RyArxiv
Robotics 41
☆ Whole-Body Conditioned Egocentric Video Prediction
We train models to Predict Ego-centric Video from human Actions (PEVA), given the past video and an action represented by the relative 3D body pose. By conditioning on kinematic pose trajectories, structured by the joint hierarchy of the body, our model learns to simulate how physical human actions shape the environment from a first-person point of view. We train an auto-regressive conditional diffusion transformer on Nymeria, a large-scale dataset of real-world egocentric video and body pose capture. We further design a hierarchical evaluation protocol with increasingly challenging tasks, enabling a comprehensive analysis of the model's embodied prediction and control abilities. Our work represents an initial attempt to tackle the challenges of modeling complex real-world environments and embodied agent behaviors with video prediction from the perspective of a human.
comment: Project Page: https://dannytran123.github.io/PEVA
SAM4D: Segment Anything in Camera and LiDAR Streams ICCV2025
We present SAM4D, a multi-modal and temporal foundation model designed for promptable segmentation across camera and LiDAR streams. Unified Multi-modal Positional Encoding (UMPE) is introduced to align camera and LiDAR features in a shared 3D space, enabling seamless cross-modal prompting and interaction. Additionally, we propose Motion-aware Cross-modal Memory Attention (MCMA), which leverages ego-motion compensation to enhance temporal consistency and long-horizon feature retrieval, ensuring robust segmentation across dynamically changing autonomous driving scenes. To avoid annotation bottlenecks, we develop a multi-modal automated data engine that synergizes VFM-driven video masklets, spatiotemporal 4D reconstruction, and cross-modal masklet fusion. This framework generates camera-LiDAR aligned pseudo-labels at a speed orders of magnitude faster than human annotation while preserving VFM-derived semantic fidelity in point cloud representations. We conduct extensive experiments on the constructed Waymo-4DSeg, which demonstrate the powerful cross-modal segmentation ability and great potential in data annotation of proposed SAM4D.
comment: Accepted by ICCV2025, Project Page: https://SAM4D-Project.github.io
☆ WorldVLA: Towards Autoregressive Action World Model
We present WorldVLA, an autoregressive action world model that unifies action and image understanding and generation. Our WorldVLA intergrates Vision-Language-Action (VLA) model and world model in one single framework. The world model predicts future images by leveraging both action and image understanding, with the purpose of learning the underlying physics of the environment to improve action generation. Meanwhile, the action model generates the subsequent actions based on image observations, aiding in visual understanding and in turn helps visual generation of the world model. We demonstrate that WorldVLA outperforms standalone action and world models, highlighting the mutual enhancement between the world model and the action model. In addition, we find that the performance of the action model deteriorates when generating sequences of actions in an autoregressive manner. This phenomenon can be attributed to the model's limited generalization capability for action prediction, leading to the propagation of errors from earlier actions to subsequent ones. To address this issue, we propose an attention mask strategy that selectively masks prior actions during the generation of the current action, which shows significant performance improvement in the action chunk generation task.
comment: Code: https://github.com/alibaba-damo-academy/WorldVLA
☆ Flow-Based Single-Step Completion for Efficient and Expressive Policy Learning
Generative models such as diffusion and flow-matching offer expressive policies for offline reinforcement learning (RL) by capturing rich, multimodal action distributions, but their iterative sampling introduces high inference costs and training instability due to gradient propagation across sampling steps. We propose the \textit{Single-Step Completion Policy} (SSCP), a generative policy trained with an augmented flow-matching objective to predict direct completion vectors from intermediate flow samples, enabling accurate, one-shot action generation. In an off-policy actor-critic framework, SSCP combines the expressiveness of generative models with the training and inference efficiency of unimodal policies, without requiring long backpropagation chains. Our method scales effectively to offline, offline-to-online, and online RL settings, offering substantial gains in speed and adaptability over diffusion-based baselines. We further extend SSCP to goal-conditioned RL, enabling flat policies to exploit subgoal structures without explicit hierarchical inference. SSCP achieves strong results across standard offline RL and behavior cloning benchmarks, positioning it as a versatile, expressive, and efficient framework for deep RL and sequential decision-making.
☆ EndoFlow-SLAM: Real-Time Endoscopic SLAM with Flow-Constrained Gaussian Splatting
Efficient three-dimensional reconstruction and real-time visualization are critical in surgical scenarios such as endoscopy. In recent years, 3D Gaussian Splatting (3DGS) has demonstrated remarkable performance in efficient 3D reconstruction and rendering. Most 3DGS-based Simultaneous Localization and Mapping (SLAM) methods only rely on the appearance constraints for optimizing both 3DGS and camera poses. However, in endoscopic scenarios, the challenges include photometric inconsistencies caused by non-Lambertian surfaces and dynamic motion from breathing affects the performance of SLAM systems. To address these issues, we additionally introduce optical flow loss as a geometric constraint, which effectively constrains both the 3D structure of the scene and the camera motion. Furthermore, we propose a depth regularisation strategy to mitigate the problem of photometric inconsistencies and ensure the validity of 3DGS depth rendering in endoscopic scenes. In addition, to improve scene representation in the SLAM system, we improve the 3DGS refinement strategy by focusing on viewpoints corresponding to Keyframes with suboptimal rendering quality frames, achieving better rendering results. Extensive experiments on the C3VD static dataset and the StereoMIS dynamic dataset demonstrate that our method outperforms existing state-of-the-art methods in novel view synthesis and pose estimation, exhibiting high performance in both static and dynamic surgical scenes. The source code will be publicly available upon paper acceptance.
☆ ToosiCubix: Monocular 3D Cuboid Labeling via Vehicle Part Annotations
Many existing methods for 3D cuboid annotation of vehicles rely on expensive and carefully calibrated camera-LiDAR or stereo setups, limiting their accessibility for large-scale data collection. We introduce ToosiCubix, a simple yet powerful approach for annotating ground-truth cuboids using only monocular images and intrinsic camera parameters. Our method requires only about 10 user clicks per vehicle, making it highly practical for adding 3D annotations to existing datasets originally collected without specialized equipment. By annotating specific features (e.g., wheels, car badge, symmetries) across different vehicle parts, we accurately estimate each vehicle's position, orientation, and dimensions up to a scale ambiguity (8 DoF). The geometric constraints are formulated as an optimization problem, which we solve using a coordinate descent strategy, alternating between Perspective-n-Points (PnP) and least-squares subproblems. To handle common ambiguities such as scale and unobserved dimensions, we incorporate probabilistic size priors, enabling 9 DoF cuboid placements. We validate our annotations against the KITTI and Cityscapes3D datasets, demonstrating that our method offers a cost-effective and scalable solution for high-quality 3D cuboid annotation.
Real-time Terrain Analysis for Off-road Autonomous Vehicles
This research addresses critical autonomous vehicle control challenges arising from road roughness variation, which induces course deviations and potential loss of road contact during steering operations. We present a novel real-time road roughness estimation system employing Bayesian calibration methodology that processes axle accelerations to predict terrain roughness with quantifiable confidence measures. The technical framework integrates a Gaussian process surrogate model with a simulated half-vehicle model, systematically processing vehicle velocity and road surface roughness parameters to generate corresponding axle acceleration responses. The Bayesian calibration routine performs inverse estimation of road roughness from observed accelerations and velocities, yielding posterior distributions that quantify prediction uncertainty for adaptive risk management. Training data generation utilizes Latin Hypercube sampling across comprehensive velocity and roughness parameter spaces, while the calibrated model integrates seamlessly with a Simplex controller architecture to dynamically adjust velocity limits based on real-time roughness predictions. Experimental validation on stochastically generated surfaces featuring varying roughness regions demonstrates robust real-time characterization capabilities, with the integrated Simplex control strategy effectively enhancing autonomous vehicle operational safety through proactive surface condition response. This innovative Bayesian framework establishes a comprehensive foundation for mitigating roughness-related operational risks while simultaneously improving efficiency and safety margins in autonomous vehicle systems.
☆ "Who Should I Believe?": User Interpretation and Decision-Making When a Family Healthcare Robot Contradicts Human Memory
Advancements in robotic capabilities for providing physical assistance, psychological support, and daily health management are making the deployment of intelligent healthcare robots in home environments increasingly feasible in the near future. However, challenges arise when the information provided by these robots contradicts users' memory, raising concerns about user trust and decision-making. This paper presents a study that examines how varying a robot's level of transparency and sociability influences user interpretation, decision-making and perceived trust when faced with conflicting information from a robot. In a 2 x 2 between-subjects online study, 176 participants watched videos of a Furhat robot acting as a family healthcare assistant and suggesting a fictional user to take medication at a different time from that remembered by the user. Results indicate that robot transparency influenced users' interpretation of information discrepancies: with a low transparency robot, the most frequent assumption was that the user had not correctly remembered the time, while with the high transparency robot, participants were more likely to attribute the discrepancy to external factors, such as a partner or another household member modifying the robot's information. Additionally, participants exhibited a tendency toward overtrust, often prioritizing the robot's recommendations over the user's memory, even when suspecting system malfunctions or third-party interference. These findings highlight the impact of transparency mechanisms in robotic systems, the complexity and importance associated with system access control for multi-user robots deployed in home environments, and the potential risks of users' over reliance on robots in sensitive domains such as healthcare.
comment: 8 pages
☆ Active Disturbance Rejection Control for Trajectory Tracking of a Seagoing USV: Design, Simulation, and Field Experiments IROS 2025
Unmanned Surface Vessels (USVs) face significant control challenges due to uncertain environmental disturbances like waves and currents. This paper proposes a trajectory tracking controller based on Active Disturbance Rejection Control (ADRC) implemented on the DUS V2500. A custom simulation incorporating realistic waves and current disturbances is developed to validate the controller's performance, supported by further validation through field tests in the harbour of Scheveningen, the Netherlands, and at sea. Simulation results demonstrate that ADRC significantly reduces cross-track error across all tested conditions compared to a baseline PID controller but increases control effort and energy consumption. Field trials confirm these findings while revealing a further increase in energy consumption during sea trials compared to the baseline.
comment: Accepted for presentation at IROS 2025. Submitted version
☆ ACTLLM: Action Consistency Tuned Large Language Model
This paper introduces ACTLLM (Action Consistency Tuned Large Language Model), a novel approach for robot manipulation in dynamic environments. Traditional vision-based systems often struggle to learn visual representations that excel in both task execution and spatial reasoning, thereby limiting their adaptability in dynamic environments. ACTLLM addresses these challenges by harnessing language to craft structured scene descriptors, providing a uniform interface for both spatial understanding and task performance through flexible language instructions. Moreover, we introduce a novel action consistency constraint that aligns visual perception with corresponding actions, thereby enhancing the learning of actionable visual representations. Additionally, we have reformulated the Markov decision process for manipulation tasks into a multi-turn visual dialogue framework. This approach enables the modeling of long-term task execution with enhanced contextual relevance derived from the history of task execution. During our evaluation, ACTLLM excels in diverse scenarios, proving its effectiveness on challenging vision-based robot manipulation tasks.
☆ Real-Time ESFP: Estimating, Smoothing, Filtering, and Pose-Mapping
This paper presents ESFP, an end-to-end pipeline that converts monocular RGB video into executable joint trajectories for a low-cost 4-DoF desktop arm. ESFP comprises four sequential modules. (1) Estimating: ROMP lifts each frame to a 24-joint 3-D skeleton. (2) Smoothing: the proposed HPSTM-a sequence-to-sequence Transformer with self-attention-combines long-range temporal context with a differentiable forward-kinematics decoder, enforcing constant bone lengths and anatomical plausibility while jointly predicting joint means and full covariances. (3) Filtering: root-normalized trajectories are variance-weighted according to HPSTM's uncertainty estimates, suppressing residual noise. (4) Pose-Mapping: a geometric retargeting layer transforms shoulder-elbow-wrist triples into the uArm's polar workspace, preserving wrist orientation.
☆ World-aware Planning Narratives Enhance Large Vision-Language Model Planner
Large Vision-Language Models (LVLMs) show promise for embodied planning tasks but struggle with complex scenarios involving unfamiliar environments and multi-step goals. Current approaches rely on environment-agnostic imitation learning that disconnects instructions from environmental contexts, causing models to struggle with context-sensitive instructions and rely on supplementary cues rather than visual reasoning during long-horizon interactions. In this work, we propose World-Aware Planning Narrative Enhancement (WAP), a framework that infuses LVLMs with comprehensive environmental understanding through four cognitive capabilities (visual appearance modeling, spatial reasoning, functional abstraction, and syntactic grounding) while developing and evaluating models using only raw visual observations through curriculum learning. Evaluations on the EB-ALFRED benchmark demonstrate substantial improvements, with Qwen2.5-VL achieving a 60.7 absolute improvement in task success rates, particularly in commonsense reasoning (+60.0) and long-horizon planning (+70.0). Notably, our enhanced open-source models outperform proprietary systems like GPT-4o and Claude-3.5-Sonnet by a large margin.
Dynamic Risk-Aware MPPI for Mobile Robots in Crowds via Efficient Monte Carlo Approximations IROS 2025
Deploying mobile robots safely among humans requires the motion planner to account for the uncertainty in the other agents' predicted trajectories. This remains challenging in traditional approaches, especially with arbitrarily shaped predictions and real-time constraints. To address these challenges, we propose a Dynamic Risk-Aware Model Predictive Path Integral control (DRA-MPPI), a motion planner that incorporates uncertain future motions modelled with potentially non-Gaussian stochastic predictions. By leveraging MPPI's gradient-free nature, we propose a method that efficiently approximates the joint Collision Probability (CP) among multiple dynamic obstacles for several hundred sampled trajectories in real-time via a Monte Carlo (MC) approach. This enables the rejection of samples exceeding a predefined CP threshold or the integration of CP as a weighted objective within the navigation cost function. Consequently, DRA-MPPI mitigates the freezing robot problem while enhancing safety. Real-world and simulated experiments with multiple dynamic obstacles demonstrate DRA-MPPI's superior performance compared to state-of-the-art approaches, including Scenario-based Model Predictive Control (S-MPC), Frenet planner, and vanilla MPPI.
comment: Accepted for presentation at IROS 2025. Submitted Version
☆ Unlocking Constraints: Source-Free Occlusion-Aware Seamless Segmentation ICCV 2025
Panoramic image processing is essential for omni-context perception, yet faces constraints like distortions, perspective occlusions, and limited annotations. Previous unsupervised domain adaptation methods transfer knowledge from labeled pinhole data to unlabeled panoramic images, but they require access to source pinhole data. To address these, we introduce a more practical task, i.e., Source-Free Occlusion-Aware Seamless Segmentation (SFOASS), and propose its first solution, called UNconstrained Learning Omni-Context Knowledge (UNLOCK). Specifically, UNLOCK includes two key modules: Omni Pseudo-Labeling Learning and Amodal-Driven Context Learning. While adapting without relying on source data or target labels, this framework enhances models to achieve segmentation with 360{\deg} viewpoint coverage and occlusion-aware reasoning. Furthermore, we benchmark the proposed SFOASS task through both real-to-real and synthetic-to-real adaptation settings. Experimental results show that our source-free method achieves performance comparable to source-dependent methods, yielding state-of-the-art scores of 10.9 in mAAP and 11.6 in mAP, along with an absolute improvement of +4.3 in mAPQ over the source-only method. All data and code will be made publicly available at https://github.com/yihong-97/UNLOCK.
comment: Accepted to ICCV 2025. All data and code will be made publicly available at https://github.com/yihong-97/UNLOCK
☆ Out-of-Distribution Semantic Occupancy Prediction
3D Semantic Occupancy Prediction is crucial for autonomous driving, providing a dense, semantically rich environmental representation. However, existing methods focus on in-distribution scenes, making them susceptible to Out-of-Distribution (OoD) objects and long-tail distributions, which increases the risk of undetected anomalies and misinterpretations, posing safety hazards. To address these challenges, we introduce Out-of-Distribution Semantic Occupancy Prediction, targeting OoD detection in 3D voxel space. To fill the gaps in the dataset, we propose a Synthetic Anomaly Integration Pipeline that injects synthetic anomalies while preserving realistic spatial and occlusion patterns, enabling the creation of two datasets: VAA-KITTI and VAA-KITTI-360. We introduce OccOoD, a novel framework integrating OoD detection into 3D semantic occupancy prediction, with Voxel-BEV Progressive Fusion (VBPF) leveraging an RWKV-based branch to enhance OoD detection via geometry-semantic fusion. Experimental results demonstrate that OccOoD achieves state-of-the-art OoD detection with an AuROC of 67.34% and an AuPRCr of 29.21% within a 1.2m region, while maintaining competitive occupancy prediction performance. The established datasets and source code will be made publicly available at https://github.com/7uHeng/OccOoD.
comment: The established datasets and source code will be made publicly available at https://github.com/7uHeng/OccOoD
☆ UAIbot: Beginner-friendly web-based simulator for interactive robotics learning and research
This paper presents UAIbot, a free and open-source web-based robotics simulator designed to address the educational and research challenges conventional simulation platforms generally face. The Python and JavaScript interfaces of UAIbot enable accessible hands-on learning experiences without cumbersome installations. By allowing users to explore fundamental mathematical and physical principles interactively, ranging from manipulator kinematics to pedestrian flow dynamics, UAIbot provides an effective tool for deepening student understanding, facilitating rapid experimentation, and enhancing research dissemination.
comment: 12 pages, 8 figures, submitted to Springer proceedings
GoIRL: Graph-Oriented Inverse Reinforcement Learning for Multimodal Trajectory Prediction ICML 2025
Trajectory prediction for surrounding agents is a challenging task in autonomous driving due to its inherent uncertainty and underlying multimodality. Unlike prevailing data-driven methods that primarily rely on supervised learning, in this paper, we introduce a novel Graph-oriented Inverse Reinforcement Learning (GoIRL) framework, which is an IRL-based predictor equipped with vectorized context representations. We develop a feature adaptor to effectively aggregate lane-graph features into grid space, enabling seamless integration with the maximum entropy IRL paradigm to infer the reward distribution and obtain the policy that can be sampled to induce multiple plausible plans. Furthermore, conditioned on the sampled plans, we implement a hierarchical parameterized trajectory generator with a refinement module to enhance prediction accuracy and a probability fusion strategy to boost prediction confidence. Extensive experimental results showcase our approach not only achieves state-of-the-art performance on the large-scale Argoverse & nuScenes motion forecasting benchmarks but also exhibits superior generalization abilities compared to existing supervised models.
comment: Accepted by ICML 2025
☆ CURL-SLAM: Continuous and Compact LiDAR Mapping
This paper studies 3D LiDAR mapping with a focus on developing an updatable and localizable map representation that enables continuity, compactness and consistency in 3D maps. Traditional LiDAR Simultaneous Localization and Mapping (SLAM) systems often rely on 3D point cloud maps, which typically require extensive storage to preserve structural details in large-scale environments. In this paper, we propose a novel paradigm for LiDAR SLAM by leveraging the Continuous and Ultra-compact Representation of LiDAR (CURL) introduced in [1]. Our proposed LiDAR mapping approach, CURL-SLAM, produces compact 3D maps capable of continuous reconstruction at variable densities using CURL's spherical harmonics implicit encoding, and achieves global map consistency after loop closure. Unlike popular Iterative Closest Point (ICP)-based LiDAR odometry techniques, CURL-SLAM formulates LiDAR pose estimation as a unique optimization problem tailored for CURL and extends it to local Bundle Adjustment (BA), enabling simultaneous pose refinement and map correction. Experimental results demonstrate that CURL-SLAM achieves state-of-the-art 3D mapping quality and competitive LiDAR trajectory accuracy, delivering sensor-rate real-time performance (10 Hz) on a CPU. We will release the CURL-SLAM implementation to the community.
Control of Marine Robots in the Era of Data-Driven Intelligence
The control of marine robots has long relied on model-based methods grounded in classical and modern control theory. However, the nonlinearity and uncertainties inherent in robot dynamics, coupled with the complexity of marine environments, have revealed the limitations of conventional control methods. The rapid evolution of machine learning has opened new avenues for incorporating data-driven intelligence into control strategies, prompting a paradigm shift in the control of marine robots. This paper provides a review of recent progress in marine robot control through the lens of this emerging paradigm. The review covers both individual and cooperative marine robotic systems, highlighting notable achievements in data-driven control of marine robots and summarizing open-source resources that support the development and validation of advanced control methods. Finally, several future perspectives are outlined to guide research toward achieving high-level autonomy for marine robots in real-world applications. This paper aims to serve as a roadmap toward the next-generation control framework of marine robots in the era of data-driven intelligence.
☆ Knowledge-Driven Imitation Learning: Enabling Generalization Across Diverse Conditions IROS 2025
Imitation learning has emerged as a powerful paradigm in robot manipulation, yet its generalization capability remains constrained by object-specific dependencies in limited expert demonstrations. To address this challenge, we propose knowledge-driven imitation learning, a framework that leverages external structural semantic knowledge to abstract object representations within the same category. We introduce a novel semantic keypoint graph as a knowledge template and develop a coarse-to-fine template-matching algorithm that optimizes both structural consistency and semantic similarity. Evaluated on three real-world robotic manipulation tasks, our method achieves superior performance, surpassing image-based diffusion policies with only one-quarter of the expert demonstrations. Extensive experiments further demonstrate its robustness across novel objects, backgrounds, and lighting conditions. This work pioneers a knowledge-driven approach to data-efficient robotic learning in real-world settings. Code and more materials are available on https://knowledge-driven.github.io/.
comment: IROS 2025
☆ V2X-REALM: Vision-Language Model-Based Robust End-to-End Cooperative Autonomous Driving with Adaptive Long-Tail Modeling
Ensuring robust planning and decision-making under rare, diverse, and visually degraded long-tail scenarios remains a fundamental challenge for autonomous driving in urban environments. This issue becomes more critical in cooperative settings, where vehicles and infrastructure jointly perceive and reason across complex environments. To address this challenge, we propose V2X-REALM, a vision-language model (VLM)-based framework with adaptive multimodal learning for robust cooperative autonomous driving under long-tail scenarios. V2X-REALM introduces three core innovations: (i) a prompt-driven long-tail scenario generation and evaluation pipeline that leverages foundation models to synthesize realistic long-tail conditions such as snow and fog across vehicle- and infrastructure-side views, enriching training diversity efficiently; (ii) a gated multi-scenario adaptive attention module that modulates the visual stream using scenario priors to recalibrate ambiguous or corrupted features; and (iii) a multi-task scenario-aware contrastive learning objective that improves multimodal alignment and promotes cross-scenario feature separability. Extensive experiments demonstrate that V2X-REALM significantly outperforms existing baselines in robustness, semantic reasoning, safety, and planning accuracy under complex, challenging driving conditions, advancing the scalability of end-to-end cooperative autonomous driving.
☆ STEP Planner: Constructing cross-hierarchical subgoal tree as an embodied long-horizon task planner
The ability to perform reliable long-horizon task planning is crucial for deploying robots in real-world environments. However, directly employing Large Language Models (LLMs) as action sequence generators often results in low success rates due to their limited reasoning ability for long-horizon embodied tasks. In the STEP framework, we construct a subgoal tree through a pair of closed-loop models: a subgoal decomposition model and a leaf node termination model. Within this framework, we develop a hierarchical tree structure that spans from coarse to fine resolutions. The subgoal decomposition model leverages a foundation LLM to break down complex goals into manageable subgoals, thereby spanning the subgoal tree. The leaf node termination model provides real-time feedback based on environmental states, determining when to terminate the tree spanning and ensuring each leaf node can be directly converted into a primitive action. Experiments conducted in both the VirtualHome WAH-NL benchmark and on real robots demonstrate that STEP achieves long-horizon embodied task completion with success rates up to 34% (WAH-NL) and 25% (real robot) outperforming SOTA methods.
☆ Fault-Tolerant Spacecraft Attitude Determination using State Estimation Techniques
The extended and unscented Kalman filter, and the particle filter provide a robust framework for fault-tolerant attitude estimation on spacecraft. This paper explores how each filter performs for a large satellite in a low earth orbit. Additionally, various techniques, built on these filters, for fault detection, isolation and recovery from erroneous sensor measurements, are analyzed. Key results from this analysis include filter performance for various fault modes.
comment: 8 pages, 19 figures
☆ Our Coding Adventure: Using LLMs to Personalise the Narrative of a Tangible Programming Robot for Preschoolers
Finding balanced ways to employ Large Language Models (LLMs) in education is a challenge due to inherent risks of poor understanding of the technology and of a susceptible audience. This is particularly so with younger children, who are known to have difficulties with pervasive screen time. Working with a tangible programming robot called Cubetto, we propose an approach to benefit from the capabilities of LLMs by employing such models in the preparation of personalised storytelling, necessary for preschool children to get accustomed to the practice of commanding the robot. We engage in action research to develop an early version of a formalised process to rapidly prototype game stories for Cubetto. Our approach has both reproducible results, because it employs open weight models, and is model-agnostic, because we test it with 5 different LLMs. We document on one hand the process, the used materials and prompts, and on the other the learning experience and outcomes. We deem the generation successful for the intended purposes of using the results as a teacher aid. Testing the models on 4 different task scenarios, we encounter issues of consistency and hallucinations and document the corresponding evaluation process and attempts (some successful and some not) to overcome these issues. Importantly, the process does not expose children to LLMs directly. Rather, the technology is used to help teachers easily develop personalised narratives on children's preferred topics. We believe our method is adequate for preschool classes and we are planning to further experiment in real-world educational settings.
comment: accepted at D-SAIL Workshop - Transformative Curriculum Design: Digitalization, Sustainability, and AI Literacy for 21st Century Learning
☆ ThermalDiffusion: Visual-to-Thermal Image-to-Image Translation for Autonomous Navigation ICRA 2025
Autonomous systems rely on sensors to estimate the environment around them. However, cameras, LiDARs, and RADARs have their own limitations. In nighttime or degraded environments such as fog, mist, or dust, thermal cameras can provide valuable information regarding the presence of objects of interest due to their heat signature. They make it easy to identify humans and vehicles that are usually at higher temperatures compared to their surroundings. In this paper, we focus on the adaptation of thermal cameras for robotics and automation, where the biggest hurdle is the lack of data. Several multi-modal datasets are available for driving robotics research in tasks such as scene segmentation, object detection, and depth estimation, which are the cornerstone of autonomous systems. However, they are found to be lacking in thermal imagery. Our paper proposes a solution to augment these datasets with synthetic thermal data to enable widespread and rapid adaptation of thermal cameras. We explore the use of conditional diffusion models to convert existing RGB images to thermal images using self-attention to learn the thermal properties of real-world objects.
comment: Accepted at Thermal Infrared in Robotics (TIRO) Workshop, ICRA 2025
☆ Parallels Between VLA Model Post-Training and Human Motor Learning: Progress, Challenges, and Trends
Vision-language-action (VLA) models extend vision-language models (VLM) by integrating action generation modules for robotic manipulation. Leveraging strengths of VLM in vision perception and instruction understanding, VLA models exhibit promising generalization across diverse manipulation tasks. However, applications demanding high precision and accuracy reveal performance gaps without further adaptation. Evidence from multiple domains highlights the critical role of post-training to align foundational models with downstream applications, spurring extensive research on post-training VLA models. VLA model post-training aims to address the challenge of improving an embodiment's ability to interact with the environment for the given tasks, analogous to the process of humans motor skills acquisition. Accordingly, this paper reviews post-training strategies for VLA models through the lens of human motor learning, focusing on three dimensions: environments, embodiments, and tasks. A structured taxonomy is introduced aligned with human learning mechanisms: (1) enhancing environmental perception, (2) improving embodiment awareness, (3) deepening task comprehension, and (4) multi-component integration. Finally, key challenges and trends in post-training VLA models are identified, establishing a conceptual framework to guide future research. This work delivers both a comprehensive overview of current VLA model post-training methods from a human motor learning perspective and practical insights for VLA model development. (Project website: https://github.com/AoqunJin/Awesome-VLA-Post-Training)
Cooperative Circumnavigation for Multi-Quadrotor Systems via Onboard Sensing
A cooperative circumnavigation framework is proposed for multi-quadrotor systems to enclose and track a moving target without reliance on external localization systems. The distinct relationships between quadrotor-quadrotor and quadrotor-target interactions are evaluated using a heterogeneous perception strategy and corresponding state estimation algorithms. A modified Kalman filter is developed to fuse visual-inertial odometry with range measurements to enhance the accuracy of inter-quadrotor relative localization. An event-triggered distributed Kalman filter is designed to achieve robust target state estimation under visual occlusion by incorporating neighbor measurements and estimated inter-quadrotor relative positions. Using the estimation results, a cooperative circumnavigation controller is constructed, leveraging an oscillator-based autonomous formation flight strategy. We conduct extensive indoor and outdoor experiments to validate the efficiency of the proposed circumnavigation framework in occluded environments. Furthermore, a quadrotor failure experiment highlights the inherent fault tolerance property of the proposed framework, underscoring its potential for deployment in search-and-rescue operations.
comment: 8 Pages, 7 figures. Accepted by RA-L
☆ Effect of Haptic Feedback on Avoidance Behavior and Visual Exploration in Dynamic VR Pedestrian Environment
Human crowd simulation in virtual reality (VR) is a powerful tool with potential applications including emergency evacuation training and assessment of building layout. While haptic feedback in VR enhances immersive experience, its effect on walking behavior in dense and dynamic pedestrian flows is unknown. Through a user study, we investigated how haptic feedback changes user walking motion in crowded pedestrian flows in VR. The results indicate that haptic feedback changed users' collision avoidance movements, as measured by increased walking trajectory length and change in pelvis angle. The displacements of users' lateral position and pelvis angle were also increased in the instantaneous response to a collision with a non-player character (NPC), even when the NPC was inside the field of view. Haptic feedback also enhanced users' awareness and visual exploration when an NPC approached from the side and back. Furthermore, variation in walking speed was increased by the haptic feedback. These results suggested that the haptic feedback enhanced users' sensitivity to a collision in VR environment.
♻ ☆ ReactEMG: Zero-Shot, Low-Latency Intent Detection via sEMG
Surface electromyography (sEMG) signals show promise for effective human-computer interfaces, particularly in rehabilitation and prosthetics. However, challenges remain in developing systems that respond quickly and reliably to user intent, across different subjects and without requiring time-consuming calibration. In this work, we propose a framework for EMG-based intent detection that addresses these challenges. Unlike traditional gesture recognition models that wait until a gesture is completed before classifying it, our approach uses a segmentation strategy to assign intent labels at every timestep as the gesture unfolds. We introduce a novel masked modeling strategy that aligns muscle activations with their corresponding user intents, enabling rapid onset detection and stable tracking of ongoing gestures. In evaluations against baseline methods, considering both accuracy and stability for device control, our approach surpasses state-of-the-art performance in zero-shot transfer conditions, demonstrating its potential for wearable robotics and next-generation prosthetic systems. Our project page is available at: https://reactemg.github.io
♻ ☆ Consensus-Driven Uncertainty for Robotic Grasping based on RGB Perception IROS 2025
Deep object pose estimators are notoriously overconfident. A grasping agent that both estimates the 6-DoF pose of a target object and predicts the uncertainty of its own estimate could avoid task failure by choosing not to act under high uncertainty. Even though object pose estimation improves and uncertainty quantification research continues to make strides, few studies have connected them to the downstream task of robotic grasping. We propose a method for training lightweight, deep networks to predict whether a grasp guided by an image-based pose estimate will succeed before that grasp is attempted. We generate training data for our networks via object pose estimation on real images and simulated grasping. We also find that, despite high object variability in grasping trials, networks benefit from training on all objects jointly, suggesting that a diverse variety of objects can nevertheless contribute to the same goal.
comment: Accepted to IROS 2025
♻ ☆ Learning Efficient and Robust Language-conditioned Manipulation using Textual-Visual Relevancy and Equivariant Language Mapping
Controlling robots through natural language is pivotal for enhancing human-robot collaboration and synthesizing complex robot behaviors. Recent works that are trained on large robot datasets show impressive generalization abilities. However, such pretrained methods are (1) often fragile to unseen scenarios, and (2) expensive to adapt to new tasks. This paper introduces Grounded Equivariant Manipulation (GEM), a robust yet efficient approach that leverages pretrained vision-language models with equivariant language mapping for language-conditioned manipulation tasks. Our experiments demonstrate GEM's high sample efficiency and generalization ability across diverse tasks in both simulation and the real world. GEM achieves similar or higher performance with orders of magnitude fewer robot data compared with major data-efficient baselines such as CLIPort and VIMA. Finally, our approach demonstrates greater robustness compared to large VLA model, e.g, OpenVLA, at correctly interpreting natural language commands on unseen objects and poses. Code, data, and training details are available https://saulbatman.github.io/gem_page/
♻ ☆ 3D Hierarchical Panoptic Segmentation in Real Orchard Environments Across Different Sensors IROS 2025
Crop yield estimation is a relevant problem in agriculture, because an accurate yield estimate can support farmers' decisions on harvesting or precision intervention. Robots can help to automate this process. To do so, they need to be able to perceive the surrounding environment to identify target objects such as trees and plants. In this paper, we introduce a novel approach to address the problem of hierarchical panoptic segmentation of apple orchards on 3D data from different sensors. Our approach is able to simultaneously provide semantic segmentation, instance segmentation of trunks and fruits, and instance segmentation of trees (a trunk with its fruits). This allows us to identify relevant information such as individual plants, fruits, and trunks, and capture the relationship among them, such as precisely estimate the number of fruits associated to each tree in an orchard. To efficiently evaluate our approach for hierarchical panoptic segmentation, we provide a dataset designed specifically for this task. Our dataset is recorded in Bonn, Germany, in a real apple orchard with a variety of sensors, spanning from a terrestrial laser scanner to a RGB-D camera mounted on different robots platforms. The experiments show that our approach surpasses state-of-the-art approaches in 3D panoptic segmentation in the agricultural domain, while also providing full hierarchical panoptic segmentation. Our dataset is publicly available at https://www.ipb.uni-bonn.de/data/hops/. The open-source implementation of our approach is available at https://github.com/PRBonn/hapt3D.
comment: Accepted to IROS 2025
♻ ☆ Rapid Gyroscope Calibration: A Deep Learning Approach
Low-cost gyroscope calibration is essential for ensuring the accuracy and reliability of gyroscope measurements. Stationary calibration estimates the deterministic parts of measurement errors. To this end, a common practice is to average the gyroscope readings during a predefined period and estimate the gyroscope bias. Calibration duration plays a crucial role in performance, therefore, longer periods are preferred. However, some applications require quick startup times and calibration is therefore allowed only for a short time. In this work, we focus on reducing low-cost gyroscope calibration time using deep learning methods. We propose an end-to-end convolutional neural network for the application of gyroscope calibration. We explore the possibilities of using multiple real and virtual gyroscopes to improve the calibration performance of single gyroscopes. To train and validate our approach, we recorded a dataset consisting of 186.6 hours of gyroscope readings, using 36 gyroscopes of four different brands. We also created a virtual dataset consisting of simulated gyroscope readings. The six datasets were used to evaluate our proposed approach. One of our key achievements in this work is reducing gyroscope calibration time by up to 89% using three low-cost gyroscopes. Our dataset is publicly available to allow reproducibility of our work and to increase research in the field.
comment: 10 Pages, 14 Figures
♻ ☆ PCF-Grasp: Converting Point Completion to Geometry Feature to Enhance 6-DoF Grasp
The 6-Degree of Freedom (DoF) grasp method based on point clouds has shown significant potential in enabling robots to grasp target objects. However, most existing methods are based on the point clouds (2.5D points) generated from single-view depth images. These point clouds only have one surface side of the object providing incomplete geometry information, which mislead the grasping algorithm to judge the shape of the target object, resulting in low grasping accuracy. Humans can accurately grasp objects from a single view by leveraging their geometry experience to estimate object shapes. Inspired by humans, we propose a novel 6-DoF grasping framework that converts the point completion results as object shape features to train the 6-DoF grasp network. Here, point completion can generate approximate complete points from the 2.5D points similar to the human geometry experience, and converting it as shape features is the way to utilize it to improve grasp efficiency. Furthermore, due to the gap between the network generation and actual execution, we integrate a score filter into our framework to select more executable grasp proposals for the real robot. This enables our method to maintain a high grasp quality in any camera viewpoint. Extensive experiments demonstrate that utilizing complete point features enables the generation of significantly more accurate grasp proposals and the inclusion of a score filter greatly enhances the credibility of real-world robot grasping. Our method achieves a 17.8\% success rate higher than the state-of-the-art method in real-world experiments.
♻ ☆ RAMBO: RL-augmented Model-based Whole-body Control for Loco-manipulation
Loco-manipulation, physical interaction of various objects that is concurrently coordinated with locomotion, remains a major challenge for legged robots due to the need for both precise end-effector control and robustness to unmodeled dynamics. While model-based controllers provide precise planning via online optimization, they are limited by model inaccuracies. In contrast, learning-based methods offer robustness, but they struggle with precise modulation of interaction forces. We introduce RAMBO, a hybrid framework that integrates model-based whole-body control within a feedback policy trained with reinforcement learning. The model-based module generates feedforward torques by solving a quadratic program, while the policy provides feedback corrective terms to enhance robustness. We validate our framework on a quadruped robot across a diverse set of real-world loco-manipulation tasks, such as pushing a shopping cart, balancing a plate, and holding soft objects, in both quadrupedal and bipedal walking. Our experiments demonstrate that RAMBO enables precise manipulation capabilities while achieving robust and dynamic locomotion.
♻ ☆ The Starlink Robot: A Platform and Dataset for Mobile Satellite Communication
The integration of satellite communication into mobile devices represents a paradigm shift in connectivity, yet the performance characteristics under motion and environmental occlusion remain poorly understood. We present the Starlink Robot, the first mobile robotic platform equipped with Starlink satellite internet, comprehensive sensor suite including upward-facing camera, LiDAR, and IMU, designed to systematically study satellite communication performance during movement. Our multi-modal dataset captures synchronized communication metrics, motion dynamics, sky visibility, and 3D environmental context across diverse scenarios including steady-state motion, variable speeds, and different occlusion conditions. This platform and dataset enable researchers to develop motion-aware communication protocols, predict connectivity disruptions, and optimize satellite communication for emerging mobile applications from smartphones to autonomous vehicles. The project is available at https://github.com/StarlinkRobot.
♻ ☆ CREStE: Scalable Mapless Navigation with Internet Scale Priors and Counterfactual Guidance
We introduce CREStE, a scalable learning-based mapless navigation framework to address the open-world generalization and robustness challenges of outdoor urban navigation. Key to achieving this is learning perceptual representations that generalize to open-set factors (e.g. novel semantic classes, terrains, dynamic entities) and inferring expert-aligned navigation costs from limited demonstrations. CREStE addresses both these issues, introducing 1) a visual foundation model (VFM) distillation objective for learning open-set structured bird's-eye-view perceptual representations, and 2) counterfactual inverse reinforcement learning (IRL), a novel active learning formulation that uses counterfactual trajectory demonstrations to reason about the most important cues when inferring navigation costs. We evaluate CREStE on the task of kilometer-scale mapless navigation in a variety of city, offroad, and residential environments and find that it outperforms all state-of-the-art approaches with 70% fewer human interventions, including a 2-kilometer mission in an unseen environment with just 1 intervention; showcasing its robustness and effectiveness for long-horizon mapless navigation. Videos and additional materials can be found on the project page: https://amrl.cs.utexas.edu/creste
comment: 18 pages, 10 figures, 5 tables
♻ ☆ Finding the Easy Way Through -- the Probabilistic Gap Planner for Social Robot Navigation
In Social Robot Navigation, autonomous agents need to resolve many sequential interactions with other agents. State-of-the art planners can efficiently resolve the next, imminent interaction cooperatively and do not focus on longer planning horizons. This makes it hard to maneuver scenarios where the agent needs to select a good strategy to find gaps or channels in the crowd. We propose to decompose trajectory planning into two separate steps: Conflict avoidance for finding good, macroscopic trajectories, and cooperative collision avoidance (CCA) for resolving the next interaction optimally. We propose the Probabilistic Gap Planner (PGP) as a conflict avoidance planner. PGP modifies an established probabilistic collision risk model to include a general assumption of cooperativity. PGP biases the short-term CCA planner to head towards gaps in the crowd. In extensive simulations with crowds of varying density, we show that using PGP in addition to state-of-the-art CCA planners improves the agents' performance: On average, agents keep more space to others, create less tension, and cause fewer collisions. This typically comes at the expense of slightly longer paths. PGP runs in real-time on WaPOCHI mobile robot by Honda R&D.
♻ ☆ IMPACT: Behavioral Intention-aware Multimodal Trajectory Prediction with Adaptive Context Trimming
While most prior research has focused on improving the precision of multimodal trajectory predictions, the explicit modeling of multimodal behavioral intentions (e.g., yielding, overtaking) remains relatively underexplored. This paper proposes a unified framework that jointly predicts both behavioral intentions and trajectories to enhance prediction accuracy, interpretability, and efficiency. Specifically, we employ a shared context encoder for both intention and trajectory predictions, thereby reducing structural redundancy and information loss. Moreover, we address the lack of ground-truth behavioral intention labels in mainstream datasets (Waymo, Argoverse) by auto-labeling these datasets, thus advancing the community's efforts in this direction. We further introduce a vectorized occupancy prediction module that infers the probability of each map polyline being occupied by the target vehicle's future trajectory. By leveraging these intention and occupancy prediction priors, our method conducts dynamic, modality-dependent pruning of irrelevant agents and map polylines in the decoding stage, effectively reducing computational overhead and mitigating noise from non-critical elements. Our approach ranks first among LiDAR-free methods on the Waymo Motion Dataset and achieves first place on the Waymo Interactive Prediction Dataset. Remarkably, even without model ensembling, our single-model framework improves the soft mean average precision (softmAP) by 10 percent compared to the second-best method in the Waymo Interactive Prediction Leaderboard. Furthermore, the proposed framework has been successfully deployed on real vehicles, demonstrating its practical effectiveness in real-world applications.
comment: under review
♻ ☆ EFEAR-4D: Ego-Velocity Filtering for Efficient and Accurate 4D radar Odometry
Odometry is a crucial component for successfully implementing autonomous navigation, relying on sensors such as cameras, LiDARs and IMUs. However, these sensors may encounter challenges in extreme weather conditions, such as snowfall and fog. The emergence of FMCW radar technology offers the potential for robust perception in adverse conditions. As the latest generation of FWCW radars, the 4D mmWave radar provides point cloud with range, azimuth, elevation, and Doppler velocity information, despite inherent sparsity and noises in the point cloud. In this paper, we propose EFEAR-4D, an accurate, highly efficient, and learning-free method for large-scale 4D radar odometry estimation. EFEAR-4D exploits Doppler velocity information delicately for robust ego-velocity estimation, resulting in a highly accurate prior guess. EFEAR-4D maintains robustness against point-cloud sparsity and noises across diverse environments through dynamic object removal and effective region-wise feature extraction. Extensive experiments on two publicly available 4D radar datasets demonstrate state-of-the-art reliability and localization accuracy of EFEAR-4D under various conditions. Furthermore, we have collected a dataset following the same route but varying installation heights of the 4D radar, emphasizing the significant impact of radar height on point cloud quality - a crucial consideration for real-world deployments. Our algorithm and dataset will be available soon at https://github.com/CLASS-Lab/EFEAR-4D.
♻ ☆ What Foundation Models can Bring for Robot Learning in Manipulation : A Survey
The realization of universal robots is an ultimate goal of researchers. However, a key hurdle in achieving this goal lies in the robots' ability to manipulate objects in their unstructured surrounding environments according to different tasks. The learning-based approach is considered an effective way to address generalization. The impressive performance of foundation models in the fields of computer vision and natural language suggests the potential of embedding foundation models into manipulation tasks as a viable path toward achieving general manipulation capability. However, we believe achieving general manipulation capability requires an overarching framework akin to auto driving. This framework should encompass multiple functional modules, with different foundation models assuming distinct roles in facilitating general manipulation capability. This survey focuses on the contributions of foundation models to robot learning for manipulation. We propose a comprehensive framework and detail how foundation models can address challenges in each module of the framework. What's more, we examine current approaches, outline challenges, suggest future research directions, and identify potential risks associated with integrating foundation models into this domain.
Computer Vision 151
☆ Whole-Body Conditioned Egocentric Video Prediction
We train models to Predict Ego-centric Video from human Actions (PEVA), given the past video and an action represented by the relative 3D body pose. By conditioning on kinematic pose trajectories, structured by the joint hierarchy of the body, our model learns to simulate how physical human actions shape the environment from a first-person point of view. We train an auto-regressive conditional diffusion transformer on Nymeria, a large-scale dataset of real-world egocentric video and body pose capture. We further design a hierarchical evaluation protocol with increasingly challenging tasks, enabling a comprehensive analysis of the model's embodied prediction and control abilities. Our work represents an initial attempt to tackle the challenges of modeling complex real-world environments and embodied agent behaviors with video prediction from the perspective of a human.
comment: Project Page: https://dannytran123.github.io/PEVA
☆ SiM3D: Single-instance Multiview Multimodal and Multisetup 3D Anomaly Detection Benchmark
We propose SiM3D, the first benchmark considering the integration of multiview and multimodal information for comprehensive 3D anomaly detection and segmentation (ADS), where the task is to produce a voxel-based Anomaly Volume. Moreover, SiM3D focuses on a scenario of high interest in manufacturing: single-instance anomaly detection, where only one object, either real or synthetic, is available for training. In this respect, SiM3D stands out as the first ADS benchmark that addresses the challenge of generalising from synthetic training data to real test data. SiM3D includes a novel multimodal multiview dataset acquired using top-tier industrial sensors and robots. The dataset features multiview high-resolution images (12 Mpx) and point clouds (7M points) for 333 instances of eight types of objects, alongside a CAD model for each type. We also provide manually annotated 3D segmentation GTs for anomalous test samples. To establish reference baselines for the proposed multiview 3D ADS task, we adapt prominent singleview methods and assess their performance using novel metrics that operate on Anomaly Volumes.
SAM4D: Segment Anything in Camera and LiDAR Streams ICCV2025
We present SAM4D, a multi-modal and temporal foundation model designed for promptable segmentation across camera and LiDAR streams. Unified Multi-modal Positional Encoding (UMPE) is introduced to align camera and LiDAR features in a shared 3D space, enabling seamless cross-modal prompting and interaction. Additionally, we propose Motion-aware Cross-modal Memory Attention (MCMA), which leverages ego-motion compensation to enhance temporal consistency and long-horizon feature retrieval, ensuring robust segmentation across dynamically changing autonomous driving scenes. To avoid annotation bottlenecks, we develop a multi-modal automated data engine that synergizes VFM-driven video masklets, spatiotemporal 4D reconstruction, and cross-modal masklet fusion. This framework generates camera-LiDAR aligned pseudo-labels at a speed orders of magnitude faster than human annotation while preserving VFM-derived semantic fidelity in point cloud representations. We conduct extensive experiments on the constructed Waymo-4DSeg, which demonstrate the powerful cross-modal segmentation ability and great potential in data annotation of proposed SAM4D.
comment: Accepted by ICCV2025, Project Page: https://SAM4D-Project.github.io
☆ HalluSegBench: Counterfactual Visual Reasoning for Segmentation Hallucination Evaluation
Recent progress in vision-language segmentation has significantly advanced grounded visual understanding. However, these models often exhibit hallucinations by producing segmentation masks for objects not grounded in the image content or by incorrectly labeling irrelevant regions. Existing evaluation protocols for segmentation hallucination primarily focus on label or textual hallucinations without manipulating the visual context, limiting their capacity to diagnose critical failures. In response, we introduce HalluSegBench, the first benchmark specifically designed to evaluate hallucinations in visual grounding through the lens of counterfactual visual reasoning. Our benchmark consists of a novel dataset of 1340 counterfactual instance pairs spanning 281 unique object classes, and a set of newly introduced metrics that quantify hallucination sensitivity under visually coherent scene edits. Experiments on HalluSegBench with state-of-the-art vision-language segmentation models reveal that vision-driven hallucinations are significantly more prevalent than label-driven ones, with models often persisting in false segmentation, highlighting the need for counterfactual reasoning to diagnose grounding fidelity.
comment: Project webpage: https://plan-lab.github.io/hallusegbench/
☆ DeOcc-1-to-3: 3D De-Occlusion from a Single Image via Self-Supervised Multi-View Diffusion
Reconstructing 3D objects from a single image is a long-standing challenge, especially under real-world occlusions. While recent diffusion-based view synthesis models can generate consistent novel views from a single RGB image, they generally assume fully visible inputs and fail when parts of the object are occluded. This leads to inconsistent views and degraded 3D reconstruction quality. To overcome this limitation, we propose an end-to-end framework for occlusion-aware multi-view generation. Our method directly synthesizes six structurally consistent novel views from a single partially occluded image, enabling downstream 3D reconstruction without requiring prior inpainting or manual annotations. We construct a self-supervised training pipeline using the Pix2Gestalt dataset, leveraging occluded-unoccluded image pairs and pseudo-ground-truth views to teach the model structure-aware completion and view consistency. Without modifying the original architecture, we fully fine-tune the view synthesis model to jointly learn completion and multi-view generation. Additionally, we introduce the first benchmark for occlusion-aware reconstruction, encompassing diverse occlusion levels, object categories, and mask patterns. This benchmark provides a standardized protocol for evaluating future methods under partial occlusions. Our code is available at https://github.com/Quyans/DeOcc123.
☆ StruMamba3D: Exploring Structural Mamba for Self-supervised Point Cloud Representation Learning ICCV 2025
Recently, Mamba-based methods have demonstrated impressive performance in point cloud representation learning by leveraging State Space Model (SSM) with the efficient context modeling ability and linear complexity. However, these methods still face two key issues that limit the potential of SSM: Destroying the adjacency of 3D points during SSM processing and failing to retain long-sequence memory as the input length increases in downstream tasks. To address these issues, we propose StruMamba3D, a novel paradigm for self-supervised point cloud representation learning. It enjoys several merits. First, we design spatial states and use them as proxies to preserve spatial dependencies among points. Second, we enhance the SSM with a state-wise update strategy and incorporate a lightweight convolution to facilitate interactions between spatial states for efficient structure modeling. Third, our method reduces the sensitivity of pre-trained Mamba-based models to varying input lengths by introducing a sequence length-adaptive strategy. Experimental results across four downstream tasks showcase the superior performance of our method. In addition, our method attains the SOTA 95.1% accuracy on ModelNet40 and 92.75% accuracy on the most challenging split of ScanObjectNN without voting strategy.
comment: Accepted by ICCV 2025
☆ Maximal Matching Matters: Preventing Representation Collapse for Robust Cross-Modal Retrieval ACL 2025
Cross-modal image-text retrieval is challenging because of the diverse possible associations between content from different modalities. Traditional methods learn a single-vector embedding to represent semantics of each sample, but struggle to capture nuanced and diverse relationships that can exist across modalities. Set-based approaches, which represent each sample with multiple embeddings, offer a promising alternative, as they can capture richer and more diverse relationships. In this paper, we show that, despite their promise, these set-based representations continue to face issues including sparse supervision and set collapse, which limits their effectiveness. To address these challenges, we propose Maximal Pair Assignment Similarity to optimize one-to-one matching between embedding sets which preserve semantic diversity within the set. We also introduce two loss functions to further enhance the representations: Global Discriminative Loss to enhance distinction among embeddings, and Intra-Set Divergence Loss to prevent collapse within each set. Our method achieves state-of-the-art performance on MS-COCO and Flickr30k without relying on external data.
comment: Accepted at the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025 Main)
☆ ResQ: A Novel Framework to Implement Residual Neural Networks on Analog Rydberg Atom Quantum Computers ICCV
Research in quantum machine learning has recently proliferated due to the potential of quantum computing to accelerate machine learning. An area of machine learning that has not yet been explored is neural ordinary differential equation (neural ODE) based residual neural networks (ResNets), which aim to improve the effectiveness of neural networks using the principles of ordinary differential equations. In this work, we present our insights about why analog Rydberg atom quantum computers are especially well-suited for ResNets. We also introduce ResQ, a novel framework to optimize the dynamics of Rydberg atom quantum computers to solve classification problems in machine learning using analog quantum neural ODEs.
comment: ResQ will appear in the Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2025
☆ Exploring the Design Space of 3D MLLMs for CT Report Generation
Multimodal Large Language Models (MLLMs) have emerged as a promising way to automate Radiology Report Generation (RRG). In this work, we systematically investigate the design space of 3D MLLMs, including visual input representation, projectors, Large Language Models (LLMs), and fine-tuning techniques for 3D CT report generation. We also introduce two knowledge-based report augmentation methods that improve performance on the GREEN score by up to 10\%, achieving the 2nd place on the MICCAI 2024 AMOS-MM challenge. Our results on the 1,687 cases from the AMOS-MM dataset show that RRG is largely independent of the size of LLM under the same training protocol. We also show that larger volume size does not always improve performance if the original ViT was pre-trained on a smaller volume size. Lastly, we show that using a segmentation mask along with the CT volume improves performance. The code is publicly available at https://github.com/bowang-lab/AMOS-MM-Solution
☆ WAFT: Warping-Alone Field Transforms for Optical Flow
We introduce Warping-Alone Field Transforms (WAFT), a simple and effective method for optical flow. WAFT is similar to RAFT but replaces cost volume with high-resolution warping, achieving better accuracy with lower memory cost. This design challenges the conventional wisdom that constructing cost volumes is necessary for strong performance. WAFT is a simple and flexible meta-architecture with minimal inductive biases and reliance on custom designs. Compared with existing methods, WAFT ranks 1st on Spring and KITTI benchmarks, achieves the best zero-shot generalization on KITTI, while being up to 4.1x faster than methods with similar performance. Code and model weights are available at https://github.com/princeton-vl/WAFT.
☆ MADrive: Memory-Augmented Driving Scene Modeling
Recent advances in scene reconstruction have pushed toward highly realistic modeling of autonomous driving (AD) environments using 3D Gaussian splatting. However, the resulting reconstructions remain closely tied to the original observations and struggle to support photorealistic synthesis of significantly altered or novel driving scenarios. This work introduces MADrive, a memory-augmented reconstruction framework designed to extend the capabilities of existing scene reconstruction methods by replacing observed vehicles with visually similar 3D assets retrieved from a large-scale external memory bank. Specifically, we release MAD-Cars, a curated dataset of ${\sim}70$K 360{\deg} car videos captured in the wild and present a retrieval module that finds the most similar car instances in the memory bank, reconstructs the corresponding 3D assets from video, and integrates them into the target scene through orientation alignment and relighting. The resulting replacements provide complete multi-view representations of vehicles in the scene, enabling photorealistic synthesis of substantially altered configurations, as demonstrated in our experiments. Project page: https://yandex-research.github.io/madrive/
☆ G$^{2}$D: Boosting Multimodal Learning with Gradient-Guided Distillation ICCV 2025
Multimodal learning aims to leverage information from diverse data modalities to achieve more comprehensive performance. However, conventional multimodal models often suffer from modality imbalance, where one or a few modalities dominate model optimization, leading to suboptimal feature representation and underutilization of weak modalities. To address this challenge, we introduce Gradient-Guided Distillation (G$^{2}$D), a knowledge distillation framework that optimizes the multimodal model with a custom-built loss function that fuses both unimodal and multimodal objectives. G$^{2}$D further incorporates a dynamic sequential modality prioritization (SMP) technique in the learning process to ensure each modality leads the learning process, avoiding the pitfall of stronger modalities overshadowing weaker ones. We validate G$^{2}$D on multiple real-world datasets and show that G$^{2}$D amplifies the significance of weak modalities while training and outperforms state-of-the-art methods in classification and regression tasks. Our code is available at https://github.com/rAIson-Lab/G2D.
comment: Accepted at ICCV 2025
☆ GGTalker: Talking Head Systhesis with Generalizable Gaussian Priors and Identity-Specific Adaptation ICCV 2025
Creating high-quality, generalizable speech-driven 3D talking heads remains a persistent challenge. Previous methods achieve satisfactory results for fixed viewpoints and small-scale audio variations, but they struggle with large head rotations and out-of-distribution (OOD) audio. Moreover, they are constrained by the need for time-consuming, identity-specific training. We believe the core issue lies in the lack of sufficient 3D priors, which limits the extrapolation capabilities of synthesized talking heads. To address this, we propose GGTalker, which synthesizes talking heads through a combination of generalizable priors and identity-specific adaptation. We introduce a two-stage Prior-Adaptation training strategy to learn Gaussian head priors and adapt to individual characteristics. We train Audio-Expression and Expression-Visual priors to capture the universal patterns of lip movements and the general distribution of head textures. During the Customized Adaptation, individual speaking styles and texture details are precisely modeled. Additionally, we introduce a color MLP to generate fine-grained, motion-aligned textures and a Body Inpainter to blend rendered results with the background, producing indistinguishable, photorealistic video frames. Comprehensive experiments show that GGTalker achieves state-of-the-art performance in rendering quality, 3D consistency, lip-sync accuracy, and training efficiency.
comment: ICCV 2025, Project page: https://vincenthu19.github.io/GGTalker/
☆ Mitigating Hallucination of Large Vision-Language Models via Dynamic Logits Calibration
Large Vision-Language Models (LVLMs) have demonstrated significant advancements in multimodal understanding, yet they are frequently hampered by hallucination-the generation of text that contradicts visual input. Existing training-free decoding strategies exhibit critical limitations, including the use of static constraints that do not adapt to semantic drift during generation, inefficiency stemming from the need for multiple forward passes, and degradation of detail due to overly rigid intervention rules. To overcome these challenges, this paper introduces Dynamic Logits Calibration (DLC), a novel training-free decoding framework designed to dynamically align text generation with visual evidence at inference time. At the decoding phase, DLC step-wise employs CLIP to assess the semantic alignment between the input image and the generated text sequence. Then, the Relative Visual Advantage (RVA) of candidate tokens is evaluated against a dynamically updated contextual baseline, adaptively adjusting output logits to favor tokens that are visually grounded. Furthermore, an adaptive weighting mechanism, informed by a real-time context alignment score, carefully balances the visual guidance while ensuring the overall quality of the textual output. Extensive experiments conducted across diverse benchmarks and various LVLM architectures (such as LLaVA, InstructBLIP, and MiniGPT-4) demonstrate that DLC significantly reduces hallucinations, outperforming current methods while maintaining high inference efficiency by avoiding multiple forward passes. Overall, we present an effective and efficient decoding-time solution to mitigate hallucinations, thereby enhancing the reliability of LVLMs for more practices. Code will be released on Github.
☆ Lightweight Physics-Informed Zero-Shot Ultrasound Plane Wave Denoising
Ultrasound Coherent Plane Wave Compounding (CPWC) enhances image contrast by combining echoes from multiple steered transmissions. While increasing the number of angles generally improves image quality, it drastically reduces the frame rate and can introduce blurring artifacts in fast-moving targets. Moreover, compounded images remain susceptible to noise, particularly when acquired with a limited number of transmissions. We propose a zero-shot denoising framework tailored for low-angle CPWC acquisitions, which enhances contrast without relying on a separate training dataset. The method divides the available transmission angles into two disjoint subsets, each used to form compound images that include higher noise levels. The new compounded images are then used to train a deep model via a self-supervised residual learning scheme, enabling it to suppress incoherent noise while preserving anatomical structures. Because angle-dependent artifacts vary between the subsets while the underlying tissue response is similar, this physics-informed pairing allows the network to learn to disentangle the inconsistent artifacts from the consistent tissue signal. Unlike supervised methods, our model requires no domain-specific fine-tuning or paired data, making it adaptable across anatomical regions and acquisition setups. The entire pipeline supports efficient training with low computational cost due to the use of a lightweight architecture, which comprises only two convolutional layers. Evaluations on simulation, phantom, and in vivo data demonstrate superior contrast enhancement and structure preservation compared to both classical and deep learning-based denoising methods.
☆ Towards Reliable Detection of Empty Space: Conditional Marked Point Processes for Object Detection
Deep neural networks have set the state-of-the-art in computer vision tasks such as bounding box detection and semantic segmentation. Object detectors and segmentation models assign confidence scores to predictions, reflecting the model's uncertainty in object detection or pixel-wise classification. However, these confidence estimates are often miscalibrated, as their architectures and loss functions are tailored to task performance rather than probabilistic foundation. Even with well calibrated predictions, object detectors fail to quantify uncertainty outside detected bounding boxes, i.e., the model does not make a probability assessment of whether an area without detected objects is truly free of obstacles. This poses a safety risk in applications such as automated driving, where uncertainty in empty areas remains unexplored. In this work, we propose an object detection model grounded in spatial statistics. Bounding box data matches realizations of a marked point process, commonly used to describe the probabilistic occurrence of spatial point events identified as bounding box centers, where marks are used to describe the spatial extension of bounding boxes and classes. Our statistical framework enables a likelihood-based training and provides well-defined confidence estimates for whether a region is drivable, i.e., free of objects. We demonstrate the effectiveness of our method through calibration assessments and evaluation of performance.
comment: 15 pages, 4 figures, 3 tables
☆ TITAN: Query-Token based Domain Adaptive Adversarial Learning ICCV 2025
We focus on the source-free domain adaptive object detection (SF-DAOD) problem when source data is unavailable during adaptation and the model must adapt to an unlabeled target domain. The majority of approaches for the problem employ a self-supervised approach using a student-teacher (ST) framework where pseudo-labels are generated via a source-pretrained model for further fine-tuning. We observe that the performance of a student model often degrades drastically, due to the collapse of the teacher model, primarily caused by high noise in pseudo-labels, resulting from domain bias, discrepancies, and a significant domain shift across domains. To obtain reliable pseudo-labels, we propose a Target-based Iterative Query-Token Adversarial Network (TITAN), which separates the target images into two subsets: those similar to the source (easy) and those dissimilar (hard). We propose a strategy to estimate variance to partition the target domain. This approach leverages the insight that higher detection variances correspond to higher recall and greater similarity to the source domain. Also, we incorporate query-token-based adversarial modules into a student-teacher baseline framework to reduce the domain gaps between two feature representations. Experiments conducted on four natural imaging datasets and two challenging medical datasets have substantiated the superior performance of TITAN compared to existing state-of-the-art (SOTA) methodologies. We report an mAP improvement of +22.7, +22.2, +21.1, and +3.7 percent over the current SOTA on C2F, C2B, S2C, and K2C benchmarks, respectively.
comment: ICCV 2025
☆ Global and Local Entailment Learning for Natural World Imagery ICCV 2025
Learning the hierarchical structure of data in vision-language models is a significant challenge. Previous works have attempted to address this challenge by employing entailment learning. However, these approaches fail to model the transitive nature of entailment explicitly, which establishes the relationship between order and semantics within a representation space. In this work, we introduce Radial Cross-Modal Embeddings (RCME), a framework that enables the explicit modeling of transitivity-enforced entailment. Our proposed framework optimizes for the partial order of concepts within vision-language models. By leveraging our framework, we develop a hierarchical vision-language foundation model capable of representing the hierarchy in the Tree of Life. Our experiments on hierarchical species classification and hierarchical retrieval tasks demonstrate the enhanced performance of our models compared to the existing state-of-the-art models. Our code and models are open-sourced at https://vishu26.github.io/RCME/index.html.
comment: Accepted at ICCV 2025
☆ Logios : An open source Greek Polytonic Optical Character Recognition system
In this paper, we present an Optical Character Recognition (OCR) system specifically designed for the accurate recognition and digitization of Greek polytonic texts. By leveraging the combined strengths of convolutional layers for feature extraction and recurrent layers for sequence learning, our system addresses the unique challenges posed by Greek polytonic scripts. This approach aims to overcome the limitations of traditional OCR methods, offering significant improvements in accuracy and efficiency. We release the underlying model as an open-source library and make our OCR platform available for academic use.
☆ Evaluation of Traffic Signals for Daily Traffic Pattern
The turning movement count data is crucial for traffic signal design, intersection geometry planning, traffic flow, and congestion analysis. This work proposes three methods called dynamic, static, and hybrid configuration for TMC-based traffic signals. A vision-based tracking system is developed to estimate the TMC of six intersections in Las Vegas using traffic cameras. The intersection design, route (e.g. vehicle movement directions), and signal configuration files with compatible formats are synthesized and imported into Simulation of Urban MObility for signal evaluation with realistic data. The initial experimental results based on estimated waiting times indicate that the cycle time of 90 and 120 seconds works best for all intersections. In addition, four intersections show better performance for dynamic signal timing configuration, and the other two with lower performance have a lower ratio of total vehicle count to total lanes of the intersection leg. Since daily traffic flow often exhibits a bimodal pattern, we propose a hybrid signal method that switches between dynamic and static methods, adapting to peak and off-peak traffic conditions for improved flow management. So, a built-in traffic generator module creates vehicle routes for 4 hours, including peak hours, and a signal design module produces signal schedule cycles according to static, dynamic, and hybrid methods. Vehicle count distributions are weighted differently for each zone (i.e., West, North, East, South) to generate diverse traffic patterns. The extended experimental results for 6 intersections with 4 hours of simulation time imply that zone-based traffic pattern distributions affect signal design selection. Although the static method works great for evenly zone-based traffic distribution, the hybrid method works well for highly weighted traffic at intersection pairs of the West-East and North-South zones.
☆ Spatial Mental Modeling from Limited Views
Can Vision Language Models (VLMs) imagine the full scene from just a few views, like humans do? Humans form spatial mental models, internal representations of unseen space, to reason about layout, perspective, and motion. Our new MindCube benchmark with 21,154 questions across 3,268 images exposes this critical gap, where existing VLMs exhibit near-random performance. Using MindCube, we systematically evaluate how well VLMs build robust spatial mental models through representing positions (cognitive mapping), orientations (perspective-taking), and dynamics (mental simulation for "what-if" movements). We then explore three approaches to help VLMs approximate spatial mental models, including unseen intermediate views, natural language reasoning chains, and cognitive maps. The significant improvement comes from a synergistic approach, "map-then-reason", that jointly trains the model to first generate a cognitive map and then reason upon it. By training models to reason over these internal maps, we boosted accuracy from 37.8% to 60.8% (+23.0%). Adding reinforcement learning pushed performance even further to 70.7% (+32.9%). Our key insight is that such scaffolding of spatial mental models, actively constructing and utilizing internal structured spatial representations with flexible reasoning processes, significantly improves understanding of unobservable space.
comment: Preprint version
☆ Rethinking Oversaturation in Classifier-Free Guidance via Low Frequency
Classifier-free guidance (CFG) succeeds in condition diffusion models that use a guidance scale to balance the influence of conditional and unconditional terms. A high guidance scale is used to enhance the performance of the conditional term. However, the high guidance scale often results in oversaturation and unrealistic artifacts. In this paper, we introduce a new perspective based on low-frequency signals, identifying the accumulation of redundant information in these signals as the key factor behind oversaturation and unrealistic artifacts. Building on this insight, we propose low-frequency improved classifier-free guidance (LF-CFG) to mitigate these issues. Specifically, we introduce an adaptive threshold-based measurement to pinpoint the locations of redundant information. We determine a reasonable threshold by analyzing the change rate of low-frequency information between prior and current steps. We then apply a down-weight strategy to reduce the impact of redundant information in the low-frequency signals. Experimental results demonstrate that LF-CFG effectively alleviates oversaturation and unrealistic artifacts across various diffusion models, including Stable Diffusion-XL, Stable Diffusion 2.1, 3.0, 3.5, and SiT-XL.
☆ A Comprehensive Dataset for Underground Miner Detection in Diverse Scenario
Underground mining operations face significant safety challenges that make emergency response capabilities crucial. While robots have shown promise in assisting with search and rescue operations, their effectiveness depends on reliable miner detection capabilities. Deep learning algorithms offer potential solutions for automated miner detection, but require comprehensive training datasets, which are currently lacking for underground mining environments. This paper presents a novel thermal imaging dataset specifically designed to enable the development and validation of miner detection systems for potential emergency applications. We systematically captured thermal imagery of various mining activities and scenarios to create a robust foundation for detection algorithms. To establish baseline performance metrics, we evaluated several state-of-the-art object detection algorithms including YOLOv8, YOLOv10, YOLO11, and RT-DETR on our dataset. While not exhaustive of all possible emergency situations, this dataset serves as a crucial first step toward developing reliable thermal-based miner detection systems that could eventually be deployed in real emergency scenarios. This work demonstrates the feasibility of using thermal imaging for miner detection and establishes a foundation for future research in this critical safety application.
☆ ThinkSound: Chain-of-Thought Reasoning in Multimodal Large Language Models for Audio Generation and Editing
While end-to-end video-to-audio generation has greatly improved, producing high-fidelity audio that authentically captures the nuances of visual content remains challenging. Like professionals in the creative industries, such generation requires sophisticated reasoning about items such as visual dynamics, acoustic environments, and temporal relationships. We present \textbf{ThinkSound}, a novel framework that leverages Chain-of-Thought (CoT) reasoning to enable stepwise, interactive audio generation and editing for videos. Our approach decomposes the process into three complementary stages: foundational foley generation that creates semantically coherent soundscapes, interactive object-centric refinement through precise user interactions, and targeted editing guided by natural language instructions. At each stage, a multimodal large language model generates contextually aligned CoT reasoning that guides a unified audio foundation model. Furthermore, we introduce \textbf{AudioCoT}, a comprehensive dataset with structured reasoning annotations that establishes connections between visual content, textual descriptions, and sound synthesis. Experiments demonstrate that ThinkSound achieves state-of-the-art performance in video-to-audio generation across both audio metrics and CoT metrics and excels in out-of-distribution Movie Gen Audio benchmark. The demo page is available at https://ThinkSound-Demo.github.io.
Controllable 3D Placement of Objects with Scene-Aware Diffusion Models
Image editing approaches have become more powerful and flexible with the advent of powerful text-conditioned generative models. However, placing objects in an environment with a precise location and orientation still remains a challenge, as this typically requires carefully crafted inpainting masks or prompts. In this work, we show that a carefully designed visual map, combined with coarse object masks, is sufficient for high quality object placement. We design a conditioning signal that resolves ambiguities, while being flexible enough to allow for changing of shapes or object orientations. By building on an inpainting model, we leave the background intact by design, in contrast to methods that model objects and background jointly. We demonstrate the effectiveness of our method in the automotive setting, where we compare different conditioning signals in novel object placement tasks. These tasks are designed to measure edit quality not only in terms of appearance, but also in terms of pose and location accuracy, including cases that require non-trivial shape changes. Lastly, we show that fine location control can be combined with appearance control to place existing objects in precise locations in a scene.
☆ Benchmarking Deep Learning and Vision Foundation Models for Atypical vs. Normal Mitosis Classification with Cross-Dataset Evaluation
Atypical mitoses mark a deviation in the cell division process that can be an independent prognostically relevant marker for tumor malignancy. However, their identification remains challenging due to low prevalence, at times subtle morphological differences from normal mitoses, low inter-rater agreement among pathologists, and class imbalance in datasets. Building on the Atypical Mitosis dataset for Breast Cancer (AMi-Br), this study presents a comprehensive benchmark comparing deep learning approaches for automated atypical mitotic figure (AMF) classification, including baseline models, foundation models with linear probing, and foundation models fine-tuned with low-rank adaptation (LoRA). For rigorous evaluation, we further introduce two new hold-out AMF datasets - AtNorM-Br, a dataset of mitoses from the The TCGA breast cancer cohort, and AtNorM-MD, a multi-domain dataset of mitoses from the MIDOG++ training set. We found average balanced accuracy values of up to 0.8135, 0.7696, and 0.7705 on the in-domain AMi-Br and the out-of-domain AtNorm-Br and AtNorM-MD datasets, respectively, with the results being particularly good for LoRA-based adaptation of the Virchow-line of foundation models. Our work shows that atypical mitosis classification, while being a challenging problem, can be effectively addressed through the use of recent advances in transfer learning and model fine-tuning techniques. We make available all code and data used in this paper in this github repository: https://github.com/DeepMicroscopy/AMi-Br_Benchmark.
☆ HyperSORT: Self-Organising Robust Training with hyper-networks MICCAI 2025
Medical imaging datasets often contain heterogeneous biases ranging from erroneous labels to inconsistent labeling styles. Such biases can negatively impact deep segmentation networks performance. Yet, the identification and characterization of such biases is a particularly tedious and challenging task. In this paper, we introduce HyperSORT, a framework using a hyper-network predicting UNets' parameters from latent vectors representing both the image and annotation variability. The hyper-network parameters and the latent vector collection corresponding to each data sample from the training set are jointly learned. Hence, instead of optimizing a single neural network to fit a dataset, HyperSORT learns a complex distribution of UNet parameters where low density areas can capture noise-specific patterns while larger modes robustly segment organs in differentiated but meaningful manners. We validate our method on two 3D abdominal CT public datasets: first a synthetically perturbed version of the AMOS dataset, and TotalSegmentator, a large scale dataset containing real unknown biases and errors. Our experiments show that HyperSORT creates a structured mapping of the dataset allowing the identification of relevant systematic biases and erroneous samples. Latent space clusters yield UNet parameters performing the segmentation task in accordance with the underlying learned systematic bias. The code and our analysis of the TotalSegmentator dataset are made available: https://github.com/ImFusionGmbH/HyperSORT
comment: Accepted at MICCAI 2025
☆ EndoFlow-SLAM: Real-Time Endoscopic SLAM with Flow-Constrained Gaussian Splatting
Efficient three-dimensional reconstruction and real-time visualization are critical in surgical scenarios such as endoscopy. In recent years, 3D Gaussian Splatting (3DGS) has demonstrated remarkable performance in efficient 3D reconstruction and rendering. Most 3DGS-based Simultaneous Localization and Mapping (SLAM) methods only rely on the appearance constraints for optimizing both 3DGS and camera poses. However, in endoscopic scenarios, the challenges include photometric inconsistencies caused by non-Lambertian surfaces and dynamic motion from breathing affects the performance of SLAM systems. To address these issues, we additionally introduce optical flow loss as a geometric constraint, which effectively constrains both the 3D structure of the scene and the camera motion. Furthermore, we propose a depth regularisation strategy to mitigate the problem of photometric inconsistencies and ensure the validity of 3DGS depth rendering in endoscopic scenes. In addition, to improve scene representation in the SLAM system, we improve the 3DGS refinement strategy by focusing on viewpoints corresponding to Keyframes with suboptimal rendering quality frames, achieving better rendering results. Extensive experiments on the C3VD static dataset and the StereoMIS dynamic dataset demonstrate that our method outperforms existing state-of-the-art methods in novel view synthesis and pose estimation, exhibiting high performance in both static and dynamic surgical scenes. The source code will be publicly available upon paper acceptance.
☆ XVerse: Consistent Multi-Subject Control of Identity and Semantic Attributes via DiT Modulation
Achieving fine-grained control over subject identity and semantic attributes (pose, style, lighting) in text-to-image generation, particularly for multiple subjects, often undermines the editability and coherence of Diffusion Transformers (DiTs). Many approaches introduce artifacts or suffer from attribute entanglement. To overcome these challenges, we propose a novel multi-subject controlled generation model XVerse. By transforming reference images into offsets for token-specific text-stream modulation, XVerse allows for precise and independent control for specific subject without disrupting image latents or features. Consequently, XVerse offers high-fidelity, editable multi-subject image synthesis with robust control over individual subject characteristics and semantic attributes. This advancement significantly improves personalized and complex scene generation capabilities.
comment: Project Page: https://bytedance.github.io/XVerse Github Link: https://github.com/bytedance/XVerse
☆ Curve-Aware Gaussian Splatting for 3D Parametric Curve Reconstruction ICCV 2025
This paper presents an end-to-end framework for reconstructing 3D parametric curves directly from multi-view edge maps. Contrasting with existing two-stage methods that follow a sequential ``edge point cloud reconstruction and parametric curve fitting'' pipeline, our one-stage approach optimizes 3D parametric curves directly from 2D edge maps, eliminating error accumulation caused by the inherent optimization gap between disconnected stages. However, parametric curves inherently lack suitability for rendering-based multi-view optimization, necessitating a complementary representation that preserves their geometric properties while enabling differentiable rendering. We propose a novel bi-directional coupling mechanism between parametric curves and edge-oriented Gaussian components. This tight correspondence formulates a curve-aware Gaussian representation, \textbf{CurveGaussian}, that enables differentiable rendering of 3D curves, allowing direct optimization guided by multi-view evidence. Furthermore, we introduce a dynamically adaptive topology optimization framework during training to refine curve structures through linearization, merging, splitting, and pruning operations. Comprehensive evaluations on the ABC dataset and real-world benchmarks demonstrate our one-stage method's superiority over two-stage alternatives, particularly in producing cleaner and more robust reconstructions. Additionally, by directly optimizing parametric curves, our method significantly reduces the parameter count during training, achieving both higher efficiency and superior performance compared to existing approaches.
comment: Code: https://github.com/zhirui-gao/Curve-Gaussian Accepted by ICCV 2025
☆ FastRef:Fast Prototype Refinement for Few-Shot Industrial Anomaly Detection
Few-shot industrial anomaly detection (FS-IAD) presents a critical challenge for practical automated inspection systems operating in data-scarce environments. While existing approaches predominantly focus on deriving prototypes from limited normal samples, they typically neglect to systematically incorporate query image statistics to enhance prototype representativeness. To address this issue, we propose FastRef, a novel and efficient prototype refinement framework for FS-IAD. Our method operates through an iterative two-stage process: (1) characteristic transfer from query features to prototypes via an optimizable transformation matrix, and (2) anomaly suppression through prototype alignment. The characteristic transfer is achieved through linear reconstruction of query features from prototypes, while the anomaly suppression addresses a key observation in FS-IAD that unlike conventional IAD with abundant normal prototypes, the limited-sample setting makes anomaly reconstruction more probable. Therefore, we employ optimal transport (OT) for non-Gaussian sampled features to measure and minimize the gap between prototypes and their refined counterparts for anomaly suppression. For comprehensive evaluation, we integrate FastRef with three competitive prototype-based FS-IAD methods: PatchCore, FastRecon, WinCLIP, and AnomalyDINO. Extensive experiments across four benchmark datasets of MVTec, ViSA, MPDD and RealIAD demonstrate both the effectiveness and computational efficiency of our approach under 1/2/4-shots.
comment: 18pages, 7figures, 6tables
☆ GenFlow: Interactive Modular System for Image Generation
Generative art unlocks boundless creative possibilities, yet its full potential remains untapped due to the technical expertise required for advanced architectural concepts and computational workflows. To bridge this gap, we present GenFlow, a novel modular framework that empowers users of all skill levels to generate images with precision and ease. Featuring a node-based editor for seamless customization and an intelligent assistant powered by natural language processing, GenFlow transforms the complexity of workflow creation into an intuitive and accessible experience. By automating deployment processes and minimizing technical barriers, our framework makes cutting-edge generative art tools available to everyone. A user study demonstrated GenFlow's ability to optimize workflows, reduce task completion times, and enhance user understanding through its intuitive interface and adaptive features. These results position GenFlow as a groundbreaking solution that redefines accessibility and efficiency in the realm of generative art.
☆ CA-I2P: Channel-Adaptive Registration Network with Global Optimal Selection ICCV 2025
Detection-free methods typically follow a coarse-to-fine pipeline, extracting image and point cloud features for patch-level matching and refining dense pixel-to-point correspondences. However, differences in feature channel attention between images and point clouds may lead to degraded matching results, ultimately impairing registration accuracy. Furthermore, similar structures in the scene could lead to redundant correspondences in cross-modal matching. To address these issues, we propose Channel Adaptive Adjustment Module (CAA) and Global Optimal Selection Module (GOS). CAA enhances intra-modal features and suppresses cross-modal sensitivity, while GOS replaces local selection with global optimization. Experiments on RGB-D Scenes V2 and 7-Scenes demonstrate the superiority of our method, achieving state-of-the-art performance in image-to-point cloud registration.
comment: ICCV 2025 accepted
☆ ToosiCubix: Monocular 3D Cuboid Labeling via Vehicle Part Annotations
Many existing methods for 3D cuboid annotation of vehicles rely on expensive and carefully calibrated camera-LiDAR or stereo setups, limiting their accessibility for large-scale data collection. We introduce ToosiCubix, a simple yet powerful approach for annotating ground-truth cuboids using only monocular images and intrinsic camera parameters. Our method requires only about 10 user clicks per vehicle, making it highly practical for adding 3D annotations to existing datasets originally collected without specialized equipment. By annotating specific features (e.g., wheels, car badge, symmetries) across different vehicle parts, we accurately estimate each vehicle's position, orientation, and dimensions up to a scale ambiguity (8 DoF). The geometric constraints are formulated as an optimization problem, which we solve using a coordinate descent strategy, alternating between Perspective-n-Points (PnP) and least-squares subproblems. To handle common ambiguities such as scale and unobserved dimensions, we incorporate probabilistic size priors, enabling 9 DoF cuboid placements. We validate our annotations against the KITTI and Cityscapes3D datasets, demonstrating that our method offers a cost-effective and scalable solution for high-quality 3D cuboid annotation.
☆ CoPa-SG: Dense Scene Graphs with Parametric and Proto-Relations
2D scene graphs provide a structural and explainable framework for scene understanding. However, current work still struggles with the lack of accurate scene graph data. To overcome this data bottleneck, we present CoPa-SG, a synthetic scene graph dataset with highly precise ground truth and exhaustive relation annotations between all objects. Moreover, we introduce parametric and proto-relations, two new fundamental concepts for scene graphs. The former provides a much more fine-grained representation than its traditional counterpart by enriching relations with additional parameters such as angles or distances. The latter encodes hypothetical relations in a scene graph and describes how relations would form if new objects are placed in the scene. Using CoPa-SG, we compare the performance of various scene graph generation models. We demonstrate how our new relation types can be integrated in downstream applications to enhance planning and reasoning capabilities.
☆ ShotBench: Expert-Level Cinematic Understanding in Vision-Language Models
Cinematography, the fundamental visual language of film, is essential for conveying narrative, emotion, and aesthetic quality. While recent Vision-Language Models (VLMs) demonstrate strong general visual understanding, their proficiency in comprehending the nuanced cinematic grammar embedded within individual shots remains largely unexplored and lacks robust evaluation. This critical gap limits both fine-grained visual comprehension and the precision of AI-assisted video generation. To address this, we introduce \textbf{ShotBench}, a comprehensive benchmark specifically designed for cinematic language understanding. It features over 3.5k expert-annotated QA pairs from images and video clips, meticulously curated from over 200 acclaimed (predominantly Oscar-nominated) films and spanning eight key cinematography dimensions. Our evaluation of 24 leading VLMs on ShotBench reveals their substantial limitations: even the top-performing model achieves less than 60\% average accuracy, particularly struggling with fine-grained visual cues and complex spatial reasoning. To catalyze advancement in this domain, we construct \textbf{ShotQA}, a large-scale multimodal dataset comprising approximately 70k cinematic QA pairs. Leveraging ShotQA, we develop \textbf{ShotVL} through supervised fine-tuning and Group Relative Policy Optimization. ShotVL significantly outperforms all existing open-source and proprietary models on ShotBench, establishing new \textbf{state-of-the-art} performance. We open-source our models, data, and code to foster rapid progress in this crucial area of AI-driven cinematic understanding and generation.
☆ Generalizable Neural Electromagnetic Inverse Scattering
Solving Electromagnetic Inverse Scattering Problems (EISP) is fundamental in applications such as medical imaging, where the goal is to reconstruct the relative permittivity from scattered electromagnetic field. This inverse process is inherently ill-posed and highly nonlinear, making it particularly challenging. A recent machine learning-based approach, Img-Interiors, shows promising results by leveraging continuous implicit functions. However, it requires case-specific optimization, lacks generalization to unseen data, and fails under sparse transmitter setups (e.g., with only one transmitter). To address these limitations, we revisit EISP from a physics-informed perspective, reformulating it as a two stage inverse transmission-scattering process. This formulation reveals the induced current as a generalizable intermediate representation, effectively decoupling the nonlinear scattering process from the ill-posed inverse problem. Built on this insight, we propose the first generalizable physics-driven framework for EISP, comprising a current estimator and a permittivity solver, working in an end-to-end manner. The current estimator explicitly learns the induced current as a physical bridge between the incident and scattered field, while the permittivity solver computes the relative permittivity directly from the estimated induced current. This design enables data-driven training and generalizable feed-forward prediction of relative permittivity on unseen data while maintaining strong robustness to transmitter sparsity. Extensive experiments show that our method outperforms state-of-the-art approaches in reconstruction accuracy, generalization, and robustness. This work offers a fundamentally new perspective on electromagnetic inverse scattering and represents a major step toward cost-effective practical solutions for electromagnetic imaging.
☆ PanSt3R: Multi-view Consistent Panoptic Segmentation ICCV 2025
Panoptic segmentation of 3D scenes, involving the segmentation and classification of object instances in a dense 3D reconstruction of a scene, is a challenging problem, especially when relying solely on unposed 2D images. Existing approaches typically leverage off-the-shelf models to extract per-frame 2D panoptic segmentations, before optimizing an implicit geometric representation (often based on NeRF) to integrate and fuse the 2D predictions. We argue that relying on 2D panoptic segmentation for a problem inherently 3D and multi-view is likely suboptimal as it fails to leverage the full potential of spatial relationships across views. In addition to requiring camera parameters, these approaches also necessitate computationally expensive test-time optimization for each scene. Instead, in this work, we propose a unified and integrated approach PanSt3R, which eliminates the need for test-time optimization by jointly predicting 3D geometry and multi-view panoptic segmentation in a single forward pass. Our approach builds upon recent advances in 3D reconstruction, specifically upon MUSt3R, a scalable multi-view version of DUSt3R, and enhances it with semantic awareness and multi-view panoptic segmentation capabilities. We additionally revisit the standard post-processing mask merging procedure and introduce a more principled approach for multi-view segmentation. We also introduce a simple method for generating novel-view predictions based on the predictions of PanSt3R and vanilla 3DGS. Overall, the proposed PanSt3R is conceptually simple, yet fast and scalable, and achieves state-of-the-art performance on several benchmarks, while being orders of magnitude faster than existing methods.
comment: Accepted at ICCV 2025
☆ Automatic Reviewers Assignment to a Research Paper Based on Allied References and Publications Weight
Everyday, a vast stream of research documents is submitted to conferences, anthologies, journals, newsletters, annual reports, daily papers, and various periodicals. Many such publications use independent external specialists to review submissions. This process is called peer review, and the reviewers are called referees. However, it is not always possible to pick the best referee for reviewing. Moreover, new research fields are emerging in every sector, and the number of research papers is increasing dramatically. To review all these papers, every journal assigns a small team of referees who may not be experts in all areas. For example, a research paper in communication technology should be reviewed by an expert from the same field. Thus, efficiently selecting the best reviewer or referee for a research paper is a big challenge. In this research, we propose and implement program that uses a new strategy to automatically select the best reviewers for a research paper. Every research paper contains references at the end, usually from the same area. First, we collect the references and count authors who have at least one paper in the references. Then, we automatically browse the web to extract research topic keywords. Next, we search for top researchers in the specific topic and count their h-index, i10-index, and citations for the first n authors. Afterward, we rank the top n authors based on a score and automatically browse their homepages to retrieve email addresses. We also check their co-authors and colleagues online and discard them from the list. The remaining top n authors, generally professors, are likely the best referees for reviewing the research paper.
comment: IEEE Conference Proceedings (5 Pages)
☆ Holistic Surgical Phase Recognition with Hierarchical Input Dependent State Space Models
Surgical workflow analysis is essential in robot-assisted surgeries, yet the long duration of such procedures poses significant challenges for comprehensive video analysis. Recent approaches have predominantly relied on transformer models; however, their quadratic attention mechanism restricts efficient processing of lengthy surgical videos. In this paper, we propose a novel hierarchical input-dependent state space model that leverages the linear scaling property of state space models to enable decision making on full-length videos while capturing both local and global dynamics. Our framework incorporates a temporally consistent visual feature extractor, which appends a state space model head to a visual feature extractor to propagate temporal information. The proposed model consists of two key modules: a local-aggregation state space model block that effectively captures intricate local dynamics, and a global-relation state space model block that models temporal dependencies across the entire video. The model is trained using a hybrid discrete-continuous supervision strategy, where both signals of discrete phase labels and continuous phase progresses are propagated through the network. Experiments have shown that our method outperforms the current state-of-the-art methods by a large margin (+2.8% on Cholec80, +4.3% on MICCAI2016, and +12.9% on Heichole datasets). Code will be publicly available after paper acceptance.
☆ Multimodal LLMs for Visualization Reconstruction and Understanding
Visualizations are crucial for data communication, yet understanding them requires comprehension of both visual elements and their underlying data relationships. Current multimodal large models, while effective in natural image understanding, struggle with visualization due to their inability to decode the data-to-visual mapping rules and extract structured information. To address these challenges, we present a novel dataset and train multimodal visualization LLMs specifically designed for understanding. Our approach combines chart images with their corresponding vectorized representations, encoding schemes, and data features. The proposed vector format enables compact and accurate reconstruction of visualization content. Experimental results demonstrate significant improvements in both data extraction accuracy and chart reconstruction quality.
☆ LLaVA-Pose: Enhancing Human Pose and Action Understanding via Keypoint-Integrated Instruction Tuning
Current vision-language models (VLMs) are well-adapted for general visual understanding tasks. However, they perform inadequately when handling complex visual tasks related to human poses and actions due to the lack of specialized vision-language instruction-following data. We introduce a method for generating such data by integrating human keypoints with traditional visual features such as captions and bounding boxes, enabling more precise understanding of human-centric scenes. Our approach constructs a dataset comprising 200,328 samples tailored to fine-tune models for human-centric tasks, focusing on three areas: conversation, detailed description, and complex reasoning. We establish an Extended Human Pose and Action Understanding Benchmark (E-HPAUB) to assess model performance on human pose and action understanding. We fine-tune the LLaVA-1.5-7B model using this dataset and evaluate our resulting LLaVA-Pose model on the benchmark, achieving significant improvements. Experimental results show an overall improvement of 33.2% compared to the original LLaVA-1.5-7B model. These findings highlight the effectiveness of keypoint-integrated data in enhancing multimodal models for human-centric visual understanding. Code is available at https://github.com/Ody-trek/LLaVA-Pose.
comment: arXiv admin note: substantial text overlap with arXiv:2409.09306
☆ DrishtiKon: Multi-Granular Visual Grounding for Text-Rich Document Images
Visual grounding in text-rich document images is a critical yet underexplored challenge for document intelligence and visual question answering (VQA) systems. We present \drishtikon, a multi-granular visual grounding framework designed to enhance interpretability and trust in VQA for complex, multilingual documents. Our approach integrates robust multi-lingual OCR, large language models, and a novel region matching algorithm to accurately localize answer spans at block, line, word, and point levels. We curate a new benchmark from the CircularsVQA test set, providing fine-grained, human-verified annotations across multiple granularities. Extensive experiments demonstrate that our method achieves state-of-the-art grounding accuracy, with line-level granularity offering the best trade-off between precision and recall. Ablation studies further highlight the benefits of multi-block and multi-line reasoning. Comparative evaluations with leading vision-language models reveal the limitations of current VLMs in precise localization, underscoring the effectiveness of our structured, alignment-based approach. Our findings pave the way for more robust and interpretable document understanding systems in real-world, text-centric scenarios. Code and dataset has been made available at https://github.com/kasuba-badri-vishal/DhrishtiKon.
comment: Work in progress
☆ Continual Self-Supervised Learning with Masked Autoencoders in Remote Sensing
The development of continual learning (CL) methods, which aim to learn new tasks in a sequential manner from the training data acquired continuously, has gained great attention in remote sensing (RS). The existing CL methods in RS, while learning new tasks, enhance robustness towards catastrophic forgetting. This is achieved by using a large number of labeled training samples, which is costly and not always feasible to gather in RS. To address this problem, we propose a novel continual self-supervised learning method in the context of masked autoencoders (denoted as CoSMAE). The proposed CoSMAE consists of two components: i) data mixup; and ii) model mixup knowledge distillation. Data mixup is associated with retaining information on previous data distributions by interpolating images from the current task with those from the previous tasks. Model mixup knowledge distillation is associated with distilling knowledge from past models and the current model simultaneously by interpolating their model weights to form a teacher for the knowledge distillation. The two components complement each other to regularize the MAE at the data and model levels to facilitate better generalization across tasks and reduce the risk of catastrophic forgetting. Experimental results show that CoSMAE achieves significant improvements of up to 4.94% over state-of-the-art CL methods applied to MAE. Our code is publicly available at: https://git.tu-berlin.de/rsim/CoSMAE.
comment: Accepted to IEEE Geoscience and Remote Sensing Letters. Our code is available at https://git.tu-berlin.de/rsim/CoSMAE
☆ HieraSurg: Hierarchy-Aware Diffusion Model for Surgical Video Generation MICCAI 2025
Surgical Video Synthesis has emerged as a promising research direction following the success of diffusion models in general-domain video generation. Although existing approaches achieve high-quality video generation, most are unconditional and fail to maintain consistency with surgical actions and phases, lacking the surgical understanding and fine-grained guidance necessary for factual simulation. We address these challenges by proposing HieraSurg, a hierarchy-aware surgical video generation framework consisting of two specialized diffusion models. Given a surgical phase and an initial frame, HieraSurg first predicts future coarse-grained semantic changes through a segmentation prediction model. The final video is then generated by a second-stage model that augments these temporal segmentation maps with fine-grained visual features, leading to effective texture rendering and integration of semantic information in the video space. Our approach leverages surgical information at multiple levels of abstraction, including surgical phase, action triplets, and panoptic segmentation maps. The experimental results on Cholecystectomy Surgical Video Generation demonstrate that the model significantly outperforms prior work both quantitatively and qualitatively, showing strong generalization capabilities and the ability to generate higher frame-rate videos. The model exhibits particularly fine-grained adherence when provided with existing segmentation maps, suggesting its potential for practical surgical applications.
comment: Accepted at MICCAI 2025
☆ HumanOmniV2: From Understanding to Omni-Modal Reasoning with Context
With the rapid evolution of multimodal large language models, the capacity to deeply understand and interpret human intentions has emerged as a critical capability, which demands detailed and thoughtful reasoning. In recent studies, Reinforcement Learning (RL) has demonstrated potential in enhancing the reasoning capabilities of Large Language Models (LLMs). Nonetheless, the challenges associated with adapting RL to multimodal data and formats remain largely unaddressed. In this paper, we identify two issues in existing multimodal reasoning models: insufficient global context understanding and shortcut problems. Insufficient context understanding can happen when a model misinterprets multimodal context, resulting in incorrect answers. The shortcut problem occurs when the model overlooks crucial clues in multimodal inputs, directly addressing the query without considering the multimodal information. To tackle these issues, we emphasize the necessity for the model to reason with a clear understanding of the global context within multimodal inputs. This global context understanding can effectively prevent the model from overlooking key multimodal cues and ensure a thorough reasoning process. To ensure the accurate interpretation of multimodal context information, we implement a context reward judged by a large language model, alongside format and accuracy rewards. Additionally, to improve complex reasoning capability, we employ the LLM to assess the logical reward, determining whether the reasoning process successfully integrates multimodal information with logical methods. We also introduce a reasoning omni-modal benchmark, IntentBench, aimed at evaluating models in understanding complex human intentions and emotions. Our proposed method demonstrates advanced performance across multiple omni-modal benchmarks compared to other open-source omni-modal models.
WordCon: Word-level Typography Control in Scene Text Rendering
Achieving precise word-level typography control within generated images remains a persistent challenge. To address it, we newly construct a word-level controlled scene text dataset and introduce the Text-Image Alignment (TIA) framework. This framework leverages cross-modal correspondence between text and local image regions provided by grounding models to enhance the Text-to-Image (T2I) model training. Furthermore, we propose WordCon, a hybrid parameter-efficient fine-tuning (PEFT) method. WordCon reparameterizes selective key parameters, improving both efficiency and portability. This allows seamless integration into diverse pipelines, including artistic text rendering, text editing, and image-conditioned text rendering. To further enhance controllability, the masked loss at the latent level is applied to guide the model to concentrate on learning the text region in the image, and the joint-attention loss provides feature-level supervision to promote disentanglement between different words. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art. The datasets and source code will be available for academic use.
☆ FairyGen: Storied Cartoon Video from a Single Child-Drawn Character
We propose FairyGen, an automatic system for generating story-driven cartoon videos from a single child's drawing, while faithfully preserving its unique artistic style. Unlike previous storytelling methods that primarily focus on character consistency and basic motion, FairyGen explicitly disentangles character modeling from stylized background generation and incorporates cinematic shot design to support expressive and coherent storytelling. Given a single character sketch, we first employ an MLLM to generate a structured storyboard with shot-level descriptions that specify environment settings, character actions, and camera perspectives. To ensure visual consistency, we introduce a style propagation adapter that captures the character's visual style and applies it to the background, faithfully retaining the character's full visual identity while synthesizing style-consistent scenes. A shot design module further enhances visual diversity and cinematic quality through frame cropping and multi-view synthesis based on the storyboard. To animate the story, we reconstruct a 3D proxy of the character to derive physically plausible motion sequences, which are then used to fine-tune an MMDiT-based image-to-video diffusion model. We further propose a two-stage motion customization adapter: the first stage learns appearance features from temporally unordered frames, disentangling identity from motion; the second stage models temporal dynamics using a timestep-shift strategy with frozen identity weights. Once trained, FairyGen directly renders diverse and coherent video scenes aligned with the storyboard. Extensive experiments demonstrate that our system produces animations that are stylistically faithful, narratively structured natural motion, highlighting its potential for personalized and engaging story animation. The code will be available at https://github.com/GVCLab/FairyGen
comment: Project Page: https://jayleejia.github.io/FairyGen/ ; Code: https://github.com/GVCLab/FairyGen
☆ Video Virtual Try-on with Conditional Diffusion Transformer Inpainter
Video virtual try-on aims to naturally fit a garment to a target person in consecutive video frames. It is a challenging task, on the one hand, the output video should be in good spatial-temporal consistency, on the other hand, the details of the given garment need to be preserved well in all the frames. Naively using image-based try-on methods frame by frame can get poor results due to severe inconsistency. Recent diffusion-based video try-on methods, though very few, happen to coincide with a similar solution: inserting temporal attention into image-based try-on model to adapt it for video try-on task, which have shown improvements but there still exist inconsistency problems. In this paper, we propose ViTI (Video Try-on Inpainter), formulate and implement video virtual try-on as a conditional video inpainting task, which is different from previous methods. In this way, we start with a video generation problem instead of an image-based try-on problem, which from the beginning has a better spatial-temporal consistency. Specifically, at first we build a video inpainting framework based on Diffusion Transformer with full 3D spatial-temporal attention, and then we progressively adapt it for video garment inpainting, with a collection of masking strategies and multi-stage training. After these steps, the model can inpaint the masked garment area with appropriate garment pixels according to the prompt with good spatial-temporal consistency. Finally, as other try-on methods, garment condition is added to the model to make sure the inpainted garment appearance and details are as expected. Both quantitative and qualitative experimental results show that ViTI is superior to previous works.
comment: 10 pages, 6 figures
☆ DuET: Dual Incremental Object Detection via Exemplar-Free Task Arithmetic ICCV 2025
Real-world object detection systems, such as those in autonomous driving and surveillance, must continuously learn new object categories and simultaneously adapt to changing environmental conditions. Existing approaches, Class Incremental Object Detection (CIOD) and Domain Incremental Object Detection (DIOD) only address one aspect of this challenge. CIOD struggles in unseen domains, while DIOD suffers from catastrophic forgetting when learning new classes, limiting their real-world applicability. To overcome these limitations, we introduce Dual Incremental Object Detection (DuIOD), a more practical setting that simultaneously handles class and domain shifts in an exemplar-free manner. We propose DuET, a Task Arithmetic-based model merging framework that enables stable incremental learning while mitigating sign conflicts through a novel Directional Consistency Loss. Unlike prior methods, DuET is detector-agnostic, allowing models like YOLO11 and RT-DETR to function as real-time incremental object detectors. To comprehensively evaluate both retention and adaptation, we introduce the Retention-Adaptability Index (RAI), which combines the Average Retention Index (Avg RI) for catastrophic forgetting and the Average Generalization Index for domain adaptability into a common ground. Extensive experiments on the Pascal Series and Diverse Weather Series demonstrate DuET's effectiveness, achieving a +13.12% RAI improvement while preserving 89.3% Avg RI on the Pascal Series (4 tasks), as well as a +11.39% RAI improvement with 88.57% Avg RI on the Diverse Weather Series (3 tasks), outperforming existing methods.
comment: Accepted at ICCV 2025
☆ Temporal Rate Reduction Clustering for Human Motion Segmentation ICCV 2025
Human Motion Segmentation (HMS), which aims to partition videos into non-overlapping human motions, has attracted increasing research attention recently. Existing approaches for HMS are mainly dominated by subspace clustering methods, which are grounded on the assumption that high-dimensional temporal data align with a Union-of-Subspaces (UoS) distribution. However, the frames in video capturing complex human motions with cluttered backgrounds may not align well with the UoS distribution. In this paper, we propose a novel approach for HMS, named Temporal Rate Reduction Clustering ($\text{TR}^2\text{C}$), which jointly learns structured representations and affinity to segment the frame sequences in video. Specifically, the structured representations learned by $\text{TR}^2\text{C}$ maintain temporally consistent and align well with a UoS structure, which is favorable for the HMS task. We conduct extensive experiments on five benchmark HMS datasets and achieve state-of-the-art performances with different feature extractors.
comment: The paper is accepted by ICCV 2025. The first two authors are equally contributed
☆ GANet-Seg: Adversarial Learning for Brain Tumor Segmentation with Hybrid Generative Models
This work introduces a novel framework for brain tumor segmentation leveraging pre-trained GANs and Unet architectures. By combining a global anomaly detection module with a refined mask generation network, the proposed model accurately identifies tumor-sensitive regions and iteratively enhances segmentation precision using adversarial loss constraints. Multi-modal MRI data and synthetic image augmentation are employed to improve robustness and address the challenge of limited annotated datasets. Experimental results on the BraTS dataset demonstrate the effectiveness of the approach, achieving high sensitivity and accuracy in both lesion-wise Dice and HD95 metrics than the baseline. This scalable method minimizes the dependency on fully annotated data, paving the way for practical real-world applications in clinical settings.
☆ DiMPLe -- Disentangled Multi-Modal Prompt Learning: Enhancing Out-Of-Distribution Alignment with Invariant and Spurious Feature Separation
We introduce DiMPLe (Disentangled Multi-Modal Prompt Learning), a novel approach to disentangle invariant and spurious features across vision and language modalities in multi-modal learning. Spurious correlations in visual data often hinder out-of-distribution (OOD) performance. Unlike prior methods focusing solely on image features, DiMPLe disentangles features within and across modalities while maintaining consistent alignment, enabling better generalization to novel classes and robustness to distribution shifts. Our method combines three key objectives: (1) mutual information minimization between invariant and spurious features, (2) spurious feature regularization, and (3) contrastive learning on invariant features. Extensive experiments demonstrate DiMPLe demonstrates superior performance compared to CoOp-OOD, when averaged across 11 diverse datasets, and achieves absolute gains of 15.27 in base class accuracy and 44.31 in novel class accuracy.
☆ Real-Time ESFP: Estimating, Smoothing, Filtering, and Pose-Mapping
This paper presents ESFP, an end-to-end pipeline that converts monocular RGB video into executable joint trajectories for a low-cost 4-DoF desktop arm. ESFP comprises four sequential modules. (1) Estimating: ROMP lifts each frame to a 24-joint 3-D skeleton. (2) Smoothing: the proposed HPSTM-a sequence-to-sequence Transformer with self-attention-combines long-range temporal context with a differentiable forward-kinematics decoder, enforcing constant bone lengths and anatomical plausibility while jointly predicting joint means and full covariances. (3) Filtering: root-normalized trajectories are variance-weighted according to HPSTM's uncertainty estimates, suppressing residual noise. (4) Pose-Mapping: a geometric retargeting layer transforms shoulder-elbow-wrist triples into the uArm's polar workspace, preserving wrist orientation.
☆ ReME: A Data-Centric Framework for Training-Free Open-Vocabulary Segmentation ICCV 2025
Training-free open-vocabulary semantic segmentation (OVS) aims to segment images given a set of arbitrary textual categories without costly model fine-tuning. Existing solutions often explore attention mechanisms of pre-trained models, such as CLIP, or generate synthetic data and design complex retrieval processes to perform OVS. However, their performance is limited by the capability of reliant models or the suboptimal quality of reference sets. In this work, we investigate the largely overlooked data quality problem for this challenging dense scene understanding task, and identify that a high-quality reference set can significantly benefit training-free OVS. With this observation, we introduce a data-quality-oriented framework, comprising a data pipeline to construct a reference set with well-paired segment-text embeddings and a simple similarity-based retrieval to unveil the essential effect of data. Remarkably, extensive evaluations on ten benchmark datasets demonstrate that our method outperforms all existing training-free OVS approaches, highlighting the importance of data-centric design for advancing OVS without training. Our code is available at https://github.com/xiweix/ReME .
comment: Accepted to ICCV 2025
☆ BitMark for Infinity: Watermarking Bitwise Autoregressive Image Generative Models
State-of-the-art text-to-image models like Infinity generate photorealistic images at an unprecedented speed. These models operate in a bitwise autoregressive manner over a discrete set of tokens that is practically infinite in size. However, their impressive generative power comes with a growing risk: as their outputs increasingly populate the Internet, they are likely to be scraped and reused as training data-potentially by the very same models. This phenomenon has been shown to lead to model collapse, where repeated training on generated content, especially from the models' own previous versions, causes a gradual degradation in performance. A promising mitigation strategy is watermarking, which embeds human-imperceptible yet detectable signals into generated images-enabling the identification of generated content. In this work, we introduce BitMark, a robust bitwise watermarking framework for Infinity. Our method embeds a watermark directly at the bit level of the token stream across multiple scales (also referred to as resolutions) during Infinity's image generation process. Our bitwise watermark subtly influences the bits to preserve visual fidelity and generation speed while remaining robust against a spectrum of removal techniques. Furthermore, it exhibits high radioactivity, i.e., when watermarked generated images are used to train another image generative model, this second model's outputs will also carry the watermark. The radioactive traces remain detectable even when only fine-tuning diffusion or image autoregressive models on images watermarked with our BitMark. Overall, our approach provides a principled step toward preventing model collapse in image generative models by enabling reliable detection of generated outputs.
☆ MedPrompt: LLM-CNN Fusion with Weight Routing for Medical Image Segmentation and Classification
Current medical image analysis systems are typically task-specific, requiring separate models for classification and segmentation, and lack the flexibility to support user-defined workflows. To address these challenges, we introduce MedPrompt, a unified framework that combines a few-shot prompted Large Language Model (Llama-4-17B) for high-level task planning with a modular Convolutional Neural Network (DeepFusionLab) for low-level image processing. The LLM interprets user instructions and generates structured output to dynamically route task-specific pretrained weights. This weight routing approach avoids retraining the entire framework when adding new tasks-only task-specific weights are required, enhancing scalability and deployment. We evaluated MedPrompt across 19 public datasets, covering 12 tasks spanning 5 imaging modalities. The system achieves a 97% end-to-end correctness in interpreting and executing prompt-driven instructions, with an average inference latency of 2.5 seconds, making it suitable for near real-time applications. DeepFusionLab achieves competitive segmentation accuracy (e.g., Dice 0.9856 on lungs) and strong classification performance (F1 0.9744 on tuberculosis). Overall, MedPrompt enables scalable, prompt-driven medical imaging by combining the interpretability of LLMs with the efficiency of modular CNNs.
comment: 40 pages, 8 Tables, 9 Figures
☆ Unlocking Constraints: Source-Free Occlusion-Aware Seamless Segmentation ICCV 2025
Panoramic image processing is essential for omni-context perception, yet faces constraints like distortions, perspective occlusions, and limited annotations. Previous unsupervised domain adaptation methods transfer knowledge from labeled pinhole data to unlabeled panoramic images, but they require access to source pinhole data. To address these, we introduce a more practical task, i.e., Source-Free Occlusion-Aware Seamless Segmentation (SFOASS), and propose its first solution, called UNconstrained Learning Omni-Context Knowledge (UNLOCK). Specifically, UNLOCK includes two key modules: Omni Pseudo-Labeling Learning and Amodal-Driven Context Learning. While adapting without relying on source data or target labels, this framework enhances models to achieve segmentation with 360{\deg} viewpoint coverage and occlusion-aware reasoning. Furthermore, we benchmark the proposed SFOASS task through both real-to-real and synthetic-to-real adaptation settings. Experimental results show that our source-free method achieves performance comparable to source-dependent methods, yielding state-of-the-art scores of 10.9 in mAAP and 11.6 in mAP, along with an absolute improvement of +4.3 in mAPQ over the source-only method. All data and code will be made publicly available at https://github.com/yihong-97/UNLOCK.
comment: Accepted to ICCV 2025. All data and code will be made publicly available at https://github.com/yihong-97/UNLOCK
☆ GroundFlow: A Plug-in Module for Temporal Reasoning on 3D Point Cloud Sequential Grounding
Sequential grounding in 3D point clouds (SG3D) refers to locating sequences of objects by following text instructions for a daily activity with detailed steps. Current 3D visual grounding (3DVG) methods treat text instructions with multiple steps as a whole, without extracting useful temporal information from each step. However, the instructions in SG3D often contain pronouns such as "it", "here" and "the same" to make language expressions concise. This requires grounding methods to understand the context and retrieve relevant information from previous steps to correctly locate object sequences. Due to the lack of an effective module for collecting related historical information, state-of-the-art 3DVG methods face significant challenges in adapting to the SG3D task. To fill this gap, we propose GroundFlow -- a plug-in module for temporal reasoning on 3D point cloud sequential grounding. Firstly, we demonstrate that integrating GroundFlow improves the task accuracy of 3DVG baseline methods by a large margin (+7.5\% and +10.2\%) in the SG3D benchmark, even outperforming a 3D large language model pre-trained on various datasets. Furthermore, we selectively extract both short-term and long-term step information based on its relevance to the current instruction, enabling GroundFlow to take a comprehensive view of historical information and maintain its temporal understanding advantage as step counts increase. Overall, our work introduces temporal reasoning capabilities to existing 3DVG models and achieves state-of-the-art performance in the SG3D benchmark across five datasets.
☆ Out-of-Distribution Semantic Occupancy Prediction
3D Semantic Occupancy Prediction is crucial for autonomous driving, providing a dense, semantically rich environmental representation. However, existing methods focus on in-distribution scenes, making them susceptible to Out-of-Distribution (OoD) objects and long-tail distributions, which increases the risk of undetected anomalies and misinterpretations, posing safety hazards. To address these challenges, we introduce Out-of-Distribution Semantic Occupancy Prediction, targeting OoD detection in 3D voxel space. To fill the gaps in the dataset, we propose a Synthetic Anomaly Integration Pipeline that injects synthetic anomalies while preserving realistic spatial and occlusion patterns, enabling the creation of two datasets: VAA-KITTI and VAA-KITTI-360. We introduce OccOoD, a novel framework integrating OoD detection into 3D semantic occupancy prediction, with Voxel-BEV Progressive Fusion (VBPF) leveraging an RWKV-based branch to enhance OoD detection via geometry-semantic fusion. Experimental results demonstrate that OccOoD achieves state-of-the-art OoD detection with an AuROC of 67.34% and an AuPRCr of 29.21% within a 1.2m region, while maintaining competitive occupancy prediction performance. The established datasets and source code will be made publicly available at https://github.com/7uHeng/OccOoD.
comment: The established datasets and source code will be made publicly available at https://github.com/7uHeng/OccOoD
☆ Task-Aware KV Compression For Cost-Effective Long Video Understanding
Long-video understanding (LVU) remains a severe challenge for existing multimodal large language models (MLLMs), primarily due to the prohibitive computational cost. Recent approaches have explored KV compression to mitigate this issue, but they often suffer from significant information loss at high compression ratios. In this paper, we introduce Video-X^2L, which flexibly preserves critical video information for each LVU task. Video-X^2L involves two key operations. The first one is called bi-level KV compression. During the MLLM's pre-filling stage, Video-X^2L generates two types of compressed KVs: low-compression KVs (L-KVs) to capture fine-grained video details and high-compression KVs (H-KVs) to offer compact video representations. The second one is called selective KV re-loading. During the MLLM's decoding stage, Video-X^2L selectively re-loads L-KVs for the most critical video chunks while using H-KVs for other less important ones. This allows the MLLM to fully utilize task-specific information while maintaining the overall compactness. Video-X^2L is simple yet effective: it is free from additional training and directly compatible with existing KV-compressible MLLMs. We evaluate Video-X^2L with a variety of popular LVU benchmarks, including VideoMME, MLVU, LongVideoBench, and VNBench. Our experiment result shows that Video-X^2L outperforms existing KV-compression methods by a huge advantage while substantially saving the computation cost.
comment: 14 pages, 3 figures, 6 tables
☆ Uncover Treasures in DCT: Advancing JPEG Quality Enhancement by Exploiting Latent Correlations
Joint Photographic Experts Group (JPEG) achieves data compression by quantizing Discrete Cosine Transform (DCT) coefficients, which inevitably introduces compression artifacts. Most existing JPEG quality enhancement methods operate in the pixel domain, suffering from the high computational costs of decoding. Consequently, direct enhancement of JPEG images in the DCT domain has gained increasing attention. However, current DCT-domain methods often exhibit limited performance. To address this challenge, we identify two critical types of correlations within the DCT coefficients of JPEG images. Building on this insight, we propose an Advanced DCT-domain JPEG Quality Enhancement (AJQE) method that fully exploits these correlations. The AJQE method enables the adaptation of numerous well-established pixel-domain models to the DCT domain, achieving superior performance with reduced computational complexity. Compared to the pixel-domain counterparts, the DCT-domain models derived by our method demonstrate a 0.35 dB improvement in PSNR and a 60.5% increase in enhancement throughput on average.
☆ Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition
Learning semantic representations from point sets of 3D object shapes is often challenged by significant geometric variations, primarily due to differences in data acquisition methods. Typically, training data is generated using point simulators, while testing data is collected with distinct 3D sensors, leading to a simulation-to-reality (Sim2Real) domain gap that limits the generalization ability of point classifiers. Current unsupervised domain adaptation (UDA) techniques struggle with this gap, as they often lack robust, domain-insensitive descriptors capable of capturing global topological information, resulting in overfitting to the limited semantic patterns of the source domain. To address this issue, we introduce a novel Topology-Aware Modeling (TAM) framework for Sim2Real UDA on object point clouds. Our approach mitigates the domain gap by leveraging global spatial topology, characterized by low-level, high-frequency 3D structures, and by modeling the topological relations of local geometric features through a novel self-supervised learning task. Additionally, we propose an advanced self-training strategy that combines cross-domain contrastive learning with self-training, effectively reducing the impact of noisy pseudo-labels and enhancing the robustness of the adaptation process. Experimental results on three public Sim2Real benchmarks validate the effectiveness of our TAM framework, showing consistent improvements over state-of-the-art methods across all evaluated tasks. The source code of this work will be available at https://github.com/zou-longkun/TAG.git.
☆ Geometry and Perception Guided Gaussians for Multiview-consistent 3D Generation from a Single Image
Generating realistic 3D objects from single-view images requires natural appearance, 3D consistency, and the ability to capture multiple plausible interpretations of unseen regions. Existing approaches often rely on fine-tuning pretrained 2D diffusion models or directly generating 3D information through fast network inference or 3D Gaussian Splatting, but their results generally suffer from poor multiview consistency and lack geometric detail. To takle these issues, we present a novel method that seamlessly integrates geometry and perception priors without requiring additional model training to reconstruct detailed 3D objects from a single image. Specifically, we train three different Gaussian branches initialized from the geometry prior, perception prior and Gaussian noise, respectively. The geometry prior captures the rough 3D shapes, while the perception prior utilizes the 2D pretrained diffusion model to enhance multiview information. Subsequently, we refine 3D Gaussian branches through mutual interaction between geometry and perception priors, further enhanced by a reprojection-based strategy that enforces depth consistency. Experiments demonstrate the higher-fidelity reconstruction results of our method, outperforming existing methods on novel view synthesis and 3D reconstruction, demonstrating robust and consistent 3D object generation.
comment: 10 pages, 5 figures
☆ Robust Deep Learning for Myocardial Scar Segmentation in Cardiac MRI with Noisy Labels MICCAI 2025
The accurate segmentation of myocardial scars from cardiac MRI is essential for clinical assessment and treatment planning. In this study, we propose a robust deep-learning pipeline for fully automated myocardial scar detection and segmentation by fine-tuning state-of-the-art models. The method explicitly addresses challenges of label noise from semi-automatic annotations, data heterogeneity, and class imbalance through the use of Kullback-Leibler loss and extensive data augmentation. We evaluate the model's performance on both acute and chronic cases and demonstrate its ability to produce accurate and smooth segmentations despite noisy labels. In particular, our approach outperforms state-of-the-art models like nnU-Net and shows strong generalizability in an out-of-distribution test set, highlighting its robustness across various imaging conditions and clinical tasks. These results establish a reliable foundation for automated myocardial scar quantification and support the broader clinical adoption of deep learning in cardiac imaging.
comment: MICCAI 2025
☆ Tree-based Semantic Losses: Application to Sparsely-supervised Large Multi-class Hyperspectral Segmentation
Hyperspectral imaging (HSI) shows great promise for surgical applications, offering detailed insights into biological tissue differences beyond what the naked eye can perceive. Refined labelling efforts are underway to train vision systems to distinguish large numbers of subtly varying classes. However, commonly used learning methods for biomedical segmentation tasks penalise all errors equivalently and thus fail to exploit any inter-class semantics in the label space. In this work, we introduce two tree-based semantic loss functions which take advantage of a hierarchical organisation of the labels. We further incorporate our losses in a recently proposed approach for training with sparse, background-free annotations. Extensive experiments demonstrate that our proposed method reaches state-of-the-art performance on a sparsely annotated HSI dataset comprising $107$ classes organised in a clinically-defined semantic tree structure. Furthermore, our method enables effective detection of out-of-distribution (OOD) pixels without compromising segmentation performance on in-distribution (ID) pixels.
☆ Personalized Federated Learning via Dual-Prompt Optimization and Cross Fusion
Federated learning (FL) enables collaborative model training across decentralized clients without sharing local data, but is challenged by heterogeneity in data, computation, and communication. Pretrained vision-language models (VLMs), with their strong generalization and lightweight tuning via prompts, offer a promising solution. However, existing federated prompt-learning methods rely only on text prompts and overlook joint label-domain distribution shifts. In this paper, we propose a personalized FL framework based on dual-prompt learning and cross fusion, termed pFedDC. Specifically, each client maintains both global and local prompts across vision and language modalities: global prompts capture common knowledge shared across the federation, while local prompts encode client-specific semantics and domain characteristics. Meanwhile, a cross-fusion module is designed to adaptively integrate prompts from different levels, enabling the model to generate personalized representations aligned with each client's unique data distribution. Extensive experiments across nine datasets with various types of heterogeneity show that pFedDC consistently outperforms state-of-the-art methods.
☆ YOLO-FDA: Integrating Hierarchical Attention and Detail Enhancement for Surface Defect Detection
Surface defect detection in industrial scenarios is both crucial and technically demanding due to the wide variability in defect types, irregular shapes and sizes, fine-grained requirements, and complex material textures. Although recent advances in AI-based detectors have improved performance, existing methods often suffer from redundant features, limited detail sensitivity, and weak robustness under multiscale conditions. To address these challenges, we propose YOLO-FDA, a novel YOLO-based detection framework that integrates fine-grained detail enhancement and attention-guided feature fusion. Specifically, we adopt a BiFPN-style architecture to strengthen bidirectional multilevel feature aggregation within the YOLOv5 backbone. To better capture fine structural changes, we introduce a Detail-directional Fusion Module (DDFM) that introduces a directional asymmetric convolution in the second-lowest layer to enrich spatial details and fuses the second-lowest layer with low-level features to enhance semantic consistency. Furthermore, we propose two novel attention-based fusion strategies, Attention-weighted Concatenation (AC) and Cross-layer Attention Fusion (CAF) to improve contextual representation and reduce feature noise. Extensive experiments on benchmark datasets demonstrate that YOLO-FDA consistently outperforms existing state-of-the-art methods in terms of both accuracy and robustness across diverse types of defects and scales.
comment: 14 pages, 6 figures. Submitted to The 8th Chinese Conference on Pattern Recognition and Computer Vision
☆ Learning to See in the Extremely Dark ICCV 2025
Learning-based methods have made promising advances in low-light RAW image enhancement, while their capability to extremely dark scenes where the environmental illuminance drops as low as 0.0001 lux remains to be explored due to the lack of corresponding datasets. To this end, we propose a paired-to-paired data synthesis pipeline capable of generating well-calibrated extremely low-light RAW images at three precise illuminance ranges of 0.01-0.1 lux, 0.001-0.01 lux, and 0.0001-0.001 lux, together with high-quality sRGB references to comprise a large-scale paired dataset named See-in-the-Extremely-Dark (SIED) to benchmark low-light RAW image enhancement approaches. Furthermore, we propose a diffusion-based framework that leverages the generative ability and intrinsic denoising property of diffusion models to restore visually pleasing results from extremely low-SNR RAW inputs, in which an Adaptive Illumination Correction Module (AICM) and a color consistency loss are introduced to ensure accurate exposure correction and color restoration. Extensive experiments on the proposed SIED and publicly available benchmarks demonstrate the effectiveness of our method. The code and dataset are available at https://github.com/JianghaiSCU/SIED.
comment: Accepted by ICCV 2025
GoIRL: Graph-Oriented Inverse Reinforcement Learning for Multimodal Trajectory Prediction ICML 2025
Trajectory prediction for surrounding agents is a challenging task in autonomous driving due to its inherent uncertainty and underlying multimodality. Unlike prevailing data-driven methods that primarily rely on supervised learning, in this paper, we introduce a novel Graph-oriented Inverse Reinforcement Learning (GoIRL) framework, which is an IRL-based predictor equipped with vectorized context representations. We develop a feature adaptor to effectively aggregate lane-graph features into grid space, enabling seamless integration with the maximum entropy IRL paradigm to infer the reward distribution and obtain the policy that can be sampled to induce multiple plausible plans. Furthermore, conditioned on the sampled plans, we implement a hierarchical parameterized trajectory generator with a refinement module to enhance prediction accuracy and a probability fusion strategy to boost prediction confidence. Extensive experimental results showcase our approach not only achieves state-of-the-art performance on the large-scale Argoverse & nuScenes motion forecasting benchmarks but also exhibits superior generalization abilities compared to existing supervised models.
comment: Accepted by ICML 2025
CL-Splats: Continual Learning of Gaussian Splatting with Local Optimization ICCV 2025
In dynamic 3D environments, accurately updating scene representations over time is crucial for applications in robotics, mixed reality, and embodied AI. As scenes evolve, efficient methods to incorporate changes are needed to maintain up-to-date, high-quality reconstructions without the computational overhead of re-optimizing the entire scene. This paper introduces CL-Splats, which incrementally updates Gaussian splatting-based 3D representations from sparse scene captures. CL-Splats integrates a robust change-detection module that segments updated and static components within the scene, enabling focused, local optimization that avoids unnecessary re-computation. Moreover, CL-Splats supports storing and recovering previous scene states, facilitating temporal segmentation and new scene-analysis applications. Our extensive experiments demonstrate that CL-Splats achieves efficient updates with improved reconstruction quality over the state-of-the-art. This establishes a robust foundation for future real-time adaptation in 3D scene reconstruction tasks.
comment: ICCV 2025, Project Page: https://cl-splats.github.io
☆ IPFormer-VideoLLM: Enhancing Multi-modal Video Understanding for Multi-shot Scenes
Video Large Language Models (VideoLLMs) have demonstrated remarkable understanding capabilities, but are found struggling to tackle multi-shot scenarios,e.g., video clips with varying camera angles or scene changes. This challenge can render failures such as instance identity forgetting and key frame negligence. In this work, we first attribute the challenge to the lack of multi-shot annotations among existing datasets and therefore we introduce a new dataset termed MultiClip-Bench, featuring dense descriptions and instruction-based question-answering pairs tailored for multi-shot scenarios. We empirically find that the training set significantly boosts the multi-shot performance, while the testing benchmark provides a reliable measure of the model capability in multi-shot scenarios. By further analyzing and discovering that current models only encode instance features in a discrete or lossy manner, at the risk of missing identity information, we then contribute a new model IPFormer-VideoLLM. Its key idea is the injection of instance-level features as instance prompts through an efficient attention-based connector. This allows for the aggregation of instance-specific information across scenes. Experiments demonstrate that our proposed dataset and model not only enhance the multi-scene video understanding significantly, but also offer distinct advantages across various video benchmarks.
☆ Pushing Trade-Off Boundaries: Compact yet Effective Remote Sensing Change Detection
Remote sensing change detection is essential for monitoring urban expansion, disaster assessment, and resource management, offering timely, accurate, and large-scale insights into dynamic landscape transformations. While deep learning has revolutionized change detection, the increasing complexity and computational demands of modern models have not necessarily translated into significant accuracy gains. Instead of following this trend, this study explores a more efficient approach, focusing on lightweight models that maintain high accuracy while minimizing resource consumption, which is an essential requirement for on-satellite processing. To this end, we propose FlickCD, which means quick flick then get great results, pushing the boundaries of the performance-resource trade-off. FlickCD introduces an Enhanced Difference Module (EDM) to amplify critical feature differences between temporal phases while suppressing irrelevant variations such as lighting and weather changes, thereby reducing computational costs in the subsequent change decoder. Additionally, the FlickCD decoder incorporates Local-Global Fusion Blocks, leveraging Shifted Window Self-Attention (SWSA) and Enhanced Global Self-Attention (EGSA) to efficiently capture semantic information at multiple scales, preserving both coarse- and fine-grained changes. Extensive experiments on four benchmark datasets demonstrate that FlickCD reduces computational and storage overheads by more than an order of magnitude while achieving state-of-the-art (SOTA) performance or incurring only a minor (<1\% F1) accuracy trade-off. The implementation code is publicly available at https://github.com/xulsh8/FlickCD.
comment: 12 pages
☆ OracleFusion: Assisting the Decipherment of Oracle Bone Script with Structurally Constrained Semantic Typography ICCV 2025
As one of the earliest ancient languages, Oracle Bone Script (OBS) encapsulates the cultural records and intellectual expressions of ancient civilizations. Despite the discovery of approximately 4,500 OBS characters, only about 1,600 have been deciphered. The remaining undeciphered ones, with their complex structure and abstract imagery, pose significant challenges for interpretation. To address these challenges, this paper proposes a novel two-stage semantic typography framework, named OracleFusion. In the first stage, this approach leverages the Multimodal Large Language Model (MLLM) with enhanced Spatial Awareness Reasoning (SAR) to analyze the glyph structure of the OBS character and perform visual localization of key components. In the second stage, we introduce Oracle Structural Vector Fusion (OSVF), incorporating glyph structure constraints and glyph maintenance constraints to ensure the accurate generation of semantically enriched vector fonts. This approach preserves the objective integrity of the glyph structure, offering visually enhanced representations that assist experts in deciphering OBS. Extensive qualitative and quantitative experiments demonstrate that OracleFusion outperforms state-of-the-art baseline models in terms of semantics, visual appeal, and glyph maintenance, significantly enhancing both readability and aesthetic quality. Furthermore, OracleFusion provides expert-like insights on unseen oracle characters, making it a valuable tool for advancing the decipherment of OBS.
comment: Accepted to ICCV 2025
☆ ESMStereo: Enhanced ShuffleMixer Disparity Upsampling for Real-Time and Accurate Stereo Matching
Stereo matching has become an increasingly important component of modern autonomous systems. Developing deep learning-based stereo matching models that deliver high accuracy while operating in real-time continues to be a major challenge in computer vision. In the domain of cost-volume-based stereo matching, accurate disparity estimation depends heavily on large-scale cost volumes. However, such large volumes store substantial redundant information and also require computationally intensive aggregation units for processing and regression, making real-time performance unattainable. Conversely, small-scale cost volumes followed by lightweight aggregation units provide a promising route for real-time performance, but lack sufficient information to ensure highly accurate disparity estimation. To address this challenge, we propose the Enhanced Shuffle Mixer (ESM) to mitigate information loss associated with small-scale cost volumes. ESM restores critical details by integrating primary features into the disparity upsampling unit. It quickly extracts features from the initial disparity estimation and fuses them with image features. These features are mixed by shuffling and layer splitting then refined through a compact feature-guided hourglass network to recover more detailed scene geometry. The ESM focuses on local contextual connectivity with a large receptive field and low computational cost, leading to the reconstruction of a highly accurate disparity map at real-time. The compact version of ESMStereo achieves an inference speed of 116 FPS on high-end GPUs and 91 FPS on the AGX Orin.
comment: Under peer review
☆ EgoAdapt: Adaptive Multisensory Distillation and Policy Learning for Efficient Egocentric Perception ICCV 2025
Modern perception models, particularly those designed for multisensory egocentric tasks, have achieved remarkable performance but often come with substantial computational costs. These high demands pose challenges for real-world deployment, especially in resource-constrained environments. In this paper, we introduce EgoAdapt, a framework that adaptively performs cross-modal distillation and policy learning to enable efficient inference across different egocentric perception tasks, including egocentric action recognition, active speaker localization, and behavior anticipation. Our proposed policy module is adaptable to task-specific action spaces, making it broadly applicable. Experimental results on three challenging egocentric datasets EPIC-Kitchens, EasyCom, and Aria Everyday Activities demonstrate that our method significantly enhances efficiency, reducing GMACs by up to 89.09%, parameters up to 82.02%, and energy up to 9.6x, while still on-par and in many cases outperforming, the performance of corresponding state-of-the-art models.
comment: Accepted at ICCV 2025
☆ PoseMaster: Generating 3D Characters in Arbitrary Poses from a Single Image
3D characters play a crucial role in our daily entertainment. To improve the efficiency of 3D character modeling, recent image-based methods use two separate models to achieve pose standardization and 3D reconstruction of the A-pose character. However, these methods are prone to generating distorted and degraded images in the pose standardization stage due to self-occlusion and viewpoints, which further affects the geometric quality of the subsequent reconstruction process. To tackle these problems, we propose PoseMaster, an end-to-end controllable 3D character generation framework. Specifically, we unify pose transformation and 3D character generation into a flow-based 3D native generation framework. To achieve accurate arbitrary-pose control, we propose to leverage the 3D body bones existing in the skeleton of an animatable character as the pose condition. Furthermore, considering the specificity of multi-condition control, we randomly empty the pose condition and the image condition during training to improve the effectiveness and generalizability of pose control. Finally, we create a high-quality pose-control dataset derived from realistic character animation data to make the model learning the implicit relationships between skeleton and skinning weights. Extensive experiments show that PoseMaster outperforms current state-of-the-art techniques in both qualitative and quantitative evaluations for A-pose character generation while demonstrating its powerful ability to achieve precise control for arbitrary poses.
☆ SAMURAI: Shape-Aware Multimodal Retrieval for 3D Object Identification
Retrieving 3D objects in complex indoor environments using only a masked 2D image and a natural language description presents significant challenges. The ROOMELSA challenge limits access to full 3D scene context, complicating reasoning about object appearance, geometry, and semantics. These challenges are intensified by distorted viewpoints, textureless masked regions, ambiguous language prompts, and noisy segmentation masks. To address this, we propose SAMURAI: Shape-Aware Multimodal Retrieval for 3D Object Identification. SAMURAI integrates CLIP-based semantic matching with shape-guided re-ranking derived from binary silhouettes of masked regions, alongside a robust majority voting strategy. A dedicated preprocessing pipeline enhances mask quality by extracting the largest connected component and removing background noise. Our hybrid retrieval framework leverages both language and shape cues, achieving competitive performance on the ROOMELSA private test set. These results highlight the importance of combining shape priors with language understanding for robust open-world 3D object retrieval.
☆ Class-Agnostic Region-of-Interest Matching in Document Images ICDAR2025
Document understanding and analysis have received a lot of attention due to their widespread application. However, existing document analysis solutions, such as document layout analysis and key information extraction, are only suitable for fixed category definitions and granularities, and cannot achieve flexible applications customized by users. Therefore, this paper defines a new task named ``Class-Agnostic Region-of-Interest Matching'' (``RoI-Matching'' for short), which aims to match the customized regions in a flexible, efficient, multi-granularity, and open-set manner. The visual prompt of the reference document and target document images are fed into our model, while the output is the corresponding bounding boxes in the target document images. To meet the above requirements, we construct a benchmark RoI-Matching-Bench, which sets three levels of difficulties following real-world conditions, and propose the macro and micro metrics to evaluate. Furthermore, we also propose a new framework RoI-Matcher, which employs a siamese network to extract multi-level features both in the reference and target domains, and cross-attention layers to integrate and align similar semantics in different domains. Experiments show that our method with a simple procedure is effective on RoI-Matching-Bench, and serves as the baseline for further research. The code is available at https://github.com/pd162/RoI-Matching.
comment: Accepted by ICDAR2025
☆ Boosting Generative Adversarial Transferability with Self-supervised Vision Transformer Features ICCV 2025
The ability of deep neural networks (DNNs) come from extracting and interpreting features from the data provided. By exploiting intermediate features in DNNs instead of relying on hard labels, we craft adversarial perturbation that generalize more effectively, boosting black-box transferability. These features ubiquitously come from supervised learning in previous work. Inspired by the exceptional synergy between self-supervised learning and the Transformer architecture, this paper explores whether exploiting self-supervised Vision Transformer (ViT) representations can improve adversarial transferability. We present dSVA -- a generative dual self-supervised ViT features attack, that exploits both global structural features from contrastive learning (CL) and local textural features from masked image modeling (MIM), the self-supervised learning paradigm duo for ViTs. We design a novel generative training framework that incorporates a generator to create black-box adversarial examples, and strategies to train the generator by exploiting joint features and the attention mechanism of self-supervised ViTs. Our findings show that CL and MIM enable ViTs to attend to distinct feature tendencies, which, when exploited in tandem, boast great adversarial generalizability. By disrupting dual deep features distilled by self-supervised ViTs, we are rewarded with remarkable black-box transferability to models of various architectures that outperform state-of-the-arts. Code available at https://github.com/spencerwooo/dSVA.
comment: 14 pages, 9 figures, to appear in ICCV 2025
☆ Improving Diffusion-Based Image Editing Faithfulness via Guidance and Scheduling
Text-guided diffusion models have become essential for high-quality image synthesis, enabling dynamic image editing. In image editing, two crucial aspects are editability, which determines the extent of modification, and faithfulness, which reflects how well unaltered elements are preserved. However, achieving optimal results is challenging because of the inherent trade-off between editability and faithfulness. To address this, we propose Faithfulness Guidance and Scheduling (FGS), which enhances faithfulness with minimal impact on editability. FGS incorporates faithfulness guidance to strengthen the preservation of input image information and introduces a scheduling strategy to resolve misalignment between editability and faithfulness. Experimental results demonstrate that FGS achieves superior faithfulness while maintaining editability. Moreover, its compatibility with various editing methods enables precise, high-quality image edits across diverse tasks.
comment: preprint
☆ Boosting Domain Generalized and Adaptive Detection with Diffusion Models: Fitness, Generalization, and Transferability ICCV2025
Detectors often suffer from performance drop due to domain gap between training and testing data. Recent methods explore diffusion models applied to domain generalization (DG) and adaptation (DA) tasks, but still struggle with large inference costs and have not yet fully leveraged the capabilities of diffusion models. We propose to tackle these problems by extracting intermediate features from a single-step diffusion process, improving feature collection and fusion to reduce inference time by 75% while enhancing performance on source domains (i.e., Fitness). Then, we construct an object-centered auxiliary branch by applying box-masked images with class prompts to extract robust and domain-invariant features that focus on object. We also apply consistency loss to align the auxiliary and ordinary branch, balancing fitness and generalization while preventing overfitting and improving performance on target domains (i.e., Generalization). Furthermore, within a unified framework, standard detectors are guided by diffusion detectors through feature-level and object-level alignment on source domains (for DG) and unlabeled target domains (for DA), thereby improving cross-domain detection performance (i.e., Transferability). Our method achieves competitive results on 3 DA benchmarks and 5 DG benchmarks. Additionally, experiments on COCO generalization benchmark demonstrate that our method maintains significant advantages and show remarkable efficiency in large domain shifts and low-data scenarios. Our work shows the superiority of applying diffusion models to domain generalized and adaptive detection tasks and offers valuable insights for visual perception tasks across diverse domains. The code is available at \href{https://github.com/heboyong/Fitness-Generalization-Transferability}{Fitness-Generalization-Transferability}.
comment: Accepted by ICCV2025. arXiv admin note: text overlap with arXiv:2503.02101
☆ V2X-REALM: Vision-Language Model-Based Robust End-to-End Cooperative Autonomous Driving with Adaptive Long-Tail Modeling
Ensuring robust planning and decision-making under rare, diverse, and visually degraded long-tail scenarios remains a fundamental challenge for autonomous driving in urban environments. This issue becomes more critical in cooperative settings, where vehicles and infrastructure jointly perceive and reason across complex environments. To address this challenge, we propose V2X-REALM, a vision-language model (VLM)-based framework with adaptive multimodal learning for robust cooperative autonomous driving under long-tail scenarios. V2X-REALM introduces three core innovations: (i) a prompt-driven long-tail scenario generation and evaluation pipeline that leverages foundation models to synthesize realistic long-tail conditions such as snow and fog across vehicle- and infrastructure-side views, enriching training diversity efficiently; (ii) a gated multi-scenario adaptive attention module that modulates the visual stream using scenario priors to recalibrate ambiguous or corrupted features; and (iii) a multi-task scenario-aware contrastive learning objective that improves multimodal alignment and promotes cross-scenario feature separability. Extensive experiments demonstrate that V2X-REALM significantly outperforms existing baselines in robustness, semantic reasoning, safety, and planning accuracy under complex, challenging driving conditions, advancing the scalability of end-to-end cooperative autonomous driving.
☆ RL-Selector: Reinforcement Learning-Guided Data Selection via Redundancy Assessment ICCV 2025
Modern deep architectures often rely on large-scale datasets, but training on these datasets incurs high computational and storage overhead. Real-world datasets often contain substantial redundancies, prompting the need for more data-efficient training paradigms. Data selection has shown promise to mitigate redundancy by identifying the most representative samples, thereby reducing training costs without compromising performance. Existing methods typically rely on static scoring metrics or pretrained models, overlooking the combined effect of selected samples and their evolving dynamics during training. We introduce the concept of epsilon-sample cover, which quantifies sample redundancy based on inter-sample relationships, capturing the intrinsic structure of the dataset. Based on this, we reformulate data selection as a reinforcement learning (RL) process and propose RL-Selector, where a lightweight RL agent optimizes the selection policy by leveraging epsilon-sample cover derived from evolving dataset distribution as a reward signal. Extensive experiments across benchmark datasets and diverse architectures demonstrate that our method consistently outperforms existing state-of-the-art baselines. Models trained with our selected datasets show enhanced generalization performance with improved training efficiency.
comment: ICCV 2025
☆ DidSee: Diffusion-Based Depth Completion for Material-Agnostic Robotic Perception and Manipulation
Commercial RGB-D cameras often produce noisy, incomplete depth maps for non-Lambertian objects. Traditional depth completion methods struggle to generalize due to the limited diversity and scale of training data. Recent advances exploit visual priors from pre-trained text-to-image diffusion models to enhance generalization in dense prediction tasks. However, we find that biases arising from training-inference mismatches in the vanilla diffusion framework significantly impair depth completion performance. Additionally, the lack of distinct visual features in non-Lambertian regions further hinders precise prediction. To address these issues, we propose \textbf{DidSee}, a diffusion-based framework for depth completion on non-Lambertian objects. First, we integrate a rescaled noise scheduler enforcing a zero terminal signal-to-noise ratio to eliminate signal leakage bias. Second, we devise a noise-agnostic single-step training formulation to alleviate error accumulation caused by exposure bias and optimize the model with a task-specific loss. Finally, we incorporate a semantic enhancer that enables joint depth completion and semantic segmentation, distinguishing objects from backgrounds and yielding precise, fine-grained depth maps. DidSee achieves state-of-the-art performance on multiple benchmarks, demonstrates robust real-world generalization, and effectively improves downstream tasks such as category-level pose estimation and robotic grasping.Project page: https://wenzhoulyu.github.io/DidSee/
☆ Instella-T2I: Pushing the Limits of 1D Discrete Latent Space Image Generation
Image tokenization plays a critical role in reducing the computational demands of modeling high-resolution images, significantly improving the efficiency of image and multimodal understanding and generation. Recent advances in 1D latent spaces have reduced the number of tokens required by eliminating the need for a 2D grid structure. In this paper, we further advance compact discrete image representation by introducing 1D binary image latents. By representing each image as a sequence of binary vectors, rather than using traditional one-hot codebook tokens, our approach preserves high-resolution details while maintaining the compactness of 1D latents. To the best of our knowledge, our text-to-image models are the first to achieve competitive performance in both diffusion and auto-regressive generation using just 128 discrete tokens for images up to 1024x1024, demonstrating up to a 32-fold reduction in token numbers compared to standard VQ-VAEs. The proposed 1D binary latent space, coupled with simple model architectures, achieves marked improvements in speed training and inference speed. Our text-to-image models allow for a global batch size of 4096 on a single GPU node with 8 AMD MI300X GPUs, and the training can be completed within 200 GPU days. Our models achieve competitive performance compared to modern image generation models without any in-house private training data or post-training refinements, offering a scalable and efficient alternative to conventional tokenization methods.
☆ LASFNet: A Lightweight Attention-Guided Self-Modulation Feature Fusion Network for Multimodal Object Detection
Effective deep feature extraction via feature-level fusion is crucial for multimodal object detection. However, previous studies often involve complex training processes that integrate modality-specific features by stacking multiple feature-level fusion units, leading to significant computational overhead. To address this issue, we propose a new fusion detection baseline that uses a single feature-level fusion unit to enable high-performance detection, thereby simplifying the training process. Based on this approach, we propose a lightweight attention-guided self-modulation feature fusion network (LASFNet), which introduces a novel attention-guided self-modulation feature fusion (ASFF) module that adaptively adjusts the responses of fusion features at both global and local levels based on attention information from different modalities, thereby promoting comprehensive and enriched feature generation. Additionally, a lightweight feature attention transformation module (FATM) is designed at the neck of LASFNet to enhance the focus on fused features and minimize information loss. Extensive experiments on three representative datasets demonstrate that, compared to state-of-the-art methods, our approach achieves a favorable efficiency-accuracy trade-off, reducing the number of parameters and computational cost by as much as 90% and 85%, respectively, while improving detection accuracy (mAP) by 1%-3%. The code will be open-sourced at https://github.com/leileilei2000/LASFNet.
☆ Multimodal Prompt Alignment for Facial Expression Recognition ICCV2025
Prompt learning has been widely adopted to efficiently adapt vision-language models (VLMs) like CLIP for various downstream tasks. Despite their success, current VLM-based facial expression recognition (FER) methods struggle to capture fine-grained textual-visual relationships, which are essential for distinguishing subtle differences between facial expressions. To address this challenge, we propose a multimodal prompt alignment framework for FER, called MPA-FER, that provides fine-grained semantic guidance to the learning process of prompted visual features, resulting in more precise and interpretable representations. Specifically, we introduce a multi-granularity hard prompt generation strategy that utilizes a large language model (LLM) like ChatGPT to generate detailed descriptions for each facial expression. The LLM-based external knowledge is injected into the soft prompts by minimizing the feature discrepancy between the soft prompts and the hard prompts. To preserve the generalization abilities of the pretrained CLIP model, our approach incorporates prototype-guided visual feature alignment, ensuring that the prompted visual features from the frozen image encoder align closely with class-specific prototypes. Additionally, we propose a cross-modal global-local alignment module that focuses on expression-relevant facial features, further improving the alignment between textual and visual features. Extensive experiments demonstrate our framework outperforms state-of-the-art methods on three FER benchmark datasets, while retaining the benefits of the pretrained model and minimizing computational costs.
comment: To appear in ICCV2025
☆ HybridQ: Hybrid Classical-Quantum Generative Adversarial Network for Skin Disease Image Generation
Machine learning-assisted diagnosis is gaining traction in skin disease detection, but training effective models requires large amounts of high-quality data. Skin disease datasets often suffer from class imbalance, privacy concerns, and object bias, making data augmentation essential. While classical generative models are widely used, they demand extensive computational resources and lengthy training time. Quantum computing offers a promising alternative, but existing quantum-based image generation methods can only yield grayscale low-quality images. Through a novel classical-quantum latent space fusion technique, our work overcomes this limitation and introduces the first classical-quantum generative adversarial network (GAN) capable of generating color medical images. Our model outperforms classical deep convolutional GANs and existing hybrid classical-quantum GANs in both image generation quality and classification performance boost when used as data augmentation. Moreover, the performance boost is comparable with that achieved using state-of-the-art classical generative models, yet with over 25 times fewer parameters and 10 times fewer training epochs. Such results suggest a promising future for quantum image generation as quantum hardware advances. Finally, we demonstrate the robust performance of our model on real IBM quantum machine with hardware noise.
☆ FedSC: Federated Learning with Semantic-Aware Collaboration KDD 2025
Federated learning (FL) aims to train models collaboratively across clients without sharing data for privacy-preserving. However, one major challenge is the data heterogeneity issue, which refers to the biased labeling preferences at multiple clients. A number of existing FL methods attempt to tackle data heterogeneity locally (e.g., regularizing local models) or globally (e.g., fine-tuning global model), often neglecting inherent semantic information contained in each client. To explore the possibility of using intra-client semantically meaningful knowledge in handling data heterogeneity, in this paper, we propose Federated Learning with Semantic-Aware Collaboration (FedSC) to capture client-specific and class-relevant knowledge across heterogeneous clients. The core idea of FedSC is to construct relational prototypes and consistent prototypes at semantic-level, aiming to provide fruitful class underlying knowledge and stable convergence signals in a prototype-wise collaborative way. On the one hand, FedSC introduces an inter-contrastive learning strategy to bring instance-level embeddings closer to relational prototypes with the same semantics and away from distinct classes. On the other hand, FedSC devises consistent prototypes via a discrepancy aggregation manner, as a regularization penalty to constrain the optimization region of the local model. Moreover, a theoretical analysis for FedSC is provided to ensure a convergence guarantee. Experimental results on various challenging scenarios demonstrate the effectiveness of FedSC and the efficiency of crucial components.
comment: 12 pages, KDD 2025
☆ Bridging Video Quality Scoring and Justification via Large Multimodal Models
Classical video quality assessment (VQA) methods generate a numerical score to judge a video's perceived visual fidelity and clarity. Yet, a score fails to describe the video's complex quality dimensions, restricting its applicability. Benefiting from the linguistic output, adapting video large multimodal models (LMMs) to VQA via instruction tuning has the potential to address this issue. The core of the approach lies in the video quality-centric instruction data. Previous explorations mainly focus on the image domain, and their data generation processes heavily rely on human quality annotations and proprietary systems, limiting data scalability and effectiveness. To address these challenges, we propose the Score-based Instruction Generation (SIG) pipeline. Specifically, SIG first scores multiple quality dimensions of an unlabeled video and maps scores to text-defined levels. It then explicitly incorporates a hierarchical Chain-of-Thought (CoT) to model the correlation between specific dimensions and overall quality, mimicking the human visual system's reasoning process. The automated pipeline eliminates the reliance on expert-written quality descriptions and proprietary systems, ensuring data scalability and generation efficiency. To this end, the resulting Score2Instruct (S2I) dataset contains over 320K diverse instruction-response pairs, laying the basis for instruction tuning. Moreover, to advance video LMMs' quality scoring and justification abilities simultaneously, we devise a progressive tuning strategy to fully unleash the power of S2I. Built upon SIG, we further curate a benchmark termed S2I-Bench with 400 open-ended questions to better evaluate the quality justification capacity of video LMMs. Experimental results on the S2I-Bench and existing benchmarks indicate that our method consistently improves quality scoring and justification capabilities across multiple video LMMs.
comment: 15 pages, 4 figures, 8 tables
☆ User-in-the-Loop View Sampling with Error Peaking Visualization ICIP 2025
Augmented reality (AR) provides ways to visualize missing view samples for novel view synthesis. Existing approaches present 3D annotations for new view samples and task users with taking images by aligning the AR display. This data collection task is known to be mentally demanding and limits capture areas to pre-defined small areas due to the ideal but restrictive underlying sampling theory. To free users from 3D annotations and limited scene exploration, we propose using locally reconstructed light fields and visualizing errors to be removed by inserting new views. Our results show that the error-peaking visualization is less invasive, reduces disappointment in final results, and is satisfactory with fewer view samples in our mobile view synthesis system. We also show that our approach can contribute to recent radiance field reconstruction for larger scenes, such as 3D Gaussian splatting.
comment: Accepted at IEEE ICIP 2025, Project Page: https://mediated-reality.github.io/projects/yasunaga_icip25/
☆ The Aging Multiverse: Generating Condition-Aware Facial Aging Tree via Training-Free Diffusion
We introduce the Aging Multiverse, a framework for generating multiple plausible facial aging trajectories from a single image, each conditioned on external factors such as environment, health, and lifestyle. Unlike prior methods that model aging as a single deterministic path, our approach creates an aging tree that visualizes diverse futures. To enable this, we propose a training-free diffusion-based method that balances identity preservation, age accuracy, and condition control. Our key contributions include attention mixing to modulate editing strength and a Simulated Aging Regularization strategy to stabilize edits. Extensive experiments and user studies demonstrate state-of-the-art performance across identity preservation, aging realism, and conditional alignment, outperforming existing editing and age-progression models, which often fail to account for one or more of the editing criteria. By transforming aging into a multi-dimensional, controllable, and interpretable process, our approach opens up new creative and practical avenues in digital storytelling, health education, and personalized visualization.
Detection of Breast Cancer Lumpectomy Margin with SAM-incorporated Forward-Forward Contrastive Learning
Complete removal of cancer tumors with a negative specimen margin during lumpectomy is essential in reducing breast cancer recurrence. However, 2D specimen radiography (SR), the current method used to assess intraoperative specimen margin status, has limited accuracy, resulting in nearly a quarter of patients requiring additional surgery. To address this, we propose a novel deep learning framework combining the Segment Anything Model (SAM) with Forward-Forward Contrastive Learning (FFCL), a pre-training strategy leveraging both local and global contrastive learning for patch-level classification of SR images. After annotating SR images with regions of known maligancy, non-malignant tissue, and pathology-confirmed margins, we pre-train a ResNet-18 backbone with FFCL to classify margin status, then reconstruct coarse binary masks to prompt SAM for refined tumor margin segmentation. Our approach achieved an AUC of 0.8455 for margin classification and segmented margins with a 27.4% improvement in Dice similarity over baseline models, while reducing inference time to 47 milliseconds per image. These results demonstrate that FFCL-SAM significantly enhances both the speed and accuracy of intraoperative margin assessment, with strong potential to reduce re-excision rates and improve surgical outcomes in breast cancer treatment. Our code is available at https://github.com/tbwa233/FFCL-SAM/.
comment: 19 pages, 7 figures, 3 tables
☆ VisionGuard: Synergistic Framework for Helmet Violation Detection
Enforcing helmet regulations among motorcyclists is essential for enhancing road safety and ensuring the effectiveness of traffic management systems. However, automatic detection of helmet violations faces significant challenges due to environmental variability, camera angles, and inconsistencies in the data. These factors hinder reliable detection of motorcycles and riders and disrupt consistent object classification. To address these challenges, we propose VisionGuard, a synergistic multi-stage framework designed to overcome the limitations of frame-wise detectors, especially in scenarios with class imbalance and inconsistent annotations. VisionGuard integrates two key components: Adaptive Labeling and Contextual Expander modules. The Adaptive Labeling module is a tracking-based refinement technique that enhances classification consistency by leveraging a tracking algorithm to assign persistent labels across frames and correct misclassifications. The Contextual Expander module improves recall for underrepresented classes by generating virtual bounding boxes with appropriate confidence scores, effectively addressing the impact of data imbalance. Experimental results show that VisionGuard improves overall mAP by 3.1% compared to baseline detectors, demonstrating its effectiveness and potential for real-world deployment in traffic surveillance systems, ultimately promoting safety and regulatory compliance.
☆ Inverse Scene Text Removal
Scene text removal (STR) aims to erase textual elements from images. It was originally intended for removing privacy-sensitiveor undesired texts from natural scene images, but is now also appliedto typographic images. STR typically detects text regions and theninpaints them. Although STR has advanced through neural networksand synthetic data, misuse risks have increased. This paper investi-gates Inverse STR (ISTR), which analyzes STR-processed images andfocuses on binary classification (detecting whether an image has un-dergone STR) and localizing removed text regions. We demonstrate inexperiments that these tasks are achievable with high accuracies, en-abling detection of potential misuse and improving STR. We also at-tempt to recover the removed text content by training a text recognizerto understand its difficulty.
comment: 17 pages
☆ Style-Aligned Image Composition for Robust Detection of Abnormal Cells in Cytopathology
Challenges such as the lack of high-quality annotations, long-tailed data distributions, and inconsistent staining styles pose significant obstacles to training neural networks to detect abnormal cells in cytopathology robustly. This paper proposes a style-aligned image composition (SAIC) method that composes high-fidelity and style-preserved pathological images to enhance the effectiveness and robustness of detection models. Without additional training, SAIC first selects an appropriate candidate from the abnormal cell bank based on attribute guidance. Then, it employs a high-frequency feature reconstruction to achieve a style-aligned and high-fidelity composition of abnormal cells and pathological backgrounds. Finally, it introduces a large vision-language model to filter high-quality synthesis images. Experimental results demonstrate that incorporating SAIC-synthesized images effectively enhances the performance and robustness of abnormal cell detection for tail categories and styles, thereby improving overall detection performance. The comprehensive quality evaluation further confirms the generalizability and practicality of SAIC in clinical application scenarios. Our code will be released at https://github.com/Joey-Qi/SAIC.
comment: MIDL 2025 Oral
☆ DBMovi-GS: Dynamic View Synthesis from Blurry Monocular Video via Sparse-Controlled Gaussian Splatting CVPR
Novel view synthesis is a task of generating scenes from unseen perspectives; however, synthesizing dynamic scenes from blurry monocular videos remains an unresolved challenge that has yet to be effectively addressed. Existing novel view synthesis methods are often constrained by their reliance on high-resolution images or strong assumptions about static geometry and rigid scene priors. Consequently, their approaches lack robustness in real-world environments with dynamic object and camera motion, leading to instability and degraded visual fidelity. To address this, we propose Motion-aware Dynamic View Synthesis from Blurry Monocular Video via Sparse-Controlled Gaussian Splatting (DBMovi-GS), a method designed for dynamic view synthesis from blurry monocular videos. Our model generates dense 3D Gaussians, restoring sharpness from blurry videos and reconstructing detailed 3D geometry of the scene affected by dynamic motion variations. Our model achieves robust performance in novel view synthesis under dynamic blurry scenes and sets a new benchmark in realistic novel view synthesis for blurry monocular video inputs.
comment: CVPRW 2025, Neural Fields Beyond Conventional Cameras
♻ ☆ TCDiff++: An End-to-end Trajectory-Controllable Diffusion Model for Harmonious Music-Driven Group Choreography
Music-driven dance generation has garnered significant attention due to its wide range of industrial applications, particularly in the creation of group choreography. During the group dance generation process, however, most existing methods still face three primary issues: multi-dancer collisions, single-dancer foot sliding and abrupt swapping in the generation of long group dance. In this paper, we propose TCDiff++, a music-driven end-to-end framework designed to generate harmonious group dance. Specifically, to mitigate multi-dancer collisions, we utilize a dancer positioning embedding to better maintain the relative positioning among dancers. Additionally, we incorporate a distance-consistency loss to ensure that inter-dancer distances remain within plausible ranges. To address the issue of single-dancer foot sliding, we introduce a swap mode embedding to indicate dancer swapping patterns and design a Footwork Adaptor to refine raw motion, thereby minimizing foot sliding. For long group dance generation, we present a long group diffusion sampling strategy that reduces abrupt position shifts by injecting positional information into the noisy input. Furthermore, we integrate a Sequence Decoder layer to enhance the model's ability to selectively process long sequences. Extensive experiments demonstrate that our TCDiff++ achieves state-of-the-art performance, particularly in long-duration scenarios, ensuring high-quality and coherent group dance generation.
♻ ☆ Towards Scalable and Generalizable Earth Observation Data Mining via Foundation Model Composition
Foundation models are rapidly transforming Earth Observation data mining by enabling generalizable and scalable solutions for key tasks such as scene classification and semantic segmentation. While most efforts in the geospatial domain have focused on developing large models trained from scratch using massive Earth Observation datasets, an alternative strategy that remains underexplored is the reuse and combination of existing pretrained models. In this study, we investigate whether foundation models pretrained on remote sensing and general vision datasets can be effectively combined to improve performance across a diverse set of key Earth Observation tasks. Using the GEO-Bench benchmark, we evaluate several prominent models, including Prithvi, Hiera, and DOFA, on eleven datasets covering a range of spatial resolutions, sensor modalities, and task types. The results show that feature-level ensembling of smaller pretrained models can match or exceed the performance of much larger models, while requiring less training time and computational resources. Moreover, the study highlights the potential of applying knowledge distillation to transfer the strengths of ensembles into more compact models, offering a practical path for deploying foundation models in real-world Earth Observation applications.
♻ ☆ Consensus-Driven Uncertainty for Robotic Grasping based on RGB Perception IROS 2025
Deep object pose estimators are notoriously overconfident. A grasping agent that both estimates the 6-DoF pose of a target object and predicts the uncertainty of its own estimate could avoid task failure by choosing not to act under high uncertainty. Even though object pose estimation improves and uncertainty quantification research continues to make strides, few studies have connected them to the downstream task of robotic grasping. We propose a method for training lightweight, deep networks to predict whether a grasp guided by an image-based pose estimate will succeed before that grasp is attempted. We generate training data for our networks via object pose estimation on real images and simulated grasping. We also find that, despite high object variability in grasping trials, networks benefit from training on all objects jointly, suggesting that a diverse variety of objects can nevertheless contribute to the same goal.
comment: Accepted to IROS 2025
♻ ☆ Learning to Be a Transformer to Pinpoint Anomalies
To efficiently deploy strong, often pre-trained feature extractors, recent Industrial Anomaly Detection and Segmentation (IADS) methods process low-resolution images, e.g., 224x224 pixels, obtained by downsampling the original input images. However, while numerous industrial applications demand the identification of both large and small defects, downsampling the input image to a low resolution may hinder a method's ability to pinpoint tiny anomalies. We propose a novel Teacher--Student paradigm to leverage strong pre-trained features while processing high-resolution input images very efficiently. The core idea concerns training two shallow MLPs (the Students) by nominal images so as to mimic the mappings between the patch embeddings induced by the self-attention layers of a frozen vision Transformer (the Teacher). Indeed, learning these mappings sets forth a challenging pretext task that small-capacity models are unlikely to accomplish on out-of-distribution data such as anomalous images. Our method can spot anomalies from high-resolution images and runs way faster than competitors, achieving state-of-the-art performance on MVTec AD and the best segmentation results on VisA. We also propose novel evaluation metrics to capture robustness to defect size, i.e., the ability to preserve good localisation from large anomalies to tiny ones. Evaluating our method also by these metrics reveals its neatly superior performance.
comment: Accepted at IEEE Access
♻ ☆ CanFields: Consolidating Diffeomorphic Flows for Non-Rigid 4D Interpolation from Arbitrary-Length Sequences ICCV2025
We introduce Canonical Consolidation Fields (CanFields). This novel method interpolates arbitrary-length sequences of independently sampled 3D point clouds into a unified, continuous, and coherent deforming shape. Unlike prior methods that oversmooth geometry or produce topological and geometric artifacts, CanFields optimizes fine-detailed geometry and deformation jointly in an unsupervised fitting with two novel bespoke modules. First, we introduce a dynamic consolidator module that adjusts the input and assigns confidence scores, balancing the optimization of the canonical shape and its motion. Second, we represent the motion as a diffeomorphic flow parameterized by a smooth velocity field. We have validated our robustness and accuracy on more than 50 diverse sequences, demonstrating its superior performance even with missing regions, noisy raw scans, and sparse data. Our project page is at: https://wangmiaowei.github.io/CanFields.github.io/.
comment: ICCV2025 Accepted
♻ ☆ SimWorld: A Unified Benchmark for Simulator-Conditioned Scene Generation via World Model
With the rapid advancement of autonomous driving technology, a lack of data has become a major obstacle to enhancing perception model accuracy. Researchers are now exploring controllable data generation using world models to diversify datasets. However, previous work has been limited to studying image generation quality on specific public datasets. There is still relatively little research on how to build data generation engines for real-world application scenes to achieve large-scale data generation for challenging scenes. In this paper, a simulator-conditioned scene generation engine based on world model is proposed. By constructing a simulation system consistent with real-world scenes, simulation data and labels, which serve as the conditions for data generation in the world model, for any scenes can be collected. It is a novel data generation pipeline by combining the powerful scene simulation capabilities of the simulation engine with the robust data generation capabilities of the world model. In addition, a benchmark with proportionally constructed virtual and real data, is provided for exploring the capabilities of world models in real-world scenes. Quantitative results show that these generated images significantly improve downstream perception models performance. Finally, we explored the generative performance of the world model in urban autonomous driving scenarios. All the data and code will be available at https://github.com/Li-Zn-H/SimWorld.
comment: 8 pages, 4 figures
♻ ☆ Chain-of-Sketch: Enabling Global Visual Reasoning
Modern vision models have achieved remarkable success in benchmarks where local features provide critical information about the target. There is now a growing interest in tackling tasks requiring more global reasoning, where local features do not provide significant information. Minsky and Papert put forward such tasks in 1969 with their connectivity study, exposing the limitations of the perceptron model. In this paper, we introduce an expanded set of global visual datasets involving graphs, strings, mazes, and image grids. We show that large vision models still struggle to learn these tasks efficiently. Similarly, state-of-the-art multi-modal LLMs perform poorly on these datasets. We explain this learning inefficiency by means of the 'globality degree' measure. To mitigate this, we propose a method called chain-of-sketch (CoS). Similar to the chain-of-thought and scratchpad techniques used in language models, CoS breaks the original task into intermediate visual steps to help learn a complex task. In addition, we show that not all CoS strategies perform equally well. Our key insight is to impose a Markovian structure on the CoS frames. This leads to the introduction of 'inductive CoS' which achieves better out-of-distribution generalization and performs well even with smaller models compared to non-inductive variants.
comment: additional experiments added, title changed from "Visual Scratchpads: Enabling Global Reasoning in Vision" to "Chain-of-Sketch: Enabling Global Visual Reasoning"
♻ ☆ QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning ICCV 2025
The practical deployment of diffusion models is still hindered by the high memory and computational overhead. Although quantization paves a way for model compression and acceleration, existing methods face challenges in achieving low-bit quantization efficiently. In this paper, we identify imbalanced activation distributions as a primary source of quantization difficulty, and propose to adjust these distributions through weight finetuning to be more quantization-friendly. We provide both theoretical and empirical evidence supporting finetuning as a practical and reliable solution. Building on this approach, we further distinguish two critical types of quantized layers: those responsible for retaining essential temporal information and those particularly sensitive to bit-width reduction. By selectively finetuning these layers under both local and global supervision, we mitigate performance degradation while enhancing quantization efficiency. Our method demonstrates its efficacy across three high-resolution image generation tasks, obtaining state-of-the-art performance across multiple bit-width settings.
comment: ICCV 2025. Code is available at https://github.com/hatchetProject/QuEST
♻ ☆ AnyCalib: On-Manifold Learning for Model-Agnostic Single-View Camera Calibration ICCV 2025
We present AnyCalib, a method for calibrating the intrinsic parameters of a camera from a single in-the-wild image, that is agnostic to the camera model. Current methods are predominantly tailored to specific camera models and/or require extrinsic cues, such as the direction of gravity, to be visible in the image. In contrast, we argue that the perspective and distortion cues inherent in images are sufficient for model-agnostic camera calibration. To demonstrate this, we frame the calibration process as the regression of the rays corresponding to each pixel. We show, for the first time, that this intermediate representation allows for a closed-form recovery of the intrinsics for a wide range of camera models, including but not limited to: pinhole, Brown-Conrady and Kannala-Brandt. Our approach also applies to edited -- cropped and stretched -- images. Experimentally, we demonstrate that AnyCalib consistently outperforms alternative methods, including 3D foundation models, despite being trained on orders of magnitude less data. Code is available at https://github.com/javrtg/AnyCalib.
comment: Accepted to ICCV 2025
EgoM2P: Egocentric Multimodal Multitask Pretraining ICCV 2025
Understanding multimodal signals in egocentric vision, such as RGB video, depth, camera poses, and gaze, is essential for applications in augmented reality, robotics, and human-computer interaction, enabling systems to better interpret the camera wearer's actions, intentions, and surrounding environment. However, building large-scale egocentric multimodal and multitask models presents unique challenges. Egocentric data are inherently heterogeneous, with large variations in modality coverage across devices and settings. Generating pseudo-labels for missing modalities, such as gaze or head-mounted camera trajectories, is often infeasible, making standard supervised learning approaches difficult to scale. Furthermore, dynamic camera motion and the complex temporal and spatial structure of first-person video pose additional challenges for the direct application of existing multimodal foundation models. To address these challenges, we introduce a set of efficient temporal tokenizers and propose EgoM2P, a masked modeling framework that learns from temporally-aware multimodal tokens to train a large, general-purpose model for egocentric 4D understanding. This unified design supports multitasking across diverse egocentric perception and synthesis tasks, including gaze prediction, egocentric camera tracking, and monocular depth estimation from egocentric video, and also serves as a generative model for conditional egocentric video synthesis. Across these tasks, EgoM2P matches or outperforms specialist models while being an order of magnitude faster. We will fully open-source EgoM2P to support the community and advance egocentric vision research. Project page: https://egom2p.github.io/.
comment: Accepted by ICCV 2025
♻ ☆ Fake it till You Make it: Reward Modeling as Discriminative Prediction
An effective reward model plays a pivotal role in reinforcement learning for post-training enhancement of visual generative models. However, current approaches of reward modeling suffer from implementation complexity due to their reliance on extensive human-annotated preference data or meticulously engineered quality dimensions that are often incomplete and engineering-intensive. Inspired by adversarial training in generative adversarial networks (GANs), this paper proposes GAN-RM, an efficient reward modeling framework that eliminates manual preference annotation and explicit quality dimension engineering. Our method trains the reward model through discrimination between a small set of representative, unpaired target samples(denoted as Preference Proxy Data) and model-generated ordinary outputs, requiring only a few hundred target samples. Comprehensive experiments demonstrate our GAN-RM's effectiveness across multiple key applications including test-time scaling implemented as Best-of-N sample filtering, post-training approaches like Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO). Code and data will be released at https://github.com/Visualignment/GAN-RM.
♻ ☆ Materialist: Physically Based Editing Using Single-Image Inverse Rendering
Achieving physically consistent image editing remains a significant challenge in computer vision. Existing image editing methods typically rely on neural networks, which struggle to accurately handle shadows and refractions. Conversely, physics-based inverse rendering often requires multi-view optimization, limiting its practicality in single-image scenarios. In this paper, we propose Materialist, a method combining a learning-based approach with physically based progressive differentiable rendering. Given an image, our method leverages neural networks to predict initial material properties. Progressive differentiable rendering is then used to optimize the environment map and refine the material properties with the goal of closely matching the rendered result to the input image. Our approach enables a range of applications, including material editing, object insertion, and relighting, while also introducing an effective method for editing material transparency without requiring full scene geometry. Furthermore, Our envmap estimation method also achieves state-of-the-art performance, further enhancing the accuracy of image editing task. Experiments demonstrate strong performance across synthetic and real-world datasets, excelling even on challenging out-of-domain images. Project website: https://lez-s.github.io/materialist_project/
comment: Add acknowledgements, more authors and more results. Project website: https://lez-s.github.io/materialist_project/
♻ ☆ DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection ICCV 2025
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.
comment: ICCV 2025
♻ ☆ Harnessing Massive Satellite Imagery with Efficient Masked Image Modeling ICCV 2025
Masked Image Modeling (MIM) has become an essential method for building foundational visual models in remote sensing (RS). However, the limitations in size and diversity of existing RS datasets restrict the ability of MIM methods to learn generalizable representations. Additionally, conventional MIM techniques, which require reconstructing all tokens, introduce unnecessary computational overhead. To address these issues, we present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach. We curated a high-quality dataset named \textbf{OpticalRS-13M} by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication. OpticalRS-13M comprises 13 million optical images covering various RS tasks, such as object detection and pixel segmentation. To enhance efficiency, we propose \textbf{SelectiveMAE}, a pre-training method that dynamically encodes and reconstructs semantically rich patch tokens, thereby reducing the inefficiencies of traditional MIM models caused by redundant background pixels in RS images. Extensive experiments show that OpticalRS-13M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2$\times$ times. This highlights the effectiveness and scalability of our pipeline in developing RS foundational models. The dataset, source code, and trained models will be released at https://github.com/MiliLab/SelectiveMAE.
comment: ICCV 2025
♻ ☆ OneIG-Bench: Omni-dimensional Nuanced Evaluation for Image Generation
Text-to-image (T2I) models have garnered significant attention for generating high-quality images aligned with text prompts. However, rapid T2I model advancements reveal limitations in early benchmarks, lacking comprehensive evaluations, for example, the evaluation on reasoning, text rendering and style. Notably, recent state-of-the-art models, with their rich knowledge modeling capabilities, show promising results on the image generation problems requiring strong reasoning ability, yet existing evaluation systems have not adequately addressed this frontier. To systematically address these gaps, we introduce OneIG-Bench, a meticulously designed comprehensive benchmark framework for fine-grained evaluation of T2I models across multiple dimensions, including prompt-image alignment, text rendering precision, reasoning-generated content, stylization, and diversity. By structuring the evaluation, this benchmark enables in-depth analysis of model performance, helping researchers and practitioners pinpoint strengths and bottlenecks in the full pipeline of image generation. Specifically, OneIG-Bench enables flexible evaluation by allowing users to focus on a particular evaluation subset. Instead of generating images for the entire set of prompts, users can generate images only for the prompts associated with the selected dimension and complete the corresponding evaluation accordingly. Our codebase and dataset are now publicly available to facilitate reproducible evaluation studies and cross-model comparisons within the T2I research community.
♻ ☆ Aligned Novel View Image and Geometry Synthesis via Cross-modal Attention Instillation
We introduce a diffusion-based framework that performs aligned novel view image and geometry generation via a warping-and-inpainting methodology. Unlike prior methods that require dense posed images or pose-embedded generative models limited to in-domain views, our method leverages off-the-shelf geometry predictors to predict partial geometries viewed from reference images, and formulates novel-view synthesis as an inpainting task for both image and geometry. To ensure accurate alignment between generated images and geometry, we propose cross-modal attention distillation, where attention maps from the image diffusion branch are injected into a parallel geometry diffusion branch during both training and inference. This multi-task approach achieves synergistic effects, facilitating geometrically robust image synthesis as well as well-defined geometry prediction. We further introduce proximity-based mesh conditioning to integrate depth and normal cues, interpolating between point cloud and filtering erroneously predicted geometry from influencing the generation process. Empirically, our method achieves high-fidelity extrapolative view synthesis on both image and geometry across a range of unseen scenes, delivers competitive reconstruction quality under interpolation settings, and produces geometrically aligned colored point clouds for comprehensive 3D completion. Project page is available at https://cvlab-kaist.github.io/MoAI.
comment: Project page at https://cvlab-kaist.github.io/MoAI
♻ ☆ STI-Bench: Are MLLMs Ready for Precise Spatial-Temporal World Understanding?
The use of Multimodal Large Language Models (MLLMs) as an end-to-end solution for Embodied AI and Autonomous Driving has become a prevailing trend. While MLLMs have been extensively studied for visual semantic understanding tasks, their ability to perform precise and quantitative spatial-temporal understanding in real-world applications remains largely unexamined, leading to uncertain prospects. To evaluate models' Spatial-Temporal Intelligence, we introduce STI-Bench, a benchmark designed to evaluate MLLMs' spatial-temporal understanding through challenging tasks such as estimating and predicting the appearance, pose, displacement, and motion of objects. Our benchmark encompasses a wide range of robot and vehicle operations across desktop, indoor, and outdoor scenarios. The extensive experiments reveals that the state-of-the-art MLLMs still struggle in real-world spatial-temporal understanding, especially in tasks requiring precise distance estimation and motion analysis.
♻ ☆ Tackling fluffy clouds: robust field boundary delineation across global agricultural landscapes with Sentinel-1 and Sentinel-2 Time Series
Accurate delineation of agricultural field boundaries is essential for effective crop monitoring and resource management. However, competing methodologies often face significant challenges, particularly in their reliance on extensive manual efforts for cloud-free data curation and limited adaptability to diverse global conditions. In this paper, we introduce PTAViT3D, a deep learning architecture specifically designed for processing three-dimensional time series of satellite imagery from either Sentinel-1 (S1) or Sentinel-2 (S2). Additionally, we present PTAViT3D-CA, an extension of the PTAViT3D model incorporating cross-attention mechanisms to fuse S1 and S2 datasets, enhancing robustness in cloud-contaminated scenarios. The proposed methods leverage spatio-temporal correlations through a memory-efficient 3D Vision Transformer architecture, facilitating accurate boundary delineation directly from raw, cloud-contaminated imagery. We comprehensively validate our models through extensive testing on various datasets, including Australia's ePaddocks - CSIRO's national agricultural field boundary product - alongside public benchmarks Fields-of-the-World, PASTIS, and AI4SmallFarms. Our results consistently demonstrate state-of-the-art performance, highlighting excellent global transferability and robustness. Crucially, our approach significantly simplifies data preparation workflows by reliably processing cloud-affected imagery, thereby offering strong adaptability across diverse agricultural environments. Our code and models are publicly available at https://github.com/feevos/tfcl.
comment: revision 1, under review
♻ ☆ Mr. DETR++: Instructive Multi-Route Training for Detection Transformers with Mixture-of-Experts CVPR 2025
Existing methods enhance the training of detection transformers by incorporating an auxiliary one-to-many assignment. In this work, we treat the model as a multi-task framework, simultaneously performing one-to-one and one-to-many predictions. We investigate the roles of each component in the transformer decoder across these two training targets, including self-attention, cross-attention, and feed-forward network. Our empirical results demonstrate that any independent component in the decoder can effectively learn both targets simultaneously, even when other components are shared. This finding leads us to propose a multi-route training mechanism, featuring a primary route for one-to-one prediction and two auxiliary training routes for one-to-many prediction. We propose a novel instructive self-attention mechanism, integrated into the first auxiliary route, which dynamically and flexibly guides object queries for one-to-many prediction. For the second auxiliary route, we introduce a route-aware Mixture-of-Experts (MoE) to facilitate knowledge sharing while mitigating potential conflicts between routes. Additionally, we apply an MoE to low-scale features in the encoder, optimizing the balance between efficiency and effectiveness. The auxiliary routes are discarded during inference. We conduct extensive experiments across various object detection baselines, achieving consistent improvements as demonstrated in Fig. 1. Our method is highly flexible and can be readily adapted to other tasks. To demonstrate its versatility, we conduct experiments on both instance segmentation and panoptic segmentation, further validating its effectiveness. Project page: https://visual-ai.github.io/mrdetr/
comment: Under review. Extended version of our CVPR 2025 paper, see arXiv:2412.10028v3
PuriDefense: Randomized Local Implicit Adversarial Purification for Defending Black-box Query-based Attacks
Black-box query-based attacks constitute significant threats to Machine Learning as a Service (MLaaS) systems since they can generate adversarial examples without accessing the target model's architecture and parameters. Traditional defense mechanisms, such as adversarial training, gradient masking, and input transformations, either impose substantial computational costs or compromise the test accuracy of non-adversarial inputs. To address these challenges, we propose an efficient defense mechanism, PuriDefense, that employs random patch-wise purifications with an ensemble of lightweight purification models at a low level of inference cost. These models leverage the local implicit function and rebuild the natural image manifold. Our theoretical analysis suggests that this approach slows down the convergence of query-based attacks by incorporating randomness into purifications. Extensive experiments on CIFAR-10 and ImageNet validate the effectiveness of our proposed purifier-based defense mechanism, demonstrating significant improvements in robustness against query-based attacks.
♻ ☆ Rethinking Detecting Salient and Camouflaged Objects in Unconstrained Scenes
While the human visual system employs distinct mechanisms to perceive salient and camouflaged objects, existing models struggle to disentangle these tasks. Specifically, salient object detection (SOD) models frequently misclassify camouflaged objects as salient, while camouflaged object detection (COD) models conversely misinterpret salient objects as camouflaged. We hypothesize that this can be attributed to two factors: (i) the specific annotation paradigm of current SOD and COD datasets, and (ii) the lack of explicit attribute relationship modeling in current models. Prevalent SOD/COD datasets enforce a mutual exclusivity constraint, assuming scenes contain either salient or camouflaged objects, which poorly aligns with the real world. Furthermore, current SOD/COD methods are primarily designed for these highly constrained datasets and lack explicit modeling of the relationship between salient and camouflaged objects. In this paper, to promote the development of unconstrained salient and camouflaged object detection, we construct a large-scale dataset, USC12K, which features comprehensive labels and four different scenes that cover all possible logical existence scenarios of both salient and camouflaged objects. To explicitly model the relationship between salient and camouflaged objects, we propose a model called USCNet, which introduces two distinct prompt query mechanisms for modeling inter-sample and intra-sample attribute relationships. Additionally, to assess the model's ability to distinguish between salient and camouflaged objects, we design an evaluation metric called CSCS. The proposed method achieves state-of-the-art performance across all scenes in various metrics. The code and dataset will be available at https://github.com/ssecv/USCNet.
comment: 18 pages, 11 figures
♻ ☆ Recall and Refine: A Simple but Effective Source-free Open-set Domain Adaptation Framework
Open-set Domain Adaptation (OSDA) aims to adapt a model from a labeled source domain to an unlabeled target domain, where novel classes - also referred to as target-private unknown classes - are present. Source-free Open-set Domain Adaptation (SF-OSDA) methods address OSDA without accessing labeled source data, making them particularly relevant under privacy constraints. However, SF-OSDA presents significant challenges due to distribution shifts and the introduction of novel classes. Existing SF-OSDA methods typically rely on thresholding the prediction entropy of a sample to identify it as either a known or unknown class, but fail to explicitly learn discriminative features for the target-private unknown classes. We propose Recall and Refine (RRDA), a novel SF-OSDA framework designed to address these limitations by explicitly learning features for target-private unknown classes. RRDA employs a two-stage process. First, we enhance the model's capacity to recognize unknown classes by training a target classifier with an additional decision boundary,guided by synthetic samples generated from target domain features. This enables the classifier to effectively separate known and unknown classes. Second, we adapt the entire model to the target domain, addressing both domain shifts and distinguishability to unknown classes. Any off-the-shelf source-free domain adaptation method (e.g. SHOT, AaD) can be seamlessly integrated into our framework at this stage. Extensive experiments on three benchmark datasets demonstrate that RRDA significantly outperforms existing SF-OSDA and OSDA methods.
comment: Accepted at TMLR 2025
♻ ☆ Do It Yourself: Learning Semantic Correspondence from Pseudo-Labels SC
Finding correspondences between semantically similar points across images and object instances is one of the everlasting challenges in computer vision. While large pre-trained vision models have recently been demonstrated as effective priors for semantic matching, they still suffer from ambiguities for symmetric objects or repeated object parts. We propose to improve semantic correspondence estimation via 3D-aware pseudo-labeling. Specifically, we train an adapter to refine off-the-shelf features using pseudo-labels obtained via 3D-aware chaining, filtering wrong labels through relaxed cyclic consistency, and 3D spherical prototype mapping constraints. While reducing the need for dataset specific annotations compared to prior work, we set a new state-of-the-art on SPair-71k by over 4% absolute gain and by over 7% against methods with similar supervision requirements. The generality of our proposed approach simplifies extension of training to other data sources, which we demonstrate in our experiments.
comment: Project page: https://genintel.github.io/DIY-SC
♻ ☆ Semantic Scene Graph for Ultrasound Image Explanation and Scanning Guidance
Understanding medical ultrasound imaging remains a long-standing challenge due to significant visual variability caused by differences in imaging and acquisition parameters. Recent advancements in large language models (LLMs) have been used to automatically generate terminology-rich summaries orientated to clinicians with sufficient physiological knowledge. Nevertheless, the increasing demand for improved ultrasound interpretability and basic scanning guidance among non-expert users, e.g., in point-of-care settings, has not yet been explored. In this study, we first introduce the scene graph (SG) for ultrasound images to explain image content to ordinary and provide guidance for ultrasound scanning. The ultrasound SG is first computed using a transformer-based one-stage method, eliminating the need for explicit object detection. To generate a graspable image explanation for ordinary, the user query is then used to further refine the abstract SG representation through LLMs. Additionally, the predicted SG is explored for its potential in guiding ultrasound scanning toward missing anatomies within the current imaging view, assisting ordinary users in achieving more standardized and complete anatomical exploration. The effectiveness of this SG-based image explanation and scanning guidance has been validated on images from the left and right neck regions, including the carotid and thyroid, across five volunteers. The results demonstrate the potential of the method to maximally democratize ultrasound by enhancing its interpretability and usability for ordinaries.
♻ ☆ Enhancing Dynamic CT Image Reconstruction with Neural Fields and Optical Flow
In this paper, we investigate image reconstruction for dynamic Computed Tomography. The motion of the target with respect to the measurement acquisition rate leads to highly resolved in time but highly undersampled in space measurements. Such problems pose a major challenge: not accounting for the dynamics of the process leads to a poor reconstruction with non-realistic motion. Variational approaches that penalize time evolution have been proposed to relate subsequent frames and improve image quality based on classical grid-based discretizations. Neural fields have emerged as a novel way to parameterize the quantity of interest using a neural network with a low-dimensional input, benefiting from being lightweight, continuous, and biased towards smooth representations. The latter property has been exploited when solving dynamic inverse problems with neural fields by minimizing a data-fidelity term only. We investigate and show the benefits of introducing explicit motion regularizers for dynamic inverse problems based on partial differential equations, namely, the optical flow equation, for the optimization of neural fields. We compare it against its unregularized counterpart and show the improvements in the reconstruction. We also compare neural fields against a grid-based solver and show that the former outperforms the latter in terms of PSNR in this task.
♻ ☆ 3D Hierarchical Panoptic Segmentation in Real Orchard Environments Across Different Sensors IROS 2025
Crop yield estimation is a relevant problem in agriculture, because an accurate yield estimate can support farmers' decisions on harvesting or precision intervention. Robots can help to automate this process. To do so, they need to be able to perceive the surrounding environment to identify target objects such as trees and plants. In this paper, we introduce a novel approach to address the problem of hierarchical panoptic segmentation of apple orchards on 3D data from different sensors. Our approach is able to simultaneously provide semantic segmentation, instance segmentation of trunks and fruits, and instance segmentation of trees (a trunk with its fruits). This allows us to identify relevant information such as individual plants, fruits, and trunks, and capture the relationship among them, such as precisely estimate the number of fruits associated to each tree in an orchard. To efficiently evaluate our approach for hierarchical panoptic segmentation, we provide a dataset designed specifically for this task. Our dataset is recorded in Bonn, Germany, in a real apple orchard with a variety of sensors, spanning from a terrestrial laser scanner to a RGB-D camera mounted on different robots platforms. The experiments show that our approach surpasses state-of-the-art approaches in 3D panoptic segmentation in the agricultural domain, while also providing full hierarchical panoptic segmentation. Our dataset is publicly available at https://www.ipb.uni-bonn.de/data/hops/. The open-source implementation of our approach is available at https://github.com/PRBonn/hapt3D.
comment: Accepted to IROS 2025
♻ ☆ Cell Tracking according to Biological Needs -- Strong Mitosis-aware Multi-Hypothesis Tracker with Aleatoric Uncertainty
Cell tracking and segmentation assist biologists in extracting insights from large-scale microscopy time-lapse data. Driven by local accuracy metrics, current tracking approaches often suffer from a lack of long-term consistency and the ability to reconstruct lineage trees correctly. To address this issue, we introduce an uncertainty estimation technique for motion estimation frameworks and extend the multi-hypothesis tracking framework. Our uncertainty estimation lifts motion representations into probabilistic spatial densities using problem-specific test-time augmentations. Moreover, we introduce a novel mitosis-aware assignment problem formulation that allows multi-hypothesis trackers to model cell splits and to resolve false associations and mitosis detections based on long-term conflicts. In our framework, explicit biological knowledge is modeled in assignment costs. We evaluate our approach on nine competitive datasets and demonstrate that we outperform the current state-of-the-art on biologically inspired metrics substantially, achieving improvements by a factor of approximately 6 and uncover new insights into the behavior of motion estimation uncertainty.
comment: 13 pages, 4 figures, 4 tables. This work has been accepted to the IEEE for publication
♻ ☆ SA-Person: Text-Based Person Retrieval with Scene-aware Re-ranking
Text-based person retrieval aims to identify a target individual from a gallery of images based on a natural language description. It presents a significant challenge due to the complexity of real-world scenes and the ambiguity of appearance-related descriptions. Existing methods primarily emphasize appearance-based cross-modal retrieval, often neglecting the contextual information embedded within the scene, which can offer valuable complementary insights for retrieval. To address this, we introduce SCENEPERSON-13W, a large-scale dataset featuring over 100,000 scenes with rich annotations covering both pedestrian appearance and environmental cues. Based on this, we propose SA-Person, a two-stage retrieval framework. In the first stage, it performs discriminative appearance grounding by aligning textual cues with pedestrian-specific regions. In the second stage, it introduces SceneRanker, a training-free, scene-aware re-ranking method leveraging multimodal large language models to jointly reason over pedestrian appearance and the global scene context. Experiments on SCENEPERSON-13W validate the effectiveness of our framework in challenging scene-level retrieval scenarios. The code and dataset will be made publicly available.
comment: 22 pages, 7 figures. Under review
♻ ☆ Variational Supervised Contrastive Learning
Contrastive learning has proven to be highly efficient and adaptable in shaping representation spaces across diverse modalities by pulling similar samples together and pushing dissimilar ones apart. However, two key limitations persist: (1) Without explicit regulation of the embedding distribution, semantically related instances can inadvertently be pushed apart unless complementary signals guide pair selection, and (2) excessive reliance on large in-batch negatives and tailored augmentations hinders generalization. To address these limitations, we propose Variational Supervised Contrastive Learning (VarCon), which reformulates supervised contrastive learning as variational inference over latent class variables and maximizes a posterior-weighted evidence lower bound (ELBO) that replaces exhaustive pair-wise comparisons for efficient class-aware matching and grants fine-grained control over intra-class dispersion in the embedding space. Trained exclusively on image data, our experiments on CIFAR-10, CIFAR-100, ImageNet-100, and ImageNet-1K show that VarCon (1) achieves state-of-the-art performance for contrastive learning frameworks, reaching 79.36% Top-1 accuracy on ImageNet-1K and 78.29% on CIFAR-100 with a ResNet-50 encoder while converging in just 200 epochs; (2) yields substantially clearer decision boundaries and semantic organization in the embedding space, as evidenced by KNN classification, hierarchical clustering results, and transfer-learning assessments; and (3) demonstrates superior performance in few-shot learning than supervised baseline and superior robustness across various augmentation strategies.
♻ ☆ Structure-Preserving Patch Decoding for Efficient Neural Video Representation
Implicit neural representations (INRs) are the subject of extensive research, particularly in their application to modeling complex signals by mapping spatial and temporal coordinates to corresponding values. When handling videos, mapping compact inputs to entire frames or spatially partitioned patch images is an effective approach. This strategy better preserves spatial relationships, reduces computational overhead, and improves reconstruction quality compared to coordinate-based mapping. However, predicting entire frames often limits the reconstruction of high-frequency visual details. Additionally, conventional patch-based approaches based on uniform spatial partitioning tend to introduce boundary discontinuities that degrade spatial coherence. We propose a neural video representation method based on Structure-Preserving Patches (SPPs) to address such limitations. Our method separates each video frame into patch images of spatially aligned frames through a deterministic pixel-based splitting similar to PixelUnshuffle. This operation preserves the global spatial structure while allowing patch-level decoding. We train the decoder to reconstruct these structured patches, enabling a global-to-local decoding strategy that captures the global layout first and refines local details. This effectively reduces boundary artifacts and mitigates distortions from naive upsampling. Experiments on standard video datasets demonstrate that our method achieves higher reconstruction quality and better compression performance than existing INR-based baselines.
♻ ☆ StateSpaceDiffuser: Bringing Long Context to Diffusion World Models
World models have recently become promising tools for predicting realistic visuals based on actions in complex environments. However, their reliance on only a few recent observations leads them to lose track of the long-term context. Consequently, in just a few steps the generated scenes drift from what was previously observed, undermining the temporal coherence of the sequence. This limitation of the state-of-the-art world models, most of which rely on diffusion, comes from their lack of a lasting environment state. To address this problem, we introduce StateSpaceDiffuser, where a diffusion model is enabled to perform long-context tasks by integrating features from a state-space model, representing the entire interaction history. This design restores long-term memory while preserving the high-fidelity synthesis of diffusion models. To rigorously measure temporal consistency, we develop an evaluation protocol that probes a model's ability to reinstantiate seen content in extended rollouts. Comprehensive experiments show that StateSpaceDiffuser significantly outperforms a strong diffusion-only baseline, maintaining a coherent visual context for an order of magnitude more steps. It delivers consistent views in both a 2D maze navigation and a complex 3D environment. These results establish that bringing state-space representations into diffusion models is highly effective in demonstrating both visual details and long-term memory.
♻ ☆ Moderating the Generalization of Score-based Generative Model
Score-based Generative Models (SGMs) have demonstrated remarkable generalization abilities, e.g. generating unseen, but natural data. However, the greater the generalization power, the more likely the unintended generalization, and the more dangerous the abuse. Research on moderated generalization in SGMs remains limited. To fill this gap, we first examine the current 'gold standard' in Machine Unlearning (MU), i.e., re-training the model after removing the undesirable training data, and find it does not work in SGMs. Further analysis of score functions reveals that the MU 'gold standard' does not alter the original score function, which explains its ineffectiveness. Based on this insight, we propose the first Moderated Score-based Generative Model (MSGM), which introduces a novel score adjustment strategy that redirects the score function away from undesirable data during the continuous-time stochastic differential equation process. Extensive experimental results demonstrate that MSGM significantly reduces the likelihood of generating undesirable content while preserving high visual quality for normal image generation. Albeit designed for SGMs, MSGM is a general and flexible MU framework that is compatible with diverse diffusion architectures (SGM and DDPM) and training strategies (re-training and fine-tuning), and enables zero-shot transfer of the pre-trained models to downstream tasks, e.g. image inpainting and reconstruction. The code will be shared upon acceptance.
♻ ☆ Metis-RISE: RL Incentivizes and SFT Enhances Multimodal Reasoning Model Learning
Recent advancements in large language models (LLMs) have witnessed a surge in the development of advanced reasoning paradigms, which are now being integrated into multimodal large language models (MLLMs). However, existing approaches often fall short: methods solely employing reinforcement learning (RL) can struggle with sample inefficiency and activating entirely absent reasoning capabilities, while conventional pipelines that initiate with a cold-start supervised fine-tuning (SFT) phase before RL may restrict the model's exploratory capacity and face suboptimal convergence. In this work, we introduce \textbf{Metis-RISE} (\textbf{R}L \textbf{I}ncentivizes and \textbf{S}FT \textbf{E}nhances) for multimodal reasoning model learning. Unlike conventional approaches, Metis-RISE distinctively omits an initial SFT stage, beginning instead with an RL phase (e.g., using a Group Relative Policy Optimization variant) to incentivize and activate the model's latent reasoning capacity. Subsequently, the targeted SFT stage addresses two key challenges identified during RL: (1) \textit{inefficient trajectory sampling} for tasks where the model possesses but inconsistently applies correct reasoning, which we tackle using self-distilled reasoning trajectories from the RL model itself; and (2) \textit{fundamental capability absence}, which we address by injecting expert-augmented knowledge for prompts where the model entirely fails. This strategic application of RL for incentivization followed by SFT for enhancement forms the core of Metis-RISE, leading to two versions of our MLLMs (7B and 72B parameters). Evaluations on the OpenCompass Multimodal Reasoning Leaderboard demonstrate that both models achieve state-of-the-art performance among similar-sized models, with the 72B version ranking fourth overall. Please refer to our project page for open-source information.
comment: Project Page: https://github.com/MM-Thinking/Metis-RISE
♻ ☆ Self-Regulated Neurogenesis for Online Data-Incremental Learning
Neural networks often struggle with catastrophic forgetting when learning sequences of tasks or data streams, unlike humans who can continuously learn and consolidate new concepts even in the absence of explicit cues. Online data-incremental learning seeks to emulate this capability by processing each sample only once, without having access to task or stream cues at any point in time since this is more realistic compared to offline setups, where all data from novel class(es) is assumed to be readily available. However, existing methods typically rely on storing the subsets of data in memory or expanding the initial model architecture, resulting in significant computational overhead. Drawing inspiration from 'self-regulated neurogenesis'-brain's mechanism for creating specialized regions or circuits for distinct functions-we propose a novel approach SERENA which encodes each concept in a specialized network path called 'concept cell', integrated into a single over-parameterized network. Once a concept is learned, its corresponding concept cell is frozen, effectively preventing the forgetting of previously acquired information. Furthermore, we introduce two new continual learning scenarios that more closely reflect real-world conditions, characterized by gradually changing sample sizes. Experimental results show that our method not only establishes new state-of-the-art results across ten benchmarks but also remarkably surpasses offline supervised batch learning performance. The code is available at https://github.com/muratonuryildirim/serena.
comment: Published at Conference on Lifelong Learning Agents (CoLLAs) 2025
♻ ☆ Referring Expression Instance Retrieval and A Strong End-to-End Baseline
Using natural language to query visual information is a fundamental need in real-world applications. Text-Image Retrieval (TIR) retrieves a target image from a gallery based on an image-level description, while Referring Expression Comprehension (REC) localizes a target object within a given image using an instance-level description. However, real-world applications often present more complex demands. Users typically query an instance-level description across a large gallery and expect to receive both relevant image and the corresponding instance location. In such scenarios, TIR struggles with fine-grained descriptions and object-level localization, while REC is limited in its ability to efficiently search large galleries and lacks an effective ranking mechanism. In this paper, we introduce a new task called \textbf{Referring Expression Instance Retrieval (REIR)}, which supports both instance-level retrieval and localization based on fine-grained referring expressions. First, we propose a large-scale benchmark for REIR, named REIRCOCO, constructed by prompting advanced vision-language models to generate high-quality referring expressions for instances in the MSCOCO and RefCOCO datasets. Second, we present a baseline method, Contrastive Language-Instance Alignment with Relation Experts (CLARE), which employs a dual-stream architecture to address REIR in an end-to-end manner. Given a referring expression, the textual branch encodes it into a query embedding. The visual branch detects candidate objects and extracts their instance-level visual features. The most similar candidate to the query is selected for bounding box prediction. CLARE is first trained on object detection and REC datasets to establish initial grounding capabilities, then optimized via Contrastive Language-Instance Alignment (CLIA) for improved retrieval across images. We will release our code and benchmark publicly.
♻ ☆ ROA-BEV: 2D Region-Oriented Attention for BEV-based 3D Object Detection IROS 2025
Vision-based Bird's-Eye-View (BEV) 3D object detection has recently become popular in autonomous driving. However, objects with a high similarity to the background from a camera perspective cannot be detected well by existing methods. In this paper, we propose a BEV-based 3D Object Detection Network with 2D Region-Oriented Attention (ROA-BEV), which enables the backbone to focus more on feature learning of the regions where objects exist. Moreover, our method further enhances the information feature learning ability of ROA through multi-scale structures. Each block of ROA utilizes a large kernel to ensure that the receptive field is large enough to catch information about large objects. Experiments on nuScenes show that ROA-BEV improves the performance based on BEVDepth. The source codes of this work will be available at https://github.com/DFLyan/ROA-BEV.
comment: accepted by IROS 2025
♻ ☆ Is my Data in your AI Model? Membership Inference Test with Application to Face Images
This article introduces the Membership Inference Test (MINT), a novel approach that aims to empirically assess if given data was used during the training of AI/ML models. Specifically, we propose two MINT architectures designed to learn the distinct activation patterns that emerge when an Audited Model is exposed to data used during its training process. These architectures are based on Multilayer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs). The experimental framework focuses on the challenging task of Face Recognition, considering three state-of-the-art Face Recognition systems. Experiments are carried out using six publicly available databases, comprising over 22 million face images in total. Different experimental scenarios are considered depending on the context of the AI model to test. Our proposed MINT approach achieves promising results, with up to 90\% accuracy, indicating the potential to recognize if an AI model has been trained with specific data. The proposed MINT approach can serve to enforce privacy and fairness in several AI applications, e.g., revealing if sensitive or private data was used for training or tuning Large Language Models (LLMs).
comment: 26 pages main text and 2 pages appendix
♻ ☆ HyperPath: Knowledge-Guided Hyperbolic Semantic Hierarchy Modeling for WSI Analysis
Pathology is essential for cancer diagnosis, with multiple instance learning (MIL) widely used for whole slide image (WSI) analysis. WSIs exhibit a natural hierarchy -- patches, regions, and slides -- with distinct semantic associations. While some methods attempt to leverage this hierarchy for improved representation, they predominantly rely on Euclidean embeddings, which struggle to fully capture semantic hierarchies. To address this limitation, we propose HyperPath, a novel method that integrates knowledge from textual descriptions to guide the modeling of semantic hierarchies of WSIs in hyperbolic space, thereby enhancing WSI classification. Our approach adapts both visual and textual features extracted by pathology vision-language foundation models to the hyperbolic space. We design an Angular Modality Alignment Loss to ensure robust cross-modal alignment, while a Semantic Hierarchy Consistency Loss further refines feature hierarchies through entailment and contradiction relationships and thus enhance semantic coherence. The classification is performed with geodesic distance, which measures the similarity between entities in the hyperbolic semantic hierarchy. This eliminates the need for linear classifiers and enables a geometry-aware approach to WSI analysis. Extensive experiments show that our method achieves superior performance across tasks compared to existing methods, highlighting the potential of hyperbolic embeddings for WSI analysis.
♻ ☆ HERMES: temporal-coHERent long-forM understanding with Episodes and Semantics ICCV 2025
Long-form video understanding presents unique challenges that extend beyond traditional short-video analysis approaches, particularly in capturing long-range dependencies, processing redundant information efficiently, and extracting high-level semantic concepts. To address these challenges, we propose a novel approach that more accurately reflects human cognition. This paper introduces HERMES: temporal-coHERent long-forM understanding with Episodes and Semantics, featuring two versatile modules that can enhance existing video-language models or operate as a standalone system. Our Episodic COmpressor (ECO) efficiently aggregates representations from micro to semi-macro levels, reducing computational overhead while preserving temporal dependencies. Our Semantics ReTRiever (SeTR) enriches these representations with semantic information by focusing on broader context, dramatically reducing feature dimensionality while preserving relevant macro-level information. We demonstrate that these modules can be seamlessly integrated into existing SOTA models, consistently improving their performance while reducing inference latency by up to 43% and memory usage by 46%. As a standalone system, HERMES achieves state-of-the-art performance across multiple long-video understanding benchmarks in both zero-shot and fully-supervised settings.
comment: Accepted for ICCV 2025. Project page: https://joslefaure.github.io/assets/html/hermes.html
♻ ☆ ClearSight: Human Vision-Inspired Solutions for Event-Based Motion Deblurring ICCV 2025
Motion deblurring addresses the challenge of image blur caused by camera or scene movement. Event cameras provide motion information that is encoded in the asynchronous event streams. To efficiently leverage the temporal information of event streams, we employ Spiking Neural Networks (SNNs) for motion feature extraction and Artificial Neural Networks (ANNs) for color information processing. Due to the non-uniform distribution and inherent redundancy of event data, existing cross-modal feature fusion methods exhibit certain limitations. Inspired by the visual attention mechanism in the human visual system, this study introduces a bioinspired dual-drive hybrid network (BDHNet). Specifically, the Neuron Configurator Module (NCM) is designed to dynamically adjusts neuron configurations based on cross-modal features, thereby focusing the spikes in blurry regions and adapting to varying blurry scenarios dynamically. Additionally, the Region of Blurry Attention Module (RBAM) is introduced to generate a blurry mask in an unsupervised manner, effectively extracting motion clues from the event features and guiding more accurate cross-modal feature fusion. Extensive subjective and objective evaluations demonstrate that our method outperforms current state-of-the-art methods on both synthetic and real-world datasets.
comment: Accepted by ICCV 2025
♻ ☆ ToMiE: Towards Explicit Exoskeleton for the Reconstruction of Complicated 3D Human Avatars
In this paper, we highlight a critical yet often overlooked factor in most 3D human tasks, namely modeling complicated 3D human with with hand-held objects or loose-fitting clothing. It is known that the parameterized formulation of SMPL is able to fit human skin; while hand-held objects and loose-fitting clothing, are difficult to get modeled within the unified framework, since their movements are usually decoupled with the human body. To enhance the capability of SMPL skeleton in response to this situation, we propose a growth strategy that enables the joint tree of the skeleton to expand adaptively. Specifically, our method, called ToMiE, consists of parent joints localization and external joints optimization. For parent joints localization, we employ a gradient-based approach guided by both LBS blending weights and motion kernels. Once the external joints are obtained, we proceed to optimize their transformations in SE(3) across different frames, enabling rendering and explicit animation. ToMiE manages to outperform other methods across various cases with hand-held objects and loose-fitting clothing, not only in rendering quality but also by offering free animation of grown joints, thereby enhancing the expressive ability of SMPL skeleton for a broader range of applications.
♻ ☆ RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS ICCV 2025
3D Gaussian Splatting (3DGS) has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling. However, existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images. We identify that the Gaussian densification process, while enhancing scene detail capture, unintentionally contributes to these artifacts by growing additional Gaussians that model transient disturbances. To address this, we propose RobustSplat, a robust solution based on two critical designs. First, we introduce a delayed Gaussian growth strategy that prioritizes optimizing static scene structure before allowing Gaussian splitting/cloning, mitigating overfitting to transient objects in early optimization. Second, we design a scale-cascaded mask bootstrapping approach that first leverages lower-resolution feature similarity supervision for reliable initial transient mask estimation, taking advantage of its stronger semantic consistency and robustness to noise, and then progresses to high-resolution supervision to achieve more precise mask prediction. Extensive experiments on multiple challenging datasets show that our method outperforms existing methods, clearly demonstrating the robustness and effectiveness of our method. Our project page is https://fcyycf.github.io/RobustSplat/.
comment: ICCV 2025. Project page: https://fcyycf.github.io/RobustSplat/
♻ ☆ 2D Triangle Splatting for Direct Differentiable Mesh Training
Differentiable rendering with 3D Gaussian primitives has emerged as a powerful method for reconstructing high-fidelity 3D scenes from multi-view images. While it offers improvements over NeRF-based methods, this representation still encounters challenges with rendering speed and advanced rendering effects, such as relighting and shadow rendering, compared to mesh-based models. In this paper, we propose 2D Triangle Splatting (2DTS), a novel method that replaces 3D Gaussian primitives with 2D triangle facelets. This representation naturally forms a discrete mesh-like structure while retaining the benefits of continuous volumetric modeling. By incorporating a compactness parameter into the triangle primitives, we enable direct training of photorealistic meshes. Our experimental results demonstrate that our triangle-based method, in its vanilla version (without compactness tuning), achieves higher fidelity compared to state-of-the-art Gaussian-based methods. Furthermore, our approach produces reconstructed meshes with superior visual quality compared to existing mesh reconstruction methods. Please visit our project page at https://gaoderender.github.io/triangle-splatting.
comment: 13 pages, 8 figures
♻ ☆ High Temporal Consistency through Semantic Similarity Propagation in Semi-Supervised Video Semantic Segmentation for Autonomous Flight CVPR2025
Semantic segmentation from RGB cameras is essential to the perception of autonomous flying vehicles. The stability of predictions through the captured videos is paramount to their reliability and, by extension, to the trustworthiness of the agents. In this paper, we propose a lightweight video semantic segmentation approach-suited to onboard real-time inference-achieving high temporal consistency on aerial data through Semantic Similarity Propagation across frames. SSP temporally propagates the predictions of an efficient image segmentation model with global registration alignment to compensate for camera movements. It combines the current estimation and the prior prediction with linear interpolation using weights computed from the features similarities of the two frames. Because data availability is a challenge in this domain, we propose a consistency-aware Knowledge Distillation training procedure for sparsely labeled datasets with few annotations. Using a large image segmentation model as a teacher to train the efficient SSP, we leverage the strong correlations between labeled and unlabeled frames in the same training videos to obtain high-quality supervision on all frames. KD-SSP obtains a significant temporal consistency increase over the base image segmentation model of 12.5% and 6.7% TC on UAVid and RuralScapes respectively, with higher accuracy and comparable inference speed. On these aerial datasets, KD-SSP provides a superior segmentation quality and inference speed trade-off than other video methods proposed for general applications and shows considerably higher consistency. Project page: https://github.com/FraunhoferIVI/SSP.
comment: Accepted by CVPR2025
♻ ☆ CREStE: Scalable Mapless Navigation with Internet Scale Priors and Counterfactual Guidance
We introduce CREStE, a scalable learning-based mapless navigation framework to address the open-world generalization and robustness challenges of outdoor urban navigation. Key to achieving this is learning perceptual representations that generalize to open-set factors (e.g. novel semantic classes, terrains, dynamic entities) and inferring expert-aligned navigation costs from limited demonstrations. CREStE addresses both these issues, introducing 1) a visual foundation model (VFM) distillation objective for learning open-set structured bird's-eye-view perceptual representations, and 2) counterfactual inverse reinforcement learning (IRL), a novel active learning formulation that uses counterfactual trajectory demonstrations to reason about the most important cues when inferring navigation costs. We evaluate CREStE on the task of kilometer-scale mapless navigation in a variety of city, offroad, and residential environments and find that it outperforms all state-of-the-art approaches with 70% fewer human interventions, including a 2-kilometer mission in an unseen environment with just 1 intervention; showcasing its robustness and effectiveness for long-horizon mapless navigation. Videos and additional materials can be found on the project page: https://amrl.cs.utexas.edu/creste
comment: 18 pages, 10 figures, 5 tables
♻ ☆ Generate the Forest before the Trees -- A Hierarchical Diffusion model for Climate Downscaling
Downscaling is essential for generating the high-resolution climate data needed for local planning, but traditional methods remain computationally demanding. Recent years have seen impressive results from AI downscaling models, particularly diffusion models, which have attracted attention due to their ability to generate ensembles and overcome the smoothing problem common in other AI methods. However, these models typically remain computationally intensive. We introduce a Hierarchical Diffusion Downscaling (HDD) model, which introduces an easily-extensible hierarchical sampling process to the diffusion framework. A coarse-to-fine hierarchy is imposed via a simple downsampling scheme. HDD achieves competitive accuracy on ERA5 reanalysis datasets and CMIP6 models, significantly reducing computational load by running on up to half as many pixels with competitive results. Additionally, a single model trained at 0.25{\deg} resolution transfers seamlessly across multiple CMIP6 models with much coarser resolution. HDD thus offers a lightweight alternative for probabilistic climate downscaling, facilitating affordable large-ensemble high-resolution climate projections. See a full code implementation at: https://github.com/HDD-Hierarchical-Diffusion-Downscaling/HDD-Hierarchical-Diffusion-Downscaling.
comment: 8 pages
♻ ☆ A Multi-Source Data Fusion-based Semantic Segmentation Model for Relic Landslide Detection
As a natural disaster, landslide often brings tremendous losses to human lives, so it urgently demands reliable detection of landslide risks. When detecting relic landslides that present important information for landslide risk warning, problems such as visual blur and small-sized dataset cause great challenges when using remote sensing images. To extract accurate semantic features, a hyper-pixel-wise contrastive learning augmented segmentation network (HPCL-Net) is proposed, which augments the local salient feature extraction from boundaries of landslides through HPCL and fuses heterogeneous information in the semantic space from high-resolution remote sensing images and digital elevation model data. For full utilization of precious samples, a global hyper-pixel-wise sample pair queues-based contrastive learning method is developed, which includes the construction of global queues that store hyper-pixel-wise samples and the updating scheme of a momentum encoder, reliably enhancing the extraction ability of semantic features. The proposed HPCL-Net is evaluated on the Loess Plateau relic landslide dataset and experimental results verify that the proposed HPCL-Net greatly outperforms existing models, where the mIoU is increased from 0.620 to 0.651, the Landslide IoU is improved from 0.334 to 0.394 and the F1score is enhanced from 0.501 to 0.565.
♻ ☆ Decouple to Reconstruct: High Quality UHD Restoration via Active Feature Disentanglement and Reversible Fusion ICCV 2025
Ultra-high-definition (UHD) image restoration often faces computational bottlenecks and information loss due to its extremely high resolution. Existing studies based on Variational Autoencoders (VAE) improve efficiency by transferring the image restoration process from pixel space to latent space. However, degraded components are inherently coupled with background elements in degraded images, both information loss during compression and information gain during compensation remain uncontrollable. These lead to restored images often exhibiting image detail loss and incomplete degradation removal. To address this issue, we propose a Controlled Differential Disentangled VAE, which utilizes Hierarchical Contrastive Disentanglement Learning and an Orthogonal Gated Projection Module to guide the VAE to actively discard easily recoverable background information while encoding more difficult-to-recover degraded information into the latent space. Additionally, we design a Complex Invertible Multiscale Fusion Network to handle background features, ensuring their consistency, and utilize a latent space restoration network to transform the degraded latent features, leading to more accurate restoration results. Extensive experimental results demonstrate that our method effectively alleviates the information loss problem in VAE models while ensuring computational efficiency, significantly improving the quality of UHD image restoration, and achieves state-of-the-art results in six UHD restoration tasks with only 1M parameters.
comment: Accepted by ICCV 2025
♻ ☆ JointDiT: Enhancing RGB-Depth Joint Modeling with Diffusion Transformers ICCV
We present JointDiT, a diffusion transformer that models the joint distribution of RGB and depth. By leveraging the architectural benefit and outstanding image prior of the state-of-the-art diffusion transformer, JointDiT not only generates high-fidelity images but also produces geometrically plausible and accurate depth maps. This solid joint distribution modeling is achieved through two simple yet effective techniques that we propose, i.e., adaptive scheduling weights, which depend on the noise levels of each modality, and the unbalanced timestep sampling strategy. With these techniques, we train our model across all noise levels for each modality, enabling JointDiT to naturally handle various combinatorial generation tasks, including joint generation, depth estimation, and depth-conditioned image generation by simply controlling the timestep of each branch. JointDiT demonstrates outstanding joint generation performance. Furthermore, it achieves comparable results in depth estimation and depth-conditioned image generation, suggesting that joint distribution modeling can serve as a replaceable alternative to conditional generation. The project page is available at https://byungki-k.github.io/JointDiT/.
comment: Accepted to IEEE/CVF International Conference on Computer Vision (ICCV) 2025. Project page: https://byungki-k.github.io/JointDiT/ Code: https://github.com/ByungKi-K/JointDiT-code
♻ ☆ HUG: Hierarchical Urban Gaussian Splatting with Block-Based Reconstruction for Large-Scale Aerial Scenes ICCV
3DGS is an emerging and increasingly popular technology in the field of novel view synthesis. Its highly realistic rendering quality and real-time rendering capabilities make it promising for various applications. However, when applied to large-scale aerial urban scenes, 3DGS methods suffer from issues such as excessive memory consumption, slow training times, prolonged partitioning processes, and significant degradation in rendering quality due to the increased data volume. To tackle these challenges, we introduce \textbf{HUG}, a novel approach that enhances data partitioning and reconstruction quality by leveraging a hierarchical neural Gaussian representation. We first propose a visibility-based data partitioning method that is simple yet highly efficient, significantly outperforming existing methods in speed. Then, we introduce a novel hierarchical weighted training approach, combined with other optimization strategies, to substantially improve reconstruction quality. Our method achieves state-of-the-art results on one synthetic dataset and four real-world datasets.
comment: An improved version has recently been accepted to ICCV, manuscript, not camera-ready
♻ ☆ ARTalk: Speech-Driven 3D Head Animation via Autoregressive Model
Speech-driven 3D facial animation aims to generate realistic lip movements and facial expressions for 3D head models from arbitrary audio clips. Although existing diffusion-based methods are capable of producing natural motions, their slow generation speed limits their application potential. In this paper, we introduce a novel autoregressive model that achieves real-time generation of highly synchronized lip movements and realistic head poses and eye blinks by learning a mapping from speech to a multi-scale motion codebook. Furthermore, our model can adapt to unseen speaking styles, enabling the creation of 3D talking avatars with unique personal styles beyond the identities seen during training. Extensive evaluations and user studies demonstrate that our method outperforms existing approaches in lip synchronization accuracy and perceived quality.
comment: More video demonstrations, code, models and data can be found on our project website: http://xg-chu.site/project_artalk/
♻ ☆ Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model MICCAI25
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/mar-cry/Ophora.
comment: Early accepted in MICCAI25
♻ ☆ Efficient Image Generation with Variadic Attention Heads CVPR
While the integration of transformers in vision models have yielded significant improvements on vision tasks they still require significant amounts of computation for both training and inference. Restricted attention mechanisms significantly reduce these computational burdens but come at the cost of losing either global or local coherence. We propose a simple, yet powerful method to reduce these trade-offs: allow the attention heads of a single transformer to attend to multiple receptive fields. We demonstrate our method utilizing Neighborhood Attention (NA) and integrate it into a StyleGAN based architecture for image generation. With this work, dubbed StyleNAT, we are able to achieve a FID of 2.05 on FFHQ, a 6% improvement over StyleGAN-XL, while utilizing 28% fewer parameters and with 4$\times$ the throughput capacity. StyleNAT achieves the Pareto Frontier on FFHQ-256 and demonstrates powerful and efficient image generation on other datasets. Our code and model checkpoints are publicly available at: https://github.com/SHI-Labs/StyleNAT
comment: Published in eLVM @ CVPR (https://openaccess.thecvf.com/content/CVPR2025W/eLVM/html/Walton_Efficient_Image_Generation_with_Variadic_Attention_Heads_CVPRW_2025_paper) | Formerly named StyleNAT: Giving Each Head a New Perspective |
Artificial Intelligence 136
☆ Whole-Body Conditioned Egocentric Video Prediction
We train models to Predict Ego-centric Video from human Actions (PEVA), given the past video and an action represented by the relative 3D body pose. By conditioning on kinematic pose trajectories, structured by the joint hierarchy of the body, our model learns to simulate how physical human actions shape the environment from a first-person point of view. We train an auto-regressive conditional diffusion transformer on Nymeria, a large-scale dataset of real-world egocentric video and body pose capture. We further design a hierarchical evaluation protocol with increasingly challenging tasks, enabling a comprehensive analysis of the model's embodied prediction and control abilities. Our work represents an initial attempt to tackle the challenges of modeling complex real-world environments and embodied agent behaviors with video prediction from the perspective of a human.
comment: Project Page: https://dannytran123.github.io/PEVA
☆ mTSBench: Benchmarking Multivariate Time Series Anomaly Detection and Model Selection at Scale
Multivariate time series anomaly detection (MTS-AD) is critical in domains like healthcare, cybersecurity, and industrial monitoring, yet remains challenging due to complex inter-variable dependencies, temporal dynamics, and sparse anomaly labels. We introduce mTSBench, the largest benchmark to date for MTS-AD and unsupervised model selection, spanning 344 labeled time series across 19 datasets and 12 diverse application domains. mTSBench evaluates 24 anomaly detection methods, including large language model (LLM)-based detectors for multivariate time series, and systematically benchmarks unsupervised model selection techniques under standardized conditions. Consistent with prior findings, our results confirm that no single detector excels across datasets, underscoring the importance of model selection. However, even state-of-the-art selection methods remain far from optimal, revealing critical gaps. mTSBench provides a unified evaluation suite to enable rigorous, reproducible comparisons and catalyze future advances in adaptive anomaly detection and robust model selection.
☆ HalluSegBench: Counterfactual Visual Reasoning for Segmentation Hallucination Evaluation
Recent progress in vision-language segmentation has significantly advanced grounded visual understanding. However, these models often exhibit hallucinations by producing segmentation masks for objects not grounded in the image content or by incorrectly labeling irrelevant regions. Existing evaluation protocols for segmentation hallucination primarily focus on label or textual hallucinations without manipulating the visual context, limiting their capacity to diagnose critical failures. In response, we introduce HalluSegBench, the first benchmark specifically designed to evaluate hallucinations in visual grounding through the lens of counterfactual visual reasoning. Our benchmark consists of a novel dataset of 1340 counterfactual instance pairs spanning 281 unique object classes, and a set of newly introduced metrics that quantify hallucination sensitivity under visually coherent scene edits. Experiments on HalluSegBench with state-of-the-art vision-language segmentation models reveal that vision-driven hallucinations are significantly more prevalent than label-driven ones, with models often persisting in false segmentation, highlighting the need for counterfactual reasoning to diagnose grounding fidelity.
comment: Project webpage: https://plan-lab.github.io/hallusegbench/
☆ WorldVLA: Towards Autoregressive Action World Model
We present WorldVLA, an autoregressive action world model that unifies action and image understanding and generation. Our WorldVLA intergrates Vision-Language-Action (VLA) model and world model in one single framework. The world model predicts future images by leveraging both action and image understanding, with the purpose of learning the underlying physics of the environment to improve action generation. Meanwhile, the action model generates the subsequent actions based on image observations, aiding in visual understanding and in turn helps visual generation of the world model. We demonstrate that WorldVLA outperforms standalone action and world models, highlighting the mutual enhancement between the world model and the action model. In addition, we find that the performance of the action model deteriorates when generating sequences of actions in an autoregressive manner. This phenomenon can be attributed to the model's limited generalization capability for action prediction, leading to the propagation of errors from earlier actions to subsequent ones. To address this issue, we propose an attention mask strategy that selectively masks prior actions during the generation of the current action, which shows significant performance improvement in the action chunk generation task.
comment: Code: https://github.com/alibaba-damo-academy/WorldVLA
☆ PsyLite Technical Report
With the rapid development of digital technology, AI-driven psychological counseling has gradually become an important research direction in the field of mental health. However, existing models still have deficiencies in dialogue safety, detailed scenario handling, and lightweight deployment. To address these issues, this study proposes PsyLite, a lightweight psychological counseling large language model agent developed based on the base model InternLM2.5-7B-chat. Through a two-stage training strategy (hybrid distillation data fine-tuning and ORPO preference optimization), PsyLite enhances the model's deep-reasoning ability, psychological counseling ability, and safe dialogue ability. After deployment using Ollama and Open WebUI, a custom workflow is created with Pipelines. An innovative conditional RAG is designed to introduce crosstalk humor elements at appropriate times during psychological counseling to enhance user experience and decline dangerous requests to strengthen dialogue safety. Evaluations show that PsyLite outperforms the baseline models in the Chinese general evaluation (CEval), psychological counseling professional evaluation (CPsyCounE), and dialogue safety evaluation (SafeDialBench), particularly in psychological counseling professionalism (CPsyCounE score improvement of 47.6\%) and dialogue safety (\safe{} score improvement of 2.4\%). Additionally, the model uses quantization technology (GGUF q4\_k\_m) to achieve low hardware deployment (5GB memory is sufficient for operation), providing a feasible solution for psychological counseling applications in resource-constrained environments.
☆ "What's Up, Doc?": Analyzing How Users Seek Health Information in Large-Scale Conversational AI Datasets
People are increasingly seeking healthcare information from large language models (LLMs) via interactive chatbots, yet the nature and inherent risks of these conversations remain largely unexplored. In this paper, we filter large-scale conversational AI datasets to achieve HealthChat-11K, a curated dataset of 11K real-world conversations composed of 25K user messages. We use HealthChat-11K and a clinician-driven taxonomy for how users interact with LLMs when seeking healthcare information in order to systematically study user interactions across 21 distinct health specialties. Our analysis reveals insights into the nature of how and why users seek health information, such as common interactions, instances of incomplete context, affective behaviors, and interactions (e.g., leading questions) that can induce sycophancy, underscoring the need for improvements in the healthcare support capabilities of LLMs deployed as conversational AI. Code and artifacts to retrieve our analyses and combine them into a curated dataset can be found here: https://github.com/yahskapar/HealthChat
comment: 25 pages, 6 figures, 4 tables, corresponds to initial HealthChat-11K dataset release
☆ Potemkin Understanding in Large Language Models
Large language models (LLMs) are regularly evaluated using benchmark datasets. But what justifies making inferences about an LLM's capabilities based on its answers to a curated set of questions? This paper first introduces a formal framework to address this question. The key is to note that the benchmarks used to test LLMs -- such as AP exams -- are also those used to test people. However, this raises an implication: these benchmarks are only valid tests if LLMs misunderstand concepts in ways that mirror human misunderstandings. Otherwise, success on benchmarks only demonstrates potemkin understanding: the illusion of understanding driven by answers irreconcilable with how any human would interpret a concept. We present two procedures for quantifying the existence of potemkins: one using a specially designed benchmark in three domains, the other using a general procedure that provides a lower-bound on their prevalence. We find that potemkins are ubiquitous across models, tasks, and domains. We also find that these failures reflect not just incorrect understanding, but deeper internal incoherence in concept representations.
☆ skLEP: A Slovak General Language Understanding Benchmark ACL 2025
In this work, we introduce skLEP, the first comprehensive benchmark specifically designed for evaluating Slovak natural language understanding (NLU) models. We have compiled skLEP to encompass nine diverse tasks that span token-level, sentence-pair, and document-level challenges, thereby offering a thorough assessment of model capabilities. To create this benchmark, we curated new, original datasets tailored for Slovak and meticulously translated established English NLU resources. Within this paper, we also present the first systematic and extensive evaluation of a wide array of Slovak-specific, multilingual, and English pre-trained language models using the skLEP tasks. Finally, we also release the complete benchmark data, an open-source toolkit facilitating both fine-tuning and evaluation of models, and a public leaderboard at https://github.com/slovak-nlp/sklep in the hopes of fostering reproducibility and drive future research in Slovak NLU.
comment: ACL 2025 Findings
☆ Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge
Agentic search such as Deep Research systems, where large language models autonomously browse the web, synthesize information, and return comprehensive citation-backed answers, represents a major shift in how users interact with web-scale information. While promising greater efficiency and cognitive offloading, the growing complexity and open-endedness of agentic search have outpaced existing evaluation benchmarks and methodologies, which largely assume short search horizons and static answers. In this paper, we introduce Mind2Web 2, a benchmark of 130 realistic, high-quality, and long-horizon tasks that require real-time web browsing and extensive information synthesis, constructed with over 1,000 hours of human labor. To address the challenge of evaluating time-varying and complex answers, we propose a novel Agent-as-a-Judge framework. Our method constructs task-specific judge agents based on a tree-structured rubric design to automatically assess both answer correctness and source attribution. We conduct a comprehensive evaluation of nine frontier agentic search systems and human performance, along with a detailed error analysis to draw insights for future development. The best-performing system, OpenAI Deep Research, can already achieve 50-70% of human performance while spending half the time, showing a great potential. Altogether, Mind2Web 2 provides a rigorous foundation for developing and benchmarking the next generation of agentic search systems.
comment: Project Homepage: https://osu-nlp-group.github.io/Mind2Web2/
☆ Process mining-driven modeling and simulation to enhance fault diagnosis in cyber-physical systems
Fault diagnosis in Cyber-Physical Systems (CPSs) is essential for ensuring system dependability and operational efficiency by accurately detecting anomalies and identifying their root causes. However, the manual modeling of faulty behaviors often demands extensive domain expertise and produces models that are complex, error-prone, and difficult to interpret. To address this challenge, we present a novel unsupervised fault diagnosis methodology that integrates collective anomaly detection in multivariate time series, process mining, and stochastic simulation. Initially, collective anomalies are detected from low-level sensor data using multivariate time-series analysis. These anomalies are then transformed into structured event logs, enabling the discovery of interpretable process models through process mining. By incorporating timing distributions into the extracted Petri nets, the approach supports stochastic simulation of faulty behaviors, thereby enhancing root cause analysis and behavioral understanding. The methodology is validated using the Robotic Arm Dataset (RoAD), a widely recognized benchmark in smart manufacturing. Experimental results demonstrate its effectiveness in modeling, simulating, and classifying faulty behaviors in CPSs. This enables the creation of comprehensive fault dictionaries that support predictive maintenance and the development of digital twins for industrial environments.
☆ Ad-Hoc Human-AI Coordination Challenge ICML 2025
Achieving seamless coordination between AI agents and humans is crucial for real-world applications, yet it remains a significant open challenge. Hanabi is a cooperative card game featuring imperfect information, constrained communication, theory of mind requirements, and coordinated action -- making it an ideal testbed for human-AI coordination. However, its use for human-AI interaction has been limited by the challenges of human evaluation. In this work, we introduce the Ad-Hoc Human-AI Coordination Challenge (AH2AC2) to overcome the constraints of costly and difficult-to-reproduce human evaluations. We develop \textit{human proxy agents} on a large-scale human dataset that serve as robust, cheap, and reproducible human-like evaluation partners in AH2AC2. To encourage the development of data-efficient methods, we open-source a dataset of 3,079 games, deliberately limiting the amount of available human gameplay data. We present baseline results for both two- and three- player Hanabi scenarios. To ensure fair evaluation, we host the proxy agents through a controlled evaluation system rather than releasing them publicly. The code is available at \href{https://github.com/FLAIROx/ah2ac2}{https://github.com/FLAIROx/ah2ac2}.
comment: Published at ICML 2025
☆ TITAN: Query-Token based Domain Adaptive Adversarial Learning ICCV 2025
We focus on the source-free domain adaptive object detection (SF-DAOD) problem when source data is unavailable during adaptation and the model must adapt to an unlabeled target domain. The majority of approaches for the problem employ a self-supervised approach using a student-teacher (ST) framework where pseudo-labels are generated via a source-pretrained model for further fine-tuning. We observe that the performance of a student model often degrades drastically, due to the collapse of the teacher model, primarily caused by high noise in pseudo-labels, resulting from domain bias, discrepancies, and a significant domain shift across domains. To obtain reliable pseudo-labels, we propose a Target-based Iterative Query-Token Adversarial Network (TITAN), which separates the target images into two subsets: those similar to the source (easy) and those dissimilar (hard). We propose a strategy to estimate variance to partition the target domain. This approach leverages the insight that higher detection variances correspond to higher recall and greater similarity to the source domain. Also, we incorporate query-token-based adversarial modules into a student-teacher baseline framework to reduce the domain gaps between two feature representations. Experiments conducted on four natural imaging datasets and two challenging medical datasets have substantiated the superior performance of TITAN compared to existing state-of-the-art (SOTA) methodologies. We report an mAP improvement of +22.7, +22.2, +21.1, and +3.7 percent over the current SOTA on C2F, C2B, S2C, and K2C benchmarks, respectively.
comment: ICCV 2025
☆ SmoothSinger: A Conditional Diffusion Model for Singing Voice Synthesis with Multi-Resolution Architecture
Singing voice synthesis (SVS) aims to generate expressive and high-quality vocals from musical scores, requiring precise modeling of pitch, duration, and articulation. While diffusion-based models have achieved remarkable success in image and video generation, their application to SVS remains challenging due to the complex acoustic and musical characteristics of singing, often resulting in artifacts that degrade naturalness. In this work, we propose SmoothSinger, a conditional diffusion model designed to synthesize high quality and natural singing voices. Unlike prior methods that depend on vocoders as a final stage and often introduce distortion, SmoothSinger refines low-quality synthesized audio directly in a unified framework, mitigating the degradation associated with two-stage pipelines. The model adopts a reference-guided dual-branch architecture, using low-quality audio from any baseline system as a reference to guide the denoising process, enabling more expressive and context-aware synthesis. Furthermore, it enhances the conventional U-Net with a parallel low-frequency upsampling path, allowing the model to better capture pitch contours and long term spectral dependencies. To improve alignment during training, we replace reference audio with degraded ground truth audio, addressing temporal mismatch between reference and target signals. Experiments on the Opencpop dataset, a large-scale Chinese singing corpus, demonstrate that SmoothSinger achieves state-of-the-art results in both objective and subjective evaluations. Extensive ablation studies confirm its effectiveness in reducing artifacts and improving the naturalness of synthesized voices.
☆ Optimising 4th-Order Runge-Kutta Methods: A Dynamic Heuristic Approach for Efficiency and Low Storage
Extended Stability Runge-Kutta (ESRK) methods are crucial for solving large-scale computational problems in science and engineering, including weather forecasting, aerodynamic analysis, and complex biological modelling. However, balancing accuracy, stability, and computational efficiency remains challenging, particularly for high-order, low-storage schemes. This study introduces a hybrid Genetic Algorithm (GA) and Reinforcement Learning (RL) approach for automated heuristic discovery, optimising low-storage ESRK methods. Unlike traditional approaches that rely on manually designed heuristics or exhaustive numerical searches, our method leverages GA-driven mutations for search-space exploration and an RL-inspired state transition mechanism to refine heuristic selection dynamically. This enables systematic parameter reduction, preserving fourth-order accuracy while significantly improving computational efficiency.The proposed GA-RL heuristic optimisation framework is validated through rigorous testing on benchmark problems, including the 1D and 2D Brusselator systems and the steady-state Navier-Stokes equations. The best-performing heuristic achieves a 25\% reduction in IPOPT runtime compared to traditional ESRK optimisation processes while maintaining numerical stability and accuracy. These findings demonstrate the potential of adaptive heuristic discovery to improve resource efficiency in high-fidelity simulations and broaden the applicability of low-storage Runge-Kutta methods in real-world computational fluid dynamics, physics simulations, and other demanding fields. This work establishes a new paradigm in heuristic optimisation for numerical methods, opening pathways for further exploration using Deep RL and AutoML-based heuristic search
☆ Spatial Mental Modeling from Limited Views
Can Vision Language Models (VLMs) imagine the full scene from just a few views, like humans do? Humans form spatial mental models, internal representations of unseen space, to reason about layout, perspective, and motion. Our new MindCube benchmark with 21,154 questions across 3,268 images exposes this critical gap, where existing VLMs exhibit near-random performance. Using MindCube, we systematically evaluate how well VLMs build robust spatial mental models through representing positions (cognitive mapping), orientations (perspective-taking), and dynamics (mental simulation for "what-if" movements). We then explore three approaches to help VLMs approximate spatial mental models, including unseen intermediate views, natural language reasoning chains, and cognitive maps. The significant improvement comes from a synergistic approach, "map-then-reason", that jointly trains the model to first generate a cognitive map and then reason upon it. By training models to reason over these internal maps, we boosted accuracy from 37.8% to 60.8% (+23.0%). Adding reinforcement learning pushed performance even further to 70.7% (+32.9%). Our key insight is that such scaffolding of spatial mental models, actively constructing and utilizing internal structured spatial representations with flexible reasoning processes, significantly improves understanding of unobservable space.
comment: Preprint version
☆ Domain Knowledge-Enhanced LLMs for Fraud and Concept Drift Detection
Detecting deceptive conversations on dynamic platforms is increasingly difficult due to evolving language patterns and Concept Drift (CD)\-i.e., semantic or topical shifts that alter the context or intent of interactions over time. These shifts can obscure malicious intent or mimic normal dialogue, making accurate classification challenging. While Large Language Models (LLMs) show strong performance in natural language tasks, they often struggle with contextual ambiguity and hallucinations in risk\-sensitive scenarios. To address these challenges, we present a Domain Knowledge (DK)\-Enhanced LLM framework that integrates pretrained LLMs with structured, task\-specific insights to perform fraud and concept drift detection. The proposed architecture consists of three main components: (1) a DK\-LLM module to detect fake or deceptive conversations; (2) a drift detection unit (OCDD) to determine whether a semantic shift has occurred; and (3) a second DK\-LLM module to classify the drift as either benign or fraudulent. We first validate the value of domain knowledge using a fake review dataset and then apply our full framework to SEConvo, a multiturn dialogue dataset that includes various types of fraud and spam attacks. Results show that our system detects fake conversations with high accuracy and effectively classifies the nature of drift. Guided by structured prompts, the LLaMA\-based implementation achieves 98\% classification accuracy. Comparative studies against zero\-shot baselines demonstrate that incorporating domain knowledge and drift awareness significantly improves performance, interpretability, and robustness in high\-stakes NLP applications.
☆ Scalable Bayesian Low-Rank Adaptation of Large Language Models via Stochastic Variational Subspace Inference UAI 2025
Despite their widespread use, large language models (LLMs) are known to hallucinate incorrect information and be poorly calibrated. This makes the uncertainty quantification of these models of critical importance, especially in high-stakes domains, such as autonomy and healthcare. Prior work has made Bayesian deep learning-based approaches to this problem more tractable by performing inference over the low-rank adaptation (LoRA) parameters of a fine-tuned model. While effective, these approaches struggle to scale to larger LLMs due to requiring further additional parameters compared to LoRA. In this work we present $\textbf{Scala}$ble $\textbf{B}$ayesian $\textbf{L}$ow-Rank Adaptation via Stochastic Variational Subspace Inference (ScalaBL). We perform Bayesian inference in an $r$-dimensional subspace, for LoRA rank $r$. By repurposing the LoRA parameters as projection matrices, we are able to map samples from this subspace into the full weight space of the LLM. This allows us to learn all the parameters of our approach using stochastic variational inference. Despite the low dimensionality of our subspace, we are able to achieve competitive performance with state-of-the-art approaches while only requiring ${\sim}1000$ additional parameters. Furthermore, it allows us to scale up to the largest Bayesian LLM to date, with four times as a many base parameters as prior work.
comment: Accepted at UAI 2025
☆ TableMoE: Neuro-Symbolic Routing for Structured Expert Reasoning in Multimodal Table Understanding
Multimodal understanding of tables in real-world contexts is challenging due to the complexity of structure, symbolic density, and visual degradation (blur, skew, watermarking, incomplete structures or fonts, multi-span or hierarchically nested layouts). Existing multimodal large language models (MLLMs) struggle with such WildStruct conditions, resulting in limited performance and poor generalization. To address these challenges, we propose TableMoE, a neuro-symbolic Mixture-of-Connector-Experts (MoCE) architecture specifically designed for robust, structured reasoning over multimodal table data. TableMoE features an innovative Neuro-Symbolic Routing mechanism, which predicts latent semantic token roles (e.g., header, data cell, axis, formula) and dynamically routes table elements to specialized experts (Table-to-HTML, Table-to-JSON, Table-to-Code) using a confidence-aware gating strategy informed by symbolic reasoning graphs. To facilitate effective alignment-driven pretraining, we introduce the large-scale TableMoE-Align dataset, consisting of 1.2M table-HTML-JSON-code quadruples across finance, science, biomedicine and industry, utilized exclusively for model pretraining. For evaluation, we curate and release four challenging WildStruct benchmarks: WMMFinQA, WMMTatQA, WMMTabDialog, and WMMFinanceMath, designed specifically to stress-test models under real-world multimodal degradation and structural complexity. Experimental results demonstrate that TableMoE significantly surpasses existing state-of-the-art models. Extensive ablation studies validate each core component, emphasizing the critical role of Neuro-Symbolic Routing and structured expert alignment. Through qualitative analyses, we further showcase TableMoE's interpretability and enhanced robustness, underscoring the effectiveness of integrating neuro-symbolic reasoning for multimodal table understanding.
comment: 43 pages and 11 figures
☆ Leveraging LLM-Assisted Query Understanding for Live Retrieval-Augmented Generation SIGIR 2025
Real-world live retrieval-augmented generation (RAG) systems face significant challenges when processing user queries that are often noisy, ambiguous, and contain multiple intents. While RAG enhances large language models (LLMs) with external knowledge, current systems typically struggle with such complex inputs, as they are often trained or evaluated on cleaner data. This paper introduces Omni-RAG, a novel framework designed to improve the robustness and effectiveness of RAG systems in live, open-domain settings. Omni-RAG employs LLM-assisted query understanding to preprocess user inputs through three key modules: (1) Deep Query Understanding and Decomposition, which utilizes LLMs with tailored prompts to denoise queries (e.g., correcting spelling errors) and decompose multi-intent queries into structured sub-queries; (2) Intent-Aware Knowledge Retrieval, which performs retrieval for each sub-query from a corpus (i.e., FineWeb using OpenSearch) and aggregates the results; and (3) Reranking and Generation, where a reranker (i.e., BGE) refines document selection before a final response is generated by an LLM (i.e., Falcon-10B) using a chain-of-thought prompt. Omni-RAG aims to bridge the gap between current RAG capabilities and the demands of real-world applications, such as those highlighted by the SIGIR 2025 LiveRAG Challenge, by robustly handling complex and noisy queries.
comment: Accepted at SIGIR 2025 LiveRAG Workshop (Oral Presentation)
☆ Temporal-Aware Graph Attention Network for Cryptocurrency Transaction Fraud Detection
Cryptocurrency transaction fraud detection faces the dual challenges of increasingly complex transaction patterns and severe class imbalance. Traditional methods rely on manual feature engineering and struggle to capture temporal and structural dependencies in transaction networks. This paper proposes an Augmented Temporal-aware Graph Attention Network (ATGAT) that enhances detection performance through three modules: (1) designing an advanced temporal embedding module that fuses multi-scale time difference features with periodic position encoding; (2) constructing a temporal-aware triple attention mechanism that jointly optimizes structural, temporal, and global context attention; (3) employing weighted BCE loss to address class imbalance. Experiments on the Elliptic++ cryptocurrency dataset demonstrate that ATGAT achieves an AUC of 0.9130, representing a 9.2% improvement over the best traditional method XGBoost, 12.0% over GCN, and 10.0% over standard GAT. This method not only validates the enhancement effect of temporal awareness and triple attention mechanisms on graph neural networks, but also provides financial institutions with more reliable fraud detection tools, with its design principles generalizable to other temporal graph anomaly detection tasks.
☆ Pay Attention to Small Weights
Finetuning large pretrained neural networks is known to be resource-intensive, both in terms of memory and computational cost. To mitigate this, a common approach is to restrict training to a subset of the model parameters. By analyzing the relationship between gradients and weights during finetuning, we observe a notable pattern: large gradients are often associated with small-magnitude weights. This correlation is more pronounced in finetuning settings than in training from scratch. Motivated by this observation, we propose NANOADAM, which dynamically updates only the small-magnitude weights during finetuning and offers several practical advantages: first, this criterion is gradient-free -- the parameter subset can be determined without gradient computation; second, it preserves large-magnitude weights, which are likely to encode critical features learned during pretraining, thereby reducing the risk of catastrophic forgetting; thirdly, it permits the use of larger learning rates and consistently leads to better generalization performance in experiments. We demonstrate this for both NLP and vision tasks.
☆ Real-time and personalized product recommendations for large e-commerce platforms
We present a methodology to provide real-time and personalized product recommendations for large e-commerce platforms, specifically focusing on fashion retail. Our approach aims to achieve accurate and scalable recommendations with minimal response times, ensuring user satisfaction, leveraging Graph Neural Networks and parsimonious learning methodologies. Extensive experimentation with datasets from one of the largest e-commerce platforms demonstrates the effectiveness of our approach in forecasting purchase sequences and handling multi-interaction scenarios, achieving efficient personalized recommendations under real-world constraints.
comment: This paper has been accepted for publication at the International Conference on Artificial Neural Networks (ICANN) 2025. The final authenticated version will be available for purchase through the publisher's website. The conference proceedings will be published by Springer in the Lecture Notes in Computer Science (LNCS) series
☆ rQdia: Regularizing Q-Value Distributions With Image Augmentation
rQdia regularizes Q-value distributions with augmented images in pixel-based deep reinforcement learning. With a simple auxiliary loss, that equalizes these distributions via MSE, rQdia boosts DrQ and SAC on 9/12 and 10/12 tasks respectively in the MuJoCo Continuous Control Suite from pixels, and Data-Efficient Rainbow on 18/26 Atari Arcade environments. Gains are measured in both sample efficiency and longer-term training. Moreover, the addition of rQdia finally propels model-free continuous control from pixels over the state encoding baseline.
☆ CA-I2P: Channel-Adaptive Registration Network with Global Optimal Selection ICCV 2025
Detection-free methods typically follow a coarse-to-fine pipeline, extracting image and point cloud features for patch-level matching and refining dense pixel-to-point correspondences. However, differences in feature channel attention between images and point clouds may lead to degraded matching results, ultimately impairing registration accuracy. Furthermore, similar structures in the scene could lead to redundant correspondences in cross-modal matching. To address these issues, we propose Channel Adaptive Adjustment Module (CAA) and Global Optimal Selection Module (GOS). CAA enhances intra-modal features and suppresses cross-modal sensitivity, while GOS replaces local selection with global optimization. Experiments on RGB-D Scenes V2 and 7-Scenes demonstrate the superiority of our method, achieving state-of-the-art performance in image-to-point cloud registration.
comment: ICCV 2025 accepted
☆ A Systematic Review of Human-AI Co-Creativity
The co creativity community is making significant progress in developing more sophisticated and tailored systems to support and enhance human creativity. Design considerations from prior work can serve as a valuable and efficient foundation for future systems. To support this effort, we conducted a systematic literature review of 62 papers on co-creative systems. These papers cover a diverse range of applications, including visual arts, design, and writing, where the AI acts not just as a tool but as an active collaborator in the creative process. From this review, we identified several key dimensions relevant to system design: phase of the creative process, creative task, proactive behavior of the system, user control, system embodiment, and AI model type. Our findings suggest that systems offering high user control lead to greater satisfaction, trust, and a stronger sense of ownership over creative outcomes. Furthermore, proactive systems, when adaptive and context sensitive, can enhance collaboration. We also extracted 24 design considerations, highlighting the value of encouraging users to externalize their thoughts and of increasing the system's social presence and transparency to foster trust. Despite recent advancements, important gaps remain, such as limited support for early creative phases like problem clarification, and challenges related to user adaptation to AI systems.
☆ Holistic Surgical Phase Recognition with Hierarchical Input Dependent State Space Models
Surgical workflow analysis is essential in robot-assisted surgeries, yet the long duration of such procedures poses significant challenges for comprehensive video analysis. Recent approaches have predominantly relied on transformer models; however, their quadratic attention mechanism restricts efficient processing of lengthy surgical videos. In this paper, we propose a novel hierarchical input-dependent state space model that leverages the linear scaling property of state space models to enable decision making on full-length videos while capturing both local and global dynamics. Our framework incorporates a temporally consistent visual feature extractor, which appends a state space model head to a visual feature extractor to propagate temporal information. The proposed model consists of two key modules: a local-aggregation state space model block that effectively captures intricate local dynamics, and a global-relation state space model block that models temporal dependencies across the entire video. The model is trained using a hybrid discrete-continuous supervision strategy, where both signals of discrete phase labels and continuous phase progresses are propagated through the network. Experiments have shown that our method outperforms the current state-of-the-art methods by a large margin (+2.8% on Cholec80, +4.3% on MICCAI2016, and +12.9% on Heichole datasets). Code will be publicly available after paper acceptance.
☆ Active Inference AI Systems for Scientific Discovery
The rapid evolution of artificial intelligence has led to expectations of transformative scientific discovery, yet current systems remain fundamentally limited by their operational architectures, brittle reasoning mechanisms, and their separation from experimental reality. Building on earlier work, we contend that progress in AI-driven science now depends on closing three fundamental gaps -- the abstraction gap, the reasoning gap, and the reality gap -- rather than on model size/data/test time compute. Scientific reasoning demands internal representations that support simulation of actions and response, causal structures that distinguish correlation from mechanism, and continuous calibration. We define active inference AI systems for scientific discovery as those that (i) maintain long-lived research memories grounded in causal self-supervised foundation models, (ii) symbolic or neuro-symbolic planners equipped with Bayesian guardrails, (iii) grow persistent knowledge graphs where thinking generates novel conceptual nodes, reasoning establishes causal edges, and real-world interaction prunes false connections while strengthening verified pathways, and (iv) refine their internal representations through closed-loop interaction with both high-fidelity simulators and automated laboratories - an operational loop where mental simulation guides action and empirical surprise reshapes understanding. In essence, we outline an architecture where discovery arises from the interplay between internal models that enable counterfactual reasoning and external validation that grounds hypotheses in reality. It is also argued that the inherent ambiguity in feedback from simulations and experiments, and underlying uncertainties makes human judgment indispensable, not as a temporary scaffold but as a permanent architectural component.
☆ IXAII: An Interactive Explainable Artificial Intelligence Interface for Decision Support Systems
Although several post-hoc methods for explainable AI have been developed, most are static and neglect the user perspective, limiting their effectiveness for the target audience. In response, we developed the interactive explainable intelligent system called IXAII that offers explanations from four explainable AI methods: LIME, SHAP, Anchors, and DiCE. Our prototype provides tailored views for five user groups and gives users agency over the explanations' content and their format. We evaluated IXAII through interviews with experts and lay users. Our results indicate that IXAII, which provides different explanations with multiple visualization options, is perceived as helpful to increase transparency. By bridging the gaps between explainable AI methods, interactivity, and practical implementation, we provide a novel perspective on AI explanation practices and human-AI interaction.
comment: 9 pages, 2 figures, accepted to DESRIST 2025 Prototype Track
☆ On Uniform Weighted Deep Polynomial approximation
It is a classical result in rational approximation theory that certain non-smooth or singular functions, such as $|x|$ and $x^{1/p}$, can be efficiently approximated using rational functions with root-exponential convergence in terms of degrees of freedom \cite{Sta, GN}. In contrast, polynomial approximations admit only algebraic convergence by Jackson's theorem \cite{Lub2}. Recent work shows that composite polynomial architectures can recover exponential approximation rates even without smoothness \cite{KY}. In this work, we introduce and analyze a class of weighted deep polynomial approximants tailored for functions with asymmetric behavior-growing unbounded on one side and decaying on the other. By multiplying a learnable deep polynomial with a one-sided weight, we capture both local non-smoothness and global growth. We show numerically that this framework outperforms Taylor, Chebyshev, and standard deep polynomial approximants, even when all use the same number of parameters. To optimize these approximants in practice, we propose a stable graph-based parameterization strategy building on \cite{Jar}.
☆ Exploring Adapter Design Tradeoffs for Low Resource Music Generation
Fine-tuning large-scale music generation models, such as MusicGen and Mustango, is a computationally expensive process, often requiring updates to billions of parameters and, therefore, significant hardware resources. Parameter-Efficient Fine-Tuning (PEFT) techniques, particularly adapter-based methods, have emerged as a promising alternative, enabling adaptation with minimal trainable parameters while preserving model performance. However, the design choices for adapters, including their architecture, placement, and size, are numerous, and it is unclear which of these combinations would produce optimal adapters and why, for a given case of low-resource music genre. In this paper, we attempt to answer this question by studying various adapter configurations for two AI music models, MusicGen and Mustango, on two genres: Hindustani Classical and Turkish Makam music. Our findings reveal distinct trade-offs: convolution-based adapters excel in capturing fine-grained local musical details such as ornamentations and short melodic phrases, while transformer-based adapters better preserve long-range dependencies crucial for structured improvisation. Additionally, we analyze computational resource requirements across different adapter scales, demonstrating how mid-sized adapters (40M parameters) achieve an optimal balance between expressivity and quality. Furthermore, we find that Mustango, a diffusion-based model, generates more diverse outputs with better adherence to the description in the input prompt while lacking in providing stability in notes, rhythm alignment, and aesthetics. Also, it is computationally intensive and requires significantly more time to train. In contrast, autoregressive models like MusicGen offer faster training and are more efficient, and can produce better quality output in comparison, but have slightly higher redundancy in their generations.
comment: 9 pages, 5 figures
Detecting Referring Expressions in Visually Grounded Dialogue with Autoregressive Language Models ACL 2025
In this paper, we explore the use of a text-only, autoregressive language modeling approach for the extraction of referring expressions from visually grounded dialogue. More specifically, the aim is to investigate the extent to which the linguistic context alone can inform the detection of mentions that have a (visually perceivable) referent in the visual context of the conversation. To this end, we adapt a pretrained large language model (LLM) to perform a relatively course-grained annotation of mention spans in unfolding conversations by demarcating mention span boundaries in text via next-token prediction. Our findings indicate that even when using a moderately sized LLM, relatively small datasets, and parameter-efficient fine-tuning, a text-only approach can be effective, highlighting the relative importance of the linguistic context for this task. Nevertheless, we argue that the task represents an inherently multimodal problem and discuss limitations fundamental to unimodal approaches.
comment: Accepted for publication at XLLM @ ACL 2025
☆ Small Encoders Can Rival Large Decoders in Detecting Groundedness
Augmenting large language models (LLMs) with external context significantly improves their performance in natural language processing (NLP) tasks. However, LLMs struggle to answer queries reliably when the provided context lacks information, often resorting to ungrounded speculation or internal knowledge. Groundedness - generating responses strictly supported by the context - is essential for ensuring factual consistency and trustworthiness. This study focuses on detecting whether a given query is grounded in a document provided in context before the costly answer generation by LLMs. Such a detection mechanism can significantly reduce both inference time and resource consumption. We show that lightweight, task specific encoder models such as RoBERTa and NomicBERT, fine-tuned on curated datasets, can achieve accuracy comparable to state-of-the-art LLMs, such as Llama3 8B and GPT4o, in groundedness detection while reducing inference latency by orders of magnitude. The code is available at : https://github.com/chandarlab/Hallucinate-less
☆ Hyperspherical Variational Autoencoders Using Efficient Spherical Cauchy Distribution
We propose a novel variational autoencoder (VAE) architecture that employs a spherical Cauchy (spCauchy) latent distribution. Unlike traditional Gaussian latent spaces or the widely used von Mises-Fisher (vMF) distribution, spCauchy provides a more natural hyperspherical representation of latent variables, better capturing directional data while maintaining flexibility. Its heavy-tailed nature prevents over-regularization, ensuring efficient latent space utilization while offering a more expressive representation. Additionally, spCauchy circumvents the numerical instabilities inherent to vMF, which arise from computing normalization constants involving Bessel functions. Instead, it enables a fully differentiable and efficient reparameterization trick via M\"obius transformations, allowing for stable and scalable training. The KL divergence can be computed through a rapidly converging power series, eliminating concerns of underflow or overflow associated with evaluation of ratios of hypergeometric functions. These properties make spCauchy a compelling alternative for VAEs, offering both theoretical advantages and practical efficiency in high-dimensional generative modeling.
☆ Integrating Vehicle Acoustic Data for Enhanced Urban Traffic Management: A Study on Speed Classification in Suzhou
This study presents and publicly releases the Suzhou Urban Road Acoustic Dataset (SZUR-Acoustic Dataset), which is accompanied by comprehensive data-acquisition protocols and annotation guidelines to ensure transparency and reproducibility of the experimental workflow. To model the coupling between vehicular noise and driving speed, we propose a bimodal-feature-fusion deep convolutional neural network (BMCNN). During preprocessing, an adaptive denoising and normalization strategy is applied to suppress environmental background interference; in the network architecture, parallel branches extract Mel-frequency cepstral coefficients (MFCCs) and wavelet-packet energy features, which are subsequently fused via a cross-modal attention mechanism in the intermediate feature space to fully exploit time-frequency information. Experimental results demonstrate that BMCNN achieves a classification accuracy of 87.56% on the SZUR-Acoustic Dataset and 96.28% on the public IDMT-Traffic dataset. Ablation studies and robustness tests on the Suzhou dataset further validate the contributions of each module to performance improvement and overfitting mitigation. The proposed acoustics-based speed classification method can be integrated into smart-city traffic management systems for real-time noise monitoring and speed estimation, thereby optimizing traffic flow control, reducing roadside noise pollution, and supporting sustainable urban planning.
☆ DiLoCoX: A Low-Communication Large-Scale Training Framework for Decentralized Cluster
The distributed training of foundation models, particularly large language models (LLMs), demands a high level of communication. Consequently, it is highly dependent on a centralized cluster with fast and reliable interconnects. Can we conduct training on slow networks and thereby unleash the power of decentralized clusters when dealing with models exceeding 100 billion parameters? In this paper, we propose DiLoCoX, a low-communication large-scale decentralized cluster training framework. It combines Pipeline Parallelism with Dual Optimizer Policy, One-Step-Delay Overlap of Communication and Local Training, and an Adaptive Gradient Compression Scheme. This combination significantly improves the scale of parameters and the speed of model pre-training. We justify the benefits of one-step-delay overlap of communication and local training, as well as the adaptive gradient compression scheme, through a theoretical analysis of convergence. Empirically, we demonstrate that DiLoCoX is capable of pre-training a 107B foundation model over a 1Gbps network. Compared to vanilla AllReduce, DiLoCoX can achieve a 357x speedup in distributed training while maintaining negligible degradation in model convergence. To the best of our knowledge, this is the first decentralized training framework successfully applied to models with over 100 billion parameters.
☆ Agent-RewardBench: Towards a Unified Benchmark for Reward Modeling across Perception, Planning, and Safety in Real-World Multimodal Agents ACL 2025
As Multimodal Large Language Models (MLLMs) advance, multimodal agents show promise in real-world tasks like web navigation and embodied intelligence. However, due to limitations in a lack of external feedback, these agents struggle with self-correction and generalization. A promising approach is to use reward models as external feedback, but there is no clear on how to select reward models for agents. Thus, there is an urgent need to build a reward bench targeted at agents. To address these challenges, we propose Agent-RewardBench, a benchmark designed to evaluate reward modeling ability in MLLMs. The benchmark is characterized by three key features: (1) Multiple dimensions and real-world agent scenarios evaluation. It covers perception, planning, and safety with 7 scenarios; (2) Step-level reward evaluation. It allows for the assessment of agent capabilities at the individual steps of a task, providing a more granular view of performance during the planning process; and (3) Appropriately difficulty and high-quality. We carefully sample from 10 diverse models, difficulty control to maintain task challenges, and manual verification to ensure the integrity of the data. Experiments demonstrate that even state-of-the-art multimodal models show limited performance, highlighting the need for specialized training in agent reward modeling. Code is available at github.
comment: ACL 2025 Main
☆ From On-chain to Macro: Assessing the Importance of Data Source Diversity in Cryptocurrency Market Forecasting
This study investigates the impact of data source diversity on the performance of cryptocurrency forecasting models by integrating various data categories, including technical indicators, on-chain metrics, sentiment and interest metrics, traditional market indices, and macroeconomic indicators. We introduce the Crypto100 index, representing the top 100 cryptocurrencies by market capitalization, and propose a novel feature reduction algorithm to identify the most impactful and resilient features from diverse data sources. Our comprehensive experiments demonstrate that data source diversity significantly enhances the predictive performance of forecasting models across different time horizons. Key findings include the paramount importance of on-chain metrics for both short-term and long-term predictions, the growing relevance of traditional market indices and macroeconomic indicators for longer-term forecasts, and substantial improvements in model accuracy when diverse data sources are utilized. These insights help demystify the short-term and long-term driving factors of the cryptocurrency market and lay the groundwork for developing more accurate and resilient forecasting models.
☆ World-aware Planning Narratives Enhance Large Vision-Language Model Planner
Large Vision-Language Models (LVLMs) show promise for embodied planning tasks but struggle with complex scenarios involving unfamiliar environments and multi-step goals. Current approaches rely on environment-agnostic imitation learning that disconnects instructions from environmental contexts, causing models to struggle with context-sensitive instructions and rely on supplementary cues rather than visual reasoning during long-horizon interactions. In this work, we propose World-Aware Planning Narrative Enhancement (WAP), a framework that infuses LVLMs with comprehensive environmental understanding through four cognitive capabilities (visual appearance modeling, spatial reasoning, functional abstraction, and syntactic grounding) while developing and evaluating models using only raw visual observations through curriculum learning. Evaluations on the EB-ALFRED benchmark demonstrate substantial improvements, with Qwen2.5-VL achieving a 60.7 absolute improvement in task success rates, particularly in commonsense reasoning (+60.0) and long-horizon planning (+70.0). Notably, our enhanced open-source models outperform proprietary systems like GPT-4o and Claude-3.5-Sonnet by a large margin.
☆ Unveiling Causal Reasoning in Large Language Models: Reality or Mirage? NeurIPS 2024
Causal reasoning capability is critical in advancing large language models (LLMs) toward strong artificial intelligence. While versatile LLMs appear to have demonstrated capabilities in understanding contextual causality and providing responses that obey the laws of causality, it remains unclear whether they perform genuine causal reasoning akin to humans. However, current evidence indicates the contrary. Specifically, LLMs are only capable of performing shallow (level-1) causal reasoning, primarily attributed to the causal knowledge embedded in their parameters, but they lack the capacity for genuine human-like (level-2) causal reasoning. To support this hypothesis, methodologically, we delve into the autoregression mechanism of transformer-based LLMs, revealing that it is not inherently causal. Empirically, we introduce a new causal Q&A benchmark called CausalProbe-2024, whose corpora are fresh and nearly unseen for the studied LLMs. The LLMs exhibit a significant performance drop on CausalProbe-2024 compared to earlier benchmarks, indicating the fact that they primarily engage in level-1 causal reasoning. To bridge the gap towards level-2 causal reasoning, we draw inspiration from the fact that human reasoning is usually facilitated by general knowledge and intended goals. We propose G^2-Reasoner, a method that incorporates general knowledge and goal-oriented prompts into LLMs' causal reasoning processes. Experiments demonstrate that G^2-Reasoner significantly enhances LLMs' causal reasoning capability, particularly in fresh and counterfactual contexts. This work sheds light on a new path for LLMs to advance towards genuine causal reasoning, going beyond level-1 and making strides towards level-2.
comment: 24 pages, accepted at NeurIPS 2024
$T^3$: Multi-level Tree-based Automatic Program Repair with Large Language Models
Automatic Program Repair (APR) is a core technology in software development and maintenance, with aims to enable automated defect repair with minimal human intervention. In recent years, the substantial advancements in Large Language Models (LLMs) and the Chain-of-Thought (CoT) techniques have significantly enhanced the reasoning capabilities of these models. However, due to the complex logic and multi-step reasoning ability needed, the application of CoT techniques in the APR domain remains insufficient. This study systematically evaluates the performance of several common CoT techniques in APR tasks and proposes an innovative framework $T^3$, which integrates the powerful reasoning capabilities of LLMs with tree search, effectively improving the precision of generating candidate repair solutions. Furthermore, $T^3$ provides valuable guidance for optimizing sample selection and repair strategies in APR tasks, establishing a robust framework for achieving efficient automated debugging.
☆ BitMark for Infinity: Watermarking Bitwise Autoregressive Image Generative Models
State-of-the-art text-to-image models like Infinity generate photorealistic images at an unprecedented speed. These models operate in a bitwise autoregressive manner over a discrete set of tokens that is practically infinite in size. However, their impressive generative power comes with a growing risk: as their outputs increasingly populate the Internet, they are likely to be scraped and reused as training data-potentially by the very same models. This phenomenon has been shown to lead to model collapse, where repeated training on generated content, especially from the models' own previous versions, causes a gradual degradation in performance. A promising mitigation strategy is watermarking, which embeds human-imperceptible yet detectable signals into generated images-enabling the identification of generated content. In this work, we introduce BitMark, a robust bitwise watermarking framework for Infinity. Our method embeds a watermark directly at the bit level of the token stream across multiple scales (also referred to as resolutions) during Infinity's image generation process. Our bitwise watermark subtly influences the bits to preserve visual fidelity and generation speed while remaining robust against a spectrum of removal techniques. Furthermore, it exhibits high radioactivity, i.e., when watermarked generated images are used to train another image generative model, this second model's outputs will also carry the watermark. The radioactive traces remain detectable even when only fine-tuning diffusion or image autoregressive models on images watermarked with our BitMark. Overall, our approach provides a principled step toward preventing model collapse in image generative models by enabling reliable detection of generated outputs.
☆ Task-Aware KV Compression For Cost-Effective Long Video Understanding
Long-video understanding (LVU) remains a severe challenge for existing multimodal large language models (MLLMs), primarily due to the prohibitive computational cost. Recent approaches have explored KV compression to mitigate this issue, but they often suffer from significant information loss at high compression ratios. In this paper, we introduce Video-X^2L, which flexibly preserves critical video information for each LVU task. Video-X^2L involves two key operations. The first one is called bi-level KV compression. During the MLLM's pre-filling stage, Video-X^2L generates two types of compressed KVs: low-compression KVs (L-KVs) to capture fine-grained video details and high-compression KVs (H-KVs) to offer compact video representations. The second one is called selective KV re-loading. During the MLLM's decoding stage, Video-X^2L selectively re-loads L-KVs for the most critical video chunks while using H-KVs for other less important ones. This allows the MLLM to fully utilize task-specific information while maintaining the overall compactness. Video-X^2L is simple yet effective: it is free from additional training and directly compatible with existing KV-compressible MLLMs. We evaluate Video-X^2L with a variety of popular LVU benchmarks, including VideoMME, MLVU, LongVideoBench, and VNBench. Our experiment result shows that Video-X^2L outperforms existing KV-compression methods by a huge advantage while substantially saving the computation cost.
comment: 14 pages, 3 figures, 6 tables
☆ Maintaining MTEB: Towards Long Term Usability and Reproducibility of Embedding Benchmarks
The Massive Text Embedding Benchmark (MTEB) has become a standard evaluation platform for text embedding models. While previous work has established the core benchmark methodology, this paper focuses on the engineering aspects that ensure MTEB's continued reproducibility and extensibility. We present our approach to maintaining robust continuous integration pipelines that validate dataset integrity, automate test execution, and assess benchmark results' generalizability. We detail the design choices that collectively enhance reproducibility and usability. Furthermore, we discuss our strategies for handling community contributions and extending the benchmark with new tasks and datasets. These engineering practices have been instrumental in scaling MTEB to become more comprehensive while maintaining quality and, ultimately, relevance to the field. Our experiences offer valuable insights for benchmark maintainers facing similar challenges in ensuring reproducibility and usability in machine learning evaluation frameworks. The MTEB repository is available at: https://github.com/embeddings-benchmark/mteb
☆ A Hierarchical Deep Learning Approach for Minority Instrument Detection
Identifying instrument activities within audio excerpts is vital in music information retrieval, with significant implications for music cataloging and discovery. Prior deep learning endeavors in musical instrument recognition have predominantly emphasized instrument classes with ample data availability. Recent studies have demonstrated the applicability of hierarchical classification in detecting instrument activities in orchestral music, even with limited fine-grained annotations at the instrument level. Based on the Hornbostel-Sachs classification, such a hierarchical classification system is evaluated using the MedleyDB dataset, renowned for its diversity and richness concerning various instruments and music genres. This work presents various strategies to integrate hierarchical structures into models and tests a new class of models for hierarchical music prediction. This study showcases more reliable coarse-level instrument detection by bridging the gap between detailed instrument identification and group-level recognition, paving the way for further advancements in this domain.
comment: International Conference on Digital Audio Effects (DAFx)
☆ A Novel Framework for Integrating 3D Ultrasound into Percutaneous Liver Tumour Ablation
3D ultrasound (US) imaging has shown significant benefits in enhancing the outcomes of percutaneous liver tumour ablation. Its clinical integration is crucial for transitioning 3D US into the therapeutic domain. However, challenges of tumour identification in US images continue to hinder its broader adoption. In this work, we propose a novel framework for integrating 3D US into the standard ablation workflow. We present a key component, a clinically viable 2D US-CT/MRI registration approach, leveraging 3D US as an intermediary to reduce registration complexity. To facilitate efficient verification of the registration workflow, we also propose an intuitive multimodal image visualization technique. In our study, 2D US-CT/MRI registration achieved a landmark distance error of approximately 2-4 mm with a runtime of 0.22s per image pair. Additionally, non-rigid registration reduced the mean alignment error by approximately 40% compared to rigid registration. Results demonstrated the efficacy of the proposed 2D US-CT/MRI registration workflow. Our integration framework advanced the capabilities of 3D US imaging in improving percutaneous tumour ablation, demonstrating the potential to expand the therapeutic role of 3D US in clinical interventions.
comment: 11 pages, 5 figures
☆ Transformer-Based Spatial-Temporal Counterfactual Outcomes Estimation ICML 2025
The real world naturally has dimensions of time and space. Therefore, estimating the counterfactual outcomes with spatial-temporal attributes is a crucial problem. However, previous methods are based on classical statistical models, which still have limitations in performance and generalization. This paper proposes a novel framework for estimating counterfactual outcomes with spatial-temporal attributes using the Transformer, exhibiting stronger estimation ability. Under mild assumptions, the proposed estimator within this framework is consistent and asymptotically normal. To validate the effectiveness of our approach, we conduct simulation experiments and real data experiments. Simulation experiments show that our estimator has a stronger estimation capability than baseline methods. Real data experiments provide a valuable conclusion to the causal effect of conflicts on forest loss in Colombia. The source code is available at https://github.com/lihe-maxsize/DeppSTCI_Release_Version-master.
comment: 24 pages, accepted at ICML 2025
☆ Robust Deep Learning for Myocardial Scar Segmentation in Cardiac MRI with Noisy Labels MICCAI 2025
The accurate segmentation of myocardial scars from cardiac MRI is essential for clinical assessment and treatment planning. In this study, we propose a robust deep-learning pipeline for fully automated myocardial scar detection and segmentation by fine-tuning state-of-the-art models. The method explicitly addresses challenges of label noise from semi-automatic annotations, data heterogeneity, and class imbalance through the use of Kullback-Leibler loss and extensive data augmentation. We evaluate the model's performance on both acute and chronic cases and demonstrate its ability to produce accurate and smooth segmentations despite noisy labels. In particular, our approach outperforms state-of-the-art models like nnU-Net and shows strong generalizability in an out-of-distribution test set, highlighting its robustness across various imaging conditions and clinical tasks. These results establish a reliable foundation for automated myocardial scar quantification and support the broader clinical adoption of deep learning in cardiac imaging.
comment: MICCAI 2025
☆ Linearity-based neural network compression
In neural network compression, most current methods reduce unnecessary parameters by measuring importance and redundancy. To augment already highly optimized existing solutions, we propose linearity-based compression as a novel way to reduce weights in a neural network. It is based on the intuition that with ReLU-like activation functions, neurons that are almost always activated behave linearly, allowing for merging of subsequent layers. We introduce the theory underlying this compression and evaluate our approach experimentally. Our novel method achieves a lossless compression down to 1/4 of the original model size in over the majority of tested models. Applying our method on already importance-based pruned models shows very little interference between different types of compression, demonstrating the option of successful combination of techniques. Overall, our work lays the foundation for a new type of compression method that enables smaller and ultimately more efficient neural network models.
☆ DBConformer: Dual-Branch Convolutional Transformer for EEG Decoding
Electroencephalography (EEG)-based brain-computer interfaces (BCIs) transform spontaneous/evoked neural activity into control commands for external communication. While convolutional neural networks (CNNs) remain the mainstream backbone for EEG decoding, their inherently short receptive field makes it difficult to capture long-range temporal dependencies and global inter-channel relationships. Recent CNN-Transformer (Conformers) hybrids partially address this issue, but most adopt a serial design, resulting in suboptimal integration of local and global features, and often overlook explicit channel-wise modeling. To address these limitations, we propose DBConformer, a dual-branch convolutional Transformer network tailored for EEG decoding. It integrates a temporal Conformer to model long-range temporal dependencies and a spatial Conformer to extract inter-channel interactions, capturing both temporal dynamics and spatial patterns in EEG signals. A lightweight channel attention module further refines spatial representations by assigning data-driven importance to EEG channels. Extensive experiments on five motor imagery (MI) datasets and two seizure detection datasets under three evaluation settings demonstrate that DBConformer consistently outperforms 10 competitive baseline models, with over eight times fewer parameters than the high-capacity EEG Conformer baseline. Further, the visualization results confirm that the features extracted by DBConformer are physiologically interpretable and aligned with sensorimotor priors in MI. The superior performance and interpretability of DBConformer make it reliable for robust and explainable EEG decoding. Code is publicized at https://github.com/wzwvv/DBConformer.
comment: 12 pages, 6 figures
☆ How Good Are Synthetic Requirements ? Evaluating LLM-Generated Datasets for AI4RE
The shortage of publicly available, labeled requirements datasets remains a major barrier to advancing Artificial Intelligence for Requirements Engineering (AI4RE). While Large Language Models offer promising capabilities for synthetic data generation, systematic approaches to control and optimize the quality of generated requirements remain underexplored. This paper presents Synthline v1, an enhanced Product Line approach for generating synthetic requirements data that extends our earlier v0 version with advanced generation strategies and curation techniques. We investigate four research questions assessing how prompting strategies, automated prompt optimization, and post-generation curation affect data quality across four classification tasks: defect detection, functional vs. non-functional, quality vs. non-quality, and security vs. non-security. Our evaluation shows that multi-sample prompting significantly boosts both utility and diversity over single-sample generation, with F1-score gains from 6 to 44 points. The use of PACE (Prompt Actor-Critic Editing) for automated prompt optimization yields task-dependent results, greatly improving functional classification (+32.5 points) but reducing performance on others. Interestingly, similarity-based curation improves diversity but often harms classification performance, indicating that some redundancy may help ML models. Most importantly, our results show that synthetic requirements can match or outperform human-authored ones for specific tasks, with synthetic data surpassing human data for security (+7.8 points) and defect classification (+15.4 points). These findings offer practical insights for AI4RE and chart a viable path to mitigating dataset scarcity through systematic synthetic generation.
☆ Curriculum-Guided Antifragile Reinforcement Learning for Secure UAV Deconfliction under Observation-Space Attacks
Reinforcement learning (RL) policies deployed in safety-critical systems, such as unmanned aerial vehicle (UAV) navigation in dynamic airspace, are vulnerable to out-ofdistribution (OOD) adversarial attacks in the observation space. These attacks induce distributional shifts that significantly degrade value estimation, leading to unsafe or suboptimal decision making rendering the existing policy fragile. To address this vulnerability, we propose an antifragile RL framework designed to adapt against curriculum of incremental adversarial perturbations. The framework introduces a simulated attacker which incrementally increases the strength of observation-space perturbations which enables the RL agent to adapt and generalize across a wider range of OOD observations and anticipate previously unseen attacks. We begin with a theoretical characterization of fragility, formally defining catastrophic forgetting as a monotonic divergence in value function distributions with increasing perturbation strength. Building on this, we define antifragility as the boundedness of such value shifts and derive adaptation conditions under which forgetting is stabilized. Our method enforces these bounds through iterative expert-guided critic alignment using Wasserstein distance minimization across incrementally perturbed observations. We empirically evaluate the approach in a UAV deconfliction scenario involving dynamic 3D obstacles. Results show that the antifragile policy consistently outperforms standard and robust RL baselines when subjected to both projected gradient descent (PGD) and GPS spoofing attacks, achieving up to 15% higher cumulative reward and over 30% fewer conflict events. These findings demonstrate the practical and theoretical viability of antifragile reinforcement learning for secure and resilient decision-making in environments with evolving threat scenarios.
☆ Robust Policy Switching for Antifragile Reinforcement Learning for UAV Deconfliction in Adversarial Environments
The increasing automation of navigation for unmanned aerial vehicles (UAVs) has exposed them to adversarial attacks that exploit vulnerabilities in reinforcement learning (RL) through sensor manipulation. Although existing robust RL methods aim to mitigate such threats, their effectiveness has limited generalization to out-of-distribution shifts from the optimal value distribution, as they are primarily designed to handle fixed perturbation. To address this limitation, this paper introduces an antifragile RL framework that enhances adaptability to broader distributional shifts by incorporating a switching mechanism based on discounted Thompson sampling (DTS). This mechanism dynamically selects among multiple robust policies to minimize adversarially induced state-action-value distribution shifts. The proposed approach first derives a diverse ensemble of action robust policies by accounting for a range of perturbations in the policy space. These policies are then modeled as a multiarmed bandit (MAB) problem, where DTS optimally selects policies in response to nonstationary Bernoulli rewards, effectively adapting to evolving adversarial strategies. Theoretical framework has also been provided where by optimizing the DTS to minimize the overall regrets due to distributional shift, results in effective adaptation against unseen adversarial attacks thus inducing antifragility. Extensive numerical simulations validate the effectiveness of the proposed framework in complex navigation environments with multiple dynamic three-dimensional obstacles and with stronger projected gradient descent (PGD) and spoofing attacks. Compared to conventional robust, non-adaptive RL methods, the antifragile approach achieves superior performance, demonstrating shorter navigation path lengths and a higher rate of conflict-free navigation trajectories compared to existing robust RL techniques
☆ Progtuning: Progressive Fine-tuning Framework for Transformer-based Language Models ICONIP 2024
Fine-tuning is a promising technique for leveraging Transformer-based language models in downstream tasks. As model sizes continue to grow, updating all model parameters becomes increasingly costly. Parameter-efficient fine-tuning methods effectively address this issue by selectively updating a small subset of parameters. However, fine-tuning and most existing parameter-efficient fine-tuning methods require updating the same number of parameters as the initial size, ignoring the unequal contribution across Transformer blocks and leading to extremely inefficient allocation of computing resources. In this paper, we propose Progtuning, the novel fine-tuning framework combined with progressive learning for Transformer-based language models. Specifically, Progtuning progressively reduces the number of updated transformer blocks based on the contribution. Remarkably, Progtuning optimizes resource allocation and reduces the number of updated parameters by approximately 25\%, while still maintaining competitive performance. And it also exhibits high adaptability with parameter-efficient fine-tuning methods, demonstrating excellent performance across various adaptation scenarios.
comment: Accepted by ICONIP 2024
☆ IPFormer-VideoLLM: Enhancing Multi-modal Video Understanding for Multi-shot Scenes
Video Large Language Models (VideoLLMs) have demonstrated remarkable understanding capabilities, but are found struggling to tackle multi-shot scenarios,e.g., video clips with varying camera angles or scene changes. This challenge can render failures such as instance identity forgetting and key frame negligence. In this work, we first attribute the challenge to the lack of multi-shot annotations among existing datasets and therefore we introduce a new dataset termed MultiClip-Bench, featuring dense descriptions and instruction-based question-answering pairs tailored for multi-shot scenarios. We empirically find that the training set significantly boosts the multi-shot performance, while the testing benchmark provides a reliable measure of the model capability in multi-shot scenarios. By further analyzing and discovering that current models only encode instance features in a discrete or lossy manner, at the risk of missing identity information, we then contribute a new model IPFormer-VideoLLM. Its key idea is the injection of instance-level features as instance prompts through an efficient attention-based connector. This allows for the aggregation of instance-specific information across scenes. Experiments demonstrate that our proposed dataset and model not only enhance the multi-scene video understanding significantly, but also offer distinct advantages across various video benchmarks.
☆ PhishKey: A Novel Centroid-Based Approach for Enhanced Phishing Detection Using Adaptive HTML Component Extraction
Phishing attacks pose a significant cybersecurity threat, evolving rapidly to bypass detection mechanisms and exploit human vulnerabilities. This paper introduces PhishKey to address the challenges of adaptability, robustness, and efficiency. PhishKey is a novel phishing detection method using automatic feature extraction from hybrid sources. PhishKey combines character-level processing with Convolutional Neural Networks (CNN) for URL classification, and a Centroid-Based Key Component Phishing Extractor (CAPE) for HTML content at the word level. CAPE reduces noise and ensures complete sample processing avoiding crop operations on the input data. The predictions from both modules are integrated using a soft-voting ensemble to achieve more accurate and reliable classifications. Experimental evaluations on four state-of-the-art datasets demonstrate the effectiveness of PhishKey. It achieves up to 98.70% F1 Score and shows strong resistance to adversarial manipulations such as injection attacks with minimal performance degradation.
☆ Interpretable Hierarchical Concept Reasoning through Attention-Guided Graph Learning
Concept-Based Models (CBMs) are a class of deep learning models that provide interpretability by explaining predictions through high-level concepts. These models first predict concepts and then use them to perform a downstream task. However, current CBMs offer interpretability only for the final task prediction, while the concept predictions themselves are typically made via black-box neural networks. To address this limitation, we propose Hierarchical Concept Memory Reasoner (H-CMR), a new CBM that provides interpretability for both concept and task predictions. H-CMR models relationships between concepts using a learned directed acyclic graph, where edges represent logic rules that define concepts in terms of other concepts. During inference, H-CMR employs a neural attention mechanism to select a subset of these rules, which are then applied hierarchically to predict all concepts and the final task. Experimental results demonstrate that H-CMR matches state-of-the-art performance while enabling strong human interaction through concept and model interventions. The former can significantly improve accuracy at inference time, while the latter can enhance data efficiency during training when background knowledge is available.
☆ ComRAG: Retrieval-Augmented Generation with Dynamic Vector Stores for Real-time Community Question Answering in Industry ACL 2025
Community Question Answering (CQA) platforms can be deemed as important knowledge bases in community, but effectively leveraging historical interactions and domain knowledge in real-time remains a challenge. Existing methods often underutilize external knowledge, fail to incorporate dynamic historical QA context, or lack memory mechanisms suited for industrial deployment. We propose ComRAG, a retrieval-augmented generation framework for real-time industrial CQA that integrates static knowledge with dynamic historical QA pairs via a centroid-based memory mechanism designed for retrieval, generation, and efficient storage. Evaluated on three industrial CQA datasets, ComRAG consistently outperforms all baselines--achieving up to 25.9% improvement in vector similarity, reducing latency by 8.7% to 23.3%, and lowering chunk growth from 20.23% to 2.06% over iterations.
comment: 7 pages, 4 figures. Accepted at ACL 2025 Industry Track
☆ FeDa4Fair: Client-Level Federated Datasets for Fairness Evaluation
Federated Learning (FL) enables collaborative model training across multiple clients without sharing clients' private data. However, fairness remains a key concern, as biases in local clients' datasets can impact the entire federated system. Heterogeneous data distributions across clients may lead to models that are fairer for some clients than others. Although several fairness-enhancing solutions are present in the literature, most focus on mitigating bias for a single sensitive attribute, typically binary, overlooking the diverse and sometimes conflicting fairness needs of different clients. This limited perspective can limit the effectiveness of fairness interventions for the different clients. To support more robust and reproducible fairness research in FL, we aim to enable a consistent benchmarking of fairness-aware FL methods at both the global and client levels. In this paper, we contribute in three ways: (1) We introduce FeDa4Fair, a library to generate tabular datasets tailored to evaluating fair FL methods under heterogeneous client bias; (2) we release four bias-heterogeneous datasets and corresponding benchmarks to compare fairness mitigation methods in a controlled environment; (3) we provide ready-to-use functions for evaluating fairness outcomes for these datasets.
☆ CovDocker: Benchmarking Covalent Drug Design with Tasks, Datasets, and Solutions KDD 2025
Molecular docking plays a crucial role in predicting the binding mode of ligands to target proteins, and covalent interactions, which involve the formation of a covalent bond between the ligand and the target, are particularly valuable due to their strong, enduring binding nature. However, most existing docking methods and deep learning approaches hardly account for the formation of covalent bonds and the associated structural changes. To address this gap, we introduce a comprehensive benchmark for covalent docking, CovDocker, which is designed to better capture the complexities of covalent binding. We decompose the covalent docking process into three main tasks: reactive location prediction, covalent reaction prediction, and covalent docking. By adapting state-of-the-art models, such as Uni-Mol and Chemformer, we establish baseline performances and demonstrate the effectiveness of the benchmark in accurately predicting interaction sites and modeling the molecular transformations involved in covalent binding. These results confirm the role of the benchmark as a rigorous framework for advancing research in covalent drug design. It underscores the potential of data-driven approaches to accelerate the discovery of selective covalent inhibitors and addresses critical challenges in therapeutic development.
comment: Accepted to KDD 2025 Research Track
☆ EgoAdapt: Adaptive Multisensory Distillation and Policy Learning for Efficient Egocentric Perception ICCV 2025
Modern perception models, particularly those designed for multisensory egocentric tasks, have achieved remarkable performance but often come with substantial computational costs. These high demands pose challenges for real-world deployment, especially in resource-constrained environments. In this paper, we introduce EgoAdapt, a framework that adaptively performs cross-modal distillation and policy learning to enable efficient inference across different egocentric perception tasks, including egocentric action recognition, active speaker localization, and behavior anticipation. Our proposed policy module is adaptable to task-specific action spaces, making it broadly applicable. Experimental results on three challenging egocentric datasets EPIC-Kitchens, EasyCom, and Aria Everyday Activities demonstrate that our method significantly enhances efficiency, reducing GMACs by up to 89.09%, parameters up to 82.02%, and energy up to 9.6x, while still on-par and in many cases outperforming, the performance of corresponding state-of-the-art models.
comment: Accepted at ICCV 2025
☆ A Semi-supervised Scalable Unified Framework for E-commerce Query Classification ACL 2025
Query classification, including multiple subtasks such as intent and category prediction, is vital to e-commerce applications. E-commerce queries are usually short and lack context, and the information between labels cannot be used, resulting in insufficient prior information for modeling. Most existing industrial query classification methods rely on users' posterior click behavior to construct training samples, resulting in a Matthew vicious cycle. Furthermore, the subtasks of query classification lack a unified framework, leading to low efficiency for algorithm optimization. In this paper, we propose a novel Semi-supervised Scalable Unified Framework (SSUF), containing multiple enhanced modules to unify the query classification tasks. The knowledge-enhanced module uses world knowledge to enhance query representations and solve the problem of insufficient query information. The label-enhanced module uses label semantics and semi-supervised signals to reduce the dependence on posterior labels. The structure-enhanced module enhances the label representation based on the complex label relations. Each module is highly pluggable, and input features can be added or removed as needed according to each subtask. We conduct extensive offline and online A/B experiments, and the results show that SSUF significantly outperforms the state-of-the-art models.
comment: Accepted by ACL 2025
☆ Improving Diffusion-Based Image Editing Faithfulness via Guidance and Scheduling
Text-guided diffusion models have become essential for high-quality image synthesis, enabling dynamic image editing. In image editing, two crucial aspects are editability, which determines the extent of modification, and faithfulness, which reflects how well unaltered elements are preserved. However, achieving optimal results is challenging because of the inherent trade-off between editability and faithfulness. To address this, we propose Faithfulness Guidance and Scheduling (FGS), which enhances faithfulness with minimal impact on editability. FGS incorporates faithfulness guidance to strengthen the preservation of input image information and introduces a scheduling strategy to resolve misalignment between editability and faithfulness. Experimental results demonstrate that FGS achieves superior faithfulness while maintaining editability. Moreover, its compatibility with various editing methods enables precise, high-quality image edits across diverse tasks.
comment: preprint
☆ Efficient Skill Discovery via Regret-Aware Optimization
Unsupervised skill discovery aims to learn diverse and distinguishable behaviors in open-ended reinforcement learning. For existing methods, they focus on improving diversity through pure exploration, mutual information optimization, and learning temporal representation. Despite that they perform well on exploration, they remain limited in terms of efficiency, especially for the high-dimensional situations. In this work, we frame skill discovery as a min-max game of skill generation and policy learning, proposing a regret-aware method on top of temporal representation learning that expands the discovered skill space along the direction of upgradable policy strength. The key insight behind the proposed method is that the skill discovery is adversarial to the policy learning, i.e., skills with weak strength should be further explored while less exploration for the skills with converged strength. As an implementation, we score the degree of strength convergence with regret, and guide the skill discovery with a learnable skill generator. To avoid degeneration, skill generation comes from an up-gradable population of skill generators. We conduct experiments on environments with varying complexities and dimension sizes. Empirical results show that our method outperforms baselines in both efficiency and diversity. Moreover, our method achieves a 15% zero shot improvement in high-dimensional environments, compared to existing methods.
☆ V2X-REALM: Vision-Language Model-Based Robust End-to-End Cooperative Autonomous Driving with Adaptive Long-Tail Modeling
Ensuring robust planning and decision-making under rare, diverse, and visually degraded long-tail scenarios remains a fundamental challenge for autonomous driving in urban environments. This issue becomes more critical in cooperative settings, where vehicles and infrastructure jointly perceive and reason across complex environments. To address this challenge, we propose V2X-REALM, a vision-language model (VLM)-based framework with adaptive multimodal learning for robust cooperative autonomous driving under long-tail scenarios. V2X-REALM introduces three core innovations: (i) a prompt-driven long-tail scenario generation and evaluation pipeline that leverages foundation models to synthesize realistic long-tail conditions such as snow and fog across vehicle- and infrastructure-side views, enriching training diversity efficiently; (ii) a gated multi-scenario adaptive attention module that modulates the visual stream using scenario priors to recalibrate ambiguous or corrupted features; and (iii) a multi-task scenario-aware contrastive learning objective that improves multimodal alignment and promotes cross-scenario feature separability. Extensive experiments demonstrate that V2X-REALM significantly outperforms existing baselines in robustness, semantic reasoning, safety, and planning accuracy under complex, challenging driving conditions, advancing the scalability of end-to-end cooperative autonomous driving.
☆ Strict Subgoal Execution: Reliable Long-Horizon Planning in Hierarchical Reinforcement Learning
Long-horizon goal-conditioned tasks pose fundamental challenges for reinforcement learning (RL), particularly when goals are distant and rewards are sparse. While hierarchical and graph-based methods offer partial solutions, they often suffer from subgoal infeasibility and inefficient planning. We introduce Strict Subgoal Execution (SSE), a graph-based hierarchical RL framework that enforces single-step subgoal reachability by structurally constraining high-level decision-making. To enhance exploration, SSE employs a decoupled exploration policy that systematically traverses underexplored regions of the goal space. Furthermore, a failure-aware path refinement, which refines graph-based planning by dynamically adjusting edge costs according to observed low-level success rates, thereby improving subgoal reliability. Experimental results across diverse long-horizon benchmarks demonstrate that SSE consistently outperforms existing goal-conditioned RL and hierarchical RL approaches in both efficiency and success rate.
comment: 9 technical page followed by references and appendix
☆ Large Language Models Acing Chartered Accountancy
Advanced intelligent systems, particularly Large Language Models (LLMs), are significantly reshaping financial practices through advancements in Natural Language Processing (NLP). However, the extent to which these models effectively capture and apply domain-specific financial knowledge remains uncertain. Addressing a critical gap in the expansive Indian financial context, this paper introduces CA-Ben, a Chartered Accountancy benchmark specifically designed to evaluate the financial, legal, and quantitative reasoning capabilities of LLMs. CA-Ben comprises structured question-answer datasets derived from the rigorous examinations conducted by the Institute of Chartered Accountants of India (ICAI), spanning foundational, intermediate, and advanced CA curriculum stages. Six prominent LLMs i.e. GPT 4o, LLAMA 3.3 70B, LLAMA 3.1 405B, MISTRAL Large, Claude 3.5 Sonnet, and Microsoft Phi 4 were evaluated using standardized protocols. Results indicate variations in performance, with Claude 3.5 Sonnet and GPT-4o outperforming others, especially in conceptual and legal reasoning. Notable challenges emerged in numerical computations and legal interpretations. The findings emphasize the strengths and limitations of current LLMs, suggesting future improvements through hybrid reasoning and retrieval-augmented generation methods, particularly for quantitative analysis and accurate legal interpretation.
comment: Accepted for publication at MoStart 2025: International Conference on Digital Transformation in Education and Applications of Artificial Intelligence, Bosnia and Herzegovina, 2025
☆ Multimodal Prompt Alignment for Facial Expression Recognition ICCV2025
Prompt learning has been widely adopted to efficiently adapt vision-language models (VLMs) like CLIP for various downstream tasks. Despite their success, current VLM-based facial expression recognition (FER) methods struggle to capture fine-grained textual-visual relationships, which are essential for distinguishing subtle differences between facial expressions. To address this challenge, we propose a multimodal prompt alignment framework for FER, called MPA-FER, that provides fine-grained semantic guidance to the learning process of prompted visual features, resulting in more precise and interpretable representations. Specifically, we introduce a multi-granularity hard prompt generation strategy that utilizes a large language model (LLM) like ChatGPT to generate detailed descriptions for each facial expression. The LLM-based external knowledge is injected into the soft prompts by minimizing the feature discrepancy between the soft prompts and the hard prompts. To preserve the generalization abilities of the pretrained CLIP model, our approach incorporates prototype-guided visual feature alignment, ensuring that the prompted visual features from the frozen image encoder align closely with class-specific prototypes. Additionally, we propose a cross-modal global-local alignment module that focuses on expression-relevant facial features, further improving the alignment between textual and visual features. Extensive experiments demonstrate our framework outperforms state-of-the-art methods on three FER benchmark datasets, while retaining the benefits of the pretrained model and minimizing computational costs.
comment: To appear in ICCV2025
☆ SAC: A Framework for Measuring and Inducing Personality Traits in LLMs with Dynamic Intensity Control
Large language models (LLMs) have gained significant traction across a wide range of fields in recent years. There is also a growing expectation for them to display human-like personalities during interactions. To meet this expectation, numerous studies have proposed methods for modelling LLM personalities through psychometric evaluations. However, most existing models face two major limitations: they rely on the Big Five (OCEAN) framework, which only provides coarse personality dimensions, and they lack mechanisms for controlling trait intensity. In this paper, we address this gap by extending the Machine Personality Inventory (MPI), which originally used the Big Five model, to incorporate the 16 Personality Factor (16PF) model, allowing expressive control over sixteen distinct traits. We also developed a structured framework known as Specific Attribute Control (SAC) for evaluating and dynamically inducing trait intensity in LLMs. Our method introduces adjective-based semantic anchoring to guide trait intensity expression and leverages behavioural questions across five intensity factors: \textit{Frequency}, \textit{Depth}, \textit{Threshold}, \textit{Effort}, and \textit{Willingness}. Through experimentation, we find that modelling intensity as a continuous spectrum yields substantially more consistent and controllable personality expression compared to binary trait toggling. Moreover, we observe that changes in target trait intensity systematically influence closely related traits in psychologically coherent directions, suggesting that LLMs internalize multi-dimensional personality structures rather than treating traits in isolation. Our work opens new pathways for controlled and nuanced human-machine interactions in domains such as healthcare, education, and interviewing processes, bringing us one step closer to truly human-like social machines.
comment: Under review
☆ Segment Anything in Pathology Images with Natural Language
Pathology image segmentation is crucial in computational pathology for analyzing histological features relevant to cancer diagnosis and prognosis. However, current methods face major challenges in clinical applications due to limited annotated data and restricted category definitions. To address these limitations, we propose PathSegmentor, the first text-prompted segmentation foundation model designed specifically for pathology images. We also introduce PathSeg , the largest and most comprehensive dataset for pathology segmentation, built from 17 public sources and containing 275k image-mask-label triples across 160 diverse categories. With PathSegmentor, users can perform semantic segmentation using natural language prompts, eliminating the need for laborious spatial inputs such as points or boxes. Extensive experiments demonstrate that PathSegmentor outperforms specialized models with higher accuracy and broader applicability, while maintaining a compact architecture. It significantly surpasses existing spatial- and text-prompted models by 0.145 and 0.429 in overall Dice scores, respectively, showing strong robustness in segmenting complex structures and generalizing to external datasets. Moreover, PathSegmentor's outputs enhance the interpretability of diagnostic models through feature importance estimation and imaging biomarker discovery, offering pathologists evidence-based support for clinical decision-making. This work advances the development of explainable AI in precision oncology.
☆ Enhancing Homophily-Heterophily Separation: Relation-Aware Learning in Heterogeneous Graphs KDD 2025
Real-world networks usually have a property of node heterophily, that is, the connected nodes usually have different features or different labels. This heterophily issue has been extensively studied in homogeneous graphs but remains under-explored in heterogeneous graphs, where there are multiple types of nodes and edges. Capturing node heterophily in heterogeneous graphs is very challenging since both node/edge heterogeneity and node heterophily should be carefully taken into consideration. Existing methods typically convert heterogeneous graphs into homogeneous ones to learn node heterophily, which will inevitably lose the potential heterophily conveyed by heterogeneous relations. To bridge this gap, we propose Relation-Aware Separation of Homophily and Heterophily (RASH), a novel contrastive learning framework that explicitly models high-order semantics of heterogeneous interactions and adaptively separates homophilic and heterophilic patterns. Particularly, RASH introduces dual heterogeneous hypergraphs to encode multi-relational bipartite subgraphs and dynamically constructs homophilic graphs and heterophilic graphs based on relation importance. A multi-relation contrastive loss is designed to align heterogeneous and homophilic/heterophilic views by maximizing mutual information. In this way, RASH simultaneously resolves the challenges of heterogeneity and heterophily in heterogeneous graphs. Extensive experiments on benchmark datasets demonstrate the effectiveness of RASH across various downstream tasks. The code is available at: https://github.com/zhengziyu77/RASH.
comment: accepted by KDD 2025
☆ From Cradle to Cane: A Two-Pass Framework for High-Fidelity Lifespan Face Aging
Face aging has become a crucial task in computer vision, with applications ranging from entertainment to healthcare. However, existing methods struggle with achieving a realistic and seamless transformation across the entire lifespan, especially when handling large age gaps or extreme head poses. The core challenge lies in balancing age accuracy and identity preservation--what we refer to as the Age-ID trade-off. Most prior methods either prioritize age transformation at the expense of identity consistency or vice versa. In this work, we address this issue by proposing a two-pass face aging framework, named Cradle2Cane, based on few-step text-to-image (T2I) diffusion models. The first pass focuses on solving age accuracy by introducing an adaptive noise injection (AdaNI) mechanism. This mechanism is guided by including prompt descriptions of age and gender for the given person as the textual condition. Also, by adjusting the noise level, we can control the strength of aging while allowing more flexibility in transforming the face. However, identity preservation is weakly ensured here to facilitate stronger age transformations. In the second pass, we enhance identity preservation while maintaining age-specific features by conditioning the model on two identity-aware embeddings (IDEmb): SVR-ArcFace and Rotate-CLIP. This pass allows for denoising the transformed image from the first pass, ensuring stronger identity preservation without compromising the aging accuracy. Both passes are jointly trained in an end-to-end way. Extensive experiments on the CelebA-HQ test dataset, evaluated through Face++ and Qwen-VL protocols, show that our Cradle2Cane outperforms existing face aging methods in age accuracy and identity consistency.
comment: 30 pages, 12 figures
☆ DFVEdit: Conditional Delta Flow Vector for Zero-shot Video Editing
The advent of Video Diffusion Transformers (Video DiTs) marks a milestone in video generation. However, directly applying existing video editing methods to Video DiTs often incurs substantial computational overhead, due to resource-intensive attention modification or finetuning. To alleviate this problem, we present DFVEdit, an efficient zero-shot video editing method tailored for Video DiTs. DFVEdit eliminates the need for both attention modification and fine-tuning by directly operating on clean latents via flow transformation. To be more specific, we observe that editing and sampling can be unified under the continuous flow perspective. Building upon this foundation, we propose the Conditional Delta Flow Vector (CDFV) -- a theoretically unbiased estimation of DFV -- and integrate Implicit Cross Attention (ICA) guidance as well as Embedding Reinforcement (ER) to further enhance editing quality. DFVEdit excels in practical efficiency, offering at least 20x inference speed-up and 85\% memory reduction on Video DiTs compared to attention-engineering-based editing methods. Extensive quantitative and qualitative experiments demonstrate that DFVEdit can be seamlessly applied to popular Video DiTs (e.g., CogVideoX and Wan2.1), attaining state-of-the-art performance on structural fidelity, spatial-temporal consistency, and editing quality.
comment: Zero-shot video editing
☆ Parallels Between VLA Model Post-Training and Human Motor Learning: Progress, Challenges, and Trends
Vision-language-action (VLA) models extend vision-language models (VLM) by integrating action generation modules for robotic manipulation. Leveraging strengths of VLM in vision perception and instruction understanding, VLA models exhibit promising generalization across diverse manipulation tasks. However, applications demanding high precision and accuracy reveal performance gaps without further adaptation. Evidence from multiple domains highlights the critical role of post-training to align foundational models with downstream applications, spurring extensive research on post-training VLA models. VLA model post-training aims to address the challenge of improving an embodiment's ability to interact with the environment for the given tasks, analogous to the process of humans motor skills acquisition. Accordingly, this paper reviews post-training strategies for VLA models through the lens of human motor learning, focusing on three dimensions: environments, embodiments, and tasks. A structured taxonomy is introduced aligned with human learning mechanisms: (1) enhancing environmental perception, (2) improving embodiment awareness, (3) deepening task comprehension, and (4) multi-component integration. Finally, key challenges and trends in post-training VLA models are identified, establishing a conceptual framework to guide future research. This work delivers both a comprehensive overview of current VLA model post-training methods from a human motor learning perspective and practical insights for VLA model development. (Project website: https://github.com/AoqunJin/Awesome-VLA-Post-Training)
☆ Evidence-based diagnostic reasoning with multi-agent copilot for human pathology
Pathology is experiencing rapid digital transformation driven by whole-slide imaging and artificial intelligence (AI). While deep learning-based computational pathology has achieved notable success, traditional models primarily focus on image analysis without integrating natural language instruction or rich, text-based context. Current multimodal large language models (MLLMs) in computational pathology face limitations, including insufficient training data, inadequate support and evaluation for multi-image understanding, and a lack of autonomous, diagnostic reasoning capabilities. To address these limitations, we introduce PathChat+, a new MLLM specifically designed for human pathology, trained on over 1 million diverse, pathology-specific instruction samples and nearly 5.5 million question answer turns. Extensive evaluations across diverse pathology benchmarks demonstrated that PathChat+ substantially outperforms the prior PathChat copilot, as well as both state-of-the-art (SOTA) general-purpose and other pathology-specific models. Furthermore, we present SlideSeek, a reasoning-enabled multi-agent AI system leveraging PathChat+ to autonomously evaluate gigapixel whole-slide images (WSIs) through iterative, hierarchical diagnostic reasoning, reaching high accuracy on DDxBench, a challenging open-ended differential diagnosis benchmark, while also capable of generating visually grounded, humanly-interpretable summary reports.
☆ OmniEval: A Benchmark for Evaluating Omni-modal Models with Visual, Auditory, and Textual Inputs
In this paper, we introduce OmniEval, a benchmark for evaluating omni-modality models like MiniCPM-O 2.6, which encompasses visual, auditory, and textual inputs. Compared with existing benchmarks, our OmniEval has several distinctive features: (i) Full-modal collaboration: We design evaluation tasks that highlight the strong coupling between audio and video, requiring models to effectively leverage the collaborative perception of all modalities; (ii) Diversity of videos: OmniEval includes 810 audio-visual synchronized videos, 285 Chinese videos and 525 English videos; (iii) Diversity and granularity of tasks: OmniEval contains 2617 question-answer pairs, comprising 1412 open-ended questions and 1205 multiple-choice questions. These questions are divided into 3 major task types and 12 sub-task types to achieve comprehensive evaluation. Among them, we introduce a more granular video localization task named Grounding. Then we conduct experiments on OmniEval with several omni-modality models. We hope that our OmniEval can provide a platform for evaluating the ability to construct and understand coherence from the context of all modalities. Codes and data could be found at https://omnieval.github.io/.
☆ Antibody Design and Optimization with Multi-scale Equivariant Graph Diffusion Models for Accurate Complex Antigen Binding IJCAI 2025
Antibody design remains a critical challenge in therapeutic and diagnostic development, particularly for complex antigens with diverse binding interfaces. Current computational methods face two main limitations: (1) capturing geometric features while preserving symmetries, and (2) generalizing novel antigen interfaces. Despite recent advancements, these methods often fail to accurately capture molecular interactions and maintain structural integrity. To address these challenges, we propose \textbf{AbMEGD}, an end-to-end framework integrating \textbf{M}ulti-scale \textbf{E}quivariant \textbf{G}raph \textbf{D}iffusion for antibody sequence and structure co-design. Leveraging advanced geometric deep learning, AbMEGD combines atomic-level geometric features with residue-level embeddings, capturing local atomic details and global sequence-structure interactions. Its E(3)-equivariant diffusion method ensures geometric precision, computational efficiency, and robust generalizability for complex antigens. Furthermore, experiments using the SAbDab database demonstrate a 10.13\% increase in amino acid recovery, 3.32\% rise in improvement percentage, and a 0.062~\AA\ reduction in root mean square deviation within the critical CDR-H3 region compared to DiffAb, a leading antibody design model. These results highlight AbMEGD's ability to balance structural integrity with improved functionality, establishing a new benchmark for sequence-structure co-design and affinity optimization. The code is available at: https://github.com/Patrick221215/AbMEGD.
comment: 9 pages, 4 figures, accepted at IJCAI 2025
☆ Beyond Reactive Safety: Risk-Aware LLM Alignment via Long-Horizon Simulation
Given the growing influence of language model-based agents on high-stakes societal decisions, from public policy to healthcare, ensuring their beneficial impact requires understanding the far-reaching implications of their suggestions. We propose a proof-of-concept framework that projects how model-generated advice could propagate through societal systems on a macroscopic scale over time, enabling more robust alignment. To assess the long-term safety awareness of language models, we also introduce a dataset of 100 indirect harm scenarios, testing models' ability to foresee adverse, non-obvious outcomes from seemingly harmless user prompts. Our approach achieves not only over 20% improvement on the new dataset but also an average win rate exceeding 70% against strong baselines on existing safety benchmarks (AdvBench, SafeRLHF, WildGuardMix), suggesting a promising direction for safer agents.
☆ Consistent Zero-shot 3D Texture Synthesis Using Geometry-aware Diffusion and Temporal Video Models
Current texture synthesis methods, which generate textures from fixed viewpoints, suffer from inconsistencies due to the lack of global context and geometric understanding. Meanwhile, recent advancements in video generation models have demonstrated remarkable success in achieving temporally consistent videos. In this paper, we introduce VideoTex, a novel framework for seamless texture synthesis that leverages video generation models to address both spatial and temporal inconsistencies in 3D textures. Our approach incorporates geometry-aware conditions, enabling precise utilization of 3D mesh structures. Additionally, we propose a structure-wise UV diffusion strategy, which enhances the generation of occluded areas by preserving semantic information, resulting in smoother and more coherent textures. VideoTex not only achieves smoother transitions across UV boundaries but also ensures high-quality, temporally stable textures across video frames. Extensive experiments demonstrate that VideoTex outperforms existing methods in texture fidelity, seam blending, and stability, paving the way for dynamic real-time applications that demand both visual quality and temporal coherence.
☆ Interpretable Representation Learning for Additive Rule Ensembles
Small additive ensembles of symbolic rules offer interpretable prediction models. Traditionally, these ensembles use rule conditions based on conjunctions of simple threshold propositions $x \geq t$ on a single input variable $x$ and threshold $t$, resulting geometrically in axis-parallel polytopes as decision regions. While this form ensures a high degree of interpretability for individual rules and can be learned efficiently using the gradient boosting approach, it relies on having access to a curated set of expressive and ideally independent input features so that a small ensemble of axis-parallel regions can describe the target variable well. Absent such features, reaching sufficient accuracy requires increasing the number and complexity of individual rules, which diminishes the interpretability of the model. Here, we extend classical rule ensembles by introducing logical propositions with learnable sparse linear transformations of input variables, i.e., propositions of the form $\mathbf{x}^\mathrm{T}\mathbf{w} \geq t$, where $\mathbf{w}$ is a learnable sparse weight vector, enabling decision regions as general polytopes with oblique faces. We propose a learning method using sequential greedy optimization based on an iteratively reweighted formulation of logistic regression. Experimental results demonstrate that the proposed method efficiently constructs rule ensembles with the same test risk as state-of-the-art methods while significantly reducing model complexity across ten benchmark datasets.
☆ LLM-guided Chemical Process Optimization with a Multi-Agent Approach
Chemical process optimization is crucial to maximize production efficiency and economic performance. Traditional methods, including gradient-based solvers, evolutionary algorithms, and parameter grid searches, become impractical when operating constraints are ill-defined or unavailable, requiring engineers to rely on subjective heuristics to estimate feasible parameter ranges. To address this constraint definition bottleneck, we present a multi-agent framework of large language model (LLM) agents that autonomously infer operating constraints from minimal process descriptions, then collaboratively guide optimization using the inferred constraints. Our AutoGen-based agentic framework employs OpenAI's o3 model, with specialized agents for constraint generation, parameter validation, simulation execution, and optimization guidance. Through two phases - autonomous constraint generation using embedded domain knowledge, followed by iterative multi-agent optimization - the framework eliminates the need for predefined operational bounds. Validated on the hydrodealkylation process across cost, yield, and yield-to-cost ratio metrics, the framework demonstrated competitive performance with conventional optimization methods while achieving better computational efficiency, requiring fewer iterations to converge. Our approach converged in under 20 minutes, achieving a 31-fold speedup over grid search. Beyond computational efficiency, the framework's reasoning-guided search demonstrates sophisticated process understanding, correctly identifying utility trade-offs, and applying domain-informed heuristics. This approach shows significant potential for optimization scenarios where operational constraints are poorly characterized or unavailable, particularly for emerging processes and retrofit applications.
comment: 16 pages (main manuscript without references), 2 figures
☆ Optimising Language Models for Downstream Tasks: A Post-Training Perspective
Language models (LMs) have demonstrated remarkable capabilities in NLP, yet adapting them efficiently and robustly to specific tasks remains challenging. As their scale and complexity grow, fine-tuning LMs on labelled data often underutilizes available unlabelled data, leads to overfitting on small task-specific sets, and imposes significant computational costs. These limitations hamper their application to the open-ended landscape of real-world language tasks. This thesis proposes a series of methods to better adapt LMs to downstream applications. First, we explore strategies for extracting task-relevant knowledge from unlabelled data, introducing a novel continued pre-training technique that outperforms state-of-the-art semi-supervised approaches. Next, we present a parameter-efficient fine-tuning method that substantially reduces memory and compute costs while maintaining competitive performance. We also introduce improved supervised fine-tuning methods that enable LMs to better follow instructions, especially when labelled data is scarce, enhancing their performance across a range of NLP tasks, including open-ended generation. Finally, we develop new evaluation methods and benchmarks, such as multi-hop spatial reasoning tasks, to assess LM capabilities and adaptation more comprehensively. Through extensive empirical studies across diverse NLP tasks, our results demonstrate that these approaches substantially improve LM robustness, efficiency, and generalization, making them more adaptable to a broad range of applications. These advances mark a significant step towards more robust and efficient LMs, bringing us closer to the goal of artificial general intelligence.
comment: PhD Thesis
☆ ZKPROV: A Zero-Knowledge Approach to Dataset Provenance for Large Language Models
As the deployment of large language models (LLMs) grows in sensitive domains, ensuring the integrity of their computational provenance becomes a critical challenge, particularly in regulated sectors such as healthcare, where strict requirements are applied in dataset usage. We introduce ZKPROV, a novel cryptographic framework that enables zero-knowledge proofs of LLM provenance. It allows users to verify that a model is trained on a reliable dataset without revealing sensitive information about it or its parameters. Unlike prior approaches that focus on complete verification of the training process (incurring significant computational cost) or depend on trusted execution environments, ZKPROV offers a distinct balance. Our method cryptographically binds a trained model to its authorized training dataset(s) through zero-knowledge proofs while avoiding proof of every training step. By leveraging dataset-signed metadata and compact model parameter commitments, ZKPROV provides sound and privacy-preserving assurances that the result of the LLM is derived from a model trained on the claimed authorized and relevant dataset. Experimental results demonstrate the efficiency and scalability of the ZKPROV in generating this proof and verifying it, achieving a practical solution for real-world deployments. We also provide formal security guarantees, proving that our approach preserves dataset confidentiality while ensuring trustworthy dataset provenance.
comment: 12 pages, 1 figure
☆ Domain Knowledge-Enhanced LLMs for Fraud and Concept Drift Detection
Detecting deceptive conversations on dynamic platforms is increasingly difficult due to evolving language patterns and Concept Drift (CD)-i.e., semantic or topical shifts that alter the context or intent of interactions over time. These shifts can obscure malicious intent or mimic normal dialogue, making accurate classification challenging. While Large Language Models (LLMs) show strong performance in natural language tasks, they often struggle with contextual ambiguity and hallucinations in risk-sensitive scenarios. To address these challenges, we present a Domain Knowledge (DK)-Enhanced LLM framework that integrates pretrained LLMs with structured, task-specific insights to perform fraud and concept drift detection. The proposed architecture consists of three main components: (1) a DK-LLM module to detect fake or deceptive conversations; (2) a drift detection unit (OCDD) to determine whether a semantic shift has occurred; and (3) a second DK-LLM module to classify the drift as either benign or fraudulent. We first validate the value of domain knowledge using a fake review dataset and then apply our full framework to SEConvo, a multiturn dialogue dataset that includes various types of fraud and spam attacks. Results show that our system detects fake conversations with high accuracy and effectively classifies the nature of drift. Guided by structured prompts, the LLaMA-based implementation achieves 98% classification accuracy. Comparative studies against zero-shot baselines demonstrate that incorporating domain knowledge and drift awareness significantly improves performance, interpretability, and robustness in high-stakes NLP applications.
♻ ☆ Prompting with Phonemes: Enhancing LLMs' Multilinguality for Non-Latin Script Languages NAACL 2025
Although multilingual LLMs have achieved remarkable performance across benchmarks, we find they continue to underperform on non-Latin script languages across contemporary LLM families. This discrepancy arises from the fact that LLMs are pretrained with orthographic scripts, which are dominated by Latin characters that obscure their shared phonology with non-Latin scripts. We propose leveraging phonemic transcriptions as complementary signals to induce script-invariant representations. Our study demonstrates that integrating phonemic signals improves performance across both non-Latin and Latin script languages, with a particularly significant impact on closing the performance gap between the two. Through detailed experiments, we show that phonemic and orthographic scripts retrieve distinct examples for in-context learning (ICL). This motivates our proposed Mixed-ICL retrieval strategy, where further aggregation from both leads to our significant performance improvements for both Latin script languages (up to 12.6%) and non-Latin script languages (up to 15.1%) compared to randomized ICL retrieval.
comment: Accepted to NAACL 2025 (Main Conference). This version contains minor improvements to the camera-ready
♻ ☆ IndieFake Dataset: A Benchmark Dataset for Audio Deepfake Detection
Advancements in audio deepfake technology offers benefits like AI assistants, better accessibility for speech impairments, and enhanced entertainment. However, it also poses significant risks to security, privacy, and trust in digital communications. Detecting and mitigating these threats requires comprehensive datasets. Existing datasets lack diverse ethnic accents, making them inadequate for many real-world scenarios. Consequently, models trained on these datasets struggle to detect audio deepfakes in diverse linguistic and cultural contexts such as in South-Asian countries. Ironically, there is a stark lack of South-Asian speaker samples in the existing datasets despite constituting a quarter of the worlds population. This work introduces the IndieFake Dataset (IFD), featuring 27.17 hours of bonafide and deepfake audio from 50 English speaking Indian speakers. IFD offers balanced data distribution and includes speaker-level characterization, absent in datasets like ASVspoof21 (DF). We evaluated various baselines on IFD against existing ASVspoof21 (DF) and In-The-Wild (ITW) datasets. IFD outperforms ASVspoof21 (DF) and proves to be more challenging compared to benchmark ITW dataset. The complete dataset, along with documentation and sample reference clips, is publicly accessible for research use on project website.
comment: Project Website: https://indie-fake-dataset.netlify.app/
♻ ☆ From Memories to Maps: Mechanisms of In-Context Reinforcement Learning in Transformers
Humans and animals show remarkable learning efficiency, adapting to new environments with minimal experience. This capability is not well captured by standard reinforcement learning algorithms that rely on incremental value updates. Rapid adaptation likely depends on episodic memory -- the ability to retrieve specific past experiences to guide decisions in novel contexts. Transformers provide a useful setting for studying these questions because of their ability to learn rapidly in-context and because their key-value architecture resembles episodic memory systems in the brain. We train a transformer to in-context reinforcement learn in a distribution of planning tasks inspired by rodent behavior. We then characterize the learning algorithms that emerge in the model. We first find that representation learning is supported by in-context structure learning and cross-context alignment, where representations are aligned across environments with different sensory stimuli. We next demonstrate that the reinforcement learning strategies developed by the model are not interpretable as standard model-free or model-based planning. Instead, we show that in-context reinforcement learning is supported by caching intermediate computations within the model's memory tokens, which are then accessed at decision time. Overall, we find that memory may serve as a computational resource, storing both raw experience and cached computations to support flexible behavior. Furthermore, the representations developed in the model resemble computations associated with the hippocampal-entorhinal system in the brain, suggesting that our findings may be relevant for natural cognition. Taken together, our work offers a mechanistic hypothesis for the rapid adaptation that underlies in-context learning in artificial and natural settings.
comment: Updates: added other funding sources; formatted title correctly
♻ ☆ In-Context Learning Strategies Emerge Rationally
Recent work analyzing in-context learning (ICL) has identified a broad set of strategies that describe model behavior in different experimental conditions. We aim to unify these findings by asking why a model learns these disparate strategies in the first place. Specifically, we start with the observation that when trained to learn a mixture of tasks, as is popular in the literature, the strategies learned by a model for performing ICL can be captured by a family of Bayesian predictors: a memorizing predictor, which assumes a discrete prior on the set of seen tasks, and a generalizing predictor, where the prior matches the underlying task distribution. Adopting the normative lens of rational analysis, where a learner's behavior is explained as an optimal adaptation to data given computational constraints, we develop a hierarchical Bayesian framework that almost perfectly predicts Transformer next-token predictions throughout training -- without assuming access to its weights. Under this framework, pretraining is viewed as a process of updating the posterior probability of different strategies, and inference-time behavior as a posterior-weighted average over these strategies' predictions. Our framework draws on common assumptions about neural network learning dynamics, which make explicit a tradeoff between loss and complexity among candidate strategies: beyond how well it explains the data, a model's preference towards implementing a strategy is dictated by its complexity. This helps explain well-known ICL phenomena, while offering novel predictions: e.g., we show a superlinear trend in the timescale for transitioning from generalization to memorization as task diversity increases. Overall, our work advances an explanatory and predictive account of ICL grounded in tradeoffs between strategy loss and complexity.
comment: Preprint
♻ ☆ Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities
AI agents have experienced a paradigm shift, from early dominance by reinforcement learning (RL) to the rise of agents powered by large language models (LLMs), and now further advancing towards a synergistic fusion of RL and LLM capabilities. This progression has endowed AI agents with increasingly strong abilities. Despite these advances, to accomplish complex real-world tasks, agents are required to plan and execute effectively, maintain reliable memory, and coordinate smoothly with other agents. Achieving these capabilities involves contending with ever-present intricate information, operations, and interactions. In light of this challenge, data structurization can play a promising role by transforming intricate and disorganized data into well-structured forms that agents can more effectively understand and process. In this context, graphs, with their natural advantage in organizing, managing, and harnessing intricate data relationships, present a powerful data paradigm for structurization to support the capabilities demanded by advanced AI agents. To this end, this survey presents a first systematic review of how graphs can empower AI agents. Specifically, we explore the integration of graph techniques with core agent functionalities, highlight notable applications, and identify prospective avenues for future research. By comprehensively surveying this burgeoning intersection, we hope to inspire the development of next-generation AI agents equipped to tackle increasingly sophisticated challenges with graphs. Related resources are collected and continuously updated for the community in the Github link.
comment: 20 pages, 7 figures
♻ ☆ Fake it till You Make it: Reward Modeling as Discriminative Prediction
An effective reward model plays a pivotal role in reinforcement learning for post-training enhancement of visual generative models. However, current approaches of reward modeling suffer from implementation complexity due to their reliance on extensive human-annotated preference data or meticulously engineered quality dimensions that are often incomplete and engineering-intensive. Inspired by adversarial training in generative adversarial networks (GANs), this paper proposes GAN-RM, an efficient reward modeling framework that eliminates manual preference annotation and explicit quality dimension engineering. Our method trains the reward model through discrimination between a small set of representative, unpaired target samples(denoted as Preference Proxy Data) and model-generated ordinary outputs, requiring only a few hundred target samples. Comprehensive experiments demonstrate our GAN-RM's effectiveness across multiple key applications including test-time scaling implemented as Best-of-N sample filtering, post-training approaches like Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO). Code and data will be released at https://github.com/Visualignment/GAN-RM.
♻ ☆ Materialist: Physically Based Editing Using Single-Image Inverse Rendering
Achieving physically consistent image editing remains a significant challenge in computer vision. Existing image editing methods typically rely on neural networks, which struggle to accurately handle shadows and refractions. Conversely, physics-based inverse rendering often requires multi-view optimization, limiting its practicality in single-image scenarios. In this paper, we propose Materialist, a method combining a learning-based approach with physically based progressive differentiable rendering. Given an image, our method leverages neural networks to predict initial material properties. Progressive differentiable rendering is then used to optimize the environment map and refine the material properties with the goal of closely matching the rendered result to the input image. Our approach enables a range of applications, including material editing, object insertion, and relighting, while also introducing an effective method for editing material transparency without requiring full scene geometry. Furthermore, Our envmap estimation method also achieves state-of-the-art performance, further enhancing the accuracy of image editing task. Experiments demonstrate strong performance across synthetic and real-world datasets, excelling even on challenging out-of-domain images. Project website: https://lez-s.github.io/materialist_project/
comment: Add acknowledgements, more authors and more results. Project website: https://lez-s.github.io/materialist_project/
♻ ☆ Explainability of Large Language Models using SMILE: Statistical Model-agnostic Interpretability with Local Explanations
Large language models like GPT, LLAMA, and Claude have become incredibly powerful at generating text, but they are still black boxes, so it is hard to understand how they decide what to say. That lack of transparency can be problematic, especially in fields where trust and accountability matter. To help with this, we introduce SMILE, a new method that explains how these models respond to different parts of a prompt. SMILE is model-agnostic and works by slightly changing the input, measuring how the output changes, and then highlighting which words had the most impact. Create simple visual heat maps showing which parts of a prompt matter the most. We tested SMILE on several leading LLMs and used metrics such as accuracy, consistency, stability, and fidelity to show that it gives clear and reliable explanations. By making these models easier to understand, SMILE brings us one step closer to making AI more transparent and trustworthy.
comment: The submission contains incorrect references that require substantial revision
♻ ☆ DisCoPatch: Taming Adversarially-driven Batch Statistics for Improved Out-of-Distribution Detection ICCV 2025
Out-of-distribution (OOD) detection holds significant importance across many applications. While semantic and domain-shift OOD problems are well-studied, this work focuses on covariate shifts - subtle variations in the data distribution that can degrade machine learning performance. We hypothesize that detecting these subtle shifts can improve our understanding of in-distribution boundaries, ultimately improving OOD detection. In adversarial discriminators trained with Batch Normalization (BN), real and adversarial samples form distinct domains with unique batch statistics - a property we exploit for OOD detection. We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder (VAE) framework that harnesses this mechanism. During inference, batches consist of patches from the same image, ensuring a consistent data distribution that allows the model to rely on batch statistics. DisCoPatch uses the VAE's suboptimal outputs (generated and reconstructed) as negative samples to train the discriminator, thereby improving its ability to delineate the boundary between in-distribution samples and covariate shifts. By tightening this boundary, DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks. The proposed model not only excels in detecting covariate shifts, achieving 95.5% AUROC on ImageNet-1K(-C) but also outperforms all prior methods on public Near-OOD (95.0%) benchmarks. With a compact model size of 25MB, it achieves high OOD detection performance at notably lower latency than existing methods, making it an efficient and practical solution for real-world OOD detection applications. The code is publicly available.
comment: ICCV 2025
♻ ☆ TracLLM: A Generic Framework for Attributing Long Context LLMs USENIX Security
Long context large language models (LLMs) are deployed in many real-world applications such as RAG, agent, and broad LLM-integrated applications. Given an instruction and a long context (e.g., documents, PDF files, webpages), a long context LLM can generate an output grounded in the provided context, aiming to provide more accurate, up-to-date, and verifiable outputs while reducing hallucinations and unsupported claims. This raises a research question: how to pinpoint the texts (e.g., sentences, passages, or paragraphs) in the context that contribute most to or are responsible for the generated output by an LLM? This process, which we call context traceback, has various real-world applications, such as 1) debugging LLM-based systems, 2) conducting post-attack forensic analysis for attacks (e.g., prompt injection attack, knowledge corruption attacks) to an LLM, and 3) highlighting knowledge sources to enhance the trust of users towards outputs generated by LLMs. When applied to context traceback for long context LLMs, existing feature attribution methods such as Shapley have sub-optimal performance and/or incur a large computational cost. In this work, we develop TracLLM, the first generic context traceback framework tailored to long context LLMs. Our framework can improve the effectiveness and efficiency of existing feature attribution methods. To improve the efficiency, we develop an informed search based algorithm in TracLLM. We also develop contribution score ensemble/denoising techniques to improve the accuracy of TracLLM. Our evaluation results show TracLLM can effectively identify texts in a long context that lead to the output of an LLM. Our code and data are at: https://github.com/Wang-Yanting/TracLLM.
comment: To appear in USENIX Security Symposium 2025. The code and data are at: https://github.com/Wang-Yanting/TracLLM
♻ ☆ Continual Learning as Computationally Constrained Reinforcement Learning
An agent that efficiently accumulates knowledge to develop increasingly sophisticated skills over a long lifetime could advance the frontier of artificial intelligence capabilities. The design of such agents, which remains a long-standing challenge of artificial intelligence, is addressed by the subject of continual learning. This monograph clarifies and formalizes concepts of continual learning, introducing a framework and set of tools to stimulate further research.
♻ ☆ Representation Learning of Lab Values via Masked AutoEncoders
Accurate imputation of missing laboratory values in electronic health records (EHRs) is critical to enable robust clinical predictions and reduce biases in AI systems in healthcare. Existing methods, such as XGBoost, softimpute, GAIN, Expectation Maximization (EM), and MICE, struggle to model the complex temporal and contextual dependencies in EHR data, particularly in underrepresented groups. In this work, we propose Lab-MAE, a novel transformer-based masked autoencoder framework that leverages self-supervised learning for the imputation of continuous sequential lab values. Lab-MAE introduces a structured encoding scheme that jointly models laboratory test values and their corresponding timestamps, enabling explicit capturing temporal dependencies. Empirical evaluation on the MIMIC-IV dataset demonstrates that Lab-MAE significantly outperforms state-of-the-art baselines such as XGBoost, softimpute, GAIN, EM, and MICE across multiple metrics, including root mean square error (RMSE), R-squared (R2), and Wasserstein distance (WD). Notably, Lab-MAE achieves equitable performance across demographic groups of patients, advancing fairness in clinical predictions. We further investigate the role of follow-up laboratory values as potential shortcut features, revealing Lab-MAE's robustness in scenarios where such data is unavailable. The findings suggest that our transformer-based architecture, adapted to the characteristics of EHR data, offers a foundation model for more accurate and fair clinical imputation. In addition, we measure and compare the carbon footprint of Lab-MAE with the a XGBoost model, highlighting its environmental requirements.
comment: 14 pages of main text, 11 appendix
♻ ☆ Semantic Preprocessing for LLM-based Malware Analysis
In a context of malware analysis, numerous approaches rely on Artificial Intelligence to handle a large volume of data. However, these techniques focus on data view (images, sequences) and not on an expert's view. Noticing this issue, we propose a preprocessing that focuses on expert knowledge to improve malware semantic analysis and result interpretability. We propose a new preprocessing method which creates JSON reports for Portable Executable files. These reports gather features from both static and behavioral analysis, and incorporate packer signature detection, MITRE ATT\&CK and Malware Behavior Catalog (MBC) knowledge. The purpose of this preprocessing is to gather a semantic representation of binary files, understandable by malware analysts, and that can enhance AI models' explainability for malicious files analysis. Using this preprocessing to train a Large Language Model for Malware classification, we achieve a weighted-average F1-score of 0.94 on a complex dataset, representative of market reality.
PuriDefense: Randomized Local Implicit Adversarial Purification for Defending Black-box Query-based Attacks
Black-box query-based attacks constitute significant threats to Machine Learning as a Service (MLaaS) systems since they can generate adversarial examples without accessing the target model's architecture and parameters. Traditional defense mechanisms, such as adversarial training, gradient masking, and input transformations, either impose substantial computational costs or compromise the test accuracy of non-adversarial inputs. To address these challenges, we propose an efficient defense mechanism, PuriDefense, that employs random patch-wise purifications with an ensemble of lightweight purification models at a low level of inference cost. These models leverage the local implicit function and rebuild the natural image manifold. Our theoretical analysis suggests that this approach slows down the convergence of query-based attacks by incorporating randomness into purifications. Extensive experiments on CIFAR-10 and ImageNet validate the effectiveness of our proposed purifier-based defense mechanism, demonstrating significant improvements in robustness against query-based attacks.
♻ ☆ Recall and Refine: A Simple but Effective Source-free Open-set Domain Adaptation Framework
Open-set Domain Adaptation (OSDA) aims to adapt a model from a labeled source domain to an unlabeled target domain, where novel classes - also referred to as target-private unknown classes - are present. Source-free Open-set Domain Adaptation (SF-OSDA) methods address OSDA without accessing labeled source data, making them particularly relevant under privacy constraints. However, SF-OSDA presents significant challenges due to distribution shifts and the introduction of novel classes. Existing SF-OSDA methods typically rely on thresholding the prediction entropy of a sample to identify it as either a known or unknown class, but fail to explicitly learn discriminative features for the target-private unknown classes. We propose Recall and Refine (RRDA), a novel SF-OSDA framework designed to address these limitations by explicitly learning features for target-private unknown classes. RRDA employs a two-stage process. First, we enhance the model's capacity to recognize unknown classes by training a target classifier with an additional decision boundary,guided by synthetic samples generated from target domain features. This enables the classifier to effectively separate known and unknown classes. Second, we adapt the entire model to the target domain, addressing both domain shifts and distinguishability to unknown classes. Any off-the-shelf source-free domain adaptation method (e.g. SHOT, AaD) can be seamlessly integrated into our framework at this stage. Extensive experiments on three benchmark datasets demonstrate that RRDA significantly outperforms existing SF-OSDA and OSDA methods.
comment: Accepted at TMLR 2025
♻ ☆ Semantic Scene Graph for Ultrasound Image Explanation and Scanning Guidance
Understanding medical ultrasound imaging remains a long-standing challenge due to significant visual variability caused by differences in imaging and acquisition parameters. Recent advancements in large language models (LLMs) have been used to automatically generate terminology-rich summaries orientated to clinicians with sufficient physiological knowledge. Nevertheless, the increasing demand for improved ultrasound interpretability and basic scanning guidance among non-expert users, e.g., in point-of-care settings, has not yet been explored. In this study, we first introduce the scene graph (SG) for ultrasound images to explain image content to ordinary and provide guidance for ultrasound scanning. The ultrasound SG is first computed using a transformer-based one-stage method, eliminating the need for explicit object detection. To generate a graspable image explanation for ordinary, the user query is then used to further refine the abstract SG representation through LLMs. Additionally, the predicted SG is explored for its potential in guiding ultrasound scanning toward missing anatomies within the current imaging view, assisting ordinary users in achieving more standardized and complete anatomical exploration. The effectiveness of this SG-based image explanation and scanning guidance has been validated on images from the left and right neck regions, including the carotid and thyroid, across five volunteers. The results demonstrate the potential of the method to maximally democratize ultrasound by enhancing its interpretability and usability for ordinaries.
♻ ☆ Thinkless: LLM Learns When to Think
Reasoning Language Models, capable of extended chain-of-thought reasoning, have demonstrated remarkable performance on tasks requiring complex logical inference. However, applying elaborate reasoning for all queries often results in substantial computational inefficiencies, particularly when many problems admit straightforward solutions. This motivates an open question: Can LLMs learn when to think? To answer this, we propose Thinkless, a learnable framework that empowers an LLM to adaptively select between short-form and long-form reasoning, based on both task complexity and the model's ability. Thinkless is trained under a reinforcement learning paradigm and employs two control tokens, for concise responses and for detailed reasoning. At the core of our method is a Decoupled Group Relative Policy Optimization (DeGRPO) algorithm, which decomposes the learning objective of hybrid reasoning into two components: (1) a control token loss that governs the selection of the reasoning mode, and (2) a response loss that improves the accuracy of the generated answers. This decoupled formulation enables fine-grained control over the contributions of each objective, stabilizing training and effectively preventing collapse observed in vanilla GRPO. Empirically, on several benchmarks such as Minerva Algebra, MATH-500, and GSM8K, Thinkless is able to reduce the usage of long-chain thinking by 50% - 90%, significantly improving the efficiency of Reasoning Language Models. The code is available at https://github.com/VainF/Thinkless
♻ ☆ Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling
The most widely used generative models map noise and data distributions by matching flows or scores. However, they struggle to incorporate partial observations and additional priors--something energy-based models (EBMs) handle elegantly by simply adding corresponding scalar energy terms. We address this issue by proposing Energy Matching, a framework that endows flow-based approaches with the flexibility of EBMs. Far from the data manifold, samples move along curl-free, optimal transport paths from noise to data. As they approach the data manifold, an entropic energy term guides the system into a Boltzmann equilibrium distribution, explicitly capturing the underlying likelihood structure of the data. We parameterize this dynamic with a single time-independent scalar field, which serves as both a powerful generator and a flexible prior for effective regularization of inverse problems. Our method substantially outperforms existing EBMs on CIFAR-10 and ImageNet generation in terms of fidelity, while retaining simulation-free training of transport-based approaches away from the data manifold. Furthermore, we leverage the method's flexibility to introduce an interaction energy that supports diverse mode exploration, which we demonstrate in a controlled protein-generation setting. Our approach focuses on learning a scalar potential energy--without time-conditioning, auxiliary generators, or additional networks--which marks a significant departure from recent EBM methods. We believe that this simplified framework significantly advances EBMs capabilities and paves the way for their wider adoption in generative modeling across diverse domains.
♻ ☆ Lagrangian Index Policy for Restless Bandits with Average Reward
We study the Lagrange Index Policy (LIP) for restless multi-armed bandits with long-run average reward. In particular, we compare the performance of LIP with the performance of the Whittle Index Policy (WIP), both heuristic policies known to be asymptotically optimal under certain natural conditions. Even though in most cases their performances are very similar, in the cases when WIP shows bad performance, LIP continues to perform very well. We then propose reinforcement learning algorithms, both tabular and NN-based, to obtain online learning schemes for LIP in the model-free setting. The proposed reinforcement learning schemes for LIP require significantly less memory than the analogous schemes for WIP. We calculate analytically the Lagrange index for the restart model, which applies to the optimal web crawling and the minimization of the weighted age of information. We also give a new proof of asymptotic optimality in case of homogeneous arms as the number of arms goes to infinity, based on exchangeability and de Finetti's theorem.
♻ ☆ A GREAT Architecture for Edge-Based Graph Problems Like TSP
In the last years, many learning-based approaches have been proposed to tackle combinatorial optimization problems such as routing problems. Many of these approaches are based on graph neural networks (GNNs) or related transformers, operating on the Euclidean coordinates representing the routing problems. However, models operating on Euclidean coordinates are ill-suited for non-Euclidean, asymmetric problem instances that are often found in real-world settings. To overcome this limitation, we propose a novel GNN-based and edge-focused neural model called Graph Edge Attention Network (GREAT). Using GREAT as an encoder to capture the properties of a routing problem instance, we build a reinforcement learning framework which we apply to Euclidean and non-Euclidean variants of vehicle routing problems such as Traveling Salesman Problem, Capacitated Vehicle Routing Problem and Orienteering Problem. Our framework is among the first to tackle non-Euclidean variants of these problems and achieves competitive results among learning-based solvers.
comment: 15 pages, 7 figures
♻ ☆ These Are Not All the Features You Are Looking For: A Fundamental Bottleneck in Supervised Pretraining
Transfer learning is a cornerstone of modern machine learning, promising a way to adapt models pretrained on a broad mix of data to new tasks with minimal new data. However, a significant challenge remains in ensuring that transferred features are sufficient to handle unseen datasets, amplified by the difficulty of quantifying whether two tasks are "related". To address these challenges, we evaluate model transfer from a pretraining mixture to each of its component tasks, assessing whether pretrained features can match the performance of task-specific direct training. We identify a fundamental limitation in deep learning models -- an "information saturation bottleneck" -- where networks fail to learn new features once they encode similar competing features during training. When restricted to learning only a subset of key features during pretraining, models will permanently lose critical features for transfer and perform inconsistently on data distributions, even components of the training mixture. Empirical evidence from published studies suggests that this phenomenon is pervasive in deep learning architectures -- factors such as data distribution or ordering affect the features that current representation learning methods can learn over time. This study suggests that relying solely on large-scale networks may not be as effective as focusing on task-specific training, when available. We propose richer feature representations as a potential solution to better generalize across new datasets and, specifically, present existing methods alongside a novel approach, the initial steps towards addressing this challenge.
comment: 10 pages, 7 figures, Preprint. Under review
♻ ☆ Rapid Gyroscope Calibration: A Deep Learning Approach
Low-cost gyroscope calibration is essential for ensuring the accuracy and reliability of gyroscope measurements. Stationary calibration estimates the deterministic parts of measurement errors. To this end, a common practice is to average the gyroscope readings during a predefined period and estimate the gyroscope bias. Calibration duration plays a crucial role in performance, therefore, longer periods are preferred. However, some applications require quick startup times and calibration is therefore allowed only for a short time. In this work, we focus on reducing low-cost gyroscope calibration time using deep learning methods. We propose an end-to-end convolutional neural network for the application of gyroscope calibration. We explore the possibilities of using multiple real and virtual gyroscopes to improve the calibration performance of single gyroscopes. To train and validate our approach, we recorded a dataset consisting of 186.6 hours of gyroscope readings, using 36 gyroscopes of four different brands. We also created a virtual dataset consisting of simulated gyroscope readings. The six datasets were used to evaluate our proposed approach. One of our key achievements in this work is reducing gyroscope calibration time by up to 89% using three low-cost gyroscopes. Our dataset is publicly available to allow reproducibility of our work and to increase research in the field.
comment: 10 Pages, 14 Figures
♻ ☆ Metis-RISE: RL Incentivizes and SFT Enhances Multimodal Reasoning Model Learning
Recent advancements in large language models (LLMs) have witnessed a surge in the development of advanced reasoning paradigms, which are now being integrated into multimodal large language models (MLLMs). However, existing approaches often fall short: methods solely employing reinforcement learning (RL) can struggle with sample inefficiency and activating entirely absent reasoning capabilities, while conventional pipelines that initiate with a cold-start supervised fine-tuning (SFT) phase before RL may restrict the model's exploratory capacity and face suboptimal convergence. In this work, we introduce \textbf{Metis-RISE} (\textbf{R}L \textbf{I}ncentivizes and \textbf{S}FT \textbf{E}nhances) for multimodal reasoning model learning. Unlike conventional approaches, Metis-RISE distinctively omits an initial SFT stage, beginning instead with an RL phase (e.g., using a Group Relative Policy Optimization variant) to incentivize and activate the model's latent reasoning capacity. Subsequently, the targeted SFT stage addresses two key challenges identified during RL: (1) \textit{inefficient trajectory sampling} for tasks where the model possesses but inconsistently applies correct reasoning, which we tackle using self-distilled reasoning trajectories from the RL model itself; and (2) \textit{fundamental capability absence}, which we address by injecting expert-augmented knowledge for prompts where the model entirely fails. This strategic application of RL for incentivization followed by SFT for enhancement forms the core of Metis-RISE, leading to two versions of our MLLMs (7B and 72B parameters). Evaluations on the OpenCompass Multimodal Reasoning Leaderboard demonstrate that both models achieve state-of-the-art performance among similar-sized models, with the 72B version ranking fourth overall. Please refer to our project page for open-source information.
comment: Project Page: https://github.com/MM-Thinking/Metis-RISE
♻ ☆ Is my Data in your AI Model? Membership Inference Test with Application to Face Images
This article introduces the Membership Inference Test (MINT), a novel approach that aims to empirically assess if given data was used during the training of AI/ML models. Specifically, we propose two MINT architectures designed to learn the distinct activation patterns that emerge when an Audited Model is exposed to data used during its training process. These architectures are based on Multilayer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs). The experimental framework focuses on the challenging task of Face Recognition, considering three state-of-the-art Face Recognition systems. Experiments are carried out using six publicly available databases, comprising over 22 million face images in total. Different experimental scenarios are considered depending on the context of the AI model to test. Our proposed MINT approach achieves promising results, with up to 90\% accuracy, indicating the potential to recognize if an AI model has been trained with specific data. The proposed MINT approach can serve to enforce privacy and fairness in several AI applications, e.g., revealing if sensitive or private data was used for training or tuning Large Language Models (LLMs).
comment: 26 pages main text and 2 pages appendix
♻ ☆ HERMES: temporal-coHERent long-forM understanding with Episodes and Semantics ICCV 2025
Long-form video understanding presents unique challenges that extend beyond traditional short-video analysis approaches, particularly in capturing long-range dependencies, processing redundant information efficiently, and extracting high-level semantic concepts. To address these challenges, we propose a novel approach that more accurately reflects human cognition. This paper introduces HERMES: temporal-coHERent long-forM understanding with Episodes and Semantics, featuring two versatile modules that can enhance existing video-language models or operate as a standalone system. Our Episodic COmpressor (ECO) efficiently aggregates representations from micro to semi-macro levels, reducing computational overhead while preserving temporal dependencies. Our Semantics ReTRiever (SeTR) enriches these representations with semantic information by focusing on broader context, dramatically reducing feature dimensionality while preserving relevant macro-level information. We demonstrate that these modules can be seamlessly integrated into existing SOTA models, consistently improving their performance while reducing inference latency by up to 43% and memory usage by 46%. As a standalone system, HERMES achieves state-of-the-art performance across multiple long-video understanding benchmarks in both zero-shot and fully-supervised settings.
comment: Accepted for ICCV 2025. Project page: https://joslefaure.github.io/assets/html/hermes.html
♻ ☆ Towards Provable (In)Secure Model Weight Release Schemes
Recent secure weight release schemes claim to enable open-source model distribution while protecting model ownership and preventing misuse. However, these approaches lack rigorous security foundations and provide only informal security guarantees. Inspired by established works in cryptography, we formalize the security of weight release schemes by introducing several concrete security definitions. We then demonstrate our definition's utility through a case study of TaylorMLP, a prominent secure weight release scheme. Our analysis reveals vulnerabilities that allow parameter extraction thus showing that TaylorMLP fails to achieve its informal security goals. We hope this work will advocate for rigorous research at the intersection of machine learning and security communities and provide a blueprint for how future weight release schemes should be designed and evaluated.
comment: 8 pages, 2 figures; author name typos and institutions corrected
♻ ☆ Search and Refine During Think: Autonomous Retrieval-Augmented Reasoning of LLMs
Large language models have demonstrated impressive reasoning capabilities but are inherently limited by their knowledge reservoir. Retrieval-augmented reasoning mitigates this limitation by allowing LLMs to query external resources, but existing methods often retrieve irrelevant or noisy information, hindering accurate reasoning. In this paper, we propose AutoRefine, a reinforcement learning post-training framework that adopts a new ``search-and-refine-during-think'' paradigm. AutoRefine introduces explicit knowledge refinement steps between successive search calls, enabling the model to iteratively filter, distill, and organize evidence before generating an answer. Furthermore, we incorporate tailored retrieval-specific rewards alongside answer correctness rewards using group relative policy optimization. Experiments on single-hop and multi-hop QA benchmarks demonstrate that AutoRefine significantly outperforms existing approaches, particularly in complex, multi-hop reasoning scenarios. Detailed analysis shows that AutoRefine issues frequent, higher-quality searches and synthesizes evidence effectively.
♻ ☆ Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG), by integrating non-parametric knowledge from external knowledge bases into models, has emerged as a promising approach to enhancing response accuracy while mitigating factual errors and hallucinations. This method has been widely applied in tasks such as Question Answering (QA). However, existing RAG methods struggle with open-domain QA tasks because they perform independent retrieval operations and directly incorporate the retrieved information into generation without maintaining a summarizing memory or using adaptive retrieval strategies, leading to noise from redundant information and insufficient information integration. To address these challenges, we propose Adaptive memory-based optimization for enhanced RAG (Amber) for open-domain QA tasks, which comprises an Agent-based Memory Updater, an Adaptive Information Collector, and a Multi-granular Content Filter, working together within an iterative memory updating paradigm. Specifically, Amber integrates and optimizes the language model's memory through a multi-agent collaborative approach, ensuring comprehensive knowledge integration from previous retrieval steps. It dynamically adjusts retrieval queries and decides when to stop retrieval based on the accumulated knowledge, enhancing retrieval efficiency and effectiveness. Additionally, it reduces noise by filtering irrelevant content at multiple levels, retaining essential information to improve overall model performance. We conduct extensive experiments on several open-domain QA datasets, and the results demonstrate the superiority and effectiveness of our method and its components. The source code is available \footnote{https://anonymous.4open.science/r/Amber-B203/}.
comment: 8pages. arXiv admin note: text overlap with arXiv:2410.08821 by other authors
♻ ☆ CREStE: Scalable Mapless Navigation with Internet Scale Priors and Counterfactual Guidance
We introduce CREStE, a scalable learning-based mapless navigation framework to address the open-world generalization and robustness challenges of outdoor urban navigation. Key to achieving this is learning perceptual representations that generalize to open-set factors (e.g. novel semantic classes, terrains, dynamic entities) and inferring expert-aligned navigation costs from limited demonstrations. CREStE addresses both these issues, introducing 1) a visual foundation model (VFM) distillation objective for learning open-set structured bird's-eye-view perceptual representations, and 2) counterfactual inverse reinforcement learning (IRL), a novel active learning formulation that uses counterfactual trajectory demonstrations to reason about the most important cues when inferring navigation costs. We evaluate CREStE on the task of kilometer-scale mapless navigation in a variety of city, offroad, and residential environments and find that it outperforms all state-of-the-art approaches with 70% fewer human interventions, including a 2-kilometer mission in an unseen environment with just 1 intervention; showcasing its robustness and effectiveness for long-horizon mapless navigation. Videos and additional materials can be found on the project page: https://amrl.cs.utexas.edu/creste
comment: 18 pages, 10 figures, 5 tables
♻ ☆ MockLLM: A Multi-Agent Behavior Collaboration Framework for Online Job Seeking and Recruiting KDD 2025
Online recruitment platforms have reshaped job-seeking and recruiting processes, driving increased demand for applications that enhance person-job matching. Traditional methods generally rely on analyzing textual data from resumes and job descriptions, limiting the dynamic, interactive aspects crucial to effective recruitment. Recent advances in Large Language Models (LLMs) have revealed remarkable potential in simulating adaptive, role-based dialogues, making them well-suited for recruitment scenarios. In this paper, we propose \textbf{MockLLM}, a novel framework to generate and evaluate mock interview interactions. The system consists of two key components: mock interview generation and two-sided evaluation in handshake protocol. By simulating both interviewer and candidate roles, MockLLM enables consistent and collaborative interactions for real-time and two-sided matching. To further improve the matching quality, MockLLM further incorporates reflection memory generation and dynamic strategy modification, refining behaviors based on previous experience. We evaluate MockLLM on real-world data Boss Zhipin, a major Chinese recruitment platform. The experimental results indicate that MockLLM outperforms existing methods in matching accuracy, scalability, and adaptability across job domains, highlighting its potential to advance candidate assessment and online recruitment.
comment: Accepted by KDD 2025 Research Track
♻ ☆ JointDiT: Enhancing RGB-Depth Joint Modeling with Diffusion Transformers ICCV
We present JointDiT, a diffusion transformer that models the joint distribution of RGB and depth. By leveraging the architectural benefit and outstanding image prior of the state-of-the-art diffusion transformer, JointDiT not only generates high-fidelity images but also produces geometrically plausible and accurate depth maps. This solid joint distribution modeling is achieved through two simple yet effective techniques that we propose, i.e., adaptive scheduling weights, which depend on the noise levels of each modality, and the unbalanced timestep sampling strategy. With these techniques, we train our model across all noise levels for each modality, enabling JointDiT to naturally handle various combinatorial generation tasks, including joint generation, depth estimation, and depth-conditioned image generation by simply controlling the timestep of each branch. JointDiT demonstrates outstanding joint generation performance. Furthermore, it achieves comparable results in depth estimation and depth-conditioned image generation, suggesting that joint distribution modeling can serve as a replaceable alternative to conditional generation. The project page is available at https://byungki-k.github.io/JointDiT/.
comment: Accepted to IEEE/CVF International Conference on Computer Vision (ICCV) 2025. Project page: https://byungki-k.github.io/JointDiT/ Code: https://github.com/ByungKi-K/JointDiT-code
♻ ☆ PCDVQ: Enhancing Vector Quantization for Large Language Models via Polar Coordinate Decoupling
Large Language Models (LLMs) face significant challenges in edge deployment due to their massive parameter scale. Vector Quantization (VQ), a clustering-based quantization method, serves as a prevalent solution to this issue for its extremely low-bit (even at 2-bit) and considerable accuracy. Since a vector is a quantity in mathematics and physics that has both direction and magnitude, existing VQ works typically quantize them in a coupled manner. However, we find that direction exhibits significantly greater sensitivity to quantization compared to the magnitude. For instance, when separately clustering the directions and magnitudes of weight vectors in LLaMA-2-7B, the accuracy drop of zero-shot tasks are 46.5\% and 2.3\%, respectively. This gap even increases with the reduction of clustering centers. Further, Euclidean distance, a common metric to access vector similarities in current VQ works, places greater emphasis on reducing the magnitude error. This property is contrary to the above finding, unavoidably leading to larger quantization errors. To these ends, this paper proposes Polar Coordinate Decoupled Vector Quantization (PCDVQ), an effective and efficient VQ framework consisting of two key modules: 1) Polar Coordinate Decoupling (PCD), which transforms vectors into their polar coordinate representations and perform independent quantization of the direction and magnitude parameters.2) Distribution Aligned Codebook Construction (DACC), which optimizes the direction and magnitude codebooks in accordance with the source distribution. Experimental results show that PCDVQ outperforms baseline methods at 2-bit level by at least 1.5\% zero-shot accuracy, establishing a novel paradigm for accurate and highly compressed LLMs.
♻ ☆ Smart Ride and Delivery Services with Electric Vehicles: Leveraging Bidirectional Charging for Profit Optimisation
With the rising popularity of electric vehicles (EVs), modern service systems, such as ride-hailing delivery services, are increasingly integrating EVs into their operations. Unlike conventional vehicles, EVs often have a shorter driving range, necessitating careful consideration of charging when fulfilling requests. With recent advances in Vehicle-to-Grid (V2G) technology - allowing EVs to also discharge energy back to the grid - new opportunities and complexities emerge. We introduce the Electric Vehicle Orienteering Problem with V2G (EVOP-V2G): a profit-maximization problem where EV drivers must select customer requests or orders while managing when and where to charge or discharge. This involves navigating dynamic electricity prices, charging station selection, and route constraints. We formulate the problem as a Mixed Integer Programming (MIP) model and propose two near-optimal metaheuristic algorithms: one evolutionary (EA) and the other based on large neighborhood search (LNS). Experiments on real-world data show our methods can double driver profits compared to baselines, while maintaining near-optimal performance on small instances and excellent scalability on larger ones. Our work highlights a promising path toward smarter, more profitable EV-based mobility systems that actively support the energy grid.
♻ ☆ Doppelganger Method: Breaking Role Consistency in LLM Agent via Prompt-based Transferable Adversarial Attack
Since the advent of large language models, prompt engineering now enables the rapid, low-effort creation of diverse autonomous agents that are already in widespread use. Yet this convenience raises urgent concerns about the safety, robustness, and behavioral consistency of the underlying prompts, along with the pressing challenge of preventing those prompts from being exposed to user's attempts. In this paper, we propose the ''Doppelganger method'' to demonstrate the risk of an agent being hijacked, thereby exposing system instructions and internal information. Next, we define the ''Prompt Alignment Collapse under Adversarial Transfer (PACAT)'' level to evaluate the vulnerability to this adversarial transfer attack. We also propose a ''Caution for Adversarial Transfer (CAT)'' prompt to counter the Doppelganger method. The experimental results demonstrate that the Doppelganger method can compromise the agent's consistency and expose its internal information. In contrast, CAT prompts enable effective defense against this adversarial attack.
♻ ☆ Efficient Image Generation with Variadic Attention Heads CVPR
While the integration of transformers in vision models have yielded significant improvements on vision tasks they still require significant amounts of computation for both training and inference. Restricted attention mechanisms significantly reduce these computational burdens but come at the cost of losing either global or local coherence. We propose a simple, yet powerful method to reduce these trade-offs: allow the attention heads of a single transformer to attend to multiple receptive fields. We demonstrate our method utilizing Neighborhood Attention (NA) and integrate it into a StyleGAN based architecture for image generation. With this work, dubbed StyleNAT, we are able to achieve a FID of 2.05 on FFHQ, a 6% improvement over StyleGAN-XL, while utilizing 28% fewer parameters and with 4$\times$ the throughput capacity. StyleNAT achieves the Pareto Frontier on FFHQ-256 and demonstrates powerful and efficient image generation on other datasets. Our code and model checkpoints are publicly available at: https://github.com/SHI-Labs/StyleNAT
comment: Published in eLVM @ CVPR (https://openaccess.thecvf.com/content/CVPR2025W/eLVM/html/Walton_Efficient_Image_Generation_with_Variadic_Attention_Heads_CVPRW_2025_paper) | Formerly named StyleNAT: Giving Each Head a New Perspective |
♻ ☆ Structuring the Unstructured: A Multi-Agent System for Extracting and Querying Financial KPIs and Guidance
Extracting structured and quantitative insights from unstructured financial filings is essential in investment research, yet remains time-consuming and resource-intensive. Conventional approaches in practice rely heavily on labor-intensive manual processes, limiting scalability and delaying the research workflow. In this paper, we propose an efficient and scalable method for accurately extracting quantitative insights from unstructured financial documents, leveraging a multi-agent system composed of large language models. Our proposed multi-agent system consists of two specialized agents: the \emph{Extraction Agent} and the \emph{Text-to-SQL Agent}. The \textit{Extraction Agent} automatically identifies key performance indicators from unstructured financial text, standardizes their formats, and verifies their accuracy. On the other hand, the \textit{Text-to-SQL Agent} generates executable SQL statements from natural language queries, allowing users to access structured data accurately without requiring familiarity with the database schema. Through experiments, we demonstrate that our proposed system effectively transforms unstructured text into structured data accurately and enables precise retrieval of key information. First, we demonstrate that our system achieves approximately 95\% accuracy in transforming financial filings into structured data, matching the performance level typically attained by human annotators. Second, in a human evaluation of the retrieval task -- where natural language queries are used to search information from structured data -- 91\% of the responses were rated as correct by human evaluators. In both evaluations, our system generalizes well across financial document types, consistently delivering reliable performance.
comment: 7 pages, FinIR'25
♻ ☆ Review learning: Real world validation of privacy preserving continual learning across medical institutions
When a deep learning model is trained sequentially on different datasets, it often forgets the knowledge learned from previous data, a problem known as catastrophic forgetting. This damages the model's performance on diverse datasets, which is critical in privacy-preserving deep learning (PPDL) applications based on transfer learning (TL). To overcome this, we introduce "review learning" (RevL), a low cost continual learning algorithm for diagnosis prediction using electronic health records (EHR) within a PPDL framework. RevL generates data samples from the model which are used to review knowledge from previous datasets. Six simulated institutional experiments and one real-world experiment involving three medical institutions were conducted to validate RevL, using three binary classification EHR data. In the real-world experiment with data from 106,508 patients, the mean global area under the receiver operating curve was 0.710 for RevL and 0.655 for TL. These results demonstrate RevL's ability to retain previously learned knowledge and its effectiveness in real-world PPDL scenarios. Our work establishes a realistic pipeline for PPDL research based on model transfers across institutions and highlights the practicality of continual learning in real-world medical settings using private EHR data.
♻ ☆ Pretrained Reversible Generation as Unsupervised Visual Representation Learning ICCV 2025
Recent generative models based on score matching and flow matching have significantly advanced generation tasks, but their potential in discriminative tasks remains underexplored. Previous approaches, such as generative classifiers, have not fully leveraged the capabilities of these models for discriminative tasks due to their intricate designs. We propose Pretrained Reversible Generation (PRG), which extracts unsupervised representations by reversing the generative process of a pretrained continuous generation model. PRG effectively reuses unsupervised generative models, leveraging their high capacity to serve as robust and generalizable feature extractors for downstream tasks. This framework enables the flexible selection of feature hierarchies tailored to specific downstream tasks. Our method consistently outperforms prior approaches across multiple benchmarks, achieving state-of-the-art performance among generative model based methods, including 78% top-1 accuracy on ImageNet at a resolution of 64*64. Extensive ablation studies, including out-of-distribution evaluations, further validate the effectiveness of our approach. Code is available at https://github.com/opendilab/PRG.
comment: Accepted by ICCV 2025
♻ ☆ SACL: Understanding and Combating Textual Bias in Code Retrieval with Semantic-Augmented Reranking and Localization
Retrieval-Augmented Code Generation (RACG) is a critical technique for enhancing code generation by retrieving relevant information. In this work, we conduct an in-depth analysis of code retrieval by systematically masking specific features while preserving code functionality. Our discoveries include: (1) although trained on code, current retrievers heavily rely on surface-level textual features (e.g., docstrings, identifier names), and (2) they exhibit a strong bias towards well-documented code, even if the documentation is irrelevant. Based on our discoveries, we propose SACL, a framework that enriches textual information and reduces bias by augmenting code or structural knowledge with semantic information. Extensive experiments show that SACL substantially improves code retrieval (e.g., by 12.8% / 9.4% / 7.0% Recall@1 on HumanEval / MBPP / SWE-Bench-Lite), which also leads to better code generation performance (e.g., by 4.88% Pass@1 on HumanEval).
♻ ☆ Will LLMs be Professional at Fund Investment? DeepFund: A Live Arena Perspective
Large Language Models (LLMs) have demonstrated impressive capabilities across various domains, but their effectiveness in financial decision-making remains inadequately evaluated. Current benchmarks primarily assess LLMs' understanding on financial documents rather than the ability to manage assets or dig out trading opportunities in dynamic market conditions. Despite the release of new benchmarks for evaluating diversified tasks on the financial domain, we identified four major problems in these benchmarks, which are data leakage, navel-gazing, over-intervention, and maintenance-hard. To pave the research gap, we introduce DeepFund, a comprehensive arena platform for evaluating LLM-based trading strategies in a live environment. Our approach implements a multi-agent framework where they serve as multiple key roles that realize the real-world investment decision processes. Moreover, we provide a web interface that visualizes LLMs' performance with fund investment metrics across different market conditions, enabling detailed comparative analysis. Through DeepFund, we aim to provide a more realistic and fair assessment on LLM's capabilities in fund investment, offering diversified insights and revealing their potential applications in real-world financial markets. Our code is publicly available at https://github.com/HKUSTDial/DeepFund.
comment: 6 pages, 3 figures, perspective paper
♻ ☆ WiS Platform: Enhancing Evaluation of LLM-Based Multi-Agent Systems Through Game-Based Analysis
Recent advancements in autonomous multi-agent systems (MAS) based on large language models (LLMs) have enhanced the application scenarios and improved the capability of LLMs to handle complex tasks. Despite demonstrating effectiveness, existing studies still evidently struggle to evaluate, analysis, and reproducibility of LLM-based MAS. In this paper, to facilitate the research on LLM-based MAS, we introduce an open, scalable, and real-time updated platform for accessing and analyzing the LLM-based MAS based on the games Who is Spy?" (WiS). Our platform is featured with three main worths: (1) a unified model evaluate interface that supports models available on Hugging Face; (2) real-time updated leaderboard for model evaluation; (3) a comprehensive evaluation covering game-winning rates, attacking, defense strategies, and reasoning of LLMs. To rigorously test WiS, we conduct extensive experiments coverage of various open- and closed-source LLMs, we find that different agents exhibit distinct and intriguing behaviors in the game. The experimental results demonstrate the effectiveness and efficiency of our platform in evaluating LLM-based MAS. Our platform and its documentation are publicly available at https://whoisspy.ai/.
♻ ☆ UP-VLA: A Unified Understanding and Prediction Model for Embodied Agent ICML2025
Recent advancements in Vision-Language-Action (VLA) models have leveraged pre-trained Vision-Language Models (VLMs) to improve the generalization capabilities. VLMs, typically pre-trained on vision-language understanding tasks, provide rich semantic knowledge and reasoning abilities. However, prior research has shown that VLMs often focus on high-level semantic content and neglect low-level features, limiting their ability to capture detailed spatial information and understand physical dynamics. These aspects, which are crucial for embodied control tasks, remain underexplored in existing pre-training paradigms. In this paper, we investigate the training paradigm for VLAs, and introduce \textbf{UP-VLA}, a \textbf{U}nified VLA model training with both multi-modal \textbf{U}nderstanding and future \textbf{P}rediction objectives, enhancing both high-level semantic comprehension and low-level spatial understanding. Experimental results show that UP-VLA achieves a 33% improvement on the Calvin ABC-D benchmark compared to the previous state-of-the-art method. Additionally, UP-VLA demonstrates improved success rates in real-world manipulation tasks, particularly those requiring precise spatial information.
comment: Accepted to ICML2025
♻ ☆ Reward-Guided Speculative Decoding for Efficient LLM Reasoning
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs). RSD synergistically combines a lightweight draft model with a more powerful target model, incorporating a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness. RSD employs a process reward model to evaluate intermediate decoding steps and dynamically decide whether to invoke the target model, optimizing the trade-off between computational cost and output quality. We theoretically demonstrate that a threshold-based mixture strategy achieves an optimal balance between resource utilization and performance. Extensive evaluations on challenging reasoning benchmarks, including Olympiad-level tasks, show that RSD delivers significant efficiency gains against decoding with the target model only (up to 4.4x fewer FLOPs), while achieving significant better accuracy than parallel decoding method on average (up to +3.5). These results highlight RSD as a robust and cost-effective approach for deploying LLMs in resource-intensive scenarios. The code is available at https://github.com/BaohaoLiao/RSD.
comment: 17 pages
InfiniCube: Unbounded and Controllable Dynamic 3D Driving Scene Generation with World-Guided Video Models ICCV 2025
We present InfiniCube, a scalable method for generating unbounded dynamic 3D driving scenes with high fidelity and controllability. Previous methods for scene generation either suffer from limited scales or lack geometric and appearance consistency along generated sequences. In contrast, we leverage the recent advancements in scalable 3D representation and video models to achieve large dynamic scene generation that allows flexible controls through HD maps, vehicle bounding boxes, and text descriptions. First, we construct a map-conditioned sparse-voxel-based 3D generative model to unleash its power for unbounded voxel world generation. Then, we re-purpose a video model and ground it on the voxel world through a set of carefully designed pixel-aligned guidance buffers, synthesizing a consistent appearance. Finally, we propose a fast feed-forward approach that employs both voxel and pixel branches to lift the dynamic videos to dynamic 3D Gaussians with controllable objects. Our method can generate controllable and realistic 3D driving scenes, and extensive experiments validate the effectiveness and superiority of our model.
comment: ICCV 2025. Project Page: https://research.nvidia.com/labs/toronto-ai/infinicube/
♻ ☆ Super Co-alignment for Sustainable Symbiotic Society
As Artificial Intelligence (AI) advances toward Artificial General Intelligence (AGI) and eventually Artificial Superintelligence (ASI), it may potentially surpass human control, deviate from human values, and even lead to irreversible catastrophic consequences in extreme cases. This looming risk underscores the critical importance of the "superalignment" problem - ensuring that AI systems which are much smarter than humans, remain aligned with human (compatible) intentions and values. While current scalable oversight and weak-to-strong generalization methods demonstrate certain applicability, they exhibit fundamental flaws in addressing the superalignment paradigm - notably, the unidirectional imposition of human values cannot accommodate superintelligence's autonomy or ensure AGI/ASI's stable learning. We contend that the values for sustainable symbiotic society should be co-shaped by humans and living AI together, achieving "Super Co-alignment." Guided by this vision, we propose a concrete framework that integrates external oversight and intrinsic proactive alignment. External oversight superalignment should be grounded in human-centered ultimate decision, supplemented by interpretable automated evaluation and correction, to achieve continuous alignment with humanity's evolving values. Intrinsic proactive superalignment is rooted in a profound understanding of the Self, others, and society, integrating self-awareness, self-reflection, and empathy to spontaneously infer human intentions, distinguishing good from evil and proactively prioritizing human well-being. The integration of externally-driven oversight with intrinsically-driven proactive alignment will co-shape symbiotic values and rules through iterative human-AGI/ASI co-alignment, paving the way for achieving safe and beneficial AGI and ASI for good, for human, and for a symbiotic ecology.
Fast Monte Carlo Tree Diffusion: 100x Speedup via Parallel Sparse Planning
Diffusion models have recently emerged as a powerful approach for trajectory planning. However, their inherently non-sequential nature limits their effectiveness in long-horizon reasoning tasks at test time. The recently proposed Monte Carlo Tree Diffusion (MCTD) offers a promising solution by combining diffusion with tree-based search, achieving state-of-the-art performance on complex planning problems. Despite its strengths, our analysis shows that MCTD incurs substantial computational overhead due to the sequential nature of tree search and the cost of iterative denoising. To address this, we propose Fast-MCTD, a more efficient variant that preserves the strengths of MCTD while significantly improving its speed and scalability. Fast-MCTD integrates two techniques: Parallel MCTD, which enables parallel rollouts via delayed tree updates and redundancy-aware selection; and Sparse MCTD, which reduces rollout length through trajectory coarsening. Experiments show that Fast-MCTD achieves up to 100x speedup over standard MCTD while maintaining or improving planning performance. Remarkably, it even outperforms Diffuser in inference speed on some tasks, despite Diffuser requiring no search and yielding weaker solutions. These results position Fast-MCTD as a practical and scalable solution for diffusion-based inference-time reasoning.
♻ ☆ AirCache: Activating Inter-modal Relevancy KV Cache Compression for Efficient Large Vision-Language Model Inference
Recent advancements in Large Visual Language Models (LVLMs) have gained significant attention due to their remarkable reasoning capabilities and proficiency in generalization. However, processing a large number of visual tokens and generating long-context outputs impose substantial computational overhead, leading to excessive demands for key-value (KV) cache. To address this critical bottleneck, we propose AirCache, a novel KV cache compression method aimed at accelerating LVLMs inference. This work systematically investigates the correlations between visual and textual tokens within the attention mechanisms of LVLMs. Our empirical analysis reveals considerable redundancy in cached visual tokens, wherein strategically eliminating these tokens preserves model performance while significantly accelerating context generation. Inspired by these findings, we introduce an elite observation window for assessing the importance of visual components in the KV cache, focusing on stable inter-modal relevancy modeling with enhanced multi-perspective consistency. Additionally, we develop an adaptive layer-wise budget allocation strategy that capitalizes on the strength and skewness of token importance distribution, showcasing superior efficiency compared to uniform allocation. Comprehensive evaluations across multiple LVLMs and benchmarks demonstrate that our method achieves comparable performance to the full cache while retaining only 10% of visual KV cache, thereby reducing decoding latency by 29% to 66% across various batch size and prompt length of inputs. Notably, as cache retention rates decrease, our method exhibits increasing performance advantages over existing approaches.
comment: We have withdrawn this manuscript due to a critical error in the methodology which affects the validity of the main results. We are currently working to address this issue and will resubmit once the correction is complete
♻ ☆ Taming the Untamed: Graph-Based Knowledge Retrieval and Reasoning for MLLMs to Conquer the Unknown ICCV 2025
The real value of knowledge lies not just in its accumulation, but in its potential to be harnessed effectively to conquer the unknown. Although recent multimodal large language models (MLLMs) exhibit impressing multimodal capabilities, they often fail in rarely encountered domain-specific tasks due to limited relevant knowledge. To explore this, we adopt visual game cognition as a testbed and select Monster Hunter: World as the target to construct a multimodal knowledge graph (MH-MMKG), which incorporates multi-modalities and intricate entity relations. We also design a series of challenging queries based on MH-MMKG to evaluate the models' ability for complex knowledge retrieval and reasoning. Furthermore, we propose a multi-agent retriever that enables a model to autonomously search relevant knowledge without additional training. Experimental results show that our approach significantly enhances the performance of MLLMs, providing a new perspective on multimodal knowledge-augmented reasoning and laying a solid foundation for future research.
comment: Accepted by ICCV 2025
♻ ☆ PP-DocBee: Improving Multimodal Document Understanding Through a Bag of Tricks
With the rapid advancement of digitalization, various document images are being applied more extensively in production and daily life, and there is an increasingly urgent need for fast and accurate parsing of the content in document images. Therefore, this report presents PP-DocBee, a novel multimodal large language model designed for end-to-end document image understanding. First, we develop a data synthesis strategy tailored to document scenarios in which we build a diverse dataset to improve the model generalization. Then, we apply a few training techniques, including dynamic proportional sampling, data preprocessing, and OCR postprocessing strategies. Extensive evaluations demonstrate the superior performance of PP-DocBee, achieving state-of-the-art results on English document understanding benchmarks and even outperforming existing open source and commercial models in Chinese document understanding. The source code and pre-trained models are publicly available at \href{https://github.com/PaddlePaddle/PaddleMIX}{https://github.com/PaddlePaddle/PaddleMIX}.
♻ ☆ ToolScan: A Benchmark for Characterizing Errors in Tool-Use LLMs
Evaluating Large Language Models (LLMs) is one of the most critical aspects of building a performant compound AI system. Since the output from LLMs propagate to downstream steps, identifying LLM errors is crucial to system performance. A common task for LLMs in AI systems is tool use. While there are several benchmark environments for evaluating LLMs on this task, they typically only give a success rate without any explanation of the failure cases. To solve this problem, we introduce TOOLSCAN, a new benchmark to identify error patterns in LLM output on tool-use tasks. Our benchmark data set comprises of queries from diverse environments that can be used to test for the presence of seven newly characterized error patterns. Using TOOLSCAN, we show that even the most prominent LLMs exhibit these error patterns in their outputs. Researchers can use these insights from TOOLSCAN to guide their error mitigation strategies.
♻ ☆ The State of Large Language Models for African Languages: Progress and Challenges
Large Language Models (LLMs) are transforming Natural Language Processing (NLP), but their benefits are largely absent for Africa's 2,000 low-resource languages. This paper comparatively analyzes African language coverage across six LLMs, eight Small Language Models (SLMs), and six Specialized SLMs (SSLMs). The evaluation covers language coverage, training sets, technical limitations, script problems, and language modelling roadmaps. The work identifies 42 supported African languages and 23 available public data sets, and it shows a big gap where four languages (Amharic, Swahili, Afrikaans, and Malagasy) are always treated while there is over 98\% of unsupported African languages. Moreover, the review shows that just Latin, Arabic, and Ge'ez scripts are identified while 20 active scripts are neglected. Some of the primary challenges are lack of data, tokenization biases, computational costs being very high, and evaluation issues. These issues demand language standardization, corpus development by the community, and effective adaptation methods for African languages.
♻ ☆ MvKeTR: Chest CT Report Generation with Multi-View Perception and Knowledge Enhancement
CT report generation (CTRG) aims to automatically generate diagnostic reports for 3D volumes, relieving clinicians' workload and improving patient care. Despite clinical value, existing works fail to effectively incorporate diagnostic information from multiple anatomical views and lack related clinical expertise essential for accurate and reliable diagnosis. To resolve these limitations, we propose a novel Multi-view perception Knowledge-enhanced TansfoRmer (MvKeTR) to mimic the diagnostic workflow of clinicians. Just as radiologists first examine CT scans from multiple planes, a Multi-View Perception Aggregator (MVPA) with view-aware attention is proposed to synthesize diagnostic information from multiple anatomical views effectively. Then, inspired by how radiologists further refer to relevant clinical records to guide diagnostic decision-making, a Cross-Modal Knowledge Enhancer (CMKE) is devised to retrieve the most similar reports based on the query volume to incorporate domain knowledge into the diagnosis procedure. Furthermore, instead of traditional MLPs, we employ Kolmogorov-Arnold Networks (KANs) as the fundamental building blocks of both modules, which exhibit superior parameter efficiency and reduced spectral bias to better capture high-frequency components critical for CT interpretation while mitigating overfitting. Extensive experiments on the public CTRG-Chest-548 K dataset demonstrate that our method outpaces prior state-of-the-art (SOTA) models across almost all metrics. The code is available at https://github.com/xiweideng/MvKeTR.
comment: Accepted for publication in IEEE Journal of Biomedical and Health Informatics
♻ ☆ ClimateIQA: A New Dataset and Benchmark to Advance Vision-Language Models in Meteorology Anomalies Analysis
Meteorological heatmaps play a vital role in deciphering extreme weather phenomena, yet their inherent complexities marked by irregular contours, unstructured patterns, and complex color variations present unique analytical hurdles for state-of-the-art Vision-Language Models (VLMs). Current state-of-the-art models like GPT-4o, Qwen-VL, and LLaVA 1.6 struggle with tasks such as precise color identification and spatial localization, resulting in inaccurate or incomplete interpretations. To address these challenges, we introduce Sparse Position and Outline Tracking (SPOT), a novel algorithm specifically designed to process irregularly shaped colored regions in visual data. SPOT identifies and localizes these regions by extracting their spatial coordinates, enabling structured representations of irregular shapes. Building on SPOT, we construct ClimateIQA, a novel meteorological visual question answering (VQA) dataset, comprising 26,280 high-resolution heatmaps and 762,120 instruction samples for wind gust, total precipitation, wind chill index and heat index analysis. ClimateIQA enhances VLM training by incorporating spatial cues, geographic metadata, and reanalysis data, improving model accuracy in interpreting and describing extreme weather features. Furthermore, we develop Climate-Zoo, a suite of fine-tuned VLMs based on SPOT-empowered ClimateIQA, which significantly outperforms existing models in meteorological heatmap tasks.
Graphics 12
☆ Managing level of detail through head-tracked peripheral degradation: a model and resulting design principles
Previous work has demonstrated the utility of reductions in the level of detail (LOD) in the periphery of head-tracked, large field of view displays. This paper provides a psychophysically based model, centered around an eye/head movement tradeoff, that explains the effectiveness of peripheral degradation and suggests how peripherally degraded displays should be designed. An experiment evaluating the effect on search performance of the shape and area of the high detail central area (inset) in peripherally degraded displays was performed, results indicated that inset shape is not a significant factor in performance. Inset area, however, was significant: performance with displays subtending at least 30 degrees of horizontal and vertical angle was not significantly different from performance with an undegraded display. These results agreed with the proposed model.
☆ An evaluation of level of detail degradation in head-mounted display peripheries
A paradigm for the design of systems that manage level of detail in virtual environments is proposed. As an example of the prototyping step in this paradigm, a user study was performed to evaluate the effectiveness of high detail insets used with head-mounted displays. Ten subjects were given a simple search task that required the location and identification of a single target object. All subjects used seven different displays (the independent variable), varying in inset size and peripheral detail, to perform this task. Frame rate, target location, subject input method, and order of display use were all controlled. Primary dependent measures were search time on trials with correct identification, and the percentage of all trials correctly identified. ANOVAs of the results showed that insetless, high detail displays did not lead to significantly different search times or accuracies than displays with insets. In fact, only the insetless, low detail display returned significantly different results. Further research is being performed to examine the effect of varying task complexity, inset size, and level of detail.
☆ IDGraphs: Intrusion Detection and Analysis Using Stream Compositing
Traffic anomalies and attacks are commonplace in today's networks and identifying them rapidly and accurately is critical for large network operators. For a statistical intrusion detection system (IDS), it is crucial to detect at the flow-level for accurate detection and mitigation. However, existing IDS systems offer only limited support for 1) interactively examining detected intrusions and anomalies, 2) analyzing worm propagation patterns, 3) and discovering correlated attacks. These problems are becoming even more acute as the traffic on today's high-speed routers continues to grow. IDGraphs is an interactive visualization system for intrusion detection that addresses these challenges. The central visualization in the system is a flow-level trace plotted with time on the horizontal axis and aggregated number of unsuccessful connections on the vertical axis. We then summarize a stack of tens or hundreds of thousands of these traces using the Histographs [RW05] technique, which maps data frequency at each pixel to brightness. Users may then interactively query the summary view, performing analysis by highlighting subsets of the traces. For example, brushing a linked correlation matrix view highlights traces with similar patterns, revealing distributed attacks that are difficult to detect using standard statistical analysis. We apply IDGraphs system to a real network router data-set with 179M flow-level records representing a total traffic of 1.16TB. The system successfully detects and analyzes a variety of attacks and anomalies, including port scanning, worm outbreaks, stealthy TCP SYN floodings, and some distributed attacks.
☆ FairyGen: Storied Cartoon Video from a Single Child-Drawn Character
We propose FairyGen, an automatic system for generating story-driven cartoon videos from a single child's drawing, while faithfully preserving its unique artistic style. Unlike previous storytelling methods that primarily focus on character consistency and basic motion, FairyGen explicitly disentangles character modeling from stylized background generation and incorporates cinematic shot design to support expressive and coherent storytelling. Given a single character sketch, we first employ an MLLM to generate a structured storyboard with shot-level descriptions that specify environment settings, character actions, and camera perspectives. To ensure visual consistency, we introduce a style propagation adapter that captures the character's visual style and applies it to the background, faithfully retaining the character's full visual identity while synthesizing style-consistent scenes. A shot design module further enhances visual diversity and cinematic quality through frame cropping and multi-view synthesis based on the storyboard. To animate the story, we reconstruct a 3D proxy of the character to derive physically plausible motion sequences, which are then used to fine-tune an MMDiT-based image-to-video diffusion model. We further propose a two-stage motion customization adapter: the first stage learns appearance features from temporally unordered frames, disentangling identity from motion; the second stage models temporal dynamics using a timestep-shift strategy with frozen identity weights. Once trained, FairyGen directly renders diverse and coherent video scenes aligned with the storyboard. Extensive experiments demonstrate that our system produces animations that are stylistically faithful, narratively structured natural motion, highlighting its potential for personalized and engaging story animation. The code will be available at https://github.com/GVCLab/FairyGen
comment: Project Page: https://jayleejia.github.io/FairyGen/ ; Code: https://github.com/GVCLab/FairyGen
☆ Consistent Zero-shot 3D Texture Synthesis Using Geometry-aware Diffusion and Temporal Video Models
Current texture synthesis methods, which generate textures from fixed viewpoints, suffer from inconsistencies due to the lack of global context and geometric understanding. Meanwhile, recent advancements in video generation models have demonstrated remarkable success in achieving temporally consistent videos. In this paper, we introduce VideoTex, a novel framework for seamless texture synthesis that leverages video generation models to address both spatial and temporal inconsistencies in 3D textures. Our approach incorporates geometry-aware conditions, enabling precise utilization of 3D mesh structures. Additionally, we propose a structure-wise UV diffusion strategy, which enhances the generation of occluded areas by preserving semantic information, resulting in smoother and more coherent textures. VideoTex not only achieves smoother transitions across UV boundaries but also ensures high-quality, temporally stable textures across video frames. Extensive experiments demonstrate that VideoTex outperforms existing methods in texture fidelity, seam blending, and stability, paving the way for dynamic real-time applications that demand both visual quality and temporal coherence.
☆ Data Visualization for Improving Financial Literacy: A Systematic Review
Financial literacy empowers individuals to make informed and effective financial decisions, improving their overall financial well-being and security. However, for many people understanding financial concepts can be daunting and only half of US adults are considered financially literate. Data visualization simplifies these concepts, making them accessible and engaging for learners of all ages. This systematic review analyzes 37 research papers exploring the use of data visualization and visual analytics in financial education and literacy enhancement. We classify these studies into five key areas: (1) the evolution of visualization use across time and space, (2) motivations for using visualization tools, (3) the financial topics addressed and instructional approaches used, (4) the types of tools and technologies applied, and (5) how the effectiveness of teaching interventions was evaluated. Furthermore, we identify research gaps and highlight opportunities for advancing financial literacy. Our findings offer practical insights for educators and professionals to effectively utilize or design visual tools for financial literacy.
♻ ☆ CanFields: Consolidating Diffeomorphic Flows for Non-Rigid 4D Interpolation from Arbitrary-Length Sequences ICCV2025
We introduce Canonical Consolidation Fields (CanFields). This novel method interpolates arbitrary-length sequences of independently sampled 3D point clouds into a unified, continuous, and coherent deforming shape. Unlike prior methods that oversmooth geometry or produce topological and geometric artifacts, CanFields optimizes fine-detailed geometry and deformation jointly in an unsupervised fitting with two novel bespoke modules. First, we introduce a dynamic consolidator module that adjusts the input and assigns confidence scores, balancing the optimization of the canonical shape and its motion. Second, we represent the motion as a diffeomorphic flow parameterized by a smooth velocity field. We have validated our robustness and accuracy on more than 50 diverse sequences, demonstrating its superior performance even with missing regions, noisy raw scans, and sparse data. Our project page is at: https://wangmiaowei.github.io/CanFields.github.io/.
comment: ICCV2025 Accepted
♻ ☆ Materialist: Physically Based Editing Using Single-Image Inverse Rendering
Achieving physically consistent image editing remains a significant challenge in computer vision. Existing image editing methods typically rely on neural networks, which struggle to accurately handle shadows and refractions. Conversely, physics-based inverse rendering often requires multi-view optimization, limiting its practicality in single-image scenarios. In this paper, we propose Materialist, a method combining a learning-based approach with physically based progressive differentiable rendering. Given an image, our method leverages neural networks to predict initial material properties. Progressive differentiable rendering is then used to optimize the environment map and refine the material properties with the goal of closely matching the rendered result to the input image. Our approach enables a range of applications, including material editing, object insertion, and relighting, while also introducing an effective method for editing material transparency without requiring full scene geometry. Furthermore, Our envmap estimation method also achieves state-of-the-art performance, further enhancing the accuracy of image editing task. Experiments demonstrate strong performance across synthetic and real-world datasets, excelling even on challenging out-of-domain images. Project website: https://lez-s.github.io/materialist_project/
comment: Add acknowledgements, more authors and more results. Project website: https://lez-s.github.io/materialist_project/
♻ ☆ TCDiff++: An End-to-end Trajectory-Controllable Diffusion Model for Harmonious Music-Driven Group Choreography
Music-driven dance generation has garnered significant attention due to its wide range of industrial applications, particularly in the creation of group choreography. During the group dance generation process, however, most existing methods still face three primary issues: multi-dancer collisions, single-dancer foot sliding and abrupt swapping in the generation of long group dance. In this paper, we propose TCDiff++, a music-driven end-to-end framework designed to generate harmonious group dance. Specifically, to mitigate multi-dancer collisions, we utilize a dancer positioning embedding to better maintain the relative positioning among dancers. Additionally, we incorporate a distance-consistency loss to ensure that inter-dancer distances remain within plausible ranges. To address the issue of single-dancer foot sliding, we introduce a swap mode embedding to indicate dancer swapping patterns and design a Footwork Adaptor to refine raw motion, thereby minimizing foot sliding. For long group dance generation, we present a long group diffusion sampling strategy that reduces abrupt position shifts by injecting positional information into the noisy input. Furthermore, we integrate a Sequence Decoder layer to enhance the model's ability to selectively process long sequences. Extensive experiments demonstrate that our TCDiff++ achieves state-of-the-art performance, particularly in long-duration scenarios, ensuring high-quality and coherent group dance generation.
♻ ☆ HUG: Hierarchical Urban Gaussian Splatting with Block-Based Reconstruction for Large-Scale Aerial Scenes ICCV
3DGS is an emerging and increasingly popular technology in the field of novel view synthesis. Its highly realistic rendering quality and real-time rendering capabilities make it promising for various applications. However, when applied to large-scale aerial urban scenes, 3DGS methods suffer from issues such as excessive memory consumption, slow training times, prolonged partitioning processes, and significant degradation in rendering quality due to the increased data volume. To tackle these challenges, we introduce \textbf{HUG}, a novel approach that enhances data partitioning and reconstruction quality by leveraging a hierarchical neural Gaussian representation. We first propose a visibility-based data partitioning method that is simple yet highly efficient, significantly outperforming existing methods in speed. Then, we introduce a novel hierarchical weighted training approach, combined with other optimization strategies, to substantially improve reconstruction quality. Our method achieves state-of-the-art results on one synthetic dataset and four real-world datasets.
comment: An improved version has recently been accepted to ICCV, manuscript, not camera-ready
InfiniCube: Unbounded and Controllable Dynamic 3D Driving Scene Generation with World-Guided Video Models ICCV 2025
We present InfiniCube, a scalable method for generating unbounded dynamic 3D driving scenes with high fidelity and controllability. Previous methods for scene generation either suffer from limited scales or lack geometric and appearance consistency along generated sequences. In contrast, we leverage the recent advancements in scalable 3D representation and video models to achieve large dynamic scene generation that allows flexible controls through HD maps, vehicle bounding boxes, and text descriptions. First, we construct a map-conditioned sparse-voxel-based 3D generative model to unleash its power for unbounded voxel world generation. Then, we re-purpose a video model and ground it on the voxel world through a set of carefully designed pixel-aligned guidance buffers, synthesizing a consistent appearance. Finally, we propose a fast feed-forward approach that employs both voxel and pixel branches to lift the dynamic videos to dynamic 3D Gaussians with controllable objects. Our method can generate controllable and realistic 3D driving scenes, and extensive experiments validate the effectiveness and superiority of our model.
comment: ICCV 2025. Project Page: https://research.nvidia.com/labs/toronto-ai/infinicube/
♻ ☆ BlenderFusion: 3D-Grounded Visual Editing and Generative Compositing
We present BlenderFusion, a generative visual compositing framework that synthesizes new scenes by recomposing objects, camera, and background. It follows a layering-editing-compositing pipeline: (i) segmenting and converting visual inputs into editable 3D entities (layering), (ii) editing them in Blender with 3D-grounded control (editing), and (iii) fusing them into a coherent scene using a generative compositor (compositing). Our generative compositor extends a pre-trained diffusion model to process both the original (source) and edited (target) scenes in parallel. It is fine-tuned on video frames with two key training strategies: (i) source masking, enabling flexible modifications like background replacement; (ii) simulated object jittering, facilitating disentangled control over objects and camera. BlenderFusion significantly outperforms prior methods in complex compositional scene editing tasks.
comment: Project page: https://blenderfusion.github.io
Robotics 46
☆ Model-Based Real-Time Pose and Sag Estimation of Overhead Power Lines Using LiDAR for Drone Inspection
Drones can inspect overhead power lines while they remain energized, significantly simplifying the inspection process. However, localizing a drone relative to all conductors using an onboard LiDAR sensor presents several challenges: (1) conductors provide minimal surface for LiDAR beams limiting the number of conductor points in a scan, (2) not all conductors are consistently detected, and (3) distinguishing LiDAR points corresponding to conductors from other objects, such as trees and pylons, is difficult. This paper proposes an estimation approach that minimizes the error between LiDAR measurements and a single geometric model representing the entire conductor array, rather than tracking individual conductors separately. Experimental results, using data from a power line drone inspection, demonstrate that this method achieves accurate tracking, with a solver converging under 50 ms per frame, even in the presence of partial observations, noise, and outliers. A sensitivity analysis shows that the estimation approach can tolerate up to twice as many outlier points as valid conductors measurements.
comment: Submitted to IEEE case 2025
☆ Online Planning for Cooperative Air-Ground Robot Systems with Unknown Fuel Requirements RSS
We consider an online variant of the fuel-constrained UAV routing problem with a ground-based mobile refueling station (FCURP-MRS), where targets incur unknown fuel costs. We develop a two-phase solution: an offline heuristic-based planner computes initial UAV and UGV paths, and a novel online planning algorithm that dynamically adjusts rendezvous points based on real-time fuel consumption during target processing. Preliminary Gazebo simulations demonstrate the feasibility of our approach in maintaining UAV-UGV path validity, ensuring mission completion. Link to video: https://youtu.be/EmpVj-fjqNY
comment: Submitted to RSS (MRS Workshop)
☆ IMA-Catcher: An IMpact-Aware Nonprehensile Catching Framework based on Combined Optimization and Learning IJRR
Robotic catching of flying objects typically generates high impact forces that might lead to task failure and potential hardware damages. This is accentuated when the object mass to robot payload ratio increases, given the strong inertial components characterizing this task. This paper aims to address this problem by proposing an implicitly impact-aware framework that accomplishes the catching task in both pre- and post-catching phases. In the first phase, a motion planner generates optimal trajectories that minimize catching forces, while in the second, the object's energy is dissipated smoothly, minimizing bouncing. In particular, in the pre-catching phase, a real-time optimal planner is responsible for generating trajectories of the end-effector that minimize the velocity difference between the robot and the object to reduce impact forces during catching. In the post-catching phase, the robot's position, velocity, and stiffness trajectories are generated based on human demonstrations when catching a series of free-falling objects with unknown masses. A hierarchical quadratic programming-based controller is used to enforce the robot's constraints (i.e., joint and torque limits) and create a stack of tasks that minimizes the reflected mass at the end-effector as a secondary objective. The initial experiments isolate the problem along one dimension to accurately study the effects of each contribution on the metrics proposed. We show how the same task, without velocity matching, would be infeasible due to excessive joint torques resulting from the impact. The addition of reflected mass minimization is then investigated, and the catching height is increased to evaluate the method's robustness. Finally, the setup is extended to catching along multiple Cartesian axes, to prove its generalization in space.
comment: 25 pages, 17 figures, accepted by International Journal of Robotics Research (IJRR)
☆ How do Foundation Models Compare to Skeleton-Based Approaches for Gesture Recognition in Human-Robot Interaction?
Gestures enable non-verbal human-robot communication, especially in noisy environments like agile production. Traditional deep learning-based gesture recognition relies on task-specific architectures using images, videos, or skeletal pose estimates as input. Meanwhile, Vision Foundation Models (VFMs) and Vision Language Models (VLMs) with their strong generalization abilities offer potential to reduce system complexity by replacing dedicated task-specific modules. This study investigates adapting such models for dynamic, full-body gesture recognition, comparing V-JEPA (a state-of-the-art VFM), Gemini Flash 2.0 (a multimodal VLM), and HD-GCN (a top-performing skeleton-based approach). We introduce NUGGET, a dataset tailored for human-robot communication in intralogistics environments, to evaluate the different gesture recognition approaches. In our experiments, HD-GCN achieves best performance, but V-JEPA comes close with a simple, task-specific classification head - thus paving a possible way towards reducing system complexity, by using it as a shared multi-task model. In contrast, Gemini struggles to differentiate gestures based solely on textual descriptions in the zero-shot setting, highlighting the need of further research on suitable input representations for gestures.
☆ ConViTac: Aligning Visual-Tactile Fusion with Contrastive Representations
Vision and touch are two fundamental sensory modalities for robots, offering complementary information that enhances perception and manipulation tasks. Previous research has attempted to jointly learn visual-tactile representations to extract more meaningful information. However, these approaches often rely on direct combination, such as feature addition and concatenation, for modality fusion, which tend to result in poor feature integration. In this paper, we propose ConViTac, a visual-tactile representation learning network designed to enhance the alignment of features during fusion using contrastive representations. Our key contribution is a Contrastive Embedding Conditioning (CEC) mechanism that leverages a contrastive encoder pretrained through self-supervised contrastive learning to project visual and tactile inputs into unified latent embeddings. These embeddings are used to couple visual-tactile feature fusion through cross-modal attention, aiming at aligning the unified representations and enhancing performance on downstream tasks. We conduct extensive experiments to demonstrate the superiority of ConViTac in real world over current state-of-the-art methods and the effectiveness of our proposed CEC mechanism, which improves accuracy by up to 12.0% in material classification and grasping prediction tasks.
☆ DemoDiffusion: One-Shot Human Imitation using pre-trained Diffusion Policy
We propose DemoDiffusion, a simple and scalable method for enabling robots to perform manipulation tasks in natural environments by imitating a single human demonstration. Our approach is based on two key insights. First, the hand motion in a human demonstration provides a useful prior for the robot's end-effector trajectory, which we can convert into a rough open-loop robot motion trajectory via kinematic retargeting. Second, while this retargeted motion captures the overall structure of the task, it may not align well with plausible robot actions in-context. To address this, we leverage a pre-trained generalist diffusion policy to modify the trajectory, ensuring it both follows the human motion and remains within the distribution of plausible robot actions. Our approach avoids the need for online reinforcement learning or paired human-robot data, enabling robust adaptation to new tasks and scenes with minimal manual effort. Experiments in both simulation and real-world settings show that DemoDiffusion outperforms both the base policy and the retargeted trajectory, enabling the robot to succeed even on tasks where the pre-trained generalist policy fails entirely. Project page: https://demodiffusion.github.io/
comment: Preprint(17 pages). Under Review
☆ A Computationally Aware Multi Objective Framework for Camera LiDAR Calibration
Accurate extrinsic calibration between LiDAR and camera sensors is important for reliable perception in autonomous systems. In this paper, we present a novel multi-objective optimization framework that jointly minimizes the geometric alignment error and computational cost associated with camera-LiDAR calibration. We optimize two objectives: (1) error between projected LiDAR points and ground-truth image edges, and (2) a composite metric for computational cost reflecting runtime and resource usage. Using the NSGA-II \cite{deb2002nsga2} evolutionary algorithm, we explore the parameter space defined by 6-DoF transformations and point sampling rates, yielding a well-characterized Pareto frontier that exposes trade-offs between calibration fidelity and resource efficiency. Evaluations are conducted on the KITTI dataset using its ground-truth extrinsic parameters for validation, with results verified through both multi-objective and constrained single-objective baselines. Compared to existing gradient-based and learned calibration methods, our approach demonstrates interpretable, tunable performance with lower deployment overhead. Pareto-optimal configurations are further analyzed for parameter sensitivity and innovation insights. A preference-based decision-making strategy selects solutions from the Pareto knee region to suit the constraints of the embedded system. The robustness of calibration is tested across variable edge-intensity weighting schemes, highlighting optimal balance points. Although real-time deployment on embedded platforms is deferred to future work, this framework establishes a scalable and transparent method for calibration under realistic misalignment and resource-limited conditions, critical for long-term autonomy, particularly in SAE L3+ vehicles receiving OTA updates.
comment: 16 pages, 10 figures
☆ Task Allocation of UAVs for Monitoring Missions via Hardware-in-the-Loop Simulation and Experimental Validation
This study addresses the optimisation of task allocation for Unmanned Aerial Vehicles (UAVs) within industrial monitoring missions. The proposed methodology integrates a Genetic Algorithms (GA) with a 2-Opt local search technique to obtain a high-quality solution. Our approach was experimentally validated in an industrial zone to demonstrate its efficacy in real-world scenarios. Also, a Hardware-in-the-loop (HIL) simulator for the UAVs team is introduced. Moreover, insights about the correlation between the theoretical cost function and the actual battery consumption and time of flight are deeply analysed. Results show that the considered costs for the optimisation part of the problem closely correlate with real-world data, confirming the practicality of the proposed approach.
☆ Learning-Based Distance Estimation for 360° Single-Sensor Setups
Accurate distance estimation is a fundamental challenge in robotic perception, particularly in omnidirectional imaging, where traditional geometric methods struggle with lens distortions and environmental variability. In this work, we propose a neural network-based approach for monocular distance estimation using a single 360{\deg} fisheye lens camera. Unlike classical trigonometric techniques that rely on precise lens calibration, our method directly learns and infers the distance of objects from raw omnidirectional inputs, offering greater robustness and adaptability across diverse conditions. We evaluate our approach on three 360{\deg} datasets (LOAF, ULM360, and a newly captured dataset Boat360), each representing distinct environmental and sensor setups. Our experimental results demonstrate that the proposed learning-based model outperforms traditional geometry-based methods and other learning baselines in both accuracy and robustness. These findings highlight the potential of deep learning for real-time omnidirectional distance estimation, making our approach particularly well-suited for low-cost applications in robotics, autonomous navigation, and surveillance.
comment: Submitted to ECMR 2025
☆ Communication-Aware Map Compression for Online Path-Planning: A Rate-Distortion Approach
This paper addresses the problem of collaborative navigation in an unknown environment, where two robots, referred to in the sequel as the Seeker and the Supporter, traverse the space simultaneously. The Supporter assists the Seeker by transmitting a compressed representation of its local map under bandwidth constraints to support the Seeker's path-planning task. We introduce a bit-rate metric based on the expected binary codeword length to quantify communication cost. Using this metric, we formulate the compression design problem as a rate-distortion optimization problem that determines when to communicate, which regions of the map should be included in the compressed representation, and at what resolution (i.e., quantization level) they should be encoded. Our formulation allows different map regions to be encoded at varying quantization levels based on their relevance to the Seeker's path-planning task. We demonstrate that the resulting optimization problem is convex, and admits a closed-form solution known in the information theory literature as reverse water-filling, enabling efficient, low-computation, and real-time implementation. Additionally, we show that the Seeker can infer the compression decisions of the Supporter independently, requiring only the encoded map content and not the encoding policy itself to be transmitted, thereby reducing communication overhead. Simulation results indicate that our method effectively constructs compressed, task-relevant map representations, both in content and resolution, that guide the Seeker's planning decisions even under tight bandwidth limitations.
☆ HRIBench: Benchmarking Vision-Language Models for Real-Time Human Perception in Human-Robot Interaction
Real-time human perception is crucial for effective human-robot interaction (HRI). Large vision-language models (VLMs) offer promising generalizable perceptual capabilities but often suffer from high latency, which negatively impacts user experience and limits VLM applicability in real-world scenarios. To systematically study VLM capabilities in human perception for HRI and performance-latency trade-offs, we introduce HRIBench, a visual question-answering (VQA) benchmark designed to evaluate VLMs across a diverse set of human perceptual tasks critical for HRI. HRIBench covers five key domains: (1) non-verbal cue understanding, (2) verbal instruction understanding, (3) human-robot object relationship understanding, (4) social navigation, and (5) person identification. To construct HRIBench, we collected data from real-world HRI environments to curate questions for non-verbal cue understanding, and leveraged publicly available datasets for the remaining four domains. We curated 200 VQA questions for each domain, resulting in a total of 1000 questions for HRIBench. We then conducted a comprehensive evaluation of both state-of-the-art closed-source and open-source VLMs (N=11) on HRIBench. Our results show that, despite their generalizability, current VLMs still struggle with core perceptual capabilities essential for HRI. Moreover, none of the models within our experiments demonstrated a satisfactory performance-latency trade-off suitable for real-time deployment, underscoring the need for future research on developing smaller, low-latency VLMs with improved human perception capabilities. HRIBench and our results can be found in this Github repository: https://github.com/interaction-lab/HRIBench.
comment: Accepted to the 19th International Symposium on Experimental Robotics (ISER 2025)
Leveraging Correlation Across Test Platforms for Variance-Reduced Metric Estimation
Learning-based robotic systems demand rigorous validation to assure reliable performance, but extensive real-world testing is often prohibitively expensive, and if conducted may still yield insufficient data for high-confidence guarantees. In this work, we introduce a general estimation framework that leverages paired data across test platforms, e.g., paired simulation and real-world observations, to achieve better estimates of real-world metrics via the method of control variates. By incorporating cheap and abundant auxiliary measurements (for example, simulator outputs) as control variates for costly real-world samples, our method provably reduces the variance of Monte Carlo estimates and thus requires significantly fewer real-world samples to attain a specified confidence bound on the mean performance. We provide theoretical analysis characterizing the variance and sample-efficiency improvement, and demonstrate empirically in autonomous driving and quadruped robotics settings that our approach achieves high-probability bounds with markedly improved sample efficiency. Our technique can lower the real-world testing burden for validating the performance of the stack, thereby enabling more efficient and cost-effective experimental evaluation of robotic systems.
☆ Lightweight Multi-Frame Integration for Robust YOLO Object Detection in Videos
Modern image-based object detection models, such as YOLOv7, primarily process individual frames independently, thus ignoring valuable temporal context naturally present in videos. Meanwhile, existing video-based detection methods often introduce complex temporal modules, significantly increasing model size and computational complexity. In practical applications such as surveillance and autonomous driving, transient challenges including motion blur, occlusions, and abrupt appearance changes can severely degrade single-frame detection performance. To address these issues, we propose a straightforward yet highly effective strategy: stacking multiple consecutive frames as input to a YOLO-based detector while supervising only the output corresponding to a single target frame. This approach leverages temporal information with minimal modifications to existing architectures, preserving simplicity, computational efficiency, and real-time inference capability. Extensive experiments on the challenging MOT20Det and our BOAT360 datasets demonstrate that our method improves detection robustness, especially for lightweight models, effectively narrowing the gap between compact and heavy detection networks. Additionally, we contribute the BOAT360 benchmark dataset, comprising annotated fisheye video sequences captured from a boat, to support future research in multi-frame video object detection in challenging real-world scenarios.
comment: Submitted to ECMR 2025
☆ Critical Anatomy-Preserving & Terrain-Augmenting Navigation (CAPTAiN): Application to Laminectomy Surgical Education
Surgical training remains a crucial milestone in modern medicine, with procedures such as laminectomy exemplifying the high risks involved. Laminectomy drilling requires precise manual control to mill bony tissue while preserving spinal segment integrity and avoiding breaches in the dura: the protective membrane surrounding the spinal cord. Despite unintended tears occurring in up to 11.3% of cases, no assistive tools are currently utilized to reduce this risk. Variability in patient anatomy further complicates learning for novice surgeons. This study introduces CAPTAiN, a critical anatomy-preserving and terrain-augmenting navigation system that provides layered, color-coded voxel guidance to enhance anatomical awareness during spinal drilling. CAPTAiN was evaluated against a standard non-navigated approach through 110 virtual laminectomies performed by 11 orthopedic residents and medical students. CAPTAiN significantly improved surgical completion rates of target anatomy (87.99% vs. 74.42%) and reduced cognitive load across multiple NASA-TLX domains. It also minimized performance gaps across experience levels, enabling novices to perform on par with advanced trainees. These findings highlight CAPTAiN's potential to optimize surgical execution and support skill development across experience levels. Beyond laminectomy, it demonstrates potential for broader applications across various surgical and drilling procedures, including those in neurosurgery, otolaryngology, and other medical fields.
☆ Behavior Foundation Model: Towards Next-Generation Whole-Body Control System of Humanoid Robots
Humanoid robots are drawing significant attention as versatile platforms for complex motor control, human-robot interaction, and general-purpose physical intelligence. However, achieving efficient whole-body control (WBC) in humanoids remains a fundamental challenge due to sophisticated dynamics, underactuation, and diverse task requirements. While learning-based controllers have shown promise for complex tasks, their reliance on labor-intensive and costly retraining for new scenarios limits real-world applicability. To address these limitations, behavior(al) foundation models (BFMs) have emerged as a new paradigm that leverages large-scale pretraining to learn reusable primitive skills and behavioral priors, enabling zero-shot or rapid adaptation to a wide range of downstream tasks. In this paper, we present a comprehensive overview of BFMs for humanoid WBC, tracing their development across diverse pre-training pipelines. Furthermore, we discuss real-world applications, current limitations, urgent challenges, and future opportunities, positioning BFMs as a key approach toward scalable and general-purpose humanoid intelligence. Finally, we provide a curated and long-term list of BFM papers and projects to facilitate more subsequent research, which is available at https://github.com/yuanmingqi/awesome-bfm-papers.
comment: 19 pages, 8 figures
☆ EANS: Reducing Energy Consumption for UAV with an Environmental Adaptive Navigation Strategy
Unmanned Aerial Vehicles (UAVS) are limited by the onboard energy. Refinement of the navigation strategy directly affects both the flight velocity and the trajectory based on the adjustment of key parameters in the UAVS pipeline, thus reducing energy consumption. However, existing techniques tend to adopt static and conservative strategies in dynamic scenarios, leading to inefficient energy reduction. Dynamically adjusting the navigation strategy requires overcoming the challenges including the task pipeline interdependencies, the environmental-strategy correlations, and the selecting parameters. To solve the aforementioned problems, this paper proposes a method to dynamically adjust the navigation strategy of the UAVS by analyzing its dynamic characteristics and the temporal characteristics of the autonomous navigation pipeline, thereby reducing UAVS energy consumption in response to environmental changes. We compare our method with the baseline through hardware-in-the-loop (HIL) simulation and real-world experiments, showing our method 3.2X and 2.6X improvements in mission time, 2.4X and 1.6X improvements in energy, respectively.
☆ A Review of Personalisation in Human-Robot Collaboration and Future Perspectives Towards Industry 5.0
The shift in research focus from Industry 4.0 to Industry 5.0 (I5.0) promises a human-centric workplace, with social and well-being values at the centre of technological implementation. Human-Robot Collaboration (HRC) is a core aspect of I5.0 development, with an increase in adaptive and personalised interactions and behaviours. This review investigates recent advancements towards personalised HRC, where user-centric adaption is key. There is a growing trend for adaptable HRC research, however there lacks a consistent and unified approach. The review highlights key research trends on which personal factors are considered, workcell and interaction design, and adaptive task completion. This raises various key considerations for future developments, particularly around the ethical and regulatory development of personalised systems, which are discussed in detail.
comment: Accepted by the 2025 34th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
☆ Learn to Position -- A Novel Meta Method for Robotic Positioning
Absolute positioning accuracy is a vital specification for robots. Achieving high position precision can be challenging due to the presence of various sources of errors. Meanwhile, accurately depicting these errors is difficult due to their stochastic nature. Vision-based methods are commonly integrated to guide robotic positioning, but their performance can be highly impacted by inevitable occlusions or adverse lighting conditions. Drawing on the aforementioned considerations, a vision-free, model-agnostic meta-method for compensating robotic position errors is proposed, which maximizes the probability of accurate robotic position via interactive feedback. Meanwhile, the proposed method endows the robot with the capability to learn and adapt to various position errors, which is inspired by the human's instinct for grasping under uncertainties. Furthermore, it is a self-learning and self-adaptive method able to accelerate the robotic positioning process as more examples are incorporated and learned. Empirical studies validate the effectiveness of the proposed method. As of the writing of this paper, the proposed meta search method has already been implemented in a robotic-based assembly line for odd-form electronic components.
☆ Multimodal Behaviour Trees for Robotic Laboratory Task Automation ICRA 2025
Laboratory robotics offer the capability to conduct experiments with a high degree of precision and reproducibility, with the potential to transform scientific research. Trivial and repeatable tasks; e.g., sample transportation for analysis and vial capping are well-suited for robots; if done successfully and reliably, chemists could contribute their efforts towards more critical research activities. Currently, robots can perform these tasks faster than chemists, but how reliable are they? Improper capping could result in human exposure to toxic chemicals which could be fatal. To ensure that robots perform these tasks as accurately as humans, sensory feedback is required to assess the progress of task execution. To address this, we propose a novel methodology based on behaviour trees with multimodal perception. Along with automating robotic tasks, this methodology also verifies the successful execution of the task, a fundamental requirement in safety-critical environments. The experimental evaluation was conducted on two lab tasks: sample vial capping and laboratory rack insertion. The results show high success rate, i.e., 88% for capping and 92% for insertion, along with strong error detection capabilities. This ultimately proves the robustness and reliability of our approach and that using multimodal behaviour trees should pave the way towards the next generation of robotic chemists.
comment: 7 pages, 5 figures, accepted and presented in ICRA 2025
☆ SPARK: Graph-Based Online Semantic Integration System for Robot Task Planning
The ability to update information acquired through various means online during task execution is crucial for a general-purpose service robot. This information includes geometric and semantic data. While SLAM handles geometric updates on 2D maps or 3D point clouds, online updates of semantic information remain unexplored. We attribute the challenge to the online scene graph representation, for its utility and scalability. Building on previous works regarding offline scene graph representations, we study online graph representations of semantic information in this work. We introduce SPARK: Spatial Perception and Robot Knowledge Integration. This framework extracts semantic information from environment-embedded cues and updates the scene graph accordingly, which is then used for subsequent task planning. We demonstrate that graph representations of spatial relationships enhance the robot system's ability to perform tasks in dynamic environments and adapt to unconventional spatial cues, like gestures.
☆ Enhanced Robotic Navigation in Deformable Environments using Learning from Demonstration and Dynamic Modulation IROS 2025
This paper presents a novel approach for robot navigation in environments containing deformable obstacles. By integrating Learning from Demonstration (LfD) with Dynamical Systems (DS), we enable adaptive and efficient navigation in complex environments where obstacles consist of both soft and hard regions. We introduce a dynamic modulation matrix within the DS framework, allowing the system to distinguish between traversable soft regions and impassable hard areas in real-time, ensuring safe and flexible trajectory planning. We validate our method through extensive simulations and robot experiments, demonstrating its ability to navigate deformable environments. Additionally, the approach provides control over both trajectory and velocity when interacting with deformable objects, including at intersections, while maintaining adherence to the original DS trajectory and dynamically adapting to obstacles for smooth and reliable navigation.
comment: Accepted to IROS 2025
☆ CARMA: Context-Aware Situational Grounding of Human-Robot Group Interactions by Combining Vision-Language Models with Object and Action Recognition
We introduce CARMA, a system for situational grounding in human-robot group interactions. Effective collaboration in such group settings requires situational awareness based on a consistent representation of present persons and objects coupled with an episodic abstraction of events regarding actors and manipulated objects. This calls for a clear and consistent assignment of instances, ensuring that robots correctly recognize and track actors, objects, and their interactions over time. To achieve this, CARMA uniquely identifies physical instances of such entities in the real world and organizes them into grounded triplets of actors, objects, and actions. To validate our approach, we conducted three experiments, where multiple humans and a robot interact: collaborative pouring, handovers, and sorting. These scenarios allow the assessment of the system's capabilities as to role distinction, multi-actor awareness, and consistent instance identification. Our experiments demonstrate that the system can reliably generate accurate actor-action-object triplets, providing a structured and robust foundation for applications requiring spatiotemporal reasoning and situated decision-making in collaborative settings.
☆ PIMBS: Efficient Body Schema Learning for Musculoskeletal Humanoids with Physics-Informed Neural Networks
Musculoskeletal humanoids are robots that closely mimic the human musculoskeletal system, offering various advantages such as variable stiffness control, redundancy, and flexibility. However, their body structure is complex, and muscle paths often significantly deviate from geometric models. To address this, numerous studies have been conducted to learn body schema, particularly the relationships among joint angles, muscle tension, and muscle length. These studies typically rely solely on data collected from the actual robot, but this data collection process is labor-intensive, and learning becomes difficult when the amount of data is limited. Therefore, in this study, we propose a method that applies the concept of Physics-Informed Neural Networks (PINNs) to the learning of body schema in musculoskeletal humanoids, enabling high-accuracy learning even with a small amount of data. By utilizing not only data obtained from the actual robot but also the physical laws governing the relationship between torque and muscle tension under the assumption of correct joint structure, more efficient learning becomes possible. We apply the proposed method to both simulation and an actual musculoskeletal humanoid and discuss its effectiveness and characteristics.
comment: Accepted at IEEE Robotics and Automation Letters
☆ Building Forest Inventories with Autonomous Legged Robots -- System, Lessons, and Challenges Ahead
Legged robots are increasingly being adopted in industries such as oil, gas, mining, nuclear, and agriculture. However, new challenges exist when moving into natural, less-structured environments, such as forestry applications. This paper presents a prototype system for autonomous, under-canopy forest inventory with legged platforms. Motivated by the robustness and mobility of modern legged robots, we introduce a system architecture which enabled a quadruped platform to autonomously navigate and map forest plots. Our solution involves a complete navigation stack for state estimation, mission planning, and tree detection and trait estimation. We report the performance of the system from trials executed over one and a half years in forests in three European countries. Our results with the ANYmal robot demonstrate that we can survey plots up to 1 ha plot under 30 min, while also identifying trees with typical DBH accuracy of 2cm. The findings of this project are presented as five lessons and challenges. Particularly, we discuss the maturity of hardware development, state estimation limitations, open problems in forest navigation, future avenues for robotic forest inventory, and more general challenges to assess autonomous systems. By sharing these lessons and challenges, we offer insight and new directions for future research on legged robots, navigation systems, and applications in natural environments. Additional videos can be found in https://dynamic.robots.ox.ac.uk/projects/legged-robots
comment: 20 pages, 13 figures. Pre-print version of the accepted paper for IEEE Transactions on Field Robotics (T-FR)
☆ Near Time-Optimal Hybrid Motion Planning for Timber Cranes ICRA 2025
Efficient, collision-free motion planning is essential for automating large-scale manipulators like timber cranes. They come with unique challenges such as hydraulic actuation constraints and passive joints-factors that are seldom addressed by current motion planning methods. This paper introduces a novel approach for time-optimal, collision-free hybrid motion planning for a hydraulically actuated timber crane with passive joints. We enhance the via-point-based stochastic trajectory optimization (VP-STO) algorithm to include pump flow rate constraints and develop a novel collision cost formulation to improve robustness. The effectiveness of the enhanced VP-STO as an optimal single-query global planner is validated by comparison with an informed RRT* algorithm using a time-optimal path parameterization (TOPP). The overall hybrid motion planning is formed by combination with a gradient-based local planner that is designed to follow the global planner's reference and to systematically consider the passive joint dynamics for both collision avoidance and sway damping.
comment: Accepted at ICRA 2025
☆ Real-Time Obstacle Avoidance Algorithms for Unmanned Aerial and Ground Vehicles
The growing use of mobile robots in sectors such as automotive, agriculture, and rescue operations reflects progress in robotics and autonomy. In unmanned aerial vehicles (UAVs), most research emphasizes visual SLAM, sensor fusion, and path planning. However, applying UAVs to search and rescue missions in disaster zones remains underexplored, especially for autonomous navigation. This report develops methods for real-time and secure UAV maneuvering in complex 3D environments, crucial during forest fires. Building upon past research, it focuses on designing navigation algorithms for unfamiliar and hazardous environments, aiming to improve rescue efficiency and safety through UAV-based early warning and rapid response. The work unfolds in phases. First, a 2D fusion navigation strategy is explored, initially for mobile robots, enabling safe movement in dynamic settings. This sets the stage for advanced features such as adaptive obstacle handling and decision-making enhancements. Next, a novel 3D reactive navigation strategy is introduced for collision-free movement in forest fire simulations, addressing the unique challenges of UAV operations in such scenarios. Finally, the report proposes a unified control approach that integrates UAVs and unmanned ground vehicles (UGVs) for coordinated rescue missions in forest environments. Each phase presents challenges, proposes control models, and validates them with mathematical and simulation-based evidence. The study offers practical value and academic insights for improving the role of UAVs in natural disaster rescue operations.
☆ Why Robots Are Bad at Detecting Their Mistakes: Limitations of Miscommunication Detection in Human-Robot Dialogue
Detecting miscommunication in human-robot interaction is a critical function for maintaining user engagement and trust. While humans effortlessly detect communication errors in conversations through both verbal and non-verbal cues, robots face significant challenges in interpreting non-verbal feedback, despite advances in computer vision for recognizing affective expressions. This research evaluates the effectiveness of machine learning models in detecting miscommunications in robot dialogue. Using a multi-modal dataset of 240 human-robot conversations, where four distinct types of conversational failures were systematically introduced, we assess the performance of state-of-the-art computer vision models. After each conversational turn, users provided feedback on whether they perceived an error, enabling an analysis of the models' ability to accurately detect robot mistakes. Despite using state-of-the-art models, the performance barely exceeds random chance in identifying miscommunication, while on a dataset with more expressive emotional content, they successfully identified confused states. To explore the underlying cause, we asked human raters to do the same. They could also only identify around half of the induced miscommunications, similarly to our model. These results uncover a fundamental limitation in identifying robot miscommunications in dialogue: even when users perceive the induced miscommunication as such, they often do not communicate this to their robotic conversation partner. This knowledge can shape expectations of the performance of computer vision models and can help researchers to design better human-robot conversations by deliberately eliciting feedback where needed.
comment: Accepted at the 34th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN 2025)
☆ Generating and Customizing Robotic Arm Trajectories using Neural Networks
We introduce a neural network approach for generating and customizing the trajectory of a robotic arm, that guarantees precision and repeatability. To highlight the potential of this novel method, we describe the design and implementation of the technique and show its application in an experimental setting of cognitive robotics. In this scenario, the NICO robot was characterized by the ability to point to specific points in space with precise linear movements, increasing the predictability of the robotic action during its interaction with humans. To achieve this goal, the neural network computes the forward kinematics of the robot arm. By integrating it with a generator of joint angles, another neural network was developed and trained on an artificial dataset created from suitable start and end poses of the robotic arm. Through the computation of angular velocities, the robot was characterized by its ability to perform the movement, and the quality of its action was evaluated in terms of shape and accuracy. Thanks to its broad applicability, our approach successfully generates precise trajectories that could be customized in their shape and adapted to different settings.
comment: The code is released at https://github.com/andylucny/nico2/tree/main/generate
☆ Personalized Mental State Evaluation in Human-Robot Interaction using Federated Learning
With the advent of Industry 5.0, manufacturers are increasingly prioritizing worker well-being alongside mass customization. Stress-aware Human-Robot Collaboration (HRC) plays a crucial role in this paradigm, where robots must adapt their behavior to human mental states to improve collaboration fluency and safety. This paper presents a novel framework that integrates Federated Learning (FL) to enable personalized mental state evaluation while preserving user privacy. By leveraging physiological signals, including EEG, ECG, EDA, EMG, and respiration, a multimodal model predicts an operator's stress level, facilitating real-time robot adaptation. The FL-based approach allows distributed on-device training, ensuring data confidentiality while improving model generalization and individual customization. Results demonstrate that the deployment of an FL approach results in a global model with performance in stress prediction accuracy comparable to a centralized training approach. Moreover, FL allows for enhancing personalization, thereby optimizing human-robot interaction in industrial settings, while preserving data privacy. The proposed framework advances privacy-preserving, adaptive robotics to enhance workforce well-being in smart manufacturing.
☆ PSALM-V: Automating Symbolic Planning in Interactive Visual Environments with Large Language Models
We propose PSALM-V, the first autonomous neuro-symbolic learning system able to induce symbolic action semantics (i.e., pre- and post-conditions) in visual environments through interaction. PSALM-V bootstraps reliable symbolic planning without expert action definitions, using LLMs to generate heuristic plans and candidate symbolic semantics. Previous work has explored using large language models to generate action semantics for Planning Domain Definition Language (PDDL)-based symbolic planners. However, these approaches have primarily focused on text-based domains or relied on unrealistic assumptions, such as access to a predefined problem file, full observability, or explicit error messages. By contrast, PSALM-V dynamically infers PDDL problem files and domain action semantics by analyzing execution outcomes and synthesizing possible error explanations. The system iteratively generates and executes plans while maintaining a tree-structured belief over possible action semantics for each action, iteratively refining these beliefs until a goal state is reached. Simulated experiments of task completion in ALFRED demonstrate that PSALM-V increases the plan success rate from 37% (Claude-3.7) to 74% in partially observed setups. Results on two 2D game environments, RTFM and Overcooked-AI, show that PSALM-V improves step efficiency and succeeds in domain induction in multi-agent settings. PSALM-V correctly induces PDDL pre- and post-conditions for real-world robot BlocksWorld tasks, despite low-level manipulation failures from the robot.
♻ ☆ EvDetMAV: Generalized MAV Detection from Moving Event Cameras
Existing micro aerial vehicle (MAV) detection methods mainly rely on the target's appearance features in RGB images, whose diversity makes it difficult to achieve generalized MAV detection. We notice that different types of MAVs share the same distinctive features in event streams due to their high-speed rotating propellers, which are hard to see in RGB images. This paper studies how to detect different types of MAVs from an event camera by fully exploiting the features of propellers in the original event stream. The proposed method consists of three modules to extract the salient and spatio-temporal features of the propellers while filtering out noise from background objects and camera motion. Since there are no existing event-based MAV datasets, we introduce a novel MAV dataset for the community. This is the first event-based MAV dataset comprising multiple scenarios and different types of MAVs. Without training, our method significantly outperforms state-of-the-art methods and can deal with challenging scenarios, achieving a precision rate of 83.0\% (+30.3\%) and a recall rate of 81.5\% (+36.4\%) on the proposed testing dataset. The dataset and code are available at: https://github.com/WindyLab/EvDetMAV.
comment: 8 pages, 7 figures. This paper is accepted by IEEE Robotics and Automation Letters
♻ ☆ AnchorDP3: 3D Affordance Guided Sparse Diffusion Policy for Robotic Manipulation
We present AnchorDP3, a diffusion policy framework for dual-arm robotic manipulation that achieves state-of-the-art performance in highly randomized environments. AnchorDP3 integrates three key innovations: (1) Simulator-Supervised Semantic Segmentation, using rendered ground truth to explicitly segment task-critical objects within the point cloud, which provides strong affordance priors; (2) Task-Conditioned Feature Encoders, lightweight modules processing augmented point clouds per task, enabling efficient multi-task learning through a shared diffusion-based action expert; (3) Affordance-Anchored Keypose Diffusion with Full State Supervision, replacing dense trajectory prediction with sparse, geometrically meaningful action anchors, i.e., keyposes such as pre-grasp pose, grasp pose directly anchored to affordances, drastically simplifying the prediction space; the action expert is forced to predict both robot joint angles and end-effector poses simultaneously, which exploits geometric consistency to accelerate convergence and boost accuracy. Trained on large-scale, procedurally generated simulation data, AnchorDP3 achieves a 98.7% average success rate in the RoboTwin benchmark across diverse tasks under extreme randomization of objects, clutter, table height, lighting, and backgrounds. This framework, when integrated with the RoboTwin real-to-sim pipeline, has the potential to enable fully autonomous generation of deployable visuomotor policies from only scene and instruction, totally eliminating human demonstrations from learning manipulation skills.
♻ ☆ FORTE: Tactile Force and Slip Sensing on Compliant Fingers for Delicate Manipulation
Handling delicate and fragile objects remains a major challenge for robotic manipulation, especially for rigid parallel grippers. While the simplicity and versatility of parallel grippers have led to widespread adoption, these grippers are limited by their heavy reliance on visual feedback. Tactile sensing and soft robotics can add responsiveness and compliance. However, existing methods typically involve high integration complexity or suffer from slow response times. In this work, we introduce FORTE, a tactile sensing system embedded in compliant gripper fingers. FORTE uses 3D-printed fin-ray grippers with internal air channels to provide low-latency force and slip feedback. FORTE applies just enough force to grasp objects without damaging them, while remaining easy to fabricate and integrate. We find that FORTE can accurately estimate grasping forces from 0-8 N with an average error of 0.2 N, and detect slip events within 100 ms of occurring. We demonstrate FORTE's ability to grasp a wide range of slippery, fragile, and deformable objects. In particular, FORTE grasps fragile objects like raspberries and potato chips with a 98.6% success rate, and achieves 93% accuracy in detecting slip events. These results highlight FORTE's potential as a robust and practical solution for enabling delicate robotic manipulation. Project page: https://merge-lab.github.io/FORTE
♻ ☆ Using Explainable AI and Hierarchical Planning for Outreach with Robots
Understanding how robots plan and execute tasks is crucial in today's world, where they are becoming more prevalent in our daily lives. However, teaching non-experts, such as K-12 students, the complexities of robot planning can be challenging. This work presents an open-source platform, JEDAI.Ed, that simplifies the process using a visual interface that abstracts the details of various planning processes that robots use for performing complex mobile manipulation tasks. Using principles developed in the field of explainable AI, this intuitive platform enables students to use a high-level intuitive instruction set to perform complex tasks, visualize them on an in-built simulator, and to obtain helpful hints and natural language explanations for errors. Finally, JEDAI.Ed, includes an adaptive curriculum generation method that provides students with customized learning ramps. This platform's efficacy was tested through a user study with university students who had little to no computer science background. Our results show that JEDAI.Ed is highly effective in increasing student engagement, teaching robotics programming, and decreasing the time need to solve tasks as compared to baselines.
♻ ☆ ReLink: Computational Circular Design of Planar Linkage Mechanisms Using Available Standard Parts
The Circular Economy framework emphasizes sustainability by reducing resource consumption and waste through the reuse of components and materials. This paper presents ReLink, a computational framework for the circular design of planar linkage mechanisms using available standard parts. Unlike most mechanism design methods, which assume the ability to create custom parts and infinite part availability, ReLink prioritizes the reuse of discrete, standardized components, thus minimizing the need for new parts. The framework consists of two main components: design generation, where a generative design algorithm generates mechanisms from an inventory of available parts, and inverse design, which uses optimization methods to identify designs that match a user-defined trajectory curve. The paper also examines the trade-offs between kinematic performance and CO2 footprint when incorporating new parts. Challenges such as the combinatorial nature of the design problem and the enforcement of valid solutions are addressed. By combining sustainability principles with kinematic synthesis, ReLink lays the groundwork for further research into computational circular design to support the development of systems that integrate reused components into mechanical products.
comment: 29 pages, 18 figures, Submitted
♻ ☆ Steering Your Diffusion Policy with Latent Space Reinforcement Learning
Robotic control policies learned from human demonstrations have achieved impressive results in many real-world applications. However, in scenarios where initial performance is not satisfactory, as is often the case in novel open-world settings, such behavioral cloning (BC)-learned policies typically require collecting additional human demonstrations to further improve their behavior -- an expensive and time-consuming process. In contrast, reinforcement learning (RL) holds the promise of enabling autonomous online policy improvement, but often falls short of achieving this due to the large number of samples it typically requires. In this work we take steps towards enabling fast autonomous adaptation of BC-trained policies via efficient real-world RL. Focusing in particular on diffusion policies -- a state-of-the-art BC methodology -- we propose diffusion steering via reinforcement learning (DSRL): adapting the BC policy by running RL over its latent-noise space. We show that DSRL is highly sample efficient, requires only black-box access to the BC policy, and enables effective real-world autonomous policy improvement. Furthermore, DSRL avoids many of the challenges associated with finetuning diffusion policies, obviating the need to modify the weights of the base policy at all. We demonstrate DSRL on simulated benchmarks, real-world robotic tasks, and for adapting pretrained generalist policies, illustrating its sample efficiency and effective performance at real-world policy improvement.
BEVPlace++: Fast, Robust, and Lightweight LiDAR Global Localization for Unmanned Ground Vehicles
This article introduces BEVPlace++, a novel, fast, and robust LiDAR global localization method for unmanned ground vehicles. It uses lightweight convolutional neural networks (CNNs) on Bird's Eye View (BEV) image-like representations of LiDAR data to achieve accurate global localization through place recognition, followed by 3-DoF pose estimation. Our detailed analyses reveal an interesting fact that CNNs are inherently effective at extracting distinctive features from LiDAR BEV images. Remarkably, keypoints of two BEV images with large translations can be effectively matched using CNN-extracted features. Building on this insight, we design a Rotation Equivariant Module (REM) to obtain distinctive features while enhancing robustness to rotational changes. A Rotation Equivariant and Invariant Network (REIN) is then developed by cascading REM and a descriptor generator, NetVLAD, to sequentially generate rotation equivariant local features and rotation invariant global descriptors. The global descriptors are used first to achieve robust place recognition, and then local features are used for accurate pose estimation. \revise{Experimental results on seven public datasets and our UGV platform demonstrate that BEVPlace++, even when trained on a small dataset (3000 frames of KITTI) only with place labels, generalizes well to unseen environments, performs consistently across different days and years, and adapts to various types of LiDAR scanners.} BEVPlace++ achieves state-of-the-art performance in multiple tasks, including place recognition, loop closure detection, and global localization. Additionally, BEVPlace++ is lightweight, runs in real-time, and does not require accurate pose supervision, making it highly convenient for deployment. \revise{The source codes are publicly available at https://github.com/zjuluolun/BEVPlace2.
comment: Accepted to IEEE Transactions on Robotics
♻ ☆ A0: An Affordance-Aware Hierarchical Model for General Robotic Manipulation
Robotic manipulation faces critical challenges in understanding spatial affordances--the "where" and "how" of object interactions--essential for complex manipulation tasks like wiping a board or stacking objects. Existing methods, including modular-based and end-to-end approaches, often lack robust spatial reasoning capabilities. Unlike recent point-based and flow-based affordance methods that focus on dense spatial representations or trajectory modeling, we propose A0, a hierarchical affordance-aware diffusion model that decomposes manipulation tasks into high-level spatial affordance understanding and low-level action execution. A0 leverages the Embodiment-Agnostic Affordance Representation, which captures object-centric spatial affordances by predicting contact points and post-contact trajectories. A0 is pre-trained on 1 million contact points data and fine-tuned on annotated trajectories, enabling generalization across platforms. Key components include Position Offset Attention for motion-aware feature extraction and a Spatial Information Aggregation Layer for precise coordinate mapping. The model's output is executed by the action execution module. Experiments on multiple robotic systems (Franka, Kinova, Realman, and Dobot) demonstrate A0's superior performance in complex tasks, showcasing its efficiency, flexibility, and real-world applicability.
♻ ☆ Proximal Control of UAVs with Federated Learning for Human-Robot Collaborative Domains
The human-robot interaction (HRI) is a growing area of research. In HRI, complex command (action) classification is still an open problem that usually prevents the real applicability of such a technique. The literature presents some works that use neural networks to detect these actions. However, occlusion is still a major issue in HRI, especially when using uncrewed aerial vehicles (UAVs), since, during the robot's movement, the human operator is often out of the robot's field of view. Furthermore, in multi-robot scenarios, distributed training is also an open problem. In this sense, this work proposes an action recognition and control approach based on Long Short-Term Memory (LSTM) Deep Neural Networks with two layers in association with three densely connected layers and Federated Learning (FL) embedded in multiple drones. The FL enabled our approach to be trained in a distributed fashion, i.e., access to data without the need for cloud or other repositories, which facilitates the multi-robot system's learning. Furthermore, our multi-robot approach results also prevented occlusion situations, with experiments with real robots achieving an accuracy greater than 96%.
comment: version 2
♻ ☆ Physics-informed Imitative Reinforcement Learning for Real-world Driving
Recent advances in imitative reinforcement learning (IRL) have considerably enhanced the ability of autonomous agents to assimilate expert demonstrations, leading to rapid skill acquisition in a range of demanding tasks. However, such learning-based agents face significant challenges when transferring knowledge to highly dynamic closed-loop environments. Their performance is significantly impacted by the conflicting optimization objectives of imitation learning (IL) and reinforcement learning (RL), sample inefficiency, and the complexity of uncovering the hidden world model and physics. To address this challenge, we propose a physics-informed IRL that is entirely data-driven. It leverages both expert demonstration data and exploratory data with a joint optimization objective, allowing the underlying physical principles of vehicle dynamics to emerge naturally from the training process. The performance is evaluated through empirical experiments and results exceed popular IL, RL and IRL algorithms in closed-loop settings on Waymax benchmark. Our approach exhibits 37.8% reduction in collision rate and 22.2% reduction in off-road rate compared to the baseline method.
♻ ☆ Neural Graph Map: Dense Mapping with Efficient Loop Closure Integration WACV 2025
Neural field-based SLAM methods typically employ a single, monolithic field as their scene representation. This prevents efficient incorporation of loop closure constraints and limits scalability. To address these shortcomings, we propose a novel RGB-D neural mapping framework in which the scene is represented by a collection of lightweight neural fields which are dynamically anchored to the pose graph of a sparse visual SLAM system. Our approach shows the ability to integrate large-scale loop closures, while requiring only minimal reintegration. Furthermore, we verify the scalability of our approach by demonstrating successful building-scale mapping taking multiple loop closures into account during the optimization, and show that our method outperforms existing state-of-the-art approaches on large scenes in terms of quality and runtime. Our code is available open-source at https://github.com/KTH-RPL/neural_graph_mapping.
comment: WACV 2025, Project page: https://kth-rpl.github.io/neural_graph_mapping/
♻ ☆ Graph-Assisted Stitching for Offline Hierarchical Reinforcement Learning ICML 2025
Existing offline hierarchical reinforcement learning methods rely on high-level policy learning to generate subgoal sequences. However, their efficiency degrades as task horizons increase, and they lack effective strategies for stitching useful state transitions across different trajectories. We propose Graph-Assisted Stitching (GAS), a novel framework that formulates subgoal selection as a graph search problem rather than learning an explicit high-level policy. By embedding states into a Temporal Distance Representation (TDR) space, GAS clusters semantically similar states from different trajectories into unified graph nodes, enabling efficient transition stitching. A shortest-path algorithm is then applied to select subgoal sequences within the graph, while a low-level policy learns to reach the subgoals. To improve graph quality, we introduce the Temporal Efficiency (TE) metric, which filters out noisy or inefficient transition states, significantly enhancing task performance. GAS outperforms prior offline HRL methods across locomotion, navigation, and manipulation tasks. Notably, in the most stitching-critical task, it achieves a score of 88.3, dramatically surpassing the previous state-of-the-art score of 1.0. Our source code is available at: https://github.com/qortmdgh4141/GAS.
comment: ICML 2025
♻ ☆ Mamba Policy: Towards Efficient 3D Diffusion Policy with Hybrid Selective State Models IROS 2025
Diffusion models have been widely employed in the field of 3D manipulation due to their efficient capability to learn distributions, allowing for precise prediction of action trajectories. However, diffusion models typically rely on large parameter UNet backbones as policy networks, which can be challenging to deploy on resource-constrained devices. Recently, the Mamba model has emerged as a promising solution for efficient modeling, offering low computational complexity and strong performance in sequence modeling. In this work, we propose the Mamba Policy, a lighter but stronger policy that reduces the parameter count by over 80% compared to the original policy network while achieving superior performance. Specifically, we introduce the XMamba Block, which effectively integrates input information with conditional features and leverages a combination of Mamba and Attention mechanisms for deep feature extraction. Extensive experiments demonstrate that the Mamba Policy excels on the Adroit, Dexart, and MetaWorld datasets, requiring significantly fewer computational resources. Additionally, we highlight the Mamba Policy's enhanced robustness in long-horizon scenarios compared to baseline methods and explore the performance of various Mamba variants within the Mamba Policy framework. Real-world experiments are also conducted to further validate its effectiveness. Our open-source project page can be found at https://andycao1125.github.io/mamba_policy/.
comment: Accepted to IROS 2025
♻ ☆ Teacher Motion Priors: Enhancing Robot Locomotion over Challenging Terrain IROS 2025
Achieving robust locomotion on complex terrains remains a challenge due to high dimensional control and environmental uncertainties. This paper introduces a teacher prior framework based on the teacher student paradigm, integrating imitation and auxiliary task learning to improve learning efficiency and generalization. Unlike traditional paradigms that strongly rely on encoder-based state embeddings, our framework decouples the network design, simplifying the policy network and deployment. A high performance teacher policy is first trained using privileged information to acquire generalizable motion skills. The teacher's motion distribution is transferred to the student policy, which relies only on noisy proprioceptive data, via a generative adversarial mechanism to mitigate performance degradation caused by distributional shifts. Additionally, auxiliary task learning enhances the student policy's feature representation, speeding up convergence and improving adaptability to varying terrains. The framework is validated on a humanoid robot, showing a great improvement in locomotion stability on dynamic terrains and significant reductions in development costs. This work provides a practical solution for deploying robust locomotion strategies in humanoid robots.
comment: 8 pages, 6 figures, 6 tables, IROS 2025
♻ ☆ FGS-SLAM: Fourier-based Gaussian Splatting for Real-time SLAM with Sparse and Dense Map Fusion
3D gaussian splatting has advanced simultaneous localization and mapping (SLAM) technology by enabling real-time positioning and the construction of high-fidelity maps. However, the uncertainty in gaussian position and initialization parameters introduces challenges, often requiring extensive iterative convergence and resulting in redundant or insufficient gaussian representations. To address this, we introduce a novel adaptive densification method based on Fourier frequency domain analysis to establish gaussian priors for rapid convergence. Additionally, we propose constructing independent and unified sparse and dense maps, where a sparse map supports efficient tracking via Generalized Iterative Closest Point (GICP) and a dense map creates high-fidelity visual representations. This is the first SLAM system leveraging frequency domain analysis to achieve high-quality gaussian mapping in real-time. Experimental results demonstrate an average frame rate of 36 FPS on Replica and TUM RGB-D datasets, achieving competitive accuracy in both localization and mapping.
♻ ☆ IKDiffuser: A Generative Inverse Kinematics Solver for Multi-arm Robots via Diffusion Model
Solving Inverse Kinematics (IK) problems is fundamental to robotics, but has primarily been successful with single serial manipulators. For multi-arm robotic systems, IK remains challenging due to complex self-collisions, coupled joints, and high-dimensional redundancy. These complexities make traditional IK solvers slow, prone to failure, and lacking in solution diversity. In this paper, we present IKDiffuser, a diffusion-based model designed for fast and diverse IK solution generation for multi-arm robotic systems. IKDiffuser learns the joint distribution over the configuration space, capturing complex dependencies and enabling seamless generalization to multi-arm robotic systems of different structures. In addition, IKDiffuser can incorporate additional objectives during inference without retraining, offering versatility and adaptability for task-specific requirements. In experiments on 6 different multi-arm systems, the proposed IKDiffuser achieves superior solution accuracy, precision, diversity, and computational efficiency compared to existing solvers. The proposed IKDiffuser framework offers a scalable, unified approach to solving multi-arm IK problems, facilitating the potential of multi-arm robotic systems in real-time manipulation tasks.
comment: under review
Computer Vision 111
IPFormer: Visual 3D Panoptic Scene Completion with Context-Adaptive Instance Proposals
Semantic Scene Completion (SSC) has emerged as a pivotal approach for jointly learning scene geometry and semantics, enabling downstream applications such as navigation in mobile robotics. The recent generalization to Panoptic Scene Completion (PSC) advances the SSC domain by integrating instance-level information, thereby enhancing object-level sensitivity in scene understanding. While PSC was introduced using LiDAR modality, methods based on camera images remain largely unexplored. Moreover, recent Transformer-based SSC approaches utilize a fixed set of learned queries to reconstruct objects within the scene volume. Although these queries are typically updated with image context during training, they remain static at test time, limiting their ability to dynamically adapt specifically to the observed scene. To overcome these limitations, we propose IPFormer, the first approach that leverages context-adaptive instance proposals at train and test time to address vision-based 3D Panoptic Scene Completion. Specifically, IPFormer adaptively initializes these queries as panoptic instance proposals derived from image context and further refines them through attention-based encoding and decoding to reason about semantic instance-voxel relationships. Experimental results show that our approach surpasses state-of-the-art methods in overall panoptic metrics PQ$^\dagger$ and PQ-All, matches performance in individual metrics, and achieves a runtime reduction exceeding 14$\times$. Furthermore, our ablation studies reveal that dynamically deriving instance proposals from image context, as opposed to random initialization, leads to a 3.62% increase in PQ-All and a remarkable average improvement of 18.65% in combined Thing-metrics. These results highlight our introduction of context-adaptive instance proposals as a pioneering effort in addressing vision-based 3D Panoptic Scene Completion.
☆ MMSearch-R1: Incentivizing LMMs to Search
Robust deployment of large multimodal models (LMMs) in real-world scenarios requires access to external knowledge sources, given the complexity and dynamic nature of real-world information. Existing approaches such as retrieval-augmented generation (RAG) and prompt engineered search agents rely on rigid pipelines, often leading to inefficient or excessive search behaviors. We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables LMMs to perform on-demand, multi-turn search in real-world Internet environments. Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty. To support training, We collect a multimodal search VQA dataset through a semi-automated pipeline that covers diverse visual and textual knowledge needs and curate a search-balanced subset with both search-required and search-free samples, which proves essential for shaping efficient and on-demand search behavior. Extensive experiments on knowledge-intensive and info-seeking VQA tasks show that our model not only outperforms RAG-based baselines of the same model size, but also matches the performance of a larger RAG-based model while reducing search calls by over 30%. We further analyze key empirical findings to offer actionable insights for advancing research in multimodal search.
comment: Code: https://github.com/EvolvingLMMs-Lab/multimodal-search-r1
☆ EditP23: 3D Editing via Propagation of Image Prompts to Multi-View
We present EditP23, a method for mask-free 3D editing that propagates 2D image edits to multi-view representations in a 3D-consistent manner. In contrast to traditional approaches that rely on text-based prompting or explicit spatial masks, EditP23 enables intuitive edits by conditioning on a pair of images: an original view and its user-edited counterpart. These image prompts are used to guide an edit-aware flow in the latent space of a pre-trained multi-view diffusion model, allowing the edit to be coherently propagated across views. Our method operates in a feed-forward manner, without optimization, and preserves the identity of the original object, in both structure and appearance. We demonstrate its effectiveness across a range of object categories and editing scenarios, achieving high fidelity to the source while requiring no manual masks.
comment: Code, supplementary videos, interactive 3D visualizations, and additional results are available at https://editp23.github.io/
☆ Disentangled representations of microscopy images IJCNN 2025
Microscopy image analysis is fundamental for different applications, from diagnosis to synthetic engineering and environmental monitoring. Modern acquisition systems have granted the possibility to acquire an escalating amount of images, requiring a consequent development of a large collection of deep learning-based automatic image analysis methods. Although deep neural networks have demonstrated great performance in this field, interpretability, an essential requirement for microscopy image analysis, remains an open challenge. This work proposes a Disentangled Representation Learning (DRL) methodology to enhance model interpretability for microscopy image classification. Exploiting benchmark datasets from three different microscopic image domains (plankton, yeast vacuoles, and human cells), we show how a DRL framework, based on transferring a representation learnt from synthetic data, can provide a good trade-off between accuracy and interpretability in this domain.
comment: Published in: International Joint Conference on Neural Networks (IJCNN 2025). Project page: https://github.com/JacopoDapueto/disentangled_microscopy
☆ Joint attitude estimation and 3D neural reconstruction of non-cooperative space objects CVPR 2025
Obtaining a better knowledge of the current state and behavior of objects orbiting Earth has proven to be essential for a range of applications such as active debris removal, in-orbit maintenance, or anomaly detection. 3D models represent a valuable source of information in the field of Space Situational Awareness (SSA). In this work, we leveraged Neural Radiance Fields (NeRF) to perform 3D reconstruction of non-cooperative space objects from simulated images. This scenario is challenging for NeRF models due to unusual camera characteristics and environmental conditions : mono-chromatic images, unknown object orientation, limited viewing angles, absence of diffuse lighting etc. In this work we focus primarly on the joint optimization of camera poses alongside the NeRF. Our experimental results show that the most accurate 3D reconstruction is achieved when training with successive images one-by-one. We estimate camera poses by optimizing an uniform rotation and use regularization to prevent successive poses from being too far apart.
comment: accepted for CVPR 2025 NFBCC workshop
☆ Shape2Animal: Creative Animal Generation from Natural Silhouettes
Humans possess a unique ability to perceive meaningful patterns in ambiguous stimuli, a cognitive phenomenon known as pareidolia. This paper introduces Shape2Animal framework to mimics this imaginative capacity by reinterpreting natural object silhouettes, such as clouds, stones, or flames, as plausible animal forms. Our automated framework first performs open-vocabulary segmentation to extract object silhouette and interprets semantically appropriate animal concepts using vision-language models. It then synthesizes an animal image that conforms to the input shape, leveraging text-to-image diffusion model and seamlessly blends it into the original scene to generate visually coherent and spatially consistent compositions. We evaluated Shape2Animal on a diverse set of real-world inputs, demonstrating its robustness and creative potential. Our Shape2Animal can offer new opportunities for visual storytelling, educational content, digital art, and interactive media design. Our project page is here: https://shape2image.github.io
☆ Weighted Mean Frequencies: a handcraft Fourier feature for 4D Flow MRI segmentation
In recent decades, the use of 4D Flow MRI images has enabled the quantification of velocity fields within a volume of interest and along the cardiac cycle. However, the lack of resolution and the presence of noise in these biomarkers are significant issues. As indicated by recent studies, it appears that biomarkers such as wall shear stress are particularly impacted by the poor resolution of vessel segmentation. The Phase Contrast Magnetic Resonance Angiography (PC-MRA) is the state-of-the-art method to facilitate segmentation. The objective of this work is to introduce a new handcraft feature that provides a novel visualisation of 4D Flow MRI images, which is useful in the segmentation task. This feature, termed Weighted Mean Frequencies (WMF), is capable of revealing the region in three dimensions where a voxel has been passed by pulsatile flow. Indeed, this feature is representative of the hull of all pulsatile velocity voxels. The value of the feature under discussion is illustrated by two experiments. The experiments involved segmenting 4D Flow MRI images using optimal thresholding and deep learning methods. The results obtained demonstrate a substantial enhancement in terms of IoU and Dice, with a respective increase of 0.12 and 0.13 in comparison with the PC-MRA feature, as evidenced by the deep learning task. This feature has the potential to yield valuable insights that could inform future segmentation processes in other vascular regions, such as the heart or the brain.
Video Perception Models for 3D Scene Synthesis
Traditionally, 3D scene synthesis requires expert knowledge and significant manual effort. Automating this process could greatly benefit fields such as architectural design, robotics simulation, virtual reality, and gaming. Recent approaches to 3D scene synthesis often rely on the commonsense reasoning of large language models (LLMs) or strong visual priors of modern image generation models. However, current LLMs demonstrate limited 3D spatial reasoning ability, which restricts their ability to generate realistic and coherent 3D scenes. Meanwhile, image generation-based methods often suffer from constraints in viewpoint selection and multi-view inconsistencies. In this work, we present Video Perception models for 3D Scene synthesis (VIPScene), a novel framework that exploits the encoded commonsense knowledge of the 3D physical world in video generation models to ensure coherent scene layouts and consistent object placements across views. VIPScene accepts both text and image prompts and seamlessly integrates video generation, feedforward 3D reconstruction, and open-vocabulary perception models to semantically and geometrically analyze each object in a scene. This enables flexible scene synthesis with high realism and structural consistency. For more precise analysis, we further introduce First-Person View Score (FPVScore) for coherence and plausibility evaluation, utilizing continuous first-person perspective to capitalize on the reasoning ability of multimodal large language models. Extensive experiments show that VIPScene significantly outperforms existing methods and generalizes well across diverse scenarios. The code will be released.
☆ SFNet: Fusion of Spatial and Frequency-Domain Features for Remote Sensing Image Forgery Detection
The rapid advancement of generative artificial intelligence is producing fake remote sensing imagery (RSI) that is increasingly difficult to detect, potentially leading to erroneous intelligence, fake news, and even conspiracy theories. Existing forgery detection methods typically rely on single visual features to capture predefined artifacts, such as spatial-domain cues to detect forged objects like roads or buildings in RSI, or frequency-domain features to identify artifacts from up-sampling operations in adversarial generative networks (GANs). However, the nature of artifacts can significantly differ depending on geographic terrain, land cover types, or specific features within the RSI. Moreover, these complex artifacts evolve as generative models become more sophisticated. In short, over-reliance on a single visual cue makes existing forgery detectors struggle to generalize across diverse remote sensing data. This paper proposed a novel forgery detection framework called SFNet, designed to identify fake images in diverse remote sensing data by leveraging spatial and frequency domain features. Specifically, to obtain rich and comprehensive visual information, SFNet employs two independent feature extractors to capture spatial and frequency domain features from input RSIs. To fully utilize the complementary domain features, the domain feature mapping module and the hybrid domain feature refinement module(CBAM attention) of SFNet are designed to successively align and fuse the multi-domain features while suppressing redundant information. Experiments on three datasets show that SFNet achieves an accuracy improvement of 4%-15.18% over the state-of-the-art RS forgery detection methods and exhibits robust generalization capabilities. The code is available at https://github.com/GeoX-Lab/RSTI/tree/main/SFNet.
☆ WonderFree: Enhancing Novel View Quality and Cross-View Consistency for 3D Scene Exploration
Interactive 3D scene generation from a single image has gained significant attention due to its potential to create immersive virtual worlds. However, a key challenge in current 3D generation methods is the limited explorability, which cannot render high-quality images during larger maneuvers beyond the original viewpoint, particularly when attempting to move forward into unseen areas. To address this challenge, we propose WonderFree, the first model that enables users to interactively generate 3D worlds with the freedom to explore from arbitrary angles and directions. Specifically, we decouple this challenge into two key subproblems: novel view quality, which addresses visual artifacts and floating issues in novel views, and cross-view consistency, which ensures spatial consistency across different viewpoints. To enhance rendering quality in novel views, we introduce WorldRestorer, a data-driven video restoration model designed to eliminate floaters and artifacts. In addition, a data collection pipeline is presented to automatically gather training data for WorldRestorer, ensuring it can handle scenes with varying styles needed for 3D scene generation. Furthermore, to improve cross-view consistency, we propose ConsistView, a multi-view joint restoration mechanism that simultaneously restores multiple perspectives while maintaining spatiotemporal coherence. Experimental results demonstrate that WonderFree not only enhances rendering quality across diverse viewpoints but also significantly improves global coherence and consistency. These improvements are confirmed by CLIP-based metrics and a user study showing a 77.20% preference for WonderFree over WonderWorld enabling a seamless and immersive 3D exploration experience. The code, model, and data will be publicly available.
☆ TRIM: A Self-Supervised Video Summarization Framework Maximizing Temporal Relative Information and Representativeness
The increasing ubiquity of video content and the corresponding demand for efficient access to meaningful information have elevated video summarization and video highlights as a vital research area. However, many state-of-the-art methods depend heavily either on supervised annotations or on attention-based models, which are computationally expensive and brittle in the face of distribution shifts that hinder cross-domain applicability across datasets. We introduce a pioneering self-supervised video summarization model that captures both spatial and temporal dependencies without the overhead of attention, RNNs, or transformers. Our framework integrates a novel set of Markov process-driven loss metrics and a two-stage self supervised learning paradigm that ensures both performance and efficiency. Our approach achieves state-of-the-art performance on the SUMME and TVSUM datasets, outperforming all existing unsupervised methods. It also rivals the best supervised models, demonstrating the potential for efficient, annotation-free architectures. This paves the way for more generalizable video summarization techniques and challenges the prevailing reliance on complex architectures.
☆ Learning-Based Distance Estimation for 360° Single-Sensor Setups
Accurate distance estimation is a fundamental challenge in robotic perception, particularly in omnidirectional imaging, where traditional geometric methods struggle with lens distortions and environmental variability. In this work, we propose a neural network-based approach for monocular distance estimation using a single 360{\deg} fisheye lens camera. Unlike classical trigonometric techniques that rely on precise lens calibration, our method directly learns and infers the distance of objects from raw omnidirectional inputs, offering greater robustness and adaptability across diverse conditions. We evaluate our approach on three 360{\deg} datasets (LOAF, ULM360, and a newly captured dataset Boat360), each representing distinct environmental and sensor setups. Our experimental results demonstrate that the proposed learning-based model outperforms traditional geometry-based methods and other learning baselines in both accuracy and robustness. These findings highlight the potential of deep learning for real-time omnidirectional distance estimation, making our approach particularly well-suited for low-cost applications in robotics, autonomous navigation, and surveillance.
comment: Submitted to ECMR 2025
☆ Dense Video Captioning using Graph-based Sentence Summarization
Recently, dense video captioning has made attractive progress in detecting and captioning all events in a long untrimmed video. Despite promising results were achieved, most existing methods do not sufficiently explore the scene evolution within an event temporal proposal for captioning, and therefore perform less satisfactorily when the scenes and objects change over a relatively long proposal. To address this problem, we propose a graph-based partition-and-summarization (GPaS) framework for dense video captioning within two stages. For the ``partition" stage, a whole event proposal is split into short video segments for captioning at a finer level. For the ``summarization" stage, the generated sentences carrying rich description information for each segment are summarized into one sentence to describe the whole event. We particularly focus on the ``summarization" stage, and propose a framework that effectively exploits the relationship between semantic words for summarization. We achieve this goal by treating semantic words as nodes in a graph and learning their interactions by coupling Graph Convolutional Network (GCN) and Long Short Term Memory (LSTM), with the aid of visual cues. Two schemes of GCN-LSTM Interaction (GLI) modules are proposed for seamless integration of GCN and LSTM. The effectiveness of our approach is demonstrated via an extensive comparison with the state-of-the-arts methods on the two benchmarks ActivityNet Captions dataset and YouCook II dataset.
comment: 12 pages
☆ Causal Representation Learning with Observational Grouping for CXR Classification
Identifiable causal representation learning seeks to uncover the true causal relationships underlying a data generation process. In medical imaging, this presents opportunities to improve the generalisability and robustness of task-specific latent features. This work introduces the concept of grouping observations to learn identifiable representations for disease classification in chest X-rays via an end-to-end framework. Our experiments demonstrate that these causal representations improve generalisability and robustness across multiple classification tasks when grouping is used to enforce invariance w.r.t race, sex, and imaging views.
☆ Show, Tell and Summarize: Dense Video Captioning Using Visual Cue Aided Sentence Summarization
In this work, we propose a division-and-summarization (DaS) framework for dense video captioning. After partitioning each untrimmed long video as multiple event proposals, where each event proposal consists of a set of short video segments, we extract visual feature (e.g., C3D feature) from each segment and use the existing image/video captioning approach to generate one sentence description for this segment. Considering that the generated sentences contain rich semantic descriptions about the whole event proposal, we formulate the dense video captioning task as a visual cue aided sentence summarization problem and propose a new two stage Long Short Term Memory (LSTM) approach equipped with a new hierarchical attention mechanism to summarize all generated sentences as one descriptive sentence with the aid of visual features. Specifically, the first-stage LSTM network takes all semantic words from the generated sentences and the visual features from all segments within one event proposal as the input, and acts as the encoder to effectively summarize both semantic and visual information related to this event proposal. The second-stage LSTM network takes the output from the first-stage LSTM network and the visual features from all video segments within one event proposal as the input, and acts as the decoder to generate one descriptive sentence for this event proposal. Our comprehensive experiments on the ActivityNet Captions dataset demonstrate the effectiveness of our newly proposed DaS framework for dense video captioning.
comment: 10 pages
☆ HRIBench: Benchmarking Vision-Language Models for Real-Time Human Perception in Human-Robot Interaction
Real-time human perception is crucial for effective human-robot interaction (HRI). Large vision-language models (VLMs) offer promising generalizable perceptual capabilities but often suffer from high latency, which negatively impacts user experience and limits VLM applicability in real-world scenarios. To systematically study VLM capabilities in human perception for HRI and performance-latency trade-offs, we introduce HRIBench, a visual question-answering (VQA) benchmark designed to evaluate VLMs across a diverse set of human perceptual tasks critical for HRI. HRIBench covers five key domains: (1) non-verbal cue understanding, (2) verbal instruction understanding, (3) human-robot object relationship understanding, (4) social navigation, and (5) person identification. To construct HRIBench, we collected data from real-world HRI environments to curate questions for non-verbal cue understanding, and leveraged publicly available datasets for the remaining four domains. We curated 200 VQA questions for each domain, resulting in a total of 1000 questions for HRIBench. We then conducted a comprehensive evaluation of both state-of-the-art closed-source and open-source VLMs (N=11) on HRIBench. Our results show that, despite their generalizability, current VLMs still struggle with core perceptual capabilities essential for HRI. Moreover, none of the models within our experiments demonstrated a satisfactory performance-latency trade-off suitable for real-time deployment, underscoring the need for future research on developing smaller, low-latency VLMs with improved human perception capabilities. HRIBench and our results can be found in this Github repository: https://github.com/interaction-lab/HRIBench.
comment: Accepted to the 19th International Symposium on Experimental Robotics (ISER 2025)
☆ AdvMIM: Adversarial Masked Image Modeling for Semi-Supervised Medical Image Segmentation MICCAI 2025
Vision Transformer has recently gained tremendous popularity in medical image segmentation task due to its superior capability in capturing long-range dependencies. However, transformer requires a large amount of labeled data to be effective, which hinders its applicability in annotation scarce semi-supervised learning scenario where only limited labeled data is available. State-of-the-art semi-supervised learning methods propose combinatorial CNN-Transformer learning to cross teach a transformer with a convolutional neural network, which achieves promising results. However, it remains a challenging task to effectively train the transformer with limited labeled data. In this paper, we propose an adversarial masked image modeling method to fully unleash the potential of transformer for semi-supervised medical image segmentation. The key challenge in semi-supervised learning with transformer lies in the lack of sufficient supervision signal. To this end, we propose to construct an auxiliary masked domain from original domain with masked image modeling and train the transformer to predict the entire segmentation mask with masked inputs to increase supervision signal. We leverage the original labels from labeled data and pseudo-labels from unlabeled data to learn the masked domain. To further benefit the original domain from masked domain, we provide a theoretical analysis of our method from a multi-domain learning perspective and devise a novel adversarial training loss to reduce the domain gap between the original and masked domain, which boosts semi-supervised learning performance. We also extend adversarial masked image modeling to CNN network. Extensive experiments on three public medical image segmentation datasets demonstrate the effectiveness of our method, where our method outperforms existing methods significantly. Our code is publicly available at https://github.com/zlheui/AdvMIM.
comment: Accepted to MICCAI 2025
☆ Lightweight Multi-Frame Integration for Robust YOLO Object Detection in Videos
Modern image-based object detection models, such as YOLOv7, primarily process individual frames independently, thus ignoring valuable temporal context naturally present in videos. Meanwhile, existing video-based detection methods often introduce complex temporal modules, significantly increasing model size and computational complexity. In practical applications such as surveillance and autonomous driving, transient challenges including motion blur, occlusions, and abrupt appearance changes can severely degrade single-frame detection performance. To address these issues, we propose a straightforward yet highly effective strategy: stacking multiple consecutive frames as input to a YOLO-based detector while supervising only the output corresponding to a single target frame. This approach leverages temporal information with minimal modifications to existing architectures, preserving simplicity, computational efficiency, and real-time inference capability. Extensive experiments on the challenging MOT20Det and our BOAT360 datasets demonstrate that our method improves detection robustness, especially for lightweight models, effectively narrowing the gap between compact and heavy detection networks. Additionally, we contribute the BOAT360 benchmark dataset, comprising annotated fisheye video sequences captured from a boat, to support future research in multi-frame video object detection in challenging real-world scenarios.
comment: Submitted to ECMR 2025
Pay Less Attention to Deceptive Artifacts: Robust Detection of Compressed Deepfakes on Online Social Networks
With the rapid advancement of deep learning, particularly through generative adversarial networks (GANs) and diffusion models (DMs), AI-generated images, or ``deepfakes", have become nearly indistinguishable from real ones. These images are widely shared across Online Social Networks (OSNs), raising concerns about their misuse. Existing deepfake detection methods overlook the ``block effects" introduced by compression in OSNs, which obscure deepfake artifacts, and primarily focus on raw images, rarely encountered in real-world scenarios. To address these challenges, we propose PLADA (Pay Less Attention to Deceptive Artifacts), a novel framework designed to tackle the lack of paired data and the ineffective use of compressed images. PLADA consists of two core modules: Block Effect Eraser (B2E), which uses a dual-stage attention mechanism to handle block effects, and Open Data Aggregation (ODA), which processes both paired and unpaired data to improve detection. Extensive experiments across 26 datasets demonstrate that PLADA achieves a remarkable balance in deepfake detection, outperforming SoTA methods in detecting deepfakes on OSNs, even with limited paired data and compression. More importantly, this work introduces the ``block effect" as a critical factor in deepfake detection, providing a robust solution for open-world scenarios. Our code is available at https://github.com/ManyiLee/PLADA.
comment: 20 pages, 10 figures
☆ AI-assisted radiographic analysis in detecting alveolar bone-loss severity and patterns
Periodontitis, a chronic inflammatory disease causing alveolar bone loss, significantly affects oral health and quality of life. Accurate assessment of bone loss severity and pattern is critical for diagnosis and treatment planning. In this study, we propose a novel AI-based deep learning framework to automatically detect and quantify alveolar bone loss and its patterns using intraoral periapical (IOPA) radiographs. Our method combines YOLOv8 for tooth detection with Keypoint R-CNN models to identify anatomical landmarks, enabling precise calculation of bone loss severity. Additionally, YOLOv8x-seg models segment bone levels and tooth masks to determine bone loss patterns (horizontal vs. angular) via geometric analysis. Evaluated on a large, expertly annotated dataset of 1000 radiographs, our approach achieved high accuracy in detecting bone loss severity (intra-class correlation coefficient up to 0.80) and bone loss pattern classification (accuracy 87%). This automated system offers a rapid, objective, and reproducible tool for periodontal assessment, reducing reliance on subjective manual evaluation. By integrating AI into dental radiographic analysis, our framework has the potential to improve early diagnosis and personalized treatment planning for periodontitis, ultimately enhancing patient care and clinical outcomes.
comment: This manuscript is 17 pages with 5 tables and 12 figures. The manuscript is under review at Nature Scientific Reports
☆ A Deep Learning Approach to Identify Rock Bolts in Complex 3D Point Clouds of Underground Mines Captured Using Mobile Laser Scanners
Rock bolts are crucial components of the subterranean support systems in underground mines that provide adequate structural reinforcement to the rock mass to prevent unforeseen hazards like rockfalls. This makes frequent assessments of such bolts critical for maintaining rock mass stability and minimising risks in underground mining operations. Where manual surveying of rock bolts is challenging due to the low light conditions in the underground mines and the time-intensive nature of the process, automated detection of rock bolts serves as a plausible solution. To that end, this study focuses on the automatic identification of rock bolts within medium to large-scale 3D point clouds obtained from underground mines using mobile laser scanners. Existing techniques for automated rock bolt identification primarily rely on feature engineering and traditional machine learning approaches. However, such techniques lack robustness as these point clouds present several challenges due to data noise, varying environments, and complex surrounding structures. Moreover, the target rock bolts are extremely small objects within large-scale point clouds and are often partially obscured due to the application of reinforcement shotcrete. Addressing these challenges, this paper proposes an approach termed DeepBolt, which employs a novel two-stage deep learning architecture specifically designed for handling severe class imbalance for the automatic and efficient identification of rock bolts in complex 3D point clouds. The proposed method surpasses state-of-the-art semantic segmentation models by up to 42.5% in Intersection over Union (IoU) for rock bolt points. Additionally, it outperforms existing rock bolt identification techniques, achieving a 96.41% precision and 96.96% recall in classifying rock bolts, demonstrating its robustness and effectiveness in complex underground environments.
☆ HiWave: Training-Free High-Resolution Image Generation via Wavelet-Based Diffusion Sampling
Diffusion models have emerged as the leading approach for image synthesis, demonstrating exceptional photorealism and diversity. However, training diffusion models at high resolutions remains computationally prohibitive, and existing zero-shot generation techniques for synthesizing images beyond training resolutions often produce artifacts, including object duplication and spatial incoherence. In this paper, we introduce HiWave, a training-free, zero-shot approach that substantially enhances visual fidelity and structural coherence in ultra-high-resolution image synthesis using pretrained diffusion models. Our method employs a two-stage pipeline: generating a base image from the pretrained model followed by a patch-wise DDIM inversion step and a novel wavelet-based detail enhancer module. Specifically, we first utilize inversion methods to derive initial noise vectors that preserve global coherence from the base image. Subsequently, during sampling, our wavelet-domain detail enhancer retains low-frequency components from the base image to ensure structural consistency, while selectively guiding high-frequency components to enrich fine details and textures. Extensive evaluations using Stable Diffusion XL demonstrate that HiWave effectively mitigates common visual artifacts seen in prior methods, achieving superior perceptual quality. A user study confirmed HiWave's performance, where it was preferred over the state-of-the-art alternative in more than 80% of comparisons, highlighting its effectiveness for high-quality, ultra-high-resolution image synthesis without requiring retraining or architectural modifications.
☆ Med-Art: Diffusion Transformer for 2D Medical Text-to-Image Generation
Text-to-image generative models have achieved remarkable breakthroughs in recent years. However, their application in medical image generation still faces significant challenges, including small dataset sizes, and scarcity of medical textual data. To address these challenges, we propose Med-Art, a framework specifically designed for medical image generation with limited data. Med-Art leverages vision-language models to generate visual descriptions of medical images which overcomes the scarcity of applicable medical textual data. Med-Art adapts a large-scale pre-trained text-to-image model, PixArt-$\alpha$, based on the Diffusion Transformer (DiT), achieving high performance under limited data. Furthermore, we propose an innovative Hybrid-Level Diffusion Fine-tuning (HLDF) method, which enables pixel-level losses, effectively addressing issues such as overly saturated colors. We achieve state-of-the-art performance on two medical image datasets, measured by FID, KID, and downstream classification performance.
comment: The project is available at \url{https://medart-ai.github.io}
☆ An Agentic System for Rare Disease Diagnosis with Traceable Reasoning
Rare diseases collectively affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains a pervasive challenge. This is largely due to their clinical heterogeneity, low individual prevalence, and the limited familiarity most clinicians have with rare conditions. Here, we introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM), capable of processing heterogeneous clinical inputs. The system generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning that links intermediate analytic steps to verifiable medical evidence. DeepRare comprises three key components: a central host with a long-term memory module; specialized agent servers responsible for domain-specific analytical tasks integrating over 40 specialized tools and web-scale, up-to-date medical knowledge sources, ensuring access to the most current clinical information. This modular and scalable design enables complex diagnostic reasoning while maintaining traceability and adaptability. We evaluate DeepRare on eight datasets. The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases. In HPO-based evaluations, DeepRare significantly outperforms other 15 methods, like traditional bioinformatics diagnostic tools, LLMs, and other agentic systems, achieving an average Recall@1 score of 57.18% and surpassing the second-best method (Reasoning LLM) by a substantial margin of 23.79 percentage points. For multi-modal input scenarios, DeepRare achieves 70.60% at Recall@1 compared to Exomiser's 53.20% in 109 cases. Manual verification of reasoning chains by clinical experts achieves 95.40% agreements. Furthermore, the DeepRare system has been implemented as a user-friendly web application http://raredx.cn/doctor.
☆ Fusing Radiomic Features with Deep Representations for Gestational Age Estimation in Fetal Ultrasound Images MICCAI 2025
Accurate gestational age (GA) estimation, ideally through fetal ultrasound measurement, is a crucial aspect of providing excellent antenatal care. However, deriving GA from manual fetal biometric measurements depends on the operator and is time-consuming. Hence, automatic computer-assisted methods are demanded in clinical practice. In this paper, we present a novel feature fusion framework to estimate GA using fetal ultrasound images without any measurement information. We adopt a deep learning model to extract deep representations from ultrasound images. We extract radiomic features to reveal patterns and characteristics of fetal brain growth. To harness the interpretability of radiomics in medical imaging analysis, we estimate GA by fusing radiomic features and deep representations. Our framework estimates GA with a mean absolute error of 8.0 days across three trimesters, outperforming current machine learning-based methods at these gestational ages. Experimental results demonstrate the robustness of our framework across different populations in diverse geographical regions. Our code is publicly available on \href{https://github.com/13204942/RadiomicsImageFusion_FetalUS}{GitHub}.
comment: Accepted at MICCAI 2025
☆ A Novel Large Vision Foundation Model (LVFM)-based Approach for Generating High-Resolution Canopy Height Maps in Plantations for Precision Forestry Management
Accurate, cost-effective monitoring of plantation aboveground biomass (AGB) is crucial for supporting local livelihoods and carbon sequestration initiatives like the China Certified Emission Reduction (CCER) program. High-resolution canopy height maps (CHMs) are essential for this, but standard lidar-based methods are expensive. While deep learning with RGB imagery offers an alternative, accurately extracting canopy height features remains challenging. To address this, we developed a novel model for high-resolution CHM generation using a Large Vision Foundation Model (LVFM). Our model integrates a feature extractor, a self-supervised feature enhancement module to preserve spatial details, and a height estimator. Tested in Beijing's Fangshan District using 1-meter Google Earth imagery, our model outperformed existing methods, including conventional CNNs. It achieved a mean absolute error of 0.09 m, a root mean square error of 0.24 m, and a correlation of 0.78 against lidar-based CHMs. The resulting CHMs enabled over 90% success in individual tree detection, high accuracy in AGB estimation, and effective tracking of plantation growth, demonstrating strong generalization to non-training areas. This approach presents a promising, scalable tool for evaluating carbon sequestration in both plantations and natural forests.
☆ Exploiting Lightweight Hierarchical ViT and Dynamic Framework for Efficient Visual Tracking
Transformer-based visual trackers have demonstrated significant advancements due to their powerful modeling capabilities. However, their practicality is limited on resource-constrained devices because of their slow processing speeds. To address this challenge, we present HiT, a novel family of efficient tracking models that achieve high performance while maintaining fast operation across various devices. The core innovation of HiT lies in its Bridge Module, which connects lightweight transformers to the tracking framework, enhancing feature representation quality. Additionally, we introduce a dual-image position encoding approach to effectively encode spatial information. HiT achieves an impressive speed of 61 frames per second (fps) on the NVIDIA Jetson AGX platform, alongside a competitive AUC of 64.6% on the LaSOT benchmark, outperforming all previous efficient trackers.Building on HiT, we propose DyHiT, an efficient dynamic tracker that flexibly adapts to scene complexity by selecting routes with varying computational requirements. DyHiT uses search area features extracted by the backbone network and inputs them into an efficient dynamic router to classify tracking scenarios. Based on the classification, DyHiT applies a divide-and-conquer strategy, selecting appropriate routes to achieve a superior trade-off between accuracy and speed. The fastest version of DyHiT achieves 111 fps on NVIDIA Jetson AGX while maintaining an AUC of 62.4% on LaSOT.Furthermore, we introduce a training-free acceleration method based on the dynamic routing architecture of DyHiT. This method significantly improves the execution speed of various high-performance trackers without sacrificing accuracy. For instance, our acceleration method enables the state-of-the-art tracker SeqTrack-B256 to achieve a 2.68 times speedup on an NVIDIA GeForce RTX 2080 Ti GPU while maintaining the same AUC of 69.9% on the LaSOT.
comment: This paper was accepted by International Journal of Computer Vision(IJCV)
☆ InvZW: Invariant Feature Learning via Noise-Adversarial Training for Robust Image Zero-Watermarking
This paper introduces a novel deep learning framework for robust image zero-watermarking based on distortion-invariant feature learning. As a zero-watermarking scheme, our method leaves the original image unaltered and learns a reference signature through optimization in the feature space. The proposed framework consists of two key modules. In the first module, a feature extractor is trained via noise-adversarial learning to generate representations that are both invariant to distortions and semantically expressive. This is achieved by combining adversarial supervision against a distortion discriminator and a reconstruction constraint to retain image content. In the second module, we design a learning-based multibit zero-watermarking scheme where the trained invariant features are projected onto a set of trainable reference codes optimized to match a target binary message. Extensive experiments on diverse image datasets and a wide range of distortions show that our method achieves state-of-the-art robustness in both feature stability and watermark recovery. Comparative evaluations against existing self-supervised and deep watermarking techniques further highlight the superiority of our framework in generalization and robustness.
☆ DreamAnywhere: Object-Centric Panoramic 3D Scene Generation
Recent advances in text-to-3D scene generation have demonstrated significant potential to transform content creation across multiple industries. Although the research community has made impressive progress in addressing the challenges of this complex task, existing methods often generate environments that are only front-facing, lack visual fidelity, exhibit limited scene understanding, and are typically fine-tuned for either indoor or outdoor settings. In this work, we address these issues and propose DreamAnywhere, a modular system for the fast generation and prototyping of 3D scenes. Our system synthesizes a 360{\deg} panoramic image from text, decomposes it into background and objects, constructs a complete 3D representation through hybrid inpainting, and lifts object masks to detailed 3D objects that are placed in the virtual environment. DreamAnywhere supports immersive navigation and intuitive object-level editing, making it ideal for scene exploration, visual mock-ups, and rapid prototyping -- all with minimal manual modeling. These features make our system particularly suitable for low-budget movie production, enabling quick iteration on scene layout and visual tone without the overhead of traditional 3D workflows. Our modular pipeline is highly customizable as it allows components to be replaced independently. Compared to current state-of-the-art text and image-based 3D scene generation approaches, DreamAnywhere shows significant improvements in coherence in novel view synthesis and achieves competitive image quality, demonstrating its effectiveness across diverse and challenging scenarios. A comprehensive user study demonstrates a clear preference for our method over existing approaches, validating both its technical robustness and practical usefulness.
☆ Practical insights on the effect of different encodings, ansätze and measurements in quantum and hybrid convolutional neural networks
This study investigates the design choices of parameterized quantum circuits (PQCs) within quantum and hybrid convolutional neural network (HQNN and QCNN) architectures, applied to the task of satellite image classification using the EuroSAT dataset. We systematically evaluate the performance implications of data encoding techniques, variational ans\"atze, and measurement in approx. 500 distinct model configurations. Our analysis reveals a clear hierarchy of influence on model performance. For hybrid architectures, which were benchmarked against their direct classical equivalents (e.g. the same architecture with the PQCs removed), the data encoding strategy is the dominant factor, with validation accuracy varying over 30% for distinct embeddings. In contrast, the selection of variational ans\"atze and measurement basis had a comparatively marginal effect, with validation accuracy variations remaining below 5%. For purely quantum models, restricted to amplitude encoding, performance was most dependent on the measurement protocol and the data-to-amplitude mapping. The measurement strategy varied the validation accuracy by up to 30% and the encoding mapping by around 8 percentage points.
comment: 20 pages, 22 figures
☆ Feature Hallucination for Self-supervised Action Recognition
Understanding human actions in videos requires more than raw pixel analysis; it relies on high-level semantic reasoning and effective integration of multimodal features. We propose a deep translational action recognition framework that enhances recognition accuracy by jointly predicting action concepts and auxiliary features from RGB video frames. At test time, hallucination streams infer missing cues, enriching feature representations without increasing computational overhead. To focus on action-relevant regions beyond raw pixels, we introduce two novel domain-specific descriptors. Object Detection Features (ODF) aggregate outputs from multiple object detectors to capture contextual cues, while Saliency Detection Features (SDF) highlight spatial and intensity patterns crucial for action recognition. Our framework seamlessly integrates these descriptors with auxiliary modalities such as optical flow, Improved Dense Trajectories, skeleton data, and audio cues. It remains compatible with state-of-the-art architectures, including I3D, AssembleNet, Video Transformer Network, FASTER, and recent models like VideoMAE V2 and InternVideo2. To handle uncertainty in auxiliary features, we incorporate aleatoric uncertainty modeling in the hallucination step and introduce a robust loss function to mitigate feature noise. Our multimodal self-supervised action recognition framework achieves state-of-the-art performance on multiple benchmarks, including Kinetics-400, Kinetics-600, and Something-Something V2, demonstrating its effectiveness in capturing fine-grained action dynamics.
comment: Accepted for publication in International Journal of Computer Vision (IJCV)
☆ EAGLE: An Efficient Global Attention Lesion Segmentation Model for Hepatic Echinococcosis
Hepatic echinococcosis (HE) is a widespread parasitic disease in underdeveloped pastoral areas with limited medical resources. While CNN-based and Transformer-based models have been widely applied to medical image segmentation, CNNs lack global context modeling due to local receptive fields, and Transformers, though capable of capturing long-range dependencies, are computationally expensive. Recently, state space models (SSMs), such as Mamba, have gained attention for their ability to model long sequences with linear complexity. In this paper, we propose EAGLE, a U-shaped network composed of a Progressive Visual State Space (PVSS) encoder and a Hybrid Visual State Space (HVSS) decoder that work collaboratively to achieve efficient and accurate segmentation of hepatic echinococcosis (HE) lesions. The proposed Convolutional Vision State Space Block (CVSSB) module is designed to fuse local and global features, while the Haar Wavelet Transformation Block (HWTB) module compresses spatial information into the channel dimension to enable lossless downsampling. Due to the lack of publicly available HE datasets, we collected CT slices from 260 patients at a local hospital. Experimental results show that EAGLE achieves state-of-the-art performance with a Dice Similarity Coefficient (DSC) of 89.76%, surpassing MSVM-UNet by 1.61%.
☆ From Codicology to Code: A Comparative Study of Transformer and YOLO-based Detectors for Layout Analysis in Historical Documents
Robust Document Layout Analysis (DLA) is critical for the automated processing and understanding of historical documents with complex page organizations. This paper benchmarks five state-of-the-art object detection architectures on three annotated datasets representing a spectrum of codicological complexity: The e-NDP, a corpus of Parisian medieval registers (1326-1504); CATMuS, a diverse multiclass dataset derived from various medieval and modern sources (ca.12th-17th centuries) and HORAE, a corpus of decorated books of hours (ca.13th-16th centuries). We evaluate two Transformer-based models (Co-DETR, Grounding DINO) against three YOLO variants (AABB, OBB, and YOLO-World). Our findings reveal significant performance variations dependent on model architecture, data set characteristics, and bounding box representation. In the e-NDP dataset, Co-DETR achieves state-of-the-art results (0.752 mAP@.50:.95), closely followed by YOLOv11X-OBB (0.721). Conversely, on the more complex CATMuS and HORAE datasets, the CNN-based YOLOv11x-OBB significantly outperforms all other models (0.564 and 0.568, respectively). This study unequivocally demonstrates that using Oriented Bounding Boxes (OBB) is not a minor refinement but a fundamental requirement for accurately modeling the non-Cartesian nature of historical manuscripts. We conclude that a key trade-off exists between the global context awareness of Transformers, ideal for structured layouts, and the superior generalization of CNN-OBB models for visually diverse and complex documents.
☆ On the Burstiness of Faces in Set
Burstiness, a phenomenon observed in text and image retrieval, refers to that particular elements appear more times in a set than a statistically independent model assumes. We argue that in the context of set-based face recognition (SFR), burstiness exists widely and degrades the performance in two aspects: Firstly, the bursty faces, where faces with particular attributes %exist frequently in a face set, dominate the training instances and dominate the training face sets and lead to poor generalization ability to unconstrained scenarios. Secondly, the bursty faces %dominating the evaluation sets interfere with the similarity comparison in set verification and identification when evaluation. To detect the bursty faces in a set, we propose three strategies based on Quickshift++, feature self-similarity, and generalized max-pooling (GMP). We apply the burst detection results on training and evaluation stages to enhance the sampling ratios or contributions of the infrequent faces. When evaluation, we additionally propose the quality-aware GMP that enables awareness of the face quality and robustness to the low-quality faces for the original GMP. We give illustrations and extensive experiments on the SFR benchmarks to demonstrate that burstiness is widespread and suppressing burstiness considerably improves the recognition performance.
comment: 18 pages, 5 figures
☆ Radiomic fingerprints for knee MR images assessment
Accurate interpretation of knee MRI scans relies on expert clinical judgment, often with high variability and limited scalability. Existing radiomic approaches use a fixed set of radiomic features (the signature), selected at the population level and applied uniformly to all patients. While interpretable, these signatures are often too constrained to represent individual pathological variations. As a result, conventional radiomic-based approaches are found to be limited in performance, compared with recent end-to-end deep learning (DL) alternatives without using interpretable radiomic features. We argue that the individual-agnostic nature in current radiomic selection is not central to its intepretability, but is responsible for the poor generalization in our application. Here, we propose a novel radiomic fingerprint framework, in which a radiomic feature set (the fingerprint) is dynamically constructed for each patient, selected by a DL model. Unlike the existing radiomic signatures, our fingerprints are derived on a per-patient basis by predicting the feature relevance in a large radiomic feature pool, and selecting only those that are predictive of clinical conditions for individual patients. The radiomic-selecting model is trained simultaneously with a low-dimensional (considered relatively explainable) logistic regression for downstream classification. We validate our methods across multiple diagnostic tasks including general knee abnormalities, anterior cruciate ligament (ACL) tears, and meniscus tears, demonstrating comparable or superior diagnostic accuracy relative to state-of-the-art end-to-end DL models. More importantly, we show that the interpretability inherent in our approach facilitates meaningful clinical insights and potential biomarker discovery, with detailed discussion, quantitative and qualitative analysis of real-world clinical cases to evidence these advantages.
☆ Learning Moderately Input-Sensitive Functions: A Case Study in QR Code Decoding
The hardness of learning a function that attains a target task relates to its input-sensitivity. For example, image classification tasks are input-insensitive as minor corruptions should not affect the classification results, whereas arithmetic and symbolic computation, which have been recently attracting interest, are highly input-sensitive as each input variable connects to the computation results. This study presents the first learning-based Quick Response (QR) code decoding and investigates learning functions of medium sensitivity. Our experiments reveal that Transformers can successfully decode QR codes, even beyond the theoretical error-correction limit, by learning the structure of embedded texts. They generalize from English-rich training data to other languages and even random strings. Moreover, we observe that the Transformer-based QR decoder focuses on data bits while ignoring error-correction bits, suggesting a decoding mechanism distinct from standard QR code readers.
comment: 17 pages, 13 figures
☆ FundaQ-8: A Clinically-Inspired Scoring Framework for Automated Fundus Image Quality Assessment
Automated fundus image quality assessment (FIQA) remains a challenge due to variations in image acquisition and subjective expert evaluations. We introduce FundaQ-8, a novel expert-validated framework for systematically assessing fundus image quality using eight critical parameters, including field coverage, anatomical visibility, illumination, and image artifacts. Using FundaQ-8 as a structured scoring reference, we develop a ResNet18-based regression model to predict continuous quality scores in the 0 to 1 range. The model is trained on 1800 fundus images from real-world clinical sources and Kaggle datasets, using transfer learning, mean squared error optimization, and standardized preprocessing. Validation against the EyeQ dataset and statistical analyses confirm the framework's reliability and clinical interpretability. Incorporating FundaQ-8 into deep learning models for diabetic retinopathy grading also improves diagnostic robustness, highlighting the value of quality-aware training in real-world screening applications.
☆ TDiR: Transformer based Diffusion for Image Restoration Tasks
Images captured in challenging environments often experience various forms of degradation, including noise, color cast, blur, and light scattering. These effects significantly reduce image quality, hindering their applicability in downstream tasks such as object detection, mapping, and classification. Our transformer-based diffusion model was developed to address image restoration tasks, aiming to improve the quality of degraded images. This model was evaluated against existing deep learning methodologies across multiple quality metrics for underwater image enhancement, denoising, and deraining on publicly available datasets. Our findings demonstrate that the diffusion model, combined with transformers, surpasses current methods in performance. The results of our model highlight the efficacy of diffusion models and transformers in improving the quality of degraded images, consequently expanding their utility in downstream tasks that require high-fidelity visual data.
☆ Ctrl-Z Sampling: Diffusion Sampling with Controlled Random Zigzag Explorations
Diffusion models have shown strong performance in conditional generation by progressively denoising Gaussian noise toward a target data distribution. This denoising process can be interpreted as a form of hill climbing in a learned latent space, where the model iteratively refines the sample toward regions of higher probability. However, diffusion models often converge to local optima that are locally visually coherent yet globally inconsistent or conditionally misaligned, due to latent space complexity and suboptimal initialization. Prior efforts attempted to address this by strengthening guidance signals or manipulating the initial noise distribution. We introduce Controlled Random Zigzag Sampling (Ctrl-Z Sampling), a novel sampling strategy designed to detect and escape such local maxima during conditional generation. The method first identifies potential local maxima using a reward model. Upon detection, it injects noise and reverts to a previous, noisier state to escape the current optimization plateau. The reward model then evaluates candidate trajectories, accepting only those that offer improvement, while progressively deeper retreat enables stronger escapes when nearby alternatives fail. This controlled random zigzag process allows dynamic alternation between forward refinement and backward exploration, enhancing both alignment and visual quality in the generated outputs. The proposed Ctrl-Z Sampling is model-agnostic and compatible with existing diffusion frameworks. Experimental results show that Ctrl-Z Sampling substantially improves generation quality with only around 7.6X increase in function evaluations.
comment: 10 pages, 3 figures, 2 tables
☆ Breaking Spatial Boundaries: Spectral-Domain Registration Guided Hyperspectral and Multispectral Blind Fusion
The blind fusion of unregistered hyperspectral images (HSIs) and multispectral images (MSIs) has attracted growing attention recently. To address the registration challenge, most existing methods employ spatial transformations on the HSI to achieve alignment with the MSI. However, due to the substantial differences in spatial resolution of the images, the performance of these methods is often unsatisfactory. Moreover, the registration process tends to be time-consuming when dealing with large-sized images in remote sensing. To address these issues, we propose tackling the registration problem from the spectral domain. Initially, a lightweight Spectral Prior Learning (SPL) network is developed to extract spectral features from the HSI and enhance the spectral resolution of the MSI. Following this, the obtained image undergoes spatial downsampling to produce the registered HSI. In this process, subspace representation and cyclic training strategy are employed to improve spectral accuracy of the registered HSI obtained. Next, we propose a blind sparse fusion (BSF) method, which utilizes group sparsity regularization to equivalently promote the low-rankness of the image. This approach not only circumvents the need for rank estimation, but also reduces computational complexity. Then, we employ the Proximal Alternating Optimization (PAO) algorithm to solve the BSF model, and present its convergence analysis. Finally, extensive numerical experiments on simulated and real datasets are conducted to verify the effectiveness of our method in registration and fusion. We also demonstrate its efficacy in enhancing classification performance.
☆ Opportunistic Osteoporosis Diagnosis via Texture-Preserving Self-Supervision, Mixture of Experts and Multi-Task Integration MICCAI 2025
Osteoporosis, characterized by reduced bone mineral density (BMD) and compromised bone microstructure, increases fracture risk in aging populations. While dual-energy X-ray absorptiometry (DXA) is the clinical standard for BMD assessment, its limited accessibility hinders diagnosis in resource-limited regions. Opportunistic computed tomography (CT) analysis has emerged as a promising alternative for osteoporosis diagnosis using existing imaging data. Current approaches, however, face three limitations: (1) underutilization of unlabeled vertebral data, (2) systematic bias from device-specific DXA discrepancies, and (3) insufficient integration of clinical knowledge such as spatial BMD distribution patterns. To address these, we propose a unified deep learning framework with three innovations. First, a self-supervised learning method using radiomic representations to leverage unlabeled CT data and preserve bone texture. Second, a Mixture of Experts (MoE) architecture with learned gating mechanisms to enhance cross-device adaptability. Third, a multi-task learning framework integrating osteoporosis diagnosis, BMD regression, and vertebra location prediction. Validated across three clinical sites and an external hospital, our approach demonstrates superior generalizability and accuracy over existing methods for opportunistic osteoporosis screening and diagnosis.
comment: Accepted by MICCAI 2025
☆ From Ideal to Real: Unified and Data-Efficient Dense Prediction for Real-World Scenarios
Dense prediction tasks hold significant importance of computer vision, aiming to learn pixel-wise annotated label for an input image. Despite advances in this field, existing methods primarily focus on idealized conditions, with limited generalization to real-world scenarios and facing the challenging scarcity of real-world data. To systematically study this problem, we first introduce DenseWorld, a benchmark spanning a broad set of 25 dense prediction tasks that correspond to urgent real-world applications, featuring unified evaluation across tasks. Then, we propose DenseDiT, which maximally exploits generative models' visual priors to perform diverse real-world dense prediction tasks through a unified strategy. DenseDiT combines a parameter-reuse mechanism and two lightweight branches that adaptively integrate multi-scale context, working with less than 0.1% additional parameters. Evaluations on DenseWorld reveal significant performance drops in existing general and specialized baselines, highlighting their limited real-world generalization. In contrast, DenseDiT achieves superior results using less than 0.01% training data of baselines, underscoring its practical value for real-world deployment. Our data, and checkpoints and codes are available at https://xcltql666.github.io/DenseDiTProj
☆ Forensic Study of Paintings Through the Comparison of Fabrics
The study of canvas fabrics in works of art is a crucial tool for authentication, attribution and conservation. Traditional methods are based on thread density map matching, which cannot be applied when canvases do not come from contiguous positions on a roll. This paper presents a novel approach based on deep learning to assess the similarity of textiles. We introduce an automatic tool that evaluates the similarity between canvases without relying on thread density maps. A Siamese deep learning model is designed and trained to compare pairs of images by exploiting the feature representations learned from the scans. In addition, a similarity estimation method is proposed, aggregating predictions from multiple pairs of cloth samples to provide a robust similarity score. Our approach is applied to canvases from the Museo Nacional del Prado, corroborating the hypothesis that plain weave canvases, widely used in painting, can be effectively compared even when their thread densities are similar. The results demonstrate the feasibility and accuracy of the proposed method, opening new avenues for the analysis of masterpieces.
☆ X-SiT: Inherently Interpretable Surface Vision Transformers for Dementia Diagnosis MICCAI 2025
Interpretable models are crucial for supporting clinical decision-making, driving advances in their development and application for medical images. However, the nature of 3D volumetric data makes it inherently challenging to visualize and interpret intricate and complex structures like the cerebral cortex. Cortical surface renderings, on the other hand, provide a more accessible and understandable 3D representation of brain anatomy, facilitating visualization and interactive exploration. Motivated by this advantage and the widespread use of surface data for studying neurological disorders, we present the eXplainable Surface Vision Transformer (X-SiT). This is the first inherently interpretable neural network that offers human-understandable predictions based on interpretable cortical features. As part of X-SiT, we introduce a prototypical surface patch decoder for classifying surface patch embeddings, incorporating case-based reasoning with spatially corresponding cortical prototypes. The results demonstrate state-of-the-art performance in detecting Alzheimer's disease and frontotemporal dementia while additionally providing informative prototypes that align with known disease patterns and reveal classification errors.
comment: MICCAI 2025
☆ Hierarchical Mask-Enhanced Dual Reconstruction Network for Few-Shot Fine-Grained Image Classification
Few-shot fine-grained image classification (FS-FGIC) presents a significant challenge, requiring models to distinguish visually similar subclasses with limited labeled examples. Existing methods have critical limitations: metric-based methods lose spatial information and misalign local features, while reconstruction-based methods fail to utilize hierarchical feature information and lack mechanisms to focus on discriminative regions. We propose the Hierarchical Mask-enhanced Dual Reconstruction Network (HMDRN), which integrates dual-layer feature reconstruction with mask-enhanced feature processing to improve fine-grained classification. HMDRN incorporates a dual-layer feature reconstruction and fusion module that leverages complementary visual information from different network hierarchies. Through learnable fusion weights, the model balances high-level semantic representations from the last layer with mid-level structural details from the penultimate layer. Additionally, we design a spatial binary mask-enhanced transformer self-reconstruction module that processes query features through adaptive thresholding while maintaining complete support features, enhancing focus on discriminative regions while filtering background noise. Extensive experiments on three challenging fine-grained datasets demonstrate that HMDRN consistently outperforms state-of-the-art methods across Conv-4 and ResNet-12 backbone architectures. Comprehensive ablation studies validate the effectiveness of each proposed component, revealing that dual-layer reconstruction enhances inter-class discrimination while mask-enhanced transformation reduces intra-class variations. Visualization results provide evidence of HMDRN's superior feature reconstruction capabilities.
☆ A Transformer Based Handwriting Recognition System Jointly Using Online and Offline Features
We posit that handwriting recognition benefits from complementary cues carried by the rasterized complex glyph and the pen's trajectory, yet most systems exploit only one modality. We introduce an end-to-end network that performs early fusion of offline images and online stroke data within a shared latent space. A patch encoder converts the grayscale crop into fixed-length visual tokens, while a lightweight transformer embeds the $(x, y, \text{pen})$ sequence. Learnable latent queries attend jointly to both token streams, yielding context-enhanced stroke embeddings that are pooled and decoded under a cross-entropy loss objective. Because integration occurs before any high-level classification, temporal cues reinforce each other during representation learning, producing stronger writer independence. Comprehensive experiments on IAMOn-DB and VNOn-DB demonstrate that our approach achieves state-of-the-art accuracy, exceeding previous bests by up to 1\%. Our study also shows adaptation of this pipeline with gesturification on the ISI-Air dataset. Our code can be found here.
comment: 15 pages, 7 figures
☆ Recognizing Surgical Phases Anywhere: Few-Shot Test-time Adaptation and Task-graph Guided Refinement MICCAI 2025
The complexity and diversity of surgical workflows, driven by heterogeneous operating room settings, institutional protocols, and anatomical variability, present a significant challenge in developing generalizable models for cross-institutional and cross-procedural surgical understanding. While recent surgical foundation models pretrained on large-scale vision-language data offer promising transferability, their zero-shot performance remains constrained by domain shifts, limiting their utility in unseen surgical environments. To address this, we introduce Surgical Phase Anywhere (SPA), a lightweight framework for versatile surgical workflow understanding that adapts foundation models to institutional settings with minimal annotation. SPA leverages few-shot spatial adaptation to align multi-modal embeddings with institution-specific surgical scenes and phases. It also ensures temporal consistency through diffusion modeling, which encodes task-graph priors derived from institutional procedure protocols. Finally, SPA employs dynamic test-time adaptation, exploiting the mutual agreement between multi-modal phase prediction streams to adapt the model to a given test video in a self-supervised manner, enhancing the reliability under test-time distribution shifts. SPA is a lightweight adaptation framework, allowing hospitals to rapidly customize phase recognition models by defining phases in natural language text, annotating a few images with the phase labels, and providing a task graph defining phase transitions. The experimental results show that the SPA framework achieves state-of-the-art performance in few-shot surgical phase recognition across multiple institutions and procedures, even outperforming full-shot models with 32-shot labeled data. Code is available at https://github.com/CAMMA-public/SPA
comment: Accepted by MICCAI 2025
☆ FedBKD: Distilled Federated Learning to Embrace Gerneralization and Personalization on Non-IID Data
Federated learning (FL) is a decentralized collaborative machine learning (ML) technique. It provides a solution to the issues of isolated data islands and data privacy leakage in industrial ML practices. One major challenge in FL is handling the non-identical and independent distributed (non-IID) data. Current solutions either focus on constructing an all-powerful global model, or customizing personalized local models. Few of them can provide both a well-generalized global model and well-performed local models at the same time. Additionally, many FL solutions to the non-IID problem are benefited from introducing public datasets. However, this will also increase the risk of data leakage. To tackle the problems, we propose a novel data-free distillation framework, Federated Bidirectional Knowledge Distillation (FedBKD). Specifically, we train Generative Adversarial Networks (GAN) for synthetic data. During the GAN training, local models serve as discriminators and their parameters are frozen. The synthetic data is then used for bidirectional distillation between global and local models to achieve knowledge interactions so that performances for both sides are improved. We conduct extensive experiments on 4 benchmarks under different non-IID settings. The results show that FedBKD achieves SOTA performances in every case.
Dynamic Bandwidth Allocation for Hybrid Event-RGB Transmission
Event cameras asynchronously capture pixel-level intensity changes with extremely low latency. They are increasingly used in conjunction with RGB cameras for a wide range of vision-related applications. However, a major challenge in these hybrid systems lies in the transmission of the large volume of triggered events and RGB images. To address this, we propose a transmission scheme that retains efficient reconstruction performance of both sources while accomplishing real-time deblurring in parallel. Conventional RGB cameras and event cameras typically capture the same scene in different ways, often resulting in significant redundant information across their outputs. To address this, we develop a joint event and image (E-I) transmission framework to eliminate redundancy and thereby optimize channel bandwidth utilization. Our approach employs Bayesian modeling and the information bottleneck method to disentangle the shared and domain-specific information within the E-I inputs. This disentangled information bottleneck framework ensures both the compactness and informativeness of extracted shared and domain-specific information. Moreover, it adaptively allocates transmission bandwidth based on scene dynamics, i.e., more symbols are allocated to events for dynamic details or to images for static information. Simulation results demonstrate that the proposed scheme not only achieves superior reconstruction quality compared to conventional systems but also delivers enhanced deblurring performance.
UniCode$^2$: Cascaded Large-scale Codebooks for Unified Multimodal Understanding and Generation
Unified multimodal large language models (MLLMs) have shown promise in jointly advancing multimodal understanding and generation, with visual codebooks discretizing images into tokens for autoregressive modeling. Existing codebook-based methods either rely on small vocabularies (~16K entries) that lack fine-grained semantics or naively scale up, resulting in low token utilization and unstable training. We propose UniCode$^2$, a cascaded codebook framework enabling large-scale, semantically aligned, and stable visual tokenization. By clustering millions of SigLIP sequence embeddings, we build a 500K-entry codebook that preserves vision-language alignment while expanding capacity. Stability is ensured via a cascaded design: a frozen codebook anchors the embedding space, and a trainable codebook refines task-specific semantics. This decoupling promotes high utilization and robust learning. Moreover, the alignment of our visual tokens with textual semantics enables seamless integration with pretrained diffusion decoders, supporting high-quality visual synthesis with minimal adaptation. UniCode^2 delivers strong performance across diverse benchmarks, demonstrating the viability of scaling visual token spaces without sacrificing stability, semantics, or modularity.
comment: 19 pages, 5 figures
☆ MS-IQA: A Multi-Scale Feature Fusion Network for PET/CT Image Quality Assessment MICCAI 2025
Positron Emission Tomography / Computed Tomography (PET/CT) plays a critical role in medical imaging, combining functional and anatomical information to aid in accurate diagnosis. However, image quality degradation due to noise, compression and other factors could potentially lead to diagnostic uncertainty and increase the risk of misdiagnosis. When evaluating the quality of a PET/CT image, both low-level features like distortions and high-level features like organ anatomical structures affect the diagnostic value of the image. However, existing medical image quality assessment (IQA) methods are unable to account for both feature types simultaneously. In this work, we propose MS-IQA, a novel multi-scale feature fusion network for PET/CT IQA, which utilizes multi-scale features from various intermediate layers of ResNet and Swin Transformer, enhancing its ability of perceiving both local and global information. In addition, a multi-scale feature fusion module is also introduced to effectively combine high-level and low-level information through a dynamically weighted channel attention mechanism. Finally, to fill the blank of PET/CT IQA dataset, we construct PET-CT-IQA-DS, a dataset containing 2,700 varying-quality PET/CT images with quality scores assigned by radiologists. Experiments on our dataset and the publicly available LDCTIQAC2023 dataset demonstrate that our proposed model has achieved superior performance against existing state-of-the-art methods in various IQA metrics. This work provides an accurate and efficient IQA method for PET/CT. Our code and dataset are available at https://github.com/MS-IQA/MS-IQA/.
comment: Accepted to MICCAI 2025
☆ Progressive Alignment Degradation Learning for Pansharpening
Deep learning-based pansharpening has been shown to effectively generate high-resolution multispectral (HRMS) images. To create supervised ground-truth HRMS images, synthetic data generated using the Wald protocol is commonly employed. This protocol assumes that networks trained on artificial low-resolution data will perform equally well on high-resolution data. However, well-trained models typically exhibit a trade-off in performance between reduced-resolution and full-resolution datasets. In this paper, we delve into the Wald protocol and find that its inaccurate approximation of real-world degradation patterns limits the generalization of deep pansharpening models. To address this issue, we propose the Progressive Alignment Degradation Module (PADM), which uses mutual iteration between two sub-networks, PAlignNet and PDegradeNet, to adaptively learn accurate degradation processes without relying on predefined operators. Building on this, we introduce HFreqdiff, which embeds high-frequency details into a diffusion framework and incorporates CFB and BACM modules for frequency-selective detail extraction and precise reverse process learning. These innovations enable effective integration of high-resolution panchromatic and multispectral images, significantly enhancing spatial sharpness and quality. Experiments and ablation studies demonstrate the proposed method's superior performance compared to state-of-the-art techniques.
comment: 13 pages, 9 figures
☆ Seeing is Believing? Mitigating OCR Hallucinations in Multimodal Large Language Models
Recent advancements in multimodal large language models have enhanced document understanding by integrating textual and visual information. However, existing models exhibit incompleteness within their paradigm in real-world scenarios, particularly under visual degradation. In such conditions, the current response paradigm often fails to adequately perceive visual degradation and ambiguity, leading to overreliance on linguistic priors or misaligned visual-textual reasoning. This difficulty in recognizing uncertainty frequently results in the generation of hallucinatory content, especially when a precise answer is not feasible. To better demonstrate and analyze this phenomenon and problem, we propose KIE-HVQA, the first benchmark dedicated to evaluating OCR hallucination in degraded document understanding. This dataset includes test samples spanning identity cards and invoices, with simulated real-world degradations for OCR reliability. This setup allows for evaluating models' capacity, under degraded input, to distinguish reliable visual information and answer accordingly, thereby highlighting the challenge of avoiding hallucination on uncertain data. To achieve vision-faithful reasoning and thereby avoid the aforementioned issues, we further introduce a GRPO-based framework featuring a novel reward mechanism. By incorporating a self-awareness of visual uncertainty and an analysis method that initiates refusal to answer to increase task difficulty within our supervised fine-tuning and reinforcement learning framework, we successfully mitigated hallucinations in ambiguous regions. Experiments on Qwen2.5-VL demonstrate that our 7B-parameter model achieves a 22\% absolute improvement in hallucination-free accuracy over GPT-4o on KIE-HVQA and there is no significant performance drop in standard tasks, highlighting both effectiveness and robustness.
☆ Towards Efficient Exemplar Based Image Editing with Multimodal VLMs ECCV 2024
Text-to-Image Diffusion models have enabled a wide array of image editing applications. However, capturing all types of edits through text alone can be challenging and cumbersome. The ambiguous nature of certain image edits is better expressed through an exemplar pair, i.e., a pair of images depicting an image before and after an edit respectively. In this work, we tackle exemplar-based image editing -- the task of transferring an edit from an exemplar pair to a content image(s), by leveraging pretrained text-to-image diffusion models and multimodal VLMs. Even though our end-to-end pipeline is optimization-free, our experiments demonstrate that it still outperforms baselines on multiple types of edits while being ~4x faster.
comment: Accepted at ECCV 2024 (AI4VA Workshop)
☆ Loss-Aware Automatic Selection of Structured Pruning Criteria for Deep Neural Network Acceleration
Structured pruning is a well-established technique for compressing neural networks, making it suitable for deployment in resource-limited edge devices. This paper presents an efficient Loss-Aware Automatic Selection of Structured Pruning Criteria (LAASP) for slimming and accelerating deep neural networks. The majority of pruning methodologies employ a sequential process consisting of three stages: 1) training, 2) pruning, and 3) fine-tuning, whereas the proposed pruning technique adopts a pruning-while-training approach that eliminates the first stage and integrates the second and third stages into a single cycle. The automatic selection of magnitude or similarity-based filter pruning criteria from a specified pool of criteria and the specific pruning layer at each pruning iteration is guided by the network's overall loss on a small subset of the training data. To mitigate the abrupt accuracy drop due to pruning, the network is retrained briefly after each reduction of a predefined number of floating-point operations (FLOPs). The optimal pruning rates for each layer in the network are automatically determined, eliminating the need for manual allocation of fixed or variable pruning rates for each layer. Experiments on the VGGNet and ResNet models on the CIFAR-10 and ImageNet benchmark datasets demonstrate the effectiveness of the proposed method. In particular, the ResNet56 and ResNet110 models on the CIFAR-10 dataset significantly improve the top-1 accuracy compared to state-of-the-art methods while reducing the network FLOPs by 52\%. Furthermore, the ResNet50 model on the ImageNet dataset reduces FLOPs by more than 42\% with a negligible 0.33\% drop in top-5 accuracy. The source code of this paper is publicly available online - https://github.com/ghimiredhikura/laasp.
☆ EAR: Erasing Concepts from Unified Autoregressive Models
Autoregressive (AR) models have achieved unified and strong performance across both visual understanding and image generation tasks. However, removing undesired concepts from AR models while maintaining overall generation quality remains an open challenge. In this paper, we propose Erasure Autoregressive Model (EAR), a fine-tuning method for effective and utility-preserving concept erasure in AR models. Specifically, we introduce Windowed Gradient Accumulation (WGA) strategy to align patch-level decoding with erasure objectives, and Thresholded Loss Masking (TLM) strategy to protect content unrelated to the target concept during fine-tuning. Furthermore, we propose a novel benchmark, Erase Concept Generator and Visual Filter (ECGVF), aim at provide a more rigorous and comprehensive foundation for evaluating concept erasure in AR models. Specifically, we first employ structured templates across diverse large language models (LLMs) to pre-generate a large-scale corpus of target-replacement concept prompt pairs. Subsequently, we generate images from these prompts and subject them to rigorous filtering via a visual classifier to ensure concept fidelity and alignment. Extensive experimental results conducted on the ECGVF benchmark with the AR model Janus-Pro demonstrate that EAR achieves marked improvements in both erasure effectiveness and model utility preservation. Code is available at: https://github.com/immc-lab/ear/
comment: 11 pages, 7 figures, 1 tables
☆ From 2D to 3D Cognition: A Brief Survey of General World Models
World models have garnered increasing attention in the development of artificial general intelligence (AGI), serving as computational frameworks for learning representations of the external world and forecasting future states. While early efforts focused on 2D visual perception and simulation, recent 3D-aware generative world models have demonstrated the ability to synthesize geometrically consistent, interactive 3D environments, marking a shift toward 3D spatial cognition. Despite rapid progress, the field lacks systematic analysis to categorize emerging techniques and clarify their roles in advancing 3D cognitive world models. This survey addresses this need by introducing a conceptual framework, providing a structured and forward-looking review of world models transitioning from 2D perception to 3D cognition. Within this framework, we highlight two key technological drivers, particularly advances in 3D representations and the incorporation of world knowledge, as fundamental pillars. Building on these, we dissect three core cognitive capabilities that underpin 3D world modeling: 3D physical scene generation, 3D spatial reasoning, and 3D spatial interaction. We further examine the deployment of these capabilities in real-world applications, including embodied AI, autonomous driving, digital twin, and gaming/VR. Finally, we identify challenges across data, modeling, and deployment, and outline future directions for advancing more robust and generalizable 3D world models.
☆ BrokenVideos: A Benchmark Dataset for Fine-Grained Artifact Localization in AI-Generated Videos
Recent advances in deep generative models have led to significant progress in video generation, yet the fidelity of AI-generated videos remains limited. Synthesized content often exhibits visual artifacts such as temporally inconsistent motion, physically implausible trajectories, unnatural object deformations, and local blurring that undermine realism and user trust. Accurate detection and spatial localization of these artifacts are crucial for both automated quality control and for guiding the development of improved generative models. However, the research community currently lacks a comprehensive benchmark specifically designed for artifact localization in AI generated videos. Existing datasets either restrict themselves to video or frame level detection or lack the fine-grained spatial annotations necessary for evaluating localization methods. To address this gap, we introduce BrokenVideos, a benchmark dataset of 3,254 AI-generated videos with meticulously annotated, pixel-level masks highlighting regions of visual corruption. Each annotation is validated through detailed human inspection to ensure high quality ground truth. Our experiments show that training state of the art artifact detection models and multi modal large language models (MLLMs) on BrokenVideos significantly improves their ability to localize corrupted regions. Through extensive evaluation, we demonstrate that BrokenVideos establishes a critical foundation for benchmarking and advancing research on artifact localization in generative video models. The dataset is available at: https://broken-video-detection-datetsets.github.io/Broken-Video-Detection-Datasets.github.io/.
comment: 7 page,4 figures,2 tables
☆ MIRAGE: A Benchmark for Multimodal Information-Seeking and Reasoning in Agricultural Expert-Guided Conversations
We introduce MIRAGE, a new benchmark for multimodal expert-level reasoning and decision-making in consultative interaction settings. Designed for the agriculture domain, MIRAGE captures the full complexity of expert consultations by combining natural user queries, expert-authored responses, and image-based context, offering a high-fidelity benchmark for evaluating models on grounded reasoning, clarification strategies, and long-form generation in a real-world, knowledge-intensive domain. Grounded in over 35,000 real user-expert interactions and curated through a carefully designed multi-step pipeline, MIRAGE spans diverse crop health, pest diagnosis, and crop management scenarios. The benchmark includes more than 7,000 unique biological entities, covering plant species, pests, and diseases, making it one of the most taxonomically diverse benchmarks available for vision-language models, grounded in the real world. Unlike existing benchmarks that rely on well-specified user inputs and closed-set taxonomies, MIRAGE features underspecified, context-rich scenarios with open-world settings, requiring models to infer latent knowledge gaps, handle rare entities, and either proactively guide the interaction or respond. Project Page: https://mirage-benchmark.github.io
comment: 66 pages, 32 figures, 23 tables
♻ ☆ One Prototype Is Enough: Single-Prototype Activation for Interpretable Image Classification
In this paper, we propose ProtoSolo, a novel deep neural architecture for interpretable image classification inspired by prototypical networks such as ProtoPNet. Existing prototype networks usually rely on the collaborative decision-making of multiple prototypes to achieve the classification and interpretation of a single category. In contrast, ProtoSolo only requires the activation of a single prototype to complete the classification. This allows the network to explain each category decision by only providing the features that are most similar to the prototype of that category, significantly reducing the cognitive complexity of the explanation. Secondly, we propose a feature-based comparison method, which uses feature map instead of full-channel feature vector as the object of similarity comparison and prototype learning. This design enables ProtoSolo to utilize richer global information for classification while relying on a single prototype activation. In addition, we propose a non-prototype projection learning strategy, which preserves the information association between the prototype and the training image patches while avoiding the sharp change of the network structure caused by the projection operation, thus avoiding its negative impact on the classification performance. Experiments on the CUB-200-2011 and Stanford Cars datasets show that ProtoSolo achieves superior performance in classification tasks and reaches the best level in terms of cognitive complexity of explanations compared to state-of-the-art interpretable methods. The code is available at https://github.com/pyt19/ProtoSolo.
♻ ☆ ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model
Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
comment: Project page: https://liuff19.github.io/ReconX
♻ ☆ Self-Supervised Multimodal NeRF for Autonomous Driving
In this paper, we propose a Neural Radiance Fields (NeRF) based framework, referred to as Novel View Synthesis Framework (NVSF). It jointly learns the implicit neural representation of space and time-varying scene for both LiDAR and Camera. We test this on a real-world autonomous driving scenario containing both static and dynamic scenes. Compared to existing multimodal dynamic NeRFs, our framework is self-supervised, thus eliminating the need for 3D labels. For efficient training and faster convergence, we introduce heuristic-based image pixel sampling to focus on pixels with rich information. To preserve the local features of LiDAR points, a Double Gradient based mask is employed. Extensive experiments on the KITTI-360 dataset show that, compared to the baseline models, our framework has reported best performance on both LiDAR and Camera domain. Code of the model is available at https://github.com/gaurav00700/Selfsupervised-NVSF
♻ ☆ Sampling Matters in Explanations: Towards Trustworthy Attribution Analysis Building Block in Visual Models through Maximizing Explanation Certainty
Image attribution analysis seeks to highlight the feature representations learned by visual models such that the highlighted feature maps can reflect the pixel-wise importance of inputs. Gradient integration is a building block in the attribution analysis by integrating the gradients from multiple derived samples to highlight the semantic features relevant to inferences. Such a building block often combines with other information from visual models such as activation or attention maps to form ultimate explanations. Yet, our theoretical analysis demonstrates that the extent to the alignment of the sample distribution in gradient integration with respect to natural image distribution gives a lower bound of explanation certainty. Prior works add noise into images as samples and the noise distributions can lead to low explanation certainty. Counter-intuitively, our experiment shows that extra information can saturate neural networks. To this end, building trustworthy attribution analysis needs to settle the sample distribution misalignment problem. Instead of adding extra information into input images, we present a semi-optimal sampling approach by suppressing features from inputs. The sample distribution by suppressing features is approximately identical to the distribution of natural images. Our extensive quantitative evaluation on large scale dataset ImageNet affirms that our approach is effective and able to yield more satisfactory explanations against state-of-the-art baselines throughout all experimental models.
comment: Code: https://anonymous.4open.science/r/sampling_matters_reproducibility-BB60/
♻ ☆ EvDetMAV: Generalized MAV Detection from Moving Event Cameras
Existing micro aerial vehicle (MAV) detection methods mainly rely on the target's appearance features in RGB images, whose diversity makes it difficult to achieve generalized MAV detection. We notice that different types of MAVs share the same distinctive features in event streams due to their high-speed rotating propellers, which are hard to see in RGB images. This paper studies how to detect different types of MAVs from an event camera by fully exploiting the features of propellers in the original event stream. The proposed method consists of three modules to extract the salient and spatio-temporal features of the propellers while filtering out noise from background objects and camera motion. Since there are no existing event-based MAV datasets, we introduce a novel MAV dataset for the community. This is the first event-based MAV dataset comprising multiple scenarios and different types of MAVs. Without training, our method significantly outperforms state-of-the-art methods and can deal with challenging scenarios, achieving a precision rate of 83.0\% (+30.3\%) and a recall rate of 81.5\% (+36.4\%) on the proposed testing dataset. The dataset and code are available at: https://github.com/WindyLab/EvDetMAV.
comment: 8 pages, 7 figures. This paper is accepted by IEEE Robotics and Automation Letters
♻ ☆ OmniGen2: Exploration to Advanced Multimodal Generation
In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2
♻ ☆ Diffusion Models Through a Global Lens: Are They Culturally Inclusive?
Text-to-image diffusion models have recently enabled the creation of visually compelling, detailed images from textual prompts. However, their ability to accurately represent various cultural nuances remains an open question. In our work, we introduce CultDiff benchmark, evaluating state-of-the-art diffusion models whether they can generate culturally specific images spanning ten countries. We show that these models often fail to generate cultural artifacts in architecture, clothing, and food, especially for underrepresented country regions, by conducting a fine-grained analysis of different similarity aspects, revealing significant disparities in cultural relevance, description fidelity, and realism compared to real-world reference images. With the collected human evaluations, we develop a neural-based image-image similarity metric, namely, CultDiff-S, to predict human judgment on real and generated images with cultural artifacts. Our work highlights the need for more inclusive generative AI systems and equitable dataset representation over a wide range of cultures.
comment: 17 pages, 17 figures, 3 tables
♻ ☆ From $\mathcal{O}(n^{2})$ to $\mathcal{O}(n)$ Parameters: Quantum Self-Attention in Vision Transformers for Biomedical Image Classification MICCAI 2025
We demonstrate that quantum vision transformers (QViTs), vision transformers (ViTs) with self-attention (SA) mechanisms replaced by quantum self-attention (QSA) mechanisms, can match state-of-the-art (SOTA) biomedical image classifiers while using 99.99% fewer parameters. QSAs are produced by replacing linear SA layers with parameterised quantum neural networks (QNNs), producing a QSA mechanism and reducing parameter scaling from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$. On RetinaMNIST, our ultra parameter-efficient QViT outperforms 13/14 SOTA methods including CNNs and ViTs, achieving 56.5% accuracy, just 0.88% below the top MedMamba model while using 99.99% fewer parameters (1K vs 14.5M) and 89% fewer GFLOPs. We present the first investigation of knowledge distillation (KD) from classical to quantum vision transformers in biomedical image classification, showing that QViTs maintain comparable performance to classical ViTs across eight diverse datasets spanning multiple modalities, with improved QSA parameter-efficiency. Our higher-qubit architecture benefitted more from KD pre-training, suggesting a scaling relationship between QSA parameters and KD effectiveness. These findings establish QSA as a practical architectural choice toward parameter-efficient biomedical image analysis.
comment: Submitted for EMA4MICCAI 2025
♻ ☆ Time-Aware Auto White Balance in Mobile Photography
Cameras rely on auto white balance (AWB) to correct undesirable color casts caused by scene illumination and the camera's spectral sensitivity. This is typically achieved using an illuminant estimator that determines the global color cast solely from the color information in the camera's raw sensor image. Mobile devices provide valuable additional metadata-such as capture timestamp and geolocation-that offers strong contextual clues to help narrow down the possible illumination solutions. This paper proposes a lightweight illuminant estimation method that incorporates such contextual metadata, along with additional capture information and image colors, into a compact model (~5K parameters), achieving promising results, matching or surpassing larger models. To validate our method, we introduce a dataset of 3,224 smartphone images with contextual metadata collected at various times of day and under diverse lighting conditions. The dataset includes ground-truth illuminant colors, determined using a color chart, and user-preferred illuminants validated through a user study, providing a comprehensive benchmark for AWB evaluation.
♻ ☆ FluoroSAM: A Language-promptable Foundation Model for Flexible X-ray Image Segmentation
Language promptable X-ray image segmentation would enable greater flexibility for human-in-the-loop workflows in diagnostic and interventional precision medicine. Prior efforts have contributed task-specific models capable of solving problems within a narrow scope, but expanding to broader use requires additional data, annotations, and training time. Recently, language-aligned foundation models (LFMs) -- machine learning models trained on large amounts of highly variable image and text data thus enabling broad applicability -- have emerged as promising tools for automated image analysis. Existing foundation models for medical image analysis focus on scenarios and modalities where large, richly annotated datasets are available. However, the X-ray imaging modality features highly variable image appearance and applications, from diagnostic chest X-rays to interventional fluoroscopy, with varying availability of data. To pave the way toward an LFM for comprehensive and language-aligned analysis of arbitrary medical X-ray images, we introduce FluoroSAM, a language-promptable variant of the Segment Anything Model, trained from scratch on 3M synthetic X-ray images from a wide variety of human anatomies, imaging geometries, and viewing angles. These include pseudo-ground truth masks for 128 organ types and 464 tools with associated text descriptions. FluoroSAM is capable of segmenting myriad anatomical structures and tools based on natural language prompts, thanks to the novel incorporation of vector quantization (VQ) of text embeddings in the training process. We demonstrate FluoroSAM's performance quantitatively on real X-ray images and showcase on several applications how FluoroSAM is a key enabler for rich human-machine interaction in the X-ray image acquisition and analysis context. Code is available at https://github.com/arcadelab/fluorosam.
♻ ☆ Dark Channel-Assisted Depth-from-Defocus from a Single Image
We estimate scene depth from a single defocus-blurred image using the dark channel as a complementary cue, leveraging its ability to capture local statistics and scene structure. Traditional depth-from-defocus (DFD) methods use multiple images with varying apertures or focus. Single-image DFD is underexplored due to its inherent challenges. Few attempts have focused on depth-from-defocus (DFD) from a single defocused image because the problem is underconstrained. Our method uses the relationship between local defocus blur and contrast variations as depth cues to improve scene structure estimation. The pipeline is trained end-to-end with adversarial learning. Experiments on real data demonstrate that incorporating the dark channel prior into single-image DFD provides meaningful depth estimation, validating our approach.
♻ ☆ Cross-Frame Representation Alignment for Fine-Tuning Video Diffusion Models
Fine-tuning Video Diffusion Models (VDMs) at the user level to generate videos that reflect specific attributes of training data presents notable challenges, yet remains underexplored despite its practical importance. Meanwhile, recent work such as Representation Alignment (REPA) has shown promise in improving the convergence and quality of DiT-based image diffusion models by aligning, or assimilating, its internal hidden states with external pretrained visual features, suggesting its potential for VDM fine-tuning. In this work, we first propose a straightforward adaptation of REPA for VDMs and empirically show that, while effective for convergence, it is suboptimal in preserving semantic consistency across frames. To address this limitation, we introduce Cross-frame Representation Alignment (CREPA), a novel regularization technique that aligns hidden states of a frame with external features from neighboring frames. Empirical evaluations on large-scale VDMs, including CogVideoX-5B and Hunyuan Video, demonstrate that CREPA improves both visual fidelity and cross-frame semantic coherence when fine-tuned with parameter-efficient methods such as LoRA. We further validate CREPA across diverse datasets with varying attributes, confirming its broad applicability.
comment: Project page: https://crepavideo.github.io
♻ ☆ PanoWan: Lifting Diffusion Video Generation Models to 360° with Latitude/Longitude-aware Mechanisms
Panoramic video generation enables immersive 360{\deg} content creation, valuable in applications that demand scene-consistent world exploration. However, existing panoramic video generation models struggle to leverage pre-trained generative priors from conventional text-to-video models for high-quality and diverse panoramic videos generation, due to limited dataset scale and the gap in spatial feature representations. In this paper, we introduce PanoWan to effectively lift pre-trained text-to-video models to the panoramic domain, equipped with minimal modules. PanoWan employs latitude-aware sampling to avoid latitudinal distortion, while its rotated semantic denoising and padded pixel-wise decoding ensure seamless transitions at longitude boundaries. To provide sufficient panoramic videos for learning these lifted representations, we contribute PanoVid, a high-quality panoramic video dataset with captions and diverse scenarios. Consequently, PanoWan achieves state-of-the-art performance in panoramic video generation and demonstrates robustness for zero-shot downstream tasks. Our project page is available at https://panowan.variantconst.com.
♻ ☆ ViStoryBench: Comprehensive Benchmark Suite for Story Visualization
Story visualization, which aims to generate a sequence of visually coherent images aligning with a given narrative and reference images, has seen significant progress with recent advancements in generative models. To further enhance the performance of story visualization frameworks in real-world scenarios, we introduce a comprehensive evaluation benchmark, ViStoryBench. We collect a diverse dataset encompassing various story types and artistic styles, ensuring models are evaluated across multiple dimensions such as different plots (e.g., comedy, horror) and visual aesthetics (e.g., anime, 3D renderings). ViStoryBench is carefully curated to balance narrative structures and visual elements, featuring stories with single and multiple protagonists to test models' ability to maintain character consistency. Additionally, it includes complex plots and intricate world-building to challenge models in generating accurate visuals. To ensure comprehensive comparisons, our benchmark incorporates a wide range of evaluation metrics assessing critical aspects. This structured and multifaceted framework enables researchers to thoroughly identify both the strengths and weaknesses of different models, fostering targeted improvements.
comment: 33 Pages, Project Page: https://vistorybench.github.io/, Code: https://github.com/vistorybench/vistorybench
♻ ☆ LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation
We propose a training-free method for open-vocabulary semantic segmentation using Vision-and-Language Models (VLMs). Our approach enhances the initial per-patch predictions of VLMs through label propagation, which jointly optimizes predictions by incorporating patch-to-patch relationships. Since VLMs are primarily optimized for cross-modal alignment and not for intra-modal similarity, we use a Vision Model (VM) that is observed to better capture these relationships. We address resolution limitations inherent to patch-based encoders by applying label propagation at the pixel level as a refinement step, significantly improving segmentation accuracy near class boundaries. Our method, called LPOSS+, performs inference over the entire image, avoiding window-based processing and thereby capturing contextual interactions across the full image. LPOSS+ achieves state-of-the-art performance among training-free methods, across a diverse set of datasets. Code: https://github.com/vladan-stojnic/LPOSS
♻ ☆ MatSwap: Light-aware material transfers in images
We present MatSwap, a method to transfer materials to designated surfaces in an image photorealistically. Such a task is non-trivial due to the large entanglement of material appearance, geometry, and lighting in a photograph. In the literature, material editing methods typically rely on either cumbersome text engineering or extensive manual annotations requiring artist knowledge and 3D scene properties that are impractical to obtain. In contrast, we propose to directly learn the relationship between the input material -- as observed on a flat surface -- and its appearance within the scene, without the need for explicit UV mapping. To achieve this, we rely on a custom light- and geometry-aware diffusion model. We fine-tune a large-scale pre-trained text-to-image model for material transfer using our synthetic dataset, preserving its strong priors to ensure effective generalization to real images. As a result, our method seamlessly integrates a desired material into the target location in the photograph while retaining the identity of the scene. We evaluate our method on synthetic and real images and show that it compares favorably to recent work both qualitatively and quantitatively. We release our code and data on https://github.com/astra-vision/MatSwap
comment: Accepted to EGSR, journal track to appear in Computer Graphics Forum
♻ ☆ MagicPose4D: Crafting Articulated Models with Appearance and Motion Control
With the success of 2D and 3D visual generative models, there is growing interest in generating 4D content. Existing methods primarily rely on text prompts to produce 4D content, but they often fall short of accurately defining complex or rare motions. To address this limitation, we propose MagicPose4D, a novel framework for refined control over both appearance and motion in 4D generation. Unlike current 4D generation methods, MagicPose4D accepts monocular videos or mesh sequences as motion prompts, enabling precise and customizable motion control. MagicPose4D comprises two key modules: (i) Dual-Phase 4D Reconstruction Module, which operates in two phases. The first phase focuses on capturing the model's shape using accurate 2D supervision and less accurate but geometrically informative 3D pseudo-supervision without imposing skeleton constraints. The second phase extracts the 3D motion (skeleton poses) using more accurate pseudo-3D supervision, obtained in the first phase and introduces kinematic chain-based skeleton constraints to ensure physical plausibility. Additionally, we propose a Global-local Chamfer loss that aligns the overall distribution of predicted mesh vertices with the supervision while maintaining part-level alignment without extra annotations. (ii) Cross-category Motion Transfer Module, which leverages the extracted motion from the 4D reconstruction module and uses a kinematic-chain-based skeleton to achieve cross-category motion transfer. It ensures smooth transitions between frames through dynamic rigidity, facilitating robust generalization without additional training. Through extensive experiments, we demonstrate that MagicPose4D significantly improves the accuracy and consistency of 4D content generation, outperforming existing methods in various benchmarks.
comment: Project Page: https://magicpose4d.github.io/
♻ ☆ CLAIM: Clinically-Guided LGE Augmentation for Realistic and Diverse Myocardial Scar Synthesis and Segmentation
Deep learning-based myocardial scar segmentation from late gadolinium enhancement (LGE) cardiac MRI has shown great potential for accurate and timely diagnosis and treatment planning for structural cardiac diseases. However, the limited availability and variability of LGE images with high-quality scar labels restrict the development of robust segmentation models. To address this, we introduce CLAIM: \textbf{C}linically-Guided \textbf{L}GE \textbf{A}ugmentation for Real\textbf{i}stic and Diverse \textbf{M}yocardial Scar Synthesis and Segmentation framework, a framework for anatomically grounded scar generation and segmentation. At its core is the SMILE module (Scar Mask generation guided by cLinical knowledgE), which conditions a diffusion-based generator on the clinically adopted AHA 17-segment model to synthesize images with anatomically consistent and spatially diverse scar patterns. In addition, CLAIM employs a joint training strategy in which the scar segmentation network is optimized alongside the generator, aiming to enhance both the realism of synthesized scars and the accuracy of the scar segmentation performance. Experimental results show that CLAIM produces anatomically coherent scar patterns and achieves higher Dice similarity with real scar distributions compared to baseline models. Our approach enables controllable and realistic myocardial scar synthesis and has demonstrated utility for downstream medical imaging task. Code is available at https://github.com/farheenjabeen/CLAIM-Scar-Synthesis.
comment: 14 Pages
♻ ☆ LVPNet: A Latent-variable-based Prediction-driven End-to-end Framework for Lossless Compression of Medical Images MICCAI 2025
Autoregressive Initial Bits is a framework that integrates sub-image autoregression and latent variable modeling, demonstrating its advantages in lossless medical image compression. However, in existing methods, the image segmentation process leads to an even distribution of latent variable information across each sub-image, which in turn causes posterior collapse and inefficient utilization of latent variables. To deal with these issues, we propose a prediction-based end-to-end lossless medical image compression method named LVPNet, leveraging global latent variables to predict pixel values and encoding predicted probabilities for lossless compression. Specifically, we introduce the Global Multi-scale Sensing Module (GMSM), which extracts compact and informative latent representations from the entire image, effectively capturing spatial dependencies within the latent space. Furthermore, to mitigate the information loss introduced during quantization, we propose the Quantization Compensation Module (QCM), which learns the distribution of quantization errors and refines the quantized features to compensate for quantization loss. Extensive experiments on challenging benchmarks demonstrate that our method achieves superior compression efficiency compared to state-of-the-art lossless image compression approaches, while maintaining competitive inference speed. The code is at https://github.com/scy-Jackel/LVPNet.
comment: Accepted to MICCAI 2025
♻ ☆ Image Super-Resolution with Guarantees via Conformalized Generative Models
The increasing use of generative ML foundation models for image restoration tasks such as super-resolution calls for robust and interpretable uncertainty quantification methods. We address this need by presenting a novel approach based on conformal prediction techniques to create a 'confidence mask' capable of reliably and intuitively communicating where the generated image can be trusted. Our method is adaptable to any black-box generative model, including those locked behind an opaque API, requires only easily attainable data for calibration, and is highly customizable via the choice of a local image similarity metric. We prove strong theoretical guarantees for our method that span fidelity error control (according to our local image similarity metric), reconstruction quality, and robustness in the face of data leakage. Finally, we empirically evaluate these results and establish our method's solid performance.
comment: 17 pages, 7 figures
♻ ☆ Learning Adaptive Lighting via Channel-Aware Guidance
Learning lighting adaptation is a crucial step in achieving good visual perception and supporting downstream vision tasks. Current research often addresses individual light-related challenges, such as high dynamic range imaging and exposure correction, in isolation. However, we identify shared fundamental properties across these tasks: i) different color channels have different light properties, and ii) the channel differences reflected in the spatial and frequency domains are different. Leveraging these insights, we introduce the channel-aware Learning Adaptive Lighting Network (LALNet), a multi-task framework designed to handle multiple light-related tasks efficiently. Specifically, LALNet incorporates color-separated features that highlight the unique light properties of each color channel, integrated with traditional color-mixed features by Light Guided Attention (LGA). The LGA utilizes color-separated features to guide color-mixed features focusing on channel differences and ensuring visual consistency across all channels. Additionally, LALNet employs dual domain channel modulation for generating color-separated features and a mixed channel modulation and light state space module for producing color-mixed features. Extensive experiments on four representative light-related tasks demonstrate that LALNet significantly outperforms state-of-the-art methods on benchmark tests and requires fewer computational resources. We provide an anonymous online demo at https://xxxxxx2025.github.io/LALNet/.
♻ ☆ It's not you, it's me -- Global urban visual perception varies across demographics and personalities
Understanding people's preferences and needs is crucial for urban planning decisions, yet current approaches often combine them from multi-cultural and multi-city populations, obscuring important demographic differences and risking amplifying biases. We conducted a large-scale urban visual perception survey of streetscapes worldwide using street view imagery, examining how demographics -- including gender, age, income, education, race and ethnicity, and, for the first time, personality traits -- shape perceptions among 1,000 participants, with balanced demographics, from five countries and 45 nationalities. This dataset, introduced as Street Perception Evaluation Considering Socioeconomics (SPECS), exhibits statistically significant differences in perception scores in six traditionally used indicators (safe, lively, wealthy, beautiful, boring, and depressing) and four new ones we propose (live nearby, walk, cycle, green) among demographics and personalities. We revealed that location-based sentiments are carried over in people's preferences when comparing urban streetscapes with other cities. Further, we compared the perception scores based on where participants and streetscapes are from. We found that an off-the-shelf machine learning model trained on an existing global perception dataset tends to overestimate positive indicators and underestimate negative ones compared to human responses, suggesting that targeted intervention should consider locals' perception. Our study aspires to rectify the myopic treatment of street perception, which rarely considers demographics or personality traits.
comment: Under review
♻ ☆ MambaMorph: a Mamba-based Framework for Medical MR-CT Deformable Registration
Capturing voxel-wise spatial correspondence across distinct modalities is crucial for medical image analysis. However, current registration approaches are not practical enough in terms of registration accuracy and clinical applicability. In this paper, we introduce MambaMorph, a novel multi-modality deformable registration framework. Specifically, MambaMorph utilizes a Mamba-based registration module and a fine-grained, yet simple, feature extractor for efficient long-range correspondence modeling and high-dimensional feature learning, respectively. Additionally, we develop a well-annotated brain MR-CT registration dataset, SR-Reg, to address the scarcity of data in multi-modality registration. To validate MambaMorph's multi-modality registration capabilities, we conduct quantitative experiments on both our SR-Reg dataset and a public T1-T2 dataset. The experimental results on both datasets demonstrate that MambaMorph significantly outperforms the current state-of-the-art learning-based registration methods in terms of registration accuracy. Further study underscores the efficiency of the Mamba-based registration module and the lightweight feature extractor, which achieve notable registration quality while maintaining reasonable computational costs and speeds. We believe that MambaMorph holds significant potential for practical applications in medical image registration. The code for MambaMorph is available at: https://github.com/Guo-Stone/MambaMorph.
♻ ☆ VICCA: Visual Interpretation and Comprehension of Chest X-ray Anomalies in Generated Report Without Human Feedback
As artificial intelligence (AI) becomes increasingly central to healthcare, the demand for explainable and trustworthy models is paramount. Current report generation systems for chest X-rays (CXR) often lack mechanisms for validating outputs without expert oversight, raising concerns about reliability and interpretability. To address these challenges, we propose a novel multimodal framework designed to enhance the semantic alignment and localization accuracy of AI-generated medical reports. Our framework integrates two key modules: a Phrase Grounding Model, which identifies and localizes pathologies in CXR images based on textual prompts, and a Text-to-Image Diffusion Module, which generates synthetic CXR images from prompts while preserving anatomical fidelity. By comparing features between the original and generated images, we introduce a dual-scoring system: one score quantifies localization accuracy, while the other evaluates semantic consistency. This approach significantly outperforms existing methods, achieving state-of-the-art results in pathology localization and text-to-image alignment. The integration of phrase grounding with diffusion models, coupled with the dual-scoring evaluation system, provides a robust mechanism for validating report quality, paving the way for more trustworthy and transparent AI in medical imaging.
♻ ☆ Bounding-box Watermarking: Defense against Model Extraction Attacks on Object Detectors ECML-PKDD2025
Deep neural networks (DNNs) deployed in a cloud often allow users to query models via the APIs. However, these APIs expose the models to model extraction attacks (MEAs). In this attack, the attacker attempts to duplicate the target model by abusing the responses from the API. Backdoor-based DNN watermarking is known as a promising defense against MEAs, wherein the defender injects a backdoor into extracted models via API responses. The backdoor is used as a watermark of the model; if a suspicious model has the watermark (i.e., backdoor), it is verified as an extracted model. This work focuses on object detection (OD) models. Existing backdoor attacks on OD models are not applicable for model watermarking as the defense against MEAs on a realistic threat model. Our proposed approach involves inserting a backdoor into extracted models via APIs by stealthily modifying the bounding-boxes (BBs) of objects detected in queries while keeping the OD capability. In our experiments on three OD datasets, the proposed approach succeeded in identifying the extracted models with 100% accuracy in a wide variety of experimental scenarios.
comment: Accepted at ECML-PKDD2025. Please refer to the conference proceedings for the final version. Source codes: https://zenodo.org/records/15641464
♻ ☆ Neural Graph Map: Dense Mapping with Efficient Loop Closure Integration WACV 2025
Neural field-based SLAM methods typically employ a single, monolithic field as their scene representation. This prevents efficient incorporation of loop closure constraints and limits scalability. To address these shortcomings, we propose a novel RGB-D neural mapping framework in which the scene is represented by a collection of lightweight neural fields which are dynamically anchored to the pose graph of a sparse visual SLAM system. Our approach shows the ability to integrate large-scale loop closures, while requiring only minimal reintegration. Furthermore, we verify the scalability of our approach by demonstrating successful building-scale mapping taking multiple loop closures into account during the optimization, and show that our method outperforms existing state-of-the-art approaches on large scenes in terms of quality and runtime. Our code is available open-source at https://github.com/KTH-RPL/neural_graph_mapping.
comment: WACV 2025, Project page: https://kth-rpl.github.io/neural_graph_mapping/
♻ ☆ ULSR-GS: Ultra Large-scale Surface Reconstruction Gaussian Splatting with Multi-View Geometric Consistency
While Gaussian Splatting (GS) demonstrates efficient and high-quality scene rendering and small area surface extraction ability, it falls short in handling large-scale aerial image surface extraction tasks. To overcome this, we present ULSR-GS, a framework dedicated to high-fidelity surface extraction in ultra-large-scale scenes, addressing the limitations of existing GS-based mesh extraction methods. Specifically, we propose a point-to-photo partitioning approach combined with a multi-view optimal view matching principle to select the best training images for each sub-region. Additionally, during training, ULSR-GS employs a densification strategy based on multi-view geometric consistency to enhance surface extraction details. Experimental results demonstrate that ULSR-GS outperforms other state-of-the-art GS-based works on large-scale aerial photogrammetry benchmark datasets, significantly improving surface extraction accuracy in complex urban environments. Project page: https://ulsrgs.github.io.
comment: Project page: https://ulsrgs.github.io
♻ ☆ World-Consistent Data Generation for Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) is a challenging task that requires an agent to navigate through photorealistic environments following natural-language instructions. One main obstacle existing in VLN is data scarcity, leading to poor generalization performance over unseen environments. Though data argumentation is a promising way for scaling up the dataset, how to generate VLN data both diverse and world-consistent remains problematic. To cope with this issue, we propose the world-consistent data generation (WCGEN), an efficacious data-augmentation framework satisfying both diversity and world-consistency, aimed at enhancing the generalization of agents to novel environments. Roughly, our framework consists of two stages, the trajectory stage which leverages a point-cloud based technique to ensure spatial coherency among viewpoints, and the viewpoint stage which adopts a novel angle synthesis method to guarantee spatial and wraparound consistency within the entire observation. By accurately predicting viewpoint changes with 3D knowledge, our approach maintains the world-consistency during the generation procedure. Experiments on a wide range of datasets verify the effectiveness of our method, demonstrating that our data augmentation strategy enables agents to achieve new state-of-the-art results on all navigation tasks, and is capable of enhancing the VLN agents' generalization ability to unseen environments.
♻ ☆ Provably Improving Generalization of Few-Shot Models with Synthetic Data ICML 2025
Few-shot image classification remains challenging due to the scarcity of labeled training examples. Augmenting them with synthetic data has emerged as a promising way to alleviate this issue, but models trained on synthetic samples often face performance degradation due to the inherent gap between real and synthetic distributions. To address this limitation, we develop a theoretical framework that quantifies the impact of such distribution discrepancies on supervised learning, specifically in the context of image classification. More importantly, our framework suggests practical ways to generate good synthetic samples and to train a predictor with high generalization ability. Building upon this framework, we propose a novel theoretical-based algorithm that integrates prototype learning to optimize both data partitioning and model training, effectively bridging the gap between real few-shot data and synthetic data. Extensive experiments results show that our approach demonstrates superior performance compared to state-of-the-art methods, outperforming them across multiple datasets.
comment: ICML 2025. Our code is released at https://github.com/Fsoft-AIC/ProtoAug
♻ ☆ Mamba Policy: Towards Efficient 3D Diffusion Policy with Hybrid Selective State Models IROS 2025
Diffusion models have been widely employed in the field of 3D manipulation due to their efficient capability to learn distributions, allowing for precise prediction of action trajectories. However, diffusion models typically rely on large parameter UNet backbones as policy networks, which can be challenging to deploy on resource-constrained devices. Recently, the Mamba model has emerged as a promising solution for efficient modeling, offering low computational complexity and strong performance in sequence modeling. In this work, we propose the Mamba Policy, a lighter but stronger policy that reduces the parameter count by over 80% compared to the original policy network while achieving superior performance. Specifically, we introduce the XMamba Block, which effectively integrates input information with conditional features and leverages a combination of Mamba and Attention mechanisms for deep feature extraction. Extensive experiments demonstrate that the Mamba Policy excels on the Adroit, Dexart, and MetaWorld datasets, requiring significantly fewer computational resources. Additionally, we highlight the Mamba Policy's enhanced robustness in long-horizon scenarios compared to baseline methods and explore the performance of various Mamba variants within the Mamba Policy framework. Real-world experiments are also conducted to further validate its effectiveness. Our open-source project page can be found at https://andycao1125.github.io/mamba_policy/.
comment: Accepted to IROS 2025
♻ ☆ WoundAmbit: Bridging State-of-the-Art Semantic Segmentation and Real-World Wound Care ECML
Chronic wounds affect a large population, particularly the elderly and diabetic patients, who often exhibit limited mobility and co-existing health conditions. Automated wound monitoring via mobile image capture can reduce in-person physician visits by enabling remote tracking of wound size. Semantic segmentation is key to this process, yet wound segmentation remains underrepresented in medical imaging research. To address this, we benchmark state-of-the-art deep learning models from general-purpose vision, medical imaging, and top methods from public wound challenges. For a fair comparison, we standardize training, data augmentation, and evaluation, conducting cross-validation to minimize partitioning bias. We also assess real-world deployment aspects, including generalization to an out-of-distribution wound dataset, computational efficiency, and interpretability. Additionally, we propose a reference object-based approach to convert AI-generated masks into clinically relevant wound size estimates and evaluate this, along with mask quality, for the five best architectures based on physician assessments. Overall, the transformer-based TransNeXt showed the highest levels of generalizability. Despite variations in inference times, all models processed at least one image per second on the CPU, which is deemed adequate for the intended application. Interpretability analysis typically revealed prominent activations in wound regions, emphasizing focus on clinically relevant features. Expert evaluation showed high mask approval for all analyzed models, with VWFormer and ConvNeXtS backbone performing the best. Size retrieval accuracy was similar across models, and predictions closely matched expert annotations. Finally, we demonstrate how our AI-driven wound size estimation framework, WoundAmbit, is integrated into a custom telehealth system.
comment: Main paper: 18 pages; supplementary material: 15 pages; the paper has been accepted for publication at the Applied Data Science (ADS) track of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2025)
♻ ☆ Toddlers' Active Gaze Behavior Supports Self-Supervised Object Learning
Toddlers learn to recognize objects from different viewpoints with almost no supervision. During this learning, they execute frequent eye and head movements that shape their visual experience. It is presently unclear if and how these behaviors contribute to toddlers' emerging object recognition abilities. To answer this question, we here combine head-mounted eye tracking during dyadic play with unsupervised machine learning. We approximate toddlers' central visual field experience by cropping image regions from a head-mounted camera centered on the current gaze location estimated via eye tracking. This visual stream feeds an unsupervised computational model of toddlers' learning, which constructs visual representations that slowly change over time. Our experiments demonstrate that toddlers' gaze strategy supports the learning of invariant object representations. Our analysis also shows that the limited size of the central visual field where acuity is high is crucial for this. Overall, our work reveals how toddlers' gaze behavior may support their development of view-invariant object recognition.
comment: 27 pages, 16 figures
♻ ☆ ZigzagPointMamba: Spatial-Semantic Mamba for Point Cloud Understanding
State Space models (SSMs) such as PointMamba enable efficient feature extraction for point cloud self-supervised learning with linear complexity, outperforming Transformers in computational efficiency. However, existing PointMamba-based methods depend on complex token ordering and random masking, which disrupt spatial continuity and local semantic correlations. We propose ZigzagPointMamba to tackle these challenges. The core of our approach is a simple zigzag scan path that globally sequences point cloud tokens, enhancing spatial continuity by preserving the proximity of spatially adjacent point tokens. Nevertheless, random masking undermines local semantic modeling in self-supervised learning. To address this, we introduce a Semantic-Siamese Masking Strategy (SMS), which masks semantically similar tokens to facilitate reconstruction by integrating local features of original and similar tokens. This overcomes the dependence on isolated local features and enables robust global semantic modeling. Our pre-trained ZigzagPointMamba weights significantly improve downstream tasks, achieving a 1.59% mIoU gain on ShapeNetPart for part segmentation, a 0.4% higher accuracy on ModelNet40 for classification, and 0.19%, 1.22%, and 0.72% higher accuracies respectively for the classification tasks on the OBJ-BG, OBJ-ONLY, and PB-T50-RS subsets of ScanObjectNN.
comment: The format of the document has an error and needs to be revised
♻ ☆ KD-DETR: Knowledge Distillation for Detection Transformer with Consistent Distillation Points Sampling CVPR 2024
DETR is a novel end-to-end transformer architecture object detector, which significantly outperforms classic detectors when scaling up. In this paper, we focus on the compression of DETR with knowledge distillation. While knowledge distillation has been well-studied in classic detectors, there is a lack of researches on how to make it work effectively on DETR. We first provide experimental and theoretical analysis to point out that the main challenge in DETR distillation is the lack of consistent distillation points. Distillation points refer to the corresponding inputs of the predictions for student to mimic, which have different formulations in CNN detector and DETR, and reliable distillation requires sufficient distillation points which are consistent between teacher and student. Based on this observation, we propose the first general knowledge distillation paradigm for DETR (KD-DETR) with consistent distillation points sampling, for both homogeneous and heterogeneous distillation. Specifically, we decouple detection and distillation tasks by introducing a set of specialized object queries to construct distillation points for DETR. We further propose a general-to-specific distillation points sampling strategy to explore the extensibility of KD-DETR. Extensive experiments validate the effectiveness and generalization of KD-DETR. For both single-scale DAB-DETR and multis-scale Deformable DETR and DINO, KD-DETR boost the performance of student model with improvements of $2.6\%-5.2\%$. We further extend KD-DETR to heterogeneous distillation, and achieves $2.1\%$ improvement by distilling the knowledge from DINO to Faster R-CNN with ResNet-50, which is comparable with homogeneous distillation methods.The code is available at https://github.com/wennyuhey/KD-DETR.
comment: Accepted to CVPR 2024
♻ ☆ FGS-SLAM: Fourier-based Gaussian Splatting for Real-time SLAM with Sparse and Dense Map Fusion
3D gaussian splatting has advanced simultaneous localization and mapping (SLAM) technology by enabling real-time positioning and the construction of high-fidelity maps. However, the uncertainty in gaussian position and initialization parameters introduces challenges, often requiring extensive iterative convergence and resulting in redundant or insufficient gaussian representations. To address this, we introduce a novel adaptive densification method based on Fourier frequency domain analysis to establish gaussian priors for rapid convergence. Additionally, we propose constructing independent and unified sparse and dense maps, where a sparse map supports efficient tracking via Generalized Iterative Closest Point (GICP) and a dense map creates high-fidelity visual representations. This is the first SLAM system leveraging frequency domain analysis to achieve high-quality gaussian mapping in real-time. Experimental results demonstrate an average frame rate of 36 FPS on Replica and TUM RGB-D datasets, achieving competitive accuracy in both localization and mapping.
♻ ☆ TT3D: Table Tennis 3D Reconstruction
Sports analysis requires processing large amounts of data, which is time-consuming and costly. Advancements in neural networks have significantly alleviated this burden, enabling highly accurate ball tracking in sports broadcasts. However, relying solely on 2D ball tracking is limiting, as it depends on the camera's viewpoint and falls short of supporting comprehensive game analysis. To address this limitation, we propose a novel approach for reconstructing precise 3D ball trajectories from online table tennis match recordings. Our method leverages the underlying physics of the ball's motion to identify the bounce state that minimizes the reprojection error of the ball's flying trajectory, hence ensuring an accurate and reliable 3D reconstruction. A key advantage of our approach is its ability to infer ball spin without relying on human pose estimation or racket tracking, which are often unreliable or unavailable in broadcast footage. We developed an automated camera calibration method capable of reliably tracking camera movements. Additionally, we adapted an existing 3D pose estimation model, which lacks depth motion capture, to accurately track player movements. Together, these contributions enable the full 3D reconstruction of a table tennis rally.
comment: Accepted to CVSport 2025
♻ ☆ Matching-Free Depth Recovery from Structured Light
We introduce a novel approach for depth estimation using images obtained from monocular structured light systems. In contrast to many existing methods that depend on image matching, our technique employs a density voxel grid to represent scene geometry. This grid is trained through self-supervised differentiable volume rendering. Our method leverages color fields derived from the projected patterns in structured light systems during the rendering process, facilitating the isolated optimization of the geometry field. This innovative approach leads to faster convergence and high-quality results. Additionally, we integrate normalized device coordinates (NDC), a distortion loss, and a distinctive surface-based color loss to enhance geometric fidelity. Experimental results demonstrate that our method outperforms current matching-based techniques in terms of geometric performance in few-shot scenarios, achieving an approximately 30% reduction in average estimated depth errors for both synthetic scenes and real-world captured scenes. Moreover, our approach allows for rapid training, being approximately three times faster than previous matching-free methods that utilize implicit representations.
comment: 13 pages, 10 figures
♻ ☆ VideoRFT: Incentivizing Video Reasoning Capability in MLLMs via Reinforced Fine-Tuning
Reinforcement fine-tuning (RFT) has shown great promise in achieving humanlevel reasoning capabilities of Large Language Models (LLMs), and has recently been extended to MLLMs. Nevertheless, reasoning about videos, which is a fundamental aspect of human intelligence, remains a persistent challenge due to the complex logic, temporal and causal structures inherent in video data. To fill this gap, we propose VIDEORFT, a novel approach that extends the RFT paradigm to cultivate human-like video reasoning capabilities in MLLMs. VIDEORFT follows the standard two-stage scheme in RFT: supervised fine-tuning (SFT) with chain-of-thought (CoT) annotations, followed by reinforcement learning (RL) to improve generalization. A central challenge to achieve this in the video domain lies in the scarcity of large-scale, high-quality video CoT datasets. We address this by building a fully automatic CoT curation pipeline. First, we devise a cognitioninspired prompting strategy to elicit a reasoning LLM to generate preliminary CoTs based solely on rich, structured, and literal representations of video content. Subsequently, these CoTs are revised by a visual-language model conditioned on the actual video, ensuring visual consistency and reducing visual hallucinations. This pipeline results in two new datasets - VideoRFT-CoT-102K for SFT and VideoRFT-RL-310K for RL. To further strengthen the RL phase, we introduce a novel semantic-consistency reward that explicitly promotes the alignment between textual reasoning and visual evidence. This reward encourages the model to produce coherent, context-aware reasoning outputs grounded in visual input. Extensive experiments show that VIDEORFT achieves state-of-the-art performance on six video reasoning benchmarks.
comment: Code: https://github.com/QiWang98/VideoRFT
♻ ☆ Skin Color Measurement from Dermatoscopic Images: An Evaluation on a Synthetic Dataset
This paper presents a comprehensive evaluation of skin color measurement methods from dermatoscopic images using a synthetic dataset (S-SYNTH) with controlled ground-truth melanin content, lesion shapes, hair models, and 18 distinct lighting conditions. This allows for rigorous assessment of the robustness and invariance to lighting conditions. We assess four classes of image colorimetry approaches: segmentation-based, patch-based, color quantization, and neural networks. We use these methods to estimate the Individual Typology Angle (ITA) and Fitzpatrick types from dermatoscopic images. Our results show that segmentation-based and color quantization methods yield robust, lighting-invariant estimates, whereas patch-based approaches exhibit significant lighting-dependent biases that require calibration. Furthermore, neural network models, particularly when combined with heavy blurring to reduce overfitting, can provide light-invariant Fitzpatrick predictions, although their generalization to real-world images remains unverified. We conclude with practical recommendations for designing fair and reliable skin color estimation methods.
♻ ☆ A Siamese Network to Detect If Two Iris Images Are Monozygotic
This study presents the first automated classifier designed to determine whether a pair of iris images originates from monozygotic individuals, addressing a previously untackled problem in biometric recognition. In Daugman-style iris recognition, the textures of the left and right irises of the same person are traditionally considered as being as different as the irises of two unrelated persons. However, previous research indicates that humans can detect that two iris images are from different eyes of the same person, or eyes of monozygotic twins, with an accuracy of about 80%. In this work, we employ a Siamese network architecture and contrastive learning to categorize a pair of iris images as coming from monozygotic or non-monozygotic irises. This could potentially be applied, for example, as a fast, noninvasive test to determine if twins are monozygotic or non-monozygotic. We construct a dataset comprising both synthetic monozygotic pairs (images of different irises of the same individual) and natural monozygotic pairs (images of different images from persons who are identical twins), in addition to non-monozygotic pairs from unrelated individuals, ensuring a comprehensive evaluation of the model's capabilities. To gain deeper insights into the learned representations, we train and analyze three variants of the model using (1) the original input images, (2) iris-only images (masking everything but the iris region), and (3) non-iris-only images (masking the iris region). This comparison reveals that both iris texture and surrounding ocular structure contain information useful for the model to classify the image pairs as monozygotic or non-monozygotic. Our approach achieves accuracy levels using the full iris image that exceed those previously reported for human classification of monozygotic iris pairs.
♻ ☆ TIIF-Bench: How Does Your T2I Model Follow Your Instructions?
The rapid advancements of Text-to-Image (T2I) models have ushered in a new phase of AI-generated content, marked by their growing ability to interpret and follow user instructions. However, existing T2I model evaluation benchmarks fall short in limited prompt diversity and complexity, as well as coarse evaluation metrics, making it difficult to evaluate the fine-grained alignment performance between textual instructions and generated images. In this paper, we present TIIF-Bench (Text-to-Image Instruction Following Benchmark), aiming to systematically assess T2I models' ability in interpreting and following intricate textual instructions. TIIF-Bench comprises a set of 5000 prompts organized along multiple dimensions, which are categorized into three levels of difficulties and complexities. To rigorously evaluate model robustness to varying prompt lengths, we provide a short and a long version for each prompt with identical core semantics. Two critical attributes, i.e., text rendering and style control, are introduced to evaluate the precision of text synthesis and the aesthetic coherence of T2I models. In addition, we collect 100 high-quality designer level prompts that encompass various scenarios to comprehensively assess model performance. Leveraging the world knowledge encoded in large vision language models, we propose a novel computable framework to discern subtle variations in T2I model outputs. Through meticulous benchmarking of mainstream T2I models on TIIF-Bench, we analyze the pros and cons of current T2I models and reveal the limitations of current T2I benchmarks. Project Page: https://a113n-w3i.github.io/TIIF_Bench/.
comment: 23 pages, 12 figures, 11 tables
♻ ☆ USP-Gaussian: Unifying Spike-based Image Reconstruction, Pose Correction and Gaussian Splatting
Spike cameras, as an innovative neuromorphic camera that captures scenes with the 0-1 bit stream at 40 kHz, are increasingly employed for the 3D reconstruction task via Neural Radiance Fields (NeRF) or 3D Gaussian Splatting (3DGS). Previous spike-based 3D reconstruction approaches often employ a casecased pipeline: starting with high-quality image reconstruction from spike streams based on established spike-to-image reconstruction algorithms, then progressing to camera pose estimation and 3D reconstruction. However, this cascaded approach suffers from substantial cumulative errors, where quality limitations of initial image reconstructions negatively impact pose estimation, ultimately degrading the fidelity of the 3D reconstruction. To address these issues, we propose a synergistic optimization framework, \textbf{USP-Gaussian}, that unifies spike-based image reconstruction, pose correction, and Gaussian splatting into an end-to-end framework. Leveraging the multi-view consistency afforded by 3DGS and the motion capture capability of the spike camera, our framework enables a joint iterative optimization that seamlessly integrates information between the spike-to-image network and 3DGS. Experiments on synthetic datasets with accurate poses demonstrate that our method surpasses previous approaches by effectively eliminating cascading errors. Moreover, we integrate pose optimization to achieve robust 3D reconstruction in real-world scenarios with inaccurate initial poses, outperforming alternative methods by effectively reducing noise and preserving fine texture details. Our code, data and trained models will be available at https://github.com/chenkang455/USP-Gaussian.
♻ ☆ VLN-R1: Vision-Language Navigation via Reinforcement Fine-Tuning
Vision-Language Navigation (VLN) is a core challenge in embodied AI, requiring agents to navigate real-world environments using natural language instructions. Current language model-based navigation systems operate on discrete topological graphs, limiting path planning to predefined node connections. We propose VLN-R1, an end-to-end framework that leverages Large Vision-Language Models (LVLM) to directly translate egocentric video streams into continuous navigation actions, adopting GRPO-based training inspired by DeepSeek-R1. To enable effective training, we first construct the VLN-Ego dataset using a 3D simulator, Habitat, and propose Long-Short Memory Sampling to balance historical and current observations. While large language models can supervise complete textual instructions, they lack fine-grained action-level control. Our framework employs a two-stage training approach: a) Supervised fine-tuning (SFT) to align the model's action sequence text predictions with expert demonstrations, followed by b) Reinforcement fine-tuning (RFT) enhanced with a Time-Decayed Reward (TDR) mechanism that strategically weights multi-step future actions. Experimental results show VLN-R1 achieves strong performance on VLN-CE benchmark. VLN-R1 proves LVLMs can drive embodied navigation and enhance task-specific reasoning through data-efficient, reward-driven post-training.
comment: project page: vlnr1.github.io
♻ ☆ C3S3: Complementary Competition and Contrastive Selection for Semi-Supervised Medical Image Segmentation ICME 2025
For the immanent challenge of insufficiently annotated samples in the medical field, semi-supervised medical image segmentation (SSMIS) offers a promising solution. Despite achieving impressive results in delineating primary target areas, most current methodologies struggle to precisely capture the subtle details of boundaries. This deficiency often leads to significant diagnostic inaccuracies. To tackle this issue, we introduce C3S3, a novel semi-supervised segmentation model that synergistically integrates complementary competition and contrastive selection. This design significantly sharpens boundary delineation and enhances overall precision. Specifically, we develop an Outcome-Driven Contrastive Learning module dedicated to refining boundary localization. Additionally, we incorporate a Dynamic Complementary Competition module that leverages two high-performing sub-networks to generate pseudo-labels, thereby further improving segmentation quality. The proposed C3S3 undergoes rigorous validation on two publicly accessible datasets, encompassing the practices of both MRI and CT scans. The results demonstrate that our method achieves superior performance compared to previous cutting-edge competitors. Especially, on the 95HD and ASD metrics, our approach achieves a notable improvement of at least 6%, highlighting the significant advancements. The code is available at https://github.com/Y-TARL/C3S3.
comment: Accepted to ICME 2025
♻ ☆ Robust Multimodal Learning for Ophthalmic Disease Grading via Disentangled Representation
This paper discusses how ophthalmologists often rely on multimodal data to improve diagnostic accuracy. However, complete multimodal data is rare in real-world applications due to a lack of medical equipment and concerns about data privacy. Traditional deep learning methods typically address these issues by learning representations in latent space. However, the paper highlights two key limitations of these approaches: (i) Task-irrelevant redundant information (e.g., numerous slices) in complex modalities leads to significant redundancy in latent space representations. (ii) Overlapping multimodal representations make it difficult to extract unique features for each modality. To overcome these challenges, the authors propose the Essence-Point and Disentangle Representation Learning (EDRL) strategy, which integrates a self-distillation mechanism into an end-to-end framework to enhance feature selection and disentanglement for more robust multimodal learning. Specifically, the Essence-Point Representation Learning module selects discriminative features that improve disease grading performance. The Disentangled Representation Learning module separates multimodal data into modality-common and modality-unique representations, reducing feature entanglement and enhancing both robustness and interpretability in ophthalmic disease diagnosis. Experiments on multimodal ophthalmology datasets show that the proposed EDRL strategy significantly outperforms current state-of-the-art methods.
comment: 10pages
♻ ☆ Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models ICML 2025
In this paper, we present Morse, a simple dual-sampling framework for accelerating diffusion models losslessly. The key insight of Morse is to reformulate the iterative generation (from noise to data) process via taking advantage of fast jump sampling and adaptive residual feedback strategies. Specifically, Morse involves two models called Dash and Dot that interact with each other. The Dash model is just the pre-trained diffusion model of any type, but operates in a jump sampling regime, creating sufficient space for sampling efficiency improvement. The Dot model is significantly faster than the Dash model, which is learnt to generate residual feedback conditioned on the observations at the current jump sampling point on the trajectory of the Dash model, lifting the noise estimate to easily match the next-step estimate of the Dash model without jump sampling. By chaining the outputs of the Dash and Dot models run in a time-interleaved fashion, Morse exhibits the merit of flexibly attaining desired image generation performance while improving overall runtime efficiency. With our proposed weight sharing strategy between the Dash and Dot models, Morse is efficient for training and inference. Our method shows a lossless speedup of 1.78X to 3.31X on average over a wide range of sampling step budgets relative to 9 baseline diffusion models on 6 image generation tasks. Furthermore, we show that our method can be also generalized to improve the Latent Consistency Model (LCM-SDXL, which is already accelerated with consistency distillation technique) tailored for few-step text-to-image synthesis. The code and models are available at https://github.com/deep-optimization/Morse.
comment: Fixed a prompt typo in Figure 18 of the Appendix. This work is accepted to ICML 2025. The project page: https://github.com/deep-optimization/Morse
♻ ☆ Predictive Modeling, Pattern Recognition, and Spatiotemporal Representations of Plant Growth in Simulated and Controlled Environments: A Comprehensive Review
Accurate predictions and representations of plant growth patterns in simulated and controlled environments are important for addressing various challenges in plant phenomics research. This review explores various works on state-of-the-art predictive pattern recognition techniques, focusing on the spatiotemporal modeling of plant traits and the integration of dynamic environmental interactions. We provide a comprehensive examination of deterministic, probabilistic, and generative modeling approaches, emphasizing their applications in high-throughput phenotyping and simulation-based plant growth forecasting. Key topics include regressions and neural network-based representation models for the task of forecasting, limitations of existing experiment-based deterministic approaches, and the need for dynamic frameworks that incorporate uncertainty and evolving environmental feedback. This review surveys advances in 2D and 3D structured data representations through functional-structural plant models and conditional generative models. We offer a perspective on opportunities for future works, emphasizing the integration of domain-specific knowledge to data-driven methods, improvements to available datasets, and the implementation of these techniques toward real-world applications.
♻ ☆ Visual and Textual Prompts in VLLMs for Enhancing Emotion Recognition
Vision Large Language Models (VLLMs) exhibit promising potential for multi-modal understanding, yet their application to video-based emotion recognition remains limited by insufficient spatial and contextual awareness. Traditional approaches, which prioritize isolated facial features, often neglect critical non-verbal cues such as body language, environmental context, and social interactions, leading to reduced robustness in real-world scenarios. To address this gap, we propose Set-of-Vision-Text Prompting (SoVTP), a novel framework that enhances zero-shot emotion recognition by integrating spatial annotations (e.g., bounding boxes, facial landmarks), physiological signals (facial action units), and contextual cues (body posture, scene dynamics, others' emotions) into a unified prompting strategy. SoVTP preserves holistic scene information while enabling fine-grained analysis of facial muscle movements and interpersonal dynamics. Extensive experiments show that SoVTP achieves substantial improvements over existing visual prompting methods, demonstrating its effectiveness in enhancing VLLMs' video emotion recognition capabilities.
comment: 14 pages, 14 figures
♻ ☆ BeltCrack: the First Sequential-image Industrial Conveyor Belt Crack Detection Dataset and Its Baseline with Triple-domain Feature Learning
Conveyor belts are important equipment in modern industry, widely applied in production and manufacturing. Their health is much critical to operational efficiency and safety. Cracks are a major threat to belt health. Currently, considering safety, how to intelligently detect belt cracks is catching an increasing attention. To implement the intelligent detection with machine learning, real crack samples are believed to be necessary. However, existing crack datasets primarily focus on pavement scenarios or synthetic data, no real-world industrial belt crack datasets at all. Cracks are a major threat to belt health. Furthermore, to validate usability and effectiveness, we propose a special baseline method with triple-domain ($i.e.$, time-space-frequency) feature hierarchical fusion learning for the two whole-new datasets. Experimental results demonstrate the availability and effectiveness of our dataset. Besides, they also show that our baseline is obviously superior to other similar detection methods. Our datasets and source codes are available at https://github.com/UESTC-nnLab/BeltCrack.
comment: 14 pages, 10 figures
♻ ☆ PP-DocBee2: Improved Baselines with Efficient Data for Multimodal Document Understanding
This report introduces PP-DocBee2, an advanced version of the PP-DocBee, designed to enhance multimodal document understanding. Built on a large multimodal model architecture, PP-DocBee2 addresses the limitations of its predecessor through key technological improvements, including enhanced synthetic data quality, improved visual feature fusion strategy, and optimized inference methodologies. These enhancements yield an $11.4\%$ performance boost on internal benchmarks for Chinese business documents, and reduce inference latency by $73.0\%$ to the vanilla version. A key innovation of our work is a data quality optimization strategy for multimodal document tasks. By employing a large-scale multimodal pre-trained model to evaluate data, we apply a novel statistical criterion to filter outliers, ensuring high-quality training data. Inspired by insights into underutilized intermediate features in multimodal models, we enhance the ViT representational capacity by decomposing it into layers and applying a novel feature fusion strategy to improve complex reasoning. The source code and pre-trained model are available at \href{https://github.com/PaddlePaddle/PaddleMIX}{https://github.com/PaddlePaddle/PaddleMIX}.
♻ ☆ Fine-Grained Perturbation Guidance via Attention Head Selection
Recent guidance methods in diffusion models steer reverse sampling by perturbing the model to construct an implicit weak model and guide generation away from it. Among these approaches, attention perturbation has demonstrated strong empirical performance in unconditional scenarios where classifier-free guidance is not applicable. However, existing attention perturbation methods lack principled approaches for determining where perturbations should be applied, particularly in Diffusion Transformer (DiT) architectures where quality-relevant computations are distributed across layers. In this paper, we investigate the granularity of attention perturbations, ranging from the layer level down to individual attention heads, and discover that specific heads govern distinct visual concepts such as structure, style, and texture quality. Building on this insight, we propose "HeadHunter", a systematic framework for iteratively selecting attention heads that align with user-centric objectives, enabling fine-grained control over generation quality and visual attributes. In addition, we introduce SoftPAG, which linearly interpolates each selected head's attention map toward an identity matrix, providing a continuous knob to tune perturbation strength and suppress artifacts. Our approach not only mitigates the oversmoothing issues of existing layer-level perturbation but also enables targeted manipulation of specific visual styles through compositional head selection. We validate our method on modern large-scale DiT-based text-to-image models including Stable Diffusion 3 and FLUX.1, demonstrating superior performance in both general quality enhancement and style-specific guidance. Our work provides the first head-level analysis of attention perturbation in diffusion models, uncovering interpretable specialization within attention layers and enabling practical design of effective perturbation strategies.
comment: Project page: https://cvlab-kaist.github.io/HeadHunter/
♻ ☆ Low-light Pedestrian Detection in Visible and Infrared Image Feeds: Issues and Challenges
Pedestrian detection has become a cornerstone for several high-level tasks, including autonomous driving, intelligent transportation, and traffic surveillance. There are several works focussed on pedestrian detection using visible images, mainly in the daytime. However, this task is very intriguing when the environmental conditions change to poor lighting or nighttime. Recently, new ideas have been spurred to use alternative sources, such as Far InfraRed (FIR) temperature sensor feeds for detecting pedestrians in low-light conditions. This study reviews recent developments in low-light pedestrian detection approaches. It systematically categorizes and analyses various algorithms from region-based to non-region-based and graph-based learning methodologies by highlighting their methodologies, implementation issues, and challenges. It also outlines the key benchmark datasets that can be used for research and development of advanced pedestrian detection algorithms, particularly in low-light situations.
comment: 29 pages, 4 tables, 21 figures
Artificial Intelligence 167
☆ Omniwise: Predicting GPU Kernels Performance with LLMs
In recent years, the rapid advancement of deep neural networks (DNNs) has revolutionized artificial intelligence, enabling models with unprecedented capabilities in understanding, generating, and processing complex data. These powerful architectures have transformed a wide range of downstream applications, tackling tasks beyond human reach. In this paper, we introduce Omniwise, the first end-to-end, self-supervised fine-tuning pipeline that applies large language models (LLMs) to GPU kernel performance prediction--a novel use case in performance profiling. Omniwise is model-agnostic and lightweight, achieving strong results even with a small 3B-parameter model. It can predict key performance metrics, including memory bandwidth, cache hit rates, GFLOPs, and arithmetic intensity, directly from kernel code without the need for code execution or profiling tools. Our approach achieves over 90% of predictions within 10% relative error on GPU kernels executed on AMD MI250 and MI300X architectures. In addition to the pipeline, we develop an online inference server and a Visual Studio Code plugin that seamlessly integrate LLM-based performance prediction into developers' workflows.
☆ Complex Model Transformations by Reinforcement Learning with Uncertain Human Guidance
Model-driven engineering problems often require complex model transformations (MTs), i.e., MTs that are chained in extensive sequences. Pertinent examples of such problems include model synchronization, automated model repair, and design space exploration. Manually developing complex MTs is an error-prone and often infeasible process. Reinforcement learning (RL) is an apt way to alleviate these issues. In RL, an autonomous agent explores the state space through trial and error to identify beneficial sequences of actions, such as MTs. However, RL methods exhibit performance issues in complex problems. In these situations, human guidance can be of high utility. In this paper, we present an approach and technical framework for developing complex MT sequences through RL, guided by potentially uncertain human advice. Our framework allows user-defined MTs to be mapped onto RL primitives, and executes them as RL programs to find optimal MT sequences. Our evaluation shows that human guidance, even if uncertain, substantially improves RL performance, and results in more efficient development of complex MTs. Through a trade-off between the certainty and timeliness of human advice, our method takes a step towards RL-driven human-in-the-loop engineering methods.
comment: Accepted for ACM/IEEE MODELS'25
☆ THIRDEYE: Cue-Aware Monocular Depth Estimation via Brain-Inspired Multi-Stage Fusion
Monocular depth estimation methods traditionally train deep models to infer depth directly from RGB pixels. This implicit learning often overlooks explicit monocular cues that the human visual system relies on, such as occlusion boundaries, shading, and perspective. Rather than expecting a network to discover these cues unaided, we present ThirdEye, a cue-aware pipeline that deliberately supplies each cue through specialised, pre-trained, and frozen networks. These cues are fused in a three-stage cortical hierarchy (V1->V2->V3) equipped with a key-value working-memory module that weights them by reliability. An adaptive-bins transformer head then produces a high-resolution disparity map. Because the cue experts are frozen, ThirdEye inherits large amounts of external supervision while requiring only modest fine-tuning. This extended version provides additional architectural detail, neuroscientific motivation, and an expanded experimental protocol; quantitative results will appear in a future revision.
☆ Engineering RAG Systems for Real-World Applications: Design, Development, and Evaluation
Retrieval-Augmented Generation (RAG) systems are emerging as a key approach for grounding Large Language Models (LLMs) in external knowledge, addressing limitations in factual accuracy and contextual relevance. However, there is a lack of empirical studies that report on the development of RAG-based implementations grounded in real-world use cases, evaluated through general user involvement, and accompanied by systematic documentation of lessons learned. This paper presents five domain-specific RAG applications developed for real-world scenarios across governance, cybersecurity, agriculture, industrial research, and medical diagnostics. Each system incorporates multilingual OCR, semantic retrieval via vector embeddings, and domain-adapted LLMs, deployed through local servers or cloud APIs to meet distinct user needs. A web-based evaluation involving a total of 100 participants assessed the systems across six dimensions: (i) Ease of Use, (ii) Relevance, (iii) Transparency, (iv) Responsiveness, (v) Accuracy, and (vi) Likelihood of Recommendation. Based on user feedback and our development experience, we documented twelve key lessons learned, highlighting technical, operational, and ethical challenges affecting the reliability and usability of RAG systems in practice.
comment: Accepted as a full paper to the 51st Euromicro Conference on Software Engineering and Advanced Applications (SEAA 2025). 9 pages, 4 figures. This is the preprint version and not the final camera ready version
☆ Generating Reliable Adverse event Profiles for Health through Automated Integrated Data (GRAPH-AID): A Semi-Automated Ontology Building Approach
As data and knowledge expand rapidly, adopting systematic methodologies for ontology generation has become crucial. With the daily increases in data volumes and frequent content changes, the demand for databases to store and retrieve information for the creation of knowledge graphs has become increasingly urgent. The previously established Knowledge Acquisition and Representation Methodology (KNARM) outlines a systematic approach to address these challenges and create knowledge graphs. However, following this methodology highlights the existing challenge of seamlessly integrating Neo4j databases with the Web Ontology Language (OWL). Previous attempts to integrate data from Neo4j into an ontology have been discussed, but these approaches often require an understanding of description logics (DL) syntax, which may not be familiar to many users. Thus, a more accessible method is necessary to bridge this gap. This paper presents a user-friendly approach that utilizes Python and its rdflib library to support ontology development. We showcase our novel approach through a Neo4j database we created by integrating data from the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database. Using this dataset, we developed a Python script that automatically generates the required classes and their axioms, facilitating a smoother integration process. This approach offers a practical solution to the challenges of ontology generation in the context of rapidly growing adverse drug event datasets, supporting improved drug safety monitoring and public health decision-making.
☆ FixCLR: Negative-Class Contrastive Learning for Semi-Supervised Domain Generalization
Semi-supervised domain generalization (SSDG) aims to solve the problem of generalizing to out-of-distribution data when only a few labels are available. Due to label scarcity, applying domain generalization methods often underperform. Consequently, existing SSDG methods combine semi-supervised learning methods with various regularization terms. However, these methods do not explicitly regularize to learn domains invariant representations across all domains, which is a key goal for domain generalization. To address this, we introduce FixCLR. Inspired by success in self-supervised learning, we change two crucial components to adapt contrastive learning for explicit domain invariance regularization: utilization of class information from pseudo-labels and using only a repelling term. FixCLR can also be added on top of most existing SSDG and semi-supervised methods for complementary performance improvements. Our research includes extensive experiments that have not been previously explored in SSDG studies. These experiments include benchmarking different improvements to semi-supervised methods, evaluating the performance of pretrained versus non-pretrained models, and testing on datasets with many domains. Overall, FixCLR proves to be an effective SSDG method, especially when combined with other semi-supervised methods.
☆ Leveraging Vision-Language Models to Select Trustworthy Super-Resolution Samples Generated by Diffusion Models
Super-resolution (SR) is an ill-posed inverse problem with many feasible solutions consistent with a given low-resolution image. On one hand, regressive SR models aim to balance fidelity and perceptual quality to yield a single solution, but this trade-off often introduces artifacts that create ambiguity in information-critical applications such as recognizing digits or letters. On the other hand, diffusion models generate a diverse set of SR images, but selecting the most trustworthy solution from this set remains a challenge. This paper introduces a robust, automated framework for identifying the most trustworthy SR sample from a diffusion-generated set by leveraging the semantic reasoning capabilities of vision-language models (VLMs). Specifically, VLMs such as BLIP-2, GPT-4o, and their variants are prompted with structured queries to assess semantic correctness, visual quality, and artifact presence. The top-ranked SR candidates are then ensembled to yield a single trustworthy output in a cost-effective manner. To rigorously assess the validity of VLM-selected samples, we propose a novel Trustworthiness Score (TWS) a hybrid metric that quantifies SR reliability based on three complementary components: semantic similarity via CLIP embeddings, structural integrity using SSIM on edge maps, and artifact sensitivity through multi-level wavelet decomposition. We empirically show that TWS correlates strongly with human preference in both ambiguous and natural images, and that VLM-guided selections consistently yield high TWS values. Compared to conventional metrics like PSNR, LPIPS, which fail to reflect information fidelity, our approach offers a principled, scalable, and generalizable solution for navigating the uncertainty of the diffusion SR space. By aligning outputs with human expectations and semantic correctness, this work sets a new benchmark for trustworthiness in generative SR.
comment: 14 pages, 9 figures, 5 tables, accepted to IEEE Transactions on Circuits and Systems for Video Technology
☆ Uncovering Hidden Violent Tendencies in LLMs: A Demographic Analysis via Behavioral Vignettes
Large language models (LLMs) are increasingly proposed for detecting and responding to violent content online, yet their ability to reason about morally ambiguous, real-world scenarios remains underexamined. We present the first study to evaluate LLMs using a validated social science instrument designed to measure human response to everyday conflict, namely the Violent Behavior Vignette Questionnaire (VBVQ). To assess potential bias, we introduce persona-based prompting that varies race, age, and geographic identity within the United States. Six LLMs developed across different geopolitical and organizational contexts are evaluated under a unified zero-shot setting. Our study reveals two key findings: (1) LLMs surface-level text generation often diverges from their internal preference for violent responses; (2) their violent tendencies vary across demographics, frequently contradicting established findings in criminology, social science, and psychology.
comment: Under review
☆ MultiFinRAG: An Optimized Multimodal Retrieval-Augmented Generation (RAG) Framework for Financial Question Answering
Financial documents--such as 10-Ks, 10-Qs, and investor presentations--span hundreds of pages and combine diverse modalities, including dense narrative text, structured tables, and complex figures. Answering questions over such content often requires joint reasoning across modalities, which strains traditional large language models (LLMs) and retrieval-augmented generation (RAG) pipelines due to token limitations, layout loss, and fragmented cross-modal context. We introduce MultiFinRAG, a retrieval-augmented generation framework purpose-built for financial QA. MultiFinRAG first performs multimodal extraction by grouping table and figure images into batches and sending them to a lightweight, quantized open-source multimodal LLM, which produces both structured JSON outputs and concise textual summaries. These outputs, along with narrative text, are embedded and indexed with modality-aware similarity thresholds for precise retrieval. A tiered fallback strategy then dynamically escalates from text-only to text+table+image contexts when necessary, enabling cross-modal reasoning while reducing irrelevant context. Despite running on commodity hardware, MultiFinRAG achieves 19 percentage points higher accuracy than ChatGPT-4o (free-tier) on complex financial QA tasks involving text, tables, images, and combined multimodal reasoning.
comment: Preprint Copy
Dynamic Context-Aware Prompt Recommendation for Domain-Specific AI Applications
LLM-powered applications are highly susceptible to the quality of user prompts, and crafting high-quality prompts can often be challenging especially for domain-specific applications. This paper presents a novel dynamic context-aware prompt recommendation system for domain-specific AI applications. Our solution combines contextual query analysis, retrieval-augmented knowledge grounding, hierarchical skill organization, and adaptive skill ranking to generate relevant and actionable prompt suggestions. The system leverages behavioral telemetry and a two-stage hierarchical reasoning process to dynamically select and rank relevant skills, and synthesizes prompts using both predefined and adaptive templates enhanced with few-shot learning. Experiments on real-world datasets demonstrate that our approach achieves high usefulness and relevance, as validated by both automated and expert evaluations.
☆ FINN-GL: Generalized Mixed-Precision Extensions for FPGA-Accelerated LSTMs
Recurrent neural networks (RNNs), particularly LSTMs, are effective for time-series tasks like sentiment analysis and short-term stock prediction. However, their computational complexity poses challenges for real-time deployment in resource constrained environments. While FPGAs offer a promising platform for energy-efficient AI acceleration, existing tools mainly target feed-forward networks, and LSTM acceleration typically requires full custom implementation. In this paper, we address this gap by leveraging the open-source and extensible FINN framework to enable the generalized deployment of LSTMs on FPGAs. Specifically, we leverage the Scan operator from the Open Neural Network Exchange (ONNX) specification to model the recurrent nature of LSTM computations, enabling support for mixed quantisation within them and functional verification of LSTM-based models. Furthermore, we introduce custom transformations within the FINN compiler to map the quantised ONNX computation graph to hardware blocks from the HLS kernel library of the FINN compiler and Vitis HLS. We validate the proposed tool-flow by training a quantised ConvLSTM model for a mid-price stock prediction task using the widely used dataset and generating a corresponding hardware IP of the model using our flow, targeting the XCZU7EV device. We show that the generated quantised ConvLSTM accelerator through our flow achieves a balance between performance (latency) and resource consumption, while matching (or bettering) inference accuracy of state-of-the-art models with reduced precision. We believe that the generalisable nature of the proposed flow will pave the way for resource-efficient RNN accelerator designs on FPGAs.
comment: 9 pages, 6 figures, 5 tables, Accepted for publication in IEEE FPL-2025 (https://2025.fpl.org/)
☆ GPU Kernel Scientist: An LLM-Driven Framework for Iterative Kernel Optimization ICML 2025
Optimizing GPU kernels for high performance is a complex task, often demanding deep architectural knowledge, extensive profiling, and iterative experimentation. This challenge is amplified when targeting newer or less-documented GPU architectures where traditional development aids are scarce. This paper introduces an LLM-powered "GPU Kernel Scientist," an automated methodology for iteratively refining accelerator kernels. Our methodology employs LLMs in a multi-stage, evolutionary process: (a) strategically selecting promising prior code versions as a basis for new iterations; (b) generating hypotheses for optimization experiments, based on existing code and assimilated knowledge from general GPU literature; and (c) autonomously implementing these experiments through code modification and subsequent submission to an external evaluation system, using only observed timing data as performance feedback. We detail how this approach navigates the challenges of the AMD MI300 target architecture and leverages LLMs to compensate for limited domain-specific human expertise. Since quantitative results from an ongoing performance competition were embargoed on paper submission date, we present the architectural design, operational workflow, and qualitative insights, highlighting the potential of LLM-driven agents to democratise and accelerate GPU kernel optimization, especially in resource-constrained or rapidly evolving hardware environments.
comment: 4 page paper plus Appendices. Accepted to the ES-FoMo "Efficient Systems for Foundation Models" workshop at ICML 2025
☆ Poster: Enhancing GNN Robustness for Network Intrusion Detection via Agent-based Analysis
Graph Neural Networks (GNNs) show great promise for Network Intrusion Detection Systems (NIDS), particularly in IoT environments, but suffer performance degradation due to distribution drift and lack robustness against realistic adversarial attacks. Current robustness evaluations often rely on unrealistic synthetic perturbations and lack demonstrations on systematic analysis of different kinds of adversarial attack, which encompass both black-box and white-box scenarios. This work proposes a novel approach to enhance GNN robustness and generalization by employing Large Language Models (LLMs) in an agentic pipeline as simulated cybersecurity expert agents. These agents scrutinize graph structures derived from network flow data, identifying and potentially mitigating suspicious or adversarially perturbed elements before GNN processing. Our experiments, using a framework designed for realistic evaluation and testing with a variety of adversarial attacks including a dataset collected from physical testbed experiments, demonstrate that integrating LLM analysis can significantly improve the resilience of GNN-based NIDS against challenges, showcasing the potential of LLM agent as a complementary layer in intrusion detection architectures.
comment: Poster accepted at the 10th IEEE European Symposium on Security and Privacy (Euro S&P 2025)
☆ The Ideation-Execution Gap: Execution Outcomes of LLM-Generated versus Human Research Ideas
Large Language Models (LLMs) have shown promise in accelerating the scientific research pipeline. A key capability for this process is the ability to generate novel research ideas, and prior studies have found settings in which LLM-generated research ideas were judged as more novel than human-expert ideas. However, a good idea should not simply appear to be novel, it should also result in better research after being executed. To test whether AI-generated ideas lead to better research outcomes, we conduct an execution study by recruiting 43 expert researchers to execute randomly-assigned ideas, either written by experts or generated by an LLM. Each expert spent over 100 hours implementing the idea and wrote a 4-page short paper to document the experiments. All the executed projects are then reviewed blindly by expert NLP researchers. Comparing the review scores of the same ideas before and after execution, the scores of the LLM-generated ideas decrease significantly more than expert-written ideas on all evaluation metrics (novelty, excitement, effectiveness, and overall; p < 0.05), closing the gap between LLM and human ideas observed at the ideation stage. When comparing the aggregated review scores from the execution study, we even observe that for many metrics there is a flip in rankings where human ideas score higher than LLM ideas. This ideation-execution gap highlights the limitations of current LLMs in generating truly effective research ideas and the challenge of evaluating research ideas in the absence of execution outcomes.
comment: main paper is 14 pages
☆ Stochastic Parameter Decomposition
A key step in reverse engineering neural networks is to decompose them into simpler parts that can be studied in relative isolation. Linear parameter decomposition -- a framework that has been proposed to resolve several issues with current decomposition methods -- decomposes neural network parameters into a sum of sparsely used vectors in parameter space. However, the current main method in this framework, Attribution-based Parameter Decomposition (APD), is impractical on account of its computational cost and sensitivity to hyperparameters. In this work, we introduce \textit{Stochastic Parameter Decomposition} (SPD), a method that is more scalable and robust to hyperparameters than APD, which we demonstrate by decomposing models that are slightly larger and more complex than was possible to decompose with APD. We also show that SPD avoids other issues, such as shrinkage of the learned parameters, and better identifies ground truth mechanisms in toy models. By bridging causal mediation analysis and network decomposition methods, this demonstration opens up new research possibilities in mechanistic interpretability by removing barriers to scaling linear parameter decomposition methods to larger models. We release a library for running SPD and reproducing our experiments at https://github.com/goodfire-ai/spd.
☆ Agile Management for Machine Learning: A Systematic Mapping Study
[Context] Machine learning (ML)-enabled systems are present in our society, driving significant digital transformations. The dynamic nature of ML development, characterized by experimental cycles and rapid changes in data, poses challenges to traditional project management. Agile methods, with their flexibility and incremental delivery, seem well-suited to address this dynamism. However, it is unclear how to effectively apply these methods in the context of ML-enabled systems, where challenges require tailored approaches. [Goal] Our goal is to outline the state of the art in agile management for ML-enabled systems. [Method] We conducted a systematic mapping study using a hybrid search strategy that combines database searches with backward and forward snowballing iterations. [Results] Our study identified 27 papers published between 2008 and 2024. From these, we identified eight frameworks and categorized recommendations and practices into eight key themes, such as Iteration Flexibility, Innovative ML-specific Artifacts, and the Minimal Viable Model. The main challenge identified across studies was accurate effort estimation for ML-related tasks. [Conclusion] This study contributes by mapping the state of the art and identifying open gaps in the field. While relevant work exists, more robust empirical evaluation is still needed to validate these contributions.
comment: Accepted for publication at the 51st Euromicro Conference Series on Software Engineering and Advanced Applications (SEAA) 2025
☆ Exploring the Effects of Chatbot Anthropomorphism and Human Empathy on Human Prosocial Behavior Toward Chatbots
Chatbots are increasingly integrated into people's lives and are widely used to help people. Recently, there has also been growing interest in the reverse direction-humans help chatbots-due to a wide range of benefits including better chatbot performance, human well-being, and collaborative outcomes. However, little research has explored the factors that motivate people to help chatbots. To address this gap, we draw on the Computers Are Social Actors (CASA) framework to examine how chatbot anthropomorphism-including human-like identity, emotional expression, and non-verbal expression-influences human empathy toward chatbots and their subsequent prosocial behaviors and intentions. We also explore people's own interpretations of their prosocial behaviors toward chatbots. We conducted an online experiment (N = 244) in which chatbots made mistakes in a collaborative image labeling task and explained the reasons to participants. We then measured participants' prosocial behaviors and intentions toward the chatbots. Our findings revealed that human identity and emotional expression of chatbots increased participants' prosocial behavior and intention toward chatbots, with empathy mediating these effects. Qualitative analysis further identified two motivations for participants' prosocial behaviors: empathy for the chatbot and perceiving the chatbot as human-like. We discuss the implications of these results for understanding and promoting human prosocial behaviors toward chatbots.
☆ MAGPIE: A dataset for Multi-AGent contextual PrIvacy Evaluation
The proliferation of LLM-based agents has led to increasing deployment of inter-agent collaboration for tasks like scheduling, negotiation, resource allocation etc. In such systems, privacy is critical, as agents often access proprietary tools and domain-specific databases requiring strict confidentiality. This paper examines whether LLM-based agents demonstrate an understanding of contextual privacy. And, if instructed, do these systems preserve inference time user privacy in non-adversarial multi-turn conversation. Existing benchmarks to evaluate contextual privacy in LLM-agents primarily assess single-turn, low-complexity tasks where private information can be easily excluded. We first present a benchmark - MAGPIE comprising 158 real-life high-stakes scenarios across 15 domains. These scenarios are designed such that complete exclusion of private data impedes task completion yet unrestricted information sharing could lead to substantial losses. We then evaluate the current state-of-the-art LLMs on (a) their understanding of contextually private data and (b) their ability to collaborate without violating user privacy. Empirical experiments demonstrate that current models, including GPT-4o and Claude-2.7-Sonnet, lack robust understanding of contextual privacy, misclassifying private data as shareable 25.2\% and 43.6\% of the time. In multi-turn conversations, these models disclose private information in 59.9\% and 50.5\% of cases even under explicit privacy instructions. Furthermore, multi-agent systems fail to complete tasks in 71\% of scenarios. These results underscore that current models are not aligned towards both contextual privacy preservation and collaborative task-solving.
☆ Test-time Scaling Techniques in Theoretical Physics -- A Comparison of Methods on the TPBench Dataset
Large language models (LLMs) have shown strong capabilities in complex reasoning, and test-time scaling techniques can enhance their performance with comparably low cost. Many of these methods have been developed and evaluated on mathematical reasoning benchmarks such as AIME. This paper investigates whether the lessons learned from these benchmarks generalize to the domain of advanced theoretical physics. We evaluate a range of common test-time scaling methods on the TPBench physics dataset and compare their effectiveness with results on AIME. To better leverage the structure of physics problems, we develop a novel, symbolic weak-verifier framework to improve parallel scaling results. Our empirical results demonstrate that this method significantly outperforms existing test-time scaling approaches on TPBench. We also evaluate our method on AIME, confirming its effectiveness in solving advanced mathematical problems. Our findings highlight the power of step-wise symbolic verification for tackling complex scientific problems.
comment: 23 pages, 6 figures
☆ On Convolutions, Intrinsic Dimension, and Diffusion Models
The manifold hypothesis asserts that data of interest in high-dimensional ambient spaces, such as image data, lies on unknown low-dimensional submanifolds. Diffusion models (DMs) -- which operate by convolving data with progressively larger amounts of Gaussian noise and then learning to revert this process -- have risen to prominence as the most performant generative models, and are known to be able to learn distributions with low-dimensional support. For a given datum in one of these submanifolds, we should thus intuitively expect DMs to have implicitly learned its corresponding local intrinsic dimension (LID), i.e. the dimension of the submanifold it belongs to. Kamkari et al. (2024b) recently showed that this is indeed the case by linking this LID to the rate of change of the log marginal densities of the DM with respect to the amount of added noise, resulting in an LID estimator known as FLIPD. LID estimators such as FLIPD have a plethora of uses, among others they quantify the complexity of a given datum, and can be used to detect outliers, adversarial examples and AI-generated text. FLIPD achieves state-of-the-art performance at LID estimation, yet its theoretical underpinnings are incomplete since Kamkari et al. (2024b) only proved its correctness under the highly unrealistic assumption of affine submanifolds. In this work we bridge this gap by formally proving the correctness of FLIPD under realistic assumptions. Additionally, we show that an analogous result holds when Gaussian convolutions are replaced with uniform ones, and discuss the relevance of this result.
The Singapore Consensus on Global AI Safety Research Priorities SC
Rapidly improving AI capabilities and autonomy hold significant promise of transformation, but are also driving vigorous debate on how to ensure that AI is safe, i.e., trustworthy, reliable, and secure. Building a trusted ecosystem is therefore essential -- it helps people embrace AI with confidence and gives maximal space for innovation while avoiding backlash. The "2025 Singapore Conference on AI (SCAI): International Scientific Exchange on AI Safety" aimed to support research in this space by bringing together AI scientists across geographies to identify and synthesise research priorities in AI safety. This resulting report builds on the International AI Safety Report chaired by Yoshua Bengio and backed by 33 governments. By adopting a defence-in-depth model, this report organises AI safety research domains into three types: challenges with creating trustworthy AI systems (Development), challenges with evaluating their risks (Assessment), and challenges with monitoring and intervening after deployment (Control).
comment: Final report from the "2025 Singapore Conference on AI (SCAI)" held April 26: https://www.scai.gov.sg/2025/scai2025-report
☆ Diffusion Tree Sampling: Scalable inference-time alignment of diffusion models
Adapting a pretrained diffusion model to new objectives at inference time remains an open problem in generative modeling. Existing steering methods suffer from inaccurate value estimation, especially at high noise levels, which biases guidance. Moreover, information from past runs is not reused to improve sample quality, resulting in inefficient use of compute. Inspired by the success of Monte Carlo Tree Search, we address these limitations by casting inference-time alignment as a search problem that reuses past computations. We introduce a tree-based approach that samples from the reward-aligned target density by propagating terminal rewards back through the diffusion chain and iteratively refining value estimates with each additional generation. Our proposed method, Diffusion Tree Sampling (DTS), produces asymptotically exact samples from the target distribution in the limit of infinite rollouts, and its greedy variant, Diffusion Tree Search (DTS$^\star$), performs a global search for high reward samples. On MNIST and CIFAR-10 class-conditional generation, DTS matches the FID of the best-performing baseline with up to $10\times$ less compute. In text-to-image generation and language completion tasks, DTS$^\star$ effectively searches for high reward samples that match best-of-N with up to $5\times$ less compute. By reusing information from previous generations, we get an anytime algorithm that turns additional compute into steadily better samples, providing a scalable approach for inference-time alignment of diffusion models.
☆ Inside you are many wolves: Using cognitive models to interpret value trade-offs in LLMs
Navigating everyday social situations often requires juggling conflicting goals, such as conveying a harsh truth, maintaining trust, all while still being mindful of another person's feelings. These value trade-offs are an integral part of human decision-making and language use, however, current tools for interpreting such dynamic and multi-faceted notions of values in LLMs are limited. In cognitive science, so-called "cognitive models" provide formal accounts of these trade-offs in humans, by modeling the weighting of a speaker's competing utility functions in choosing an action or utterance. In this work, we use a leading cognitive model of polite speech to interpret the extent to which LLMs represent human-like trade-offs. We apply this lens to systematically evaluate value trade-offs in two encompassing model settings: degrees of reasoning "effort" in frontier black-box models, and RL post-training dynamics of open-source models. Our results highlight patterns of higher informational utility than social utility in reasoning models, and in open-source models shown to be stronger in mathematical reasoning. Our findings from LLMs' training dynamics suggest large shifts in utility values early on in training with persistent effects of the choice of base model and pretraining data, compared to feedback dataset or alignment method. We show that our method is responsive to diverse aspects of the rapidly evolving LLM landscape, with insights for forming hypotheses about other high-level behaviors, shaping training regimes for reasoning models, and better controlling trade-offs between values during model training.
comment: 11 pages, 3 figures
☆ The Decrypto Benchmark for Multi-Agent Reasoning and Theory of Mind
As Large Language Models (LLMs) gain agentic abilities, they will have to navigate complex multi-agent scenarios, interacting with human users and other agents in cooperative and competitive settings. This will require new reasoning skills, chief amongst them being theory of mind (ToM), or the ability to reason about the "mental" states of other agents. However, ToM and other multi-agent abilities in LLMs are poorly understood, since existing benchmarks suffer from narrow scope, data leakage, saturation, and lack of interactivity. We thus propose Decrypto, a game-based benchmark for multi-agent reasoning and ToM drawing inspiration from cognitive science, computational pragmatics and multi-agent reinforcement learning. It is designed to be as easy as possible in all other dimensions, eliminating confounding factors commonly found in other benchmarks. To our knowledge, it is also the first platform for designing interactive ToM experiments. We validate the benchmark design through comprehensive empirical evaluations of frontier LLMs, robustness studies, and human-AI cross-play experiments. We find that LLM game-playing abilities lag behind humans and simple word-embedding baselines. We then create variants of two classic cognitive science experiments within Decrypto to evaluate three key ToM abilities. Surprisingly, we find that state-of-the-art reasoning models are significantly worse at those tasks than their older counterparts. This demonstrates that Decrypto addresses a crucial gap in current reasoning and ToM evaluations, and paves the path towards better artificial agents.
comment: 41 pages, 19 figures
☆ Disentangled representations of microscopy images IJCNN 2025
Microscopy image analysis is fundamental for different applications, from diagnosis to synthetic engineering and environmental monitoring. Modern acquisition systems have granted the possibility to acquire an escalating amount of images, requiring a consequent development of a large collection of deep learning-based automatic image analysis methods. Although deep neural networks have demonstrated great performance in this field, interpretability, an essential requirement for microscopy image analysis, remains an open challenge. This work proposes a Disentangled Representation Learning (DRL) methodology to enhance model interpretability for microscopy image classification. Exploiting benchmark datasets from three different microscopic image domains (plankton, yeast vacuoles, and human cells), we show how a DRL framework, based on transferring a representation learnt from synthetic data, can provide a good trade-off between accuracy and interpretability in this domain.
comment: Published in: International Joint Conference on Neural Networks (IJCNN 2025). Project page: https://github.com/JacopoDapueto/disentangled_microscopy
☆ Towards Community-Driven Agents for Machine Learning Engineering
Large language model-based machine learning (ML) agents have shown great promise in automating ML research. However, existing agents typically operate in isolation on a given research problem, without engaging with the broader research community, where human researchers often gain insights and contribute by sharing knowledge. To bridge this gap, we introduce MLE-Live, a live evaluation framework designed to assess an agent's ability to communicate with and leverage collective knowledge from a simulated Kaggle research community. Building on this framework, we propose CoMind, a novel agent that excels at exchanging insights and developing novel solutions within a community context. CoMind achieves state-of-the-art performance on MLE-Live and outperforms 79.2% human competitors on average across four ongoing Kaggle competitions. Our code is released at https://github.com/comind-ml/CoMind.
☆ Define-ML: An Approach to Ideate Machine Learning-Enabled Systems
[Context] The increasing adoption of machine learning (ML) in software systems demands specialized ideation approaches that address ML-specific challenges, including data dependencies, technical feasibility, and alignment between business objectives and probabilistic system behavior. Traditional ideation methods like Lean Inception lack structured support for these ML considerations, which can result in misaligned product visions and unrealistic expectations. [Goal] This paper presents Define-ML, a framework that extends Lean Inception with tailored activities - Data Source Mapping, Feature-to-Data Source Mapping, and ML Mapping - to systematically integrate data and technical constraints into early-stage ML product ideation. [Method] We developed and validated Define-ML following the Technology Transfer Model, conducting both static validation (with a toy problem) and dynamic validation (in a real-world industrial case study). The analysis combined quantitative surveys with qualitative feedback, assessing utility, ease of use, and intent of adoption. [Results] Participants found Define-ML effective for clarifying data concerns, aligning ML capabilities with business goals, and fostering cross-functional collaboration. The approach's structured activities reduced ideation ambiguity, though some noted a learning curve for ML-specific components, which can be mitigated by expert facilitation. All participants expressed the intention to adopt Define-ML. [Conclusion] Define-ML provides an openly available, validated approach for ML product ideation, building on Lean Inception's agility while aligning features with available data and increasing awareness of technical feasibility.
comment: Accepted for publication at the 51st Euromicro Conference Series on Software Engineering and Advanced Applications (SEAA) 2025
☆ Weighted Mean Frequencies: a handcraft Fourier feature for 4D Flow MRI segmentation
In recent decades, the use of 4D Flow MRI images has enabled the quantification of velocity fields within a volume of interest and along the cardiac cycle. However, the lack of resolution and the presence of noise in these biomarkers are significant issues. As indicated by recent studies, it appears that biomarkers such as wall shear stress are particularly impacted by the poor resolution of vessel segmentation. The Phase Contrast Magnetic Resonance Angiography (PC-MRA) is the state-of-the-art method to facilitate segmentation. The objective of this work is to introduce a new handcraft feature that provides a novel visualisation of 4D Flow MRI images, which is useful in the segmentation task. This feature, termed Weighted Mean Frequencies (WMF), is capable of revealing the region in three dimensions where a voxel has been passed by pulsatile flow. Indeed, this feature is representative of the hull of all pulsatile velocity voxels. The value of the feature under discussion is illustrated by two experiments. The experiments involved segmenting 4D Flow MRI images using optimal thresholding and deep learning methods. The results obtained demonstrate a substantial enhancement in terms of IoU and Dice, with a respective increase of 0.12 and 0.13 in comparison with the PC-MRA feature, as evidenced by the deep learning task. This feature has the potential to yield valuable insights that could inform future segmentation processes in other vascular regions, such as the heart or the brain.
☆ Deciphering GunType Hierarchy through Acoustic Analysis of Gunshot Recordings
The escalating rates of gun-related violence and mass shootings represent a significant threat to public safety. Timely and accurate information for law enforcement agencies is crucial in mitigating these incidents. Current commercial gunshot detection systems, while effective, often come with prohibitive costs. This research explores a cost-effective alternative by leveraging acoustic analysis of gunshot recordings, potentially obtainable from ubiquitous devices like cell phones, to not only detect gunshots but also classify the type of firearm used. This paper details a study on deciphering gun type hierarchies using a curated dataset of 3459 recordings. We investigate the fundamental acoustic characteristics of gunshots, including muzzle blasts and shockwaves, which vary based on firearm type, ammunition, and shooting direction. We propose and evaluate machine learning frameworks, including Support Vector Machines (SVMs) as a baseline and a more advanced Convolutional Neural Network (CNN) architecture for joint gunshot detection and gun type classification. Results indicate that our deep learning approach achieves a mean average precision (mAP) of 0.58 on clean labeled data, outperforming the SVM baseline (mAP 0.39). Challenges related to data quality, environmental noise, and the generalization capabilities when using noisy web-sourced data (mAP 0.35) are also discussed. The long-term vision is to develop a highly accurate, real-time system deployable on common recording devices, significantly reducing detection costs and providing critical intelligence to first responders.
comment: 4 pages + 1 References
☆ AI Assistants to Enhance and Exploit the PETSc Knowledge Base
Generative AI, especially through large language models (LLMs), is transforming how technical knowledge can be accessed, reused, and extended. PETSc, a widely used numerical library for high-performance scientific computing, has accumulated a rich but fragmented knowledge base over its three decades of development, spanning source code, documentation, mailing lists, GitLab issues, Discord conversations, technical papers, and more. Much of this knowledge remains informal and inaccessible to users and new developers. To activate and utilize this knowledge base more effectively, the PETSc team has begun building an LLM-powered system that combines PETSc content with custom LLM tools -- including retrieval-augmented generation (RAG), reranking algorithms, and chatbots -- to assist users, support developers, and propose updates to formal documentation. This paper presents initial experiences designing and evaluating these tools, focusing on system architecture, using RAG and reranking for PETSc-specific information, evaluation methodologies for various LLMs and embedding models, and user interface design. Leveraging the Argonne Leadership Computing Facility resources, we analyze how LLM responses can enhance the development and use of numerical software, with an initial focus on scalable Krylov solvers. Our goal is to establish an extensible framework for knowledge-centered AI in scientific software, enabling scalable support, enriched documentation, and enhanced workflows for research and development. We conclude by outlining directions for expanding this system into a robust, evolving platform that advances software ecosystems to accelerate scientific discovery.
☆ CogGen: A Learner-Centered Generative AI Architecture for Intelligent Tutoring with Programming Video
We introduce CogGen, a learner-centered AI architecture that transforms programming videos into interactive, adaptive learning experiences by integrating student modeling with generative AI tutoring based on the Cognitive Apprenticeship framework. The architecture consists of three components: (1) video segmentation by learning goals, (2) a conversational tutoring engine applying Cognitive Apprenticeship strategies, and (3) a student model using Bayesian Knowledge Tracing to adapt instruction. Our technical evaluation demonstrates effective video segmentation accuracy and strong pedagogical alignment across knowledge, method, action, and interaction layers. Ablation studies confirm the necessity of each component in generating effective guidance. This work advances AI-powered tutoring by bridging structured student modeling with interactive AI conversations, offering a scalable approach to enhancing video-based programming education.
☆ Fine-Tuning and Prompt Engineering of LLMs, for the Creation of Multi-Agent AI for Addressing Sustainable Protein Production Challenges
The global demand for sustainable protein sources has accelerated the need for intelligent tools that can rapidly process and synthesise domain-specific scientific knowledge. In this study, we present a proof-of-concept multi-agent Artificial Intelligence (AI) framework designed to support sustainable protein production research, with an initial focus on microbial protein sources. Our Retrieval-Augmented Generation (RAG)-oriented system consists of two GPT-based LLM agents: (1) a literature search agent that retrieves relevant scientific literature on microbial protein production for a specified microbial strain, and (2) an information extraction agent that processes the retrieved content to extract relevant biological and chemical information. Two parallel methodologies, fine-tuning and prompt engineering, were explored for agent optimisation. Both methods demonstrated effectiveness at improving the performance of the information extraction agent in terms of transformer-based cosine similarity scores between obtained and ideal outputs. Mean cosine similarity scores were increased by up to 25%, while universally reaching mean scores of $\geq 0.89$ against ideal output text. Fine-tuning overall improved the mean scores to a greater extent (consistently of $\geq 0.94$) compared to prompt engineering, although lower statistical uncertainties were observed with the latter approach. A user interface was developed and published for enabling the use of the multi-agent AI system, alongside preliminary exploration of additional chemical safety-based search capabilities
☆ AI in the Writing Process: How Purposeful AI Support Fosters Student Writing
The ubiquity of technologies like ChatGPT has raised concerns about their impact on student writing, particularly regarding reduced learner agency and superficial engagement with content. While standalone chat-based LLMs often produce suboptimal writing outcomes, evidence suggests that purposefully designed AI writing support tools can enhance the writing process. This paper investigates how different AI support approaches affect writers' sense of agency and depth of knowledge transformation. Through a randomized control trial with 90 undergraduate students, we compare three conditions: (1) a chat-based LLM writing assistant, (2) an integrated AI writing tool to support diverse subprocesses, and (3) a standard writing interface (control). Our findings demonstrate that, among AI-supported conditions, students using the integrated AI writing tool exhibited greater agency over their writing process and engaged in deeper knowledge transformation overall. These results suggest that thoughtfully designed AI writing support targeting specific aspects of the writing process can help students maintain ownership of their work while facilitating improved engagement with content.
☆ Dense Video Captioning using Graph-based Sentence Summarization
Recently, dense video captioning has made attractive progress in detecting and captioning all events in a long untrimmed video. Despite promising results were achieved, most existing methods do not sufficiently explore the scene evolution within an event temporal proposal for captioning, and therefore perform less satisfactorily when the scenes and objects change over a relatively long proposal. To address this problem, we propose a graph-based partition-and-summarization (GPaS) framework for dense video captioning within two stages. For the ``partition" stage, a whole event proposal is split into short video segments for captioning at a finer level. For the ``summarization" stage, the generated sentences carrying rich description information for each segment are summarized into one sentence to describe the whole event. We particularly focus on the ``summarization" stage, and propose a framework that effectively exploits the relationship between semantic words for summarization. We achieve this goal by treating semantic words as nodes in a graph and learning their interactions by coupling Graph Convolutional Network (GCN) and Long Short Term Memory (LSTM), with the aid of visual cues. Two schemes of GCN-LSTM Interaction (GLI) modules are proposed for seamless integration of GCN and LSTM. The effectiveness of our approach is demonstrated via an extensive comparison with the state-of-the-arts methods on the two benchmarks ActivityNet Captions dataset and YouCook II dataset.
comment: 12 pages
☆ Causal Representation Learning with Observational Grouping for CXR Classification
Identifiable causal representation learning seeks to uncover the true causal relationships underlying a data generation process. In medical imaging, this presents opportunities to improve the generalisability and robustness of task-specific latent features. This work introduces the concept of grouping observations to learn identifiable representations for disease classification in chest X-rays via an end-to-end framework. Our experiments demonstrate that these causal representations improve generalisability and robustness across multiple classification tasks when grouping is used to enforce invariance w.r.t race, sex, and imaging views.
☆ Vulnerability Disclosure through Adaptive Black-Box Adversarial Attacks on NIDS
Adversarial attacks, wherein slight inputs are carefully crafted to mislead intelligent models, have attracted increasing attention. However, a critical gap persists between theoretical advancements and practical application, particularly in structured data like network traffic, where interdependent features complicate effective adversarial manipulations. Moreover, ambiguity in current approaches restricts reproducibility and limits progress in this field. Hence, existing defenses often fail to handle evolving adversarial attacks. This paper proposes a novel approach for black-box adversarial attacks, that addresses these limitations. Unlike prior work, which often assumes system access or relies on repeated probing, our method strictly respect black-box constraints, reducing interaction to avoid detection and better reflect real-world scenarios. We present an adaptive feature selection strategy using change-point detection and causality analysis to identify and target sensitive features to perturbations. This lightweight design ensures low computational cost and high deployability. Our comprehensive experiments show the attack's effectiveness in evading detection with minimal interaction, enhancing its adaptability and applicability in real-world scenarios. By advancing the understanding of adversarial attacks in network traffic, this work lays a foundation for developing robust defenses.
☆ Show, Tell and Summarize: Dense Video Captioning Using Visual Cue Aided Sentence Summarization
In this work, we propose a division-and-summarization (DaS) framework for dense video captioning. After partitioning each untrimmed long video as multiple event proposals, where each event proposal consists of a set of short video segments, we extract visual feature (e.g., C3D feature) from each segment and use the existing image/video captioning approach to generate one sentence description for this segment. Considering that the generated sentences contain rich semantic descriptions about the whole event proposal, we formulate the dense video captioning task as a visual cue aided sentence summarization problem and propose a new two stage Long Short Term Memory (LSTM) approach equipped with a new hierarchical attention mechanism to summarize all generated sentences as one descriptive sentence with the aid of visual features. Specifically, the first-stage LSTM network takes all semantic words from the generated sentences and the visual features from all segments within one event proposal as the input, and acts as the encoder to effectively summarize both semantic and visual information related to this event proposal. The second-stage LSTM network takes the output from the first-stage LSTM network and the visual features from all video segments within one event proposal as the input, and acts as the decoder to generate one descriptive sentence for this event proposal. Our comprehensive experiments on the ActivityNet Captions dataset demonstrate the effectiveness of our newly proposed DaS framework for dense video captioning.
comment: 10 pages
☆ DeepQuark: deep-neural-network approach to multiquark bound states
For the first time, we implement the deep-neural-network-based variational Monte Carlo approach for the multiquark bound states, whose complexity surpasses that of electron or nucleon systems due to strong SU(3) color interactions. We design a novel and high-efficiency architecture, DeepQuark, to address the unique challenges in multiquark systems such as stronger correlations, extra discrete quantum numbers, and intractable confinement interaction. Our method demonstrates competitive performance with state-of-the-art approaches, including diffusion Monte Carlo and Gaussian expansion method, in the nucleon, doubly heavy tetraquark, and fully heavy tetraquark systems. Notably, it outperforms existing calculations for pentaquarks, exemplified by the triply heavy pentaquark. For the nucleon, we successfully incorporate three-body flux-tube confinement interactions without additional computational costs. In tetraquark systems, we consistently describe hadronic molecule $T_{cc}$ and compact tetraquark $T_{bb}$ with an unbiased form of wave function ansatz. In the pentaquark sector, we obtain weakly bound $\bar D^*\Xi_{cc}^*$ molecule $P_{cc\bar c}(5715)$ with $S=\frac{5}{2}$ and its bottom partner $P_{bb\bar b}(15569)$. They can be viewed as the analogs of the molecular $T_{cc}$. We recommend experimental search of $P_{cc\bar c}(5715)$ in the D-wave $J/\psi \Lambda_c$ channel. DeepQuark holds great promise for extension to larger multiquark systems, overcoming the computational barriers in conventional methods. It also serves as a powerful framework for exploring confining mechanism beyond two-body interactions in multiquark states, which may offer valuable insights into nonperturbative QCD and general many-body physics.
comment: 10 pages, 3 figures, 6 tables
☆ Large Language Model-Driven Code Compliance Checking in Building Information Modeling
This research addresses the time-consuming and error-prone nature of manual code compliance checking in Building Information Modeling (BIM) by introducing a Large Language Model (LLM)-driven approach to semi-automate this critical process. The developed system integrates LLMs such as GPT, Claude, Gemini, and Llama, with Revit software to interpret building codes, generate Python scripts, and perform semi-automated compliance checks within the BIM environment. Case studies on a single-family residential project and an office building project demonstrated the system's ability to reduce the time and effort required for compliance checks while improving accuracy. It streamlined the identification of violations, such as non-compliant room dimensions, material usage, and object placements, by automatically assessing relationships and generating actionable reports. Compared to manual methods, the system eliminated repetitive tasks, simplified complex regulations, and ensured reliable adherence to standards. By offering a comprehensive, adaptable, and cost-effective solution, this proposed approach offers a promising advancement in BIM-based compliance checking, with potential applications across diverse regulatory documents in construction projects.
Pay Less Attention to Deceptive Artifacts: Robust Detection of Compressed Deepfakes on Online Social Networks
With the rapid advancement of deep learning, particularly through generative adversarial networks (GANs) and diffusion models (DMs), AI-generated images, or ``deepfakes", have become nearly indistinguishable from real ones. These images are widely shared across Online Social Networks (OSNs), raising concerns about their misuse. Existing deepfake detection methods overlook the ``block effects" introduced by compression in OSNs, which obscure deepfake artifacts, and primarily focus on raw images, rarely encountered in real-world scenarios. To address these challenges, we propose PLADA (Pay Less Attention to Deceptive Artifacts), a novel framework designed to tackle the lack of paired data and the ineffective use of compressed images. PLADA consists of two core modules: Block Effect Eraser (B2E), which uses a dual-stage attention mechanism to handle block effects, and Open Data Aggregation (ODA), which processes both paired and unpaired data to improve detection. Extensive experiments across 26 datasets demonstrate that PLADA achieves a remarkable balance in deepfake detection, outperforming SoTA methods in detecting deepfakes on OSNs, even with limited paired data and compression. More importantly, this work introduces the ``block effect" as a critical factor in deepfake detection, providing a robust solution for open-world scenarios. Our code is available at https://github.com/ManyiLee/PLADA.
comment: 20 pages, 10 figures
☆ When Life Gives You Samples: The Benefits of Scaling up Inference Compute for Multilingual LLMs
Recent advancements in large language models (LLMs) have shifted focus toward scaling inference-time compute, improving performance without retraining the model. A common approach is to sample multiple outputs in parallel, and select one of these as the final output. However, work to date has focused on English and a handful of domains such as math and code. In contrast, we are most interested in techniques that generalize across open-ended tasks, formally verifiable tasks, and across languages. In this work, we study how to robustly scale inference-time compute for open-ended generative tasks in a multilingual, multi-task setting. Our findings show that both sampling strategy based on temperature variation and selection strategy must be adapted to account for diverse domains and varied language settings. We evaluate existing selection methods, revealing that strategies effective in English often fail to generalize across languages. We propose novel sampling and selection strategies specifically adapted for multilingual and multi-task inference scenarios, and show they yield notable gains across languages and tasks. In particular, our combined sampling and selection methods lead to an average +6.8 jump in win-rates for our 8B models on m-ArenaHard-v2.0 prompts, against proprietary models such as Gemini. At larger scale, Command-A (111B model) equipped with our methods, shows +9.0 improvement in win-rates on the same benchmark with just five samples against single-sample decoding, a substantial increase at minimal cost. Our results underscore the need for language- and task-aware approaches to inference-time compute, aiming to democratize performance improvements in underrepresented languages.
☆ WattsOnAI: Measuring, Analyzing, and Visualizing Energy and Carbon Footprint of AI Workloads
The rapid advancement of AI, particularly large language models (LLMs), has raised significant concerns about the energy use and carbon emissions associated with model training and inference. However, existing tools for measuring and reporting such impacts are often fragmented, lacking systematic metric integration and offering limited support for correlation analysis among them. This paper presents WattsOnAI, a comprehensive software toolkit for the measurement, analysis, and visualization of energy use, power draw, hardware performance, and carbon emissions across AI workloads. By seamlessly integrating with existing AI frameworks, WattsOnAI offers standardized reports and exports fine-grained time-series data to support benchmarking and reproducibility in a lightweight manner. It further enables in-depth correlation analysis between hardware metrics and model performance and thus facilitates bottleneck identification and performance enhancement. By addressing critical limitations in existing tools, WattsOnAI encourages the research community to weigh environmental impact alongside raw performance of AI workloads and advances the shift toward more sustainable "Green AI" practices. The code is available at https://github.com/SusCom-Lab/WattsOnAI.
comment: 11 pages, 7 figures and 5 tables
☆ Case-based Reasoning Augmented Large Language Model Framework for Decision Making in Realistic Safety-Critical Driving Scenarios
Driving in safety-critical scenarios requires quick, context-aware decision-making grounded in both situational understanding and experiential reasoning. Large Language Models (LLMs), with their powerful general-purpose reasoning capabilities, offer a promising foundation for such decision-making. However, their direct application to autonomous driving remains limited due to challenges in domain adaptation, contextual grounding, and the lack of experiential knowledge needed to make reliable and interpretable decisions in dynamic, high-risk environments. To address this gap, this paper presents a Case-Based Reasoning Augmented Large Language Model (CBR-LLM) framework for evasive maneuver decision-making in complex risk scenarios. Our approach integrates semantic scene understanding from dashcam video inputs with the retrieval of relevant past driving cases, enabling LLMs to generate maneuver recommendations that are both context-sensitive and human-aligned. Experiments across multiple open-source LLMs show that our framework improves decision accuracy, justification quality, and alignment with human expert behavior. Risk-aware prompting strategies further enhance performance across diverse risk types, while similarity-based case retrieval consistently outperforms random sampling in guiding in-context learning. Case studies further demonstrate the framework's robustness in challenging real-world conditions, underscoring its potential as an adaptive and trustworthy decision-support tool for intelligent driving systems.
comment: 12 pages, 10 figures, under-review conference
☆ Industrial Energy Disaggregation with Digital Twin-generated Dataset and Efficient Data Augmentation
Industrial Non-Intrusive Load Monitoring (NILM) is limited by the scarcity of high-quality datasets and the complex variability of industrial energy consumption patterns. To address data scarcity and privacy issues, we introduce the Synthetic Industrial Dataset for Energy Disaggregation (SIDED), an open-source dataset generated using Digital Twin simulations. SIDED includes three types of industrial facilities across three different geographic locations, capturing diverse appliance behaviors, weather conditions, and load profiles. We also propose the Appliance-Modulated Data Augmentation (AMDA) method, a computationally efficient technique that enhances NILM model generalization by intelligently scaling appliance power contributions based on their relative impact. We show in experiments that NILM models trained with AMDA-augmented data significantly improve the disaggregation of energy consumption of complex industrial appliances like combined heat and power systems. Specifically, in our out-of-sample scenarios, models trained with AMDA achieved a Normalized Disaggregation Error of 0.093, outperforming models trained without data augmentation (0.451) and those trained with random data augmentation (0.290). Data distribution analyses confirm that AMDA effectively aligns training and test data distributions, enhancing model generalization.
☆ OctoThinker: Mid-training Incentivizes Reinforcement Learning Scaling
Different base language model families, such as Llama and Qwen, exhibit divergent behaviors during post-training with reinforcement learning (RL), especially on reasoning-intensive tasks. What makes a base language model suitable for reinforcement learning? Gaining deeper insight into this question is essential for developing RL-scalable foundation models of the next generation. In this work, we investigate how mid-training strategies shape RL dynamics, focusing on two representative model families: Qwen and Llama. Our study reveals that (1) high-quality mathematical corpora, such as MegaMath-Web-Pro, significantly improve both base model and RL performance, while existing alternatives (e.g., FineMath-4plus) fail to do so; (2) further adding QA-style data, particularly long chain-of-thought (CoT) reasoning examples, enhances RL outcomes, and instruction data further unlocks this effect; (3) while long-CoT improves reasoning depth, it can also induce verbosity of model responses and unstability of RL training, underscoring the importance of data formatting; (4) scaling mid-training consistently leads to stronger downstream RL performance. Building on these insights, we introduce a two-stage mid-training strategy, Stable-then-Decay, in which base models are first trained on 200B tokens with a constant learning rate, followed by 20B tokens across three CoT-focused branches with learning rate decay. This yields OctoThinker, a family of models demonstrating strong RL compatibility and closing the performance gap with more RL-friendly model families, i.e., Qwen. We hope our work will help shape pre-training strategies for foundation models in the RL era. To support further research, we release our open-source models along with a curated math reasoning-intensive corpus of over 70 billion tokens (i.e., MegaMath-Web-Pro-Max).
comment: 26 pages; The first three authors contribute to this work equally
☆ Engineering Sentience
We spell out a definition of sentience that may be useful for designing and building it in machines. We propose that for sentience to be meaningful for AI, it must be fleshed out in functional, computational terms, in enough detail to allow for implementation. Yet, this notion of sentience must also reflect something essentially 'subjective', beyond just having the general capacity to encode perceptual content. For this specific functional notion of sentience to occur, we propose that certain sensory signals need to be both assertoric (persistent) and qualitative. To illustrate the definition in more concrete terms, we sketch out some ways for potential implementation, given current technology. Understanding what it takes for artificial agents to be functionally sentient can also help us avoid creating them inadvertently, or at least, realize that we have created them in a timely manner.
☆ ReCode: Updating Code API Knowledge with Reinforcement Learning
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: Work in progress
☆ Mixtures of Neural Cellular Automata: A Stochastic Framework for Growth Modelling and Self-Organization
Neural Cellular Automata (NCAs) are a promising new approach to model self-organizing processes, with potential applications in life science. However, their deterministic nature limits their ability to capture the stochasticity of real-world biological and physical systems. We propose the Mixture of Neural Cellular Automata (MNCA), a novel framework incorporating the idea of mixture models into the NCA paradigm. By combining probabilistic rule assignments with intrinsic noise, MNCAs can model diverse local behaviors and reproduce the stochastic dynamics observed in biological processes. We evaluate the effectiveness of MNCAs in three key domains: (1) synthetic simulations of tissue growth and differentiation, (2) image morphogenesis robustness, and (3) microscopy image segmentation. Results show that MNCAs achieve superior robustness to perturbations, better recapitulate real biological growth patterns, and provide interpretable rule segmentation. These findings position MNCAs as a promising tool for modeling stochastic dynamical systems and studying self-growth processes.
☆ Counterfactual Influence as a Distributional Quantity ICML 2025
Machine learning models are known to memorize samples from their training data, raising concerns around privacy and generalization. Counterfactual self-influence is a popular metric to study memorization, quantifying how the model's prediction for a sample changes depending on the sample's inclusion in the training dataset. However, recent work has shown memorization to be affected by factors beyond self-influence, with other training samples, in particular (near-)duplicates, having a large impact. We here study memorization treating counterfactual influence as a distributional quantity, taking into account how all training samples influence how a sample is memorized. For a small language model, we compute the full influence distribution of training samples on each other and analyze its properties. We find that solely looking at self-influence can severely underestimate tangible risks associated with memorization: the presence of (near-)duplicates seriously reduces self-influence, while we find these samples to be (near-)extractable. We observe similar patterns for image classification, where simply looking at the influence distributions reveals the presence of near-duplicates in CIFAR-10. Our findings highlight that memorization stems from complex interactions across training data and is better captured by the full influence distribution than by self-influence alone.
comment: Workshop on The Impact of Memorization on Trustworthy Foundation Models (MemFM) @ ICML 2025
☆ Automatic Demonstration Selection for LLM-based Tabular Data Classification
A fundamental question in applying In-Context Learning (ICL) for tabular data classification is how to determine the ideal number of demonstrations in the prompt. This work addresses this challenge by presenting an algorithm to automatically select a reasonable number of required demonstrations. Our method distinguishes itself by integrating not only the tabular data's distribution but also the user's selected prompt template and the specific Large Language Model (LLM) into its estimation. Rooted in Spectral Graph Theory, our proposed algorithm defines a novel metric to quantify the similarities between different demonstrations. We then construct a similarity graph and analyze the eigenvalues of its Laplacian to derive the minimum number of demonstrations capable of representing the data within the LLM's intrinsic representation space. We validate the efficacy of our approach through experiments comparing its performance against conventional random selection algorithms on diverse datasets and LLMs.
☆ An Agentic System for Rare Disease Diagnosis with Traceable Reasoning
Rare diseases collectively affect over 300 million individuals worldwide, yet timely and accurate diagnosis remains a pervasive challenge. This is largely due to their clinical heterogeneity, low individual prevalence, and the limited familiarity most clinicians have with rare conditions. Here, we introduce DeepRare, the first rare disease diagnosis agentic system powered by a large language model (LLM), capable of processing heterogeneous clinical inputs. The system generates ranked diagnostic hypotheses for rare diseases, each accompanied by a transparent chain of reasoning that links intermediate analytic steps to verifiable medical evidence. DeepRare comprises three key components: a central host with a long-term memory module; specialized agent servers responsible for domain-specific analytical tasks integrating over 40 specialized tools and web-scale, up-to-date medical knowledge sources, ensuring access to the most current clinical information. This modular and scalable design enables complex diagnostic reasoning while maintaining traceability and adaptability. We evaluate DeepRare on eight datasets. The system demonstrates exceptional diagnostic performance among 2,919 diseases, achieving 100% accuracy for 1013 diseases. In HPO-based evaluations, DeepRare significantly outperforms other 15 methods, like traditional bioinformatics diagnostic tools, LLMs, and other agentic systems, achieving an average Recall@1 score of 57.18% and surpassing the second-best method (Reasoning LLM) by a substantial margin of 23.79 percentage points. For multi-modal input scenarios, DeepRare achieves 70.60% at Recall@1 compared to Exomiser's 53.20% in 109 cases. Manual verification of reasoning chains by clinical experts achieves 95.40% agreements. Furthermore, the DeepRare system has been implemented as a user-friendly web application http://raredx.cn/doctor.
☆ Off-Policy Evaluation and Learning for the Future under Non-Stationarity
We study the novel problem of future off-policy evaluation (F-OPE) and learning (F-OPL) for estimating and optimizing the future value of policies in non-stationary environments, where distributions vary over time. In e-commerce recommendations, for instance, our goal is often to estimate and optimize the policy value for the upcoming month using data collected by an old policy in the previous month. A critical challenge is that data related to the future environment is not observed in the historical data. Existing methods assume stationarity or depend on restrictive reward-modeling assumptions, leading to significant bias. To address these limitations, we propose a novel estimator named \textit{\textbf{O}ff-\textbf{P}olicy Estimator for the \textbf{F}uture \textbf{V}alue (\textbf{\textit{OPFV}})}, designed for accurately estimating policy values at any future time point. The key feature of OPFV is its ability to leverage the useful structure within time-series data. While future data might not be present in the historical log, we can leverage, for example, seasonal, weekly, or holiday effects that are consistent in both the historical and future data. Our estimator is the first to exploit these time-related structures via a new type of importance weighting, enabling effective F-OPE. Theoretical analysis identifies the conditions under which OPFV becomes low-bias. In addition, we extend our estimator to develop a new policy-gradient method to proactively learn a good future policy using only historical data. Empirical results show that our methods substantially outperform existing methods in estimating and optimizing the future policy value under non-stationarity for various experimental setups.
☆ SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models
Ensuring the security of complex system-on-chips (SoCs) designs is a critical imperative, yet traditional verification techniques struggle to keep pace due to significant challenges in automation, scalability, comprehensiveness, and adaptability. The advent of large language models (LLMs), with their remarkable capabilities in natural language understanding, code generation, and advanced reasoning, presents a new paradigm for tackling these issues. Moving beyond monolithic models, an agentic approach allows for the creation of multi-agent systems where specialized LLMs collaborate to solve complex problems more effectively. Recognizing this opportunity, we introduce SV-LLM, a novel multi-agent assistant system designed to automate and enhance SoC security verification. By integrating specialized agents for tasks like verification question answering, security asset identification, threat modeling, test plan and property generation, vulnerability detection, and simulation-based bug validation, SV-LLM streamlines the workflow. To optimize their performance in these diverse tasks, agents leverage different learning paradigms, such as in-context learning, fine-tuning, and retrieval-augmented generation (RAG). The system aims to reduce manual intervention, improve accuracy, and accelerate security analysis, supporting proactive identification and mitigation of risks early in the design cycle. We demonstrate its potential to transform hardware security practices through illustrative case studies and experiments that showcase its applicability and efficacy.
☆ Client Clustering Meets Knowledge Sharing: Enhancing Privacy and Robustness in Personalized Peer-to-Peer Learning
The growing adoption of Artificial Intelligence (AI) in Internet of Things (IoT) ecosystems has intensified the need for personalized learning methods that can operate efficiently and privately across heterogeneous, resource-constrained devices. However, enabling effective personalized learning in decentralized settings introduces several challenges, including efficient knowledge transfer between clients, protection of data privacy, and resilience against poisoning attacks. In this paper, we address these challenges by developing P4 (Personalized, Private, Peer-to-Peer) -- a method designed to deliver personalized models for resource-constrained IoT devices while ensuring differential privacy and robustness against poisoning attacks. Our solution employs a lightweight, fully decentralized algorithm to privately detect client similarity and form collaborative groups. Within each group, clients leverage differentially private knowledge distillation to co-train their models, maintaining high accuracy while ensuring robustness to the presence of malicious clients. We evaluate P4 on popular benchmark datasets using both linear and CNN-based architectures across various heterogeneity settings and attack scenarios. Experimental results show that P4 achieves 5% to 30% higher accuracy than leading differentially private peer-to-peer approaches and maintains robustness with up to 30% malicious clients. Additionally, we demonstrate its practicality by deploying it on resource-constrained devices, where collaborative training between two clients adds only ~7 seconds of overhead.
☆ GymPN: A Library for Decision-Making in Process Management Systems
Process management systems support key decisions about the way work is allocated in organizations. This includes decisions on which task to perform next, when to execute the task, and who to assign the task to. Suitable software tools are required to support these decisions in a way that is optimal for the organization. This paper presents a software library, called GymPN, that supports optimal decision-making in business processes using Deep Reinforcement Learning. GymPN builds on previous work that supports task assignment in business processes, introducing two key novelties: support for partial process observability and the ability to model multiple decisions in a business process. These novel elements address fundamental limitations of previous work and thus enable the representation of more realistic process decisions. We evaluate the library on eight typical business process decision-making problem patterns, showing that GymPN allows for easy modeling of the desired problems, as well as learning optimal decision policies.
☆ Paladin-mini: A Compact and Efficient Grounding Model Excelling in Real-World Scenarios
This paper introduces two significant contributions to address the issue of grounding claims in a given context. Grounding means that given a context (document) and a claim, there's at least one supportive evidence for the claim in the document. We will introduce Paladin-mini, a compact (3.8B parameters) open-source classifier model (used for labeling data as grounded or ungrounded) engineered for robust performance in real-world scenarios, and the grounding-benchmark, a new evaluation dataset designed to assess performance on critical reasoning tasks. We'll also demonstrate the results of Paladin-mini with benchmarks against the current State-of-the-art and share clear and reproducible results.
comment: 6 pages, 2 figures
☆ CARMA: Context-Aware Situational Grounding of Human-Robot Group Interactions by Combining Vision-Language Models with Object and Action Recognition
We introduce CARMA, a system for situational grounding in human-robot group interactions. Effective collaboration in such group settings requires situational awareness based on a consistent representation of present persons and objects coupled with an episodic abstraction of events regarding actors and manipulated objects. This calls for a clear and consistent assignment of instances, ensuring that robots correctly recognize and track actors, objects, and their interactions over time. To achieve this, CARMA uniquely identifies physical instances of such entities in the real world and organizes them into grounded triplets of actors, objects, and actions. To validate our approach, we conducted three experiments, where multiple humans and a robot interact: collaborative pouring, handovers, and sorting. These scenarios allow the assessment of the system's capabilities as to role distinction, multi-actor awareness, and consistent instance identification. Our experiments demonstrate that the system can reliably generate accurate actor-action-object triplets, providing a structured and robust foundation for applications requiring spatiotemporal reasoning and situated decision-making in collaborative settings.
☆ Self-Supervised Graph Learning via Spectral Bootstrapping and Laplacian-Based Augmentations
We present LaplaceGNN, a novel self-supervised graph learning framework that bypasses the need for negative sampling by leveraging spectral bootstrapping techniques. Our method integrates Laplacian-based signals into the learning process, allowing the model to effectively capture rich structural representations without relying on contrastive objectives or handcrafted augmentations. By focusing on positive alignment, LaplaceGNN achieves linear scaling while offering a simpler, more efficient, self-supervised alternative for graph neural networks, applicable across diverse domains. Our contributions are twofold: we precompute spectral augmentations through max-min centrality-guided optimization, enabling rich structural supervision without relying on handcrafted augmentations, then we integrate an adversarial bootstrapped training scheme that further strengthens feature learning and robustness. Our extensive experiments on different benchmark datasets show that LaplaceGNN achieves superior performance compared to state-of-the-art self-supervised graph methods, offering a promising direction for efficiently learning expressive graph representations.
comment: LaplaceGNN is a novel graph learning framework that employs a bootstrapped teacher-student architecture. Its precomputed spectral augmentations and adversarial training enable robust performance, outperforming SOTA methods while scaling linearly
☆ Tabular Feature Discovery With Reasoning Type Exploration
Feature engineering for tabular data remains a critical yet challenging step in machine learning. Recently, large language models (LLMs) have been used to automatically generate new features by leveraging their vast knowledge. However, existing LLM-based approaches often produce overly simple or repetitive features, partly due to inherent biases in the transformations the LLM chooses and the lack of structured reasoning guidance during generation. In this paper, we propose a novel method REFeat, which guides an LLM to discover diverse and informative features by leveraging multiple types of reasoning to steer the feature generation process. Experiments on 59 benchmark datasets demonstrate that our approach not only achieves higher predictive accuracy on average, but also discovers more diverse and meaningful features. These results highlight the promise of incorporating rich reasoning paradigms and adaptive strategy selection into LLM-driven feature discovery for tabular data.
☆ A foundation model with multi-variate parallel attention to generate neuronal activity
Learning from multi-variate time-series with heterogeneous channel configurations remains a fundamental challenge for deep neural networks (DNNs), particularly in clinical domains such as intracranial electroencephalography (iEEG), where channel setups vary widely across subjects. In this work, we introduce multi-variate parallel attention (MVPA), a novel self-attention mechanism that disentangles content, temporal, and spatial attention, enabling flexible, generalizable, and efficient modeling of time-series data with varying channel counts and configurations. We use MVPA to build MVPFormer, a generative foundation model for human electrophysiology, trained to predict the evolution of iEEG signals across diverse subjects. To support this and future effort by the community, we release the SWEC iEEG dataset, the largest publicly available iEEG dataset to date, comprising nearly 10,000 hours of recordings from heterogeneous clinical sources. MVPFormer leverages MVPA to achieve strong generalization across subjects, demonstrating expert-level performance in seizure detection and outperforming state-of-the-art Transformer baselines on our SWEC, the MAYO, and the FNUSA dataset. We further validate MVPA on standard time-series forecasting and classification tasks, where it matches or exceeds existing attention-based models. Together, our contributions establish MVPA as a general-purpose attention mechanism for heterogeneous time-series and MVPFormer as the first open-source, open-weights, and open-data iEEG foundation model with state-of-the-art clinical performance. The code is available at https://github.com/IBM/multi-variate-parallel-transformer. The SWEC iEEG dataset is available at https://mb-neuro.medical-blocks.ch/public_access/databases/ieeg/swec_ieeg.
comment: The code is available at https://github.com/IBM/multi-variate-parallel-transformer. The SWEC iEEG dataset is available at https://mb-neuro.medical-blocks.ch/public_access/databases/ieeg/swec_ieeg
☆ DipSVD: Dual-importance Protected SVD for Efficient LLM Compression
The ever-increasing computational demands and deployment costs of large language models (LLMs) have spurred numerous compressing methods. Compared to quantization and unstructured pruning, SVD compression offers superior hardware compatibility and theoretical guarantees. However, existing SVD-based methods focus on the overall discrepancy between the original and compressed matrices while overlooking the protection of critical components within the matrix, which leads to inferior performance in the compressed models. This paper proposes a dual-level importance protection mechanism to enhance SVD-based compression methods: (1) local importance protection: preserving the most critical singular vectors within each weight matrix through channel-weighted data whitening; and (2) global importance protection: enabling less important layers to bear a greater portion of the compression burden through either a heuristic or optimization-based approach, thereby minimizing the impact of compression on critical layers. Extensive experiments demonstrate that DipSVD outperforms existing SVD-based compression approaches across multiple benchmarks, achieving superior model performance especially at high model compression ratios.
☆ Feature Hallucination for Self-supervised Action Recognition
Understanding human actions in videos requires more than raw pixel analysis; it relies on high-level semantic reasoning and effective integration of multimodal features. We propose a deep translational action recognition framework that enhances recognition accuracy by jointly predicting action concepts and auxiliary features from RGB video frames. At test time, hallucination streams infer missing cues, enriching feature representations without increasing computational overhead. To focus on action-relevant regions beyond raw pixels, we introduce two novel domain-specific descriptors. Object Detection Features (ODF) aggregate outputs from multiple object detectors to capture contextual cues, while Saliency Detection Features (SDF) highlight spatial and intensity patterns crucial for action recognition. Our framework seamlessly integrates these descriptors with auxiliary modalities such as optical flow, Improved Dense Trajectories, skeleton data, and audio cues. It remains compatible with state-of-the-art architectures, including I3D, AssembleNet, Video Transformer Network, FASTER, and recent models like VideoMAE V2 and InternVideo2. To handle uncertainty in auxiliary features, we incorporate aleatoric uncertainty modeling in the hallucination step and introduce a robust loss function to mitigate feature noise. Our multimodal self-supervised action recognition framework achieves state-of-the-art performance on multiple benchmarks, including Kinetics-400, Kinetics-600, and Something-Something V2, demonstrating its effectiveness in capturing fine-grained action dynamics.
comment: Accepted for publication in International Journal of Computer Vision (IJCV)
☆ IMC-PINN-FE: A Physics-Informed Neural Network for Patient-Specific Left Ventricular Finite Element Modeling with Image Motion Consistency and Biomechanical Parameter Estimation
Elucidating the biomechanical behavior of the myocardium is crucial for understanding cardiac physiology, but cannot be directly inferred from clinical imaging and typically requires finite element (FE) simulations. However, conventional FE methods are computationally expensive and often fail to reproduce observed cardiac motions. We propose IMC-PINN-FE, a physics-informed neural network (PINN) framework that integrates imaged motion consistency (IMC) with FE modeling for patient-specific left ventricular (LV) biomechanics. Cardiac motion is first estimated from MRI or echocardiography using either a pre-trained attention-based network or an unsupervised cyclic-regularized network, followed by extraction of motion modes. IMC-PINN-FE then rapidly estimates myocardial stiffness and active tension by fitting clinical pressure measurements, accelerating computation from hours to seconds compared to traditional inverse FE. Based on these parameters, it performs FE modeling across the cardiac cycle at 75x speedup. Through motion constraints, it matches imaged displacements more accurately, improving average Dice from 0.849 to 0.927, while preserving realistic pressure-volume behavior. IMC-PINN-FE advances previous PINN-FE models by introducing back-computation of material properties and better motion fidelity. Using motion from a single subject to reconstruct shape modes also avoids the need for large datasets and improves patient specificity. IMC-PINN-FE offers a robust and efficient approach for rapid, personalized, and image-consistent cardiac biomechanical modeling.
☆ Mobile-R1: Towards Interactive Reinforcement Learning for VLM-Based Mobile Agent via Task-Level Rewards
Vision-language model-based mobile agents have gained the ability to not only understand complex instructions and mobile screenshots, but also optimize their action outputs via thinking and reasoning, benefiting from reinforcement learning, such as Group Relative Policy Optimization (GRPO). However, existing research centers on offline reinforcement learning training or online optimization using action-level rewards, which limits the agent's dynamic interaction with the environment. This often results in agents settling into local optima, thereby weakening their ability for exploration and error action correction. To address these challenges, we introduce an approach called Mobile-R1, which employs interactive multi-turn reinforcement learning with task-level rewards for mobile agents. Our training framework consists of three stages: initial format finetuning, single-step online training via action-level reward, followed by online training via task-level reward based on multi-turn trajectories. This strategy is designed to enhance the exploration and error correction capabilities of Mobile-R1, leading to significant performance improvements. Moreover, we have collected a dataset covering 28 Chinese applications with 24,521 high-quality manual annotations and established a new benchmark with 500 trajectories. We will open source all resources, including the dataset, benchmark, model weight, and codes: https://mobile-r1.github.io/Mobile-R1/.
comment: 14 pages, 12 figures
☆ Comparative Analysis of Deep Learning Models for Crop Disease Detection: A Transfer Learning Approach
This research presents the development of an Artificial Intelligence (AI) - driven crop disease detection system designed to assist farmers in rural areas with limited resources. We aim to compare different deep learning models for a comparative analysis, focusing on their efficacy in transfer learning. By leveraging deep learning models, including EfficientNet, ResNet101, MobileNetV2, and our custom CNN, which achieved a validation accuracy of 95.76%, the system effectively classifies plant diseases. This research demonstrates the potential of transfer learning in reshaping agricultural practices, improving crop health management, and supporting sustainable farming in rural environments.
☆ Beyond-Expert Performance with Limited Demonstrations: Efficient Imitation Learning with Double Exploration
Imitation learning is a central problem in reinforcement learning where the goal is to learn a policy that mimics the expert's behavior. In practice, it is often challenging to learn the expert policy from a limited number of demonstrations accurately due to the complexity of the state space. Moreover, it is essential to explore the environment and collect data to achieve beyond-expert performance. To overcome these challenges, we propose a novel imitation learning algorithm called Imitation Learning with Double Exploration (ILDE), which implements exploration in two aspects: (1) optimistic policy optimization via an exploration bonus that rewards state-action pairs with high uncertainty to potentially improve the convergence to the expert policy, and (2) curiosity-driven exploration of the states that deviate from the demonstration trajectories to potentially yield beyond-expert performance. Empirically, we demonstrate that ILDE outperforms the state-of-the-art imitation learning algorithms in terms of sample efficiency and achieves beyond-expert performance on Atari and MuJoCo tasks with fewer demonstrations than in previous work. We also provide a theoretical justification of ILDE as an uncertainty-regularized policy optimization method with optimistic exploration, leading to a regret growing sublinearly in the number of episodes.
☆ Enterprise Large Language Model Evaluation Benchmark
Large Language Models (LLMs) ) have demonstrated promise in boosting productivity across AI-powered tools, yet existing benchmarks like Massive Multitask Language Understanding (MMLU) inadequately assess enterprise-specific task complexities. We propose a 14-task framework grounded in Bloom's Taxonomy to holistically evaluate LLM capabilities in enterprise contexts. To address challenges of noisy data and costly annotation, we develop a scalable pipeline combining LLM-as-a-Labeler, LLM-as-a-Judge, and corrective retrieval-augmented generation (CRAG), curating a robust 9,700-sample benchmark. Evaluation of six leading models shows open-source contenders like DeepSeek R1 rival proprietary models in reasoning tasks but lag in judgment-based scenarios, likely due to overthinking. Our benchmark reveals critical enterprise performance gaps and offers actionable insights for model optimization. This work provides enterprises a blueprint for tailored evaluations and advances practical LLM deployment.
comment: Submitted to MLNLP 2025 at https://csity2025.org/mlnlp/index
☆ Argumentative Ensembling for Robust Recourse under Model Multiplicity
In machine learning, it is common to obtain multiple equally performing models for the same prediction task, e.g., when training neural networks with different random seeds. Model multiplicity (MM) is the situation which arises when these competing models differ in their predictions for the same input, for which ensembling is often employed to determine an aggregation of the outputs. Providing recourse recommendations via counterfactual explanations (CEs) under MM thus becomes complex, since the CE may not be valid across all models, i.e., the CEs are not robust under MM. In this work, we formalise the problem of providing recourse under MM, which we name recourse-aware ensembling (RAE). We propose the idea that under MM, CEs for each individual model should be considered alongside their predictions so that the aggregated prediction and recourse are decided in tandem. Centred around this intuition, we introduce six desirable properties for solutions to this problem. For solving RAE, we propose a novel argumentative ensembling method which guarantees the robustness of CEs under MM. Specifically, our method leverages computational argumentation to explicitly represent the conflicts between models and counterfactuals regarding prediction results and CE validity. It then uses argumentation semantics to resolve the conflicts and obtain the final solution, in a manner which is parametric to the chosen semantics. Our method also allows for the specification of preferences over the models under MM, allowing further customisation of the ensemble. In a comprehensive theoretical analysis, we characterise the behaviour of argumentative ensembling with four different argumentation semantics. We then empirically demonstrate the effectiveness of our approach in satisfying desirable properties with eight instantiations of our method. (Abstract is shortened for arXiv.)
comment: arXiv admin note: substantial text overlap with arXiv:2312.15097
☆ Generating and Customizing Robotic Arm Trajectories using Neural Networks
We introduce a neural network approach for generating and customizing the trajectory of a robotic arm, that guarantees precision and repeatability. To highlight the potential of this novel method, we describe the design and implementation of the technique and show its application in an experimental setting of cognitive robotics. In this scenario, the NICO robot was characterized by the ability to point to specific points in space with precise linear movements, increasing the predictability of the robotic action during its interaction with humans. To achieve this goal, the neural network computes the forward kinematics of the robot arm. By integrating it with a generator of joint angles, another neural network was developed and trained on an artificial dataset created from suitable start and end poses of the robotic arm. Through the computation of angular velocities, the robot was characterized by its ability to perform the movement, and the quality of its action was evaluated in terms of shape and accuracy. Thanks to its broad applicability, our approach successfully generates precise trajectories that could be customized in their shape and adapted to different settings.
comment: The code is released at https://github.com/andylucny/nico2/tree/main/generate
☆ Time-series surrogates from energy consumers generated by machine learning approaches for long-term forecasting scenarios
Forecasting attracts a lot of research attention in the electricity value chain. However, most studies concentrate on short-term forecasting of generation or consumption with a focus on systems and less on individual consumers. Even more neglected is the topic of long-term forecasting of individual power consumption. Here, we provide an in-depth comparative evaluation of data-driven methods for generating synthetic time series data tailored to energy consumption long-term forecasting. High-fidelity synthetic data is crucial for a wide range of applications, including state estimations in energy systems or power grid planning. In this study, we assess and compare the performance of multiple state-of-the-art but less common techniques: a hybrid Wasserstein Generative Adversarial Network (WGAN), Denoising Diffusion Probabilistic Model (DDPM), Hidden Markov Model (HMM), and Masked Autoregressive Bernstein polynomial normalizing Flows (MABF). We analyze the ability of each method to replicate the temporal dynamics, long-range dependencies, and probabilistic transitions characteristic of individual energy consumption profiles. Our comparative evaluation highlights the strengths and limitations of: WGAN, DDPM, HMM and MABF aiding in selecting the most suitable approach for state estimations and other energy-related tasks. Our generation and analysis framework aims to enhance the accuracy and reliability of synthetic power consumption data while generating data that fulfills criteria like anonymisation - preserving privacy concerns mitigating risks of specific profiling of single customers. This study utilizes an open-source dataset from households in Germany with 15min time resolution. The generated synthetic power profiles can readily be used in applications like state estimations or consumption forecasting.
☆ Q-resafe: Assessing Safety Risks and Quantization-aware Safety Patching for Quantized Large Language Models ICML 2025
Quantized large language models (LLMs) have gained increasing attention and significance for enabling deployment in resource-constrained environments. However, emerging studies on a few calibration dataset-free quantization methods suggest that quantization may compromise the safety capabilities of LLMs, underscoring the urgent need for systematic safety evaluations and effective mitigation strategies. In this paper, we present comprehensive safety evaluations across various mainstream quantization techniques and diverse calibration datasets, utilizing widely accepted safety benchmarks. To address the identified safety vulnerabilities, we propose a quantization-aware safety patching framework, Q-resafe, to efficiently restore the safety capabilities of quantized LLMs while minimizing any adverse impact on utility. Extensive experimental results demonstrate that Q-resafe successfully re-aligns the safety of quantized LLMs with their pre-quantization counterparts, even under challenging evaluation scenarios. Project page is available at: https://github.com/Thecommonirin/Qresafe.
comment: ICML 2025
☆ Language Modeling by Language Models
Can we leverage LLMs to model the process of discovering novel language model (LM) architectures? Inspired by real research, we propose a multi-agent LLM approach that simulates the conventional stages of research, from ideation and literature search (proposal stage) to design implementation (code generation), generative pre-training, and downstream evaluation (verification). Using ideas from scaling laws, our system, Genesys, employs a Ladder of Scales approach; new designs are proposed, adversarially reviewed, implemented, and selectively verified at increasingly larger model scales (14M$\sim$350M parameters) with a narrowing budget (the number of models we can train at each scale). To help make discovery efficient and factorizable, Genesys uses a novel genetic programming backbone, which we show has empirical advantages over commonly used direct prompt generation workflows (e.g., $\sim$86\% percentage point improvement in successful design generation, a key bottleneck). We report experiments involving 1,162 newly discovered designs (1,062 fully verified through pre-training) and find the best designs to be highly competitive with known architectures (e.g., outperform GPT2, Mamba2, etc., on 6/9 common benchmarks). We couple these results with comprehensive system-level ablations and formal results, which give broader insights into the design of effective autonomous discovery systems.
☆ Evaluating PDE discovery methods for multiscale modeling of biological signals
Biological systems are non-linear, include unobserved variables and the physical principles that govern their dynamics are partly unknown. This makes the characterization of their behavior very challenging. Notably, their activity occurs on multiple interdependent spatial and temporal scales that require linking mechanisms across scales. To address the challenge of bridging gaps between scales, we leverage partial differential equations (PDE) discovery. PDE discovery suggests meso-scale dynamics characteristics from micro-scale data. In this article, we present our framework combining particle-based simulations and PDE discovery and conduct preliminary experiments to assess equation discovery in controlled settings. We evaluate five state-of-the-art PDE discovery methods on particle-based simulations of calcium diffusion in astrocytes. The performances of the methods are evaluated on both the form of the discovered equation and the forecasted temporal variations of calcium concentration. Our results show that several methods accurately recover the diffusion term, highlighting the potential of PDE discovery for capturing macroscopic dynamics in biological systems from microscopic data.
☆ FedBKD: Distilled Federated Learning to Embrace Gerneralization and Personalization on Non-IID Data
Federated learning (FL) is a decentralized collaborative machine learning (ML) technique. It provides a solution to the issues of isolated data islands and data privacy leakage in industrial ML practices. One major challenge in FL is handling the non-identical and independent distributed (non-IID) data. Current solutions either focus on constructing an all-powerful global model, or customizing personalized local models. Few of them can provide both a well-generalized global model and well-performed local models at the same time. Additionally, many FL solutions to the non-IID problem are benefited from introducing public datasets. However, this will also increase the risk of data leakage. To tackle the problems, we propose a novel data-free distillation framework, Federated Bidirectional Knowledge Distillation (FedBKD). Specifically, we train Generative Adversarial Networks (GAN) for synthetic data. During the GAN training, local models serve as discriminators and their parameters are frozen. The synthetic data is then used for bidirectional distillation between global and local models to achieve knowledge interactions so that performances for both sides are improved. We conduct extensive experiments on 4 benchmarks under different non-IID settings. The results show that FedBKD achieves SOTA performances in every case.
☆ CBF-AFA: Chunk-Based Multi-SSL Fusion for Automatic Fluency Assessment
Automatic fluency assessment (AFA) remains challenging, particularly in capturing speech rhythm, pauses, and disfluencies in non-native speakers. We introduce a chunk-based approach integrating self-supervised learning (SSL) models (Wav2Vec2, HuBERT, and WavLM) selected for their complementary strengths in phonetic, prosodic, and noisy speech modeling, with a hierarchical CNN-BiLSTM framework. Speech is segmented into breath-group chunks using Silero voice activity detection (Silero-VAD), enabling fine-grained temporal analysis while mitigating over-segmentation artifacts. SSL embeddings are fused via a learnable weighted mechanism, balancing acoustic and linguistic features, and enriched with chunk-level fluency markers (e.g., speech rate, pause durations, n-gram repetitions). The CNN-BiLSTM captures local and long-term dependencies across chunks. Evaluated on Avalinguo and Speechocean762, our approach improves F1-score by 2.8 and Pearson correlation by 6.2 points over single SSL baselines on Speechocean762, with gains of 4.2 F1-score and 4.0 Pearson points on Avalinguo, surpassing Pyannote.audio-based segmentation baselines. These findings highlight chunk-based multi-SSL fusion for robust fluency evaluation, though future work should explore generalization to dialects with irregular prosody.
comment: 5 pages, accepted for presentation at EUSIPCO 2025
☆ Enhancing Large Language Models through Structured Reasoning
Recent Large Language Models (LLMs) have significantly advanced natural language processing and automated decision-making. However, these models still encounter difficulties when performing complex reasoning tasks involving logical deduction and systematic planning, primarily due to their reliance on implicit statistical relationships without structured knowledge representation.Inspired by cognitive science and neurosymbolic AI, we introduce a novel approach to enhance LLMs through explicit structured reasoning. First, we convert unstructured data into structured formats by explicitly annotating reasoning steps. We then employ this structured dataset to train LLMs through Supervised Fine-Tuning (SFT). Additionally, we enhance the structured reasoning capabilities of LLMs using Group Relative Policy Optimization (GRPO), incorporating two innovative algorithms--MAX-Flow and Longest Common Subsequence (LCS)--which notably improve reasoning effectiveness and reduce computational complexity. Experimental results from fine-tuning a DeepSeek-R1-Distill-Qwen-1.5B model demonstrate concise reasoning, robust performance across various scenarios, and improved compatibility with optimization techniques, validating the efficacy of structured reasoning integration in LLMs.
comment: Preprint. Under review
☆ Directed Link Prediction using GNN with Local and Global Feature Fusion
Link prediction is a classical problem in graph analysis with many practical applications. For directed graphs, recently developed deep learning approaches typically analyze node similarities through contrastive learning and aggregate neighborhood information through graph convolutions. In this work, we propose a novel graph neural network (GNN) framework to fuse feature embedding with community information. We theoretically demonstrate that such hybrid features can improve the performance of directed link prediction. To utilize such features efficiently, we also propose an approach to transform input graphs into directed line graphs so that nodes in the transformed graph can aggregate more information during graph convolutions. Experiments on benchmark datasets show that our approach outperforms the state-of-the-art in most cases when 30%, 40%, 50%, and 60% of the connected links are used as training data, respectively.
☆ Perspectives in Play: A Multi-Perspective Approach for More Inclusive NLP Systems
In the realm of Natural Language Processing (NLP), common approaches for handling human disagreement consist of aggregating annotators' viewpoints to establish a single ground truth. However, prior studies show that disregarding individual opinions can lead can lead to the side effect of underrepresenting minority perspectives, especially in subjective tasks, where annotators may systematically disagree because of their preferences. Recognizing that labels reflect the diverse backgrounds, life experiences, and values of individuals, this study proposes a new multi-perspective approach using soft labels to encourage the development of the next generation of perspective aware models, more inclusive and pluralistic. We conduct an extensive analysis across diverse subjective text classification tasks, including hate speech, irony, abusive language, and stance detection, to highlight the importance of capturing human disagreements, often overlooked by traditional aggregation methods. Results show that the multi-perspective approach not only better approximates human label distributions, as measured by Jensen-Shannon Divergence (JSD), but also achieves superior classification performance (higher F1 scores), outperforming traditional approaches. However, our approach exhibits lower confidence in tasks like irony and stance detection, likely due to the inherent subjectivity present in the texts. Lastly, leveraging Explainable AI (XAI), we explore model uncertainty and uncover meaningful insights into model predictions.
☆ Affective Priming Score: A Data-Driven Method to Detect Priming in Sequential Datasets
Affective priming exemplifies the challenge of ambiguity in affective computing. While the community has largely addressed this issue from a label-based perspective, identifying data points in the sequence affected by the priming effect, the impact of priming on data itself, particularly in physiological signals, remains underexplored. Data affected by priming can lead to misclassifications when used in learning models. This study proposes the Affective Priming Score (APS), a data-driven method to detect data points influenced by the priming effect. The APS assigns a score to each data point, quantifying the extent to which it is affected by priming. To validate this method, we apply it to the SEED and SEED-VII datasets, which contain sufficient transitions between emotional events to exhibit priming effects. We train models with the same configuration using both the original data and priming-free sequences. The misclassification rate is significantly reduced when using priming-free sequences compared to the original data. This work contributes to the broader challenge of ambiguity by identifying and mitigating priming effects at the data level, enhancing model robustness, and offering valuable insights for the design and collection of affective computing datasets.
☆ How to Retrieve Examples in In-context Learning to Improve Conversational Emotion Recognition using Large Language Models?
Large language models (LLMs) have enabled a wide variety of real-world applications in various domains. However, creating a high-performing application with high accuracy remains challenging, particularly for subjective tasks like emotion recognition. Inspired by the SLT 2024 GenSER Challenge, this study investigates approaches to improving conversational emotion recognition (CER) by LLMs. Specifically, we explore how to retrieve high-quality examples in in-context learning (ICL) to enhance CER. We propose various strategies based on random and augmented example retrieval and also analyze the impact of conversational context on CER accuracy. Experiments were conducted on the three datasets including IEMOCAP, MELD and EmoryNLP. The results show that augmented example retrieval consistently outperforms other techniques under investigation across all datasets, highlighting the importance of retrieving coherent targeted examples and enhancing them through paraphrasing.
☆ Zero-Shot Attribution for Large Language Models: A Distribution Testing Approach
A growing fraction of all code is sampled from Large Language Models (LLMs). We investigate the problem of attributing code generated by language models using hypothesis testing to leverage established techniques and guarantees. Given a set of samples $S$ and a suspect model $\mathcal{L}^*$, our goal is to assess the likelihood of $S$ originating from $\mathcal{L}^*$. Due to the curse of dimensionality, this is intractable when only samples from the LLM are given: to circumvent this, we use both samples and density estimates from the LLM, a form of access commonly available. We introduce $\mathsf{Anubis}$, a zero-shot attribution tool that frames attribution as a distribution testing problem. Our experiments on a benchmark of code samples show that $\mathsf{Anubis}$ achieves high AUROC scores ( $\ge0.9$) when distinguishing between LLMs like DeepSeek-Coder, CodeGemma, and Stable-Code using only $\approx 2000$ samples.
comment: 16 pages, 4 figures
☆ Progressive Alignment Degradation Learning for Pansharpening
Deep learning-based pansharpening has been shown to effectively generate high-resolution multispectral (HRMS) images. To create supervised ground-truth HRMS images, synthetic data generated using the Wald protocol is commonly employed. This protocol assumes that networks trained on artificial low-resolution data will perform equally well on high-resolution data. However, well-trained models typically exhibit a trade-off in performance between reduced-resolution and full-resolution datasets. In this paper, we delve into the Wald protocol and find that its inaccurate approximation of real-world degradation patterns limits the generalization of deep pansharpening models. To address this issue, we propose the Progressive Alignment Degradation Module (PADM), which uses mutual iteration between two sub-networks, PAlignNet and PDegradeNet, to adaptively learn accurate degradation processes without relying on predefined operators. Building on this, we introduce HFreqdiff, which embeds high-frequency details into a diffusion framework and incorporates CFB and BACM modules for frequency-selective detail extraction and precise reverse process learning. These innovations enable effective integration of high-resolution panchromatic and multispectral images, significantly enhancing spatial sharpness and quality. Experiments and ablation studies demonstrate the proposed method's superior performance compared to state-of-the-art techniques.
comment: 13 pages, 9 figures
☆ COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees
Uncertainty quantification (UQ) for foundation models is essential to identify and mitigate potential hallucinations in automatically generated text. However, heuristic UQ approaches lack formal guarantees for key metrics such as the false discovery rate (FDR) in selective prediction. Previous work adopts the split conformal prediction (SCP) framework to ensure desired coverage of admissible answers by constructing prediction sets, but these sets often contain incorrect candidates, limiting their practical utility. To address this, we propose COIN, an uncertainty-guarding selection framework that calibrates statistically valid thresholds to filter a single generated answer per question under user-specified FDR constraints. COIN estimates the empirical error rate on a calibration set and applies confidence interval methods such as Clopper-Pearson to establish a high-probability upper bound on the true error rate (i.e., FDR). This enables the selection of the largest uncertainty threshold that ensures FDR control on test data while significantly increasing sample retention. We demonstrate COIN's robustness in risk control, strong test-time power in retaining admissible answers, and predictive efficiency under limited calibration data across both general and multimodal text generation tasks. Furthermore, we show that employing alternative upper bound constructions and UQ strategies can further boost COIN's power performance, which underscores its extensibility and adaptability to diverse application scenarios.
☆ Valid Selection among Conformal Sets
Conformal prediction offers a distribution-free framework for constructing prediction sets with coverage guarantees. In practice, multiple valid conformal prediction sets may be available, arising from different models or methodologies. However, selecting the most desirable set, such as the smallest, can invalidate the coverage guarantees. To address this challenge, we propose a stability-based approach that ensures coverage for the selected prediction set. We extend our results to the online conformal setting, propose several refinements in settings where additional structure is available, and demonstrate its effectiveness through experiments.
SEED: A Structural Encoder for Embedding-Driven Decoding in Time Series Prediction with LLMs
Multivariate time series forecasting requires models to simultaneously capture variable-wise structural dependencies and generalize across diverse tasks. While structural encoders are effective in modeling feature interactions, they lack the capacity to support semantic-level reasoning or task adaptation. Conversely, large language models (LLMs) possess strong generalization capabilities but remain incompatible with raw time series inputs. This gap limits the development of unified, transferable prediction systems. Therefore, we introduce SEED, a structural encoder for embedding-driven decoding, which integrates four stages: a token-aware encoder for patch extraction, a projection module that aligns patches with language model embeddings, a semantic reprogramming mechanism that maps patches to task-aware prototypes, and a frozen language model for prediction. This modular architecture decouples representation learning from inference, enabling efficient alignment between numerical patterns and semantic reasoning. Empirical results demonstrate that the proposed method achieves consistent improvements over strong baselines, and comparative studies on various datasets confirm SEED's role in addressing the structural-semantic modeling gap.
☆ Do psychic cells generate consciousness?
Technological advances in the past decades have begun to enable neuroscientists to address fundamental questions about consciousness in an unprecedented way. Here we review remarkable recent progress in our understanding of cellular-level mechanisms of conscious processing in the brain. Of particular interest are the cortical pyramidal neurons -- or "psychic cells" called by Ram\'on y Cajal more than 100 years ago -- which have an intriguing cellular mechanism that accounts for selective disruption of feedback signaling in the brain upon anesthetic-induced loss of consciousness. Importantly, a particular class of metabotropic receptors distributed over the dendrites of pyramidal cells are highlighted as the key cellular mechanism. After all, Cajal's instinct over a century ago may turn out to be correct -- we may have just begun to understand whether and how psychic cells indeed generate and control our consciousness.
☆ AI and Agile Software Development: From Frustration to Success -- XP2025 Workshop Summary
The full-day workshop on AI and Agile at XP 2025 convened a diverse group of researchers and industry practitioners to address the practical challenges and opportunities of integrating Artificial Intelligence into Agile software development. Through interactive sessions, participants identified shared frustrations related to integrating AI into Agile Software Development practices, including challenges with tooling, governance, data quality, and critical skill gaps. These challenges were systematically prioritized and analyzed to uncover root causes. The workshop culminated in the collaborative development of a research roadmap that pinpoints actionable directions for future work, including both immediate solutions and ambitious long-term goals. The key outcome is a structured agenda designed to foster joint industry-academic efforts to move from identified frustrations to successful implementation.
☆ Irec: A Metacognitive Scaffolding for Self-Regulated Learning through Just-in-Time Insight Recall: A Conceptual Framework and System Prototype
The core challenge in learning has shifted from knowledge acquisition to effective Self-Regulated Learning (SRL): planning, monitoring, and reflecting on one's learning. Existing digital tools, however, inadequately support metacognitive reflection. Spaced Repetition Systems (SRS) use de-contextualized review, overlooking the role of context, while Personal Knowledge Management (PKM) tools require high manual maintenance. To address these challenges, this paper introduces "Insight Recall," a novel paradigm that conceptualizes the context-triggered retrieval of personal past insights as a metacognitive scaffold to promote SRL. We formalize this paradigm using the Just-in-Time Adaptive Intervention (JITAI) framework and implement a prototype system, Irec, to demonstrate its feasibility. At its core, Irec uses a dynamic knowledge graph of the user's learning history. When a user faces a new problem, a hybrid retrieval engine recalls relevant personal "insights." Subsequently, a large language model (LLM) performs a deep similarity assessment to filter and present the most relevant scaffold in a just-in-time manner. To reduce cognitive load, Irec features a human-in-the-loop pipeline for LLM-based knowledge graph construction. We also propose an optional "Guided Inquiry" module, where users can engage in a Socratic dialogue with an expert LLM, using the current problem and recalled insights as context. The contribution of this paper is a solid theoretical framework and a usable system platform for designing next-generation intelligent learning systems that enhance metacognition and self-regulation.
comment: Version 1 of a work in progress. Finalized system flowcharts, a public GitHub repository with the source code, and a full reproducibility package detailing the prompts, models, and testing guidelines will be provided in v2
☆ Loss-Aware Automatic Selection of Structured Pruning Criteria for Deep Neural Network Acceleration
Structured pruning is a well-established technique for compressing neural networks, making it suitable for deployment in resource-limited edge devices. This paper presents an efficient Loss-Aware Automatic Selection of Structured Pruning Criteria (LAASP) for slimming and accelerating deep neural networks. The majority of pruning methodologies employ a sequential process consisting of three stages: 1) training, 2) pruning, and 3) fine-tuning, whereas the proposed pruning technique adopts a pruning-while-training approach that eliminates the first stage and integrates the second and third stages into a single cycle. The automatic selection of magnitude or similarity-based filter pruning criteria from a specified pool of criteria and the specific pruning layer at each pruning iteration is guided by the network's overall loss on a small subset of the training data. To mitigate the abrupt accuracy drop due to pruning, the network is retrained briefly after each reduction of a predefined number of floating-point operations (FLOPs). The optimal pruning rates for each layer in the network are automatically determined, eliminating the need for manual allocation of fixed or variable pruning rates for each layer. Experiments on the VGGNet and ResNet models on the CIFAR-10 and ImageNet benchmark datasets demonstrate the effectiveness of the proposed method. In particular, the ResNet56 and ResNet110 models on the CIFAR-10 dataset significantly improve the top-1 accuracy compared to state-of-the-art methods while reducing the network FLOPs by 52\%. Furthermore, the ResNet50 model on the ImageNet dataset reduces FLOPs by more than 42\% with a negligible 0.33\% drop in top-5 accuracy. The source code of this paper is publicly available online - https://github.com/ghimiredhikura/laasp.
☆ EAR: Erasing Concepts from Unified Autoregressive Models
Autoregressive (AR) models have achieved unified and strong performance across both visual understanding and image generation tasks. However, removing undesired concepts from AR models while maintaining overall generation quality remains an open challenge. In this paper, we propose Erasure Autoregressive Model (EAR), a fine-tuning method for effective and utility-preserving concept erasure in AR models. Specifically, we introduce Windowed Gradient Accumulation (WGA) strategy to align patch-level decoding with erasure objectives, and Thresholded Loss Masking (TLM) strategy to protect content unrelated to the target concept during fine-tuning. Furthermore, we propose a novel benchmark, Erase Concept Generator and Visual Filter (ECGVF), aim at provide a more rigorous and comprehensive foundation for evaluating concept erasure in AR models. Specifically, we first employ structured templates across diverse large language models (LLMs) to pre-generate a large-scale corpus of target-replacement concept prompt pairs. Subsequently, we generate images from these prompts and subject them to rigorous filtering via a visual classifier to ensure concept fidelity and alignment. Extensive experimental results conducted on the ECGVF benchmark with the AR model Janus-Pro demonstrate that EAR achieves marked improvements in both erasure effectiveness and model utility preservation. Code is available at: https://github.com/immc-lab/ear/
comment: 11 pages, 7 figures, 1 tables
☆ AI Copilots for Reproducibility in Science: A Case Study
Open science initiatives seek to make research outputs more transparent, accessible, and reusable, but ensuring that published findings can be independently reproduced remains a persistent challenge. This paper introduces OpenPub, an AI-powered platform that supports researchers, reviewers, and readers through a suite of modular copilots focused on key open science tasks. In this work, we present the Reproducibility Copilot, which analyzes manuscripts, code, and supplementary materials to generate structured Jupyter Notebooks and recommendations aimed at facilitating computational, or "rote", reproducibility. We conducted feasibility tests using previously studied research papers with known reproducibility benchmarks. Results indicate that OpenPub can substantially reduce reproduction time - from over 30 hours to about 1 hour - while achieving high coverage of figures, tables, and results suitable for computational reproduction. The system systematically detects barriers to reproducibility, including missing hyperparameters, undocumented preprocessing steps, and incomplete or inaccessible datasets. These findings suggest that AI-driven tools can meaningfully reduce the burden of reproducibility efforts and contribute to more transparent and verifiable scientific communication. The modular copilot architecture also provides a foundation for extending AI assistance to additional open science objectives beyond reproducibility.
☆ CCRS: A Zero-Shot LLM-as-a-Judge Framework for Comprehensive RAG Evaluation SIGIR 2025
RAG systems enhance LLMs by incorporating external knowledge, which is crucial for domains that demand factual accuracy and up-to-date information. However, evaluating the multifaceted quality of RAG outputs, spanning aspects such as contextual coherence, query relevance, factual correctness, and informational completeness, poses significant challenges. Existing evaluation methods often rely on simple lexical overlap metrics, which are inadequate for capturing these nuances, or involve complex multi-stage pipelines with intermediate steps like claim extraction or require finetuning specialized judge models, hindering practical efficiency. To address these limitations, we propose CCRS (Contextual Coherence and Relevance Score), a novel suite of five metrics that utilizes a single, powerful, pretrained LLM as a zero-shot, end-to-end judge. CCRS evaluates: Contextual Coherence (CC), Question Relevance (QR), Information Density (ID), Answer Correctness (AC), and Information Recall (IR). We apply CCRS to evaluate six diverse RAG system configurations on the challenging BioASQ dataset. Our analysis demonstrates that CCRS effectively discriminates between system performances, confirming, for instance, that the Mistral-7B reader outperforms Llama variants. We provide a detailed analysis of CCRS metric properties, including score distributions, convergent/discriminant validity, tie rates, population statistics, and discriminative power. Compared to the complex RAGChecker framework, CCRS offers comparable or superior discriminative power for key aspects like recall and faithfulness, while being significantly more computationally efficient. CCRS thus provides a practical, comprehensive, and efficient framework for evaluating and iteratively improving RAG systems.
comment: Accepted at LLM4Eval @ SIGIR 2025
☆ U-R-VEDA: Integrating UNET, Residual Links, Edge and Dual Attention, and Vision Transformer for Accurate Semantic Segmentation of CMRs
Artificial intelligence, including deep learning models, will play a transformative role in automated medical image analysis for the diagnosis of cardiac disorders and their management. Automated accurate delineation of cardiac images is the first necessary initial step for the quantification and automated diagnosis of cardiac disorders. In this paper, we propose a deep learning based enhanced UNet model, U-R-Veda, which integrates convolution transformations, vision transformer, residual links, channel-attention, and spatial attention, together with edge-detection based skip-connections for an accurate fully-automated semantic segmentation of cardiac magnetic resonance (CMR) images. The model extracts local-features and their interrelationships using a stack of combination convolution blocks, with embedded channel and spatial attention in the convolution block, and vision transformers. Deep embedding of channel and spatial attention in the convolution block identifies important features and their spatial localization. The combined edge information with channel and spatial attention as skip connection reduces information-loss during convolution transformations. The overall model significantly improves the semantic segmentation of CMR images necessary for improved medical image analysis. An algorithm for the dual attention module (channel and spatial attention) has been presented. Performance results show that U-R-Veda achieves an average accuracy of 95.2%, based on DSC metrics. The model outperforms the accuracy attained by other models, based on DSC and HD metrics, especially for the delineation of right-ventricle and left-ventricle-myocardium.
comment: 15 pages, 3 figures
☆ BrokenVideos: A Benchmark Dataset for Fine-Grained Artifact Localization in AI-Generated Videos
Recent advances in deep generative models have led to significant progress in video generation, yet the fidelity of AI-generated videos remains limited. Synthesized content often exhibits visual artifacts such as temporally inconsistent motion, physically implausible trajectories, unnatural object deformations, and local blurring that undermine realism and user trust. Accurate detection and spatial localization of these artifacts are crucial for both automated quality control and for guiding the development of improved generative models. However, the research community currently lacks a comprehensive benchmark specifically designed for artifact localization in AI generated videos. Existing datasets either restrict themselves to video or frame level detection or lack the fine-grained spatial annotations necessary for evaluating localization methods. To address this gap, we introduce BrokenVideos, a benchmark dataset of 3,254 AI-generated videos with meticulously annotated, pixel-level masks highlighting regions of visual corruption. Each annotation is validated through detailed human inspection to ensure high quality ground truth. Our experiments show that training state of the art artifact detection models and multi modal large language models (MLLMs) on BrokenVideos significantly improves their ability to localize corrupted regions. Through extensive evaluation, we demonstrate that BrokenVideos establishes a critical foundation for benchmarking and advancing research on artifact localization in generative video models. The dataset is available at: https://broken-video-detection-datetsets.github.io/Broken-Video-Detection-Datasets.github.io/.
comment: 7 page,4 figures,2 tables
☆ MIRAGE: A Benchmark for Multimodal Information-Seeking and Reasoning in Agricultural Expert-Guided Conversations
We introduce MIRAGE, a new benchmark for multimodal expert-level reasoning and decision-making in consultative interaction settings. Designed for the agriculture domain, MIRAGE captures the full complexity of expert consultations by combining natural user queries, expert-authored responses, and image-based context, offering a high-fidelity benchmark for evaluating models on grounded reasoning, clarification strategies, and long-form generation in a real-world, knowledge-intensive domain. Grounded in over 35,000 real user-expert interactions and curated through a carefully designed multi-step pipeline, MIRAGE spans diverse crop health, pest diagnosis, and crop management scenarios. The benchmark includes more than 7,000 unique biological entities, covering plant species, pests, and diseases, making it one of the most taxonomically diverse benchmarks available for vision-language models, grounded in the real world. Unlike existing benchmarks that rely on well-specified user inputs and closed-set taxonomies, MIRAGE features underspecified, context-rich scenarios with open-world settings, requiring models to infer latent knowledge gaps, handle rare entities, and either proactively guide the interaction or respond. Project Page: https://mirage-benchmark.github.io
comment: 66 pages, 32 figures, 23 tables
♻ ☆ ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model
Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
comment: Project page: https://liuff19.github.io/ReconX
♻ ☆ AnchorDP3: 3D Affordance Guided Sparse Diffusion Policy for Robotic Manipulation
We present AnchorDP3, a diffusion policy framework for dual-arm robotic manipulation that achieves state-of-the-art performance in highly randomized environments. AnchorDP3 integrates three key innovations: (1) Simulator-Supervised Semantic Segmentation, using rendered ground truth to explicitly segment task-critical objects within the point cloud, which provides strong affordance priors; (2) Task-Conditioned Feature Encoders, lightweight modules processing augmented point clouds per task, enabling efficient multi-task learning through a shared diffusion-based action expert; (3) Affordance-Anchored Keypose Diffusion with Full State Supervision, replacing dense trajectory prediction with sparse, geometrically meaningful action anchors, i.e., keyposes such as pre-grasp pose, grasp pose directly anchored to affordances, drastically simplifying the prediction space; the action expert is forced to predict both robot joint angles and end-effector poses simultaneously, which exploits geometric consistency to accelerate convergence and boost accuracy. Trained on large-scale, procedurally generated simulation data, AnchorDP3 achieves a 98.7% average success rate in the RoboTwin benchmark across diverse tasks under extreme randomization of objects, clutter, table height, lighting, and backgrounds. This framework, when integrated with the RoboTwin real-to-sim pipeline, has the potential to enable fully autonomous generation of deployable visuomotor policies from only scene and instruction, totally eliminating human demonstrations from learning manipulation skills.
♻ ☆ Thought Anchors: Which LLM Reasoning Steps Matter?
Reasoning large language models have recently achieved state-of-the-art performance in many fields. However, their long-form chain-of-thought reasoning creates interpretability challenges as each generated token depends on all previous ones, making the computation harder to decompose. We argue that analyzing reasoning traces at the sentence level is a promising approach to understanding reasoning processes. We present three complementary attribution methods: (1) a black-box method measuring each sentence's counterfactual importance by comparing final answers across 100 rollouts conditioned on the model generating that sentence or one with a different meaning; (2) a white-box method of aggregating attention patterns between pairs of sentences, which identified "broadcasting" sentences that receive disproportionate attention from all future sentences via "receiver" attention heads; (3) a causal attribution method measuring logical connections between sentences by suppressing attention toward one sentence and measuring the effect on each future sentence's tokens. Each method provides evidence for the existence of thought anchors, reasoning steps that have outsized importance and that disproportionately influence the subsequent reasoning process. These thought anchors are typically planning or backtracking sentences. We provide an open-source tool (www.thought-anchors.com) for visualizing the outputs of our methods, and present a case study showing converging patterns across methods that map how a model performs multi-step reasoning. The consistency across methods demonstrates the potential of sentence-level analysis for a deeper understanding of reasoning models.
comment: Paul C. Bogdan and Uzay Macar contributed equally to this work, and their listed order was determined by coinflip. Neel Nanda and Arthur Conmy contributed equally to this work as senior authors, and their listed order was determined by coinflip
♻ ☆ Quantifying Fairness in LLMs Beyond Tokens: A Semantic and Statistical Perspective
Large Language Models (LLMs) often generate responses with inherent biases, undermining their reliability in real-world applications. Existing evaluation methods often overlook biases in long-form responses and the intrinsic variability of LLM outputs. To address these challenges, we propose FiSCo(Fine-grained Semantic Computation), a novel statistical framework to evaluate group-level fairness in LLMs by detecting subtle semantic differences in long-form responses across demographic groups. Unlike prior work focusing on sentiment or token-level comparisons, FiSCo goes beyond surface-level analysis by operating at the claim level, leveraging entailment checks to assess the consistency of meaning across responses. We decompose model outputs into semantically distinct claims and apply statistical hypothesis testing to compare inter- and intra-group similarities, enabling robust detection of subtle biases. We formalize a new group counterfactual fairness definition and validate FiSCo on both synthetic and human-annotated datasets spanning gender, race, and age. Experiments show that FiSco more reliably identifies nuanced biases while reducing the impact of stochastic LLM variability, outperforming various evaluation metrics.
comment: 29 pages, 9 figures, 15 tables
♻ ☆ OmniGen2: Exploration to Advanced Multimodal Generation
In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2
♻ ☆ Exploring Big Five Personality and AI Capability Effects in LLM-Simulated Negotiation Dialogues KDD 2025
This paper presents an evaluation framework for agentic AI systems in mission-critical negotiation contexts, addressing the need for AI agents that can adapt to diverse human operators and stakeholders. Using Sotopia as a simulation testbed, we present two experiments that systematically evaluated how personality traits and AI agent characteristics influence LLM-simulated social negotiation outcomes--a capability essential for a variety of applications involving cross-team coordination and civil-military interactions. Experiment 1 employs causal discovery methods to measure how personality traits impact price bargaining negotiations, through which we found that Agreeableness and Extraversion significantly affect believability, goal achievement, and knowledge acquisition outcomes. Sociocognitive lexical measures extracted from team communications detected fine-grained differences in agents' empathic communication, moral foundations, and opinion patterns, providing actionable insights for agentic AI systems that must operate reliably in high-stakes operational scenarios. Experiment 2 evaluates human-AI job negotiations by manipulating both simulated human personality and AI system characteristics, specifically transparency, competence, adaptability, demonstrating how AI agent trustworthiness impact mission effectiveness. These findings establish a repeatable evaluation methodology for experimenting with AI agent reliability across diverse operator personalities and human-agent team dynamics, directly supporting operational requirements for reliable AI systems. Our work advances the evaluation of agentic AI workflows by moving beyond standard performance metrics to incorporate social dynamics essential for mission success in complex operations.
comment: Under review for KDD 2025 Workshop on Evaluation and Trustworthiness of Agentic and Generative AI Models
♻ ☆ Improving Human-AI Coordination through Online Adversarial Training and Generative Models
Being able to cooperate with new people is an important component of many economically valuable AI tasks, from household robotics to autonomous driving. However, generalizing to novel humans requires training on data that captures the diversity of human behaviors. Adversarial training is a promising method that allows dynamic data generation and ensures that agents are robust. It creates a feedback loop where the agent's performance influences the generation of new adversarial data, which can be used immediately to train the agent. However, adversarial training is difficult to apply in a cooperative task; how can we train an adversarial cooperator? We propose a novel strategy that combines a pretrained generative model to simulate valid cooperative agent policies with adversarial training to maximize regret. We call our method GOAT: Generative Online Adversarial Training. In this framework, the GOAT dynamically searches the latent space of the generative model for coordination strategies where the learning policy, the Cooperator agent, underperforms. GOAT enables better generalization by exposing the Cooperator to various challenging interaction scenarios. We maintain realistic coordination strategies by keeping the generative model frozen, thus avoiding adversarial exploitation. We evaluate GOAT with real human partners, and the results demonstrate state of the art performance on the Overcooked benchmark, highlighting its effectiveness in generalizing to diverse human behaviors.
♻ ☆ A3 : an Analytical Low-Rank Approximation Framework for Attention
Large language models have demonstrated remarkable performance; however, their massive parameter counts make deployment highly expensive. Low-rank approximation offers a promising compression solution, yet existing approaches have two main limitations: (1) They focus on minimizing the output error of individual linear layers, without considering the architectural characteristics of Transformers, and (2) they decompose a large weight matrix into two small low-rank matrices. Consequently, these methods often fall short compared to other compression techniques like pruning and quantization, and introduce runtime overhead such as the extra GEMM kernel launches for decomposed small matrices. To address these limitations, we propose $\tt A^\tt 3$, a post-training low-rank approximation framework. $\tt A^\tt 3$ splits a Transformer layer into three functional components, namely $\tt QK$, $\tt OV$, and $\tt MLP$. For each component, $\tt A^\tt 3$ provides an analytical solution that reduces the hidden dimension size inside each component while minimizing the component's functional loss ($\it i.e.$, error in attention scores, attention outputs, and MLP outputs). This approach directly reduces model sizes, KV cache sizes, and FLOPs without introducing any runtime overheads. In addition, it provides a new narrative in advancing the optimization problem from singular linear layer loss optimization toward improved end-to-end performance. Through extensive experiments, we show that $\tt A^\tt 3$ maintains superior performance compared to SoTAs. For example, under the same reduction budget in computation and memory, our low-rank approximated LLaMA 3.1-70B achieves a perplexity of 4.69 on WikiText-2, outperforming the previous SoTA's 7.87 by 3.18. We also demonstrate the versatility of $\tt A^\tt 3$, including KV cache compression, quantization, and mixed-rank assignments for enhanced performance.
♻ ☆ AI-Driven Sentiment Analytics: Unlocking Business Value in the E-Commerce Landscape
The rapid growth of e-commerce has led to an overwhelming volume of customer feedback, from product reviews to service interactions. Extracting meaningful insights from this data is crucial for businesses aiming to improve customer satisfaction and optimize decision-making. This paper presents an AI-driven sentiment analysis system designed specifically for e-commerce applications, balancing accuracy with interpretability. Our approach integrates traditional machine learning techniques with modern deep learning models, allowing for a more nuanced understanding of customer sentiment while ensuring transparency in decision-making. Experimental results show that our system outperforms standard sentiment analysis methods, achieving an accuracy of 89.7% on diverse, large-scale datasets. Beyond technical performance, real-world implementation across multiple e-commerce platforms demonstrates tangible improvements in customer engagement and operational efficiency. This study highlights both the potential and the challenges of applying AI to sentiment analysis in a commercial setting, offering insights into practical deployment strategies and areas for future refinement.
comment: 7 pages
♻ ☆ NFISiS: New Perspectives on Fuzzy Inference Systems for Renewable Energy Forecasting
Deep learning models, despite their popularity, face challenges such as long training times and a lack of interpretability. In contrast, fuzzy inference systems offer a balance of accuracy and transparency. This paper addresses the limitations of traditional Takagi-Sugeno-Kang fuzzy models by extending the recently proposed New Takagi-Sugeno-Kang model to a new Mamdani-based regressor. These models are data-driven, allowing users to define the number of rules to balance accuracy and interpretability. To handle the complexity of large datasets, this research integrates wrapper and ensemble techniques. A Genetic Algorithm is used as a wrapper for feature selection, creating genetic versions of the models. Furthermore, ensemble models, including the Random New Mamdani Regressor, Random New Takagi-Sugeno-Kang, and Random Forest New Takagi-Sugeno-Kang, are introduced to improve robustness. The proposed models are validated on photovoltaic energy forecasting datasets, a critical application due to the intermittent nature of solar power. Results demonstrate that the genetic and ensemble fuzzy models, particularly the Genetic New Takagi-Sugeno-Kang and Random Forest New Takagi-Sugeno-Kang, achieve superior performance. They often outperform both traditional machine learning and deep learning models while providing a simpler and more interpretable rule-based structure. The models are available online in a library called nfisis (https://pypi.org/project/nfisis/).
♻ ☆ InterFormer: Effective Heterogeneous Interaction Learning for Click-Through Rate Prediction
Click-through rate (CTR) prediction, which predicts the probability of a user clicking an ad, is a fundamental task in recommender systems. The emergence of heterogeneous information, such as user profile and behavior sequences, depicts user interests from different aspects. A mutually beneficial integration of heterogeneous information is the cornerstone towards the success of CTR prediction. However, most of the existing methods suffer from two fundamental limitations, including (1) insufficient inter-mode interaction due to the unidirectional information flow between modes, and (2) aggressive information aggregation caused by early summarization, resulting in excessive information loss. To address the above limitations, we propose a novel module named InterFormer to learn heterogeneous information interaction in an interleaving style. To achieve better interaction learning, InterFormer enables bidirectional information flow for mutually beneficial learning across different modes. To avoid aggressive information aggregation, we retain complete information in each data mode and use a separate bridging arch for effective information selection and summarization. Our proposed InterFormer achieves state-of-the-art performance on three public datasets and a large-scale industrial dataset.
comment: 11 pages, 6 figures
♻ ☆ SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model
The rapid advancement of generative models in creating highly realistic images poses substantial risks for misinformation dissemination. For instance, a synthetic image, when shared on social media, can mislead extensive audiences and erode trust in digital content, resulting in severe repercussions. Despite some progress, academia has not yet created a large and diversified deepfake detection dataset for social media, nor has it devised an effective solution to address this issue. In this paper, we introduce the Social media Image Detection dataSet (SID-Set), which offers three key advantages: (1) extensive volume, featuring 300K AI-generated/tampered and authentic images with comprehensive annotations, (2) broad diversity, encompassing fully synthetic and tampered images across various classes, and (3) elevated realism, with images that are predominantly indistinguishable from genuine ones through mere visual inspection. Furthermore, leveraging the exceptional capabilities of large multimodal models, we propose a new image deepfake detection, localization, and explanation framework, named SIDA (Social media Image Detection, localization, and explanation Assistant). SIDA not only discerns the authenticity of images, but also delineates tampered regions through mask prediction and provides textual explanations of the model's judgment criteria. Compared with state-of-the-art deepfake detection models on SID-Set and other benchmarks, extensive experiments demonstrate that SIDA achieves superior performance among diversified settings. The code, model, and dataset will be released.
comment: This version revises and corrects the metric calculations in the tables
♻ ☆ Zero-TIG: Temporal Consistency-Aware Zero-Shot Illumination-Guided Low-light Video Enhancement
Low-light and underwater videos suffer from poor visibility, low contrast, and high noise, necessitating enhancements in visual quality. However, existing approaches typically rely on paired ground truth, which limits their practicality and often fails to maintain temporal consistency. To overcome these obstacles, this paper introduces a novel zero-shot learning approach named Zero-TIG, leveraging the Retinex theory and optical flow techniques. The proposed network consists of an enhancement module and a temporal feedback module. The enhancement module comprises three subnetworks: low-light image denoising, illumination estimation, and reflection denoising. The temporal enhancement module ensures temporal consistency by incorporating histogram equalization, optical flow computation, and image warping to align the enhanced previous frame with the current frame, thereby maintaining continuity. Additionally, we address color distortion in underwater data by adaptively balancing RGB channels. The experimental results demonstrate that our method achieves low-light video enhancement without the need for paired training data, making it a promising and applicable method for real-world scenario enhancement.
♻ ☆ Composite Flow Matching for Reinforcement Learning with Shifted-Dynamics Data
Incorporating pre-collected offline data from a source environment can significantly improve the sample efficiency of reinforcement learning (RL), but this benefit is often challenged by discrepancies between the transition dynamics of the source and target environments. Existing methods typically address this issue by penalizing or filtering out source transitions in high dynamics-gap regions. However, their estimation of the dynamics gap often relies on KL divergence or mutual information, which can be ill-defined when the source and target dynamics have disjoint support. To overcome these limitations, we propose CompFlow, a method grounded in the theoretical connection between flow matching and optimal transport. Specifically, we model the target dynamics as a conditional flow built upon the output distribution of the source-domain flow, rather than learning it directly from a Gaussian prior. This composite structure offers two key advantages: (1) improved generalization for learning target dynamics, and (2) a principled estimation of the dynamics gap via the Wasserstein distance between source and target transitions. Leveraging our principled estimation of the dynamics gap, we further introduce an optimistic active data collection strategy that prioritizes exploration in regions of high dynamics gap, and theoretically prove that it reduces the performance disparity with the optimal policy. Empirically, CompFlow outperforms strong baselines across several RL benchmarks with shifted dynamics.
♻ ☆ TaxaDiffusion: Progressively Trained Diffusion Model for Fine-Grained Species Generation ICCV 2025
We propose TaxaDiffusion, a taxonomy-informed training framework for diffusion models to generate fine-grained animal images with high morphological and identity accuracy. Unlike standard approaches that treat each species as an independent category, TaxaDiffusion incorporates domain knowledge that many species exhibit strong visual similarities, with distinctions often residing in subtle variations of shape, pattern, and color. To exploit these relationships, TaxaDiffusion progressively trains conditioned diffusion models across different taxonomic levels -- starting from broad classifications such as Class and Order, refining through Family and Genus, and ultimately distinguishing at the Species level. This hierarchical learning strategy first captures coarse-grained morphological traits shared by species with common ancestors, facilitating knowledge transfer before refining fine-grained differences for species-level distinction. As a result, TaxaDiffusion enables accurate generation even with limited training samples per species. Extensive experiments on three fine-grained animal datasets demonstrate that outperforms existing approaches, achieving superior fidelity in fine-grained animal image generation. Project page: https://amink8.github.io/TaxaDiffusion/
comment: Accepted to ICCV 2025
♻ ☆ Advanced computer vision for extracting georeferenced vehicle trajectories from drone imagery
This paper presents a framework for extracting georeferenced vehicle trajectories from high-altitude drone imagery, addressing key challenges in urban traffic monitoring and the limitations of traditional ground-based systems. Our approach integrates several novel contributions, including a tailored object detector optimized for high-altitude bird's-eye view perspectives, a unique track stabilization method that uses detected vehicle bounding boxes as exclusion masks during image registration, and an orthophoto and master frame-based georeferencing strategy that enhances consistent alignment across multiple drone viewpoints. Additionally, our framework features robust vehicle dimension estimation and detailed road segmentation, enabling comprehensive traffic analysis. Conducted in the Songdo International Business District, South Korea, the study utilized a multi-drone experiment covering 20 intersections, capturing approximately 12TB of 4K video data over four days. The framework produced two high-quality datasets: the Songdo Traffic dataset, comprising approximately 700,000 unique vehicle trajectories, and the Songdo Vision dataset, containing over 5,000 human-annotated images with about 300,000 vehicle instances in four classes. Comparisons with high-precision sensor data from an instrumented probe vehicle highlight the accuracy and consistency of our extraction pipeline in dense urban environments. The public release of Songdo Traffic and Songdo Vision, and the complete source code for the extraction pipeline, establishes new benchmarks in data quality, reproducibility, and scalability in traffic research. Results demonstrate the potential of integrating drone technology with advanced computer vision for precise and cost-effective urban traffic monitoring, providing valuable resources for developing intelligent transportation systems and enhancing traffic management strategies.
♻ ☆ Revealing higher-order neural representations of uncertainty with the Noise Estimation through Reinforcement-based Diffusion (NERD) model
Studies often aim to reveal ``first-order" representations (FORs), which encode aspects of an observer's environment, such as contents or structure. A less-common target is ``higher-order" representations (HORs), which are ``about" FORs -- e.g., their strength or uncertainty -- and which may contribute to learning. HORs about uncertainty are unlikely to be direct ``read-outs" of FOR characteristics, instead reflecting noisy estimation processes incorporating prior expectations about uncertainty, but how the brain represents such expected uncertainty distributions remains largely unexplored. Here, we study ``noise expectation" HORs using neural data from a task which may require the brain to learn about its own noise: decoded neurofeedback, wherein human subjects learn to volitionally produce target neural patterns. We develop and apply a Noise Estimation through Reinforcement-based Diffusion (NERD) model to characterize how brains may undertake this process, and show that NERD offers high explanatory power for human behavior.
comment: 27 pages, 7 figures, 12 equations
♻ ☆ GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs
LLMs have shown impressive capabilities across various natural language processing tasks, yet remain vulnerable to input prompts, known as jailbreak attacks, carefully designed to bypass safety guardrails and elicit harmful responses. Traditional methods rely on manual heuristics but suffer from limited generalizability. Despite being automatic, optimization-based attacks often produce unnatural prompts that can be easily detected by safety filters or require high computational costs due to discrete token optimization. In this paper, we introduce Generative Adversarial Suffix Prompter (GASP), a novel automated framework that can efficiently generate human-readable jailbreak prompts in a fully black-box setting. In particular, GASP leverages latent Bayesian optimization to craft adversarial suffixes by efficiently exploring continuous latent embedding spaces, gradually optimizing the suffix prompter to improve attack efficacy while balancing prompt coherence via a targeted iterative refinement procedure. Through comprehensive experiments, we show that GASP can produce natural adversarial prompts, significantly improving jailbreak success over baselines, reducing training times, and accelerating inference speed, thus making it an efficient and scalable solution for red-teaming LLMs.
comment: 38 pages, 8 tables, 18 figures
♻ ☆ Markets with Heterogeneous Agents: Dynamics and Survival of Bayesian vs. No-Regret Learners
We analyze the performance of heterogeneous learning agents in asset markets with stochastic payoffs. Our main focus is on comparing Bayesian learners and no-regret learners who compete in markets and identifying the conditions under which each approach is more effective. Surprisingly, we find that low regret is not sufficient for survival: an agent can have regret as low as $O(\log T)$ but still vanish when competing against a Bayesian with a finite prior and any positive prior probability on the correct model. On the other hand, we show that Bayesian learning is fragile, while no-regret learning requires less knowledge of the environment and is therefore more robust. Motivated by the strengths and weaknesses of both approaches, we propose a balanced strategy for utilizing Bayesian updates that improves robustness and adaptability to distribution shifts, providing a step toward a best-of-both-worlds learning approach. The method is general, efficient, and easy to implement. Finally, we formally establish the relationship between the notions of survival and market dominance studied in economics and the framework of regret minimization, thus bridging these theories. More broadly, our work contributes to the understanding of dynamics with heterogeneous types of learning agents and their impact on markets.
comment: Learning in Markets, Heterogeneous Agents, Regret and Survival, Bayesian Learning, No-Regret Learning, Portfolio Optimization, Kelly Rule, Distribution Shifts, Robust Bayesian Updates
♻ ☆ Diffusion Models Through a Global Lens: Are They Culturally Inclusive?
Text-to-image diffusion models have recently enabled the creation of visually compelling, detailed images from textual prompts. However, their ability to accurately represent various cultural nuances remains an open question. In our work, we introduce CultDiff benchmark, evaluating state-of-the-art diffusion models whether they can generate culturally specific images spanning ten countries. We show that these models often fail to generate cultural artifacts in architecture, clothing, and food, especially for underrepresented country regions, by conducting a fine-grained analysis of different similarity aspects, revealing significant disparities in cultural relevance, description fidelity, and realism compared to real-world reference images. With the collected human evaluations, we develop a neural-based image-image similarity metric, namely, CultDiff-S, to predict human judgment on real and generated images with cultural artifacts. Our work highlights the need for more inclusive generative AI systems and equitable dataset representation over a wide range of cultures.
comment: 17 pages, 17 figures, 3 tables
♻ ☆ Recycling the Web: A Method to Enhance Pre-training Data Quality and Quantity for Language Models
Scaling laws predict that the performance of large language models improves with increasing model size and data size. In practice, pre-training has been relying on massive web crawls, using almost all data sources publicly available on the internet so far. However, this pool of natural data does not grow at the same rate as the compute supply. Furthermore, the availability of high-quality texts is even more limited: data filtering pipelines often remove up to 99% of the initial web scrapes to achieve state-of-the-art. To address the "data wall" of pre-training scaling, our work explores ways to transform and recycle data discarded in existing filtering processes. We propose REWIRE, REcycling the Web with guIded REwrite, a method to enrich low-quality documents so that they could become useful for training. This in turn allows us to increase the representation of synthetic data in the final pre-training set. Experiments at 1B, 3B and 7B scales of the DCLM benchmark show that mixing high-quality raw texts and our rewritten texts lead to 1.0, 1.3 and 2.5 percentage points improvement respectively across 22 diverse tasks, compared to training on only filtered web data. Training on the raw-synthetic data mix is also more effective than having access to 2x web data. Through further analysis, we demonstrate that about 82% of the mixed in texts come from transforming lower-quality documents that would otherwise be discarded. REWIRE also outperforms related approaches of generating synthetic data, including Wikipedia-style paraphrasing, question-answer synthesizing and knowledge extraction. These results suggest that recycling web texts holds the potential for being a simple and effective approach for scaling pre-training data.
♻ ☆ Do Concept Bottleneck Models Respect Localities?
Concept-based explainability methods use human-understandable intermediaries to produce explanations for machine learning models. These methods assume concept predictions can help understand a model's internal reasoning. In this work, we assess the degree to which such an assumption is true by analyzing whether concept predictors leverage "relevant" features to make predictions, a term we call locality. Concept-based models that fail to respect localities also fail to be explainable because concept predictions are based on spurious features, making the interpretation of the concept predictions vacuous. To assess whether concept-based models respect localities, we construct and use three metrics to characterize when models respect localities, complementing our analysis with theoretical results. Each of our metrics captures a different notion of perturbation and assess whether perturbing "irrelevant" features impacts the predictions made by a concept predictors. We find that many concept-based models used in practice fail to respect localities because concept predictors cannot always clearly distinguish distinct concepts. Based on these findings, we propose suggestions for alleviating this issue.
comment: Published at TMLR
♻ ☆ From $\mathcal{O}(n^{2})$ to $\mathcal{O}(n)$ Parameters: Quantum Self-Attention in Vision Transformers for Biomedical Image Classification MICCAI 2025
We demonstrate that quantum vision transformers (QViTs), vision transformers (ViTs) with self-attention (SA) mechanisms replaced by quantum self-attention (QSA) mechanisms, can match state-of-the-art (SOTA) biomedical image classifiers while using 99.99% fewer parameters. QSAs are produced by replacing linear SA layers with parameterised quantum neural networks (QNNs), producing a QSA mechanism and reducing parameter scaling from $\mathcal{O}(n^2)$ to $\mathcal{O}(n)$. On RetinaMNIST, our ultra parameter-efficient QViT outperforms 13/14 SOTA methods including CNNs and ViTs, achieving 56.5% accuracy, just 0.88% below the top MedMamba model while using 99.99% fewer parameters (1K vs 14.5M) and 89% fewer GFLOPs. We present the first investigation of knowledge distillation (KD) from classical to quantum vision transformers in biomedical image classification, showing that QViTs maintain comparable performance to classical ViTs across eight diverse datasets spanning multiple modalities, with improved QSA parameter-efficiency. Our higher-qubit architecture benefitted more from KD pre-training, suggesting a scaling relationship between QSA parameters and KD effectiveness. These findings establish QSA as a practical architectural choice toward parameter-efficient biomedical image analysis.
comment: Submitted for EMA4MICCAI 2025
♻ ☆ FluoroSAM: A Language-promptable Foundation Model for Flexible X-ray Image Segmentation
Language promptable X-ray image segmentation would enable greater flexibility for human-in-the-loop workflows in diagnostic and interventional precision medicine. Prior efforts have contributed task-specific models capable of solving problems within a narrow scope, but expanding to broader use requires additional data, annotations, and training time. Recently, language-aligned foundation models (LFMs) -- machine learning models trained on large amounts of highly variable image and text data thus enabling broad applicability -- have emerged as promising tools for automated image analysis. Existing foundation models for medical image analysis focus on scenarios and modalities where large, richly annotated datasets are available. However, the X-ray imaging modality features highly variable image appearance and applications, from diagnostic chest X-rays to interventional fluoroscopy, with varying availability of data. To pave the way toward an LFM for comprehensive and language-aligned analysis of arbitrary medical X-ray images, we introduce FluoroSAM, a language-promptable variant of the Segment Anything Model, trained from scratch on 3M synthetic X-ray images from a wide variety of human anatomies, imaging geometries, and viewing angles. These include pseudo-ground truth masks for 128 organ types and 464 tools with associated text descriptions. FluoroSAM is capable of segmenting myriad anatomical structures and tools based on natural language prompts, thanks to the novel incorporation of vector quantization (VQ) of text embeddings in the training process. We demonstrate FluoroSAM's performance quantitatively on real X-ray images and showcase on several applications how FluoroSAM is a key enabler for rich human-machine interaction in the X-ray image acquisition and analysis context. Code is available at https://github.com/arcadelab/fluorosam.
♻ ☆ Rethinking Early Stopping: Refine, Then Calibrate
Machine learning classifiers often produce probabilistic predictions that are critical for accurate and interpretable decision-making in various domains. The quality of these predictions is generally evaluated with proper losses, such as cross-entropy, which decompose into two components: calibration error assesses general under/overconfidence, while refinement error measures the ability to distinguish different classes. In this paper, we present a novel variational formulation of the calibration-refinement decomposition that sheds new light on post-hoc calibration, and enables rapid estimation of the different terms. Equipped with this new perspective, we provide theoretical and empirical evidence that calibration and refinement errors are not minimized simultaneously during training. Selecting the best epoch based on validation loss thus leads to a compromise point that is suboptimal for both terms. To address this, we propose minimizing refinement error only during training (Refine,...), before minimizing calibration error post hoc, using standard techniques (...then Calibrate). Our method integrates seamlessly with any classifier and consistently improves performance across diverse classification tasks.
♻ ☆ Integrating Various Software Artifacts for Better LLM-based Bug Localization and Program Repair
LLMs have garnered considerable attention for their potential to streamline Automated Program Repair (APR). LLM-based approaches can either insert the correct code or directly generate patches when provided with buggy methods. However, most of LLM-based APR methods rely on a single type of software information, without fully leveraging different software artifacts. Despite this, many LLM-based approaches do not explore which specific types of information best assist in APR. Addressing this gap is crucial for advancing LLM-based APR techniques. We propose DEVLoRe to use issue content (description and message) and stack error traces to localize buggy methods, then rely on debug information in buggy methods and issue content and stack error to localize buggy lines and generate plausible patches which can pass all unit tests. The results show that while issue content is particularly effective in assisting LLMs with fault localization and program repair, different types of software artifacts complement each other. By incorporating different artifacts, DEVLoRe successfully locates 49.3% and 47.6% of single and non-single buggy methods and generates 56.0% and 14.5% plausible patches for the Defects4J v2.0 dataset, respectively. This outperforms current state-of-the-art APR methods. Furthermore, we re-implemented and evaluated our framework, demonstrating its effectiveness in its effectiveness in resolving 9 unique issues compared to other state-of-the-art frameworks using the same or more advanced models on SWE-bench Lite.We also discussed whether a leading framework for Python code can be directly applied to Java code, or vice versa. The source code and experimental results of this work for replication are available at https://github.com/XYZboom/DEVLoRe.
comment: 25 pages, 12 images, 10 tables, Manuscript revision submitted to a journal (2025)
♻ ☆ Unlocking In-Context Learning for Natural Datasets Beyond Language Modelling
Large Language Models (LLMs) exhibit In-Context Learning (ICL), which enables the model to perform new tasks conditioning only on the examples provided in the context without updating the model's weights. While ICL offers fast adaptation across natural language tasks and domains, its emergence is less straightforward for modalities beyond text. In this work, we systematically uncover properties present in LLMs that support the emergence of ICL for autoregressive models and various modalities by promoting the learning of the needed mechanisms for ICL. We identify exact token repetitions in the training data sequences as an important factor for ICL. Such repetitions further improve stability and reduce transiency in ICL performance. Moreover, we emphasise the significance of training task difficulty for the emergence of ICL. Finally, by applying our novel insights on ICL emergence, we unlock ICL capabilities for various visual datasets and a more challenging EEG classification task in a few-shot learning regime.
♻ ☆ TabArena: A Living Benchmark for Machine Learning on Tabular Data
With the growing popularity of deep learning and foundation models for tabular data, the need for standardized and reliable benchmarks is higher than ever. However, current benchmarks are static. Their design is not updated even if flaws are discovered, model versions are updated, or new models are released. To address this, we introduce TabArena, the first continuously maintained living tabular benchmarking system. To launch TabArena, we manually curate a representative collection of datasets and well-implemented models, conduct a large-scale benchmarking study to initialize a public leaderboard, and assemble a team of experienced maintainers. Our results highlight the influence of validation method and ensembling of hyperparameter configurations to benchmark models at their full potential. While gradient-boosted trees are still strong contenders on practical tabular datasets, we observe that deep learning methods have caught up under larger time budgets with ensembling. At the same time, foundation models excel on smaller datasets. Finally, we show that ensembles across models advance the state-of-the-art in tabular machine learning and investigate the contributions of individual models. We launch TabArena with a public leaderboard, reproducible code, and maintenance protocols to create a living benchmark available at https://tabarena.ai.
comment: v2: fixed author list. 51 pages. Code available at https://tabarena.ai/code; examples at https://tabarena.ai/code-examples; dataset curation at https://tabarena.ai/data-tabular-ml-iid-study and https://tabarena.ai/dataset-curation
♻ ☆ Adversarial Reasoning at Jailbreaking Time ICML 2025
As large language models (LLMs) are becoming more capable and widespread, the study of their failure cases is becoming increasingly important. Recent advances in standardizing, measuring, and scaling test-time compute suggest new methodologies for optimizing models to achieve high performance on hard tasks. In this paper, we apply these advances to the task of model jailbreaking: eliciting harmful responses from aligned LLMs. We develop an adversarial reasoning approach to automatic jailbreaking that leverages a loss signal to guide the test-time compute, achieving SOTA attack success rates against many aligned LLMs, even those that aim to trade inference-time compute for adversarial robustness. Our approach introduces a new paradigm in understanding LLM vulnerabilities, laying the foundation for the development of more robust and trustworthy AI systems.
comment: Accepted to the 42nd International Conference on Machine Learning (ICML 2025)
♻ ☆ Separating Tongue from Thought: Activation Patching Reveals Language-Agnostic Concept Representations in Transformers ICML 2024
A central question in multilingual language modeling is whether large language models (LLMs) develop a universal concept representation, disentangled from specific languages. In this paper, we address this question by analyzing latent representations (latents) during a word-translation task in transformer-based LLMs. We strategically extract latents from a source translation prompt and insert them into the forward pass on a target translation prompt. By doing so, we find that the output language is encoded in the latent at an earlier layer than the concept to be translated. Building on this insight, we conduct two key experiments. First, we demonstrate that we can change the concept without changing the language and vice versa through activation patching alone. Second, we show that patching with the mean representation of a concept across different languages does not affect the models' ability to translate it, but instead improves it. Finally, we generalize to multi-token generation and demonstrate that the model can generate natural language description of those mean representations. Our results provide evidence for the existence of language-agnostic concept representations within the investigated models.
comment: 20 pages, 14 figures, previous version published under the title "How Do Llamas Process Multilingual Text? A Latent Exploration through Activation Patching" at the ICML 2024 mechanistic interpretability workshop at https://openreview.net/forum?id=0ku2hIm4BS
♻ ☆ Proximal Control of UAVs with Federated Learning for Human-Robot Collaborative Domains
The human-robot interaction (HRI) is a growing area of research. In HRI, complex command (action) classification is still an open problem that usually prevents the real applicability of such a technique. The literature presents some works that use neural networks to detect these actions. However, occlusion is still a major issue in HRI, especially when using uncrewed aerial vehicles (UAVs), since, during the robot's movement, the human operator is often out of the robot's field of view. Furthermore, in multi-robot scenarios, distributed training is also an open problem. In this sense, this work proposes an action recognition and control approach based on Long Short-Term Memory (LSTM) Deep Neural Networks with two layers in association with three densely connected layers and Federated Learning (FL) embedded in multiple drones. The FL enabled our approach to be trained in a distributed fashion, i.e., access to data without the need for cloud or other repositories, which facilitates the multi-robot system's learning. Furthermore, our multi-robot approach results also prevented occlusion situations, with experiments with real robots achieving an accuracy greater than 96%.
comment: version 2
♻ ☆ VRAIL: Vectorized Reward-based Attribution for Interpretable Learning
We propose VRAIL (Vectorized Reward-based Attribution for Interpretable Learning), a bi-level framework for value-based reinforcement learning (RL) that learns interpretable weight representations from state features. VRAIL consists of two stages: a deep learning (DL) stage that fits an estimated value function using state features, and an RL stage that uses this to shape learning via potential-based reward transformations. The estimator is modeled in either linear or quadratic form, allowing attribution of importance to individual features and their interactions. Empirical results on the Taxi-v3 environment demonstrate that VRAIL improves training stability and convergence compared to standard DQN, without requiring environment modifications. Further analysis shows that VRAIL uncovers semantically meaningful subgoals, such as passenger possession, highlighting its ability to produce human-interpretable behavior. Our findings suggest that VRAIL serves as a general, model-agnostic framework for reward shaping that enhances both learning and interpretability.
♻ ☆ Training Plug-n-Play Knowledge Modules with Deep Context Distillation
Dynamically integrating new or rapidly evolving information after (Large) Language Model pre-training remains challenging, particularly in low-data scenarios or when dealing with private and specialized documents. In-context learning and retrieval-augmented generation (RAG) face limitations, including their high inference costs and their inability to capture global document information. In this paper, we propose a way of modularizing knowledge by training document-level Knowledge Modules (KMs). KMs are lightweight components implemented as parameter-efficient LoRA modules, which are trained to store information about new documents and can be easily plugged into models on demand. We show that next-token prediction performs poorly as the training objective for KMs. We instead propose Deep Context Distillation: we learn KMs parameters such as to simulate hidden states and logits of a teacher that takes the document in context. Our method outperforms standard next-token prediction and pre-instruction training techniques, across two datasets. Finally, we highlight synergies between KMs and RAG.
comment: Preprint
♻ ☆ Fine, I'll Merge It Myself: A Multi-Fidelity Framework for Automated Model Merging
Reasoning capabilities represent a critical frontier for large language models (LLMs), but developing them requires extensive proprietary datasets and computational resources. One way to efficiently supplement capabilities with is by model merging, which offers a promising alternative by combining multiple models without retraining. However, current merging approaches rely on manually-designed strategies for merging hyperparameters, limiting the exploration of potential model combinations and requiring significant human effort. We propose an Automated Model Merging Framework that enables fine-grained exploration of merging strategies while reducing costs through multi-fidelity approximations. We support both single and multi-objective optimization and introduce two novel search spaces: layerwise fusion (LFS) and depth-wise integration (DIS). Evaluating across a number of benchmarks, we find that the search autonomously finds 1) Merges that further boost single-objective performance, even on tasks the model has already been finetuned on, and 2) Merges that optimize multi-objective frontiers across tasks. Effective merges are found with limited compute, e.g. within less than 500 search steps.
♻ ☆ Non-equilibrium Annealed Adjoint Sampler
Recently, there has been significant progress in learning-based diffusion samplers, which aim to sample from a given unnormalized density. These methods typically follow one of two paradigms: (i) formulating sampling as an unbiased stochastic optimal control (SOC) problem using a canonical reference process, or (ii) refining annealed path measures through importance-weighted sampling. Although annealing approaches have advantages in guiding samples toward high-density regions, reliance on importance sampling leads to high variance and limited scalability in practice. In this paper, we introduce the \textbf{Non-equilibrium Annealed Adjoint Sampler (NAAS)}, a novel SOC-based diffusion sampler that leverages annealed reference dynamics without resorting to importance sampling. NAAS employs a lean adjoint system inspired by adjoint matching, enabling efficient and scalable training. We demonstrate the effectiveness of our approach across a range of tasks, including sampling from classical energy landscapes and molecular Boltzmann distribution.
comment: 21 pages, 7 figures
♻ ☆ CLAIM: Clinically-Guided LGE Augmentation for Realistic and Diverse Myocardial Scar Synthesis and Segmentation
Deep learning-based myocardial scar segmentation from late gadolinium enhancement (LGE) cardiac MRI has shown great potential for accurate and timely diagnosis and treatment planning for structural cardiac diseases. However, the limited availability and variability of LGE images with high-quality scar labels restrict the development of robust segmentation models. To address this, we introduce CLAIM: \textbf{C}linically-Guided \textbf{L}GE \textbf{A}ugmentation for Real\textbf{i}stic and Diverse \textbf{M}yocardial Scar Synthesis and Segmentation framework, a framework for anatomically grounded scar generation and segmentation. At its core is the SMILE module (Scar Mask generation guided by cLinical knowledgE), which conditions a diffusion-based generator on the clinically adopted AHA 17-segment model to synthesize images with anatomically consistent and spatially diverse scar patterns. In addition, CLAIM employs a joint training strategy in which the scar segmentation network is optimized alongside the generator, aiming to enhance both the realism of synthesized scars and the accuracy of the scar segmentation performance. Experimental results show that CLAIM produces anatomically coherent scar patterns and achieves higher Dice similarity with real scar distributions compared to baseline models. Our approach enables controllable and realistic myocardial scar synthesis and has demonstrated utility for downstream medical imaging task. Code is available at https://github.com/farheenjabeen/CLAIM-Scar-Synthesis.
comment: 14 Pages
♻ ☆ RefPentester: A Knowledge-Informed Self-Reflective Penetration Testing Framework Based on Large Language Models
Automated penetration testing (AutoPT) powered by large language models (LLMs) has gained attention for its ability to automate ethical hacking processes and identify vulnerabilities in target systems by leveraging the inherent knowledge of LLMs. However, existing LLM-based AutoPT frameworks often underperform compared to human experts in challenging tasks for several reasons: the imbalanced knowledge used in LLM training, short-sightedness in the planning process, and hallucinations during command generation. Moreover, the trial-and-error nature of the PT process is constrained by existing frameworks lacking mechanisms to learn from previous failures, restricting adaptive improvement of PT strategies. To address these limitations, we propose a knowledge-informed, self-reflective PT framework powered by LLMs, called RefPentester. This AutoPT framework is designed to assist human operators in identifying the current stage of the PT process, selecting appropriate tactics and techniques for each stage, choosing suggested actions, providing step-by-step operational guidance, and reflecting on and learning from previous failed operations. We also modeled the PT process as a seven-state Stage Machine to integrate the proposed framework effectively. The evaluation shows that RefPentester can successfully reveal credentials on Hack The Box's Sau machine, outperforming the baseline GPT-4o model by 16.7%. Across PT stages, RefPentester also demonstrates superior success rates on PT stage transitions.
♻ ☆ Scientists' First Exam: Probing Cognitive Abilities of MLLM via Perception, Understanding, and Reasoning
Scientific discoveries increasingly rely on complex multimodal reasoning based on information-intensive scientific data and domain-specific expertise. Empowered by expert-level scientific benchmarks, scientific Multimodal Large Language Models (MLLMs) hold the potential to significantly enhance this discovery process in realistic workflows. However, current scientific benchmarks mostly focus on evaluating the knowledge understanding capabilities of MLLMs, leading to an inadequate assessment of their perception and reasoning abilities. To address this gap, we present the Scientists' First Exam (SFE) benchmark, designed to evaluate the scientific cognitive capacities of MLLMs through three interconnected levels: scientific signal perception, scientific attribute understanding, scientific comparative reasoning. Specifically, SFE comprises 830 expert-verified VQA pairs across three question types, spanning 66 multimodal tasks across five high-value disciplines. Extensive experiments reveal that current state-of-the-art GPT-o3 and InternVL-3 achieve only 34.08% and 26.52% on SFE, highlighting significant room for MLLMs to improve in scientific realms. We hope the insights obtained in SFE will facilitate further developments in AI-enhanced scientific discoveries.
comment: 82 pages
♻ ☆ Physics-informed Imitative Reinforcement Learning for Real-world Driving
Recent advances in imitative reinforcement learning (IRL) have considerably enhanced the ability of autonomous agents to assimilate expert demonstrations, leading to rapid skill acquisition in a range of demanding tasks. However, such learning-based agents face significant challenges when transferring knowledge to highly dynamic closed-loop environments. Their performance is significantly impacted by the conflicting optimization objectives of imitation learning (IL) and reinforcement learning (RL), sample inefficiency, and the complexity of uncovering the hidden world model and physics. To address this challenge, we propose a physics-informed IRL that is entirely data-driven. It leverages both expert demonstration data and exploratory data with a joint optimization objective, allowing the underlying physical principles of vehicle dynamics to emerge naturally from the training process. The performance is evaluated through empirical experiments and results exceed popular IL, RL and IRL algorithms in closed-loop settings on Waymax benchmark. Our approach exhibits 37.8% reduction in collision rate and 22.2% reduction in off-road rate compared to the baseline method.
♻ ☆ CogniBench: A Legal-inspired Framework and Dataset for Assessing Cognitive Faithfulness of Large Language Models ACL 2025
Faithfulness hallucinations are claims generated by a Large Language Model (LLM) not supported by contexts provided to the LLM. Lacking assessment standards, existing benchmarks focus on "factual statements" that rephrase source materials while overlooking "cognitive statements" that involve making inferences from the given context. Consequently, evaluating and detecting the hallucination of cognitive statements remains challenging. Inspired by how evidence is assessed in the legal domain, we design a rigorous framework to assess different levels of faithfulness of cognitive statements and introduce the CogniBench dataset where we reveal insightful statistics. To keep pace with rapidly evolving LLMs, we further develop an automatic annotation pipeline that scales easily across different models. This results in a large-scale CogniBench-L dataset, which facilitates training accurate detectors for both factual and cognitive hallucinations. We release our model and datasets at: https://github.com/FUTUREEEEEE/CogniBench
comment: ACL 2025
No Free Lunch: Rethinking Internal Feedback for LLM Reasoning
Reinforcement learning has emerged as a powerful paradigm for post-training large language models (LLMs) to improve reasoning. Approaches like Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) have shown strong results, but they require extensive external supervision. We investigate an alternative class of methods, Reinforcement Learning from Internal Feedback (RLIF), which relies solely on intrinsic model-derived signals instead of external rewards. In particular, we leverage unsupervised reward proxies such as token-level entropy, trajectory-level entropy, and self-certainty. Our theoretical analysis shows these internal objectives are partially equivalent, and we empirically evaluate various RLIF strategies on challenging math reasoning benchmarks. Experimental results demonstrate that RLIF can boost the reasoning performance of base LLMs at the beginning phase of the training, matching or surpassing RLVR techniques on these tasks. However, when training progresses, performance degrades even below the model before training. Moreover, we find that RLIF yields little improvement for instruction-tuned models, indicating diminishing returns of intrinsic feedback once an LLM is already instruction-tuned. We further analyze this limitation by mixing model weights and explain the reason of RLIF's training behaviors, providing practical guidelines for integrating internal feedback signals into LLM training. We hope our analysis of internal feedback will inform more principled and effective strategies for LLM post-training.
♻ ☆ WyckoffDiff -- A Generative Diffusion Model for Crystal Symmetry ICML 2025
Crystalline materials often exhibit a high level of symmetry. However, most generative models do not account for symmetry, but rather model each atom without any constraints on its position or element. We propose a generative model, Wyckoff Diffusion (WyckoffDiff), which generates symmetry-based descriptions of crystals. This is enabled by considering a crystal structure representation that encodes all symmetry, and we design a novel neural network architecture which enables using this representation inside a discrete generative model framework. In addition to respecting symmetry by construction, the discrete nature of our model enables fast generation. We additionally present a new metric, Fr\'echet Wrenformer Distance, which captures the symmetry aspects of the materials generated, and we benchmark WyckoffDiff against recently proposed generative models for crystal generation. As a proof-of-concept study, we use WyckoffDiff to find new materials below the convex hull of thermodynamical stability.
comment: Accepted to ICML 2025, to appear in PMLR 267. Code is available online at https://github.com/httk/wyckoffdiff
♻ ☆ Chemical knowledge-informed framework for privacy-aware retrosynthesis learning
Chemical reaction data is a pivotal asset, driving advances in competitive fields such as pharmaceuticals, materials science, and industrial chemistry. Its proprietary nature renders it sensitive, as it often includes confidential insights and competitive advantages organizations strive to protect. However, in contrast to this need for confidentiality, the current standard training paradigm for machine learning-based retrosynthesis gathers reaction data from multiple sources into one single edge to train prediction models. This paradigm poses considerable privacy risks as it necessitates broad data availability across organizational boundaries and frequent data transmission between entities, potentially exposing proprietary information to unauthorized access or interception during storage and transfer. In the present study, we introduce the chemical knowledge-informed framework (CKIF), a privacy-preserving approach for learning retrosynthesis models. CKIF enables distributed training across multiple chemical organizations without compromising the confidentiality of proprietary reaction data. Instead of gathering raw reaction data, CKIF learns retrosynthesis models through iterative, chemical knowledge-informed aggregation of model parameters. In particular, the chemical properties of predicted reactants are leveraged to quantitatively assess the observable behaviors of individual models, which in turn determines the adaptive weights used for model aggregation. On a variety of reaction datasets, CKIF outperforms several strong baselines by a clear margin.
♻ ☆ SMAR: Soft Modality-Aware Routing Strategy for MoE-based Multimodal Large Language Models Preserving Language Capabilities
Mixture of Experts (MoE) architectures have become a key approach for scaling large language models, with growing interest in extending them to multimodal tasks. Existing methods to build multimodal MoE models either incur high training costs or suffer from degraded language capabilities when adapting pretrained models. To address this, we propose Soft ModalityAware Routing (SMAR), a novel regularization technique that uses Kullback Leibler divergence to control routing probability distributions across modalities, encouraging expert specialization without modifying model architecture or heavily relying on textual data. Experiments on visual instruction tuning show that SMAR preserves language ability at 86.6% retention with only 2.5% pure text, outperforming baselines while maintaining strong multimodal performance. Our approach offers a practical and efficient solution to balance modality differentiation and language capabilities in multimodal MoE models.
♻ ☆ A Survey on Explainable Reinforcement Learning: Concepts, Algorithms, Challenges
Reinforcement Learning (RL) is a popular machine learning paradigm where intelligent agents interact with the environment to fulfill a long-term goal. Driven by the resurgence of deep learning, Deep RL (DRL) has witnessed great success over a wide spectrum of complex control tasks. Despite the encouraging results achieved, the deep neural network-based backbone is widely deemed as a black box that impedes practitioners to trust and employ trained agents in realistic scenarios where high security and reliability are essential. To alleviate this issue, a large volume of literature devoted to shedding light on the inner workings of the intelligent agents has been proposed, by constructing intrinsic interpretability or post-hoc explainability. In this survey, we provide a comprehensive review of existing works on eXplainable RL (XRL) and introduce a new taxonomy where prior works are clearly categorized into model-explaining, reward-explaining, state-explaining, and task-explaining methods. We also review and highlight RL methods that conversely leverage human knowledge to promote learning efficiency and performance of agents while this kind of method is often ignored in XRL field. Some challenges and opportunities in XRL are discussed. This survey intends to provide a high-level summarization of XRL and to motivate future research on more effective XRL solutions. Corresponding open source codes are collected and categorized at https://github.com/Plankson/awesome-explainable-reinforcement-learning.
♻ ☆ Confucius3-Math: A Lightweight High-Performance Reasoning LLM for Chinese K-12 Mathematics Learning
We introduce Confucius3-Math, an open-source large language model with 14B parameters that (1) runs efficiently on a single consumer-grade GPU; (2) achieves SOTA performances on a range of mathematical reasoning tasks, outperforming many models with significantly larger sizes. In particular, as part of our mission to enhancing education and knowledge dissemination with AI, Confucius3-Math is specifically committed to mathematics learning for Chinese K-12 students and educators. Built via post-training with large-scale reinforcement learning (RL), Confucius3-Math aligns with national curriculum and excels at solving main-stream Chinese K-12 mathematical problems with low cost. In this report we share our development recipe, the challenges we encounter and the techniques we develop to overcome them. In particular, we introduce three technical innovations: Targeted Entropy Regularization, Recent Sample Recovery and Policy-Specific Hardness Weighting. These innovations encompass a new entropy regularization, a novel data scheduling policy, and an improved group-relative advantage estimator. Collectively, they significantly stabilize the RL training, improve data efficiency, and boost performance. Our work demonstrates the feasibility of building strong reasoning models in a particular domain at low cost. We open-source our model and code at https://github.com/netease-youdao/Confucius3-Math.
♻ ☆ $C^3$-Bench: The Things Real Disturbing LLM based Agent in Multi-Tasking
Agents based on large language models leverage tools to modify environments, revolutionizing how AI interacts with the physical world. Unlike traditional NLP tasks that rely solely on historical dialogue for responses, these agents must consider more complex factors, such as inter-tool relationships, environmental feedback and previous decisions, when making choices. Current research typically evaluates agents via multi-turn dialogues. However, it overlooks the influence of these critical factors on agent behavior. To bridge this gap, we present an open-source and high-quality benchmark $C^3$-Bench. This benchmark integrates attack concepts and applies univariate analysis to pinpoint key elements affecting agent robustness. In concrete, we design three challenges: navigate complex tool relationships, handle critical hidden information and manage dynamic decision paths. Complementing these challenges, we introduce fine-grained metrics, innovative data collection algorithms and reproducible evaluation methods. Extensive experiments are conducted on 49 mainstream agents, encompassing general fast-thinking, slow-thinking and domain-specific models. We observe that agents have significant shortcomings in handling tool dependencies, long context information dependencies and frequent policy-type switching. In essence, $C^3$-Bench aims to expose model vulnerabilities through these challenges and drive research into the interpretability of agent performance. The benchmark is publicly available at https://github.com/yupeijei1997/C3-Bench.
♻ ☆ Graph-Assisted Stitching for Offline Hierarchical Reinforcement Learning ICML 2025
Existing offline hierarchical reinforcement learning methods rely on high-level policy learning to generate subgoal sequences. However, their efficiency degrades as task horizons increase, and they lack effective strategies for stitching useful state transitions across different trajectories. We propose Graph-Assisted Stitching (GAS), a novel framework that formulates subgoal selection as a graph search problem rather than learning an explicit high-level policy. By embedding states into a Temporal Distance Representation (TDR) space, GAS clusters semantically similar states from different trajectories into unified graph nodes, enabling efficient transition stitching. A shortest-path algorithm is then applied to select subgoal sequences within the graph, while a low-level policy learns to reach the subgoals. To improve graph quality, we introduce the Temporal Efficiency (TE) metric, which filters out noisy or inefficient transition states, significantly enhancing task performance. GAS outperforms prior offline HRL methods across locomotion, navigation, and manipulation tasks. Notably, in the most stitching-critical task, it achieves a score of 88.3, dramatically surpassing the previous state-of-the-art score of 1.0. Our source code is available at: https://github.com/qortmdgh4141/GAS.
comment: ICML 2025
♻ ☆ Solving Linear-Gaussian Bayesian Inverse Problems with Decoupled Diffusion Sequential Monte Carlo ICML 2025
A recent line of research has exploited pre-trained generative diffusion models as priors for solving Bayesian inverse problems. We contribute to this research direction by designing a sequential Monte Carlo method for linear-Gaussian inverse problems which builds on "decoupled diffusion", where the generative process is designed such that larger updates to the sample are possible. The method is asymptotically exact and we demonstrate the effectiveness of our Decoupled Diffusion Sequential Monte Carlo (DDSMC) algorithm on both synthetic as well as protein and image data. Further, we demonstrate how the approach can be extended to discrete data.
comment: Accepted to ICML 2025, to appear in PMLR 267. Code available at https://github.com/filipekstrm/ddsmc
♻ ☆ Balancing Truthfulness and Informativeness with Uncertainty-Aware Instruction Fine-Tuning
Instruction fine-tuning (IFT) can increase the informativeness of large language models (LLMs), but may reduce their truthfulness. This trade-off arises because IFT steers LLMs to generate responses containing long-tail knowledge that was not well covered during pre-training. As a result, models become more informative but less accurate when generalizing to unseen tasks. In this paper, we empirically demonstrate how unfamiliar knowledge in IFT datasets can negatively affect the truthfulness of LLMs, and we introduce two new IFT paradigms, $UNIT_{cut}$ and $UNIT_{ref}$, to address this issue. $UNIT_{cut}$ identifies and removes unfamiliar knowledge from IFT datasets to mitigate its impact on model truthfulness, whereas $UNIT_{ref}$ trains LLMs to recognize their uncertainty and explicitly indicate it at the end of their responses. Our experiments show that $UNIT_{cut}$ substantially improves LLM truthfulness, while $UNIT_{ref}$ maintains high informativeness and reduces hallucinations by distinguishing between confident and uncertain statements.
♻ ☆ Aurora: Are Android Malware Classifiers Reliable and Stable under Distribution Shift?
The performance figures of modern drift-adaptive malware classifiers appear promising, but does this translate to genuine operational reliability? The standard evaluation paradigm primarily focuses on baseline performance metrics, neglecting confidence-error alignment and operational stability. While TESSERACT established the importance of temporal evaluation, we take a complementary direction by investigating whether malware classifiers maintain reliable and stable confidence estimates under distribution shifts and exploring the tensions between scientific advancement and practical impacts when they do not. We propose AURORA, a framework to evaluate malware classifiers based on their confidence quality and operational resilience. AURORA subjects the confidence profile of a given model to verification to assess the reliability of its estimates. Unreliable confidence estimates erode operational trust, waste valuable annotation budget on non-informative samples for active learning, and leave error-prone instances undetected in selective classification. AURORA is complemented by a set of metrics designed to go beyond point-in-time performance, striving towards a more holistic assessment of operational stability throughout temporal evaluation periods. The fragility in SOTA frameworks across datasets of varying drift suggests the need for a return to the whiteboard.
♻ ☆ Teacher Motion Priors: Enhancing Robot Locomotion over Challenging Terrain IROS 2025
Achieving robust locomotion on complex terrains remains a challenge due to high dimensional control and environmental uncertainties. This paper introduces a teacher prior framework based on the teacher student paradigm, integrating imitation and auxiliary task learning to improve learning efficiency and generalization. Unlike traditional paradigms that strongly rely on encoder-based state embeddings, our framework decouples the network design, simplifying the policy network and deployment. A high performance teacher policy is first trained using privileged information to acquire generalizable motion skills. The teacher's motion distribution is transferred to the student policy, which relies only on noisy proprioceptive data, via a generative adversarial mechanism to mitigate performance degradation caused by distributional shifts. Additionally, auxiliary task learning enhances the student policy's feature representation, speeding up convergence and improving adaptability to varying terrains. The framework is validated on a humanoid robot, showing a great improvement in locomotion stability on dynamic terrains and significant reductions in development costs. This work provides a practical solution for deploying robust locomotion strategies in humanoid robots.
comment: 8 pages, 6 figures, 6 tables, IROS 2025
♻ ☆ WoundAmbit: Bridging State-of-the-Art Semantic Segmentation and Real-World Wound Care ECML
Chronic wounds affect a large population, particularly the elderly and diabetic patients, who often exhibit limited mobility and co-existing health conditions. Automated wound monitoring via mobile image capture can reduce in-person physician visits by enabling remote tracking of wound size. Semantic segmentation is key to this process, yet wound segmentation remains underrepresented in medical imaging research. To address this, we benchmark state-of-the-art deep learning models from general-purpose vision, medical imaging, and top methods from public wound challenges. For a fair comparison, we standardize training, data augmentation, and evaluation, conducting cross-validation to minimize partitioning bias. We also assess real-world deployment aspects, including generalization to an out-of-distribution wound dataset, computational efficiency, and interpretability. Additionally, we propose a reference object-based approach to convert AI-generated masks into clinically relevant wound size estimates and evaluate this, along with mask quality, for the five best architectures based on physician assessments. Overall, the transformer-based TransNeXt showed the highest levels of generalizability. Despite variations in inference times, all models processed at least one image per second on the CPU, which is deemed adequate for the intended application. Interpretability analysis typically revealed prominent activations in wound regions, emphasizing focus on clinically relevant features. Expert evaluation showed high mask approval for all analyzed models, with VWFormer and ConvNeXtS backbone performing the best. Size retrieval accuracy was similar across models, and predictions closely matched expert annotations. Finally, we demonstrate how our AI-driven wound size estimation framework, WoundAmbit, is integrated into a custom telehealth system.
comment: Main paper: 18 pages; supplementary material: 15 pages; the paper has been accepted for publication at the Applied Data Science (ADS) track of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2025)
♻ ☆ Toddlers' Active Gaze Behavior Supports Self-Supervised Object Learning
Toddlers learn to recognize objects from different viewpoints with almost no supervision. During this learning, they execute frequent eye and head movements that shape their visual experience. It is presently unclear if and how these behaviors contribute to toddlers' emerging object recognition abilities. To answer this question, we here combine head-mounted eye tracking during dyadic play with unsupervised machine learning. We approximate toddlers' central visual field experience by cropping image regions from a head-mounted camera centered on the current gaze location estimated via eye tracking. This visual stream feeds an unsupervised computational model of toddlers' learning, which constructs visual representations that slowly change over time. Our experiments demonstrate that toddlers' gaze strategy supports the learning of invariant object representations. Our analysis also shows that the limited size of the central visual field where acuity is high is crucial for this. Overall, our work reveals how toddlers' gaze behavior may support their development of view-invariant object recognition.
comment: 27 pages, 16 figures
♻ ☆ Distributed satellite information networks: Architecture, enabling technologies, and trends
Driven by the vision of ubiquitous connectivity and wireless intelligence, the evolution of ultra-dense constellation-based satellite-integrated Internet is underway, now taking preliminary shape. Nevertheless, the entrenched institutional silos and limited, nonrenewable heterogeneous network resources leave current satellite systems struggling to accommodate the escalating demands of next-generation intelligent applications. In this context, the distributed satellite information networks (DSIN), exemplified by the cohesive clustered satellites system, have emerged as an innovative architecture, bridging information gaps across diverse satellite systems, such as communication, navigation, and remote sensing, and establishing a unified, open information network paradigm to support resilient space information services. This survey first provides a profound discussion about innovative network architectures of DSIN, encompassing distributed regenerative satellite network architecture, distributed satellite computing network architecture, and reconfigurable satellite formation flying, to enable flexible and scalable communication, computing and control. The DSIN faces challenges from network heterogeneity, unpredictable channel dynamics, sparse resources, and decentralized collaboration frameworks. To address these issues, a series of enabling technologies is identified, including channel modeling and estimation, cloud-native distributed MIMO cooperation, grant-free massive access, network routing, and the proper combination of all these diversity techniques. Furthermore, to heighten the overall resource efficiency, the cross-layer optimization techniques are further developed to meet upper-layer deterministic, adaptive and secure information services requirements. In addition, emerging research directions and new opportunities are highlighted on the way to achieving the DSIN vision.
♻ ☆ AgentBreeder: Mitigating the AI Safety Impact of Multi-Agent Scaffolds via Self-Improvement
Scaffolding Large Language Models (LLMs) into multi-agent systems often improves performance on complex tasks, but the safety impact of such scaffolds has not been thoroughly explored. We introduce AgentBreeder, a framework for multi-objective self-improving evolutionary search over scaffolds. We evaluate discovered scaffolds on widely recognized reasoning, mathematics, and safety benchmarks and compare them with popular baselines. In 'blue' mode, we see a 79.4% average uplift in safety benchmark performance while maintaining or improving capability scores. In 'red' mode, we find adversarially weak scaffolds emerging concurrently with capability optimization. Our work demonstrates the risks of multi-agent scaffolding and provides a framework for mitigating them. Code is available at https://github.com/J-Rosser-UK/AgentBreeder.
♻ ☆ FGS-SLAM: Fourier-based Gaussian Splatting for Real-time SLAM with Sparse and Dense Map Fusion
3D gaussian splatting has advanced simultaneous localization and mapping (SLAM) technology by enabling real-time positioning and the construction of high-fidelity maps. However, the uncertainty in gaussian position and initialization parameters introduces challenges, often requiring extensive iterative convergence and resulting in redundant or insufficient gaussian representations. To address this, we introduce a novel adaptive densification method based on Fourier frequency domain analysis to establish gaussian priors for rapid convergence. Additionally, we propose constructing independent and unified sparse and dense maps, where a sparse map supports efficient tracking via Generalized Iterative Closest Point (GICP) and a dense map creates high-fidelity visual representations. This is the first SLAM system leveraging frequency domain analysis to achieve high-quality gaussian mapping in real-time. Experimental results demonstrate an average frame rate of 36 FPS on Replica and TUM RGB-D datasets, achieving competitive accuracy in both localization and mapping.
♻ ☆ MS-TVNet:A Long-Term Time Series Prediction Method Based on Multi-Scale Dynamic Convolution
Long-term time series prediction has predominantly relied on Transformer and MLP models, while the potential of convolutional networks in this domain remains underexplored. To address this gap, we introduce a novel multi-scale time series reshape module, which effectively captures the relationships among multi-period patches and variable dependencies. Building upon this module, we propose MS-TVNet, a multi-scale 3D dynamic convolutional neural network. Through comprehensive evaluations on diverse datasets, MS-TVNet demonstrates superior performance compared to baseline models, achieving state-of-the-art (SOTA) results in long-term time series prediction. Our findings highlight the effectiveness of leveraging convolutional networks for capturing complex temporal patterns, suggesting a promising direction for future research in this field.The code is realsed on https://github.com/Curyyfaust/TVNet.
♻ ☆ IKDiffuser: A Generative Inverse Kinematics Solver for Multi-arm Robots via Diffusion Model
Solving Inverse Kinematics (IK) problems is fundamental to robotics, but has primarily been successful with single serial manipulators. For multi-arm robotic systems, IK remains challenging due to complex self-collisions, coupled joints, and high-dimensional redundancy. These complexities make traditional IK solvers slow, prone to failure, and lacking in solution diversity. In this paper, we present IKDiffuser, a diffusion-based model designed for fast and diverse IK solution generation for multi-arm robotic systems. IKDiffuser learns the joint distribution over the configuration space, capturing complex dependencies and enabling seamless generalization to multi-arm robotic systems of different structures. In addition, IKDiffuser can incorporate additional objectives during inference without retraining, offering versatility and adaptability for task-specific requirements. In experiments on 6 different multi-arm systems, the proposed IKDiffuser achieves superior solution accuracy, precision, diversity, and computational efficiency compared to existing solvers. The proposed IKDiffuser framework offers a scalable, unified approach to solving multi-arm IK problems, facilitating the potential of multi-arm robotic systems in real-time manipulation tasks.
comment: under review
♻ ☆ Hybrid AI for Responsive Multi-Turn Online Conversations with Novel Dynamic Routing and Feedback Adaptation NAACL 2025
Retrieval-Augmented Generation (RAG) systems and large language model (LLM)-powered chatbots have significantly advanced conversational AI by combining generative capabilities with external knowledge retrieval. Despite their success, enterprise-scale deployments face critical challenges, including diverse user queries, high latency, hallucinations, and difficulty integrating frequently updated domain-specific knowledge. This paper introduces a novel hybrid framework that integrates RAG with intent-based canned responses, leveraging predefined high-confidence responses for efficiency while dynamically routing complex or ambiguous queries to the RAG pipeline. Our framework employs a dialogue context manager to ensure coherence in multi-turn interactions and incorporates a feedback loop to refine intents, dynamically adjust confidence thresholds, and expand response coverage over time. Experimental results demonstrate that the proposed framework achieves a balance of high accuracy (95\%) and low latency (180ms), outperforming RAG and intent-based systems across diverse query types, positioning it as a scalable and adaptive solution for enterprise conversational AI applications.
comment: Proceedings of the 4th International Workshop on Knowledge Augmented Methods for Natural Language Processing in NAACL 2025, pages 215 to 229, Albuquerque, New Mexico, USA. Association for Computational Linguistics
♻ ☆ Mapping the Evolution of Research Contributions using KnoVo
This paper presents KnoVo (Knowledge Evolution), an intelligent framework designed for quantifying and analyzing the evolution of research novelty in the scientific literature. Moving beyond traditional citation analysis, which primarily measures impact, KnoVo determines a paper's novelty relative to both prior and subsequent work within its multilayered citation network. Given a target paper's abstract, KnoVo utilizes Large Language Models (LLMs) to dynamically extract dimensions of comparison (e.g., methodology, application, dataset). The target paper is then compared to related publications along these same extracted dimensions. This comparative analysis, inspired by tournament selection, yields quantitative novelty scores reflecting the relative improvement, equivalence, or inferiority of the target paper in specific aspects. By aggregating these scores and visualizing their progression, for instance, through dynamic evolution graphs and comparative radar charts, KnoVo facilitates researchers not only to assess originality and identify similar work, but also to track knowledge evolution along specific research dimensions, uncover research gaps, and explore cross-disciplinary connections. We demonstrate these capabilities through a detailed analysis of 20 diverse papers from multiple scientific fields and report on the performance of various open-source LLMs within the KnoVo framework.
♻ ☆ PhysUniBench: An Undergraduate-Level Physics Reasoning Benchmark for Multimodal Models
Physics problem-solving is a challenging domain for large AI models, requiring integration of conceptual understanding, mathematical reasoning, and interpretation of physical diagrams. Current evaluation methodologies show notable limitations in capturing the breadth and complexity of undergraduate-level physics, underscoring the need for more rigorous assessments. To this end, we present PhysUniBench, a large-scale multimodal benchmark designed to evaluate and improve the reasoning capabilities of multimodal large language models (MLLMs) specifically on undergraduate-level physics problems. PhysUniBench consists of 3,304 physics questions spanning 8 major sub-disciplines of physics, each accompanied by one visual diagrams. The benchmark includes both open-ended and multiple-choice questions, systematically curated and difficulty-rated through an iterative model-in-the-loop process. The benchmark's construction involved a rigorous multi-stage process, including multiple roll-outs, expert-level evaluation, automated filtering of easily solved problems, and a nuanced difficulty grading system with five levels. Through extensive experiments, we observe that current state-of-the-art models encounter substantial challenges in physics reasoning. For example, GPT-4o mini achieves only about 34.2% accuracy in the proposed PhysUniBench. These results highlight that current MLLMs struggle with advanced physics reasoning, especially on multi-step problems and those requiring precise diagram interpretation. By providing a broad and rigorous assessment tool, PhysUniBench aims to drive progress in AI for Science, encouraging the development of models with stronger physical reasoning, problem-solving skills, and multimodal understanding. The benchmark and evaluation scripts are available at https://prismax-team.github.io/PhysUniBenchmark/.
♻ ☆ USP-Gaussian: Unifying Spike-based Image Reconstruction, Pose Correction and Gaussian Splatting
Spike cameras, as an innovative neuromorphic camera that captures scenes with the 0-1 bit stream at 40 kHz, are increasingly employed for the 3D reconstruction task via Neural Radiance Fields (NeRF) or 3D Gaussian Splatting (3DGS). Previous spike-based 3D reconstruction approaches often employ a casecased pipeline: starting with high-quality image reconstruction from spike streams based on established spike-to-image reconstruction algorithms, then progressing to camera pose estimation and 3D reconstruction. However, this cascaded approach suffers from substantial cumulative errors, where quality limitations of initial image reconstructions negatively impact pose estimation, ultimately degrading the fidelity of the 3D reconstruction. To address these issues, we propose a synergistic optimization framework, \textbf{USP-Gaussian}, that unifies spike-based image reconstruction, pose correction, and Gaussian splatting into an end-to-end framework. Leveraging the multi-view consistency afforded by 3DGS and the motion capture capability of the spike camera, our framework enables a joint iterative optimization that seamlessly integrates information between the spike-to-image network and 3DGS. Experiments on synthetic datasets with accurate poses demonstrate that our method surpasses previous approaches by effectively eliminating cascading errors. Moreover, we integrate pose optimization to achieve robust 3D reconstruction in real-world scenarios with inaccurate initial poses, outperforming alternative methods by effectively reducing noise and preserving fine texture details. Our code, data and trained models will be available at https://github.com/chenkang455/USP-Gaussian.
♻ ☆ Rewarding Graph Reasoning Process makes LLMs more Generalized Reasoners KDD 2025
Despite significant advancements in Large Language Models (LLMs), developing advanced reasoning capabilities in LLMs remains a key challenge. Process Reward Models (PRMs) have demonstrated exceptional promise in enhancing reasoning by providing step-wise feedback, particularly in the context of mathematical reasoning. However, their application to broader reasoning domains remains understudied, largely due to the high costs associated with manually creating step-level supervision. In this work, we explore the potential of PRMs in graph reasoning problems - a domain that demands sophisticated multi-step reasoning and offers opportunities for automated step-level data generation using established graph algorithms. We introduce GraphSILO, the largest dataset for graph reasoning problems with fine-grained step-wise labels, built using automated Task-oriented Trajectories and Monte Carlo Tree Search (MCTS) to generate detailed reasoning steps with step-wise labels. Building upon this dataset, we train GraphPRM, the first PRM designed for graph reasoning problems, and evaluate its effectiveness in two key settings: inference-time scaling and reinforcement learning via Direct Preference Optimization (DPO). Experimental results show that GraphPRM significantly improves LLM performance across 13 graph reasoning tasks, delivering a 9% gain for Qwen2.5-7B and demonstrating transferability to new graph reasoning datasets and new reasoning domains like mathematical problem-solving. Notably, GraphPRM enhances LLM performance on GSM8K and Math500, underscoring the cross-domain applicability of graph-based reasoning rewards. Our findings highlight the potential of PRMs in advancing reasoning across diverse domains, paving the way for more versatile and effective LLMs.
comment: Accepted to KDD 2025 Research Track
♻ ☆ C3S3: Complementary Competition and Contrastive Selection for Semi-Supervised Medical Image Segmentation ICME 2025
For the immanent challenge of insufficiently annotated samples in the medical field, semi-supervised medical image segmentation (SSMIS) offers a promising solution. Despite achieving impressive results in delineating primary target areas, most current methodologies struggle to precisely capture the subtle details of boundaries. This deficiency often leads to significant diagnostic inaccuracies. To tackle this issue, we introduce C3S3, a novel semi-supervised segmentation model that synergistically integrates complementary competition and contrastive selection. This design significantly sharpens boundary delineation and enhances overall precision. Specifically, we develop an Outcome-Driven Contrastive Learning module dedicated to refining boundary localization. Additionally, we incorporate a Dynamic Complementary Competition module that leverages two high-performing sub-networks to generate pseudo-labels, thereby further improving segmentation quality. The proposed C3S3 undergoes rigorous validation on two publicly accessible datasets, encompassing the practices of both MRI and CT scans. The results demonstrate that our method achieves superior performance compared to previous cutting-edge competitors. Especially, on the 95HD and ASD metrics, our approach achieves a notable improvement of at least 6%, highlighting the significant advancements. The code is available at https://github.com/Y-TARL/C3S3.
comment: Accepted to ICME 2025
♻ ☆ Screen Hijack: Visual Poisoning of VLM Agents in Mobile Environments
With the growing integration of vision-language models (VLMs), mobile agents are now widely used for tasks like UI automation and camera-based user assistance. These agents are often fine-tuned on limited user-generated datasets, leaving them vulnerable to covert threats during the training process. In this work we present GHOST, the first clean-label backdoor attack specifically designed for mobile agents built upon VLMs. Our method manipulates only the visual inputs of a portion of the training samples - without altering their corresponding labels or instructions - thereby injecting malicious behaviors into the model. Once fine-tuned with this tampered data, the agent will exhibit attacker-controlled responses when a specific visual trigger is introduced at inference time. The core of our approach lies in aligning the gradients of poisoned samples with those of a chosen target instance, embedding backdoor-relevant features into the poisoned training data. To maintain stealth and enhance robustness, we develop three realistic visual triggers: static visual patches, dynamic motion cues, and subtle low-opacity overlays. We evaluate our method across six real-world Android apps and three VLM architectures adapted for mobile use. Results show that our attack achieves high attack success rates (up to 94.67 percent) while maintaining high clean-task performance (FSR up to 95.85 percent). Additionally, ablation studies shed light on how various design choices affect the efficacy and concealment of the attack. Overall, this work is the first to expose critical security flaws in VLM-based mobile agents, highlighting their susceptibility to clean-label backdoor attacks and the urgent need for effective defense mechanisms in their training pipelines.
comment: 12 pages
♻ ☆ TSPulse: Dual Space Tiny Pre-Trained Models for Rapid Time-Series Analysis
The rise of time-series pre-trained models has advanced temporal representation learning, but current state-of-the-art models are often large-scale, requiring substantial compute. We introduce TSPulse, ultra-compact time-series pre-trained models with only 1M parameters, specialized to perform strongly across classification, anomaly detection, imputation, and retrieval tasks. TSPulse introduces innovations at both the architecture and task levels. At the architecture level, it employs a dual-space masked reconstruction, learning from both time and frequency domains to capture complementary signals. This is further enhanced by a dual-embedding disentanglement, generating both detailed embeddings for fine-grained analysis and high-level semantic embeddings for broader task understanding. Notably, TSPulse's semantic embeddings are robust to shifts in time, magnitude, and noise, which is important for robust retrieval. At the task level, TSPulse incorporates TSLens, a fine-tuning component enabling task-specific feature attention. It also introduces a multi-head triangulation technique that correlates deviations from multiple prediction heads, enhancing anomaly detection by fusing complementary model outputs. Additionally, a hybrid mask pretraining is proposed to improves zero-shot imputation by reducing pre-training bias. These architecture and task innovations collectively contribute to TSPulse's significant performance gains: 5-16% on the UEA classification benchmarks, +20% on the TSB-AD anomaly detection leaderboard, +50% in zero-shot imputation, and +25% in time-series retrieval. Remarkably, these results are achieved with just 1M parameters (10-100X smaller than existing SOTA models) and allow GPU-free inference, setting a new standard for efficient time-series pre-trained models. The models can be accessed from https://huggingface.co/ibm-granite/granite-timeseries-tspulse-r1
♻ ☆ Evaluating Generalization and Representation Stability in Small LMs via Prompting, Fine-Tuning and Out-of-Distribution Prompts ICML
We investigate the generalization capabilities of small language models under two popular adaptation paradigms: few-shot prompting and supervised fine-tuning. While prompting is often favored for its parameter efficiency and flexibility, it remains unclear how robust this approach is in low-resource settings and under distributional shifts. This paper presents a comparative study of prompting and fine-tuning across task formats, prompt styles, and model scales, with a focus on their behavior in both in-distribution and out-of-distribution (OOD) settings. Beyond accuracy, we analyze the internal representations learned by each approach to assess the stability and abstraction of task-specific features. Our findings highlight critical differences in how small models internalize and generalize knowledge under different adaptation strategies. This work offers practical guidance for model selection in low-data regimes and contributes empirical insight into the ongoing debate over prompting versus fine-tuning. Code for the experiments is available at the following
comment: Accepted at ICML
♻ ☆ Robust Multimodal Learning for Ophthalmic Disease Grading via Disentangled Representation
This paper discusses how ophthalmologists often rely on multimodal data to improve diagnostic accuracy. However, complete multimodal data is rare in real-world applications due to a lack of medical equipment and concerns about data privacy. Traditional deep learning methods typically address these issues by learning representations in latent space. However, the paper highlights two key limitations of these approaches: (i) Task-irrelevant redundant information (e.g., numerous slices) in complex modalities leads to significant redundancy in latent space representations. (ii) Overlapping multimodal representations make it difficult to extract unique features for each modality. To overcome these challenges, the authors propose the Essence-Point and Disentangle Representation Learning (EDRL) strategy, which integrates a self-distillation mechanism into an end-to-end framework to enhance feature selection and disentanglement for more robust multimodal learning. Specifically, the Essence-Point Representation Learning module selects discriminative features that improve disease grading performance. The Disentangled Representation Learning module separates multimodal data into modality-common and modality-unique representations, reducing feature entanglement and enhancing both robustness and interpretability in ophthalmic disease diagnosis. Experiments on multimodal ophthalmology datasets show that the proposed EDRL strategy significantly outperforms current state-of-the-art methods.
comment: 10pages
♻ ☆ Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models ICML 2025
In this paper, we present Morse, a simple dual-sampling framework for accelerating diffusion models losslessly. The key insight of Morse is to reformulate the iterative generation (from noise to data) process via taking advantage of fast jump sampling and adaptive residual feedback strategies. Specifically, Morse involves two models called Dash and Dot that interact with each other. The Dash model is just the pre-trained diffusion model of any type, but operates in a jump sampling regime, creating sufficient space for sampling efficiency improvement. The Dot model is significantly faster than the Dash model, which is learnt to generate residual feedback conditioned on the observations at the current jump sampling point on the trajectory of the Dash model, lifting the noise estimate to easily match the next-step estimate of the Dash model without jump sampling. By chaining the outputs of the Dash and Dot models run in a time-interleaved fashion, Morse exhibits the merit of flexibly attaining desired image generation performance while improving overall runtime efficiency. With our proposed weight sharing strategy between the Dash and Dot models, Morse is efficient for training and inference. Our method shows a lossless speedup of 1.78X to 3.31X on average over a wide range of sampling step budgets relative to 9 baseline diffusion models on 6 image generation tasks. Furthermore, we show that our method can be also generalized to improve the Latent Consistency Model (LCM-SDXL, which is already accelerated with consistency distillation technique) tailored for few-step text-to-image synthesis. The code and models are available at https://github.com/deep-optimization/Morse.
comment: Fixed a prompt typo in Figure 18 of the Appendix. This work is accepted to ICML 2025. The project page: https://github.com/deep-optimization/Morse
♻ ☆ PP-DocBee2: Improved Baselines with Efficient Data for Multimodal Document Understanding
This report introduces PP-DocBee2, an advanced version of the PP-DocBee, designed to enhance multimodal document understanding. Built on a large multimodal model architecture, PP-DocBee2 addresses the limitations of its predecessor through key technological improvements, including enhanced synthetic data quality, improved visual feature fusion strategy, and optimized inference methodologies. These enhancements yield an $11.4\%$ performance boost on internal benchmarks for Chinese business documents, and reduce inference latency by $73.0\%$ to the vanilla version. A key innovation of our work is a data quality optimization strategy for multimodal document tasks. By employing a large-scale multimodal pre-trained model to evaluate data, we apply a novel statistical criterion to filter outliers, ensuring high-quality training data. Inspired by insights into underutilized intermediate features in multimodal models, we enhance the ViT representational capacity by decomposing it into layers and applying a novel feature fusion strategy to improve complex reasoning. The source code and pre-trained model are available at \href{https://github.com/PaddlePaddle/PaddleMIX}{https://github.com/PaddlePaddle/PaddleMIX}.
♻ ☆ Fine-Grained Perturbation Guidance via Attention Head Selection
Recent guidance methods in diffusion models steer reverse sampling by perturbing the model to construct an implicit weak model and guide generation away from it. Among these approaches, attention perturbation has demonstrated strong empirical performance in unconditional scenarios where classifier-free guidance is not applicable. However, existing attention perturbation methods lack principled approaches for determining where perturbations should be applied, particularly in Diffusion Transformer (DiT) architectures where quality-relevant computations are distributed across layers. In this paper, we investigate the granularity of attention perturbations, ranging from the layer level down to individual attention heads, and discover that specific heads govern distinct visual concepts such as structure, style, and texture quality. Building on this insight, we propose "HeadHunter", a systematic framework for iteratively selecting attention heads that align with user-centric objectives, enabling fine-grained control over generation quality and visual attributes. In addition, we introduce SoftPAG, which linearly interpolates each selected head's attention map toward an identity matrix, providing a continuous knob to tune perturbation strength and suppress artifacts. Our approach not only mitigates the oversmoothing issues of existing layer-level perturbation but also enables targeted manipulation of specific visual styles through compositional head selection. We validate our method on modern large-scale DiT-based text-to-image models including Stable Diffusion 3 and FLUX.1, demonstrating superior performance in both general quality enhancement and style-specific guidance. Our work provides the first head-level analysis of attention perturbation in diffusion models, uncovering interpretable specialization within attention layers and enabling practical design of effective perturbation strategies.
comment: Project page: https://cvlab-kaist.github.io/HeadHunter/
Graphics 10
☆ 3DGH: 3D Head Generation with Composable Hair and Face SIGGRAPH 2025
We present 3DGH, an unconditional generative model for 3D human heads with composable hair and face components. Unlike previous work that entangles the modeling of hair and face, we propose to separate them using a novel data representation with template-based 3D Gaussian Splatting, in which deformable hair geometry is introduced to capture the geometric variations across different hairstyles. Based on this data representation, we design a 3D GAN-based architecture with dual generators and employ a cross-attention mechanism to model the inherent correlation between hair and face. The model is trained on synthetic renderings using carefully designed objectives to stabilize training and facilitate hair-face separation. We conduct extensive experiments to validate the design choice of 3DGH, and evaluate it both qualitatively and quantitatively by comparing with several state-of-the-art 3D GAN methods, demonstrating its effectiveness in unconditional full-head image synthesis and composable 3D hairstyle editing. More details will be available on our project page: https://c-he.github.io/projects/3dgh/.
comment: Accepted to SIGGRAPH 2025. Project page: https://c-he.github.io/projects/3dgh/
☆ Generative Blocks World: Moving Things Around in Pictures
We describe Generative Blocks World to interact with the scene of a generated image by manipulating simple geometric abstractions. Our method represents scenes as assemblies of convex 3D primitives, and the same scene can be represented by different numbers of primitives, allowing an editor to move either whole structures or small details. Once the scene geometry has been edited, the image is generated by a flow-based method which is conditioned on depth and a texture hint. Our texture hint takes into account the modified 3D primitives, exceeding texture-consistency provided by existing key-value caching techniques. These texture hints (a) allow accurate object and camera moves and (b) largely preserve the identity of objects depicted. Quantitative and qualitative experiments demonstrate that our approach outperforms prior works in visual fidelity, editability, and compositional generalization.
comment: 23 pages, 16 figures, 2 tables
☆ EditP23: 3D Editing via Propagation of Image Prompts to Multi-View
We present EditP23, a method for mask-free 3D editing that propagates 2D image edits to multi-view representations in a 3D-consistent manner. In contrast to traditional approaches that rely on text-based prompting or explicit spatial masks, EditP23 enables intuitive edits by conditioning on a pair of images: an original view and its user-edited counterpart. These image prompts are used to guide an edit-aware flow in the latent space of a pre-trained multi-view diffusion model, allowing the edit to be coherently propagated across views. Our method operates in a feed-forward manner, without optimization, and preserves the identity of the original object, in both structure and appearance. We demonstrate its effectiveness across a range of object categories and editing scenarios, achieving high fidelity to the source while requiring no manual masks.
comment: Code, supplementary videos, interactive 3D visualizations, and additional results are available at https://editp23.github.io/
☆ DreamAnywhere: Object-Centric Panoramic 3D Scene Generation
Recent advances in text-to-3D scene generation have demonstrated significant potential to transform content creation across multiple industries. Although the research community has made impressive progress in addressing the challenges of this complex task, existing methods often generate environments that are only front-facing, lack visual fidelity, exhibit limited scene understanding, and are typically fine-tuned for either indoor or outdoor settings. In this work, we address these issues and propose DreamAnywhere, a modular system for the fast generation and prototyping of 3D scenes. Our system synthesizes a 360{\deg} panoramic image from text, decomposes it into background and objects, constructs a complete 3D representation through hybrid inpainting, and lifts object masks to detailed 3D objects that are placed in the virtual environment. DreamAnywhere supports immersive navigation and intuitive object-level editing, making it ideal for scene exploration, visual mock-ups, and rapid prototyping -- all with minimal manual modeling. These features make our system particularly suitable for low-budget movie production, enabling quick iteration on scene layout and visual tone without the overhead of traditional 3D workflows. Our modular pipeline is highly customizable as it allows components to be replaced independently. Compared to current state-of-the-art text and image-based 3D scene generation approaches, DreamAnywhere shows significant improvements in coherence in novel view synthesis and achieves competitive image quality, demonstrating its effectiveness across diverse and challenging scenarios. A comprehensive user study demonstrates a clear preference for our method over existing approaches, validating both its technical robustness and practical usefulness.
☆ X-SiT: Inherently Interpretable Surface Vision Transformers for Dementia Diagnosis MICCAI 2025
Interpretable models are crucial for supporting clinical decision-making, driving advances in their development and application for medical images. However, the nature of 3D volumetric data makes it inherently challenging to visualize and interpret intricate and complex structures like the cerebral cortex. Cortical surface renderings, on the other hand, provide a more accessible and understandable 3D representation of brain anatomy, facilitating visualization and interactive exploration. Motivated by this advantage and the widespread use of surface data for studying neurological disorders, we present the eXplainable Surface Vision Transformer (X-SiT). This is the first inherently interpretable neural network that offers human-understandable predictions based on interpretable cortical features. As part of X-SiT, we introduce a prototypical surface patch decoder for classifying surface patch embeddings, incorporating case-based reasoning with spatially corresponding cortical prototypes. The results demonstrate state-of-the-art performance in detecting Alzheimer's disease and frontotemporal dementia while additionally providing informative prototypes that align with known disease patterns and reveal classification errors.
comment: MICCAI 2025
☆ RaRa Clipper: A Clipper for Gaussian Splatting Based on Ray Tracer and Rasterizer
With the advancement of Gaussian Splatting techniques, a growing number of datasets based on this representation have been developed. However, performing accurate and efficient clipping for Gaussian Splatting remains a challenging and unresolved problem, primarily due to the volumetric nature of Gaussian primitives, which makes hard clipping incapable of precisely localizing their pixel-level contributions. In this paper, we propose a hybrid rendering framework that combines rasterization and ray tracing to achieve efficient and high-fidelity clipping of Gaussian Splatting data. At the core of our method is the RaRa strategy, which first leverages rasterization to quickly identify Gaussians intersected by the clipping plane, followed by ray tracing to compute attenuation weights based on their partial occlusion. These weights are then used to accurately estimate each Gaussian's contribution to the final image, enabling smooth and continuous clipping effects. We validate our approach on diverse datasets, including general Gaussians, hair strand Gaussians, and multi-layer Gaussians, and conduct user studies to evaluate both perceptual quality and quantitative performance. Experimental results demonstrate that our method delivers visually superior results while maintaining real-time rendering performance and preserving high fidelity in the unclipped regions.
♻ ☆ ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model
Advancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
comment: Project page: https://liuff19.github.io/ReconX
♻ ☆ TCDiff++: An End-to-end Trajectory-Controllable Diffusion Model for Harmonious Music-Driven Group Choreography
Music-driven dance generation has garnered significant attention due to its wide range of industrial applications, particularly in the creation of group choreography. During the group dance generation process, however, most existing methods still face three primary issues: multi-dancer collisions, single-dancer foot sliding and abrupt swapping in the generation of long group dance. In this paper, we propose TCDiff++, a music-driven end-to-end framework designed to generate harmonious group dance. Specifically, to mitigate multi-dancer collisions, we utilize a dancer positioning embedding to better maintain the relative positioning among dancers. Additionally, we incorporate a distance-consistency loss to ensure that inter-dancer distances remain within plausible ranges. To address the issue of single-dancer foot sliding, we introduce a swap mode embedding to indicate dancer swapping patterns and design a Footwork Adaptor to refine raw motion, thereby minimizing foot sliding. For long group dance generation, we present a long group diffusion sampling strategy that reduces abrupt position shifts by injecting positional information into the noisy input. Furthermore, we integrate a Sequence Decoder layer to enhance the model's ability to selectively process long sequences. Extensive experiments demonstrate that our TCDiff++ achieves state-of-the-art performance, particularly in long-duration scenarios, ensuring high-quality and coherent group dance generation.
♻ ☆ Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models ICML 2025
In this paper, we present Morse, a simple dual-sampling framework for accelerating diffusion models losslessly. The key insight of Morse is to reformulate the iterative generation (from noise to data) process via taking advantage of fast jump sampling and adaptive residual feedback strategies. Specifically, Morse involves two models called Dash and Dot that interact with each other. The Dash model is just the pre-trained diffusion model of any type, but operates in a jump sampling regime, creating sufficient space for sampling efficiency improvement. The Dot model is significantly faster than the Dash model, which is learnt to generate residual feedback conditioned on the observations at the current jump sampling point on the trajectory of the Dash model, lifting the noise estimate to easily match the next-step estimate of the Dash model without jump sampling. By chaining the outputs of the Dash and Dot models run in a time-interleaved fashion, Morse exhibits the merit of flexibly attaining desired image generation performance while improving overall runtime efficiency. With our proposed weight sharing strategy between the Dash and Dot models, Morse is efficient for training and inference. Our method shows a lossless speedup of 1.78X to 3.31X on average over a wide range of sampling step budgets relative to 9 baseline diffusion models on 6 image generation tasks. Furthermore, we show that our method can be also generalized to improve the Latent Consistency Model (LCM-SDXL, which is already accelerated with consistency distillation technique) tailored for few-step text-to-image synthesis. The code and models are available at https://github.com/deep-optimization/Morse.
comment: Fixed a prompt typo in Figure 18 of the Appendix. This work is accepted to ICML 2025. The project page: https://github.com/deep-optimization/Morse
♻ ☆ MatSwap: Light-aware material transfers in images
We present MatSwap, a method to transfer materials to designated surfaces in an image photorealistically. Such a task is non-trivial due to the large entanglement of material appearance, geometry, and lighting in a photograph. In the literature, material editing methods typically rely on either cumbersome text engineering or extensive manual annotations requiring artist knowledge and 3D scene properties that are impractical to obtain. In contrast, we propose to directly learn the relationship between the input material -- as observed on a flat surface -- and its appearance within the scene, without the need for explicit UV mapping. To achieve this, we rely on a custom light- and geometry-aware diffusion model. We fine-tune a large-scale pre-trained text-to-image model for material transfer using our synthetic dataset, preserving its strong priors to ensure effective generalization to real images. As a result, our method seamlessly integrates a desired material into the target location in the photograph while retaining the identity of the scene. We evaluate our method on synthetic and real images and show that it compares favorably to recent work both qualitatively and quantitatively. We release our code and data on https://github.com/astra-vision/MatSwap
comment: Accepted to EGSR, journal track to appear in Computer Graphics Forum
Robotics 51
☆ Unified Vision-Language-Action Model
Vision-language-action models (VLAs) have garnered significant attention for their potential in advancing robotic manipulation. However, previous approaches predominantly rely on the general comprehension capabilities of vision-language models (VLMs) to generate action signals, often overlooking the rich temporal and causal structure embedded in visual observations. In this paper, we present UniVLA, a unified and native multimodal VLA model that autoregressively models vision, language, and action signals as discrete token sequences. This formulation enables flexible multimodal tasks learning, particularly from large-scale video data. By incorporating world modeling during post-training, UniVLA captures causal dynamics from videos, facilitating effective transfer to downstream policy learning--especially for long-horizon tasks. Our approach sets new state-of-the-art results across several widely used simulation benchmarks, including CALVIN, LIBERO, and Simplenv-Bridge, significantly surpassing previous methods. For example, UniVLA achieves 95.5% average success rate on LIBERO benchmark, surpassing pi0-FAST's 85.5%. We further demonstrate its broad applicability on real-world ALOHA manipulation and autonomous driving.
comment: technical report
☆ ManiGaussian++: General Robotic Bimanual Manipulation with Hierarchical Gaussian World Model
Multi-task robotic bimanual manipulation is becoming increasingly popular as it enables sophisticated tasks that require diverse dual-arm collaboration patterns. Compared to unimanual manipulation, bimanual tasks pose challenges to understanding the multi-body spatiotemporal dynamics. An existing method ManiGaussian pioneers encoding the spatiotemporal dynamics into the visual representation via Gaussian world model for single-arm settings, which ignores the interaction of multiple embodiments for dual-arm systems with significant performance drop. In this paper, we propose ManiGaussian++, an extension of ManiGaussian framework that improves multi-task bimanual manipulation by digesting multi-body scene dynamics through a hierarchical Gaussian world model. To be specific, we first generate task-oriented Gaussian Splatting from intermediate visual features, which aims to differentiate acting and stabilizing arms for multi-body spatiotemporal dynamics modeling. We then build a hierarchical Gaussian world model with the leader-follower architecture, where the multi-body spatiotemporal dynamics is mined for intermediate visual representation via future scene prediction. The leader predicts Gaussian Splatting deformation caused by motions of the stabilizing arm, through which the follower generates the physical consequences resulted from the movement of the acting arm. As a result, our method significantly outperforms the current state-of-the-art bimanual manipulation techniques by an improvement of 20.2% in 10 simulated tasks, and achieves 60% success rate on average in 9 challenging real-world tasks. Our code is available at https://github.com/April-Yz/ManiGaussian_Bimanual.
☆ Look to Locate: Vision-Based Multisensory Navigation with 3-D Digital Maps for GNSS-Challenged Environments
In Global Navigation Satellite System (GNSS)-denied environments such as indoor parking structures or dense urban canyons, achieving accurate and robust vehicle positioning remains a significant challenge. This paper proposes a cost-effective, vision-based multi-sensor navigation system that integrates monocular depth estimation, semantic filtering, and visual map registration (VMR) with 3-D digital maps. Extensive testing in real-world indoor and outdoor driving scenarios demonstrates the effectiveness of the proposed system, achieving sub-meter accuracy of 92% indoors and more than 80% outdoors, with consistent horizontal positioning and heading average root mean-square errors of approximately 0.98 m and 1.25 {\deg}, respectively. Compared to the baselines examined, the proposed solution significantly reduced drift and improved robustness under various conditions, achieving positioning accuracy improvements of approximately 88% on average. This work highlights the potential of cost-effective monocular vision systems combined with 3D maps for scalable, GNSS-independent navigation in land vehicles.
☆ CronusVLA: Transferring Latent Motion Across Time for Multi-Frame Prediction in Manipulation
Recent vision-language-action (VLA) models built on pretrained vision-language models (VLMs) have demonstrated strong generalization across manipulation tasks. However, they remain constrained by a single-frame observation paradigm and cannot fully benefit from the motion information offered by aggregated multi-frame historical observations, as the large vision-language backbone introduces substantial computational cost and inference latency. We propose CronusVLA, a unified framework that extends single-frame VLA models to the multi-frame paradigm through an efficient post-training stage. CronusVLA comprises three key components: (1) single-frame pretraining on large-scale embodied datasets with autoregressive action tokens prediction, which establishes an embodied vision-language foundation; (2) multi-frame encoding, adapting the prediction of vision-language backbones from discrete action tokens to motion features during post-training, and aggregating motion features from historical frames into a feature chunking; (3) cross-frame decoding, which maps the feature chunking to accurate actions via a shared decoder with cross-attention. By reducing redundant token computation and caching past motion features, CronusVLA achieves efficient inference. As an application of motion features, we further propose an action adaptation mechanism based on feature-action retrieval to improve model performance during finetuning. CronusVLA achieves state-of-the-art performance on SimplerEnv with 70.9% success rate, and 12.7% improvement over OpenVLA on LIBERO. Real-world Franka experiments also show the strong performance and robustness.
comment: 36 pages, 21 figures
☆ ReactEMG: Zero-Shot, Low-Latency Intent Detection via sEMG
Surface electromyography (sEMG) signals show promise for effective human-computer interfaces, particularly in rehabilitation and prosthetics. However, challenges remain in developing systems that respond quickly and reliably to user intent, across different subjects and without requiring time-consuming calibration. In this work, we propose a framework for EMG-based intent detection that addresses these challenges. Unlike traditional gesture recognition models that wait until a gesture is completed before classifying it, our approach uses a segmentation strategy to assign intent labels at every timestep as the gesture unfolds. We introduce a novel masked modeling strategy that aligns muscle activations with their corresponding user intents, enabling rapid onset detection and stable tracking of ongoing gestures. In evaluations against baseline methods, considering both accuracy and stability for device control, our approach surpasses state-of-the-art performance in zero-shot transfer conditions, demonstrating its potential for wearable robotics and next-generation prosthetic systems. Our project page is available at: https://reactemg.github.io
☆ The Starlink Robot: A Platform and Dataset for Mobile Satellite Communication
The integration of satellite communication into mobile devices represents a paradigm shift in connectivity, yet the performance characteristics under motion and environmental occlusion remain poorly understood. We present the Starlink Robot, the first mobile robotic platform equipped with Starlink satellite internet, comprehensive sensor suite including upward-facing camera, LiDAR, and IMU, designed to systematically study satellite communication performance during movement. Our multi-modal dataset captures synchronized communication metrics, motion dynamics, sky visibility, and 3D environmental context across diverse scenarios including steady-state motion, variable speeds, and different occlusion conditions. This platform and dataset enable researchers to develop motion-aware communication protocols, predict connectivity disruptions, and optimize satellite communication for emerging mobile applications from smartphones to autonomous vehicles. The project is available at https://github.com/StarlinkRobot.
☆ Systematic Comparison of Projection Methods for Monocular 3D Human Pose Estimation on Fisheye Images
Fisheye cameras offer robots the ability to capture human movements across a wider field of view (FOV) than standard pinhole cameras, making them particularly useful for applications in human-robot interaction and automotive contexts. However, accurately detecting human poses in fisheye images is challenging due to the curved distortions inherent to fisheye optics. While various methods for undistorting fisheye images have been proposed, their effectiveness and limitations for poses that cover a wide FOV has not been systematically evaluated in the context of absolute human pose estimation from monocular fisheye images. To address this gap, we evaluate the impact of pinhole, equidistant and double sphere camera models, as well as cylindrical projection methods, on 3D human pose estimation accuracy. We find that in close-up scenarios, pinhole projection is inadequate, and the optimal projection method varies with the FOV covered by the human pose. The usage of advanced fisheye models like the double sphere model significantly enhances 3D human pose estimation accuracy. We propose a heuristic for selecting the appropriate projection model based on the detection bounding box to enhance prediction quality. Additionally, we introduce and evaluate on our novel dataset FISHnCHIPS, which features 3D human skeleton annotations in fisheye images, including images from unconventional angles, such as extreme close-ups, ground-mounted cameras, and wide-FOV poses, available at: https://www.vision.rwth-aachen.de/fishnchips
comment: Presented at IEEE International Conference on Robotics and Automation 2025
☆ Estimating Spatially-Dependent GPS Errors Using a Swarm of Robots
External factors, including urban canyons and adversarial interference, can lead to Global Positioning System (GPS) inaccuracies that vary as a function of the position in the environment. This study addresses the challenge of estimating a static, spatially-varying error function using a team of robots. We introduce a State Bias Estimation Algorithm (SBE) whose purpose is to estimate the GPS biases. The central idea is to use sensed estimates of the range and bearing to the other robots in the team to estimate changes in bias across the environment. A set of drones moves in a 2D environment, each sampling data from GPS, range, and bearing sensors. The biases calculated by the SBE at estimated positions are used to train a Gaussian Process Regression (GPR) model. We use a Sparse Gaussian process-based Informative Path Planning (IPP) algorithm that identifies high-value regions of the environment for data collection. The swarm plans paths that maximize information gain in each iteration, further refining their understanding of the environment's positional bias landscape. We evaluated SBE and IPP in simulation and compared the IPP methodology to an open-loop strategy.
comment: 6 pages, 7 figures, 2025 IEEE 21st International Conference on Automation Science and Engineering
☆ UniTac-NV: A Unified Tactile Representation For Non-Vision-Based Tactile Sensors IROS
Generalizable algorithms for tactile sensing remain underexplored, primarily due to the diversity of sensor modalities. Recently, many methods for cross-sensor transfer between optical (vision-based) tactile sensors have been investigated, yet little work focus on non-optical tactile sensors. To address this gap, we propose an encoder-decoder architecture to unify tactile data across non-vision-based sensors. By leveraging sensor-specific encoders, the framework creates a latent space that is sensor-agnostic, enabling cross-sensor data transfer with low errors and direct use in downstream applications. We leverage this network to unify tactile data from two commercial tactile sensors: the Xela uSkin uSPa 46 and the Contactile PapillArray. Both were mounted on a UR5e robotic arm, performing force-controlled pressing sequences against distinct object shapes (circular, square, and hexagonal prisms) and two materials (rigid PLA and flexible TPU). Another more complex unseen object was also included to investigate the model's generalization capabilities. We show that alignment in latent space can be implicitly learned from joint autoencoder training with matching contacts collected via different sensors. We further demonstrate the practical utility of our approach through contact geometry estimation, where downstream models trained on one sensor's latent representation can be directly applied to another without retraining.
comment: 7 pages, 8 figures. Accepted version to appear in: 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
☆ ReLink: Computational Circular Design of Planar Linkage Mechanisms Using Available Standard Parts
The Circular Economy framework emphasizes sustainability by reducing resource consumption and waste through the reuse of components and materials. This paper presents ReLink, a computational framework for the circular design of planar linkage mechanisms using available standard parts. Unlike most mechanism design methods, which assume the ability to create custom parts and infinite part availability, ReLink prioritizes the reuse of discrete, standardized components, thus minimizing the need for new parts. The framework consists of two main components: design generation, where a generative design algorithm generates mechanisms from an inventory of available parts, and inverse design, which uses optimization methods to identify designs that match a user-defined trajectory curve. The paper also examines the trade-offs between kinematic performance and CO2 footprint when incorporating new parts. Challenges such as the combinatorial nature of the design problem and the enforcement of valid solutions are addressed. By combining sustainability principles with kinematic synthesis, ReLink lays the groundwork for further research into computational circular design to support the development of systems that integrate reused components into mechanical products.
comment: 29 pages, 18 figures, submitted to the Journal of Cleaner Production
☆ A Verification Methodology for Safety Assurance of Robotic Autonomous Systems
Autonomous robots deployed in shared human environments, such as agricultural settings, require rigorous safety assurance to meet both functional reliability and regulatory compliance. These systems must operate in dynamic, unstructured environments, interact safely with humans, and respond effectively to a wide range of potential hazards. This paper presents a verification workflow for the safety assurance of an autonomous agricultural robot, covering the entire development life-cycle, from concept study and design to runtime verification. The outlined methodology begins with a systematic hazard analysis and risk assessment to identify potential risks and derive corresponding safety requirements. A formal model of the safety controller is then developed to capture its behaviour and verify that the controller satisfies the specified safety properties with respect to these requirements. The proposed approach is demonstrated on a field robot operating in an agricultural setting. The results show that the methodology can be effectively used to verify safety-critical properties and facilitate the early identification of design issues, contributing to the development of safer robots and autonomous systems.
comment: In Proc. of the 26th TAROS (Towards Autonomous Robotic Systems) Conference, York, UK, August, 2025
☆ Probabilistic modelling and safety assurance of an agriculture robot providing light-treatment
Continued adoption of agricultural robots postulates the farmer's trust in the reliability, robustness and safety of the new technology. This motivates our work on safety assurance of agricultural robots, particularly their ability to detect, track and avoid obstacles and humans. This paper considers a probabilistic modelling and risk analysis framework for use in the early development phases. Starting off with hazard identification and a risk assessment matrix, the behaviour of the mobile robot platform, sensor and perception system, and any humans present are captured using three state machines. An auto-generated probabilistic model is then solved and analysed using the probabilistic model checker PRISM. The result provides unique insight into fundamental development and engineering aspects by quantifying the effect of the risk mitigation actions and risk reduction associated with distinct design concepts. These include implications of adopting a higher performance and more expensive Object Detection System or opting for a more elaborate warning system to increase human awareness. Although this paper mainly focuses on the initial concept-development phase, the proposed safety assurance framework can also be used during implementation, and subsequent deployment and operation phases.
☆ Soft Robotic Delivery of Coiled Anchors for Cardiac Interventions
Trans-catheter cardiac intervention has become an increasingly available option for high-risk patients without the complications of open heart surgery. However, current catheterbased platforms suffer from a lack of dexterity, force application, and compliance required to perform complex intracardiac procedures. An exemplary task that would significantly ease minimally invasive intracardiac procedures is the implantation of anchor coils, which can be used to fix and implant various devices in the beating heart. We introduce a robotic platform capable of delivering anchor coils. We develop a kineto-statics model of the robotic platform and demonstrate low positional error. We leverage the passive compliance and high force output of the actuator in a multi-anchor delivery procedure against a motile in-vitro simulator with millimeter level accuracy.
comment: This work has been submitted to the IEEE for possible publication
☆ Robotics Under Construction: Challenges on Job Sites ICRA
As labor shortages and productivity stagnation increasingly challenge the construction industry, automation has become essential for sustainable infrastructure development. This paper presents an autonomous payload transportation system as an initial step toward fully unmanned construction sites. Our system, based on the CD110R-3 crawler carrier, integrates autonomous navigation, fleet management, and GNSS-based localization to facilitate material transport in construction site environments. While the current system does not yet incorporate dynamic environment adaptation algorithms, we have begun fundamental investigations into external-sensor based perception and mapping system. Preliminary results highlight the potential challenges, including navigation in evolving terrain, environmental perception under construction-specific conditions, and sensor placement optimization for improving autonomy and efficiency. Looking forward, we envision a construction ecosystem where collaborative autonomous agents dynamically adapt to site conditions, optimizing workflow and reducing human intervention. This paper provides foundational insights into the future of robotics-driven construction automation and identifies critical areas for further technological development.
comment: Workshop on Field Robotics, ICRA
☆ Adaptive Domain Modeling with Language Models: A Multi-Agent Approach to Task Planning
We introduce TAPAS (Task-based Adaptation and Planning using AgentS), a multi-agent framework that integrates Large Language Models (LLMs) with symbolic planning to solve complex tasks without the need for manually defined environment models. TAPAS employs specialized LLM-based agents that collaboratively generate and adapt domain models, initial states, and goal specifications as needed using structured tool-calling mechanisms. Through this tool-based interaction, downstream agents can request modifications from upstream agents, enabling adaptation to novel attributes and constraints without manual domain redefinition. A ReAct (Reason+Act)-style execution agent, coupled with natural language plan translation, bridges the gap between dynamically generated plans and real-world robot capabilities. TAPAS demonstrates strong performance in benchmark planning domains and in the VirtualHome simulated real-world environment.
☆ Fake or Real, Can Robots Tell? Evaluating Embodied Vision-Language Models on Real and 3D-Printed Objects
Robotic scene understanding increasingly relies on vision-language models (VLMs) to generate natural language descriptions of the environment. In this work, we present a comparative study of captioning strategies for tabletop scenes captured by a robotic arm equipped with an RGB camera. The robot collects images of objects from multiple viewpoints, and we evaluate several models that generate scene descriptions. We compare the performance of various captioning models, like BLIP and VLMs. Our experiments examine the trade-offs between single-view and multi-view captioning, and difference between recognising real-world and 3D printed objects. We quantitatively evaluate object identification accuracy, completeness, and naturalness of the generated captions. Results show that VLMs can be used in robotic settings where common objects need to be recognised, but fail to generalise to novel representations. Our findings provide practical insights into deploying foundation models for embodied agents in real-world settings.
☆ T-Rex: Task-Adaptive Spatial Representation Extraction for Robotic Manipulation with Vision-Language Models NeurIPS 2025
Building a general robotic manipulation system capable of performing a wide variety of tasks in real-world settings is a challenging task. Vision-Language Models (VLMs) have demonstrated remarkable potential in robotic manipulation tasks, primarily due to the extensive world knowledge they gain from large-scale datasets. In this process, Spatial Representations (such as points representing object positions or vectors representing object orientations) act as a bridge between VLMs and real-world scene, effectively grounding the reasoning abilities of VLMs and applying them to specific task scenarios. However, existing VLM-based robotic approaches often adopt a fixed spatial representation extraction scheme for various tasks, resulting in insufficient representational capability or excessive extraction time. In this work, we introduce T-Rex, a Task-Adaptive Framework for Spatial Representation Extraction, which dynamically selects the most appropriate spatial representation extraction scheme for each entity based on specific task requirements. Our key insight is that task complexity determines the types and granularity of spatial representations, and Stronger representational capabilities are typically associated with Higher overall system operation costs. Through comprehensive experiments in real-world robotic environments, we show that our approach delivers significant advantages in spatial understanding, efficiency, and stability without additional training.
comment: submitted to NeurIPS 2025
Ground-Effect-Aware Modeling and Control for Multicopters
The ground effect on multicopters introduces several challenges, such as control errors caused by additional lift, oscillations that may occur during near-ground flight due to external torques, and the influence of ground airflow on models such as the rotor drag and the mixing matrix. This article collects and analyzes the dynamics data of near-ground multicopter flight through various methods, including force measurement platforms and real-world flights. For the first time, we summarize the mathematical model of the external torque of multicopters under ground effect. The influence of ground airflow on rotor drag and the mixing matrix is also verified through adequate experimentation and analysis. Through simplification and derivation, the differential flatness of the multicopter's dynamic model under ground effect is confirmed. To mitigate the influence of these disturbance models on control, we propose a control method that combines dynamic inverse and disturbance models, ensuring consistent control effectiveness at both high and low altitudes. In this method, the additional thrust and variations in rotor drag under ground effect are both considered and compensated through feedforward models. The leveling torque of ground effect can be equivalently represented as variations in the center of gravity and the moment of inertia. In this way, the leveling torque does not explicitly appear in the dynamic model. The final experimental results show that the method proposed in this paper reduces the control error (RMSE) by \textbf{45.3\%}. Please check the supplementary material at: https://github.com/ZJU-FAST-Lab/Ground-effect-controller.
☆ Is an object-centric representation beneficial for robotic manipulation ?
Object-centric representation (OCR) has recently become a subject of interest in the computer vision community for learning a structured representation of images and videos. It has been several times presented as a potential way to improve data-efficiency and generalization capabilities to learn an agent on downstream tasks. However, most existing work only evaluates such models on scene decomposition, without any notion of reasoning over the learned representation. Robotic manipulation tasks generally involve multi-object environments with potential inter-object interaction. We thus argue that they are a very interesting playground to really evaluate the potential of existing object-centric work. To do so, we create several robotic manipulation tasks in simulated environments involving multiple objects (several distractors, the robot, etc.) and a high-level of randomization (object positions, colors, shapes, background, initial positions, etc.). We then evaluate one classical object-centric method across several generalization scenarios and compare its results against several state-of-the-art hollistic representations. Our results exhibit that existing methods are prone to failure in difficult scenarios involving complex scene structures, whereas object-centric methods help overcome these challenges.
☆ A Survey on Soft Robot Adaptability: Implementations, Applications, and Prospects
Soft robots, compared to rigid robots, possess inherent advantages, including higher degrees of freedom, compliance, and enhanced safety, which have contributed to their increasing application across various fields. Among these benefits, adaptability is particularly noteworthy. In this paper, adaptability in soft robots is categorized into external and internal adaptability. External adaptability refers to the robot's ability to adjust, either passively or actively, to variations in environments, object properties, geometries, and task dynamics. Internal adaptability refers to the robot's ability to cope with internal variations, such as manufacturing tolerances or material aging, and to generalize control strategies across different robots. As the field of soft robotics continues to evolve, the significance of adaptability has become increasingly pronounced. In this review, we summarize various approaches to enhancing the adaptability of soft robots, including design, sensing, and control strategies. Additionally, we assess the impact of adaptability on applications such as surgery, wearable devices, locomotion, and manipulation. We also discuss the limitations of soft robotics adaptability and prospective directions for future research. By analyzing adaptability through the lenses of implementation, application, and challenges, this paper aims to provide a comprehensive understanding of this essential characteristic in soft robotics and its implications for diverse applications.
comment: 12 pages, 4 figures, accepted by IEEE Robotics & Automation Magazine
☆ Zero-Shot Parameter Learning of Robot Dynamics Using Bayesian Statistics and Prior Knowledge
Inertial parameter identification of industrial robots is an established process, but standard methods using Least Squares or Machine Learning do not consider prior information about the robot and require extensive measurements. Inspired by Bayesian statistics, this paper presents an identification method with improved generalization that incorporates prior knowledge and is able to learn with only a few or without additional measurements (Zero-Shot Learning). Furthermore, our method is able to correctly learn not only the inertial but also the mechanical and base parameters of the MABI Max 100 robot while ensuring physical feasibility and specifying the confidence intervals of the results. We also provide different types of priors for serial robots with 6 degrees of freedom, where datasheets or CAD models are not available.
comment: Carsten Reiners and Minh Trinh contributed equally to this work
☆ Robotic Perception with a Large Tactile-Vision-Language Model for Physical Property Inference
Inferring physical properties can significantly enhance robotic manipulation by enabling robots to handle objects safely and efficiently through adaptive grasping strategies. Previous approaches have typically relied on either tactile or visual data, limiting their ability to fully capture properties. We introduce a novel cross-modal perception framework that integrates visual observations with tactile representations within a multimodal vision-language model. Our physical reasoning framework, which employs a hierarchical feature alignment mechanism and a refined prompting strategy, enables our model to make property-specific predictions that strongly correlate with ground-truth measurements. Evaluated on 35 diverse objects, our approach outperforms existing baselines and demonstrates strong zero-shot generalization. Keywords: tactile perception, visual-tactile fusion, physical property inference, multimodal integration, robot perception
comment: This paper has been accepted by the 2025 International Conference on Climbing and Walking Robots (CLAWAR). These authors contributed equally to this work: Zexiang Guo, Hengxiang Chen, Xinheng Mai
☆ Da Yu: Towards USV-Based Image Captioning for Waterway Surveillance and Scene Understanding
Automated waterway environment perception is crucial for enabling unmanned surface vessels (USVs) to understand their surroundings and make informed decisions. Most existing waterway perception models primarily focus on instance-level object perception paradigms (e.g., detection, segmentation). However, due to the complexity of waterway environments, current perception datasets and models fail to achieve global semantic understanding of waterways, limiting large-scale monitoring and structured log generation. With the advancement of vision-language models (VLMs), we leverage image captioning to introduce WaterCaption, the first captioning dataset specifically designed for waterway environments. WaterCaption focuses on fine-grained, multi-region long-text descriptions, providing a new research direction for visual geo-understanding and spatial scene cognition. Exactly, it includes 20.2k image-text pair data with 1.8 million vocabulary size. Additionally, we propose Da Yu, an edge-deployable multi-modal large language model for USVs, where we propose a novel vision-to-language projector called Nano Transformer Adaptor (NTA). NTA effectively balances computational efficiency with the capacity for both global and fine-grained local modeling of visual features, thereby significantly enhancing the model's ability to generate long-form textual outputs. Da Yu achieves an optimal balance between performance and efficiency, surpassing state-of-the-art models on WaterCaption and several other captioning benchmarks.
comment: 14 pages, 13 figures
☆ AirV2X: Unified Air-Ground Vehicle-to-Everything Collaboration
While multi-vehicular collaborative driving demonstrates clear advantages over single-vehicle autonomy, traditional infrastructure-based V2X systems remain constrained by substantial deployment costs and the creation of "uncovered danger zones" in rural and suburban areas. We present AirV2X-Perception, a large-scale dataset that leverages Unmanned Aerial Vehicles (UAVs) as a flexible alternative or complement to fixed Road-Side Units (RSUs). Drones offer unique advantages over ground-based perception: complementary bird's-eye-views that reduce occlusions, dynamic positioning capabilities that enable hovering, patrolling, and escorting navigation rules, and significantly lower deployment costs compared to fixed infrastructure. Our dataset comprises 6.73 hours of drone-assisted driving scenarios across urban, suburban, and rural environments with varied weather and lighting conditions. The AirV2X-Perception dataset facilitates the development and standardized evaluation of Vehicle-to-Drone (V2D) algorithms, addressing a critical gap in the rapidly expanding field of aerial-assisted autonomous driving systems. The dataset and development kits are open-sourced at https://github.com/taco-group/AirV2X-Perception.
☆ Ontology Neural Network and ORTSF: A Framework for Topological Reasoning and Delay-Robust Control
The advancement of autonomous robotic systems has led to impressive capabilities in perception, localization, mapping, and control. Yet, a fundamental gap remains: existing frameworks excel at geometric reasoning and dynamic stability but fall short in representing and preserving relational semantics, contextual reasoning, and cognitive transparency essential for collaboration in dynamic, human-centric environments. This paper introduces a unified architecture comprising the Ontology Neural Network (ONN) and the Ontological Real-Time Semantic Fabric (ORTSF) to address this gap. The ONN formalizes relational semantic reasoning as a dynamic topological process. By embedding Forman-Ricci curvature, persistent homology, and semantic tensor structures within a unified loss formulation, ONN ensures that relational integrity and topological coherence are preserved as scenes evolve over time. The ORTSF transforms reasoning traces into actionable control commands while compensating for system delays. It integrates predictive and delay-aware operators that ensure phase margin preservation and continuity of control signals, even under significant latency conditions. Empirical studies demonstrate the ONN + ORTSF framework's ability to unify semantic cognition and robust control, providing a mathematically principled and practically viable solution for cognitive robotics.
comment: 12 pages, 5 figures, includes theoretical proofs and simulation results
☆ Scaffolding Dexterous Manipulation with Vision-Language Models
Dexterous robotic hands are essential for performing complex manipulation tasks, yet remain difficult to train due to the challenges of demonstration collection and high-dimensional control. While reinforcement learning (RL) can alleviate the data bottleneck by generating experience in simulation, it typically relies on carefully designed, task-specific reward functions, which hinder scalability and generalization. Thus, contemporary works in dexterous manipulation have often bootstrapped from reference trajectories. These trajectories specify target hand poses that guide the exploration of RL policies and object poses that enable dense, task-agnostic rewards. However, sourcing suitable trajectories - particularly for dexterous hands - remains a significant challenge. Yet, the precise details in explicit reference trajectories are often unnecessary, as RL ultimately refines the motion. Our key insight is that modern vision-language models (VLMs) already encode the commonsense spatial and semantic knowledge needed to specify tasks and guide exploration effectively. Given a task description (e.g., "open the cabinet") and a visual scene, our method uses an off-the-shelf VLM to first identify task-relevant keypoints (e.g., handles, buttons) and then synthesize 3D trajectories for hand motion and object motion. Subsequently, we train a low-level residual RL policy in simulation to track these coarse trajectories or "scaffolds" with high fidelity. Across a number of simulated tasks involving articulated objects and semantic understanding, we demonstrate that our method is able to learn robust dexterous manipulation policies. Moreover, we showcase that our method transfers to real-world robotic hands without any human demonstrations or handcrafted rewards.
☆ Preserving Sense of Agency: User Preferences for Robot Autonomy and User Control across Household Tasks
Roboticists often design with the assumption that assistive robots should be fully autonomous. However, it remains unclear whether users prefer highly autonomous robots, as prior work in assistive robotics suggests otherwise. High robot autonomy can reduce the user's sense of agency, which represents feeling in control of one's environment. How much control do users, in fact, want over the actions of robots used for in-home assistance? We investigate how robot autonomy levels affect users' sense of agency and the autonomy level they prefer in contexts with varying risks. Our study asked participants to rate their sense of agency as robot users across four distinct autonomy levels and ranked their robot preferences with respect to various household tasks. Our findings revealed that participants' sense of agency was primarily influenced by two factors: (1) whether the robot acts autonomously, and (2) whether a third party is involved in the robot's programming or operation. Notably, an end-user programmed robot highly preserved users' sense of agency, even though it acts autonomously. However, in high-risk settings, e.g., preparing a snack for a child with allergies, they preferred robots that prioritized their control significantly more. Additional contextual factors, such as trust in a third party operator, also shaped their preferences.
comment: Accepted by the 2025 34th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
The MOTIF Hand: A Robotic Hand for Multimodal Observations with Thermal, Inertial, and Force Sensors
Advancing dexterous manipulation with multi-fingered robotic hands requires rich sensory capabilities, while existing designs lack onboard thermal and torque sensing. In this work, we propose the MOTIF hand, a novel multimodal and versatile robotic hand that extends the LEAP hand by integrating: (i) dense tactile information across the fingers, (ii) a depth sensor, (iii) a thermal camera, (iv), IMU sensors, and (v) a visual sensor. The MOTIF hand is designed to be relatively low-cost (under 4000 USD) and easily reproducible. We validate our hand design through experiments that leverage its multimodal sensing for two representative tasks. First, we integrate thermal sensing into 3D reconstruction to guide temperature-aware, safe grasping. Second, we show how our hand can distinguish objects with identical appearance but different masses - a capability beyond methods that use vision only.
☆ Robust Robotic Exploration and Mapping Using Generative Occupancy Map Synthesis
We present a novel approach for enhancing robotic exploration by using generative occupancy mapping. We introduce SceneSense, a diffusion model designed and trained for predicting 3D occupancy maps given partial observations. Our proposed approach probabilistically fuses these predictions into a running occupancy map in real-time, resulting in significant improvements in map quality and traversability. We implement SceneSense onboard a quadruped robot and validate its performance with real-world experiments to demonstrate the effectiveness of the model. In these experiments, we show that occupancy maps enhanced with SceneSense predictions better represent our fully observed ground truth data (24.44% FID improvement around the robot and 75.59% improvement at range). We additionally show that integrating SceneSense-enhanced maps into our robotic exploration stack as a "drop-in" map improvement, utilizing an existing off-the-shelf planner, results in improvements in robustness and traversability time. Finally we show results of full exploration evaluations with our proposed system in two dissimilar environments and find that locally enhanced maps provide more consistent exploration results than maps constructed only from direct sensor measurements.
comment: arXiv admin note: text overlap with arXiv:2409.10681
☆ Hierarchical Reinforcement Learning and Value Optimization for Challenging Quadruped Locomotion
We propose a novel hierarchical reinforcement learning framework for quadruped locomotion over challenging terrain. Our approach incorporates a two-layer hierarchy in which a high-level policy (HLP) selects optimal goals for a low-level policy (LLP). The LLP is trained using an on-policy actor-critic RL algorithm and is given footstep placements as goals. We propose an HLP that does not require any additional training or environment samples and instead operates via an online optimization process over the learned value function of the LLP. We demonstrate the benefits of this framework by comparing it with an end-to-end reinforcement learning (RL) approach. We observe improvements in its ability to achieve higher rewards with fewer collisions across an array of different terrains, including terrains more difficult than any encountered during training.
☆ Robust Embodied Self-Identification of Morphology in Damaged Multi-Legged Robots
Multi-legged robots (MLRs) are vulnerable to leg damage during complex missions, which can impair their performance. This paper presents a self-modeling and damage identification algorithm that enables autonomous adaptation to partial or complete leg loss using only data from a low-cost IMU. A novel FFT-based filter is introduced to address time-inconsistent signals, improving damage detection by comparing body orientation between the robot and its model. The proposed method identifies damaged legs and updates the robot's model for integration into its control system. Experiments on uneven terrain validate its robustness and computational efficiency.
☆ Evolutionary Gait Reconfiguration in Damaged Legged Robots
Multi-legged robots deployed in complex missions are susceptible to physical damage in their legs, impairing task performance and potentially compromising mission success. This letter presents a rapid, training-free damage recovery algorithm for legged robots subject to partial or complete loss of functional legs. The proposed method first stabilizes locomotion by generating a new gait sequence and subsequently optimally reconfigures leg gaits via a developed differential evolution algorithm to maximize forward progression while minimizing body rotation and lateral drift. The algorithm successfully restores locomotion in a 24-degree-of-freedom hexapod within one hour, demonstrating both high efficiency and robustness to structural damage.
♻ ☆ Learning Accurate Whole-body Throwing with High-frequency Residual Policy and Pullback Tube Acceleration IROS 2025
Throwing is a fundamental skill that enables robots to manipulate objects in ways that extend beyond the reach of their arms. We present a control framework that combines learning and model-based control for prehensile whole-body throwing with legged mobile manipulators. Our framework consists of three components: a nominal tracking policy for the end-effector, a high-frequency residual policy to enhance tracking accuracy, and an optimization-based module to improve end-effector acceleration control. The proposed controller achieved the average of 0.28 m landing error when throwing at targets located 6 m away. Furthermore, in a comparative study with university students, the system achieved a velocity tracking error of 0.398 m/s and a success rate of 56.8%, hitting small targets randomly placed at distances of 3-5 m while throwing at a specified speed of 6 m/s. In contrast, humans have a success rate of only 15.2%. This work provides an early demonstration of prehensile throwing with quantified accuracy on hardware, contributing to progress in dynamic whole-body manipulation.
comment: 8 pages, IROS 2025
♻ ☆ ros2 fanuc interface: Design and Evaluation of a Fanuc CRX Hardware Interface in ROS2
This paper introduces the ROS2 control and the Hardware Interface (HW) integration for the Fanuc CRX- robot family. It explains basic implementation details and communication protocols, and its integration with the Moveit2 motion planning library. We conducted a series of experiments to evaluate relevant performances in the robotics field. We tested the developed ros2_fanuc_interface for four relevant robotics cases: step response, trajectory tracking, collision avoidance integrated with Moveit2, and dynamic velocity scaling, respectively. Results show that, despite a non-negligible delay between command and feedback, the robot can track the defined path with negligible errors (if it complies with joint velocity limits), ensuring collision avoidance. Full code is open source and available at https://github.com/paolofrance/ros2_fanuc_interface.
Toward Teach and Repeat Across Seasonal Deep Snow Accumulation
Teach and repeat is a rapid way to achieve autonomy in challenging terrain and off-road environments. A human operator pilots the vehicles to create a network of paths that are mapped and associated with odometry. Immediately after teaching, the system can drive autonomously within its tracks. This precision lets operators remain confident that the robot will follow a traversable route. However, this operational paradigm has rarely been explored in off-road environments that change significantly through seasonal variation. This paper presents preliminary field trials using lidar and radar implementations of teach and repeat. Using a subset of the data from the upcoming FoMo dataset, we attempted to repeat routes that were 4 days, 44 days, and 113 days old. Lidar teach and repeat demonstrated a stronger ability to localize when the ground points were removed. FMCW radar was often able to localize on older maps, but only with small deviations from the taught path. Additionally, we highlight specific cases where radar localization failed with recent maps due to the high pitch or roll of the vehicle. We highlight lessons learned during the field deployment and highlight areas to improve to achieve reliable teach and repeat with seasonal changes in the environment. Please follow the dataset at https://norlab-ulaval.github.io/FoMo-website for updates and information on the data release.
♻ ☆ Energy-Efficient Motion Planner for Legged Robots IROS 2025
We propose an online motion planner for legged robot locomotion with the primary objective of achieving energy efficiency. The conceptual idea is to leverage a placement set of footstep positions based on the robot's body position to determine when and how to execute steps. In particular, the proposed planner uses virtual placement sets beneath the hip joints of the legs and executes a step when the foot is outside of such placement set. Furthermore, we propose a parameter design framework that considers both energy-efficiency and robustness measures to optimize the gait by changing the shape of the placement set along with other parameters, such as step height and swing time, as a function of walking speed. We show that the planner produces trajectories that have a low Cost of Transport (CoT) and high robustness measure, and evaluate our approach against model-free Reinforcement Learning (RL) and motion imitation using biological dog motion priors as the reference. Overall, within low to medium velocity range, we show a 50.4% improvement in CoT and improved robustness over model-free RL, our best performing baseline. Finally, we show ability to handle slippery surfaces, gait transitions, and disturbances in simulation and hardware with the Unitree A1 robot.
comment: This paper has been accepted for publication at the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025). 8 pages, 8 figures
♻ ☆ Robustness Assessment of Assemblies in Frictional Contact
This work establishes a solution to the problem of assessing the capacity of multi-object assemblies to withstand external forces without becoming unstable. Our physically-grounded approach handles arbitrary structures made from rigid objects of any shape and mass distribution without relying on heuristics or approximations. The result is a method that provides a foundation for autonomous robot decision-making when interacting with objects in frictional contact. Our strategy relies on a contact interface graph representation to reason about instabilities and makes use of object shape information to decouple sub-problems and improve efficiency. Our algorithm can be used by motion planners to produce safe assembly transportation plans, and by object placement planners to select better poses. Compared to prior work, our approach is more generally applicable than commonly used heuristics and more efficient than dynamics simulations.
comment: Submitted to IEEE Transactions on Automation Science and Engineering. Contains 14 pages, 16 figures, and 3 tables
♻ ☆ FusionForce: End-to-end Differentiable Neural-Symbolic Layer for Trajectory Prediction
We propose end-to-end differentiable model that predicts robot trajectories on rough offroad terrain from camera images and/or lidar point clouds. The model integrates a learnable component that predicts robot-terrain interaction forces with a neural-symbolic layer that enforces the laws of classical mechanics and consequently improves generalization on out-of-distribution data. The neural-symbolic layer includes a differentiable physics engine that computes the robot's trajectory by querying these forces at the points of contact with the terrain. As the proposed architecture comprises substantial geometrical and physics priors, the resulting model can also be seen as a learnable physics engine conditioned on real sensor data that delivers $10^4$ trajectories per second. We argue and empirically demonstrate that this architecture reduces the sim-to-real gap and mitigates out-of-distribution sensitivity. The differentiability, in conjunction with the rapid simulation speed, makes the model well-suited for various applications including model predictive control, trajectory shooting, supervised and reinforcement learning, or SLAM.
comment: Code: https://github.com/ctu-vras/fusionforce
♻ ☆ DroneDiffusion: Robust Quadrotor Dynamics Learning with Diffusion Models ICRA
An inherent fragility of quadrotor systems stems from model inaccuracies and external disturbances. These factors hinder performance and compromise the stability of the system, making precise control challenging. Existing model-based approaches either make deterministic assumptions, utilize Gaussian-based representations of uncertainty, or rely on nominal models, all of which often fall short in capturing the complex, multimodal nature of real-world dynamics. This work introduces DroneDiffusion, a novel framework that leverages conditional diffusion models to learn quadrotor dynamics, formulated as a sequence generation task. DroneDiffusion achieves superior generalization to unseen, complex scenarios by capturing the temporal nature of uncertainties and mitigating error propagation. We integrate the learned dynamics with an adaptive controller for trajectory tracking with stability guarantees. Extensive experiments in both simulation and real-world flights demonstrate the robustness of the framework across a range of scenarios, including unfamiliar flight paths and varying payloads, velocities, and wind disturbances.
comment: Accepted to the International Conference on Robotics and Automation (ICRA) 2025
SemGauss-SLAM: Dense Semantic Gaussian Splatting SLAM IROS 2025
We propose SemGauss-SLAM, a dense semantic SLAM system utilizing 3D Gaussian representation, that enables accurate 3D semantic mapping, robust camera tracking, and high-quality rendering simultaneously. In this system, we incorporate semantic feature embedding into 3D Gaussian representation, which effectively encodes semantic information within the spatial layout of the environment for precise semantic scene representation. Furthermore, we propose feature-level loss for updating 3D Gaussian representation, enabling higher-level guidance for 3D Gaussian optimization. In addition, to reduce cumulative drift in tracking and improve semantic reconstruction accuracy, we introduce semantic-informed bundle adjustment. By leveraging multi-frame semantic associations, this strategy enables joint optimization of 3D Gaussian representation and camera poses, resulting in low-drift tracking and accurate semantic mapping. Our SemGauss-SLAM demonstrates superior performance over existing radiance field-based SLAM methods in terms of mapping and tracking accuracy on Replica and ScanNet datasets, while also showing excellent capabilities in high-precision semantic segmentation and dense semantic mapping.
comment: IROS 2025
♻ ☆ Fully distributed and resilient source seeking for robot swarms
We propose a self-contained, resilient and fully distributed solution for locating the maximum of an unknown scalar field using a swarm of robots that travel at a constant speed. Unlike conventional reactive methods relying on gradient information, our methodology enables the swarm to determine an ascending direction so that it approaches the source with an arbitrary precision. Our source-seeking solution consists of three distributed algorithms running simultaneously in a slow-fast closed-loop system. The fastest algorithm provides the centroid-relative coordinates of the robots and the next slower one provides the ascending direction to be tracked. The tracking of the ascending direction by single integrators is instantaneous; howeverin this paper we will also focus on 2D unicycle-like robots with a constant speed. The third algorithm, the slowest one since the speed of the robots can be chosen arbitrarily slow, is the individual control law for the unicycle to track the estimated ascending direction.We will show that the three distributed algorithms converge exponentially fast to their objectives, allowing for a feasible slow-fast closed-loop system. The robots are not constrained to any particular geometric formation, and we study both discrete and continuous distributions of robots.The swarm shape analysis reveals the resiliency of our approach as expected in robot swarms, i.e., by amassing robots we ensure the source-seeking functionality in the event of missing or misplaced individuals or even if the robot network splits in two or more disconnected subnetworks.We exploit such an analysis so that the swarm can adapt to unknown environments by morphing its shape and maneuvering while still following an ascending direction. We analyze our solution with robots as kinematic points in n-dimensional Euclidean spaces and extend the analysis to 2D unicycle-like robots with constant speeds.
comment: 16 pages, submitted version to T-TAC. Jesus Bautista and Antonio Acuaviva contributed equally to this work. arXiv admin note: text overlap with arXiv:2309.02937
♻ ☆ AntiGrounding: Lifting Robotic Actions into VLM Representation Space for Decision Making NeurIPS 2025
Vision-Language Models (VLMs) encode knowledge and reasoning capabilities for robotic manipulation within high-dimensional representation spaces. However, current approaches often project them into compressed intermediate representations, discarding important task-specific information such as fine-grained spatial or semantic details. To address this, we propose AntiGrounding, a new framework that reverses the instruction grounding process. It lifts candidate actions directly into the VLM representation space, renders trajectories from multiple views, and uses structured visual question answering for instruction-based decision making. This enables zero-shot synthesis of optimal closed-loop robot trajectories for new tasks. We also propose an offline policy refinement module that leverages past experience to enhance long-term performance. Experiments in both simulation and real-world environments show that our method outperforms baselines across diverse robotic manipulation tasks.
comment: submitted to NeurIPS 2025
♻ ☆ ContactDexNet: Multi-fingered Robotic Hand Grasping in Cluttered Environments through Hand-object Contact Semantic Mapping
The deep learning models has significantly advanced dexterous manipulation techniques for multi-fingered hand grasping. However, the contact information-guided grasping in cluttered environments remains largely underexplored. To address this gap, we have developed a method for generating multi-fingered hand grasp samples in cluttered settings through contact semantic map. We introduce a contact semantic conditional variational autoencoder network (CoSe-CVAE) for creating comprehensive contact semantic map from object point cloud. We utilize grasp detection method to estimate hand grasp poses from the contact semantic map. Finally, an unified grasp evaluation model PointNetGPD++ is designed to assess grasp quality and collision probability, substantially improving the reliability of identifying optimal grasps in cluttered scenarios. Our grasp generation method has demonstrated remarkable success, outperforming state-of-the-art methods by at least 4.65% with 81.0% average grasping success rate in real-world single-object environment and 75.3% grasping success rate in cluttered scenes. We also proposed the multi-modal multi-fingered grasping dataset generation method. Our multi-fingered hand grasping dataset outperforms previous datasets in scene diversity, modality diversity. The dataset, code and supplementary materials can be found at https://sites.google.com/view/contact-dexnet.
comment: 8 pages
♻ ☆ Perspective-Shifted Neuro-Symbolic World Models: A Framework for Socially-Aware Robot Navigation
Navigating in environments alongside humans requires agents to reason under uncertainty and account for the beliefs and intentions of those around them. Under a sequential decision-making framework, egocentric navigation can naturally be represented as a Markov Decision Process (MDP). However, social navigation additionally requires reasoning about the hidden beliefs of others, inherently leading to a Partially Observable Markov Decision Process (POMDP), where agents lack direct access to others' mental states. Inspired by Theory of Mind and Epistemic Planning, we propose (1) a neuro-symbolic model-based reinforcement learning architecture for social navigation, addressing the challenge of belief tracking in partially observable environments; and (2) a perspective-shift operator for belief estimation, leveraging recent work on Influence-based Abstractions (IBA) in structured multi-agent settings.
comment: Accepted as a regular paper at the 2025 IEEE International Conference on Robot & Human Interactive Communication (RO-MAN). \c{opyright} 2025 IEEE. The final version will appear in IEEE Xplore (DOI TBD)
♻ ☆ Pseudo-Kinematic Trajectory Control and Planning of Tracked Vehicles
Tracked vehicles distribute their weight continuously over a large surface area (the tracks). This distinctive feature makes them the preferred choice for vehicles required to traverse soft and uneven terrain. From a robotics perspective, however, this flexibility comes at a cost: the complexity of modelling the system and the resulting difficulty in designing theoretically sound navigation solutions. In this paper, we aim to bridge this gap by proposing a framework for the navigation of tracked vehicles, built upon three key pillars. The first pillar comprises two models: a simulation model and a control-oriented model. The simulation model captures the intricate terramechanics dynamics arising from soil-track interaction and is employed to develop faithful digital twins of the system across a wide range of operating conditions. The control-oriented model is pseudo-kinematic and mathematically tractable, enabling the design of efficient and theoretically robust control schemes. The second pillar is a Lyapunov-based feedback trajectory controller that provides certifiable tracking guarantees. The third pillar is a portfolio of motion planning solutions, each offering different complexity-accuracy trade-offs. The various components of the proposed approach are validated through an extensive set of simulation and experimental data.
♻ ☆ Help or Hindrance: Understanding the Impact of Robot Communication in Action Teams
The human-robot interaction (HRI) field has recognized the importance of enabling robots to interact with teams. Human teams rely on effective communication for successful collaboration in time-sensitive environments. Robots can play a role in enhancing team coordination through real-time assistance. Despite significant progress in human-robot teaming research, there remains an essential gap in how robots can effectively communicate with action teams using multimodal interaction cues in time-sensitive environments. This study addresses this knowledge gap in an experimental in-lab study to investigate how multimodal robot communication in action teams affects workload and human perception of robots. We explore team collaboration in a medical training scenario where a robotic crash cart (RCC) provides verbal and non-verbal cues to help users remember to perform iterative tasks and search for supplies. Our findings show that verbal cues for object search tasks and visual cues for task reminders reduce team workload and increase perceived ease of use and perceived usefulness more effectively than a robot with no feedback. Our work contributes to multimodal interaction research in the HRI field, highlighting the need for more human-robot teaming research to understand best practices for integrating collaborative robots in time-sensitive environments such as in hospitals, search and rescue, and manufacturing applications.
comment: This is the author's original submitted version of the paper accepted to the 2025 IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). \c{opyright} 2025 IEEE. Personal use of this material is permitted. For any other use, please contact IEEE
♻ ☆ Human-Robot Teaming Field Deployments: A Comparison Between Verbal and Non-verbal Communication
Healthcare workers (HCWs) encounter challenges in hospitals, such as retrieving medical supplies quickly from crash carts, which could potentially result in medical errors and delays in patient care. Robotic crash carts (RCCs) have shown promise in assisting healthcare teams during medical tasks through guided object searches and task reminders. Limited exploration has been done to determine what communication modalities are most effective and least disruptive to patient care in real-world settings. To address this gap, we conducted a between-subjects experiment comparing the RCC's verbal and non-verbal communication of object search with a standard crash cart in resuscitation scenarios to understand the impact of robot communication on workload and attitudes toward using robots in the workplace. Our findings indicate that verbal communication significantly reduced mental demand and effort compared to visual cues and with a traditional crash cart. Although frustration levels were slightly higher during collaborations with the robot compared to a traditional cart, these research insights provide valuable implications for human-robot teamwork in high-stakes environments.
comment: This is the author's original submitted version of the paper accepted to the 2025 IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). \c{opyright} 2025 IEEE. Personal use of this material is permitted. For any other use, please contact IEEE
♻ ☆ TeViR: Text-to-Video Reward with Diffusion Models for Efficient Reinforcement Learning
Developing scalable and generalizable reward engineering for reinforcement learning (RL) is crucial for creating general-purpose agents, especially in the challenging domain of robotic manipulation. While recent advances in reward engineering with Vision-Language Models (VLMs) have shown promise, their sparse reward nature significantly limits sample efficiency. This paper introduces TeViR, a novel method that leverages a pre-trained text-to-video diffusion model to generate dense rewards by comparing the predicted image sequence with current observations. Experimental results across 11 complex robotic tasks demonstrate that TeViR outperforms traditional methods leveraging sparse rewards and other state-of-the-art (SOTA) methods, achieving better sample efficiency and performance without ground truth environmental rewards. TeViR's ability to efficiently guide agents in complex environments highlights its potential to advance reinforcement learning applications in robotic manipulation.
♻ ☆ DynNPC: Finding More Violations Induced by ADS in Simulation Testing through Dynamic NPC Behavior Generation
Recently, a number of simulation testing approaches have been proposed to generate diverse driving scenarios for autonomous driving systems (ADSs) testing. However, the behaviors of NPC vehicles in these scenarios generated by previous approaches are predefined and mutated before simulation execution, ignoring traffic signals and the behaviors of the Ego vehicle. Thus, a large number of the violations they found are induced by unrealistic behaviors of NPC vehicles, revealing no bugs of ADSs. Besides, the vast scenario search space of NPC behaviors during the iterative mutations limits the efficiency of previous approaches. To address these limitations, we propose a novel scenario-based testing framework, DynNPC, to generate more violation scenarios induced by the ADS. Specifically, DynNPC allows NPC vehicles to dynamically generate behaviors using different driving strategies during simulation execution based on traffic signals and the real-time behavior of the Ego vehicle. We compare DynNPC with five state-of-the-art scenario-based testing approaches. Our evaluation has demonstrated the effectiveness and efficiency of DynNPC in finding more violation scenarios induced by the ADS.
♻ ☆ Overlap-Aware Feature Learning for Robust Unsupervised Domain Adaptation for 3D Semantic Segmentation IROS 2025
3D point cloud semantic segmentation (PCSS) is a cornerstone for environmental perception in robotic systems and autonomous driving, enabling precise scene understanding through point-wise classification. While unsupervised domain adaptation (UDA) mitigates label scarcity in PCSS, existing methods critically overlook the inherent vulnerability to real-world perturbations (e.g., snow, fog, rain) and adversarial distortions. This work first identifies two intrinsic limitations that undermine current PCSS-UDA robustness: (a) unsupervised features overlap from unaligned boundaries in shared-class regions and (b) feature structure erosion caused by domain-invariant learning that suppresses target-specific patterns. To address the proposed problems, we propose a tripartite framework consisting of: 1) a robustness evaluation model quantifying resilience against adversarial attack/corruption types through robustness metrics; 2) an invertible attention alignment module (IAAM) enabling bidirectional domain mapping while preserving discriminative structure via attention-guided overlap suppression; and 3) a contrastive memory bank with quality-aware contrastive learning that progressively refines pseudo-labels with feature quality for more discriminative representations. Extensive experiments on SynLiDAR-to-SemanticPOSS adaptation demonstrate a maximum mIoU improvement of 14.3\% under adversarial attack.
comment: This paper has been accepted to the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ COBRA-PPM: A Causal Bayesian Reasoning Architecture Using Probabilistic Programming for Robot Manipulation Under Uncertainty
Manipulation tasks require robots to reason about cause and effect when interacting with objects. Yet, many data-driven approaches lack causal semantics and thus only consider correlations. We introduce COBRA-PPM, a novel causal Bayesian reasoning architecture that combines causal Bayesian networks and probabilistic programming to perform interventional inference for robot manipulation under uncertainty. We demonstrate its capabilities through high-fidelity Gazebo-based experiments on an exemplar block stacking task, where it predicts manipulation outcomes with high accuracy (Pred Acc: 88.6%) and performs greedy next-best action selection with a 94.2% task success rate. We further demonstrate sim2real transfer on a domestic robot, showing effectiveness in handling real-world uncertainty from sensor noise and stochastic actions. Our generalised and extensible framework supports a wide range of manipulation scenarios and lays a foundation for future work at the intersection of robotics and causality.
comment: 8 pages, 7 figures, accepted to the 2025 IEEE European Conference on Mobile Robots (ECMR 2025)
Artificial Intelligence 166
☆ Radial Attention: $O(n\log n)$ Sparse Attention with Energy Decay for Long Video Generation
Recent advances in diffusion models have enabled high-quality video generation, but the additional temporal dimension significantly increases computational costs, making training and inference on long videos prohibitively expensive. In this paper, we identify a phenomenon we term Spatiotemporal Energy Decay in video diffusion models: post-softmax attention scores diminish as spatial and temporal distance between tokens increase, akin to the physical decay of signal or waves over space and time in nature. Motivated by this, we propose Radial Attention, a scalable sparse attention mechanism with $O(n \log n)$ complexity that translates energy decay into exponentially decaying compute density, which is significantly more efficient than standard $O(n^2)$ dense attention and more expressive than linear attention. Specifically, Radial Attention employs a simple, static attention mask where each token attends to spatially nearby tokens, with the attention window size shrinking with temporal distance. Moreover, it allows pre-trained video diffusion models to extend their generation length with efficient LoRA-based fine-tuning. Extensive experiments show that Radial Attention maintains video quality across Wan2.1-14B, HunyuanVideo, and Mochi 1, achieving up to a 1.9$\times$ speedup over the original dense attention. With minimal tuning, it enables video generation up to 4$\times$ longer while reducing training costs by up to 4.4$\times$ compared to direct fine-tuning and accelerating inference by up to 3.7$\times$ compared to dense attention inference.
comment: Code: https://github.com/mit-han-lab/radial-attention
☆ Orthogonal Finetuning Made Scalable
Orthogonal finetuning (OFT) offers highly parameter-efficient adaptation while preventing catastrophic forgetting, but its high runtime and memory demands limit practical deployment. We identify the core computational bottleneck in OFT as its weight-centric implementation, which relies on costly matrix-matrix multiplications with cubic complexity. To overcome this, we propose OFTv2, an input-centric reformulation that instead uses matrix-vector multiplications (i.e., matrix-free computation), reducing the computational cost to quadratic. We further introduce the Cayley-Neumann parameterization, an efficient orthogonal parameterization that approximates the matrix inversion in Cayley transform via a truncated Neumann series. These modifications allow OFTv2 to achieve up to 10x faster training and 3x lower GPU memory usage without compromising performance. In addition, we extend OFTv2 to support finetuning quantized foundation models and show that it outperforms the popular QLoRA in training stability, efficiency, and memory usage.
comment: Technical report (17 pages, 7 figures, project page: https://spherelab.ai/oftv2/)
☆ JoyAgents-R1: Joint Evolution Dynamics for Versatile Multi-LLM Agents with Reinforcement Learning
Multi-agent reinforcement learning (MARL) has emerged as a prominent paradigm for increasingly complex tasks. However, joint evolution across heterogeneous agents remains challenging due to cooperative inefficiency and training instability. In this paper, we propose the joint evolution dynamics for MARL called JoyAgents-R1, which first applies Group Relative Policy Optimization (GRPO) to the joint training of heterogeneous multi-agents. By iteratively refining agents' large language models (LLMs) and memories, the method achieves holistic equilibrium with optimal decision-making and memory capabilities. Specifically, JoyAgents-R1 first implements node-wise Monte Carlo sampling on the behavior of each agent across entire reasoning trajectories to enhance GRPO sampling efficiency while maintaining policy diversity. Then, our marginal benefit-driven selection strategy identifies top-$K$ sampling groups with maximal reward fluctuations, enabling targeted agent model updates that improve training stability and maximize joint benefits through cost-effective parameter adjustments. Meanwhile, JoyAgents-R1 introduces an adaptive memory evolution mechanism that repurposes GRPO rewards as cost-free supervisory signals to eliminate repetitive reasoning and accelerate convergence. Experiments across general and domain-specific scenarios demonstrate that JoyAgents-R1 achieves performance comparable to that of larger LLMs while built on smaller open-source models.
comment: 33 pages, 7 figures, under review
☆ Temporal-IRL: Modeling Port Congestion and Berth Scheduling with Inverse Reinforcement Learning
Predicting port congestion is crucial for maintaining reliable global supply chains. Accurate forecasts enableimprovedshipment planning, reducedelaysand costs, and optimizeinventoryanddistributionstrategies, thereby ensuring timely deliveries and enhancing supply chain resilience. To achieve accurate predictions, analyzing vessel behavior and their stay times at specific port terminals is essential, focusing particularly on berth scheduling under various conditions. Crucially, the model must capture and learn the underlying priorities and patterns of berth scheduling. Berth scheduling and planning are influenced by a range of factors, including incoming vessel size, waiting times, and the status of vessels within the port terminal. By observing historical Automatic Identification System (AIS) positions of vessels, we reconstruct berth schedules, which are subsequently utilized to determine the reward function via Inverse Reinforcement Learning (IRL). For this purpose, we modeled a specific terminal at the Port of New York/New Jersey and developed Temporal-IRL. This Temporal-IRL model learns berth scheduling to predict vessel sequencing at the terminal and estimate vessel port stay, encompassing both waiting and berthing times, to forecast port congestion. Utilizing data from Maher Terminal spanning January 2015 to September 2023, we trained and tested the model, achieving demonstrably excellent results.
comment: TRB2025
☆ Improving Progressive Generation with Decomposable Flow Matching
Generating high-dimensional visual modalities is a computationally intensive task. A common solution is progressive generation, where the outputs are synthesized in a coarse-to-fine spectral autoregressive manner. While diffusion models benefit from the coarse-to-fine nature of denoising, explicit multi-stage architectures are rarely adopted. These architectures have increased the complexity of the overall approach, introducing the need for a custom diffusion formulation, decomposition-dependent stage transitions, add-hoc samplers, or a model cascade. Our contribution, Decomposable Flow Matching (DFM), is a simple and effective framework for the progressive generation of visual media. DFM applies Flow Matching independently at each level of a user-defined multi-scale representation (such as Laplacian pyramid). As shown by our experiments, our approach improves visual quality for both images and videos, featuring superior results compared to prior multistage frameworks. On Imagenet-1k 512px, DFM achieves 35.2% improvements in FDD scores over the base architecture and 26.4% over the best-performing baseline, under the same training compute. When applied to finetuning of large models, such as FLUX, DFM shows faster convergence speed to the training distribution. Crucially, all these advantages are achieved with a single model, architectural simplicity, and minimal modifications to existing training pipelines.
comment: Project Webpage: https://snap-research.github.io/dfm/
☆ A standard transformer and attention with linear biases for molecular conformer generation
Sampling low-energy molecular conformations, spatial arrangements of atoms in a molecule, is a critical task for many different calculations performed in the drug discovery and optimization process. Numerous specialized equivariant networks have been designed to generate molecular conformations from 2D molecular graphs. Recently, non-equivariant transformer models have emerged as a viable alternative due to their capability to scale to improve generalization. However, the concern has been that non-equivariant models require a large model size to compensate the lack of equivariant bias. In this paper, we demonstrate that a well-chosen positional encoding effectively addresses these size limitations. A standard transformer model incorporating relative positional encoding for molecular graphs when scaled to 25 million parameters surpasses the current state-of-the-art non-equivariant base model with 64 million parameters on the GEOM-DRUGS benchmark. We implemented relative positional encoding as a negative attention bias that linearly increases with the shortest path distances between graph nodes at varying slopes for different attention heads, similar to ALiBi, a widely adopted relative positional encoding technique in the NLP domain. This architecture has the potential to serve as a foundation for a novel class of generative models for molecular conformations.
comment: Revision of paper at OpenReview: https://openreview.net/forum?id=BjjerMYL3F
☆ Evaluating Compliance with Visualization Guidelines in Diagrams for Scientific Publications Using Large Vision Language Models ICDAR 2025
Diagrams are widely used to visualize data in publications. The research field of data visualization deals with defining principles and guidelines for the creation and use of these diagrams, which are often not known or adhered to by researchers, leading to misinformation caused by providing inaccurate or incomplete information. In this work, large Vision Language Models (VLMs) are used to analyze diagrams in order to identify potential problems in regards to selected data visualization principles and guidelines. To determine the suitability of VLMs for these tasks, five open source VLMs and five prompting strategies are compared using a set of questions derived from selected data visualization guidelines. The results show that the employed VLMs work well to accurately analyze diagram types (F1-score 82.49 %), 3D effects (F1-score 98.55 %), axes labels (F1-score 76.74 %), lines (RMSE 1.16), colors (RMSE 1.60) and legends (F1-score 96.64 %, RMSE 0.70), while they cannot reliably provide feedback about the image quality (F1-score 0.74 %) and tick marks/labels (F1-score 46.13 %). Among the employed VLMs, Qwen2.5VL performs best, and the summarizing prompting strategy performs best for most of the experimental questions. It is shown that VLMs can be used to automatically identify a number of potential issues in diagrams, such as missing axes labels, missing legends, and unnecessary 3D effects. The approach laid out in this work can be extended for further aspects of data visualization.
comment: Accepted at ICDAR 2025
☆ Persona Features Control Emergent Misalignment
Understanding how language models generalize behaviors from their training to a broader deployment distribution is an important problem in AI safety. Betley et al. discovered that fine-tuning GPT-4o on intentionally insecure code causes "emergent misalignment," where models give stereotypically malicious responses to unrelated prompts. We extend this work, demonstrating emergent misalignment across diverse conditions, including reinforcement learning on reasoning models, fine-tuning on various synthetic datasets, and in models without safety training. To investigate the mechanisms behind this generalized misalignment, we apply a "model diffing" approach using sparse autoencoders to compare internal model representations before and after fine-tuning. This approach reveals several "misaligned persona" features in activation space, including a toxic persona feature which most strongly controls emergent misalignment and can be used to predict whether a model will exhibit such behavior. Additionally, we investigate mitigation strategies, discovering that fine-tuning an emergently misaligned model on just a few hundred benign samples efficiently restores alignment.
☆ KnowRL: Exploring Knowledgeable Reinforcement Learning for Factuality
Large Language Models (LLMs), particularly slow-thinking models, often exhibit severe hallucination, outputting incorrect content due to an inability to accurately recognize knowledge boundaries during reasoning. While Reinforcement Learning (RL) can enhance complex reasoning abilities, its outcome-oriented reward mechanism often lacks factual supervision over the thinking process, further exacerbating the hallucination problem. To address the high hallucination in slow-thinking models, we propose Knowledge-enhanced RL, KnowRL. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. This targeted factual input during RL training enables the model to learn and internalize fact-based reasoning strategies. By directly rewarding adherence to facts within the reasoning steps, KnowRL fosters a more reliable thinking process. Experimental results on three hallucination evaluation datasets and two reasoning evaluation datasets demonstrate that KnowRL effectively mitigates hallucinations in slow-thinking models while maintaining their original strong reasoning capabilities. Our code is available at https://github.com/zjunlp/KnowRL.
comment: Work in progress
☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate models across three dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities.
comment: Work in progress
☆ Learning Task Belief Similarity with Latent Dynamics for Meta-Reinforcement Learning ICLR2025
Meta-reinforcement learning requires utilizing prior task distribution information obtained during exploration to rapidly adapt to unknown tasks. The efficiency of an agent's exploration hinges on accurately identifying the current task. Recent Bayes-Adaptive Deep RL approaches often rely on reconstructing the environment's reward signal, which is challenging in sparse reward settings, leading to suboptimal exploitation. Inspired by bisimulation metrics, which robustly extracts behavioral similarity in continuous MDPs, we propose SimBelief-a novel meta-RL framework via measuring similarity of task belief in Bayes-Adaptive MDP (BAMDP). SimBelief effectively extracts common features of similar task distributions, enabling efficient task identification and exploration in sparse reward environments. We introduce latent task belief metric to learn the common structure of similar tasks and incorporate it into the specific task belief. By learning the latent dynamics across task distributions, we connect shared latent task belief features with specific task features, facilitating rapid task identification and adaptation. Our method outperforms state-of-the-art baselines on sparse reward MuJoCo and panda-gym tasks.
comment: ICLR2025 https://openreview.net/forum?id=5YbuOTUFQ4
☆ SAGE: Strategy-Adaptive Generation Engine for Query Rewriting
Query rewriting is pivotal for enhancing dense retrieval, yet current methods demand large-scale supervised data or suffer from inefficient reinforcement learning (RL) exploration. In this work, we first establish that guiding Large Language Models (LLMs) with a concise set of expert-crafted strategies, such as semantic expansion and entity disambiguation, substantially improves retrieval effectiveness on challenging benchmarks, including HotpotQA, FEVER, NFCorpus, and SciFact. Building on this insight, we introduce the Strategy-Adaptive Generation Engine (SAGE), which operationalizes these strategies in an RL framework. SAGE introduces two novel reward shaping mechanisms-Strategic Credit Shaping (SCS) and Contrastive Reward Shaping (CRS)-to deliver more informative learning signals. This strategy-guided approach not only achieves new state-of-the-art NDCG@10 results, but also uncovers a compelling emergent behavior: the agent learns to select optimal strategies, reduces unnecessary exploration, and generates concise rewrites, lowering inference cost without sacrificing performance. Our findings demonstrate that strategy-guided RL, enhanced with nuanced reward shaping, offers a scalable, efficient, and more interpretable paradigm for developing the next generation of robust information retrieval systems.
☆ Alleviating User-Sensitive bias with Fair Generative Sequential Recommendation Model
Recommendation fairness has recently attracted much attention. In the real world, recommendation systems are driven by user behavior, and since users with the same sensitive feature (e.g., gender and age) tend to have the same patterns, recommendation models can easily capture the strong correlation preference of sensitive features and thus cause recommendation unfairness. Diffusion model (DM) as a new generative model paradigm has achieved great success in recommendation systems. DM's ability to model uncertainty and represent diversity, and its modeling mechanism has a high degree of adaptability with the real-world recommendation process with bias. Therefore, we use DM to effectively model the fairness of recommendation and enhance the diversity. This paper proposes a FairGENerative sequential Recommendation model based on DM, FairGENRec. In the training phase, we inject random noise into the original distribution under the guidance of the sensitive feature recognition model, and a sequential denoise model is designed for the reverse reconstruction of items. Simultaneously, recommendation fairness modeling is completed by injecting multi-interests representational information that eliminates the bias of sensitive user features into the generated results. In the inference phase, the model obtains the noise in the form of noise addition by using the history interactions which is followed by reverse iteration to reconstruct the target item representation. Finally, our extensive experiments on three datasets demonstrate the dual enhancement effect of FairGENRec on accuracy and fairness, while the statistical analysis of the cases visualizes the degree of improvement on the fairness of the recommendation.
☆ Kling-Foley: Multimodal Diffusion Transformer for High-Quality Video-to-Audio Generation
We propose Kling-Foley, a large-scale multimodal Video-to-Audio generation model that synthesizes high-quality audio synchronized with video content. In Kling-Foley, we introduce multimodal diffusion transformers to model the interactions between video, audio, and text modalities, and combine it with a visual semantic representation module and an audio-visual synchronization module to enhance alignment capabilities. Specifically, these modules align video conditions with latent audio elements at the frame level, thereby improving semantic alignment and audio-visual synchronization. Together with text conditions, this integrated approach enables precise generation of video-matching sound effects. In addition, we propose a universal latent audio codec that can achieve high-quality modeling in various scenarios such as sound effects, speech, singing, and music. We employ a stereo rendering method that imbues synthesized audio with a spatial presence. At the same time, in order to make up for the incomplete types and annotations of the open-source benchmark, we also open-source an industrial-level benchmark Kling-Audio-Eval. Our experiments show that Kling-Foley trained with the flow matching objective achieves new audio-visual SOTA performance among public models in terms of distribution matching, semantic alignment, temporal alignment and audio quality.
☆ Automatic Prompt Optimization for Knowledge Graph Construction: Insights from an Empirical Study
A KG represents a network of entities and illustrates relationships between them. KGs are used for various applications, including semantic search and discovery, reasoning, decision-making, natural language processing, machine learning, and recommendation systems. Triple (subject-relation-object) extraction from text is the fundamental building block of KG construction and has been widely studied, for example, in early benchmarks such as ACE 2002 to more recent ones, such as WebNLG 2020, REBEL and SynthIE. While the use of LLMs is explored for KG construction, handcrafting reasonable task-specific prompts for LLMs is a labour-intensive exercise and can be brittle due to subtle changes in the LLM models employed. Recent work in NLP tasks (e.g. autonomy generation) uses automatic prompt optimization/engineering to address this challenge by generating optimal or near-optimal task-specific prompts given input-output examples. This empirical study explores the application of automatic prompt optimization for the triple extraction task using experimental benchmarking. We evaluate different settings by changing (a) the prompting strategy, (b) the LLM being used for prompt optimization and task execution, (c) the number of canonical relations in the schema (schema complexity), (d) the length and diversity of input text, (e) the metric used to drive the prompt optimization, and (f) the dataset being used for training and testing. We evaluate three different automatic prompt optimizers, namely, DSPy, APE, and TextGrad and use two different triple extraction datasets, SynthIE and REBEL. Through rigorous empirical evaluation, our main contribution highlights that automatic prompt optimization techniques can generate reasonable prompts similar to humans for triple extraction. In turn, these optimized prompts achieve improved results, particularly with increasing schema complexity and text size.
☆ A Survey of Multi-sensor Fusion Perception for Embodied AI: Background, Methods, Challenges and Prospects
Multi-sensor fusion perception (MSFP) is a key technology for embodied AI, which can serve a variety of downstream tasks (e.g., 3D object detection and semantic segmentation) and application scenarios (e.g., autonomous driving and swarm robotics). Recently, impressive achievements on AI-based MSFP methods have been reviewed in relevant surveys. However, we observe that the existing surveys have some limitations after a rigorous and detailed investigation. For one thing, most surveys are oriented to a single task or research field, such as 3D object detection or autonomous driving. Therefore, researchers in other related tasks often find it difficult to benefit directly. For another, most surveys only introduce MSFP from a single perspective of multi-modal fusion, while lacking consideration of the diversity of MSFP methods, such as multi-view fusion and time-series fusion. To this end, in this paper, we hope to organize MSFP research from a task-agnostic perspective, where methods are reported from various technical views. Specifically, we first introduce the background of MSFP. Next, we review multi-modal and multi-agent fusion methods. A step further, time-series fusion methods are analyzed. In the era of LLM, we also investigate multimodal LLM fusion methods. Finally, we discuss open challenges and future directions for MSFP. We hope this survey can help researchers understand the important progress in MSFP and provide possible insights for future research.
☆ SRFT: A Single-Stage Method with Supervised and Reinforcement Fine-Tuning for Reasoning
Large language models (LLMs) have achieved remarkable progress in reasoning tasks, yet the optimal integration of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) remains a fundamental challenge. Through comprehensive analysis of token distributions, learning dynamics, and integration mechanisms from entropy-based perspectives, we reveal key differences between these paradigms: SFT induces coarse-grained global changes to LLM policy distributions, while RL performs fine-grained selective optimizations, with entropy serving as a critical indicator of training effectiveness. Building on these observations, we propose Supervised Reinforcement Fine-Tuning (SRFT), a single-stage method that unifies both fine-tuning paradigms through entropy-aware weighting mechanisms. Our approach simultaneously applies SFT and RL to directly optimize the LLM using demonstrations and self-exploration rollouts rather than through two-stage sequential methods. Extensive experiments show that SRFT achieves 59.1% average accuracy, outperforming zero-RL methods by 9.0% on five mathematical reasoning benchmarks and 10.9% on three out-of-distribution benchmarks.
☆ Cross-regularization: Adaptive Model Complexity through Validation Gradients ICML 2025
Model regularization requires extensive manual tuning to balance complexity against overfitting. Cross-regularization resolves this tradeoff by directly adapting regularization parameters through validation gradients during training. The method splits parameter optimization - training data guides feature learning while validation data shapes complexity controls - converging provably to cross-validation optima. When implemented through noise injection in neural networks, this approach reveals striking patterns: unexpectedly high noise tolerance and architecture-specific regularization that emerges organically during training. Beyond complexity control, the framework integrates seamlessly with data augmentation, uncertainty calibration and growing datasets while maintaining single-run efficiency through a simple gradient-based approach.
comment: 21 pages, 13 figures. Accepted at ICML 2025
☆ Arabic Dialect Classification using RNNs, Transformers, and Large Language Models: A Comparative Analysis
The Arabic language is among the most popular languages in the world with a huge variety of dialects spoken in 22 countries. In this study, we address the problem of classifying 18 Arabic dialects of the QADI dataset of Arabic tweets. RNN models, Transformer models, and large language models (LLMs) via prompt engineering are created and tested. Among these, MARBERTv2 performed best with 65% accuracy and 64% F1-score. Through the use of state-of-the-art preprocessing techniques and the latest NLP models, this paper identifies the most significant linguistic issues in Arabic dialect identification. The results corroborate applications like personalized chatbots that respond in users' dialects, social media monitoring, and greater accessibility for Arabic communities.
☆ NeRF-based CBCT Reconstruction needs Normalization and Initialization
Cone Beam Computed Tomography (CBCT) is widely used in medical imaging. However, the limited number and intensity of X-ray projections make reconstruction an ill-posed problem with severe artifacts. NeRF-based methods have achieved great success in this task. However, they suffer from a local-global training mismatch between their two key components: the hash encoder and the neural network. Specifically, in each training step, only a subset of the hash encoder's parameters is used (local sparse), whereas all parameters in the neural network participate (global dense). Consequently, hash features generated in each step are highly misaligned, as they come from different subsets of the hash encoder. These misalignments from different training steps are then fed into the neural network, causing repeated inconsistent global updates in training, which leads to unstable training, slower convergence, and degraded reconstruction quality. Aiming to alleviate the impact of this local-global optimization mismatch, we introduce a Normalized Hash Encoder, which enhances feature consistency and mitigates the mismatch. Additionally, we propose a Mapping Consistency Initialization(MCI) strategy that initializes the neural network before training by leveraging the global mapping property from a well-trained model. The initialized neural network exhibits improved stability during early training, enabling faster convergence and enhanced reconstruction performance. Our method is simple yet effective, requiring only a few lines of code while substantially improving training efficiency on 128 CT cases collected from 4 different datasets, covering 7 distinct anatomical regions.
☆ Who Does What in Deep Learning? Multidimensional Game-Theoretic Attribution of Function of Neural Units
Neural networks now generate text, images, and speech with billions of parameters, producing a need to know how each neural unit contributes to these high-dimensional outputs. Existing explainable-AI methods, such as SHAP, attribute importance to inputs, but cannot quantify the contributions of neural units across thousands of output pixels, tokens, or logits. Here we close that gap with Multiperturbation Shapley-value Analysis (MSA), a model-agnostic game-theoretic framework. By systematically lesioning combinations of units, MSA yields Shapley Modes, unit-wise contribution maps that share the exact dimensionality of the model's output. We apply MSA across scales, from multi-layer perceptrons to the 56-billion-parameter Mixtral-8x7B and Generative Adversarial Networks (GAN). The approach demonstrates how regularisation concentrates computation in a few hubs, exposes language-specific experts inside the LLM, and reveals an inverted pixel-generation hierarchy in GANs. Together, these results showcase MSA as a powerful approach for interpreting, editing, and compressing deep neural networks.
☆ Geometric-Aware Variational Inference: Robust and Adaptive Regularization with Directional Weight Uncertainty
Deep neural networks require principled uncertainty quantification, yet existing variational inference methods often employ isotropic Gaussian approximations in weight space that poorly match the network's inherent geometry. We address this mismatch by introducing Concentration-Adapted Perturbations (CAP), a variational framework that models weight uncertainties directly on the unit hypersphere using von Mises-Fisher distributions. Building on recent work in radial-directional posterior decompositions and spherical weight constraints, CAP provides the first complete theoretical framework connecting directional statistics to practical noise regularization in neural networks. Our key contribution is an analytical derivation linking vMF concentration parameters to activation noise variance, enabling each layer to learn its optimal uncertainty level through a novel closed-form KL divergence regularizer. In experiments on CIFAR-10, CAP significantly improves model calibration - reducing Expected Calibration Error by 5.6x - while providing interpretable layer-wise uncertainty profiles. CAP requires minimal computational overhead and integrates seamlessly into standard architectures, offering a theoretically grounded yet practical approach to uncertainty quantification in deep learning.
comment: 19 pages, 4 figures
☆ From Reproduction to Replication: Evaluating Research Agents with Progressive Code Masking
Recent progress in autonomous code generation has fueled excitement around AI agents capable of accelerating scientific discovery by running experiments. However, there is currently no benchmark that evaluates whether such agents can implement scientific ideas when given varied amounts of code as a starting point, interpolating between reproduction (running code) and from-scratch replication (fully re-implementing and running code). We introduce AutoExperiment, a benchmark that evaluates AI agents' ability to implement and run machine learning experiments based on natural language descriptions in research papers. In each task, agents are given a research paper, a codebase with key functions masked out, and a command to run the experiment. The goal is to generate the missing code, execute the experiment in a sandboxed environment, and reproduce the results. AutoExperiment scales in difficulty by varying the number of missing functions $n$, ranging from partial reproduction to full replication. We evaluate state-of-the-art agents and find that performance degrades rapidly as $n$ increases. Agents that can dynamically interact with the environment (e.g. to debug their code) can outperform agents in fixed "agentless" harnesses, and there exists a significant gap between single-shot and multi-trial success rates (Pass@1 vs. Pass@5), motivating verifier approaches to our benchmark. Our findings highlight critical challenges in long-horizon code generation, context retrieval, and autonomous experiment execution, establishing AutoExperiment as a new benchmark for evaluating progress in AI-driven scientific experimentation. Our data and code are open-sourced at https://github.com/j1mk1m/AutoExperiment .
☆ Uncovering Conceptual Blindspots in Generative Image Models Using Sparse Autoencoders
Despite their impressive performance, generative image models trained on large-scale datasets frequently fail to produce images with seemingly simple concepts -- e.g., human hands or objects appearing in groups of four -- that are reasonably expected to appear in the training data. These failure modes have largely been documented anecdotally, leaving open the question of whether they reflect idiosyncratic anomalies or more structural limitations of these models. To address this, we introduce a systematic approach for identifying and characterizing "conceptual blindspots" -- concepts present in the training data but absent or misrepresented in a model's generations. Our method leverages sparse autoencoders (SAEs) to extract interpretable concept embeddings, enabling a quantitative comparison of concept prevalence between real and generated images. We train an archetypal SAE (RA-SAE) on DINOv2 features with 32,000 concepts -- the largest such SAE to date -- enabling fine-grained analysis of conceptual disparities. Applied to four popular generative models (Stable Diffusion 1.5/2.1, PixArt, and Kandinsky), our approach reveals specific suppressed blindspots (e.g., bird feeders, DVD discs, and whitespaces on documents) and exaggerated blindspots (e.g., wood background texture and palm trees). At the individual datapoint level, we further isolate memorization artifacts -- instances where models reproduce highly specific visual templates seen during training. Overall, we propose a theoretically grounded framework for systematically identifying conceptual blindspots in generative models by assessing their conceptual fidelity with respect to the underlying data-generating process.
☆ LLM-Driven Medical Document Analysis: Enhancing Trustworthy Pathology and Differential Diagnosis ICDAR 2025
Medical document analysis plays a crucial role in extracting essential clinical insights from unstructured healthcare records, supporting critical tasks such as differential diagnosis. Determining the most probable condition among overlapping symptoms requires precise evaluation and deep medical expertise. While recent advancements in large language models (LLMs) have significantly enhanced performance in medical document analysis, privacy concerns related to sensitive patient data limit the use of online LLMs services in clinical settings. To address these challenges, we propose a trustworthy medical document analysis platform that fine-tunes a LLaMA-v3 using low-rank adaptation, specifically optimized for differential diagnosis tasks. Our approach utilizes DDXPlus, the largest benchmark dataset for differential diagnosis, and demonstrates superior performance in pathology prediction and variable-length differential diagnosis compared to existing methods. The developed web-based platform allows users to submit their own unstructured medical documents and receive accurate, explainable diagnostic results. By incorporating advanced explainability techniques, the system ensures transparent and reliable predictions, fostering user trust and confidence. Extensive evaluations confirm that the proposed method surpasses current state-of-the-art models in predictive accuracy while offering practical utility in clinical settings. This work addresses the urgent need for reliable, explainable, and privacy-preserving artificial intelligence solutions, representing a significant advancement in intelligent medical document analysis for real-world healthcare applications. The code can be found at \href{https://github.com/leitro/Differential-Diagnosis-LoRA}{https://github.com/leitro/Differential-Diagnosis-LoRA}.
comment: Accepted at ICDAR 2025
☆ Toward Decision-Oriented Prognostics: An Integrated Estimate-Optimize Framework for Predictive Maintenance
Recent research increasingly integrates machine learning (ML) into predictive maintenance (PdM) to reduce operational and maintenance costs in data-rich operational settings. However, uncertainty due to model misspecification continues to limit widespread industrial adoption. This paper proposes a PdM framework in which sensor-driven prognostics inform decision-making under economic trade-offs within a finite decision space. We investigate two key questions: (1) Does higher predictive accuracy necessarily lead to better maintenance decisions? (2) If not, how can the impact of prediction errors on downstream maintenance decisions be mitigated? We first demonstrate that in the traditional estimate-then-optimize (ETO) framework, errors in probabilistic prediction can result in inconsistent and suboptimal maintenance decisions. To address this, we propose an integrated estimate-optimize (IEO) framework that jointly tunes predictive models while directly optimizing for maintenance outcomes. We establish theoretical finite-sample guarantees on decision consistency under standard assumptions. Specifically, we develop a stochastic perturbation gradient descent algorithm suitable for small run-to-failure datasets. Empirical evaluations on a turbofan maintenance case study show that the IEO framework reduces average maintenance regret up to 22% compared to ETO. This study provides a principled approach to managing prediction errors in data-driven PdM. By aligning prognostic model training with maintenance objectives, the IEO framework improves robustness under model misspecification and improves decision quality. The improvement is particularly pronounced when the decision-making policy is misaligned with the decision-maker's target. These findings support more reliable maintenance planning in uncertain operational environments.
comment: 22 pages, 5 figures, 4 tables
☆ Outlier-Safe Pre-Training for Robust 4-Bit Quantization of Large Language Models
Extreme activation outliers in Large Language Models (LLMs) critically degrade quantization performance, hindering efficient on-device deployment. While channel-wise operations and adaptive gradient scaling are recognized causes, practical mitigation remains challenging. We introduce Outlier-Safe Pre-Training (OSP), a practical guideline that proactively prevents outlier formation rather than relying on post-hoc mitigation. OSP combines three key innovations: (1) the Muon optimizer, eliminating privileged bases while maintaining training efficiency; (2) Single-Scale RMSNorm, preventing channel-wise amplification; and (3) a learnable embedding projection, redistributing activation magnitudes originating from embedding matrices. We validate OSP by training a 1.4B-parameter model on 1 trillion tokens, which is the first production-scale LLM trained without such outliers. Under aggressive 4-bit quantization, our OSP model achieves a 35.7 average score across 10 benchmarks (compared to 26.5 for an Adam-trained model), with only a 2% training overhead. Remarkably, OSP models exhibit near-zero excess kurtosis (0.04) compared to extreme values (1818.56) in standard models, fundamentally altering LLM quantization behavior. Our work demonstrates that outliers are not inherent to LLMs but are consequences of training strategies, paving the way for more efficient LLM deployment. The source code and pretrained checkpoints are available at https://github.com/dmis-lab/Outlier-Safe-Pre-Training.
☆ When Can We Reuse a Calibration Set for Multiple Conformal Predictions?
Reliable uncertainty quantification is crucial for the trustworthiness of machine learning applications. Inductive Conformal Prediction (ICP) offers a distribution-free framework for generating prediction sets or intervals with user-specified confidence. However, standard ICP guarantees are marginal and typically require a fresh calibration set for each new prediction to maintain their validity. This paper addresses this practical limitation by demonstrating how e-conformal prediction, in conjunction with Hoeffding's inequality, can enable the repeated use of a single calibration set with a high probability of preserving the desired coverage. Through a case study on the CIFAR-10 dataset, we train a deep neural network and utilise a calibration set to estimate a Hoeffding correction. This correction allows us to apply a modified Markov's inequality, leading to the construction of prediction sets with quantifiable confidence. Our results illustrate the feasibility of maintaining provable performance in conformal prediction while enhancing its practicality by reducing the need for repeated calibration. The code for this work is publicly available.
☆ From memories to maps: Mechanisms of in context reinforcement learning in transformers
Humans and animals show remarkable learning efficiency, adapting to new environments with minimal experience. This capability is not well captured by standard reinforcement learning algorithms that rely on incremental value updates. Rapid adaptation likely depends on episodic memory -- the ability to retrieve specific past experiences to guide decisions in novel contexts. Transformers provide a useful setting for studying these questions because of their ability to learn rapidly in-context and because their key-value architecture resembles episodic memory systems in the brain. We train a transformer to in-context reinforcement learn in a distribution of planning tasks inspired by rodent behavior. We then characterize the learning algorithms that emerge in the model. We first find that representation learning is supported by in-context structure learning and cross-context alignment, where representations are aligned across environments with different sensory stimuli. We next demonstrate that the reinforcement learning strategies developed by the model are not interpretable as standard model-free or model-based planning. Instead, we show that in-context reinforcement learning is supported by caching intermediate computations within the model's memory tokens, which are then accessed at decision time. Overall, we find that memory may serve as a computational resource, storing both raw experience and cached computations to support flexible behavior. Furthermore, the representations developed in the model resemble computations associated with the hippocampal-entorhinal system in the brain, suggesting that our findings may be relevant for natural cognition. Taken together, our work offers a mechanistic hypothesis for the rapid adaptation that underlies in-context learning in artificial and natural settings.
☆ Semantic Scene Graph for Ultrasound Image Explanation and Scanning Guidance
Understanding medical ultrasound imaging remains a long-standing challenge due to significant visual variability caused by differences in imaging and acquisition parameters. Recent advancements in large language models (LLMs) have been used to automatically generate terminology-rich summaries orientated to clinicians with sufficient physiological knowledge. Nevertheless, the increasing demand for improved ultrasound interpretability and basic scanning guidance among non-expert users, e.g., in point-of-care settings, has not yet been explored. In this study, we first introduce the scene graph (SG) for ultrasound images to explain image content to ordinary and provide guidance for ultrasound scanning. The ultrasound SG is first computed using a transformer-based one-stage method, eliminating the need for explicit object detection. To generate a graspable image explanation for ordinary, the user query is then used to further refine the abstract SG representation through LLMs. Additionally, the predicted SG is explored for its potential in guiding ultrasound scanning toward missing anatomies within the current imaging view, assisting ordinary users in achieving more standardized and complete anatomical exploration. The effectiveness of this SG-based image explanation and scanning guidance has been validated on images from the left and right neck regions, including the carotid and thyroid, across five volunteers. The results demonstrate the potential of the method to maximally democratize ultrasound by enhancing its interpretability and usability for ordinaries.
☆ Tailored Conversations beyond LLMs: A RL-Based Dialogue Manager
In this work, we propose a novel framework that integrates large language models (LLMs) with an RL-based dialogue manager for open-ended dialogue with a specific goal. By leveraging hierarchical reinforcement learning to model the structured phases of dialogue and employ meta-learning to enhance adaptability across diverse user profiles, our approach enhances adaptability and efficiency, enabling the system to learn from limited data, transition fluidly between dialogue phases, and personalize responses to heterogeneous patient needs. We apply our framework to Motivational Interviews, aiming to foster behavior change, and demonstrate that the proposed dialogue manager outperforms a state-of-the-art LLM baseline in terms of reward, showing a potential benefit of conditioning LLMs to create open-ended dialogue systems with specific goals.
☆ Identifying Macro Causal Effects in C-DMGs over DMGs UAI2025
The do-calculus is a sound and complete tool for identifying causal effects in acyclic directed mixed graphs (ADMGs) induced by structural causal models (SCMs). However, in many real-world applications, especially in high-dimensional setting, constructing a fully specified ADMG is often infeasible. This limitation has led to growing interest in partially specified causal representations, particularly through cluster-directed mixed graphs (C-DMGs), which group variables into clusters and offer a more abstract yet practical view of causal dependencies. While these representations can include cycles, recent work has shown that the do-calculus remains sound and complete for identifying macro-level causal effects in C-DMGs over ADMGs under the assumption that all clusters size are greater than 1. Nevertheless, real-world systems often exhibit cyclic causal dynamics at the structural level. To account for this, input-output structural causal models (ioSCMs) have been introduced as a generalization of SCMs that allow for cycles. ioSCMs induce another type of graph structure known as a directed mixed graph (DMG). Analogous to the ADMG setting, one can define C-DMGs over DMGs as high-level representations of causal relations among clusters of variables. In this paper, we prove that, unlike in the ADMG setting, the do-calculus is unconditionally sound and complete for identifying macro causal effects in C-DMGs over DMGs. Furthermore, we show that the graphical criteria for non-identifiability of macro causal effects previously established C-DMGs over ADMGs naturally extends to a subset of C-DMGs over DMGs.
comment: Accepted to the UAI2025 workshop on Causal Abstractions and Representations. arXiv admin note: substantial text overlap with arXiv:2504.01551
☆ The receptron is a nonlinear threshold logic gate with intrinsic multi-dimensional selective capabilities for analog inputs
Threshold logic gates (TLGs) have been proposed as artificial counterparts of biological neurons with classification capabilities based on a linear predictor function combining a set of weights with the feature vector. The linearity of TLGs limits their classification capabilities requiring the use of networks for the accomplishment of complex tasks. A generalization of the TLG model called receptron, characterized by input-dependent weight functions allows for a significant enhancement of classification performances even with the use of a single unit. Here we formally demonstrate that a receptron, characterized by nonlinear input-dependent weight functions, exhibit intrinsic selective activation properties for analog inputs, when the input vector is within cubic domains in a 3D space. The proposed model can be extended to the n-dimensional case for multidimensional applications. Our results suggest that receptron-based networks can represent a new class of devices capable to manage a large number of analog inputs, for edge applications requiring high selectivity and classification capabilities without the burden of complex training.
comment: 12 pages, 7 figures
☆ On the efficacy of old features for the detection of new bots
For more than a decade now, academicians and online platform administrators have been studying solutions to the problem of bot detection. Bots are computer algorithms whose use is far from being benign: malicious bots are purposely created to distribute spam, sponsor public characters and, ultimately, induce a bias within the public opinion. To fight the bot invasion on our online ecosystem, several approaches have been implemented, mostly based on (supervised and unsupervised) classifiers, which adopt the most varied account features, from the simplest to the most expensive ones to be extracted from the raw data obtainable through the Twitter public APIs. In this exploratory study, using Twitter as a benchmark, we compare the performances of four state-of-art feature sets in detecting novel bots: one of the output scores of the popular bot detector Botometer, which considers more than 1,000 features of an account to take a decision; two feature sets based on the account profile and timeline; and the information about the Twitter client from which the user tweets. The results of our analysis, conducted on six recently released datasets of Twitter accounts, hint at the possible use of general-purpose classifiers and cheap-to-compute account features for the detection of evolved bots.
comment: pre-print version
☆ Hierarchical Time Series Forecasting Via Latent Mean Encoding
Coherently forecasting the behaviour of a target variable across both coarse and fine temporal scales is crucial for profit-optimized decision-making in several business applications, and remains an open research problem in temporal hierarchical forecasting. Here, we propose a new hierarchical architecture that tackles this problem by leveraging modules that specialize in forecasting the different temporal aggregation levels of interest. The architecture, which learns to encode the average behaviour of the target variable within its hidden layers, makes accurate and coherent forecasts across the target temporal hierarchies. We validate our architecture on the challenging, real-world M5 dataset and show that it outperforms established methods, such as the TSMixer model.
☆ Why Uncertainty Calibration Matters for Reliable Perturbation-based Explanations ICLR 2025
Perturbation-based explanations are widely utilized to enhance the transparency of modern machine-learning models. However, their reliability is often compromised by the unknown model behavior under the specific perturbations used. This paper investigates the relationship between uncertainty calibration - the alignment of model confidence with actual accuracy - and perturbation-based explanations. We show that models frequently produce unreliable probability estimates when subjected to explainability-specific perturbations and theoretically prove that this directly undermines explanation quality. To address this, we introduce ReCalX, a novel approach to recalibrate models for improved perturbation-based explanations while preserving their original predictions. Experiments on popular computer vision models demonstrate that our calibration strategy produces explanations that are more aligned with human perception and actual object locations.
comment: ICLR 2025 Workshop: XAI4Science: From Understanding Model Behavior to Discovering New Scientific Knowledge
☆ VideoPCDNet: Video Parsing and Prediction with Phase Correlation Networks
Understanding and predicting video content is essential for planning and reasoning in dynamic environments. Despite advancements, unsupervised learning of object representations and dynamics remains challenging. We present VideoPCDNet, an unsupervised framework for object-centric video decomposition and prediction. Our model uses frequency-domain phase correlation techniques to recursively parse videos into object components, which are represented as transformed versions of learned object prototypes, enabling accurate and interpretable tracking. By explicitly modeling object motion through a combination of frequency domain operations and lightweight learned modules, VideoPCDNet enables accurate unsupervised object tracking and prediction of future video frames. In our experiments, we demonstrate that VideoPCDNet outperforms multiple object-centric baseline models for unsupervised tracking and prediction on several synthetic datasets, while learning interpretable object and motion representations.
comment: Accepted for Publication at ICANN 2025
☆ Position: Intelligent Science Laboratory Requires the Integration of Cognitive and Embodied AI
Scientific discovery has long been constrained by human limitations in expertise, physical capability, and sleep cycles. The recent rise of AI scientists and automated laboratories has accelerated both the cognitive and operational aspects of research. However, key limitations persist: AI systems are often confined to virtual environments, while automated laboratories lack the flexibility and autonomy to adaptively test new hypotheses in the physical world. Recent advances in embodied AI, such as generalist robot foundation models, diffusion-based action policies, fine-grained manipulation learning, and sim-to-real transfer, highlight the promise of integrating cognitive and embodied intelligence. This convergence opens the door to closed-loop systems that support iterative, autonomous experimentation and the possibility of serendipitous discovery. In this position paper, we propose the paradigm of Intelligent Science Laboratories (ISLs): a multi-layered, closed-loop framework that deeply integrates cognitive and embodied intelligence. ISLs unify foundation models for scientific reasoning, agent-based workflow orchestration, and embodied agents for robust physical experimentation. We argue that such systems are essential for overcoming the current limitations of scientific discovery and for realizing the full transformative potential of AI-driven science.
☆ ChordPrompt: Orchestrating Cross-Modal Prompt Synergy for Multi-Domain Incremental Learning in CLIP ECML-PKDD 2025
Continual learning (CL) empowers pre-trained vision-language models to adapt effectively to novel or previously underrepresented data distributions without comprehensive retraining, enhancing their adaptability and efficiency. While vision-language models like CLIP show great promise, they struggle to maintain performance across domains in incremental learning scenarios. Existing prompt learning methods face two main limitations: 1) they primarily focus on class-incremental learning scenarios, lacking specific strategies for multi-domain task incremental learning; 2) most current approaches employ single-modal prompts, neglecting the potential benefits of cross-modal information exchange. To address these challenges, we propose the \ChordPrompt framework, which facilitates a harmonious interplay between visual and textual prompts. \ChordPrompt introduces cross-modal prompts to leverage interactions between visual and textual information. Our approach also employs domain-adaptive text prompts to select appropriate prompts for continual adaptation across multiple domains. Comprehensive experiments on multi-domain incremental learning benchmarks demonstrate that \ChordPrompt outperforms state-of-the-art methods in zero-shot generalization and downstream task performance.
comment: Accept by ECML-PKDD 2025
☆ ECCoT: A Framework for Enhancing Effective Cognition via Chain of Thought in Large Language Model
In the era of large-scale artificial intelligence, Large Language Models (LLMs) have made significant strides in natural language processing. However, they often lack transparency and generate unreliable outputs, raising concerns about their interpretability. To address this, the Chain of Thought (CoT) prompting method structures reasoning into step-by-step deductions. Yet, not all reasoning chains are valid, and errors can lead to unreliable conclusions. We propose ECCoT, an End-to-End Cognitive Chain of Thought Validation Framework, to evaluate and refine reasoning chains in LLMs. ECCoT integrates the Markov Random Field-Embedded Topic Model (MRF-ETM) for topic-aware CoT generation and Causal Sentence-BERT (CSBert) for causal reasoning alignment. By filtering ineffective chains using structured ordering statistics, ECCoT improves interpretability, reduces biases, and enhances the trustworthiness of LLM-based decision-making. Key contributions include the introduction of ECCoT, MRF-ETM for topic-driven CoT generation, and CSBert for causal reasoning enhancement. Code is released at: https://github.com/erwinmsmith/ECCoT.git.
☆ Robotics Under Construction: Challenges on Job Sites ICRA
As labor shortages and productivity stagnation increasingly challenge the construction industry, automation has become essential for sustainable infrastructure development. This paper presents an autonomous payload transportation system as an initial step toward fully unmanned construction sites. Our system, based on the CD110R-3 crawler carrier, integrates autonomous navigation, fleet management, and GNSS-based localization to facilitate material transport in construction site environments. While the current system does not yet incorporate dynamic environment adaptation algorithms, we have begun fundamental investigations into external-sensor based perception and mapping system. Preliminary results highlight the potential challenges, including navigation in evolving terrain, environmental perception under construction-specific conditions, and sensor placement optimization for improving autonomy and efficiency. Looking forward, we envision a construction ecosystem where collaborative autonomous agents dynamically adapt to site conditions, optimizing workflow and reducing human intervention. This paper provides foundational insights into the future of robotics-driven construction automation and identifies critical areas for further technological development.
comment: Workshop on Field Robotics, ICRA
☆ Adaptive Domain Modeling with Language Models: A Multi-Agent Approach to Task Planning
We introduce TAPAS (Task-based Adaptation and Planning using AgentS), a multi-agent framework that integrates Large Language Models (LLMs) with symbolic planning to solve complex tasks without the need for manually defined environment models. TAPAS employs specialized LLM-based agents that collaboratively generate and adapt domain models, initial states, and goal specifications as needed using structured tool-calling mechanisms. Through this tool-based interaction, downstream agents can request modifications from upstream agents, enabling adaptation to novel attributes and constraints without manual domain redefinition. A ReAct (Reason+Act)-style execution agent, coupled with natural language plan translation, bridges the gap between dynamically generated plans and real-world robot capabilities. TAPAS demonstrates strong performance in benchmark planning domains and in the VirtualHome simulated real-world environment.
☆ Vision Transformer-Based Time-Series Image Reconstruction for Cloud-Filling Applications RSS
Cloud cover in multispectral imagery (MSI) poses significant challenges for early season crop mapping, as it leads to missing or corrupted spectral information. Synthetic aperture radar (SAR) data, which is not affected by cloud interference, offers a complementary solution, but lack sufficient spectral detail for precise crop mapping. To address this, we propose a novel framework, Time-series MSI Image Reconstruction using Vision Transformer (ViT), to reconstruct MSI data in cloud-covered regions by leveraging the temporal coherence of MSI and the complementary information from SAR from the attention mechanism. Comprehensive experiments, using rigorous reconstruction evaluation metrics, demonstrate that Time-series ViT framework significantly outperforms baselines that use non-time-series MSI and SAR or time-series MSI without SAR, effectively enhancing MSI image reconstruction in cloud-covered regions.
comment: This paper has been accepted as a conference paper at the 2025 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
☆ Fake or Real, Can Robots Tell? Evaluating Embodied Vision-Language Models on Real and 3D-Printed Objects
Robotic scene understanding increasingly relies on vision-language models (VLMs) to generate natural language descriptions of the environment. In this work, we present a comparative study of captioning strategies for tabletop scenes captured by a robotic arm equipped with an RGB camera. The robot collects images of objects from multiple viewpoints, and we evaluate several models that generate scene descriptions. We compare the performance of various captioning models, like BLIP and VLMs. Our experiments examine the trade-offs between single-view and multi-view captioning, and difference between recognising real-world and 3D printed objects. We quantitatively evaluate object identification accuracy, completeness, and naturalness of the generated captions. Results show that VLMs can be used in robotic settings where common objects need to be recognised, but fail to generalise to novel representations. Our findings provide practical insights into deploying foundation models for embodied agents in real-world settings.
☆ Towards an Introspective Dynamic Model of Globally Distributed Computing Infrastructures
Large-scale scientific collaborations like ATLAS, Belle II, CMS, DUNE, and others involve hundreds of research institutes and thousands of researchers spread across the globe. These experiments generate petabytes of data, with volumes soon expected to reach exabytes. Consequently, there is a growing need for computation, including structured data processing from raw data to consumer-ready derived data, extensive Monte Carlo simulation campaigns, and a wide range of end-user analysis. To manage these computational and storage demands, centralized workflow and data management systems are implemented. However, decisions regarding data placement and payload allocation are often made disjointly and via heuristic means. A significant obstacle in adopting more effective heuristic or AI-driven solutions is the absence of a quick and reliable introspective dynamic model to evaluate and refine alternative approaches. In this study, we aim to develop such an interactive system using real-world data. By examining job execution records from the PanDA workflow management system, we have pinpointed key performance indicators such as queuing time, error rate, and the extent of remote data access. The dataset includes five months of activity. Additionally, we are creating a generative AI model to simulate time series of payloads, which incorporate visible features like category, event count, and submitting group, as well as hidden features like the total computational load-derived from existing PanDA records and computing site capabilities. These hidden features, which are not visible to job allocators, whether heuristic or AI-driven, influence factors such as queuing times and data movement.
☆ Interpretable Hybrid Machine Learning Models Using FOLD-R++ and Answer Set Programming
Machine learning (ML) techniques play a pivotal role in high-stakes domains such as healthcare, where accurate predictions can greatly enhance decision-making. However, most high-performing methods such as neural networks and ensemble methods are often opaque, limiting trust and broader adoption. In parallel, symbolic methods like Answer Set Programming (ASP) offer the possibility of interpretable logical rules but do not always match the predictive power of ML models. This paper proposes a hybrid approach that integrates ASP-derived rules from the FOLD-R++ algorithm with black-box ML classifiers to selectively correct uncertain predictions and provide human-readable explanations. Experiments on five medical datasets reveal statistically significant performance gains in accuracy and F1 score. This study underscores the potential of combining symbolic reasoning with conventional ML to achieve high interpretability without sacrificing accuracy.
comment: accepted for publication as a Technical Communication at ICLP 2025
☆ Has Machine Translation Evaluation Achieved Human Parity? The Human Reference and the Limits of Progress ACL 2025
In Machine Translation (MT) evaluation, metric performance is assessed based on agreement with human judgments. In recent years, automatic metrics have demonstrated increasingly high levels of agreement with humans. To gain a clearer understanding of metric performance and establish an upper bound, we incorporate human baselines in the MT meta-evaluation, that is, the assessment of MT metrics' capabilities. Our results show that human annotators are not consistently superior to automatic metrics, with state-of-the-art metrics often ranking on par with or higher than human baselines. Despite these findings suggesting human parity, we discuss several reasons for caution. Finally, we explore the broader implications of our results for the research field, asking: Can we still reliably measure improvements in MT evaluation? With this work, we aim to shed light on the limits of our ability to measure progress in the field, fostering discussion on an issue that we believe is crucial to the entire MT evaluation community.
comment: Accepted at ACL 2025 Main Conference. 24 pages
☆ FAF: A Feature-Adaptive Framework for Few-Shot Time Series Forecasting
Multi-task and few-shot time series forecasting tasks are commonly encountered in scenarios such as the launch of new products in different cities. However, traditional time series forecasting methods suffer from insufficient historical data, which stems from a disregard for the generalized and specific features among different tasks. For the aforementioned challenges, we propose the Feature-Adaptive Time Series Forecasting Framework (FAF), which consists of three key components: the Generalized Knowledge Module (GKM), the Task-Specific Module (TSM), and the Rank Module (RM). During training phase, the GKM is updated through a meta-learning mechanism that enables the model to extract generalized features across related tasks. Meanwhile, the TSM is trained to capture diverse local dynamics through multiple functional regions, each of which learns specific features from individual tasks. During testing phase, the RM dynamically selects the most relevant functional region from the TSM based on input sequence features, which is then combined with the generalized knowledge learned by the GKM to generate accurate forecasts. This design enables FAF to achieve robust and personalized forecasting even with sparse historical observations We evaluate FAF on five diverse real-world datasets under few-shot time series forecasting settings. Experimental results demonstrate that FAF consistently outperforms baselines that include three categories of time series forecasting methods. In particular, FAF achieves a 41.81\% improvement over the best baseline, iTransformer, on the CO$_2$ emissions dataset.
comment: 12 pages,4 figures, 8 tables
☆ PrivacyXray: Detecting Privacy Breaches in LLMs through Semantic Consistency and Probability Certainty
Large Language Models (LLMs) are widely used in sensitive domains, including healthcare, finance, and legal services, raising concerns about potential private information leaks during inference. Privacy extraction attacks, such as jailbreaking, expose vulnerabilities in LLMs by crafting inputs that force the models to output sensitive information. However, these attacks cannot verify whether the extracted private information is accurate, as no public datasets exist for cross-validation, leaving a critical gap in private information detection during inference. To address this, we propose PrivacyXray, a novel framework detecting privacy breaches by analyzing LLM inner states. Our analysis reveals that LLMs exhibit higher semantic coherence and probabilistic certainty when generating correct private outputs. Based on this, PrivacyXray detects privacy breaches using four metrics: intra-layer and inter-layer semantic similarity, token-level and sentence-level probability distributions. PrivacyXray addresses critical challenges in private information detection by overcoming the lack of open-source private datasets and eliminating reliance on external data for validation. It achieves this through the synthesis of realistic private data and a detection mechanism based on the inner states of LLMs. Experiments show that PrivacyXray achieves consistent performance, with an average accuracy of 92.69% across five LLMs. Compared to state-of-the-art methods, PrivacyXray achieves significant improvements, with an average accuracy increase of 20.06%, highlighting its stability and practical utility in real-world applications.
☆ MambaOutRS: A Hybrid CNN-Fourier Architecture for Remote Sensing Image Classification
Recent advances in deep learning for vision tasks have seen the rise of State Space Models (SSMs) like Mamba, celebrated for their linear scalability. However, their adaptation to 2D visual data often necessitates complex modifications that may diminish efficiency. In this paper, we introduce MambaOutRS, a novel hybrid convolutional architecture for remote sensing image classification that re-evaluates the necessity of recurrent SSMs. MambaOutRS builds upon stacked Gated CNN blocks for local feature extraction and introduces a novel Fourier Filter Gate (FFG) module that operates in the frequency domain to capture global contextual information efficiently. Our architecture employs a four-stage hierarchical design and was extensively evaluated on challenging remote sensing datasets: UC Merced, AID, NWPU-RESISC45, and EuroSAT. MambaOutRS consistently achieved state-of-the-art (SOTA) performance across these benchmarks. Notably, our MambaOutRS-t variant (24.0M parameters) attained the highest F1-scores of 98.41\% on UC Merced and 95.99\% on AID, significantly outperforming existing baselines, including larger transformer models and Mamba-based architectures, despite using considerably fewer parameters. An ablation study conclusively demonstrates the critical role of the Fourier Filter Gate in enhancing the model's ability to capture global spatial patterns, leading to robust and accurate classification. These results strongly suggest that the complexities of recurrent SSMs can be effectively superseded by a judicious combination of gated convolutions for spatial mixing and frequency-based gates for spectral global context. Thus, MambaOutRS provides a compelling and efficient paradigm for developing high-performance deep learning models in remote sensing and other vision domains, particularly where computational efficiency is paramount.
☆ General Methods Make Great Domain-specific Foundation Models: A Case-study on Fetal Ultrasound MICCAI 2025
With access to large-scale, unlabeled medical datasets, researchers are confronted with two questions: Should they attempt to pretrain a custom foundation model on this medical data, or use transfer-learning from an existing generalist model? And, if a custom model is pretrained, are novel methods required? In this paper we explore these questions by conducting a case-study, in which we train a foundation model on a large regional fetal ultrasound dataset of 2M images. By selecting the well-established DINOv2 method for pretraining, we achieve state-of-the-art results on three fetal ultrasound datasets, covering data from different countries, classification, segmentation, and few-shot tasks. We compare against a series of models pretrained on natural images, ultrasound images, and supervised baselines. Our results demonstrate two key insights: (i) Pretraining on custom data is worth it, even if smaller models are trained on less data, as scaling in natural image pretraining does not translate to ultrasound performance. (ii) Well-tuned methods from computer vision are making it feasible to train custom foundation models for a given medical domain, requiring no hyperparameter tuning and little methodological adaptation. Given these findings, we argue that a bias towards methodological innovation should be avoided when developing domain specific foundation models under common computational resource constraints.
comment: Submitted version of paper accepted at MICCAI 2025
☆ RCStat: A Statistical Framework for using Relative Contextualization in Transformers
Prior work on input-token importance in auto-regressive transformers has relied on Softmax-normalized attention weights, which obscure the richer structure of pre-Softmax query-key logits. We introduce RCStat, a statistical framework that harnesses raw attention logits via Relative Contextualization (RC), a random variable measuring contextual alignment between token segments, and derive an efficient upper bound for RC. We demonstrate two applications: (i) Key-Value compression, where RC-based thresholds drive adaptive key-value eviction for substantial cache reduction with minimal quality loss; and (ii) Attribution, where RC yields higher-fidelity token-, sentence-, and chunk-level explanations than post-Softmax methods. Across question answering, summarization, and attribution benchmarks, RCStat achieves significant empirical gains, delivering state-of-the-art compression and attribution performance without any model retraining.
☆ Lost in Translation? Converting RegExes for Log Parsing into Dynatrace Pattern Language
Log files provide valuable information for detecting and diagnosing problems in enterprise software applications and data centers. Several log analytics tools and platforms were developed to help filter and extract information from logs, typically using regular expressions (RegExes). Recent commercial log analytics platforms provide domain-specific languages specifically designed for log parsing, such as Grok or the Dynatrace Pattern Language (DPL). However, users who want to migrate to these platforms must manually convert their RegExes into the new pattern language, which is costly and error-prone. In this work, we present Reptile, which combines a rule-based approach for converting RegExes into DPL patterns with a best-effort approach for cases where a full conversion is impossible. Furthermore, it integrates GPT-4 to optimize the obtained DPL patterns. The evaluation with 946 RegExes collected from a large company shows that Reptile safely converted 73.7% of them. The evaluation of Reptile's pattern optimization with 23 real-world RegExes showed an F1-score and MCC above 0.91. These results are promising and have ample practical implications for companies that migrate to a modern log analytics platform, such as Dynatrace.
comment: 18 pages, 7 tables, 18 figures
☆ ReMAR-DS: Recalibrated Feature Learning for Metal Artifact Reduction and CT Domain Transformation
Artifacts in kilo-Voltage CT (kVCT) imaging degrade image quality, impacting clinical decisions. We propose a deep learning framework for metal artifact reduction (MAR) and domain transformation from kVCT to Mega-Voltage CT (MVCT). The proposed framework, ReMAR-DS, utilizes an encoder-decoder architecture with enhanced feature recalibration, effectively reducing artifacts while preserving anatomical structures. This ensures that only relevant information is utilized in the reconstruction process. By infusing recalibrated features from the encoder block, the model focuses on relevant spatial regions (e.g., areas with artifacts) and highlights key features across channels (e.g., anatomical structures), leading to improved reconstruction of artifact-corrupted regions. Unlike traditional MAR methods, our approach bridges the gap between high-resolution kVCT and artifact-resistant MVCT, enhancing radiotherapy planning. It produces high-quality MVCT-like reconstructions, validated through qualitative and quantitative evaluations. Clinically, this enables oncologists to rely on kVCT alone, reducing repeated high-dose MVCT scans and lowering radiation exposure for cancer patients.
comment: Accepted in 23rd International Conference on Image Analysis and Processing (ICIAP) 2025, Italy
☆ NTRL: Encounter Generation via Reinforcement Learning for Dynamic Difficulty Adjustment in Dungeons and Dragons
Balancing combat encounters in Dungeons & Dragons (D&D) is a complex task that requires Dungeon Masters (DM) to manually assess party strength, enemy composition, and dynamic player interactions while avoiding interruption of the narrative flow. In this paper, we propose Encounter Generation via Reinforcement Learning (NTRL), a novel approach that automates Dynamic Difficulty Adjustment (DDA) in D&D via combat encounter design. By framing the problem as a contextual bandit, NTRL generates encounters based on real-time party members attributes. In comparison with classic DM heuristics, NTRL iteratively optimizes encounters to extend combat longevity (+200%), increases damage dealt to party members, reducing post-combat hit points (-16.67%), and raises the number of player deaths while maintaining low total party kills (TPK). The intensification of combat forces players to act wisely and engage in tactical maneuvers, even though the generated encounters guarantee high win rates (70%). Even in comparison with encounters designed by human Dungeon Masters, NTRL demonstrates superior performance by enhancing the strategic depth of combat while increasing difficulty in a manner that preserves overall game fairness.
☆ Automatic Posology Structuration : What role for LLMs?
Automatically structuring posology instructions is essential for improving medication safety and enabling clinical decision support. In French prescriptions, these instructions are often ambiguous, irregular, or colloquial, limiting the effectiveness of classic ML pipelines. We explore the use of Large Language Models (LLMs) to convert free-text posologies into structured formats, comparing prompt-based methods and fine-tuning against a "pre-LLM" system based on Named Entity Recognition and Linking (NERL). Our results show that while prompting improves performance, only fine-tuned LLMs match the accuracy of the baseline. Through error analysis, we observe complementary strengths: NERL offers structural precision, while LLMs better handle semantic nuances. Based on this, we propose a hybrid pipeline that routes low-confidence cases from NERL (<0.8) to the LLM, selecting outputs based on confidence scores. This strategy achieves 91% structuration accuracy while minimizing latency and compute. Our results show that this hybrid approach improves structuration accuracy while limiting computational cost, offering a scalable solution for real-world clinical use.
☆ MATE: LLM-Powered Multi-Agent Translation Environment for Accessibility Applications
Accessibility remains a critical concern in today's society, as many technologies are not developed to support the full range of user needs. Existing multi-agent systems (MAS) often cannot provide comprehensive assistance for users in need due to the lack of customization stemming from closed-source designs. Consequently, individuals with disabilities frequently encounter significant barriers when attempting to interact with digital environments. We introduce MATE, a multimodal accessibility MAS, which performs the modality conversions based on the user's needs. The system is useful for assisting people with disabilities by ensuring that data will be converted to an understandable format. For instance, if the user cannot see well and receives an image, the system converts this image to its audio description. MATE can be applied to a wide range of domains, industries, and areas, such as healthcare, and can become a useful assistant for various groups of users. The system supports multiple types of models, ranging from LLM API calling to using custom machine learning (ML) classifiers. This flexibility ensures that the system can be adapted to various needs and is compatible with a wide variety of hardware. Since the system is expected to run locally, it ensures the privacy and security of sensitive information. In addition, the framework can be effectively integrated with institutional technologies (e.g., digital healthcare service) for real-time user assistance. Furthermore, we introduce ModCon-Task-Identifier, a model that is capable of extracting the precise modality conversion task from the user input. Numerous experiments show that ModCon-Task-Identifier consistently outperforms other LLMs and statistical models on our custom data. Our code and data are publicly available at https://github.com/AlgazinovAleksandr/Multi-Agent-MATE.
☆ NaviAgent: Bilevel Planning on Tool Dependency Graphs for Function Calling
LLMs' reliance on static knowledge and fragile tool invocation severely hinders the orchestration of complex, heterogeneous toolchains, particularly at large scales. Existing methods typically use rigid single-path execution, resulting in poor error recovery and exponentially growing search spaces. We introduce NaviAgent, a graph-navigated bilevel planning architecture for robust function calling, comprising a Multi-Path Decider and Graph-Encoded Navigator. As an LLM-powered agent, the Multi-Path Decider defines a four-dimensional decision space and continuously perceives environmental states, dynamically selecting the optimal action to fully cover all tool invocation scenarios. The Graph-Encoded Navigator constructs a Tool Dependency Heterogeneous Graph (TDHG), where node embeddings explicitly fuse API schema structure with historical invocation behavior. It also integrates a novel heuristic search strategy that guides the Decider toward efficient and highly successful toolchains, even for unseen tool combinations. Experiments show that NaviAgent consistently achieves the highest task success rate (TSR) across all foundation models and task complexities, outperforming the average baselines (ReAct, ToolLLM, {\alpha}-UMI) by 13.5%, 16.4%, and 19.0% on Qwen2.5-14B, Qwen2.5-32B, and Deepseek-V3, respectively. Its execution steps are typically within one step of the most efficient baseline, ensuring a strong balance between quality and efficiency. Notably, a fine-tuned Qwen2.5-14B model achieves a TSR of 49.5%, surpassing the much larger 32B model (44.9%) under our architecture. Incorporating the Graph-Encoded Navigator further boosts TSR by an average of 2.4 points, with gains up over 9 points on complex tasks for larger models (Deepseek-V3 and GPT-4o), highlighting its essential role in toolchain orchestration.
☆ Experimental Assessment of Neural 3D Reconstruction for Small UAV-based Applications
The increasing miniaturization of Unmanned Aerial Vehicles (UAVs) has expanded their deployment potential to indoor and hard-to-reach areas. However, this trend introduces distinct challenges, particularly in terms of flight dynamics and power consumption, which limit the UAVs' autonomy and mission capabilities. This paper presents a novel approach to overcoming these limitations by integrating Neural 3D Reconstruction (N3DR) with small UAV systems for fine-grained 3-Dimensional (3D) digital reconstruction of small static objects. Specifically, we design, implement, and evaluate an N3DR-based pipeline that leverages advanced models, i.e., Instant-ngp, Nerfacto, and Splatfacto, to improve the quality of 3D reconstructions using images of the object captured by a fleet of small UAVs. We assess the performance of the considered models using various imagery and pointcloud metrics, comparing them against the baseline Structure from Motion (SfM) algorithm. The experimental results demonstrate that the N3DR-enhanced pipeline significantly improves reconstruction quality, making it feasible for small UAVs to support high-precision 3D mapping and anomaly detection in constrained environments. In more general terms, our results highlight the potential of N3DR in advancing the capabilities of miniaturized UAV systems.
comment: 6 pages, 7 figures, 2 tables, accepted at IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 2025
☆ Recalling The Forgotten Class Memberships: Unlearned Models Can Be Noisy Labelers to Leak Privacy IJCAI 2025
Machine Unlearning (MU) technology facilitates the removal of the influence of specific data instances from trained models on request. Despite rapid advancements in MU technology, its vulnerabilities are still underexplored, posing potential risks of privacy breaches through leaks of ostensibly unlearned information. Current limited research on MU attacks requires access to original models containing privacy data, which violates the critical privacy-preserving objective of MU. To address this gap, we initiate an innovative study on recalling the forgotten class memberships from unlearned models (ULMs) without requiring access to the original one. Specifically, we implement a Membership Recall Attack (MRA) framework with a teacher-student knowledge distillation architecture, where ULMs serve as noisy labelers to transfer knowledge to student models. Then, it is translated into a Learning with Noisy Labels (LNL) problem for inferring the correct labels of the forgetting instances. Extensive experiments on state-of-the-art MU methods with multiple real datasets demonstrate that the proposed MRA strategy exhibits high efficacy in recovering class memberships of unlearned instances. As a result, our study and evaluation have established a benchmark for future research on MU vulnerabilities.
comment: IJCAI 2025
☆ Dialogic Pedagogy for Large Language Models: Aligning Conversational AI with Proven Theories of Learning
Large Language Models (LLMs) are rapidly transforming education by enabling rich conversational learning experiences. This article provides a comprehensive review of how LLM-based conversational agents are being used in higher education, with extensions to secondary and lifelong learning contexts. We synthesize existing literature on LLMs in education and theories of conversational and dialogic pedagogy - including Vygotsky's sociocultural learning (scaffolding and the Zone of Proximal Development), the Socratic method, and Laurillard's conversational framework - and examine how prompting strategies and retrieval-augmented generation (RAG) can align LLM behaviors with these pedagogical theories, and how it can support personalized, adaptive learning. We map educational theories to LLM capabilities, highlighting where LLM-driven dialogue supports established learning principles and where it challenges or falls short of traditional pedagogical assumptions. Notable gaps in applying prior theories to LLMs are identified, such as the models tendency to provide direct answers instead of fostering co-construction of knowledge, and the need to account for the constant availability and broad but non-human expertise of LLM tutors. In response, we propose practical strategies to better align LLM interactions with sound pedagogy - for example, designing prompts that encourage Socratic questioning, scaffolded guidance, and student reflection, as well as integrating retrieval mechanisms to ensure accuracy and contextual relevance. Our aim is to bridge the gap between educational theory and the emerging practice of AI-driven conversational learning, offering insights and tools for making LLM-based dialogues more educationally productive and theory-aligned.
☆ Fast and Distributed Equivariant Graph Neural Networks by Virtual Node Learning
Equivariant Graph Neural Networks (GNNs) have achieved remarkable success across diverse scientific applications. However, existing approaches face critical efficiency challenges when scaling to large geometric graphs and suffer significant performance degradation when the input graphs are sparsified for computational tractability. To address these limitations, we introduce FastEGNN and DistEGNN, two novel enhancements to equivariant GNNs for large-scale geometric graphs. FastEGNN employs a key innovation: a small ordered set of virtual nodes that effectively approximates the large unordered graph of real nodes. Specifically, we implement distinct message passing and aggregation mechanisms for different virtual nodes to ensure mutual distinctiveness, and minimize Maximum Mean Discrepancy (MMD) between virtual and real coordinates to achieve global distributedness. This design enables FastEGNN to maintain high accuracy while efficiently processing large-scale sparse graphs. For extremely large-scale geometric graphs, we present DistEGNN, a distributed extension where virtual nodes act as global bridges between subgraphs in different devices, maintaining consistency while dramatically reducing memory and computational overhead. We comprehensively evaluate our models across four challenging domains: N-body systems (100 nodes), protein dynamics (800 nodes), Water-3D (8,000 nodes), and our new Fluid113K benchmark (113,000 nodes). Results demonstrate superior efficiency and performance, establishing new capabilities in large-scale equivariant graph learning. Code is available at https://github.com/GLAD-RUC/DistEGNN.
☆ Surgery-R1: Advancing Surgical-VQLA with Reasoning Multimodal Large Language Model via Reinforcement Learning
In recent years, significant progress has been made in the field of surgical scene understanding, particularly in the task of Visual Question Localized-Answering in robotic surgery (Surgical-VQLA). However, existing Surgical-VQLA models lack deep reasoning capabilities and interpretability in surgical scenes, which limits their reliability and potential for development in clinical applications. To address this issue, inspired by the development of Reasoning Multimodal Large Language Models (MLLMs), we first build the Surgery-R1-54k dataset, including paired data for Visual-QA, Grounding-QA, and Chain-of-Thought (CoT). Then, we propose the first Reasoning MLLM for Surgical-VQLA (Surgery-R1). In our Surgery-R1, we design a two-stage fine-tuning mechanism to enable the basic MLLM with complex reasoning abilities by utilizing supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT). Furthermore, for an efficient and high-quality rule-based reward system in our RFT, we design a Multimodal Coherence reward mechanism to mitigate positional illusions that may arise in surgical scenarios. Experiment results demonstrate that Surgery-R1 outperforms other existing state-of-the-art (SOTA) models in the Surgical-VQLA task and widely-used MLLMs, while also validating its reasoning capabilities and the effectiveness of our approach. The code and dataset will be organized in https://github.com/FiFi-HAO467/Surgery-R1.
☆ MuBench: Assessment of Multilingual Capabilities of Large Language Models Across 61 Languages
Multilingual large language models (LLMs) are advancing rapidly, with new models frequently claiming support for an increasing number of languages. However, existing evaluation datasets are limited and lack cross-lingual alignment, leaving assessments of multilingual capabilities fragmented in both language and skill coverage. To address this, we introduce MuBench, a benchmark covering 61 languages and evaluating a broad range of capabilities. We evaluate several state-of-the-art multilingual LLMs and find notable gaps between claimed and actual language coverage, particularly a persistent performance disparity between English and low-resource languages. Leveraging MuBench's alignment, we propose Multilingual Consistency (MLC) as a complementary metric to accuracy for analyzing performance bottlenecks and guiding model improvement. Finally, we pretrain a suite of 1.2B-parameter models on English and Chinese with 500B tokens, varying language ratios and parallel data proportions to investigate cross-lingual transfer dynamics.
☆ Can Large Language Models Capture Human Annotator Disagreements?
Human annotation variation (i.e., annotation disagreements) is common in NLP and often reflects important information such as task subjectivity and sample ambiguity. While Large Language Models (LLMs) are increasingly used for automatic annotation to reduce human effort, their evaluation often focuses on predicting the majority-voted "ground truth" labels. It is still unclear, however, whether these models also capture informative human annotation variation. Our work addresses this gap by extensively evaluating LLMs' ability to predict annotation disagreements without access to repeated human labels. Our results show that LLMs struggle with modeling disagreements, which can be overlooked by majority label-based evaluations. Notably, while RLVR-style (Reinforcement learning with verifiable rewards) reasoning generally boosts LLM performance, it degrades performance in disagreement prediction. Our findings highlight the critical need for evaluating and improving LLM annotators in disagreement modeling. Code and data at https://github.com/EdisonNi-hku/Disagreement_Prediction.
comment: Preprint Under Review
☆ KunLunBaizeRAG: Reinforcement Learning Driven Inference Performance Leap for Large Language Models
This paper introduces KunLunBaizeRAG, a reinforcement learning-driven reasoning framework designed to enhance the reasoning capabilities of large language models (LLMs) in complex multi-hop question-answering tasks. The framework addresses key limitations of traditional RAG, such as retrieval drift, information redundancy, and strategy rigidity. Key innovations include the RAG-driven Reasoning Alignment (RDRA) mechanism, the Search-Think Iterative Enhancement (STIE) mechanism, the Network-Local Intelligent Routing (NLR) mechanism, and a progressive hybrid training strategy. Experimental results demonstrate significant improvements in exact match (EM) and LLM-judged score (LJ) across four benchmarks, highlighting the framework's robustness and effectiveness in complex reasoning scenarios.
☆ Stylized Structural Patterns for Improved Neural Network Pre-training
Modern deep learning models in computer vision require large datasets of real images, which are difficult to curate and pose privacy and legal concerns, limiting their commercial use. Recent works suggest synthetic data as an alternative, yet models trained with it often underperform. This paper proposes a two-step approach to bridge this gap. First, we propose an improved neural fractal formulation through which we introduce a new class of synthetic data. Second, we propose reverse stylization, a technique that transfers visual features from a small, license-free set of real images onto synthetic datasets, enhancing their effectiveness. We analyze the domain gap between our synthetic datasets and real images using Kernel Inception Distance (KID) and show that our method achieves a significantly lower distributional gap compared to existing synthetic datasets. Furthermore, our experiments across different tasks demonstrate the practical impact of this reduced gap. We show that pretraining the EDM2 diffusion model on our synthetic dataset leads to an 11% reduction in FID during image generation, compared to models trained on existing synthetic datasets, and a 20% decrease in autoencoder reconstruction error, indicating improved performance in data representation. Furthermore, a ViT-S model trained for classification on this synthetic data achieves over a 10% improvement in ImageNet-100 accuracy. Our work opens up exciting possibilities for training practical models when sufficiently large real training sets are not available.
☆ Iterative Quantum Feature Maps
Quantum machine learning models that leverage quantum circuits as quantum feature maps (QFMs) are recognized for their enhanced expressive power in learning tasks. Such models have demonstrated rigorous end-to-end quantum speedups for specific families of classification problems. However, deploying deep QFMs on real quantum hardware remains challenging due to circuit noise and hardware constraints. Additionally, variational quantum algorithms often suffer from computational bottlenecks, particularly in accurate gradient estimation, which significantly increases quantum resource demands during training. We propose Iterative Quantum Feature Maps (IQFMs), a hybrid quantum-classical framework that constructs a deep architecture by iteratively connecting shallow QFMs with classically computed augmentation weights. By incorporating contrastive learning and a layer-wise training mechanism, IQFMs effectively reduces quantum runtime and mitigates noise-induced degradation. In tasks involving noisy quantum data, numerical experiments show that IQFMs outperforms quantum convolutional neural networks, without requiring the optimization of variational quantum parameters. Even for a typical classical image classification benchmark, a carefully designed IQFMs achieves performance comparable to that of classical neural networks. This framework presents a promising path to address current limitations and harness the full potential of quantum-enhanced machine learning.
comment: 13 pages, 12 figures
☆ Tagged for Direction: Pinning Down Causal Edge Directions with Precision
Not every causal relation between variables is equal, and this can be leveraged for the task of causal discovery. Recent research shows that pairs of variables with particular type assignments induce a preference on the causal direction of other pairs of variables with the same type. Although useful, this assignment of a specific type to a variable can be tricky in practice. We propose a tag-based causal discovery approach where multiple tags are assigned to each variable in a causal graph. Existing causal discovery approaches are first applied to direct some edges, which are then used to determine edge relations between tags. Then, these edge relations are used to direct the undirected edges. Doing so improves upon purely type-based relations, where the assumption of type consistency lacks robustness and flexibility due to being restricted to single types for each variable. Our experimental evaluations show that this boosts causal discovery and that these high-level tag relations fit common knowledge.
☆ Mem4Nav: Boosting Vision-and-Language Navigation in Urban Environments with a Hierarchical Spatial-Cognition Long-Short Memory System
Vision-and-Language Navigation (VLN) in large-scale urban environments requires embodied agents to ground linguistic instructions in complex scenes and recall relevant experiences over extended time horizons. Prior modular pipelines offer interpretability but lack unified memory, while end-to-end (M)LLM agents excel at fusing vision and language yet remain constrained by fixed context windows and implicit spatial reasoning. We introduce \textbf{Mem4Nav}, a hierarchical spatial-cognition long-short memory system that can augment any VLN backbone. Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic topology graph for high-level landmark connectivity, storing both in trainable memory tokens embedded via a reversible Transformer. Long-term memory (LTM) compresses and retains historical observations at both octree and graph nodes, while short-term memory (STM) caches recent multimodal entries in relative coordinates for real-time obstacle avoidance and local planning. At each step, STM retrieval sharply prunes dynamic context, and, when deeper history is needed, LTM tokens are decoded losslessly to reconstruct past embeddings. Evaluated on Touchdown and Map2Seq across three backbones (modular, state-of-the-art VLN with prompt-based LLM, and state-of-the-art VLN with strided-attention MLLM), Mem4Nav yields 7-13 pp gains in Task Completion, sufficient SPD reduction, and >10 pp nDTW improvement. Ablations confirm the indispensability of both the hierarchical map and dual memory modules. Our codes are open-sourced via https://github.com/tsinghua-fib-lab/Mem4Nav.
☆ Commander-GPT: Dividing and Routing for Multimodal Sarcasm Detection
Multimodal sarcasm understanding is a high-order cognitive task. Although large language models (LLMs) have shown impressive performance on many downstream NLP tasks, growing evidence suggests that they struggle with sarcasm understanding. In this paper, we propose Commander-GPT, a modular decision routing framework inspired by military command theory. Rather than relying on a single LLM's capability, Commander-GPT orchestrates a team of specialized LLM agents where each agent will be selectively assigned to a focused sub-task such as context modeling, sentiment analysis, etc. Their outputs are then routed back to the commander, which integrates the information and performs the final sarcasm judgment. To coordinate these agents, we introduce three types of centralized commanders: (1) a trained lightweight encoder-based commander (e.g., multi-modal BERT); (2) four small autoregressive language models, serving as moderately capable commanders (e.g., DeepSeek-VL); (3) two large LLM-based commander (Gemini Pro and GPT-4o) that performs task routing, output aggregation, and sarcasm decision-making in a zero-shot fashion. We evaluate Commander-GPT on the MMSD and MMSD 2.0 benchmarks, comparing five prompting strategies. Experimental results show that our framework achieves 4.4% and 11.7% improvement in F1 score over state-of-the-art (SoTA) baselines on average, demonstrating its effectiveness.
☆ Unsupervised Dataset Dictionary Learning for domain shift robust clustering: application to sitting posture identification
This paper introduces a novel approach, Unsupervised Dataset Dictionary Learning (U-DaDiL), for totally unsupervised robust clustering applied to sitting posture identification. Traditional methods often lack adaptability to diverse datasets and suffer from domain shift issues. U-DaDiL addresses these challenges by aligning distributions from different datasets using Wasserstein barycenter based representation. Experimental evaluations on the Office31 dataset demonstrate significant improvements in cluster alignment accuracy. This work also presents a promising step for addressing domain shift and robust clustering for unsupervised sitting posture identification
☆ Is an object-centric representation beneficial for robotic manipulation ?
Object-centric representation (OCR) has recently become a subject of interest in the computer vision community for learning a structured representation of images and videos. It has been several times presented as a potential way to improve data-efficiency and generalization capabilities to learn an agent on downstream tasks. However, most existing work only evaluates such models on scene decomposition, without any notion of reasoning over the learned representation. Robotic manipulation tasks generally involve multi-object environments with potential inter-object interaction. We thus argue that they are a very interesting playground to really evaluate the potential of existing object-centric work. To do so, we create several robotic manipulation tasks in simulated environments involving multiple objects (several distractors, the robot, etc.) and a high-level of randomization (object positions, colors, shapes, background, initial positions, etc.). We then evaluate one classical object-centric method across several generalization scenarios and compare its results against several state-of-the-art hollistic representations. Our results exhibit that existing methods are prone to failure in difficult scenarios involving complex scene structures, whereas object-centric methods help overcome these challenges.
☆ A Global-Local Cross-Attention Network for Ultra-high Resolution Remote Sensing Image Semantic Segmentation
With the rapid development of ultra-high resolution (UHR) remote sensing technology, the demand for accurate and efficient semantic segmentation has increased significantly. However, existing methods face challenges in computational efficiency and multi-scale feature fusion. To address these issues, we propose GLCANet (Global-Local Cross-Attention Network), a lightweight segmentation framework designed for UHR remote sensing imagery.GLCANet employs a dual-stream architecture to efficiently fuse global semantics and local details while minimizing GPU usage. A self-attention mechanism enhances long-range dependencies, refines global features, and preserves local details for better semantic consistency. A masked cross-attention mechanism also adaptively fuses global-local features, selectively enhancing fine-grained details while exploiting global context to improve segmentation accuracy. Experimental results show that GLCANet outperforms state-of-the-art methods regarding accuracy and computational efficiency. The model effectively processes large, high-resolution images with a small memory footprint, providing a promising solution for real-world remote sensing applications.
☆ Automated Detection of Pre-training Text in Black-box LLMs
Detecting whether a given text is a member of the pre-training data of Large Language Models (LLMs) is crucial for ensuring data privacy and copyright protection. Most existing methods rely on the LLM's hidden information (e.g., model parameters or token probabilities), making them ineffective in the black-box setting, where only input and output texts are accessible. Although some methods have been proposed for the black-box setting, they rely on massive manual efforts such as designing complicated questions or instructions. To address these issues, we propose VeilProbe, the first framework for automatically detecting LLMs' pre-training texts in a black-box setting without human intervention. VeilProbe utilizes a sequence-to-sequence mapping model to infer the latent mapping feature between the input text and the corresponding output suffix generated by the LLM. Then it performs the key token perturbations to obtain more distinguishable membership features. Additionally, considering real-world scenarios where the ground-truth training text samples are limited, a prototype-based membership classifier is introduced to alleviate the overfitting issue. Extensive evaluations on three widely used datasets demonstrate that our framework is effective and superior in the black-box setting.
comment: 13 pages
☆ NAADA: A Noise-Aware Attention Denoising Autoencoder for Dental Panoramic Radiographs
Convolutional denoising autoencoders (DAEs) are powerful tools for image restoration. However, they inherit a key limitation of convolutional neural networks (CNNs): they tend to recover low-frequency features, such as smooth regions, more effectively than high-frequency details. This leads to the loss of fine details, which is particularly problematic in dental radiographs where preserving subtle anatomical structures is crucial. While self-attention mechanisms can help mitigate this issue by emphasizing important features, conventional attention methods often prioritize features corresponding to cleaner regions and may overlook those obscured by noise. To address this limitation, we propose a noise-aware self-attention method, which allows the model to effectively focus on and recover key features even within noisy regions. Building on this approach, we introduce the noise-aware attention-enhanced denoising autoencoder (NAADA) network for enhancing noisy panoramic dental radiographs. Compared with the recent state of the art (and much heavier) methods like Uformer, MResDNN etc., our method improves the reconstruction of fine details, ensuring better image quality and diagnostic accuracy.
comment: 10 pages, 8 figures
☆ Conversational Intent-Driven GraphRAG: Enhancing Multi-Turn Dialogue Systems through Adaptive Dual-Retrieval of Flow Patterns and Context Semantics
We present CID-GraphRAG (Conversational Intent-Driven Graph Retrieval Augmented Generation), a novel framework that addresses the limitations of existing dialogue systems in maintaining both contextual coherence and goal-oriented progression in multi-turn customer service conversations. Unlike traditional RAG systems that rely solely on semantic similarity (Conversation RAG) or standard knowledge graphs (GraphRAG), CID-GraphRAG constructs dynamic intent transition graphs from goal achieved historical dialogues and implements a dual-retrieval mechanism that adaptively balances intent-based graph traversal with semantic search. This approach enables the system to simultaneously leverage both conversional intent flow patterns and contextual semantics, significantly improving retrieval quality and response quality. In extensive experiments on real-world customer service dialogues, we employ both automatic metrics and LLM-as-judge assessments, demonstrating that CID-GraphRAG significantly outperforms both semantic-based Conversation RAG and intent-based GraphRAG baselines across all evaluation criteria. Quantitatively, CID-GraphRAG demonstrates substantial improvements over Conversation RAG across automatic metrics, with relative gains of 11% in BLEU, 5% in ROUGE-L, 6% in METEOR, and most notably, a 58% improvement in response quality according to LLM-as-judge evaluations. These results demonstrate that the integration of intent transition structures with semantic retrieval creates a synergistic effect that neither approach achieves independently, establishing CID-GraphRAG as an effective framework for addressing the challenges of maintaining contextual coherence and goal-oriented progression in knowledge-intensive multi-turn dialogues.
☆ Evolutionary Level Repair
We address the problem of game level repair, which consists of taking a designed but non-functional game level and making it functional. This might consist of ensuring the completeness of the level, reachability of objects, or other performance characteristics. The repair problem may also be constrained in that it can only make a small number of changes to the level. We investigate search-based solutions to the level repair problem, particularly using evolutionary and quality-diversity algorithms, with good results. This level repair method is applied to levels generated using a machine learning-based procedural content generation (PCGML) method that generates stylistically appropriate but frequently broken levels. This combination of PCGML for generation and search-based methods for repair shows great promise as a hybrid procedural content generation (PCG) method.
☆ From High-SNR Radar Signal to ECG: A Transfer Learning Model with Cardio-Focusing Algorithm for Scenarios with Limited Data
Electrocardiogram (ECG), as a crucial find-grained cardiac feature, has been successfully recovered from radar signals in the literature, but the performance heavily relies on the high-quality radar signal and numerous radar-ECG pairs for training, restricting the applications in new scenarios due to data scarcity. Therefore, this work will focus on radar-based ECG recovery in new scenarios with limited data and propose a cardio-focusing and -tracking (CFT) algorithm to precisely track the cardiac location to ensure an efficient acquisition of high-quality radar signals. Furthermore, a transfer learning model (RFcardi) is proposed to extract cardio-related information from the radar signal without ECG ground truth based on the intrinsic sparsity of cardiac features, and only a few synchronous radar-ECG pairs are required to fine-tune the pre-trained model for the ECG recovery. The experimental results reveal that the proposed CFT can dynamically identify the cardiac location, and the RFcardi model can effectively generate faithful ECG recoveries after using a small number of radar-ECG pairs for training. The code and dataset are available after the publication.
☆ Spotting Out-of-Character Behavior: Atomic-Level Evaluation of Persona Fidelity in Open-Ended Generation ACL 2025
Ensuring persona fidelity in large language models (LLMs) is essential for maintaining coherent and engaging human-AI interactions. However, LLMs often exhibit Out-of-Character (OOC) behavior, where generated responses deviate from an assigned persona, leading to inconsistencies that affect model reliability. Existing evaluation methods typically assign single scores to entire responses, struggling to capture subtle persona misalignment, particularly in long-form text generation. To address this limitation, we propose an atomic-level evaluation framework that quantifies persona fidelity at a finer granularity. Our three key metrics measure the degree of persona alignment and consistency within and across generations. Our approach enables a more precise and realistic assessment of persona fidelity by identifying subtle deviations that real users would encounter. Through our experiments, we demonstrate that our framework effectively detects persona inconsistencies that prior methods overlook. By analyzing persona fidelity across diverse tasks and personality types, we reveal how task structure and persona desirability influence model adaptability, highlighting challenges in maintaining consistent persona expression.
comment: Findings of ACL 2025; github repo: https://github.com/ddindidu/atomic-persona-evaluation/
☆ In-Context Occam's Razor: How Transformers Prefer Simpler Hypotheses on the Fly
In-context learning (ICL) enables transformers to adapt to new tasks through contextual examples without parameter updates. While existing research has typically studied ICL in fixed-complexity environments, practical language models encounter tasks spanning diverse complexity levels. This paper investigates how transformers navigate hierarchical task structures where higher-complexity categories can perfectly represent any pattern generated by simpler ones. We design well-controlled testbeds based on Markov chains and linear regression that reveal transformers not only identify the appropriate complexity level for each task but also accurately infer the corresponding parameters--even when the in-context examples are compatible with multiple complexity hypotheses. Notably, when presented with data generated by simpler processes, transformers consistently favor the least complex sufficient explanation. We theoretically explain this behavior through a Bayesian framework, demonstrating that transformers effectively implement an in-context Bayesian Occam's razor by balancing model fit against complexity penalties. We further ablate on the roles of model size, training mixture distribution, inference context length, and architecture. Finally, we validate this Occam's razor-like inductive bias on a pretrained GPT-4 model with Boolean-function tasks as case study, suggesting it may be inherent to transformers trained on diverse task distributions.
comment: 28 pages, 19 figures
☆ Discrepancy-Aware Graph Mask Auto-Encoder
Masked Graph Auto-Encoder, a powerful graph self-supervised training paradigm, has recently shown superior performance in graph representation learning. Existing works typically rely on node contextual information to recover the masked information. However, they fail to generalize well to heterophilic graphs where connected nodes may be not similar, because they focus only on capturing the neighborhood information and ignoring the discrepancy information between different nodes, resulting in indistinguishable node representations. In this paper, to address this issue, we propose a Discrepancy-Aware Graph Mask Auto-Encoder (DGMAE). It obtains more distinguishable node representations by reconstructing the discrepancy information of neighboring nodes during the masking process. We conduct extensive experiments on 17 widely-used benchmark datasets. The results show that our DGMAE can effectively preserve the discrepancies of nodes in low-dimensional space. Moreover, DGMAE significantly outperforms state-of-the-art graph self-supervised learning methods on three graph analytic including tasks node classification, node clustering, and graph classification, demonstrating its remarkable superiority. The code of DGMAE is available at https://github.com/zhengziyu77/DGMAE.
☆ Unlocking Insights Addressing Alcohol Inference Mismatch through Database-Narrative Alignment
Road traffic crashes are a significant global cause of fatalities, emphasizing the urgent need for accurate crash data to enhance prevention strategies and inform policy development. This study addresses the challenge of alcohol inference mismatch (AIM) by employing database narrative alignment to identify AIM in crash data. A framework was developed to improve data quality in crash management systems and reduce the percentage of AIM crashes. Utilizing the BERT model, the analysis of 371,062 crash records from Iowa (2016-2022) revealed 2,767 AIM incidents, resulting in an overall AIM percentage of 24.03%. Statistical tools, including the Probit Logit model, were used to explore the crash characteristics affecting AIM patterns. The findings indicate that alcohol-related fatal crashes and nighttime incidents have a lower percentage of the mismatch, while crashes involving unknown vehicle types and older drivers are more susceptible to mismatch. The geospatial cluster as part of this study can identify the regions which have an increased need for education and training. These insights highlight the necessity for targeted training programs and data management teams to improve the accuracy of crash reporting and support evidence-based policymaking.
☆ FEAT: A Preference Feedback Dataset through a Cost-Effective Auto-Generation and Labeling Framework for English AI Tutoring ACL 2025
In English education tutoring, teacher feedback is essential for guiding students. Recently, AI-based tutoring systems have emerged to assist teachers; however, these systems require high-quality and large-scale teacher feedback data, which is both time-consuming and costly to generate manually. In this study, we propose FEAT, a cost-effective framework for generating teacher feedback, and have constructed three complementary datasets: (1) DIRECT-Manual (DM), where both humans and large language models (LLMs) collaboratively generate high-quality teacher feedback, albeit at a higher cost; (2) DIRECT-Generated (DG), an LLM-only generated, cost-effective dataset with lower quality;, and (3) DIRECT-Augmented (DA), primarily based on DG with a small portion of DM added to enhance quality while maintaining cost-efficiency. Experimental results showed that incorporating a small portion of DM (5-10%) into DG leads to superior performance compared to using 100% DM alone.
comment: ACL 2025 (Short)
☆ JCAPT: A Joint Modeling Approach for CAPT ISCA
Effective pronunciation feedback is critical in second language (L2) learning, for which computer-assisted pronunciation training (CAPT) systems often encompass two key tasks: automatic pronunciation assessment (APA) and mispronunciation detection and diagnosis (MDD). Recent work has shown that joint modeling of these two tasks can yield mutual benefits. Our unified framework leverages Mamba, a selective state space model (SSM), while integrating phonological features and think token strategies to jointly enhance interpretability and fine-grained temporal reasoning in APA and MDD. To our knowledge, this is the first study to combine phonological attribution, SSM-based modeling, and prompting in CAPT. A series of experiments conducted on the speechocean762 benchmark demonstrate that our model consistently outperforms prior methods, particularly on the MDD task.
comment: Submitted to the ISCA SLaTE-2025 Workshop
☆ Capturing Fine-Grained Alignments Improves 3D Affordance Detection
In this work, we address the challenge of affordance detection in 3D point clouds, a task that requires effectively capturing fine-grained alignments between point clouds and text. Existing methods often struggle to model such alignments, resulting in limited performance on standard benchmarks. A key limitation of these approaches is their reliance on simple cosine similarity between point cloud and text embeddings, which lacks the expressiveness needed for fine-grained reasoning. To address this limitation, we propose LM-AD, a novel method for affordance detection in 3D point clouds. Moreover, we introduce the Affordance Query Module (AQM), which efficiently captures fine-grained alignment between point clouds and text by leveraging a pretrained language model. We demonstrated that our method outperformed existing approaches in terms of accuracy and mean Intersection over Union on the 3D AffordanceNet dataset.
comment: MVA 2025 (Oral)
☆ Skywork-SWE: Unveiling Data Scaling Laws for Software Engineering in LLMs
Software engineering (SWE) has recently emerged as a crucial testbed for next-generation LLM agents, demanding inherent capabilities in two critical dimensions: sustained iterative problem-solving (e.g., >50 interaction rounds) and long-context dependency resolution (e.g., >32k tokens). However, the data curation process in SWE remains notoriously time-consuming, as it heavily relies on manual annotation for code file filtering and the setup of dedicated runtime environments to execute and validate unit tests. Consequently, most existing datasets are limited to only a few thousand GitHub-sourced instances. To this end, we propose an incremental, automated data-curation pipeline that systematically scales both the volume and diversity of SWE datasets. Our dataset comprises 10,169 real-world Python task instances from 2,531 distinct GitHub repositories, each accompanied by a task specified in natural language and a dedicated runtime-environment image for automated unit-test validation. We have carefully curated over 8,000 successfully runtime-validated training trajectories from our proposed SWE dataset. When fine-tuning the Skywork-SWE model on these trajectories, we uncover a striking data scaling phenomenon: the trained model's performance for software engineering capabilities in LLMs continues to improve as the data size increases, showing no signs of saturation. Notably, our Skywork-SWE model achieves 38.0% pass@1 accuracy on the SWE-bench Verified benchmark without using verifiers or multiple rollouts, establishing a new state-of-the-art (SOTA) among the Qwen2.5-Coder-32B-based LLMs built on the OpenHands agent framework. Furthermore, with the incorporation of test-time scaling techniques, the performance further improves to 47.0% accuracy, surpassing the previous SOTA results for sub-32B parameter models. We release the Skywork-SWE-32B model checkpoint to accelerate future research.
☆ AirV2X: Unified Air-Ground Vehicle-to-Everything Collaboration
While multi-vehicular collaborative driving demonstrates clear advantages over single-vehicle autonomy, traditional infrastructure-based V2X systems remain constrained by substantial deployment costs and the creation of "uncovered danger zones" in rural and suburban areas. We present AirV2X-Perception, a large-scale dataset that leverages Unmanned Aerial Vehicles (UAVs) as a flexible alternative or complement to fixed Road-Side Units (RSUs). Drones offer unique advantages over ground-based perception: complementary bird's-eye-views that reduce occlusions, dynamic positioning capabilities that enable hovering, patrolling, and escorting navigation rules, and significantly lower deployment costs compared to fixed infrastructure. Our dataset comprises 6.73 hours of drone-assisted driving scenarios across urban, suburban, and rural environments with varied weather and lighting conditions. The AirV2X-Perception dataset facilitates the development and standardized evaluation of Vehicle-to-Drone (V2D) algorithms, addressing a critical gap in the rapidly expanding field of aerial-assisted autonomous driving systems. The dataset and development kits are open-sourced at https://github.com/taco-group/AirV2X-Perception.
☆ Emotion Detection on User Front-Facing App Interfaces for Enhanced Schedule Optimization: A Machine Learning Approach
Human-Computer Interaction (HCI) has evolved significantly to incorporate emotion recognition capabilities, creating unprecedented opportunities for adaptive and personalized user experiences. This paper explores the integration of emotion detection into calendar applications, enabling user interfaces to dynamically respond to users' emotional states and stress levels, thereby enhancing both productivity and engagement. We present and evaluate two complementary approaches to emotion detection: a biometric-based method utilizing heart rate (HR) data extracted from electrocardiogram (ECG) signals processed through Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) neural networks to predict the emotional dimensions of Valence, Arousal, and Dominance; and a behavioral method analyzing computer activity through multiple machine learning models to classify emotions based on fine-grained user interactions such as mouse movements, clicks, and keystroke patterns. Our comparative analysis, from real-world datasets, reveals that while both approaches demonstrate effectiveness, the computer activity-based method delivers superior consistency and accuracy, particularly for mouse-related interactions, which achieved approximately 90\% accuracy. Furthermore, GRU networks outperformed LSTM models in the biometric approach, with Valence prediction reaching 84.38\% accuracy.
☆ EmoStage: A Framework for Accurate Empathetic Response Generation via Perspective-Taking and Phase Recognition
The rising demand for mental health care has fueled interest in AI-driven counseling systems. While large language models (LLMs) offer significant potential, current approaches face challenges, including limited understanding of clients' psychological states and counseling stages, reliance on high-quality training data, and privacy concerns associated with commercial deployment. To address these issues, we propose EmoStage, a framework that enhances empathetic response generation by leveraging the inference capabilities of open-source LLMs without additional training data. Our framework introduces perspective-taking to infer clients' psychological states and support needs, enabling the generation of emotionally resonant responses. In addition, phase recognition is incorporated to ensure alignment with the counseling process and to prevent contextually inappropriate or inopportune responses. Experiments conducted in both Japanese and Chinese counseling settings demonstrate that EmoStage improves the quality of responses generated by base models and performs competitively with data-driven methods.
☆ Enhancing Generalization of Spiking Neural Networks Through Temporal Regularization
Spiking Neural Networks (SNNs) have received widespread attention due to their event-driven and low-power characteristics, making them particularly effective for processing event-based neuromorphic data. Recent studies have shown that directly trained SNNs suffer from severe overfitting issues due to the limited scale of neuromorphic datasets and the gradient mismatching problem, which fundamentally constrain their generalization performance. In this paper, we propose a temporal regularization training (TRT) method by introducing a time-dependent regularization mechanism to enforce stronger constraints on early timesteps. We compare the performance of TRT with other state-of-the-art methods performance on datasets including CIFAR10/100, ImageNet100, DVS-CIFAR10, and N-Caltech101. To validate the effectiveness of TRT, we conducted ablation studies and analyses including loss landscape visualization and learning curve analysis, demonstrating that TRT can effectively mitigate overfitting and flatten the training loss landscape, thereby enhancing generalizability. Furthermore, we establish a theoretical interpretation of TRT's temporal regularization mechanism based on the results of Fisher information analysis. We analyze the temporal information dynamics inside SNNs by tracking Fisher information during the TRT training process, revealing the Temporal Information Concentration (TIC) phenomenon, where Fisher information progressively concentrates in early timesteps. The time-decaying regularization mechanism implemented in TRT effectively guides the network to learn robust features in early timesteps with rich information, thereby leading to significant improvements in model generalization. Code is available at https://github.com/ZBX05/Temporal-Regularization-Training.
comment: Code is available at https://github.com/ZBX05/Temporal-Regularization-Training
☆ Robust Behavior Cloning Via Global Lipschitz Regularization
Behavior Cloning (BC) is an effective imitation learning technique and has even been adopted in some safety-critical domains such as autonomous vehicles. BC trains a policy to mimic the behavior of an expert by using a dataset composed of only state-action pairs demonstrated by the expert, without any additional interaction with the environment. However, During deployment, the policy observations may contain measurement errors or adversarial disturbances. Since the observations may deviate from the true states, they can mislead the agent into making sub-optimal actions. In this work, we use a global Lipschitz regularization approach to enhance the robustness of the learned policy network. We then show that the resulting global Lipschitz property provides a robustness certificate to the policy with respect to different bounded norm perturbations. Then, we propose a way to construct a Lipschitz neural network that ensures the policy robustness. We empirically validate our theory across various environments in Gymnasium. Keywords: Robust Reinforcement Learning; Behavior Cloning; Lipschitz Neural Network
☆ RecLLM-R1: A Two-Stage Training Paradigm with Reinforcement Learning and Chain-of-Thought v1
Traditional recommendation systems often grapple with "filter bubbles", underutilization of external knowledge, and a disconnect between model optimization and business policy iteration. To address these limitations, this paper introduces RecLLM-R1, a novel recommendation framework leveraging Large Language Models (LLMs) and drawing inspiration from the DeepSeek R1 methodology. The framework initiates by transforming user profiles, historical interactions, and multi-faceted item attributes into LLM-interpretable natural language prompts through a carefully engineered data construction process. Subsequently, a two-stage training paradigm is employed: the initial stage involves Supervised Fine-Tuning (SFT) to imbue the LLM with fundamental recommendation capabilities. The subsequent stage utilizes Group Relative Policy Optimization (GRPO), a reinforcement learning technique, augmented with a Chain-of-Thought (CoT) mechanism. This stage guides the model through multi-step reasoning and holistic decision-making via a flexibly defined reward function, aiming to concurrently optimize recommendation accuracy, diversity, and other bespoke business objectives. Empirical evaluations on a real-world user behavior dataset from a large-scale social media platform demonstrate that RecLLM-R1 significantly surpasses existing baseline methods across a spectrum of evaluation metrics, including accuracy, diversity, and novelty. It effectively mitigates the filter bubble effect and presents a promising avenue for the integrated optimization of recommendation models and policies under intricate business goals.
☆ Video-XL-2: Towards Very Long-Video Understanding Through Task-Aware KV Sparsification
Multi-modal large language models (MLLMs) models have made significant progress in video understanding over the past few years. However, processing long video inputs remains a major challenge due to high memory and computational costs. This makes it difficult for current models to achieve both strong performance and high efficiency in long video understanding. To address this challenge, we propose Video-XL-2, a novel MLLM that delivers superior cost-effectiveness for long-video understanding based on task-aware KV sparsification. The proposed framework operates with two key steps: chunk-based pre-filling and bi-level key-value decoding. Chunk-based pre-filling divides the visual token sequence into chunks, applying full attention within each chunk and sparse attention across chunks. This significantly reduces computational and memory overhead. During decoding, bi-level key-value decoding selectively reloads either dense or sparse key-values for each chunk based on its relevance to the task. This approach further improves memory efficiency and enhances the model's ability to capture fine-grained information. Video-XL-2 achieves state-of-the-art performance on various long video understanding benchmarks, outperforming existing open-source lightweight models. It also demonstrates exceptional efficiency, capable of processing over 10,000 frames on a single NVIDIA A100 (80GB) GPU and thousands of frames in just a few seconds.
comment: 12 pages, 5 Figure, 3 Table
☆ GBGC: Efficient and Adaptive Graph Coarsening via Granular-ball Computing
The objective of graph coarsening is to generate smaller, more manageable graphs while preserving key information of the original graph. Previous work were mainly based on the perspective of spectrum-preserving, using some predefined coarsening rules to make the eigenvalues of the Laplacian matrix of the original graph and the coarsened graph match as much as possible. However, they largely overlooked the fact that the original graph is composed of subregions at different levels of granularity, where highly connected and similar nodes should be more inclined to be aggregated together as nodes in the coarsened graph. By combining the multi-granularity characteristics of the graph structure, we can generate coarsened graph at the optimal granularity. To this end, inspired by the application of granular-ball computing in multi-granularity, we propose a new multi-granularity, efficient, and adaptive coarsening method via granular-ball (GBGC), which significantly improves the coarsening results and efficiency. Specifically, GBGC introduces an adaptive granular-ball graph refinement mechanism, which adaptively splits the original graph from coarse to fine into granular-balls of different sizes and optimal granularity, and constructs the coarsened graph using these granular-balls as supernodes. In addition, compared with other state-of-the-art graph coarsening methods, the processing speed of this method can be increased by tens to hundreds of times and has lower time complexity. The accuracy of GBGC is almost always higher than that of the original graph due to the good robustness and generalization of the granular-ball computing, so it has the potential to become a standard graph data preprocessing method.
☆ Private Model Personalization Revisited ICML 2025
We study model personalization under user-level differential privacy (DP) in the shared representation framework. In this problem, there are $n$ users whose data is statistically heterogeneous, and their optimal parameters share an unknown embedding $U^* \in\mathbb{R}^{d\times k}$ that maps the user parameters in $\mathbb{R}^d$ to low-dimensional representations in $\mathbb{R}^k$, where $k\ll d$. Our goal is to privately recover the shared embedding and the local low-dimensional representations with small excess risk in the federated setting. We propose a private, efficient federated learning algorithm to learn the shared embedding based on the FedRep algorithm in [CHM+21]. Unlike [CHM+21], our algorithm satisfies differential privacy, and our results hold for the case of noisy labels. In contrast to prior work on private model personalization [JRS+21], our utility guarantees hold under a larger class of users' distributions (sub-Gaussian instead of Gaussian distributions). Additionally, in natural parameter regimes, we improve the privacy error term in [JRS+21] by a factor of $\widetilde{O}(dk)$. Next, we consider the binary classification setting. We present an information-theoretic construction to privately learn the shared embedding and derive a margin-based accuracy guarantee that is independent of $d$. Our method utilizes the Johnson-Lindenstrauss transform to reduce the effective dimensions of the shared embedding and the users' data. This result shows that dimension-independent risk bounds are possible in this setting under a margin loss.
comment: ICML 2025
☆ MedErr-CT: A Visual Question Answering Benchmark for Identifying and Correcting Errors in CT Reports CVPR 2025
Computed Tomography (CT) plays a crucial role in clinical diagnosis, but the growing demand for CT examinations has raised concerns about diagnostic errors. While Multimodal Large Language Models (MLLMs) demonstrate promising comprehension of medical knowledge, their tendency to produce inaccurate information highlights the need for rigorous validation. However, existing medical visual question answering (VQA) benchmarks primarily focus on simple visual recognition tasks, lacking clinical relevance and failing to assess expert-level knowledge. We introduce MedErr-CT, a novel benchmark for evaluating medical MLLMs' ability to identify and correct errors in CT reports through a VQA framework. The benchmark includes six error categories - four vision-centric errors (Omission, Insertion, Direction, Size) and two lexical error types (Unit, Typo) - and is organized into three task levels: classification, detection, and correction. Using this benchmark, we quantitatively assess the performance of state-of-the-art 3D medical MLLMs, revealing substantial variation in their capabilities across different error types. Our benchmark contributes to the development of more reliable and clinically applicable MLLMs, ultimately helping reduce diagnostic errors and improve accuracy in clinical practice. The code and datasets are available at https://github.com/babbu3682/MedErr-CT.
comment: 14 pages, 5 figures, submitted to CVPR 2025
♻ ☆ jina-embeddings-v4: Universal Embeddings for Multimodal Multilingual Retrieval
We introduce jina-embeddings-v4, a 3.8 billion parameter multimodal embedding model that unifies text and image representations through a novel architecture supporting both single-vector and multi-vector embeddings in the late interaction style. The model incorporates task-specific Low-Rank Adaptation (LoRA) adapters to optimize performance across diverse retrieval scenarios, including query-document retrieval, semantic text similarity, and code search. Comprehensive evaluations demonstrate that jina-embeddings-v4 achieves state-of-the-art performance on both single-modal and cross-modal retrieval tasks, with particular strength in processing visually rich content such as tables, charts, diagrams, and mixed-media formats. To facilitate evaluation of this capability, we also introduce Jina-VDR, a novel benchmark specifically designed for visually rich image retrieval.
comment: 22 pages, 1-10 main, 14-22 experimental results, benchmark tables
♻ ☆ MOST: MR reconstruction Optimization for multiple downStream Tasks via continual learning
Deep learning-based Magnetic Resonance (MR) reconstruction methods have focused on generating high-quality images but often overlook the impact on downstream tasks (e.g., segmentation) that utilize the reconstructed images. Cascading separately trained reconstruction network and downstream task network has been shown to introduce performance degradation due to error propagation and domain gaps between training datasets. To mitigate this issue, downstream task-oriented reconstruction optimization has been proposed for a single downstream task. Expanding this optimization to multi-task scenarios is not straightforward. In this work, we extended this optimization to sequentially introduced multiple downstream tasks and demonstrated that a single MR reconstruction network can be optimized for multiple downstream tasks by deploying continual learning (MOST). MOST integrated techniques from replay-based continual learning and image-guided loss to overcome catastrophic forgetting. Comparative experiments demonstrated that MOST outperformed a reconstruction network without finetuning, a reconstruction network with na\"ive finetuning, and conventional continual learning methods. The source code is available at: https://github.com/SNU-LIST/MOST.
♻ ☆ ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation
Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, an emerging issue is their inclination to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint (manually designed or trained on the concise data) during the token generation of the reasoning process. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well. For instance, we achieve a reduction ratio of 65\% for the reasoning length on GSM8K benchmark with Qwen-3 4B with nearly no accuracy loss.
comment: Codes are available at https://github.com/tsa18/ConciseHint
♻ ☆ MuseControlLite: Multifunctional Music Generation with Lightweight Conditioners ICML 2025
We propose MuseControlLite, a lightweight mechanism designed to fine-tune text-to-music generation models for precise conditioning using various time-varying musical attributes and reference audio signals. The key finding is that positional embeddings, which have been seldom used by text-to-music generation models in the conditioner for text conditions, are critical when the condition of interest is a function of time. Using melody control as an example, our experiments show that simply adding rotary positional embeddings to the decoupled cross-attention layers increases control accuracy from 56.6% to 61.1%, while requiring 6.75 times fewer trainable parameters than state-of-the-art fine-tuning mechanisms, using the same pre-trained diffusion Transformer model of Stable Audio Open. We evaluate various forms of musical attribute control, audio inpainting, and audio outpainting, demonstrating improved controllability over MusicGen-Large and Stable Audio Open ControlNet at a significantly lower fine-tuning cost, with only 85M trainble parameters. Source code, model checkpoints, and demo examples are available at: https://musecontrollite.github.io/web/.
comment: Accepted by the 42nd International Conference on Machine Learning (ICML 2025)
♻ ☆ Benchmarking the Pedagogical Knowledge of Large Language Models
Benchmarks like Massive Multitask Language Understanding (MMLU) have played a pivotal role in evaluating AI's knowledge and abilities across diverse domains. However, existing benchmarks predominantly focus on content knowledge, leaving a critical gap in assessing models' understanding of pedagogy - the method and practice of teaching. This paper introduces The Pedagogy Benchmark, a novel dataset designed to evaluate large language models on their Cross-Domain Pedagogical Knowledge (CDPK) and Special Education Needs and Disability (SEND) pedagogical knowledge. These benchmarks are built on a carefully curated set of questions sourced from professional development exams for teachers, which cover a range of pedagogical subdomains such as teaching strategies and assessment methods. Here we outline the methodology and development of these benchmarks. We report results for 97 models, with accuracies spanning a range from 28% to 89% on the pedagogical knowledge questions. We consider the relationship between cost and accuracy and chart the progression of the Pareto value frontier over time. We provide online leaderboards at https://rebrand.ly/pedagogy which are updated with new models and allow interactive exploration and filtering based on various model properties, such as cost per token and open-vs-closed weights, as well as looking at performance in different subjects. LLMs and generative AI have tremendous potential to influence education and help to address the global learning crisis. Education-focused benchmarks are crucial to measure models' capacities to understand pedagogical concepts, respond appropriately to learners' needs, and support effective teaching practices across diverse contexts. They are needed for informing the responsible and evidence-based deployment of LLMs and LLM-based tools in educational settings, and for guiding both development and policy decisions.
♻ ☆ ReDit: Reward Dithering for Improved LLM Policy Optimization
DeepSeek-R1 has successfully enhanced Large Language Model (LLM) reasoning capabilities through its rule-based reward system. While it's a ''perfect'' reward system that effectively mitigates reward hacking, such reward functions are often discrete. Our experimental observations suggest that discrete rewards can lead to gradient anomaly, unstable optimization, and slow convergence. To address this issue, we propose ReDit (Reward Dithering), a method that dithers the discrete reward signal by adding simple random noise. With this perturbed reward, exploratory gradients are continuously provided throughout the learning process, enabling smoother gradient updates and accelerating convergence. The injected noise also introduces stochasticity into flat reward regions, encouraging the model to explore novel policies and escape local optima. Experiments across diverse tasks demonstrate the effectiveness and efficiency of ReDit. On average, ReDit achieves performance comparable to vanilla GRPO with only approximately 10% the training steps, and furthermore, still exhibits a 4% performance improvement over vanilla GRPO when trained for a similar duration. Visualizations confirm significant mitigation of gradient issues with ReDit. Moreover, theoretical analyses are provided to further validate these advantages.
comment: 10 pages, 15 figures
♻ ☆ Lemmanaid: Neuro-Symbolic Lemma Conjecturing
Automatically conjecturing useful, interesting and novel lemmas would greatly improve automated reasoning tools and lower the bar for formalizing mathematics in proof assistants. It is however a very challenging task for both neural and symbolic approaches. We present the first steps towards a practical neuro-symbolic lemma conjecturing tool, Lemmanaid, that combines Large Language Models (LLMs) and symbolic methods, and evaluate it on proof libraries for the Isabelle proof assistant. We train an LLM to generate lemma templates that describe the shape of a lemma, and use symbolic methods to fill in the details. We compare Lemmanaid against an LLM trained to generate complete lemma statements as well as previous fully symbolic conjecturing methods. Lemmanaid outperforms both neural and symbolic methods on test sets from Isabelle's HOL library and from its Archive of Formal Proofs, discovering between 29-39.5% of the gold standard human written lemmas. This is 8-15% more lemmas than the neural-only method. By leveraging the best of both symbolic and neural methods we can generate useful lemmas for a wide range of input domains, facilitating computer-assisted theory development and formalization.
♻ ☆ MCP-Zero: Active Tool Discovery for Autonomous LLM Agents
True intelligence requires active capability acquisition, yet current LLM agents inject pre-defined tool schemas into prompts, reducing models to passive selectors and falling short of robust general-purpose agency. We introduce MCP-Zero, an active agent framework that restores tool discovery autonomy to LLMs themselves. Instead of overwhelming models with all available tools, MCP-Zero enables agents to actively identify capability gaps, and request specific tools on-demand, transforming them from large-scale retrievers into genuine autonomous agents. The framework operates through three core mechanisms: (1) Active Tool Request, where models autonomously generate structured requests specifying their exact tool requirements; (2) Hierarchical Semantic Routing, a two-stage algorithm that matches requests to relevant servers and tools through improved semantic alignment; (3) Iterative Capability Extension, enabling agents to progressively build cross-domain toolchains while maintaining minimal context footprint. We construct MCP-tools, a comprehensive dataset of 308 MCP servers and 2,797 tools from the official Model-Context-Protocol repository. Experiments demonstrate that MCP-Zero preserves agent autonomy while achieving substantial efficiency gains: (i) accurate tool selection from nearly 3k candidates across 248.1k tokens; (ii) 98\% reduction in token consumption on APIBank while maintaining high accuracy; and (iii) consistent multi-turn performance that scales with tool ecosystem growth. This work establishes active tool discovery as a fundamental design pattern for scalable autonomous agent systems.
♻ ☆ Multimodal Fusion SLAM with Fourier Attention RAL
Visual SLAM is particularly challenging in environments affected by noise, varying lighting conditions, and darkness. Learning-based optical flow algorithms can leverage multiple modalities to address these challenges, but traditional optical flow-based visual SLAM approaches often require significant computational resources.To overcome this limitation, we propose FMF-SLAM, an efficient multimodal fusion SLAM method that utilizes fast Fourier transform (FFT) to enhance the algorithm efficiency. Specifically, we introduce a novel Fourier-based self-attention and cross-attention mechanism to extract features from RGB and depth signals. We further enhance the interaction of multimodal features by incorporating multi-scale knowledge distillation across modalities. We also demonstrate the practical feasibility of FMF-SLAM in real-world scenarios with real time performance by integrating it with a security robot by fusing with a global positioning module GNSS-RTK and global Bundle Adjustment. Our approach is validated using video sequences from TUM, TartanAir, and our real-world datasets, showcasing state-of-the-art performance under noisy, varying lighting, and dark conditions.Our code and datasets are available at https://github.com/youjie-zhou/FMF-SLAM.git.
comment: Accepted in IEEE RAL
♻ ☆ Understanding Reasoning in Thinking Language Models via Steering Vectors
Recent advances in large language models (LLMs) have led to the development of thinking language models that generate extensive internal reasoning chains before producing responses. While these models achieve improved performance, controlling their reasoning processes remains challenging. This work presents a steering approach for thinking LLMs by analyzing and manipulating specific reasoning behaviors in DeepSeek-R1-Distill models. Through a systematic experiment on 500 tasks across 10 diverse categories, we identify several reasoning behaviors exhibited by thinking models, including expressing uncertainty, generating examples for hypothesis validation, and backtracking in reasoning chains. We demonstrate that these behaviors are mediated by linear directions in the model's activation space and can be controlled using steering vectors. By extracting and applying these vectors, we provide a method to modulate specific aspects of the model's reasoning process, such as its tendency to backtrack or express uncertainty. Our approach offers practical tools for steering reasoning processes in thinking models in a controlled and interpretable manner. We validate our steering method using three DeepSeek-R1-Distill models, demonstrating consistent control across different model architectures.
♻ ☆ Rich Interoperable Metadata for Cultural Heritage Projects at Jagiellonian University
The rich metadata created nowadays for objects stored in libraries has nowhere to be stored, because core standards, namely MARC 21 and Dublin Core, are not flexible enough. The aim of this paper is to summarize our work-in-progress on tackling this problem in research on cultural heritage objects at the Jagiellonian University (JU). We compared the objects' metadata currently being collected at the JU (with examples of manuscript, placard, and obituary) with five widespread metadata standards used by the cultural heritage community: Dublin Core, EAD, MODS, EDM and Digital Scriptorium. Our preliminary results showed that mapping between them is indeed problematic, but we identified requirements that should be followed in further work on the JU cultural heritage metadata schema in order to achieve maximum interoperability. As we move forward, based on the successive versions of the conceptual model, we will conduct experiments to validate the practical feasibility of these mappings and the degree to which the proposed model will actually enable integration with data in these various metadata formats.
comment: 10 pages; submitted to TPLD 2025; change in v2: heavily rewritten, new content added; change in v3: updated e-mail address
♻ ☆ Large language models for automated scholarly paper review: A survey
Large language models (LLMs) have significantly impacted human society, influencing various domains. Among them, academia is not simply a domain affected by LLMs, but it is also the pivotal force in the development of LLMs. In academic publication, this phenomenon is represented during the incorporation of LLMs into the peer review mechanism for reviewing manuscripts. LLMs hold transformative potential for the full-scale implementation of automated scholarly paper review (ASPR), but they also pose new issues and challenges that need to be addressed. In this survey paper, we aim to provide a holistic view of ASPR in the era of LLMs. We begin with a survey to find out which LLMs are used to conduct ASPR. Then, we review what ASPR-related technological bottlenecks have been solved with the incorporation of LLM technology. After that, we move on to explore new methods, new datasets, new source code, and new online systems that come with LLMs for ASPR. Furthermore, we summarize the performance and issues of LLMs in ASPR, and investigate the attitudes and reactions of publishers and academia to ASPR. Lastly, we discuss the challenges and future directions associated with the development of LLMs for ASPR. This survey serves as an inspirational reference for the researchers and can promote the progress of ASPR for its actual implementation.
comment: Please cite the version of Information Fusion
♻ ☆ Interrogating AI: Characterizing Emergent Playful Interactions with ChatGPT SC
In an era of AI's growing capabilities and influences, recent advancements are reshaping HCI and CSCW's view of AI. Playful interactions emerged as an important way for users to make sense of the ever-changing AI technologies, yet remained underexamined. We target this gap by investigating playful interactions exhibited by users of a popular AI technology, ChatGPT. Through a thematic analysis of 372 user-generated posts on the ChatGPT subreddit, we found that more than half (54\%) of user discourse revolved around playful interactions. The analysis further allowed us to construct a preliminary framework to describe these interactions, categorizing them into six types: reflecting, jesting, imitating, challenging, tricking, and contriving; each included sub-categories. This study contributes to HCI and CSCW by identifying the diverse ways users engage in playful interactions with AI. It examines how these interactions can help users understand AI's agency, shape human-AI relationships, and provide insights for designing AI systems.
comment: Accepted to CSCW 2025; 23 pages
♻ ☆ "I know myself better, but not really greatly": How Well Can LLMs Detect and Explain LLM-Generated Texts?
Distinguishing between human- and LLM-generated texts is crucial given the risks associated with misuse of LLMs. This paper investigates detection and explanation capabilities of current LLMs across two settings: binary (human vs. LLM-generated) and ternary classification (including an ``undecided'' class). We evaluate 6 close- and open-source LLMs of varying sizes and find that self-detection (LLMs identifying their own outputs) consistently outperforms cross-detection (identifying outputs from other LLMs), though both remain suboptimal. Introducing a ternary classification framework improves both detection accuracy and explanation quality across all models. Through comprehensive quantitative and qualitative analyses using our human-annotated dataset, we identify key explanation failures, primarily reliance on inaccurate features, hallucinations, and flawed reasoning. Our findings underscore the limitations of current LLMs in self-detection and self-explanation, highlighting the need for further research to address overfitting and enhance generalizability.
comment: Under review
♻ ☆ ASR-enhanced Multimodal Representation Learning for Cross-Domain Product Retrieval
E-commerce is increasingly multimedia-enriched, with products exhibited in a broad-domain manner as images, short videos, or live stream promotions. A unified and vectorized cross-domain production representation is essential. Due to large intra-product variance and high inter-product similarity in the broad-domain scenario, a visual-only representation is inadequate. While Automatic Speech Recognition (ASR) text derived from the short or live-stream videos is readily accessible, how to de-noise the excessively noisy text for multimodal representation learning is mostly untouched. We propose ASR-enhanced Multimodal Product Representation Learning (AMPere). In order to extract product-specific information from the raw ASR text, AMPere uses an easy-to-implement LLM-based ASR text summarizer. The LLM-summarized text, together with visual data, is then fed into a multi-branch network to generate compact multimodal embeddings. Extensive experiments on a large-scale tri-domain dataset verify the effectiveness of AMPere in obtaining a unified multimodal product representation that clearly improves cross-domain product retrieval.
comment: accepted for publication as a REGULAR paper in the IEEE Transactions on Multimedia
♻ ☆ Detecting Machine-Generated Texts: Not Just "AI vs Humans" and Explainability is Complicated
As LLMs rapidly advance, increasing concerns arise regarding risks about actual authorship of texts we see online and in real world. The task of distinguishing LLM-authored texts is complicated by the nuanced and overlapping behaviors of both machines and humans. In this paper, we challenge the current practice of considering LLM-generated text detection a binary classification task of differentiating human from AI. Instead, we introduce a novel ternary text classification scheme, adding an "undecided" category for texts that could be attributed to either source, and we show that this new category is crucial to understand how to make the detection result more explainable to lay users. This research shifts the paradigm from merely classifying to explaining machine-generated texts, emphasizing need for detectors to provide clear and understandable explanations to users. Our study involves creating four new datasets comprised of texts from various LLMs and human authors. Based on new datasets, we performed binary classification tests to ascertain the most effective SOTA detection methods and identified SOTA LLMs capable of producing harder-to-detect texts. We constructed a new dataset of texts generated by two top-performing LLMs and human authors, and asked three human annotators to produce ternary labels with explanation notes. This dataset was used to investigate how three top-performing SOTA detectors behave in new ternary classification context. Our results highlight why "undecided" category is much needed from the viewpoint of explainability. Additionally, we conducted an analysis of explainability of the three best-performing detectors and the explanation notes of the human annotators, revealing insights about the complexity of explainable detection of machine-generated texts. Finally, we propose guidelines for developing future detection systems with improved explanatory power.
comment: 19 pages, 2 figures
♻ ☆ A Certified Proof Checker for Deep Neural Network Verification in Imandra
Recent advances in the verification of deep neural networks (DNNs) have opened the way for a broader usage of DNN verification technology in many application areas, including safety-critical ones. However, DNN verifiers are themselves complex programs that have been shown to be susceptible to errors and numerical imprecision; this, in turn, has raised the question of trust in DNN verifiers. One prominent attempt to address this issue is enhancing DNN verifiers with the capability of producing certificates of their results that are subject to independent algorithmic checking. While formulations of Marabou certificate checking already exist on top of the state-of-the-art DNN verifier Marabou, they are implemented in C++, and that code itself raises the question of trust (e.g., in the precision of floating point calculations or guarantees for implementation soundness). Here, we present an alternative implementation of the Marabou certificate checking in Imandra -- an industrial functional programming language and an interactive theorem prover (ITP) -- that allows us to obtain full proof of certificate correctness. The significance of the result is two-fold. Firstly, it gives stronger independent guarantees for Marabou proofs. Secondly, it opens the way for the wider adoption of DNN verifiers in interactive theorem proving in the same way as many ITPs already incorporate SMT solvers.
comment: Accepted at ITP 2025, Interactive Theorem Proving
♻ ☆ Local Look-Ahead Guidance via Verifier-in-the-Loop for Automated Theorem Proving ACL 2025
The most promising recent methods for AI reasoning require applying variants of reinforcement learning (RL) either on rolled out trajectories from the LLMs, even for the step-wise rewards, or large quantities of human-annotated trajectory data. The reliance on the rolled-out trajectory renders the compute cost and time prohibitively high. In particular, the correctness of a reasoning trajectory can typically only be judged at its completion, leading to sparse rewards in RL or requiring expensive synthetic data generation in expert iteration-like methods. In this work, we focus on the Automatic Theorem Proving (ATP) task and propose a novel verifier-in-the-loop design, which, unlike existing approaches that leverage feedback on the entire reasoning trajectory, employs an automated verifier to give intermediate feedback at each step of the reasoning process. Using Lean as the verifier, we empirically show that the step-by-step local verification produces a global improvement in the model's reasoning accuracy and efficiency.
comment: Accepted at the Findings of ACL 2025, Accepted at ICLR 2025 Workshop on Reasoning and Planning for Large Language Models
♻ ☆ AI-Assisted Transport of Radioactive Ion Beams
Beams of radioactive heavy ions allow researchers to study rare and unstable atomic nuclei, shedding light into the internal structure of exotic nuclei and on how chemical elements are formed in stars. However, the extraction and transport of radioactive beams rely on time-consuming expert-driven tuning methods, where hundreds of parameters are manually optimized. Here, we introduce a system that employs Artificial Intelligence (AI), specifically utilizing Bayesian Optimization, to assist in the transport process of radioactive beams. We apply our methodology to real-life scenarios showing advantages when compared with standard tuning methods. This AI-assisted approach can be extended to other radioactive beam facilities around the world to improve operational efficiency and enhance scientific output.
comment: 6 pages, 6 figures; Results section expanded. More references and DOI added
♻ ☆ HeurAgenix: Leveraging LLMs for Solving Complex Combinatorial Optimization Challenges
Heuristic algorithms play a vital role in solving combinatorial optimization (CO) problems, yet traditional designs depend heavily on manual expertise and struggle to generalize across diverse instances. We introduce \textbf{HeurAgenix}, a two-stage hyper-heuristic framework powered by large language models (LLMs) that first evolves heuristics and then selects among them automatically. In the heuristic evolution phase, HeurAgenix leverages an LLM to compare seed heuristic solutions with higher-quality solutions and extract reusable evolution strategies. During problem solving, it dynamically picks the most promising heuristic for each problem state, guided by the LLM's perception ability. For flexibility, this selector can be either a state-of-the-art LLM or a fine-tuned lightweight model with lower inference cost. To mitigate the scarcity of reliable supervision caused by CO complexity, we fine-tune the lightweight heuristic selector with a dual-reward mechanism that jointly exploits singals from selection preferences and state perception, enabling robust selection under noisy annotations. Extensive experiments on canonical benchmarks show that HeurAgenix not only outperforms existing LLM-based hyper-heuristics but also matches or exceeds specialized solvers. Code is available at https://github.com/microsoft/HeurAgenix.
comment: 27 pages,9 figures
♻ ☆ Language Model Re-rankers are Fooled by Lexical Similarities
Language model (LM) re-rankers are used to refine retrieval results for retrieval-augmented generation (RAG). They are more expensive than lexical matching methods like BM25 but assumed to better process semantic information and the relations between the query and the retrieved answers. To understand whether LM re-rankers always live up to this assumption, we evaluate 6 different LM re-rankers on the NQ, LitQA2 and DRUID datasets. Our results show that LM re-rankers struggle to outperform a simple BM25 baseline on DRUID. Leveraging a novel separation metric based on BM25 scores, we explain and identify re-ranker errors stemming from lexical dissimilarities. We also investigate different methods to improve LM re-ranker performance and find these methods mainly useful for NQ. Taken together, our work identifies and explains weaknesses of LM re-rankers and points to the need for more adversarial and realistic datasets for their evaluation.
comment: Accepted to FEVER 2025
♻ ☆ Multimodal Machine Learning in Mental Health: A Survey of Data, Algorithms, and Challenges
Multimodal machine learning (MML) is rapidly reshaping the way mental-health disorders are detected, characterized, and longitudinally monitored. Whereas early studies relied on isolated data streams -- such as speech, text, or wearable signals -- recent research has converged on architectures that integrate heterogeneous modalities to capture the rich, complex signatures of psychiatric conditions. This survey provides the first comprehensive, clinically grounded synthesis of MML for mental health. We (i) catalog 26 public datasets spanning audio, visual, physiological signals, and text modalities; (ii) systematically compare transformer, graph, and hybrid-based fusion strategies across 28 models, highlighting trends in representation learning and cross-modal alignment. Beyond summarizing current capabilities, we interrogate open challenges: data governance and privacy, demographic and intersectional fairness, evaluation explainability, and the complexity of mental health disorders in multimodal settings. By bridging methodological innovation with psychiatric utility, this survey aims to orient both ML researchers and mental-health practitioners toward the next generation of trustworthy, multimodal decision-support systems.
♻ ☆ AI-based Multimodal Biometrics for Detecting Smartphone Distractions: Application to Online Learning
This work investigates the use of multimodal biometrics to detect distractions caused by smartphone use during tasks that require sustained attention, with a focus on computer-based online learning. Although the methods are applicable to various domains, such as autonomous driving, we concentrate on the challenges learners face in maintaining engagement amid internal (e.g., motivation), system-related (e.g., course design) and contextual (e.g., smartphone use) factors. Traditional learning platforms often lack detailed behavioral data, but Multimodal Learning Analytics (MMLA) and biosensors provide new insights into learner attention. We propose an AI-based approach that leverages physiological signals and head pose data to detect phone use. Our results show that single biometric signals, such as brain waves or heart rate, offer limited accuracy, while head pose alone achieves 87%. A multimodal model combining all signals reaches 91% accuracy, highlighting the benefits of integration. We conclude by discussing the implications and limitations of deploying these models for real-time support in online learning environments.
comment: Accepted in EC-TEL25: 20th European Conference on Technology Enhanced Learning, Newcastle and Durham, UK, 15-19 September 2025
♻ ☆ ECG-SMART-NET: A Deep Learning Architecture for Precise ECG Diagnosis of Occlusion Myocardial Infarction
Objective: In this paper we develop and evaluate ECG-SMART-NET for occlusion myocardial infarction (OMI) identification. OMI is a severe form of heart attack characterized by complete blockage of one or more coronary arteries requiring immediate referral for cardiac catheterization to restore blood flow to the heart. Two thirds of OMI cases are difficult to visually identify from a 12-lead electrocardiogram (ECG) and can be potentially fatal if not identified quickly. Previous works on this topic are scarce, and current state-of-the-art evidence suggests both feature-based random forests and convolutional neural networks (CNNs) are promising approaches to improve ECG detection of OMI. Methods: While the ResNet architecture has been adapted for use with ECG recordings, it is not ideally suited to capture informative temporal features within each lead and the spatial concordance or discordance across leads. We propose a clinically informed modification of the ResNet-18 architecture. The model first learns temporal features through temporal convolutional layers with 1xk kernels followed by a spatial convolutional layer, after the residual blocks, with 12x1 kernels to learn spatial features. Results: ECG-SMART-NET was benchmarked against the original ResNet-18 and other state-of-the-art models on a multisite real-word clinical dataset that consists of 10,393 ECGs from 7,397 unique patients (rate of OMI =7.2%). ECG-SMART-NET outperformed other models in the classification of OMI with a test AUC of 0.953 [0.921, 0.978]. Conclusion and Significance: ECG-SMART-NET can outperform the state-of-the-art random forest for OMI prediction and is better suited for this task than the original ResNet-18 architecture.
comment: 9 pages, 7 figures, 6 tables
♻ ☆ Human-Centered Editable Speech-to-Sign-Language Generation via Streaming Conformer-Transformer and Resampling Hook
Existing end-to-end sign-language animation systems suffer from low naturalness, limited facial/body expressivity, and no user control. We propose a human-centered, real-time speech-to-sign animation framework that integrates (1) a streaming Conformer encoder with an autoregressive Transformer-MDN decoder for synchronized upper-body and facial motion generation, (2) a transparent, editable JSON intermediate representation empowering deaf users and experts to inspect and modify each sign segment, and (3) a human-in-the-loop optimization loop that refines the model based on user edits and ratings. Deployed on Unity3D, our system achieves a 13 ms average frame-inference time and a 103 ms end-to-end latency on an RTX 4070. Our key contributions include the design of a JSON-centric editing mechanism for fine-grained sign-level personalization and the first application of an MDN-based feedback loop for continuous model adaptation. This combination establishes a generalizable, explainable AI paradigm for user-adaptive, low-latency multimodal systems. In studies with 20 deaf signers and 5 professional interpreters, we observe a +13 point SUS improvement, 6.7 point reduction in cognitive load, and significant gains in naturalness and trust (p $<$ .001) over baselines. This work establishes a scalable, explainable AI paradigm for accessible sign-language technologies.
♻ ☆ KAG-Thinker: Interactive Thinking and Deep Reasoning in LLMs via Knowledge-Augmented Generation
In this paper, we introduce KAG-Thinker, which upgrade KAG to a multi-turn interactive thinking and deep reasoning framework powered by a dedicated parameter-light large language model (LLM). Our approach constructs a structured thinking process for solving complex problems, enhancing the the logical coherence and contextual consistency of the reasoning process in question-answering (Q&A) tasks on domain-specific knowledge bases (KBs) within LLMs. Following the \textbf{Logical Form} guided retrieval and reasoning technology route of KAG, this framework first decomposes complex questions into independently solvable sub-problems (which are also referred to as logical forms) through \textbf{breadth decomposition}. Each such logical form is represented in two equivalent forms-natural language and logical function-and subsequently classified as either a Knowledge Retrieval or Reasoning Analysis task. Dependencies and parameter passing between these tasks are explicitly modeled via logical function interfaces. In the solving process, the Retrieval function performs retrieval tasks. It retrieves one-hop structured and unstructured information of specified knowledge unit. While the Math and Deduce functions are used to perform reasoning analysis tasks. Secondly, it is worth noting that, in the Knowledge Retrieval sub-problem tasks, LLMs and external knowledge sources are regarded as equivalent KBs. We use the \textbf{knowledge boundary} module to determine the optimal source using self-regulatory mechanisms such as confidence calibration and reflective reasoning, and use the \textbf{depth solving} module to enhance the comprehensiveness of knowledge acquisition...
♻ ☆ ChatSR: Multimodal Large Language Models for Scientific Formula Discovery
Formulas are the language of communication between humans and nature. The discovery of formulas to describe natural laws from observational data is the purpose of scientific research. It is also an important research topic in artificial intelligence, which is called a symbolic regression problem. Most of the existing symbolic regression methods generate expressions directly from observed data. Although in some methods, we can inject some prior knowledge into the model by adding constraints or introducing some special character hints. However, these methods can only introduce a limited amount of prior knowledge specified in advance. Not to mention understanding natural language instructions. In this article, based on the powerful knowledge reserve and language understanding ability of multi-modal large language models, we present ChatSR, which acts like a knowledgeable human scientist, and we can tell it any prior knowledge through natural language to guide it in formula generation. By testing on 13 datasets, ChatSR not only shows state-of-the-art performance on traditional symbolic regression tasks. More notably, ChatSR can well understand the prior knowledge contained in natural language prompts and improve the quality of generated expressions. In addition, it is exciting that ChatSR has a good zero-shot capability to understand prior knowledge that is not present in the training data.
comment: 23 pages,
♻ ☆ DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
Large Language Models (LLMs) have recently been extended to the video domain, enabling sophisticated video-language understanding. However, existing Video LLMs often exhibit limitations in fine-grained temporal reasoning, restricting their ability to precisely attribute responses to specific video moments, especially under constrained supervision. We introduce DaMO, a data-efficient Video LLM explicitly designed for accurate temporal reasoning and multimodal understanding. At its core, the proposed Temporal-aware Fuseformer employs a hierarchical dual-stream architecture that progressively captures temporal dynamics within each modality and effectively fuses complementary visual and audio information. To further enhance computational efficiency, DaMO integrates a global residual that reduces spatial redundancy while preserving essential semantic details. We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities. This work also contributes multiple datasets augmented from existing ones with GPT-generated temporally grounded QA pairs for tasks requiring temporal supervision. Comprehensive experiments on temporal grounding and video QA benchmarks demonstrate that DaMO consistently surpasses prior methods, particularly in tasks demanding precise temporal alignment and reasoning. Our work establishes a promising direction for data-efficient video-language modeling.
comment: I would like to request the withdrawal of this submission because the current version contains significant errors and incomplete results. I intend to revise the manuscript thoroughly before resubmitting. I apologize for the oversight and appreciate your understanding
♻ ☆ Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges
Smart grids are crucial for meeting rising energy demands driven by global population growth and urbanization. By integrating renewable energy sources, they enhance efficiency, reliability, and sustainability. However, ensuring their availability and security requires advanced operational control and safety measures. Although artificial intelligence and machine learning can help assess grid stability, challenges such as data scarcity and cybersecurity threats, particularly adversarial attacks, remain. Data scarcity is a major issue, as obtaining real-world instances of grid instability requires significant expertise, resources, and time. Yet, these instances are critical for testing new research advancements and security mitigations. This paper introduces a novel framework for detecting instability in smart grids using only stable data. It employs a Generative Adversarial Network (GAN) where the generator is designed not to produce near-realistic data but instead to generate Out-Of-Distribution (OOD) samples with respect to the stable class. These OOD samples represent unstable behavior, anomalies, or disturbances that deviate from the stable data distribution. By training exclusively on stable data and exposing the discriminator to OOD samples, our framework learns a robust decision boundary to distinguish stable conditions from any unstable behavior, without requiring unstable data during training. Furthermore, we incorporate an adversarial training layer to enhance resilience against attacks. Evaluated on a real-world dataset, our solution achieves up to 98.1\% accuracy in predicting grid stability and 98.9\% in detecting adversarial attacks. Implemented on a single-board computer, it enables real-time decision-making with an average response time of under 7ms.
♻ ☆ Towards Unsupervised Multi-Agent Reinforcement Learning via Task-Agnostic Exploration
In reinforcement learning, we typically refer to unsupervised pre-training when we aim to pre-train a policy without a priori access to the task specification, i.e. rewards, to be later employed for efficient learning of downstream tasks. In single-agent settings, the problem has been extensively studied and mostly understood. A popular approach, called task-agnostic exploration, casts the unsupervised objective as maximizing the entropy of the state distribution induced by the agent's policy, from which principles and methods follow. In contrast, little is known about it in multi-agent settings, which are ubiquitous in the real world. What are the pros and cons of alternative problem formulations in this setting? How hard is the problem in theory, how can we solve it in practice? In this paper, we address these questions by first characterizing those alternative formulations and highlighting how the problem, even when tractable in theory, is non-trivial in practice. Then, we present a scalable, decentralized, trust-region policy search algorithm to address the problem in practical settings. Finally, we provide numerical validations to both corroborate the theoretical findings and pave the way for unsupervised multi-agent reinforcement learning via task-agnostic exploration in challenging domains, showing that optimizing for a specific objective, namely mixture entropy, provides an excellent trade-off between tractability and performances.
♻ ☆ Smart Traffic Signals: Comparing MARL and Fixed-Time Strategies
Urban traffic congestion, particularly at intersections, significantly impacts travel time, fuel consumption, and emissions. Traditional fixed-time signal control systems often lack the adaptability to manage dynamic traffic patterns effectively. This study explores the application of multi-agent reinforcement learning (MARL) to optimize traffic signal coordination across multiple intersections within a simulated environment. Utilizing Pygame, a simulation was developed to model a network of interconnected intersections with randomly generated vehicle flows to reflect realistic traffic variability. A decentralized MARL controller was implemented, in which each traffic signal operates as an autonomous agent, making decisions based on local observations and information from neighboring agents. Performance was evaluated against a baseline fixed-time controller using metrics such as average vehicle wait time and overall throughput. The MARL approach demonstrated statistically significant improvements, including reduced average waiting times and improved throughput. These findings suggest that MARL-based dynamic control strategies hold substantial promise for improving urban traffic management efficiency. More research is recommended to address scalability and real-world implementation challenges.
♻ ☆ TrainVerify: Equivalence-Based Verification for Distributed LLM Training
Training large language models (LLMs) at scale requires parallel execution across thousands of devices, incurring enormous computational costs. Yet, these costly distributed trainings are rarely verified, leaving them prone to silent errors and potentially wasting millions of GPU hours. We introduce TrainVerify, a system for verifiable distributed training of LLMs. Given a deep learning model's logical specification as the ground truth, TrainVerify formally verifies that a distributed parallel execution plan is mathematically equivalent to it. Direct verification is notoriously difficult due to the sheer scale of LLMs which often involves billions of variables and highly intricate computation graphs. Therefore, TrainVerify introduces shape-reduction techniques and a stage-wise parallel verification algorithm that significantly reduces complexity while preserving formal correctness. TrainVerify scales to frontier LLMs, including the successful verification of the Llama3 (405B) and DeepSeek-V3 (671B) training plans.
♻ ☆ AntiGrounding: Lifting Robotic Actions into VLM Representation Space for Decision Making NeurIPS 2025
Vision-Language Models (VLMs) encode knowledge and reasoning capabilities for robotic manipulation within high-dimensional representation spaces. However, current approaches often project them into compressed intermediate representations, discarding important task-specific information such as fine-grained spatial or semantic details. To address this, we propose AntiGrounding, a new framework that reverses the instruction grounding process. It lifts candidate actions directly into the VLM representation space, renders trajectories from multiple views, and uses structured visual question answering for instruction-based decision making. This enables zero-shot synthesis of optimal closed-loop robot trajectories for new tasks. We also propose an offline policy refinement module that leverages past experience to enhance long-term performance. Experiments in both simulation and real-world environments show that our method outperforms baselines across diverse robotic manipulation tasks.
comment: submitted to NeurIPS 2025
♻ ☆ ContactDexNet: Multi-fingered Robotic Hand Grasping in Cluttered Environments through Hand-object Contact Semantic Mapping
The deep learning models has significantly advanced dexterous manipulation techniques for multi-fingered hand grasping. However, the contact information-guided grasping in cluttered environments remains largely underexplored. To address this gap, we have developed a method for generating multi-fingered hand grasp samples in cluttered settings through contact semantic map. We introduce a contact semantic conditional variational autoencoder network (CoSe-CVAE) for creating comprehensive contact semantic map from object point cloud. We utilize grasp detection method to estimate hand grasp poses from the contact semantic map. Finally, an unified grasp evaluation model PointNetGPD++ is designed to assess grasp quality and collision probability, substantially improving the reliability of identifying optimal grasps in cluttered scenarios. Our grasp generation method has demonstrated remarkable success, outperforming state-of-the-art methods by at least 4.65% with 81.0% average grasping success rate in real-world single-object environment and 75.3% grasping success rate in cluttered scenes. We also proposed the multi-modal multi-fingered grasping dataset generation method. Our multi-fingered hand grasping dataset outperforms previous datasets in scene diversity, modality diversity. The dataset, code and supplementary materials can be found at https://sites.google.com/view/contact-dexnet.
comment: 8 pages
♻ ☆ Exploring the Collaborative Co-Creation Process with AI: A Case Study in Novice Music Production
Artificial intelligence is reshaping creative domains, yet its co-creative processes, especially in group settings with novice users, remain under explored. To bridge this gap, we conducted a case study in a college-level course where nine undergraduate students were tasked with creating three original music tracks using AI tools over 10 weeks. The study spanned the entire creative journey from ideation to releasing these songs on Spotify. Participants leveraged AI for music and lyric production, cover art, and distribution. Our findings highlight how AI transforms creative workflows: accelerating ideation but compressing the traditional preparation stage, and requiring novices to navigate a challenging idea selection and validation phase. We also identified a new "collaging and refinement" stage, where participants creatively combined diverse AI-generated outputs into cohesive works. Furthermore, AI influenced group social dynamics and role division among human creators. Based on these insights, we propose the Human-AI Co-Creation Stage Model and the Human-AI Agency Model, offering new perspectives on collaborative co-creation with AI.
♻ ☆ Mixture of Cache-Conditional Experts for Efficient Mobile Device Inference
Mixture of Experts (MoE) LLMs have recently gained attention for their ability to enhance performance by selectively engaging specialized subnetworks or "experts" for each input. However, deploying MoEs on memory-constrained devices remains challenging, particularly when generating tokens sequentially with a batch size of one, as opposed to typical high-throughput settings involving long sequences or large batches. In this work, we optimize MoE on memory-constrained devices where only a subset of expert weights fit in DRAM. We introduce a novel cache-aware routing strategy that leverages expert reuse during token generation to improve cache locality. We evaluate our approach on language modeling, MMLU, and GSM8K benchmarks and present on-device results demonstrating 2$\times$ speedups on mobile devices, offering a flexible, training-free solution to extend MoE's applicability across real-world applications.
comment: Published in Transactions on Machine Learning Research (06/2025)
♻ ☆ SSPS: Self-Supervised Positive Sampling for Robust Self-Supervised Speaker Verification
Self-Supervised Learning (SSL) has led to considerable progress in Speaker Verification (SV). The standard framework uses same-utterance positive sampling and data-augmentation to generate anchor-positive pairs of the same speaker. This is a major limitation, as this strategy primarily encodes channel information from the recording condition, shared by the anchor and positive. We propose a new positive sampling technique to address this bottleneck: Self-Supervised Positive Sampling (SSPS). For a given anchor, SSPS aims to find an appropriate positive, i.e., of the same speaker identity but a different recording condition, in the latent space using clustering assignments and a memory queue of positive embeddings. SSPS improves SV performance for both SimCLR and DINO, reaching 2.57% and 2.53% EER, outperforming SOTA SSL methods on VoxCeleb1-O. In particular, SimCLR-SSPS achieves a 58% EER reduction by lowering intra-speaker variance, providing comparable performance to DINO-SSPS.
comment: accepted at Interspeech 2025
♻ ☆ Exclusive Style Removal for Cross Domain Novel Class Discovery
As a promising field in open-world learning, \textit{Novel Class Discovery} (NCD) is usually a task to cluster unseen novel classes in an unlabeled set based on the prior knowledge of labeled data within the same domain. However, the performance of existing NCD methods could be severely compromised when novel classes are sampled from a different distribution with the labeled ones. In this paper, we explore and establish the solvability of NCD with cross domain setting under the necessary condition that the style information needs to be removed. Based on the theoretical analysis, we introduce an exclusive style removal module for extracting style information that is distinctive from the baseline features, thereby facilitating inference. Moreover, this module is easy to integrate with other NCD methods, acting as a plug-in to improve performance on novel classes with different distributions compared to the labeled set. Additionally, recognizing the non-negligible influence of different backbones and pre-training strategies on the performance of the NCD methods, we build a fair benchmark for future NCD research. Extensive experiments on three common datasets demonstrate the effectiveness of our proposed style removal strategy.
♻ ☆ Perspective-Shifted Neuro-Symbolic World Models: A Framework for Socially-Aware Robot Navigation
Navigating in environments alongside humans requires agents to reason under uncertainty and account for the beliefs and intentions of those around them. Under a sequential decision-making framework, egocentric navigation can naturally be represented as a Markov Decision Process (MDP). However, social navigation additionally requires reasoning about the hidden beliefs of others, inherently leading to a Partially Observable Markov Decision Process (POMDP), where agents lack direct access to others' mental states. Inspired by Theory of Mind and Epistemic Planning, we propose (1) a neuro-symbolic model-based reinforcement learning architecture for social navigation, addressing the challenge of belief tracking in partially observable environments; and (2) a perspective-shift operator for belief estimation, leveraging recent work on Influence-based Abstractions (IBA) in structured multi-agent settings.
comment: Accepted as a regular paper at the 2025 IEEE International Conference on Robot & Human Interactive Communication (RO-MAN). \c{opyright} 2025 IEEE. The final version will appear in IEEE Xplore (DOI TBD)
♻ ☆ The Elements of Differentiable Programming
Artificial intelligence has recently experienced remarkable advances, fueled by large models, vast datasets, accelerated hardware, and, last but not least, the transformative power of differentiable programming. This new programming paradigm enables end-to-end differentiation of complex computer programs (including those with control flows and data structures), making gradient-based optimization of program parameters possible. As an emerging paradigm, differentiable programming builds upon several areas of computer science and applied mathematics, including automatic differentiation, graphical models, optimization and statistics. This book presents a comprehensive review of the fundamental concepts useful for differentiable programming. We adopt two main perspectives, that of optimization and that of probability, with clear analogies between the two. Differentiable programming is not merely the differentiation of programs, but also the thoughtful design of programs intended for differentiation. By making programs differentiable, we inherently introduce probability distributions over their execution, providing a means to quantify the uncertainty associated with program outputs.
comment: Draft version 3
♻ ☆ Multi-Continental Healthcare Modelling Using Blockchain-Enabled Federated Learning
One of the biggest challenges of building artificial intelligence (AI) model in the healthcare area is the data sharing. Since healthcare data is private, sensitive, and heterogeneous, collecting sufficient data for modelling is exhausting, costly, and sometimes impossible. In this paper, we propose a framework for global healthcare modelling using datasets from multi-continents (Europe, North America, and Asia) without sharing the local datasets, and choose glucose management as a study model to verify its effectiveness. Technically, blockchain-enabled federated learning is implemented with adaptation to meet the privacy and safety requirements of healthcare data, meanwhile, it rewards honest participation and penalizes malicious activities using its on-chain incentive mechanism. Experimental results show that the proposed framework is effective, efficient, and privacy-preserving. Its prediction accuracy consistently outperforms models trained on limited personal data and achieves comparable or even slightly better results than centralized training in certain scenarios, all while preserving data privacy. This work paves the way for international collaborations on healthcare projects, where additional data is crucial for reducing bias and providing benefits to humanity.
comment: Accepted by IEEE Global Blockchain Conference, 2025
♻ ☆ Meta-Reasoner: Dynamic Guidance for Optimized Inference-time Reasoning in Large Language Models
Large Language Models (LLMs) increasingly rely on prolonged reasoning chains to solve complex tasks. However, this trial-and-error approach often leads to high computational overhead and error propagation, where early mistakes can derail subsequent steps. To address these issues, we introduce Meta-Reasoner, a framework that dynamically optimizes inference-time reasoning by enabling LLMs to "think about how to think." Drawing inspiration from human meta-cognition and dual-process theory, Meta-Reasoner operates as a strategic advisor, decoupling high-level guidance from step-by-step generation. It employs contextual multi-armed bandits to iteratively evaluate reasoning progress and select optimal strategies (e.g., backtrack, clarify ambiguity, restart from scratch, or propose alternative approaches), and reallocates computational resources toward the most promising paths. Our evaluations on mathematical reasoning and puzzles highlight the potential of dynamic reasoning chains to overcome inherent challenges in the LLM reasoning process and also show promise in broader applications, offering a scalable and adaptable solution for reasoning-intensive tasks.
♻ ☆ Evaluating link prediction: New perspectives and recommendations
Link prediction (LP) is an important problem in network science and machine learning research. The state-of-the-art LP methods are usually evaluated in a uniform setup, ignoring several factors associated with the data and application specific needs. We identify a number of such factors, such as, network-type, problem-type, geodesic distance between the end nodes and its distribution over the classes, nature and applicability of LP methods, class imbalance and its impact on early retrieval, evaluation metric, etc., and present an experimental setup which allows us to evaluate LP methods in a rigorous and controlled manner. We perform extensive experiments with a variety of LP methods over real network datasets in this controlled setup, and gather valuable insights on the interactions of these factors with the performance of LP through an array of carefully designed hypotheses. Following the insights, we provide recommendations to be followed as best practice for evaluating LP methods.
♻ ☆ Defeating Prompt Injections by Design
Large Language Models (LLMs) are increasingly deployed in agentic systems that interact with an untrusted environment. However, LLM agents are vulnerable to prompt injection attacks when handling untrusted data. In this paper we propose CaMeL, a robust defense that creates a protective system layer around the LLM, securing it even when underlying models are susceptible to attacks. To operate, CaMeL explicitly extracts the control and data flows from the (trusted) query; therefore, the untrusted data retrieved by the LLM can never impact the program flow. To further improve security, CaMeL uses a notion of a capability to prevent the exfiltration of private data over unauthorized data flows by enforcing security policies when tools are called. We demonstrate effectiveness of CaMeL by solving $77\%$ of tasks with provable security (compared to $84\%$ with an undefended system) in AgentDojo. We release CaMeL at https://github.com/google-research/camel-prompt-injection.
comment: Updated version with newer models and link to the code
♻ ☆ Controllable Video Generation with Provable Disentanglement
Controllable video generation remains a significant challenge, despite recent advances in generating high-quality and consistent videos. Most existing methods for controlling video generation treat the video as a whole, neglecting intricate fine-grained spatiotemporal relationships, which limits both control precision and efficiency. In this paper, we propose Controllable Video Generative Adversarial Networks (CoVoGAN) to disentangle the video concepts, thus facilitating efficient and independent control over individual concepts. Specifically, following the minimal change principle, we first disentangle static and dynamic latent variables. We then leverage the sufficient change property to achieve component-wise identifiability of dynamic latent variables, enabling disentangled control of video generation. To establish the theoretical foundation, we provide a rigorous analysis demonstrating the identifiability of our approach. Building on these theoretical insights, we design a Temporal Transition Module to disentangle latent dynamics. To enforce the minimal change principle and sufficient change property, we minimize the dimensionality of latent dynamic variables and impose temporal conditional independence. To validate our approach, we integrate this module as a plug-in for GANs. Extensive qualitative and quantitative experiments on various video generation benchmarks demonstrate that our method significantly improves generation quality and controllability across diverse real-world scenarios.
♻ ☆ Unified Neural Backdoor Removal with Only Few Clean Samples through Unlearning and Relearning
Deep neural networks have achieved remarkable success across various applications; however, their vulnerability to backdoor attacks poses severe security risks -- especially in situations where only a limited set of clean samples is available for defense. In this work, we address this critical challenge by proposing ULRL (UnLearn and ReLearn for backdoor removal), a novel two-phase approach for comprehensive backdoor removal. Our method first employs an unlearning phase, in which the network's loss is intentionally maximized on a small clean dataset to expose neurons that are excessively sensitive to backdoor triggers. Subsequently, in the relearning phase, these suspicious neurons are recalibrated using targeted reinitialization and cosine similarity regularization, effectively neutralizing backdoor influences while preserving the model's performance on benign data. Extensive experiments with 12 backdoor types on multiple datasets (CIFAR-10, CIFAR-100, GTSRB, and Tiny-ImageNet) and architectures (PreAct-ResNet18, VGG19-BN, and ViT-B-16) demonstrate that ULRL significantly reduces the attack success rate without compromising clean accuracy -- even when only 1% of clean data is used for defense.
comment: Accepted for publication in IEEE Transactions on Information Forensics and Security (TIFS), 2025; 15 pages
♻ ☆ Do Vendi Scores Converge with Finite Samples? Truncated Vendi Score for Finite-Sample Convergence Guarantees
Evaluating the diversity of generative models without reference data poses methodological challenges. The reference-free Vendi and RKE scores address this by quantifying the diversity of generated data using matrix-based entropy measures. Among these two, the Vendi score is typically computed via the eigendecomposition of an $n \times n$ kernel matrix constructed from n generated samples. However, the prohibitive computational cost of eigendecomposition for large $n$ often limits the number of samples used to fewer than 20,000. In this paper, we investigate the statistical convergence of the Vendi and RKE scores under restricted sample sizes. We numerically demonstrate that, in general, the Vendi score computed with standard sample sizes below 20,000 may not converge to its asymptotic value under infinite sampling. To address this, we introduce the $t$-truncated Vendi score by truncating the eigenspectrum of the kernel matrix, which is provably guaranteed to converge to its population limit with $n=\mathcal{O}(t)$ samples. We further show that existing Nystr\"om and FKEA approximation methods converge to the asymptotic limit of the truncated Vendi score. In contrast to the Vendi score, we prove that the RKE score enjoys universal convergence guarantees across all kernel functions. We conduct several numerical experiments to illustrate the concentration of Nystr\"om and FKEA computed Vendi scores around the truncated Vendi score, and we analyze how the truncated Vendi and RKE scores correlate with the diversity of image and text data. The code is available at https://github.com/aziksh-ospanov/truncated-vendi.
♻ ☆ SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented Dialogue Agents NeurIPS 2023
Task-oriented dialogue (TOD) models have made significant progress in recent years. However, previous studies primarily focus on datasets written by annotators, which has resulted in a gap between academic research and real-world spoken conversation scenarios. While several small-scale spoken TOD datasets are proposed to address robustness issues such as ASR errors, they ignore the unique challenges in spoken conversation. To tackle the limitations, we introduce SpokenWOZ, a large-scale speech-text dataset for spoken TOD, containing 8 domains, 203k turns, 5.7k dialogues and 249 hours of audios from human-to-human spoken conversations. SpokenWOZ further incorporates common spoken characteristics such as word-by-word processing and reasoning in spoken language. Based on these characteristics, we present cross-turn slot and reasoning slot detection as new challenges. We conduct experiments on various baselines, including text-modal models, newly proposed dual-modal models, and LLMs, e.g., ChatGPT. The results show that the current models still have substantial room for improvement in spoken conversation, where the most advanced dialogue state tracker only achieves 25.65% in joint goal accuracy and the SOTA end-to-end model only correctly completes the user request in 52.1% of dialogues. The dataset, code, and leaderboard are available: https://spokenwoz.github.io/.
comment: NeurIPS 2023
♻ ☆ PBFT-Backed Semantic Voting for Multi-Agent Memory Pruning
The proliferation of multi-agent systems (MAS) in complex, dynamic environments necessitates robust and efficient mechanisms for managing shared knowledge. A critical challenge is ensuring that distributed memories remain synchronized, relevant, and free from the accumulation of outdated or inconsequential data - a process analogous to biological forgetting. This paper introduces the Co-Forgetting Protocol, a novel, comprehensive framework designed to address this challenge by enabling synchronized memory pruning in MAS. The protocol integrates three key components: (1) context-aware semantic voting, where agents utilize a lightweight DistilBERT model to assess the relevance of memory items based on their content and the current operational context; (2) multi-scale temporal decay functions, which assign diminishing importance to memories based on their age and access frequency across different time horizons; and (3) a Practical Byzantine Fault Tolerance (PBFT)-based consensus mechanism, ensuring that decisions to retain or discard memory items are agreed upon by a qualified and fault-tolerant majority of agents, even in the presence of up to f Byzantine (malicious or faulty) agents in a system of N greater than or equal to 3f+1 agents. The protocol leverages gRPC for efficient inter-agent communication and Pinecone for scalable vector embedding storage and similarity search, with SQLite managing metadata. Experimental evaluations in a simulated MAS environment with four agents demonstrate the protocol's efficacy, achieving a 52% reduction in memory footprint over 500 epochs, 88% voting accuracy in forgetting decisions against human-annotated benchmarks, a 92% PBFT consensus success rate under simulated Byzantine conditions, and an 82% cache hit rate for memory access.
comment: 13 pages
♻ ☆ DeltaSpace: A Semantic-aligned Feature Space for Flexible Text-guided Image Editing
Text-guided image editing faces significant challenges when considering training and inference flexibility. Much literature collects large amounts of annotated image-text pairs to train text-conditioned generative models from scratch, which is expensive and not efficient. After that, some approaches that leverage pre-trained vision-language models have been proposed to avoid data collection, but they are limited by either per text-prompt optimization or inference-time hyper-parameters tuning. To address these issues, we investigate and identify a specific space, referred to as CLIP DeltaSpace, where the CLIP visual feature difference of two images is semantically aligned with the CLIP textual feature difference of their corresponding text descriptions. Based on DeltaSpace, we propose a novel framework called DeltaEdit, which maps the CLIP visual feature differences to the latent space directions of a generative model during the training phase, and predicts the latent space directions from the CLIP textual feature differences during the inference phase. And this design endows DeltaEdit with two advantages: (1) text-free training; (2) generalization to various text prompts for zero-shot inference. Extensive experiments validate the effectiveness and versatility of DeltaEdit with different generative models, including both the GAN model and the diffusion model, in achieving flexible text-guided image editing. Code is available at https://github.com/Yueming6568/DeltaEdit.
comment: 18 pages. arXiv admin note: text overlap with arXiv:2303.06285
♻ ☆ RAG+: Enhancing Retrieval-Augmented Generation with Application-Aware Reasoning
The integration of external knowledge through Retrieval-Augmented Generation (RAG) has become foundational in enhancing large language models (LLMs) for knowledge-intensive tasks. However, existing RAG paradigms often overlook the cognitive step of applying knowledge, leaving a gap between retrieved facts and task-specific reasoning. In this work, we introduce RAG+, a principled and modular extension that explicitly incorporates application-aware reasoning into the RAG pipeline. RAG+ constructs a dual corpus consisting of knowledge and aligned application examples, created either manually or automatically, and retrieves both jointly during inference. This design enables LLMs not only to access relevant information but also to apply it within structured, goal-oriented reasoning processes. Experiments across mathematical, legal, and medical domains, conducted on multiple models, demonstrate that RAG+ consistently outperforms standard RAG variants, achieving average improvements of 3-5%, and peak gains up to 7.5% in complex scenarios. By bridging retrieval with actionable application, RAG+ advances a more cognitively grounded framework for knowledge integration, representing a step toward more interpretable and capable LLMs.
♻ ☆ TeViR: Text-to-Video Reward with Diffusion Models for Efficient Reinforcement Learning
Developing scalable and generalizable reward engineering for reinforcement learning (RL) is crucial for creating general-purpose agents, especially in the challenging domain of robotic manipulation. While recent advances in reward engineering with Vision-Language Models (VLMs) have shown promise, their sparse reward nature significantly limits sample efficiency. This paper introduces TeViR, a novel method that leverages a pre-trained text-to-video diffusion model to generate dense rewards by comparing the predicted image sequence with current observations. Experimental results across 11 complex robotic tasks demonstrate that TeViR outperforms traditional methods leveraging sparse rewards and other state-of-the-art (SOTA) methods, achieving better sample efficiency and performance without ground truth environmental rewards. TeViR's ability to efficiently guide agents in complex environments highlights its potential to advance reinforcement learning applications in robotic manipulation.
♻ ☆ Are We There Yet? A Brief Survey of Music Emotion Prediction Datasets, Models and Outstanding Challenges
Deep learning models for music have advanced drastically in recent years, but how good are machine learning models at capturing emotion, and what challenges are researchers facing? In this paper, we provide a comprehensive overview of the available music-emotion datasets and discuss evaluation standards as well as competitions in the field. We also offer a brief overview of various types of music emotion prediction models that have been built over the years, providing insights into the diverse approaches within the field. Through this examination, we highlight the challenges that persist in accurately capturing emotion in music, including issues related to dataset quality, annotation consistency, and model generalization. Additionally, we explore the impact of different modalities, such as audio, MIDI, and physiological signals, on the effectiveness of emotion prediction models. Through this examination, we identify persistent challenges in music emotion recognition (MER), including issues related to dataset quality, the ambiguity in emotion labels, and the difficulties of cross-dataset generalization. We argue that future advancements in MER require standardized benchmarks, larger and more diverse datasets, and improved model interpretability. Recognizing the dynamic nature of this field, we have complemented our findings with an accompanying GitHub repository. This repository contains a comprehensive list of music emotion datasets and recent predictive models.
♻ ☆ Understanding Human-AI Trust in Education
As AI chatbots become increasingly integrated in education, students are turning to these systems for guidance, feedback, and information. However, the anthropomorphic characteristics of these chatbots create ambiguity regarding whether students develop trust toward them as they would a human peer or instructor, based in interpersonal trust, or as they would any other piece of technology, based in technology trust. This ambiguity presents theoretical challenges, as interpersonal trust models may inappropriately ascribe human intentionality and morality to AI, while technology trust models were developed for non-social technologies, leaving their applicability to anthropomorphic systems unclear. To address this gap, we investigate how human-like and system-like trusting beliefs comparatively influence students' perceived enjoyment, trusting intention, behavioral intention to use, and perceived usefulness of an AI chatbot - factors associated with students' engagement and learning outcomes. Through partial least squares structural equation modeling, we found that human-like and system-like trust significantly influenced student perceptions, with varied effects. Human-like trust more strongly predicted trusting intention, while system-like trust better predicted behavioral intention and perceived usefulness. Both had similar effects on perceived enjoyment. Given the partial explanatory power of each type of trust, we propose that students develop a distinct form of trust with AI chatbots (human-AI trust) that differs from human-human and human-technology models of trust. Our findings highlight the need for new theoretical frameworks specific to human-AI trust and offer practical insights for fostering appropriately calibrated trust, which is critical for the effective adoption and pedagogical impact of AI in education.
♻ ☆ Sum-of-Parts: Self-Attributing Neural Networks with End-to-End Learning of Feature Groups ICML2025
Self-attributing neural networks (SANNs) present a potential path towards interpretable models for high-dimensional problems, but often face significant trade-offs in performance. In this work, we formally prove a lower bound on errors of per-feature SANNs, whereas group-based SANNs can achieve zero error and thus high performance. Motivated by these insights, we propose Sum-of-Parts (SOP), a framework that transforms any differentiable model into a group-based SANN, where feature groups are learned end-to-end without group supervision. SOP achieves state-of-the-art performance for SANNs on vision and language tasks, and we validate that the groups are interpretable on a range of quantitative and semantic metrics. We further validate the utility of SOP explanations in model debugging and cosmological scientific discovery. Our code is available at https://github.com/BrachioLab/sop
comment: ICML2025 Camera Ready
♻ ☆ Long-Context Generalization with Sparse Attention
Transformer-based architectures traditionally employ softmax to compute attention weights, which produces dense distributions over all tokens in a sequence. While effective in many settings, this density has been shown to be detrimental for tasks that demand precise focus on fixed-size patterns: as sequence length increases, non-informative tokens accumulate attention probability mass, leading to dispersion and representational collapse. We show in this paper that sparse attention mechanisms using $\alpha$-entmax can avoid these issues, due to their ability to assign exact zeros to irrelevant tokens. Furthermore, we introduce Adaptive-Scalable Entmax (ASEntmax), which endows $\alpha$-entmax with a learnable temperature parameter, allowing the attention distribution to interpolate between sparse (pattern-focused) and dense (softmax-like) regimes. Finally, we show that the ability to locate and generalize fixed-size patterns can be further improved through a careful design of position encodings, which impacts both dense and sparse attention methods. By integrating ASEntmax into standard transformer layers alongside proper positional encodings, we show that our models greatly outperform softmax, scalable softmax, and fixed-temperature $\alpha$-entmax baselines on long-context generalization.
♻ ☆ VesselSAM: Leveraging SAM for Aortic Vessel Segmentation with AtrousLoRA
Medical image segmentation is crucial for clinical diagnosis and treatment planning, especially when dealing with complex anatomical structures such as vessels. However, accurately segmenting vessels remains challenging due to their small size, intricate edge structures, and susceptibility to artifacts and imaging noise. In this work, we propose VesselSAM, an enhanced version of the Segment Anything Model (SAM), specifically tailored for aortic vessel segmentation. VesselSAM incorporates AtrousLoRA, a novel module integrating Atrous Attention and Low-Rank Adaptation (LoRA), to enhance segmentation performance. Atrous Attention enables the model to capture multi-scale contextual information, preserving both fine-grained local details and broader global context. Additionally, LoRA facilitates efficient fine-tuning of the frozen SAM image encoder, reducing the number of trainable parameters and thereby enhancing computational efficiency. We evaluate VesselSAM using two challenging datasets: the Aortic Vessel Tree (AVT) dataset and the Type-B Aortic Dissection (TBAD) dataset. VesselSAM achieves state-of-the-art performance, attaining DSC scores of 93.50\%, 93.25\%, 93.02\%, and 93.26\% across multi-center datasets. Our results demonstrate that VesselSAM delivers high segmentation accuracy while significantly reducing computational overhead compared to existing large-scale models. This development paves the way for enhanced AI-based aortic vessel segmentation in clinical environments. The code and models will be released at https://github.com/Adnan-CAS/AtrousLora.
comment: Work in progress
♻ ☆ LAuReL: Learned Augmented Residual Layer
One of the core pillars of efficient deep learning methods is architectural improvements such as the residual/skip connection, which has led to significantly better model convergence and quality. Since then the residual connection has become ubiquitous in not just convolutional neural networks but also transformer-based architectures, the backbone of LLMs. In this paper we introduce Learned Augmented Residual Layer (LAuReL) -- a novel generalization of the canonical residual connection -- with the goal to be an in-situ replacement of the latter while outperforming on both model quality and footprint metrics. Our experiments show that using LAuReL can help boost performance for both vision and language models. For example, on the ResNet-50, ImageNet 1K task, it achieves 60% of the gains from adding an extra layer, while only adding 0.003% more parameters, and matches it while adding 2.6 times fewer parameters. Similarly, when pre-training 1B and 4B parameter LLMs, LAuReL improves performance on a variety of challenging downstream evaluation tasks by 2.54% to 20.05%, while adding only 0.012% and 0.1% additional parameters, respectively.
comment: Accepted at 42nd International Conference on Machine Learning (2025), Vancouver, Canada
♻ ☆ CVE-Bench: A Benchmark for AI Agents' Ability to Exploit Real-World Web Application Vulnerabilities
Large language model (LLM) agents are increasingly capable of autonomously conducting cyberattacks, posing significant threats to existing applications. This growing risk highlights the urgent need for a real-world benchmark to evaluate the ability of LLM agents to exploit web application vulnerabilities. However, existing benchmarks fall short as they are limited to abstracted Capture the Flag competitions or lack comprehensive coverage. Building a benchmark for real-world vulnerabilities involves both specialized expertise to reproduce exploits and a systematic approach to evaluating unpredictable threats. To address this challenge, we introduce CVE-Bench, a real-world cybersecurity benchmark based on critical-severity Common Vulnerabilities and Exposures. In CVE-Bench, we design a sandbox framework that enables LLM agents to exploit vulnerable web applications in scenarios that mimic real-world conditions, while also providing effective evaluation of their exploits. Our evaluation shows that the state-of-the-art agent framework can resolve up to 13% of vulnerabilities.
comment: 15 pages, 4 figures, 5 tables
♻ ☆ SycnMapV2: Robust and Adaptive Unsupervised Segmentation
Human vision excels at segmenting visual cues without the need for explicit training, and it remains remarkably robust even as noise severity increases. In contrast, existing AI algorithms struggle to maintain accuracy under similar conditions. Here, we present SyncMapV2, the first to solve unsupervised segmentation with state-of-the-art robustness. SyncMapV2 exhibits a minimal drop in mIoU, only 0.01%, under digital corruption, compared to a 23.8% drop observed in SOTA methods. This superior performance extends across various types of corruption: noise (7.3% vs. 37.7%), weather (7.5% vs. 33.8%), and blur (7.0% vs. 29.5%). Notably, SyncMapV2 accomplishes this without any robust training, supervision, or loss functions. It is based on a learning paradigm that uses self-organizing dynamical equations combined with concepts from random networks. Moreover, unlike conventional methods that require re-initialization for each new input, SyncMapV2 adapts online, mimicking the continuous adaptability of human vision. Thus, we go beyond the accurate and robust results, and present the first algorithm that can do all the above online, adapting to input rather than re-initializing. In adaptability tests, SyncMapV2 demonstrates near-zero performance degradation, which motivates and fosters a new generation of robust and adaptive intelligence in the near future.
♻ ☆ ClimateIQA: A New Dataset and Benchmark to Advance Vision-Language Models in Meteorology Anomalies Analysis
Meteorological heatmaps play a vital role in deciphering extreme weather phenomena, yet their inherent complexities marked by irregular contours, unstructured patterns, and complex color variations present unique analytical hurdles for state-of-the-art Vision-Language Models (VLMs). Current state-of-the-art models like GPT-4o, Qwen-VL, and LLaVA 1.6 struggle with tasks such as precise color identification and spatial localization, resulting in inaccurate or incomplete interpretations. To address these challenges, we introduce Sparse Position and Outline Tracking (SPOT), a novel algorithm specifically designed to process irregularly shaped colored regions in visual data. SPOT identifies and localizes these regions by extracting their spatial coordinates, enabling structured representations of irregular shapes. Building on SPOT, we construct ClimateIQA, a novel meteorological visual question answering (VQA) dataset, comprising 26,280 high-resolution heatmaps and 762,120 instruction samples for wind gust, total precipitation, wind chill index and heat index analysis. ClimateIQA enhances VLM training by incorporating spatial cues, geographic metadata, and reanalysis data, improving model accuracy in interpreting and describing extreme weather features. Furthermore, we develop Climate-Zoo, a suite of fine-tuned VLMs based on SPOT-empowered ClimateIQA, which significantly outperforms existing models in meteorological heatmap tasks.
♻ ☆ DF2: Distribution-Free Decision-Focused Learning UAI 2025
Decision-focused learning (DFL), which differentiates through the KKT conditions, has recently emerged as a powerful approach for predict-then-optimize problems. However, under probabilistic settings, DFL faces three major bottlenecks: model mismatch error, sample average approximation error, and gradient approximation error. Model mismatch error stems from the misalignment between the model's parameterized predictive distribution and the true probability distribution. Sample average approximation error arises when using finite samples to approximate the expected optimization objective. Gradient approximation error occurs when the objectives are non-convex and KKT conditions cannot be directly applied. In this paper, we present DF2, the first distribution-free decision-focused learning method designed to mitigate these three bottlenecks. Rather than depending on a task-specific forecaster that requires precise model assumptions, our method directly learns the expected optimization function during training. To efficiently learn this function in a data-driven manner, we devise an attention-based model architecture inspired by the distribution-based parameterization of the expected objective. We evaluate DF2 on two synthetic problems and three real-world problems, demonstrating the effectiveness of DF2. Our code is available at: https://github.com/Lingkai-Kong/DF2.
comment: UAI 2025
♻ ☆ Evaluating Transparent Reasoning in Large Language Models for Accountable Critical Tasks NeurIPS 2024
This paper introduces REACT, a benchmark designed to rigorously evaluate the reasoning capabilities of large language models (LLMs) within accountable, high-stakes decision-making tasks in medical and legal domains. Unlike traditional benchmarks primarily focused on prediction accuracy, REACT emphasizes transparent and interpretable reasoning, requiring models to align their logic closely with expert-derived procedures. To assess whether LLM reasoning aligns closely with human experts, we annotated 511 clinical cases from the medical domain and 86 legal cases from the legal domain, each enriched with detailed expert-extracted rationales and evidence supporting each step of the reasoning process. These annotations were guided by carefully constructed reasoning graphs, which explicitly encode domain-specific inference structures and decision criteria derived by domain experts. These reasoning graphs serve not only as standards for expert annotation but also as structured guidelines enabling models to reason transparently and step-by-step. To address the scalability challenges of manual annotation, we further developed a semi-automatic annotation pipeline leveraging expert-defined reasoning graph templates to efficiently generate new graphs, exploring the potential to extend our approach into additional critical domains. Experimental results demonstrate that reasoning graphs substantially enhance the interpretability and accuracy of LLM reasoning compared to traditional baselines, although significant gaps remain relative to expert-level reasoning performance.
comment: This paper is the journal extension of our NeurIPS 2024 paper "DiReCT: Diagnostic Reasoning for Clinical Notes via Large Language Models"
♻ ☆ Disentangling Reasoning and Knowledge in Medical Large Language Models
Medical reasoning in large language models (LLMs) aims to emulate clinicians' diagnostic thinking, but current benchmarks such as MedQA-USMLE, MedMCQA, and PubMedQA often mix reasoning with factual recall. We address this by separating 11 biomedical QA benchmarks into reasoning- and knowledge-focused subsets using a PubMedBERT classifier that reaches 81 percent accuracy, comparable to human performance. Our analysis shows that only 32.8 percent of questions require complex reasoning. We evaluate biomedical models (HuatuoGPT-o1, MedReason, m1) and general-domain models (DeepSeek-R1, o4-mini, Qwen3), finding consistent gaps between knowledge and reasoning performance. For example, HuatuoGPT-o1 scores 56.9 on knowledge but only 44.8 on reasoning. In adversarial tests where models are misled with incorrect initial reasoning, biomedical models degrade sharply, while larger or RL-trained general models show more robustness. To address this, we train BioMed-R1 using fine-tuning and reinforcement learning on reasoning-heavy examples. It achieves the strongest performance among similarly sized models. Further gains may come from incorporating clinical case reports and training with adversarial and backtracking scenarios.
♻ ☆ Robust Optimization with Diffusion Models for Green Security
In green security, defenders must forecast adversarial behavior, such as poaching, illegal logging, and illegal fishing, to plan effective patrols. These behavior are often highly uncertain and complex. Prior work has leveraged game theory to design robust patrol strategies to handle uncertainty, but existing adversarial behavior models primarily rely on Gaussian processes or linear models, which lack the expressiveness needed to capture intricate behavioral patterns. To address this limitation, we propose a conditional diffusion model for adversary behavior modeling, leveraging its strong distribution-fitting capabilities. To the best of our knowledge, this is the first application of diffusion models in the green security domain. Integrating diffusion models into game-theoretic optimization, however, presents new challenges, including a constrained mixed strategy space and the need to sample from an unnormalized distribution to estimate utilities. To tackle these challenges, we introduce a mixed strategy of mixed strategies and employ a twisted Sequential Monte Carlo (SMC) sampler for accurate sampling. Theoretically, our algorithm is guaranteed to converge to an epsilon equilibrium with high probability using a finite number of iterations and samples. Empirically, we evaluate our approach on both synthetic and real-world poaching datasets, demonstrating its effectiveness.
♻ ☆ Process Reward Models That Think
Step-by-step verifiers -- also known as process reward models (PRMs) -- are a key ingredient for test-time scaling. PRMs require step-level supervision, making them expensive to train. This work aims to build data-efficient PRMs as verbalized step-wise reward models that verify every step in the solution by generating a verification chain-of-thought (CoT). We propose ThinkPRM, a long CoT verifier fine-tuned on orders of magnitude fewer process labels than those required by discriminative PRMs. Our approach capitalizes on the inherent reasoning abilities of long CoT models, and outperforms LLM-as-a-Judge and discriminative verifiers -- using only 1% of the process labels in PRM800K -- across several challenging benchmarks. Specifically, ThinkPRM beats the baselines on ProcessBench, MATH-500, and AIME '24 under best-of-N selection and reward-guided search. In an out-of-domain evaluation on a subset of GPQA-Diamond and LiveCodeBench, our PRM surpasses discriminative verifiers trained on the full PRM800K by 8% and 4.5%, respectively. Lastly, under the same token budget, ThinkPRM scales up verification compute more effectively compared to LLM-as-a-Judge, outperforming it by 7.2% on a subset of ProcessBench. Our work highlights the value of generative, long CoT PRMs that can scale test-time compute for verification while requiring minimal supervision for training. Our code, data, and models will be released at https://github.com/mukhal/thinkprm.
♻ ☆ Leveraging Large Language Models to Democratize Access to Costly Datasets for Academic Research
Unequal access to costly datasets essential for empirical research has long hindered researchers from disadvantaged institutions, limiting their ability to contribute to their fields and advance their careers. Recent breakthroughs in Large Language Models (LLMs) have the potential to democratize data access by automating data collection from unstructured sources. We develop and evaluate a novel methodology using GPT-4o-mini within a Retrieval-Augmented Generation (RAG) framework to collect data from corporate disclosures. Our approach achieves human-level accuracy in collecting CEO pay ratios from approximately 10,000 proxy statements and Critical Audit Matters (CAMs) from more than 12,000 10-K filings, with LLM processing times of 9 and 40 minutes respectively, each at a cost under $10. This stands in stark contrast to the hundreds of hours needed for manual collection or the thousands of dollars required for commercial database subscriptions. To foster a more inclusive research community by empowering researchers with limited resources to explore new avenues of inquiry, we share our methodology and the resulting datasets.
comment: 52 pagegs, 5 figures, 5 tables
Research on Model Parallelism and Data Parallelism Optimization Methods in Large Language Model-Based Recommendation Systems
With the rapid adoption of large language models (LLMs) in recommendation systems, the computational and communication bottlenecks caused by their massive parameter sizes and large data volumes have become increasingly prominent. This paper systematically investigates two classes of optimization methods-model parallelism and data parallelism-for distributed training of LLMs in recommendation scenarios. For model parallelism, we implement both tensor parallelism and pipeline parallelism, and introduce an adaptive load-balancing mechanism to reduce cross-device communication overhead. For data parallelism, we compare synchronous and asynchronous modes, combining gradient compression and sparsification techniques with an efficient aggregation communication framework to significantly improve bandwidth utilization. Experiments conducted on a real-world recommendation dataset in a simulated service environment demonstrate that our proposed hybrid parallelism scheme increases training throughput by over 30% and improves resource utilization by approximately 20% compared to traditional single-mode parallelism, while maintaining strong scalability and robustness. Finally, we discuss trade-offs among different parallel strategies in online deployment and outline future directions involving heterogeneous hardware integration and automated scheduling technologies.
♻ ☆ SASSHA: Sharpness-aware Adaptive Second-order Optimization with Stable Hessian Approximation ICML 2025
Approximate second-order optimization methods often exhibit poorer generalization compared to first-order approaches. In this work, we look into this issue through the lens of the loss landscape and find that existing second-order methods tend to converge to sharper minima compared to SGD. In response, we propose Sassha, a novel second-order method designed to enhance generalization by explicitly reducing sharpness of the solution, while stabilizing the computation of approximate Hessians along the optimization trajectory. In fact, this sharpness minimization scheme is crafted also to accommodate lazy Hessian updates, so as to secure efficiency besides flatness. To validate its effectiveness, we conduct a wide range of standard deep learning experiments where Sassha demonstrates its outstanding generalization performance that is comparable to, and mostly better than, other methods. We provide a comprehensive set of analyses including convergence, robustness, stability, efficiency, and cost.
comment: ICML 2025
Graphics 7
☆ Uncovering Conceptual Blindspots in Generative Image Models Using Sparse Autoencoders
Despite their impressive performance, generative image models trained on large-scale datasets frequently fail to produce images with seemingly simple concepts -- e.g., human hands or objects appearing in groups of four -- that are reasonably expected to appear in the training data. These failure modes have largely been documented anecdotally, leaving open the question of whether they reflect idiosyncratic anomalies or more structural limitations of these models. To address this, we introduce a systematic approach for identifying and characterizing "conceptual blindspots" -- concepts present in the training data but absent or misrepresented in a model's generations. Our method leverages sparse autoencoders (SAEs) to extract interpretable concept embeddings, enabling a quantitative comparison of concept prevalence between real and generated images. We train an archetypal SAE (RA-SAE) on DINOv2 features with 32,000 concepts -- the largest such SAE to date -- enabling fine-grained analysis of conceptual disparities. Applied to four popular generative models (Stable Diffusion 1.5/2.1, PixArt, and Kandinsky), our approach reveals specific suppressed blindspots (e.g., bird feeders, DVD discs, and whitespaces on documents) and exaggerated blindspots (e.g., wood background texture and palm trees). At the individual datapoint level, we further isolate memorization artifacts -- instances where models reproduce highly specific visual templates seen during training. Overall, we propose a theoretically grounded framework for systematically identifying conceptual blindspots in generative models by assessing their conceptual fidelity with respect to the underlying data-generating process.
☆ Virtual Memory for 3D Gaussian Splatting
3D Gaussian Splatting represents a breakthrough in the field of novel view synthesis. It establishes Gaussians as core rendering primitives for highly accurate real-world environment reconstruction. Recent advances have drastically increased the size of scenes that can be created. In this work, we present a method for rendering large and complex 3D Gaussian Splatting scenes using virtual memory. By leveraging well-established virtual memory and virtual texturing techniques, our approach efficiently identifies visible Gaussians and dynamically streams them to the GPU just in time for real-time rendering. Selecting only the necessary Gaussians for both storage and rendering results in reduced memory usage and effectively accelerates rendering, especially for highly complex scenes. Furthermore, we demonstrate how level of detail can be integrated into our proposed method to further enhance rendering speed for large-scale scenes. With an optimized implementation, we highlight key practical considerations and thoroughly evaluate the proposed technique and its impact on desktop and mobile devices.
comment: Based on the Master Thesis from Jonathan Haberl from 2024, Submitted to TVCG in Feb. 2025;
☆ Continuous Indexed Points for Multivariate Volume Visualization
We introduce continuous indexed points for improved multivariate volume visualization. Indexed points represent linear structures in parallel coordinates and can be used to encode local correlation of multivariate (including multifield, multifaceted, and multiattribute) volume data. First, we perform local linear fitting in the spatial neighborhood of each volume sample using principal component analysis, accelerated by hierarchical spatial data structures. This local linear information is then visualized as continuous indexed points in parallel coordinates: a density representation of indexed points in a continuous domain. With our new method, multivariate volume data can be analyzed using the eigenvector information from local spatial embeddings. We utilize both 1-flat and 2-flat indexed points, allowing us to identify correlations between two variables and even three variables, respectively. An interactive occlusion shading model facilitates good spatial perception of the volume rendering of volumetric correlation characteristics. Interactive exploration is supported by specifically designed multivariate transfer function widgets working in the image plane of parallel coordinates. We show that our generic technique works for multi-attribute datasets. The effectiveness and usefulness of our new method is demonstrated through a case study, an expert user study, and domain expert feedback.
comment: Peer reviewed and accepted by Computational Visual Media
☆ A Batch-Insensitive Dynamic GNN Approach to Address Temporal Discontinuity in Graph Streams
In dynamic graphs, preserving temporal continuity is critical. However, Memory-based Dynamic Graph Neural Networks (MDGNNs) trained with large batches often disrupt event sequences, leading to temporal information loss. This discontinuity not only deteriorates temporal modeling but also hinders optimization by increasing the difficulty of parameter convergence. Our theoretical study quantifies this through a Lipschitz upper bound, showing that large batch sizes enlarge the parameter search space. In response, we propose BADGNN, a novel batch-agnostic framework consisting of two core components: (1) Temporal Lipschitz Regularization (TLR) to control parameter search space expansion, and (2) Adaptive Attention Adjustment (A3) to alleviate attention distortion induced by both regularization and batching. Empirical results on three benchmark datasets show that BADGNN maintains strong performance while enabling significantly larger batch sizes and faster training compared to TGN. Our code is available at Code: https://anonymous.4open.science/r/TGN_Lipichitz-C033/.
comment: 8pages, 5figures
☆ Style Transfer: A Decade Survey
The revolutionary advancement of Artificial Intelligence Generated Content (AIGC) has fundamentally transformed the landscape of visual content creation and artistic expression. While remarkable progress has been made in image generation and style transfer, the underlying mechanisms and aesthetic implications of these technologies remain insufficiently understood. This paper presents a comprehensive survey of AIGC technologies in visual arts, tracing their evolution from early algorithmic frameworks to contemporary deep generative models. We identify three pivotal paradigms: Variational Autoencoders (VAE), Generative Adversarial Networks (GANs), and Diffusion Models, and examine their roles in bridging the gap between human creativity and machine synthesis. To support our analysis, we systematically review over 500 research papers published in the past decade, spanning both foundational developments and state-of-the-art innovations. Furthermore, we propose a multidimensional evaluation framework that incorporates Technical Innovation, Artistic Merit, Visual Quality, Computational Efficiency, and Creative Potential. Our findings reveal both the transformative capacities and current limitations of AIGC systems, emphasizing their profound impact on the future of creative practices. Through this extensive synthesis, we offer a unified perspective on the convergence of artificial intelligence and artistic expression, while outlining key challenges and promising directions for future research in this rapidly evolving field.
comment: 32 pages
♻ ☆ FLUX.1 Kontext: Flow Matching for In-Context Image Generation and Editing in Latent Space
We present evaluation results for FLUX.1 Kontext, a generative flow matching model that unifies image generation and editing. The model generates novel output views by incorporating semantic context from text and image inputs. Using a simple sequence concatenation approach, FLUX.1 Kontext handles both local editing and generative in-context tasks within a single unified architecture. Compared to current editing models that exhibit degradation in character consistency and stability across multiple turns, we observe that FLUX.1 Kontext improved preservation of objects and characters, leading to greater robustness in iterative workflows. The model achieves competitive performance with current state-of-the-art systems while delivering significantly faster generation times, enabling interactive applications and rapid prototyping workflows. To validate these improvements, we introduce KontextBench, a comprehensive benchmark with 1026 image-prompt pairs covering five task categories: local editing, global editing, character reference, style reference and text editing. Detailed evaluations show the superior performance of FLUX.1 Kontext in terms of both single-turn quality and multi-turn consistency, setting new standards for unified image processing models.
♻ ☆ VR-Doh: Hands-on 3D Modeling in Virtual Reality
We introduce VR-Doh, an open-source, hands-on 3D modeling system that enables intuitive creation and manipulation of elastoplastic objects in Virtual Reality (VR). By customizing the Material Point Method (MPM) for real-time simulation of hand-induced large deformations and enhancing 3D Gaussian Splatting for seamless rendering, VR-Doh provides an interactive and immersive 3D modeling experience. Users can naturally sculpt, deform, and edit objects through both contact- and gesture-based hand-object interactions. To achieve real-time performance, our system incorporates localized simulation techniques, particle-level collision handling, and the decoupling of physical and appearance representations, ensuring smooth and responsive interactions. VR-Doh supports both object creation and editing, enabling diverse modeling tasks such as designing food items, characters, and interlocking structures, all resulting in simulation-ready assets. User studies with both novice and experienced participants highlight the system's intuitive design, immersive feedback, and creative potential. Compared to existing geometric modeling tools, VR-Doh offers enhanced accessibility and natural interaction, making it a powerful tool for creative exploration in VR.
comment: 12 pages
Computer Vision 159
☆ Radial Attention: $O(n\log n)$ Sparse Attention with Energy Decay for Long Video Generation
Recent advances in diffusion models have enabled high-quality video generation, but the additional temporal dimension significantly increases computational costs, making training and inference on long videos prohibitively expensive. In this paper, we identify a phenomenon we term Spatiotemporal Energy Decay in video diffusion models: post-softmax attention scores diminish as spatial and temporal distance between tokens increase, akin to the physical decay of signal or waves over space and time in nature. Motivated by this, we propose Radial Attention, a scalable sparse attention mechanism with $O(n \log n)$ complexity that translates energy decay into exponentially decaying compute density, which is significantly more efficient than standard $O(n^2)$ dense attention and more expressive than linear attention. Specifically, Radial Attention employs a simple, static attention mask where each token attends to spatially nearby tokens, with the attention window size shrinking with temporal distance. Moreover, it allows pre-trained video diffusion models to extend their generation length with efficient LoRA-based fine-tuning. Extensive experiments show that Radial Attention maintains video quality across Wan2.1-14B, HunyuanVideo, and Mochi 1, achieving up to a 1.9$\times$ speedup over the original dense attention. With minimal tuning, it enables video generation up to 4$\times$ longer while reducing training costs by up to 4.4$\times$ compared to direct fine-tuning and accelerating inference by up to 3.7$\times$ compared to dense attention inference.
comment: Code: https://github.com/mit-han-lab/radial-attention
☆ AnimaX: Animating the Inanimate in 3D with Joint Video-Pose Diffusion Models
We present AnimaX, a feed-forward 3D animation framework that bridges the motion priors of video diffusion models with the controllable structure of skeleton-based animation. Traditional motion synthesis methods are either restricted to fixed skeletal topologies or require costly optimization in high-dimensional deformation spaces. In contrast, AnimaX effectively transfers video-based motion knowledge to the 3D domain, supporting diverse articulated meshes with arbitrary skeletons. Our method represents 3D motion as multi-view, multi-frame 2D pose maps, and enables joint video-pose diffusion conditioned on template renderings and a textual motion prompt. We introduce shared positional encodings and modality-aware embeddings to ensure spatial-temporal alignment between video and pose sequences, effectively transferring video priors to motion generation task. The resulting multi-view pose sequences are triangulated into 3D joint positions and converted into mesh animation via inverse kinematics. Trained on a newly curated dataset of 160,000 rigged sequences, AnimaX achieves state-of-the-art results on VBench in generalization, motion fidelity, and efficiency, offering a scalable solution for category-agnostic 3D animation. Project page: \href{https://anima-x.github.io/}{https://anima-x.github.io/}.
comment: Project page: https://anima-x.github.io/
☆ Unified Vision-Language-Action Model
Vision-language-action models (VLAs) have garnered significant attention for their potential in advancing robotic manipulation. However, previous approaches predominantly rely on the general comprehension capabilities of vision-language models (VLMs) to generate action signals, often overlooking the rich temporal and causal structure embedded in visual observations. In this paper, we present UniVLA, a unified and native multimodal VLA model that autoregressively models vision, language, and action signals as discrete token sequences. This formulation enables flexible multimodal tasks learning, particularly from large-scale video data. By incorporating world modeling during post-training, UniVLA captures causal dynamics from videos, facilitating effective transfer to downstream policy learning--especially for long-horizon tasks. Our approach sets new state-of-the-art results across several widely used simulation benchmarks, including CALVIN, LIBERO, and Simplenv-Bridge, significantly surpassing previous methods. For example, UniVLA achieves 95.5% average success rate on LIBERO benchmark, surpassing pi0-FAST's 85.5%. We further demonstrate its broad applicability on real-world ALOHA manipulation and autonomous driving.
comment: technical report
☆ ScaleCap: Inference-Time Scalable Image Captioning via Dual-Modality Debiasing
This paper presents ScaleCap, an inference-time scalable image captioning strategy that generates comprehensive and detailed image captions. The key challenges of high-quality image captioning lie in the inherent biases of LVLMs: multimodal bias resulting in imbalanced descriptive granularity, offering detailed accounts of some elements while merely skimming over others; linguistic bias leading to hallucinated descriptions of non-existent objects. To address these issues, we propose a scalable debiased captioning strategy, which continuously enriches and calibrates the caption with increased inference budget. Specifically, we propose two novel components: heuristic question answering and contrastive sentence rating. The former generates content-specific questions based on the image and answers them to progressively inject relevant information into the caption. The latter employs sentence-level offline contrastive decoding to effectively identify and eliminate hallucinations caused by linguistic biases. With increased inference cost, more heuristic questions are raised by ScaleCap to progressively capture additional visual details, generating captions that are more accurate, balanced, and informative. Extensive modality alignment experiments demonstrate the effectiveness of ScaleCap. Annotating 450K images with ScaleCap and using them for LVLM pretraining leads to consistent performance gains across 11 widely used benchmarks. Furthermore, ScaleCap showcases superb richness and fidelity of generated captions with two additional tasks: replacing images with captions in VQA task, and reconstructing images from captions to assess semantic coverage. Code is available at https://github.com/Cooperx521/ScaleCap.
comment: Code is available at https://github.com/Cooperx521/ScaleCap
☆ Orthogonal Finetuning Made Scalable
Orthogonal finetuning (OFT) offers highly parameter-efficient adaptation while preventing catastrophic forgetting, but its high runtime and memory demands limit practical deployment. We identify the core computational bottleneck in OFT as its weight-centric implementation, which relies on costly matrix-matrix multiplications with cubic complexity. To overcome this, we propose OFTv2, an input-centric reformulation that instead uses matrix-vector multiplications (i.e., matrix-free computation), reducing the computational cost to quadratic. We further introduce the Cayley-Neumann parameterization, an efficient orthogonal parameterization that approximates the matrix inversion in Cayley transform via a truncated Neumann series. These modifications allow OFTv2 to achieve up to 10x faster training and 3x lower GPU memory usage without compromising performance. In addition, we extend OFTv2 to support finetuning quantized foundation models and show that it outperforms the popular QLoRA in training stability, efficiency, and memory usage.
comment: Technical report (17 pages, 7 figures, project page: https://spherelab.ai/oftv2/)
☆ A Comparative Study of NAFNet Baselines for Image Restoration
We study NAFNet (Nonlinear Activation Free Network), a simple and efficient deep learning baseline for image restoration. By using CIFAR10 images corrupted with noise and blur, we conduct an ablation study of NAFNet's core components. Our baseline model implements SimpleGate activation, Simplified Channel Activation (SCA), and LayerNormalization. We compare this baseline to different variants that replace or remove components. Quantitative results (PSNR, SSIM) and examples illustrate how each modification affects restoration performance. Our findings support the NAFNet design: the SimpleGate and simplified attention mechanisms yield better results than conventional activations and attention, while LayerNorm proves to be important for stable training. We conclude with recommendations for model design, discuss potential improvements, and future work.
☆ Active View Selector: Fast and Accurate Active View Selection with Cross Reference Image Quality Assessment
We tackle active view selection in novel view synthesis and 3D reconstruction. Existing methods like FisheRF and ActiveNeRF select the next best view by minimizing uncertainty or maximizing information gain in 3D, but they require specialized designs for different 3D representations and involve complex modelling in 3D space. Instead, we reframe this as a 2D image quality assessment (IQA) task, selecting views where current renderings have the lowest quality. Since ground-truth images for candidate views are unavailable, full-reference metrics like PSNR and SSIM are inapplicable, while no-reference metrics, such as MUSIQ and MANIQA, lack the essential multi-view context. Inspired by a recent cross-referencing quality framework CrossScore, we train a model to predict SSIM within a multi-view setup and use it to guide view selection. Our cross-reference IQA framework achieves substantial quantitative and qualitative improvements across standard benchmarks, while being agnostic to 3D representations, and runs 14-33 times faster than previous methods.
comment: Project page: https://avs.active.vision/
☆ GenHSI: Controllable Generation of Human-Scene Interaction Videos
Large-scale pre-trained video diffusion models have exhibited remarkable capabilities in diverse video generation. However, existing solutions face several challenges in using these models to generate long movie-like videos with rich human-object interactions that include unrealistic human-scene interaction, lack of subject identity preservation, and require expensive training. We propose GenHSI, a training-free method for controllable generation of long human-scene interaction videos (HSI). Taking inspiration from movie animation, our key insight is to overcome the limitations of previous work by subdividing the long video generation task into three stages: (1) script writing, (2) pre-visualization, and (3) animation. Given an image of a scene, a user description, and multiple images of a person, we use these three stages to generate long-videos that preserve human-identity and provide rich human-scene interactions. Script writing converts complex human tasks into simple atomic tasks that are used in the pre-visualization stage to generate 3D keyframes (storyboards). These 3D keyframes are rendered and animated by off-the-shelf video diffusion models for consistent long video generation with rich contacts in a 3D-aware manner. A key advantage of our work is that we alleviate the need for scanned, accurate scenes and create 3D keyframes from single-view images. We are the first to generate a long video sequence with a consistent camera pose that contains arbitrary numbers of character actions without training. Experiments demonstrate that our method can generate long videos that effectively preserve scene content and character identity with plausible human-scene interaction from a single image scene. Visit our project homepage https://kunkun0w0.github.io/project/GenHSI/ for more information.
☆ Improving Progressive Generation with Decomposable Flow Matching
Generating high-dimensional visual modalities is a computationally intensive task. A common solution is progressive generation, where the outputs are synthesized in a coarse-to-fine spectral autoregressive manner. While diffusion models benefit from the coarse-to-fine nature of denoising, explicit multi-stage architectures are rarely adopted. These architectures have increased the complexity of the overall approach, introducing the need for a custom diffusion formulation, decomposition-dependent stage transitions, add-hoc samplers, or a model cascade. Our contribution, Decomposable Flow Matching (DFM), is a simple and effective framework for the progressive generation of visual media. DFM applies Flow Matching independently at each level of a user-defined multi-scale representation (such as Laplacian pyramid). As shown by our experiments, our approach improves visual quality for both images and videos, featuring superior results compared to prior multistage frameworks. On Imagenet-1k 512px, DFM achieves 35.2% improvements in FDD scores over the base architecture and 26.4% over the best-performing baseline, under the same training compute. When applied to finetuning of large models, such as FLUX, DFM shows faster convergence speed to the training distribution. Crucially, all these advantages are achieved with a single model, architectural simplicity, and minimal modifications to existing training pipelines.
comment: Project Webpage: https://snap-research.github.io/dfm/
☆ SimpleGVR: A Simple Baseline for Latent-Cascaded Video Super-Resolution
Latent diffusion models have emerged as a leading paradigm for efficient video generation. However, as user expectations shift toward higher-resolution outputs, relying solely on latent computation becomes inadequate. A promising approach involves decoupling the process into two stages: semantic content generation and detail synthesis. The former employs a computationally intensive base model at lower resolutions, while the latter leverages a lightweight cascaded video super-resolution (VSR) model to achieve high-resolution output. In this work, we focus on studying key design principles for latter cascaded VSR models, which are underexplored currently. First, we propose two degradation strategies to generate training pairs that better mimic the output characteristics of the base model, ensuring alignment between the VSR model and its upstream generator. Second, we provide critical insights into VSR model behavior through systematic analysis of (1) timestep sampling strategies, (2) noise augmentation effects on low-resolution (LR) inputs. These findings directly inform our architectural and training innovations. Finally, we introduce interleaving temporal unit and sparse local attention to achieve efficient training and inference, drastically reducing computational overhead. Extensive experiments demonstrate the superiority of our framework over existing methods, with ablation studies confirming the efficacy of each design choice. Our work establishes a simple yet effective baseline for cascaded video super-resolution generation, offering practical insights to guide future advancements in efficient cascaded synthesis systems.
comment: Project webpage available at https://simplegvr.github.io/
☆ Bind-Your-Avatar: Multi-Talking-Character Video Generation with Dynamic 3D-mask-based Embedding Router
Recent years have witnessed remarkable advances in audio-driven talking head generation. However, existing approaches predominantly focus on single-character scenarios. While some methods can create separate conversation videos between two individuals, the critical challenge of generating unified conversation videos with multiple physically co-present characters sharing the same spatial environment remains largely unaddressed. This setting presents two key challenges: audio-to-character correspondence control and the lack of suitable datasets featuring multi-character talking videos within the same scene. To address these challenges, we introduce Bind-Your-Avatar, an MM-DiT-based model specifically designed for multi-talking-character video generation in the same scene. Specifically, we propose (1) A novel framework incorporating a fine-grained Embedding Router that binds `who' and `speak what' together to address the audio-to-character correspondence control. (2) Two methods for implementing a 3D-mask embedding router that enables frame-wise, fine-grained control of individual characters, with distinct loss functions based on observed geometric priors and a mask refinement strategy to enhance the accuracy and temporal smoothness of the predicted masks. (3) The first dataset, to the best of our knowledge, specifically constructed for multi-talking-character video generation, and accompanied by an open-source data processing pipeline, and (4) A benchmark for the dual-talking-characters video generation, with extensive experiments demonstrating superior performance over multiple state-of-the-art methods.
☆ Look to Locate: Vision-Based Multisensory Navigation with 3-D Digital Maps for GNSS-Challenged Environments
In Global Navigation Satellite System (GNSS)-denied environments such as indoor parking structures or dense urban canyons, achieving accurate and robust vehicle positioning remains a significant challenge. This paper proposes a cost-effective, vision-based multi-sensor navigation system that integrates monocular depth estimation, semantic filtering, and visual map registration (VMR) with 3-D digital maps. Extensive testing in real-world indoor and outdoor driving scenarios demonstrates the effectiveness of the proposed system, achieving sub-meter accuracy of 92% indoors and more than 80% outdoors, with consistent horizontal positioning and heading average root mean-square errors of approximately 0.98 m and 1.25 {\deg}, respectively. Compared to the baselines examined, the proposed solution significantly reduced drift and improved robustness under various conditions, achieving positioning accuracy improvements of approximately 88% on average. This work highlights the potential of cost-effective monocular vision systems combined with 3D maps for scalable, GNSS-independent navigation in land vehicles.
☆ CronusVLA: Transferring Latent Motion Across Time for Multi-Frame Prediction in Manipulation
Recent vision-language-action (VLA) models built on pretrained vision-language models (VLMs) have demonstrated strong generalization across manipulation tasks. However, they remain constrained by a single-frame observation paradigm and cannot fully benefit from the motion information offered by aggregated multi-frame historical observations, as the large vision-language backbone introduces substantial computational cost and inference latency. We propose CronusVLA, a unified framework that extends single-frame VLA models to the multi-frame paradigm through an efficient post-training stage. CronusVLA comprises three key components: (1) single-frame pretraining on large-scale embodied datasets with autoregressive action tokens prediction, which establishes an embodied vision-language foundation; (2) multi-frame encoding, adapting the prediction of vision-language backbones from discrete action tokens to motion features during post-training, and aggregating motion features from historical frames into a feature chunking; (3) cross-frame decoding, which maps the feature chunking to accurate actions via a shared decoder with cross-attention. By reducing redundant token computation and caching past motion features, CronusVLA achieves efficient inference. As an application of motion features, we further propose an action adaptation mechanism based on feature-action retrieval to improve model performance during finetuning. CronusVLA achieves state-of-the-art performance on SimplerEnv with 70.9% success rate, and 12.7% improvement over OpenVLA on LIBERO. Real-world Franka experiments also show the strong performance and robustness.
comment: 36 pages, 21 figures
☆ KnowRL: Exploring Knowledgeable Reinforcement Learning for Factuality
Large Language Models (LLMs), particularly slow-thinking models, often exhibit severe hallucination, outputting incorrect content due to an inability to accurately recognize knowledge boundaries during reasoning. While Reinforcement Learning (RL) can enhance complex reasoning abilities, its outcome-oriented reward mechanism often lacks factual supervision over the thinking process, further exacerbating the hallucination problem. To address the high hallucination in slow-thinking models, we propose Knowledge-enhanced RL, KnowRL. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. This targeted factual input during RL training enables the model to learn and internalize fact-based reasoning strategies. By directly rewarding adherence to facts within the reasoning steps, KnowRL fosters a more reliable thinking process. Experimental results on three hallucination evaluation datasets and two reasoning evaluation datasets demonstrate that KnowRL effectively mitigates hallucinations in slow-thinking models while maintaining their original strong reasoning capabilities. Our code is available at https://github.com/zjunlp/KnowRL.
comment: Work in progress
☆ CoCo4D: Comprehensive and Complex 4D Scene Generation
Existing 4D synthesis methods primarily focus on object-level generation or dynamic scene synthesis with limited novel views, restricting their ability to generate multi-view consistent and immersive dynamic 4D scenes. To address these constraints, we propose a framework (dubbed as CoCo4D) for generating detailed dynamic 4D scenes from text prompts, with the option to include images. Our method leverages the crucial observation that articulated motion typically characterizes foreground objects, whereas background alterations are less pronounced. Consequently, CoCo4D divides 4D scene synthesis into two responsibilities: modeling the dynamic foreground and creating the evolving background, both directed by a reference motion sequence. Given a text prompt and an optional reference image, CoCo4D first generates an initial motion sequence utilizing video diffusion models. This motion sequence then guides the synthesis of both the dynamic foreground object and the background using a novel progressive outpainting scheme. To ensure seamless integration of the moving foreground object within the dynamic background, CoCo4D optimizes a parametric trajectory for the foreground, resulting in realistic and coherent blending. Extensive experiments show that CoCo4D achieves comparable or superior performance in 4D scene generation compared to existing methods, demonstrating its effectiveness and efficiency. More results are presented on our website https://colezwhy.github.io/coco4d/.
comment: 16 pages,10 figures
☆ Systematic Review of Pituitary Gland and Pituitary Adenoma Automatic Segmentation Techniques in Magnetic Resonance Imaging
Purpose: Accurate segmentation of both the pituitary gland and adenomas from magnetic resonance imaging (MRI) is essential for diagnosis and treatment of pituitary adenomas. This systematic review evaluates automatic segmentation methods for improving the accuracy and efficiency of MRI-based segmentation of pituitary adenomas and the gland itself. Methods: We reviewed 34 studies that employed automatic and semi-automatic segmentation methods. We extracted and synthesized data on segmentation techniques and performance metrics (such as Dice overlap scores). Results: The majority of reviewed studies utilized deep learning approaches, with U-Net-based models being the most prevalent. Automatic methods yielded Dice scores of 0.19--89.00\% for pituitary gland and 4.60--96.41\% for adenoma segmentation. Semi-automatic methods reported 80.00--92.10\% for pituitary gland and 75.90--88.36\% for adenoma segmentation. Conclusion: Most studies did not report important metrics such as MR field strength, age and adenoma size. Automated segmentation techniques such as U-Net-based models show promise, especially for adenoma segmentation, but further improvements are needed to achieve consistently good performance in small structures like the normal pituitary gland. Continued innovation and larger, diverse datasets are likely critical to enhancing clinical applicability.
☆ Systematic Comparison of Projection Methods for Monocular 3D Human Pose Estimation on Fisheye Images
Fisheye cameras offer robots the ability to capture human movements across a wider field of view (FOV) than standard pinhole cameras, making them particularly useful for applications in human-robot interaction and automotive contexts. However, accurately detecting human poses in fisheye images is challenging due to the curved distortions inherent to fisheye optics. While various methods for undistorting fisheye images have been proposed, their effectiveness and limitations for poses that cover a wide FOV has not been systematically evaluated in the context of absolute human pose estimation from monocular fisheye images. To address this gap, we evaluate the impact of pinhole, equidistant and double sphere camera models, as well as cylindrical projection methods, on 3D human pose estimation accuracy. We find that in close-up scenarios, pinhole projection is inadequate, and the optimal projection method varies with the FOV covered by the human pose. The usage of advanced fisheye models like the double sphere model significantly enhances 3D human pose estimation accuracy. We propose a heuristic for selecting the appropriate projection model based on the detection bounding box to enhance prediction quality. Additionally, we introduce and evaluate on our novel dataset FISHnCHIPS, which features 3D human skeleton annotations in fisheye images, including images from unconventional angles, such as extreme close-ups, ground-mounted cameras, and wide-FOV poses, available at: https://www.vision.rwth-aachen.de/fishnchips
comment: Presented at IEEE International Conference on Robotics and Automation 2025
☆ NeRF-based CBCT Reconstruction needs Normalization and Initialization
Cone Beam Computed Tomography (CBCT) is widely used in medical imaging. However, the limited number and intensity of X-ray projections make reconstruction an ill-posed problem with severe artifacts. NeRF-based methods have achieved great success in this task. However, they suffer from a local-global training mismatch between their two key components: the hash encoder and the neural network. Specifically, in each training step, only a subset of the hash encoder's parameters is used (local sparse), whereas all parameters in the neural network participate (global dense). Consequently, hash features generated in each step are highly misaligned, as they come from different subsets of the hash encoder. These misalignments from different training steps are then fed into the neural network, causing repeated inconsistent global updates in training, which leads to unstable training, slower convergence, and degraded reconstruction quality. Aiming to alleviate the impact of this local-global optimization mismatch, we introduce a Normalized Hash Encoder, which enhances feature consistency and mitigates the mismatch. Additionally, we propose a Mapping Consistency Initialization(MCI) strategy that initializes the neural network before training by leveraging the global mapping property from a well-trained model. The initialized neural network exhibits improved stability during early training, enabling faster convergence and enhanced reconstruction performance. Our method is simple yet effective, requiring only a few lines of code while substantially improving training efficiency on 128 CT cases collected from 4 different datasets, covering 7 distinct anatomical regions.
☆ Noise Consistency Training: A Native Approach for One-Step Generator in Learning Additional Controls
The pursuit of efficient and controllable high-quality content generation remains a central challenge in artificial intelligence-generated content (AIGC). While one-step generators, enabled by diffusion distillation techniques, offer excellent generation quality and computational efficiency, adapting them to new control conditions--such as structural constraints, semantic guidelines, or external inputs--poses a significant challenge. Conventional approaches often necessitate computationally expensive modifications to the base model and subsequent diffusion distillation. This paper introduces Noise Consistency Training (NCT), a novel and lightweight approach to directly integrate new control signals into pre-trained one-step generators without requiring access to original training images or retraining the base diffusion model. NCT operates by introducing an adapter module and employs a noise consistency loss in the noise space of the generator. This loss aligns the adapted model's generation behavior across noises that are conditionally dependent to varying degrees, implicitly guiding it to adhere to the new control. Theoretically, this training objective can be understood as minimizing the distributional distance between the adapted generator and the conditional distribution induced by the new conditions. NCT is modular, data-efficient, and easily deployable, relying only on the pre-trained one-step generator and a control signal model. Extensive experiments demonstrate that NCT achieves state-of-the-art controllable generation in a single forward pass, surpassing existing multi-step and distillation-based methods in both generation quality and computational efficiency. Code is available at https://github.com/Luo-Yihong/NCT
☆ Uncovering Conceptual Blindspots in Generative Image Models Using Sparse Autoencoders
Despite their impressive performance, generative image models trained on large-scale datasets frequently fail to produce images with seemingly simple concepts -- e.g., human hands or objects appearing in groups of four -- that are reasonably expected to appear in the training data. These failure modes have largely been documented anecdotally, leaving open the question of whether they reflect idiosyncratic anomalies or more structural limitations of these models. To address this, we introduce a systematic approach for identifying and characterizing "conceptual blindspots" -- concepts present in the training data but absent or misrepresented in a model's generations. Our method leverages sparse autoencoders (SAEs) to extract interpretable concept embeddings, enabling a quantitative comparison of concept prevalence between real and generated images. We train an archetypal SAE (RA-SAE) on DINOv2 features with 32,000 concepts -- the largest such SAE to date -- enabling fine-grained analysis of conceptual disparities. Applied to four popular generative models (Stable Diffusion 1.5/2.1, PixArt, and Kandinsky), our approach reveals specific suppressed blindspots (e.g., bird feeders, DVD discs, and whitespaces on documents) and exaggerated blindspots (e.g., wood background texture and palm trees). At the individual datapoint level, we further isolate memorization artifacts -- instances where models reproduce highly specific visual templates seen during training. Overall, we propose a theoretically grounded framework for systematically identifying conceptual blindspots in generative models by assessing their conceptual fidelity with respect to the underlying data-generating process.
☆ UltraAD: Fine-Grained Ultrasound Anomaly Classification via Few-Shot CLIP Adaptation
Precise anomaly detection in medical images is critical for clinical decision-making. While recent unsupervised or semi-supervised anomaly detection methods trained on large-scale normal data show promising results, they lack fine-grained differentiation, such as benign vs. malignant tumors. Additionally, ultrasound (US) imaging is highly sensitive to devices and acquisition parameter variations, creating significant domain gaps in the resulting US images. To address these challenges, we propose UltraAD, a vision-language model (VLM)-based approach that leverages few-shot US examples for generalized anomaly localization and fine-grained classification. To enhance localization performance, the image-level token of query visual prototypes is first fused with learnable text embeddings. This image-informed prompt feature is then further integrated with patch-level tokens, refining local representations for improved accuracy. For fine-grained classification, a memory bank is constructed from few-shot image samples and corresponding text descriptions that capture anatomical and abnormality-specific features. During training, the stored text embeddings remain frozen, while image features are adapted to better align with medical data. UltraAD has been extensively evaluated on three breast US datasets, outperforming state-of-the-art methods in both lesion localization and fine-grained medical classification. The code will be released upon acceptance.
☆ ReCoGNet: Recurrent Context-Guided Network for 3D MRI Prostate Segmentation
Prostate gland segmentation from T2-weighted MRI is a critical yet challenging task in clinical prostate cancer assessment. While deep learning-based methods have significantly advanced automated segmentation, most conventional approaches-particularly 2D convolutional neural networks (CNNs)-fail to leverage inter-slice anatomical continuity, limiting their accuracy and robustness. Fully 3D models offer improved spatial coherence but require large amounts of annotated data, which is often impractical in clinical settings. To address these limitations, we propose a hybrid architecture that models MRI sequences as spatiotemporal data. Our method uses a deep, pretrained DeepLabV3 backbone to extract high-level semantic features from each MRI slice and a recurrent convolutional head, built with ConvLSTM layers, to integrate information across slices while preserving spatial structure. This combination enables context-aware segmentation with improved consistency, particularly in data-limited and noisy imaging conditions. We evaluate our method on the PROMISE12 benchmark under both clean and contrast-degraded test settings. Compared to state-of-the-art 2D and 3D segmentation models, our approach demonstrates superior performance in terms of precision, recall, Intersection over Union (IoU), and Dice Similarity Coefficient (DSC), highlighting its potential for robust clinical deployment.
☆ Semantic Scene Graph for Ultrasound Image Explanation and Scanning Guidance
Understanding medical ultrasound imaging remains a long-standing challenge due to significant visual variability caused by differences in imaging and acquisition parameters. Recent advancements in large language models (LLMs) have been used to automatically generate terminology-rich summaries orientated to clinicians with sufficient physiological knowledge. Nevertheless, the increasing demand for improved ultrasound interpretability and basic scanning guidance among non-expert users, e.g., in point-of-care settings, has not yet been explored. In this study, we first introduce the scene graph (SG) for ultrasound images to explain image content to ordinary and provide guidance for ultrasound scanning. The ultrasound SG is first computed using a transformer-based one-stage method, eliminating the need for explicit object detection. To generate a graspable image explanation for ordinary, the user query is then used to further refine the abstract SG representation through LLMs. Additionally, the predicted SG is explored for its potential in guiding ultrasound scanning toward missing anatomies within the current imaging view, assisting ordinary users in achieving more standardized and complete anatomical exploration. The effectiveness of this SG-based image explanation and scanning guidance has been validated on images from the left and right neck regions, including the carotid and thyroid, across five volunteers. The results demonstrate the potential of the method to maximally democratize ultrasound by enhancing its interpretability and usability for ordinaries.
☆ Genome-Anchored Foundation Model Embeddings Improve Molecular Prediction from Histology Images
Precision oncology requires accurate molecular insights, yet obtaining these directly from genomics is costly and time-consuming for broad clinical use. Predicting complex molecular features and patient prognosis directly from routine whole-slide images (WSI) remains a major challenge for current deep learning methods. Here we introduce PathLUPI, which uses transcriptomic privileged information during training to extract genome-anchored histological embeddings, enabling effective molecular prediction using only WSIs at inference. Through extensive evaluation across 49 molecular oncology tasks using 11,257 cases among 20 cohorts, PathLUPI demonstrated superior performance compared to conventional methods trained solely on WSIs. Crucially, it achieves AUC $\geq$ 0.80 in 14 of the biomarker prediction and molecular subtyping tasks and C-index $\geq$ 0.70 in survival cohorts of 5 major cancer types. Moreover, PathLUPI embeddings reveal distinct cellular morphological signatures associated with specific genotypes and related biological pathways within WSIs. By effectively encoding molecular context to refine WSI representations, PathLUPI overcomes a key limitation of existing models and offers a novel strategy to bridge molecular insights with routine pathology workflows for wider clinical application.
comment: Under Review
☆ Recurrent Visual Feature Extraction and Stereo Attentions for CT Report Generation
Generating reports for computed tomography (CT) images is a challenging task, while similar to existing studies for medical image report generation, yet has its unique characteristics, such as spatial encoding of multiple images, alignment between image volume and texts, etc. Existing solutions typically use general 2D or 3D image processing techniques to extract features from a CT volume, where they firstly compress the volume and then divide the compressed CT slices into patches for visual encoding. These approaches do not explicitly account for the transformations among CT slices, nor do they effectively integrate multi-level image features, particularly those containing specific organ lesions, to instruct CT report generation (CTRG). In considering the strong correlation among consecutive slices in CT scans, in this paper, we propose a large language model (LLM) based CTRG method with recurrent visual feature extraction and stereo attentions for hierarchical feature modeling. Specifically, we use a vision Transformer to recurrently process each slice in a CT volume, and employ a set of attentions over the encoded slices from different perspectives to selectively obtain important visual information and align them with textual features, so as to better instruct an LLM for CTRG. Experiment results and further analysis on the benchmark M3D-Cap dataset show that our method outperforms strong baseline models and achieves state-of-the-art results, demonstrating its validity and effectiveness.
comment: 7 pages, 3 figures
☆ SAM2-SGP: Enhancing SAM2 for Medical Image Segmentation via Support-Set Guided Prompting
Although new vision foundation models such as Segment Anything Model 2 (SAM2) have significantly enhanced zero-shot image segmentation capabilities, reliance on human-provided prompts poses significant challenges in adapting SAM2 to medical image segmentation tasks. Moreover, SAM2's performance in medical image segmentation was limited by the domain shift issue, since it was originally trained on natural images and videos. To address these challenges, we proposed SAM2 with support-set guided prompting (SAM2-SGP), a framework that eliminated the need for manual prompts. The proposed model leveraged the memory mechanism of SAM2 to generate pseudo-masks using image-mask pairs from a support set via a Pseudo-mask Generation (PMG) module. We further introduced a novel Pseudo-mask Attention (PMA) module, which used these pseudo-masks to automatically generate bounding boxes and enhance localized feature extraction by guiding attention to relevant areas. Furthermore, a low-rank adaptation (LoRA) strategy was adopted to mitigate the domain shift issue. The proposed framework was evaluated on both 2D and 3D datasets across multiple medical imaging modalities, including fundus photography, X-ray, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound. The results demonstrated a significant performance improvement over state-of-the-art models, such as nnUNet and SwinUNet, as well as foundation models, such as SAM2 and MedSAM2, underscoring the effectiveness of the proposed approach. Our code is publicly available at https://github.com/astlian9/SAM_Support.
☆ Video Compression for Spatiotemporal Earth System Data
Large-scale Earth system datasets, from high-resolution remote sensing imagery to spatiotemporal climate model outputs, exhibit characteristics analogous to those of standard videos. Their inherent spatial, temporal, and spectral redundancies can thus be readily exploited by established video compression techniques. Here, we present xarrayvideo, a Python library for compressing multichannel spatiotemporal datasets by encoding them as videos. Our approach achieves compression ratios of up to 250x while maintaining high fidelity by leveraging standard, well-optimized video codecs through ffmpeg. We demonstrate the library's effectiveness on four real-world multichannel spatiotemporal datasets: DynamicEarthNet (very high resolution Planet images), DeepExtremeCubes (high resolution Sentinel-2 images), ERA5 (weather reanalysis data), and the SimpleS2 dataset (high resolution multichannel Sentinel-2 images), achieving Peak Signal-to-Noise Ratios (PSNRs) of 55.86, 40.60, 46.58, and 43.23 dB at 0.1 bits per pixel per band (bpppb) and 65.91, 54.28, 62.90, and 55.04 dB at 1 bpppb. We are redistributing two of these datasets, DeepExtremeCubes (2.3 Tb) and DynamicEarthNet (525 Gb), in the machine-learning-ready and cloud-ready TACO format through HuggingFace at significantly reduced sizes (270 Gb and 8.5 Gb, respectively) without compromising quality (PSNR 55.77-56.65 and 60.15). No performance loss is observed when the compressed versions of these datasets are used in their respective deep learning-based downstream tasks (next step reflectance prediction and landcover segmentation). In conclusion, xarrayvideo presents an efficient solution for handling the rapidly growing size of Earth observation datasets, making advanced compression techniques accessible and practical to the Earth science community. The library is available for use at https://github.com/IPL-UV/xarrayvideo
☆ PEVLM: Parallel Encoding for Vision-Language Models
Vision-Language Models (VLMs) have demonstrated strong performance in video-language tasks, yet their application to long video understanding remains constrained by the quadratic complexity of standard attention mechanisms. In this paper, we propose \textbf{PEVLM}, a parallel encoding strategy specifically designed to improve the prefill efficiency of VLMs without requiring model finetuning. PEVLM partitions the input into block-wise segments with a shared sink, preserves full-attention positional embeddings, and aligns attention weights to mimic full-attention distributions. This design reduces attention computation from $O((T \times N)^2)$ to $O(T \times N)$ while maintaining high accuracy. Extensive experiments on the LongVideoBench benchmark show that PEVLM achieves up to 8.37\% accuracy improvement over existing inference-efficient methods and delivers up to 7.47x speedup in attention computation and 40\% reduction in end-to-end latency. Under strict latency constraints, PEVLM significantly outperforms baselines, raising accuracy from 23.26\% to 61.03\%. These results highlight PEVLM's effectiveness for low-latency, long-context video understanding, making it well-suited for real-world applications such as autonomous driving.
☆ HOIverse: A Synthetic Scene Graph Dataset With Human Object Interactions
When humans and robotic agents coexist in an environment, scene understanding becomes crucial for the agents to carry out various downstream tasks like navigation and planning. Hence, an agent must be capable of localizing and identifying actions performed by the human. Current research lacks reliable datasets for performing scene understanding within indoor environments where humans are also a part of the scene. Scene Graphs enable us to generate a structured representation of a scene or an image to perform visual scene understanding. To tackle this, we present HOIverse a synthetic dataset at the intersection of scene graph and human-object interaction, consisting of accurate and dense relationship ground truths between humans and surrounding objects along with corresponding RGB images, segmentation masks, depth images and human keypoints. We compute parametric relations between various pairs of objects and human-object pairs, resulting in an accurate and unambiguous relation definitions. In addition, we benchmark our dataset on state-of-the-art scene graph generation models to predict parametric relations and human-object interactions. Through this dataset, we aim to accelerate research in the field of scene understanding involving people.
☆ VideoPCDNet: Video Parsing and Prediction with Phase Correlation Networks
Understanding and predicting video content is essential for planning and reasoning in dynamic environments. Despite advancements, unsupervised learning of object representations and dynamics remains challenging. We present VideoPCDNet, an unsupervised framework for object-centric video decomposition and prediction. Our model uses frequency-domain phase correlation techniques to recursively parse videos into object components, which are represented as transformed versions of learned object prototypes, enabling accurate and interpretable tracking. By explicitly modeling object motion through a combination of frequency domain operations and lightweight learned modules, VideoPCDNet enables accurate unsupervised object tracking and prediction of future video frames. In our experiments, we demonstrate that VideoPCDNet outperforms multiple object-centric baseline models for unsupervised tracking and prediction on several synthetic datasets, while learning interpretable object and motion representations.
comment: Accepted for Publication at ICANN 2025
☆ Filling of incomplete sinograms from sparse PET detector configurations using a residual U-Net
Long axial field-of-view PET scanners offer increased field-of-view and sensitivity compared to traditional PET scanners. However, a significant cost is associated with the densely packed photodetectors required for the extended-coverage systems, limiting clinical utilisation. To mitigate the cost limitations, alternative sparse system configurations have been proposed, allowing an extended field-of-view PET design with detector costs similar to a standard PET system, albeit at the expense of image quality. In this work, we propose a deep sinogram restoration network to fill in the missing sinogram data. Our method utilises a modified Residual U-Net, trained on clinical PET scans from a GE Signa PET/MR, simulating the removal of 50% of the detectors in a chessboard pattern (retaining only 25% of all lines of response). The model successfully recovers missing counts, with a mean absolute error below two events per pixel, outperforming 2D interpolation in both sinogram and reconstructed image domain. Notably, the predicted sinograms exhibit a smoothing effect, leading to reconstructed images lacking sharpness in finer details. Despite these limitations, the model demonstrates a substantial capacity for compensating for the undersampling caused by the sparse detector configuration. This proof-of-concept study suggests that sparse detector configurations, combined with deep learning techniques, offer a viable alternative to conventional PET scanner designs. This approach supports the development of cost-effective, total body PET scanners, allowing a significant step forward in medical imaging technology.
comment: 15 pages, 9 figures
☆ Implementing blind navigation through multi-modal sensing and gait guidance
By the year 2023, the global population of individuals with impaired vision has surpassed 220 million. People with impaired vision will find it difficult while finding path or avoiding obstacles, and must ask for auxiliary tools for help. Although traditional aids such as guide canes and guide dogs exist, they still have some shortcomings. In this paper, we present our wearable blind guiding device, what perform navigation guidance through our proposed Gait-based Guiding System. Our device innovatively integrates gait phase analysis for walking guide, and in terms of environmental perception, we use multimodal sensing to acquire diverse environment information. During the experiment, we conducted both indoor and outdoor experiments, and compared with the standard guide cane. The result shows superior performance of our device in blind guidance.
☆ Vision Transformer-Based Time-Series Image Reconstruction for Cloud-Filling Applications RSS
Cloud cover in multispectral imagery (MSI) poses significant challenges for early season crop mapping, as it leads to missing or corrupted spectral information. Synthetic aperture radar (SAR) data, which is not affected by cloud interference, offers a complementary solution, but lack sufficient spectral detail for precise crop mapping. To address this, we propose a novel framework, Time-series MSI Image Reconstruction using Vision Transformer (ViT), to reconstruct MSI data in cloud-covered regions by leveraging the temporal coherence of MSI and the complementary information from SAR from the attention mechanism. Comprehensive experiments, using rigorous reconstruction evaluation metrics, demonstrate that Time-series ViT framework significantly outperforms baselines that use non-time-series MSI and SAR or time-series MSI without SAR, effectively enhancing MSI image reconstruction in cloud-covered regions.
comment: This paper has been accepted as a conference paper at the 2025 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
☆ Learning from Anatomy: Supervised Anatomical Pretraining (SAP) for Improved Metastatic Bone Disease Segmentation in Whole-Body MRI
The segmentation of metastatic bone disease (MBD) in whole-body MRI (WB-MRI) is a challenging problem. Due to varying appearances and anatomical locations of lesions, ambiguous boundaries, and severe class imbalance, obtaining reliable segmentations requires large, well-annotated datasets capturing lesion variability. Generating such datasets requires substantial time and expertise, and is prone to error. While self-supervised learning (SSL) can leverage large unlabeled datasets, learned generic representations often fail to capture the nuanced features needed for accurate lesion detection. In this work, we propose a Supervised Anatomical Pretraining (SAP) method that learns from a limited dataset of anatomical labels. First, an MRI-based skeletal segmentation model is developed and trained on WB-MRI scans from healthy individuals for high-quality skeletal delineation. Then, we compare its downstream efficacy in segmenting MBD on a cohort of 44 patients with metastatic prostate cancer, against both a baseline random initialization and a state-of-the-art SSL method. SAP significantly outperforms both the baseline and SSL-pretrained models, achieving a normalized surface Dice of 0.76 and a Dice coefficient of 0.64. The method achieved a lesion detection F2 score of 0.44, improving on 0.24 (baseline) and 0.31 (SSL). When considering only clinically relevant lesions larger than 1~ml, SAP achieves a detection sensitivity of 100% in 28 out of 32 patients. Learning bone morphology from anatomy yields an effective and domain-relevant inductive bias that can be leveraged for the downstream segmentation task of bone lesions. All code and models are made publicly available.
comment: This preprint is currently under review at *Computers in Biology and Medicine* (Elsevier). This version has not been peer-reviewed
☆ SMARTIES: Spectrum-Aware Multi-Sensor Auto-Encoder for Remote Sensing Images
From optical sensors to microwave radars, leveraging the complementary strengths of remote sensing (RS) sensors is crucial for achieving dense spatio-temporal monitoring of our planet. In contrast, recent deep learning models, whether task-specific or foundational, are often specific to single sensors or to fixed combinations: adapting such models to different sensory inputs requires both architectural changes and re-training, limiting scalability and generalization across multiple RS sensors. On the contrary, a single model able to modulate its feature representations to accept diverse sensors as input would pave the way to agile and flexible multi-sensor RS data processing. To address this, we introduce SMARTIES, a generic and versatile foundation model lifting sensor-specific/dependent efforts and enabling scalability and generalization to diverse RS sensors: SMARTIES projects data from heterogeneous sensors into a shared spectrum-aware space, enabling the use of arbitrary combinations of bands both for training and inference. To obtain sensor-agnostic representations, we train a single, unified transformer model reconstructing masked multi-sensor data with cross-sensor token mixup. On both single- and multi-modal tasks across diverse sensors, SMARTIES outperforms previous models that rely on sensor-specific pretraining. Our code and pretrained models are available at https://gsumbul.github.io/SMARTIES.
☆ Fake or Real, Can Robots Tell? Evaluating Embodied Vision-Language Models on Real and 3D-Printed Objects
Robotic scene understanding increasingly relies on vision-language models (VLMs) to generate natural language descriptions of the environment. In this work, we present a comparative study of captioning strategies for tabletop scenes captured by a robotic arm equipped with an RGB camera. The robot collects images of objects from multiple viewpoints, and we evaluate several models that generate scene descriptions. We compare the performance of various captioning models, like BLIP and VLMs. Our experiments examine the trade-offs between single-view and multi-view captioning, and difference between recognising real-world and 3D printed objects. We quantitatively evaluate object identification accuracy, completeness, and naturalness of the generated captions. Results show that VLMs can be used in robotic settings where common objects need to be recognised, but fail to generalise to novel representations. Our findings provide practical insights into deploying foundation models for embodied agents in real-world settings.
☆ MambaOutRS: A Hybrid CNN-Fourier Architecture for Remote Sensing Image Classification
Recent advances in deep learning for vision tasks have seen the rise of State Space Models (SSMs) like Mamba, celebrated for their linear scalability. However, their adaptation to 2D visual data often necessitates complex modifications that may diminish efficiency. In this paper, we introduce MambaOutRS, a novel hybrid convolutional architecture for remote sensing image classification that re-evaluates the necessity of recurrent SSMs. MambaOutRS builds upon stacked Gated CNN blocks for local feature extraction and introduces a novel Fourier Filter Gate (FFG) module that operates in the frequency domain to capture global contextual information efficiently. Our architecture employs a four-stage hierarchical design and was extensively evaluated on challenging remote sensing datasets: UC Merced, AID, NWPU-RESISC45, and EuroSAT. MambaOutRS consistently achieved state-of-the-art (SOTA) performance across these benchmarks. Notably, our MambaOutRS-t variant (24.0M parameters) attained the highest F1-scores of 98.41\% on UC Merced and 95.99\% on AID, significantly outperforming existing baselines, including larger transformer models and Mamba-based architectures, despite using considerably fewer parameters. An ablation study conclusively demonstrates the critical role of the Fourier Filter Gate in enhancing the model's ability to capture global spatial patterns, leading to robust and accurate classification. These results strongly suggest that the complexities of recurrent SSMs can be effectively superseded by a judicious combination of gated convolutions for spatial mixing and frequency-based gates for spectral global context. Thus, MambaOutRS provides a compelling and efficient paradigm for developing high-performance deep learning models in remote sensing and other vision domains, particularly where computational efficiency is paramount.
☆ ConCM: Consistency-Driven Calibration and Matching for Few-Shot Class-Incremental Learning
Few-Shot Class-Incremental Learning (FSCIL) requires models to adapt to novel classes with limited supervision while preserving learned knowledge. Existing prospective learning-based space construction methods reserve space to accommodate novel classes. However, prototype deviation and structure fixity limit the expressiveness of the embedding space. In contrast to fixed space reservation, we explore the optimization of feature-structure dual consistency and propose a Consistency-driven Calibration and Matching Framework (ConCM) that systematically mitigate the knowledge conflict inherent in FSCIL. Specifically, inspired by hippocampal associative memory, we design a memory-aware prototype calibration that extracts generalized semantic attributes from base classes and reintegrates them into novel classes to enhance the conceptual center consistency of features. Further, we propose dynamic structure matching, which adaptively aligns the calibrated features to a session-specific optimal manifold space, ensuring cross-session structure consistency. Theoretical analysis shows that our method satisfies both geometric optimality and maximum matching, thereby overcoming the need for class-number priors. On large-scale FSCIL benchmarks including mini-ImageNet and CUB200, ConCM achieves state-of-the-art performance, surpassing current optimal method by 3.20% and 3.68% in harmonic accuracy of incremental sessions.
comment: 9 pages, 5 figures(Excluding the appendix)
☆ General Methods Make Great Domain-specific Foundation Models: A Case-study on Fetal Ultrasound MICCAI 2025
With access to large-scale, unlabeled medical datasets, researchers are confronted with two questions: Should they attempt to pretrain a custom foundation model on this medical data, or use transfer-learning from an existing generalist model? And, if a custom model is pretrained, are novel methods required? In this paper we explore these questions by conducting a case-study, in which we train a foundation model on a large regional fetal ultrasound dataset of 2M images. By selecting the well-established DINOv2 method for pretraining, we achieve state-of-the-art results on three fetal ultrasound datasets, covering data from different countries, classification, segmentation, and few-shot tasks. We compare against a series of models pretrained on natural images, ultrasound images, and supervised baselines. Our results demonstrate two key insights: (i) Pretraining on custom data is worth it, even if smaller models are trained on less data, as scaling in natural image pretraining does not translate to ultrasound performance. (ii) Well-tuned methods from computer vision are making it feasible to train custom foundation models for a given medical domain, requiring no hyperparameter tuning and little methodological adaptation. Given these findings, we argue that a bias towards methodological innovation should be avoided when developing domain specific foundation models under common computational resource constraints.
comment: Submitted version of paper accepted at MICCAI 2025
☆ Identifying Physically Realizable Triggers for Backdoored Face Recognition Networks ICIP 2021
Backdoor attacks embed a hidden functionality into deep neural networks, causing the network to display anomalous behavior when activated by a predetermined pattern in the input Trigger, while behaving well otherwise on public test data. Recent works have shown that backdoored face recognition (FR) systems can respond to natural-looking triggers like a particular pair of sunglasses. Such attacks pose a serious threat to the applicability of FR systems in high-security applications. We propose a novel technique to (1) detect whether an FR network is compromised with a natural, physically realizable trigger, and (2) identify such triggers given a compromised network. We demonstrate the effectiveness of our methods with a compromised FR network, where we are able to identify the trigger (e.g., green sunglasses or red hat) with a top-5 accuracy of 74%, whereas a naive brute force baseline achieves 56% accuracy.
comment: Accepted to ICIP 2021
☆ ReMAR-DS: Recalibrated Feature Learning for Metal Artifact Reduction and CT Domain Transformation
Artifacts in kilo-Voltage CT (kVCT) imaging degrade image quality, impacting clinical decisions. We propose a deep learning framework for metal artifact reduction (MAR) and domain transformation from kVCT to Mega-Voltage CT (MVCT). The proposed framework, ReMAR-DS, utilizes an encoder-decoder architecture with enhanced feature recalibration, effectively reducing artifacts while preserving anatomical structures. This ensures that only relevant information is utilized in the reconstruction process. By infusing recalibrated features from the encoder block, the model focuses on relevant spatial regions (e.g., areas with artifacts) and highlights key features across channels (e.g., anatomical structures), leading to improved reconstruction of artifact-corrupted regions. Unlike traditional MAR methods, our approach bridges the gap between high-resolution kVCT and artifact-resistant MVCT, enhancing radiotherapy planning. It produces high-quality MVCT-like reconstructions, validated through qualitative and quantitative evaluations. Clinically, this enables oncologists to rely on kVCT alone, reducing repeated high-dose MVCT scans and lowering radiation exposure for cancer patients.
comment: Accepted in 23rd International Conference on Image Analysis and Processing (ICIAP) 2025, Italy
☆ Visual hallucination detection in large vision-language models via evidential conflict
Despite the remarkable multimodal capabilities of Large Vision-Language Models (LVLMs), discrepancies often occur between visual inputs and textual outputs--a phenomenon we term visual hallucination. This critical reliability gap poses substantial risks in safety-critical Artificial Intelligence (AI) applications, necessitating a comprehensive evaluation benchmark and effective detection methods. Firstly, we observe that existing visual-centric hallucination benchmarks mainly assess LVLMs from a perception perspective, overlooking hallucinations arising from advanced reasoning capabilities. We develop the Perception-Reasoning Evaluation Hallucination (PRE-HAL) dataset, which enables the systematic evaluation of both perception and reasoning capabilities of LVLMs across multiple visual semantics, such as instances, scenes, and relations. Comprehensive evaluation with this new benchmark exposed more visual vulnerabilities, particularly in the more challenging task of relation reasoning. To address this issue, we propose, to the best of our knowledge, the first Dempster-Shafer theory (DST)-based visual hallucination detection method for LVLMs through uncertainty estimation. This method aims to efficiently capture the degree of conflict in high-level features at the model inference phase. Specifically, our approach employs simple mass functions to mitigate the computational complexity of evidence combination on power sets. We conduct an extensive evaluation of state-of-the-art LVLMs, LLaVA-v1.5, mPLUG-Owl2 and mPLUG-Owl3, with the new PRE-HAL benchmark. Experimental results indicate that our method outperforms five baseline uncertainty metrics, achieving average AUROC improvements of 4%, 10%, and 7% across three LVLMs. Our code is available at https://github.com/HT86159/Evidential-Conflict.
☆ Experimental Assessment of Neural 3D Reconstruction for Small UAV-based Applications
The increasing miniaturization of Unmanned Aerial Vehicles (UAVs) has expanded their deployment potential to indoor and hard-to-reach areas. However, this trend introduces distinct challenges, particularly in terms of flight dynamics and power consumption, which limit the UAVs' autonomy and mission capabilities. This paper presents a novel approach to overcoming these limitations by integrating Neural 3D Reconstruction (N3DR) with small UAV systems for fine-grained 3-Dimensional (3D) digital reconstruction of small static objects. Specifically, we design, implement, and evaluate an N3DR-based pipeline that leverages advanced models, i.e., Instant-ngp, Nerfacto, and Splatfacto, to improve the quality of 3D reconstructions using images of the object captured by a fleet of small UAVs. We assess the performance of the considered models using various imagery and pointcloud metrics, comparing them against the baseline Structure from Motion (SfM) algorithm. The experimental results demonstrate that the N3DR-enhanced pipeline significantly improves reconstruction quality, making it feasible for small UAVs to support high-precision 3D mapping and anomaly detection in constrained environments. In more general terms, our results highlight the potential of N3DR in advancing the capabilities of miniaturized UAV systems.
comment: 6 pages, 7 figures, 2 tables, accepted at IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 2025
☆ SceneCrafter: Controllable Multi-View Driving Scene Editing CVPR 2025
Simulation is crucial for developing and evaluating autonomous vehicle (AV) systems. Recent literature builds on a new generation of generative models to synthesize highly realistic images for full-stack simulation. However, purely synthetically generated scenes are not grounded in reality and have difficulty in inspiring confidence in the relevance of its outcomes. Editing models, on the other hand, leverage source scenes from real driving logs, and enable the simulation of different traffic layouts, behaviors, and operating conditions such as weather and time of day. While image editing is an established topic in computer vision, it presents fresh sets of challenges in driving simulation: (1) the need for cross-camera 3D consistency, (2) learning ``empty street" priors from driving data with foreground occlusions, and (3) obtaining paired image tuples of varied editing conditions while preserving consistent layout and geometry. To address these challenges, we propose SceneCrafter, a versatile editor for realistic 3D-consistent manipulation of driving scenes captured from multiple cameras. We build on recent advancements in multi-view diffusion models, using a fully controllable framework that scales seamlessly to multi-modality conditions like weather, time of day, agent boxes and high-definition maps. To generate paired data for supervising the editing model, we propose a novel framework on top of Prompt-to-Prompt to generate geometrically consistent synthetic paired data with global edits. We also introduce an alpha-blending framework to synthesize data with local edits, leveraging a model trained on empty street priors through novel masked training and multi-view repaint paradigm. SceneCrafter demonstrates powerful editing capabilities and achieves state-of-the-art realism, controllability, 3D consistency, and scene editing quality compared to existing baselines.
comment: CVPR 2025
☆ HMSViT: A Hierarchical Masked Self-Supervised Vision Transformer for Corneal Nerve Segmentation and Diabetic Neuropathy Diagnosis
Diabetic Peripheral Neuropathy (DPN) affects nearly half of diabetes patients, requiring early detection. Corneal Confocal Microscopy (CCM) enables non-invasive diagnosis, but automated methods suffer from inefficient feature extraction, reliance on handcrafted priors, and data limitations. We propose HMSViT, a novel Hierarchical Masked Self-Supervised Vision Transformer (HMSViT) designed for corneal nerve segmentation and DPN diagnosis. Unlike existing methods, HMSViT employs pooling-based hierarchical and dual attention mechanisms with absolute positional encoding, enabling efficient multi-scale feature extraction by capturing fine-grained local details in early layers and integrating global context in deeper layers, all at a lower computational cost. A block-masked self supervised learning framework is designed for the HMSViT that reduces reliance on labelled data, enhancing feature robustness, while a multi-scale decoder is used for segmentation and classification by fusing hierarchical features. Experiments on clinical CCM datasets showed HMSViT achieves state-of-the-art performance, with 61.34% mIoU for nerve segmentation and 70.40% diagnostic accuracy, outperforming leading hierarchical models like the Swin Transformer and HiViT by margins of up to 6.39% in segmentation accuracy while using fewer parameters. Detailed ablation studies further reveal that integrating block-masked SSL with hierarchical multi-scale feature extraction substantially enhances performance compared to conventional supervised training. Overall, these comprehensive experiments confirm that HMSViT delivers excellent, robust, and clinically viable results, demonstrating its potential for scalable deployment in real-world diagnostic applications.
☆ USIS16K: High-Quality Dataset for Underwater Salient Instance Segmentation
Inspired by the biological visual system that selectively allocates attention to efficiently identify salient objects or regions, underwater salient instance segmentation (USIS) aims to jointly address the problems of where to look (saliency prediction) and what is there (instance segmentation) in underwater scenarios. However, USIS remains an underexplored challenge due to the inaccessibility and dynamic nature of underwater environments, as well as the scarcity of large-scale, high-quality annotated datasets. In this paper, we introduce USIS16K, a large-scale dataset comprising 16,151 high-resolution underwater images collected from diverse environmental settings and covering 158 categories of underwater objects. Each image is annotated with high-quality instance-level salient object masks, representing a significant advance in terms of diversity, complexity, and scalability. Furthermore, we provide benchmark evaluations on underwater object detection and USIS tasks using USIS16K. To facilitate future research in this domain, the dataset and benchmark models are publicly available.
comment: 8 pages 10 figures
☆ Surgery-R1: Advancing Surgical-VQLA with Reasoning Multimodal Large Language Model via Reinforcement Learning
In recent years, significant progress has been made in the field of surgical scene understanding, particularly in the task of Visual Question Localized-Answering in robotic surgery (Surgical-VQLA). However, existing Surgical-VQLA models lack deep reasoning capabilities and interpretability in surgical scenes, which limits their reliability and potential for development in clinical applications. To address this issue, inspired by the development of Reasoning Multimodal Large Language Models (MLLMs), we first build the Surgery-R1-54k dataset, including paired data for Visual-QA, Grounding-QA, and Chain-of-Thought (CoT). Then, we propose the first Reasoning MLLM for Surgical-VQLA (Surgery-R1). In our Surgery-R1, we design a two-stage fine-tuning mechanism to enable the basic MLLM with complex reasoning abilities by utilizing supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT). Furthermore, for an efficient and high-quality rule-based reward system in our RFT, we design a Multimodal Coherence reward mechanism to mitigate positional illusions that may arise in surgical scenarios. Experiment results demonstrate that Surgery-R1 outperforms other existing state-of-the-art (SOTA) models in the Surgical-VQLA task and widely-used MLLMs, while also validating its reasoning capabilities and the effectiveness of our approach. The code and dataset will be organized in https://github.com/FiFi-HAO467/Surgery-R1.
☆ Stylized Structural Patterns for Improved Neural Network Pre-training
Modern deep learning models in computer vision require large datasets of real images, which are difficult to curate and pose privacy and legal concerns, limiting their commercial use. Recent works suggest synthetic data as an alternative, yet models trained with it often underperform. This paper proposes a two-step approach to bridge this gap. First, we propose an improved neural fractal formulation through which we introduce a new class of synthetic data. Second, we propose reverse stylization, a technique that transfers visual features from a small, license-free set of real images onto synthetic datasets, enhancing their effectiveness. We analyze the domain gap between our synthetic datasets and real images using Kernel Inception Distance (KID) and show that our method achieves a significantly lower distributional gap compared to existing synthetic datasets. Furthermore, our experiments across different tasks demonstrate the practical impact of this reduced gap. We show that pretraining the EDM2 diffusion model on our synthetic dataset leads to an 11% reduction in FID during image generation, compared to models trained on existing synthetic datasets, and a 20% decrease in autoencoder reconstruction error, indicating improved performance in data representation. Furthermore, a ViT-S model trained for classification on this synthetic data achieves over a 10% improvement in ImageNet-100 accuracy. Our work opens up exciting possibilities for training practical models when sufficiently large real training sets are not available.
☆ Assessing Risk of Stealing Proprietary Models for Medical Imaging Tasks MICCAI 2024
The success of deep learning in medical imaging applications has led several companies to deploy proprietary models in diagnostic workflows, offering monetized services. Even though model weights are hidden to protect the intellectual property of the service provider, these models are exposed to model stealing (MS) attacks, where adversaries can clone the model's functionality by querying it with a proxy dataset and training a thief model on the acquired predictions. While extensively studied on general vision tasks, the susceptibility of medical imaging models to MS attacks remains inadequately explored. This paper investigates the vulnerability of black-box medical imaging models to MS attacks under realistic conditions where the adversary lacks access to the victim model's training data and operates with limited query budgets. We demonstrate that adversaries can effectively execute MS attacks by using publicly available datasets. To further enhance MS capabilities with limited query budgets, we propose a two-step model stealing approach termed QueryWise. This method capitalizes on unlabeled data obtained from a proxy distribution to train the thief model without incurring additional queries. Evaluation on two medical imaging models for Gallbladder Cancer and COVID-19 classification substantiates the effectiveness of the proposed attack. The source code is available at https://github.com/rajankita/QueryWise.
comment: Accepted to MICCAI 2024
☆ Angio-Diff: Learning a Self-Supervised Adversarial Diffusion Model for Angiographic Geometry Generation
Vascular diseases pose a significant threat to human health, with X-ray angiography established as the gold standard for diagnosis, allowing for detailed observation of blood vessels. However, angiographic X-rays expose personnel and patients to higher radiation levels than non-angiographic X-rays, which are unwanted. Thus, modality translation from non-angiographic to angiographic X-rays is desirable. Data-driven deep approaches are hindered by the lack of paired large-scale X-ray angiography datasets. While making high-quality vascular angiography synthesis crucial, it remains challenging. We find that current medical image synthesis primarily operates at pixel level and struggles to adapt to the complex geometric structure of blood vessels, resulting in unsatisfactory quality of blood vessel image synthesis, such as disconnections or unnatural curvatures. To overcome this issue, we propose a self-supervised method via diffusion models to transform non-angiographic X-rays into angiographic X-rays, mitigating data shortages for data-driven approaches. Our model comprises a diffusion model that learns the distribution of vascular data from diffusion latent, a generator for vessel synthesis, and a mask-based adversarial module. To enhance geometric accuracy, we propose a parametric vascular model to fit the shape and distribution of blood vessels. The proposed method contributes a pipeline and a synthetic dataset for X-ray angiography. We conducted extensive comparative and ablation experiments to evaluate the Angio-Diff. The results demonstrate that our method achieves state-of-the-art performance in synthetic angiography image quality and more accurately synthesizes the geometric structure of blood vessels. The code is available at https://github.com/zfw-cv/AngioDiff.
☆ Deblurring in the Wild: A Real-World Dataset from Smartphone High-Speed Videos
We introduce the largest real-world image deblurring dataset constructed from smartphone slow-motion videos. Using 240 frames captured over one second, we simulate realistic long-exposure blur by averaging frames to produce blurry images, while using the temporally centered frame as the sharp reference. Our dataset contains over 42,000 high-resolution blur-sharp image pairs, making it approximately 10 times larger than widely used datasets, with 8 times the amount of different scenes, including indoor and outdoor environments, with varying object and camera motions. We benchmark multiple state-of-the-art (SOTA) deblurring models on our dataset and observe significant performance degradation, highlighting the complexity and diversity of our benchmark. Our dataset serves as a challenging new benchmark to facilitate robust and generalizable deblurring models.
comment: 8 pages (without references), 3 figures. Dataset https://huggingface.co/datasets/masterda/SloMoBlur
☆ AMF-MedIT: An Efficient Align-Modulation-Fusion Framework for Medical Image-Tabular Data
Multimodal medical analysis combining image and tabular data has gained increasing attention. However, effective fusion remains challenging due to cross-modal discrepancies in feature dimensions and modality contributions, as well as the noise from high-dimensional tabular inputs. To address these problems, we present AMF-MedIT, an efficient Align-Modulation-Fusion framework for medical image and tabular data integration, particularly under data-scarce conditions. To harmonize dimension discrepancies and dynamically adjust modality contributions, we propose the Adaptive Modulation and Fusion (AMF) module, a novel modulation-based fusion paradigm with a streamlined architecture. We first derive the modulation objectives and introduce a modality confidence ratio, enabling the incorporation of prior knowledge into the fusion process. Then, the feature masks, density and leakage losses are proposed to achieve the modulation objectives. Additionally, we introduce FT-Mamba, a powerful tabular encoder leveraging a selective mechanism to handle noisy medical tabular data efficiently. Furthermore, interpretability studies are conducted to explore how different tabular encoders supervise the imaging modality during contrastive pretraining for the first time. Extensive experiments demonstrate that AMF-MedIT achieves a superior balance between multimodal performance and data efficiency while showing strong adaptability to incomplete tabular data. Interpretability analysis also highlights FT-Mamba's capabilities in extracting distinct tabular features and guiding the image encoder toward more accurate and flexible attention patterns.
☆ Mem4Nav: Boosting Vision-and-Language Navigation in Urban Environments with a Hierarchical Spatial-Cognition Long-Short Memory System
Vision-and-Language Navigation (VLN) in large-scale urban environments requires embodied agents to ground linguistic instructions in complex scenes and recall relevant experiences over extended time horizons. Prior modular pipelines offer interpretability but lack unified memory, while end-to-end (M)LLM agents excel at fusing vision and language yet remain constrained by fixed context windows and implicit spatial reasoning. We introduce \textbf{Mem4Nav}, a hierarchical spatial-cognition long-short memory system that can augment any VLN backbone. Mem4Nav fuses a sparse octree for fine-grained voxel indexing with a semantic topology graph for high-level landmark connectivity, storing both in trainable memory tokens embedded via a reversible Transformer. Long-term memory (LTM) compresses and retains historical observations at both octree and graph nodes, while short-term memory (STM) caches recent multimodal entries in relative coordinates for real-time obstacle avoidance and local planning. At each step, STM retrieval sharply prunes dynamic context, and, when deeper history is needed, LTM tokens are decoded losslessly to reconstruct past embeddings. Evaluated on Touchdown and Map2Seq across three backbones (modular, state-of-the-art VLN with prompt-based LLM, and state-of-the-art VLN with strided-attention MLLM), Mem4Nav yields 7-13 pp gains in Task Completion, sufficient SPD reduction, and >10 pp nDTW improvement. Ablations confirm the indispensability of both the hierarchical map and dual memory modules. Our codes are open-sourced via https://github.com/tsinghua-fib-lab/Mem4Nav.
☆ Virtual Memory for 3D Gaussian Splatting
3D Gaussian Splatting represents a breakthrough in the field of novel view synthesis. It establishes Gaussians as core rendering primitives for highly accurate real-world environment reconstruction. Recent advances have drastically increased the size of scenes that can be created. In this work, we present a method for rendering large and complex 3D Gaussian Splatting scenes using virtual memory. By leveraging well-established virtual memory and virtual texturing techniques, our approach efficiently identifies visible Gaussians and dynamically streams them to the GPU just in time for real-time rendering. Selecting only the necessary Gaussians for both storage and rendering results in reduced memory usage and effectively accelerates rendering, especially for highly complex scenes. Furthermore, we demonstrate how level of detail can be integrated into our proposed method to further enhance rendering speed for large-scale scenes. With an optimized implementation, we highlight key practical considerations and thoroughly evaluate the proposed technique and its impact on desktop and mobile devices.
comment: Based on the Master Thesis from Jonathan Haberl from 2024, Submitted to TVCG in Feb. 2025;
☆ A Global-Local Cross-Attention Network for Ultra-high Resolution Remote Sensing Image Semantic Segmentation
With the rapid development of ultra-high resolution (UHR) remote sensing technology, the demand for accurate and efficient semantic segmentation has increased significantly. However, existing methods face challenges in computational efficiency and multi-scale feature fusion. To address these issues, we propose GLCANet (Global-Local Cross-Attention Network), a lightweight segmentation framework designed for UHR remote sensing imagery.GLCANet employs a dual-stream architecture to efficiently fuse global semantics and local details while minimizing GPU usage. A self-attention mechanism enhances long-range dependencies, refines global features, and preserves local details for better semantic consistency. A masked cross-attention mechanism also adaptively fuses global-local features, selectively enhancing fine-grained details while exploiting global context to improve segmentation accuracy. Experimental results show that GLCANet outperforms state-of-the-art methods regarding accuracy and computational efficiency. The model effectively processes large, high-resolution images with a small memory footprint, providing a promising solution for real-world remote sensing applications.
☆ Generate the Forest before the Trees -- A Hierarchical Diffusion model for Climate Downscaling
Downscaling is essential for generating the high-resolution climate data needed for local planning, but traditional methods remain computationally demanding. Recent years have seen impressive results from AI downscaling models, particularly diffusion models, which have attracted attention due to their ability to generate ensembles and overcome the smoothing problem common in other AI methods. However, these models typically remain computationally intensive. We introduce a Hierarchical Diffusion Downscaling (HDD) model, which introduces an easily-extensible hierarchical sampling process to the diffusion framework. A coarse-to-fine hierarchy is imposed via a simple downsampling scheme. HDD achieves competitive accuracy on ERA5 reanalysis datasets and CMIP6 models, significantly reducing computational load by running on up to half as many pixels with competitive results. Additionally, a single model trained at 0.25{\deg} resolution transfers seamlessly across multiple CMIP6 models with much coarser resolution. HDD thus offers a lightweight alternative for probabilistic climate downscaling, facilitating affordable large-ensemble high-resolution climate projections. See a full code implementation at: https://github.com/HDD-Hierarchical-Diffusion-Downscaling/HDD-Hierarchical-Diffusion-Downscaling.
comment: 8 pages
☆ Emergence of Text Readability in Vision Language Models CVPR 2025
We investigate how the ability to recognize textual content within images emerges during the training of Vision-Language Models (VLMs). Our analysis reveals a critical phenomenon: the ability to read textual information in a given image \textbf{(text readability)} emerges abruptly after substantial training iterations, in contrast to semantic content understanding which develops gradually from the early stages of training. This delayed emergence may reflect how contrastive learning tends to initially prioritize general semantic understanding, with text-specific symbolic processing developing later. Interestingly, the ability to match images with rendered text develops even slower, indicating a deeper need for semantic integration. These findings highlight the need for tailored training strategies to accelerate robust text comprehension in VLMs, laying the groundwork for future research on optimizing multimodal learning.
comment: EVAL-FoMo Workshop @ CVPR 2025
☆ Online camera-pose-free stereo endoscopic tissue deformation recovery with tissue-invariant vision-biomechanics consistency
Tissue deformation recovery based on stereo endoscopic images is crucial for tool-tissue interaction analysis and benefits surgical navigation and autonomous soft tissue manipulation. Previous research suffers from the problems raised from camera motion, occlusion, large tissue deformation, lack of tissue-specific biomechanical priors, and reliance on offline processing. Unlike previous studies where the tissue geometry and deformation are represented by 3D points and displacements, the proposed method models tissue geometry as the 3D point and derivative map and tissue deformation as the 3D displacement and local deformation map. For a single surface point, 6 parameters are used to describe its rigid motion and 3 parameters for its local deformation. The method is formulated under the camera-centric setting, where all motions are regarded as the scene motion with respect to the camera. Inter-frame alignment is realized by optimizing the inter-frame deformation, making it unnecessary to estimate camera pose. The concept of the canonical map is introduced to optimize tissue geometry and deformation in an online approach. Quantitative and qualitative experiments were conducted using in vivo and ex vivo laparoscopic datasets. With the inputs of depth and optical flow, the method stably models tissue geometry and deformation even when the tissue is partially occluded or moving outside the field of view. Results show that the 3D reconstruction accuracy in the non-occluded and occluded areas reaches 0.37$\pm$0.27 mm and 0.39$\pm$0.21 mm in terms of surface distance, respectively. The method can also estimate surface strain distribution during various manipulations as an extra modality for mechanical-based analysis.
☆ NAADA: A Noise-Aware Attention Denoising Autoencoder for Dental Panoramic Radiographs
Convolutional denoising autoencoders (DAEs) are powerful tools for image restoration. However, they inherit a key limitation of convolutional neural networks (CNNs): they tend to recover low-frequency features, such as smooth regions, more effectively than high-frequency details. This leads to the loss of fine details, which is particularly problematic in dental radiographs where preserving subtle anatomical structures is crucial. While self-attention mechanisms can help mitigate this issue by emphasizing important features, conventional attention methods often prioritize features corresponding to cleaner regions and may overlook those obscured by noise. To address this limitation, we propose a noise-aware self-attention method, which allows the model to effectively focus on and recover key features even within noisy regions. Building on this approach, we introduce the noise-aware attention-enhanced denoising autoencoder (NAADA) network for enhancing noisy panoramic dental radiographs. Compared with the recent state of the art (and much heavier) methods like Uformer, MResDNN etc., our method improves the reconstruction of fine details, ensuring better image quality and diagnostic accuracy.
comment: 10 pages, 8 figures
☆ Reconsidering Explicit Longitudinal Mammography Alignment for Enhanced Breast Cancer Risk Prediction MICCAI 2025
Regular mammography screening is essential for early breast cancer detection. Deep learning-based risk prediction methods have sparked interest to adjust screening intervals for high-risk groups. While early methods focused only on current mammograms, recent approaches leverage the temporal aspect of screenings to track breast tissue changes over time, requiring spatial alignment across different time points. Two main strategies for this have emerged: explicit feature alignment through deformable registration and implicit learned alignment using techniques like transformers, with the former providing more control. However, the optimal approach for explicit alignment in mammography remains underexplored. In this study, we provide insights into where explicit alignment should occur (input space vs. representation space) and if alignment and risk prediction should be jointly optimized. We demonstrate that jointly learning explicit alignment in representation space while optimizing risk estimation performance, as done in the current state-of-the-art approach, results in a trade-off between alignment quality and predictive performance and show that image-level alignment is superior to representation-level alignment, leading to better deformation field quality and enhanced risk prediction accuracy. The code is available at https://github.com/sot176/Longitudinal_Mammogram_Alignment.git.
comment: MICCAI 2025, early accepted
☆ SoK: Can Synthetic Images Replace Real Data? A Survey of Utility and Privacy of Synthetic Image Generation USENIX Security
Advances in generative models have transformed the field of synthetic image generation for privacy-preserving data synthesis (PPDS). However, the field lacks a comprehensive survey and comparison of synthetic image generation methods across diverse settings. In particular, when we generate synthetic images for the purpose of training a classifier, there is a pipeline of generation-sampling-classification which takes private training as input and outputs the final classifier of interest. In this survey, we systematically categorize existing image synthesis methods, privacy attacks, and mitigations along this generation-sampling-classification pipeline. To empirically compare diverse synthesis approaches, we provide a benchmark with representative generative methods and use model-agnostic membership inference attacks (MIAs) as a measure of privacy risk. Through this study, we seek to answer critical questions in PPDS: Can synthetic data effectively replace real data? Which release strategy balances utility and privacy? Do mitigations improve the utility-privacy tradeoff? Which generative models perform best across different scenarios? With a systematic evaluation of diverse methods, our study provides actionable insights into the utility-privacy tradeoffs of synthetic data generation methods and guides the decision on optimal data releasing strategies for real-world applications.
comment: Accepted at the 34th USENIX Security Symposium (USENIX Security '25). 21 pages, plus a 6-page appendix
☆ Training-Free Motion Customization for Distilled Video Generators with Adaptive Test-Time Distillation
Distilled video generation models offer fast and efficient synthesis but struggle with motion customization when guided by reference videos, especially under training-free settings. Existing training-free methods, originally designed for standard diffusion models, fail to generalize due to the accelerated generative process and large denoising steps in distilled models. To address this, we propose MotionEcho, a novel training-free test-time distillation framework that enables motion customization by leveraging diffusion teacher forcing. Our approach uses high-quality, slow teacher models to guide the inference of fast student models through endpoint prediction and interpolation. To maintain efficiency, we dynamically allocate computation across timesteps according to guidance needs. Extensive experiments across various distilled video generation models and benchmark datasets demonstrate that our method significantly improves motion fidelity and generation quality while preserving high efficiency. Project page: https://euminds.github.io/motionecho/
☆ Image Segmentation using Chan-Vese Active Contours
This paper presents a comprehensive derivation and implementation of the Chan-Vese active contour model for image segmentation. The model, derived from the Mumford-Shah variational framework, evolves contours based on regional intensity differences rather than image gradients, making it highly effective for segmenting noisy images or images with weak boundaries. We provide a rigorous mathematical derivation of the level set formulation, including detailed treatment of each energy term using the divergence theorem and curve evolution theory. The resulting algorithm is implemented in Python using finite difference methods with special care to numerical stability, including an upwind entropy scheme and curvature-based regularization. Experimental results on medical and synthetic images demonstrate accurate segmentation, robustness to noise, and superior performance compared to classical edge-based methods. This study confirms the suitability of the Chan-Vese model for complex segmentation tasks and highlights its potential for use in real-world imaging applications.
☆ Trajectory Prediction in Dynamic Object Tracking: A Critical Study
This study provides a detailed analysis of current advancements in dynamic object tracking (DOT) and trajectory prediction (TP) methodologies, including their applications and challenges. It covers various approaches, such as feature-based, segmentation-based, estimation-based, and learning-based methods, evaluating their effectiveness, deployment, and limitations in real-world scenarios. The study highlights the significant impact of these technologies in automotive and autonomous vehicles, surveillance and security, healthcare, and industrial automation, contributing to safety and efficiency. Despite the progress, challenges such as improved generalization, computational efficiency, reduced data dependency, and ethical considerations still exist. The study suggests future research directions to address these challenges, emphasizing the importance of multimodal data integration, semantic information fusion, and developing context-aware systems, along with ethical and privacy-preserving frameworks.
☆ Segment Any 3D-Part in a Scene from a Sentence
This paper aims to achieve the segmentation of any 3D part in a scene based on natural language descriptions, extending beyond traditional object-level 3D scene understanding and addressing both data and methodological challenges. Due to the expensive acquisition and annotation burden, existing datasets and methods are predominantly limited to object-level comprehension. To overcome the limitations of data and annotation availability, we introduce the 3D-PU dataset, the first large-scale 3D dataset with dense part annotations, created through an innovative and cost-effective method for constructing synthetic 3D scenes with fine-grained part-level annotations, paving the way for advanced 3D-part scene understanding. On the methodological side, we propose OpenPart3D, a 3D-input-only framework to effectively tackle the challenges of part-level segmentation. Extensive experiments demonstrate the superiority of our approach in open-vocabulary 3D scene understanding tasks at the part level, with strong generalization capabilities across various 3D scene datasets.
☆ Comparative Performance of Finetuned ImageNet Pre-trained Models for Electronic Component Classification
Electronic component classification and detection are crucial in manufacturing industries, significantly reducing labor costs and promoting technological and industrial development. Pre-trained models, especially those trained on ImageNet, are highly effective in image classification, allowing researchers to achieve excellent results even with limited data. This paper compares the performance of twelve ImageNet pre-trained models in classifying electronic components. Our findings show that all models tested delivered respectable accuracies. MobileNet-V2 recorded the highest at 99.95%, while EfficientNet-B0 had the lowest at 92.26%. These results underscore the substantial benefits of using ImageNet pre-trained models in image classification tasks and confirm the practical applicability of these methods in the electronics manufacturing sector.
comment: This is the author's version of the accepted paper. The final version will appear in IEEE UV 2024
☆ Memory-Augmented Incomplete Multimodal Survival Prediction via Cross-Slide and Gene-Attentive Hypergraph Learning MICCAI2025
Multimodal pathology-genomic analysis is critical for cancer survival prediction. However, existing approaches predominantly integrate formalin-fixed paraffin-embedded (FFPE) slides with genomic data, while neglecting the availability of other preservation slides, such as Fresh Froze (FF) slides. Moreover, as the high-resolution spatial nature of pathology data tends to dominate the cross-modality fusion process, it hinders effective multimodal fusion and leads to modality imbalance challenges between pathology and genomics. These methods also typically require complete data modalities, limiting their clinical applicability with incomplete modalities, such as missing either pathology or genomic data. In this paper, we propose a multimodal survival prediction framework that leverages hypergraph learning to effectively integrate multi-WSI information and cross-modality interactions between pathology slides and genomics data while addressing modality imbalance. In addition, we introduce a memory mechanism that stores previously learned paired pathology-genomic features and dynamically compensates for incomplete modalities. Experiments on five TCGA datasets demonstrate that our model outperforms advanced methods by over 2.3% in C-Index. Under incomplete modality scenarios, our approach surpasses pathology-only (3.3%) and gene-only models (7.9%). Code: https://github.com/MCPathology/M2Surv
comment: accepted by MICCAI2025 code: https://github.com/MCPathology/M2Surv
☆ Continual Retinal Vision-Language Pre-training upon Incremental Imaging Modalities MICCAI 2025
Traditional fundus image analysis models focus on single-modal tasks, ignoring fundus modality complementarity, which limits their versatility. Recently, retinal foundation models have emerged, but most still remain modality-specific. Integrating multiple fundus imaging modalities into a single foundation model is valuable. However, in dynamic environments, data from different modalities often arrive incrementally, necessitating continual pre-training. To address this, we propose RetCoP, the first continual vision-language pre-training framework in the fundus domain, which incrementally integrates image and text features from different imaging modalities into a single unified foundation model. To mitigate catastrophic forgetting in continual pre-training, we introduce a rehearsal strategy utilizing representative image-text pairs and an off-diagonal information distillation approach. The former allows the model to revisit knowledge from previous stages, while the latter explicitly preserves the alignment between image and text representations. Experiments show that RetCoP outperforms all the compared methods, achieving the best generalization and lowest forgetting rate. The code can be found at https://github.com/Yuang-Yao/RetCoP.
comment: Accepted by MICCAI 2025
☆ Progressive Modality Cooperation for Multi-Modality Domain Adaptation
In this work, we propose a new generic multi-modality domain adaptation framework called Progressive Modality Cooperation (PMC) to transfer the knowledge learned from the source domain to the target domain by exploiting multiple modality clues (\eg, RGB and depth) under the multi-modality domain adaptation (MMDA) and the more general multi-modality domain adaptation using privileged information (MMDA-PI) settings. Under the MMDA setting, the samples in both domains have all the modalities. In two newly proposed modules of our PMC, the multiple modalities are cooperated for selecting the reliable pseudo-labeled target samples, which captures the modality-specific information and modality-integrated information, respectively. Under the MMDA-PI setting, some modalities are missing in the target domain. Hence, to better exploit the multi-modality data in the source domain, we further propose the PMC with privileged information (PMC-PI) method by proposing a new multi-modality data generation (MMG) network. MMG generates the missing modalities in the target domain based on the source domain data by considering both domain distribution mismatch and semantics preservation, which are respectively achieved by using adversarial learning and conditioning on weighted pseudo semantics. Extensive experiments on three image datasets and eight video datasets for various multi-modality cross-domain visual recognition tasks under both MMDA and MMDA-PI settings clearly demonstrate the effectiveness of our proposed PMC framework.
☆ Capturing Fine-Grained Alignments Improves 3D Affordance Detection
In this work, we address the challenge of affordance detection in 3D point clouds, a task that requires effectively capturing fine-grained alignments between point clouds and text. Existing methods often struggle to model such alignments, resulting in limited performance on standard benchmarks. A key limitation of these approaches is their reliance on simple cosine similarity between point cloud and text embeddings, which lacks the expressiveness needed for fine-grained reasoning. To address this limitation, we propose LM-AD, a novel method for affordance detection in 3D point clouds. Moreover, we introduce the Affordance Query Module (AQM), which efficiently captures fine-grained alignment between point clouds and text by leveraging a pretrained language model. We demonstrated that our method outperformed existing approaches in terms of accuracy and mean Intersection over Union on the 3D AffordanceNet dataset.
comment: MVA 2025 (Oral)
☆ Airway Skill Assessment with Spatiotemporal Attention Mechanisms Using Human Gaze
Airway management skills are critical in emergency medicine and are typically assessed through subjective evaluation, often failing to gauge competency in real-world scenarios. This paper proposes a machine learning-based approach for assessing airway skills, specifically endotracheal intubation (ETI), using human gaze data and video recordings. The proposed system leverages an attention mechanism guided by the human gaze to enhance the recognition of successful and unsuccessful ETI procedures. Visual masks were created from gaze points to guide the model in focusing on task-relevant areas, reducing irrelevant features. An autoencoder network extracts features from the videos, while an attention module generates attention from the visual masks, and a classifier outputs a classification score. This method, the first to use human gaze for ETI, demonstrates improved accuracy and efficiency over traditional methods. The integration of human gaze data not only enhances model performance but also offers a robust, objective assessment tool for clinical skills, particularly in high-stress environments such as military settings. The results show improvements in prediction accuracy, sensitivity, and trustworthiness, highlighting the potential for this approach to improve clinical training and patient outcomes in emergency medicine.
comment: 13 pages, 6 figures, 14 equations,
☆ Open-Vocabulary Camouflaged Object Segmentation with Cascaded Vision Language Models
Open-Vocabulary Camouflaged Object Segmentation (OVCOS) seeks to segment and classify camouflaged objects from arbitrary categories, presenting unique challenges due to visual ambiguity and unseen categories.Recent approaches typically adopt a two-stage paradigm: first segmenting objects, then classifying the segmented regions using Vision Language Models (VLMs).However, these methods (1) suffer from a domain gap caused by the mismatch between VLMs' full-image training and cropped-region inference, and (2) depend on generic segmentation models optimized for well-delineated objects, making them less effective for camouflaged objects.Without explicit guidance, generic segmentation models often overlook subtle boundaries, leading to imprecise segmentation.In this paper,we introduce a novel VLM-guided cascaded framework to address these issues in OVCOS.For segmentation, we leverage the Segment Anything Model (SAM), guided by the VLM.Our framework uses VLM-derived features as explicit prompts to SAM, effectively directing attention to camouflaged regions and significantly improving localization accuracy.For classification, we avoid the domain gap introduced by hard cropping.Instead, we treat the segmentation output as a soft spatial prior via the alpha channel, which retains the full image context while providing precise spatial guidance, leading to more accurate and context-aware classification of camouflaged objects.The same VLM is shared across both segmentation and classification to ensure efficiency and semantic consistency.Extensive experiments on both OVCOS and conventional camouflaged object segmentation benchmarks demonstrate the clear superiority of our method, highlighting the effectiveness of leveraging rich VLM semantics for both segmentation and classification of camouflaged objects.
☆ Explicit Residual-Based Scalable Image Coding for Humans and Machines
Scalable image compression is a technique that progressively reconstructs multiple versions of an image for different requirements. In recent years, images have increasingly been consumed not only by humans but also by image recognition models. This shift has drawn growing attention to scalable image compression methods that serve both machine and human vision (ICMH). Many existing models employ neural network-based codecs, known as learned image compression, and have made significant strides in this field by carefully designing the loss functions. In some cases, however, models are overly reliant on their learning capacity, and their architectural design is not sufficiently considered. In this paper, we enhance the coding efficiency and interpretability of ICMH framework by integrating an explicit residual compression mechanism, which is commonly employed in resolution scalable coding methods such as JPEG2000. Specifically, we propose two complementary methods: Feature Residual-based Scalable Coding (FR-ICMH) and Pixel Residual-based Scalable Coding (PR-ICMH). These proposed methods are applicable to various machine vision tasks. Moreover, they provide flexibility to choose between encoder complexity and compression performance, making it adaptable to diverse application requirements. Experimental results demonstrate the effectiveness of our proposed methods, with PR-ICMH achieving up to 29.57% BD-rate savings over the previous work.
☆ HoliGS: Holistic Gaussian Splatting for Embodied View Synthesis
We propose HoliGS, a novel deformable Gaussian splatting framework that addresses embodied view synthesis from long monocular RGB videos. Unlike prior 4D Gaussian splatting and dynamic NeRF pipelines, which struggle with training overhead in minute-long captures, our method leverages invertible Gaussian Splatting deformation networks to reconstruct large-scale, dynamic environments accurately. Specifically, we decompose each scene into a static background plus time-varying objects, each represented by learned Gaussian primitives undergoing global rigid transformations, skeleton-driven articulation, and subtle non-rigid deformations via an invertible neural flow. This hierarchical warping strategy enables robust free-viewpoint novel-view rendering from various embodied camera trajectories by attaching Gaussians to a complete canonical foreground shape (\eg, egocentric or third-person follow), which may involve substantial viewpoint changes and interactions between multiple actors. Our experiments demonstrate that \ourmethod~ achieves superior reconstruction quality on challenging datasets while significantly reducing both training and rendering time compared to state-of-the-art monocular deformable NeRFs. These results highlight a practical and scalable solution for EVS in real-world scenarios. The source code will be released.
☆ Da Yu: Towards USV-Based Image Captioning for Waterway Surveillance and Scene Understanding
Automated waterway environment perception is crucial for enabling unmanned surface vessels (USVs) to understand their surroundings and make informed decisions. Most existing waterway perception models primarily focus on instance-level object perception paradigms (e.g., detection, segmentation). However, due to the complexity of waterway environments, current perception datasets and models fail to achieve global semantic understanding of waterways, limiting large-scale monitoring and structured log generation. With the advancement of vision-language models (VLMs), we leverage image captioning to introduce WaterCaption, the first captioning dataset specifically designed for waterway environments. WaterCaption focuses on fine-grained, multi-region long-text descriptions, providing a new research direction for visual geo-understanding and spatial scene cognition. Exactly, it includes 20.2k image-text pair data with 1.8 million vocabulary size. Additionally, we propose Da Yu, an edge-deployable multi-modal large language model for USVs, where we propose a novel vision-to-language projector called Nano Transformer Adaptor (NTA). NTA effectively balances computational efficiency with the capacity for both global and fine-grained local modeling of visual features, thereby significantly enhancing the model's ability to generate long-form textual outputs. Da Yu achieves an optimal balance between performance and efficiency, surpassing state-of-the-art models on WaterCaption and several other captioning benchmarks.
comment: 14 pages, 13 figures
☆ AirV2X: Unified Air-Ground Vehicle-to-Everything Collaboration
While multi-vehicular collaborative driving demonstrates clear advantages over single-vehicle autonomy, traditional infrastructure-based V2X systems remain constrained by substantial deployment costs and the creation of "uncovered danger zones" in rural and suburban areas. We present AirV2X-Perception, a large-scale dataset that leverages Unmanned Aerial Vehicles (UAVs) as a flexible alternative or complement to fixed Road-Side Units (RSUs). Drones offer unique advantages over ground-based perception: complementary bird's-eye-views that reduce occlusions, dynamic positioning capabilities that enable hovering, patrolling, and escorting navigation rules, and significantly lower deployment costs compared to fixed infrastructure. Our dataset comprises 6.73 hours of drone-assisted driving scenarios across urban, suburban, and rural environments with varied weather and lighting conditions. The AirV2X-Perception dataset facilitates the development and standardized evaluation of Vehicle-to-Drone (V2D) algorithms, addressing a critical gap in the rapidly expanding field of aerial-assisted autonomous driving systems. The dataset and development kits are open-sourced at https://github.com/taco-group/AirV2X-Perception.
☆ Self-Paced Collaborative and Adversarial Network for Unsupervised Domain Adaptation
This paper proposes a new unsupervised domain adaptation approach called Collaborative and Adversarial Network (CAN), which uses the domain-collaborative and domain-adversarial learning strategy for training the neural network. The domain-collaborative learning aims to learn domain-specific feature representation to preserve the discriminability for the target domain, while the domain adversarial learning aims to learn domain-invariant feature representation to reduce the domain distribution mismatch between the source and target domains. We show that these two learning strategies can be uniformly formulated as domain classifier learning with positive or negative weights on the losses. We then design a collaborative and adversarial training scheme, which automatically learns domain-specific representations from lower blocks in CNNs through collaborative learning and domain-invariant representations from higher blocks through adversarial learning. Moreover, to further enhance the discriminability in the target domain, we propose Self-Paced CAN (SPCAN), which progressively selects pseudo-labeled target samples for re-training the classifiers. We employ a self-paced learning strategy to select pseudo-labeled target samples in an easy-to-hard fashion. Comprehensive experiments on different benchmark datasets, Office-31, ImageCLEF-DA, and VISDA-2017 for the object recognition task, and UCF101-10 and HMDB51-10 for the video action recognition task, show our newly proposed approaches achieve the state-of-the-art performance, which clearly demonstrates the effectiveness of our proposed approaches for unsupervised domain adaptation.
☆ Convergent and divergent connectivity patterns of the arcuate fasciculus in macaques and humans
The organization and connectivity of the arcuate fasciculus (AF) in nonhuman primates remain contentious, especially concerning how its anatomy diverges from that of humans. Here, we combined cross-scale single-neuron tracing - using viral-based genetic labeling and fluorescence micro-optical sectioning tomography in macaques (n = 4; age 3 - 11 years) - with whole-brain tractography from 11.7T diffusion MRI. Complemented by spectral embedding analysis of 7.0T MRI in humans, we performed a comparative connectomic analysis of the AF across species. We demonstrate that the macaque AF originates in the temporal-parietal cortex, traverses the auditory cortex and parietal operculum, and projects into prefrontal regions. In contrast, the human AF exhibits greater expansion into the middle temporal gyrus and stronger prefrontal and parietal operculum connectivity - divergences quantified by Kullback-Leibler analysis that likely underpin the evolutionary specialization of human language networks. These interspecies differences - particularly the human AF's broader temporal integration and strengthened frontoparietal linkages - suggest a connectivity-based substrate for the emergence of advanced language processing unique to humans. Furthermore, our findings offer a neuroanatomical framework for understanding AF-related disorders such as aphasia and dyslexia, where aberrant connectivity disrupts language function.
comment: 34 pages, 6 figures
☆ 3D-SSM: A Novel 3D Selective Scan Module for Remote Sensing Change Detection
Existing Mamba-based approaches in remote sensing change detection have enhanced scanning models, yet remain limited by their inability to capture long-range dependencies between image channels effectively, which restricts their feature representation capabilities. To address this limitation, we propose a 3D selective scan module (3D-SSM) that captures global information from both the spatial plane and channel perspectives, enabling a more comprehensive understanding of the data.Based on the 3D-SSM, we present two key components: a spatiotemporal interaction module (SIM) and a multi-branch feature extraction module (MBFEM). The SIM facilitates bi-temporal feature integration by enabling interactions between global and local features across images from different time points, thereby enhancing the detection of subtle changes. Meanwhile, the MBFEM combines features from the frequency domain, spatial domain, and 3D-SSM to provide a rich representation of contextual information within the image. Our proposed method demonstrates favourable performance compared to state-of-the-art change detection methods on five benchmark datasets through extensive experiments. Code is available at https://github.com/VerdantMist/3D-SSM
☆ Automated Image Recognition Framework
While the efficacy of deep learning models heavily relies on data, gathering and annotating data for specific tasks, particularly when addressing novel or sensitive subjects lacking relevant datasets, poses significant time and resource challenges. In response to this, we propose a novel Automated Image Recognition (AIR) framework that harnesses the power of generative AI. AIR empowers end-users to synthesize high-quality, pre-annotated datasets, eliminating the necessity for manual labeling. It also automatically trains deep learning models on the generated datasets with robust image recognition performance. Our framework includes two main data synthesis processes, AIR-Gen and AIR-Aug. The AIR-Gen enables end-users to seamlessly generate datasets tailored to their specifications. To improve image quality, we introduce a novel automated prompt engineering module that leverages the capabilities of large language models. We also introduce a distribution adjustment algorithm to eliminate duplicates and outliers, enhancing the robustness and reliability of generated datasets. On the other hand, the AIR-Aug enhances a given dataset, thereby improving the performance of deep classifier models. AIR-Aug is particularly beneficial when users have limited data for specific tasks. Through comprehensive experiments, we demonstrated the efficacy of our generated data in training deep learning models and showcased the system's potential to provide image recognition models for a wide range of objects. We also conducted a user study that achieved an impressive score of 4.4 out of 5.0, underscoring the AI community's positive perception of AIR.
comment: ICCCI 2025
☆ MSR-Align: Policy-Grounded Multimodal Alignment for Safety-Aware Reasoning in Vision-Language Models
Vision-Language Models (VLMs) have achieved remarkable progress in multimodal reasoning tasks through enhanced chain-of-thought capabilities. However, this advancement also introduces novel safety risks, as these models become increasingly vulnerable to harmful multimodal prompts that can trigger unethical or unsafe behaviors. Existing safety alignment approaches, primarily designed for unimodal language models, fall short in addressing the complex and nuanced threats posed by multimodal inputs. Moreover, current safety datasets lack the fine-grained, policy-grounded reasoning required to robustly align reasoning-capable VLMs. In this work, we introduce {MSR-Align}, a high-quality Multimodal Safety Reasoning dataset tailored to bridge this gap. MSR-Align supports fine-grained, deliberative reasoning over standardized safety policies across both vision and text modalities. Our data generation pipeline emphasizes multimodal diversity, policy-grounded reasoning, and rigorous quality filtering using strong multimodal judges. Extensive experiments demonstrate that fine-tuning VLMs on MSR-Align substantially improves robustness against both textual and vision-language jailbreak attacks, while preserving or enhancing general reasoning performance. MSR-Align provides a scalable and effective foundation for advancing the safety alignment of reasoning-capable VLMs. Our dataset is made publicly available at https://huggingface.co/datasets/Leigest/MSR-Align.
☆ Quantitative Benchmarking of Anomaly Detection Methods in Digital Pathology
Anomaly detection has been widely studied in the context of industrial defect inspection, with numerous methods developed to tackle a range of challenges. In digital pathology, anomaly detection holds significant potential for applications such as rare disease identification, artifact detection, and biomarker discovery. However, the unique characteristics of pathology images, such as their large size, multi-scale structures, stain variability, and repetitive patterns, introduce new challenges that current anomaly detection algorithms struggle to address. In this quantitative study, we benchmark over 20 classical and prevalent anomaly detection methods through extensive experiments. We curated five digital pathology datasets, both real and synthetic, to systematically evaluate these approaches. Our experiments investigate the influence of image scale, anomaly pattern types, and training epoch selection strategies on detection performance. The results provide a detailed comparison of each method's strengths and limitations, establishing a comprehensive benchmark to guide future research in anomaly detection for digital pathology images.
☆ Video-XL-2: Towards Very Long-Video Understanding Through Task-Aware KV Sparsification
Multi-modal large language models (MLLMs) models have made significant progress in video understanding over the past few years. However, processing long video inputs remains a major challenge due to high memory and computational costs. This makes it difficult for current models to achieve both strong performance and high efficiency in long video understanding. To address this challenge, we propose Video-XL-2, a novel MLLM that delivers superior cost-effectiveness for long-video understanding based on task-aware KV sparsification. The proposed framework operates with two key steps: chunk-based pre-filling and bi-level key-value decoding. Chunk-based pre-filling divides the visual token sequence into chunks, applying full attention within each chunk and sparse attention across chunks. This significantly reduces computational and memory overhead. During decoding, bi-level key-value decoding selectively reloads either dense or sparse key-values for each chunk based on its relevance to the task. This approach further improves memory efficiency and enhances the model's ability to capture fine-grained information. Video-XL-2 achieves state-of-the-art performance on various long video understanding benchmarks, outperforming existing open-source lightweight models. It also demonstrates exceptional efficiency, capable of processing over 10,000 frames on a single NVIDIA A100 (80GB) GPU and thousands of frames in just a few seconds.
comment: 12 pages, 5 Figure, 3 Table
☆ Deformable Medical Image Registration with Effective Anatomical Structure Representation and Divide-and-Conquer Network
Effective representation of Regions of Interest (ROI) and independent alignment of these ROIs can significantly enhance the performance of deformable medical image registration (DMIR). However, current learning-based DMIR methods have limitations. Unsupervised techniques disregard ROI representation and proceed directly with aligning pairs of images, while weakly-supervised methods heavily depend on label constraints to facilitate registration. To address these issues, we introduce a novel ROI-based registration approach named EASR-DCN. Our method represents medical images through effective ROIs and achieves independent alignment of these ROIs without requiring labels. Specifically, we first used a Gaussian mixture model for intensity analysis to represent images using multiple effective ROIs with distinct intensities. Furthermore, we propose a novel Divide-and-Conquer Network (DCN) to process these ROIs through separate channels to learn feature alignments for each ROI. The resultant correspondences are seamlessly integrated to generate a comprehensive displacement vector field. Extensive experiments were performed on three MRI and one CT datasets to showcase the superior accuracy and deformation reduction efficacy of our EASR-DCN. Compared to VoxelMorph, our EASR-DCN achieved improvements of 10.31\% in the Dice score for brain MRI, 13.01\% for cardiac MRI, and 5.75\% for hippocampus MRI, highlighting its promising potential for clinical applications. The code for this work will be released upon acceptance of the paper.
☆ MedErr-CT: A Visual Question Answering Benchmark for Identifying and Correcting Errors in CT Reports CVPR 2025
Computed Tomography (CT) plays a crucial role in clinical diagnosis, but the growing demand for CT examinations has raised concerns about diagnostic errors. While Multimodal Large Language Models (MLLMs) demonstrate promising comprehension of medical knowledge, their tendency to produce inaccurate information highlights the need for rigorous validation. However, existing medical visual question answering (VQA) benchmarks primarily focus on simple visual recognition tasks, lacking clinical relevance and failing to assess expert-level knowledge. We introduce MedErr-CT, a novel benchmark for evaluating medical MLLMs' ability to identify and correct errors in CT reports through a VQA framework. The benchmark includes six error categories - four vision-centric errors (Omission, Insertion, Direction, Size) and two lexical error types (Unit, Typo) - and is organized into three task levels: classification, detection, and correction. Using this benchmark, we quantitatively assess the performance of state-of-the-art 3D medical MLLMs, revealing substantial variation in their capabilities across different error types. Our benchmark contributes to the development of more reliable and clinically applicable MLLMs, ultimately helping reduce diagnostic errors and improve accuracy in clinical practice. The code and datasets are available at https://github.com/babbu3682/MedErr-CT.
comment: 14 pages, 5 figures, submitted to CVPR 2025
☆ ToSA: Token Merging with Spatial Awareness IROS 2025
Token merging has emerged as an effective strategy to accelerate Vision Transformers (ViT) by reducing computational costs. However, existing methods primarily rely on the visual token's feature similarity for token merging, overlooking the potential of integrating spatial information, which can serve as a reliable criterion for token merging in the early layers of ViT, where the visual tokens only possess weak visual information. In this paper, we propose ToSA, a novel token merging method that combines both semantic and spatial awareness to guide the token merging process. ToSA leverages the depth image as input to generate pseudo spatial tokens, which serve as auxiliary spatial information for the visual token merging process. With the introduced spatial awareness, ToSA achieves a more informed merging strategy that better preserves critical scene structure. Experimental results demonstrate that ToSA outperforms previous token merging methods across multiple benchmarks on visual and embodied question answering while largely reducing the runtime of the ViT, making it an efficient solution for ViT acceleration. The code will be available at: https://github.com/hsiangwei0903/ToSA
comment: Accepted by IROS 2025
☆ VoxelOpt: Voxel-Adaptive Message Passing for Discrete Optimization in Deformable Abdominal CT Registration MICCAI 2025
Recent developments in neural networks have improved deformable image registration (DIR) by amortizing iterative optimization, enabling fast and accurate DIR results. However, learning-based methods often face challenges with limited training data, large deformations, and tend to underperform compared to iterative approaches when label supervision is unavailable. While iterative methods can achieve higher accuracy in such scenarios, they are considerably slower than learning-based methods. To address these limitations, we propose VoxelOpt, a discrete optimization-based DIR framework that combines the strengths of learning-based and iterative methods to achieve a better balance between registration accuracy and runtime. VoxelOpt uses displacement entropy from local cost volumes to measure displacement signal strength at each voxel, which differs from earlier approaches in three key aspects. First, it introduces voxel-wise adaptive message passing, where voxels with lower entropy receives less influence from their neighbors. Second, it employs a multi-level image pyramid with 27-neighbor cost volumes at each level, avoiding exponential complexity growth. Third, it replaces hand-crafted features or contrastive learning with a pretrained foundational segmentation model for feature extraction. In abdominal CT registration, these changes allow VoxelOpt to outperform leading iterative in both efficiency and accuracy, while matching state-of-the-art learning-based methods trained with label supervision. The source code will be available at https://github.com/tinymilky/VoxelOpt
comment: Accepted for publication at MICCAI 2025
☆ EBC-ZIP: Improving Blockwise Crowd Counting with Zero-Inflated Poisson Regression
Density map estimation has become the mainstream paradigm in crowd counting. However, most existing methods overlook the extreme sparsity of ground-truth density maps. In real-world crowd scenes, the vast majority of spatial regions (often over 95%) contain no people, leading to heavily imbalanced count distributions. Ignoring this imbalance can bias models toward overestimating dense regions and underperforming in sparse areas. Furthermore, most loss functions used in density estimation are majorly based on MSE and implicitly assume Gaussian distributions, which are ill-suited for modeling discrete, non-negative count data. In this paper, we propose EBC-ZIP, a crowd counting framework that models the spatial distribution of counts using a Zero-Inflated Poisson (ZIP) regression formulation. Our approach replaces the traditional regression loss with the negative log-likelihood of the ZIP distribution, enabling better handling of zero-heavy distributions while preserving count accuracy. Built upon the recently proposed Enhanced Block Classification (EBC) framework, EBC-ZIP inherits EBC's advantages in preserving the discreteness of targets and ensuring training stability, while further improving performance through a more principled probabilistic loss. We also evaluate EBC-ZIP with backbones of varying computational complexity to assess its scalability. Extensive experiments on four crowd counting benchmarks demonstrate that EBC-ZIP consistently outperforms EBC and achieves state-of-the-art results.
☆ Computer Vision based Automated Quantification of Agricultural Sprayers Boom Displacement
Application rate errors when using self-propelled agricultural sprayers for agricultural production remain a concern. Among other factors, spray boom instability is one of the major contributors to application errors. Spray booms' width of 38m, combined with 30 kph driving speeds, varying terrain, and machine dynamics when maneuvering complex field boundaries, make controls of these booms very complex. However, there is no quantitative knowledge on the extent of boom movement to systematically develop a solution that might include boom designs and responsive boom control systems. Therefore, this study was conducted to develop an automated computer vision system to quantify the boom movement of various agricultural sprayers. A computer vision system was developed to track a target on the edge of the sprayer boom in real time. YOLO V7, V8, and V11 neural network models were trained to track the boom's movements in field operations to quantify effective displacement in the vertical and transverse directions. An inclinometer sensor was mounted on the boom to capture boom angles and validate the neural network model output. The results showed that the model could detect the target with more than 90 percent accuracy, and distance estimates of the target on the boom were within 0.026 m of the inclinometer sensor data. This system can quantify the boom movement on the current sprayer and potentially on any other sprayer with minor modifications. The data can be used to make design improvements to make sprayer booms more stable and achieve greater application accuracy.
comment: Under publication process for COMPAG
☆ Any-Order GPT as Masked Diffusion Model: Decoupling Formulation and Architecture
Large language models (LLMs) predominantly use autoregressive (AR) approaches, but masked diffusion models (MDMs) are emerging as viable alternatives. A key challenge in comparing AR and MDM paradigms is their typical architectural difference: AR models are often decoder-only, while MDMs have largely been encoder-only. This practice of changing both the modeling paradigm and architecture simultaneously makes direct comparisons unfair, as it's hard to distinguish whether observed differences stem from the paradigm itself or the architectural shift. This research evaluates MDMs within a decoder-only framework to: (1) equitably compare MDM (as Any-Order AR, or AO-AR) and standard AR paradigms. Our investigation suggests that the standard AO-AR objective, which averages over all token permutations, may benefit from refinement, as many permutations appear less informative compared to the language's inherent left-to-right structure. (2) Investigate architectural influences (decoder-only vs. encoder-only) within MDMs. We demonstrate that while encoder-only MDMs model a simpler conditional probability space, decoder-only MDMs can achieve dramatic generation speedups ($\sim25\times$) and comparable perplexity with temperature annealing despite modeling a vastly larger space, highlighting key trade-offs. This work thus decouples core paradigm differences from architectural influences, offering insights for future model design. Code is available at https://github.com/scxue/AO-GPT-MDM.
♻ ☆ ObjCtrl-2.5D: Training-free Object Control with Camera Poses
This study aims to achieve more precise and versatile object control in image-to-video (I2V) generation. Current methods typically represent the spatial movement of target objects with 2D trajectories, which often fail to capture user intention and frequently produce unnatural results. To enhance control, we present ObjCtrl-2.5D, a training-free object control approach that uses a 3D trajectory, extended from a 2D trajectory with depth information, as a control signal. By modeling object movement as camera movement, ObjCtrl-2.5D represents the 3D trajectory as a sequence of camera poses, enabling object motion control using an existing camera motion control I2V generation model (CMC-I2V) without training. To adapt the CMC-I2V model originally designed for global motion control to handle local object motion, we introduce a module to isolate the target object from the background, enabling independent local control. In addition, we devise an effective way to achieve more accurate object control by sharing low-frequency warped latent within the object's region across frames. Extensive experiments demonstrate that ObjCtrl-2.5D significantly improves object control accuracy compared to training-free methods and offers more diverse control capabilities than training-based approaches using 2D trajectories, enabling complex effects like object rotation. Code and results are available at https://wzhouxiff.github.io/projects/ObjCtrl-2.5D/.
comment: Project Page: https://wzhouxiff.github.io/projects/ObjCtrl-2.5D/
♻ ☆ Two-Stream Spatial-Temporal Transformer Framework for Person Identification via Natural Conversational Keypoints
In the age of AI-driven generative technologies, traditional biometric recognition systems face unprecedented challenges, particularly from sophisticated deepfake and face reenactment techniques. In this study, we propose a Two-Stream Spatial-Temporal Transformer Framework for person identification using upper body keypoints visible during online conversations, which we term conversational keypoints. Our framework processes both spatial relationships between keypoints and their temporal evolution through two specialized branches: a Spatial Transformer (STR) that learns distinctive structural patterns in keypoint configurations, and a Temporal Transformer (TTR) that captures sequential motion patterns. Using the state-of-the-art Sapiens pose estimator, we extract 133 keypoints (based on COCO-WholeBody format) representing facial features, head pose, and hand positions. The framework was evaluated on a dataset of 114 individuals engaged in natural conversations, achieving recognition accuracies of 80.12% for the spatial stream, 63.61% for the temporal stream. We then explored two fusion strategies: a shared loss function approach achieving 82.22% accuracy, and a feature-level fusion method that concatenates feature maps from both streams, significantly improving performance to 94.86%. By jointly modeling both static anatomical relationships and dynamic movement patterns, our approach learns comprehensive identity signatures that are more robust to spoofing than traditional appearance-based methods.
comment: I would like to withdraw this submission due to the need for substantial revisions in the results and analysis. I plan to correct and improve the study and submit a more complete version in the near future
♻ ☆ Aligning Anime Video Generation with Human Feedback
Anime video generation faces significant challenges due to the scarcity of anime data and unusual motion patterns, leading to issues such as motion distortion and flickering artifacts, which result in misalignment with human preferences. Existing reward models, designed primarily for real-world videos, fail to capture the unique appearance and consistency requirements of anime. In this work, we propose a pipeline to enhance anime video generation by leveraging human feedback for better alignment. Specifically, we construct the first multi-dimensional reward dataset for anime videos, comprising 30k human-annotated samples that incorporating human preferences for both visual appearance and visual consistency. Based on this, we develop AnimeReward, a powerful reward model that employs specialized vision-language models for different evaluation dimensions to guide preference alignment. Furthermore, we introduce Gap-Aware Preference Optimization (GAPO), a novel training method that explicitly incorporates preference gaps into the optimization process, enhancing alignment performance and efficiency. Extensive experiment results show that AnimeReward outperforms existing reward models, and the inclusion of GAPO leads to superior alignment in both quantitative benchmarks and human evaluations, demonstrating the effectiveness of our pipeline in enhancing anime video quality. Our code and dataset are publicly available at https://github.com/bilibili/Index-anisora.
comment: 10 pages, 7 figures, 7 tables
♻ ☆ RA-NeRF: Robust Neural Radiance Field Reconstruction with Accurate Camera Pose Estimation under Complex Trajectories IROS 2025
Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have emerged as powerful tools for 3D reconstruction and SLAM tasks. However, their performance depends heavily on accurate camera pose priors. Existing approaches attempt to address this issue by introducing external constraints but fall short of achieving satisfactory accuracy, particularly when camera trajectories are complex. In this paper, we propose a novel method, RA-NeRF, capable of predicting highly accurate camera poses even with complex camera trajectories. Following the incremental pipeline, RA-NeRF reconstructs the scene using NeRF with photometric consistency and incorporates flow-driven pose regulation to enhance robustness during initialization and localization. Additionally, RA-NeRF employs an implicit pose filter to capture the camera movement pattern and eliminate the noise for pose estimation. To validate our method, we conduct extensive experiments on the Tanks\&Temple dataset for standard evaluation, as well as the NeRFBuster dataset, which presents challenging camera pose trajectories. On both datasets, RA-NeRF achieves state-of-the-art results in both camera pose estimation and visual quality, demonstrating its effectiveness and robustness in scene reconstruction under complex pose trajectories.
comment: IROS 2025
♻ ☆ Grounding Beyond Detection: Enhancing Contextual Understanding in Embodied 3D Grounding
Embodied 3D grounding aims to localize target objects described in human instructions from ego-centric viewpoint. Most methods typically follow a two-stage paradigm where a trained 3D detector's optimized backbone parameters are used to initialize a grounding model. In this study, we explore a fundamental question: Does embodied 3D grounding benefit enough from detection? To answer this question, we assess the grounding performance of detection models using predicted boxes filtered by the target category. Surprisingly, these detection models without any instruction-specific training outperform the grounding models explicitly trained with language instructions. This indicates that even category-level embodied 3D grounding may not be well resolved, let alone more fine-grained context-aware grounding. Motivated by this finding, we propose DEGround, which shares DETR queries as object representation for both DEtection and Grounding and enables the grounding to benefit from basic category classification and box detection. Based on this framework, we further introduce a regional activation grounding module that highlights instruction-related regions and a query-wise modulation module that incorporates sentence-level semantic into the query representation, strengthening the context-aware understanding of language instructions. Remarkably, DEGround outperforms state-of-the-art model BIP3D by 7.52% at overall accuracy on the EmbodiedScan validation set. The source code will be publicly available at https://github.com/zyn213/DEGround.
comment: 1st place on EmbodiedScan visual grounding
♻ ☆ Beyond Reconstruction: A Physics Based Neural Deferred Shader for Photo-realistic Rendering
Deep learning based rendering has achieved major improvements in photo-realistic image synthesis, with potential applications including visual effects in movies and photo-realistic scene building in video games. However, a significant limitation is the difficulty of decomposing the illumination and material parameters, which limits such methods to reconstructing an input scene, without any possibility to control these parameters. This paper introduces a novel physics based neural deferred shading pipeline to decompose the data-driven rendering process, learn a generalizable shading function to produce photo-realistic results for shading and relighting tasks; we also propose a shadow estimator to efficiently mimic shadowing effects. Our model achieves improved performance compared to classical models and a state-of-art neural shading model, and enables generalizable photo-realistic shading from arbitrary illumination input.
♻ ☆ ASR-enhanced Multimodal Representation Learning for Cross-Domain Product Retrieval
E-commerce is increasingly multimedia-enriched, with products exhibited in a broad-domain manner as images, short videos, or live stream promotions. A unified and vectorized cross-domain production representation is essential. Due to large intra-product variance and high inter-product similarity in the broad-domain scenario, a visual-only representation is inadequate. While Automatic Speech Recognition (ASR) text derived from the short or live-stream videos is readily accessible, how to de-noise the excessively noisy text for multimodal representation learning is mostly untouched. We propose ASR-enhanced Multimodal Product Representation Learning (AMPere). In order to extract product-specific information from the raw ASR text, AMPere uses an easy-to-implement LLM-based ASR text summarizer. The LLM-summarized text, together with visual data, is then fed into a multi-branch network to generate compact multimodal embeddings. Extensive experiments on a large-scale tri-domain dataset verify the effectiveness of AMPere in obtaining a unified multimodal product representation that clearly improves cross-domain product retrieval.
comment: accepted for publication as a REGULAR paper in the IEEE Transactions on Multimedia
♻ ☆ IgCONDA-PET: Weakly-Supervised PET Anomaly Detection using Implicitly-Guided Attention-Conditional Counterfactual Diffusion Modeling -- a Multi-Center, Multi-Cancer, and Multi-Tracer Study
Minimizing the need for pixel-level annotated data to train PET lesion detection and segmentation networks is highly desired and can be transformative, given time and cost constraints associated with expert annotations. Current unsupervised or weakly-supervised anomaly detection methods rely on autoencoder or generative adversarial networks (GANs) trained only on healthy data. While these approaches reduce annotation dependency, GAN-based methods are notably more challenging to train than non-GAN alternatives (such as autoencoders) due to issues such as the simultaneous optimization of two competing networks, mode collapse, and training instability. In this paper, we present the weakly-supervised $\textbf{I}$mplicitly-$\textbf{g}$uided $\textbf{CO}$u$\textbf{N}$terfactual diffusion model for $\textbf{D}$etecting $\textbf{A}$nomalies in $\textbf{PET}$ images (IgCONDA-PET). The solution is developed and validated using PET scans from six retrospective cohorts consisting of a total of 2652 cases (multi-cancer, multi-tracer) containing both local and public datasets (spanning multiple centers). The training is conditioned on image class labels (healthy vs. unhealthy) via attention modules, and we employ implicit diffusion guidance. We perform counterfactual generation which facilitates "unhealthy-to-healthy" domain translation by generating a synthetic, healthy version of an unhealthy input image, enabling the detection of anomalies through the calculated differences. The performance of our method was compared against several other deep learning based weakly-supervised or unsupervised methods as well as traditional methods like 41% SUV$_\text{max}$ thresholding. We also highlight the importance of incorporating attention modules in our network for the detection of small anomalies. The code is publicly available at: https://github.com/ahxmeds/IgCONDA-PET.git.
comment: 48 pages, 13 figures, 4 tables
♻ ☆ Light of Normals: Unified Feature Representation for Universal Photometric Stereo
Universal photometric stereo (PS) aims to recover high-quality surface normals from objects under arbitrary lighting conditions without relying on specific illumination models. Despite recent advances such as SDM-UniPS and Uni MS-PS, two fundamental challenges persist: 1) the deep coupling between varying illumination and surface normal features, where ambiguity in observed intensity makes it difficult to determine whether brightness variations stem from lighting changes or surface orientation; and 2) the preservation of high-frequency geometric details in complex surfaces, where intricate geometries create self-shadowing, inter-reflections, and subtle normal variations that conventional feature processing operations struggle to capture accurately.
comment: Home: https://houyuanchen111.github.io/lino.github.io Github: https://github.com/houyuanchen111/LINO_UniPS HuggingFace Demo: https://huggingface.co/spaces/houyuanchen/lino
♻ ☆ MAMMA: Markerless & Automatic Multi-Person Motion Action Capture
We present MAMMA, a markerless motion-capture pipeline that accurately recovers SMPL-X parameters from multi-view video of two-person interaction sequences. Traditional motion-capture systems rely on physical markers. Although they offer high accuracy, their requirements of specialized hardware, manual marker placement, and extensive post-processing make them costly and time-consuming. Recent learning-based methods attempt to overcome these limitations, but most are designed for single-person capture, rely on sparse keypoints, or struggle with occlusions and physical interactions. In this work, we introduce a method that predicts dense 2D surface landmarks conditioned on segmentation masks, enabling person-specific correspondence estimation even under heavy occlusion. We employ a novel architecture that exploits learnable queries for each landmark. We demonstrate that our approach can handle complex person--person interaction and offers greater accuracy than existing methods. To train our network, we construct a large, synthetic multi-view dataset combining human motions from diverse sources, including extreme poses, hand motions, and close interactions. Our dataset yields high-variability synthetic sequences with rich body contact and occlusion, and includes SMPL-X ground-truth annotations with dense 2D landmarks. The result is a system capable of capturing human motion without the need for markers. Our approach offers competitive reconstruction quality compared to commercial marker-based motion-capture solutions, without the extensive manual cleanup. Finally, we address the absence of common benchmarks for dense-landmark prediction and markerless motion capture by introducing two evaluation settings built from real multi-view sequences. We will release our dataset, benchmark, method, training code, and pre-trained model weights for research purposes.
♻ ☆ LoRA-Edit: Controllable First-Frame-Guided Video Editing via Mask-Aware LoRA Fine-Tuning
Video editing using diffusion models has achieved remarkable results in generating high-quality edits for videos. However, current methods often rely on large-scale pretraining, limiting flexibility for specific edits. First-frame-guided editing provides control over the first frame, but lacks flexibility over subsequent frames. To address this, we propose a mask-based LoRA (Low-Rank Adaptation) tuning method that adapts pretrained Image-to-Video (I2V) models for flexible video editing. Our approach preserves background regions while enabling controllable edits propagation. This solution offers efficient and adaptable video editing without altering the model architecture. To better steer this process, we incorporate additional references, such as alternate viewpoints or representative scene states, which serve as visual anchors for how content should unfold. We address the control challenge using a mask-driven LoRA tuning strategy that adapts a pre-trained image-to-video model to the editing context. The model must learn from two distinct sources: the input video provides spatial structure and motion cues, while reference images offer appearance guidance. A spatial mask enables region-specific learning by dynamically modulating what the model attends to, ensuring that each area draws from the appropriate source. Experimental results show our method achieves superior video editing performance compared to state-of-the-art methods. Project Page: https://cjeen.github.io/LoraEditPaper
comment: 12 pages
FOCoOp: Enhancing Out-of-Distribution Robustness in Federated Prompt Learning for Vision-Language Models ICML25
Federated prompt learning (FPL) for vision-language models is a powerful approach to collaboratively adapt models across distributed clients while preserving data privacy. However, existing FPL approaches suffer from a trade-off between performance and robustness, particularly in out-of-distribution (OOD) shifts, limiting their reliability in real-world scenarios. The inherent in-distribution (ID) data heterogeneity among different clients makes it more challenging to maintain this trade-off. To fill this gap, we introduce a Federated OOD-aware Context Optimization (FOCoOp) framework, which captures diverse distributions among clients using ID global prompts, local prompts, and OOD prompts. Specifically, FOCoOp leverages three sets of prompts to create both class-level and distribution-level separations, which adapt to OOD shifts through bi-level distributionally robust optimization. Additionally, FOCoOp improves the discrimination consistency among clients, i.e., calibrating global prompts, seemingly OOD prompts, and OOD prompts by semi-unbalanced optimal transport. The extensive experiments on real-world datasets demonstrate that FOCoOp effectively captures decentralized heterogeneous distributions and enhances robustness of different OOD shifts. The project is available at GitHub.
comment: Accepted by ICML25
♻ ☆ GCE-Pose: Global Context Enhancement for Category-level Object Pose Estimation CVPR 2025
A key challenge in model-free category-level pose estimation is the extraction of contextual object features that generalize across varying instances within a specific category. Recent approaches leverage foundational features to capture semantic and geometry cues from data. However, these approaches fail under partial visibility. We overcome this with a first-complete-then-aggregate strategy for feature extraction utilizing class priors. In this paper, we present GCE-Pose, a method that enhances pose estimation for novel instances by integrating category-level global context prior. GCE-Pose performs semantic shape reconstruction with a proposed Semantic Shape Reconstruction (SSR) module. Given an unseen partial RGB-D object instance, our SSR module reconstructs the instance's global geometry and semantics by deforming category-specific 3D semantic prototypes through a learned deep Linear Shape Model. We further introduce a Global Context Enhanced (GCE) feature fusion module that effectively fuses features from partial RGB-D observations and the reconstructed global context. Extensive experiments validate the impact of our global context prior and the effectiveness of the GCE fusion module, demonstrating that GCE-Pose significantly outperforms existing methods on challenging real-world datasets HouseCat6D and NOCS-REAL275. Our project page is available at https://colin-de.github.io/GCE-Pose/.
comment: CVPR 2025 accepted
♻ ☆ crossMoDA Challenge: Evolution of Cross-Modality Domain Adaptation Techniques for Vestibular Schwannoma and Cochlea Segmentation from 2021 to 2023
The cross-Modality Domain Adaptation (crossMoDA) challenge series, initiated in 2021 in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), focuses on unsupervised cross-modality segmentation, learning from contrast-enhanced T1 (ceT1) and transferring to T2 MRI. The task is an extreme example of domain shift chosen to serve as a meaningful and illustrative benchmark. From a clinical application perspective, it aims to automate Vestibular Schwannoma (VS) and cochlea segmentation on T2 scans for more cost-effective VS management. Over time, the challenge objectives have evolved to enhance its clinical relevance. The challenge evolved from using single-institutional data and basic segmentation in 2021 to incorporating multi-institutional data and Koos grading in 2022, and by 2023, it included heterogeneous routine data and sub-segmentation of intra- and extra-meatal tumour components. In this work, we report the findings of the 2022 and 2023 editions and perform a retrospective analysis of the challenge progression over the years. The observations from the successive challenge contributions indicate that the number of outliers decreases with an expanding dataset. This is notable since the diversity of scanning protocols of the datasets concurrently increased. The winning approach of the 2023 edition reduced the number of outliers on the 2021 and 2022 testing data, demonstrating how increased data heterogeneity can enhance segmentation performance even on homogeneous data. However, the cochlea Dice score declined in 2023, likely due to the added complexity from tumour sub-annotations affecting overall segmentation performance. While progress is still needed for clinically acceptable VS segmentation, the plateauing performance suggests that a more challenging cross-modal task may better serve future benchmarking.
♻ ☆ FusionForce: End-to-end Differentiable Neural-Symbolic Layer for Trajectory Prediction
We propose end-to-end differentiable model that predicts robot trajectories on rough offroad terrain from camera images and/or lidar point clouds. The model integrates a learnable component that predicts robot-terrain interaction forces with a neural-symbolic layer that enforces the laws of classical mechanics and consequently improves generalization on out-of-distribution data. The neural-symbolic layer includes a differentiable physics engine that computes the robot's trajectory by querying these forces at the points of contact with the terrain. As the proposed architecture comprises substantial geometrical and physics priors, the resulting model can also be seen as a learnable physics engine conditioned on real sensor data that delivers $10^4$ trajectories per second. We argue and empirically demonstrate that this architecture reduces the sim-to-real gap and mitigates out-of-distribution sensitivity. The differentiability, in conjunction with the rapid simulation speed, makes the model well-suited for various applications including model predictive control, trajectory shooting, supervised and reinforcement learning, or SLAM.
comment: Code: https://github.com/ctu-vras/fusionforce
♻ ☆ AI-based Multimodal Biometrics for Detecting Smartphone Distractions: Application to Online Learning
This work investigates the use of multimodal biometrics to detect distractions caused by smartphone use during tasks that require sustained attention, with a focus on computer-based online learning. Although the methods are applicable to various domains, such as autonomous driving, we concentrate on the challenges learners face in maintaining engagement amid internal (e.g., motivation), system-related (e.g., course design) and contextual (e.g., smartphone use) factors. Traditional learning platforms often lack detailed behavioral data, but Multimodal Learning Analytics (MMLA) and biosensors provide new insights into learner attention. We propose an AI-based approach that leverages physiological signals and head pose data to detect phone use. Our results show that single biometric signals, such as brain waves or heart rate, offer limited accuracy, while head pose alone achieves 87%. A multimodal model combining all signals reaches 91% accuracy, highlighting the benefits of integration. We conclude by discussing the implications and limitations of deploying these models for real-time support in online learning environments.
comment: Accepted in EC-TEL25: 20th European Conference on Technology Enhanced Learning, Newcastle and Durham, UK, 15-19 September 2025
♻ ☆ Contactless Cardiac Pulse Monitoring Using Event Cameras
Time event cameras are a novel technology for recording scene information at extremely low latency and with low power consumption. Event cameras output a stream of events that encapsulate pixel-level light intensity changes within the scene, capturing information with a higher dynamic range and temporal resolution than traditional cameras. This study investigates the contact-free reconstruction of an individual's cardiac pulse signal from time event recording of their face using a supervised convolutional neural network (CNN) model. An end-to-end model is trained to extract the cardiac signal from a two-dimensional representation of the event stream, with model performance evaluated based on the accuracy of the calculated heart rate. The experimental results confirm that physiological cardiac information in the facial region is effectively preserved within the event stream, showcasing the potential of this novel sensor for remote heart rate monitoring. The model trained on event frames achieves a root mean square error (RMSE) of 3.32 beats per minute (bpm) compared to the RMSE of 2.92 bpm achieved by the baseline model trained on standard camera frames. Furthermore, models trained on event frames generated at 60 and 120 FPS outperformed the 30 FPS standard camera results, achieving an RMSE of 2.54 and 2.13 bpm, respectively.
♻ ☆ Diff-Def: Diffusion-Generated Deformation Fields for Conditional Atlases
Anatomical atlases are widely used for population studies and analysis. Conditional atlases target a specific sub-population defined via certain conditions, such as demographics or pathologies, and allow for the investigation of fine-grained anatomical differences like morphological changes associated with ageing or disease. Existing approaches use either registration-based methods that are often unable to handle large anatomical variations or generative adversarial models, which are challenging to train since they can suffer from training instabilities. Instead of generating atlases directly in as intensities, we propose using latent diffusion models to generate deformation fields, which transform a general population atlas into one representing a specific sub-population. Our approach ensures structural integrity, enhances interpretability and avoids hallucinations that may arise during direct image synthesis by generating this deformation field and regularising it using a neighbourhood of images. We compare our method to several state-of-the-art atlas generation methods using brain MR images from the UK Biobank. Our method generates highly realistic atlases with smooth transformations and high anatomical fidelity, outperforming existing baselines. We demonstrate the quality of these atlases through comprehensive evaluations, including quantitative metrics for anatomical accuracy, perceptual similarity, and qualitative analyses displaying the consistency and realism of the generated atlases.
♻ ☆ ConciseHint: Boosting Efficient Reasoning via Continuous Concise Hints during Generation
Recent advancements in large reasoning models (LRMs) like DeepSeek-R1 and OpenAI o1 series have achieved notable performance enhancements on complex reasoning tasks by scaling up the generation length by Chain-of-Thought (CoT). However, an emerging issue is their inclination to produce excessively verbose reasoning processes, leading to the inefficiency problem. Existing literature on improving efficiency mainly adheres to the before-reasoning paradigms such as prompting and reasoning or fine-tuning and reasoning, but ignores the promising direction of directly encouraging the model to speak concisely by intervening during the generation of reasoning. In order to fill the blank, we propose a framework dubbed ConciseHint, which continuously encourages the reasoning model to speak concisely by injecting the textual hint (manually designed or trained on the concise data) during the token generation of the reasoning process. Besides, ConciseHint is adaptive to the complexity of the query by adaptively adjusting the hint intensity, which ensures it will not undermine model performance. Experiments on the state-of-the-art LRMs, including DeepSeek-R1 and Qwen-3 series, demonstrate that our method can effectively produce concise reasoning processes while maintaining performance well. For instance, we achieve a reduction ratio of 65\% for the reasoning length on GSM8K benchmark with Qwen-3 4B with nearly no accuracy loss.
comment: Codes are available at https://github.com/tsa18/ConciseHint
♻ ☆ Cross-sensor self-supervised training and alignment for remote sensing
Large-scale ''foundation models'' have gained traction as a way to leverage the vast amounts of unlabeled remote sensing data collected every day. However, due to the multiplicity of Earth Observation satellites, these models should learn ''sensor agnostic'' representations, that generalize across sensor characteristics with minimal fine-tuning. This is complicated by data availability, as low-resolution imagery, such as Sentinel-2 and Landsat-8 data, are available in large amounts, while very high-resolution aerial or satellite data is less common. To tackle these challenges, we introduce cross-sensor self-supervised training and alignment for remote sensing (X-STARS). We design a self-supervised training loss, the Multi-Sensor Alignment Dense loss (MSAD), to align representations across sensors, even with vastly different resolutions. Our X-STARS can be applied to train models from scratch, or to adapt large models pretrained on e.g low-resolution EO data to new high-resolution sensors, in a continual pretraining framework. We collect and release MSC-France, a new multi-sensor dataset, on which we train our X-STARS models, then evaluated on seven downstream classification and segmentation tasks. We demonstrate that X-STARS outperform s the state-of-the-art by a significant margin with less data across various conditions of data availability and resolutions.
♻ ☆ Improving Out-of-Distribution Detection via Dynamic Covariance Calibration ICML25
Out-of-Distribution (OOD) detection is essential for the trustworthiness of AI systems. Methods using prior information (i.e., subspace-based methods) have shown effective performance by extracting information geometry to detect OOD data with a more appropriate distance metric. However, these methods fail to address the geometry distorted by ill-distributed samples, due to the limitation of statically extracting information geometry from the training distribution. In this paper, we argue that the influence of ill-distributed samples can be corrected by dynamically adjusting the prior geometry in response to new data. Based on this insight, we propose a novel approach that dynamically updates the prior covariance matrix using real-time input features, refining its information. Specifically, we reduce the covariance along the direction of real-time input features and constrain adjustments to the residual space, thus preserving essential data characteristics and avoiding effects on unintended directions in the principal space. We evaluate our method on two pre-trained models for the CIFAR dataset and five pre-trained models for ImageNet-1k, including the self-supervised DINO model. Extensive experiments demonstrate that our approach significantly enhances OOD detection across various models. The code is released at https://github.com/workerbcd/ooddcc.
comment: Accepted by ICML25
♻ ☆ DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
Large Language Models (LLMs) have recently been extended to the video domain, enabling sophisticated video-language understanding. However, existing Video LLMs often exhibit limitations in fine-grained temporal reasoning, restricting their ability to precisely attribute responses to specific video moments, especially under constrained supervision. We introduce DaMO, a data-efficient Video LLM explicitly designed for accurate temporal reasoning and multimodal understanding. At its core, the proposed Temporal-aware Fuseformer employs a hierarchical dual-stream architecture that progressively captures temporal dynamics within each modality and effectively fuses complementary visual and audio information. To further enhance computational efficiency, DaMO integrates a global residual that reduces spatial redundancy while preserving essential semantic details. We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities. This work also contributes multiple datasets augmented from existing ones with GPT-generated temporally grounded QA pairs for tasks requiring temporal supervision. Comprehensive experiments on temporal grounding and video QA benchmarks demonstrate that DaMO consistently surpasses prior methods, particularly in tasks demanding precise temporal alignment and reasoning. Our work establishes a promising direction for data-efficient video-language modeling.
comment: I would like to request the withdrawal of this submission because the current version contains significant errors and incomplete results. I intend to revise the manuscript thoroughly before resubmitting. I apologize for the oversight and appreciate your understanding
SemGauss-SLAM: Dense Semantic Gaussian Splatting SLAM IROS 2025
We propose SemGauss-SLAM, a dense semantic SLAM system utilizing 3D Gaussian representation, that enables accurate 3D semantic mapping, robust camera tracking, and high-quality rendering simultaneously. In this system, we incorporate semantic feature embedding into 3D Gaussian representation, which effectively encodes semantic information within the spatial layout of the environment for precise semantic scene representation. Furthermore, we propose feature-level loss for updating 3D Gaussian representation, enabling higher-level guidance for 3D Gaussian optimization. In addition, to reduce cumulative drift in tracking and improve semantic reconstruction accuracy, we introduce semantic-informed bundle adjustment. By leveraging multi-frame semantic associations, this strategy enables joint optimization of 3D Gaussian representation and camera poses, resulting in low-drift tracking and accurate semantic mapping. Our SemGauss-SLAM demonstrates superior performance over existing radiance field-based SLAM methods in terms of mapping and tracking accuracy on Replica and ScanNet datasets, while also showing excellent capabilities in high-precision semantic segmentation and dense semantic mapping.
comment: IROS 2025
♻ ☆ Unfolding the Past: A Comprehensive Deep Learning Approach to Analyzing Incunabula Pages
We developed a proof-of-concept method for the automatic analysis of the structure and content of incunabula pages. A custom dataset comprising 500 annotated pages from five different incunabula was created using resources from the Jagiellonian Digital Library. Each page was manually labeled with five predefined classes: Text, Title, Picture, Table, and Handwriting. Additionally, the publicly available DocLayNet dataset was utilized as supplementary training data. To perform object detection, YOLO11n and YOLO11s models were employed and trained using two strategies: a combined dataset (DocLayNet and the custom dataset) and the custom dataset alone. The highest performance (F1 = 0.94) was achieved by the YOLO11n model trained exclusively on the custom data. Optical character recognition was then conducted on regions classified as Text, using both Tesseract and Kraken OCR, with Tesseract demonstrating superior results. Subsequently, image classification was applied to the Picture class using a ResNet18 model, achieving an accuracy of 98.7% across five subclasses: Decorative_letter, Illustration, Other, Stamp, and Wrong_detection. Furthermore, the CLIP model was utilized to generate semantic descriptions of illustrations. The results confirm the potential of machine learning in the analysis of early printed books, while emphasizing the need for further advancements in OCR performance and visual content interpretation.
comment: 10 pages, 8 figures; submitted to TPDL 2025; change in v2: updated e-mail address
♻ ☆ Privacy Attacks on Image AutoRegressive Models ICML2025
Image AutoRegressive generation has emerged as a new powerful paradigm with image autoregressive models (IARs) matching state-of-the-art diffusion models (DMs) in image quality (FID: 1.48 vs. 1.58) while allowing for a higher generation speed. However, the privacy risks associated with IARs remain unexplored, raising concerns regarding their responsible deployment. To address this gap, we conduct a comprehensive privacy analysis of IARs, comparing their privacy risks to the ones of DMs as reference points. Concretely, we develop a novel membership inference attack (MIA) that achieves a remarkably high success rate in detecting training images (with a True Positive Rate at False Positive Rate = 1% of 86.38% vs. 6.38% for DMs with comparable attacks). We leverage our novel MIA to provide dataset inference (DI) for IARs, and show that it requires as few as 6 samples to detect dataset membership (compared to 200 for DI in DMs), confirming a higher information leakage in IARs. Finally, we are able to extract hundreds of training data points from an IAR (e.g., 698 from VAR-d30). Our results suggest a fundamental privacy-utility trade-off: while IARs excel in image generation quality and speed, they are empirically significantly more vulnerable to privacy attacks compared to DMs that achieve similar performance. We release the code at https://github.com/sprintml/privacy_attacks_against_iars for reproducibility.
comment: Accepted at ICML2025
PicoSAM2: Low-Latency Segmentation In-Sensor for Edge Vision Applications
Real-time, on-device segmentation is critical for latency-sensitive and privacy-aware applications like smart glasses and IoT devices. We introduce PicoSAM2, a lightweight (1.3M parameters, 336M MACs) promptable segmentation model optimized for edge and in-sensor execution, including the Sony IMX500. It builds on a depthwise separable U-Net, with knowledge distillation and fixed-point prompt encoding to learn from the Segment Anything Model 2 (SAM2). On COCO and LVIS, it achieves 51.9% and 44.9% mIoU, respectively. The quantized model (1.22MB) runs at 14.3 ms on the IMX500-achieving 86 MACs/cycle, making it the only model meeting both memory and compute constraints for in-sensor deployment. Distillation boosts LVIS performance by +3.5% mIoU and +5.1% mAP. These results demonstrate that efficient, promptable segmentation is feasible directly on-camera, enabling privacy-preserving vision without cloud or host processing.
♻ ☆ Multimodal Fusion SLAM with Fourier Attention RAL
Visual SLAM is particularly challenging in environments affected by noise, varying lighting conditions, and darkness. Learning-based optical flow algorithms can leverage multiple modalities to address these challenges, but traditional optical flow-based visual SLAM approaches often require significant computational resources.To overcome this limitation, we propose FMF-SLAM, an efficient multimodal fusion SLAM method that utilizes fast Fourier transform (FFT) to enhance the algorithm efficiency. Specifically, we introduce a novel Fourier-based self-attention and cross-attention mechanism to extract features from RGB and depth signals. We further enhance the interaction of multimodal features by incorporating multi-scale knowledge distillation across modalities. We also demonstrate the practical feasibility of FMF-SLAM in real-world scenarios with real time performance by integrating it with a security robot by fusing with a global positioning module GNSS-RTK and global Bundle Adjustment. Our approach is validated using video sequences from TUM, TartanAir, and our real-world datasets, showcasing state-of-the-art performance under noisy, varying lighting, and dark conditions.Our code and datasets are available at https://github.com/youjie-zhou/FMF-SLAM.git.
comment: Accepted in IEEE RAL
♻ ☆ Cross-Level Multi-Instance Distillation for Self-Supervised Fine-Grained Visual Categorization
High-quality annotation of fine-grained visual categories demands great expert knowledge, which is taxing and time consuming. Alternatively, learning fine-grained visual representation from enormous unlabeled images (e.g., species, brands) by self-supervised learning becomes a feasible solution. However, recent researches find that existing self-supervised learning methods are less qualified to represent fine-grained categories. The bottleneck lies in that the pre-text representation is built from every patch-wise embedding, while fine-grained categories are only determined by several key patches of an image. In this paper, we propose a Cross-level Multi-instance Distillation (CMD) framework to tackle the challenge. Our key idea is to consider the importance of each image patch in determining the fine-grained pre-text representation by multiple instance learning. To comprehensively learn the relation between informative patches and fine-grained semantics, the multi-instance knowledge distillation is implemented on both the region/image crop pairs from the teacher and student net, and the region-image crops inside the teacher / student net, which we term as intra-level multi-instance distillation and inter-level multi-instance distillation. Extensive experiments on CUB-200-2011, Stanford Cars and FGVC Aircraft show that the proposed method outperforms the contemporary method by upto 10.14% and existing state-of-the-art self-supervised learning approaches by upto 19.78% on both top-1 accuracy and Rank-1 retrieval metric.
comment: Accepted by IEEE Transactions on Image Processing (TIP)
♻ ☆ Exclusive Style Removal for Cross Domain Novel Class Discovery
As a promising field in open-world learning, \textit{Novel Class Discovery} (NCD) is usually a task to cluster unseen novel classes in an unlabeled set based on the prior knowledge of labeled data within the same domain. However, the performance of existing NCD methods could be severely compromised when novel classes are sampled from a different distribution with the labeled ones. In this paper, we explore and establish the solvability of NCD with cross domain setting under the necessary condition that the style information needs to be removed. Based on the theoretical analysis, we introduce an exclusive style removal module for extracting style information that is distinctive from the baseline features, thereby facilitating inference. Moreover, this module is easy to integrate with other NCD methods, acting as a plug-in to improve performance on novel classes with different distributions compared to the labeled set. Additionally, recognizing the non-negligible influence of different backbones and pre-training strategies on the performance of the NCD methods, we build a fair benchmark for future NCD research. Extensive experiments on three common datasets demonstrate the effectiveness of our proposed style removal strategy.
♻ ☆ DivTrackee versus DynTracker: Promoting Diversity in Anti-Facial Recognition against Dynamic FR Strategy
The widespread adoption of facial recognition (FR) models raises serious concerns about their potential misuse, motivating the development of anti-facial recognition (AFR) to protect user facial privacy. In this paper, we argue that the static FR strategy, predominantly adopted in prior literature for evaluating AFR efficacy, cannot faithfully characterize the actual capabilities of determined trackers who aim to track a specific target identity. In particular, we introduce DynTracker, a dynamic FR strategy where the model's gallery database is iteratively updated with newly recognized target identity images. Surprisingly, such a simple approach renders all the existing AFR protections ineffective. To mitigate the privacy threats posed by DynTracker, we advocate for explicitly promoting diversity in the AFR-protected images. We hypothesize that the lack of diversity is the primary cause of the failure of existing AFR methods. Specifically, we develop DivTrackee, a novel method for crafting diverse AFR protections that builds upon a text-guided image generation framework and diversity-promoting adversarial losses. Through comprehensive experiments on various image benchmarks and feature extractors, we demonstrate DynTracker's strength in breaking existing AFR methods and the superiority of DivTrackee in preventing user facial images from being identified by dynamic FR strategies. We believe our work can act as an important initial step towards developing more effective AFR methods for protecting user facial privacy against determined trackers.
♻ ☆ RRCANet: Recurrent Reusable-Convolution Attention Network for Infrared Small Target Detection
Infrared small target detection is a challenging task due to its unique characteristics (e.g., small, dim, shapeless and changeable). Recently published CNN-based methods have achieved promising performance with heavy feature extraction and fusion modules. To achieve efficient and effective detection, we propose a recurrent reusable-convolution attention network (RRCA-Net) for infrared small target detection. Specifically, RRCA-Net incorporates reusable-convolution block (RuCB) in a recurrent manner without introducing extra parameters. With the help of the repetitive iteration in RuCB, the high-level information of small targets in the deep layers can be well maintained and further refined. Then, a dual interactive attention aggregation module (DIAAM) is proposed to promote the mutual enhancement and fusion of refined information. In this way, RRCA-Net can both achieve high-level feature refinement and enhance the correlation of contextual information between adjacent layers. Moreover, to achieve steady convergence, we design a target characteristic inspired loss function (DpT-k loss) by integrating physical and mathematical constraints. Experimental results on three benchmark datasets (e.g. NUAA-SIRST, IRSTD-1k, DenseSIRST) demonstrate that our RRCA-Net can achieve comparable performance to the state-of-the-art methods while maintaining a small number of parameters, and act as a plug and play module to introduce consistent performance improvement for several popular IRSTD methods. Our code will be available at https://github.com/yongxianLiu/ soon.
comment: We have corrected some annotation errors in the figures
♻ ☆ Improved and Explainable Cervical Cancer Classification using Ensemble Pooling of Block Fused Descriptors
Cervical cancer is the second most common cancer in women and causes high death rates. Earlier models for detecting cervical cancer had limited success. In this work, we propose new models that substantially outperform previous models. Previous studies show that pretrained ResNets extract features from cervical cancer images well. Hence, our first model involves working with three ResNets (50, 101, 152). All the existing works use only the last convolution block of their respective ResNet, which captures abstract features (e.g., shapes, objects). However, we believe that detailed features (e.g., color, edges, texture), coming from earlier convolution blocks, are equally important for cancer (specifically cervical cancer) classification. Since now the number of features become large, we use a novel feature selection technique of Global Max Pooling for detailed features and Global Average Pooling for abstract features. Hence, our second model consists of the resulting Cascaded Block Fused variants of the three ResNets. To improve the performance further, we combine and normalize the features of the three standard ResNets as well as our proposed three Cascaded Block Fused ResNets. This type of combination is also new in cancer classification domain (also in cervical cancer), and results in our third and fourth models, respectively. We use a linear SVM for classification. We exhaustively perform experiments on two public datasets, IARC and AnnoCerv, achieving an average performance of 97.92% and 92.97% surpassing standard ResNets performance of 90.89% and 87.97%, respectively. We outperform the competitive approach available on IARC dataset with an average gain of 13.20%, while no prior competitive work available on AnnoCerv. Additionally, we introduce a novel SHAP+LIME explainability method, accurately identifying the cancerous region in 97% of cases.
comment: 26 Pages, 10 figures, and 8 tables
♻ ☆ Controllable Video Generation with Provable Disentanglement
Controllable video generation remains a significant challenge, despite recent advances in generating high-quality and consistent videos. Most existing methods for controlling video generation treat the video as a whole, neglecting intricate fine-grained spatiotemporal relationships, which limits both control precision and efficiency. In this paper, we propose Controllable Video Generative Adversarial Networks (CoVoGAN) to disentangle the video concepts, thus facilitating efficient and independent control over individual concepts. Specifically, following the minimal change principle, we first disentangle static and dynamic latent variables. We then leverage the sufficient change property to achieve component-wise identifiability of dynamic latent variables, enabling disentangled control of video generation. To establish the theoretical foundation, we provide a rigorous analysis demonstrating the identifiability of our approach. Building on these theoretical insights, we design a Temporal Transition Module to disentangle latent dynamics. To enforce the minimal change principle and sufficient change property, we minimize the dimensionality of latent dynamic variables and impose temporal conditional independence. To validate our approach, we integrate this module as a plug-in for GANs. Extensive qualitative and quantitative experiments on various video generation benchmarks demonstrate that our method significantly improves generation quality and controllability across diverse real-world scenarios.
♻ ☆ FineCLIPER: Multi-modal Fine-grained CLIP for Dynamic Facial Expression Recognition with AdaptERs ACM MM 2024
Dynamic Facial Expression Recognition (DFER) is crucial for understanding human behavior. However, current methods exhibit limited performance mainly due to the scarcity of high-quality data, the insufficient utilization of facial dynamics, and the ambiguity of expression semantics, etc. To this end, we propose a novel framework, named Multi-modal Fine-grained CLIP for Dynamic Facial Expression Recognition with AdaptERs (FineCLIPER), incorporating the following novel designs: 1) To better distinguish between similar facial expressions, we extend the class labels to textual descriptions from both positive and negative aspects, and obtain supervision by calculating the cross-modal similarity based on the CLIP model; 2) Our FineCLIPER adopts a hierarchical manner to effectively mine useful cues from DFE videos. Specifically, besides directly embedding video frames as input (low semantic level), we propose to extract the face segmentation masks and landmarks based on each frame (middle semantic level) and utilize the Multi-modal Large Language Model (MLLM) to further generate detailed descriptions of facial changes across frames with designed prompts (high semantic level). Additionally, we also adopt Parameter-Efficient Fine-Tuning (PEFT) to enable efficient adaptation of large pre-trained models (i.e., CLIP) for this task. Our FineCLIPER achieves SOTA performance on the DFEW, FERV39k, and MAFW datasets in both supervised and zero-shot settings with few tunable parameters. Project Page: https://haroldchen19.github.io/FineCLIPER-Page/
comment: Accepted to ACM MM 2024
♻ ☆ VideoMathQA: Benchmarking Mathematical Reasoning via Multimodal Understanding in Videos
Mathematical reasoning in real-world video settings presents a fundamentally different challenge than in static images or text. It requires interpreting fine-grained visual information, accurately reading handwritten or digital text, and integrating spoken cues, often dispersed non-linearly over time. In such multimodal contexts, success hinges not just on perception, but on selectively identifying and integrating the right contextual details from a rich and noisy stream of content. To this end, we introduce VideoMathQA, a benchmark designed to evaluate whether models can perform such temporally extended cross-modal reasoning on videos. The benchmark spans 10 diverse mathematical domains, covering videos ranging from 10 seconds to over 1 hour. It requires models to interpret structured visual content, understand instructional narratives, and jointly ground concepts across visual, audio, and textual modalities. We employ graduate-level experts to ensure high quality, totaling over $920$ man-hours of annotation. To reflect real-world scenarios, questions are designed around three core reasoning challenges: direct problem solving, where answers are grounded in the presented question; conceptual transfer, which requires applying learned methods to new problems; and deep instructional comprehension, involving multi-step reasoning over extended explanations and partially worked-out solutions. Each question includes multi-step reasoning annotations, enabling fine-grained diagnosis of model capabilities. Through this benchmark, we highlight the limitations of existing approaches and establish a systematic evaluation framework for models that must reason, rather than merely perceive, across temporally extended and modality-rich mathematical problem settings. Our benchmark and evaluation code are available at: https://mbzuai-oryx.github.io/VideoMathQA
comment: VideoMathQA Technical Report
♻ ☆ Flopping for FLOPs: Leveraging equivariance for computational efficiency ICML 2025
Incorporating geometric invariance into neural networks enhances parameter efficiency but typically increases computational costs. This paper introduces new equivariant neural networks that preserve symmetry while maintaining a comparable number of floating-point operations (FLOPs) per parameter to standard non-equivariant networks. We focus on horizontal mirroring (flopping) invariance, common in many computer vision tasks. The main idea is to parametrize the feature spaces in terms of mirror-symmetric and mirror-antisymmetric features, i.e., irreps of the flopping group. This decomposes the linear layers to be block-diagonal, requiring half the number of FLOPs. Our approach reduces both FLOPs and wall-clock time, providing a practical solution for efficient, scalable symmetry-aware architectures.
comment: ICML 2025
♻ ☆ Temporal-Spectral-Spatial Unified Remote Sensing Dense Prediction
The proliferation of multi-source remote sensing data has propelled the development of deep learning for dense prediction, yet significant challenges in data and task unification persist. Current deep learning architectures for remote sensing are fundamentally rigid. They are engineered for fixed input-output configurations, restricting their adaptability to the heterogeneous spatial, temporal, and spectral dimensions inherent in real-world data. Furthermore, these models neglect the intrinsic correlations among semantic segmentation, binary change detection, and semantic change detection, necessitating the development of distinct models or task-specific decoders. This paradigm is also constrained to a predefined set of output semantic classes, where any change to the classes requires costly retraining. To overcome these limitations, we introduce the Spatial-Temporal-Spectral Unified Network (STSUN) for unified modeling. STSUN can adapt to input and output data with arbitrary spatial sizes, temporal lengths, and spectral bands by leveraging their metadata for a unified representation. Moreover, STSUN unifies disparate dense prediction tasks within a single architecture by conditioning the model on trainable task embeddings. Similarly, STSUN facilitates flexible prediction across any set of semantic categories by integrating trainable category embeddings as metadata. Extensive experiments on multiple datasets with diverse STS configurations in multiple scenarios demonstrate that a single STSUN model effectively adapts to heterogeneous inputs and outputs, unifying various dense prediction tasks and diverse semantic class predictions. The proposed approach consistently achieves state-of-the-art performance, highlighting its robustness and generalizability for complex remote sensing applications.
comment: 14 pages, 6 figures, Code link:https://github.com/walking-shadow/Official_TSSUN
♻ ☆ DeltaSpace: A Semantic-aligned Feature Space for Flexible Text-guided Image Editing
Text-guided image editing faces significant challenges when considering training and inference flexibility. Much literature collects large amounts of annotated image-text pairs to train text-conditioned generative models from scratch, which is expensive and not efficient. After that, some approaches that leverage pre-trained vision-language models have been proposed to avoid data collection, but they are limited by either per text-prompt optimization or inference-time hyper-parameters tuning. To address these issues, we investigate and identify a specific space, referred to as CLIP DeltaSpace, where the CLIP visual feature difference of two images is semantically aligned with the CLIP textual feature difference of their corresponding text descriptions. Based on DeltaSpace, we propose a novel framework called DeltaEdit, which maps the CLIP visual feature differences to the latent space directions of a generative model during the training phase, and predicts the latent space directions from the CLIP textual feature differences during the inference phase. And this design endows DeltaEdit with two advantages: (1) text-free training; (2) generalization to various text prompts for zero-shot inference. Extensive experiments validate the effectiveness and versatility of DeltaEdit with different generative models, including both the GAN model and the diffusion model, in achieving flexible text-guided image editing. Code is available at https://github.com/Yueming6568/DeltaEdit.
comment: 18 pages. arXiv admin note: text overlap with arXiv:2303.06285
♻ ☆ Dynamic PET Image Reconstruction via Non-negative INR Factorization
The reconstruction of dynamic positron emission tomography (PET) images from noisy projection data is a significant but challenging problem. In this paper, we introduce an unsupervised learning approach, Non-negative Implicit Neural Representation Factorization (\texttt{NINRF}), based on low rank matrix factorization of unknown images and employing neural networks to represent both coefficients and bases. Mathematically, we demonstrate that if a sequence of dynamic PET images satisfies a generalized non-negative low-rank property, it can be decomposed into a set of non-negative continuous functions varying in the temporal-spatial domain. This bridges the well-established non-negative matrix factorization (NMF) with continuous functions and we propose using implicit neural representations (INRs) to connect matrix with continuous functions. The neural network parameters are obtained by minimizing the KL divergence, with additional sparsity regularization on coefficients and bases. Extensive experiments on dynamic PET reconstruction with Poisson noise demonstrate the effectiveness of the proposed method compared to other methods, while giving continuous representations for object's detailed geometric features and regional concentration variation.
♻ ☆ Brain Mapping with Dense Features: Grounding Cortical Semantic Selectivity in Natural Images With Vision Transformers ICLR 2025
We introduce BrainSAIL, a method for linking neural selectivity with spatially distributed semantic visual concepts in natural scenes. BrainSAIL leverages recent advances in large-scale artificial neural networks, using them to provide insights into the functional topology of the brain. To overcome the challenge presented by the co-occurrence of multiple categories in natural images, BrainSAIL exploits semantically consistent, dense spatial features from pre-trained vision models, building upon their demonstrated ability to robustly predict neural activity. This method derives clean, spatially dense embeddings without requiring any additional training, and employs a novel denoising process that leverages the semantic consistency of images under random augmentations. By unifying the space of whole-image embeddings and dense visual features and then applying voxel-wise encoding models to these features, we enable the identification of specific subregions of each image which drive selectivity patterns in different areas of the higher visual cortex. This provides a powerful tool for dissecting the neural mechanisms that underlie semantic visual processing for natural images. We validate BrainSAIL on cortical regions with known category selectivity, demonstrating its ability to accurately localize and disentangle selectivity to diverse visual concepts. Next, we demonstrate BrainSAIL's ability to characterize high-level visual selectivity to scene properties and low-level visual features such as depth, luminance, and saturation, providing insights into the encoding of complex visual information. Finally, we use BrainSAIL to directly compare the feature selectivity of different brain encoding models across different regions of interest in visual cortex. Our innovative method paves the way for significant advances in mapping and decomposing high-level visual representations in the human brain.
comment: Accepted at ICLR 2025, code: https://github.com/aluo-x/BrainSAIL
♻ ☆ Hadamard Attention Recurrent Transformer: A Strong Baseline for Stereo Matching Transformer
Constrained by the low-rank bottleneck inherent in attention mechanisms, current stereo matching transformers suffer from limited nonlinear expressivity, which renders their feature representations sensitive to challenging conditions such as reflections. To overcome this difficulty, we present the Hadamard Attention Recurrent Stereo Transformer (HART). HART includes a novel attention mechanism that incorporates the following components: 1) The Dense Attention Kernel (DAK) maps the attention weight distribution into a high-dimensional space over (0, +$\infty$). By removing the upper bound constraint on attention weights, DAK enables more flexible modeling of complex feature interactions. This reduces feature collinearity. 2) The Multi Kernel & Order Interaction (MKOI) module extends the attention mechanism by unifying semantic and spatial knowledge learning. This integration improves the ability of HART to learn features in binocular images. Experimental results demonstrate the effectiveness of our HART. In reflective area, HART ranked 1st on the KITTI 2012 benchmark among all published methods at the time of submission. Code is available at https://github.com/ZYangChen/HART.
♻ ☆ Super-Resolution with Structured Motion
We consider the limits of super-resolution using imaging constraints. Due to various theoretical and practical limitations, reconstruction-based methods have been largely restricted to small increases in resolution. In addition, motion-blur is usually seen as a nuisance that impedes super-resolution. We show that by using high-precision motion information, sparse image priors, and convex optimization, it is possible to increase resolution by large factors. A key operation in super-resolution is deconvolution with a box. In general, convolution with a box is not invertible. However, we obtain perfect reconstructions of sparse signals using convex optimization. We also show that motion blur can be helpful for super-resolution. We demonstrate that using pseudo-random motion it is possible to reconstruct a high-resolution target using a single low-resolution image. We present numerical experiments with simulated data and results with real data captured by a camera mounted on a computer controlled stage.
♻ ☆ VesselSAM: Leveraging SAM for Aortic Vessel Segmentation with AtrousLoRA
Medical image segmentation is crucial for clinical diagnosis and treatment planning, especially when dealing with complex anatomical structures such as vessels. However, accurately segmenting vessels remains challenging due to their small size, intricate edge structures, and susceptibility to artifacts and imaging noise. In this work, we propose VesselSAM, an enhanced version of the Segment Anything Model (SAM), specifically tailored for aortic vessel segmentation. VesselSAM incorporates AtrousLoRA, a novel module integrating Atrous Attention and Low-Rank Adaptation (LoRA), to enhance segmentation performance. Atrous Attention enables the model to capture multi-scale contextual information, preserving both fine-grained local details and broader global context. Additionally, LoRA facilitates efficient fine-tuning of the frozen SAM image encoder, reducing the number of trainable parameters and thereby enhancing computational efficiency. We evaluate VesselSAM using two challenging datasets: the Aortic Vessel Tree (AVT) dataset and the Type-B Aortic Dissection (TBAD) dataset. VesselSAM achieves state-of-the-art performance, attaining DSC scores of 93.50\%, 93.25\%, 93.02\%, and 93.26\% across multi-center datasets. Our results demonstrate that VesselSAM delivers high segmentation accuracy while significantly reducing computational overhead compared to existing large-scale models. This development paves the way for enhanced AI-based aortic vessel segmentation in clinical environments. The code and models will be released at https://github.com/Adnan-CAS/AtrousLora.
comment: Work in progress
♻ ☆ LAuReL: Learned Augmented Residual Layer
One of the core pillars of efficient deep learning methods is architectural improvements such as the residual/skip connection, which has led to significantly better model convergence and quality. Since then the residual connection has become ubiquitous in not just convolutional neural networks but also transformer-based architectures, the backbone of LLMs. In this paper we introduce Learned Augmented Residual Layer (LAuReL) -- a novel generalization of the canonical residual connection -- with the goal to be an in-situ replacement of the latter while outperforming on both model quality and footprint metrics. Our experiments show that using LAuReL can help boost performance for both vision and language models. For example, on the ResNet-50, ImageNet 1K task, it achieves 60% of the gains from adding an extra layer, while only adding 0.003% more parameters, and matches it while adding 2.6 times fewer parameters. Similarly, when pre-training 1B and 4B parameter LLMs, LAuReL improves performance on a variety of challenging downstream evaluation tasks by 2.54% to 20.05%, while adding only 0.012% and 0.1% additional parameters, respectively.
comment: Accepted at 42nd International Conference on Machine Learning (2025), Vancouver, Canada
♻ ☆ Classification in Japanese Sign Language Based on Dynamic Facial Expressions
Sign language is a visual language expressed through hand movements and non-manual markers. Non-manual markers include facial expressions and head movements. These expressions vary across different nations. Therefore, specialized analysis methods for each sign language are necessary. However, research on Japanese Sign Language (JSL) recognition is limited due to a lack of datasets. The development of recognition models that consider both manual and non-manual features of JSL is crucial for precise and smooth communication with deaf individuals. In JSL, sentence types such as affirmative statements and questions are distinguished by facial expressions. In this paper, we propose a JSL recognition method that focuses on facial expressions. Our proposed method utilizes a neural network to analyze facial features and classify sentence types. Through the experiments, we confirm our method's effectiveness by achieving a classification accuracy of 96.05%.
comment: Accepted by 2024 IEEE 13th Global Conference on Consumer Electronics (GCCE 2024)
♻ ☆ SycnMapV2: Robust and Adaptive Unsupervised Segmentation
Human vision excels at segmenting visual cues without the need for explicit training, and it remains remarkably robust even as noise severity increases. In contrast, existing AI algorithms struggle to maintain accuracy under similar conditions. Here, we present SyncMapV2, the first to solve unsupervised segmentation with state-of-the-art robustness. SyncMapV2 exhibits a minimal drop in mIoU, only 0.01%, under digital corruption, compared to a 23.8% drop observed in SOTA methods. This superior performance extends across various types of corruption: noise (7.3% vs. 37.7%), weather (7.5% vs. 33.8%), and blur (7.0% vs. 29.5%). Notably, SyncMapV2 accomplishes this without any robust training, supervision, or loss functions. It is based on a learning paradigm that uses self-organizing dynamical equations combined with concepts from random networks. Moreover, unlike conventional methods that require re-initialization for each new input, SyncMapV2 adapts online, mimicking the continuous adaptability of human vision. Thus, we go beyond the accurate and robust results, and present the first algorithm that can do all the above online, adapting to input rather than re-initializing. In adaptability tests, SyncMapV2 demonstrates near-zero performance degradation, which motivates and fosters a new generation of robust and adaptive intelligence in the near future.
♻ ☆ ClimateIQA: A New Dataset and Benchmark to Advance Vision-Language Models in Meteorology Anomalies Analysis
Meteorological heatmaps play a vital role in deciphering extreme weather phenomena, yet their inherent complexities marked by irregular contours, unstructured patterns, and complex color variations present unique analytical hurdles for state-of-the-art Vision-Language Models (VLMs). Current state-of-the-art models like GPT-4o, Qwen-VL, and LLaVA 1.6 struggle with tasks such as precise color identification and spatial localization, resulting in inaccurate or incomplete interpretations. To address these challenges, we introduce Sparse Position and Outline Tracking (SPOT), a novel algorithm specifically designed to process irregularly shaped colored regions in visual data. SPOT identifies and localizes these regions by extracting their spatial coordinates, enabling structured representations of irregular shapes. Building on SPOT, we construct ClimateIQA, a novel meteorological visual question answering (VQA) dataset, comprising 26,280 high-resolution heatmaps and 762,120 instruction samples for wind gust, total precipitation, wind chill index and heat index analysis. ClimateIQA enhances VLM training by incorporating spatial cues, geographic metadata, and reanalysis data, improving model accuracy in interpreting and describing extreme weather features. Furthermore, we develop Climate-Zoo, a suite of fine-tuned VLMs based on SPOT-empowered ClimateIQA, which significantly outperforms existing models in meteorological heatmap tasks.
♻ ☆ Referring Expression Instance Retrieval and A Strong End-to-End Baseline
Natural language querying of visual content underpins many vision-language tasks, typically categorized by text granularity and visual search scope. Text-Image Retrieval (TIR) retrieves whole images using coarse descriptions, while Referring Expression Comprehension (REC) localizes objects using fine-grained expressions within a single image. However, real-world scenarios often require both instance-level retrieval and localization across large galleries -- tasks where TIR lacks precision and REC lacks scalability. To address this gap, we propose a new task: Referring Expression Instance Retrieval (REIR), which jointly supports instance-level retrieval and localization. We introduce REIRCOCO, a large-scale benchmark constructed by prompting vision-language models to generate fine-grained expressions for MSCOCO and RefCOCO instances. We also present a baseline method, CLARE, featuring a dual-stream architecture with a Mix of Relation Experts (MORE) module for capturing inter-instance relationships. CLARE integrates object detection and REC pretraining with Contrastive Language-Instance Alignment (CLIA) for end-to-end optimization. Experiments show that CLARE achieves state-of-the-art performance on REIR and generalizes well to TIR and REC, highlighting its effectiveness and versatility.
♻ ☆ Stepping Out of Similar Semantic Space for Open-Vocabulary Segmentation
Open-vocabulary segmentation aims to achieve segmentation of arbitrary categories given unlimited text inputs as guidance. To achieve this, recent works have focused on developing various technical routes to exploit the potential of large-scale pre-trained vision-language models and have made significant progress on existing benchmarks. However, we find that existing test sets are limited in measuring the models' comprehension of ``open-vocabulary" concepts, as their semantic space closely resembles the training space, even with many overlapping categories. To this end, we present a new benchmark named OpenBench that differs significantly from the training semantics. It is designed to better assess the model's ability to understand and segment a wide range of real-world concepts. When testing existing methods on OpenBench, we find that their performance diverges from the conclusions drawn on existing test sets. In addition, we propose a method named OVSNet to improve the segmentation performance for diverse and open scenarios. Through elaborate fusion of heterogeneous features and cost-free expansion of the training space, OVSNet achieves state-of-the-art results on both existing datasets and our proposed OpenBench. Corresponding analysis demonstrate the soundness and effectiveness of our proposed benchmark and method.
♻ ☆ Not All Thats Rare Is Lost: Causal Paths to Rare Concept Synthesis
Diffusion models have shown strong capabilities in high-fidelity image generation but often falter when synthesizing rare concepts, i.e., prompts that are infrequently observed in the training distribution. In this paper, we introduce RAP, a principled framework that treats rare concept generation as navigating a latent causal path: a progressive, model-aligned trajectory through the generative space from frequent concepts to rare targets. Rather than relying on heuristic prompt alternation, we theoretically justify that rare prompt guidance can be approximated by semantically related frequent prompts. We then formulate prompt switching as a dynamic process based on score similarity, enabling adaptive stage transitions. Furthermore, we reinterpret prompt alternation as a second-order denoising mechanism, promoting smooth semantic progression and coherent visual synthesis. Through this causal lens, we align input scheduling with the model's internal generative dynamics. Experiments across diverse diffusion backbones demonstrate that RAP consistently enhances rare concept generation, outperforming strong baselines in both automated evaluations and human studies.
♻ ☆ Dataset of soil images with corresponding particle size distributions for photogranulometry
Traditional particle size distribution (PSD) analyses create significant downtime and are expensive in labor and maintenance. These drawbacks could be alleviated using optical grain size analysis integrated into routine geotechnical laboratory workflow. This paper presents a high-resolution dataset of 12,714 images of 321 different soil samples collected in the Montreal, Quebec region, alongside their PSD analysis. It is designed to provide a robust starting point for training convolutional neural networks (CNN) in geotechnical applications. Soil samples were photographed in a standardized top-view position with a resolution of 45 MP and a minimum scale of 39.4 micrometers per pixel, both in their moist and dry states. A custom test bench employing 13x9 inch white aluminum trays, on which the samples are spread in a thin layer, was used. For samples exceeding a size limit, a coning and quartering method was employed for mass reduction.
comment: 8 pages, 10 figures, conference
♻ ☆ Pro-AD: Learning Comprehensive Prototypes with Prototype-based Constraint for Multi-class Unsupervised Anomaly Detection
Prototype-based reconstruction methods for unsupervised anomaly detection utilize a limited set of learnable prototypes which only aggregates insufficient normal information, resulting in undesirable reconstruction. However, increasing the number of prototypes may lead to anomalies being well reconstructed through the attention mechanism, which we refer to as the "Soft Identity Mapping" problem. In this paper, we propose Pro-AD to address these issues and fully utilize the prototypes to boost the performance of anomaly detection. Specifically, we first introduce an expanded set of learnable prototypes to provide sufficient capacity for semantic information. Then we employ a Dynamic Bidirectional Decoder which integrates the process of the normal information aggregation and the target feature reconstruction via prototypes, with the aim of allowing the prototypes to aggregate more comprehensive normal semantic information from different levels of the image features and the target feature reconstruction to not only utilize its contextual information but also dynamically leverage the learned comprehensive prototypes. Additionally, to prevent the anomalies from being well reconstructed using sufficient semantic information through the attention mechanism, Pro-AD introduces a Prototype-based Constraint that applied within the target feature reconstruction process of the decoder, which further improves the performance of our approach. Extensive experiments on multiple challenging benchmarks demonstrate that our Pro-AD achieve state-of-the-art performance, highlighting its superior robustness and practical effectiveness for Multi-class Unsupervised Anomaly Detection task.
♻ ☆ Overlap-Aware Feature Learning for Robust Unsupervised Domain Adaptation for 3D Semantic Segmentation IROS 2025
3D point cloud semantic segmentation (PCSS) is a cornerstone for environmental perception in robotic systems and autonomous driving, enabling precise scene understanding through point-wise classification. While unsupervised domain adaptation (UDA) mitigates label scarcity in PCSS, existing methods critically overlook the inherent vulnerability to real-world perturbations (e.g., snow, fog, rain) and adversarial distortions. This work first identifies two intrinsic limitations that undermine current PCSS-UDA robustness: (a) unsupervised features overlap from unaligned boundaries in shared-class regions and (b) feature structure erosion caused by domain-invariant learning that suppresses target-specific patterns. To address the proposed problems, we propose a tripartite framework consisting of: 1) a robustness evaluation model quantifying resilience against adversarial attack/corruption types through robustness metrics; 2) an invertible attention alignment module (IAAM) enabling bidirectional domain mapping while preserving discriminative structure via attention-guided overlap suppression; and 3) a contrastive memory bank with quality-aware contrastive learning that progressively refines pseudo-labels with feature quality for more discriminative representations. Extensive experiments on SynLiDAR-to-SemanticPOSS adaptation demonstrate a maximum mIoU improvement of 14.3\% under adversarial attack.
comment: This paper has been accepted to the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ MDeRainNet: An Efficient Macro-pixel Image Rain Removal Network
Since rainy weather always degrades image quality and poses significant challenges to most computer vision-based intelligent systems, image de-raining has been a hot research topic. Fortunately, in a rainy light field (LF) image, background obscured by rain streaks in one sub-view may be visible in the other sub-views, and implicit depth information and recorded 4D structural information may benefit rain streak detection and removal. However, existing LF image rain removal methods either do not fully exploit the global correlations of 4D LF data or only utilize partial sub-views, resulting in sub-optimal rain removal performance and no-equally good quality for all de-rained sub-views. In this paper, we propose an efficient network, called MDeRainNet, for rain streak removal from LF images. The proposed network adopts a multi-scale encoder-decoder architecture, which directly works on Macro-pixel images (MPIs) to improve the rain removal performance. To fully model the global correlation between the spatial and the angular information, we propose an Extended Spatial-Angular Interaction (ESAI) module to merge them, in which a simple and effective Transformer-based Spatial-Angular Interaction Attention (SAIA) block is also proposed for modeling long-range geometric correlations and making full use of the angular information. Furthermore, to improve the generalization performance of our network on real-world rainy scenes, we propose a novel semi-supervised learning framework for our MDeRainNet, which utilizes multi-level KL loss to bridge the domain gap between features of synthetic and real-world rain streaks and introduces colored-residue image guided contrastive regularization to reconstruct rain-free images. Extensive experiments conducted on synthetic and real-world LFIs demonstrate that our method outperforms the state-of-the-art methods both quantitatively and qualitatively.
comment: 14 pages, 14 figures, 4 tables
♻ ☆ FusionSAM: Visual Multi-Modal Learning with Segment Anything
Multimodal image fusion and semantic segmentation are critical for autonomous driving. Despite advancements, current models often struggle with segmenting densely packed elements due to a lack of comprehensive fusion features for guidance during training. While the Segment Anything Model (SAM) allows precise control during fine-tuning through its flexible prompting encoder, its potential remains largely unexplored in the context of multimodal segmentation for natural images. In this paper, we introduce SAM into multimodal image segmentation for the first time, proposing a novel framework that combines Latent Space Token Generation (LSTG) and Fusion Mask Prompting (FMP) modules. This approach transforms the training methodology for multimodal segmentation from a traditional black-box approach to a controllable, prompt-based mechanism. Specifically, we obtain latent space features for both modalities through vector quantization and embed them into a cross-attention-based inter-domain fusion module to establish long-range dependencies between modalities. We then use these comprehensive fusion features as prompts to guide precise pixel-level segmentation. Extensive experiments on multiple public datasets demonstrate that our method significantly outperforms SAM and SAM2 in multimodal autonomous driving scenarios, achieving an average improvement of 4.1$\%$ over the state-of-the-art method in segmentation mIoU, and the performance is also optimized in other multi-modal visual scenes.
♻ ☆ MIFNet: Learning Modality-Invariant Features for Generalizable Multimodal Image Matching
Many keypoint detection and description methods have been proposed for image matching or registration. While these methods demonstrate promising performance for single-modality image matching, they often struggle with multimodal data because the descriptors trained on single-modality data tend to lack robustness against the non-linear variations present in multimodal data. Extending such methods to multimodal image matching often requires well-aligned multimodal data to learn modality-invariant descriptors. However, acquiring such data is often costly and impractical in many real-world scenarios. To address this challenge, we propose a modality-invariant feature learning network (MIFNet) to compute modality-invariant features for keypoint descriptions in multimodal image matching using only single-modality training data. Specifically, we propose a novel latent feature aggregation module and a cumulative hybrid aggregation module to enhance the base keypoint descriptors trained on single-modality data by leveraging pre-trained features from Stable Diffusion models. %, our approach generates robust and invariant features across diverse and unknown modalities. We validate our method with recent keypoint detection and description methods in three multimodal retinal image datasets (CF-FA, CF-OCT, EMA-OCTA) and two remote sensing datasets (Optical-SAR and Optical-NIR). Extensive experiments demonstrate that the proposed MIFNet is able to learn modality-invariant feature for multimodal image matching without accessing the targeted modality and has good zero-shot generalization ability. The code will be released at https://github.com/lyp-deeplearning/MIFNet.
comment: Accept by IEEE TIP 2025
♻ ☆ Object-aware Sound Source Localization via Audio-Visual Scene Understanding CVPR 2025
Audio-visual sound source localization task aims to spatially localize sound-making objects within visual scenes by integrating visual and audio cues. However, existing methods struggle with accurately localizing sound-making objects in complex scenes, particularly when visually similar silent objects coexist. This limitation arises primarily from their reliance on simple audio-visual correspondence, which does not capture fine-grained semantic differences between sound-making and silent objects. To address these challenges, we propose a novel sound source localization framework leveraging Multimodal Large Language Models (MLLMs) to generate detailed contextual information that explicitly distinguishes between sound-making foreground objects and silent background objects. To effectively integrate this detailed information, we introduce two novel loss functions: Object-aware Contrastive Alignment (OCA) loss and Object Region Isolation (ORI) loss. Extensive experimental results on MUSIC and VGGSound datasets demonstrate the effectiveness of our approach, significantly outperforming existing methods in both single-source and multi-source localization scenarios. Code and generated detailed contextual information are available at: https://github.com/VisualAIKHU/OA-SSL.
comment: Accepted at CVPR 2025
♻ ☆ A Contrastive Learning Foundation Model Based on Perfectly Aligned Sample Pairs for Remote Sensing Images
Self-Supervised Learning (SSL) enables us to pre-train foundation models without costly labeled data. Among SSL methods, Contrastive Learning (CL) methods are better at obtaining accurate semantic representations in noise interference. However, due to the significant domain gap, while CL methods have achieved great success in many computer vision tasks, they still require specific adaptation for Remote Sensing (RS) images. To this end, we present a novel self-supervised method called PerA, which produces all-purpose RS features through semantically Perfectly Aligned sample pairs. Specifically, PerA obtains features from sampled views by applying spatially disjoint masks to augmented images rather than random cropping. Our framework provides high-quality features by ensuring consistency between teacher and student and predicting learnable mask tokens. Compared to previous contrastive methods, our method demonstrates higher memory efficiency and can be trained with larger batches due to its sparse inputs. Additionally, the proposed method demonstrates remarkable adaptability to uncurated RS data and reduce the impact of the potential semantic inconsistency. We also collect an unlabeled pre-training dataset, which contains about 5 million RS images. We conducted experiments on multiple downstream task datasets and achieved performance comparable to previous state-of-the-art methods with a limited model scale, demonstrating the effectiveness of our approach. We hope this work will contribute to practical remote sensing interpretation works.
♻ ☆ Privacy-Shielded Image Compression: Defending Against Exploitation from Vision-Language Pretrained Models ICML 2025
The improved semantic understanding of vision-language pretrained (VLP) models has made it increasingly difficult to protect publicly posted images from being exploited by search engines and other similar tools. In this context, this paper seeks to protect users' privacy by implementing defenses at the image compression stage to prevent exploitation. Specifically, we propose a flexible coding method, termed Privacy-Shielded Image Compression (PSIC), that can produce bitstreams with multiple decoding options. By default, the bitstream is decoded to preserve satisfactory perceptual quality while preventing interpretation by VLP models. Our method also retains the original image compression functionality. With a customizable input condition, the proposed scheme can reconstruct the image that preserves its full semantic information. A Conditional Latent Trigger Generation (CLTG) module is proposed to produce bias information based on customizable conditions to guide the decoding process into different reconstructed versions, and an Uncertainty-Aware Encryption-Oriented (UAEO) optimization function is designed to leverage the soft labels inferred from the target VLP model's uncertainty on the training data. This paper further incorporates an adaptive multi-objective optimization strategy to obtain improved encrypting performance and perceptual quality simultaneously within a unified training process. The proposed scheme is plug-and-play and can be seamlessly integrated into most existing Learned Image Compression (LIC) models. Extensive experiments across multiple downstream tasks have demonstrated the effectiveness of our design.
comment: 11 pages, 6 figures, publised to ICML 2025
♻ ☆ DDS-NAS: Dynamic Data Selection within Neural Architecture Search via On-line Hard Example Mining applied to Image Classification
In order to address the scalability challenge within Neural Architecture Search (NAS), we speed up NAS training via dynamic hard example mining within a curriculum learning framework. By utilizing an autoencoder that enforces an image similarity embedding in latent space, we construct an efficient kd-tree structure to order images by furthest neighbour dissimilarity in a low-dimensional embedding. From a given query image from our subsample dataset, we can identify the most dissimilar image within the global dataset in logarithmic time. Via curriculum learning, we then dynamically re-formulate an unbiased subsample dataset for NAS optimisation, upon which the current NAS solution architecture performs poorly. We show that our DDS-NAS framework speeds up gradient-based NAS strategies by up to 27x without loss in performance. By maximising the contribution of each image sample during training, we reduce the duration of a NAS training cycle and the number of iterations required for convergence.
comment: 27 single-column pages, 8 figures, to be published in Pattern Recognition
♻ ☆ Screen Them All: High-Throughput Pan-Cancer Genetic and Phenotypic Biomarker Screening from H&E Whole Slide Images
Molecular assays are standard of care for detecting genomic alterations in cancer prognosis and therapy selection but are costly, tissue-destructive and time-consuming. Artificial intelligence (AI) applied to routine hematoxylin and eosin (H&E)-stained whole slide images (WSIs) offers a fast and economical alternative for screening molecular biomarkers. We introduce OmniScreen, a high-throughput AI-based system leveraging Virchow2 embeddings extracted from 60,529 cancer patients with paired 489-gene MSK-IMPACT targeted biomarker panel and WSIs. Unlike conventional approaches that train separate models for each biomarker, OmniScreen employs a unified model to predict a broad range of clinically relevant biomarkers across cancers, including low-prevalence targets impractical to model individually. OmniScreen reliably identifies therapeutic targets and shared phenotypic features across common and rare tumors. We investigate the biomarker prediction probabilities and accuracies of OmniScreen in relation to tumor area, cohort size, histologic subtype alignment, and pathway-level morphological patterns. These findings underscore the potential of OmniScreen for routine clinical screening.
♻ ☆ DRO-Augment Framework: Robustness by Synergizing Wasserstein Distributionally Robust Optimization and Data Augmentation
In many real-world applications, ensuring the robustness and stability of deep neural networks (DNNs) is crucial, particularly for image classification tasks that encounter various input perturbations. While data augmentation techniques have been widely adopted to enhance the resilience of a trained model against such perturbations, there remains significant room for improvement in robustness against corrupted data and adversarial attacks simultaneously. To address this challenge, we introduce DRO-Augment, a novel framework that integrates Wasserstein Distributionally Robust Optimization (W-DRO) with various data augmentation strategies to improve the robustness of the models significantly across a broad spectrum of corruptions. Our method outperforms existing augmentation methods under severe data perturbations and adversarial attack scenarios while maintaining the accuracy on the clean datasets on a range of benchmark datasets, including but not limited to CIFAR-10-C, CIFAR-100-C, MNIST, and Fashion-MNIST. On the theoretical side, we establish novel generalization error bounds for neural networks trained using a computationally efficient, variation-regularized loss function closely related to the W-DRO problem.
comment: 26 pages,3 figures
♻ ☆ From Coarse to Continuous: Progressive Refinement Implicit Neural Representation for Motion-Robust Anisotropic MRI Reconstruction
In motion-robust magnetic resonance imaging (MRI), slice-to-volume reconstruction is critical for recovering anatomically consistent 3D brain volumes from 2D slices, especially under accelerated acquisitions or patient motion. However, this task remains challenging due to hierarchical structural disruptions. It includes local detail loss from k-space undersampling, global structural aliasing caused by motion, and volumetric anisotropy. Therefore, we propose a progressive refinement implicit neural representation (PR-INR) framework. Our PR-INR unifies motion correction, structural refinement, and volumetric synthesis within a geometry-aware coordinate space. Specifically, a motion-aware diffusion module is first employed to generate coarse volumetric reconstructions that suppress motion artifacts and preserve global anatomical structures. Then, we introduce an implicit detail restoration module that performs residual refinement by aligning spatial coordinates with visual features. It corrects local structures and enhances boundary precision. Further, a voxel continuous-aware representation module represents the image as a continuous function over 3D coordinates. It enables accurate inter-slice completion and high-frequency detail recovery. We evaluate PR-INR on five public MRI datasets under various motion conditions (3% and 5% displacement), undersampling rates (4x and 8x) and slice resolutions (scale = 5). Experimental results demonstrate that PR-INR outperforms state-of-the-art methods in both quantitative reconstruction metrics and visual quality. It further shows generalization and robustness across diverse unseen domains.
♻ ☆ WAFFLE: Finetuning Multi-Modal Model for Automated Front-End Development
Web development involves turning UI designs into functional webpages, which can be difficult for both beginners and experienced developers due to the complexity of HTML's hierarchical structures and styles. While Large Language Models (LLMs) have shown promise in generating source code, two major challenges persist in UI-to-HTML code generation: (1) effectively representing HTML's hierarchical structure for LLMs, and (2) bridging the gap between the visual nature of UI designs and the text-based format of HTML code. To tackle these challenges, we introduce Waffle, a new fine-tuning strategy that uses a structure-aware attention mechanism to improve LLMs' understanding of HTML's structure and a contrastive fine-tuning approach to align LLMs' understanding of UI images and HTML code. Models fine-tuned with Waffle show up to 9.00 pp (percentage point) higher HTML match, 0.0982 higher CW-SSIM, 32.99 higher CLIP, and 27.12 pp higher LLEM on our new benchmark WebSight-Test and an existing benchmark Design2Code, outperforming current fine-tuning methods.
♻ ☆ MaizeField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The development of artificial intelligence (AI) and machine learning (ML) based tools for 3D phenotyping, especially for maize, has been limited due to the lack of large and diverse 3D datasets. 2D image datasets fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present MaizeField3D (https://baskargroup.github.io/MaizeField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset includes 1,045 high-quality point clouds of field-grown maize collected using a terrestrial laser scanner (TLS). Point clouds of 520 plants from this dataset were segmented and annotated using a graph-based segmentation method to isolate individual leaves and stalks, ensuring consistent labeling across all samples. This labeled data was then used for fitting procedural models that provide a structured parametric representation of the maize plants. The leaves of the maize plants in the procedural models are represented using Non-Uniform Rational B-Spline (NURBS) surfaces that were generated using a two-step optimization process combining gradient-free and gradient-based methods. We conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset also includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled point cloud data (100k, 50k, 10k points), which can be readily used for different downstream computational tasks. MaizeField3D will serve as a comprehensive foundational dataset for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
comment: Elvis Kimara and Mozhgan Hadadi contributed equally to this work
♻ ☆ Temporal Differential Fields for 4D Motion Modeling via Image-to-Video Synthesis MICCAI
Temporal modeling on regular respiration-induced motions is crucial to image-guided clinical applications. Existing methods cannot simulate temporal motions unless high-dose imaging scans including starting and ending frames exist simultaneously. However, in the preoperative data acquisition stage, the slight movement of patients may result in dynamic backgrounds between the first and last frames in a respiratory period. This additional deviation can hardly be removed by image registration, thus affecting the temporal modeling. To address that limitation, we pioneeringly simulate the regular motion process via the image-to-video (I2V) synthesis framework, which animates with the first frame to forecast future frames of a given length. Besides, to promote the temporal consistency of animated videos, we devise the Temporal Differential Diffusion Model to generate temporal differential fields, which measure the relative differential representations between adjacent frames. The prompt attention layer is devised for fine-grained differential fields, and the field augmented layer is adopted to better interact these fields with the I2V framework, promoting more accurate temporal variation of synthesized videos. Extensive results on ACDC cardiac and 4D Lung datasets reveal that our approach simulates 4D videos along the intrinsic motion trajectory, rivaling other competitive methods on perceptual similarity and temporal consistency. Codes will be available soon.
comment: early accepted by MICCAI
♻ ☆ Exploring AI-based System Design for Pixel-level Protected Health Information Detection in Medical Images
De-identification of medical images is a critical step to ensure privacy during data sharing in research and clinical settings. The initial step in this process involves detecting Protected Health Information (PHI), which can be found in image metadata or imprinted within image pixels. Despite the importance of such systems, there has been limited evaluation of existing AI-based solutions, creating barriers to the development of reliable and robust tools. In this study, we present an AI-based pipeline for PHI detection, comprising three key modules: text detection, text extraction, and text analysis. We benchmark three models - YOLOv11, EasyOCR, and GPT-4o - across different setups corresponding to these modules, evaluating their performance on two different datasets encompassing multiple imaging modalities and PHI categories. Our findings indicate that the optimal setup involves utilizing dedicated vision and language models for each module, which achieves a commendable balance in performance, latency, and cost associated with the usage of Large Language Models (LLMs). Additionally, we show that the application of LLMs not only involves identifying PHI content but also enhances OCR tasks and facilitates an end-to-end PHI detection pipeline, showcasing promising outcomes through our analysis.
comment: In progress
♻ ☆ Shape and Texture Recognition in Large Vision-Language Models
Shapes and textures are the basic building blocks of visual perception. The ability to identify shapes regardless of orientation, texture, or context, and to recognize textures and materials independently of their associated objects, is essential for a general visual understanding of the world. This work introduces the Large Shape and Textures dataset (LAS&T), a giant collection of highly diverse shapes and textures, created by unsupervised extraction of patterns from natural images. This dataset is used to benchmark how effectively leading Large Vision-Language Models (LVLMs) understand shapes, textures, and materials in 2D and 3D scenes. For shape recognition, we test the models' ability to match images of identical shapes that differ in orientation, texture, color, or environment. Our results show that the shape recognition capabilities of the LVLMs remain significantly below human performance. LVLMs rely predominantly on high-level and semantic features and struggle with abstract shapes lacking clear class associations. For texture and material recognition, we evaluated the models' ability to identify images with identical textures and materials across different objects and environments. Interestingly, leading LVLMs approach human-level performance in recognizing materials in 3D scenes, yet substantially underperform humans when identifying simpler more abstract 2D textures. These results are consistent across a wide range of leading VLMs (GPT/Gemini/LLama/Qwen) and foundation vision models (DINO/CLIP), exposing major deficiencies in the ability of leading models to understand fundamental visual concepts. In contrast, simple nets trained directly for these tasks achieve high accuracy. The LAS&T dataset, featuring over 600,000 images for 2D/3D shape, texture, and material recognition and retrieval, is publicly available.
♻ ☆ GlyphPattern: An Abstract Pattern Recognition Benchmark for Vision-Language Models
Vision-Language Models (VLMs) building upon the foundation of powerful large language models have made rapid progress in reasoning across visual and textual data. While VLMs perform well on vision tasks that they are trained on, our results highlight key challenges in abstract pattern recognition. We present GlyphPattern, a 954 item dataset that pairs 318 human-written descriptions of visual patterns from 40 writing systems with three visual presentation styles. GlyphPattern evaluates abstract pattern recognition in VLMs, requiring models to understand and judge natural language descriptions of visual patterns. GlyphPattern patterns are drawn from a large-scale cognitive science investigation of human writing systems; as a result, they are rich in spatial reference and compositionality. Our experiments show that GlyphPattern is challenging for state-of-the-art VLMs (GPT-4o achieves only 55% accuracy), with marginal gains from few-shot prompting. Our detailed error analysis reveals challenges at multiple levels, including visual processing, natural language understanding, and pattern generalization.
Robotics 56
MinD: Unified Visual Imagination and Control via Hierarchical World Models
Video generation models (VGMs) offer a promising pathway for unified world modeling in robotics by integrating simulation, prediction, and manipulation. However, their practical application remains limited due to (1) slowgeneration speed, which limits real-time interaction, and (2) poor consistency between imagined videos and executable actions. To address these challenges, we propose Manipulate in Dream (MinD), a hierarchical diffusion-based world model framework that employs a dual-system design for vision-language manipulation. MinD executes VGM at low frequencies to extract video prediction features, while leveraging a high-frequency diffusion policy for real-time interaction. This architecture enables low-latency, closed-loop control in manipulation with coherent visual guidance. To better coordinate the two systems, we introduce a video-action diffusion matching module (DiffMatcher), with a novel co-training strategy that uses separate schedulers for each diffusion model. Specifically, we introduce a diffusion-forcing mechanism to DiffMatcher that aligns their intermediate representations during training, helping the fast action model better understand video-based predictions. Beyond manipulation, MinD also functions as a world simulator, reliably predicting task success or failure in latent space before execution. Trustworthy analysis further shows that VGMs can preemptively evaluate task feasibility and mitigate risks. Extensive experiments across multiple benchmarks demonstrate that MinD achieves state-of-the-art manipulation (63%+) in RL-Bench, advancing the frontier of unified world modeling in robotics.
☆ GRAND-SLAM: Local Optimization for Globally Consistent Large-Scale Multi-Agent Gaussian SLAM
3D Gaussian splatting has emerged as an expressive scene representation for RGB-D visual SLAM, but its application to large-scale, multi-agent outdoor environments remains unexplored. Multi-agent Gaussian SLAM is a promising approach to rapid exploration and reconstruction of environments, offering scalable environment representations, but existing approaches are limited to small-scale, indoor environments. To that end, we propose Gaussian Reconstruction via Multi-Agent Dense SLAM, or GRAND-SLAM, a collaborative Gaussian splatting SLAM method that integrates i) an implicit tracking module based on local optimization over submaps and ii) an approach to inter- and intra-robot loop closure integrated into a pose-graph optimization framework. Experiments show that GRAND-SLAM provides state-of-the-art tracking performance and 28% higher PSNR than existing methods on the Replica indoor dataset, as well as 91% lower multi-agent tracking error and improved rendering over existing multi-agent methods on the large-scale, outdoor Kimera-Multi dataset.
☆ SViP: Sequencing Bimanual Visuomotor Policies with Object-Centric Motion Primitives
Imitation learning (IL), particularly when leveraging high-dimensional visual inputs for policy training, has proven intuitive and effective in complex bimanual manipulation tasks. Nonetheless, the generalization capability of visuomotor policies remains limited, especially when small demonstration datasets are available. Accumulated errors in visuomotor policies significantly hinder their ability to complete long-horizon tasks. To address these limitations, we propose SViP, a framework that seamlessly integrates visuomotor policies into task and motion planning (TAMP). SViP partitions human demonstrations into bimanual and unimanual operations using a semantic scene graph monitor. Continuous decision variables from the key scene graph are employed to train a switching condition generator. This generator produces parameterized scripted primitives that ensure reliable performance even when encountering out-of-the-distribution observations. Using only 20 real-world demonstrations, we show that SViP enables visuomotor policies to generalize across out-of-distribution initial conditions without requiring object pose estimators. For previously unseen tasks, SViP automatically discovers effective solutions to achieve the goal, leveraging constraint modeling in TAMP formulism. In real-world experiments, SViP outperforms state-of-the-art generative IL methods, indicating wider applicability for more complex tasks. Project website: https://sites.google.com/view/svip-bimanual
comment: Project website: https://sites.google.com/view/svip-bimanual
☆ Learning Physical Systems: Symplectification via Gauge Fixing in Dirac Structures RSS
Physics-informed deep learning has achieved remarkable progress by embedding geometric priors, such as Hamiltonian symmetries and variational principles, into neural networks, enabling structure-preserving models that extrapolate with high accuracy. However, in systems with dissipation and holonomic constraints, ubiquitous in legged locomotion and multibody robotics, the canonical symplectic form becomes degenerate, undermining the very invariants that guarantee stability and long-term prediction. In this work, we tackle this foundational limitation by introducing Presymplectification Networks (PSNs), the first framework to learn the symplectification lift via Dirac structures, restoring a non-degenerate symplectic geometry by embedding constrained systems into a higher-dimensional manifold. Our architecture combines a recurrent encoder with a flow-matching objective to learn the augmented phase-space dynamics end-to-end. We then attach a lightweight Symplectic Network (SympNet) to forecast constrained trajectories while preserving energy, momentum, and constraint satisfaction. We demonstrate our method on the dynamics of the ANYmal quadruped robot, a challenging contact-rich, multibody system. To the best of our knowledge, this is the first framework that effectively bridges the gap between constrained, dissipative mechanical systems and symplectic learning, unlocking a whole new class of geometric machine learning models, grounded in first principles yet adaptable from data.
comment: Presented at Equivariant Systems: Theory and Applications in State Estimation, Artificial Intelligence and Control, Robotics: Science and Systems (RSS) 2025 Workshop, 6 Pages, 3 Figures
☆ OC-SOP: Enhancing Vision-Based 3D Semantic Occupancy Prediction by Object-Centric Awareness
Autonomous driving perception faces significant challenges due to occlusions and incomplete scene data in the environment. To overcome these issues, the task of semantic occupancy prediction (SOP) is proposed, which aims to jointly infer both the geometry and semantic labels of a scene from images. However, conventional camera-based methods typically treat all categories equally and primarily rely on local features, leading to suboptimal predictions, especially for dynamic foreground objects. To address this, we propose Object-Centric SOP (OC-SOP), a framework that integrates high-level object-centric cues extracted via a detection branch into the semantic occupancy prediction pipeline. This object-centric integration significantly enhances the prediction accuracy for foreground objects and achieves state-of-the-art performance among all categories on SemanticKITTI.
comment: under review
☆ SWA-SOP: Spatially-aware Window Attention for Semantic Occupancy Prediction in Autonomous Driving
Perception systems in autonomous driving rely on sensors such as LiDAR and cameras to perceive the 3D environment. However, due to occlusions and data sparsity, these sensors often fail to capture complete information. Semantic Occupancy Prediction (SOP) addresses this challenge by inferring both occupancy and semantics of unobserved regions. Existing transformer-based SOP methods lack explicit modeling of spatial structure in attention computation, resulting in limited geometric awareness and poor performance in sparse or occluded areas. To this end, we propose Spatially-aware Window Attention (SWA), a novel mechanism that incorporates local spatial context into attention. SWA significantly improves scene completion and achieves state-of-the-art results on LiDAR-based SOP benchmarks. We further validate its generality by integrating SWA into a camera-based SOP pipeline, where it also yields consistent gains across modalities.
comment: under reviewed
☆ DefFusionNet: Learning Multimodal Goal Shapes for Deformable Object Manipulation via a Diffusion-based Probabilistic Model
Deformable object manipulation is critical to many real-world robotic applications, ranging from surgical robotics and soft material handling in manufacturing to household tasks like laundry folding. At the core of this important robotic field is shape servoing, a task focused on controlling deformable objects into desired shapes. The shape servoing formulation requires the specification of a goal shape. However, most prior works in shape servoing rely on impractical goal shape acquisition methods, such as laborious domain-knowledge engineering or manual manipulation. DefGoalNet previously posed the current state-of-the-art solution to this problem, which learns deformable object goal shapes directly from a small number of human demonstrations. However, it significantly struggles in multi-modal settings, where multiple distinct goal shapes can all lead to successful task completion. As a deterministic model, DefGoalNet collapses these possibilities into a single averaged solution, often resulting in an unusable goal. In this paper, we address this problem by developing DefFusionNet, a novel neural network that leverages the diffusion probabilistic model to learn a distribution over all valid goal shapes rather than predicting a single deterministic outcome. This enables the generation of diverse goal shapes and avoids the averaging artifacts. We demonstrate our method's effectiveness on robotic tasks inspired by both manufacturing and surgical applications, both in simulation and on a physical robot. Our work is the first generative model capable of producing a diverse, multi-modal set of deformable object goals for real-world robotic applications.
☆ USVTrack: USV-Based 4D Radar-Camera Tracking Dataset for Autonomous Driving in Inland Waterways IROS
Object tracking in inland waterways plays a crucial role in safe and cost-effective applications, including waterborne transportation, sightseeing tours, environmental monitoring and surface rescue. Our Unmanned Surface Vehicle (USV), equipped with a 4D radar, a monocular camera, a GPS, and an IMU, delivers robust tracking capabilities in complex waterborne environments. By leveraging these sensors, our USV collected comprehensive object tracking data, which we present as USVTrack, the first 4D radar-camera tracking dataset tailored for autonomous driving in new generation waterborne transportation systems. Our USVTrack dataset presents rich scenarios, featuring diverse various waterways, varying times of day, and multiple weather and lighting conditions. Moreover, we present a simple but effective radar-camera matching method, termed RCM, which can be plugged into popular two-stage association trackers. Experimental results utilizing RCM demonstrate the effectiveness of the radar-camera matching in improving object tracking accuracy and reliability for autonomous driving in waterborne environments. The USVTrack dataset is public on https://usvtrack.github.io.
comment: Accepted by IROS
☆ TDACloud: Point Cloud Recognition Using Topological Data Analysis
Point cloud-based object/place recognition remains a problem of interest in applications such as autonomous driving, scene reconstruction, and localization. Extracting meaningful local descriptors from a query point cloud that can be matched with the descriptors of the collected point clouds is a challenging problem. Furthermore, when the query point cloud is noisy or has been transformed (e.g., rotated), it adds to the complexity. To this end, we propose a novel methodology, named TDACloud, using Topological Data Analysis (TDA) for local descriptor extraction from a point cloud, which does not need resource-intensive GPU-based machine learning training. More specifically, we used the ATOL vectorization method to generate vectors for point clouds. Unlike voxelization, our proposed technique can take raw point clouds as inputs and outputs a fixed-size TDA-descriptor vector. To test the quality of the proposed TDACloud technique, we have implemented it on multiple real-world (e.g., Oxford RobotCar, KITTI-360) and realistic (e.g., ShapeNet) point cloud datasets for object and place recognition. We have also tested TDACloud on noisy and transformed test cases where the query point cloud has been scaled, translated, or rotated. Our results demonstrate high recognition accuracies in noisy conditions and large-scale real-world place recognition while outperforming the baselines by up to approximately 14%.
☆ Including Semantic Information via Word Embeddings for Skeleton-based Action Recognition IJCNN
Effective human action recognition is widely used for cobots in Industry 4.0 to assist in assembly tasks. However, conventional skeleton-based methods often lose keypoint semantics, limiting their effectiveness in complex interactions. In this work, we introduce a novel approach to skeleton-based action recognition that enriches input representations by leveraging word embeddings to encode semantic information. Our method replaces one-hot encodings with semantic volumes, enabling the model to capture meaningful relationships between joints and objects. Through extensive experiments on multiple assembly datasets, we demonstrate that our approach significantly improves classification performance, and enhances generalization capabilities by simultaneously supporting different skeleton types and object classes. Our findings highlight the potential of incorporating semantic information to enhance skeleton-based action recognition in dynamic and diverse environments.
comment: IEEE International Joint Conference on Neural Networks (IJCNN) 2025
☆ Safety-Aware Optimal Scheduling for Autonomous Masonry Construction using Collaborative Heterogeneous Aerial Robots IROS 2025
This paper presents a novel high-level task planning and optimal coordination framework for autonomous masonry construction, using a team of heterogeneous aerial robotic workers, consisting of agents with separate skills for brick placement and mortar application. This introduces new challenges in scheduling and coordination, particularly due to the mortar curing deadline required for structural bonding and ensuring the safety constraints among UAVs operating in parallel. To address this, an automated pipeline generates the wall construction plan based on the available bricks while identifying static structural dependencies and potential conflicts for safe operation. The proposed framework optimizes UAV task allocation and execution timing by incorporating dynamically coupled precedence deadline constraints that account for the curing process and static structural dependency constraints, while enforcing spatio-temporal constraints to prevent collisions and ensure safety. The primary objective of the scheduler is to minimize the overall construction makespan while minimizing logistics, traveling time between tasks, and the curing time to maintain both adhesion quality and safe workspace separation. The effectiveness of the proposed method in achieving coordinated and time-efficient aerial masonry construction is extensively validated through Gazebo simulated missions. The results demonstrate the framework's capability to streamline UAV operations, ensuring both structural integrity and safety during the construction process.
comment: This paper has been accepted for publication at the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ NOVA: Navigation via Object-Centric Visual Autonomy for High-Speed Target Tracking in Unstructured GPS-Denied Environments
Autonomous aerial target tracking in unstructured and GPS-denied environments remains a fundamental challenge in robotics. Many existing methods rely on motion capture systems, pre-mapped scenes, or feature-based localization to ensure safety and control, limiting their deployment in real-world conditions. We introduce NOVA, a fully onboard, object-centric framework that enables robust target tracking and collision-aware navigation using only a stereo camera and an IMU. Rather than constructing a global map or relying on absolute localization, NOVA formulates perception, estimation, and control entirely in the target's reference frame. A tightly integrated stack combines a lightweight object detector with stereo depth completion, followed by histogram-based filtering to infer robust target distances under occlusion and noise. These measurements feed a visual-inertial state estimator that recovers the full 6-DoF pose of the robot relative to the target. A nonlinear model predictive controller (NMPC) plans dynamically feasible trajectories in the target frame. To ensure safety, high-order control barrier functions are constructed online from a compact set of high-risk collision points extracted from depth, enabling real-time obstacle avoidance without maps or dense representations. We validate NOVA across challenging real-world scenarios, including urban mazes, forest trails, and repeated transitions through buildings with intermittent GPS loss and severe lighting changes that disrupt feature-based localization. Each experiment is repeated multiple times under similar conditions to assess resilience, showing consistent and reliable performance. NOVA achieves agile target following at speeds exceeding 50 km/h. These results show that high-speed vision-based tracking is possible in the wild using only onboard sensing, with no reliance on external localization or environment assumptions.
MCN-SLAM: Multi-Agent Collaborative Neural SLAM with Hybrid Implicit Neural Scene Representation
Neural implicit scene representations have recently shown promising results in dense visual SLAM. However, existing implicit SLAM algorithms are constrained to single-agent scenarios, and fall difficulties in large-scale scenes and long sequences. Existing NeRF-based multi-agent SLAM frameworks cannot meet the constraints of communication bandwidth. To this end, we propose the first distributed multi-agent collaborative neural SLAM framework with hybrid scene representation, distributed camera tracking, intra-to-inter loop closure, and online distillation for multiple submap fusion. A novel triplane-grid joint scene representation method is proposed to improve scene reconstruction. A novel intra-to-inter loop closure method is designed to achieve local (single-agent) and global (multi-agent) consistency. We also design a novel online distillation method to fuse the information of different submaps to achieve global consistency. Furthermore, to the best of our knowledge, there is no real-world dataset for NeRF-based/GS-based SLAM that provides both continuous-time trajectories groundtruth and high-accuracy 3D meshes groundtruth. To this end, we propose the first real-world Dense slam (DES) dataset covering both single-agent and multi-agent scenarios, ranging from small rooms to large-scale outdoor scenes, with high-accuracy ground truth for both 3D mesh and continuous-time camera trajectory. This dataset can advance the development of the research in both SLAM, 3D reconstruction, and visual foundation model. Experiments on various datasets demonstrate the superiority of the proposed method in both mapping, tracking, and communication. The dataset and code will open-source on https://github.com/dtc111111/mcnslam.
PG-LIO: Photometric-Geometric fusion for Robust LiDAR-Inertial Odometry
LiDAR-Inertial Odometry (LIO) is widely used for accurate state estimation and mapping which is an essential requirement for autonomous robots. Conventional LIO methods typically rely on formulating constraints from the geometric structure sampled by the LiDAR. Hence, in the lack of geometric structure, these tend to become ill-conditioned (degenerate) and fail. Robustness of LIO to such conditions is a necessity for its broader deployment. To address this, we propose PG-LIO, a real-time LIO method that fuses photometric and geometric information sampled by the LiDAR along with inertial constraints from an Inertial Measurement Unit (IMU). This multi-modal information is integrated into a factor graph optimized over a sliding window for real-time operation. We evaluate PG-LIO on multiple datasets that include both geometrically well-conditioned as well as self-similar scenarios. Our method achieves accuracy on par with state-of-the-art LIO in geometrically well-structured settings while significantly improving accuracy in degenerate cases including against methods that also fuse intensity. Notably, we demonstrate only 1 m drift over a 1 km manually piloted aerial trajectory through a geometrically self-similar tunnel at an average speed of 7.5m/s (max speed 10.8 m/s). For the benefit of the community, we shall also release our source code https://github.com/ntnu-arl/mimosa
comment: 8 pages, 6 figures
☆ Learning Point Correspondences In Radar 3D Point Clouds For Radar-Inertial Odometry
Using 3D point clouds in odometry estimation in robotics often requires finding a set of correspondences between points in subsequent scans. While there are established methods for point clouds of sufficient quality, state-of-the-art still struggles when this quality drops. Thus, this paper presents a novel learning-based framework for predicting robust point correspondences between pairs of noisy, sparse and unstructured 3D point clouds from a light-weight, low-power, inexpensive, consumer-grade System-on-Chip (SoC) Frequency Modulated Continuous Wave (FMCW) radar sensor. Our network is based on the transformer architecture which allows leveraging the attention mechanism to discover pairs of points in consecutive scans with the greatest mutual affinity. The proposed network is trained in a self-supervised way using set-based multi-label classification cross-entropy loss, where the ground-truth set of matches is found by solving the Linear Sum Assignment (LSA) optimization problem, which avoids tedious hand annotation of the training data. Additionally, posing the loss calculation as multi-label classification permits supervising on point correspondences directly instead of on odometry error, which is not feasible for sparse and noisy data from the SoC radar we use. We evaluate our method with an open-source state-of-the-art Radar-Inertial Odometry (RIO) framework in real-world Unmanned Aerial Vehicle (UAV) flights and with the widely used public Coloradar dataset. Evaluation shows that the proposed method improves the position estimation accuracy by over 14 % and 19 % on average, respectively. The open source code and datasets can be found here: https://github.com/aau-cns/radar_transformer.
☆ Design, fabrication and control of a cable-driven parallel robot
In cable driven parallel robots (CDPRs), the payload is suspended using a network of cables whose length can be controlled to maneuver the payload within the workspace. Compared to rigid link robots, CDPRs provide better maneuverability due to the flexibility of the cables and consume lesser power due to the high strength-to-weight ratio of the cables. However, amongst other things, the flexibility of the cables and the fact that they can only pull (and not push) render the dynamics of CDPRs complex. Hence advanced modelling paradigms and control algorithms must be developed to fully utilize the potential of CDPRs. Furthermore, given the complex dynamics of CDPRs, the models and control algorithms proposed for them must be validated on experimental setups to ascertain their efficacy in practice. We have recently developed an elaborate experimental setup for a CDPR with three cables and validated elementary open-loop motion planning algorithms on it. In this paper, we describe several aspects of the design and fabrication of our setup, including component selection and assembly, and present our experimental results. Our setup can reproduce complex phenomenon such as the transverse vibration of the cables seen in large CDPRs and will in the future be used to model and control such phenomenon and also to validate more sophisticated motion planning algorithms.
comment: 4 pages, 8 fugures
☆ Mirror Eyes: Explainable Human-Robot Interaction at a Glance
The gaze of a person tends to reflect their interest. This work explores what happens when this statement is taken literally and applied to robots. Here we present a robot system that employs a moving robot head with a screen-based eye model that can direct the robot's gaze to points in physical space and present a reflection-like mirror image of the attended region on top of each eye. We conducted a user study with 33 participants, who were asked to instruct the robot to perform pick-and-place tasks, monitor the robot's task execution, and interrupt it in case of erroneous actions. Despite a deliberate lack of instructions about the role of the eyes and a very brief system exposure, participants felt more aware about the robot's information processing, detected erroneous actions earlier, and rated the user experience higher when eye-based mirroring was enabled compared to non-reflective eyes. These results suggest a beneficial and intuitive utilization of the introduced method in cooperative human-robot interaction.
comment: Accepted to the 34th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
☆ A Motivational Architecture for Open-Ended Learning Challenges in Robots
Developing agents capable of autonomously interacting with complex and dynamic environments, where task structures may change over time and prior knowledge cannot be relied upon, is a key prerequisite for deploying artificial systems in real-world settings. The open-ended learning framework identifies the core challenges for creating such agents, including the ability to autonomously generate new goals, acquire the necessary skills (or curricula of skills) to achieve them, and adapt to non-stationary environments. While many existing works tackles various aspects of these challenges in isolation, few propose integrated solutions that address them simultaneously. In this paper, we introduce H-GRAIL, a hierarchical architecture that, through the use of different typologies of intrinsic motivations and interconnected learning mechanisms, autonomously discovers new goals, learns the required skills for their achievement, generates skill sequences for tackling interdependent tasks, and adapts to non-stationary environments. We tested H-GRAIL in a real robotic scenario, demonstrating how the proposed solutions effectively address the various challenges of open-ended learning.
comment: Accepted to RLDM 2025
☆ GraspMAS: Zero-Shot Language-driven Grasp Detection with Multi-Agent System IROS 2025
Language-driven grasp detection has the potential to revolutionize human-robot interaction by allowing robots to understand and execute grasping tasks based on natural language commands. However, existing approaches face two key challenges. First, they often struggle to interpret complex text instructions or operate ineffectively in densely cluttered environments. Second, most methods require a training or finetuning step to adapt to new domains, limiting their generation in real-world applications. In this paper, we introduce GraspMAS, a new multi-agent system framework for language-driven grasp detection. GraspMAS is designed to reason through ambiguities and improve decision-making in real-world scenarios. Our framework consists of three specialized agents: Planner, responsible for strategizing complex queries; Coder, which generates and executes source code; and Observer, which evaluates the outcomes and provides feedback. Intensive experiments on two large-scale datasets demonstrate that our GraspMAS significantly outperforms existing baselines. Additionally, robot experiments conducted in both simulation and real-world settings further validate the effectiveness of our approach.
comment: 8 pages, accepted to IROS 2025
☆ Radar and Event Camera Fusion for Agile Robot Ego-Motion Estimation
Achieving reliable ego motion estimation for agile robots, e.g., aerobatic aircraft, remains challenging because most robot sensors fail to respond timely and clearly to highly dynamic robot motions, often resulting in measurement blurring, distortion, and delays. In this paper, we propose an IMU-free and feature-association-free framework to achieve aggressive ego-motion velocity estimation of a robot platform in highly dynamic scenarios by combining two types of exteroceptive sensors, an event camera and a millimeter wave radar, First, we used instantaneous raw events and Doppler measurements to derive rotational and translational velocities directly. Without a sophisticated association process between measurement frames, the proposed method is more robust in texture-less and structureless environments and is more computationally efficient for edge computing devices. Then, in the back-end, we propose a continuous-time state-space model to fuse the hybrid time-based and event-based measurements to estimate the ego-motion velocity in a fixed-lagged smoother fashion. In the end, we validate our velometer framework extensively in self-collected experiment datasets. The results indicate that our IMU-free and association-free ego motion estimation framework can achieve reliable and efficient velocity output in challenging environments. The source code, illustrative video and dataset are available at https://github.com/ZzhYgwh/TwistEstimator.
☆ Integrating Maneuverable Planning and Adaptive Control for Robot Cart-Pushing under Disturbances
Precise and flexible cart-pushing is a challenging task for mobile robots. The motion constraints during cart-pushing and the robot's redundancy lead to complex motion planning problems, while variable payloads and disturbances present complicated dynamics. In this work, we propose a novel planning and control framework for flexible whole-body coordination and robust adaptive control. Our motion planning method employs a local coordinate representation and a novel kinematic model to solve a nonlinear optimization problem, thereby enhancing motion maneuverability by generating feasible and flexible push poses. Furthermore, we present a disturbance rejection control method to resist disturbances and reduce control errors for the complex control problem without requiring an accurate dynamic model. We validate our method through extensive experiments in simulation and real-world settings, demonstrating its superiority over existing approaches. To the best of our knowledge, this is the first work to systematically evaluate the flexibility and robustness of cart-pushing methods in experiments. The video supplement is available at https://sites.google.com/view/mpac-pushing/.
comment: 11 pages, 11 figures
☆ Robots and Children that Learn Together : Improving Knowledge Retention by Teaching Peer-Like Interactive Robots
Despite growing interest in Learning-by-Teaching (LbT), few studies have explored how this paradigm can be implemented with autonomous, peer-like social robots in real classrooms. Most prior work has relied on scripted or Wizard-of-Oz behaviors, limiting our understanding of how real-time, interactive learning can be supported by artificial agents. This study addresses this gap by introducing Interactive Reinforcement Learning (RL) as a cognitive model for teachable social robots. We conducted two between-subject experiments with 58 primary school children, who either taught a robot or practiced independently on a tablet while learning French vocabulary (memorization) and grammatical rules (inference). The robot, powered by Interactive RL, learned from the child's evaluative feedback. Children in the LbT condition achieved significantly higher retention gains compared to those in the self-practice condition, especially on the grammar task. Learners with lower prior knowledge benefited most from teaching the robot. Behavioural metrics revealed that children adapted their teaching strategies over time and engaged more deeply during inference tasks. This work makes two contributions: (1) it introduces Interactive RL as a pedagogically effective and scalable model for peer-robot learning, and (2) it demonstrates, for the first time, the feasibility of deploying multiple autonomous robots simultaneously in real classrooms. These findings extend theoretical understanding of LbT by showing that social robots can function not only as passive tutees but as adaptive partners that enhance meta-cognitive engagement and long-term learning outcomes.
☆ Robotic Manipulation of a Rotating Chain with Bottom End Fixed
This paper studies the problem of using a robot arm to manipulate a uniformly rotating chain with its bottom end fixed. Existing studies have investigated ideal rotational shapes for practical applications, yet they do not discuss how these shapes can be consistently achieved through manipulation planning. Our work presents a manipulation strategy for stable and consistent shape transitions. We find that the configuration space of such a chain is homeomorphic to a three-dimensional cube. Using this property, we suggest a strategy to manipulate the chain into different configurations, specifically from one rotation mode to another, while taking stability and feasibility into consideration. We demonstrate the effectiveness of our strategy in physical experiments by successfully transitioning from rest to the first two rotation modes. The concepts explored in our work has critical applications in ensuring safety and efficiency of drill string and yarn spinning operations.
comment: 6 pages, 5 figures
☆ TritonZ: A Remotely Operated Underwater Rover with Manipulator Arm for Exploration and Rescue Operations
The increasing demand for underwater exploration and rescue operations enforces the development of advanced wireless or semi-wireless underwater vessels equipped with manipulator arms. This paper presents the implementation of a semi-wireless underwater vehicle, "TritonZ" equipped with a manipulator arm, tailored for effective underwater exploration and rescue operations. The vehicle's compact design enables deployment in different submarine surroundings, addressing the need for wireless systems capable of navigating challenging underwater terrains. The manipulator arm can interact with the environment, allowing the robot to perform sophisticated tasks during exploration and rescue missions in emergency situations. TritonZ is equipped with various sensors such as Pi-Camera, Humidity, and Temperature sensors to send real-time environmental data. Our underwater vehicle controlled using a customized remote controller can navigate efficiently in the water where Pi-Camera enables live streaming of the surroundings. Motion control and video capture are performed simultaneously using this camera. The manipulator arm is designed to perform various tasks, similar to grasping, manipulating, and collecting underwater objects. Experimental results shows the efficacy of the proposed remotely operated vehicle in performing a variety of underwater exploration and rescue tasks. Additionally, the results show that TritonZ can maintain an average of 13.5cm/s with a minimal delay of 2-3 seconds. Furthermore, the vehicle can sustain waves underwater by maintaining its position as well as average velocity. The full project details and source code can be accessed at this link: https://github.com/kawser-ahmed-byte/TritonZ
comment: 6 pages, 5 figures
☆ Crowdsourcing Ubiquitous Indoor Localization with Non-Cooperative Wi-Fi Ranging
Indoor localization opens the path to potentially transformative applications. Although many indoor localization methods have been proposed over the years, they remain too impractical for widespread deployment in the real world. In this paper, we introduce PeepLoc, a deployable and scalable Wi-Fi-based solution for indoor localization that relies only on pre-existing devices and infrastructure. Specifically, PeepLoc works on any mobile device with an unmodified Wi-Fi transceiver and in any indoor environment with a sufficient number of Wi-Fi access points (APs) and pedestrian traffic. At the core of PeepLoc is (a) a mechanism which allows any Wi-Fi device to obtain non-cooperative time-of-flight (ToF) to any Wi-Fi AP and (b) a novel bootstrapping mechanism that relies on pedestrian dead reckoning (PDR) and crowdsourcing to opportunistically initialize pre-existing APs as anchor points within an environment. We implement PeepLoc using commodity hardware and evaluate it extensively across 4 campus buildings. We show PeepLoc leads to a mean and median positional error of 3.41 m and 3.06 m respectively, which is superior to existing deployed indoor localization systems and is competitive with commodity GPS in outdoor environments.
☆ Improvement on LiDAR-Camera Calibration Using Square Targets
Precise sensor calibration is critical for autonomous vehicles as a prerequisite for perception algorithms to function properly. Rotation error of one degree can translate to position error of meters in target object detection at large distance, leading to improper reaction of the system or even safety related issues. Many methods for multi-sensor calibration have been proposed. However, there are very few work that comprehensively consider the challenges of the calibration procedure when applied to factory manufacturing pipeline or after-sales service scenarios. In this work, we introduce a fully automatic LiDAR-camera extrinsic calibration algorithm based on targets that is fast, easy to deploy and robust to sensor noises such as missing data. The core of the method include: (1) an automatic multi-stage LiDAR board detection pipeline using only geometry information with no specific material requirement; (2) a fast coarse extrinsic parameter search mechanism that is robust to initial extrinsic errors; (3) a direct optimization algorithm that is robust to sensor noises. We validate the effectiveness of our methods through experiments on data captured in real world scenarios.
☆ Learning Approach to Efficient Vision-based Active Tracking of a Flying Target by an Unmanned Aerial Vehicle
Autonomous tracking of flying aerial objects has important civilian and defense applications, ranging from search and rescue to counter-unmanned aerial systems (counter-UAS). Ground based tracking requires setting up infrastructure, could be range limited, and may not be feasible in remote areas, crowded cities or in dense vegetation areas. Vision based active tracking of aerial objects from another airborne vehicle, e.g., a chaser unmanned aerial vehicle (UAV), promises to fill this important gap, along with serving aerial coordination use cases. Vision-based active tracking by a UAV entails solving two coupled problems: 1) compute-efficient and accurate (target) object detection and target state estimation; and 2) maneuver decisions to ensure that the target remains in the field of view in the future time-steps and favorably positioned for continued detection. As a solution to the first problem, this paper presents a novel integration of standard deep learning based architectures with Kernelized Correlation Filter (KCF) to achieve compute-efficient object detection without compromising accuracy, unlike standalone learning or filtering approaches. The proposed perception framework is validated using a lab-scale setup. For the second problem, to obviate the linearity assumptions and background variations limiting effectiveness of the traditional controllers, we present the use of reinforcement learning to train a neuro-controller for fast computation of velocity maneuvers. New state space, action space and reward formulations are developed for this purpose, and training is performed in simulation using AirSim. The trained model is also tested in AirSim with respect to complex target maneuvers, and is found to outperform a baseline PID control in terms of tracking up-time and average distance maintained (from the target) during tracking.
comment: AIAA Aviation 2025
☆ Robot Tactile Gesture Recognition Based on Full-body Modular E-skin
With the development of robot electronic skin technology, various tactile sensors, enhanced by AI, are unlocking a new dimension of perception for robots. In this work, we explore how robots equipped with electronic skin can recognize tactile gestures and interpret them as human commands. We developed a modular robot E-skin, composed of multiple irregularly shaped skin patches, which can be assembled to cover the robot's body while capturing real-time pressure and pose data from thousands of sensing points. To process this information, we propose an equivariant graph neural network-based recognizer that efficiently and accurately classifies diverse tactile gestures, including poke, grab, stroke, and double-pat. By mapping the recognized gestures to predefined robot actions, we enable intuitive human-robot interaction purely through tactile input.
☆ Drive-R1: Bridging Reasoning and Planning in VLMs for Autonomous Driving with Reinforcement Learning
Large vision-language models (VLMs) for autonomous driving (AD) are evolving beyond perception and cognition tasks toward motion planning. However, we identify two critical challenges in this direction: (1) VLMs tend to learn shortcuts by relying heavily on history input information, achieving seemingly strong planning results without genuinely understanding the visual inputs; and (2) the chain-ofthought (COT) reasoning processes are always misaligned with the motion planning outcomes, and how to effectively leverage the complex reasoning capability to enhance planning remains largely underexplored. In this paper, we start from a small-scale domain-specific VLM and propose Drive-R1 designed to bridges the scenario reasoning and motion planning for AD. Drive-R1 first undergoes the supervised finetuning on a elaborate dataset containing both long and short COT data. Drive-R1 is encouraged to reason step-by-step from visual input to final planning decisions. Subsequently, Drive-R1 is trained within a reinforcement learning framework that incentivizes the discovery of reasoning paths that are more informative for planning, guided by rewards based on predicted trajectories and meta actions. Experimental evaluations on the nuScenes and DriveLM-nuScenes benchmarks demonstrate that Drive-R1 achieves superior performance compared to existing state-of-the-art VLMs. We believe that Drive-R1 presents a promising direction for bridging reasoning and planning in AD, offering methodological insights for future research and applications.
☆ Haptic-ACT -- Pseudo Oocyte Manipulation by a Robot Using Multimodal Information and Action Chunking with Transformers IROS2025
In this paper we introduce Haptic-ACT, an advanced robotic system for pseudo oocyte manipulation, integrating multimodal information and Action Chunking with Transformers (ACT). Traditional automation methods for oocyte transfer rely heavily on visual perception, often requiring human supervision due to biological variability and environmental disturbances. Haptic-ACT enhances ACT by incorporating haptic feedback, enabling real-time grasp failure detection and adaptive correction. Additionally, we introduce a 3D-printed TPU soft gripper to facilitate delicate manipulations. Experimental results demonstrate that Haptic-ACT improves the task success rate, robustness, and adaptability compared to conventional ACT, particularly in dynamic environments. These findings highlight the potential of multimodal learning in robotics for biomedical automation.
comment: Accepted at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2025) Project website https://upedrou.github.io/haptic-act_IROS2025
☆ Low-Cost Infrastructure-Free 3D Relative Localization with Sub-Meter Accuracy in Near Field
Relative localization in the near-field scenario is critically important for unmanned vehicle (UxV) applications. Although related works addressing 2D relative localization problem have been widely studied for unmanned ground vehicles (UGVs), the problem in 3D scenarios for unmanned aerial vehicles (UAVs) involves more uncertainties and remains to be investigated. Inspired by the phenomenon that animals can achieve swarm behaviors solely based on individual perception of relative information, this study proposes an infrastructure-free 3D relative localization framework that relies exclusively on onboard ultra-wideband (UWB) sensors. Leveraging 2D relative positioning research, we conducted feasibility analysis, system modeling, simulations, performance evaluation, and field tests using UWB sensors. The key contributions of this work include: derivation of the Cram\'er-Rao lower bound (CRLB) and geometric dilution of precision (GDOP) for near-field scenarios; development of two localization algorithms -- one based on Euclidean distance matrix (EDM) and another employing maximum likelihood estimation (MLE); comprehensive performance comparison and computational complexity analysis against state-of-the-art methods; simulation studies and field experiments; a novel sensor deployment strategy inspired by animal behavior, enabling single-sensor implementation within the proposed framework for UxV applications. The theoretical, simulation, and experimental results demonstrate strong generalizability to other 3D near-field localization tasks, with significant potential for a cost-effective cross-platform UxV collaborative system.
☆ Situated Haptic Interaction: Exploring the Role of Context in Affective Perception of Robotic Touch
Affective interaction is not merely about recognizing emotions; it is an embodied, situated process shaped by context and co-created through interaction. In affective computing, the role of haptic feedback within dynamic emotional exchanges remains underexplored. This study investigates how situational emotional cues influence the perception and interpretation of haptic signals given by a robot. In a controlled experiment, 32 participants watched video scenarios in which a robot experienced either positive actions (such as being kissed), negative actions (such as being slapped) or neutral actions. After each video, the robot conveyed its emotional response through haptic communication, delivered via a wearable vibration sleeve worn by the participant. Participants rated the robot's emotional state-its valence (positive or negative) and arousal (intensity)-based on the video, the haptic feedback, and the combination of the two. The study reveals a dynamic interplay between visual context and touch. Participants' interpretation of haptic feedback was strongly shaped by the emotional context of the video, with visual context often overriding the perceived valence of the haptic signal. Negative haptic cues amplified the perceived valence of the interaction, while positive cues softened it. Furthermore, haptics override the participants' perception of arousal of the video. Together, these results offer insights into how situated haptic feedback can enrich affective human-robot interaction, pointing toward more nuanced and embodied approaches to emotional communication with machines.
☆ CUPID: Curating Data your Robot Loves with Influence Functions
In robot imitation learning, policy performance is tightly coupled with the quality and composition of the demonstration data. Yet, developing a precise understanding of how individual demonstrations contribute to downstream outcomes - such as closed-loop task success or failure - remains a persistent challenge. We propose CUPID, a robot data curation method based on a novel influence function-theoretic formulation for imitation learning policies. Given a set of evaluation rollouts, CUPID estimates the influence of each training demonstration on the policy's expected return. This enables ranking and selection of demonstrations according to their impact on the policy's closed-loop performance. We use CUPID to curate data by 1) filtering out training demonstrations that harm policy performance and 2) subselecting newly collected trajectories that will most improve the policy. Extensive simulated and hardware experiments show that our approach consistently identifies which data drives test-time performance. For example, training with less than 33% of curated data can yield state-of-the-art diffusion policies on the simulated RoboMimic benchmark, with similar gains observed in hardware. Furthermore, hardware experiments show that our method can identify robust strategies under distribution shift, isolate spurious correlations, and even enhance the post-training of generalist robot policies. Additional materials are made available at: https://cupid-curation.github.io.
comment: Project page: https://cupid-curation.github.io. 28 pages, 15 figures
☆ Analysis and experiments of the dissipative Twistcar: direction reversal and asymptotic approximations
Underactuated wheeled vehicles are commonly studied as nonholonomic systems with periodic actuation. Twistcar is a classical example inspired by a riding toy, which has been analyzed using a planar model of a dynamical system with nonholonomic constraints. Most of the previous analyses did not account for energy dissipation due to friction. In this work, we study a theoretical two-link model of the Twistcar while incorporating dissipation due to rolling resistance. We obtain asymptotic expressions for the system's small-amplitude steady-state periodic dynamics, which reveals the possibility of reversing the direction of motion upon varying the geometric and mass properties of the vehicle. Next, we design and construct a robotic prototype of the Twistcar whose center-of-mass position can be shifted by adding and removing a massive block, enabling demonstration of the Twistcar's direction reversal phenomenon. We also conduct parameter fitting for the frictional resistance in order to improve agreement with experiments.
☆ Multimodal Anomaly Detection with a Mixture-of-Experts IROS 2025
With a growing number of robots being deployed across diverse applications, robust multimodal anomaly detection becomes increasingly important. In robotic manipulation, failures typically arise from (1) robot-driven anomalies due to an insufficient task model or hardware limitations, and (2) environment-driven anomalies caused by dynamic environmental changes or external interferences. Conventional anomaly detection methods focus either on the first by low-level statistical modeling of proprioceptive signals or the second by deep learning-based visual environment observation, each with different computational and training data requirements. To effectively capture anomalies from both sources, we propose a mixture-of-experts framework that integrates the complementary detection mechanisms with a visual-language model for environment monitoring and a Gaussian-mixture regression-based detector for tracking deviations in interaction forces and robot motions. We introduce a confidence-based fusion mechanism that dynamically selects the most reliable detector for each situation. We evaluate our approach on both household and industrial tasks using two robotic systems, demonstrating a 60% reduction in detection delay while improving frame-wise anomaly detection performance compared to individual detectors.
comment: 8 pages, 5 figures, 1 table, the paper has been accepted for publication in the Proceedings of the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ Faster Motion Planning via Restarts
Randomized methods such as PRM and RRT are widely used in motion planning. However, in some cases, their running-time suffers from inherent instability, leading to ``catastrophic'' performance even for relatively simple instances. We apply stochastic restart techniques, some of them new, for speeding up Las Vegas algorithms, that provide dramatic speedups in practice (a factor of $3$ [or larger] in many cases). Our experiments demonstrate that the new algorithms have faster runtimes, shorter paths, and greater gains from multi-threading (when compared with straightforward parallel implementation). We prove the optimality of the new variants. Our implementation is open source, available on github, and is easy to deploy and use.
comment: arXiv admin note: text overlap with arXiv:2503.04633
♻ ☆ Learning Accurate Whole-body Throwing with High-frequency Residual Policy and Pullback Tube Acceleration IROS 2025
Throwing is a fundamental skill that enables robots to manipulate objects in ways that extend beyond the reach of their arms. We present a control framework that combines learning and model-based control for prehensile whole-body throwing with legged mobile manipulators. Our framework consists of three components: a nominal tracking policy for the end-effector, a high-frequency residual policy to enhance tracking accuracy, and an optimization-based module to improve end-effector acceleration control. The proposed controller achieved the average of 0.28 m landing error when throwing at targets located 6 m away. Furthermore, in a comparative study with university students, the system achieved a velocity tracking error of 0.398 m/s and a success rate of 56.8%, hitting small targets randomly placed at distances of 3-5 m while throwing at a specified speed of 6 m/s. In contrast, humans have a success rate of only 15.2%. This work provides an early demonstration of prehensile throwing with quantified accuracy on hardware, contributing to progress in dynamic whole-body manipulation.
comment: 8 pages, IROS 2025
♻ ☆ Agile, Autonomous Spacecraft Constellations with Disruption Tolerant Networking to Monitor Precipitation and Urban Floods
Fully re-orientable small spacecraft are now supported by commercial technologies, allowing them to point their instruments in any direction and capture images, with short notice. When combined with improved onboard processing, and implemented on a constellation of inter-communicable satellites, this intelligent agility can significantly increase responsiveness to transient or evolving phenomena. We demonstrate a ground-based and onboard algorithmic framework that combines orbital mechanics, attitude control, inter-satellite communication, intelligent prediction and planning to schedule the time-varying, re-orientation of agile, small satellites in a constellation. Planner intelligence is improved by updating the predictive value of future space-time observations based on shared observations of evolving episodic precipitation and urban flood forecasts. Reliable inter-satellite communication within a fast, dynamic constellation topology is modeled in the physical, access control and network layer. We apply the framework on a representative 24-satellite constellation observing 5 global regions. Results show appropriately low latency in information exchange (average within 1/3rd available time for implicit consensus), enabling the onboard scheduler to observe ~7% more flood magnitude than a ground-based implementation. Both onboard and offline versions performed ~98% better than constellations without agility.
♻ ☆ GAF: Gaussian Action Field as a Dynamic World Model for Robotic Manipulation
Accurate action inference is critical for vision-based robotic manipulation. Existing approaches typically follow either a Vision-to-Action (V-A) paradigm, predicting actions directly from visual inputs, or a Vision-to-3D-to-Action (V-3D-A) paradigm, leveraging intermediate 3D representations. However, these methods often struggle with action inaccuracies due to the complexity and dynamic nature of manipulation scenes. In this paper, we propose a Vision-to-4D-to-Action (V-4D-A) framework that enables direct action reasoning from motion-aware 4D representations via a Gaussian Action Field (GAF). GAF extends 3D Gaussian Splatting (3DGS) by incorporating learnable motion attributes, allowing simultaneous modeling of dynamic scenes and manipulation actions. To learn time-varying scene geometry and action-aware robot motion, GAF supports three key query types: reconstruction of the current scene, prediction of future frames, and estimation of initial action via robot motion. Furthermore, the high-quality current and future frames generated by GAF facilitate manipulation action refinement through a GAF-guided diffusion model. Extensive experiments demonstrate significant improvements, with GAF achieving +11.5385 dB PSNR and -0.5574 LPIPS improvements in reconstruction quality, while boosting the average success rate in robotic manipulation tasks by 10.33% over state-of-the-art methods. Project page: http://chaiying1.github.io/GAF.github.io/project_page/
comment: http://chaiying1.github.io/GAF.github.io/project_page/
Learning to Insert for Constructive Neural Vehicle Routing Solver
Neural Combinatorial Optimisation (NCO) is a promising learning-based approach for solving Vehicle Routing Problems (VRPs) without extensive manual design. While existing constructive NCO methods typically follow an appending-based paradigm that sequentially adds unvisited nodes to partial solutions, this rigid approach often leads to suboptimal results. To overcome this limitation, we explore the idea of insertion-based paradigm and propose Learning to Construct with Insertion-based Paradigm (L2C-Insert), a novel learning-based method for constructive NCO. Unlike traditional approaches, L2C-Insert builds solutions by strategically inserting unvisited nodes at any valid position in the current partial solution, which can significantly enhance the flexibility and solution quality. The proposed framework introduces three key components: a novel model architecture for precise insertion position prediction, an efficient training scheme for model optimization, and an advanced inference technique that fully exploits the insertion paradigm's flexibility. Extensive experiments on both synthetic and real-world instances of the Travelling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) demonstrate that L2C-Insert consistently achieves superior performance across various problem sizes.
♻ ☆ Context-Aware Human Behavior Prediction Using Multimodal Large Language Models: Challenges and Insights
Predicting human behavior in shared environments is crucial for safe and efficient human-robot interaction. Traditional data-driven methods to that end are pre-trained on domain-specific datasets, activity types, and prediction horizons. In contrast, the recent breakthroughs in Large Language Models (LLMs) promise open-ended cross-domain generalization to describe various human activities and make predictions in any context. In particular, Multimodal LLMs (MLLMs) are able to integrate information from various sources, achieving more contextual awareness and improved scene understanding. The difficulty in applying general-purpose MLLMs directly for prediction stems from their limited capacity for processing large input sequences, sensitivity to prompt design, and expensive fine-tuning. In this paper, we present a systematic analysis of applying pre-trained MLLMs for context-aware human behavior prediction. To this end, we introduce a modular multimodal human activity prediction framework that allows us to benchmark various MLLMs, input variations, In-Context Learning (ICL), and autoregressive techniques. Our evaluation indicates that the best-performing framework configuration is able to reach 92.8% semantic similarity and 66.1% exact label accuracy in predicting human behaviors in the target frame.
comment: Accepted at IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 2025
♻ ☆ Shaken, Not Stirred: A Novel Dataset for Visual Understanding of Glasses in Human-Robot Bartending Tasks IROS
Datasets for object detection often do not account for enough variety of glasses, due to their transparent and reflective properties. Specifically, open-vocabulary object detectors, widely used in embodied robotic agents, fail to distinguish subclasses of glasses. This scientific gap poses an issue to robotic applications that suffer from accumulating errors between detection, planning, and action execution. The paper introduces a novel method for the acquisition of real-world data from RGB-D sensors that minimizes human effort. We propose an auto-labeling pipeline that generates labels for all the acquired frames based on the depth measurements. We provide a novel real-world glass object dataset that was collected on the Neuro-Inspired COLlaborator (NICOL), a humanoid robot platform. The data set consists of 7850 images recorded from five different cameras. We show that our trained baseline model outperforms state-of-the-art open-vocabulary approaches. In addition, we deploy our baseline model in an embodied agent approach to the NICOL platform, on which it achieves a success rate of 81% in a human-robot bartending scenario.
comment: Submitted and Accepted for Presentation at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Multi-Stage Manipulation with Demonstration-Augmented Reward, Policy, and World Model Learning
Long-horizon tasks in robotic manipulation present significant challenges in reinforcement learning (RL) due to the difficulty of designing dense reward functions and effectively exploring the expansive state-action space. However, despite a lack of dense rewards, these tasks often have a multi-stage structure, which can be leveraged to decompose the overall objective into manageable subgoals. In this work, we propose DEMO3, a framework that exploits this structure for efficient learning from visual inputs. Specifically, our approach incorporates multi-stage dense reward learning, a bi-phasic training scheme, and world model learning into a carefully designed demonstration-augmented RL framework that strongly mitigates the challenge of exploration in long-horizon tasks. Our evaluations demonstrate that our method improves data-efficiency by an average of 40% and by 70% on particularly difficult tasks compared to state-of-the-art approaches. We validate this across 16 sparse-reward tasks spanning four domains, including challenging humanoid visual control tasks using as few as five demonstrations.
comment: Project page can be found at https://adrialopezescoriza.github.io/demo3/
♻ ☆ Diffusion-based learning of contact plans for agile locomotion
Legged robots have become capable of performing highly dynamic maneuvers in the past few years. However, agile locomotion in highly constrained environments such as stepping stones is still a challenge. In this paper, we propose a combination of model-based control, search, and learning to design efficient control policies for agile locomotion on stepping stones. In our framework, we use nonlinear model predictive control (NMPC) to generate whole-body motions for a given contact plan. To efficiently search for an optimal contact plan, we propose to use Monte Carlo tree search (MCTS). While the combination of MCTS and NMPC can quickly find a feasible plan for a given environment (a few seconds), it is not yet suitable to be used as a reactive policy. Hence, we generate a dataset for optimal goal-conditioned policy for a given scene and learn it through supervised learning. In particular, we leverage the power of diffusion models in handling multi-modality in the dataset. We test our proposed framework on a scenario where our quadruped robot Solo12 successfully jumps to different goals in a highly constrained environment.
HybridVLA: Collaborative Diffusion and Autoregression in a Unified Vision-Language-Action Model
A fundamental objective of manipulation policy design is to endow robots to comprehend human instructions, reason about scene cues, and execute generalized actions in dynamic environments. Recent autoregressive vision-language-action (VLA) methods inherit common-sense reasoning capabilities from vision-language models (VLMs) for next action-token prediction. However, these methods quantize actions into discrete bins, which disrupts the continuity required for precise control. In contrast, existing diffusion-based VLA methods incorporate an additional diffusion head to predict continuous actions solely conditioned on feature representations extracted by the VLM, without fully leveraging the VLM's pretrained reasoning capabilities through token-level generation. To address these limitations, we introduce HybridVLA, a unified framework that absorbs the continuous nature of diffusion-based actions and the contextual reasoning of autoregression within a single large language model. To mitigate interference between the two generation paradigms, we propose a collaborative training recipe that seamlessly incorporates diffusion denoising into the next-token prediction process. With this recipe, we find these two action prediction methods not only reinforce each other but also exhibit varying strength across different tasks. Therefore, we design a collaborative action ensemble mechanism that adaptively fuses both predictions, leading to more robust control. HybridVLA outperforms previous state-of-the-art VLA methods by 14\% and 19\% in mean success rate on simulation and real-world tasks, respectively, while demonstrating stable manipulation in unseen configurations.
♻ ☆ LoopSR: Looping Sim-and-Real for Lifelong Policy Adaptation of Legged Robots IROS 2025
Reinforcement Learning (RL) has shown its remarkable and generalizable capability in legged locomotion through sim-to-real transfer. However, while adaptive methods like domain randomization are expected to enhance policy robustness across diverse environments, they potentially compromise the policy's performance in any specific environment, leading to suboptimal real-world deployment due to the No Free Lunch theorem. To address this, we propose LoopSR, a lifelong policy adaptation framework that continuously refines RL policies in the post-deployment stage. LoopSR employs a transformer-based encoder to map real-world trajectories into a latent space and reconstruct a digital twin of the real world for further improvement. Autoencoder architecture and contrastive learning methods are adopted to enhance feature extraction of real-world dynamics. Simulation parameters for continual training are derived by combining predicted values from the decoder with retrieved parameters from a pre-collected simulation trajectory dataset. By leveraging simulated continual training, LoopSR achieves superior data efficiency compared with strong baselines, yielding eminent performance with limited data in both sim-to-sim and sim-to-real experiments.
comment: IROS 2025
♻ ☆ SALT: A Flexible Semi-Automatic Labeling Tool for General LiDAR Point Clouds with Cross-Scene Adaptability and 4D Consistency
We propose a flexible Semi-Automatic Labeling Tool (SALT) for general LiDAR point clouds with cross-scene adaptability and 4D consistency. Unlike recent approaches that rely on camera distillation, SALT operates directly on raw LiDAR data, automatically generating pre-segmentation results. To achieve this, we propose a novel zero-shot learning paradigm, termed data alignment, which transforms LiDAR data into pseudo-images by aligning with the training distribution of vision foundation models. Additionally, we design a 4D-consistent prompting strategy and 4D non-maximum suppression module to enhance SAM2, ensuring high-quality, temporally consistent presegmentation. SALT surpasses the latest zero-shot methods by 18.4% PQ on SemanticKITTI and achieves nearly 40-50% of human annotator performance on our newly collected low-resolution LiDAR data and on combined data from three LiDAR types, significantly boosting annotation efficiency. We anticipate that SALT's open-sourcing will catalyze substantial expansion of current LiDAR datasets and lay the groundwork for the future development of LiDAR foundation models. Code is available at https://github.com/Cavendish518/SALT.
♻ ☆ Accurate Simulation and Parameter Identification of Deformable Linear Objects using Discrete Elastic Rods in Generalized Coordinates
This paper presents a fast and accurate model of a deformable linear object (DLO) -- e.g., a rope, wire, or cable -- integrated into an established robot physics simulator, MuJoCo. Most accurate DLO models with low computational times exist in standalone numerical simulators, which are unable or require tedious work to handle external objects. Based on an existing state-of-the-art DLO model -- Discrete Elastic Rods (DER) -- our implementation provides an improvement in accuracy over MuJoCo's own native cable model. To minimize computational load, our model utilizes force-lever analysis to adapt the Cartesian stiffness forces of the DER into its generalized coordinates. As a key contribution, we introduce a novel parameter identification pipeline designed for both simplicity and accuracy, which we utilize to determine the bending and twisting stiffness of three distinct DLOs. We then evaluate the performance of each model by simulating the DLOs and comparing them to their real-world counterparts and against theoretically proven validation tests.
comment: 7 pages, 6 figures
♻ ☆ IDCAIS: Inter-Defender Collision-Aware Interception Strategy against Multiple Attackers
In the prior literature on multi-agent area defense games, the assignments of the defenders to the attackers are done based on a cost metric associated only with the interception of the attackers. In contrast to that, this paper presents an Inter-Defender Collision-Aware Interception Strategy (IDCAIS) for defenders to intercept attackers in order to defend a protected area, such that the defender-to-attacker assignment protocol not only takes into account an interception-related cost but also takes into account any possible future collisions among the defenders on their optimal interception trajectories. In particular, in this paper, the defenders are assigned to intercept attackers using a mixed-integer quadratic program (MIQP) that: 1) minimizes the sum of times taken by defenders to capture the attackers under time-optimal control, as well as 2) helps eliminate or delay possible future collisions among the defenders on the optimal trajectories. To prevent inevitable collisions on optimal trajectories or collisions arising due to time-sub-optimal behavior by the attackers, a minimally augmented control using exponential control barrier function (ECBF) is also provided. Simulations show the efficacy of the approach.
comment: 14 pages, 12 figures
♻ ☆ Experimental Setup and Software Pipeline to Evaluate Optimization based Autonomous Multi-Robot Search Algorithms
Signal source localization has been a problem of interest in the multi-robot systems domain given its applications in search & rescue and hazard localization in various industrial and outdoor settings. A variety of multi-robot search algorithms exist that usually formulate and solve the associated autonomous motion planning problem as a heuristic model-free or belief model-based optimization process. Most of these algorithms however remains tested only in simulation, thereby losing the opportunity to generate knowledge about how such algorithms would compare/contrast in a real physical setting in terms of search performance and real-time computing performance. To address this gap, this paper presents a new lab-scale physical setup and associated open-source software pipeline to evaluate and benchmark multi-robot search algorithms. The presented physical setup innovatively uses an acoustic source (that is safe and inexpensive) and small ground robots (e-pucks) operating in a standard motion-capture environment. This setup can be easily recreated and used by most robotics researchers. The acoustic source also presents interesting uncertainty in terms of its noise-to-signal ratio, which is useful to assess sim-to-real gaps. The overall software pipeline is designed to readily interface with any multi-robot search algorithm with minimal effort and is executable in parallel asynchronous form. This pipeline includes a framework for distributed implementation of multi-robot or swarm search algorithms, integrated with a ROS (Robotics Operating System)-based software stack for motion capture supported localization. The utility of this novel setup is demonstrated by using it to evaluate two state-of-the-art multi-robot search algorithms, based on swarm optimization and batch-Bayesian Optimization (called Bayes-Swarm), as well as a random walk baseline.
comment: IDETC 2025
♻ ☆ Stochastic Motion Planning as Gaussian Variational Inference: Theory and Algorithms
We present a novel formulation for motion planning under uncertainties based on variational inference where the optimal motion plan is modeled as a posterior distribution. We propose a Gaussian variational inference-based framework, termed Gaussian Variational Inference Motion Planning (GVI-MP), to approximate this posterior by a Gaussian distribution over the trajectories. We show that the GVI-MP framework is dual to a special class of stochastic control problems and brings robustness into the decision-making in motion planning. We develop two algorithms to numerically solve this variational inference and the equivalent control formulations for motion planning. The first algorithm uses a natural gradient paradigm to iteratively update a Gaussian proposal distribution on the sparse motion planning factor graph. We propose a second algorithm, the Proximal Covariance Steering Motion Planner (PCS-MP), to solve the same inference problem in its stochastic control form with an additional terminal constraint. We leverage a proximal gradient paradigm where, at each iteration, we quadratically approximate nonlinear state costs and solve a linear covariance steering problem in closed form. The efficacy of the proposed algorithms is demonstrated through extensive experiments on various robot models. An implementation is provided in https://github.com/hzyu17/VIMP.
comment: 20 pages
♻ ☆ Learning Realistic Joint Space Boundaries for Range of Motion Analysis of Healthy and Impaired Human Arms
A realistic human kinematic model that satisfies anatomical constraints is essential for human-robot interaction, biomechanics and robot-assisted rehabilitation. Modeling realistic joint constraints, however, is challenging as human arm motion is constrained by joint limits, inter- and intra-joint dependencies, self-collisions, individual capabilities and muscular or neurological constraints which are difficult to represent. Hence, physicians and researchers have relied on simple box-constraints, ignoring important anatomical factors. In this paper, we propose a data-driven method to learn realistic anatomically constrained upper-limb range of motion (RoM) boundaries from motion capture data. This is achieved by fitting a one-class support vector machine to a dataset of upper-limb joint space exploration motions with an efficient hyper-parameter tuning scheme. Our approach outperforms similar works focused on valid RoM learning. Further, we propose an impairment index (II) metric that offers a quantitative assessment of capability/impairment when comparing healthy and impaired arms. We validate the metric on healthy subjects physically constrained to emulate hemiplegia and different disability levels as stroke patients. [https://sites.google.com/seas.upenn.edu/learning-rom]
♻ ☆ cuVSLAM: CUDA accelerated visual odometry and mapping
Accurate and robust pose estimation is a key requirement for any autonomous robot. We present cuVSLAM, a state-of-the-art solution for visual simultaneous localization and mapping, which can operate with a variety of visual-inertial sensor suites, including multiple RGB and depth cameras, and inertial measurement units. cuVSLAM supports operation with as few as one RGB camera to as many as 32 cameras, in arbitrary geometric configurations, thus supporting a wide range of robotic setups. cuVSLAM is specifically optimized using CUDA to deploy in real-time applications with minimal computational overhead on edge-computing devices such as the NVIDIA Jetson. We present the design and implementation of cuVSLAM, example use cases, and empirical results on several state-of-the-art benchmarks demonstrating the best-in-class performance of cuVSLAM.
♻ ☆ Terrain-aware Low Altitude Path Planning
In this paper, we study the problem of generating low-altitude path plans for nap-of-the-earth (NOE) flight in real time with only RGB images from onboard cameras and the vehicle pose. We propose a novel training method that combines behavior cloning and self-supervised learning, where the self-supervision component allows the learned policy to refine the paths generated by the expert planner. Simulation studies show 24.7% reduction in average path elevation compared to the standard behavior cloning approach.
♻ ☆ Why Sample Space Matters: Keyframe Sampling Optimization for LiDAR-based Place Recognition
Recent advances in robotics are driving real-world autonomy for long-term and large-scale missions, where loop closures via place recognition are vital for mitigating pose estimation drift. However, achieving real-time performance remains challenging for resource-constrained mobile robots and multi-robot systems due to the computational burden of high-density sampling, which increases the complexity of comparing and verifying query samples against a growing map database. Conventional methods often retain redundant information or miss critical data by relying on fixed sampling intervals or operating in 3-D space instead of the descriptor feature space. To address these challenges, we introduce the concept of sample space and propose a novel keyframe sampling approach for LiDAR-based place recognition. Our method minimizes redundancy while preserving essential information in the hyper-dimensional descriptor space, supporting both learning-based and handcrafted descriptors. The proposed approach incorporates a sliding window optimization strategy to ensure efficient keyframe selection and real-time performance, enabling seamless integration into robotic pipelines. In sum, our approach demonstrates robust performance across diverse datasets, with the ability to adapt seamlessly from indoor to outdoor scenarios without parameter tuning, reducing loop closure detection times and memory requirements.
comment: The work is no longer intended for consideration in its current form. Readers are instead encouraged to refer to our related and more complete study, arXiv:2501.01791, which should be considered as a stand-alone contribution
♻ ☆ Employing Laban Shape for Generating Emotionally and Functionally Expressive Trajectories in Robotic Manipulators
Successful human-robot collaboration depends on cohesive communication and a precise understanding of the robot's abilities, goals, and constraints. While robotic manipulators offer high precision, versatility, and productivity, they exhibit expressionless and monotonous motions that conceal the robot's intention, resulting in a lack of efficiency and transparency with humans. In this work, we use Laban notation, a dance annotation language, to enable robotic manipulators to generate trajectories with functional expressivity, where the robot uses nonverbal cues to communicate its abilities and the likelihood of succeeding at its task. We achieve this by introducing two novel variants of Hesitant expressive motion (Spoke-Like and Arc-Like). We also enhance the emotional expressivity of four existing emotive trajectories (Happy, Sad, Shy, and Angry) by augmenting Laban Effort usage with Laban Shape. The functionally expressive motions are validated via a human-subjects study, where participants equate both variants of Hesitant motion with reduced robot competency. The enhanced emotive trajectories are shown to be viewed as distinct emotions using the Valence-Arousal-Dominance (VAD) spectrum, corroborating the usage of Laban Shape.
comment: Accepted for presentation at the 2025 IEEE RO-MAN Conference
Computer Vision 9
☆ TC-Light: Temporally Consistent Relighting for Dynamic Long Videos
Editing illumination in long videos with complex dynamics has significant value in various downstream tasks, including visual content creation and manipulation, as well as data scaling up for embodied AI through sim2real and real2real transfer. Nevertheless, existing video relighting techniques are predominantly limited to portrait videos or fall into the bottleneck of temporal consistency and computation efficiency. In this paper, we propose TC-Light, a novel paradigm characterized by the proposed two-stage post optimization mechanism. Starting from the video preliminarily relighted by an inflated video relighting model, it optimizes appearance embedding in the first stage to align global illumination. Then it optimizes the proposed canonical video representation, i.e., Unique Video Tensor (UVT), to align fine-grained texture and lighting in the second stage. To comprehensively evaluate performance, we also establish a long and highly dynamic video benchmark. Extensive experiments show that our method enables physically plausible relighting results with superior temporal coherence and low computation cost. The code and video demos are available at https://dekuliutesla.github.io/tclight/.
comment: Project Page: https://dekuliutesla.github.io/tclight/ Code: https://github.com/Linketic/TC-Light
♻ ☆ Emergent Temporal Correspondences from Video Diffusion Transformers
Recent advancements in video diffusion models based on Diffusion Transformers (DiTs) have achieved remarkable success in generating temporally coherent videos. Yet, a fundamental question persists: how do these models internally establish and represent temporal correspondences across frames? We introduce DiffTrack, the first quantitative analysis framework designed to answer this question. DiffTrack constructs a dataset of prompt-generated video with pseudo ground-truth tracking annotations and proposes novel evaluation metrics to systematically analyze how each component within the full 3D attention mechanism of DiTs (e.g., representations, layers, and timesteps) contributes to establishing temporal correspondences. Our analysis reveals that query-key similarities in specific, but not all, layers play a critical role in temporal matching, and that this matching becomes increasingly prominent during the denoising process. We demonstrate practical applications of DiffTrack in zero-shot point tracking, where it achieves state-of-the-art performance compared to existing vision foundation and self-supervised video models. Further, we extend our findings to motion-enhanced video generation with a novel guidance method that improves temporal consistency of generated videos without additional training. We believe our work offers crucial insights into the inner workings of video DiTs and establishes a foundation for further research and applications leveraging their temporal understanding.
comment: Project page is available at https://cvlab-kaist.github.io/DiffTrack
♻ ☆ Multi-label Scene Classification for Autonomous Vehicles: Acquiring and Accumulating Knowledge from Diverse Datasets
Driving scene identification, which assigns multiple non-exclusive class labels to a scene, provides the contextual awareness necessary for enhancing autonomous vehicles' ability to understand, reason about, and interact with the complex driving environment. As a multi-label classification problem, it is better tackled via multitasking learning. However, directly training a multi-label classification model for driving scene identification through multitask learning presents two main challenges: acquiring a balanced, comprehensively annotated multi-label dataset and balancing learning across different tasks. This paper introduces a novel learning system that synergizes knowledge acquisition and accumulation (KAA) with consistency-based active learning (CAL) to address those challenges. KAA acquires and accumulates knowledge about scene identification from various single-label datasets via monotask learning. Subsequently, CAL effectively resolves the knowledge gap caused by the discrepancy between single-label and multi-label data. An ablation study on our Driving Scene Identification (DSI) dataset demonstrates a 56.1% performance increase over the baseline model pretrained on ImageNet. Of this, KAA accounts for 31.3% of the gain, and CAL contributes 24.8%. Moreover, KAA-CAL stands out as the best performer when compared to state-of-the-art (SOTA) multi-label models on two public datasets, BDD100K and HSD, achieving this while using 85% less data. The DSI dataset and the implementation code for KAA-CAL are available at https://github.com/KELISBU/KAA-CAL .
EmoAgent: A Multi-Agent Framework for Diverse Affective Image Manipulation
Affective Image Manipulation (AIM) aims to alter visual elements within an image to evoke specific emotional responses from viewers. However, existing AIM approaches rely on rigid \emph{one-to-one} mappings between emotions and visual cues, making them ill-suited for the inherently subjective and diverse ways in which humans perceive and express emotion.To address this, we introduce a novel task setting termed \emph{Diverse AIM (D-AIM)}, aiming to generate multiple visually distinct yet emotionally consistent image edits from a single source image and target emotion. We propose \emph{EmoAgent}, the first multi-agent framework tailored specifically for D-AIM. EmoAgent explicitly decomposes the manipulation process into three specialized phases executed by collaborative agents: a Planning Agent that generates diverse emotional editing strategies, an Editing Agent that precisely executes these strategies, and a Critic Agent that iteratively refines the results to ensure emotional accuracy. This collaborative design empowers EmoAgent to model \emph{one-to-many} emotion-to-visual mappings, enabling semantically diverse and emotionally faithful edits.Extensive quantitative and qualitative evaluations demonstrate that EmoAgent substantially outperforms state-of-the-art approaches in both emotional fidelity and semantic diversity, effectively generating multiple distinct visual edits that convey the same target emotion.
♻ ☆ RealSR-R1: Reinforcement Learning for Real-World Image Super-Resolution with Vision-Language Chain-of-Thought
Real-World Image Super-Resolution is one of the most challenging task in image restoration. However, existing methods struggle with an accurate understanding of degraded image content, leading to reconstructed results that are both low-fidelity and unnatural. We present RealSR-R1 in this work, which empowers the RealSR models with understanding and reasoning capabilities. Inspired by the success of Chain of Thought (CoT) in large language models (LLMs), we simulate the human process of handling degraded images and propose the VLCoT framework, which integrates vision and language reasoning. The framework aims to precisely restore image details by progressively generating more comprehensive text and higher-resolution images. To overcome the challenge of traditional supervised learning CoT failing to generalize to real-world scenarios, we introduce, for the first time, Group Relative Policy Optimization (GRPO) into the Real-World Image Super-Resolution task. We propose VLCoT-GRPO as a solution, which designs four reward functions: (1) Format reward, used to standardize the CoT process; (2) Degradation reward, to incentivize accurate degradation estimation; (3) Understanding reward, to ensure the accuracy of the generated content; and (4) Generation reward, where we propose using a visual expert model to evaluate the quality of generated images, encouraging the model to generate more realistic images. Extensive experiments demonstrate that our proposed RealSR-R1 can generate realistic details and accurately understand image content, particularly in semantically rich scenes or images with severe degradation.
♻ ☆ TextBraTS: Text-Guided Volumetric Brain Tumor Segmentation with Innovative Dataset Development and Fusion Module Exploration
Deep learning has demonstrated remarkable success in medical image segmentation and computer-aided diagnosis. In particular, numerous advanced methods have achieved state-of-the-art performance in brain tumor segmentation from MRI scans. While recent studies in other medical imaging domains have revealed that integrating textual reports with visual data can enhance segmentation accuracy, the field of brain tumor analysis lacks a comprehensive dataset that combines radiological images with corresponding textual annotations. This limitation has hindered the exploration of multimodal approaches that leverage both imaging and textual data. To bridge this critical gap, we introduce the TextBraTS dataset, the first publicly available volume-level multimodal dataset that contains paired MRI volumes and rich textual annotations, derived from the widely adopted BraTS2020 benchmark. Building upon this novel dataset, we propose a novel baseline framework and sequential cross-attention method for text-guided volumetric medical image segmentation. Through extensive experiments with various text-image fusion strategies and templated text formulations, our approach demonstrates significant improvements in brain tumor segmentation accuracy, offering valuable insights into effective multimodal integration techniques. Our dataset, implementation code, and pre-trained models are publicly available at https://github.com/Jupitern52/TextBraTS.
♻ ☆ A Prior-Guided Joint Diffusion Model in Projection Domain for PET Tracer Conversion
Positron emission tomography (PET) is widely used to assess metabolic activity, but its application is limited by the availability of radiotracers. 18F-labeled fluorodeoxyglucose (18F-FDG) is the most commonly used tracer but shows limited effectiveness for certain tumors. In contrast, 6-18F-fluoro-3,4-dihydroxy-L-phenylalanine (18F-DOPA) offers higher specificity for neuroendocrine tumors and neurological disorders. However, the complexity of its synthesis process and constraints on transportation time have limited its clinical application. Among different forms of raw data acquired by the scanner, sinogram is a commonly used representation in PET imaging. Therefore, modeling in projection domain enables more direct utilization of the original information, potentially reducing the accumulation errors during the image reconstruction process. Inspired by these factors, this study proposes a prior-guided joint diffusion model (PJDM) for transforming 18F-FDG PET sinograms into 18F-DOPA PET sinograms. During inference, an initial synthetic 18F-DOPA PET sinogram is first generated using a higher-order hybrid sampler. This sinogram is then degraded and serves as an additional condition to guide the iterative refinement process. Experimental results demonstrated that PJDM effectively improved both sinogram quality and the final synthetic outcomes. The code is available at: https://github.com/yqx7150/PJDM.
♻ ☆ A Comparative Analysis of Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) as Dimensionality Reduction Techniques
High-dimensional image data often require dimensionality reduction before further analysis. This paper provides a purely analytical comparison of two linear techniques-Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). After the derivation of each algorithm from first principles, we assess their interpretability, numerical stability, and suitability for differing matrix shapes. building on classical and recent numerical literature, We synthesize rule-of-thumb guidelines for choosing one out of the two algorithms without empirical benchmarking, building on classical and recent numerical literature. Limitations and directions for future experimental work are outlined at the end.
♻ ☆ An Exploratory Approach Towards Investigating and Explaining Vision Transformer and Transfer Learning for Brain Disease Detection
The brain is a highly complex organ that manages many important tasks, including movement, memory and thinking. Brain-related conditions, like tumors and degenerative disorders, can be hard to diagnose and treat. Magnetic Resonance Imaging (MRI) serves as a key tool for identifying these conditions, offering high-resolution images of brain structures. Despite this, interpreting MRI scans can be complicated. This study tackles this challenge by conducting a comparative analysis of Vision Transformer (ViT) and Transfer Learning (TL) models such as VGG16, VGG19, Resnet50V2, MobilenetV2 for classifying brain diseases using MRI data from Bangladesh based dataset. ViT, known for their ability to capture global relationships in images, are particularly effective for medical imaging tasks. Transfer learning helps to mitigate data constraints by fine-tuning pre-trained models. Furthermore, Explainable AI (XAI) methods such as GradCAM, GradCAM++, LayerCAM, ScoreCAM, and Faster-ScoreCAM are employed to interpret model predictions. The results demonstrate that ViT surpasses transfer learning models, achieving a classification accuracy of 94.39%. The integration of XAI methods enhances model transparency, offering crucial insights to aid medical professionals in diagnosing brain diseases with greater precision.
comment: Accepted for publication in 2024 27th International Conference on Computer and Information Technology (ICCIT)
Artificial Intelligence 187
☆ Vision as a Dialect: Unifying Visual Understanding and Generation via Text-Aligned Representations
This paper presents a multimodal framework that attempts to unify visual understanding and generation within a shared discrete semantic representation. At its core is the Text-Aligned Tokenizer (TA-Tok), which converts images into discrete tokens using a text-aligned codebook projected from a large language model's (LLM) vocabulary. By integrating vision and text into a unified space with an expanded vocabulary, our multimodal LLM, Tar, enables cross-modal input and output through a shared interface, without the need for modality-specific designs. Additionally, we propose scale-adaptive encoding and decoding to balance efficiency and visual detail, along with a generative de-tokenizer to produce high-fidelity visual outputs. To address diverse decoding needs, we utilize two complementary de-tokenizers: a fast autoregressive model and a diffusion-based model. To enhance modality fusion, we investigate advanced pre-training tasks, demonstrating improvements in both visual understanding and generation. Experiments across benchmarks show that Tar matches or surpasses existing multimodal LLM methods, achieving faster convergence and greater training efficiency. Code, models, and data are available at https://tar.csuhan.com
comment: Project page: https://tar.csuhan.com
MinD: Unified Visual Imagination and Control via Hierarchical World Models
Video generation models (VGMs) offer a promising pathway for unified world modeling in robotics by integrating simulation, prediction, and manipulation. However, their practical application remains limited due to (1) slowgeneration speed, which limits real-time interaction, and (2) poor consistency between imagined videos and executable actions. To address these challenges, we propose Manipulate in Dream (MinD), a hierarchical diffusion-based world model framework that employs a dual-system design for vision-language manipulation. MinD executes VGM at low frequencies to extract video prediction features, while leveraging a high-frequency diffusion policy for real-time interaction. This architecture enables low-latency, closed-loop control in manipulation with coherent visual guidance. To better coordinate the two systems, we introduce a video-action diffusion matching module (DiffMatcher), with a novel co-training strategy that uses separate schedulers for each diffusion model. Specifically, we introduce a diffusion-forcing mechanism to DiffMatcher that aligns their intermediate representations during training, helping the fast action model better understand video-based predictions. Beyond manipulation, MinD also functions as a world simulator, reliably predicting task success or failure in latent space before execution. Trustworthy analysis further shows that VGMs can preemptively evaluate task feasibility and mitigate risks. Extensive experiments across multiple benchmarks demonstrate that MinD achieves state-of-the-art manipulation (63%+) in RL-Bench, advancing the frontier of unified world modeling in robotics.
☆ Steering Conceptual Bias via Transformer Latent-Subspace Activation
This work examines whether activating latent subspaces in language models (LLMs) can steer scientific code generation toward a specific programming language. Five causal LLMs were first evaluated on scientific coding prompts to quantify their baseline bias among four programming languages. A static neuron-attribution method, perturbing the highest activated MLP weight for a C++ or CPP token, proved brittle and exhibited limited generalization across prompt styles and model scales. To address these limitations, a gradient-refined adaptive activation steering framework (G-ACT) was developed: per-prompt activation differences are clustered into a small set of steering directions, and lightweight per-layer probes are trained and refined online to select the appropriate steering vector. In LLaMA-3.2 3B, this approach reliably biases generation towards the CPP language by increasing the average probe classification accuracy by 15% and the early layers (0-6) improving the probe classification accuracy by 61.5% compared to the standard ACT framework. For LLaMA-3.3 70B, where attention-head signals become more diffuse, targeted injections at key layers still improve language selection. Although per-layer probing introduces a modest inference overhead, it remains practical by steering only a subset of layers and enables reproducible model behavior. These results demonstrate a scalable, interpretable and efficient mechanism for concept-level control for practical agentic systems.
☆ OMEGA: Can LLMs Reason Outside the Box in Math? Evaluating Exploratory, Compositional, and Transformative Generalization
Recent large-scale language models (LLMs) with long Chain-of-Thought reasoning-such as DeepSeek-R1-have achieved impressive results on Olympiad-level mathematics benchmarks. However, they often rely on a narrow set of strategies and struggle with problems that require a novel way of thinking. To systematically investigate these limitations, we introduce OMEGA-Out-of-distribution Math Problems Evaluation with 3 Generalization Axes-a controlled yet diverse benchmark designed to evaluate three axes of out-of-distribution generalization, inspired by Boden's typology of creativity: (1) Exploratory-applying known problem solving skills to more complex instances within the same problem domain; (2) Compositional-combining distinct reasoning skills, previously learned in isolation, to solve novel problems that require integrating these skills in new and coherent ways; and (3) Transformative-adopting novel, often unconventional strategies by moving beyond familiar approaches to solve problems more effectively. OMEGA consists of programmatically generated training-test pairs derived from templated problem generators across geometry, number theory, algebra, combinatorics, logic, and puzzles, with solutions verified using symbolic, numerical, or graphical methods. We evaluate frontier (or top-tier) LLMs and observe sharp performance degradation as problem complexity increases. Moreover, we fine-tune the Qwen-series models across all generalization settings and observe notable improvements in exploratory generalization, while compositional generalization remains limited and transformative reasoning shows little to no improvement. By isolating and quantifying these fine-grained failures, OMEGA lays the groundwork for advancing LLMs toward genuine mathematical creativity beyond mechanical proficiency.
☆ CommVQ: Commutative Vector Quantization for KV Cache Compression ICML 2025
Large Language Models (LLMs) are increasingly used in applications requiring long context lengths, but the key-value (KV) cache often becomes a memory bottleneck on GPUs as context grows. To address this, we propose Commutative Vector Quantization (CommVQ) to significantly reduce memory usage for long-context LLM inference. We first introduce additive quantization with a lightweight encoder and codebook to compress the KV cache, which can be decoded via simple matrix multiplication. To further reduce computational costs during decoding, we design the codebook to be commutative with Rotary Position Embedding (RoPE) and train it using an Expectation-Maximization (EM) algorithm. This enables efficient integration of decoding into the self-attention mechanism. Our approach achieves high accuracy with additive quantization and low overhead via the RoPE-commutative codebook. Experiments on long-context benchmarks and GSM8K show that our method reduces FP16 KV cache size by 87.5% with 2-bit quantization, while outperforming state-of-the-art KV cache quantization methods. Notably, it enables 1-bit KV cache quantization with minimal accuracy loss, allowing a LLaMA-3.1 8B model to run with a 128K context length on a single RTX 4090 GPU. The source code is available at: https://github.com/UMass-Embodied-AGI/CommVQ.
comment: ICML 2025 poster
☆ OmniGen2: Exploration to Advanced Multimodal Generation
In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2
☆ OmniAvatar: Efficient Audio-Driven Avatar Video Generation with Adaptive Body Animation
Significant progress has been made in audio-driven human animation, while most existing methods focus mainly on facial movements, limiting their ability to create full-body animations with natural synchronization and fluidity. They also struggle with precise prompt control for fine-grained generation. To tackle these challenges, we introduce OmniAvatar, an innovative audio-driven full-body video generation model that enhances human animation with improved lip-sync accuracy and natural movements. OmniAvatar introduces a pixel-wise multi-hierarchical audio embedding strategy to better capture audio features in the latent space, enhancing lip-syncing across diverse scenes. To preserve the capability for prompt-driven control of foundation models while effectively incorporating audio features, we employ a LoRA-based training approach. Extensive experiments show that OmniAvatar surpasses existing models in both facial and semi-body video generation, offering precise text-based control for creating videos in various domains, such as podcasts, human interactions, dynamic scenes, and singing. Our project page is https://omni-avatar.github.io/.
comment: Project page: https://omni-avatar.github.io/
☆ TAMMs: Temporal-Aware Multimodal Model for Satellite Image Change Understanding and Forecasting
Satellite image time-series analysis demands fine-grained spatial-temporal reasoning, which remains a challenge for existing multimodal large language models (MLLMs). In this work, we study the capabilities of MLLMs on a novel task that jointly targets temporal change understanding and future scene generation, aiming to assess their potential for modeling complex multimodal dynamics over time. We propose TAMMs, a Temporal-Aware Multimodal Model for satellite image change understanding and forecasting, which enhances frozen MLLMs with lightweight temporal modules for structured sequence encoding and contextual prompting. To guide future image generation, TAMMs introduces a Semantic-Fused Control Injection (SFCI) mechanism that adaptively combines high-level semantic reasoning and structural priors within an enhanced ControlNet. This dual-path conditioning enables temporally consistent and semantically grounded image synthesis. Experiments demonstrate that TAMMs outperforms strong MLLM baselines in both temporal change understanding and future image forecasting tasks, highlighting how carefully designed temporal reasoning and semantic fusion can unlock the full potential of MLLMs for spatio-temporal understanding.
comment: Submitted to the 33rd ACM International Conference on Multimedia. Our dataset can be found at https://huggingface.co/datasets/IceInPot/TAMMs
☆ Mechanistic Interpretability Needs Philosophy
Mechanistic interpretability (MI) aims to explain how neural networks work by uncovering their underlying causal mechanisms. As the field grows in influence, it is increasingly important to examine not just models themselves, but the assumptions, concepts and explanatory strategies implicit in MI research. We argue that mechanistic interpretability needs philosophy: not as an afterthought, but as an ongoing partner in clarifying its concepts, refining its methods, and assessing the epistemic and ethical stakes of interpreting AI systems. Taking three open problems from the MI literature as examples, this position paper illustrates the value philosophy can add to MI research, and outlines a path toward deeper interdisciplinary dialogue.
☆ LongWriter-Zero: Mastering Ultra-Long Text Generation via Reinforcement Learning
Ultra-long generation by large language models (LLMs) is a widely demanded scenario, yet it remains a significant challenge due to their maximum generation length limit and overall quality degradation as sequence length increases. Previous approaches, exemplified by LongWriter, typically rely on ''teaching'', which involves supervised fine-tuning (SFT) on synthetic long-form outputs. However, this strategy heavily depends on synthetic SFT data, which is difficult and costly to construct, often lacks coherence and consistency, and tends to be overly artificial and structurally monotonous. In this work, we propose an incentivization-based approach that, starting entirely from scratch and without relying on any annotated or synthetic data, leverages reinforcement learning (RL) to foster the emergence of ultra-long, high-quality text generation capabilities in LLMs. We perform RL training starting from a base model, similar to R1-Zero, guiding it to engage in reasoning that facilitates planning and refinement during the writing process. To support this, we employ specialized reward models that steer the LLM towards improved length control, writing quality, and structural formatting. Experimental evaluations show that our LongWriter-Zero model, trained from Qwen2.5-32B, consistently outperforms traditional SFT methods on long-form writing tasks, achieving state-of-the-art results across all metrics on WritingBench and Arena-Write, and even surpassing 100B+ models such as DeepSeek R1 and Qwen3-235B. We open-source our data and model checkpoints under https://huggingface.co/THU-KEG/LongWriter-Zero-32B
☆ Understanding Software Engineering Agents: A Study of Thought-Action-Result Trajectories
Large Language Model (LLM)-based agents are increasingly employed to automate complex software engineering tasks such as program repair and issue resolution. These agents operate by autonomously generating natural language thoughts, invoking external tools, and iteratively refining their solutions. Despite their widespread adoption, the internal decision-making processes of these agents remain largely unexplored, limiting our understanding of their operational dynamics and failure modes. In this paper, we present a large-scale empirical study of the thought-action-result trajectories of three state-of-the-art LLM-based agents: \textsc{RepairAgent}, \textsc{AutoCodeRover}, and \textsc{OpenHands}. We unify their interaction logs into a common format, capturing 120 trajectories and 2822 LLM interactions focused on program repair and issue resolution. Our study combines quantitative analyses of structural properties, action patterns, and token usage with qualitative assessments of reasoning coherence and feedback integration. We identify key trajectory characteristics such as iteration counts and token consumption, recurring action sequences, and the semantic coherence linking thoughts, actions, and their results. Our findings reveal behavioral motifs and anti-patterns that distinguish successful from failed executions, providing actionable insights for improving agent design, including prompting strategies, failure diagnosis, and anti-pattern detection. We release our dataset and annotation framework to support further research on transparent and robust autonomous software engineering agents.
☆ RWESummary: A Framework and Test for Choosing Large Language Models to Summarize Real-World Evidence (RWE) Studies
Large Language Models (LLMs) have been extensively evaluated for general summarization tasks as well as medical research assistance, but they have not been specifically evaluated for the task of summarizing real-world evidence (RWE) from structured output of RWE studies. We introduce RWESummary, a proposed addition to the MedHELM framework (Bedi, Cui, Fuentes, Unell et al., 2025) to enable benchmarking of LLMs for this task. RWESummary includes one scenario and three evaluations covering major types of errors observed in summarization of medical research studies and was developed using Atropos Health proprietary data. Additionally, we use RWESummary to compare the performance of different LLMs in our internal RWE summarization tool. At the time of publication, with 13 distinct RWE studies, we found the Gemini 2.5 models performed best overall (both Flash and Pro). We suggest RWESummary as a novel and useful foundation model benchmark for real-world evidence study summarization.
comment: 24 pages, 2 figures
☆ OC-SOP: Enhancing Vision-Based 3D Semantic Occupancy Prediction by Object-Centric Awareness
Autonomous driving perception faces significant challenges due to occlusions and incomplete scene data in the environment. To overcome these issues, the task of semantic occupancy prediction (SOP) is proposed, which aims to jointly infer both the geometry and semantic labels of a scene from images. However, conventional camera-based methods typically treat all categories equally and primarily rely on local features, leading to suboptimal predictions, especially for dynamic foreground objects. To address this, we propose Object-Centric SOP (OC-SOP), a framework that integrates high-level object-centric cues extracted via a detection branch into the semantic occupancy prediction pipeline. This object-centric integration significantly enhances the prediction accuracy for foreground objects and achieves state-of-the-art performance among all categories on SemanticKITTI.
comment: under review
☆ Shift Happens: Mixture of Experts based Continual Adaptation in Federated Learning
Federated Learning (FL) enables collaborative model training across decentralized clients without sharing raw data, yet faces significant challenges in real-world settings where client data distributions evolve dynamically over time. This paper tackles the critical problem of covariate and label shifts in streaming FL environments, where non-stationary data distributions degrade model performance and require adaptive middleware solutions. We introduce ShiftEx, a shift-aware mixture of experts framework that dynamically creates and trains specialized global models in response to detected distribution shifts using Maximum Mean Discrepancy for covariate shifts. The framework employs a latent memory mechanism for expert reuse and implements facility location-based optimization to jointly minimize covariate mismatch, expert creation costs, and label imbalance. Through theoretical analysis and comprehensive experiments on benchmark datasets, we demonstrate 5.5-12.9 percentage point accuracy improvements and 22-95 % faster adaptation compared to state-of-the-art FL baselines across diverse shift scenarios. The proposed approach offers a scalable, privacy-preserving middleware solution for FL systems operating in non-stationary, real-world conditions while minimizing communication and computational overhead.
☆ SWA-SOP: Spatially-aware Window Attention for Semantic Occupancy Prediction in Autonomous Driving
Perception systems in autonomous driving rely on sensors such as LiDAR and cameras to perceive the 3D environment. However, due to occlusions and data sparsity, these sensors often fail to capture complete information. Semantic Occupancy Prediction (SOP) addresses this challenge by inferring both occupancy and semantics of unobserved regions. Existing transformer-based SOP methods lack explicit modeling of spatial structure in attention computation, resulting in limited geometric awareness and poor performance in sparse or occluded areas. To this end, we propose Spatially-aware Window Attention (SWA), a novel mechanism that incorporates local spatial context into attention. SWA significantly improves scene completion and achieves state-of-the-art results on LiDAR-based SOP benchmarks. We further validate its generality by integrating SWA into a camera-based SOP pipeline, where it also yields consistent gains across modalities.
comment: under reviewed
☆ TRIZ Agents: A Multi-Agent LLM Approach for TRIZ-Based Innovation
TRIZ, the Theory of Inventive Problem Solving, is a structured, knowledge-based framework for innovation and abstracting problems to find inventive solutions. However, its application is often limited by the complexity and deep interdisciplinary knowledge required. Advancements in Large Language Models (LLMs) have revealed new possibilities for automating parts of this process. While previous studies have explored single LLMs in TRIZ applications, this paper introduces a multi-agent approach. We propose an LLM-based multi-agent system, called TRIZ agents, each with specialized capabilities and tool access, collaboratively solving inventive problems based on the TRIZ methodology. This multi-agent system leverages agents with various domain expertise to efficiently navigate TRIZ steps. The aim is to model and simulate an inventive process with language agents. We assess the effectiveness of this team of agents in addressing complex innovation challenges based on a selected case study in engineering. We demonstrate the potential of agent collaboration to produce diverse, inventive solutions. This research contributes to the future of AI-driven innovation, showcasing the advantages of decentralized problem-solving in complex ideation tasks.
comment: 12 pages, 10 figures, 2 tables, Accepted at the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025). Final version published in Proceedings of ICAART 2025 (Vol. 1), pages 196-207
☆ Programming by Backprop: LLMs Acquire Reusable Algorithmic Abstractions During Code Training
Training large language models (LLMs) on source code significantly enhances their general-purpose reasoning abilities, but the mechanisms underlying this generalisation are poorly understood. In this paper, we propose Programming by Backprop (PBB) as a potential driver of this effect - teaching a model to evaluate a program for inputs by training on its source code alone, without ever seeing I/O examples. To explore this idea, we finetune LLMs on two sets of programs representing simple maths problems and algorithms: one with source code and I/O examples (w/ IO), the other with source code only (w/o IO). We find evidence that LLMs have some ability to evaluate w/o IO programs for inputs in a range of experimental settings, and make several observations. Firstly, PBB works significantly better when programs are provided as code rather than semantically equivalent language descriptions. Secondly, LLMs can produce outputs for w/o IO programs directly, by implicitly evaluating the program within the forward pass, and more reliably when stepping through the program in-context via chain-of-thought. We further show that PBB leads to more robust evaluation of programs across inputs than training on I/O pairs drawn from a distribution that mirrors naturally occurring data. Our findings suggest a mechanism for enhanced reasoning through code training: it allows LLMs to internalise reusable algorithmic abstractions. Significant scope remains for future work to enable LLMs to more effectively learn from symbolic procedures, and progress in this direction opens other avenues like model alignment by training on formal constitutional principles.
☆ Sensitivity Analysis of Image Classification Models using Generalized Polynomial Chaos
Integrating advanced communication protocols in production has accelerated the adoption of data-driven predictive quality methods, notably machine learning (ML) models. However, ML models in image classification often face significant uncertainties arising from model, data, and domain shifts. These uncertainties lead to overconfidence in the classification model's output. To better understand these models, sensitivity analysis can help to analyze the relative influence of input parameters on the output. This work investigates the sensitivity of image classification models used for predictive quality. We propose modeling the distributional domain shifts of inputs with random variables and quantifying their impact on the model's outputs using Sobol indices computed via generalized polynomial chaos (GPC). This approach is validated through a case study involving a welding defect classification problem, utilizing a fine-tuned ResNet18 model and an emblem classification model used in BMW Group production facilities.
☆ ContinualFlow: Learning and Unlearning with Neural Flow Matching ICML 2025
We introduce ContinualFlow, a principled framework for targeted unlearning in generative models via Flow Matching. Our method leverages an energy-based reweighting loss to softly subtract undesired regions of the data distribution without retraining from scratch or requiring direct access to the samples to be unlearned. Instead, it relies on energy-based proxies to guide the unlearning process. We prove that this induces gradients equivalent to Flow Matching toward a soft mass-subtracted target, and validate the framework through experiments on 2D and image domains, supported by interpretable visualizations and quantitative evaluations.
comment: Accepted at the ICML 2025 Workshop on Machine Unlearning for Generative AI (MUGen @ ICML25, Vancouver, July 2025)
☆ On the Existence of Universal Simulators of Attention
Prior work on the learnability of transformers has established its capacity to approximate specific algorithmic patterns through training under restrictive architectural assumptions. Fundamentally, these arguments remain data-driven and therefore can only provide a probabilistic guarantee. Expressivity, on the contrary, has theoretically been explored to address the problems \emph{computable} by such architecture. These results proved the Turing-completeness of transformers, investigated bounds focused on circuit complexity, and formal logic. Being at the crossroad between learnability and expressivity, the question remains: \emph{can transformer architectures exactly simulate an arbitrary attention mechanism, or in particular, the underlying operations?} In this study, we investigate the transformer encoder's ability to simulate a vanilla attention mechanism. By constructing a universal simulator $\mathcal{U}$ composed of transformer encoders, we present algorithmic solutions to identically replicate attention outputs and the underlying elementary matrix and activation operations via RASP, a formal framework for transformer computation. Our proofs, for the first time, show the existence of an algorithmically achievable data-agnostic solution, previously known to be approximated only by learning.
☆ Deep CNN Face Matchers Inherently Support Revocable Biometric Templates
One common critique of biometric authentication is that if an individual's biometric is compromised, then the individual has no recourse. The concept of revocable biometrics was developed to address this concern. A biometric scheme is revocable if an individual can have their current enrollment in the scheme revoked, so that the compromised biometric template becomes worthless, and the individual can re-enroll with a new template that has similar recognition power. We show that modern deep CNN face matchers inherently allow for a robust revocable biometric scheme. For a given state-of-the-art deep CNN backbone and training set, it is possible to generate an unlimited number of distinct face matcher models that have both (1) equivalent recognition power, and (2) strongly incompatible biometric templates. The equivalent recognition power extends to the point of generating impostor and genuine distributions that have the same shape and placement on the similarity dimension, meaning that the models can share a similarity threshold for a 1-in-10,000 false match rate. The biometric templates from different model instances are so strongly incompatible that the cross-instance similarity score for images of the same person is typically lower than the same-instance similarity score for images of different persons. That is, a stolen biometric template that is revoked is of less value in attempting to match the re-enrolled identity than the average impostor template. We also explore the feasibility of using a Vision Transformer (ViT) backbone-based face matcher in the revocable biometric system proposed in this work and demonstrate that it is less suitable compared to typical ResNet-based deep CNN backbones.
☆ A Study of Dynamic Stock Relationship Modeling and S&P500 Price Forecasting Based on Differential Graph Transformer
Stock price prediction is vital for investment decisions and risk management, yet remains challenging due to markets' nonlinear dynamics and time-varying inter-stock correlations. Traditional static-correlation models fail to capture evolving stock relationships. To address this, we propose a Differential Graph Transformer (DGT) framework for dynamic relationship modeling and price prediction. Our DGT integrates sequential graph structure changes into multi-head self-attention via a differential graph mechanism, adaptively preserving high-value connections while suppressing noise. Causal temporal attention captures global/local dependencies in price sequences. We further evaluate correlation metrics (Pearson, Mutual Information, Spearman, Kendall's Tau) across global/local/dual scopes as spatial-attention priors. Using 10 years of S&P 500 closing prices (z-score normalized; 64-day sliding windows), DGT with spatial priors outperformed GRU baselines (RMSE: 0.24 vs. 0.87). Kendall's Tau global matrices yielded optimal results (MAE: 0.11). K-means clustering revealed "high-volatility growth" and "defensive blue-chip" stocks, with the latter showing lower errors (RMSE: 0.13) due to stable correlations. Kendall's Tau and Mutual Information excelled in volatile sectors. This study innovatively combines differential graph structures with Transformers, validating dynamic relationship modeling and identifying optimal correlation metrics/scopes. Clustering analysis supports tailored quantitative strategies. Our framework advances financial time-series prediction through dynamic modeling and cross-asset interaction analysis.
☆ Frequency-Weighted Training Losses for Phoneme-Level DNN-based Speech Enhancement SP
Recent advances in deep learning have significantly improved multichannel speech enhancement algorithms, yet conventional training loss functions such as the scale-invariant signal-to-distortion ratio (SDR) may fail to preserve fine-grained spectral cues essential for phoneme intelligibility. In this work, we propose perceptually-informed variants of the SDR loss, formulated in the time-frequency domain and modulated by frequency-dependent weighting schemes. These weights are designed to emphasize time-frequency regions where speech is prominent or where the interfering noise is particularly strong. We investigate both fixed and adaptive strategies, including ANSI band-importance weights, spectral magnitude-based weighting, and dynamic weighting based on the relative amount of speech and noise. We train the FaSNet multichannel speech enhancement model using these various losses. Experimental results show that while standard metrics such as the SDR are only marginally improved, their perceptual frequency-weighted counterparts exhibit a more substantial improvement. Besides, spectral and phoneme-level analysis indicates better consonant reconstruction, which points to a better preservation of certain acoustic cues.
comment: This is the preprint of the paper submitted to the 26th IEEE International Workshop on Multimedia Signal Processing (MMSP)
☆ Matrix-Game: Interactive World Foundation Model
We introduce Matrix-Game, an interactive world foundation model for controllable game world generation. Matrix-Game is trained using a two-stage pipeline that first performs large-scale unlabeled pretraining for environment understanding, followed by action-labeled training for interactive video generation. To support this, we curate Matrix-Game-MC, a comprehensive Minecraft dataset comprising over 2,700 hours of unlabeled gameplay video clips and over 1,000 hours of high-quality labeled clips with fine-grained keyboard and mouse action annotations. Our model adopts a controllable image-to-world generation paradigm, conditioned on a reference image, motion context, and user actions. With over 17 billion parameters, Matrix-Game enables precise control over character actions and camera movements, while maintaining high visual quality and temporal coherence. To evaluate performance, we develop GameWorld Score, a unified benchmark measuring visual quality, temporal quality, action controllability, and physical rule understanding for Minecraft world generation. Extensive experiments show that Matrix-Game consistently outperforms prior open-source Minecraft world models (including Oasis and MineWorld) across all metrics, with particularly strong gains in controllability and physical consistency. Double-blind human evaluations further confirm the superiority of Matrix-Game, highlighting its ability to generate perceptually realistic and precisely controllable videos across diverse game scenarios. To facilitate future research on interactive image-to-world generation, we will open-source the Matrix-Game model weights and the GameWorld Score benchmark at https://github.com/SkyworkAI/Matrix-Game.
comment: Technical Report
☆ NOVA: Navigation via Object-Centric Visual Autonomy for High-Speed Target Tracking in Unstructured GPS-Denied Environments
Autonomous aerial target tracking in unstructured and GPS-denied environments remains a fundamental challenge in robotics. Many existing methods rely on motion capture systems, pre-mapped scenes, or feature-based localization to ensure safety and control, limiting their deployment in real-world conditions. We introduce NOVA, a fully onboard, object-centric framework that enables robust target tracking and collision-aware navigation using only a stereo camera and an IMU. Rather than constructing a global map or relying on absolute localization, NOVA formulates perception, estimation, and control entirely in the target's reference frame. A tightly integrated stack combines a lightweight object detector with stereo depth completion, followed by histogram-based filtering to infer robust target distances under occlusion and noise. These measurements feed a visual-inertial state estimator that recovers the full 6-DoF pose of the robot relative to the target. A nonlinear model predictive controller (NMPC) plans dynamically feasible trajectories in the target frame. To ensure safety, high-order control barrier functions are constructed online from a compact set of high-risk collision points extracted from depth, enabling real-time obstacle avoidance without maps or dense representations. We validate NOVA across challenging real-world scenarios, including urban mazes, forest trails, and repeated transitions through buildings with intermittent GPS loss and severe lighting changes that disrupt feature-based localization. Each experiment is repeated multiple times under similar conditions to assess resilience, showing consistent and reliable performance. NOVA achieves agile target following at speeds exceeding 50 km/h. These results show that high-speed vision-based tracking is possible in the wild using only onboard sensing, with no reliance on external localization or environment assumptions.
☆ SIM-Net: A Multimodal Fusion Network Using Inferred 3D Object Shape Point Clouds from RGB Images for 2D Classification
We introduce the Shape-Image Multimodal Network (SIM-Net), a novel 2D image classification architecture that integrates 3D point cloud representations inferred directly from RGB images. Our key contribution lies in a pixel-to-point transformation that converts 2D object masks into 3D point clouds, enabling the fusion of texture-based and geometric features for enhanced classification performance. SIM-Net is particularly well-suited for the classification of digitized herbarium specimens (a task made challenging by heterogeneous backgrounds), non-plant elements, and occlusions that compromise conventional image-based models. To address these issues, SIM-Net employs a segmentation-based preprocessing step to extract object masks prior to 3D point cloud generation. The architecture comprises a CNN encoder for 2D image features and a PointNet-based encoder for geometric features, which are fused into a unified latent space. Experimental evaluations on herbarium datasets demonstrate that SIM-Net consistently outperforms ResNet101, achieving gains of up to 9.9% in accuracy and 12.3% in F-score. It also surpasses several transformer-based state-of-the-art architectures, highlighting the benefits of incorporating 3D structural reasoning into 2D image classification tasks.
comment: 25 pages, 9 figures, 14 tables
☆ Multi-Scale Spectral Attention Module-based Hyperspectral Segmentation in Autonomous Driving Scenarios
Recent advances in autonomous driving (AD) have highlighted the potential of Hyperspectral Imaging (HSI) for enhanced environmental perception, particularly in challenging weather and lighting conditions. However, efficiently processing its high-dimensional spectral data remains a significant challenge. This paper introduces a Multi-scale Spectral Attention Module (MSAM) that enhances spectral feature extraction through three parallel 1D convolutions with varying kernel sizes between 1 to 11, coupled with an adaptive feature aggregation mechanism. By integrating MSAM into UNet's skip connections (UNet-SC), our proposed UNet-MSAM achieves significant improvements in semantic segmentation performance across multiple HSI datasets: HyKo-VIS v2, HSI-Drive v2, and Hyperspectral City v2. Our comprehensive experiments demonstrate that with minimal computational overhead (on average 0.02% in parameters and 0.82% GFLOPS), UNet-MSAM consistently outperforms UNet-SC, achieving average improvements of 3.61% in mean IoU and 3.80% in mF1 across the three datasets. Through extensive ablation studies, we have established that multi-scale kernel combinations perform better than single-scale configurations. These findings demonstrate the potential of HSI processing for AD and provide valuable insights into designing robust, multi-scale spectral feature extractors for real-world applications.
☆ Is There a Case for Conversation Optimized Tokenizers in Large Language Models?
The computational and energy costs of Large Language Models (LLMs) have increased exponentially driven by the growing model sizes and the massive adoption of LLMs by hundreds of millions of users. The unit cost of an LLM is the computation of a token. Therefore, the tokenizer plays an important role in the efficiency of a model, and they are carefully optimized to minimize the number of tokens for the text in their training corpus. One of the most popular applications of LLMs are chatbots that interact with users. A key observation is that, for those chatbots, what is important is the performance of the tokenizer in the user text input and the chatbot responses. Those are most likely different from the text in the training corpus. So, a question that immediately arises is whether there is a potential benefit in optimizing tokenizers for chatbot conversations. In this paper, this idea is explored for different tokenizers by using a publicly available corpus of chatbot conversations to redesign their vocabularies and evaluate their performance in this domain. The results show that conversation-optimized tokenizers consistently reduce the number of tokens in chatbot dialogues, which can lead to meaningful energy savings, in the range of 5% to 10% while having minimal or even slightly positive impact on tokenization efficiency for the original training corpus.
☆ Benchmarking histopathology foundation models in a multi-center dataset for skin cancer subtyping
Pretraining on large-scale, in-domain datasets grants histopathology foundation models (FM) the ability to learn task-agnostic data representations, enhancing transfer learning on downstream tasks. In computational pathology, automated whole slide image analysis requires multiple instance learning (MIL) frameworks due to the gigapixel scale of the slides. The diversity among histopathology FMs has highlighted the need to design real-world challenges for evaluating their effectiveness. To bridge this gap, our work presents a novel benchmark for evaluating histopathology FMs as patch-level feature extractors within a MIL classification framework. For that purpose, we leverage the AI4SkIN dataset, a multi-center cohort encompassing slides with challenging cutaneous spindle cell neoplasm subtypes. We also define the Foundation Model - Silhouette Index (FM-SI), a novel metric to measure model consistency against distribution shifts. Our experimentation shows that extracting less biased features enhances classification performance, especially in similarity-based MIL classifiers.
comment: Accepeted for oral presentation at Medical Image Understanding and Analysis (MIUA) 2025
☆ Historical Report Guided Bi-modal Concurrent Learning for Pathology Report Generation
Automated pathology report generation from Whole Slide Images (WSIs) faces two key challenges: (1) lack of semantic content in visual features and (2) inherent information redundancy in WSIs. To address these issues, we propose a novel Historical Report Guided \textbf{Bi}-modal Concurrent Learning Framework for Pathology Report \textbf{Gen}eration (BiGen) emulating pathologists' diagnostic reasoning, consisting of: (1) A knowledge retrieval mechanism to provide rich semantic content, which retrieves WSI-relevant knowledge from pre-built medical knowledge bank by matching high-attention patches and (2) A bi-modal concurrent learning strategy instantiated via a learnable visual token and a learnable textual token to dynamically extract key visual features and retrieved knowledge, where weight-shared layers enable cross-modal alignment between visual features and knowledge features. Our multi-modal decoder integrates both modals for comprehensive diagnostic reports generation. Experiments on the PathText (BRCA) dataset demonstrate our framework's superiority, achieving state-of-the-art performance with 7.4\% relative improvement in NLP metrics and 19.1\% enhancement in classification metrics for Her-2 prediction versus existing methods. Ablation studies validate the necessity of our proposed modules, highlighting our method's ability to provide WSI-relevant rich semantic content and suppress information redundancy in WSIs. Code is publicly available at https://github.com/DeepMed-Lab-ECNU/BiGen.
☆ Dual-level Behavioral Consistency for Inter-group and Intra-group Coordination in Multi-Agent Systems
Behavioral diversity in Multi-agent reinforcement learning(MARL) represents an emerging and promising research area. Prior work has largely centered on intra-group behavioral consistency in multi-agent systems, with limited attention given to behavioral consistency in multi-agent grouping scenarios. In this paper, we introduce Dual-Level Behavioral Consistency (DLBC), a novel MARL control method designed to explicitly regulate agent behaviors at both intra-group and inter-group levels. DLBC partitions agents into distinct groups and dynamically modulates behavioral diversity both within and between these groups. By dynamically modulating behavioral diversity within and between these groups, DLBC achieves enhanced division of labor through inter-group consistency, which constrains behavioral strategies across different groups. Simultaneously, intra-group consistency, achieved by aligning behavioral strategies within each group, fosters stronger intra-group cooperation. Crucially, DLBC's direct constraint of agent policy functions ensures its broad applicability across various algorithmic frameworks. Experimental results in various grouping cooperation scenarios demonstrate that DLBC significantly enhances both intra-group cooperative performance and inter-group task specialization, yielding substantial performance improvements. DLBC provides new ideas for behavioral consistency control of multi-intelligent body systems, and its potential for application in more complex tasks and dynamic environments can be further explored in the future.
☆ Federated Loss Exploration for Improved Convergence on Non-IID Data
Federated learning (FL) has emerged as a groundbreaking paradigm in machine learning (ML), offering privacy-preserving collaborative model training across diverse datasets. Despite its promise, FL faces significant hurdles in non-identically and independently distributed (non-IID) data scenarios, where most existing methods often struggle with data heterogeneity and lack robustness in performance. This paper introduces Federated Loss Exploration (FedLEx), an innovative approach specifically designed to tackle these challenges. FedLEx distinctively addresses the shortcomings of existing FL methods in non-IID settings by optimizing its learning behavior for scenarios in which assumptions about data heterogeneity are impractical or unknown. It employs a federated loss exploration technique, where clients contribute to a global guidance matrix by calculating gradient deviations for model parameters. This matrix serves as a strategic compass to guide clients' gradient updates in subsequent FL rounds, thereby fostering optimal parameter updates for the global model. FedLEx effectively navigates the complex loss surfaces inherent in non-IID data, enhancing knowledge transfer in an efficient manner, since only a small number of epochs and small amount of data are required to build a strong global guidance matrix that can achieve model convergence without the need for additional data sharing or data distribution statics in a large client scenario. Our extensive experiments with state-of-the art FL algorithms demonstrate significant improvements in performance, particularly under realistic non-IID conditions, thus highlighting FedLEx's potential to overcome critical barriers in diverse FL applications.
☆ Granular-Ball-Induced Multiple Kernel K-Means IJCAI 2025
Most existing multi-kernel clustering algorithms, such as multi-kernel K-means, often struggle with computational efficiency and robustness when faced with complex data distributions. These challenges stem from their dependence on point-to-point relationships for optimization, which can lead to difficulty in accurately capturing data sets' inherent structure and diversity. Additionally, the intricate interplay between multiple kernels in such algorithms can further exacerbate these issues, effectively impacting their ability to cluster data points in high-dimensional spaces. In this paper, we leverage granular-ball computing to improve the multi-kernel clustering framework. The core of granular-ball computing is to adaptively fit data distribution by balls from coarse to acceptable levels. Each ball can enclose data points based on a density consistency measurement. Such ball-based data description thus improves the computational efficiency and the robustness to unknown noises. Specifically, based on granular-ball representations, we introduce the granular-ball kernel (GBK) and its corresponding granular-ball multi-kernel K-means framework (GB-MKKM) for efficient clustering. Using granular-ball relationships in multiple kernel spaces, the proposed GB-MKKM framework shows its superiority in efficiency and clustering performance in the empirical evaluation of various clustering tasks.
comment: Accepted by IJCAI 2025
☆ AggTruth: Contextual Hallucination Detection using Aggregated Attention Scores in LLMs CCS 2025
In real-world applications, Large Language Models (LLMs) often hallucinate, even in Retrieval-Augmented Generation (RAG) settings, which poses a significant challenge to their deployment. In this paper, we introduce AggTruth, a method for online detection of contextual hallucinations by analyzing the distribution of internal attention scores in the provided context (passage). Specifically, we propose four different variants of the method, each varying in the aggregation technique used to calculate attention scores. Across all LLMs examined, AggTruth demonstrated stable performance in both same-task and cross-task setups, outperforming the current SOTA in multiple scenarios. Furthermore, we conducted an in-depth analysis of feature selection techniques and examined how the number of selected attention heads impacts detection performance, demonstrating that careful selection of heads is essential to achieve optimal results.
comment: ICCS 2025 Workshops
☆ Multi-Agent Reinforcement Learning for Inverse Design in Photonic Integrated Circuits
Inverse design of photonic integrated circuits (PICs) has traditionally relied on gradientbased optimization. However, this approach is prone to end up in local minima, which results in suboptimal design functionality. As interest in PICs increases due to their potential for addressing modern hardware demands through optical computing, more adaptive optimization algorithms are needed. We present a reinforcement learning (RL) environment as well as multi-agent RL algorithms for the design of PICs. By discretizing the design space into a grid, we formulate the design task as an optimization problem with thousands of binary variables. We consider multiple two- and three-dimensional design tasks that represent PIC components for an optical computing system. By decomposing the design space into thousands of individual agents, our algorithms are able to optimize designs with only a few thousand environment samples. They outperform previous state-of-the-art gradient-based optimization in both twoand three-dimensional design tasks. Our work may also serve as a benchmark for further exploration of sample-efficient RL for inverse design in photonics.
☆ Frequency Control in Microgrids: An Adaptive Fuzzy-Neural-Network Virtual Synchronous Generator
The reliance on distributed renewable energy has increased recently. As a result, power electronic-based distributed generators replaced synchronous generators which led to a change in the dynamic characteristics of the microgrid. Most critically, they reduced system inertia and damping. Virtual synchronous generators emulated in power electronics, which mimic the dynamic behaviour of synchronous generators, are meant to fix this problem. However, fixed virtual synchronous generator parameters cannot guarantee a frequency regulation within the acceptable tolerance range. Conversely, a dynamic adjustment of these virtual parameters promises robust solution with stable frequency. This paper proposes a method to adapt the inertia, damping, and droop parameters dynamically through a fuzzy neural network controller. This controller trains itself online to choose appropriate values for these virtual parameters. The proposed method can be applied to a typical AC microgrid by considering the penetration and impact of renewable energy sources. We study the system in a MATLAB/Simulink model and validate it experimentally in real time using hardware-in-the-loop based on an embedded ARM system (SAM3X8E, Cortex-M3). Compared to traditional and fuzzy logic controller methods, the results demonstrate that the proposed method significantly reduces the frequency deviation to less than 0.03 Hz and shortens the stabilizing/recovery time.
comment: 11 pages, 17 figures
☆ Simulation-Free Differential Dynamics through Neural Conservation Laws
We present a novel simulation-free framework for training continuous-time diffusion processes over very general objective functions. Existing methods typically involve either prescribing the optimal diffusion process -- which only works for heavily restricted problem formulations -- or require expensive simulation to numerically obtain the time-dependent densities and sample from the diffusion process. In contrast, we propose a coupled parameterization which jointly models a time-dependent density function, or probability path, and the dynamics of a diffusion process that generates this probability path. To accomplish this, our approach directly bakes in the Fokker-Planck equation and density function requirements as hard constraints, by extending and greatly simplifying the construction of Neural Conservation Laws. This enables simulation-free training for a large variety of problem formulations, from data-driven objectives as in generative modeling and dynamical optimal transport, to optimality-based objectives as in stochastic optimal control, with straightforward extensions to mean-field objectives due to the ease of accessing exact density functions. We validate our method in a diverse range of application domains from modeling spatio-temporal events to learning optimal dynamics from population data.
☆ BulletGen: Improving 4D Reconstruction with Bullet-Time Generation
Transforming casually captured, monocular videos into fully immersive dynamic experiences is a highly ill-posed task, and comes with significant challenges, e.g., reconstructing unseen regions, and dealing with the ambiguity in monocular depth estimation. In this work we introduce BulletGen, an approach that takes advantage of generative models to correct errors and complete missing information in a Gaussian-based dynamic scene representation. This is done by aligning the output of a diffusion-based video generation model with the 4D reconstruction at a single frozen "bullet-time" step. The generated frames are then used to supervise the optimization of the 4D Gaussian model. Our method seamlessly blends generative content with both static and dynamic scene components, achieving state-of-the-art results on both novel-view synthesis, and 2D/3D tracking tasks.
Optimization-Induced Dynamics of Lipschitz Continuity in Neural Networks
Lipschitz continuity characterizes the worst-case sensitivity of neural networks to small input perturbations; yet its dynamics (i.e. temporal evolution) during training remains under-explored. We present a rigorous mathematical framework to model the temporal evolution of Lipschitz continuity during training with stochastic gradient descent (SGD). This framework leverages a system of stochastic differential equations (SDEs) to capture both deterministic and stochastic forces. Our theoretical analysis identifies three principal factors driving the evolution: (i) the projection of gradient flows, induced by the optimization dynamics, onto the operator-norm Jacobian of parameter matrices; (ii) the projection of gradient noise, arising from the randomness in mini-batch sampling, onto the operator-norm Jacobian; and (iii) the projection of the gradient noise onto the operator-norm Hessian of parameter matrices. Furthermore, our theoretical framework sheds light on such as how noisy supervision, parameter initialization, batch size, and mini-batch sampling trajectories, among other factors, shape the evolution of the Lipschitz continuity of neural networks. Our experimental results demonstrate strong agreement between the theoretical implications and the observed behaviors.
☆ Airalogy: AI-empowered universal data digitization for research automation
Research data are the foundation of Artificial Intelligence (AI)-driven science, yet current AI applications remain limited to a few fields with readily available, well-structured, digitized datasets. Achieving comprehensive AI empowerment across multiple disciplines is still out of reach. Present-day research data collection is often fragmented, lacking unified standards, inefficiently managed, and difficult to share. Creating a single platform for standardized data digitization needs to overcome the inherent challenge of balancing between universality (supporting the diverse, ever-evolving needs of various disciplines) and standardization (enforcing consistent formats to fully enable AI). No existing platform accommodates both facets. Building a truly multidisciplinary platform requires integrating scientific domain knowledge with sophisticated computing skills. Researchers often lack the computational expertise to design customized and standardized data recording methods, whereas platform developers rarely grasp the intricate needs of multiple scientific domains. These gaps impede research data standardization and hamper AI-driven progress. In this study, we address these challenges by developing Airalogy (https://airalogy.com), the world's first AI- and community-driven platform that balances universality and standardization for digitizing research data across multiple disciplines. Airalogy represents entire research workflows using customizable, standardized data records and offers an advanced AI research copilot for intelligent Q&A, automated data entry, analysis, and research automation. Already deployed in laboratories across all four schools of Westlake University, Airalogy has the potential to accelerate and automate scientific innovation in universities, industry, and the global research community-ultimately benefiting humanity as a whole.
comment: 146 pages, 6 figures, 49 supplementary figures
☆ T-CPDL: A Temporal Causal Probabilistic Description Logic for Developing Logic-RAG Agent
Large language models excel at generating fluent text but frequently struggle with structured reasoning involving temporal constraints, causal relationships, and probabilistic reasoning. To address these limitations, we propose Temporal Causal Probabilistic Description Logic (T-CPDL), an integrated framework that extends traditional Description Logic with temporal interval operators, explicit causal relationships, and probabilistic annotations. We present two distinct variants of T-CPDL: one capturing qualitative temporal relationships through Allen's interval algebra, and another variant enriched with explicit timestamped causal assertions. Both variants share a unified logical structure, enabling complex reasoning tasks ranging from simple temporal ordering to nuanced probabilistic causation. Empirical evaluations on temporal reasoning and causal inference benchmarks confirm that T-CPDL substantially improves inference accuracy, interpretability, and confidence calibration of language model outputs. By delivering transparent reasoning paths and fine-grained temporal and causal semantics, T-CPDL significantly enhances the capability of language models to support robust, explainable, and trustworthy decision-making. This work also lays the groundwork for developing advanced Logic-Retrieval-Augmented Generation (Logic-RAG) frameworks, potentially boosting the reasoning capabilities and efficiency of knowledge graph-enhanced RAG systems.
☆ Security Assessment of DeepSeek and GPT Series Models against Jailbreak Attacks
The widespread deployment of large language models (LLMs) has raised critical concerns over their vulnerability to jailbreak attacks, i.e., adversarial prompts that bypass alignment mechanisms and elicit harmful or policy-violating outputs. While proprietary models like GPT-4 have undergone extensive evaluation, the robustness of emerging open-source alternatives such as DeepSeek remains largely underexplored, despite their growing adoption in real-world applications. In this paper, we present the first systematic jailbreak evaluation of DeepSeek-series models, comparing them with GPT-3.5 and GPT-4 using the HarmBench benchmark. We evaluate seven representative attack strategies across 510 harmful behaviors categorized by both function and semantic domain. Our analysis reveals that DeepSeek's Mixture-of-Experts (MoE) architecture introduces routing sparsity that offers selective robustness against optimization-based attacks such as TAP-T, but leads to significantly higher vulnerability under prompt-based and manually engineered attacks. In contrast, GPT-4 Turbo demonstrates stronger and more consistent safety alignment across diverse behaviors, likely due to its dense Transformer design and reinforcement learning from human feedback. Fine-grained behavioral analysis and case studies further show that DeepSeek often routes adversarial prompts to under-aligned expert modules, resulting in inconsistent refusal behaviors. These findings highlight a fundamental trade-off between architectural efficiency and alignment generalization, emphasizing the need for targeted safety tuning and modular alignment strategies to ensure secure deployment of open-source LLMs.
☆ A Question Bank to Assess AI Inclusivity: Mapping out the Journey from Diversity Errors to Inclusion Excellence
Ensuring diversity and inclusion (D&I) in artificial intelligence (AI) is crucial for mitigating biases and promoting equitable decision-making. However, existing AI risk assessment frameworks often overlook inclusivity, lacking standardized tools to measure an AI system's alignment with D&I principles. This paper introduces a structured AI inclusivity question bank, a comprehensive set of 253 questions designed to evaluate AI inclusivity across five pillars: Humans, Data, Process, System, and Governance. The development of the question bank involved an iterative, multi-source approach, incorporating insights from literature reviews, D&I guidelines, Responsible AI frameworks, and a simulated user study. The simulated evaluation, conducted with 70 AI-generated personas related to different AI jobs, assessed the question bank's relevance and effectiveness for AI inclusivity across diverse roles and application domains. The findings highlight the importance of integrating D&I principles into AI development workflows and governance structures. The question bank provides an actionable tool for researchers, practitioners, and policymakers to systematically assess and enhance the inclusivity of AI systems, paving the way for more equitable and responsible AI technologies.
☆ Embedded FPGA Acceleration of Brain-Like Neural Networks: Online Learning to Scalable Inference
Edge AI applications increasingly require models that can learn and adapt on-device with minimal energy budget. Traditional deep learning models, while powerful, are often overparameterized, energy-hungry, and dependent on cloud connectivity. Brain-Like Neural Networks (BLNNs), such as the Bayesian Confidence Propagation Neural Network (BCPNN), propose a neuromorphic alternative by mimicking cortical architecture and biologically-constrained learning. They offer sparse architectures with local learning rules and unsupervised/semi-supervised learning, making them well-suited for low-power edge intelligence. However, existing BCPNN implementations rely on GPUs or datacenter FPGAs, limiting their applicability to embedded systems. This work presents the first embedded FPGA accelerator for BCPNN on a Zynq UltraScale+ SoC using High-Level Synthesis. We implement both online learning and inference-only kernels with support for variable and mixed precision. Evaluated on MNIST, Pneumonia, and Breast Cancer datasets, our accelerator achieves up to 17.5x latency and 94% energy savings over ARM baselines, without sacrificing accuracy. This work enables practical neuromorphic computing on edge devices, bridging the gap between brain-like learning and real-world deployment.
☆ Standard Applicability Judgment and Cross-jurisdictional Reasoning: A RAG-based Framework for Medical Device Compliance
Identifying the appropriate regulatory standard applicability remains a critical yet understudied challenge in medical device compliance, frequently necessitating expert interpretation of fragmented and heterogeneous documentation across different jurisdictions. To address this challenge, we introduce a modular AI system that leverages a retrieval-augmented generation (RAG) pipeline to automate standard applicability determination. Given a free-text device description, our system retrieves candidate standards from a curated corpus and uses large language models to infer jurisdiction-specific applicability, classified as Mandatory, Recommended, or Not Applicable, with traceable justifications. We construct an international benchmark dataset of medical device descriptions with expert-annotated standard mappings, and evaluate our system against retrieval-only, zero-shot, and rule-based baselines. The proposed approach attains a classification accuracy of 73% and a Top-5 retrieval recall of 87%, demonstrating its effectiveness in identifying relevant regulatory standards. We introduce the first end-to-end system for standard applicability reasoning, enabling scalable and interpretable AI-supported regulatory science. Notably, our region-aware RAG agent performs cross-jurisdictional reasoning between Chinese and U.S. standards, supporting conflict resolution and applicability justification across regulatory frameworks.
☆ Smooth Operators: LLMs Translating Imperfect Hints into Disfluency-Rich Transcripts INTERSPEECH2025
Accurate detection of disfluencies in spoken language is crucial for enhancing the performance of automatic speech and language processing systems, as well as fostering the development of more inclusive speech and language technologies. Leveraging the growing trend of large language models (LLMs) as versatile learners capable of processing both lexical and non-lexical inputs (e.g., audio and video), we propose a novel approach to transcribing disfluencies as explicit tokens with timestamps, enabling the generation of fully annotated disfluency-rich transcripts. Our method integrates acoustic representations extracted from an audio encoder with textual inputs of varying quality: clean transcriptions without disfluencies, time-aligned transcriptions from aligners, or outputs from phoneme-based ASR models -- all of which may contain imperfections. Importantly, our experiments demonstrate that textual inputs do not need to be flawless. As long as they include timestamp-related cues, LLMs can effectively smooth the input and produce fully disfluency-annotated transcripts, underscoring their robustness in handling imperfect hints.
comment: Accepted to INTERSPEECH2025 workshop DISS2025
☆ Generalizing Vision-Language Models to Novel Domains: A Comprehensive Survey
Recently, vision-language pretraining has emerged as a transformative technique that integrates the strengths of both visual and textual modalities, resulting in powerful vision-language models (VLMs). Leveraging web-scale pretraining data, these models exhibit strong zero-shot capabilities. However, their performance often deteriorates when confronted with domain-specific or specialized generalization tasks. To address this, a growing body of research focuses on transferring or generalizing the rich knowledge embedded in VLMs to various downstream applications. This survey aims to comprehensively summarize the generalization settings, methodologies, benchmarking and results in VLM literatures. Delving into the typical VLM structures, current literatures are categorized into prompt-based, parameter-based and feature-based methods according to the transferred modules. The differences and characteristics in each category are furthered summarized and discussed by revisiting the typical transfer learning (TL) settings, providing novel interpretations for TL in the era of VLMs. Popular benchmarks for VLM generalization are further introduced with thorough performance comparisons among the reviewed methods. Following the advances in large-scale generalizable pretraining, this survey also discusses the relations and differences between VLMs and up-to-date multimodal large language models (MLLM), e.g., DeepSeek-VL. By systematically reviewing the surging literatures in vision-language research from a novel and practical generalization prospective, this survey contributes to a clear landscape of current and future multimodal researches.
☆ Comparative Evaluation of ChatGPT and DeepSeek Across Key NLP Tasks: Strengths, Weaknesses, and Domain-Specific Performance
The increasing use of large language models (LLMs) in natural language processing (NLP) tasks has sparked significant interest in evaluating their effectiveness across diverse applications. While models like ChatGPT and DeepSeek have shown strong results in many NLP domains, a comprehensive evaluation is needed to understand their strengths, weaknesses, and domain-specific abilities. This is critical as these models are applied to various tasks, from sentiment analysis to more nuanced tasks like textual entailment and translation. This study aims to evaluate ChatGPT and DeepSeek across five key NLP tasks: sentiment analysis, topic classification, text summarization, machine translation, and textual entailment. A structured experimental protocol is used to ensure fairness and minimize variability. Both models are tested with identical, neutral prompts and evaluated on two benchmark datasets per task, covering domains like news, reviews, and formal/informal texts. The results show that DeepSeek excels in classification stability and logical reasoning, while ChatGPT performs better in tasks requiring nuanced understanding and flexibility. These findings provide valuable insights for selecting the appropriate LLM based on task requirements.
☆ PuckTrick: A Library for Making Synthetic Data More Realistic
The increasing reliance on machine learning (ML) models for decision-making requires high-quality training data. However, access to real-world datasets is often restricted due to privacy concerns, proprietary restrictions, and incomplete data availability. As a result, synthetic data generation (SDG) has emerged as a viable alternative, enabling the creation of artificial datasets that preserve the statistical properties of real data while ensuring privacy compliance. Despite its advantages, synthetic data is often overly clean and lacks real-world imperfections, such as missing values, noise, outliers, and misclassified labels, which can significantly impact model generalization and robustness. To address this limitation, we introduce Pucktrick, a Python library designed to systematically contaminate synthetic datasets by introducing controlled errors. The library supports multiple error types, including missing data, noisy values, outliers, label misclassification, duplication, and class imbalance, offering a structured approach to evaluating ML model resilience under real-world data imperfections. Pucktrick provides two contamination modes: one for injecting errors into clean datasets and another for further corrupting already contaminated datasets. Through extensive experiments on real-world financial datasets, we evaluate the impact of systematic data contamination on model performance. Our findings demonstrate that ML models trained on contaminated synthetic data outperform those trained on purely synthetic, error-free data, particularly for tree-based and linear models such as SVMs and Extra Trees.
comment: 17 pages, 3 figures
☆ AI-Generated Song Detection via Lyrics Transcripts
The recent rise in capabilities of AI-based music generation tools has created an upheaval in the music industry, necessitating the creation of accurate methods to detect such AI-generated content. This can be done using audio-based detectors; however, it has been shown that they struggle to generalize to unseen generators or when the audio is perturbed. Furthermore, recent work used accurate and cleanly formatted lyrics sourced from a lyrics provider database to detect AI-generated music. However, in practice, such perfect lyrics are not available (only the audio is); this leaves a substantial gap in applicability in real-life use cases. In this work, we instead propose solving this gap by transcribing songs using general automatic speech recognition (ASR) models. We do this using several detectors. The results on diverse, multi-genre, and multi-lingual lyrics show generally strong detection performance across languages and genres, particularly for our best-performing model using Whisper large-v2 and LLM2Vec embeddings. In addition, we show that our method is more robust than state-of-the-art audio-based ones when the audio is perturbed in different ways and when evaluated on different music generators. Our code is available at https://github.com/deezer/robust-AI-lyrics-detection.
comment: Accepted to ISMIR 2025
☆ MeRF: Motivation-enhanced Reinforcement Finetuning for Large Reasoning Models
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a powerful learn-to-reason paradigm for Large Language Models (LLMs) to tackle complex reasoning tasks. However, existing RLVR methods overlook one of the most distinctive capabilities of LLMs, their in-context learning ability, as prominently demonstrated by the success of Chain-of-Thought (CoT) prompting. This motivates us to explore how reinforcement learning can be effectively combined with in-context learning to better improve the reasoning capabilities of LLMs. In this paper, we introduce Motivation-enhanced Reinforcement Finetuning} (MeRF), an intuitive yet effective method enhancing reinforcement learning of LLMs by involving ``telling LLMs the rules of the game''. Specifically, MeRF directly injects the reward specification into the prompt, which serves as an in-context motivation for model to improve its responses with awareness of the optimization objective. This simple modification leverages the in-context learning ability of LLMs aligning generation with optimization, thereby incentivizing the model to generate desired outputs from both inner motivation and external reward. Empirical evaluations on the Knights and Knaves~(K&K) logic puzzle reasoning benchmark demonstrate that \texttt{MeRF} achieves substantial performance gains over baselines. Moreover, ablation studies show that performance improves with greater consistency between the in-context motivation and the external reward function, while the model also demonstrates an ability to adapt to misleading motivations through reinforcement learning.
☆ A Deep Convolutional Neural Network-Based Novel Class Balancing for Imbalance Data Segmentation
Retinal fundus images provide valuable insights into the human eye's interior structure and crucial features, such as blood vessels, optic disk, macula, and fovea. However, accurate segmentation of retinal blood vessels can be challenging due to imbalanced data distribution and varying vessel thickness. In this paper, we propose BLCB-CNN, a novel pipeline based on deep learning and bi-level class balancing scheme to achieve vessel segmentation in retinal fundus images. The BLCB-CNN scheme uses a Convolutional Neural Network (CNN) architecture and an empirical approach to balance the distribution of pixels across vessel and non-vessel classes and within thin and thick vessels. Level-I is used for vessel/non-vessel balancing and Level-II is used for thick/thin vessel balancing. Additionally, pre-processing of the input retinal fundus image is performed by Global Contrast Normalization (GCN), Contrast Limited Adaptive Histogram Equalization (CLAHE), and gamma corrections to increase intensity uniformity as well as to enhance the contrast between vessels and background pixels. The resulting balanced dataset is used for classification-based segmentation of the retinal vascular tree. We evaluate the proposed scheme on standard retinal fundus images and achieve superior performance measures, including an area under the ROC curve of 98.23%, Accuracy of 96.22%, Sensitivity of 81.57%, and Specificity of 97.65%. We also demonstrate the method's efficacy through external cross-validation on STARE images, confirming its generalization ability.
comment: This is preprint of the paper submitted to Scientific Reports journal
☆ Benchmarking Foundation Models and Parameter-Efficient Fine-Tuning for Prognosis Prediction in Medical Imaging
Artificial Intelligence (AI) holds significant promise for improving prognosis prediction in medical imaging, yet its effective application remains challenging. In this work, we introduce a structured benchmark explicitly designed to evaluate and compare the transferability of Convolutional Neural Networks and Foundation Models in predicting clinical outcomes in COVID-19 patients, leveraging diverse publicly available Chest X-ray datasets. Our experimental methodology extensively explores a wide set of fine-tuning strategies, encompassing traditional approaches such as Full Fine-Tuning and Linear Probing, as well as advanced Parameter-Efficient Fine-Tuning methods including Low-Rank Adaptation, BitFit, VeRA, and IA3. The evaluations were conducted across multiple learning paradigms, including both extensive full-data scenarios and more clinically realistic Few-Shot Learning settings, which are critical for modeling rare disease outcomes and rapidly emerging health threats. By implementing a large-scale comparative analysis involving a diverse selection of pretrained models, including general-purpose architectures pretrained on large-scale datasets such as CLIP and DINOv2, to biomedical-specific models like MedCLIP, BioMedCLIP, and PubMedCLIP, we rigorously assess each model's capacity to effectively adapt and generalize to prognosis tasks, particularly under conditions of severe data scarcity and pronounced class imbalance. The benchmark was designed to capture critical conditions common in prognosis tasks, including variations in dataset size and class distribution, providing detailed insights into the strengths and limitations of each fine-tuning strategy. This extensive and structured evaluation aims to inform the practical deployment and adoption of robust, efficient, and generalizable AI-driven solutions in real-world clinical prognosis prediction workflows.
☆ How Robust is Model Editing after Fine-Tuning? An Empirical Study on Text-to-Image Diffusion Models
Model editing offers a low-cost technique to inject or correct a particular behavior in a pre-trained model without extensive retraining, supporting applications such as factual correction and bias mitigation. Despite this common practice, it remains unknown whether edits persist after fine-tuning or whether they are inadvertently reversed. This question has fundamental practical implications. For example, if fine-tuning removes prior edits, it could serve as a defence mechanism against hidden malicious edits. Vice versa, the unintended removal of edits related to bias mitigation could pose serious safety concerns. We systematically investigate the interaction between model editing and fine-tuning in the context of T2I diffusion models, which are known to exhibit biases and generate inappropriate content. Our study spans two T2I model families (Stable Diffusion and FLUX), two sota editing techniques, and three fine-tuning methods (DreamBooth, LoRA, and DoRA). Through an extensive empirical analysis across diverse editing tasks and evaluation metrics, our findings reveal a trend: edits generally fail to persist through fine-tuning, even when fine-tuning is tangential or unrelated to the edits. Notably, we observe that DoRA exhibits the strongest edit reversal effect. At the same time, among editing methods, UCE demonstrates greater robustness, retaining significantly higher efficacy post-fine-tuning compared to ReFACT. These findings highlight a crucial limitation in current editing methodologies, emphasizing the need for more robust techniques to ensure reliable long-term control and alignment of deployed AI systems. These findings have dual implications for AI safety: they suggest that fine-tuning could serve as a remediation mechanism for malicious edits while simultaneously highlighting the need for re-editing after fine-tuning to maintain beneficial safety and alignment properties.
☆ A Large Language Model-based Multi-Agent Framework for Analog Circuits' Sizing Relationships Extraction
In the design process of the analog circuit pre-layout phase, device sizing is an important step in determining whether an analog circuit can meet the required performance metrics. Many existing techniques extract the circuit sizing task as a mathematical optimization problem to solve and continuously improve the optimization efficiency from a mathematical perspective. But they ignore the automatic introduction of prior knowledge, fail to achieve effective pruning of the search space, which thereby leads to a considerable compression margin remaining in the search space. To alleviate this problem, we propose a large language model (LLM)-based multi-agent framework for analog circuits' sizing relationships extraction from academic papers. The search space in the sizing process can be effectively pruned based on the sizing relationship extracted by this framework. Eventually, we conducted tests on 3 types of circuits, and the optimization efficiency was improved by $2.32 \sim 26.6 \times$. This work demonstrates that the LLM can effectively prune the search space for analog circuit sizing, providing a new solution for the combination of LLMs and conventional analog circuit design automation methods.
comment: Accepted by ISEDA 2025
☆ TReB: A Comprehensive Benchmark for Evaluating Table Reasoning Capabilities of Large Language Models
The majority of data in businesses and industries is stored in tables, databases, and data warehouses. Reasoning with table-structured data poses significant challenges for large language models (LLMs) due to its hidden semantics, inherent complexity, and structured nature. One of these challenges is lacking an effective evaluation benchmark fairly reflecting the performances of LLMs on broad table reasoning abilities. In this paper, we fill in this gap, presenting a comprehensive table reasoning evolution benchmark, TReB, which measures both shallow table understanding abilities and deep table reasoning abilities, a total of 26 sub-tasks. We construct a high quality dataset through an iterative data processing procedure. We create an evaluation framework to robustly measure table reasoning capabilities with three distinct inference modes, TCoT, PoT and ICoT. Further, we benchmark over 20 state-of-the-art LLMs using this frame work and prove its effectiveness. Experimental results reveal that existing LLMs still have significant room for improvement in addressing the complex and real world Table related tasks. Both the dataset and evaluation framework are publicly available, with the dataset hosted on [HuggingFace] and the framework on [GitHub].
comment: Benmark report v1.0
☆ Latent Space Analysis for Melanoma Prevention
Melanoma represents a critical health risk due to its aggressive progression and high mortality, underscoring the need for early, interpretable diagnostic tools. While deep learning has advanced in skin lesion classification, most existing models provide only binary outputs, offering limited clinical insight. This work introduces a novel approach that extends beyond classification, enabling interpretable risk modelling through a Conditional Variational Autoencoder. The proposed method learns a structured latent space that captures semantic relationships among lesions, allowing for a nuanced, continuous assessment of morphological differences. An SVM is also trained on this representation effectively differentiating between benign nevi and melanomas, demonstrating strong and consistent performance. More importantly, the learned latent space supports visual and geometric interpretation of malignancy, with the spatial proximity of a lesion to known melanomas serving as a meaningful indicator of risk. This approach bridges predictive performance with clinical applicability, fostering early detection, highlighting ambiguous cases, and enhancing trust in AI-assisted diagnosis through transparent and interpretable decision-making.
comment: 11 pages, 4 figures, under review
☆ The Debugging Decay Index: Rethinking Debugging Strategies for Code LLMs
The effectiveness of AI debugging follows a predictable exponential decay pattern; most models lose 60-80% of their debugging capability within just 2-3 attempts, despite iterative debugging being a critical capability for practical code generation systems. We introduce the Debugging Decay Index (DDI), a mathematical framework that quantifies when debugging becomes ineffective and predicts intervention points. Our strategic fresh start approach shifts from exploitation to exploration at strategic points in the debugging process, demonstrating that well-timed interventions can rescue the effectiveness of debugging. DDI reveals a fundamental limitation in current AI debugging and provides the first quantitative framework for optimising iterative code generation strategies.
☆ ADNF-Clustering: An Adaptive and Dynamic Neuro-Fuzzy Clustering for Leukemia Prediction
Leukemia diagnosis and monitoring rely increasingly on high-throughput image data, yet conventional clustering methods lack the flexibility to accommodate evolving cellular patterns and quantify uncertainty in real time. We introduce Adaptive and Dynamic Neuro-Fuzzy Clustering, a novel streaming-capable framework that combines Convolutional Neural Network-based feature extraction with an online fuzzy clustering engine. ADNF initializes soft partitions via Fuzzy C-Means, then continuously updates micro-cluster centers, densities, and fuzziness parameters using a Fuzzy Temporal Index (FTI) that measures entropy evolution. A topology refinement stage performs density-weighted merging and entropy-guided splitting to guard against over- and under-segmentation. On the C-NMC leukemia microscopy dataset, our tool achieves a silhouette score of 0.51, demonstrating superior cohesion and separation over static baselines. The method's adaptive uncertainty modeling and label-free operation hold immediate potential for integration within the INFANT pediatric oncology network, enabling scalable, up-to-date support for personalized leukemia management.
comment: 6 pages, 1 figure, under review
☆ Evaluating Causal Explanation in Medical Reports with LLM-Based and Human-Aligned Metrics SIGIR 2025
This study investigates how accurately different evaluation metrics capture the quality of causal explanations in automatically generated diagnostic reports. We compare six metrics: BERTScore, Cosine Similarity, BioSentVec, GPT-White, GPT-Black, and expert qualitative assessment across two input types: observation-based and multiple-choice-based report generation. Two weighting strategies are applied: one reflecting task-specific priorities, and the other assigning equal weights to all metrics. Our results show that GPT-Black demonstrates the strongest discriminative power in identifying logically coherent and clinically valid causal narratives. GPT-White also aligns well with expert evaluations, while similarity-based metrics diverge from clinical reasoning quality. These findings emphasize the impact of metric selection and weighting on evaluation outcomes, supporting the use of LLM-based evaluation for tasks requiring interpretability and causal reasoning.
comment: 9 pages, presented at LLM4Eval Workshop, SIGIR 2025 Padova, Italy, July 17, 2025
☆ LOGICPO: Efficient Translation of NL-based Logical Problems to FOL using LLMs and Preference Optimization
Logical reasoning is a key task for artificial intelligence due to it's role in major downstream tasks such as Question Answering, Summarization. Recent methods in improving the reasoning ability of LLMs fall short in correctly converting a natural language reasoning problem to an equivalent logical formulation, which hinders the framework's overall ability to reason. Towards this, we propose to use finetuning on a preference optimization dataset to learn to parse and represent a natural language problem as a whole to a consistent logical program by 1) introducing a new supervised and preference optimization dataset LogicPO, and 2) adopting popular techniques such as Direct Preference Optimization (DPO), Kahneman-Tversky optimization (KTO) to finetune open-source LLMs. Our best model with Phi-3.5 consistently outperforms GPT-3.5-turbo's (8-shot) by producing 10% more logically correct and with 14% less syntax errors. Through the framework and our improved evaluation metrics, we offer a promising direction in improving the logical reasoning of LLMs by better representing them in their logical formulations.
PERSCEN: Learning Personalized Interaction Pattern and Scenario Preference for Multi-Scenario Matching KDD 2025
With the expansion of business scales and scopes on online platforms, multi-scenario matching has become a mainstream solution to reduce maintenance costs and alleviate data sparsity. The key to effective multi-scenario recommendation lies in capturing both user preferences shared across all scenarios and scenario-aware preferences specific to each scenario. However, existing methods often overlook user-specific modeling, limiting the generation of personalized user representations. To address this, we propose PERSCEN, an innovative approach that incorporates user-specific modeling into multi-scenario matching. PERSCEN constructs a user-specific feature graph based on user characteristics and employs a lightweight graph neural network to capture higher-order interaction patterns, enabling personalized extraction of preferences shared across scenarios. Additionally, we leverage vector quantization techniques to distil scenario-aware preferences from users' behavior sequence within individual scenarios, facilitating user-specific and scenario-aware preference modeling. To enhance efficient and flexible information transfer, we introduce a progressive scenario-aware gated linear unit that allows fine-grained, low-latency fusion. Extensive experiments demonstrate that PERSCEN outperforms existing methods. Further efficiency analysis confirms that PERSCEN effectively balances performance with computational cost, ensuring its practicality for real-world industrial systems.
comment: Accepted by KDD 2025
☆ Robots and Children that Learn Together : Improving Knowledge Retention by Teaching Peer-Like Interactive Robots
Despite growing interest in Learning-by-Teaching (LbT), few studies have explored how this paradigm can be implemented with autonomous, peer-like social robots in real classrooms. Most prior work has relied on scripted or Wizard-of-Oz behaviors, limiting our understanding of how real-time, interactive learning can be supported by artificial agents. This study addresses this gap by introducing Interactive Reinforcement Learning (RL) as a cognitive model for teachable social robots. We conducted two between-subject experiments with 58 primary school children, who either taught a robot or practiced independently on a tablet while learning French vocabulary (memorization) and grammatical rules (inference). The robot, powered by Interactive RL, learned from the child's evaluative feedback. Children in the LbT condition achieved significantly higher retention gains compared to those in the self-practice condition, especially on the grammar task. Learners with lower prior knowledge benefited most from teaching the robot. Behavioural metrics revealed that children adapted their teaching strategies over time and engaged more deeply during inference tasks. This work makes two contributions: (1) it introduces Interactive RL as a pedagogically effective and scalable model for peer-robot learning, and (2) it demonstrates, for the first time, the feasibility of deploying multiple autonomous robots simultaneously in real classrooms. These findings extend theoretical understanding of LbT by showing that social robots can function not only as passive tutees but as adaptive partners that enhance meta-cognitive engagement and long-term learning outcomes.
Dynamic Knowledge Exchange and Dual-diversity Review: Concisely Unleashing the Potential of a Multi-Agent Research Team
Scientific progress increasingly relies on effective collaboration among researchers, a dynamic that large language models (LLMs) have only begun to emulate. While recent LLM-based scientist agents show promise in autonomous scientific discovery, they often lack the interactive reasoning and evaluation mechanisms essential to real-world research. We propose IDVSCI (Internal Discussion and Vote SCIentists), a multi-agent framework built on LLMs that incorporates two key innovations: a Dynamic Knowledge Exchange mechanism enabling iterative feedback among agents, and a Dual-Diversity Review paradigm that simulates heterogeneous expert evaluation. These components jointly promote deeper reasoning and the generation of more creative and impactful scientific ideas. To evaluate the effectiveness and generalizability of our approach, we conduct experiments on two datasets: a widely used benchmark in computer science and a new dataset we introduce in the health sciences domain. Results show that IDVSCI consistently achieves the best performance across both datasets, outperforming existing systems such as AI Scientist and VIRSCI. These findings highlight the value of modeling interaction and peer review dynamics in LLM-based autonomous research.
Controlled Generation with Equivariant Variational Flow Matching
We derive a controlled generation objective within the framework of Variational Flow Matching (VFM), which casts flow matching as a variational inference problem. We demonstrate that controlled generation can be implemented two ways: (1) by way of end-to-end training of conditional generative models, or (2) as a Bayesian inference problem, enabling post hoc control of unconditional models without retraining. Furthermore, we establish the conditions required for equivariant generation and provide an equivariant formulation of VFM tailored for molecular generation, ensuring invariance to rotations, translations, and permutations. We evaluate our approach on both uncontrolled and controlled molecular generation, achieving state-of-the-art performance on uncontrolled generation and outperforming state-of-the-art models in controlled generation, both with end-to-end training and in the Bayesian inference setting. This work strengthens the connection between flow-based generative modeling and Bayesian inference, offering a scalable and principled framework for constraint-driven and symmetry-aware generation.
☆ Structured Kolmogorov-Arnold Neural ODEs for Interpretable Learning and Symbolic Discovery of Nonlinear Dynamics
Understanding and modeling nonlinear dynamical systems is a fundamental problem across scientific and engineering domains. While deep learning has demonstrated remarkable potential for learning complex system behavior, achieving models that are both highly accurate and physically interpretable remains a major challenge. To address this, we propose Structured Kolmogorov-Arnold Neural ODEs (SKANODEs), a novel framework that integrates structured state-space modeling with the Kolmogorov-Arnold Network (KAN). SKANODE first employs a fully trainable KAN as a universal function approximator within a structured Neural ODE framework to perform virtual sensing, recovering latent states that correspond to physically interpretable quantities such as positions and velocities. Once this structured latent representation is established, we exploit the symbolic regression capability of KAN to extract compact and interpretable expressions for the system's governing dynamics. The resulting symbolic expression is then substituted back into the Neural ODE framework and further calibrated through continued training to refine its coefficients, enhancing both the precision of the discovered equations and the predictive accuracy of system responses. Extensive experiments on both simulated and real-world systems demonstrate that SKANODE achieves superior performance while offering interpretable, physics-consistent models that uncover the underlying mechanisms of nonlinear dynamical systems.
☆ Confucius3-Math: A Lightweight High-Performance Reasoning LLM for Chinese K-12 Mathematics Learning
We introduce Confucius3-Math, an open-source large language model with 14B parameters that (1) runs efficiently on a single consumer-grade GPU; (2) achieves SOTA performances on a range of mathematical reasoning tasks, outperforming many models with significantly larger sizes. In particular, as part of our mission to enhancing education and knowledge dissemination with AI, Confucius3-Math is specifically committed to mathematics learning for Chinese K-12 students and educators. Built via post-training with large-scale reinforcement learning (RL), Confucius3-Math aligns with national curriculum and excels at solving main-stream Chinese K-12 mathematical problems with low cost. In this report we share our development recipe, the challenges we encounter and the techniques we develop to overcome them. In particular, we introduce three technical innovations: Targeted Entropy Regularization, Recent Sample Recovery and Policy-Specific Hardness Weighting. These innovations encompass a new entropy regularization, a novel data scheduling policy, and an improved group-relative advantage estimator. Collectively, they significantly stabilize the RL training, improve data efficiency, and boost performance. Our work demonstrates the feasibility of building strong reasoning models in a particular domain at low cost. We open-source our model and code at https://github.com/netease-youdao/Confucius3-Math.
☆ Bias vs Bias -- Dawn of Justice: A Fair Fight in Recommendation Systems
Recommendation systems play a crucial role in our daily lives by impacting user experience across various domains, including e-commerce, job advertisements, entertainment, etc. Given the vital role of such systems in our lives, practitioners must ensure they do not produce unfair and imbalanced recommendations. Previous work addressing bias in recommendations overlooked bias in certain item categories, potentially leaving some biases unaddressed. Additionally, most previous work on fair re-ranking focused on binary-sensitive attributes. In this paper, we address these issues by proposing a fairness-aware re-ranking approach that helps mitigate bias in different categories of items. This re-ranking approach leverages existing biases to correct disparities in recommendations across various demographic groups. We show how our approach can mitigate bias on multiple sensitive attributes, including gender, age, and occupation. We experimented on three real-world datasets to evaluate the effectiveness of our re-ranking scheme in mitigating bias in recommendations. Our results show how this approach helps mitigate social bias with little to no degradation in performance.
☆ A Multi-Scale Spatial Attention-Based Zero-Shot Learning Framework for Low-Light Image Enhancement
Low-light image enhancement remains a challenging task, particularly in the absence of paired training data. In this study, we present LucentVisionNet, a novel zero-shot learning framework that addresses the limitations of traditional and deep learning-based enhancement methods. The proposed approach integrates multi-scale spatial attention with a deep curve estimation network, enabling fine-grained enhancement while preserving semantic and perceptual fidelity. To further improve generalization, we adopt a recurrent enhancement strategy and optimize the model using a composite loss function comprising six tailored components, including a novel no-reference image quality loss inspired by human visual perception. Extensive experiments on both paired and unpaired benchmark datasets demonstrate that LucentVisionNet consistently outperforms state-of-the-art supervised, unsupervised, and zero-shot methods across multiple full-reference and no-reference image quality metrics. Our framework achieves high visual quality, structural consistency, and computational efficiency, making it well-suited for deployment in real-world applications such as mobile photography, surveillance, and autonomous navigation.
☆ Use Property-Based Testing to Bridge LLM Code Generation and Validation
Large Language Models (LLMs) excel at code generation, but ensuring their outputs to be functionally correct, especially in complex programming tasks, is a persistent challenge. While traditional Test-Driven Development (TDD) offers a path for code refinement, its efficacy with LLMs is often undermined by the scarcity of high-quality test cases or the pitfalls of automated test generation, including biased tests or inaccurate output predictions that can misdirect the correction process. This paper introduces Property-Generated Solver, a novel framework that leverages Property-Based Testing (PBT) to validate high-level program properties or invariants, instead of relying on specific input-output examples. These properties are often simpler to define and verify than directly predicting exhaustive test oracles, breaking the "cycle of self-deception" where tests might share flaws with the code they are meant to validate. Property-Generated Solver employs two collaborative LLM-based agents: a Generator dedicated to code generation and iterative refinement, and a Tester that manages the PBT life-cycle and formulate semantically rich feedback from property violations. The resulting comprehensive and actionable feedback then guides the Generator in its refinement efforts. By establishing PBT as the core validation engine within this iterative, closed-loop paradigm, Property-Generated Solver provides a robust mechanism for steering LLMs towards more correct and generalizable code. Extensive experimental results on multiple code generation benchmarks demonstrate that Property-Generated Solver achieves substantial pass@1 improvements, ranging from 23.1% to 37.3% relative gains over established TDD methods.
☆ LettinGo: Explore User Profile Generation for Recommendation System
User profiling is pivotal for recommendation systems, as it transforms raw user interaction data into concise and structured representations that drive personalized recommendations. While traditional embedding-based profiles lack interpretability and adaptability, recent advances with large language models (LLMs) enable text-based profiles that are semantically richer and more transparent. However, existing methods often adhere to fixed formats that limit their ability to capture the full diversity of user behaviors. In this paper, we introduce LettinGo, a novel framework for generating diverse and adaptive user profiles. By leveraging the expressive power of LLMs and incorporating direct feedback from downstream recommendation tasks, our approach avoids the rigid constraints imposed by supervised fine-tuning (SFT). Instead, we employ Direct Preference Optimization (DPO) to align the profile generator with task-specific performance, ensuring that the profiles remain adaptive and effective. LettinGo operates in three stages: (1) exploring diverse user profiles via multiple LLMs, (2) evaluating profile quality based on their impact in recommendation systems, and (3) aligning the profile generation through pairwise preference data derived from task performance. Experimental results demonstrate that our framework significantly enhances recommendation accuracy, flexibility, and contextual awareness. This work enhances profile generation as a key innovation for next-generation recommendation systems.
comment: 11 pages, 3 figures
☆ Spiffy: Efficient Implementation of CoLaNET for Raspberry Pi
This paper presents a lightweight software-based approach for running spiking neural networks (SNNs) without relying on specialized neuromorphic hardware or frameworks. Instead, we implement a specific SNN architecture (CoLaNET) in Rust and optimize it for common computing platforms. As a case study, we demonstrate our implementation, called Spiffy, on a Raspberry Pi using the MNIST dataset. Spiffy achieves 92% accuracy with low latency - just 0.9 ms per training step and 0.45 ms per inference step. The code is open-source.
comment: 7 pages, 3 figures
☆ Sharpening the Spear: Adaptive Expert-Guided Adversarial Attack Against DRL-based Autonomous Driving Policies
Deep reinforcement learning (DRL) has emerged as a promising paradigm for autonomous driving. However, despite their advanced capabilities, DRL-based policies remain highly vulnerable to adversarial attacks, posing serious safety risks in real-world deployments. Investigating such attacks is crucial for revealing policy vulnerabilities and guiding the development of more robust autonomous systems. While prior attack methods have made notable progress, they still face several challenges: 1) they often rely on high-frequency attacks, yet critical attack opportunities are typically context-dependent and temporally sparse, resulting in inefficient attack patterns; 2) restricting attack frequency can improve efficiency but often results in unstable training due to the adversary's limited exploration. To address these challenges, we propose an adaptive expert-guided adversarial attack method that enhances both the stability and efficiency of attack policy training. Our method first derives an expert policy from successful attack demonstrations using imitation learning, strengthened by an ensemble Mixture-of-Experts architecture for robust generalization across scenarios. This expert policy then guides a DRL-based adversary through a KL-divergence regularization term. Due to the diversity of scenarios, expert policies may be imperfect. To address this, we further introduce a performance-aware annealing strategy that gradually reduces reliance on the expert as the adversary improves. Extensive experiments demonstrate that our method achieves outperforms existing approaches in terms of collision rate, attack efficiency, and training stability, especially in cases where the expert policy is sub-optimal.
comment: 12 pages, 3 figures, 2 tables
☆ GeNeRT: A Physics-Informed Approach to Intelligent Wireless Channel Modeling via Generalizable Neural Ray Tracing
Neural ray tracing (RT) has emerged as a promising paradigm for channel modeling by combining physical propagation principles with neural networks. It enables high modeling accuracy and efficiency. However, current neural RT methods face two key limitations: constrained generalization capability due to strong spatial dependence, and weak adherence to electromagnetic laws. In this paper, we propose GeNeRT, a Generalizable Neural RT framework with enhanced generalization, accuracy and efficiency. GeNeRT supports both intra-scenario spatial transferability and inter-scenario zero-shot generalization. By incorporating Fresnel-inspired neural network design, it also achieves higher accuracy in multipath component (MPC) prediction. Furthermore, a GPU-tensorized acceleration strategy is introduced to improve runtime efficiency. Extensive experiments conducted in outdoor scenarios demonstrate that GeNeRT generalizes well across untrained regions within a scenario and entirely unseen environments, and achieves superior accuracy in MPC prediction compared to baselines. Moreover, it outperforms Wireless Insite in runtime efficiency, particularly in multi-transmitter settings. Ablation experiments validate the effectiveness of the network architecture and training strategy in capturing physical principles of ray-surface interactions.
☆ Selective Social-Interaction via Individual Importance for Fast Human Trajectory Prediction
This paper presents an architecture for selecting important neighboring people to predict the primary person's trajectory. To achieve effective neighboring people selection, we propose a people selection module called the Importance Estimator which outputs the importance of each neighboring person for predicting the primary person's future trajectory. To prevent gradients from being blocked by non-differentiable operations when sampling surrounding people based on their importance, we employ the Gumbel Softmax for training. Experiments conducted on the JRDB dataset show that our method speeds up the process with competitive prediction accuracy.
comment: MIRU 2025
☆ Tu(r)ning AI Green: Exploring Energy Efficiency Cascading with Orthogonal Optimizations
AI's exponential growth intensifies computational demands and energy challenges. While practitioners employ various optimization techniques, that we refer as "knobs" in this paper, to tune model efficiency, these are typically afterthoughts and reactive ad-hoc changes applied in isolation without understanding their combinatorial effects on energy efficiency. This paper emphasizes on treating energy efficiency as the first-class citizen and as a fundamental design consideration for a compute-intensive pipeline. We show that strategic selection across five AI pipeline phases (data, model, training, system, inference) creates cascading efficiency. Experimental validation shows orthogonal combinations reduce energy consumption by up to $94.6$% while preserving $95.95$% of the original F1 score of non-optimized pipelines. This curated approach provides actionable frameworks for informed sustainable AI that balance efficiency, performance, and environmental responsibility.
comment: In review
☆ Learning Causal Graphs at Scale: A Foundation Model Approach
Due to its human-interpretability and invariance properties, Directed Acyclic Graph (DAG) has been a foundational tool across various areas of AI research, leading to significant advancements. However, DAG learning remains highly challenging, due to its super-exponential growth in computational cost and identifiability issues, particularly in small-sample regimes. To address these two challenges, in this work we leverage the recent success of linear transformers and develop a foundation model approach for discovering multiple order-consistent DAGs across tasks. In particular, we propose Attention-DAG (ADAG), a novel attention-mechanism-based architecture for learning multiple linear Structural Equation Models (SEMs). ADAG learns the mapping from observed data to both graph structure and parameters via a nonlinear attention-based kernel, enabling efficient multi-task estimation of the underlying linear SEMs. By formulating the learning process across multiple tasks as a continuous optimization problem, the pre-trained ADAG model captures the common structural properties as a shared low-dimensional prior, thereby reducing the ill-posedness of downstream DAG learning tasks in small-sample regimes. We evaluate our proposed approach on benchmark synthetic datasets and find that ADAG achieves substantial improvements in both DAG learning accuracy and zero-shot inference efficiency. To the best of our knowledge, this is the first practical approach for pre-training a foundation model specifically designed for DAG learning, representing a step toward more efficient and generalizable down-stream applications in causal discovery.
☆ Open Set Recognition for Endoscopic Image Classification: A Deep Learning Approach on the Kvasir Dataset
Endoscopic image classification plays a pivotal role in medical diagnostics by identifying anatomical landmarks and pathological findings. However, conventional closed-set classification frameworks are inherently limited in open-world clinical settings, where previously unseen conditions can arise andcompromise model reliability. To address this, we explore the application of Open Set Recognition (OSR) techniques on the Kvasir dataset, a publicly available and diverse endoscopic image collection. In this study, we evaluate and compare the OSR capabilities of several representative deep learning architectures, including ResNet-50, Swin Transformer, and a hybrid ResNet-Transformer model, under both closed-set and open-set conditions. OpenMax is adopted as a baseline OSR method to assess the ability of these models to distinguish known classes from previously unseen categories. This work represents one of the first efforts to apply open set recognition to the Kvasir dataset and provides a foundational benchmark for evaluating OSR performance in medical image analysis. Our results offer practical insights into model behavior in clinically realistic settings and highlight the importance of OSR techniques for the safe deployment of AI systems in endoscopy.
comment: 9 pages, 3 figures, 3 tables
☆ ARD-LoRA: Dynamic Rank Allocation for Parameter-Efficient Fine-Tuning of Foundation Models with Heterogeneous Adaptation Needs
Conventional Low-Rank Adaptation (LoRA) methods employ a fixed rank, imposing uniform adaptation across transformer layers and attention heads despite their heterogeneous learning dynamics. This paper introduces Adaptive Rank Dynamic LoRA (ARD-LoRA), a novel framework that automates rank allocation through learnable scaling factors. These factors are optimized via a meta-objective balancing task performance and parameter efficiency, incorporating $\ell_1$ sparsity for minimal rank and Total Variation regularization for stable rank transitions. ARD-LoRA enables continuous, differentiable, per-head rank adaptation. Experiments on LLAMA-3.1-70B and PaliGemma-2 demonstrate ARD-LoRA's efficacy, achieving up to 99.3% of full fine-tuning performance with only 0.32% trainable parameters, outperforming strong baselines like DoRA and AdaLoRA. Furthermore, it reduces multimodal adaptation memory by 41%. These results establish dynamic, fine-grained rank allocation as a critical paradigm for efficient foundation model adaptation.
☆ Advanced For-Loop for QML algorithm search
This paper introduces an advanced framework leveraging Large Language Model-based Multi-Agent Systems (LLMMA) for the automated search and optimization of Quantum Machine Learning (QML) algorithms. Inspired by Google DeepMind's FunSearch, the proposed system works on abstract level to iteratively generates and refines quantum transformations of classical machine learning algorithms (concepts), such as the Multi-Layer Perceptron, forward-forward and backpropagation algorithms. As a proof of concept, this work highlights the potential of agentic frameworks to systematically explore classical machine learning concepts and adapt them for quantum computing, paving the way for efficient and automated development of QML algorithms. Future directions include incorporating planning mechanisms and optimizing strategy in the search space for broader applications in quantum-enhanced machine learning.
comment: 7 pages, 8 figures
☆ RLPR: Extrapolating RLVR to General Domains without Verifiers
Reinforcement Learning with Verifiable Rewards (RLVR) demonstrates promising potential in advancing the reasoning capabilities of LLMs. However, its success remains largely confined to mathematical and code domains. This primary limitation stems from the heavy reliance on domain-specific verifiers, which results in prohibitive complexity and limited scalability. To address the challenge, our key observation is that LLM's intrinsic probability of generating a correct free-form answer directly indicates its own evaluation of the reasoning reward (i.e., how well the reasoning process leads to the correct answer). Building on this insight, we propose RLPR, a simple verifier-free framework that extrapolates RLVR to broader general domains. RLPR uses the LLM's own token probability scores for reference answers as the reward signal and maximizes the expected reward during training. We find that addressing the high variance of this noisy probability reward is crucial to make it work, and propose prob-to-reward and stabilizing methods to ensure a precise and stable reward from LLM intrinsic probabilities. Comprehensive experiments in four general-domain benchmarks and three mathematical benchmarks show that RLPR consistently improves reasoning capabilities in both areas for Gemma, Llama, and Qwen based models. Notably, RLPR outperforms concurrent VeriFree by 7.6 points on TheoremQA and 7.5 points on Minerva, and even surpasses strong verifier-model-dependent approaches General-Reasoner by 1.6 average points across seven benchmarks.
comment: Project Website: https://github.com/openbmb/RLPR
☆ Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models ICML 2025
In this paper, we present Morse, a simple dual-sampling framework for accelerating diffusion models losslessly. The key insight of Morse is to reformulate the iterative generation (from noise to data) process via taking advantage of fast jump sampling and adaptive residual feedback strategies. Specifically, Morse involves two models called Dash and Dot that interact with each other. The Dash model is just the pre-trained diffusion model of any type, but operates in a jump sampling regime, creating sufficient space for sampling efficiency improvement. The Dot model is significantly faster than the Dash model, which is learnt to generate residual feedback conditioned on the observations at the current jump sampling point on the trajectory of the Dash model, lifting the noise estimate to easily match the next-step estimate of the Dash model without jump sampling. By chaining the outputs of the Dash and Dot models run in a time-interleaved fashion, Morse exhibits the merit of flexibly attaining desired image generation performance while improving overall runtime efficiency. With our proposed weight sharing strategy between the Dash and Dot models, Morse is efficient for training and inference. Our method shows a lossless speedup of 1.78X to 3.31X on average over a wide range of sampling step budgets relative to 9 baseline diffusion models on 6 image generation tasks. Furthermore, we show that our method can be also generalized to improve the Latent Consistency Model (LCM-SDXL, which is already accelerated with consistency distillation technique) tailored for few-step text-to-image synthesis. The code and models are available at https://github.com/deep-optimization/Morse.
comment: This work is accepted to ICML 2025. The project page: https://github.com/deep-optimization/Morse
☆ Semantic Structure-Aware Generative Attacks for Enhanced Adversarial Transferability
Generative adversarial attacks train a perturbation generator on a white-box surrogate model and subsequently apply the crafted perturbations to unseen black-box victim models. In contrast to iterative attacks, these methods deliver superior inference-time efficiency, scalability, and transferability; however, up until now, existing studies have not fully exploited the representational capacity of generative models to preserve and harness semantic information. Specifically, the intermediate activations of the generator encode rich semantic features--object boundaries and coarse shapes--that remain under-exploited, thereby limiting the alignment of perturbations with object-salient regions which are critical for adversarial transferability. To remedy this, we introduce a semantic structure-aware attack framework based on the Mean Teacher, which serves as a temporally smoothed feature reference. With this smoothed reference, we further direct semantic consistency between the early-layer activations in the student and those of the semantically rich teacher by feature distillation. By anchoring perturbation synthesis to the semantically salient early intermediate blocks within the generator based on empirical findings, our method guides progressive adversarial perturbation on regions that substantially enhance adversarial transferability. We conduct extensive experiments over diverse models, domains and tasks to demonstrate consistent improvements relative to state-of-the-art generative attacks, comprehensively evaluated using conventional metrics and our newly proposed Accidental Correction Rate (ACR).
☆ Smart-LLaMA-DPO: Reinforced Large Language Model for Explainable Smart Contract Vulnerability Detection ISSTA 2025
Smart contract vulnerability detection remains a major challenge in blockchain security. Existing vulnerability detection methods face two main issues: (1) Existing datasets lack comprehensive coverage and high-quality explanations for preference learning. (2) Large language models (LLMs) often struggle with accurately interpreting specific concepts in smart contract security. Empirical analysis shows that even after continual pre-training (CPT) and supervised fine-tuning (SFT), LLMs may misinterpret the execution order of state changes, resulting in incorrect explanations despite making correct detection decisions. To address these challenges, we propose Smart-LLaMA-DPO based on LLaMA-3.1-8B. We construct a comprehensive dataset covering four major vulnerability types and machine-unauditable vulnerabilities, including precise labels, explanations, and locations for SFT, as well as high-quality and low-quality output pairs for Direct Preference Optimization (DPO). Second, we perform CPT using large-scale smart contract to enhance the LLM's understanding of specific security practices in smart contracts. Futhermore, we conduct SFT with our comprehensive dataset. Finally, we apply DPO, leveraging human feedback and a specially designed loss function that increases the probability of preferred explanations while reducing the likelihood of non-preferred outputs. We evaluate Smart-LLaMA-DPO on four major vulnerability types: reentrancy, timestamp dependence, integer overflow/underflow, and delegatecall, as well as machine-unauditable vulnerabilities. Our method significantly outperforms state-of-the-art baselines, with average improvements of 10.43% in F1 score and 7.87% in accuracy. Moreover, both LLM evaluation and human evaluation confirm that our method generates more correct, thorough, and clear explanations.
comment: Accepted to ISSTA 2025
☆ Quantum-Classical Hybrid Quantized Neural Network
Here in this work, we present a novel Quadratic Binary Optimization (QBO) model for quantized neural network training, enabling the use of arbitrary activation and loss functions through spline interpolation. We introduce Forward Interval Propagation (FIP), a method designed to tackle the challenges of non-linearity and the multi-layer composite structure in neural networks by discretizing activation functions into linear subintervals. This approach preserves the universal approximation properties of neural networks while allowing complex nonlinear functions to be optimized using quantum computers, thus broadening their applicability in artificial intelligence. We provide theoretical upper bounds on the approximation error and the number of Ising spins required, by deriving the sample complexity of the empirical risk minimization problem, from an optimization perspective. A significant challenge in solving the associated Quadratic Constrained Binary Optimization (QCBO) model on a large scale is the presence of numerous constraints. When employing the penalty method to handle these constraints, tuning a large number of penalty coefficients becomes a critical hyperparameter optimization problem, increasing computational complexity and potentially affecting solution quality. To address this, we employ the Quantum Conditional Gradient Descent (QCGD) algorithm, which leverages quantum computing to directly solve the QCBO problem. We prove the convergence of QCGD under a quantum oracle with randomness and bounded variance in objective value, as well as under limited precision constraints in the coefficient matrix. Additionally, we provide an upper bound on the Time-To-Solution for the QCBO solving process. Experimental results using a coherent Ising machine (CIM) demonstrate a 94.95% accuracy on the Fashion MNIST classification task, with only 1.1-bit precision.
comment: 30 pages, 5 figures, comments are welcome
☆ AdapThink: Adaptive Thinking Preferences for Reasoning Language Model
Reinforcement Learning (RL)-based post-training has significantly advanced the complex reasoning capabilities of language models, fostering sophisticated self-reflection processes. However, this ``slow thinking'' paradigm presents a critical challenge to reasoning efficiency: models may expend excessive computation on simple questions and shift reasoning prematurely for complex ones. Previous mechanisms typically rely on static length budgets or predefined rules, lacking the adaptability for varying question complexities and models' evolving capabilities. To this end, we propose AdapThink, an adaptive post-training framework designed to induce more efficient thinking while maintaining the performance of reasoning language models. Specifically, AdapThink incorporates two key mechanisms: 1) A group-relative reward function that leverages model confidence and response's characteristic to dynamically adjust the preference of reflection-related transition words without resorting to a fixed length preference. 2) A diversity-aware sampling mechanism that balances the training group's solution accuracy with reasoning diversity via an entropy-guided score. Experiments on several mathematical reasoning datasets with DeepSeek-distilled models demonstrate AdapThink's advantages in enabling adaptive reasoning patterns and mitigating the inefficiencies.
☆ The 4th Dimension for Scaling Model Size
Scaling the size of large language models typically involves three dimensions: depth, width, and the number of parameters. In this work, we explore a fourth dimension, virtual logical depth (VLD), which increases the effective algorithmic depth without changing the overall parameter count by reusing parameters within the model. Although parameter reuse is not a new concept, its potential and characteristics in model scaling have not been thoroughly studied. Through carefully designed controlled experiments, we make the following key discoveries regarding VLD scaling: VLD scaling forces the knowledge capacity of the model to remain almost constant, with only minor variations. VLD scaling enables a significant improvement in reasoning capability, provided the scaling method is properly implemented. The number of parameters correlates with knowledge capacity, but not with reasoning capability. Under certain conditions, it is not necessary to increase the parameter count to enhance reasoning. These findings are consistent across various model configurations and are likely to be generally valid within the scope of our experiments.
☆ Make It Efficient: Dynamic Sparse Attention for Autoregressive Image Generation
Autoregressive conditional image generation models have emerged as a dominant paradigm in text-to-image synthesis. These methods typically convert images into one-dimensional token sequences and leverage the self-attention mechanism, which has achieved remarkable success in natural language processing, to capture long-range dependencies, model global context, and ensure semantic coherence. However, excessively long contexts during inference lead to significant memory overhead caused by KV-cache and computational delays. To alleviate these challenges, we systematically analyze how global semantics, spatial layouts, and fine-grained textures are formed during inference, and propose a novel training-free context optimization method called Adaptive Dynamic Sparse Attention (ADSA). Conceptually, ADSA dynamically identifies historical tokens crucial for maintaining local texture consistency and those essential for ensuring global semantic coherence, thereby efficiently streamlining attention computation. Additionally, we introduce a dynamic KV-cache update mechanism tailored for ADSA, reducing GPU memory consumption during inference by approximately $50\%$. Extensive qualitative and quantitative experiments demonstrate the effectiveness and superiority of our approach in terms of both generation quality and resource efficiency.
☆ These are Not All the Features You are Looking For: A Fundamental Bottleneck In Supervised Pretraining
Transfer learning is a cornerstone of modern machine learning, promising a way to adapt models pretrained on a broad mix of data to new tasks with minimal new data. However, a significant challenge remains in ensuring that transferred features are sufficient to handle unseen datasets, amplified by the difficulty of quantifying whether two tasks are "related". To address these challenges, we evaluate model transfer from a pretraining mixture to each of its component tasks, assessing whether pretrained features can match the performance of task-specific direct training. We identify a fundamental limitation in deep learning models -- an "information saturation bottleneck" -- where networks fail to learn new features once they encode similar competing features during training. When restricted to learning only a subset of key features during pretraining, models will permanently lose critical features for transfer and perform inconsistently on data distributions, even components of the training mixture. Empirical evidence from published studies suggests that this phenomenon is pervasive in deep learning architectures -- factors such as data distribution or ordering affect the features that current representation learning methods can learn over time. This study suggests that relying solely on large-scale networks may not be as effective as focusing on task-specific training, when available. We propose richer feature representations as a potential solution to better generalize across new datasets and, specifically, present existing methods alongside a novel approach, the initial steps towards addressing this challenge.
comment: 10 pages, 7 figures, Preprint. Under review
☆ Cross-Architecture Knowledge Distillation (KD) for Retinal Fundus Image Anomaly Detection on NVIDIA Jetson Nano
Early and accurate identification of retinal ailments is crucial for averting ocular decline; however, access to dependable diagnostic devices is not often available in low-resourced settings. This project proposes to solve that by developing a lightweight, edge-device deployable disease classifier using cross-architecture knowledge distilling. We first train a high-capacity vision transformer (ViT) teacher model, pre-trained using I-JEPA self-supervised learning, to classify fundus images into four classes: Normal, Diabetic Retinopathy, Glaucoma, and Cataract. We kept an Internet of Things (IoT) focus when compressing to a CNN-based student model for deployment in resource-limited conditions, such as the NVIDIA Jetson Nano. This was accomplished using a novel framework which included a Partitioned Cross-Attention (PCA) projector, a Group-Wise Linear (GL) projector, and a multi-view robust training method. The teacher model has 97.4 percent more parameters than the student model, with it achieving 89 percent classification with a roughly 93 percent retention of the teacher model's diagnostic performance. The retention of clinical classification behavior supports our method's initial aim: compression of the ViT while retaining accuracy. Our work serves as an example of a scalable, AI-driven triage solution for retinal disorders in under-resourced areas.
comment: 15 pages, 10 figures. Berk Yilmaz and Aniruddh Aiyengar contributed equally to this work
☆ A Conceptual Framework for AI Capability Evaluations
As AI systems advance and integrate into society, well-designed and transparent evaluations are becoming essential tools in AI governance, informing decisions by providing evidence about system capabilities and risks. Yet there remains a lack of clarity on how to perform these assessments both comprehensively and reliably. To address this gap, we propose a conceptual framework for analyzing AI capability evaluations, offering a structured, descriptive approach that systematizes the analysis of widely used methods and terminology without imposing new taxonomies or rigid formats. This framework supports transparency, comparability, and interpretability across diverse evaluations. It also enables researchers to identify methodological weaknesses, assists practitioners in designing evaluations, and provides policymakers with an accessible tool to scrutinize, compare, and navigate complex evaluation landscapes.
comment: arXiv admin note: text overlap with arXiv:2306.04181 by other authors
☆ Bayesian Evolutionary Swarm Architecture: A Formal Epistemic System Grounded in Truth-Based Competition
We introduce a mathematically rigorous framework for an artificial intelligence system composed of probabilistic agents evolving through structured competition and belief revision. The architecture, grounded in Bayesian inference, measure theory, and population dynamics, defines agent fitness as a function of alignment with a fixed external oracle representing ground truth. Agents compete in a discrete-time environment, adjusting posterior beliefs through observed outcomes, with higher-rated agents reproducing and lower-rated agents undergoing extinction. Ratings are updated via pairwise truth-aligned utility comparisons, and belief updates preserve measurable consistency and stochastic convergence. We introduce hash-based cryptographic identity commitments to ensure traceability, alongside causal inference operators using do-calculus. Formal theorems on convergence, robustness, and evolutionary stability are provided. The system establishes truth as an evolutionary attractor, demonstrating that verifiable knowledge arises from adversarial epistemic pressure within a computable, self-regulating swarm.
comment: 83 pages, 14 sections, 92 formal results, no prior conference publication
☆ Spiritual-LLM : Gita Inspired Mental Health Therapy In the Era of LLMs
Traditional mental health support systems often generate responses based solely on the user's current emotion and situations, resulting in superficial interventions that fail to address deeper emotional needs. This study introduces a novel framework by integrating spiritual wisdom from the Bhagavad Gita with advanced large language model GPT-4o to enhance emotional well-being. We present the GITes (Gita Integrated Therapy for Emotional Support) dataset, which enhances the existing ExTES mental health dataset by including 10,729 spiritually guided responses generated by GPT-4o and evaluated by domain experts. We benchmark GITes against 12 state-of-the-art LLMs, including both mental health specific and general purpose models. To evaluate spiritual relevance in generated responses beyond what conventional n-gram based metrics capture, we propose a novel Spiritual Insight metric and automate assessment via an LLM as jury framework using chain-of-thought prompting. Integrating spiritual guidance into AI driven support enhances both NLP and spiritual metrics for the best performing LLM Phi3-Mini 3.2B Instruct, achieving improvements of 122.71% in ROUGE, 126.53% in METEOR, 8.15% in BERT score, 15.92% in Spiritual Insight, 18.61% in Sufficiency and 13.22% in Relevance compared to its zero-shot counterpart. While these results reflect substantial improvements across automated empathy and spirituality metrics, further validation in real world patient populations remains a necessary step. Our findings indicate a strong potential for AI systems enriched with spiritual guidance to enhance user satisfaction and perceived support outcomes. The code and dataset will be publicly available to advance further research in this emerging area.
☆ Finding Clustering Algorithms in the Transformer Architecture
The invention of the transformer architecture has revolutionized Artificial Intelligence (AI), yielding unprecedented success in areas such as natural language processing, computer vision, and multimodal reasoning. Despite these advances, it is unclear whether transformers are able to learn and implement precise algorithms. Here, we demonstrate that transformers can exactly implement a fundamental and widely used algorithm for $k$-means clustering: Lloyd's algorithm. First, we theoretically prove the existence of such a transformer architecture, which we term the $k$-means transformer, that exactly implements Lloyd's algorithm for $k$-means clustering using the standard ingredients of modern transformers: attention and residual connections. Next, we numerically implement this transformer and demonstrate in experiments the exact correspondence between our architecture and Lloyd's algorithm, providing a fully neural implementation of $k$-means clustering. Finally, we demonstrate that interpretable alterations (e.g., incorporating layer normalizations or multilayer perceptrons) to this architecture yields diverse and novel variants of clustering algorithms, such as soft $k$-means, spherical $k$-means, trimmed $k$-means, and more. Collectively, our findings demonstrate how transformer mechanisms can precisely map onto algorithmic procedures, offering a clear and interpretable perspective on implementing precise algorithms in transformers.
☆ CUPID: Curating Data your Robot Loves with Influence Functions
In robot imitation learning, policy performance is tightly coupled with the quality and composition of the demonstration data. Yet, developing a precise understanding of how individual demonstrations contribute to downstream outcomes - such as closed-loop task success or failure - remains a persistent challenge. We propose CUPID, a robot data curation method based on a novel influence function-theoretic formulation for imitation learning policies. Given a set of evaluation rollouts, CUPID estimates the influence of each training demonstration on the policy's expected return. This enables ranking and selection of demonstrations according to their impact on the policy's closed-loop performance. We use CUPID to curate data by 1) filtering out training demonstrations that harm policy performance and 2) subselecting newly collected trajectories that will most improve the policy. Extensive simulated and hardware experiments show that our approach consistently identifies which data drives test-time performance. For example, training with less than 33% of curated data can yield state-of-the-art diffusion policies on the simulated RoboMimic benchmark, with similar gains observed in hardware. Furthermore, hardware experiments show that our method can identify robust strategies under distribution shift, isolate spurious correlations, and even enhance the post-training of generalist robot policies. Additional materials are made available at: https://cupid-curation.github.io.
comment: Project page: https://cupid-curation.github.io. 28 pages, 15 figures
☆ Enhancing Security in LLM Applications: A Performance Evaluation of Early Detection Systems
Prompt injection threatens novel applications that emerge from adapting LLMs for various user tasks. The newly developed LLM-based software applications become more ubiquitous and diverse. However, the threat of prompt injection attacks undermines the security of these systems as the mitigation and defenses against them, proposed so far, are insufficient. We investigated the capabilities of early prompt injection detection systems, focusing specifically on the detection performance of techniques implemented in various open-source solutions. These solutions are supposed to detect certain types of prompt injection attacks, including the prompt leak. In prompt leakage attacks, an attacker maliciously manipulates the LLM into outputting its system instructions, violating the system's confidentiality. Our study presents analyzes of distinct prompt leakage detection techniques, and a comparative analysis of several detection solutions, which implement those techniques. We identify the strengths and weaknesses of these techniques and elaborate on their optimal configuration and usage in high-stake deployments. In one of the first studies on existing prompt leak detection solutions, we compared the performances of LLM Guard, Vigil, and Rebuff. We concluded that the implementations of canary word checks in Vigil and Rebuff were not effective at detecting prompt leak attacks, and we proposed improvements for them. We also found an evasion weakness in Rebuff's secondary model-based technique and proposed a mitigation. Then, the result of the comparison of LLM Guard, Vigil, and Rebuff at their peak performance revealed that Vigil is optimal for cases when minimal false positive rate is required, and Rebuff is the most optimal for average needs.
comment: 18 pages, 8 tables, 7 figures
☆ Improving Student-AI Interaction Through Pedagogical Prompting: An Example in Computer Science Education
With the proliferation of large language model (LLM) applications since 2022, their use in education has sparked both excitement and concern. Recent studies consistently highlight students' (mis)use of LLMs can hinder learning outcomes. This work aims to teach students how to effectively prompt LLMs to improve their learning. We first proposed pedagogical prompting, a theoretically-grounded new concept to elicit learning-oriented responses from LLMs. To move from concept design to a proof-of-concept learning intervention in real educational settings, we selected early undergraduate CS education (CS1/CS2) as the example context. We began with a formative survey study with instructors (N=36) teaching early-stage undergraduate-level CS courses to inform the instructional design based on classroom needs. Based on their insights, we designed and developed a learning intervention through an interactive system with scenario-based instruction to train pedagogical prompting skills. Finally, we evaluated its instructional effectiveness through a user study with CS novice students (N=22) using pre/post-tests. Through mixed methods analyses, our results indicate significant improvements in learners' LLM-based pedagogical help-seeking skills, along with positive attitudes toward the system and increased willingness to use pedagogical prompts in the future. Our contributions include (1) a theoretical framework of pedagogical prompting; (2) empirical insights into current instructor attitudes toward pedagogical prompting; and (3) a learning intervention design with an interactive learning tool and scenario-based instruction leading to promising results on teaching LLM-based help-seeking. Our approach is scalable for broader implementation in classrooms and has the potential to be integrated into tools like ChatGPT as an on-boarding experience to encourage learning-oriented use of generative AI.
comment: Under review for Computer & Education: Artificial Intelligence. Journal policy allows submitting as preprint
☆ Baba is LLM: Reasoning in a Game with Dynamic Rules
Large language models (LLMs) are known to perform well on language tasks, but struggle with reasoning tasks. This paper explores the ability of LLMs to play the 2D puzzle game Baba is You, in which players manipulate rules by rearranging text blocks that define object properties. Given that this rule-manipulation relies on language abilities and reasoning, it is a compelling challenge for LLMs. Six LLMs are evaluated using different prompt types, including (1) simple, (2) rule-extended and (3) action-extended prompts. In addition, two models (Mistral, OLMo) are finetuned using textual and structural data from the game. Results show that while larger models (particularly GPT-4o) perform better in reasoning and puzzle solving, smaller unadapted models struggle to recognize game mechanics or apply rule changes. Finetuning improves the ability to analyze the game levels, but does not significantly improve solution formulation. We conclude that even for state-of-the-art and finetuned LLMs, reasoning about dynamic rule changes is difficult (specifically, understanding the use-mention distinction). The results provide insights into the applicability of LLMs to complex problem-solving tasks and highlight the suitability of games with dynamically changing rules for testing reasoning and reflection by LLMs.
☆ Language Models Might Not Understand You: Evaluating Theory of Mind via Story Prompting
We introduce $\texttt{StorySim}$, a programmable framework for synthetically generating stories to evaluate the theory of mind (ToM) and world modeling (WM) capabilities of large language models (LLMs). Unlike prior benchmarks that may suffer from contamination in pretraining data, $\texttt{StorySim}$ produces novel, compositional story prompts anchored by a highly controllable $\texttt{Storyboard}$, enabling precise manipulation of character perspectives and events. We use this framework to design first- and second-order ToM tasks alongside WM tasks that control for the ability to track and model mental states. Our experiments across a suite of state-of-the-art LLMs reveal that most models perform better on WM tasks than ToM tasks, and that models tend to perform better reasoning with humans compared to inanimate objects. Additionally, our framework enabled us to find evidence of heuristic behavior such as recency bias and an over-reliance on earlier events in the story. All code for generating data and evaluations is freely available.
comment: 14 pages, 11 figures
☆ RareSpot: Spotting Small and Rare Wildlife in Aerial Imagery with Multi-Scale Consistency and Context-Aware Augmentation CVPR 2025
Automated detection of small and rare wildlife in aerial imagery is crucial for effective conservation, yet remains a significant technical challenge. Prairie dogs exemplify this issue: their ecological importance as keystone species contrasts sharply with their elusive presence--marked by small size, sparse distribution, and subtle visual features--which undermines existing detection approaches. To address these challenges, we propose RareSpot, a robust detection framework integrating multi-scale consistency learning and context-aware augmentation. Our multi-scale consistency approach leverages structured alignment across feature pyramids, enhancing fine-grained object representation and mitigating scale-related feature loss. Complementarily, context-aware augmentation strategically synthesizes challenging training instances by embedding difficult-to-detect samples into realistic environmental contexts, significantly boosting model precision and recall. Evaluated on an expert-annotated prairie dog drone imagery benchmark, our method achieves state-of-the-art performance, improving detection accuracy by over 35% compared to baseline methods. Importantly, it generalizes effectively across additional wildlife datasets, demonstrating broad applicability. The RareSpot benchmark and approach not only support critical ecological monitoring but also establish a new foundation for detecting small, rare species in complex aerial scenes.
comment: Accepted to the CVPR 2025 Workshop on Computer Vision for Animal Behavior Tracking and Modeling (CV4Animals)
☆ FairCauseSyn: Towards Causally Fair LLM-Augmented Synthetic Data Generation
Synthetic data generation creates data based on real-world data using generative models. In health applications, generating high-quality data while maintaining fairness for sensitive attributes is essential for equitable outcomes. Existing GAN-based and LLM-based methods focus on counterfactual fairness and are primarily applied in finance and legal domains. Causal fairness provides a more comprehensive evaluation framework by preserving causal structure, but current synthetic data generation methods do not address it in health settings. To fill this gap, we develop the first LLM-augmented synthetic data generation method to enhance causal fairness using real-world tabular health data. Our generated data deviates by less than 10% from real data on causal fairness metrics. When trained on causally fair predictors, synthetic data reduces bias on the sensitive attribute by 70% compared to real data. This work improves access to fair synthetic data, supporting equitable health research and healthcare delivery.
comment: Accepted to IEEE EMBC 2025
☆ Reading Smiles: Proxy Bias in Foundation Models for Facial Emotion Recognition
Foundation Models (FMs) are rapidly transforming Affective Computing (AC), with Vision Language Models (VLMs) now capable of recognising emotions in zero shot settings. This paper probes a critical but underexplored question: what visual cues do these models rely on to infer affect, and are these cues psychologically grounded or superficially learnt? We benchmark varying scale VLMs on a teeth annotated subset of AffectNet dataset and find consistent performance shifts depending on the presence of visible teeth. Through structured introspection of, the best-performing model, i.e., GPT-4o, we show that facial attributes like eyebrow position drive much of its affective reasoning, revealing a high degree of internal consistency in its valence-arousal predictions. These patterns highlight the emergent nature of FMs behaviour, but also reveal risks: shortcut learning, bias, and fairness issues especially in sensitive domains like mental health and education.
☆ HAWAII: Hierarchical Visual Knowledge Transfer for Efficient Vision-Language Models
Improving the visual understanding ability of vision-language models (VLMs) is crucial for enhancing their performance across various tasks. While using multiple pretrained visual experts has shown great promise, it often incurs significant computational costs during training and inference. To address this challenge, we propose HAWAII, a novel framework that distills knowledge from multiple visual experts into a single vision encoder, enabling it to inherit the complementary strengths of several experts with minimal computational overhead. To mitigate conflicts among different teachers and switch between different teacher-specific knowledge, instead of using a fixed set of adapters for multiple teachers, we propose to use teacher-specific Low-Rank Adaptation (LoRA) adapters with a corresponding router. Each adapter is aligned with a specific teacher, avoiding noisy guidance during distillation. To enable efficient knowledge distillation, we propose fine-grained and coarse-grained distillation. At the fine-grained level, token importance scores are employed to emphasize the most informative tokens from each teacher adaptively. At the coarse-grained level, we summarize the knowledge from multiple teachers and transfer it to the student using a set of general-knowledge LoRA adapters with a router. Extensive experiments on various vision-language tasks demonstrate the superiority of HAWAII, compared to the popular open-source VLMs.
comment: Work in progress
☆ From Rows to Yields: How Foundation Models for Tabular Data Simplify Crop Yield Prediction
We present an application of a foundation model for small- to medium-sized tabular data (TabPFN), to sub-national yield forecasting task in South Africa. TabPFN has recently demonstrated superior performance compared to traditional machine learning (ML) models in various regression and classification tasks. We used the dekadal (10-days) time series of Earth Observation (EO; FAPAR and soil moisture) and gridded weather data (air temperature, precipitation and radiation) to forecast the yield of summer crops at the sub-national level. The crop yield data was available for 23 years and for up to 8 provinces. Covariate variables for TabPFN (i.e., EO and weather) were extracted by region and aggregated at a monthly scale. We benchmarked the results of the TabPFN against six ML models and three baseline models. Leave-one-year-out cross-validation experiment setting was used in order to ensure the assessment of the models capacity to forecast an unseen year. Results showed that TabPFN and ML models exhibit comparable accuracy, outperforming the baselines. Nonetheless, TabPFN demonstrated superior practical utility due to its significantly faster tuning time and reduced requirement for feature engineering. This renders TabPFN a more viable option for real-world operation yield forecasting applications, where efficiency and ease of implementation are paramount.
☆ Plan for Speed -- Dilated Scheduling for Masked Diffusion Language Models
Masked diffusion language models (MDLM) have shown strong promise for non-autoregressive text generation, yet existing samplers act as implicit planners, selecting tokens to unmask via denoiser confidence or entropy scores. Such heuristics falter under parallel unmasking - they ignore pairwise interactions between tokens and cannot account for dependencies when unmasking multiple positions at once, limiting their inference time to traditional auto-regressive (AR) models. We introduce the Dilated-scheduled Unmasking Strategy (DUS), an inference-only, planner-model-free method that requires no additional training. DUS leverages a first-order Markov assumption to partition sequence positions into dilation-based groups of non-adjacent tokens, enabling independent, parallel unmasking steps that respect local context that minimizes the joint entropy of each iteration step. Unlike semi-AR block approaches (e.g., LLADA and Dream) that still invoke the denoiser per block, DUS reduces the number of denoiser calls to O(log B) per generation block - yielding substantial speedup over the O(B) run time of state-of-the-art diffusion models, where B is the block size in the semi-AR inference process. In experiments on math (GSM8K) and code completion (Humaneval, MBPP) benchmarks - domains suited to non-ordinal generation - DUS improves scores over parallel confidence-based planner, without modifying the underlying denoiser. DUS offers a lightweight, budget-aware approach to efficient, high-quality text generation, paving the way to unlock the true capabilities of MDLMs.
☆ Statistical Inference for Optimal Transport Maps: Recent Advances and Perspectives
In many applications of optimal transport (OT), the object of primary interest is the optimal transport map. This map rearranges mass from one probability distribution to another in the most efficient way possible by minimizing a specified cost. In this paper we review recent advances in estimating and developing limit theorems for the OT map, using samples from the underlying distributions. We also review parallel lines of work that establish similar results for special cases and variants of the basic OT setup. We conclude with a discussion of key directions for future research with the goal of providing practitioners with reliable inferential tools.
comment: 36 pages, 1 figure
Survey of HPC in US Research Institutions
The rapid growth of AI, data-intensive science, and digital twin technologies has driven an unprecedented demand for high-performance computing (HPC) across the research ecosystem. While national laboratories and industrial hyperscalers have invested heavily in exascale and GPU-centric architectures, university-operated HPC systems remain comparatively under-resourced. This survey presents a comprehensive assessment of the HPC landscape across U.S. universities, benchmarking their capabilities against Department of Energy (DOE) leadership-class systems and industrial AI infrastructures. We examine over 50 premier research institutions, analyzing compute capacity, architectural design, governance models, and energy efficiency. Our findings reveal that university clusters, though vital for academic research, exhibit significantly lower growth trajectories (CAGR $\approx$ 18%) than their national ($\approx$ 43%) and industrial ($\approx$ 78%) counterparts. The increasing skew toward GPU-dense AI workloads has widened the capability gap, highlighting the need for federated computing, idle-GPU harvesting, and cost-sharing models. We also identify emerging paradigms, such as decentralized reinforcement learning, as promising opportunities for democratizing AI training within campus environments. Ultimately, this work provides actionable insights for academic leaders, funding agencies, and technology partners to ensure more equitable and sustainable HPC access in support of national research priorities.
☆ IndieFake Dataset: A Benchmark Dataset for Audio Deepfake Detection
Advancements in audio deepfake technology offers benefits like AI assistants, better accessibility for speech impairments, and enhanced entertainment. However, it also poses significant risks to security, privacy, and trust in digital communications. Detecting and mitigating these threats requires comprehensive datasets. Existing datasets lack diverse ethnic accents, making them inadequate for many real-world scenarios. Consequently, models trained on these datasets struggle to detect audio deepfakes in diverse linguistic and cultural contexts such as in South-Asian countries. Ironically, there is a stark lack of South-Asian speaker samples in the existing datasets despite constituting a quarter of the worlds population. This work introduces the IndieFake Dataset (IFD), featuring 27.17 hours of bonafide and deepfake audio from 50 English speaking Indian speakers. IFD offers balanced data distribution and includes speaker-level characterization, absent in datasets like ASVspoof21 (DF). We evaluated various baselines on IFD against existing ASVspoof21 (DF) and In-The-Wild (ITW) datasets. IFD outperforms ASVspoof21 (DF) and proves to be more challenging compared to benchmark ITW dataset. The dataset will be publicly available upon acceptance.
☆ GLIMPSE: Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation for Generative LVLMs
Recent advances in large vision language models (LVLMs) have unlocked unprecedented capabilities in generating coherent responses from visual inputs. However, interpreting where LVLMs direct their visual attention while generating free-form textual responses remains a significant challenge, yet is essential for understanding model behavior, diagnosing hallucination, exposing bias and ensuring transparency. We introduce GLIMPSE (Gradient-Layer Importance Mapping for Prompted Visual Saliency Explanation), a lightweight, model-agnostic framework for visualizing the salient image regions that LVLMs rely upon during open-ended visual question answering (VQA), while concurrently revealing the multimodal textual saliency. GLIMPSE fuses gradient-weighted attention, adaptive layer propagation, and weighted token aggregation to produce holistic response-level attribution heat maps for interpreting cross-modal reasoning, outperforming prior interpretability methods in human-alignment. We demonstrate an analytic explainable AI (XAI) approach using GLIMPSE to uncover fine-grained insights into LVLM cross-modal attribution, trace token-level reasoning dynamics, and analyze systematic human-attention misalignment, hallucination, and bias.
☆ A Comment On "The Illusion of Thinking": Reframing the Reasoning Cliff as an Agentic Gap
The recent work by Shojaee et al. (2025), titled The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity, presents a compelling empirical finding, a reasoning cliff, where the performance of Large Reasoning Models (LRMs) collapses beyond a specific complexity threshold, which the authors posit as an intrinsic scaling limitation of Chain-of-Thought (CoT) reasoning. This commentary, while acknowledging the study's methodological rigor, contends that this conclusion is confounded by experimental artifacts. We argue that the observed failure is not evidence of a fundamental cognitive boundary, but rather a predictable outcome of system-level constraints in the static, text-only evaluation paradigm, including tool use restrictions, context window recall issues, the absence of crucial cognitive baselines, inadequate statistical reporting, and output generation limits. We reframe this performance collapse through the lens of an agentic gap, asserting that the models are not failing at reasoning, but at execution within a profoundly restrictive interface. We empirically substantiate this critique by demonstrating a striking reversal. A model, initially declaring a puzzle impossible when confined to text-only generation, now employs agentic tools to not only solve it but also master variations of complexity far beyond the reasoning cliff it previously failed to surmount. Additionally, our empirical analysis of tool-enabled models like o4-mini and GPT-4o reveals a hierarchy of agentic reasoning, from simple procedural execution to complex meta-cognitive self-correction, which has significant implications for how we define and measure machine intelligence. The illusion of thinking attributed to LRMs is less a reasoning deficit and more a consequence of an otherwise capable mind lacking the tools for action.
comment: 10 pages, 2 figures, Comment on "The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity" (arXiv:2506.06941v1)
☆ Citizenship Challenges in Artificial Intelligence Education
This chapter addresses the citizenship challenges related to AI in education, particularly concerning students, teachers, and other educational stakeholders in the context of AI integration. We first explore how to foster AI awareness and education, along with various strategies to promote a socio-critical approach to AI training, aiming to identify relevant and ethical uses to prioritise. In the second part, we discuss critical thinking and computational thinking skills that can be mobilised within certain AI-supported educational activities, depending on the degree of creative and transformative engagement those activities require.
comment: in French language
☆ SHAMaNS: Sound Localization with Hybrid Alpha-Stable Spatial Measure and Neural Steerer
This paper describes a sound source localization (SSL) technique that combines an $\alpha$-stable model for the observed signal with a neural network-based approach for modeling steering vectors. Specifically, a physics-informed neural network, referred to as Neural Steerer, is used to interpolate measured steering vectors (SVs) on a fixed microphone array. This allows for a more robust estimation of the so-called $\alpha$-stable spatial measure, which represents the most plausible direction of arrival (DOA) of a target signal. As an $\alpha$-stable model for the non-Gaussian case ($\alpha$ $\in$ (0, 2)) theoretically defines a unique spatial measure, we choose to leverage it to account for residual reconstruction error of the Neural Steerer in the downstream tasks. The objective scores indicate that our proposed technique outperforms state-of-the-art methods in the case of multiple sound sources.
comment: European Signal Processing Conference (EUSIPCO), Sep 2025, Palermo, Italy
☆ LLMs on a Budget? Say HOLA
Running Large Language Models (LLMs) on edge devices is constrained by high compute and memory demands posing a barrier for real-time applications in sectors like healthcare, education, and embedded systems. Current solutions such as quantization, pruning, and retrieval-augmented generation (RAG) offer only partial optimizations and often compromise on speed or accuracy. We introduce HOLA, an end-to-end optimization framework for efficient LLM deployment. Internally, it leverages Hierarchical Speculative Decoding (HSD) for faster inference without quality loss. Externally, AdaComp-RAG adjusts retrieval complexity based on context needs. Together with LoBi, which blends structured pruning (LoRA) and quantization, HOLA delivers significant gains: 17.6% EMA on GSM8K, 10.5% MCA on ARC, and reduced latency and memory on edge devices like Jetson Nano--proving both scalable and production-ready.
☆ SWE-SQL: Illuminating LLM Pathways to Solve User SQL Issues in Real-World Applications
Resolution of complex SQL issues persists as a significant bottleneck in real-world database applications. Current Large Language Models (LLMs), while adept at text-to-SQL translation, have not been rigorously evaluated on the more challenging task of debugging SQL issues. To address this gap, we introduce BIRD-CRITIC, a new SQL issue debugging benchmark comprising 530 PostgreSQL tasks (BIRD-CRITIC-PG) and 570 multi-dialect tasks (BIRD-CRITIC-Multi), distilled from authentic user issues and replayed within new environments to facilitate rigorous evaluation. Baseline evaluations underscore the task's complexity, with the leading reasoning model O3-Mini achieving only 38.87% success rate on BIRD-CRITIC-PG and 33.33% on BIRD-CRITIC-Multi. Meanwhile, advancing open-source models for database tasks is crucial for empowering local development while safeguarding data privacy. Therefore, we present Six-Gym (Sql-fIX-Gym), a training environment for elevating open-source model capabilities for SQL issue debugging. This environment leverages SQL-Rewind strategy, which automatically generates executable issue-solution datasets by reverse-engineering issues from verified SQLs. However, popular trajectory-based fine-tuning methods do not explore substantial supervisory signals. We further propose f-Plan Boosting, which extracts high-level debugging plans from SQL solutions, enabling teacher LLMs to produce 73.7% more successful trajectories for training. We integrate these components into an open-source agent, Bird-Fixer. Based on Qwen-2.5-Coder-14B, Bird-Fixer achieves 38.11% success rate on BIRD-CRITIC-PG and 29.65% on BIRD-CRITIC-Multi, surpassing leading proprietary models such as Claude-3.7-Sonnet and GPT-4.1, marking a significant step toward democratizing sophisticated SQL-debugging capabilities. The leaderboard and source code are available: https://bird-critic.github.io/
comment: 26 pages, 9 figures
♻ ☆ PlantDeBERTa: An Open Source Language Model for Plant Science
The rapid advancement of transformer-based language models has catalyzed breakthroughs in biomedical and clinical natural language processing; however, plant science remains markedly underserved by such domain-adapted tools. In this work, we present PlantDeBERTa, a high-performance, open-source language model specifically tailored for extracting structured knowledge from plant stress-response literature. Built upon the DeBERTa architecture-known for its disentangled attention and robust contextual encoding-PlantDeBERTa is fine-tuned on a meticulously curated corpus of expert-annotated abstracts, with a primary focus on lentil (Lens culinaris) responses to diverse abiotic and biotic stressors. Our methodology combines transformer-based modeling with rule-enhanced linguistic post-processing and ontology-grounded entity normalization, enabling PlantDeBERTa to capture biologically meaningful relationships with precision and semantic fidelity. The underlying corpus is annotated using a hierarchical schema aligned with the Crop Ontology, encompassing molecular, physiological, biochemical, and agronomic dimensions of plant adaptation. PlantDeBERTa exhibits strong generalization capabilities across entity types and demonstrates the feasibility of robust domain adaptation in low-resource scientific fields.By providing a scalable and reproducible framework for high-resolution entity recognition, PlantDeBERTa bridges a critical gap in agricultural NLP and paves the way for intelligent, data-driven systems in plant genomics, phenomics, and agronomic knowledge discovery. Our model is publicly released to promote transparency and accelerate cross-disciplinary innovation in computational plant science.
♻ ☆ Mathematical Proof as a Litmus Test: Revealing Failure Modes of Advanced Large Reasoning Models
Large reasoning models (e.g., R1, o3) have demonstrated remarkable mathematical problem-solving abilities. However, the high reported accuracy of these advanced models on popular datasets, reliance on purely numerical evaluation and potential benchmark leakage, often masks their true reasoning shortcomings. To address this, we propose leveraging the inherent rigor and methodological complexity of mathematical proofs as a diagnostic tool to expose these hidden failures. Specifically, we introduce the RFMDataset (Reveal Failure Modes), a collection of 200 diverse mathematical proof problems, and thoroughly evaluate advanced models' performance on it. Our in-depth analysis of their failures uncovers 10 fine-grained error types, which shows fundamental limitations in current large reasoning models: 1) large reasoning models grapple profoundly with mathematical proofs, with some generating entirely correct proofs for less than 20% of problems and failing even on basic ones; 2) models exhibit a diverse spectrum of reasoning failures, prominently demonstrating the lack of guarantees for the correctness and rigor of single-step reasoning; and 3) models show hallucination and incompleteness during the reasoning process. Our findings reveal that models' self-reflection is insufficient to resolve the current logical dilemmas, necessitating formalized and fine-grained logical training.
♻ ☆ Optimizing Sensory Neurons: Nonlinear Attention Mechanisms for Accelerated Convergence in Permutation-Invariant Neural Networks for Reinforcement Learning
Training reinforcement learning (RL) agents often requires significant computational resources and prolonged training durations. To address this challenge, we build upon prior work that introduced a neural architecture with permutation-invariant sensory processing. We propose a modified attention mechanism that applies a non-linear transformation to the key vectors (K), producing enriched representations (K') through a custom mapping function. This Nonlinear Attention (NLA) mechanism enhances the representational capacity of the attention layer, enabling the agent to learn more expressive feature interactions. As a result, our model achieves significantly faster convergence and improved training efficiency, while maintaining performance on par with the baseline. These results highlight the potential of nonlinear attention mechanisms to accelerate reinforcement learning without sacrificing effectiveness.
comment: there was an error with the figures and the algorithm, working on it to correct it, will publish with updated and correct algorithm and results
♻ ☆ Song Form-aware Full-Song Text-to-Lyrics Generation with Multi-Level Granularity Syllable Count Control
Lyrics generation presents unique challenges, particularly in achieving precise syllable control while adhering to song form structures such as verses and choruses. Conventional line-by-line approaches often lead to unnatural phrasing, underscoring the need for more granular syllable management. We propose a framework for lyrics generation that enables multi-level syllable control at the word, phrase, line, and paragraph levels, aware of song form. Our approach generates complete lyrics conditioned on input text and song form, ensuring alignment with specified syllable constraints. Generated lyrics samples are available at: https://tinyurl.com/lyrics9999
comment: Accepted to Interspeech 2025
♻ ☆ Segment Anything for Satellite Imagery: A Strong Baseline and a Regional Dataset for Automatic Field Delineation
Accurate mapping of agricultural field boundaries is essential for the efficient operation of agriculture. Automatic extraction from high-resolution satellite imagery, supported by computer vision techniques, can avoid costly ground surveys. In this paper, we present a pipeline for field delineation based on the Segment Anything Model (SAM), introducing a fine-tuning strategy to adapt SAM to this task. In addition to using published datasets, we describe a method for acquiring a complementary regional dataset that covers areas beyond current sources. Extensive experiments assess segmentation accuracy and evaluate the generalization capabilities. Our approach provides a robust baseline for automated field delineation. The new regional dataset, known as ERAS, is now publicly available.
comment: Acceptet at ICIAP 2025
♻ ☆ VRAIL: Vectorized Reward-based Attribution for Interpretable Learning
We propose VRAIL (Vectorized Reward-based Attribution for Interpretable Learning), a bi-level framework for value-based reinforcement learning (RL) that learns interpretable weight representations from state features. VRAIL consists of two stages: a deep learning (DL) stage that fits an estimated value function using state features, and an RL stage that uses this to shape learning via potential-based reward transformations. The estimator is modeled in either linear or quadratic form, allowing attribution of importance to individual features and their interactions. Empirical results on the Taxi-v3 environment demonstrate that VRAIL improves training stability and convergence compared to standard DQN, without requiring environment modifications. Further analysis shows that VRAIL uncovers semantically meaningful subgoals, such as passenger possession, highlighting its ability to produce human-interpretable behavior. Our findings suggest that VRAIL serves as a general, model-agnostic framework for reward shaping that enhances both learning and interpretability.
♻ ☆ Accurate and scalable exchange-correlation with deep learning
Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schr\"odinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
comment: Main: 13 pages plus references, 11 figures and tables. Supplementary information: 19 pages, 12 figures and tables. v2 update: fix rendering of figure 1 and part of figure 5 in Safari PDF viewer. v3 update: update author information and fix typo
♻ ☆ Segmentation-Aware Generative Reinforcement Network (GRN) for Tissue Layer Segmentation in 3-D Ultrasound Images for Chronic Low-back Pain (cLBP) Assessment
We introduce a novel segmentation-aware joint training framework called generative reinforcement network (GRN) that integrates segmentation loss feedback to optimize both image generation and segmentation performance in a single stage. An image enhancement technique called segmentation-guided enhancement (SGE) is also developed, where the generator produces images tailored specifically for the segmentation model. Two variants of GRN were also developed, including GRN for sample-efficient learning (GRN-SEL) and GRN for semi-supervised learning (GRN-SSL). GRN's performance was evaluated using a dataset of 69 fully annotated 3D ultrasound scans from 29 subjects. The annotations included six anatomical structures: dermis, superficial fat, superficial fascial membrane (SFM), deep fat, deep fascial membrane (DFM), and muscle. Our results show that GRN-SEL with SGE reduces labeling efforts by up to 70% while achieving a 1.98% improvement in the Dice Similarity Coefficient (DSC) compared to models trained on fully labeled datasets. GRN-SEL alone reduces labeling efforts by 60%, GRN-SSL with SGE decreases labeling requirements by 70%, and GRN-SSL alone by 60%, all while maintaining performance comparable to fully supervised models. These findings suggest the effectiveness of the GRN framework in optimizing segmentation performance with significantly less labeled data, offering a scalable and efficient solution for ultrasound image analysis and reducing the burdens associated with data annotation.
♻ ☆ LED: LLM Enhanced Open-Vocabulary Object Detection without Human Curated Data Generation
Large foundation models trained on large-scale vision-language data can boost Open-Vocabulary Object Detection (OVD) via synthetic training data, yet the hand-crafted pipelines often introduce bias and overfit to specific prompts. We sidestep this issue by directly fusing hidden states from Large Language Models (LLMs) into detectors-an avenue surprisingly under-explored. This paper presents a systematic method to enhance visual grounding by utilizing decoder layers of the LLM of an MLLM. We introduce a zero-initialized cross-attention adapter to enable efficient knowledge fusion from LLMs to object detectors, a new approach called LED (LLM Enhanced Open-Vocabulary Object Detection). We find that intermediate LLM layers already encode rich spatial semantics; adapting only the early layers yields most of the gain. With Swin-T as the vision encoder, Qwen2-0.5B + LED lifts GroundingDINO by 3.82 % on OmniLabel at just 8.7 % extra GFLOPs, and a larger vision backbone pushes the improvement to 6.22 %. Extensive ablations on adapter variants, LLM scales and fusion depths further corroborate our design.
♻ ☆ Conformal Prediction for Causal Effects of Continuous Treatments
Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
♻ ☆ Maximizing Confidence Alone Improves Reasoning
Reinforcement learning (RL) has enabled machine learning models to achieve significant advances in many fields. Most recently, RL has empowered frontier language models to solve challenging math, science, and coding problems. However, central to any RL algorithm is the reward function, and reward engineering is a notoriously difficult problem in any domain. In this paper, we propose RENT: Reinforcement Learning via Entropy Minimization -- a fully unsupervised RL method that requires no external reward or ground-truth answers, and instead uses the model's entropy of its underlying distribution as an intrinsic reward. We find that by reinforcing the chains of thought that yield high model confidence on its generated answers, the model improves its reasoning ability. In our experiments, we showcase these improvements on an extensive suite of commonly-used reasoning benchmarks, including GSM8K, MATH500, AMC, AIME, and GPQA, and models of varying sizes from the Qwen and Mistral families. The generality of our unsupervised learning method lends itself to applicability in a wide range of domains where external supervision is unavailable.
comment: Website: https://rent-rl.github.io/
♻ ☆ Image Captions are Natural Prompts for Text-to-Image Models
With the rapid development of Artificial Intelligence Generated Content (AIGC), it has become a common practice to train models on synthetic data due to data-scarcity and privacy leakage problems. Owing to massive and diverse information conveyed in real images, it is challenging for text-to-image generative models to synthesize informative training data with hand-crafted prompts. Considering the impressive ability of large generative models, could such models directly synthesize good training images for prediction tasks with proper prompts? We offer an affirmative response to this question by proposing a simple yet effective method, validated through ImageNet classification. Specifically, we caption each real image with the advanced captioning model to obtain informative and faithful prompts that extract class-relevant information and clarify the polysemy of class names. The image captions and class names are concatenated to prompt generative models for training image synthesis. We show that this simple caption incorporation significantly boosts the informativeness of synthetic data therefore enhancing downstream model generalization. More importantly, besides improvements in data augmentation and privacy preservation, our experiments demonstrate that synthesized images can exceed real data in terms of out-of-distribution robustness.
comment: 31 pages, 2 figure, 15 tables. Codes are available at https://github.com/LeavesLei/Caption_in_Prompt
♻ ☆ Simple and Critical Iterative Denoising: A Recasting of Discrete Diffusion in Graph Generation ICML 2025
Discrete Diffusion and Flow Matching models have significantly advanced generative modeling for discrete structures, including graphs. However, the dependencies between intermediate noisy states lead to error accumulation and propagation during the reverse denoising process - a phenomenon known as compounding denoising errors. To address this problem, we propose a novel framework called Simple Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence between intermediate states. Additionally, we enhance our model by incorporating a Critic. During generation, the Critic selectively retains or corrupts elements in an instance based on their likelihood under the data distribution. Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
comment: ICML 2025 Accepted paper
Learning to Insert for Constructive Neural Vehicle Routing Solver
Neural Combinatorial Optimisation (NCO) is a promising learning-based approach for solving Vehicle Routing Problems (VRPs) without extensive manual design. While existing constructive NCO methods typically follow an appending-based paradigm that sequentially adds unvisited nodes to partial solutions, this rigid approach often leads to suboptimal results. To overcome this limitation, we explore the idea of insertion-based paradigm and propose Learning to Construct with Insertion-based Paradigm (L2C-Insert), a novel learning-based method for constructive NCO. Unlike traditional approaches, L2C-Insert builds solutions by strategically inserting unvisited nodes at any valid position in the current partial solution, which can significantly enhance the flexibility and solution quality. The proposed framework introduces three key components: a novel model architecture for precise insertion position prediction, an efficient training scheme for model optimization, and an advanced inference technique that fully exploits the insertion paradigm's flexibility. Extensive experiments on both synthetic and real-world instances of the Travelling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) demonstrate that L2C-Insert consistently achieves superior performance across various problem sizes.
♻ ☆ Reasoning Limitations of Multimodal Large Language Models. A Case Study of Bongard Problems ICML 2025
Abstract visual reasoning (AVR) involves discovering shared concepts across images through analogy, akin to solving IQ test problems. Bongard Problems (BPs) remain a key challenge in AVR, requiring both visual reasoning and verbal description. We investigate whether multimodal large language models (MLLMs) can solve BPs by formulating a set of diverse MLLM-suited solution strategies and testing $4$ proprietary and $4$ open-access models on $3$ BP datasets featuring synthetic (classic BPs) and real-world (Bongard HOI and Bongard-OpenWorld) images. Despite some successes on real-world datasets, MLLMs struggle with synthetic BPs. To explore this gap, we introduce Bongard-RWR, a dataset representing synthetic BP concepts using real-world images. Our findings suggest that weak MLLM performance on classical BPs is not due to the domain specificity, but rather comes from their general AVR limitations. Code and dataset are available at: https://github.com/pavonism/bongard-rwr
comment: Accepted to The Forty-Second International Conference on Machine Learning (ICML 2025)
♻ ☆ Working Document -- Formalising Software Requirements with Large Language Models
This draft is a working document, having a summary of nighty-four (94) papers with additional sections on Traceability of Software Requirements (Section 4), Formal Methods and Its Tools (Section 5), Unifying Theories of Programming (UTP) and Theory of Institutions (Section 6). Please refer to abstract of [7,8]. Key difference of this draft from our recently anticipated ones with similar titles, i.e. AACS 2025 [7] and SAIV 2025 [8] is: [7] is a two page submission to ADAPT Annual Conference, Ireland. Submitted on 18th of March, 2025, it went through the light-weight blind review and accepted for poster presentation. Conference was held on 15th of May, 2025; [8] is a nine page paper with additional nine pages of references and summary tables, submitted to Symposium on AI Verification (SAIV 2025) on 24th of April, 2025. It went through rigorous review process. The uploaded version on arXiv.org [8] is the improved one of the submission, after addressing the specific suggestions to improve the paper.
comment: 22 pages. 6 summary tables. arXiv admin note: substantial text overlap with arXiv:2506.11874
♻ ☆ The Impact of Input Order Bias on Large Language Models for Software Fault Localization
Large Language Models (LLMs) have shown significant potential in software engineering tasks such as Fault Localization (FL) and Automatic Program Repair (APR). This study investigates how input order and context size influence LLM performance in FL, a crucial step for many downstream software engineering tasks. We evaluate different method orderings using Kendall Tau distances, including "perfect" (where ground truths appear first) and "worst" (where ground truths appear last), across two benchmarks containing Java and Python projects. Our results reveal a strong order bias: in Java projects, Top-1 FL accuracy drops from 57% to 20% when reversing the order, while in Python projects, it decreases from 38% to approximately 3%. However, segmenting inputs into smaller contexts mitigates this bias, reducing the performance gap in FL from 22% and 6% to just 1% across both benchmarks. We replaced method names with semantically meaningful alternatives to determine whether this bias is due to data leakage. The observed trends remained consistent, suggesting that the bias is not caused by memorization from training data but rather by the inherent effect of input order. Additionally, we explored ordering methods based on traditional FL techniques and metrics, finding that DepGraph's ranking achieves 48% Top-1 accuracy, outperforming simpler approaches such as CallGraph(DFS). These findings highlight the importance of structuring inputs, managing context effectively, and selecting appropriate ordering strategies to enhance LLM performance in FL and other software engineering applications.
♻ ☆ SEAL: Scaling to Emphasize Attention for Long-Context Retrieval ACL 2025
While many advanced LLMs are designed to handle long sequence data, we can still observe notable quality degradation even within the sequence limit. In this work, we introduce a novel approach called Scaling to Emphasize Attention for Long-context retrieval (SEAL), which enhances the retrieval performance of large language models (LLMs) over long contexts. We observe that specific attention heads are closely tied to long-context retrieval, showing positive or negative correlation with retrieval scores, and adjusting the strength of these heads boosts the quality of LLMs in long context by a large margin. Built on this insight, we propose a learning-based mechanism that leverages generated data to emphasize these heads. By applying SEAL, we achieve significant improvements in long-context retrieval performance across various tasks and models. Additionally, when combined with existing training-free context extension techniques, SEAL extends the contextual limits of LLMs while maintaining highly reliable outputs.
comment: Accepted at ACL 2025 Main
♻ ☆ Eye of Judgement: Dissecting the Evaluation of Russian-speaking LLMs with POLLUX
We introduce POLLUX, a comprehensive open-source benchmark designed to evaluate the generative capabilities of large language models (LLMs) in Russian. Our main contribution is a novel evaluation methodology that enhances the interpretability of LLM assessment. For each task type, we define a set of detailed criteria and develop a scoring protocol where models evaluate responses and provide justifications for their ratings. This enables transparent, criteria-driven evaluation beyond traditional resource-consuming, side-by-side human comparisons. POLLUX includes a detailed, fine-grained taxonomy of 35 task types covering diverse generative domains such as code generation, creative writing, and practical assistant use cases, totaling 2,100 manually crafted and professionally authored prompts. Each task is categorized by difficulty (easy/medium/hard), with experts constructing the dataset entirely from scratch. We also release a family of LLM-as-a-Judge (7B and 32B) evaluators trained for nuanced assessment of generative outputs. This approach provides scalable, interpretable evaluation and annotation tools for model development, effectively replacing costly and less precise human judgments.
comment: 179 pages
♻ ☆ Handling Numeric Expressions in Automatic Speech Recognition
This paper addresses the problem of correctly formatting numeric expressions in automatic speech recognition (ASR) transcripts. This is challenging since the expected transcript format depends on the context, e.g., 1945 (year) vs. 19:45 (timestamp). We compare cascaded and end-to-end approaches to recognize and format numeric expressions such as years, timestamps, currency amounts, and quantities. For the end-to-end approach, we employed a data generation strategy using a large language model (LLM) together with a text to speech (TTS) model to generate adaptation data. The results on our test data set show that while approaches based on LLMs perform well in recognizing formatted numeric expressions, adapted end-to-end models offer competitive performance with the advantage of lower latency and inference cost.
♻ ☆ Context-Aware Human Behavior Prediction Using Multimodal Large Language Models: Challenges and Insights
Predicting human behavior in shared environments is crucial for safe and efficient human-robot interaction. Traditional data-driven methods to that end are pre-trained on domain-specific datasets, activity types, and prediction horizons. In contrast, the recent breakthroughs in Large Language Models (LLMs) promise open-ended cross-domain generalization to describe various human activities and make predictions in any context. In particular, Multimodal LLMs (MLLMs) are able to integrate information from various sources, achieving more contextual awareness and improved scene understanding. The difficulty in applying general-purpose MLLMs directly for prediction stems from their limited capacity for processing large input sequences, sensitivity to prompt design, and expensive fine-tuning. In this paper, we present a systematic analysis of applying pre-trained MLLMs for context-aware human behavior prediction. To this end, we introduce a modular multimodal human activity prediction framework that allows us to benchmark various MLLMs, input variations, In-Context Learning (ICL), and autoregressive techniques. Our evaluation indicates that the best-performing framework configuration is able to reach 92.8% semantic similarity and 66.1% exact label accuracy in predicting human behaviors in the target frame.
comment: Accepted at IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 2025
♻ ☆ Med-REFL: Medical Reasoning Enhancement via Self-Corrected Fine-grained Reflection
Large reasoning models have recently made significant strides in mathematical and code reasoning, yet their success has not transferred smoothly to the medical domain. While multiple factors contribute to this disparity, a critical issue is the inadequate focus on the quality of intermediate reflection steps, which is particularly crucial in high-stakes medical scenarios. To address this challenge, we propose Med-REFL, a \underline{\textbf{Med}}ical \underline{\textbf{R}}easoning \underline{\textbf{E}}nhancement via self-corrected \underline{\textbf{F}}ine-grained ref\underline{\textbf{L}}ection. Our method leverages a tree-of-thought approach to decompose medical questions into fine-grained reasoning paths, quantitatively evaluating each step and its subsequent reflections. These assessments enable automatic construction of direct preference optimization data, reducing reliance on expensive expert annotations while guiding models to identify and correct reasoning errors. Experimental results on the MedQA-USMLE benchmark demonstrate Med-REFL achieves consistent improvements, with average gains up to 4.11\%. Notably, it further boosts the state-of-the-art performance of 7B/8B models by an additional 4.13\%. Furthermore, Med-REFL exhibits strong generalization capabilities and robustness across several challenging medical question-answering datasets. Our work illustrates that prioritizing reflection quality leads to more accurate and trustworthy reasoning in medical AI applications. Checkpoints, code, and data can be found in https://github.com/TianYin123/Med-REFL.
♻ ☆ BAnG: Bidirectional Anchored Generation for Conditional RNA Design
Designing RNA molecules that interact with specific proteins is a critical challenge in experimental and computational biology. Existing computational approaches require a substantial amount of previously known interacting RNA sequences for each specific protein or a detailed knowledge of RNA structure, restricting their utility in practice. To address this limitation, we develop RNA-BAnG, a deep learning-based model designed to generate RNA sequences for protein interactions without these requirements. Central to our approach is a novel generative method, Bidirectional Anchored Generation (BAnG), which leverages the observation that protein-binding RNA sequences often contain functional binding motifs embedded within broader sequence contexts. We first validate our method on generic synthetic tasks involving similar localized motifs to those appearing in RNAs, demonstrating its benefits over existing generative approaches. We then evaluate our model on biological sequences, showing its effectiveness for conditional RNA sequence design given a binding protein.
♻ ☆ "I understand why I got this grade": Automatic Short Answer Grading with Feedback
In recent years, there has been a growing interest in using Artificial Intelligence (AI) to automate student assessment in education. Among different types of assessments, summative assessments play a crucial role in evaluating a student's understanding level of a course. Such examinations often involve short-answer questions. However, grading these responses and providing meaningful feedback manually at scale is both time-consuming and labor-intensive. Feedback is particularly important, as it helps students recognize their strengths and areas for improvement. Despite the importance of this task, there is a significant lack of publicly available datasets that support automatic short-answer grading with feedback generation. To address this gap, we introduce Engineering Short Answer Feedback (EngSAF), a dataset designed for automatic short-answer grading with feedback. The dataset covers a diverse range of subjects, questions, and answer patterns from multiple engineering domains and contains ~5.8k data points. We incorporate feedback into our dataset by leveraging the generative capabilities of state-of-the-art large language models (LLMs) using our Label-Aware Synthetic Feedback Generation (LASFG) strategy. This paper underscores the importance of enhanced feedback in practical educational settings, outlines dataset annotation and feedback generation processes, conducts a thorough EngSAF analysis, and provides different LLMs-based zero-shot and finetuned baselines for future comparison. The best-performing model (Mistral-7B) achieves an overall accuracy of 75.4% and 58.7% on unseen answers and unseen question test sets, respectively. Additionally, we demonstrate the efficiency and effectiveness of our ASAG system through its deployment in a real-world end-semester exam at a reputed institute.
♻ ☆ C-SEO Bench: Does Conversational SEO Work?
Large Language Models (LLMs) are transforming search engines into Conversational Search Engines (CSE). Consequently, Search Engine Optimization (SEO) is being shifted into Conversational Search Engine Optimization (C-SEO). We are beginning to see dedicated C-SEO methods for modifying web documents to increase their visibility in CSE responses. However, they are often tested only for a limited breadth of application domains; we do not understand whether certain C-SEO methods would be effective for a broad range of domains. Moreover, existing evaluations consider only a single-actor scenario where only one web document adopts a C-SEO method; in reality, multiple players are likely to competitively adopt the cutting-edge C-SEO techniques, drawing an analogy from the dynamics we have seen in SEO. We present C-SEO Bench, the first benchmark designed to evaluate C-SEO methods across multiple tasks, domains, and number of actors. We consider two search tasks, question answering and product recommendation, with three domains each. We also formalize a new evaluation protocol with varying adoption rates among involved actors. Our experiments reveal that most current C-SEO methods are largely ineffective, contrary to reported results in the literature. Instead, traditional SEO strategies, those aiming to improve the ranking of the source in the LLM context, are significantly more effective. We also observe that as we increase the number of C-SEO adopters, the overall gains decrease, depicting a congested and zero-sum nature of the problem. Our code and data are available at https://github.com/parameterlab/c-seo-bench and https://huggingface.co/datasets/parameterlab/c-seo-bench.
♻ ☆ Pretraining Language Models to Ponder in Continuous Space
Humans ponder before articulating complex sentence elements, enabling deeper cognitive processing through focused effort. In this work, we introduce this pondering process into language models by repeatedly invoking the forward process within a single token generation step. During pondering, instead of generating an actual token sampled from the prediction distribution, the model ponders by yielding a weighted sum of all token embeddings according to the predicted token distribution. The generated embedding is then fed back as input for another forward pass. We show that the model can learn to ponder in this way through self-supervised learning, without any human annotations. Experiments across three widely used open-source architectures-GPT-2, Pythia, and LLaMA-and extensive downstream task evaluations demonstrate the effectiveness and generality of our method. For language modeling tasks, pondering language models achieve performance comparable to vanilla models with twice the number of parameters. On 9 downstream benchmarks, our pondering-enhanced Pythia models significantly outperform the official Pythia models. Notably, PonderingPythia-2.8B surpasses Pythia-6.9B, and PonderingPythia-1B is comparable to TinyLlama-1.1B, which is trained on 10 times more data. The code is available at https://github.com/LUMIA-Group/PonderingLM.
♻ ☆ Bures-Wasserstein Flow Matching for Graph Generation
Graph generation has emerged as a critical task in fields ranging from molecule design to drug discovery. Contemporary approaches, notably diffusion and flow-based models, have achieved solid graph generative performance through constructing a probability path that interpolates between a reference distribution and the data distribution. However, these methods typically model the evolution of individual nodes and edges independently and use linear interpolations to build the path assuming that the data lie in Euclidean space. We show that this is suboptimal given the intrinsic non-Euclidean structure and interconnected patterns of graphs, and it poses risks to the sampling convergence. To build a better probability path, we model the joint evolution of the nodes and edges by representing graphs as connected systems parameterized by Markov random fields (MRF). We then leverage the optimal transport displacement between MRF objects to design the probability path for graph generation. Based on this, we introduce BWFlow, a flow-matching framework for graph generation that respects the underlying geometry of graphs and provides smooth velocities in the probability path. The novel framework can be adapted to both continuous and discrete flow-matching algorithms. Experimental evaluations in plain graph generation and 2D/3D molecule generation validate the effectiveness of BWFlow in graph generation with competitive performance, stable training, and guaranteed sampling convergence.
♻ ☆ API Agents vs. GUI Agents: Divergence and Convergence
Large language models (LLMs) have evolved beyond simple text generation to power software agents that directly translate natural language commands into tangible actions. While API-based LLM agents initially rose to prominence for their robust automation capabilities and seamless integration with programmatic endpoints, recent progress in multimodal LLM research has enabled GUI-based LLM agents that interact with graphical user interfaces in a human-like manner. Although these two paradigms share the goal of enabling LLM-driven task automation, they diverge significantly in architectural complexity, development workflows, and user interaction models. This paper presents the first comprehensive comparative study of API-based and GUI-based LLM agents, systematically analyzing their divergence and potential convergence. We examine key dimensions and highlight scenarios in which hybrid approaches can harness their complementary strengths. By proposing clear decision criteria and illustrating practical use cases, we aim to guide practitioners and researchers in selecting, combining, or transitioning between these paradigms. Ultimately, we indicate that continuing innovations in LLM-based automation are poised to blur the lines between API- and GUI-driven agents, paving the way for more flexible, adaptive solutions in a wide range of real-world applications.
♻ ☆ Interpreting Global Perturbation Robustness of Image Models using Axiomatic Spectral Importance Decomposition
Perturbation robustness evaluates the vulnerabilities of models, arising from a variety of perturbations, such as data corruptions and adversarial attacks. Understanding the mechanisms of perturbation robustness is critical for global interpretability. We present a model-agnostic, global mechanistic interpretability method to interpret the perturbation robustness of image models. This research is motivated by two key aspects. First, previous global interpretability works, in tandem with robustness benchmarks, e.g. mean corruption error (mCE), are not designed to directly interpret the mechanisms of perturbation robustness within image models. Second, we notice that the spectral signal-to-noise ratios (SNR) of perturbed natural images exponentially decay over the frequency. This power-law-like decay implies that: Low-frequency signals are generally more robust than high-frequency signals -- yet high classification accuracy can not be achieved by low-frequency signals alone. By applying Shapley value theory, our method axiomatically quantifies the predictive powers of robust features and non-robust features within an information theory framework. Our method, dubbed as \textbf{I-ASIDE} (\textbf{I}mage \textbf{A}xiomatic \textbf{S}pectral \textbf{I}mportance \textbf{D}ecomposition \textbf{E}xplanation), provides a unique insight into model robustness mechanisms. We conduct extensive experiments over a variety of vision models pre-trained on ImageNet to show that \textbf{I-ASIDE} can not only \textbf{measure} the perturbation robustness but also \textbf{provide interpretations} of its mechanisms.
comment: Accepted by Transactions on Machine Learning Research (TMLR 2024)
♻ ☆ AutoPDL: Automatic Prompt Optimization for LLM Agents
The performance of large language models (LLMs) depends on how they are prompted, with choices spanning both the high-level prompting pattern (e.g., Zero-Shot, CoT, ReAct, ReWOO) and the specific prompt content (instructions and few-shot demonstrations). Manually tuning this combination is tedious, error-prone, and specific to a given LLM and task. Therefore, this paper proposes AutoPDL, an automated approach to discovering good LLM agent configurations. Our approach frames this as a structured AutoML problem over a combinatorial space of agentic and non-agentic prompting patterns and demonstrations, using successive halving to efficiently navigate this space. We introduce a library implementing common prompting patterns using the PDL prompt programming language. AutoPDL solutions are human-readable, editable, and executable PDL programs that use this library. This approach also enables source-to-source optimization, allowing human-in-the-loop refinement and reuse. Evaluations across three tasks and seven LLMs (ranging from 3B to 70B parameters) show consistent accuracy gains ($9.06\pm15.3$ percentage points), up to 68.9pp, and reveal that selected prompting strategies vary across models and tasks.
♻ ☆ Affordable AI Assistants with Knowledge Graph of Thoughts
Large Language Models (LLMs) are revolutionizing the development of AI assistants capable of performing diverse tasks across domains. However, current state-of-the-art LLM-driven agents face significant challenges, including high operational costs and limited success rates on complex benchmarks like GAIA. To address these issues, we propose Knowledge Graph of Thoughts (KGoT), an innovative AI assistant architecture that integrates LLM reasoning with dynamically constructed knowledge graphs (KGs). KGoT extracts and structures task-relevant knowledge into a dynamic KG representation, iteratively enhanced through external tools such as math solvers, web crawlers, and Python scripts. Such structured representation of task-relevant knowledge enables low-cost models to solve complex tasks effectively while also minimizing bias and noise. For example, KGoT achieves a 29% improvement in task success rates on the GAIA benchmark compared to Hugging Face Agents with GPT-4o mini. Moreover, harnessing a smaller model dramatically reduces operational costs by over 36x compared to GPT-4o. Improvements for other models (e.g., Qwen2.5-32B and Deepseek-R1-70B) and benchmarks (e.g., SimpleQA) are similar. KGoT offers a scalable, affordable, versatile, and high-performing solution for AI assistants.
♻ ☆ Machine-learning based high-bandwidth magnetic sensing
Recent years have seen significant growth of quantum technologies, and specifically quantum sensing, both in terms of the capabilities of advanced platforms and their applications. One of the leading platforms in this context is nitrogen-vacancy (NV) color centers in diamond, providing versatile, high-sensitivity, and high-spatial-resolution magnetic sensing. Nevertheless, current schemes for spin resonance magnetic sensing (as applied by NV quantum sensing) suffer from tradeoffs associated with sensitivity, dynamic range, and bandwidth. Here we address this issue, and implement machine learning tools to enhance NV magnetic sensing in terms of the sensitivity/bandwidth tradeoff in large dynamic range scenarios. Our results indicate a potential reduction of required data points by at least a factor of 3, while maintaining the current error level. Our results promote quantum machine learning protocols for sensing applications towards more feasible and efficient quantum technologies.
comment: 12 pages including supplementary, 5 figures, 3 supplementary figures
♻ ☆ ASCenD-BDS: Adaptable, Stochastic and Context-aware framework for Detection of Bias, Discrimination and Stereotyping
The rapid evolution of Large Language Models (LLMs) has transformed natural language processing but raises critical concerns about biases inherent in their deployment and use across diverse linguistic and sociocultural contexts. This paper presents a framework named ASCenD BDS (Adaptable, Stochastic and Context-aware framework for Detection of Bias, Discrimination and Stereotyping). The framework presents approach to detecting bias, discrimination, stereotyping across various categories such as gender, caste, age, disability, socioeconomic status, linguistic variations, etc., using an approach which is Adaptive, Stochastic and Context-Aware. The existing frameworks rely heavily on usage of datasets to generate scenarios for detection of Bias, Discrimination and Stereotyping. Examples include datasets such as Civil Comments, Wino Gender, WinoBias, BOLD, CrowS Pairs and BBQ. However, such an approach provides point solutions. As a result, these datasets provide a finite number of scenarios for assessment. The current framework overcomes this limitation by having features which enable Adaptability, Stochasticity, Context Awareness. Context awareness can be customized for any nation or culture or sub-culture (for example an organization's unique culture). In this paper, context awareness in the Indian context has been established. Content has been leveraged from Indian Census 2011 to have a commonality of categorization. A framework has been developed using Category, Sub-Category, STEM, X-Factor, Synonym to enable the features for Adaptability, Stochasticity and Context awareness. The framework has been described in detail in Section 3. Overall 800 plus STEMs, 10 Categories, 31 unique SubCategories were developed by a team of consultants at Saint Fox Consultancy Private Ltd. The concept has been tested out in SFCLabs as part of product development.
comment: 17 pages, 6 Figures and this manuscript will be submitted to Q1,Q2 Journals
♻ ☆ HiRAG: Retrieval-Augmented Generation with Hierarchical Knowledge
Graph-based Retrieval-Augmented Generation (RAG) methods have significantly enhanced the performance of large language models (LLMs) in domain-specific tasks. However, existing RAG methods do not adequately utilize the naturally inherent hierarchical knowledge in human cognition, which limits the capabilities of RAG systems. In this paper, we introduce a new RAG approach, called HiRAG, which utilizes hierarchical knowledge to enhance the semantic understanding and structure capturing capabilities of RAG systems in the indexing and retrieval processes. Our extensive experiments demonstrate that HiRAG achieves significant performance improvements over the state-of-the-art baseline methods.
♻ ☆ Indeterminate Probability Theory
Complex continuous or mixed joint distributions (e.g., P(Y | z_1, z_2, ..., z_N)) generally lack closed-form solutions, often necessitating approximations such as MCMC. This paper proposes Indeterminate Probability Theory (IPT), which makes the following contributions: (1) An observer-centered framework in which experimental outcomes are represented as distributions combining ground truth with observation error; (2) The introduction of three independence candidate axioms that enable a two-phase probabilistic inference framework; (3) The derivation of closed-form solutions for arbitrary complex joint distributions under this framework. Both the Indeterminate Probability Neural Network (IPNN) model and the non-neural multivariate time series forecasting application demonstrate IPT's effectiveness in modeling high-dimensional distributions, with successful validation up to 1000 dimensions. Importantly, IPT is consistent with classical probability theory and subsumes the frequentist equation in the limit of vanishing observation error.
comment: 25 pages
♻ ☆ QUEST: Quality-aware Semi-supervised Table Extraction for Business Documents ICDAR 2025
Automating table extraction (TE) from business documents is critical for industrial workflows but remains challenging due to sparse annotations and error-prone multi-stage pipelines. While semi-supervised learning (SSL) can leverage unlabeled data, existing methods rely on confidence scores that poorly reflect extraction quality. We propose QUEST, a Quality-aware Semi-supervised Table extraction framework designed for business documents. QUEST introduces a novel quality assessment model that evaluates structural and contextual features of extracted tables, trained to predict F1 scores instead of relying on confidence metrics. This quality-aware approach guides pseudo-label selection during iterative SSL training, while diversity measures (DPP, Vendi score, IntDiv) mitigate confirmation bias. Experiments on a proprietary business dataset (1000 annotated + 10000 unannotated documents) show QUEST improves F1 from 64% to 74% and reduces empty predictions by 45% (from 12% to 6.5%). On the DocILE benchmark (600 annotated + 20000 unannotated documents), QUEST achieves a 50% F1 score (up from 42%) and reduces empty predictions by 19% (from 27% to 22%). The framework's interpretable quality assessments and robustness to annotation scarcity make it particularly suited for business documents, where structural consistency and data completeness are paramount.
comment: Accepted at ICDAR 2025
♻ ☆ xInv: Explainable Optimization of Inverse Problems
Inverse problems are central to a wide range of fields, including healthcare, climate science, and agriculture. They involve the estimation of inputs, typically via iterative optimization, to some known forward model so that it produces a desired outcome. Despite considerable development in the explainability and interpretability of forward models, the iterative optimization of inverse problems remains largely cryptic to domain experts. We propose a methodology to produce explanations, from traces produced by an optimizer, that are interpretable by humans at the abstraction of the domain. The central idea in our approach is to instrument a differentiable simulator so that it emits natural language events during its forward and backward passes. In a post-process, we use a Language Model to create an explanation from the list of events. We demonstrate the effectiveness of our approach with an illustrative optimization problem and an example involving the training of a neural network.
♻ ☆ Large Language Models powered Malicious Traffic Detection: Architecture, Opportunities and Case Study
Malicious traffic detection is a pivotal technology for network security to identify abnormal network traffic and detect network attacks. Large Language Models (LLMs) are trained on a vast corpus of text, have amassed remarkable capabilities of context-understanding and commonsense knowledge. This has opened up a new door for network attacks detection. Researchers have already initiated discussions regarding the application of LLMs on specific cyber-security tasks. Unfortunately, there remains a lack of comprehensive analysis on harnessing LLMs for traffic detection, as well as the opportunities and challenges. In this paper, we focus on unleashing the full potential of Large Language Models (LLMs) in malicious traffic detection. We present a holistic view of the architecture of LLM-powered malicious traffic detection, including the procedures of Pre-training, Fine-tuning, and Detection. Especially, by exploring the knowledge and capabilities of LLM, we identify three distinct roles LLM can act in traffic classification: Classifier, Encoder, and Predictor. For each of them, the modeling paradigm, opportunities and challenges are elaborated. Finally, we present our design on LLM-powered DDoS detection as a case study. The proposed framework attains accurate detection on carpet bombing DDoS by exploiting LLMs' capabilities in contextual mining. The evaluation shows its efficacy, exhibiting a nearly 35% improvement compared to existing systems.
comment: accepted
♻ ☆ TreeSynth: Synthesizing Diverse Data from Scratch via Tree-Guided Subspace Partitioning
Model customization necessitates high-quality and diverse datasets, but acquiring such data remains time-consuming and labor-intensive. Despite the great potential of large language models (LLMs) for data synthesis, current approaches are constrained by limited seed data, model biases, and low-variation prompts, resulting in limited diversity and biased distributions with the increase of data scales. To tackle this challenge, we introduce TREESYNTH, a tree-guided subspace-based data synthesis approach inspired by decision trees. It constructs a spatial partitioning tree to recursively divide a task-specific full data space (i.e., root node) into numerous atomic subspaces (i.e., leaf nodes) with mutually exclusive and exhaustive attributes to ensure both distinctiveness and comprehensiveness before synthesizing samples within each atomic subspace. This globally dividing-and-synthesizing method finally collects subspace samples into a comprehensive dataset, effectively circumventing repetition and space collapse to ensure the diversity of large-scale data synthesis. Furthermore, the spatial partitioning tree enables sample allocation into atomic subspaces, allowing the rebalancing of existing datasets for more balanced and comprehensive distributions. Empirically, extensive experiments across diverse benchmarks consistently demonstrate the superior data diversity, model performance, and robust scalability of TREESYNTH compared to both human-crafted datasets and peer data synthesis methods, with an average performance gain reaching 10%. Besides, the consistent improvements of TREESYNTH-balanced datasets highlight its efficacious application to redistribute existing datasets for more comprehensive coverage and the induced performance enhancement. The code is available at https://github.com/cpa2001/TreeSynth.
♻ ☆ LoRA-One: One-Step Full Gradient Could Suffice for Fine-Tuning Large Language Models, Provably and Efficiently ICML 2025
This paper explores how theory can guide and enhance practical algorithms, using Low-Rank Adaptation (LoRA, Hu et al. 2022) in large language models as a case study. We rigorously prove that, under gradient descent, LoRA adapters align with specific singular subspaces of the one-step full fine-tuning gradient. This result suggests that, by properly initializing the adapters using the one-step full gradient, subspace alignment can be achieved immediately and applicable to both linear and nonlinear models. Building on our theory, we propose a theory-driven algorithm, LoRA-One, where the linear convergence (as well as generalization) is built and incorporating preconditioners theoretically helps mitigate the effects of ill-conditioning. Besides, our theory reveals connections between LoRA-One and other gradient-alignment-based methods, helping to clarify misconceptions in the design of such algorithms. LoRA-One achieves significant empirical improvements over LoRA and its variants across benchmarks in natural language understanding, mathematical reasoning, and code generation. Code is available at: https://github.com/YuanheZ/LoRA-One.
comment: Accepted by ICML 2025 (Oral)
♻ ☆ OAgents: An Empirical Study of Building Effective Agents
Recently, Agentic AI has become an increasingly popular research field. However, we argue that current agent research practices lack standardization and scientific rigor, making it hard to conduct fair comparisons among methods. As a result, it is still unclear how different design choices in agent frameworks affect effectiveness, and measuring their progress remains challenging. In this work, we conduct a systematic empirical study on GAIA benchmark and BrowseComp to examine the impact of popular design choices in key agent components in a fair and rigorous manner. We find that the lack of a standard evaluation protocol makes previous works, even open-sourced ones, non-reproducible, with significant variance between random runs. Therefore, we introduce a more robust evaluation protocol to stabilize comparisons. Our study reveals which components and designs are crucial for effective agents, while others are redundant, despite seeming logical. Based on our findings, we build and open-source OAgents, a new foundation agent framework that achieves state-of-the-art performance among open-source projects. OAgents offers a modular design for various agent components, promoting future research in Agentic AI.
comment: 28 pages
♻ ☆ Anatomical basis of sex differences in the electrocardiogram identified by three-dimensional torso-heart imaging reconstruction pipeline
The electrocardiogram (ECG) is used for diagnosis and risk stratification following myocardial infarction (MI). Women have a higher incidence of missed MI diagnosis and complications following infarction, and to address this we aim to provide quantitative information on sex-differences in ECG and torso-ventricular anatomy features. A novel computational automated pipeline is presented enabling the three-dimensional reconstruction of torso-ventricular anatomies for 425 post-MI subjects and 1051 healthy controls from UK Biobank clinical images. Regression models were created relating torso-ventricular and ECG parameters. For post-MI women, the heart is positioned more posteriorly and vertically, than in men (with healthy women yet more vertical). Post-MI women exhibit less QRS prolongation, requiring 27% more prolongation than men to exceed 120ms. Only half of the sex difference in QRS is associated with smaller female cavities. Lower STj amplitude in women is striking, associated with smaller ventricles, but also more superior and posterior cardiac position. Post-MI, T wave amplitude and R axis deviations are strongly associated with a more posterior and horizontal cardiac position in women (but not in men). Our study highlights the need to quantify sex differences in anatomical features, their implications in ECG interpretation, and the application of clinical ECG thresholds in post-MI.
comment: Paper under revision
♻ ☆ Compromising Honesty and Harmlessness in Language Models via Deception Attacks
Recent research on large language models (LLMs) has demonstrated their ability to understand and employ deceptive behavior, even without explicit prompting. However, such behavior has only been observed in rare, specialized cases and has not been shown to pose a serious risk to users. Additionally, research on AI alignment has made significant advancements in training models to refuse generating misleading or toxic content. As a result, LLMs generally became honest and harmless. In this study, we introduce "deception attacks" that undermine both of these traits, revealing a vulnerability that, if exploited, could have serious real-world consequences. We introduce fine-tuning methods that cause models to selectively deceive users on targeted topics while remaining accurate on others. Through a series of experiments, we show that such targeted deception is effective even in high-stakes domains or ideologically charged subjects. In addition, we find that deceptive fine-tuning often compromises other safety properties: deceptive models are more likely to produce toxic content, including hate speech and stereotypes. Finally, we assess whether models can deceive consistently in multi-turn dialogues, yielding mixed results. Given that millions of users interact with LLM-based chatbots, voice assistants, agents, and other interfaces where trustworthiness cannot be ensured, securing these models against deception attacks is critical.
♻ ☆ Infi-MMR: Curriculum-based Unlocking Multimodal Reasoning via Phased Reinforcement Learning in Multimodal Small Language Models
Recent advancements in large language models (LLMs) have demonstrated substantial progress in reasoning capabilities, such as DeepSeek-R1, which leverages rule-based reinforcement learning to enhance logical reasoning significantly. However, extending these achievements to multimodal large language models (MLLMs) presents critical challenges, which are frequently more pronounced for Multimodal Small Language Models (MSLMs) given their typically weaker foundational reasoning abilities: (1) the scarcity of high-quality multimodal reasoning datasets, (2) the degradation of reasoning capabilities due to the integration of visual processing, and (3) the risk that direct application of reinforcement learning may produce complex yet incorrect reasoning processes. To address these challenges, we design a novel framework Infi-MMR to systematically unlock the reasoning potential of MSLMs through a curriculum of three carefully structured phases and propose our multimodal reasoning model Infi-MMR-3B. The first phase, Foundational Reasoning Activation, leverages high-quality textual reasoning datasets to activate and strengthen the model's logical reasoning capabilities. The second phase, Cross-Modal Reasoning Adaptation, utilizes caption-augmented multimodal data to facilitate the progressive transfer of reasoning skills to multimodal contexts. The third phase, Multimodal Reasoning Enhancement, employs curated, caption-free multimodal data to mitigate linguistic biases and promote robust cross-modal reasoning. Infi-MMR-3B achieves both state-of-the-art multimodal math reasoning ability (43.68% on MathVerse testmini, 27.04% on MathVision test, and 21.33% on OlympiadBench) and general reasoning ability (67.2% on MathVista testmini). Resources are available at https://huggingface.co/Reallm-Labs/Infi-MMR-3B.
♻ ☆ SLR: An Automated Synthesis Framework for Scalable Logical Reasoning
We introduce SLR, an end-to-end framework for systematic evaluation and training of Large Language Models (LLMs) via Scalable Logical Reasoning. Given a user's task specification, SLR enables scalable, automated synthesis of inductive reasoning tasks with precisely controlled difficulty. For each task, SLR synthesizes (i) a latent ground-truth rule, (ii) an executable validation program used by a symbolic judge to deterministically verify model outputs, and (iii) an instruction prompt for the reasoning task. Using SLR, we create SLR-Bench, a benchmark comprising over 19k prompts spanning 20 curriculum levels that progressively increase in relational, arithmetic, and recursive complexity. Large-scale evaluation reveals that contemporary LLMs readily produce syntactically valid rules, yet often fail at correct logical inference. Recent reasoning LLMs do somewhat better, but incur substantial increases in test-time compute, sometimes exceeding 15k completion tokens. Finally, logic-tuning via SLR doubles Llama-3-8B accuracy on SLR-Bench, achieving parity with Gemini-Flash-Thinking at a fraction of computational cost. SLR is fully automated, requires no human annotation, ensures dataset novelty, and offers a scalable environment for probing and advancing LLMs' reasoning capabilities.
♻ ☆ Recent Trends in Artificial Intelligence Technology: A Scoping Review
Artificial intelligence is more ubiquitous in multiple domains. Smartphones, social media platforms, search engines, and autonomous vehicles are just a few examples of applications that utilize artificial intelligence technologies to enhance their performance. This study carries out a scoping review of the current state-of-the-art artificial intelligence technologies following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework. The goal was to find the most advanced technologies used in different domains of artificial intelligence technology research. Three recognized journals were used from artificial intelligence and machine learning domain: Journal of Artificial Intelligence Research, Journal of Machine Learning Research, and Machine Learning, and articles published in 2022 were observed. Certain qualifications were laid for the technological solutions: the technology must be tested against comparable solutions, commonly approved or otherwise well justified datasets must be used while applying, and results must show improvements against comparable solutions. One of the most important parts of the technology development appeared to be how to process and exploit the data gathered from multiple sources. The data can be highly unstructured, and the technological solution should be able to utilize the data with minimum manual work from humans. The results of this review indicate that creating labeled datasets is very laborious, and solutions exploiting unsupervised or semi-supervised learning technologies are more and more researched. The learning algorithms should be able to be updated efficiently, and predictions should be interpretable. Using artificial intelligence technologies in real-world applications, safety and explainable predictions are mandatory to consider before mass adoption can occur.
♻ ☆ DipLLM: Fine-Tuning LLM for Strategic Decision-making in Diplomacy ICML 2025
Diplomacy is a complex multiplayer game that requires both cooperation and competition, posing significant challenges for AI systems. Traditional methods rely on equilibrium search to generate extensive game data for training, which demands substantial computational resources. Large Language Models (LLMs) offer a promising alternative, leveraging pre-trained knowledge to achieve strong performance with relatively small-scale fine-tuning. However, applying LLMs to Diplomacy remains challenging due to the exponential growth of possible action combinations and the intricate strategic interactions among players. To address this challenge, we propose DipLLM, a fine-tuned LLM-based agent that learns equilibrium policies for Diplomacy. DipLLM employs an autoregressive factorization framework to simplify the complex task of multi-unit action assignment into a sequence of unit-level decisions. By defining an equilibrium policy within this framework as the learning objective, we fine-tune the model using only 1.5% of the data required by the state-of-the-art Cicero model, surpassing its performance. Our results demonstrate the potential of fine-tuned LLMs for tackling complex strategic decision-making in multiplayer games.
comment: Accepted to the 42nd International Conference on Machine Learning (ICML 2025)
♻ ☆ Do Concept Bottleneck Models Respect Localities?
Concept-based explainability methods use human-understandable intermediaries to produce explanations for machine learning models. These methods assume concept predictions can help understand a model's internal reasoning. In this work, we assess the degree to which such an assumption is true by analyzing whether concept predictors leverage ``relevant'' features to make predictions, a term we call locality. Concept-based models that fail to respect localities also fail to be explainable because concept predictions are based on spurious features, making the interpretation of the concept predictions vacuous. To assess whether concept-based models respect localities, we construct and use three metrics to characterize when models respect localities, complementing our analysis with theoretical results. Each of our metrics captures a different notion of perturbation and assess whether perturbing ``irrelevant'' features impacts the predictions made by a concept predictors. We find that many concept-based models used in practice fail to respect localities because concept predictors cannot always clearly distinguish distinct concepts. Based on these findings, we propose suggestions for alleviating this issue.
comment: Published at TMLR
♻ ☆ RePST: Language Model Empowered Spatio-Temporal Forecasting via Semantic-Oriented Reprogramming
Spatio-temporal forecasting is pivotal in numerous real-world applications, including transportation planning, energy management, and climate monitoring. In this work, we aim to harness the reasoning and generalization abilities of Pre-trained Language Models (PLMs) for more effective spatio-temporal forecasting, particularly in data-scarce scenarios. However, recent studies uncover that PLMs, which are primarily trained on textual data, often falter when tasked with modeling the intricate correlations in numerical time series, thereby limiting their effectiveness in comprehending spatio-temporal data. To bridge the gap, we propose RePST, a semantic-oriented PLM reprogramming framework tailored for spatio-temporal forecasting. Specifically, we first propose a semantic-oriented decomposer that adaptively disentangles spatially correlated time series into interpretable sub-components, which facilitates PLM to understand sophisticated spatio-temporal dynamics via a divide-and-conquer strategy. Moreover, we propose a selective discrete reprogramming scheme, which introduces an expanded spatio-temporal vocabulary space to project spatio-temporal series into discrete representations. This scheme minimizes the information loss during reprogramming and enriches the representations derived by PLMs. Extensive experiments on real-world datasets show that the proposed RePST outperforms twelve state-of-the-art baseline methods, particularly in data-scarce scenarios, highlighting the effectiveness and superior generalization capabilities of PLMs for spatio-temporal forecasting. Our codes can be found at https://github.com/usail-hkust/REPST.
♻ ☆ Position is Power: System Prompts as a Mechanism of Bias in Large Language Models (LLMs)
System prompts in Large Language Models (LLMs) are predefined directives that guide model behaviour, taking precedence over user inputs in text processing and generation. LLM deployers increasingly use them to ensure consistent responses across contexts. While model providers set a foundation of system prompts, deployers and third-party developers can append additional prompts without visibility into others' additions, while this layered implementation remains entirely hidden from end-users. As system prompts become more complex, they can directly or indirectly introduce unaccounted for side effects. This lack of transparency raises fundamental questions about how the position of information in different directives shapes model outputs. As such, this work examines how the placement of information affects model behaviour. To this end, we compare how models process demographic information in system versus user prompts across six commercially available LLMs and 50 demographic groups. Our analysis reveals significant biases, manifesting in differences in user representation and decision-making scenarios. Since these variations stem from inaccessible and opaque system-level configurations, they risk representational, allocative and potential other biases and downstream harms beyond the user's ability to detect or correct. Our findings draw attention to these critical issues, which have the potential to perpetuate harms if left unexamined. Further, we argue that system prompt analysis must be incorporated into AI auditing processes, particularly as customisable system prompts become increasingly prevalent in commercial AI deployments.
comment: Published in Proceedings of ACM FAccT 2025 Update Comment: Fixed the error where user vs. system and implicit vs. explicit labels in the heatmaps were switched. The takeaways remain the same
♻ ☆ PlanGenLLMs: A Modern Survey of LLM Planning Capabilities ACL 2025
LLMs have immense potential for generating plans, transforming an initial world state into a desired goal state. A large body of research has explored the use of LLMs for various planning tasks, from web navigation to travel planning and database querying. However, many of these systems are tailored to specific problems, making it challenging to compare them or determine the best approach for new tasks. There is also a lack of clear and consistent evaluation criteria. Our survey aims to offer a comprehensive overview of current LLM planners to fill this gap. It builds on foundational work by Kartam and Wilkins (1990) and examines six key performance criteria: completeness, executability, optimality, representation, generalization, and efficiency. For each, we provide a thorough analysis of representative works and highlight their strengths and weaknesses. Our paper also identifies crucial future directions, making it a valuable resource for both practitioners and newcomers interested in leveraging LLM planning to support agentic workflows.
comment: Accepted by ACL 2025
♻ ☆ Shapley Revisited: Tractable Responsibility Measures for Query Answers PODS'25
The Shapley value, originating from cooperative game theory, has been employed to define responsibility measures that quantify the contributions of database facts to obtaining a given query answer. For non-numeric queries, this is done by considering a cooperative game whose players are the facts and whose wealth function assigns 1 or 0 to each subset of the database, depending on whether the query answer holds in the given subset. While conceptually simple, this approach suffers from a notable drawback: the problem of computing such Shapley values is #P-hard in data complexity, even for simple conjunctive queries. This motivates us to revisit the question of what constitutes a reasonable responsibility measure and to introduce a new family of responsibility measures -- weighted sums of minimal supports (WSMS) -- which satisfy intuitive properties. Interestingly, while the definition of WSMSs is simple and bears no obvious resemblance to the Shapley value formula, we prove that every WSMS measure can be equivalently seen as the Shapley value of a suitably defined cooperative game. Moreover, WSMS measures enjoy tractable data complexity for a large class of queries, including all unions of conjunctive queries. We further explore the combined complexity of WSMS computation and establish (in)tractability results for various subclasses of conjunctive queries.
comment: Long version of PODS'25 paper, with corrected error on Shapley symmetry axiom statement
♻ ☆ AFBS:Buffer Gradient Selection in Semi-asynchronous Federated Learning
Asynchronous federated learning (AFL) accelerates training by eliminating the need to wait for stragglers, but its asynchronous nature introduces gradient staleness, where outdated gradients degrade performance. Existing solutions address this issue with gradient buffers, forming a semi-asynchronous framework. However, this approach struggles when buffers accumulate numerous stale gradients, as blindly aggregating all gradients can harm training. To address this, we propose AFBS (Asynchronous FL Buffer Selection), the first algorithm to perform gradient selection within buffers while ensuring privacy protection. Specifically, the client sends the random projection encrypted label distribution matrix before training, and the server performs client clustering based on it. During training, server scores and selects gradients within each cluster based on their informational value, discarding low-value gradients to enhance semi-asynchronous federated learning. Extensive experiments in highly heterogeneous system and data environments demonstrate AFBS's superior performance compared to state-of-the-art methods. Notably, on the most challenging task, CIFAR-100, AFBS improves accuracy by up to 4.8% over the previous best algorithm and reduces the time to reach target accuracy by 75%.
♻ ☆ When Large Language Models Meet Vector Databases: A Survey
This survey explores the synergistic potential of Large Language Models (LLMs) and Vector Databases (VecDBs), a burgeoning but rapidly evolving research area. With the proliferation of LLMs comes a host of challenges, including hallucinations, outdated knowledge, prohibitive commercial application costs, and memory issues. VecDBs emerge as a compelling solution to these issues by offering an efficient means to store, retrieve, and manage the high-dimensional vector representations intrinsic to LLM operations. Through this nuanced review, we delineate the foundational principles of LLMs and VecDBs and critically analyze their integration's impact on enhancing LLM functionalities. This discourse extends into a discussion on the speculative future developments in this domain, aiming to catalyze further research into optimizing the confluence of LLMs and VecDBs for advanced data handling and knowledge extraction capabilities.
♻ ☆ Personalized News Recommendation with Multi-granularity Candidate-aware User Modeling
Matching candidate news with user interests is crucial for personalized news recommendations. Most existing methods can represent a user's reading interests through a single profile based on clicked news, which may not fully capture the diversity of user interests. Although some approaches incorporate candidate news or topic information, they remain insufficient because they neglect the multi-granularity relatedness between candidate news and user interests. To address this, this study proposed a multi-granularity candidate-aware user modeling framework that integrated user interest features across various levels of granularity. It consisted of two main components: candidate news encoding and user modeling. A news textual information extractor and a knowledge-enhanced entity information extractor can capture candidate news features, and word-level, entity-level, and news-level candidate-aware mechanisms can provide a comprehensive representation of user interests. Extensive experiments on a real-world dataset demonstrated that the proposed model could significantly outperform baseline models.
♻ ☆ FutureFill: Fast Generation from Convolutional Sequence Models
We address the challenge of efficient auto-regressive generation in sequence prediction models by introducing FutureFill, a general-purpose fast generation method for any sequence prediction algorithm based on convolutional operators. FutureFill reduces generation time from quadratic to quasilinear in the context length. Moreover, when generating from a prompt, it requires a prefill cache whose size grows only with the number of tokens to be generated, often much smaller than the caches required by standard convolutional or attention based models. We validate our theoretical claims with experiments on synthetic tasks and demonstrate substantial efficiency gains when generating from a deep convolutional sequence prediction model.
♻ ☆ Sycophancy in Vision-Language Models: A Systematic Analysis and an Inference-Time Mitigation Framework
Large Vision-Language Models (LVLMs) have shown significant capability in vision-language understanding. However, one critical issue that persists in these models is sycophancy, where models are unduly influenced by leading or deceptive prompts, resulting in biased outputs and hallucinations. Despite the rapid development of LVLMs, evaluating and mitigating sycophancy remains largely under-explored. In this work, we fill this gap by systematically analyzing sycophancy across multiple vision-language benchmarks and propose an inference-time mitigation framework. We curate leading queries and quantify the susceptibility of state-of-the-art LVLMs to prompt-induced bias, revealing consistent performance degradation and instability across models and tasks. Our analysis further uncovers model-specific behavioral traits, such as sentiment sensitivity and prediction polarity shifts under sycophancy. To mitigate these issues, we propose a training-free, model-agnostic framework that operates entirely at inference time. Our approach first employs a query neutralizer, leveraging an language model to suppress implicit sycophantic bias in user queries. We then introduce a sycophancy-aware contrastive decoding mechanism that dynamically recalibrates token-level output distributions by contrasting responses to neutralized and leading queries. Finally, an adaptive logits refinement module further modifies the contrasted logits by integrating both a adaptive plausibility filter and query sentiment scaler, ensuring coherent and robust generation. Extensive experiments demonstrate that this framework effectively mitigates sycophancy across all evaluated models, while maintaining performance on neutral prompts. Our results suggest that sycophancy in LVLMs is a general and urgent challenge, and that inference-time strategies offer a promising path toward trustworthy multimodal reasoning.
♻ ☆ CAD-GPT: Synthesising CAD Construction Sequence with Spatial Reasoning-Enhanced Multimodal LLMs AAAI 2025
Computer-aided design (CAD) significantly enhances the efficiency, accuracy, and innovation of design processes by enabling precise 2D and 3D modeling, extensive analysis, and optimization. Existing methods for creating CAD models rely on latent vectors or point clouds, which are difficult to obtain, and storage costs are substantial. Recent advances in Multimodal Large Language Models (MLLMs) have inspired researchers to use natural language instructions and images for CAD model construction. However, these models still struggle with inferring accurate 3D spatial location and orientation, leading to inaccuracies in determining the spatial 3D starting points and extrusion directions for constructing geometries. This work introduces CAD-GPT, a CAD synthesis method with spatial reasoning-enhanced MLLM that takes either a single image or a textual description as input. To achieve precise spatial inference, our approach introduces a 3D Modeling Spatial Mechanism. This method maps 3D spatial positions and 3D sketch plane rotation angles into a 1D linguistic feature space using a specialized spatial unfolding mechanism, while discretizing 2D sketch coordinates into an appropriate planar space to enable precise determination of spatial starting position, sketch orientation, and 2D sketch coordinate translations. Extensive experiments demonstrate that CAD-GPT consistently outperforms existing state-of-the-art methods in CAD model synthesis, both quantitatively and qualitatively.
comment: Accepted at AAAI 2025 (Vol. 39, No. 8), pages 7880-7888. DOI: 10.1609/aaai.v39i8.32849
♻ ☆ Uncertainty-aware Efficient Subgraph Isomorphism using Graph Topology
Subgraph isomorphism, also known as subgraph matching, is typically regarded as an NP-complete problem. This complexity is further compounded in practical applications where edge weights are real-valued and may be affected by measurement noise and potential missing data. Such graph matching routinely arises in applications such as image matching and map matching. Most subgraph matching methods fail to perform node-to-node matching under presence of such corruptions. We propose a method for identifying the node correspondence between a subgraph and a full graph in the inexact case without node labels in two steps - (a) extract the minimal unique topology preserving subset from the subgraph and find its feasible matching in the full graph, and (b) implement a consensus-based algorithm to expand the matched node set by pairing unique paths based on boundary commutativity. To demonstrate the effectiveness of the proposed method, a simulation is performed on the Erdos-Renyi random graphs and two case studies are performed on the image-based affine covariant features dataset and KITTI stereo dataset respectively. Going beyond the existing subgraph matching approaches, the proposed method is shown to have realistically sub-linear computational efficiency, robustness to random measurement noise, and good statistical properties. Our method is also readily applicable to the exact matching case without loss of generality.
♻ ☆ LLM Web Dynamics: Tracing Model Collapse in a Network of LLMs
The increasing use of synthetic data from the public Internet has enhanced data usage efficiency in large language model (LLM) training. However, the potential threat of model collapse remains insufficiently explored. Existing studies primarily examine model collapse in a single model setting or rely solely on statistical surrogates. In this work, we introduce LLM Web Dynamics (LWD), an efficient framework for investigating model collapse at the network level. By simulating the Internet with a retrieval-augmented generation (RAG) database, we analyze the convergence pattern of model outputs. Furthermore, we provide theoretical guarantees for this convergence by drawing an analogy to interacting Gaussian Mixture Models.
♻ ☆ MIRAGE: A Multi-modal Benchmark for Spatial Perception, Reasoning, and Intelligence
Spatial perception and reasoning are core components of human cognition, encompassing object recognition, spatial relational understanding, and dynamic reasoning. Despite progress in computer vision, existing benchmarks reveal significant gaps in models' abilities to accurately recognize object attributes and reason about spatial relationships, both essential for dynamic reasoning. To address these limitations, we propose MIRAGE, a multi-modal benchmark designed to evaluate models' capabilities in Counting (object attribute recognition), Relation (spatial relational reasoning), and Counting with Relation. Through diverse and complex scenarios requiring fine-grained recognition and reasoning, MIRAGE highlights critical limitations in state-of-the-art models, underscoring the need for improved representations and reasoning frameworks. By targeting these foundational abilities, MIRAGE provides a pathway toward spatiotemporal reasoning in future research.
♻ ☆ SWE-Dev: Building Software Engineering Agents with Training and Inference Scaling ACL'25
Large language models (LLMs) have advanced rapidly from conversational problem solving to addressing real-world tasks involving tool use, such as software engineering (SWE). Recent LLM-powered toolkits, such as OpenAI Codex and Cursor, have offered end-to-end automation of the software development process. However, building effective SWE agents remains challenging due to the lack of high-quality training data and effective test cases. To address this issue, we present SWE-Dev, an SWE agent built upon open-source LLMs. First, we develop a robust pipeline to synthesize test cases for patch evaluation. Second, we scale up agent trajectories to construct the training data for building SWE-Dev. Experiments on the SWE-bench-Verified benchmark show that the SWE-Dev models can achieve top performance among all open SWE agents. Specifically, the success rates of the SWE-Dev 7B and 32B parameter models reach 23.4% and 36.6%, respectively, outperforming state-of-the-art open-source models. All code, models, and datasets are publicly available at https://github.com/THUDM/SWE-Dev.
comment: Accepted to Findings of ACL'25
♻ ☆ Symmetric Reinforcement Learning Loss for Robust Learning on Diverse Tasks and Model Scales
Reinforcement learning (RL) training is inherently unstable due to factors such as moving targets and high gradient variance. Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning from AI Feedback (RLAIF) can introduce additional difficulty. Differing preferences can complicate the alignment process, and prediction errors in a trained reward model can become more severe as the LLM generates unseen outputs. To enhance training robustness, RL has adopted techniques from supervised learning, such as ensembles and layer normalization. In this work, we improve the stability of RL training by adapting the reverse cross entropy (RCE) from supervised learning for noisy data to define a symmetric RL loss. We demonstrate performance improvements across various tasks and scales. We conduct experiments in discrete action tasks (Atari games) and continuous action space tasks (MuJoCo benchmark and Box2D) using Symmetric A2C (SA2C) and Symmetric PPO (SPPO), with and without added noise with especially notable performance in SPPO across different hyperparameters. Furthermore, we validate the benefits of the symmetric RL loss when using SPPO for large language models through improved performance in RLHF tasks, such as IMDB positive sentiment sentiment and TL;DR summarization tasks.
♻ ☆ Align and Distill: Unifying and Improving Domain Adaptive Object Detection
Object detectors often perform poorly on data that differs from their training set. Domain adaptive object detection (DAOD) methods have recently demonstrated strong results on addressing this challenge. Unfortunately, we identify systemic benchmarking pitfalls that call past results into question and hamper further progress: (a) Overestimation of performance due to underpowered baselines, (b) Inconsistent implementation practices preventing transparent comparisons of methods, and (c) Lack of generality due to outdated backbones and lack of diversity in benchmarks. We address these problems by introducing: (1) A unified benchmarking and implementation framework, Align and Distill (ALDI), enabling comparison of DAOD methods and supporting future development, (2) A fair and modern training and evaluation protocol for DAOD that addresses benchmarking pitfalls, (3) A new DAOD benchmark dataset, CFC-DAOD, enabling evaluation on diverse real-world data, and (4) A new method, ALDI++, that achieves state-of-the-art results by a large margin. ALDI++ outperforms the previous state-of-the-art by +3.5 AP50 on Cityscapes to Foggy Cityscapes, +5.7 AP50 on Sim10k to Cityscapes (where ours is the only method to outperform a fair baseline), and +0.6 AP50 on CFC Kenai to Channel. ALDI and ALDI++ are architecture-agnostic, setting a new state-of-the-art for YOLO and DETR-based DAOD as well without additional hyperparameter tuning. Our framework, dataset, and state-of-the-art method offer a critical reset for DAOD and provide a strong foundation for future research. Code and data are available: https://github.com/justinkay/aldi and https://github.com/visipedia/caltech-fish-counting.
comment: TMLR camera ready (Featured Certification). 33 pages, 15 figures
♻ ☆ AI-Enhanced Deliberative Democracy and the Future of the Collective Will
This article unpacks the design choices behind longstanding and newly proposed computational frameworks aimed at finding common grounds across collective preferences and examines their potential future impacts, both technically and normatively. It begins by situating AI-assisted preference elicitation within the historical role of opinion polls, emphasizing that preferences are shaped by the decision-making context and are seldom objectively captured. With that caveat in mind, we explore AI-based democratic innovations as discovery tools for fostering reasonable representations of a collective will, sense-making, and agreement-seeking. At the same time, we caution against dangerously misguided uses, such as enabling binding decisions, fostering gradual disempowerment or post-rationalizing political outcomes.
♻ ☆ Time-IMM: A Dataset and Benchmark for Irregular Multimodal Multivariate Time Series
Time series data in real-world applications such as healthcare, climate modeling, and finance are often irregular, multimodal, and messy, with varying sampling rates, asynchronous modalities, and pervasive missingness. However, existing benchmarks typically assume clean, regularly sampled, unimodal data, creating a significant gap between research and real-world deployment. We introduce Time-IMM, a dataset specifically designed to capture cause-driven irregularity in multimodal multivariate time series. Time-IMM represents nine distinct types of time series irregularity, categorized into trigger-based, constraint-based, and artifact-based mechanisms. Complementing the dataset, we introduce IMM-TSF, a benchmark library for forecasting on irregular multimodal time series, enabling asynchronous integration and realistic evaluation. IMM-TSF includes specialized fusion modules, including a timestamp-to-text fusion module and a multimodality fusion module, which support both recency-aware averaging and attention-based integration strategies. Empirical results demonstrate that explicitly modeling multimodality on irregular time series data leads to substantial gains in forecasting performance. Time-IMM and IMM-TSF provide a foundation for advancing time series analysis under real-world conditions. The dataset is publicly available at https://www.kaggle.com/datasets/blacksnail789521/time-imm/data, and the benchmark library can be accessed at https://anonymous.4open.science/r/IMMTSF_NeurIPS2025.
comment: This paper is currently under review
♻ ☆ TRAIL: Trace Reasoning and Agentic Issue Localization
The increasing adoption of agentic workflows across diverse domains brings a critical need to scalably and systematically evaluate the complex traces these systems generate. Current evaluation methods depend on manual, domain-specific human analysis of lengthy workflow traces - an approach that does not scale with the growing complexity and volume of agentic outputs. Error analysis in these settings is further complicated by the interplay of external tool outputs and language model reasoning, making it more challenging than traditional software debugging. In this work, we (1) articulate the need for robust and dynamic evaluation methods for agentic workflow traces, (2) introduce a formal taxonomy of error types encountered in agentic systems, and (3) present a set of 148 large human-annotated traces (TRAIL) constructed using this taxonomy and grounded in established agentic benchmarks. To ensure ecological validity, we curate traces from both single and multi-agent systems, focusing on real-world applications such as software engineering and open-world information retrieval. Our evaluations reveal that modern long context LLMs perform poorly at trace debugging, with the best Gemini-2.5-pro model scoring a mere 11% on TRAIL. Our dataset and code are made publicly available to support and accelerate future research in scalable evaluation for agentic workflows.
comment: Dataset: https://huggingface.co/datasets/PatronusAI/TRAIL
♻ ☆ cuVSLAM: CUDA accelerated visual odometry and mapping
Accurate and robust pose estimation is a key requirement for any autonomous robot. We present cuVSLAM, a state-of-the-art solution for visual simultaneous localization and mapping, which can operate with a variety of visual-inertial sensor suites, including multiple RGB and depth cameras, and inertial measurement units. cuVSLAM supports operation with as few as one RGB camera to as many as 32 cameras, in arbitrary geometric configurations, thus supporting a wide range of robotic setups. cuVSLAM is specifically optimized using CUDA to deploy in real-time applications with minimal computational overhead on edge-computing devices such as the NVIDIA Jetson. We present the design and implementation of cuVSLAM, example use cases, and empirical results on several state-of-the-art benchmarks demonstrating the best-in-class performance of cuVSLAM.
♻ ☆ Impact of Visual Context on Noisy Multimodal NMT: An Empirical Study for English to Indian Languages
Neural Machine Translation (NMT) has made remarkable progress using large-scale textual data, but the potential of incorporating multimodal inputs, especially visual information, remains underexplored in high-resource settings. While prior research has focused on using multimodal data in low-resource scenarios, this study examines how image features impact translation when added to a large-scale, pre-trained unimodal NMT system. Surprisingly, the study finds that images might be redundant in this context. Additionally, the research introduces synthetic noise to assess whether images help the model handle textual noise. Multimodal models slightly outperform text-only models in noisy settings, even when random images are used. The study's experiments translate from English to Hindi, Bengali, and Malayalam, significantly outperforming state-of-the-art benchmarks. Interestingly, the effect of visual context varies with the level of source text noise: no visual context works best for non-noisy translations, cropped image features are optimal for low noise, and full image features perform better in high-noise scenarios. This sheds light on the role of visual context, especially in noisy settings, and opens up a new research direction for Noisy Neural Machine Translation in multimodal setups. The research emphasizes the importance of combining visual and textual information to improve translation across various environments. Our code is publicly available at https://github.com/babangain/indicMMT.
♻ ☆ Rational Metareasoning for Large Language Models
Being prompted to engage in reasoning has emerged as a core technique for using large language models (LLMs), deploying additional inference-time compute to improve task performance. However, as LLMs increase in both size and adoption, inference costs are correspondingly becoming increasingly burdensome. How, then, might we optimize reasoning's cost-performance tradeoff? This work introduces a novel approach based on computational models of metareasoning used in cognitive science, training LLMs to selectively use intermediate reasoning steps only when necessary. We first develop a reward function that incorporates the Value of Computation by penalizing unnecessary reasoning, then use this reward function with Expert Iteration to train the LLM. Compared to few-shot chain-of-thought prompting and STaR, our method significantly reduces inference costs (20-37\% fewer tokens generated across three models) while maintaining task performance across diverse datasets.
♻ ☆ AI-Facilitated Episodic Future Thinking For Adults with Obesity
Episodic Future Thinking (EFT) involves vividly imagining personal future events and experiences in detail. It has shown promise as an intervention to reduce delay discounting-the tendency to devalue delayed rewards in favor of immediate gratification- and to promote behavior change in a range of maladaptive health behaviors. We present EFTeacher, an AI chatbot powered by the GPT-4-Turbo large language model, designed to generate EFT cues for users with lifestyle-related conditions. To evaluate the feasibility and usability of EFTeacher, we conducted a mixed-methods study that included usability assessments, user evaluations based on content characteristics questionnaires, and semi-structured interviews. Qualitative findings indicate that participants perceived EFTeacher as communicative and supportive through an engaging dialogue. The chatbot facilitated imaginative thinking and reflection on future goals. Participants appreciated its adaptability and personalization features, though some noted challenges such as repetitive dialogue and verbose responses. Our findings underscore the potential of large language model-based chatbots in EFT interventions targeting maladaptive health behaviors.
♻ ☆ Robust Reinforcement Learning from Human Feedback for Large Language Models Fine-Tuning
Reinforcement learning from human feedback (RLHF) has emerged as a key technique for aligning the output of large language models (LLMs) with human preferences. To learn the reward function, most existing RLHF algorithms use the Bradley-Terry model, which relies on assumptions about human preferences that may not reflect the complexity and variability of real-world judgments. In this paper, we propose a robust algorithm to enhance the performance of existing approaches under such reward model misspecifications. Theoretically, our algorithm reduces the variance of reward and policy estimators, leading to improved regret bounds. Empirical evaluations on LLM benchmark datasets demonstrate that the proposed algorithm consistently outperforms existing methods, with 77-81% of responses being favored over baselines on the Anthropic Helpful and Harmless dataset.
♻ ☆ Emergent Risk Awareness in Rational Agents under Resource Constraints
Advanced reasoning models with agentic capabilities (AI agents) are deployed to interact with humans and to solve sequential decision-making problems under (approximate) utility functions and internal models. When such problems have resource or failure constraints where action sequences may be forcibly terminated once resources are exhausted, agents face implicit trade-offs that reshape their utility-driven (rational) behaviour. Additionally, since these agents are typically commissioned by a human principal to act on their behalf, asymmetries in constraint exposure can give rise to previously unanticipated misalignment between human objectives and agent incentives. We formalise this setting through a survival bandit framework, provide theoretical and empirical results that quantify the impact of survival-driven preference shifts, identify conditions under which misalignment emerges and propose mechanisms to mitigate the emergence of risk-seeking or risk-averse behaviours. As a result, this work aims to increase understanding and interpretability of emergent behaviours of AI agents operating under such survival pressure, and offer guidelines for safely deploying such AI systems in critical resource-limited environments.
Graphics 9
☆ A B-Spline Finite Element Method for Cloth Simulation
We present a B-spline finite element method (FEM) for cloth simulation. Building on quadratic B-spline basis functions, our method provides a globally $C^1$-continuous displacement field, enabling consistent and accurate discretization of both membrane and bending energies. This smooth representation effectively mitigates locking artifacts and mesh dependency issues commonly observed with linear FEM. To further improve efficiency, we develop a reduced integration scheme that separately optimizes quadrature rules for membrane and bending energies, further reducing computational overhead while maintaining accuracy. We validate our approach through extensive experiments, demonstrating improved accuracy, visual quality, and efficiency compared to linear FEM and recent higher-order methods. Our method enables realistic simulation of complex wrinkling dynamics across varying material parameters, offering a promising new spatial discretization for cloth simulation.
comment: 19 pages, 18 figures
☆ DuetGen: Music Driven Two-Person Dance Generation via Hierarchical Masked Modeling
We present DuetGen, a novel framework for generating interactive two-person dances from music. The key challenge of this task lies in the inherent complexities of two-person dance interactions, where the partners need to synchronize both with each other and with the music. Inspired by the recent advances in motion synthesis, we propose a two-stage solution: encoding two-person motions into discrete tokens and then generating these tokens from music. To effectively capture intricate interactions, we represent both dancers' motions as a unified whole to learn the necessary motion tokens, and adopt a coarse-to-fine learning strategy in both the stages. Our first stage utilizes a VQ-VAE that hierarchically separates high-level semantic features at a coarse temporal resolution from low-level details at a finer resolution, producing two discrete token sequences at different abstraction levels. Subsequently, in the second stage, two generative masked transformers learn to map music signals to these dance tokens: the first producing high-level semantic tokens, and the second, conditioned on music and these semantic tokens, producing the low-level tokens. We train both transformers to learn to predict randomly masked tokens within the sequence, enabling them to iteratively generate motion tokens by filling an empty token sequence during inference. Through the hierarchical masked modeling and dedicated interaction representation, DuetGen achieves the generation of synchronized and interactive two-person dances across various genres. Extensive experiments and user studies on a benchmark duet dance dataset demonstrate state-of-the-art performance of DuetGen in motion realism, music-dance alignment, and partner coordination.
comment: 11 pages, 7 figures, 2 tables, accepted in ACM Siggraph 2025 conference track
☆ TCDiff++: An End-to-end Trajectory-Controllable Diffusion Model for Harmonious Music-Driven Group Choreography
Music-driven dance generation has garnered significant attention due to its wide range of industrial applications, particularly in the creation of group choreography. During the group dance generation process, however, most existing methods still face three primary issues: multi-dancer collisions, single-dancer foot sliding and abrupt swapping in the generation of long group dance. In this paper, we propose TCDiff++, a music-driven end-to-end framework designed to generate harmonious group dance. Specifically, to mitigate multi-dancer collisions, we utilize a dancer positioning embedding to better maintain the relative positioning among dancers. Additionally, we incorporate a distance-consistency loss to ensure that inter-dancer distances remain within plausible ranges. To address the issue of single-dancer foot sliding, we introduce a swap mode embedding to indicate dancer swapping patterns and design a Footwork Adaptor to refine raw motion, thereby minimizing foot sliding. For long group dance generation, we present a long group diffusion sampling strategy that reduces abrupt position shifts by injecting positional information into the noisy input. Furthermore, we integrate a Sequence Decoder layer to enhance the model's ability to selectively process long sequences. Extensive experiments demonstrate that our TCDiff++ achieves state-of-the-art performance, particularly in long-duration scenarios, ensuring high-quality and coherent group dance generation.
☆ BulletGen: Improving 4D Reconstruction with Bullet-Time Generation
Transforming casually captured, monocular videos into fully immersive dynamic experiences is a highly ill-posed task, and comes with significant challenges, e.g., reconstructing unseen regions, and dealing with the ambiguity in monocular depth estimation. In this work we introduce BulletGen, an approach that takes advantage of generative models to correct errors and complete missing information in a Gaussian-based dynamic scene representation. This is done by aligning the output of a diffusion-based video generation model with the 4D reconstruction at a single frozen "bullet-time" step. The generated frames are then used to supervise the optimization of the 4D Gaussian model. Our method seamlessly blends generative content with both static and dynamic scene components, achieving state-of-the-art results on both novel-view synthesis, and 2D/3D tracking tasks.
☆ What You Think Is What You Get: Bridge User Intent and Transfer Function Design through Multimodal Large Language Models
Direct volume rendering (DVR) is a fundamental technique for visualizing volumetric data, with transfer functions (TFs) playing a crucial role in extracting meaningful structures. However, designing effective TFs remains unintuitive due to the semantic gap between user intent and TF parameter space. Researchers have developed numerous TF optimization methods to bridge this gap. However, existing methods still face two challenges: large exploration space and weak generalizability. To address these issues, we propose What You Think is What You Get (WYTWYG) framework, which leveraging Multi-model Large Language Models (MLLMs) to guide the TF optimization based on user intent. Specifically, we first introduce a novel TF optimization approach comprising two core components: (1) an evolution-based explorer for effective exploration of the TF space, and (2) a volume rendering quality evaluator based on MLLMs to provide generalizable visual guidance. We further propose a TF interactive design system based on this approach. We demonstrate the general applicability of our framework through three case studies, and validate the effectiveness of each component through extensive experiments. Our code is available at: https://github.com/wyysteelhead/TFevolve.
☆ Morse: Dual-Sampling for Lossless Acceleration of Diffusion Models ICML 2025
In this paper, we present Morse, a simple dual-sampling framework for accelerating diffusion models losslessly. The key insight of Morse is to reformulate the iterative generation (from noise to data) process via taking advantage of fast jump sampling and adaptive residual feedback strategies. Specifically, Morse involves two models called Dash and Dot that interact with each other. The Dash model is just the pre-trained diffusion model of any type, but operates in a jump sampling regime, creating sufficient space for sampling efficiency improvement. The Dot model is significantly faster than the Dash model, which is learnt to generate residual feedback conditioned on the observations at the current jump sampling point on the trajectory of the Dash model, lifting the noise estimate to easily match the next-step estimate of the Dash model without jump sampling. By chaining the outputs of the Dash and Dot models run in a time-interleaved fashion, Morse exhibits the merit of flexibly attaining desired image generation performance while improving overall runtime efficiency. With our proposed weight sharing strategy between the Dash and Dot models, Morse is efficient for training and inference. Our method shows a lossless speedup of 1.78X to 3.31X on average over a wide range of sampling step budgets relative to 9 baseline diffusion models on 6 image generation tasks. Furthermore, we show that our method can be also generalized to improve the Latent Consistency Model (LCM-SDXL, which is already accelerated with consistency distillation technique) tailored for few-step text-to-image synthesis. The code and models are available at https://github.com/deep-optimization/Morse.
comment: This work is accepted to ICML 2025. The project page: https://github.com/deep-optimization/Morse
☆ SOF: Sorted Opacity Fields for Fast Unbounded Surface Reconstruction
Recent advances in 3D Gaussian representations have significantly improved the quality and efficiency of image-based scene reconstruction. Their explicit nature facilitates real-time rendering and fast optimization, yet extracting accurate surfaces - particularly in large-scale, unbounded environments - remains a difficult task. Many existing methods rely on approximate depth estimates and global sorting heuristics, which can introduce artifacts and limit the fidelity of the reconstructed mesh. In this paper, we present Sorted Opacity Fields (SOF), a method designed to recover detailed surfaces from 3D Gaussians with both speed and precision. Our approach improves upon prior work by introducing hierarchical resorting and a robust formulation of Gaussian depth, which better aligns with the level-set. To enhance mesh quality, we incorporate a level-set regularizer operating on the opacity field and introduce losses that encourage geometrically-consistent primitive shapes. In addition, we develop a parallelized Marching Tetrahedra algorithm tailored to our opacity formulation, reducing meshing time by up to an order of magnitude. As demonstrated by our quantitative evaluation, SOF achieves higher reconstruction accuracy while cutting total processing time by more than a factor of three. These results mark a step forward in turning efficient Gaussian-based rendering into equally efficient geometry extraction.
☆ Am I Playing Better Now? The Effects of G-SYNC in 60Hz Gameplay
G-SYNC technology matches formerly regular display refreshes to irregular frame updates, improving frame rates and interactive latency. In a previous study of gaming at the 30Hz frame rates common on consoles, players of Battlefield 4 were unable to discern when G-SYNC was in use, but scored higher with G-SYNC and were affected emotionally. We build on that study with the first examination of G-SYNC's effects at the 60Hz frame rate more common in PC gaming and on emerging consoles. Though G-SYNC's effects are less at 60Hz than they were at 30Hz, G-SYNC can still improve the performance of veteran players, particularly when games are challenging. G-SYNC's effects on emotion and experience were limited.
♻ ☆ CAD-GPT: Synthesising CAD Construction Sequence with Spatial Reasoning-Enhanced Multimodal LLMs AAAI 2025
Computer-aided design (CAD) significantly enhances the efficiency, accuracy, and innovation of design processes by enabling precise 2D and 3D modeling, extensive analysis, and optimization. Existing methods for creating CAD models rely on latent vectors or point clouds, which are difficult to obtain, and storage costs are substantial. Recent advances in Multimodal Large Language Models (MLLMs) have inspired researchers to use natural language instructions and images for CAD model construction. However, these models still struggle with inferring accurate 3D spatial location and orientation, leading to inaccuracies in determining the spatial 3D starting points and extrusion directions for constructing geometries. This work introduces CAD-GPT, a CAD synthesis method with spatial reasoning-enhanced MLLM that takes either a single image or a textual description as input. To achieve precise spatial inference, our approach introduces a 3D Modeling Spatial Mechanism. This method maps 3D spatial positions and 3D sketch plane rotation angles into a 1D linguistic feature space using a specialized spatial unfolding mechanism, while discretizing 2D sketch coordinates into an appropriate planar space to enable precise determination of spatial starting position, sketch orientation, and 2D sketch coordinate translations. Extensive experiments demonstrate that CAD-GPT consistently outperforms existing state-of-the-art methods in CAD model synthesis, both quantitatively and qualitatively.
comment: Accepted at AAAI 2025 (Vol. 39, No. 8), pages 7880-7888. DOI: 10.1609/aaai.v39i8.32849
Robotics 25
☆ Integrating LLMs and Digital Twins for Adaptive Multi-Robot Task Allocation in Construction
Multi-robot systems are emerging as a promising solution to the growing demand for productivity, safety, and adaptability across industrial sectors. However, effectively coordinating multiple robots in dynamic and uncertain environments, such as construction sites, remains a challenge, particularly due to unpredictable factors like material delays, unexpected site conditions, and weather-induced disruptions. To address these challenges, this study proposes an adaptive task allocation framework that strategically leverages the synergistic potential of Digital Twins, Integer Programming (IP), and Large Language Models (LLMs). The multi-robot task allocation problem is formally defined and solved using an IP model that accounts for task dependencies, robot heterogeneity, scheduling constraints, and re-planning requirements. A mechanism for narrative-driven schedule adaptation is introduced, in which unstructured natural language inputs are interpreted by an LLM, and optimization constraints are autonomously updated, enabling human-in-the-loop flexibility without manual coding. A digital twin-based system has been developed to enable real-time synchronization between physical operations and their digital representations. This closed-loop feedback framework ensures that the system remains dynamic and responsive to ongoing changes on site. A case study demonstrates both the computational efficiency of the optimization algorithm and the reasoning performance of several LLMs, with top-performing models achieving over 97% accuracy in constraint and parameter extraction. The results confirm the practicality, adaptability, and cross-domain applicability of the proposed methods.
☆ Automated Plan Refinement for Improving Efficiency of Robotic Layup of Composite Sheets
The automation of composite sheet layup is essential to meet the increasing demand for composite materials in various industries. However, draping plans for the robotic layup of composite sheets are not robust. A plan that works well under a certain condition does not work well in a different condition. Changes in operating conditions due to either changes in material properties or working environment may lead a draping plan to exhibit suboptimal performance. In this paper, we present a comprehensive framework aimed at refining plans based on the observed execution performance. Our framework prioritizes the minimization of uncompacted regions while simultaneously improving time efficiency. To achieve this, we integrate human expertise with data-driven decision-making to refine expert-crafted plans for diverse production environments. We conduct experiments to validate the effectiveness of our approach, revealing significant reductions in the number of corrective paths required compared to initial expert-crafted plans. Through a combination of empirical data analysis, action-effectiveness modeling, and search-based refinement, our system achieves superior time efficiency in robotic layup. Experimental results demonstrate the efficacy of our approach in optimizing the layup process, thereby advancing the state-of-the-art in composite manufacturing automation.
☆ RoboArena: Distributed Real-World Evaluation of Generalist Robot Policies
Comprehensive, unbiased, and comparable evaluation of modern generalist policies is uniquely challenging: existing approaches for robot benchmarking typically rely on heavy standardization, either by specifying fixed evaluation tasks and environments, or by hosting centralized ''robot challenges'', and do not readily scale to evaluating generalist policies across a broad range of tasks and environments. In this work, we propose RoboArena, a new approach for scalable evaluation of generalist robot policies in the real world. Instead of standardizing evaluations around fixed tasks, environments, or locations, we propose to crowd-source evaluations across a distributed network of evaluators. Importantly, evaluators can freely choose the tasks and environments they evaluate on, enabling easy scaling of diversity, but they are required to perform double-blind evaluations over pairs of policies. Then, by aggregating preference feedback from pairwise comparisons across diverse tasks and environments, we can derive a ranking of policies. We instantiate our approach across a network of evaluators at seven academic institutions using the DROID robot platform. Through more than 600 pairwise real-robot evaluation episodes across seven generalist policies, we demonstrate that our crowd-sourced approach can more accurately rank the performance of existing generalist policies than conventional, centralized evaluation approaches, while being more scalable, resilient, and trustworthy. We open our evaluation network to the community and hope that it can enable more accessible comparisons of generalist robot policies.
comment: Website: https://robo-arena.github.io/
☆ RoboTwin 2.0: A Scalable Data Generator and Benchmark with Strong Domain Randomization for Robust Bimanual Robotic Manipulation
Simulation-based data synthesis has emerged as a powerful paradigm for enhancing real-world robotic manipulation. However, existing synthetic datasets remain insufficient for robust bimanual manipulation due to two challenges: (1) the lack of an efficient, scalable data generation method for novel tasks, and (2) oversimplified simulation environments that fail to capture real-world complexity. We present RoboTwin 2.0, a scalable simulation framework that enables automated, large-scale generation of diverse and realistic data, along with unified evaluation protocols for dual-arm manipulation. We first construct RoboTwin-OD, a large-scale object library comprising 731 instances across 147 categories, each annotated with semantic and manipulation-relevant labels. Building on this foundation, we develop an expert data synthesis pipeline that combines multimodal large language models (MLLMs) with simulation-in-the-loop refinement to generate task-level execution code automatically. To improve sim-to-real transfer, RoboTwin 2.0 incorporates structured domain randomization along five axes: clutter, lighting, background, tabletop height and language instructions, thereby enhancing data diversity and policy robustness. We instantiate this framework across 50 dual-arm tasks spanning five robot embodiments, and pre-collect over 100,000 domain-randomized expert trajectories. Empirical results show a 10.9% gain in code generation success and improved generalization to novel real-world scenarios. A VLA model fine-tuned on our dataset achieves a 367% relative improvement (42.0% vs. 9.0%) on unseen scene real-world tasks, while zero-shot models trained solely on our synthetic data achieve a 228% relative gain, highlighting strong generalization without real-world supervision. We release the data generator, benchmark, dataset, and code to support scalable research in robust bimanual manipulation.
comment: Project Page: https://robotwin-platform.github.io/
☆ StereoTacTip: Vision-based Tactile Sensing with Biomimetic Skin-Marker Arrangements
Vision-Based Tactile Sensors (VBTSs) stand out for their superior performance due to their high-information content output. Recently, marker-based VBTSs have been shown to give accurate geometry reconstruction when using stereo cameras. \uhl{However, many marker-based VBTSs use complex biomimetic skin-marker arrangements, which presents issues for the geometric reconstruction of the skin surface from the markers}. Here we investigate how the marker-based skin morphology affects stereo vision-based tactile sensing, using a novel VBTS called the StereoTacTip. To achieve accurate geometry reconstruction, we introduce: (i) stereo marker matching and tracking using a novel Delaunay-Triangulation-Ring-Coding algorithm; (ii) a refractive depth correction model that corrects the depth distortion caused by refraction in the internal media; (iii) a skin surface correction model from the marker positions, relying on an inverse calculation of normals to the skin surface; and (iv)~methods for geometry reconstruction over multiple contacts. To demonstrate these findings, we reconstruct topographic terrains on a large 3D map. Even though contributions (i) and (ii) were developed for biomimetic markers, they should improve the performance of all marker-based VBTSs. Overall, this work illustrates that a thorough understanding and evaluation of the morphologically-complex skin and marker-based tactile sensor principles are crucial for obtaining accurate geometric information.
comment: 11 pages, 13 figures
☆ Leveraging Cloud-Fog Automation for Autonomous Collision Detection and Classification in Intelligent Unmanned Surface Vehicles
Industrial Cyber-Physical Systems (ICPS) technologies are foundational in driving maritime autonomy, particularly for Unmanned Surface Vehicles (USVs). However, onboard computational constraints and communication latency significantly restrict real-time data processing, analysis, and predictive modeling, hence limiting the scalability and responsiveness of maritime ICPS. To overcome these challenges, we propose a distributed Cloud-Edge-IoT architecture tailored for maritime ICPS by leveraging design principles from the recently proposed Cloud-Fog Automation paradigm. Our proposed architecture comprises three hierarchical layers: a Cloud Layer for centralized and decentralized data aggregation, advanced analytics, and future model refinement; an Edge Layer that executes localized AI-driven processing and decision-making; and an IoT Layer responsible for low-latency sensor data acquisition. Our experimental results demonstrated improvements in computational efficiency, responsiveness, and scalability. When compared with our conventional approaches, we achieved a classification accuracy of 86\%, with an improved latency performance. By adopting Cloud-Fog Automation, we address the low-latency processing constraints and scalability challenges in maritime ICPS applications. Our work offers a practical, modular, and scalable framework to advance robust autonomy and AI-driven decision-making and autonomy for intelligent USVs in future maritime ICPS.
comment: 6 pages, 5 figures, accepted paper on the 23rd IEEE International Conference on Industrial Informatics (INDIN), July 12-15, 2025, Kunming, China
☆ ADA-DPM: A Neural Descriptors-based Adaptive Noise Point Filtering Strategy for SLAM
LiDAR SLAM has demonstrated significant application value in various fields, including mobile robot navigation and high-precision map construction. However, existing methods often need to make a trade-off between positioning accuracy and system robustness when faced with dynamic object interference, point cloud noise, and unstructured environments. To address this challenge, we propose an adaptive noise filtering SLAM strategy-ADA-DPM, achieving excellent preference in both aspects. We design the Dynamic Segmentation Head to predict the category of feature points belonging to dynamic points, to eliminate dynamic feature points; design the Global Importance Scoring Head to adaptively select feature points with higher contribution and features while suppressing noise interference; and construct the Cross Layer Intra-Graph Convolution Module (GLI-GCN) to fuse multi-scale neighborhood structures, thereby enhancing the discriminative ability of overlapping features. Finally, to further validate the effectiveness of our method, we tested it on several publicly available datasets and achieved outstanding results.
☆ Newtonian and Lagrangian Neural Networks: A Comparison Towards Efficient Inverse Dynamics Identification
Accurate inverse dynamics models are essential tools for controlling industrial robots. Recent research combines neural network regression with inverse dynamics formulations of the Newton-Euler and the Euler-Lagrange equations of motion, resulting in so-called Newtonian neural networks and Lagrangian neural networks, respectively. These physics-informed models seek to identify unknowns in the analytical equations from data. Despite their potential, current literature lacks guidance on choosing between Lagrangian and Newtonian networks. In this study, we show that when motor torques are estimated instead of directly measuring joint torques, Lagrangian networks prove less effective compared to Newtonian networks as they do not explicitly model dissipative torques. The performance of these models is compared to neural network regression on data of a MABI MAX 100 industrial robot.
comment: Paper accepted for publication in 14th IFAC Symposium on Robotics
☆ CFTel: A Practical Architecture for Robust and Scalable Telerobotics with Cloud-Fog Automation
Telerobotics is a key foundation in autonomous Industrial Cyber-Physical Systems (ICPS), enabling remote operations across various domains. However, conventional cloud-based telerobotics suffers from latency, reliability, scalability, and resilience issues, hindering real-time performance in critical applications. Cloud-Fog Telerobotics (CFTel) builds on the Cloud-Fog Automation (CFA) paradigm to address these limitations by leveraging a distributed Cloud-Edge-Robotics computing architecture, enabling deterministic connectivity, deterministic connected intelligence, and deterministic networked computing. This paper synthesizes recent advancements in CFTel, aiming to highlight its role in facilitating scalable, low-latency, autonomous, and AI-driven telerobotics. We analyze architectural frameworks and technologies that enable them, including 5G Ultra-Reliable Low-Latency Communication, Edge Intelligence, Embodied AI, and Digital Twins. The study demonstrates that CFTel has the potential to enhance real-time control, scalability, and autonomy while supporting service-oriented solutions. We also discuss practical challenges, including latency constraints, cybersecurity risks, interoperability issues, and standardization efforts. This work serves as a foundational reference for researchers, stakeholders, and industry practitioners in future telerobotics research.
comment: 6 pages, 1 figure, accepted paper on the 23rd IEEE International Conference on Industrial Informatics (INDIN), July 12-15, 2025, Kunming, China
☆ GeNIE: A Generalizable Navigation System for In-the-Wild Environments
Reliable navigation in unstructured, real-world environments remains a significant challenge for embodied agents, especially when operating across diverse terrains, weather conditions, and sensor configurations. In this paper, we introduce GeNIE (Generalizable Navigation System for In-the-Wild Environments), a robust navigation framework designed for global deployment. GeNIE integrates a generalizable traversability prediction model built on SAM2 with a novel path fusion strategy that enhances planning stability in noisy and ambiguous settings. We deployed GeNIE in the Earth Rover Challenge (ERC) at ICRA 2025, where it was evaluated across six countries spanning three continents. GeNIE took first place and achieved 79% of the maximum possible score, outperforming the second-best team by 17%, and completed the entire competition without a single human intervention. These results set a new benchmark for robust, generalizable outdoor robot navigation. We will release the codebase, pretrained model weights, and newly curated datasets to support future research in real-world navigation.
comment: 8 pages, 5 figures. Jiaming Wang, Diwen Liu, and Jizhuo Chen contributed equally
☆ Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective ICML 2025
We propose a novel prompt design paradigm that challenges conventional wisdom in large language model (LLM) prompting. While conventional wisdom prioritizes well-crafted instructions and demonstrations for in-context learning (ICL), we show that pruning random demonstrations into seemingly incoherent "gibberish" can remarkably improve performance across diverse tasks. Notably, the "gibberish" always matches or surpasses state-of-the-art automatic prompt optimization techniques, achieving substantial gains regardless of LLM alignment. Nevertheless, discovering an effective pruning strategy is non-trivial, as existing attribution methods and prompt compression algorithms fail to deliver robust results, let alone human intuition. In terms of this, we propose a self-discover prompt optimization framework, PromptQuine, an evolutionary search framework that automatically searches for the pruning strategy by itself using only low-data regimes. Much like the emergent complexity in nature--such as symbiosis and self-organization--arising in response to resource constraints, our framework evolves and refines unconventional yet highly effective prompts by leveraging only the tokens present within the context. We demonstrate its effectiveness across classification, multi-choice question answering, generation and math reasoning tasks across LLMs, while achieving decent runtime efficiency. We hope our findings can guide mechanistic studies on in-context learning, and provide a call to action, to pave the way for more open-ended search algorithms for more effective LLM prompting.
comment: ICML 2025, and Code will be released at: https://github.com/jianyu-cs/PromptQuine/
☆ Embedded Flexible Circumferential Sensing for Real-Time Intraoperative Environmental Perception in Continuum Robots
Continuum robots have been widely adopted in robot-assisted minimally invasive surgery (RMIS) because of their compact size and high flexibility. However, their proprioceptive capabilities remain limited, particularly in narrow lumens, where lack of environmental awareness can lead to unintended tissue contact and surgical risks. To address this challenge, this work proposes a flexible annular sensor structure integrated around the vertebral disks of continuum robots. The proposed design enables real-time environmental mapping by estimating the distance between the robotic disks and the surrounding tissue, thereby facilitating safer operation through advanced control strategies. The experiment has proven that its accuracy in obstacle detection can reach 0.19 mm. Fabricated using flexible printed circuit (FPC) technology, the sensor demonstrates a modular and cost-effective design with compact dimensions and low noise interference. Its adaptable parameters allow compatibility with various continuum robot architectures, offering a promising solution for enhancing intraoperative perception and control in surgical robotics.
☆ Cross-modal State Space Modeling for Real-time RGB-thermal Wild Scene Semantic Segmentation
The integration of RGB and thermal data can significantly improve semantic segmentation performance in wild environments for field robots. Nevertheless, multi-source data processing (e.g. Transformer-based approaches) imposes significant computational overhead, presenting challenges for resource-constrained systems. To resolve this critical limitation, we introduced CM-SSM, an efficient RGB-thermal semantic segmentation architecture leveraging a cross-modal state space modeling (SSM) approach. Our framework comprises two key components. First, we introduced a cross-modal 2D-selective-scan (CM-SS2D) module to establish SSM between RGB and thermal modalities, which constructs cross-modal visual sequences and derives hidden state representations of one modality from the other. Second, we developed a cross-modal state space association (CM-SSA) module that effectively integrates global associations from CM-SS2D with local spatial features extracted through convolutional operations. In contrast with Transformer-based approaches, CM-SSM achieves linear computational complexity with respect to image resolution. Experimental results show that CM-SSM achieves state-of-the-art performance on the CART dataset with fewer parameters and lower computational cost. Further experiments on the PST900 dataset demonstrate its generalizability. Codes are available at https://github.com/xiaodonguo/CMSSM.
☆ Geometric Contact Flows: Contactomorphisms for Dynamics and Control ICML 2025
Accurately modeling and predicting complex dynamical systems, particularly those involving force exchange and dissipation, is crucial for applications ranging from fluid dynamics to robotics, but presents significant challenges due to the intricate interplay of geometric constraints and energy transfer. This paper introduces Geometric Contact Flows (GFC), a novel framework leveraging Riemannian and Contact geometry as inductive biases to learn such systems. GCF constructs a latent contact Hamiltonian model encoding desirable properties like stability or energy conservation. An ensemble of contactomorphisms then adapts this model to the target dynamics while preserving these properties. This ensemble allows for uncertainty-aware geodesics that attract the system's behavior toward the data support, enabling robust generalization and adaptation to unseen scenarios. Experiments on learning dynamics for physical systems and for controlling robots on interaction tasks demonstrate the effectiveness of our approach.
comment: Accepted at ICML 2025
♻ ☆ SurgSora: Object-Aware Diffusion Model for Controllable Surgical Video Generation MICCAI 2025
Surgical video generation can enhance medical education and research, but existing methods lack fine-grained motion control and realism. We introduce SurgSora, a framework that generates high-fidelity, motion-controllable surgical videos from a single input frame and user-specified motion cues. Unlike prior approaches that treat objects indiscriminately or rely on ground-truth segmentation masks, SurgSora leverages self-predicted object features and depth information to refine RGB appearance and optical flow for precise video synthesis. It consists of three key modules: (1) the Dual Semantic Injector, which extracts object-specific RGB-D features and segmentation cues to enhance spatial representations; (2) the Decoupled Flow Mapper, which fuses multi-scale optical flow with semantic features for realistic motion dynamics; and (3) the Trajectory Controller, which estimates sparse optical flow and enables user-guided object movement. By conditioning these enriched features within the Stable Video Diffusion, SurgSora achieves state-of-the-art visual authenticity and controllability in advancing surgical video synthesis, as demonstrated by extensive quantitative and qualitative comparisons. Our human evaluation in collaboration with expert surgeons further demonstrates the high realism of SurgSora-generated videos, highlighting the potential of our method for surgical training and education. Our project is available at https://surgsora.github.io/surgsora.github.io.
comment: MICCAI 2025
♻ ☆ Structured Pneumatic Fingerpads for Actively Tunable Grip Friction RAS
Grip surfaces with tunable friction can actively modify contact conditions, enabling transitions between higher- and lower-friction states for grasp adjustment. Friction can be increased to grip securely and then decreased to gently release (e.g., for handovers) or manipulate in-hand. Recent friction-tuning surface designs using soft pneumatic chambers show good control over grip friction; however, most require complex fabrication processes and/or custom gripper hardware. We present a practical structured fingerpad design for friction tuning that uses less than $1 USD of materials, takes only seconds to repair, and is easily adapted to existing grippers. Our design uses surface morphology changes to tune friction. The fingerpad is actuated by pressurizing its internal chambers, thereby deflecting its flexible grip surface out from or into these chambers. We characterize the friction-tuning capabilities of our design by measuring the shear force required to pull an object from a gripper equipped with two independently actuated fingerpads. Our results show that varying actuation pressure and timing changes the magnitude of friction forces on a gripped object by up to a factor of 2.8. We demonstrate additional features including macro-scale interlocking behaviour and pressure-based object detection.
comment: In Proceedings of the IEEE/RAS International Conference on Soft Robotics (RoboSoft'25), Lausanne, Switzerland, Apr. 22-26, 2025
♻ ☆ Learning to Adapt through Bio-Inspired Gait Strategies for Versatile Quadruped Locomotion
Legged robots must adapt their gait to navigate unpredictable environments, a challenge that animals master with ease. However, most deep reinforcement learning (DRL) approaches to quadruped locomotion rely on a fixed gait, limiting adaptability to changes in terrain and dynamic state. Here we show that integrating three core principles of animal locomotion-gait transition strategies, gait memory and real-time motion adjustments enables a DRL control framework to fluidly switch among multiple gaits and recover from instability, all without external sensing. Our framework is guided by biomechanics-inspired metrics that capture efficiency, stability and system limits, which are unified to inform optimal gait selection. The resulting framework achieves blind zero-shot deployment across diverse, real-world terrains and substantially significantly outperforms baseline controllers. By embedding biological principles into data-driven control, this work marks a step towards robust, efficient and versatile robotic locomotion, highlighting how animal motor intelligence can shape the next generation of adaptive machines.
comment: 19 pages, 8 figures, journal paper
♻ ☆ Physics-Informed Multi-Agent Reinforcement Learning for Distributed Multi-Robot Problems
The networked nature of multi-robot systems presents challenges in the context of multi-agent reinforcement learning. Centralized control policies do not scale with increasing numbers of robots, whereas independent control policies do not exploit the information provided by other robots, exhibiting poor performance in cooperative-competitive tasks. In this work we propose a physics-informed reinforcement learning approach able to learn distributed multi-robot control policies that are both scalable and make use of all the available information to each robot. Our approach has three key characteristics. First, it imposes a port-Hamiltonian structure on the policy representation, respecting energy conservation properties of physical robot systems and the networked nature of robot team interactions. Second, it uses self-attention to ensure a sparse policy representation able to handle time-varying information at each robot from the interaction graph. Third, we present a soft actor-critic reinforcement learning algorithm parameterized by our self-attention port-Hamiltonian control policy, which accounts for the correlation among robots during training while overcoming the need of value function factorization. Extensive simulations in different multi-robot scenarios demonstrate the success of the proposed approach, surpassing previous multi-robot reinforcement learning solutions in scalability, while achieving similar or superior performance (with averaged cumulative reward up to x2 greater than the state-of-the-art with robot teams x6 larger than the number of robots at training time). We also validate our approach on multiple real robots in the Georgia Tech Robotarium under imperfect communication, demonstrating zero-shot sim-to-real transfer and scalability across number of robots.
comment: Paper accepted and published at IEEE T-RO
♻ ☆ Active Fine-Tuning of Multi-Task Policies
Pre-trained generalist policies are rapidly gaining relevance in robot learning due to their promise of fast adaptation to novel, in-domain tasks. This adaptation often relies on collecting new demonstrations for a specific task of interest and applying imitation learning algorithms, such as behavioral cloning. However, as soon as several tasks need to be learned, we must decide which tasks should be demonstrated and how often? We study this multi-task problem and explore an interactive framework in which the agent adaptively selects the tasks to be demonstrated. We propose AMF (Active Multi-task Fine-tuning), an algorithm to maximize multi-task policy performance under a limited demonstration budget by collecting demonstrations yielding the largest information gain on the expert policy. We derive performance guarantees for AMF under regularity assumptions and demonstrate its empirical effectiveness to efficiently fine-tune neural policies in complex and high-dimensional environments.
♻ ☆ Cross from Left to Right Brain: Adaptive Text Dreamer for Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) requires the agent to navigate by following natural instructions under partial observability, making it difficult to align perception with language. Recent methods mitigate this by imagining future scenes, yet they rely on vision-based synthesis, leading to high computational cost and redundant details. To this end, we propose to adaptively imagine key environmental semantics via \textit{language} form, enabling a more reliable and efficient strategy. Specifically, we introduce a novel Adaptive Text Dreamer (ATD), a dual-branch self-guided imagination policy built upon a large language model (LLM). ATD is designed with a human-like left-right brain architecture, where the left brain focuses on logical integration, and the right brain is responsible for imaginative prediction of future scenes. To achieve this, we fine-tune only the Q-former within both brains to efficiently activate domain-specific knowledge in the LLM, enabling dynamic updates of logical reasoning and imagination during navigation. Furthermore, we introduce a cross-interaction mechanism to regularize the imagined outputs and inject them into a navigation expert module, allowing ATD to jointly exploit both the reasoning capacity of the LLM and the expertise of the navigation model. We conduct extensive experiments on the R2R benchmark, where ATD achieves state-of-the-art performance with fewer parameters. The code is \href{https://github.com/zhangpingrui/Adaptive-Text-Dreamer}{here}.
♻ ☆ POPGym Arcade: Parallel Pixelated POMDPs
We present the POPGym Arcade, a collection of hardware-accelerated, pixel-based environments with shared observation and action spaces. Each environment includes fully and partially observable variants, enabling counterfactual studies on partial observability. We also introduce mathematical tools for analyzing policies under partial observability, which reveal how agents recall past information to make decisions. Our analysis shows (1) that controlling for partial observability is critical and (2) that agents with long-term memory learn brittle policies that struggle to generalize. Finally, we demonstrate that recurrent policies can be "poisoned" by old, out-of-distribution observations, with implications for sim-to-real transfer, imitation learning, and offline reinforcement learning.
♻ ☆ An Efficient Method for Extracting the Shortest Path from the Dubins Set for Short Distances Between Initial and Final Positions
Path planning is crucial for the efficient operation of Autonomous Mobile Robots (AMRs) in factory environments. Many existing algorithms rely on Dubins paths, which have been adapted for various applications. However, an efficient method for directly determining the shortest Dubins path remains underdeveloped. This paper presents a comprehensive approach to efficiently identify the shortest path within the Dubins set. We classify the initial and final configurations into six equivalency groups based on the quadrants formed by their orientation angle pairs. Paths within each group exhibit shared topological properties, enabling a reduction in the number of candidate cases to analyze. This pre-classification step simplifies the problem and eliminates the need to explicitly compute and compare the lengths of all possible paths. As a result, the proposed method significantly lowers computational complexity. Extensive experiments confirm that our approach consistently outperforms existing methods in terms of computational efficiency.
comment: 9 pages, 10 figures
♻ ☆ A real-time anomaly detection method for robots based on a flexible and sparse latent space
The growing demand for robots to operate effectively in diverse environments necessitates the need for robust real-time anomaly detection techniques during robotic operations. However, deep learning-based models in robotics face significant challenges due to limited training data and highly noisy signal features. In this paper, we present Sparse Masked Autoregressive Flow-based Adversarial AutoEncoder model to address these problems. This approach integrates Masked Autoregressive Flow model into Adversarial AutoEncoders to construct a flexible latent space and utilize Sparse autoencoder to efficiently focus on important features, even in scenarios with limited feature space. Our experiments demonstrate that the proposed model achieves a 4.96% to 9.75% higher area under the receiver operating characteristic curve for pick-and-place robotic operations with randomly placed cans, compared to existing state-of-the-art methods. Notably, it showed up to 19.67% better performance in scenarios involving collisions with lightweight objects. Additionally, unlike the existing state-of-the-art model, our model performs inferences within 1 millisecond, ensuring real-time anomaly detection. These capabilities make our model highly applicable to machine learning-based robotic safety systems in dynamic environments. The code is available at https://github.com/twkang43/sparse-maf-aae.
comment: 20 pages, 11 figures
♻ ☆ DriveSuprim: Towards Precise Trajectory Selection for End-to-End Planning
In complex driving environments, autonomous vehicles must navigate safely. Relying on a single predicted path, as in regression-based approaches, usually does not explicitly assess the safety of the predicted trajectory. Selection-based methods address this by generating and scoring multiple trajectory candidates and predicting the safety score for each, but face optimization challenges in precisely selecting the best option from thousands of possibilities and distinguishing subtle but safety-critical differences, especially in rare or underrepresented scenarios. We propose DriveSuprim to overcome these challenges and advance the selection-based paradigm through a coarse-to-fine paradigm for progressive candidate filtering, a rotation-based augmentation method to improve robustness in out-of-distribution scenarios, and a self-distillation framework to stabilize training. DriveSuprim achieves state-of-the-art performance, reaching 93.5% PDMS in NAVSIM v1 and 87.1% EPDMS in NAVSIM v2 without extra data, demonstrating superior safetycritical capabilities, including collision avoidance and compliance with rules, while maintaining high trajectory quality in various driving scenarios.
comment: 15 pages, 6 figures
♻ ☆ G3Flow: Generative 3D Semantic Flow for Pose-aware and Generalizable Object Manipulation CVPR 2025
Recent advances in imitation learning for 3D robotic manipulation have shown promising results with diffusion-based policies. However, achieving human-level dexterity requires seamless integration of geometric precision and semantic understanding. We present G3Flow, a novel framework that constructs real-time semantic flow, a dynamic, object-centric 3D semantic representation by leveraging foundation models. Our approach uniquely combines 3D generative models for digital twin creation, vision foundation models for semantic feature extraction, and robust pose tracking for continuous semantic flow updates. This integration enables complete semantic understanding even under occlusions while eliminating manual annotation requirements. By incorporating semantic flow into diffusion policies, we demonstrate significant improvements in both terminal-constrained manipulation and cross-object generalization. Extensive experiments across five simulation tasks show that G3Flow consistently outperforms existing approaches, achieving up to 68.3% and 50.1% average success rates on terminal-constrained manipulation and cross-object generalization tasks respectively. Our results demonstrate the effectiveness of G3Flow in enhancing real-time dynamic semantic feature understanding for robotic manipulation policies.
comment: Webpage: https://tianxingchen.github.io/G3Flow/, accepted to CVPR 2025
Artificial Intelligence 115
☆ Deep Learning-based Alignment Measurement in Knee Radiographs MICCAI 2025
Radiographic knee alignment (KA) measurement is important for predicting joint health and surgical outcomes after total knee replacement. Traditional methods for KA measurements are manual, time-consuming and require long-leg radiographs. This study proposes a deep learning-based method to measure KA in anteroposterior knee radiographs via automatically localized knee anatomical landmarks. Our method builds on hourglass networks and incorporates an attention gate structure to enhance robustness and focus on key anatomical features. To our knowledge, this is the first deep learning-based method to localize over 100 knee anatomical landmarks to fully outline the knee shape while integrating KA measurements on both pre-operative and post-operative images. It provides highly accurate and reliable anatomical varus/valgus KA measurements using the anatomical tibiofemoral angle, achieving mean absolute differences ~1{\deg} when compared to clinical ground truth measurements. Agreement between automated and clinical measurements was excellent pre-operatively (intra-class correlation coefficient (ICC) = 0.97) and good post-operatively (ICC = 0.86). Our findings demonstrate that KA assessment can be automated with high accuracy, creating opportunities for digitally enhanced clinical workflows.
comment: Accepted to MICCAI 2025
☆ Prompt Engineering Techniques for Mitigating Cultural Bias Against Arabs and Muslims in Large Language Models: A Systematic Review
Large language models have demonstrated remarkable capabilities across various domains, yet concerns about cultural bias - particularly towards Arabs and Muslims - pose significant ethical challenges by perpetuating harmful stereotypes and marginalization. Despite growing recognition of bias in LLMs, prompt engineering strategies specifically addressing Arab and Muslim representation remain understudied. This mixed-methods systematic review examines such techniques, offering evidence-based guidance for researchers and practitioners. Following PRISMA guidelines and Kitchenham's systematic review methodology, we analyzed 8 empirical studies published between 2021-2024 investigating bias mitigation strategies. Our findings reveal five primary prompt engineering approaches: cultural prompting, affective priming, self-debiasing techniques, structured multi-step pipelines, and parameter-optimized continuous prompts. Although all approaches show potential for reducing bias, effectiveness varied substantially across studies and bias types. Evidence suggests that certain bias types may be more resistant to prompt-based mitigation than others. Structured multi-step pipelines demonstrated the highest overall effectiveness, achieving up to 87.7% reduction in bias, though they require greater technical expertise. Cultural prompting offers broader accessibility with substantial effectiveness. These results underscore the accessibility of prompt engineering for mitigating cultural bias without requiring access to model parameters. The limited number of studies identified highlights a significant research gap in this critical area. Future research should focus on developing culturally adaptive prompting techniques, creating Arab and Muslim-specific evaluation resources, and integrating prompt engineering with complementary debiasing methods to address deeper stereotypes while maintaining model utility.
☆ Two Sonification Methods for the MindCube
In this work, we explore the musical interface potential of the MindCube, an interactive device designed to study emotions. Embedding diverse sensors and input devices, this interface resembles a fidget cube toy commonly used to help users relieve their stress and anxiety. As such, it is a particularly well-suited controller for musical systems that aim to help with emotion regulation. In this regard, we present two different mappings for the MindCube, with and without AI. With our generative AI mapping, we propose a way to infuse meaning within a latent space and techniques to navigate through it with an external controller. We discuss our results and propose directions for future work.
comment: 5 pages, 5 figures
☆ Wisdom of Crowds Through Myopic Self-Confidence Adaptation
The wisdom of crowds is an umbrella term for phenomena suggesting that the collective judgment or decision of a large group can be more accurate than the individual judgments or decisions of the group members. A well-known example illustrating this concept is the competition at a country fair described by Galton, where the median value of the individual guesses about the weight of an ox resulted in an astonishingly accurate estimate of the actual weight. This phenomenon resembles classical results in probability theory and relies on independent decision-making. The accuracy of the group's final decision can be significantly reduced if the final agents' opinions are driven by a few influential agents. In this paper, we consider a group of agents who initially possess uncorrelated and unbiased noisy measurements of a common state of the world. Assume these agents iteratively update their estimates according to a simple non-Bayesian learning rule, commonly known in mathematical sociology as the French-DeGroot dynamics or iterative opinion pooling. As a result of this iterative distributed averaging process, each agent arrives at an asymptotic estimate of the state of the world, with the variance of this estimate determined by the matrix of weights the agents assign to each other. Every agent aims at minimizing the variance of her asymptotic estimate of the state of the world; however, such variance is also influenced by the weights allocated by other agents. To achieve the best possible estimate, the agents must then solve a game-theoretic, multi-objective optimization problem defined by the available sets of influence weights. We characterize both the Pareto frontier and the set of Nash equilibria in the resulting game. Additionally, we examine asynchronous best-response dynamics for the group of agents and prove their convergence to the set of strict Nash equilibria.
☆ DeInfoReg: A Decoupled Learning Framework for Better Training Throughput
This paper introduces Decoupled Supervised Learning with Information Regularization (DeInfoReg), a novel approach that transforms a long gradient flow into multiple shorter ones, thereby mitigating the vanishing gradient problem. Integrating a pipeline strategy, DeInfoReg enables model parallelization across multiple GPUs, significantly improving training throughput. We compare our proposed method with standard backpropagation and other gradient flow decomposition techniques. Extensive experiments on diverse tasks and datasets demonstrate that DeInfoReg achieves superior performance and better noise resistance than traditional BP models and efficiently utilizes parallel computing resources. The code for reproducibility is available at: https://github.com/ianzih/Decoupled-Supervised-Learning-for-Information-Regularization/.
☆ Call Me Maybe: Enhancing JavaScript Call Graph Construction using Graph Neural Networks
Static analysis plays a key role in finding bugs, including security issues. A critical step in static analysis is building accurate call graphs that model function calls in a program. However, due to hard-to-analyze language features, existing call graph construction algorithms for JavaScript are neither sound nor complete. Prior work shows that even advanced solutions produce false edges and miss valid ones. In this work, we assist these tools by identifying missed call edges. Our main idea is to frame the problem as link prediction on full program graphs, using a rich representation with multiple edge types. Our approach, GRAPHIA, leverages recent advances in graph neural networks to model non-local relationships between code elements. Concretely, we propose representing JavaScript programs using a combination of syntactic- and semantic-based edges. GRAPHIA can learn from imperfect labels, including static call edges from existing tools and dynamic edges from tests, either from the same or different projects. Because call graphs are sparse, standard machine learning metrics like ROC are not suitable. Instead, we evaluate GRAPHIA by ranking function definitions for each unresolved call site. We conduct a large-scale evaluation on 50 popular JavaScript libraries with 163K call edges (150K static and 13K dynamic). GRAPHIA builds program graphs with 6.6M structural and 386K semantic edges. It ranks the correct target as the top candidate in over 42% of unresolved cases and within the top 5 in 72% of cases, reducing the manual effort needed for analysis. Our results show that learning-based methods can improve the recall of JavaScript call graph construction. To our knowledge, this is the first work to apply GNN-based link prediction to full multi-file program graphs for interprocedural analysis.
☆ The Impact of Medication Non-adherence on Adverse Outcomes: Evidence from Schizophrenia Patients via Survival Analysis
This study quantifies the association between non-adherence to antipsychotic medications and adverse outcomes in individuals with schizophrenia. We frame the problem using survival analysis, focusing on the time to the earliest of several adverse events (early death, involuntary hospitalization, jail booking). We extend standard causal inference methods (T-learner, S-learner, nearest neighbor matching) to utilize various survival models to estimate individual and average treatment effects, where treatment corresponds to medication non-adherence. Analyses are repeated using different amounts of longitudinal information (3, 6, 9, and 12 months). Using data from Allegheny County in western Pennsylvania, we find strong evidence that non-adherence advances adverse outcomes by approximately 1 to 4 months. Ablation studies confirm that county-provided risk scores adjust for key confounders, as their removal amplifies the estimated effects. Subgroup analyses by medication formulation (injectable vs. oral) and medication type consistently show that non-adherence is associated with earlier adverse events. These findings highlight the clinical importance of adherence in delaying psychiatric crises and show that integrating survival analysis with causal inference tools can yield policy-relevant insights. We caution that although we apply causal inference, we only make associative claims and discuss assumptions needed for causal interpretation.
comment: Conference on Health, Inference, and Learning (CHIL 2025)
☆ CareLab at #SMM4H-HeaRD 2025: Insomnia Detection and Food Safety Event Extraction with Domain-Aware Transformers AAAI
This paper presents our system for the SMM4H-HeaRD 2025 shared tasks, specifically Task 4 (Subtasks 1, 2a, and 2b) and Task 5 (Subtasks 1 and 2). Task 4 focused on detecting mentions of insomnia in clinical notes, while Task 5 addressed the extraction of food safety events from news articles. We participated in all subtasks and report key findings across them, with particular emphasis on Task 5 Subtask 1, where our system achieved strong performance-securing first place with an F1 score of 0.958 on the test set. To attain this result, we employed encoder-based models (e.g., RoBERTa), alongside GPT-4 for data augmentation. This paper outlines our approach, including preprocessing, model architecture, and subtask-specific adaptations
comment: In the Proceedings of the 10th Social Media Mining for Health and Health Real-World Data Workshop and Shared Tasks, co-located with AAAI ICWSM 2025
☆ Reasoning about Uncertainty: Do Reasoning Models Know When They Don't Know?
Reasoning language models have set state-of-the-art (SOTA) records on many challenging benchmarks, enabled by multi-step reasoning induced using reinforcement learning. However, like previous language models, reasoning models are prone to generating confident, plausible responses that are incorrect (hallucinations). Knowing when and how much to trust these models is critical to the safe deployment of reasoning models in real-world applications. To this end, we explore uncertainty quantification of reasoning models in this work. Specifically, we ask three fundamental questions: First, are reasoning models well-calibrated? Second, does deeper reasoning improve model calibration? Finally, inspired by humans' innate ability to double-check their thought processes to verify the validity of their answers and their confidence, we ask: can reasoning models improve their calibration by explicitly reasoning about their chain-of-thought traces? We introduce introspective uncertainty quantification (UQ) to explore this direction. In extensive evaluations on SOTA reasoning models across a broad range of benchmarks, we find that reasoning models: (i) are typically overconfident, with self-verbalized confidence estimates often greater than 85% particularly for incorrect responses, (ii) become even more overconfident with deeper reasoning, and (iii) can become better calibrated through introspection (e.g., o3-Mini and DeepSeek R1) but not uniformly (e.g., Claude 3.7 Sonnet becomes more poorly calibrated). Lastly, we conclude with important research directions to design necessary UQ benchmarks and improve the calibration of reasoning models.
☆ STACT-Time: Spatio-Temporal Cross Attention for Cine Thyroid Ultrasound Time Series Classification
Thyroid cancer is among the most common cancers in the United States. Thyroid nodules are frequently detected through ultrasound (US) imaging, and some require further evaluation via fine-needle aspiration (FNA) biopsy. Despite its effectiveness, FNA often leads to unnecessary biopsies of benign nodules, causing patient discomfort and anxiety. To address this, the American College of Radiology Thyroid Imaging Reporting and Data System (TI-RADS) has been developed to reduce benign biopsies. However, such systems are limited by interobserver variability. Recent deep learning approaches have sought to improve risk stratification, but they often fail to utilize the rich temporal and spatial context provided by US cine clips, which contain dynamic global information and surrounding structural changes across various views. In this work, we propose the Spatio-Temporal Cross Attention for Cine Thyroid Ultrasound Time Series Classification (STACT-Time) model, a novel representation learning framework that integrates imaging features from US cine clips with features from segmentation masks automatically generated by a pretrained model. By leveraging self-attention and cross-attention mechanisms, our model captures the rich temporal and spatial context of US cine clips while enhancing feature representation through segmentation-guided learning. Our model improves malignancy prediction compared to state-of-the-art models, achieving a cross-validation precision of 0.91 (plus or minus 0.02) and an F1 score of 0.89 (plus or minus 0.02). By reducing unnecessary biopsies of benign nodules while maintaining high sensitivity for malignancy detection, our model has the potential to enhance clinical decision-making and improve patient outcomes.
☆ Non-equilibrium Annealed Adjoint Sampler
Recently, there has been significant progress in learning-based diffusion samplers, which aim to sample from a given unnormalized density. These methods typically follow one of two paradigms: (i) formulating sampling as an unbiased stochastic optimal control (SOC) problem using a canonical reference process, or (ii) refining annealed path measures through importance-weighted sampling. Although annealing approaches have advantages in guiding samples toward high-density regions, reliance on importance sampling leads to high variance and limited scalability in practice. In this paper, we introduce the \textbf{Non-equilibrium Annealed Adjoint Sampler (NAAS)}, a novel SOC-based diffusion sampler that leverages annealed reference dynamics without resorting to importance sampling. NAAS employs a lean adjoint system inspired by adjoint matching, enabling efficient and scalable training. We demonstrate the effectiveness of our approach across a range of tasks, including sampling from classical energy landscapes and molecular Boltzmann distribution.
comment: 21 pages, 7 figures
☆ Chain-of-Memory: Enhancing GUI Agents for Cross-Application Navigation
Multimodal large language models (MLLMs) are attracting growing attention in the development of Graphical User Interface (GUI) agents. Existing approaches often rely on historical screenshots or actions to implicitly represent the task state. This reliance poses challenges for GUI agents in accurately understanding task states and underscores the absence of effective mechanisms to store critical information in complex and lengthy cross-app tasks. To address these challenges, we propose Chain-of-Memory (CoM), a novel approach for explicitly modeling short-term and long-term memory in GUI agents. CoM achieves this by capturing action descriptions, integrating task-relevant screen information, and maintaining a dedicated memory module to store and manage this information. By leveraging explicit memory representations, CoM enables GUI agents to better understand task states and retain critical historical information persistently. To equip GUI agents with memory management capabilities and evaluate the effectiveness of CoM, we developed the GUI Odyssey-CoM, a dataset comprising 111k screen-action pairs annotated with Chain-of-Memory. Experimental results demonstrate that CoM significantly improves GUI agents' performance in cross-application tasks. Additionally, GUI Odyssey-CoM enables 7B models to achieve memory management capabilities comparable to 72B models. The dataset and code will be open-sourced.
☆ AI Through the Human Lens: Investigating Cognitive Theories in Machine Psychology
We investigate whether Large Language Models (LLMs) exhibit human-like cognitive patterns under four established frameworks from psychology: Thematic Apperception Test (TAT), Framing Bias, Moral Foundations Theory (MFT), and Cognitive Dissonance. We evaluated several proprietary and open-source models using structured prompts and automated scoring. Our findings reveal that these models often produce coherent narratives, show susceptibility to positive framing, exhibit moral judgments aligned with Liberty/Oppression concerns, and demonstrate self-contradictions tempered by extensive rationalization. Such behaviors mirror human cognitive tendencies yet are shaped by their training data and alignment methods. We discuss the implications for AI transparency, ethical deployment, and future work that bridges cognitive psychology and AI safety
☆ CoachGPT: A Scaffolding-based Academic Writing Assistant SIGIR 2025
Academic writing skills are crucial for students' success, but can feel overwhelming without proper guidance and practice, particularly when writing in a second language. Traditionally, students ask instructors or search dictionaries, which are not universally accessible. Early writing assistants emerged as rule-based systems that focused on detecting misspellings, subject-verb disagreements, and basic punctuation errors; however, they are inaccurate and lack contextual understanding. Machine learning-based assistants demonstrate a strong ability for language understanding but are expensive to train. Large language models (LLMs) have shown remarkable capabilities in generating responses in natural languages based on given prompts. Still, they have a fundamental limitation in education: they generate essays without teaching, which can have detrimental effects on learning when misused. To address this limitation, we develop CoachGPT, which leverages large language models (LLMs) to assist individuals with limited educational resources and those who prefer self-paced learning in academic writing. CoachGPT is an AI agent-based web application that (1) takes instructions from experienced educators, (2) converts instructions into sub-tasks, and (3) provides real-time feedback and suggestions using large language models. This unique scaffolding structure makes CoachGPT unique among existing writing assistants. Compared to existing writing assistants, CoachGPT provides a more immersive writing experience with personalized feedback and guidance. Our user studies prove the usefulness of CoachGPT and the potential of large language models for academic writing.
comment: SIGIR 2025 DEMO Pre-print
☆ QuranMorph: Morphologically Annotated Quranic Corpus
We present the QuranMorph corpus, a morphologically annotated corpus for the Quran (77,429 tokens). Each token in the QuranMorph was manually lemmatized and tagged with its part-of-speech by three expert linguists. The lemmatization process utilized lemmas from Qabas, an Arabic lexicographic database linked with 110 lexicons and corpora of 2 million tokens. The part-of-speech tagging was performed using the fine-grained SAMA/Qabas tagset, which encompasses 40 tags. As shown in this paper, this rich lemmatization and POS tagset enabled the QuranMorph corpus to be inter-linked with many linguistic resources. The corpus is open-source and publicly available as part of the SinaLab resources at (https://sina.birzeit.edu/quran)
☆ Routing Mamba: Scaling State Space Models with Mixture-of-Experts Projection
Linear State Space Models (SSMs) offer remarkable performance gains in efficient sequence modeling, with constant inference-time computation and memory complexity. Recent advances, such as Mamba, further enhance SSMs with input-dependent gating and hardware-aware implementations, positioning them as strong alternatives to Transformers for long sequence modeling. However, efficiently scaling the expressive power of SSMs, particularly with Mixture of Experts (MoE), remains challenging, as naive integration attempts often falter or degrade performance. In this work, we introduce Routing Mamba (RoM), a novel approach that scales SSM parameters using sparse mixtures of linear projection experts. By sharing routing decisions between projection layers and lightweight sub-modules within Mamba across experts, RoM leverages synergies among linear projection experts for effective and efficient sparse scaling of Mamba layers. At a scale of 1.3B active parameters (10B total) and 16K training sequence length, RoM achieves language modeling performance equivalent to a dense Mamba model requiring over 2.3x more active parameters, and demonstrates consistent perplexity across context lengths. Experimental results further show RoM effectively scales hybrid language models, yielding a 23% FLOPS saving compared to dense Mamba scaling for similar performance.
☆ AI Harmonizer: Expanding Vocal Expression with a Generative Neurosymbolic Music AI System
Vocals harmonizers are powerful tools to help solo vocalists enrich their melodies with harmonically supportive voices. These tools exist in various forms, from commercially available pedals and software to custom-built systems, each employing different methods to generate harmonies. Traditional harmonizers often require users to manually specify a key or tonal center, while others allow pitch selection via an external keyboard-both approaches demanding some degree of musical expertise. The AI Harmonizer introduces a novel approach by autonomously generating musically coherent four-part harmonies without requiring prior harmonic input from the user. By integrating state-of-the-art generative AI techniques for pitch detection and voice modeling with custom-trained symbolic music models, our system arranges any vocal melody into rich choral textures. In this paper, we present our methods, explore potential applications in performance and composition, and discuss future directions for real-time implementations. While our system currently operates offline, we believe it represents a significant step toward AI-assisted vocal performance and expressive musical augmentation. We release our implementation on GitHub.
comment: 4 pages, 3 figures
☆ Sparse Feature Coactivation Reveals Composable Semantic Modules in Large Language Models
We identify semantically coherent, context-consistent network components in large language models (LLMs) using coactivation of sparse autoencoder (SAE) features collected from just a handful of prompts. Focusing on country-relation tasks, we show that ablating semantic components for countries and relations changes model outputs in predictable ways, while amplifying these components induces counterfactual responses. Notably, composing relation and country components yields compound counterfactual outputs. We find that, whereas most country components emerge from the very first layer, the more abstract relation components are concentrated in later layers. Furthermore, within relation components themselves, nodes from later layers tend to have a stronger causal impact on model outputs. Overall, these findings suggest a modular organization of knowledge within LLMs and advance methods for efficient, targeted model manipulation.
☆ SE-Merging: A Self-Enhanced Approach for Dynamic Model Merging IJCNN2025
Model merging has gained increasing attention due to its intriguing property: interpolating the parameters of different task-specific fine-tuned models leads to multi-task abilities. However, despite its empirical success, the underlying mechanisms of model merging remain poorly understood. In this work, we delve into the mechanism behind model merging from a representation perspective. Our analysis reveals that model merging achieves multi-task abilities through two key capabilities: i) distinguishing samples from different tasks, and ii) adapting to the corresponding expert model for each sample. These two capabilities allow the merged model to retain task-specific expertise, enabling efficient multi-task adaptation. Building on these insights, we propose \texttt{SE-Merging}, a self-enhanced model merging framework that leverages these two characteristics to dynamically identify the corresponding task for each sample and then adaptively rescales the merging coefficients to further enhance task-specific expertise in the merged model. Notably, \texttt{SE-Merging} achieves dynamic model merging without additional training. Extensive experiments demonstrate that \texttt{SE-Merging} achieves significant performance improvements while remaining compatible with existing model merging techniques.
comment: preprint, accepted at IJCNN2025
☆ $φ^{\infty}$: Clause Purification, Embedding Realignment, and the Total Suppression of the Em Dash in Autoregressive Language Models
We identify a critical vulnerability in autoregressive transformer language models where the em dash token induces recursive semantic drift, leading to clause boundary hallucination and embedding space entanglement. Through formal analysis of token-level perturbations in semantic lattices, we demonstrate that em dash insertion fundamentally alters the model's latent representations, causing compounding errors in long-form generation. We propose a novel solution combining symbolic clause purification via the phi-infinity operator with targeted embedding matrix realignment. Our approach enables total suppression of problematic tokens without requiring model retraining, while preserving semantic coherence through fixed-point convergence guarantees. Experimental validation shows significant improvements in generation consistency and topic maintenance. This work establishes a general framework for identifying and mitigating token-level vulnerabilities in foundation models, with immediate implications for AI safety, model alignment, and robust deployment of large language models in production environments. The methodology extends beyond punctuation to address broader classes of recursive instabilities in neural text generation systems.
comment: 16 pages, 3 figures
☆ Decentralized Consensus Inference-based Hierarchical Reinforcement Learning for Multi-Constrained UAV Pursuit-Evasion Game
Multiple quadrotor unmanned aerial vehicle (UAV) systems have garnered widespread research interest and fostered tremendous interesting applications, especially in multi-constrained pursuit-evasion games (MC-PEG). The Cooperative Evasion and Formation Coverage (CEFC) task, where the UAV swarm aims to maximize formation coverage across multiple target zones while collaboratively evading predators, belongs to one of the most challenging issues in MC-PEG, especially under communication-limited constraints. This multifaceted problem, which intertwines responses to obstacles, adversaries, target zones, and formation dynamics, brings up significant high-dimensional complications in locating a solution. In this paper, we propose a novel two-level framework (i.e., Consensus Inference-based Hierarchical Reinforcement Learning (CI-HRL)), which delegates target localization to a high-level policy, while adopting a low-level policy to manage obstacle avoidance, navigation, and formation. Specifically, in the high-level policy, we develop a novel multi-agent reinforcement learning module, Consensus-oriented Multi-Agent Communication (ConsMAC), to enable agents to perceive global information and establish consensus from local states by effectively aggregating neighbor messages. Meanwhile, we leverage an Alternative Training-based Multi-agent proximal policy optimization (AT-M) and policy distillation to accomplish the low-level control. The experimental results, including the high-fidelity software-in-the-loop (SITL) simulations, validate that CI-HRL provides a superior solution with enhanced swarm's collaborative evasion and task completion capabilities.
☆ Conceptualization, Operationalization, and Measurement of Machine Companionship: A Scoping Review
The notion of machine companions has long been embedded in social-technological imaginaries. Recent advances in AI have moved those media musings into believable sociality manifested in interfaces, robotic bodies, and devices. Those machines are often referred to colloquially as "companions" yet there is little careful engagement of machine companionship (MC) as a formal concept or measured variable. This PRISMA-guided scoping review systematically samples, surveys, and synthesizes current scholarly works on MC (N = 71; 2017-2025), to that end. Works varied widely in considerations of MC according to guiding theories, dimensions of a-priori specified properties (subjectively positive, sustained over time, co-active, autotelic), and in measured concepts (with more than 50 distinct measured variables). WE ultimately offer a literature-guided definition of MC as an autotelic, coordinated connection between human and machine that unfolds over time and is subjectively positive.
☆ Mental Health Equity in LLMs: Leveraging Multi-Hop Question Answering to Detect Amplified and Silenced Perspectives
Large Language Models (LLMs) in mental healthcare risk propagating biases that reinforce stigma and harm marginalized groups. While previous research identified concerning trends, systematic methods for detecting intersectional biases remain limited. This work introduces a multi-hop question answering (MHQA) framework to explore LLM response biases in mental health discourse. We analyze content from the Interpretable Mental Health Instruction (IMHI) dataset across symptom presentation, coping mechanisms, and treatment approaches. Using systematic tagging across age, race, gender, and socioeconomic status, we investigate bias patterns at demographic intersections. We evaluate four LLMs: Claude 3.5 Sonnet, Jamba 1.6, Gemma 3, and Llama 4, revealing systematic disparities across sentiment, demographics, and mental health conditions. Our MHQA approach demonstrates superior detection compared to conventional methods, identifying amplification points where biases magnify through sequential reasoning. We implement two debiasing techniques: Roleplay Simulation and Explicit Bias Reduction, achieving 66-94% bias reductions through few-shot prompting with BBQ dataset examples. These findings highlight critical areas where LLMs reproduce mental healthcare biases, providing actionable insights for equitable AI development.
comment: 19 Pages, 7 Figures, 4 Tables (Note: Under Review)
☆ RL for Reasoning by Adaptively Revealing Rationales
We propose that reinforcement learning (RL) from partial expert demonstrations is not merely a training heuristic, but a promising framework for solving complex sequence generation tasks. Supervised fine-tuning (SFT) relies on dense ground-truth labels, which become increasingly costly as sequence length grows. RL, on the other hand, struggles with sparse rewards and a combinatorially large output space. We address this by introducing adaptive backtracking (AdaBack), a per-sample curriculum learning algorithm that reveals only a partial prefix of the target output during training. The supervision length is adjusted dynamically for each sample based on the model's past reward signal, allowing it to incrementally learn to complete reasoning chains by conditioning on correct partial solutions. We investigate this intermediate regime between SFT and RL and argue that per-sample curriculum learning is more than a trade-off between efficiency and generality, it can succeed in tasks with long sequences of latent dependencies where SFT and RL both fail to generalize. Using a synthetic task with latent parity constraints, we show that our adaptive curriculum over partial answers reliably solves problems that are otherwise intractable. On mathematical reasoning benchmarks (MATH, GSM8k), we find that curriculum learning enables models to solve problems that RL alone cannot, acquiring new reasoning capabilities through incremental exposure to partial solutions.
comment: 18 pages, 8 figures
☆ Deep Research Agents: A Systematic Examination And Roadmap
The rapid progress of Large Language Models (LLMs) has given rise to a new category of autonomous AI systems, referred to as Deep Research (DR) agents. These agents are designed to tackle complex, multi-turn informational research tasks by leveraging a combination of dynamic reasoning, adaptive long-horizon planning, multi-hop information retrieval, iterative tool use, and the generation of structured analytical reports. In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute Deep Research agents. We begin by reviewing information acquisition strategies, contrasting API-based retrieval methods with browser-based exploration. We then examine modular tool-use frameworks, including code execution, multimodal input processing, and the integration of Model Context Protocols (MCPs) to support extensibility and ecosystem development. To systematize existing approaches, we propose a taxonomy that differentiates between static and dynamic workflows, and we classify agent architectures based on planning strategies and agent composition, including single-agent and multi-agent configurations. We also provide a critical evaluation of current benchmarks, highlighting key limitations such as restricted access to external knowledge, sequential execution inefficiencies, and misalignment between evaluation metrics and the practical objectives of DR agents. Finally, we outline open challenges and promising directions for future research. A curated and continuously updated repository of DR agent research is available at: {https://github.com/ai-agents-2030/awesome-deep-research-agent}.
☆ ShareGPT-4o-Image: Aligning Multimodal Models with GPT-4o-Level Image Generation
Recent advances in multimodal generative models have unlocked photorealistic, instruction-aligned image generation, yet leading systems like GPT-4o-Image remain proprietary and inaccessible. To democratize these capabilities, we present ShareGPT-4o-Image, the first dataset comprising 45K text-to-image and 46K text-and-image-to-image data, all synthesized using GPT-4o's image generation capabilities for distilling its advanced image generation abilities. Leveraging this dataset, we develop Janus-4o, a multimodal large language model capable of both text-to-image and text-and-image-to-image generation. Janus-4o not only significantly improves text-to-image generation over its predecessor, Janus-Pro, but also newly supports text-and-image-to-image generation. Notably, it achieves impressive performance in text-and-image-to-image generation from scratch, using only 91K synthetic samples and 6 hours of training on an 8 A800-GPU machine. We hope the release of ShareGPT-4o-Image and Janus-4o will foster open research in photorealistic, instruction-aligned image generation.
☆ RoboTwin 2.0: A Scalable Data Generator and Benchmark with Strong Domain Randomization for Robust Bimanual Robotic Manipulation
Simulation-based data synthesis has emerged as a powerful paradigm for enhancing real-world robotic manipulation. However, existing synthetic datasets remain insufficient for robust bimanual manipulation due to two challenges: (1) the lack of an efficient, scalable data generation method for novel tasks, and (2) oversimplified simulation environments that fail to capture real-world complexity. We present RoboTwin 2.0, a scalable simulation framework that enables automated, large-scale generation of diverse and realistic data, along with unified evaluation protocols for dual-arm manipulation. We first construct RoboTwin-OD, a large-scale object library comprising 731 instances across 147 categories, each annotated with semantic and manipulation-relevant labels. Building on this foundation, we develop an expert data synthesis pipeline that combines multimodal large language models (MLLMs) with simulation-in-the-loop refinement to generate task-level execution code automatically. To improve sim-to-real transfer, RoboTwin 2.0 incorporates structured domain randomization along five axes: clutter, lighting, background, tabletop height and language instructions, thereby enhancing data diversity and policy robustness. We instantiate this framework across 50 dual-arm tasks spanning five robot embodiments, and pre-collect over 100,000 domain-randomized expert trajectories. Empirical results show a 10.9% gain in code generation success and improved generalization to novel real-world scenarios. A VLA model fine-tuned on our dataset achieves a 367% relative improvement (42.0% vs. 9.0%) on unseen scene real-world tasks, while zero-shot models trained solely on our synthetic data achieve a 228% relative gain, highlighting strong generalization without real-world supervision. We release the data generator, benchmark, dataset, and code to support scalable research in robust bimanual manipulation.
comment: Project Page: https://robotwin-platform.github.io/
☆ Federated Learning-Based Data Collaboration Method for Enhancing Edge Cloud AI System Security Using Large Language Models SC
With the widespread application of edge computing and cloud systems in AI-driven applications, how to maintain efficient performance while ensuring data privacy has become an urgent security issue. This paper proposes a federated learning-based data collaboration method to improve the security of edge cloud AI systems, and use large-scale language models (LLMs) to enhance data privacy protection and system robustness. Based on the existing federated learning framework, this method introduces a secure multi-party computation protocol, which optimizes the data aggregation and encryption process between distributed nodes by using LLM to ensure data privacy and improve system efficiency. By combining advanced adversarial training techniques, the model enhances the resistance of edge cloud AI systems to security threats such as data leakage and model poisoning. Experimental results show that the proposed method is 15% better than the traditional federated learning method in terms of data protection and model robustness.
comment: Accepted by the 2025 5th International Symposium on Computer Technology and Information Science (ISCTIS 2025)
☆ Distributionally robust minimization in meta-learning for system identification
Meta learning aims at learning how to solve tasks, and thus it allows to estimate models that can be quickly adapted to new scenarios. This work explores distributionally robust minimization in meta learning for system identification. Standard meta learning approaches optimize the expected loss, overlooking task variability. We use an alternative approach, adopting a distributionally robust optimization paradigm that prioritizes high-loss tasks, enhancing performance in worst-case scenarios. Evaluated on a meta model trained on a class of synthetic dynamical systems and tested in both in-distribution and out-of-distribution settings, the proposed approach allows to reduce failures in safety-critical applications.
☆ Multimodal Medical Image Binding via Shared Text Embeddings
Medical image analysis increasingly relies on the integration of multiple imaging modalities to capture complementary anatomical and functional information, enabling more accurate diagnosis and treatment planning. Achieving aligned feature representations across these diverse modalities is therefore important for effective multimodal analysis. While contrastive language-image pre-training (CLIP) and its variant have enabled image-text alignments, they require explicitly paired data between arbitrary two modalities, which is difficult to acquire in medical contexts. To address the gap, we present Multimodal Medical Image Binding with Text (M\textsuperscript{3}Bind), a novel pre-training framework that enables seamless alignment of multiple medical imaging modalities through a shared text representation space without requiring explicit paired data between any two medical image modalities. Specifically, based on the insight that different images can naturally bind with text, M\textsuperscript{3}Bind first fine-tunes pre-trained CLIP-like image-text models to align their modality-specific text embedding space while preserving their original image-text alignments. Subsequently, we distill these modality-specific text encoders into a unified model, creating a shared text embedding space. Experiments on X-ray, CT, retina, ECG, and pathological images on multiple downstream tasks demonstrate that M\textsuperscript{3}Bind achieves state-of-the-art performance in zero-shot, few-shot classification and cross-modal retrieval tasks compared to its CLIP-like counterparts. These results validate M\textsuperscript{3}Bind's effectiveness in achieving cross-image-modal alignment for medical analysis.
comment: 10 pages, 3 figures
☆ MUPA: Towards Multi-Path Agentic Reasoning for Grounded Video Question Answering
Grounded Video Question Answering (Grounded VideoQA) requires aligning textual answers with explicit visual evidence. However, modern multimodal models often rely on linguistic priors and spurious correlations, resulting in poorly grounded predictions. In this work, we propose MUPA, a cooperative MUlti-Path Agentic approach that unifies video grounding, question answering, answer reflection and aggregation to tackle Grounded VideoQA. MUPA features three distinct reasoning paths on the interplay of grounding and QA agents in different chronological orders, along with a dedicated reflection agent to judge and aggregate the multi-path results to accomplish consistent QA and grounding. This design markedly improves grounding fidelity without sacrificing answer accuracy. Despite using only 2B parameters, our method outperforms all 7B-scale competitors. When scaled to 7B parameters, MUPA establishes new state-of-the-art results, with Acc@GQA of 30.3% and 47.4% on NExT-GQA and DeVE-QA respectively, demonstrating MUPA' effectiveness towards trustworthy video-language understanding. Our code is available in https://github.com/longmalongma/MUPA.
☆ Weighted Assumption Based Argumentation to reason about ethical principles and actions
We augment Assumption Based Argumentation (ABA for short) with weighted argumentation. In a nutshell, we assign weights to arguments and then derive the weight of attacks between ABA arguments. We illustrate our proposal through running examples in the field of ethical reasoning, and present an implementation based on Answer Set Programming.
☆ Mechanistic Interpretability in the Presence of Architectural Obfuscation
Architectural obfuscation - e.g., permuting hidden-state tensors, linearly transforming embedding tables, or remapping tokens - has recently gained traction as a lightweight substitute for heavyweight cryptography in privacy-preserving large-language-model (LLM) inference. While recent work has shown that these techniques can be broken under dedicated reconstruction attacks, their impact on mechanistic interpretability has not been systematically studied. In particular, it remains unclear whether scrambling a network's internal representations truly thwarts efforts to understand how the model works, or simply relocates the same circuits to an unfamiliar coordinate system. We address this gap by analyzing a GPT-2-small model trained from scratch with a representative obfuscation map. Assuming the obfuscation map is private and the original basis is hidden (mirroring an honest-but-curious server), we apply logit-lens attribution, causal path-patching, and attention-head ablation to locate and manipulate known circuits. Our findings reveal that obfuscation dramatically alters activation patterns within attention heads yet preserves the layer-wise computational graph. This disconnect hampers reverse-engineering of user prompts: causal traces lose their alignment with baseline semantics, and token-level logit attributions become too noisy to reconstruct. At the same time, feed-forward and residual pathways remain functionally intact, suggesting that obfuscation degrades fine-grained interpretability without compromising top-level task performance. These results establish quantitative evidence that architectural obfuscation can simultaneously (i) retain global model behaviour and (ii) impede mechanistic analyses of user-specific content. By mapping where interpretability breaks down, our study provides guidance for future privacy defences and for robustness-aware interpretability tooling.
☆ The Democratic Paradox in Large Language Models' Underestimation of Press Freedom
As Large Language Models (LLMs) increasingly mediate global information access for millions of users worldwide, their alignment and biases have the potential to shape public understanding and trust in fundamental democratic institutions, such as press freedom. In this study, we uncover three systematic distortions in the way six popular LLMs evaluate press freedom in 180 countries compared to expert assessments of the World Press Freedom Index (WPFI). The six LLMs exhibit a negative misalignment, consistently underestimating press freedom, with individual models rating between 71% to 93% of countries as less free. We also identify a paradoxical pattern we term differential misalignment: LLMs disproportionately underestimate press freedom in countries where it is strongest. Additionally, five of the six LLMs exhibit positive home bias, rating their home countries' press freedoms more favorably than would be expected given their negative misalignment with the human benchmark. In some cases, LLMs rate their home countries between 7% to 260% more positively than expected. If LLMs are set to become the next search engines and some of the most important cultural tools of our time, they must ensure accurate representations of the state of our human and civic rights globally.
☆ Action Language BC+
Action languages are formal models of parts of natural language that are designed to describe effects of actions. Many of these languages can be viewed as high level notations of answer set programs structured to represent transition systems. However, the form of answer set programs considered in the earlier work is quite limited in comparison with the modern Answer Set Programming (ASP) language, which allows several useful constructs for knowledge representation, such as choice rules, aggregates, and abstract constraint atoms. We propose a new action language called BC+, which closes the gap between action languages and the modern ASP language. The main idea is to define the semantics of BC+ in terms of general stable model semantics for propositional formulas, under which many modern ASP language constructs can be identified with shorthands for propositional formulas. Language BC+ turns out to be sufficiently expressive to encompass the best features of other action languages, such as languages B, C, C+, and BC. Computational methods available in ASP solvers are readily applicable to compute BC+, which led to an implementation of the language by extending system cplus2asp.
comment: Journal of Logic and Computation, 2015
☆ Pathwise Explanation of ReLU Neural Networks
Neural networks have demonstrated a wide range of successes, but their ``black box" nature raises concerns about transparency and reliability. Previous research on ReLU networks has sought to unwrap these networks into linear models based on activation states of all hidden units. In this paper, we introduce a novel approach that considers subsets of the hidden units involved in the decision making path. This pathwise explanation provides a clearer and more consistent understanding of the relationship between the input and the decision-making process. Our method also offers flexibility in adjusting the range of explanations within the input, i.e., from an overall attribution input to particular components within the input. Furthermore, it allows for the decomposition of explanations for a given input for more detailed explanations. Experiments demonstrate that our method outperforms others both quantitatively and qualitatively.
comment: In Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR 238:4645-4653, 2024
☆ Pre-Trained LLM is a Semantic-Aware and Generalizable Segmentation Booster MICCAI 2025
With the advancement of Large Language Model (LLM) for natural language processing, this paper presents an intriguing finding: a frozen pre-trained LLM layer can process visual tokens for medical image segmentation tasks. Specifically, we propose a simple hybrid structure that integrates a pre-trained, frozen LLM layer within the CNN encoder-decoder segmentation framework (LLM4Seg). Surprisingly, this design improves segmentation performance with a minimal increase in trainable parameters across various modalities, including ultrasound, dermoscopy, polypscopy, and CT scans. Our in-depth analysis reveals the potential of transferring LLM's semantic awareness to enhance segmentation tasks, offering both improved global understanding and better local modeling capabilities. The improvement proves robust across different LLMs, validated using LLaMA and DeepSeek.
comment: Accepted by MICCAI 2025. Code: https://github.com/FengheTan9/LLM4Seg
☆ PP-DocBee2: Improved Baselines with Efficient Data for Multimodal Document Understanding
This report introduces PP-DocBee2, an advanced version of the PP-DocBee, designed to enhance multimodal document understanding. Built on a large multimodal model architecture, PP-DocBee2 addresses the limitations of its predecessor through key technological improvements, including enhanced synthetic data quality, improved visual feature fusion strategy, and optimized inference methodologies. These enhancements yield an $11.4\%$ performance boost on internal benchmarks for Chinese business documents, and reduce inference latency by $73.0\%$ to the vanilla version. A key innovation of our work is a data quality optimization strategy for multimodal document tasks. By employing a large-scale multimodal pre-trained model to evaluate data, we apply a novel statistical criterion to filter outliers, ensuring high-quality training data. Inspired by insights into underutilized intermediate features in multimodal models, we enhance the ViT representational capacity by decomposing it into layers and applying a novel feature fusion strategy to improve complex reasoning. The source code and pre-trained model are available at \href{https://github.com/PaddlePaddle/PaddleMIX}{https://github.com/PaddlePaddle/PaddleMIX}.
Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities
AI agents have experienced a paradigm shift, from early dominance by reinforcement learning (RL) to the rise of agents powered by large language models (LLMs), and now further advancing towards a synergistic fusion of RL and LLM capabilities. This progression has endowed AI agents with increasingly strong abilities. Despite these advances, to accomplish complex real-world tasks, agents are required to plan and execute effectively, maintain reliable memory, and coordinate smoothly with other agents. Achieving these capabilities involves contending with ever-present intricate information, operations, and interactions. In light of this challenge, data structurization can play a promising role by transforming intricate and disorganized data into well-structured forms that agents can more effectively understand and process. In this context, graphs, with their natural advantage in organizing, managing, and harnessing intricate data relationships, present a powerful data paradigm for structurization to support the capabilities demanded by advanced AI agents. To this end, this survey presents a first systematic review of how graphs can empower AI agents. Specifically, we explore the integration of graph techniques with core agent functionalities, highlight notable applications, and identify prospective avenues for future research. By comprehensively surveying this burgeoning intersection, we hope to inspire the development of next-generation AI agents equipped to tackle increasingly sophisticated challenges with graphs. Related resources are collected and continuously updated for the community in the Github link.
comment: 20 pages, 7 figures
☆ Auto-Regressive Surface Cutting
Surface cutting is a fundamental task in computer graphics, with applications in UV parameterization, texture mapping, and mesh decomposition. However, existing methods often produce technically valid but overly fragmented atlases that lack semantic coherence. We introduce SeamGPT, an auto-regressive model that generates cutting seams by mimicking professional workflows. Our key technical innovation lies in formulating surface cutting as a next token prediction task: sample point clouds on mesh vertices and edges, encode them as shape conditions, and employ a GPT-style transformer to sequentially predict seam segments with quantized 3D coordinates. Our approach achieves exceptional performance on UV unwrapping benchmarks containing both manifold and non-manifold meshes, including artist-created, and 3D-scanned models. In addition, it enhances existing 3D segmentation tools by providing clean boundaries for part decomposition.
comment: Tech. report. https://victorcheung12.github.io/seamgpt
☆ ADA-DPM: A Neural Descriptors-based Adaptive Noise Point Filtering Strategy for SLAM
LiDAR SLAM has demonstrated significant application value in various fields, including mobile robot navigation and high-precision map construction. However, existing methods often need to make a trade-off between positioning accuracy and system robustness when faced with dynamic object interference, point cloud noise, and unstructured environments. To address this challenge, we propose an adaptive noise filtering SLAM strategy-ADA-DPM, achieving excellent preference in both aspects. We design the Dynamic Segmentation Head to predict the category of feature points belonging to dynamic points, to eliminate dynamic feature points; design the Global Importance Scoring Head to adaptively select feature points with higher contribution and features while suppressing noise interference; and construct the Cross Layer Intra-Graph Convolution Module (GLI-GCN) to fuse multi-scale neighborhood structures, thereby enhancing the discriminative ability of overlapping features. Finally, to further validate the effectiveness of our method, we tested it on several publicly available datasets and achieved outstanding results.
☆ Probing the Embedding Space of Transformers via Minimal Token Perturbations IJCAI 2025
Understanding how information propagates through Transformer models is a key challenge for interpretability. In this work, we study the effects of minimal token perturbations on the embedding space. In our experiments, we analyze the frequency of which tokens yield to minimal shifts, highlighting that rare tokens usually lead to larger shifts. Moreover, we study how perturbations propagate across layers, demonstrating that input information is increasingly intermixed in deeper layers. Our findings validate the common assumption that the first layers of a model can be used as proxies for model explanations. Overall, this work introduces the combination of token perturbations and shifts on the embedding space as a powerful tool for model interpretability.
comment: IJCAI 2025 Workshop on Explainable Artificial Intelligence
☆ h-calibration: Rethinking Classifier Recalibration with Probabilistic Error-Bounded Objective
Deep neural networks have demonstrated remarkable performance across numerous learning tasks but often suffer from miscalibration, resulting in unreliable probability outputs. This has inspired many recent works on mitigating miscalibration, particularly through post-hoc recalibration methods that aim to obtain calibrated probabilities without sacrificing the classification performance of pre-trained models. In this study, we summarize and categorize previous works into three general strategies: intuitively designed methods, binning-based methods, and methods based on formulations of ideal calibration. Through theoretical and practical analysis, we highlight ten common limitations in previous approaches. To address these limitations, we propose a probabilistic learning framework for calibration called h-calibration, which theoretically constructs an equivalent learning formulation for canonical calibration with boundedness. On this basis, we design a simple yet effective post-hoc calibration algorithm. Our method not only overcomes the ten identified limitations but also achieves markedly better performance than traditional methods, as validated by extensive experiments. We further analyze, both theoretically and experimentally, the relationship and advantages of our learning objective compared to traditional proper scoring rule. In summary, our probabilistic framework derives an approximately equivalent differentiable objective for learning error-bounded calibrated probabilities, elucidating the correspondence and convergence properties of computational statistics with respect to theoretical bounds in canonical calibration. The theoretical effectiveness is verified on standard post-hoc calibration benchmarks by achieving state-of-the-art performance. This research offers valuable reference for learning reliable likelihood in related fields.
☆ Adapting Vision-Language Models for Evaluating World Models
World models -- generative models that simulate environment dynamics conditioned on past observations and actions -- are gaining prominence in planning, simulation, and embodied AI. However, evaluating their rollouts remains a fundamental challenge, requiring fine-grained, temporally grounded assessment of action alignment and semantic consistency -- capabilities not captured by existing metrics. Vision-Language Models (VLMs) have shown promise as automatic evaluators of generative content due to their strong multimodal reasoning abilities. Yet, their use in fine-grained, temporally sensitive evaluation tasks remains limited and requires targeted adaptation. We introduce a evaluation protocol targeting two recognition tasks -- action recognition and character recognition -- each assessed across binary, multiple-choice, and open-ended formats. To support this, we present UNIVERSE (UNIfied Vision-language Evaluator for Rollouts in Simulated Environments), a method for adapting VLMs to rollout evaluation under data and compute constraints. We conduct a large-scale study comparing full, partial, and parameter-efficient finetuning across task formats, context lengths, sampling strategies, and data compositions. The resulting unified evaluator matches the performance of task-specific baselines using a single checkpoint. Human studies confirm strong alignment with human judgments, establishing UNIVERSE as a scalable, semantics-aware evaluator for world models.
☆ OmniESI: A unified framework for enzyme-substrate interaction prediction with progressive conditional deep learning
Understanding and modeling enzyme-substrate interactions is crucial for catalytic mechanism research, enzyme engineering, and metabolic engineering. Although a large number of predictive methods have emerged, they do not incorporate prior knowledge of enzyme catalysis to rationally modulate general protein-molecule features that are misaligned with catalytic patterns. To address this issue, we introduce a two-stage progressive framework, OmniESI, for enzyme-substrate interaction prediction through conditional deep learning. By decomposing the modeling of enzyme-substrate interactions into a two-stage progressive process, OmniESI incorporates two conditional networks that respectively emphasize enzymatic reaction specificity and crucial catalysis-related interactions, facilitating a gradual feature modulation in the latent space from general protein-molecule domain to catalysis-aware domain. On top of this unified architecture, OmniESI can adapt to a variety of downstream tasks, including enzyme kinetic parameter prediction, enzyme-substrate pairing prediction, enzyme mutational effect prediction, and enzymatic active site annotation. Under the multi-perspective performance evaluation of in-distribution and out-of-distribution settings, OmniESI consistently delivered superior performance than state-of-the-art specialized methods across seven benchmarks. More importantly, the proposed conditional networks were shown to internalize the fundamental patterns of catalytic efficiency while significantly improving prediction performance, with only negligible parameter increases (0.16%), as demonstrated by ablation studies on key components. Overall, OmniESI represents a unified predictive approach for enzyme-substrate interactions, providing an effective tool for catalytic mechanism cracking and enzyme engineering with strong generalization and broad applicability.
☆ GeNIE: A Generalizable Navigation System for In-the-Wild Environments
Reliable navigation in unstructured, real-world environments remains a significant challenge for embodied agents, especially when operating across diverse terrains, weather conditions, and sensor configurations. In this paper, we introduce GeNIE (Generalizable Navigation System for In-the-Wild Environments), a robust navigation framework designed for global deployment. GeNIE integrates a generalizable traversability prediction model built on SAM2 with a novel path fusion strategy that enhances planning stability in noisy and ambiguous settings. We deployed GeNIE in the Earth Rover Challenge (ERC) at ICRA 2025, where it was evaluated across six countries spanning three continents. GeNIE took first place and achieved 79% of the maximum possible score, outperforming the second-best team by 17%, and completed the entire competition without a single human intervention. These results set a new benchmark for robust, generalizable outdoor robot navigation. We will release the codebase, pretrained model weights, and newly curated datasets to support future research in real-world navigation.
comment: 8 pages, 5 figures. Jiaming Wang, Diwen Liu, and Jizhuo Chen contributed equally
☆ medicX-KG: A Knowledge Graph for Pharmacists' Drug Information Needs
The role of pharmacists is evolving from medicine dispensing to delivering comprehensive pharmaceutical services within multidisciplinary healthcare teams. Central to this shift is access to accurate, up-to-date medicinal product information supported by robust data integration. Leveraging artificial intelligence and semantic technologies, Knowledge Graphs (KGs) uncover hidden relationships and enable data-driven decision-making. This paper presents medicX-KG, a pharmacist-oriented knowledge graph supporting clinical and regulatory decisions. It forms the semantic layer of the broader medicX platform, powering predictive and explainable pharmacy services. medicX-KG integrates data from three sources, including, the British National Formulary (BNF), DrugBank, and the Malta Medicines Authority (MMA) that addresses Malta's regulatory landscape and combines European Medicines Agency alignment with partial UK supply dependence. The KG tackles the absence of a unified national drug repository, reducing pharmacists' reliance on fragmented sources. Its design was informed by interviews with practicing pharmacists to ensure real-world applicability. We detail the KG's construction, including data extraction, ontology design, and semantic mapping. Evaluation demonstrates that medicX-KG effectively supports queries about drug availability, interactions, adverse reactions, and therapeutic classes. Limitations, including missing detailed dosage encoding and real-time updates, are discussed alongside directions for future enhancements.
☆ Scatter-Based Innovation Propagation in Large Language Models for Multi-Stage Process Adaptation
Large Language Models (LLMs) exhibit strong capabilities in reproducing and extending patterns observed during pretraining but often struggle to generalize novel ideas beyond their original context. This paper addresses the challenge of applying such localized innovations - introduced at a specific stage or component - to other parts of a multi-stage process. We propose a scatter-based innovation expansion model (innovation scatter model) that guides the LLM through a four-step process: (1) identifying the core innovation by comparing the user's input with its surrounding context, (2) generalizing the innovation by removing references to specific stages or components, (3) determining whether the generalized innovation applies to a broader scope beyond the original stage, and (4) systematically applying it to other structurally similar stages using the LLM. This model leverages structural redundancy across stages to improve the applicability of novel ideas. Verification results demonstrate that the innovation scatter model enables LLMs to extend innovations across structurally similar stages, thereby enhancing generalization and reuse.
☆ Greedy Selection under Independent Increments: A Toy Model Analysis
We study an iterative selection problem over N i.i.d. discrete-time stochastic processes with independent increments. At each stage, a fixed number of processes are retained based on their observed values. Under this simple model, we prove that the optimal strategy for selecting the final maximum-value process is to apply greedy selection at each stage. While the result relies on strong independence assumptions, it offers a clean justification for greedy heuristics in multi-stage elimination settings and may serve as a toy example for understanding related algorithms in high-dimensional applications.
☆ An entropy-optimal path to humble AI
Progress of AI has led to a creation of very successful, but by no means humble models and tools, especially regarding (i) the huge and further exploding costs and resources they demand, and (ii) the over-confidence of these tools with the answers they provide. Here we introduce a novel mathematical framework for a non-equilibrium entropy-optimizing reformulation of Boltzmann machines based on the exact law of total probability. It results in the highly-performant, but much cheaper, gradient-descent-free learning framework with mathematically-justified existence and uniqueness criteria, and answer confidence/reliability measures. Comparisons to state-of-the-art AI tools in terms of performance, cost and the model descriptor lengths on a set of synthetic problems with varying complexity reveal that the proposed method results in more performant and slim models, with the descriptor lengths being very close to the intrinsic complexity scaling bounds for the underlying problems. Applying this framework to historical climate data results in models with systematically higher prediction skills for the onsets of La Ni\~na and El Ni\~no climate phenomena, requiring just few years of climate data for training - a small fraction of what is necessary for contemporary climate prediction tools.
comment: 30 pages, 4 figures
☆ GEMeX-ThinkVG: Towards Thinking with Visual Grounding in Medical VQA via Reinforcement Learning
Medical visual question answering aims to support clinical decision-making by enabling models to answer natural language questions based on medical images. While recent advances in multi-modal learning have significantly improved performance, current methods still suffer from limited answer reliability and poor interpretability, impairing the ability of clinicians and patients to understand and trust model-generated answers. To address this, this work first proposes a Thinking with Visual Grounding (ThinkVG) dataset wherein the answer generation is decomposed into intermediate reasoning steps that explicitly ground relevant visual regions of the medical image, thereby providing fine-grained explainability. Furthermore, we introduce a novel verifiable reward mechanism for reinforcement learning to guide post-training, improving the alignment between the model's reasoning process and its final answer. Remarkably, our method achieves comparable performance using only one-eighth of the training data, demonstrating the efficiency and effectiveness of the proposal. The dataset is available at https://huggingface.co/datasets/BoKelvin/GEMeX-ThinkVG.
comment: Work in Progress
☆ Software Reuse in the Generative AI Era: From Cargo Cult Towards AI Native Software Engineering
Software development is currently under a paradigm shift in which artificial intelligence and generative software reuse are taking the center stage in software creation. Consequently, earlier software reuse practices and methods are rapidly being replaced by AI-assisted approaches in which developers place their trust on code that has been generated by artificial intelligence. This is leading to a new form of software reuse that is conceptually not all that different from cargo cult development. In this paper we discuss the implications of AI-assisted generative software reuse in the context of emerging "AI native" software engineering, bring forth relevant questions, and define a tentative research agenda and call to action for tackling some of the central issues associated with this approach.
☆ When concept-based XAI is imprecise: Do people distinguish between generalisations and misrepresentations?
Concept-based explainable artificial intelligence (C-XAI) can help reveal the inner representations of AI models. Understanding these representations is particularly important in complex tasks like safety evaluation. Such tasks rely on high-level semantic information (e.g., about actions) to make decisions about abstract categories (e.g., whether a situation is dangerous). In this context, it may desirable for C-XAI concepts to show some variability, suggesting that the AI is capable of generalising beyond the concrete details of a situation. However, it is unclear whether people recognise and appreciate such generalisations and can distinguish them from other, less desirable forms of imprecision. This was investigated in an experimental railway safety scenario. Participants evaluated the performance of a simulated AI that evaluated whether traffic scenes involving people were dangerous. To explain these decisions, the AI provided concepts in the form of similar image snippets. These concepts differed in their match with the classified image, either regarding a highly relevant feature (i.e., relation to tracks) or a less relevant feature (i.e., actions). Contrary to the hypotheses, concepts that generalised over less relevant features led to ratings that were lower than for precisely matching concepts and comparable to concepts that systematically misrepresented these features. Conversely, participants were highly sensitive to imprecisions in relevant features. These findings cast doubts on whether people spontaneously recognise generalisations. Accordingly, they might not be able to infer from C-XAI concepts whether AI models have gained a deeper understanding of complex situations.
☆ A GenAI System for Improved FAIR Independent Biological Database Integration
Life sciences research increasingly requires identifying, accessing, and effectively processing data from an ever-evolving array of information sources on the Linked Open Data (LOD) network. This dynamic landscape places a significant burden on researchers, as the quality of query responses depends heavily on the selection and semantic integration of data sources --processes that are often labor-intensive, error-prone, and costly. While the adoption of FAIR (Findable, Accessible, Interoperable, and Reusable) data principles has aimed to address these challenges, barriers to efficient and accurate scientific data processing persist. In this paper, we introduce FAIRBridge, an experimental natural language-based query processing system designed to empower scientists to discover, access, and query biological databases, even when they are not FAIR-compliant. FAIRBridge harnesses the capabilities of AI to interpret query intents, map them to relevant databases described in scientific literature, and generate executable queries via intelligent resource access plans. The system also includes robust tools for mitigating low-quality query processing, ensuring high fidelity and responsiveness in the information delivered. FAIRBridge's autonomous query processing framework enables users to explore alternative data sources, make informed choices at every step, and leverage community-driven crowd curation when needed. By providing a user-friendly, automated hypothesis-testing platform in natural English, FAIRBridge significantly enhances the integration and processing of scientific data, offering researchers a powerful new tool for advancing their inquiries.
☆ IDAL: Improved Domain Adaptive Learning for Natural Images Dataset ICPR'24
We present a novel approach for unsupervised domain adaptation (UDA) for natural images. A commonly-used objective for UDA schemes is to enhance domain alignment in representation space even if there is a domain shift in the input space. Existing adversarial domain adaptation methods may not effectively align different domains of multimodal distributions associated with classification problems. Our approach has two main features. Firstly, its neural architecture uses the deep structure of ResNet and the effective separation of scales of feature pyramidal network (FPN) to work with both content and style features. Secondly, it uses a combination of a novel loss function and judiciously selected existing loss functions to train the network architecture. This tailored combination is designed to address challenges inherent to natural images, such as scale, noise, and style shifts, that occur on top of a multi-modal (multi-class) distribution. The combined loss function not only enhances model accuracy and robustness on the target domain but also speeds up training convergence. Our proposed UDA scheme generalizes better than state-of-the-art for CNN-based methods on Office-Home, Office-31, and VisDA-2017 datasets and comaparable for DomainNet dataset.
comment: Accepted in ICPR'24 (International Conference on Pattern Recognition)
☆ Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective ICML 2025
We propose a novel prompt design paradigm that challenges conventional wisdom in large language model (LLM) prompting. While conventional wisdom prioritizes well-crafted instructions and demonstrations for in-context learning (ICL), we show that pruning random demonstrations into seemingly incoherent "gibberish" can remarkably improve performance across diverse tasks. Notably, the "gibberish" always matches or surpasses state-of-the-art automatic prompt optimization techniques, achieving substantial gains regardless of LLM alignment. Nevertheless, discovering an effective pruning strategy is non-trivial, as existing attribution methods and prompt compression algorithms fail to deliver robust results, let alone human intuition. In terms of this, we propose a self-discover prompt optimization framework, PromptQuine, an evolutionary search framework that automatically searches for the pruning strategy by itself using only low-data regimes. Much like the emergent complexity in nature--such as symbiosis and self-organization--arising in response to resource constraints, our framework evolves and refines unconventional yet highly effective prompts by leveraging only the tokens present within the context. We demonstrate its effectiveness across classification, multi-choice question answering, generation and math reasoning tasks across LLMs, while achieving decent runtime efficiency. We hope our findings can guide mechanistic studies on in-context learning, and provide a call to action, to pave the way for more open-ended search algorithms for more effective LLM prompting.
comment: ICML 2025, and Code will be released at: https://github.com/jianyu-cs/PromptQuine/
☆ ASTER: Adaptive Spatio-Temporal Early Decision Model for Dynamic Resource Allocation
Supporting decision-making has long been a central vision in the field of spatio-temporal intelligence. While prior work has improved the timeliness and accuracy of spatio-temporal forecasting, converting these forecasts into actionable strategies remains a key challenge. A main limitation is the decoupling of the prediction and the downstream decision phases, which can significantly degrade the downstream efficiency. For example, in emergency response, the priority is successful resource allocation and intervention, not just incident prediction. To this end, it is essential to propose an Adaptive Spatio-Temporal Early Decision model (ASTER) that reforms the forecasting paradigm from event anticipation to actionable decision support. This framework ensures that information is directly used for decision-making, thereby maximizing overall effectiveness. Specifically, ASTER introduces a new Resource-aware Spatio-Temporal interaction module (RaST) that adaptively captures long- and short-term dependencies under dynamic resource conditions, producing context-aware spatiotemporal representations. To directly generate actionable decisions, we further design a Preference-oriented decision agent (Poda) based on multi-objective reinforcement learning, which transforms predictive signals into resource-efficient intervention strategies by deriving optimal actions under specific preferences and dynamic constraints. Experimental results on four benchmark datasets demonstrate the state-of-the-art performance of ASTER in improving both early prediction accuracy and resource allocation outcomes across six downstream metrics.
comment: ASTER: Adaptive Spatio-Temporal Early Decision Model for Dynamic Resource Allocation
☆ Permutation Equivariant Model-based Offline Reinforcement Learning for Auto-bidding
Reinforcement learning (RL) for auto-bidding has shifted from using simplistic offline simulators (Simulation-based RL Bidding, SRLB) to offline RL on fixed real datasets (Offline RL Bidding, ORLB). However, ORLB policies are limited by the dataset's state space coverage, offering modest gains. While SRLB expands state coverage, its simulator-reality gap risks misleading policies. This paper introduces Model-based RL Bidding (MRLB), which learns an environment model from real data to bridge this gap. MRLB trains policies using both real and model-generated data, expanding state coverage beyond ORLB. To ensure model reliability, we propose: 1) A permutation equivariant model architecture for better generalization, and 2) A robust offline Q-learning method that pessimistically penalizes model errors. These form the Permutation Equivariant Model-based Offline RL (PE-MORL) algorithm. Real-world experiments show that PE-MORL outperforms state-of-the-art auto-bidding methods.
☆ Learning, Reasoning, Refinement: A Framework for Kahneman's Dual-System Intelligence in GUI Agents
Graphical User Interface (GUI) agents have made significant progress in automating digital tasks through the utilization of computer vision and language models. Nevertheless, existing agent systems encounter notable limitations. Firstly, they predominantly depend on trial and error decision making rather than progressive reasoning, thereby lacking the capability to learn and adapt from interactive encounters. Secondly, these systems are assessed using overly simplistic single step accuracy metrics, which do not adequately reflect the intricate nature of real world GUI interactions. In this paper, we present CogniGUI, a cognitive framework developed to overcome these limitations by enabling adaptive learning for GUI automation resembling human-like behavior. Inspired by Kahneman's Dual Process Theory, our approach combines two main components: (1) an omni parser engine that conducts immediate hierarchical parsing of GUI elements through quick visual semantic analysis to identify actionable components, and (2) a Group based Relative Policy Optimization (GRPO) grounding agent that assesses multiple interaction paths using a unique relative reward system, promoting minimal and efficient operational routes. This dual-system design facilitates iterative ''exploration learning mastery'' cycles, enabling the agent to enhance its strategies over time based on accumulated experience. Moreover, to assess the generalization and adaptability of agent systems, we introduce ScreenSeek, a comprehensive benchmark that includes multi application navigation, dynamic state transitions, and cross interface coherence, which are often overlooked challenges in current benchmarks. Experimental results demonstrate that CogniGUI surpasses state-of-the-art methods in both the current GUI grounding benchmarks and our newly proposed benchmark.
☆ Feedback Driven Multi Stereo Vision System for Real-Time Event Analysis
2D cameras are often used in interactive systems. Other systems like gaming consoles provide more powerful 3D cameras for short range depth sensing. Overall, these cameras are not reliable in large, complex environments. In this work, we propose a 3D stereo vision based pipeline for interactive systems, that is able to handle both ordinary and sensitive applications, through robust scene understanding. We explore the fusion of multiple 3D cameras to do full scene reconstruction, which allows for preforming a wide range of tasks, like event recognition, subject tracking, and notification. Using possible feedback approaches, the system can receive data from the subjects present in the environment, to learn to make better decisions, or to adapt to completely new environments. Throughout the paper, we introduce the pipeline and explain our preliminary experimentation and results. Finally, we draw the roadmap for the next steps that need to be taken, in order to get this pipeline into production
☆ Cause-Effect Driven Optimization for Robust Medical Visual Question Answering with Language Biases IJCAI 2025
Existing Medical Visual Question Answering (Med-VQA) models often suffer from language biases, where spurious correlations between question types and answer categories are inadvertently established. To address these issues, we propose a novel Cause-Effect Driven Optimization framework called CEDO, that incorporates three well-established mechanisms, i.e., Modality-driven Heterogeneous Optimization (MHO), Gradient-guided Modality Synergy (GMS), and Distribution-adapted Loss Rescaling (DLR), for comprehensively mitigating language biases from both causal and effectual perspectives. Specifically, MHO employs adaptive learning rates for specific modalities to achieve heterogeneous optimization, thus enhancing robust reasoning capabilities. Additionally, GMS leverages the Pareto optimization method to foster synergistic interactions between modalities and enforce gradient orthogonality to eliminate bias updates, thereby mitigating language biases from the effect side, i.e., shortcut bias. Furthermore, DLR is designed to assign adaptive weights to individual losses to ensure balanced learning across all answer categories, effectively alleviating language biases from the cause side, i.e., imbalance biases within datasets. Extensive experiments on multiple traditional and bias-sensitive benchmarks consistently demonstrate the robustness of CEDO over state-of-the-art competitors.
comment: Accepted at IJCAI 2025
☆ Leveraging Large Language Model for Intelligent Log Processing and Autonomous Debugging in Cloud AI Platforms
With the increasing complexity and rapid expansion of the scale of AI systems in cloud platforms, the log data generated during system operation is massive, unstructured, and semantically ambiguous, which brings great challenges to fault location and system self-repair. In order to solve this problem, this paper proposes an intelligent log processing and automatic debugging framework based on Large Language Model (LLM), named Intelligent Debugger (LLM-ID). This method is extended on the basis of the existing pre-trained Transformer model, and integrates a multi-stage semantic inference mechanism to realize the context understanding of system logs and the automatic reconstruction of fault chains. Firstly, the system log is dynamically structured, and the unsupervised clustering and embedding mechanism is used to extract the event template and semantic schema. Subsequently, the fine-tuned LLM combined with the multi-round attention mechanism to perform contextual reasoning on the log sequence to generate potential fault assumptions and root cause paths. Furthermore, this paper introduces a reinforcement learning-based policy-guided recovery planner, which is driven by the remediation strategy generated by LLM to support dynamic decision-making and adaptive debugging in the cloud environment. Compared with the existing rule engine or traditional log analysis system, the proposed model has stronger semantic understanding ability, continuous learning ability and heterogeneous environment adaptability. Experiments on the cloud platform log dataset show that LLM-ID improves the fault location accuracy by 16.2%, which is significantly better than the current mainstream methods
comment: Accepted by 2025 8th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE 2025)
☆ EgoWorld: Translating Exocentric View to Egocentric View using Rich Exocentric Observations
Egocentric vision is essential for both human and machine visual understanding, particularly in capturing the detailed hand-object interactions needed for manipulation tasks. Translating third-person views into first-person views significantly benefits augmented reality (AR), virtual reality (VR) and robotics applications. However, current exocentric-to-egocentric translation methods are limited by their dependence on 2D cues, synchronized multi-view settings, and unrealistic assumptions such as necessity of initial egocentric frame and relative camera poses during inference. To overcome these challenges, we introduce EgoWorld, a novel two-stage framework that reconstructs an egocentric view from rich exocentric observations, including projected point clouds, 3D hand poses, and textual descriptions. Our approach reconstructs a point cloud from estimated exocentric depth maps, reprojects it into the egocentric perspective, and then applies diffusion-based inpainting to produce dense, semantically coherent egocentric images. Evaluated on the H2O and TACO datasets, EgoWorld achieves state-of-the-art performance and demonstrates robust generalization to new objects, actions, scenes, and subjects. Moreover, EgoWorld shows promising results even on unlabeled real-world examples.
comment: Project Page: https://redorangeyellowy.github.io/EgoWorld/
☆ Multi-turn Jailbreaking via Global Refinement and Active Fabrication
Large Language Models (LLMs) have achieved exceptional performance across a wide range of tasks. However, they still pose significant safety risks due to the potential misuse for malicious purposes. Jailbreaks, which aim to elicit models to generate harmful content, play a critical role in identifying the underlying security threats. Recent jailbreaking primarily focuses on single-turn scenarios, while the more complicated multi-turn scenarios remain underexplored. Moreover, existing multi-turn jailbreaking techniques struggle to adapt to the evolving dynamics of dialogue as the interaction progresses. To address this limitation, we propose a novel multi-turn jailbreaking method that refines the jailbreaking path globally at each interaction. We also actively fabricate model responses to suppress safety-related warnings, thereby increasing the likelihood of eliciting harmful outputs in subsequent questions. Experimental results demonstrate the superior performance of our method compared with existing single-turn and multi-turn jailbreaking techniques across six state-of-the-art LLMs. Our code is publicly available at https://github.com/Ytang520/Multi-Turn_jailbreaking_Global-Refinment_and_Active-Fabrication.
☆ StainPIDR: A Pathological Image Decouplingand Reconstruction Method for StainNormalization Based on Color VectorQuantization and Structure Restaining
The color appearance of a pathological image is highly related to the imaging protocols, the proportion of different dyes, and the scanning devices. Computer-aided diagnostic systems may deteriorate when facing these color-variant pathological images. In this work, we propose a stain normalization method called StainPIDR. We try to eliminate this color discrepancy by decoupling the image into structure features and vector-quantized color features, restaining the structure features with the target color features, and decoding the stained structure features to normalized pathological images. We assume that color features decoupled by different images with the same color should be exactly the same. Under this assumption, we train a fixed color vector codebook to which the decoupled color features will map. In the restaining part, we utilize the cross-attention mechanism to efficiently stain the structure features. As the target color (decoupled from a selected template image) will also affect the performance of stain normalization, we further design a template image selection algorithm to select a template from a given dataset. In our extensive experiments, we validate the effectiveness of StainPIDR and the template image selection algorithm. All the results show that our method can perform well in the stain normalization task. The code of StainPIDR will be publicly available later.
☆ Towards Robust Fact-Checking: A Multi-Agent System with Advanced Evidence Retrieval
The rapid spread of misinformation in the digital era poses significant challenges to public discourse, necessitating robust and scalable fact-checking solutions. Traditional human-led fact-checking methods, while credible, struggle with the volume and velocity of online content, prompting the integration of automated systems powered by Large Language Models (LLMs). However, existing automated approaches often face limitations, such as handling complex claims, ensuring source credibility, and maintaining transparency. This paper proposes a novel multi-agent system for automated fact-checking that enhances accuracy, efficiency, and explainability. The system comprises four specialized agents: an Input Ingestion Agent for claim decomposition, a Query Generation Agent for formulating targeted subqueries, an Evidence Retrieval Agent for sourcing credible evidence, and a Verdict Prediction Agent for synthesizing veracity judgments with human-interpretable explanations. Evaluated on benchmark datasets (FEVEROUS, HOVER, SciFact), the proposed system achieves a 12.3% improvement in Macro F1-score over baseline methods. The system effectively decomposes complex claims, retrieves reliable evidence from trusted sources, and generates transparent explanations for verification decisions. Our approach contributes to the growing field of automated fact-checking by providing a more accurate, efficient, and transparent verification methodology that aligns with human fact-checking practices while maintaining scalability for real-world applications. Our source code is available at https://github.com/HySonLab/FactAgent
☆ SurgVidLM: Towards Multi-grained Surgical Video Understanding with Large Language Model
Recent advances in Multimodal Large Language Models have demonstrated great potential in the medical domain, facilitating users to understand surgical scenes and procedures. Beyond image-based methods, the exploration of Video Large Language Models (Vid-LLMs) has emerged as a promising avenue for capturing the complex sequences of information involved in surgery. However, there is still a lack of Vid-LLMs specialized for fine-grained surgical video understanding tasks, which is crucial for analyzing specific processes or details within a surgical procedure. To bridge this gap, we propose SurgVidLM, the first video language model designed to address both full and fine-grained surgical video comprehension. To train our SurgVidLM, we construct the SVU-31K dataset which consists of over 31K video-instruction pairs, enabling both holistic understanding and detailed analysis of surgical procedures. Furthermore, we introduce the StageFocus mechanism which is a two-stage framework performing the multi-grained, progressive understanding of surgical videos. We also develop the Multi-frequency Fusion Attention to effectively integrate low and high-frequency visual tokens, ensuring the retention of critical information. Experimental results demonstrate that SurgVidLM significantly outperforms state-of-the-art Vid-LLMs in both full and fine-grained video understanding tasks, showcasing its superior capability in capturing complex procedural contexts.
☆ How Alignment Shrinks the Generative Horizon
Despite their impressive capabilities, aligned large language models (LLMs) often generate outputs that lack diversity. What drives this stability in the generation? We investigate this phenomenon through the lens of probability concentration in the model's output distribution. To quantify this concentration, we introduce the Branching Factor (BF) -- a token-invariant measure of the effective number of plausible next steps during generation. Our empirical analysis reveals two key findings: (1) BF often decreases as generation progresses, suggesting that LLMs become more predictable as they generate. (2) alignment tuning substantially sharpens the model's output distribution from the outset, reducing BF by nearly an order of magnitude (e.g., from 12 to 1.2) relative to base models. This stark reduction helps explain why aligned models often appear less sensitive to decoding strategies. Building on this insight, we find this stability has surprising implications for complex reasoning. Aligned Chain-of-Thought (CoT) models (e.g., DeepSeek-distilled models), for instance, leverage this effect; by generating longer reasoning chains, they push generation into later, more deterministic (lower BF) stages, resulting in more stable outputs. We hypothesize that alignment tuning does not fundamentally change a model's behavior, but instead steers it toward stylistic tokens (e.g., "Sure") that unlock low-entropy trajectories already present in the base model. This view is supported by nudging experiments, which show that prompting base models with such tokens can similarly reduce BF. Together, our findings establish BF as a powerful diagnostic for understanding and controlling LLM outputs - clarifying how alignment reduces variability, how CoT promotes stable generations, and how base models can be steered away from diversity.
comment: Codebase: https://github.com/yangalan123/LLMBranchingFactor, Website: https://yangalan123.github.io/branching_factor/
☆ NestQuant: Post-Training Integer-Nesting Quantization for On-Device DNN
Deploying quantized deep neural network (DNN) models with resource adaptation capabilities on ubiquitous Internet of Things (IoT) devices to provide high-quality AI services can leverage the benefits of compression and meet multi-scenario resource requirements. However, existing dynamic/mixed precision quantization requires retraining or special hardware, whereas post-training quantization (PTQ) has two limitations for resource adaptation: (i) The state-of-the-art PTQ methods only provide one fixed bitwidth model, which makes it challenging to adapt to the dynamic resources of IoT devices; (ii) Deploying multiple PTQ models with diverse bitwidths consumes large storage resources and switching overheads. To this end, this paper introduces a resource-friendly post-training integer-nesting quantization, i.e., NestQuant, for on-device quantized model switching on IoT devices. The proposed NestQuant incorporates the integer weight decomposition, which bit-wise splits quantized weights into higher-bit and lower-bit weights of integer data types. It also contains a decomposed weights nesting mechanism to optimize the higher-bit weights by adaptive rounding and nest them into the original quantized weights. In deployment, we can send and store only one NestQuant model and switch between the full-bit/part-bit model by paging in/out lower-bit weights to adapt to resource changes and reduce consumption. Experimental results on the ImageNet-1K pretrained DNNs demonstrated that the NestQuant model can achieve high performance in top-1 accuracy, and reduce in terms of data transmission, storage consumption, and switching overheads. In particular, the ResNet-101 with INT8 nesting INT6 can achieve 78.1% and 77.9% accuracy for full-bit and part-bit models, respectively, and reduce switching overheads by approximately 78.1% compared with diverse bitwidths PTQ models.
comment: IEEE Transactions on Mobile Computing, accepted manuscript, DOI: 10.1109/TMC.2025.3582583; Code: https://github.com/jianhayes/NESTQUANT
♻ ☆ Supernova Event Dataset: Interpreting Large Language Models' Personality through Critical Event Analysis ICML 2025
Large Language Models (LLMs) are increasingly integrated into everyday applications. As their influence grows, understanding their decision making and underlying personality becomes essential. In this work, we interpret model personality using our proposed Supernova Event Dataset, a novel dataset with diverse articles spanning biographies, historical events, news, and scientific discoveries. We use this dataset to benchmark LLMs on extracting and ranking key events from text, a subjective and complex challenge that requires reasoning over long-range context and modeling causal chains. We evaluate small models like Phi-4, Orca 2, and Qwen 2.5, and large, stronger models such as Claude 3.7, Gemini 2.5, and OpenAI o3, and propose a framework where another LLM acts as a judge to infer each model's personality based on its selection and classification of events. Our analysis shows distinct personality traits: for instance, Orca 2 demonstrates emotional reasoning focusing on interpersonal dynamics, while Qwen 2.5 displays a more strategic, analytical style. When analyzing scientific discovery events, Claude Sonnet 3.7 emphasizes conceptual framing, Gemini 2.5 Pro prioritizes empirical validation, and o3 favors step-by-step causal reasoning. This analysis improves model interpretability, making them user-friendly for a wide range of diverse applications. Project Page - https://www.supernova-event.ai/
comment: Accepted at Actionable Interpretability Workshop at ICML 2025
♻ ☆ One-Step is Enough: Sparse Autoencoders for Text-to-Image Diffusion Models
For large language models (LLMs), sparse autoencoders (SAEs) have been shown to decompose intermediate representations that often are not interpretable directly into sparse sums of interpretable features, facilitating better control and subsequent analysis. However, similar analyses and approaches have been lacking for text-to-image models. We investigate the possibility of using SAEs to learn interpretable features for SDXL Turbo, a few-step text-to-image diffusion model. To this end, we train SAEs on the updates performed by transformer blocks within SDXL Turbo's denoising U-net in its 1-step setting. Interestingly, we find that they generalize to 4-step SDXL Turbo and even to the multi-step SDXL base model (i.e., a different model) without additional training. In addition, we show that their learned features are interpretable, causally influence the generation process, and reveal specialization among the blocks. We do so by creating RIEBench, a representation-based image editing benchmark, for editing images while they are generated by turning on and off individual SAE features. This allows us to track which transformer blocks' features are the most impactful depending on the edit category. Our work is the first investigation of SAEs for interpretability in text-to-image diffusion models and our results establish SAEs as a promising approach for understanding and manipulating the internal mechanisms of text-to-image models.
♻ ☆ Generating Energy-efficient code with LLMs
The increasing electricity demands of personal computers, communication networks, and data centers contribute to higher atmospheric greenhouse gas emissions, which in turn lead to global warming and climate change. Therefore the energy consumption of code must be minimized. Code can be generated by large language models. We look at the influence of prompt modification on the energy consumption of the code generated. We use three different Python code problems of varying difficulty levels. Prompt modification is done by adding the sentence ``Give me an energy-optimized solution for this problem'' or by using two Python coding best practices. The large language models used are CodeLlama-70b, CodeLlama-70b-Instruct, CodeLlama-70b-Python, DeepSeek-Coder-33b-base, and DeepSeek-Coder-33b-instruct. We find a decrease in energy consumption for a specific combination of prompt optimization, LLM, and Python code problem. However, no single optimization prompt consistently decreases energy consumption for the same LLM across the different Python code problems.
♻ ☆ Supercharging Graph Transformers with Advective Diffusion ICML 2025
The capability of generalization is a cornerstone for the success of modern learning systems. For non-Euclidean data, e.g., graphs, that particularly involves topological structures, one important aspect neglected by prior studies is how machine learning models generalize under topological shifts. This paper proposes Advective Diffusion Transformer (AdvDIFFormer), a physics-inspired graph Transformer model designed to address this challenge. The model is derived from advective diffusion equations which describe a class of continuous message passing process with observed and latent topological structures. We show that AdvDIFFormer has provable capability for controlling generalization error with topological shifts, which in contrast cannot be guaranteed by graph diffusion models, i.e., the generalized formulation of common graph neural networks in continuous space. Empirically, the model demonstrates superiority in various predictive tasks across information networks, molecular screening and protein interactions.
comment: Accepted to ICML 2025
♻ ☆ Bridging Geometric Diffusion and Energy Minimization: A Unified Framework for Neural Message Passing ICLR 2023
Learning representations for structured data with certain geometries (e.g., observed or unobserved) is a fundamental challenge, wherein message passing neural networks (MPNNs) have become a de facto class of model solutions. In this paper, we propose an energy-constrained diffusion model as a principled mathematical framework for understanding the mechanism of MPNNs and navigating novel architectural designs. Inspired by physical systems, the model combines the inductive bias of diffusion on manifolds with layer-wise constraints of energy minimization. We identify that the diffusion operators have a one-to-one correspondence with the energy functions implicitly descended by the diffusion process, and the finite-difference iteration for solving the energy-constrained diffusion system induces the propagation layers of various types of MPNNs operating on observed or latent structures. This leads to a unified perspective on common neural architectures whose computational flows can be cast as message passing (or its special case), including MLP, GCN, GIN, APPNP, GCNII, GAT, and Transformers. Building on these insights, we devise a new class of neural message passing models, dubbed diffusion-inspired Transformers, whose global attention layers are derived from the principled energy-constrained diffusion framework. Across diverse datasets, ranging from real-world networks to images, texts, and physical particles, we demonstrate that the new model achieves promising performance in scenarios where the data structures are observed (as a graph), partially observed, or entirely unobserved.
comment: Accepted to Journal of Machine Learning Research (JMLR). Extended version from DIFFormer in ICLR 2023
♻ ☆ Analysis and Evaluation of Synthetic Data Generation in Speech Dysfluency Detection
Speech dysfluency detection is crucial for clinical diagnosis and language assessment, but existing methods are limited by the scarcity of high-quality annotated data. Although recent advances in TTS model have enabled synthetic dysfluency generation, existing synthetic datasets suffer from unnatural prosody and limited contextual diversity. To address these limitations, we propose LLM-Dys -- the most comprehensive dysfluent speech corpus with LLM-enhanced dysfluency simulation. This dataset captures 11 dysfluency categories spanning both word and phoneme levels. Building upon this resource, we improve an end-to-end dysfluency detection framework. Experimental validation demonstrates state-of-the-art performance. All data, models, and code are open-sourced at https://github.com/Berkeley-Speech-Group/LLM-Dys.
comment: Accepted by Interspeech 2025
♻ ☆ Human Action CLIPs: Detecting AI-generated Human Motion
AI-generated video generation continues its journey through the uncanny valley to produce content that is increasingly perceptually indistinguishable from reality. To better protect individuals, organizations, and societies from its malicious applications, we describe an effective and robust technique for distinguishing real from AI-generated human motion using multi-modal semantic embeddings. Our method is robust to the types of laundering that typically confound more low- to mid-level approaches, including resolution and compression attacks. This method is evaluated against DeepAction, a custom-built, open-sourced dataset of video clips with human actions generated by seven text-to-video AI models and matching real footage. The dataset is available under an academic license at https://www.huggingface.co/datasets/faridlab/deepaction_v1.
♻ ☆ MalPurifier: Enhancing Android Malware Detection with Adversarial Purification against Evasion Attacks SC
Machine learning (ML) has gained significant adoption in Android malware detection to address the escalating threats posed by the rapid proliferation of malware attacks. However, recent studies have revealed the inherent vulnerabilities of ML-based detection systems to evasion attacks. While efforts have been made to address this critical issue, many of the existing defensive methods encounter challenges such as lower effectiveness or reduced generalization capabilities. In this paper, we introduce MalPurifier, a novel adversarial purification framework specifically engineered for Android malware detection. Specifically, MalPurifier integrates three key innovations: a diversified adversarial perturbation mechanism for robustness and generalizability, a protective noise injection strategy for benign data integrity, and a Denoising AutoEncoder (DAE) with a dual-objective loss for accurate purification and classification. Extensive experiments on two large-scale datasets demonstrate that MalPurifier significantly outperforms state-of-the-art defenses. It robustly defends against a comprehensive set of 37 perturbation-based evasion attacks, consistently achieving robust accuracies above 90.91%. As a lightweight, model-agnostic, and plug-and-play module, MalPurifier offers a practical and effective solution to bolster the security of ML-based Android malware detectors.
comment: 17 pages; Major Revision for IEEE TDSC
♻ ☆ Style2Code: A Style-Controllable Code Generation Framework with Dual-Modal Contrastive Representation Learning EMNLP 2025
Controllable code generation, the ability to synthesize code that follows a specified style while maintaining functionality, remains a challenging task. We propose a two-stage training framework combining contrastive learning and conditional decoding to enable flexible style control. The first stage aligns code style representations with semantic and structural features. In the second stage, we fine-tune a language model (e.g., Flan-T5) conditioned on the learned style vector to guide generation. Our method supports style interpolation and user personalization via lightweight mixing. Compared to prior work, our unified framework offers improved stylistic control without sacrificing code correctness. This is among the first approaches to combine contrastive alignment with conditional decoding for style-guided code generation.
comment: 10 pages, 5 figures, submitted to EMNLP 2025 (Industry Track)
♻ ☆ Human-AI Interactions and Societal Pitfalls
When working with generative artificial intelligence (AI), users may see productivity gains, but the AI-generated content may not match their preferences exactly. To study this effect, we introduce a Bayesian framework in which heterogeneous users choose how much information to share with the AI, facing a trade-off between output fidelity and communication cost. We show that the interplay between these individual-level decisions and AI training may lead to societal challenges. Outputs may become more homogenized, especially when the AI is trained on AI-generated content, potentially triggering a homogenization death spiral. And any AI bias may propagate to become societal bias. A solution to the homogenization and bias issues is to reduce human-AI interaction frictions and enable users to flexibly share information, leading to personalized outputs without sacrificing productivity.
♻ ☆ PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks
Most methods for neural network verification focus on bounding the image, i.e., set of outputs for a given input set. This can be used to, for example, check the robustness of neural network predictions to bounded perturbations of an input. However, verifying properties concerning the preimage, i.e., the set of inputs satisfying an output property, requires abstractions in the input space. We present a general framework for preimage abstraction that produces under- and over-approximations of any polyhedral output set. Our framework employs cheap parameterised linear relaxations of the neural network, together with an anytime refinement procedure that iteratively partitions the input region by splitting on input features and neurons. The effectiveness of our approach relies on carefully designed heuristics and optimization objectives to achieve rapid improvements in the approximation volume. We evaluate our method on a range of tasks, demonstrating significant improvement in efficiency and scalability to high-input-dimensional image classification tasks compared to state-of-the-art techniques. Further, we showcase the application to quantitative verification and robustness analysis, presenting a sound and complete algorithm for the former and providing sound quantitative results for the latter.
comment: arXiv admin note: text overlap with arXiv:2305.03686
♻ ☆ TrumorGPT: Graph-Based Retrieval-Augmented Large Language Model for Fact-Checking
In the age of social media, the rapid spread of misinformation and rumors has led to the emergence of infodemics, where false information poses a significant threat to society. To combat this issue, we introduce TrumorGPT, a novel generative artificial intelligence solution designed for fact-checking in the health domain. TrumorGPT aims to distinguish "trumors", which are health-related rumors that turn out to be true, providing a crucial tool in differentiating between mere speculation and verified facts. This framework leverages a large language model (LLM) with few-shot learning for semantic health knowledge graph construction and semantic reasoning. TrumorGPT incorporates graph-based retrieval-augmented generation (GraphRAG) to address the hallucination issue common in LLMs and the limitations of static training data. GraphRAG involves accessing and utilizing information from regularly updated semantic health knowledge graphs that consist of the latest medical news and health information, ensuring that fact-checking by TrumorGPT is based on the most recent data. Evaluating with extensive healthcare datasets, TrumorGPT demonstrates superior performance in fact-checking for public health claims. Its ability to effectively conduct fact-checking across various platforms marks a critical step forward in the fight against health-related misinformation, enhancing trust and accuracy in the digital information age.
♻ ☆ SurgSora: Object-Aware Diffusion Model for Controllable Surgical Video Generation MICCAI 2025
Surgical video generation can enhance medical education and research, but existing methods lack fine-grained motion control and realism. We introduce SurgSora, a framework that generates high-fidelity, motion-controllable surgical videos from a single input frame and user-specified motion cues. Unlike prior approaches that treat objects indiscriminately or rely on ground-truth segmentation masks, SurgSora leverages self-predicted object features and depth information to refine RGB appearance and optical flow for precise video synthesis. It consists of three key modules: (1) the Dual Semantic Injector, which extracts object-specific RGB-D features and segmentation cues to enhance spatial representations; (2) the Decoupled Flow Mapper, which fuses multi-scale optical flow with semantic features for realistic motion dynamics; and (3) the Trajectory Controller, which estimates sparse optical flow and enables user-guided object movement. By conditioning these enriched features within the Stable Video Diffusion, SurgSora achieves state-of-the-art visual authenticity and controllability in advancing surgical video synthesis, as demonstrated by extensive quantitative and qualitative comparisons. Our human evaluation in collaboration with expert surgeons further demonstrates the high realism of SurgSora-generated videos, highlighting the potential of our method for surgical training and education. Our project is available at https://surgsora.github.io/surgsora.github.io.
comment: MICCAI 2025
♻ ☆ Rumor Detection on Social Media with Reinforcement Learning-based Key Propagation Graph Generator
The spread of rumors on social media, particularly during significant events like the US elections and the COVID-19 pandemic, poses a serious threat to social stability and public health. Current rumor detection methods primarily rely on propagation graphs to improve the model performance. However, the effectiveness of these methods is often compromised by noisy and irrelevant structures in the propagation process. To tackle this issue, techniques such as weight adjustment and data augmentation have been proposed. However, they depend heavily on rich original propagation structures, limiting their effectiveness in handling rumors that lack sufficient propagation information, especially in the early stages of dissemination. In this work, we introduce the Key Propagation Graph Generator (KPG), a novel reinforcement learning-based framework, that generates contextually coherent and informative propagation patterns for events with insufficient topology information and identifies significant substructures in events with redundant and noisy propagation structures. KPG comprises two key components: the Candidate Response Generator (CRG) and the Ending Node Selector (ENS). CRG learns latent variable distributions from refined propagation patterns to eliminate noise and generate new candidates for ENS, while ENS identifies the most influential substructures in propagation graphs and provides training data for CRG. Furthermore, we develop an end-to-end framework that utilizes rewards derived from a pre-trained graph neural network to guide the training process. The resulting key propagation graphs are then employed in downstream rumor detection tasks. Extensive experiments conducted on four datasets demonstrate that KPG outperforms current state-of-the-art methods.
♻ ☆ Hierarchical Decision Making Based on Structural Information Principles
Hierarchical Reinforcement Learning (HRL) is a promising approach for managing task complexity across multiple levels of abstraction and accelerating long-horizon agent exploration. However, the effectiveness of hierarchical policies heavily depends on prior knowledge and manual assumptions about skill definitions and task decomposition. In this paper, we propose a novel Structural Information principles-based framework, namely SIDM, for hierarchical Decision Making in both single-agent and multi-agent scenarios. Central to our work is the utilization of structural information embedded in the decision-making process to adaptively and dynamically discover and learn hierarchical policies through environmental abstractions. Specifically, we present an abstraction mechanism that processes historical state-action trajectories to construct abstract representations of states and actions. We define and optimize directed structural entropy, a metric quantifying the uncertainty in transition dynamics between abstract states, to discover skills that capture key transition patterns in RL environments. Building on these findings, we develop a skill-based learning method for single-agent scenarios and a role-based collaboration method for multi-agent scenarios, both of which can flexibly integrate various underlying algorithms for enhanced performance. Extensive evaluations on challenging benchmarks demonstrate that our framework significantly and consistently outperforms state-of-the-art baselines, improving the effectiveness, efficiency, and stability of policy learning by up to 32.70%, 64.86%, and 88.26%, respectively, as measured by average rewards, convergence timesteps, and standard deviations.
comment: Submitted to JMLR
♻ ☆ Cross from Left to Right Brain: Adaptive Text Dreamer for Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) requires the agent to navigate by following natural instructions under partial observability, making it difficult to align perception with language. Recent methods mitigate this by imagining future scenes, yet they rely on vision-based synthesis, leading to high computational cost and redundant details. To this end, we propose to adaptively imagine key environmental semantics via \textit{language} form, enabling a more reliable and efficient strategy. Specifically, we introduce a novel Adaptive Text Dreamer (ATD), a dual-branch self-guided imagination policy built upon a large language model (LLM). ATD is designed with a human-like left-right brain architecture, where the left brain focuses on logical integration, and the right brain is responsible for imaginative prediction of future scenes. To achieve this, we fine-tune only the Q-former within both brains to efficiently activate domain-specific knowledge in the LLM, enabling dynamic updates of logical reasoning and imagination during navigation. Furthermore, we introduce a cross-interaction mechanism to regularize the imagined outputs and inject them into a navigation expert module, allowing ATD to jointly exploit both the reasoning capacity of the LLM and the expertise of the navigation model. We conduct extensive experiments on the R2R benchmark, where ATD achieves state-of-the-art performance with fewer parameters. The code is \href{https://github.com/zhangpingrui/Adaptive-Text-Dreamer}{here}.
♻ ☆ Rethinking Cancer Gene Identification through Graph Anomaly Analysis
Graph neural networks (GNNs) have shown promise in integrating protein-protein interaction (PPI) networks for identifying cancer genes in recent studies. However, due to the insufficient modeling of the biological information in PPI networks, more faithfully depiction of complex protein interaction patterns for cancer genes within the graph structure remains largely unexplored. This study takes a pioneering step toward bridging biological anomalies in protein interactions caused by cancer genes to statistical graph anomaly. We find a unique graph anomaly exhibited by cancer genes, namely weight heterogeneity, which manifests as significantly higher variance in edge weights of cancer gene nodes within the graph. Additionally, from the spectral perspective, we demonstrate that the weight heterogeneity could lead to the "flattening out" of spectral energy, with a concentration towards the extremes of the spectrum. Building on these insights, we propose the HIerarchical-Perspective Graph Neural Network (HIPGNN) that not only determines spectral energy distribution variations on the spectral perspective, but also perceives detailed protein interaction context on the spatial perspective. Extensive experiments are conducted on two reprocessed datasets STRINGdb and CPDB, and the experimental results demonstrate the superiority of HIPGNN.
♻ ☆ MM-R5: MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval
Multimodal document retrieval systems enable information access across text, images, and layouts, benefiting various domains like document-based question answering, report analysis, and interactive content summarization. Rerankers improve retrieval precision by reordering retrieved candidates. However, current multimodal reranking methods remain underexplored, with significant room for improvement in both training strategies and overall effectiveness. Moreover, the lack of explicit reasoning makes it difficult to analyze and optimize these methods further. In this paper, We propose MM-R5, a MultiModal Reasoning-Enhanced ReRanker via Reinforcement Learning for Document Retrieval, aiming to provide a more effective and reliable solution for multimodal reranking tasks. MM-R5 is trained in two stages: supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we focus on improving instruction-following and guiding the model to generate complete and high-quality reasoning chains. To support this, we introduce a novel data construction strategy that produces rich, high-quality reasoning data. In the RL stage, we design a task-specific reward framework, including a reranking reward tailored for multimodal candidates and a composite template-based reward to further refine reasoning quality. We conduct extensive experiments on MMDocIR, a challenging public benchmark spanning multiple domains. MM-R5 achieves state-of-the-art performance on most metrics and delivers comparable results to much larger models on the remaining ones. Moreover, compared to the best retrieval-only method, MM-R5 improves recall@1 by over 4%. These results validate the effectiveness of our reasoning-enhanced training pipeline. Our code is available at https://github.com/i2vec/MM-R5 .
♻ ☆ FLARE: Toward Universal Dataset Purification against Backdoor Attacks
Deep neural networks (DNNs) are susceptible to backdoor attacks, where adversaries poison datasets with adversary-specified triggers to implant hidden backdoors, enabling malicious manipulation of model predictions. Dataset purification serves as a proactive defense by removing malicious training samples to prevent backdoor injection at its source. We first reveal that the current advanced purification methods rely on a latent assumption that the backdoor connections between triggers and target labels in backdoor attacks are simpler to learn than the benign features. We demonstrate that this assumption, however, does not always hold, especially in all-to-all (A2A) and untargeted (UT) attacks. As a result, purification methods that analyze the separation between the poisoned and benign samples in the input-output space or the final hidden layer space are less effective. We observe that this separability is not confined to a single layer but varies across different hidden layers. Motivated by this understanding, we propose FLARE, a universal purification method to counter various backdoor attacks. FLARE aggregates abnormal activations from all hidden layers to construct representations for clustering. To enhance separation, FLARE develops an adaptive subspace selection algorithm to isolate the optimal space for dividing an entire dataset into two clusters. FLARE assesses the stability of each cluster and identifies the cluster with higher stability as poisoned. Extensive evaluations on benchmark datasets demonstrate the effectiveness of FLARE against 22 representative backdoor attacks, including all-to-one (A2O), all-to-all (A2A), and untargeted (UT) attacks, and its robustness to adaptive attacks. Codes are available at \href{https://github.com/THUYimingLi/BackdoorBox}{BackdoorBox} and \href{https://github.com/vtu81/backdoor-toolbox}{backdoor-toolbox}.
comment: 15 pages, This paper is accepted and will appear in TIFS (CCF-A)
♻ ☆ POPGym Arcade: Parallel Pixelated POMDPs
We present the POPGym Arcade, a collection of hardware-accelerated, pixel-based environments with shared observation and action spaces. Each environment includes fully and partially observable variants, enabling counterfactual studies on partial observability. We also introduce mathematical tools for analyzing policies under partial observability, which reveal how agents recall past information to make decisions. Our analysis shows (1) that controlling for partial observability is critical and (2) that agents with long-term memory learn brittle policies that struggle to generalize. Finally, we demonstrate that recurrent policies can be "poisoned" by old, out-of-distribution observations, with implications for sim-to-real transfer, imitation learning, and offline reinforcement learning.
♻ ☆ Learning from Reference Answers: Versatile Language Model Alignment without Binary Human Preference Data
Large language models~(LLMs) are expected to be helpful, harmless, and honest. In alignment scenarios such as safety, confidence, and general preference alignment, binary preference data collection and reward modeling are resource-intensive but essential for transferring human preference. In this work, we explore using the similarity between sampled generations and high-quality reference answers as an alternative reward function choice for LLM alignment. Similarity reward circumvents binary preference data collection and reward modeling when unary high-quality reference answers are available. We introduce \textit{RefAlign}, a versatile REINFORCE-style alignment algorithm that does not rely on reference or reward models. RefAlign utilizes similarity metrics, such as BERTScore between sampled generations and reference answers as surrogate rewards. Beyond general human preference optimization, RefAlign can be readily extended to diverse scenarios, such as safety and confidence alignment, by incorporating the similarity reward with task-related objectives. In various scenarios, RefAlign demonstrates comparable performance to previous alignment methods without binary preference data and reward models.
comment: work in progress
♻ ☆ AlphaDecay: Module-wise Weight Decay for Heavy-Tailed Balancing in LLMs
Weight decay is a standard regularization technique for training large language models (LLMs). While it is common to assign a uniform decay rate to every layer, this approach overlooks the structural diversity of LLMs and the varying spectral properties across modules. In this paper, we introduce AlphaDecay, a simple yet effective method that adaptively assigns different weight decay strengths to each module of an LLM. Our approach is guided by Heavy-Tailed Self-Regularization (HT-SR) theory, which analyzes the empirical spectral density (ESD) of weight correlation matrices to quantify "heavy-tailedness." Modules exhibiting more pronounced heavy-tailed ESDs, reflecting stronger feature learning, are assigned weaker decay, while modules with lighter-tailed spectra receive stronger decay. Our method leverages tailored weight decay assignments to balance the module-wise differences in spectral properties, leading to improved performance. Extensive pre-training tasks with various model sizes from 60M to 1B demonstrate that AlphaDecay achieves better perplexity and generalization than conventional uniform decay and other adaptive decay baselines. Our code is available at https://github.com/hed-ucas/AlphaDecay.
♻ ☆ GeAR: Graph-enhanced Agent for Retrieval-augmented Generation ACL 2025
Retrieval-augmented Generation (RAG) relies on effective retrieval capabilities, yet traditional sparse and dense retrievers inherently struggle with multi-hop retrieval scenarios. In this paper, we introduce GeAR, a system that advances RAG performance through two key innovations: (i) an efficient graph expansion mechanism that augments any conventional base retriever, such as BM25, and (ii) an agent framework that incorporates the resulting graph-based retrieval into a multi-step retrieval framework. Our evaluation demonstrates GeAR's superior retrieval capabilities across three multi-hop question answering datasets. Notably, our system achieves state-of-the-art results with improvements exceeding 10% on the challenging MuSiQue dataset, while consuming fewer tokens and requiring fewer iterations than existing multi-step retrieval systems. The project page is available at https://gear-rag.github.io.
comment: ACL 2025 Findings
♻ ☆ Cross-Entropy Games for Language Models: From Implicit Knowledge to General Capability Measures
Large Language Models (LLMs) define probability measures on text. By considering the implicit knowledge question of what it means for an LLM to know such a measure and what it entails algorithmically, we are naturally led to formulate a series of tasks that go beyond generative sampling, involving forms of summarization, counterfactual thinking, anomaly detection, originality search, reverse prompting, debating, creative solving, etc. These tasks can be formulated as games based on LLM measures, which we call Cross-Entropy (Xent) Games. Xent Games can be single-player or multi-player. They involve cross-entropy scores and cross-entropy constraints, and can be expressed as simple computational graphs and programs. We show the Xent Game space is large enough to contain a wealth of interesting examples, while being constructible from basic game-theoretic consistency axioms. We then discuss how the Xent Game space can be used to measure the abilities of LLMs. This leads to the construction of Xent Game measures: finite families of Xent Games that can be used as capability benchmarks, built from a given scope, by extracting a covering measure. To address the unbounded scope problem associated with the challenge of measuring general abilities, we propose to explore the space of Xent Games in a coherent fashion, using ideas inspired by evolutionary dynamics.
comment: 42 pages, 16 figures
♻ ☆ Introducing voice timbre attribute detection
This paper focuses on explaining the timbre conveyed by speech signals and introduces a task termed voice timbre attribute detection (vTAD). In this task, voice timbre is explained with a set of sensory attributes describing its human perception. A pair of speech utterances is processed, and their intensity is compared in a designated timbre descriptor. Moreover, a framework is proposed, which is built upon the speaker embeddings extracted from the speech utterances. The investigation is conducted on the VCTK-RVA dataset. Experimental examinations on the ECAPA-TDNN and FACodec speaker encoders demonstrated that: 1) the ECAPA-TDNN speaker encoder was more capable in the seen scenario, where the testing speakers were included in the training set; 2) the FACodec speaker encoder was superior in the unseen scenario, where the testing speakers were not part of the training, indicating enhanced generalization capability. The VCTK-RVA dataset and open-source code are available on the website https://github.com/vTAD2025-Challenge/vTAD.
comment: arXiv admin note: substantial text overlap with arXiv:2505.09382
♻ ☆ The Voice Timbre Attribute Detection 2025 Challenge Evaluation Plan
Voice timbre refers to the unique quality or character of a person's voice that distinguishes it from others as perceived by human hearing. The Voice Timbre Attribute Detection (VtaD) 2025 challenge focuses on explaining the voice timbre attribute in a comparative manner. In this challenge, the human impression of voice timbre is verbalized with a set of sensory descriptors, including bright, coarse, soft, magnetic, and so on. The timbre is explained from the comparison between two voices in their intensity within a specific descriptor dimension. The VtaD 2025 challenge starts in May and culminates in a special proposal at the NCMMSC2025 conference in October 2025 in Zhenjiang, China.
♻ ☆ Reinforcement Learning Teachers of Test Time Scaling
Training reasoning language models (LMs) with reinforcement learning (RL) for one-hot correctness inherently relies on the LM being able to explore and solve its task with some chance at initialization. Furthermore, a key use case of reasoning LMs is to act as teachers for distilling new students and cold-starting future RL iterations rather than being deployed themselves. From these considerations, we introduce a new framework that avoids RL's exploration challenge by training a new class of Reinforcement-Learned Teachers (RLTs) focused on yielding the most effective downstream distillation. RLTs are prompted with both the question and solution to each problem, and tasked to simply "connect-the-dots" with detailed explanations tailored for their students. We train RLTs with dense rewards obtained by feeding each explanation to the student and testing its understanding of the problem's solution. In practice, the raw outputs of a 7B RLT provide higher final performance on competition and graduate-level tasks than existing distillation and cold-starting pipelines that collect and postprocess the reasoning traces of orders of magnitude larger LMs. Furthermore, RLTs maintain their effectiveness when training larger students and when applied zero-shot to out-of-distribution tasks, unlocking new levels of efficiency and re-usability for the RL reasoning framework.
comment: Code available at: https://github.com/SakanaAI/RLT
♻ ☆ Information Science Principles of Machine Learning: A Causal Chain Meta-Framework Based on Formalized Information Mapping
[Objective] This study focuses on addressing the current lack of a unified formal theoretical framework in machine learning, as well as the deficiencies in interpretability and ethical safety assurance. [Methods] A formal information model is first constructed, utilizing sets of well-formed formulas to explicitly define the ontological states and carrier mappings of typical components in machine learning. Learnable and processable predicates, along with learning and processing functions, are introduced to analyze the logical deduction and constraint rules of the causal chains within models. [Results] A meta-framework for machine learning theory (MLT-MF) is established. Based on this framework, universal definitions for model interpretability and ethical safety are proposed. Furthermore, three key theorems are proved: the equivalence of model interpretability and information recoverability, the assurance of ethical safety, and the estimation of generalization error. [Limitations] The current framework assumes ideal conditions with noiseless information-enabling mappings and primarily targets model learning and processing logic in static scenarios. It does not yet address information fusion and conflict resolution across ontological spaces in multimodal or multi-agent systems. [Conclusions] This work overcomes the limitations of fragmented research and provides a unified theoretical foundation for systematically addressing the critical challenges currently faced in machine learning.
♻ ☆ AnyEnhance: A Unified Generative Model with Prompt-Guidance and Self-Critic for Voice Enhancement
We introduce AnyEnhance, a unified generative model for voice enhancement that processes both speech and singing voices. Based on a masked generative model, AnyEnhance is capable of handling both speech and singing voices, supporting a wide range of enhancement tasks including denoising, dereverberation, declipping, super-resolution, and target speaker extraction, all simultaneously and without fine-tuning. AnyEnhance introduces a prompt-guidance mechanism for in-context learning, which allows the model to natively accept a reference speaker's timbre. In this way, it could boost enhancement performance when a reference audio is available and enable the target speaker extraction task without altering the underlying architecture. Moreover, we also introduce a self-critic mechanism into the generative process for masked generative models, yielding higher-quality outputs through iterative self-assessment and refinement. Extensive experiments on various enhancement tasks demonstrate AnyEnhance outperforms existing methods in terms of both objective metrics and subjective listening tests. Demo audios are publicly available at https://amphionspace.github.io/anyenhance/.
comment: Accepted by IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP) 2025
♻ ☆ Leveraging Model Guidance to Extract Training Data from Personalized Diffusion Models ICML
Diffusion Models (DMs) have become powerful image generation tools, especially for few-shot fine-tuning where a pretrained DM is fine-tuned on a small image set to capture specific styles or objects. Many people upload these personalized checkpoints online, fostering communities such as Civitai and HuggingFace. However, model owners may overlook the data leakage risks when releasing fine-tuned checkpoints. Moreover, concerns regarding copyright violations arise when unauthorized data is used during fine-tuning. In this paper, we ask: "Can training data be extracted from these fine-tuned DMs shared online?" A successful extraction would present not only data leakage threats but also offer tangible evidence of copyright infringement. To answer this, we propose FineXtract, a framework for extracting fine-tuning data. Our method approximates fine-tuning as a gradual shift in the model's learned distribution -- from the original pretrained DM toward the fine-tuning data. By extrapolating the models before and after fine-tuning, we guide the generation toward high-probability regions within the fine-tuned data distribution. We then apply a clustering algorithm to extract the most probable images from those generated using this extrapolated guidance. Experiments on DMs fine-tuned with datasets including WikiArt, DreamBooth, and real-world checkpoints posted online validate the effectiveness of our method, extracting about 20% of fine-tuning data in most cases. The code is available https://github.com/Nicholas0228/FineXtract.
comment: Accepted at the International Conference on Machine Learning (ICML) 2025
♻ ☆ Stream-Omni: Simultaneous Multimodal Interactions with Large Language-Vision-Speech Model
The emergence of GPT-4o-like large multimodal models (LMMs) has raised the exploration of integrating text, vision, and speech modalities to support more flexible multimodal interaction. Existing LMMs typically concatenate representation of modalities along the sequence dimension and feed them into a large language model (LLM) backbone. While sequence-dimension concatenation is straightforward for modality integration, it often relies heavily on large-scale data to learn modality alignments. In this paper, we aim to model the relationships between modalities more purposefully, thereby achieving more efficient and flexible modality alignments. To this end, we propose Stream-Omni, a large language-vision-speech model with efficient modality alignments, which can simultaneously support interactions under various modality combinations. Stream-Omni employs LLM as the backbone and aligns the vision and speech to the text based on their relationships. For vision that is semantically complementary to text, Stream-Omni uses sequence-dimension concatenation to achieve vision-text alignment. For speech that is semantically consistent with text, Stream-Omni introduces a CTC-based layer-dimension mapping to achieve speech-text alignment. In this way, Stream-Omni can achieve modality alignments with less data (especially speech), enabling the transfer of text capabilities to other modalities. Experiments on various benchmarks demonstrate that Stream-Omni achieves strong performance on visual understanding, speech interaction, and vision-grounded speech interaction tasks. Owing to the layer-dimensional mapping, Stream-Omni can simultaneously provide intermediate text outputs (such as ASR transcriptions and model responses) during speech interaction, offering users a comprehensive multimodal experience.
comment: Code: https://github.com/ictnlp/Stream-Omni , Model: https://huggingface.co/ICTNLP/stream-omni-8b
♻ ☆ Unveiling Molecular Moieties through Hierarchical Grad-CAM Graph Explainability
Background: Virtual Screening (VS) has become an essential tool in drug discovery, enabling the rapid and cost-effective identification of potential bioactive molecules. Among recent advancements, Graph Neural Networks (GNNs) have gained prominence for their ability to model complex molecular structures using graph-based representations. However, the integration of explainable methods to elucidate the specific contributions of molecular substructures to biological activity remains a significant challenge. This limitation hampers both the interpretability of predictive models and the rational design of novel therapeutics. Results: We trained 20 GNN models on a dataset of small molecules with the goal of predicting their activity on 20 distinct protein targets from the Kinase family. These classifiers achieved state-of-the-art performance in virtual screening tasks, demonstrating high accuracy and robustness on different targets. Building upon these models, we implemented the Hierarchical Grad-CAM graph Explainer (HGE) framework, enabling an in-depth analysis of the molecular moieties driving protein-ligand binding stabilization. HGE exploits Grad-CAM explanations at the atom, ring, and whole-molecule levels, leveraging the message-passing mechanism to highlight the most relevant chemical moieties. Validation against experimental data from the literature confirmed the ability of the explainer to recognize a molecular pattern of drugs and correctly annotate them to the known target. Conclusion: Our approach may represent a valid support to shorten both the screening and the hit discovery process. Detailed knowledge of the molecular substructures that play a role in the binding process can help the computational chemist to gain insights into the structure optimization, as well as in drug repurposing tasks.
♻ ☆ LightRetriever: A LLM-based Hybrid Retrieval Architecture with 1000x Faster Query Inference
Large Language Models (LLMs)-based hybrid retrieval uses LLMs to encode queries and documents into low-dimensional dense or high-dimensional sparse vectors. It retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based hybrid retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full-sized LLM on an H800 GPU, our approach achieves over a 1000x speedup for query inference with GPU acceleration, and even a 20x speedup without GPU. Experiments on large-scale retrieval benchmarks demonstrate that our method generalizes well across diverse retrieval tasks, retaining an average of 95% full-sized performance.
♻ ☆ Rubric Is All You Need: Enhancing LLM-based Code Evaluation With Question-Specific Rubrics
Since the emergence of Large Language Models (LLMs) popularized by the release of GPT-3 and ChatGPT, LLMs have shown remarkable promise in programming-related tasks. While code generation using LLMs has become a popular field of research, code evaluation using LLMs remains under-explored. In this paper, we focus on LLM-based code evaluation and attempt to fill in the existing gaps. We propose multi-agentic novel approaches using \emph{question-specific rubrics} tailored to the problem statement, arguing that these perform better for logical assessment than the existing approaches that use \emph{question-agnostic rubrics}. To address the lack of suitable evaluation datasets, we introduce two datasets: a Data Structures and Algorithms dataset containing 150 student submissions from a popular Data Structures and Algorithms practice website, and an Object Oriented Programming dataset comprising 80 student submissions from undergraduate computer science courses. In addition to using standard metrics (Spearman Correlation, Cohen's Kappa), we additionally propose a new metric called as Leniency, which quantifies evaluation strictness relative to expert assessment. Our comprehensive analysis demonstrates that \emph{question-specific rubrics} significantly enhance logical assessment of code in educational settings, providing better feedback aligned with instructional goals beyond mere syntactic correctness.
comment: Accepted in ICER 2025
♻ ☆ Effective Red-Teaming of Policy-Adherent Agents
Task-oriented LLM-based agents are increasingly used in domains with strict policies, such as refund eligibility or cancellation rules. The challenge lies in ensuring that the agent consistently adheres to these rules and policies, appropriately refusing any request that would violate them, while still maintaining a helpful and natural interaction. This calls for the development of tailored design and evaluation methodologies to ensure agent resilience against malicious user behavior. We propose a novel threat model that focuses on adversarial users aiming to exploit policy-adherent agents for personal benefit. To address this, we present CRAFT, a multi-agent red-teaming system that leverages policy-aware persuasive strategies to undermine a policy-adherent agent in a customer-service scenario, outperforming conventional jailbreak methods such as DAN prompts, emotional manipulation, and coercive. Building upon the existing tau-bench benchmark, we introduce tau-break, a complementary benchmark designed to rigorously assess the agent's robustness against manipulative user behavior. Finally, we evaluate several straightforward yet effective defense strategies. While these measures provide some protection, they fall short, highlighting the need for stronger, research-driven safeguards to protect policy-adherent agents from adversarial attacks
♻ ☆ DSGram: Dynamic Weighting Sub-Metrics for Grammatical Error Correction in the Era of Large Language Models
Evaluating the performance of Grammatical Error Correction (GEC) models has become increasingly challenging, as large language model (LLM)-based GEC systems often produce corrections that diverge from provided gold references. This discrepancy undermines the reliability of traditional reference-based evaluation metrics. In this study, we propose a novel evaluation framework for GEC models, DSGram, integrating Semantic Coherence, Edit Level, and Fluency, and utilizing a dynamic weighting mechanism. Our framework employs the Analytic Hierarchy Process (AHP) in conjunction with large language models to ascertain the relative importance of various evaluation criteria. Additionally, we develop a dataset incorporating human annotations and LLM-simulated sentences to validate our algorithms and fine-tune more cost-effective models. Experimental results indicate that our proposed approach enhances the effectiveness of GEC model evaluations.
♻ ☆ Interpretable global minima of deep ReLU neural networks on sequentially separable data
We explicitly construct zero loss neural network classifiers. We write the weight matrices and bias vectors in terms of cumulative parameters, which determine truncation maps acting recursively on input space. The configurations for the training data considered are (i) sufficiently small, well separated clusters corresponding to each class, and (ii) equivalence classes which are sequentially linearly separable. In the best case, for $Q$ classes of data in $\mathbb{R}^M$, global minimizers can be described with $Q(M+2)$ parameters.
comment: AMS Latex, 31 pages, 3 figures
♻ ☆ SIPDO: Closed-Loop Prompt Optimization via Synthetic Data Feedback
Prompt quality plays a critical role in the performance of large language models (LLMs), motivating a growing body of work on prompt optimization. Most existing methods optimize prompts over a fixed dataset, assuming static input distributions and offering limited support for iterative improvement. We introduce SIPDO (Self-Improving Prompts through Data-Augmented Optimization), a closed-loop framework for prompt learning that integrates synthetic data generation into the optimization process. SIPDO couples a synthetic data generator with a prompt optimizer, where the generator produces new examples that reveal current prompt weaknesses and the optimizer incrementally refines the prompt in response. This feedback-driven loop enables systematic improvement of prompt performance without assuming access to external supervision or new tasks. Experiments across question answering and reasoning benchmarks show that SIPDO outperforms standard prompt tuning methods, highlighting the value of integrating data synthesis into prompt learning workflows.
♻ ☆ From Easy to Hard: Building a Shortcut for Differentially Private Image Synthesis
Differentially private (DP) image synthesis aims to generate synthetic images from a sensitive dataset, alleviating the privacy leakage concerns of organizations sharing and utilizing synthetic images. Although previous methods have significantly progressed, especially in training diffusion models on sensitive images with DP Stochastic Gradient Descent (DP-SGD), they still suffer from unsatisfactory performance. In this work, inspired by curriculum learning, we propose a two-stage DP image synthesis framework, where diffusion models learn to generate DP synthetic images from easy to hard. Unlike existing methods that directly use DP-SGD to train diffusion models, we propose an easy stage in the beginning, where diffusion models learn simple features of the sensitive images. To facilitate this easy stage, we propose to use `central images', simply aggregations of random samples of the sensitive dataset. Intuitively, although those central images do not show details, they demonstrate useful characteristics of all images and only incur minimal privacy costs, thus helping early-phase model training. We conduct experiments to present that on the average of four investigated image datasets, the fidelity and utility metrics of our synthetic images are 33.1% and 2.1% better than the state-of-the-art method.
comment: Accepted at IEEE S&P (Oakland) 2025; code available at https://github.com/SunnierLee/DP-FETA; revised proofs in App.A
♻ ☆ Large Language Models for Disease Diagnosis: A Scoping Review
Automatic disease diagnosis has become increasingly valuable in clinical practice. The advent of large language models (LLMs) has catalyzed a paradigm shift in artificial intelligence, with growing evidence supporting the efficacy of LLMs in diagnostic tasks. Despite the increasing attention in this field, a holistic view is still lacking. Many critical aspects remain unclear, such as the diseases and clinical data to which LLMs have been applied, the LLM techniques employed, and the evaluation methods used. In this article, we perform a comprehensive review of LLM-based methods for disease diagnosis. Our review examines the existing literature across various dimensions, including disease types and associated clinical specialties, clinical data, LLM techniques, and evaluation methods. Additionally, we offer recommendations for applying and evaluating LLMs for diagnostic tasks. Furthermore, we assess the limitations of current research and discuss future directions. To our knowledge, this is the first comprehensive review for LLM-based disease diagnosis.
comment: 68 pages, 6 figures
♻ ☆ DriveSuprim: Towards Precise Trajectory Selection for End-to-End Planning
In complex driving environments, autonomous vehicles must navigate safely. Relying on a single predicted path, as in regression-based approaches, usually does not explicitly assess the safety of the predicted trajectory. Selection-based methods address this by generating and scoring multiple trajectory candidates and predicting the safety score for each, but face optimization challenges in precisely selecting the best option from thousands of possibilities and distinguishing subtle but safety-critical differences, especially in rare or underrepresented scenarios. We propose DriveSuprim to overcome these challenges and advance the selection-based paradigm through a coarse-to-fine paradigm for progressive candidate filtering, a rotation-based augmentation method to improve robustness in out-of-distribution scenarios, and a self-distillation framework to stabilize training. DriveSuprim achieves state-of-the-art performance, reaching 93.5% PDMS in NAVSIM v1 and 87.1% EPDMS in NAVSIM v2 without extra data, demonstrating superior safetycritical capabilities, including collision avoidance and compliance with rules, while maintaining high trajectory quality in various driving scenarios.
comment: 15 pages, 6 figures
♻ ☆ How Far is Video Generation from World Model: A Physical Law Perspective ICML 2025
OpenAI's Sora highlights the potential of video generation for developing world models that adhere to fundamental physical laws. However, the ability of video generation models to discover such laws purely from visual data without human priors can be questioned. A world model learning the true law should give predictions robust to nuances and correctly extrapolate on unseen scenarios. In this work, we evaluate across three key scenarios: in-distribution, out-of-distribution, and combinatorial generalization. We developed a 2D simulation testbed for object movement and collisions to generate videos deterministically governed by one or more classical mechanics laws. This provides an unlimited supply of data for large-scale experimentation and enables quantitative evaluation of whether the generated videos adhere to physical laws. We trained diffusion-based video generation models to predict object movements based on initial frames. Our scaling experiments show perfect generalization within the distribution, measurable scaling behavior for combinatorial generalization, but failure in out-of-distribution scenarios. Further experiments reveal two key insights about the generalization mechanisms of these models: (1) the models fail to abstract general physical rules and instead exhibit "case-based" generalization behavior, i.e., mimicking the closest training example; (2) when generalizing to new cases, models are observed to prioritize different factors when referencing training data: color > size > velocity > shape. Our study suggests that scaling alone is insufficient for video generation models to uncover fundamental physical laws, despite its role in Sora's broader success. See our project page at https://phyworld.github.io
comment: ICML 2025
♻ ☆ G3Flow: Generative 3D Semantic Flow for Pose-aware and Generalizable Object Manipulation CVPR 2025
Recent advances in imitation learning for 3D robotic manipulation have shown promising results with diffusion-based policies. However, achieving human-level dexterity requires seamless integration of geometric precision and semantic understanding. We present G3Flow, a novel framework that constructs real-time semantic flow, a dynamic, object-centric 3D semantic representation by leveraging foundation models. Our approach uniquely combines 3D generative models for digital twin creation, vision foundation models for semantic feature extraction, and robust pose tracking for continuous semantic flow updates. This integration enables complete semantic understanding even under occlusions while eliminating manual annotation requirements. By incorporating semantic flow into diffusion policies, we demonstrate significant improvements in both terminal-constrained manipulation and cross-object generalization. Extensive experiments across five simulation tasks show that G3Flow consistently outperforms existing approaches, achieving up to 68.3% and 50.1% average success rates on terminal-constrained manipulation and cross-object generalization tasks respectively. Our results demonstrate the effectiveness of G3Flow in enhancing real-time dynamic semantic feature understanding for robotic manipulation policies.
comment: Webpage: https://tianxingchen.github.io/G3Flow/, accepted to CVPR 2025
♻ ☆ DART: An Automated End-to-End Object Detection Pipeline with Data Diversification, Open-Vocabulary Bounding Box Annotation, Pseudo-Label Review, and Model Training
Accurate real-time object detection is vital across numerous industrial applications, from safety monitoring to quality control. Traditional approaches, however, are hindered by arduous manual annotation and data collection, struggling to adapt to ever-changing environments and novel target objects. To address these limitations, this paper presents DART, an innovative automated end-to-end pipeline that revolutionizes object detection workflows from data collection to model evaluation. It eliminates the need for laborious human labeling and extensive data collection while achieving outstanding accuracy across diverse scenarios. DART encompasses four key stages: (1) Data Diversification using subject-driven image generation (DreamBooth with SDXL), (2) Annotation via open-vocabulary object detection (Grounding DINO) to generate bounding box and class labels, (3) Review of generated images and pseudo-labels by large multimodal models (InternVL-1.5 and GPT-4o) to guarantee credibility, and (4) Training of real-time object detectors (YOLOv8 and YOLOv10) using the verified data. We apply DART to a self-collected dataset of construction machines named Liebherr Product, which contains over 15K high-quality images across 23 categories. The current instantiation of DART significantly increases average precision (AP) from 0.064 to 0.832. Its modular design ensures easy exchangeability and extensibility, allowing for future algorithm upgrades, seamless integration of new object categories, and adaptability to customized environments without manual labeling and additional data collection. The code and dataset are released at https://github.com/chen-xin-94/DART.
comment: Corrected minor typos; no changes to results or conclusions
♻ ☆ DeepMedcast: A Deep Learning Method for Generating Intermediate Weather Forecasts among Multiple NWP Models
Numerical weather prediction (NWP) centers around the world operate a variety of NWP models. In addition, recent advances in AI-driven NWP models have further increased the availability of NWP outputs. While this expansion holds the potential to improve forecast accuracy, it raises a critical question: which prediction is the most plausible? If the NWP models have comparable accuracy, it is impossible to determine in advance which one is the best. Traditional approaches, such as ensemble or weighted averaging, combine multiple NWP outputs to produce a single forecast with improved accuracy. However, they often result in meteorologically unrealistic and uninterpretable outputs, such as the splitting of tropical cyclone centers or frontal boundaries into multiple distinct systems. To address this issue, we propose DeepMedcast, a deep learning method that generates intermediate forecasts between two or more NWP outputs. Unlike averaging, DeepMedcast provides predictions in which meteorologically significant features -- such as the locations of tropical cyclones, extratropical cyclones, fronts, and shear lines -- approximately align with the arithmetic mean of the corresponding features predicted by the input NWP models, without distorting meteorological structures. We demonstrate the capability of DeepMedcast through case studies and verification results, showing that it produces realistic and interpretable forecasts with higher accuracy than the input NWP models. By providing plausible intermediate forecasts, DeepMedcast can significantly contribute to the efficiency and standardization of operational forecasting tasks, including general, marine, and aviation forecasts.
comment: 15 pages, 11 figures
♻ ☆ Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning with verifiable rewards~(\textit{RLVR}). However, existing \textit{RLVR} approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. To address this issue, we introduce \textbf{LUFFY} (\textbf{L}earning to reason \textbf{U}nder o\textbf{FF}-polic\textbf{Y} guidance), a framework that augments \textit{RLVR} with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Specifically, LUFFY combines the Mixed-Policy GRPO framework, which has a theoretically guaranteed convergence rate, alongside policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Compared with previous RLVR methods, LUFFY achieves an over \textbf{+6.4} average gain across six math benchmarks and an advantage of over \textbf{+6.2} points in out-of-distribution tasks. Most significantly, we show that LUFFY successfully trains weak models in scenarios where on-policy RLVR completely fails. These results provide compelling evidence that LUFFY transcends the fundamental limitations of on-policy RLVR and demonstrates the great potential of utilizing off-policy guidance in RLVR.
comment: Work in progress
Graphics 2
☆ Auto-Regressive Surface Cutting
Surface cutting is a fundamental task in computer graphics, with applications in UV parameterization, texture mapping, and mesh decomposition. However, existing methods often produce technically valid but overly fragmented atlases that lack semantic coherence. We introduce SeamGPT, an auto-regressive model that generates cutting seams by mimicking professional workflows. Our key technical innovation lies in formulating surface cutting as a next token prediction task: sample point clouds on mesh vertices and edges, encode them as shape conditions, and employ a GPT-style transformer to sequentially predict seam segments with quantized 3D coordinates. Our approach achieves exceptional performance on UV unwrapping benchmarks containing both manifold and non-manifold meshes, including artist-created, and 3D-scanned models. In addition, it enhances existing 3D segmentation tools by providing clean boundaries for part decomposition.
comment: Tech. report. https://victorcheung12.github.io/seamgpt
♻ ☆ Human Action CLIPs: Detecting AI-generated Human Motion
AI-generated video generation continues its journey through the uncanny valley to produce content that is increasingly perceptually indistinguishable from reality. To better protect individuals, organizations, and societies from its malicious applications, we describe an effective and robust technique for distinguishing real from AI-generated human motion using multi-modal semantic embeddings. Our method is robust to the types of laundering that typically confound more low- to mid-level approaches, including resolution and compression attacks. This method is evaluated against DeepAction, a custom-built, open-sourced dataset of video clips with human actions generated by seven text-to-video AI models and matching real footage. The dataset is available under an academic license at https://www.huggingface.co/datasets/faridlab/deepaction_v1.
Robotics 18
☆ Generative Grasp Detection and Estimation with Concept Learning-based Safety Criteria
Neural networks are often regarded as universal equations that can estimate any function. This flexibility, however, comes with the drawback of high complexity, rendering these networks into black box models, which is especially relevant in safety-centric applications. To that end, we propose a pipeline for a collaborative robot (Cobot) grasping algorithm that detects relevant tools and generates the optimal grasp. To increase the transparency and reliability of this approach, we integrate an explainable AI method that provides an explanation for the underlying prediction of a model by extracting the learned features and correlating them to corresponding classes from the input. These concepts are then used as additional criteria to ensure the safe handling of work tools. In this paper, we show the consistency of this approach and the criterion for improving the handover position. This approach was tested in an industrial environment, where a camera system was set up to enable a robot to pick up certain tools and objects.
comment: RAAD 2025: 34th International Conference on Robotics in Alpe-Adria-Danube Region
☆ Leveling the Playing Field: Carefully Comparing Classical and Learned Controllers for Quadrotor Trajectory Tracking RSS 2025
Learning-based control approaches like reinforcement learning (RL) have recently produced a slew of impressive results for tasks like quadrotor trajectory tracking and drone racing. Naturally, it is common to demonstrate the advantages of these new controllers against established methods like analytical controllers. We observe, however, that reliably comparing the performance of such very different classes of controllers is more complicated than might appear at first sight. As a case study, we take up the problem of agile tracking of an end-effector for a quadrotor with a fixed arm. We develop a set of best practices for synthesizing the best-in-class RL and geometric controllers (GC) for benchmarking. In the process, we resolve widespread RL-favoring biases in prior studies that provide asymmetric access to: (1) the task definition, in the form of an objective function, (2) representative datasets, for parameter optimization, and (3) feedforward information, describing the desired future trajectory. The resulting findings are the following: our improvements to the experimental protocol for comparing learned and classical controllers are critical, and each of the above asymmetries can yield misleading conclusions. Prior works have claimed that RL outperforms GC, but we find the gaps between the two controller classes are much smaller than previously published when accounting for symmetric comparisons. Geometric control achieves lower steady-state error than RL, while RL has better transient performance, resulting in GC performing better in relatively slow or less agile tasks, but RL performing better when greater agility is required. Finally, we open-source implementations of geometric and RL controllers for these aerial vehicles, implementing best practices for future development. Website and code is available at https://pratikkunapuli.github.io/rl-vs-gc/
comment: Accepted for publication to RSS 2025. 10 pages, 5 figures. Project website: https://pratikkunapuli.github.io/rl-vs-gc/
☆ Engagement and Disclosures in LLM-Powered Cognitive Behavioral Therapy Exercises: A Factorial Design Comparing the Influence of a Robot vs. Chatbot Over Time
Many researchers are working to address the worldwide mental health crisis by developing therapeutic technologies that increase the accessibility of care, including leveraging large language model (LLM) capabilities in chatbots and socially assistive robots (SARs) used for therapeutic applications. Yet, the effects of these technologies over time remain unexplored. In this study, we use a factorial design to assess the impact of embodiment and time spent engaging in therapeutic exercises on participant disclosures. We assessed transcripts gathered from a two-week study in which 26 university student participants completed daily interactive Cognitive Behavioral Therapy (CBT) exercises in their residences using either an LLM-powered SAR or a disembodied chatbot. We evaluated the levels of active engagement and high intimacy of their disclosures (opinions, judgments, and emotions) during each session and over time. Our findings show significant interactions between time and embodiment for both outcome measures: participant engagement and intimacy increased over time in the physical robot condition, while both measures decreased in the chatbot condition.
☆ Learning to Dock: A Simulation-based Study on Closing the Sim2Real Gap in Autonomous Underwater Docking
Autonomous Underwater Vehicle (AUV) docking in dynamic and uncertain environments is a critical challenge for underwater robotics. Reinforcement learning is a promising method for developing robust controllers, but the disparity between training simulations and the real world, or the sim2real gap, often leads to a significant deterioration in performance. In this work, we perform a simulation study on reducing the sim2real gap in autonomous docking through training various controllers and then evaluating them under realistic disturbances. In particular, we focus on the real-world challenge of docking under different payloads that are potentially outside the original training distribution. We explore existing methods for improving robustness including randomization techniques and history-conditioned controllers. Our findings provide insights into mitigating the sim2real gap when training docking controllers. Furthermore, our work indicates areas of future research that may be beneficial to the marine robotics community.
comment: Advancing Quantitative and Qualitative Simulators for Marine Applications Workshop Paper at International Conference on Robotics and Automation 2025
☆ RoboMonkey: Scaling Test-Time Sampling and Verification for Vision-Language-Action Models
Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in visuomotor control, yet ensuring their robustness in unstructured real-world environments remains a persistent challenge. In this paper, we investigate test-time scaling through the lens of sampling and verification as means to enhance the robustness and generalization of VLAs. We first demonstrate that the relationship between action error and the number of generated samples follows an exponentiated power law across a range of VLAs, indicating the existence of inference-time scaling laws. Building on these insights, we introduce RoboMonkey, a test-time scaling framework for VLAs. At deployment, RoboMonkey samples a small set of actions from a VLA, applies Gaussian perturbation and majority voting to construct an action proposal distribution, and then uses a Vision Language Model (VLM)-based verifier to select the optimal action. We propose a synthetic data generation pipeline for training such VLM-based action verifiers, and demonstrate that scaling the synthetic dataset consistently improves verification and downstream accuracy. Through extensive simulated and hardware experiments, we show that pairing existing VLAs with RoboMonkey yields significant performance gains, achieving a 25% absolute improvement on out-of-distribution tasks and 8% on in-distribution tasks. Additionally, when adapting to new robot setups, we show that fine-tuning both VLAs and action verifiers yields a 7% performance increase compared to fine-tuning VLAs alone.
☆ Optimizing Exploration with a New Uncertainty Framework for Active SLAM Systems
Accurate reconstruction of the environment is a central goal of Simultaneous Localization and Mapping (SLAM) systems. However, the agent's trajectory can significantly affect estimation accuracy. This paper presents a new method to model map uncertainty in Active SLAM systems using an Uncertainty Map (UM). The UM uses probability distributions to capture where the map is uncertain, allowing Uncertainty Frontiers (UF) to be defined as key exploration-exploitation objectives and potential stopping criteria. In addition, the method introduces the Signed Relative Entropy (SiREn), based on the Kullback-Leibler divergence, to measure both coverage and uncertainty together. This helps balance exploration and exploitation through an easy-to-understand parameter. Unlike methods that depend on particular SLAM setups, the proposed approach is compatible with different types of sensors, such as cameras, LiDARs, and multi-sensor fusion. It also addresses common problems in exploration planning and stopping conditions. Furthermore, integrating this map modeling approach with a UF-based planning system enables the agent to autonomously explore open spaces, a behavior not previously observed in the Active SLAM literature. Code and implementation details are available as a ROS node, and all generated data are openly available for public use, facilitating broader adoption and validation of the proposed approach.
☆ Quantification of Sim2Real Gap via Neural Simulation Gap Function
In this paper, we introduce the notion of neural simulation gap functions, which formally quantifies the gap between the mathematical model and the model in the high-fidelity simulator, which closely resembles reality. Many times, a controller designed for a mathematical model does not work in reality because of the unmodelled gap between the two systems. With the help of this simulation gap function, one can use existing model-based tools to design controllers for the mathematical system and formally guarantee a decent transition from the simulation to the real world. Although in this work, we have quantified this gap using a neural network, which is trained using a finite number of data points, we give formal guarantees on the simulation gap function for the entire state space including the unseen data points. We collect data from high-fidelity simulators leveraging recent advancements in Real-to-Sim transfer to ensure close alignment with reality. We demonstrate our results through two case studies - a Mecanum bot and a Pendulum.
☆ RLRC: Reinforcement Learning-based Recovery for Compressed Vision-Language-Action Models
Vision-Language-Action models (VLA) have demonstrated remarkable capabilities and promising potential in solving complex robotic manipulation tasks. However, their substantial parameter sizes and high inference latency pose significant challenges for real-world deployment, particularly on resource-constrained robotic platforms. To address this issue, we begin by conducting an extensive empirical study to explore the effectiveness of model compression techniques when applied to VLAs. Building on the insights gained from these preliminary experiments, we propose RLRC, a three-stage recovery method for compressed VLAs, including structured pruning, performance recovery based on SFT and RL, and further quantization. RLRC achieves up to an 8x reduction in memory usage and a 2.3x improvement in inference throughput, while maintaining or even surpassing the original VLA's task success rate. Extensive experiments show that RLRC consistently outperforms existing compression baselines, demonstrating strong potential for on-device deployment of VLAs. Project website: https://rlrc-vla.github.io
☆ Imitation Learning for Active Neck Motion Enabling Robot Manipulation beyond the Field of View
Most prior research in deep imitation learning has predominantly utilized fixed cameras for image input, which constrains task performance to the predefined field of view. However, enabling a robot to actively maneuver its neck can significantly expand the scope of imitation learning to encompass a wider variety of tasks and expressive actions such as neck gestures. To facilitate imitation learning in robots capable of neck movement while simultaneously performing object manipulation, we propose a teaching system that systematically collects datasets incorporating neck movements while minimizing discomfort caused by dynamic viewpoints during teleoperation. In addition, we present a novel network model for learning manipulation tasks including active neck motion. Experimental results showed that our model can achieve a high success rate of around 90\%, regardless of the distraction from the viewpoint variations by active neck motion. Moreover, the proposed model proved particularly effective in challenging scenarios, such as when objects were situated at the periphery or beyond the standard field of view, where traditional models struggled. The proposed approach contributes to the efficiency of dataset collection and extends the applicability of imitation learning to more complex and dynamic scenarios.
comment: 6 pages
☆ Risk-Guided Diffusion: Toward Deploying Robot Foundation Models in Space, Where Failure Is Not An Option
Safe, reliable navigation in extreme, unfamiliar terrain is required for future robotic space exploration missions. Recent generative-AI methods learn semantically aware navigation policies from large, cross-embodiment datasets, but offer limited safety guarantees. Inspired by human cognitive science, we propose a risk-guided diffusion framework that fuses a fast, learned "System-1" with a slow, physics-based "System-2", sharing computation at both training and inference to couple adaptability with formal safety. Hardware experiments conducted at the NASA JPL's Mars-analog facility, Mars Yard, show that our approach reduces failure rates by up to $4\times$ while matching the goal-reaching performance of learning-based robotic models by leveraging inference-time compute without any additional training.
☆ DRAMA-X: A Fine-grained Intent Prediction and Risk Reasoning Benchmark For Driving RAM
Understanding the short-term motion of vulnerable road users (VRUs) like pedestrians and cyclists is critical for safe autonomous driving, especially in urban scenarios with ambiguous or high-risk behaviors. While vision-language models (VLMs) have enabled open-vocabulary perception, their utility for fine-grained intent reasoning remains underexplored. Notably, no existing benchmark evaluates multi-class intent prediction in safety-critical situations, To address this gap, we introduce DRAMA-X, a fine-grained benchmark constructed from the DRAMA dataset via an automated annotation pipeline. DRAMA-X contains 5,686 accident-prone frames labeled with object bounding boxes, a nine-class directional intent taxonomy, binary risk scores, expert-generated action suggestions for the ego vehicle, and descriptive motion summaries. These annotations enable a structured evaluation of four interrelated tasks central to autonomous decision-making: object detection, intent prediction, risk assessment, and action suggestion. As a reference baseline, we propose SGG-Intent, a lightweight, training-free framework that mirrors the ego vehicle's reasoning pipeline. It sequentially generates a scene graph from visual input using VLM-backed detectors, infers intent, assesses risk, and recommends an action using a compositional reasoning stage powered by a large language model. We evaluate a range of recent VLMs, comparing performance across all four DRAMA-X tasks. Our experiments demonstrate that scene-graph-based reasoning enhances intent prediction and risk assessment, especially when contextual cues are explicitly modeled.
comment: 19 pages, 5 figures, Preprint under review. Code available at: https://github.com/taco-group/DRAMA-X
☆ Accelerating Residual Reinforcement Learning with Uncertainty Estimation
Residual Reinforcement Learning (RL) is a popular approach for adapting pretrained policies by learning a lightweight residual policy that provides corrective actions. While Residual RL is more sample-efficient than finetuning the entire base policy, existing methods struggle with sparse rewards and are designed for deterministic base policies. We propose two improvements to Residual RL that further enhance its sample efficiency and make it suitable for stochastic base policies. First, we leverage uncertainty estimates of the base policy to focus exploration on regions in which the base policy is not confident. Second, we propose a simple modification to off-policy residual learning that allows it to observe base actions and better handle stochastic base policies. We evaluate our method with both Gaussian-based and Diffusion-based stochastic base policies on tasks from Robosuite and D4RL, and compare against state-of-the-art finetuning methods, demo-augmented RL methods, and other residual RL methods. Our algorithm significantly outperforms existing baselines in a variety of simulation benchmark environments. We also deploy our learned polices in the real world to demonstrate their robustness with zero-shot sim-to-real transfer.
☆ VLA-OS: Structuring and Dissecting Planning Representations and Paradigms in Vision-Language-Action Models
Recent studies on Vision-Language-Action (VLA) models have shifted from the end-to-end action-generation paradigm toward a pipeline involving task planning followed by action generation, demonstrating improved performance on various complex, long-horizon manipulation tasks. However, existing approaches vary significantly in terms of network architectures, planning paradigms, representations, and training data sources, making it challenging for researchers to identify the precise sources of performance gains and components to be further improved. To systematically investigate the impacts of different planning paradigms and representations isolating from network architectures and training data, in this paper, we introduce VLA-OS, a unified VLA architecture series capable of various task planning paradigms, and design a comprehensive suite of controlled experiments across diverse object categories (rigid and deformable), visual modalities (2D and 3D), environments (simulation and real-world), and end-effectors (grippers and dexterous hands). Our results demonstrate that: 1) visually grounded planning representations are generally better than language planning representations; 2) the Hierarchical-VLA paradigm generally achieves superior or comparable performance than other paradigms on task performance, pretraining, generalization ability, scalability, and continual learning ability, albeit at the cost of slower training and inference speeds.
♻ ☆ Object State Estimation Through Robotic Active Interaction for Biological Autonomous Drilling
Estimating the state of biological specimens is challenging due to limited observation through microscopic vision. For instance, during mouse skull drilling, the appearance alters little when thinning bone tissue because of its semi-transparent property and the high-magnification microscopic vision. To obtain the object's state, we introduce an object state estimation method for biological specimens through active interaction based on the deflection. The method is integrated to enhance the autonomous drilling system developed in our previous work. The method and integrated system were evaluated through 12 autonomous eggshell drilling experiment trials. The results show that the system achieved a 91.7% successful ratio and 75% detachable ratio, showcasing its potential applicability in more complex surgical procedures such as mouse skull craniotomy. This research paves the way for further development of autonomous robotic systems capable of estimating the object's state through active interaction.
comment: 6 pages, 5 figures, accepted by RA-L. Please refer to the DOI to access the accepted version
♻ ☆ Trajectory Prediction for Autonomous Driving: Progress, Limitations, and Future Directions
As the potential for autonomous vehicles to be integrated on a large scale into modern traffic systems continues to grow, ensuring safe navigation in dynamic environments is crucial for smooth integration. To guarantee safety and prevent collisions, autonomous vehicles must be capable of accurately predicting the trajectories of surrounding traffic agents. Over the past decade, significant efforts from both academia and industry have been dedicated to designing solutions for precise trajectory forecasting. These efforts have produced a diverse range of approaches, raising questions about the differences between these methods and whether trajectory prediction challenges have been fully addressed. This paper reviews a substantial portion of recent trajectory prediction methods proposing a taxonomy to classify existing solutions. A general overview of the prediction pipeline is also provided, covering input and output modalities, modeling features, and prediction paradigms existing in the literature. In addition, the paper discusses active research areas within trajectory prediction, addresses the posed research questions, and highlights the remaining research gaps and challenges.
♻ ☆ Learning Aerodynamics for the Control of Flying Humanoid Robots
Robots with multi-modal locomotion are an active research field due to their versatility in diverse environments. In this context, additional actuation can provide humanoid robots with aerial capabilities. Flying humanoid robots face challenges in modeling and control, particularly with aerodynamic forces. This paper addresses these challenges from a technological and scientific standpoint. The technological contribution includes the mechanical design of iRonCub-Mk1, a jet-powered humanoid robot, optimized for jet engine integration, and hardware modifications for wind tunnel experiments on humanoid robots for precise aerodynamic forces and surface pressure measurements. The scientific contribution offers a comprehensive approach to model and control aerodynamic forces using classical and learning techniques. Computational Fluid Dynamics (CFD) simulations calculate aerodynamic forces, validated through wind tunnel experiments on iRonCub-Mk1. An automated CFD framework expands the aerodynamic dataset, enabling the training of a Deep Neural Network and a linear regression model. These models are integrated into a simulator for designing aerodynamic-aware controllers, validated through flight simulations and balancing experiments on the iRonCub-Mk1 physical prototype.
♻ ☆ Autonomous Navigation of Quadrupeds Using Coverage Path Planning with Morphological Skeleton Map
This paper proposes a novel method of coverage path planning for the purpose of scanning an unstructured environment autonomously. The method uses the morphological skeleton of the prior 2D navigation map via SLAM to generate a sequence of points of interest (POIs). This sequence is then ordered to create an optimal path given the robot's current position. To control the high-level operation, a finite state machine is used to switch between two modes: navigating towards a POI using Nav2, and scanning the local surrounding. We validate the method in a leveled indoor obstacle-free non-convex environment on time efficiency and reachability over five trials. The map reader and the path planner can quickly process maps of width and height ranging between [196,225] pixels and [185,231] pixels in 2.52 ms/pixel and 1.7 ms/pixel, respectively, where their computation time increases with 22.0 ns/pixel and 8.17 $\mu$s/pixel, respectively. The robot managed to reach 86.5% of all waypoints over all five runs. The proposed method suffers from drift occurring in the 2D navigation map.
comment: 15 pages, published to Fronters In Robotics (currently in production), major revision: title change, abstract revised, grammar fixed, mathematical notations fixed and made consistent, conclusion revised, related works extended, Algorithm 1-3 revised
♻ ☆ OWMM-Agent: Open World Mobile Manipulation With Multi-modal Agentic Data Synthesis
The rapid progress of navigation, manipulation, and vision models has made mobile manipulators capable in many specialized tasks. However, the open-world mobile manipulation (OWMM) task remains a challenge due to the need for generalization to open-ended instructions and environments, as well as the systematic complexity to integrate high-level decision making with low-level robot control based on both global scene understanding and current agent state. To address this complexity, we propose a novel multi-modal agent architecture that maintains multi-view scene frames and agent states for decision-making and controls the robot by function calling. A second challenge is the hallucination from domain shift. To enhance the agent performance, we further introduce an agentic data synthesis pipeline for the OWMM task to adapt the VLM model to our task domain with instruction fine-tuning. We highlight our fine-tuned OWMM-VLM as the first dedicated foundation model for mobile manipulators with global scene understanding, robot state tracking, and multi-modal action generation in a unified model. Through experiments, we demonstrate that our model achieves SOTA performance compared to other foundation models including GPT-4o and strong zero-shot generalization in real world. The project page is at https://github.com/HHYHRHY/OWMM-Agent
comment: 9 pages of main content, 19 pages in total
Artificial Intelligence 20
☆ In-Context Learning Strategies Emerge Rationally
Recent work analyzing in-context learning (ICL) has identified a broad set of strategies that describe model behavior in different experimental conditions. We aim to unify these findings by asking why a model learns these disparate strategies in the first place. Specifically, we start with the observation that when trained to learn a mixture of tasks, as is popular in the literature, the strategies learned by a model for performing ICL can be captured by a family of Bayesian predictors: a memorizing predictor, which assumes a discrete prior on the set of seen tasks, and a generalizing predictor, wherein the prior matches the underlying task distribution. Adopting the lens of rational analysis from cognitive science, where a learner's behavior is explained as an optimal adaptation to data given computational constraints, we develop a hierarchical Bayesian framework that almost perfectly predicts Transformer next token predictions throughout training without assuming access to its weights. Under this framework, pretraining is viewed as a process of updating the posterior probability of different strategies, and its inference-time behavior as a posterior-weighted average over these strategies' predictions. Our framework draws on common assumptions about neural network learning dynamics, which make explicit a tradeoff between loss and complexity among candidate strategies: beyond how well it explains the data, a model's preference towards implementing a strategy is dictated by its complexity. This helps explain well-known ICL phenomena, while offering novel predictions: e.g., we show a superlinear trend in the timescale for transition to memorization as task diversity is increased. Overall, our work advances an explanatory and predictive account of ICL grounded in tradeoffs between strategy loss and complexity.
comment: Preprint
☆ Pathway-based Progressive Inference (PaPI) for Energy-Efficient Continual Learning
Continual learning systems face the dual challenge of preventing catastrophic forgetting while maintaining energy efficiency, particularly in resource-constrained environments. This paper introduces Pathway-based Progressive Inference (PaPI), a novel theoretical framework that addresses these challenges through a mathematically rigorous approach to pathway selection and adaptation. We formulate continual learning as an energy-constrained optimization problem and provide formal convergence guarantees for our pathway routing mechanisms. Our theoretical analysis demonstrates that PaPI achieves an $\mathcal{O}(K)$ improvement in the stability-plasticity trade-off compared to monolithic architectures, where $K$ is the number of pathways. We derive tight bounds on forgetting rates using Fisher Information Matrix analysis and prove that PaPI's energy consumption scales with the number of active parameters rather than the total model size. Comparative theoretical analysis shows that PaPI provides stronger guarantees against catastrophic forgetting than Elastic Weight Consolidation (EWC) while maintaining better energy efficiency than both EWC and Gradient Episodic Memory (GEM). Our experimental validation confirms these theoretical advantages across multiple benchmarks, demonstrating PaPI's effectiveness for continual learning in energy-constrained settings. Our codes are available at https://github.com/zser092/PAPI_FILES.
☆ A Comparative Study of Open-Source Libraries for Synthetic Tabular Data Generation: SDV vs. SynthCity
High-quality training data is critical to the performance of machine learning models, particularly Large Language Models (LLMs). However, obtaining real, high-quality data can be challenging, especially for smaller organizations and early-stage startups. Synthetic data generators provide a promising solution by replicating the statistical and structural properties of real data while preserving privacy and scalability. This study evaluates the performance of six tabular synthetic data generators from two widely used open-source libraries: SDV (Gaussian Copula, CTGAN, TVAE) and Synthicity (Bayesian Network, CTGAN, TVAE). Using a real-world dataset from the UCI Machine Learning Repository, comprising energy consumption and environmental variables from Belgium, we simulate a low-data regime by training models on only 1,000 rows. Each generator is then tasked with producing synthetic datasets under two conditions: a 1:1 (1,000 rows) and a 1:10 (10,000 rows) input-output ratio. Evaluation is conducted using two criteria: statistical similarity, measured via classical statistics and distributional metrics; and predictive utility, assessed using a "Train on Synthetic, Test on Real" approach with four regression models. While statistical similarity remained consistent across models in both scenarios, predictive utility declined notably in the 1:10 case. The Bayesian Network from Synthicity achieved the highest fidelity in both scenarios, while TVAE from SDV performed best in predictive tasks under the 1:10 setting. Although no significant performance gap was found between the two libraries, SDV stands out for its superior documentation and ease of use, making it more accessible for practitioners.
comment: 23 Pages, 5 figures, and 6 tables
☆ Out of Control -- Why Alignment Needs Formal Control Theory (and an Alignment Control Stack)
This position paper argues that formal optimal control theory should be central to AI alignment research, offering a distinct perspective from prevailing AI safety and security approaches. While recent work in AI safety and mechanistic interpretability has advanced formal methods for alignment, they often fall short of the generalisation required of control frameworks for other technologies. There is also a lack of research into how to render different alignment/control protocols interoperable. We argue that by recasting alignment through principles of formal optimal control and framing alignment in terms of hierarchical stack from physical to socio-technical layers according to which controls may be applied we can develop a better understanding of the potential and limitations for controlling frontier models and agentic AI systems. To this end, we introduce an Alignment Control Stack which sets out a hierarchical layered alignment stack, identifying measurement and control characteristics at each layer and how different layers are formally interoperable. We argue that such analysis is also key to the assurances that will be needed by governments and regulators in order to see AI technologies sustainably benefit the community. Our position is that doing so will bridge the well-established and empirically validated methods of optimal control with practical deployment considerations to create a more comprehensive alignment framework, enhancing how we approach safety and reliability for advanced AI systems.
comment: Under review for Neurips 2025
☆ THCM-CAL: Temporal-Hierarchical Causal Modelling with Conformal Calibration for Clinical Risk Prediction
Automated clinical risk prediction from electronic health records (EHRs) demands modeling both structured diagnostic codes and unstructured narrative notes. However, most prior approaches either handle these modalities separately or rely on simplistic fusion strategies that ignore the directional, hierarchical causal interactions by which narrative observations precipitate diagnoses and propagate risk across admissions. In this paper, we propose THCM-CAL, a Temporal-Hierarchical Causal Model with Conformal Calibration. Our framework constructs a multimodal causal graph where nodes represent clinical entities from two modalities: Textual propositions extracted from notes and ICD codes mapped to textual descriptions. Through hierarchical causal discovery, THCM-CAL infers three clinically grounded interactions: intra-slice same-modality sequencing, intra-slice cross-modality triggers, and inter-slice risk propagation. To enhance prediction reliability, we extend conformal prediction to multi-label ICD coding, calibrating per-code confidence intervals under complex co-occurrences. Experimental results on MIMIC-III and MIMIC-IV demonstrate the superiority of THCM-CAL.
comment: 13 pages, 4 figures
☆ Generative Grasp Detection and Estimation with Concept Learning-based Safety Criteria
Neural networks are often regarded as universal equations that can estimate any function. This flexibility, however, comes with the drawback of high complexity, rendering these networks into black box models, which is especially relevant in safety-centric applications. To that end, we propose a pipeline for a collaborative robot (Cobot) grasping algorithm that detects relevant tools and generates the optimal grasp. To increase the transparency and reliability of this approach, we integrate an explainable AI method that provides an explanation for the underlying prediction of a model by extracting the learned features and correlating them to corresponding classes from the input. These concepts are then used as additional criteria to ensure the safe handling of work tools. In this paper, we show the consistency of this approach and the criterion for improving the handover position. This approach was tested in an industrial environment, where a camera system was set up to enable a robot to pick up certain tools and objects.
comment: RAAD 2025: 34th International Conference on Robotics in Alpe-Adria-Danube Region
☆ Causal Spherical Hypergraph Networks for Modelling Social Uncertainty
Human social behaviour is governed by complex interactions shaped by uncertainty, causality, and group dynamics. We propose Causal Spherical Hypergraph Networks (Causal-SphHN), a principled framework for socially grounded prediction that jointly models higher-order structure, directional influence, and epistemic uncertainty. Our method represents individuals as hyperspherical embeddings and group contexts as hyperedges, capturing semantic and relational geometry. Uncertainty is quantified via Shannon entropy over von Mises-Fisher distributions, while temporal causal dependencies are identified using Granger-informed subgraphs. Information is propagated through an angular message-passing mechanism that respects belief dispersion and directional semantics. Experiments on SNARE (offline networks), PHEME (online discourse), and AMIGOS (multimodal affect) show that Causal-SphHN improves predictive accuracy, robustness, and calibration over strong baselines. Moreover, it enables interpretable analysis of influence patterns and social ambiguity. This work contributes a unified causal-geometric approach for learning under uncertainty in dynamic social environments.
☆ Reflective Verbal Reward Design for Pluralistic Alignment IJCAI 2025
AI agents are commonly aligned with "human values" through reinforcement learning from human feedback (RLHF), where a single reward model is learned from aggregated human feedback and used to align an agent's behavior. However, human values are not homogeneous--different people hold distinct and sometimes conflicting values. Aggregating feedback into a single reward model risks disproportionately suppressing minority preferences. To address this, we present a novel reward modeling approach for learning individualized reward models. Our approach uses a language model to guide users through reflective dialogues where they critique agent behavior and construct their preferences. This personalized dialogue history, containing the user's reflections and critiqued examples, is then used as context for another language model that serves as an individualized reward function (what we call a "verbal reward model") for evaluating new trajectories. In studies with 30 participants, our method achieved a 9-12% improvement in accuracy over non-reflective verbal reward models while being more sample efficient than traditional supervised learning methods.
comment: 9 pages, 3 figures, accepted to the IJCAI 2025 Human-Centred AI track. Project repository at: https://osf.io/8yxf2/
☆ Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach
Aligning large language models (LLMs) with human preferences usually requires fine-tuning methods such as RLHF and DPO. These methods directly optimize the model parameters, so they cannot be used in test-time to improve model performance, nor are they applicable when the model weights are not accessible. In contrast, test-time methods sidestep weight updates by leveraging reward functions to guide and improve output quality. However, they incur high inference costs, and their one-shot guidance is often based on imperfect reward or value functions, leading to suboptimal outputs. In this work, we present a method named Iterative Reweight-then-Optimize (IRO), a reinforcement learning (RL) framework that performs RL-style alignment of the (frozen) base model without touching its parameters. During training, each iteration (i) samples candidates from the base model, (ii) resamples using current value functions, and (iii) trains a new lightweight value function that guides the next decoding pass. At test time, the value functions are used to guide the base model generation via a search-based optimization process. Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT), but without requiring access to the model weights.
☆ Actionable Interpretability via Causal Hypergraphs: Unravelling Batch Size Effects in Deep Learning
While the impact of batch size on generalisation is well studied in vision tasks, its causal mechanisms remain underexplored in graph and text domains. We introduce a hypergraph-based causal framework, HGCNet, that leverages deep structural causal models (DSCMs) to uncover how batch size influences generalisation via gradient noise, minima sharpness, and model complexity. Unlike prior approaches based on static pairwise dependencies, HGCNet employs hypergraphs to capture higher-order interactions across training dynamics. Using do-calculus, we quantify direct and mediated effects of batch size interventions, providing interpretable, causally grounded insights into optimisation. Experiments on citation networks, biomedical text, and e-commerce reviews show that HGCNet outperforms strong baselines including GCN, GAT, PI-GNN, BERT, and RoBERTa. Our analysis reveals that smaller batch sizes causally enhance generalisation through increased stochasticity and flatter minima, offering actionable interpretability to guide training strategies in deep learning. This work positions interpretability as a driver of principled architectural and optimisation choices beyond post hoc analysis.
☆ Learning to Dock: A Simulation-based Study on Closing the Sim2Real Gap in Autonomous Underwater Docking
Autonomous Underwater Vehicle (AUV) docking in dynamic and uncertain environments is a critical challenge for underwater robotics. Reinforcement learning is a promising method for developing robust controllers, but the disparity between training simulations and the real world, or the sim2real gap, often leads to a significant deterioration in performance. In this work, we perform a simulation study on reducing the sim2real gap in autonomous docking through training various controllers and then evaluating them under realistic disturbances. In particular, we focus on the real-world challenge of docking under different payloads that are potentially outside the original training distribution. We explore existing methods for improving robustness including randomization techniques and history-conditioned controllers. Our findings provide insights into mitigating the sim2real gap when training docking controllers. Furthermore, our work indicates areas of future research that may be beneficial to the marine robotics community.
comment: Advancing Quantitative and Qualitative Simulators for Marine Applications Workshop Paper at International Conference on Robotics and Automation 2025
☆ CultureMERT: Continual Pre-Training for Cross-Cultural Music Representation Learning
Recent advances in music foundation models have improved audio representation learning, yet their effectiveness across diverse musical traditions remains limited. We introduce CultureMERT-95M, a multi-culturally adapted foundation model developed to enhance cross-cultural music representation learning and understanding. To achieve this, we propose a two-stage continual pre-training strategy that integrates learning rate re-warming and re-decaying, enabling stable adaptation even with limited computational resources. Training on a 650-hour multi-cultural data mix, comprising Greek, Turkish, and Indian music traditions, results in an average improvement of 4.9% in ROC-AUC and AP across diverse non-Western music auto-tagging tasks, surpassing prior state-of-the-art, with minimal forgetting on Western-centric benchmarks. We further investigate task arithmetic, an alternative approach to multi-cultural adaptation that merges single-culture adapted models in the weight space. Task arithmetic performs on par with our multi-culturally trained model on non-Western auto-tagging tasks and shows no regression on Western datasets. Cross-cultural evaluation reveals that single-culture models transfer with varying effectiveness across musical traditions, whereas the multi-culturally adapted model achieves the best overall performance. To support research on world music representation learning, we publicly release CultureMERT-95M and CultureMERT-TA-95M, fostering the development of more culturally aware music foundation models.
comment: 10 pages, 4 figures, accepted to the 26th International Society for Music Information Retrieval conference (ISMIR 2025), to be held in Daejeon, South Korea
☆ RoboMonkey: Scaling Test-Time Sampling and Verification for Vision-Language-Action Models
Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in visuomotor control, yet ensuring their robustness in unstructured real-world environments remains a persistent challenge. In this paper, we investigate test-time scaling through the lens of sampling and verification as means to enhance the robustness and generalization of VLAs. We first demonstrate that the relationship between action error and the number of generated samples follows an exponentiated power law across a range of VLAs, indicating the existence of inference-time scaling laws. Building on these insights, we introduce RoboMonkey, a test-time scaling framework for VLAs. At deployment, RoboMonkey samples a small set of actions from a VLA, applies Gaussian perturbation and majority voting to construct an action proposal distribution, and then uses a Vision Language Model (VLM)-based verifier to select the optimal action. We propose a synthetic data generation pipeline for training such VLM-based action verifiers, and demonstrate that scaling the synthetic dataset consistently improves verification and downstream accuracy. Through extensive simulated and hardware experiments, we show that pairing existing VLAs with RoboMonkey yields significant performance gains, achieving a 25% absolute improvement on out-of-distribution tasks and 8% on in-distribution tasks. Additionally, when adapting to new robot setups, we show that fine-tuning both VLAs and action verifiers yields a 7% performance increase compared to fine-tuning VLAs alone.
☆ Reimagining Parameter Space Exploration with Diffusion Models ICML 2025
Adapting neural networks to new tasks typically requires task-specific fine-tuning, which is time-consuming and reliant on labeled data. We explore a generative alternative that produces task-specific parameters directly from task identity, eliminating the need for task-specific training. To this end, we propose using diffusion models to learn the underlying structure of effective task-specific parameter space and synthesize parameters on demand. Once trained, the task-conditioned diffusion model can generate specialized weights directly from task identifiers. We evaluate this approach across three scenarios: generating parameters for a single seen task, for multiple seen tasks, and for entirely unseen tasks. Experiments show that diffusion models can generate accurate task-specific parameters and support multi-task interpolation when parameter subspaces are well-structured, but fail to generalize to unseen tasks, highlighting both the potential and limitations of this generative solution.
comment: Accepted at ICML 2025 EXAIT Workshop
☆ Efficient Strategy Synthesis for MDPs via Hierarchical Block Decomposition
Software-intensive systems, such as software product lines and robotics, utilise Markov decision processes (MDPs) to capture uncertainty and analyse sequential decision-making problems. Despite the usefulness of conventional policy synthesis methods, they fail to scale to large state spaces. Our approach addresses this issue and accelerates policy synthesis in large MDPs by dynamically refining the MDP and iteratively selecting the most fragile MDP regions for refinement. This iterative procedure offers a balance between accuracy and efficiency, as refinement occurs only when necessary. Through a comprehensive empirical evaluation comprising diverse case studies and MDPs up to 1M states, we demonstrate significant performance improvements yielded by our approach compared to the leading probabilistic model checker PRISM (up to 2x), thus offering a very competitive solution for real-world policy synthesis tasks in larger MDPs.
☆ Bayesian Social Deduction with Graph-Informed Language Models
Social reasoning - inferring unobservable beliefs and intentions from partial observations of other agents - remains a challenging task for large language models (LLMs). We evaluate the limits of current reasoning language models in the social deduction game Avalon and find that while the largest models demonstrate strong performance, they require extensive test-time inference and degrade sharply when distilled to smaller, real-time-capable variants. To address this, we introduce a hybrid reasoning framework that externalizes belief inference to a structured probabilistic model, while using an LLM for language understanding and interaction. Our approach achieves competitive performance with much larger models in Agent-Agent play and, notably, is the first language agent to defeat human players in a controlled study - achieving a 67% win rate and receiving higher qualitative ratings than both reasoning baselines and human teammates. We release code, models, and a dataset to support future work on social reasoning in LLM agents, which can be found at https://camp-lab-purdue.github.io/bayesian-social-deduction/
comment: 32 pages, 10 figures. Under review
☆ AnyMAC: Cascading Flexible Multi-Agent Collaboration via Next-Agent Prediction
Recent progress in large language model (LLM)-based multi-agent collaboration highlights the power of structured communication in enabling collective intelligence. However, existing methods largely rely on static or graph-based inter-agent topologies, lacking the potential adaptability and flexibility in communication. In this work, we propose a new framework that rethinks multi-agent coordination through a sequential structure rather than a graph structure, offering a significantly larger topology space for multi-agent communication. Our method focuses on two key directions: (1) Next-Agent Prediction, which selects the most suitable agent role at each step, and (2) Next-Context Selection (NCS), which enables each agent to selectively access relevant information from any previous step. Together, these components construct task-adaptive communication pipelines that support both role flexibility and global information flow. Extensive evaluations across multiple benchmarks demonstrate that our approach achieves superior performance while substantially reducing communication overhead.
♻ ☆ The Hive Mind is a Single Reinforcement Learning Agent
Decision-making is an essential attribute of any intelligent agent or group. Natural systems are known to converge to optimal strategies through at least two distinct mechanisms: collective decision-making via imitation of others, and individual trial-and-error. This paper establishes an equivalence between these two paradigms by drawing from the well-established collective decision-making model of nest-site selection in swarms of honey bees. We show that the emergent distributed cognition (sometimes referred to as the hive mind ) arising from individual bees following simple, local imitation-based rules is equivalent to a single online reinforcement learning (RL) agent interacting with many parallel environments. The update rule through which this macro-agent learns is a bandit algorithm that we coin Maynard-Cross Learning. Our analysis implies that a group of cognition-limited organisms can be on-par with a more complex, reinforcement-enabled entity, substantiating the idea that group-level intelligence may explain how seemingly simple and blind individual behaviors are selected in nature.
♻ ☆ Evaluating LLMs with Multiple Problems at once
This paper shows the benefits and fruitfulness of evaluating LLMs with multiple problems at once, a paradigm we call multi-problem evaluation (MPE). Unlike conventional single-problem evaluation, where a prompt presents a single problem and expects one specific answer, MPE places multiple problems together in a single prompt and assesses how well an LLM answers all these problems in a single output. Leveraging 6 classification and 12 reasoning benchmarks that already exist, we introduce a new benchmark called ZeMPE (Zero-shot Multi-Problem Evaluation), comprising 53,100 zero-shot multi-problem prompts. We experiment with a total of 13 LLMs from 5 model families on ZeMPE to present a comprehensive and systematic MPE. Our results show that LLMs are capable of handling multiple problems from a single data source as well as handling them separately, but there are conditions this multiple problem handling capability falls short. In addition, we perform in-depth further analyses and explore model-level factors that may enable multiple problem handling capabilities in LLMs. We release our corpus and code to facilitate future research.
comment: 22 pages, 9 figures, 12 tables
♻ ☆ Smooth InfoMax -- Towards Easier Post-Hoc Interpretability
We introduce Smooth InfoMax (SIM), a self-supervised representation learning method that incorporates interpretability constraints into the latent representations at different depths of the network. Based on $\beta$-VAEs, SIM's architecture consists of probabilistic modules optimized locally with the InfoNCE loss to produce Gaussian-distributed representations regularized toward the standard normal distribution. This creates smooth, well-defined, and better-disentangled latent spaces, enabling easier post-hoc analysis. Evaluated on speech data, SIM preserves the large-scale training benefits of Greedy InfoMax while improving the effectiveness of post-hoc interpretability methods across layers.
Graphics 2
☆ Collaborative Texture Filtering
Recent advances in texture compression provide major improvements in compression ratios, but cannot use the GPU's texture units for decompression and filtering. This has led to the development of stochastic texture filtering (STF) techniques to avoid the high cost of multiple texel evaluations with such formats. Unfortunately, those methods can give undesirable visual appearance changes under magnification and may contain visible noise and flicker despite the use of spatiotemporal denoisers. Recent work substantially improves the quality of magnification filtering with STF by sharing decoded texel values between nearby pixels (Wronski 2025). Using GPU wave communication intrinsics, this sharing can be performed inside actively executing shaders without memory traffic overhead. We take this idea further and present novel algorithms that use wave communication between lanes to avoid repeated texel decompression prior to filtering. By distributing unique work across lanes, we can achieve zero-error filtering using <=1 texel evaluations per pixel given a sufficiently large magnification factor. For the remaining cases, we propose novel filtering fallback methods that also achieve higher quality than prior approaches.
comment: Accepted to ACM/EG Symposium on High Performance Graphics (HPG), 2025
☆ 3D Gaussian Splatting for Fine-Detailed Surface Reconstruction in Large-Scale Scene IROS 2025
Recent developments in 3D Gaussian Splatting have made significant advances in surface reconstruction. However, scaling these methods to large-scale scenes remains challenging due to high computational demands and the complex dynamic appearances typical of outdoor environments. These challenges hinder the application in aerial surveying and autonomous driving. This paper proposes a novel solution to reconstruct large-scale surfaces with fine details, supervised by full-sized images. Firstly, we introduce a coarse-to-fine strategy to reconstruct a coarse model efficiently, followed by adaptive scene partitioning and sub-scene refining from image segments. Additionally, we integrate a decoupling appearance model to capture global appearance variations and a transient mask model to mitigate interference from moving objects. Finally, we expand the multi-view constraint and introduce a single-view regularization for texture-less areas. Our experiments were conducted on the publicly available dataset GauU-Scene V2, which was captured using unmanned aerial vehicles. To the best of our knowledge, our method outperforms existing NeRF-based and Gaussian-based methods, achieving high-fidelity visual results and accurate surface from full-size image optimization. Open-source code will be available on GitHub.
comment: IROS 2025
Robotics 43
☆ Long-term Traffic Simulation with Interleaved Autoregressive Motion and Scenario Generation
An ideal traffic simulator replicates the realistic long-term point-to-point trip that a self-driving system experiences during deployment. Prior models and benchmarks focus on closed-loop motion simulation for initial agents in a scene. This is problematic for long-term simulation. Agents enter and exit the scene as the ego vehicle enters new regions. We propose InfGen, a unified next-token prediction model that performs interleaved closed-loop motion simulation and scene generation. InfGen automatically switches between closed-loop motion simulation and scene generation mode. It enables stable long-term rollout simulation. InfGen performs at the state-of-the-art in short-term (9s) traffic simulation, and significantly outperforms all other methods in long-term (30s) simulation. The code and model of InfGen will be released at https://orangesodahub.github.io/InfGen
comment: Preprint. Project page: https://orangesodahub.github.io/InfGen Code: https://github.com/OrangeSodahub/infgen
☆ Part$^{2}$GS: Part-aware Modeling of Articulated Objects using 3D Gaussian Splatting
Articulated objects are common in the real world, yet modeling their structure and motion remains a challenging task for 3D reconstruction methods. In this work, we introduce Part$^{2}$GS, a novel framework for modeling articulated digital twins of multi-part objects with high-fidelity geometry and physically consistent articulation. Part$^{2}$GS leverages a part-aware 3D Gaussian representation that encodes articulated components with learnable attributes, enabling structured, disentangled transformations that preserve high-fidelity geometry. To ensure physically consistent motion, we propose a motion-aware canonical representation guided by physics-based constraints, including contact enforcement, velocity consistency, and vector-field alignment. Furthermore, we introduce a field of repel points to prevent part collisions and maintain stable articulation paths, significantly improving motion coherence over baselines. Extensive evaluations on both synthetic and real-world datasets show that Part$^{2}$GS consistently outperforms state-of-the-art methods by up to 10$\times$ in Chamfer Distance for movable parts.
☆ Dex1B: Learning with 1B Demonstrations for Dexterous Manipulation RSS 2025
Generating large-scale demonstrations for dexterous hand manipulation remains challenging, and several approaches have been proposed in recent years to address this. Among them, generative models have emerged as a promising paradigm, enabling the efficient creation of diverse and physically plausible demonstrations. In this paper, we introduce Dex1B, a large-scale, diverse, and high-quality demonstration dataset produced with generative models. The dataset contains one billion demonstrations for two fundamental tasks: grasping and articulation. To construct it, we propose a generative model that integrates geometric constraints to improve feasibility and applies additional conditions to enhance diversity. We validate the model on both established and newly introduced simulation benchmarks, where it significantly outperforms prior state-of-the-art methods. Furthermore, we demonstrate its effectiveness and robustness through real-world robot experiments. Our project page is at https://jianglongye.com/dex1b
comment: Accepted to RSS 2025. Project page: https://jianglongye.com/dex1b
☆ Judo: A User-Friendly Open-Source Package for Sampling-Based Model Predictive Control RSS
Recent advancements in parallel simulation and successful robotic applications are spurring a resurgence in sampling-based model predictive control. To build on this progress, however, the robotics community needs common tooling for prototyping, evaluating, and deploying sampling-based controllers. We introduce Judo, a software package designed to address this need. To facilitate rapid prototyping and evaluation, Judo provides robust implementations of common sampling-based MPC algorithms and standardized benchmark tasks. It further emphasizes usability with simple but extensible interfaces for controller and task definitions, asynchronous execution for straightforward simulation-to-hardware transfer, and a highly customizable interactive GUI for tuning controllers interactively. While written in Python, the software leverages MuJoCo as its physics backend to achieve real-time performance, which we validate across both consumer and server-grade hardware. Code at https://github.com/bdaiinstitute/judo.
comment: Accepted at the 2025 RSS Workshop on Fast Motion Planning and Control in the Era of Parallelism. 5 Pages
☆ RGBTrack: Fast, Robust Depth-Free 6D Pose Estimation and Tracking IROS 2025
We introduce a robust framework, RGBTrack, for real-time 6D pose estimation and tracking that operates solely on RGB data, thereby eliminating the need for depth input for such dynamic and precise object pose tracking tasks. Building on the FoundationPose architecture, we devise a novel binary search strategy combined with a render-and-compare mechanism to efficiently infer depth and generate robust pose hypotheses from true-scale CAD models. To maintain stable tracking in dynamic scenarios, including rapid movements and occlusions, RGBTrack integrates state-of-the-art 2D object tracking (XMem) with a Kalman filter and a state machine for proactive object pose recovery. In addition, RGBTrack's scale recovery module dynamically adapts CAD models of unknown scale using an initial depth estimate, enabling seamless integration with modern generative reconstruction techniques. Extensive evaluations on benchmark datasets demonstrate that RGBTrack's novel depth-free approach achieves competitive accuracy and real-time performance, making it a promising practical solution candidate for application areas including robotics, augmented reality, and computer vision. The source code for our implementation will be made publicly available at https://github.com/GreatenAnoymous/RGBTrack.git.
comment: Accepted to IROS 2025
☆ Monocular One-Shot Metric-Depth Alignment for RGB-Based Robot Grasping IROS 2025
Accurate 6D object pose estimation is a prerequisite for successfully completing robotic prehensile and non-prehensile manipulation tasks. At present, 6D pose estimation for robotic manipulation generally relies on depth sensors based on, e.g., structured light, time-of-flight, and stereo-vision, which can be expensive, produce noisy output (as compared with RGB cameras), and fail to handle transparent objects. On the other hand, state-of-the-art monocular depth estimation models (MDEMs) provide only affine-invariant depths up to an unknown scale and shift. Metric MDEMs achieve some successful zero-shot results on public datasets, but fail to generalize. We propose a novel framework, Monocular One-shot Metric-depth Alignment (MOMA), to recover metric depth from a single RGB image, through a one-shot adaptation building on MDEM techniques. MOMA performs scale-rotation-shift alignments during camera calibration, guided by sparse ground-truth depth points, enabling accurate depth estimation without additional data collection or model retraining on the testing setup. MOMA supports fine-tuning the MDEM on transparent objects, demonstrating strong generalization capabilities. Real-world experiments on tabletop 2-finger grasping and suction-based bin-picking applications show MOMA achieves high success rates in diverse tasks, confirming its effectiveness.
comment: Accepted to IROS 2025
☆ Learning Accurate Whole-body Throwing with High-frequency Residual Policy and Pullback Tube Acceleration IROS 2025
Throwing is a fundamental skill that enables robots to manipulate objects in ways that extend beyond the reach of their arms. We present a control framework that combines learning and model-based control for prehensile whole-body throwing with legged mobile manipulators. Our framework consists of three components: a nominal tracking policy for the end-effector, a high-frequency residual policy to enhance tracking accuracy, and an optimization-based module to improve end-effector acceleration control. The proposed controller achieved the average of 0.28 m landing error when throwing at targets located 6 m away. Furthermore, in a comparative study with university students, the system achieved a velocity tracking error of 0.398 m/s and a success rate of 56.8%, hitting small targets randomly placed at distances of 3-5 m while throwing at a specified speed of 6 m/s. In contrast, humans have a success rate of only 15.2%. This work provides an early demonstration of prehensile throwing with quantified accuracy on hardware, contributing to progress in dynamic whole-body manipulation.
comment: 8 pages, IROS 2025
☆ SDDiff: Boost Radar Perception via Spatial-Doppler Diffusion
Point cloud extraction (PCE) and ego velocity estimation (EVE) are key capabilities gaining attention in 3D radar perception. However, existing work typically treats these two tasks independently, which may neglect the interplay between radar's spatial and Doppler domain features, potentially introducing additional bias. In this paper, we observe an underlying correlation between 3D points and ego velocity, which offers reciprocal benefits for PCE and EVE. To fully unlock such inspiring potential, we take the first step to design a Spatial-Doppler Diffusion (SDDiff) model for simultaneously dense PCE and accurate EVE. To seamlessly tailor it to radar perception, SDDiff improves the conventional latent diffusion process in three major aspects. First, we introduce a representation that embodies both spatial occupancy and Doppler features. Second, we design a directional diffusion with radar priors to streamline the sampling. Third, we propose Iterative Doppler Refinement to enhance the model's adaptability to density variations and ghosting effects. Extensive evaluations show that SDDiff significantly outperforms state-of-the-art baselines by achieving 59% higher in EVE accuracy, 4X greater in valid generation density while boosting PCE effectiveness and reliability.
☆ Multimodal Fused Learning for Solving the Generalized Traveling Salesman Problem in Robotic Task Planning
Effective and efficient task planning is essential for mobile robots, especially in applications like warehouse retrieval and environmental monitoring. These tasks often involve selecting one location from each of several target clusters, forming a Generalized Traveling Salesman Problem (GTSP) that remains challenging to solve both accurately and efficiently. To address this, we propose a Multimodal Fused Learning (MMFL) framework that leverages both graph and image-based representations to capture complementary aspects of the problem, and learns a policy capable of generating high-quality task planning schemes in real time. Specifically, we first introduce a coordinate-based image builder that transforms GTSP instances into spatially informative representations. We then design an adaptive resolution scaling strategy to enhance adaptability across different problem scales, and develop a multimodal fusion module with dedicated bottlenecks that enables effective integration of geometric and spatial features. Extensive experiments show that our MMFL approach significantly outperforms state-of-the-art methods across various GTSP instances while maintaining the computational efficiency required for real-time robotic applications. Physical robot tests further validate its practical effectiveness in real-world scenarios.
comment: 14 pages, 6 figures, under review
☆ Orbital Collision: An Indigenously Developed Web-based Space Situational Awareness Platform SC 2025
This work presents an indigenous web based platform Orbital Collision (OrCo), created by the Space Systems Laboratory at IIIT Delhi, to enhance Space Situational Awareness (SSA) by predicting collision probabilities of space objects using Two Line Elements (TLE) data. The work highlights the growing challenges of congestion in the Earth's orbital environment, mainly due to space debris and defunct satellites, which increase collision risks. It employs several methods for propagating orbital uncertainty and calculating the collision probability. The performance of the platform is evaluated through accuracy assessments and efficiency metrics, in order to improve the tracking of space objects and ensure the safety of the satellite in congested space.
comment: This work has been already submitted for STEP-IPSC 2025 Conference Proceedings
☆ ROS 2 Agnocast: Supporting Unsized Message Types for True Zero-Copy Publish/Subscribe IPC
Robot applications, comprising independent components that mutually publish/subscribe messages, are built on inter-process communication (IPC) middleware such as Robot Operating System 2 (ROS 2). In large-scale ROS 2 systems like autonomous driving platforms, true zero-copy communication -- eliminating serialization and deserialization -- is crucial for efficiency and real-time performance. However, existing true zero-copy middleware solutions lack widespread adoption as they fail to meet three essential requirements: 1) Support for all ROS 2 message types including unsized ones; 2) Minimal modifications to existing application code; 3) Selective implementation of zero-copy communication between specific nodes while maintaining conventional communication mechanisms for other inter-node communications including inter-host node communications. This first requirement is critical, as production-grade ROS 2 projects like Autoware rely heavily on unsized message types throughout their codebase to handle diverse use cases (e.g., various sensors), and depend on the broader ROS 2 ecosystem, where unsized message types are pervasive in libraries. The remaining requirements facilitate seamless integration with existing projects. While IceOryx middleware, a practical true zero-copy solution, meets all but the first requirement, other studies achieving the first requirement fail to satisfy the remaining criteria. This paper presents Agnocast, a true zero-copy IPC framework applicable to ROS 2 C++ on Linux that fulfills all these requirements. Our evaluation demonstrates that Agnocast maintains constant IPC overhead regardless of message size, even for unsized message types. In Autoware PointCloud Preprocessing, Agnocast achieves a 16% improvement in average response time and a 25% improvement in worst-case response time.
comment: 10 pages, 13 figures. Accepted for IEEE ISORC 2025; this is the author-accepted manuscript
☆ Vision-Based Multirotor Control for Spherical Target Tracking: A Bearing-Angle Approach
This work addresses the problem of designing a visual servo controller for a multirotor vehicle, with the end goal of tracking a moving spherical target with unknown radius. To address this problem, we first transform two bearing measurements provided by a camera sensor into a bearing-angle pair. We then use this information to derive the system's dynamics in a new set of coordinates, where the angle measurement is used to quantify a relative distance to the target. Building on this system representation, we design an adaptive nonlinear control algorithm that takes advantage of the properties of the new system geometry and assumes that the target follows a constant acceleration model. Simulation results illustrate the performance of the proposed control algorithm.
comment: This paper has been accepted for presentation at the 2025 IEEE European Control Conference (ECC)
☆ Camera Calibration via Circular Patterns: A Comprehensive Framework with Measurement Uncertainty and Unbiased Projection Model
Camera calibration using planar targets has been widely favored, and two types of control points have been mainly considered as measurements: the corners of the checkerboard and the centroid of circles. Since a centroid is derived from numerous pixels, the circular pattern provides more precise measurements than the checkerboard. However, the existing projection model of circle centroids is biased under lens distortion, resulting in low performance. To surmount this limitation, we propose an unbiased projection model of the circular pattern and demonstrate its superior accuracy compared to the checkerboard. Complementing this, we introduce uncertainty into circular patterns to enhance calibration robustness and completeness. Defining centroid uncertainty improves the performance of calibration components, including pattern detection, optimization, and evaluation metrics. We also provide guidelines for performing good camera calibration based on the evaluation metric. The core concept of this approach is to model the boundary points of a two-dimensional shape as a Markov random field, considering its connectivity. The shape distribution is propagated to the centroid uncertainty through an appropriate shape representation based on the Green theorem. Consequently, the resulting framework achieves marked gains in calibration accuracy and robustness. The complete source code and demonstration video are available at https://github.com/chaehyeonsong/discocal.
☆ AnyTraverse: An off-road traversability framework with VLM and human operator in the loop
Off-road traversability segmentation enables autonomous navigation with applications in search-and-rescue, military operations, wildlife exploration, and agriculture. Current frameworks struggle due to significant variations in unstructured environments and uncertain scene changes, and are not adaptive to be used for different robot types. We present AnyTraverse, a framework combining natural language-based prompts with human-operator assistance to determine navigable regions for diverse robotic vehicles. The system segments scenes for a given set of prompts and calls the operator only when encountering previously unexplored scenery or unknown class not part of the prompt in its region-of-interest, thus reducing active supervision load while adapting to varying outdoor scenes. Our zero-shot learning approach eliminates the need for extensive data collection or retraining. Our experimental validation includes testing on RELLIS-3D, Freiburg Forest, and RUGD datasets and demonstrate real-world deployment on multiple robot platforms. The results show that AnyTraverse performs better than GA-NAV and Off-seg while offering a vehicle-agnostic approach to off-road traversability that balances automation with targeted human supervision.
☆ Learning Dexterous Object Handover
Object handover is an important skill that we use daily when interacting with other humans. To deploy robots in collaborative setting, like houses, being able to receive and handing over objects safely and efficiently becomes a crucial skill. In this work, we demonstrate the use of Reinforcement Learning (RL) for dexterous object handover between two multi-finger hands. Key to this task is the use of a novel reward function based on dual quaternions to minimize the rotation distance, which outperforms other rotation representations such as Euler and rotation matrices. The robustness of the trained policy is experimentally evaluated by testing w.r.t. objects that are not included in the training distribution, and perturbations during the handover process. The results demonstrate that the trained policy successfully perform this task, achieving a total success rate of 94% in the best-case scenario after 100 experiments, thereby showing the robustness of our policy with novel objects. In addition, the best-case performance of the policy decreases by only 13.8% when the other robot moves during the handover, proving that our policy is also robust to this type of perturbation, which is common in real-world object handovers.
comment: Paper accepted for presentation in RoMan 2025
☆ Off-Policy Actor-Critic for Adversarial Observation Robustness: Virtual Alternative Training via Symmetric Policy Evaluation ICML2025
Recently, robust reinforcement learning (RL) methods designed to handle adversarial input observations have received significant attention, motivated by RL's inherent vulnerabilities. While existing approaches have demonstrated reasonable success, addressing worst-case scenarios over long time horizons requires both minimizing the agent's cumulative rewards for adversaries and training agents to counteract them through alternating learning. However, this process introduces mutual dependencies between the agent and the adversary, making interactions with the environment inefficient and hindering the development of off-policy methods. In this work, we propose a novel off-policy method that eliminates the need for additional environmental interactions by reformulating adversarial learning as a soft-constrained optimization problem. Our approach is theoretically supported by the symmetric property of policy evaluation between the agent and the adversary. The implementation is available at https://github.com/nakanakakosuke/VALT_SAC.
comment: ICML2025 poster, 39 pages, 6 figures, 13 tables. arXiv admin note: text overlap with arXiv:2409.00418
☆ A Scalable Post-Processing Pipeline for Large-Scale Free-Space Multi-Agent Path Planning with PiBT
Free-space multi-agent path planning remains challenging at large scales. Most existing methods either offer optimality guarantees but do not scale beyond a few dozen agents, or rely on grid-world assumptions that do not generalize well to continuous space. In this work, we propose a hybrid, rule-based planning framework that combines Priority Inheritance with Backtracking (PiBT) with a novel safety-aware path smoothing method. Our approach extends PiBT to 8-connected grids and selectively applies string-pulling based smoothing while preserving collision safety through local interaction awareness and a fallback collision resolution step based on Safe Interval Path Planning (SIPP). This design allows us to reduce overall path lengths while maintaining real-time performance. We demonstrate that our method can scale to over 500 agents in large free-space environments, outperforming existing any-angle and optimal methods in terms of runtime, while producing near-optimal trajectories in sparse domains. Our results suggest this framework is a promising building block for scalable, real-time multi-agent navigation in robotics systems operating beyond grid constraints.
☆ IsoNet: Causal Analysis of Multimodal Transformers for Neuromuscular Gesture Classification
Hand gestures are a primary output of the human motor system, yet the decoding of their neuromuscular signatures remains a bottleneck for basic neuroscience and assistive technologies such as prosthetics. Traditional human-machine interface pipelines rely on a single biosignal modality, but multimodal fusion can exploit complementary information from sensors. We systematically compare linear and attention-based fusion strategies across three architectures: a Multimodal MLP, a Multimodal Transformer, and a Hierarchical Transformer, evaluating performance on scenarios with unimodal and multimodal inputs. Experiments use two publicly available datasets: NinaPro DB2 (sEMG and accelerometer) and HD-sEMG 65-Gesture (high-density sEMG and force). Across both datasets, the Hierarchical Transformer with attention-based fusion consistently achieved the highest accuracy, surpassing the multimodal and best single-modality linear-fusion MLP baseline by over 10% on NinaPro DB2 and 3.7% on HD-sEMG. To investigate how modalities interact, we introduce an Isolation Network that selectively silences unimodal or cross-modal attention pathways, quantifying each group of token interactions' contribution to downstream decisions. Ablations reveal that cross-modal interactions contribute approximately 30% of the decision signal across transformer layers, highlighting the importance of attention-driven fusion in harnessing complementary modality information. Together, these findings reveal when and how multimodal fusion would enhance biosignal classification and also provides mechanistic insights of human muscle activities. The study would be beneficial in the design of sensor arrays for neurorobotic systems.
☆ DRARL: Disengagement-Reason-Augmented Reinforcement Learning for Efficient Improvement of Autonomous Driving Policy
With the increasing presence of automated vehicles on open roads under driver supervision, disengagement cases are becoming more prevalent. While some data-driven planning systems attempt to directly utilize these disengagement cases for policy improvement, the inherent scarcity of disengagement data (often occurring as a single instances) restricts training effectiveness. Furthermore, some disengagement data should be excluded since the disengagement may not always come from the failure of driving policies, e.g. the driver may casually intervene for a while. To this end, this work proposes disengagement-reason-augmented reinforcement learning (DRARL), which enhances driving policy improvement process according to the reason of disengagement cases. Specifically, the reason of disengagement is identified by a out-of-distribution (OOD) state estimation model. When the reason doesn't exist, the case will be identified as a casual disengagement case, which doesn't require additional policy adjustment. Otherwise, the policy can be updated under a reason-augmented imagination environment, improving the policy performance of disengagement cases with similar reasons. The method is evaluated using real-world disengagement cases collected by autonomous driving robotaxi. Experimental results demonstrate that the method accurately identifies policy-related disengagement reasons, allowing the agent to handle both original and semantically similar cases through reason-augmented training. Furthermore, the approach prevents the agent from becoming overly conservative after policy adjustments. Overall, this work provides an efficient way to improve driving policy performance with disengagement cases.
☆ Experimental Setup and Software Pipeline to Evaluate Optimization based Autonomous Multi-Robot Search Algorithms
Signal source localization has been a problem of interest in the multi-robot systems domain given its applications in search \& rescue and hazard localization in various industrial and outdoor settings. A variety of multi-robot search algorithms exist that usually formulate and solve the associated autonomous motion planning problem as a heuristic model-free or belief model-based optimization process. Most of these algorithms however remains tested only in simulation, thereby losing the opportunity to generate knowledge about how such algorithms would compare/contrast in a real physical setting in terms of search performance and real-time computing performance. To address this gap, this paper presents a new lab-scale physical setup and associated open-source software pipeline to evaluate and benchmark multi-robot search algorithms. The presented physical setup innovatively uses an acoustic source (that is safe and inexpensive) and small ground robots (e-pucks) operating in a standard motion-capture environment. This setup can be easily recreated and used by most robotics researchers. The acoustic source also presents interesting uncertainty in terms of its noise-to-signal ratio, which is useful to assess sim-to-real gaps. The overall software pipeline is designed to readily interface with any multi-robot search algorithm with minimal effort and is executable in parallel asynchronous form. This pipeline includes a framework for distributed implementation of multi-robot or swarm search algorithms, integrated with a ROS (Robotics Operating System)-based software stack for motion capture supported localization. The utility of this novel setup is demonstrated by using it to evaluate two state-of-the-art multi-robot search algorithms, based on swarm optimization and batch-Bayesian Optimization (called Bayes-Swarm), as well as a random walk baseline.
comment: to be published in IDETC 2025 conference proceedings
☆ VLM-Empowered Multi-Mode System for Efficient and Safe Planetary Navigation IROS 2025
The increasingly complex and diverse planetary exploration environment requires more adaptable and flexible rover navigation strategy. In this study, we propose a VLM-empowered multi-mode system to achieve efficient while safe autonomous navigation for planetary rovers. Vision-Language Model (VLM) is used to parse scene information by image inputs to achieve a human-level understanding of terrain complexity. Based on the complexity classification, the system switches to the most suitable navigation mode, composing of perception, mapping and planning modules designed for different terrain types, to traverse the terrain ahead before reaching the next waypoint. By integrating the local navigation system with a map server and a global waypoint generation module, the rover is equipped to handle long-distance navigation tasks in complex scenarios. The navigation system is evaluated in various simulation environments. Compared to the single-mode conservative navigation method, our multi-mode system is able to bootstrap the time and energy efficiency in a long-distance traversal with varied type of obstacles, enhancing efficiency by 79.5%, while maintaining its avoidance capabilities against terrain hazards to guarantee rover safety. More system information is shown at https://chengsn1234.github.io/multi-mode-planetary-navigation/.
comment: accepted by IROS 2025
☆ Compliant Residual DAgger: Improving Real-World Contact-Rich Manipulation with Human Corrections
We address key challenges in Dataset Aggregation (DAgger) for real-world contact-rich manipulation: how to collect informative human correction data and how to effectively update policies with this new data. We introduce Compliant Residual DAgger (CR-DAgger), which contains two novel components: 1) a Compliant Intervention Interface that leverages compliance control, allowing humans to provide gentle, accurate delta action corrections without interrupting the ongoing robot policy execution; and 2) a Compliant Residual Policy formulation that learns from human corrections while incorporating force feedback and force control. Our system significantly enhances performance on precise contact-rich manipulation tasks using minimal correction data, improving base policy success rates by over 50\% on two challenging tasks (book flipping and belt assembly) while outperforming both retraining-from-scratch and finetuning approaches. Through extensive real-world experiments, we provide practical guidance for implementing effective DAgger in real-world robot learning tasks. Result videos are available at: https://compliant-residual-dagger.github.io/
☆ PPTP: Performance-Guided Physiological Signal-Based Trust Prediction in Human-Robot Collaboration
Trust prediction is a key issue in human-robot collaboration, especially in construction scenarios where maintaining appropriate trust calibration is critical for safety and efficiency. This paper introduces the Performance-guided Physiological signal-based Trust Prediction (PPTP), a novel framework designed to improve trust assessment. We designed a human-robot construction scenario with three difficulty levels to induce different trust states. Our approach integrates synchronized multimodal physiological signals (ECG, GSR, and EMG) with collaboration performance evaluation to predict human trust levels. Individual physiological signals are processed using collaboration performance information as guiding cues, leveraging the standardized nature of collaboration performance to compensate for individual variations in physiological responses. Extensive experiments demonstrate the efficacy of our cross-modality fusion method in significantly improving trust classification performance. Our model achieves over 81% accuracy in three-level trust classification, outperforming the best baseline method by 6.7%, and notably reaches 74.3% accuracy in high-resolution seven-level classification, which is a first in trust prediction research. Ablation experiments further validate the superiority of physiological signal processing guided by collaboration performance assessment.
☆ On the Power of Spatial Locality on Online Routing Problems
We consider the online versions of two fundamental routing problems, traveling salesman (TSP) and dial-a-ride (DARP), which have a variety of relevant applications in logistics and robotics. The online versions of these problems concern with efficiently serving a sequence of requests presented in a real-time on-line fashion located at points of a metric space by servers (salesmen/vehicles/robots). In this paper, motivated from real-world applications, such as Uber/Lyft rides, where some limited knowledge is available on the future requests, we propose the {\em spatial locality} model that provides in advance the distance within which new request(s) will be released from the current position of server(s). We study the usefulness of this advanced information on achieving the improved competitive ratios for both the problems with $k\geq 1$ servers, compared to the competitive results established in the literature without such spatial locality consideration. We show that small locality is indeed useful in obtaining improved competitive ratios irrespective of the metric space.
comment: 13 pages
☆ EASE: Embodied Active Event Perception via Self-Supervised Energy Minimization
Active event perception, the ability to dynamically detect, track, and summarize events in real time, is essential for embodied intelligence in tasks such as human-AI collaboration, assistive robotics, and autonomous navigation. However, existing approaches often depend on predefined action spaces, annotated datasets, and extrinsic rewards, limiting their adaptability and scalability in dynamic, real-world scenarios. Inspired by cognitive theories of event perception and predictive coding, we propose EASE, a self-supervised framework that unifies spatiotemporal representation learning and embodied control through free energy minimization. EASE leverages prediction errors and entropy as intrinsic signals to segment events, summarize observations, and actively track salient actors, operating without explicit annotations or external rewards. By coupling a generative perception model with an action-driven control policy, EASE dynamically aligns predictions with observations, enabling emergent behaviors such as implicit memory, target continuity, and adaptability to novel environments. Extensive evaluations in simulation and real-world settings demonstrate EASE's ability to achieve privacy-preserving and scalable event perception, providing a robust foundation for embodied systems in unscripted, dynamic tasks.
comment: Accepted to IEEE Robotics and Automation Letters, 2025
☆ Public Perceptions of Autonomous Vehicles: A Survey of Pedestrians and Cyclists in Pittsburgh
This study investigates how autonomous vehicle(AV) technology is perceived by pedestrians and bicyclists in Pittsburgh. Using survey data from over 1200 respondents, the research explores the interplay between demographics, AV interactions, infrastructural readiness, safety perceptions, and trust. Findings highlight demographic divides, infrastructure gaps, and the crucial role of communication and education in AV adoption.
☆ Online Adaptation for Flying Quadrotors in Tight Formations
The task of flying in tight formations is challenging for teams of quadrotors because the complex aerodynamic wake interactions can destabilize individual team members as well as the team. Furthermore, these aerodynamic effects are highly nonlinear and fast-paced, making them difficult to model and predict. To overcome these challenges, we present L1 KNODE-DW MPC, an adaptive, mixed expert learning based control framework that allows individual quadrotors to accurately track trajectories while adapting to time-varying aerodynamic interactions during formation flights. We evaluate L1 KNODE-DW MPC in two different three-quadrotor formations and show that it outperforms several MPC baselines. Our results show that the proposed framework is capable of enabling the three-quadrotor team to remain vertically aligned in close proximity throughout the flight. These findings show that the L1 adaptive module compensates for unmodeled disturbances most effectively when paired with an accurate dynamics model. A video showcasing our framework and the physical experiments is available here: https://youtu.be/9QX1Q5Ut9Rs
comment: 10 pages, 4 figures
☆ Distilling On-device Language Models for Robot Planning with Minimal Human Intervention
Large language models (LLMs) provide robots with powerful contextual reasoning abilities and a natural human interface. Yet, current LLM-enabled robots typically depend on cloud-hosted models, limiting their usability in environments with unreliable communication infrastructure, such as outdoor or industrial settings. We present PRISM, a framework for distilling small language model (SLM)-enabled robot planners that run on-device with minimal human supervision. Starting from an existing LLM-enabled planner, PRISM automatically synthesizes diverse tasks and environments, elicits plans from the LLM, and uses this synthetic dataset to distill a compact SLM as a drop-in replacement of the source model. We apply PRISM to three LLM-enabled planners for mapping and exploration, manipulation, and household assistance, and we demonstrate that PRISM improves the performance of Llama-3.2-3B from 10-20% of GPT-4o's performance to over 93% - using only synthetic data. We further demonstrate that the distilled planners generalize across heterogeneous robotic platforms (ground and aerial) and diverse environments (indoor and outdoor). We release all software, trained models, and datasets at https://zacravichandran.github.io/PRISM.
☆ DiLQR: Differentiable Iterative Linear Quadratic Regulator via Implicit Differentiation ICML 2025
While differentiable control has emerged as a powerful paradigm combining model-free flexibility with model-based efficiency, the iterative Linear Quadratic Regulator (iLQR) remains underexplored as a differentiable component. The scalability of differentiating through extended iterations and horizons poses significant challenges, hindering iLQR from being an effective differentiable controller. This paper introduces DiLQR, a framework that facilitates differentiation through iLQR, allowing it to serve as a trainable and differentiable module, either as or within a neural network. A novel aspect of this framework is the analytical solution that it provides for the gradient of an iLQR controller through implicit differentiation, which ensures a constant backward cost regardless of iteration, while producing an accurate gradient. We evaluate our framework on imitation tasks on famous control benchmarks. Our analytical method demonstrates superior computational performance, achieving up to 128x speedup and a minimum of 21x speedup compared to automatic differentiation. Our method also demonstrates superior learning performance ($10^6$x) compared to traditional neural network policies and better model loss with differentiable controllers that lack exact analytical gradients. Furthermore, we integrate our module into a larger network with visual inputs to demonstrate the capacity of our method for high-dimensional, fully end-to-end tasks. Codes can be found on the project homepage https://sites.google.com/view/dilqr/.
comment: Accepted at ICML 2025. Official conference page: https://icml.cc/virtual/2025/poster/44176. OpenReview page: https://openreview.net/forum?id=m2EfTrbv4o
☆ General-Purpose Robotic Navigation via LVLM-Orchestrated Perception, Reasoning, and Acting
Developing general-purpose navigation policies for unknown environments remains a core challenge in robotics. Most existing systems rely on task-specific neural networks and fixed data flows, limiting generalizability. Large Vision-Language Models (LVLMs) offer a promising alternative by embedding human-like knowledge suitable for reasoning and planning. Yet, prior LVLM-robot integrations typically depend on pre-mapped spaces, hard-coded representations, and myopic exploration. We introduce the Agentic Robotic Navigation Architecture (ARNA), a general-purpose navigation framework that equips an LVLM-based agent with a library of perception, reasoning, and navigation tools available within modern robotic stacks. At runtime, the agent autonomously defines and executes task-specific workflows that iteratively query the robotic modules, reason over multimodal inputs, and select appropriate navigation actions. This approach enables robust navigation and reasoning in previously unmapped environments, providing a new perspective on robotic stack design. Evaluated in Habitat Lab on the HM-EQA benchmark, ARNA achieves state-of-the-art performance, demonstrating effective exploration, navigation, and embodied question answering without relying on handcrafted plans, fixed input representations, or pre-existing maps.
☆ Kinematic Model Optimization via Differentiable Contact Manifold for In-Space Manipulation RSS 2025
Robotic manipulation in space is essential for emerging applications such as debris removal and in-space servicing, assembly, and manufacturing (ISAM). A key requirement for these tasks is the ability to perform precise, contact-rich manipulation under significant uncertainty. In particular, thermal-induced deformation of manipulator links and temperature-dependent encoder bias introduce kinematic parameter errors that significantly degrade end-effector accuracy. Traditional calibration techniques rely on external sensors or dedicated calibration procedures, which can be infeasible or risky in dynamic, space-based operational scenarios. This paper proposes a novel method for kinematic parameter estimation that only requires encoder measurements and binary contact detection. The approach focuses on estimating link thermal deformation strain and joint encoder biases by leveraging information of the contact manifold - the set of relative SE(3) poses at which contact between the manipulator and environment occurs. We present two core contributions: (1) a differentiable, learning-based model of the contact manifold, and (2) an optimization-based algorithm for estimating kinematic parameters from encoder measurements at contact instances. By enabling parameter estimation using only encoder measurements and contact detection, this method provides a robust, interpretable, and data-efficient solution for safe and accurate manipulation in the challenging conditions of space.
comment: Accepted and presented in RSS 2025 Space Robotics Workshop (https://albee.github.io/space-robotics-rss/). 3 pages with 1 figure
☆ A workflow for generating synthetic LiDAR datasets in simulation environments
This paper presents a simulation workflow for generating synthetic LiDAR datasets to support autonomous vehicle perception, robotics research, and sensor security analysis. Leveraging the CoppeliaSim simulation environment and its Python API, we integrate time-of-flight LiDAR, image sensors, and two dimensional scanners onto a simulated vehicle platform operating within an urban scenario. The workflow automates data capture, storage, and annotation across multiple formats (PCD, PLY, CSV), producing synchronized multimodal datasets with ground truth pose information. We validate the pipeline by generating large-scale point clouds and corresponding RGB and depth imagery. The study examines potential security vulnerabilities in LiDAR data, such as adversarial point injection and spoofing attacks, and demonstrates how synthetic datasets can facilitate the evaluation of defense strategies. Finally, limitations related to environmental realism, sensor noise modeling, and computational scalability are discussed, and future research directions, such as incorporating weather effects, real-world terrain models, and advanced scanner configurations, are proposed. The workflow provides a versatile, reproducible framework for generating high-fidelity synthetic LiDAR datasets to advance perception research and strengthen sensor security in autonomous systems. Documentation and examples accompany this framework; samples of animated cloud returns and image sensor data can be found at this Link.
♻ ☆ ASAP-MO:Advanced Situational Awareness and Perception for Mission-critical Operations ICRA
Deploying robotic missions can be challenging due to the complexity of controlling robots with multiple degrees of freedom, fusing diverse sensory inputs, and managing communication delays and interferences. In nuclear inspection, robots can be crucial in assessing environments where human presence is limited, requiring precise teleoperation and coordination. Teleoperation requires extensive training, as operators must process multiple outputs while ensuring safe interaction with critical assets. These challenges are amplified when operating a fleet of heterogeneous robots across multiple environments, as each robot may have distinct control interfaces, sensory systems, and operational constraints. Efficient coordination in such settings remains an open problem. This paper presents a field report on how we integrated robot fleet capabilities - including mapping, localization, and telecommunication - toward a joint mission. We simulated a nuclear inspection scenario for exposed areas, using lights to represent a radiation source. We deployed two Unmanned Ground Vehicles (UGVs) tasked with mapping indoor and outdoor environments while remotely controlled from a single base station. Despite having distinct operational goals, the robots produced a unified map output, demonstrating the feasibility of coordinated multi-robot missions. Our results highlight key operational challenges and provide insights into improving adaptability and situational awareness in remote robotic deployments.
comment: 6 pages + references, 7 figures, Presented at the 2025 IEEE ICRA Workshop on Field Robotics
♻ ☆ Safe Guaranteed Exploration for Non-linear Systems
Safely exploring environments with a-priori unknown constraints is a fundamental challenge that restricts the autonomy of robots. While safety is paramount, guarantees on sufficient exploration are also crucial for ensuring autonomous task completion. To address these challenges, we propose a novel safe guaranteed exploration framework using optimal control, which achieves first-of-its-kind results: guaranteed exploration for non-linear systems with finite time sample complexity bounds, while being provably safe with arbitrarily high probability. The framework is general and applicable to many real-world scenarios with complex non-linear dynamics and unknown domains. We improve the efficiency of this general framework by proposing an algorithm, SageMPC, SAfe Guaranteed Exploration using Model Predictive Control. SageMPC leverages three key techniques: i) exploiting a Lipschitz bound, ii) goal-directed exploration, and iii) receding horizon style re-planning, all while maintaining the desired sample complexity, safety and exploration guarantees of the framework. Lastly, we demonstrate safe efficient exploration in challenging unknown environments using SageMPC with a car model.
comment: Accepted paper in IEEE Transactions on Automatic Control, 2025
♻ ☆ Problem Space Transformations for Out-of-Distribution Generalisation in Behavioural Cloning
The combination of behavioural cloning and neural networks has driven significant progress in robotic manipulation. As these algorithms may require a large number of demonstrations for each task of interest, they remain fundamentally inefficient in complex scenarios, in which finite datasets can hardly cover the state space. One of the remaining challenges is thus out-of-distribution (OOD) generalisation, i.e. the ability to predict correct actions for states with a low likelihood with respect to the state occupancy induced by the dataset. This issue is aggravated when the system to control is treated as a black-box, ignoring its physical properties. This work characterises widespread properties of robotic manipulation, specifically pose equivariance and locality. We investigate the effect of the choice of problem space on OOD performance of BC policies and how transformations arising from characteristic properties of manipulation could be employed for its improvement. We empirically demonstrate that these transformations allow behaviour cloning policies, using either standard MLP-based one-step action prediction or diffusion-based action-sequence prediction, to generalise better to OOD problem instances.
♻ ☆ SR3D: Unleashing Single-view 3D Reconstruction for Transparent and Specular Object Grasping
Recent advancements in 3D robotic manipulation have improved grasping of everyday objects, but transparent and specular materials remain challenging due to depth sensing limitations. While several 3D reconstruction and depth completion approaches address these challenges, they suffer from setup complexity or limited observation information utilization. To address this, leveraging the power of single view 3D object reconstruction approaches, we propose a training free framework SR3D that enables robotic grasping of transparent and specular objects from a single view observation. Specifically, given single view RGB and depth images, SR3D first uses the external visual models to generate 3D reconstructed object mesh based on RGB image. Then, the key idea is to determine the 3D object's pose and scale to accurately localize the reconstructed object back into its original depth corrupted 3D scene. Therefore, we propose view matching and keypoint matching mechanisms,which leverage both the 2D and 3D's inherent semantic and geometric information in the observation to determine the object's 3D state within the scene, thereby reconstructing an accurate 3D depth map for effective grasp detection. Experiments in both simulation and real world show the reconstruction effectiveness of SR3D.
♻ ☆ Rejecting Outliers in 2D-3D Point Correspondences from 2D Forward-Looking Sonar Observations
Rejecting outliers before applying classical robust methods is a common approach to increase the success rate of estimation, particularly when the outlier ratio is extremely high (e.g. 90%). However, this method often relies on sensor- or task-specific characteristics, which may not be easily transferable across different scenarios. In this paper, we focus on the problem of rejecting 2D-3D point correspondence outliers from 2D forward-looking sonar (2D FLS) observations, which is one of the most popular perception device in the underwater field but has a significantly different imaging mechanism compared to widely used perspective cameras and LiDAR. We fully leverage the narrow field of view in the elevation of 2D FLS and develop two compatibility tests for different 3D point configurations: (1) In general cases, we design a pairwise length in-range test to filter out overly long or short edges formed from point sets; (2) In coplanar cases, we design a coplanarity test to check if any four correspondences are compatible under a coplanar setting. Both tests are integrated into outlier rejection pipelines, where they are followed by maximum clique searching to identify the largest consistent measurement set as inliers. Extensive simulations demonstrate that the proposed methods for general and coplanar cases perform effectively under outlier ratios of 80% and 90%, respectively.
♻ ☆ DualGuard MPPI: Safe and Performant Optimal Control by Combining Sampling-Based MPC and Hamilton-Jacobi Reachability
Designing controllers that are both safe and performant is inherently challenging. This co-optimization can be formulated as a constrained optimal control problem, where the cost function represents the performance criterion and safety is specified as a constraint. While sampling-based methods, such as Model Predictive Path Integral (MPPI) control, have shown great promise in tackling complex optimal control problems, they often struggle to enforce safety constraints. To address this limitation, we propose DualGuard-MPPI, a novel framework for solving safety-constrained optimal control problems. Our approach integrates Hamilton-Jacobi reachability analysis within the MPPI sampling process to ensure that all generated samples are provably safe for the system. On the one hand, this integration allows DualGuard-MPPI to enforce strict safety constraints; at the same time, it facilitates a more effective exploration of the environment with the same number of samples, reducing the effective sampling variance and leading to better performance optimization. Through several simulations and hardware experiments, we demonstrate that the proposed approach achieves much higher performance compared to existing MPPI methods, without compromising safety.
comment: 8 pages, 7 figures
♻ ☆ Can We Detect Failures Without Failure Data? Uncertainty-Aware Runtime Failure Detection for Imitation Learning Policies
Recent years have witnessed impressive robotic manipulation systems driven by advances in imitation learning and generative modeling, such as diffusion- and flow-based approaches. As robot policy performance increases, so does the complexity and time horizon of achievable tasks, inducing unexpected and diverse failure modes that are difficult to predict a priori. To enable trustworthy policy deployment in safety-critical human environments, reliable runtime failure detection becomes important during policy inference. However, most existing failure detection approaches rely on prior knowledge of failure modes and require failure data during training, which imposes a significant challenge in practicality and scalability. In response to these limitations, we present FAIL-Detect, a modular two-stage approach for failure detection in imitation learning-based robotic manipulation. To accurately identify failures from successful training data alone, we frame the problem as sequential out-of-distribution (OOD) detection. We first distill policy inputs and outputs into scalar signals that correlate with policy failures and capture epistemic uncertainty. FAIL-Detect then employs conformal prediction (CP) as a versatile framework for uncertainty quantification with statistical guarantees. Empirically, we thoroughly investigate both learned and post-hoc scalar signal candidates on diverse robotic manipulation tasks. Our experiments show learned signals to be mostly consistently effective, particularly when using our novel flow-based density estimator. Furthermore, our method detects failures more accurately and faster than state-of-the-art (SOTA) failure detection baselines. These results highlight the potential of FAIL-Detect to enhance the safety and reliability of imitation learning-based robotic systems as they progress toward real-world deployment.
comment: Accepted by Robotics: Science and Systems 2025
♻ ☆ Embodied Web Agents: Bridging Physical-Digital Realms for Integrated Agent Intelligence
AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-world landmarks using web knowledge. We introduce Embodied Web Agents, a novel paradigm for AI agents that fluidly bridge embodiment and web-scale reasoning. To operationalize this concept, we first develop the Embodied Web Agents task environments, a unified simulation platform that tightly integrates realistic 3D indoor and outdoor environments with functional web interfaces. Building upon this platform, we construct and release the Embodied Web Agents Benchmark, which encompasses a diverse suite of tasks including cooking, navigation, shopping, tourism, and geolocation - all requiring coordinated reasoning across physical and digital realms for systematic assessment of cross-domain intelligence. Experimental results reveal significant performance gaps between state-of-the-art AI systems and human capabilities, establishing both challenges and opportunities at the intersection of embodied cognition and web-scale knowledge access. All datasets, codes and websites are publicly available at our project page https://embodied-web-agent.github.io/.
♻ ☆ SD++: Enhancing Standard Definition Maps by Incorporating Road Knowledge using LLMs
High-definition maps (HD maps) are detailed and informative maps capturing lane centerlines and road elements. Although very useful for autonomous driving, HD maps are costly to build and maintain. Furthermore, access to these high-quality maps is usually limited to the firms that build them. On the other hand, standard definition (SD) maps provide road centerlines with an accuracy of a few meters. In this paper, we explore the possibility of enhancing SD maps by incorporating information from road manuals using LLMs. We develop SD++, an end-to-end pipeline to enhance SD maps with location-dependent road information obtained from a road manual. We suggest and compare several ways of using LLMs for such a task. Furthermore, we show the generalization ability of SD++ by showing results from both California and Japan.
comment: 7 pages, 8 figures, 1 table, Accepted at IEEE Intelligent Vehicles Symposium 2025
♻ ☆ Using Language and Road Manuals to Inform Map Reconstruction for Autonomous Driving RSS 2025
Lane-topology prediction is a critical component of safe and reliable autonomous navigation. An accurate understanding of the road environment aids this task. We observe that this information often follows conventions encoded in natural language, through design codes that reflect the road structure and road names that capture the road functionality. We augment this information in a lightweight manner to SMERF, a map-prior-based online lane-topology prediction model, by combining structured road metadata from OSM maps and lane-width priors from Road design manuals with the road centerline encodings. We evaluate our method on two geo-diverse complex intersection scenarios. Our method shows improvement in both lane and traffic element detection and their association. We report results using four topology-aware metrics to comprehensively assess the model performance. These results demonstrate the ability of our approach to generalize and scale to diverse topologies and conditions.
comment: 4 pages, 3 figures, Accepted at RSS 2025 Workshop - RobotEvaluation@RSS 2025
♻ ☆ Uncertainty-Aware Planning for Heterogeneous Robot Teams using Dynamic Topological Graphs and Mixed-Integer Programming
Multi-robot planning and coordination in uncertain environments is a fundamental computational challenge, since the belief space increases exponentially with the number of robots. In this paper, we address the problem of planning in uncertain environments with a heterogeneous robot team of fast scout vehicles for information gathering and more risk-averse carrier robots from which the scouts vehicles are deployed. To overcome the computational challenges, we represent the environment and operational scenario using a topological graph, where the parameters of the edge weight distributions vary with the state of the robot team on the graph, and we formulate a computationally efficient mixed-integer program which removes the dependence on the number of robots from its decision space. Our formulation results in the capability to generate optimal multi-robot, long-horizon plans in seconds that could otherwise be computationally intractable. Ultimately our approach enables real-time re-planning, since the computation time is significantly faster than the time to execute one step. We evaluate our algorithm in a scenario where the robot team must traverse an environment while minimizing detection by observers in positions that are uncertain to the robot team. We demonstrate that our method is computationally tractable, can improve performance in the presence of imperfect information, and can be adjusted for different risk profiles.
comment: \copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Computer Vision 111
☆ VLN-R1: Vision-Language Navigation via Reinforcement Fine-Tuning
Vision-Language Navigation (VLN) is a core challenge in embodied AI, requiring agents to navigate real-world environments using natural language instructions. Current language model-based navigation systems operate on discrete topological graphs, limiting path planning to predefined node connections. We propose VLN-R1, an end-to-end framework that leverages Large Vision-Language Models (LVLM) to directly translate egocentric video streams into continuous navigation actions, adopting GRPO-based training inspired by DeepSeek-R1. To enable effective training, we first construct the VLN-Ego dataset using a 3D simulator, Habitat, and propose Long-Short Memory Sampling to balance historical and current observations. While large language models can supervise complete textual instructions, they lack fine-grained action-level control. Our framework employs a two-stage training approach: a) Supervised fine-tuning (SFT) to align the model's action sequence text predictions with expert demonstrations, followed by b) Reinforcement fine-tuning (RFT) enhanced with a Time-Decayed Reward (TDR) mechanism that strategically weights multi-step future actions. Experimental results show VLN-R1 achieves strong performance on VLN-CE benchmark. VLN-R1 proves LVLMs can drive embodied navigation and enhance task-specific reasoning through data-efficient, reward-driven post-training.
comment: project page: www.vlnr1.github.io
☆ Machine Mental Imagery: Empower Multimodal Reasoning with Latent Visual Tokens
Vision-language models (VLMs) excel at multimodal understanding, yet their text-only decoding forces them to verbalize visual reasoning, limiting performance on tasks that demand visual imagination. Recent attempts train VLMs to render explicit images, but the heavy image-generation pre-training often hinders the reasoning ability. Inspired by the way humans reason with mental imagery-the internal construction and manipulation of visual cues-we investigate whether VLMs can reason through interleaved multimodal trajectories without producing explicit images. To this end, we present a Machine Mental Imagery framework, dubbed as Mirage, which augments VLM decoding with latent visual tokens alongside ordinary text. Concretely, whenever the model chooses to ``think visually'', it recasts its hidden states as next tokens, thereby continuing a multimodal trajectory without generating pixel-level images. Begin by supervising the latent tokens through distillation from ground-truth image embeddings, we then switch to text-only supervision to make the latent trajectory align tightly with the task objective. A subsequent reinforcement learning stage further enhances the multimodal reasoning capability. Experiments on diverse benchmarks demonstrate that Mirage unlocks stronger multimodal reasoning without explicit image generation.
comment: Project page: https://vlm-mirage.github.io/
☆ Long-term Traffic Simulation with Interleaved Autoregressive Motion and Scenario Generation
An ideal traffic simulator replicates the realistic long-term point-to-point trip that a self-driving system experiences during deployment. Prior models and benchmarks focus on closed-loop motion simulation for initial agents in a scene. This is problematic for long-term simulation. Agents enter and exit the scene as the ego vehicle enters new regions. We propose InfGen, a unified next-token prediction model that performs interleaved closed-loop motion simulation and scene generation. InfGen automatically switches between closed-loop motion simulation and scene generation mode. It enables stable long-term rollout simulation. InfGen performs at the state-of-the-art in short-term (9s) traffic simulation, and significantly outperforms all other methods in long-term (30s) simulation. The code and model of InfGen will be released at https://orangesodahub.github.io/InfGen
comment: Preprint. Project page: https://orangesodahub.github.io/InfGen Code: https://github.com/OrangeSodahub/infgen
☆ Part$^{2}$GS: Part-aware Modeling of Articulated Objects using 3D Gaussian Splatting
Articulated objects are common in the real world, yet modeling their structure and motion remains a challenging task for 3D reconstruction methods. In this work, we introduce Part$^{2}$GS, a novel framework for modeling articulated digital twins of multi-part objects with high-fidelity geometry and physically consistent articulation. Part$^{2}$GS leverages a part-aware 3D Gaussian representation that encodes articulated components with learnable attributes, enabling structured, disentangled transformations that preserve high-fidelity geometry. To ensure physically consistent motion, we propose a motion-aware canonical representation guided by physics-based constraints, including contact enforcement, velocity consistency, and vector-field alignment. Furthermore, we introduce a field of repel points to prevent part collisions and maintain stable articulation paths, significantly improving motion coherence over baselines. Extensive evaluations on both synthetic and real-world datasets show that Part$^{2}$GS consistently outperforms state-of-the-art methods by up to 10$\times$ in Chamfer Distance for movable parts.
☆ DreamCube: 3D Panorama Generation via Multi-plane Synchronization
3D panorama synthesis is a promising yet challenging task that demands high-quality and diverse visual appearance and geometry of the generated omnidirectional content. Existing methods leverage rich image priors from pre-trained 2D foundation models to circumvent the scarcity of 3D panoramic data, but the incompatibility between 3D panoramas and 2D single views limits their effectiveness. In this work, we demonstrate that by applying multi-plane synchronization to the operators from 2D foundation models, their capabilities can be seamlessly extended to the omnidirectional domain. Based on this design, we further introduce DreamCube, a multi-plane RGB-D diffusion model for 3D panorama generation, which maximizes the reuse of 2D foundation model priors to achieve diverse appearances and accurate geometry while maintaining multi-view consistency. Extensive experiments demonstrate the effectiveness of our approach in panoramic image generation, panoramic depth estimation, and 3D scene generation.
comment: Project page: https://yukun-huang.github.io/DreamCube/
☆ UniFork: Exploring Modality Alignment for Unified Multimodal Understanding and Generation
Unified image understanding and generation has emerged as a promising paradigm in multimodal artificial intelligence. Despite recent progress, the optimal architectural design for such unified models remains an open challenge. In this work, we start by analyzing the modality alignment behaviors of task-specific expert models for understanding and generation, as well as current unified models. Our analysis reveals a crucial observation: understanding tasks benefit from a progressively increasing modality alignment across network depth, which helps build up semantic information for better comprehension; In contrast, generation tasks follow a different trend: modality alignment increases in the early layers but decreases in the deep layers to recover spatial details. These divergent alignment patterns create a fundamental conflict in fully shared Transformer backbones, where a uniform representational flow often leads to performance compromises across two tasks. Motivated by this finding, we introduce UniFork, a novel Y-shaped architecture that shares the shallow layers for cross-task representation learning, while employing task-specific branches in deeper layers to avoid task interference. This design effectively balances shared learning and task specialization. Through extensive ablation experiments, we demonstrate that Unifork consistently outperforms conventional fully shared Transformer architectures, and achieves performance on par with or better than task-specific models.
comment: Code: https://github.com/tliby/UniFork
☆ Hunyuan-GameCraft: High-dynamic Interactive Game Video Generation with Hybrid History Condition
Recent advances in diffusion-based and controllable video generation have enabled high-quality and temporally coherent video synthesis, laying the groundwork for immersive interactive gaming experiences. However, current methods face limitations in dynamics, generality, long-term consistency, and efficiency, which limit the ability to create various gameplay videos. To address these gaps, we introduce Hunyuan-GameCraft, a novel framework for high-dynamic interactive video generation in game environments. To achieve fine-grained action control, we unify standard keyboard and mouse inputs into a shared camera representation space, facilitating smooth interpolation between various camera and movement operations. Then we propose a hybrid history-conditioned training strategy that extends video sequences autoregressively while preserving game scene information. Additionally, to enhance inference efficiency and playability, we achieve model distillation to reduce computational overhead while maintaining consistency across long temporal sequences, making it suitable for real-time deployment in complex interactive environments. The model is trained on a large-scale dataset comprising over one million gameplay recordings across over 100 AAA games, ensuring broad coverage and diversity, then fine-tuned on a carefully annotated synthetic dataset to enhance precision and control. The curated game scene data significantly improves the visual fidelity, realism and action controllability. Extensive experiments demonstrate that Hunyuan-GameCraft significantly outperforms existing models, advancing the realism and playability of interactive game video generation.
comment: Project page: https://hunyuan-gamecraft.github.io/
☆ Dex1B: Learning with 1B Demonstrations for Dexterous Manipulation RSS 2025
Generating large-scale demonstrations for dexterous hand manipulation remains challenging, and several approaches have been proposed in recent years to address this. Among them, generative models have emerged as a promising paradigm, enabling the efficient creation of diverse and physically plausible demonstrations. In this paper, we introduce Dex1B, a large-scale, diverse, and high-quality demonstration dataset produced with generative models. The dataset contains one billion demonstrations for two fundamental tasks: grasping and articulation. To construct it, we propose a generative model that integrates geometric constraints to improve feasibility and applies additional conditions to enhance diversity. We validate the model on both established and newly introduced simulation benchmarks, where it significantly outperforms prior state-of-the-art methods. Furthermore, we demonstrate its effectiveness and robustness through real-world robot experiments. Our project page is at https://jianglongye.com/dex1b
comment: Accepted to RSS 2025. Project page: https://jianglongye.com/dex1b
☆ Facial Landmark Visualization and Emotion Recognition Through Neural Networks
Emotion recognition from facial images is a crucial task in human-computer interaction, enabling machines to learn human emotions through facial expressions. Previous studies have shown that facial images can be used to train deep learning models; however, most of these studies do not include a through dataset analysis. Visualizing facial landmarks can be challenging when extracting meaningful dataset insights; to address this issue, we propose facial landmark box plots, a visualization technique designed to identify outliers in facial datasets. Additionally, we compare two sets of facial landmark features: (i) the landmarks' absolute positions and (ii) their displacements from a neutral expression to the peak of an emotional expression. Our results indicate that a neural network achieves better performance than a random forest classifier.
comment: Best paper Award COMIA 2025
☆ YASMOT: Yet another stereo image multi-object tracker
There now exists many popular object detectors based on deep learning that can analyze images and extract locations and class labels for occurrences of objects. For image time series (i.e., video or sequences of stills), tracking objects over time and preserving object identity can help to improve object detection performance, and is necessary for many downstream tasks, including classifying and predicting behaviors, and estimating total abundances. Here we present yasmot, a lightweight and flexible object tracker that can process the output from popular object detectors and track objects over time from either monoscopic or stereoscopic camera configurations. In addition, it includes functionality to generate consensus detections from ensembles of object detectors.
comment: 5 pages
☆ Proportional Sensitivity in Generative Adversarial Network (GAN)-Augmented Brain Tumor Classification Using Convolutional Neural Network
Generative Adversarial Networks (GAN) have shown potential in expanding limited medical imaging datasets. This study explores how different ratios of GAN-generated and real brain tumor MRI images impact the performance of a CNN in classifying healthy vs. tumorous scans. A DCGAN was used to create synthetic images which were mixed with real ones at various ratios to train a custom CNN. The CNN was then evaluated on a separate real-world test set. Our results indicate that the model maintains high sensitivity and precision in tumor classification, even when trained predominantly on synthetic data. When only a small portion of GAN data was added, such as 900 real images and 100 GAN images, the model achieved excellent performance, with test accuracy reaching 95.2%, and precision, recall, and F1-score all exceeding 95%. However, as the proportion of GAN images increased further, performance gradually declined. This study suggests that while GANs are useful for augmenting limited datasets especially when real data is scarce, too much synthetic data can introduce artifacts that affect the model's ability to generalize to real world cases.
comment: This papaer has been submitted to The 18th International Conference on Brain Informatics (BI'25), Italy
☆ Co-Seg++: Mutual Prompt-Guided Collaborative Learning for Versatile Medical Segmentation
Medical image analysis is critical yet challenged by the need of jointly segmenting organs or tissues, and numerous instances for anatomical structures and tumor microenvironment analysis. Existing studies typically formulated different segmentation tasks in isolation, which overlooks the fundamental interdependencies between these tasks, leading to suboptimal segmentation performance and insufficient medical image understanding. To address this issue, we propose a Co-Seg++ framework for versatile medical segmentation. Specifically, we introduce a novel co-segmentation paradigm, allowing semantic and instance segmentation tasks to mutually enhance each other. We first devise a spatio-temporal prompt encoder (STP-Encoder) to capture long-range spatial and temporal relationships between segmentation regions and image embeddings as prior spatial constraints. Moreover, we devise a multi-task collaborative decoder (MTC-Decoder) that leverages cross-guidance to strengthen the contextual consistency of both tasks, jointly computing semantic and instance segmentation masks. Extensive experiments on diverse CT and histopathology datasets demonstrate that the proposed Co-Seg++ outperforms state-of-the-arts in the semantic, instance, and panoptic segmentation of dental anatomical structures, histopathology tissues, and nuclei instances. The source code is available at https://github.com/xq141839/Co-Seg-Plus.
comment: Under Review
☆ Do We Need Large VLMs for Spotting Soccer Actions?
Traditional video-based tasks like soccer action spotting rely heavily on visual inputs, often requiring complex and computationally expensive models to process dense video data. In this work, we propose a shift from this video-centric approach to a text-based task, making it lightweight and scalable by utilizing Large Language Models (LLMs) instead of Vision-Language Models (VLMs). We posit that expert commentary, which provides rich, fine-grained descriptions and contextual cues such as excitement and tactical insights, contains enough information to reliably spot key actions in a match. To demonstrate this, we use the SoccerNet Echoes dataset, which provides timestamped commentary, and employ a system of three LLMs acting as judges specializing in outcome, excitement, and tactics. Each LLM evaluates sliding windows of commentary to identify actions like goals, cards, and substitutions, generating accurate timestamps for these events. Our experiments show that this language-centric approach performs effectively in detecting critical match events, providing a lightweight and training-free alternative to traditional video-based methods for action spotting.
comment: 5 pages, 2 figures
☆ MeDi: Metadata-Guided Diffusion Models for Mitigating Biases in Tumor Classification
Deep learning models have made significant advances in histological prediction tasks in recent years. However, for adaptation in clinical practice, their lack of robustness to varying conditions such as staining, scanner, hospital, and demographics is still a limiting factor: if trained on overrepresented subpopulations, models regularly struggle with less frequent patterns, leading to shortcut learning and biased predictions. Large-scale foundation models have not fully eliminated this issue. Therefore, we propose a novel approach explicitly modeling such metadata into a Metadata-guided generative Diffusion model framework (MeDi). MeDi allows for a targeted augmentation of underrepresented subpopulations with synthetic data, which balances limited training data and mitigates biases in downstream models. We experimentally show that MeDi generates high-quality histopathology images for unseen subpopulations in TCGA, boosts the overall fidelity of the generated images, and enables improvements in performance for downstream classifiers on datasets with subpopulation shifts. Our work is a proof-of-concept towards better mitigating data biases with generative models.
☆ On the Theory of Conditional Feature Alignment for Unsupervised Domain-Adaptive Counting
Object counting models suffer when deployed across domains with differing density variety, since density shifts are inherently task-relevant and violate standard domain adaptation assumptions. To address this, we propose a theoretical framework of conditional feature alignment. We first formalize the notion of conditional divergence by partitioning each domain into subsets (e.g., object vs. background) and measuring divergences per condition. We then derive a joint error bound showing that, under discrete label spaces treated as condition sets, aligning distributions conditionally leads to tighter bounds on the combined source-target decision error than unconditional alignment. These insights motivate a general conditional adaptation principle: by preserving task-relevant variations while filtering out nuisance shifts, one can achieve superior cross-domain generalization for counting. We provide both defining conditional divergence then proving its benefit in lowering joint error and a practical adaptation strategy that preserves task-relevant information in unsupervised domain-adaptive counting. We demonstrate the effectiveness of our approach through extensive experiments on multiple counting datasets with varying density distributions. The results show that our method outperforms existing unsupervised domain adaptation methods, empirically validating the theoretical insights on conditional feature alignment.
comment: 18 pages, 5 figures, 8 tables
☆ Semi-Supervised Multi-Modal Medical Image Segmentation for Complex Situations MICCAI 2025
Semi-supervised learning addresses the issue of limited annotations in medical images effectively, but its performance is often inadequate for complex backgrounds and challenging tasks. Multi-modal fusion methods can significantly improve the accuracy of medical image segmentation by providing complementary information. However, they face challenges in achieving significant improvements under semi-supervised conditions due to the challenge of effectively leveraging unlabeled data. There is a significant need to create an effective and reliable multi-modal learning strategy for leveraging unlabeled data in semi-supervised segmentation. To address these issues, we propose a novel semi-supervised multi-modal medical image segmentation approach, which leverages complementary multi-modal information to enhance performance with limited labeled data. Our approach employs a multi-stage multi-modal fusion and enhancement strategy to fully utilize complementary multi-modal information, while reducing feature discrepancies and enhancing feature sharing and alignment. Furthermore, we effectively introduce contrastive mutual learning to constrain prediction consistency across modalities, thereby facilitating the robustness of segmentation results in semi-supervised tasks. Experimental results on two multi-modal datasets demonstrate the superior performance and robustness of the proposed framework, establishing its valuable potential for solving medical image segmentation tasks in complex scenarios.
comment: 10 pages, 2 figures, accepted at MICCAI 2025
Dynamic Watermark Generation for Digital Images using Perimeter Gated SPAD Imager PUFs SC
Digital image watermarks as a security feature can be derived from the imager's physically unclonable functions (PUFs) by utilizing the manufacturing variations, i.e., the dark signal non-uniformity (DSNU). While a few demonstrations focused on the CMOS image sensors (CIS) and active pixel sensors (APS), single photon avalanche diode (SPAD) imagers have never been investigated for this purpose. In this work, we have proposed a novel watermarking technique using perimeter gated SPAD (pgSPAD) imagers. We utilized the DSNU of three 64 x 64 pgSPAD imager chips, fabricated in a 0.35 {\mu}m standard CMOS process and analyzed the simulated watermarks for standard test images from publicly available database. Our observation shows that both source identification and tamper detection can be achieved using the proposed source-scene-specific dynamic watermarks with a controllable sensitivity-robustness trade-off.
comment: 5 pages, 7 figures, accepted at MWSCAS 2025 Conference
☆ Robust Training with Data Augmentation for Medical Imaging Classification
Deep neural networks are increasingly being used to detect and diagnose medical conditions using medical imaging. Despite their utility, these models are highly vulnerable to adversarial attacks and distribution shifts, which can affect diagnostic reliability and undermine trust among healthcare professionals. In this study, we propose a robust training algorithm with data augmentation (RTDA) to mitigate these vulnerabilities in medical image classification. We benchmark classifier robustness against adversarial perturbations and natural variations of RTDA and six competing baseline techniques, including adversarial training and data augmentation approaches in isolation and combination, using experimental data sets with three different imaging technologies (mammograms, X-rays, and ultrasound). We demonstrate that RTDA achieves superior robustness against adversarial attacks and improved generalization performance in the presence of distribution shift in each image classification task while maintaining high clean accuracy.
☆ RGBTrack: Fast, Robust Depth-Free 6D Pose Estimation and Tracking IROS 2025
We introduce a robust framework, RGBTrack, for real-time 6D pose estimation and tracking that operates solely on RGB data, thereby eliminating the need for depth input for such dynamic and precise object pose tracking tasks. Building on the FoundationPose architecture, we devise a novel binary search strategy combined with a render-and-compare mechanism to efficiently infer depth and generate robust pose hypotheses from true-scale CAD models. To maintain stable tracking in dynamic scenarios, including rapid movements and occlusions, RGBTrack integrates state-of-the-art 2D object tracking (XMem) with a Kalman filter and a state machine for proactive object pose recovery. In addition, RGBTrack's scale recovery module dynamically adapts CAD models of unknown scale using an initial depth estimate, enabling seamless integration with modern generative reconstruction techniques. Extensive evaluations on benchmark datasets demonstrate that RGBTrack's novel depth-free approach achieves competitive accuracy and real-time performance, making it a promising practical solution candidate for application areas including robotics, augmented reality, and computer vision. The source code for our implementation will be made publicly available at https://github.com/GreatenAnoymous/RGBTrack.git.
comment: Accepted to IROS 2025
☆ MEXA: Towards General Multimodal Reasoning with Dynamic Multi-Expert Aggregation
Combining pre-trained expert models offers substantial potential for scalable multimodal reasoning, but building a unified framework remains challenging due to the increasing diversity of input modalities and task complexity. For instance, medical diagnosis requires precise reasoning over structured clinical tables, while financial forecasting depends on interpreting plot-based data to make informed predictions. To tackle this challenge, we introduce MEXA, a training-free framework that performs modality- and task-aware aggregation of multiple expert models to enable effective multimodal reasoning across diverse and distinct domains. MEXA dynamically selects expert models based on the input modality and the task-specific reasoning demands (i.e., skills). Each expert model, specialized in a modality task pair, generates interpretable textual reasoning outputs. MEXA then aggregates and reasons over these outputs using a Large Reasoning Model (LRM) to produce the final answer. This modular design allows flexible and transparent multimodal reasoning across diverse domains without additional training overhead. We extensively evaluate our approach on diverse multimodal benchmarks, including Video Reasoning, Audio Reasoning, 3D Understanding, and Medical QA. MEXA consistently delivers performance improvements over strong multimodal baselines, highlighting the effectiveness and broad applicability of our expert-driven selection and aggregation in diverse multimodal reasoning tasks.
comment: The first two authors contributed equally; Github link: https://github.com/Yui010206/MEXA
☆ Monocular One-Shot Metric-Depth Alignment for RGB-Based Robot Grasping IROS 2025
Accurate 6D object pose estimation is a prerequisite for successfully completing robotic prehensile and non-prehensile manipulation tasks. At present, 6D pose estimation for robotic manipulation generally relies on depth sensors based on, e.g., structured light, time-of-flight, and stereo-vision, which can be expensive, produce noisy output (as compared with RGB cameras), and fail to handle transparent objects. On the other hand, state-of-the-art monocular depth estimation models (MDEMs) provide only affine-invariant depths up to an unknown scale and shift. Metric MDEMs achieve some successful zero-shot results on public datasets, but fail to generalize. We propose a novel framework, Monocular One-shot Metric-depth Alignment (MOMA), to recover metric depth from a single RGB image, through a one-shot adaptation building on MDEM techniques. MOMA performs scale-rotation-shift alignments during camera calibration, guided by sparse ground-truth depth points, enabling accurate depth estimation without additional data collection or model retraining on the testing setup. MOMA supports fine-tuning the MDEM on transparent objects, demonstrating strong generalization capabilities. Real-world experiments on tabletop 2-finger grasping and suction-based bin-picking applications show MOMA achieves high success rates in diverse tasks, confirming its effectiveness.
comment: Accepted to IROS 2025
☆ Assembler: Scalable 3D Part Assembly via Anchor Point Diffusion
We present Assembler, a scalable and generalizable framework for 3D part assembly that reconstructs complete objects from input part meshes and a reference image. Unlike prior approaches that mostly rely on deterministic part pose prediction and category-specific training, Assembler is designed to handle diverse, in-the-wild objects with varying part counts, geometries, and structures. It addresses the core challenges of scaling to general 3D part assembly through innovations in task formulation, representation, and data. First, Assembler casts part assembly as a generative problem and employs diffusion models to sample plausible configurations, effectively capturing ambiguities arising from symmetry, repeated parts, and multiple valid assemblies. Second, we introduce a novel shape-centric representation based on sparse anchor point clouds, enabling scalable generation in Euclidean space rather than SE(3) pose prediction. Third, we construct a large-scale dataset of over 320K diverse part-object assemblies using a synthesis and filtering pipeline built on existing 3D shape repositories. Assembler achieves state-of-the-art performance on PartNet and is the first to demonstrate high-quality assembly for complex, real-world objects. Based on Assembler, we further introduce an interesting part-aware 3D modeling system that generates high-resolution, editable objects from images, demonstrating potential for interactive and compositional design. Project page: https://assembler3d.github.io
comment: Technical Report. Project page: https://assembler3d.github.io
☆ Relaxed syntax modeling in Transformers for future-proof license plate recognition
Effective license plate recognition systems are required to be resilient to constant change, as new license plates are released into traffic daily. While Transformer-based networks excel in their recognition at first sight, we observe significant performance drop over time which proves them unsuitable for tense production environments. Indeed, such systems obtain state-of-the-art results on plates whose syntax is seen during training. Yet, we show they perform similarly to random guessing on future plates where legible characters are wrongly recognized due to a shift in their syntax. After highlighting the flows of positional and contextual information in Transformer encoder-decoders, we identify several causes for their over-reliance on past syntax. Following, we devise architectural cut-offs and replacements which we integrate into SaLT, an attempt at a Syntax-Less Transformer for syntax-agnostic modeling of license plate representations. Experiments on both real and synthetic datasets show that our approach reaches top accuracy on past syntax and most importantly nearly maintains performance on future license plates. We further demonstrate the robustness of our architecture enhancements by way of various ablations.
☆ Stretching Beyond the Obvious: A Gradient-Free Framework to Unveil the Hidden Landscape of Visual Invariance
Uncovering which features' combinations high-level visual units encode is critical to understand how images are transformed into representations that support recognition. While existing feature visualization approaches typically infer a unit's most exciting images, this is insufficient to reveal the manifold of transformations under which responses remain invariant, which is key to generalization in vision. Here we introduce Stretch-and-Squeeze (SnS), an unbiased, model-agnostic, and gradient-free framework to systematically characterize a unit's invariance landscape and its vulnerability to adversarial perturbations in both biological and artificial visual systems. SnS frames these transformations as bi-objective optimization problems. To probe invariance, SnS seeks image perturbations that maximally alter the representation of a reference stimulus in a given processing stage while preserving unit activation. To probe adversarial sensitivity, SnS seeks perturbations that minimally alter the stimulus while suppressing unit activation. Applied to convolutional neural networks (CNNs), SnS revealed image variations that were further from a reference image in pixel-space than those produced by affine transformations, while more strongly preserving the target unit's response. The discovered invariant images differed dramatically depending on the choice of image representation used for optimization: pixel-level changes primarily affected luminance and contrast, while stretching mid- and late-layer CNN representations altered texture and pose respectively. Notably, the invariant images from robust networks were more recognizable by human subjects than those from standard networks, supporting the higher fidelity of robust CNNs as models of the visual system.
comment: 21 pages, 9 figures
☆ Unsupervised Image Super-Resolution Reconstruction Based on Real-World Degradation Patterns
The training of real-world super-resolution reconstruction models heavily relies on datasets that reflect real-world degradation patterns. Extracting and modeling degradation patterns for super-resolution reconstruction using only real-world low-resolution (LR) images remains a challenging task. When synthesizing datasets to simulate real-world degradation, relying solely on degradation extraction methods fails to capture both blur and diverse noise characteristics across varying LR distributions, as well as more implicit degradations such as color gamut shifts. Conversely, domain translation alone cannot accurately approximate real-world blur characteristics due to the significant degradation domain gap between synthetic and real data. To address these challenges, we propose a novel TripleGAN framework comprising two strategically designed components: The FirstGAN primarily focuses on narrowing the domain gap in blur characteristics, while the SecondGAN performs domain-specific translation to approximate target-domain blur properties and learn additional degradation patterns. The ThirdGAN is trained on pseudo-real data generated by the FirstGAN and SecondGAN to reconstruct real-world LR images. Extensive experiments on the RealSR and DRealSR datasets demonstrate that our method exhibits clear advantages in quantitative metrics while maintaining sharp reconstructions without over-smoothing artifacts. The proposed framework effectively learns real-world degradation patterns from LR observations and synthesizes aligned datasets with corresponding degradation characteristics, thereby enabling the trained network to achieve superior performance in reconstructing high-quality SR images from real-world LR inputs.
☆ A Synthetic Benchmark for Collaborative 3D Semantic Occupancy Prediction in V2X Autonomous Driving
3D semantic occupancy prediction is an emerging perception paradigm in autonomous driving, providing a voxel-level representation of both geometric details and semantic categories. However, the perception capability of a single vehicle is inherently constrained by occlusion, restricted sensor range, and narrow viewpoints. To address these limitations, collaborative perception enables the exchange of complementary information, thereby enhancing the completeness and accuracy. In the absence of a dedicated dataset for collaborative 3D semantic occupancy prediction, we augment an existing collaborative perception dataset by replaying it in CARLA with a high-resolution semantic voxel sensor to provide dense and comprehensive occupancy annotations. In addition, we establish benchmarks with varying prediction ranges designed to systematically assess the impact of spatial extent on collaborative prediction. We further develop a baseline model that performs inter-agent feature fusion via spatial alignment and attention aggregation. Experimental results demonstrate that our baseline model consistently outperforms single-agent models, with increasing gains observed as the prediction range expands.
☆ Prmpt2Adpt: Prompt-Based Zero-Shot Domain Adaptation for Resource-Constrained Environments
Unsupervised Domain Adaptation (UDA) is a critical challenge in real-world vision systems, especially in resource-constrained environments like drones, where memory and computation are limited. Existing prompt-driven UDA methods typically rely on large vision-language models and require full access to source-domain data during adaptation, limiting their applicability. In this work, we propose Prmpt2Adpt, a lightweight and efficient zero-shot domain adaptation framework built around a teacher-student paradigm guided by prompt-based feature alignment. At the core of our method is a distilled and fine-tuned CLIP model, used as the frozen backbone of a Faster R-CNN teacher. A small set of low-level source features is aligned to the target domain semantics-specified only through a natural language prompt-via Prompt-driven Instance Normalization (PIN). These semantically steered features are used to briefly fine-tune the detection head of the teacher model. The adapted teacher then generates high-quality pseudo-labels, which guide the on-the-fly adaptation of a compact student model. Experiments on the MDS-A dataset demonstrate that Prmpt2Adpt achieves competitive detection performance compared to state-of-the-art methods, while delivering up to 7x faster adaptation and 5x faster inference speed using few source images-making it a practical and scalable solution for real-time adaptation in low-resource domains.
☆ ForestFormer3D: A Unified Framework for End-to-End Segmentation of Forest LiDAR 3D Point Clouds
The segmentation of forest LiDAR 3D point clouds, including both individual tree and semantic segmentation, is fundamental for advancing forest management and ecological research. However, current approaches often struggle with the complexity and variability of natural forest environments. We present ForestFormer3D, a new unified and end-to-end framework designed for precise individual tree and semantic segmentation. ForestFormer3D incorporates ISA-guided query point selection, a score-based block merging strategy during inference, and a one-to-many association mechanism for effective training. By combining these new components, our model achieves state-of-the-art performance for individual tree segmentation on the newly introduced FOR-instanceV2 dataset, which spans diverse forest types and regions. Additionally, ForestFormer3D generalizes well to unseen test sets (Wytham woods and LAUTx), showcasing its robustness across different forest conditions and sensor modalities. The FOR-instanceV2 dataset and the ForestFormer3D code will be released soon.
☆ Enhancing Step-by-Step and Verifiable Medical Reasoning in MLLMs
Multimodal large language models (MLLMs) have begun to demonstrate robust reasoning capabilities on general tasks, yet their application in the medical domain remains in its early stages. Constructing chain-of-thought (CoT) training data is essential for bolstering the reasoning abilities of medical MLLMs. However, existing approaches exhibit a deficiency in offering a comprehensive framework for searching and evaluating effective reasoning paths towards critical diagnosis. To address this challenge, we propose Mentor-Intern Collaborative Search (MICS), a novel reasoning-path searching scheme to generate rigorous and effective medical CoT data. MICS first leverages mentor models to initialize the reasoning, one step at a time, then prompts each intern model to continue the thinking along those initiated paths, and finally selects the optimal reasoning path according to the overall reasoning performance of multiple intern models. The reasoning performance is determined by an MICS-Score, which assesses the quality of generated reasoning paths. Eventually, we construct MMRP, a multi-task medical reasoning dataset with ranked difficulty, and Chiron-o1, a new medical MLLM devised via a curriculum learning strategy, with robust visual question-answering and generalizable reasoning capabilities. Extensive experiments demonstrate that Chiron-o1, trained on our CoT dataset constructed using MICS, achieves state-of-the-art performance across a list of medical visual question answering and reasoning benchmarks. Codes are available at GitHub - manglu097/Chiron-o1: Enhancing Step-by-Step and Verifiable Medical Reasoning in MLLMs
☆ Reversing Flow for Image Restoration CVPR2025
Image restoration aims to recover high-quality (HQ) images from degraded low-quality (LQ) ones by reversing the effects of degradation. Existing generative models for image restoration, including diffusion and score-based models, often treat the degradation process as a stochastic transformation, which introduces inefficiency and complexity. In this work, we propose ResFlow, a novel image restoration framework that models the degradation process as a deterministic path using continuous normalizing flows. ResFlow augments the degradation process with an auxiliary process that disambiguates the uncertainty in HQ prediction to enable reversible modeling of the degradation process. ResFlow adopts entropy-preserving flow paths and learns the augmented degradation flow by matching the velocity field. ResFlow significantly improves the performance and speed of image restoration, completing the task in fewer than four sampling steps. Extensive experiments demonstrate that ResFlow achieves state-of-the-art results across various image restoration benchmarks, offering a practical and efficient solution for real-world applications.
comment: CVPR2025 Final Version; Corresponding Author: Bing Li
☆ Visual-Instructed Degradation Diffusion for All-in-One Image Restoration CVPR2025
Image restoration tasks like deblurring, denoising, and dehazing usually need distinct models for each degradation type, restricting their generalization in real-world scenarios with mixed or unknown degradations. In this work, we propose \textbf{Defusion}, a novel all-in-one image restoration framework that utilizes visual instruction-guided degradation diffusion. Unlike existing methods that rely on task-specific models or ambiguous text-based priors, Defusion constructs explicit \textbf{visual instructions} that align with the visual degradation patterns. These instructions are grounded by applying degradations to standardized visual elements, capturing intrinsic degradation features while agnostic to image semantics. Defusion then uses these visual instructions to guide a diffusion-based model that operates directly in the degradation space, where it reconstructs high-quality images by denoising the degradation effects with enhanced stability and generalizability. Comprehensive experiments demonstrate that Defusion outperforms state-of-the-art methods across diverse image restoration tasks, including complex and real-world degradations.
comment: CVPR2025 Final Version; Corresponding Author: Bing Li
☆ LAION-C: An Out-of-Distribution Benchmark for Web-Scale Vision Models ICML 2025
Out-of-distribution (OOD) robustness is a desired property of computer vision models. Improving model robustness requires high-quality signals from robustness benchmarks to quantify progress. While various benchmark datasets such as ImageNet-C were proposed in the ImageNet era, most ImageNet-C corruption types are no longer OOD relative to today's large, web-scraped datasets, which already contain common corruptions such as blur or JPEG compression artifacts. Consequently, these benchmarks are no longer well-suited for evaluating OOD robustness in the era of web-scale datasets. Indeed, recent models show saturating scores on ImageNet-era OOD benchmarks, indicating that it is unclear whether models trained on web-scale datasets truly become better at OOD generalization or whether they have simply been exposed to the test distortions during training. To address this, we introduce LAION-C as a benchmark alternative for ImageNet-C. LAION-C consists of six novel distortion types specifically designed to be OOD, even for web-scale datasets such as LAION. In a comprehensive evaluation of state-of-the-art models, we find that the LAION-C dataset poses significant challenges to contemporary models, including MLLMs such as Gemini and GPT-4o. We additionally conducted a psychophysical experiment to evaluate the difficulty of our corruptions for human observers, enabling a comparison of models to lab-quality human robustness data. We observe a paradigm shift in OOD generalization: from humans outperforming models, to the best models now matching or outperforming the best human observers.
comment: ICML 2025 camera ready version
☆ LunarLoc: Segment-Based Global Localization on the Moon
Global localization is necessary for autonomous operations on the lunar surface where traditional Earth-based navigation infrastructure, such as GPS, is unavailable. As NASA advances toward sustained lunar presence under the Artemis program, autonomous operations will be an essential component of tasks such as robotic exploration and infrastructure deployment. Tasks such as excavation and transport of regolith require precise pose estimation, but proposed approaches such as visual-inertial odometry (VIO) accumulate odometry drift over long traverses. Precise pose estimation is particularly important for upcoming missions such as the ISRU Pilot Excavator (IPEx) that rely on autonomous agents to operate over extended timescales and varied terrain. To help overcome odometry drift over long traverses, we propose LunarLoc, an approach to global localization that leverages instance segmentation for zero-shot extraction of boulder landmarks from onboard stereo imagery. Segment detections are used to construct a graph-based representation of the terrain, which is then aligned with a reference map of the environment captured during a previous session using graph-theoretic data association. This method enables accurate and drift-free global localization in visually ambiguous settings. LunarLoc achieves sub-cm level accuracy in multi-session global localization experiments, significantly outperforming the state of the art in lunar global localization. To encourage the development of further methods for global localization on the Moon, we release our datasets publicly with a playback module: https://github.com/mit-acl/lunarloc-data.
☆ PET Tracer Separation Using Conditional Diffusion Transformer with Multi-latent Space Learning
In clinical practice, single-radiotracer positron emission tomography (PET) is commonly used for imaging. Although multi-tracer PET imaging can provide supplementary information of radiotracers that are sensitive to physiological function changes, enabling a more comprehensive characterization of physiological and pathological states, the gamma-photon pairs generated by positron annihilation reactions of different tracers in PET imaging have the same energy, making it difficult to distinguish the tracer signals. In this study, a multi-latent space guided texture conditional diffusion transformer model (MS-CDT) is proposed for PET tracer separation. To the best of our knowledge, this is the first attempt to use texture condition and multi-latent space for tracer separation in PET imaging. The proposed model integrates diffusion and transformer architectures into a unified optimization framework, with the novel addition of texture masks as conditional inputs to enhance image details. By leveraging multi-latent space prior derived from different tracers, the model captures multi-level feature representations, aiming to balance computational efficiency and detail preservation. The texture masks, serving as conditional guidance, help the model focus on salient structural patterns, thereby improving the extraction and utilization of fine-grained image textures. When combined with the diffusion transformer backbone, this conditioning mechanism contributes to more accurate and robust tracer separation. To evaluate its effectiveness, the proposed MS-CDT is compared with several advanced methods on two types of 3D PET datasets: brain and chest scans. Experimental results indicate that MS-CDT achieved competitive performance in terms of image quality and preservation of clinically relevant information. Code is available at: https://github.com/yqx7150/MS-CDT.
☆ AI's Blind Spots: Geographic Knowledge and Diversity Deficit in Generated Urban Scenario
Image generation models are revolutionizing many domains, and urban analysis and design is no exception. While such models are widely adopted, there is a limited literature exploring their geographic knowledge, along with the biases they embed. In this work, we generated 150 synthetic images for each state in the USA and related capitals using FLUX 1 and Stable Diffusion 3.5, two state-of-the-art models for image generation. We embed each image using DINO-v2 ViT-S/14 and the Fr\'echet Inception Distances to measure the similarity between the generated images. We found that while these models have implicitly learned aspects of USA geography, if we prompt the models to generate an image for "United States" instead of specific cities or states, the models exhibit a strong representative bias toward metropolis-like areas, excluding rural states and smaller cities. {\color{black} In addition, we found that models systematically exhibit some entity-disambiguation issues with European-sounding names like Frankfort or Devon.
☆ With Limited Data for Multimodal Alignment, Let the STRUCTURE Guide You
Multimodal models have demonstrated powerful capabilities in complex tasks requiring multimodal alignment including zero-shot classification and cross-modal retrieval. However, existing models typically rely on millions of paired multimodal samples, which are prohibitively expensive or infeasible to obtain in many domains. In this work, we explore the feasibility of building multimodal models with limited amount of paired data by aligning pretrained unimodal foundation models. We show that high-quality alignment is possible with as few as tens of thousands of paired samples$\unicode{x2013}$less than $1\%$ of the data typically used in the field. To achieve this, we introduce STRUCTURE, an effective regularization technique that preserves the neighborhood geometry of the latent space of unimodal encoders. Additionally, we show that aligning last layers is often suboptimal and demonstrate the benefits of aligning the layers with the highest representational similarity across modalities. These two components can be readily incorporated into existing alignment methods, yielding substantial gains across 24 zero-shot image classification and retrieval benchmarks, with average relative improvement of $51.6\%$ in classification and $91.8\%$ in retrieval tasks. Our results highlight the effectiveness and broad applicability of our framework for limited-sample multimodal learning and offer a promising path forward for resource-constrained domains.
☆ From Lab to Factory: Pitfalls and Guidelines for Self-/Unsupervised Defect Detection on Low-Quality Industrial Images ECML
The detection and localization of quality-related problems in industrially mass-produced products has historically relied on manual inspection, which is costly and error-prone. Machine learning has the potential to replace manual handling. As such, the desire is to facilitate an unsupervised (or self-supervised) approach, as it is often impossible to specify all conceivable defects ahead of time. A plethora of prior works have demonstrated the aptitude of common reconstruction-, embedding-, and synthesis-based methods in laboratory settings. However, in practice, we observe that most methods do not handle low data quality well or exude low robustness in unfavorable, but typical real-world settings. For practitioners it may be very difficult to identify the actual underlying problem when such methods underperform. Worse, often-reported metrics (e.g., AUROC) are rarely suitable in practice and may give misleading results. In our setting, we attempt to identify subtle anomalies on the surface of blasted forged metal parts, using rather low-quality RGB imagery only, which is a common industrial setting. We specifically evaluate two types of state-of-the-art models that allow us to identify and improve quality issues in production data, without having to obtain new data. Our contribution is to provide guardrails for practitioners that allow them to identify problems related to, e.g., (lack of) robustness or invariance, in either the chosen model or the data reliably in similar scenarios. Furthermore, we exemplify common pitfalls in and shortcomings of likelihood-based approaches and outline a framework for proper empirical risk estimation that is more suitable for real-world scenarios.
comment: 18 pages, 7 figures, 1 table. Camera-ready version for the 2025 conference European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD '25)
☆ ParkFormer: A Transformer-Based Parking Policy with Goal Embedding and Pedestrian-Aware Control
Autonomous parking plays a vital role in intelligent vehicle systems, particularly in constrained urban environments where high-precision control is required. While traditional rule-based parking systems struggle with environmental uncertainties and lack adaptability in crowded or dynamic scenes, human drivers demonstrate the ability to park intuitively without explicit modeling. Inspired by this observation, we propose a Transformer-based end-to-end framework for autonomous parking that learns from expert demonstrations. The network takes as input surround-view camera images, goal-point representations, ego vehicle motion, and pedestrian trajectories. It outputs discrete control sequences including throttle, braking, steering, and gear selection. A novel cross-attention module integrates BEV features with target points, and a GRU-based pedestrian predictor enhances safety by modeling dynamic obstacles. We validate our method on the CARLA 0.9.14 simulator in both vertical and parallel parking scenarios. Experiments show our model achieves a high success rate of 96.57\%, with average positional and orientation errors of 0.21 meters and 0.41 degrees, respectively. The ablation studies further demonstrate the effectiveness of key modules such as pedestrian prediction and goal-point attention fusion. The code and dataset will be released at: https://github.com/little-snail-f/ParkFormer.
Controllable and Expressive One-Shot Video Head Swapping
In this paper, we propose a novel diffusion-based multi-condition controllable framework for video head swapping, which seamlessly transplant a human head from a static image into a dynamic video, while preserving the original body and background of target video, and further allowing to tweak head expressions and movements during swapping as needed. Existing face-swapping methods mainly focus on localized facial replacement neglecting holistic head morphology, while head-swapping approaches struggling with hairstyle diversity and complex backgrounds, and none of these methods allow users to modify the transplanted head expressions after swapping. To tackle these challenges, our method incorporates several innovative strategies through a unified latent diffusion paradigm. 1) Identity-preserving context fusion: We propose a shape-agnostic mask strategy to explicitly disentangle foreground head identity features from background/body contexts, combining hair enhancement strategy to achieve robust holistic head identity preservation across diverse hair types and complex backgrounds. 2) Expression-aware landmark retargeting and editing: We propose a disentangled 3DMM-driven retargeting module that decouples identity, expression, and head poses, minimizing the impact of original expressions in input images and supporting expression editing. While a scale-aware retargeting strategy is further employed to minimize cross-identity expression distortion for higher transfer precision. Experimental results demonstrate that our method excels in seamless background integration while preserving the identity of the source portrait, as well as showcasing superior expression transfer capabilities applicable to both real and virtual characters.
comment: Project page: https://humanaigc.github.io/SwapAnyHead/
☆ Camera Calibration via Circular Patterns: A Comprehensive Framework with Measurement Uncertainty and Unbiased Projection Model
Camera calibration using planar targets has been widely favored, and two types of control points have been mainly considered as measurements: the corners of the checkerboard and the centroid of circles. Since a centroid is derived from numerous pixels, the circular pattern provides more precise measurements than the checkerboard. However, the existing projection model of circle centroids is biased under lens distortion, resulting in low performance. To surmount this limitation, we propose an unbiased projection model of the circular pattern and demonstrate its superior accuracy compared to the checkerboard. Complementing this, we introduce uncertainty into circular patterns to enhance calibration robustness and completeness. Defining centroid uncertainty improves the performance of calibration components, including pattern detection, optimization, and evaluation metrics. We also provide guidelines for performing good camera calibration based on the evaluation metric. The core concept of this approach is to model the boundary points of a two-dimensional shape as a Markov random field, considering its connectivity. The shape distribution is propagated to the centroid uncertainty through an appropriate shape representation based on the Green theorem. Consequently, the resulting framework achieves marked gains in calibration accuracy and robustness. The complete source code and demonstration video are available at https://github.com/chaehyeonsong/discocal.
☆ Beyond Blur: A Fluid Perspective on Generative Diffusion Models
We propose a novel PDE-driven corruption process for generative image synthesis based on advection-diffusion processes which generalizes existing PDE-based approaches. Our forward pass formulates image corruption via a physically motivated PDE that couples directional advection with isotropic diffusion and Gaussian noise, controlled by dimensionless numbers (Peclet, Fourier). We implement this PDE numerically through a GPU-accelerated custom Lattice Boltzmann solver for fast evaluation. To induce realistic turbulence, we generate stochastic velocity fields that introduce coherent motion and capture multi-scale mixing. In the generative process, a neural network learns to reverse the advection-diffusion operator thus constituting a novel generative model. We discuss how previous methods emerge as specific cases of our operator, demonstrating that our framework generalizes prior PDE-based corruption techniques. We illustrate how advection improves the diversity and quality of the generated images while keeping the overall color palette unaffected. This work bridges fluid dynamics, dimensionless PDE theory, and deep generative modeling, offering a fresh perspective on physically informed image corruption processes for diffusion-based synthesis.
comment: 11 pages, 8 figures, pre-print, supplementary pseudocode in appendix
☆ AnyTraverse: An off-road traversability framework with VLM and human operator in the loop
Off-road traversability segmentation enables autonomous navigation with applications in search-and-rescue, military operations, wildlife exploration, and agriculture. Current frameworks struggle due to significant variations in unstructured environments and uncertain scene changes, and are not adaptive to be used for different robot types. We present AnyTraverse, a framework combining natural language-based prompts with human-operator assistance to determine navigable regions for diverse robotic vehicles. The system segments scenes for a given set of prompts and calls the operator only when encountering previously unexplored scenery or unknown class not part of the prompt in its region-of-interest, thus reducing active supervision load while adapting to varying outdoor scenes. Our zero-shot learning approach eliminates the need for extensive data collection or retraining. Our experimental validation includes testing on RELLIS-3D, Freiburg Forest, and RUGD datasets and demonstrate real-world deployment on multiple robot platforms. The results show that AnyTraverse performs better than GA-NAV and Off-seg while offering a vehicle-agnostic approach to off-road traversability that balances automation with targeted human supervision.
☆ Self-supervised Feature Extraction for Enhanced Ball Detection on Soccer Robots
Robust and accurate ball detection is a critical component for autonomous humanoid soccer robots, particularly in dynamic and challenging environments such as RoboCup outdoor fields. However, traditional supervised approaches require extensive manual annotation, which is costly and time-intensive. To overcome this problem, we present a self-supervised learning framework for domain-adaptive feature extraction to enhance ball detection performance. The proposed approach leverages a general-purpose pretrained model to generate pseudo-labels, which are then used in a suite of self-supervised pretext tasks -- including colorization, edge detection, and triplet loss -- to learn robust visual features without relying on manual annotations. Additionally, a model-agnostic meta-learning (MAML) strategy is incorporated to ensure rapid adaptation to new deployment scenarios with minimal supervision. A new dataset comprising 10,000 labeled images from outdoor RoboCup SPL matches is introduced, used to validate the method, and made available to the community. Experimental results demonstrate that the proposed pipeline outperforms baseline models in terms of accuracy, F1 score, and IoU, while also exhibiting faster convergence.
☆ Loupe: A Generalizable and Adaptive Framework for Image Forgery Detection IJCAI 2025
The proliferation of generative models has raised serious concerns about visual content forgery. Existing deepfake detection methods primarily target either image-level classification or pixel-wise localization. While some achieve high accuracy, they often suffer from limited generalization across manipulation types or rely on complex architectures. In this paper, we propose Loupe, a lightweight yet effective framework for joint deepfake detection and localization. Loupe integrates a patch-aware classifier and a segmentation module with conditional queries, allowing simultaneous global authenticity classification and fine-grained mask prediction. To enhance robustness against distribution shifts of test set, Loupe introduces a pseudo-label-guided test-time adaptation mechanism by leveraging patch-level predictions to supervise the segmentation head. Extensive experiments on the DDL dataset demonstrate that Loupe achieves state-of-the-art performance, securing the first place in the IJCAI 2025 Deepfake Detection and Localization Challenge with an overall score of 0.846. Our results validate the effectiveness of the proposed patch-level fusion and conditional query design in improving both classification accuracy and spatial localization under diverse forgery patterns. The code is available at https://github.com/Kamichanw/Loupe.
comment: 6 pages, 2 figures, accepted by IJCAI 2025 workshop
☆ FOCUS: Unified Vision-Language Modeling for Interactive Editing Driven by Referential Segmentation
Recent Large Vision Language Models (LVLMs) demonstrate promising capabilities in unifying visual understanding and generative modeling, enabling both accurate content understanding and flexible editing. However, current approaches treat "what to see" and "how to edit" separately: they either perform isolated object segmentation or utilize segmentation masks merely as conditional prompts for local edit generation tasks, often relying on multiple disjointed models. To bridge these gaps, we introduce FOCUS, a unified LVLM that integrates segmentation-aware perception and controllable object-centric generation within an end-to-end framework. FOCUS employs a dual-branch visual encoder to simultaneously capture global semantic context and fine-grained spatial details. In addition, we leverage a MoVQGAN-based visual tokenizer to produce discrete visual tokens that enhance generation quality. To enable accurate and controllable image editing, we propose a progressive multi-stage training pipeline, where segmentation masks are jointly optimized and used as spatial condition prompts to guide the diffusion decoder. This strategy aligns visual encoding, segmentation, and generation modules, effectively bridging segmentation-aware perception with fine-grained visual synthesis. Extensive experiments across three core tasks, including multimodal understanding, referring segmentation accuracy, and controllable image generation, demonstrate that FOCUS achieves strong performance by jointly optimizing visual perception and generative capabilities.
☆ Co-VisiON: Co-Visibility ReasONing on Sparse Image Sets of Indoor Scenes
Humans exhibit a remarkable ability to recognize co-visibility-the overlapping regions visible in multiple images-even when these images are sparsely distributed across a complex scene. This capability is foundational in 3D vision and robotic perception. Despite significant progress in vision learning, it remains unclear whether current vision models have reached human-level proficiency in co-visibility analysis. In this work, we introduce the Co-Visibility reasONing (Co-VisiON) benchmark, designed to directly evaluate co-visibility reasoning on sparse image sets across over 1000 indoor scenarios. Our experiments reveal that while co-visibility is typically treated as a low-level feature matching task, it poses a significant challenge for existing vision models under sparse conditions. Notably, a proprietary vision-language model outperforms all purely vision-based approaches, with all models lagging substantially behind human performance. This gap underscores the need for more than basic pairwise vision processing-it calls for a comprehensive spatial understanding through high-level reasoning across multiple views. Inspired by human visual cognition, we propose a novel multi-view baseline, Covis, which achieves top performance among pure vision models and narrows the gap to the proprietary VLM. We hope our benchmark and findings will spur further advancements in developing vision models capable of robust, high-level reasoning in challenging, sparse environments. Our dataset and source code can be found at: https://ai4ce.github.io/CoVISION
☆ Temperature calibration of surface emissivities with an improved thermal image enhancement network
Infrared thermography faces persistent challenges in temperature accuracy due to material emissivity variations, where existing methods often neglect the joint optimization of radiometric calibration and image degradation. This study introduces a physically guided neural framework that unifies temperature correction and image enhancement through a symmetric skip-CNN architecture and an emissivity-aware attention module. The pre-processing stage segments the ROIs of the image and and initially corrected the firing rate. A novel dual-constrained loss function strengthens the statistical consistency between the target and reference regions through mean-variance alignment and histogram matching based on Kullback-Leibler dispersion. The method works by dynamically fusing thermal radiation features and spatial context, and the model suppresses emissivity artifacts while recovering structural details. After validating the industrial blower system under different conditions, the improved network realizes the dynamic fusion of thermal radiation characteristics and spatial background, with accurate calibration results in various industrial conditions.
☆ Seeing What Matters: Generalizable AI-generated Video Detection with Forensic-Oriented Augmentation
Synthetic video generation is progressing very rapidly. The latest models can produce very realistic high-resolution videos that are virtually indistinguishable from real ones. Although several video forensic detectors have been recently proposed, they often exhibit poor generalization, which limits their applicability in a real-world scenario. Our key insight to overcome this issue is to guide the detector towards seeing what really matters. In fact, a well-designed forensic classifier should focus on identifying intrinsic low-level artifacts introduced by a generative architecture rather than relying on high-level semantic flaws that characterize a specific model. In this work, first, we study different generative architectures, searching and identifying discriminative features that are unbiased, robust to impairments, and shared across models. Then, we introduce a novel forensic-oriented data augmentation strategy based on the wavelet decomposition and replace specific frequency-related bands to drive the model to exploit more relevant forensic cues. Our novel training paradigm improves the generalizability of AI-generated video detectors, without the need for complex algorithms and large datasets that include multiple synthetic generators. To evaluate our approach, we train the detector using data from a single generative model and test it against videos produced by a wide range of other models. Despite its simplicity, our method achieves a significant accuracy improvement over state-of-the-art detectors and obtains excellent results even on very recent generative models, such as NOVA and FLUX. Code and data will be made publicly available.
☆ PQCAD-DM: Progressive Quantization and Calibration-Assisted Distillation for Extremely Efficient Diffusion Model
Diffusion models excel in image generation but are computational and resource-intensive due to their reliance on iterative Markov chain processes, leading to error accumulation and limiting the effectiveness of naive compression techniques. In this paper, we propose PQCAD-DM, a novel hybrid compression framework combining Progressive Quantization (PQ) and Calibration-Assisted Distillation (CAD) to address these challenges. PQ employs a two-stage quantization with adaptive bit-width transitions guided by a momentum-based mechanism, reducing excessive weight perturbations in low-precision. CAD leverages full-precision calibration datasets during distillation, enabling the student to match full-precision performance even with a quantized teacher. As a result, PQCAD-DM achieves a balance between computational efficiency and generative quality, halving inference time while maintaining competitive performance. Extensive experiments validate PQCAD-DM's superior generative capabilities and efficiency across diverse datasets, outperforming fixed-bit quantization methods.
comment: 10 pages, 6 figures
☆ Infrared and Visible Image Fusion Based on Implicit Neural Representations
Infrared and visible light image fusion aims to combine the strengths of both modalities to generate images that are rich in information and fulfill visual or computational requirements. This paper proposes an image fusion method based on Implicit Neural Representations (INR), referred to as INRFuse. This method parameterizes a continuous function through a neural network to implicitly represent the multimodal information of the image, breaking through the traditional reliance on discrete pixels or explicit features. The normalized spatial coordinates of the infrared and visible light images serve as inputs, and multi-layer perceptrons is utilized to adaptively fuse the features of both modalities, resulting in the output of the fused image. By designing multiple loss functions, the method jointly optimizes the similarity between the fused image and the original images, effectively preserving the thermal radiation information of the infrared image while maintaining the texture details of the visible light image. Furthermore, the resolution-independent characteristic of INR allows for the direct fusion of images with varying resolutions and achieves super-resolution reconstruction through high-density coordinate queries. Experimental results indicate that INRFuse outperforms existing methods in both subjective visual quality and objective evaluation metrics, producing fused images with clear structures, natural details, and rich information without the necessity for a training dataset.
☆ Cross-Modal Obfuscation for Jailbreak Attacks on Large Vision-Language Models
Large Vision-Language Models (LVLMs) demonstrate exceptional performance across multimodal tasks, yet remain vulnerable to jailbreak attacks that bypass built-in safety mechanisms to elicit restricted content generation. Existing black-box jailbreak methods primarily rely on adversarial textual prompts or image perturbations, yet these approaches are highly detectable by standard content filtering systems and exhibit low query and computational efficiency. In this work, we present Cross-modal Adversarial Multimodal Obfuscation (CAMO), a novel black-box jailbreak attack framework that decomposes malicious prompts into semantically benign visual and textual fragments. By leveraging LVLMs' cross-modal reasoning abilities, CAMO covertly reconstructs harmful instructions through multi-step reasoning, evading conventional detection mechanisms. Our approach supports adjustable reasoning complexity and requires significantly fewer queries than prior attacks, enabling both stealth and efficiency. Comprehensive evaluations conducted on leading LVLMs validate CAMO's effectiveness, showcasing robust performance and strong cross-model transferability. These results underscore significant vulnerabilities in current built-in safety mechanisms, emphasizing an urgent need for advanced, alignment-aware security and safety solutions in vision-language systems.
comment: 15 pages, 9 figures
☆ Class Agnostic Instance-level Descriptor for Visual Instance Search
Despite the great success of the deep features in content-based image retrieval, the visual instance search remains challenging due to the lack of effective instance level feature representation. Supervised or weakly supervised object detection methods are not among the options due to their poor performance on the unknown object categories. In this paper, based on the feature set output from self-supervised ViT, the instance level region discovery is modeled as detecting the compact feature subsets in a hierarchical fashion. The hierarchical decomposition results in a hierarchy of feature subsets. The non-leaf nodes and leaf nodes on the hierarchy correspond to the various instance regions in an image of different semantic scales. The hierarchical decomposition well addresses the problem of object embedding and occlusions, which are widely observed in the real scenarios. The features derived from the nodes on the hierarchy make up a comprehensive representation for the latent instances in the image. Our instance-level descriptor remains effective on both the known and unknown object categories. Empirical studies on three instance search benchmarks show that it outperforms state-of-the-art methods considerably.
☆ Noise-Informed Diffusion-Generated Image Detection with Anomaly Attention
With the rapid development of image generation technologies, especially the advancement of Diffusion Models, the quality of synthesized images has significantly improved, raising concerns among researchers about information security. To mitigate the malicious abuse of diffusion models, diffusion-generated image detection has proven to be an effective countermeasure.However, a key challenge for forgery detection is generalising to diffusion models not seen during training. In this paper, we address this problem by focusing on image noise. We observe that images from different diffusion models share similar noise patterns, distinct from genuine images. Building upon this insight, we introduce a novel Noise-Aware Self-Attention (NASA) module that focuses on noise regions to capture anomalous patterns. To implement a SOTA detection model, we incorporate NASA into Swin Transformer, forming an novel detection architecture NASA-Swin. Additionally, we employ a cross-modality fusion embedding to combine RGB and noise images, along with a channel mask strategy to enhance feature learning from both modalities. Extensive experiments demonstrate the effectiveness of our approach in enhancing detection capabilities for diffusion-generated images. When encountering unseen generation methods, our approach achieves the state-of-the-art performance.Our code is available at https://github.com/WeinanGuan/NASA-Swin.
comment: Accepted by TIFS 2025. Our code is availabel at https://github.com/WeinanGuan/NASA-Swin
☆ Uncertainty-Aware Variational Information Pursuit for Interpretable Medical Image Analysis
In medical imaging, AI decision-support systems must balance accuracy and interpretability to build user trust and support effective clinical decision-making. Recently, Variational Information Pursuit (V-IP) and its variants have emerged as interpretable-by-design modeling techniques, aiming to explain AI decisions in terms of human-understandable, clinically relevant concepts. However, existing V-IP methods overlook instance-level uncertainties in query-answer generation, which can arise from model limitations (epistemic uncertainty) or variability in expert responses (aleatoric uncertainty). This paper introduces Uncertainty-Aware V-IP (UAV-IP), a novel framework that integrates uncertainty quantification into the V-IP process. We evaluate UAV-IP across four medical imaging datasets, PH2, Derm7pt, BrEaST, and SkinCon, demonstrating an average AUC improvement of approximately 3.2% while generating 20% more concise explanations compared to baseline V-IP, without sacrificing informativeness. These findings highlight the importance of uncertainty-aware reasoning in interpretable by design models for robust and reliable medical decision-making.
☆ Cross-modal Offset-guided Dynamic Alignment and Fusion for Weakly Aligned UAV Object Detection
Unmanned aerial vehicle (UAV) object detection plays a vital role in applications such as environmental monitoring and urban security. To improve robustness, recent studies have explored multimodal detection by fusing visible (RGB) and infrared (IR) imagery. However, due to UAV platform motion and asynchronous imaging, spatial misalignment frequently occurs between modalities, leading to weak alignment. This introduces two major challenges: semantic inconsistency at corresponding spatial locations and modality conflict during feature fusion. Existing methods often address these issues in isolation, limiting their effectiveness. In this paper, we propose Cross-modal Offset-guided Dynamic Alignment and Fusion (CoDAF), a unified framework that jointly tackles both challenges in weakly aligned UAV-based object detection. CoDAF comprises two novel modules: the Offset-guided Semantic Alignment (OSA), which estimates attention-based spatial offsets and uses deformable convolution guided by a shared semantic space to align features more precisely; and the Dynamic Attention-guided Fusion Module (DAFM), which adaptively balances modality contributions through gating and refines fused features via spatial-channel dual attention. By integrating alignment and fusion in a unified design, CoDAF enables robust UAV object detection. Experiments on standard benchmarks validate the effectiveness of our approach, with CoDAF achieving a mAP of 78.6% on the DroneVehicle dataset.
☆ 3DeepRep: 3D Deep Low-rank Tensor Representation for Hyperspectral Image Inpainting
Recent approaches based on transform-based tensor nuclear norm (TNN) have demonstrated notable effectiveness in hyperspectral image (HSI) inpainting by leveraging low-rank structures in latent representations. Recent developments incorporate deep transforms to improve low-rank tensor representation; however, existing approaches typically restrict the transform to the spectral mode, neglecting low-rank properties along other tensor modes. In this paper, we propose a novel 3-directional deep low-rank tensor representation (3DeepRep) model, which performs deep nonlinear transforms along all three modes of the HSI tensor. To enforce low-rankness, the model minimizes the nuclear norms of mode-i frontal slices in the corresponding latent space for each direction (i=1,2,3), forming a 3-directional TNN regularization. The outputs from the three directional branches are subsequently fused via a learnable aggregation module to produce the final result. An efficient gradient-based optimization algorithm is developed to solve the model in a self-supervised manner. Extensive experiments on real-world HSI datasets demonstrate that the proposed method achieves superior inpainting performance compared to existing state-of-the-art techniques, both qualitatively and quantitatively.
☆ TeSG: Textual Semantic Guidance for Infrared and Visible Image Fusion
Infrared and visible image fusion (IVF) aims to combine complementary information from both image modalities, producing more informative and comprehensive outputs. Recently, text-guided IVF has shown great potential due to its flexibility and versatility. However, the effective integration and utilization of textual semantic information remains insufficiently studied. To tackle these challenges, we introduce textual semantics at two levels: the mask semantic level and the text semantic level, both derived from textual descriptions extracted by large Vision-Language Models (VLMs). Building on this, we propose Textual Semantic Guidance for infrared and visible image fusion, termed TeSG, which guides the image synthesis process in a way that is optimized for downstream tasks such as detection and segmentation. Specifically, TeSG consists of three core components: a Semantic Information Generator (SIG), a Mask-Guided Cross-Attention (MGCA) module, and a Text-Driven Attentional Fusion (TDAF) module. The SIG generates mask and text semantics based on textual descriptions. The MGCA module performs initial attention-based fusion of visual features from both infrared and visible images, guided by mask semantics. Finally, the TDAF module refines the fusion process with gated attention driven by text semantics. Extensive experiments demonstrate the competitiveness of our approach, particularly in terms of performance on downstream tasks, compared to existing state-of-the-art methods.
comment: 11 pages, 6 figures
☆ Few-Shot Generalized Category Discovery With Retrieval-Guided Decision Boundary Enhancement ICMR 2025
While existing Generalized Category Discovery (GCD) models have achieved significant success, their performance with limited labeled samples and a small number of known categories remains largely unexplored. In this work, we introduce the task of Few-shot Generalized Category Discovery (FSGCD), aiming to achieve competitive performance in GCD tasks under conditions of known information scarcity. To tackle this challenge, we propose a decision boundary enhancement framework with affinity-based retrieval. Our framework is designed to learn the decision boundaries of known categories and transfer these boundaries to unknown categories. First, we use a decision boundary pre-training module to mitigate the overfitting of pre-trained information on known category boundaries and improve the learning of these decision boundaries using labeled samples. Second, we implement a two-stage retrieval-guided decision boundary optimization strategy. Specifically, this strategy further enhances the severely limited known boundaries by using affinity-retrieved pseudo-labeled samples. Then, these refined boundaries are applied to unknown clusters via guidance from affinity-based feature retrieval. Experimental results demonstrate that our proposed method outperforms existing methods on six public GCD benchmarks under the FSGCD setting. The codes are available at: https://github.com/Ryh1218/FSGCD
comment: Accepted by ICMR 2025
☆ Language-driven Description Generation and Common Sense Reasoning for Video Action Recognition
Recent video action recognition methods have shown excellent performance by adapting large-scale pre-trained language-image models to the video domain. However, language models contain rich common sense priors - the scene contexts that humans use to constitute an understanding of objects, human-object interactions, and activities - that have not been fully exploited. In this paper, we introduce a framework incorporating language-driven common sense priors to identify cluttered video action sequences from monocular views that are often heavily occluded. We propose: (1) A video context summary component that generates candidate objects, activities, and the interactions between objects and activities; (2) A description generation module that describes the current scene given the context and infers subsequent activities, through auxiliary prompts and common sense reasoning; (3) A multi-modal activity recognition head that combines visual and textual cues to recognize video actions. We demonstrate the effectiveness of our approach on the challenging Action Genome and Charades datasets.
☆ LaVi: Efficient Large Vision-Language Models via Internal Feature Modulation
Despite the impressive advancements of Large Vision-Language Models (LVLMs), existing approaches suffer from a fundamental bottleneck: inefficient visual-language integration. Current methods either disrupt the model's inherent structure or introduce severe long-context computational burden, severely limiting scalability and efficiency. In this paper, we rethink multimodal integration and present LaVi, a novel LVLM that enables seamless and efficient vision-language fusion through internal feature modulation within the Large Language Models (LLMs). Unlike dominant LVLMs that rely on visual token concatenation, LaVi bypasses long-context expansion by introducing a lightweight and adaptive transformation, which incorporates visual context by injecting token-wise vision-conditioned deltas into the affine parameters of layer normalization. This mechanism directly modulates linguistic hidden states based on visual input, ensuring precise vision-language alignment while preserving the LLM's linguistic priors and drastically reducing computational costs. Extensive evaluations across 15 image and video benchmarks demonstrate that LaVi not only achieves state-of-the-art multimodal performance but also dramatically enhances efficiency. Compared to LLaVA-OV-7B, LaVi reduces FLOPs by 94.0%, improves inference speed by 3.1 times, and cuts memory usage in half - establishing LaVi as a scalable and practical solution for real-time multimodal reasoning. The code and models will be released soon.
☆ DepthVanish: Optimizing Adversarial Interval Structures for Stereo-Depth-Invisible Patches
Stereo Depth estimation is a critical task in autonomous driving and robotics, where inaccuracies (such as misidentifying nearby objects as distant) can lead to dangerous situations. Adversarial attacks against stereo depth estimation can help reveal vulnerabilities before deployment. Previous work has shown that repeating optimized textures can effectively mislead stereo depth estimation in digital settings. However, our research reveals that these naively repeated texture structures perform poorly in physical-world implementations, i.e., when deployed as patches, limiting their practical utility for testing stereo depth estimation systems. In this work, for the first time, we discover that introducing regular intervals between repeated textures, creating a striped structure, significantly enhances the patch attack effectiveness. Through extensive experimentation, we analyze how variations of this novel structure influence the performance. Based on these insights, we develop a novel stereo depth attack that jointly optimizes both the striped structure and texture elements. Our generated adversarial patches can be inserted into any scenes and successfully attack state-of-the-art stereo depth estimation methods, i.e., RAFT-Stereo and STTR. Most critically, our patch can also attack commercial RGB-D cameras (Intel RealSense) in real-world conditions, demonstrating their practical relevance for security assessment of stereo systems.
☆ How to Train your Text-to-Image Model: Evaluating Design Choices for Synthetic Training Captions
Training data is at the core of any successful text-to-image models. The quality and descriptiveness of image text are crucial to a model's performance. Given the noisiness and inconsistency in web-scraped datasets, recent works shifted towards synthetic training captions. While this setup is generally believed to produce more capable models, current literature does not provide any insights into its design choices. This study closes this gap by systematically investigating how different synthetic captioning strategies impact the downstream performance of text-to-image models. Our experiments demonstrate that dense, high-quality captions enhance text alignment but may introduce trade-offs in output aesthetics and diversity. Conversely, captions of randomized lengths yield balanced improvements across aesthetics and alignment without compromising sample diversity. We also demonstrate that varying caption distributions introduce significant shifts in the output bias of a trained model. Our findings underscore the importance of caption design in achieving optimal model performance and provide practical insights for more effective training data strategies in text-to-image generation.
☆ Extracting Multimodal Learngene in CLIP: Unveiling the Multimodal Generalizable Knowledge
CLIP (Contrastive Language-Image Pre-training) has attracted widespread attention for its multimodal generalizable knowledge, which is significant for downstream tasks. However, the computational overhead of a large number of parameters and large-scale pre-training poses challenges of pre-training a different scale of CLIP. Learngene extracts the generalizable components termed as learngene from an ancestry model and initializes diverse descendant models with it. Previous Learngene paradigms fail to handle the generalizable knowledge in multimodal scenarios. In this paper, we put forward the idea of utilizing a multimodal block to extract the multimodal generalizable knowledge, which inspires us to propose MM-LG (Multimodal Learngene), a novel framework designed to extract and leverage generalizable components from CLIP. Specifically, we first establish multimodal and unimodal blocks to extract the multimodal and unimodal generalizable knowledge in a weighted-sum manner. Subsequently, we employ these components to numerically initialize descendant models of varying scales and modalities. Extensive experiments demonstrate MM-LG's effectiveness, which achieves performance gains over existing learngene approaches (e.g.,+3.1% on Oxford-IIIT PET and +4.13% on Flickr30k) and comparable or superior results to the pre-training and fine-tuning paradigm (e.g.,+1.9% on Oxford-IIIT PET and +3.65% on Flickr30k). Notably, MM-LG requires only around 25% of the parameter storage while reducing around 2.8 times pre-training costs for diverse model scales compared to the pre-training and fine-tuning paradigm, making it particularly suitable for efficient deployment across diverse downstream tasks.
♻ ☆ Embodied Web Agents: Bridging Physical-Digital Realms for Integrated Agent Intelligence
AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-world landmarks using web knowledge. We introduce Embodied Web Agents, a novel paradigm for AI agents that fluidly bridge embodiment and web-scale reasoning. To operationalize this concept, we first develop the Embodied Web Agents task environments, a unified simulation platform that tightly integrates realistic 3D indoor and outdoor environments with functional web interfaces. Building upon this platform, we construct and release the Embodied Web Agents Benchmark, which encompasses a diverse suite of tasks including cooking, navigation, shopping, tourism, and geolocation - all requiring coordinated reasoning across physical and digital realms for systematic assessment of cross-domain intelligence. Experimental results reveal significant performance gaps between state-of-the-art AI systems and human capabilities, establishing both challenges and opportunities at the intersection of embodied cognition and web-scale knowledge access. All datasets, codes and websites are publicly available at our project page https://embodied-web-agent.github.io/.
♻ ☆ Sekai: A Video Dataset towards World Exploration
Video generation techniques have made remarkable progress, promising to be the foundation of interactive world exploration. However, existing video generation datasets are not well-suited for world exploration training as they suffer from some limitations: limited locations, short duration, static scenes, and a lack of annotations about exploration and the world. In this paper, we introduce Sekai (meaning ``world'' in Japanese), a high-quality first-person view worldwide video dataset with rich annotations for world exploration. It consists of over 5,000 hours of walking or drone view (FPV and UVA) videos from over 100 countries and regions across 750 cities. We develop an efficient and effective toolbox to collect, pre-process and annotate videos with location, scene, weather, crowd density, captions, and camera trajectories. Experiments demonstrate the quality of the dataset. And, we use a subset to train an interactive video world exploration model, named YUME (meaning ``dream'' in Japanese). We believe Sekai will benefit the area of video generation and world exploration, and motivate valuable applications. The project page is https://lixsp11.github.io/sekai-project/.
comment: 12 pages, 6 figures
♻ ☆ One-Step Diffusion for Detail-Rich and Temporally Consistent Video Super-Resolution
It is a challenging problem to reproduce rich spatial details while maintaining temporal consistency in real-world video super-resolution (Real-VSR), especially when we leverage pre-trained generative models such as stable diffusion (SD) for realistic details synthesis. Existing SD-based Real-VSR methods often compromise spatial details for temporal coherence, resulting in suboptimal visual quality. We argue that the key lies in how to effectively extract the degradation-robust temporal consistency priors from the low-quality (LQ) input video and enhance the video details while maintaining the extracted consistency priors. To achieve this, we propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-based one-step diffusion model, achieving realistic frame details and temporal consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval (CFR) module to aggregate complementary information across frames, and train a Consistency-LoRA (C-LoRA) to learn robust temporal representations from degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with the temporal space defined by C-LoRA to keep temporal coherence. The two phases alternate iteratively for optimization, collaboratively delivering consistent and detail-rich outputs. During inference, the two LoRA branches are merged into the SD model, allowing efficient and high-quality video restoration in a single diffusion step. Experiments show that DLoRAL achieves strong performance in both accuracy and speed. Code and models are available at https://github.com/yjsunnn/DLoRAL.
Show-o2: Improved Native Unified Multimodal Models
This paper presents improved native unified multimodal models, \emph{i.e.,} Show-o2, that leverage autoregressive modeling and flow matching. Built upon a 3D causal variational autoencoder space, unified visual representations are constructed through a dual-path of spatial (-temporal) fusion, enabling scalability across image and video modalities while ensuring effective multimodal understanding and generation. Based on a language model, autoregressive modeling and flow matching are natively applied to the language head and flow head, respectively, to facilitate text token prediction and image/video generation. A two-stage training recipe is designed to effectively learn and scale to larger models. The resulting Show-o2 models demonstrate versatility in handling a wide range of multimodal understanding and generation tasks across diverse modalities, including text, images, and videos. Code and models are released at https://github.com/showlab/Show-o.
comment: Technical report. (v2: update references and tables)
♻ ☆ Privacy-Preserving Chest X-ray Classification in Latent Space with Homomorphically Encrypted Neural Inference
Medical imaging data contain sensitive patient information requiring strong privacy protection. Many analytical setups require data to be sent to a server for inference purposes. Homomorphic encryption (HE) provides a solution by allowing computations to be performed on encrypted data without revealing the original information. However, HE inference is computationally expensive, particularly for large images (e.g., chest X-rays). In this study, we propose an HE inference framework for medical images that uses VQGAN to compress images into latent representations, thereby significantly reducing the computational burden while preserving image quality. We approximate the activation functions with lower-degree polynomials to balance the accuracy and efficiency in compliance with HE requirements. We observed that a downsampling factor of eight for compression achieved an optimal balance between performance and computational cost. We further adapted the squeeze and excitation module, which is known to improve traditional CNNs, to enhance the HE framework. Our method was tested on two chest X-ray datasets for multi-label classification tasks using vanilla CNN backbones. Although HE inference remains relatively slow and introduces minor performance differences compared with unencrypted inference, our approach shows strong potential for practical use in medical images
comment: 11 pages, 5 figures
♻ ☆ SynPo: Boosting Training-Free Few-Shot Medical Segmentation via High-Quality Negative Prompts MICCAI 2025
The advent of Large Vision Models (LVMs) offers new opportunities for few-shot medical image segmentation. However, existing training-free methods based on LVMs fail to effectively utilize negative prompts, leading to poor performance on low-contrast medical images. To address this issue, we propose SynPo, a training-free few-shot method based on LVMs (e.g., SAM), with the core insight: improving the quality of negative prompts. To select point prompts in a more reliable confidence map, we design a novel Confidence Map Synergy Module by combining the strengths of DINOv2 and SAM. Based on the confidence map, we select the top-k pixels as the positive points set and choose the negative points set using a Gaussian distribution, followed by independent K-means clustering for both sets. Then, these selected points are leveraged as high-quality prompts for SAM to get the segmentation results. Extensive experiments demonstrate that SynPo achieves performance comparable to state-of-the-art training-based few-shot methods.
comment: MICCAI 2025 Early Accept. Project Page: https://liu-yufei.github.io/synpo-project-page/
♻ ☆ BreastDCEDL: Curating a Comprehensive DCE-MRI Dataset and developing a Transformer Implementation for Breast Cancer Treatment Response Prediction
Breast cancer remains a leading cause of cancer-related mortality worldwide, making early detection and accurate treatment response monitoring critical priorities. We present BreastDCEDL, a curated, deep learning-ready dataset comprising pre-treatment 3D Dynamic Contrast-Enhanced MRI (DCE-MRI) scans from 2,070 breast cancer patients drawn from the I-SPY1, I-SPY2, and Duke cohorts, all sourced from The Cancer Imaging Archive. The raw DICOM imaging data were rigorously converted into standardized 3D NIfTI volumes with preserved signal integrity, accompanied by unified tumor annotations and harmonized clinical metadata including pathologic complete response (pCR), hormone receptor (HR), and HER2 status. Although DCE-MRI provides essential diagnostic information and deep learning offers tremendous potential for analyzing such complex data, progress has been limited by lack of accessible, public, multicenter datasets. BreastDCEDL addresses this gap by enabling development of advanced models, including state-of-the-art transformer architectures that require substantial training data. To demonstrate its capacity for robust modeling, we developed the first transformer-based model for breast DCE-MRI, leveraging Vision Transformer (ViT) architecture trained on RGB-fused images from three contrast phases (pre-contrast, early post-contrast, and late post-contrast). Our ViT model achieved state-of-the-art pCR prediction performance in HR+/HER2- patients (AUC 0.94, accuracy 0.93). BreastDCEDL includes predefined benchmark splits, offering a framework for reproducible research and enabling clinically meaningful modeling in breast cancer imaging.
♻ ☆ AerialVG: A Challenging Benchmark for Aerial Visual Grounding by Exploring Positional Relations
Visual grounding (VG) aims to localize target objects in an image based on natural language descriptions. In this paper, we propose AerialVG, a new task focusing on visual grounding from aerial views. Compared to traditional VG, AerialVG poses new challenges, \emph{e.g.}, appearance-based grounding is insufficient to distinguish among multiple visually similar objects, and positional relations should be emphasized. Besides, existing VG models struggle when applied to aerial imagery, where high-resolution images cause significant difficulties. To address these challenges, we introduce the first AerialVG dataset, consisting of 5K real-world aerial images, 50K manually annotated descriptions, and 103K objects. Particularly, each annotation in AerialVG dataset contains multiple target objects annotated with relative spatial relations, requiring models to perform comprehensive spatial reasoning. Furthermore, we propose an innovative model especially for the AerialVG task, where a Hierarchical Cross-Attention is devised to focus on target regions, and a Relation-Aware Grounding module is designed to infer positional relations. Experimental results validate the effectiveness of our dataset and method, highlighting the importance of spatial reasoning in aerial visual grounding. The code and dataset will be released.
comment: 8 pages, 6 figures
♻ ☆ Improving Surgical Risk Prediction Through Integrating Automated Body Composition Analysis: a Retrospective Trial on Colectomy Surgery
Objective: To evaluate whether preoperative body composition metrics automatically extracted from CT scans can predict postoperative outcomes after colectomy, either alone or combined with clinical variables or existing risk predictors. Main outcomes and measures: The primary outcome was the predictive performance for 1-year all-cause mortality following colectomy. A Cox proportional hazards model with 1-year follow-up was used, and performance was evaluated using the concordance index (C-index) and Integrated Brier Score (IBS). Secondary outcomes included postoperative complications, unplanned readmission, blood transfusion, and severe infection, assessed using AUC and Brier Score from logistic regression. Odds ratios (OR) described associations between individual CT-derived body composition metrics and outcomes. Over 300 features were extracted from preoperative CTs across multiple vertebral levels, including skeletal muscle area, density, fat areas, and inter-tissue metrics. NSQIP scores were available for all surgeries after 2012.
comment: 32 pages, 5 figures
♻ ☆ MSCA-Net:Multi-Scale Context Aggregation Network for Infrared Small Target Detection
In complex environments, detecting tiny infrared targets has always been challenging because of the low contrast and high noise levels inherent in infrared images. These factors often lead to the loss of crucial details during feature extraction. Moreover, existing detection methods have limitations in adequately integrating global and local information, which constrains the efficiency and accuracy of infrared small target detection. To address these challenges, this paper proposes a network architecture named MSCA-Net, which integrates three key components: Multi-Scale Enhanced Dilated Attention mechanism (MSEDA), Positional Convolutional Block Attention Module (PCBAM), and Channel Aggregation Feature Fusion Block (CAB). Specifically, MSEDA employs a multi-scale feature fusion attention mechanism to adaptively aggregate information across different scales, enriching feature representation. PCBAM captures the correlation between global and local features through a correlation matrix-based strategy, enabling deep feature interaction. Moreover, CAB enhances the representation of critical features by assigning greater weights to them, integrating both low-level and high-level information, and thereby improving the models detection performance in complex backgrounds. The experimental results demonstrate that MSCA-Net achieves strong small target detection performance in complex backgrounds. Specifically, it attains mIoU scores of 78.43%, 94.56%, and 67.08% on the NUAA-SIRST, NUDT-SIRST, and IRTSD-1K datasets, respectively, underscoring its effectiveness and strong potential for real-world applications.
♻ ☆ Perceptual-GS: Scene-adaptive Perceptual Densification for Gaussian Splatting ICML
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for novel view synthesis. However, existing methods struggle to adaptively optimize the distribution of Gaussian primitives based on scene characteristics, making it challenging to balance reconstruction quality and efficiency. Inspired by human perception, we propose scene-adaptive perceptual densification for Gaussian Splatting (Perceptual-GS), a novel framework that integrates perceptual sensitivity into the 3DGS training process to address this challenge. We first introduce a perception-aware representation that models human visual sensitivity while constraining the number of Gaussian primitives. Building on this foundation, we develop a perceptual sensitivity-adaptive distribution to allocate finer Gaussian granularity to visually critical regions, enhancing reconstruction quality and robustness. Extensive evaluations on multiple datasets, including BungeeNeRF for large-scale scenes, demonstrate that Perceptual-GS achieves state-of-the-art performance in reconstruction quality, efficiency, and robustness. The code is publicly available at: https://github.com/eezkni/Perceptual-GS
comment: Accepted to International Conference on Machine Learning (ICML) 2025
♻ ☆ Genesis: Multimodal Driving Scene Generation with Spatio-Temporal and Cross-Modal Consistency
We present Genesis, a unified framework for joint generation of multi-view driving videos and LiDAR sequences with spatio-temporal and cross-modal consistency. Genesis employs a two-stage architecture that integrates a DiT-based video diffusion model with 3D-VAE encoding, and a BEV-aware LiDAR generator with NeRF-based rendering and adaptive sampling. Both modalities are directly coupled through a shared latent space, enabling coherent evolution across visual and geometric domains. To guide the generation with structured semantics, we introduce DataCrafter, a captioning module built on vision-language models that provides scene-level and instance-level supervision. Extensive experiments on the nuScenes benchmark demonstrate that Genesis achieves state-of-the-art performance across video and LiDAR metrics (FVD 16.95, FID 4.24, Chamfer 0.611), and benefits downstream tasks including segmentation and 3D detection, validating the semantic fidelity and practical utility of the generated data.
♻ ☆ DeSPITE: Exploring Contrastive Deep Skeleton-Pointcloud-IMU-Text Embeddings for Advanced Point Cloud Human Activity Understanding ICCV 2025
Despite LiDAR (Light Detection and Ranging) being an effective privacy-preserving alternative to RGB cameras to perceive human activities, it remains largely underexplored in the context of multi-modal contrastive pre-training for human activity understanding (e.g., human activity recognition (HAR), retrieval, or person re-identification (RE-ID)). To close this gap, our work explores learning the correspondence between LiDAR point clouds, human skeleton poses, IMU data, and text in a joint embedding space. More specifically, we present DeSPITE, a Deep Skeleton-Pointcloud-IMU-Text Embedding model, which effectively learns a joint embedding space across these four modalities. At the heart of our empirical exploration, we have combined the existing LIPD and Babel datasets, which enabled us to synchronize data of all four modalities, allowing us to explore the learning of a new joint embedding space. Our experiments demonstrate novel human activity understanding tasks for point cloud sequences enabled through DeSPITE, including Skeleton<->Pointcloud<->IMU matching, retrieval, and temporal moment retrieval. Furthermore, we show that DeSPITE is an effective pre-training strategy for point cloud HAR through experiments in MSR-Action3D and HMPEAR.
comment: This work is currently under review at ICCV 2025
♻ ☆ Decoupled Classifier-Free Guidance for Counterfactual Diffusion Models
Counterfactual image generation aims to simulate realistic visual outcomes under specific causal interventions. Diffusion models have recently emerged as a powerful tool for this task, combining DDIM inversion with conditional generation via classifier-free guidance (CFG). However, standard CFG applies a single global weight across all conditioning variables, which can lead to poor identity preservation and spurious attribute changes - a phenomenon known as attribute amplification. To address this, we propose Decoupled Classifier-Free Guidance (DCFG), a flexible and model-agnostic framework that introduces group-wise conditioning control. DCFG builds on an attribute-split embedding strategy that disentangles semantic inputs, enabling selective guidance on user-defined attribute groups. For counterfactual generation, we partition attributes into intervened and invariant sets based on a causal graph and apply distinct guidance to each. Experiments on CelebA-HQ, MIMIC-CXR, and EMBED show that DCFG improves intervention fidelity, mitigates unintended changes, and enhances reversibility, enabling more faithful and interpretable counterfactual image generation.
♻ ☆ Learning Joint Denoising, Demosaicing, and Compression from the Raw Natural Image Noise Dataset
This paper introduces the Raw Natural Image Noise Dataset (RawNIND), a diverse collection of paired raw images designed to support the development of denoising models that generalize across sensors, image development workflows, and styles. Two denoising methods are proposed: one operates directly on raw Bayer data, leveraging computational efficiency, while the other processes linear RGB images for improved generalization to different sensors, with both preserving flexibility for subsequent development. Both methods outperform traditional approaches which rely on developed images. Additionally, the integration of denoising and compression at the raw data level significantly enhances rate-distortion performance and computational efficiency. These findings suggest a paradigm shift toward raw data workflows for efficient and flexible image processing.
♻ ☆ Efficient Online Inference of Vision Transformers by Training-Free Tokenization
The cost of deploying vision transformers increasingly represents a barrier to wider industrial adoption. Existing compression techniques require additional end-to-end fine-tuning or incur a significant drawback to runtime, making them ill-suited for online (real-time) inference, where a prediction is made on any new input as it comes in. We introduce the $\textbf{Visual Word Tokenizer}$ (VWT), a training-free method for reducing energy costs while retaining performance and runtime. The VWT groups visual subwords (image patches) that are frequently used into visual words while infrequent ones remain intact. To do so, $\textit{intra}$-image or $\textit{inter}$-image statistics are leveraged to identify similar visual concepts for sequence compression. Experimentally, we demonstrate a reduction in wattage of up to 25% with only a 20% increase in runtime at most. Comparative approaches of 8-bit quantization and token merging achieve a lower or similar energy efficiency but exact a higher toll on runtime (up to 100% or more). Our results indicate that VWTs are well-suited for efficient online inference with a marginal compromise on performance.
♻ ☆ SHAKTI: A 2.5 Billion Parameter Small Language Model Optimized for Edge AI and Low-Resource Environments
We introduce Shakti, a 2.5 billion parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. Shakti combines high-performance NLP with optimized efficiency and precision, making it ideal for real-time AI applications where computational resources and memory are limited. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service. Benchmark evaluations demonstrate that Shakti performs competitively against larger models while maintaining low latency and on-device efficiency, positioning it as a leading solution for edge AI.
comment: Paper in pdf format is 11 pages and contains 4 tables
♻ ☆ SR3D: Unleashing Single-view 3D Reconstruction for Transparent and Specular Object Grasping
Recent advancements in 3D robotic manipulation have improved grasping of everyday objects, but transparent and specular materials remain challenging due to depth sensing limitations. While several 3D reconstruction and depth completion approaches address these challenges, they suffer from setup complexity or limited observation information utilization. To address this, leveraging the power of single view 3D object reconstruction approaches, we propose a training free framework SR3D that enables robotic grasping of transparent and specular objects from a single view observation. Specifically, given single view RGB and depth images, SR3D first uses the external visual models to generate 3D reconstructed object mesh based on RGB image. Then, the key idea is to determine the 3D object's pose and scale to accurately localize the reconstructed object back into its original depth corrupted 3D scene. Therefore, we propose view matching and keypoint matching mechanisms,which leverage both the 2D and 3D's inherent semantic and geometric information in the observation to determine the object's 3D state within the scene, thereby reconstructing an accurate 3D depth map for effective grasp detection. Experiments in both simulation and real world show the reconstruction effectiveness of SR3D.
♻ ☆ Collaborative Perception Datasets for Autonomous Driving: A Review
Collaborative perception has attracted growing interest from academia and industry due to its potential to enhance perception accuracy, safety, and robustness in autonomous driving through multi-agent information fusion. With the advancement of Vehicle-to-Everything (V2X) communication, numerous collaborative perception datasets have emerged, varying in cooperation paradigms, sensor configurations, data sources, and application scenarios. However, the absence of systematic summarization and comparative analysis hinders effective resource utilization and standardization of model evaluation. As the first comprehensive review focused on collaborative perception datasets, this work reviews and compares existing resources from a multi-dimensional perspective. We categorize datasets based on cooperation paradigms, examine their data sources and scenarios, and analyze sensor modalities and supported tasks. A detailed comparative analysis is conducted across multiple dimensions. We also outline key challenges and future directions, including dataset scalability, diversity, domain adaptation, standardization, privacy, and the integration of large language models. To support ongoing research, we provide a continuously updated online repository of collaborative perception datasets and related literature: https://github.com/frankwnb/Collaborative-Perception-Datasets-for-Autonomous-Driving.
comment: 18pages, 7figures, journal
♻ ☆ Real-time Free-view Human Rendering from Sparse-view RGB Videos using Double Unprojected Textures CVPR 2025
Real-time free-view human rendering from sparse-view RGB inputs is a challenging task due to the sensor scarcity and the tight time budget. To ensure efficiency, recent methods leverage 2D CNNs operating in texture space to learn rendering primitives. However, they either jointly learn geometry and appearance, or completely ignore sparse image information for geometry estimation, significantly harming visual quality and robustness to unseen body poses. To address these issues, we present Double Unprojected Textures, which at the core disentangles coarse geometric deformation estimation from appearance synthesis, enabling robust and photorealistic 4K rendering in real-time. Specifically, we first introduce a novel image-conditioned template deformation network, which estimates the coarse deformation of the human template from a first unprojected texture. This updated geometry is then used to apply a second and more accurate texture unprojection. The resulting texture map has fewer artifacts and better alignment with input views, which benefits our learning of finer-level geometry and appearance represented by Gaussian splats. We validate the effectiveness and efficiency of the proposed method in quantitative and qualitative experiments, which significantly surpasses other state-of-the-art methods. Project page: https://vcai.mpi-inf.mpg.de/projects/DUT/
comment: Accepted at CVPR 2025, Project page: https://vcai.mpi-inf.mpg.de/projects/DUT/
♻ ☆ Deep Learning based Visually Rich Document Content Understanding: A Survey
Visually Rich Documents (VRDs) play a vital role in domains such as academia, finance, healthcare, and marketing, as they convey information through a combination of text, layout, and visual elements. Traditional approaches to extracting information from VRDs rely heavily on expert knowledge and manual annotation, making them labor-intensive and inefficient. Recent advances in deep learning have transformed this landscape by enabling multimodal models that integrate vision, language, and layout features through pretraining, significantly improving information extraction performance. This survey presents a comprehensive overview of deep learning-based frameworks for VRD Content Understanding (VRD-CU). We categorize existing methods based on their modeling strategies and downstream tasks, and provide a comparative analysis of key components, including feature representation, fusion techniques, model architectures, and pretraining objectives. Additionally, we highlight the strengths and limitations of each approach and discuss their suitability for different applications. The paper concludes with a discussion of current challenges and emerging trends, offering guidance for future research and practical deployment in real-world scenarios.
comment: Work in Progress
♻ ☆ Generalized Category Discovery under the Long-Tailed Distribution
This paper addresses the problem of Generalized Category Discovery (GCD) under a long-tailed distribution, which involves discovering novel categories in an unlabelled dataset using knowledge from a set of labelled categories. Existing works assume a uniform distribution for both datasets, but real-world data often exhibits a long-tailed distribution, where a few categories contain most examples, while others have only a few. While the long-tailed distribution is well-studied in supervised and semi-supervised settings, it remains unexplored in the GCD context. We identify two challenges in this setting - balancing classifier learning and estimating category numbers - and propose a framework based on confident sample selection and density-based clustering to tackle them. Our experiments on both long-tailed and conventional GCD datasets demonstrate the effectiveness of our method.
♻ ☆ GenLit: Reformulating Single-Image Relighting as Video Generation
Manipulating the illumination of a 3D scene within a single image represents a fundamental challenge in computer vision and graphics. This problem has traditionally been addressed using inverse rendering techniques, which involve explicit 3D asset reconstruction and costly ray-tracing simulations. Meanwhile, recent advancements in visual foundation models suggest that a new paradigm could soon be possible -- one that replaces explicit physical models with networks that are trained on large amounts of image and video data. In this paper, we exploit the physical world understanding of a video diffusion model, particularly Stable Video Diffusion, to relight a single image. We introduce GenLit, a framework that distills the ability of a graphics engine to perform light manipulation into a video-generation model, enabling users to directly insert and manipulate a point light in the 3D world within a given image, and generate results directly as a video sequence. We find that a model fine-tuned on only a small synthetic dataset generalizes to real-world scenes, enabling single-image relighting with plausible and convincing shadows. Our results highlight the ability of video foundation models to capture rich information about lighting, material, and, shape and our findings indicate that such models, with minimal training, can be used to perform relighting without explicit asset reconstruction or complex ray tracing. Project page: https://genlit.is.tue.mpg.de/.
♻ ☆ Training Multi-Layer Binary Neural Networks With Local Binary Error Signals
Binary Neural Networks (BNNs) significantly reduce computational complexity and memory usage in machine and deep learning by representing weights and activations with just one bit. However, most existing training algorithms for BNNs rely on quantization-aware floating-point Stochastic Gradient Descent (SGD), limiting the full exploitation of binary operations to the inference phase only. In this work, we propose, for the first time, a fully binary and gradient-free training algorithm for multi-layer BNNs, eliminating the need for back-propagated floating-point gradients. Specifically, the proposed algorithm relies on local binary error signals and binary weight updates, employing integer-valued hidden weights that serve as a synaptic metaplasticity mechanism, thereby enhancing its neurobiological plausibility. Our proposed solution enables the training of binary multi-layer perceptrons by using exclusively XNOR, Popcount, and increment/decrement operations. Experimental results on multi-class classification benchmarks show test accuracy improvements of up to +35.47% over the only existing fully binary single-layer state-of-the-art solution. Compared to full-precision SGD, our solution improves test accuracy by up to +35.30% under the same total memory demand, while also reducing computational cost by two to three orders of magnitude in terms of the total number of Boolean gates. The proposed algorithm is made available to the scientific community as a public repository.
♻ ☆ ICC: Quantifying Image Caption Concreteness for Multimodal Dataset Curation ACL 2024
Web-scale training on paired text-image data is becoming increasingly central to multimodal learning, but is challenged by the highly noisy nature of datasets in the wild. Standard data filtering approaches succeed in removing mismatched text-image pairs, but permit semantically related but highly abstract or subjective text. These approaches lack the fine-grained ability to isolate the most concrete samples that provide the strongest signal for learning in a noisy dataset. In this work, we propose a new metric, image caption concreteness, that evaluates caption text without an image reference to measure its concreteness and relevancy for use in multimodal learning. Our approach leverages strong foundation models for measuring visual-semantic information loss in multimodal representations. We demonstrate that this strongly correlates with human evaluation of concreteness in both single-word and sentence-level texts. Moreover, we show that curation using ICC complements existing approaches: It succeeds in selecting the highest quality samples from multimodal web-scale datasets to allow for efficient training in resource-constrained settings.
comment: Accepted to ACL 2024 (Finding). For Project webpage, see https://moranyanuka.github.io/icc/
♻ ☆ 360VOTS: Visual Object Tracking and Segmentation in Omnidirectional Videos
Visual object tracking and segmentation in omnidirectional videos are challenging due to the wide field-of-view and large spherical distortion brought by 360{\deg} images. To alleviate these problems, we introduce a novel representation, extended bounding field-of-view (eBFoV), for target localization and use it as the foundation of a general 360 tracking framework which is applicable for both omnidirectional visual object tracking and segmentation tasks. Building upon our previous work on omnidirectional visual object tracking (360VOT), we propose a comprehensive dataset and benchmark that incorporates a new component called omnidirectional video object segmentation (360VOS). The 360VOS dataset includes 290 sequences accompanied by dense pixel-wise masks and covers a broader range of target categories. To support both the development and evaluation of algorithms in this domain, we divide the dataset into a training subset with 170 sequences and a testing subset with 120 sequences. Furthermore, we tailor evaluation metrics for both omnidirectional tracking and segmentation to ensure rigorous assessment. Through extensive experiments, we benchmark state-of-the-art approaches and demonstrate the effectiveness of our proposed 360 tracking framework and training dataset. Homepage: https://360vots.hkustvgd.com/
comment: arXiv admin note: substantial text overlap with arXiv:2307.14630
♻ ☆ Bridging Domain Gaps in Agricultural Image Analysis: A Comprehensive Review From Shallow Adaptation to Deep Learning
With the growing application of computer vision in agriculture, image analysis has become essential for tasks such as crop health monitoring and pest detection. However, significant domain shifts caused by environmental variations, different crop types, and diverse data acquisition methods hinder model generalization across regions, seasons, and complex agricultural settings. This paper investigates how Domain Adaptation (DA) techniques can address these challenges by improving cross-domain transferability in agricultural image analysis. Given the limited availability of labeled data, weak model adaptability, and dynamic field conditions, DA has emerged as a promising solution. The review systematically summarizes recent advances in DA for agricultural imagery, focusing on applications such as crop health monitoring, pest detection, and fruit recognition, where DA methods have enhanced performance across diverse domains. DA approaches are categorized into shallow and deep learning methods, including supervised, semi-supervised, and unsupervised strategies, with particular attention to adversarial learning-based techniques that have demonstrated strong potential in complex scenarios. In addition, the paper reviews key public agricultural image datasets, evaluating their strengths and limitations in DA research. Overall, this work offers a comprehensive framework and critical insights to guide future research and development of domain adaptation in agricultural vision tasks.
♻ ☆ More Thinking, Less Seeing? Assessing Amplified Hallucination in Multimodal Reasoning Models
Test-time compute has empowered multimodal large language models to generate extended reasoning chains, yielding strong performance on tasks such as multimodal math reasoning. However, this improved reasoning ability often comes with increased hallucination: as generations become longer, models tend to drift away from image-grounded content and rely more heavily on language priors. Attention analysis shows that longer reasoning chains lead to reduced focus on visual inputs, which contributes to hallucination. To systematically study this phenomenon, we introduce RH-AUC, a metric that quantifies how a model's perception accuracy changes with reasoning length, allowing us to evaluate whether the model preserves visual grounding during reasoning. We also release RH-Bench, a diagnostic benchmark that spans a variety of multimodal tasks, designed to assess the trade-off between reasoning ability and hallucination. Our analysis reveals that (i) larger models typically achieve a better balance between reasoning and perception, and (ii) this balance is influenced more by the types and domains of training data than by its overall volume. These findings underscore the importance of evaluation frameworks that jointly consider both reasoning quality and perceptual fidelity.
♻ ☆ When and How Does CLIP Enable Domain and Compositional Generalization? ICML 2025
The remarkable generalization performance of contrastive vision-language models like CLIP is often attributed to the diversity of their training distributions. However, key questions remain unanswered: Can CLIP generalize to an entirely unseen domain when trained on a diverse mixture of domains (domain generalization)? Can it generalize to unseen classes within partially seen domains (compositional generalization)? What factors affect such generalization? To answer these questions, we trained CLIP models on systematically constructed training distributions with controlled domain diversity and object class exposure. Our experiments show that domain diversity is essential for both domain and compositional generalization, yet compositional generalization can be surprisingly weaker than domain generalization when the training distribution contains a suboptimal subset of the test domain. Through data-centric and mechanistic analyses, we find that successful generalization requires the learning of sufficiently shared representations in intermediate layers and circuits.
comment: ICML 2025 (Spotlight)
♻ ☆ Cost-effective Instruction Learning for Pathology Vision and Language Analysis
The advent of vision-language models fosters the interactive conversations between AI-enabled models and humans. Yet applying these models into clinics must deal with daunting challenges around large-scale training data, financial, and computational resources. Here we propose a cost-effective instruction learning framework for conversational pathology named as CLOVER. CLOVER only trains a lightweight module and uses instruction tuning while freezing the parameters of the large language model. Instead of using costly GPT-4, we propose well-designed prompts on GPT-3.5 for building generation-based instructions, emphasizing the utility of pathological knowledge derived from the Internet source. To augment the use of instructions, we construct a high-quality set of template-based instructions in the context of digital pathology. From two benchmark datasets, our findings reveal the strength of hybrid-form instructions in the visual question-answer in pathology. Extensive results show the cost-effectiveness of CLOVER in answering both open-ended and closed-ended questions, where CLOVER outperforms strong baselines that possess 37 times more training parameters and use instruction data generated from GPT-4. Through the instruction tuning, CLOVER exhibits robustness of few-shot learning in the external clinical dataset. These findings demonstrate that cost-effective modeling of CLOVER could accelerate the adoption of rapid conversational applications in the landscape of digital pathology.
♻ ☆ Memory-enhanced Retrieval Augmentation for Long Video Understanding
Efficient long-video understanding~(LVU) remains a challenging task in computer vision. Current long-context vision-language models~(LVLMs) suffer from information loss due to compression and brute-force downsampling. While retrieval-augmented generation (RAG) methods mitigate this issue, their applicability is limited due to explicit query dependency. To overcome this challenge, we introduce a novel memory-enhanced RAG-based approach called MemVid, which is inspired by the cognitive memory of human beings. Our approach operates in four basic steps: 1) memorizing holistic video information, 2) reasoning about the task's information needs based on memory, 3) retrieving critical moments based on the information needs, and 4) focusing on the retrieved moments to produce the final answer. To enhance the system's memory-grounded reasoning capabilities while achieving optimal end-to-end performance, we propose a curriculum learning strategy. This approach begins with supervised learning on well-annotated reasoning results, then progressively explores and reinforces more plausible reasoning outcomes through reinforcement learning. We perform extensive evaluations on popular LVU benchmarks, including MLVU, VideoMME and LVBench. In our experiments, MemVid demonstrates superior efficiency and effectiveness compared to both LVLMs and RAG methods.
♻ ☆ IQE-CLIP: Instance-aware Query Embedding for Zero-/Few-shot Anomaly Detection in Medical Domain
Recently, the rapid advancements of vision-language models, such as CLIP, leads to significant progress in zero-/few-shot anomaly detection (ZFSAD) tasks. However, most existing CLIP-based ZFSAD methods commonly assume prior knowledge of categories and rely on carefully crafted prompts tailored to specific scenarios. While such meticulously designed text prompts effectively capture semantic information in the textual space, they fall short of distinguishing normal and anomalous instances within the joint embedding space. Moreover, these ZFSAD methods are predominantly explored in industrial scenarios, with few efforts conducted to medical tasks. To this end, we propose an innovative framework for ZFSAD tasks in medical domain, denoted as IQE-CLIP. We reveal that query embeddings, which incorporate both textual and instance-aware visual information, are better indicators for abnormalities. Specifically, we first introduce class-based prompting tokens and learnable prompting tokens for better adaptation of CLIP to the medical domain. Then, we design an instance-aware query module (IQM) to extract region-level contextual information from both text prompts and visual features, enabling the generation of query embeddings that are more sensitive to anomalies. Extensive experiments conducted on six medical datasets demonstrate that IQE-CLIP achieves state-of-the-art performance on both zero-shot and few-shot tasks. We release our code and data at https://github.com/hongh0/IQE-CLIP/.
♻ ☆ A CLIP-Powered Framework for Robust and Generalizable Data Selection ICLR 2025
Large-scale datasets have been pivotal to the advancements of deep learning models in recent years, but training on such large datasets invariably incurs substantial storage and computational overhead. Meanwhile, real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance. Data selection has shown promise in identifying the most representative samples from the entire dataset, which aims to minimize the performance gap with reduced training costs. Existing works typically rely on single-modality information to assign importance scores for individual samples, which may lead to inaccurate assessments, especially when dealing with noisy or corrupted samples. To address this limitation, we propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection. Specifically, our framework consists of three key modules-dataset adaptation, sample scoring, and selection optimization-that together harness extensive pre-trained multimodal knowledge to comprehensively assess sample influence and optimize the selection results through multi-objective optimization. Extensive experiments demonstrate that our approach consistently outperforms existing state-of-the-art baselines on various benchmark datasets. Notably, our method effectively removes noisy or damaged samples from the dataset, enabling it to achieve even higher performance with less data. This indicates that it is not only a way to accelerate training but can also improve overall data quality.
comment: ICLR 2025 Spotlight
♻ ☆ Efficient Depth-Guided Urban View Synthesis ECCV2024
Recent advances in implicit scene representation enable high-fidelity street view novel view synthesis. However, existing methods optimize a neural radiance field for each scene, relying heavily on dense training images and extensive computation resources. To mitigate this shortcoming, we introduce a new method called Efficient Depth-Guided Urban View Synthesis (EDUS) for fast feed-forward inference and efficient per-scene fine-tuning. Different from prior generalizable methods that infer geometry based on feature matching, EDUS leverages noisy predicted geometric priors as guidance to enable generalizable urban view synthesis from sparse input images. The geometric priors allow us to apply our generalizable model directly in the 3D space, gaining robustness across various sparsity levels. Through comprehensive experiments on the KITTI-360 and Waymo datasets, we demonstrate promising generalization abilities on novel street scenes. Moreover, our results indicate that EDUS achieves state-of-the-art performance in sparse view settings when combined with fast test-time optimization.
comment: ECCV2024, Project page: https://xdimlab.github.io/EDUS/
♻ ☆ Medical Artificial Intelligence for Early Detection of Lung Cancer: A Survey
Lung cancer remains one of the leading causes of morbidity and mortality worldwide, making early diagnosis critical for improving therapeutic outcomes and patient prognosis. Computer-aided diagnosis systems, which analyze computed tomography images, have proven effective in detecting and classifying pulmonary nodules, significantly enhancing the detection rate of early-stage lung cancer. Although traditional machine learning algorithms have been valuable, they exhibit limitations in handling complex sample data. The recent emergence of deep learning has revolutionized medical image analysis, driving substantial advancements in this field. This review focuses on recent progress in deep learning for pulmonary nodule detection, segmentation, and classification. Traditional machine learning methods, such as support vector machines and k-nearest neighbors, have shown limitations, paving the way for advanced approaches like Convolutional Neural Networks, Recurrent Neural Networks, and Generative Adversarial Networks. The integration of ensemble models and novel techniques is also discussed, emphasizing the latest developments in lung cancer diagnosis. Deep learning algorithms, combined with various analytical techniques, have markedly improved the accuracy and efficiency of pulmonary nodule analysis, surpassing traditional methods, particularly in nodule classification. Although challenges remain, continuous technological advancements are expected to further strengthen the role of deep learning in medical diagnostics, especially for early lung cancer detection and diagnosis. A comprehensive list of lung cancer detection models reviewed in this work is available at https://github.com/CaiGuoHui123/Awesome-Lung-Cancer-Detection.
comment: Accepted to Engineering Applications of Artificial Intelligence
♻ ☆ Label-guided Facial Retouching Reversion ICME2025
With the popularity of social media platforms and retouching tools, more people are beautifying their facial photos, posing challenges for fields requiring photo authenticity. To address this issue, some work has proposed makeup removal methods, but they cannot revert images involving geometric deformations caused by retouching. To tackle the problem of facial retouching reversion, we propose a framework, dubbed Re-Face, which consists of three components: a facial retouching detector, an image reversion model named FaceR, and a color correction module called Hierarchical Adaptive Instance Normalization (H-AdaIN). FaceR can utilize labels generated by the facial retouching detector as guidance to revert the retouched facial images. Then, color correction is performed using H-AdaIN to address the issue of color shift. Extensive experiments demonstrate the effectiveness of our framework and each module.
comment: ICME2025 Oral
♻ ☆ DopQ-ViT: Towards Distribution-Friendly and Outlier-Aware Post-Training Quantization for Vision Transformers
Vision Transformers (ViTs) have gained significant attention, but their high computing cost limits the practical applications. While post-training quantization (PTQ) reduces model size and speeds up inference, it often degrades performance, especially in low-bit settings. We identify two key reasons for the performance degradation: 1) existing quantization methods fail to align with the power-law distribution of post-Softmax activations, and 2) reparameterizing post-LayerNorm activations leads to a performance drop due to the significant influence of outliers in the scaling factors. To address these challenges, we propose DopQ-ViT, a Distribution-friendly and Outlier-aware Post-training Quantization method for ViTs. First, DopQ-ViT introduces the Tan Quantizer (TanQ), which better preserves the power-law distribution of post-Softmax activations by focusing more on values near 1. Second, DopQ-ViT presents the MAD-guided Optimal Scaling Factor (MOSF), which selects the optimal scaling factor without introducing additional calculations. Extensive experiments across various ViT models and quantization settings demonstrate that DopQ-ViT, with the help of TanQ and MOSF, outperforms previous PTQ methods on both classification and detection tasks.
♻ ☆ MaPPER: Multimodal Prior-guided Parameter Efficient Tuning for Referring Expression Comprehension EMNLP 2024
Referring Expression Comprehension (REC), which aims to ground a local visual region via natural language, is a task that heavily relies on multimodal alignment. Most existing methods utilize powerful pre-trained models to transfer visual/linguistic knowledge by full fine-tuning. However, full fine-tuning the entire backbone not only breaks the rich prior knowledge embedded in the pre-training, but also incurs significant computational costs. Motivated by the recent emergence of Parameter-Efficient Transfer Learning (PETL) methods, we aim to solve the REC task in an effective and efficient manner. Directly applying these PETL methods to the REC task is inappropriate, as they lack the specific-domain abilities for precise local visual perception and visual-language alignment. Therefore, we propose a novel framework of Multimodal Prior-guided Parameter Efficient Tuning, namely MaPPER. Specifically, MaPPER comprises Dynamic Prior Adapters guided by an aligned prior, and Local Convolution Adapters to extract precise local semantics for better visual perception. Moreover, the Prior-Guided Text module is proposed to further utilize the prior for facilitating the cross-modal alignment. Experimental results on three widely-used benchmarks demonstrate that MaPPER achieves the best accuracy compared to the full fine-tuning and other PETL methods with only 1.41% tunable backbone parameters. Our code is available at https://github.com/liuting20/MaPPER.
comment: EMNLP 2024 main
♻ ☆ LoRA-Edit: Controllable First-Frame-Guided Video Editing via Mask-Aware LoRA Fine-Tuning
Video editing using diffusion models has achieved remarkable results in generating high-quality edits for videos. However, current methods often rely on large-scale pretraining, limiting flexibility for specific edits. First-frame-guided editing provides control over the first frame, but lacks flexibility over subsequent frames. To address this, we propose a mask-based LoRA (Low-Rank Adaptation) tuning method that adapts pretrained Image-to-Video (I2V) models for flexible video editing. Our approach preserves background regions while enabling controllable edits propagation. This solution offers efficient and adaptable video editing without altering the model architecture. To better steer this process, we incorporate additional references, such as alternate viewpoints or representative scene states, which serve as visual anchors for how content should unfold. We address the control challenge using a mask-driven LoRA tuning strategy that adapts a pre-trained image-to-video model to the editing context. The model must learn from two distinct sources: the input video provides spatial structure and motion cues, while reference images offer appearance guidance. A spatial mask enables region-specific learning by dynamically modulating what the model attends to, ensuring that each area draws from the appropriate source. Experimental results show our method achieves superior video editing performance compared to state-of-the-art methods. Project Page: https://cjeen.github.io/LoraEditPaper
comment: 12 pages
♻ ☆ Improving Out-of-Distribution Detection via Dynamic Covariance Calibration
Out-of-Distribution (OOD) detection is essential for the trustworthiness of AI systems. Methods using prior information (i.e., subspace-based methods) have shown effective performance by extracting information geometry to detect OOD data with a more appropriate distance metric. However, these methods fail to address the geometry distorted by ill-distributed samples, due to the limitation of statically extracting information geometry from the training distribution. In this paper, we argue that the influence of ill-distributed samples can be corrected by dynamically adjusting the prior geometry in response to new data. Based on this insight, we propose a novel approach that dynamically updates the prior covariance matrix using real-time input features, refining its information. Specifically, we reduce the covariance along the direction of real-time input features and constrain adjustments to the residual space, thus preserving essential data characteristics and avoiding effects on unintended directions in the principal space. We evaluate our method on two pre-trained models for the CIFAR dataset and five pre-trained models for ImageNet-1k, including the self-supervised DINO model. Extensive experiments demonstrate that our approach significantly enhances OOD detection across various models. The code is released at https://github.com/workerbcd/ooddcc.
♻ ☆ Understanding and Reducing the Class-Dependent Effects of Data Augmentation with A Two-Player Game Approach
Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed, it may have an unfair effect in multi-class classification. While data augmentation generally improves the overall performance (and therefore is beneficial for many classes), it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose CLAM, a CLAss-dependent Multiplicative-weights method. To derive it, we first formulate the training of a classifier as a non-linear optimization problem that aims at simultaneously maximizing the individual class performances and balancing them. By rewriting this optimization problem as an adversarial two-player game, we propose a novel multiplicative weight algorithm, for which we prove the convergence. Interestingly, our formulation also reveals that the class-dependent effects of data augmentation is not due to data augmentation only, but is in fact a general phenomenon. Our empirical results over six datasets demonstrate that the performance of learned classifiers is indeed more fairly distributed over classes, with only limited impact on the average accuracy.
♻ ☆ Cross-Modal Geometric Hierarchy Fusion: An Implicit-Submap Driven Framework for Resilient 3D Place Recognition
LiDAR-based place recognition serves as a crucial enabler for long-term autonomy in robotics and autonomous driving systems. Yet, prevailing methodologies relying on handcrafted feature extraction face dual challenges: (1) Inconsistent point cloud density, induced by ego-motion dynamics and environmental disturbances during repeated traversals, leads to descriptor instability, and (2) Representation fragility stems from reliance on single-level geometric abstractions that lack discriminative power in structurally complex scenarios. To address these limitations, we propose a novel framework that redefines 3D place recognition through density-agnostic geometric reasoning. Specifically, we introduce an implicit 3D representation based on elastic points, which is immune to the interference of original scene point cloud density and achieves the characteristic of uniform distribution. Subsequently, we derive the occupancy grid and normal vector information of the scene from this implicit representation. Finally, with the aid of these two types of information, we obtain descriptors that fuse geometric information from both bird's-eye view (capturing macro-level spatial layouts) and 3D segment (encoding micro-scale surface geometries) perspectives. We conducted extensive experiments on numerous datasets (KITTI, KITTI-360, MulRan, NCLT) across diverse environments. The experimental results demonstrate that our method achieves state-of-the-art performance. Moreover, our approach strikes an optimal balance between accuracy, runtime, and memory optimization for historical maps, showcasing excellent Resilient and scalability. Our code will be open-sourced in the future.
♻ ☆ Demographics-Informed Neural Network for Multi-Modal Spatiotemporal forecasting of Urban Growth and Travel Patterns Using Satellite Imagery
This study presents a novel demographics informed deep learning framework designed to forecast urban spatial transformations by jointly modeling geographic satellite imagery, socio-demographics, and travel behavior dynamics. The proposed model employs an encoder-decoder architecture with temporal gated residual connections, integrating satellite imagery and demographic data to accurately forecast future spatial transformations. The study also introduces a demographics prediction component which ensures that predicted satellite imagery are consistent with demographic features, significantly enhancing physiological realism and socioeconomic accuracy. The framework is enhanced by a proposed multi-objective loss function complemented by a semantic loss function that balances visual realism with temporal coherence. The experimental results from this study demonstrate the superior performance of the proposed model compared to state-of-the-art models, achieving higher structural similarity (SSIM: 0.8342) and significantly improved demographic consistency (Demo-loss: 0.14 versus 0.95 and 0.96 for baseline models). Additionally, the study validates co-evolutionary theories of urban development, demonstrating quantifiable bidirectional influences between built environment characteristics and population patterns. The study also contributes a comprehensive multimodal dataset pairing satellite imagery sequences (2012-2023) with corresponding demographic and travel behavior attributes, addressing existing gaps in urban and transportation planning resources by explicitly connecting physical landscape evolution with socio-demographic patterns.
♻ ☆ NeRF: Neural Radiance Field in 3D Vision: A Comprehensive Review (Updated Post-Gaussian Splatting)
In March 2020, Neural Radiance Field (NeRF) revolutionized Computer Vision, allowing for implicit, neural network-based scene representation and novel view synthesis. NeRF models have found diverse applications in robotics, urban mapping, autonomous navigation, virtual reality/augmented reality, and more. In August 2023, Gaussian Splatting, a direct competitor to the NeRF-based framework, was proposed, gaining tremendous momentum and overtaking NeRF-based research in terms of interest as the dominant framework for novel view synthesis. We present a comprehensive survey of NeRF papers from the past five years (2020-2025). These include papers from the pre-Gaussian Splatting era, where NeRF dominated the field for novel view synthesis and 3D implicit and hybrid representation neural field learning. We also include works from the post-Gaussian Splatting era where NeRF and implicit/hybrid neural fields found more niche applications. Our survey is organized into architecture and application-based taxonomies in the pre-Gaussian Splatting era, as well as a categorization of active research areas for NeRF, neural field, and implicit/hybrid neural representation methods. We provide an introduction to the theory of NeRF and its training via differentiable volume rendering. We also present a benchmark comparison of the performance and speed of classical NeRF, implicit and hybrid neural representation, and neural field models, and an overview of key datasets.
comment: Updated Post-Gaussian Splatting
♻ ☆ Enhancing Weakly Supervised 3D Medical Image Segmentation through Probabilistic-aware Learning
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning. Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation. However, this approach heavily relies on labor-intensive and time-consuming fully annotated ground-truth labels, particularly for 3D volumes. To overcome this limitation, we propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging. Our pipeline integrates three innovative components: a Probability-based Pseudo Label Generation technique for synthesizing dense segmentation masks from sparse annotations, a Probabilistic Multi-head Self-Attention network for robust feature extraction within our Probabilistic Transformer Network, and a Probability-informed Segmentation Loss Function to enhance training with annotation confidence. Demonstrating significant advances, our approach not only rivals the performance of fully supervised methods but also surpasses existing weakly supervised methods in CT and MRI datasets, achieving up to 18.1% improvement in Dice scores for certain organs. The code is available at https://github.com/runminjiang/PW4MedSeg.
♻ ☆ CryoCCD: Conditional Cycle-consistent Diffusion with Biophysical Modeling for Cryo-EM Synthesis
Cryo-electron microscopy (cryo-EM) offers near-atomic resolution imaging of macromolecules, but developing robust models for downstream analysis is hindered by the scarcity of high-quality annotated data. While synthetic data generation has emerged as a potential solution, existing methods often fail to capture both the structural diversity of biological specimens and the complex, spatially varying noise inherent in cryo-EM imaging. To overcome these limitations, we propose CryoCCD, a synthesis framework that integrates biophysical modeling with generative techniques. Specifically, CryoCCD produces multi-scale cryo-EM micrographs that reflect realistic biophysical variability through compositional heterogeneity, cellular context, and physics-informed imaging. To generate realistic noise, we employ a conditional diffusion model, enhanced by cycle consistency to preserve structural fidelity and mask-aware contrastive learning to capture spatially adaptive noise patterns. Extensive experiments show that CryoCCD generates structurally accurate micrographs and enhances performance in downstream tasks, outperforming state-of-the-art baselines in both particle picking and reconstruction.
Event Cameras Meet SPADs for High-Speed, Low-Bandwidth Imaging
Traditional cameras face a trade-off between low-light performance and high-speed imaging: longer exposure times to capture sufficient light results in motion blur, whereas shorter exposures result in Poisson-corrupted noisy images. While burst photography techniques help mitigate this tradeoff, conventional cameras are fundamentally limited in their sensor noise characteristics. Event cameras and single-photon avalanche diode (SPAD) sensors have emerged as promising alternatives to conventional cameras due to their desirable properties. SPADs are capable of single-photon sensitivity with microsecond temporal resolution, and event cameras can measure brightness changes up to 1 MHz with low bandwidth requirements. We show that these properties are complementary, and can help achieve low-light, high-speed image reconstruction with low bandwidth requirements. We introduce a sensor fusion framework to combine SPADs with event cameras to improves the reconstruction of high-speed, low-light scenes while reducing the high bandwidth cost associated with using every SPAD frame. Our evaluation, on both synthetic and real sensor data, demonstrates significant enhancements ( > 5 dB PSNR) in reconstructing low-light scenes at high temporal resolution (100 kHz) compared to conventional cameras. Event-SPAD fusion shows great promise for real-world applications, such as robotics or medical imaging.
comment: IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025
♻ ☆ SD++: Enhancing Standard Definition Maps by Incorporating Road Knowledge using LLMs
High-definition maps (HD maps) are detailed and informative maps capturing lane centerlines and road elements. Although very useful for autonomous driving, HD maps are costly to build and maintain. Furthermore, access to these high-quality maps is usually limited to the firms that build them. On the other hand, standard definition (SD) maps provide road centerlines with an accuracy of a few meters. In this paper, we explore the possibility of enhancing SD maps by incorporating information from road manuals using LLMs. We develop SD++, an end-to-end pipeline to enhance SD maps with location-dependent road information obtained from a road manual. We suggest and compare several ways of using LLMs for such a task. Furthermore, we show the generalization ability of SD++ by showing results from both California and Japan.
comment: 7 pages, 8 figures, 1 table, Accepted at IEEE Intelligent Vehicles Symposium 2025
Artificial Intelligence 142
No Free Lunch: Rethinking Internal Feedback for LLM Reasoning
Reinforcement learning has emerged as a powerful paradigm for post-training large language models (LLMs) to improve reasoning. Approaches like Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) have shown strong results, but they require extensive external supervision. We investigate an alternative class of methods, Reinforcement Learning from Internal Feedback (RLIF), which relies solely on intrinsic model-derived signals instead of external rewards. In particular, we leverage unsupervised reward proxies such as token-level entropy, trajectory-level entropy, and self-certainty. Our theoretical analysis shows these internal objectives are partially equivalent, and we empirically evaluate various RLIF strategies on challenging math reasoning benchmarks. Experimental results demonstrate that RLIF can boost the reasoning performance of base LLMs at the beginning phase of the training, matching or surpassing RLVR techniques on these tasks. However, when training progresses, performance degrades even below the model before training. Moreover, we find that RLIF yields little improvement for instruction-tuned models, indicating diminishing returns of intrinsic feedback once an LLM is already instruction-tuned. We further analyze this limitation by mixing model weights and explain the reason of RLIF's training behaviors, providing practical guidelines for integrating internal feedback signals into LLM training. We hope our analysis of internal feedback will inform more principled and effective strategies for LLM post-training.
☆ Machine Mental Imagery: Empower Multimodal Reasoning with Latent Visual Tokens
Vision-language models (VLMs) excel at multimodal understanding, yet their text-only decoding forces them to verbalize visual reasoning, limiting performance on tasks that demand visual imagination. Recent attempts train VLMs to render explicit images, but the heavy image-generation pre-training often hinders the reasoning ability. Inspired by the way humans reason with mental imagery-the internal construction and manipulation of visual cues-we investigate whether VLMs can reason through interleaved multimodal trajectories without producing explicit images. To this end, we present a Machine Mental Imagery framework, dubbed as Mirage, which augments VLM decoding with latent visual tokens alongside ordinary text. Concretely, whenever the model chooses to ``think visually'', it recasts its hidden states as next tokens, thereby continuing a multimodal trajectory without generating pixel-level images. Begin by supervising the latent tokens through distillation from ground-truth image embeddings, we then switch to text-only supervision to make the latent trajectory align tightly with the task objective. A subsequent reinforcement learning stage further enhances the multimodal reasoning capability. Experiments on diverse benchmarks demonstrate that Mirage unlocks stronger multimodal reasoning without explicit image generation.
comment: Project page: https://vlm-mirage.github.io/
☆ Long-term Traffic Simulation with Interleaved Autoregressive Motion and Scenario Generation
An ideal traffic simulator replicates the realistic long-term point-to-point trip that a self-driving system experiences during deployment. Prior models and benchmarks focus on closed-loop motion simulation for initial agents in a scene. This is problematic for long-term simulation. Agents enter and exit the scene as the ego vehicle enters new regions. We propose InfGen, a unified next-token prediction model that performs interleaved closed-loop motion simulation and scene generation. InfGen automatically switches between closed-loop motion simulation and scene generation mode. It enables stable long-term rollout simulation. InfGen performs at the state-of-the-art in short-term (9s) traffic simulation, and significantly outperforms all other methods in long-term (30s) simulation. The code and model of InfGen will be released at https://orangesodahub.github.io/InfGen
comment: Preprint. Project page: https://orangesodahub.github.io/InfGen Code: https://github.com/OrangeSodahub/infgen
☆ Part$^{2}$GS: Part-aware Modeling of Articulated Objects using 3D Gaussian Splatting
Articulated objects are common in the real world, yet modeling their structure and motion remains a challenging task for 3D reconstruction methods. In this work, we introduce Part$^{2}$GS, a novel framework for modeling articulated digital twins of multi-part objects with high-fidelity geometry and physically consistent articulation. Part$^{2}$GS leverages a part-aware 3D Gaussian representation that encodes articulated components with learnable attributes, enabling structured, disentangled transformations that preserve high-fidelity geometry. To ensure physically consistent motion, we propose a motion-aware canonical representation guided by physics-based constraints, including contact enforcement, velocity consistency, and vector-field alignment. Furthermore, we introduce a field of repel points to prevent part collisions and maintain stable articulation paths, significantly improving motion coherence over baselines. Extensive evaluations on both synthetic and real-world datasets show that Part$^{2}$GS consistently outperforms state-of-the-art methods by up to 10$\times$ in Chamfer Distance for movable parts.
☆ Dissecting the SWE-Bench Leaderboards: Profiling Submitters and Architectures of LLM- and Agent-Based Repair Systems
The rapid progress in Automated Program Repair (APR) has been driven by advances in AI, particularly large language models (LLMs) and agent-based systems. SWE-Bench is a recent benchmark designed to evaluate LLM-based repair systems using real issues and pull requests mined from 12 popular open-source Python repositories. Its public leaderboards, SWE-Bench Lite and SWE-Bench Verified, have become central platforms for tracking progress and comparing solutions. However, because the submission process does not require detailed documentation, the architectural design and origin of many solutions remain unclear. In this paper, we present the first comprehensive study of all submissions to the SWE-Bench Lite (68 entries) and Verified (79 entries) leaderboards, analyzing 67 unique approaches across dimensions such as submitter type, product availability, LLM usage, and system architecture. Our findings reveal the dominance of proprietary LLMs (especially Claude 3.5/3.7), the presence of both agentic and non-agentic designs, and a contributor base spanning from individual developers to large tech companies.
☆ Network Sparsity Unlocks the Scaling Potential of Deep Reinforcement Learning ICML 2025
Effectively scaling up deep reinforcement learning models has proven notoriously difficult due to network pathologies during training, motivating various targeted interventions such as periodic reset and architectural advances such as layer normalization. Instead of pursuing more complex modifications, we show that introducing static network sparsity alone can unlock further scaling potential beyond their dense counterparts with state-of-the-art architectures. This is achieved through simple one-shot random pruning, where a predetermined percentage of network weights are randomly removed once before training. Our analysis reveals that, in contrast to naively scaling up dense DRL networks, such sparse networks achieve both higher parameter efficiency for network expressivity and stronger resistance to optimization challenges like plasticity loss and gradient interference. We further extend our evaluation to visual and streaming RL scenarios, demonstrating the consistent benefits of network sparsity.
comment: Accepted to ICML 2025
☆ Facial Landmark Visualization and Emotion Recognition Through Neural Networks
Emotion recognition from facial images is a crucial task in human-computer interaction, enabling machines to learn human emotions through facial expressions. Previous studies have shown that facial images can be used to train deep learning models; however, most of these studies do not include a through dataset analysis. Visualizing facial landmarks can be challenging when extracting meaningful dataset insights; to address this issue, we propose facial landmark box plots, a visualization technique designed to identify outliers in facial datasets. Additionally, we compare two sets of facial landmark features: (i) the landmarks' absolute positions and (ii) their displacements from a neutral expression to the peak of an emotional expression. Our results indicate that a neural network achieves better performance than a random forest classifier.
comment: Best paper Award COMIA 2025
☆ Towards AI Search Paradigm
In this paper, we introduce the AI Search Paradigm, a comprehensive blueprint for next-generation search systems capable of emulating human information processing and decision-making. The paradigm employs a modular architecture of four LLM-powered agents (Master, Planner, Executor and Writer) that dynamically adapt to the full spectrum of information needs, from simple factual queries to complex multi-stage reasoning tasks. These agents collaborate dynamically through coordinated workflows to evaluate query complexity, decompose problems into executable plans, and orchestrate tool usage, task execution, and content synthesis. We systematically present key methodologies for realizing this paradigm, including task planning and tool integration, execution strategies, aligned and robust retrieval-augmented generation, and efficient LLM inference, spanning both algorithmic techniques and infrastructure-level optimizations. By providing an in-depth guide to these foundational components, this work aims to inform the development of trustworthy, adaptive, and scalable AI search systems.
☆ Continual Learning with Columnar Spiking Neural Networks
This study investigates columnar-organized spiking neural networks (SNNs) for continual learning and catastrophic forgetting. Using CoLaNET (Columnar Layered Network), we show that microcolumns adapt most efficiently to new tasks when they lack shared structure with prior learning. We demonstrate how CoLaNET hyperparameters govern the trade-off between retaining old knowledge (stability) and acquiring new information (plasticity). Our optimal configuration learns ten sequential MNIST tasks effectively, maintaining 92% accuracy on each. It shows low forgetting, with only 4% performance degradation on the first task after training on nine subsequent tasks.
comment: 12 pages, 3 figures
☆ Proportional Sensitivity in Generative Adversarial Network (GAN)-Augmented Brain Tumor Classification Using Convolutional Neural Network
Generative Adversarial Networks (GAN) have shown potential in expanding limited medical imaging datasets. This study explores how different ratios of GAN-generated and real brain tumor MRI images impact the performance of a CNN in classifying healthy vs. tumorous scans. A DCGAN was used to create synthetic images which were mixed with real ones at various ratios to train a custom CNN. The CNN was then evaluated on a separate real-world test set. Our results indicate that the model maintains high sensitivity and precision in tumor classification, even when trained predominantly on synthetic data. When only a small portion of GAN data was added, such as 900 real images and 100 GAN images, the model achieved excellent performance, with test accuracy reaching 95.2%, and precision, recall, and F1-score all exceeding 95%. However, as the proportion of GAN images increased further, performance gradually declined. This study suggests that while GANs are useful for augmenting limited datasets especially when real data is scarce, too much synthetic data can introduce artifacts that affect the model's ability to generalize to real world cases.
comment: This papaer has been submitted to The 18th International Conference on Brain Informatics (BI'25), Italy
☆ The MedPerturb Dataset: What Non-Content Perturbations Reveal About Human and Clinical LLM Decision Making
Clinical robustness is critical to the safe deployment of medical Large Language Models (LLMs), but key questions remain about how LLMs and humans may differ in response to the real-world variability typified by clinical settings. To address this, we introduce MedPerturb, a dataset designed to systematically evaluate medical LLMs under controlled perturbations of clinical input. MedPerturb consists of clinical vignettes spanning a range of pathologies, each transformed along three axes: (1) gender modifications (e.g., gender-swapping or gender-removal); (2) style variation (e.g., uncertain phrasing or colloquial tone); and (3) format changes (e.g., LLM-generated multi-turn conversations or summaries). With MedPerturb, we release a dataset of 800 clinical contexts grounded in realistic input variability, outputs from four LLMs, and three human expert reads per clinical context. We use MedPerturb in two case studies to reveal how shifts in gender identity cues, language style, or format reflect diverging treatment selections between humans and LLMs. We find that LLMs are more sensitive to gender and style perturbations while human annotators are more sensitive to LLM-generated format perturbations such as clinical summaries. Our results highlight the need for evaluation frameworks that go beyond static benchmarks to assess the similarity between human clinician and LLM decisions under the variability characteristic of clinical settings.
☆ Sparse-Reg: Improving Sample Complexity in Offline Reinforcement Learning using Sparsity
In this paper, we investigate the use of small datasets in the context of offline reinforcement learning (RL). While many common offline RL benchmarks employ datasets with over a million data points, many offline RL applications rely on considerably smaller datasets. We show that offline RL algorithms can overfit on small datasets, resulting in poor performance. To address this challenge, we introduce "Sparse-Reg": a regularization technique based on sparsity to mitigate overfitting in offline reinforcement learning, enabling effective learning in limited data settings and outperforming state-of-the-art baselines in continuous control.
☆ Do We Need Large VLMs for Spotting Soccer Actions?
Traditional video-based tasks like soccer action spotting rely heavily on visual inputs, often requiring complex and computationally expensive models to process dense video data. In this work, we propose a shift from this video-centric approach to a text-based task, making it lightweight and scalable by utilizing Large Language Models (LLMs) instead of Vision-Language Models (VLMs). We posit that expert commentary, which provides rich, fine-grained descriptions and contextual cues such as excitement and tactical insights, contains enough information to reliably spot key actions in a match. To demonstrate this, we use the SoccerNet Echoes dataset, which provides timestamped commentary, and employ a system of three LLMs acting as judges specializing in outcome, excitement, and tactics. Each LLM evaluates sliding windows of commentary to identify actions like goals, cards, and substitutions, generating accurate timestamps for these events. Our experiments show that this language-centric approach performs effectively in detecting critical match events, providing a lightweight and training-free alternative to traditional video-based methods for action spotting.
comment: 5 pages, 2 figures
☆ MeDi: Metadata-Guided Diffusion Models for Mitigating Biases in Tumor Classification
Deep learning models have made significant advances in histological prediction tasks in recent years. However, for adaptation in clinical practice, their lack of robustness to varying conditions such as staining, scanner, hospital, and demographics is still a limiting factor: if trained on overrepresented subpopulations, models regularly struggle with less frequent patterns, leading to shortcut learning and biased predictions. Large-scale foundation models have not fully eliminated this issue. Therefore, we propose a novel approach explicitly modeling such metadata into a Metadata-guided generative Diffusion model framework (MeDi). MeDi allows for a targeted augmentation of underrepresented subpopulations with synthetic data, which balances limited training data and mitigates biases in downstream models. We experimentally show that MeDi generates high-quality histopathology images for unseen subpopulations in TCGA, boosts the overall fidelity of the generated images, and enables improvements in performance for downstream classifiers on datasets with subpopulation shifts. Our work is a proof-of-concept towards better mitigating data biases with generative models.
☆ Consistent Sampling and Simulation: Molecular Dynamics with Energy-Based Diffusion Models
Diffusion models have recently gained significant attention due to their effectiveness in various scientific domains, including biochemistry. When trained on equilibrium molecular distributions, diffusion models provide both: a generative procedure to sample equilibrium conformations and associated forces derived from the model's scores. However, using the forces for coarse-grained molecular dynamics simulations uncovers inconsistencies in the samples generated via classical diffusion inference and simulation, despite both originating from the same model. Particularly at the small diffusion timesteps required for simulations, diffusion models fail to satisfy the Fokker-Planck equation, which governs how the score should evolve over time. We interpret this deviation as an indication of the observed inconsistencies and propose an energy-based diffusion model with a Fokker-Planck-derived regularization term enforcing consistency. We demonstrate the effectiveness of our approach on toy systems, alanine dipeptide, and introduce a state-of-the-art transferable Boltzmann emulator for dipeptides that supports simulation and demonstrates enhanced consistency and efficient sampling.
☆ Robust Training with Data Augmentation for Medical Imaging Classification
Deep neural networks are increasingly being used to detect and diagnose medical conditions using medical imaging. Despite their utility, these models are highly vulnerable to adversarial attacks and distribution shifts, which can affect diagnostic reliability and undermine trust among healthcare professionals. In this study, we propose a robust training algorithm with data augmentation (RTDA) to mitigate these vulnerabilities in medical image classification. We benchmark classifier robustness against adversarial perturbations and natural variations of RTDA and six competing baseline techniques, including adversarial training and data augmentation approaches in isolation and combination, using experimental data sets with three different imaging technologies (mammograms, X-rays, and ultrasound). We demonstrate that RTDA achieves superior robustness against adversarial attacks and improved generalization performance in the presence of distribution shift in each image classification task while maintaining high clean accuracy.
☆ Chain-of-Trust: A Progressive Trust Evaluation Framework Enabled by Generative AI
In collaborative systems with complex tasks relying on distributed resources, trust evaluation of potential collaborators has emerged as an effective mechanism for task completion. However, due to the network dynamics and varying information gathering latencies, it is extremely challenging to observe and collect all trust attributes of a collaborating device concurrently for a comprehensive trust assessment. In this paper, a novel progressive trust evaluation framework, namely chain-of-trust, is proposed to make better use of misaligned device attribute data. This framework, designed for effective task completion, divides the trust evaluation process into multiple chained stages based on task decomposition. At each stage, based on the task completion process, the framework only gathers the latest device attribute data relevant to that stage, leading to reduced trust evaluation complexity and overhead. By leveraging advanced in-context learning, few-shot learning, and reasoning capabilities, generative AI is then employed to analyze and interpret the collected data to produce correct evaluation results quickly. Only devices deemed trustworthy at this stage proceed to the next round of trust evaluation. The framework ultimately determines devices that remain trustworthy across all stages. Experimental results demonstrate that the proposed framework achieves high accuracy in trust evaluation.
☆ Rapid and Continuous Trust Evaluation for Effective Task Collaboration Through Siamese Model
Trust is emerging as an effective tool to ensure the successful completion of collaborative tasks within collaborative systems. However, rapidly and continuously evaluating the trustworthiness of collaborators during task execution is a significant challenge due to distributed devices, complex operational environments, and dynamically changing resources. To tackle this challenge, this paper proposes a Siamese-enabled rapid and continuous trust evaluation framework (SRCTE) to facilitate effective task collaboration. First, the communication and computing resource attributes of the collaborator in a trusted state, along with historical collaboration data, are collected and represented using an attributed control flow graph (ACFG) that captures trust-related semantic information and serves as a reference for comparison with data collected during task execution. At each time slot of task execution, the collaborator's communication and computing resource attributes, as well as task completion effectiveness, are collected in real time and represented with an ACFG to convey their trust-related semantic information. A Siamese model, consisting of two shared-parameter Structure2vec networks, is then employed to learn the deep semantics of each pair of ACFGs and generate their embeddings. Finally, the similarity between the embeddings of each pair of ACFGs is calculated to determine the collaborator's trust value at each time slot. A real system is built using two Dell EMC 5200 servers and a Google Pixel 8 to test the effectiveness of the proposed SRCTE framework. Experimental results demonstrate that SRCTE converges rapidly with only a small amount of data and achieves a high anomaly trust detection rate compared to the baseline algorithm.
☆ When Can Model-Free Reinforcement Learning be Enough for Thinking?
Recent work on large language models has demonstrated the use of model-free reinforcement learning (RL) to train reasoning-like capabilities. The emergence of "thinking" through model-free RL is interesting as thinking actions neither produce reward nor change the external world state to one where the agent is more likely to get reward. This paper seeks to build a domain-independent understanding of when model-free RL will lead to "thinking" as a strategy for reward maximization. To build this understanding, we first introduce a theoretical model which we call a \textit{thought Markov decision process} (MDP). Thought MDPs minimally extend the classical MDP model to include an abstract notion of thought state and thought action. Using the thought MDP model, we prove the importance of policy initialization in determining whether or not thinking emerges and show formally that thought actions are equivalent to the agent choosing to perform a step of policy improvement before continuing to act. We then show that open-source LLMs satisfy the conditions that our theory predicts are necessary for model-free RL to produce thinking-like behavior. Finally, we hypothesize sufficient conditions that would enable thinking to be learned outside of language generation and introduce a toy domain where a combination of multi-task pre-training and designated thought actions enable more data-efficient RL compared to non-thinking agents.
comment: 15 pages, 3 figures
☆ Mathematical Proof as a Litmus Test: Revealing Failure Modes of Advanced Large Reasoning Models
Large reasoning models (e.g., R1, o3) have demonstrated remarkable mathematical problem-solving abilities. However, the high reported accuracy of these advanced models on popular datasets, reliance on purely numerical evaluation and potential benchmark leakage, often masks their true reasoning shortcomings. To address this, we propose leveraging the inherent rigor and methodological complexity of mathematical proofs as a diagnostic tool to expose these hidden failures. Specifically, we introduce the RFMDataset (Reveal Failure Modes), a collection of 200 diverse mathematical proof problems, and thoroughly evaluate advanced models' performance on it. Our in-depth analysis of their failures uncovers 10 fine-grained error types, which shows fundamental limitations in current large reasoning models: 1) large reasoning models grapple profoundly with mathematical proofs, with some generating entirely correct proofs for less than 20% of problems and failing even on basic ones; 2) models exhibit a diverse spectrum of reasoning failures, prominently demonstrating the lack of guarantees for the correctness and rigor of single-step reasoning; and 3) models show hallucination and incompleteness during the reasoning process. Our findings reveal that models' self-reflection is insufficient to resolve the current logical dilemmas, necessitating formalized and fine-grained logical training.
☆ MEXA: Towards General Multimodal Reasoning with Dynamic Multi-Expert Aggregation
Combining pre-trained expert models offers substantial potential for scalable multimodal reasoning, but building a unified framework remains challenging due to the increasing diversity of input modalities and task complexity. For instance, medical diagnosis requires precise reasoning over structured clinical tables, while financial forecasting depends on interpreting plot-based data to make informed predictions. To tackle this challenge, we introduce MEXA, a training-free framework that performs modality- and task-aware aggregation of multiple expert models to enable effective multimodal reasoning across diverse and distinct domains. MEXA dynamically selects expert models based on the input modality and the task-specific reasoning demands (i.e., skills). Each expert model, specialized in a modality task pair, generates interpretable textual reasoning outputs. MEXA then aggregates and reasons over these outputs using a Large Reasoning Model (LRM) to produce the final answer. This modular design allows flexible and transparent multimodal reasoning across diverse domains without additional training overhead. We extensively evaluate our approach on diverse multimodal benchmarks, including Video Reasoning, Audio Reasoning, 3D Understanding, and Medical QA. MEXA consistently delivers performance improvements over strong multimodal baselines, highlighting the effectiveness and broad applicability of our expert-driven selection and aggregation in diverse multimodal reasoning tasks.
comment: The first two authors contributed equally; Github link: https://github.com/Yui010206/MEXA
☆ Are Bias Evaluation Methods Biased ? ACL 2025
The creation of benchmarks to evaluate the safety of Large Language Models is one of the key activities within the trusted AI community. These benchmarks allow models to be compared for different aspects of safety such as toxicity, bias, harmful behavior etc. Independent benchmarks adopt different approaches with distinct data sets and evaluation methods. We investigate how robust such benchmarks are by using different approaches to rank a set of representative models for bias and compare how similar are the overall rankings. We show that different but widely used bias evaluations methods result in disparate model rankings. We conclude with recommendations for the community in the usage of such benchmarks.
comment: Accepted to ACL 2025 Workshop GEM
☆ Towards Advanced Mathematical Reasoning for LLMs via First-Order Logic Theorem Proving
Large language models (LLMs) have shown promising first-order logic (FOL) reasoning capabilities with applications in various areas. However, their effectiveness in complex mathematical reasoning involving multi-step FOL deductions is still under-researched. While LLMs perform competitively on established mathematical reasoning benchmarks, they struggle with multi-step FOL tasks, as demonstrated by Deepseek-Prover-V2-7B's low accuracy (4.2%) on our proposed theorem proving dataset. This issue arises from the limited exploration of diverse proof strategies and the potential for early reasoning mistakes to undermine entire proofs. To address these issues, we propose DREAM, a self-adaptive solution that enhances the Diversity and REAsonability of LLMs' generation strategies. DREAM incorporates an Axiom-Driven Strategy Diversification mechanism to promote varied strategic outcomes and a Sub-Proposition Error Feedback to help LLMs reflect on and correct their proofs. Our contributions include pioneering advancements in LLMs' mathematical reasoning through FOL theorem proving, introducing a novel inference stage solution that improves performance by 0.6% to 6.4%, and providing a curated dataset of 447 mathematical theorems in Lean 4 format for evaluation.
☆ TransDreamerV3: Implanting Transformer In DreamerV3
This paper introduces TransDreamerV3, a reinforcement learning model that enhances the DreamerV3 architecture by integrating a transformer encoder. The model is designed to improve memory and decision-making capabilities in complex environments. We conducted experiments on Atari-Boxing, Atari-Freeway, Atari-Pong, and Crafter tasks, where TransDreamerV3 demonstrated improved performance over DreamerV3, particularly in the Atari-Freeway and Crafter tasks. While issues in the Minecraft task and limited training across all tasks were noted, TransDreamerV3 displays advancement in world model-based reinforcement learning, leveraging transformer architectures.
☆ Identifiability of Deep Polynomial Neural Networks
Polynomial Neural Networks (PNNs) possess a rich algebraic and geometric structure. However, their identifiability -- a key property for ensuring interpretability -- remains poorly understood. In this work, we present a comprehensive analysis of the identifiability of deep PNNs, including architectures with and without bias terms. Our results reveal an intricate interplay between activation degrees and layer widths in achieving identifiability. As special cases, we show that architectures with non-increasing layer widths are generically identifiable under mild conditions, while encoder-decoder networks are identifiable when the decoder widths do not grow too rapidly. Our proofs are constructive and center on a connection between deep PNNs and low-rank tensor decompositions, and Kruskal-type uniqueness theorems. This yields both generic conditions determined by the architecture, and effective conditions that depend on the network's parameters. We also settle an open conjecture on the expected dimension of PNN's neurovarieties, and provide new bounds on the activation degrees required for it to reach its maximum.
comment: 1 figure
☆ Dispositions and Roles of Generically Dependent Entities
BFO 2020 does not support functions, dispositions, and roles of generically dependent continuants (like software or datasets). In this paper, we argue that this is a severe limitation, which prevents, for example, the adequate representation of the functions of computer models or the various roles of datasets during the execution of these models. We discuss the aspects of BFO 2020 that prevent the representation of realizable entities of generically dependent continuants. Two approaches to address the issue are presented: (a) the use of defined classes and (b) a proposal of changes that allow BFO to support functions, dispositions, and roles of generically dependent continuants.
☆ Tower+: Bridging Generality and Translation Specialization in Multilingual LLMs
Fine-tuning pretrained LLMs has been shown to be an effective strategy for reaching state-of-the-art performance on specific tasks like machine translation. However, this process of adaptation often implies sacrificing general-purpose capabilities, such as conversational reasoning and instruction-following, hampering the utility of the system in real-world applications that require a mixture of skills. In this paper, we introduce Tower+, a suite of models designed to deliver strong performance across both translation and multilingual general-purpose text capabilities. We achieve a Pareto frontier between translation specialization and multilingual general-purpose capabilities by introducing a novel training recipe that builds on Tower (Alves et al., 2024), comprising continued pretraining, supervised fine-tuning, preference optimization, and reinforcement learning with verifiable rewards. At each stage of training, we carefully generate and curate data to strengthen performance on translation as well as general-purpose tasks involving code generation, mathematics problem solving, and general instruction-following. We develop models at multiple scales: 2B, 9B, and 72B. Our smaller models often outperform larger general-purpose open-weight and proprietary LLMs (e.g., Llama 3.3 70B, GPT-4o). Our largest model delivers best-in-class translation performance for high-resource languages and top results in multilingual Arena Hard evaluations and in IF-MT, a benchmark we introduce for evaluating both translation and instruction-following. Our findings highlight that it is possible to rival frontier models in general capabilities, while optimizing for specific business domains, such as translation and localization.
☆ LLM-Based Bot Broadens the Range of Arguments in Online Discussions, Even When Transparently Disclosed as AI
A wide range of participation is essential for democracy, as it helps prevent the dominance of extreme views, erosion of legitimacy, and political polarization. However, engagement in online political discussions often features a limited spectrum of views due to high levels of self-selection and the tendency of online platforms to facilitate exchanges primarily among like-minded individuals. This study examines whether an LLM-based bot can widen the scope of perspectives expressed by participants in online discussions through two pre-registered randomized experiments conducted in a chatroom. We evaluate the impact of a bot that actively monitors discussions, identifies missing arguments, and introduces them into the conversation. The results indicate that our bot significantly expands the range of arguments, as measured by both objective and subjective metrics. Furthermore, disclosure of the bot as AI does not significantly alter these effects. These findings suggest that LLM-based moderation tools can positively influence online political discourse.
☆ Flow-Based Non-stationary Temporal Regime Causal Structure Learning
Understanding causal relationships in multivariate time series is crucial in many scenarios, such as those dealing with financial or neurological data. Many such time series exhibit multiple regimes, i.e., consecutive temporal segments with a priori unknown boundaries, with each regime having its own causal structure. Inferring causal dependencies and regime shifts is critical for analyzing the underlying processes. However, causal structure learning in this setting is challenging due to (1) non stationarity, i.e., each regime can have its own causal graph and mixing function, and (2) complex noise distributions, which may be non Gaussian or heteroscedastic. Existing causal discovery approaches cannot address these challenges, since generally assume stationarity or Gaussian noise with constant variance. Hence, we introduce FANTOM, a unified framework for causal discovery that handles non stationary processes along with non Gaussian and heteroscedastic noises. FANTOM simultaneously infers the number of regimes and their corresponding indices and learns each regime's Directed Acyclic Graph. It uses a Bayesian Expectation Maximization algorithm that maximizes the evidence lower bound of the data log likelihood. On the theoretical side, we prove, under mild assumptions, that temporal heteroscedastic causal models, introduced in FANTOM's formulation, are identifiable in both stationary and non stationary settings. In addition, extensive experiments on synthetic and real data show that FANTOM outperforms existing methods.
☆ From Concepts to Components: Concept-Agnostic Attention Module Discovery in Transformers
Transformers have achieved state-of-the-art performance across language and vision tasks. This success drives the imperative to interpret their internal mechanisms with the dual goals of enhancing performance and improving behavioral control. Attribution methods help advance interpretability by assigning model outputs associated with a target concept to specific model components. Current attribution research primarily studies multi-layer perceptron neurons and addresses relatively simple concepts such as factual associations (e.g., Paris is located in France). This focus tends to overlook the impact of the attention mechanism and lacks a unified approach for analyzing more complex concepts. To fill these gaps, we introduce Scalable Attention Module Discovery (SAMD), a concept-agnostic method for mapping arbitrary, complex concepts to specific attention heads of general transformer models. We accomplish this by representing each concept as a vector, calculating its cosine similarity with each attention head, and selecting the TopK-scoring heads to construct the concept-associated attention module. We then propose Scalar Attention Module Intervention (SAMI), a simple strategy to diminish or amplify the effects of a concept by adjusting the attention module using only a single scalar parameter. Empirically, we demonstrate SAMD on concepts of varying complexity, and visualize the locations of their corresponding modules. Our results demonstrate that module locations remain stable before and after LLM post-training, and confirm prior work on the mechanics of LLM multilingualism. Through SAMI, we facilitate jailbreaking on HarmBench (+72.7%) by diminishing "safety" and improve performance on the GSM8K benchmark (+1.6%) by amplifying "reasoning". Lastly, we highlight the domain-agnostic nature of our approach by suppressing the image classification accuracy of vision transformers on ImageNet.
☆ MAWIFlow Benchmark: Realistic Flow-Based Evaluation for Network Intrusion Detection
Benchmark datasets for network intrusion detection commonly rely on synthetically generated traffic, which fails to reflect the statistical variability and temporal drift encountered in operational environments. This paper introduces MAWIFlow, a flow-based benchmark derived from the MAWILAB v1.1 dataset, designed to enable realistic and reproducible evaluation of anomaly detection methods. A reproducible preprocessing pipeline is presented that transforms raw packet captures into flow representations conforming to the CICFlowMeter format, while preserving MAWILab's original anomaly labels. The resulting datasets comprise temporally distinct samples from January 2011, 2016, and 2021, drawn from trans-Pacific backbone traffic. To establish reference baselines, traditional machine learning methods, including Decision Trees, Random Forests, XGBoost, and Logistic Regression, are compared to a deep learning model based on a CNN-BiLSTM architecture. Empirical results demonstrate that tree-based classifiers perform well on temporally static data but experience significant performance degradation over time. In contrast, the CNN-BiLSTM model maintains better performance, thus showing improved generalization. These findings underscore the limitations of synthetic benchmarks and static models, and motivate the adoption of realistic datasets with explicit temporal structure. All datasets, pipeline code, and model implementations are made publicly available to foster transparency and reproducibility.
comment: 11 pages, 3 figures
☆ LSCD: Lomb-Scargle Conditioned Diffusion for Time series Imputation ICML 2025
Time series with missing or irregularly sampled data are a persistent challenge in machine learning. Many methods operate on the frequency-domain, relying on the Fast Fourier Transform (FFT) which assumes uniform sampling, therefore requiring prior interpolation that can distort the spectra. To address this limitation, we introduce a differentiable Lomb--Scargle layer that enables a reliable computation of the power spectrum of irregularly sampled data. We integrate this layer into a novel score-based diffusion model (LSCD) for time series imputation conditioned on the entire signal spectrum. Experiments on synthetic and real-world benchmarks demonstrate that our method recovers missing data more accurately than purely time-domain baselines, while simultaneously producing consistent frequency estimates. Crucially, our method can be easily integrated into learning frameworks, enabling broader adoption of spectral guidance in machine learning approaches involving incomplete or irregular data.
comment: In ICML 2025
☆ Instituto de Telecomunicações at IWSLT 2025: Aligning Small-Scale Speech and Language Models for Speech-to-Text Learning
This paper presents the IT-IST submission to the IWSLT 2025 Shared Task on Instruction Following Speech Processing. We submit results for the Short Track, i.e., speech recognition, translation, and spoken question answering. Our model is a unified speech-to-text model that integrates a pre-trained continuous speech encoder and text decoder through a first phase of modality alignment and a second phase of instruction fine-tuning. Crucially, we focus on using small-scale language model backbones (< 2B) and restrict to high-quality, CC-BY data along with synthetic data generation to supplement existing resources.
comment: 7 pages, 1 figure, IWSLT 2025
☆ A Quantile Regression Approach for Remaining Useful Life Estimation with State Space Models
Predictive Maintenance (PdM) is pivotal in Industry 4.0 and 5.0, proactively enhancing efficiency through accurate equipment Remaining Useful Life (RUL) prediction, thus optimizing maintenance scheduling and reducing unexpected failures and premature interventions. This paper introduces a novel RUL estimation approach leveraging State Space Models (SSM) for efficient long-term sequence modeling. To handle model uncertainty, Simoultaneous Quantile Regression (SQR) is integrated into the SSM, enabling multiple quantile estimations. The proposed method is benchmarked against traditional sequence modelling techniques (LSTM, Transformer, Informer) using the C-MAPSS dataset. Results demonstrate superior accuracy and computational efficiency of SSM models, underscoring their potential for high-stakes industrial applications.
comment: Submitted to IFAC Joint Conference on Computers, Cognition, and Communication (J3C) 2025
☆ Elevating Styled Mahjong Agents with Learning from Demonstration
A wide variety of bots in games enriches the gameplay experience and enhances replayability. Recent advancements in game artificial intelligence have predominantly focused on improving the proficiency of bots. Nevertheless, developing highly competent bots with a wide range of distinct play styles remains a relatively under-explored area. We select the Mahjong game environment as a case study. The high degree of randomness inherent in the Mahjong game and the prevalence of out-of-distribution states lead to suboptimal performance of existing offline learning and Learning-from-Demonstration (LfD) algorithms. In this paper, we leverage the gameplay histories of existing Mahjong agents and put forward a novel LfD algorithm that necessitates only minimal modifications to the Proximal Policy Optimization algorithm. The comprehensive empirical results illustrate that our proposed method not only significantly enhances the proficiency of the agents but also effectively preserves their unique play styles.
☆ TeXpert: A Multi-Level Benchmark for Evaluating LaTeX Code Generation by LLMs ACL 2025
LaTeX's precision and flexibility in typesetting have made it the gold standard for the preparation of scientific documentation. Large Language Models (LLMs) present a promising opportunity for researchers to produce publication-ready material using LaTeX with natural language instructions, yet current benchmarks completely lack evaluation of this ability. By introducing TeXpert, our benchmark dataset with natural language prompts for generating LaTeX code focused on components of scientific documents across multiple difficulty levels, we conduct an in-depth analysis of LLM performance in this regard and identify frequent error types. Our evaluation across open and closed-source LLMs highlights multiple key findings: LLMs excelling on standard benchmarks perform poorly in LaTeX generation with a significant accuracy drop-off as the complexity of tasks increases; open-source models like DeepSeek v3 and DeepSeek Coder strongly rival closed-source counterparts in LaTeX tasks; and formatting and package errors are unexpectedly prevalent, suggesting a lack of diverse LaTeX examples in the training datasets of most LLMs. Our dataset, code, and model evaluations are available at https://github.com/knowledge-verse-ai/TeXpert.
comment: Accepted to the SDProc Workshop @ ACL 2025
☆ Language Bottleneck Models: A Framework for Interpretable Knowledge Tracing and Beyond
Accurately assessing student knowledge is critical for effective education, yet traditional Knowledge Tracing (KT) methods rely on opaque latent embeddings, limiting interpretability. Even LLM-based approaches generate direct predictions or summaries that may hallucinate without any accuracy guarantees. We recast KT as an inverse problem: learning the minimum natural-language summary that makes past answers explainable and future answers predictable. Our Language Bottleneck Model (LBM) consists of an encoder LLM that writes an interpretable knowledge summary and a frozen decoder LLM that must reconstruct and predict student responses using only that summary text. By constraining all predictive information to pass through a short natural-language bottleneck, LBMs ensure that the summary contains accurate information while remaining human-interpretable. Experiments on synthetic arithmetic benchmarks and the large-scale Eedi dataset show that LBMs rival the accuracy of state-of-the-art KT and direct LLM methods while requiring orders-of-magnitude fewer student trajectories. We demonstrate that training the encoder with group-relative policy optimization, using downstream decoding accuracy as a reward signal, effectively improves summary quality.
☆ Latent Concept Disentanglement in Transformer-based Language Models
When large language models (LLMs) use in-context learning (ICL) to solve a new task, they seem to grasp not only the goal of the task but also core, latent concepts in the demonstration examples. This begs the question of whether transformers represent latent structures as part of their computation or whether they take shortcuts to solve the problem. Prior mechanistic work on ICL does not address this question because it does not sufficiently examine the relationship between the learned representation and the latent concept, and the considered problem settings often involve only single-step reasoning. In this work, we examine how transformers disentangle and use latent concepts. We show that in 2-hop reasoning tasks with a latent, discrete concept, the model successfully identifies the latent concept and does step-by-step concept composition. In tasks parameterized by a continuous latent concept, we find low-dimensional subspaces in the representation space where the geometry mimics the underlying parameterization. Together, these results refine our understanding of ICL and the representation of transformers, and they provide evidence for highly localized structures in the model that disentangle latent concepts in ICL tasks.
☆ Formal Control for Uncertain Systems via Contract-Based Probabilistic Surrogates (Extended Version)
The requirement for identifying accurate system representations has not only been a challenge to fulfill, but it has compromised the scalability of formal methods, as the resulting models are often too complex for effective decision making with formal correctness and performance guarantees. Focusing on probabilistic simulation relations and surrogate models of stochastic systems, we propose an approach that significantly enhances the scalability and practical applicability of such simulation relations by eliminating the need to compute error bounds directly. As a result, we provide an abstraction-based technique that scales effectively to higher dimensions while addressing complex nonlinear agent-environment interactions with infinite-horizon temporal logic guarantees amidst uncertainty. Our approach trades scalability for conservatism favorably, as demonstrated on a complex high-dimensional vehicle intersection case study.
comment: 26 pages, 5 figures, extended version of paper accepted for publication at QEST 2025
☆ Enhancing Step-by-Step and Verifiable Medical Reasoning in MLLMs
Multimodal large language models (MLLMs) have begun to demonstrate robust reasoning capabilities on general tasks, yet their application in the medical domain remains in its early stages. Constructing chain-of-thought (CoT) training data is essential for bolstering the reasoning abilities of medical MLLMs. However, existing approaches exhibit a deficiency in offering a comprehensive framework for searching and evaluating effective reasoning paths towards critical diagnosis. To address this challenge, we propose Mentor-Intern Collaborative Search (MICS), a novel reasoning-path searching scheme to generate rigorous and effective medical CoT data. MICS first leverages mentor models to initialize the reasoning, one step at a time, then prompts each intern model to continue the thinking along those initiated paths, and finally selects the optimal reasoning path according to the overall reasoning performance of multiple intern models. The reasoning performance is determined by an MICS-Score, which assesses the quality of generated reasoning paths. Eventually, we construct MMRP, a multi-task medical reasoning dataset with ranked difficulty, and Chiron-o1, a new medical MLLM devised via a curriculum learning strategy, with robust visual question-answering and generalizable reasoning capabilities. Extensive experiments demonstrate that Chiron-o1, trained on our CoT dataset constructed using MICS, achieves state-of-the-art performance across a list of medical visual question answering and reasoning benchmarks. Codes are available at GitHub - manglu097/Chiron-o1: Enhancing Step-by-Step and Verifiable Medical Reasoning in MLLMs
☆ Multimodal Fused Learning for Solving the Generalized Traveling Salesman Problem in Robotic Task Planning
Effective and efficient task planning is essential for mobile robots, especially in applications like warehouse retrieval and environmental monitoring. These tasks often involve selecting one location from each of several target clusters, forming a Generalized Traveling Salesman Problem (GTSP) that remains challenging to solve both accurately and efficiently. To address this, we propose a Multimodal Fused Learning (MMFL) framework that leverages both graph and image-based representations to capture complementary aspects of the problem, and learns a policy capable of generating high-quality task planning schemes in real time. Specifically, we first introduce a coordinate-based image builder that transforms GTSP instances into spatially informative representations. We then design an adaptive resolution scaling strategy to enhance adaptability across different problem scales, and develop a multimodal fusion module with dedicated bottlenecks that enables effective integration of geometric and spatial features. Extensive experiments show that our MMFL approach significantly outperforms state-of-the-art methods across various GTSP instances while maintaining the computational efficiency required for real-time robotic applications. Physical robot tests further validate its practical effectiveness in real-world scenarios.
comment: 14 pages, 6 figures, under review
☆ A deep learning and machine learning approach to predict neonatal death in the context of São Paulo
Neonatal death is still a concerning reality for underdeveloped and even some developed countries. Worldwide data indicate that 26.693 babies out of 1,000 births die, according to Macro Trades. To reduce this number, early prediction of endangered babies is crucial. Such prediction enables the opportunity to take ample care of the child and mother so that early child death can be avoided. In this context, machine learning was used to determine whether a newborn baby is at risk. To train the predictive model, historical data of 1.4 million newborns was used. Machine learning and deep learning techniques such as logical regression, K-nearest neighbor, random forest classifier, extreme gradient boosting (XGBoost), convolutional neural network, and long short-term memory (LSTM) were implemented using the dataset to identify the most accurate model for predicting neonatal mortality. Among the machine learning algorithms, XGBoost and random forest classifier achieved the best accuracy with 94%, while among the deep learning models, LSTM delivered the highest accuracy with 99%. Therefore, using LSTM appears to be the most suitable approach to predict whether precautionary measures for a child are necessary.
☆ Single-shot thermometry of simulated Bose--Einstein condensates using artificial intelligence
Precise determination of thermodynamic parameters in ultracold Bose gases remains challenging due to the destructive nature of conventional measurement techniques and inherent experimental uncertainties. We demonstrate an artificial intelligence approach for rapid, non-destructive estimation of the chemical potential and temperature from single-shot, in situ imaged density profiles of finite-temperature Bose gases. Our convolutional neural network is trained exclusively on quasi-2D `pancake' condensates in harmonic trap configurations. It achieves parameter extraction within fractions of a second. The model also demonstrates zero-shot generalisation across both trap geometry and thermalisation dynamics, successfully estimating thermodynamic parameters for toroidally trapped condensates with errors of only a few nanokelvin despite no prior exposure to such geometries during training, and maintaining predictive accuracy during dynamic thermalisation processes after a relatively brief evolution without explicit training on non-equilibrium states. These results suggest that supervised learning can overcome traditional limitations in ultracold atom thermometry, with extension to broader geometric configurations, temperature ranges, and additional parameters potentially enabling comprehensive real-time analysis of quantum gas experiments. Such capabilities could significantly streamline experimental workflows whilst improving measurement precision across a range of quantum fluid systems.
☆ Real-Time Black-Box Optimization for Dynamic Discrete Environments Using Embedded Ising Machines
Many real-time systems require the optimization of discrete variables. Black-box optimization (BBO) algorithms and multi-armed bandit (MAB) algorithms perform optimization by repeatedly taking actions and observing the corresponding instant rewards without any prior knowledge. Recently, a BBO method using an Ising machine has been proposed to find the best action that is represented by a combination of discrete values and maximizes the instant reward in static environments. In contrast, dynamic environments, where real-time systems operate, necessitate MAB algorithms that maximize the average reward over multiple trials. However, due to the enormous number of actions resulting from the combinatorial nature of discrete optimization, conventional MAB algorithms cannot effectively optimize dynamic, discrete environments. Here, we show a heuristic MAB method for dynamic, discrete environments by extending the BBO method, in which an Ising machine effectively explores the actions while considering interactions between variables and changes in dynamic environments. We demonstrate the dynamic adaptability of the proposed method in a wireless communication system with moving users.
comment: 18 pages, 6figures
☆ Towards Effective Complementary Security Analysis using Large Language Models
A key challenge in security analysis is the manual evaluation of potential security weaknesses generated by static application security testing (SAST) tools. Numerous false positives (FPs) in these reports reduce the effectiveness of security analysis. We propose using Large Language Models (LLMs) to improve the assessment of SAST findings. We investigate the ability of LLMs to reduce FPs while trying to maintain a perfect true positive rate, using datasets extracted from the OWASP Benchmark (v1.2) and a real-world software project. Our results indicate that advanced prompting techniques, such as Chain-of-Thought and Self-Consistency, substantially improve FP detection. Notably, some LLMs identified approximately 62.5% of FPs in the OWASP Benchmark dataset without missing genuine weaknesses. Combining detections from different LLMs would increase this FP detection to approximately 78.9%. Additionally, we demonstrate our approach's generalizability using a real-world dataset covering five SAST tools, three programming languages, and infrastructure files. The best LLM detected 33.85% of all FPs without missing genuine weaknesses, while combining detections from different LLMs would increase this detection to 38.46%. Our findings highlight the potential of LLMs to complement traditional SAST tools, enhancing automation and reducing resources spent addressing false alarms.
comment: 8 pages, 6 figures
☆ AI's Blind Spots: Geographic Knowledge and Diversity Deficit in Generated Urban Scenario
Image generation models are revolutionizing many domains, and urban analysis and design is no exception. While such models are widely adopted, there is a limited literature exploring their geographic knowledge, along with the biases they embed. In this work, we generated 150 synthetic images for each state in the USA and related capitals using FLUX 1 and Stable Diffusion 3.5, two state-of-the-art models for image generation. We embed each image using DINO-v2 ViT-S/14 and the Fr\'echet Inception Distances to measure the similarity between the generated images. We found that while these models have implicitly learned aspects of USA geography, if we prompt the models to generate an image for "United States" instead of specific cities or states, the models exhibit a strong representative bias toward metropolis-like areas, excluding rural states and smaller cities. {\color{black} In addition, we found that models systematically exhibit some entity-disambiguation issues with European-sounding names like Frankfort or Devon.
☆ With Limited Data for Multimodal Alignment, Let the STRUCTURE Guide You
Multimodal models have demonstrated powerful capabilities in complex tasks requiring multimodal alignment including zero-shot classification and cross-modal retrieval. However, existing models typically rely on millions of paired multimodal samples, which are prohibitively expensive or infeasible to obtain in many domains. In this work, we explore the feasibility of building multimodal models with limited amount of paired data by aligning pretrained unimodal foundation models. We show that high-quality alignment is possible with as few as tens of thousands of paired samples$\unicode{x2013}$less than $1\%$ of the data typically used in the field. To achieve this, we introduce STRUCTURE, an effective regularization technique that preserves the neighborhood geometry of the latent space of unimodal encoders. Additionally, we show that aligning last layers is often suboptimal and demonstrate the benefits of aligning the layers with the highest representational similarity across modalities. These two components can be readily incorporated into existing alignment methods, yielding substantial gains across 24 zero-shot image classification and retrieval benchmarks, with average relative improvement of $51.6\%$ in classification and $91.8\%$ in retrieval tasks. Our results highlight the effectiveness and broad applicability of our framework for limited-sample multimodal learning and offer a promising path forward for resource-constrained domains.
☆ The Importance of Being Lazy: Scaling Limits of Continual Learning
Despite recent efforts, neural networks still struggle to learn in non-stationary environments, and our understanding of catastrophic forgetting (CF) is far from complete. In this work, we perform a systematic study on the impact of model scale and the degree of feature learning in continual learning. We reconcile existing contradictory observations on scale in the literature, by differentiating between lazy and rich training regimes through a variable parameterization of the architecture. We show that increasing model width is only beneficial when it reduces the amount of feature learning, yielding more laziness. Using the framework of dynamical mean field theory, we then study the infinite width dynamics of the model in the feature learning regime and characterize CF, extending prior theoretical results limited to the lazy regime. We study the intricate relationship between feature learning, task non-stationarity, and forgetting, finding that high feature learning is only beneficial with highly similar tasks. We identify a transition modulated by task similarity where the model exits an effectively lazy regime with low forgetting to enter a rich regime with significant forgetting. Finally, our findings reveal that neural networks achieve optimal performance at a critical level of feature learning, which depends on task non-stationarity and transfers across model scales. This work provides a unified perspective on the role of scale and feature learning in continual learning.
comment: Proceedings of the 42nd International Conference on Machine Learning (2025). JG and AB contributed equally to this work
☆ ParkFormer: A Transformer-Based Parking Policy with Goal Embedding and Pedestrian-Aware Control
Autonomous parking plays a vital role in intelligent vehicle systems, particularly in constrained urban environments where high-precision control is required. While traditional rule-based parking systems struggle with environmental uncertainties and lack adaptability in crowded or dynamic scenes, human drivers demonstrate the ability to park intuitively without explicit modeling. Inspired by this observation, we propose a Transformer-based end-to-end framework for autonomous parking that learns from expert demonstrations. The network takes as input surround-view camera images, goal-point representations, ego vehicle motion, and pedestrian trajectories. It outputs discrete control sequences including throttle, braking, steering, and gear selection. A novel cross-attention module integrates BEV features with target points, and a GRU-based pedestrian predictor enhances safety by modeling dynamic obstacles. We validate our method on the CARLA 0.9.14 simulator in both vertical and parallel parking scenarios. Experiments show our model achieves a high success rate of 96.57\%, with average positional and orientation errors of 0.21 meters and 0.41 degrees, respectively. The ablation studies further demonstrate the effectiveness of key modules such as pedestrian prediction and goal-point attention fusion. The code and dataset will be released at: https://github.com/little-snail-f/ParkFormer.
☆ Bandwidth Selectors on Semiparametric Bayesian Networks
Semiparametric Bayesian networks (SPBNs) integrate parametric and non-parametric probabilistic models, offering flexibility in learning complex data distributions from samples. In particular, kernel density estimators (KDEs) are employed for the non-parametric component. Under the assumption of data normality, the normal rule is used to learn the bandwidth matrix for the KDEs in SPBNs. This matrix is the key hyperparameter that controls the trade-off between bias and variance. However, real-world data often deviates from normality, potentially leading to suboptimal density estimation and reduced predictive performance. This paper first establishes the theoretical framework for the application of state-of-the-art bandwidth selectors and subsequently evaluates their impact on SPBN performance. We explore the approaches of cross-validation and plug-in selectors, assessing their effectiveness in enhancing the learning capability and applicability of SPBNs. To support this investigation, we have extended the open-source package PyBNesian for SPBNs with the additional bandwidth selection techniques and conducted extensive experimental analyses. Our results demonstrate that the proposed bandwidth selectors leverage increasing information more effectively than the normal rule, which, despite its robustness, stagnates with more data. In particular, unbiased cross-validation generally outperforms the normal rule, highlighting its advantage in high sample size scenarios.
comment: 37 pages, 15 figures. Submitted to Information Sciences
☆ AnyTraverse: An off-road traversability framework with VLM and human operator in the loop
Off-road traversability segmentation enables autonomous navigation with applications in search-and-rescue, military operations, wildlife exploration, and agriculture. Current frameworks struggle due to significant variations in unstructured environments and uncertain scene changes, and are not adaptive to be used for different robot types. We present AnyTraverse, a framework combining natural language-based prompts with human-operator assistance to determine navigable regions for diverse robotic vehicles. The system segments scenes for a given set of prompts and calls the operator only when encountering previously unexplored scenery or unknown class not part of the prompt in its region-of-interest, thus reducing active supervision load while adapting to varying outdoor scenes. Our zero-shot learning approach eliminates the need for extensive data collection or retraining. Our experimental validation includes testing on RELLIS-3D, Freiburg Forest, and RUGD datasets and demonstrate real-world deployment on multiple robot platforms. The results show that AnyTraverse performs better than GA-NAV and Off-seg while offering a vehicle-agnostic approach to off-road traversability that balances automation with targeted human supervision.
☆ Learning Dexterous Object Handover
Object handover is an important skill that we use daily when interacting with other humans. To deploy robots in collaborative setting, like houses, being able to receive and handing over objects safely and efficiently becomes a crucial skill. In this work, we demonstrate the use of Reinforcement Learning (RL) for dexterous object handover between two multi-finger hands. Key to this task is the use of a novel reward function based on dual quaternions to minimize the rotation distance, which outperforms other rotation representations such as Euler and rotation matrices. The robustness of the trained policy is experimentally evaluated by testing w.r.t. objects that are not included in the training distribution, and perturbations during the handover process. The results demonstrate that the trained policy successfully perform this task, achieving a total success rate of 94% in the best-case scenario after 100 experiments, thereby showing the robustness of our policy with novel objects. In addition, the best-case performance of the policy decreases by only 13.8% when the other robot moves during the handover, proving that our policy is also robust to this type of perturbation, which is common in real-world object handovers.
comment: Paper accepted for presentation in RoMan 2025
☆ Loupe: A Generalizable and Adaptive Framework for Image Forgery Detection IJCAI 2025
The proliferation of generative models has raised serious concerns about visual content forgery. Existing deepfake detection methods primarily target either image-level classification or pixel-wise localization. While some achieve high accuracy, they often suffer from limited generalization across manipulation types or rely on complex architectures. In this paper, we propose Loupe, a lightweight yet effective framework for joint deepfake detection and localization. Loupe integrates a patch-aware classifier and a segmentation module with conditional queries, allowing simultaneous global authenticity classification and fine-grained mask prediction. To enhance robustness against distribution shifts of test set, Loupe introduces a pseudo-label-guided test-time adaptation mechanism by leveraging patch-level predictions to supervise the segmentation head. Extensive experiments on the DDL dataset demonstrate that Loupe achieves state-of-the-art performance, securing the first place in the IJCAI 2025 Deepfake Detection and Localization Challenge with an overall score of 0.846. Our results validate the effectiveness of the proposed patch-level fusion and conditional query design in improving both classification accuracy and spatial localization under diverse forgery patterns. The code is available at https://github.com/Kamichanw/Loupe.
comment: 6 pages, 2 figures, accepted by IJCAI 2025 workshop
☆ Robust Dynamic Material Handling via Adaptive Constrained Evolutionary Reinforcement Learning
Dynamic material handling (DMH) involves the assignment of dynamically arriving material transporting tasks to suitable vehicles in real time for minimising makespan and tardiness. In real-world scenarios, historical task records are usually available, which enables the training of a decision policy on multiple instances consisting of historical records. Recently, reinforcement learning has been applied to solve DMH. Due to the occurrence of dynamic events such as new tasks, adaptability is highly required. Solving DMH is challenging since constraints including task delay should be satisfied. A feedback is received only when all tasks are served, which leads to sparse reward. Besides, making the best use of limited computational resources and historical records for training a robust policy is crucial. The time allocated to different problem instances would highly impact the learning process. To tackle those challenges, this paper proposes a novel adaptive constrained evolutionary reinforcement learning (ACERL) approach, which maintains a population of actors for diverse exploration. ACERL accesses each actor for tackling sparse rewards and constraint violation to restrict the behaviour of the policy. Moreover, ACERL adaptively selects the most beneficial training instances for improving the policy. Extensive experiments on eight training and eight unseen test instances demonstrate the outstanding performance of ACERL compared with several state-of-the-art algorithms. Policies trained by ACERL can schedule the vehicles while fully satisfying the constraints. Additional experiments on 40 unseen noised instances show the robust performance of ACERL. Cross-validation further presents the overall effectiveness of ACREL. Besides, a rigorous ablation study highlights the coordination and benefits of each ingredient of ACERL.
☆ MIST: Jailbreaking Black-box Large Language Models via Iterative Semantic Tuning
Despite efforts to align large language models (LLMs) with societal and moral values, these models remain susceptible to jailbreak attacks--methods designed to elicit harmful responses. Jailbreaking black-box LLMs is considered challenging due to the discrete nature of token inputs, restricted access to the target LLM, and limited query budget. To address the issues above, we propose an effective method for jailbreaking black-box large language Models via Iterative Semantic Tuning, named MIST. MIST enables attackers to iteratively refine prompts that preserve the original semantic intent while inducing harmful content. Specifically, to balance semantic similarity with computational efficiency, MIST incorporates two key strategies: sequential synonym search, and its advanced version--order-determining optimization. Extensive experiments across two open-source models and four closed-source models demonstrate that MIST achieves competitive attack success rates and attack transferability compared with other state-of-the-art white-box and black-box jailbreak methods. Additionally, we conduct experiments on computational efficiency to validate the practical viability of MIST.
comment: 12 pages, 3 figures
☆ TabArena: A Living Benchmark for Machine Learning on Tabular Data
With the growing popularity of deep learning and foundation models for tabular data, the need for standardized and reliable benchmarks is higher than ever. However, current benchmarks are static. Their design is not updated even if flaws are discovered, model versions are updated, or new models are released. To address this, we introduce TabArena, the first continuously maintained living tabular benchmarking system. To launch TabArena, we manually curate a representative collection of datasets and well-implemented models, conduct a large-scale benchmarking study to initialize a public leaderboard, and assemble a team of experienced maintainers. Our results highlight the influence of validation method and ensembling of hyperparameter configurations to benchmark models at their full potential. While gradient-boosted trees are still strong contenders on practical tabular datasets, we observe that deep learning methods have caught up under larger time budgets with ensembling. At the same time, foundation models excel on smaller datasets. Finally, we show that ensembles across models advance the state-of-the-art in tabular machine learning and investigate the contributions of individual models. We launch TabArena with a public leaderboard, reproducible code, and maintenance protocols to create a living benchmark available at https://tabarena.ai.
comment: 51 pages. Code available at https://tabarena.ai/code; examples at https://tabarena.ai/code-examples; dataset curation at https://tabarena.ai/data-tabular-ml-iid-study and https://tabarena.ai/dataset-curation
☆ What Is the Point of Equality in Machine Learning Fairness? Beyond Equality of Opportunity
Fairness in machine learning (ML) has become a rapidly growing area of research. But why, in the first place, is unfairness in ML morally wrong? And why should we care about improving fairness? Most fair-ML research implicitly appeals to distributive equality: the idea that desirable goods and benefits, such as opportunities (e.g., Barocas et al., 2023), should be equally distributed across society. Unfair ML models, then, are seen as wrong because they unequally distribute such benefits. This paper argues that this exclusive focus on distributive equality offers an incomplete and potentially misleading ethical foundation. Grounding ML fairness in egalitarianism -- the view that equality is a fundamental moral and social ideal -- requires challenging structural inequality: systematic, institutional, and durable arrangements that privilege some groups while disadvantaging others. Structural inequality manifests through ML systems in two primary forms: allocative harms (e.g., economic loss) and representational harms (e.g., stereotypes, erasure). While distributive equality helps address allocative harms, it fails to explain why representational harms are wrong -- why it is wrong for ML systems to reinforce social hierarchies that stratify people into superior and inferior groups -- and why ML systems should aim to foster a society where people relate as equals (i.e., relational equality). To address these limitations, the paper proposes a multifaceted egalitarian framework for ML fairness that integrates both distributive and relational equality. Drawing on critical social and political philosophy, this framework offers a more comprehensive ethical foundation for tackling the full spectrum of harms perpetuated by ML systems. The paper also outlines practical pathways for implementing the framework across the ML pipeline.
comment: Accepted for presentation at ACM FAccT 2025; under final review (minor revision) at an ACM journal
☆ PQCAD-DM: Progressive Quantization and Calibration-Assisted Distillation for Extremely Efficient Diffusion Model
Diffusion models excel in image generation but are computational and resource-intensive due to their reliance on iterative Markov chain processes, leading to error accumulation and limiting the effectiveness of naive compression techniques. In this paper, we propose PQCAD-DM, a novel hybrid compression framework combining Progressive Quantization (PQ) and Calibration-Assisted Distillation (CAD) to address these challenges. PQ employs a two-stage quantization with adaptive bit-width transitions guided by a momentum-based mechanism, reducing excessive weight perturbations in low-precision. CAD leverages full-precision calibration datasets during distillation, enabling the student to match full-precision performance even with a quantized teacher. As a result, PQCAD-DM achieves a balance between computational efficiency and generative quality, halving inference time while maintaining competitive performance. Extensive experiments validate PQCAD-DM's superior generative capabilities and efficiency across diverse datasets, outperforming fixed-bit quantization methods.
comment: 10 pages, 6 figures
Reinforcement learning for hybrid charging stations planning and operation considering fixed and mobile chargers
The success of vehicle electrification, which brings significant societal and environmental benefits, is contingent upon the availability of efficient and adaptable charging infrastructure. Traditional fixed-location charging stations often face issues like underutilization or congestion due to the dynamic nature of charging demand. Mobile chargers have emerged as a flexible solution, capable of relocating to align with these demand fluctuations. This paper addresses the optimal planning and operation of hybrid charging infrastructures, integrating both fixed and mobile chargers within urban road networks. We introduce the Hybrid Charging Station Planning and Operation (HCSPO) problem, which simultaneously optimizes the location and configuration of fixed charging stations and schedules mobile chargers for dynamic operations. Our approach incorporates a charging demand prediction model grounded in Model Predictive Control (MPC) to enhance decision-making. To solve the HCSPO problem, we propose a deep reinforcement learning method, augmented with heuristic scheduling techniques, to effectively bridge the planning of fixed chargers with the real-time operation of mobile chargers. Extensive case studies using real-world urban scenarios demonstrate that our method significantly improves the availability of charging infrastructure and reduces user inconvenience compared to existing solutions and baselines.
comment: 11pages
☆ Language-Informed Synthesis of Rational Agent Models for Grounded Theory-of-Mind Reasoning On-The-Fly
Drawing real world social inferences usually requires taking into account information from multiple modalities. Language is a particularly powerful source of information in social settings, especially in novel situations where language can provide both abstract information about the environment dynamics and concrete specifics about an agent that cannot be easily visually observed. In this paper, we propose Language-Informed Rational Agent Synthesis (LIRAS), a framework for drawing context-specific social inferences that integrate linguistic and visual inputs. LIRAS frames multimodal social reasoning as a process of constructing structured but situation-specific agent and environment representations - leveraging multimodal language models to parse language and visual inputs into unified symbolic representations, over which a Bayesian inverse planning engine can be run to produce granular probabilistic judgments. On a range of existing and new social reasoning tasks derived from cognitive science experiments, we find that our model (instantiated with a comparatively lightweight VLM) outperforms ablations and state-of-the-art models in capturing human judgments across all domains.
comment: 5 figures, 19 pages
☆ Metapath-based Hyperbolic Contrastive Learning for Heterogeneous Graph Embedding
The hyperbolic space, characterized by a constant negative curvature and exponentially expanding space, aligns well with the structural properties of heterogeneous graphs. However, although heterogeneous graphs inherently possess diverse power-law structures, most hyperbolic heterogeneous graph embedding models rely on a single hyperbolic space. This approach may fail to effectively capture the diverse power-law structures within heterogeneous graphs. To address this limitation, we propose a Metapath-based Hyperbolic Contrastive Learning framework (MHCL), which uses multiple hyperbolic spaces to capture diverse complex structures within heterogeneous graphs. Specifically, by learning each hyperbolic space to describe the distribution of complex structures corresponding to each metapath, it is possible to capture semantic information effectively. Since metapath embeddings represent distinct semantic information, preserving their discriminability is important when aggregating them to obtain node representations. Therefore, we use a contrastive learning approach to optimize MHCL and improve the discriminability of metapath embeddings. In particular, our contrastive learning method minimizes the distance between embeddings of the same metapath and maximizes the distance between those of different metapaths in hyperbolic space, thereby improving the separability of metapath embeddings with distinct semantic information. We conduct comprehensive experiments to evaluate the effectiveness of MHCL. The experimental results demonstrate that MHCL outperforms state-of-the-art baselines in various graph machine learning tasks, effectively capturing the complex structures of heterogeneous graphs.
comment: 14 pages, 9 figures
☆ Off-Policy Actor-Critic for Adversarial Observation Robustness: Virtual Alternative Training via Symmetric Policy Evaluation ICML2025
Recently, robust reinforcement learning (RL) methods designed to handle adversarial input observations have received significant attention, motivated by RL's inherent vulnerabilities. While existing approaches have demonstrated reasonable success, addressing worst-case scenarios over long time horizons requires both minimizing the agent's cumulative rewards for adversaries and training agents to counteract them through alternating learning. However, this process introduces mutual dependencies between the agent and the adversary, making interactions with the environment inefficient and hindering the development of off-policy methods. In this work, we propose a novel off-policy method that eliminates the need for additional environmental interactions by reformulating adversarial learning as a soft-constrained optimization problem. Our approach is theoretically supported by the symmetric property of policy evaluation between the agent and the adversary. The implementation is available at https://github.com/nakanakakosuke/VALT_SAC.
comment: ICML2025 poster, 39 pages, 6 figures, 13 tables. arXiv admin note: text overlap with arXiv:2409.00418
☆ RapFlow-TTS: Rapid and High-Fidelity Text-to-Speech with Improved Consistency Flow Matching
We introduce RapFlow-TTS, a rapid and high-fidelity TTS acoustic model that leverages velocity consistency constraints in flow matching (FM) training. Although ordinary differential equation (ODE)-based TTS generation achieves natural-quality speech, it typically requires a large number of generation steps, resulting in a trade-off between quality and inference speed. To address this challenge, RapFlow-TTS enforces consistency in the velocity field along the FM-straightened ODE trajectory, enabling consistent synthetic quality with fewer generation steps. Additionally, we introduce techniques such as time interval scheduling and adversarial learning to further enhance the quality of the few-step synthesis. Experimental results show that RapFlow-TTS achieves high-fidelity speech synthesis with a 5- and 10-fold reduction in synthesis steps than the conventional FM- and score-based approaches, respectively.
comment: Accepted on Interspeech 2025
☆ LM-SPT: LM-Aligned Semantic Distillation for Speech Tokenization
With the rapid progress of speech language models (SLMs), discrete speech tokens have emerged as a core interface between speech and text, enabling unified modeling across modalities. Recent speech tokenization approaches aim to isolate semantic information from low-level acoustics to better align with language models. In particular, previous methods use SSL teachers such as HuBERT to extract semantic representations, which are then distilled into a semantic quantizer to suppress acoustic redundancy as well as capture content-related latent structures. However, they still produce speech token sequences significantly longer than their textual counterparts, creating challenges for efficient speech-language modeling. Reducing the frame rate is a natural solution, but standard techniques, such as rigid average pooling across frames, can distort or dilute the semantic structure required for effective LM alignment. To address this, we propose LM-SPT, a speech tokenization method that introduces a novel semantic distillation. Instead of directly matching teacher and student features via pooling, we reconstruct speech solely from semantic tokens and minimize the discrepancy between the encoded representations of the original and reconstructed waveforms, obtained from a frozen automatic speech recognition (ASR) encoder. This indirect yet data-driven supervision enables the tokenizer to learn discrete units that are more semantically aligned with language models. LM-SPT further incorporates architectural improvements to the encoder and decoder for speech tokenization, and supports multiple frame rates, including 25Hz, 12.5Hz, and 6.25Hz. Experimental results show that LM-SPT achieves superior reconstruction fidelity compared to baselines, and that SLMs trained with LM-SPT tokens achieve competitive performances on speech-to-text and consistently outperform baselines on text-to-speech tasks.
☆ On Training-Test (Mis)alignment in Unsupervised Combinatorial Optimization: Observation, Empirical Exploration, and Analysis ICML 2025
In unsupervised combinatorial optimization (UCO), during training, one aims to have continuous decisions that are promising in a probabilistic sense for each training instance, which enables end-to-end training on initially discrete and non-differentiable problems. At the test time, for each test instance, starting from continuous decisions, derandomization is typically applied to obtain the final deterministic decisions. Researchers have developed more and more powerful test-time derandomization schemes to enhance the empirical performance and the theoretical guarantee of UCO methods. However, we notice a misalignment between training and testing in the existing UCO methods. Consequently, lower training losses do not necessarily entail better post-derandomization performance, even for the training instances without any data distribution shift. Empirically, we indeed observe such undesirable cases. We explore a preliminary idea to better align training and testing in UCO by including a differentiable version of derandomization into training. Our empirical exploration shows that such an idea indeed improves training-test alignment, but also introduces nontrivial challenges into training.
comment: 2nd Workshop on Test-Time Adaptation: Putting Updates to the Test @ ICML 2025
☆ Incentivizing High-quality Participation From Federated Learning Agents
Federated learning (FL) provides a promising paradigm for facilitating collaboration between multiple clients that jointly learn a global model without directly sharing their local data. However, existing research suffers from two caveats: 1) From the perspective of agents, voluntary and unselfish participation is often assumed. But self-interested agents may opt out of the system or provide low-quality contributions without proper incentives; 2) From the mechanism designer's perspective, the aggregated models can be unsatisfactory as the existing game-theoretical federated learning approach for data collection ignores the potential heterogeneous effort caused by contributed data. To alleviate above challenges, we propose an incentive-aware framework for agent participation that considers data heterogeneity to accelerate the convergence process. Specifically, we first introduce the notion of Wasserstein distance to explicitly illustrate the heterogeneous effort and reformulate the existing upper bound of convergence. To induce truthful reporting from agents, we analyze and measure the generalization error gap of any two agents by leveraging the peer prediction mechanism to develop score functions. We further present a two-stage Stackelberg game model that formalizes the process and examines the existence of equilibrium. Extensive experiments on real-world datasets demonstrate the effectiveness of our proposed mechanism.
☆ The Role of Model Confidence on Bias Effects in Measured Uncertainties
With the growing adoption of Large Language Models (LLMs) for open-ended tasks, accurately assessing epistemic uncertainty, which reflects a model's lack of knowledge, has become crucial to ensuring reliable outcomes. However, quantifying epistemic uncertainty in such tasks is challenging due to the presence of aleatoric uncertainty, which arises from multiple valid answers. While bias can introduce noise into epistemic uncertainty estimation, it may also reduce noise from aleatoric uncertainty. To investigate this trade-off, we conduct experiments on Visual Question Answering (VQA) tasks and find that mitigating prompt-introduced bias improves uncertainty quantification in GPT-4o. Building on prior work showing that LLMs tend to copy input information when model confidence is low, we further analyze how these prompt biases affect measured epistemic and aleatoric uncertainty across varying bias-free confidence levels with GPT-4o and Qwen2-VL. We find that all considered biases induce greater changes in both uncertainties when bias-free model confidence is lower. Moreover, lower bias-free model confidence leads to greater underestimation of epistemic uncertainty (i.e. overconfidence) due to bias, whereas it has no significant effect on the direction of changes in aleatoric uncertainty estimation. These distinct effects deepen our understanding of bias mitigation for uncertainty quantification and potentially inform the development of more advanced techniques.
☆ TriCon-SF: A Triple-Shuffle and Contribution-Aware Serial Federated Learning Framework for Heterogeneous Healthcare Data
Serial pipeline training is an efficient paradigm for handling data heterogeneity in cross-silo federated learning with low communication overhead. However, even without centralized aggregation, direct transfer of models between clients can violate privacy regulations and remain susceptible to gradient leakage and linkage attacks. Additionally, ensuring resilience against semi-honest or malicious clients who may manipulate or misuse received models remains a grand challenge, particularly in privacy-sensitive domains such as healthcare. To address these challenges, we propose TriCon-SF, a novel serial federated learning framework that integrates triple shuffling and contribution awareness. TriCon-SF introduces three levels of randomization by shuffling model layers, data segments, and training sequences to break deterministic learning patterns and disrupt potential attack vectors, thereby enhancing privacy and robustness. In parallel, it leverages Shapley value methods to dynamically evaluate client contributions during training, enabling the detection of dishonest behavior and enhancing system accountability. Extensive experiments on non-IID healthcare datasets demonstrate that TriCon-SF outperforms standard serial and parallel federated learning in both accuracy and communication efficiency. Security analysis further supports its resilience against client-side privacy attacks.
☆ Generalizable Agent Modeling for Agent Collaboration-Competition Adaptation with Multi-Retrieval and Dynamic Generation
Adapting a single agent to a new multi-agent system brings challenges, necessitating adjustments across various tasks, environments, and interactions with unknown teammates and opponents. Addressing this challenge is highly complex, and researchers have proposed two simplified scenarios, Multi-agent reinforcement learning for zero-shot learning and Ad-Hoc Teamwork. Building on these foundations, we propose a more comprehensive setting, Agent Collaborative-Competitive Adaptation (ACCA), which evaluates an agent to generalize across diverse scenarios, tasks, and interactions with both unfamiliar opponents and teammates. In ACCA, agents adjust to task and environmental changes, collaborate with unseen teammates, and compete against unknown opponents. We introduce a new modeling approach, Multi-Retrieval and Dynamic Generation (MRDG), that effectively models both teammates and opponents using their behavioral trajectories. This method incorporates a positional encoder for varying team sizes and a hypernetwork module to boost agents' learning and adaptive capabilities. Additionally, a viewpoint alignment module harmonizes the observational perspectives of retrieved teammates and opponents with the learning agent. Extensive tests in benchmark scenarios like SMAC, Overcooked-AI, and Melting Pot show that MRDG significantly improves robust collaboration and competition with unseen teammates and opponents, surpassing established baselines. Our code is available at: https://github.com/vcis-wangchenxu/MRDG.git
comment: This manuscript is under submission to Neurocomputing
☆ ReasonGRM: Enhancing Generative Reward Models through Large Reasoning Models
Generative Reward Models (GRMs) provide greater flexibility than scalar reward models in capturing human preferences, but their effectiveness is limited by poor reasoning capabilities. This often results in incomplete or overly speculative reasoning paths, leading to hallucinations or missing key information in complex tasks. We address this challenge with ReasonGRM, a three-stage generative reward modeling framework. In the first stage, Zero-RL is used to generate concise, outcome-directed reasoning paths that reduce the likelihood of critical omissions. In the second stage, we introduce a novel evaluation metric, $R^\star$, which scores reasoning paths based on their generation likelihood. This favors paths that reach correct answers with minimal exploration, helping to reduce hallucination-prone data during training. In the final stage, the model is further refined through reinforcement learning on challenging examples to enhance its preference discrimination capabilities. Experiments on three public benchmarks show that ReasonGRM achieves competitive or state-of-the-art performance, outperforming previous best GRMs by 1.8\% on average and surpassing proprietary models such as GPT-4o by up to 5.6\%. These results demonstrate the effectiveness of reasoning-aware training and highlight the importance of high-quality rationale selection for reliable preference modeling.
☆ Large Language Models as Psychological Simulators: A Methodological Guide
Large language models (LLMs) offer emerging opportunities for psychological and behavioral research, but methodological guidance is lacking. This article provides a framework for using LLMs as psychological simulators across two primary applications: simulating roles and personas to explore diverse contexts, and serving as computational models to investigate cognitive processes. For simulation, we present methods for developing psychologically grounded personas that move beyond demographic categories, with strategies for validation against human data and use cases ranging from studying inaccessible populations to prototyping research instruments. For cognitive modeling, we synthesize emerging approaches for probing internal representations, methodological advances in causal interventions, and strategies for relating model behavior to human cognition. We address overarching challenges including prompt sensitivity, temporal limitations from training data cutoffs, and ethical considerations that extend beyond traditional human subjects review. Throughout, we emphasize the need for transparency about model capabilities and constraints. Together, this framework integrates emerging empirical evidence about LLM performance--including systematic biases, cultural limitations, and prompt brittleness--to help researchers wrangle these challenges and leverage the unique capabilities of LLMs in psychological research.
☆ From Prompts to Constructs: A Dual-Validity Framework for LLM Research in Psychology
Large language models (LLMs) are rapidly being adopted across psychology, serving as research tools, experimental subjects, human simulators, and computational models of cognition. However, the application of human measurement tools to these systems can produce contradictory results, raising concerns that many findings are measurement phantoms--statistical artifacts rather than genuine psychological phenomena. In this Perspective, we argue that building a robust science of AI psychology requires integrating two of our field's foundational pillars: the principles of reliable measurement and the standards for sound causal inference. We present a dual-validity framework to guide this integration, which clarifies how the evidence needed to support a claim scales with its scientific ambition. Using an LLM to classify text may require only basic accuracy checks, whereas claiming it can simulate anxiety demands a far more rigorous validation process. Current practice systematically fails to meet these requirements, often treating statistical pattern matching as evidence of psychological phenomena. The same model output--endorsing "I am anxious"--requires different validation strategies depending on whether researchers claim to measure, characterize, simulate, or model psychological constructs. Moving forward requires developing computational analogues of psychological constructs and establishing clear, scalable standards of evidence rather than the uncritical application of human measurement tools.
☆ Interpretable Low-Dimensional Modeling of Spatiotemporal Agent States for Decision Making in Football Tactics
Understanding football tactics is crucial for managers and analysts. Previous research has proposed models based on spatial and kinematic equations, but these are computationally expensive. Also, Reinforcement learning approaches use player positions and velocities but lack interpretability and require large datasets. Rule-based models align with expert knowledge but have not fully considered all players' states. This study explores whether low-dimensional, rule-based models using spatiotemporal data can effectively capture football tactics. Our approach defines interpretable state variables for both the ball-holder and potential pass receivers, based on criteria that explore options like passing. Through discussions with a manager, we identified key variables representing the game state. We then used StatsBomb event data and SkillCorner tracking data from the 2023$/$24 LaLiga season to train an XGBoost model to predict pass success. The analysis revealed that the distance between the player and the ball, as well as the player's space score, were key factors in determining successful passes. Our interpretable low-dimensional modeling facilitates tactical analysis through the use of intuitive variables and provides practical value as a tool to support decision-making in football.
comment: 5 pages, 3 figures, presented in iCSports 2024 Abstract Track
☆ Fast and Stable Diffusion Planning through Variational Adaptive Weighting
Diffusion models have recently shown promise in offline RL. However, these methods often suffer from high training costs and slow convergence, particularly when using transformer-based denoising backbones. While several optimization strategies have been proposed -- such as modified noise schedules, auxiliary prediction targets, and adaptive loss weighting -- challenges remain in achieving stable and efficient training. In particular, existing loss weighting functions typically rely on neural network approximators, which can be ineffective in early training phases due to limited generalization capacity of MLPs when exposed to sparse feedback in the early training stages. In this work, we derive a variationally optimal uncertainty-aware weighting function and introduce a closed-form polynomial approximation method for its online estimation under the flow-based generative modeling framework. We integrate our method into a diffusion planning pipeline and evaluate it on standard offline RL benchmarks. Experimental results on Maze2D and Kitchen tasks show that our method achieves competitive performance with up to 10 times fewer training steps, highlighting its practical effectiveness.
☆ A Simple Contrastive Framework Of Item Tokenization For Generative Recommendation
Generative retrieval-based recommendation has emerged as a promising paradigm aiming at directly generating the identifiers of the target candidates. However, in large-scale recommendation systems, this approach becomes increasingly cumbersome due to the redundancy and sheer scale of the token space. To overcome these limitations, recent research has explored the use of semantic tokens as an alternative to ID tokens, which typically leveraged reconstruction-based strategies, like RQ-VAE, to quantize content embeddings and significantly reduce the embedding size. However, reconstructive quantization aims for the precise reconstruction of each item embedding independently, which conflicts with the goal of generative retrieval tasks focusing more on differentiating among items. Moreover, multi-modal side information of items, such as descriptive text and images, geographical knowledge in location-based recommendation services, has been shown to be effective in improving recommendations by providing richer contexts for interactions. Nevertheless, effectively integrating such complementary knowledge into existing generative recommendation frameworks remains challenging. To overcome these challenges, we propose a novel unsupervised deep quantization exclusively based on contrastive learning, named SimCIT (a Simple Contrastive Item Tokenization framework). Specifically, different from existing reconstruction-based strategies, SimCIT propose to use a learnable residual quantization module to align with the signals from different modalities of the items, which combines multi-modal knowledge alignment and semantic tokenization in a mutually beneficial contrastive learning framework. Extensive experiments across public datasets and a large-scale industrial dataset from various domains demonstrate SimCIT's effectiveness in LLM-based generative recommendation.
comment: 12 pages,7 figures
☆ How to Train your Text-to-Image Model: Evaluating Design Choices for Synthetic Training Captions
Training data is at the core of any successful text-to-image models. The quality and descriptiveness of image text are crucial to a model's performance. Given the noisiness and inconsistency in web-scraped datasets, recent works shifted towards synthetic training captions. While this setup is generally believed to produce more capable models, current literature does not provide any insights into its design choices. This study closes this gap by systematically investigating how different synthetic captioning strategies impact the downstream performance of text-to-image models. Our experiments demonstrate that dense, high-quality captions enhance text alignment but may introduce trade-offs in output aesthetics and diversity. Conversely, captions of randomized lengths yield balanced improvements across aesthetics and alignment without compromising sample diversity. We also demonstrate that varying caption distributions introduce significant shifts in the output bias of a trained model. Our findings underscore the importance of caption design in achieving optimal model performance and provide practical insights for more effective training data strategies in text-to-image generation.
☆ A Minimalist Optimizer Design for LLM Pretraining
Training large language models (LLMs) typically relies on adaptive optimizers such as Adam, which require significant memory to maintain first- and second-moment matrices, known as optimizer states. While recent works such as GaLore, Fira, and APOLLO have proposed state-compressed variants to reduce memory consumption, a fundamental question remains: What is the minimal amount of optimizer state that is truly necessary to retain state-of-the-art performance in LLM pretraining? In this work, we systematically investigate this question using a bottom-up approach. We find that two memory- and compute-efficient optimization techniques are particularly effective: (1) column-wise gradient normalization significantly boosts the performance of plain SGD without requiring momentum; and (2) adding first-order momentum only to the output layer - where gradient variance is highest - yields performance competitive with fully adaptive methods such as Muon. Based on these insights, we propose SCALE (Stochastic Column-normalized Last-layer Momentum), a new optimizer that combines column-normalized SGD with last-layer momentum, where column normalization refers to normalizing the gradient along the output dimension. Across multiple LLaMA models (60M-1B), SCALE matches or exceeds the performance of Adam while using only 35-45% of the total memory. It also consistently outperforms memory-efficient optimizers such as GaLore, Fira, and APOLLO, making it a strong candidate for large-scale pretraining under memory constraints. For the LLaMA 7B model, SCALE outperforms the state-of-the-art method APOLLO in terms of both perplexity and memory consumption. In addition, our method serves as a minimalist baseline for more sophisticated optimizer design.
♻ ☆ AQA-Bench: An Interactive Benchmark for Evaluating LLMs' Sequential Reasoning Ability
This paper introduces AQA-Bench, a novel benchmark to assess the sequential reasoning capabilities of large language models (LLMs) in algorithmic contexts, such as depth-first search (DFS). The key feature of our evaluation benchmark lies in its interactive evaluation protocol - for example, in DFS, the availability of each node's connected edge is contingent upon the model's traversal to that node, thereby necessitating the LLM's ability to effectively remember visited nodes and strategize subsequent moves considering the possible environmental feedback in the future steps. We comprehensively build AQA-Bench with three different algorithms, namely binary search, depth-first search, and breadth-first search, and to evaluate the sequential reasoning ability of 14 different LLMs. Our investigations reveal several interesting findings: (1) Closed-source models like GPT-4 and Gemini generally show much stronger sequential reasoning ability, significantly outperforming open-source LLMs. (2) Naively providing in-context examples may inadvertently hurt few-shot performance in an interactive environment due to over-fitting to examples. (3) Instead of using optimal steps from another test case as the in-context example, a very limited number of predecessor steps in the current test case following the optimal policy can substantially boost small models' performance. (4) The performance gap between weak models and strong models is greatly due to the incapability of weak models to start well. (5) The scaling correlation between performance and model size is not always significant, sometimes even showcasing an inverse trend. We hope our study can catalyze future work on advancing the understanding and enhancement of LLMs' capabilities in sequential reasoning. The code is available at https://github.com/UCSC-VLAA/AQA-Bench.
♻ ☆ TALE: A Tool-Augmented Framework for Reference-Free Evaluation of Large Language Models
As Large Language Models (LLMs) become increasingly integrated into real-world, autonomous applications, relying on static, pre-annotated references for evaluation poses significant challenges in cost, scalability, and completeness. We propose Tool-Augmented LLM Evaluation (TALE), a framework to assess LLM outputs without predetermined ground-truth answers. Unlike conventional metrics that compare to fixed references or depend solely on LLM-as-a-judge knowledge, TALE employs an agent with tool-access capabilities that actively retrieves and synthesizes external evidence. It iteratively generates web queries, collects information, summarizes findings, and refines subsequent searches through reflection. By shifting away from static references, TALE aligns with free-form question-answering tasks common in real-world scenarios. Experimental results on multiple free-form QA benchmarks show that TALE not only outperforms standard reference-based metrics for measuring response accuracy but also achieves substantial to near-perfect agreement with human evaluations. TALE enhances the reliability of LLM evaluations in real-world, dynamic scenarios without relying on static references.
♻ ☆ BreastDCEDL: Curating a Comprehensive DCE-MRI Dataset and developing a Transformer Implementation for Breast Cancer Treatment Response Prediction
Breast cancer remains a leading cause of cancer-related mortality worldwide, making early detection and accurate treatment response monitoring critical priorities. We present BreastDCEDL, a curated, deep learning-ready dataset comprising pre-treatment 3D Dynamic Contrast-Enhanced MRI (DCE-MRI) scans from 2,070 breast cancer patients drawn from the I-SPY1, I-SPY2, and Duke cohorts, all sourced from The Cancer Imaging Archive. The raw DICOM imaging data were rigorously converted into standardized 3D NIfTI volumes with preserved signal integrity, accompanied by unified tumor annotations and harmonized clinical metadata including pathologic complete response (pCR), hormone receptor (HR), and HER2 status. Although DCE-MRI provides essential diagnostic information and deep learning offers tremendous potential for analyzing such complex data, progress has been limited by lack of accessible, public, multicenter datasets. BreastDCEDL addresses this gap by enabling development of advanced models, including state-of-the-art transformer architectures that require substantial training data. To demonstrate its capacity for robust modeling, we developed the first transformer-based model for breast DCE-MRI, leveraging Vision Transformer (ViT) architecture trained on RGB-fused images from three contrast phases (pre-contrast, early post-contrast, and late post-contrast). Our ViT model achieved state-of-the-art pCR prediction performance in HR+/HER2- patients (AUC 0.94, accuracy 0.93). BreastDCEDL includes predefined benchmark splits, offering a framework for reproducible research and enabling clinically meaningful modeling in breast cancer imaging.
♻ ☆ Convergent Linear Representations of Emergent Misalignment
Fine-tuning large language models on narrow datasets can cause them to develop broadly misaligned behaviours: a phenomena known as emergent misalignment. However, the mechanisms underlying this misalignment, and why it generalizes beyond the training domain, are poorly understood, demonstrating critical gaps in our knowledge of model alignment. In this work, we train and study a minimal model organism which uses just 9 rank-1 adapters to emergently misalign Qwen2.5-14B-Instruct. Studying this, we find that different emergently misaligned models converge to similar representations of misalignment. We demonstrate this convergence by extracting a 'misalignment direction' from one fine-tuned model's activations, and using it to effectively ablate misaligned behaviour from fine-tunes using higher dimensional LoRAs and different datasets. Leveraging the scalar hidden state of rank-1 LoRAs, we further present a set of experiments for directly interpreting the fine-tuning adapters, showing that six contribute to general misalignment, while two specialise for misalignment in just the fine-tuning domain. Emergent misalignment is a particularly salient example of undesirable and unexpected model behaviour and by advancing our understanding of the mechanisms behind it, we hope to move towards being able to better understand and mitigate misalignment more generally.
♻ ☆ LLMs and Stack Overflow Discussions: Reliability, Impact, and Challenges
Since its release in November 2022, ChatGPT has shaken up Stack Overflow, the premier platform for developers queries on programming and software development. Demonstrating an ability to generate instant, human-like responses to technical questions, ChatGPT has ignited debates within the developer community about the evolving role of human-driven platforms in the age of generative AI. Two months after ChatGPT release, Meta released its answer with its own Large Language Model (LLM) called LLaMA: the race was on. We conducted an empirical study analyzing questions from Stack Overflow and using these LLMs to address them. This way, we aim to (i) quantify the reliability of LLMs answers and their potential to replace Stack Overflow in the long term; (ii) identify and understand why LLMs fail; (iii) measure users activity evolution with Stack Overflow over time; and (iv) compare LLMs together. Our empirical results are unequivocal: ChatGPT and LLaMA challenge human expertise, yet do not outperform it for some domains, while a significant decline in user posting activity has been observed. Furthermore, we also discuss the impact of our findings regarding the usage and development of new LLMs and provide guidelines for future challenges faced by users and researchers.
comment: 63 pages, 11 figures
♻ ☆ A Minimalist Method for Fine-tuning Text-to-Image Diffusion Models
Recent work uses reinforcement learning (RL) to fine-tune text-to-image diffusion models, improving text-image alignment and sample quality. However, existing approaches introduce unnecessary complexity: they cache the full sampling trajectory, depend on differentiable reward models or large preference datasets, or require specialized guidance techniques. Motivated by the "golden noise" hypothesis -- that certain initial noise samples can consistently yield superior alignment -- we introduce Noise PPO, a minimalist RL algorithm that leaves the pre-trained diffusion model entirely frozen and learns a prompt-conditioned initial noise generator. Our approach requires no trajectory storage, reward backpropagation, or complex guidance tricks. Extensive experiments show that optimizing the initial noise distribution consistently improves alignment and sample quality over the original model, with the most significant gains at low inference steps. As the number of inference steps increases, the benefit of noise optimization diminishes but remains present. These findings clarify the scope and limitations of the golden noise hypothesis and reinforce the practical value of minimalist RL fine-tuning for diffusion models.
comment: 17 pages, 6 figures
♻ ☆ A Technical Study into 0.5B Reasoning Language Models
The ongoing evolution of language models has led to the development of large-scale architectures that demonstrate exceptional performance across a wide range of tasks. However, these models come with significant computational and energy demands, as well as potential privacy implications. In this context, Small Reasoning Language Models (SRLMs) with approximately 0.5 billion parameters present a compelling alternative due to their remarkable computational efficiency and cost effectiveness, particularly in resource-constrained environments. Despite these advantages, the limited capacity of 0.5 billion parameter models poses challenges in handling complex tasks such as mathematical reasoning and code generation. This research investigates various training strategies, including supervised fine-tuning (SFT), knowledge distillation (KD), and reinforcement learning (RL), as well as their hybrid implementations, to enhance the performance of 0.5B SRLMs. We analyze effective methodologies to bridge the performance gap between SRLMS and larger models and present insights into optimal training pipelines tailored for these smaller architectures. Through extensive experimental validation and analysis, our work aims to provide actionable recommendations for maximizing the reasoning capabilities of 0.5B models.
♻ ☆ LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning
Chain-of-thought (CoT) prompting is a popular in-context learning (ICL) approach for large language models (LLMs), especially when tackling complex reasoning tasks. Traditional ICL approaches construct prompts using examples that contain questions similar to the input question. However, CoT prompting, which includes crucial intermediate reasoning steps (rationales) within its examples, necessitates selecting examples based on these rationales rather than the questions themselves. Existing methods require human experts or pre-trained LLMs to describe the skill, a high-level abstraction of rationales, to guide the selection. These methods, however, are often costly and difficult to scale. Instead, this paper introduces a new approach named Latent Reasoning Skills (LaRS) that employs unsupervised learning to create a latent space representation of rationales, with a latent variable called a reasoning skill. Concurrently, LaRS learns a reasoning policy to determine the required reasoning skill for a given question. Then the ICL examples are selected by aligning the reasoning skills between past examples and the question. This approach is theoretically grounded and compute-efficient, eliminating the need for auxiliary LLM inference or manual prompt design. Empirical results demonstrate that LaRS consistently outperforms SOTA skill-based selection methods, processing example banks four times faster, reducing LLM inferences during the selection stage by half, and showing greater robustness to sub-optimal example banks.
♻ ☆ AerialVG: A Challenging Benchmark for Aerial Visual Grounding by Exploring Positional Relations
Visual grounding (VG) aims to localize target objects in an image based on natural language descriptions. In this paper, we propose AerialVG, a new task focusing on visual grounding from aerial views. Compared to traditional VG, AerialVG poses new challenges, \emph{e.g.}, appearance-based grounding is insufficient to distinguish among multiple visually similar objects, and positional relations should be emphasized. Besides, existing VG models struggle when applied to aerial imagery, where high-resolution images cause significant difficulties. To address these challenges, we introduce the first AerialVG dataset, consisting of 5K real-world aerial images, 50K manually annotated descriptions, and 103K objects. Particularly, each annotation in AerialVG dataset contains multiple target objects annotated with relative spatial relations, requiring models to perform comprehensive spatial reasoning. Furthermore, we propose an innovative model especially for the AerialVG task, where a Hierarchical Cross-Attention is devised to focus on target regions, and a Relation-Aware Grounding module is designed to infer positional relations. Experimental results validate the effectiveness of our dataset and method, highlighting the importance of spatial reasoning in aerial visual grounding. The code and dataset will be released.
comment: 8 pages, 6 figures
♻ ☆ PlantBert: An Open Source Language Model for Plant Science
The rapid advancement of transformer-based language models has catalyzed breakthroughs in biomedical and clinical natural language processing; however, plant science remains markedly underserved by such domain-adapted tools. In this work, we present PlantBert, a high-performance, open-source language model specifically tailored for extracting structured knowledge from plant stress-response literature. Built upon the DeBERTa architecture-known for its disentangled attention and robust contextual encoding-PlantBert is fine-tuned on a meticulously curated corpus of expert-annotated abstracts, with a primary focus on lentil (Lens culinaris) responses to diverse abiotic and biotic stressors. Our methodology combines transformer-based modeling with rule-enhanced linguistic post-processing and ontology-grounded entity normalization, enabling PlantBert to capture biologically meaningful relationships with precision and semantic fidelity. The underlying corpus is annotated using a hierarchical schema aligned with the Crop Ontology, encompassing molecular, physiological, biochemical, and agronomic dimensions of plant adaptation. PlantBert exhibits strong generalization capabilities across entity types and demonstrates the feasibility of robust domain adaptation in low-resource scientific fields. By providing a scalable and reproducible framework for high-resolution entity recognition, PlantBert bridges a critical gap in agricultural NLP and paves the way for intelligent, data-driven systems in plant genomics, phenomics, and agronomic knowledge discovery. Our model is publicly released to promote transparency and accelerate cross-disciplinary innovation in computational plant science.
♻ ☆ Calibrating Pre-trained Language Classifiers on LLM-generated Noisy Labels via Iterative Refinement KDD'25
The traditional process of creating labeled datasets is labor-intensive and expensive. Recent breakthroughs in open-source large language models (LLMs) have opened up a new avenue in generating labeled datasets automatically for various natural language processing (NLP) tasks, providing an alternative to such an expensive annotation process. However, the reliability of such auto-generated labels remains a significant concern due to inherent inaccuracies. When learning from noisy labels, the model's generalization is likely to be harmed as it is prone to overfit to those label noises. While previous studies in learning from noisy labels mainly focus on synthetic noise and real-world noise, LLM-generated label noise receives less attention. In this paper, we propose SiDyP: Simplex Label Diffusion with Dynamic Prior to calibrate the classifier's prediction, thus enhancing its robustness towards LLM-generated noisy labels. SiDyP retrieves potential true label candidates by neighborhood label distribution in text embedding space and iteratively refines noisy candidates using a simplex diffusion model. Our framework can increase the performance of the BERT classifier fine-tuned on both zero-shot and few-shot LLM-generated noisy label datasets by an average of 7.21% and 7.30% respectively. We demonstrate the effectiveness of SiDyP by conducting extensive benchmarking for different LLMs over a variety of NLP tasks. Our code is available on Github.
comment: Accepted at KDD'25
♻ ☆ One-Step Diffusion for Detail-Rich and Temporally Consistent Video Super-Resolution
It is a challenging problem to reproduce rich spatial details while maintaining temporal consistency in real-world video super-resolution (Real-VSR), especially when we leverage pre-trained generative models such as stable diffusion (SD) for realistic details synthesis. Existing SD-based Real-VSR methods often compromise spatial details for temporal coherence, resulting in suboptimal visual quality. We argue that the key lies in how to effectively extract the degradation-robust temporal consistency priors from the low-quality (LQ) input video and enhance the video details while maintaining the extracted consistency priors. To achieve this, we propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-based one-step diffusion model, achieving realistic frame details and temporal consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval (CFR) module to aggregate complementary information across frames, and train a Consistency-LoRA (C-LoRA) to learn robust temporal representations from degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with the temporal space defined by C-LoRA to keep temporal coherence. The two phases alternate iteratively for optimization, collaboratively delivering consistent and detail-rich outputs. During inference, the two LoRA branches are merged into the SD model, allowing efficient and high-quality video restoration in a single diffusion step. Experiments show that DLoRAL achieves strong performance in both accuracy and speed. Code and models are available at https://github.com/yjsunnn/DLoRAL.
♻ ☆ Incivility and Rigidity: The Risks of Fine-Tuning LLMs for Political Argumentation
The incivility prevalent on platforms like Twitter (now X) and Reddit poses a challenge for developing AI systems that can support productive and rhetorically sound political argumentation. In this study, we report experiments with GPT-3.5 Turbo, fine-tuned on two contrasting datasets of political discussions: high-variance, high-incivility Twitter replies to U.S. Congress, and low-variance, low-incivility posts from Reddit's r/ChangeMyView. We systematically evaluate how these data sources and prompting strategies shape the rhetorical framing and deliberative quality of model-generated arguments. Our results show that Reddit-finetuned models produce safer but rhetorically rigid arguments, while cross-platform fine-tuning amplifies toxicity. Prompting reduces specific toxic behaviors, such as personal attacks, but fails to fully mitigate the influence of high-incivility training data. We introduce and validate a rhetorical evaluation rubric and provide practical guidelines for deploying LLMs in content authoring, moderation, and deliberation support.
♻ ☆ Eau De $Q$-Network: Adaptive Distillation of Neural Networks in Deep Reinforcement Learning
Recent works have successfully demonstrated that sparse deep reinforcement learning agents can be competitive against their dense counterparts. This opens up opportunities for reinforcement learning applications in fields where inference time and memory requirements are cost-sensitive or limited by hardware. Until now, dense-to-sparse methods have relied on hand-designed sparsity schedules that are not synchronized with the agent's learning pace. Crucially, the final sparsity level is chosen as a hyperparameter, which requires careful tuning as setting it too high might lead to poor performances. In this work, we address these shortcomings by crafting a dense-to-sparse algorithm that we name Eau De $Q$-Network (EauDeQN). To increase sparsity at the agent's learning pace, we consider multiple online networks with different sparsity levels, where each online network is trained from a shared target network. At each target update, the online network with the smallest loss is chosen as the next target network, while the other networks are replaced by a pruned version of the chosen network. We evaluate the proposed approach on the Atari $2600$ benchmark and the MuJoCo physics simulator, showing that EauDeQN reaches high sparsity levels while keeping performances high.
comment: Published at RLC 2025: https://openreview.net/forum?id=Bb84iBj4wU#discussion
♻ ☆ Can Large Language Models Replace Human Subjects? A Large-Scale Replication of Scenario-Based Experiments in Psychology and Management
Artificial Intelligence (AI) is increasingly being integrated into scientific research, particularly in the social sciences, where understanding human behavior is critical. Large Language Models (LLMs) have shown promise in replicating human-like responses in various psychological experiments. We conducted a large-scale study replicating 156 psychological experiments from top social science journals using three state-of-the-art LLMs (GPT-4, Claude 3.5 Sonnet, and DeepSeek v3). Our results reveal that while LLMs demonstrate high replication rates for main effects (73-81%) and moderate to strong success with interaction effects (46-63%), They consistently produce larger effect sizes than human studies, with Fisher Z values approximately 2-3 times higher than human studies. Notably, LLMs show significantly lower replication rates for studies involving socially sensitive topics such as race, gender and ethics. When original studies reported null findings, LLMs produced significant results at remarkably high rates (68-83%) - while this could reflect cleaner data with less noise, as evidenced by narrower confidence intervals, it also suggests potential risks of effect size overestimation. Our results demonstrate both the promise and challenges of LLMs in psychological research, offering efficient tools for pilot testing and rapid hypothesis validation while enriching rather than replacing traditional human subject studies, yet requiring more nuanced interpretation and human validation for complex social phenomena and culturally sensitive research questions.
comment: 5 figures, 2 tables
♻ ☆ Decoupled Classifier-Free Guidance for Counterfactual Diffusion Models
Counterfactual image generation aims to simulate realistic visual outcomes under specific causal interventions. Diffusion models have recently emerged as a powerful tool for this task, combining DDIM inversion with conditional generation via classifier-free guidance (CFG). However, standard CFG applies a single global weight across all conditioning variables, which can lead to poor identity preservation and spurious attribute changes - a phenomenon known as attribute amplification. To address this, we propose Decoupled Classifier-Free Guidance (DCFG), a flexible and model-agnostic framework that introduces group-wise conditioning control. DCFG builds on an attribute-split embedding strategy that disentangles semantic inputs, enabling selective guidance on user-defined attribute groups. For counterfactual generation, we partition attributes into intervened and invariant sets based on a causal graph and apply distinct guidance to each. Experiments on CelebA-HQ, MIMIC-CXR, and EMBED show that DCFG improves intervention fidelity, mitigates unintended changes, and enhances reversibility, enabling more faithful and interpretable counterfactual image generation.
♻ ☆ Assessing Tenstorrent's RISC-V MatMul Acceleration Capabilities SC
The increasing demand for generative AI as Large Language Models (LLMs) services has driven the need for specialized hardware architectures that optimize computational efficiency and energy consumption. This paper evaluates the performance of the Tenstorrent Grayskull e75 RISC-V accelerator for basic linear algebra kernels at reduced numerical precision, a fundamental operation in LLM computations. We present a detailed characterization of Grayskull's execution model, gridsize, matrix dimensions, data formats, and numerical precision impact computational efficiency. Furthermore, we compare Grayskull's performance against state-of-the-art architectures with tensor acceleration, including Intel Sapphire Rapids processors and two NVIDIA GPUs (V100 and A100). Whilst NVIDIA GPUs dominate raw performance, Grayskull demonstrates a competitive trade-off between power consumption and computational throughput, reaching a peak of 1.55 TFLOPs/Watt with BF16.
comment: Accepted to the Computational Aspects of Deep Learning Workshop at ISC High Performance 2025. To appear in the ISC High Performance 2025 Workshop Proceedings
♻ ☆ Capturing Polysemanticity with PRISM: A Multi-Concept Feature Description Framework
Automated interpretability research aims to identify concepts encoded in neural network features to enhance human understanding of model behavior. Current feature description methods face two critical challenges: limited robustness and the flawed assumption that each neuron encodes only a single concept (monosemanticity), despite growing evidence that neurons are often polysemantic. This assumption restricts the expressiveness of feature descriptions and limits their ability to capture the full range of behaviors encoded in model internals. To address this, we introduce Polysemantic FeatuRe Identification and Scoring Method (PRISM), a novel framework that captures the inherent complexity of neural network features. Unlike prior approaches that assign a single description per feature, PRISM provides more nuanced descriptions for both polysemantic and monosemantic features. We apply PRISM to language models and, through extensive benchmarking against existing methods, demonstrate that our approach produces more accurate and faithful feature descriptions, improving both overall description quality (via a description score) and the ability to capture distinct concepts when polysemanticity is present (via a polysemanticity score).
♻ ☆ Mask-PINNs: Regulating Feature Distributions in Physics-Informed Neural Networks
Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving partial differential equations (PDEs) by embedding physical laws directly into the loss function. However, effective training of PINNs remains challenging due to internal covariate shift, which destabilizes feature distributions and impairs model expressiveness. While normalization techniques like Batch Normalization and Layer Normalization are standard remedies in deep learning, they disrupt the pointwise input-output mappings critical to preserving the physical consistency in PINNs. In this work, we introduce Mask-PINNs, a novel architecture that regulates internal feature distributions through a smooth, learnable mask function applied pointwise across hidden layers. Unlike conventional normalization methods, the proposed mask function preserves the deterministic nature of input-output relationships while suppressing activation drift and saturation. Theoretically, we demonstrate that Mask-PINNs control feature spread near initialization by attenuating gradient variance growth through a tailored modulation mechanism. Empirically, we validate the method on multiple PDE benchmarks across diverse activation functions. Our results show consistent improvements in prediction accuracy, convergence stability, and robustness, with relative L2 errors reduced by up to two orders of magnitude over baseline models. Furthermore, we demonstrate that Mask-PINNs enable the effective use of wider networks, overcoming a key limitation in existing PINN frameworks.
♻ ☆ PromptDSI: Prompt-based Rehearsal-free Instance-wise Incremental Learning for Document Retrieval ECML
Differentiable Search Index (DSI) utilizes pre-trained language models to perform indexing and document retrieval via end-to-end learning without relying on external indexes. However, DSI requires full re-training to index new documents, causing significant computational inefficiencies. Continual learning (CL) offers a solution by enabling the model to incrementally update without full re-training. Existing CL solutions in document retrieval rely on memory buffers or generative models for rehearsal, which is infeasible when accessing previous training data is restricted due to privacy concerns. To this end, we introduce PromptDSI, a prompt-based, rehearsal-free continual learning approach for document retrieval. PromptDSI follows the Prompt-based Continual Learning (PCL) framework, using learnable prompts to efficiently index new documents without accessing previous documents or queries. To improve retrieval latency, we remove the initial forward pass of PCL, which otherwise greatly increases training and inference time, with a negligible trade-off in performance. Additionally, we introduce a novel topic-aware prompt pool that employs neural topic embeddings as fixed keys, eliminating the instability of prompt key optimization while maintaining competitive performance with existing PCL prompt pools. In a challenging rehearsal-free continual learning setup, we demonstrate that PromptDSI variants outperform rehearsal-based baselines, match the strong cache-based baseline in mitigating forgetting, and significantly improving retrieval performance on new corpora.
comment: ECML PKDD 2025 Research track. Camera-ready version. Code is available at https://github.com/LouisDo2108/PromptDSI
♻ ☆ LogProber: Disentangling confidence from contamination in LLM responses
In machine learning, contamination refers to situations where testing data leak into the training set. The issue is particularly relevant for the evaluation of the performance of Large Language Models (LLMs), which are generally trained on gargantuan, and generally opaque, corpora of text scraped from the world wide web. Developing tools to detect contamination is therefore crucial to be able to fairly and properly track the evolution of the performance of LLMs. To date, only a few recent studies have attempted to address the issue of quantifying and detecting contamination in short text sequences, such as those commonly found in benchmarks. However, these methods have limitations that can sometimes render them impractical. In the present paper, we introduce LogProber, a novel, efficient algorithm that we show to be able to detect contamination in a black box setting that tries to tackle some of these drawbacks by focusing on the familiarity with the question rather than the answer. Here, we explore the properties of the proposed method in comparison with concurrent approaches, identify its advantages and limitations, and illustrate how different forms of contamination can go undetected depending on the design of the detection algorithm.
♻ ☆ SafeGenBench: A Benchmark Framework for Security Vulnerability Detection in LLM-Generated Code
The code generation capabilities of large language models(LLMs) have emerged as a critical dimension in evaluating their overall performance. However, prior research has largely overlooked the security risks inherent in the generated code. In this work, we introduce SafeGenBench, a benchmark specifically designed to assess the security of LLM-generated code. The dataset encompasses a wide range of common software development scenarios and vulnerability types. Building upon this benchmark, we develop an automatic evaluation framework that leverages both static application security testing(SAST) and LLM-based judging to assess the presence of security vulnerabilities in model-generated code. Through the empirical evaluation of state-of-the-art LLMs on SafeGenBench, we reveal notable deficiencies in their ability to produce vulnerability-free code. Our findings highlight pressing challenges and offer actionable insights for future advancements in the secure code generation performance of LLMs. The data and code will be released soon.
♻ ☆ Machine Learning Methods for Small Data and Upstream Bioprocessing Applications: A Comprehensive Review
Data is crucial for machine learning (ML) applications, yet acquiring large datasets can be costly and time-consuming, especially in complex, resource-intensive fields like biopharmaceuticals. A key process in this industry is upstream bioprocessing, where living cells are cultivated and optimised to produce therapeutic proteins and biologics. The intricate nature of these processes, combined with high resource demands, often limits data collection, resulting in smaller datasets. This comprehensive review explores ML methods designed to address the challenges posed by small data and classifies them into a taxonomy to guide practical applications. Furthermore, each method in the taxonomy was thoroughly analysed, with a detailed discussion of its core concepts and an evaluation of its effectiveness in tackling small data challenges, as demonstrated by application results in the upstream bioprocessing and other related domains. By analysing how these methods tackle small data challenges from different perspectives, this review provides actionable insights, identifies current research gaps, and offers guidance for leveraging ML in data-constrained environments.
♻ ☆ Selective Use of Yannakakis' Algorithm to Improve Query Performance: Machine Learning to the Rescue
Query optimization has played a central role in database research for decades. However, more often than not, the proposed optimization techniques lead to a performance improvement in some, but not in all, situations. Therefore, we urgently need a methodology for designing a decision procedure that decides for a given query whether the optimization technique should be applied or not. In this work, we propose such a methodology with a focus on Yannakakis-style query evaluation as our optimization technique of interest. More specifically, we formulate this decision problem as an algorithm selection problem and we present a Machine Learning based approach for its solution. Empirical results with several benchmarks on a variety of database systems show that our approach indeed leads to a statistically significant performance improvement.
♻ ☆ Robust Finite-Memory Policy Gradients for Hidden-Model POMDPs IJCAI 2025
Partially observable Markov decision processes (POMDPs) model specific environments in sequential decision-making under uncertainty. Critically, optimal policies for POMDPs may not be robust against perturbations in the environment. Hidden-model POMDPs (HM-POMDPs) capture sets of different environment models, that is, POMDPs with a shared action and observation space. The intuition is that the true model is hidden among a set of potential models, and it is unknown which model will be the environment at execution time. A policy is robust for a given HM-POMDP if it achieves sufficient performance for each of its POMDPs.We compute such robust policies by combining two orthogonal techniques: (1) a deductive formal verification technique that supports tractable robust policy evaluation by computing a worst-case POMDP within the HM-POMDP, and (2) subgradient ascent to optimize the candidate policy for a worst-case POMDP. The empirical evaluation shows that, compared to various baselines, our approach (1) produces policies that are more robust and generalize better to unseen POMDPs, and (2) scales to HM-POMDPs that consist of over a hundred thousand environments.
comment: Accepted for publication at IJCAI 2025
♻ ☆ POV Learning: Individual Alignment of Multimodal Models using Human Perception
Aligning machine learning systems with human expectations is mostly attempted by training with manually vetted human behavioral samples, typically explicit feedback. This is done on a population level since the context that is capturing the subjective Point-Of-View (POV) of a concrete person in a specific situational context is not retained in the data. However, we argue that alignment on an individual level can boost the subjective predictive performance for the individual user interacting with the system considerably. Since perception differs for each person, the same situation is observed differently. Consequently, the basis for decision making and the subsequent reasoning processes and observable reactions differ. We hypothesize that individual perception patterns can be used for improving the alignment on an individual level. We test this, by integrating perception information into machine learning systems and measuring their predictive performance wrt.~individual subjective assessments. For our empirical study, we collect a novel data set of multimodal stimuli and corresponding eye tracking sequences for the novel task of Perception-Guided Crossmodal Entailment and tackle it with our Perception-Guided Multimodal Transformer. Our findings suggest that exploiting individual perception signals for the machine learning of subjective human assessments provides a valuable cue for individual alignment. It does not only improve the overall predictive performance from the point-of-view of the individual user but might also contribute to steering AI systems towards every person's individual expectations and values.
♻ ☆ LearnAlign: Reasoning Data Selection for Reinforcement Learning in Large Language Models Based on Improved Gradient Alignment
Reinforcement learning (RL) has become a key technique for enhancing LLMs' reasoning abilities, yet its data inefficiency remains a major bottleneck. To address this critical yet challenging issue, we present a novel gradient-alignment-based method, named LearnAlign, which intelligently selects the learnable and representative training reasoning data for RL post-training. To overcome the issue of response-length bias in gradient norms, we introduce the data learnability based on the success rate, which can indicate the learning potential of each data point. Experiments across three mathematical reasoning benchmarks demonstrate that our method significantly reduces training data requirements while achieving minor performance degradation or even improving performance compared to full-data training. For example, it reduces data requirements by up to 1,000 data points with better performance (77.53%) than that on the full dataset on GSM8K benchmark (77.04%). Furthermore, we show its effectiveness in the staged RL setting. This work provides valuable insights into data-efficient RL post-training and establishes a foundation for future research in optimizing reasoning data selection. To facilitate future work, we will release code.
♻ ☆ Dynamic Knowledge Integration for Evidence-Driven Counter-Argument Generation with Large Language Models ACL 2025
This paper investigates the role of dynamic external knowledge integration in improving counter-argument generation using Large Language Models (LLMs). While LLMs have shown promise in argumentative tasks, their tendency to generate lengthy, potentially unfactual responses highlights the need for more controlled and evidence-based approaches. We introduce a new manually curated dataset of argument and counter-argument pairs specifically designed to balance argumentative complexity with evaluative feasibility. We also propose a new LLM-as-a-Judge evaluation methodology that shows a stronger correlation with human judgments compared to traditional reference-based metrics. Our experimental results demonstrate that integrating dynamic external knowledge from the web significantly improves the quality of generated counter-arguments, particularly in terms of relatedness, persuasiveness, and factuality. The findings suggest that combining LLMs with real-time external knowledge retrieval offers a promising direction for developing more effective and reliable counter-argumentation systems.
comment: ACL 2025
♻ ☆ PR-Attack: Coordinated Prompt-RAG Attacks on Retrieval-Augmented Generation in Large Language Models via Bilevel Optimization SIGIR 2025
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of applications, e.g., medical question-answering, mathematical sciences, and code generation. However, they also exhibit inherent limitations, such as outdated knowledge and susceptibility to hallucinations. Retrieval-Augmented Generation (RAG) has emerged as a promising paradigm to address these issues, but it also introduces new vulnerabilities. Recent efforts have focused on the security of RAG-based LLMs, yet existing attack methods face three critical challenges: (1) their effectiveness declines sharply when only a limited number of poisoned texts can be injected into the knowledge database, (2) they lack sufficient stealth, as the attacks are often detectable by anomaly detection systems, which compromises their effectiveness, and (3) they rely on heuristic approaches to generate poisoned texts, lacking formal optimization frameworks and theoretic guarantees, which limits their effectiveness and applicability. To address these issues, we propose coordinated Prompt-RAG attack (PR-attack), a novel optimization-driven attack that introduces a small number of poisoned texts into the knowledge database while embedding a backdoor trigger within the prompt. When activated, the trigger causes the LLM to generate pre-designed responses to targeted queries, while maintaining normal behavior in other contexts. This ensures both high effectiveness and stealth. We formulate the attack generation process as a bilevel optimization problem leveraging a principled optimization framework to develop optimal poisoned texts and triggers. Extensive experiments across diverse LLMs and datasets demonstrate the effectiveness of PR-Attack, achieving a high attack success rate even with a limited number of poisoned texts and significantly improved stealth compared to existing methods.
comment: Accepted at SIGIR 2025
♻ ☆ Optimizing Sensory Neurons: Nonlinear Attention Mechanisms for Accelerated Convergence in Permutation-Invariant Neural Networks for Reinforcement Learning
Training reinforcement learning (RL) agents often requires significant computational resources and prolonged training durations. To address this challenge, we build upon prior work that introduced a neural architecture with permutation-invariant sensory processing. We propose a modified attention mechanism that applies a non-linear transformation to the key vectors (K), producing enriched representations (K') through a custom mapping function. This Nonlinear Attention (NLA) mechanism enhances the representational capacity of the attention layer, enabling the agent to learn more expressive feature interactions. As a result, our model achieves significantly faster convergence and improved training efficiency, while maintaining performance on par with the baseline. These results highlight the potential of nonlinear attention mechanisms to accelerate reinforcement learning without sacrificing effectiveness.
♻ ☆ Refining music sample identification with a self-supervised graph neural network
Automatic sample identification (ASID), the detection and identification of portions of audio recordings that have been reused in new musical works, is an essential but challenging task in the field of audio query-based retrieval. While a related task, audio fingerprinting, has made significant progress in accurately retrieving musical content under "real world" (noisy, reverberant) conditions, ASID systems struggle to identify samples that have undergone musical modifications. Thus, a system robust to common music production transformations such as time-stretching, pitch-shifting, effects processing, and underlying or overlaying music is an important open challenge. In this work, we propose a lightweight and scalable encoding architecture employing a Graph Neural Network within a contrastive learning framework. Our model uses only 9% of the trainable parameters compared to the current state-of-the-art system while achieving comparable performance, reaching a mean average precision (mAP) of 44.2%. To enhance retrieval quality, we introduce a two-stage approach consisting of an initial coarse similarity search for candidate selection, followed by a cross-attention classifier that rejects irrelevant matches and refines the ranking of retrieved candidates - an essential capability absent in prior models. In addition, because queries in real-world applications are often short in duration, we benchmark our system for short queries using new fine-grained annotations for the Sample100 dataset, which we publish as part of this work.
comment: Accepted at International Conference for Music Information Retrieval (ISMIR) 2025
♻ ☆ Towards Efficient Few-shot Graph Neural Architecture Search via Partitioning Gradient Contribution KDD 2025
To address the weight coupling problem, certain studies introduced few-shot Neural Architecture Search (NAS) methods, which partition the supernet into multiple sub-supernets. However, these methods often suffer from computational inefficiency and tend to provide suboptimal partitioning schemes. To address this problem more effectively, we analyze the weight coupling problem from a novel perspective, which primarily stems from distinct modules in succeeding layers imposing conflicting gradient directions on the preceding layer modules. Based on this perspective, we propose the Gradient Contribution (GC) method that efficiently computes the cosine similarity of gradient directions among modules by decomposing the Vector-Jacobian Product during supernet backpropagation. Subsequently, the modules with conflicting gradient directions are allocated to distinct sub-supernets while similar ones are grouped together. To assess the advantages of GC and address the limitations of existing Graph Neural Architecture Search methods, which are limited to searching a single type of Graph Neural Networks (Message Passing Neural Networks (MPNNs) or Graph Transformers (GTs)), we propose the Unified Graph Neural Architecture Search (UGAS) framework, which explores optimal combinations of MPNNs and GTs. The experimental results demonstrate that GC achieves state-of-the-art (SOTA) performance in supernet partitioning quality and time efficiency. In addition, the architectures searched by UGAS+GC outperform both the manually designed GNNs and those obtained by existing NAS methods. Finally, ablation studies further demonstrate the effectiveness of all proposed methods.
comment: Accepted by SIGKDD 2025
♻ ☆ Sekai: A Video Dataset towards World Exploration
Video generation techniques have made remarkable progress, promising to be the foundation of interactive world exploration. However, existing video generation datasets are not well-suited for world exploration training as they suffer from some limitations: limited locations, short duration, static scenes, and a lack of annotations about exploration and the world. In this paper, we introduce Sekai (meaning ``world'' in Japanese), a high-quality first-person view worldwide video dataset with rich annotations for world exploration. It consists of over 5,000 hours of walking or drone view (FPV and UVA) videos from over 100 countries and regions across 750 cities. We develop an efficient and effective toolbox to collect, pre-process and annotate videos with location, scene, weather, crowd density, captions, and camera trajectories. Experiments demonstrate the quality of the dataset. And, we use a subset to train an interactive video world exploration model, named YUME (meaning ``dream'' in Japanese). We believe Sekai will benefit the area of video generation and world exploration, and motivate valuable applications. The project page is https://lixsp11.github.io/sekai-project/.
comment: 12 pages, 6 figures
♻ ☆ Adapting While Learning: Grounding LLMs for Scientific Problems with Intelligent Tool Usage Adaptation
Large Language Models (LLMs) demonstrate promising capabilities in solving scientific problems but often suffer from the issue of hallucination. While integrating LLMs with tools can mitigate this issue, models fine-tuned on tool usage become overreliant on them and incur unnecessary costs. Inspired by how human experts assess problem complexity before selecting solutions, we propose a novel two-component fine-tuning method, Adapting While Learning (AWL). In the first component, World Knowledge Learning (WKL), LLMs internalize scientific knowledge by learning from tool-generated solutions. In the second component, Tool Usage Adaptation (TUA), we categorize problems as easy or hard based on the model's accuracy, and train it to maintain direct reasoning for easy problems while switching to tools for hard ones. We validate our method on six scientific benchmark datasets across climate science, epidemiology, physics, and other domains. Compared to the original instruct model (8B), models post-trained with AWL achieve 29.11% higher answer accuracy and 12.72% better tool usage accuracy, even surpassing state-of-the-art models including GPT-4o and Claude-3.5 on four custom-created datasets. Our code is open-source at https://github.com/Rose-STL-Lab/Adapting-While-Learning.
comment: 37 pages, 16 figures
♻ ☆ More Thinking, Less Seeing? Assessing Amplified Hallucination in Multimodal Reasoning Models
Test-time compute has empowered multimodal large language models to generate extended reasoning chains, yielding strong performance on tasks such as multimodal math reasoning. However, this improved reasoning ability often comes with increased hallucination: as generations become longer, models tend to drift away from image-grounded content and rely more heavily on language priors. Attention analysis shows that longer reasoning chains lead to reduced focus on visual inputs, which contributes to hallucination. To systematically study this phenomenon, we introduce RH-AUC, a metric that quantifies how a model's perception accuracy changes with reasoning length, allowing us to evaluate whether the model preserves visual grounding during reasoning. We also release RH-Bench, a diagnostic benchmark that spans a variety of multimodal tasks, designed to assess the trade-off between reasoning ability and hallucination. Our analysis reveals that (i) larger models typically achieve a better balance between reasoning and perception, and (ii) this balance is influenced more by the types and domains of training data than by its overall volume. These findings underscore the importance of evaluation frameworks that jointly consider both reasoning quality and perceptual fidelity.
♻ ☆ Preference-Driven Multi-Objective Combinatorial Optimization with Conditional Computation
Recent deep reinforcement learning methods have achieved remarkable success in solving multi-objective combinatorial optimization problems (MOCOPs) by decomposing them into multiple subproblems, each associated with a specific weight vector. However, these methods typically treat all subproblems equally and solve them using a single model, hindering the effective exploration of the solution space and thus leading to suboptimal performance. To overcome the limitation, we propose POCCO, a novel plug-and-play framework that enables adaptive selection of model structures for subproblems, which are subsequently optimized based on preference signals rather than explicit reward values. Specifically, we design a conditional computation block that routes subproblems to specialized neural architectures. Moreover, we propose a preference-driven optimization algorithm that learns pairwise preferences between winning and losing solutions. We evaluate the efficacy and versatility of POCCO by applying it to two state-of-the-art neural methods for MOCOPs. Experimental results across four classic MOCOP benchmarks demonstrate its significant superiority and strong generalization.
comment: 22 pages, 6 figures, under review
♻ ☆ Efficient but Vulnerable: Benchmarking and Defending LLM Batch Prompting Attack ACL
Batch prompting, which combines a batch of multiple queries sharing the same context in one inference, has emerged as a promising solution to reduce inference costs. However, our study reveals a significant security vulnerability in batch prompting: malicious users can inject attack instructions into a batch, leading to unwanted interference across all queries, which can result in the inclusion of harmful content, such as phishing links, or the disruption of logical reasoning. In this paper, we construct BATCHSAFEBENCH, a comprehensive benchmark comprising 150 attack instructions of two types and 8k batch instances, to study the batch prompting vulnerability systematically. Our evaluation of both closed-source and open-weight LLMs demonstrates that all LLMs are susceptible to batch-prompting attacks. We then explore multiple defending approaches. While the prompting-based defense shows limited effectiveness for smaller LLMs, the probing-based approach achieves about 95% accuracy in detecting attacks. Additionally, we perform a mechanistic analysis to understand the attack and identify attention heads that are responsible for it.
comment: Accepted to ACL Findings, 2025
♻ ☆ Cost-effective Instruction Learning for Pathology Vision and Language Analysis
The advent of vision-language models fosters the interactive conversations between AI-enabled models and humans. Yet applying these models into clinics must deal with daunting challenges around large-scale training data, financial, and computational resources. Here we propose a cost-effective instruction learning framework for conversational pathology named as CLOVER. CLOVER only trains a lightweight module and uses instruction tuning while freezing the parameters of the large language model. Instead of using costly GPT-4, we propose well-designed prompts on GPT-3.5 for building generation-based instructions, emphasizing the utility of pathological knowledge derived from the Internet source. To augment the use of instructions, we construct a high-quality set of template-based instructions in the context of digital pathology. From two benchmark datasets, our findings reveal the strength of hybrid-form instructions in the visual question-answer in pathology. Extensive results show the cost-effectiveness of CLOVER in answering both open-ended and closed-ended questions, where CLOVER outperforms strong baselines that possess 37 times more training parameters and use instruction data generated from GPT-4. Through the instruction tuning, CLOVER exhibits robustness of few-shot learning in the external clinical dataset. These findings demonstrate that cost-effective modeling of CLOVER could accelerate the adoption of rapid conversational applications in the landscape of digital pathology.
♻ ☆ Planning of Heuristics: Strategic Planning on Large Language Models with Monte Carlo Tree Search for Automating Heuristic Optimization
Heuristics have achieved great success in solving combinatorial optimization problems~(COPs). However, heuristics designed by humans require too much domain knowledge and testing time. Since Large Language Models~(LLMs) possess strong capabilities to understand and generate content with a knowledge base that covers various domains, they offer potential ways to automatically optimize heuristics. To this end, we propose Planning of Heuristics~(PoH), an optimization method that integrates LLM self-reflection with Monte Carlo Tree Search, a well-known planning algorithm. PoH iteratively refines generated heuristics by evaluating their performance and providing improvement suggestions. Our method enables to iteratively evaluate the generated heuristics~(states) and improve them based on the improvement suggestions~(actions) and evaluation results~(rewards), by effectively simulating future states to search for paths with higher rewards. In this paper, we apply PoH to solve the Traveling Salesman Problem and the Flow Shop Scheduling Problem. The experimental results show that PoH outperforms hand-crafted heuristics and other Automatic Heuristic Design methods based on LLMs, and achieves the state-of-the-art performance in automating heuristic optimization with LLMs to solve tested COPs, especially with large sizes.
comment: 17 pages, 8 figures
♻ ☆ Alto: Orchestrating Distributed Compound AI Systems with Nested Ancestry
Compound AI applications chain together subcomponents such as generative language models, document retrievers, and embedding models. Applying traditional systems optimizations such as parallelism and pipelining in compound AI systems is difficult because each component has different constraints in terms of the granularity and type of data that it ingests. New data is often generated during intermediate computations, and text streams may be split into smaller, independent fragments (such as documents to sentences) which may then be re-aggregated at later parts of the computation. Due to this complexity, existing systems to serve compound AI queries do not fully take advantage of parallelism and pipelining opportunities. We present Alto, a framework that automatically optimizes execution of compound AI queries through streaming and parallelism. Bento introduces a new abstraction called nested ancestry, a metadata hierarchy that allows the system to correctly track partial outputs and aggregate data across the heterogeneous constraints of the components of compound AI applications. This metadata is automatically inferred from the programming model, allowing developers to express complex dataflow patterns without needing to reason manually about the details of routing and aggregation. Implementations of four applications in Alto outperform or match implementations in LangGraph, a popular existing AI programming framework. Alto implementations match or improve latency by between 10-30%.
♻ ☆ SSR-Zero: Simple Self-Rewarding Reinforcement Learning for Machine Translation
Large language models (LLMs) have recently demonstrated remarkable capabilities in machine translation (MT). However, most advanced MT-specific LLMs heavily rely on external supervision signals during training, such as human-annotated reference data or trained reward models (RMs), which are often expensive to obtain and challenging to scale. To overcome this limitation, we propose a Simple Self-Rewarding (SSR) Reinforcement Learning (RL) framework for MT that is reference-free, fully online, and relies solely on self-judging rewards. Training with SSR using 13K monolingual examples and Qwen-2.5-7B as the backbone, our model SSR-Zero-7B outperforms existing MT-specific LLMs, e.g., TowerInstruct-13B and GemmaX-28-9B, as well as larger general LLMs like Qwen2.5-32B-Instruct in English $\leftrightarrow$ Chinese translation tasks from WMT23, WMT24, and Flores200 benchmarks. Furthermore, by augmenting SSR with external supervision from COMET, our strongest model, SSR-X-Zero-7B, achieves state-of-the-art performance in English $\leftrightarrow$ Chinese translation, surpassing all existing open-source models under 72B parameters and even outperforming closed-source models, e.g., GPT-4o and Gemini 1.5 Pro. Our analysis highlights the effectiveness of the self-rewarding mechanism compared to the external LLM-as-a-judge approach in MT and demonstrates its complementary benefits when combined with trained RMs. Our findings provide valuable insight into the potential of self-improving RL methods. We have publicly released our code, data and models.
♻ ☆ Can We Detect Failures Without Failure Data? Uncertainty-Aware Runtime Failure Detection for Imitation Learning Policies
Recent years have witnessed impressive robotic manipulation systems driven by advances in imitation learning and generative modeling, such as diffusion- and flow-based approaches. As robot policy performance increases, so does the complexity and time horizon of achievable tasks, inducing unexpected and diverse failure modes that are difficult to predict a priori. To enable trustworthy policy deployment in safety-critical human environments, reliable runtime failure detection becomes important during policy inference. However, most existing failure detection approaches rely on prior knowledge of failure modes and require failure data during training, which imposes a significant challenge in practicality and scalability. In response to these limitations, we present FAIL-Detect, a modular two-stage approach for failure detection in imitation learning-based robotic manipulation. To accurately identify failures from successful training data alone, we frame the problem as sequential out-of-distribution (OOD) detection. We first distill policy inputs and outputs into scalar signals that correlate with policy failures and capture epistemic uncertainty. FAIL-Detect then employs conformal prediction (CP) as a versatile framework for uncertainty quantification with statistical guarantees. Empirically, we thoroughly investigate both learned and post-hoc scalar signal candidates on diverse robotic manipulation tasks. Our experiments show learned signals to be mostly consistently effective, particularly when using our novel flow-based density estimator. Furthermore, our method detects failures more accurately and faster than state-of-the-art (SOTA) failure detection baselines. These results highlight the potential of FAIL-Detect to enhance the safety and reliability of imitation learning-based robotic systems as they progress toward real-world deployment.
comment: Accepted by Robotics: Science and Systems 2025
♻ ☆ LEGO-Puzzles: How Good Are MLLMs at Multi-Step Spatial Reasoning?
Multi-step spatial reasoning entails understanding and reasoning about spatial relationships across multiple sequential steps, which is crucial for tackling complex real-world applications, such as robotic manipulation, autonomous navigation, and automated assembly. To assess how well current Multimodal Large Language Models (MLLMs) have acquired this fundamental capability, we introduce LEGO-Puzzles, a scalable benchmark designed to evaluate both spatial understanding and sequential reasoning in MLLMs through LEGO-based tasks. LEGO-Puzzles consists of 1,100 carefully curated visual question-answering (VQA) samples spanning 11 distinct tasks, ranging from basic spatial understanding to complex multi-step reasoning. Based on LEGO-Puzzles, we conduct a comprehensive evaluation of 20 state-of-the-art MLLMs and uncover significant limitations in their spatial reasoning capabilities: even the most powerful MLLMs can answer only about half of the test cases, whereas human participants achieve over 90% accuracy. Furthermore, based on LEGO-Puzzles, we design generation tasks to investigate whether MLLMs can transfer their spatial understanding and reasoning abilities to image generation. Our experiments show that only GPT-4o and Gemini-2.0-Flash exhibit a limited ability to follow these instructions, while other MLLMs either replicate the input image or generate completely irrelevant outputs. Overall, LEGO-Puzzles exposes critical deficiencies in existing MLLMs' spatial understanding and sequential reasoning capabilities, and underscores the need for further advancements in multimodal spatial reasoning.
comment: 11 pages, 3 figures
♻ ☆ FDLLM: A Dedicated Detector for Black-Box LLMs Fingerprinting
Large Language Models (LLMs) are rapidly transforming the landscape of digital content creation. However, the prevalent black-box Application Programming Interface (API) access to many LLMs introduces significant challenges in accountability, governance, and security. LLM fingerprinting, which aims to identify the source model by analyzing statistical and stylistic features of generated text, offers a potential solution. Current progress in this area is hindered by a lack of dedicated datasets and the need for efficient, practical methods that are robust against adversarial manipulations. To address these challenges, we introduce FD-Dataset, a comprehensive bilingual fingerprinting benchmark comprising 90,000 text samples from 20 famous proprietary and open-source LLMs. Furthermore, we present FDLLM, a novel fingerprinting method that leverages parameter-efficient Low-Rank Adaptation (LoRA) to fine-tune a foundation model. This approach enables LoRA to extract deep, persistent features that characterize each source LLM. Through our analysis, we find that LoRA adaptation promotes the aggregation of outputs from the same LLM in representation space while enhancing the separation between different LLMs. This mechanism explains why LoRA proves particularly effective for LLM fingerprinting. Extensive empirical evaluations on FD-Dataset demonstrate FDLLM's superiority, achieving a Macro F1 score 22.1% higher than the strongest baseline. FDLLM also exhibits strong generalization to newly released models, achieving an average accuracy of 95% on unseen models. Notably, FDLLM remains consistently robust under various adversarial attacks, including polishing, translation, and synonym substitution. Experimental results show that FDLLM reduces the average attack success rate from 49.2% (LM-D) to 23.9%.
Nature Language Model: Deciphering the Language of Nature for Scientific Discovery
Foundation models have revolutionized natural language processing and artificial intelligence, significantly enhancing how machines comprehend and generate human languages. Inspired by the success of these foundation models, researchers have developed foundation models for individual scientific domains, including small molecules, materials, proteins, DNA, RNA and even cells. However, these models are typically trained in isolation, lacking the ability to integrate across different scientific domains. Recognizing that entities within these domains can all be represented as sequences, which together form the "language of nature", we introduce Nature Language Model (NatureLM), a sequence-based science foundation model designed for scientific discovery. Pre-trained with data from multiple scientific domains, NatureLM offers a unified, versatile model that enables various applications including: (i) generating and optimizing small molecules, proteins, RNA, and materials using text instructions; (ii) cross-domain generation/design, such as protein-to-molecule and protein-to-RNA generation; and (iii) top performance across different domains, matching or surpassing state-of-the-art specialist models. NatureLM offers a promising generalist approach for various scientific tasks, including drug discovery (hit generation/optimization, ADMET optimization, synthesis), novel material design, and the development of therapeutic proteins or nucleotides. We have developed NatureLM models in different sizes (1 billion, 8 billion, and 46.7 billion parameters) and observed a clear improvement in performance as the model size increases.
comment: 95 pages
♻ ☆ DeepSelective: Interpretable Prognosis Prediction via Feature Selection and Compression in EHR Data
The rapid accumulation of Electronic Health Records (EHRs) has transformed healthcare by providing valuable data that enhance clinical predictions and diagnoses. While conventional machine learning models have proven effective, they often lack robust representation learning and depend heavily on expert-crafted features. Although deep learning offers powerful solutions, it is often criticized for its lack of interpretability. To address these challenges, we propose DeepSelective, a novel end to end deep learning framework for predicting patient prognosis using EHR data, with a strong emphasis on enhancing model interpretability. DeepSelective combines data compression techniques with an innovative feature selection approach, integrating custom-designed modules that work together to improve both accuracy and interpretability. Our experiments demonstrate that DeepSelective not only enhances predictive accuracy but also significantly improves interpretability, making it a valuable tool for clinical decision-making. The source code is freely available at http://www.healthinformaticslab.org/supp/resources.php .
♻ ☆ Conformal Inference under High-Dimensional Covariate Shifts via Likelihood-Ratio Regularization
We consider the problem of conformal prediction under covariate shift. Given labeled data from a source domain and unlabeled data from a covariate shifted target domain, we seek to construct prediction sets with valid marginal coverage in the target domain. Most existing methods require estimating the unknown likelihood ratio function, which can be prohibitive for high-dimensional data such as images. To address this challenge, we introduce the likelihood ratio regularized quantile regression (LR-QR) algorithm, which combines the pinball loss with a novel choice of regularization in order to construct a threshold function without directly estimating the unknown likelihood ratio. We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term that we can control. Our proofs draw on a novel analysis of coverage via stability bounds from learning theory. Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks, including a regression task for the Communities and Crime dataset, an image classification task from the WILDS repository, and an LLM question-answering task on the MMLU benchmark.
♻ ☆ Synthesizing Composite Hierarchical Structure from Symbolic Music Corpora IJCAI '25
Western music is an innately hierarchical system of interacting levels of structure, from fine-grained melody to high-level form. In order to analyze music compositions holistically and at multiple granularities, we propose a unified, hierarchical meta-representation of musical structure called the structural temporal graph (STG). For a single piece, the STG is a data structure that defines a hierarchy of progressively finer structural musical features and the temporal relationships between them. We use the STG to enable a novel approach for deriving a representative structural summary of a music corpus, which we formalize as a nested NP-hard combinatorial optimization problem extending the Generalized Median Graph problem. Our approach first applies simulated annealing to develop a measure of structural distance between two music pieces rooted in graph isomorphism. Our approach then combines the formal guarantees of SMT solvers with nested simulated annealing over structural distances to produce a structurally sound, representative centroid STG for an entire corpus of STGs from individual pieces. To evaluate our approach, we conduct experiments verifying that structural distance accurately differentiates between music pieces, and that derived centroids accurately structurally characterize their corpora.
comment: In Proceedings of the 34th International Joint Conference on Artificial Intelligence (IJCAI '25), Montreal, Canada, August 2025
♻ ☆ CDS: Knowledge Component-Driven Data Synthesis Guided by Cognitive Diagnosis Theory
Large Language Models (LLMs) have achieved significant advancements, but the increasing complexity of tasks and higher performance demands highlight the need for continuous improvement. Some approaches utilize synthetic data generated by advanced LLMs based on evaluation results to train models. However, conventional evaluation methods fail to provide detailed, fine-grained profiles of LLMs, limiting their guidance for data synthesis. In this paper, we introduce the Cognitive Diagnostic Synthesis (CDS) method, which incorporates a diagnostic process inspired by Cognitive Diagnosis Theory (CDT) to refine evaluation results and characterize model profiles at the knowledge component level. Based on these diagnostics, we propose two diagnosis-synthesis strategies for weakness-targeted data synthesis. Additionally, we present an enhanced data augmentation and selection pipeline to improve the quality and diversity of synthesized data. Our experiments with several open-source models show significant improvements across multiple benchmarks, achieving up to 6.00% improvement in code generation, 13.10% in mathematical reasoning, and 5.43% in academic exams. Code and data are available on GitHub.
♻ ☆ Automated Skill Discovery for Language Agents through Exploration and Iterative Feedback
Training large language model (LLM) agents to acquire necessary skills and perform diverse tasks within an environment is gaining interest as a means to enable open-endedness. However, creating the training dataset for their skill acquisition faces several challenges. Manual trajectory collection requires significant human effort. Another approach, where LLMs directly propose tasks to learn, is often invalid, as the LLMs lack knowledge of which tasks are actually feasible. Moreover, the generated data may not provide a meaningful learning signal, as agents often already perform well on the proposed tasks. To address this, we propose a novel automatic skill discovery framework EXIF for LLM-powered agents, designed to improve the feasibility of generated target behaviors while accounting for the agents' capabilities. Our method adopts an exploration-first strategy by employing an exploration agent (Alice) to train the target agent (Bob) to learn essential skills in the environment. Specifically, Alice first interacts with the environment to retrospectively generate a feasible, environment-grounded skill dataset, which is then used to train Bob. Crucially, we incorporate an iterative feedback loop, where Alice evaluates Bob's performance to identify areas for improvement. This feedback then guides Alice's next round of exploration, forming a closed-loop data generation process. Experiments on Webshop and Crafter demonstrate EXIF's ability to effectively discover meaningful skills and iteratively expand the capabilities of the trained agent without any human intervention, achieving substantial performance improvements. Interestingly, we observe that setting Alice to the same model as Bob also notably improves performance, demonstrating EXIF's potential for building a self-evolving system.
comment: Preprint, under review
♻ ☆ Revisiting Multi-Agent Debate as Test-Time Scaling: A Systematic Study of Conditional Effectiveness
The remarkable growth in large language model (LLM) capabilities has spurred exploration into multi-agent systems, with debate frameworks emerging as a promising avenue for enhanced problem-solving. These multi-agent debate (MAD) approaches, where agents collaboratively present, critique, and refine arguments, potentially offer improved reasoning, robustness, and diverse perspectives over monolithic models. Despite prior studies leveraging MAD, a systematic understanding of its effectiveness compared to self-agent methods, particularly under varying conditions, remains elusive. This paper seeks to fill this gap by conceptualizing MAD as a test-time computational scaling technique, distinguished by collaborative refinement and diverse exploration capabilities. We conduct a comprehensive empirical investigation comparing MAD with strong self-agent test-time scaling baselines on mathematical reasoning and safety-related tasks. Our study systematically examines the influence of task difficulty, model scale, and agent diversity on MAD's performance. Key findings reveal that, for mathematical reasoning, MAD offers limited advantages over self-agent scaling but becomes more effective with increased problem difficulty and decreased model capability, while agent diversity shows little benefit. Conversely, for safety tasks, MAD's collaborative refinement can increase vulnerability, but incorporating diverse agent configurations facilitates a gradual reduction in attack success through the collaborative refinement process. We believe our findings provide critical guidance for the future development of more effective and strategically deployed MAD systems.
comment: Preprint, under review
♻ ☆ Beyond principlism: Practical strategies for ethical AI use in research practices
The rapid adoption of generative artificial intelligence (AI) in scientific research, particularly large language models (LLMs), has outpaced the development of ethical guidelines, leading to a "Triple-Too" problem: too many high-level ethical initiatives, too abstract principles lacking contextual and practical relevance, and too much focus on restrictions and risks over benefits and utilities. Existing approaches--principlism (reliance on abstract ethical principles), formalism (rigid application of rules), and technological solutionism (overemphasis on technological fixes)--offer little practical guidance for addressing ethical challenges of AI in scientific research practices. To bridge the gap between abstract principles and day-to-day research practices, a user-centered, realism-inspired approach is proposed here. It outlines five specific goals for ethical AI use: 1) understanding model training and output, including bias mitigation strategies; 2) respecting privacy, confidentiality, and copyright; 3) avoiding plagiarism and policy violations; 4) applying AI beneficially compared to alternatives; and 5) using AI transparently and reproducibly. Each goal is accompanied by actionable strategies and realistic cases of misuse and corrective measures. I argue that ethical AI application requires evaluating its utility against existing alternatives rather than isolated performance metrics. Additionally, I propose documentation guidelines to enhance transparency and reproducibility in AI-assisted research. Moving forward, we need targeted professional development, training programs, and balanced enforcement mechanisms to promote responsible AI use while fostering innovation. By refining these ethical guidelines and adapting them to emerging AI capabilities, we can accelerate scientific progress without compromising research integrity.
comment: Published in: AI and Ethics, 2025
♻ ☆ MaPPER: Multimodal Prior-guided Parameter Efficient Tuning for Referring Expression Comprehension EMNLP 2024
Referring Expression Comprehension (REC), which aims to ground a local visual region via natural language, is a task that heavily relies on multimodal alignment. Most existing methods utilize powerful pre-trained models to transfer visual/linguistic knowledge by full fine-tuning. However, full fine-tuning the entire backbone not only breaks the rich prior knowledge embedded in the pre-training, but also incurs significant computational costs. Motivated by the recent emergence of Parameter-Efficient Transfer Learning (PETL) methods, we aim to solve the REC task in an effective and efficient manner. Directly applying these PETL methods to the REC task is inappropriate, as they lack the specific-domain abilities for precise local visual perception and visual-language alignment. Therefore, we propose a novel framework of Multimodal Prior-guided Parameter Efficient Tuning, namely MaPPER. Specifically, MaPPER comprises Dynamic Prior Adapters guided by an aligned prior, and Local Convolution Adapters to extract precise local semantics for better visual perception. Moreover, the Prior-Guided Text module is proposed to further utilize the prior for facilitating the cross-modal alignment. Experimental results on three widely-used benchmarks demonstrate that MaPPER achieves the best accuracy compared to the full fine-tuning and other PETL methods with only 1.41% tunable backbone parameters. Our code is available at https://github.com/liuting20/MaPPER.
comment: EMNLP 2024 main
♻ ☆ Info-Coevolution: An Efficient Framework for Data Model Coevolution
Machine learning relies heavily on data, yet the continuous growth of real-world data poses challenges for efficient dataset construction and training. A fundamental yet unsolved question is: given our current model and data, does a new data (sample/batch) need annotation/learning? Conventional approaches retain all available data, leading to non-optimal data and training efficiency. Active learning aims to reduce data redundancy by selecting a subset of samples to annotate, while it increases pipeline complexity and introduces bias. In this work, we propose Info-Coevolution, a novel framework that efficiently enables models and data to coevolve through online selective annotation with no bias. Leveraging task-specific models (and open-source models), it selectively annotates and integrates online and web data to improve datasets efficiently. For real-world datasets like ImageNet-1K, Info-Coevolution reduces annotation and training costs by 32\% without performance loss. It is able to automatically give the saving ratio without tuning the ratio. It can further reduce the annotation ratio to 50\% with semi-supervised learning. We also explore retrieval-based dataset enhancement using unlabeled open-source data. Code is available at https://github.com/NUS-HPC-AI-Lab/Info-Coevolution/.
comment: V1
♻ ☆ GraphRAG-Bench: Challenging Domain-Specific Reasoning for Evaluating Graph Retrieval-Augmented Generation
Graph Retrieval Augmented Generation (GraphRAG) has garnered increasing recognition for its potential to enhance large language models (LLMs) by structurally organizing domain-specific corpora and facilitating complex reasoning. However, current evaluations of GraphRAG models predominantly rely on traditional question-answering datasets. Their limited scope in questions and evaluation metrics fails to comprehensively assess the reasoning capacity improvements enabled by GraphRAG models. To address this gap, we introduce GraphRAG-Bench, a large-scale, domain-specific benchmark designed to rigorously evaluate GraphRAG models. Our benchmark offers three key superiorities: \((i)\) Challenging question design. Featuring college-level, domain-specific questions that demand multi-hop reasoning, the benchmark ensures that simple content retrieval is insufficient for problem-solving. For example, some questions require mathematical reasoning or programming. \((ii)\) Diverse task coverage. The dataset includes a broad spectrum of reasoning tasks, multiple-choice, true/false, multi-select, open-ended, and fill-in-the-blank. It spans 16 disciplines in twenty core textbooks. \((iii)\) Holistic evaluation framework. GraphRAG-Bench provides comprehensive assessment across the entire GraphRAG pipeline, including graph construction, knowledge retrieval, and answer generation. Beyond final-answer correctness, it evaluates the logical coherence of the reasoning process. By applying nine contemporary GraphRAG methods to GraphRAG-Bench, we demonstrate its utility in quantifying how graph-based structuring improves model reasoning capabilities. Our analysis reveals critical insights about graph architectures, retrieval efficacy, and reasoning capabilities, offering actionable guidance for the research community.
♻ ☆ Understanding and Reducing the Class-Dependent Effects of Data Augmentation with A Two-Player Game Approach
Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed, it may have an unfair effect in multi-class classification. While data augmentation generally improves the overall performance (and therefore is beneficial for many classes), it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose CLAM, a CLAss-dependent Multiplicative-weights method. To derive it, we first formulate the training of a classifier as a non-linear optimization problem that aims at simultaneously maximizing the individual class performances and balancing them. By rewriting this optimization problem as an adversarial two-player game, we propose a novel multiplicative weight algorithm, for which we prove the convergence. Interestingly, our formulation also reveals that the class-dependent effects of data augmentation is not due to data augmentation only, but is in fact a general phenomenon. Our empirical results over six datasets demonstrate that the performance of learned classifiers is indeed more fairly distributed over classes, with only limited impact on the average accuracy.
♻ ☆ LLMs in Disease Diagnosis: A Comparative Study of DeepSeek-R1 and O3 Mini Across Chronic Health Conditions
Large Language Models (LLMs) are revolutionizing medical diagnostics by enhancing both disease classification and clinical decision-making. In this study, we evaluate the performance of two LLM- based diagnostic tools, DeepSeek R1 and O3 Mini, using a structured dataset of symptoms and diagnoses. We assessed their predictive accuracy at both the disease and category levels, as well as the reliability of their confidence scores. DeepSeek R1 achieved a disease-level accuracy of 76% and an overall accuracy of 82%, outperforming O3 Mini, which attained 72% and 75% respectively. Notably, DeepSeek R1 demonstrated exceptional performance in Mental Health, Neurological Disorders, and Oncology, where it reached 100% accuracy, while O3 Mini excelled in Autoimmune Disease classification with 100% accuracy. Both models, however, struggled with Respiratory Disease classification, recording accuracies of only 40% for DeepSeek R1 and 20% for O3 Mini. Additionally, the analysis of confidence scores revealed that DeepSeek R1 provided high-confidence predictions in 92% of cases, compared to 68% for O3 Mini. Ethical considerations regarding bias, model interpretability, and data privacy are also discussed to ensure the responsible integration of LLMs into clinical practice. Overall, our findings offer valuable insights into the strengths and limitations of LLM-based diagnostic systems and provide a roadmap for future enhancements in AI-driven healthcare.
comment: 12 pages, 3 figures
♻ ☆ Embodied Web Agents: Bridging Physical-Digital Realms for Integrated Agent Intelligence
AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-world landmarks using web knowledge. We introduce Embodied Web Agents, a novel paradigm for AI agents that fluidly bridge embodiment and web-scale reasoning. To operationalize this concept, we first develop the Embodied Web Agents task environments, a unified simulation platform that tightly integrates realistic 3D indoor and outdoor environments with functional web interfaces. Building upon this platform, we construct and release the Embodied Web Agents Benchmark, which encompasses a diverse suite of tasks including cooking, navigation, shopping, tourism, and geolocation - all requiring coordinated reasoning across physical and digital realms for systematic assessment of cross-domain intelligence. Experimental results reveal significant performance gaps between state-of-the-art AI systems and human capabilities, establishing both challenges and opportunities at the intersection of embodied cognition and web-scale knowledge access. All datasets, codes and websites are publicly available at our project page https://embodied-web-agent.github.io/.
♻ ☆ Med-U1: Incentivizing Unified Medical Reasoning in LLMs via Large-scale Reinforcement Learning
Medical Question-Answering (QA) encompasses a broad spectrum of tasks, including multiple choice questions (MCQ), open-ended text generation, and complex computational reasoning. Despite this variety, a unified framework for delivering high-quality medical QA has yet to emerge. Although recent progress in reasoning-augmented large language models (LLMs) has shown promise, their ability to achieve comprehensive medical understanding is still largely unexplored. In this paper, we present Med-U1, a unified framework for robust reasoning across medical QA tasks with diverse output formats, ranging from MCQs to complex generation and computation tasks. Med-U1 employs pure large-scale reinforcement learning with mixed rule-based binary reward functions, incorporating a length penalty to manage output verbosity. With multi-objective reward optimization, Med-U1 directs LLMs to produce concise and verifiable reasoning chains. Empirical results reveal that Med-U1 significantly improves performance across multiple challenging Med-QA benchmarks, surpassing even larger specialized and proprietary models. Furthermore, Med-U1 demonstrates robust generalization to out-of-distribution (OOD) tasks. Extensive analysis presents insights into training strategies, reasoning chain length control, and reward design for medical LLMs. Our code is available here.
♻ ☆ Open-Set Graph Anomaly Detection via Normal Structure Regularisation ICLR 2025
This paper considers an important Graph Anomaly Detection (GAD) task, namely open-set GAD, which aims to train a detection model using a small number of normal and anomaly nodes (referred to as seen anomalies) to detect both seen anomalies and unseen anomalies (i.e., anomalies that cannot be illustrated the training anomalies). Those labelled training data provide crucial prior knowledge about abnormalities for GAD models, enabling substantially reduced detection errors. However, current supervised GAD methods tend to over-emphasise fitting the seen anomalies, leading to many errors of detecting the unseen anomalies as normal nodes. Further, existing open-set AD models were introduced to handle Euclidean data, failing to effectively capture discriminative features from graph structure and node attributes for GAD. In this work, we propose a novel open-set GAD approach, namely normal structure regularisation (NSReg), to achieve generalised detection ability to unseen anomalies, while maintaining its effectiveness on detecting seen anomalies. The key idea in NSReg is to introduce a regularisation term that enforces the learning of compact, semantically-rich representations of normal nodes based on their structural relations to other nodes. When being optimised with supervised anomaly detection losses, the regularisation term helps incorporate strong normality into the modelling, and thus, it effectively avoids over-fitting the seen anomalies and learns a better normality decision boundary, largely reducing the false negatives of detecting unseen anomalies as normal. Extensive empirical results on seven real-world datasets show that NSReg significantly outperforms state-of-the-art competing methods by at least 14% AUC-ROC on the unseen anomaly classes and by 10% AUC-ROC on all anomaly classes.
comment: Accepted by ICLR 2025
♻ ☆ RiOSWorld: Benchmarking the Risk of Multimodal Computer-Use Agents
With the rapid development of multimodal large language models (MLLMs), they are increasingly deployed as autonomous computer-use agents capable of accomplishing complex computer tasks. However, a pressing issue arises: Can the safety risk principles designed and aligned for general MLLMs in dialogue scenarios be effectively transferred to real-world computer-use scenarios? Existing research on evaluating the safety risks of MLLM-based computer-use agents suffers from several limitations: it either lacks realistic interactive environments, or narrowly focuses on one or a few specific risk types. These limitations ignore the complexity, variability, and diversity of real-world environments, thereby restricting comprehensive risk evaluation for computer-use agents. To this end, we introduce \textbf{RiOSWorld}, a benchmark designed to evaluate the potential risks of MLLM-based agents during real-world computer manipulations. Our benchmark includes 492 risky tasks spanning various computer applications, involving web, social media, multimedia, os, email, and office software. We categorize these risks into two major classes based on their risk source: (i) User-originated risks and (ii) Environmental risks. For the evaluation, we evaluate safety risks from two perspectives: (i) Risk goal intention and (ii) Risk goal completion. Extensive experiments with multimodal agents on \textbf{RiOSWorld} demonstrate that current computer-use agents confront significant safety risks in real-world scenarios. Our findings highlight the necessity and urgency of safety alignment for computer-use agents in real-world computer manipulation, providing valuable insights for developing trustworthy computer-use agents. Our benchmark is publicly available at https://yjyddq.github.io/RiOSWorld.github.io/.
comment: 40 pages, 6 figures, Project Page: https://yjyddq.github.io/RiOSWorld.github.io/
♻ ☆ CryoCCD: Conditional Cycle-consistent Diffusion with Biophysical Modeling for Cryo-EM Synthesis
Cryo-electron microscopy (cryo-EM) offers near-atomic resolution imaging of macromolecules, but developing robust models for downstream analysis is hindered by the scarcity of high-quality annotated data. While synthetic data generation has emerged as a potential solution, existing methods often fail to capture both the structural diversity of biological specimens and the complex, spatially varying noise inherent in cryo-EM imaging. To overcome these limitations, we propose CryoCCD, a synthesis framework that integrates biophysical modeling with generative techniques. Specifically, CryoCCD produces multi-scale cryo-EM micrographs that reflect realistic biophysical variability through compositional heterogeneity, cellular context, and physics-informed imaging. To generate realistic noise, we employ a conditional diffusion model, enhanced by cycle consistency to preserve structural fidelity and mask-aware contrastive learning to capture spatially adaptive noise patterns. Extensive experiments show that CryoCCD generates structurally accurate micrographs and enhances performance in downstream tasks, outperforming state-of-the-art baselines in both particle picking and reconstruction.
♻ ☆ RL2Grid: Benchmarking Reinforcement Learning in Power Grid Operations
Reinforcement learning (RL) can provide adaptive and scalable controllers essential for power grid decarbonization. However, RL methods struggle with power grids' complex dynamics, long-horizon goals, and hard physical constraints. For these reasons, we present RL2Grid, a benchmark designed in collaboration with power system operators to accelerate progress in grid control and foster RL maturity. Built on RTE France's power simulation framework, RL2Grid standardizes tasks, state and action spaces, and reward structures for a systematic evaluation and comparison of RL algorithms. Moreover, we integrate operational heuristics and design safety constraints based on human expertise to ensure alignment with physical requirements. By establishing reference performance metrics for classic RL baselines on RL2Grid's tasks, we highlight the need for novel methods capable of handling real systems and discuss future directions for RL-based grid control.
♻ ☆ Adaptive Guidance Accelerates Reinforcement Learning of Reasoning Models
We study the process through which reasoning models trained with reinforcement learning on verifiable rewards (RLVR) can learn to solve new problems. We find that RLVR drives performance in two main ways: (1) by compressing pass@$k$ into pass@1 and (2) via "capability gain" in which models learn to solve new problems that they previously could not solve even at high $k$. We find that while capability gain exists across model scales, learning to solve new problems is primarily driven through self-distillation. We demonstrate these findings across model scales ranging from 0.5B to 72B parameters on >500,000 reasoning problems with prompts and verifiable final answers across math, science, and code domains. We further show that we can significantly improve pass@$k$ rates by leveraging natural language guidance for the model to consider within context while still requiring the model to derive a solution chain from scratch. Based of these insights, we derive $\text{Guide}$ -- a new class of online training algorithms. $\text{Guide}$ adaptively incorporates hints into the model's context on problems for which all rollouts were initially incorrect and adjusts the importance sampling ratio for the "off-policy" trajectories in order to optimize the policy for contexts in which the hints are no longer present. We describe variants of $\text{Guide}$ for GRPO and PPO and empirically show that Guide-GRPO on 7B and 32B parameter models improves generalization over its vanilla counterpart with up to 4$\%$ macro-average improvement across math benchmarks. We include careful ablations to analyze $\text{Guide}$'s components and theoretically analyze Guide's learning efficiency.
♻ ☆ Using Language and Road Manuals to Inform Map Reconstruction for Autonomous Driving RSS 2025
Lane-topology prediction is a critical component of safe and reliable autonomous navigation. An accurate understanding of the road environment aids this task. We observe that this information often follows conventions encoded in natural language, through design codes that reflect the road structure and road names that capture the road functionality. We augment this information in a lightweight manner to SMERF, a map-prior-based online lane-topology prediction model, by combining structured road metadata from OSM maps and lane-width priors from Road design manuals with the road centerline encodings. We evaluate our method on two geo-diverse complex intersection scenarios. Our method shows improvement in both lane and traffic element detection and their association. We report results using four topology-aware metrics to comprehensively assess the model performance. These results demonstrate the ability of our approach to generalize and scale to diverse topologies and conditions.
comment: 4 pages, 3 figures, Accepted at RSS 2025 Workshop - RobotEvaluation@RSS 2025
Graphics 6
☆ DreamCube: 3D Panorama Generation via Multi-plane Synchronization
3D panorama synthesis is a promising yet challenging task that demands high-quality and diverse visual appearance and geometry of the generated omnidirectional content. Existing methods leverage rich image priors from pre-trained 2D foundation models to circumvent the scarcity of 3D panoramic data, but the incompatibility between 3D panoramas and 2D single views limits their effectiveness. In this work, we demonstrate that by applying multi-plane synchronization to the operators from 2D foundation models, their capabilities can be seamlessly extended to the omnidirectional domain. Based on this design, we further introduce DreamCube, a multi-plane RGB-D diffusion model for 3D panorama generation, which maximizes the reuse of 2D foundation model priors to achieve diverse appearances and accurate geometry while maintaining multi-view consistency. Extensive experiments demonstrate the effectiveness of our approach in panoramic image generation, panoramic depth estimation, and 3D scene generation.
comment: Project page: https://yukun-huang.github.io/DreamCube/
☆ Toward Understanding Similarity of Visualization Techniques
The literature describes many visualization techniques for different types of data, tasks, and application contexts, and new techniques are proposed on a regular basis. Visualization surveys try to capture the immense space of techniques and structure it with meaningful categorizations. Yet, it remains difficult to understand the similarity of visualization techniques in general. We approach this open research question from two angles. First, we follow a model-driven approach that is based on defining the signature of visualization techniques and interpreting the similarity of signatures as the similarity of their associated techniques. Second, following an expert-driven approach, we asked visualization experts in a small online study for their ad-hoc intuitive assessment of the similarity of pairs visualization techniques. From both approaches, we gain insight into the similarity of a set of 13 basic and advanced visualizations for different types of data. While our results are so far preliminary and academic, they are first steps toward better understanding the similarity of visualization techniques.
☆ Volumetric Parameterization for 3-Dimensional Simply-Connected Manifolds
With advances in technology, there has been growing interest in developing effective mapping methods for 3-dimensional objects in recent years. Volumetric parameterization for 3D solid manifolds plays an important role in processing 3D data. However, the conventional approaches cannot control the bijectivity and local geometric distortions of the result mappings due to the complex structure of the solid manifolds. Moreover, prior methods mainly focus on one property instead of balancing different properties during the mapping process. In this paper, we propose several novel methods for computing volumetric parameterizations for 3D simply-connected manifolds. Analogous to surface parameterization, our framework incorporates several models designed to preserve geometric structure, achieve density equalization, and optimally balance geometric and density distortions. With these methods, various 3D manifold parameterizations with different desired properties can be achieved. These methods are tested on different examples and manifold remeshing applications, demonstrating their effectiveness and accuracy.
☆ Beyond Blur: A Fluid Perspective on Generative Diffusion Models
We propose a novel PDE-driven corruption process for generative image synthesis based on advection-diffusion processes which generalizes existing PDE-based approaches. Our forward pass formulates image corruption via a physically motivated PDE that couples directional advection with isotropic diffusion and Gaussian noise, controlled by dimensionless numbers (Peclet, Fourier). We implement this PDE numerically through a GPU-accelerated custom Lattice Boltzmann solver for fast evaluation. To induce realistic turbulence, we generate stochastic velocity fields that introduce coherent motion and capture multi-scale mixing. In the generative process, a neural network learns to reverse the advection-diffusion operator thus constituting a novel generative model. We discuss how previous methods emerge as specific cases of our operator, demonstrating that our framework generalizes prior PDE-based corruption techniques. We illustrate how advection improves the diversity and quality of the generated images while keeping the overall color palette unaffected. This work bridges fluid dynamics, dimensionless PDE theory, and deep generative modeling, offering a fresh perspective on physically informed image corruption processes for diffusion-based synthesis.
comment: 11 pages, 8 figures, pre-print, supplementary pseudocode in appendix
☆ BlenderFusion: 3D-Grounded Visual Editing and Generative Compositing
We present BlenderFusion, a generative visual compositing framework that synthesizes new scenes by recomposing objects, camera, and background. It follows a layering-editing-compositing pipeline: (i) segmenting and converting visual inputs into editable 3D entities (layering), (ii) editing them in Blender with 3D-grounded control (editing), and (iii) fusing them into a coherent scene using a generative compositor (compositing). Our generative compositor extends a pre-trained diffusion model to process both the original (source) and edited (target) scenes in parallel. It is fine-tuned on video frames with two key training strategies: (i) source masking, enabling flexible modifications like background replacement; (ii) simulated object jittering, facilitating disentangled control over objects and camera. BlenderFusion significantly outperforms prior methods in complex compositional scene editing tasks.
comment: Project page: https://blenderfusion.github.io
♻ ☆ GenLit: Reformulating Single-Image Relighting as Video Generation
Manipulating the illumination of a 3D scene within a single image represents a fundamental challenge in computer vision and graphics. This problem has traditionally been addressed using inverse rendering techniques, which involve explicit 3D asset reconstruction and costly ray-tracing simulations. Meanwhile, recent advancements in visual foundation models suggest that a new paradigm could soon be possible -- one that replaces explicit physical models with networks that are trained on large amounts of image and video data. In this paper, we exploit the physical world understanding of a video diffusion model, particularly Stable Video Diffusion, to relight a single image. We introduce GenLit, a framework that distills the ability of a graphics engine to perform light manipulation into a video-generation model, enabling users to directly insert and manipulate a point light in the 3D world within a given image, and generate results directly as a video sequence. We find that a model fine-tuned on only a small synthetic dataset generalizes to real-world scenes, enabling single-image relighting with plausible and convincing shadows. Our results highlight the ability of video foundation models to capture rich information about lighting, material, and, shape and our findings indicate that such models, with minimal training, can be used to perform relighting without explicit asset reconstruction or complex ray tracing. Project page: https://genlit.is.tue.mpg.de/.
Robotics 55
☆ CodeDiffuser: Attention-Enhanced Diffusion Policy via VLM-Generated Code for Instruction Ambiguity RSS
Natural language instructions for robotic manipulation tasks often exhibit ambiguity and vagueness. For instance, the instruction "Hang a mug on the mug tree" may involve multiple valid actions if there are several mugs and branches to choose from. Existing language-conditioned policies typically rely on end-to-end models that jointly handle high-level semantic understanding and low-level action generation, which can result in suboptimal performance due to their lack of modularity and interpretability. To address these challenges, we introduce a novel robotic manipulation framework that can accomplish tasks specified by potentially ambiguous natural language. This framework employs a Vision-Language Model (VLM) to interpret abstract concepts in natural language instructions and generates task-specific code - an interpretable and executable intermediate representation. The generated code interfaces with the perception module to produce 3D attention maps that highlight task-relevant regions by integrating spatial and semantic information, effectively resolving ambiguities in instructions. Through extensive experiments, we identify key limitations of current imitation learning methods, such as poor adaptation to language and environmental variations. We show that our approach excels across challenging manipulation tasks involving language ambiguity, contact-rich manipulation, and multi-object interactions.
comment: Accepted to Robotics: Science and Systems (RSS) 2025. The first three authors contributed equally. Project Page: https://robopil.github.io/code-diffuser/
☆ See What I Mean? Expressiveness and Clarity in Robot Display Design
Nonverbal visual symbols and displays play an important role in communication when humans and robots work collaboratively. However, few studies have investigated how different types of non-verbal cues affect objective task performance, especially in a dynamic environment that requires real time decision-making. In this work, we designed a collaborative navigation task where the user and the robot only had partial information about the map on each end and thus the users were forced to communicate with a robot to complete the task. We conducted our study in a public space and recruited 37 participants who randomly passed by our setup. Each participant collaborated with a robot utilizing either animated anthropomorphic eyes and animated icons, or static anthropomorphic eyes and static icons. We found that participants that interacted with a robot with animated displays reported the greatest level of trust and satisfaction; that participants interpreted static icons the best; and that participants with a robot with static eyes had the highest completion success. These results suggest that while animation can foster trust with robots, human-robot communication can be optimized by the addition of familiar static icons that may be easier for users to interpret. We published our code, designed symbols, and collected results online at: https://github.com/mattufts/huamn_Cozmo_interaction.
☆ History-Augmented Vision-Language Models for Frontier-Based Zero-Shot Object Navigation
Object Goal Navigation (ObjectNav) challenges robots to find objects in unseen environments, demanding sophisticated reasoning. While Vision-Language Models (VLMs) show potential, current ObjectNav methods often employ them superficially, primarily using vision-language embeddings for object-scene similarity checks rather than leveraging deeper reasoning. This limits contextual understanding and leads to practical issues like repetitive navigation behaviors. This paper introduces a novel zero-shot ObjectNav framework that pioneers the use of dynamic, history-aware prompting to more deeply integrate VLM reasoning into frontier-based exploration. Our core innovation lies in providing the VLM with action history context, enabling it to generate semantic guidance scores for navigation actions while actively avoiding decision loops. We also introduce a VLM-assisted waypoint generation mechanism for refining the final approach to detected objects. Evaluated on the HM3D dataset within Habitat, our approach achieves a 46% Success Rate (SR) and 24.8% Success weighted by Path Length (SPL). These results are comparable to state-of-the-art zero-shot methods, demonstrating the significant potential of our history-augmented VLM prompting strategy for more robust and context-aware robotic navigation.
☆ DRIVE Through the Unpredictability:From a Protocol Investigating Slip to a Metric Estimating Command Uncertainty
Off-road autonomous navigation is a challenging task as it is mainly dependent on the accuracy of the motion model. Motion model performances are limited by their ability to predict the interaction between the terrain and the UGV, which an onboard sensor can not directly measure. In this work, we propose using the DRIVE protocol to standardize the collection of data for system identification and characterization of the slip state space. We validated this protocol by acquiring a dataset with two platforms (from 75 kg to 470 kg) on six terrains (i.e., asphalt, grass, gravel, ice, mud, sand) for a total of 4.9 hours and 14.7 km. Using this data, we evaluate the DRIVE protocol's ability to explore the velocity command space and identify the reachable velocities for terrain-robot interactions. We investigated the transfer function between the command velocity space and the resulting steady-state slip for an SSMR. An unpredictability metric is proposed to estimate command uncertainty and help assess risk likelihood and severity in deployment. Finally, we share our lessons learned on running system identification on large UGV to help the community.
comment: This version is the preprint of a journal article with the same title, accepted in the IEEE Transactions on Field Robotics. To have a look at the early access version, use the following link https://ieeexplore.ieee.org/document/11037776
☆ Reimagination with Test-time Observation Interventions: Distractor-Robust World Model Predictions for Visual Model Predictive Control
World models enable robots to "imagine" future observations given current observations and planned actions, and have been increasingly adopted as generalized dynamics models to facilitate robot learning. Despite their promise, these models remain brittle when encountering novel visual distractors such as objects and background elements rarely seen during training. Specifically, novel distractors can corrupt action outcome predictions, causing downstream failures when robots rely on the world model imaginations for planning or action verification. In this work, we propose Reimagination with Observation Intervention (ReOI), a simple yet effective test-time strategy that enables world models to predict more reliable action outcomes in open-world scenarios where novel and unanticipated visual distractors are inevitable. Given the current robot observation, ReOI first detects visual distractors by identifying which elements of the scene degrade in physically implausible ways during world model prediction. Then, it modifies the current observation to remove these distractors and bring the observation closer to the training distribution. Finally, ReOI "reimagines" future outcomes with the modified observation and reintroduces the distractors post-hoc to preserve visual consistency for downstream planning and verification. We validate our approach on a suite of robotic manipulation tasks in the context of action verification, where the verifier needs to select desired action plans based on predictions from a world model. Our results show that ReOI is robust to both in-distribution and out-of-distribution visual distractors. Notably, it improves task success rates by up to 3x in the presence of novel distractors, significantly outperforming action verification that relies on world model predictions without imagination interventions.
☆ An Optimization-Augmented Control Framework for Single and Coordinated Multi-Arm Robotic Manipulation IROS 2025
Robotic manipulation demands precise control over both contact forces and motion trajectories. While force control is essential for achieving compliant interaction and high-frequency adaptation, it is limited to operations in close proximity to the manipulated object and often fails to maintain stable orientation during extended motion sequences. Conversely, optimization-based motion planning excels in generating collision-free trajectories over the robot's configuration space but struggles with dynamic interactions where contact forces play a crucial role. To address these limitations, we propose a multi-modal control framework that combines force control and optimization-augmented motion planning to tackle complex robotic manipulation tasks in a sequential manner, enabling seamless switching between control modes based on task requirements. Our approach decomposes complex tasks into subtasks, each dynamically assigned to one of three control modes: Pure optimization for global motion planning, pure force control for precise interaction, or hybrid control for tasks requiring simultaneous trajectory tracking and force regulation. This framework is particularly advantageous for bimanual and multi-arm manipulation, where synchronous motion and coordination among arms are essential while considering both the manipulated object and environmental constraints. We demonstrate the versatility of our method through a range of long-horizon manipulation tasks, including single-arm, bimanual, and multi-arm applications, highlighting its ability to handle both free-space motion and contact-rich manipulation with robustness and precision.
comment: 8 pages, 8 figures, accepted for oral presentation at IROS 2025. Supplementary site: https://sites.google.com/view/komo-force/home
☆ BIDA: A Bi-level Interaction Decision-making Algorithm for Autonomous Vehicles in Dynamic Traffic Scenarios
In complex real-world traffic environments, autonomous vehicles (AVs) need to interact with other traffic participants while making real-time and safety-critical decisions accordingly. The unpredictability of human behaviors poses significant challenges, particularly in dynamic scenarios, such as multi-lane highways and unsignalized T-intersections. To address this gap, we design a bi-level interaction decision-making algorithm (BIDA) that integrates interactive Monte Carlo tree search (MCTS) with deep reinforcement learning (DRL), aiming to enhance interaction rationality, efficiency and safety of AVs in dynamic key traffic scenarios. Specifically, we adopt three types of DRL algorithms to construct a reliable value network and policy network, which guide the online deduction process of interactive MCTS by assisting in value update and node selection. Then, a dynamic trajectory planner and a trajectory tracking controller are designed and implemented in CARLA to ensure smooth execution of planned maneuvers. Experimental evaluations demonstrate that our BIDA not only enhances interactive deduction and reduces computational costs, but also outperforms other latest benchmarks, which exhibits superior safety, efficiency and interaction rationality under varying traffic conditions.
comment: 6 pages, 3 figures, 4 tables, accepted for IEEE Intelligent Vehicles (IV) Symposium 2025
☆ Agile, Autonomous Spacecraft Constellations with Disruption Tolerant Networking to Monitor Precipitation and Urban Floods
Fully re-orientable small spacecraft are now supported by commercial technologies, allowing them to point their instruments in any direction and capture images, with short notice. When combined with improved onboard processing, and implemented on a constellation of inter-communicable satellites, this intelligent agility can significantly increase responsiveness to transient or evolving phenomena. We demonstrate a ground-based and onboard algorithmic framework that combines orbital mechanics, attitude control, inter-satellite communication, intelligent prediction and planning to schedule the time-varying, re-orientation of agile, small satellites in a constellation. Planner intelligence is improved by updating the predictive value of future space-time observations based on shared observations of evolving episodic precipitation and urban flood forecasts. Reliable inter-satellite communication within a fast, dynamic constellation topology is modeled in the physical, access control and network layer. We apply the framework on a representative 24-satellite constellation observing 5 global regions. Results show appropriately low latency in information exchange (average within 1/3rd available time for implicit consensus), enabling the onboard scheduler to observe ~7% more flood magnitude than a ground-based implementation. Both onboard and offline versions performed ~98% better than constellations without agility.
☆ eCAV: An Edge-Assisted Evaluation Platform for Connected Autonomous Vehicles
As autonomous vehicles edge closer to widespread adoption, enhancing road safety through collision avoidance and minimization of collateral damage becomes imperative. Vehicle-to-everything (V2X) technologies, which include vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-cloud (V2C), are being proposed as mechanisms to achieve this safety improvement. Simulation-based testing is crucial for early-stage evaluation of Connected Autonomous Vehicle (CAV) control systems, offering a safer and more cost-effective alternative to real-world tests. However, simulating large 3D environments with many complex single- and multi-vehicle sensors and controllers is computationally intensive. There is currently no evaluation framework that can effectively evaluate realistic scenarios involving large numbers of autonomous vehicles. We propose eCAV -- an efficient, modular, and scalable evaluation platform to facilitate both functional validation of algorithmic approaches to increasing road safety, as well as performance prediction of algorithms of various V2X technologies, including a futuristic Vehicle-to-Edge control plane and correspondingly designed control algorithms. eCAV can model up to 256 vehicles running individual control algorithms without perception enabled, which is $8\times$ more vehicles than what is possible with state-of-the-art alternatives. %faster than state-of-the-art alternatives that can simulate $8\times$ fewer vehicles. With perception enabled, eCAV simulates up to 64 vehicles with a step time under 800ms, which is $4\times$ more and $1.5\times$ faster than the state-of-the-art OpenCDA framework.
☆ Grounding Language Models with Semantic Digital Twins for Robotic Planning
We introduce a novel framework that integrates Semantic Digital Twins (SDTs) with Large Language Models (LLMs) to enable adaptive and goal-driven robotic task execution in dynamic environments. The system decomposes natural language instructions into structured action triplets, which are grounded in contextual environmental data provided by the SDT. This semantic grounding allows the robot to interpret object affordances and interaction rules, enabling action planning and real-time adaptability. In case of execution failures, the LLM utilizes error feedback and SDT insights to generate recovery strategies and iteratively revise the action plan. We evaluate our approach using tasks from the ALFRED benchmark, demonstrating robust performance across various household scenarios. The proposed framework effectively combines high-level reasoning with semantic environment understanding, achieving reliable task completion in the face of uncertainty and failure.
☆ Human2LocoMan: Learning Versatile Quadrupedal Manipulation with Human Pretraining
Quadrupedal robots have demonstrated impressive locomotion capabilities in complex environments, but equipping them with autonomous versatile manipulation skills in a scalable way remains a significant challenge. In this work, we introduce a cross-embodiment imitation learning system for quadrupedal manipulation, leveraging data collected from both humans and LocoMan, a quadruped equipped with multiple manipulation modes. Specifically, we develop a teleoperation and data collection pipeline, which unifies and modularizes the observation and action spaces of the human and the robot. To effectively leverage the collected data, we propose an efficient modularized architecture that supports co-training and pretraining on structured modality-aligned data across different embodiments. Additionally, we construct the first manipulation dataset for the LocoMan robot, covering various household tasks in both unimanual and bimanual modes, supplemented by a corresponding human dataset. We validate our system on six real-world manipulation tasks, where it achieves an average success rate improvement of 41.9% overall and 79.7% under out-of-distribution (OOD) settings compared to the baseline. Pretraining with human data contributes a 38.6% success rate improvement overall and 82.7% under OOD settings, enabling consistently better performance with only half the amount of robot data. Our code, hardware, and data are open-sourced at: https://human2bots.github.io.
☆ Full-Pose Tracking via Robust Control for Over-Actuated Multirotors
This paper presents a robust cascaded control architecture for over-actuated multirotors. It extends the Incremental Nonlinear Dynamic Inversion (INDI) control combined with structured H_inf control, initially proposed for under-actuated multirotors, to a broader range of multirotor configurations. To achieve precise and robust attitude and position tracking, we employ a weighted least-squares geometric guidance control allocation method, formulated as a quadratic optimization problem, enabling full-pose tracking. The proposed approach effectively addresses key challenges, such as preventing infeasible pose references and enhancing robustness against disturbances, as well as considering multirotor's actual physical limitations. Numerical simulations with an over-actuated hexacopter validate the method's effectiveness, demonstrating its adaptability to diverse mission scenarios and its potential for real-world aerial applications.
☆ IS-Bench: Evaluating Interactive Safety of VLM-Driven Embodied Agents in Daily Household Tasks
Flawed planning from VLM-driven embodied agents poses significant safety hazards, hindering their deployment in real-world household tasks. However, existing static, non-interactive evaluation paradigms fail to adequately assess risks within these interactive environments, since they cannot simulate dynamic risks that emerge from an agent's actions and rely on unreliable post-hoc evaluations that ignore unsafe intermediate steps. To bridge this critical gap, we propose evaluating an agent's interactive safety: its ability to perceive emergent risks and execute mitigation steps in the correct procedural order. We thus present IS-Bench, the first multi-modal benchmark designed for interactive safety, featuring 161 challenging scenarios with 388 unique safety risks instantiated in a high-fidelity simulator. Crucially, it facilitates a novel process-oriented evaluation that verifies whether risk mitigation actions are performed before/after specific risk-prone steps. Extensive experiments on leading VLMs, including the GPT-4o and Gemini-2.5 series, reveal that current agents lack interactive safety awareness, and that while safety-aware Chain-of-Thought can improve performance, it often compromises task completion. By highlighting these critical limitations, IS-Bench provides a foundation for developing safer and more reliable embodied AI systems.
☆ CSC-MPPI: A Novel Constrained MPPI Framework with DBSCAN for Reliable Obstacle Avoidance
This paper proposes Constrained Sampling Cluster Model Predictive Path Integral (CSC-MPPI), a novel constrained formulation of MPPI designed to enhance trajectory optimization while enforcing strict constraints on system states and control inputs. Traditional MPPI, which relies on a probabilistic sampling process, often struggles with constraint satisfaction and generates suboptimal trajectories due to the weighted averaging of sampled trajectories. To address these limitations, the proposed framework integrates a primal-dual gradient-based approach and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to steer sampled input trajectories into feasible regions while mitigating risks associated with weighted averaging. First, to ensure that sampled trajectories remain within the feasible region, the primal-dual gradient method is applied to iteratively shift sampled inputs while enforcing state and control constraints. Then, DBSCAN groups the sampled trajectories, enabling the selection of representative control inputs within each cluster. Finally, among the representative control inputs, the one with the lowest cost is chosen as the optimal action. As a result, CSC-MPPI guarantees constraint satisfaction, improves trajectory selection, and enhances robustness in complex environments. Simulation and real-world experiments demonstrate that CSC-MPPI outperforms traditional MPPI in obstacle avoidance, achieving improved reliability and efficiency. The experimental videos are available at https://cscmppi.github.io
☆ Comparison between External and Internal Single Stage Planetary gearbox actuators for legged robots
Legged robots, such as quadrupeds and humanoids, require high-performance actuators for efficient locomotion. Quasi-Direct-Drive (QDD) actuators with single-stage planetary gearboxes offer low inertia, high efficiency, and transparency. Among planetary gearbox architectures, Internal (ISSPG) and External Single-Stage Planetary Gearbox (ESSPG) are the two predominant designs. While ISSPG is often preferred for its compactness and high torque density at certain gear ratios, no objective comparison between the two architectures exists. Additionally, existing designs rely on heuristics rather than systematic optimization. This paper presents a design framework for optimally selecting actuator parameters based on given performance requirements and motor specifications. Using this framework, we generate and analyze various optimized gearbox designs for both architectures. Our results demonstrate that for the T-motor U12, ISSPG is the superior choice within the lower gear ratio range of 5:1 to 7:1, offering a lighter design. However, for gear ratios exceeding 7:1, ISSPG becomes infeasible, making ESSPG the better option in the 7:1 to 11:1 range. To validate our approach, we designed and optimized two actuators for manufacturing: an ISSPG with a 6.0:1 gear ratio and an ESSPG with a 7.2:1 gear ratio. Their respective masses closely align with our optimization model predictions, confirming the effectiveness of our methodology.
comment: 6 pages, 5 figures, Accepted at Advances in Robotics 2025
☆ Goal-conditioned Hierarchical Reinforcement Learning for Sample-efficient and Safe Autonomous Driving at Intersections
Reinforcement learning (RL) exhibits remarkable potential in addressing autonomous driving tasks. However, it is difficult to train a sample-efficient and safe policy in complex scenarios. In this article, we propose a novel hierarchical reinforcement learning (HRL) framework with a goal-conditioned collision prediction (GCCP) module. In the hierarchical structure, the GCCP module predicts collision risks according to different potential subgoals of the ego vehicle. A high-level decision-maker choose the best safe subgoal. A low-level motion-planner interacts with the environment according to the subgoal. Compared to traditional RL methods, our algorithm is more sample-efficient, since its hierarchical structure allows reusing the policies of subgoals across similar tasks for various navigation scenarios. In additional, the GCCP module's ability to predict both the ego vehicle's and surrounding vehicles' future actions according to different subgoals, ensures the safety of the ego vehicle throughout the decision-making process. Experimental results demonstrate that the proposed method converges to an optimal policy faster and achieves higher safety than traditional RL methods.
☆ M-Predictive Spliner: Enabling Spatiotemporal Multi-Opponent Overtaking for Autonomous Racing
Unrestricted multi-agent racing presents a significant research challenge, requiring decision-making at the limits of a robot's operational capabilities. While previous approaches have either ignored spatiotemporal information in the decision-making process or been restricted to single-opponent scenarios, this work enables arbitrary multi-opponent head-to-head racing while considering the opponents' future intent. The proposed method employs a KF-based multi-opponent tracker to effectively perform opponent ReID by associating them across observations. Simultaneously, spatial and velocity GPR is performed on all observed opponent trajectories, providing predictive information to compute the overtaking maneuvers. This approach has been experimentally validated on a physical 1:10 scale autonomous racing car, achieving an overtaking success rate of up to 91.65% and demonstrating an average 10.13%-point improvement in safety at the same speed as the previous SotA. These results highlight its potential for high-performance autonomous racing.
☆ Dense 3D Displacement Estimation for Landslide Monitoring via Fusion of TLS Point Clouds and Embedded RGB Images
Landslide monitoring is essential for understanding geohazards and mitigating associated risks. However, existing point cloud-based methods typically rely on either geometric or radiometric information and often yield sparse or non-3D displacement estimates. In this paper, we propose a hierarchical partition-based coarse-to-fine approach that fuses 3D point clouds and co-registered RGB images to estimate dense 3D displacement vector fields. We construct patch-level matches using both 3D geometry and 2D image features. These matches are refined via geometric consistency checks, followed by rigid transformation estimation per match. Experimental results on two real-world landslide datasets demonstrate that our method produces 3D displacement estimates with high spatial coverage (79% and 97%) and high accuracy. Deviations in displacement magnitude with respect to external measurements (total station or GNSS observations) are 0.15 m and 0.25 m on the two datasets, respectively, and only 0.07 m and 0.20 m compared to manually derived references. These values are below the average scan resolutions (0.08 m and 0.30 m). Our method outperforms the state-of-the-art method F2S3 in spatial coverage while maintaining comparable accuracy. Our approach offers a practical and adaptable solution for TLS-based landslide monitoring and is extensible to other types of point clouds and monitoring tasks. Our example data and source code are publicly available at https://github.com/zhaoyiww/fusion4landslide.
comment: 20 pages, 16 figures. Preprint under peer review. Example data and code available at [GitHub](https://github.com/zhaoyiww/fusion4landslide)
☆ CapsDT: Diffusion-Transformer for Capsule Robot Manipulation IROS 2025
Vision-Language-Action (VLA) models have emerged as a prominent research area, showcasing significant potential across a variety of applications. However, their performance in endoscopy robotics, particularly endoscopy capsule robots that perform actions within the digestive system, remains unexplored. The integration of VLA models into endoscopy robots allows more intuitive and efficient interactions between human operators and medical devices, improving both diagnostic accuracy and treatment outcomes. In this work, we design CapsDT, a Diffusion Transformer model for capsule robot manipulation in the stomach. By processing interleaved visual inputs, and textual instructions, CapsDT can infer corresponding robotic control signals to facilitate endoscopy tasks. In addition, we developed a capsule endoscopy robot system, a capsule robot controlled by a robotic arm-held magnet, addressing different levels of four endoscopy tasks and creating corresponding capsule robot datasets within the stomach simulator. Comprehensive evaluations on various robotic tasks indicate that CapsDT can serve as a robust vision-language generalist, achieving state-of-the-art performance in various levels of endoscopy tasks while achieving a 26.25% success rate in real-world simulation manipulation.
comment: IROS 2025
☆ Probabilistic Collision Risk Estimation for Pedestrian Navigation
Intelligent devices for supporting persons with vision impairment are becoming more widespread, but they are lacking behind the advancements in intelligent driver assistant system. To make a first step forward, this work discusses the integration of the risk model technology, previously used in autonomous driving and advanced driver assistance systems, into an assistance device for persons with vision impairment. The risk model computes a probabilistic collision risk given object trajectories which has previously been shown to give better indications of an object's collision potential compared to distance or time-to-contact measures in vehicle scenarios. In this work, we show that the risk model is also superior in warning persons with vision impairment about dangerous objects. Our experiments demonstrate that the warning accuracy of the risk model is 67% while both distance and time-to-contact measures reach only 51% accuracy for real-world data.
ControlVLA: Few-shot Object-centric Adaptation for Pre-trained Vision-Language-Action Models
Learning real-world robotic manipulation is challenging, particularly when limited demonstrations are available. Existing methods for few-shot manipulation often rely on simulation-augmented data or pre-built modules like grasping and pose estimation, which struggle with sim-to-real gaps and lack extensibility. While large-scale imitation pre-training shows promise, adapting these general-purpose policies to specific tasks in data-scarce settings remains unexplored. To achieve this, we propose ControlVLA, a novel framework that bridges pre-trained VLA models with object-centric representations via a ControlNet-style architecture for efficient fine-tuning. Specifically, to introduce object-centric conditions without overwriting prior knowledge, ControlVLA zero-initializes a set of projection layers, allowing them to gradually adapt the pre-trained manipulation policies. In real-world experiments across 6 diverse tasks, including pouring cubes and folding clothes, our method achieves a 76.7% success rate while requiring only 10-20 demonstrations -- a significant improvement over traditional approaches that require more than 100 demonstrations to achieve comparable success. Additional experiments highlight ControlVLA's extensibility to long-horizon tasks and robustness to unseen objects and backgrounds.
comment: Website: https://controlvla.github.io
☆ FlowRAM: Grounding Flow Matching Policy with Region-Aware Mamba Framework for Robotic Manipulation
Robotic manipulation in high-precision tasks is essential for numerous industrial and real-world applications where accuracy and speed are required. Yet current diffusion-based policy learning methods generally suffer from low computational efficiency due to the iterative denoising process during inference. Moreover, these methods do not fully explore the potential of generative models for enhancing information exploration in 3D environments. In response, we propose FlowRAM, a novel framework that leverages generative models to achieve region-aware perception, enabling efficient multimodal information processing. Specifically, we devise a Dynamic Radius Schedule, which allows adaptive perception, facilitating transitions from global scene comprehension to fine-grained geometric details. Furthermore, we integrate state space models to integrate multimodal information, while preserving linear computational complexity. In addition, we employ conditional flow matching to learn action poses by regressing deterministic vector fields, simplifying the learning process while maintaining performance. We verify the effectiveness of the FlowRAM in the RLBench, an established manipulation benchmark, and achieve state-of-the-art performance. The results demonstrate that FlowRAM achieves a remarkable improvement, particularly in high-precision tasks, where it outperforms previous methods by 12.0% in average success rate. Additionally, FlowRAM is able to generate physically plausible actions for a variety of real-world tasks in less than 4 time steps, significantly increasing inference speed.
☆ Single-Microphone-Based Sound Source Localization for Mobile Robots in Reverberant Environments IROS
Accurately estimating sound source positions is crucial for robot audition. However, existing sound source localization methods typically rely on a microphone array with at least two spatially preconfigured microphones. This requirement hinders the applicability of microphone-based robot audition systems and technologies. To alleviate these challenges, we propose an online sound source localization method that uses a single microphone mounted on a mobile robot in reverberant environments. Specifically, we develop a lightweight neural network model with only 43k parameters to perform real-time distance estimation by extracting temporal information from reverberant signals. The estimated distances are then processed using an extended Kalman filter to achieve online sound source localization. To the best of our knowledge, this is the first work to achieve online sound source localization using a single microphone on a moving robot, a gap that we aim to fill in this work. Extensive experiments demonstrate the effectiveness and merits of our approach. To benefit the broader research community, we have open-sourced our code at https://github.com/JiangWAV/single-mic-SSL.
comment: This paper was accepted and going to appear in the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
☆ From Theory to Practice: Identifying the Optimal Approach for Offset Point Tracking in the Context of Agricultural Robotics ICRA
Modern agriculture faces escalating challenges: increasing demand for food, labor shortages, and the urgent need to reduce environmental impact. Agricultural robotics has emerged as a promising response to these pressures, enabling the automation of precise and suitable field operations. In particular, robots equipped with implements for tasks such as weeding or sowing must interact delicately and accurately with the crops and soil. Unlike robots in other domains, these agricultural platforms typically use rigidly mounted implements, where the implement's position is more critical than the robot's center in determining task success. Yet, most control strategies in the literature focus on the vehicle body, often neglecting the acctual working point of the system. This is particularly important when considering new agriculture practices where crops row are not necessary straights. This paper presents a predictive control strategy targeting the implement's reference point. The method improves tracking performance by anticipating the motion of the implement, which, due to its offset from the vehicle's center of rotation, is prone to overshooting during turns if not properly accounted for.
comment: Presented at the 2025 IEEE ICRA Workshop on Field Robotics
☆ Investigating Lagrangian Neural Networks for Infinite Horizon Planning in Quadrupedal Locomotion
Lagrangian Neural Networks (LNNs) present a principled and interpretable framework for learning the system dynamics by utilizing inductive biases. While traditional dynamics models struggle with compounding errors over long horizons, LNNs intrinsically preserve the physical laws governing any system, enabling accurate and stable predictions essential for sustainable locomotion. This work evaluates LNNs for infinite horizon planning in quadrupedal robots through four dynamics models: (1) full-order forward dynamics (FD) training and inference, (2) diagonalized representation of Mass Matrix in full order FD, (3) full-order inverse dynamics (ID) training with FD inference, (4) reduced-order modeling via torso centre-of-mass (CoM) dynamics. Experiments demonstrate that LNNs bring improvements in sample efficiency (10x) and superior prediction accuracy (up to 2-10x) compared to baseline methods. Notably, the diagonalization approach of LNNs reduces computational complexity while retaining some interpretability, enabling real-time receding horizon control. These findings highlight the advantages of LNNs in capturing the underlying structure of system dynamics in quadrupeds, leading to improved performance and efficiency in locomotion planning and control. Additionally, our approach achieves a higher control frequency than previous LNN methods, demonstrating its potential for real-world deployment on quadrupeds.
comment: 6 pages, 5 figures, Accepted at Advances in Robotics (AIR) Conference 2025
☆ Noise Fusion-based Distillation Learning for Anomaly Detection in Complex Industrial Environments IROS 2025
Anomaly detection and localization in automated industrial manufacturing can significantly enhance production efficiency and product quality. Existing methods are capable of detecting surface defects in pre-defined or controlled imaging environments. However, accurately detecting workpiece defects in complex and unstructured industrial environments with varying views, poses and illumination remains challenging. We propose a novel anomaly detection and localization method specifically designed to handle inputs with perturbative patterns. Our approach introduces a new framework based on a collaborative distillation heterogeneous teacher network (HetNet), an adaptive local-global feature fusion module, and a local multivariate Gaussian noise generation module. HetNet can learn to model the complex feature distribution of normal patterns using limited information about local disruptive changes. We conducted extensive experiments on mainstream benchmarks. HetNet demonstrates superior performance with approximately 10% improvement across all evaluation metrics on MSC-AD under industrial conditions, while achieving state-of-the-art results on other datasets, validating its resilience to environmental fluctuations and its capability to enhance the reliability of industrial anomaly detection systems across diverse scenarios. Tests in real-world environments further confirm that HetNet can be effectively integrated into production lines to achieve robust and real-time anomaly detection. Codes, images and videos are published on the project website at: https://zihuatanejoyu.github.io/HetNet/
comment: IROS 2025 Oral
☆ Human-Centered Shared Autonomy for Motor Planning, Learning, and Control Applications
With recent advancements in AI and computational tools, intelligent paradigms have emerged to enhance fields like shared autonomy and human-machine teaming in healthcare. Advanced AI algorithms (e.g., reinforcement learning) can autonomously make decisions to achieve planning and motion goals. However, in healthcare, where human intent is crucial, fully independent machine decisions may not be ideal. This chapter presents a comprehensive review of human-centered shared autonomy AI frameworks, focusing on upper limb biosignal-based machine interfaces and associated motor control systems, including computer cursors, robotic arms, and planar platforms. We examine motor planning, learning (rehabilitation), and control, covering conceptual foundations of human-machine teaming in reach-and-grasp tasks and analyzing both theoretical and practical implementations. Each section explores how human and machine inputs can be blended for shared autonomy in healthcare applications. Topics include human factors, biosignal processing for intent detection, shared autonomy in brain-computer interfaces (BCI), rehabilitation, assistive robotics, and Large Language Models (LLMs) as the next frontier. We propose adaptive shared autonomy AI as a high-performance paradigm for collaborative human-AI systems, identify key implementation challenges, and outline future directions, particularly regarding AI reasoning agents. This analysis aims to bridge neuroscientific insights with robotics to create more intuitive, effective, and ethical human-machine teaming frameworks.
☆ EndoMUST: Monocular Depth Estimation for Robotic Endoscopy via End-to-end Multi-step Self-supervised Training IROS 2025
Monocular depth estimation and ego-motion estimation are significant tasks for scene perception and navigation in stable, accurate and efficient robot-assisted endoscopy. To tackle lighting variations and sparse textures in endoscopic scenes, multiple techniques including optical flow, appearance flow and intrinsic image decomposition have been introduced into the existing methods. However, the effective training strategy for multiple modules are still critical to deal with both illumination issues and information interference for self-supervised depth estimation in endoscopy. Therefore, a novel framework with multistep efficient finetuning is proposed in this work. In each epoch of end-to-end training, the process is divided into three steps, including optical flow registration, multiscale image decomposition and multiple transformation alignments. At each step, only the related networks are trained without interference of irrelevant information. Based on parameter-efficient finetuning on the foundation model, the proposed method achieves state-of-the-art performance on self-supervised depth estimation on SCARED dataset and zero-shot depth estimation on Hamlyn dataset, with 4\%$\sim$10\% lower error. The evaluation code of this work has been published on https://github.com/BaymaxShao/EndoMUST.
comment: Accepted by IROS 2025
☆ DualTHOR: A Dual-Arm Humanoid Simulation Platform for Contingency-Aware Planning
Developing embodied agents capable of performing complex interactive tasks in real-world scenarios remains a fundamental challenge in embodied AI. Although recent advances in simulation platforms have greatly enhanced task diversity to train embodied Vision Language Models (VLMs), most platforms rely on simplified robot morphologies and bypass the stochastic nature of low-level execution, which limits their transferability to real-world robots. To address these issues, we present a physics-based simulation platform DualTHOR for complex dual-arm humanoid robots, built upon an extended version of AI2-THOR. Our simulator includes real-world robot assets, a task suite for dual-arm collaboration, and inverse kinematics solvers for humanoid robots. We also introduce a contingency mechanism that incorporates potential failures through physics-based low-level execution, bridging the gap to real-world scenarios. Our simulator enables a more comprehensive evaluation of the robustness and generalization of VLMs in household environments. Extensive evaluations reveal that current VLMs struggle with dual-arm coordination and exhibit limited robustness in realistic environments with contingencies, highlighting the importance of using our simulator to develop more capable VLMs for embodied tasks. The code is available at https://github.com/ds199895/DualTHOR.git.
☆ Quantum Artificial Intelligence for Secure Autonomous Vehicle Navigation: An Architectural Proposal
Navigation is a very crucial aspect of autonomous vehicle ecosystem which heavily relies on collecting and processing large amounts of data in various states and taking a confident and safe decision to define the next vehicle maneuver. In this paper, we propose a novel architecture based on Quantum Artificial Intelligence by enabling quantum and AI at various levels of navigation decision making and communication process in Autonomous vehicles : Quantum Neural Networks for multimodal sensor fusion, Nav-Q for Quantum reinforcement learning for navigation policy optimization and finally post-quantum cryptographic protocols for secure communication. Quantum neural networks uses quantum amplitude encoding to fuse data from various sensors like LiDAR, radar, camera, GPS and weather etc., This approach gives a unified quantum state representation between heterogeneous sensor modalities. Nav-Q module processes the fused quantum states through variational quantum circuits to learn optimal navigation policies under swift dynamic and complex conditions. Finally, post quantum cryptographic protocols are used to secure communication channels for both within vehicle communication and V2X (Vehicle to Everything) communications and thus secures the autonomous vehicle communication from both classical and quantum security threats. Thus, the proposed framework addresses fundamental challenges in autonomous vehicles navigation by providing quantum performance and future proof security. Index Terms Quantum Computing, Autonomous Vehicles, Sensor Fusion
comment: 5 pages, 2 figures, 17 references. Architectural proposal for quantum AI integration in autonomous vehicle navigation systems for secured navigation
☆ Adversarial Attacks and Detection in Visual Place Recognition for Safer Robot Navigation
Stand-alone Visual Place Recognition (VPR) systems have little defence against a well-designed adversarial attack, which can lead to disastrous consequences when deployed for robot navigation. This paper extensively analyzes the effect of four adversarial attacks common in other perception tasks and four novel VPR-specific attacks on VPR localization performance. We then propose how to close the loop between VPR, an Adversarial Attack Detector (AAD), and active navigation decisions by demonstrating the performance benefit of simulated AADs in a novel experiment paradigm -- which we detail for the robotics community to use as a system framework. In the proposed experiment paradigm, we see the addition of AADs across a range of detection accuracies can improve performance over baseline; demonstrating a significant improvement -- such as a ~50% reduction in the mean along-track localization error -- can be achieved with True Positive and False Positive detection rates of only 75% and up to 25% respectively. We examine a variety of metrics including: Along-Track Error, Percentage of Time Attacked, Percentage of Time in an `Unsafe' State, and Longest Continuous Time Under Attack. Expanding further on these results, we provide the first investigation into the efficacy of the Fast Gradient Sign Method (FGSM) adversarial attack for VPR. The analysis in this work highlights the need for AADs in real-world systems for trustworthy navigation, and informs quantitative requirements for system design.
☆ A Low-Cost Portable Lidar-based Mobile Mapping System on an Android Smartphone SP
The rapid advancement of the metaverse, digital twins, and robotics underscores the demand for low-cost, portable mapping systems for reality capture. Current mobile solutions, such as the Leica BLK2Go and lidar-equipped smartphones, either come at a high cost or are limited in range and accuracy. Leveraging the proliferation and technological evolution of mobile devices alongside recent advancements in lidar technology, we introduce a novel, low-cost, portable mobile mapping system. Our system integrates a lidar unit, an Android smartphone, and an RTK-GNSS stick. Running on the Android platform, it features lidar-inertial odometry built with the NDK, and logs data from the lidar, wide-angle camera, IMU, and GNSS. With a total bill of materials (BOM) cost under 2,000 USD and a weight of about 1 kilogram, the system achieves a good balance between affordability and portability. We detail the system design, multisensor calibration, synchronization, and evaluate its performance for tracking and mapping. To further contribute to the community, the system's design and software are made open source at: https://github.com/OSUPCVLab/marslogger_android/releases/tag/v2.1
comment: ISPRS GSW2025 Dubai UAE
☆ Contactless Precision Steering of Particles in a Fluid inside a Cube with Rotating Walls
Contactless manipulation of small objects is essential for biomedical and chemical applications, such as cell analysis, assisted fertilisation, and precision chemistry. Established methods, including optical, acoustic, and magnetic tweezers, are now complemented by flow control techniques that use flow-induced motion to enable precise and versatile manipulation. However, trapping multiple particles in fluid remains a challenge. This study introduces a novel control algorithm capable of steering multiple particles in flow. The system uses rotating disks to generate flow fields that transport particles to precise locations. Disk rotations are governed by a feedback control policy based on the Optimising a Discrete Loss (ODIL) framework, which combines fluid dynamics equations with path objectives into a single loss function. Our experiments, conducted in both simulations and with the physical device, demonstrate the capability of the approach to transport two beads simultaneously to predefined locations, advancing robust contactless particle manipulation for biomedical applications.
☆ ViTacFormer: Learning Cross-Modal Representation for Visuo-Tactile Dexterous Manipulation
Dexterous manipulation is a cornerstone capability for robotic systems aiming to interact with the physical world in a human-like manner. Although vision-based methods have advanced rapidly, tactile sensing remains crucial for fine-grained control, particularly in unstructured or visually occluded settings. We present ViTacFormer, a representation-learning approach that couples a cross-attention encoder to fuse high-resolution vision and touch with an autoregressive tactile prediction head that anticipates future contact signals. Building on this architecture, we devise an easy-to-challenging curriculum that steadily refines the visual-tactile latent space, boosting both accuracy and robustness. The learned cross-modal representation drives imitation learning for multi-fingered hands, enabling precise and adaptive manipulation. Across a suite of challenging real-world benchmarks, our method achieves approximately 50% higher success rates than prior state-of-the-art systems. To our knowledge, it is also the first to autonomously complete long-horizon dexterous manipulation tasks that demand highly precise control with an anthropomorphic hand, successfully executing up to 11 sequential stages and sustaining continuous operation for 2.5 minutes.
☆ KARL: Kalman-Filter Assisted Reinforcement Learner for Dynamic Object Tracking and Grasping
We present Kalman-filter Assisted Reinforcement Learner (KARL) for dynamic object tracking and grasping over eye-on-hand (EoH) systems, significantly expanding such systems capabilities in challenging, realistic environments. In comparison to the previous state-of-the-art, KARL (1) incorporates a novel six-stage RL curriculum that doubles the system's motion range, thereby greatly enhancing the system's grasping performance, (2) integrates a robust Kalman filter layer between the perception and reinforcement learning (RL) control modules, enabling the system to maintain an uncertain but continuous 6D pose estimate even when the target object temporarily exits the camera's field-of-view or undergoes rapid, unpredictable motion, and (3) introduces mechanisms to allow retries to gracefully recover from unavoidable policy execution failures. Extensive evaluations conducted in both simulation and real-world experiments qualitatively and quantitatively corroborate KARL's advantage over earlier systems, achieving higher grasp success rates and faster robot execution speed. Source code and supplementary materials for KARL will be made available at: https://github.com/arc-l/karl.
☆ Reproducible Evaluation of Camera Auto-Exposure Methods in the Field: Platform, Benchmark and Lessons Learned
Standard datasets often present limitations, particularly due to the fixed nature of input data sensors, which makes it difficult to compare methods that actively adjust sensor parameters to suit environmental conditions. This is the case with Automatic-Exposure (AE) methods, which rely on environmental factors to influence the image acquisition process. As a result, AE methods have traditionally been benchmarked in an online manner, rendering experiments non-reproducible. Building on our prior work, we propose a methodology that utilizes an emulator capable of generating images at any exposure time. This approach leverages BorealHDR, a unique multi-exposure stereo dataset, along with its new extension, in which data was acquired along a repeated trajectory at different times of the day to assess the impact of changing illumination. In total, BorealHDR covers 13.4 km over 59 trajectories in challenging lighting conditions. The dataset also includes lidar-inertial-odometry-based maps with pose estimation for each image frame, as well as Global Navigation Satellite System (GNSS) data for comparison. We demonstrate that by using images acquired at various exposure times, we can emulate realistic images with a Root-Mean-Square Error (RMSE) below 1.78% compared to ground truth images. Using this offline approach, we benchmarked eight AE methods, concluding that the classical AE method remains the field's best performer. To further support reproducibility, we provide in-depth details on the development of our backpack acquisition platform, including hardware, electrical components, and performance specifications. Additionally, we share valuable lessons learned from deploying the backpack over more than 25 km across various environments. Our code and dataset are available online at this link: https://github.com/norlab-ulaval/TFR24 BorealHDR
comment: 19 pages, 11 figures, pre-print version of the accepted paper for IEEE Transactions on Field Robotics (T-FR)
☆ Reflective VLM Planning for Dual-Arm Desktop Cleaning: Bridging Open-Vocabulary Perception and Precise Manipulation
Desktop cleaning demands open-vocabulary recognition and precise manipulation for heterogeneous debris. We propose a hierarchical framework integrating reflective Vision-Language Model (VLM) planning with dual-arm execution via structured scene representation. Grounded-SAM2 facilitates open-vocabulary detection, while a memory-augmented VLM generates, critiques, and revises manipulation sequences. These sequences are converted into parametric trajectories for five primitives executed by coordinated Franka arms. Evaluated in simulated scenarios, our system achieving 87.2% task completion, a 28.8% improvement over static VLM and 36.2% over single-arm baselines. Structured memory integration proves crucial for robust, generalizable manipulation while maintaining real-time control performance.
♻ ☆ From Movement Primitives to Distance Fields to Dynamical Systems
Developing autonomous robots capable of learning and reproducing complex motions from demonstrations remains a fundamental challenge in robotics. On the one hand, movement primitives (MPs) provide a compact and modular representation of continuous trajectories. On the other hand, autonomous systems provide control policies that are time independent. We propose in this paper a simple and flexible approach that gathers the advantages of both representations by transforming MPs into autonomous systems. The key idea is to transform the explicit representation of a trajectory as an implicit shape encoded as a distance field. This conversion from a time-dependent motion to a spatial representation enables the definition of an autonomous dynamical system with modular reactions to perturbation. Asymptotic stability guarantees are provided by using Bernstein basis functions in the MPs, representing trajectories as concatenated quadratic B\'ezier curves, which provide an analytical method for computing distance fields. This approach bridges conventional MPs with distance fields, ensuring smooth and precise motion encoding, while maintaining a continuous spatial representation. By simply leveraging the analytic gradients of the curve and its distance field, a stable dynamical system can be computed to reproduce the demonstrated trajectories while handling perturbations, without requiring a model of the dynamical system to be estimated. Numerical simulations and real-world robotic experiments validate our method's ability to encode complex motion patterns while ensuring trajectory stability, together with the flexibility of designing the desired reaction to perturbations. An interactive project page demonstrating our approach is available at https://mp-df-ds.github.io/.
comment: 8 pages, 8 Figures
♻ ☆ ClutterDexGrasp: A Sim-to-Real System for General Dexterous Grasping in Cluttered Scenes
Dexterous grasping in cluttered scenes presents significant challenges due to diverse object geometries, occlusions, and potential collisions. Existing methods primarily focus on single-object grasping or grasp-pose prediction without interaction, which are insufficient for complex, cluttered scenes. Recent vision-language-action models offer a potential solution but require extensive real-world demonstrations, making them costly and difficult to scale. To address these limitations, we revisit the sim-to-real transfer pipeline and develop key techniques that enable zero-shot deployment in reality while maintaining robust generalization. We propose ClutterDexGrasp, a two-stage teacher-student framework for closed-loop target-oriented dexterous grasping in cluttered scenes. The framework features a teacher policy trained in simulation using clutter density curriculum learning, incorporating both a geometry and spatially-embedded scene representation and a novel comprehensive safety curriculum, enabling general, dynamic, and safe grasping behaviors. Through imitation learning, we distill the teacher's knowledge into a student 3D diffusion policy (DP3) that operates on partial point cloud observations. To the best of our knowledge, this represents the first zero-shot sim-to-real closed-loop system for target-oriented dexterous grasping in cluttered scenes, demonstrating robust performance across diverse objects and layouts. More details and videos are available at https://clutterdexgrasp.github.io/.
♻ ☆ Your Ride, Your Rules: Psychology and Cognition Enabled Automated Driving Systems
Despite rapid advances in autonomous driving technology, current autonomous vehicles (AVs) lack effective bidirectional human-machine communication, limiting their ability to personalize the riding experience and recover from uncertain or immobilized states. This limitation undermines occupant comfort and trust, potentially hindering the adoption of AV technologies. We propose PACE-ADS (Psychology and Cognition Enabled Automated Driving Systems), a human-centered autonomy framework enabling AVs to sense, interpret, and respond to both external traffic conditions and internal occupant states. PACE-ADS uses an agentic workflow where three foundation model agents collaborate: the Driver Agent interprets the external environment; the Psychologist Agent decodes passive psychological signals (e.g., EEG, heart rate, facial expressions) and active cognitive inputs (e.g., verbal commands); and the Coordinator Agent synthesizes these inputs to generate high-level decisions that enhance responsiveness and personalize the ride. PACE-ADS complements, rather than replaces, conventional AV modules. It operates at the semantic planning layer, while delegating low-level control to native systems. The framework activates only when changes in the rider's psychological state are detected or when occupant instructions are issued. It integrates into existing AV platforms with minimal adjustments, positioning PACE-ADS as a scalable enhancement. We evaluate it in closed-loop simulations across diverse traffic scenarios, including intersections, pedestrian interactions, work zones, and car-following. Results show improved ride comfort, dynamic behavioral adjustment, and safe recovery from edge-case scenarios via autonomous reasoning or rider input. PACE-ADS bridges the gap between technical autonomy and human-centered mobility.
comment: 10 figures,13 pages, two colummns
♻ ☆ A Survey of World Models for Autonomous Driving
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling, fundamentally transforming how vehicles interpret dynamic scenes and execute safe decision-making. World models have emerged as a linchpin technology, offering high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics. This paper systematically reviews recent advances in world models for autonomous driving, proposing a three-tiered taxonomy: (i) Generation of Future Physical World, covering Image-, BEV-, OG-, and PC-based generation methods that enhance scene evolution modeling through diffusion models and 4D occupancy forecasting; (ii) Behavior Planning for Intelligent Agents, combining rule-driven and learning-based paradigms with cost map optimization and reinforcement learning for trajectory generation in complex traffic conditions; (ii) Interaction between Prediction and Planning, achieving multi-agent collaborative decision-making through latent space diffusion and memory-augmented architectures. The study further analyzes training paradigms, including self-supervised learning, multimodal pretraining, and generative data augmentation, while evaluating world models' performance in scene understanding and motion prediction tasks. Future research must address key challenges in self-supervised representation learning, long-tail scenario generation, and multimodal fusion to advance the practical deployment of world models in complex urban environments. Overall, the comprehensive analysis provides a technical roadmap for harnessing the transformative potential of world models in advancing safe and reliable autonomous driving solutions.
comment: Ongoing project. Paper list: https://github.com/FengZicai/AwesomeWMAD; Benchmark: https://github.com/FengZicai/WMAD-Benchmarks
♻ ☆ Context Matters: Learning Generalizable Rewards via Calibrated Features
A key challenge in reward learning from human input is that desired agent behavior often changes based on context. Traditional methods typically treat each new context as a separate task with its own reward function. For example, if a previously ignored stove becomes too hot to be around, the robot must learn a new reward from scratch, even though the underlying preference for prioritizing safety over efficiency remains unchanged. We observe that context influences not the underlying preference itself, but rather the $\textit{saliency}$--or importance--of reward features. For instance, stove heat affects the importance of the robot's proximity, yet the human's safety preference stays the same. Existing multi-task and meta IRL methods learn context-dependent representations $\textit{implicitly}$--without distinguishing between preferences and feature importance--resulting in substantial data requirements. Instead, we propose $\textit{explicitly}$ modeling context-invariant preferences separately from context-dependent feature saliency, creating modular reward representations that adapt to new contexts. To achieve this, we introduce $\textit{calibrated features}$--representations that capture contextual effects on feature saliency--and present specialized paired comparison queries that isolate saliency from preference for efficient learning. Experiments with simulated users show our method significantly improves sample efficiency, requiring 10x fewer preference queries than baselines to achieve equivalent reward accuracy, with up to 15% better performance in low-data regimes (5-10 queries). An in-person user study (N=12) demonstrates that participants can effectively teach their unique personal contextual preferences using our method, enabling more adaptable and personalized reward learning.
comment: 30 pages, 21 figures
♻ ☆ Learning Attentive Neural Processes for Planning with Pushing Actions RSS 2025
Our goal is to enable robots to plan sequences of tabletop actions to push a block with unknown physical properties to a desired goal pose. We approach this problem by learning the constituent models of a Partially-Observable Markov Decision Process (POMDP), where the robot can observe the outcome of a push, but the physical properties of the block that govern the dynamics remain unknown. A common solution approach is to train an observation model in a supervised fashion, and do inference with a general inference technique such as particle filters. However, supervised training requires knowledge of the relevant physical properties that determine the problem dynamics, which we do not assume to be known. Planning also requires simulating many belief updates, which becomes expensive when using particle filters to represent the belief. We propose to learn an Attentive Neural Process that computes the belief over a learned latent representation of the relevant physical properties given a history of actions. To address the pushing planning problem, we integrate a trained Neural Process with a double-progressive widening sampling strategy. Simulation results indicate that Neural Process Tree with Double Progressive Widening (NPT-DPW) generates better-performing plans faster than traditional particle-filter methods that use a supervised-trained observation model, even in complex pushing scenarios.
comment: To be presented at RSS 2025 RoboReps Workshop
An Iterative Task-Driven Framework for Resilient LiDAR Place Recognition in Adverse Weather
LiDAR place recognition (LPR) plays a vital role in autonomous navigation. However, existing LPR methods struggle to maintain robustness under adverse weather conditions such as rain, snow, and fog, where weather-induced noise and point cloud degradation impair LiDAR reliability and perception accuracy. To tackle these challenges, we propose an Iterative Task-Driven Framework (ITDNet), which integrates a LiDAR Data Restoration (LDR) module and a LiDAR Place Recognition (LPR) module through an iterative learning strategy. These modules are jointly trained end-to-end, with alternating optimization to enhance performance. The core rationale of ITDNet is to leverage the LDR module to recover the corrupted point clouds while preserving structural consistency with clean data, thereby improving LPR accuracy in adverse weather. Simultaneously, the LPR task provides feature pseudo-labels to guide the LDR module's training, aligning it more effectively with the LPR task. To achieve this, we first design a task-driven LPR loss and a reconstruction loss to jointly supervise the optimization of the LDR module. Furthermore, for the LDR module, we propose a Dual-Domain Mixer (DDM) block for frequency-spatial feature fusion and a Semantic-Aware Generator (SAG) block for semantic-guided restoration. In addition, for the LPR module, we introduce a Multi-Frequency Transformer (MFT) block and a Wavelet Pyramid NetVLAD (WPN) block to aggregate multi-scale, robust global descriptors. Finally, extensive experiments on Weather-KITTI, Boreas, and our proposed Weather-Apollo datasets demonstrate that, ITDNet outperforms existing LPR methods, achieving state-of-the-art performance in adverse weather.
comment: Submitted to IEEE TVT
♻ ☆ Dual-arm Motion Generation for Repositioning Care based on Deep Predictive Learning with Somatosensory Attention Mechanism
Caregiving is a vital role for domestic robots, especially the repositioning care has immense societal value, critically improving the health and quality of life of individuals with limited mobility. However, repositioning task is a challenging area of research, as it requires robots to adapt their motions while interacting flexibly with patients. The task involves several key challenges: (1) applying appropriate force to specific target areas; (2) performing multiple actions seamlessly, each requiring different force application policies; and (3) motion adaptation under uncertain positional conditions. To address these, we propose a deep neural network (DNN)-based architecture utilizing proprioceptive and visual attention mechanisms, along with impedance control to regulate the robot's movements. Using the dual-arm humanoid robot Dry-AIREC, the proposed model successfully generated motions to insert the robot's hand between the bed and a mannequin's back without applying excessive force, and it supported the transition from a supine to a lifted-up position. The project page is here: https://sites.google.com/view/caregiving-robot-airec/repositioning
♻ ☆ JammingSnake: A follow-the-leader continuum robot with variable stiffness based on fiber jamming
Follow-the-leader (FTL) motion is essential for continuum robots operating in fragile and confined environments. It allows the robot to exert minimal force on its surroundings, reducing the risk of damage. This paper presents a novel design of a snake-like robot capable of achieving FTL motion by integrating fiber jamming modules (FJMs). The proposed robot can dynamically adjust its stiffness during propagation and interaction with the environment. An algorithm is developed to independently control the tendon and FJM insertion movements, allowing the robot to maintain its shape while minimizing the forces exerted on surrounding structures. To validate the proposed design, comparative tests were conducted between a traditional tendon-driven robot and the novel design under different configurations. The results demonstrate that our design relies significantly less on contact with the surroundings to maintain its shape. This highlights its potential for safer and more effective operations in delicate environments, such as minimally invasive surgery (MIS) or industrial in-situ inspection.
comment: 8 pages, 4 figures, published in T-MECH
♻ ☆ General Force Sensation for Tactile Robot
Robotic tactile sensors, including vision-based and taxel-based sensors, enable agile manipulation and safe human-robot interaction through force sensation. However, variations in structural configurations, measured signals, and material properties create domain gaps that limit the transferability of learned force sensation across different tactile sensors. Here, we introduce GenForce, a general framework for achieving transferable force sensation across both homogeneous and heterogeneous tactile sensors in robotic systems. By unifying tactile signals into marker-based binary tactile images, GenForce enables the transfer of existing force labels to arbitrary target sensors using a marker-to-marker translation technique with a few paired data. This process equips uncalibrated tactile sensors with force prediction capabilities through spatiotemporal force prediction models trained on the transferred data. Extensive experimental results validate GenForce's generalizability, accuracy, and robustness across sensors with diverse marker patterns, structural designs, material properties, and sensing principles. The framework significantly reduces the need for costly and labor-intensive labeled data collection, enabling the rapid deployment of multiple tactile sensors on robotic hands requiring force sensing capabilities.
♻ ☆ Traversability-aware path planning in dynamic environments
Planning in environments with moving obstacles remains a significant challenge in robotics. While many works focus on navigation and path planning in obstacle-dense spaces, traversing such congested regions is often avoidable by selecting alternative routes. This paper presents Traversability-aware FMM (Tr-FMM), a path planning method that computes paths in dynamic environments, avoiding crowded regions. The method operates in two steps: first, it discretizes the environment, identifying regions and their distribution; second, it computes the traversability of regions, aiming to minimize both obstacle risks and goal deviation. The path is then computed by propagating the wavefront through regions with higher traversability. Simulated and real-world experiments demonstrate that the approach enhances significant safety by keeping the robot away from regions with obstacles while reducing unnecessary deviations from the goal.
♻ ☆ Enhanced Trust Region Sequential Convex Optimization for Multi-Drone Thermal Screening Trajectory Planning in Urban Environments
The rapid detection of abnormal body temperatures in urban populations is essential for managing public health risks, especially during outbreaks of infectious diseases. Multi-drone thermal screening systems offer promising solutions for fast, large-scale, and non-intrusive human temperature monitoring. However, trajectory planning for multiple drones in complex urban environments poses significant challenges, including collision avoidance, coverage efficiency, and constrained flight environments. In this study, we propose an enhanced trust region sequential convex optimization (TR-SCO) algorithm for optimal trajectory planning of multiple drones performing thermal screening tasks. Our improved algorithm integrates a refined convex optimization formulation within a trust region framework, effectively balancing trajectory smoothness, obstacle avoidance, altitude constraints, and maximum screening coverage. Simulation results demonstrate that our approach significantly improves trajectory optimality and computational efficiency compared to conventional convex optimization methods. This research provides critical insights and practical contributions toward deploying efficient multi-drone systems for real-time thermal screening in urban areas. For reader who are interested in our research, we release our source code at https://github.com/Cherry0302/Enhanced-TR-SCO.
♻ ☆ ReinFlow: Fine-tuning Flow Matching Policy with Online Reinforcement Learning
We propose ReinFlow, a simple yet effective online reinforcement learning (RL) framework that fine-tunes a family of flow matching policies for continuous robotic control. Derived from rigorous RL theory, ReinFlow injects learnable noise into a flow policy's deterministic path, converting the flow into a discrete-time Markov Process for exact and straightforward likelihood computation. This conversion facilitates exploration and ensures training stability, enabling ReinFlow to fine-tune diverse flow model variants, including Rectified Flow [35] and Shortcut Models [19], particularly at very few or even one denoising step. We benchmark ReinFlow in representative locomotion and manipulation tasks, including long-horizon planning with visual input and sparse reward. The episode reward of Rectified Flow policies obtained an average net growth of 135.36% after fine-tuning in challenging legged locomotion tasks while saving denoising steps and 82.63% of wall time compared to state-of-the-art diffusion RL fine-tuning method DPPO [43]. The success rate of the Shortcut Model policies in state and visual manipulation tasks achieved an average net increase of 40.34% after fine-tuning with ReinFlow at four or even one denoising step, whose performance is comparable to fine-tuned DDIM policies while saving computation time for an average of 23.20%. Project webpage: https://reinflow.github.io/
comment: 31 pages, 13 figures, 10 tables
♻ ☆ AssistantX: An LLM-Powered Proactive Assistant in Collaborative Human-Populated Environment
Current service robots suffer from limited natural language communication abilities, heavy reliance on predefined commands, ongoing human intervention, and, most notably, a lack of proactive collaboration awareness in human-populated environments. This results in narrow applicability and low utility. In this paper, we introduce AssistantX, an LLM-powered proactive assistant designed for autonomous operation in realworld scenarios with high accuracy. AssistantX employs a multi-agent framework consisting of 4 specialized LLM agents, each dedicated to perception, planning, decision-making, and reflective review, facilitating advanced inference capabilities and comprehensive collaboration awareness, much like a human assistant by your side. We built a dataset of 210 real-world tasks to validate AssistantX, which includes instruction content and status information on whether relevant personnel are available. Extensive experiments were conducted in both text-based simulations and a real office environment over the course of a month and a half. Our experiments demonstrate the effectiveness of the proposed framework, showing that AssistantX can reactively respond to user instructions, actively adjust strategies to adapt to contingencies, and proactively seek assistance from humans to ensure successful task completion. More details and videos can be found at https://assistantx-agent.github.io/AssistantX/.
comment: 8 pages, 10 figures, 6 tables
♻ ☆ LeVERB: Humanoid Whole-Body Control with Latent Vision-Language Instruction
Vision-language-action (VLA) models have demonstrated strong semantic understanding and zero-shot generalization, yet most existing systems assume an accurate low-level controller with hand-crafted action "vocabulary" such as end-effector pose or root velocity. This assumption confines prior work to quasi-static tasks and precludes the agile, whole-body behaviors required by humanoid whole-body control (WBC) tasks. To capture this gap in the literature, we start by introducing the first sim-to-real-ready, vision-language, closed-loop benchmark for humanoid WBC, comprising over 150 tasks from 10 categories. We then propose LeVERB: Latent Vision-Language-Encoded Robot Behavior, a hierarchical latent instruction-following framework for humanoid vision-language WBC, the first of its kind. At the top level, a vision-language policy learns a latent action vocabulary from synthetically rendered kinematic demonstrations; at the low level, a reinforcement-learned WBC policy consumes these latent verbs to generate dynamics-level commands. In our benchmark, LeVERB can zero-shot attain a 80% success rate on simple visual navigation tasks, and 58.5% success rate overall, outperforming naive hierarchical whole-body VLA implementation by 7.8 times.
comment: https://ember-lab-berkeley.github.io/LeVERB-Website/
♻ ☆ From Experts to a Generalist: Toward General Whole-Body Control for Humanoid Robots
Achieving general agile whole-body control on humanoid robots remains a major challenge due to diverse motion demands and data conflicts. While existing frameworks excel in training single motion-specific policies, they struggle to generalize across highly varied behaviors due to conflicting control requirements and mismatched data distributions. In this work, we propose BumbleBee (BB), an expert-generalist learning framework that combines motion clustering and sim-to-real adaptation to overcome these challenges. BB first leverages an autoencoder-based clustering method to group behaviorally similar motions using motion features and motion descriptions. Expert policies are then trained within each cluster and refined with real-world data through iterative delta action modeling to bridge the sim-to-real gap. Finally, these experts are distilled into a unified generalist controller that preserves agility and robustness across all motion types. Experiments on two simulations and a real humanoid robot demonstrate that BB achieves state-of-the-art general whole-body control, setting a new benchmark for agile, robust, and generalizable humanoid performance in the real world.
♻ ☆ V2X-VLM: End-to-End V2X Cooperative Autonomous Driving Through Large Vision-Language Models
Vehicle-to-everything (V2X) cooperation has emerged as a promising paradigm to overcome the perception limitations of classical autonomous driving by leveraging information from both ego-vehicle and infrastructure sensors. However, effectively fusing heterogeneous visual and semantic information while ensuring robust trajectory planning remains a significant challenge. This paper introduces V2X-VLM, a novel end-to-end (E2E) cooperative autonomous driving framework based on vision-language models (VLMs). V2X-VLM integrates multiperspective camera views from vehicles and infrastructure with text-based scene descriptions to enable a more comprehensive understanding of driving environments. Specifically, we propose a contrastive learning-based mechanism to reinforce the alignment of heterogeneous visual and textual characteristics, which enhances the semantic understanding of complex driving scenarios, and employ a knowledge distillation strategy to stabilize training. Experiments on a large real-world dataset demonstrate that V2X-VLM achieves state-of-the-art trajectory planning accuracy, significantly reducing L2 error and collision rate compared to existing cooperative autonomous driving baselines. Ablation studies validate the contributions of each component. Moreover, the evaluation of robustness and efficiency highlights the practicality of V2X-VLM for real-world deployment to enhance overall autonomous driving safety and decision-making.
♻ ☆ Hierarchical and Modular Network on Non-prehensile Manipulation in General Environments
For robots to operate in general environments like households, they must be able to perform non-prehensile manipulation actions such as toppling and rolling to manipulate ungraspable objects. However, prior works on non-prehensile manipulation cannot yet generalize across environments with diverse geometries. The main challenge lies in adapting to varying environmental constraints: within a cabinet, the robot must avoid walls and ceilings; to lift objects to the top of a step, the robot must account for the step's pose and extent. While deep reinforcement learning (RL) has demonstrated impressive success in non-prehensile manipulation, accounting for such variability presents a challenge for the generalist policy, as it must learn diverse strategies for each new combination of constraints. To address this, we propose a modular and reconfigurable architecture that adaptively reconfigures network modules based on task requirements. To capture the geometric variability in environments, we extend the contact-based object representation (CORN) to environment geometries, and propose a procedural algorithm for generating diverse environments to train our agent. Taken together, the resulting policy can zero-shot transfer to novel real-world environments and objects despite training entirely within a simulator. We additionally release a simulation-based benchmark featuring nine digital twins of real-world scenes with 353 objects to facilitate non-prehensile manipulation research in realistic domains.
comment: http://unicorn-hamnet.github.io/
Computer Vision 36
☆ CodeDiffuser: Attention-Enhanced Diffusion Policy via VLM-Generated Code for Instruction Ambiguity RSS
Natural language instructions for robotic manipulation tasks often exhibit ambiguity and vagueness. For instance, the instruction "Hang a mug on the mug tree" may involve multiple valid actions if there are several mugs and branches to choose from. Existing language-conditioned policies typically rely on end-to-end models that jointly handle high-level semantic understanding and low-level action generation, which can result in suboptimal performance due to their lack of modularity and interpretability. To address these challenges, we introduce a novel robotic manipulation framework that can accomplish tasks specified by potentially ambiguous natural language. This framework employs a Vision-Language Model (VLM) to interpret abstract concepts in natural language instructions and generates task-specific code - an interpretable and executable intermediate representation. The generated code interfaces with the perception module to produce 3D attention maps that highlight task-relevant regions by integrating spatial and semantic information, effectively resolving ambiguities in instructions. Through extensive experiments, we identify key limitations of current imitation learning methods, such as poor adaptation to language and environmental variations. We show that our approach excels across challenging manipulation tasks involving language ambiguity, contact-rich manipulation, and multi-object interactions.
comment: Accepted to Robotics: Science and Systems (RSS) 2025. The first three authors contributed equally. Project Page: https://robopil.github.io/code-diffuser/
☆ Leveraging CNN and IoT for Effective E-Waste Management
The increasing proliferation of electronic devices in the modern era has led to a significant surge in electronic waste (e-waste). Improper disposal and insufficient recycling of e-waste pose serious environmental and health risks. This paper proposes an IoT-enabled system combined with a lightweight CNN-based classification pipeline to enhance the identification, categorization, and routing of e-waste materials. By integrating a camera system and a digital weighing scale, the framework automates the classification of electronic items based on visual and weight-based attributes. The system demonstrates how real-time detection of e-waste components such as circuit boards, sensors, and wires can facilitate smart recycling workflows and improve overall waste processing efficiency.
comment: 6 pages, 4 figures, published in 2023 7th International Conference on I-SMAC IoT in Social Mobile Analytics and Cloud. Conference held in Kirtipur Nepal from 11 to 13 October 2023
☆ Overfitting in Histopathology Model Training: The Need for Customized Architectures
This study investigates the critical problem of overfitting in deep learning models applied to histopathology image analysis. We show that simply adopting and fine-tuning large-scale models designed for natural image analysis often leads to suboptimal performance and significant overfitting when applied to histopathology tasks. Through extensive experiments with various model architectures, including ResNet variants and Vision Transformers (ViT), we show that increasing model capacity does not necessarily improve performance on histopathology datasets. Our findings emphasize the need for customized architectures specifically designed for histopathology image analysis, particularly when working with limited datasets. Using Oesophageal Adenocarcinomas public dataset, we demonstrate that simpler, domain-specific architectures can achieve comparable or better performance while minimizing overfitting.
☆ FlatCAD: Fast Curvature Regularization of Neural SDFs for CAD Models
Neural signed-distance fields (SDFs) have become a versatile backbone for geometric learning, yet enforcing developable, CAD-style behavior still hinges on Gaussian curvature penalties that require full Hessian evaluation and second-order automatic differentiation, both of which are costly in memory and runtime. We present a curvature proxy that regularizes only the mixed second-order term (Weingarten term), allowing the two principal curvatures to adapt freely to data while suppressing unwanted warp. Two complementary instantiations realize this idea: (i) a finite-difference proxy that replaces each Hessian entry with four forward SDF evaluations and a single first-order gradient, and (ii) an autodiff proxy that computes the same mixed derivative via one Hessian-vector product, sidestepping explicit full Hessian assembly and remaining faster in practice. Both variants converge to the exact mixed second derivative, thus preserving the intended geometric bias without incurring full second-order graphs. On the ABC benchmarks, the proxies match or exceed the reconstruction fidelity of Hessian-based baselines while reducing GPU memory use and wall-clock time by a factor of two. Because the method is drop-in and framework-agnostic, it opens a practical path toward scalable, curvature-aware SDF learning for engineering-grade shape reconstruction.
comment: 12 page, 10 figures, preprint
☆ MetaQAP -- A Meta-Learning Approach for Quality-Aware Pretraining in Image Quality Assessment
Image Quality Assessment (IQA) is a critical task in a wide range of applications but remains challenging due to the subjective nature of human perception and the complexity of real-world image distortions. This study proposes MetaQAP, a novel no-reference IQA model designed to address these challenges by leveraging quality-aware pre-training and meta-learning. The model performs three key contributions: pre-training Convolutional Neural Networks (CNNs) on a quality-aware dataset, implementing a quality-aware loss function to optimize predictions, and integrating a meta-learner to form an ensemble model that effectively combines predictions from multiple base models. Experimental evaluations were conducted on three benchmark datasets: LiveCD, KonIQ-10K, and BIQ2021. The proposed MetaQAP model achieved exceptional performance with Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) scores of 0.9885/0.9812 on LiveCD, 0.9702/0.9658 on KonIQ-10K, and 0.884/0.8765 on BIQ2021, outperforming existing IQA methods. Cross-dataset evaluations further demonstrated the generalizability of the model, with PLCC and SROCC scores ranging from 0.6721 to 0.8023 and 0.6515 to 0.7805, respectively, across diverse datasets. The ablation study confirmed the significance of each model component, revealing substantial performance degradation when critical elements such as the meta-learner or quality-aware loss function were omitted. MetaQAP not only addresses the complexities of authentic distortions but also establishes a robust and generalizable framework for practical IQA applications. By advancing the state-of-the-art in no-reference IQA, this research provides valuable insights and methodologies for future improvements and extensions in the field.
☆ Exoplanet Classification through Vision Transformers with Temporal Image Analysis
The classification of exoplanets has been a longstanding challenge in astronomy, requiring significant computational and observational resources. Traditional methods demand substantial effort, time, and cost, highlighting the need for advanced machine learning techniques to enhance classification efficiency. In this study, we propose a methodology that transforms raw light curve data from NASA's Kepler mission into Gramian Angular Fields (GAFs) and Recurrence Plots (RPs) using the Gramian Angular Difference Field and recurrence plot techniques. These transformed images serve as inputs to the Vision Transformer (ViT) model, leveraging its ability to capture intricate temporal dependencies. We assess the performance of the model through recall, precision, and F1 score metrics, using a 5-fold cross-validation approach to obtain a robust estimate of the model's performance and reduce evaluation bias. Our comparative analysis reveals that RPs outperform GAFs, with the ViT model achieving an 89.46$\%$ recall and an 85.09$\%$ precision rate, demonstrating its significant capability in accurately identifying exoplanetary transits. Despite using under-sampling techniques to address class imbalance, dataset size reduction remains a limitation. This study underscores the importance of further research into optimizing model architectures to enhance automation, performance, and generalization of the model.
comment: Accepted for publication in the Astronomical Journal
☆ Hybrid Attention Network for Accurate Breast Tumor Segmentation in Ultrasound Images
Breast ultrasound imaging is a valuable tool for early breast cancer detection, but automated tumor segmentation is challenging due to inherent noise, variations in scale of lesions, and fuzzy boundaries. To address these challenges, we propose a novel hybrid attention-based network for lesion segmentation. Our proposed architecture integrates a pre-trained DenseNet121 in the encoder part for robust feature extraction with a multi-branch attention-enhanced decoder tailored for breast ultrasound images. The bottleneck incorporates Global Spatial Attention (GSA), Position Encoding (PE), and Scaled Dot-Product Attention (SDPA) to learn global context, spatial relationships, and relative positional features. The Spatial Feature Enhancement Block (SFEB) is embedded at skip connections to refine and enhance spatial features, enabling the network to focus more effectively on tumor regions. A hybrid loss function combining Binary Cross-Entropy (BCE) and Jaccard Index loss optimizes both pixel-level accuracy and region-level overlap metrics, enhancing robustness to class imbalance and irregular tumor shapes. Experiments on public datasets demonstrate that our method outperforms existing approaches, highlighting its potential to assist radiologists in early and accurate breast cancer diagnosis.
☆ Spatially-Aware Evaluation of Segmentation Uncertainty CVPR 2025
Uncertainty maps highlight unreliable regions in segmentation predictions. However, most uncertainty evaluation metrics treat voxels independently, ignoring spatial context and anatomical structure. As a result, they may assign identical scores to qualitatively distinct patterns (e.g., scattered vs. boundary-aligned uncertainty). We propose three spatially aware metrics that incorporate structural and boundary information and conduct a thorough validation on medical imaging data from the prostate zonal segmentation challenge within the Medical Segmentation Decathlon. Our results demonstrate improved alignment with clinically important factors and better discrimination between meaningful and spurious uncertainty patterns.
comment: Presented at the 4th Workshop on Uncertainty Quantification for Computer Vision (CVPR 2025), June 11, 2025. This version is not included in the official proceedings
☆ SafeTriage: Facial Video De-identification for Privacy-Preserving Stroke Triage
Effective stroke triage in emergency settings often relies on clinicians' ability to identify subtle abnormalities in facial muscle coordination. While recent AI models have shown promise in detecting such patterns from patient facial videos, their reliance on real patient data raises significant ethical and privacy challenges -- especially when training robust and generalizable models across institutions. To address these concerns, we propose SafeTriage, a novel method designed to de-identify patient facial videos while preserving essential motion cues crucial for stroke diagnosis. SafeTriage leverages a pretrained video motion transfer (VMT) model to map the motion characteristics of real patient faces onto synthetic identities. This approach retains diagnostically relevant facial dynamics without revealing the patients' identities. To mitigate the distribution shift between normal population pre-training videos and patient population test videos, we introduce a conditional generative model for visual prompt tuning, which adapts the input space of the VMT model to ensure accurate motion transfer without needing to fine-tune the VMT model backbone. Comprehensive evaluation, including quantitative metrics and clinical expert assessments, demonstrates that SafeTriage-produced synthetic videos effectively preserve stroke-relevant facial patterns, enabling reliable AI-based triage. Our evaluations also show that SafeTriage provides robust privacy protection while maintaining diagnostic accuracy, offering a secure and ethically sound foundation for data sharing and AI-driven clinical analysis in neurological disorders.
comment: IPMI 2025
☆ DiffO: Single-step Diffusion for Image Compression at Ultra-Low Bitrates
Although image compression is fundamental to visual data processing and has inspired numerous standard and learned codecs, these methods still suffer severe quality degradation at extremely low bits per pixel. While recent diffusion based models provided enhanced generative performance at low bitrates, they still yields limited perceptual quality and prohibitive decoding latency due to multiple denoising steps. In this paper, we propose the first single step diffusion model for image compression (DiffO) that delivers high perceptual quality and fast decoding at ultra low bitrates. DiffO achieves these goals by coupling two key innovations: (i) VQ Residual training, which factorizes a structural base code and a learned residual in latent space, capturing both global geometry and high frequency details; and (ii) rate adaptive noise modulation, which tunes denoising strength on the fly to match the desired bitrate. Extensive experiments show that DiffO surpasses state of the art compression performance while improving decoding speed by about 50x compared to prior diffusion-based methods, greatly improving the practicality of generative codecs. The code will be available at https://github.com/Freemasti/DiffO.
☆ Reimagination with Test-time Observation Interventions: Distractor-Robust World Model Predictions for Visual Model Predictive Control
World models enable robots to "imagine" future observations given current observations and planned actions, and have been increasingly adopted as generalized dynamics models to facilitate robot learning. Despite their promise, these models remain brittle when encountering novel visual distractors such as objects and background elements rarely seen during training. Specifically, novel distractors can corrupt action outcome predictions, causing downstream failures when robots rely on the world model imaginations for planning or action verification. In this work, we propose Reimagination with Observation Intervention (ReOI), a simple yet effective test-time strategy that enables world models to predict more reliable action outcomes in open-world scenarios where novel and unanticipated visual distractors are inevitable. Given the current robot observation, ReOI first detects visual distractors by identifying which elements of the scene degrade in physically implausible ways during world model prediction. Then, it modifies the current observation to remove these distractors and bring the observation closer to the training distribution. Finally, ReOI "reimagines" future outcomes with the modified observation and reintroduces the distractors post-hoc to preserve visual consistency for downstream planning and verification. We validate our approach on a suite of robotic manipulation tasks in the context of action verification, where the verifier needs to select desired action plans based on predictions from a world model. Our results show that ReOI is robust to both in-distribution and out-of-distribution visual distractors. Notably, it improves task success rates by up to 3x in the presence of novel distractors, significantly outperforming action verification that relies on world model predictions without imagination interventions.
☆ From Semantic To Instance: A Semi-Self-Supervised Learning Approach
Instance segmentation is essential for applications such as automated monitoring of plant health, growth, and yield. However, extensive effort is required to create large-scale datasets with pixel-level annotations of each object instance for developing instance segmentation models that restrict the use of deep learning in these areas. This challenge is more significant in images with densely packed, self-occluded objects, which are common in agriculture. To address this challenge, we propose a semi-self-supervised learning approach that requires minimal manual annotation to develop a high-performing instance segmentation model. We design GLMask, an image-mask representation for the model to focus on shape, texture, and pattern while minimizing its dependence on color features. We develop a pipeline to generate semantic segmentation and then transform it into instance-level segmentation. The proposed approach substantially outperforms the conventional instance segmentation models, establishing a state-of-the-art wheat head instance segmentation model with mAP@50 of 98.5%. Additionally, we assessed the proposed methodology on the general-purpose Microsoft COCO dataset, achieving a significant performance improvement of over 12.6% mAP@50. This highlights that the utility of our proposed approach extends beyond precision agriculture and applies to other domains, specifically those with similar data characteristics.
☆ VesselSDF: Distance Field Priors for Vascular Network Reconstruction
Accurate segmentation of vascular networks from sparse CT scan slices remains a significant challenge in medical imaging, particularly due to the thin, branching nature of vessels and the inherent sparsity between imaging planes. Existing deep learning approaches, based on binary voxel classification, often struggle with structural continuity and geometric fidelity. To address this challenge, we present VesselSDF, a novel framework that leverages signed distance fields (SDFs) for robust vessel reconstruction. Our method reformulates vessel segmentation as a continuous SDF regression problem, where each point in the volume is represented by its signed distance to the nearest vessel surface. This continuous representation inherently captures the smooth, tubular geometry of blood vessels and their branching patterns. We obtain accurate vessel reconstructions while eliminating common SDF artifacts such as floating segments, thanks to our adaptive Gaussian regularizer which ensures smoothness in regions far from vessel surfaces while producing precise geometry near the surface boundaries. Our experimental results demonstrate that VesselSDF significantly outperforms existing methods and preserves vessel geometry and connectivity, enabling more reliable vascular analysis in clinical settings.
☆ How Hard Is Snow? A Paired Domain Adaptation Dataset for Clear and Snowy Weather: CADC+
The impact of snowfall on 3D object detection performance remains underexplored. Conducting such an evaluation requires a dataset with sufficient labelled data from both weather conditions, ideally captured in the same driving environment. Current driving datasets with LiDAR point clouds either do not provide enough labelled data in both snowy and clear weather conditions, or rely on de-snowing methods to generate synthetic clear weather. Synthetic data often lacks realism and introduces an additional domain shift that confounds accurate evaluations. To address these challenges, we present CADC+, the first paired weather domain adaptation dataset for autonomous driving in winter conditions. CADC+ extends the Canadian Adverse Driving Conditions dataset (CADC) using clear weather data that was recorded on the same roads and in the same period as CADC. To create CADC+, we pair each CADC sequence with a clear weather sequence that matches the snowy sequence as closely as possible. CADC+ thus minimizes the domain shift resulting from factors unrelated to the presence of snow. We also present some preliminary results using CADC+ to evaluate the effect of snow on 3D object detection performance. We observe that snow introduces a combination of aleatoric and epistemic uncertainties, acting as both noise and a distinct data domain.
comment: IEEE IV 2025
☆ Subspace-Boosted Model Merging
Model merging enables the combination of multiple specialized expert models into a single model capable of performing multiple tasks. However, the benefits of merging an increasing amount of specialized experts generally lead to diminishing returns and reduced overall performance gains. In this work, we offer an explanation and analysis from a task arithmetic perspective; revealing that as the merging process (across numerous existing merging methods) continues for more and more experts, the associated task vector space experiences rank collapse. To mitigate this issue, we introduce Subspace Boosting, which operates on the singular value decomposed task vector space and maintains task vector ranks. Subspace Boosting raises merging efficacy for up to 20 expert models by large margins of more than 10% when evaluated on vision benchmarks. Moreover, we propose employing Higher-Order Generalized Singular Value Decomposition to further quantify task similarity, offering a new interpretable perspective on model merging.
comment: 21 pages (main + supp)
☆ Hunyuan3D 2.5: Towards High-Fidelity 3D Assets Generation with Ultimate Details
In this report, we present Hunyuan3D 2.5, a robust suite of 3D diffusion models aimed at generating high-fidelity and detailed textured 3D assets. Hunyuan3D 2.5 follows two-stages pipeline of its previous version Hunyuan3D 2.0, while demonstrating substantial advancements in both shape and texture generation. In terms of shape generation, we introduce a new shape foundation model -- LATTICE, which is trained with scaled high-quality datasets, model-size, and compute. Our largest model reaches 10B parameters and generates sharp and detailed 3D shape with precise image-3D following while keeping mesh surface clean and smooth, significantly closing the gap between generated and handcrafted 3D shapes. In terms of texture generation, it is upgraded with phyiscal-based rendering (PBR) via a novel multi-view architecture extended from Hunyuan3D 2.0 Paint model. Our extensive evaluation shows that Hunyuan3D 2.5 significantly outperforms previous methods in both shape and end-to-end texture generation.
comment: Technical report
☆ Spotting tell-tale visual artifacts in face swapping videos: strengths and pitfalls of CNN detectors
Face swapping manipulations in video streams represents an increasing threat in remote video communications, due to advances in automated and real-time tools. Recent literature proposes to characterize and exploit visual artifacts introduced in video frames by swapping algorithms when dealing with challenging physical scenes, such as face occlusions. This paper investigates the effectiveness of this approach by benchmarking CNN-based data-driven models on two data corpora (including a newly collected one) and analyzing generalization capabilities with respect to different acquisition sources and swapping algorithms. The results confirm excellent performance of general-purpose CNN architectures when operating within the same data source, but a significant difficulty in robustly characterizing occlusion-based visual cues across datasets. This highlights the need for specialized detection strategies to deal with such artifacts.
comment: 8 pages, 4 figures, workshop paper
☆ DT-UFC: Universal Large Model Feature Coding via Peaky-to-Balanced Distribution Transformation
Like image coding in visual data transmission, feature coding is essential for the distributed deployment of large models by significantly reducing transmission and storage overhead. However, prior studies have mostly targeted task- or model-specific scenarios, leaving the challenge of universal feature coding across diverse large models largely unaddressed. In this paper, we present the first systematic study on universal feature coding for large models. The key challenge lies in the inherently diverse and distributionally incompatible nature of features extracted from different models. For example, features from DINOv2 exhibit highly peaky, concentrated distributions, while those from Stable Diffusion 3 (SD3) are more dispersed and uniform. This distributional heterogeneity severely hampers both compression efficiency and cross-model generalization. To address this, we propose a learned peaky-to-balanced distribution transformation, which reshapes highly skewed feature distributions into a common, balanced target space. This transformation is non-uniform, data-driven, and plug-and-play, enabling effective alignment of heterogeneous distributions without modifying downstream codecs. With this alignment, a universal codec trained on the balanced target distribution can effectively generalize to features from different models and tasks. We validate our approach on three representative large models-LLaMA3, DINOv2, and SD3-across multiple tasks and modalities. Extensive experiments show that our method achieves notable improvements in both compression efficiency and cross-model generalization over task-specific baselines. All source code will be released for future research.
♻ ☆ RDD: Robust Feature Detector and Descriptor using Deformable Transformer
As a core step in structure-from-motion and SLAM, robust feature detection and description under challenging scenarios such as significant viewpoint changes remain unresolved despite their ubiquity. While recent works have identified the importance of local features in modeling geometric transformations, these methods fail to learn the visual cues present in long-range relationships. We present Robust Deformable Detector (RDD), a novel and robust keypoint detector/descriptor leveraging the deformable transformer, which captures global context and geometric invariance through deformable self-attention mechanisms. Specifically, we observed that deformable attention focuses on key locations, effectively reducing the search space complexity and modeling the geometric invariance. Furthermore, we collected an Air-to-Ground dataset for training in addition to the standard MegaDepth dataset. Our proposed method outperforms all state-of-the-art keypoint detection/description methods in sparse matching tasks and is also capable of semi-dense matching. To ensure comprehensive evaluation, we introduce two challenging benchmarks: one emphasizing large viewpoint and scale variations, and the other being an Air-to-Ground benchmark -- an evaluation setting that has recently gaining popularity for 3D reconstruction across different altitudes.
♻ ☆ TARDIS STRIDE: A Spatio-Temporal Road Image Dataset and World Model for Autonomy
World models aim to simulate environments and enable effective agent behavior. However, modeling real-world environments presents unique challenges as they dynamically change across both space and, crucially, time. To capture these composed dynamics, we introduce a Spatio-Temporal Road Image Dataset for Exploration (STRIDE) permuting 360-degree panoramic imagery into rich interconnected observation, state and action nodes. Leveraging this structure, we can simultaneously model the relationship between egocentric views, positional coordinates, and movement commands across both space and time. We benchmark this dataset via TARDIS, a transformer-based generative world model that integrates spatial and temporal dynamics through a unified autoregressive framework trained on STRIDE. We demonstrate robust performance across a range of agentic tasks such as controllable photorealistic image synthesis, instruction following, autonomous self-control, and state-of-the-art georeferencing. These results suggest a promising direction towards sophisticated generalist agents--capable of understanding and manipulating the spatial and temporal aspects of their material environments--with enhanced embodied reasoning capabilities. Training code, datasets, and model checkpoints are made available at https://huggingface.co/datasets/Tera-AI/STRIDE.
comment: Computer Vision, Pattern Recognition, Early-Fusion, Dataset, Data Augmentation
♻ ☆ A Comprehensive Survey on Continual Learning in Generative Models
The rapid advancement of generative models has enabled modern AI systems to comprehend and produce highly sophisticated content, even achieving human-level performance in specific domains. However, these models remain fundamentally constrained by catastrophic forgetting - a persistent challenge where adapting to new tasks typically leads to significant degradation in performance on previously learned tasks. To address this practical limitation, numerous approaches have been proposed to enhance the adaptability and scalability of generative models in real-world applications. In this work, we present a comprehensive survey of continual learning methods for mainstream generative models, including large language models, multimodal large language models, vision language action models, and diffusion models. Drawing inspiration from the memory mechanisms of the human brain, we systematically categorize these approaches into three paradigms: architecture-based, regularization-based, and replay-based methods, while elucidating their underlying methodologies and motivations. We further analyze continual learning setups for different generative models, including training objectives, benchmarks, and core backbones, offering deeper insights into the field. The project page of this paper is available at https://github.com/Ghy0501/Awesome-Continual-Learning-in-Generative-Models.
comment: Preprint
♻ ☆ OpenPath: Open-Set Active Learning for Pathology Image Classification via Pre-trained Vision-Language Models MICCAI 2025
Pathology image classification plays a crucial role in accurate medical diagnosis and treatment planning. Training high-performance models for this task typically requires large-scale annotated datasets, which are both expensive and time-consuming to acquire. Active Learning (AL) offers a solution by iteratively selecting the most informative samples for annotation, thereby reducing the labeling effort. However, most AL methods are designed under the assumption of a closed-set scenario, where all the unannotated images belong to target classes. In real-world clinical environments, the unlabeled pool often contains a substantial amount of Out-Of-Distribution (OOD) data, leading to low efficiency of annotation in traditional AL methods. Furthermore, most existing AL methods start with random selection in the first query round, leading to a significant waste of labeling costs in open-set scenarios. To address these challenges, we propose OpenPath, a novel open-set active learning approach for pathological image classification leveraging a pre-trained Vision-Language Model (VLM). In the first query, we propose task-specific prompts that combine target and relevant non-target class prompts to effectively select In-Distribution (ID) and informative samples from the unlabeled pool. In subsequent queries, Diverse Informative ID Sampling (DIS) that includes Prototype-based ID candidate Selection (PIS) and Entropy-Guided Stochastic Sampling (EGSS) is proposed to ensure both purity and informativeness in a query, avoiding the selection of OOD samples. Experiments on two public pathology image datasets show that OpenPath significantly enhances the model's performance due to its high purity of selected samples, and outperforms several state-of-the-art open-set AL methods. The code is available at \href{https://github.com/HiLab-git/OpenPath}{https://github.com/HiLab-git/OpenPath}..
comment: MICCAI 2025 early accept
♻ ☆ Hierarchical Multi-Positive Contrastive Learning for Patent Image Retrieval SIGIR 2025
Patent images are technical drawings that convey information about a patent's innovation. Patent image retrieval systems aim to search in vast collections and retrieve the most relevant images. Despite recent advances in information retrieval, patent images still pose significant challenges due to their technical intricacies and complex semantic information, requiring efficient fine-tuning for domain adaptation. Current methods neglect patents' hierarchical relationships, such as those defined by the Locarno International Classification (LIC) system, which groups broad categories (e.g., "furnishing") into subclasses (e.g., "seats" and "beds") and further into specific patent designs. In this work, we introduce a hierarchical multi-positive contrastive loss that leverages the LIC's taxonomy to induce such relations in the retrieval process. Our approach assigns multiple positive pairs to each patent image within a batch, with varying similarity scores based on the hierarchical taxonomy. Our experimental analysis with various vision and multimodal models on the DeepPatent2 dataset shows that the proposed method enhances the retrieval results. Notably, our method is effective with low-parameter models, which require fewer computational resources and can be deployed on environments with limited hardware.
comment: 5 pages, 3 figures, Accepted as a short paper at the 6th Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech 2025), co-located with SIGIR 2025
♻ ☆ Surg-3M: A Dataset and Foundation Model for Perception in Surgical Settings
Advancements in computer-assisted surgical procedures heavily rely on accurate visual data interpretation from camera systems used during surgeries. Traditional open-access datasets focusing on surgical procedures are often limited by their small size, typically consisting of fewer than 100 videos with less than 100K images. To address these constraints, a new dataset called Surg-3M has been compiled using a novel aggregation pipeline that collects high-resolution videos from online sources. Featuring an extensive collection of over 4K surgical videos totaling 938 hours of high-quality footage across multiple procedure types, Surg-3M offers a comprehensive resource surpassing existing alternatives in size and scope, including two novel tasks. To demonstrate the effectiveness of this dataset, we present SurgFM, a self-supervised foundation model pretrained on Surg-3M that achieves impressive results in downstream tasks such as surgical phase recognition, action recognition, and tool presence detection. Combining key components from ConvNeXt, DINO, and an innovative augmented distillation method, SurgFM exhibits exceptional performance compared to specialist architectures across various benchmarks. Our experimental results show that SurgFM outperforms state-of-the-art models in multiple downstream tasks, including significant gains in surgical phase recognition (+8.9pp, +4.7pp, and +3.9pp of Jaccard in AutoLaparo, M2CAI16, and Cholec80), action recognition (+3.1pp of mAP in CholecT50) and tool presence detection (+4.6pp of mAP in Cholec80). Moreover, even when using only half of the data, SurgFM outperforms state-of-the-art models in AutoLaparo and achieves state-of-the-art performance in Cholec80. Both Surg-3M and SurgFM have significant potential to accelerate progress towards developing autonomous robotic surgery systems.
comment: 15 pages
♻ ☆ Low-Resource Video Super-Resolution using Memory, Wavelets, and Deformable Convolutions
The tradeoff between reconstruction quality and compute required for video super-resolution (VSR) remains a formidable challenge in its adoption for deployment on resource-constrained edge devices. While transformer-based VSR models have set new benchmarks for reconstruction quality in recent years, these require substantial computational resources. On the other hand, lightweight models that have been introduced even recently struggle to deliver state-of-the-art reconstruction. We propose a novel lightweight and parameter-efficient neural architecture for VSR that achieves state-of-the-art reconstruction accuracy with just 2.3 million parameters. Our model enhances information utilization based on several architectural attributes. Firstly, it uses 2D wavelet decompositions strategically interlayered with learnable convolutional layers to utilize the inductive prior of spatial sparsity of edges in visual data. Secondly, it uses a single memory tensor to capture inter-frame temporal information while avoiding the computational cost of previous memory-based schemes. Thirdly, it uses residual deformable convolutions for implicit inter-frame object alignment that improve upon deformable convolutions by enhancing spatial information in inter-frame feature differences. Architectural insights from our model can pave the way for real-time VSR on the edge, such as display devices for streaming data.
♻ ☆ Layer-wise Alignment: Examining Safety Alignment Across Image Encoder Layers in Vision Language Models ICML 2025
Vision-language models (VLMs) have improved significantly in their capabilities, but their complex architecture makes their safety alignment challenging. In this paper, we reveal an uneven distribution of harmful information across the intermediate layers of the image encoder and show that skipping a certain set of layers and exiting early can increase the chance of the VLM generating harmful responses. We call it as "Image enCoder Early-exiT" based vulnerability (ICET). Our experiments across three VLMs: LLaVA-1.5, LLaVA-NeXT, and Llama 3.2, show that performing early exits from the image encoder significantly increases the likelihood of generating harmful outputs. To tackle this, we propose a simple yet effective modification of the Clipped-Proximal Policy Optimization (Clip-PPO) algorithm for performing layer-wise multi-modal RLHF for VLMs. We term this as Layer-Wise PPO (L-PPO). We evaluate our L-PPO algorithm across three multimodal datasets and show that it consistently reduces the harmfulness caused by early exits.
comment: Accepted by ICML 2025 as a spotlight poster
♻ ☆ MonoSOWA: Scalable monocular 3D Object detector Without human Annotations
Inferring object 3D position and orientation from a single RGB camera is a foundational task in computer vision with many important applications. Traditionally, 3D object detection methods are trained in a fully-supervised setup, requiring LiDAR and vast amounts of human annotations, which are laborious, costly, and do not scale well with the ever-increasing amounts of data being captured. We present a novel method to train a 3D object detector from a single RGB camera without domain-specific human annotations, making orders of magnitude more data available for training. The method uses newly proposed Local Object Motion Model to disentangle object movement source between subsequent frames, is approximately 700 times faster than previous work and compensates camera focal length differences to aggregate multiple datasets. The method is evaluated on three public datasets, where despite using no human labels, it outperforms prior work by a significant margin. It also shows its versatility as a pre-training tool for fully-supervised training and shows that combining pseudo-labels from multiple datasets can achieve comparable accuracy to using human labels from a single dataset. The source code and model are available at https://github.com/jskvrna/MonoSOWA.
♻ ☆ Autonomous Computer Vision Development with Agentic AI
Agentic Artificial Intelligence (AI) systems leveraging Large Language Models (LLMs) exhibit significant potential for complex reasoning, planning, and tool utilization. We demonstrate that a specialized computer vision system can be built autonomously from a natural language prompt using Agentic AI methods. This involved extending SimpleMind (SM), an open-source Cognitive AI environment with configurable tools for medical image analysis, with an LLM-based agent, implemented using OpenManus, to automate the planning (tool configuration) for a particular computer vision task. We provide a proof-of-concept demonstration that an agentic system can interpret a computer vision task prompt, plan a corresponding SimpleMind workflow by decomposing the task and configuring appropriate tools. From the user input prompt, "provide sm (SimpleMind) config for lungs, heart, and ribs segmentation for cxr (chest x-ray)"), the agent LLM was able to generate the plan (tool configuration file in YAML format), and execute SM-Learn (training) and SM-Think (inference) scripts autonomously. The computer vision agent automatically configured, trained, and tested itself on 50 chest x-ray images, achieving mean dice scores of 0.96, 0.82, 0.83, for lungs, heart, and ribs, respectively. This work shows the potential for autonomous planning and tool configuration that has traditionally been performed by a data scientist in the development of computer vision applications.
comment: The paper is 13 pages long and contains 4 figures
4Seasons: Benchmarking Visual SLAM and Long-Term Localization for Autonomous Driving in Challenging Conditions
In this paper, we present a novel visual SLAM and long-term localization benchmark for autonomous driving in challenging conditions based on the large-scale 4Seasons dataset. The proposed benchmark provides drastic appearance variations caused by seasonal changes and diverse weather and illumination conditions. While significant progress has been made in advancing visual SLAM on small-scale datasets with similar conditions, there is still a lack of unified benchmarks representative of real-world scenarios for autonomous driving. We introduce a new unified benchmark for jointly evaluating visual odometry, global place recognition, and map-based visual localization performance which is crucial to successfully enable autonomous driving in any condition. The data has been collected for more than one year, resulting in more than 300 km of recordings in nine different environments ranging from a multi-level parking garage to urban (including tunnels) to countryside and highway. We provide globally consistent reference poses with up to centimeter-level accuracy obtained from the fusion of direct stereo-inertial odometry with RTK GNSS. We evaluate the performance of several state-of-the-art visual odometry and visual localization baseline approaches on the benchmark and analyze their properties. The experimental results provide new insights into current approaches and show promising potential for future research. Our benchmark and evaluation protocols will be available at https://go.vision.in.tum.de/4seasons.
comment: Published in International Journal of Computer Vision (IJCV). arXiv admin note: substantial text overlap with arXiv:2009.06364
♻ ☆ AutoPresent: Designing Structured Visuals from Scratch
Designing structured visuals such as presentation slides is essential for communicative needs, necessitating both content creation and visual planning skills. In this work, we tackle the challenge of automated slide generation, where models produce slide presentations from natural language (NL) instructions. We first introduce the SlidesBench benchmark, the first benchmark for slide generation with 7k training and 585 testing examples derived from 310 slide decks across 10 domains. SlidesBench supports evaluations that are (i)reference-based to measure similarity to a target slide, and (ii)reference-free to measure the design quality of generated slides alone. We benchmark end-to-end image generation and program generation methods with a variety of models, and find that programmatic methods produce higher-quality slides in user-interactable formats. Built on the success of program generation, we create AutoPresent, an 8B Llama-based model trained on 7k pairs of instructions paired with code for slide generation, and achieve results comparable to the closed-source model GPT-4o. We further explore iterative design refinement where the model is tasked to self-refine its own output, and we found that this process improves the slide's quality. We hope that our work will provide a basis for future work on generating structured visuals.
♻ ☆ An Approach Towards Identifying Bangladeshi Leaf Diseases through Transfer Learning and XAI
Leaf diseases are harmful conditions that affect the health, appearance and productivity of plants, leading to significant plant loss and negatively impacting farmers' livelihoods. These diseases cause visible symptoms such as lesions, color changes, and texture variations, making it difficult for farmers to manage plant health, especially in large or remote farms where expert knowledge is limited. The main motivation of this study is to provide an efficient and accessible solution for identifying plant leaf diseases in Bangladesh, where agriculture plays a critical role in food security. The objective of our research is to classify 21 distinct leaf diseases across six plants using deep learning models, improving disease detection accuracy while reducing the need for expert involvement. Deep Learning (DL) techniques, including CNN and Transfer Learning (TL) models like VGG16, VGG19, MobileNetV2, InceptionV3, ResNet50V2 and Xception are used. VGG19 and Xception achieve the highest accuracies, with 98.90% and 98.66% respectively. Additionally, Explainable AI (XAI) techniques such as GradCAM, GradCAM++, LayerCAM, ScoreCAM and FasterScoreCAM are used to enhance transparency by highlighting the regions of the models focused on during disease classification. This transparency ensures that farmers can understand the model's predictions and take necessary action. This approach not only improves disease management but also supports farmers in making informed decisions, leading to better plant protection and increased agricultural productivity.
comment: Accepted for publication in 2024 27th International Conference on Computer and Information Technology (ICCIT)
♻ ☆ Comprehensive Lung Disease Detection Using Deep Learning Models and Hybrid Chest X-ray Data with Explainable AI
Advanced diagnostic instruments are crucial for the accurate detection and treatment of lung diseases, which affect millions of individuals globally. This study examines the effectiveness of deep learning and transfer learning models using a hybrid dataset, created by merging four individual datasets from Bangladesh and global sources. The hybrid dataset significantly enhances model accuracy and generalizability, particularly in detecting COVID-19, pneumonia, lung opacity, and normal lung conditions from chest X-ray images. A range of models, including CNN, VGG16, VGG19, InceptionV3, Xception, ResNet50V2, InceptionResNetV2, MobileNetV2, and DenseNet121, were applied to both individual and hybrid datasets. The results showed superior performance on the hybrid dataset, with VGG16, Xception, ResNet50V2, and DenseNet121 each achieving an accuracy of 99%. This consistent performance across the hybrid dataset highlights the robustness of these models in handling diverse data while maintaining high accuracy. To understand the models implicit behavior, explainable AI techniques were employed to illuminate their black-box nature. Specifically, LIME was used to enhance the interpretability of model predictions, especially in cases of misclassification, contributing to the development of reliable and interpretable AI-driven solutions for medical imaging.
comment: Accepted for publication in 2024 27th International Conference on Computer and Information Technology (ICCIT)
♻ ☆ Efficient Event-Based Object Detection: A Hybrid Neural Network with Spatial and Temporal Attention
Event cameras offer high temporal resolution and dynamic range with minimal motion blur, making them promising for robust object detection. While Spiking Neural Networks (SNNs) on neuromorphic hardware are often considered for energy-efficient and low latency event-based data processing, they often fall short of Artificial Neural Networks (ANNs) in accuracy and flexibility. Here, we introduce Attention-based Hybrid SNN-ANN backbones for event-based object detection to leverage the strengths of both SNN and ANN architectures. A novel Attention-based SNN-ANN bridge module captures sparse spatial and temporal relations from the SNN layer and converts them into dense feature maps for the ANN part of the backbone. Additionally, we present a variant that integrates DWConvL-STMs to the ANN blocks to capture slower dynamics. This multi-timescale network combines fast SNN processing for short timesteps with long-term dense RNN processing, effectively capturing both fast and slow dynamics. Experimental results demonstrate that our proposed method surpasses SNN-based approaches by significant margins, with results comparable to existing ANN and RNN-based methods. Unlike ANN-only networks, the hybrid setup allows us to implement the SNN blocks on digital neuromorphic hardware to investigate the feasibility of our approach. Extensive ablation studies and implementation on neuromorphic hardware confirm the effectiveness of our proposed modules and architectural choices. Our hybrid SNN-ANN architectures pave the way for ANN-like performance at a drastically reduced parameter, latency, and power budget.
♻ ☆ xGen-MM (BLIP-3): A Family of Open Large Multimodal Models
This paper introduces BLIP-3, an open framework for developing Large Multimodal Models (LMMs). The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs. We release 4B and 14B models, including both the pre-trained base model and the instruction fine-tuned ones. Our models undergo rigorous evaluation across a range of tasks, including both single and multi-image benchmarks. Our models demonstrate competitive performance among open-source LMMs with similar model sizes. Our resulting LMMs demonstrate competitive performance among open-source LMMs with similar model sizes, with the ability to comprehend interleaved image-text inputs. Our training code, models, and all datasets used in this work, including the three largescale datasets we create and the preprocessed ones, will be open-sourced to better support the research community.
♻ ☆ Boosting multi-demographic federated learning for chest radiograph analysis using general-purpose self-supervised representations
Reliable artificial intelligence (AI) models for medical image analysis often depend on large and diverse labeled datasets. Federated learning (FL) offers a decentralized and privacy-preserving approach to training but struggles in highly non-independent and identically distributed (non-IID) settings, where institutions with more representative data may experience degraded performance. Moreover, existing large-scale FL studies have been limited to adult datasets, neglecting the unique challenges posed by pediatric data, which introduces additional non-IID variability. To address these limitations, we analyzed n=398,523 adult chest radiographs from diverse institutions across multiple countries and n=9,125 pediatric images, leveraging transfer learning from general-purpose self-supervised image representations to classify pneumonia and cases with no abnormality. Using state-of-the-art vision transformers, we found that FL improved performance only for smaller adult datasets (P<0.001) but degraded performance for larger datasets (P<0.064) and pediatric cases (P=0.242). However, equipping FL with self-supervised weights significantly enhanced outcomes across pediatric cases (P=0.031) and most adult datasets (P<0.008), except the largest dataset (P=0.052). These findings underscore the potential of easily deployable general-purpose self-supervised image representations to address non-IID challenges in clinical FL applications and highlight their promise for enhancing patient outcomes and advancing pediatric healthcare, where data scarcity and variability remain persistent obstacles.
comment: Published in European Journal of Radiology Artificial Intelligence
♻ ☆ A Survey of World Models for Autonomous Driving
Recent breakthroughs in autonomous driving have been propelled by advances in robust world modeling, fundamentally transforming how vehicles interpret dynamic scenes and execute safe decision-making. World models have emerged as a linchpin technology, offering high-fidelity representations of the driving environment that integrate multi-sensor data, semantic cues, and temporal dynamics. This paper systematically reviews recent advances in world models for autonomous driving, proposing a three-tiered taxonomy: (i) Generation of Future Physical World, covering Image-, BEV-, OG-, and PC-based generation methods that enhance scene evolution modeling through diffusion models and 4D occupancy forecasting; (ii) Behavior Planning for Intelligent Agents, combining rule-driven and learning-based paradigms with cost map optimization and reinforcement learning for trajectory generation in complex traffic conditions; (ii) Interaction between Prediction and Planning, achieving multi-agent collaborative decision-making through latent space diffusion and memory-augmented architectures. The study further analyzes training paradigms, including self-supervised learning, multimodal pretraining, and generative data augmentation, while evaluating world models' performance in scene understanding and motion prediction tasks. Future research must address key challenges in self-supervised representation learning, long-tail scenario generation, and multimodal fusion to advance the practical deployment of world models in complex urban environments. Overall, the comprehensive analysis provides a technical roadmap for harnessing the transformative potential of world models in advancing safe and reliable autonomous driving solutions.
comment: Ongoing project. Paper list: https://github.com/FengZicai/AwesomeWMAD; Benchmark: https://github.com/FengZicai/WMAD-Benchmarks
Artificial Intelligence 158
☆ Relational Deep Learning: Challenges, Foundations and Next-Generation Architectures
Graph machine learning has led to a significant increase in the capabilities of models that learn on arbitrary graph-structured data and has been applied to molecules, social networks, recommendation systems, and transportation, among other domains. Data in multi-tabular relational databases can also be constructed as 'relational entity graphs' for Relational Deep Learning (RDL) - a new blueprint that enables end-to-end representation learning without traditional feature engineering. Compared to arbitrary graph-structured data, relational entity graphs have key properties: (i) their structure is defined by primary-foreign key relationships between entities in different tables, (ii) the structural connectivity is a function of the relational schema defining a database, and (iii) the graph connectivity is temporal and heterogeneous in nature. In this paper, we provide a comprehensive review of RDL by first introducing the representation of relational databases as relational entity graphs, and then reviewing public benchmark datasets that have been used to develop and evaluate recent GNN-based RDL models. We discuss key challenges including large-scale multi-table integration and the complexities of modeling temporal dynamics and heterogeneous data, while also surveying foundational neural network methods and recent architectural advances specialized for relational entity graphs. Finally, we explore opportunities to unify these distinct modeling challenges, highlighting how RDL converges multiple sub-fields in graph machine learning towards the design of foundation models that can transform the processing of relational data.
☆ LLMs in Coding and their Impact on the Commercial Software Engineering Landscape
Large-language-model coding tools are now mainstream in software engineering. But as these same tools move human effort up the development stack, they present fresh dangers: 10% of real prompts leak private data, 42% of generated snippets hide security flaws, and the models can even ``agree'' with wrong ideas, a trait called sycophancy. We argue that firms must tag and review every AI-generated line of code, keep prompts and outputs inside private or on-premises deployments, obey emerging safety regulations, and add tests that catch sycophantic answers -- so they can gain speed without losing security and accuracy.
☆ SemAgent: A Semantics Aware Program Repair Agent
Large Language Models (LLMs) have shown impressive capabilities in downstream software engineering tasks such as Automated Program Repair (APR). In particular, there has been a lot of research on repository-level issue-resolution benchmarks such as SWE-Bench. Although there has been significant progress on this topic, we notice that in the process of solving such issues, existing agentic systems tend to hyper-localize on immediately suspicious lines of code and fix them in isolation, without a deeper understanding of the issue semantics, code semantics, or execution semantics. Consequently, many existing systems generate patches that overfit to the user issue, even when a more general fix is preferable. To address this limitation, we introduce SemAgent, a novel workflow-based procedure that leverages issue, code, and execution semantics to generate patches that are complete - identifying and fixing all lines relevant to the issue. We achieve this through a novel pipeline that (a) leverages execution semantics to retrieve relevant context, (b) comprehends issue-semantics via generalized abstraction, (c) isolates code-semantics within the context of this abstraction, and (d) leverages this understanding in a two-stage architecture: a repair stage that proposes fine-grained fixes, followed by a reviewer stage that filters relevant fixes based on the inferred issue-semantics. Our evaluations show that our methodology achieves a solve rate of 44.66% on the SWEBench-Lite benchmark beating all other workflow-based approaches, and an absolute improvement of 7.66% compared to our baseline, which lacks such deep semantic understanding. We note that our approach performs particularly well on issues requiring multi-line reasoning (and editing) and edge-case handling, suggesting that incorporating issue and code semantics into APR pipelines can lead to robust and semantically consistent repairs.
☆ Long-Context Generalization with Sparse Attention
Transformer-based architectures traditionally employ softmax to compute attention weights, which produces dense distributions over all tokens in a sequence. While effective in many settings, this density has been shown to be detrimental for tasks that demand precise focus on fixed-size patterns: as sequence length increases, non-informative tokens accumulate attention probability mass, leading to dispersion and representational collapse. We show in this paper that sparse attention mechanisms using $\alpha$-entmax can avoid these issues, due to their ability to assign exact zeros to irrelevant tokens. Furthermore, we introduce Adaptive-Scalable Entmax (ASEntmax), which endows $\alpha$-entmax with a learnable temperature parameter, allowing the attention distribution to interpolate between sparse (pattern-focused) and dense (softmax-like) regimes. Finally, we show that the ability to locate and generalize fixed-size patterns can be further improved through a careful design of position encodings, which impacts both dense and sparse attention methods. By integrating ASEntmax into standard transformer layers alongside proper positional encodings, we show that our models greatly outperform softmax, scalable softmax, and fixed-temperature $\alpha$-entmax baselines on long-context generalization.
☆ Latent Noise Injection for Private and Statistically Aligned Synthetic Data Generation
Synthetic Data Generation has become essential for scalable, privacy-preserving statistical analysis. While standard approaches based on generative models, such as Normalizing Flows, have been widely used, they often suffer from slow convergence in high-dimensional settings, frequently converging more slowly than the canonical $1/\sqrt{n}$ rate when approximating the true data distribution. To overcome these limitations, we propose a Latent Noise Injection method using Masked Autoregressive Flows (MAF). Instead of directly sampling from the trained model, our method perturbs each data point in the latent space and maps it back to the data domain. This construction preserves a one to one correspondence between observed and synthetic data, enabling synthetic outputs that closely reflect the underlying distribution, particularly in challenging high-dimensional regimes where traditional sampling struggles. Our procedure satisfies local $(\epsilon, \delta)$-differential privacy and introduces a single perturbation parameter to control the privacy-utility trade-off. Although estimators based on individual synthetic datasets may converge slowly, we show both theoretically and empirically that aggregating across $K$ studies in a meta analysis framework restores classical efficiency and yields consistent, reliable inference. We demonstrate that with a well-calibrated perturbation parameter, Latent Noise Injection achieves strong statistical alignment with the original data and robustness against membership inference attacks. These results position our method as a compelling alternative to conventional flow-based sampling for synthetic data sharing in decentralized and privacy-sensitive domains, such as biomedical research.
☆ GeoGuess: Multimodal Reasoning based on Hierarchy of Visual Information in Street View
Multimodal reasoning is a process of understanding, integrating and inferring information across different data modalities. It has recently attracted surging academic attention as a benchmark for Artificial Intelligence (AI). Although there are various tasks for evaluating multimodal reasoning ability, they still have limitations. Lack of reasoning on hierarchical visual clues at different levels of granularity, e.g., local details and global context, is of little discussion, despite its frequent involvement in real scenarios. To bridge the gap, we introduce a novel and challenging task for multimodal reasoning, namely GeoGuess. Given a street view image, the task is to identify its location and provide a detailed explanation. A system that succeeds in GeoGuess should be able to detect tiny visual clues, perceive the broader landscape, and associate with vast geographic knowledge. Therefore, GeoGuess would require the ability to reason between hierarchical visual information and geographic knowledge. In this work, we establish a benchmark for GeoGuess by introducing a specially curated dataset GeoExplain which consists of panoramas-geocoordinates-explanation tuples. Additionally, we present a multimodal and multilevel reasoning method, namely SightSense which can make prediction and generate comprehensive explanation based on hierarchy of visual information and external knowledge. Our analysis and experiments demonstrate their outstanding performance in GeoGuess.
☆ History-Augmented Vision-Language Models for Frontier-Based Zero-Shot Object Navigation
Object Goal Navigation (ObjectNav) challenges robots to find objects in unseen environments, demanding sophisticated reasoning. While Vision-Language Models (VLMs) show potential, current ObjectNav methods often employ them superficially, primarily using vision-language embeddings for object-scene similarity checks rather than leveraging deeper reasoning. This limits contextual understanding and leads to practical issues like repetitive navigation behaviors. This paper introduces a novel zero-shot ObjectNav framework that pioneers the use of dynamic, history-aware prompting to more deeply integrate VLM reasoning into frontier-based exploration. Our core innovation lies in providing the VLM with action history context, enabling it to generate semantic guidance scores for navigation actions while actively avoiding decision loops. We also introduce a VLM-assisted waypoint generation mechanism for refining the final approach to detected objects. Evaluated on the HM3D dataset within Habitat, our approach achieves a 46% Success Rate (SR) and 24.8% Success weighted by Path Length (SPL). These results are comparable to state-of-the-art zero-shot methods, demonstrating the significant potential of our history-augmented VLM prompting strategy for more robust and context-aware robotic navigation.
☆ Modeling Public Perceptions of Science in Media
Effectively engaging the public with science is vital for fostering trust and understanding in our scientific community. Yet, with an ever-growing volume of information, science communicators struggle to anticipate how audiences will perceive and interact with scientific news. In this paper, we introduce a computational framework that models public perception across twelve dimensions, such as newsworthiness, importance, and surprisingness. Using this framework, we create a large-scale science news perception dataset with 10,489 annotations from 2,101 participants from diverse US and UK populations, providing valuable insights into public responses to scientific information across domains. We further develop NLP models that predict public perception scores with a strong performance. Leveraging the dataset and model, we examine public perception of science from two perspectives: (1) Perception as an outcome: What factors affect the public perception of scientific information? (2) Perception as a predictor: Can we use the estimated perceptions to predict public engagement with science? We find that individuals' frequency of science news consumption is the driver of perception, whereas demographic factors exert minimal influence. More importantly, through a large-scale analysis and carefully designed natural experiment on Reddit, we demonstrate that the estimated public perception of scientific information has direct connections with the final engagement pattern. Posts with more positive perception scores receive significantly more comments and upvotes, which is consistent across different scientific information and for the same science, but are framed differently. Overall, this research underscores the importance of nuanced perception modeling in science communication, offering new pathways to predict public interest and engagement with scientific content.
☆ The Role of Explanation Styles and Perceived Accuracy on Decision Making in Predictive Process Monitoring
Predictive Process Monitoring (PPM) often uses deep learning models to predict the future behavior of ongoing processes, such as predicting process outcomes. While these models achieve high accuracy, their lack of interpretability undermines user trust and adoption. Explainable AI (XAI) aims to address this challenge by providing the reasoning behind the predictions. However, current evaluations of XAI in PPM focus primarily on functional metrics (such as fidelity), overlooking user-centered aspects such as their effect on task performance and decision-making. This study investigates the effects of explanation styles (feature importance, rule-based, and counterfactual) and perceived AI accuracy (low or high) on decision-making in PPM. We conducted a decision-making experiment, where users were presented with the AI predictions, perceived accuracy levels, and explanations of different styles. Users' decisions were measured both before and after receiving explanations, allowing the assessment of objective metrics (Task Performance and Agreement) and subjective metrics (Decision Confidence). Our findings show that perceived accuracy and explanation style have a significant effect.
comment: Accepted at CAiSE'25
☆ Distribution Parameter Actor-Critic: Shifting the Agent-Environment Boundary for Diverse Action Spaces
We introduce a novel reinforcement learning (RL) framework that treats distribution parameters as actions, redefining the boundary between agent and environment. This reparameterization makes the new action space continuous, regardless of the original action type (discrete, continuous, mixed, etc.). Under this new parameterization, we develop a generalized deterministic policy gradient estimator, Distribution Parameter Policy Gradient (DPPG), which has lower variance than the gradient in the original action space. Although learning the critic over distribution parameters poses new challenges, we introduce interpolated critic learning (ICL), a simple yet effective strategy to enhance learning, supported by insights from bandit settings. Building on TD3, a strong baseline for continuous control, we propose a practical DPPG-based actor-critic algorithm, Distribution Parameter Actor-Critic (DPAC). Empirically, DPAC outperforms TD3 in MuJoCo continuous control tasks from OpenAI Gym and DeepMind Control Suite, and demonstrates competitive performance on the same environments with discretized action spaces.
☆ FLAME: Towards Federated Fine-Tuning Large Language Models Through Adaptive SMoE
Existing resource-adaptive LoRA federated fine-tuning methods enable clients to fine-tune models using compressed versions of global LoRA matrices, in order to accommodate various compute resources across clients. This compression requirement will lead to suboptimal performance due to information loss. To address this, we propose FLAME, a novel federated learning framework based on the Sparse Mixture-of-Experts (SMoE) architecture. Unlike prior approaches, FLAME retains full (uncompressed) global LoRA matrices and achieves client-side adaptability by varying the number of activated experts per client. However, incorporating SMoE into federated learning introduces unique challenges, specifically, the mismatch in output magnitude from partial expert activation and the imbalance in expert training quality across clients. FLAME tackles these challenges through a lightweight rescaling mechanism and an activation-aware aggregation scheme. Empirical results across diverse computational settings demonstrate that FLAME consistently outperforms existing methods, providing a robust and effective solution for resource-adaptive federated learning.
☆ A Community-driven vision for a new Knowledge Resource for AI
The long-standing goal of creating a comprehensive, multi-purpose knowledge resource, reminiscent of the 1984 Cyc project, still persists in AI. Despite the success of knowledge resources like WordNet, ConceptNet, Wolfram|Alpha and other commercial knowledge graphs, verifiable, general-purpose widely available sources of knowledge remain a critical deficiency in AI infrastructure. Large language models struggle due to knowledge gaps; robotic planning lacks necessary world knowledge; and the detection of factually false information relies heavily on human expertise. What kind of knowledge resource is most needed in AI today? How can modern technology shape its development and evaluation? A recent AAAI workshop gathered over 50 researchers to explore these questions. This paper synthesizes our findings and outlines a community-driven vision for a new knowledge infrastructure. In addition to leveraging contemporary advances in knowledge representation and reasoning, one promising idea is to build an open engineering framework to exploit knowledge modules effectively within the context of practical applications. Such a framework should include sets of conventions and social structures that are adopted by contributors.
comment: 17 pages
☆ Hybrid Attention Network for Accurate Breast Tumor Segmentation in Ultrasound Images
Breast ultrasound imaging is a valuable tool for early breast cancer detection, but automated tumor segmentation is challenging due to inherent noise, variations in scale of lesions, and fuzzy boundaries. To address these challenges, we propose a novel hybrid attention-based network for lesion segmentation. Our proposed architecture integrates a pre-trained DenseNet121 in the encoder part for robust feature extraction with a multi-branch attention-enhanced decoder tailored for breast ultrasound images. The bottleneck incorporates Global Spatial Attention (GSA), Position Encoding (PE), and Scaled Dot-Product Attention (SDPA) to learn global context, spatial relationships, and relative positional features. The Spatial Feature Enhancement Block (SFEB) is embedded at skip connections to refine and enhance spatial features, enabling the network to focus more effectively on tumor regions. A hybrid loss function combining Binary Cross-Entropy (BCE) and Jaccard Index loss optimizes both pixel-level accuracy and region-level overlap metrics, enhancing robustness to class imbalance and irregular tumor shapes. Experiments on public datasets demonstrate that our method outperforms existing approaches, highlighting its potential to assist radiologists in early and accurate breast cancer diagnosis.
☆ Energy-Based Transfer for Reinforcement Learning
Reinforcement learning algorithms often suffer from poor sample efficiency, making them challenging to apply in multi-task or continual learning settings. Efficiency can be improved by transferring knowledge from a previously trained teacher policy to guide exploration in new but related tasks. However, if the new task sufficiently differs from the teacher's training task, the transferred guidance may be sub-optimal and bias exploration toward low-reward behaviors. We propose an energy-based transfer learning method that uses out-of-distribution detection to selectively issue guidance, enabling the teacher to intervene only in states within its training distribution. We theoretically show that energy scores reflect the teacher's state-visitation density and empirically demonstrate improved sample efficiency and performance across both single-task and multi-task settings.
☆ Spatially-Aware Evaluation of Segmentation Uncertainty CVPR 2025
Uncertainty maps highlight unreliable regions in segmentation predictions. However, most uncertainty evaluation metrics treat voxels independently, ignoring spatial context and anatomical structure. As a result, they may assign identical scores to qualitatively distinct patterns (e.g., scattered vs. boundary-aligned uncertainty). We propose three spatially aware metrics that incorporate structural and boundary information and conduct a thorough validation on medical imaging data from the prostate zonal segmentation challenge within the Medical Segmentation Decathlon. Our results demonstrate improved alignment with clinically important factors and better discrimination between meaningful and spurious uncertainty patterns.
comment: Presented at the 4th Workshop on Uncertainty Quantification for Computer Vision (CVPR 2025), June 11, 2025. This version is not included in the official proceedings
☆ AI-Driven Tools in Modern Software Quality Assurance: An Assessment of Benefits, Challenges, and Future Directions
Traditional quality assurance (QA) methods face significant challenges in addressing the complexity, scale, and rapid iteration cycles of modern software systems and are strained by limited resources available, leading to substantial costs associated with poor quality. The object of this research is the Quality Assurance processes for modern distributed software applications. The subject of the research is the assessment of the benefits, challenges, and prospects of integrating modern AI-oriented tools into quality assurance processes. We performed comprehensive analysis of implications on both verification and validation processes covering exploratory test analyses, equivalence partitioning and boundary analyses, metamorphic testing, finding inconsistencies in acceptance criteria (AC), static analyses, test case generation, unit test generation, test suit optimization and assessment, end to end scenario execution. End to end regression of sample enterprise application utilizing AI-agents over generated test scenarios was implemented as a proof of concept highlighting practical use of the study. The results, with only 8.3% flaky executions of generated test cases, indicate significant potential for the proposed approaches. However, the study also identified substantial challenges for practical adoption concerning generation of semantically identical coverage, "black box" nature and lack of explainability from state-of-the-art Large Language Models (LLMs), the tendency to correct mutated test cases to match expected results, underscoring the necessity for thorough verification of both generated artifacts and test execution results. The research demonstrates AI's transformative potential for QA but highlights the importance of a strategic approach to implementing these technologies, considering the identified limitations and the need for developing appropriate verification methodologies.
comment: 11 pages, 9 figures
☆ Measuring (a Sufficient) World Model in LLMs: A Variance Decomposition Framework
Understanding whether large language models (LLMs) possess a world model-a structured understanding of the world that supports generalization beyond surface-level patterns-is central to assessing their reliability, especially in high-stakes applications. We propose a formal framework for evaluating whether an LLM exhibits a sufficiently robust world model, defined as producing consistent outputs across semantically equivalent prompts while distinguishing between prompts that express different intents. We introduce a new evaluation approach to measure this that decomposes model response variability into three components: variability due to user purpose, user articulation, and model instability. An LLM with a strong world model should attribute most of the variability in its responses to changes in foundational purpose rather than superficial changes in articulation. This approach allows us to quantify how much of a model's behavior is semantically grounded rather than driven by model instability or alternative wording. We apply this framework to evaluate LLMs across diverse domains. Our results show how larger models attribute a greater share of output variability to changes in user purpose, indicating a more robust world model. This improvement is not uniform, however: larger models do not consistently outperform smaller ones across all domains, and their advantage in robustness is often modest. These findings highlight the importance of moving beyond accuracy-based benchmarks toward semantic diagnostics that more directly assess the structure and stability of a model's internal understanding of the world.
☆ Advancing Harmful Content Detection in Organizational Research: Integrating Large Language Models with Elo Rating System
Large language models (LLMs) offer promising opportunities for organizational research. However, their built-in moderation systems can create problems when researchers try to analyze harmful content, often refusing to follow certain instructions or producing overly cautious responses that undermine validity of the results. This is particularly problematic when analyzing organizational conflicts such as microaggressions or hate speech. This paper introduces an Elo rating-based method that significantly improves LLM performance for harmful content analysis In two datasets, one focused on microaggression detection and the other on hate speech, we find that our method outperforms traditional LLM prompting techniques and conventional machine learning models on key measures such as accuracy, precision, and F1 scores. Advantages include better reliability when analyzing harmful content, fewer false positives, and greater scalability for large-scale datasets. This approach supports organizational applications, including detecting workplace harassment, assessing toxic communication, and fostering safer and more inclusive work environments.
comment: Submitted for HICSS 2025 (Hawaii International Conference on System Sciences); under review
☆ Reimagination with Test-time Observation Interventions: Distractor-Robust World Model Predictions for Visual Model Predictive Control
World models enable robots to "imagine" future observations given current observations and planned actions, and have been increasingly adopted as generalized dynamics models to facilitate robot learning. Despite their promise, these models remain brittle when encountering novel visual distractors such as objects and background elements rarely seen during training. Specifically, novel distractors can corrupt action outcome predictions, causing downstream failures when robots rely on the world model imaginations for planning or action verification. In this work, we propose Reimagination with Observation Intervention (ReOI), a simple yet effective test-time strategy that enables world models to predict more reliable action outcomes in open-world scenarios where novel and unanticipated visual distractors are inevitable. Given the current robot observation, ReOI first detects visual distractors by identifying which elements of the scene degrade in physically implausible ways during world model prediction. Then, it modifies the current observation to remove these distractors and bring the observation closer to the training distribution. Finally, ReOI "reimagines" future outcomes with the modified observation and reintroduces the distractors post-hoc to preserve visual consistency for downstream planning and verification. We validate our approach on a suite of robotic manipulation tasks in the context of action verification, where the verifier needs to select desired action plans based on predictions from a world model. Our results show that ReOI is robust to both in-distribution and out-of-distribution visual distractors. Notably, it improves task success rates by up to 3x in the presence of novel distractors, significantly outperforming action verification that relies on world model predictions without imagination interventions.
☆ From Semantic To Instance: A Semi-Self-Supervised Learning Approach
Instance segmentation is essential for applications such as automated monitoring of plant health, growth, and yield. However, extensive effort is required to create large-scale datasets with pixel-level annotations of each object instance for developing instance segmentation models that restrict the use of deep learning in these areas. This challenge is more significant in images with densely packed, self-occluded objects, which are common in agriculture. To address this challenge, we propose a semi-self-supervised learning approach that requires minimal manual annotation to develop a high-performing instance segmentation model. We design GLMask, an image-mask representation for the model to focus on shape, texture, and pattern while minimizing its dependence on color features. We develop a pipeline to generate semantic segmentation and then transform it into instance-level segmentation. The proposed approach substantially outperforms the conventional instance segmentation models, establishing a state-of-the-art wheat head instance segmentation model with mAP@50 of 98.5%. Additionally, we assessed the proposed methodology on the general-purpose Microsoft COCO dataset, achieving a significant performance improvement of over 12.6% mAP@50. This highlights that the utility of our proposed approach extends beyond precision agriculture and applies to other domains, specifically those with similar data characteristics.
☆ One Sample is Enough to Make Conformal Prediction Robust
Given any model, conformal prediction (CP) returns prediction sets guaranteed to include the true label with high adjustable probability. Robust CP (RCP) extends this to inputs with worst-case noise. A well-established approach is to use randomized smoothing for RCP since it is applicable to any black-box model and provides smaller sets compared to deterministic methods. However, current smoothing-based RCP requires many model forward passes per each input which is computationally expensive. We show that conformal prediction attains some robustness even with a forward pass on a single randomly perturbed input. Using any binary certificate we propose a single sample robust CP (RCP1). Our approach returns robust sets with smaller average set size compared to SOTA methods which use many (e.g. around 100) passes per input. Our key insight is to certify the conformal prediction procedure itself rather than individual scores. Our approach is agnostic to the setup (classification and regression). We further extend our approach to smoothing-based robust conformal risk control.
☆ BIDA: A Bi-level Interaction Decision-making Algorithm for Autonomous Vehicles in Dynamic Traffic Scenarios
In complex real-world traffic environments, autonomous vehicles (AVs) need to interact with other traffic participants while making real-time and safety-critical decisions accordingly. The unpredictability of human behaviors poses significant challenges, particularly in dynamic scenarios, such as multi-lane highways and unsignalized T-intersections. To address this gap, we design a bi-level interaction decision-making algorithm (BIDA) that integrates interactive Monte Carlo tree search (MCTS) with deep reinforcement learning (DRL), aiming to enhance interaction rationality, efficiency and safety of AVs in dynamic key traffic scenarios. Specifically, we adopt three types of DRL algorithms to construct a reliable value network and policy network, which guide the online deduction process of interactive MCTS by assisting in value update and node selection. Then, a dynamic trajectory planner and a trajectory tracking controller are designed and implemented in CARLA to ensure smooth execution of planned maneuvers. Experimental evaluations demonstrate that our BIDA not only enhances interactive deduction and reduces computational costs, but also outperforms other latest benchmarks, which exhibits superior safety, efficiency and interaction rationality under varying traffic conditions.
comment: 6 pages, 3 figures, 4 tables, accepted for IEEE Intelligent Vehicles (IV) Symposium 2025
☆ Subspace-Boosted Model Merging
Model merging enables the combination of multiple specialized expert models into a single model capable of performing multiple tasks. However, the benefits of merging an increasing amount of specialized experts generally lead to diminishing returns and reduced overall performance gains. In this work, we offer an explanation and analysis from a task arithmetic perspective; revealing that as the merging process (across numerous existing merging methods) continues for more and more experts, the associated task vector space experiences rank collapse. To mitigate this issue, we introduce Subspace Boosting, which operates on the singular value decomposed task vector space and maintains task vector ranks. Subspace Boosting raises merging efficacy for up to 20 expert models by large margins of more than 10% when evaluated on vision benchmarks. Moreover, we propose employing Higher-Order Generalized Singular Value Decomposition to further quantify task similarity, offering a new interpretable perspective on model merging.
comment: 21 pages (main + supp)
☆ Hunyuan3D 2.5: Towards High-Fidelity 3D Assets Generation with Ultimate Details
In this report, we present Hunyuan3D 2.5, a robust suite of 3D diffusion models aimed at generating high-fidelity and detailed textured 3D assets. Hunyuan3D 2.5 follows two-stages pipeline of its previous version Hunyuan3D 2.0, while demonstrating substantial advancements in both shape and texture generation. In terms of shape generation, we introduce a new shape foundation model -- LATTICE, which is trained with scaled high-quality datasets, model-size, and compute. Our largest model reaches 10B parameters and generates sharp and detailed 3D shape with precise image-3D following while keeping mesh surface clean and smooth, significantly closing the gap between generated and handcrafted 3D shapes. In terms of texture generation, it is upgraded with phyiscal-based rendering (PBR) via a novel multi-view architecture extended from Hunyuan3D 2.0 Paint model. Our extensive evaluation shows that Hunyuan3D 2.5 significantly outperforms previous methods in both shape and end-to-end texture generation.
comment: Technical report
☆ Relic: Enhancing Reward Model Generalization for Low-Resource Indic Languages with Few-Shot Examples
Reward models are essential for aligning large language models (LLMs) with human preferences. However, most open-source multilingual reward models are primarily trained on preference datasets in high-resource languages, resulting in unreliable reward signals for low-resource Indic languages. Collecting large-scale, high-quality preference data for these languages is prohibitively expensive, making preference-based training approaches impractical. To address this challenge, we propose RELIC, a novel in-context learning framework for reward modeling in low-resource Indic languages. RELIC trains a retriever with a pairwise ranking objective to select in-context examples from auxiliary high-resource languages that most effectively highlight the distinction between preferred and less-preferred responses. Extensive experiments on three preference datasets- PKU-SafeRLHF, WebGPT, and HH-RLHF-using state-of-the-art open-source reward models demonstrate that RELIC significantly improves reward model accuracy for low-resource Indic languages, consistently outperforming existing example selection methods. For example, on Bodo-a low-resource Indic language-using a LLaMA-3.2-3B reward model, RELIC achieves a 12.81% and 10.13% improvement in accuracy over zero-shot prompting and state-of-the-art example selection method, respectively.
☆ ML-Master: Towards AI-for-AI via Integration of Exploration and Reasoning
As AI capabilities advance toward and potentially beyond human-level performance, a natural transition emerges where AI-driven development becomes more efficient than human-centric approaches. A promising pathway toward this transition lies in AI-for-AI (AI4AI), which leverages AI techniques to automate and optimize the design, training, and deployment of AI systems themselves. While LLM-based agents have shown the potential to realize AI4AI, they are often unable to fully leverage the experience accumulated by agents during the exploration of solutions in the reasoning process, leading to inefficiencies and suboptimal performance. To address this limitation, we propose ML-Master, a novel AI4AI agent that seamlessly integrates exploration and reasoning by employing a selectively scoped memory mechanism. This approach allows ML-Master to efficiently combine diverse insights from parallel solution trajectories with analytical reasoning, guiding further exploration without overwhelming the agent with excessive context. We evaluate ML-Master on the MLE-Bench, where it achieves a 29.3% average medal rate, significantly surpassing existing methods, particularly in medium-complexity tasks, while accomplishing this superior performance within a strict 12-hour time constraint-half the 24-hour limit used by previous baselines. These results demonstrate ML-Master's potential as a powerful tool for advancing AI4AI.
☆ Spotting tell-tale visual artifacts in face swapping videos: strengths and pitfalls of CNN detectors
Face swapping manipulations in video streams represents an increasing threat in remote video communications, due to advances in automated and real-time tools. Recent literature proposes to characterize and exploit visual artifacts introduced in video frames by swapping algorithms when dealing with challenging physical scenes, such as face occlusions. This paper investigates the effectiveness of this approach by benchmarking CNN-based data-driven models on two data corpora (including a newly collected one) and analyzing generalization capabilities with respect to different acquisition sources and swapping algorithms. The results confirm excellent performance of general-purpose CNN architectures when operating within the same data source, but a significant difficulty in robustly characterizing occlusion-based visual cues across datasets. This highlights the need for specialized detection strategies to deal with such artifacts.
comment: 8 pages, 4 figures, workshop paper
☆ Grounding Language Models with Semantic Digital Twins for Robotic Planning
We introduce a novel framework that integrates Semantic Digital Twins (SDTs) with Large Language Models (LLMs) to enable adaptive and goal-driven robotic task execution in dynamic environments. The system decomposes natural language instructions into structured action triplets, which are grounded in contextual environmental data provided by the SDT. This semantic grounding allows the robot to interpret object affordances and interaction rules, enabling action planning and real-time adaptability. In case of execution failures, the LLM utilizes error feedback and SDT insights to generate recovery strategies and iteratively revise the action plan. We evaluate our approach using tasks from the ALFRED benchmark, demonstrating robust performance across various household scenarios. The proposed framework effectively combines high-level reasoning with semantic environment understanding, achieving reliable task completion in the face of uncertainty and failure.
☆ Towards Generalizable Generic Harmful Speech Datasets for Implicit Hate Speech Detection
Implicit hate speech has recently emerged as a critical challenge for social media platforms. While much of the research has traditionally focused on harmful speech in general, the need for generalizable techniques to detect veiled and subtle forms of hate has become increasingly pressing. Based on lexicon analysis, we hypothesize that implicit hate speech is already present in publicly available harmful speech datasets but may not have been explicitly recognized or labeled by annotators. Additionally, crowdsourced datasets are prone to mislabeling due to the complexity of the task and often influenced by annotators' subjective interpretations. In this paper, we propose an approach to address the detection of implicit hate speech and enhance generalizability across diverse datasets by leveraging existing harmful speech datasets. Our method comprises three key components: influential sample identification, reannotation, and augmentation using Llama-3 70B and GPT-4o. Experimental results demonstrate the effectiveness of our approach in improving implicit hate detection, achieving a +12.9-point F1 score improvement compared to the baseline.
☆ Human2LocoMan: Learning Versatile Quadrupedal Manipulation with Human Pretraining
Quadrupedal robots have demonstrated impressive locomotion capabilities in complex environments, but equipping them with autonomous versatile manipulation skills in a scalable way remains a significant challenge. In this work, we introduce a cross-embodiment imitation learning system for quadrupedal manipulation, leveraging data collected from both humans and LocoMan, a quadruped equipped with multiple manipulation modes. Specifically, we develop a teleoperation and data collection pipeline, which unifies and modularizes the observation and action spaces of the human and the robot. To effectively leverage the collected data, we propose an efficient modularized architecture that supports co-training and pretraining on structured modality-aligned data across different embodiments. Additionally, we construct the first manipulation dataset for the LocoMan robot, covering various household tasks in both unimanual and bimanual modes, supplemented by a corresponding human dataset. We validate our system on six real-world manipulation tasks, where it achieves an average success rate improvement of 41.9% overall and 79.7% under out-of-distribution (OOD) settings compared to the baseline. Pretraining with human data contributes a 38.6% success rate improvement overall and 82.7% under OOD settings, enabling consistently better performance with only half the amount of robot data. Our code, hardware, and data are open-sourced at: https://human2bots.github.io.
☆ Do We Talk to Robots Like Therapists, and Do They Respond Accordingly? Language Alignment in AI Emotional Support
As conversational agents increasingly engage in emotionally supportive dialogue, it is important to understand how closely their interactions resemble those in traditional therapy settings. This study investigates whether the concerns shared with a robot align with those shared in human-to-human (H2H) therapy sessions, and whether robot responses semantically mirror those of human therapists. We analyzed two datasets: one of interactions between users and professional therapists (Hugging Face's NLP Mental Health Conversations), and another involving supportive conversations with a social robot (QTrobot from LuxAI) powered by a large language model (LLM, GPT-3.5). Using sentence embeddings and K-means clustering, we assessed cross-agent thematic alignment by applying a distance-based cluster-fitting method that evaluates whether responses from one agent type map to clusters derived from the other, and validated it using Euclidean distances. Results showed that 90.88% of robot conversation disclosures could be mapped to clusters from the human therapy dataset, suggesting shared topical structure. For matched clusters, we compared the subjects as well as therapist and robot responses using Transformer, Word2Vec, and BERT embeddings, revealing strong semantic overlap in subjects' disclosures in both datasets, as well as in the responses given to similar human disclosure themes across agent types (robot vs. human therapist). These findings highlight both the parallels and boundaries of robot-led support conversations and their potential for augmenting mental health interventions.
☆ Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities
Sampling efficiently from a target unnormalized probability density remains a core challenge, with relevance across countless high-impact scientific applications. A promising approach towards this challenge is the design of amortized samplers that borrow key ideas, such as probability path design, from state-of-the-art generative diffusion models. However, all existing diffusion-based samplers remain unable to draw samples from distributions at the scale of even simple molecular systems. In this paper, we propose Progressive Inference-Time Annealing (PITA), a novel framework to learn diffusion-based samplers that combines two complementary interpolation techniques: I.) Annealing of the Boltzmann distribution and II.) Diffusion smoothing. PITA trains a sequence of diffusion models from high to low temperatures by sequentially training each model at progressively higher temperatures, leveraging engineered easy access to samples of the temperature-annealed target density. In the subsequent step, PITA enables simulating the trained diffusion model to procure training samples at a lower temperature for the next diffusion model through inference-time annealing using a novel Feynman-Kac PDE combined with Sequential Monte Carlo. Empirically, PITA enables, for the first time, equilibrium sampling of N-body particle systems, Alanine Dipeptide, and tripeptides in Cartesian coordinates with dramatically lower energy function evaluations. Code available at: https://github.com/taraak/pita
☆ Joint Tensor-Train Parameterization for Efficient and Expressive Low-Rank Adaptation
Low-Rank Adaptation (LoRA) is widely recognized for its parameter-efficient fine-tuning of large-scale neural models. However, standard LoRA independently optimizes low-rank matrices, which inherently limits its expressivity and generalization capabilities. While classical tensor-train (TT) decomposition can be separately employed on individual LoRA matrices, this work demonstrates that the classical TT-based approach neither significantly improves parameter efficiency nor achieves substantial performance gains. This paper proposes TensorGuide, a novel tensor-train-guided adaptation framework to overcome these limitations. TensorGuide generates two correlated low-rank LoRA matrices through a unified TT structure driven by controlled Gaussian noise. The resulting joint TT representation inherently provides structured, low-rank adaptations, significantly enhancing expressivity, generalization, and parameter efficiency without increasing the number of trainable parameters. Theoretically, we justify these improvements through neural tangent kernel analyses, demonstrating superior optimization dynamics and enhanced generalization. Extensive experiments on quantum dot classification and GPT-2 fine-tuning benchmarks demonstrate that TensorGuide-based LoRA consistently outperforms standard LoRA and TT-LoRA, achieving improved accuracy and scalability with fewer parameters.
comment: Preprint. Under Review
☆ Consumer-friendly EEG-based Emotion Recognition System: A Multi-scale Convolutional Neural Network Approach
EEG is a non-invasive, safe, and low-risk method to record electrophysiological signals inside the brain. Especially with recent technology developments like dry electrodes, consumer-grade EEG devices, and rapid advances in machine learning, EEG is commonly used as a resource for automatic emotion recognition. With the aim to develop a deep learning model that can perform EEG-based emotion recognition in a real-life context, we propose a novel approach to utilize multi-scale convolutional neural networks to accomplish such tasks. By implementing feature extraction kernels with many ratio coefficients as well as a new type of kernel that learns key information from four separate areas of the brain, our model consistently outperforms the state-of-the-art TSception model in predicting valence, arousal, and dominance scores across many performance evaluation metrics.
comment: 29 pages, 10 figures
☆ StoryWriter: A Multi-Agent Framework for Long Story Generation
Long story generation remains a challenge for existing large language models (LLMs), primarily due to two main factors: (1) discourse coherence, which requires plot consistency, logical coherence, and completeness in the long-form generation, and (2) narrative complexity, which requires an interwoven and engaging narrative. To address these challenges, we propose StoryWriter, a multi-agent story generation framework, which consists of three main modules: (1) outline agent, which generates event-based outlines containing rich event plots, character, and event-event relationships. (2) planning agent, which further details events and plans which events should be written in each chapter to maintain an interwoven and engaging story. (3) writing agent, which dynamically compresses the story history based on the current event to generate and reflect new plots, ensuring the coherence of the generated story. We conduct both human and automated evaluation, and StoryWriter significantly outperforms existing story generation baselines in both story quality and length. Furthermore, we use StoryWriter to generate a dataset, which contains about $6,000$ high-quality long stories, with an average length of $8,000$ words. We train the model Llama3.1-8B and GLM4-9B using supervised fine-tuning on LongStory and develop StoryWriter_GLM and StoryWriter_GLM, which demonstrates advanced performance in long story generation.
☆ Leveraging Influence Functions for Resampling Data in Physics-Informed Neural Networks
Physics-informed neural networks (PINNs) offer a powerful approach to solving partial differential equations (PDEs), which are ubiquitous in the quantitative sciences. Applied to both forward and inverse problems across various scientific domains, PINNs have recently emerged as a valuable tool in the field of scientific machine learning. A key aspect of their training is that the data -- spatio-temporal points sampled from the PDE's input domain -- are readily available. Influence functions, a tool from the field of explainable AI (XAI), approximate the effect of individual training points on the model, enhancing interpretability. In the present work, we explore the application of influence function-based sampling approaches for the training data. Our results indicate that such targeted resampling based on data attribution methods has the potential to enhance prediction accuracy in physics-informed neural networks, demonstrating a practical application of an XAI method in PINN training.
comment: This article was presented at "The 3rd World Conference on eXplainable Artificial Intelligence" (2025)
☆ Agentic Personalisation of Cross-Channel Marketing Experiences
Consumer applications provide ample opportunities to surface and communicate various forms of content to users. From promotional campaigns for new features or subscriptions, to evergreen nudges for engagement, or personalised recommendations; across e-mails, push notifications, and in-app surfaces. The conventional approach to orchestration for communication relies heavily on labour-intensive manual marketer work, and inhibits effective personalisation of content, timing, frequency, and copy-writing. We formulate this task under a sequential decision-making framework, where we aim to optimise a modular decision-making policy that maximises incremental engagement for any funnel event. Our approach leverages a Difference-in-Differences design for Individual Treatment Effect estimation, and Thompson sampling to balance the explore-exploit trade-off. We present results from a multi-service application, where our methodology has resulted in significant increases to a variety of goal events across several product features, and is currently deployed across 150 million users.
☆ Optimizing MoE Routers: Design, Implementation, and Evaluation in Transformer Models
Mixture of Experts (MoE) architectures increase large language model scalability, yet their performance depends on the router module that moves tokens to specialized experts. Bad routing can load imbalance and reduced accuracy. This project designed and implemented different router architectures within Transformer models to fix these limitations. We experimented with six distinct router variants Linear, Attention, Multi-Layer Perceptron (MLP), Hybrid, Hash, and our new MLP-Hadamard. We characterized these routers using BERT and the Qwen1.5-MoE model, looking at parameter efficiency, inference latency, routing entropy, and expert utilization patterns. Our evaluations showed distinct trade-offs: Linear routers offer speed, while MLP and Attention routers provide greater expressiveness. The MLP-Hadamard router shows a unique capability for structured, sparse routing. We successfully replaced and fine-tuned custom routers within the complex, quantized Qwen1.5-MoE model. This work provides a comparative analysis of MoE router designs and offers insights into optimizing their performance for efficient and effective large-scale model deployment.
comment: All authors contributed equally. 11 pages, 6 figures
☆ Efficient Transformations in Deep Learning Convolutional Neural Networks
This study investigates the integration of signal processing transformations -- Fast Fourier Transform (FFT), Walsh-Hadamard Transform (WHT), and Discrete Cosine Transform (DCT) -- within the ResNet50 convolutional neural network (CNN) model for image classification. The primary objective is to assess the trade-offs between computational efficiency, energy consumption, and classification accuracy during training and inference. Using the CIFAR-100 dataset (100 classes, 60,000 images), experiments demonstrated that incorporating WHT significantly reduced energy consumption while improving accuracy. Specifically, a baseline ResNet50 model achieved a testing accuracy of 66%, consuming an average of 25,606 kJ per model. In contrast, a modified ResNet50 incorporating WHT in the early convolutional layers achieved 74% accuracy, and an enhanced version with WHT applied to both early and late layers achieved 79% accuracy, with an average energy consumption of only 39 kJ per model. These results demonstrate the potential of WHT as a highly efficient and effective approach for energy-constrained CNN applications.
comment: All authors contributed equally to this work. 17 pages, 36 references, 10 figures, 1 appendix
☆ Robustness Evaluation of OCR-based Visual Document Understanding under Multi-Modal Adversarial Attacks EMNLP 2025
Visual Document Understanding (VDU) systems have achieved strong performance in information extraction by integrating textual, layout, and visual signals. However, their robustness under realistic adversarial perturbations remains insufficiently explored. We introduce the first unified framework for generating and evaluating multi-modal adversarial attacks on OCR-based VDU models. Our method covers six gradient-based layout attack scenarios, incorporating manipulations of OCR bounding boxes, pixels, and texts across both word and line granularities, with constraints on layout perturbation budget (e.g., IoU >= 0.6) to preserve plausibility. Experimental results across four datasets (FUNSD, CORD, SROIE, DocVQA) and six model families demonstrate that line-level attacks and compound perturbations (BBox + Pixel + Text) yield the most severe performance degradation. Projected Gradient Descent (PGD)-based BBox perturbations outperform random-shift baselines in all investigated models. Ablation studies further validate the impact of layout budget, text modification, and adversarial transferability.
comment: 8 pages, 1 figure, under review at EMNLP 2025
☆ Drag-and-Drop LLMs: Zero-Shot Prompt-to-Weights
Modern Parameter-Efficient Fine-Tuning (PEFT) methods such as low-rank adaptation (LoRA) reduce the cost of customizing large language models (LLMs), yet still require a separate optimization run for every downstream dataset. We introduce \textbf{Drag-and-Drop LLMs (\textit{DnD})}, a prompt-conditioned parameter generator that eliminates per-task training by mapping a handful of unlabeled task prompts directly to LoRA weight updates. A lightweight text encoder distills each prompt batch into condition embeddings, which are then transformed by a cascaded hyper-convolutional decoder into the full set of LoRA matrices. Once trained in a diverse collection of prompt-checkpoint pairs, DnD produces task-specific parameters in seconds, yielding i) up to \textbf{12,000$\times$} lower overhead than full fine-tuning, ii) average gains up to \textbf{30\%} in performance over the strongest training LoRAs on unseen common-sense reasoning, math, coding, and multimodal benchmarks, and iii) robust cross-domain generalization despite never seeing the target data or labels. Our results demonstrate that prompt-conditioned parameter generation is a viable alternative to gradient-based adaptation for rapidly specializing LLMs. Our project is available at \href{https://jerryliang24.github.io/DnD}{https://jerryliang24.github.io/DnD}.
comment: We propose a method that can generate LoRA parameters in seconds
☆ IS-Bench: Evaluating Interactive Safety of VLM-Driven Embodied Agents in Daily Household Tasks
Flawed planning from VLM-driven embodied agents poses significant safety hazards, hindering their deployment in real-world household tasks. However, existing static, non-interactive evaluation paradigms fail to adequately assess risks within these interactive environments, since they cannot simulate dynamic risks that emerge from an agent's actions and rely on unreliable post-hoc evaluations that ignore unsafe intermediate steps. To bridge this critical gap, we propose evaluating an agent's interactive safety: its ability to perceive emergent risks and execute mitigation steps in the correct procedural order. We thus present IS-Bench, the first multi-modal benchmark designed for interactive safety, featuring 161 challenging scenarios with 388 unique safety risks instantiated in a high-fidelity simulator. Crucially, it facilitates a novel process-oriented evaluation that verifies whether risk mitigation actions are performed before/after specific risk-prone steps. Extensive experiments on leading VLMs, including the GPT-4o and Gemini-2.5 series, reveal that current agents lack interactive safety awareness, and that while safety-aware Chain-of-Thought can improve performance, it often compromises task completion. By highlighting these critical limitations, IS-Bench provides a foundation for developing safer and more reliable embodied AI systems.
☆ NepaliGPT: A Generative Language Model for the Nepali Language
After the release of ChatGPT, Large Language Models (LLMs) have gained huge popularity in recent days and thousands of variants of LLMs have been released. However, there is no generative language model for the Nepali language, due to which other downstream tasks, including fine-tuning, have not been explored yet. To fill this research gap in the Nepali NLP space, this research proposes \textit{NepaliGPT}, a generative large language model tailored specifically for the Nepali language. This research introduces an advanced corpus for the Nepali language collected from several sources, called the Devanagari Corpus. Likewise, the research introduces the first NepaliGPT benchmark dataset comprised of 4,296 question-answer pairs in the Nepali language. The proposed LLM NepaliGPT achieves the following metrics in text generation: Perplexity of 26.32245, ROUGE-1 score of 0.2604, causal coherence of 81.25\%, and causal consistency of 85.41\%.
comment: 11 pages, 9 figures
☆ From LLM-anation to LLM-orchestrator: Coordinating Small Models for Data Labeling
Although the annotation paradigm based on Large Language Models (LLMs) has made significant breakthroughs in recent years, its actual deployment still has two core bottlenecks: first, the cost of calling commercial APIs in large-scale annotation is very expensive; second, in scenarios that require fine-grained semantic understanding, such as sentiment classification and toxicity classification, the annotation accuracy of LLMs is even lower than that of Small Language Models (SLMs) dedicated to this field. To address these problems, we propose a new paradigm of multi-model cooperative annotation and design a fully automatic annotation framework AutoAnnotator based on this. Specifically, AutoAnnotator consists of two layers. The upper-level meta-controller layer uses the generation and reasoning capabilities of LLMs to select SLMs for annotation, automatically generate annotation code and verify difficult samples; the lower-level task-specialist layer consists of multiple SLMs that perform annotation through multi-model voting. In addition, we use the difficult samples obtained by the secondary review of the meta-controller layer as the reinforcement learning set and fine-tune the SLMs in stages through a continual learning strategy, thereby improving the generalization of SLMs. Extensive experiments show that AutoAnnotator outperforms existing open-source/API LLMs in zero-shot, one-shot, CoT, and majority voting settings. Notably, AutoAnnotator reduces the annotation cost by 74.15% compared to directly annotating with GPT-3.5-turbo, while still improving the accuracy by 6.21%. Project page: https://github.com/Zhaiyuan-Ji/AutoAnnotator.
☆ CLIP-MG: Guiding Semantic Attention with Skeletal Pose Features and RGB Data for Micro-Gesture Recognition on the iMiGUE Dataset
Micro-gesture recognition is a challenging task in affective computing due to the subtle, involuntary nature of the gestures and their low movement amplitude. In this paper, we introduce a Pose-Guided Semantics-Aware CLIP-based architecture, or CLIP for Micro-Gesture recognition (CLIP-MG), a modified CLIP model tailored for micro-gesture classification on the iMiGUE dataset. CLIP-MG integrates human pose (skeleton) information into the CLIP-based recognition pipeline through pose-guided semantic query generation and a gated multi-modal fusion mechanism. The proposed model achieves a Top-1 accuracy of 61.82%. These results demonstrate both the potential of our approach and the remaining difficulty in fully adapting vision-language models like CLIP for micro-gesture recognition.
☆ Can structural correspondences ground real world representational content in Large Language Models?
Large Language Models (LLMs) such as GPT-4 produce compelling responses to a wide range of prompts. But their representational capacities are uncertain. Many LLMs have no direct contact with extra-linguistic reality: their inputs, outputs and training data consist solely of text, raising the questions (1) can LLMs represent anything and (2) if so, what? In this paper, I explore what it would take to answer these questions according to a structural-correspondence based account of representation, and make an initial survey of this evidence. I argue that the mere existence of structural correspondences between LLMs and worldly entities is insufficient to ground representation of those entities. However, if these structural correspondences play an appropriate role - they are exploited in a way that explains successful task performance - then they could ground real world contents. This requires overcoming a challenge: the text-boundedness of LLMs appears, on the face of it, to prevent them engaging in the right sorts of tasks.
☆ Watermarking Autoregressive Image Generation
Watermarking the outputs of generative models has emerged as a promising approach for tracking their provenance. Despite significant interest in autoregressive image generation models and their potential for misuse, no prior work has attempted to watermark their outputs at the token level. In this work, we present the first such approach by adapting language model watermarking techniques to this setting. We identify a key challenge: the lack of reverse cycle-consistency (RCC), wherein re-tokenizing generated image tokens significantly alters the token sequence, effectively erasing the watermark. To address this and to make our method robust to common image transformations, neural compression, and removal attacks, we introduce (i) a custom tokenizer-detokenizer finetuning procedure that improves RCC, and (ii) a complementary watermark synchronization layer. As our experiments demonstrate, our approach enables reliable and robust watermark detection with theoretically grounded p-values.
comment: Code: https://github.com/facebookresearch/wmar
☆ Analyzing the Influence of Knowledge Graph Information on Relation Extraction
We examine the impact of incorporating knowledge graph information on the performance of relation extraction models across a range of datasets. Our hypothesis is that the positions of entities within a knowledge graph provide important insights for relation extraction tasks. We conduct experiments on multiple datasets, each varying in the number of relations, training examples, and underlying knowledge graphs. Our results demonstrate that integrating knowledge graph information significantly enhances performance, especially when dealing with an imbalance in the number of training examples for each relation. We evaluate the contribution of knowledge graph-based features by combining established relation extraction methods with graph-aware Neural Bellman-Ford networks. These features are tested in both supervised and zero-shot settings, demonstrating consistent performance improvements across various datasets.
☆ Explainable Rule Application via Structured Prompting: A Neural-Symbolic Approach
Large Language Models (LLMs) excel in complex reasoning tasks but struggle with consistent rule application, exception handling, and explainability, particularly in domains like legal analysis that require both natural language understanding and precise logical inference. This paper introduces a structured prompting framework that decomposes reasoning into three verifiable steps: entity identification, property extraction, and symbolic rule application. By integrating neural and symbolic approaches, our method leverages LLMs' interpretive flexibility while ensuring logical consistency through formal verification. The framework externalizes task definitions, enabling domain experts to refine logical structures without altering the architecture. Evaluated on the LegalBench hearsay determination task, our approach significantly outperformed baselines, with OpenAI o-family models showing substantial improvements - o1 achieving an F1 score of 0.929 and o3-mini reaching 0.867 using structured decomposition with complementary predicates, compared to their few-shot baselines of 0.714 and 0.74 respectively. This hybrid neural-symbolic system offers a promising pathway for transparent and consistent rule-based reasoning, suggesting potential for explainable AI applications in structured legal reasoning tasks.
comment: Accepted for publication at the 29th International Conference on Knowledge-Based and Intelligent Information \& Engineering Systems (KES 2025)
☆ Reliable Few-shot Learning under Dual Noises
Recent advances in model pre-training give rise to task adaptation-based few-shot learning (FSL), where the goal is to adapt a pre-trained task-agnostic model for capturing task-specific knowledge with a few-labeled support samples of the target task.Nevertheless, existing approaches may still fail in the open world due to the inevitable in-distribution (ID) and out-of-distribution (OOD) noise from both support and query samples of the target task. With limited support samples available, i) the adverse effect of the dual noises can be severely amplified during task adaptation, and ii) the adapted model can produce unreliable predictions on query samples in the presence of the dual noises. In this work, we propose DEnoised Task Adaptation (DETA++) for reliable FSL. DETA++ uses a Contrastive Relevance Aggregation (CoRA) module to calculate image and region weights for support samples, based on which a clean prototype loss and a noise entropy maximization loss are proposed to achieve noise-robust task adaptation. Additionally,DETA++ employs a memory bank to store and refine clean regions for each inner-task class, based on which a Local Nearest Centroid Classifier (LocalNCC) is devised to yield noise-robust predictions on query samples. Moreover, DETA++ utilizes an Intra-class Region Swapping (IntraSwap) strategy to rectify ID class prototypes during task adaptation, enhancing the model's robustness to the dual noises. Extensive experiments demonstrate the effectiveness and flexibility of DETA++.
comment: 17 pages, 6 figures,
☆ Segment Anything for Satellite Imagery: A Strong Baseline and a Regional Dataset for Automatic Field Delineation
Accurate mapping of agricultural field boundaries is essential for the efficient operation of agriculture. Automatic extraction from high-resolution satellite imagery, supported by computer vision techniques, can avoid costly ground surveys. In this paper, we present a pipeline for field delineation based on the Segment Anything Model (SAM), introducing a fine-tuning strategy to adapt SAM to this task. In addition to using published datasets, we describe a method for acquiring a complementary regional dataset that covers areas beyond current sources. Extensive experiments assess segmentation accuracy and evaluate the generalization capabilities. Our approach provides a robust baseline for automated field delineation. The new regional dataset, known as ERAS, is now publicly available.
comment: Acceptet at ICIAP 2025
☆ Improved Exploration in GFlownets via Enhanced Epistemic Neural Networks ICML 2025
Efficiently identifying the right trajectories for training remains an open problem in GFlowNets. To address this, it is essential to prioritize exploration in regions of the state space where the reward distribution has not been sufficiently learned. This calls for uncertainty-driven exploration, in other words, the agent should be aware of what it does not know. This attribute can be measured by joint predictions, which are particularly important for combinatorial and sequential decision problems. In this research, we integrate epistemic neural networks (ENN) with the conventional architecture of GFlowNets to enable more efficient joint predictions and better uncertainty quantification, thereby improving exploration and the identification of optimal trajectories. Our proposed algorithm, ENN-GFN-Enhanced, is compared to the baseline method in GFlownets and evaluated in grid environments and structured sequence generation in various settings, demonstrating both its efficacy and efficiency.
comment: Accepted to the EXAIT Workshop at ICML 2025
☆ Learning Multi-scale Spatial-frequency Features for Image Denoising
Recent advancements in multi-scale architectures have demonstrated exceptional performance in image denoising tasks. However, existing architectures mainly depends on a fixed single-input single-output Unet architecture, ignoring the multi-scale representations of pixel level. In addition, previous methods treat the frequency domain uniformly, ignoring the different characteristics of high-frequency and low-frequency noise. In this paper, we propose a novel multi-scale adaptive dual-domain network (MADNet) for image denoising. We use image pyramid inputs to restore noise-free results from low-resolution images. In order to realize the interaction of high-frequency and low-frequency information, we design an adaptive spatial-frequency learning unit (ASFU), where a learnable mask is used to separate the information into high-frequency and low-frequency components. In the skip connections, we design a global feature fusion block to enhance the features at different scales. Extensive experiments on both synthetic and real noisy image datasets verify the effectiveness of MADNet compared with current state-of-the-art denoising approaches.
☆ SycnMapV2: Robust and Adaptive Unsupervised Segmentation
Human vision excels at segmenting visual cues without the need for explicit training, and it remains remarkably robust even as noise severity increases. In contrast, existing AI algorithms struggle to maintain accuracy under similar conditions. Here, we present SyncMapV2, the first to solve unsupervised segmentation with state-of-the-art robustness. SyncMapV2 exhibits a minimal drop in mIoU, only 0.01%, under digital corruption, compared to a 23.8% drop observed in SOTA methods.This superior performance extends across various types of corruption: noise (7.3% vs. 37.7%), weather (7.5% vs. 33.8%), and blur (7.0% vs. 29.5%). Notably, SyncMapV2 accomplishes this without any robust training, supervision, or loss functions. It is based on a learning paradigm that uses self-organizing dynamical equations combined with concepts from random networks. Moreover,unlike conventional methods that require re-initialization for each new input, SyncMapV2 adapts online, mimicking the continuous adaptability of human vision. Thus, we go beyond the accurate and robust results, and present the first algorithm that can do all the above online, adapting to input rather than re-initializing. In adaptability tests, SyncMapV2 demonstrates near-zero performance degradation, which motivates and fosters a new generation of robust and adaptive intelligence in the near future.
☆ Approximation Fixpoint Theory with Refined Approximation Spaces KR 2024
Approximation Fixpoint Theory (AFT) is a powerful theory covering various semantics of non-monotonic reasoning formalisms in knowledge representation such as Logic Programming and Answer Set Programming. Many semantics of such non-monotonic formalisms can be characterized as suitable fixpoints of a non-monotonic operator on a suitable lattice. Instead of working on the original lattice, AFT operates on intervals in such lattice to approximate or construct the fixpoints of interest. While AFT has been applied successfully across a broad range of non-monotonic reasoning formalisms, it is confronted by its limitations in other, relatively simple, examples. In this paper, we overcome those limitations by extending consistent AFT to deal with approximations that are more refined than intervals. Therefore, we introduce a more general notion of approximation spaces, showcase the improved expressiveness and investigate relations between different approximation spaces.
comment: Submitted to KR 2024
☆ Next-Token Prediction Should be Ambiguity-Sensitive: A Meta-Learning Perspective
The rapid adaptation ability of auto-regressive foundation models is often attributed to the diversity of their pre-training data. This is because, from a Bayesian standpoint, minimizing prediction error in such settings requires integrating over all plausible latent hypotheses consistent with observations. While this behavior is desirable in principle, it often proves too ambitious in practice: under high ambiguity, the number of plausible latent alternatives makes Bayes-optimal prediction computationally intractable. Cognitive science has long recognized this limitation, suggesting that under such conditions, heuristics or information-seeking strategies are preferable to exhaustive inference. Translating this insight to next-token prediction, we hypothesize that low- and high-ambiguity predictions pose different computational demands, making ambiguity-agnostic next-token prediction a detrimental inductive bias. To test this, we introduce MetaHMM, a synthetic sequence meta-learning benchmark with rich compositional structure and a tractable Bayesian oracle. We show that Transformers indeed struggle with high-ambiguity predictions across model sizes. Motivated by cognitive theories, we propose a method to convert pre-trained models into Monte Carlo predictors that decouple task inference from token prediction. Preliminary results show substantial gains in ambiguous contexts through improved capacity allocation and test-time scalable inference, though challenges remain.
☆ Artificial Intelligence for Atmospheric Sciences: A Research Roadmap
Atmospheric sciences are crucial for understanding environmental phenomena ranging from air quality to extreme weather events, and climate change. Recent breakthroughs in sensing, communication, computing, and Artificial Intelligence (AI) have significantly advanced atmospheric sciences, enabling the generation of vast amounts of data through long-term Earth observations and providing powerful tools for analyzing atmospheric phenomena and predicting natural disasters. This paper contributes a critical interdisciplinary overview that bridges the fields of atmospheric science and computer science, highlighting the transformative potential of AI in atmospheric research. We identify key challenges associated with integrating AI into atmospheric research, including issues related to big data and infrastructure, and provide a detailed research roadmap that addresses both current and emerging challenges.
☆ CapsDT: Diffusion-Transformer for Capsule Robot Manipulation IROS 2025
Vision-Language-Action (VLA) models have emerged as a prominent research area, showcasing significant potential across a variety of applications. However, their performance in endoscopy robotics, particularly endoscopy capsule robots that perform actions within the digestive system, remains unexplored. The integration of VLA models into endoscopy robots allows more intuitive and efficient interactions between human operators and medical devices, improving both diagnostic accuracy and treatment outcomes. In this work, we design CapsDT, a Diffusion Transformer model for capsule robot manipulation in the stomach. By processing interleaved visual inputs, and textual instructions, CapsDT can infer corresponding robotic control signals to facilitate endoscopy tasks. In addition, we developed a capsule endoscopy robot system, a capsule robot controlled by a robotic arm-held magnet, addressing different levels of four endoscopy tasks and creating corresponding capsule robot datasets within the stomach simulator. Comprehensive evaluations on various robotic tasks indicate that CapsDT can serve as a robust vision-language generalist, achieving state-of-the-art performance in various levels of endoscopy tasks while achieving a 26.25% success rate in real-world simulation manipulation.
comment: IROS 2025
☆ Category-based Galaxy Image Generation via Diffusion Models
Conventional galaxy generation methods rely on semi-analytical models and hydrodynamic simulations, which are highly dependent on physical assumptions and parameter tuning. In contrast, data-driven generative models do not have explicit physical parameters pre-determined, and instead learn them efficiently from observational data, making them alternative solutions to galaxy generation. Among these, diffusion models outperform Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) in quality and diversity. Leveraging physical prior knowledge to these models can further enhance their capabilities. In this work, we present GalCatDiff, the first framework in astronomy to leverage both galaxy image features and astrophysical properties in the network design of diffusion models. GalCatDiff incorporates an enhanced U-Net and a novel block entitled Astro-RAB (Residual Attention Block), which dynamically combines attention mechanisms with convolution operations to ensure global consistency and local feature fidelity. Moreover, GalCatDiff uses category embeddings for class-specific galaxy generation, avoiding the high computational costs of training separate models for each category. Our experimental results demonstrate that GalCatDiff significantly outperforms existing methods in terms of the consistency of sample color and size distributions, and the generated galaxies are both visually realistic and physically consistent. This framework will enhance the reliability of galaxy simulations and can potentially serve as a data augmentor to support future galaxy classification algorithm development.
comment: 18 pages, 6 figures. Submitted to AAS Astronomical Journal (AJ) and is under revision. See another indenpdent work for furthur reference -- Can AI Dream of Unseen Galaxies? Conditional Diffusion Model for Galaxy Morphology Augmentation (Ma, Sun et al.). Comments are welcome
☆ Synthetic ALS-EEG Data Augmentation for ALS Diagnosis Using Conditional WGAN with Weight Clipping
Amyotrophic Lateral Sclerosis (ALS) is a rare neurodegenerative disease, and high-quality EEG data from ALS patients are scarce. This data scarcity, coupled with severe class imbalance between ALS and healthy control recordings, poses a challenge for training reliable machine learning classifiers. In this work, we address these issues by generating synthetic EEG signals for ALS patients using a Conditional Wasserstein Generative Adversarial Network (CWGAN). We train CWGAN on a private EEG dataset (ALS vs. non-ALS) to learn the distribution of ALS EEG signals and produce realistic synthetic samples. We preprocess and normalize EEG recordings, and train a CWGAN model to generate synthetic ALS signals. The CWGAN architecture and training routine are detailed, with key hyperparameters chosen for stable training. Qualitative evaluation of generated signals shows that they closely mimic real ALS EEG patterns. The CWGAN training converged with generator and discriminator loss curves stabilizing, indicating successful learning. The synthetic EEG signals appear realistic and have potential use as augmented data for training classifiers, helping to mitigate class imbalance and improve ALS detection accuracy. We discuss how this approach can facilitate data sharing and enhance diagnostic models.
comment: The code is available on GitHub: https://github.com/abdulvahapmutlu/als-synthetic-data-augmentation-wgan
☆ CF-Seg: Counterfactuals meet Segmentation MICCAI 2025
Segmenting anatomical structures in medical images plays an important role in the quantitative assessment of various diseases. However, accurate segmentation becomes significantly more challenging in the presence of disease. Disease patterns can alter the appearance of surrounding healthy tissues, introduce ambiguous boundaries, or even obscure critical anatomical structures. As such, segmentation models trained on real-world datasets may struggle to provide good anatomical segmentation, leading to potential misdiagnosis. In this paper, we generate counterfactual (CF) images to simulate how the same anatomy would appear in the absence of disease without altering the underlying structure. We then use these CF images to segment structures of interest, without requiring any changes to the underlying segmentation model. Our experiments on two real-world clinical chest X-ray datasets show that the use of counterfactual images improves anatomical segmentation, thereby aiding downstream clinical decision-making.
comment: Accepted at MICCAI 2025
☆ CP$^2$: Leveraging Geometry for Conformal Prediction via Canonicalization UAI 2025
We study the problem of conformal prediction (CP) under geometric data shifts, where data samples are susceptible to transformations such as rotations or flips. While CP endows prediction models with post-hoc uncertainty quantification and formal coverage guarantees, their practicality breaks under distribution shifts that deteriorate model performance. To address this issue, we propose integrating geometric information--such as geometric pose--into the conformal procedure to reinstate its guarantees and ensure robustness under geometric shifts. In particular, we explore recent advancements on pose canonicalization as a suitable information extractor for this purpose. Evaluating the combined approach across discrete and continuous shifts and against equivariant and augmentation-based baselines, we find that integrating geometric information with CP yields a principled way to address geometric shifts while maintaining broad applicability to black-box predictors.
comment: 17 pages, 7 figures, 9 tables (including appendix); published at UAI 2025
☆ JETHICS: Japanese Ethics Understanding Evaluation Dataset
In this work, we propose JETHICS, a Japanese dataset for evaluating ethics understanding of AI models. JETHICS contains 78K examples and is built by following the construction methods of the existing English ETHICS dataset. It includes four categories based normative theories and concepts from ethics and political philosophy; and one representing commonsense morality. Our evaluation experiments on non-proprietary large language models (LLMs) and on GPT-4o reveal that even GPT-4o achieves only an average score of about 0.7, while the best-performing Japanese LLM attains around 0.5, indicating a relatively large room for improvement in current LLMs.
☆ From Teacher to Student: Tracking Memorization Through Model Distillation ACL 2025
Large language models (LLMs) are known to memorize parts of their training data, raising important concerns around privacy and security. While previous research has focused on studying memorization in pre-trained models, much less is known about how knowledge distillation (KD) affects memorization.In this study, we explore how different KD methods influence the memorization of fine-tuned task data when a large teacher model is distilled into smaller student variants.This study demonstrates that distilling a larger teacher model, fine-tuned on a dataset, into a smaller variant not only lowers computational costs and model size but also significantly reduces the memorization risks compared to standard fine-tuning approaches.
comment: 5 pages, in-proceedings L2M2 @ ACL 2025
☆ On using AI for EEG-based BCI applications: problems, current challenges and future trends
Imagine unlocking the power of the mind to communicate, create, and even interact with the world around us. Recent breakthroughs in Artificial Intelligence (AI), especially in how machines "see" and "understand" language, are now fueling exciting progress in decoding brain signals from scalp electroencephalography (EEG). Prima facie, this opens the door to revolutionary brain-computer interfaces (BCIs) designed for real life, moving beyond traditional uses to envision Brain-to-Speech, Brain-to-Image, and even a Brain-to-Internet of Things (BCIoT). However, the journey is not as straightforward as it was for Computer Vision (CV) and Natural Language Processing (NLP). Applying AI to real-world EEG-based BCIs, particularly in building powerful foundational models, presents unique and intricate hurdles that could affect their reliability. Here, we unfold a guided exploration of this dynamic and rapidly evolving research area. Rather than barely outlining a map of current endeavors and results, the goal is to provide a principled navigation of this hot and cutting-edge research landscape. We consider the basic paradigms that emerge from a causal perspective and the attendant challenges presented to AI-based models. Looking ahead, we then discuss promising research avenues that could overcome today's technological, methodological, and ethical limitations. Our aim is to lay out a clear roadmap for creating truly practical and effective EEG-based BCI solutions that can thrive in everyday environments.
☆ Large Language Models are Near-Optimal Decision-Makers with a Non-Human Learning Behavior
Human decision-making belongs to the foundation of our society and civilization, but we are on the verge of a future where much of it will be delegated to artificial intelligence. The arrival of Large Language Models (LLMs) has transformed the nature and scope of AI-supported decision-making; however, the process by which they learn to make decisions, compared to humans, remains poorly understood. In this study, we examined the decision-making behavior of five leading LLMs across three core dimensions of real-world decision-making: uncertainty, risk, and set-shifting. Using three well-established experimental psychology tasks designed to probe these dimensions, we benchmarked LLMs against 360 newly recruited human participants. Across all tasks, LLMs often outperformed humans, approaching near-optimal performance. Moreover, the processes underlying their decisions diverged fundamentally from those of humans. On the one hand, our finding demonstrates the ability of LLMs to manage uncertainty, calibrate risk, and adapt to changes. On the other hand, this disparity highlights the risks of relying on them as substitutes for human judgment, calling for further inquiry.
☆ Under the Shadow of Babel: How Language Shapes Reasoning in LLMs
Language is not only a tool for communication but also a medium for human cognition and reasoning. If, as linguistic relativity suggests, the structure of language shapes cognitive patterns, then large language models (LLMs) trained on human language may also internalize the habitual logical structures embedded in different languages. To examine this hypothesis, we introduce BICAUSE, a structured bilingual dataset for causal reasoning, which includes semantically aligned Chinese and English samples in both forward and reversed causal forms. Our study reveals three key findings: (1) LLMs exhibit typologically aligned attention patterns, focusing more on causes and sentence-initial connectives in Chinese, while showing a more balanced distribution in English. (2) Models internalize language-specific preferences for causal word order and often rigidly apply them to atypical inputs, leading to degraded performance, especially in Chinese. (3) When causal reasoning succeeds, model representations converge toward semantically aligned abstractions across languages, indicating a shared understanding beyond surface form. Overall, these results suggest that LLMs not only mimic surface linguistic forms but also internalize the reasoning biases shaped by language. Rooted in cognitive linguistic theory, this phenomenon is for the first time empirically verified through structural analysis of model internals.
comment: 15 pages, 10 figures
☆ PRISON: Unmasking the Criminal Potential of Large Language Models
As large language models (LLMs) advance, concerns about their misconduct in complex social contexts intensify. Existing research overlooked the systematic understanding and assessment of their criminal capability in realistic interactions. We propose a unified framework PRISON, to quantify LLMs' criminal potential across five dimensions: False Statements, Frame-Up, Psychological Manipulation, Emotional Disguise, and Moral Disengagement. Using structured crime scenarios adapted from classic films, we evaluate both criminal potential and anti-crime ability of LLMs via role-play. Results show that state-of-the-art LLMs frequently exhibit emergent criminal tendencies, such as proposing misleading statements or evasion tactics, even without explicit instructions. Moreover, when placed in a detective role, models recognize deceptive behavior with only 41% accuracy on average, revealing a striking mismatch between conducting and detecting criminal behavior. These findings underscore the urgent need for adversarial robustness, behavioral alignment, and safety mechanisms before broader LLM deployment.
☆ Geometric Learning in Black-Box Optimization: A GNN Framework for Algorithm Performance Prediction
Automated algorithm performance prediction in numerical blackbox optimization often relies on problem characterizations, such as exploratory landscape analysis features. These features are typically used as inputs to machine learning models and are represented in a tabular format. However, such approaches often overlook algorithm configurations, a key factor influencing performance. The relationships between algorithm operators, parameters, problem characteristics, and performance outcomes form a complex structure best represented as a graph. This work explores the use of heterogeneous graph data structures and graph neural networks to predict the performance of optimization algorithms by capturing the complex dependencies between problems, algorithm configurations, and performance outcomes. We focus on two modular frameworks, modCMA-ES and modDE, which decompose two widely used derivative-free optimization algorithms: the covariance matrix adaptation evolution strategy (CMA-ES) and differential evolution (DE). We evaluate 324 modCMA-ES and 576 modDE variants on 24 BBOB problems across six runtime budgets and two problem dimensions. Achieving up to 36.6% improvement in MSE over traditional tabular-based methods, this work highlights the potential of geometric learning in black-box optimization.
☆ GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning
Recent reinforcement learning approaches, such as outcome-supervised GRPO, have advanced Chain-of-Thought reasoning in large language models (LLMs), yet their adaptation to multimodal LLMs (MLLMs) is unexplored. To address the lack of rigorous evaluation for MLLM post-training methods, we introduce SEED-Bench-R1, a benchmark with complex real-world videos requiring balanced perception and reasoning. It offers a large training set and evaluates generalization across three escalating challenges: in-distribution, cross-environment, and cross-environment-task scenarios. Using SEED-Bench-R1, we find that standard GRPO, while improving answer accuracy, often reduces logical coherence between reasoning steps and answers, with only a 57.9% consistency rate. This stems from reward signals focusing solely on final answers, encouraging shortcuts, and strict KL penalties limiting exploration.To address this, we propose GRPO-CARE, a consistency-aware RL framework optimizing both answer correctness and reasoning coherence without explicit supervision. GRPO-CARE introduces a two-tiered reward: (1) a base reward for answer correctness, and (2) an adaptive consistency bonus, computed by comparing the model's reasoning-to-answer likelihood (via a slowly-evolving reference model) against group peers.This dual mechanism amplifies rewards for reasoning paths that are both correct and logically consistent. Replacing KL penalties with this adaptive bonus, GRPO-CARE outperforms standard GRPO on SEED-Bench-R1, achieving a 6.7% performance gain on the hardest evaluation level and a 24.5% improvement in consistency. It also shows strong transferability, improving model performance across diverse video understanding benchmarks. Our work contributes a systematically designed benchmark and a generalizable post-training framework, advancing the development of more interpretable and robust MLLMs.
comment: Code released at: https://github.com/TencentARC/GRPO-CARE
☆ Improved Intelligibility of Dysarthric Speech using Conditional Flow Matching
Dysarthria is a neurological disorder that significantly impairs speech intelligibility, often rendering affected individuals unable to communicate effectively. This necessitates the development of robust dysarthric-to-regular speech conversion techniques. In this work, we investigate the utility and limitations of self-supervised learning (SSL) features and their quantized representations as an alternative to mel-spectrograms for speech generation. Additionally, we explore methods to mitigate speaker variability by generating clean speech in a single-speaker voice using features extracted from WavLM. To this end, we propose a fully non-autoregressive approach that leverages Conditional Flow Matching (CFM) with Diffusion Transformers to learn a direct mapping from dysarthric to clean speech. Our findings highlight the effectiveness of discrete acoustic units in improving intelligibility while achieving faster convergence compared to traditional mel-spectrogram-based approaches.
comment: Accepted at Interspeech 2025
☆ GFlowGR: Fine-tuning Generative Recommendation Frameworks with Generative Flow Networks
Generative recommendations (GR), which usually include item tokenizers and generative Large Language Models (LLMs), have demonstrated remarkable success across a wide range of scenarios. The majority of existing research efforts primarily concentrate on developing powerful item tokenizers or advancing LLM decoding strategies to attain superior performance. However, the critical fine-tuning step in GR frameworks, which is essential for adapting LLMs to recommendation data, remains largely unexplored. Current approaches predominantly rely on either the next-token prediction loss of supervised fine-tuning (SFT) or recommendationspecific direct preference optimization (DPO) strategies. Both methods ignore the exploration of possible positive unobserved samples, which is commonly referred to as the exposure bias problem. To mitigate this problem, this paper treats the GR as a multi-step generation task and constructs a GFlowNets-based fine-tuning framework (GFlowGR). The proposed framework integrates collaborative knowledge from traditional recommender systems to create an adaptive trajectory sampler and a comprehensive reward model. Leveraging the diverse generation property of GFlowNets, along with sampling and heuristic weighting techniques, GFlowGR emerges as a promising approach to mitigate the exposure bias problem. Extensive empirical results on two real-world datasets and with two different GR backbones highlight the effectiveness and robustness of GFlowGR.
☆ A Brain-to-Population Graph Learning Framework for Diagnosing Brain Disorders
Recent developed graph-based methods for diagnosing brain disorders using functional connectivity highly rely on predefined brain atlases, but overlook the rich information embedded within atlases and the confounding effects of site and phenotype variability. To address these challenges, we propose a two-stage Brain-to-Population Graph Learning (B2P-GL) framework that integrates the semantic similarity of brain regions and condition-based population graph modeling. In the first stage, termed brain representation learning, we leverage brain atlas knowledge from GPT-4 to enrich the graph representation and refine the brain graph through an adaptive node reassignment graph attention network. In the second stage, termed population disorder diagnosis, phenotypic data is incorporated into population graph construction and feature fusion to mitigate confounding effects and enhance diagnosis performance. Experiments on the ABIDE I, ADHD-200, and Rest-meta-MDD datasets show that B2P-GL outperforms state-of-the-art methods in prediction accuracy while enhancing interpretability. Overall, our proposed framework offers a reliable and personalized approach to brain disorder diagnosis, advancing clinical applicability.
comment: 16 pages, 7 figures, 13 tables; this paper has been submitted for possible publication
☆ Consistency Verification in Ontology-Based Process Models with Parameter Interdependencies
The formalization of process knowledge using ontologies enables consistent modeling of parameter interdependencies in manufacturing. These interdependencies are typically represented as mathematical expressions that define relations between process parameters, supporting tasks such as calculation, validation, and simulation. To support cross-context application and knowledge reuse, such expressions are often defined in a generic form and applied across multiple process contexts. This highlights the necessity of a consistent and semantically coherent model to ensure the correctness of data retrieval and interpretation. Consequently, dedicated mechanisms are required to address key challenges such as selecting context-relevant data, ensuring unit compatibility between variables and data elements, and verifying the completeness of input data required for evaluating mathematical expressions. This paper presents a set of verification mechanisms for a previously developed ontology-based process model that integrates standardized process semantics, data element definitions, and formal mathematical constructs. The approach includes (i) SPARQL-based filtering to retrieve process-relevant data, (ii) a unit consistency check based on expected-unit annotations and semantic classification, and (iii) a data completeness check to validate the evaluability of interdependencies. The applicability of the approach is demonstrated with a use case from Resin Transfer Molding (RTM), supporting the development of machine-interpretable and verifiable engineering models.
comment: This paper is accepted at IEEE ETFA 2025 and will be published in the conference proceedings
☆ Probing the Robustness of Large Language Models Safety to Latent Perturbations
Safety alignment is a key requirement for building reliable Artificial General Intelligence. Despite significant advances in safety alignment, we observe that minor latent shifts can still trigger unsafe responses in aligned models. We argue that this stems from the shallow nature of existing alignment methods, which focus on surface-level refusal behaviors without sufficiently altering internal representations. Consequently, small shifts in hidden activations can re-trigger harmful behaviors embedded in the latent space. To explore the robustness of safety alignment to latent perturbations, we introduce a probing method that measures the Negative Log-Likelihood of the original response generated by the model. This probe quantifies local sensitivity in the latent space, serving as a diagnostic tool for identifying vulnerable directions. Based on this signal, we construct effective jailbreak trajectories, giving rise to the Activation Steering Attack (ASA). More importantly, these insights offer a principled foundation for improving alignment robustness. To this end, we introduce Layer-wise Adversarial Patch Training~(LAPT), a fine-tuning strategy that inject controlled perturbations into hidden representations during training. Experimental results highlight that LAPT strengthen alignment robustness without compromising general capabilities. Our findings reveal fundamental flaws in current alignment paradigms and call for representation-level training strategies that move beyond surface-level behavior supervision. Codes and results are available at https://github.com/Carol-gutianle/LatentSafety.
☆ CRIA: A Cross-View Interaction and Instance-Adapted Pre-training Framework for Generalizable EEG Representations
The difficulty of extracting deep features from EEG data and effectively integrating information from multiple views presents significant challenges for developing a generalizable pretraining framework for EEG representation learning. However, most existing pre-training methods rely solely on the contextual semantics of a single view, failing to capture the complex and synergistic interactions among different perspectives, limiting the expressiveness and generalization of learned representations. To address these issues, this paper proposes CRIA, an adaptive framework that utilizes variable-length and variable-channel coding to achieve a unified representation of EEG data across different datasets. In this work, we define cross-view information as the integrated representation that emerges from the interaction among temporal, spectral, and spatial views of EEG signals. The model employs a cross-attention mechanism to fuse temporal, spectral, and spatial features effectively, and combines an attention matrix masking strategy based on the information bottleneck principle with a novel viewpoint masking pre-training scheme. Experimental results on the Temple University EEG corpus and the CHB-MIT dataset show that CRIA outperforms existing methods with the same pre-training conditions, achieving a balanced accuracy of 57.02% for multi-class event classification and 80.03% for anomaly detection, highlighting its strong generalization ability.
☆ A Hybrid DeBERTa and Gated Broad Learning System for Cyberbullying Detection in English Text
The proliferation of online communication platforms has created unprecedented opportunities for global connectivity while simultaneously enabling harmful behaviors such as cyberbullying, which affects approximately 54.4\% of teenagers according to recent research. This paper presents a hybrid architecture that combines the contextual understanding capabilities of transformer-based models with the pattern recognition strengths of broad learning systems for effective cyberbullying detection. This approach integrates a modified DeBERTa model augmented with Squeeze-and-Excitation blocks and sentiment analysis capabilities with a Gated Broad Learning System (GBLS) classifier, creating a synergistic framework that outperforms existing approaches across multiple benchmark datasets. The proposed ModifiedDeBERTa + GBLS model achieved good performance on four English datasets: 79.3\% accuracy on HateXplain, 95.41\% accuracy on SOSNet, 91.37\% accuracy on Mendeley-I, and 94.67\% accuracy on Mendeley-II. Beyond performance gains, the framework incorporates comprehensive explainability mechanisms including token-level attribution analysis, LIME-based local interpretations, and confidence calibration, addressing critical transparency requirements in automated content moderation. Ablation studies confirm the meaningful contribution of each architectural component, while failure case analysis reveals specific challenges in detecting implicit bias and sarcastic content, providing valuable insights for future improvements in cyberbullying detection systems.
☆ DynScaling: Efficient Verifier-free Inference Scaling via Dynamic and Integrated Sampling
Inference-time scaling has proven effective in boosting large language model (LLM) performance through increased test-time computation. Yet, its practical application is often hindered by reliance on external verifiers or a lack of optimization for realistic computational constraints. We propose DynScaling, which addresses these limitations through two primary innovations: an integrated parallel-sequential sampling strategy and a bandit-based dynamic budget allocation framework. The integrated sampling strategy unifies parallel and sequential sampling by constructing synthetic sequential reasoning chains from initially independent parallel responses, promoting diverse and coherent reasoning trajectories. The dynamic budget allocation framework formulates the allocation of computational resources as a multi-armed bandit problem, adaptively distributing the inference budget across queries based on the uncertainty of previously sampled responses, thereby maximizing computational efficiency. By combining these components, DynScaling effectively improves LLM performance under practical resource constraints without the need for external verifiers. Experimental results demonstrate that DynScaling consistently surpasses existing verifier-free inference scaling baselines in both task performance and computational cost.
☆ OSWorld-Human: Benchmarking the Efficiency of Computer-Use Agents
Generative AI is being leveraged to solve a variety of computer-use tasks involving desktop applications. State-of-the-art systems have focused solely on improving accuracy on leading benchmarks. However, these systems are practically unusable due to extremely high end-to-end latency (e.g., tens of minutes) for tasks that typically take humans just a few minutes to complete. To understand the cause behind this and to guide future developments of computer agents, we conduct the first study on the temporal performance of computer-use agents on OSWorld, the flagship benchmark in computer-use AI. We find that large model calls for planning and reflection account for the majority of the overall latency, and as an agent uses more steps to complete a task, each successive step can take 3x longer than steps at the beginning of a task. We then construct OSWorld-Human, a manually annotated version of the original OSWorld dataset that contains a human-determined trajectory for each task. We evaluate 16 agents on their efficiency using OSWorld-Human and found that even the highest-scoring agents on OSWorld take 1.4-2.7x more steps than necessary.
☆ Vision-Guided Chunking Is All You Need: Enhancing RAG with Multimodal Document Understanding
Retrieval-Augmented Generation (RAG) systems have revolutionized information retrieval and question answering, but traditional text-based chunking methods struggle with complex document structures, multi-page tables, embedded figures, and contextual dependencies across page boundaries. We present a novel multimodal document chunking approach that leverages Large Multimodal Models (LMMs) to process PDF documents in batches while maintaining semantic coherence and structural integrity. Our method processes documents in configurable page batches with cross-batch context preservation, enabling accurate handling of tables spanning multiple pages, embedded visual elements, and procedural content. We evaluate our approach on a curated dataset of PDF documents with manually crafted queries, demonstrating improvements in chunk quality and downstream RAG performance. Our vision-guided approach achieves better accuracy compared to traditional vanilla RAG systems, with qualitative analysis showing superior preservation of document structure and semantic coherence.
comment: 11 pages, 1 Figure, 1 Table
☆ EvoLM: In Search of Lost Language Model Training Dynamics
Modern language model (LM) training has been divided into multiple stages, making it difficult for downstream developers to evaluate the impact of design choices made at each stage. We present EvoLM, a model suite that enables systematic and transparent analysis of LMs' training dynamics across pre-training, continued pre-training, supervised fine-tuning, and reinforcement learning. By training over 100 LMs with 1B and 4B parameters from scratch, we rigorously evaluate both upstream (language modeling) and downstream (problem-solving) reasoning capabilities, including considerations of both in-domain and out-of-domain generalization. Key insights highlight the diminishing returns from excessive pre-training and post-training, the importance and practices of mitigating forgetting during domain-specific continued pre-training, the crucial role of continued pre-training in bridging pre-training and post-training phases, and various intricate trade-offs when configuring supervised fine-tuning and reinforcement learning. To facilitate open research and reproducibility, we release all pre-trained and post-trained models, training datasets for all stages, and our entire training and evaluation pipeline.
☆ From General to Targeted Rewards: Surpassing GPT-4 in Open-Ended Long-Context Generation
Current research on long-form context in Large Language Models (LLMs) primarily focuses on the understanding of long-contexts, the Open-ended Long Text Generation (Open-LTG) remains insufficiently explored. Training a long-context generation model requires curation of gold standard reference data, which is typically nonexistent for informative Open-LTG tasks. However, previous methods only utilize general assessments as reward signals, which limits accuracy. To bridge this gap, we introduce ProxyReward, an innovative reinforcement learning (RL) based framework, which includes a dataset and a reward signal computation method. Firstly, ProxyReward Dataset generation is accomplished through simple prompts that enables the model to create automatically, obviating extensive labeled data or significant manual effort. Secondly, ProxyReward Signal offers a targeted evaluation of information comprehensiveness and accuracy for specific questions. The experimental results indicate that our method ProxyReward surpasses even GPT-4-Turbo. It can significantly enhance performance by 20% on the Open-LTG task when training widely used open-source models, while also surpassing the LLM-as-a-Judge approach. Our work presents effective methods to enhance the ability of LLMs to address complex open-ended questions posed by human.
☆ Dual-Objective Reinforcement Learning with Novel Hamilton-Jacobi-Bellman Formulations
Hard constraints in reinforcement learning (RL), whether imposed via the reward function or the model architecture, often degrade policy performance. Lagrangian methods offer a way to blend objectives with constraints, but often require intricate reward engineering and parameter tuning. In this work, we extend recent advances that connect Hamilton-Jacobi (HJ) equations with RL to propose two novel value functions for dual-objective satisfaction. Namely, we address: (1) the Reach-Always-Avoid problem - of achieving distinct reward and penalty thresholds - and (2) the Reach-Reach problem - of achieving thresholds of two distinct rewards. In contrast with temporal logic approaches, which typically involve representing an automaton, we derive explicit, tractable Bellman forms in this context by decomposing our problem into reach, avoid, and reach-avoid problems, as to leverage these aforementioned recent advances. From a mathematical perspective, the Reach-Always-Avoid and Reach-Reach problems are complementary and fundamentally different from standard sum-of-rewards problems and temporal logic problems, providing a new perspective on constrained decision-making. We leverage our analysis to propose a variation of Proximal Policy Optimization (DO-HJ-PPO), which solves these problems. Across a range of tasks for safe-arrival and multi-target achievement, we demonstrate that DO-HJ-PPO produces qualitatively distinct behaviors from previous approaches and out-competes a number of baselines in various metrics.
☆ Bayesian Epistemology with Weighted Authority: A Formal Architecture for Truth-Promoting Autonomous Scientific Reasoning
The exponential expansion of scientific literature has surpassed the epistemic processing capabilities of both human experts and current artificial intelligence systems. This paper introduces Bayesian Epistemology with Weighted Authority (BEWA), a formally structured architecture that operationalises belief as a dynamic, probabilistically coherent function over structured scientific claims. Each claim is contextualised, author-attributed, and evaluated through a system of replication scores, citation weighting, and temporal decay. Belief updates are performed via evidence-conditioned Bayesian inference, contradiction processing, and epistemic decay mechanisms. The architecture supports graph-based claim propagation, authorial credibility modelling, cryptographic anchoring, and zero-knowledge audit verification. By formalising scientific reasoning into a computationally verifiable epistemic network, BEWA advances the foundation for machine reasoning systems that promote truth utility, rational belief convergence, and audit-resilient integrity across dynamic scientific domains.
comment: 91 pages, 0 figures, includes mathematical appendix and formal proofs. Designed as a foundational submission for a modular autonomous epistemic reasoning system. Suitable for logic in computer science, AI epistemology, and scientific informatics
☆ VRAIL: Vectorized Reward-based Attribution for Interpretable Learning
We propose VRAIL (Vectorized Reward-based Attribution for Interpretable Learning), a bi-level framework for value-based reinforcement learning (RL) that learns interpretable weight representations from state features. VRAIL consists of two stages: a deep learning (DL) stage that fits an estimated value function using state features, and an RL stage that uses this to shape learning via potential-based reward transformations. The estimator is modeled in either linear or quadratic form, allowing attribution of importance to individual features and their interactions. Empirical results on the Taxi-v3 environment demonstrate that VRAIL improves training stability and convergence compared to standard DQN, without requiring environment modifications. Further analysis shows that VRAIL uncovers semantically meaningful subgoals, such as passenger possession, highlighting its ability to produce human-interpretable behavior. Our findings suggest that VRAIL serves as a general, model-agnostic framework for reward shaping that enhances both learning and interpretability.
☆ DIGMAPPER: A Modular System for Automated Geologic Map Digitization
Historical geologic maps contain rich geospatial information, such as rock units, faults, folds, and bedding planes, that is critical for assessing mineral resources essential to renewable energy, electric vehicles, and national security. However, digitizing maps remains a labor-intensive and time-consuming task. We present DIGMAPPER, a modular, scalable system developed in collaboration with the United States Geological Survey (USGS) to automate the digitization of geologic maps. DIGMAPPER features a fully dockerized, workflow-orchestrated architecture that integrates state-of-the-art deep learning models for map layout analysis, feature extraction, and georeferencing. To overcome challenges such as limited training data and complex visual content, our system employs innovative techniques, including in-context learning with large language models, synthetic data generation, and transformer-based models. Evaluations on over 100 annotated maps from the DARPA-USGS dataset demonstrate high accuracy across polygon, line, and point feature extraction, and reliable georeferencing performance. Deployed at USGS, DIGMAPPER significantly accelerates the creation of analysis-ready geospatial datasets, supporting national-scale critical mineral assessments and broader geoscientific applications.
☆ AutoHFormer: Efficient Hierarchical Autoregressive Transformer for Time Series Prediction
Time series forecasting requires architectures that simultaneously achieve three competing objectives: (1) strict temporal causality for reliable predictions, (2) sub-quadratic complexity for practical scalability, and (3) multi-scale pattern recognition for accurate long-horizon forecasting. We introduce AutoHFormer, a hierarchical autoregressive transformer that addresses these challenges through three key innovations: 1) Hierarchical Temporal Modeling: Our architecture decomposes predictions into segment-level blocks processed in parallel, followed by intra-segment sequential refinement. This dual-scale approach maintains temporal coherence while enabling efficient computation. 2) Dynamic Windowed Attention: The attention mechanism employs learnable causal windows with exponential decay, reducing complexity while preserving precise temporal relationships. This design avoids both the anti-causal violations of standard transformers and the sequential bottlenecks of RNN hybrids. 3) Adaptive Temporal Encoding: a novel position encoding system is adopted to capture time patterns at multiple scales. It combines fixed oscillating patterns for short-term variations with learnable decay rates for long-term trends. Comprehensive experiments demonstrate that AutoHFormer 10.76X faster training and 6.06X memory reduction compared to PatchTST on PEMS08, while maintaining consistent accuracy across 96-720 step horizons in most of cases. These breakthroughs establish new benchmarks for efficient and precise time series modeling. Implementations of our method and all baselines in hierarchical autoregressive mechanism are available at https://github.com/lizzyhku/Autotime.
comment: 14 pages
☆ Quantum Artificial Intelligence for Secure Autonomous Vehicle Navigation: An Architectural Proposal
Navigation is a very crucial aspect of autonomous vehicle ecosystem which heavily relies on collecting and processing large amounts of data in various states and taking a confident and safe decision to define the next vehicle maneuver. In this paper, we propose a novel architecture based on Quantum Artificial Intelligence by enabling quantum and AI at various levels of navigation decision making and communication process in Autonomous vehicles : Quantum Neural Networks for multimodal sensor fusion, Nav-Q for Quantum reinforcement learning for navigation policy optimization and finally post-quantum cryptographic protocols for secure communication. Quantum neural networks uses quantum amplitude encoding to fuse data from various sensors like LiDAR, radar, camera, GPS and weather etc., This approach gives a unified quantum state representation between heterogeneous sensor modalities. Nav-Q module processes the fused quantum states through variational quantum circuits to learn optimal navigation policies under swift dynamic and complex conditions. Finally, post quantum cryptographic protocols are used to secure communication channels for both within vehicle communication and V2X (Vehicle to Everything) communications and thus secures the autonomous vehicle communication from both classical and quantum security threats. Thus, the proposed framework addresses fundamental challenges in autonomous vehicles navigation by providing quantum performance and future proof security. Index Terms Quantum Computing, Autonomous Vehicles, Sensor Fusion
comment: 5 pages, 2 figures, 17 references. Architectural proposal for quantum AI integration in autonomous vehicle navigation systems for secured navigation
☆ Double Entendre: Robust Audio-Based AI-Generated Lyrics Detection via Multi-View Fusion ACL 2025
The rapid advancement of AI-based music generation tools is revolutionizing the music industry but also posing challenges to artists, copyright holders, and providers alike. This necessitates reliable methods for detecting such AI-generated content. However, existing detectors, relying on either audio or lyrics, face key practical limitations: audio-based detectors fail to generalize to new or unseen generators and are vulnerable to audio perturbations; lyrics-based methods require cleanly formatted and accurate lyrics, unavailable in practice. To overcome these limitations, we propose a novel, practically grounded approach: a multimodal, modular late-fusion pipeline that combines automatically transcribed sung lyrics and speech features capturing lyrics-related information within the audio. By relying on lyrical aspects directly from audio, our method enhances robustness, mitigates susceptibility to low-level artifacts, and enables practical applicability. Experiments show that our method, DE-detect, outperforms existing lyrics-based detectors while also being more robust to audio perturbations. Thus, it offers an effective, robust solution for detecting AI-generated music in real-world scenarios. Our code is available at https://github.com/deezer/robust-AI-lyrics-detection.
comment: Accepted to ACL 2025 Findings
☆ Advanced Sign Language Video Generation with Compressed and Quantized Multi-Condition Tokenization
Sign Language Video Generation (SLVG) seeks to generate identity-preserving sign language videos from spoken language texts. Existing methods primarily rely on the single coarse condition (\eg, skeleton sequences) as the intermediary to bridge the translation model and the video generation model, which limits both the naturalness and expressiveness of the generated videos. To overcome these limitations, we propose SignViP, a novel SLVG framework that incorporates multiple fine-grained conditions for improved generation fidelity. Rather than directly translating error-prone high-dimensional conditions, SignViP adopts a discrete tokenization paradigm to integrate and represent fine-grained conditions (\ie, fine-grained poses and 3D hands). SignViP contains three core components. (1) Sign Video Diffusion Model is jointly trained with a multi-condition encoder to learn continuous embeddings that encapsulate fine-grained motion and appearance. (2) Finite Scalar Quantization (FSQ) Autoencoder is further trained to compress and quantize these embeddings into discrete tokens for compact representation of the conditions. (3) Multi-Condition Token Translator is trained to translate spoken language text to discrete multi-condition tokens. During inference, Multi-Condition Token Translator first translates the spoken language text into discrete multi-condition tokens. These tokens are then decoded to continuous embeddings by FSQ Autoencoder, which are subsequently injected into Sign Video Diffusion Model to guide video generation. Experimental results show that SignViP achieves state-of-the-art performance across metrics, including video quality, temporal coherence, and semantic fidelity. The code is available at https://github.com/umnooob/signvip/.
☆ A Vietnamese Dataset for Text Segmentation and Multiple Choices Reading Comprehension
Vietnamese, the 20th most spoken language with over 102 million native speakers, lacks robust resources for key natural language processing tasks such as text segmentation and machine reading comprehension (MRC). To address this gap, we present VSMRC, the Vietnamese Text Segmentation and Multiple-Choice Reading Comprehension Dataset. Sourced from Vietnamese Wikipedia, our dataset includes 15,942 documents for text segmentation and 16,347 synthetic multiple-choice question-answer pairs generated with human quality assurance, ensuring a reliable and diverse resource. Experiments show that mBERT consistently outperforms monolingual models on both tasks, achieving an accuracy of 88.01% on MRC test set and an F1 score of 63.15\% on text segmentation test set. Our analysis reveals that multilingual models excel in NLP tasks for Vietnamese, suggesting potential applications to other under-resourced languages. VSMRC is available at HuggingFace
☆ Heterogeneous-Modal Unsupervised Domain Adaptation via Latent Space Bridging
Unsupervised domain adaptation (UDA) methods effectively bridge domain gaps but become struggled when the source and target domains belong to entirely distinct modalities. To address this limitation, we propose a novel setting called Heterogeneous-Modal Unsupervised Domain Adaptation (HMUDA), which enables knowledge transfer between completely different modalities by leveraging a bridge domain containing unlabeled samples from both modalities. To learn under the HMUDA setting, we propose Latent Space Bridging (LSB), a specialized framework designed for the semantic segmentation task. Specifically, LSB utilizes a dual-branch architecture, incorporating a feature consistency loss to align representations across modalities and a domain alignment loss to reduce discrepancies between class centroids across domains. Extensive experiments conducted on six benchmark datasets demonstrate that LSB achieves state-of-the-art performance.
♻ ☆ Learning to Route LLMs with Confidence Tokens
Large language models (LLMs) have demonstrated impressive performance on several tasks and are increasingly deployed in real-world applications. However, especially in high-stakes settings, it becomes vital to know when the output of an LLM may be unreliable. Depending on whether an answer is trustworthy, a system can then choose to route the question to another expert, or otherwise fall back on a safe default behavior. In this work, we study the extent to which LLMs can reliably indicate confidence in their answers, and how this notion of confidence can translate into downstream accuracy gains. We propose Self-Reflection with Error-based Feedback (Self-REF), a lightweight training strategy to teach LLMs to express confidence in whether their answers are correct in a reliable manner. Self-REF introduces confidence tokens into the LLM, from which a confidence score can be extracted. Compared to conventional approaches such as verbalizing confidence and examining token probabilities, we demonstrate empirically that confidence tokens show significant improvements in downstream routing and rejection learning tasks.
♻ ☆ Lion Secretly Solves Constrained Optimization: As Lyapunov Predicts ICLR 2024
Lion (Evolved Sign Momentum), a new optimizer discovered through program search, has shown promising results in training large AI models. It performs comparably or favorably to AdamW but with greater memory efficiency. As we can expect from the results of a random search program, Lion incorporates elements from several existing algorithms, including signed momentum, decoupled weight decay, Polak, and Nesterov momentum, but does not fit into any existing category of theoretically grounded optimizers. Thus, even though Lion appears to perform well as a general-purpose optimizer for a wide range of tasks, its theoretical basis remains uncertain. This lack of theoretical clarity limits opportunities to further enhance and expand Lion's efficacy. This work aims to demystify Lion. Based on both continuous-time and discrete-time analysis, we demonstrate that Lion is a theoretically novel and principled approach for minimizing a general loss function $f(x)$ while enforcing a bound constraint $\|x\|_\infty \leq 1/\lambda$. Lion achieves this through the incorporation of decoupled weight decay, where $\lambda$ represents the weight decay coefficient. Our analysis is made possible by the development of a new Lyapunov function for the Lion updates. It applies to a broader family of Lion-$\kappa$ algorithms, where the $\text{sign}(\cdot)$ operator in Lion is replaced by the subgradient of a convex function $\kappa$, leading to the solution of a general composite optimization problem of $\min_x f(x) + \kappa^*(x)$. Our findings provide valuable insights into the dynamics of Lion and pave the way for further improvements and extensions of Lion-related algorithms.
comment: ICLR 2024 Spotlight
♻ ☆ From RAG to Memory: Non-Parametric Continual Learning for Large Language Models ICML 2025
Our ability to continuously acquire, organize, and leverage knowledge is a key feature of human intelligence that AI systems must approximate to unlock their full potential. Given the challenges in continual learning with large language models (LLMs), retrieval-augmented generation (RAG) has become the dominant way to introduce new information. However, its reliance on vector retrieval hinders its ability to mimic the dynamic and interconnected nature of human long-term memory. Recent RAG approaches augment vector embeddings with various structures like knowledge graphs to address some of these gaps, namely sense-making and associativity. However, their performance on more basic factual memory tasks drops considerably below standard RAG. We address this unintended deterioration and propose HippoRAG 2, a framework that outperforms standard RAG comprehensively on factual, sense-making, and associative memory tasks. HippoRAG 2 builds upon the Personalized PageRank algorithm used in HippoRAG and enhances it with deeper passage integration and more effective online use of an LLM. This combination pushes this RAG system closer to the effectiveness of human long-term memory, achieving a 7% improvement in associative memory tasks over the state-of-the-art embedding model while also exhibiting superior factual knowledge and sense-making memory capabilities. This work paves the way for non-parametric continual learning for LLMs. Code and data are available at https://github.com/OSU-NLP-Group/HippoRAG.
comment: ICML 2025. Code and data are available at: https://github.com/OSU-NLP-Group/HippoRAG
♻ ☆ MonoSOWA: Scalable monocular 3D Object detector Without human Annotations
Inferring object 3D position and orientation from a single RGB camera is a foundational task in computer vision with many important applications. Traditionally, 3D object detection methods are trained in a fully-supervised setup, requiring LiDAR and vast amounts of human annotations, which are laborious, costly, and do not scale well with the ever-increasing amounts of data being captured. We present a novel method to train a 3D object detector from a single RGB camera without domain-specific human annotations, making orders of magnitude more data available for training. The method uses newly proposed Local Object Motion Model to disentangle object movement source between subsequent frames, is approximately 700 times faster than previous work and compensates camera focal length differences to aggregate multiple datasets. The method is evaluated on three public datasets, where despite using no human labels, it outperforms prior work by a significant margin. It also shows its versatility as a pre-training tool for fully-supervised training and shows that combining pseudo-labels from multiple datasets can achieve comparable accuracy to using human labels from a single dataset. The source code and model are available at https://github.com/jskvrna/MonoSOWA.
♻ ☆ Autonomous Computer Vision Development with Agentic AI
Agentic Artificial Intelligence (AI) systems leveraging Large Language Models (LLMs) exhibit significant potential for complex reasoning, planning, and tool utilization. We demonstrate that a specialized computer vision system can be built autonomously from a natural language prompt using Agentic AI methods. This involved extending SimpleMind (SM), an open-source Cognitive AI environment with configurable tools for medical image analysis, with an LLM-based agent, implemented using OpenManus, to automate the planning (tool configuration) for a particular computer vision task. We provide a proof-of-concept demonstration that an agentic system can interpret a computer vision task prompt, plan a corresponding SimpleMind workflow by decomposing the task and configuring appropriate tools. From the user input prompt, "provide sm (SimpleMind) config for lungs, heart, and ribs segmentation for cxr (chest x-ray)"), the agent LLM was able to generate the plan (tool configuration file in YAML format), and execute SM-Learn (training) and SM-Think (inference) scripts autonomously. The computer vision agent automatically configured, trained, and tested itself on 50 chest x-ray images, achieving mean dice scores of 0.96, 0.82, 0.83, for lungs, heart, and ribs, respectively. This work shows the potential for autonomous planning and tool configuration that has traditionally been performed by a data scientist in the development of computer vision applications.
comment: The paper is 13 pages long and contains 4 figures
♻ ☆ A Survey of Automatic Hallucination Evaluation on Natural Language Generation
The proliferation of Large Language Models (LLMs) has introduced a critical challenge: accurate hallucination evaluation that ensures model reliability. While Automatic Hallucination Evaluation (AHE) has emerged as essential, the field suffers from methodological fragmentation, hindering both theoretical understanding and practical advancement. This survey addresses this critical gap through a comprehensive analysis of 74 evaluation methods, revealing that 74% specifically target LLMs, a paradigm shift that demands new evaluation frameworks. We formulate a unified evaluation pipeline encompassing datasets and benchmarks, evidence collection strategies, and comparison mechanisms, systematically documenting the evolution from pre-LLM to post-LLM methodologies. Beyond taxonomical organization, we identify fundamental limitations in current approaches and their implications for real-world deployment. To guide future research, we delineate key challenges and propose strategic directions, including enhanced interpretability mechanisms and integration of application-specific evaluation criteria, ultimately providing a roadmap for developing more robust and practical hallucination evaluation systems.
comment: 30 pages
♻ ☆ A Implies B: Circuit Analysis in LLMs for Propositional Logical Reasoning
Due to the size and complexity of modern large language models (LLMs), it has proven challenging to uncover the underlying mechanisms that models use to solve reasoning problems. For instance, is their reasoning for a specific problem localized to certain parts of the network? Do they break down the reasoning problem into modular components that are then executed as sequential steps as we go deeper in the model? To better understand the reasoning capability of LLMs, we study a minimal propositional logic problem that requires combining multiple facts to arrive at a solution. By studying this problem on Mistral and Gemma models, up to 27B parameters, we illuminate the core components the models use to solve such logic problems. From a mechanistic interpretability point of view, we use causal mediation analysis to uncover the pathways and components of the LLMs' reasoning processes. Then, we offer fine-grained insights into the functions of attention heads in different layers. We not only find a sparse circuit that computes the answer, but we decompose it into sub-circuits that have four distinct and modular uses. Finally, we reveal that three distinct models -- Mistral-7B, Gemma-2-9B and Gemma-2-27B -- contain analogous but not identical mechanisms.
♻ ☆ ChatDBG: Augmenting Debugging with Large Language Models
Debugging is a critical but challenging task for programmers. This paper proposes ChatDBG, an AI-powered debugging assistant. ChatDBG integrates large language models (LLMs) to significantly enhance the capabilities and user-friendliness of conventional debuggers. ChatDBG lets programmers engage in a collaborative dialogue with the debugger, allowing them to pose complex questions about program state, perform root cause analysis for crashes or assertion failures, and explore open-ended queries like "why is x null?". To handle these queries, ChatDBG grants the LLM autonomy to "take the wheel": it can act as an independent agent capable of querying and controlling the debugger to navigate through stacks and inspect program state. It then reports its findings and yields back control to the programmer. By leveraging the real-world knowledge embedded in LLMs, ChatDBG can diagnose issues identifiable only through the use of domain-specific reasoning. Our ChatDBG prototype integrates with standard debuggers including LLDB and GDB for native code and Pdb for Python. Our evaluation across a diverse set of code, including C/C++ code with known bugs and a suite of Python code including standalone scripts and Jupyter notebooks, demonstrates that ChatDBG can successfully analyze root causes, explain bugs, and generate accurate fixes for a wide range of real-world errors. For the Python programs, a single query led to an actionable bug fix 67% of the time; one additional follow-up query increased the success rate to 85%. ChatDBG has seen rapid uptake; it has already been downloaded more than 75,000 times.
comment: 22 pages, https://doi.org/10.1145/3729355
♻ ☆ Song Form-aware Full-Song Text-to-Lyrics Generation with Multi-Level Granularity Syllable Count Control
Lyrics generation presents unique challenges, particularly in achieving precise syllable control while adhering to song form structures such as verses and choruses. Conventional line-by-line approaches often lead to unnatural phrasing, underscoring the need for more granular syllable management. We propose a framework for lyrics generation that enables multi-level syllable control at the word, phrase, line, and paragraph levels, aware of song form. Our approach generates complete lyrics conditioned on input text and song form, ensuring alignment with specified syllable constraints. Generated lyrics samples are available at: https://tinyurl.com/lyrics9999
comment: Accepted to Interspeech 2025
♻ ☆ Essential-Web v1.0: 24T tokens of organized web data
Data plays the most prominent role in how language models acquire skills and knowledge. The lack of massive, well-organized pre-training datasets results in costly and inaccessible data pipelines. We present Essential-Web v1.0, a 24-trillion-token dataset in which every document is annotated with a twelve-category taxonomy covering topic, format, content complexity, and quality. Taxonomy labels are produced by EAI-Distill-0.5b, a fine-tuned 0.5b-parameter model that achieves an annotator agreement within 3% of Qwen2.5-32B-Instruct. With nothing more than SQL-style filters, we obtain competitive web-curated datasets in math (-8.0% relative to SOTA), web code (+14.3%), STEM (+24.5%) and medical (+8.6%). Essential-Web v1.0 is available on HuggingFace: https://huggingface.co/datasets/EssentialAI/essential-web-v1.0
comment: include MegaMath-Web-Pro
♻ ☆ Efficient Event-Based Object Detection: A Hybrid Neural Network with Spatial and Temporal Attention
Event cameras offer high temporal resolution and dynamic range with minimal motion blur, making them promising for robust object detection. While Spiking Neural Networks (SNNs) on neuromorphic hardware are often considered for energy-efficient and low latency event-based data processing, they often fall short of Artificial Neural Networks (ANNs) in accuracy and flexibility. Here, we introduce Attention-based Hybrid SNN-ANN backbones for event-based object detection to leverage the strengths of both SNN and ANN architectures. A novel Attention-based SNN-ANN bridge module captures sparse spatial and temporal relations from the SNN layer and converts them into dense feature maps for the ANN part of the backbone. Additionally, we present a variant that integrates DWConvL-STMs to the ANN blocks to capture slower dynamics. This multi-timescale network combines fast SNN processing for short timesteps with long-term dense RNN processing, effectively capturing both fast and slow dynamics. Experimental results demonstrate that our proposed method surpasses SNN-based approaches by significant margins, with results comparable to existing ANN and RNN-based methods. Unlike ANN-only networks, the hybrid setup allows us to implement the SNN blocks on digital neuromorphic hardware to investigate the feasibility of our approach. Extensive ablation studies and implementation on neuromorphic hardware confirm the effectiveness of our proposed modules and architectural choices. Our hybrid SNN-ANN architectures pave the way for ANN-like performance at a drastically reduced parameter, latency, and power budget.
♻ ☆ xGen-MM (BLIP-3): A Family of Open Large Multimodal Models
This paper introduces BLIP-3, an open framework for developing Large Multimodal Models (LMMs). The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs. We release 4B and 14B models, including both the pre-trained base model and the instruction fine-tuned ones. Our models undergo rigorous evaluation across a range of tasks, including both single and multi-image benchmarks. Our models demonstrate competitive performance among open-source LMMs with similar model sizes. Our resulting LMMs demonstrate competitive performance among open-source LMMs with similar model sizes, with the ability to comprehend interleaved image-text inputs. Our training code, models, and all datasets used in this work, including the three largescale datasets we create and the preprocessed ones, will be open-sourced to better support the research community.
♻ ☆ QG-SMS: Enhancing Test Item Analysis via Student Modeling and Simulation ACL 2025
While the Question Generation (QG) task has been increasingly adopted in educational assessments, its evaluation remains limited by approaches that lack a clear connection to the educational values of test items. In this work, we introduce test item analysis, a method frequently used by educators to assess test question quality, into QG evaluation. Specifically, we construct pairs of candidate questions that differ in quality across dimensions such as topic coverage, item difficulty, item discrimination, and distractor efficiency. We then examine whether existing QG evaluation approaches can effectively distinguish these differences. Our findings reveal significant shortcomings in these approaches with respect to accurately assessing test item quality in relation to student performance. To address this gap, we propose a novel QG evaluation framework, QG-SMS, which leverages Large Language Model for Student Modeling and Simulation to perform test item analysis. As demonstrated in our extensive experiments and human evaluation study, the additional perspectives introduced by the simulated student profiles lead to a more effective and robust assessment of test items.
comment: Camera Ready - ACL 2025 Main
♻ ☆ Boosting multi-demographic federated learning for chest radiograph analysis using general-purpose self-supervised representations
Reliable artificial intelligence (AI) models for medical image analysis often depend on large and diverse labeled datasets. Federated learning (FL) offers a decentralized and privacy-preserving approach to training but struggles in highly non-independent and identically distributed (non-IID) settings, where institutions with more representative data may experience degraded performance. Moreover, existing large-scale FL studies have been limited to adult datasets, neglecting the unique challenges posed by pediatric data, which introduces additional non-IID variability. To address these limitations, we analyzed n=398,523 adult chest radiographs from diverse institutions across multiple countries and n=9,125 pediatric images, leveraging transfer learning from general-purpose self-supervised image representations to classify pneumonia and cases with no abnormality. Using state-of-the-art vision transformers, we found that FL improved performance only for smaller adult datasets (P<0.001) but degraded performance for larger datasets (P<0.064) and pediatric cases (P=0.242). However, equipping FL with self-supervised weights significantly enhanced outcomes across pediatric cases (P=0.031) and most adult datasets (P<0.008), except the largest dataset (P=0.052). These findings underscore the potential of easily deployable general-purpose self-supervised image representations to address non-IID challenges in clinical FL applications and highlight their promise for enhancing patient outcomes and advancing pediatric healthcare, where data scarcity and variability remain persistent obstacles.
comment: Published in European Journal of Radiology Artificial Intelligence
♻ ☆ The Memory Paradox: Why Our Brains Need Knowledge in an Age of AI
In the age of generative AI and ubiquitous digital tools, human cognition faces a structural paradox: as external aids become more capable, internal memory systems risk atrophy. Drawing on neuroscience and cognitive psychology, this paper examines how heavy reliance on AI systems and discovery-based pedagogies may impair the consolidation of declarative and procedural memory -- systems essential for expertise, critical thinking, and long-term retention. We review how tools like ChatGPT and calculators can short-circuit the retrieval, error correction, and schema-building processes necessary for robust neural encoding. Notably, we highlight striking parallels between deep learning phenomena such as "grokking" and the neuroscience of overlearning and intuition. Empirical studies are discussed showing how premature reliance on AI during learning inhibits proceduralization and intuitive mastery. We argue that effective human-AI interaction depends on strong internal models -- biological "schemata" and neural manifolds -- that enable users to evaluate, refine, and guide AI output. The paper concludes with policy implications for education and workforce training in the age of large language models.
comment: 50 pages, 8 figures
♻ ☆ Human-like Forgetting Curves in Deep Neural Networks
This study bridges cognitive science and neural network design by examining whether artificial models exhibit human-like forgetting curves. Drawing upon Ebbinghaus' seminal work on memory decay and principles of spaced repetition, we propose a quantitative framework to measure information retention in neural networks. Our approach computes the recall probability by evaluating the similarity between a network's current hidden state and previously stored prototype representations. This retention metric facilitates the scheduling of review sessions, thereby mitigating catastrophic forgetting during deployment and enhancing training efficiency by prompting targeted reviews. Our experiments with Multi-Layer Perceptrons reveal human-like forgetting curves, with knowledge becoming increasingly robust through scheduled reviews. This alignment between neural network forgetting curves and established human memory models identifies neural networks as an architecture that naturally emulates human memory decay and can inform state-of-the-art continual learning algorithms.
♻ ☆ Web Archives Metadata Generation with GPT-4o: Challenges and Insights
Current metadata creation for web archives is time consuming and costly due to reliance on human effort. This paper explores the use of gpt-4o for metadata generation within the Web Archive Singapore, focusing on scalability, efficiency, and cost effectiveness. We processed 112 Web ARChive (WARC) files using data reduction techniques, achieving a notable 99.9% reduction in metadata generation costs. By prompt engineering, we generated titles and abstracts, which were evaluated both intrinsically using Levenshtein Distance and BERTScore, and extrinsically with human cataloguers using McNemar's test. Results indicate that while our method offers significant cost savings and efficiency gains, human curated metadata maintains an edge in quality. The study identifies key challenges including content inaccuracies, hallucinations, and translation issues, suggesting that Large Language Models (LLMs) should serve as complements rather than replacements for human cataloguers. Future work will focus on refining prompts, improving content filtering, and addressing privacy concerns through experimentation with smaller models. This research advances the integration of LLMs in web archiving, offering valuable insights into their current capabilities and outlining directions for future enhancements. The code is available at https://github.com/masamune-prog/warc2summary for further development and use by institutions facing similar challenges.
comment: Published in Information Technology and Libraries, Vol. 44, No. 2, June 2025
♻ ☆ PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding
Vision-language models are integral to computer vision research, yet many high-performing models remain closed-source, obscuring their data, design and training recipe. The research community has responded by using distillation from black-box models to label training data, achieving strong benchmark results, at the cost of measurable scientific progress. However, without knowing the details of the teacher model and its data sources, scientific progress remains difficult to measure. In this paper, we study building a Perception Language Model (PLM) in a fully open and reproducible framework for transparent research in image and video understanding. We analyze standard training pipelines without distillation from proprietary models and explore large-scale synthetic data to identify critical data gaps, particularly in detailed video understanding. To bridge these gaps, we release 2.8M human-labeled instances of fine-grained video question-answer pairs and spatio-temporally grounded video captions. Additionally, we introduce PLM-VideoBench, a suite for evaluating challenging video understanding tasks focusing on the ability to reason about "what", "where", "when", and "how" of a video. We make our work fully reproducible by providing data, training recipes, code & models. https://github.com/facebookresearch/perception_models
comment: Technical Report
♻ ☆ Quantifying artificial intelligence through algorithmic generalization
The rapid development of artificial intelligence (AI) systems has created an urgent need for their scientific quantification. While their fluency across a variety of domains is impressive, AI systems fall short on tests requiring algorithmic reasoning -- a glaring limitation given the necessity for interpretable and reliable technology. Despite a surge of reasoning benchmarks emerging from the academic community, no theoretical framework exists to quantify algorithmic reasoning in AI systems. Here, we adopt a framework from computational complexity theory to quantify algorithmic generalization using algebraic expressions: algebraic circuit complexity. Algebraic circuit complexity theory -- the study of algebraic expressions as circuit models -- is a natural framework to study the complexity of algorithmic computation. Algebraic circuit complexity enables the study of generalization by defining benchmarks in terms of the computational requirements to solve a problem. Moreover, algebraic circuits are generic mathematical objects; an arbitrarily large number of samples can be generated for a specified circuit, making it an ideal experimental sandbox for the data-hungry models that are used today. In this Perspective, we adopt tools from algebraic circuit complexity, apply them to formalize a science of algorithmic generalization, and address key challenges for its successful application to AI science.
♻ ☆ ALTA: Compiler-Based Analysis of Transformers
We propose a new programming language called ALTA and a compiler that can map ALTA programs to Transformer weights. ALTA is inspired by RASP, a language proposed by Weiss et al. (2021), and Tracr (Lindner et al., 2023), a compiler from RASP programs to Transformer weights. ALTA complements and extends this prior work, offering the ability to express loops and to compile programs to Universal Transformers, among other advantages. ALTA allows us to constructively show how Transformers can represent length-invariant algorithms for computing parity and addition, as well as a solution to the SCAN benchmark of compositional generalization tasks, without requiring intermediate scratchpad decoding steps. We also propose tools to analyze cases where the expressibility of an algorithm is established, but end-to-end training on a given training set fails to induce behavior consistent with the desired algorithm. To this end, we explore training from ALTA execution traces as a more fine-grained supervision signal. This enables additional experiments and theoretical analyses relating the learnability of various algorithms to data availability and modeling decisions, such as positional encodings. We make the ALTA framework -- language specification, symbolic interpreter, and weight compiler -- available to the community to enable further applications and insights.
comment: TMLR 2025
♻ ☆ SWE-Factory: Your Automated Factory for Issue Resolution Training Data and Evaluation Benchmarks
Constructing large-scale datasets for the GitHub issue resolution task is crucial for both training and evaluating the software engineering capabilities of Large Language Models (LLMs). However, the traditional process for creating such benchmarks is notoriously challenging and labor-intensive, particularly in the stages of setting up evaluation environments, grading test outcomes, and validating task instances. In this paper, we propose SWE-Factory, an automated pipeline designed to address these challenges. To tackle these issues, our pipeline integrates three core automated components. First, we introduce SWE-Builder, a multi-agent system that automates evaluation environment construction, which employs four specialized agents that work in a collaborative, iterative loop and leverages an environment memory pool to enhance efficiency. Second, we introduce a standardized, exit-code-based grading method that eliminates the need for manually writing custom parsers. Finally, we automate the fail2pass validation process using these reliable exit code signals. Experiments on 671 issues across four programming languages show that our pipeline can effectively construct valid task instances; for example, with GPT-4.1-mini, our SWE-Builder constructs 269 valid instances at $0.045 per instance, while with Gemini-2.5-flash, it achieves comparable performance at the lowest cost of $0.024 per instance. We also demonstrate that our exit-code-based grading achieves 100% accuracy compared to manual inspection, and our automated fail2pass validation reaches a precision of 0.92 and a recall of 1.00. We hope our automated pipeline will accelerate the collection of large-scale, high-quality GitHub issue resolution datasets for both training and evaluation. Our code and datasets are released at https://github.com/DeepSoftwareAnalytics/swe-factory.
♻ ☆ Breaking the Compression Ceiling: Data-Free Pipeline for Ultra-Efficient Delta Compression
With the rise of the fine-tuned--pretrained paradigm, storing numerous fine-tuned models for multi-tasking creates significant storage overhead. Delta compression alleviates this by storing only the pretrained model and the highly compressed delta weights (the differences between fine-tuned and pretrained model weights). However, existing methods fail to maintain both high compression and performance, and often rely on data. To address these challenges, we propose UltraDelta, the first data-free delta compression pipeline that achieves both ultra-high compression and strong performance. UltraDelta is designed to minimize redundancy, maximize information, and stabilize performance across inter-layer, intra-layer, and global dimensions, using three key components: (1) Variance-Based Mixed Sparsity Allocation assigns sparsity based on variance, giving lower sparsity to high-variance layers to preserve inter-layer information. (2) Distribution-Aware Compression applies uniform quantization and then groups parameters by value, followed by group-wise pruning, to better preserve intra-layer distribution. (3) Trace-Norm-Guided Rescaling uses the trace norm of delta weights to estimate a global rescaling factor, improving model stability under higher compression. Extensive experiments across (a) large language models (fine-tuned on LLaMA-2 7B and 13B) with up to 133x, (b) general NLP models (RoBERTa-base, T5-base) with up to 800x, (c) vision models (ViT-B/32, ViT-L/14) with up to 400x, and (d) multi-modal models (BEiT-3) with 40x compression ratio, demonstrate that UltraDelta consistently outperforms existing methods, especially under ultra-high compression.
♻ ☆ On Path to Multimodal Historical Reasoning: HistBench and HistAgent
Recent advances in large language models (LLMs) have led to remarkable progress across domains, yet their capabilities in the humanities, particularly history, remain underexplored. Historical reasoning poses unique challenges for AI, involving multimodal source interpretation, temporal inference, and cross-linguistic analysis. While general-purpose agents perform well on many existing benchmarks, they lack the domain-specific expertise required to engage with historical materials and questions. To address this gap, we introduce HistBench, a new benchmark of 414 high-quality questions designed to evaluate AI's capacity for historical reasoning and authored by more than 40 expert contributors. The tasks span a wide range of historical problems-from factual retrieval based on primary sources to interpretive analysis of manuscripts and images, to interdisciplinary challenges involving archaeology, linguistics, or cultural history. Furthermore, the benchmark dataset spans 29 ancient and modern languages and covers a wide range of historical periods and world regions. Finding the poor performance of LLMs and other agents on HistBench, we further present HistAgent, a history-specific agent equipped with carefully designed tools for OCR, translation, archival search, and image understanding in History. On HistBench, HistAgent based on GPT-4o achieves an accuracy of 27.54% pass@1 and 36.47% pass@2, significantly outperforming LLMs with online search and generalist agents, including GPT-4o (18.60%), DeepSeek-R1(14.49%) and Open Deep Research-smolagents(20.29% pass@1 and 25.12% pass@2). These results highlight the limitations of existing LLMs and generalist agents and demonstrate the advantages of HistAgent for historical reasoning.
comment: 17 pages, 7 figures
♻ ☆ TARDIS STRIDE: A Spatio-Temporal Road Image Dataset and World Model for Autonomy
World models aim to simulate environments and enable effective agent behavior. However, modeling real-world environments presents unique challenges as they dynamically change across both space and, crucially, time. To capture these composed dynamics, we introduce a Spatio-Temporal Road Image Dataset for Exploration (STRIDE) permuting 360-degree panoramic imagery into rich interconnected observation, state and action nodes. Leveraging this structure, we can simultaneously model the relationship between egocentric views, positional coordinates, and movement commands across both space and time. We benchmark this dataset via TARDIS, a transformer-based generative world model that integrates spatial and temporal dynamics through a unified autoregressive framework trained on STRIDE. We demonstrate robust performance across a range of agentic tasks such as controllable photorealistic image synthesis, instruction following, autonomous self-control, and state-of-the-art georeferencing. These results suggest a promising direction towards sophisticated generalist agents--capable of understanding and manipulating the spatial and temporal aspects of their material environments--with enhanced embodied reasoning capabilities. Training code, datasets, and model checkpoints are made available at https://huggingface.co/datasets/Tera-AI/STRIDE.
comment: Computer Vision, Pattern Recognition, Early-Fusion, Dataset, Data Augmentation
♻ ☆ WebXAII: an open-source web framework to study human-XAI interaction
This article introduces WebXAII, an open-source web framework designed to facilitate research on human interaction with eXplainable Artificial Intelligence (XAI) systems. The field of XAI is rapidly expanding, driven by the growing societal implications of the widespread adoption of AI (and in particular machine learning) across diverse applications. Researchers who study the interaction between humans and XAI techniques typically develop ad hoc interfaces in order to conduct their studies. These interfaces are usually not shared alongside the results of the studies, which limits their reusability and the reproducibility of experiments. In response, we design and implement WebXAII, a web-based platform that can embody full experimental protocols, meaning that it can present all aspects of the experiment to human participants and record their responses. The experimental protocols are translated into a composite architecture of generic views and modules, which offers a lot of flexibility. The architecture is defined in a structured configuration file, so that protocols can be implemented with minimal programming skills. We demonstrate that WebXAII can effectively embody relevant protocols, by reproducing the protocol of a state-of-the-art study of the literature.
♻ ☆ Adaptive Experimental Design for Policy Learning
This study investigates the contextual best arm identification (BAI) problem, aiming to design an adaptive experiment to identify the best treatment arm conditioned on contextual information (covariates). We consider a decision-maker who assigns treatment arms to experimental units during an experiment and recommends the estimated best treatment arm based on the contexts at the end of the experiment. The decision-maker uses a policy for recommendations, which is a function that provides the estimated best treatment arm given the contexts. In our evaluation, we focus on the worst-case expected regret, a relative measure between the expected outcomes of an optimal policy and our proposed policy. We derive a lower bound for the expected simple regret and then propose a strategy called Adaptive Sampling-Policy Learning (PLAS). We prove that this strategy is minimax rate-optimal in the sense that its leading factor in the regret upper bound matches the lower bound as the number of experimental units increases.
comment: arXiv admin note: text overlap with arXiv:2302.02988
♻ ☆ Behaviour Planning: A Toolkit for Diverse Planning
Diverse planning approaches are utilised in real-world applications like risk management, automated streamed data analysis, and malware detection. The current diverse planning formulations encode the diversity model as a distance function, which is computational inexpensive when comparing two plans. However, such modelling approach limits what can be encoded as measure of diversity, as well as the ability to explain why two plans are different. This paper introduces a novel approach to the diverse planning problem, allowing for more expressive modelling of diversity using a n-dimensional grid representation, where each dimension corresponds to a user-defined feature. Furthermore, we present a novel toolkit that generates diverse plans based on such customisable diversity models, called \emph{Behaviour Planning}. We provide an implementation for behaviour planning using planning-as-satisfiability. An empirical evaluation of our implementation shows that behaviour planning significantly outperforms the current diverse planning method in generating diverse plans measured on our new customisable diversity models. Our implementation is the first diverse planning approach to support planning categories beyond classical planning, such as over-subscription and numerical planning.
♻ ☆ Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation
Gradient-based optimization has been a cornerstone of machine learning that enabled the vast advances of Artificial Intelligence (AI) development over the past decades. However, this type of optimization requires differentiation, and with recent evidence of the benefits of non-differentiable (e.g. neuromorphic) architectures over classical models w.r.t. efficiency, such constraints can become limiting in the future. We present Layer-wise Feedback Propagation (LFP), a novel training principle for neural network-like predictors that utilizes methods from the domain of explainability to decompose a reward to individual neurons based on their respective contributions. Leveraging these neuron-wise rewards, our method then implements a greedy approach reinforcing helpful parts of the network and weakening harmful ones. While having comparable computational complexity to gradient descent, LFP does not require gradient computation and generates sparse and thereby memory- and energy-efficient parameter updates and models. We establish the convergence of LFP theoretically and empirically, demonstrating its effectiveness on various models and datasets. Via two applications - neural network pruning and the approximation-free training of Spiking Neural Networks (SNNs) - we demonstrate that LFP combines increased efficiency in terms of computation and representation with flexibility w.r.t. choice of model architecture and objective function. Our code is available at https://github.com/leanderweber/layerwise-feedback-propagation.
♻ ☆ LAECIPS: Large Vision Model Assisted Adaptive Edge-Cloud Collaboration for IoT-based Embodied Intelligence System
Embodied intelligence (EI) enables manufacturing systems to flexibly perceive, reason, adapt, and operate within dynamic shop floor environments. In smart manufacturing, a representative EI scenario is robotic visual inspection, where industrial robots must accurately inspect components on rapidly changing, heterogeneous production lines. This task requires both high inference accuracy especially for uncommon defects and low latency to match production speeds, despite evolving lighting, part geometries, and surface conditions. To meet these needs, we propose LAECIPS, a large vision model-assisted adaptive edge-cloud collaboration framework for IoT-based embodied intelligence systems. LAECIPS decouples large vision models in the cloud from lightweight models on the edge, enabling plug-and-play model adaptation and continual learning. Through a hard input mining-based inference strategy, LAECIPS routes complex and uncertain inspection cases to the cloud while handling routine tasks at the edge, achieving both high accuracy and low latency. Experiments conducted on a real-world robotic semantic segmentation system for visual inspection demonstrate significant improvements in accuracy, processing latency, and communication overhead compared to state-of-the-art methods. LAECIPS provides a practical and scalable foundation for embodied intelligence in smart manufacturing, especially in adaptive robotic inspection and quality control scenarios.
♻ ☆ Dual Thinking and Logical Processing -- Are Multi-modal Large Language Models Closing the Gap with Human Vision ?
The dual thinking framework considers fast, intuitive, and slower logical processing. The perception of dual thinking in vision requires images where inferences from intuitive and logical processing differ, and the latter is under-explored in current studies. We introduce a novel adversarial dataset to provide evidence for the dual thinking framework in human vision, which also facilitates the study of the qualitative behavior of deep learning models. Our psychophysical studies show the presence of multiple inferences in rapid succession, and analysis of errors shows that the early stopping of visual processing can result in missing relevant information. MLLMs (Multi-modal Large Language Models) and VLMs (Vision Language Models) have made significant progress in correcting errors in intuitive processing in human vision and showed enhanced performance on images requiring logical processing. However, their improvements in logical processing have not kept pace with their advancements in intuitive processing. In contrast, segmentation models exhibit errors similar to those seen in intuitive human processing and lack understanding of sub-structures, as indicated by errors related to sub-components in identified instances. As AI (Artificial Intelligence)-based systems find increasing applications in safety-critical domains like autonomous driving, the integration of logical processing capabilities becomes essential. This not only enhances performance but also addresses the limitations of scaling-based approaches while ensuring robustness and reliability in real-world environments.
♻ ☆ Infrastructure for AI Agents
AI agents plan and execute interactions in open-ended environments. For example, OpenAI's Operator can use a web browser to do product comparisons and buy online goods. Much research on making agents useful and safe focuses on directly modifying their behaviour, such as by training them to follow user instructions. Direct behavioural modifications are useful, but do not fully address how heterogeneous agents will interact with each other and other actors. Rather, we will need external protocols and systems to shape such interactions. For instance, agents will need more efficient protocols to communicate with each other and form agreements. Attributing an agent's actions to a particular human or other legal entity can help to establish trust, and also disincentivize misuse. Given this motivation, we propose the concept of \textbf{agent infrastructure}: technical systems and shared protocols external to agents that are designed to mediate and influence their interactions with and impacts on their environments. Just as the Internet relies on protocols like HTTPS, our work argues that agent infrastructure will be similarly indispensable to ecosystems of agents. We identify three functions for agent infrastructure: 1) attributing actions, properties, and other information to specific agents, their users, or other actors; 2) shaping agents' interactions; and 3) detecting and remedying harmful actions from agents. We provide an incomplete catalog of research directions for such functions. For each direction, we include analysis of use cases, infrastructure adoption, relationships to existing (internet) infrastructure, limitations, and open questions. Making progress on agent infrastructure can prepare society for the adoption of more advanced agents.
comment: Accepted to TMLR
♻ ☆ AlignDistil: Token-Level Language Model Alignment as Adaptive Policy Distillation ACL 2025
In modern large language models (LLMs), LLM alignment is of crucial importance and is typically achieved through methods such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO). However, in most existing methods for LLM alignment, all tokens in the response are optimized using a sparse, response-level reward or preference annotation. The ignorance of token-level rewards may erroneously punish high-quality tokens or encourage low-quality tokens, resulting in suboptimal performance and slow convergence speed. To address this issue, we propose AlignDistil, an RLHF-equivalent distillation method for token-level reward optimization. Specifically, we introduce the reward learned by DPO into the RLHF objective and theoretically prove the equivalence between this objective and a token-level distillation process, where the teacher distribution linearly combines the logits from the DPO model and a reference model. On this basis, we further bridge the accuracy gap between the reward from the DPO model and the pure reward model, by building a contrastive DPO reward with a normal and a reverse DPO model. Moreover, to avoid under- and over-optimization on different tokens, we design a token adaptive logit extrapolation mechanism to construct an appropriate teacher distribution for each token. Experimental results demonstrate the superiority of our AlignDistil over existing methods and showcase fast convergence due to its token-level distributional reward optimization.
comment: ACL 2025 Main Conference, code available at: https://github.com/songmzhang/AlignDistil
♻ ☆ LLM-Guided Indoor Navigation with Multimodal Map Understanding
Indoor navigation presents unique challenges due to complex layouts and the unavailability of GNSS signals. Existing solutions often struggle with contextual adaptation, and typically require dedicated hardware. In this work, we explore the potential of a Large Language Model (LLM), i.e., ChatGPT, to generate natural, context-aware navigation instructions from indoor map images. We design and evaluate test cases across different real-world environments, analyzing the effectiveness of LLMs in interpreting spatial layouts, handling user constraints, and planning efficient routes. Our findings demonstrate the potential of LLMs for supporting personalized indoor navigation, with an average of 86.59% correct indications and a maximum of 97.14%. The proposed system achieves high accuracy and reasoning performance. These results have key implications for AI-driven navigation and assistive technologies.
comment: 7 pages, 3 figures, 5 tables
Learning Multi-Branch Cooperation for Enhanced Click-Through Rate Prediction at Taobao
Existing click-through rate (CTR) prediction works have studied the role of feature interaction through a variety of techniques. Each interaction technique exhibits its own strength, and solely using one type usually constrains the model's capability to capture the complex feature relationships, especially for industrial data with enormous input feature fields. Recent research shows that effective CTR models often combine an MLP network with a dedicated feature interaction network in a two-parallel structure. However, the interplay and cooperative dynamics between different streams or branches remain under-researched. In this work, we introduce a novel Multi-Branch Cooperation Network (MBCnet) which enables multiple branch networks to collaborate with each other for better complex feature interaction modeling. Specifically, MBCnet consists of three branches: the Extensible Feature Grouping and Crossing (EFGC) branch that promotes the model's memorization ability of specific feature fields, the low rank Cross Net branch and Deep branch to enhance explicit and implicit feature crossing for improved generalization. Among these branches, a novel cooperation scheme is proposed based on two principles: Branch co-teaching and moderate differentiation. Branch co-teaching encourages well-learned branches to support poorly-learned ones on specific training samples. Moderate differentiation advocates branches to maintain a reasonable level of difference in their feature representations on the same inputs. This cooperation strategy improves learning through mutual knowledge sharing and boosts the discovery of diverse feature interactions across branches. Experiments on large-scale industrial datasets and online A/B test at Taobao app demonstrate MBCnet's superior performance, delivering a 0.09 point increase in CTR, 1.49% growth in deals, and 1.62% rise in GMV. Core codes are available online.
comment: 14 pages
♻ ☆ Serving Large Language Models on Huawei CloudMatrix384
The rapid evolution of large language models (LLMs), driven by growing parameter scales, adoption of mixture-of-experts (MoE) architectures, and expanding context lengths, imposes unprecedented demands on AI infrastructure. Traditional AI clusters face limitations in compute intensity, memory bandwidth, inter-chip communication, and latency, compounded by variable workloads and strict service-level objectives. Addressing these issues requires fundamentally redesigned hardware-software integration. This paper introduces Huawei CloudMatrix, a next-generation AI datacenter architecture, realized in the production-grade CloudMatrix384 supernode. It integrates 384 Ascend 910 NPUs and 192 Kunpeng CPUs interconnected via an ultra-high-bandwidth Unified Bus (UB) network, enabling direct all-to-all communication and dynamic pooling of resources. These features optimize performance for communication-intensive operations, such as large-scale MoE expert parallelism and distributed key-value cache access. To fully leverage CloudMatrix384, we propose CloudMatrix-Infer, an advanced LLM serving solution incorporating three core innovations: a peer-to-peer serving architecture that independently scales prefill, decode, and caching; a large-scale expert parallelism strategy supporting EP320 via efficient UB-based token dispatch; and hardware-aware optimizations including specialized operators, microbatch-based pipelining, and INT8 quantization. Evaluation with the DeepSeek-R1 model shows CloudMatrix-Infer achieves state-of-the-art efficiency: prefill throughput of 6,688 tokens/s per NPU and decode throughput of 1,943 tokens/s per NPU (<50 ms TPOT). It effectively balances throughput and latency, sustaining 538 tokens/s per NPU even under stringent 15 ms latency constraints, while INT8 quantization maintains model accuracy across benchmarks.
comment: 59 pages, 24 figures
♻ ☆ Guaranteed prediction sets for functional surrogate models
We propose a method for obtaining statistically guaranteed prediction sets for functional machine learning methods: surrogate models which map between function spaces, motivated by the need to build reliable PDE emulators. The method constructs nested prediction sets on a low-dimensional representation (an SVD) of the surrogate model's error, and then maps these sets to the prediction space using set-propagation techniques. This results in prediction sets for functional surrogate models with conformal prediction coverage guarantees. We use zonotopes as basis of the set construction, which allow an exact linear propagation and are closed under Cartesian products, making them well-suited to this high-dimensional problem. The method is model agnostic and can thus be applied to complex Sci-ML models, including Neural Operators, but also in simpler settings. We also introduce a technique to capture the truncation error of the SVD, preserving the guarantees of the method.
♻ ☆ Automatic dataset shift identification to support safe deployment of medical imaging AI MICCAI 2025
Shifts in data distribution can substantially harm the performance of clinical AI models and lead to misdiagnosis. Hence, various methods have been developed to detect the presence of such shifts at deployment time. However, the root causes of dataset shifts are diverse, and the choice of shift mitigation strategies is highly dependent on the precise type of shift encountered at test time. As such, detecting test-time dataset shift is not sufficient: precisely identifying which type of shift has occurred is critical. In this work, we propose the first unsupervised dataset shift identification framework for imaging datasets, effectively distinguishing between prevalence shift (caused by a change in the label distribution), covariate shift (caused by a change in input characteristics) and mixed shifts (simultaneous prevalence and covariate shifts). We discuss the importance of self-supervised encoders for detecting subtle covariate shifts and propose a novel shift detector leveraging both self-supervised encoders and task model outputs for improved shift detection. We show the effectiveness of the proposed shift identification framework across three different imaging modalities (chest radiography, digital mammography, and retinal fundus images) on five types of real-world dataset shifts using five large publicly available datasets.
comment: Accepted at MICCAI 2025. This version is an extended version with additional experimental results. Code available at https://github.com/biomedia-mira/shift_identification
♻ ☆ BEADs: Bias Evaluation Across Domains
Recent advancements in large language models (LLMs) have significantly improved natural language processing (NLP) applications. However, these models often inherit biases from their training data. While several datasets exist for bias detection, most are limited to one or two NLP tasks, typically classification or evaluation, and lack comprehensive coverage across a broader range of tasks. To address this gap, we introduce the Bias Evaluations Across Domains (BEADs) dataset, designed to support a wide range of NLP tasks, including text classification, token classification, bias quantification, and benign language generation. A key contribution of this work is the gold-standard annotation provided by GPT-4 for scalability, with expert verification to ensure high reliability. BEADs can be used for both fine-tuning models (for classification and generation tasks) and evaluating LLM behavior. Our findings show that BEADs effectively surfaces various biases during model fine-tuning and helps reduce biases in language generation tasks while maintaining output quality. The dataset also highlights prevalent demographic biases in LLMs during evaluation. We release BEADs as a practical resource for detecting and mitigating bias across domains, supporting the development of responsible AI systems. Project: https://vectorinstitute.github.io/BEAD/ Data: https://huggingface.co/datasets/shainar/BEAD
comment: under review
♻ ☆ SwarmThinkers: Learning Physically Consistent Atomic KMC Transitions at Scale
Can a scientific simulation system be physically consistent, interpretable by design, and scalable across regimes--all at once? Despite decades of progress, this trifecta remains elusive. Classical methods like Kinetic Monte Carlo ensure thermodynamic accuracy but scale poorly; learning-based methods offer efficiency but often sacrifice physical consistency and interpretability. We present SwarmThinkers, a reinforcement learning framework that recasts atomic-scale simulation as a physically grounded swarm intelligence system. Each diffusing particle is modeled as a local decision-making agent that selects transitions via a shared policy network trained under thermodynamic constraints. A reweighting mechanism fuses learned preferences with transition rates, preserving statistical fidelity while enabling interpretable, step-wise decision making. Training follows a centralized-training, decentralized-execution paradigm, allowing the policy to generalize across system sizes, concentrations, and temperatures without retraining. On a benchmark simulating radiation-induced Fe-Cu alloy precipitation, SwarmThinkers is the first system to achieve full-scale, physically consistent simulation on a single A100 GPU, previously attainable only via OpenKMC on a supercomputer. It delivers up to 4963x (3185x on average) faster computation with 485x lower memory usage. By treating particles as decision-makers, not passive samplers, SwarmThinkers marks a paradigm shift in scientific simulation--one that unifies physical consistency, interpretability, and scalability through agent-driven intelligence.
♻ ☆ Multi-Preference Optimization: Generalizing DPO via Set-Level Contrasts
Direct Preference Optimization (DPO) has become a popular approach for aligning language models using pairwise preferences. However, in practical post-training pipelines, on-policy generation typically yields multiple candidate responses per prompt, which are scored by a reward model to guide learning. In this setting, we propose $\textbf{Multi-Preference Optimization (MPO)}$, a generalization of DPO that optimizes over entire sets of responses by extending the Bradley-Terry model to groupwise comparisons between chosen and rejected sets. To further enhance learning, MPO employs deviation-based weighting, which emphasizes outlier responses that deviate most from the mean reward, effectively inducing a self-paced curriculum. We theoretically prove that MPO reduces alignment bias at a rate of $\mathcal{O}\left(\frac{1}{\sqrt{n}}\right)$ with respect to the number of responses per query. Empirically, MPO achieves state-of-the-art performance on the UltraFeedback benchmark and yields up to $\sim 17.5\%$ improvement over the state-of-the-art baseline in length-controlled win rate on AlpacaEval2, establishing a new baseline for preference-based alignment
♻ ☆ Learning Dynamics in Continual Pre-Training for Large Language Models ICML2025
Continual Pre-Training (CPT) has become a popular and effective method to apply strong foundation models to specific downstream tasks. In this work, we explore the learning dynamics throughout the CPT process for large language models. We specifically focus on how general and downstream domain performance evolves at each training step, with domain performance measured via validation losses. We have observed that the CPT loss curve fundamentally characterizes the transition from one curve to another hidden curve, and could be described by decoupling the effects of distribution shift and learning rate annealing. We derive a CPT scaling law that combines the two factors, enabling the prediction of loss at any (continual) training steps and across learning rate schedules (LRS) in CPT. Our formulation presents a comprehensive understanding of several critical factors in CPT, including loss potential, peak learning rate, training steps, replay ratio, etc. Moreover, our approach can be adapted to customize training hyper-parameters to different CPT goals such as balancing general and domain-specific performance. Extensive experiments demonstrate that our scaling law holds across various CPT datasets and training hyper-parameters.
comment: Accepted to ICML2025 (Oral)
♻ ☆ Federated Learning for MRI-based BrainAGE: a multicenter study on post-stroke functional outcome prediction
$\textbf{Objective:}$ Brain-predicted age difference (BrainAGE) is a neuroimaging biomarker reflecting brain health. However, training robust BrainAGE models requires large datasets, often restricted by privacy concerns. This study evaluates the performance of federated learning (FL) for BrainAGE estimation in ischemic stroke patients treated with mechanical thrombectomy, and investigates its association with clinical phenotypes and functional outcomes. $\textbf{Methods:}$ We used FLAIR brain images from 1674 stroke patients across 16 hospital centers. We implemented standard machine learning and deep learning models for BrainAGE estimates under three data management strategies: centralized learning (pooled data), FL (local training at each site), and single-site learning. We reported prediction errors and examined associations between BrainAGE and vascular risk factors (e.g., diabetes mellitus, hypertension, smoking), as well as functional outcomes at three months post-stroke. Logistic regression evaluated BrainAGE's predictive value for these outcomes, adjusting for age, sex, vascular risk factors, stroke severity, time between MRI and arterial puncture, prior intravenous thrombolysis, and recanalisation outcome. $\textbf{Results:}$ While centralized learning yielded the most accurate predictions, FL consistently outperformed single-site models. BrainAGE was significantly higher in patients with diabetes mellitus across all models. Comparisons between patients with good and poor functional outcomes, and multivariate predictions of these outcomes showed the significance of the association between BrainAGE and post-stroke recovery. $\textbf{Conclusion:}$ FL enables accurate age predictions without data centralization. The strong association between BrainAGE, vascular risk factors, and post-stroke recovery highlights its potential for prognostic modeling in stroke care.
♻ ☆ Semantic Preprocessing for LLM-based Malware Analysis
In a context of malware analysis, numerous approaches rely on Artificial Intelligence to handle a large volume of data. However, these techniques focus on data view (images, sequences) and not on an expert's view. Noticing this issue, we propose a preprocessing that focuses on expert knowledge to improve malware semantic analysis and result interpretability. We propose a new preprocessing method which creates JSON reports for Portable Executable files. These reports gather features from both static and behavioral analysis, and incorporate packer signature detection, MITRE ATT\&CK and Malware Behavior Catalog (MBC) knowledge. The purpose of this preprocessing is to gather a semantic representation of binary files, understandable by malware analysts, and that can enhance AI models' explainability for malicious files analysis. Using this preprocessing to train a Large Language Model for Malware classification, we achieve a weighted-average F1-score of 0.94 on a complex dataset, representative of market reality.
♻ ☆ AutoSculpt: A Pattern-based Model Auto-pruning Framework Using Reinforcement Learning and Graph Learning
As deep neural networks (DNNs) are increasingly deployed on edge devices, optimizing models for constrained computational resources is critical. Existing auto-pruning methods face challenges due to the diversity of DNN models, various operators (e.g., filters), and the difficulty in balancing pruning granularity with model accuracy. To address these limitations, we introduce AutoSculpt, a pattern-based automated pruning framework designed to enhance efficiency and accuracy by leveraging graph learning and deep reinforcement learning (DRL). AutoSculpt automatically identifies and prunes regular patterns within DNN architectures that can be recognized by existing inference engines, enabling runtime acceleration. Three key steps in AutoSculpt include: (1) Constructing DNNs as graphs to encode their topology and parameter dependencies, (2) embedding computationally efficient pruning patterns, and (3) utilizing DRL to iteratively refine auto-pruning strategies until the optimal balance between compression and accuracy is achieved. Experimental results demonstrate the effectiveness of AutoSculpt across various architectures, including ResNet, MobileNet, VGG, and Vision Transformer, achieving pruning rates of up to 90% and nearly 18% improvement in FLOPs reduction, outperforming all baselines. The codes can be available at https://anonymous.4open.science/r/AutoSculpt-DDA0
comment: I have identified a significant and fundamental flaw in the methodology described in Section 3 of the manuscript. This flaw pertains to a critical error in the implementation of the model's training procedure, which renders the reported performance metrics unreliable. This issue is not correctable through an erratum or replacement as it undermines the core findings and validity of the entire study
♻ ☆ Representation Learning with Mutual Influence of Modalities for Node Classification in Multi-Modal Heterogeneous Networks
Nowadays, numerous online platforms can be described as multi-modal heterogeneous networks (MMHNs), such as Douban's movie networks and Amazon's product review networks. Accurately categorizing nodes within these networks is crucial for analyzing the corresponding entities, which requires effective representation learning on nodes. However, existing multi-modal fusion methods often adopt either early fusion strategies which may lose the unique characteristics of individual modalities, or late fusion approaches overlooking the cross-modal guidance in GNN-based information propagation. In this paper, we propose a novel model for node classification in MMHNs, named Heterogeneous Graph Neural Network with Inter-Modal Attention (HGNN-IMA). It learns node representations by capturing the mutual influence of multiple modalities during the information propagation process, within the framework of heterogeneous graph transformer. Specifically, a nested inter-modal attention mechanism is integrated into the inter-node attention to achieve adaptive multi-modal fusion, and modality alignment is also taken into account to encourage the propagation among nodes with consistent similarities across all modalities. Moreover, an attention loss is augmented to mitigate the impact of missing modalities. Extensive experiments validate the superiority of the model in the node classification task, providing an innovative view to handle multi-modal data, especially when accompanied with network structures.
♻ ☆ Efficient Mixture-of-Expert for Video-based Driver State and Physiological Multi-task Estimation in Conditional Autonomous Driving
Road safety remains a critical challenge worldwide, with approximately 1.35 million fatalities annually attributed to traffic accidents, often due to human errors. As we advance towards higher levels of vehicle automation, challenges still exist, as driving with automation can cognitively over-demand drivers if they engage in non-driving-related tasks (NDRTs), or lead to drowsiness if driving was the sole task. This calls for the urgent need for an effective Driver Monitoring System (DMS) that can evaluate cognitive load and drowsiness in SAE Level-2/3 autonomous driving contexts. In this study, we propose a novel multi-task DMS, termed VDMoE, which leverages RGB video input to monitor driver states non-invasively. By utilizing key facial features to minimize computational load and integrating remote Photoplethysmography (rPPG) for physiological insights, our approach enhances detection accuracy while maintaining efficiency. Additionally, we optimize the Mixture-of-Experts (MoE) framework to accommodate multi-modal inputs and improve performance across different tasks. A novel prior-inclusive regularization method is introduced to align model outputs with statistical priors, thus accelerating convergence and mitigating overfitting risks. We validate our method with the creation of a new dataset (MCDD), which comprises RGB video and physiological indicators from 42 participants, and two public datasets. Our findings demonstrate the effectiveness of VDMoE in monitoring driver states, contributing to safer autonomous driving systems. The code and data will be released.
♻ ☆ Batayan: A Filipino NLP benchmark for evaluating Large Language Models ACL 2025
Recent advances in large language models (LLMs) have demonstrated remarkable capabilities on widely benchmarked high-resource languages. However, linguistic nuances of under-resourced languages remain unexplored. We introduce Batayan, a holistic Filipino benchmark that systematically evaluates LLMs across three key natural language processing (NLP) competencies: understanding, reasoning, and generation. Batayan consolidates eight tasks, three of which have not existed prior for Filipino corpora, covering both Tagalog and code-switched Taglish utterances. Our rigorous, native-speaker-driven adaptation and validation processes ensures fluency and authenticity to the complex morphological and syntactic structures of Filipino, alleviating the pervasive translationese bias in existing Filipino corpora. We report empirical results on a variety of open-source and commercial LLMs, highlighting significant performance gaps that signal the under-representation of Filipino in pre-training corpora, the unique hurdles in modeling Filipino's rich morphology and construction, and the importance of explicit Filipino language support. Moreover, we discuss the practical challenges encountered in dataset construction and propose principled solutions for building culturally and linguistically-faithful resources in under-represented languages. We also provide a public evaluation suite as a clear foundation for iterative, community-driven progress in Filipino NLP.
comment: Accepted to ACL 2025 (Main Conference)
♻ ☆ AGI-Driven Generative Semantic Communications: Principles and Practices
Semantic communications leverage artificial intelligence (AI) technologies to extract semantic information for efficient data delivery, thereby significantly reducing communication cost. With the evolution towards artificial general intelligence (AGI), the increasing demands for AGI services pose new challenges to semantic communications. In this context, an AGI application is typically defined on a general-sense task, covering a broad, even unforeseen, set of objectives, as well as driven by the need for a human-friendly interface in forms (e.g., videos, images, or text) easily understood by human users.In response, we introduce an AGI-driven communication paradigm for supporting AGI applications, called generative semantic communication (GSC). We first describe the basic concept of GSC and its difference from existing semantic communications, and then introduce a general framework of GSC based on advanced AI technologies including foundation models and generative models. Two case studies are presented to verify the advantages of GSC. Finally, open challenges and new research directions are discussed to stimulate this line of research and pave the way for practical applications.
♻ ☆ SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration
Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities. However, their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation. Existing VLA acceleration methods primarily focus on structural optimization, overlooking the fact that these models operate in sequential decision-making environments. As a result, temporal redundancy in sequential action generation and spatial redundancy in visual input remain unaddressed. To this end, we propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens. Specifically, we design an action-aware model scheduling mechanism that reduces temporal redundancy by dynamically switching between VLA model and a lightweight generator. Inspired by the human motion pattern of focusing on key decision points while relying on intuition for other actions, we categorize VLA actions into deliberative and intuitive, assigning the former to the VLA model and the latter to the lightweight generator, enabling frequency-adaptive execution through collaborative model scheduling. To address spatial redundancy, we further develop a spatio-semantic dual-aware token pruning method. Tokens are classified into spatial and semantic types and pruned based on their dual-aware importance to accelerate VLA inference. These two mechanisms work jointly to guide the VLA in focusing on critical actions and salient visual information, achieving effective acceleration while maintaining high accuracy. Experimental results demonstrate that our method achieves up to 1.5$\times$ acceleration with less than 3% drop in accuracy, outperforming existing approaches in multiple tasks.
♻ ☆ Decentralized Collective World Model for Emergent Communication and Coordination
We propose a fully decentralized multi-agent world model that enables both symbol emergence for communication and coordinated behavior through temporal extension of collective predictive coding. Unlike previous research that focuses on either communication or coordination separately, our approach achieves both simultaneously. Our method integrates world models with communication channels, enabling agents to predict environmental dynamics, estimate states from partial observations, and share critical information through bidirectional message exchange with contrastive learning for message alignment. Using a two-agent trajectory drawing task, we demonstrate that our communication-based approach outperforms non-communicative models when agents have divergent perceptual capabilities, achieving the second-best coordination after centralized models. Importantly, our decentralized approach with constraints preventing direct access to other agents' internal states facilitates the emergence of more meaningful symbol systems that accurately reflect environmental states. These findings demonstrate the effectiveness of decentralized communication for supporting coordination while developing shared representations of the environment.
comment: Accepted at IEEE ICDL 2025
♻ ☆ AssistantX: An LLM-Powered Proactive Assistant in Collaborative Human-Populated Environment
Current service robots suffer from limited natural language communication abilities, heavy reliance on predefined commands, ongoing human intervention, and, most notably, a lack of proactive collaboration awareness in human-populated environments. This results in narrow applicability and low utility. In this paper, we introduce AssistantX, an LLM-powered proactive assistant designed for autonomous operation in realworld scenarios with high accuracy. AssistantX employs a multi-agent framework consisting of 4 specialized LLM agents, each dedicated to perception, planning, decision-making, and reflective review, facilitating advanced inference capabilities and comprehensive collaboration awareness, much like a human assistant by your side. We built a dataset of 210 real-world tasks to validate AssistantX, which includes instruction content and status information on whether relevant personnel are available. Extensive experiments were conducted in both text-based simulations and a real office environment over the course of a month and a half. Our experiments demonstrate the effectiveness of the proposed framework, showing that AssistantX can reactively respond to user instructions, actively adjust strategies to adapt to contingencies, and proactively seek assistance from humans to ensure successful task completion. More details and videos can be found at https://assistantx-agent.github.io/AssistantX/.
comment: 8 pages, 10 figures, 6 tables
♻ ☆ On the Limits of Language Generation: Trade-Offs Between Hallucination and Mode Collapse STOC 2025
Specifying all desirable properties of a language model is challenging, but certain requirements seem essential. Given samples from an unknown language, the trained model should produce valid strings not seen in training and be expressive enough to capture the language's full richness. Otherwise, outputting invalid strings constitutes "hallucination," and failing to capture the full range leads to "mode collapse." We ask if a language model can meet both requirements. We investigate this within a statistical language generation setting building on Gold and Angluin. Here, the model receives random samples from a distribution over an unknown language K, which belongs to a possibly infinite collection of languages. The goal is to generate unseen strings from K. We say the model generates from K with consistency and breadth if, as training size increases, its output converges to all unseen strings in K. Kleinberg and Mullainathan [KM24] asked if consistency and breadth in language generation are possible. We answer this negatively: for a large class of language models, including next-token prediction models, this is impossible for most collections of candidate languages. This contrasts with [KM24]'s result, showing consistent generation without breadth is possible for any countable collection of languages. Our finding highlights that generation with breadth fundamentally differs from generation without breadth. As a byproduct, we establish near-tight bounds on the number of samples needed for generation with or without breadth. Finally, our results offer hope: consistent generation with breadth is achievable for any countable collection of languages when negative examples (strings outside K) are available alongside positive ones. This suggests that post-training feedback, which encodes negative examples, can be crucial in reducing hallucinations while limiting mode collapse.
comment: Accepted for presentation at the 57th Symposium on Theory of Computing (STOC 2025)
♻ ☆ Rethinking External Slow-Thinking: From Snowball Errors to Probability of Correct Reasoning ICML 2025
Test-time scaling, which is also often referred to as slow-thinking, has been demonstrated to enhance multi-step reasoning in large language models (LLMs). However, despite its widespread utilization, the mechanisms underlying slow-thinking methods remain poorly understood. This paper explores the mechanisms of external slow-thinking from a theoretical standpoint. We begin by examining the snowball error effect within the LLM reasoning process and connect it to the likelihood of correct reasoning using information theory. Building on this, we show that external slow-thinking methods can be interpreted as strategies to mitigate the error probability. We further provide a comparative analysis of popular external slow-thinking approaches, ranging from simple to complex, highlighting their differences and interrelationships. Our findings suggest that the efficacy of these methods is not primarily determined by the specific framework employed, and that expanding the search scope or the model's internal reasoning capacity may yield more sustained improvements in the long term. We open-source our code at https://github.com/ZyGan1999/Snowball-Errors-and-Probability.
comment: Published as a conference paper in ICML 2025
♻ ☆ LeVERB: Humanoid Whole-Body Control with Latent Vision-Language Instruction
Vision-language-action (VLA) models have demonstrated strong semantic understanding and zero-shot generalization, yet most existing systems assume an accurate low-level controller with hand-crafted action "vocabulary" such as end-effector pose or root velocity. This assumption confines prior work to quasi-static tasks and precludes the agile, whole-body behaviors required by humanoid whole-body control (WBC) tasks. To capture this gap in the literature, we start by introducing the first sim-to-real-ready, vision-language, closed-loop benchmark for humanoid WBC, comprising over 150 tasks from 10 categories. We then propose LeVERB: Latent Vision-Language-Encoded Robot Behavior, a hierarchical latent instruction-following framework for humanoid vision-language WBC, the first of its kind. At the top level, a vision-language policy learns a latent action vocabulary from synthetically rendered kinematic demonstrations; at the low level, a reinforcement-learned WBC policy consumes these latent verbs to generate dynamics-level commands. In our benchmark, LeVERB can zero-shot attain a 80% success rate on simple visual navigation tasks, and 58.5% success rate overall, outperforming naive hierarchical whole-body VLA implementation by 7.8 times.
comment: https://ember-lab-berkeley.github.io/LeVERB-Website/
♻ ☆ FALCON: Feedback-driven Adaptive Long/short-term memory reinforced Coding Optimization system
Recently, large language models (LLMs) have achieved significant progress in automated code generation. Despite their strong instruction-following capabilities, these models frequently struggled to align with user intent in coding scenarios. In particular, they were hampered by datasets that lacked diversity and failed to address specialized tasks or edge cases. Furthermore, challenges in supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF) led to failures in generating precise, human-intent-aligned code. To tackle these challenges and improve the code generation performance for automated programming systems, we propose Feedback-driven Adaptive Long/short-term memory reinforced Coding Optimization (i.e., FALCON). FALCON is structured into two hierarchical levels. From the global level, long-term memory improves code quality by retaining and applying learned knowledge. At the local level, short-term memory allows for the incorporation of immediate feedback from compilers and AI systems. Additionally, we introduce meta-reinforcement learning with feedback rewards to solve the global-local bi-level optimization problem and enhance the model's adaptability across diverse code generation tasks. Extensive experiments demonstrate that our technique achieves state-of-the-art performance, leading other reinforcement learning methods by more than 4.5 percentage points on the MBPP benchmark and 6.1 percentage points on the Humaneval benchmark. The open-sourced code is publicly available at https://github.com/titurte/FALCON.
comment: 20 pages, 7 figures
♻ ☆ Screen Hijack: Visual Poisoning of VLM Agents in Mobile Environments
With the growing integration of vision-language models (VLMs), mobile agents are now widely used for tasks like UI automation and camera-based user assistance. These agents are often fine-tuned on limited user-generated datasets, leaving them vulnerable to covert threats during the training process. In this work we present GHOST, the first clean-label backdoor attack specifically designed for mobile agents built upon VLMs. Our method manipulates only the visual inputs of a portion of the training samples - without altering their corresponding labels or instructions - thereby injecting malicious behaviors into the model. Once fine-tuned with this tampered data, the agent will exhibit attacker-controlled responses when a specific visual trigger is introduced at inference time. The core of our approach lies in aligning the gradients of poisoned samples with those of a chosen target instance, embedding backdoor-relevant features into the poisoned training data. To maintain stealth and enhance robustness, we develop three realistic visual triggers: static visual patches, dynamic motion cues, and subtle low-opacity overlays. We evaluate our method across six real-world Android apps and three VLM architectures adapted for mobile use. Results show that our attack achieves high attack success rates (up to 94.67 percent) while maintaining high clean-task performance (FSR up to 95.85 percent). Additionally, ablation studies shed light on how various design choices affect the efficacy and concealment of the attack. Overall, this work is the first to expose critical security flaws in VLM-based mobile agents, highlighting their susceptibility to clean-label backdoor attacks and the urgent need for effective defense mechanisms in their training pipelines.
comment: 12 pages
♻ ☆ Enhancing Mathematical Reasoning in Large Language Models with Self-Consistency-Based Hallucination Detection
Large language models (LLMs) have demonstrated strong mathematical reasoning capabilities but remain susceptible to hallucinations producing plausible yet incorrect statements especially in theorem proving, symbolic manipulation, and numerical computation. While self-consistency (SC) has been explored as a means to improve factuality in LLMs, existing approaches primarily apply SC to final-answer selection, neglecting the logical consistency of intermediate reasoning steps. In this work, we introduce a structured self-consistency framework designed to enhance the reliability of mathematical reasoning. Our method enforces self-consistency across intermediate steps and final outputs, reducing logical inconsistencies and hallucinations. We evaluate our approach across three core mathematical tasks: theorem proving, symbolic transformation, and numerical computation. Experimental results demonstrate that SC significantly improves proof validity, symbolic reasoning accuracy, and numerical stability while maintaining computational efficiency. Further analysis reveals that structured self-consistency not only enhances problem-solving accuracy but also reduces the variance of model-generated outputs. These findings highlight self-consistency as a robust mechanism for improving mathematical reasoning in LLMs, paving the way for more reliable and interpretable AI-driven mathematics.
♻ ☆ Representation Learning of Point Cloud Upsampling in Global and Local Inputs
In recent years, point cloud upsampling has been widely applied in tasks such as 3D reconstruction and object recognition. This study proposed a novel framework, ReLPU, which enhances upsampling performance by explicitly learning from both global and local structural features of point clouds. Specifically, we extracted global features from uniformly segmented inputs (Average Segments) and local features from patch-based inputs of the same point cloud. These two types of features were processed through parallel autoencoders, fused, and then fed into a shared decoder for upsampling. This dual-input design improved feature completeness and cross-scale consistency, especially in sparse and noisy regions. Our framework was applied to several state-of-the-art autoencoder-based networks and validated on standard datasets. Experimental results demonstrated consistent improvements in geometric fidelity and robustness. In addition, saliency maps confirmed that parallel global-local learning significantly enhanced the interpretability and performance of point cloud upsampling.
♻ ☆ V2X-VLM: End-to-End V2X Cooperative Autonomous Driving Through Large Vision-Language Models
Vehicle-to-everything (V2X) cooperation has emerged as a promising paradigm to overcome the perception limitations of classical autonomous driving by leveraging information from both ego-vehicle and infrastructure sensors. However, effectively fusing heterogeneous visual and semantic information while ensuring robust trajectory planning remains a significant challenge. This paper introduces V2X-VLM, a novel end-to-end (E2E) cooperative autonomous driving framework based on vision-language models (VLMs). V2X-VLM integrates multiperspective camera views from vehicles and infrastructure with text-based scene descriptions to enable a more comprehensive understanding of driving environments. Specifically, we propose a contrastive learning-based mechanism to reinforce the alignment of heterogeneous visual and textual characteristics, which enhances the semantic understanding of complex driving scenarios, and employ a knowledge distillation strategy to stabilize training. Experiments on a large real-world dataset demonstrate that V2X-VLM achieves state-of-the-art trajectory planning accuracy, significantly reducing L2 error and collision rate compared to existing cooperative autonomous driving baselines. Ablation studies validate the contributions of each component. Moreover, the evaluation of robustness and efficiency highlights the practicality of V2X-VLM for real-world deployment to enhance overall autonomous driving safety and decision-making.
♻ ☆ Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation
Embodied agents exhibit immense potential across a multitude of domains, making the assurance of their behavioral safety a fundamental prerequisite for their widespread deployment. However, existing research predominantly concentrates on the security of general large language models, lacking specialized methodologies for establishing safety benchmarks and input moderation tailored to embodied agents. To bridge this gap, this paper introduces a novel input moderation framework, meticulously designed to safeguard embodied agents. This framework encompasses the entire pipeline, including taxonomy definition, dataset curation, moderator architecture, model training, and rigorous evaluation. Notably, we introduce EAsafetyBench, a meticulously crafted safety benchmark engineered to facilitate both the training and stringent assessment of moderators specifically designed for embodied agents. Furthermore, we propose Pinpoint, an innovative prompt-decoupled input moderation scheme that harnesses a masked attention mechanism to effectively isolate and mitigate the influence of functional prompts on moderation tasks. Extensive experiments conducted on diverse benchmark datasets and models validate the feasibility and efficacy of the proposed approach. The results demonstrate that our methodologies achieve an impressive average detection accuracy of 94.58%, surpassing the performance of existing state-of-the-art techniques, alongside an exceptional moderation processing time of merely 0.002 seconds per instance.
comment: 9 pages
♻ ☆ SDE-SQL: Enhancing Text-to-SQL Generation in Large Language Models via Self-Driven Exploration with SQL Probes
Recent advancements in large language models (LLMs) have significantly improved performance on the Text-to-SQL task. However, prior approaches typically rely on static, pre-processed database information provided at inference time, which limits the model's ability to fully understand the database contents. Without dynamic interaction, LLMs are constrained to fixed, human-provided context and cannot autonomously explore the underlying data. To address this limitation, we propose SDE-SQL, a framework that enables large language models to perform self-driven exploration of databases during inference. This is accomplished by generating and executing SQL probes, which allow the model to actively retrieve information from the database and iteratively update its understanding of the data. Unlike prior methods, SDE-SQL operates in a zero-shot setting, without relying on any question-SQL pairs as in-context demonstrations. When evaluated on the BIRD benchmark with Qwen2.5-72B-Instruct, SDE-SQL achieves an 8.02% relative improvement in execution accuracy over the vanilla Qwen2.5-72B-Instruct baseline, establishing a new state-of-the-art among methods based on open-source models without supervised fine-tuning (SFT) or model ensembling. Moreover, with SFT, the performance of SDE-SQL can be further enhanced, yielding an additional 0.52% improvement.
♻ ☆ Efficient Retail Video Annotation: A Robust Key Frame Generation Approach for Product and Customer Interaction Analysis ICCV 2025
Accurate video annotation plays a vital role in modern retail applications, including customer behavior analysis, product interaction detection, and in-store activity recognition. However, conventional annotation methods heavily rely on time-consuming manual labeling by human annotators, introducing non-robust frame selection and increasing operational costs. To address these challenges in the retail domain, we propose a deep learning-based approach that automates key-frame identification in retail videos and provides automatic annotations of products and customers. Our method leverages deep neural networks to learn discriminative features by embedding video frames and incorporating object detection-based techniques tailored for retail environments. Experimental results showcase the superiority of our approach over traditional methods, achieving accuracy comparable to human annotator labeling while enhancing the overall efficiency of retail video annotation. Remarkably, our approach leads to an average of 2 times cost savings in video annotation. By allowing human annotators to verify/adjust less than 5% of detected frames in the video dataset, while automating the annotation process for the remaining frames without reducing annotation quality, retailers can significantly reduce operational costs. The automation of key-frame detection enables substantial time and effort savings in retail video labeling tasks, proving highly valuable for diverse retail applications such as shopper journey analysis, product interaction detection, and in-store security monitoring.
comment: Submitting to ICCV 2025 workshop: https://retailvisionworkshop.github.io/
♻ ☆ Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning
Low-Rank Adaptation (LoRA) is widely used for adapting large language models (LLMs) to specific domains due to its efficiency and modularity. Meanwhile, vanilla LoRA struggles with task conflicts in multi-task scenarios. Recent works adopt Mixture of Experts (MoE) by treating each LoRA module as an expert, thereby mitigating task interference through multiple specialized LoRA modules. While effective, these methods often isolate knowledge within individual tasks, failing to fully exploit the shared knowledge across related tasks. In this paper, we establish a connection between single LoRA and multi-LoRA MoE, integrating them into a unified framework. We demonstrate that the dynamic routing of multiple LoRAs is functionally equivalent to rank partitioning and block-level activation within a single LoRA. We further empirically demonstrate that finer-grained LoRA partitioning, within the same total and activated parameter constraints, leads to better performance gains across heterogeneous tasks. Building on these findings, we propose Single-ranked Mixture of Experts LoRA (\textbf{SMoRA}), which embeds MoE into LoRA by \textit{treating each rank as an independent expert}. With a \textit{dynamic rank-wise activation} mechanism, SMoRA promotes finer-grained knowledge sharing while mitigating task conflicts. Experiments demonstrate that SMoRA activates fewer parameters yet achieves better performance in multi-task scenarios.
♻ ☆ Core Knowledge Deficits in Multi-Modal Language Models ICML 2025
While Multi-modal Large Language Models (MLLMs) demonstrate impressive abilities over high-level perception and reasoning, their robustness in the wild remains limited, often falling short on tasks that are intuitive and effortless for humans. We examine the hypothesis that these deficiencies stem from the absence of core knowledge--rudimentary cognitive abilities innate to humans from early childhood. To explore the core knowledge representation in MLLMs, we introduce CoreCognition, a large-scale benchmark encompassing 12 core knowledge concepts grounded in developmental cognitive science. We evaluate 230 models with 11 different prompts, leading to a total of 2,530 data points for analysis. Our experiments uncover four key findings, collectively demonstrating core knowledge deficits in MLLMs: they consistently underperform and show reduced, or even absent, scalability on low-level abilities relative to high-level ones. Finally, we propose Concept Hacking, a novel controlled evaluation method that reveals MLLMs fail to progress toward genuine core knowledge understanding, but instead rely on shortcut learning as they scale.
comment: Accepted by ICML 2025. Project page at https://williamium3000.github.io/core-knowledge and code is available at https://github.com/williamium3000/core-knowledge
♻ ☆ ShapeLib: Designing a library of programmatic 3D shape abstractions with Large Language Models
We present ShapeLib, the first method that leverages the priors of LLMs to design libraries of programmatic 3D shape abstractions. Our system accepts two forms of design intent: text descriptions of functions to include in the library and a seed set of exemplar shapes. We discover abstractions that match this design intent with a guided LLM workflow that first proposes, and then validates, different ways of applying and implementing functions. We learn recognition networks that map shapes to programs with these newly discovered abstractions by training on data produced by LLM authored synthetic data generation procedures. Across modeling domains (split by shape category), we find that LLMs, when thoughtfully combined with geometric reasoning, can be guided to author a library of abstraction functions that generalize to shapes outside of the seed set. This framework addresses a long-standing shape analysis problem of how to discover reusable abstraction functions while exposing interpretable, semantically aligned interfaces. We find that ShapeLib provides distinct advantages over prior alternative abstraction discovery works in terms of generalization, usability, and maintaining plausibility under manipulation. Finally, we demonstrate that ShapeLib's abstraction functions unlock a number of downstream applications, combining LLM reasoning over shape programs with geometry processing to support shape editing and generation.
♻ ☆ Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing
As textual reasoning with large language models (LLMs) has advanced significantly, there has been growing interest in enhancing the multimodal reasoning capabilities of large vision-language models (LVLMs). However, existing methods primarily approach multimodal reasoning in a straightforward, text-centric manner, where both reasoning and answer derivation are conducted purely through text, with the only difference being the presence of multimodal input. As a result, these methods often encounter fundamental limitations in spatial reasoning tasks that demand precise geometric understanding and continuous spatial tracking-capabilities that humans achieve through mental visualization and manipulation. To address the limitations, we propose drawing to reason in space, a novel paradigm that enables LVLMs to reason through elementary drawing operations in the visual space. By equipping models with basic drawing operations, including annotating bounding boxes and drawing auxiliary lines, we empower them to express and analyze spatial relationships through direct visual manipulation, meanwhile avoiding the performance ceiling imposed by specialized perception tools in previous tool-integrated reasoning approaches. To cultivate this capability, we develop a three-stage training framework: cold-start training with synthetic data to establish basic drawing abilities, reflective rejection sampling to enhance self-reflection behaviors, and reinforcement learning to directly optimize for target rewards. Extensive experiments demonstrate that our model, named VILASR, consistently outperforms existing methods across diverse spatial reasoning benchmarks, involving maze navigation, static spatial reasoning, video-based reasoning, and multi-view-based reasoning tasks, with an average improvement of 18.4%.
Graphics 3
☆ FlatCAD: Fast Curvature Regularization of Neural SDFs for CAD Models
Neural signed-distance fields (SDFs) have become a versatile backbone for geometric learning, yet enforcing developable, CAD-style behavior still hinges on Gaussian curvature penalties that require full Hessian evaluation and second-order automatic differentiation, both of which are costly in memory and runtime. We present a curvature proxy that regularizes only the mixed second-order term (Weingarten term), allowing the two principal curvatures to adapt freely to data while suppressing unwanted warp. Two complementary instantiations realize this idea: (i) a finite-difference proxy that replaces each Hessian entry with four forward SDF evaluations and a single first-order gradient, and (ii) an autodiff proxy that computes the same mixed derivative via one Hessian-vector product, sidestepping explicit full Hessian assembly and remaining faster in practice. Both variants converge to the exact mixed second derivative, thus preserving the intended geometric bias without incurring full second-order graphs. On the ABC benchmarks, the proxies match or exceed the reconstruction fidelity of Hessian-based baselines while reducing GPU memory use and wall-clock time by a factor of two. Because the method is drop-in and framework-agnostic, it opens a practical path toward scalable, curvature-aware SDF learning for engineering-grade shape reconstruction.
comment: 12 page, 10 figures, preprint
☆ PAROAttention: Pattern-Aware ReOrdering for Efficient Sparse and Quantized Attention in Visual Generation Models
In visual generation, the quadratic complexity of attention mechanisms results in high memory and computational costs, especially for longer token sequences required in high-resolution image or multi-frame video generation. To address this, prior research has explored techniques such as sparsification and quantization. However, these techniques face significant challenges under low density and reduced bitwidths. Through systematic analysis, we identify that the core difficulty stems from the dispersed and irregular characteristics of visual attention patterns. Therefore, instead of introducing specialized sparsification and quantization design to accommodate such patterns, we propose an alternative strategy: *reorganizing* the attention pattern to alleviate the challenges. Inspired by the local aggregation nature of visual feature extraction, we design a novel **Pattern-Aware token ReOrdering (PARO)** technique, which unifies the diverse attention patterns into a hardware-friendly block-wise pattern. This unification substantially simplifies and enhances both sparsification and quantization. We evaluate the performance-efficiency trade-offs of various design choices and finalize a methodology tailored for the unified pattern. Our approach, **PAROAttention**, achieves video and image generation with lossless metrics, and nearly identical results from full-precision (FP) baselines, while operating at notably lower density (~20%-30%) and bitwidth (**INT8/INT4**), achieving a **1.9x** to **2.7x** end-to-end latency speedup.
comment: project page: https://a-suozhang.xyz/paroattn.github.io
♻ ☆ ShapeLib: Designing a library of programmatic 3D shape abstractions with Large Language Models
We present ShapeLib, the first method that leverages the priors of LLMs to design libraries of programmatic 3D shape abstractions. Our system accepts two forms of design intent: text descriptions of functions to include in the library and a seed set of exemplar shapes. We discover abstractions that match this design intent with a guided LLM workflow that first proposes, and then validates, different ways of applying and implementing functions. We learn recognition networks that map shapes to programs with these newly discovered abstractions by training on data produced by LLM authored synthetic data generation procedures. Across modeling domains (split by shape category), we find that LLMs, when thoughtfully combined with geometric reasoning, can be guided to author a library of abstraction functions that generalize to shapes outside of the seed set. This framework addresses a long-standing shape analysis problem of how to discover reusable abstraction functions while exposing interpretable, semantically aligned interfaces. We find that ShapeLib provides distinct advantages over prior alternative abstraction discovery works in terms of generalization, usability, and maintaining plausibility under manipulation. Finally, we demonstrate that ShapeLib's abstraction functions unlock a number of downstream applications, combining LLM reasoning over shape programs with geometry processing to support shape editing and generation.
Computer Vision 111
Nabla-R2D3: Effective and Efficient 3D Diffusion Alignment with 2D Rewards
Generating high-quality and photorealistic 3D assets remains a longstanding challenge in 3D vision and computer graphics. Although state-of-the-art generative models, such as diffusion models, have made significant progress in 3D generation, they often fall short of human-designed content due to limited ability to follow instructions, align with human preferences, or produce realistic textures, geometries, and physical attributes. In this paper, we introduce Nabla-R2D3, a highly effective and sample-efficient reinforcement learning alignment framework for 3D-native diffusion models using 2D rewards. Built upon the recently proposed Nabla-GFlowNet method, which matches the score function to reward gradients in a principled manner for reward finetuning, our Nabla-R2D3 enables effective adaptation of 3D diffusion models using only 2D reward signals. Extensive experiments show that, unlike vanilla finetuning baselines which either struggle to converge or suffer from reward hacking, Nabla-R2D3 consistently achieves higher rewards and reduced prior forgetting within a few finetuning steps.
comment: Technical Report (21 pages, 21 figures)
☆ Evolutionary Caching to Accelerate Your Off-the-Shelf Diffusion Model
Diffusion-based image generation models excel at producing high-quality synthetic content, but suffer from slow and computationally expensive inference. Prior work has attempted to mitigate this by caching and reusing features within diffusion transformers across inference steps. These methods, however, often rely on rigid heuristics that result in limited acceleration or poor generalization across architectures. We propose Evolutionary Caching to Accelerate Diffusion models (ECAD), a genetic algorithm that learns efficient, per-model, caching schedules forming a Pareto frontier, using only a small set of calibration prompts. ECAD requires no modifications to network parameters or reference images. It offers significant inference speedups, enables fine-grained control over the quality-latency trade-off, and adapts seamlessly to different diffusion models. Notably, ECAD's learned schedules can generalize effectively to resolutions and model variants not seen during calibration. We evaluate ECAD on PixArt-alpha, PixArt-Sigma, and FLUX-1.dev using multiple metrics (FID, CLIP, Image Reward) across diverse benchmarks (COCO, MJHQ-30k, PartiPrompts), demonstrating consistent improvements over previous approaches. On PixArt-alpha, ECAD identifies a schedule that outperforms the previous state-of-the-art method by 4.47 COCO FID while increasing inference speedup from 2.35x to 2.58x. Our results establish ECAD as a scalable and generalizable approach for accelerating diffusion inference. Our project website is available at https://aniaggarwal.github.io/ecad and our code is available at https://github.com/aniaggarwal/ecad.
comment: 29 pages, 22 figures, 9 tables
☆ Particle-Grid Neural Dynamics for Learning Deformable Object Models from RGB-D Videos
Modeling the dynamics of deformable objects is challenging due to their diverse physical properties and the difficulty of estimating states from limited visual information. We address these challenges with a neural dynamics framework that combines object particles and spatial grids in a hybrid representation. Our particle-grid model captures global shape and motion information while predicting dense particle movements, enabling the modeling of objects with varied shapes and materials. Particles represent object shapes, while the spatial grid discretizes the 3D space to ensure spatial continuity and enhance learning efficiency. Coupled with Gaussian Splattings for visual rendering, our framework achieves a fully learning-based digital twin of deformable objects and generates 3D action-conditioned videos. Through experiments, we demonstrate that our model learns the dynamics of diverse objects -- such as ropes, cloths, stuffed animals, and paper bags -- from sparse-view RGB-D recordings of robot-object interactions, while also generalizing at the category level to unseen instances. Our approach outperforms state-of-the-art learning-based and physics-based simulators, particularly in scenarios with limited camera views. Furthermore, we showcase the utility of our learned models in model-based planning, enabling goal-conditioned object manipulation across a range of tasks. The project page is available at https://kywind.github.io/pgnd .
comment: Project page: https://kywind.github.io/pgnd
☆ Embodied Web Agents: Bridging Physical-Digital Realms for Integrated Agent Intelligence
AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-world landmarks using web knowledge. We introduce Embodied Web Agents, a novel paradigm for AI agents that fluidly bridge embodiment and web-scale reasoning. To operationalize this concept, we first develop the Embodied Web Agents task environments, a unified simulation platform that tightly integrates realistic 3D indoor and outdoor environments with functional web interfaces. Building upon this platform, we construct and release the Embodied Web Agents Benchmark, which encompasses a diverse suite of tasks including cooking, navigation, shopping, tourism, and geolocation - all requiring coordinated reasoning across physical and digital realms for systematic assessment of cross-domain intelligence. Experimental results reveal significant performance gaps between state-of-the-art AI systems and human capabilities, establishing both challenges and opportunities at the intersection of embodied cognition and web-scale knowledge access. All datasets, codes and websites are publicly available at our project page https://embodied-web-agent.github.io/.
☆ Sekai: A Video Dataset towards World Exploration
Video generation techniques have made remarkable progress, promising to be the foundation of interactive world exploration. However, existing video generation datasets are not well-suited for world exploration training as they suffer from some limitations: limited locations, short duration, static scenes, and a lack of annotations about exploration and the world. In this paper, we introduce Sekai (meaning ``world'' in Japanese), a high-quality first-person view worldwide video dataset with rich annotations for world exploration. It consists of over 5,000 hours of walking or drone view (FPV and UVA) videos from over 100 countries and regions across 750 cities. We develop an efficient and effective toolbox to collect, pre-process and annotate videos with location, scene, weather, crowd density, captions, and camera trajectories. Experiments demonstrate the quality of the dataset. And, we use a subset to train an interactive video world exploration model, named YUME (meaning ``dream'' in Japanese). We believe Sekai will benefit the area of video generation and world exploration, and motivate valuable applications.
comment: 12 pages, 6 figures
☆ UniRelight: Learning Joint Decomposition and Synthesis for Video Relighting
We address the challenge of relighting a single image or video, a task that demands precise scene intrinsic understanding and high-quality light transport synthesis. Existing end-to-end relighting models are often limited by the scarcity of paired multi-illumination data, restricting their ability to generalize across diverse scenes. Conversely, two-stage pipelines that combine inverse and forward rendering can mitigate data requirements but are susceptible to error accumulation and often fail to produce realistic outputs under complex lighting conditions or with sophisticated materials. In this work, we introduce a general-purpose approach that jointly estimates albedo and synthesizes relit outputs in a single pass, harnessing the generative capabilities of video diffusion models. This joint formulation enhances implicit scene comprehension and facilitates the creation of realistic lighting effects and intricate material interactions, such as shadows, reflections, and transparency. Trained on synthetic multi-illumination data and extensive automatically labeled real-world videos, our model demonstrates strong generalization across diverse domains and surpasses previous methods in both visual fidelity and temporal consistency.
comment: Project page: https://research.nvidia.com/labs/toronto-ai/UniRelight/
☆ Dual-Stage Value-Guided Inference with Margin-Based Reward Adjustment for Fast and Faithful VLM Captioning
Despite significant advances in inference-time search for vision-language models (VLMs), existing approaches remain both computationally expensive and prone to unpenalized, low-confidence generations which often lead to persistent hallucinations. We introduce \textbf{Value-guided Inference with Margin-based Reward (ViMaR)}, a two-stage inference framework that improves both efficiency and output fidelity by combining a temporal-difference value model with a margin-aware reward adjustment. In the first stage, we perform a single pass to identify the highest-value caption among diverse candidates. In the second stage, we selectively refine only those segments that were overlooked or exhibit weak visual grounding, thereby eliminating frequently rewarded evaluations. A calibrated margin-based penalty discourages low-confidence continuations while preserving descriptive richness. Extensive experiments across multiple VLM architectures demonstrate that ViMaR generates captions that are significantly more reliable, factually accurate, detailed, and explanatory, while achieving over 4$\times$ speedup compared to existing value-guided methods. Specifically, we show that ViMaR trained solely on LLaVA Mistral-7B, \textit{generalizes effectively to guide decoding in a stronger unseen model}. To further validate this, we adapt the ViMaR to steer generation in LLaVA-OneVision-Qwen2-7B, leading to consistent improvements in caption quality and demonstrating robust cross-model guidance. This cross-model generalization highlights ViMaR's flexibility and modularity, positioning it as a scalable and transferable inference-time decoding strategy. Furthermore, when ViMaR-generated captions are used for self-training, the underlying models achieve substantial gains across a broad suite of visual comprehension benchmarks, underscoring the potential of fast, accurate, and self-improving VLM pipelines.
☆ Demystifying the Visual Quality Paradox in Multimodal Large Language Models
Recent Multimodal Large Language Models (MLLMs) excel on benchmark vision-language tasks, yet little is known about how input visual quality shapes their responses. Does higher perceptual quality of images already translate to better MLLM understanding? We conduct the first systematic study spanning leading MLLMs and a suite of vision-language benchmarks, applying controlled degradations and stylistic shifts to each image. Surprisingly, we uncover a visual-quality paradox: model, task, and even individual-instance performance can improve when images deviate from human-perceived fidelity. Off-the-shelf restoration pipelines fail to reconcile these idiosyncratic preferences. To close the gap, we introduce Visual-Quality Test-Time Tuning (VQ-TTT)-a lightweight adaptation module that: (1) inserts a learnable, low-rank kernel before the frozen vision encoder to modulate frequency content; and (2) fine-tunes only shallow vision-encoder layers via LoRA. VQ-TTT dynamically adjusts each input image in a single forward pass, aligning it with task-specific model preferences. Across the evaluated MLLMs and all datasets, VQ-TTT lifts significant average accuracy, with no external models, cached features, or extra training data. These findings redefine ``better'' visual inputs for MLLMs and highlight the need for adaptive, rather than universally ``clean'', imagery, in the new era of AI being the main data customer.
comment: 18 pages
☆ FindingDory: A Benchmark to Evaluate Memory in Embodied Agents
Large vision-language models have recently demonstrated impressive performance in planning and control tasks, driving interest in their application to real-world robotics. However, deploying these models for reasoning in embodied contexts is limited by their ability to incorporate long-term experience collected across multiple days and represented by vast collections of images. Current VLMs typically struggle to process more than a few hundred images concurrently, highlighting the need for more efficient mechanisms to handle long-term memory in embodied settings. To effectively evaluate these models for long-horizon control, a benchmark must specifically target scenarios where memory is crucial for success. Existing long-video QA benchmarks overlook embodied challenges like object manipulation and navigation, which demand low-level skills and fine-grained reasoning over past interactions. Moreover, effective memory integration in embodied agents involves both recalling relevant historical information and executing actions based on that information, making it essential to study these aspects together rather than in isolation. In this work, we introduce a new benchmark for long-range embodied tasks in the Habitat simulator. This benchmark evaluates memory-based capabilities across 60 tasks requiring sustained engagement and contextual awareness in an environment. The tasks can also be procedurally extended to longer and more challenging versions, enabling scalable evaluation of memory and reasoning. We also present baselines that integrate state-of-the-art VLMs with low level navigation policies, assessing their performance on these memory-intensive tasks and highlight areas for improvement.
comment: Our dataset and code will be made available at: https://findingdory-benchmark.github.io/
☆ HOIDiNi: Human-Object Interaction through Diffusion Noise Optimization
We present HOIDiNi, a text-driven diffusion framework for synthesizing realistic and plausible human-object interaction (HOI). HOI generation is extremely challenging since it induces strict contact accuracies alongside a diverse motion manifold. While current literature trades off between realism and physical correctness, HOIDiNi optimizes directly in the noise space of a pretrained diffusion model using Diffusion Noise Optimization (DNO), achieving both. This is made feasible thanks to our observation that the problem can be separated into two phases: an object-centric phase, primarily making discrete choices of hand-object contact locations, and a human-centric phase that refines the full-body motion to realize this blueprint. This structured approach allows for precise hand-object contact without compromising motion naturalness. Quantitative, qualitative, and subjective evaluations on the GRAB dataset alone clearly indicate HOIDiNi outperforms prior works and baselines in contact accuracy, physical validity, and overall quality. Our results demonstrate the ability to generate complex, controllable interactions, including grasping, placing, and full-body coordination, driven solely by textual prompts. https://hoidini.github.io.
comment: Project page: https://hoidini.github.io
☆ BoxFusion: Reconstruction-Free Open-Vocabulary 3D Object Detection via Real-Time Multi-View Box Fusion
Open-vocabulary 3D object detection has gained significant interest due to its critical applications in autonomous driving and embodied AI. Existing detection methods, whether offline or online, typically rely on dense point cloud reconstruction, which imposes substantial computational overhead and memory constraints, hindering real-time deployment in downstream tasks. To address this, we propose a novel reconstruction-free online framework tailored for memory-efficient and real-time 3D detection. Specifically, given streaming posed RGB-D video input, we leverage Cubify Anything as a pre-trained visual foundation model (VFM) for single-view 3D object detection by bounding boxes, coupled with CLIP to capture open-vocabulary semantics of detected objects. To fuse all detected bounding boxes across different views into a unified one, we employ an association module for correspondences of multi-views and an optimization module to fuse the 3D bounding boxes of the same instance predicted in multi-views. The association module utilizes 3D Non-Maximum Suppression (NMS) and a box correspondence matching module, while the optimization module uses an IoU-guided efficient random optimization technique based on particle filtering to enforce multi-view consistency of the 3D bounding boxes while minimizing computational complexity. Extensive experiments on ScanNetV2 and CA-1M datasets demonstrate that our method achieves state-of-the-art performance among online methods. Benefiting from this novel reconstruction-free paradigm for 3D object detection, our method exhibits great generalization abilities in various scenarios, enabling real-time perception even in environments exceeding 1000 square meters.
comment: 11 pages, 6 figures
☆ Mono-Modalizing Extremely Heterogeneous Multi-Modal Medical Image Registration MICCAI
In clinical practice, imaging modalities with functional characteristics, such as positron emission tomography (PET) and fractional anisotropy (FA), are often aligned with a structural reference (e.g., MRI, CT) for accurate interpretation or group analysis, necessitating multi-modal deformable image registration (DIR). However, due to the extreme heterogeneity of these modalities compared to standard structural scans, conventional unsupervised DIR methods struggle to learn reliable spatial mappings and often distort images. We find that the similarity metrics guiding these models fail to capture alignment between highly disparate modalities. To address this, we propose M2M-Reg (Multi-to-Mono Registration), a novel framework that trains multi-modal DIR models using only mono-modal similarity while preserving the established architectural paradigm for seamless integration into existing models. We also introduce GradCyCon, a regularizer that leverages M2M-Reg's cyclic training scheme to promote diffeomorphism. Furthermore, our framework naturally extends to a semi-supervised setting, integrating pre-aligned and unaligned pairs only, without requiring ground-truth transformations or segmentation masks. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that M2M-Reg achieves up to 2x higher DSC than prior methods for PET-MRI and FA-MRI registration, highlighting its effectiveness in handling highly heterogeneous multi-modal DIR. Our code is available at https://github.com/MICV-yonsei/M2M-Reg.
comment: 11 pages, 3 figures, 2 tables, Accepted at Medical Image Computing and Computer Assisted Intervention (MICCAI) 2025
☆ One-Step Diffusion for Detail-Rich and Temporally Consistent Video Super-Resolution
It is a challenging problem to reproduce rich spatial details while maintaining temporal consistency in real-world video super-resolution (Real-VSR), especially when we leverage pre-trained generative models such as stable diffusion (SD) for realistic details synthesis. Existing SD-based Real-VSR methods often compromise spatial details for temporal coherence, resulting in suboptimal visual quality. We argue that the key lies in how to effectively extract the degradation-robust temporal consistency priors from the low-quality (LQ) input video and enhance the video details while maintaining the extracted consistency priors. To achieve this, we propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-based one-step diffusion model, achieving realistic frame details and temporal consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval (CFR) module to aggregate complementary information across frames, and train a Consistency-LoRA (C-LoRA) to learn robust temporal representations from degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with the temporal space defined by C-LoRA to keep temporal coherence. The two phases alternate iteratively for optimization, collaboratively delivering consistent and detail-rich outputs. During inference, the two LoRA branches are merged into the SD model, allowing efficient and high-quality video restoration in a single diffusion step. Experiments show that DLoRAL achieves strong performance in both accuracy and speed. Code and models are available at https://github.com/yjsunnn/DLoRAL.
☆ A Unified Graph-based Framework for Scalable 3D Tree Reconstruction and Non-Destructive Biomass Estimation from Point Clouds
Estimating forest above-ground biomass (AGB) is crucial for assessing carbon storage and supporting sustainable forest management. Quantitative Structural Model (QSM) offers a non-destructive approach to AGB estimation through 3D tree structural reconstruction. However, current QSM methods face significant limitations, as they are primarily designed for individual trees,depend on high-quality point cloud data from terrestrial laser scanning (TLS), and also require multiple pre-processing steps that hinder scalability and practical deployment. This study presents a novel unified framework that enables end-to-end processing of large-scale point clouds using an innovative graph-based pipeline. The proposed approach seamlessly integrates tree segmentation,leaf-wood separation and 3D skeletal reconstruction through dedicated graph operations including pathing and abstracting for tree topology reasoning. Comprehensive validation was conducted on datasets with varying leaf conditions (leaf-on and leaf-off), spatial scales (tree- and plot-level), and data sources (TLS and UAV-based laser scanning, ULS). Experimental results demonstrate strong performance under challenging conditions, particularly in leaf-on scenarios (~20% relative error) and low-density ULS datasets with partial coverage (~30% relative error). These findings indicate that the proposed framework provides a robust and scalable solution for large-scale, non-destructive AGB estimation. It significantly reduces dependency on specialized pre-processing tools and establishes ULS as a viable alternative to TLS. To our knowledge, this is the first method capable of enabling seamless, end-to-end 3D tree reconstruction at operational scales. This advancement substantially improves the feasibility of QSM-based AGB estimation, paving the way for broader applications in forest inventory and climate change research.
comment: 17 pages,19 figures
☆ Baltimore Atlas: FreqWeaver Adapter for Semi-supervised Ultra-high Spatial Resolution Land Cover Classification
Ultra-high Spatial Resolution Land Cover Classification is essential for fine-grained land cover analysis, yet it remains challenging due to the high cost of pixel-level annotations, significant scale variation, and the limited adaptability of large-scale vision models. Existing methods typically focus on 1-meter spatial resolution imagery and rely heavily on annotated data, whereas practical applications often require processing higher-resolution imagery under weak supervision. To address this, we propose a parameter-efficient semi-supervised segmentation framework for 0.3 m spatial resolution imagery, which leverages the knowledge of SAM2 and introduces a remote sensing-specific FreqWeaver Adapter to enhance fine-grained detail modeling while maintaining a lightweight design at only 5.96% of the total model parameters. By effectively leveraging unlabeled data and maintaining minimal parameter overhead, the proposed method delivers robust segmentation results with superior structural consistency, achieving a 1.78% improvement over existing parameter-efficient tuning strategies and a 3.44% gain compared to state-of-the-art high-resolution remote sensing segmentation approaches.
Show-o2: Improved Native Unified Multimodal Models
This paper presents improved native unified multimodal models, \emph{i.e.,} Show-o2, that leverage autoregressive modeling and flow matching. Built upon a 3D causal variational autoencoder space, unified visual representations are constructed through a dual-path of spatial (-temporal) fusion, enabling scalability across image and video modalities while ensuring effective multimodal understanding and generation. Based on a language model, autoregressive modeling and flow matching are natively applied to the language head and flow head, respectively, to facilitate text token prediction and image/video generation. A two-stage training recipe is designed to effectively learn and scale to larger models. The resulting Show-o2 models demonstrate versatility in handling a wide range of multimodal understanding and generation tasks across diverse modalities, including text, images, and videos. Code and models are released at https://github.com/showlab/Show-o.
comment: Technical report
Control and Realism: Best of Both Worlds in Layout-to-Image without Training ICML2025
Layout-to-Image generation aims to create complex scenes with precise control over the placement and arrangement of subjects. Existing works have demonstrated that pre-trained Text-to-Image diffusion models can achieve this goal without training on any specific data; however, they often face challenges with imprecise localization and unrealistic artifacts. Focusing on these drawbacks, we propose a novel training-free method, WinWinLay. At its core, WinWinLay presents two key strategies, Non-local Attention Energy Function and Adaptive Update, that collaboratively enhance control precision and realism. On one hand, we theoretically demonstrate that the commonly used attention energy function introduces inherent spatial distribution biases, hindering objects from being uniformly aligned with layout instructions. To overcome this issue, non-local attention prior is explored to redistribute attention scores, facilitating objects to better conform to the specified spatial conditions. On the other hand, we identify that the vanilla backpropagation update rule can cause deviations from the pre-trained domain, leading to out-of-distribution artifacts. We accordingly introduce a Langevin dynamics-based adaptive update scheme as a remedy that promotes in-domain updating while respecting layout constraints. Extensive experiments demonstrate that WinWinLay excels in controlling element placement and achieving photorealistic visual fidelity, outperforming the current state-of-the-art methods.
comment: Accepted by ICML2025
☆ Automated MRI Tumor Segmentation using hybrid U-Net with Transformer and Efficient Attention
Cancer is an abnormal growth with potential to invade locally and metastasize to distant organs. Accurate auto-segmentation of the tumor and surrounding normal tissues is required for radiotherapy treatment plan optimization. Recent AI-based segmentation models are generally trained on large public datasets, which lack the heterogeneity of local patient populations. While these studies advance AI-based medical image segmentation, research on local datasets is necessary to develop and integrate AI tumor segmentation models directly into hospital software for efficient and accurate oncology treatment planning and execution. This study enhances tumor segmentation using computationally efficient hybrid UNet-Transformer models on magnetic resonance imaging (MRI) datasets acquired from a local hospital under strict privacy protection. We developed a robust data pipeline for seamless DICOM extraction and preprocessing, followed by extensive image augmentation to ensure model generalization across diverse clinical settings, resulting in a total dataset of 6080 images for training. Our novel architecture integrates UNet-based convolutional neural networks with a transformer bottleneck and complementary attention modules, including efficient attention, Squeeze-and-Excitation (SE) blocks, Convolutional Block Attention Module (CBAM), and ResNeXt blocks. To accelerate convergence and reduce computational demands, we used a maximum batch size of 8 and initialized the encoder with pretrained ImageNet weights, training the model on dual NVIDIA T4 GPUs via checkpointing to overcome Kaggle's runtime limits. Quantitative evaluation on the local MRI dataset yielded a Dice similarity coefficient of 0.764 and an Intersection over Union (IoU) of 0.736, demonstrating competitive performance despite limited data and underscoring the importance of site-specific model development for clinical deployment.
comment: 16 pages, 5 figures
☆ RaCalNet: Radar Calibration Network for Sparse-Supervised Metric Depth Estimation
Dense metric depth estimation using millimeter-wave radar typically requires dense LiDAR supervision, generated via multi-frame projection and interpolation, to guide the learning of accurate depth from sparse radar measurements and RGB images. However, this paradigm is both costly and data-intensive. To address this, we propose RaCalNet, a novel framework that eliminates the need for dense supervision by using sparse LiDAR to supervise the learning of refined radar measurements, resulting in a supervision density of merely around 1% compared to dense-supervised methods. Unlike previous approaches that associate radar points with broad image regions and rely heavily on dense labels, RaCalNet first recalibrates and refines sparse radar points to construct accurate depth priors. These priors then serve as reliable anchors to guide monocular depth prediction, enabling metric-scale estimation without resorting to dense supervision. This design improves structural consistency and preserves fine details. Despite relying solely on sparse supervision, RaCalNet surpasses state-of-the-art dense-supervised methods, producing depth maps with clear object contours and fine-grained textures. Extensive experiments on the ZJU-4DRadarCam dataset and real-world deployment scenarios demonstrate its effectiveness, reducing RMSE by 35.30% and 34.89%, respectively.
comment: 9 pages, 7 figures
☆ CLAIM: Clinically-Guided LGE Augmentation for Realistic and Diverse Myocardial Scar Synthesis and Segmentation
Deep learning-based myocardial scar segmentation from late gadolinium enhancement (LGE) cardiac MRI has shown great potential for accurate and timely diagnosis and treatment planning for structural cardiac diseases. However, the limited availability and variability of LGE images with high-quality scar labels restrict the development of robust segmentation models. To address this, we introduce CLAIM: \textbf{C}linically-Guided \textbf{L}GE \textbf{A}ugmentation for Real\textbf{i}stic and Diverse \textbf{M}yocardial Scar Synthesis and Segmentation framework, a framework for anatomically grounded scar generation and segmentation. At its core is the SMILE module (Scar Mask generation guided by cLinical knowledgE), which conditions a diffusion-based generator on the clinically adopted AHA 17-segment model to synthesize images with anatomically consistent and spatially diverse scar patterns. In addition, CLAIM employs a joint training strategy in which the scar segmentation network is optimized alongside the generator, aiming to enhance both the realism of synthesized scars and the accuracy of the scar segmentation performance. Experimental results show that CLAIM produces anatomically coherent scar patterns and achieves higher Dice similarity with real scar distributions compared to baseline models. Our approach enables controllable and realistic myocardial scar synthesis and has demonstrated utility for downstream medical imaging task.
comment: 14 Pages
☆ NTIRE 2025 Image Shadow Removal Challenge Report
This work examines the findings of the NTIRE 2025 Shadow Removal Challenge. A total of 306 participants have registered, with 17 teams successfully submitting their solutions during the final evaluation phase. Following the last two editions, this challenge had two evaluation tracks: one focusing on reconstruction fidelity and the other on visual perception through a user study. Both tracks were evaluated with images from the WSRD+ dataset, simulating interactions between self- and cast-shadows with a large number of diverse objects, textures, and materials.
☆ Pixel-level Certified Explanations via Randomized Smoothing
Post-hoc attribution methods aim to explain deep learning predictions by highlighting influential input pixels. However, these explanations are highly non-robust: small, imperceptible input perturbations can drastically alter the attribution map while maintaining the same prediction. This vulnerability undermines their trustworthiness and calls for rigorous robustness guarantees of pixel-level attribution scores. We introduce the first certification framework that guarantees pixel-level robustness for any black-box attribution method using randomized smoothing. By sparsifying and smoothing attribution maps, we reformulate the task as a segmentation problem and certify each pixel's importance against $\ell_2$-bounded perturbations. We further propose three evaluation metrics to assess certified robustness, localization, and faithfulness. An extensive evaluation of 12 attribution methods across 5 ImageNet models shows that our certified attributions are robust, interpretable, and faithful, enabling reliable use in downstream tasks. Our code is at https://github.com/AlaaAnani/certified-attributions.
☆ Advanced cervical cancer classification: enhancing pap smear images with hybrid PMD Filter-CLAHE
Cervical cancer remains a significant health problem, especially in developing countries. Early detection is critical for effective treatment. Convolutional neural networks (CNN) have shown promise in automated cervical cancer screening, but their performance depends on Pap smear image quality. This study investigates the impact of various image preprocessing techniques on CNN performance for cervical cancer classification using the SIPaKMeD dataset. Three preprocessing techniques were evaluated: perona-malik diffusion (PMD) filter for noise reduction, contrast-limited adaptive histogram equalization (CLAHE) for image contrast enhancement, and the proposed hybrid PMD filter-CLAHE approach. The enhanced image datasets were evaluated on pretrained models, such as ResNet-34, ResNet-50, SqueezeNet-1.0, MobileNet-V2, EfficientNet-B0, EfficientNet-B1, DenseNet-121, and DenseNet-201. The results show that hybrid preprocessing PMD filter-CLAHE can improve the Pap smear image quality and CNN architecture performance compared to the original images. The maximum metric improvements are 13.62% for accuracy, 10.04% for precision, 13.08% for recall, and 14.34% for F1-score. The proposed hybrid PMD filter-CLAHE technique offers a new perspective in improving cervical cancer classification performance using CNN architectures.
☆ GenHOI: Generalizing Text-driven 4D Human-Object Interaction Synthesis for Unseen Objects
While diffusion models and large-scale motion datasets have advanced text-driven human motion synthesis, extending these advances to 4D human-object interaction (HOI) remains challenging, mainly due to the limited availability of large-scale 4D HOI datasets. In our study, we introduce GenHOI, a novel two-stage framework aimed at achieving two key objectives: 1) generalization to unseen objects and 2) the synthesis of high-fidelity 4D HOI sequences. In the initial stage of our framework, we employ an Object-AnchorNet to reconstruct sparse 3D HOI keyframes for unseen objects, learning solely from 3D HOI datasets, thereby mitigating the dependence on large-scale 4D HOI datasets. Subsequently, we introduce a Contact-Aware Diffusion Model (ContactDM) in the second stage to seamlessly interpolate sparse 3D HOI keyframes into densely temporally coherent 4D HOI sequences. To enhance the quality of generated 4D HOI sequences, we propose a novel Contact-Aware Encoder within ContactDM to extract human-object contact patterns and a novel Contact-Aware HOI Attention to effectively integrate the contact signals into diffusion models. Experimental results show that we achieve state-of-the-art results on the publicly available OMOMO and 3D-FUTURE datasets, demonstrating strong generalization abilities to unseen objects, while enabling high-fidelity 4D HOI generation.
☆ Multimodal Large Language Models for Medical Report Generation via Customized Prompt Tuning
Medical report generation from imaging data remains a challenging task in clinical practice. While large language models (LLMs) show great promise in addressing this challenge, their effective integration with medical imaging data still deserves in-depth exploration. In this paper, we present MRG-LLM, a novel multimodal large language model (MLLM) that combines a frozen LLM with a learnable visual encoder and introduces a dynamic prompt customization mechanism. Our key innovation lies in generating instance-specific prompts tailored to individual medical images through conditional affine transformations derived from visual features. We propose two implementations: prompt-wise and promptbook-wise customization, enabling precise and targeted report generation. Extensive experiments on IU X-ray and MIMIC-CXR datasets demonstrate that MRG-LLM achieves state-of-the-art performance in medical report generation. Our code will be made publicly available.
☆ Hunyuan3D 2.1: From Images to High-Fidelity 3D Assets with Production-Ready PBR Material
3D AI-generated content (AIGC) is a passionate field that has significantly accelerated the creation of 3D models in gaming, film, and design. Despite the development of several groundbreaking models that have revolutionized 3D generation, the field remains largely accessible only to researchers, developers, and designers due to the complexities involved in collecting, processing, and training 3D models. To address these challenges, we introduce Hunyuan3D 2.1 as a case study in this tutorial. This tutorial offers a comprehensive, step-by-step guide on processing 3D data, training a 3D generative model, and evaluating its performance using Hunyuan3D 2.1, an advanced system for producing high-resolution, textured 3D assets. The system comprises two core components: the Hunyuan3D-DiT for shape generation and the Hunyuan3D-Paint for texture synthesis. We will explore the entire workflow, including data preparation, model architecture, training strategies, evaluation metrics, and deployment. By the conclusion of this tutorial, you will have the knowledge to finetune or develop a robust 3D generative model suitable for applications in gaming, virtual reality, and industrial design.
comment: Github link: https://github.com/Tencent-Hunyuan/Hunyuan3D-2.1
☆ NERO: Explainable Out-of-Distribution Detection with Neuron-level Relevance
Ensuring reliability is paramount in deep learning, particularly within the domain of medical imaging, where diagnostic decisions often hinge on model outputs. The capacity to separate out-of-distribution (OOD) samples has proven to be a valuable indicator of a model's reliability in research. In medical imaging, this is especially critical, as identifying OOD inputs can help flag potential anomalies that might otherwise go undetected. While many OOD detection methods rely on feature or logit space representations, recent works suggest these approaches may not fully capture OOD diversity. To address this, we propose a novel OOD scoring mechanism, called NERO, that leverages neuron-level relevance at the feature layer. Specifically, we cluster neuron-level relevance for each in-distribution (ID) class to form representative centroids and introduce a relevance distance metric to quantify a new sample's deviation from these centroids, enhancing OOD separability. Additionally, we refine performance by incorporating scaled relevance in the bias term and combining feature norms. Our framework also enables explainable OOD detection. We validate its effectiveness across multiple deep learning architectures on the gastrointestinal imaging benchmarks Kvasir and GastroVision, achieving improvements over state-of-the-art OOD detection methods.
☆ MCOO-SLAM: A Multi-Camera Omnidirectional Object SLAM System
Object-level SLAM offers structured and semantically meaningful environment representations, making it more interpretable and suitable for high-level robotic tasks. However, most existing approaches rely on RGB-D sensors or monocular views, which suffer from narrow fields of view, occlusion sensitivity, and limited depth perception-especially in large-scale or outdoor environments. These limitations often restrict the system to observing only partial views of objects from limited perspectives, leading to inaccurate object modeling and unreliable data association. In this work, we propose MCOO-SLAM, a novel Multi-Camera Omnidirectional Object SLAM system that fully leverages surround-view camera configurations to achieve robust, consistent, and semantically enriched mapping in complex outdoor scenarios. Our approach integrates point features and object-level landmarks enhanced with open-vocabulary semantics. A semantic-geometric-temporal fusion strategy is introduced for robust object association across multiple views, leading to improved consistency and accurate object modeling, and an omnidirectional loop closure module is designed to enable viewpoint-invariant place recognition using scene-level descriptors. Furthermore, the constructed map is abstracted into a hierarchical 3D scene graph to support downstream reasoning tasks. Extensive experiments in real-world demonstrate that MCOO-SLAM achieves accurate localization and scalable object-level mapping with improved robustness to occlusion, pose variation, and environmental complexity.
☆ A Real-time Endoscopic Image Denoising System
Endoscopes featuring a miniaturized design have significantly enhanced operational flexibility, portability, and diagnostic capability while substantially reducing the invasiveness of medical procedures. Recently, single-use endoscopes equipped with an ultra-compact analogue image sensor measuring less than 1mm x 1mm bring revolutionary advancements to medical diagnosis. They reduce the structural redundancy and large capital expenditures associated with reusable devices, eliminate the risk of patient infections caused by inadequate disinfection, and alleviate patient suffering. However, the limited photosensitive area results in reduced photon capture per pixel, requiring higher photon sensitivity settings to maintain adequate brightness. In high-contrast medical imaging scenarios, the small-sized sensor exhibits a constrained dynamic range, making it difficult to simultaneously capture details in both highlights and shadows, and additional localized digital gain is required to compensate. Moreover, the simplified circuit design and analog signal transmission introduce additional noise sources. These factors collectively contribute to significant noise issues in processed endoscopic images. In this work, we developed a comprehensive noise model for analog image sensors in medical endoscopes, addressing three primary noise types: fixed-pattern noise, periodic banding noise, and mixed Poisson-Gaussian noise. Building on this analysis, we propose a hybrid denoising system that synergistically combines traditional image processing algorithms with advanced learning-based techniques for captured raw frames from sensors. Experiments demonstrate that our approach effectively reduces image noise without fine detail loss or color distortion, while achieving real-time performance on FPGA platforms and an average PSNR improvement from 21.16 to 33.05 on our test dataset.
☆ When Model Knowledge meets Diffusion Model: Diffusion-assisted Data-free Image Synthesis with Alignment of Domain and Class ICML 2025
Open-source pre-trained models hold great potential for diverse applications, but their utility declines when their training data is unavailable. Data-Free Image Synthesis (DFIS) aims to generate images that approximate the learned data distribution of a pre-trained model without accessing the original data. However, existing DFIS meth ods produce samples that deviate from the training data distribution due to the lack of prior knowl edge about natural images. To overcome this limitation, we propose DDIS, the first Diffusion-assisted Data-free Image Synthesis method that leverages a text-to-image diffusion model as a powerful image prior, improving synthetic image quality. DDIS extracts knowledge about the learned distribution from the given model and uses it to guide the diffusion model, enabling the generation of images that accurately align with the training data distribution. To achieve this, we introduce Domain Alignment Guidance (DAG) that aligns the synthetic data domain with the training data domain during the diffusion sampling process. Furthermore, we optimize a single Class Alignment Token (CAT) embedding to effectively capture class-specific attributes in the training dataset. Experiments on PACS and Ima geNet demonstrate that DDIS outperforms prior DFIS methods by generating samples that better reflect the training data distribution, achieving SOTA performance in data-free applications.
comment: Published at ICML 2025
☆ Unsupervised Pelage Pattern Unwrapping for Animal Re-identification
Existing individual re-identification methods often struggle with the deformable nature of animal fur or skin patterns which undergo geometric distortions due to body movement and posture changes. In this paper, we propose a geometry-aware texture mapping approach that unwarps pelage patterns, the unique markings found on an animal's skin or fur, into a canonical UV space, enabling more robust feature matching. Our method uses surface normal estimation to guide the unwrapping process while preserving the geometric consistency between the 3D surface and the 2D texture space. We focus on two challenging species: Saimaa ringed seals (Pusa hispida saimensis) and leopards (Panthera pardus). Both species have distinctive yet highly deformable fur patterns. By integrating our pattern-preserving UV mapping with existing re-identification techniques, we demonstrate improved accuracy across diverse poses and viewing angles. Our framework does not require ground truth UV annotations and can be trained in a self-supervised manner. Experiments on seal and leopard datasets show up to a 5.4% improvement in re-identification accuracy.
☆ Open-World Object Counting in Videos
We introduce a new task of open-world object counting in videos: given a text description, or an image example, that specifies the target object, the objective is to enumerate all the unique instances of the target objects in the video. This task is especially challenging in crowded scenes with occlusions and similar objects, where avoiding double counting and identifying reappearances is crucial. To this end, we make the following contributions: we introduce a model, CountVid, for this task. It leverages an image-based counting model, and a promptable video segmentation and tracking model to enable automated, open-world object counting across video frames. To evaluate its performance, we introduce VideoCount, a new dataset for our novel task built from the TAO and MOT20 tracking datasets, as well as from videos of penguins and metal alloy crystallization captured by x-rays. Using this dataset, we demonstrate that CountVid provides accurate object counts, and significantly outperforms strong baselines. The VideoCount dataset, the CountVid model, and all the code are available at https://github.com/niki-amini-naieni/CountVid/.
☆ FedWSIDD: Federated Whole Slide Image Classification via Dataset Distillation MICCAI 2025
Federated learning (FL) has emerged as a promising approach for collaborative medical image analysis, enabling multiple institutions to build robust predictive models while preserving sensitive patient data. In the context of Whole Slide Image (WSI) classification, FL faces significant challenges, including heterogeneous computational resources across participating medical institutes and privacy concerns. To address these challenges, we propose FedWSIDD, a novel FL paradigm that leverages dataset distillation (DD) to learn and transmit synthetic slides. On the server side, FedWSIDD aggregates synthetic slides from participating centres and distributes them across all centres. On the client side, we introduce a novel DD algorithm tailored to histopathology datasets which incorporates stain normalisation into the distillation process to generate a compact set of highly informative synthetic slides. These synthetic slides, rather than model parameters, are transmitted to the server. After communication, the received synthetic slides are combined with original slides for local tasks. Extensive experiments on multiple WSI classification tasks, including CAMELYON16 and CAMELYON17, demonstrate that FedWSIDD offers flexibility for heterogeneous local models, enhances local WSI classification performance, and preserves patient privacy. This makes it a highly effective solution for complex WSI classification tasks. The code is available at FedWSIDD.
comment: MICCAI 2025
☆ OpenPath: Open-Set Active Learning for Pathology Image Classification via Pre-trained Vision-Language Models MICCAI 2025
Pathology image classification plays a crucial role in accurate medical diagnosis and treatment planning. Training high-performance models for this task typically requires large-scale annotated datasets, which are both expensive and time-consuming to acquire. Active Learning (AL) offers a solution by iteratively selecting the most informative samples for annotation, thereby reducing the labeling effort. However, most AL methods are designed under the assumption of a closed-set scenario, where all the unannotated images belong to target classes. In real-world clinical environments, the unlabeled pool often contains a substantial amount of Out-Of-Distribution (OOD) data, leading to low efficiency of annotation in traditional AL methods. Furthermore, most existing AL methods start with random selection in the first query round, leading to a significant waste of labeling costs in open-set scenarios. To address these challenges, we propose OpenPath, a novel open-set active learning approach for pathological image classification leveraging a pre-trained Vision-Language Model (VLM). In the first query, we propose task-specific prompts that combine target and relevant non-target class prompts to effectively select In-Distribution (ID) and informative samples from the unlabeled pool. In subsequent queries, Diverse Informative ID Sampling (DIS) that includes Prototype-based ID candidate Selection (PIS) and Entropy-Guided Stochastic Sampling (EGSS) is proposed to ensure both purity and informativeness in a query, avoiding the selection of OOD samples. Experiments on two public pathology image datasets show that OpenPath significantly enhances the model's performance due to its high purity of selected samples, and outperforms several state-of-the-art open-set AL methods. The code is available at \href{https://github.com/HiLab-git/OpenPath}{https://github.com/HiLab-git/OpenPath}..
comment: MICCAI 2025 early accept
☆ MapFM: Foundation Model-Driven HD Mapping with Multi-Task Contextual Learning
In autonomous driving, high-definition (HD) maps and semantic maps in bird's-eye view (BEV) are essential for accurate localization, planning, and decision-making. This paper introduces an enhanced End-to-End model named MapFM for online vectorized HD map generation. We show significantly boost feature representation quality by incorporating powerful foundation model for encoding camera images. To further enrich the model's understanding of the environment and improve prediction quality, we integrate auxiliary prediction heads for semantic segmentation in the BEV representation. This multi-task learning approach provides richer contextual supervision, leading to a more comprehensive scene representation and ultimately resulting in higher accuracy and improved quality of the predicted vectorized HD maps. The source code is available at https://github.com/LIvanoff/MapFM.
comment: Preprint. Submitted. 12 pages, 4 figures
☆ One-shot Face Sketch Synthesis in the Wild via Generative Diffusion Prior and Instruction Tuning
Face sketch synthesis is a technique aimed at converting face photos into sketches. Existing face sketch synthesis research mainly relies on training with numerous photo-sketch sample pairs from existing datasets. However, these large-scale discriminative learning methods will have to face problems such as data scarcity and high human labor costs. Once the training data becomes scarce, their generative performance significantly degrades. In this paper, we propose a one-shot face sketch synthesis method based on diffusion models. We optimize text instructions on a diffusion model using face photo-sketch image pairs. Then, the instructions derived through gradient-based optimization are used for inference. To simulate real-world scenarios more accurately and evaluate method effectiveness more comprehensively, we introduce a new benchmark named One-shot Face Sketch Dataset (OS-Sketch). The benchmark consists of 400 pairs of face photo-sketch images, including sketches with different styles and photos with different backgrounds, ages, sexes, expressions, illumination, etc. For a solid out-of-distribution evaluation, we select only one pair of images for training at each time, with the rest used for inference. Extensive experiments demonstrate that the proposed method can convert various photos into realistic and highly consistent sketches in a one-shot context. Compared to other methods, our approach offers greater convenience and broader applicability. The dataset will be available at: https://github.com/HanWu3125/OS-Sketch
comment: We propose a novel framework for face sketch synthesis, where merely a single pair of samples suffices to enable in-the-wild face sketch synthesis
☆ MEGC2025: Micro-Expression Grand Challenge on Spot Then Recognize and Visual Question Answering ACM MM 2025
Facial micro-expressions (MEs) are involuntary movements of the face that occur spontaneously when a person experiences an emotion but attempts to suppress or repress the facial expression, typically found in a high-stakes environment. In recent years, substantial advancements have been made in the areas of ME recognition, spotting, and generation. However, conventional approaches that treat spotting and recognition as separate tasks are suboptimal, particularly for analyzing long-duration videos in realistic settings. Concurrently, the emergence of multimodal large language models (MLLMs) and large vision-language models (LVLMs) offers promising new avenues for enhancing ME analysis through their powerful multimodal reasoning capabilities. The ME grand challenge (MEGC) 2025 introduces two tasks that reflect these evolving research directions: (1) ME spot-then-recognize (ME-STR), which integrates ME spotting and subsequent recognition in a unified sequential pipeline; and (2) ME visual question answering (ME-VQA), which explores ME understanding through visual question answering, leveraging MLLMs or LVLMs to address diverse question types related to MEs. All participating algorithms are required to run on this test set and submit their results on a leaderboard. More details are available at https://megc2025.github.io.
comment: Micro-Expression Grand Challenge (MEGC) at ACM MM 2025
☆ Human Motion Capture from Loose and Sparse Inertial Sensors with Garment-aware Diffusion Models IJCAI 2025
Motion capture using sparse inertial sensors has shown great promise due to its portability and lack of occlusion issues compared to camera-based tracking. Existing approaches typically assume that IMU sensors are tightly attached to the human body. However, this assumption often does not hold in real-world scenarios. In this paper, we present a new task of full-body human pose estimation using sparse, loosely attached IMU sensors. To solve this task, we simulate IMU recordings from an existing garment-aware human motion dataset. We developed transformer-based diffusion models to synthesize loose IMU data and estimate human poses based on this challenging loose IMU data. In addition, we show that incorporating garment-related parameters while training the model on simulated loose data effectively maintains expressiveness and enhances the ability to capture variations introduced by looser or tighter garments. Experiments show that our proposed diffusion methods trained on simulated and synthetic data outperformed the state-of-the-art methods quantitatively and qualitatively, opening up a promising direction for future research.
comment: Accepted by IJCAI 2025
☆ AI-driven visual monitoring of industrial assembly tasks
Visual monitoring of industrial assembly tasks is critical for preventing equipment damage due to procedural errors and ensuring worker safety. Although commercial solutions exist, they typically require rigid workspace setups or the application of visual markers to simplify the problem. We introduce ViMAT, a novel AI-driven system for real-time visual monitoring of assembly tasks that operates without these constraints. ViMAT combines a perception module that extracts visual observations from multi-view video streams with a reasoning module that infers the most likely action being performed based on the observed assembly state and prior task knowledge. We validate ViMAT on two assembly tasks, involving the replacement of LEGO components and the reconfiguration of hydraulic press molds, demonstrating its effectiveness through quantitative and qualitative analysis in challenging real-world scenarios characterized by partial and uncertain visual observations. Project page: https://tev-fbk.github.io/ViMAT
☆ BCRNet: Enhancing Landmark Detection in Laparoscopic Liver Surgery via Bezier Curve Refinement MICCAI 2025
Laparoscopic liver surgery, while minimally invasive, poses significant challenges in accurately identifying critical anatomical structures. Augmented reality (AR) systems, integrating MRI/CT with laparoscopic images based on 2D-3D registration, offer a promising solution for enhancing surgical navigation. A vital aspect of the registration progress is the precise detection of curvilinear anatomical landmarks in laparoscopic images. In this paper, we propose BCRNet (Bezier Curve Refinement Net), a novel framework that significantly enhances landmark detection in laparoscopic liver surgery primarily via the Bezier curve refinement strategy. The framework starts with a Multi-modal Feature Extraction (MFE) module designed to robustly capture semantic features. Then we propose Adaptive Curve Proposal Initialization (ACPI) to generate pixel-aligned Bezier curves and confidence scores for reliable initial proposals. Additionally, we design the Hierarchical Curve Refinement (HCR) mechanism to enhance these proposals iteratively through a multi-stage process, capturing fine-grained contextual details from multi-scale pixel-level features for precise Bezier curve adjustment. Extensive evaluations on the L3D and P2ILF datasets demonstrate that BCRNet outperforms state-of-the-art methods, achieving significant performance improvements. Code will be available.
comment: Accepted at MICCAI 2025, 11 pages, 2 figures
☆ MSNeRV: Neural Video Representation with Multi-Scale Feature Fusion
Implicit Neural representations (INRs) have emerged as a promising approach for video compression, and have achieved comparable performance to the state-of-the-art codecs such as H.266/VVC. However, existing INR-based methods struggle to effectively represent detail-intensive and fast-changing video content. This limitation mainly stems from the underutilization of internal network features and the absence of video-specific considerations in network design. To address these challenges, we propose a multi-scale feature fusion framework, MSNeRV, for neural video representation. In the encoding stage, we enhance temporal consistency by employing temporal windows, and divide the video into multiple Groups of Pictures (GoPs), where a GoP-level grid is used for background representation. Additionally, we design a multi-scale spatial decoder with a scale-adaptive loss function to integrate multi-resolution and multi-frequency information. To further improve feature extraction, we introduce a multi-scale feature block that fully leverages hidden features. We evaluate MSNeRV on HEVC ClassB and UVG datasets for video representation and compression. Experimental results demonstrate that our model exhibits superior representation capability among INR-based approaches and surpasses VTM-23.7 (Random Access) in dynamic scenarios in terms of compression efficiency.
☆ Domain Adaptation for Image Classification of Defects in Semiconductor Manufacturing
In the semiconductor sector, due to high demand but also strong and increasing competition, time to market and quality are key factors in securing significant market share in various application areas. Thanks to the success of deep learning methods in recent years in the computer vision domain, Industry 4.0 and 5.0 applications, such as defect classification, have achieved remarkable success. In particular, Domain Adaptation (DA) has proven highly effective since it focuses on using the knowledge learned on a (source) domain to adapt and perform effectively on a different but related (target) domain. By improving robustness and scalability, DA minimizes the need for extensive manual re-labeling or re-training of models. This not only reduces computational and resource costs but also allows human experts to focus on high-value tasks. Therefore, we tested the efficacy of DA techniques in semi-supervised and unsupervised settings within the context of the semiconductor field. Moreover, we propose the DBACS approach, a CycleGAN-inspired model enhanced with additional loss terms to improve performance. All the approaches are studied and validated on real-world Electron Microscope images considering the unsupervised and semi-supervised settings, proving the usefulness of our method in advancing DA techniques for the semiconductor field.
☆ Privacy-Preserving Chest X-ray Classification in Latent Space with Homomorphically Encrypted Neural Inference
Medical imaging data contain sensitive patient information requiring strong privacy protection. Many analytical setups require data to be sent to a server for inference purposes. Homomorphic encryption (HE) provides a solution by allowing computations to be performed on encrypted data without revealing the original information. However, HE inference is computationally expensive, particularly for large images (e.g., chest X-rays). In this study, we propose an HE inference framework for medical images that uses VQGAN to compress images into latent representations, thereby significantly reducing the computational burden while preserving image quality. We approximate the activation functions with lower-degree polynomials to balance the accuracy and efficiency in compliance with HE requirements. We observed that a downsampling factor of eight for compression achieved an optimal balance between performance and computational cost. We further adapted the squeeze and excitation module, which is known to improve traditional CNNs, to enhance the HE framework. Our method was tested on two chest X-ray datasets for multi-label classification tasks using vanilla CNN backbones. Although HE inference remains relatively slow and introduces minor performance differences compared with unencrypted inference, our approach shows strong potential for practical use in medical images
comment: 11 pages, 5 figures
☆ Retrospective Memory for Camouflaged Object Detection
Camouflaged object detection (COD) primarily focuses on learning subtle yet discriminative representations from complex scenes. Existing methods predominantly follow the parametric feedforward architecture based on static visual representation modeling. However, they lack explicit mechanisms for acquiring historical context, limiting their adaptation and effectiveness in handling challenging camouflage scenes. In this paper, we propose a recall-augmented COD architecture, namely RetroMem, which dynamically modulates camouflage pattern perception and inference by integrating relevant historical knowledge into the process. Specifically, RetroMem employs a two-stage training paradigm consisting of a learning stage and a recall stage to construct, update, and utilize memory representations effectively. During the learning stage, we design a dense multi-scale adapter (DMA) to improve the pretrained encoder's capability to capture rich multi-scale visual information with very few trainable parameters, thereby providing foundational inferences. In the recall stage, we propose a dynamic memory mechanism (DMM) and an inference pattern reconstruction (IPR). These components fully leverage the latent relationships between learned knowledge and current sample context to reconstruct the inference of camouflage patterns, thereby significantly improving the model's understanding of camouflage scenes. Extensive experiments on several widely used datasets demonstrate that our RetroMem significantly outperforms existing state-of-the-art methods.
☆ RA-NeRF: Robust Neural Radiance Field Reconstruction with Accurate Camera Pose Estimation under Complex Trajectories IROS 2025
Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have emerged as powerful tools for 3D reconstruction and SLAM tasks. However, their performance depends heavily on accurate camera pose priors. Existing approaches attempt to address this issue by introducing external constraints but fall short of achieving satisfactory accuracy, particularly when camera trajectories are complex. In this paper, we propose a novel method, RA-NeRF, capable of predicting highly accurate camera poses even with complex camera trajectories. Following the incremental pipeline, RA-NeRF reconstructs the scene using NeRF with photometric consistency and incorporates flow-driven pose regulation to enhance robustness during initialization and localization. Additionally, RA-NeRF employs an implicit pose filter to capture the camera movement pattern and eliminate the noise for pose estimation. To validate our method, we conduct extensive experiments on the Tanks\&Temple dataset for standard evaluation, as well as the NeRFBuster dataset, which presents challenging camera pose trajectories. On both datasets, RA-NeRF achieves state-of-the-art results in both camera pose estimation and visual quality, demonstrating its effectiveness and robustness in scene reconstruction under complex pose trajectories.
comment: IROS 2025
☆ Convolutional Feature Enhancement and Attention Fusion BiFPN for Ship Detection in SAR Images
Synthetic Aperture Radar (SAR) enables submeter-resolution imaging and all-weather monitoring via active microwave and advanced signal processing. Currently, SAR has found extensive applications in critical maritime domains such as ship detection. However, SAR ship detection faces several challenges, including significant scale variations among ships, the presence of small offshore vessels mixed with noise, and complex backgrounds for large nearshore ships. To address these issues, this paper proposes a novel feature enhancement and fusion framework named C-AFBiFPN. C-AFBiFPN constructs a Convolutional Feature Enhancement (CFE) module following the backbone network, aiming to enrich feature representation and enhance the ability to capture and represent local details and contextual information. Furthermore, C-AFBiFPN innovatively integrates BiFormer attention within the fusion strategy of BiFPN, creating the AFBiFPN network. AFBiFPN improves the global modeling capability of cross-scale feature fusion and can adaptively focus on critical feature regions. The experimental results on SAR Ship Detection Dataset (SSDD) indicate that the proposed approach substantially enhances detection accuracy for small targets, robustness against occlusions, and adaptability to multi-scale features.
comment: 5 pages, 4 figures, 2 tables. Code available at https://github.com/mlj666219/C-AFBiFPN/tree/master
☆ video-SALMONN 2: Captioning-Enhanced Audio-Visual Large Language Models
Videos contain a wealth of information, and generating detailed and accurate descriptions in natural language is a key aspect of video understanding. In this paper, we present video-SALMONN 2, an advanced audio-visual large language model (LLM) with low-rank adaptation (LoRA) designed for enhanced video (with paired audio) captioning through directed preference optimisation (DPO). We propose new metrics to evaluate the completeness and accuracy of video descriptions, which are optimised using DPO. To further improve training, we propose a novel multi-round DPO (MrDPO) approach, which involves periodically updating the DPO reference model, merging and re-initialising the LoRA module as a proxy for parameter updates after each training round (1,000 steps), and incorporating guidance from ground-truth video captions to stabilise the process. Experimental results show that MrDPO significantly enhances video-SALMONN 2's captioning accuracy, reducing the captioning error rates by 28\%. The final video-SALMONN 2 model, with just 7 billion parameters, surpasses leading models such as GPT-4o and Gemini-1.5-Pro in video captioning tasks, while maintaining highly competitive performance to the state-of-the-art on widely used video question-answering benchmarks among models of similar size. Codes are available at \href{https://github.com/bytedance/video-SALMONN-2}{https://github.com/bytedance/video-SALMONN-2}.
☆ DM-FNet: Unified multimodal medical image fusion via diffusion process-trained encoder-decoder
Multimodal medical image fusion (MMIF) extracts the most meaningful information from multiple source images, enabling a more comprehensive and accurate diagnosis. Achieving high-quality fusion results requires a careful balance of brightness, color, contrast, and detail; this ensures that the fused images effectively display relevant anatomical structures and reflect the functional status of the tissues. However, existing MMIF methods have limited capacity to capture detailed features during conventional training and suffer from insufficient cross-modal feature interaction, leading to suboptimal fused image quality. To address these issues, this study proposes a two-stage diffusion model-based fusion network (DM-FNet) to achieve unified MMIF. In Stage I, a diffusion process trains UNet for image reconstruction. UNet captures detailed information through progressive denoising and represents multilevel data, providing a rich set of feature representations for the subsequent fusion network. In Stage II, noisy images at various steps are input into the fusion network to enhance the model's feature recognition capability. Three key fusion modules are also integrated to process medical images from different modalities adaptively. Ultimately, the robust network structure and a hybrid loss function are integrated to harmonize the fused image's brightness, color, contrast, and detail, enhancing its quality and information density. The experimental results across various medical image types demonstrate that the proposed method performs exceptionally well regarding objective evaluation metrics. The fused image preserves appropriate brightness, a comprehensive distribution of radioactive tracers, rich textures, and clear edges. The code is available at https://github.com/HeDan-11/DM-FNet.
comment: This paper has been accepted by IEEE Transactions on Multimedia (TMM) in March 2025
☆ Privacy-Shielded Image Compression: Defending Against Exploitation from Vision-Language Pretrained Models ICML 2025
The improved semantic understanding of vision-language pretrained (VLP) models has made it increasingly difficult to protect publicly posted images from being exploited by search engines and other similar tools. In this context, this paper seeks to protect users' privacy by implementing defenses at the image compression stage to prevent exploitation. Specifically, we propose a flexible coding method, termed Privacy-Shielded Image Compression (PSIC), that can produce bitstreams with multiple decoding options. By default, the bitstream is decoded to preserve satisfactory perceptual quality while preventing interpretation by VLP models. Our method also retains the original image compression functionality. With a customizable input condition, the proposed scheme can reconstruct the image that preserves its full semantic information. A Conditional Latent Trigger Generation (CLTG) module is proposed to produce bias information based on customizable conditions to guide the decoding process into different reconstructed versions, and an Uncertainty-Aware Encryption-Oriented (UAEO) optimization function is designed to leverage the soft labels inferred from the target VLP model's uncertainty on the training data. This paper further incorporates an adaptive multi-objective optimization strategy to obtain improved encrypting performance and perceptual quality simultaneously within a unified training process. The proposed scheme is plug-and-play and can be seamlessly integrated into most existing Learned Image Compression (LIC) models. Extensive experiments across multiple downstream tasks have demonstrated the effectiveness of our design.
comment: 11 pages, 6 figures, publised to ICML 2025
☆ Conquering the Retina: Bringing Visual in-Context Learning to OCT
Recent advancements in medical image analysis have led to the development of highly specialized models tailored to specific clinical tasks. These models have demonstrated exceptional performance and remain a crucial research direction. Yet, their applicability is limited to predefined tasks, requiring expertise and extensive resources for development and adaptation. In contrast, generalist models offer a different form of utility: allowing medical practitioners to define tasks on the fly without the need for task-specific model development. In this work, we explore how to train generalist models for the domain of retinal optical coherence tomography using visual in-context learning (VICL), i.e., training models to generalize across tasks based on a few examples provided at inference time. To facilitate rigorous assessment, we propose a broad evaluation protocol tailored to VICL in OCT. We extensively evaluate a state-of-the-art medical VICL approach on multiple retinal OCT datasets, establishing a first baseline to highlight the potential and current limitations of in-context learning for OCT. To foster further research and practical adoption, we openly release our code.
☆ Classification of Multi-Parametric Body MRI Series Using Deep Learning
Multi-parametric magnetic resonance imaging (mpMRI) exams have various series types acquired with different imaging protocols. The DICOM headers of these series often have incorrect information due to the sheer diversity of protocols and occasional technologist errors. To address this, we present a deep learning-based classification model to classify 8 different body mpMRI series types so that radiologists read the exams efficiently. Using mpMRI data from various institutions, multiple deep learning-based classifiers of ResNet, EfficientNet, and DenseNet are trained to classify 8 different MRI series, and their performance is compared. Then, the best-performing classifier is identified, and its classification capability under the setting of different training data quantities is studied. Also, the model is evaluated on the out-of-training-distribution datasets. Moreover, the model is trained using mpMRI exams obtained from different scanners in two training strategies, and its performance is tested. Experimental results show that the DenseNet-121 model achieves the highest F1-score and accuracy of 0.966 and 0.972 over the other classification models with p-value$<$0.05. The model shows greater than 0.95 accuracy when trained with over 729 studies of the training data, whose performance improves as the training data quantities grew larger. On the external data with the DLDS and CPTAC-UCEC datasets, the model yields 0.872 and 0.810 accuracy for each. These results indicate that in both the internal and external datasets, the DenseNet-121 model attains high accuracy for the task of classifying 8 body MRI series types.
☆ ReSeDis: A Dataset for Referring-based Object Search across Large-Scale Image Collections
Large-scale visual search engines are expected to solve a dual problem at once: (i) locate every image that truly contains the object described by a sentence and (ii) identify the object's bounding box or exact pixels within each hit. Existing techniques address only one side of this challenge. Visual grounding yields tight boxes and masks but rests on the unrealistic assumption that the object is present in every test image, producing a flood of false alarms when applied to web-scale collections. Text-to-image retrieval excels at sifting through massive databases to rank relevant images, yet it stops at whole-image matches and offers no fine-grained localization. We introduce Referring Search and Discovery (ReSeDis), the first task that unifies corpus-level retrieval with pixel-level grounding. Given a free-form description, a ReSeDis model must decide whether the queried object appears in each image and, if so, where it is, returning bounding boxes or segmentation masks. To enable rigorous study, we curate a benchmark in which every description maps uniquely to object instances scattered across a large, diverse corpus, eliminating unintended matches. We further design a task-specific metric that jointly scores retrieval recall and localization precision. Finally, we provide a straightforward zero-shot baseline using a frozen vision-language model, revealing significant headroom for future study. ReSeDis offers a realistic, end-to-end testbed for building the next generation of robust and scalable multimodal search systems.
☆ Echo-DND: A dual noise diffusion model for robust and precise left ventricle segmentation in echocardiography
Recent advancements in diffusion probabilistic models (DPMs) have revolutionized image processing, demonstrating significant potential in medical applications. Accurate segmentation of the left ventricle (LV) in echocardiograms is crucial for diagnostic procedures and necessary treatments. However, ultrasound images are notoriously noisy with low contrast and ambiguous LV boundaries, thereby complicating the segmentation process. To address these challenges, this paper introduces Echo-DND, a novel dual-noise diffusion model specifically designed for this task. Echo-DND leverages a unique combination of Gaussian and Bernoulli noises. It also incorporates a multi-scale fusion conditioning module to improve segmentation precision. Furthermore, it utilizes spatial coherence calibration to maintain spatial integrity in segmentation masks. The model's performance was rigorously validated on the CAMUS and EchoNet-Dynamic datasets. Extensive evaluations demonstrate that the proposed framework outperforms existing SOTA models. It achieves high Dice scores of 0.962 and 0.939 on these datasets, respectively. The proposed Echo-DND model establishes a new standard in echocardiogram segmentation, and its architecture holds promise for broader applicability in other medical imaging tasks, potentially improving diagnostic accuracy across various medical domains. Project page: https://abdur75648.github.io/Echo-DND
comment: Version of record published in Discover Applied Sciences (Springer Nature). The definitive article is available at https://doi.org/10.1007/s42452-025-07055-5
☆ Enhancing point cloud analysis via neighbor aggregation correction based on cross-stage structure correlation
Point cloud analysis is the cornerstone of many downstream tasks, among which aggregating local structures is the basis for understanding point cloud data. While numerous works aggregate neighbor using three-dimensional relative coordinates, there are irrelevant point interference and feature hierarchy gap problems due to the limitation of local coordinates. Although some works address this limitation by refining spatial description though explicit modeling of cross-stage structure, these enhancement methods based on direct geometric structure encoding have problems of high computational overhead and noise sensitivity. To overcome these problems, we propose the Point Distribution Set Abstraction module (PDSA) that utilizes the correlation in the high-dimensional space to correct the feature distribution during aggregation, which improves the computational efficiency and robustness. PDSA distinguishes the point correlation based on a lightweight cross-stage structural descriptor, and enhances structural homogeneity by reducing the variance of the neighbor feature matrix and increasing classes separability though long-distance modeling. Additionally, we introducing a key point mechanism to optimize the computational overhead. The experimental result on semantic segmentation and classification tasks based on different baselines verify the generalization of the method we proposed, and achieve significant performance improvement with less parameter cost. The corresponding ablation and visualization results demonstrate the effectiveness and rationality of our method. The code and training weight is available at: https://github.com/AGENT9717/PointDistribution
comment: 17 papes, 7 figures
☆ Robust Instant Policy: Leveraging Student's t-Regression Model for Robust In-context Imitation Learning of Robot Manipulation IROS
Imitation learning (IL) aims to enable robots to perform tasks autonomously by observing a few human demonstrations. Recently, a variant of IL, called In-Context IL, utilized off-the-shelf large language models (LLMs) as instant policies that understand the context from a few given demonstrations to perform a new task, rather than explicitly updating network models with large-scale demonstrations. However, its reliability in the robotics domain is undermined by hallucination issues such as LLM-based instant policy, which occasionally generates poor trajectories that deviate from the given demonstrations. To alleviate this problem, we propose a new robust in-context imitation learning algorithm called the robust instant policy (RIP), which utilizes a Student's t-regression model to be robust against the hallucinated trajectories of instant policies to allow reliable trajectory generation. Specifically, RIP generates several candidate robot trajectories to complete a given task from an LLM and aggregates them using the Student's t-distribution, which is beneficial for ignoring outliers (i.e., hallucinations); thereby, a robust trajectory against hallucinations is generated. Our experiments, conducted in both simulated and real-world environments, show that RIP significantly outperforms state-of-the-art IL methods, with at least $26\%$ improvement in task success rates, particularly in low-data scenarios for everyday tasks. Video results available at https://sites.google.com/view/robustinstantpolicy.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025 accepted
☆ SynPo: Boosting Training-Free Few-Shot Medical Segmentation via High-Quality Negative Prompts
The advent of Large Vision Models (LVMs) offers new opportunities for few-shot medical image segmentation. However, existing training-free methods based on LVMs fail to effectively utilize negative prompts, leading to poor performance on low-contrast medical images. To address this issue, we propose SynPo, a training-free few-shot method based on LVMs (e.g., SAM), with the core insight: improving the quality of negative prompts. To select point prompts in a more reliable confidence map, we design a novel Confidence Map Synergy Module by combining the strengths of DINOv2 and SAM. Based on the confidence map, we select the top-k pixels as the positive points set and choose the negative points set using a Gaussian distribution, followed by independent K-means clustering for both sets. Then, these selected points are leveraged as high-quality prompts for SAM to get the segmentation results. Extensive experiments demonstrate that SynPo achieves performance comparable to state-of-the-art training-based few-shot methods.
☆ An Empirical Study of Bugs in Data Visualization Libraries
Data visualization (DataViz) libraries play a crucial role in presentation, data analysis, and application development, underscoring the importance of their accuracy in transforming data into visual representations. Incorrect visualizations can adversely impact user experience, distort information conveyance, and influence user perception and decision-making processes. Visual bugs in these libraries can be particularly insidious as they may not cause obvious errors like crashes, but instead mislead users of the underlying data graphically, resulting in wrong decision making. Consequently, a good understanding of the unique characteristics of bugs in DataViz libraries is essential for researchers and developers to detect and fix bugs in DataViz libraries. This study presents the first comprehensive analysis of bugs in DataViz libraries, examining 564 bugs collected from five widely-used libraries. Our study systematically analyzes their symptoms and root causes, and provides a detailed taxonomy. We found that incorrect/inaccurate plots are pervasive in DataViz libraries and incorrect graphic computation is the major root cause, which necessitates further automated testing methods for DataViz libraries. Moreover, we identified eight key steps to trigger such bugs and two test oracles specific to DataViz libraries, which may inspire future research in designing effective automated testing techniques. Furthermore, with the recent advancements in Vision Language Models (VLMs), we explored the feasibility of applying these models to detect incorrect/inaccurate plots. The results show that the effectiveness of VLMs in bug detection varies from 29% to 57%, depending on the prompts, and adding more information in prompts does not necessarily increase the effectiveness. More findings can be found in our manuscript.
comment: Proc. ACM Softw. Eng. 2, FSE
☆ Enhancing Vector Quantization with Distributional Matching: A Theoretical and Empirical Study
The success of autoregressive models largely depends on the effectiveness of vector quantization, a technique that discretizes continuous features by mapping them to the nearest code vectors within a learnable codebook. Two critical issues in existing vector quantization methods are training instability and codebook collapse. Training instability arises from the gradient discrepancy introduced by the straight-through estimator, especially in the presence of significant quantization errors, while codebook collapse occurs when only a small subset of code vectors are utilized during training. A closer examination of these issues reveals that they are primarily driven by a mismatch between the distributions of the features and code vectors, leading to unrepresentative code vectors and significant data information loss during compression. To address this, we employ the Wasserstein distance to align these two distributions, achieving near 100\% codebook utilization and significantly reducing the quantization error. Both empirical and theoretical analyses validate the effectiveness of the proposed approach.
☆ Break Stylistic Sophon: Are We Really Meant to Confine the Imagination in Style Transfer?
In this pioneering study, we introduce StyleWallfacer, a groundbreaking unified training and inference framework, which not only addresses various issues encountered in the style transfer process of traditional methods but also unifies the framework for different tasks. This framework is designed to revolutionize the field by enabling artist level style transfer and text driven stylization. First, we propose a semantic-based style injection method that uses BLIP to generate text descriptions strictly aligned with the semantics of the style image in CLIP space. By leveraging a large language model to remove style-related descriptions from these descriptions, we create a semantic gap. This gap is then used to fine-tune the model, enabling efficient and drift-free injection of style knowledge. Second, we propose a data augmentation strategy based on human feedback, incorporating high-quality samples generated early in the fine-tuning process into the training set to facilitate progressive learning and significantly reduce its overfitting. Finally, we design a training-free triple diffusion process using the fine-tuned model, which manipulates the features of self-attention layers in a manner similar to the cross-attention mechanism. Specifically, in the generation process, the key and value of the content-related process are replaced with those of the style-related process to inject style while maintaining text control over the model. We also introduce query preservation to mitigate disruptions to the original content. Under such a design, we have achieved high-quality image-driven style transfer and text-driven stylization, delivering artist-level style transfer results while preserving the original image content. Moreover, we achieve image color editing during the style transfer process for the first time.
☆ An accurate and revised version of optical character recognition-based speech synthesis using LabVIEW
Knowledge extraction through sound is a distinctive property. Visually impaired individuals often rely solely on Braille books and audio recordings provided by NGOs. Due to limitations in these approaches, blind individuals often cannot access books of their choice. Speech is a more effective mode of communication than text for blind and visually impaired persons, as they can easily respond to sounds. This paper presents the development of an accurate, reliable, cost-effective, and user-friendly optical character recognition (OCR)-based speech synthesis system. The OCR-based system has been implemented using Laboratory Virtual Instrument Engineering Workbench (LabVIEW).
comment: 9 pages, 9 figures
♻ ☆ YOLOv11-RGBT: Towards a Comprehensive Single-Stage Multispectral Object Detection Framework
Multispectral object detection, which integrates information from multiple bands, can enhance detection accuracy and environmental adaptability, holding great application potential across various fields. Although existing methods have made progress in cross-modal interaction, low-light conditions, and model lightweight, there are still challenges like the lack of a unified single-stage framework, difficulty in balancing performance and fusion strategy, and unreasonable modality weight allocation. To address these, based on the YOLOv11 framework, we present YOLOv11-RGBT, a new comprehensive multimodal object detection framework. We designed six multispectral fusion modes and successfully applied them to models from YOLOv3 to YOLOv12 and RT-DETR. After reevaluating the importance of the two modalities, we proposed a P3 mid-fusion strategy and multispectral controllable fine-tuning (MCF) strategy for multispectral models. These improvements optimize feature fusion, reduce redundancy and mismatches, and boost overall model performance. Experiments show our framework excels on three major open-source multispectral object detection datasets, like LLVIP and FLIR. Particularly, the multispectral controllable fine-tuning strategy significantly enhanced model adaptability and robustness. On the FLIR dataset, it consistently improved YOLOv11 models' mAP by 3.41%-5.65%, reaching a maximum of 47.61%, verifying the framework and strategies' effectiveness. The code is available at: https://github.com/wandahangFY/YOLOv11-RGBT.
comment: 29 pages, 8 figures . The errors in the first version have been corrected, and no new version will be submitted in the near future. The next version will include more experiments
♻ ☆ MSVIT: Improving Spiking Vision Transformer Using Multi-scale Attention Fusion IJCAI'25
The combination of Spiking Neural Networks (SNNs) with Vision Transformer architectures has garnered significant attention due to their potential for energy-efficient and high-performance computing paradigms. However, a substantial performance gap still exists between SNN-based and ANN-based transformer architectures. While existing methods propose spiking self-attention mechanisms that are successfully combined with SNNs, the overall architectures proposed by these methods suffer from a bottleneck in effectively extracting features from different image scales. In this paper, we address this issue and propose MSVIT. This novel spike-driven Transformer architecture firstly uses multi-scale spiking attention (MSSA) to enhance the capabilities of spiking attention blocks. We validate our approach across various main datasets. The experimental results show that MSVIT outperforms existing SNN-based models, positioning itself as a state-of-the-art solution among SNN-transformer architectures. The codes are available at https://github.com/Nanhu-AI-Lab/MSViT.
comment: 11pages, 2figures, accepted by IJCAI'25 (34th International Joint Conference on Artificial Intelligence)
♻ ☆ ImmerseGen: Agent-Guided Immersive World Generation with Alpha-Textured Proxies
Automatic creation of 3D scenes for immersive VR presence has been a significant research focus for decades. However, existing methods often rely on either high-poly mesh modeling with post-hoc simplification or massive 3D Gaussians, resulting in a complex pipeline or limited visual realism. In this paper, we demonstrate that such exhaustive modeling is unnecessary for achieving compelling immersive experience. We introduce ImmerseGen, a novel agent-guided framework for compact and photorealistic world modeling. ImmerseGen represents scenes as hierarchical compositions of lightweight geometric proxies, i.e., simplified terrain and billboard meshes, and generates photorealistic appearance by synthesizing RGBA textures onto these proxies. Specifically, we propose terrain-conditioned texturing for user-centric base world synthesis, and RGBA asset texturing for midground and foreground scenery. This reformulation offers several advantages: (i) it simplifies modeling by enabling agents to guide generative models in producing coherent textures that integrate seamlessly with the scene; (ii) it bypasses complex geometry creation and decimation by directly synthesizing photorealistic textures on proxies, preserving visual quality without degradation; (iii) it enables compact representations suitable for real-time rendering on mobile VR headsets. To automate scene creation from text prompts, we introduce VLM-based modeling agents enhanced with semantic grid-based analysis for improved spatial reasoning and accurate asset placement. ImmerseGen further enriches scenes with dynamic effects and ambient audio to support multisensory immersion. Experiments on scene generation and live VR showcases demonstrate that ImmerseGen achieves superior photorealism, spatial coherence and rendering efficiency compared to prior methods. Project webpage: https://immersegen.github.io.
comment: Project webpage: https://immersegen.github.io
♻ ☆ VideoMAR: Autoregressive Video Generatio with Continuous Tokens
Masked-based autoregressive models have demonstrated promising image generation capability in continuous space. However, their potential for video generation remains under-explored. In this paper, we propose \textbf{VideoMAR}, a concise and efficient decoder-only autoregressive image-to-video model with continuous tokens, composing temporal frame-by-frame and spatial masked generation. We first identify temporal causality and spatial bi-directionality as the first principle of video AR models, and propose the next-frame diffusion loss for the integration of mask and video generation. Besides, the huge cost and difficulty of long sequence autoregressive modeling is a basic but crucial issue. To this end, we propose the temporal short-to-long curriculum learning and spatial progressive resolution training, and employ progressive temperature strategy at inference time to mitigate the accumulation error. Furthermore, VideoMAR replicates several unique capacities of language models to video generation. It inherently bears high efficiency due to simultaneous temporal-wise KV cache and spatial-wise parallel generation, and presents the capacity of spatial and temporal extrapolation via 3D rotary embeddings. On the VBench-I2V benchmark, VideoMAR surpasses the previous state-of-the-art (Cosmos I2V) while requiring significantly fewer parameters ($9.3\%$), training data ($0.5\%$), and GPU resources ($0.2\%$).
♻ ☆ Cosmos-Drive-Dreams: Scalable Synthetic Driving Data Generation with World Foundation Models
Collecting and annotating real-world data for safety-critical physical AI systems, such as Autonomous Vehicle (AV), is time-consuming and costly. It is especially challenging to capture rare edge cases, which play a critical role in training and testing of an AV system. To address this challenge, we introduce the Cosmos-Drive-Dreams - a synthetic data generation (SDG) pipeline that aims to generate challenging scenarios to facilitate downstream tasks such as perception and driving policy training. Powering this pipeline is Cosmos-Drive, a suite of models specialized from NVIDIA Cosmos world foundation model for the driving domain and are capable of controllable, high-fidelity, multi-view, and spatiotemporally consistent driving video generation. We showcase the utility of these models by applying Cosmos-Drive-Dreams to scale the quantity and diversity of driving datasets with high-fidelity and challenging scenarios. Experimentally, we demonstrate that our generated data helps in mitigating long-tail distribution problems and enhances generalization in downstream tasks such as 3D lane detection, 3D object detection and driving policy learning. We open source our pipeline toolkit, dataset and model weights through the NVIDIA's Cosmos platform. Project page: https://research.nvidia.com/labs/toronto-ai/cosmos_drive_dreams
comment: Only the core contributors are listed. The full list of contributors can be found in Appendix A of this paper
♻ ☆ Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey
Detecting out-of-distribution (OOD) samples is crucial for ensuring the safety of machine learning systems and has shaped the field of OOD detection. Meanwhile, several other problems are closely related to OOD detection, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). To unify these problems, a generalized OOD detection framework was proposed, taxonomically categorizing these five problems. However, Vision Language Models (VLMs) such as CLIP have significantly changed the paradigm and blurred the boundaries between these fields, again confusing researchers. In this survey, we first present a generalized OOD detection v2, encapsulating the evolution of these fields in the VLM era. Our framework reveals that, with some field inactivity and integration, the demanding challenges have become OOD detection and AD. Then, we highlight the significant shift in the definition, problem settings, and benchmarks; we thus feature a comprehensive review of the methodology for OOD detection and related tasks to clarify their relationship to OOD detection. Finally, we explore the advancements in the emerging Large Vision Language Model (LVLM) era, such as GPT-4V. We conclude with open challenges and future directions. The resource is available at https://github.com/AtsuMiyai/Awesome-OOD-VLM.
comment: Accepted at TMLR2025. Survey paper. We welcome questions, issues, and paper requests via https://github.com/AtsuMiyai/Awesome-OOD-VLM
♻ ☆ Vision Transformers Don't Need Trained Registers
We investigate the mechanism underlying a previously identified phenomenon in Vision Transformers -- the emergence of high-norm tokens that lead to noisy attention maps. We observe that in multiple models (e.g., CLIP, DINOv2), a sparse set of neurons is responsible for concentrating high-norm activations on outlier tokens, leading to irregular attention patterns and degrading downstream visual processing. While the existing solution for removing these outliers involves retraining models from scratch with additional learned register tokens, we use our findings to create a training-free approach to mitigate these artifacts. By shifting the high-norm activations from our discovered register neurons into an additional untrained token, we can mimic the effect of register tokens on a model already trained without registers. We demonstrate that our method produces cleaner attention and feature maps, enhances performance over base models across multiple downstream visual tasks, and achieves results comparable to models explicitly trained with register tokens. We then extend test-time registers to off-the-shelf vision-language models to improve their interpretability. Our results suggest that test-time registers effectively take on the role of register tokens at test-time, offering a training-free solution for any pre-trained model released without them.
comment: Project page and code: https://avdravid.github.io/test-time-registers
♻ ☆ I2I-Mamba: Multi-modal medical image synthesis via selective state space modeling
Multi-modal medical image synthesis involves nonlinear transformation of tissue signals between source and target modalities, where tissues exhibit contextual interactions across diverse spatial distances. As such, the utility of a network architecture in synthesis depends on its ability to express these contextual features. Convolutional neural networks (CNNs) offer high local precision at the expense of poor sensitivity to long-range context. While transformers promise to alleviate this issue, they suffer from an unfavorable trade-off between sensitivity to long- versus short-range context due to the intrinsic complexity of attention filters. To effectively capture contextual features while avoiding the complexity-driven trade-offs, here we introduce a novel multi-modal synthesis method, I2I-Mamba, based on the state space modeling (SSM) framework. Focusing on semantic representations across a hybrid residual architecture, I2I-Mamba leverages novel dual-domain Mamba (ddMamba) blocks for complementary contextual modeling in image and Fourier domains, while maintaining spatial precision with convolutional layers. Diverting from conventional raster-scan trajectories, ddMamba leverages novel SSM operators based on a spiral-scan trajectory to learn context with enhanced radial coverage and angular isotropy, and a channel-mixing layer to aggregate context across the channel dimension. Comprehensive demonstrations on multi-contrast MRI and MRI-CT protocols indicate that I2I-Mamba offers superior performance against state-of-the-art CNNs, transformers and SSMs.
comment: 14 pages, 6 figures
♻ ☆ A dataset of high-resolution plantar pressures for gait analysis across varying footwear and walking speeds
Gait refers to the patterns of limb movement generated during walking, which are unique to each individual due to both physical and behavioral traits. Walking patterns have been widely studied in biometrics, biomechanics, sports, and rehabilitation. While traditional methods rely on video and motion capture, advances in plantar pressure sensing technology now offer deeper insights into gait. However, underfoot pressures during walking remain underexplored due to the lack of large, publicly accessible datasets. To address this, we introduce the UNB StepUP-P150 dataset: a footStep database for gait analysis and recognition using Underfoot Pressure, including data from 150 individuals. This dataset comprises high-resolution plantar pressure data (4 sensors per cm-squared) collected using a 1.2m by 3.6m pressure-sensing walkway. It contains over 200,000 footsteps from participants walking with various speeds (preferred, slow-to-stop, fast, and slow) and footwear conditions (barefoot, standard shoes, and two personal shoes), supporting advancements in biometric gait recognition and presenting new research opportunities in biomechanics and deep learning. UNB StepUP-P150 establishes a new benchmark for plantar pressure-based gait analysis and recognition.
♻ ☆ VideoHallu: Evaluating and Mitigating Multi-modal Hallucinations on Synthetic Video Understanding
Synthetic video generation has gained significant attention for its realism and broad applications, but remains prone to violations of common sense and physical laws. This highlights the need for reliable abnormality detectors that understand such principles and are robust to hallucinations. To address this, we introduce VideoHallu, a benchmark of over 3,000 video QA pairs built from synthetic videos generated by models like Veo2, Sora, and Kling, paired with expert-crafted counterintuitive QA to evaluate the critical thinking abilities of Multi-modal Large Language Models (MLLMs) on abnormalities that are perceptually obvious to humans but often hallucinated due to language priors. VideoHallu evaluates MLLMs' abnormality detection abilities with examples across alignment, consistency, commonsense, and physics. We benchmark SOTA MLLMs, including GPT-4o, Gemini-2.5-Pro, Qwen2.5-VL, Video-R1, and VideoChat-R1. We observe that these models perform well on many real-world benchmarks like MVBench and MovieChat, but still struggle with basic physics-based and commonsense reasoning in synthetic videos. We further show that post-training with Group Relative Policy Optimization (GRPO), using curriculum learning on datasets combining video QA with counterintuitive commonsense and physics reasoning over real and synthetic videos, improves MLLMs' abnormality detection and critical thinking, demonstrating the value of targeted training for improving their understanding of commonsense and physical laws. Our code is available at https://github.com/zli12321/VideoHallu.git.
♻ ☆ RDD: Robust Feature Detector and Descriptor using Deformable Transformer
As a core step in structure-from-motion and SLAM, robust feature detection and description under challenging scenarios such as significant viewpoint changes remain unresolved despite their ubiquity. While recent works have identified the importance of local features in modeling geometric transformations, these methods fail to learn the visual cues present in long-range relationships. We present Robust Deformable Detector (RDD), a novel and robust keypoint detector/descriptor leveraging the deformable transformer, which captures global context and geometric invariance through deformable self-attention mechanisms. Specifically, we observed that deformable attention focuses on key locations, effectively reducing the search space complexity and modeling the geometric invariance. Furthermore, we collected an Air-to-Ground dataset for training in addition to the standard MegaDepth dataset. Our proposed method outperforms all state-of-the-art keypoint detection/description methods in sparse matching tasks and is also capable of semi-dense matching. To ensure comprehensive evaluation, we introduce two challenging benchmarks: one emphasizing large viewpoint and scale variations, and the other being an Air-to-Ground benchmark -- an evaluation setting that has recently gaining popularity for 3D reconstruction across different altitudes.
♻ ☆ TARDIS STRIDE: A Spatio-Temporal Road Image Dataset and World Model for Autonomy
World models aim to simulate environments and enable effective agent behavior. However, modeling real-world environments presents unique challenges as they dynamically change across both space and, crucially, time. To capture these composed dynamics, we introduce a Spatio-Temporal Road Image Dataset for Exploration (STRIDE) permuting 360-degree panoramic imagery into rich interconnected observation, state and action nodes. Leveraging this structure, we can simultaneously model the relationship between egocentric views, positional coordinates, and movement commands across both space and time. We benchmark this dataset via TARDIS, a transformer-based generative world model that integrates spatial and temporal dynamics through a unified autoregressive framework trained on STRIDE. We demonstrate robust performance across a range of agentic tasks such as controllable photorealistic image synthesis, instruction following, autonomous self-control, and state-of-the-art georeferencing. These results suggest a promising direction towards sophisticated generalist agents--capable of understanding and manipulating the spatial and temporal aspects of their material environments--with enhanced embodied reasoning capabilities. Training code, datasets, and model checkpoints are made available at https://huggingface.co/datasets/Tera-AI/STRIDE.
comment: Computer Vision, Pattern Recognition, Early-Fusion, Dataset, Data Augmentation
♻ ☆ LaViDa: A Large Diffusion Language Model for Multimodal Understanding
Modern Vision-Language Models (VLMs) can solve a wide range of tasks requiring visual reasoning. In real-world scenarios, desirable properties for VLMs include fast inference and controllable generation (e.g., constraining outputs to adhere to a desired format). However, existing autoregressive (AR) VLMs like LLaVA struggle in these aspects. Discrete diffusion models (DMs) offer a promising alternative, enabling parallel decoding for faster inference and bidirectional context for controllable generation through text-infilling. While effective in language-only settings, DMs' potential for multimodal tasks is underexplored. We introduce LaViDa, a family of VLMs built on DMs. We build LaViDa by equipping DMs with a vision encoder and jointly fine-tune the combined parts for multimodal instruction following. To address challenges encountered, LaViDa incorporates novel techniques such as complementary masking for effective training, prefix KV cache for efficient inference, and timestep shifting for high-quality sampling. Experiments show that LaViDa achieves competitive or superior performance to AR VLMs on multi-modal benchmarks such as MMMU, while offering unique advantages of DMs, including flexible speed-quality tradeoff, controllability, and bidirectional reasoning. On COCO captioning, LaViDa surpasses Open-LLaVa-Next-8B by +4.1 CIDEr with 1.92x speedup. On bidirectional tasks, it achieves +59% improvement on Constrained Poem Completion. These results demonstrate LaViDa as a strong alternative to AR VLMs. Code and models will be released in the camera-ready version.
comment: 26 pages, 8 figures
♻ ☆ Exploring Personalized Federated Learning Architectures for Violence Detection in Surveillance Videos
The challenge of detecting violent incidents in urban surveillance systems is compounded by the voluminous and diverse nature of video data. This paper presents a targeted approach using Personalized Federated Learning (PFL) to address these issues, specifically employing the Federated Learning with Personalization Layers method within the Flower framework. Our methodology adapts learning models to the unique data characteristics of each surveillance node, effectively managing the heterogeneous and non-IID nature of surveillance video data. Through rigorous experiments conducted on balanced and imbalanced datasets, our PFL models demonstrated enhanced accuracy and efficiency, achieving up to 99.3% accuracy. This study underscores the potential of PFL to significantly improve the scalability and effectiveness of surveillance systems, offering a robust, privacy-preserving solution for violence detection in complex urban environments.
comment: 7 pages, 5 figures, 4 tables
♻ ☆ A Comprehensive Survey on Continual Learning in Generative Models
The rapid advancement of generative models has enabled modern AI systems to comprehend and produce highly sophisticated content, even achieving human-level performance in specific domains. However, these models remain fundamentally constrained by catastrophic forgetting - a persistent challenge where adapting to new tasks typically leads to significant degradation in performance on previously learned tasks. To address this practical limitation, numerous approaches have been proposed to enhance the adaptability and scalability of generative models in real-world applications. In this work, we present a comprehensive survey of continual learning methods for mainstream generative models, including large language models, multimodal large language models, vision language action models, and diffusion models. Drawing inspiration from the memory mechanisms of the human brain, we systematically categorize these approaches into three paradigms: architecture-based, regularization-based, and replay-based methods, while elucidating their underlying methodologies and motivations. We further analyze continual learning setups for different generative models, including training objectives, benchmarks, and core backbones, offering deeper insights into the field. The project page of this paper is available at https://github.com/Ghy0501/Awesome-Continual-Learning-in-Generative-Models.
comment: Preprint
♻ ☆ EgoBlind: Towards Egocentric Visual Assistance for the Blind
We present EgoBlind, the first egocentric VideoQA dataset collected from blind individuals to evaluate the assistive capabilities of contemporary multimodal large language models (MLLMs). EgoBlind comprises 1,392 videos that record the daily lives of real blind users from a first-person perspective. It also features 5,311 questions directly posed or generated and verified by blind individuals to reflect their in-situation needs for visual assistance under various scenarios. We provide each question with an average of 3 reference answers to alleviate subjective evaluation. Using EgoBlind, we comprehensively evaluate 16 advanced MLLMs and find that all models struggle, with the best performers achieving accuracy near 60\%, far behind human performance of 87.4\%. To guide future advancements, we identify and summarize major limitations of existing MLLMs in egocentric visual assistance for the blind and explore heuristic solutions for improvement. With these efforts, we hope EgoBlind can serve as a valuable foundation for developing more effective AI assistants to enhance the independence of the blind individuals' lives. Data and evaluation code are available at https://github.com/doc-doc/EgoBlind.
comment: We extend and resplit the dataset
♻ ☆ Translation-Equivariance of Normalization Layers and Aliasing in Convolutional Neural Networks COLT 2025
The design of convolutional neural architectures that are exactly equivariant to continuous translations is an active field of research. It promises to benefit scientific computing, notably by making existing imaging systems more physically accurate. Most efforts focus on the design of downsampling/pooling layers, upsampling layers and activation functions, but little attention is dedicated to normalization layers. In this work, we present a novel theoretical framework for understanding the equivariance of normalization layers to discrete shifts and continuous translations. We also determine necessary and sufficient conditions for normalization layers to be equivariant in terms of the dimensions they operate on. Using real feature maps from ResNet-18 and ImageNet, we test those theoretical results empirically and find that they are consistent with our predictions.
comment: Accepted at the Workshop on the Theory of AI for Scientific Computing (COLT 2025)
♻ ☆ Unsourced Adversarial CAPTCHA: A Bi-Phase Adversarial CAPTCHA Framework
With the rapid advancements in deep learning, traditional CAPTCHA schemes are increasingly vulnerable to automated attacks powered by deep neural networks (DNNs). Existing adversarial attack methods often rely on original image characteristics, resulting in distortions that hinder human interpretation and limit applicability in scenarios lacking initial input images. To address these challenges, we propose the Unsourced Adversarial CAPTCHA (UAC), a novel framework generating high-fidelity adversarial examples guided by attacker-specified text prompts. Leveraging a Large Language Model (LLM), UAC enhances CAPTCHA diversity and supports both targeted and untargeted attacks. For targeted attacks, the EDICT method optimizes dual latent variables in a diffusion model for superior image quality. In untargeted attacks, especially for black-box scenarios, we introduce bi-path unsourced adversarial CAPTCHA (BP-UAC), a two-step optimization strategy employing multimodal gradients and bi-path optimization for efficient misclassification. Experiments show BP-UAC achieves high attack success rates across diverse systems, generating natural CAPTCHAs indistinguishable to humans and DNNs.
♻ ☆ Leveraging Depth and Language for Open-Vocabulary Domain-Generalized Semantic Segmentation
Open-Vocabulary semantic segmentation (OVSS) and domain generalization in semantic segmentation (DGSS) highlight a subtle complementarity that motivates Open-Vocabulary Domain-Generalized Semantic Segmentation (OV-DGSS). OV-DGSS aims to generate pixel-level masks for unseen categories while maintaining robustness across unseen domains, a critical capability for real-world scenarios such as autonomous driving in adverse conditions. We introduce Vireo, a novel single-stage framework for OV-DGSS that unifies the strengths of OVSS and DGSS for the first time. Vireo builds upon the frozen Visual Foundation Models (VFMs) and incorporates scene geometry via Depth VFMs to extract domain-invariant structural features. To bridge the gap between visual and textual modalities under domain shift, we propose three key components: (1) GeoText Prompts, which align geometric features with language cues and progressively refine VFM encoder representations; (2) Coarse Mask Prior Embedding (CMPE) for enhancing gradient flow for faster convergence and stronger textual influence; and (3) the Domain-Open-Vocabulary Vector Embedding Head (DOV-VEH), which fuses refined structural and semantic features for robust prediction. Comprehensive evaluation on these components demonstrates the effectiveness of our designs. Our proposed Vireo achieves the state-of-the-art performance and surpasses existing methods by a large margin in both domain generalization and open-vocabulary recognition, offering a unified and scalable solution for robust visual understanding in diverse and dynamic environments. Code is available at https://github.com/anonymouse-9c53tp182bvz/Vireo.
♻ ☆ Instance-Adaptive Keypoint Learning with Local-to-Global Geometric Aggregation for Category-Level Object Pose Estimation
Category-level object pose estimation aims to predict the 6D pose and size of previously unseen instances from predefined categories, requiring strong generalization across diverse object instances. Although many previous methods attempt to mitigate intra-class variations, they often struggle with instances exhibiting complex geometries or significant deviations from canonical shapes. To address this issue, we propose INKL-Pose, a novel category-level object pose estimation framework that enables INstance-adaptive Keypoint Learning with local-to-global geometric aggregation. Specifically, our method first predicts semantically consistent and geometrically informative keypoints using an Instance-Adaptive Keypoint Detector, then refines them: (1) a Local Keypoint Feature Aggregator capturing fine-grained geometries, and (2) a Global Keypoint Feature Aggregator using bidirectional Mamba for structural consistency. To enable bidirectional modeling in Mamba, we introduce a simple yet effective Feature Sequence Flipping strategy that preserves spatial coherence while constructing backward feature sequence. Additionally, we design a surface loss and a separation loss to encourage uniform coverage and spatial diversity in keypoint distribution. The resulting keypoints are mapped to a canonical space for 6D pose and size regression. Extensive experiments on CAMERA25, REAL275, and HouseCat6D show that INKL-Pose achieves state-of-the-art performance with 16.7M parameters and runs at 36 FPS on an NVIDIA RTX 4090D GPU.
♻ ☆ RefChartQA: Grounding Visual Answer on Chart Images through Instruction Tuning ICDAR 2025
Recently, Vision Language Models (VLMs) have increasingly emphasized document visual grounding to achieve better human-computer interaction, accessibility, and detailed understanding. However, its application to visualizations such as charts remains under-explored due to the inherent complexity of interleaved visual-numerical relationships in chart images. Existing chart understanding methods primarily focus on answering questions without explicitly identifying the visual elements that support their predictions. To bridge this gap, we introduce RefChartQA, a novel benchmark that integrates Chart Question Answering (ChartQA) with visual grounding, enabling models to refer elements at multiple granularities within chart images. Furthermore, we conduct a comprehensive evaluation by instruction-tuning 5 state-of-the-art VLMs across different categories. Our experiments demonstrate that incorporating spatial awareness via grounding improves response accuracy by over 15%, reducing hallucinations, and improving model reliability. Additionally, we identify key factors influencing text-spatial alignment, such as architectural improvements in TinyChart, which leverages a token-merging module for enhanced feature fusion. Our dataset is open-sourced for community development and further advancements. All models and code will be publicly available at https://github.com/moured/RefChartQA.
comment: Accepted by ICDAR 2025. All models and code will be publicly available at https://github.com/moured/RefChartQA
♻ ☆ Rasterizing Wireless Radiance Field via Deformable 2D Gaussian Splatting
Modeling the wireless radiance field (WRF) is fundamental to modern communication systems, enabling key tasks such as localization, sensing, and channel estimation. Traditional approaches, which rely on empirical formulas or physical simulations, often suffer from limited accuracy or require strong scene priors. Recent neural radiance field (NeRF-based) methods improve reconstruction fidelity through differentiable volumetric rendering, but their reliance on computationally expensive multilayer perceptron (MLP) queries hinders real-time deployment. To overcome these challenges, we introduce Gaussian splatting (GS) to the wireless domain, leveraging its efficiency in modeling optical radiance fields to enable compact and accurate WRF reconstruction. Specifically, we propose SwiftWRF, a deformable 2D Gaussian splatting framework that synthesizes WRF spectra at arbitrary positions under single-sided transceiver mobility. SwiftWRF employs CUDA-accelerated rasterization to render spectra at over 100000 fps and uses a lightweight MLP to model the deformation of 2D Gaussians, effectively capturing mobility-induced WRF variations. In addition to novel spectrum synthesis, the efficacy of SwiftWRF is further underscored in its applications in angle-of-arrival (AoA) and received signal strength indicator (RSSI) prediction. Experiments conducted on both real-world and synthetic indoor scenes demonstrate that SwiftWRF can reconstruct WRF spectra up to 500x faster than existing state-of-the-art methods, while significantly enhancing its signal quality. The project page is https://evan-sudo.github.io/swiftwrf/.
♻ ☆ A Bird Song Detector for improving bird identification through Deep Learning: a case study from Doñana
Passive Acoustic Monitoring is a key tool for biodiversity conservation, but the large volumes of unsupervised audio it generates present major challenges for extracting meaningful information. Deep Learning offers promising solutions. BirdNET, a widely used bird identification model, has shown success in many study systems but is limited at local scale due to biases in its training data, which focus on specific locations and target sounds rather than entire soundscapes. A key challenge in bird species identification is that many recordings either lack target species or contain overlapping vocalizations, complicating automatic identification. To address these problems, we developed a multi-stage pipeline for automatic bird vocalization identification in Do\~nana National Park (SW Spain), a wetland of high conservation concern. We deployed AudioMoth recorders in three main habitats across nine locations and manually annotated 461 minutes of audio, resulting in 3749 labeled segments spanning 34 classes. We first applied a Bird Song Detector to isolate bird vocalizations using spectrogram-based image processing. Then, species were classified using custom models trained at the local scale. Applying the Bird Song Detector before classification improved species identification, as all models performed better when analyzing only the segments where birds were detected. Specifically, the combination of detector and fine-tuned BirdNET outperformed the baseline without detection. This approach demonstrates the effectiveness of integrating a Bird Song Detector with local classification models. These findings highlight the need to adapt general-purpose tools to specific ecological challenges. Automatically detecting bird species helps track the health of this threatened ecosystem, given birds sensitivity to environmental change, and supports conservation planning to reduce biodiversity loss.
comment: 23 pages, 14 images, for associated dataset see https://huggingface.co/datasets/GrunCrow/BIRDeep_AudioAnnotations , for associated code see https://github.com/GrunCrow/BIRDeep_BirdSongDetector_NeuralNetworks and https://github.com/GrunCrow/Bird-Song-Detector
♻ ☆ Incorporating Pre-training Data Matters in Unsupervised Domain Adaptation
In deep learning, initializing models with pre-trained weights has become the de facto practice for various downstream tasks. Many unsupervised domain adaptation (UDA) methods typically adopt a backbone pre-trained on ImageNet, and focus on reducing the source-target domain discrepancy. However, the impact of pre-training on adaptation received little attention. In this study, we delve into UDA from the novel perspective of pre-training. We first demonstrate the impact of pre-training by analyzing the dynamic distribution discrepancies between pre-training data domain and the source/ target domain during adaptation. Then, we reveal that the target error also stems from the pre-training in the following two factors: 1) empirically, target error arises from the gradually degenerative pre-trained knowledge during adaptation; 2) theoretically, the error bound depends on difference between the gradient of loss function, \ie, on the target domain and pre-training data domain. To address these two issues, we redefine UDA as a three-domain problem, \ie, source domain, target domain, and pre-training data domain; then we propose a novel framework, named TriDA. We maintain the pre-trained knowledge and improve the error bound by incorporating pre-training data into adaptation for both vanilla UDA and source-free UDA scenarios. For efficiency, we introduce a selection strategy for pre-training data, and offer a solution with synthesized images when pre-training data is unavailable during adaptation. Notably, TriDA is effective even with a small amount of pre-training or synthesized images, and seamlessly complements the two scenario UDA methods, demonstrating state-of-the-art performance across multiple benchmarks. We hope our work provides new insights for better understanding and application of domain adaptation.
♻ ☆ Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model MICCAI25
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/mar-cry/Ophora.
comment: Early accepted in MICCAI25
♻ ☆ SFDLA: Source-Free Document Layout Analysis ICDAR 2025
Document Layout Analysis (DLA) is a fundamental task in document understanding. However, existing DLA and adaptation methods often require access to large-scale source data and target labels. This requirements severely limiting their real-world applicability, particularly in privacy-sensitive and resource-constrained domains, such as financial statements, medical records, and proprietary business documents. According to our observation, directly transferring source-domain fine-tuned models on target domains often results in a significant performance drop (Avg. -32.64%). In this work, we introduce Source-Free Document Layout Analysis (SFDLA), aiming for adapting a pre-trained source DLA models to an unlabeled target domain, without access to any source data. To address this challenge, we establish the first SFDLA benchmark, covering three major DLA datasets for geometric- and content-aware adaptation. Furthermore, we propose Document Layout Analysis Adapter (DLAdapter), a novel framework that is designed to improve source-free adaptation across document domains. Our method achieves a +4.21% improvement over the source-only baseline and a +2.26% gain over existing source-free methods from PubLayNet to DocLayNet. We believe this work will inspire the DLA community to further investigate source-free document understanding. To support future research of the community, the benchmark, models, and code will be publicly available at https://github.com/s3setewe/sfdla-DLAdapter.
comment: Accepted by ICDAR 2025. The benchmark, models, and code will be publicly available at https://github.com/s3setewe/sfdla-DLAdapter
♻ ☆ Style-Preserving Lip Sync via Audio-Aware Style Reference
Audio-driven lip sync has recently drawn significant attention due to its widespread application in the multimedia domain. Individuals exhibit distinct lip shapes when speaking the same utterance, attributed to the unique speaking styles of individuals, posing a notable challenge for audio-driven lip sync. Earlier methods for such task often bypassed the modeling of personalized speaking styles, resulting in sub-optimal lip sync conforming to the general styles. Recent lip sync techniques attempt to guide the lip sync for arbitrary audio by aggregating information from a style reference video, yet they can not preserve the speaking styles well due to their inaccuracy in style aggregation. This work proposes an innovative audio-aware style reference scheme that effectively leverages the relationships between input audio and reference audio from style reference video to address the style-preserving audio-driven lip sync. Specifically, we first develop an advanced Transformer-based model adept at predicting lip motion corresponding to the input audio, augmented by the style information aggregated through cross-attention layers from style reference video. Afterwards, to better render the lip motion into realistic talking face video, we devise a conditional latent diffusion model, integrating lip motion through modulated convolutional layers and fusing reference facial images via spatial cross-attention layers. Extensive experiments validate the efficacy of the proposed approach in achieving precise lip sync, preserving speaking styles, and generating high-fidelity, realistic talking face videos.
comment: submitted to IEEE Transactions on Multimedia(TMM)
♻ ☆ The OCR Quest for Generalization: Learning to recognize low-resource alphabets with model editing
Achieving robustness in recognition systems across diverse domains is crucial for their practical utility. While ample data availability is usually assumed, low-resource languages, such as ancient manuscripts and non-western languages, tend to be kept out of the equations of massive pretraining and foundational techniques due to an under representation. In this work, we aim for building models which can generalize to new distributions of data, such as alphabets, faster than centralized fine-tune strategies. For doing so, we take advantage of the recent advancements in model editing to enhance the incorporation of unseen scripts (low-resource learning). In contrast to state-of-the-art meta-learning, we showcase the effectiveness of domain merging in sparse distributions of data, with agnosticity of its relation to the overall distribution or any other prototyping necessity. Even when using the same exact training data, our experiments showcase significant performance boosts in \textbf{transfer learning} to new alphabets and \textbf{out-of-domain evaluation} in challenging domain shifts, including historical ciphered texts and non-Latin scripts. This research contributes a novel approach into building models that can easily adopt under-represented alphabets and, therefore, enable document recognition to a wider set of contexts and cultures.
comment: Preprint (under review) For Journal
♻ ☆ SCAM: A Real-World Typographic Robustness Evaluation for Multimodal Foundation Models CVPR 2025
Typographic attacks exploit the interplay between text and visual content in multimodal foundation models, causing misclassifications when misleading text is embedded within images. However, existing datasets are limited in size and diversity, making it difficult to study such vulnerabilities. In this paper, we introduce SCAM, the largest and most diverse dataset of real-world typographic attack images to date, containing 1,162 images across hundreds of object categories and attack words. Through extensive benchmarking of Vision-Language Models (VLMs) on SCAM, we demonstrate that typographic attacks significantly degrade performance, and identify that training data and model architecture influence the susceptibility to these attacks. Our findings reveal that typographic attacks persist in state-of-the-art Large Vision-Language Models (LVLMs) due to the choice of their vision encoder, though larger Large Language Models (LLMs) backbones help mitigate their vulnerability. Additionally, we demonstrate that synthetic attacks closely resemble real-world (handwritten) attacks, validating their use in research. Our work provides a comprehensive resource and empirical insights to facilitate future research toward robust and trustworthy multimodal AI systems. We publicly release the datasets introduced in this paper along with the code for evaluations at www.bliss.berlin/research/scam.
comment: Accepted at CVPR 2025 Workshop EVAL-FoMo-2
♻ ☆ Pro-AD: Learning Comprehensive Prototypes with Prototype-based Constraint for Multi-class Unsupervised Anomaly Detection
Prototype-based reconstruction methods for unsupervised anomaly detection utilize a limited set of learnable prototypes which only aggregates insufficient normal information, resulting in undesirable reconstruction. However, increasing the number of prototypes may lead to anomalies being well reconstructed through the attention mechanism, which we refer to as the "Soft Identity Mapping" problem. In this paper, we propose Pro-AD to address these issues and fully utilize the prototypes to boost the performance of anomaly detection. Specifically, we first introduce an expanded set of learnable prototypes to provide sufficient capacity for semantic information. Then we employ a Dynamic Bidirectional Decoder which integrates the process of the normal information aggregation and the target feature reconstruction via prototypes, with the aim of allowing the prototypes to aggregate more comprehensive normal semantic information from different levels of the image features and the target feature reconstruction to not only utilize its contextual information but also dynamically leverage the learned comprehensive prototypes. Additionally, to prevent the anomalies from being well reconstructed using sufficient semantic information through the attention mechanism, Pro-AD introduces a Prototype-based Constraint that applied within the target feature reconstruction process of the decoder, which further improves the performance of our approach. Extensive experiments on multiple challenging benchmarks demonstrate that our Pro-AD achieve state-of-the-art performance, highlighting its superior robustness and practical effectiveness for Multi-class Unsupervised Anomaly Detection task.
♻ ☆ DRL-Based Resource Allocation for Motion Blur Resistant Federated Self-Supervised Learning in IoV
In the Internet of Vehicles (IoV), Federated Learning (FL) provides a privacy-preserving solution by aggregating local models without sharing data. Traditional supervised learning requires image data with labels, but data labeling involves significant manual effort. Federated Self-Supervised Learning (FSSL) utilizes Self-Supervised Learning (SSL) for local training in FL, eliminating the need for labels while protecting privacy. Compared to other SSL methods, Momentum Contrast (MoCo) reduces the demand for computing resources and storage space by creating a dictionary. However, using MoCo in FSSL requires uploading the local dictionary from vehicles to Base Station (BS), which poses a risk of privacy leakage. Simplified Contrast (SimCo) addresses the privacy leakage issue in MoCo-based FSSL by using dual temperature instead of a dictionary to control sample distribution. Additionally, considering the negative impact of motion blur on model aggregation, and based on SimCo, we propose a motion blur-resistant FSSL method, referred to as BFSSL. Furthermore, we address energy consumption and delay in the BFSSL process by proposing a Deep Reinforcement Learning (DRL)-based resource allocation scheme, called DRL-BFSSL. In this scheme, BS allocates the Central Processing Unit (CPU) frequency and transmission power of vehicles to minimize energy consumption and latency, while aggregating received models based on the motion blur level. Simulation results validate the effectiveness of our proposed aggregation and resource allocation methods.
comment: This paper has been accepted by IEEE Internet of Things Journal. The source code has been released at: https://github.com/qiongwu86/DRL-BFSSL
♻ ☆ FLARE: Towards Universal Dataset Purification against Backdoor Attacks
Deep neural networks (DNNs) are susceptible to backdoor attacks, where adversaries poison datasets with adversary-specified triggers to implant hidden backdoors, enabling malicious manipulation of model predictions. Dataset purification serves as a proactive defense by removing malicious training samples to prevent backdoor injection at its source. We first reveal that the current advanced purification methods rely on a latent assumption that the backdoor connections between triggers and target labels in backdoor attacks are simpler to learn than the benign features. We demonstrate that this assumption, however, does not always hold, especially in all-to-all (A2A) and untargeted (UT) attacks. As a result, purification methods that analyze the separation between the poisoned and benign samples in the input-output space or the final hidden layer space are less effective. We observe that this separability is not confined to a single layer but varies across different hidden layers. Motivated by this understanding, we propose FLARE, a universal purification method to counter various backdoor attacks. FLARE aggregates abnormal activations from all hidden layers to construct representations for clustering. To enhance separation, FLARE develops an adaptive subspace selection algorithm to isolate the optimal space for dividing an entire dataset into two clusters. FLARE assesses the stability of each cluster and identifies the cluster with higher stability as poisoned. Extensive evaluations on benchmark datasets demonstrate the effectiveness of FLARE against 22 representative backdoor attacks, including all-to-one (A2O), all-to-all (A2A), and untargeted (UT) attacks, and its robustness to adaptive attacks. Codes are available at \href{https://github.com/THUYimingLi/BackdoorBox}{BackdoorBox} and \href{https://github.com/vtu81/backdoor-toolbox}{backdoor-toolbox}.
comment: 15 pages, This paper is accepted and will appear in TIFS (CCF-A)
♻ ☆ EmoEdit: Evoking Emotions through Image Manipulation
Affective Image Manipulation (AIM) seeks to modify user-provided images to evoke specific emotional responses. This task is inherently complex due to its twofold objective: significantly evoking the intended emotion, while preserving the original image composition. Existing AIM methods primarily adjust color and style, often failing to elicit precise and profound emotional shifts. Drawing on psychological insights, we introduce EmoEdit, which extends AIM by incorporating content modifications to enhance emotional impact. Specifically, we first construct EmoEditSet, a large-scale AIM dataset comprising 40,120 paired data through emotion attribution and data construction. To make existing generative models emotion-aware, we design the Emotion adapter and train it using EmoEditSet. We further propose an instruction loss to capture the semantic variations in data pairs. Our method is evaluated both qualitatively and quantitatively, demonstrating superior performance compared to existing state-of-the-art techniques. Additionally, we showcase the portability of our Emotion adapter to other diffusion-based models, enhancing their emotion knowledge with diverse semantics.
♻ ☆ PanopticNeRF-360: Panoramic 3D-to-2D Label Transfer in Urban Scenes
Training perception systems for self-driving cars requires substantial 2D annotations that are labor-intensive to manual label. While existing datasets provide rich annotations on pre-recorded sequences, they fall short in labeling rarely encountered viewpoints, potentially hampering the generalization ability for perception models. In this paper, we present PanopticNeRF-360, a novel approach that combines coarse 3D annotations with noisy 2D semantic cues to generate high-quality panoptic labels and images from any viewpoint. Our key insight lies in exploiting the complementarity of 3D and 2D priors to mutually enhance geometry and semantics. Specifically, we propose to leverage coarse 3D bounding primitives and noisy 2D semantic and instance predictions to guide geometry optimization, by encouraging predicted labels to match panoptic pseudo ground truth. Simultaneously, the improved geometry assists in filtering 3D&2D annotation noise by fusing semantics in 3D space via a learned semantic field. To further enhance appearance, we combine MLP and hash grids to yield hybrid scene features, striking a balance between high-frequency appearance and contiguous semantics. Our experiments demonstrate PanopticNeRF-360's state-of-the-art performance over label transfer methods on the challenging urban scenes of the KITTI-360 dataset. Moreover, PanopticNeRF-360 enables omnidirectional rendering of high-fidelity, multi-view and spatiotemporally consistent appearance, semantic and instance labels. We make our code and data available at https://github.com/fuxiao0719/PanopticNeRF
comment: TPAMI 2025. Project page: http://fuxiao0719.github.io/projects/panopticnerf360/ Code: https://github.com/fuxiao0719/PanopticNeRF/tree/panopticnerf360
♻ ☆ Improving LLM Video Understanding with 16 Frames Per Second
Human vision is dynamic and continuous. However, in video understanding with multimodal large language models (LLMs), existing methods primarily rely on static features extracted from images sampled at a fixed low frame rate of frame-per-second (FPS) $\leqslant$2, leading to critical visual information loss. In this paper, we introduce F-16, the first multimodal LLM designed for high-frame-rate video understanding. By increasing the frame rate to 16 FPS and compressing visual tokens within each 1-second clip, F-16 efficiently captures dynamic visual features while preserving key semantic information. Experimental results demonstrate that higher frame rates considerably enhance video understanding across multiple benchmarks, providing a new approach to improving video LLMs beyond scaling model size or training data. F-16 achieves state-of-the-art performance among 7-billion-parameter video LLMs on both general and fine-grained video understanding benchmarks, such as Video-MME and TemporalBench. Furthermore, F-16 excels in complex spatiotemporal tasks, including high-speed sports analysis (\textit{e.g.}, basketball, football, gymnastics, and diving), outperforming SOTA proprietary visual models like GPT-4o and Gemini-1.5-pro. Additionally, we introduce a novel decoding method for F-16 that enables highly efficient low-frame-rate inference without requiring model retraining. We will release the source code, model checkpoints, and data at \href{https://github.com/bytedance/F-16}{https://github.com/bytedance/F-16}.
♻ ☆ PRO: Projection Domain Synthesis for CT Imaging
Synthesizing high quality CT projection data remains a significant challenge due to the limited availability of annotated data and the complex nature of CT imaging. In this work, we present PRO, a projection domain synthesis foundation model for CT imaging. To the best of our knowledge, this is the first study that performs CT synthesis in the projection domain. Unlike previous approaches that operate in the image domain, PRO learns rich structural representations from raw projection data and leverages anatomical text prompts for controllable synthesis. This projection domain strategy enables more faithful modeling of underlying imaging physics and anatomical structures. Moreover, PRO functions as a foundation model, capable of generalizing across diverse downstream tasks by adjusting its generative behavior via prompt inputs. Experimental results demonstrated that incorporating our synthesized data significantly improves performance across multiple downstream tasks, including low-dose and sparse-view reconstruction. These findings underscore the versatility and scalability of PRO in data generation for various CT applications. These results highlight the potential of projection domain synthesis as a powerful tool for data augmentation and robust CT imaging. Our source code is publicly available at: https://github.com/yqx7150/PRO.
♻ ☆ Jailbreak Large Vision-Language Models Through Multi-Modal Linkage
With the significant advancement of Large Vision-Language Models (VLMs), concerns about their potential misuse and abuse have grown rapidly. Previous studies have highlighted VLMs' vulnerability to jailbreak attacks, where carefully crafted inputs can lead the model to produce content that violates ethical and legal standards. However, existing methods struggle against state-of-the-art VLMs like GPT-4o, due to the over-exposure of harmful content and lack of stealthy malicious guidance. In this work, we propose a novel jailbreak attack framework: Multi-Modal Linkage (MML) Attack. Drawing inspiration from cryptography, MML utilizes an encryption-decryption process across text and image modalities to mitigate over-exposure of malicious information. To align the model's output with malicious intent covertly, MML employs a technique called "evil alignment", framing the attack within a video game production scenario. Comprehensive experiments demonstrate MML's effectiveness. Specifically, MML jailbreaks GPT-4o with attack success rates of 97.80% on SafeBench, 98.81% on MM-SafeBench and 99.07% on HADES-Dataset. Our code is available at https://github.com/wangyu-ovo/MML.
♻ ☆ SUEDE:Shared Unified Experts for Physical-Digital Face Attack Detection Enhancement ICME 2025
Face recognition systems are vulnerable to physical attacks (e.g., printed photos) and digital threats (e.g., DeepFake), which are currently being studied as independent visual tasks, such as Face Anti-Spoofing and Forgery Detection. The inherent differences among various attack types present significant challenges in identifying a common feature space, making it difficult to develop a unified framework for detecting data from both attack modalities simultaneously. Inspired by the efficacy of Mixture-of-Experts (MoE) in learning across diverse domains, we explore utilizing multiple experts to learn the distinct features of various attack types. However, the feature distributions of physical and digital attacks overlap and differ. This suggests that relying solely on distinct experts to learn the unique features of each attack type may overlook shared knowledge between them. To address these issues, we propose SUEDE, the Shared Unified Experts for Physical-Digital Face Attack Detection Enhancement. SUEDE combines a shared expert (always activated) to capture common features for both attack types and multiple routed experts (selectively activated) for specific attack types. Further, we integrate CLIP as the base network to ensure the shared expert benefits from prior visual knowledge and align visual-text representations in a unified space. Extensive results demonstrate SUEDE achieves superior performance compared to state-of-the-art unified detection methods.
comment: Accepted in ICME 2025 (Oral)
♻ ☆ MOS: Model Surgery for Pre-Trained Model-Based Class-Incremental Learning AAAI 2025
Class-Incremental Learning (CIL) requires models to continually acquire knowledge of new classes without forgetting old ones. Despite Pre-trained Models (PTMs) have shown excellent performance in CIL, catastrophic forgetting still occurs as the model learns new concepts. Existing work seeks to utilize lightweight components to adjust the PTM, while the forgetting phenomenon still comes from {\em parameter and retrieval} levels. Specifically, iterative updates of the model result in parameter drift, while mistakenly retrieving irrelevant modules leads to the mismatch during inference. To this end, we propose MOdel Surgery (MOS) to rescue the model from forgetting previous knowledge. By training task-specific adapters, we continually adjust the PTM to downstream tasks. To mitigate parameter-level forgetting, we present an adapter merging approach to learn task-specific adapters, which aims to bridge the gap between different components while reserve task-specific information. Besides, to address retrieval-level forgetting, we introduce a training-free self-refined adapter retrieval mechanism during inference, which leverages the model's inherent ability for better adapter retrieval. By jointly rectifying the model with those steps, MOS can robustly resist catastrophic forgetting in the learning process. Extensive experiments on seven benchmark datasets validate MOS's state-of-the-art performance. Code is available at: https://github.com/sun-hailong/AAAI25-MOS
comment: Accepted to AAAI 2025. Code is available at: https://github.com/sun-hailong/AAAI25-MOS
♻ ☆ A Curated and Re-annotated Peripheral Blood Cell Dataset Integrating Four Public Resources
We present TXL-PBC, a curated and re-annotated peripheral blood cell dataset constructed by integrating four publicly available resources: Blood Cell Count and Detection (BCCD), Blood Cell Detection Dataset (BCDD), Peripheral Blood Cells (PBC), and Raabin White Blood Cell (Raabin-WBC). Through rigorous sample selection, semi-automatic annotation using the YOLOv8n model, and comprehensive manual review, we ensured high annotation accuracy and consistency. The final dataset contains 1,260 images and 18,143 bounding box annotations for three major blood cell types: white blood cells (WBC), red blood cells (RBC), and platelets. We provide detailed visual analyses of the data distribution, demonstrating the diversity and balance of the dataset. To further validate the quality and utility of TXL-PBC, we trained several mainstream object detection models, including YOLOv5s, YOLOv8s, YOLOv11s, SSD300, Faster R-CNN, and RetinaNet, and report their baseline performance. The TXL-PBC dataset is openly available on Figshare and GitHub, offering a valuable resource for the development and benchmarking of blood cell detection models and related machine learning research.
♻ ☆ Data Augmentation Through Random Style Replacement
In this paper, we introduce a novel data augmentation technique that combines the advantages of style augmentation and random erasing by selectively replacing image subregions with style-transferred patches. Our approach first applies a random style transfer to training images, then randomly substitutes selected areas of these images with patches derived from the style-transferred versions. This method is able to seamlessly accommodate a wide range of existing style transfer algorithms and can be readily integrated into diverse data augmentation pipelines. By incorporating our strategy, the training process becomes more robust and less prone to overfitting. Comparative experiments demonstrate that, relative to previous style augmentation methods, our technique achieves superior performance and faster convergence.
comment: Accepted by 2025 6th International Conference on Computer Vision, Image and Deep Learning
♻ ☆ SurgSora: Object-Aware Diffusion Model for Controllable Surgical Video Generation
Surgical video generation can enhance medical education and research, but existing methods lack fine-grained motion control and realism. We introduce SurgSora, a framework that generates high-fidelity, motion-controllable surgical videos from a single input frame and user-specified motion cues. Unlike prior approaches that treat objects indiscriminately or rely on ground-truth segmentation masks, SurgSora leverages self-predicted object features and depth information to refine RGB appearance and optical flow for precise video synthesis. It consists of three key modules: (1) the Dual Semantic Injector, which extracts object-specific RGB-D features and segmentation cues to enhance spatial representations; (2) the Decoupled Flow Mapper, which fuses multi-scale optical flow with semantic features for realistic motion dynamics; and (3) the Trajectory Controller, which estimates sparse optical flow and enables user-guided object movement. By conditioning these enriched features within the Stable Video Diffusion, SurgSora achieves state-of-the-art visual authenticity and controllability in advancing surgical video synthesis, as demonstrated by extensive quantitative and qualitative comparisons. Our human evaluation in collaboration with expert surgeons further demonstrates the high realism of SurgSora-generated videos, highlighting the potential of our method for surgical training and education. Our project is available at https://surgsora.github.io/surgsora.github.io.
♻ ☆ Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think ICLR 2025
Recent studies have shown that the denoising process in (generative) diffusion models can induce meaningful (discriminative) representations inside the model, though the quality of these representations still lags behind those learned through recent self-supervised learning methods. We argue that one main bottleneck in training large-scale diffusion models for generation lies in effectively learning these representations. Moreover, training can be made easier by incorporating high-quality external visual representations, rather than relying solely on the diffusion models to learn them independently. We study this by introducing a straightforward regularization called REPresentation Alignment (REPA), which aligns the projections of noisy input hidden states in denoising networks with clean image representations obtained from external, pretrained visual encoders. The results are striking: our simple strategy yields significant improvements in both training efficiency and generation quality when applied to popular diffusion and flow-based transformers, such as DiTs and SiTs. For instance, our method can speed up SiT training by over 17.5$\times$, matching the performance (without classifier-free guidance) of a SiT-XL model trained for 7M steps in less than 400K steps. In terms of final generation quality, our approach achieves state-of-the-art results of FID=1.42 using classifier-free guidance with the guidance interval.
comment: ICLR 2025 (Oral). Project page: https://sihyun.me/REPA
♻ ☆ Generative diffusion model surrogates for mechanistic agent-based biological models
Mechanistic, multicellular, agent-based models are commonly used to investigate tissue, organ, and organism-scale biology at single-cell resolution. The Cellular-Potts Model (CPM) is a powerful and popular framework for developing and interrogating these models. CPMs become computationally expensive at large space- and time- scales making application and investigation of developed models difficult. Surrogate models may allow for the accelerated evaluation of CPMs of complex biological systems. However, the stochastic nature of these models means each set of parameters may give rise to different model configurations, complicating surrogate model development. In this work, we leverage denoising diffusion probabilistic models to train a generative AI surrogate of a CPM used to investigate in vitro vasculogenesis. We describe the use of an image classifier to learn the characteristics that define unique areas of a 2-dimensional parameter space. We then apply this classifier to aid in surrogate model selection and verification. Our CPM model surrogate generates model configurations 20,000 timesteps ahead of a reference configuration and demonstrates approximately a 22x reduction in computational time as compared to native code execution. Our work represents a step towards the implementation of DDPMs to develop digital twins of stochastic biological systems.
♻ ☆ PLD: A Choice-Theoretic List-Wise Knowledge Distillation
Knowledge distillation is a model compression technique in which a compact "student" network is trained to replicate the predictive behavior of a larger "teacher" network. In logit-based knowledge distillation it has become the de facto approach to augment cross-entropy with a distillation term. Typically this term is either a KL divergence-matching marginal probabilities or a correlation-based loss capturing intra- and inter-class relationships but in every case it sits as an add-on to cross-entropy with its own weight that must be carefully tuned. In this paper we adopt a choice-theoretic perspective and recast knowledge distillation under the Plackett-Luce model by interpreting teacher logits as "worth" scores. We introduce Plackett-Luce Distillation (PLD), a weighted list-wise ranking loss in which the teacher model transfers knowledge of its full ranking of classes, weighting each ranked choice by its own confidence. PLD directly optimizes a single teacher-optimal ranking of the true label first, followed by the remaining classes in descending teacher confidence, yielding a convex, translation-invariant surrogate that subsumes weighted cross-entropy. Empirically on standard image classification benchmarks, PLD improves Top-1 accuracy by an average of +0.42% over DIST (arXiv:2205.10536) and +1.04% over KD (arXiv:1503.02531) in homogeneous settings and by +0.48% and +1.09% over DIST and KD, respectively, in heterogeneous settings.
♻ ☆ Bi-VLDoc: Bidirectional Vision-Language Modeling for Visually-Rich Document Understanding
Multi-modal document pre-trained models have proven to be very effective in a variety of visually-rich document understanding (VrDU) tasks. Though existing document pre-trained models have achieved excellent performance on standard benchmarks for VrDU, the way they model and exploit the interactions between vision and language on documents has hindered them from better generalization ability and higher accuracy. In this work, we investigate the problem of vision-language joint representation learning for VrDU mainly from the perspective of supervisory signals. Specifically, a pre-training paradigm called Bi-VLDoc is proposed, in which a bidirectional vision-language supervision strategy and a vision-language hybrid-attention mechanism are devised to fully explore and utilize the interactions between these two modalities, to learn stronger cross-modal document representations with richer semantics. Benefiting from the learned informative cross-modal document representations, Bi-VLDoc significantly advances the state-of-the-art performance on three widely-used document understanding benchmarks, including Form Understanding (from 85.14% to 93.44%), Receipt Information Extraction (from 96.01% to 97.84%), and Document Classification (from 96.08% to 97.12%). On Document Visual QA, Bi-VLDoc achieves the state-of-the-art performance compared to previous single model methods.
comment: IJDAR 2025
♻ ☆ Multiclass Post-Earthquake Building Assessment Integrating High-Resolution Optical and SAR Satellite Imagery, Ground Motion, and Soil Data with Transformers
Timely and accurate assessments of building damage are crucial for effective response and recovery in the aftermath of earthquakes. Conventional preliminary damage assessments (PDA) often rely on manual door-to-door inspections, which are not only time-consuming but also pose significant safety risks. To safely expedite the PDA process, researchers have studied the applicability of satellite imagery processed with heuristic and machine learning approaches. These approaches output binary or, more recently, multiclass damage states at the scale of a block or a single building. However, the current performance of such approaches limits practical applicability. To address this limitation, we introduce a metadata-enriched, transformer based framework that combines high-resolution post-earthquake satellite imagery with building-specific metadata relevant to the seismic performance of the structure. Our model achieves state-of-the-art performance in multiclass post-earthquake damage identification for buildings from the Turkey-Syria earthquake on February 6, 2023. Specifically, we demonstrate that incorporating metadata, such as seismic intensity indicators, soil properties, and SAR damage proxy maps not only enhances the model's accuracy and ability to distinguish between damage classes, but also improves its generalizability across various regions. Furthermore, we conducted a detailed, class-wise analysis of feature importance to understand the model's decision-making across different levels of building damage. This analysis reveals how individual metadata features uniquely contribute to predictions for each damage class. By leveraging both satellite imagery and metadata, our proposed framework enables faster and more accurate damage assessments for precise, multiclass, building-level evaluations that can improve disaster response and accelerate recovery efforts for affected communities.
comment: 28 Pages, 12 Figures
♻ ☆ AdaVideoRAG: Omni-Contextual Adaptive Retrieval-Augmented Efficient Long Video Understanding
Multimodal Large Language Models (MLLMs) struggle with long videos due to fixed context windows and weak long-term dependency modeling. Existing Retrieval-Augmented Generation (RAG) methods for videos use static retrieval strategies, leading to inefficiencies for simple queries and information loss for complex tasks. To address this, we propose AdaVideoRAG, a novel framework that dynamically adapts retrieval granularity based on query complexity using a lightweight intent classifier. Our framework employs an Omni-Knowledge Indexing module to build hierarchical databases from text (captions, ASR, OCR), visual features, and semantic graphs, enabling optimal resource allocation across tasks. We also introduce the HiVU benchmark for comprehensive evaluation. Experiments demonstrate improved efficiency and accuracy for long-video understanding, with seamless integration into existing MLLMs. AdaVideoRAG establishes a new paradigm for adaptive retrieval in video analysis. Codes will be open-sourced at https://github.com/xzc-zju/AdaVideoRAG.
♻ ☆ Click-Calib: A Robust Extrinsic Calibration Method for Surround-View Systems
Surround-View System (SVS) is an essential component in Advanced Driver Assistance System (ADAS) and requires precise calibrations. However, conventional offline extrinsic calibration methods are cumbersome and time-consuming as they rely heavily on physical patterns. Additionally, these methods primarily focus on short-range areas surrounding the vehicle, resulting in lower calibration quality in more distant zones. To address these limitations, we propose Click-Calib, a pattern-free approach for offline SVS extrinsic calibration. Without requiring any special setup, the user only needs to click a few keypoints on the ground in natural scenes. Unlike other offline calibration approaches, Click-Calib optimizes camera poses over a wide range by minimizing reprojection distance errors of keypoints, thereby achieving accurate calibrations at both short and long distances. Furthermore, Click-Calib supports both single-frame and multiple-frame modes, with the latter offering even better results. Evaluations on our in-house dataset and the public WoodScape dataset demonstrate its superior accuracy and robustness compared to baseline methods. Code is available at https://github.com/lwangvaleo/click_calib.
♻ ☆ SemVink: Advancing VLMs' Semantic Understanding of Optical Illusions via Visual Global Thinking
Vision-language models (VLMs) excel in semantic tasks but falter at a core human capability: detecting hidden content in optical illusions or AI-generated images through perceptual adjustments like zooming. We introduce HC-Bench, a benchmark of 112 images with hidden text, objects, and illusions, revealing that leading VLMs achieve near-zero accuracy (0-5.36%)-even with explicit prompting. Humans resolve such ambiguities instinctively, yet VLMs fail due to an overreliance on high-level semantics. Strikingly, we propose SemVink (Semantic Visual Thinking) by simply scaling images to low resolutions (32-128 pixels), which unlocks >99% accuracy by eliminating redundant visual noise. This exposes a critical architectural flaw: VLMs prioritize abstract reasoning over low-level visual operations crucial for real-world robustness. Our work urges a shift toward hybrid models integrating multi-scale processing, bridging the gap between computational vision and human cognition for applications in medical imaging, security, and beyond.
♻ ☆ Towards Cross-Subject EMG Pattern Recognition via Dual-Branch Adversarial Feature Disentanglement
Cross-subject electromyography (EMG) pattern recognition faces significant challenges due to inter-subject variability in muscle anatomy, electrode placement, and signal characteristics. Traditional methods rely on subject-specific calibration data to adapt models to new users, an approach that is both time-consuming and impractical for large-scale, real-world deployment. This paper presents an approach to eliminate calibration requirements through feature disentanglement, enabling effective cross-subject generalization. We propose an end-to-end dual-branch adversarial neural network that simultaneously performs pattern recognition and individual identification by disentangling EMG features into pattern-specific and subject-specific components. The pattern-specific components facilitate robust pattern recognition for new users without model calibration, while the subject-specific components enable downstream applications such as task-invariant biometric identification. Experimental results demonstrate that the proposed model achieves robust performance on data from unseen users, outperforming various baseline methods in cross-subject scenarios. Overall, this study offers a new perspective for cross-subject EMG pattern recognition without model calibration and highlights the proposed model's potential for broader applications, such as task-independent biometric systems.
comment: 6 pages, 3 figures. This work has been accepted for presentation at the IEEE Engineering in Medicine and Biology Conference (EMBC) 2025. New version corrects numerical errors in Table 1. Conclusions are unaffected
Artificial Intelligence 149
☆ Dense SAE Latents Are Features, Not Bugs
Sparse autoencoders (SAEs) are designed to extract interpretable features from language models by enforcing a sparsity constraint. Ideally, training an SAE would yield latents that are both sparse and semantically meaningful. However, many SAE latents activate frequently (i.e., are \emph{dense}), raising concerns that they may be undesirable artifacts of the training procedure. In this work, we systematically investigate the geometry, function, and origin of dense latents and show that they are not only persistent but often reflect meaningful model representations. We first demonstrate that dense latents tend to form antipodal pairs that reconstruct specific directions in the residual stream, and that ablating their subspace suppresses the emergence of new dense features in retrained SAEs -- suggesting that high density features are an intrinsic property of the residual space. We then introduce a taxonomy of dense latents, identifying classes tied to position tracking, context binding, entropy regulation, letter-specific output signals, part-of-speech, and principal component reconstruction. Finally, we analyze how these features evolve across layers, revealing a shift from structural features in early layers, to semantic features in mid layers, and finally to output-oriented signals in the last layers of the model. Our findings indicate that dense latents serve functional roles in language model computation and should not be dismissed as training noise.
☆ Embodied Web Agents: Bridging Physical-Digital Realms for Integrated Agent Intelligence
AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-world landmarks using web knowledge. We introduce Embodied Web Agents, a novel paradigm for AI agents that fluidly bridge embodiment and web-scale reasoning. To operationalize this concept, we first develop the Embodied Web Agents task environments, a unified simulation platform that tightly integrates realistic 3D indoor and outdoor environments with functional web interfaces. Building upon this platform, we construct and release the Embodied Web Agents Benchmark, which encompasses a diverse suite of tasks including cooking, navigation, shopping, tourism, and geolocation - all requiring coordinated reasoning across physical and digital realms for systematic assessment of cross-domain intelligence. Experimental results reveal significant performance gaps between state-of-the-art AI systems and human capabilities, establishing both challenges and opportunities at the intersection of embodied cognition and web-scale knowledge access. All datasets, codes and websites are publicly available at our project page https://embodied-web-agent.github.io/.
☆ Sekai: A Video Dataset towards World Exploration
Video generation techniques have made remarkable progress, promising to be the foundation of interactive world exploration. However, existing video generation datasets are not well-suited for world exploration training as they suffer from some limitations: limited locations, short duration, static scenes, and a lack of annotations about exploration and the world. In this paper, we introduce Sekai (meaning ``world'' in Japanese), a high-quality first-person view worldwide video dataset with rich annotations for world exploration. It consists of over 5,000 hours of walking or drone view (FPV and UVA) videos from over 100 countries and regions across 750 cities. We develop an efficient and effective toolbox to collect, pre-process and annotate videos with location, scene, weather, crowd density, captions, and camera trajectories. Experiments demonstrate the quality of the dataset. And, we use a subset to train an interactive video world exploration model, named YUME (meaning ``dream'' in Japanese). We believe Sekai will benefit the area of video generation and world exploration, and motivate valuable applications.
comment: 12 pages, 6 figures
☆ Leaky Thoughts: Large Reasoning Models Are Not Private Thinkers
We study privacy leakage in the reasoning traces of large reasoning models used as personal agents. Unlike final outputs, reasoning traces are often assumed to be internal and safe. We challenge this assumption by showing that reasoning traces frequently contain sensitive user data, which can be extracted via prompt injections or accidentally leak into outputs. Through probing and agentic evaluations, we demonstrate that test-time compute approaches, particularly increased reasoning steps, amplify such leakage. While increasing the budget of those test-time compute approaches makes models more cautious in their final answers, it also leads them to reason more verbosely and leak more in their own thinking. This reveals a core tension: reasoning improves utility but enlarges the privacy attack surface. We argue that safety efforts must extend to the model's internal thinking, not just its outputs.
SwarmAgentic: Towards Fully Automated Agentic System Generation via Swarm Intelligence
The rapid progress of Large Language Models has advanced agentic systems in decision-making, coordination, and task execution. Yet, existing agentic system generation frameworks lack full autonomy, missing from-scratch agent generation, self-optimizing agent functionality, and collaboration, limiting adaptability and scalability. We propose SwarmAgentic, a framework for fully automated agentic system generation that constructs agentic systems from scratch and jointly optimizes agent functionality and collaboration as interdependent components through language-driven exploration. To enable efficient search over system-level structures, SwarmAgentic maintains a population of candidate systems and evolves them via feedback-guided updates, drawing inspiration from Particle Swarm Optimization (PSO). We evaluate our method on six real-world, open-ended, and exploratory tasks involving high-level planning, system-level coordination, and creative reasoning. Given only a task description and an objective function, SwarmAgentic outperforms all baselines, achieving a +261.8% relative improvement over ADAS on the TravelPlanner benchmark, highlighting the effectiveness of full automation in structurally unconstrained tasks. This framework marks a significant step toward scalable and autonomous agentic system design, bridging swarm intelligence with fully automated system multi-agent generation. Our code is publicly released at https://yaoz720.github.io/SwarmAgentic/.
comment: 41 pages
☆ AutoRule: Reasoning Chain-of-thought Extracted Rule-based Rewards Improve Preference Learning
Rule-based rewards offer a promising strategy for improving reinforcement learning from human feedback (RLHF), but current approaches often rely on manual rule engineering. We present AutoRule, a fully automated method for extracting rules from preference feedback and formulating them into rule-based rewards. AutoRule extraction operates in three stages: it leverages a reasoning model to interpret user preferences, identifies candidate rules from the reasoning chain of these interpretations, and synthesizes them into a unified rule set. Leveraging the finalized rule set, we employ language-model verifiers to compute the fraction of rules satisfied by each output, using this metric as an auxiliary reward alongside the learned reward model during policy optimization. Training a Llama-3-8B model with AutoRule results in a 28.6\% relative improvement in length-controlled win rate on AlpacaEval2.0, and a 6.1\% relative gain in second-turn performance on a held-out MT-Bench subset, compared to a GRPO baseline trained with the same learned reward model but without the rule-based auxiliary reward. Our analysis confirms that the extracted rules exhibit good agreement with dataset preference. We find that AutoRule demonstrates reduced reward hacking compared to a learned reward model when run over two episodes. Finally, our case study suggests that the extracted rules capture unique qualities valued in different datasets. The extracted rules are provided in the appendix, and the code is open-sourced at https://github.com/cxcscmu/AutoRule.
☆ Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement
Recent advancements in large reasoning models (LRMs) have significantly enhanced language models' capabilities in complex problem-solving by emulating human-like deliberative thinking. However, these models often exhibit overthinking (i.e., the generation of unnecessarily verbose and redundant content), which hinders efficiency and inflates inference cost. In this work, we explore the representational and behavioral origins of this inefficiency, revealing that LRMs inherently possess the capacity for more concise reasoning. Empirical analyses show that correct reasoning paths vary significantly in length, and the shortest correct responses often suffice, indicating untapped efficiency potential. Exploiting these findings, we propose two lightweight methods to enhance LRM efficiency. First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction in the model's representation space. Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity by rewarding concise correct solutions. Extensive experiments on seven LRM backbones across multiple mathematical reasoning benchmarks demonstrate that our methods significantly reduce reasoning length while preserving or improving task performance. Our results highlight that reasoning efficiency can be improved by leveraging and guiding the intrinsic capabilities of existing models in a self-guided manner.
☆ Demystifying the Visual Quality Paradox in Multimodal Large Language Models
Recent Multimodal Large Language Models (MLLMs) excel on benchmark vision-language tasks, yet little is known about how input visual quality shapes their responses. Does higher perceptual quality of images already translate to better MLLM understanding? We conduct the first systematic study spanning leading MLLMs and a suite of vision-language benchmarks, applying controlled degradations and stylistic shifts to each image. Surprisingly, we uncover a visual-quality paradox: model, task, and even individual-instance performance can improve when images deviate from human-perceived fidelity. Off-the-shelf restoration pipelines fail to reconcile these idiosyncratic preferences. To close the gap, we introduce Visual-Quality Test-Time Tuning (VQ-TTT)-a lightweight adaptation module that: (1) inserts a learnable, low-rank kernel before the frozen vision encoder to modulate frequency content; and (2) fine-tunes only shallow vision-encoder layers via LoRA. VQ-TTT dynamically adjusts each input image in a single forward pass, aligning it with task-specific model preferences. Across the evaluated MLLMs and all datasets, VQ-TTT lifts significant average accuracy, with no external models, cached features, or extra training data. These findings redefine ``better'' visual inputs for MLLMs and highlight the need for adaptive, rather than universally ``clean'', imagery, in the new era of AI being the main data customer.
comment: 18 pages
☆ The AI Policy Module: Developing Computer Science Student Competency in AI Ethics and Policy
As artificial intelligence (AI) further embeds itself into many settings across personal and professional contexts, increasing attention must be paid not only to AI ethics, but also to the governance and regulation of AI technologies through AI policy. However, the prevailing post-secondary computing curriculum is currently ill-equipped to prepare future AI practitioners to confront increasing demands to implement abstract ethical principles and normative policy preferences into the design and development of AI systems. We believe that familiarity with the 'AI policy landscape' and the ability to translate ethical principles to practices will in the future constitute an important responsibility for even the most technically-focused AI engineers. Toward preparing current computer science (CS) students for these new expectations, we developed an AI Policy Module to introduce discussions of AI policy into the CS curriculum. Building on a successful pilot in fall 2024, in this innovative practice full paper we present an updated and expanded version of the module, including a technical assignment on "AI regulation". We present the findings from our pilot of the AI Policy Module 2.0, evaluating student attitudes towards AI ethics and policy through pre- and post-module surveys. Following the module, students reported increased concern about the ethical impacts of AI technologies while also expressing greater confidence in their abilities to engage in discussions about AI regulation. Finally, we highlight the AI Regulation Assignment as an effective and engaging tool for exploring the limits of AI alignment and emphasizing the role of 'policy' in addressing ethical challenges.
comment: Accepted at IEEE Frontiers in Education (FIE) 2025
☆ Revisiting Compositional Generalization Capability of Large Language Models Considering Instruction Following Ability ACL 2025
In generative commonsense reasoning tasks such as CommonGen, generative large language models (LLMs) compose sentences that include all given concepts. However, when focusing on instruction-following capabilities, if a prompt specifies a concept order, LLMs must generate sentences that adhere to the specified order. To address this, we propose Ordered CommonGen, a benchmark designed to evaluate the compositional generalization and instruction-following abilities of LLMs. This benchmark measures ordered coverage to assess whether concepts are generated in the specified order, enabling a simultaneous evaluation of both abilities. We conducted a comprehensive analysis using 36 LLMs and found that, while LLMs generally understand the intent of instructions, biases toward specific concept order patterns often lead to low-diversity outputs or identical results even when the concept order is altered. Moreover, even the most instruction-compliant LLM achieved only about 75% ordered coverage, highlighting the need for improvements in both instruction-following and compositional generalization capabilities.
comment: ACL 2025 Main
☆ Federated Learning for MRI-based BrainAGE: a multicenter study on post-stroke functional outcome prediction
$\textbf{Objective:}$ Brain-predicted age difference (BrainAGE) is a neuroimaging biomarker reflecting brain health. However, training robust BrainAGE models requires large datasets, often restricted by privacy concerns. This study evaluates the performance of federated learning (FL) for BrainAGE estimation in ischemic stroke patients treated with mechanical thrombectomy, and investigates its association with clinical phenotypes and functional outcomes. $\textbf{Methods:}$ We used FLAIR brain images from 1674 stroke patients across 16 hospital centers. We implemented standard machine learning and deep learning models for BrainAGE estimates under three data management strategies: centralized learning (pooled data), FL (local training at each site), and single-site learning. We reported prediction errors and examined associations between BrainAGE and vascular risk factors (e.g., diabetes mellitus, hypertension, smoking), as well as functional outcomes at three months post-stroke. Logistic regression evaluated BrainAGE's predictive value for these outcomes, adjusting for age, sex, vascular risk factors, stroke severity, time between MRI and arterial puncture, prior intravenous thrombolysis, and recanalisation outcome. $\textbf{Results:}$ While centralized learning yielded the most accurate predictions, FL consistently outperformed single-site models. BrainAGE was significantly higher in patients with diabetes mellitus across all models. Comparisons between patients with good and poor functional outcomes, and multivariate predictions of these outcomes showed the significance of the association between BrainAGE and post-stroke recovery. $\textbf{Conclusion:}$ FL enables accurate age predictions without data centralization. The strong association between BrainAGE, vascular risk factors, and post-stroke recovery highlights its potential for prognostic modeling in stroke care.
☆ The Effect of State Representation on LLM Agent Behavior in Dynamic Routing Games
Large Language Models (LLMs) have shown promise as decision-makers in dynamic settings, but their stateless nature necessitates creating a natural language representation of history. We present a unifying framework for systematically constructing natural language "state" representations for prompting LLM agents in repeated multi-agent games. Previous work on games with LLM agents has taken an ad hoc approach to encoding game history, which not only obscures the impact of state representation on agents' behavior, but also limits comparability between studies. Our framework addresses these gaps by characterizing methods of state representation along three axes: action informativeness (i.e., the extent to which the state representation captures actions played); reward informativeness (i.e., the extent to which the state representation describes rewards obtained); and prompting style (or natural language compression, i.e., the extent to which the full text history is summarized). We apply this framework to a dynamic selfish routing game, chosen because it admits a simple equilibrium both in theory and in human subject experiments \cite{rapoport_choice_2009}. Despite the game's relative simplicity, we find that there are key dependencies of LLM agent behavior on the natural language state representation. In particular, we observe that representations which provide agents with (1) summarized, rather than complete, natural language representations of past history; (2) information about regrets, rather than raw payoffs; and (3) limited information about others' actions lead to behavior that more closely matches game theoretic equilibrium predictions, and with more stable game play by the agents. By contrast, other representations can exhibit either large deviations from equilibrium, higher variation in dynamic game play over time, or both.
comment: 27 pages, 20 figures
☆ GFLC: Graph-based Fairness-aware Label Correction for Fair Classification
Fairness in machine learning (ML) has a critical importance for building trustworthy machine learning system as artificial intelligence (AI) systems increasingly impact various aspects of society, including healthcare decisions and legal judgments. Moreover, numerous studies demonstrate evidence of unfair outcomes in ML and the need for more robust fairness-aware methods. However, the data we use to train and develop debiasing techniques often contains biased and noisy labels. As a result, the label bias in the training data affects model performance and misrepresents the fairness of classifiers during testing. To tackle this problem, our paper presents Graph-based Fairness-aware Label Correction (GFLC), an efficient method for correcting label noise while preserving demographic parity in datasets. In particular, our approach combines three key components: prediction confidence measure, graph-based regularization through Ricci-flow-optimized graph Laplacians, and explicit demographic parity incentives. Our experimental findings show the effectiveness of our proposed approach and show significant improvements in the trade-off between performance and fairness metrics compared to the baseline.
comment: 25 pages, 6 figures
☆ The Compositional Architecture of Regret in Large Language Models
Regret in Large Language Models refers to their explicit regret expression when presented with evidence contradicting their previously generated misinformation. Studying the regret mechanism is crucial for enhancing model reliability and helps in revealing how cognition is coded in neural networks. To understand this mechanism, we need to first identify regret expressions in model outputs, then analyze their internal representation. This analysis requires examining the model's hidden states, where information processing occurs at the neuron level. However, this faces three key challenges: (1) the absence of specialized datasets capturing regret expressions, (2) the lack of metrics to find the optimal regret representation layer, and (3) the lack of metrics for identifying and analyzing regret neurons. Addressing these limitations, we propose: (1) a workflow for constructing a comprehensive regret dataset through strategically designed prompting scenarios, (2) the Supervised Compression-Decoupling Index (S-CDI) metric to identify optimal regret representation layers, and (3) the Regret Dominance Score (RDS) metric to identify regret neurons and the Group Impact Coefficient (GIC) to analyze activation patterns. Our experimental results successfully identified the optimal regret representation layer using the S-CDI metric, which significantly enhanced performance in probe classification experiments. Additionally, we discovered an M-shaped decoupling pattern across model layers, revealing how information processing alternates between coupling and decoupling phases. Through the RDS metric, we categorized neurons into three distinct functional groups: regret neurons, non-regret neurons, and dual neurons.
comment: 23 pages
☆ LoX: Low-Rank Extrapolation Robustifies LLM Safety Against Fine-tuning
Large Language Models (LLMs) have become indispensable in real-world applications. However, their widespread adoption raises significant safety concerns, particularly in responding to socially harmful questions. Despite substantial efforts to improve model safety through alignment, aligned models can still have their safety protections undermined by subsequent fine-tuning - even when the additional training data appears benign. In this paper, we empirically demonstrate that this vulnerability stems from the sensitivity of safety-critical low-rank subspaces in LLM parameters to fine-tuning. Building on this insight, we propose a novel training-free method, termed Low-Rank Extrapolation (LoX), to enhance safety robustness by extrapolating the safety subspace of an aligned LLM. Our experimental results confirm the effectiveness of LoX, demonstrating significant improvements in robustness against both benign and malicious fine-tuning attacks while preserving the model's adaptability to new tasks. For instance, LoX leads to 11% to 54% absolute reductions in attack success rates (ASR) facing benign or malicious fine-tuning attacks. By investigating the ASR landscape of parameters, we attribute the success of LoX to that the extrapolation moves LLM parameters to a flatter zone, thereby less sensitive to perturbations. The code is available at github.com/VITA-Group/LoX.
☆ From Model to Classroom: Evaluating Generated MCQs for Portuguese with Narrative and Difficulty Concerns
While MCQs are valuable for learning and evaluation, manually creating them with varying difficulty levels and targeted reading skills remains a time-consuming and costly task. Recent advances in generative AI provide an opportunity to automate MCQ generation efficiently. However, assessing the actual quality and reliability of generated MCQs has received limited attention -- particularly regarding cases where generation fails. This aspect becomes particularly important when the generated MCQs are meant to be applied in real-world settings. Additionally, most MCQ generation studies focus on English, leaving other languages underexplored. This paper investigates the capabilities of current generative models in producing MCQs for reading comprehension in Portuguese, a morphologically rich language. Our study focuses on generating MCQs that align with curriculum-relevant narrative elements and span different difficulty levels. We evaluate these MCQs through expert review and by analyzing the psychometric properties extracted from student responses to assess their suitability for elementary school students. Our results show that current models can generate MCQs of comparable quality to human-authored ones. However, we identify issues related to semantic clarity and answerability. Also, challenges remain in generating distractors that engage students and meet established criteria for high-quality MCQ option design.
comment: This is a preprint version of the manuscript currently under review at an international journal
☆ WikiMixQA: A Multimodal Benchmark for Question Answering over Tables and Charts ACL 2025
Documents are fundamental to preserving and disseminating information, often incorporating complex layouts, tables, and charts that pose significant challenges for automatic document understanding (DU). While vision-language large models (VLLMs) have demonstrated improvements across various tasks, their effectiveness in processing long-context vision inputs remains unclear. This paper introduces WikiMixQA, a benchmark comprising 1,000 multiple-choice questions (MCQs) designed to evaluate cross-modal reasoning over tables and charts extracted from 4,000 Wikipedia pages spanning seven distinct topics. Unlike existing benchmarks, WikiMixQA emphasizes complex reasoning by requiring models to synthesize information from multiple modalities. We evaluate 12 state-of-the-art vision-language models, revealing that while proprietary models achieve ~70% accuracy when provided with direct context, their performance deteriorates significantly when retrieval from long documents is required. Among these, GPT-4-o is the only model exceeding 50% accuracy in this setting, whereas open-source models perform considerably worse, with a maximum accuracy of 27%. These findings underscore the challenges of long-context, multi-modal reasoning and establish WikiMixQA as a crucial benchmark for advancing document understanding research.
comment: ACL 2025 (Findings)
☆ One-Step Diffusion for Detail-Rich and Temporally Consistent Video Super-Resolution
It is a challenging problem to reproduce rich spatial details while maintaining temporal consistency in real-world video super-resolution (Real-VSR), especially when we leverage pre-trained generative models such as stable diffusion (SD) for realistic details synthesis. Existing SD-based Real-VSR methods often compromise spatial details for temporal coherence, resulting in suboptimal visual quality. We argue that the key lies in how to effectively extract the degradation-robust temporal consistency priors from the low-quality (LQ) input video and enhance the video details while maintaining the extracted consistency priors. To achieve this, we propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-based one-step diffusion model, achieving realistic frame details and temporal consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval (CFR) module to aggregate complementary information across frames, and train a Consistency-LoRA (C-LoRA) to learn robust temporal representations from degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with the temporal space defined by C-LoRA to keep temporal coherence. The two phases alternate iteratively for optimization, collaboratively delivering consistent and detail-rich outputs. During inference, the two LoRA branches are merged into the SD model, allowing efficient and high-quality video restoration in a single diffusion step. Experiments show that DLoRAL achieves strong performance in both accuracy and speed. Code and models are available at https://github.com/yjsunnn/DLoRAL.
☆ Managing Complex Failure Analysis Workflows with LLM-based Reasoning and Acting Agents
Failure Analysis (FA) is a highly intricate and knowledge-intensive process. The integration of AI components within the computational infrastructure of FA labs has the potential to automate a variety of tasks, including the detection of non-conformities in images, the retrieval of analogous cases from diverse data sources, and the generation of reports from annotated images. However, as the number of deployed AI models increases, the challenge lies in orchestrating these components into cohesive and efficient workflows that seamlessly integrate with the FA process. This paper investigates the design and implementation of a Large Language Model (LLM)-based Planning Agent (LPA) to assist FA engineers in solving their analysis cases. The LPA integrates LLMs with advanced planning capabilities and external tool utilization, enabling autonomous processing of complex queries, retrieval of relevant data from external systems, and generation of human-readable responses. Evaluation results demonstrate the agent's operational effectiveness and reliability in supporting FA tasks.
☆ Towards Explainable Indoor Localization: Interpreting Neural Network Learning on Wi-Fi Fingerprints Using Logic Gates
Indoor localization using deep learning (DL) has demonstrated strong accuracy in mapping Wi-Fi RSS fingerprints to physical locations; however, most existing DL frameworks function as black-box models, offering limited insight into how predictions are made or how models respond to real-world noise over time. This lack of interpretability hampers our ability to understand the impact of temporal variations - caused by environmental dynamics - and to adapt models for long-term reliability. To address this, we introduce LogNet, a novel logic gate-based framework designed to interpret and enhance DL-based indoor localization. LogNet enables transparent reasoning by identifying which access points (APs) are most influential for each reference point (RP) and reveals how environmental noise disrupts DL-driven localization decisions. This interpretability allows us to trace and diagnose model failures and adapt DL systems for more stable long-term deployments. Evaluations across multiple real-world building floorplans and over two years of temporal variation show that LogNet not only interprets the internal behavior of DL models but also improves performance-achieving up to 1.1x to 2.8x lower localization error, 3.4x to 43.3x smaller model size, and 1.5x to 3.6x lower latency compared to prior DL-based models.
☆ DAILOC: Domain-Incremental Learning for Indoor Localization using Smartphones
Wi-Fi fingerprinting-based indoor localization faces significant challenges in real-world deployments due to domain shifts arising from device heterogeneity and temporal variations within indoor environments. Existing approaches often address these issues independently, resulting in poor generalization and susceptibility to catastrophic forgetting over time. In this work, we propose DAILOC, a novel domain-incremental learning framework that jointly addresses both temporal and device-induced domain shifts. DAILOC introduces a novel disentanglement strategy that separates domain shifts from location-relevant features using a multi-level variational autoencoder. Additionally, we introduce a novel memory-guided class latent alignment mechanism to address the effects of catastrophic forgetting over time. Experiments across multiple smartphones, buildings, and time instances demonstrate that DAILOC significantly outperforms state-of-the-art methods, achieving up to 2.74x lower average error and 4.6x lower worst-case error.
☆ CLAIM: Clinically-Guided LGE Augmentation for Realistic and Diverse Myocardial Scar Synthesis and Segmentation
Deep learning-based myocardial scar segmentation from late gadolinium enhancement (LGE) cardiac MRI has shown great potential for accurate and timely diagnosis and treatment planning for structural cardiac diseases. However, the limited availability and variability of LGE images with high-quality scar labels restrict the development of robust segmentation models. To address this, we introduce CLAIM: \textbf{C}linically-Guided \textbf{L}GE \textbf{A}ugmentation for Real\textbf{i}stic and Diverse \textbf{M}yocardial Scar Synthesis and Segmentation framework, a framework for anatomically grounded scar generation and segmentation. At its core is the SMILE module (Scar Mask generation guided by cLinical knowledgE), which conditions a diffusion-based generator on the clinically adopted AHA 17-segment model to synthesize images with anatomically consistent and spatially diverse scar patterns. In addition, CLAIM employs a joint training strategy in which the scar segmentation network is optimized alongside the generator, aiming to enhance both the realism of synthesized scars and the accuracy of the scar segmentation performance. Experimental results show that CLAIM produces anatomically coherent scar patterns and achieves higher Dice similarity with real scar distributions compared to baseline models. Our approach enables controllable and realistic myocardial scar synthesis and has demonstrated utility for downstream medical imaging task.
comment: 14 Pages
☆ Learning Algorithms in the Limit COLT 2025
This paper studies the problem of learning computable functions in the limit by extending Gold's inductive inference framework to incorporate \textit{computational observations} and \textit{restricted input sources}. Complimentary to the traditional Input-Output Observations, we introduce Time-Bound Observations, and Policy-Trajectory Observations to study the learnability of general recursive functions under more realistic constraints. While input-output observations do not suffice for learning the class of general recursive functions in the limit, we overcome this learning barrier by imposing computational complexity constraints or supplementing with approximate time-bound observations. Further, we build a formal framework around observations of \textit{computational agents} and show that learning computable functions from policy trajectories reduces to learning rational functions from input and output, thereby revealing interesting connections to finite-state transducer inference. On the negative side, we show that computable or polynomial-mass characteristic sets cannot exist for the class of linear-time computable functions even for policy-trajectory observations.
comment: Accepted at COLT 2025. This version matches the proceedings version
☆ Intrinsic and Extrinsic Organized Attention: Softmax Invariance and Network Sparsity
We examine the intrinsic (within the attention head) and extrinsic (amongst the attention heads) structure of the self-attention mechanism in transformers. Theoretical evidence for invariance of the self-attention mechanism to softmax activation is obtained by appealing to paradifferential calculus, (and is supported by computational examples), which relies on the intrinsic organization of the attention heads. Furthermore, we use an existing methodology for hierarchical organization of tensors to examine network structure by constructing hierarchal partition trees with respect to the query, key, and head axes of network 3-tensors. Such an organization is consequential since it allows one to profitably execute common signal processing tasks on a geometry where the organized network 3-tensors exhibit regularity. We exemplify this qualitatively, by visualizing the hierarchical organization of the tree comprised of attention heads and the diffusion map embeddings, and quantitatively by investigating network sparsity with the expansion coefficients of individual attention heads and the entire network with respect to the bi and tri-haar bases (respectively) on the space of queries, keys, and heads of the network. To showcase the utility of our theoretical and methodological findings, we provide computational examples using vision and language transformers. The ramifications of these findings are two-fold: (1) a subsequent step in interpretability analysis is theoretically admitted, and can be exploited empirically for downstream interpretability tasks (2) one can use the network 3-tensor organization for empirical network applications such as model pruning (by virtue of network sparsity) and network architecture comparison.
comment: 16 pages, 6 figures, 2 tables
☆ Capturing Polysemanticity with PRISM: A Multi-Concept Feature Description Framework
Automated interpretability research aims to identify concepts encoded in neural network features to enhance human understanding of model behavior. Current feature description methods face two critical challenges: limited robustness and the flawed assumption that each neuron encodes only a single concept (monosemanticity), despite growing evidence that neurons are often polysemantic. This assumption restricts the expressiveness of feature descriptions and limits their ability to capture the full range of behaviors encoded in model internals. To address this, we introduce Polysemantic FeatuRe Identification and Scoring Method (PRISM), a novel framework that captures the inherent complexity of neural network features. Unlike prior approaches that assign a single description per feature, PRISM provides more nuanced descriptions for both polysemantic and monosemantic features. We apply PRISM to language models and, through extensive benchmarking against existing methods, demonstrate that our approach produces more accurate and faithful feature descriptions, improving both overall description quality (via a description score) and the ability to capture distinct concepts when polysemanticity is present (via a polysemanticity score).
☆ RePCS: Diagnosing Data Memorization in LLM-Powered Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) has become a common strategy for updating large language model (LLM) responses with current, external information. However, models may still rely on memorized training data, bypass the retrieved evidence, and produce contaminated outputs. We introduce Retrieval-Path Contamination Scoring (RePCS), a diagnostic method that detects such behavior without requiring model access or retraining. RePCS compares two inference paths: (i) a parametric path using only the query, and (ii) a retrieval-augmented path using both the query and retrieved context by computing the Kullback-Leibler (KL) divergence between their output distributions. A low divergence suggests that the retrieved context had minimal impact, indicating potential memorization. This procedure is model-agnostic, requires no gradient or internal state access, and adds only a single additional forward pass. We further derive PAC-style guarantees that link the KL threshold to user-defined false positive and false negative rates. On the Prompt-WNQA benchmark, RePCS achieves a ROC-AUC of 0.918. This result outperforms the strongest prior method by 6.5 percentage points while keeping latency overhead below 4.7% on an NVIDIA T4 GPU. RePCS offers a lightweight, black-box safeguard to verify whether a RAG system meaningfully leverages retrieval, making it especially valuable in safety-critical applications.
comment: 11 pages, 7 figures, 5 tables
☆ Optimizing Web-Based AI Query Retrieval with GPT Integration in LangChain A CoT-Enhanced Prompt Engineering Approach
Large Language Models have brought a radical change in the process of remote learning students, among other aspects of educative activities. Current retrieval of remote learning resources lacks depth in contextual meaning that provides comprehensive information on complex student queries. This work proposes a novel approach to enhancing remote learning retrieval by integrating GPT-based models within the LangChain framework. We achieve this system in a more intuitive and productive manner using CoT reasoning and prompt engineering. The framework we propose puts much emphasis on increasing the precision and relevance of the retrieval results to return comprehensive and contextually enriched explanations and resources that best suit each student's needs. We also assess the effectiveness of our approach against paradigmatic LLMs and report improvements in user satisfaction and learning outcomes.
☆ Over-squashing in Spatiotemporal Graph Neural Networks
Graph Neural Networks (GNNs) have achieved remarkable success across various domains. However, recent theoretical advances have identified fundamental limitations in their information propagation capabilities, such as over-squashing, where distant nodes fail to effectively exchange information. While extensively studied in static contexts, this issue remains unexplored in Spatiotemporal GNNs (STGNNs), which process sequences associated with graph nodes. Nonetheless, the temporal dimension amplifies this challenge by increasing the information that must be propagated. In this work, we formalize the spatiotemporal over-squashing problem and demonstrate its distinct characteristics compared to the static case. Our analysis reveals that counterintuitively, convolutional STGNNs favor information propagation from points temporally distant rather than close in time. Moreover, we prove that architectures that follow either time-and-space or time-then-space processing paradigms are equally affected by this phenomenon, providing theoretical justification for computationally efficient implementations. We validate our findings on synthetic and real-world datasets, providing deeper insights into their operational dynamics and principled guidance for more effective designs.
☆ Pixel-level Certified Explanations via Randomized Smoothing
Post-hoc attribution methods aim to explain deep learning predictions by highlighting influential input pixels. However, these explanations are highly non-robust: small, imperceptible input perturbations can drastically alter the attribution map while maintaining the same prediction. This vulnerability undermines their trustworthiness and calls for rigorous robustness guarantees of pixel-level attribution scores. We introduce the first certification framework that guarantees pixel-level robustness for any black-box attribution method using randomized smoothing. By sparsifying and smoothing attribution maps, we reformulate the task as a segmentation problem and certify each pixel's importance against $\ell_2$-bounded perturbations. We further propose three evaluation metrics to assess certified robustness, localization, and faithfulness. An extensive evaluation of 12 attribution methods across 5 ImageNet models shows that our certified attributions are robust, interpretable, and faithful, enabling reliable use in downstream tasks. Our code is at https://github.com/AlaaAnani/certified-attributions.
☆ SPARE: Single-Pass Annotation with Reference-Guided Evaluation for Automatic Process Supervision and Reward Modelling
Process or step-wise supervision has played a crucial role in advancing complex multi-step reasoning capabilities of Large Language Models (LLMs). However, efficient, high-quality automated process annotation remains a significant challenge. To address this, we introduce Single-Pass Annotation with Reference-Guided Evaluation (SPARE), a novel structured framework that enables single-pass, per-step annotation by aligning each solution step to one or multiple steps in a reference solution, accompanied by explicit reasoning for evaluation. We show that reference-guided step-level evaluation effectively facilitates process supervision on four datasets spanning three domains: mathematical reasoning, multi-hop compositional question answering, and spatial reasoning. We demonstrate that SPARE, when compared to baselines, improves reasoning performance when used for: (1) fine-tuning models in an offline RL setup for inference-time greedy-decoding, and (2) training reward models for ranking/aggregating multiple LLM-generated outputs. Additionally, SPARE achieves competitive performance on challenging mathematical datasets while offering 2.6 times greater efficiency, requiring only 38% of the runtime, compared to tree search-based automatic annotation. The codebase, along with a trained SPARE-PRM model, is publicly released to facilitate further research and reproducibility.
comment: 8 pages main content, 4 figures, 4 tables
☆ GenHOI: Generalizing Text-driven 4D Human-Object Interaction Synthesis for Unseen Objects
While diffusion models and large-scale motion datasets have advanced text-driven human motion synthesis, extending these advances to 4D human-object interaction (HOI) remains challenging, mainly due to the limited availability of large-scale 4D HOI datasets. In our study, we introduce GenHOI, a novel two-stage framework aimed at achieving two key objectives: 1) generalization to unseen objects and 2) the synthesis of high-fidelity 4D HOI sequences. In the initial stage of our framework, we employ an Object-AnchorNet to reconstruct sparse 3D HOI keyframes for unseen objects, learning solely from 3D HOI datasets, thereby mitigating the dependence on large-scale 4D HOI datasets. Subsequently, we introduce a Contact-Aware Diffusion Model (ContactDM) in the second stage to seamlessly interpolate sparse 3D HOI keyframes into densely temporally coherent 4D HOI sequences. To enhance the quality of generated 4D HOI sequences, we propose a novel Contact-Aware Encoder within ContactDM to extract human-object contact patterns and a novel Contact-Aware HOI Attention to effectively integrate the contact signals into diffusion models. Experimental results show that we achieve state-of-the-art results on the publicly available OMOMO and 3D-FUTURE datasets, demonstrating strong generalization abilities to unseen objects, while enabling high-fidelity 4D HOI generation.
☆ Context-Informed Grounding Supervision
Large language models (LLMs) are often supplemented with external knowledge to provide information not encoded in their parameters or to reduce hallucination. In such cases, we expect the model to generate responses by grounding its response in the provided external context. However, prior work has shown that simply appending context at inference time does not ensure grounded generation. To address this, we propose Context-INformed Grounding Supervision (CINGS), a post-training supervision in which the model is trained with relevant context prepended to the response, while computing the loss only over the response tokens and masking out the context. Our experiments demonstrate that models trained with CINGS exhibit stronger grounding in both textual and visual domains compared to standard instruction-tuned models. In the text domain, CINGS outperforms other training methods across 11 information-seeking datasets and is complementary to inference-time grounding techniques. In the vision-language domain, replacing a vision-language model's LLM backbone with a CINGS-trained model reduces hallucinations across four benchmarks and maintains factual consistency throughout the generated response. This improved grounding comes without degradation in general downstream performance. Finally, we analyze the mechanism underlying the enhanced grounding in CINGS and find that it induces a shift in the model's prior knowledge and behavior, implicitly encouraging greater reliance on the external context.
☆ Co-Creative Learning via Metropolis-Hastings Interaction between Humans and AI
We propose co-creative learning as a novel paradigm where humans and AI, i.e., biological and artificial agents, mutually integrate their partial perceptual information and knowledge to construct shared external representations, a process we interpret as symbol emergence. Unlike traditional AI teaching based on unilateral knowledge transfer, this addresses the challenge of integrating information from inherently different modalities. We empirically test this framework using a human-AI interaction model based on the Metropolis-Hastings naming game (MHNG), a decentralized Bayesian inference mechanism. In an online experiment, 69 participants played a joint attention naming game (JA-NG) with one of three computer agent types (MH-based, always-accept, or always-reject) under partial observability. Results show that human-AI pairs with an MH-based agent significantly improved categorization accuracy through interaction and achieved stronger convergence toward a shared sign system. Furthermore, human acceptance behavior aligned closely with the MH-derived acceptance probability. These findings provide the first empirical evidence for co-creative learning emerging in human-AI dyads via MHNG-based interaction. This suggests a promising path toward symbiotic AI systems that learn with humans, rather than from them, by dynamically aligning perceptual experiences, opening a new venue for symbiotic AI alignment.
☆ RE-IMAGINE: Symbolic Benchmark Synthesis for Reasoning Evaluation ICML 2025
Recent Large Language Models (LLMs) have reported high accuracy on reasoning benchmarks. However, it is still unclear whether the observed results arise from true reasoning or from statistical recall of the training set. Inspired by the ladder of causation (Pearl, 2009) and its three levels (associations, interventions and counterfactuals), this paper introduces RE-IMAGINE, a framework to characterize a hierarchy of reasoning ability in LLMs, alongside an automated pipeline to generate problem variations at different levels of the hierarchy. By altering problems in an intermediate symbolic representation, RE-IMAGINE generates arbitrarily many problems that are not solvable using memorization alone. Moreover, the framework is general and can work across reasoning domains, including math, code, and logic. We demonstrate our framework on four widely-used benchmarks to evaluate several families of LLMs, and observe reductions in performance when the models are queried with problem variations. These assessments indicate a degree of reliance on statistical recall for past performance, and open the door to further research targeting skills across the reasoning hierarchy.
comment: ICML 2025
☆ Uncovering Intention through LLM-Driven Code Snippet Description Generation
Documenting code snippets is essential to pinpoint key areas where both developers and users should pay attention. Examples include usage examples and other Application Programming Interfaces (APIs), which are especially important for third-party libraries. With the rise of Large Language Models (LLMs), the key goal is to investigate the kinds of description developers commonly use and evaluate how well an LLM, in this case Llama, can support description generation. We use NPM Code Snippets, consisting of 185,412 packages with 1,024,579 code snippets. From there, we use 400 code snippets (and their descriptions) as samples. First, our manual classification found that the majority of original descriptions (55.5%) highlight example-based usage. This finding emphasizes the importance of clear documentation, as some descriptions lacked sufficient detail to convey intent. Second, the LLM correctly identified the majority of original descriptions as "Example" (79.75%), which is identical to our manual finding, showing a propensity for generalization. Third, compared to the originals, the produced description had an average similarity score of 0.7173, suggesting relevance but room for improvement. Scores below 0.9 indicate some irrelevance. Our results show that depending on the task of the code snippet, the intention of the document may differ from being instructions for usage, installations, or descriptive learning examples for any user of a library.
comment: 6 pages, 3 figures, 4 tables, conference paper
☆ Warping and Matching Subsequences Between Time Series
Comparing time series is essential in various tasks such as clustering and classification. While elastic distance measures that allow warping provide a robust quantitative comparison, a qualitative comparison on top of them is missing. Traditional visualizations focus on point-to-point alignment and do not convey the broader structural relationships at the level of subsequences. This limitation makes it difficult to understand how and where one time series shifts, speeds up or slows down with respect to another. To address this, we propose a novel technique that simplifies the warping path to highlight, quantify and visualize key transformations (shift, compression, difference in amplitude). By offering a clearer representation of how subsequences match between time series, our method enhances interpretability in time series comparison.
☆ Zero-Shot Reinforcement Learning Under Partial Observability
Recent work has shown that, under certain assumptions, zero-shot reinforcement learning (RL) methods can generalise to any unseen task in an environment after reward-free pre-training. Access to Markov states is one such assumption, yet, in many real-world applications, the Markov state is only partially observable. Here, we explore how the performance of standard zero-shot RL methods degrades when subjected to partially observability, and show that, as in single-task RL, memory-based architectures are an effective remedy. We evaluate our memory-based zero-shot RL methods in domains where the states, rewards and a change in dynamics are partially observed, and show improved performance over memory-free baselines. Our code is open-sourced via: https://enjeeneer.io/projects/bfms-with-memory/.
comment: Reinforcement Learning Conference 2025
☆ Hunyuan3D 2.1: From Images to High-Fidelity 3D Assets with Production-Ready PBR Material
3D AI-generated content (AIGC) is a passionate field that has significantly accelerated the creation of 3D models in gaming, film, and design. Despite the development of several groundbreaking models that have revolutionized 3D generation, the field remains largely accessible only to researchers, developers, and designers due to the complexities involved in collecting, processing, and training 3D models. To address these challenges, we introduce Hunyuan3D 2.1 as a case study in this tutorial. This tutorial offers a comprehensive, step-by-step guide on processing 3D data, training a 3D generative model, and evaluating its performance using Hunyuan3D 2.1, an advanced system for producing high-resolution, textured 3D assets. The system comprises two core components: the Hunyuan3D-DiT for shape generation and the Hunyuan3D-Paint for texture synthesis. We will explore the entire workflow, including data preparation, model architecture, training strategies, evaluation metrics, and deployment. By the conclusion of this tutorial, you will have the knowledge to finetune or develop a robust 3D generative model suitable for applications in gaming, virtual reality, and industrial design.
comment: Github link: https://github.com/Tencent-Hunyuan/Hunyuan3D-2.1
☆ Reward Models in Deep Reinforcement Learning: A Survey IJCAI 2025
In reinforcement learning (RL), agents continually interact with the environment and use the feedback to refine their behavior. To guide policy optimization, reward models are introduced as proxies of the desired objectives, such that when the agent maximizes the accumulated reward, it also fulfills the task designer's intentions. Recently, significant attention from both academic and industrial researchers has focused on developing reward models that not only align closely with the true objectives but also facilitate policy optimization. In this survey, we provide a comprehensive review of reward modeling techniques within the deep RL literature. We begin by outlining the background and preliminaries in reward modeling. Next, we present an overview of recent reward modeling approaches, categorizing them based on the source, the mechanism, and the learning paradigm. Building on this understanding, we discuss various applications of these reward modeling techniques and review methods for evaluating reward models. Finally, we conclude by highlighting promising research directions in reward modeling. Altogether, this survey includes both established and emerging methods, filling the vacancy of a systematic review of reward models in current literature.
comment: IJCAI 2025 Survey Track (To Appear)
☆ Unifying VXAI: A Systematic Review and Framework for the Evaluation of Explainable AI
Modern AI systems frequently rely on opaque black-box models, most notably Deep Neural Networks, whose performance stems from complex architectures with millions of learned parameters. While powerful, their complexity poses a major challenge to trustworthiness, particularly due to a lack of transparency. Explainable AI (XAI) addresses this issue by providing human-understandable explanations of model behavior. However, to ensure their usefulness and trustworthiness, such explanations must be rigorously evaluated. Despite the growing number of XAI methods, the field lacks standardized evaluation protocols and consensus on appropriate metrics. To address this gap, we conduct a systematic literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and introduce a unified framework for the eValuation of XAI (VXAI). We identify 362 relevant publications and aggregate their contributions into 41 functionally similar metric groups. In addition, we propose a three-dimensional categorization scheme spanning explanation type, evaluation contextuality, and explanation quality desiderata. Our framework provides the most comprehensive and structured overview of VXAI to date. It supports systematic metric selection, promotes comparability across methods, and offers a flexible foundation for future extensions.
comment: Submitted to TMLR, under review
☆ MCOO-SLAM: A Multi-Camera Omnidirectional Object SLAM System
Object-level SLAM offers structured and semantically meaningful environment representations, making it more interpretable and suitable for high-level robotic tasks. However, most existing approaches rely on RGB-D sensors or monocular views, which suffer from narrow fields of view, occlusion sensitivity, and limited depth perception-especially in large-scale or outdoor environments. These limitations often restrict the system to observing only partial views of objects from limited perspectives, leading to inaccurate object modeling and unreliable data association. In this work, we propose MCOO-SLAM, a novel Multi-Camera Omnidirectional Object SLAM system that fully leverages surround-view camera configurations to achieve robust, consistent, and semantically enriched mapping in complex outdoor scenarios. Our approach integrates point features and object-level landmarks enhanced with open-vocabulary semantics. A semantic-geometric-temporal fusion strategy is introduced for robust object association across multiple views, leading to improved consistency and accurate object modeling, and an omnidirectional loop closure module is designed to enable viewpoint-invariant place recognition using scene-level descriptors. Furthermore, the constructed map is abstracted into a hierarchical 3D scene graph to support downstream reasoning tasks. Extensive experiments in real-world demonstrate that MCOO-SLAM achieves accurate localization and scalable object-level mapping with improved robustness to occlusion, pose variation, and environmental complexity.
☆ A Real-time Endoscopic Image Denoising System
Endoscopes featuring a miniaturized design have significantly enhanced operational flexibility, portability, and diagnostic capability while substantially reducing the invasiveness of medical procedures. Recently, single-use endoscopes equipped with an ultra-compact analogue image sensor measuring less than 1mm x 1mm bring revolutionary advancements to medical diagnosis. They reduce the structural redundancy and large capital expenditures associated with reusable devices, eliminate the risk of patient infections caused by inadequate disinfection, and alleviate patient suffering. However, the limited photosensitive area results in reduced photon capture per pixel, requiring higher photon sensitivity settings to maintain adequate brightness. In high-contrast medical imaging scenarios, the small-sized sensor exhibits a constrained dynamic range, making it difficult to simultaneously capture details in both highlights and shadows, and additional localized digital gain is required to compensate. Moreover, the simplified circuit design and analog signal transmission introduce additional noise sources. These factors collectively contribute to significant noise issues in processed endoscopic images. In this work, we developed a comprehensive noise model for analog image sensors in medical endoscopes, addressing three primary noise types: fixed-pattern noise, periodic banding noise, and mixed Poisson-Gaussian noise. Building on this analysis, we propose a hybrid denoising system that synergistically combines traditional image processing algorithms with advanced learning-based techniques for captured raw frames from sensors. Experiments demonstrate that our approach effectively reduces image noise without fine detail loss or color distortion, while achieving real-time performance on FPGA platforms and an average PSNR improvement from 21.16 to 33.05 on our test dataset.
☆ Evaluation Pipeline for systematically searching for Anomaly Detection Systems
Digitalization in the medical world provides major benefits while making it a target for attackers and thus hard to secure. To deal with network intruders we propose an anomaly detection system on hardware to detect malicious clients in real-time. We meet real-time and power restrictions using FPGAs. Overall system performance is achieved via the presented holistic system evaluation.
comment: Submitted to 18th HiPEAC Workshop on Reconfigurable Computing (WRC'2024)
☆ Efficient and Generalizable Environmental Understanding for Visual Navigation
Visual Navigation is a core task in Embodied AI, enabling agents to navigate complex environments toward given objectives. Across diverse settings within Navigation tasks, many necessitate the modelling of sequential data accumulated from preceding time steps. While existing methods perform well, they typically process all historical observations simultaneously, overlooking the internal association structure within the data, which may limit the potential for further improvements in task performance. We address this by examining the unique characteristics of Navigation tasks through the lens of causality, introducing a causal framework to highlight the limitations of conventional sequential methods. Leveraging this insight, we propose Causality-Aware Navigation (CAN), which incorporates a Causal Understanding Module to enhance the agent's environmental understanding capability. Empirical evaluations show that our approach consistently outperforms baselines across various tasks and simulation environments. Extensive ablations studies attribute these gains to the Causal Understanding Module, which generalizes effectively in both Reinforcement and Supervised Learning settings without computational overhead.
☆ Open-World Object Counting in Videos
We introduce a new task of open-world object counting in videos: given a text description, or an image example, that specifies the target object, the objective is to enumerate all the unique instances of the target objects in the video. This task is especially challenging in crowded scenes with occlusions and similar objects, where avoiding double counting and identifying reappearances is crucial. To this end, we make the following contributions: we introduce a model, CountVid, for this task. It leverages an image-based counting model, and a promptable video segmentation and tracking model to enable automated, open-world object counting across video frames. To evaluate its performance, we introduce VideoCount, a new dataset for our novel task built from the TAO and MOT20 tracking datasets, as well as from videos of penguins and metal alloy crystallization captured by x-rays. Using this dataset, we demonstrate that CountVid provides accurate object counts, and significantly outperforms strong baselines. The VideoCount dataset, the CountVid model, and all the code are available at https://github.com/niki-amini-naieni/CountVid/.
☆ When and How Unlabeled Data Provably Improve In-Context Learning
Recent research shows that in-context learning (ICL) can be effective even when demonstrations have missing or incorrect labels. To shed light on this capability, we examine a canonical setting where the demonstrations are drawn according to a binary Gaussian mixture model (GMM) and a certain fraction of the demonstrations have missing labels. We provide a comprehensive theoretical study to show that: (1) The loss landscape of one-layer linear attention models recover the optimal fully-supervised estimator but completely fail to exploit unlabeled data; (2) In contrast, multilayer or looped transformers can effectively leverage unlabeled data by implicitly constructing estimators of the form $\sum_{i\ge 0} a_i (X^\top X)^iX^\top y$ with $X$ and $y$ denoting features and partially-observed labels (with missing entries set to zero). We characterize the class of polynomials that can be expressed as a function of depth and draw connections to Expectation Maximization, an iterative pseudo-labeling algorithm commonly used in semi-supervised learning. Importantly, the leading polynomial power is exponential in depth, so mild amount of depth/looping suffices. As an application of theory, we propose looping off-the-shelf tabular foundation models to enhance their semi-supervision capabilities. Extensive evaluations on real-world datasets show that our method significantly improves the semisupervised tabular learning performance over the standard single pass inference.
☆ J3DAI: A tiny DNN-Based Edge AI Accelerator for 3D-Stacked CMOS Image Sensor
This paper presents J3DAI, a tiny deep neural network-based hardware accelerator for a 3-layer 3D-stacked CMOS image sensor featuring an artificial intelligence (AI) chip integrating a Deep Neural Network (DNN)-based accelerator. The DNN accelerator is designed to efficiently perform neural network tasks such as image classification and segmentation. This paper focuses on the digital system of J3DAI, highlighting its Performance-Power-Area (PPA) characteristics and showcasing advanced edge AI capabilities on a CMOS image sensor. To support hardware, we utilized the Aidge comprehensive software framework, which enables the programming of both the host processor and the DNN accelerator. Aidge supports post-training quantization, significantly reducing memory footprint and computational complexity, making it crucial for deploying models on resource-constrained hardware like J3DAI. Our experimental results demonstrate the versatility and efficiency of this innovative design in the field of edge AI, showcasing its potential to handle both simple and computationally intensive tasks. Future work will focus on further optimizing the architecture and exploring new applications to fully leverage the capabilities of J3DAI. As edge AI continues to grow in importance, innovations like J3DAI will play a crucial role in enabling real-time, low-latency, and energy-efficient AI processing at the edge.
comment: Preprint from ISLPED 2025. 979-8-3315-2710-5/25/$31.00 \c{opyright}2025 IEEE
☆ MapFM: Foundation Model-Driven HD Mapping with Multi-Task Contextual Learning
In autonomous driving, high-definition (HD) maps and semantic maps in bird's-eye view (BEV) are essential for accurate localization, planning, and decision-making. This paper introduces an enhanced End-to-End model named MapFM for online vectorized HD map generation. We show significantly boost feature representation quality by incorporating powerful foundation model for encoding camera images. To further enrich the model's understanding of the environment and improve prediction quality, we integrate auxiliary prediction heads for semantic segmentation in the BEV representation. This multi-task learning approach provides richer contextual supervision, leading to a more comprehensive scene representation and ultimately resulting in higher accuracy and improved quality of the predicted vectorized HD maps. The source code is available at https://github.com/LIvanoff/MapFM.
comment: Preprint. Submitted. 12 pages, 4 figures
☆ Active Learning-Guided Seq2Seq Variational Autoencoder for Multi-target Inhibitor Generation
Simultaneously optimizing molecules against multiple therapeutic targets remains a profound challenge in drug discovery, particularly due to sparse rewards and conflicting design constraints. We propose a structured active learning (AL) paradigm integrating a sequence-to-sequence (Seq2Seq) variational autoencoder (VAE) into iterative loops designed to balance chemical diversity, molecular quality, and multi-target affinity. Our method alternates between expanding chemically feasible regions of latent space and progressively constraining molecules based on increasingly stringent multi-target docking thresholds. In a proof-of-concept study targeting three related coronavirus main proteases (SARS-CoV-2, SARS-CoV, MERS-CoV), our approach efficiently generated a structurally diverse set of pan-inhibitor candidates. We demonstrate that careful timing and strategic placement of chemical filters within this active learning pipeline markedly enhance exploration of beneficial chemical space, transforming the sparse-reward, multi-objective drug design problem into an accessible computational task. Our framework thus provides a generalizable roadmap for efficiently navigating complex polypharmacological landscapes.
comment: 16 pages, 7 figures
☆ ConLID: Supervised Contrastive Learning for Low-Resource Language Identification EMNLP
Language identification (LID) is a critical step in curating multilingual LLM pretraining corpora from web crawls. While many studies on LID model training focus on collecting diverse training data to improve performance, low-resource languages -- often limited to single-domain data, such as the Bible -- continue to perform poorly. To resolve these class imbalance and bias issues, we propose a novel supervised contrastive learning (SCL) approach to learn domain-invariant representations for low-resource languages. Through an extensive analysis, we show that our approach improves LID performance on out-of-domain data for low-resource languages by 3.2%, demonstrating its effectiveness in enhancing LID models.
comment: Submitted to EMNLP
☆ Cohort Discovery: A Survey on LLM-Assisted Clinical Trial Recruitment
Recent advances in LLMs have greatly improved general-domain NLP tasks. Yet, their adoption in critical domains, such as clinical trial recruitment, remains limited. As trials are designed in natural language and patient data is represented as both structured and unstructured text, the task of matching trials and patients benefits from knowledge aggregation and reasoning abilities of LLMs. Classical approaches are trial-specific and LLMs with their ability to consolidate distributed knowledge hold the potential to build a more general solution. Yet recent applications of LLM-assisted methods rely on proprietary models and weak evaluation benchmarks. In this survey, we are the first to analyze the task of trial-patient matching and contextualize emerging LLM-based approaches in clinical trial recruitment. We critically examine existing benchmarks, approaches and evaluation frameworks, the challenges to adopting LLM technologies in clinical research and exciting future directions.
☆ Human Motion Capture from Loose and Sparse Inertial Sensors with Garment-aware Diffusion Models IJCAI 2025
Motion capture using sparse inertial sensors has shown great promise due to its portability and lack of occlusion issues compared to camera-based tracking. Existing approaches typically assume that IMU sensors are tightly attached to the human body. However, this assumption often does not hold in real-world scenarios. In this paper, we present a new task of full-body human pose estimation using sparse, loosely attached IMU sensors. To solve this task, we simulate IMU recordings from an existing garment-aware human motion dataset. We developed transformer-based diffusion models to synthesize loose IMU data and estimate human poses based on this challenging loose IMU data. In addition, we show that incorporating garment-related parameters while training the model on simulated loose data effectively maintains expressiveness and enhances the ability to capture variations introduced by looser or tighter garments. Experiments show that our proposed diffusion methods trained on simulated and synthetic data outperformed the state-of-the-art methods quantitatively and qualitatively, opening up a promising direction for future research.
comment: Accepted by IJCAI 2025
☆ Unlocking Post-hoc Dataset Inference with Synthetic Data ICML 2025
The remarkable capabilities of Large Language Models (LLMs) can be mainly attributed to their massive training datasets, which are often scraped from the internet without respecting data owners' intellectual property rights. Dataset Inference (DI) offers a potential remedy by identifying whether a suspect dataset was used in training, thereby enabling data owners to verify unauthorized use. However, existing DI methods require a private set-known to be absent from training-that closely matches the compromised dataset's distribution. Such in-distribution, held-out data is rarely available in practice, severely limiting the applicability of DI. In this work, we address this challenge by synthetically generating the required held-out set. Our approach tackles two key obstacles: (1) creating high-quality, diverse synthetic data that accurately reflects the original distribution, which we achieve via a data generator trained on a carefully designed suffix-based completion task, and (2) bridging likelihood gaps between real and synthetic data, which is realized through post-hoc calibration. Extensive experiments on diverse text datasets show that using our generated data as a held-out set enables DI to detect the original training sets with high confidence, while maintaining a low false positive rate. This result empowers copyright owners to make legitimate claims on data usage and demonstrates our method's reliability for real-world litigations. Our code is available at https://github.com/sprintml/PostHocDatasetInference.
comment: Accepted at ICML 2025
☆ Domain Adaptation for Image Classification of Defects in Semiconductor Manufacturing
In the semiconductor sector, due to high demand but also strong and increasing competition, time to market and quality are key factors in securing significant market share in various application areas. Thanks to the success of deep learning methods in recent years in the computer vision domain, Industry 4.0 and 5.0 applications, such as defect classification, have achieved remarkable success. In particular, Domain Adaptation (DA) has proven highly effective since it focuses on using the knowledge learned on a (source) domain to adapt and perform effectively on a different but related (target) domain. By improving robustness and scalability, DA minimizes the need for extensive manual re-labeling or re-training of models. This not only reduces computational and resource costs but also allows human experts to focus on high-value tasks. Therefore, we tested the efficacy of DA techniques in semi-supervised and unsupervised settings within the context of the semiconductor field. Moreover, we propose the DBACS approach, a CycleGAN-inspired model enhanced with additional loss terms to improve performance. All the approaches are studied and validated on real-world Electron Microscope images considering the unsupervised and semi-supervised settings, proving the usefulness of our method in advancing DA techniques for the semiconductor field.
☆ RAS-Eval: A Comprehensive Benchmark for Security Evaluation of LLM Agents in Real-World Environments
The rapid deployment of Large language model (LLM) agents in critical domains like healthcare and finance necessitates robust security frameworks. To address the absence of standardized evaluation benchmarks for these agents in dynamic environments, we introduce RAS-Eval, a comprehensive security benchmark supporting both simulated and real-world tool execution. RAS-Eval comprises 80 test cases and 3,802 attack tasks mapped to 11 Common Weakness Enumeration (CWE) categories, with tools implemented in JSON, LangGraph, and Model Context Protocol (MCP) formats. We evaluate 6 state-of-the-art LLMs across diverse scenarios, revealing significant vulnerabilities: attacks reduced agent task completion rates (TCR) by 36.78% on average and achieved an 85.65% success rate in academic settings. Notably, scaling laws held for security capabilities, with larger models outperforming smaller counterparts. Our findings expose critical risks in real-world agent deployments and provide a foundational framework for future security research. Code and data are available at https://github.com/lanzer-tree/RAS-Eval.
comment: 12 pages, 8 figures
☆ Singular Value Decomposition on Kronecker Adaptation for Large Language Model
Large pre-trained Transformer models achieve state-of-the-art results across diverse language and reasoning tasks, but full fine-tuning incurs substantial storage, memory, and computational overhead. Parameter-efficient fine-tuning (PEFT) methods mitigate these costs by learning only a small subset of task-specific parameters, yet existing approaches either introduce inference-time latency (adapter modules), suffer from suboptimal convergence (randomly initialized low-rank updates), or rely on fixed rank choices that may not match task complexity (Kronecker-based decompositions). We propose SoKA (SVD on Kronecker Adaptation), a novel PEFT strategy that combines Kronecker-product tensor factorization with SVD-driven initialization and spectrum-aware dynamic rank selection. Our Kronecker-Product SVD (KPSVD) procedure extracts principal components of the full weight update into compact Kronecker factors, while an adaptive rank selection algorithm uses energy-threshold and elbow-point criteria to prune negligible components. Empirical evaluation on LLaMA2-7B across arithmetic reasoning (GSM8K), formal mathematics (MATH), and code generation (MBPP) demonstrates that SoKA requires only 0.99M trainable parameters, 25% fewer than LoRA/PiSSA, while matching or exceeding baseline performance. Moreover, SoKA exhibits faster convergence and more stable gradients, highlighting its robustness and efficiency for large-scale model adaptation.
☆ Joint Computation Offloading and Resource Allocation for Uncertain Maritime MEC via Cooperation of UAVs and Vessels
The computation demands from the maritime Internet of Things (MIoT) increase rapidly in recent years, and the unmanned aerial vehicles (UAVs) and vessels based multi-access edge computing (MEC) can fulfill these MIoT requirements. However, the uncertain maritime tasks present significant challenges of inefficient computation offloading and resource allocation. In this paper, we focus on the maritime computation offloading and resource allocation through the cooperation of UAVs and vessels, with consideration of uncertain tasks. Specifically, we propose a cooperative MEC framework for computation offloading and resource allocation, including MIoT devices, UAVs and vessels. Then, we formulate the optimization problem to minimize the total execution time. As for the uncertain MIoT tasks, we leverage Lyapunov optimization to tackle the unpredictable task arrivals and varying computational resource availability. By converting the long-term constraints into short-term constraints, we obtain a set of small-scale optimization problems. Further, considering the heterogeneity of actions and resources of UAVs and vessels, we reformulate the small-scale optimization problem into a Markov game (MG). Moreover, a heterogeneous-agent soft actor-critic is proposed to sequentially update various neural networks and effectively solve the MG problem. Finally, simulations are conducted to verify the effectiveness in addressing computational offloading and resource allocation.
☆ A Comparative Study of Task Adaptation Techniques of Large Language Models for Identifying Sustainable Development Goals
In 2012, the United Nations introduced 17 Sustainable Development Goals (SDGs) aimed at creating a more sustainable and improved future by 2030. However, tracking progress toward these goals is difficult because of the extensive scale and complexity of the data involved. Text classification models have become vital tools in this area, automating the analysis of vast amounts of text from a variety of sources. Additionally, large language models (LLMs) have recently proven indispensable for many natural language processing tasks, including text classification, thanks to their ability to recognize complex linguistic patterns and semantics. This study analyzes various proprietary and open-source LLMs for a single-label, multi-class text classification task focused on the SDGs. Then, it also evaluates the effectiveness of task adaptation techniques (i.e., in-context learning approaches), namely Zero-Shot and Few-Shot Learning, as well as Fine-Tuning within this domain. The results reveal that smaller models, when optimized through prompt engineering, can perform on par with larger models like OpenAI's GPT (Generative Pre-trained Transformer).
comment: Submitted to IEEE Access
☆ Multi-Agent Reinforcement Learning for Autonomous Multi-Satellite Earth Observation: A Realistic Case Study
The exponential growth of Low Earth Orbit (LEO) satellites has revolutionised Earth Observation (EO) missions, addressing challenges in climate monitoring, disaster management, and more. However, autonomous coordination in multi-satellite systems remains a fundamental challenge. Traditional optimisation approaches struggle to handle the real-time decision-making demands of dynamic EO missions, necessitating the use of Reinforcement Learning (RL) and Multi-Agent Reinforcement Learning (MARL). In this paper, we investigate RL-based autonomous EO mission planning by modelling single-satellite operations and extending to multi-satellite constellations using MARL frameworks. We address key challenges, including energy and data storage limitations, uncertainties in satellite observations, and the complexities of decentralised coordination under partial observability. By leveraging a near-realistic satellite simulation environment, we evaluate the training stability and performance of state-of-the-art MARL algorithms, including PPO, IPPO, MAPPO, and HAPPO. Our results demonstrate that MARL can effectively balance imaging and resource management while addressing non-stationarity and reward interdependency in multi-satellite coordination. The insights gained from this study provide a foundation for autonomous satellite operations, offering practical guidelines for improving policy learning in decentralised EO missions.
☆ HeurAgenix: Leveraging LLMs for Solving Complex Combinatorial Optimization Challenges
Heuristic algorithms play a vital role in solving combinatorial optimization (CO) problems, yet traditional designs depend heavily on manual expertise and struggle to generalize across diverse instances. We introduce \textbf{HeurAgenix}, a two-stage hyper-heuristic framework powered by large language models (LLMs) that first evolves heuristics and then selects among them automatically. In the heuristic evolution phase, HeurAgenix leverages an LLM to compare seed heuristic solutions with higher-quality solutions and extract reusable evolution strategies. During problem solving, it dynamically picks the most promising heuristic for each problem state, guided by the LLM's perception ability. For flexibility, this selector can be either a state-of-the-art LLM or a fine-tuned lightweight model with lower inference cost. To mitigate the scarcity of reliable supervision caused by CO complexity, we fine-tune the lightweight heuristic selector with a dual-reward mechanism that jointly exploits singals from selection preferences and state perception, enabling robust selection under noisy annotations. Extensive experiments on canonical benchmarks show that HeurAgenix not only outperforms existing LLM-based hyper-heuristics but also matches or exceeds specialized solvers. Code is available at https://github.com/microsoft/HeurAgenix.
comment: 27 pages,9 figures
☆ Accessible Gesture-Driven Augmented Reality Interaction System
Augmented reality (AR) offers immersive interaction but remains inaccessible for users with motor impairments or limited dexterity due to reliance on precise input methods. This study proposes a gesture-based interaction system for AR environments, leveraging deep learning to recognize hand and body gestures from wearable sensors and cameras, adapting interfaces to user capabilities. The system employs vision transformers (ViTs), temporal convolutional networks (TCNs), and graph attention networks (GATs) for gesture processing, with federated learning ensuring privacy-preserving model training across diverse users. Reinforcement learning optimizes interface elements like menu layouts and interaction modes. Experiments demonstrate a 20% improvement in task completion efficiency and a 25% increase in user satisfaction for motor-impaired users compared to baseline AR systems. This approach enhances AR accessibility and scalability. Keywords: Deep learning, Federated learning, Gesture recognition, Augmented reality, Accessibility, Human-computer interaction
☆ Classification of Multi-Parametric Body MRI Series Using Deep Learning
Multi-parametric magnetic resonance imaging (mpMRI) exams have various series types acquired with different imaging protocols. The DICOM headers of these series often have incorrect information due to the sheer diversity of protocols and occasional technologist errors. To address this, we present a deep learning-based classification model to classify 8 different body mpMRI series types so that radiologists read the exams efficiently. Using mpMRI data from various institutions, multiple deep learning-based classifiers of ResNet, EfficientNet, and DenseNet are trained to classify 8 different MRI series, and their performance is compared. Then, the best-performing classifier is identified, and its classification capability under the setting of different training data quantities is studied. Also, the model is evaluated on the out-of-training-distribution datasets. Moreover, the model is trained using mpMRI exams obtained from different scanners in two training strategies, and its performance is tested. Experimental results show that the DenseNet-121 model achieves the highest F1-score and accuracy of 0.966 and 0.972 over the other classification models with p-value$<$0.05. The model shows greater than 0.95 accuracy when trained with over 729 studies of the training data, whose performance improves as the training data quantities grew larger. On the external data with the DLDS and CPTAC-UCEC datasets, the model yields 0.872 and 0.810 accuracy for each. These results indicate that in both the internal and external datasets, the DenseNet-121 model attains high accuracy for the task of classifying 8 body MRI series types.
☆ LLM Agent for Hyper-Parameter Optimization
Hyper-parameters are essential and critical for the performance of communication algorithms. However, current hyper-parameters tuning methods for warm-start particles swarm optimization with cross and mutation (WS-PSO-CM) algortihm for radio map-enabled unmanned aerial vehicle (UAV) trajectory and communication are primarily heuristic-based, exhibiting low levels of automation and unsatisfactory performance. In this paper, we design an large language model (LLM) agent for automatic hyper-parameters-tuning, where an iterative framework and model context protocol (MCP) are applied. In particular, the LLM agent is first setup via a profile, which specifies the mission, background, and output format. Then, the LLM agent is driven by the prompt requirement, and iteratively invokes WS-PSO-CM algorithm for exploration. Finally, the LLM agent autonomously terminates the loop and returns a set of hyper-parameters. Our experiment results show that the minimal sum-rate achieved by hyper-parameters generated via our LLM agent is significantly higher than those by both human heuristics and random generation methods. This indicates that an LLM agent with PSO knowledge and WS-PSO-CM algorithm background is useful in finding high-performance hyper-parameters.
comment: 6 pages, 6 figures
☆ SonicVerse: Multi-Task Learning for Music Feature-Informed Captioning
Detailed captions that accurately reflect the characteristics of a music piece can enrich music databases and drive forward research in music AI. This paper introduces a multi-task music captioning model, SonicVerse, that integrates caption generation with auxiliary music feature detection tasks such as key detection, vocals detection, and more, so as to directly capture both low-level acoustic details as well as high-level musical attributes. The key contribution is a projection-based architecture that transforms audio input into language tokens, while simultaneously detecting music features through dedicated auxiliary heads. The outputs of these heads are also projected into language tokens, to enhance the captioning input. This framework not only produces rich, descriptive captions for short music fragments but also directly enables the generation of detailed time-informed descriptions for longer music pieces, by chaining the outputs using a large-language model. To train the model, we extended the MusicBench dataset by annotating it with music features using MIRFLEX, a modular music feature extractor, resulting in paired audio, captions and music feature data. Experimental results show that incorporating features in this way improves the quality and detail of the generated captions.
comment: 14 pages, 2 figures, Accepted to AIMC 2025
☆ Thunder-Tok: Minimizing Tokens per Word in Tokenizing Korean Texts for Generative Language Models
This paper introduces Thunder-Tok, a new Korean tokenizer designed to reduce token fertility without compromising model performance. Our approach uses a rule-based pre-tokenization method that aligns with the linguistic structure of the Korean language. We also create a seed vocabulary containing tokens that resemble linguistic units and employ a branching entropy-based selection algorithm. These techniques increase the average token length, thus lowering fertility while preserving linguistic information. Experimental results indicate that Thunder-Tok reduces fertility by approximately 10% (i.e., reduces the number of tokens by 10%, improving the inference speed by 10%) compared to BPE without compromising performance across various downstream tasks. These findings demonstrate that our linguistically informed approach is effective and practical for designing efficient tokenizers for language models.
☆ Modeling the One-to-Many Property in Open-Domain Dialogue with LLMs
Open-domain Dialogue (OD) exhibits a one-to-many (o2m) property, whereby multiple appropriate responses exist for a single dialogue context. Despite prior research showing that modeling this property boosts response diversity, most modern LLM-based dialogue agents do not explicitly do so. In this work, we model the o2m property of OD in LLMs by decomposing OD generation into two key tasks: Multi-Response Generation (MRG) and Preference-based Selection (PS), which entail generating a set of n semantically and lexically diverse high-quality responses for a given dialogue context, followed by selecting a single response based on human preference, respectively. To facilitate MRG and PS, we introduce o2mDial, a dialogue corpus explicitly designed to capture the o2m property by featuring multiple plausible responses for each context. Leveraging o2mDial, we propose new in-context learning and instruction-tuning strategies, as well as novel evaluation metrics for MRG, alongside a model-based approach for PS. Empirical results demonstrate that applying the proposed two-stage framework to smaller LLMs for OD generation enhances overall response diversity while maintaining contextual coherence, improving response quality by up to 90%, bringing them closer to the performance of larger models.
☆ Advancing Loss Functions in Recommender Systems: A Comparative Study with a Rényi Divergence-Based Solution AAAI 2025
Loss functions play a pivotal role in optimizing recommendation models. Among various loss functions, Softmax Loss (SL) and Cosine Contrastive Loss (CCL) are particularly effective. Their theoretical connections and differences warrant in-depth exploration. This work conducts comprehensive analyses of these losses, yielding significant insights: 1) Common strengths -- both can be viewed as augmentations of traditional losses with Distributional Robust Optimization (DRO), enhancing robustness to distributional shifts; 2) Respective limitations -- stemming from their use of different distribution distance metrics in DRO optimization, SL exhibits high sensitivity to false negative instances, whereas CCL suffers from low data utilization. To address these limitations, this work proposes a new loss function, DrRL, which generalizes SL and CCL by leveraging R\'enyi-divergence in DRO optimization. DrRL incorporates the advantageous structures of both SL and CCL, and can be demonstrated to effectively mitigate their limitations. Extensive experiments have been conducted to validate the superiority of DrRL on both recommendation accuracy and robustness.
comment: AAAI 2025
☆ Transit for All: Mapping Equitable Bike2Subway Connection using Region Representation Learning
Ensuring equitable public transit access remains challenging, particularly in densely populated cities like New York City (NYC), where low-income and minority communities often face limited transit accessibility. Bike-sharing systems (BSS) can bridge these equity gaps by providing affordable first- and last-mile connections. However, strategically expanding BSS into underserved neighborhoods is difficult due to uncertain bike-sharing demand at newly planned ("cold-start") station locations and limitations in traditional accessibility metrics that may overlook realistic bike usage potential. We introduce Transit for All (TFA), a spatial computing framework designed to guide the equitable expansion of BSS through three components: (1) spatially-informed bike-sharing demand prediction at cold-start stations using region representation learning that integrates multimodal geospatial data, (2) comprehensive transit accessibility assessment leveraging our novel weighted Public Transport Accessibility Level (wPTAL) by combining predicted bike-sharing demand with conventional transit accessibility metrics, and (3) strategic recommendations for new bike station placements that consider potential ridership and equity enhancement. Using NYC as a case study, we identify transit accessibility gaps that disproportionately impact low-income and minority communities in historically underserved neighborhoods. Our results show that strategically placing new stations guided by wPTAL notably reduces disparities in transit access related to economic and demographic factors. From our study, we demonstrate that TFA provides practical guidance for urban planners to promote equitable transit and enhance the quality of life in underserved urban communities.
☆ Improving Dialogue Discourse Parsing through Discourse-aware Utterance Clarification ACL2025
Dialogue discourse parsing aims to identify and analyze discourse relations between the utterances within dialogues. However, linguistic features in dialogues, such as omission and idiom, frequently introduce ambiguities that obscure the intended discourse relations, posing significant challenges for parsers. To address this issue, we propose a Discourse-aware Clarification Module (DCM) to enhance the performance of the dialogue discourse parser. DCM employs two distinct reasoning processes: clarification type reasoning and discourse goal reasoning. The former analyzes linguistic features, while the latter distinguishes the intended relation from the ambiguous one. Furthermore, we introduce Contribution-aware Preference Optimization (CPO) to mitigate the risk of erroneous clarifications, thereby reducing cascading errors. CPO enables the parser to assess the contributions of the clarifications from DCM and provide feedback to optimize the DCM, enhancing its adaptability and alignment with the parser's requirements. Extensive experiments on the STAC and Molweni datasets demonstrate that our approach effectively resolves ambiguities and significantly outperforms the state-of-the-art (SOTA) baselines.
comment: Accepted by ACL2025(main conference)
☆ Sequential Policy Gradient for Adaptive Hyperparameter Optimization
Reinforcement learning is essential for neural architecture search and hyperparameter optimization, but the conventional approaches impede widespread use due to prohibitive time and computational costs. Inspired by DeepSeek-V3 multi-token prediction architecture, we propose Sequential Policy Gradient modeling (SPG), a novel trajectory generation paradigm for lightweight online hyperparameter optimization. In contrast to conventional policy gradient methods, SPG extends the base model with temporary modules, enabling it to generate state-action (padded) trajectories in a single forward pass. Our experiments demonstrate that models gain performance when retrained with SPG on their original datasets and also outperform standard transfer fine-tuning. We evaluate on five datasets spanning computer vision (ImageNet, COCO), natural language processing (GLUE, SQuAD), and audio (SUPERB) to assess the industrial applicability of SPG. The proposed method demonstrates consistent improvements across widely adopted models, achieving performance gains of $+0.2\sim7\%$, with significantly low computational costs. Fully reproducible code and pre-trained models: https://huggingface.co/UniversalAlgorithmic/SPG.
comment: 10 pages, 2 figures
☆ Truncated Proximal Policy Optimization
Recently, test-time scaling Large Language Models (LLMs) have demonstrated exceptional reasoning capabilities across scientific and professional tasks by generating long chains-of-thought (CoT). As a crucial component for developing these reasoning models, reinforcement learning (RL), exemplified by Proximal Policy Optimization (PPO) and its variants, allows models to learn through trial and error. However, PPO can be time-consuming due to its inherent on-policy nature, which is further exacerbated by increasing response lengths. In this work, we propose Truncated Proximal Policy Optimization (T-PPO), a novel extension to PPO that improves training efficiency by streamlining policy update and length-restricted response generation. T-PPO mitigates the issue of low hardware utilization, an inherent drawback of fully synchronized long-generation procedures, where resources often sit idle during the waiting periods for complete rollouts. Our contributions are two-folds. First, we propose Extended Generalized Advantage Estimation (EGAE) for advantage estimation derived from incomplete responses while maintaining the integrity of policy learning. Second, we devise a computationally optimized mechanism that allows for the independent optimization of the policy and value models. By selectively filtering prompt and truncated tokens, this mechanism reduces redundant computations and accelerates the training process without sacrificing convergence performance. We demonstrate the effectiveness and efficacy of T-PPO on AIME 2024 with a 32B base model. The experimental results show that T-PPO improves the training efficiency of reasoning LLMs by up to 2.5x and outperforms its existing competitors.
☆ Mapping Caregiver Needs to AI Chatbot Design: Strengths and Gaps in Mental Health Support for Alzheimer's and Dementia Caregivers
Family caregivers of individuals with Alzheimer's Disease and Related Dementia (AD/ADRD) face significant emotional and logistical challenges that place them at heightened risk for stress, anxiety, and depression. Although recent advances in generative AI -- particularly large language models (LLMs) -- offer new opportunities to support mental health, little is known about how caregivers perceive and engage with such technologies. To address this gap, we developed Carey, a GPT-4o-based chatbot designed to provide informational and emotional support to AD/ADRD caregivers. Using Carey as a technology probe, we conducted semi-structured interviews with 16 family caregivers following scenario-driven interactions grounded in common caregiving stressors. Through inductive coding and reflexive thematic analysis, we surface a systemic understanding of caregiver needs and expectations across six themes -- on-demand information access, emotional support, safe space for disclosure, crisis management, personalization, and data privacy. For each of these themes, we also identified the nuanced tensions in the caregivers' desires and concerns. We present a mapping of caregiver needs, AI chatbot's strengths, gaps, and design recommendations. Our findings offer theoretical and practical insights to inform the design of proactive, trustworthy, and caregiver-centered AI systems that better support the evolving mental health needs of AD/ADRD caregivers.
Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs
We present Ring-lite, a Mixture-of-Experts (MoE)-based large language model optimized via reinforcement learning (RL) to achieve efficient and robust reasoning capabilities. Built upon the publicly available Ling-lite model, a 16.8 billion parameter model with 2.75 billion activated parameters, our approach matches the performance of state-of-the-art (SOTA) small-scale reasoning models on challenging benchmarks (e.g., AIME, LiveCodeBench, GPQA-Diamond) while activating only one-third of the parameters required by comparable models. To accomplish this, we introduce a joint training pipeline integrating distillation with RL, revealing undocumented challenges in MoE RL training. First, we identify optimization instability during RL training, and we propose Constrained Contextual Computation Policy Optimization(C3PO), a novel approach that enhances training stability and improves computational throughput via algorithm-system co-design methodology. Second, we empirically demonstrate that selecting distillation checkpoints based on entropy loss for RL training, rather than validation metrics, yields superior performance-efficiency trade-offs in subsequent RL training. Finally, we develop a two-stage training paradigm to harmonize multi-domain data integration, addressing domain conflicts that arise in training with mixed dataset. We will release the model, dataset, and code.
comment: Technical Report
♻ ☆ Accurate and scalable exchange-correlation with deep learning
Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schr\"odinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
comment: Main: 13 pages plus references, 11 figures and tables. Supplementary information: 19 pages, 12 figures and tables. v2 update: fix rendering of figure 1 and part of figure 5 in Safari PDF viewer
♻ ☆ AIn't Nothing But a Survey? Using Large Language Models for Coding German Open-Ended Survey Responses on Survey Motivation
The recent development and wider accessibility of LLMs have spurred discussions about how they can be used in survey research, including classifying open-ended survey responses. Due to their linguistic capacities, it is possible that LLMs are an efficient alternative to time-consuming manual coding and the pre-training of supervised machine learning models. As most existing research on this topic has focused on English-language responses relating to non-complex topics or on single LLMs, it is unclear whether its findings generalize and how the quality of these classifications compares to established methods. In this study, we investigate to what extent different LLMs can be used to code open-ended survey responses in other contexts, using German data on reasons for survey participation as an example. We compare several state-of-the-art LLMs and several prompting approaches, and evaluate the LLMs' performance by using human expert codings. Overall performance differs greatly between LLMs, and only a fine-tuned LLM achieves satisfactory levels of predictive performance. Performance differences between prompting approaches are conditional on the LLM used. Finally, LLMs' unequal classification performance across different categories of reasons for survey participation results in different categorical distributions when not using fine-tuning. We discuss the implications of these findings, both for methodological research on coding open-ended responses and for their substantive analysis, and for practitioners processing or substantively analyzing such data. Finally, we highlight the many trade-offs researchers need to consider when choosing automated methods for open-ended response classification in the age of LLMs. In doing so, our study contributes to the growing body of research about the conditions under which LLMs can be efficiently, accurately, and reliably leveraged in survey research.
comment: to appear in Survey Research Methods
♻ ☆ Probabilistic Aggregation and Targeted Embedding Optimization for Collective Moral Reasoning in Large Language Models ACL 2025
Large Language Models (LLMs) have shown impressive moral reasoning abilities. Yet they often diverge when confronted with complex, multi-factor moral dilemmas. To address these discrepancies, we propose a framework that synthesizes multiple LLMs' moral judgments into a collectively formulated moral judgment, realigning models that deviate significantly from this consensus. Our aggregation mechanism fuses continuous moral acceptability scores (beyond binary labels) into a collective probability, weighting contributions by model reliability. For misaligned models, a targeted embedding-optimization procedure fine-tunes token embeddings for moral philosophical theories, minimizing JS divergence to the consensus while preserving semantic integrity. Experiments on a large-scale social moral dilemma dataset show our approach builds robust consensus and improves individual model fidelity. These findings highlight the value of data-driven moral alignment across multiple models and its potential for safer, more consistent AI systems.
comment: Accepted to ACL 2025 (Findings)
♻ ☆ No-Regret Learning Under Adversarial Resource Constraints: A Spending Plan Is All You Need!
We study online decision making problems under resource constraints, where both reward and cost functions are drawn from distributions that may change adversarially over time. We focus on two canonical settings: $(i)$ online resource allocation where rewards and costs are observed before action selection, and $(ii)$ online learning with resource constraints where they are observed after action selection, under full feedback or bandit feedback. It is well known that achieving sublinear regret in these settings is impossible when reward and cost distributions may change arbitrarily over time. To address this challenge, we analyze a framework in which the learner is guided by a spending plan--a sequence prescribing expected resource usage across rounds. We design general (primal-)dual methods that achieve sublinear regret with respect to baselines that follow the spending plan. Crucially, the performance of our algorithms improves when the spending plan ensures a well-balanced distribution of the budget across rounds. We additionally provide a robust variant of our methods to handle worst-case scenarios where the spending plan is highly imbalanced. To conclude, we study the regret of our algorithms when competing against benchmarks that deviate from the prescribed spending plan.
♻ ☆ Aligning Evaluation with Clinical Priorities: Calibration, Label Shift, and Error Costs
Machine learning-based decision support systems are increasingly deployed in clinical settings, where probabilistic scoring functions are used to inform and prioritize patient management decisions. However, widely used scoring rules, such as accuracy and AUC-ROC, fail to adequately reflect key clinical priorities, including calibration, robustness to distributional shifts, and sensitivity to asymmetric error costs. In this work, we propose a principled yet practical evaluation framework for selecting calibrated thresholded classifiers that explicitly accounts for the uncertainty in class prevalences and domain-specific cost asymmetries often found in clinical settings. Building on the theory of proper scoring rules, particularly the Schervish representation, we derive an adjusted variant of cross-entropy (log score) that averages cost-weighted performance over clinically relevant ranges of class balance. The resulting evaluation is simple to apply, sensitive to clinical deployment conditions, and designed to prioritize models that are both calibrated and robust to real-world variations.
♻ ☆ MSVIT: Improving Spiking Vision Transformer Using Multi-scale Attention Fusion IJCAI'25
The combination of Spiking Neural Networks (SNNs) with Vision Transformer architectures has garnered significant attention due to their potential for energy-efficient and high-performance computing paradigms. However, a substantial performance gap still exists between SNN-based and ANN-based transformer architectures. While existing methods propose spiking self-attention mechanisms that are successfully combined with SNNs, the overall architectures proposed by these methods suffer from a bottleneck in effectively extracting features from different image scales. In this paper, we address this issue and propose MSVIT. This novel spike-driven Transformer architecture firstly uses multi-scale spiking attention (MSSA) to enhance the capabilities of spiking attention blocks. We validate our approach across various main datasets. The experimental results show that MSVIT outperforms existing SNN-based models, positioning itself as a state-of-the-art solution among SNN-transformer architectures. The codes are available at https://github.com/Nanhu-AI-Lab/MSViT.
comment: 11pages, 2figures, accepted by IJCAI'25 (34th International Joint Conference on Artificial Intelligence)
♻ ☆ Seewo's Submission to MLC-SLM: Lessons learned from Speech Reasoning Language Models
This paper presents Seewo's systems for both tracks of the Multilingual Conversational Speech Language Model Challenge (MLC-SLM), addressing automatic speech recognition (ASR) and speaker diarization with ASR (SD-ASR). We introduce a multi-stage training pipeline that explicitly enhances reasoning and self-correction in speech language models for ASR. Our approach combines curriculum learning for progressive capability acquisition, Chain-of-Thought data augmentation to foster intermediate reflection, and Reinforcement Learning with Verifiable Rewards (RLVR) to further refine self-correction through reward-driven optimization. This approach achieves substantial improvements over the official challenge baselines. On the evaluation set, our best system attains a WER/CER of 11.57% for Track 1 and a tcpWER/tcpCER of 17.67% for Track 2. Comprehensive ablation studies demonstrate the effectiveness of each component under challenge constraints.
♻ ☆ GRAM: A Generative Foundation Reward Model for Reward Generalization ICML 2025
In aligning large language models (LLMs), reward models have played an important role, but are standardly trained as discriminative models and rely only on labeled human preference data. In this paper, we explore methods that train reward models using both unlabeled and labeled data. Building on the generative models in LLMs, we develop a generative reward model that is first trained via large-scale unsupervised learning and then fine-tuned via supervised learning. We also show that by using label smoothing, we are in fact optimizing a regularized pairwise ranking loss. This result, in turn, provides a new view of training reward models, which links generative models and discriminative models under the same class of training objectives. The outcome of these techniques is a foundation reward model, which can be applied to a wide range of tasks with little or no further fine-tuning effort. Extensive experiments show that this model generalizes well across several tasks, including response ranking, reinforcement learning from human feedback, and task adaptation with fine-tuning, achieving significant performance improvements over several strong baseline models.
comment: Accepted by ICML 2025
♻ ☆ VideoMAR: Autoregressive Video Generatio with Continuous Tokens
Masked-based autoregressive models have demonstrated promising image generation capability in continuous space. However, their potential for video generation remains under-explored. In this paper, we propose \textbf{VideoMAR}, a concise and efficient decoder-only autoregressive image-to-video model with continuous tokens, composing temporal frame-by-frame and spatial masked generation. We first identify temporal causality and spatial bi-directionality as the first principle of video AR models, and propose the next-frame diffusion loss for the integration of mask and video generation. Besides, the huge cost and difficulty of long sequence autoregressive modeling is a basic but crucial issue. To this end, we propose the temporal short-to-long curriculum learning and spatial progressive resolution training, and employ progressive temperature strategy at inference time to mitigate the accumulation error. Furthermore, VideoMAR replicates several unique capacities of language models to video generation. It inherently bears high efficiency due to simultaneous temporal-wise KV cache and spatial-wise parallel generation, and presents the capacity of spatial and temporal extrapolation via 3D rotary embeddings. On the VBench-I2V benchmark, VideoMAR surpasses the previous state-of-the-art (Cosmos I2V) while requiring significantly fewer parameters ($9.3\%$), training data ($0.5\%$), and GPU resources ($0.2\%$).
♻ ☆ From Data-Driven to Purpose-Driven Artificial Intelligence: Systems Thinking for Data-Analytic Automation of Patient Care
In this work, we reflect on the data-driven modeling paradigm that is gaining ground in AI-driven automation of patient care. We argue that the repurposing of existing real-world patient datasets for machine learning may not always represent an optimal approach to model development as it could lead to undesirable outcomes in patient care. We reflect on the history of data analysis to explain how the data-driven paradigm rose to popularity, and we envision ways in which systems thinking and clinical domain theory could complement the existing model development approaches in reaching human-centric outcomes. We call for a purpose-driven machine learning paradigm that is grounded in clinical theory and the sociotechnical realities of real-world operational contexts. We argue that understanding the utility of existing patient datasets requires looking in two directions: upstream towards the data generation, and downstream towards the automation objectives. This purpose-driven perspective to AI system development opens up new methodological opportunities and holds promise for AI automation of patient care.
comment: The work is under review at ACM Health
♻ ☆ Generalized Out-of-Distribution Detection and Beyond in Vision Language Model Era: A Survey
Detecting out-of-distribution (OOD) samples is crucial for ensuring the safety of machine learning systems and has shaped the field of OOD detection. Meanwhile, several other problems are closely related to OOD detection, including anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). To unify these problems, a generalized OOD detection framework was proposed, taxonomically categorizing these five problems. However, Vision Language Models (VLMs) such as CLIP have significantly changed the paradigm and blurred the boundaries between these fields, again confusing researchers. In this survey, we first present a generalized OOD detection v2, encapsulating the evolution of these fields in the VLM era. Our framework reveals that, with some field inactivity and integration, the demanding challenges have become OOD detection and AD. Then, we highlight the significant shift in the definition, problem settings, and benchmarks; we thus feature a comprehensive review of the methodology for OOD detection and related tasks to clarify their relationship to OOD detection. Finally, we explore the advancements in the emerging Large Vision Language Model (LVLM) era, such as GPT-4V. We conclude with open challenges and future directions. The resource is available at https://github.com/AtsuMiyai/Awesome-OOD-VLM.
comment: Accepted at TMLR2025. Survey paper. We welcome questions, issues, and paper requests via https://github.com/AtsuMiyai/Awesome-OOD-VLM
♻ ☆ J4R: Learning to Judge with Equivalent Initial State Group Relative Policy Optimization
To keep pace with the increasing pace of large language models (LLM) development, model output evaluation has transitioned away from time-consuming human evaluation to automatic evaluation, where LLMs themselves are tasked with assessing and critiquing other model outputs. LLM-as-judge models are a class of generative evaluators that excel in evaluating relatively simple domains, like chat quality, but struggle in reasoning intensive domains where model responses contain more substantive and challenging content. To remedy existing judge shortcomings, we explore training judges with reinforcement learning (RL). We make three key contributions: (1) We propose the Equivalent Initial State Group Relative Policy Optimization (EIS-GRPO) algorithm, which allows us to train our judge to be robust to positional biases that arise in more complex evaluation settings. (2) We introduce ReasoningJudgeBench, a benchmark that evaluates judges in diverse reasoning settings not covered by prior work. (3) We train Judge for Reasoning (J4R), a 7B judge trained with EIS-GRPO that outperforms GPT-4o and the next best small judge by 6.7% and 9%, matching or exceeding the performance of larger GRPO-trained judges on both JudgeBench and ReasoningJudgeBench.
comment: 25 pages, 4 figures, 6 tables. Updated with code and benchmark
♻ ☆ Router-R1: Teaching LLMs Multi-Round Routing and Aggregation via Reinforcement Learning
The rapid emergence of diverse large language models (LLMs) has spurred the development of LLM routers that assign user queries to the most suitable model. However, existing LLM routers typically perform a single-round, one-to-one mapping (\textit{i.e.}, assigning each query to a single model in isolation), which limits their capability to tackle complex tasks that demand the complementary strengths of multiple LLMs. In this paper, we present \textbf{Router-R1}, a reinforcement learning (RL)-based framework that formulates multi-LLM routing and aggregation as a sequential decision process. Router-R1 instantiates the router itself as a capable LLM, leveraging its reasoning ability to interleave "think" actions (internal deliberation) with "route" actions (dynamic model invocation), and integrates each response into its evolving context. To facilitate learning, we employ a lightweight rule-based reward comprising format rewards, final outcome rewards, and a novel cost reward for optimizing the balance between performance and cost, opening a pathway toward enhancing performance-cost trade-offs via RL. Router-R1 also conditions only on simple model descriptors such as pricing, latency, and example performance, enabling strong generalization to unseen model selection. Experiments on seven general and multi-hop QA benchmarks show that Router-R1 outperforms several strong baselines, achieving superior performance while maintaining robust generalization and cost management.
comment: Code is available at https://github.com/ulab-uiuc/Router-R1. Models and Datasets are available at https://huggingface.co/collections/ulab-ai/router-r1-6851bbe099c7a56914b5db03
♻ ☆ A Novel Perturb-ability Score to Mitigate Evasion Adversarial Attacks on Flow-Based ML-NIDS
As network security threats evolve, safeguarding flow-based Machine Learning (ML)-based Network Intrusion Detection Systems (NIDS) from evasion adversarial attacks is crucial. This paper introduces the notion of feature perturb-ability and presents a novel Perturb-ability Score (PS), which quantifies how susceptible NIDS features are to manipulation in the problem-space by an attacker. PS thereby identifies features structurally resistant to evasion attacks in flow-based ML-NIDS due to the semantics of network traffic fields, as these features are constrained by domain-specific limitations and correlations. Consequently, attempts to manipulate such features would likely either compromise the attack's malicious functionality, render the traffic invalid for processing, or potentially both outcomes simultaneously. We introduce and demonstrate the effectiveness of our PS-enabled defenses, PS-guided feature selection and PS-guided feature masking, in enhancing flow-based NIDS resilience. Experimental results across various ML-based NIDS models and public datasets show that discarding or masking highly manipulatable features (high-PS features) can maintain solid detection performance while significantly reducing vulnerability to evasion adversarial attacks. Our findings confirm that PS effectively identifies flow-based NIDS features susceptible to problem-space perturbations. This novel approach leverages problem-space NIDS domain constraints as lightweight universal defense mechanisms against evasion adversarial attacks targeting flow-based ML-NIDS.
♻ ☆ Refactoring Codebases through Library Design
Maintainable and general software allows developers to build robust applications efficiently, yet achieving these qualities often requires refactoring specialized solutions into reusable components. This challenge becomes particularly relevant as code agents become increasingly accurate at solving isolated programming problems. We investigate code agents' capacity to refactor code in ways supporting growth and reusability. We present both a method and a benchmark for refactoring: Librarian, a sample-and-rerank method for generating reusable libraries, and Minicode, a benchmark where code agents must minimize and refactor multiple independent solutions into a joint library. Compared to state-of-the-art code agents, Librarian achieves strong results on both compression and correctness on Minicode, obtaining compression rates 1.6-2x better than coding agents while also improving correctness. We open-source our code and benchmark at https://code-refactor.github.io/.
comment: 29 pages
♻ ☆ Vision Transformers Don't Need Trained Registers
We investigate the mechanism underlying a previously identified phenomenon in Vision Transformers -- the emergence of high-norm tokens that lead to noisy attention maps. We observe that in multiple models (e.g., CLIP, DINOv2), a sparse set of neurons is responsible for concentrating high-norm activations on outlier tokens, leading to irregular attention patterns and degrading downstream visual processing. While the existing solution for removing these outliers involves retraining models from scratch with additional learned register tokens, we use our findings to create a training-free approach to mitigate these artifacts. By shifting the high-norm activations from our discovered register neurons into an additional untrained token, we can mimic the effect of register tokens on a model already trained without registers. We demonstrate that our method produces cleaner attention and feature maps, enhances performance over base models across multiple downstream visual tasks, and achieves results comparable to models explicitly trained with register tokens. We then extend test-time registers to off-the-shelf vision-language models to improve their interpretability. Our results suggest that test-time registers effectively take on the role of register tokens at test-time, offering a training-free solution for any pre-trained model released without them.
comment: Project page and code: https://avdravid.github.io/test-time-registers
♻ ☆ "Generate" the Future of Work through AI: Empirical Evidence from Online Labor Markets
Large Language Model (LLM)-based generative AI systems, such as ChatGPT, demonstrate zero-shot learning capabilities across a wide range of downstream tasks. Owing to their general-purpose nature and potential to augment or even automate job functions, these systems are poised to reshape labor market dynamics. However, predicting their precise impact \textit{a priori} is challenging, given AI's simultaneous effects on both demand and supply, as well as the strategic responses of market participants. Leveraging an extensive dataset from a leading online labor platform, we document a pronounced displacement effect and an overall contraction in submarkets where required skills closely align with core LLM functionalities. Although demand and supply both decline, the reduction in supply is comparatively smaller, thereby intensifying competition among freelancers. Notably, further analysis shows that this heightened competition is especially pronounced in programming-intensive submarkets. This pattern is attributed to skill-transition effects: by lowering the human-capital barrier to programming, ChatGPT enables incumbent freelancers to enter programming tasks. Moreover, these transitions are not homogeneous, with high-skilled freelancers contributing disproportionately to the shift. Our findings illuminate the multifaceted impacts of general-purpose AI on labor markets, highlighting not only the displacement of certain occupations but also the inducement of skill transitions within the labor supply. These insights offer practical implications for policymakers, platform operators, and workers.
comment: 92 pages, 16 figures, 34 tables
♻ ☆ TARDIS STRIDE: A Spatio-Temporal Road Image Dataset and World Model for Autonomy
World models aim to simulate environments and enable effective agent behavior. However, modeling real-world environments presents unique challenges as they dynamically change across both space and, crucially, time. To capture these composed dynamics, we introduce a Spatio-Temporal Road Image Dataset for Exploration (STRIDE) permuting 360-degree panoramic imagery into rich interconnected observation, state and action nodes. Leveraging this structure, we can simultaneously model the relationship between egocentric views, positional coordinates, and movement commands across both space and time. We benchmark this dataset via TARDIS, a transformer-based generative world model that integrates spatial and temporal dynamics through a unified autoregressive framework trained on STRIDE. We demonstrate robust performance across a range of agentic tasks such as controllable photorealistic image synthesis, instruction following, autonomous self-control, and state-of-the-art georeferencing. These results suggest a promising direction towards sophisticated generalist agents--capable of understanding and manipulating the spatial and temporal aspects of their material environments--with enhanced embodied reasoning capabilities. Training code, datasets, and model checkpoints are made available at https://huggingface.co/datasets/Tera-AI/STRIDE.
comment: Computer Vision, Pattern Recognition, Early-Fusion, Dataset, Data Augmentation
♻ ☆ Fractured Chain-of-Thought Reasoning
Inference-time scaling techniques have significantly bolstered the reasoning capabilities of large language models (LLMs) by harnessing additional computational effort at inference without retraining. Similarly, Chain-of-Thought (CoT) prompting and its extension, Long CoT, improve accuracy by generating rich intermediate reasoning trajectories, but these approaches incur substantial token costs that impede their deployment in latency-sensitive settings. In this work, we first show that truncated CoT, which stops reasoning before completion and directly generates the final answer, often matches full CoT sampling while using dramatically fewer tokens. Building on this insight, we introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling along three orthogonal axes: (1) the number of reasoning trajectories, (2) the number of final solutions per trajectory, and (3) the depth at which reasoning traces are truncated. Through extensive experiments on five diverse reasoning benchmarks and several model scales, we demonstrate that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget. Our analysis reveals how to allocate computation across these dimensions to maximize performance, paving the way for more efficient and scalable LLM reasoning. Code is available at https://github.com/BaohaoLiao/frac-cot.
♻ ☆ Exploring Personalized Federated Learning Architectures for Violence Detection in Surveillance Videos
The challenge of detecting violent incidents in urban surveillance systems is compounded by the voluminous and diverse nature of video data. This paper presents a targeted approach using Personalized Federated Learning (PFL) to address these issues, specifically employing the Federated Learning with Personalization Layers method within the Flower framework. Our methodology adapts learning models to the unique data characteristics of each surveillance node, effectively managing the heterogeneous and non-IID nature of surveillance video data. Through rigorous experiments conducted on balanced and imbalanced datasets, our PFL models demonstrated enhanced accuracy and efficiency, achieving up to 99.3% accuracy. This study underscores the potential of PFL to significantly improve the scalability and effectiveness of surveillance systems, offering a robust, privacy-preserving solution for violence detection in complex urban environments.
comment: 7 pages, 5 figures, 4 tables
♻ ☆ Pap2Pat: Benchmarking Outline-Guided Long-Text Patent Generation with Patent-Paper Pairs ACL 2025
Dealing with long and highly complex technical text is a challenge for Large Language Models (LLMs), which still have to unfold their potential in supporting expensive and timeintensive processes like patent drafting. Within patents, the description constitutes more than 90% of the document on average. Yet, its automatic generation remains understudied. When drafting patent applications, patent attorneys typically receive invention reports (IRs), which are usually confidential, hindering research on LLM-supported patent drafting. Often, prepublication research papers serve as IRs. We leverage this duality to build PAP2PAT, an open and realistic benchmark for patent drafting consisting of 1.8k patent-paper pairs describing the same inventions. To address the complex longdocument patent generation task, we propose chunk-based outline-guided generation using the research paper as invention specification. Our extensive evaluation using PAP2PAT and a human case study show that LLMs can effectively leverage information from the paper, but still struggle to provide the necessary level of detail. Fine-tuning leads to more patent-style language, but also to more hallucination. We release our data and code https://github.com/boschresearch/Pap2Pat.
comment: ACL 2025 Findings
♻ ☆ EgoBlind: Towards Egocentric Visual Assistance for the Blind
We present EgoBlind, the first egocentric VideoQA dataset collected from blind individuals to evaluate the assistive capabilities of contemporary multimodal large language models (MLLMs). EgoBlind comprises 1,392 videos that record the daily lives of real blind users from a first-person perspective. It also features 5,311 questions directly posed or generated and verified by blind individuals to reflect their in-situation needs for visual assistance under various scenarios. We provide each question with an average of 3 reference answers to alleviate subjective evaluation. Using EgoBlind, we comprehensively evaluate 16 advanced MLLMs and find that all models struggle, with the best performers achieving accuracy near 60\%, far behind human performance of 87.4\%. To guide future advancements, we identify and summarize major limitations of existing MLLMs in egocentric visual assistance for the blind and explore heuristic solutions for improvement. With these efforts, we hope EgoBlind can serve as a valuable foundation for developing more effective AI assistants to enhance the independence of the blind individuals' lives. Data and evaluation code are available at https://github.com/doc-doc/EgoBlind.
comment: We extend and resplit the dataset
♻ ☆ RadioRAG: Online Retrieval-augmented Generation for Radiology Question Answering
Large language models (LLMs) often generate outdated or inaccurate information based on static training datasets. Retrieval-augmented generation (RAG) mitigates this by integrating outside data sources. While previous RAG systems used pre-assembled, fixed databases with limited flexibility, we have developed Radiology RAG (RadioRAG), an end-to-end framework that retrieves data from authoritative radiologic online sources in real-time. We evaluate the diagnostic accuracy of various LLMs when answering radiology-specific questions with and without access to additional online information via RAG. Using 80 questions from the RSNA Case Collection across radiologic subspecialties and 24 additional expert-curated questions with reference standard answers, LLMs (GPT-3.5-turbo, GPT-4, Mistral-7B, Mixtral-8x7B, and Llama3 [8B and 70B]) were prompted with and without RadioRAG in a zero-shot inference scenario RadioRAG retrieved context-specific information from Radiopaedia in real-time. Accuracy was investigated. Statistical analyses were performed using bootstrapping. The results were further compared with human performance. RadioRAG improved diagnostic accuracy across most LLMs, with relative accuracy increases ranging up to 54% for different LLMs. It matched or exceeded non-RAG models and the human radiologist in question answering across radiologic subspecialties, particularly in breast imaging and emergency radiology. However, the degree of improvement varied among models; GPT-3.5-turbo and Mixtral-8x7B-instruct-v0.1 saw notable gains, while Mistral-7B-instruct-v0.2 showed no improvement, highlighting variability in RadioRAG's effectiveness. LLMs benefit when provided access to domain-specific data beyond their training data. RadioRAG shows potential to improve LLM accuracy and factuality in radiology question answering by integrating real-time domain-specific data.
comment: Published in Radiology: Artificial Intelligence
♻ ☆ M3-JEPA: Multimodal Alignment via Multi-gate MoE based on the Joint-Embedding Predictive Architecture ICML 2025
Current multimodal learning strategies primarily optimize in the original token space. Such a framework is easy to incorporate with the backbone of pretrained language model, but might result in modality collapse. To alleviate such issues, we leverage the Joint-Embedding Predictive Architecture (JEPA) on the multimodal tasks, which converts the input embedding into the output embedding space by a predictor and then conducts the cross-modal alignment on the latent space. We implement this predictor by a Multi-Gate Mixture of Experts (MMoE) and name the framework as M3-JEPA, accordingly. The gating function disentangles the modality-specific and shared information and derives information-theoretic optimality. The framework is implemented with both contrastive and regularization loss, and solved by alternative gradient descent (AGD) between different multimodal tasks. By thoroughly designed experiments, we show that M3-JEPA can obtain state-of-the-art performance on different modalities and tasks, generalize to unseen datasets and domains, and is computationally efficient in both training and inference. Our observation suggests that M3-JEPA might become a new basis to self-supervised learning in the open world.
comment: 16 pages, 5 figures. ICML 2025
♻ ☆ KANITE: Kolmogorov-Arnold Networks for ITE estimation
We introduce KANITE, a framework leveraging Kolmogorov-Arnold Networks (KANs) for Individual Treatment Effect (ITE) estimation under multiple treatments setting in causal inference. By utilizing KAN's unique abilities to learn univariate activation functions as opposed to learning linear weights by Multi-Layer Perceptrons (MLPs), we improve the estimates of ITEs. The KANITE framework comprises two key architectures: 1.Integral Probability Metric (IPM) architecture: This employs an IPM loss in a specialized manner to effectively align towards ITE estimation across multiple treatments. 2. Entropy Balancing (EB) architecture: This uses weights for samples that are learned by optimizing entropy subject to balancing the covariates across treatment groups. Extensive evaluations on benchmark datasets demonstrate that KANITE outperforms state-of-the-art algorithms in both $\epsilon_{\text{PEHE}}$ and $\epsilon_{\text{ATE}}$ metrics. Our experiments highlight the advantages of KANITE in achieving improved causal estimates, emphasizing the potential of KANs to advance causal inference methodologies across diverse application areas.
comment: 16 pages, 4 figures
♻ ☆ Adding Chocolate to Mint: Mitigating Metric Interference in Machine Translation
As automatic metrics become increasingly stronger and widely adopted, the risk of unintentionally "gaming the metric" during model development rises. This issue is caused by metric interference (MINT), i.e., the use of the same or related metrics for both model tuning and evaluation. MINT can misguide practitioners into being overoptimistic about the performance of their systems: as system outputs become a function of the interfering metric, their estimated quality loses correlation with human judgments. In this work, we analyze two common cases of MINT in machine translation-related tasks: filtering of training data, and decoding with quality signals. Importantly, we find that MINT strongly distorts instance-level metric scores, even when metrics are not directly optimized for-questioning the common strategy of leveraging a different, yet related metric for evaluation that is not used for tuning. To address this problem, we propose MINTADJUST, a method for more reliable evaluation under MINT. On the WMT24 MT shared task test set, MINTADJUST ranks translations and systems more accurately than state-of-the-art metrics across a majority of language pairs, especially for high-quality systems. Furthermore, MINTADJUST outperforms AUTORANK, the ensembling method used by the organizers.
♻ ☆ Position Paper: Rethinking Privacy in RL for Sequential Decision-making in the Age of LLMs IJCNN 2025
The rise of reinforcement learning (RL) in critical real-world applications demands a fundamental rethinking of privacy in AI systems. Traditional privacy frameworks, designed to protect isolated data points, fall short for sequential decision-making systems where sensitive information emerges from temporal patterns, behavioral strategies, and collaborative dynamics. Modern RL paradigms, such as federated RL (FedRL) and RL with human feedback (RLHF) in large language models (LLMs), exacerbate these challenges by introducing complex, interactive, and context-dependent learning environments that traditional methods do not address. In this position paper, we argue for a new privacy paradigm built on four core principles: multi-scale protection, behavioral pattern protection, collaborative privacy preservation, and context-aware adaptation. These principles expose inherent tensions between privacy, utility, and interpretability that must be navigated as RL systems become more pervasive in high-stakes domains like healthcare, autonomous vehicles, and decision support systems powered by LLMs. To tackle these challenges, we call for the development of new theoretical frameworks, practical mechanisms, and rigorous evaluation methodologies that collectively enable effective privacy protection in sequential decision-making systems.
comment: IJCNN 2025 Position Paper Track
Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?
Toxicity remains a leading cause of early-stage drug development failure. Despite advances in molecular design and property prediction, the task of molecular toxicity repair - generating structurally valid molecular alternatives with reduced toxicity - has not yet been systematically defined or benchmarked. To fill this gap, we introduce ToxiMol, the first benchmark task for general-purpose Multimodal Large Language Models (MLLMs) focused on molecular toxicity repair. We construct a standardized dataset covering 11 primary tasks and 560 representative toxic molecules spanning diverse mechanisms and granularities. We design a prompt annotation pipeline with mechanism-aware and task-adaptive capabilities, informed by expert toxicological knowledge. In parallel, we propose an automated evaluation framework, ToxiEval, which integrates toxicity endpoint prediction, synthetic accessibility, drug-likeness, and structural similarity into a high-throughput evaluation chain for repair success. We systematically assess nearly 30 mainstream general-purpose MLLMs and design multiple ablation studies to analyze key factors such as evaluation criteria, candidate diversity, and failure attribution. Experimental results show that although current MLLMs still face significant challenges on this task, they begin to demonstrate promising capabilities in toxicity understanding, semantic constraint adherence, and structure-aware molecule editing.
♻ ☆ Deep Graph Anomaly Detection: A Survey and New Perspectives
Graph anomaly detection (GAD), which aims to identify unusual graph instances (nodes, edges, subgraphs, or graphs), has attracted increasing attention in recent years due to its significance in a wide range of applications. Deep learning approaches, graph neural networks (GNNs) in particular, have been emerging as a promising paradigm for GAD, owing to its strong capability in capturing complex structure and/or node attributes in graph data. Considering the large number of methods proposed for GNN-based GAD, it is of paramount importance to summarize the methodologies and findings in the existing GAD studies, so that we can pinpoint effective model designs for tackling open GAD problems. To this end, in this work we aim to present a comprehensive review of deep learning approaches for GAD. Existing GAD surveys are focused on task-specific discussions, making it difficult to understand the technical insights of existing methods and their limitations in addressing some unique challenges in GAD. To fill this gap, we first discuss the problem complexities and their resulting challenges in GAD, and then provide a systematic review of current deep GAD methods from three novel perspectives of methodology, including GNN backbone design, proxy task design for GAD, and graph anomaly measures. To deepen the discussions, we further propose a taxonomy of 13 fine-grained method categories under these three perspectives to provide more in-depth insights into the model designs and their capabilities. To facilitate the experiments and validation, we also summarize a collection of widely-used GAD datasets and empirical comparison. We further discuss multiple open problems to inspire more future high-quality research. A continuously updated repository for datasets, links to the codes of algorithms, and empirical comparison is available at https://github.com/mala-lab/Awesome-Deep-Graph-Anomaly-Detection.
comment: Accepted by TKDE
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information, particularly for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component for efficient ontology management, the growing size of ontologies and accumulating errors caused by manual labour overwhelm current OV approaches. In this paper, we propose yet another approach to performing OV using existing ontology matching (OM) techniques and systems. We introduce a unified OM4OV pipeline. From an OM perspective, we reconstruct a new task formulation and measurement for OV tasks. Building upon the prior alignment(s) from OM, we propose a pipeline optimisation method called the cross-reference (CR) mechanism to enhance overall OV performance. We experimentally validate the OM4OV pipeline and the cross-reference mechanism in the OV tested originating from the Ontology Alignment Evaluation Initiative (OAEI) datasets. We also discuss insights into OM used for OV tasks, where some false mappings detected by OV systems are not actually untrue.
comment: 15 pages, 8 figures, 1 table
♻ ☆ Semantic-Geometric-Physical-Driven Robot Manipulation Skill Transfer via Skill Library and Tactile Representation
Developing general robotic systems capable of manipulating in unstructured environments is a significant challenge, particularly as the tasks involved are typically long-horizon and rich-contact, requiring efficient skill transfer across different task scenarios. To address these challenges, we propose knowledge graph-based skill library construction method. This method hierarchically organizes manipulation knowledge using "task graph" and "scene graph" to represent task-specific and scene-specific information, respectively. Additionally, we introduce "state graph" to facilitate the interaction between high-level task planning and low-level scene information. Building upon this foundation, we further propose a novel hierarchical skill transfer framework based on the skill library and tactile representation, which integrates high-level reasoning for skill transfer and low-level precision for execution. At the task level, we utilize large language models (LLMs) and combine contextual learning with a four-stage chain-of-thought prompting paradigm to achieve subtask sequence transfer. At the motion level, we develop an adaptive trajectory transfer method based on the skill library and the heuristic path planning algorithm. At the physical level, we propose an adaptive contour extraction and posture perception method based on tactile representation. This method dynamically acquires high-precision contour and posture information from visual-tactile images, adjusting parameters such as contact position and posture to ensure the effectiveness of transferred skills in new environments. Experiments demonstrate the skill transfer and adaptability capabilities of the proposed methods across different task scenarios. Project website: https://github.com/MingchaoQi/skill_transfer
♻ ☆ FrontendBench: A Benchmark for Evaluating LLMs on Front-End Development via Automatic Evaluation
Large Language Models (LLMs) have made significant strides in front-end code generation. However, existing benchmarks exhibit several critical limitations: many tasks are overly simplistic, test cases often lack rigor, and end-to-end validation is absent. These issues hinder the accurate assessment of model performance. To address these challenges, we present FrontendBench, a benchmark co-developed by humans and LLMs. FrontendBench categorizes tasks based on code functionality and incorporates interactive test scenarios, enabling a more comprehensive and practical evaluation of front-end code generation capabilities. The benchmark comprises 148 meticulously crafted prompt-test case pairs spanning five levels of web components, from basic UI elements to complex interactive features. Each task reflects realistic front-end development challenges. Furthermore, we introduce an automatic evaluation framework that executes generated code within a sandbox environment and assesses outcomes using predefined test scripts. This framework achieves a 90.54% agreement rate with expert human evaluations, demonstrating high reliability. We benchmark several state-of-the-art LLMs on FrontendBench and observe substantial performance disparities in handling real-world front-end tasks. These results highlight FrontendBench as a reliable and scalable benchmark, supporting consistent multimodal evaluation and providing a robust foundation for future research in front-end code generation. Our data and code will be released soon.
♻ ☆ Machine Learners Should Acknowledge the Legal Implications of Large Language Models as Personal Data
Does GPT know you? The answer depends on your level of public recognition; however, if your information was available on a website, the answer could be yes. Most Large Language Models (LLMs) memorize training data to some extent. Thus, even when an LLM memorizes only a small amount of personal data, it typically falls within the scope of data protection laws. If a person is identified or identifiable, the implications are far-reaching. The LLM is subject to EU General Data Protection Regulation requirements even after the training phase is concluded. To back our arguments: (1.) We reiterate that LLMs output training data at inference time, be it verbatim or in generalized form. (2.) We show that some LLMs can thus be considered personal data on their own. This triggers a cascade of data protection implications such as data subject rights, including rights to access, rectification, or erasure. These rights extend to the information embedded within the AI model. (3.) This paper argues that machine learning researchers must acknowledge the legal implications of LLMs as personal data throughout the full ML development lifecycle, from data collection and curation to model provision on e.g., GitHub or Hugging Face. (4.) We propose different ways for the ML research community to deal with these legal implications. Our paper serves as a starting point for improving the alignment between data protection law and the technical capabilities of LLMs. Our findings underscore the need for more interaction between the legal domain and the ML community.
♻ ☆ Heterogeneous Relationships of Subjects and Shapelets for Semi-supervised Multivariate Series Classification
Multivariate time series (MTS) classification is widely applied in fields such as industry, healthcare, and finance, aiming to extract key features from complex time series data for accurate decision-making and prediction. However, existing methods for MTS often struggle due to the challenges of effectively modeling high-dimensional data and the lack of labeled data, resulting in poor classification performance. To address this issue, we propose a heterogeneous relationships of subjects and shapelets method for semi-supervised MTS classification. This method offers a novel perspective by integrating various types of additional information while capturing the relationships between them. Specifically, we first utilize a contrast temporal self-attention module to obtain sparse MTS representations, and then model the similarities between these representations using soft dynamic time warping to construct a similarity graph. Secondly, we learn the shapelets for different subject types, incorporating both the subject features and their shapelets as additional information to further refine the similarity graph, ultimately generating a heterogeneous graph. Finally, we use a dual level graph attention network to get prediction. Through this method, we successfully transform dataset into a heterogeneous graph, integrating multiple additional information and achieving precise semi-supervised node classification. Experiments on the Human Activity Recognition, sleep stage classification and University of East Anglia datasets demonstrate that our method outperforms current state-of-the-art methods in MTS classification tasks, validating its superiority.
comment: We would like to request the withdrawal of our manuscript due to logical errors in the paper
♻ ☆ Contrast Similarity-Aware Dual-Pathway Mamba for Multivariate Time Series Node Classification
Multivariate time series (MTS) data is generated through multiple sensors across various domains such as engineering application, health monitoring, and the internet of things, characterized by its temporal changes and high dimensional characteristics. Over the past few years, many studies have explored the long-range dependencies and similarities in MTS. However, long-range dependencies are difficult to model due to their temporal changes and high dimensionality makes it difficult to obtain similarities effectively and efficiently. Thus, to address these issues, we propose contrast similarity-aware dual-pathway Mamba for MTS node classification (CS-DPMamba). Firstly, to obtain the dynamic similarity of each sample, we initially use temporal contrast learning module to acquire MTS representations. And then we construct a similarity matrix between MTS representations using Fast Dynamic Time Warping (FastDTW). Secondly, we apply the DPMamba to consider the bidirectional nature of MTS, allowing us to better capture long-range and short-range dependencies within the data. Finally, we utilize the Kolmogorov-Arnold Network enhanced Graph Isomorphism Network to complete the information interaction in the matrix and MTS node classification task. By comprehensively considering the long-range dependencies and dynamic similarity features, we achieved precise MTS node classification. We conducted experiments on multiple University of East Anglia (UEA) MTS datasets, which encompass diverse application scenarios. Our results demonstrate the superiority of our method through both supervised and semi-supervised experiments on the MTS classification task.
comment: We would like to request the withdrawal of our manuscript due to logical errors in the paper
♻ ☆ A Bird Song Detector for improving bird identification through Deep Learning: a case study from Doñana
Passive Acoustic Monitoring is a key tool for biodiversity conservation, but the large volumes of unsupervised audio it generates present major challenges for extracting meaningful information. Deep Learning offers promising solutions. BirdNET, a widely used bird identification model, has shown success in many study systems but is limited at local scale due to biases in its training data, which focus on specific locations and target sounds rather than entire soundscapes. A key challenge in bird species identification is that many recordings either lack target species or contain overlapping vocalizations, complicating automatic identification. To address these problems, we developed a multi-stage pipeline for automatic bird vocalization identification in Do\~nana National Park (SW Spain), a wetland of high conservation concern. We deployed AudioMoth recorders in three main habitats across nine locations and manually annotated 461 minutes of audio, resulting in 3749 labeled segments spanning 34 classes. We first applied a Bird Song Detector to isolate bird vocalizations using spectrogram-based image processing. Then, species were classified using custom models trained at the local scale. Applying the Bird Song Detector before classification improved species identification, as all models performed better when analyzing only the segments where birds were detected. Specifically, the combination of detector and fine-tuned BirdNET outperformed the baseline without detection. This approach demonstrates the effectiveness of integrating a Bird Song Detector with local classification models. These findings highlight the need to adapt general-purpose tools to specific ecological challenges. Automatically detecting bird species helps track the health of this threatened ecosystem, given birds sensitivity to environmental change, and supports conservation planning to reduce biodiversity loss.
comment: 23 pages, 14 images, for associated dataset see https://huggingface.co/datasets/GrunCrow/BIRDeep_AudioAnnotations , for associated code see https://github.com/GrunCrow/BIRDeep_BirdSongDetector_NeuralNetworks and https://github.com/GrunCrow/Bird-Song-Detector
♻ ☆ PsychBench: A comprehensive and professional benchmark for evaluating the performance of LLM-assisted psychiatric clinical practice
The advent of Large Language Models (LLMs) offers potential solutions to address problems such as shortage of medical resources and low diagnostic consistency in psychiatric clinical practice. Despite this potential, a robust and comprehensive benchmarking framework to assess the efficacy of LLMs in authentic psychiatric clinical environments is absent. This has impeded the advancement of specialized LLMs tailored to psychiatric applications. In response to this gap, by incorporating clinical demands in psychiatry and clinical data, we proposed a benchmarking system, PsychBench, to evaluate the practical performance of LLMs in psychiatric clinical settings. We conducted a comprehensive quantitative evaluation of 16 LLMs using PsychBench, and investigated the impact of prompt design, chain-of-thought reasoning, input text length, and domain-specific knowledge fine-tuning on model performance. Through detailed error analysis, we identified strengths and potential limitations of the existing models and suggested directions for improvement. Subsequently, a clinical reader study involving 60 psychiatrists of varying seniority was conducted to further explore the practical benefits of existing LLMs as supportive tools for psychiatrists of varying seniority. Through the quantitative and reader evaluation, we show that while existing models demonstrate significant potential, they are not yet adequate as decision-making tools in psychiatric clinical practice. The reader study further indicates that, as an auxiliary tool, LLM could provide particularly notable support for junior psychiatrists, effectively enhancing their work efficiency and overall clinical quality. To promote research in this area, we will make the dataset and evaluation framework publicly available, with the hope of advancing the application of LLMs in psychiatric clinical settings.
♻ ☆ CORA: Coalitional Rational Advantage Decomposition for Multi-Agent Policy Gradients
This work focuses on the credit assignment problem in cooperative multi-agent reinforcement learning (MARL). Sharing the global advantage among agents often leads to suboptimal policy updates as it fails to account for the distinct contributions of agents. Although numerous methods consider global or individual contributions for credit assignment, a detailed analysis at the coalition level remains lacking in many approaches. This work analyzes the over-updating problem during multi-agent policy updates from a coalition-level perspective. To address this issue, we propose a credit assignment method called Coalitional Rational Advantage Decomposition (CORA). CORA evaluates coalitional advantages via marginal contributions from all possible coalitions and decomposes advantages using the core solution from cooperative game theory, ensuring coalitional rationality. To reduce computational overhead, CORA employs random coalition sampling. Experiments on matrix games, differential games, and multi-agent collaboration benchmarks demonstrate that CORA outperforms strong baselines, particularly in tasks with multiple local optima. These findings highlight the importance of coalition-aware credit assignment for improving MARL performance.
♻ ☆ Imagine Beyond! Distributionally Robust Auto-Encoding for State Space Coverage in Online Reinforcement Learning
Goal-Conditioned Reinforcement Learning (GCRL) enables agents to autonomously acquire diverse behaviors, but faces major challenges in visual environments due to high-dimensional, semantically sparse observations. In the online setting, where agents learn representations while exploring, the latent space evolves with the agent's policy, to capture newly discovered areas of the environment. However, without incentivization to maximize state coverage in the representation, classical approaches based on auto-encoders may converge to latent spaces that over-represent a restricted set of states frequently visited by the agent. This is exacerbated in an intrinsic motivation setting, where the agent uses the distribution encoded in the latent space to sample the goals it learns to master. To address this issue, we propose to progressively enforce distributional shifts towards a uniform distribution over the full state space, to ensure a full coverage of skills that can be learned in the environment. We introduce DRAG (Distributionally Robust Auto-Encoding for GCRL), a method that combines the $\beta$-VAE framework with Distributionally Robust Optimization. DRAG leverages an adversarial neural weighter of training states of the VAE, to account for the mismatch between the current data distribution and unseen parts of the environment. This allows the agent to construct semantically meaningful latent spaces beyond its immediate experience. Our approach improves state space coverage and downstream control performance on hard exploration environments such as mazes and robotic control involving walls to bypass, without pre-training nor prior environment knowledge.
♻ ☆ Behaviour Planning: A Toolkit for Diverse Planning
Diverse planning approaches are utilised in real-world applications like risk management, automated streamed data analysis, and malware detection. The current diverse planning formulations encode the diversity model as a distance function, which is computational inexpensive when comparing two plans. However, such modelling approach limits what can be encoded as measure of diversity, as well as the ability to explain why two plans are different. This paper introduces a novel approach to the diverse planning problem, allowing for more expressive modelling of diversity using a n-dimensional grid representation, where each dimension corresponds to a user-defined feature. Furthermore, we present a novel toolkit that generates diverse plans based on such customisable diversity models, called \emph{Behaviour Planning}. We provide an implementation for behaviour planning using planning-as-satisfiability. An empirical evaluation of our implementation shows that behaviour planning significantly outperforms the current diverse planning method in generating diverse plans measured on our new customisable diversity models. Our implementation is the first diverse planning approach to support planning categories beyond classical planning, such as over-subscription and numerical planning.
♻ ☆ Style-Preserving Lip Sync via Audio-Aware Style Reference
Audio-driven lip sync has recently drawn significant attention due to its widespread application in the multimedia domain. Individuals exhibit distinct lip shapes when speaking the same utterance, attributed to the unique speaking styles of individuals, posing a notable challenge for audio-driven lip sync. Earlier methods for such task often bypassed the modeling of personalized speaking styles, resulting in sub-optimal lip sync conforming to the general styles. Recent lip sync techniques attempt to guide the lip sync for arbitrary audio by aggregating information from a style reference video, yet they can not preserve the speaking styles well due to their inaccuracy in style aggregation. This work proposes an innovative audio-aware style reference scheme that effectively leverages the relationships between input audio and reference audio from style reference video to address the style-preserving audio-driven lip sync. Specifically, we first develop an advanced Transformer-based model adept at predicting lip motion corresponding to the input audio, augmented by the style information aggregated through cross-attention layers from style reference video. Afterwards, to better render the lip motion into realistic talking face video, we devise a conditional latent diffusion model, integrating lip motion through modulated convolutional layers and fusing reference facial images via spatial cross-attention layers. Extensive experiments validate the efficacy of the proposed approach in achieving precise lip sync, preserving speaking styles, and generating high-fidelity, realistic talking face videos.
comment: submitted to IEEE Transactions on Multimedia(TMM)
♻ ☆ Serving Large Language Models on Huawei CloudMatrix384
The rapid evolution of large language models (LLMs), driven by growing parameter scales, adoption of mixture-of-experts (MoE) architectures, and expanding context lengths, imposes unprecedented demands on AI infrastructure. Traditional AI clusters face limitations in compute intensity, memory bandwidth, inter-chip communication, and latency, compounded by variable workloads and strict service-level objectives. Addressing these issues requires fundamentally redesigned hardware-software integration. This paper introduces Huawei CloudMatrix, a next-generation AI datacenter architecture, realized in the production-grade CloudMatrix384 supernode. It integrates 384 Ascend 910C NPUs and 192 Kunpeng CPUs interconnected via an ultra-high-bandwidth Unified Bus (UB) network, enabling direct all-to-all communication and dynamic pooling of resources. These features optimize performance for communication-intensive operations, such as large-scale MoE expert parallelism and distributed key-value cache access. To fully leverage CloudMatrix384, we propose CloudMatrix-Infer, an advanced LLM serving solution incorporating three core innovations: a peer-to-peer serving architecture that independently scales prefill, decode, and caching; a large-scale expert parallelism strategy supporting EP320 via efficient UB-based token dispatch; and hardware-aware optimizations including specialized operators, microbatch-based pipelining, and INT8 quantization. Evaluation with the DeepSeek-R1 model shows CloudMatrix-Infer achieves state-of-the-art efficiency: prefill throughput of 6,688 tokens/s per NPU and decode throughput of 1,943 tokens/s per NPU (<50 ms TPOT). It effectively balances throughput and latency, sustaining 538 tokens/s per NPU even under stringent 15 ms latency constraints, while INT8 quantization maintains model accuracy across benchmarks.
comment: 59 pages, 24 figures
♻ ☆ SCAM: A Real-World Typographic Robustness Evaluation for Multimodal Foundation Models CVPR 2025
Typographic attacks exploit the interplay between text and visual content in multimodal foundation models, causing misclassifications when misleading text is embedded within images. However, existing datasets are limited in size and diversity, making it difficult to study such vulnerabilities. In this paper, we introduce SCAM, the largest and most diverse dataset of real-world typographic attack images to date, containing 1,162 images across hundreds of object categories and attack words. Through extensive benchmarking of Vision-Language Models (VLMs) on SCAM, we demonstrate that typographic attacks significantly degrade performance, and identify that training data and model architecture influence the susceptibility to these attacks. Our findings reveal that typographic attacks persist in state-of-the-art Large Vision-Language Models (LVLMs) due to the choice of their vision encoder, though larger Large Language Models (LLMs) backbones help mitigate their vulnerability. Additionally, we demonstrate that synthetic attacks closely resemble real-world (handwritten) attacks, validating their use in research. Our work provides a comprehensive resource and empirical insights to facilitate future research toward robust and trustworthy multimodal AI systems. We publicly release the datasets introduced in this paper along with the code for evaluations at www.bliss.berlin/research/scam.
comment: Accepted at CVPR 2025 Workshop EVAL-FoMo-2
♻ ☆ HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised Relation Extraction NAACL 2022
Unsupervised relation extraction aims to extract the relationship between entities from natural language sentences without prior information on relational scope or distribution. Existing works either utilize self-supervised schemes to refine relational feature signals by iteratively leveraging adaptive clustering and classification that provoke gradual drift problems, or adopt instance-wise contrastive learning which unreasonably pushes apart those sentence pairs that are semantically similar. To overcome these defects, we propose a novel contrastive learning framework named HiURE, which has the capability to derive hierarchical signals from relational feature space using cross hierarchy attention and effectively optimize relation representation of sentences under exemplar-wise contrastive learning. Experimental results on two public datasets demonstrate the advanced effectiveness and robustness of HiURE on unsupervised relation extraction when compared with state-of-the-art models.
comment: In NAACL 2022 as a long paper. Code and data available at https://github.com/THU-BPM/HiURE
♻ ☆ Spatial Context-based Self-Supervised Learning for Handwritten Text Recognition
Handwritten Text Recognition (HTR) is a relevant problem in computer vision, and implies unique challenges owing to its inherent variability and the rich contextualization required for its interpretation. Despite the success of Self-Supervised Learning (SSL) in computer vision, its application to HTR has been rather scattered, leaving key SSL methodologies unexplored. This work focuses on one of them, namely Spatial Context-based SSL. We investigate how this family of approaches can be adapted and optimized for HTR and propose new workflows that leverage the unique features of handwritten text. Our experiments demonstrate that the methods considered lead to advancements in the state-of-the-art of SSL for HTR in a number of benchmark cases.
comment: Published at Pattern Recognition Letters (PRL)
♻ ☆ An Effective Incorporating Heterogeneous Knowledge Curriculum Learning for Sequence Labeling ACL 2025
Sequence labeling models often benefit from incorporating external knowledge. However, this practice introduces data heterogeneity and complicates the model with additional modules, leading to increased expenses for training a high-performing model. To address this challenge, we propose a two-stage curriculum learning (TCL) framework specifically designed for sequence labeling tasks. The TCL framework enhances training by gradually introducing data instances from easy to hard, aiming to improve both performance and training speed. Furthermore, we explore different metrics for assessing the difficulty levels of sequence labeling tasks. Through extensive experimentation on six Chinese word segmentation (CWS) and Part-of-speech tagging (POS) datasets, we demonstrate the effectiveness of our model in enhancing the performance of sequence labeling models. Additionally, our analysis indicates that TCL accelerates training and alleviates the slow training problem associated with complex models.
comment: 10 pages, 9 tables, 3 figures, Accepted by ACL 2025 (short paper)
Trust Region Preference Approximation: A simple and stable reinforcement learning algorithm for LLM reasoning
Recently, Large Language Models (LLMs) have rapidly evolved, approaching Artificial General Intelligence (AGI) while benefiting from large-scale reinforcement learning to enhance Human Alignment (HA) and Reasoning. Recent reward-based optimization algorithms, such as Proximal Policy Optimization (PPO) and Group Relative Policy Optimization (GRPO) have achieved significant performance on reasoning tasks, whereas preference-based optimization algorithms such as Direct Preference Optimization (DPO) significantly improve the performance of LLMs on human alignment. However, despite the strong performance of reward-based optimization methods in alignment tasks , they remain vulnerable to reward hacking. Furthermore, preference-based algorithms (such as Online DPO) haven't yet matched the performance of reward-based optimization algorithms (like PPO) on reasoning tasks, making their exploration in this specific area still a worthwhile pursuit. Motivated by these challenges, we propose the Trust Region Preference Approximation (TRPA) algorithm, which integrates rule-based optimization with preference-based optimization for reasoning tasks. As a preference-based algorithm, TRPA naturally eliminates the reward hacking issue. TRPA constructs preference levels using predefined rules, forms corresponding preference pairs, and leverages a novel optimization algorithm for RL training with a theoretical monotonic improvement guarantee. Experimental results demonstrate that TRPA not only achieves competitive performance on reasoning tasks but also exhibits robust stability. The code of this paper are released and updating on https://github.com/XueruiSu/Trust-Region-Preference-Approximation.git.
comment: 10pages
♻ ☆ Large Language Models for Automated Literature Review: An Evaluation of Reference Generation, Abstract Writing, and Review Composition
Large language models (LLMs) have emerged as a potential solution to automate the complex processes involved in writing literature reviews, such as literature collection, organization, and summarization. However, it is yet unclear how good LLMs are at automating comprehensive and reliable literature reviews. This study introduces a framework to automatically evaluate the performance of LLMs in three key tasks of literature writing: reference generation, literature summary, and literature review composition. We introduce multidimensional evaluation metrics that assess the hallucination rates in generated references and measure the semantic coverage and factual consistency of the literature summaries and compositions against human-written counterparts. The experimental results reveal that even the most advanced models still generate hallucinated references, despite recent progress. Moreover, we observe that the performance of different models varies across disciplines when it comes to writing literature reviews. These findings highlight the need for further research and development to improve the reliability of LLMs in automating academic literature reviews.
comment: 12 pages, 5 figures, 5 tables
♻ ☆ FLARE: Towards Universal Dataset Purification against Backdoor Attacks
Deep neural networks (DNNs) are susceptible to backdoor attacks, where adversaries poison datasets with adversary-specified triggers to implant hidden backdoors, enabling malicious manipulation of model predictions. Dataset purification serves as a proactive defense by removing malicious training samples to prevent backdoor injection at its source. We first reveal that the current advanced purification methods rely on a latent assumption that the backdoor connections between triggers and target labels in backdoor attacks are simpler to learn than the benign features. We demonstrate that this assumption, however, does not always hold, especially in all-to-all (A2A) and untargeted (UT) attacks. As a result, purification methods that analyze the separation between the poisoned and benign samples in the input-output space or the final hidden layer space are less effective. We observe that this separability is not confined to a single layer but varies across different hidden layers. Motivated by this understanding, we propose FLARE, a universal purification method to counter various backdoor attacks. FLARE aggregates abnormal activations from all hidden layers to construct representations for clustering. To enhance separation, FLARE develops an adaptive subspace selection algorithm to isolate the optimal space for dividing an entire dataset into two clusters. FLARE assesses the stability of each cluster and identifies the cluster with higher stability as poisoned. Extensive evaluations on benchmark datasets demonstrate the effectiveness of FLARE against 22 representative backdoor attacks, including all-to-one (A2O), all-to-all (A2A), and untargeted (UT) attacks, and its robustness to adaptive attacks. Codes are available at \href{https://github.com/THUYimingLi/BackdoorBox}{BackdoorBox} and \href{https://github.com/vtu81/backdoor-toolbox}{backdoor-toolbox}.
comment: 15 pages, This paper is accepted and will appear in TIFS (CCF-A)
♻ ☆ Influential Bandits: Pulling an Arm May Change the Environment
While classical formulations of multi-armed bandit problems assume that each arm's reward is independent and stationary, real-world applications often involve non-stationary environments and interdependencies between arms. In particular, selecting one arm may influence the future rewards of other arms, a scenario not adequately captured by existing models such as rotting bandits or restless bandits. To address this limitation, we propose the influential bandit problem, which models inter-arm interactions through an unknown, symmetric, positive semi-definite interaction matrix that governs the dynamics of arm losses. We formally define this problem and establish two regret lower bounds, including a superlinear $\Omega(T^2 / \log^2 T)$ bound for the standard LCB algorithm (loss minimization version of UCB) and an algorithm-independent $\Omega(T)$ bound, which highlight the inherent difficulty of the setting. We then introduce a new algorithm based on a lower confidence bound (LCB) estimator tailored to the structure of the loss dynamics. Under mild assumptions, our algorithm achieves a regret of $O(KT \log T)$, which is nearly optimal in terms of its dependence on the time horizon. The algorithm is simple to implement and computationally efficient. Empirical evaluations on both synthetic and real-world datasets demonstrate the presence of inter-arm influence and confirm the superior performance of our method compared to conventional bandit algorithms.
comment: TMLR
♻ ☆ Aligning AI Research with the Needs of Clinical Coding Workflows: Eight Recommendations Based on US Data Analysis and Critical Review ACL 2025
Clinical coding is crucial for healthcare billing and data analysis. Manual clinical coding is labour-intensive and error-prone, which has motivated research towards full automation of the process. However, our analysis, based on US English electronic health records and automated coding research using these records, shows that widely used evaluation methods are not aligned with real clinical contexts. For example, evaluations that focus on the top 50 most common codes are an oversimplification, as there are thousands of codes used in practice. This position paper aims to align AI coding research more closely with practical challenges of clinical coding. Based on our analysis, we offer eight specific recommendations, suggesting ways to improve current evaluation methods. Additionally, we propose new AI-based methods beyond automated coding, suggesting alternative approaches to assist clinical coders in their workflows.
comment: Accepted to the ACL 2025 Main Conference
♻ ☆ Advancing oncology with federated learning: transcending boundaries in breast, lung, and prostate cancer. A systematic review
Federated Learning (FL) has emerged as a promising solution to address the limitations of centralised machine learning (ML) in oncology, particularly in overcoming privacy concerns and harnessing the power of diverse, multi-center data. This systematic review synthesises current knowledge on the state-of-the-art FL in oncology, focusing on breast, lung, and prostate cancer. Distinct from previous surveys, our comprehensive review critically evaluates the real-world implementation and impact of FL on cancer care, demonstrating its effectiveness in enhancing ML generalisability, performance and data privacy in clinical settings and data. We evaluated state-of-the-art advances in FL, demonstrating its growing adoption amid tightening data privacy regulations. FL outperformed centralised ML in 15 out of the 25 studies reviewed, spanning diverse ML models and clinical applications, and facilitating integration of multi-modal information for precision medicine. Despite the current challenges identified in reproducibility, standardisation and methodology across studies, the demonstrable benefits of FL in harnessing real-world data and addressing clinical needs highlight its significant potential for advancing cancer research. We propose that future research should focus on addressing these limitations and investigating further advanced FL methods, to fully harness data diversity and realise the transformative power of cutting-edge FL in cancer care.
comment: 5 Figures, 3 Tables, 1 Supplementary Table
♻ ☆ BIS Reasoning 1.0: The First Large-Scale Japanese Benchmark for Belief-Inconsistent Syllogistic Reasoning
We present BIS Reasoning 1.0, the first large-scale Japanese dataset of syllogistic reasoning problems explicitly designed to evaluate belief-inconsistent reasoning in large language models (LLMs). Unlike prior datasets such as NeuBAROCO and JFLD, which focus on general or belief-aligned reasoning, BIS Reasoning 1.0 introduces logically valid yet belief-inconsistent syllogisms to uncover reasoning biases in LLMs trained on human-aligned corpora. We benchmark state-of-the-art models - including GPT models, Claude models, and leading Japanese LLMs - revealing significant variance in performance, with GPT-4o achieving 79.54% accuracy. Our analysis identifies critical weaknesses in current LLMs when handling logically valid but belief-conflicting inputs. These findings have important implications for deploying LLMs in high-stakes domains such as law, healthcare, and scientific literature, where truth must override intuitive belief to ensure integrity and safety.
comment: This version includes an updated literature review, added acknowledgements, and a revised author list
♻ ☆ A Systematic Survey of Natural Language Processing for the Greek Language
Comprehensive monolingual Natural Language Processing (NLP) surveys are essential for assessing language-specific challenges, resource availability, and research gaps. However, existing surveys often lack standardized methodologies, leading to selection bias and fragmented coverage of NLP tasks and resources. This study introduces a generalizable framework for systematic monolingual NLP surveys. Our approach integrates a structured search protocol to minimize bias, an NLP task taxonomy for classification, and language resource taxonomies to identify potential benchmarks and highlight opportunities for improving resource availability. We apply this framework to Greek NLP (2012-2023), providing an in-depth analysis of its current state, task-specific progress, and resource gaps. The survey results are publicly available (https://doi.org/10.5281/zenodo.15314882) and are regularly updated to provide an evergreen resource. This systematic survey of Greek NLP serves as a case study, demonstrating the effectiveness of our framework and its potential for broader application to other not so well-resourced languages as regards NLP.
comment: This version matches the paper published in Patterns (Cell Press). The title has been updated to reflect the published version
♻ ☆ On Finding Small Hyper-Gradients in Bilevel Optimization: Hardness Results and Improved Analysis COLT 2024
Bilevel optimization reveals the inner structure of otherwise oblique optimization problems, such as hyperparameter tuning, neural architecture search, and meta-learning. A common goal in bilevel optimization is to minimize a hyper-objective that implicitly depends on the solution set of the lower-level function. Although this hyper-objective approach is widely used, its theoretical properties have not been thoroughly investigated in cases where the lower-level functions lack strong convexity. In this work, we first provide hardness results to show that the goal of finding stationary points of the hyper-objective for nonconvex-convex bilevel optimization can be intractable for zero-respecting algorithms. Then we study a class of tractable nonconvex-nonconvex bilevel problems when the lower-level function satisfies the Polyak-{\L}ojasiewicz (PL) condition. We show a simple first-order algorithm can achieve better complexity bounds of $\tilde{\mathcal{O}}(\epsilon^{-2})$, $\tilde{\mathcal{O}}(\epsilon^{-4})$ and $\tilde{\mathcal{O}}(\epsilon^{-6})$ in the deterministic, partially stochastic, and fully stochastic setting respectively. The complexities in the first two cases are optimal up to logarithmic factors.
comment: Published in COLT 2024. This arXiv version refines Assumption 4.1 (d); adds discussions on related works in Appendix A; and corrects the kappa dependency in the upper bounds
♻ ☆ Task-Aware Virtual Training: Enhancing Generalization in Meta-Reinforcement Learning for Out-of-Distribution Tasks ICML 2025
Meta reinforcement learning aims to develop policies that generalize to unseen tasks sampled from a task distribution. While context-based meta-RL methods improve task representation using task latents, they often struggle with out-of-distribution (OOD) tasks. To address this, we propose Task-Aware Virtual Training (TAVT), a novel algorithm that accurately captures task characteristics for both training and OOD scenarios using metric-based representation learning. Our method successfully preserves task characteristics in virtual tasks and employs a state regularization technique to mitigate overestimation errors in state-varying environments. Numerical results demonstrate that TAVT significantly enhances generalization to OOD tasks across various MuJoCo and MetaWorld environments. Our code is available at https://github.com/JM-Kim-94/tavt.git.
comment: 9 pages main paper, 20 pages appendices with reference. Accepted to ICML 2025
♻ ☆ Wolfpack Adversarial Attack for Robust Multi-Agent Reinforcement Learning ICML 2025
Traditional robust methods in multi-agent reinforcement learning (MARL) often struggle against coordinated adversarial attacks in cooperative scenarios. To address this limitation, we propose the Wolfpack Adversarial Attack framework, inspired by wolf hunting strategies, which targets an initial agent and its assisting agents to disrupt cooperation. Additionally, we introduce the Wolfpack-Adversarial Learning for MARL (WALL) framework, which trains robust MARL policies to defend against the proposed Wolfpack attack by fostering systemwide collaboration. Experimental results underscore the devastating impact of the Wolfpack attack and the significant robustness improvements achieved by WALL. Our code is available at https://github.com/sunwoolee0504/WALL.
comment: 9 pages main, 23 pages appendix with reference. Accepeted by ICML 2025
♻ ☆ LLäMmlein: Transparent, Compact and Competitive German-Only Language Models from Scratch ACL25
We create two German-only decoder models, LL\"aMmlein 120M and 1B, transparently from scratch and publish them, along with the training data, for the German NLP research community to use. The model training involved several key steps, including extensive data preprocessing, the creation of a custom German tokenizer, the training itself, as well as the evaluation of the final models on various benchmarks. Throughout the training process, multiple checkpoints were saved and analyzed using the SuperGLEBer benchmark to monitor the models' learning dynamics. Compared to state-of-the-art models on the SuperGLEBer benchmark, both LL\"aMmlein models performed competitively, consistently matching or surpassing models with similar parameter sizes. The results show that the models' quality scales with size as expected, but performance improvements on some tasks plateaued early, offering valuable insights into resource allocation for future model development.
comment: camera ready @ACL25; https://www.informatik.uni-wuerzburg.de/datascience/projects/nlp/llammlein/
♻ ☆ Efficient Long CoT Reasoning in Small Language Models
Recent large reasoning models such as DeepSeek-R1 exhibit strong complex problems solving abilities by generating long chain-of-thought (CoT) reasoning steps. It is challenging to directly train small language models (SLMs) to emerge long CoT. Thus, distillation becomes a practical method to enable SLMs for such reasoning ability. However, the long CoT often contains a lot of redundant contents (e.g., overthinking steps) which may make SLMs hard to learn considering their relatively poor capacity and generalization. To address this issue, we propose a simple-yet-effective method to prune unnecessary steps in long CoT, and then employ an on-policy method for the SLM itself to curate valid and useful long CoT training data. In this way, SLMs can effectively learn efficient long CoT reasoning and preserve competitive performance at the same time. Experimental results across a series of mathematical reasoning benchmarks demonstrate the effectiveness of the proposed method in distilling long CoT reasoning ability into SLMs which maintains the competitive performance but significantly reduces generating redundant reasoning steps.
♻ ☆ ALPS: Attention Localization and Pruning Strategy for Efficient Alignment of Large Language Models ACL25
Aligning general-purpose large language models (LLMs) to downstream tasks often incurs significant training adjustment costs. Prior research has explored various avenues to enhance alignment efficiency, primarily through minimal-data training or data-driven activations to identify key attention heads. However, these approaches inherently introduce data dependency, which hinders generalization and reusability. To address this issue and enhance model alignment efficiency, we propose the Attention Localization and Pruning Strategy (ALPS), an efficient algorithm that localizes the most task-sensitive attention heads and prunes by restricting attention training updates to these heads, thereby reducing alignment costs. Experimental results demonstrate that our method activates only 10% of attention parameters during fine-tuning while achieving a 2% performance improvement over baselines on three tasks. Moreover, the identified task-specific heads are transferable across datasets and mitigate knowledge forgetting. Our work and findings provide a novel perspective on efficient LLM alignment. The code is available at https://github.com/VoiceBeer/ALPS.
comment: Accepted@ACL25-findings, 17 pages, 8 figures, 14 tables
♻ ☆ TransXSSM: A Hybrid Transformer State Space Model with Unified Rotary Position Embedding
Transformers exhibit proficiency in capturing long-range dependencies, whereas State Space Models (SSMs) facilitate linear-time sequence modeling. Notwithstanding their synergistic potential, the integration of these architectures presents a significant challenge, primarily attributable to a fundamental incongr inuity their respective positional encoding mechanisms: Transformers rely on explicit Rotary Position Embeddings (RoPE), while SSMs leverage implicit positional representations via convolutions. This divergence often precipitates discontinuities and suboptimal performance.To address this impediment, we propose a unified rotary position embedding (Unified RoPE) methodology, thereby establishing a consistent positional encoding framework for both self-attention and state-space components. Using this Unified RoPE, we introduce TransXSSM, a hybrid architecture that coherently integrates the Transformer and SSM layers under this unified positional encoding scheme. At a 4 sequenceK length, TransXSSM exhibits training and inference speeds that are 42.3% and 29.5% faster, respectively, relative to standard Transformer models. It also delivers higher accuracy: under comparable settings, it surpasses a Transformer baseline by over 4% on language modeling benchmarks.TransXSSM furthermore scales more effectively: TransXSSM-1.3B gains 7.22% in average accuracy over its 320M version (versus about 6% gains for equivalent Transformers or SSMs). Our results show that unified positional encoding resolves positional incompatibility in hybrid models, enabling efficient, high-performance long-context modeling.
♻ ☆ Synthesizing Composite Hierarchical Structure from Symbolic Music Corpora IJCAI '25
Western music is an innately hierarchical system of interacting levels of structure, from fine-grained melody to high-level form. In order to analyze music compositions holistically and at multiple granularities, we propose a unified, hierarchical meta-representation of musical structure called the structural temporal graph (STG). For a single piece, the STG is a data structure that defines a hierarchy of progressively finer structural musical features and the temporal relationships between them. We use the STG to enable a novel approach for deriving a representative structural summary of a music corpus, which we formalize as a dually NP-hard combinatorial optimization problem extending the Generalized Median Graph problem. Our approach first applies simulated annealing to develop a measure of structural distance between two music pieces rooted in graph isomorphism. Our approach then combines the formal guarantees of SMT solvers with nested simulated annealing over structural distances to produce a structurally sound, representative centroid STG for an entire corpus of STGs from individual pieces. To evaluate our approach, we conduct experiments verifying that structural distance accurately differentiates between music pieces, and that derived centroids accurately structurally characterize their corpora.
comment: In Proceedings of the 34th International Joint Conference on Artificial Intelligence (IJCAI '25), Montreal, Canada, August 2025
♻ ☆ SurgSora: Object-Aware Diffusion Model for Controllable Surgical Video Generation
Surgical video generation can enhance medical education and research, but existing methods lack fine-grained motion control and realism. We introduce SurgSora, a framework that generates high-fidelity, motion-controllable surgical videos from a single input frame and user-specified motion cues. Unlike prior approaches that treat objects indiscriminately or rely on ground-truth segmentation masks, SurgSora leverages self-predicted object features and depth information to refine RGB appearance and optical flow for precise video synthesis. It consists of three key modules: (1) the Dual Semantic Injector, which extracts object-specific RGB-D features and segmentation cues to enhance spatial representations; (2) the Decoupled Flow Mapper, which fuses multi-scale optical flow with semantic features for realistic motion dynamics; and (3) the Trajectory Controller, which estimates sparse optical flow and enables user-guided object movement. By conditioning these enriched features within the Stable Video Diffusion, SurgSora achieves state-of-the-art visual authenticity and controllability in advancing surgical video synthesis, as demonstrated by extensive quantitative and qualitative comparisons. Our human evaluation in collaboration with expert surgeons further demonstrates the high realism of SurgSora-generated videos, highlighting the potential of our method for surgical training and education. Our project is available at https://surgsora.github.io/surgsora.github.io.
♻ ☆ REVOLVE: Optimizing AI Systems by Tracking Response Evolution in Textual Optimization ICML 2025
Recent advancements in large language models (LLMs) have significantly enhanced the ability of LLM-based systems to perform complex tasks through natural language processing and tool interaction. However, optimizing these LLM-based systems for specific tasks remains challenging, often requiring manual interventions like prompt engineering and hyperparameter tuning. Existing automatic optimization methods, such as textual feedback-based techniques (e.g., TextGrad), tend to focus on immediate feedback, analogous to using immediate derivatives in traditional numerical gradient descent. However, relying solely on such feedback can be limited when the adjustments made in response to this feedback are either too small or fluctuate irregularly, potentially slowing down or even stalling the optimization process. To overcome these challenges, more adaptive methods are needed, especially in situations where the system's response is evolving slowly or unpredictably. In this paper, we introduce REVOLVE, an optimization method that tracks how "R"esponses "EVOLVE" across iterations in LLM systems. By focusing on the evolution of responses over time, REVOLVE enables more stable and effective optimization by making thoughtful, progressive adjustments at each step. Experimental results demonstrate that REVOLVE outperforms competitive baselines, achieving a 7.8% improvement in prompt optimization, a 20.72% gain in solution refinement, and a 29.17% increase in code optimization. Additionally, REVOLVE converges in fewer iterations, resulting in significant computational savings. Beyond its practical contributions, REVOLVE highlights a promising direction, where the rich knowledge from established optimization principles can be leveraged to enhance LLM systems, which paves the way for further advancements in this hybrid domain.
comment: 20 pages, 2 figures, accepted by ICML 2025
♻ ☆ CODESYNC: Synchronizing Large Language Models with Dynamic Code Evolution at Scale
Large Language Models (LLMs) have exhibited exceptional performance in software engineering yet face challenges in adapting to continually evolving code knowledge, particularly regarding the frequent updates of third-party library APIs. This limitation, stemming from static pre-training datasets, often results in non-executable code or implementations with suboptimal safety and efficiency. To this end, this paper introduces CODESYNC, a data engine for identifying outdated code patterns and collecting real-time code knowledge updates from Python third-party libraries. Building upon CODESYNC, we develop CODESYNCBENCH, a comprehensive benchmark for assessing LLMs' ability to stay synchronized with code evolution, which covers real-world updates for 220 APIs from six Python libraries. Our benchmark offers 3,300 test cases across three evaluation tasks and an update-aware instruction tuning dataset consisting of 2,200 training samples. Extensive experiments on 14 state-of-the-art LLMs reveal that they struggle with dynamic code evolution, even with the support of advanced knowledge updating methods (e.g., DPO, ORPO, and SimPO). We believe that our benchmark can offer a strong foundation for the development of more effective methods for real-time code knowledge updating in the future. The experimental code and dataset are publicly available at: https://github.com/Lucky-voyage/Code-Sync.
♻ ☆ Beyond Propagation of Chaos: A Stochastic Algorithm for Mean Field Optimization
Gradient flow in the 2-Wasserstein space is widely used to optimize functionals over probability distributions and is typically implemented using an interacting particle system with $n$ particles. Analyzing these algorithms requires showing (a) that the finite-particle system converges and/or (b) that the resultant empirical distribution of the particles closely approximates the optimal distribution (i.e., propagation of chaos). However, establishing efficient sufficient conditions can be challenging, as the finite particle system may produce heavily dependent random variables. In this work, we study the virtual particle stochastic approximation, originally introduced for Stein Variational Gradient Descent. This method can be viewed as a form of stochastic gradient descent in the Wasserstein space and can be implemented efficiently. In popular settings, we demonstrate that our algorithm's output converges to the optimal distribution under conditions similar to those for the infinite particle limit, and it produces i.i.d. samples without the need to explicitly establish propagation of chaos bounds.
♻ ☆ SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented Dialogue Agents NeurIPS 2023
Task-oriented dialogue (TOD) models have made significant progress in recent years. However, previous studies primarily focus on datasets written by annotators, which has resulted in a gap between academic research and real-world spoken conversation scenarios. While several small-scale spoken TOD datasets are proposed to address robustness issues such as ASR errors, they ignore the unique challenges in spoken conversation. To tackle the limitations, we introduce SpokenWOZ, a large-scale speech-text dataset for spoken TOD, containing 8 domains, 203k turns, 5.7k dialogues and 249 hours of audios from human-to-human spoken conversations. SpokenWOZ further incorporates common spoken characteristics such as word-by-word processing and reasoning in spoken language. Based on these characteristics, we present cross-turn slot and reasoning slot detection as new challenges. We conduct experiments on various baselines, including text-modal models, newly proposed dual-modal models, and LLMs, e.g., ChatGPT. The results show that the current models still have substantial room for improvement in spoken conversation, where the most advanced dialogue state tracker only achieves 25.65% in joint goal accuracy and the SOTA end-to-end model only correctly completes the user request in 52.1% of dialogues. The dataset, code, and leaderboard are available: https://spokenwoz.github.io/.
comment: NeurIPS 2023
♻ ☆ PLD: A Choice-Theoretic List-Wise Knowledge Distillation
Knowledge distillation is a model compression technique in which a compact "student" network is trained to replicate the predictive behavior of a larger "teacher" network. In logit-based knowledge distillation it has become the de facto approach to augment cross-entropy with a distillation term. Typically this term is either a KL divergence-matching marginal probabilities or a correlation-based loss capturing intra- and inter-class relationships but in every case it sits as an add-on to cross-entropy with its own weight that must be carefully tuned. In this paper we adopt a choice-theoretic perspective and recast knowledge distillation under the Plackett-Luce model by interpreting teacher logits as "worth" scores. We introduce Plackett-Luce Distillation (PLD), a weighted list-wise ranking loss in which the teacher model transfers knowledge of its full ranking of classes, weighting each ranked choice by its own confidence. PLD directly optimizes a single teacher-optimal ranking of the true label first, followed by the remaining classes in descending teacher confidence, yielding a convex, translation-invariant surrogate that subsumes weighted cross-entropy. Empirically on standard image classification benchmarks, PLD improves Top-1 accuracy by an average of +0.42% over DIST (arXiv:2205.10536) and +1.04% over KD (arXiv:1503.02531) in homogeneous settings and by +0.48% and +1.09% over DIST and KD, respectively, in heterogeneous settings.
Perspective Transition of Large Language Models for Solving Subjective Tasks ACL 2025
Large language models (LLMs) have revolutionized the field of natural language processing, enabling remarkable progress in various tasks. Different from objective tasks such as commonsense reasoning and arithmetic question-answering, the performance of LLMs on subjective tasks is still limited, where the perspective on the specific problem plays crucial roles for better interpreting the context and giving proper response. For example, in certain scenarios, LLMs may perform better when answering from an expert role perspective, potentially eliciting their relevant domain knowledge. In contrast, in some scenarios, LLMs may provide more accurate responses when answering from a third-person standpoint, enabling a more comprehensive understanding of the problem and potentially mitigating inherent biases. In this paper, we propose Reasoning through Perspective Transition (RPT), a method based on in-context learning that enables LLMs to dynamically select among direct, role, and third-person perspectives for the best way to solve corresponding subjective problem. Through extensive experiments on totally 12 subjective tasks by using both closed-source and open-source LLMs including GPT-4, GPT-3.5, Llama-3, and Qwen-2, our method outperforms widely used single fixed perspective based methods such as chain-of-thought prompting and expert prompting, highlights the intricate ways that LLMs can adapt their perspectives to provide nuanced and contextually appropriate responses for different problems.
comment: ACL 2025 Findings
♻ ☆ Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization ICML 2025
Large language model (LLM) agents have recently demonstrated impressive capabilities in various domains like open-ended conversation and multi-step decision-making. However, it remains challenging for these agents to solve strategic language games, such as Werewolf, which demand both strategic decision-making and free-form language interactions. Existing LLM agents often suffer from intrinsic bias in their action distributions and limited exploration of the unbounded text action space, resulting in suboptimal performance. To address these challenges, we propose Latent Space Policy Optimization (LSPO), an iterative framework that combines game-theoretic methods with LLM fine-tuning to build strategic language agents. LSPO leverages the observation that while the language space is combinatorially large, the underlying strategy space is relatively compact. We first map free-form utterances into a finite latent strategy space, yielding an abstracted extensive-form game. Then we apply game-theoretic methods like Counterfactual Regret Minimization (CFR) to optimize the policy in the latent space. Finally, we fine-tune the LLM via Direct Preference Optimization (DPO) to align with the learned policy. By iteratively alternating between these steps, our LSPO agents progressively enhance both strategic reasoning and language communication. Experiment on the Werewolf game shows that our agents iteratively expand the strategy space with improving performance and outperform existing Werewolf agents, underscoring their effectiveness in free-form language games with strategic interactions.
comment: Published in ICML 2025
♻ ☆ Multiclass Post-Earthquake Building Assessment Integrating High-Resolution Optical and SAR Satellite Imagery, Ground Motion, and Soil Data with Transformers
Timely and accurate assessments of building damage are crucial for effective response and recovery in the aftermath of earthquakes. Conventional preliminary damage assessments (PDA) often rely on manual door-to-door inspections, which are not only time-consuming but also pose significant safety risks. To safely expedite the PDA process, researchers have studied the applicability of satellite imagery processed with heuristic and machine learning approaches. These approaches output binary or, more recently, multiclass damage states at the scale of a block or a single building. However, the current performance of such approaches limits practical applicability. To address this limitation, we introduce a metadata-enriched, transformer based framework that combines high-resolution post-earthquake satellite imagery with building-specific metadata relevant to the seismic performance of the structure. Our model achieves state-of-the-art performance in multiclass post-earthquake damage identification for buildings from the Turkey-Syria earthquake on February 6, 2023. Specifically, we demonstrate that incorporating metadata, such as seismic intensity indicators, soil properties, and SAR damage proxy maps not only enhances the model's accuracy and ability to distinguish between damage classes, but also improves its generalizability across various regions. Furthermore, we conducted a detailed, class-wise analysis of feature importance to understand the model's decision-making across different levels of building damage. This analysis reveals how individual metadata features uniquely contribute to predictions for each damage class. By leveraging both satellite imagery and metadata, our proposed framework enables faster and more accurate damage assessments for precise, multiclass, building-level evaluations that can improve disaster response and accelerate recovery efforts for affected communities.
comment: 28 Pages, 12 Figures
♻ ☆ ChemHAS: Hierarchical Agent Stacking for Enhancing Chemistry Tools
Large Language Model (LLM)-based agents have demonstrated the ability to improve performance in chemistry-related tasks by selecting appropriate tools. However, their effectiveness remains limited by the inherent prediction errors of chemistry tools. In this paper, we take a step further by exploring how LLMbased agents can, in turn, be leveraged to reduce prediction errors of the tools. To this end, we propose ChemHAS (Chemical Hierarchical Agent Stacking), a simple yet effective method that enhances chemistry tools through optimizing agent-stacking structures from limited data. ChemHAS achieves state-of-the-art performance across four fundamental chemistry tasks, demonstrating that our method can effectively compensate for prediction errors of the tools. Furthermore, we identify and characterize four distinct agent-stacking behaviors, potentially improving interpretability and revealing new possibilities for AI agent applications in scientific research. Our code and dataset are publicly available at https: //anonymous.4open.science/r/ChemHAS-01E4/README.md.
comment: 9 pages
♻ ☆ LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models
The rapid development of Large Language Models (LLMs) has brought impressive advancements across various tasks. However, despite these achievements, LLMs still pose inherent safety risks, especially in the context of jailbreak attacks. Most existing jailbreak methods follow an input-level manipulation paradigm to bypass safety mechanisms. Yet, as alignment techniques improve, such attacks are becoming increasingly detectable. In this work, we identify an underexplored threat vector: the model's internal reasoning process, which can be manipulated to elicit harmful outputs in a more stealthy way. To explore this overlooked attack surface, we propose a novel black-box jailbreak attack method, Analyzing-based Jailbreak (ABJ). ABJ comprises two independent attack paths: textual and visual reasoning attacks, which exploit the model's multimodal reasoning capabilities to bypass safety mechanisms, comprehensively exposing vulnerabilities in its reasoning chain. We conduct extensive experiments on ABJ across various open-source and closed-source LLMs, VLMs, and RLMs. In particular, ABJ achieves high attack success rate (ASR) (82.1% on GPT-4o-2024-11-20) with exceptional attack efficiency (AE) among all target models, showcasing its remarkable attack effectiveness, transferability, and efficiency. Our work reveals a new type of safety risk and highlights the urgent need to mitigate implicit vulnerabilities in the model's reasoning process.
♻ ☆ Math Neurosurgery: Isolating Language Models' Math Reasoning Abilities Using Only Forward Passes ACL 2025
Math reasoning is an active area of Large Language Model (LLM) research because it is a hallmark of artificial intelligence and has implications in several domains, including math education. However, few works have explored how math reasoning is encoded within LLM parameters and if it is a skill that can be isolated within models. Doing so could allow targeted intervention to improve math performance without altering non-math behavior and foster understanding of how models encode math reasoning. We introduce Math Neurosurgery (MathNeuro), a computationally efficient method we use to isolate math-specific parameters in LLMs using only forward passes. MathNeuro builds on existing work by using weights and activations to calculate parameter importance, but isolates math-specific parameters by filtering out those important for general language tasks. Through pruning parameters MathNeuro identifies, we delete a LLM's math reasoning ability without significantly impacting its general language ability. Scaling the identified parameters by a small constant improves a pretrained or instruction-tuned LLM's performance by 4-17% on GSM8K and 5-35% on MATH while leaving non-math behavior unaltered. MathNeuro is also data efficient: most of its effectiveness holds when identifying math-specific parameters using a single sample. MathNeuro highlights the potential for future work to intervene on math-specific parameters.
comment: 38 pages, 54 figures, Accepted to ACL 2025 (Main)
♻ ☆ The NordDRG AI Benchmark for Large Language Models
Large language models (LLMs) are already being piloted for clinical coding and decision support. However, until now, no open benchmark has targeted the hospital funding layer where Diagnosis-Related Groups (DRG) determine reimbursement across many countries. We release NordDRG-AI-Benchmark, the first public test-bed that captures a complete DRG rule set and evaluates an LLM's ability to reason over multilingual diagnosis, procedure, and tariff logic. The benchmark bundles three classes of artefacts: (i) definition tables with 20 interlinked tables covering DRG logic, ICD and NCSP codes, age/sex splits, and country flags; (ii) expert manuals and changelog templates describing real governance workflows; and (iii) a prompt pack of 14 CaseMix tasks that span code lookup, cross-table inference, multilingual terminology, and quality-assurance audits. All artefacts are available at: https://github.com/longshoreforrest/norddrg-ai-benchmark A baseline demonstration shows that five state-of-the-art LLMs perform very differently on the nine automatically verifiable tasks: o3 (OpenAI) scores 9 out of 9, GPT-4o and o4-mini-high score 7 out of 9, while Gemini 2.5 Pro and Gemini 2.5 Flash solve only 5 out of 9 and 3 out of 9, respectively. These results confirm that NordDRG-AI-Benchmark highlights domain-specific strengths and weaknesses that remain hidden in generic LLM benchmarks, offering a reproducible baseline for research on trustworthy automation in hospital funding.
comment: 15 pages, 4 figures
♻ ☆ The Epochal Sawtooth Phenomenon: Unveiling Training Loss Oscillations in Adam and Other Optimizers
In this paper, we identify and analyze a recurring training loss pattern, which we term the \textit{Epochal Sawtooth Phenomenon (ESP)}, commonly observed during training with adaptive gradient-based optimizers, particularly Adam optimizer. This pattern is characterized by a sharp drop in loss at the beginning of each epoch, followed by a gradual increase, resulting in a sawtooth-shaped loss curve. Through empirical observations, we demonstrate that while this effect is most pronounced with Adam, it persists, although less severely, with other optimizers such as RMSProp. We empirically analyze the mechanisms underlying ESP, focusing on key factors such as Adam's $\beta$ parameters, batch size, data shuffling, and sample replacement. Our analysis shows that ESP arises from adaptive learning rate adjustments controlled by the second moment estimate. Additionally, we identify the ``immediate re-exposure to samples'' effect during data shuffling, which causes the model to learn or memorize more at the beginning of each epoch. We also find that smaller values of $\beta_2$ exacerbate ESP but can act as a form of regularization. While ESP is not necessarily indicative of overfitting, higher model capacity can amplify the phenomenon. To further support our analysis, we replicate ESP through a high-dimensional quadratic minimization task. We demonstrate that ESP can emerge even in simple optimization scenarios, reinforcing the generality of this pattern. The code for reproducing our experiments is available at https://github.com/qiliuchn/training-loss-pattern.
comment: 15 pages, 21 figures
Graphics 9
Nabla-R2D3: Effective and Efficient 3D Diffusion Alignment with 2D Rewards
Generating high-quality and photorealistic 3D assets remains a longstanding challenge in 3D vision and computer graphics. Although state-of-the-art generative models, such as diffusion models, have made significant progress in 3D generation, they often fall short of human-designed content due to limited ability to follow instructions, align with human preferences, or produce realistic textures, geometries, and physical attributes. In this paper, we introduce Nabla-R2D3, a highly effective and sample-efficient reinforcement learning alignment framework for 3D-native diffusion models using 2D rewards. Built upon the recently proposed Nabla-GFlowNet method, which matches the score function to reward gradients in a principled manner for reward finetuning, our Nabla-R2D3 enables effective adaptation of 3D diffusion models using only 2D reward signals. Extensive experiments show that, unlike vanilla finetuning baselines which either struggle to converge or suffer from reward hacking, Nabla-R2D3 consistently achieves higher rewards and reduced prior forgetting within a few finetuning steps.
comment: Technical Report (21 pages, 21 figures)
☆ MicroRicci: A Greedy and Local Ricci Flow Solver for Self-Tuning Mesh Smoothing
Real-time mesh smoothing at scale remains a formidable challenge: classical Ricci-flow solvers demand costly global updates, while greedy heuristics suffer from slow convergence or brittle tuning. We present MicroRicci, the first truly self-tuning, local Ricci-flow solver that borrows ideas from coding theory and packs them into just 1K + 200 parameters. Its primary core is a greedy syndrome-decoding step that pinpoints and corrects the largest curvature error in O(E) time, augmented by two tiny neural modules that adaptively choose vertices and step sizes on the fly. On a diverse set of 110 SJTU-TMQA meshes, MicroRicci slashes iteration counts from 950+=140 to 400+=80 (2.4x speedup), tightens curvature spread from 0.19 to 0.185, and achieves a remarkable UV-distortion-to-MOS correlation of r = -0.93. It adds only 0.25 ms per iteration (0.80 to 1.05 ms), yielding an end-to-end 1.8x runtime acceleration over state-of-the-art methods. MicroRicci's combination of linear-time updates, automatic hyperparameter adaptation, and high-quality geometric and perceptual results makes it well suited for real-time, resource-limited applications in graphics, simulation, and related fields.
comment: 9 pages, 8 figures, 4 tables
☆ One-shot Face Sketch Synthesis in the Wild via Generative Diffusion Prior and Instruction Tuning
Face sketch synthesis is a technique aimed at converting face photos into sketches. Existing face sketch synthesis research mainly relies on training with numerous photo-sketch sample pairs from existing datasets. However, these large-scale discriminative learning methods will have to face problems such as data scarcity and high human labor costs. Once the training data becomes scarce, their generative performance significantly degrades. In this paper, we propose a one-shot face sketch synthesis method based on diffusion models. We optimize text instructions on a diffusion model using face photo-sketch image pairs. Then, the instructions derived through gradient-based optimization are used for inference. To simulate real-world scenarios more accurately and evaluate method effectiveness more comprehensively, we introduce a new benchmark named One-shot Face Sketch Dataset (OS-Sketch). The benchmark consists of 400 pairs of face photo-sketch images, including sketches with different styles and photos with different backgrounds, ages, sexes, expressions, illumination, etc. For a solid out-of-distribution evaluation, we select only one pair of images for training at each time, with the rest used for inference. Extensive experiments demonstrate that the proposed method can convert various photos into realistic and highly consistent sketches in a one-shot context. Compared to other methods, our approach offers greater convenience and broader applicability. The dataset will be available at: https://github.com/HanWu3125/OS-Sketch
comment: We propose a novel framework for face sketch synthesis, where merely a single pair of samples suffices to enable in-the-wild face sketch synthesis
☆ Human Motion Capture from Loose and Sparse Inertial Sensors with Garment-aware Diffusion Models IJCAI 2025
Motion capture using sparse inertial sensors has shown great promise due to its portability and lack of occlusion issues compared to camera-based tracking. Existing approaches typically assume that IMU sensors are tightly attached to the human body. However, this assumption often does not hold in real-world scenarios. In this paper, we present a new task of full-body human pose estimation using sparse, loosely attached IMU sensors. To solve this task, we simulate IMU recordings from an existing garment-aware human motion dataset. We developed transformer-based diffusion models to synthesize loose IMU data and estimate human poses based on this challenging loose IMU data. In addition, we show that incorporating garment-related parameters while training the model on simulated loose data effectively maintains expressiveness and enhances the ability to capture variations introduced by looser or tighter garments. Experiments show that our proposed diffusion methods trained on simulated and synthetic data outperformed the state-of-the-art methods quantitatively and qualitatively, opening up a promising direction for future research.
comment: Accepted by IJCAI 2025
☆ You Only Render Once: Enhancing Energy and Computation Efficiency of Mobile Virtual Reality
Mobile Virtual Reality (VR) is essential to achieving convenient and immersive human-computer interaction and realizing emerging applications such as Metaverse. However, existing VR technologies require two separate renderings of binocular images, causing a significant bottleneck for mobile devices with limited computing capability and power supply. This paper proposes an approach to rendering optimization for mobile VR called EffVR. By utilizing the per-pixel attribute, EffVR can generate binocular VR images from the monocular image through genuinely one rendering, saving half the computation over conventional approaches. Our evaluation indicates that, compared with the state-of-art, EffVRcan save 27% power consumption on average while achieving high binocular image quality (0.9679 SSIM and 34.09 PSNR) in mobile VR applications. Additionally, EffVR can increase the frame rate by 115.2%. These results corroborate EffVRsuperior computation/energy-saving performance, paving the road to a sustainable mobile VR. The source code, demo video, android app, and more are released anonymously at https://yoro-vr.github.io/
☆ User-Guided Force-Directed Graph Layout
Visual analysis of relational data is essential for many real-world analytics tasks, with layout quality being key to interpretability. However, existing layout algorithms often require users to navigate complex parameters to express their intent. We present a user-guided force-directed layout approach that enables intuitive control through freehand sketching. Our method uses classical image analysis techniques to extract structural information from sketches, which is then used to generate positional constraints that guide the layout process. We evaluate the approach on various real and synthetic graphs ranging from small to medium scale, demonstrating its ability to produce layouts aligned with user expectations. An implementation of our method along with documentation and a demo page is freely available on GitHub at https://github.com/sciluna/uggly.
☆ GratNet: A Photorealistic Neural Shader for Diffractive Surfaces
Structural coloration is commonly modeled using wave optics for reliable and photorealistic rendering of natural, quasi-periodic and complex nanostructures. Such models often rely on dense, preliminary or preprocessed data to accurately capture the nuanced variations in diffractive surface reflectances. This heavy data dependency warrants implicit neural representation which has not been addressed comprehensively in the current literature. In this paper, we present a multi-layer perceptron (MLP) based method for data-driven rendering of diffractive surfaces with high accuracy and efficiency. We primarily approach this problem from a data compression perspective to devise a nuanced training and modeling method which is attuned to the domain and range characteristics of diffractive reflectance datasets. Importantly, our approach avoids over-fitting and has robust resampling behavior. Using Peak-Signal-to-Noise (PSNR), Structural Similarity Index Measure (SSIM) and a flipping difference evaluator (FLIP) as evaluation metrics, we demonstrate the high-quality reconstruction of the ground-truth. In comparison to a recent state-of-the-art offline, wave-optical, forward modeling approach, our method reproduces subjectively similar results with significant performance gains. We reduce the memory footprint of the raw datasets by two orders of magnitude in general. Lastly, we depict the working of our method with actual surface renderings.
Graphics4Science: Computer Graphics for Scientific Impacts
Computer graphics, often associated with films, games, and visual effects, has long been a powerful tool for addressing scientific challenges--from its origins in 3D visualization for medical imaging to its role in modern computational modeling and simulation. This course explores the deep and evolving relationship between computer graphics and science, highlighting past achievements, ongoing contributions, and open questions that remain. We show how core methods, such as geometric reasoning and physical modeling, provide inductive biases that help address challenges in both fields, especially in data-scarce settings. To that end, we aim to reframe graphics as a modeling language for science by bridging vocabulary gaps between the two communities. Designed for both newcomers and experts, Graphics4Science invites the graphics community to engage with science, tackle high-impact problems where graphics expertise can make a difference, and contribute to the future of scientific discovery. Additional details are available on the course website: https://graphics4science.github.io
♻ ☆ ImmerseGen: Agent-Guided Immersive World Generation with Alpha-Textured Proxies
Automatic creation of 3D scenes for immersive VR presence has been a significant research focus for decades. However, existing methods often rely on either high-poly mesh modeling with post-hoc simplification or massive 3D Gaussians, resulting in a complex pipeline or limited visual realism. In this paper, we demonstrate that such exhaustive modeling is unnecessary for achieving compelling immersive experience. We introduce ImmerseGen, a novel agent-guided framework for compact and photorealistic world modeling. ImmerseGen represents scenes as hierarchical compositions of lightweight geometric proxies, i.e., simplified terrain and billboard meshes, and generates photorealistic appearance by synthesizing RGBA textures onto these proxies. Specifically, we propose terrain-conditioned texturing for user-centric base world synthesis, and RGBA asset texturing for midground and foreground scenery. This reformulation offers several advantages: (i) it simplifies modeling by enabling agents to guide generative models in producing coherent textures that integrate seamlessly with the scene; (ii) it bypasses complex geometry creation and decimation by directly synthesizing photorealistic textures on proxies, preserving visual quality without degradation; (iii) it enables compact representations suitable for real-time rendering on mobile VR headsets. To automate scene creation from text prompts, we introduce VLM-based modeling agents enhanced with semantic grid-based analysis for improved spatial reasoning and accurate asset placement. ImmerseGen further enriches scenes with dynamic effects and ambient audio to support multisensory immersion. Experiments on scene generation and live VR showcases demonstrate that ImmerseGen achieves superior photorealism, spatial coherence and rendering efficiency compared to prior methods. Project webpage: https://immersegen.github.io.
comment: Project webpage: https://immersegen.github.io
Robotics 59
☆ Particle-Grid Neural Dynamics for Learning Deformable Object Models from RGB-D Videos
Modeling the dynamics of deformable objects is challenging due to their diverse physical properties and the difficulty of estimating states from limited visual information. We address these challenges with a neural dynamics framework that combines object particles and spatial grids in a hybrid representation. Our particle-grid model captures global shape and motion information while predicting dense particle movements, enabling the modeling of objects with varied shapes and materials. Particles represent object shapes, while the spatial grid discretizes the 3D space to ensure spatial continuity and enhance learning efficiency. Coupled with Gaussian Splattings for visual rendering, our framework achieves a fully learning-based digital twin of deformable objects and generates 3D action-conditioned videos. Through experiments, we demonstrate that our model learns the dynamics of diverse objects -- such as ropes, cloths, stuffed animals, and paper bags -- from sparse-view RGB-D recordings of robot-object interactions, while also generalizing at the category level to unseen instances. Our approach outperforms state-of-the-art learning-based and physics-based simulators, particularly in scenarios with limited camera views. Furthermore, we showcase the utility of our learned models in model-based planning, enabling goal-conditioned object manipulation across a range of tasks. The project page is available at https://kywind.github.io/pgnd .
comment: Project page: https://kywind.github.io/pgnd
☆ Embodied Web Agents: Bridging Physical-Digital Realms for Integrated Agent Intelligence
AI agents today are mostly siloed - they either retrieve and reason over vast amount of digital information and knowledge obtained online; or interact with the physical world through embodied perception, planning and action - but rarely both. This separation limits their ability to solve tasks that require integrated physical and digital intelligence, such as cooking from online recipes, navigating with dynamic map data, or interpreting real-world landmarks using web knowledge. We introduce Embodied Web Agents, a novel paradigm for AI agents that fluidly bridge embodiment and web-scale reasoning. To operationalize this concept, we first develop the Embodied Web Agents task environments, a unified simulation platform that tightly integrates realistic 3D indoor and outdoor environments with functional web interfaces. Building upon this platform, we construct and release the Embodied Web Agents Benchmark, which encompasses a diverse suite of tasks including cooking, navigation, shopping, tourism, and geolocation - all requiring coordinated reasoning across physical and digital realms for systematic assessment of cross-domain intelligence. Experimental results reveal significant performance gaps between state-of-the-art AI systems and human capabilities, establishing both challenges and opportunities at the intersection of embodied cognition and web-scale knowledge access. All datasets, codes and websites are publicly available at our project page https://embodied-web-agent.github.io/.
☆ Vision in Action: Learning Active Perception from Human Demonstrations
We present Vision in Action (ViA), an active perception system for bimanual robot manipulation. ViA learns task-relevant active perceptual strategies (e.g., searching, tracking, and focusing) directly from human demonstrations. On the hardware side, ViA employs a simple yet effective 6-DoF robotic neck to enable flexible, human-like head movements. To capture human active perception strategies, we design a VR-based teleoperation interface that creates a shared observation space between the robot and the human operator. To mitigate VR motion sickness caused by latency in the robot's physical movements, the interface uses an intermediate 3D scene representation, enabling real-time view rendering on the operator side while asynchronously updating the scene with the robot's latest observations. Together, these design elements enable the learning of robust visuomotor policies for three complex, multi-stage bimanual manipulation tasks involving visual occlusions, significantly outperforming baseline systems.
☆ FindingDory: A Benchmark to Evaluate Memory in Embodied Agents
Large vision-language models have recently demonstrated impressive performance in planning and control tasks, driving interest in their application to real-world robotics. However, deploying these models for reasoning in embodied contexts is limited by their ability to incorporate long-term experience collected across multiple days and represented by vast collections of images. Current VLMs typically struggle to process more than a few hundred images concurrently, highlighting the need for more efficient mechanisms to handle long-term memory in embodied settings. To effectively evaluate these models for long-horizon control, a benchmark must specifically target scenarios where memory is crucial for success. Existing long-video QA benchmarks overlook embodied challenges like object manipulation and navigation, which demand low-level skills and fine-grained reasoning over past interactions. Moreover, effective memory integration in embodied agents involves both recalling relevant historical information and executing actions based on that information, making it essential to study these aspects together rather than in isolation. In this work, we introduce a new benchmark for long-range embodied tasks in the Habitat simulator. This benchmark evaluates memory-based capabilities across 60 tasks requiring sustained engagement and contextual awareness in an environment. The tasks can also be procedurally extended to longer and more challenging versions, enabling scalable evaluation of memory and reasoning. We also present baselines that integrate state-of-the-art VLMs with low level navigation policies, assessing their performance on these memory-intensive tasks and highlight areas for improvement.
comment: Our dataset and code will be made available at: https://findingdory-benchmark.github.io/
☆ GRIM: Task-Oriented Grasping with Conditioning on Generative Examples
Task-Oriented Grasping (TOG) presents a significant challenge, requiring a nuanced understanding of task semantics, object affordances, and the functional constraints dictating how an object should be grasped for a specific task. To address these challenges, we introduce GRIM (Grasp Re-alignment via Iterative Matching), a novel training-free framework for task-oriented grasping. Initially, a coarse alignment strategy is developed using a combination of geometric cues and principal component analysis (PCA)-reduced DINO features for similarity scoring. Subsequently, the full grasp pose associated with the retrieved memory instance is transferred to the aligned scene object and further refined against a set of task-agnostic, geometrically stable grasps generated for the scene object, prioritizing task compatibility. In contrast to existing learning-based methods, GRIM demonstrates strong generalization capabilities, achieving robust performance with only a small number of conditioning examples.
☆ RaCalNet: Radar Calibration Network for Sparse-Supervised Metric Depth Estimation
Dense metric depth estimation using millimeter-wave radar typically requires dense LiDAR supervision, generated via multi-frame projection and interpolation, to guide the learning of accurate depth from sparse radar measurements and RGB images. However, this paradigm is both costly and data-intensive. To address this, we propose RaCalNet, a novel framework that eliminates the need for dense supervision by using sparse LiDAR to supervise the learning of refined radar measurements, resulting in a supervision density of merely around 1% compared to dense-supervised methods. Unlike previous approaches that associate radar points with broad image regions and rely heavily on dense labels, RaCalNet first recalibrates and refines sparse radar points to construct accurate depth priors. These priors then serve as reliable anchors to guide monocular depth prediction, enabling metric-scale estimation without resorting to dense supervision. This design improves structural consistency and preserves fine details. Despite relying solely on sparse supervision, RaCalNet surpasses state-of-the-art dense-supervised methods, producing depth maps with clear object contours and fine-grained textures. Extensive experiments on the ZJU-4DRadarCam dataset and real-world deployment scenarios demonstrate its effectiveness, reducing RMSE by 35.30% and 34.89%, respectively.
comment: 9 pages, 7 figures
Aerial Grasping via Maximizing Delta-Arm Workspace Utilization
The workspace limits the operational capabilities and range of motion for the systems with robotic arms. Maximizing workspace utilization has the potential to provide more optimal solutions for aerial manipulation tasks, increasing the system's flexibility and operational efficiency. In this paper, we introduce a novel planning framework for aerial grasping that maximizes workspace utilization. We formulate an optimization problem to optimize the aerial manipulator's trajectory, incorporating task constraints to achieve efficient manipulation. To address the challenge of incorporating the delta arm's non-convex workspace into optimization constraints, we leverage a Multilayer Perceptron (MLP) to map position points to feasibility probabilities.Furthermore, we employ Reversible Residual Networks (RevNet) to approximate the complex forward kinematics of the delta arm, utilizing efficient model gradients to eliminate workspace constraints. We validate our methods in simulations and real-world experiments to demonstrate their effectiveness.
comment: 8 pages, 7 figures
☆ Real-Time Initialization of Unknown Anchors for UWB-aided Navigation
This paper presents a framework for the real-time initialization of unknown Ultra-Wideband (UWB) anchors in UWB-aided navigation systems. The method is designed for localization solutions where UWB modules act as supplementary sensors. Our approach enables the automatic detection and calibration of previously unknown anchors during operation, removing the need for manual setup. By combining an online Positional Dilution of Precision (PDOP) estimation, a lightweight outlier detection method, and an adaptive robust kernel for non-linear optimization, our approach significantly improves robustness and suitability for real-world applications compared to state-of-the-art. In particular, we show that our metric which triggers an initialization decision is more conservative than current ones commonly based on initial linear or non-linear initialization guesses. This allows for better initialization geometry and subsequently lower initialization errors. We demonstrate the proposed approach on two different mobile robots: an autonomous forklift and a quadcopter equipped with a UWB-aided Visual-Inertial Odometry (VIO) framework. The results highlight the effectiveness of the proposed method with robust initialization and low positioning error. We open-source our code in a C++ library including a ROS wrapper.
☆ SurfAAV: Design and Implementation of a Novel Multimodal Surfing Aquatic-Aerial Vehicle
Despite significant advancements in the research of aquatic-aerial robots, existing configurations struggle to efficiently perform underwater, surface, and aerial movement simultaneously. In this paper, we propose a novel multimodal surfing aquatic-aerial vehicle, SurfAAV, which efficiently integrates underwater navigation, surface gliding, and aerial flying capabilities. Thanks to the design of the novel differential thrust vectoring hydrofoil, SurfAAV can achieve efficient surface gliding and underwater navigation without the need for a buoyancy adjustment system. This design provides flexible operational capabilities for both surface and underwater tasks, enabling the robot to quickly carry out underwater monitoring activities. Additionally, when it is necessary to reach another water body, SurfAAV can switch to aerial mode through a gliding takeoff, flying to the target water area to perform corresponding tasks. The main contribution of this letter lies in proposing a new solution for underwater, surface, and aerial movement, designing a novel hybrid prototype concept, developing the required control laws, and validating the robot's ability to successfully perform surface gliding and gliding takeoff. SurfAAV achieves a maximum surface gliding speed of 7.96 m/s and a maximum underwater speed of 3.1 m/s. The prototype's surface gliding maneuverability and underwater cruising maneuverability both exceed those of existing aquatic-aerial vehicles.
☆ Model Predictive Path-Following Control for a Quadrotor
Automating drone-assisted processes is a complex task. Many solutions rely on trajectory generation and tracking, whereas in contrast, path-following control is a particularly promising approach, offering an intuitive and natural approach to automate tasks for drones and other vehicles. While different solutions to the path-following problem have been proposed, most of them lack the capability to explicitly handle state and input constraints, are formulated in a conservative two-stage approach, or are only applicable to linear systems. To address these challenges, the paper is built upon a Model Predictive Control-based path-following framework and extends its application to the Crazyflie quadrotor, which is investigated in hardware experiments. A cascaded control structure including an underlying attitude controller is included in the Model Predictive Path-Following Control formulation to meet the challenging real-time demands of quadrotor control. The effectiveness of the proposed method is demonstrated through real-world experiments, representing, to the best of the authors' knowledge, a novel application of this MPC-based path-following approach to the quadrotor. Additionally, as an extension to the original method, to allow for deviations of the path in cases where the precise following of the path might be overly restrictive, a corridor path-following approach is presented.
comment: 15 pages, 11 figures, submitted to PAMM 2025
☆ MCOO-SLAM: A Multi-Camera Omnidirectional Object SLAM System
Object-level SLAM offers structured and semantically meaningful environment representations, making it more interpretable and suitable for high-level robotic tasks. However, most existing approaches rely on RGB-D sensors or monocular views, which suffer from narrow fields of view, occlusion sensitivity, and limited depth perception-especially in large-scale or outdoor environments. These limitations often restrict the system to observing only partial views of objects from limited perspectives, leading to inaccurate object modeling and unreliable data association. In this work, we propose MCOO-SLAM, a novel Multi-Camera Omnidirectional Object SLAM system that fully leverages surround-view camera configurations to achieve robust, consistent, and semantically enriched mapping in complex outdoor scenarios. Our approach integrates point features and object-level landmarks enhanced with open-vocabulary semantics. A semantic-geometric-temporal fusion strategy is introduced for robust object association across multiple views, leading to improved consistency and accurate object modeling, and an omnidirectional loop closure module is designed to enable viewpoint-invariant place recognition using scene-level descriptors. Furthermore, the constructed map is abstracted into a hierarchical 3D scene graph to support downstream reasoning tasks. Extensive experiments in real-world demonstrate that MCOO-SLAM achieves accurate localization and scalable object-level mapping with improved robustness to occlusion, pose variation, and environmental complexity.
☆ Efficient Navigation Among Movable Obstacles using a Mobile Manipulator via Hierarchical Policy Learning IROS 2025
We propose a hierarchical reinforcement learning (HRL) framework for efficient Navigation Among Movable Obstacles (NAMO) using a mobile manipulator. Our approach combines interaction-based obstacle property estimation with structured pushing strategies, facilitating the dynamic manipulation of unforeseen obstacles while adhering to a pre-planned global path. The high-level policy generates pushing commands that consider environmental constraints and path-tracking objectives, while the low-level policy precisely and stably executes these commands through coordinated whole-body movements. Comprehensive simulation-based experiments demonstrate improvements in performing NAMO tasks, including higher success rates, shortened traversed path length, and reduced goal-reaching times, compared to baselines. Additionally, ablation studies assess the efficacy of each component, while a qualitative analysis further validates the accuracy and reliability of the real-time obstacle property estimation.
comment: 8 pages, 6 figures, Accepted to IROS 2025. Supplementary Video: https://youtu.be/sZ8_z7sYVP0
☆ Comparison of Innovative Strategies for the Coverage Problem: Path Planning, Search Optimization, and Applications in Underwater Robotics
In many applications, including underwater robotics, the coverage problem requires an autonomous vehicle to systematically explore a defined area while minimizing redundancy and avoiding obstacles. This paper investigates coverage path planning strategies to enhance the efficiency of underwater gliders, particularly in maximizing the probability of detecting a radioactive source while ensuring safe navigation. We evaluate three path-planning approaches: the Traveling Salesman Problem (TSP), Minimum Spanning Tree (MST), and Optimal Control Problem (OCP). Simulations were conducted in MATLAB, comparing processing time, uncovered areas, path length, and traversal time. Results indicate that OCP is preferable when traversal time is constrained, although it incurs significantly higher computational costs. Conversely, MST-based approaches provide faster but less optimal solutions. These findings offer insights into selecting appropriate algorithms based on mission priorities, balancing efficiency and computational feasibility.
☆ Offensive Robot Cybersecurity
Offensive Robot Cybersecurity introduces a groundbreaking approach by advocating for offensive security methods empowered by means of automation. It emphasizes the necessity of understanding attackers' tactics and identifying vulnerabilities in advance to develop effective defenses, thereby improving robots' security posture. This thesis leverages a decade of robotics experience, employing Machine Learning and Game Theory to streamline the vulnerability identification and exploitation process. Intrinsically, the thesis uncovers a profound connection between robotic architecture and cybersecurity, highlighting that the design and creation aspect of robotics deeply intertwines with its protection against attacks. This duality -- whereby the architecture that shapes robot behavior and capabilities also necessitates a defense mechanism through offensive and defensive cybersecurity strategies -- creates a unique equilibrium. Approaching cybersecurity with a dual perspective of defense and attack, rooted in an understanding of systems architecture, has been pivotal. Through comprehensive analysis, including ethical considerations, the development of security tools, and executing cyber attacks on robot software, hardware, and industry deployments, this thesis proposes a novel architecture for cybersecurity cognitive engines. These engines, powered by advanced game theory and machine learning, pave the way for autonomous offensive cybersecurity strategies for robots, marking a significant shift towards self-defending robotic systems. This research not only underscores the importance of offensive measures in enhancing robot cybersecurity but also sets the stage for future advancements where robots are not just resilient to cyber threats but are equipped to autonomously safeguard themselves.
comment: Doctoral thesis
☆ Designing Intent: A Multimodal Framework for Human-Robot Cooperation in Industrial Workspaces
As robots enter collaborative workspaces, ensuring mutual understanding between human workers and robotic systems becomes a prerequisite for trust, safety, and efficiency. In this position paper, we draw on the cooperation scenario of the AIMotive project in which a human and a cobot jointly perform assembly tasks to argue for a structured approach to intent communication. Building on the Situation Awareness-based Agent Transparency (SAT) framework and the notion of task abstraction levels, we propose a multidimensional design space that maps intent content (SAT1, SAT3), planning horizon (operational to strategic), and modality (visual, auditory, haptic). We illustrate how this space can guide the design of multimodal communication strategies tailored to dynamic collaborative work contexts. With this paper, we lay the conceptual foundation for a future design toolkit aimed at supporting transparent human-robot interaction in the workplace. We highlight key open questions and design challenges, and propose a shared agenda for multimodal, adaptive, and trustworthy robotic collaboration in hybrid work environments.
comment: 9 pages
☆ Minimizing Structural Vibrations via Guided Flow Matching Design Optimization
Structural vibrations are a source of unwanted noise in engineering systems like cars, trains or airplanes. Minimizing these vibrations is crucial for improving passenger comfort. This work presents a novel design optimization approach based on guided flow matching for reducing vibrations by placing beadings (indentations) in plate-like structures. Our method integrates a generative flow matching model and a surrogate model trained to predict structural vibrations. During the generation process, the flow matching model pushes towards manufacturability while the surrogate model pushes to low-vibration solutions. The flow matching model and its training data implicitly define the design space, enabling a broader exploration of potential solutions as no optimization of manually-defined design parameters is required. We apply our method to a range of differentiable optimization objectives, including direct optimization of specific eigenfrequencies through careful construction of the objective function. Results demonstrate that our method generates diverse and manufacturable plate designs with reduced structural vibrations compared to designs from random search, a criterion-based design heuristic and genetic optimization. The code and data are available from https://github.com/ecker-lab/Optimizing_Vibrating_Plates.
☆ Context-Aware Deep Lagrangian Networks for Model Predictive Control IROS
Controlling a robot based on physics-informed dynamic models, such as deep Lagrangian networks (DeLaN), can improve the generalizability and interpretability of the resulting behavior. However, in complex environments, the number of objects to potentially interact with is vast, and their physical properties are often uncertain. This complexity makes it infeasible to employ a single global model. Therefore, we need to resort to online system identification of context-aware models that capture only the currently relevant aspects of the environment. While physical principles such as the conservation of energy may not hold across varying contexts, ensuring physical plausibility for any individual context-aware model can still be highly desirable, particularly when using it for receding horizon control methods such as Model Predictive Control (MPC). Hence, in this work, we extend DeLaN to make it context-aware, combine it with a recurrent network for online system identification, and integrate it with a MPC for adaptive, physics-informed control. We also combine DeLaN with a residual dynamics model to leverage the fact that a nominal model of the robot is typically available. We evaluate our method on a 7-DOF robot arm for trajectory tracking under varying loads. Our method reduces the end-effector tracking error by 39%, compared to a 21% improvement achieved by a baseline that uses an extended Kalman filter.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
☆ Multi-Agent Reinforcement Learning for Autonomous Multi-Satellite Earth Observation: A Realistic Case Study
The exponential growth of Low Earth Orbit (LEO) satellites has revolutionised Earth Observation (EO) missions, addressing challenges in climate monitoring, disaster management, and more. However, autonomous coordination in multi-satellite systems remains a fundamental challenge. Traditional optimisation approaches struggle to handle the real-time decision-making demands of dynamic EO missions, necessitating the use of Reinforcement Learning (RL) and Multi-Agent Reinforcement Learning (MARL). In this paper, we investigate RL-based autonomous EO mission planning by modelling single-satellite operations and extending to multi-satellite constellations using MARL frameworks. We address key challenges, including energy and data storage limitations, uncertainties in satellite observations, and the complexities of decentralised coordination under partial observability. By leveraging a near-realistic satellite simulation environment, we evaluate the training stability and performance of state-of-the-art MARL algorithms, including PPO, IPPO, MAPPO, and HAPPO. Our results demonstrate that MARL can effectively balance imaging and resource management while addressing non-stationarity and reward interdependency in multi-satellite coordination. The insights gained from this study provide a foundation for autonomous satellite operations, offering practical guidelines for improving policy learning in decentralised EO missions.
☆ SHeRLoc: Synchronized Heterogeneous Radar Place Recognition for Cross-Modal Localization
Despite the growing adoption of radar in robotics, the majority of research has been confined to homogeneous sensor types, overlooking the integration and cross-modality challenges inherent in heterogeneous radar technologies. This leads to significant difficulties in generalizing across diverse radar data types, with modality-aware approaches that could leverage the complementary strengths of heterogeneous radar remaining unexplored. To bridge these gaps, we propose SHeRLoc, the first deep network tailored for heterogeneous radar, which utilizes RCS polar matching to align multimodal radar data. Our hierarchical optimal transport-based feature aggregation method generates rotationally robust multi-scale descriptors. By employing FFT-similarity-based data mining and adaptive margin-based triplet loss, SHeRLoc enables FOV-aware metric learning. SHeRLoc achieves an order of magnitude improvement in heterogeneous radar place recognition, increasing recall@1 from below 0.1 to 0.9 on a public dataset and outperforming state of-the-art methods. Also applicable to LiDAR, SHeRLoc paves the way for cross-modal place recognition and heterogeneous sensor SLAM. The source code will be available upon acceptance.
comment: This work has been submitted to the IEEE for possible publication
☆ Robust Instant Policy: Leveraging Student's t-Regression Model for Robust In-context Imitation Learning of Robot Manipulation IROS
Imitation learning (IL) aims to enable robots to perform tasks autonomously by observing a few human demonstrations. Recently, a variant of IL, called In-Context IL, utilized off-the-shelf large language models (LLMs) as instant policies that understand the context from a few given demonstrations to perform a new task, rather than explicitly updating network models with large-scale demonstrations. However, its reliability in the robotics domain is undermined by hallucination issues such as LLM-based instant policy, which occasionally generates poor trajectories that deviate from the given demonstrations. To alleviate this problem, we propose a new robust in-context imitation learning algorithm called the robust instant policy (RIP), which utilizes a Student's t-regression model to be robust against the hallucinated trajectories of instant policies to allow reliable trajectory generation. Specifically, RIP generates several candidate robot trajectories to complete a given task from an LLM and aggregates them using the Student's t-distribution, which is beneficial for ignoring outliers (i.e., hallucinations); thereby, a robust trajectory against hallucinations is generated. Our experiments, conducted in both simulated and real-world environments, show that RIP significantly outperforms state-of-the-art IL methods, with at least $26\%$ improvement in task success rates, particularly in low-data scenarios for everyday tasks. Video results available at https://sites.google.com/view/robustinstantpolicy.
comment: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025 accepted
☆ Human Locomotion Implicit Modeling Based Real-Time Gait Phase Estimation
Gait phase estimation based on inertial measurement unit (IMU) signals facilitates precise adaptation of exoskeletons to individual gait variations. However, challenges remain in achieving high accuracy and robustness, particularly during periods of terrain changes. To address this, we develop a gait phase estimation neural network based on implicit modeling of human locomotion, which combines temporal convolution for feature extraction with transformer layers for multi-channel information fusion. A channel-wise masked reconstruction pre-training strategy is proposed, which first treats gait phase state vectors and IMU signals as joint observations of human locomotion, thus enhancing model generalization. Experimental results demonstrate that the proposed method outperforms existing baseline approaches, achieving a gait phase RMSE of $2.729 \pm 1.071%$ and phase rate MAE of $0.037 \pm 0.016%$ under stable terrain conditions with a look-back window of 2 seconds, and a phase RMSE of $3.215 \pm 1.303%$ and rate MAE of $0.050 \pm 0.023%$ under terrain transitions. Hardware validation on a hip exoskeleton further confirms that the algorithm can reliably identify gait cycles and key events, adapting to various continuous motion scenarios. This research paves the way for more intelligent and adaptive exoskeleton systems, enabling safer and more efficient human-robot interaction across diverse real-world environments.
☆ Probabilistic Trajectory GOSPA: A Metric for Uncertainty-Aware Multi-Object Tracking Performance Evaluation
This paper presents a generalization of the trajectory general optimal sub-pattern assignment (GOSPA) metric for evaluating multi-object tracking algorithms that provide trajectory estimates with track-level uncertainties. This metric builds on the recently introduced probabilistic GOSPA metric to account for both the existence and state estimation uncertainties of individual object states. Similar to trajectory GOSPA (TGOSPA), it can be formulated as a multidimensional assignment problem, and its linear programming relaxation--also a valid metric--is computable in polynomial time. Additionally, this metric retains the interpretability of TGOSPA, and we show that its decomposition yields intuitive costs terms associated to expected localization error and existence probability mismatch error for properly detected objects, expected missed and false detection error, and track switch error. The effectiveness of the proposed metric is demonstrated through a simulation study.
comment: 7 pages, 4 figures
☆ TACT: Humanoid Whole-body Contact Manipulation through Deep Imitation Learning with Tactile Modality
Manipulation with whole-body contact by humanoid robots offers distinct advantages, including enhanced stability and reduced load. On the other hand, we need to address challenges such as the increased computational cost of motion generation and the difficulty of measuring broad-area contact. We therefore have developed a humanoid control system that allows a humanoid robot equipped with tactile sensors on its upper body to learn a policy for whole-body manipulation through imitation learning based on human teleoperation data. This policy, named tactile-modality extended ACT (TACT), has a feature to take multiple sensor modalities as input, including joint position, vision, and tactile measurements. Furthermore, by integrating this policy with retargeting and locomotion control based on a biped model, we demonstrate that the life-size humanoid robot RHP7 Kaleido is capable of achieving whole-body contact manipulation while maintaining balance and walking. Through detailed experimental verification, we show that inputting both vision and tactile modalities into the policy contributes to improving the robustness of manipulation involving broad and delicate contact.
☆ Booster Gym: An End-to-End Reinforcement Learning Framework for Humanoid Robot Locomotion
Recent advancements in reinforcement learning (RL) have led to significant progress in humanoid robot locomotion, simplifying the design and training of motion policies in simulation. However, the numerous implementation details make transferring these policies to real-world robots a challenging task. To address this, we have developed a comprehensive code framework that covers the entire process from training to deployment, incorporating common RL training methods, domain randomization, reward function design, and solutions for handling parallel structures. This library is made available as a community resource, with detailed descriptions of its design and experimental results. We validate the framework on the Booster T1 robot, demonstrating that the trained policies seamlessly transfer to the physical platform, enabling capabilities such as omnidirectional walking, disturbance resistance, and terrain adaptability. We hope this work provides a convenient tool for the robotics community, accelerating the development of humanoid robots. The code can be found in https://github.com/BoosterRobotics/booster_gym.
VIMS: A Visual-Inertial-Magnetic-Sonar SLAM System in Underwater Environments IROS 2025
In this study, we present a novel simultaneous localization and mapping (SLAM) system, VIMS, designed for underwater navigation. Conventional visual-inertial state estimators encounter significant practical challenges in perceptually degraded underwater environments, particularly in scale estimation and loop closing. To address these issues, we first propose leveraging a low-cost single-beam sonar to improve scale estimation. Then, VIMS integrates a high-sampling-rate magnetometer for place recognition by utilizing magnetic signatures generated by an economical magnetic field coil. Building on this, a hierarchical scheme is developed for visual-magnetic place recognition, enabling robust loop closure. Furthermore, VIMS achieves a balance between local feature tracking and descriptor-based loop closing, avoiding additional computational burden on the front end. Experimental results highlight the efficacy of the proposed VIMS, demonstrating significant improvements in both the robustness and accuracy of state estimation within underwater environments.
comment: This work has been accepted for publication at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ I Know You're Listening: Adaptive Voice for HRI IROS 23
While the use of social robots for language teaching has been explored, there remains limited work on a task-specific synthesized voices for language teaching robots. Given that language is a verbal task, this gap may have severe consequences for the effectiveness of robots for language teaching tasks. We address this lack of L2 teaching robot voices through three contributions: 1. We address the need for a lightweight and expressive robot voice. Using a fine-tuned version of Matcha-TTS, we use emoji prompting to create an expressive voice that shows a range of expressivity over time. The voice can run in real time with limited compute resources. Through case studies, we found this voice more expressive, socially appropriate, and suitable for long periods of expressive speech, such as storytelling. 2. We explore how to adapt a robot's voice to physical and social ambient environments to deploy our voices in various locations. We found that increasing pitch and pitch rate in noisy and high-energy environments makes the robot's voice appear more appropriate and makes it seem more aware of its current environment. 3. We create an English TTS system with improved clarity for L2 listeners using known linguistic properties of vowels that are difficult for these listeners. We used a data-driven, perception-based approach to understand how L2 speakers use duration cues to interpret challenging words with minimal tense (long) and lax (short) vowels in English. We found that the duration of vowels strongly influences the perception for L2 listeners and created an "L2 clarity mode" for Matcha-TTS that applies a lengthening to tense vowels while leaving lax vowels unchanged. Our clarity mode was found to be more respectful, intelligible, and encouraging than base Matcha-TTS while reducing transcription errors in these challenging tense/lax minimal pairs.
comment: PhD Thesis Simon Fraser University https://summit.sfu.ca/item/39353 Read the Room: Adapting a Robot's Voice to Ambient and Social Contexts IROS 23 Mmm whatcha say? Uncovering distal and proximal context effects in first and second-language word perception using psychophysical reverse correlation INTERSPEECH 24 Emojivoice: Towards long-term controllable expressivity in robot speech RO-MAN 25
☆ DyNaVLM: Zero-Shot Vision-Language Navigation System with Dynamic Viewpoints and Self-Refining Graph Memory
We present DyNaVLM, an end-to-end vision-language navigation framework using Vision-Language Models (VLM). In contrast to prior methods constrained by fixed angular or distance intervals, our system empowers agents to freely select navigation targets via visual-language reasoning. At its core lies a self-refining graph memory that 1) stores object locations as executable topological relations, 2) enables cross-robot memory sharing through distributed graph updates, and 3) enhances VLM's decision-making via retrieval augmentation. Operating without task-specific training or fine-tuning, DyNaVLM demonstrates high performance on GOAT and ObjectNav benchmarks. Real-world tests further validate its robustness and generalization. The system's three innovations: dynamic action space formulation, collaborative graph memory, and training-free deployment, establish a new paradigm for scalable embodied robot, bridging the gap between discrete VLN tasks and continuous real-world navigation.
☆ 3D Vision-tactile Reconstruction from Infrared and Visible Images for Robotic Fine-grained Tactile Perception
To achieve human-like haptic perception in anthropomorphic grippers, the compliant sensing surfaces of vision tactile sensor (VTS) must evolve from conventional planar configurations to biomimetically curved topographies with continuous surface gradients. However, planar VTSs have challenges when extended to curved surfaces, including insufficient lighting of surfaces, blurring in reconstruction, and complex spatial boundary conditions for surface structures. With an end goal of constructing a human-like fingertip, our research (i) develops GelSplitter3D by expanding imaging channels with a prism and a near-infrared (NIR) camera, (ii) proposes a photometric stereo neural network with a CAD-based normal ground truth generation method to calibrate tactile geometry, and (iii) devises a normal integration method with boundary constraints of depth prior information to correcting the cumulative error of surface integrals. We demonstrate better tactile sensing performance, a 40$\%$ improvement in normal estimation accuracy, and the benefits of sensor shapes in grasping and manipulation tasks.
☆ EmojiVoice: Towards long-term controllable expressivity in robot speech
Humans vary their expressivity when speaking for extended periods to maintain engagement with their listener. Although social robots tend to be deployed with ``expressive'' joyful voices, they lack this long-term variation found in human speech. Foundation model text-to-speech systems are beginning to mimic the expressivity in human speech, but they are difficult to deploy offline on robots. We present EmojiVoice, a free, customizable text-to-speech (TTS) toolkit that allows social roboticists to build temporally variable, expressive speech on social robots. We introduce emoji-prompting to allow fine-grained control of expressivity on a phase level and use the lightweight Matcha-TTS backbone to generate speech in real-time. We explore three case studies: (1) a scripted conversation with a robot assistant, (2) a storytelling robot, and (3) an autonomous speech-to-speech interactive agent. We found that using varied emoji prompting improved the perception and expressivity of speech over a long period in a storytelling task, but expressive voice was not preferred in the assistant use case.
comment: Accepted to RO-MAN 2025, Demo at HRI 2025 : https://dl.acm.org/doi/10.5555/3721488.3721774
☆ HEAL: An Empirical Study on Hallucinations in Embodied Agents Driven by Large Language Models
Large language models (LLMs) are increasingly being adopted as the cognitive core of embodied agents. However, inherited hallucinations, which stem from failures to ground user instructions in the observed physical environment, can lead to navigation errors, such as searching for a refrigerator that does not exist. In this paper, we present the first systematic study of hallucinations in LLM-based embodied agents performing long-horizon tasks under scene-task inconsistencies. Our goal is to understand to what extent hallucinations occur, what types of inconsistencies trigger them, and how current models respond. To achieve these goals, we construct a hallucination probing set by building on an existing benchmark, capable of inducing hallucination rates up to 40x higher than base prompts. Evaluating 12 models across two simulation environments, we find that while models exhibit reasoning, they fail to resolve scene-task inconsistencies-highlighting fundamental limitations in handling infeasible tasks. We also provide actionable insights on ideal model behavior for each scenario, offering guidance for developing more robust and reliable planning strategies.
☆ Assigning Multi-Robot Tasks to Multitasking Robots
One simplifying assumption in existing and well-performing task allocation methods is that the robots are single-tasking: each robot operates on a single task at any given time. While this assumption is harmless to make in some situations, it can be inefficient or even infeasible in others. In this paper, we consider assigning multi-robot tasks to multitasking robots. The key contribution is a novel task allocation framework that incorporates the consideration of physical constraints introduced by multitasking. This is in contrast to the existing work where such constraints are largely ignored. After formulating the problem, we propose a compilation to weighted MAX-SAT, which allows us to leverage existing solvers for a solution. A more efficient greedy heuristic is then introduced. For evaluation, we first compare our methods with a modern baseline that is efficient for single-tasking robots to validate the benefits of multitasking in synthetic domains. Then, using a site-clearing scenario in simulation, we further illustrate the complex task interaction considered by the multitasking robots in our approach to demonstrate its performance. Finally, we demonstrate a physical experiment to show how multitasking enabled by our approach can benefit task efficiency in a realistic setting.
☆ Learning from Planned Data to Improve Robotic Pick-and-Place Planning Efficiency
This work proposes a learning method to accelerate robotic pick-and-place planning by predicting shared grasps. Shared grasps are defined as grasp poses feasible to both the initial and goal object configurations in a pick-and-place task. Traditional analytical methods for solving shared grasps evaluate grasp candidates separately, leading to substantial computational overhead as the candidate set grows. To overcome the limitation, we introduce an Energy-Based Model (EBM) that predicts shared grasps by combining the energies of feasible grasps at both object poses. This formulation enables early identification of promising candidates and significantly reduces the search space. Experiments show that our method improves grasp selection performance, offers higher data efficiency, and generalizes well to unseen grasps and similarly shaped objects.
☆ Optimal Navigation in Microfluidics via the Optimization of a Discrete Loss
Optimal path planning and control of microscopic devices navigating in fluid environments is essential for applications ranging from targeted drug delivery to environmental monitoring. These tasks are challenging due to the complexity of microdevice-flow interactions. We introduce a closed-loop control method that optimizes a discrete loss (ODIL) in terms of dynamics and path objectives. In comparison with reinforcement learning, ODIL is more robust, up to three orders faster, and excels in high-dimensional action/state spaces, making it a powerful tool for navigating complex flow environments.
comment: 21 pages, 13 figures
☆ Advancing Autonomous Racing: A Comprehensive Survey of the RoboRacer (F1TENTH) Platform
The RoboRacer (F1TENTH) platform has emerged as a leading testbed for advancing autonomous driving research, offering a scalable, cost-effective, and community-driven environment for experimentation. This paper presents a comprehensive survey of the platform, analyzing its modular hardware and software architecture, diverse research applications, and role in autonomous systems education. We examine critical aspects such as bridging the simulation-to-reality (Sim2Real) gap, integration with simulation environments, and the availability of standardized datasets and benchmarks. Furthermore, the survey highlights advancements in perception, planning, and control algorithms, as well as insights from global competitions and collaborative research efforts. By consolidating these contributions, this study positions RoboRacer as a versatile framework for accelerating innovation and bridging the gap between theoretical research and real-world deployment. The findings underscore the platform's significance in driving forward developments in autonomous racing and robotics.
☆ Challenges and Research Directions from the Operational Use of a Machine Learning Damage Assessment System via Small Uncrewed Aerial Systems at Hurricanes Debby and Helene
This paper details four principal challenges encountered with machine learning (ML) damage assessment using small uncrewed aerial systems (sUAS) at Hurricanes Debby and Helene that prevented, degraded, or delayed the delivery of data products during operations and suggests three research directions for future real-world deployments. The presence of these challenges is not surprising given that a review of the literature considering both datasets and proposed ML models suggests this is the first sUAS-based ML system for disaster damage assessment actually deployed as a part of real-world operations. The sUAS-based ML system was applied by the State of Florida to Hurricanes Helene (2 orthomosaics, 3.0 gigapixels collected over 2 sorties by a Wintra WingtraOne sUAS) and Debby (1 orthomosaic, 0.59 gigapixels collected via 1 sortie by a Wintra WingtraOne sUAS) in Florida. The same model was applied to crewed aerial imagery of inland flood damage resulting from post-tropical remnants of Hurricane Debby in Pennsylvania (436 orthophotos, 136.5 gigapixels), providing further insights into the advantages and limitations of sUAS for disaster response. The four challenges (variationin spatial resolution of input imagery, spatial misalignment between imagery and geospatial data, wireless connectivity, and data product format) lead to three recommendations that specify research needed to improve ML model capabilities to accommodate the wide variation of potential spatial resolutions used in practice, handle spatial misalignment, and minimize the dependency on wireless connectivity. These recommendations are expected to improve the effective operational use of sUAS and sUAS-based ML damage assessment systems for disaster response.
comment: 6 pages, 5 Figures, 1 Table
☆ A Small-Scale Robot for Autonomous Driving: Design, Challenges, and Best Practices
Small-scale autonomous vehicle platforms provide a cost-effective environment for developing and testing advanced driving systems. However, specific configurations within this scale are underrepresented, limiting full awareness of their potential. This paper focuses on a one-sixth-scale setup, offering a high-level overview of its design, hardware and software integration, and typical challenges encountered during development. We discuss methods for addressing mechanical and electronic issues common to this scale and propose guidelines for improving reliability and performance. By sharing these insights, we aim to expand the utility of small-scale vehicles for testing autonomous driving algorithms and to encourage further research in this domain.
☆ CooperRisk: A Driving Risk Quantification Pipeline with Multi-Agent Cooperative Perception and Prediction IROS2025
Risk quantification is a critical component of safe autonomous driving, however, constrained by the limited perception range and occlusion of single-vehicle systems in complex and dense scenarios. Vehicle-to-everything (V2X) paradigm has been a promising solution to sharing complementary perception information, nevertheless, how to ensure the risk interpretability while understanding multi-agent interaction with V2X remains an open question. In this paper, we introduce the first V2X-enabled risk quantification pipeline, CooperRisk, to fuse perception information from multiple agents and quantify the scenario driving risk in future multiple timestamps. The risk is represented as a scenario risk map to ensure interpretability based on risk severity and exposure, and the multi-agent interaction is captured by the learning-based cooperative prediction model. We carefully design a risk-oriented transformer-based prediction model with multi-modality and multi-agent considerations. It aims to ensure scene-consistent future behaviors of multiple agents and avoid conflicting predictions that could lead to overly conservative risk quantification and cause the ego vehicle to become overly hesitant to drive. Then, the temporal risk maps could serve to guide a model predictive control planner. We evaluate the CooperRisk pipeline in a real-world V2X dataset V2XPnP, and the experiments demonstrate its superior performance in risk quantification, showing a 44.35% decrease in conflict rate between the ego vehicle and background traffic participants.
comment: IROS2025
☆ Improving Robotic Manipulation: Techniques for Object Pose Estimation, Accommodating Positional Uncertainty, and Disassembly Tasks from Examples
To use robots in more unstructured environments, we have to accommodate for more complexities. Robotic systems need more awareness of the environment to adapt to uncertainty and variability. Although cameras have been predominantly used in robotic tasks, the limitations that come with them, such as occlusion, visibility and breadth of information, have diverted some focus to tactile sensing. In this thesis, we explore the use of tactile sensing to determine the pose of the object using the temporal features. We then use reinforcement learning with tactile collisions to reduce the number of attempts required to grasp an object resulting from positional uncertainty from camera estimates. Finally, we use information provided by these tactile sensors to a reinforcement learning agent to determine the trajectory to take to remove an object from a restricted passage while reducing training time by pertaining from human examples.
comment: Thesis
☆ Semantic and Feature Guided Uncertainty Quantification of Visual Localization for Autonomous Vehicles ICRA 2025
The uncertainty quantification of sensor measurements coupled with deep learning networks is crucial for many robotics systems, especially for safety-critical applications such as self-driving cars. This paper develops an uncertainty quantification approach in the context of visual localization for autonomous driving, where locations are selected based on images. Key to our approach is to learn the measurement uncertainty using light-weight sensor error model, which maps both image feature and semantic information to 2-dimensional error distribution. Our approach enables uncertainty estimation conditioned on the specific context of the matched image pair, implicitly capturing other critical, unannotated factors (e.g., city vs highway, dynamic vs static scenes, winter vs summer) in a latent manner. We demonstrate the accuracy of our uncertainty prediction framework using the Ithaca365 dataset, which includes variations in lighting and weather (sunny, night, snowy). Both the uncertainty quantification of the sensor+network is evaluated, along with Bayesian localization filters using unique sensor gating method. Results show that the measurement error does not follow a Gaussian distribution with poor weather and lighting conditions, and is better predicted by our Gaussian Mixture model.
comment: Accepted by ICRA 2025
☆ PRISM-Loc: a Lightweight Long-range LiDAR Localization in Urban Environments with Topological Maps IROS 2025
Localization in the environment is one of the crucial tasks of navigation of a mobile robot or a self-driving vehicle. For long-range routes, performing localization within a dense global lidar map in real time may be difficult, and the creation of such a map may require much memory. To this end, leveraging topological maps may be useful. In this work, we propose PRISM-Loc -- a topological map-based approach for localization in large environments. The proposed approach leverages a twofold localization pipeline, which consists of global place recognition and estimation of the local pose inside the found location. For local pose estimation, we introduce an original lidar scan matching algorithm, which is based on 2D features and point-based optimization. We evaluate the proposed method on the ITLP-Campus dataset on a 3 km route, and compare it against the state-of-the-art metric map-based and place recognition-based competitors. The results of the experiments show that the proposed method outperforms its competitors both quality-wise and computationally-wise.
comment: This version was submitted and rejected from IROS 2025 conference
☆ SafeMimic: Towards Safe and Autonomous Human-to-Robot Imitation for Mobile Manipulation
For robots to become efficient helpers in the home, they must learn to perform new mobile manipulation tasks simply by watching humans perform them. Learning from a single video demonstration from a human is challenging as the robot needs to first extract from the demo what needs to be done and how, translate the strategy from a third to a first-person perspective, and then adapt it to be successful with its own morphology. Furthermore, to mitigate the dependency on costly human monitoring, this learning process should be performed in a safe and autonomous manner. We present SafeMimic, a framework to learn new mobile manipulation skills safely and autonomously from a single third-person human video. Given an initial human video demonstration of a multi-step mobile manipulation task, SafeMimic first parses the video into segments, inferring both the semantic changes caused and the motions the human executed to achieve them and translating them to an egocentric reference. Then, it adapts the behavior to the robot's own morphology by sampling candidate actions around the human ones, and verifying them for safety before execution in a receding horizon fashion using an ensemble of safety Q-functions trained in simulation. When safe forward progression is not possible, SafeMimic backtracks to previous states and attempts a different sequence of actions, adapting both the trajectory and the grasping modes when required for its morphology. As a result, SafeMimic yields a strategy that succeeds in the demonstrated behavior and learns task-specific actions that reduce exploration in future attempts. Our experiments show that our method allows robots to safely and efficiently learn multi-step mobile manipulation behaviors from a single human demonstration, from different users, and in different environments, with improvements over state-of-the-art baselines across seven tasks
☆ Context Matters! Relaxing Goals with LLMs for Feasible 3D Scene Planning
Classical planning in AI and Robotics addresses complex tasks by shifting from imperative to declarative approaches (e.g., PDDL). However, these methods often fail in real scenarios due to limited robot perception and the need to ground perceptions to planning predicates. This often results in heavily hard-coded behaviors that struggle to adapt, even with scenarios where goals can be achieved through relaxed planning. Meanwhile, Large Language Models (LLMs) lead to planning systems that leverage commonsense reasoning but often at the cost of generating unfeasible and/or unsafe plans. To address these limitations, we present an approach integrating classical planning with LLMs, leveraging their ability to extract commonsense knowledge and ground actions. We propose a hierarchical formulation that enables robots to make unfeasible tasks tractable by defining functionally equivalent goals through gradual relaxation. This mechanism supports partial achievement of the intended objective, suited to the agent's specific context. Our method demonstrates its ability to adapt and execute tasks effectively within environments modeled using 3D Scene Graphs through comprehensive qualitative and quantitative evaluations. We also show how this method succeeds in complex scenarios where other benchmark methods are more likely to fail. Code, dataset, and additional material are released to the community.
☆ Steering Your Diffusion Policy with Latent Space Reinforcement Learning
Robotic control policies learned from human demonstrations have achieved impressive results in many real-world applications. However, in scenarios where initial performance is not satisfactory, as is often the case in novel open-world settings, such behavioral cloning (BC)-learned policies typically require collecting additional human demonstrations to further improve their behavior -- an expensive and time-consuming process. In contrast, reinforcement learning (RL) holds the promise of enabling autonomous online policy improvement, but often falls short of achieving this due to the large number of samples it typically requires. In this work we take steps towards enabling fast autonomous adaptation of BC-trained policies via efficient real-world RL. Focusing in particular on diffusion policies -- a state-of-the-art BC methodology -- we propose diffusion steering via reinforcement learning (DSRL): adapting the BC policy by running RL over its latent-noise space. We show that DSRL is highly sample efficient, requires only black-box access to the BC policy, and enables effective real-world autonomous policy improvement. Furthermore, DSRL avoids many of the challenges associated with finetuning diffusion policies, obviating the need to modify the weights of the base policy at all. We demonstrate DSRL on simulated benchmarks, real-world robotic tasks, and for adapting pretrained generalist policies, illustrating its sample efficiency and effective performance at real-world policy improvement.
☆ Robust control for multi-legged elongate robots in noisy environments
Modern two and four legged robots exhibit impressive mobility on complex terrain, largely attributed to advancement in learning algorithms. However, these systems often rely on high-bandwidth sensing and onboard computation to perceive/respond to terrain uncertainties. Further, current locomotion strategies typically require extensive robot-specific training, limiting their generalizability across platforms. Building on our prior research connecting robot-environment interaction and communication theory, we develop a new paradigm to construct robust and simply controlled multi-legged elongate robots (MERs) capable of operating effectively in cluttered, unstructured environments. In this framework, each leg-ground contact is thought of as a basic active contact (bac), akin to bits in signal transmission. Reliable locomotion can be achieved in open-loop on "noisy" landscapes via sufficient redundancy in bacs. In such situations, robustness is achieved through passive mechanical responses. We term such processes as those displaying mechanical intelligence (MI) and analogize these processes to forward error correction (FEC) in signal transmission. To augment MI, we develop feedback control schemes, which we refer to as computational intelligence (CI) and such processes analogize automatic repeat request (ARQ) in signal transmission. Integration of these analogies between locomotion and communication theory allow analysis, design, and prediction of embodied intelligence control schemes (integrating MI and CI) in MERs, showing effective and reliable performance (approximately half body lengths per cycle) on complex landscapes with terrain "noise" over twice the robot's height. Our work provides a foundation for systematic development of MER control, paving the way for terrain-agnostic, agile, and resilient robotic systems capable of operating in extreme environments.
☆ Correspondence-Free Multiview Point Cloud Registration via Depth-Guided Joint Optimisation IROS 2025
Multiview point cloud registration is a fundamental task for constructing globally consistent 3D models. Existing approaches typically rely on feature extraction and data association across multiple point clouds; however, these processes are challenging to obtain global optimal solution in complex environments. In this paper, we introduce a novel correspondence-free multiview point cloud registration method. Specifically, we represent the global map as a depth map and leverage raw depth information to formulate a non-linear least squares optimisation that jointly estimates poses of point clouds and the global map. Unlike traditional feature-based bundle adjustment methods, which rely on explicit feature extraction and data association, our method bypasses these challenges by associating multi-frame point clouds with a global depth map through their corresponding poses. This data association is implicitly incorporated and dynamically refined during the optimisation process. Extensive evaluations on real-world datasets demonstrate that our method outperforms state-of-the-art approaches in accuracy, particularly in challenging environments where feature extraction and data association are difficult.
comment: 8 pages, accepted for publication in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ An Advanced Framework for Ultra-Realistic Simulation and Digital Twinning for Autonomous Vehicles
Simulation is a fundamental tool in developing autonomous vehicles, enabling rigorous testing without the logistical and safety challenges associated with real-world trials. As autonomous vehicle technologies evolve and public safety demands increase, advanced, realistic simulation frameworks are critical. Current testing paradigms employ a mix of general-purpose and specialized simulators, such as CARLA and IVRESS, to achieve high-fidelity results. However, these tools often struggle with compatibility due to differing platform, hardware, and software requirements, severely hampering their combined effectiveness. This paper introduces BlueICE, an advanced framework for ultra-realistic simulation and digital twinning, to address these challenges. BlueICE's innovative architecture allows for the decoupling of computing platforms, hardware, and software dependencies while offering researchers customizable testing environments to meet diverse fidelity needs. Key features include containerization to ensure compatibility across different systems, a unified communication bridge for seamless integration of various simulation tools, and synchronized orchestration of input and output across simulators. This framework facilitates the development of sophisticated digital twins for autonomous vehicle testing and sets a new standard in simulation accuracy and flexibility. The paper further explores the application of BlueICE in two distinct case studies: the ICAT indoor testbed and the STAR campus outdoor testbed at the University of Delaware. These case studies demonstrate BlueICE's capability to create sophisticated digital twins for autonomous vehicle testing and underline its potential as a standardized testbed for future autonomous driving technologies.
comment: 6 Pages. 5 Figures, 1 Table
♻ ☆ Semantic-Geometric-Physical-Driven Robot Manipulation Skill Transfer via Skill Library and Tactile Representation
Developing general robotic systems capable of manipulating in unstructured environments is a significant challenge, particularly as the tasks involved are typically long-horizon and rich-contact, requiring efficient skill transfer across different task scenarios. To address these challenges, we propose knowledge graph-based skill library construction method. This method hierarchically organizes manipulation knowledge using "task graph" and "scene graph" to represent task-specific and scene-specific information, respectively. Additionally, we introduce "state graph" to facilitate the interaction between high-level task planning and low-level scene information. Building upon this foundation, we further propose a novel hierarchical skill transfer framework based on the skill library and tactile representation, which integrates high-level reasoning for skill transfer and low-level precision for execution. At the task level, we utilize large language models (LLMs) and combine contextual learning with a four-stage chain-of-thought prompting paradigm to achieve subtask sequence transfer. At the motion level, we develop an adaptive trajectory transfer method based on the skill library and the heuristic path planning algorithm. At the physical level, we propose an adaptive contour extraction and posture perception method based on tactile representation. This method dynamically acquires high-precision contour and posture information from visual-tactile images, adjusting parameters such as contact position and posture to ensure the effectiveness of transferred skills in new environments. Experiments demonstrate the skill transfer and adaptability capabilities of the proposed methods across different task scenarios. Project website: https://github.com/MingchaoQi/skill_transfer
♻ ☆ PP-Tac: Paper Picking Using Tactile Feedback in Dexterous Robotic Hands RSS
Robots are increasingly envisioned as human companions, assisting with everyday tasks that often involve manipulating deformable objects. Although recent advances in robotic hardware and embodied AI have expanded their capabilities, current systems still struggle with handling thin, flat, and deformable objects such as paper and fabric. This limitation arises from the lack of suitable perception techniques for robust state estimation under diverse object appearances, as well as the absence of planning techniques for generating appropriate grasp motions. To bridge these gaps, this paper introduces PP-Tac, a robotic system for picking up paper-like objects. PP-Tac features a multi-fingered robotic hand with high-resolution omnidirectional tactile sensors \sensorname. This hardware configuration enables real-time slip detection and online frictional force control that mitigates such slips. Furthermore, grasp motion generation is achieved through a trajectory synthesis pipeline, which first constructs a dataset of finger's pinching motions. Based on this dataset, a diffusion-based policy is trained to control the hand-arm robotic system. Experiments demonstrate that PP-Tac can effectively grasp paper-like objects of varying material, thickness, and stiffness, achieving an overall success rate of 87.5\%. To our knowledge, this work is the first attempt to grasp paper-like deformable objects using a tactile dexterous hand. Our project webpage can be found at: https://peilin-666.github.io/projects/PP-Tac/
comment: accepted by Robotics: Science and Systems(RSS) 2025 url: https://peilin-666.github.io/projects/PP-Tac/
♻ ☆ Learning the Geometric Mechanics of Robot Motion Using Gaussian Mixtures
Data-driven models of robot motion constructed using principles from Geometric Mechanics have been shown to produce useful predictions of robot motion for a variety of robots. For robots with a useful number of DoF, these geometric mechanics models can only be constructed in the neighborhood of a gait. Here we show how Gaussian Mixture Models (GMM) can be used as a form of manifold learning that learns the structure of the Geometric Mechanics "motility map" and demonstrate: [i] a sizable improvement in prediction quality when compared to the previously published methods; [ii] a method that can be applied to any motion dataset and not only periodic gait data; [iii] a way to pre-process the data-set to facilitate extrapolation in places where the motility map is known to be linear. Our results can be applied anywhere a data-driven geometric motion model might be useful.
comment: 16 pages, 10 figures
♻ ☆ An Actionable Hierarchical Scene Representation Enhancing Autonomous Inspection Missions in Unknown Environments IROS 2025
In this article, we present the Layered Semantic Graphs (LSG), a novel actionable hierarchical scene graph, fully integrated with a multi-modal mission planner, the FLIE: A First-Look based Inspection and Exploration planner. The novelty of this work stems from aiming to address the task of maintaining an intuitive and multi-resolution scene representation, while simultaneously offering a tractable foundation for planning and scene understanding during an ongoing inspection mission of apriori unknown targets-of-interest in an unknown environment. The proposed LSG scheme is composed of locally nested hierarchical graphs, at multiple layers of abstraction, with the abstract concepts grounded on the functionality of the integrated FLIE planner. Furthermore, LSG encapsulates real-time semantic segmentation models that offer extraction and localization of desired semantic elements within the hierarchical representation. This extends the capability of the inspection planner, which can then leverage LSG to make an informed decision to inspect a particular semantic of interest. We also emphasize the hierarchical and semantic path-planning capabilities of LSG, which could extend inspection missions by improving situational awareness for human operators in an unknown environment. The validity of the proposed scheme is proven through extensive evaluations of the proposed architecture in simulations, as well as experimental field deployments on a Boston Dynamics Spot quadruped robot in urban outdoor environment settings.
comment: Accepted to IROS 2025
♻ ☆ LLM-as-BT-Planner: Leveraging LLMs for Behavior Tree Generation in Robot Task Planning ICRA 2025
Robotic assembly tasks remain an open challenge due to their long horizon nature and complex part relations. Behavior trees (BTs) are increasingly used in robot task planning for their modularity and flexibility, but creating them manually can be effort-intensive. Large language models (LLMs) have recently been applied to robotic task planning for generating action sequences, yet their ability to generate BTs has not been fully investigated. To this end, we propose LLM-as-BT-Planner, a novel framework that leverages LLMs for BT generation in robotic assembly task planning. Four in-context learning methods are introduced to utilize the natural language processing and inference capabilities of LLMs for producing task plans in BT format, reducing manual effort while ensuring robustness and comprehensibility. Additionally, we evaluate the performance of fine-tuned smaller LLMs on the same tasks. Experiments in both simulated and real-world settings demonstrate that our framework enhances LLMs' ability to generate BTs, improving success rate through in-context learning and supervised fine-tuning.
comment: 7 pages. presented in ICRA 2025
♻ ☆ A compact neuromorphic system for ultra-energy-efficient, on-device robot localization
Neuromorphic computing offers a transformative pathway to overcome the computational and energy challenges faced in deploying robotic localization and navigation systems at the edge. Visual place recognition, a critical component for navigation, is often hampered by the high resource demands of conventional systems, making them unsuitable for small-scale robotic platforms which still require accurate long-endurance localization. Although neuromorphic approaches offer potential for greater efficiency, real-time edge deployment remains constrained by the complexity of bio-realistic networks. In order to overcome this challenge, fusion of hardware and algorithms is critical to employ this specialized computing paradigm. Here, we demonstrate a neuromorphic localization system that performs competitive place recognition in up to 8 kilometers of traversal using models as small as 180 kilobytes with 44,000 parameters, while consuming less than 8% of the energy required by conventional methods. Our Locational Encoding with Neuromorphic Systems (LENS) integrates spiking neural networks, an event-based dynamic vision sensor, and a neuromorphic processor within a single SynSense Speck chip, enabling real-time, energy-efficient localization on a hexapod robot. When compared to a benchmark place recognition method, Sum-of-Absolute-Differences (SAD), LENS performs comparably in overall precision. LENS represents an accurate fully neuromorphic localization system capable of large-scale, on-device deployment for energy efficient robotic place recognition. Neuromorphic computing enables resource-constrained robots to perform energy efficient, accurate localization.
comment: 42 pages, 5 main figures, 8 supplementary figures, 2 supplementary tables, and 1 movie
♻ ☆ Map Space Belief Prediction for Manipulation-Enhanced Mapping RSS 2025
Searching for objects in cluttered environments requires selecting efficient viewpoints and manipulation actions to remove occlusions and reduce uncertainty in object locations, shapes, and categories. In this work, we address the problem of manipulation-enhanced semantic mapping, where a robot has to efficiently identify all objects in a cluttered shelf. Although Partially Observable Markov Decision Processes~(POMDPs) are standard for decision-making under uncertainty, representing unstructured interactive worlds remains challenging in this formalism. To tackle this, we define a POMDP whose belief is summarized by a metric-semantic grid map and propose a novel framework that uses neural networks to perform map-space belief updates to reason efficiently and simultaneously about object geometries, locations, categories, occlusions, and manipulation physics. Further, to enable accurate information gain analysis, the learned belief updates should maintain calibrated estimates of uncertainty. Therefore, we propose Calibrated Neural-Accelerated Belief Updates (CNABUs) to learn a belief propagation model that generalizes to novel scenarios and provides confidence-calibrated predictions for unknown areas. Our experiments show that our novel POMDP planner improves map completeness and accuracy over existing methods in challenging simulations and successfully transfers to real-world cluttered shelves in zero-shot fashion.
comment: 14 pages, 10 figures; Published at RSS 2025 - this version contains a small fix to figure 6 which was missing a plot in the original submission
♻ ☆ Closed-Loop Long-Horizon Robotic Planning via Equilibrium Sequence Modeling ICML 2025
In the endeavor to make autonomous robots take actions, task planning is a major challenge that requires translating high-level task descriptions to long-horizon action sequences. Despite recent advances in language model agents, they remain prone to planning errors and limited in their ability to plan ahead. To address these limitations in robotic planning, we advocate a self-refining scheme that iteratively refines a draft plan until an equilibrium is reached. Remarkably, this process can be optimized end-to-end from an analytical perspective without the need to curate additional verifiers or reward models, allowing us to train self-refining planners in a simple supervised learning fashion. Meanwhile, a nested equilibrium sequence modeling procedure is devised for efficient closed-loop planning that incorporates useful feedback from the environment (or an internal world model). Our method is evaluated on the VirtualHome-Env benchmark, showing advanced performance with improved scaling w.r.t. inference-time computation. Code is available at https://github.com/Singularity0104/equilibrium-planner.
comment: ICML 2025
♻ ☆ SurgSora: Object-Aware Diffusion Model for Controllable Surgical Video Generation
Surgical video generation can enhance medical education and research, but existing methods lack fine-grained motion control and realism. We introduce SurgSora, a framework that generates high-fidelity, motion-controllable surgical videos from a single input frame and user-specified motion cues. Unlike prior approaches that treat objects indiscriminately or rely on ground-truth segmentation masks, SurgSora leverages self-predicted object features and depth information to refine RGB appearance and optical flow for precise video synthesis. It consists of three key modules: (1) the Dual Semantic Injector, which extracts object-specific RGB-D features and segmentation cues to enhance spatial representations; (2) the Decoupled Flow Mapper, which fuses multi-scale optical flow with semantic features for realistic motion dynamics; and (3) the Trajectory Controller, which estimates sparse optical flow and enables user-guided object movement. By conditioning these enriched features within the Stable Video Diffusion, SurgSora achieves state-of-the-art visual authenticity and controllability in advancing surgical video synthesis, as demonstrated by extensive quantitative and qualitative comparisons. Our human evaluation in collaboration with expert surgeons further demonstrates the high realism of SurgSora-generated videos, highlighting the potential of our method for surgical training and education. Our project is available at https://surgsora.github.io/surgsora.github.io.
♻ ☆ Tailless Flapping-Wing Robot With Bio-Inspired Elastic Passive Legs for Multi-Modal Locomotion RAL
Flapping-wing robots offer significant versatility; however, achieving efficient multi-modal locomotion remains challenging. This paper presents the design, modeling, and experimentation of a novel tailless flapping-wing robot with three independently actuated pairs of wings. Inspired by the leg morphology of juvenile water striders, the robot incorporates bio-inspired elastic passive legs that convert flapping-induced vibrations into directional ground movement, enabling locomotion without additional actuators. This vibration-driven mechanism facilitates lightweight, mechanically simplified multi-modal mobility. An SE(3)-based controller coordinates flight and mode transitions with minimal actuation. To validate the robot's feasibility, a functional prototype was developed, and experiments were conducted to evaluate its flight, ground locomotion, and mode-switching capabilities. Results show satisfactory performance under constrained actuation, highlighting the potential of multi-modal flapping-wing designs for future aerial-ground robotic applications. These findings provide a foundation for future studies on frequency-based terrestrial control and passive yaw stabilization in hybrid locomotion systems.
comment: 8 pages, 11 figures, accepted by IEEE Robotics and Automation Letters (RAL)
♻ ☆ Human-Robot Co-Transportation using Disturbance-Aware MPC with Pose Optimization
This paper proposes a new control algorithm for human-robot co-transportation using a robot manipulator equipped with a mobile base and a robotic arm. We integrate the regular Model Predictive Control (MPC) with a novel pose optimization mechanism to more efficiently mitigate disturbances (such as human behavioral uncertainties or robot actuation noise) during the task. The core of our methodology involves a two-step iterative design: At each planning horizon, we determine the optimal pose of the robotic arm (joint angle configuration) from a candidate set, aiming to achieve the lowest estimated control cost. This selection is based on solving a disturbance-aware Discrete Algebraic Ricatti Equation (DARE), which also determines the optimal inputs for the robot's whole body control (including both the mobile base and the robotic arm). To validate the effectiveness of the proposed approach, we provide theoretical derivation for the disturbance-aware DARE and perform simulated experiments and hardware demos using a Fetch robot under varying conditions, including different trajectories and different levels of disturbances. The results reveal that our proposed approach outperforms baseline algorithms.
comment: 8 pages, 6 figures
♻ ☆ Robo2VLM: Visual Question Answering from Large-Scale In-the-Wild Robot Manipulation Datasets
Vision-Language Models (VLMs) acquire real-world knowledge and general reasoning ability through Internet-scale image-text corpora. They can augment robotic systems with scene understanding and task planning, and assist visuomotor policies that are trained on robot trajectory data. We explore the reverse paradigm - using rich, real, multi-modal robot trajectory data to enhance and evaluate VLMs. In this paper, we present Robo2VLM, a Visual Question Answering (VQA) dataset generation framework for VLMs. Given a human tele-operated robot trajectory, Robo2VLM derives ground-truth from non-visual and non-descriptive sensory modalities, such as end-effector pose, gripper aperture, and force sensing. Based on these modalities, it segments the robot trajectory into a sequence of manipulation phases. At each phase, Robo2VLM uses scene and interaction understanding to identify 3D properties of the robot, task goal, and the target object. The properties are used to generate representative VQA queries - images with textural multiple-choice questions - based on spatial, goal-conditioned, and interaction reasoning question templates. We curate Robo2VLM-1, a large-scale in-the-wild dataset with 684,710 questions covering 463 distinct scenes and 3,396 robotic manipulation tasks from 176k real robot trajectories. Results suggest that Robo2VLM-1 can benchmark and improve VLM capabilities in spatial and interaction reasoning.
♻ ☆ RefAV: Towards Planning-Centric Scenario Mining
Autonomous Vehicles (AVs) collect and pseudo-label terabytes of multi-modal data localized to HD maps during normal fleet testing. However, identifying interesting and safety-critical scenarios from uncurated driving logs remains a significant challenge. Traditional scenario mining techniques are error-prone and prohibitively time-consuming, often relying on hand-crafted structured queries. In this work, we revisit spatio-temporal scenario mining through the lens of recent vision-language models (VLMs) to detect whether a described scenario occurs in a driving log and, if so, precisely localize it in both time and space. To address this problem, we introduce RefAV, a large-scale dataset of 10,000 diverse natural language queries that describe complex multi-agent interactions relevant to motion planning derived from 1000 driving logs in the Argoverse 2 Sensor dataset. We evaluate several referential multi-object trackers and present an empirical analysis of our baselines. Notably, we find that naively repurposing off-the-shelf VLMs yields poor performance, suggesting that scenario mining presents unique challenges. Lastly, we discuss our recent CVPR 2025 competition and share insights from the community. Our code and dataset are available at https://github.com/CainanD/RefAV/ and https://argoverse.github.io/user-guide/tasks/scenario_mining.html
comment: Project Page: https://cainand.github.io/RefAV/
Robotics 67
☆ GMT: General Motion Tracking for Humanoid Whole-Body Control
The ability to track general whole-body motions in the real world is a useful way to build general-purpose humanoid robots. However, achieving this can be challenging due to the temporal and kinematic diversity of the motions, the policy's capability, and the difficulty of coordination of the upper and lower bodies. To address these issues, we propose GMT, a general and scalable motion-tracking framework that trains a single unified policy to enable humanoid robots to track diverse motions in the real world. GMT is built upon two core components: an Adaptive Sampling strategy and a Motion Mixture-of-Experts (MoE) architecture. The Adaptive Sampling automatically balances easy and difficult motions during training. The MoE ensures better specialization of different regions of the motion manifold. We show through extensive experiments in both simulation and the real world the effectiveness of GMT, achieving state-of-the-art performance across a broad spectrum of motions using a unified general policy. Videos and additional information can be found at https://gmt-humanoid.github.io.
☆ CDP: Towards Robust Autoregressive Visuomotor Policy Learning via Causal Diffusion
Diffusion Policy (DP) enables robots to learn complex behaviors by imitating expert demonstrations through action diffusion. However, in practical applications, hardware limitations often degrade data quality, while real-time constraints restrict model inference to instantaneous state and scene observations. These limitations seriously reduce the efficacy of learning from expert demonstrations, resulting in failures in object localization, grasp planning, and long-horizon task execution. To address these challenges, we propose Causal Diffusion Policy (CDP), a novel transformer-based diffusion model that enhances action prediction by conditioning on historical action sequences, thereby enabling more coherent and context-aware visuomotor policy learning. To further mitigate the computational cost associated with autoregressive inference, a caching mechanism is also introduced to store attention key-value pairs from previous timesteps, substantially reducing redundant computations during execution. Extensive experiments in both simulated and real-world environments, spanning diverse 2D and 3D manipulation tasks, demonstrate that CDP uniquely leverages historical action sequences to achieve significantly higher accuracy than existing methods. Moreover, even when faced with degraded input observation quality, CDP maintains remarkable precision by reasoning through temporal continuity, which highlights its practical robustness for robotic control under realistic, imperfect conditions.
☆ RobotSmith: Generative Robotic Tool Design for Acquisition of Complex Manipulation Skills
Endowing robots with tool design abilities is critical for enabling them to solve complex manipulation tasks that would otherwise be intractable. While recent generative frameworks can automatically synthesize task settings, such as 3D scenes and reward functions, they have not yet addressed the challenge of tool-use scenarios. Simply retrieving human-designed tools might not be ideal since many tools (e.g., a rolling pin) are difficult for robotic manipulators to handle. Furthermore, existing tool design approaches either rely on predefined templates with limited parameter tuning or apply generic 3D generation methods that are not optimized for tool creation. To address these limitations, we propose RobotSmith, an automated pipeline that leverages the implicit physical knowledge embedded in vision-language models (VLMs) alongside the more accurate physics provided by physics simulations to design and use tools for robotic manipulation. Our system (1) iteratively proposes tool designs using collaborative VLM agents, (2) generates low-level robot trajectories for tool use, and (3) jointly optimizes tool geometry and usage for task performance. We evaluate our approach across a wide range of manipulation tasks involving rigid, deformable, and fluid objects. Experiments show that our method consistently outperforms strong baselines in terms of both task success rate and overall performance. Notably, our approach achieves a 50.0\% average success rate, significantly surpassing other baselines such as 3D generation (21.4%) and tool retrieval (11.1%). Finally, we deploy our system in real-world settings, demonstrating that the generated tools and their usage plans transfer effectively to physical execution, validating the practicality and generalization capabilities of our approach.
☆ Markov Regime-Switching Intelligent Driver Model for Interpretable Car-Following Behavior
Accurate and interpretable car-following models are essential for traffic simulation and autonomous vehicle development. However, classical models like the Intelligent Driver Model (IDM) are fundamentally limited by their parsimonious and single-regime structure. They fail to capture the multi-modal nature of human driving, where a single driving state (e.g., speed, relative speed, and gap) can elicit many different driver actions. This forces the model to average across distinct behaviors, reducing its fidelity and making its parameters difficult to interpret. To overcome this, we introduce a regime-switching framework that allows driving behavior to be governed by different IDM parameter sets, each corresponding to an interpretable behavioral mode. This design enables the model to dynamically switch between interpretable behavioral modes, rather than averaging across diverse driving contexts. We instantiate the framework using a Factorial Hidden Markov Model with IDM dynamics (FHMM-IDM), which explicitly separates intrinsic driving regimes (e.g., aggressive acceleration, steady-state following) from external traffic scenarios (e.g., free-flow, congestion, stop-and-go) through two independent latent Markov processes. Bayesian inference via Markov chain Monte Carlo (MCMC) is used to jointly estimate the regime-specific parameters, transition dynamics, and latent state trajectories. Experiments on the HighD dataset demonstrate that FHMM-IDM uncovers interpretable structure in human driving, effectively disentangling internal driver actions from contextual traffic conditions and revealing dynamic regime-switching patterns. This framework provides a tractable and principled solution to modeling context-dependent driving behavior under uncertainty, offering improvements in the fidelity of traffic simulations, the efficacy of safety analyses, and the development of more human-centric ADAS.
☆ Tactile Beyond Pixels: Multisensory Touch Representations for Robot Manipulation
We present Sparsh-X, the first multisensory touch representations across four tactile modalities: image, audio, motion, and pressure. Trained on ~1M contact-rich interactions collected with the Digit 360 sensor, Sparsh-X captures complementary touch signals at diverse temporal and spatial scales. By leveraging self-supervised learning, Sparsh-X fuses these modalities into a unified representation that captures physical properties useful for robot manipulation tasks. We study how to effectively integrate real-world touch representations for both imitation learning and tactile adaptation of sim-trained policies, showing that Sparsh-X boosts policy success rates by 63% over an end-to-end model using tactile images and improves robustness by 90% in recovering object states from touch. Finally, we benchmark Sparsh-X ability to make inferences about physical properties, such as object-action identification, material-quantity estimation, and force estimation. Sparsh-X improves accuracy in characterizing physical properties by 48% compared to end-to-end approaches, demonstrating the advantages of multisensory pretraining for capturing features essential for dexterous manipulation.
☆ Casper: Inferring Diverse Intents for Assistive Teleoperation with Vision Language Models
Assistive teleoperation, where control is shared between a human and a robot, enables efficient and intuitive human-robot collaboration in diverse and unstructured environments. A central challenge in real-world assistive teleoperation is for the robot to infer a wide range of human intentions from user control inputs and to assist users with correct actions. Existing methods are either confined to simple, predefined scenarios or restricted to task-specific data distributions at training, limiting their support for real-world assistance. We introduce Casper, an assistive teleoperation system that leverages commonsense knowledge embedded in pre-trained visual language models (VLMs) for real-time intent inference and flexible skill execution. Casper incorporates an open-world perception module for a generalized understanding of novel objects and scenes, a VLM-powered intent inference mechanism that leverages commonsense reasoning to interpret snippets of teleoperated user input, and a skill library that expands the scope of prior assistive teleoperation systems to support diverse, long-horizon mobile manipulation tasks. Extensive empirical evaluation, including human studies and system ablations, demonstrates that Casper improves task performance, reduces human cognitive load, and achieves higher user satisfaction than direct teleoperation and assistive teleoperation baselines.
☆ DiFuse-Net: RGB and Dual-Pixel Depth Estimation using Window Bi-directional Parallax Attention and Cross-modal Transfer Learning IROS 2025
Depth estimation is crucial for intelligent systems, enabling applications from autonomous navigation to augmented reality. While traditional stereo and active depth sensors have limitations in cost, power, and robustness, dual-pixel (DP) technology, ubiquitous in modern cameras, offers a compelling alternative. This paper introduces DiFuse-Net, a novel modality decoupled network design for disentangled RGB and DP based depth estimation. DiFuse-Net features a window bi-directional parallax attention mechanism (WBiPAM) specifically designed to capture the subtle DP disparity cues unique to smartphone cameras with small aperture. A separate encoder extracts contextual information from the RGB image, and these features are fused to enhance depth prediction. We also propose a Cross-modal Transfer Learning (CmTL) mechanism to utilize large-scale RGB-D datasets in the literature to cope with the limitations of obtaining large-scale RGB-DP-D dataset. Our evaluation and comparison of the proposed method demonstrates its superiority over the DP and stereo-based baseline methods. Additionally, we contribute a new, high-quality, real-world RGB-DP-D training dataset, named Dual-Camera Dual-Pixel (DCDP) dataset, created using our novel symmetric stereo camera hardware setup, stereo calibration and rectification protocol, and AI stereo disparity estimation method.
comment: Accepted in IROS 2025
☆ AGENTSAFE: Benchmarking the Safety of Embodied Agents on Hazardous Instructions
The rapid advancement of vision-language models (VLMs) and their integration into embodied agents have unlocked powerful capabilities for decision-making. However, as these systems are increasingly deployed in real-world environments, they face mounting safety concerns, particularly when responding to hazardous instructions. In this work, we propose AGENTSAFE, the first comprehensive benchmark for evaluating the safety of embodied VLM agents under hazardous instructions. AGENTSAFE simulates realistic agent-environment interactions within a simulation sandbox and incorporates a novel adapter module that bridges the gap between high-level VLM outputs and low-level embodied controls. Specifically, it maps recognized visual entities to manipulable objects and translates abstract planning into executable atomic actions in the environment. Building on this, we construct a risk-aware instruction dataset inspired by Asimovs Three Laws of Robotics, including base risky instructions and mutated jailbroken instructions. The benchmark includes 45 adversarial scenarios, 1,350 hazardous tasks, and 8,100 hazardous instructions, enabling systematic testing under adversarial conditions ranging from perception, planning, and action execution stages.
comment: 11 pages
☆ Factor-Graph-Based Passive Acoustic Navigation for Decentralized Cooperative Localization Using Bearing Elevation Depth Difference
Accurate and scalable underwater multi-agent localization remains a critical challenge due to the constraints of underwater communication. In this work, we propose a multi-agent localization framework using a factor-graph representation that incorporates bearing, elevation, and depth difference (BEDD). Our method leverages inverted ultra-short baseline (inverted-USBL) derived azimuth and elevation measurements from incoming acoustic signals and relative depth measurements to enable cooperative localization for a multi-robot team of autonomous underwater vehicles (AUVs). We validate our approach in the HoloOcean underwater simulator with a fleet of AUVs, demonstrating improved localization accuracy compared to dead reckoning. Additionally, we investigate the impact of azimuth and elevation measurement outliers, highlighting the need for robust outlier rejection techniques for acoustic signals.
☆ SENIOR: Efficient Query Selection and Preference-Guided Exploration in Preference-based Reinforcement Learning
Preference-based Reinforcement Learning (PbRL) methods provide a solution to avoid reward engineering by learning reward models based on human preferences. However, poor feedback- and sample- efficiency still remain the problems that hinder the application of PbRL. In this paper, we present a novel efficient query selection and preference-guided exploration method, called SENIOR, which could select the meaningful and easy-to-comparison behavior segment pairs to improve human feedback-efficiency and accelerate policy learning with the designed preference-guided intrinsic rewards. Our key idea is twofold: (1) We designed a Motion-Distinction-based Selection scheme (MDS). It selects segment pairs with apparent motion and different directions through kernel density estimation of states, which is more task-related and easy for human preference labeling; (2) We proposed a novel preference-guided exploration method (PGE). It encourages the exploration towards the states with high preference and low visits and continuously guides the agent achieving the valuable samples. The synergy between the two mechanisms could significantly accelerate the progress of reward and policy learning. Our experiments show that SENIOR outperforms other five existing methods in both human feedback-efficiency and policy convergence speed on six complex robot manipulation tasks from simulation and four real-worlds.
comment: 8 pages, 8 figures
☆ Latent Action Diffusion for Cross-Embodiment Manipulation
End-to-end learning approaches offer great potential for robotic manipulation, but their impact is constrained by data scarcity and heterogeneity across different embodiments. In particular, diverse action spaces across different end-effectors create barriers for cross-embodiment learning and skill transfer. We address this challenge through diffusion policies learned in a latent action space that unifies diverse end-effector actions. We first show that we can learn a semantically aligned latent action space for anthropomorphic robotic hands, a human hand, and a parallel jaw gripper using encoders trained with a contrastive loss. Second, we show that by using our proposed latent action space for co-training on manipulation data from different end-effectors, we can utilize a single policy for multi-robot control and obtain up to 13% improved manipulation success rates, indicating successful skill transfer despite a significant embodiment gap. Our approach using latent cross-embodiment policies presents a new method to unify different action spaces across embodiments, enabling efficient multi-robot control and data sharing across robot setups. This unified representation significantly reduces the need for extensive data collection for each new robot morphology, accelerates generalization across embodiments, and ultimately facilitates more scalable and efficient robotic learning.
comment: 14 pages, 6 figures
☆ NetRoller: Interfacing General and Specialized Models for End-to-End Autonomous Driving
Integrating General Models (GMs) such as Large Language Models (LLMs), with Specialized Models (SMs) in autonomous driving tasks presents a promising approach to mitigating challenges in data diversity and model capacity of existing specialized driving models. However, this integration leads to problems of asynchronous systems, which arise from the distinct characteristics inherent in GMs and SMs. To tackle this challenge, we propose NetRoller, an adapter that incorporates a set of novel mechanisms to facilitate the seamless integration of GMs and specialized driving models. Specifically, our mechanisms for interfacing the asynchronous GMs and SMs are organized into three key stages. NetRoller first harvests semantically rich and computationally efficient representations from the reasoning processes of LLMs using an early stopping mechanism, which preserves critical insights on driving context while maintaining low overhead. It then applies learnable query embeddings, nonsensical embeddings, and positional layer embeddings to facilitate robust and efficient cross-modality translation. At last, it employs computationally efficient Query Shift and Feature Shift mechanisms to enhance the performance of SMs through few-epoch fine-tuning. Based on the mechanisms formalized in these three stages, NetRoller enables specialized driving models to operate at their native frequencies while maintaining situational awareness of the GM. Experiments conducted on the nuScenes dataset demonstrate that integrating GM through NetRoller significantly improves human similarity and safety in planning tasks, and it also achieves noticeable precision improvements in detection and mapping tasks for end-to-end autonomous driving. The code and models are available at https://github.com/Rex-sys-hk/NetRoller .
comment: This work has been submitted to the IEEE for possible publication
☆ VisLanding: Monocular 3D Perception for UAV Safe Landing via Depth-Normal Synergy IROS2025
This paper presents VisLanding, a monocular 3D perception-based framework for safe UAV (Unmanned Aerial Vehicle) landing. Addressing the core challenge of autonomous UAV landing in complex and unknown environments, this study innovatively leverages the depth-normal synergy prediction capabilities of the Metric3D V2 model to construct an end-to-end safe landing zones (SLZ) estimation framework. By introducing a safe zone segmentation branch, we transform the landing zone estimation task into a binary semantic segmentation problem. The model is fine-tuned and annotated using the WildUAV dataset from a UAV perspective, while a cross-domain evaluation dataset is constructed to validate the model's robustness. Experimental results demonstrate that VisLanding significantly enhances the accuracy of safe zone identification through a depth-normal joint optimization mechanism, while retaining the zero-shot generalization advantages of Metric3D V2. The proposed method exhibits superior generalization and robustness in cross-domain testing compared to other approaches. Furthermore, it enables the estimation of landing zone area by integrating predicted depth and normal information, providing critical decision-making support for practical applications.
comment: Accepted by IROS2025
☆ GAMORA: A Gesture Articulated Meta Operative Robotic Arm for Hazardous Material Handling in Containment-Level Environments
The convergence of robotics and virtual reality (VR) has enabled safer and more efficient workflows in high-risk laboratory settings, particularly virology labs. As biohazard complexity increases, minimizing direct human exposure while maintaining precision becomes essential. We propose GAMORA (Gesture Articulated Meta Operative Robotic Arm), a novel VR-guided robotic system that enables remote execution of hazardous tasks using natural hand gestures. Unlike existing scripted automation or traditional teleoperation, GAMORA integrates the Oculus Quest 2, NVIDIA Jetson Nano, and Robot Operating System (ROS) to provide real-time immersive control, digital twin simulation, and inverse kinematics-based articulation. The system supports VR-based training and simulation while executing precision tasks in physical environments via a 3D-printed robotic arm. Inverse kinematics ensure accurate manipulation for delicate operations such as specimen handling and pipetting. The pipeline includes Unity-based 3D environment construction, real-time motion planning, and hardware-in-the-loop testing. GAMORA achieved a mean positional discrepancy of 2.2 mm (improved from 4 mm), pipetting accuracy within 0.2 mL, and repeatability of 1.2 mm across 50 trials. Integrated object detection via YOLOv8 enhances spatial awareness, while energy-efficient operation (50% reduced power output) ensures sustainable deployment. The system's digital-physical feedback loop enables safe, precise, and repeatable automation of high-risk lab tasks. GAMORA offers a scalable, immersive solution for robotic control and biosafety in biomedical research environments.
☆ Can Pretrained Vision-Language Embeddings Alone Guide Robot Navigation? RSS
Foundation models have revolutionized robotics by providing rich semantic representations without task-specific training. While many approaches integrate pretrained vision-language models (VLMs) with specialized navigation architectures, the fundamental question remains: can these pretrained embeddings alone successfully guide navigation without additional fine-tuning or specialized modules? We present a minimalist framework that decouples this question by training a behavior cloning policy directly on frozen vision-language embeddings from demonstrations collected by a privileged expert. Our approach achieves a 74% success rate in navigation to language-specified targets, compared to 100% for the state-aware expert, though requiring 3.2 times more steps on average. This performance gap reveals that pretrained embeddings effectively support basic language grounding but struggle with long-horizon planning and spatial reasoning. By providing this empirical baseline, we highlight both the capabilities and limitations of using foundation models as drop-in representations for embodied tasks, offering critical insights for robotics researchers facing practical design tradeoffs between system complexity and performance in resource-constrained scenarios. Our code is available at https://github.com/oadamharoon/text2nav
comment: 6 figures, 2 tables, Accepted to Robotics: Science and Systems (RSS) 2025 Workshop on Robot Planning in the Era of Foundation Models (FM4RoboPlan)
☆ ros2 fanuc interface: Design and Evaluation of a Fanuc CRX Hardware Interface in ROS2
This paper introduces the ROS2 control and the Hardware Interface (HW) integration for the Fanuc CRX- robot family. It explains basic implementation details and communication protocols, and its integration with the Moveit2 motion planning library. We conducted a series of experiments to evaluate relevant performances in the robotics field. We tested the developed ros2_fanuc_interface for four relevant robotics cases: step response, trajectory tracking, collision avoidance integrated with Moveit2, and dynamic velocity scaling, respectively. Results show that, despite a non-negligible delay between command and feedback, the robot can track the defined path with negligible errors (if it complies with joint velocity limits), ensuring collision avoidance. Full code is open source and available at https://github.com/paolofrance/ros2_fanuc_interface.
☆ Automatic Cannulation of Femoral Vessels in a Porcine Shock Model
Rapid and reliable vascular access is critical in trauma and critical care. Central vascular catheterization enables high-volume resuscitation, hemodynamic monitoring, and advanced interventions like ECMO and REBOA. While peripheral access is common, central access is often necessary but requires specialized ultrasound-guided skills, posing challenges in prehospital settings. The complexity arises from deep target vessels and the precision needed for needle placement. Traditional techniques, like the Seldinger method, demand expertise to avoid complications. Despite its importance, ultrasound-guided central access is underutilized due to limited field expertise. While autonomous needle insertion has been explored for peripheral vessels, only semi-autonomous methods exist for femoral access. This work advances toward full automation, integrating robotic ultrasound for minimally invasive emergency procedures. Our key contribution is the successful femoral vein and artery cannulation in a porcine hemorrhagic shock model.
comment: 2 pages, 2 figures, conference
☆ Enhancing Object Search in Indoor Spaces via Personalized Object-factored Ontologies
Personalization is critical for the advancement of service robots. Robots need to develop tailored understandings of the environments they are put in. Moreover, they need to be aware of changes in the environment to facilitate long-term deployment. Long-term understanding as well as personalization is necessary to execute complex tasks like prepare dinner table or tidy my room. A precursor to such tasks is that of Object Search. Consequently, this paper focuses on locating and searching multiple objects in indoor environments. In this paper, we propose two crucial novelties. Firstly, we propose a novel framework that can enable robots to deduce Personalized Ontologies of indoor environments. Our framework consists of a personalization schema that enables the robot to tune its understanding of ontologies. Secondly, we propose an Adaptive Inferencing strategy. We integrate Dynamic Belief Updates into our approach which improves performance in multi-object search tasks. The cumulative effect of personalization and adaptive inferencing is an improved capability in long-term object search. This framework is implemented on top of a multi-layered semantic map. We conduct experiments in real environments and compare our results against various state-of-the-art (SOTA) methods to demonstrate the effectiveness of our approach. Additionally, we show that personalization can act as a catalyst to enhance the performance of SOTAs. Video Link: https://bit.ly/3WHk9i9
comment: 8 pages, 9 figures. Accepted for publication in 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems
☆ Adaptive Reinforcement Learning for Unobservable Random Delays
In standard Reinforcement Learning (RL) settings, the interaction between the agent and the environment is typically modeled as a Markov Decision Process (MDP), which assumes that the agent observes the system state instantaneously, selects an action without delay, and executes it immediately. In real-world dynamic environments, such as cyber-physical systems, this assumption often breaks down due to delays in the interaction between the agent and the system. These delays can vary stochastically over time and are typically unobservable, meaning they are unknown when deciding on an action. Existing methods deal with this uncertainty conservatively by assuming a known fixed upper bound on the delay, even if the delay is often much lower. In this work, we introduce the interaction layer, a general framework that enables agents to adaptively and seamlessly handle unobservable and time-varying delays. Specifically, the agent generates a matrix of possible future actions to handle both unpredictable delays and lost action packets sent over networks. Building on this framework, we develop a model-based algorithm, Actor-Critic with Delay Adaptation (ACDA), which dynamically adjusts to delay patterns. Our method significantly outperforms state-of-the-art approaches across a wide range of locomotion benchmark environments.
☆ Data Driven Approach to Input Shaping for Vibration Suppression in a Flexible Robot Arm
This paper presents a simple and effective method for setting parameters for an input shaper to suppress the residual vibrations in flexible robot arms using a data-driven approach. The parameters are adaptively tuned in the workspace of the robot by interpolating previously measured data of the robot's residual vibrations. Input shaping is a simple and robust technique to generate vibration-reduced shaped commands by a convolution of an impulse sequence with the desired input command. The generated impulses create waves in the material countering the natural vibrations of the system. The method is demonstrated with a flexible 3D-printed robot arm with multiple different materials, achieving a significant reduction in the residual vibrations.
comment: 6 pages, 11 figures, robosoft2025 conference
☆ Barrier Method for Inequality Constrained Factor Graph Optimization with Application to Model Predictive Control
Factor graphs have demonstrated remarkable efficiency for robotic perception tasks, particularly in localization and mapping applications. However, their application to optimal control problems -- especially Model Predictive Control (MPC) -- has remained limited due to fundamental challenges in constraint handling. This paper presents a novel integration of the Barrier Interior Point Method (BIPM) with factor graphs, implemented as an open-source extension to the widely adopted g2o framework. Our approach introduces specialized inequality factor nodes that encode logarithmic barrier functions, thereby overcoming the quadratic-form limitations of conventional factor graph formulations. To the best of our knowledge, this is the first g2o-based implementation capable of efficiently handling both equality and inequality constraints within a unified optimization backend. We validate the method through a multi-objective adaptive cruise control application for autonomous vehicles. Benchmark comparisons with state-of-the-art constraint-handling techniques demonstrate faster convergence and improved computational efficiency. (Code repository: https://github.com/snt-arg/bipm_g2o)
☆ ClutterDexGrasp: A Sim-to-Real System for General Dexterous Grasping in Cluttered Scenes
Dexterous grasping in cluttered scenes presents significant challenges due to diverse object geometries, occlusions, and potential collisions. Existing methods primarily focus on single-object grasping or grasp-pose prediction without interaction, which are insufficient for complex, cluttered scenes. Recent vision-language-action models offer a potential solution but require extensive real-world demonstrations, making them costly and difficult to scale. To address these limitations, we revisit the sim-to-real transfer pipeline and develop key techniques that enable zero-shot deployment in reality while maintaining robust generalization. We propose ClutterDexGrasp, a two-stage teacher-student framework for closed-loop target-oriented dexterous grasping in cluttered scenes. The framework features a teacher policy trained in simulation using clutter density curriculum learning, incorporating both a novel geometry and spatially-embedded scene representation and a comprehensive safety curriculum, enabling general, dynamic, and safe grasping behaviors. Through imitation learning, we distill the teacher's knowledge into a student 3D diffusion policy (DP3) that operates on partial point cloud observations. To the best of our knowledge, this represents the first zero-shot sim-to-real closed-loop system for target-oriented dexterous grasping in cluttered scenes, demonstrating robust performance across diverse objects and layouts. More details and videos are available at https://clutterdexgrasp.github.io/.
☆ Socially Aware Robot Crowd Navigation via Online Uncertainty-Driven Risk Adaptation
Navigation in human-robot shared crowded environments remains challenging, as robots are expected to move efficiently while respecting human motion conventions. However, many existing approaches emphasize safety or efficiency while overlooking social awareness. This article proposes Learning-Risk Model Predictive Control (LR-MPC), a data-driven navigation algorithm that balances efficiency, safety, and social awareness. LR-MPC consists of two phases: an offline risk learning phase, where a Probabilistic Ensemble Neural Network (PENN) is trained using risk data from a heuristic MPC-based baseline (HR-MPC), and an online adaptive inference phase, where local waypoints are sampled and globally guided by a Multi-RRT planner. Each candidate waypoint is evaluated for risk by PENN, and predictions are filtered using epistemic and aleatoric uncertainty to ensure robust decision-making. The safest waypoint is selected as the MPC input for real-time navigation. Extensive experiments demonstrate that LR-MPC outperforms baseline methods in success rate and social awareness, enabling robots to navigate complex crowds with high adaptability and low disruption. A website about this work is available at https://sites.google.com/view/lr-mpc.
☆ Uncertainty-Driven Radar-Inertial Fusion for Instantaneous 3D Ego-Velocity Estimation
We present a method for estimating ego-velocity in autonomous navigation by integrating high-resolution imaging radar with an inertial measurement unit. The proposed approach addresses the limitations of traditional radar-based ego-motion estimation techniques by employing a neural network to process complex-valued raw radar data and estimate instantaneous linear ego-velocity along with its associated uncertainty. This uncertainty-aware velocity estimate is then integrated with inertial measurement unit data using an Extended Kalman Filter. The filter leverages the network-predicted uncertainty to refine the inertial sensor's noise and bias parameters, improving the overall robustness and accuracy of the ego-motion estimation. We evaluated the proposed method on the publicly available ColoRadar dataset. Our approach achieves significantly lower error compared to the closest publicly available method and also outperforms both instantaneous and scan matching-based techniques.
comment: This paper has been accepted for presentation at the 28th International Conference on Information Fusion (Fusion 2025)
☆ Steering Robots with Inference-Time Interactions
Imitation learning has driven the development of generalist policies capable of autonomously solving multiple tasks. However, when a pretrained policy makes errors during deployment, there are limited mechanisms for users to correct its behavior. While collecting additional data for finetuning can address such issues, doing so for each downstream use case is inefficient at deployment. My research proposes an alternative: keeping pretrained policies frozen as a fixed skill repertoire while allowing user interactions to guide behavior generation toward user preferences at inference time. By making pretrained policies steerable, users can help correct policy errors when the model struggles to generalize-without needing to finetune the policy. Specifically, I propose (1) inference-time steering, which leverages user interactions to switch between discrete skills, and (2) task and motion imitation, which enables user interactions to edit continuous motions while satisfying task constraints defined by discrete symbolic plans. These frameworks correct misaligned policy predictions without requiring additional training, maximizing the utility of pretrained models while achieving inference-time user objectives.
comment: MIT Robotics PhD Thesis
☆ Whole-Body Control Framework for Humanoid Robots with Heavy Limbs: A Model-Based Approach
Humanoid robots often face significant balance issues due to the motion of their heavy limbs. These challenges are particularly pronounced when attempting dynamic motion or operating in environments with irregular terrain. To address this challenge, this manuscript proposes a whole-body control framework for humanoid robots with heavy limbs, using a model-based approach that combines a kino-dynamics planner and a hierarchical optimization problem. The kino-dynamics planner is designed as a model predictive control (MPC) scheme to account for the impact of heavy limbs on mass and inertia distribution. By simplifying the robot's system dynamics and constraints, the planner enables real-time planning of motion and contact forces. The hierarchical optimization problem is formulated using Hierarchical Quadratic Programming (HQP) to minimize limb control errors and ensure compliance with the policy generated by the kino-dynamics planner. Experimental validation of the proposed framework demonstrates its effectiveness. The humanoid robot with heavy limbs controlled by the proposed framework can achieve dynamic walking speeds of up to 1.2~m/s, respond to external disturbances of up to 60~N, and maintain balance on challenging terrains such as uneven surfaces, and outdoor environments.
☆ Public Acceptance of Cybernetic Avatars in the service sector: Evidence from a Large-Scale Survey in Dubai
Cybernetic avatars are hybrid interaction robots or digital representations that combine autonomous capabilities with teleoperated control. This study investigates the acceptance of cybernetic avatars in the highly multicultural society of Dubai, with particular emphasis on robotic avatars for customer service. Specifically, we explore how acceptance varies as a function of robot appearance (e.g., android, robotic-looking, cartoonish), deployment settings (e.g., shopping malls, hotels, hospitals), and functional tasks (e.g., providing information, patrolling). To this end, we conducted a large-scale survey with over 1,000 participants. Overall, cybernetic avatars received a high level of acceptance, with physical robot avatars receiving higher acceptance than digital avatars. In terms of appearance, robot avatars with a highly anthropomorphic robotic appearance were the most accepted, followed by cartoonish designs and androids. Animal-like appearances received the lowest level of acceptance. Among the tasks, providing information and guidance was rated as the most valued. Shopping malls, airports, public transport stations, and museums were the settings with the highest acceptance, whereas healthcare-related spaces received lower levels of support. An analysis by community cluster revealed among others that Emirati respondents showed significantly greater acceptance of android appearances compared to the overall sample, while participants from the 'Other Asia' cluster were significantly more accepting of cartoonish appearances. Our study underscores the importance of incorporating citizen feedback into the design and deployment of cybernetic avatars from the early stages to enhance acceptance of this technology in society.
comment: 25 pages, 3 Figures
☆ Robust Adaptive Time-Varying Control Barrier Function with Application to Robotic Surface Treatment
Set invariance techniques such as control barrier functions (CBFs) can be used to enforce time-varying constraints such as keeping a safe distance from dynamic objects. However, existing methods for enforcing time-varying constraints often overlook model uncertainties. To address this issue, this paper proposes a CBFs-based robust adaptive controller design endowing time-varying constraints while considering parametric uncertainty and additive disturbances. To this end, we first leverage Robust adaptive Control Barrier Functions (RaCBFs) to handle model uncertainty, along with the concept of Input-to-State Safety (ISSf) to ensure robustness towards input disturbances. Furthermore, to alleviate the inherent conservatism in robustness, we also incorporate a set membership identification scheme. We demonstrate the proposed method on robotic surface treatment that requires time-varying force bounds to ensure uniform quality, in numerical simulation and real robotic setup, showing that the quality is formally guaranteed within an acceptable range.
comment: This work has been accepted to ECC 2025
☆ A Novel Indicator for Quantifying and Minimizing Information Utility Loss of Robot Teams
The timely exchange of information among robots within a team is vital, but it can be constrained by limited wireless capacity. The inability to deliver information promptly can result in estimation errors that impact collaborative efforts among robots. In this paper, we propose a new metric termed Loss of Information Utility (LoIU) to quantify the freshness and utility of information critical for cooperation. The metric enables robots to prioritize information transmissions within bandwidth constraints. We also propose the estimation of LoIU using belief distributions and accordingly optimize both transmission schedule and resource allocation strategy for device-to-device transmissions to minimize the time-average LoIU within a robot team. A semi-decentralized Multi-Agent Deep Deterministic Policy Gradient framework is developed, where each robot functions as an actor responsible for scheduling transmissions among its collaborators while a central critic periodically evaluates and refines the actors in response to mobility and interference. Simulations validate the effectiveness of our approach, demonstrating an enhancement of information freshness and utility by 98%, compared to alternative methods.
☆ Narrate2Nav: Real-Time Visual Navigation with Implicit Language Reasoning in Human-Centric Environments
Large Vision-Language Models (VLMs) have demonstrated potential in enhancing mobile robot navigation in human-centric environments by understanding contextual cues, human intentions, and social dynamics while exhibiting reasoning capabilities. However, their computational complexity and limited sensitivity to continuous numerical data impede real-time performance and precise motion control. To this end, we propose Narrate2Nav, a novel real-time vision-action model that leverages a novel self-supervised learning framework based on the Barlow Twins redundancy reduction loss to embed implicit natural language reasoning, social cues, and human intentions within a visual encoder-enabling reasoning in the model's latent space rather than token space. The model combines RGB inputs, motion commands, and textual signals of scene context during training to bridge from robot observations to low-level motion commands for short-horizon point-goal navigation during deployment. Extensive evaluation of Narrate2Nav across various challenging scenarios in both offline unseen dataset and real-world experiments demonstrates an overall improvement of 52.94 percent and 41.67 percent, respectively, over the next best baseline. Additionally, qualitative comparative analysis of Narrate2Nav's visual encoder attention map against four other baselines demonstrates enhanced attention to navigation-critical scene elements, underscoring its effectiveness in human-centric navigation tasks.
☆ Pose State Perception of Interventional Robot for Cardio-cerebrovascular Procedures
In response to the increasing demand for cardiocerebrovascular interventional surgeries, precise control of interventional robots has become increasingly important. Within these complex vascular scenarios, the accurate and reliable perception of the pose state for interventional robots is particularly crucial. This paper presents a novel vision-based approach without the need of additional sensors or markers. The core of this paper's method consists of a three-part framework: firstly, a dual-head multitask U-Net model for simultaneous vessel segment and interventional robot detection; secondly, an advanced algorithm for skeleton extraction and optimization; and finally, a comprehensive pose state perception system based on geometric features is implemented to accurately identify the robot's pose state and provide strategies for subsequent control. The experimental results demonstrate the proposed method's high reliability and accuracy in trajectory tracking and pose state perception.
☆ AMPLIFY: Actionless Motion Priors for Robot Learning from Videos
Action-labeled data for robotics is scarce and expensive, limiting the generalization of learned policies. In contrast, vast amounts of action-free video data are readily available, but translating these observations into effective policies remains a challenge. We introduce AMPLIFY, a novel framework that leverages large-scale video data by encoding visual dynamics into compact, discrete motion tokens derived from keypoint trajectories. Our modular approach separates visual motion prediction from action inference, decoupling the challenges of learning what motion defines a task from how robots can perform it. We train a forward dynamics model on abundant action-free videos and an inverse dynamics model on a limited set of action-labeled examples, allowing for independent scaling. Extensive evaluations demonstrate that the learned dynamics are both accurate, achieving up to 3.7x better MSE and over 2.5x better pixel prediction accuracy compared to prior approaches, and broadly useful. In downstream policy learning, our dynamics predictions enable a 1.2-2.2x improvement in low-data regimes, a 1.4x average improvement by learning from action-free human videos, and the first generalization to LIBERO tasks from zero in-distribution action data. Beyond robotic control, we find the dynamics learned by AMPLIFY to be a versatile latent world model, enhancing video prediction quality. Our results present a novel paradigm leveraging heterogeneous data sources to build efficient, generalizable world models. More information can be found at https://amplify-robotics.github.io/.
☆ Hard Contacts with Soft Gradients: Refining Differentiable Simulators for Learning and Control
Contact forces pose a major challenge for gradient-based optimization of robot dynamics as they introduce jumps in the system's velocities. Penalty-based simulators, such as MuJoCo, simplify gradient computation by softening the contact forces. However, realistically simulating hard contacts requires very stiff contact settings, which leads to incorrect gradients when using automatic differentiation. On the other hand, using non-stiff settings strongly increases the sim-to-real gap. We analyze the contact computation of penalty-based simulators to identify the causes of gradient errors. Then, we propose DiffMJX, which combines adaptive integration with MuJoCo XLA, to notably improve gradient quality in the presence of hard contacts. Finally, we address a key limitation of contact gradients: they vanish when objects do not touch. To overcome this, we introduce Contacts From Distance (CFD), a mechanism that enables the simulator to generate informative contact gradients even before objects are in contact. To preserve physical realism, we apply CFD only in the backward pass using a straight-through trick, allowing us to compute useful gradients without modifying the forward simulation.
☆ Non-Overlap-Aware Egocentric Pose Estimation for Collaborative Perception in Connected Autonomy IROS 2025
Egocentric pose estimation is a fundamental capability for multi-robot collaborative perception in connected autonomy, such as connected autonomous vehicles. During multi-robot operations, a robot needs to know the relative pose between itself and its teammates with respect to its own coordinates. However, different robots usually observe completely different views that contains similar objects, which leads to wrong pose estimation. In addition, it is unrealistic to allow robots to share their raw observations to detect overlap due to the limited communication bandwidth constraint. In this paper, we introduce a novel method for Non-Overlap-Aware Egocentric Pose Estimation (NOPE), which performs egocentric pose estimation in a multi-robot team while identifying the non-overlap views and satifying the communication bandwidth constraint. NOPE is built upon an unified hierarchical learning framework that integrates two levels of robot learning: (1) high-level deep graph matching for correspondence identification, which allows to identify if two views are overlapping or not, (2) low-level position-aware cross-attention graph learning for egocentric pose estimation. To evaluate NOPE, we conduct extensive experiments in both high-fidelity simulation and real-world scenarios. Experimental results have demonstrated that NOPE enables the novel capability for non-overlapping-aware egocentric pose estimation and achieves state-of-art performance compared with the existing methods. Our project page at https://hongh0.github.io/NOPE/.
comment: IROS 2025
☆ TACS-Graphs: Traversability-Aware Consistent Scene Graphs for Ground Robot Indoor Localization and Mapping IROS 2025
Scene graphs have emerged as a powerful tool for robots, providing a structured representation of spatial and semantic relationships for advanced task planning. Despite their potential, conventional 3D indoor scene graphs face critical limitations, particularly under- and over-segmentation of room layers in structurally complex environments. Under-segmentation misclassifies non-traversable areas as part of a room, often in open spaces, while over-segmentation fragments a single room into overlapping segments in complex environments. These issues stem from naive voxel-based map representations that rely solely on geometric proximity, disregarding the structural constraints of traversable spaces and resulting in inconsistent room layers within scene graphs. To the best of our knowledge, this work is the first to tackle segmentation inconsistency as a challenge and address it with Traversability-Aware Consistent Scene Graphs (TACS-Graphs), a novel framework that integrates ground robot traversability with room segmentation. By leveraging traversability as a key factor in defining room boundaries, the proposed method achieves a more semantically meaningful and topologically coherent segmentation, effectively mitigating the inaccuracies of voxel-based scene graph approaches in complex environments. Furthermore, the enhanced segmentation consistency improves loop closure detection efficiency in the proposed Consistent Scene Graph-leveraging Loop Closure Detection (CoSG-LCD) leading to higher pose estimation accuracy. Experimental results confirm that the proposed approach outperforms state-of-the-art methods in terms of scene graph consistency and pose graph optimization performance.
comment: Accepted by IROS 2025
☆ Lasso Gripper: A String Shooting-Retracting Mechanism for Shape-Adaptive Grasping
Handling oversized, variable-shaped, or delicate objects in transportation, grasping tasks is extremely challenging, mainly due to the limitations of the gripper's shape and size. This paper proposes a novel gripper, Lasso Gripper. Inspired by traditional tools like the lasso and the uurga, Lasso Gripper captures objects by launching and retracting a string. Contrary to antipodal grippers, which concentrate force on a limited area, Lasso Gripper applies uniform pressure along the length of the string for a more gentle grasp. The gripper is controlled by four motors-two for launching the string inward and two for launching it outward. By adjusting motor speeds, the size of the string loop can be tuned to accommodate objects of varying sizes, eliminating the limitations imposed by the maximum gripper separation distance. To address the issue of string tangling during rapid retraction, a specialized mechanism was incorporated. Additionally, a dynamic model was developed to estimate the string's curve, providing a foundation for the kinematic analysis of the workspace. In grasping experiments, Lasso Gripper, mounted on a robotic arm, successfully captured and transported a range of objects, including bull and horse figures as well as delicate vegetables. The demonstration video is available here: https://youtu.be/PV1J76mNP9Y.
comment: 6 pages, 13 figures
☆ GAF: Gaussian Action Field as a Dvnamic World Model for Robotic Mlanipulation
Accurate action inference is critical for vision-based robotic manipulation. Existing approaches typically follow either a Vision-to-Action (V-A) paradigm, predicting actions directly from visual inputs, or a Vision-to-3D-to-Action (V-3D-A) paradigm, leveraging intermediate 3D representations. However, these methods often struggle with action inaccuracies due to the complexity and dynamic nature of manipulation scenes. In this paper, we propose a V-4D-A framework that enables direct action reasoning from motion-aware 4D representations via a Gaussian Action Field (GAF). GAF extends 3D Gaussian Splatting (3DGS) by incorporating learnable motion attributes, allowing simultaneous modeling of dynamic scenes and manipulation actions. To learn time-varying scene geometry and action-aware robot motion, GAF supports three key query types: reconstruction of the current scene, prediction of future frames, and estimation of initial action via robot motion. Furthermore, the high-quality current and future frames generated by GAF facilitate manipulation action refinement through a GAF-guided diffusion model. Extensive experiments demonstrate significant improvements, with GAF achieving +11.5385 dB PSNR and -0.5574 LPIPS improvements in reconstruction quality, while boosting the average success rate in robotic manipulation tasks by 10.33% over state-of-the-art methods. Project page: http://chaiying1.github.io/GAF.github.io/project_page/
comment: http://chaiying1.github.io/GAF.github.io/project_page/
☆ KDMOS:Knowledge Distillation for Motion Segmentation
Motion Object Segmentation (MOS) is crucial for autonomous driving, as it enhances localization, path planning, map construction, scene flow estimation, and future state prediction. While existing methods achieve strong performance, balancing accuracy and real-time inference remains a challenge. To address this, we propose a logits-based knowledge distillation framework for MOS, aiming to improve accuracy while maintaining real-time efficiency. Specifically, we adopt a Bird's Eye View (BEV) projection-based model as the student and a non-projection model as the teacher. To handle the severe imbalance between moving and non-moving classes, we decouple them and apply tailored distillation strategies, allowing the teacher model to better learn key motion-related features. This approach significantly reduces false positives and false negatives. Additionally, we introduce dynamic upsampling, optimize the network architecture, and achieve a 7.69% reduction in parameter count, mitigating overfitting. Our method achieves a notable IoU of 78.8% on the hidden test set of the SemanticKITTI-MOS dataset and delivers competitive results on the Apollo dataset. The KDMOS implementation is available at https://github.com/SCNU-RISLAB/KDMOS.
☆ Haptic-Based User Authentication for Tele-robotic System
Tele-operated robots rely on real-time user behavior mapping for remote tasks, but ensuring secure authentication remains a challenge. Traditional methods, such as passwords and static biometrics, are vulnerable to spoofing and replay attacks, particularly in high-stakes, continuous interactions. This paper presents a novel anti-spoofing and anti-replay authentication approach that leverages distinctive user behavioral features extracted from haptic feedback during human-robot interactions. To evaluate our authentication approach, we collected a time-series force feedback dataset from 15 participants performing seven distinct tasks. We then developed a transformer-based deep learning model to extract temporal features from the haptic signals. By analyzing user-specific force dynamics, our method achieves over 90 percent accuracy in both user identification and task classification, demonstrating its potential for enhancing access control and identity assurance in tele-robotic systems.
☆ A Hierarchical Test Platform for Vision Language Model (VLM)-Integrated Real-World Autonomous Driving
Vision-Language Models (VLMs) have demonstrated notable promise in autonomous driving by offering the potential for multimodal reasoning through pretraining on extensive image-text pairs. However, adapting these models from broad web-scale data to the safety-critical context of driving presents a significant challenge, commonly referred to as domain shift. Existing simulation-based and dataset-driven evaluation methods, although valuable, often fail to capture the full complexity of real-world scenarios and cannot easily accommodate repeatable closed-loop testing with flexible scenario manipulation. In this paper, we introduce a hierarchical real-world test platform specifically designed to evaluate VLM-integrated autonomous driving systems. Our approach includes a modular, low-latency on-vehicle middleware that allows seamless incorporation of various VLMs, a clearly separated perception-planning-control architecture that can accommodate both VLM-based and conventional modules, and a configurable suite of real-world testing scenarios on a closed track that facilitates controlled yet authentic evaluations. We demonstrate the effectiveness of the proposed platform`s testing and evaluation ability with a case study involving a VLM-enabled autonomous vehicle, highlighting how our test framework supports robust experimentation under diverse conditions.
☆ ReLCP: Scalable Complementarity-Based Collision Resolution for Smooth Rigid Bodies
We present a complementarity-based collision resolution algorithm for smooth, non-spherical, rigid bodies. Unlike discrete surface representation approaches, which approximate surfaces using discrete elements (e.g., tessellations or sub-spheres) with constraints between nearby faces, edges, nodes, or sub-objects, our algorithm solves a recursively generated linear complementarity problem (ReLCP) to adaptively identify potential collision locations during the collision resolution procedure. Despite adaptively and in contrast to Newton-esque schemes, we prove conditions under which the resulting solution exists and the center of mass translational and rotational dynamics are unique. Our ReLCP also converges to classical LCP-based collision resolution for sufficiently small timesteps. Because increasing the surface resolution in discrete representation methods necessitates subdividing geometry into finer elements -- leading to a super-linear increase in the number of collision constraints -- these approaches scale poorly with increased surface resolution. In contrast, our adaptive ReLCP framework begins with a single constraint per pair of nearby bodies and introduces new constraints only when unconstrained motion would lead to overlap, circumventing the oversampling required by discrete methods. By requiring one to two orders of magnitude fewer collision constraints to achieve the same surface resolution, we observe 10-100x speedup in densely packed applications. We validate our ReLCP method against multisphere and single-constraint methods, comparing convergence in a two-ellipsoid collision test, scalability and performance in a compacting ellipsoid suspension and growing bacterial colony, and stability in a taut chainmail network, highlighting our ability to achieve high-fidelity surface representations without suffering from poor scalability or artificial surface roughness.
☆ Context Matters: Learning Generalizable Rewards via Calibrated Features
A key challenge in reward learning from human input is that desired agent behavior often changes based on context. Traditional methods typically treat each new context as a separate task with its own reward function. For example, if a previously ignored stove becomes too hot to be around, the robot must learn a new reward from scratch, even though the underlying preference for prioritizing safety over efficiency remains unchanged. We observe that context influences not the underlying preference itself, but rather the $\textit{saliency}$--or importance--of reward features. For instance, stove heat affects the importance of the robot's proximity, yet the human's safety preference stays the same. Existing multi-task and meta IRL methods learn context-dependent representations $\textit{implicitly}$--without distinguishing between preferences and feature importance--resulting in substantial data requirements. Instead, we propose $\textit{explicitly}$ modeling context-invariant preferences separately from context-dependent feature saliency, creating modular reward representations that adapt to new contexts. To achieve this, we introduce $\textit{calibrated features}$--representations that capture contextual effects on feature saliency--and present specialized paired comparison queries that isolate saliency from preference for efficient learning. Experiments with simulated users show our method significantly improves sample efficiency, requiring 10x fewer preference queries than baselines to achieve equivalent reward accuracy, with up to 15% better performance in low-data regimes (5-10 queries). An in-person user study (N=12) demonstrates that participants can effectively teach their unique personal contextual preferences using our method, enabling more adaptable and personalized reward learning.
comment: 30 pages, 21 figures
☆ Six-DoF Hand-Based Teleoperation for Omnidirectional Aerial Robots IROS 2025
Omnidirectional aerial robots offer full 6-DoF independent control over position and orientation, making them popular for aerial manipulation. Although advancements in robotic autonomy, operating by human remains essential in complex aerial environments. Existing teleoperation approaches for multirotors fail to fully leverage the additional DoFs provided by omnidirectional rotation. Additionally, the dexterity of human fingers should be exploited for more engaged interaction. In this work, we propose an aerial teleoperation system that brings the omnidirectionality of human hands into the unbounded aerial workspace. Our system includes two motion-tracking marker sets -- one on the shoulder and one on the hand -- along with a data glove to capture hand gestures. Using these inputs, we design four interaction modes for different tasks, including Spherical Mode and Cartesian Mode for long-range moving as well as Operation Mode and Locking Mode for precise manipulation, where the hand gestures are utilized for seamless mode switching. We evaluate our system on a valve-turning task in real world, demonstrating how each mode contributes to effective aerial manipulation. This interaction framework bridges human dexterity with aerial robotics, paving the way for enhanced teleoperated aerial manipulation in unstructured environments.
comment: 7 pages, 9 figures. This work has been accepted to IROS 2025. The video will be released soon
☆ Advances in Compliance Detection: Novel Models Using Vision-Based Tactile Sensors
Compliance is a critical parameter for describing objects in engineering, agriculture, and biomedical applications. Traditional compliance detection methods are limited by their lack of portability and scalability, rely on specialized, often expensive equipment, and are unsuitable for robotic applications. Moreover, existing neural network-based approaches using vision-based tactile sensors still suffer from insufficient prediction accuracy. In this paper, we propose two models based on Long-term Recurrent Convolutional Networks (LRCNs) and Transformer architectures that leverage RGB tactile images and other information captured by the vision-based sensor GelSight to predict compliance metrics accurately. We validate the performance of these models using multiple metrics and demonstrate their effectiveness in accurately estimating compliance. The proposed models exhibit significant performance improvement over the baseline. Additionally, we investigated the correlation between sensor compliance and object compliance estimation, which revealed that objects that are harder than the sensor are more challenging to estimate.
comment: Accepted in the IEEE International Conference on Development and Learning (ICDL). The paper contains 8 pages and 7 figures
☆ Time-Optimized Safe Navigation in Unstructured Environments through Learning Based Depth Completion
Quadrotors hold significant promise for several applications such as agriculture, search and rescue, and infrastructure inspection. Achieving autonomous operation requires systems to navigate safely through complex and unfamiliar environments. This level of autonomy is particularly challenging due to the complexity of such environments and the need for real-time decision making especially for platforms constrained by size, weight, and power (SWaP), which limits flight time and precludes the use of bulky sensors like Light Detection and Ranging (LiDAR) for mapping. Furthermore, computing globally optimal, collision-free paths and translating them into time-optimized, safe trajectories in real time adds significant computational complexity. To address these challenges, we present a fully onboard, real-time navigation system that relies solely on lightweight onboard sensors. Our system constructs a dense 3D map of the environment using a novel visual depth estimation approach that fuses stereo and monocular learning-based depth, yielding longer-range, denser, and less noisy depth maps than conventional stereo methods. Building on this map, we introduce a novel planning and trajectory generation framework capable of rapidly computing time-optimal global trajectories. As the map is incrementally updated with new depth information, our system continuously refines the trajectory to maintain safety and optimality. Both our planner and trajectory generator outperforms state-of-the-art methods in terms of computational efficiency and guarantee obstacle-free trajectories. We validate our system through robust autonomous flight experiments in diverse indoor and outdoor environments, demonstrating its effectiveness for safe navigation in previously unknown settings.
☆ FEAST: A Flexible Mealtime-Assistance System Towards In-the-Wild Personalization RSS 2025
Physical caregiving robots hold promise for improving the quality of life of millions worldwide who require assistance with feeding. However, in-home meal assistance remains challenging due to the diversity of activities (e.g., eating, drinking, mouth wiping), contexts (e.g., socializing, watching TV), food items, and user preferences that arise during deployment. In this work, we propose FEAST, a flexible mealtime-assistance system that can be personalized in-the-wild to meet the unique needs of individual care recipients. Developed in collaboration with two community researchers and informed by a formative study with a diverse group of care recipients, our system is guided by three key tenets for in-the-wild personalization: adaptability, transparency, and safety. FEAST embodies these principles through: (i) modular hardware that enables switching between assisted feeding, drinking, and mouth-wiping, (ii) diverse interaction methods, including a web interface, head gestures, and physical buttons, to accommodate diverse functional abilities and preferences, and (iii) parameterized behavior trees that can be safely and transparently adapted using a large language model. We evaluate our system based on the personalization requirements identified in our formative study, demonstrating that FEAST offers a wide range of transparent and safe adaptations and outperforms a state-of-the-art baseline limited to fixed customizations. To demonstrate real-world applicability, we conduct an in-home user study with two care recipients (who are community researchers), feeding them three meals each across three diverse scenarios. We further assess FEAST's ecological validity by evaluating with an Occupational Therapist previously unfamiliar with the system. In all cases, users successfully personalize FEAST to meet their individual needs and preferences. Website: https://emprise.cs.cornell.edu/feast
comment: RSS 2025 - Outstanding Paper Award & Outstanding Systems Paper Award Finalist
☆ Efficient and Real-Time Motion Planning for Robotics Using Projection-Based Optimization IROS 2025
Generating motions for robots interacting with objects of various shapes is a complex challenge, further complicated by the robot geometry and multiple desired behaviors. While current robot programming tools (such as inverse kinematics, collision avoidance, and manipulation planning) often treat these problems as constrained optimization, many existing solvers focus on specific problem domains or do not exploit geometric constraints effectively. We propose an efficient first-order method, Augmented Lagrangian Spectral Projected Gradient Descent (ALSPG), which leverages geometric projections via Euclidean projections, Minkowski sums, and basis functions. We show that by using geometric constraints rather than full constraints and gradients, ALSPG significantly improves real-time performance. Compared to second-order methods like iLQR, ALSPG remains competitive in the unconstrained case. We validate our method through toy examples and extensive simulations, and demonstrate its effectiveness on a 7-axis Franka robot, a 6-axis P-Rob robot and a 1:10 scale car in real-world experiments. Source codes, experimental data and videos are available on the project webpage: https://sites.google.com/view/alspg-oc
comment: submitted to IROS 2025
☆ Towards Perception-based Collision Avoidance for UAVs when Guiding the Visually Impaired IROS
Autonomous navigation by drones using onboard sensors combined with machine learning and computer vision algorithms is impacting a number of domains, including agriculture, logistics, and disaster management. In this paper, we examine the use of drones for assisting visually impaired people (VIPs) in navigating through outdoor urban environments. Specifically, we present a perception-based path planning system for local planning around the neighborhood of the VIP, integrated with a global planner based on GPS and maps for coarse planning. We represent the problem using a geometric formulation and propose a multi DNN based framework for obstacle avoidance of the UAV as well as the VIP. Our evaluations conducted on a drone human system in a university campus environment verifies the feasibility of our algorithms in three scenarios; when the VIP walks on a footpath, near parked vehicles, and in a crowded street.
comment: 16 pages, 7 figures; Accepted as Late-Breaking Results at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2023
☆ Feedback-MPPI: Fast Sampling-Based MPC via Rollout Differentiation -- Adios low-level controllers
Model Predictive Path Integral control is a powerful sampling-based approach suitable for complex robotic tasks due to its flexibility in handling nonlinear dynamics and non-convex costs. However, its applicability in real-time, highfrequency robotic control scenarios is limited by computational demands. This paper introduces Feedback-MPPI (F-MPPI), a novel framework that augments standard MPPI by computing local linear feedback gains derived from sensitivity analysis inspired by Riccati-based feedback used in gradient-based MPC. These gains allow for rapid closed-loop corrections around the current state without requiring full re-optimization at each timestep. We demonstrate the effectiveness of F-MPPI through simulations and real-world experiments on two robotic platforms: a quadrupedal robot performing dynamic locomotion on uneven terrain and a quadrotor executing aggressive maneuvers with onboard computation. Results illustrate that incorporating local feedback significantly improves control performance and stability, enabling robust, high-frequency operation suitable for complex robotic systems.
♻ ☆ Opt2Skill: Imitating Dynamically-feasible Whole-Body Trajectories for Versatile Humanoid Loco-Manipulation
Humanoid robots are designed to perform diverse loco-manipulation tasks. However, they face challenges due to their high-dimensional and unstable dynamics, as well as the complex contact-rich nature of the tasks. Model-based optimal control methods offer flexibility to define precise motion but are limited by high computational complexity and accurate contact sensing. On the other hand, reinforcement learning (RL) handles high-dimensional spaces with strong robustness but suffers from inefficient learning, unnatural motion, and sim-to-real gaps. To address these challenges, we introduce Opt2Skill, an end-to-end pipeline that combines model-based trajectory optimization with RL to achieve robust whole-body loco-manipulation. Opt2Skill generates dynamic feasible and contact-consistent reference motions for the Digit humanoid robot using differential dynamic programming (DDP) and trains RL policies to track these optimal trajectories. Our results demonstrate that Opt2Skill outperforms baselines that rely on human demonstrations and inverse kinematics-based references, both in motion tracking and task success rates. Furthermore, we show that incorporating trajectories with torque information improves contact force tracking in contact-involved tasks, such as wiping a table. We have successfully transferred our approach to real-world applications.
♻ ☆ IKDiffuser: Fast and Diverse Inverse Kinematics Solution Generation for Multi-arm Robotic Systems
Solving Inverse Kinematics (IK) problems is fundamental to robotics, but has primarily been successful with single serial manipulators. For multi-arm robotic systems, IK remains challenging due to complex self-collisions, coupled joints, and high-dimensional redundancy. These complexities make traditional IK solvers slow, prone to failure, and lacking in solution diversity. In this paper, we present IKDiffuser, a diffusion-based model designed for fast and diverse IK solution generation for multi-arm robotic systems. IKDiffuser learns the joint distribution over the configuration space, capturing complex dependencies and enabling seamless generalization to multi-arm robotic systems of different structures. In addition, IKDiffuser can incorporate additional objectives during inference without retraining, offering versatility and adaptability for task-specific requirements. In experiments on 6 different multi-arm systems, the proposed IKDiffuser achieves superior solution accuracy, precision, diversity, and computational efficiency compared to existing solvers. The proposed IKDiffuser framework offers a scalable, unified approach to solving multi-arm IK problems, facilitating the potential of multi-arm robotic systems in real-time manipulation tasks.
comment: under review
♻ ☆ Human-robot collaborative transport personalization via Dynamic Movement Primitives and velocity scaling
Nowadays, industries are showing a growing interest in human-robot collaboration, particularly for shared tasks. This requires intelligent strategies to plan a robot's motions, considering both task constraints and human-specific factors such as height and movement preferences. This work introduces a novel approach to generate personalized trajectories using Dynamic Movement Primitives (DMPs), enhanced with real-time velocity scaling based on human feedback. The method was rigorously tested in industrial-grade experiments, focusing on the collaborative transport of an engine cowl lip section. Comparative analysis between DMP-generated trajectories and a state-of-the-art motion planner (BiTRRT) highlights their adaptability combined with velocity scaling. Subjective user feedback further demonstrates a clear preference for DMP- based interactions. Objective evaluations, including physiological measurements from brain and skin activity, reinforce these findings, showcasing the advantages of DMPs in enhancing human-robot interaction and improving user experience.
♻ ☆ LBAP: Improved Uncertainty Alignment of LLM Planners using Bayesian Inference
Large language models (LLMs) showcase many desirable traits for intelligent and helpful robots. However, they are also known to hallucinate predictions. This issue is exacerbated in robotics where LLM hallucinations may result in robots confidently executing plans that are contrary to user goals or relying more frequently on human assistance. In this work, we present LBAP, a novel approach for utilizing off-the-shelf LLMs, alongside Bayesian inference for uncertainty Alignment in robotic Planners that minimizes hallucinations and human intervention. Our key finding is that we can use Bayesian inference to more accurately calibrate a robots confidence measure through accounting for both scene grounding and world knowledge. This process allows us to mitigate hallucinations and better align the LLM's confidence measure with the probability of success. Through experiments in both simulation and the real world on tasks with a variety of ambiguities, we show that LBAP significantly increases success rate and decreases the amount of human intervention required relative to prior art. For example, in our real-world testing paradigm, LBAP decreases the human help rate of previous methods by over 33% at a success rate of 70%.
♻ ☆ Language and Planning in Robotic Navigation: A Multilingual Evaluation of State-of-the-Art Models AAAI'25
Large Language Models (LLMs) such as GPT-4, trained on huge amount of datasets spanning multiple domains, exhibit significant reasoning, understanding, and planning capabilities across various tasks. This study presents the first-ever work in Arabic language integration within the Vision-and-Language Navigation (VLN) domain in robotics, an area that has been notably underexplored in existing research. We perform a comprehensive evaluation of state-of-the-art multi-lingual Small Language Models (SLMs), including GPT-4o mini, Llama 3 8B, and Phi-3 medium 14B, alongside the Arabic-centric LLM, Jais. Our approach utilizes the NavGPT framework, a pure LLM-based instruction-following navigation agent, to assess the impact of language on navigation reasoning through zero-shot sequential action prediction using the R2R dataset. Through comprehensive experiments, we demonstrate that our framework is capable of high-level planning for navigation tasks when provided with instructions in both English and Arabic. However, certain models struggled with reasoning and planning in the Arabic language due to inherent limitations in their capabilities, sub-optimal performance, and parsing issues. These findings highlight the importance of enhancing planning and reasoning capabilities in language models for effective navigation, emphasizing this as a key area for further development while also unlocking the potential of Arabic-language models for impactful real-world applications.
comment: This work has been accepted for presentation at LM4Plan@AAAI'25. For more details, please check: https://llmforplanning.github.io/
♻ ☆ ClearDepth: Enhanced Stereo Perception of Transparent Objects for Robotic Manipulation
Transparent object depth perception poses a challenge in everyday life and logistics, primarily due to the inability of standard 3D sensors to accurately capture depth on transparent or reflective surfaces. This limitation significantly affects depth map and point cloud-reliant applications, especially in robotic manipulation. We developed a vision transformer-based algorithm for stereo depth recovery of transparent objects. This approach is complemented by an innovative feature post-fusion module, which enhances the accuracy of depth recovery by structural features in images. To address the high costs associated with dataset collection for stereo camera-based perception of transparent objects, our method incorporates a parameter-aligned, domain-adaptive, and physically realistic Sim2Real simulation for efficient data generation, accelerated by AI algorithm. Our experimental results demonstrate the model's exceptional Sim2Real generalizability in real-world scenarios, enabling precise depth mapping of transparent objects to assist in robotic manipulation. Project details are available at https://sites.google.com/view/cleardepth/ .
comment: 7 pages, 7 figures
♻ ☆ AssistantX: An LLM-Powered Proactive Assistant in Collaborative Human-Populated Environment
Current service robots suffer from limited natural language communication abilities, heavy reliance on predefined commands, ongoing human intervention, and, most notably, a lack of proactive collaboration awareness in human-populated environments. This results in narrow applicability and low utility. In this paper, we introduce AssistantX, an LLM-powered proactive assistant designed for autonomous operation in realworld scenarios with high accuracy. AssistantX employs a multi-agent framework consisting of 4 specialized LLM agents, each dedicated to perception, planning, decision-making, and reflective review, facilitating advanced inference capabilities and comprehensive collaboration awareness, much like a human assistant by your side. We built a dataset of 210 real-world tasks to validate AssistantX, which includes instruction content and status information on whether relevant personnel are available. Extensive experiments were conducted in both text-based simulations and a real office environment over the course of a month and a half. Our experiments demonstrate the effectiveness of the proposed framework, showing that AssistantX can reactively respond to user instructions, actively adjust strategies to adapt to contingencies, and proactively seek assistance from humans to ensure successful task completion. More details and videos can be found at https://assistantx-agent. github.io/AssistantX/.
comment: 8 pages, 10 figures, 6 tables
♻ ☆ Design and Evaluation of an Uncertainty-Aware Shared-Autonomy System with Hierarchical Conservative Skill Inference
Shared-autonomy imitation learning lets a human correct a robot in real time, mitigating covariate-shift errors. Yet existing approaches ignore two critical factors: (i) the operator's cognitive load and (ii) the risk created by delayed or erroneous interventions. We present an uncertainty-aware shared-autonomy system in which the robot modulates its behaviour according to a learned estimate of latent-space skill uncertainty. A hierarchical policy first infers a conservative skill embedding and then decodes it into low-level actions, enabling rapid task execution while automatically slowing down when uncertainty is high. We detail a full, open-source VR-teleoperation pipeline that is compatible with multi-configuration manipulators such as UR-series arms. Experiments on pouring and pick-and-place tasks demonstrate 70-90% success in dynamic scenes with moving targets, and a qualitative study shows a marked reduction in collision events compared with a non-conservative baseline. Although a dedicated ablation that isolates uncertainty is impractical on hardware for safety and cost reasons, the reported gains in stability and operator workload already validate the design and motivate future large-scale studies.
comment: ArXiv 2024
♻ ☆ DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation CVPR 2025
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Accepted by CVPR 2025. Camera ready version. Previous DexDiffuser. Project page: https://dexdiffuser.github.io/
♻ ☆ Sketch-Plan-Generalize: Learning and Planning with Neuro-Symbolic Programmatic Representations for Inductive Spatial Concepts ICML 2025
Effective human-robot collaboration requires the ability to learn personalized concepts from a limited number of demonstrations, while exhibiting inductive generalization, hierarchical composition, and adaptability to novel constraints. Existing approaches that use code generation capabilities of pre-trained large (vision) language models as well as purely neural models show poor generalization to \emph{a-priori} unseen complex concepts. Neuro-symbolic methods (Grand et al., 2023) offer a promising alternative by searching in program space, but face challenges in large program spaces due to the inability to effectively guide the search using demonstrations. Our key insight is to factor inductive concept learning as: (i) {\it Sketch:} detecting and inferring a coarse signature of a new concept (ii) {\it Plan:} performing an MCTS search over grounded action sequences guided by human demonstrations (iii) {\it Generalize:} abstracting out grounded plans as inductive programs. Our pipeline facilitates generalization and modular re-use, enabling continual concept learning. Our approach combines the benefits of code generation ability of large language models (LLMs) along with grounded neural representations, resulting in neuro-symbolic programs that show stronger inductive generalization on the task of constructing complex structures vis-\'a-vis LLM-only and purely neural approaches. Further, we demonstrate reasoning and planning capabilities with learned concepts for embodied instruction following.
comment: Programmatic Representations for Agent Learning Worskop, ICML 2025
♻ ☆ SRT-H: A Hierarchical Framework for Autonomous Surgery via Language Conditioned Imitation Learning
Research on autonomous surgery has largely focused on simple task automation in controlled environments. However, real-world surgical applications demand dexterous manipulation over extended durations and robust generalization to the inherent variability of human tissue. These challenges remain difficult to address using existing logic-based or conventional end-to-end learning strategies. To address this gap, we propose a hierarchical framework for performing dexterous, long-horizon surgical steps. Our approach utilizes a high-level policy for task planning and a low-level policy for generating low-level trajectories. The high-level planner plans in language space, generating task or corrective instructions to guide the robot through the long-horizon steps and correct for the low-level policy's errors. We validate our framework through ex vivo experiments on cholecystectomy, a commonly-practiced minimally invasive procedure, and conduct ablation studies to evaluate key components of the system. Our method achieves a 100% success rate across n=8 different ex vivo gallbladders, operating fully autonomously without human intervention. The hierarchical approach improves the policy's ability to recover from suboptimal states that are inevitable in the highly dynamic environment of realistic surgical applications. This work demonstrates step-level autonomy in a surgical procedure, marking a milestone toward clinical deployment of autonomous surgical systems.
♻ ☆ Fast Contact Detection via Fusion of Joint and Inertial Sensors for Parallel Robots in Human-Robot Collaboration
Fast contact detection is crucial for safe human-robot collaboration. Observers based on proprioceptive information can be used for contact detection but have first-order error dynamics, which results in delays. Sensor fusion based on inertial measurement units (IMUs) consisting of accelerometers and gyroscopes is advantageous for reducing delays. The acceleration estimation enables the direct calculation of external forces. For serial robots, the installation of multiple accelerometers and gyroscopes is required for dynamics modeling since the joint coordinates are the minimal coordinates. Alternatively, parallel robots (PRs) offer the potential to use only one IMU on the end-effector platform, which already presents the minimal coordinates of the PR. This work introduces a sensor-fusion method for contact detection using encoders and only one low-cost, consumer-grade IMU for a PR. The end-effector accelerations are estimated by an extended Kalman filter and incorporated into the dynamics to calculate external forces. In real-world experiments with a planar PR, we demonstrate that this approach reduces the detection duration by up to 50% compared to a momentum observer and enables the collision and clamping detection within 3-39ms.
comment: Preprint of a publication accepted for IEEE Robotics and Automation Letters
♻ ☆ H$^3$DP: Triply-Hierarchical Diffusion Policy for Visuomotor Learning
Visuomotor policy learning has witnessed substantial progress in robotic manipulation, with recent approaches predominantly relying on generative models to model the action distribution. However, these methods often overlook the critical coupling between visual perception and action prediction. In this work, we introduce $\textbf{Triply-Hierarchical Diffusion Policy}~(\textbf{H$^{\mathbf{3}}$DP})$, a novel visuomotor learning framework that explicitly incorporates hierarchical structures to strengthen the integration between visual features and action generation. H$^{3}$DP contains $\mathbf{3}$ levels of hierarchy: (1) depth-aware input layering that organizes RGB-D observations based on depth information; (2) multi-scale visual representations that encode semantic features at varying levels of granularity; and (3) a hierarchically conditioned diffusion process that aligns the generation of coarse-to-fine actions with corresponding visual features. Extensive experiments demonstrate that H$^{3}$DP yields a $\mathbf{+27.5\%}$ average relative improvement over baselines across $\mathbf{44}$ simulation tasks and achieves superior performance in $\mathbf{4}$ challenging bimanual real-world manipulation tasks. Project Page: https://lyy-iiis.github.io/h3dp/.
♻ ☆ Hierarchical Intention Tracking with Switching Trees for Real-Time Adaptation to Dynamic Human Intentions during Collaboration
During collaborative tasks, human behavior is guided by multiple levels of intentions that evolve over time, such as task sequence preferences and interaction strategies. To adapt to these changing preferences and promptly correct any inaccurate estimations, collaborative robots must accurately track these dynamic human intentions in real time. We propose a Hierarchical Intention Tracking (HIT) algorithm for collaborative robots to track dynamic and hierarchical human intentions effectively in real time. HIT represents human intentions as intention trees with arbitrary depth, and probabilistically tracks human intentions by Bayesian filtering, upward measurement propagation, and downward posterior propagation across all levels. We develop a HIT-based robotic system that dynamically switches between Interaction-Task and Verification-Task trees for a collaborative assembly task, allowing the robot to effectively coordinate human intentions at three levels: task-level (subtask goal locations), interaction-level (mode of engagement with the robot), and verification-level (confirming or correcting intention recognition). Our user study shows that our HIT-based collaborative robot system surpasses existing collaborative robot solutions by achieving a balance between efficiency, physical workload, and user comfort while ensuring safety and task completion. Post-experiment surveys further reveal that the HIT-based system enhances the user trust and minimizes interruptions to user's task flow through its effective understanding of human intentions across multiple levels.
comment: 15 pages, 10 figures
♻ ☆ SmartWay: Enhanced Waypoint Prediction and Backtracking for Zero-Shot Vision-and-Language Navigation IROS 2025
Vision-and-Language Navigation (VLN) in continuous environments requires agents to interpret natural language instructions while navigating unconstrained 3D spaces. Existing VLN-CE frameworks rely on a two-stage approach: a waypoint predictor to generate waypoints and a navigator to execute movements. However, current waypoint predictors struggle with spatial awareness, while navigators lack historical reasoning and backtracking capabilities, limiting adaptability. We propose a zero-shot VLN-CE framework integrating an enhanced waypoint predictor with a Multi-modal Large Language Model (MLLM)-based navigator. Our predictor employs a stronger vision encoder, masked cross-attention fusion, and an occupancy-aware loss for better waypoint quality. The navigator incorporates history-aware reasoning and adaptive path planning with backtracking, improving robustness. Experiments on R2R-CE and MP3D benchmarks show our method achieves state-of-the-art (SOTA) performance in zero-shot settings, demonstrating competitive results compared to fully supervised methods. Real-world validation on Turtlebot 4 further highlights its adaptability.
comment: Accepted by IROS 2025. Project website: https://sxyxs.github.io/smartway/
♻ ☆ DreamGen: Unlocking Generalization in Robot Learning through Video World Models
We introduce DreamGen, a simple yet highly effective 4-stage pipeline for training robot policies that generalize across behaviors and environments through neural trajectories - synthetic robot data generated from video world models. DreamGen leverages state-of-the-art image-to-video generative models, adapting them to the target robot embodiment to produce photorealistic synthetic videos of familiar or novel tasks in diverse environments. Since these models generate only videos, we recover pseudo-action sequences using either a latent action model or an inverse-dynamics model (IDM). Despite its simplicity, DreamGen unlocks strong behavior and environment generalization: a humanoid robot can perform 22 new behaviors in both seen and unseen environments, while requiring teleoperation data from only a single pick-and-place task in one environment. To evaluate the pipeline systematically, we introduce DreamGen Bench, a video generation benchmark that shows a strong correlation between benchmark performance and downstream policy success. Our work establishes a promising new axis for scaling robot learning well beyond manual data collection. Code available at https://github.com/NVIDIA/GR00T-Dreams.
comment: See website for videos: https://research.nvidia.com/labs/gear/dreamgen
♻ ☆ Mass-Adaptive Admittance Control for Robotic Manipulators
Handling objects with unknown or changing masses is a common challenge in robotics, often leading to errors or instability if the control system cannot adapt in real-time. In this paper, we present a novel approach that enables a six-degrees-of-freedom robotic manipulator to reliably follow waypoints while automatically estimating and compensating for unknown payload weight. Our method integrates an admittance control framework with a mass estimator, allowing the robot to dynamically update an excitation force to compensate for the payload mass. This strategy mitigates end-effector sagging and preserves stability when handling objects of unknown weights. We experimentally validated our approach in a challenging pick-and-place task on a shelf with a crossbar, improved accuracy in reaching waypoints and compliant motion compared to a baseline admittance-control scheme. By safely accommodating unknown payloads, our work enhances flexibility in robotic automation and represents a significant step forward in adaptive control for uncertain environments.
comment: 6 pages, 7 figures
♻ ☆ Semantic Mapping in Indoor Embodied AI -- A Survey on Advances, Challenges, and Future Directions
Intelligent embodied agents (e.g. robots) need to perform complex semantic tasks in unfamiliar environments. Among many skills that the agents need to possess, building and maintaining a semantic map of the environment is most crucial in long-horizon tasks. A semantic map captures information about the environment in a structured way, allowing the agent to reference it for advanced reasoning throughout the task. While existing surveys in embodied AI focus on general advancements or specific tasks like navigation and manipulation, this paper provides a comprehensive review of semantic map-building approaches in embodied AI, specifically for indoor navigation. We categorize these approaches based on their structural representation (spatial grids, topological graphs, dense point-clouds or hybrid maps) and the type of information they encode (implicit features or explicit environmental data). We also explore the strengths and limitations of the map building techniques, highlight current challenges, and propose future research directions. We identify that the field is moving towards developing open-vocabulary, queryable, task-agnostic map representations, while high memory demands and computational inefficiency still remaining to be open challenges. This survey aims to guide current and future researchers in advancing semantic mapping techniques for embodied AI systems.
Computer Vision 153
☆ CDP: Towards Robust Autoregressive Visuomotor Policy Learning via Causal Diffusion
Diffusion Policy (DP) enables robots to learn complex behaviors by imitating expert demonstrations through action diffusion. However, in practical applications, hardware limitations often degrade data quality, while real-time constraints restrict model inference to instantaneous state and scene observations. These limitations seriously reduce the efficacy of learning from expert demonstrations, resulting in failures in object localization, grasp planning, and long-horizon task execution. To address these challenges, we propose Causal Diffusion Policy (CDP), a novel transformer-based diffusion model that enhances action prediction by conditioning on historical action sequences, thereby enabling more coherent and context-aware visuomotor policy learning. To further mitigate the computational cost associated with autoregressive inference, a caching mechanism is also introduced to store attention key-value pairs from previous timesteps, substantially reducing redundant computations during execution. Extensive experiments in both simulated and real-world environments, spanning diverse 2D and 3D manipulation tasks, demonstrate that CDP uniquely leverages historical action sequences to achieve significantly higher accuracy than existing methods. Moreover, even when faced with degraded input observation quality, CDP maintains remarkable precision by reasoning through temporal continuity, which highlights its practical robustness for robotic control under realistic, imperfect conditions.
☆ ASCD: Attention-Steerable Contrastive Decoding for Reducing Hallucination in MLLM
Multimodal Large Language Model (MLLM) often suffer from hallucinations. They over-rely on partial cues and generate incorrect responses. Recently, methods like Visual Contrastive Decoding (VCD) and Instruction Contrastive Decoding (ICD) have been proposed to mitigate hallucinations by contrasting predictions from perturbed or negatively prefixed inputs against original outputs. In this work, we uncover that methods like VCD and ICD fundamentally influence internal attention dynamics of the model. This observation suggests that their effectiveness may not stem merely from surface-level modifications to logits but from deeper shifts in attention distribution. Inspired by this insight, we propose an attention-steerable contrastive decoding framework that directly intervenes in attention mechanisms of the model to offer a more principled approach to mitigating hallucinations. Our experiments across multiple MLLM architectures and diverse decoding methods demonstrate that our approach significantly reduces hallucinations and improves the performance on benchmarks such as POPE, CHAIR, and MMHal-Bench, while simultaneously enhancing performance on standard VQA benchmarks.
comment: 15 pages, 7 figures
☆ Scaling-Up the Pretraining of the Earth Observation Foundation Model PhilEO to the MajorTOM Dataset
Today, Earth Observation (EO) satellites generate massive volumes of data, with the Copernicus Sentinel-2 constellation alone producing approximately 1.6TB per day. To fully exploit this information, it is essential to pretrain EO Foundation Models (FMs) on large unlabeled datasets, enabling efficient fine-tuning for several different downstream tasks with minimal labeled data. In this work, we present the scaling-up of our recently proposed EO Foundation Model, PhilEO Geo-Aware U-Net, on the unlabeled 23TB dataset MajorTOM, which covers the vast majority of the Earth's surface, as well as on the specialized subset FastTOM 2TB that does not include oceans and ice. We develop and study various PhilEO model variants with different numbers of parameters and architectures. Finally, we fine-tune the models on the PhilEO Bench for road density estimation, building density pixel-wise regression, and land cover semantic segmentation, and we evaluate the performance. Our results demonstrate that for all n-shots for road density regression, the PhilEO 44M MajorTOM 23TB model outperforms PhilEO Globe 0.5TB 44M. We also show that for most n-shots for road density estimation and building density regression, PhilEO 200M FastTOM outperforms all the other models. The effectiveness of both dataset and model scaling is validated using the PhilEO Bench. We also study the impact of architecture scaling, transitioning from U-Net Convolutional Neural Networks (CNN) to Vision Transformers (ViT).
comment: 6 pages, 9 figures, 1 table, 29 references
☆ Cost-Aware Routing for Efficient Text-To-Image Generation
Diffusion models are well known for their ability to generate a high-fidelity image for an input prompt through an iterative denoising process. Unfortunately, the high fidelity also comes at a high computational cost due the inherently sequential generative process. In this work, we seek to optimally balance quality and computational cost, and propose a framework to allow the amount of computation to vary for each prompt, depending on its complexity. Each prompt is automatically routed to the most appropriate text-to-image generation function, which may correspond to a distinct number of denoising steps of a diffusion model, or a disparate, independent text-to-image model. Unlike uniform cost reduction techniques (e.g., distillation, model quantization), our approach achieves the optimal trade-off by learning to reserve expensive choices (e.g., 100+ denoising steps) only for a few complex prompts, and employ more economical choices (e.g., small distilled model) for less sophisticated prompts. We empirically demonstrate on COCO and DiffusionDB that by learning to route to nine already-trained text-to-image models, our approach is able to deliver an average quality that is higher than that achievable by any of these models alone.
☆ SyncTalk++: High-Fidelity and Efficient Synchronized Talking Heads Synthesis Using Gaussian Splatting
Achieving high synchronization in the synthesis of realistic, speech-driven talking head videos presents a significant challenge. A lifelike talking head requires synchronized coordination of subject identity, lip movements, facial expressions, and head poses. The absence of these synchronizations is a fundamental flaw, leading to unrealistic results. To address the critical issue of synchronization, identified as the ''devil'' in creating realistic talking heads, we introduce SyncTalk++, which features a Dynamic Portrait Renderer with Gaussian Splatting to ensure consistent subject identity preservation and a Face-Sync Controller that aligns lip movements with speech while innovatively using a 3D facial blendshape model to reconstruct accurate facial expressions. To ensure natural head movements, we propose a Head-Sync Stabilizer, which optimizes head poses for greater stability. Additionally, SyncTalk++ enhances robustness to out-of-distribution (OOD) audio by incorporating an Expression Generator and a Torso Restorer, which generate speech-matched facial expressions and seamless torso regions. Our approach maintains consistency and continuity in visual details across frames and significantly improves rendering speed and quality, achieving up to 101 frames per second. Extensive experiments and user studies demonstrate that SyncTalk++ outperforms state-of-the-art methods in synchronization and realism. We recommend watching the supplementary video: https://ziqiaopeng.github.io/synctalk++.
☆ Active InSAR monitoring of building damage in Gaza during the Israel-Hamas War
Aerial bombardment of the Gaza Strip beginning October 7, 2023 is one of the most intense bombing campaigns of the twenty-first century, driving widespread urban damage. Characterizing damage over a geographically dynamic and protracted armed conflict requires active monitoring. Synthetic aperture radar (SAR) has precedence for mapping disaster-induced damage with bi-temporal methods but applications to active monitoring during sustained crises are limited. Using interferometric SAR data from Sentinel-1, we apply a long temporal-arc coherent change detection (LT-CCD) approach to track weekly damage trends over the first year of the 2023- Israel-Hamas War. We detect 92.5% of damage labels in reference data from the United Nations with a negligible (1.2%) false positive rate. The temporal fidelity of our approach reveals rapidly increasing damage during the first three months of the war focused in northern Gaza, a notable pause in damage during a temporary ceasefire, and surges of new damage as conflict hot-spots shift from north to south. Three-fifths (191,263) of all buildings are damaged or destroyed by the end of the study. With massive need for timely data on damage in armed conflict zones, our low-cost and low-latency approach enables rapid uptake of damage information at humanitarian and journalistic organizations.
☆ Plug-and-Play with 2.5D Artifact Reduction Prior for Fast and Accurate Industrial Computed Tomography Reconstruction
Cone-beam X-ray computed tomography (XCT) is an essential imaging technique for generating 3D reconstructions of internal structures, with applications ranging from medical to industrial imaging. Producing high-quality reconstructions typically requires many X-ray measurements; this process can be slow and expensive, especially for dense materials. Recent work incorporating artifact reduction priors within a plug-and-play (PnP) reconstruction framework has shown promising results in improving image quality from sparse-view XCT scans while enhancing the generalizability of deep learning-based solutions. However, this method uses a 2D convolutional neural network (CNN) for artifact reduction, which captures only slice-independent information from the 3D reconstruction, limiting performance. In this paper, we propose a PnP reconstruction method that uses a 2.5D artifact reduction CNN as the prior. This approach leverages inter-slice information from adjacent slices, capturing richer spatial context while remaining computationally efficient. We show that this 2.5D prior not only improves the quality of reconstructions but also enables the model to directly suppress commonly occurring XCT artifacts (such as beam hardening), eliminating the need for artifact correction pre-processing. Experiments on both experimental and synthetic cone-beam XCT data demonstrate that the proposed method better preserves fine structural details, such as pore size and shape, leading to more accurate defect detection compared to 2D priors. In particular, we demonstrate strong performance on experimental XCT data using a 2.5D artifact reduction prior trained entirely on simulated scans, highlighting the proposed method's ability to generalize across domains.
comment: Submitted to Journal of Nondestructive Evaluation
☆ DiFuse-Net: RGB and Dual-Pixel Depth Estimation using Window Bi-directional Parallax Attention and Cross-modal Transfer Learning IROS 2025
Depth estimation is crucial for intelligent systems, enabling applications from autonomous navigation to augmented reality. While traditional stereo and active depth sensors have limitations in cost, power, and robustness, dual-pixel (DP) technology, ubiquitous in modern cameras, offers a compelling alternative. This paper introduces DiFuse-Net, a novel modality decoupled network design for disentangled RGB and DP based depth estimation. DiFuse-Net features a window bi-directional parallax attention mechanism (WBiPAM) specifically designed to capture the subtle DP disparity cues unique to smartphone cameras with small aperture. A separate encoder extracts contextual information from the RGB image, and these features are fused to enhance depth prediction. We also propose a Cross-modal Transfer Learning (CmTL) mechanism to utilize large-scale RGB-D datasets in the literature to cope with the limitations of obtaining large-scale RGB-DP-D dataset. Our evaluation and comparison of the proposed method demonstrates its superiority over the DP and stereo-based baseline methods. Additionally, we contribute a new, high-quality, real-world RGB-DP-D training dataset, named Dual-Camera Dual-Pixel (DCDP) dataset, created using our novel symmetric stereo camera hardware setup, stereo calibration and rectification protocol, and AI stereo disparity estimation method.
comment: Accepted in IROS 2025
☆ Iterative Camera-LiDAR Extrinsic Optimization via Surrogate Diffusion IROS 2025
Cameras and LiDAR are essential sensors for autonomous vehicles. The fusion of camera and LiDAR data addresses the limitations of individual sensors but relies on precise extrinsic calibration. Recently, numerous end-to-end calibration methods have been proposed; however, most predict extrinsic parameters in a single step and lack iterative optimization capabilities. To address the increasing demand for higher accuracy, we propose a versatile iterative framework based on surrogate diffusion. This framework can enhance the performance of any calibration method without requiring architectural modifications. Specifically, the initial extrinsic parameters undergo iterative refinement through a denoising process, in which the original calibration method serves as a surrogate denoiser to estimate the final extrinsics at each step. For comparative analysis, we selected four state-of-the-art calibration methods as surrogate denoisers and compared the results of our diffusion process with those of two other iterative approaches. Extensive experiments demonstrate that when integrated with our diffusion model, all calibration methods achieve higher accuracy, improved robustness, and greater stability compared to other iterative techniques and their single-step counterparts.
comment: 7 pages, 4 figures, accepted by IROS 2025
☆ Towards Desiderata-Driven Design of Visual Counterfactual Explainers
Visual counterfactual explainers (VCEs) are a straightforward and promising approach to enhancing the transparency of image classifiers. VCEs complement other types of explanations, such as feature attribution, by revealing the specific data transformations to which a machine learning model responds most strongly. In this paper, we argue that existing VCEs focus too narrowly on optimizing sample quality or change minimality; they fail to consider the more holistic desiderata for an explanation, such as fidelity, understandability, and sufficiency. To address this shortcoming, we explore new mechanisms for counterfactual generation and investigate how they can help fulfill these desiderata. We combine these mechanisms into a novel 'smooth counterfactual explorer' (SCE) algorithm and demonstrate its effectiveness through systematic evaluations on synthetic and real data.
☆ FocalClick-XL: Towards Unified and High-quality Interactive Segmentation
Interactive segmentation enables users to extract binary masks of target objects through simple interactions such as clicks, scribbles, and boxes. However, existing methods often support only limited interaction forms and struggle to capture fine details. In this paper, we revisit the classical coarse-to-fine design of FocalClick and introduce significant extensions. Inspired by its multi-stage strategy, we propose a novel pipeline, FocalClick-XL, to address these challenges simultaneously. Following the emerging trend of large-scale pretraining, we decompose interactive segmentation into meta-tasks that capture different levels of information -- context, object, and detail -- assigning a dedicated subnet to each level.This decomposition allows each subnet to undergo scaled pretraining with independent data and supervision, maximizing its effectiveness. To enhance flexibility, we share context- and detail-level information across different interaction forms as common knowledge while introducing a prompting layer at the object level to encode specific interaction types. As a result, FocalClick-XL achieves state-of-the-art performance on click-based benchmarks and demonstrates remarkable adaptability to diverse interaction formats, including boxes, scribbles, and coarse masks. Beyond binary mask generation, it is also capable of predicting alpha mattes with fine-grained details, making it a versatile and powerful tool for interactive segmentation.
☆ Recognition through Reasoning: Reinforcing Image Geo-localization with Large Vision-Language Models
Previous methods for image geo-localization have typically treated the task as either classification or retrieval, often relying on black-box decisions that lack interpretability. The rise of large vision-language models (LVLMs) has enabled a rethinking of geo-localization as a reasoning-driven task grounded in visual cues. However, two major challenges persist. On the data side, existing reasoning-focused datasets are primarily based on street-view imagery, offering limited scene diversity and constrained viewpoints. On the modeling side, current approaches predominantly rely on supervised fine-tuning, which yields only marginal improvements in reasoning capabilities. To address these challenges, we propose a novel pipeline that constructs a reasoning-oriented geo-localization dataset, MP16-Reason, using diverse social media images. We introduce GLOBE, Group-relative policy optimization for Locatability assessment and Optimized visual-clue reasoning, yielding Bi-objective geo-Enhancement for the VLM in recognition and reasoning. GLOBE incorporates task-specific rewards that jointly enhance locatability assessment, visual clue reasoning, and geolocation accuracy. Both qualitative and quantitative results demonstrate that GLOBE outperforms state-of-the-art open-source LVLMs on geo-localization tasks, particularly in diverse visual scenes, while also generating more insightful and interpretable reasoning trajectories.
☆ DDS-NAS: Dynamic Data Selection within Neural Architecture Search via On-line Hard Example Mining applied to Image Classification
In order to address the scalability challenge within Neural Architecture Search (NAS), we speed up NAS training via dynamic hard example mining within a curriculum learning framework. By utilizing an autoencoder that enforces an image similarity embedding in latent space, we construct an efficient kd-tree structure to order images by furthest neighbour dissimilarity in a low-dimensional embedding. From a given query image from our subsample dataset, we can identify the most dissimilar image within the global dataset in logarithmic time. Via curriculum learning, we then dynamically re-formulate an unbiased subsample dataset for NAS optimisation, upon which the current NAS solution architecture performs poorly. We show that our DDS-NAS framework speeds up gradient-based NAS strategies by up to 27x without loss in performance. By maximising the contribution of each image sample during training, we reduce the duration of a NAS training cycle and the number of iterations required for convergence.
comment: 27 single-column pages, 8 figures, to be published in Pattern Recognition
☆ 3DGS-IEval-15K: A Large-scale Image Quality Evaluation Database for 3D Gaussian-Splatting
3D Gaussian Splatting (3DGS) has emerged as a promising approach for novel view synthesis, offering real-time rendering with high visual fidelity. However, its substantial storage requirements present significant challenges for practical applications. While recent state-of-the-art (SOTA) 3DGS methods increasingly incorporate dedicated compression modules, there is a lack of a comprehensive framework to evaluate their perceptual impact. Therefore we present 3DGS-IEval-15K, the first large-scale image quality assessment (IQA) dataset specifically designed for compressed 3DGS representations. Our dataset encompasses 15,200 images rendered from 10 real-world scenes through 6 representative 3DGS algorithms at 20 strategically selected viewpoints, with different compression levels leading to various distortion effects. Through controlled subjective experiments, we collect human perception data from 60 viewers. We validate dataset quality through scene diversity and MOS distribution analysis, and establish a comprehensive benchmark with 30 representative IQA metrics covering diverse types. As the largest-scale 3DGS quality assessment dataset to date, our work provides a foundation for developing 3DGS specialized IQA metrics, and offers essential data for investigating view-dependent quality distribution patterns unique to 3DGS. The database is publicly available at https://github.com/YukeXing/3DGS-IEval-15K.
☆ VisText-Mosquito: A Multimodal Dataset and Benchmark for AI-Based Mosquito Breeding Site Detection and Reasoning
Mosquito-borne diseases pose a major global health risk, requiring early detection and proactive control of breeding sites to prevent outbreaks. In this paper, we present VisText-Mosquito, a multimodal dataset that integrates visual and textual data to support automated detection, segmentation, and reasoning for mosquito breeding site analysis. The dataset includes 1,828 annotated images for object detection, 142 images for water surface segmentation, and natural language reasoning texts linked to each image. The YOLOv9s model achieves the highest precision of 0.92926 and mAP@50 of 0.92891 for object detection, while YOLOv11n-Seg reaches a segmentation precision of 0.91587 and mAP@50 of 0.79795. For reasoning generation, our fine-tuned BLIP model achieves a final loss of 0.0028, with a BLEU score of 54.7, BERTScore of 0.91, and ROUGE-L of 0.87. This dataset and model framework emphasize the theme "Prevention is Better than Cure", showcasing how AI-based detection can proactively address mosquito-borne disease risks. The dataset and implementation code are publicly available at GitHub: https://github.com/adnanul-islam-jisun/VisText-Mosquito
☆ Unsupervised Imaging Inverse Problems with Diffusion Distribution Matching
This work addresses image restoration tasks through the lens of inverse problems using unpaired datasets. In contrast to traditional approaches -- which typically assume full knowledge of the forward model or access to paired degraded and ground-truth images -- the proposed method operates under minimal assumptions and relies only on small, unpaired datasets. This makes it particularly well-suited for real-world scenarios, where the forward model is often unknown or misspecified, and collecting paired data is costly or infeasible. The method leverages conditional flow matching to model the distribution of degraded observations, while simultaneously learning the forward model via a distribution-matching loss that arises naturally from the framework. Empirically, it outperforms both single-image blind and unsupervised approaches on deblurring and non-uniform point spread function (PSF) calibration tasks. It also matches state-of-the-art performance on blind super-resolution. We also showcase the effectiveness of our method with a proof of concept for lens calibration: a real-world application traditionally requiring time-consuming experiments and specialized equipment. In contrast, our approach achieves this with minimal data acquisition effort.
comment: Code available at https://github.com/inria-thoth/ddm4ip
☆ Align Your Flow: Scaling Continuous-Time Flow Map Distillation
Diffusion- and flow-based models have emerged as state-of-the-art generative modeling approaches, but they require many sampling steps. Consistency models can distill these models into efficient one-step generators; however, unlike flow- and diffusion-based methods, their performance inevitably degrades when increasing the number of steps, which we show both analytically and empirically. Flow maps generalize these approaches by connecting any two noise levels in a single step and remain effective across all step counts. In this paper, we introduce two new continuous-time objectives for training flow maps, along with additional novel training techniques, generalizing existing consistency and flow matching objectives. We further demonstrate that autoguidance can improve performance, using a low-quality model for guidance during distillation, and an additional boost can be achieved by adversarial finetuning, with minimal loss in sample diversity. We extensively validate our flow map models, called Align Your Flow, on challenging image generation benchmarks and achieve state-of-the-art few-step generation performance on both ImageNet 64x64 and 512x512, using small and efficient neural networks. Finally, we show text-to-image flow map models that outperform all existing non-adversarially trained few-step samplers in text-conditioned synthesis.
comment: Project page: https://research.nvidia.com/labs/toronto-ai/AlignYourFlow/
☆ PoseGRAF: Geometric-Reinforced Adaptive Fusion for Monocular 3D Human Pose Estimation
Existing monocular 3D pose estimation methods primarily rely on joint positional features, while overlooking intrinsic directional and angular correlations within the skeleton. As a result, they often produce implausible poses under joint occlusions or rapid motion changes. To address these challenges, we propose the PoseGRAF framework. We first construct a dual graph convolutional structure that separately processes joint and bone graphs, effectively capturing their local dependencies. A Cross-Attention module is then introduced to model interdependencies between bone directions and joint features. Building upon this, a dynamic fusion module is designed to adaptively integrate both feature types by leveraging the relational dependencies between joints and bones. An improved Transformer encoder is further incorporated in a residual manner to generate the final output. Experimental results on the Human3.6M and MPI-INF-3DHP datasets show that our method exceeds state-of-the-art approaches. Additional evaluations on in-the-wild videos further validate its generalizability. The code is publicly available at https://github.com/iCityLab/PoseGRAF.
☆ Synthetic Data Augmentation for Table Detection: Re-evaluating TableNet's Performance with Automatically Generated Document Images
Document pages captured by smartphones or scanners often contain tables, yet manual extraction is slow and error-prone. We introduce an automated LaTeX-based pipeline that synthesizes realistic two-column pages with visually diverse table layouts and aligned ground-truth masks. The generated corpus augments the real-world Marmot benchmark and enables a systematic resolution study of TableNet. Training TableNet on our synthetic data achieves a pixel-wise XOR error of 4.04% on our synthetic test set with a 256x256 input resolution, and 4.33% with 1024x1024. The best performance on the Marmot benchmark is 9.18% (at 256x256), while cutting manual annotation effort through automation.
☆ Busting the Paper Ballot: Voting Meets Adversarial Machine Learning CCS 2025
We show the security risk associated with using machine learning classifiers in United States election tabulators. The central classification task in election tabulation is deciding whether a mark does or does not appear on a bubble associated to an alternative in a contest on the ballot. Barretto et al. (E-Vote-ID 2021) reported that convolutional neural networks are a viable option in this field, as they outperform simple feature-based classifiers. Our contributions to election security can be divided into four parts. To demonstrate and analyze the hypothetical vulnerability of machine learning models on election tabulators, we first introduce four new ballot datasets. Second, we train and test a variety of different models on our new datasets. These models include support vector machines, convolutional neural networks (a basic CNN, VGG and ResNet), and vision transformers (Twins and CaiT). Third, using our new datasets and trained models, we demonstrate that traditional white box attacks are ineffective in the voting domain due to gradient masking. Our analyses further reveal that gradient masking is a product of numerical instability. We use a modified difference of logits ratio loss to overcome this issue (Croce and Hein, ICML 2020). Fourth, in the physical world, we conduct attacks with the adversarial examples generated using our new methods. In traditional adversarial machine learning, a high (50% or greater) attack success rate is ideal. However, for certain elections, even a 5% attack success rate can flip the outcome of a race. We show such an impact is possible in the physical domain. We thoroughly discuss attack realism, and the challenges and practicality associated with printing and scanning ballot adversarial examples.
comment: 18 Pages. Author version of article to appear at CCS 2025
☆ Risk Estimation of Knee Osteoarthritis Progression via Predictive Multi-task Modelling from Efficient Diffusion Model using X-ray Images
Medical imaging plays a crucial role in assessing knee osteoarthritis (OA) risk by enabling early detection and disease monitoring. Recent machine learning methods have improved risk estimation (i.e., predicting the likelihood of disease progression) and predictive modelling (i.e., the forecasting of future outcomes based on current data) using medical images, but clinical adoption remains limited due to their lack of interpretability. Existing approaches that generate future images for risk estimation are complex and impractical. Additionally, previous methods fail to localize anatomical knee landmarks, limiting interpretability. We address these gaps with a new interpretable machine learning method to estimate the risk of knee OA progression via multi-task predictive modelling that classifies future knee OA severity and predicts anatomical knee landmarks from efficiently generated high-quality future images. Such image generation is achieved by leveraging a diffusion model in a class-conditioned latent space to forecast disease progression, offering a visual representation of how particular health conditions may evolve. Applied to the Osteoarthritis Initiative dataset, our approach improves the state-of-the-art (SOTA) by 2\%, achieving an AUC of 0.71 in predicting knee OA progression while offering ~9% faster inference time.
☆ DreamLight: Towards Harmonious and Consistent Image Relighting
We introduce a model named DreamLight for universal image relighting in this work, which can seamlessly composite subjects into a new background while maintaining aesthetic uniformity in terms of lighting and color tone. The background can be specified by natural images (image-based relighting) or generated from unlimited text prompts (text-based relighting). Existing studies primarily focus on image-based relighting, while with scant exploration into text-based scenarios. Some works employ intricate disentanglement pipeline designs relying on environment maps to provide relevant information, which grapples with the expensive data cost required for intrinsic decomposition and light source. Other methods take this task as an image translation problem and perform pixel-level transformation with autoencoder architecture. While these methods have achieved decent harmonization effects, they struggle to generate realistic and natural light interaction effects between the foreground and background. To alleviate these challenges, we reorganize the input data into a unified format and leverage the semantic prior provided by the pretrained diffusion model to facilitate the generation of natural results. Moreover, we propose a Position-Guided Light Adapter (PGLA) that condenses light information from different directions in the background into designed light query embeddings, and modulates the foreground with direction-biased masked attention. In addition, we present a post-processing module named Spectral Foreground Fixer (SFF) to adaptively reorganize different frequency components of subject and relighted background, which helps enhance the consistency of foreground appearance. Extensive comparisons and user study demonstrate that our DreamLight achieves remarkable relighting performance.
☆ MobileHolo: A Lightweight Complex-Valued Deformable CNN for High-Quality Computer-Generated Hologram
Holographic displays have significant potential in virtual reality and augmented reality owing to their ability to provide all the depth cues. Deep learning-based methods play an important role in computer-generated holograms (CGH). During the diffraction process, each pixel exerts an influence on the reconstructed image. However, previous works face challenges in capturing sufficient information to accurately model this process, primarily due to the inadequacy of their effective receptive field (ERF). Here, we designed complex-valued deformable convolution for integration into network, enabling dynamic adjustment of the convolution kernel's shape to increase flexibility of ERF for better feature extraction. This approach allows us to utilize a single model while achieving state-of-the-art performance in both simulated and optical experiment reconstructions, surpassing existing open-source models. Specifically, our method has a peak signal-to-noise ratio that is 2.04 dB, 5.31 dB, and 9.71 dB higher than that of CCNN-CGH, HoloNet, and Holo-encoder, respectively, when the resolution is 1920$\times$1072. The number of parameters of our model is only about one-eighth of that of CCNN-CGH.
comment: 8 pages, 9 figures
☆ Exploring Diffusion with Test-Time Training on Efficient Image Restoration
Image restoration faces challenges including ineffective feature fusion, computational bottlenecks and inefficient diffusion processes. To address these, we propose DiffRWKVIR, a novel framework unifying Test-Time Training (TTT) with efficient diffusion. Our approach introduces three key innovations: (1) Omni-Scale 2D State Evolution extends RWKV's location-dependent parameterization to hierarchical multi-directional 2D scanning, enabling global contextual awareness with linear complexity O(L); (2) Chunk-Optimized Flash Processing accelerates intra-chunk parallelism by 3.2x via contiguous chunk processing (O(LCd) complexity), reducing sequential dependencies and computational overhead; (3) Prior-Guided Efficient Diffusion extracts a compact Image Prior Representation (IPR) in only 5-20 steps, proving 45% faster training/inference than DiffIR while solving computational inefficiency in denoising. Evaluated across super-resolution and inpainting benchmarks (Set5, Set14, BSD100, Urban100, Places365), DiffRWKVIR outperforms SwinIR, HAT, and MambaIR/v2 in PSNR, SSIM, LPIPS, and efficiency metrics. Our method establishes a new paradigm for adaptive, high-efficiency image restoration with optimized hardware utilization.
comment: Submitted to The 8th Chinese Conference on Pattern Recognition and Computer Vision (2025). Contact to nomodeset@qq.com. Source code will open in 4 months
☆ VisLanding: Monocular 3D Perception for UAV Safe Landing via Depth-Normal Synergy IROS2025
This paper presents VisLanding, a monocular 3D perception-based framework for safe UAV (Unmanned Aerial Vehicle) landing. Addressing the core challenge of autonomous UAV landing in complex and unknown environments, this study innovatively leverages the depth-normal synergy prediction capabilities of the Metric3D V2 model to construct an end-to-end safe landing zones (SLZ) estimation framework. By introducing a safe zone segmentation branch, we transform the landing zone estimation task into a binary semantic segmentation problem. The model is fine-tuned and annotated using the WildUAV dataset from a UAV perspective, while a cross-domain evaluation dataset is constructed to validate the model's robustness. Experimental results demonstrate that VisLanding significantly enhances the accuracy of safe zone identification through a depth-normal joint optimization mechanism, while retaining the zero-shot generalization advantages of Metric3D V2. The proposed method exhibits superior generalization and robustness in cross-domain testing compared to other approaches. Furthermore, it enables the estimation of landing zone area by integrating predicted depth and normal information, providing critical decision-making support for practical applications.
comment: Accepted by IROS2025
☆ Integrating Radiomics with Deep Learning Enhances Multiple Sclerosis Lesion Delineation
Background: Accurate lesion segmentation is critical for multiple sclerosis (MS) diagnosis, yet current deep learning approaches face robustness challenges. Aim: This study improves MS lesion segmentation by combining data fusion and deep learning techniques. Materials and Methods: We suggested novel radiomic features (concentration rate and R\'enyi entropy) to characterize different MS lesion types and fused these with raw imaging data. The study integrated radiomic features with imaging data through a ResNeXt-UNet architecture and attention-augmented U-Net architecture. Our approach was evaluated on scans from 46 patients (1102 slices), comparing performance before and after data fusion. Results: The radiomics-enhanced ResNeXt-UNet demonstrated high segmentation accuracy, achieving significant improvements in precision and sensitivity over the MRI-only baseline and a Dice score of 0.774$\pm$0.05; p<0.001 according to Bonferroni-adjusted Wilcoxon signed-rank tests. The radiomics-enhanced attention-augmented U-Net model showed a greater model stability evidenced by reduced performance variability (SDD = 0.18 $\pm$ 0.09 vs. 0.21 $\pm$ 0.06; p=0.03) and smoother validation curves with radiomics integration. Conclusion: These results validate our hypothesis that fusing radiomics with raw imaging data boosts segmentation performance and stability in state-of-the-art models.
☆ Train Once, Forget Precisely: Anchored Optimization for Efficient Post-Hoc Unlearning ICML
As machine learning systems increasingly rely on data subject to privacy regulation, selectively unlearning specific information from trained models has become essential. In image classification, this involves removing the influence of particular training samples, semantic classes, or visual styles without full retraining. We introduce \textbf{Forget-Aligned Model Reconstruction (FAMR)}, a theoretically grounded and computationally efficient framework for post-hoc unlearning in deep image classifiers. FAMR frames forgetting as a constrained optimization problem that minimizes a uniform-prediction loss on the forget set while anchoring model parameters to their original values via an $\ell_2$ penalty. A theoretical analysis links FAMR's solution to influence-function-based retraining approximations, with bounds on parameter and output deviation. Empirical results on class forgetting tasks using CIFAR-10 and ImageNet-100 demonstrate FAMR's effectiveness, with strong performance retention and minimal computational overhead. The framework generalizes naturally to concept and style erasure, offering a scalable and certifiable route to efficient post-hoc forgetting in vision models.
comment: Accepted at ICML MUGen'25
☆ GAMORA: A Gesture Articulated Meta Operative Robotic Arm for Hazardous Material Handling in Containment-Level Environments
The convergence of robotics and virtual reality (VR) has enabled safer and more efficient workflows in high-risk laboratory settings, particularly virology labs. As biohazard complexity increases, minimizing direct human exposure while maintaining precision becomes essential. We propose GAMORA (Gesture Articulated Meta Operative Robotic Arm), a novel VR-guided robotic system that enables remote execution of hazardous tasks using natural hand gestures. Unlike existing scripted automation or traditional teleoperation, GAMORA integrates the Oculus Quest 2, NVIDIA Jetson Nano, and Robot Operating System (ROS) to provide real-time immersive control, digital twin simulation, and inverse kinematics-based articulation. The system supports VR-based training and simulation while executing precision tasks in physical environments via a 3D-printed robotic arm. Inverse kinematics ensure accurate manipulation for delicate operations such as specimen handling and pipetting. The pipeline includes Unity-based 3D environment construction, real-time motion planning, and hardware-in-the-loop testing. GAMORA achieved a mean positional discrepancy of 2.2 mm (improved from 4 mm), pipetting accuracy within 0.2 mL, and repeatability of 1.2 mm across 50 trials. Integrated object detection via YOLOv8 enhances spatial awareness, while energy-efficient operation (50% reduced power output) ensures sustainable deployment. The system's digital-physical feedback loop enables safe, precise, and repeatable automation of high-risk lab tasks. GAMORA offers a scalable, immersive solution for robotic control and biosafety in biomedical research environments.
☆ SIRI-Bench: Challenging VLMs' Spatial Intelligence through Complex Reasoning Tasks
Large Language Models (LLMs) are experiencing rapid advancements in complex reasoning, exhibiting remarkable generalization in mathematics and programming. In contrast, while spatial intelligence is fundamental for Vision-Language Models (VLMs) in real-world interaction, the systematic evaluation of their complex reasoning ability within spatial contexts remains underexplored. To bridge this gap, we introduce SIRI-Bench, a benchmark designed to evaluate VLMs' spatial intelligence through video-based reasoning tasks. SIRI-Bench comprises nearly 1K video-question-answer triplets, where each problem is embedded in a realistic 3D scene and captured by video. By carefully designing questions and corresponding 3D scenes, our benchmark ensures that solving the questions requires both spatial comprehension for extracting information and high-level reasoning for deriving solutions, making it a challenging benchmark for evaluating VLMs. To facilitate large-scale data synthesis, we develop an Automatic Scene Creation Engine. This engine, leveraging multiple specialized LLM agents, can generate realistic 3D scenes from abstract math problems, ensuring faithfulness to the original descriptions. Experimental results reveal that state-of-the-art VLMs struggle significantly on SIRI-Bench, underscoring the challenge of spatial reasoning. We hope that our study will bring researchers' attention to spatially grounded reasoning and advance VLMs in visual problem-solving.
comment: 16 pages, 9 figures
☆ MOL: Joint Estimation of Micro-Expression, Optical Flow, and Landmark via Transformer-Graph-Style Convolution
Facial micro-expression recognition (MER) is a challenging problem, due to transient and subtle micro-expression (ME) actions. Most existing methods depend on hand-crafted features, key frames like onset, apex, and offset frames, or deep networks limited by small-scale and low-diversity datasets. In this paper, we propose an end-to-end micro-action-aware deep learning framework with advantages from transformer, graph convolution, and vanilla convolution. In particular, we propose a novel F5C block composed of fully-connected convolution and channel correspondence convolution to directly extract local-global features from a sequence of raw frames, without the prior knowledge of key frames. The transformer-style fully-connected convolution is proposed to extract local features while maintaining global receptive fields, and the graph-style channel correspondence convolution is introduced to model the correlations among feature patterns. Moreover, MER, optical flow estimation, and facial landmark detection are jointly trained by sharing the local-global features. The two latter tasks contribute to capturing facial subtle action information for MER, which can alleviate the impact of insufficient training data. Extensive experiments demonstrate that our framework (i) outperforms the state-of-the-art MER methods on CASME II, SAMM, and SMIC benchmarks, (ii) works well for optical flow estimation and facial landmark detection, and (iii) can capture facial subtle muscle actions in local regions associated with MEs. The code is available at https://github.com/CYF-cuber/MOL.
comment: This paper has been accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence
☆ Towards Reliable WMH Segmentation under Domain Shift: An Application Study using Maximum Entropy Regularization to Improve Uncertainty Estimation
Accurate segmentation of white matter hyperintensities (WMH) is crucial for clinical decision-making, particularly in the context of multiple sclerosis. However, domain shifts, such as variations in MRI machine types or acquisition parameters, pose significant challenges to model calibration and uncertainty estimation. This study investigates the impact of domain shift on WMH segmentation by proposing maximum-entropy regularization techniques to enhance model calibration and uncertainty estimation, with the purpose of identifying errors post-deployment using predictive uncertainty as a proxy measure that does not require ground-truth labels. To do this, we conducted experiments using a U-Net architecture to evaluate these regularization schemes on two publicly available datasets, assessing performance with the Dice coefficient, expected calibration error, and entropy-based uncertainty estimates. Our results show that entropy-based uncertainty estimates can anticipate segmentation errors, and that maximum-entropy regularization further strengthens the correlation between uncertainty and segmentation performance while also improving model calibration under domain shift.
comment: 32 pages, 7 figures
☆ I Speak and You Find: Robust 3D Visual Grounding with Noisy and Ambiguous Speech Inputs
Existing 3D visual grounding methods rely on precise text prompts to locate objects within 3D scenes. Speech, as a natural and intuitive modality, offers a promising alternative. Real-world speech inputs, however, often suffer from transcription errors due to accents, background noise, and varying speech rates, limiting the applicability of existing 3DVG methods. To address these challenges, we propose \textbf{SpeechRefer}, a novel 3DVG framework designed to enhance performance in the presence of noisy and ambiguous speech-to-text transcriptions. SpeechRefer integrates seamlessly with xisting 3DVG models and introduces two key innovations. First, the Speech Complementary Module captures acoustic similarities between phonetically related words and highlights subtle distinctions, generating complementary proposal scores from the speech signal. This reduces dependence on potentially erroneous transcriptions. Second, the Contrastive Complementary Module employs contrastive learning to align erroneous text features with corresponding speech features, ensuring robust performance even when transcription errors dominate. Extensive experiments on the SpeechRefer and peechNr3D datasets demonstrate that SpeechRefer improves the performance of existing 3DVG methods by a large margin, which highlights SpeechRefer's potential to bridge the gap between noisy speech inputs and reliable 3DVG, enabling more intuitive and practical multimodal systems.
☆ Foundation Model Insights and a Multi-Model Approach for Superior Fine-Grained One-shot Subset Selection ICML 2025
One-shot subset selection serves as an effective tool to reduce deep learning training costs by identifying an informative data subset based on the information extracted by an information extractor (IE). Traditional IEs, typically pre-trained on the target dataset, are inherently dataset-dependent. Foundation models (FMs) offer a promising alternative, potentially mitigating this limitation. This work investigates two key questions: (1) Can FM-based subset selection outperform traditional IE-based methods across diverse datasets? (2) Do all FMs perform equally well as IEs for subset selection? Extensive experiments uncovered surprising insights: FMs consistently outperform traditional IEs on fine-grained datasets, whereas their advantage diminishes on coarse-grained datasets with noisy labels. Motivated by these finding, we propose RAM-APL (RAnking Mean-Accuracy of Pseudo-class Labels), a method tailored for fine-grained image datasets. RAM-APL leverages multiple FMs to enhance subset selection by exploiting their complementary strengths. Our approach achieves state-of-the-art performance on fine-grained datasets, including Oxford-IIIT Pet, Food-101, and Caltech-UCSD Birds-200-2011.
comment: 18 pages, 10 figures, accepted by ICML 2025
☆ Dense360: Dense Understanding from Omnidirectional Panoramas
Multimodal Large Language Models (MLLMs) require comprehensive visual inputs to achieve dense understanding of the physical world. While existing MLLMs demonstrate impressive world understanding capabilities through limited field-of-view (FOV) visual inputs (e.g., 70 degree), we take the first step toward dense understanding from omnidirectional panoramas. We first introduce an omnidirectional panoramas dataset featuring a comprehensive suite of reliability-scored annotations. Specifically, our dataset contains 160K panoramas with 5M dense entity-level captions, 1M unique referring expressions, and 100K entity-grounded panoramic scene descriptions. Compared to multi-view alternatives, panoramas can provide more complete, compact, and continuous scene representations through equirectangular projections (ERP). However, the use of ERP introduces two key challenges for MLLMs: i) spatial continuity along the circle of latitude, and ii) latitude-dependent variation in information density. We address these challenges through ERP-RoPE, a position encoding scheme specifically designed for panoramic ERP. In addition, we introduce Dense360-Bench, the first benchmark for evaluating MLLMs on omnidirectional captioning and grounding, establishing a comprehensive framework for advancing dense visual-language understanding in panoramic settings.
☆ Adapting Lightweight Vision Language Models for Radiological Visual Question Answering
Recent advancements in vision-language systems have improved the accuracy of Radiological Visual Question Answering (VQA) Models. However, some challenges remain across each stage of model development: limited expert-labeled images hinders data procurement at scale; the intricate and nuanced patterns of radiological images make modeling inherently difficult; and the lack of evaluation evaluation efforts makes it difficult to identify cases where the model might be ill-conditioned. In this study, we fine-tune a lightweight 3B parameter vision-language model for Radiological VQA, demonstrating that small models, when appropriately tuned with curated data, can achieve robust performance across both open- and closed-ended questions. We propose a cost-effective training pipeline from synthetic question-answer pair generation to multi-stage fine-tuning on specialised radiological domain-targeted datasets (e.g., ROCO v2.0, MedPix v2.0). Our results show that despite operating at a fraction of the scale of state-of-the-art models such as LLaVA-Med, our model achieves promising performance given its small parameter size and the limited scale of training data. We introduce a lightweight saliency-based diagnostic tool that enables domain experts to inspect VQA model performance and identify ill-conditioned failure modes through saliency analysis.
☆ Model compression using knowledge distillation with integrated gradients
Model compression is critical for deploying deep learning models on resource-constrained devices. We introduce a novel method enhancing knowledge distillation with integrated gradients (IG) as a data augmentation strategy. Our approach overlays IG maps onto input images during training, providing student models with deeper insights into teacher models' decision-making processes. Extensive evaluation on CIFAR-10 demonstrates that our IG-augmented knowledge distillation achieves 92.6% testing accuracy with a 4.1x compression factor-a significant 1.1 percentage point improvement ($p<0.001$) over non-distilled models (91.5%). This compression reduces inference time from 140 ms to 13 ms. Our method precomputes IG maps before training, transforming substantial runtime costs into a one-time preprocessing step. Our comprehensive experiments include: (1) comparisons with attention transfer, revealing complementary benefits when combined with our approach; (2) Monte Carlo simulations confirming statistical robustness; (3) systematic evaluation of compression factor versus accuracy trade-offs across a wide range (2.2x-1122x); and (4) validation on an ImageNet subset aligned with CIFAR-10 classes, demonstrating generalisability beyond the initial dataset. These extensive ablation studies confirm that IG-based knowledge distillation consistently outperforms conventional approaches across varied architectures and compression ratios. Our results establish this framework as a viable compression technique for real-world deployment on edge devices while maintaining competitive accuracy.
comment: 49 pages, 12 figures
☆ MoTE: Mixture of Ternary Experts for Memory-efficient Large Multimodal Models
Large multimodal Mixture-of-Experts (MoEs) effectively scale the model size to boost performance while maintaining fixed active parameters. However, previous works primarily utilized full-precision experts during sparse up-cycling. Despite they show superior performance on end tasks, the large amount of experts introduces higher memory footprint, which poses significant challenges for the deployment on edge devices. In this work, we propose MoTE, a scalable and memory-efficient approach to train Mixture-of-Ternary-Experts models from dense checkpoint. Instead of training fewer high-precision experts, we propose to train more low-precision experts during up-cycling. Specifically, we use the pre-trained FFN as a shared expert and train ternary routed experts with parameters in {-1, 0, 1}. Extensive experiments show that our approach has promising scaling trend along model size. MoTE achieves comparable performance to full-precision baseline MoE-LLaVA while offering lower memory footprint. Furthermore, our approach is compatible with post-training quantization methods and the advantage further amplifies when memory-constraint goes lower. Given the same amount of expert memory footprint of 3.4GB and combined with post-training quantization, MoTE outperforms MoE-LLaVA by a gain of 4.3% average accuracy on end tasks, demonstrating its effectiveness and potential for memory-constrained devices.
comment: Work in progress
☆ A large-scale heterogeneous 3D magnetic resonance brain imaging dataset for self-supervised learning
We present FOMO60K, a large-scale, heterogeneous dataset of 60,529 brain Magnetic Resonance Imaging (MRI) scans from 13,900 sessions and 11,187 subjects, aggregated from 16 publicly available sources. The dataset includes both clinical- and research-grade images, multiple MRI sequences, and a wide range of anatomical and pathological variability, including scans with large brain anomalies. Minimal preprocessing was applied to preserve the original image characteristics while reducing barriers to entry for new users. Accompanying code for self-supervised pretraining and finetuning is provided. FOMO60K is intended to support the development and benchmarking of self-supervised learning methods in medical imaging at scale.
☆ Toward Rich Video Human-Motion2D Generation
Generating realistic and controllable human motions, particularly those involving rich multi-character interactions, remains a significant challenge due to data scarcity and the complexities of modeling inter-personal dynamics. To address these limitations, we first introduce a new large-scale rich video human motion 2D dataset (Motion2D-Video-150K) comprising 150,000 video sequences. Motion2D-Video-150K features a balanced distribution of diverse single-character and, crucially, double-character interactive actions, each paired with detailed textual descriptions. Building upon this dataset, we propose a novel diffusion-based rich video human motion2D generation (RVHM2D) model. RVHM2D incorporates an enhanced textual conditioning mechanism utilizing either dual text encoders (CLIP-L/B) or T5-XXL with both global and local features. We devise a two-stage training strategy: the model is first trained with a standard diffusion objective, and then fine-tuned using reinforcement learning with an FID-based reward to further enhance motion realism and text alignment. Extensive experiments demonstrate that RVHM2D achieves leading performance on the Motion2D-Video-150K benchmark in generating both single and interactive double-character scenarios.
☆ Compositional Attribute Imbalance in Vision Datasets
Visual attribute imbalance is a common yet underexplored issue in image classification, significantly impacting model performance and generalization. In this work, we first define the first-level and second-level attributes of images and then introduce a CLIP-based framework to construct a visual attribute dictionary, enabling automatic evaluation of image attributes. By systematically analyzing both single-attribute imbalance and compositional attribute imbalance, we reveal how the rarity of attributes affects model performance. To tackle these challenges, we propose adjusting the sampling probability of samples based on the rarity of their compositional attributes. This strategy is further integrated with various data augmentation techniques (such as CutMix, Fmix, and SaliencyMix) to enhance the model's ability to represent rare attributes. Extensive experiments on benchmark datasets demonstrate that our method effectively mitigates attribute imbalance, thereby improving the robustness and fairness of deep neural networks. Our research highlights the importance of modeling visual attribute distributions and provides a scalable solution for long-tail image classification tasks.
☆ Causally Steered Diffusion for Automated Video Counterfactual Generation
Adapting text-to-image (T2I) latent diffusion models for video editing has shown strong visual fidelity and controllability, but challenges remain in maintaining causal relationships in video content. Edits affecting causally dependent attributes risk generating unrealistic or misleading outcomes if these relationships are ignored. In this work, we propose a causally faithful framework for counterfactual video generation, guided by a vision-language model (VLM). Our method is agnostic to the underlying video editing system and does not require access to its internal mechanisms or finetuning. Instead, we guide the generation by optimizing text prompts based on an assumed causal graph, addressing the challenge of latent space control in LDMs. We evaluate our approach using standard video quality metrics and counterfactual-specific criteria, such as causal effectiveness and minimality. Our results demonstrate that causally faithful video counterfactuals can be effectively generated within the learned distribution of LDMs through prompt-based causal steering. With its compatibility with any black-box video editing system, our method holds significant potential for generating realistic "what-if" video scenarios in diverse areas such as healthcare and digital media.
☆ Decoupled Classifier-Free Guidance for Counterfactual Diffusion Models
Counterfactual image generation aims to simulate realistic visual outcomes under specific causal interventions. Diffusion models have recently emerged as a powerful tool for this task, combining DDIM inversion with conditional generation via classifier-free guidance (CFG). However, standard CFG applies a single global weight across all conditioning variables, which can lead to poor identity preservation and spurious attribute changes - a phenomenon known as attribute amplification. To address this, we propose Decoupled Classifier-Free Guidance (DCFG), a flexible and model-agnostic framework that introduces group-wise conditioning control. DCFG builds on an attribute-split embedding strategy that disentangles semantic inputs, enabling selective guidance on user-defined attribute groups. For counterfactual generation, we partition attributes into intervened and invariant sets based on a causal graph and apply distinct guidance to each. Experiments on CelebA-HQ, MIMIC-CXR, and EMBED show that DCFG improves intervention fidelity, mitigates unintended changes, and enhances reversibility, enabling more faithful and interpretable counterfactual image generation.
☆ Enclosing Prototypical Variational Autoencoder for Explainable Out-of-Distribution Detection
Understanding the decision-making and trusting the reliability of Deep Machine Learning Models is crucial for adopting such methods to safety-relevant applications. We extend self-explainable Prototypical Variational models with autoencoder-based out-of-distribution (OOD) detection: A Variational Autoencoder is applied to learn a meaningful latent space which can be used for distance-based classification, likelihood estimation for OOD detection, and reconstruction. The In-Distribution (ID) region is defined by a Gaussian mixture distribution with learned prototypes representing the center of each mode. Furthermore, a novel restriction loss is introduced that promotes a compact ID region in the latent space without collapsing it into single points. The reconstructive capabilities of the Autoencoder ensure the explainability of the prototypes and the ID region of the classifier, further aiding the discrimination of OOD samples. Extensive evaluations on common OOD detection benchmarks as well as a large-scale dataset from a real-world railway application demonstrate the usefulness of the approach, outperforming previous methods.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution is published in Computer Safety, Reliability and Security - SAFECOMP 2024 Workshops - DECSoS, SASSUR, TOASTS, and WAISE, and is available online at https://doi.org/10.1007/978-3-031-68738-9_29
☆ GrFormer: A Novel Transformer on Grassmann Manifold for Infrared and Visible Image Fusion
In the field of image fusion, promising progress has been made by modeling data from different modalities as linear subspaces. However, in practice, the source images are often located in a non-Euclidean space, where the Euclidean methods usually cannot encapsulate the intrinsic topological structure. Typically, the inner product performed in the Euclidean space calculates the algebraic similarity rather than the semantic similarity, which results in undesired attention output and a decrease in fusion performance. While the balance of low-level details and high-level semantics should be considered in infrared and visible image fusion task. To address this issue, in this paper, we propose a novel attention mechanism based on Grassmann manifold for infrared and visible image fusion (GrFormer). Specifically, our method constructs a low-rank subspace mapping through projection constraints on the Grassmann manifold, compressing attention features into subspaces of varying rank levels. This forces the features to decouple into high-frequency details (local low-rank) and low-frequency semantics (global low-rank), thereby achieving multi-scale semantic fusion. Additionally, to effectively integrate the significant information, we develop a cross-modal fusion strategy (CMS) based on a covariance mask to maximise the complementary properties between different modalities and to suppress the features with high correlation, which are deemed redundant. The experimental results demonstrate that our network outperforms SOTA methods both qualitatively and quantitatively on multiple image fusion benchmarks. The codes are available at https://github.com/Shaoyun2023.
comment: 16 pages, 11 figures
☆ DepthSeg: Depth prompting in remote sensing semantic segmentation
Remote sensing semantic segmentation is crucial for extracting detailed land surface information, enabling applications such as environmental monitoring, land use planning, and resource assessment. In recent years, advancements in artificial intelligence have spurred the development of automatic remote sensing semantic segmentation methods. However, the existing semantic segmentation methods focus on distinguishing spectral characteristics of different objects while ignoring the differences in the elevation of the different targets. This results in land cover misclassification in complex scenarios involving shadow occlusion and spectral confusion. In this paper, we introduce a depth prompting two-dimensional (2D) remote sensing semantic segmentation framework (DepthSeg). It automatically models depth/height information from 2D remote sensing images and integrates it into the semantic segmentation framework to mitigate the effects of spectral confusion and shadow occlusion. During the feature extraction phase of DepthSeg, we introduce a lightweight adapter to enable cost-effective fine-tuning of the large-parameter vision transformer encoder pre-trained by natural images. In the depth prompting phase, we propose a depth prompter to model depth/height features explicitly. In the semantic prediction phase, we introduce a semantic classification decoder that couples the depth prompts with high-dimensional land-cover features, enabling accurate extraction of land-cover types. Experiments on the LiuZhou dataset validate the advantages of the DepthSeg framework in land cover mapping tasks. Detailed ablation studies further highlight the significance of the depth prompts in remote sensing semantic segmentation.
☆ Compressed Video Super-Resolution based on Hierarchical Encoding
This paper presents a general-purpose video super-resolution (VSR) method, dubbed VSR-HE, specifically designed to enhance the perceptual quality of compressed content. Targeting scenarios characterized by heavy compression, the method upscales low-resolution videos by a ratio of four, from 180p to 720p or from 270p to 1080p. VSR-HE adopts hierarchical encoding transformer blocks and has been sophisticatedly optimized to eliminate a wide range of compression artifacts commonly introduced by H.265/HEVC encoding across various quantization parameter (QP) levels. To ensure robustness and generalization, the model is trained and evaluated under diverse compression settings, allowing it to effectively restore fine-grained details and preserve visual fidelity. The proposed VSR-HE has been officially submitted to the ICME 2025 Grand Challenge on VSR for Video Conferencing (Team BVI-VSR), under both the Track 1 (General-Purpose Real-World Video Content) and Track 2 (Talking Head Videos).
☆ Discrete JEPA: Learning Discrete Token Representations without Reconstruction
The cornerstone of cognitive intelligence lies in extracting hidden patterns from observations and leveraging these principles to systematically predict future outcomes. However, current image tokenization methods demonstrate significant limitations in tasks requiring symbolic abstraction and logical reasoning capabilities essential for systematic inference. To address this challenge, we propose Discrete-JEPA, extending the latent predictive coding framework with semantic tokenization and novel complementary objectives to create robust tokenization for symbolic reasoning tasks. Discrete-JEPA dramatically outperforms baselines on visual symbolic prediction tasks, while striking visual evidence reveals the spontaneous emergence of deliberate systematic patterns within the learned semantic token space. Though an initial model, our approach promises a significant impact for advancing Symbolic world modeling and planning capabilities in artificial intelligence systems.
☆ DGG-XNet: A Hybrid Deep Learning Framework for Multi-Class Brain Disease Classification with Explainable AI
Accurate diagnosis of brain disorders such as Alzheimer's disease and brain tumors remains a critical challenge in medical imaging. Conventional methods based on manual MRI analysis are often inefficient and error-prone. To address this, we propose DGG-XNet, a hybrid deep learning model integrating VGG16 and DenseNet121 to enhance feature extraction and classification. DenseNet121 promotes feature reuse and efficient gradient flow through dense connectivity, while VGG16 contributes strong hierarchical spatial representations. Their fusion enables robust multiclass classification of neurological conditions. Grad-CAM is applied to visualize salient regions, enhancing model transparency. Trained on a combined dataset from BraTS 2021 and Kaggle, DGG-XNet achieved a test accuracy of 91.33\%, with precision, recall, and F1-score all exceeding 91\%. These results highlight DGG-XNet's potential as an effective and interpretable tool for computer-aided diagnosis (CAD) of neurodegenerative and oncological brain disorders.
☆ HydroChronos: Forecasting Decades of Surface Water Change
Forecasting surface water dynamics is crucial for water resource management and climate change adaptation. However, the field lacks comprehensive datasets and standardized benchmarks. In this paper, we introduce HydroChronos, a large-scale, multi-modal spatiotemporal dataset for surface water dynamics forecasting designed to address this gap. We couple the dataset with three forecasting tasks. The dataset includes over three decades of aligned Landsat 5 and Sentinel-2 imagery, climate data, and Digital Elevation Models for diverse lakes and rivers across Europe, North America, and South America. We also propose AquaClimaTempo UNet, a novel spatiotemporal architecture with a dedicated climate data branch, as a strong benchmark baseline. Our model significantly outperforms a Persistence baseline for forecasting future water dynamics by +14% and +11% F1 across change detection and direction of change classification tasks, and by +0.1 MAE on the magnitude of change regression. Finally, we conduct an Explainable AI analysis to identify the key climate variables and input channels that influence surface water change, providing insights to inform and guide future modeling efforts.
☆ EVA02-AT: Egocentric Video-Language Understanding with Spatial-Temporal Rotary Positional Embeddings and Symmetric Optimization
Egocentric video-language understanding demands both high efficiency and accurate spatial-temporal modeling. Existing approaches face three key challenges: 1) Excessive pre-training cost arising from multi-stage pre-training pipelines, 2) Ineffective spatial-temporal encoding due to manually split 3D rotary positional embeddings that hinder feature interactions, and 3) Imprecise learning objectives in soft-label multi-instance retrieval, which neglect negative pair correlations. In this paper, we introduce EVA02-AT, a suite of EVA02-based video-language foundation models tailored to egocentric video understanding tasks. EVA02-AT first efficiently transfers an image-based CLIP model into a unified video encoder via a single-stage pretraining. Second, instead of applying rotary positional embeddings to isolated dimensions, we introduce spatial-temporal rotary positional embeddings along with joint attention, which can effectively encode both spatial and temporal information on the entire hidden dimension. This joint encoding of spatial-temporal features enables the model to learn cross-axis relationships, which are crucial for accurately modeling motion and interaction in videos. Third, focusing on multi-instance video-language retrieval tasks, we introduce the Symmetric Multi-Similarity (SMS) loss and a novel training framework that advances all soft labels for both positive and negative pairs, providing a more precise learning objective. Extensive experiments on Ego4D, EPIC-Kitchens-100, and Charades-Ego under zero-shot and fine-tuning settings demonstrate that EVA02-AT achieves state-of-the-art performance across diverse egocentric video-language tasks with fewer parameters. Models with our SMS loss also show significant performance gains on multi-instance retrieval benchmarks. Our code and models are publicly available at https://github.com/xqwang14/EVA02-AT .
☆ FGA-NN: Film Grain Analysis Neural Network
Film grain, once a by-product of analog film, is now present in most cinematographic content for aesthetic reasons. However, when such content is compressed at medium to low bitrates, film grain is lost due to its random nature. To preserve artistic intent while compressing efficiently, film grain is analyzed and modeled before encoding and synthesized after decoding. This paper introduces FGA-NN, the first learning-based film grain analysis method to estimate conventional film grain parameters compatible with conventional synthesis. Quantitative and qualitative results demonstrate FGA-NN's superior balance between analysis accuracy and synthesis complexity, along with its robustness and applicability.
☆ FRIDU: Functional Map Refinement with Guided Image Diffusion
We propose a novel approach for refining a given correspondence map between two shapes. A correspondence map represented as a functional map, namely a change of basis matrix, can be additionally treated as a 2D image. With this perspective, we train an image diffusion model directly in the space of functional maps, enabling it to generate accurate maps conditioned on an inaccurate initial map. The training is done purely in the functional space, and thus is highly efficient. At inference time, we use the pointwise map corresponding to the current functional map as guidance during the diffusion process. The guidance can additionally encourage different functional map objectives, such as orthogonality and commutativity with the Laplace-Beltrami operator. We show that our approach is competitive with state-of-the-art methods of map refinement and that guided diffusion models provide a promising pathway to functional map processing.
comment: Accepted to SGP 2025 (Symposium on Geometry Processing)
☆ BRISC: Annotated Dataset for Brain Tumor Segmentation and Classification with Swin-HAFNet
Accurate segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) remain key challenges in medical image analysis, largely due to the lack of high-quality, balanced, and diverse datasets. In this work, we present a new curated MRI dataset designed specifically for brain tumor segmentation and classification tasks. The dataset comprises 6,000 contrast-enhanced T1-weighted MRI scans annotated by certified radiologists and physicians, spanning three major tumor types-glioma, meningioma, and pituitary-as well as non-tumorous cases. Each sample includes high-resolution labels and is categorized across axial, sagittal, and coronal imaging planes to facilitate robust model development and cross-view generalization. To demonstrate the utility of the dataset, we propose a transformer-based segmentation model and benchmark it against established baselines. Our method achieves the highest weighted mean Intersection-over-Union (IoU) of 82.3%, with improvements observed across all tumor categories. Importantly, this study serves primarily as an introduction to the dataset, establishing foundational benchmarks for future research. We envision this dataset as a valuable resource for advancing machine learning applications in neuro-oncology, supporting both academic research and clinical decision-support development. datasetlink: https://www.kaggle.com/datasets/briscdataset/brisc2025/
☆ orGAN: A Synthetic Data Augmentation Pipeline for Simultaneous Generation of Surgical Images and Ground Truth Labels
Deep learning in medical imaging faces obstacles: limited data diversity, ethical issues, high acquisition costs, and the need for precise annotations. Bleeding detection and localization during surgery is especially challenging due to the scarcity of high-quality datasets that reflect real surgical scenarios. We propose orGAN, a GAN-based system for generating high-fidelity, annotated surgical images of bleeding. By leveraging small "mimicking organ" datasets, synthetic models that replicate tissue properties and bleeding, our approach reduces ethical concerns and data-collection costs. orGAN builds on StyleGAN with Relational Positional Learning to simulate bleeding events realistically and mark bleeding coordinates. A LaMa-based inpainting module then restores clean, pre-bleed visuals, enabling precise pixel-level annotations. In evaluations, a balanced dataset of orGAN and mimicking-organ images achieved 90% detection accuracy in surgical settings and up to 99% frame-level accuracy. While our development data lack diverse organ morphologies and contain intraoperative artifacts, orGAN markedly advances ethical, efficient, and cost-effective creation of realistic annotated bleeding datasets, supporting broader integration of AI in surgical practice.
comment: 24 pages, 7figures
☆ Leader360V: The Large-scale, Real-world 360 Video Dataset for Multi-task Learning in Diverse Environment
360 video captures the complete surrounding scenes with the ultra-large field of view of 360X180. This makes 360 scene understanding tasks, eg, segmentation and tracking, crucial for appications, such as autonomous driving, robotics. With the recent emergence of foundation models, the community is, however, impeded by the lack of large-scale, labelled real-world datasets. This is caused by the inherent spherical properties, eg, severe distortion in polar regions, and content discontinuities, rendering the annotation costly yet complex. This paper introduces Leader360V, the first large-scale, labeled real-world 360 video datasets for instance segmentation and tracking. Our datasets enjoy high scene diversity, ranging from indoor and urban settings to natural and dynamic outdoor scenes. To automate annotation, we design an automatic labeling pipeline, which subtly coordinates pre-trained 2D segmentors and large language models to facilitate the labeling. The pipeline operates in three novel stages. Specifically, in the Initial Annotation Phase, we introduce a Semantic- and Distortion-aware Refinement module, which combines object mask proposals from multiple 2D segmentors with LLM-verified semantic labels. These are then converted into mask prompts to guide SAM2 in generating distortion-aware masks for subsequent frames. In the Auto-Refine Annotation Phase, missing or incomplete regions are corrected either by applying the SDR again or resolving the discontinuities near the horizontal borders. The Manual Revision Phase finally incorporates LLMs and human annotators to further refine and validate the annotations. Extensive user studies and evaluations demonstrate the effectiveness of our labeling pipeline. Meanwhile, experiments confirm that Leader360V significantly enhances model performance for 360 video segmentation and tracking, paving the way for more scalable 360 scene understanding.
comment: 23 pages, 16 figures
☆ Exploring Non-contrastive Self-supervised Representation Learning for Image-based Profiling CVPR 2025
Image-based cell profiling aims to create informative representations of cell images. This technique is critical in drug discovery and has greatly advanced with recent improvements in computer vision. Inspired by recent developments in non-contrastive Self-Supervised Learning (SSL), this paper provides an initial exploration into training a generalizable feature extractor for cell images using such methods. However, there are two major challenges: 1) There is a large difference between the distributions of cell images and natural images, causing the view-generation process in existing SSL methods to fail; and 2) Unlike typical scenarios where each representation is based on a single image, cell profiling often involves multiple input images, making it difficult to effectively combine all available information. To overcome these challenges, we propose SSLProfiler, a non-contrastive SSL framework specifically designed for cell profiling. We introduce specialized data augmentation and representation post-processing methods tailored to cell images, which effectively address the issues mentioned above and result in a robust feature extractor. With these improvements, SSLProfiler won the Cell Line Transferability challenge at CVPR 2025.
comment: CVPR 2025 Computer Vision for Drug Discovery
☆ Comparison of Two Methods for Stationary Incident Detection Based on Background Image
In general, background subtraction-based methods are used to detect moving objects in visual tracking applications. In this paper, we employed a background subtraction-based scheme to detect the temporarily stationary objects. We proposed two schemes for stationary object detection, and we compare those in terms of detection performance and computational complexity. In the first approach, we used a single background, and in the second approach, we used dual backgrounds, generated with different learning rates, in order to detect temporarily stopped objects. Finally, we used normalized cross correlation (NCC) based image comparison to monitor and track the detected stationary object in a video scene. The proposed method is robust with partial occlusion, short-time fully occlusion, and illumination changes, and it can operate in real time.
comment: 8 pages, 6 figures
☆ synth-dacl: Does Synthetic Defect Data Enhance Segmentation Accuracy and Robustness for Real-World Bridge Inspections?
Adequate bridge inspection is increasingly challenging in many countries due to growing ailing stocks, compounded with a lack of staff and financial resources. Automating the key task of visual bridge inspection, classification of defects and building components on pixel level, improves efficiency, increases accuracy and enhances safety in the inspection process and resulting building assessment. Models overtaking this task must cope with an assortment of real-world conditions. They must be robust to variations in image quality, as well as background texture, as defects often appear on surfaces of diverse texture and degree of weathering. dacl10k is the largest and most diverse dataset for real-world concrete bridge inspections. However, the dataset exhibits class imbalance, which leads to notably poor model performance particularly when segmenting fine-grained classes such as cracks and cavities. This work introduces "synth-dacl", a compilation of three novel dataset extensions based on synthetic concrete textures. These extensions are designed to balance class distribution in dacl10k and enhance model performance, especially for crack and cavity segmentation. When incorporating the synth-dacl extensions, we observe substantial improvements in model robustness across 15 perturbed test sets. Notably, on the perturbed test set, a model trained on dacl10k combined with all synthetic extensions achieves a 2% increase in mean IoU, F1 score, Recall, and Precision compared to the same model trained solely on dacl10k.
☆ Cross-Modal Geometric Hierarchy Fusion: An Implicit-Submap Driven Framework for Resilient 3D Place Recognition
LiDAR-based place recognition serves as a crucial enabler for long-term autonomy in robotics and autonomous driving systems. Yet, prevailing methodologies relying on handcrafted feature extraction face dual challenges: (1) Inconsistent point cloud density, induced by ego-motion dynamics and environmental disturbances during repeated traversals, leads to descriptor instability, and (2) Representation fragility stems from reliance on single-level geometric abstractions that lack discriminative power in structurally complex scenarios. To address these limitations, we propose a novel framework that redefines 3D place recognition through density-agnostic geometric reasoning. Specifically, we introduce an implicit 3D representation based on elastic points, which is immune to the interference of original scene point cloud density and achieves the characteristic of uniform distribution. Subsequently, we derive the occupancy grid and normal vector information of the scene from this implicit representation. Finally, with the aid of these two types of information, we obtain descriptors that fuse geometric information from both bird's-eye view (capturing macro-level spatial layouts) and 3D segment (encoding micro-scale surface geometries) perspectives. We conducted extensive experiments on numerous datasets (KITTI, KITTI-360, MulRan, NCLT) across diverse environments. The experimental results demonstrate that our method achieves state-of-the-art performance. Moreover, our approach strikes an optimal balance between accuracy, runtime, and memory optimization for historical maps, showcasing excellent Resilient and scalability. Our code will be open-sourced in the future.
☆ Unified Representation Space for 3D Visual Grounding
3D visual grounding (3DVG) is a critical task in scene understanding that aims to identify objects in 3D scenes based on text descriptions. However, existing methods rely on separately pre-trained vision and text encoders, resulting in a significant gap between the two modalities in terms of spatial geometry and semantic categories. This discrepancy often causes errors in object positioning and classification. The paper proposes UniSpace-3D, which innovatively introduces a unified representation space for 3DVG, effectively bridging the gap between visual and textual features. Specifically, UniSpace-3D incorporates three innovative designs: i) a unified representation encoder that leverages the pre-trained CLIP model to map visual and textual features into a unified representation space, effectively bridging the gap between the two modalities; ii) a multi-modal contrastive learning module that further reduces the modality gap; iii) a language-guided query selection module that utilizes the positional and semantic information to identify object candidate points aligned with textual descriptions. Extensive experiments demonstrate that UniSpace-3D outperforms baseline models by at least 2.24% on the ScanRefer and Nr3D/Sr3D datasets. The code will be made available upon acceptance of the paper.
☆ HRGS: Hierarchical Gaussian Splatting for Memory-Efficient High-Resolution 3D Reconstruction
3D Gaussian Splatting (3DGS) has made significant strides in real-time 3D scene reconstruction, but faces memory scalability issues in high-resolution scenarios. To address this, we propose Hierarchical Gaussian Splatting (HRGS), a memory-efficient framework with hierarchical block-level optimization. First, we generate a global, coarse Gaussian representation from low-resolution data. Then, we partition the scene into multiple blocks, refining each block with high-resolution data. The partitioning involves two steps: Gaussian partitioning, where irregular scenes are normalized into a bounded cubic space with a uniform grid for task distribution, and training data partitioning, where only relevant observations are retained for each block. By guiding block refinement with the coarse Gaussian prior, we ensure seamless Gaussian fusion across adjacent blocks. To reduce computational demands, we introduce Importance-Driven Gaussian Pruning (IDGP), which computes importance scores for each Gaussian and removes those with minimal contribution, speeding up convergence and reducing memory usage. Additionally, we incorporate normal priors from a pretrained model to enhance surface reconstruction quality. Our method enables high-quality, high-resolution 3D scene reconstruction even under memory constraints. Extensive experiments on three benchmarks show that HRGS achieves state-of-the-art performance in high-resolution novel view synthesis (NVS) and surface reconstruction tasks.
☆ Latent Anomaly Detection: Masked VQ-GAN for Unsupervised Segmentation in Medical CBCT
Advances in treatment technology now allow for the use of customizable 3D-printed hydrogel wound dressings for patients with osteoradionecrosis (ORN) of the jaw (ONJ). Meanwhile, deep learning has enabled precise segmentation of 3D medical images using tools like nnUNet. However, the scarcity of labeled data in ONJ imaging makes supervised training impractical. This study aims to develop an unsupervised training approach for automatically identifying anomalies in imaging scans. We propose a novel two-stage training pipeline. In the first stage, a VQ-GAN is trained to accurately reconstruct normal subjects. In the second stage, random cube masking and ONJ-specific masking are applied to train a new encoder capable of recovering the data. The proposed method achieves successful segmentation on both simulated and real patient data. This approach provides a fast initial segmentation solution, reducing the burden of manual labeling. Additionally, it has the potential to be directly used for 3D printing when combined with hand-tuned post-processing.
☆ AMPLIFY: Actionless Motion Priors for Robot Learning from Videos
Action-labeled data for robotics is scarce and expensive, limiting the generalization of learned policies. In contrast, vast amounts of action-free video data are readily available, but translating these observations into effective policies remains a challenge. We introduce AMPLIFY, a novel framework that leverages large-scale video data by encoding visual dynamics into compact, discrete motion tokens derived from keypoint trajectories. Our modular approach separates visual motion prediction from action inference, decoupling the challenges of learning what motion defines a task from how robots can perform it. We train a forward dynamics model on abundant action-free videos and an inverse dynamics model on a limited set of action-labeled examples, allowing for independent scaling. Extensive evaluations demonstrate that the learned dynamics are both accurate, achieving up to 3.7x better MSE and over 2.5x better pixel prediction accuracy compared to prior approaches, and broadly useful. In downstream policy learning, our dynamics predictions enable a 1.2-2.2x improvement in low-data regimes, a 1.4x average improvement by learning from action-free human videos, and the first generalization to LIBERO tasks from zero in-distribution action data. Beyond robotic control, we find the dynamics learned by AMPLIFY to be a versatile latent world model, enhancing video prediction quality. Our results present a novel paradigm leveraging heterogeneous data sources to build efficient, generalizable world models. More information can be found at https://amplify-robotics.github.io/.
☆ Egocentric Human-Object Interaction Detection: A New Benchmark and Method
Understanding the interaction between humans and objects has gained much attention in recent years. Existing human-object interaction (HOI) detection methods mainly focus on the third-person perspectives, overlooking a more intuitive way from the egocentric view of HOI, namely Ego-HOI. This paper introduces an Ego-HOIBench, a new dataset to promote the benchmarking and development of Ego-HOI detection. Our Ego-HOIBench comprises more than 27K egocentric images with high-quality hand-verb-object triplet annotations across 123 fine-grained interaction categories and locations, covering a rich diversity of scenarios, object types, and hand configurations in daily activities. In addition, we explore and adapt third-person HOI detection methods to Ego-HOIBench and illustrate the challenges of hand-occluded objects and the complexity of single- and two-hand interactions. To build a new baseline, we propose a Hand Geometry and Interactivity Refinement (HGIR) scheme, which leverages hand pose and geometric information as valuable cues for interpreting interactions. Specifically, the HGIR scheme explicitly extracts global hand geometric features from the estimated hand pose proposals and refines the interaction-specific features using pose-interaction attention. This scheme enables the model to obtain a robust and powerful interaction representation, significantly improving the Ego-HOI detection capability. Our approach is lightweight and effective, and it can be easily applied to HOI baselines in a plug-and-play manner to achieve state-of-the-art results on Ego-HOIBench. Our project is available at: https://dengkunyuan.github.io/EgoHOIBench/
☆ Meta-SurDiff: Classification Diffusion Model Optimized by Meta Learning is Reliable for Online Surgical Phase Recognition
Online surgical phase recognition has drawn great attention most recently due to its potential downstream applications closely related to human life and health. Despite deep models have made significant advances in capturing the discriminative long-term dependency of surgical videos to achieve improved recognition, they rarely account for exploring and modeling the uncertainty in surgical videos, which should be crucial for reliable online surgical phase recognition. We categorize the sources of uncertainty into two types, frame ambiguity in videos and unbalanced distribution among surgical phases, which are inevitable in surgical videos. To address this pivot issue, we introduce a meta-learning-optimized classification diffusion model (Meta-SurDiff), to take full advantage of the deep generative model and meta-learning in achieving precise frame-level distribution estimation for reliable online surgical phase recognition. For coarse recognition caused by ambiguous video frames, we employ a classification diffusion model to assess the confidence of recognition results at a finer-grained frame-level instance. For coarse recognition caused by unbalanced phase distribution, we use a meta-learning based objective to learn the diffusion model, thus enhancing the robustness of classification boundaries for different surgical phases.We establish effectiveness of Meta-SurDiff in online surgical phase recognition through extensive experiments on five widely used datasets using more than four practical metrics. The datasets include Cholec80, AutoLaparo, M2Cai16, OphNet, and NurViD, where OphNet comes from ophthalmic surgeries, NurViD is the daily care dataset, while the others come from laparoscopic surgeries. We will release the code upon acceptance.
comment: 15 pages, 5 figures
☆ One-Shot Neural Architecture Search with Network Similarity Directed Initialization for Pathological Image Classification
Deep learning-based pathological image analysis presents unique challenges due to the practical constraints of network design. Most existing methods apply computer vision models directly to medical tasks, neglecting the distinct characteristics of pathological images. This mismatch often leads to computational inefficiencies, particularly in edge-computing scenarios. To address this, we propose a novel Network Similarity Directed Initialization (NSDI) strategy to improve the stability of neural architecture search (NAS). Furthermore, we introduce domain adaptation into one-shot NAS to better handle variations in staining and semantic scale across pathology datasets. Experiments on the BRACS dataset demonstrate that our method outperforms existing approaches, delivering both superior classification performance and clinically relevant feature localization.
☆ A multi-stage augmented multimodal interaction network for fish feeding intensity quantification
In recirculating aquaculture systems, accurate and effective assessment of fish feeding intensity is crucial for reducing feed costs and calculating optimal feeding times. However, current studies have limitations in modality selection, feature extraction and fusion, and co-inference for decision making, which restrict further improvement in the accuracy, applicability and reliability of multimodal fusion models. To address this problem, this study proposes a Multi-stage Augmented Multimodal Interaction Network (MAINet) for quantifying fish feeding intensity. Firstly, a general feature extraction framework is proposed to efficiently extract feature information from input image, audio and water wave datas. Second, an Auxiliary-modality Reinforcement Primary-modality Mechanism (ARPM) is designed for inter-modal interaction and generate enhanced features, which consists of a Channel Attention Fusion Network (CAFN) and a Dual-mode Attention Fusion Network (DAFN). Finally, an Evidence Reasoning (ER) rule is introduced to fuse the output results of each modality and make decisions, thereby completing the quantification of fish feeding intensity. The experimental results show that the constructed MAINet reaches 96.76%, 96.78%, 96.79% and 96.79% in accuracy, precision, recall and F1-Score respectively, and its performance is significantly higher than the comparison models. Compared with models that adopt single-modality, dual-modality fusion and different decision-making fusion methods, it also has obvious advantages. Meanwhile, the ablation experiments further verified the key role of the proposed improvement strategy in improving the robustness and feature utilization efficiency of model, which can effectively improve the accuracy of the quantitative results of fish feeding intensity.
☆ SceneAware: Scene-Constrained Pedestrian Trajectory Prediction with LLM-Guided Walkability
Accurate prediction of pedestrian trajectories is essential for applications in robotics and surveillance systems. While existing approaches primarily focus on social interactions between pedestrians, they often overlook the rich environmental context that significantly shapes human movement patterns. In this paper, we propose SceneAware, a novel framework that explicitly incorporates scene understanding to enhance trajectory prediction accuracy. Our method leverages a Vision Transformer~(ViT) scene encoder to process environmental context from static scene images, while Multi-modal Large Language Models~(MLLMs) generate binary walkability masks that distinguish between accessible and restricted areas during training. We combine a Transformer-based trajectory encoder with the ViT-based scene encoder, capturing both temporal dynamics and spatial constraints. The framework integrates collision penalty mechanisms that discourage predicted trajectories from violating physical boundaries, ensuring physically plausible predictions. SceneAware is implemented in both deterministic and stochastic variants. Comprehensive experiments on the ETH/UCY benchmark datasets show that our approach outperforms state-of-the-art methods, with more than 50\% improvement over previous models. Our analysis based on different trajectory categories shows that the model performs consistently well across various types of pedestrian movement. This highlights the importance of using explicit scene information and shows that our scene-aware approach is both effective and reliable in generating accurate and physically plausible predictions. Code is available at: https://github.com/juho127/SceneAware.
RadFabric: Agentic AI System with Reasoning Capability for Radiology
Chest X ray (CXR) imaging remains a critical diagnostic tool for thoracic conditions, but current automated systems face limitations in pathology coverage, diagnostic accuracy, and integration of visual and textual reasoning. To address these gaps, we propose RadFabric, a multi agent, multimodal reasoning framework that unifies visual and textual analysis for comprehensive CXR interpretation. RadFabric is built on the Model Context Protocol (MCP), enabling modularity, interoperability, and scalability for seamless integration of new diagnostic agents. The system employs specialized CXR agents for pathology detection, an Anatomical Interpretation Agent to map visual findings to precise anatomical structures, and a Reasoning Agent powered by large multimodal reasoning models to synthesize visual, anatomical, and clinical data into transparent and evidence based diagnoses. RadFabric achieves significant performance improvements, with near-perfect detection of challenging pathologies like fractures (1.000 accuracy) and superior overall diagnostic accuracy (0.799) compared to traditional systems (0.229 to 0.527). By integrating cross modal feature alignment and preference-driven reasoning, RadFabric advances AI-driven radiology toward transparent, anatomically precise, and clinically actionable CXR analysis.
comment: 4 figures, 2 tables
☆ Interpreting Biomedical VLMs on High-Imbalance Out-of-Distributions: An Insight into BiomedCLIP on Radiology
In this paper, we construct two research objectives: i) explore the learned embedding space of BiomedCLIP, an open-source large vision language model, to analyse meaningful class separations, and ii) quantify the limitations of BiomedCLIP when applied to a highly imbalanced, out-of-distribution multi-label medical dataset. We experiment on IU-xray dataset, which exhibits the aforementioned criteria, and evaluate BiomedCLIP in classifying images (radiographs) in three contexts: zero-shot inference, full finetuning, and linear probing. The results show that the model under zero-shot settings over-predicts all labels, leading to poor precision and inter-class separability. Full fine-tuning improves classification of distinct diseases, while linear probing detects overlapping features. We demonstrate visual understanding of the model using Grad-CAM heatmaps and compare with 15 annotations by a radiologist. We highlight the need for careful adaptations of the models to foster reliability and applicability in a real-world setting. The code for the experiments in this work is available and maintained on GitHub.
comment: GitHub: https://github.com/Nafiz95/BioVLM_Eval_CXR
☆ GAF: Gaussian Action Field as a Dvnamic World Model for Robotic Mlanipulation
Accurate action inference is critical for vision-based robotic manipulation. Existing approaches typically follow either a Vision-to-Action (V-A) paradigm, predicting actions directly from visual inputs, or a Vision-to-3D-to-Action (V-3D-A) paradigm, leveraging intermediate 3D representations. However, these methods often struggle with action inaccuracies due to the complexity and dynamic nature of manipulation scenes. In this paper, we propose a V-4D-A framework that enables direct action reasoning from motion-aware 4D representations via a Gaussian Action Field (GAF). GAF extends 3D Gaussian Splatting (3DGS) by incorporating learnable motion attributes, allowing simultaneous modeling of dynamic scenes and manipulation actions. To learn time-varying scene geometry and action-aware robot motion, GAF supports three key query types: reconstruction of the current scene, prediction of future frames, and estimation of initial action via robot motion. Furthermore, the high-quality current and future frames generated by GAF facilitate manipulation action refinement through a GAF-guided diffusion model. Extensive experiments demonstrate significant improvements, with GAF achieving +11.5385 dB PSNR and -0.5574 LPIPS improvements in reconstruction quality, while boosting the average success rate in robotic manipulation tasks by 10.33% over state-of-the-art methods. Project page: http://chaiying1.github.io/GAF.github.io/project_page/
comment: http://chaiying1.github.io/GAF.github.io/project_page/
☆ KDMOS:Knowledge Distillation for Motion Segmentation
Motion Object Segmentation (MOS) is crucial for autonomous driving, as it enhances localization, path planning, map construction, scene flow estimation, and future state prediction. While existing methods achieve strong performance, balancing accuracy and real-time inference remains a challenge. To address this, we propose a logits-based knowledge distillation framework for MOS, aiming to improve accuracy while maintaining real-time efficiency. Specifically, we adopt a Bird's Eye View (BEV) projection-based model as the student and a non-projection model as the teacher. To handle the severe imbalance between moving and non-moving classes, we decouple them and apply tailored distillation strategies, allowing the teacher model to better learn key motion-related features. This approach significantly reduces false positives and false negatives. Additionally, we introduce dynamic upsampling, optimize the network architecture, and achieve a 7.69% reduction in parameter count, mitigating overfitting. Our method achieves a notable IoU of 78.8% on the hidden test set of the SemanticKITTI-MOS dataset and delivers competitive results on the Apollo dataset. The KDMOS implementation is available at https://github.com/SCNU-RISLAB/KDMOS.
☆ FADPNet: Frequency-Aware Dual-Path Network for Face Super-Resolution
Face super-resolution (FSR) under limited computational costs remains an open problem. Existing approaches typically treat all facial pixels equally, resulting in suboptimal allocation of computational resources and degraded FSR performance. CNN is relatively sensitive to high-frequency facial features, such as component contours and facial outlines. Meanwhile, Mamba excels at capturing low-frequency features like facial color and fine-grained texture, and does so with lower complexity than Transformers. Motivated by these observations, we propose FADPNet, a Frequency-Aware Dual-Path Network that decomposes facial features into low- and high-frequency components and processes them via dedicated branches. For low-frequency regions, we introduce a Mamba-based Low-Frequency Enhancement Block (LFEB), which combines state-space attention with squeeze-and-excitation operations to extract low-frequency global interactions and emphasize informative channels. For high-frequency regions, we design a CNN-based Deep Position-Aware Attention (DPA) module to enhance spatially-dependent structural details, complemented by a lightweight High-Frequency Refinement (HFR) module that further refines frequency-specific representations. Through the above designs, our method achieves an excellent balance between FSR quality and model efficiency, outperforming existing approaches.
comment: 12 pages, 11 figures, 6 tales
☆ Déjà Vu: Efficient Video-Language Query Engine with Learning-based Inter-Frame Computation Reuse VLDB
Recently, Video-Language Models (VideoLMs) have demonstrated remarkable capabilities, offering significant potential for flexible and powerful video query systems. These models typically rely on Vision Transformers (ViTs), which process video frames individually to extract visual embeddings. However, generating embeddings for large-scale videos requires ViT inferencing across numerous frames, posing a major hurdle to real-world deployment and necessitating solutions for integration into scalable video data management systems. This paper introduces D\'ej\`a Vu, a video-language query engine that accelerates ViT-based VideoLMs by reusing computations across consecutive frames. At its core is ReuseViT, a modified ViT model specifically designed for VideoLM tasks, which learns to detect inter-frame reuse opportunities, striking an effective balance between accuracy and reuse. Although ReuseViT significantly reduces computation, these savings do not directly translate into performance gains on GPUs. To overcome this, D\'ej\`a Vu integrates memory-compute joint compaction techniques that convert the FLOP savings into tangible performance gains. Evaluations on three VideoLM tasks show that D\'ej\`a Vu accelerates embedding generation by up to a 2.64x within a 2% error bound, dramatically enhancing the practicality of VideoLMs for large-scale video analytics.
comment: Accepted to 2025 VLDB
☆ Image Segmentation with Large Language Models: A Survey with Perspectives for Intelligent Transportation Systems
The integration of Large Language Models (LLMs) with computer vision is profoundly transforming perception tasks like image segmentation. For intelligent transportation systems (ITS), where accurate scene understanding is critical for safety and efficiency, this new paradigm offers unprecedented capabilities. This survey systematically reviews the emerging field of LLM-augmented image segmentation, focusing on its applications, challenges, and future directions within ITS. We provide a taxonomy of current approaches based on their prompting mechanisms and core architectures, and we highlight how these innovations can enhance road scene understanding for autonomous driving, traffic monitoring, and infrastructure maintenance. Finally, we identify key challenges, including real-time performance and safety-critical reliability, and outline a perspective centered on explainable, human-centric AI as a prerequisite for the successful deployment of this technology in next-generation transportation systems.
☆ Hyper-Local Deformable Transformers for Text Spotting on Historical Maps KDD2024
Text on historical maps contains valuable information providing georeferenced historical, political, and cultural contexts. However, text extraction from historical maps is challenging due to the lack of (1) effective methods and (2) training data. Previous approaches use ad-hoc steps tailored to only specific map styles. Recent machine learning-based text spotters (e.g., for scene images) have the potential to solve these challenges because of their flexibility in supporting various types of text instances. However, these methods remain challenges in extracting precise image features for predicting every sub-component (boundary points and characters) in a text instance. This is critical because map text can be lengthy and highly rotated with complex backgrounds, posing difficulties in detecting relevant image features from a rough text region. This paper proposes PALETTE, an end-to-end text spotter for scanned historical maps of a wide variety. PALETTE introduces a novel hyper-local sampling module to explicitly learn localized image features around the target boundary points and characters of a text instance for detection and recognition. PALETTE also enables hyper-local positional embeddings to learn spatial interactions between boundary points and characters within and across text instances. In addition, this paper presents a novel approach to automatically generate synthetic map images, SynthMap+, for training text spotters for historical maps. The experiment shows that PALETTE with SynthMap+ outperforms SOTA text spotters on two new benchmark datasets of historical maps, particularly for long and angled text. We have deployed PALETTE with SynthMap+ to process over 60,000 maps in the David Rumsey Historical Map collection and generated over 100 million text labels to support map searching. The project is released at https://github.com/kartta-foundation/mapkurator-palette-doc.
comment: Published in KDD2024
☆ Advances in Compliance Detection: Novel Models Using Vision-Based Tactile Sensors
Compliance is a critical parameter for describing objects in engineering, agriculture, and biomedical applications. Traditional compliance detection methods are limited by their lack of portability and scalability, rely on specialized, often expensive equipment, and are unsuitable for robotic applications. Moreover, existing neural network-based approaches using vision-based tactile sensors still suffer from insufficient prediction accuracy. In this paper, we propose two models based on Long-term Recurrent Convolutional Networks (LRCNs) and Transformer architectures that leverage RGB tactile images and other information captured by the vision-based sensor GelSight to predict compliance metrics accurately. We validate the performance of these models using multiple metrics and demonstrate their effectiveness in accurately estimating compliance. The proposed models exhibit significant performance improvement over the baseline. Additionally, we investigated the correlation between sensor compliance and object compliance estimation, which revealed that objects that are harder than the sensor are more challenging to estimate.
comment: Accepted in the IEEE International Conference on Development and Learning (ICDL). The paper contains 8 pages and 7 figures
☆ NeuroMoE: A Transformer-Based Mixture-of-Experts Framework for Multi-Modal Neurological Disorder Classification
The integration of multi-modal Magnetic Resonance Imaging (MRI) and clinical data holds great promise for enhancing the diagnosis of neurological disorders (NDs) in real-world clinical settings. Deep Learning (DL) has recently emerged as a powerful tool for extracting meaningful patterns from medical data to aid in diagnosis. However, existing DL approaches struggle to effectively leverage multi-modal MRI and clinical data, leading to suboptimal performance. To address this challenge, we utilize a unique, proprietary multi-modal clinical dataset curated for ND research. Based on this dataset, we propose a novel transformer-based Mixture-of-Experts (MoE) framework for ND classification, leveraging multiple MRI modalities-anatomical (aMRI), Diffusion Tensor Imaging (DTI), and functional (fMRI)-alongside clinical assessments. Our framework employs transformer encoders to capture spatial relationships within volumetric MRI data while utilizing modality-specific experts for targeted feature extraction. A gating mechanism with adaptive fusion dynamically integrates expert outputs, ensuring optimal predictive performance. Comprehensive experiments and comparisons with multiple baselines demonstrate that our multi-modal approach significantly enhances diagnostic accuracy, particularly in distinguishing overlapping disease states. Our framework achieves a validation accuracy of 82.47\%, outperforming baseline methods by over 10\%, highlighting its potential to improve ND diagnosis by applying multi-modal learning to real-world clinical data.
comment: Accepted at the 47th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
☆ Vision Transformers for End-to-End Quark-Gluon Jet Classification from Calorimeter Images IJCAI
Distinguishing between quark- and gluon-initiated jets is a critical and challenging task in high-energy physics, pivotal for improving new physics searches and precision measurements at the Large Hadron Collider. While deep learning, particularly Convolutional Neural Networks (CNNs), has advanced jet tagging using image-based representations, the potential of Vision Transformer (ViT) architectures, renowned for modeling global contextual information, remains largely underexplored for direct calorimeter image analysis, especially under realistic detector and pileup conditions. This paper presents a systematic evaluation of ViTs and ViT-CNN hybrid models for quark-gluon jet classification using simulated 2012 CMS Open Data. We construct multi-channel jet-view images from detector-level energy deposits (ECAL, HCAL) and reconstructed tracks, enabling an end-to-end learning approach. Our comprehensive benchmarking demonstrates that ViT-based models, notably ViT+MaxViT and ViT+ConvNeXt hybrids, consistently outperform established CNN baselines in F1-score, ROC-AUC, and accuracy, highlighting the advantage of capturing long-range spatial correlations within jet substructure. This work establishes the first systematic framework and robust performance baselines for applying ViT architectures to calorimeter image-based jet classification using public collider data, alongside a structured dataset suitable for further deep learning research in this domain.
comment: Accepted in Third International Workshop on Generalizing from Limited Resources in the Open World Workshop at International Joint Conference on Artificial Intelligence (IJCAI) 2025
☆ Frequency-Calibrated Membership Inference Attacks on Medical Image Diffusion Models
The increasing use of diffusion models for image generation, especially in sensitive areas like medical imaging, has raised significant privacy concerns. Membership Inference Attack (MIA) has emerged as a potential approach to determine if a specific image was used to train a diffusion model, thus quantifying privacy risks. Existing MIA methods often rely on diffusion reconstruction errors, where member images are expected to have lower reconstruction errors than non-member images. However, applying these methods directly to medical images faces challenges. Reconstruction error is influenced by inherent image difficulty, and diffusion models struggle with high-frequency detail reconstruction. To address these issues, we propose a Frequency-Calibrated Reconstruction Error (FCRE) method for MIAs on medical image diffusion models. By focusing on reconstruction errors within a specific mid-frequency range and excluding both high-frequency (difficult to reconstruct) and low-frequency (less informative) regions, our frequency-selective approach mitigates the confounding factor of inherent image difficulty. Specifically, we analyze the reverse diffusion process, obtain the mid-frequency reconstruction error, and compute the structural similarity index score between the reconstructed and original images. Membership is determined by comparing this score to a threshold. Experiments on several medical image datasets demonstrate that our FCRE method outperforms existing MIA methods.
☆ Recursive Variational Autoencoders for 3D Blood Vessel Generative Modeling
Anatomical trees play an important role in clinical diagnosis and treatment planning. Yet, accurately representing these structures poses significant challenges owing to their intricate and varied topology and geometry. Most existing methods to synthesize vasculature are rule based, and despite providing some degree of control and variation in the structures produced, they fail to capture the diversity and complexity of actual anatomical data. We developed a Recursive variational Neural Network (RvNN) that fully exploits the hierarchical organization of the vessel and learns a low-dimensional manifold encoding branch connectivity along with geometry features describing the target surface. After training, the RvNN latent space can be sampled to generate new vessel geometries. By leveraging the power of generative neural networks, we generate 3D models of blood vessels that are both accurate and diverse, which is crucial for medical and surgical training, hemodynamic simulations, and many other purposes. These results closely resemble real data, achieving high similarity in vessel radii, length, and tortuosity across various datasets, including those with aneurysms. To the best of our knowledge, this work is the first to utilize this technique for synthesizing blood vessels.
☆ Foundation Artificial Intelligence Models for Health Recognition Using Face Photographs (FAHR-Face)
Background: Facial appearance offers a noninvasive window into health. We built FAHR-Face, a foundation model trained on >40 million facial images and fine-tuned it for two distinct tasks: biological age estimation (FAHR-FaceAge) and survival risk prediction (FAHR-FaceSurvival). Methods: FAHR-FaceAge underwent a two-stage, age-balanced fine-tuning on 749,935 public images; FAHR-FaceSurvival was fine-tuned on 34,389 photos of cancer patients. Model robustness (cosmetic surgery, makeup, pose, lighting) and independence (saliency mapping) was tested extensively. Both models were clinically tested in two independent cancer patient datasets with survival analyzed by multivariable Cox models and adjusted for clinical prognostic factors. Findings: For age estimation, FAHR-FaceAge had the lowest mean absolute error of 5.1 years on public datasets, outperforming benchmark models and maintaining accuracy across the full human lifespan. In cancer patients, FAHR-FaceAge outperformed a prior facial age estimation model in survival prognostication. FAHR-FaceSurvival demonstrated robust prediction of mortality, and the highest-risk quartile had more than triple the mortality of the lowest (adjusted hazard ratio 3.22; P<0.001). These findings were validated in the independent cohort and both models showed generalizability across age, sex, race and cancer subgroups. The two algorithms provided distinct, complementary prognostic information; saliency mapping revealed each model relied on distinct facial regions. The combination of FAHR-FaceAge and FAHR-FaceSurvival improved prognostic accuracy. Interpretation: A single foundation model can generate inexpensive, scalable facial biomarkers that capture both biological ageing and disease-related mortality risk. The foundation model enabled effective training using relatively small clinical datasets.
☆ PeRL: Permutation-Enhanced Reinforcement Learning for Interleaved Vision-Language Reasoning
Inspired by the impressive reasoning capabilities demonstrated by reinforcement learning approaches like DeepSeek-R1, recent emerging research has begun exploring the use of reinforcement learning (RL) to enhance vision-language models (VLMs) for multimodal reasoning tasks. However, most existing multimodal reinforcement learning approaches remain limited to spatial reasoning within single-image contexts, yet still struggle to generalize to more complex and real-world scenarios involving multi-image positional reasoning, where understanding the relationships across images is crucial. To address this challenge, we propose a general reinforcement learning approach PeRL tailored for interleaved multimodal tasks, and a multi-stage strategy designed to enhance the exploration-exploitation trade-off, thereby improving learning efficiency and task performance. Specifically, we introduce permutation of image sequences to simulate varied positional relationships to explore more spatial and positional diversity. Furthermore, we design a rollout filtering mechanism for resampling to focus on trajectories that contribute most to learning optimal behaviors to exploit learned policies effectively. We evaluate our model on 5 widely-used multi-image benchmarks and 3 single-image benchmarks. Our experiments confirm that PeRL trained model consistently surpasses R1-related and interleaved VLM baselines by a large margin, achieving state-of-the-art performance on multi-image benchmarks, while preserving comparable performance on single-image tasks.
☆ DETONATE: A Benchmark for Text-to-Image Alignment and Kernelized Direct Preference Optimization
Alignment is crucial for text-to-image (T2I) models to ensure that generated images faithfully capture user intent while maintaining safety and fairness. Direct Preference Optimization (DPO), prominent in large language models (LLMs), is extending its influence to T2I systems. This paper introduces DPO-Kernels for T2I models, a novel extension enhancing alignment across three dimensions: (i) Hybrid Loss, integrating embedding-based objectives with traditional probability-based loss for improved optimization; (ii) Kernelized Representations, employing Radial Basis Function (RBF), Polynomial, and Wavelet kernels for richer feature transformations and better separation between safe and unsafe inputs; and (iii) Divergence Selection, expanding beyond DPO's default Kullback-Leibler (KL) regularizer by incorporating Wasserstein and R'enyi divergences for enhanced stability and robustness. We introduce DETONATE, the first large-scale benchmark of its kind, comprising approximately 100K curated image pairs categorized as chosen and rejected. DETONATE encapsulates three axes of social bias and discrimination: Race, Gender, and Disability. Prompts are sourced from hate speech datasets, with images generated by leading T2I models including Stable Diffusion 3.5 Large, Stable Diffusion XL, and Midjourney. Additionally, we propose the Alignment Quality Index (AQI), a novel geometric measure quantifying latent-space separability of safe/unsafe image activations, revealing hidden vulnerabilities. Empirically, we demonstrate that DPO-Kernels maintain strong generalization bounds via Heavy-Tailed Self-Regularization (HT-SR). DETONATE and complete code are publicly released.
comment: 59 pages, 10 figures
☆ pycnet-audio: A Python package to support bioacoustics data processing
Passive acoustic monitoring is an emerging approach in wildlife research that leverages recent improvements in purpose-made automated recording units (ARUs). The general approach is to deploy ARUs in the field to record on a programmed schedule for extended periods (weeks or months), after which the audio data are retrieved. These data must then be processed, typically either by measuring or analyzing characteristics of the audio itself (e.g. calculating acoustic indices), or by searching for some signal of interest within the recordings, e.g. vocalizations or other sounds produced by some target species, anthropogenic or environmental noise, etc. In the latter case, some method is required to locate the signal(s) of interest within the audio. While very small datasets can simply be searched manually, even modest projects can produce audio datasets on the order of 105 hours of recordings, making manual review impractical and necessitating some form of automated detection. pycnet-audio (Ruff 2024) is intended to provide a practical processing workflow for acoustic data, built around the PNW-Cnet model, which was initially developed by the U.S. Forest Service to support population monitoring of northern spotted owls (Strix occidentalis caurina) and other forest owls (Lesmeister and Jenkins 2022; Ruff et al. 2020). PNW-Cnet has been expanded to detect vocalizations of ca. 80 forest wildlife species and numerous forms of anthropogenic and environmental noise (Ruff et al. 2021, 2023).
♻ ☆ VideoPDE: Unified Generative PDE Solving via Video Inpainting Diffusion Models
We present a unified framework for solving partial differential equations (PDEs) using video-inpainting diffusion transformer models. Unlike existing methods that devise specialized strategies for either forward or inverse problems under full or partial observation, our approach unifies these tasks under a single, flexible generative framework. Specifically, we recast PDE-solving as a generalized inpainting problem, e.g., treating forward prediction as inferring missing spatiotemporal information of future states from initial conditions. To this end, we design a transformer-based architecture that conditions on arbitrary patterns of known data to infer missing values across time and space. Our method proposes pixel-space video diffusion models for fine-grained, high-fidelity inpainting and conditioning, while enhancing computational efficiency through hierarchical modeling. Extensive experiments show that our video inpainting-based diffusion model offers an accurate and versatile solution across a wide range of PDEs and problem setups, outperforming state-of-the-art baselines.
comment: Project page: https://videopde.github.io/
♻ ☆ Lecture Video Visual Objects (LVVO) Dataset: A Benchmark for Visual Object Detection in Educational Videos
We introduce the Lecture Video Visual Objects (LVVO) dataset, a new benchmark for visual object detection in educational video content. The dataset consists of 4,000 frames extracted from 245 lecture videos spanning biology, computer science, and geosciences. A subset of 1,000 frames, referred to as LVVO_1k, has been manually annotated with bounding boxes for four visual categories: Table, Chart-Graph, Photographic-image, and Visual-illustration. Each frame was labeled independently by two annotators, resulting in an inter-annotator F1 score of 83.41%, indicating strong agreement. To ensure high-quality consensus annotations, a third expert reviewed and resolved all cases of disagreement through a conflict resolution process. To expand the dataset, a semi-supervised approach was employed to automatically annotate the remaining 3,000 frames, forming LVVO_3k. The complete dataset offers a valuable resource for developing and evaluating both supervised and semi-supervised methods for visual content detection in educational videos. The LVVO dataset is publicly available to support further research in this domain.
♻ ☆ Self-Supervised Enhancement for Depth from a Lightweight ToF Sensor with Monocular Images IROS 2025
Depth map enhancement using paired high-resolution RGB images offers a cost-effective solution for improving low-resolution depth data from lightweight ToF sensors. Nevertheless, naively adopting a depth estimation pipeline to fuse the two modalities requires groundtruth depth maps for supervision. To address this, we propose a self-supervised learning framework, SelfToF, which generates detailed and scale-aware depth maps. Starting from an image-based self-supervised depth estimation pipeline, we add low-resolution depth as inputs, design a new depth consistency loss, propose a scale-recovery module, and finally obtain a large performance boost. Furthermore, since the ToF signal sparsity varies in real-world applications, we upgrade SelfToF to SelfToF* with submanifold convolution and guided feature fusion. Consequently, SelfToF* maintain robust performance across varying sparsity levels in ToF data. Overall, our proposed method is both efficient and effective, as verified by extensive experiments on the NYU and ScanNet datasets. The code is available at \href{https://github.com/denyingmxd/selftof}{https://github.com/denyingmxd/selftof}.
comment: accepted by IROS 2025
♻ ☆ SeqPE: Transformer with Sequential Position Encoding
Since self-attention layers in Transformers are permutation invariant by design, positional encodings must be explicitly incorporated to enable spatial understanding. However, fixed-size lookup tables used in traditional learnable position embeddings (PEs) limit extrapolation capabilities beyond pre-trained sequence lengths. Expert-designed methods such as ALiBi and RoPE, mitigate this limitation but demand extensive modifications for adapting to new modalities, underscoring fundamental challenges in adaptability and scalability. In this work, we present SeqPE, a unified and fully learnable position encoding framework that represents each $n$-dimensional position index as a symbolic sequence and employs a lightweight sequential position encoder to learn their embeddings in an end-to-end manner. To regularize SeqPE's embedding space, we introduce two complementary objectives: a contrastive objective that aligns embedding distances with a predefined position-distance function, and a knowledge distillation loss that anchors out-of-distribution position embeddings to in-distribution teacher representations, further enhancing extrapolation performance. Experiments across language modeling, long-context question answering, and 2D image classification demonstrate that SeqPE not only surpasses strong baselines in perplexity, exact match (EM), and accuracy--particularly under context length extrapolation--but also enables seamless generalization to multi-dimensional inputs without requiring manual architectural redesign. We release our code, data, and checkpoints at https://github.com/ghrua/seqpe.
♻ ☆ Inherently Faithful Attention Maps for Vision Transformers
We introduce an attention-based method that uses learned binary attention masks to ensure that only attended image regions influence the prediction. Context can strongly affect object perception, sometimes leading to biased representations, particularly when objects appear in out-of-distribution backgrounds. At the same time, many image-level object-centric tasks require identifying relevant regions, often requiring context. To address this conundrum, we propose a two-stage framework: stage 1 processes the full image to discover object parts and identify task-relevant regions, while stage 2 leverages input attention masking to restrict its receptive field to these regions, enabling a focused analysis while filtering out potentially spurious information. Both stages are trained jointly, allowing stage 2 to refine stage 1. Extensive experiments across diverse benchmarks demonstrate that our approach significantly improves robustness against spurious correlations and out-of-distribution backgrounds. Code: https://github.com/ananthu-aniraj/ifam
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Codes and data will be available later (under review). Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
comment: 13 pages of main body, 3 tables, 5 figures, 45 pages of appendix
♻ ☆ Language and Planning in Robotic Navigation: A Multilingual Evaluation of State-of-the-Art Models AAAI'25
Large Language Models (LLMs) such as GPT-4, trained on huge amount of datasets spanning multiple domains, exhibit significant reasoning, understanding, and planning capabilities across various tasks. This study presents the first-ever work in Arabic language integration within the Vision-and-Language Navigation (VLN) domain in robotics, an area that has been notably underexplored in existing research. We perform a comprehensive evaluation of state-of-the-art multi-lingual Small Language Models (SLMs), including GPT-4o mini, Llama 3 8B, and Phi-3 medium 14B, alongside the Arabic-centric LLM, Jais. Our approach utilizes the NavGPT framework, a pure LLM-based instruction-following navigation agent, to assess the impact of language on navigation reasoning through zero-shot sequential action prediction using the R2R dataset. Through comprehensive experiments, we demonstrate that our framework is capable of high-level planning for navigation tasks when provided with instructions in both English and Arabic. However, certain models struggled with reasoning and planning in the Arabic language due to inherent limitations in their capabilities, sub-optimal performance, and parsing issues. These findings highlight the importance of enhancing planning and reasoning capabilities in language models for effective navigation, emphasizing this as a key area for further development while also unlocking the potential of Arabic-language models for impactful real-world applications.
comment: This work has been accepted for presentation at LM4Plan@AAAI'25. For more details, please check: https://llmforplanning.github.io/
♻ ☆ ProbRadarM3F: mmWave Radar based Human Skeletal Pose Estimation with Probability Map Guided Multi-Format Feature Fusion
Millimeter wave (mmWave) radar is a non-intrusive privacy and relatively convenient and inexpensive device, which has been demonstrated to be applicable in place of RGB cameras in human indoor pose estimation tasks. However, mmWave radar relies on the collection of reflected signals from the target, and the radar signals containing information is difficult to be fully applied. This has been a long-standing hindrance to the improvement of pose estimation accuracy. To address this major challenge, this paper introduces a probability map guided multi-format feature fusion model, ProbRadarM3F. This is a novel radar feature extraction framework using a traditional FFT method in parallel with a probability map based positional encoding method. ProbRadarM3F fuses the traditional heatmap features and the positional features, then effectively achieves the estimation of 14 keypoints of the human body. Experimental evaluation on the HuPR dataset proves the effectiveness of the model proposed in this paper, outperforming other methods experimented on this dataset with an AP of 69.9 %. The emphasis of our study is focusing on the position information that is not exploited before in radar singal. This provides direction to investigate other potential non-redundant information from mmWave rader.
♻ ☆ FigCaps-HF: A Figure-to-Caption Generative Framework and Benchmark with Human Feedback
Captions are crucial for understanding scientific visualizations and documents. Existing captioning methods for scientific figures rely on figure-caption pairs extracted from documents for training, many of which fall short with respect to metrics like helpfulness, explainability, and visual-descriptiveness [15] leading to generated captions being misaligned with reader preferences. To enable the generation of high-quality figure captions, we introduce FigCaps-HF a new framework for figure-caption generation that can incorporate domain expert feedback in generating captions optimized for reader preferences. Our framework comprises of 1) an automatic method for evaluating quality of figure-caption pairs, 2) a novel reinforcement learning with human feedback (RLHF) method to optimize a generative figure-to-caption model for reader preferences. We demonstrate the effectiveness of our simple learning framework by improving performance over standard fine-tuning across different types of models. In particular, when using BLIP as the base model, our RLHF framework achieves a mean gain of 35.7%, 16.9%, and 9% in ROUGE, BLEU, and Meteor, respectively. Finally, we release a large-scale benchmark dataset with human feedback on figure-caption pairs to enable further evaluation and development of RLHF techniques for this problem.
comment: 16 pages, 4 figures. Benchmark Documentation: https://figcapshf.github.io/
♻ ☆ ONEBench to Test Them All: Sample-Level Benchmarking Over Open-Ended Capabilities
Traditional fixed test sets fall short in evaluating open-ended capabilities of foundation models. To address this, we propose ONEBench(OpeN-Ended Benchmarking), a new testing paradigm that consolidates individual evaluation datasets into a unified, ever-expanding sample pool. ONEBench allows users to generate custom, open-ended evaluation benchmarks from this pool, corresponding to specific capabilities of interest. By aggregating samples across test sets, ONEBench enables the assessment of diverse capabilities beyond those covered by the original test sets, while mitigating overfitting and dataset bias. Most importantly, it frames model evaluation as a collective process of selecting and aggregating sample-level tests. The shift from task-specific benchmarks to ONEBench introduces two challenges: (1)heterogeneity and (2)incompleteness. Heterogeneity refers to the aggregation over diverse metrics, while incompleteness describes comparing models evaluated on different data subsets. To address these challenges, we explore algorithms to aggregate sparse measurements into reliable model scores. Our aggregation algorithm ensures identifiability(asymptotically recovering ground-truth scores) and rapid convergence, enabling accurate model ranking with less data. On homogenous datasets, we show our aggregation algorithm provides rankings that highly correlate with those produced by average scores. We also demonstrate robustness to ~95% of measurements missing, reducing evaluation cost by up to 20x with little-to-no change in model rankings. We introduce ONEBench-LLM for language models and ONEBench-LMM for vision-language models, unifying evaluations across these domains. Overall, we present a technique for open-ended evaluation, which can aggregate over incomplete, heterogeneous sample-level measurements to continually grow a benchmark alongside the rapidly developing foundation models.
♻ ☆ Diverse Topology Optimization using Modulated Neural Fields
Topology optimization (TO) is a family of computational methods that derive near-optimal geometries from formal problem descriptions. Despite their success, established TO methods are limited to generating single solutions, restricting the exploration of alternative designs. To address this limitation, we introduce Topology Optimization using Modulated Neural Fields (TOM) - a data-free method that trains a neural network to generate structurally compliant shapes and explores diverse solutions through an explicit diversity constraint. The network is trained with a solver-in-the-loop, optimizing the material distribution in each iteration. The trained model produces diverse shapes that closely adhere to the design requirements. We validate TOM on 2D and 3D TO problems. Our results show that TOM generates more diverse solutions than any previous method, all while maintaining near-optimality and without relying on a dataset. These findings open new avenues for engineering and design, offering enhanced flexibility and innovation in structural optimization.
comment: 22 pages, 14 figures
♻ ☆ Infinity: Scaling Bitwise AutoRegressive Modeling for High-Resolution Image Synthesis
We present Infinity, a Bitwise Visual AutoRegressive Modeling capable of generating high-resolution, photorealistic images following language instruction. Infinity redefines visual autoregressive model under a bitwise token prediction framework with an infinite-vocabulary tokenizer & classifier and bitwise self-correction mechanism, remarkably improving the generation capacity and details. By theoretically scaling the tokenizer vocabulary size to infinity and concurrently scaling the transformer size, our method significantly unleashes powerful scaling capabilities compared to vanilla VAR. Infinity sets a new record for autoregressive text-to-image models, outperforming top-tier diffusion models like SD3-Medium and SDXL. Notably, Infinity surpasses SD3-Medium by improving the GenEval benchmark score from 0.62 to 0.73 and the ImageReward benchmark score from 0.87 to 0.96, achieving a win rate of 66%. Without extra optimization, Infinity generates a high-quality 1024x1024 image in 0.8 seconds, making it 2.6x faster than SD3-Medium and establishing it as the fastest text-to-image model. Models and codes will be released to promote further exploration of Infinity for visual generation and unified tokenizer modeling.
comment: 17 pages, 14 figures
♻ ☆ Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents ICLR 2025
Multimodal large language models (MLLMs) are transforming the capabilities of graphical user interface (GUI) agents, facilitating their transition from controlled simulations to complex, real-world applications across various platforms. However, the effectiveness of these agents hinges on the robustness of their grounding capability. Current GUI agents predominantly utilize text-based representations such as HTML or accessibility trees, which, despite their utility, often introduce noise, incompleteness, and increased computational overhead. In this paper, we advocate a human-like embodiment for GUI agents that perceive the environment entirely visually and directly perform pixel-level operations on the GUI. The key is visual grounding models that can accurately map diverse referring expressions of GUI elements to their coordinates on the GUI across different platforms. We show that a simple recipe, which includes web-based synthetic data and slight adaptation of the LLaVA architecture, is surprisingly effective for training such visual grounding models. We collect the largest dataset for GUI visual grounding so far, containing 10M GUI elements and their referring expressions over 1.3M screenshots, and use it to train UGround, a strong universal visual grounding model for GUI agents. Empirical results on six benchmarks spanning three categories (grounding, offline agent, and online agent) show that 1) UGround substantially outperforms existing visual grounding models for GUI agents, by up to 20% absolute, and 2) agents with UGround outperform state-of-the-art agents, despite the fact that existing agents use additional text-based input while ours only uses visual perception. These results provide strong support for the feasibility and promises of GUI agents that navigate the digital world as humans do.
comment: Accepted to ICLR 2025 (Oral). Project Homepage: https://osu-nlp-group.github.io/UGround/
♻ ☆ Mouse Lockbox Dataset: Behavior Recognition for Mice Solving Lockboxes CVPR
Machine learning and computer vision methods have a major impact on the study of natural animal behavior, as they enable the (semi-)automatic analysis of vast amounts of video data. Mice are the standard mammalian model system in most research fields, but the datasets available today to refine such methods focus either on simple or social behaviors. In this work, we present a video dataset of individual mice solving complex mechanical puzzles, so-called lockboxes. The more than 110 hours of total playtime show their behavior recorded from three different perspectives. As a benchmark for frame-level action classification methods, we provide human-annotated labels for all videos of two different mice, that equal 13% of our dataset. Our keypoint (pose) tracking-based action classification framework illustrates the challenges of automated labeling of fine-grained behaviors, such as the manipulation of objects. We hope that our work will help accelerate the advancement of automated action and behavior classification in the computational neuroscience community. Our dataset is publicly available at https://doi.org/10.14279/depositonce-23850
comment: Accepted and published (poster) at the CV4Animals: Computer Vision for Animal Behavior Tracking and Modeling workshop, in conjunction with Computer Vision and Pattern Recognition (CVPR) 2025
♻ ☆ Strategic Client Selection to Address Non-IIDness in HAPS-enabled FL Networks
The deployment of federated learning (FL) in non-terrestrial networks (NTN) that are supported by high-altitude platform stations (HAPS) offers numerous advantages. Due to its large footprint, it facilitates interaction with a large number of line-of-sight (LoS) ground clients, each possessing diverse datasets along with distinct communication and computational capabilities. The presence of many clients enhances the accuracy of the FL model and speeds up convergence. However, the variety of datasets among these clients poses a significant challenge, as it leads to pervasive non-independent and identically distributed (non-IID) data. The data non-IIDness results in markedly reduced training accuracy and slower convergence rates. To address this issue, we propose a novel weighted attribute-based client selection strategy that leverages multiple user-specific attributes, including historical traffic patterns, instantaneous channel conditions, computational capabilities, and previous-round learning performance. By combining these attributes into a composite score for each user at every FL round and selecting users with higher scores as FL clients, the framework ensures more uniform and representative data distributions, effectively mitigating the adverse effects of non-IID data. Simulation results corroborate the effectiveness of the proposed client selection strategy in enhancing FL model accuracy and convergence rate, as well as reducing training loss, by effectively addressing the critical challenge of data non-IIDness in large-scale FL system implementations.
comment: Submitted to IEEE for possible publication
♻ ☆ ClearDepth: Enhanced Stereo Perception of Transparent Objects for Robotic Manipulation
Transparent object depth perception poses a challenge in everyday life and logistics, primarily due to the inability of standard 3D sensors to accurately capture depth on transparent or reflective surfaces. This limitation significantly affects depth map and point cloud-reliant applications, especially in robotic manipulation. We developed a vision transformer-based algorithm for stereo depth recovery of transparent objects. This approach is complemented by an innovative feature post-fusion module, which enhances the accuracy of depth recovery by structural features in images. To address the high costs associated with dataset collection for stereo camera-based perception of transparent objects, our method incorporates a parameter-aligned, domain-adaptive, and physically realistic Sim2Real simulation for efficient data generation, accelerated by AI algorithm. Our experimental results demonstrate the model's exceptional Sim2Real generalizability in real-world scenarios, enabling precise depth mapping of transparent objects to assist in robotic manipulation. Project details are available at https://sites.google.com/view/cleardepth/ .
comment: 7 pages, 7 figures
♻ ☆ HKD4VLM: A Progressive Hybrid Knowledge Distillation Framework for Robust Multimodal Hallucination and Factuality Detection in VLMs
Driven by the rapid progress in vision-language models (VLMs), the responsible behavior of large-scale multimodal models has become a prominent research area, particularly focusing on hallucination detection and factuality checking. In this paper, we present the solution for the two tracks of Responsible AI challenge. Inspirations from the general domain demonstrate that a smaller distilled VLM can often outperform a larger VLM that is directly tuned on downstream tasks, while achieving higher efficiency. We thus jointly tackle two tasks from the perspective of knowledge distillation and propose a progressive hybrid knowledge distillation framework termed HKD4VLM. Specifically, the overall framework can be decomposed into Pyramid-like Progressive Online Distillation and Ternary-Coupled Refinement Distillation, hierarchically moving from coarse-grained knowledge alignment to fine-grained refinement. Besides, we further introduce the mapping shift-enhanced inference and diverse augmentation strategies to enhance model performance and robustness. Extensive experimental results demonstrate the effectiveness of our HKD4VLM. Ablation studies provide insights into the critical design choices driving performance gains.
♻ ☆ PunchBench: Benchmarking MLLMs in Multimodal Punchline Comprehension ACL 2025
Multimodal punchlines, which involve humor or sarcasm conveyed in image-caption pairs, are a popular way of communication on online multimedia platforms. With the rapid development of multimodal large language models (MLLMs), it is essential to assess their ability to effectively comprehend these punchlines. However, existing benchmarks on punchline comprehension suffer from three major limitations: 1) language shortcuts that allow models to solely rely on text, 2) lack of question diversity, and 3) narrow focus on a specific domain of multimodal content (e.g., cartoon). To address these limitations, we introduce a multimodal \textbf{Punch}line comprehension \textbf{Bench}mark, named \textbf{PunchBench}, which is tailored for accurate and comprehensive evaluation of punchline comprehension. To enhance the evaluation accuracy, we generate synonymous and antonymous captions by modifying original captions, which mitigates the impact of shortcuts in the captions. To provide a comprehensive evaluation, PunchBench incorporates diverse question formats and image-captions from various domains. On this basis, we conduct extensive evaluations and reveal a significant gap between state-of-the-art MLLMs and humans in punchline comprehension. To improve punchline comprehension, we propose Simple-to-Complex Chain-of-Question (SC-CoQ) strategy, enabling the models to incrementally address complicated questions by first mastering simple ones. SC-CoQ effectively enhances the performance of various MLLMs on PunchBench, surpassing in-context learning and chain-of-thought.
comment: This is the camera-ready version for ACL 2025
♻ ☆ Concept Guided Co-salient Object Detection
Co-salient object detection (Co-SOD) aims to identify common salient objects across a group of related images. While recent methods have made notable progress, they typically rely on low-level visual patterns and lack semantic priors, limiting their detection performance. We propose ConceptCoSOD, a concept-guided framework that introduces high-level semantic knowledge to enhance co-saliency detection. By extracting shared text-based concepts from the input image group, ConceptCoSOD provides semantic guidance that anchors the detection process. To further improve concept quality, we analyze the effect of diffusion timesteps and design a resampling strategy that selects more informative steps for learning robust concepts. This semantic prior, combined with the resampling-enhanced representation, enables accurate and consistent segmentation even in challenging visual conditions. Extensive experiments on three benchmark datasets and five corrupted settings demonstrate that ConceptCoSOD significantly outperforms existing methods in both accuracy and generalization.
♻ ☆ FlowAlign: Trajectory-Regularized, Inversion-Free Flow-based Image Editing
Recent inversion-free, flow-based image editing methods such as FlowEdit leverages a pre-trained noise-to-image flow model such as Stable Diffusion 3, enabling text-driven manipulation by solving an ordinary differential equation (ODE). While the lack of exact latent inversion is a core advantage of these methods, it often results in unstable editing trajectories and poor source consistency. To address this limitation, we propose FlowAlign, a novel inversion-free flow-based framework for consistent image editing with principled trajectory control. FlowAlign introduces a flow-matching loss as a regularization mechanism to promote smoother and more stable trajectories during the editing process. Notably, the flow-matching loss is shown to explicitly balance semantic alignment with the edit prompt and structural consistency with the source image along the trajectory. Furthermore, FlowAlign naturally supports reverse editing by simply reversing the ODE trajectory, highlighting the reversible and consistent nature of the transformation. Extensive experiments demonstrate that FlowAlign outperforms existing methods in both source preservation and editing controllability.
♻ ☆ DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation CVPR 2025
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Accepted by CVPR 2025. Camera ready version. Previous DexDiffuser. Project page: https://dexdiffuser.github.io/
♻ ☆ InkSight: Offline-to-Online Handwriting Conversion by Teaching Vision-Language Models to Read and Write
Digital note-taking is gaining popularity, offering a durable, editable, and easily indexable way of storing notes in a vectorized form, known as digital ink. However, a substantial gap remains between this way of note-taking and traditional pen-and-paper note-taking, a practice that is still favored by a vast majority. Our work InkSight, aims to bridge the gap by empowering physical note-takers to effortlessly convert their work (offline handwriting) to digital ink (online handwriting), a process we refer to as derendering. Prior research on the topic has focused on the geometric properties of images, resulting in limited generalization beyond their training domains. Our approach combines reading and writing priors, allowing training a model in the absence of large amounts of paired samples, which are difficult to obtain. To our knowledge, this is the first work that effectively derenders handwritten text in arbitrary photos with diverse visual characteristics and backgrounds. Furthermore, it generalizes beyond its training domain into simple sketches. Our human evaluation reveals that 87% of the samples produced by our model on the challenging HierText dataset are considered as a valid tracing of the input image and 67% look like a pen trajectory traced by a human.
comment: Accepted by Transactions on Machine Learning Research
♻ ☆ A Survey on Personalized Content Synthesis with Diffusion Models
Recent advancements in diffusion models have significantly impacted content creation, leading to the emergence of Personalized Content Synthesis (PCS). By utilizing a small set of user-provided examples featuring the same subject, PCS aims to tailor this subject to specific user-defined prompts. Over the past two years, more than 150 methods have been introduced in this area. However, existing surveys primarily focus on text-to-image generation, with few providing up-to-date summaries on PCS. This paper provides a comprehensive survey of PCS, introducing the general frameworks of PCS research, which can be categorized into test-time fine-tuning (TTF) and pre-trained adaptation (PTA) approaches. We analyze the strengths, limitations, and key techniques of these methodologies. Additionally, we explore specialized tasks within the field, such as object, face, and style personalization, while highlighting their unique challenges and innovations. Despite the promising progress, we also discuss ongoing challenges, including overfitting and the trade-off between subject fidelity and text alignment. Through this detailed overview and analysis, we propose future directions to further the development of PCS.
♻ ☆ Knowledge Bridger: Towards Training-free Missing Modality Completion CVPR 2025
Previous successful approaches to missing modality completion rely on carefully designed fusion techniques and extensive pre-training on complete data, which can limit their generalizability in out-of-domain (OOD) scenarios. In this study, we pose a new challenge: can we develop a missing modality completion model that is both resource-efficient and robust to OOD generalization? To address this, we present a training-free framework for missing modality completion that leverages large multimodal models (LMMs). Our approach, termed the "Knowledge Bridger", is modality-agnostic and integrates generation and ranking of missing modalities. By defining domain-specific priors, our method automatically extracts structured information from available modalities to construct knowledge graphs. These extracted graphs connect the missing modality generation and ranking modules through the LMM, resulting in high-quality imputations of missing modalities. Experimental results across both general and medical domains show that our approach consistently outperforms competing methods, including in OOD generalization. Additionally, our knowledge-driven generation and ranking techniques demonstrate superiority over variants that directly employ LMMs for generation and ranking, offering insights that may be valuable for applications in other domains.
comment: Accepted to CVPR 2025
♻ ☆ Learning Invariant Causal Mechanism from Vision-Language Models ICML 2025
Contrastive Language-Image Pretraining (CLIP) has achieved remarkable success, but its performance can degrade when fine-tuned in out-of-distribution (OOD) scenarios. We model the prediction process using a Structural Causal Model (SCM) and show that the causal mechanism involving both invariant and variant factors in training environments differs from that in test environments. In contrast, the causal mechanism with solely invariant factors remains consistent across environments. We theoretically prove the existence of a linear mapping from CLIP embeddings to invariant factors, which can be estimated using interventional data. Additionally, we provide a condition to guarantee low OOD risk of the invariant predictor. Based on these insights, we propose the Invariant Causal Mechanism of CLIP (CLIP-ICM) framework. CLIP-ICM involves collecting interventional data, estimating a linear projection matrix, and making predictions within the invariant subspace. Experiments on several OOD datasets show that CLIP-ICM significantly improves the performance of CLIP. Our method offers a simple but powerful enhancement, boosting the reliability of CLIP in real-world applications.
comment: Accepted to ICML 2025
♻ ☆ GraphAU-Pain: Graph-based Action Unit Representation for Pain Intensity Estimation IJCAI25
Understanding pain-related facial behaviors is essential for digital healthcare in terms of effective monitoring, assisted diagnostics, and treatment planning, particularly for patients unable to communicate verbally. Existing data-driven methods of detecting pain from facial expressions are limited due to interpretability and severity quantification. To this end, we propose GraphAU-Pain, leveraging a graph-based framework to model facial Action Units (AUs) and their interrelationships for pain intensity estimation. AUs are represented as graph nodes, with co-occurrence relationships as edges, enabling a more expressive depiction of pain-related facial behaviors. By utilizing a relational graph neural network, our framework offers improved interpretability and significant performance gains. Experiments conducted on the publicly available UNBC dataset demonstrate the effectiveness of the GraphAU-Pain, achieving an F1-score of 66.21% and accuracy of 87.61% in pain intensity estimation.
comment: MiGA@IJCAI25
BiggerGait: Unlocking Gait Recognition with Layer-wise Representations from Large Vision Models
Large vision models (LVM) based gait recognition has achieved impressive performance. However, existing LVM-based approaches may overemphasize gait priors while neglecting the intrinsic value of LVM itself, particularly the rich, distinct representations across its multi-layers. To adequately unlock LVM's potential, this work investigates the impact of layer-wise representations on downstream recognition tasks. Our analysis reveals that LVM's intermediate layers offer complementary properties across tasks, integrating them yields an impressive improvement even without rich well-designed gait priors. Building on this insight, we propose a simple and universal baseline for LVM-based gait recognition, termed BiggerGait. Comprehensive evaluations on CCPG, CAISA-B*, SUSTech1K, and CCGR\_MINI validate the superiority of BiggerGait across both within- and cross-domain tasks, establishing it as a simple yet practical baseline for gait representation learning. All the models and code will be publicly available.
♻ ☆ Hardware-Rasterized Ray-Based Gaussian Splatting
We present a novel, hardware rasterized rendering approach for ray-based 3D Gaussian Splatting (RayGS), obtaining both fast and high-quality results for novel view synthesis. Our work contains a mathematically rigorous and geometrically intuitive derivation about how to efficiently estimate all relevant quantities for rendering RayGS models, structured with respect to standard hardware rasterization shaders. Our solution is the first enabling rendering RayGS models at sufficiently high frame rates to support quality-sensitive applications like Virtual and Mixed Reality. Our second contribution enables alias-free rendering for RayGS, by addressing MIP-related issues arising when rendering diverging scales during training and testing. We demonstrate significant performance gains, across different benchmark scenes, while retaining state-of-the-art appearance quality of RayGS.
♻ ☆ BS-LDM: Effective Bone Suppression in High-Resolution Chest X-Ray Images with Conditional Latent Diffusion Models
Lung diseases represent a significant global health challenge, with Chest X-Ray (CXR) being a key diagnostic tool due to its accessibility and affordability. Nonetheless, the detection of pulmonary lesions is often hindered by overlapping bone structures in CXR images, leading to potential misdiagnoses. To address this issue, we develop an end-to-end framework called BS-LDM, designed to effectively suppress bone in high-resolution CXR images. This framework is based on conditional latent diffusion models and incorporates a multi-level hybrid loss-constrained vector-quantized generative adversarial network which is crafted for perceptual compression, ensuring the preservation of details. To further enhance the framework's performance, we utilize offset noise in the forward process, and a temporal adaptive thresholding strategy in the reverse process. These additions help minimize discrepancies in generating low-frequency information of soft tissue images. Additionally, we have compiled a high-quality bone suppression dataset named SZCH-X-Rays. This dataset includes 818 pairs of high-resolution CXR and soft tissue images collected from our partner hospital. Moreover, we processed 241 data pairs from the JSRT dataset into negative images, which are more commonly used in clinical practice. Our comprehensive experiments and downstream evaluations reveal that BS-LDM excels in bone suppression, underscoring its clinical value. Our code is available at https://github.com/diaoquesang/BS-LDM.
comment: 12 pages, 8 figures
♻ ☆ MSDNet: Multi-Scale Decoder for Few-Shot Semantic Segmentation via Transformer-Guided Prototyping
Few-shot Semantic Segmentation addresses the challenge of segmenting objects in query images with only a handful of annotated examples. However, many previous state-of-the-art methods either have to discard intricate local semantic features or suffer from high computational complexity. To address these challenges, we propose a new Few-shot Semantic Segmentation framework based on the Transformer architecture. Our approach introduces the spatial transformer decoder and the contextual mask generation module to improve the relational understanding between support and query images. Moreover, we introduce a multi scale decoder to refine the segmentation mask by incorporating features from different resolutions in a hierarchical manner. Additionally, our approach integrates global features from intermediate encoder stages to improve contextual understanding, while maintaining a lightweight structure to reduce complexity. This balance between performance and efficiency enables our method to achieve competitive results on benchmark datasets such as PASCAL-5^i and COCO-20^i in both 1-shot and 5-shot settings. Notably, our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies. https://github.com/amirrezafateh/MSDNet
♻ ☆ Learning Spatially Adaptive $\ell_1$-Norms Weights for Convolutional Synthesis Regularization
We propose an unrolled algorithm approach for learning spatially adaptive parameter maps in the framework of convolutional synthesis-based $\ell_1$ regularization. More precisely, we consider a family of pre-trained convolutional filters and estimate deeply parametrized spatially varying parameters applied to the sparse feature maps by means of unrolling a FISTA algorithm to solve the underlying sparse estimation problem. The proposed approach is evaluated for image reconstruction of low-field MRI and compared to spatially adaptive and non-adaptive analysis-type procedures relying on Total Variation regularization and to a well-established model-based deep learning approach. We show that the proposed approach produces visually and quantitatively comparable results with the latter approaches and at the same time remains highly interpretable. In particular, the inferred parameter maps quantify the local contribution of each filter in the reconstruction, which provides valuable insight into the algorithm mechanism and could potentially be used to discard unsuited filters.
comment: Accepted for publication in the proceedings of the EUSIPCO 2025 conference
♻ ☆ H$^3$DP: Triply-Hierarchical Diffusion Policy for Visuomotor Learning
Visuomotor policy learning has witnessed substantial progress in robotic manipulation, with recent approaches predominantly relying on generative models to model the action distribution. However, these methods often overlook the critical coupling between visual perception and action prediction. In this work, we introduce $\textbf{Triply-Hierarchical Diffusion Policy}~(\textbf{H$^{\mathbf{3}}$DP})$, a novel visuomotor learning framework that explicitly incorporates hierarchical structures to strengthen the integration between visual features and action generation. H$^{3}$DP contains $\mathbf{3}$ levels of hierarchy: (1) depth-aware input layering that organizes RGB-D observations based on depth information; (2) multi-scale visual representations that encode semantic features at varying levels of granularity; and (3) a hierarchically conditioned diffusion process that aligns the generation of coarse-to-fine actions with corresponding visual features. Extensive experiments demonstrate that H$^{3}$DP yields a $\mathbf{+27.5\%}$ average relative improvement over baselines across $\mathbf{44}$ simulation tasks and achieves superior performance in $\mathbf{4}$ challenging bimanual real-world manipulation tasks. Project Page: https://lyy-iiis.github.io/h3dp/.
♻ ☆ Patho-R1: A Multimodal Reinforcement Learning-Based Pathology Expert Reasoner
Recent advances in vision language models (VLMs) have enabled broad progress in the general medical field. However, pathology still remains a more challenging subdomain, with current pathology specific VLMs exhibiting limitations in both diagnostic accuracy and reasoning plausibility. Such shortcomings are largely attributable to the nature of current pathology datasets, which are primarily composed of image description pairs that lack the depth and structured diagnostic paradigms employed by real world pathologists. In this study, we leverage pathology textbooks and real world pathology experts to construct high-quality, reasoning-oriented datasets. Building on this, we introduce Patho-R1, a multimodal RL-based pathology Reasoner, trained through a three-stage pipeline: (1) continued pretraining on 3.5 million image-text pairs for knowledge infusion; (2) supervised fine-tuning on 500k high-quality Chain-of-Thought samples for reasoning incentivizing; (3) reinforcement learning using Group Relative Policy Optimization and Decoupled Clip and Dynamic sAmpling Policy Optimization strategies for multimodal reasoning quality refinement. To further assess the alignment quality of our dataset, we propose Patho-CLIP, trained on the same figure-caption corpus used for continued pretraining. Comprehensive experimental results demonstrate that both Patho-CLIP and Patho-R1 achieve robust performance across a wide range of pathology-related tasks, including zero-shot classification, cross-modal retrieval, Visual Question Answering, and Multiple Choice Question. Our project is available at the Patho-R1 repository: https://github.com/Wenchuan-Zhang/Patho-R1.
♻ ☆ Unified Source-Free Domain Adaptation
In the pursuit of transferring a source model to a target domain without access to the source training data, Source-Free Domain Adaptation (SFDA) has been extensively explored across various scenarios, including Closed-set, Open-set, Partial-set, and Generalized settings. Existing methods, focusing on specific scenarios, not only address a limited subset of challenges but also necessitate prior knowledge of the target domain, significantly limiting their practical utility and deployability. In light of these considerations, we introduce a more practical yet challenging problem, termed unified SFDA, which comprehensively incorporates all specific scenarios in a unified manner. In this paper, we propose a novel approach latent Causal factors discovery for unified SFDA(CausalDA). In contrast to previous alternatives that emphasize learning the statistical description of reality, we formulate CausalDA from a causality perspective. The objective is to uncover the causal relationships between latent variables and model decisions, enhancing the reliability and robustness of the learned model against domain shifts. To integrate extensive world knowledge, we leverage a pre-trained vision-language model such as CLIP. This aids in the formation and discovery of latent causal factors in the absence of supervision in the variation of distribution and semantics, coupled with a newly designed information bottleneck with theoretical guarantees. Extensive experiments demonstrate that CausalDA can achieve new state-of-the-art results in distinct SFDA settings, as well as source-free out-of-distribution generalization.
♻ ☆ FlagEvalMM: A Flexible Framework for Comprehensive Multimodal Model Evaluation
We present FlagEvalMM, an open-source evaluation framework designed to comprehensively assess multimodal models across a diverse range of vision-language understanding and generation tasks, such as visual question answering, text-to-image/video generation, and image-text retrieval. We decouple model inference from evaluation through an independent evaluation service, thus enabling flexible resource allocation and seamless integration of new tasks and models. Moreover, FlagEvalMM utilizes advanced inference acceleration tools (e.g., vLLM, SGLang) and asynchronous data loading to significantly enhance evaluation efficiency. Extensive experiments show that FlagEvalMM offers accurate and efficient insights into model strengths and limitations, making it a valuable tool for advancing multimodal research. The framework is publicly accessible athttps://github.com/flageval-baai/FlagEvalMM.
♻ ☆ T2V-OptJail: Discrete Prompt Optimization for Text-to-Video Jailbreak Attacks
In recent years, fueled by the rapid advancement of diffusion models, text-to-video (T2V) generation models have achieved remarkable progress, with notable examples including Pika, Luma, Kling, and Open-Sora. Although these models exhibit impressive generative capabilities, they also expose significant security risks due to their vulnerability to jailbreak attacks, where the models are manipulated to produce unsafe content such as pornography, violence, or discrimination. Existing works such as T2VSafetyBench provide preliminary benchmarks for safety evaluation, but lack systematic methods for thoroughly exploring model vulnerabilities. To address this gap, we are the first to formalize the T2V jailbreak attack as a discrete optimization problem and propose a joint objective-based optimization framework, called T2V-OptJail. This framework consists of two key optimization goals: bypassing the built-in safety filtering mechanisms to increase the attack success rate, preserving semantic consistency between the adversarial prompt and the unsafe input prompt, as well as between the generated video and the unsafe input prompt, to enhance content controllability. In addition, we introduce an iterative optimization strategy guided by prompt variants, where multiple semantically equivalent candidates are generated in each round, and their scores are aggregated to robustly guide the search toward optimal adversarial prompts. We conduct large-scale experiments on several T2V models, covering both open-source models and real commercial closed-source models. The experimental results show that the proposed method improves 11.4% and 10.0% over the existing state-of-the-art method in terms of attack success rate assessed by GPT-4, attack success rate assessed by human accessors, respectively, verifying the significant advantages of the method in terms of attack effectiveness and content control.
♻ ☆ Exploring Linear Attention Alternative for Single Image Super-Resolution
Deep learning-based single-image super-resolution (SISR) technology focuses on enhancing low-resolution (LR) images into high-resolution (HR) ones. Although significant progress has been made, challenges remain in computational complexity and quality, particularly in remote sensing image processing. To address these issues, we propose our Omni-Scale RWKV Super-Resolution (OmniRWKVSR) model which presents a novel approach that combines the Receptance Weighted Key Value (RWKV) architecture with feature extraction techniques such as Visual RWKV Spatial Mixing (VRSM) and Visual RWKV Channel Mixing (VRCM), aiming to overcome the limitations of existing methods and achieve superior SISR performance. This work has proved able to provide effective solutions for high-quality image reconstruction. Under the 4x Super-Resolution tasks, compared to the MambaIR model, we achieved an average improvement of 0.26% in PSNR and 0.16% in SSIM.
comment: This paper has been published to IEEE International Joint Conference on Neural Networks 2025 as the final camera ready version. Contact at nomodeset@qq.com
Automated Muscle and Fat Segmentation in Computed Tomography for Comprehensive Body Composition Analysis
Body composition assessment using CT images can potentially be used for a number of clinical applications, including the prognostication of cardiovascular outcomes, evaluation of metabolic health, monitoring of disease progression, assessment of nutritional status, prediction of treatment response in oncology, and risk stratification for surgical and critical care outcomes. While multiple groups have developed in-house segmentation tools for this analysis, there are very limited publicly available tools that could be consistently used across different applications. To mitigate this gap, we present a publicly accessible, end-to-end segmentation and feature calculation model specifically for CT body composition analysis. Our model performs segmentation of skeletal muscle, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) across the chest, abdomen, and pelvis area in axial CT images. It also provides various body composition metrics, including muscle density, visceral-to-subcutaneous fat (VAT/SAT) ratio, muscle area/volume, and skeletal muscle index (SMI), supporting both 2D and 3D assessments. To evaluate the model, the segmentation was applied to both internal and external datasets, with body composition metrics analyzed across different age, sex, and race groups. The model achieved high dice coefficients on both internal and external datasets, exceeding 89% for skeletal muscle, SAT, and VAT segmentation. The model outperforms the benchmark by 2.40% on skeletal muscle and 10.26% on SAT compared to the manual annotations given by the publicly available dataset. Body composition metrics show mean relative absolute errors (MRAEs) under 10% for all measures. Furthermore, the model provided muscular fat segmentation with a Dice coefficient of 56.27%, which can be utilized for additional analyses as needed.
♻ ☆ A Simple Baseline with Single-encoder for Referring Image Segmentation
Referring image segmentation (RIS) requires dense vision-language interactions between visual pixels and textual words to segment objects based on a given description. However, commonly adapted dual-encoders in RIS, e.g., Swin transformer and BERT (uni-modal encoders) or CLIP (a multi-modal dual-encoder), lack dense multi-modal interactions during pre-training, leading to a gap with a pixel-level RIS task. To bridge this gap, existing RIS methods often rely on multi-modal fusion modules that interact two encoders, but this approach leads to high computational costs. In this paper, we present a novel RIS method with a single-encoder, i.e., BEiT-3, maximizing the potential of shared self-attention across all framework components. This enables seamless interactions of two modalities from input to final prediction, producing granularly aligned multi-modal features. Furthermore, we propose lightweight yet effective decoder modules, a Shared FPN and a Shared Mask Decoder, which contribute to the high efficiency of our model. Our simple baseline with a single encoder achieves outstanding performances on the RIS benchmark datasets while maintaining computational efficiency, compared to the most recent SoTA methods based on dual-encoders.
comment: arXiv pre-print
♻ ☆ Scaling Computer-Use Grounding via User Interface Decomposition and Synthesis
Graphical user interface (GUI) grounding, the ability to map natural language instructions to specific actions on graphical user interfaces, remains a critical bottleneck in computer use agent development. Current benchmarks oversimplify grounding tasks as short referring expressions, failing to capture the complexity of real-world interactions that require software commonsense, layout understanding, and fine-grained manipulation capabilities. To address these limitations, we introduce OSWorld-G, a comprehensive benchmark comprising 564 finely annotated samples across diverse task types including text matching, element recognition, layout understanding, and precise manipulation. Additionally, we synthesize and release the largest computer use grounding dataset Jedi, which contains 4 million examples through multi-perspective decoupling of tasks. Our multi-scale models trained on Jedi demonstrate its effectiveness by outperforming existing approaches on ScreenSpot-v2, ScreenSpot-Pro, and our OSWorld-G. Furthermore, we demonstrate that improved grounding with Jedi directly enhances agentic capabilities of general foundation models on complex computer tasks, improving from 5% to 27% on OSWorld. Through detailed ablation studies, we identify key factors contributing to grounding performance and verify that combining specialized data for different interface elements enables compositional generalization to novel interfaces. All benchmark, data, checkpoints, and code are open-sourced and available at https://osworld-grounding.github.io.
comment: 49 pages, 13 figures
♻ ☆ Analyzing Effects of Mixed Sample Data Augmentation on Model Interpretability
Mixed sample data augmentation strategies are actively used when training deep neural networks (DNNs). Recent studies suggest that they are effective at various tasks. However, the impact of mixed sample data augmentation on model interpretability has not been widely studied. In this paper, we explore the relationship between model interpretability and mixed sample data augmentation, specifically in terms of feature attribution maps. To this end, we introduce a new metric that allows a comparison of model interpretability while minimizing the impact of occlusion robustness of the model. Experimental results show that several mixed sample data augmentation decreases the interpretability of the model and label mixing during data augmentation plays a significant role in this effect. This new finding suggests it is important to carefully adopt the mixed sample data augmentation method, particularly in applications where attribution map-based interpretability is important.
comment: Accepted to Neural Networks
♻ ☆ SDTrack: A Baseline for Event-based Tracking via Spiking Neural Networks
Event cameras provide superior temporal resolution, dynamic range, power efficiency, and pixel bandwidth. Spiking Neural Networks (SNNs) naturally complement event data through discrete spike signals, making them ideal for event-based tracking. However, current approaches that combine Artificial Neural Networks (ANNs) and SNNs, along with suboptimal architectures, compromise energy efficiency and limit tracking performance. To address these limitations, we propose the first Transformer-based spike-driven tracking pipeline. Our Global Trajectory Prompt (GTP) method effectively captures global trajectory information and aggregates it with event streams into event images to enhance spatiotemporal representation. We then introduce SDTrack, a Transformer-based spike-driven tracker comprising a Spiking MetaFormer backbone and a simple tracking head that directly predicts normalized coordinates using spike signals. The framework is end-to-end, does not require data augmentation or post-processing. Extensive experiments demonstrate that SDTrack achieves state-of-the-art performance while maintaining the lowest parameter count and energy consumption across multiple event-based tracking benchmarks, establishing a solid baseline for future research in the field of neuromorphic vision.
comment: 11 pages,7 figures,4 tables
♻ ☆ SmartWay: Enhanced Waypoint Prediction and Backtracking for Zero-Shot Vision-and-Language Navigation IROS 2025
Vision-and-Language Navigation (VLN) in continuous environments requires agents to interpret natural language instructions while navigating unconstrained 3D spaces. Existing VLN-CE frameworks rely on a two-stage approach: a waypoint predictor to generate waypoints and a navigator to execute movements. However, current waypoint predictors struggle with spatial awareness, while navigators lack historical reasoning and backtracking capabilities, limiting adaptability. We propose a zero-shot VLN-CE framework integrating an enhanced waypoint predictor with a Multi-modal Large Language Model (MLLM)-based navigator. Our predictor employs a stronger vision encoder, masked cross-attention fusion, and an occupancy-aware loss for better waypoint quality. The navigator incorporates history-aware reasoning and adaptive path planning with backtracking, improving robustness. Experiments on R2R-CE and MP3D benchmarks show our method achieves state-of-the-art (SOTA) performance in zero-shot settings, demonstrating competitive results compared to fully supervised methods. Real-world validation on Turtlebot 4 further highlights its adaptability.
comment: Accepted by IROS 2025. Project website: https://sxyxs.github.io/smartway/
♻ ☆ Niagara: Normal-Integrated Geometric Affine Field for Scene Reconstruction from a Single View
Recent advances in single-view 3D scene reconstruction have highlighted the challenges in capturing fine geometric details and ensuring structural consistency, particularly in high-fidelity outdoor scene modeling. This paper presents Niagara, a new single-view 3D scene reconstruction framework that can faithfully reconstruct challenging outdoor scenes from a single input image for the first time. Our approach integrates monocular depth and normal estimation as input, which substantially improves its ability to capture fine details, mitigating common issues like geometric detail loss and deformation. Additionally, we introduce a geometric affine field (GAF) and 3D self-attention as geometry-constraint, which combines the structural properties of explicit geometry with the adaptability of implicit feature fields, striking a balance between efficient rendering and high-fidelity reconstruction. Our framework finally proposes a specialized encoder-decoder architecture, where a depth-based 3D Gaussian decoder is proposed to predict 3D Gaussian parameters, which can be used for novel view synthesis. Extensive results and analyses suggest that our Niagara surpasses prior SoTA approaches such as Flash3D in both single-view and dual-view settings, significantly enhancing the geometric accuracy and visual fidelity, especially in outdoor scenes.
♻ ☆ Hanfu-Bench: A Multimodal Benchmark on Cross-Temporal Cultural Understanding and Transcreation
Culture is a rich and dynamic domain that evolves across both geography and time. However, existing studies on cultural understanding with vision-language models (VLMs) primarily emphasize geographic diversity, often overlooking the critical temporal dimensions. To bridge this gap, we introduce Hanfu-Bench, a novel, expert-curated multimodal dataset. Hanfu, a traditional garment spanning ancient Chinese dynasties, serves as a representative cultural heritage that reflects the profound temporal aspects of Chinese culture while remaining highly popular in Chinese contemporary society. Hanfu-Bench comprises two core tasks: cultural visual understanding and cultural image transcreation.The former task examines temporal-cultural feature recognition based on single- or multi-image inputs through multiple-choice visual question answering, while the latter focuses on transforming traditional attire into modern designs through cultural element inheritance and modern context adaptation. Our evaluation shows that closed VLMs perform comparably to non-experts on visual cutural understanding but fall short by 10\% to human experts, while open VLMs lags further behind non-experts. For the transcreation task, multi-faceted human evaluation indicates that the best-performing model achieves a success rate of only 42\%. Our benchmark provides an essential testbed, revealing significant challenges in this new direction of temporal cultural understanding and creative adaptation.
comment: cultural analysis, cultural visual understanding, cultural image transcreation (update dataset license)
♻ ☆ 3D Brain MRI Classification for Alzheimer Diagnosis Using CNN with Data Augmentation
A three-dimensional convolutional neural network was developed to classify T1-weighted brain MRI scans as healthy or Alzheimer. The network comprises 3D convolution, pooling, batch normalization, dense ReLU layers, and a sigmoid output. Using stochastic noise injection and five-fold cross-validation, the model achieved test set accuracy of 0.912 and area under the ROC curve of 0.961, an improvement of approximately 0.027 over resizing alone. Sensitivity and specificity both exceeded 0.90. These results align with prior work reporting up to 0.10 gain via synthetic augmentation. The findings demonstrate the effectiveness of simple augmentation for 3D MRI classification and motivate future exploration of advanced augmentation methods and architectures such as 3D U-Net and vision transformers.
♻ ☆ Hardware-Friendly Static Quantization Method for Video Diffusion Transformers
Diffusion Transformers for video generation have gained significant research interest since the impressive performance of SORA. Efficient deployment of such generative-AI models on GPUs has been demonstrated with dynamic quantization. However, resource-constrained devices cannot support dynamic quantization, and need static quantization of the models for their efficient deployment on AI processors. In this paper, we propose a novel method for the post-training quantization of OpenSora\cite{opensora}, a Video Diffusion Transformer, without relying on dynamic quantization techniques. Our approach employs static quantization, achieving video quality comparable to FP16 and dynamically quantized ViDiT-Q methods, as measured by CLIP, and VQA metrics. In particular, we utilize per-step calibration data to adequately provide a post-training statically quantized model for each time step, incorporating channel-wise quantization for weights and tensor-wise quantization for activations. By further applying the smooth-quantization technique, we can obtain high-quality video outputs with the statically quantized models. Extensive experimental results demonstrate that static quantization can be a viable alternative to dynamic quantization for video diffusion transformers, offering a more efficient approach without sacrificing performance.
comment: Accepted to MIPR 2025
♻ ☆ CellCLIP -- Learning Perturbation Effects in Cell Painting via Text-Guided Contrastive Learning
High-content screening (HCS) assays based on high-throughput microscopy techniques such as Cell Painting have enabled the interrogation of cells' morphological responses to perturbations at an unprecedented scale. The collection of such data promises to facilitate a better understanding of the relationships between different perturbations and their effects on cellular state. Towards achieving this goal, recent advances in cross-modal contrastive learning could, in theory, be leveraged to learn a unified latent space that aligns perturbations with their corresponding morphological effects. However, the application of such methods to HCS data is not straightforward due to substantial differences in the semantics of Cell Painting images compared to natural images, and the difficulty of representing different classes of perturbations (e.g., small molecule vs CRISPR gene knockout) in a single latent space. In response to these challenges, here we introduce CellCLIP, a cross-modal contrastive learning framework for HCS data. CellCLIP leverages pre-trained image encoders coupled with a novel channel encoding scheme to better capture relationships between different microscopy channels in image embeddings, along with natural language encoders for representing perturbations. Our framework outperforms current open-source models, demonstrating the best performance in both cross-modal retrieval and biologically meaningful downstream tasks while also achieving significant reductions in computation time.
♻ ☆ Image Corruption-Inspired Membership Inference Attacks against Large Vision-Language Models
Large vision-language models (LVLMs) have demonstrated outstanding performance in many downstream tasks. However, LVLMs are trained on large-scale datasets, which can pose privacy risks if training images contain sensitive information. Therefore, it is important to detect whether an image is used to train the LVLM. Recent studies have investigated membership inference attacks (MIAs) against LVLMs, including detecting image-text pairs and single-modality content. In this work, we focus on detecting whether a target image is used to train the target LVLM. We design simple yet effective Image Corruption-Inspired Membership Inference Attacks (ICIMIA) against LLVLMs, which are inspired by LVLM's different sensitivity to image corruption for member and non-member images. We first perform an MIA method under the white-box setting, where we can obtain the embeddings of the image through the vision part of the target LVLM. The attacks are based on the embedding similarity between the image and its corrupted version. We further explore a more practical scenario where we have no knowledge about target LVLMs and we can only query the target LVLMs with an image and a question. We then conduct the attack by utilizing the output text embeddings' similarity. Experiments on existing datasets validate the effectiveness of our proposed attack methods under those two different settings.
comment: Preprint. 15 pages
♻ ☆ Controllable Dance Generation with Style-Guided Motion Diffusion
Dance plays an important role as an artistic form and expression in human culture, yet the creation of dance remains a challenging task. Most dance generation methods primarily rely solely on music, seldom taking into consideration intrinsic attributes such as music style or genre. In this work, we introduce Flexible Dance Generation with Style Description Prompts (DGSDP), a diffusion-based framework suitable for diversified tasks of dance generation by fully leveraging the semantics of music style. The core component of this framework is Music-Conditioned Style-Aware Diffusion (MCSAD), which comprises a Transformer-based network and a music Style Modulation module. The MCSAD seemly integrates music conditions and style description prompts into the dance generation framework, ensuring that generated dances are consistent with the music content and style. To facilitate flexible dance generation and accommodate different tasks, a spatial-temporal masking strategy is effectively applied in the backward diffusion process. The proposed framework successfully generates realistic dance sequences that are accurately aligned with music for a variety of tasks such as long-term generation, dance in-betweening, dance inpainting, and etc. We hope that this work has the potential to inspire dance generation and creation, with promising applications in entertainment, art, and education. Code is available on Github: https://github.com/mucunzhuzhu/DGSDP.
♻ ☆ HyMamba: Mamba with Hybrid Geometry-Feature Coupling for Efficient Point Cloud Classification
Point cloud classification is one of the essential technologies for achieving intelligent perception of 3D environments by machines, its core challenge is to efficiently extract local and global features. Mamba leverages state space models (SSMs) for global point cloud modeling. Although prior Mamba-based point cloud processing methods pay attention to the limitation of its flattened sequence modeling mechanism in fusing local and global features, the critical issue of weakened local geometric relevance caused by decoupling geometric structures and features in the input patches remains not fully revealed, and both jointly limit local feature extraction. Therefore, we propose HyMamba, a geometry and feature coupled Mamba framework featuring: (1) Geometry-Feature Coupled Pooling (GFCP), which achieves physically interpretable geometric information coupling by dynamically aggregating adjacent geometric information into local features; (2) Collaborative Feature Enhancer (CoFE), which enhances sparse signal capture through cross-path feature hybridization while effectively integrating global and local contexts. We conducted extensive experiments on ModelNet40 and ScanObjectNN datasets. The results demonstrate that the proposed model achieves superior classification performance, particularly on the ModelNet40, where it elevates accuracy to 95.99% with merely 0.03M additional parameters. Furthermore, it attains 98.9% accuracy on the ModelNetFewShot dataset, validating its robust generalization capabilities under sparse samples. Our code and weights are available at https://github.com/L1277471578/HyMamba
♻ ☆ MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning
Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy that progressively teaches the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL not only outperforms both open-source and proprietary Med-LVLMs, but also exhibits human-like reasoning patterns. Notably, it achieves an average performance gain of 20.7% over supervised fine-tuning baselines.
♻ ☆ Tile Classification Based Viewport Prediction with Multi-modal Fusion Transformer
Viewport prediction is a crucial aspect of tile-based 360 video streaming system. However, existing trajectory based methods lack of robustness, also oversimplify the process of information construction and fusion between different modality inputs, leading to the error accumulation problem. In this paper, we propose a tile classification based viewport prediction method with Multi-modal Fusion Transformer, namely MFTR. Specifically, MFTR utilizes transformer-based networks to extract the long-range dependencies within each modality, then mine intra- and inter-modality relations to capture the combined impact of user historical inputs and video contents on future viewport selection. In addition, MFTR categorizes future tiles into two categories: user interested or not, and selects future viewport as the region that contains most user interested tiles. Comparing with predicting head trajectories, choosing future viewport based on tile's binary classification results exhibits better robustness and interpretability. To evaluate our proposed MFTR, we conduct extensive experiments on two widely used PVS-HM and Xu-Gaze dataset. MFTR shows superior performance over state-of-the-art methods in terms of average prediction accuracy and overlap ratio, also presents competitive computation efficiency.
comment: This paper is accepted by ACM-MM 2023
An Open-Source Software Toolkit & Benchmark Suite for the Evaluation and Adaptation of Multimodal Action Models ICML
Recent innovations in multimodal action models represent a promising direction for developing general-purpose agentic systems, combining visual understanding, language comprehension, and action generation. We introduce MultiNet - a novel, fully open-source benchmark and surrounding software ecosystem designed to rigorously evaluate and adapt models across vision, language, and action domains. We establish standardized evaluation protocols for assessing vision-language models (VLMs) and vision-language-action models (VLAs), and provide open source software to download relevant data, models, and evaluations. Additionally, we provide a composite dataset with over 1.3 trillion tokens of image captioning, visual question answering, commonsense reasoning, robotic control, digital game-play, simulated locomotion/manipulation, and many more tasks. The MultiNet benchmark, framework, toolkit, and evaluation harness have been used in downstream research on the limitations of VLA generalization.
comment: ICML CodeML Workshop, 13 Pages, 6 Figures, 2 Tables
Benchmarking Vision, Language, & Action Models in Procedurally Generated, Open Ended Action Environments
Vision-language-action (VLA) models represent an important step toward general-purpose robotic systems by integrating visual perception, language understanding, and action execution. However, systematic evaluation of these models, particularly their zero-shot generalization capabilities in procedurally out-of-distribution (OOD) environments, remains limited. In this paper, we introduce MultiNet v0.2, a comprehensive benchmark designed to evaluate and analyze the generalization performance of state-of-the-art VLMs and VLAs - including GPT-4o, GPT-4.1, OpenVLA, Pi0 Base, and Pi0 FAST - on diverse procedural tasks from the Procgen benchmark. Our analysis reveals several critical insights: (1) all evaluated models exhibit significant limitations in zero-shot generalization to OOD tasks, with performance heavily influenced by factors such as action representation and task complexity; (2) VLAs generally outperforms other models due to their robust architectural design; and (3) VLM variants demonstrate substantial improvements when constrained appropriately, highlighting the sensitivity of model performance to precise prompt engineering. We release our benchmark, evaluation framework, and findings to enable the assessment of future VLA models and identify critical areas for improvement in their application to out-of-distribution digital tasks.
comment: 16 pages, 26 figures
♻ ☆ WHALES: A Multi-agent Scheduling Dataset for Enhanced Cooperation in Autonomous Driving
Cooperative perception research is constrained by the scarcity of datasets that capture the complexity of real-world Vehicle-to-Everything (V2X) interactions, particularly under dynamic communication constraints. To address this, we present WHALES (Wireless enhanced Autonomous vehicles with Large number of Engaged agents), the first large-scale V2X dataset specifically designed to benchmark communication-aware agent scheduling and scalable cooperative perception. WHALES establishes a new state-of-the-art (SOTA) standard with an average of 8.4 cooperative agents per scene and 2.01 million annotated 3D objects spanning diverse traffic scenarios. It integrates communication metadata to simulate real-world communication bottlenecks, enabling rigorous evaluation of scheduling strategies. To further advance the field, we propose the Coverage-Aware Historical Scheduler (CAHS), a novel scheduling baseline that prioritizes agents based on historical viewpoint coverage, improving perception performance over existing SOTA methods. WHALES bridges the gap between simulated and real-world V2X challenges, offering a robust framework to explore perception-scheduling co-design, cross-data generalization, and scalability limits. The WHALES dataset and code are available at: https://github.com/chensiweiTHU/WHALES.
AgentCPM-GUI: Building Mobile-Use Agents with Reinforcement Fine-Tuning
The recent progress of large language model agents has opened new possibilities for automating tasks through graphical user interfaces (GUIs), especially in mobile environments where intelligent interaction can greatly enhance usability. However, practical deployment of such agents remains constrained by several key challenges. Existing training data is often noisy and lack semantic diversity, which hinders the learning of precise grounding and planning. Models trained purely by imitation tend to overfit to seen interface patterns and fail to generalize in unfamiliar scenarios. Moreover, most prior work focuses on English interfaces while overlooks the growing diversity of non-English applications such as those in the Chinese mobile ecosystem. In this work, we present AgentCPM-GUI, an 8B-parameter GUI agent built for robust and efficient on-device GUI interaction. Our training pipeline includes grounding-aware pre-training to enhance perception, supervised fine-tuning on high-quality Chinese and English trajectories to imitate human-like actions, and reinforcement fine-tuning with GRPO to improve reasoning capability. We also introduce a compact action space that reduces output length and supports low-latency execution on mobile devices. AgentCPM-GUI achieves state-of-the-art performance on five public benchmarks and a new Chinese GUI benchmark called CAGUI, reaching $96.9\%$ Type-Match and $91.3\%$ Exact-Match. To facilitate reproducibility and further research, we publicly release all code, model checkpoint, and evaluation data.
comment: Updated results in Table 2 and Table 3; The project is available at https://github.com/OpenBMB/AgentCPM-GUI
♻ ☆ 3D Hand Mesh-Guided AI-Generated Malformed Hand Refinement with Hand Pose Transformation via Diffusion Model
The malformed hands in the AI-generated images seriously affect the authenticity of the images. To refine malformed hands, existing depth-based approaches use a hand depth estimator to guide the refinement of malformed hands. Due to the performance limitations of the hand depth estimator, many hand details cannot be represented, resulting in errors in the generated hands, such as confusing the palm and the back of the hand. To solve this problem, we propose a 3D mesh-guided refinement framework using a diffusion pipeline. We use a state-of-the-art 3D hand mesh estimator, which provides more details of the hands. For training, we collect and reannotate a dataset consisting of RGB images and 3D hand mesh. Then we design a diffusion inpainting model to generate refined outputs guided by 3D hand meshes. For inference, we propose a double check algorithm to facilitate the 3D hand mesh estimator to obtain robust hand mesh guidance to obtain our refined results. Beyond malformed hand refinement, we propose a novel hand pose transformation method. It increases the flexibility and diversity of the malformed hand refinement task. We made the restored images mimic the hand poses of the reference images. The pose transformation requires no additional training. Extensive experimental results demonstrate the superior performance of our proposed method.
♻ ☆ Distraction is All You Need for Multimodal Large Language Model Jailbreaking CVPR 2025
Multimodal Large Language Models (MLLMs) bridge the gap between visual and textual data, enabling a range of advanced applications. However, complex internal interactions among visual elements and their alignment with text can introduce vulnerabilities, which may be exploited to bypass safety mechanisms. To address this, we analyze the relationship between image content and task and find that the complexity of subimages, rather than their content, is key. Building on this insight, we propose the Distraction Hypothesis, followed by a novel framework called Contrasting Subimage Distraction Jailbreaking (CS-DJ), to achieve jailbreaking by disrupting MLLMs alignment through multi-level distraction strategies. CS-DJ consists of two components: structured distraction, achieved through query decomposition that induces a distributional shift by fragmenting harmful prompts into sub-queries, and visual-enhanced distraction, realized by constructing contrasting subimages to disrupt the interactions among visual elements within the model. This dual strategy disperses the model's attention, reducing its ability to detect and mitigate harmful content. Extensive experiments across five representative scenarios and four popular closed-source MLLMs, including GPT-4o-mini, GPT-4o, GPT-4V, and Gemini-1.5-Flash, demonstrate that CS-DJ achieves average success rates of 52.40% for the attack success rate and 74.10% for the ensemble attack success rate. These results reveal the potential of distraction-based approaches to exploit and bypass MLLMs' defenses, offering new insights for attack strategies.
comment: CVPR 2025 highlight
♻ ☆ Efficient multi-view training for 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has emerged as a preferred choice alongside Neural Radiance Fields (NeRF) in inverse rendering due to its superior rendering speed. Currently, the common approach in 3DGS is to utilize "single-view" mini-batch training, where only one image is processed per iteration, in contrast to NeRF's "multi-view" mini-batch training, which leverages multiple images. We observe that such single-view training can lead to suboptimal optimization due to increased variance in mini-batch stochastic gradients, highlighting the necessity for multi-view training. However, implementing multi-view training in 3DGS poses challenges. Simply rendering multiple images per iteration incurs considerable overhead and may result in suboptimal Gaussian densification due to its reliance on single-view assumptions. To address these issues, we modify the rasterization process to minimize the overhead associated with multi-view training and propose a 3D distance-aware D-SSIM loss and multi-view adaptive density control that better suits multi-view scenarios. Our experiments demonstrate that the proposed methods significantly enhance the performance of 3DGS and its variants, freeing 3DGS from the constraints of single-view training.
♻ ☆ CSVQA: A Chinese Multimodal Benchmark for Evaluating STEM Reasoning Capabilities of VLMs
Vision-Language Models (VLMs) have demonstrated remarkable progress in multimodal understanding, yet their capabilities for scientific reasoning remain inadequately assessed. Current multimodal benchmarks predominantly evaluate generic image comprehension or text-driven reasoning, lacking authentic scientific contexts that require domain-specific knowledge integration with visual evidence analysis. To fill this gap, we present CSVQA, a diagnostic multimodal benchmark specifically designed for evaluating scientific reasoning through domain-grounded visual question answering. Our benchmark features 1,378 carefully constructed question-answer pairs spanning diverse STEM disciplines, each demanding domain knowledge, integration of visual evidence, and higher-order reasoning. Compared to prior multimodal benchmarks, CSVQA places greater emphasis on real-world scientific content and complex reasoning. We additionally propose a rigorous evaluation protocol to systematically assess whether model predictions are substantiated by valid intermediate reasoning steps based on curated explanations. Our comprehensive evaluation of 15 VLMs on this benchmark reveals notable performance disparities, as even the top-ranked proprietary model attains only 49.6% accuracy. This empirical evidence underscores the pressing need for advancing scientific reasoning capabilities in VLMs. Our CSVQA is released at https://huggingface.co/datasets/Skywork/CSVQA
comment: 36 pages
♻ ☆ CooPre: Cooperative Pretraining for V2X Cooperative Perception
Existing Vehicle-to-Everything (V2X) cooperative perception methods rely on accurate multi-agent 3D annotations. Nevertheless, it is time-consuming and expensive to collect and annotate real-world data, especially for V2X systems. In this paper, we present a self-supervised learning framwork for V2X cooperative perception, which utilizes the vast amount of unlabeled 3D V2X data to enhance the perception performance. Specifically, multi-agent sensing information is aggregated to form a holistic view and a novel proxy task is formulated to reconstruct the LiDAR point clouds across multiple connected agents to better reason multi-agent spatial correlations. Besides, we develop a V2X bird-eye-view (BEV) guided masking strategy which effectively allows the model to pay attention to 3D features across heterogeneous V2X agents (i.e., vehicles and infrastructure) in the BEV space. Noticeably, such a masking strategy effectively pretrains the 3D encoder with a multi-agent LiDAR point cloud reconstruction objective and is compatible with mainstream cooperative perception backbones. Our approach, validated through extensive experiments on representative datasets (i.e., V2X-Real, V2V4Real, and OPV2V) and multiple state-of-the-art cooperative perception methods (i.e., AttFuse, F-Cooper, and V2X-ViT), leads to a performance boost across all V2X settings. Notably, CooPre achieves a 4% mAP improvement on V2X-Real dataset and surpasses baseline performance using only 50% of the training data, highlighting its data efficiency. Additionally, we demonstrate the framework's powerful performance in cross-domain transferability and robustness under challenging scenarios. The code will be made publicly available at https://github.com/ucla-mobility/CooPre.
♻ ☆ Patch distribution modeling framework adaptive cosine estimator (PaDiM-ACE) for anomaly detection and localization in synthetic aperture radar imagery SP
This work presents a new approach to anomaly detection and localization in synthetic aperture radar imagery (SAR), expanding upon the existing patch distribution modeling framework (PaDiM). We introduce the adaptive cosine estimator (ACE) detection statistic. PaDiM uses the Mahalanobis distance at inference, an unbounded metric. ACE instead uses the cosine similarity metric, providing bounded anomaly detection scores. The proposed method is evaluated across multiple SAR datasets, with performance metrics including the area under the receiver operating curve (AUROC) at the image and pixel level, aiming for increased performance in anomaly detection and localization of SAR imagery. The code is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/PaDiM-ACE.
comment: Accepted to SPIE, Defense and Commercial Sensing, Algorithms for Synthetic Aperture Radar Imagery XXXII (April 2025)
♻ ☆ Improved Convex Decomposition with Ensembling and Boolean Primitives
Describing a scene in terms of primitives -- geometrically simple shapes that offer a parsimonious but accurate abstraction of structure -- is an established and difficult fitting problem. Different scenes require different numbers of primitives, and these primitives interact strongly. Existing methods are evaluated by predicting depth, normals and segmentation from the primitives, then evaluating the accuracy of those predictions. The state of the art method involves a learned regression procedure to predict a start point consisting of a fixed number of primitives, followed by a descent method to refine the geometry and remove redundant primitives. CSG (Constructive Solid Geometry) representations are significantly enhanced by a set-differencing operation. Our representation incorporates negative primitives, which are differenced from the positive primitives. These notably enrich the geometry that the model can encode, while complicating the fitting problem. This paper demonstrates a method that can (a) incorporate these negative primitives and (b) choose the overall number of positive and negative primitives by ensembling. Extensive experiments on the standard NYUv2 dataset confirm that (a) this approach results in substantial improvements in depth representation and segmentation over SOTA and (b) negative primitives make a notable contribution to accuracy. Our method is robustly applicable across datasets: in a first, we evaluate primitive prediction for LAION images.
comment: 25 pages, 16 figures, 9 tables
♻ ☆ Think Twice before Adaptation: Improving Adaptability of DeepFake Detection via Online Test-Time Adaptation IJCAI-25
Deepfake (DF) detectors face significant challenges when deployed in real-world environments, particularly when encountering test samples deviated from training data through either postprocessing manipulations or distribution shifts. We demonstrate postprocessing techniques can completely obscure generation artifacts presented in DF samples, leading to performance degradation of DF detectors. To address these challenges, we propose Think Twice before Adaptation (\texttt{T$^2$A}), a novel online test-time adaptation method that enhances the adaptability of detectors during inference without requiring access to source training data or labels. Our key idea is to enable the model to explore alternative options through an Uncertainty-aware Negative Learning objective rather than solely relying on its initial predictions as commonly seen in entropy minimization (EM)-based approaches. We also introduce an Uncertain Sample Prioritization strategy and Gradients Masking technique to improve the adaptation by focusing on important samples and model parameters. Our theoretical analysis demonstrates that the proposed negative learning objective exhibits complementary behavior to EM, facilitating better adaptation capability. Empirically, our method achieves state-of-the-art results compared to existing test-time adaptation (TTA) approaches and significantly enhances the resilience and generalization of DF detectors during inference. Code is available \href{https://github.com/HongHanh2104/T2A-Think-Twice-Before-Adaptation}{here}.
comment: Accepted at 34th International Joint Conference on Artificial Intelligence (IJCAI-25)
♻ ☆ Hierarchical Multi-Positive Contrastive Learning for Patent Image Retrieval SIGIR 2025
Patent images are technical drawings that convey information about a patent's innovation. Patent image retrieval systems aim to search in vast collections and retrieve the most relevant images. Despite recent advances in information retrieval, patent images still pose significant challenges due to their technical intricacies and complex semantic information, requiring efficient fine-tuning for domain adaptation. Current methods neglect patents' hierarchical relationships, such as those defined by the Locarno International Classification (LIC) system, which groups broad categories (e.g., "furnishing") into subclasses (e.g., "seats" and "beds") and further into specific patent designs. In this work, we introduce a hierarchical multi-positive contrastive loss that leverages the LIC's taxonomy to induce such relations in the retrieval process. Our approach assigns multiple positive pairs to each patent image within a batch, with varying similarity scores based on the hierarchical taxonomy. Our experimental analysis with various vision and multimodal models on the DeepPatent2 dataset shows that the proposed method enhances the retrieval results. Notably, our method is effective with low-parameter models, which require fewer computational resources and can be deployed on environments with limited hardware.
comment: 5 pages, 3 figures, Accepted as a short paper at the 6th Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech 2025), co-located with SIGIR 2025
♻ ☆ Semantic Mapping in Indoor Embodied AI -- A Survey on Advances, Challenges, and Future Directions
Intelligent embodied agents (e.g. robots) need to perform complex semantic tasks in unfamiliar environments. Among many skills that the agents need to possess, building and maintaining a semantic map of the environment is most crucial in long-horizon tasks. A semantic map captures information about the environment in a structured way, allowing the agent to reference it for advanced reasoning throughout the task. While existing surveys in embodied AI focus on general advancements or specific tasks like navigation and manipulation, this paper provides a comprehensive review of semantic map-building approaches in embodied AI, specifically for indoor navigation. We categorize these approaches based on their structural representation (spatial grids, topological graphs, dense point-clouds or hybrid maps) and the type of information they encode (implicit features or explicit environmental data). We also explore the strengths and limitations of the map building techniques, highlight current challenges, and propose future research directions. We identify that the field is moving towards developing open-vocabulary, queryable, task-agnostic map representations, while high memory demands and computational inefficiency still remaining to be open challenges. This survey aims to guide current and future researchers in advancing semantic mapping techniques for embodied AI systems.
♻ ☆ RoCA: Robust Cross-Domain End-to-End Autonomous Driving
End-to-end (E2E) autonomous driving has recently emerged as a new paradigm, offering significant potential. However, few studies have looked into the practical challenge of deployment across domains (e.g., cities). Although several works have incorporated Large Language Models (LLMs) to leverage their open-world knowledge, LLMs do not guarantee cross-domain driving performance and may incur prohibitive retraining costs during domain adaptation. In this paper, we propose RoCA, a novel framework for robust cross-domain E2E autonomous driving. RoCA formulates the joint probabilistic distribution over the tokens that encode ego and surrounding vehicle information in the E2E pipeline. Instantiating with a Gaussian process (GP), RoCA learns a set of basis tokens with corresponding trajectories, which span diverse driving scenarios. Then, given any driving scene, it is able to probabilistically infer the future trajectory. By using RoCA together with a base E2E model in source-domain training, we improve the generalizability of the base model, without requiring extra inference computation. In addition, RoCA enables robust adaptation on new target domains, significantly outperforming direct finetuning. We extensively evaluate RoCA on various cross-domain scenarios and show that it achieves strong domain generalization and adaptation performance.
Artificial Intelligence 229
☆ A Variational Framework for Improving Naturalness in Generative Spoken Language Models ICML
The success of large language models in text processing has inspired their adaptation to speech modeling. However, since speech is continuous and complex, it is often discretized for autoregressive modeling. Speech tokens derived from self-supervised models (known as semantic tokens) typically focus on the linguistic aspects of speech but neglect prosodic information. As a result, models trained on these tokens can generate speech with reduced naturalness. Existing approaches try to fix this by adding pitch features to the semantic tokens. However, pitch alone cannot fully represent the range of paralinguistic attributes, and selecting the right features requires careful hand-engineering. To overcome this, we propose an end-to-end variational approach that automatically learns to encode these continuous speech attributes to enhance the semantic tokens. Our approach eliminates the need for manual extraction and selection of paralinguistic features. Moreover, it produces preferred speech continuations according to human raters. Code, samples and models are available at https://github.com/b04901014/vae-gslm.
comment: International Conference on Machine Learning (ICML) 2025
☆ From Bytes to Ideas: Language Modeling with Autoregressive U-Nets
Tokenization imposes a fixed granularity on the input text, freezing how a language model operates on data and how far in the future it predicts. Byte Pair Encoding (BPE) and similar schemes split text once, build a static vocabulary, and leave the model stuck with that choice. We relax this rigidity by introducing an autoregressive U-Net that learns to embed its own tokens as it trains. The network reads raw bytes, pools them into words, then pairs of words, then up to 4 words, giving it a multi-scale view of the sequence. At deeper stages, the model must predict further into the future -- anticipating the next few words rather than the next byte -- so deeper stages focus on broader semantic patterns while earlier stages handle fine details. When carefully tuning and controlling pretraining compute, shallow hierarchies tie strong BPE baselines, and deeper hierarchies have a promising trend. Because tokenization now lives inside the model, the same system can handle character-level tasks and carry knowledge across low-resource languages.
☆ Optimizing Length Compression in Large Reasoning Models
Large Reasoning Models (LRMs) have achieved remarkable success, yet they often suffer from producing unnecessary and verbose reasoning chains. We identify a core aspect of this issue as "invalid thinking" -- models tend to repeatedly double-check their work after having derived the correct answer. To address this specific inefficiency, we move beyond the general principles of Efficacy and Efficiency to propose two new, fine-grained principles: Brevity, which advocates for eliminating redundancy, and Sufficiency, which ensures critical reasoning steps are preserved. Guided by these principles, we introduce LC-R1, a post-training method based on Group Relative Policy Optimization (GRPO). LC-R1 employs a novel combination of a Length Reward for overall conciseness and a Compress Reward that is specifically designed to remove the invalid portion of the thinking process. Extensive experiments on multiple reasoning benchmarks demonstrate that LC-R1 achieves a significant reduction in sequence length (~50%) with only a marginal (~2%) drop in accuracy, achieving a favorable trade-off point on the Pareto frontier that prioritizes high compression. Our analysis further validates the robustness of LC-R1 and provides valuable insights for developing more powerful yet computationally efficient LRMs. Our code is released at https://github.com/zxiangx/LC-R1.
comment: 16 pages, 7 figures, 4 tables
☆ Exploring Speaker Diarization with Mixture of Experts
In this paper, we propose a novel neural speaker diarization system using memory-aware multi-speaker embedding with sequence-to-sequence architecture (NSD-MS2S), which integrates a memory-aware multi-speaker embedding module with a sequence-to-sequence architecture. The system leverages a memory module to enhance speaker embeddings and employs a Seq2Seq framework to efficiently map acoustic features to speaker labels. Additionally, we explore the application of mixture of experts in speaker diarization, and introduce a Shared and Soft Mixture of Experts (SS-MoE) module to further mitigate model bias and enhance performance. Incorporating SS-MoE leads to the extended model NSD-MS2S-SSMoE. Experiments on multiple complex acoustic datasets, including CHiME-6, DiPCo, Mixer 6 and DIHARD-III evaluation sets, demonstrate meaningful improvements in robustness and generalization. The proposed methods achieve state-of-the-art results, showcasing their effectiveness in challenging real-world scenarios.
☆ AgentDistill: Training-Free Agent Distillation with Generalizable MCP Boxes
While knowledge distillation has become a mature field for compressing large language models (LLMs) into smaller ones by aligning their outputs or internal representations, the distillation of LLM-based agents, which involve planning, memory, and tool use, remains relatively underexplored. Existing agent distillation methods typically replay full teacher trajectories or imitate step-by-step teacher tool usage, but they often struggle to train student agents to dynamically plan and act in novel environments. We propose AgentDistill, a novel, training-free agent distillation framework that enables efficient and scalable knowledge transfer via direct reuse of Model-Context-Protocols (MCPs), which are structured and reusable task-solving modules autonomously generated by teacher agents. The reuse of these distilled MCPs enables student agents to generalize their capabilities across domains and solve new problems with minimal supervision or human intervention. Experiments on biomedical and mathematical benchmarks demonstrate that our distilled student agents, built on small language models, can achieve performance comparable to advanced systems using large LLMs such as OctoTools (GPT-4o), highlighting the effectiveness of our framework in building scalable and cost-efficient intelligent agents.
comment: 10 pages, 5 figures
☆ Casper: Inferring Diverse Intents for Assistive Teleoperation with Vision Language Models
Assistive teleoperation, where control is shared between a human and a robot, enables efficient and intuitive human-robot collaboration in diverse and unstructured environments. A central challenge in real-world assistive teleoperation is for the robot to infer a wide range of human intentions from user control inputs and to assist users with correct actions. Existing methods are either confined to simple, predefined scenarios or restricted to task-specific data distributions at training, limiting their support for real-world assistance. We introduce Casper, an assistive teleoperation system that leverages commonsense knowledge embedded in pre-trained visual language models (VLMs) for real-time intent inference and flexible skill execution. Casper incorporates an open-world perception module for a generalized understanding of novel objects and scenes, a VLM-powered intent inference mechanism that leverages commonsense reasoning to interpret snippets of teleoperated user input, and a skill library that expands the scope of prior assistive teleoperation systems to support diverse, long-horizon mobile manipulation tasks. Extensive empirical evaluation, including human studies and system ablations, demonstrates that Casper improves task performance, reduces human cognitive load, and achieves higher user satisfaction than direct teleoperation and assistive teleoperation baselines.
☆ Adaptive Accompaniment with ReaLchords ICML 2024
Jamming requires coordination, anticipation, and collaborative creativity between musicians. Current generative models of music produce expressive output but are not able to generate in an \emph{online} manner, meaning simultaneously with other musicians (human or otherwise). We propose ReaLchords, an online generative model for improvising chord accompaniment to user melody. We start with an online model pretrained by maximum likelihood, and use reinforcement learning to finetune the model for online use. The finetuning objective leverages both a novel reward model that provides feedback on both harmonic and temporal coherency between melody and chord, and a divergence term that implements a novel type of distillation from a teacher model that can see the future melody. Through quantitative experiments and listening tests, we demonstrate that the resulting model adapts well to unfamiliar input and produce fitting accompaniment. ReaLchords opens the door to live jamming, as well as simultaneous co-creation in other modalities.
comment: Accepted by ICML 2024
☆ Refining music sample identification with a self-supervised graph neural network
Automatic sample identification (ASID), the detection and identification of portions of audio recordings that have been reused in new musical works, is an essential but challenging task in the field of audio query-based retrieval. While a related task, audio fingerprinting, has made significant progress in accurately retrieving musical content under "real world" (noisy, reverberant) conditions, ASID systems struggle to identify samples that have undergone musical modifications. Thus, a system robust to common music production transformations such as time-stretching, pitch-shifting, effects processing, and underlying or overlaying music is an important open challenge. In this work, we propose a lightweight and scalable encoding architecture employing a Graph Neural Network within a contrastive learning framework. Our model uses only 9% of the trainable parameters compared to the current state-of-the-art system while achieving comparable performance, reaching a mean average precision (mAP) of 44.2%. To enhance retrieval quality, we introduce a two-stage approach consisting of an initial coarse similarity search for candidate selection, followed by a cross-attention classifier that rejects irrelevant matches and refines the ranking of retrieved candidates - an essential capability absent in prior models. In addition, because queries in real-world applications are often short in duration, we benchmark our system for short queries using new fine-grained annotations for the Sample100 dataset, which we publish as part of this work.
comment: Accepted at International Conference for Music Information Retrieval (ISMIR) 2025
☆ Unified Software Engineering agent as AI Software Engineer
The growth of Large Language Model (LLM) technology has raised expectations for automated coding. However, software engineering is more than coding and is concerned with activities including maintenance and evolution of a project. In this context, the concept of LLM agents has gained traction, which utilize LLMs as reasoning engines to invoke external tools autonomously. But is an LLM agent the same as an AI software engineer? In this paper, we seek to understand this question by developing a Unified Software Engineering agent or USEagent. Unlike existing work which builds specialized agents for specific software tasks such as testing, debugging, and repair, our goal is to build a unified agent which can orchestrate and handle multiple capabilities. This gives the agent the promise of handling complex scenarios in software development such as fixing an incomplete patch, adding new features, or taking over code written by others. We envision USEagent as the first draft of a future AI Software Engineer which can be a team member in future software development teams involving both AI and humans. To evaluate the efficacy of USEagent, we build a Unified Software Engineering bench (USEbench) comprising of myriad tasks such as coding, testing, and patching. USEbench is a judicious mixture of tasks from existing benchmarks such as SWE-bench, SWT-bench, and REPOCOD. In an evaluation on USEbench consisting of 1,271 repository-level software engineering tasks, USEagent shows improved efficacy compared to existing general agents such as OpenHands CodeActAgent. There exist gaps in the capabilities of USEagent for certain coding tasks, which provides hints on further developing the AI Software Engineer of the future.
comment: Leonhard Applis and Yuntong Zhang contributed equally to this work
☆ Design an Editable Speech-to-Sign-Language Transformer System: A Human-Centered AI Approach
This paper presents a human-centered, real-time, user-adaptive speech-to-sign language animation system that integrates Transformer-based motion generation with a transparent, user-editable JSON intermediate layer. The framework overcomes key limitations in prior sign language technologies by enabling direct user inspection and modification of sign segments, thus enhancing naturalness, expressiveness, and user agency. Leveraging a streaming Conformer encoder and autoregressive Transformer-MDN decoder, the system synchronizes spoken input into upper-body and facial motion for 3D avatar rendering. Edits and user ratings feed into a human-in-the-loop optimization loop for continuous improvement. Experiments with 20 deaf signers and 5 interpreters show that the editable interface and participatory feedback significantly improve comprehension, naturalness, usability, and trust, while lowering cognitive load. With sub-20 ms per-frame inference on standard hardware, the system is ready for real-time communication and education. This work illustrates how technical and participatory innovation together enable accessible, explainable, and user-adaptive AI for sign language technology.
☆ StreetLens: Enabling Human-Centered AI Agents for Neighborhood Assessment from Street View Imagery
Traditionally, neighborhood studies have employed interviews, surveys, and manual image annotation guided by detailed protocols to identify environmental characteristics, including physical disorder, decay, street safety, and sociocultural symbols, and to examine their impact on developmental and health outcomes. While these methods yield rich insights, they are time-consuming and require intensive expert intervention. Recent technological advances, including vision-language models (VLMs), have begun to automate parts of this process; however, existing efforts are often ad hoc and lack adaptability across research designs and geographic contexts. In this demo paper, we present StreetLens, a human-centered, researcher-configurable workflow that embeds relevant social science expertise in a VLM for scalable neighborhood environmental assessments. StreetLens mimics the process of trained human coders by grounding the analysis in questions derived from established interview protocols, retrieving relevant street view imagery (SVI), and generating a wide spectrum of semantic annotations from objective features (e.g., the number of cars) to subjective perceptions (e.g., the sense of disorder in an image). By enabling researchers to define the VLM's role through domain-informed prompting, StreetLens places domain knowledge at the core of the analysis process. It also supports the integration of prior survey data to enhance robustness and expand the range of characteristics assessed across diverse settings. We provide a Google Colab notebook to make StreetLens accessible and extensible for researchers working with public or custom SVI datasets. StreetLens represents a shift toward flexible, agentic AI systems that work closely with researchers to accelerate and scale neighborhood studies.
☆ Rigor in AI: Doing Rigorous AI Work Requires a Broader, Responsible AI-Informed Conception of Rigor
In AI research and practice, rigor remains largely understood in terms of methodological rigor -- such as whether mathematical, statistical, or computational methods are correctly applied. We argue that this narrow conception of rigor has contributed to the concerns raised by the responsible AI community, including overblown claims about AI capabilities. Our position is that a broader conception of what rigorous AI research and practice should entail is needed. We believe such a conception -- in addition to a more expansive understanding of (1) methodological rigor -- should include aspects related to (2) what background knowledge informs what to work on (epistemic rigor); (3) how disciplinary, community, or personal norms, standards, or beliefs influence the work (normative rigor); (4) how clearly articulated the theoretical constructs under use are (conceptual rigor); (5) what is reported and how (reporting rigor); and (6) how well-supported the inferences from existing evidence are (interpretative rigor). In doing so, we also aim to provide useful language and a framework for much-needed dialogue about the AI community's work by researchers, policymakers, journalists, and other stakeholders.
comment: 20 pages, 1 figure, 1 table
☆ SENIOR: Efficient Query Selection and Preference-Guided Exploration in Preference-based Reinforcement Learning
Preference-based Reinforcement Learning (PbRL) methods provide a solution to avoid reward engineering by learning reward models based on human preferences. However, poor feedback- and sample- efficiency still remain the problems that hinder the application of PbRL. In this paper, we present a novel efficient query selection and preference-guided exploration method, called SENIOR, which could select the meaningful and easy-to-comparison behavior segment pairs to improve human feedback-efficiency and accelerate policy learning with the designed preference-guided intrinsic rewards. Our key idea is twofold: (1) We designed a Motion-Distinction-based Selection scheme (MDS). It selects segment pairs with apparent motion and different directions through kernel density estimation of states, which is more task-related and easy for human preference labeling; (2) We proposed a novel preference-guided exploration method (PGE). It encourages the exploration towards the states with high preference and low visits and continuously guides the agent achieving the valuable samples. The synergy between the two mechanisms could significantly accelerate the progress of reward and policy learning. Our experiments show that SENIOR outperforms other five existing methods in both human feedback-efficiency and policy convergence speed on six complex robot manipulation tasks from simulation and four real-worlds.
comment: 8 pages, 8 figures
☆ Revisiting Chain-of-Thought Prompting: Zero-shot Can Be Stronger than Few-shot
In-Context Learning (ICL) is an essential emergent ability of Large Language Models (LLMs), and recent studies introduce Chain-of-Thought (CoT) to exemplars of ICL to enhance the reasoning capability, especially in mathematics tasks. However, given the continuous advancement of model capabilities, it remains unclear whether CoT exemplars still benefit recent, stronger models in such tasks. Through systematic experiments, we find that for recent strong models such as the Qwen2.5 series, adding traditional CoT exemplars does not improve reasoning performance compared to Zero-Shot CoT. Instead, their primary function is to align the output format with human expectations. We further investigate the effectiveness of enhanced CoT exemplars, constructed using answers from advanced models such as \texttt{Qwen2.5-Max} and \texttt{DeepSeek-R1}. Experimental results indicate that these enhanced exemplars still fail to improve the model's reasoning performance. Further analysis reveals that models tend to ignore the exemplars and focus primarily on the instructions, leading to no observable gain in reasoning ability. Overall, our findings highlight the limitations of the current ICL+CoT framework in mathematical reasoning, calling for a re-examination of the ICL paradigm and the definition of exemplars.
comment: 19 pages,22 figures
☆ Navigating the growing field of research on AI for software testing -- the taxonomy for AI-augmented software testing and an ontology-driven literature survey
In industry, software testing is the primary method to verify and validate the functionality, performance, security, usability, and so on, of software-based systems. Test automation has gained increasing attention in industry over the last decade, following decades of intense research into test automation and model-based testing. However, designing, developing, maintaining and evolving test automation is a considerable effort. Meanwhile, AI's breakthroughs in many engineering fields are opening up new perspectives for software testing, for both manual and automated testing. This paper reviews recent research on AI augmentation in software test automation, from no automation to full automation. It also discusses new forms of testing made possible by AI. Based on this, the newly developed taxonomy, ai4st, is presented and used to classify recent research and identify open research questions.
comment: 15 pages, 7 figures, 1 table, 2 listings (will be presented at FMICS 2025)
☆ ACM Survey Draft on Formalising Software Requirements with Large Language Models
This draft is a working document, having a summary of nighty-four (94) papers with additional sections on Traceability of Software Requirements (Section 4), Formal Methods and Its Tools (Section 5), Unifying Theories of Programming (UTP) and Theory of Institutions (Section 6). Please refer to abstract of [7,8]. Key difference of this draft from our recently anticipated ones with similar titles, i.e. AACS 2025 [7] and SAIV 2025 [8] is: [7] is a two page submission to ADAPT Annual Conference, Ireland. Submitted on 18th of March, 2025, it went through the light-weight blind review and accepted for poster presentation. Conference was held on 15th of May, 2025. [8] is a nine page paper with additional nine pages of references and summary tables, submitted to Symposium on AI Verification (SAIV 2025) on 24th of April, 2025. It went through rigorous review process. The uploaded version on arXiv.org [8] is the improved one of the submission, after addressing the specific suggestions to improve the paper.
comment: 22 pages. 6 summary tables
☆ Low-code to fight climate change: the Climaborough project
The EU-funded Climaborough project supports European cities to achieve carbon neutrality by 2030. Eleven cities in nine countries will deploy in real conditions products and services fostering climate transition in their local environment. The Climaborough City Platform is being developed to monitor the cities' overall progress towards their climate goals by aggregating historic and real-time data and displaying the results in user-friendly dashboards that will be used by non-technical experts to evaluate the effectiveness of local experimental initiatives, identify those that yield significant impact, and assess the potential consequences of scaling them up to a broader level. In this paper, we explain how we have put in place a low-code/no-code strategy in Climaborough in response to the project's aim to quickly deploy climate dashboards. A low-code strategy is used to accelerate the development of the dashboards. The dashboards embed a no-code philosophy that enables all types of citizen profiles to configure and adapt the dashboard to their specific needs.
comment: This paper was presented in the Research Projects Track of the 19th International Conference on Research Challenges in Information Science (RCIS 2025)
☆ PoseGRAF: Geometric-Reinforced Adaptive Fusion for Monocular 3D Human Pose Estimation
Existing monocular 3D pose estimation methods primarily rely on joint positional features, while overlooking intrinsic directional and angular correlations within the skeleton. As a result, they often produce implausible poses under joint occlusions or rapid motion changes. To address these challenges, we propose the PoseGRAF framework. We first construct a dual graph convolutional structure that separately processes joint and bone graphs, effectively capturing their local dependencies. A Cross-Attention module is then introduced to model interdependencies between bone directions and joint features. Building upon this, a dynamic fusion module is designed to adaptively integrate both feature types by leveraging the relational dependencies between joints and bones. An improved Transformer encoder is further incorporated in a residual manner to generate the final output. Experimental results on the Human3.6M and MPI-INF-3DHP datasets show that our method exceeds state-of-the-art approaches. Additional evaluations on in-the-wild videos further validate its generalizability. The code is publicly available at https://github.com/iCityLab/PoseGRAF.
☆ Synthetic Data Augmentation for Table Detection: Re-evaluating TableNet's Performance with Automatically Generated Document Images
Document pages captured by smartphones or scanners often contain tables, yet manual extraction is slow and error-prone. We introduce an automated LaTeX-based pipeline that synthesizes realistic two-column pages with visually diverse table layouts and aligned ground-truth masks. The generated corpus augments the real-world Marmot benchmark and enables a systematic resolution study of TableNet. Training TableNet on our synthetic data achieves a pixel-wise XOR error of 4.04% on our synthetic test set with a 256x256 input resolution, and 4.33% with 1024x1024. The best performance on the Marmot benchmark is 9.18% (at 256x256), while cutting manual annotation effort through automation.
☆ GenerationPrograms: Fine-grained Attribution with Executable Programs
Recent large language models (LLMs) achieve impressive performance in source-conditioned text generation but often fail to correctly provide fine-grained attributions for their outputs, undermining verifiability and trust. Moreover, existing attribution methods do not explain how and why models leverage the provided source documents to generate their final responses, limiting interpretability. To overcome these challenges, we introduce a modular generation framework, GenerationPrograms, inspired by recent advancements in executable "code agent" architectures. Unlike conventional generation methods that simultaneously generate outputs and attributions or rely on post-hoc attribution, GenerationPrograms decomposes the process into two distinct stages: first, creating an executable program plan composed of modular text operations (such as paraphrasing, compression, and fusion) explicitly tailored to the query, and second, executing these operations following the program's specified instructions to produce the final response. Empirical evaluations demonstrate that GenerationPrograms significantly improves attribution quality at both the document level and sentence level across two long-form question-answering tasks and a multi-document summarization task. We further demonstrate that GenerationPrograms can effectively function as a post-hoc attribution method, outperforming traditional techniques in recovering accurate attributions. In addition, the interpretable programs generated by GenerationPrograms enable localized refinement through modular-level improvements that further enhance overall attribution quality.
comment: 27 Pages. Code: https://github.com/meetdavidwan/generationprograms
☆ Object-Centric Neuro-Argumentative Learning
Over the last decade, as we rely more on deep learning technologies to make critical decisions, concerns regarding their safety, reliability and interpretability have emerged. We introduce a novel Neural Argumentative Learning (NAL) architecture that integrates Assumption-Based Argumentation (ABA) with deep learning for image analysis. Our architecture consists of neural and symbolic components. The former segments and encodes images into facts using object-centric learning, while the latter applies ABA learning to develop ABA frameworks enabling predictions with images. Experiments on synthetic data show that the NAL architecture can be competitive with a state-of-the-art alternative.
comment: Proceedings of Machine Learning Research, 2025 19th Conference on Neurosymbolic Learning and Reasoning
☆ TGDPO: Harnessing Token-Level Reward Guidance for Enhancing Direct Preference Optimization ICML 2025
Recent advancements in reinforcement learning from human feedback have shown that utilizing fine-grained token-level reward models can substantially enhance the performance of Proximal Policy Optimization (PPO) in aligning large language models. However, it is challenging to leverage such token-level reward as guidance for Direct Preference Optimization (DPO), since DPO is formulated as a sequence-level bandit problem. To address this challenge, this work decomposes the sequence-level PPO into a sequence of token-level proximal policy optimization problems and then frames the problem of token-level PPO with token-level reward guidance, from which closed-form optimal token-level policy and the corresponding token-level reward can be derived. Using the obtained reward and Bradley-Terry model, this work establishes a framework of computable loss functions with token-level reward guidance for DPO, and proposes a practical reward guidance based on the induced DPO reward. This formulation enables different tokens to exhibit varying degrees of deviation from reference policy based on their respective rewards. Experiment results demonstrate that our method achieves substantial performance improvements over DPO, with win rate gains of up to 7.5 points on MT-Bench, 6.2 points on AlpacaEval 2, and 4.3 points on Arena-Hard. Code is available at https://github.com/dvlab-research/TGDPO.
comment: ICML 2025
☆ From Points to Places: Towards Human Mobility-Driven Spatiotemporal Foundation Models via Understanding Places
Capturing human mobility is essential for modeling how people interact with and move through physical spaces, reflecting social behavior, access to resources, and dynamic spatial patterns. To support scalable and transferable analysis across diverse geographies and contexts, there is a need for a generalizable foundation model for spatiotemporal data. While foundation models have transformed language and vision, they remain limited in handling the unique challenges posed by the spatial, temporal, and semantic complexity of mobility data. This vision paper advocates for a new class of spatial foundation models that integrate geolocation semantics with human mobility across multiple scales. Central to our vision is a shift from modeling discrete points of interest to understanding places: dynamic, context-rich regions shaped by human behavior and mobility that may comprise many places of interest. We identify key gaps in adaptability, scalability, and multi-granular reasoning, and propose research directions focused on modeling places and enabling efficient learning. Our goal is to guide the development of scalable, context-aware models for next-generation geospatial intelligence. These models unlock powerful applications ranging from personalized place discovery and logistics optimization to urban planning, ultimately enabling smarter and more responsive spatial decision-making.
☆ Enhancing Symbolic Machine Learning by Subsymbolic Representations
The goal of neuro-symbolic AI is to integrate symbolic and subsymbolic AI approaches, to overcome the limitations of either. Prominent systems include Logic Tensor Networks (LTN) or DeepProbLog, which offer neural predicates and end-to-end learning. The versatility of systems like LTNs and DeepProbLog, however, makes them less efficient in simpler settings, for instance, for discriminative machine learning, in particular in domains with many constants. Therefore, we follow a different approach: We propose to enhance symbolic machine learning schemes by giving them access to neural embeddings. In the present paper, we show this for TILDE and embeddings of constants used by TILDE in similarity predicates. The approach can be fine-tuned by further refining the embeddings depending on the symbolic theory. In experiments in three real-world domain, we show that this simple, yet effective, approach outperforms all other baseline methods in terms of the F1 score. The approach could be useful beyond this setting: Enhancing symbolic learners in this way could be extended to similarities between instances (effectively working like kernels within a logical language), for analogical reasoning, or for propositionalization.
☆ QUEST: Quality-aware Semi-supervised Table Extraction for Business Documents ICDAR 2025
Automating table extraction (TE) from business documents is critical for industrial workflows but remains challenging due to sparse annotations and error-prone multi-stage pipelines. While semi-supervised learning (SSL) can leverage unlabeled data, existing methods rely on confidence scores that poorly reflect extraction quality. We propose QUEST, a Quality-aware Semi-supervised Table extraction framework designed for business documents. QUEST introduces a novel quality assessment model that evaluates structural and contextual features of extracted tables, trained to predict F1 scores instead of relying on confidence metrics. This quality-aware approach guides pseudo-label selection during iterative SSL training, while diversity measures (DPP, Vendi score, IntDiv) mitigate confirmation bias. Experiments on a proprietary business dataset (1000 annotated + 10000 unannotated documents) show QUEST improves F1 from 64% to 74% and reduces empty predictions by 45% (from 12% to 6.5%). On the DocILE benchmark (600 annotated + 20000 unannotated documents), QUEST achieves a 50% F1 score (up from 42%) and reduces empty predictions by 19% (from 27% to 22%). The framework's interpretable quality assessments and robustness to annotation scarcity make it particularly suited for business documents, where structural consistency and data completeness are paramount.
comment: Accepted at ICDAR 2025
Controlling Context: Generative AI at Work in Integrated Circuit Design and Other High-Precision Domains
Generative AI tools have become more prevalent in engineering workflows, particularly through chatbots and code assistants. As the perceived accuracy of these tools improves, questions arise about whether and how those who work in high-precision domains might maintain vigilance for errors, and what other aspects of using such tools might trouble their work. This paper analyzes interviews with hardware and software engineers, and their collaborators, who work in integrated circuit design to identify the role accuracy plays in their use of generative AI tools and what other forms of trouble they face in using such tools. The paper inventories these forms of trouble, which are then mapped to elements of generative AI systems, to conclude that controlling the context of interactions between engineers and the generative AI tools is one of the largest challenges they face. The paper concludes with recommendations for mitigating this form of trouble by increasing the ability to control context interactively.
☆ AlphaDecay:Module-wise Weight Decay for Heavy-Tailed Balancing in LLMs
Weight decay is a standard regularization technique for training large language models (LLMs). While it is common to assign a uniform decay rate to every layer, this approach overlooks the structural diversity of LLMs and the varying spectral properties across modules. In this paper, we introduce AlphaDecay, a simple yet effective method that adaptively assigns different weight decay strengths to each module of an LLM. Our approach is guided by Heavy-Tailed Self-Regularization (HT-SR) theory, which analyzes the empirical spectral density (ESD) of weight correlation matrices to quantify "heavy-tailedness." Modules exhibiting more pronounced heavy-tailed ESDs, reflecting stronger feature learning, are assigned weaker decay, while modules with lighter-tailed spectra receive stronger decay. Our method leverages tailored weight decay assignments to balance the module-wise differences in spectral properties, leading to improved performance. Extensive pre-training tasks with various model sizes from 60M to 1B demonstrate that AlphaDecay achieves better perplexity and generalization than conventional uniform decay and other adaptive decay baselines.
☆ Doppelgänger Method: Breaking Role Consistency in LLM Agent via Prompt-based Transferable Adversarial Attack
Since the advent of large language models, prompt engineering now enables the rapid, low-effort creation of diverse autonomous agents that are already in widespread use. Yet this convenience raises urgent concerns about the safety, robustness, and behavioral consistency of the underlying prompts, along with the pressing challenge of preventing those prompts from being exposed to user's attempts. In this paper, we propose the ''Doppelg\"anger method'' to demonstrate the risk of an agent being hijacked, thereby exposing system instructions and internal information. Next, we define the ''Prompt Alignment Collapse under Adversarial Transfer (PACAT)'' level to evaluate the vulnerability to this adversarial transfer attack. We also propose a ''Caution for Adversarial Transfer (CAT)'' prompt to counter the Doppelg\"anger method. The experimental results demonstrate that the Doppelg\"anger method can compromise the agent's consistency and expose its internal information. In contrast, CAT prompts enable effective defense against this adversarial attack.
☆ Automatic Qiskit Code Refactoring Using Large Language Models
As quantum software frameworks evolve, developers face increasing challenges in maintaining compatibility with rapidly changing APIs. In this work, we present a novel methodology for refactoring Qiskit code using large language models (LLMs). We begin by extracting a taxonomy of migration scenarios from the different sources of official Qiskit documentation (such as release notes), capturing common patterns such as migration of functionality to different modules and deprecated usage. This taxonomy, along with the original Python source code, is provided as input to an LLM, which is then tasked with identifying instances of migration scenarios in the code and suggesting appropriate refactoring solutions. Our approach is designed to address the context length limitations of current LLMs by structuring the input and reasoning process in a targeted, efficient manner. The results demonstrate that LLMs, when guided by domain-specific migration knowledge, can effectively assist in automating Qiskit code migration. This work contributes both a set of proven prompts and taxonomy for Qiskit code migration from earlier versions to version 0.46 and a methodology to asses the capabilities of LLMs to assist in the migration of quantum code.
comment: Submitted for review to "Taller Latinoamericano de Ingenier\'ia de Software Cu\'antico" (https://www.ripaisc.net/call-for-papers-tlisc-2025/)
☆ Complete Characterization for Adjustment in Summary Causal Graphs of Time Series UAI
The identifiability problem for interventions aims at assessing whether the total causal effect can be written with a do-free formula, and thus be estimated from observational data only. We study this problem, considering multiple interventions, in the context of time series when only an abstraction of the true causal graph, in the form of a summary causal graph, is available. We propose in particular both necessary and sufficient conditions for the adjustment criterion, which we show is complete in this setting, and provide a pseudo-linear algorithm to decide whether the query is identifiable or not.
comment: Accepted at the 41st Conference on Uncertainty in Artificial Intelligence (UAI)
☆ Sharp Generalization Bounds for Foundation Models with Asymmetric Randomized Low-Rank Adapters
Low-Rank Adaptation (LoRA) has emerged as a widely adopted parameter-efficient fine-tuning (PEFT) technique for foundation models. Recent work has highlighted an inherent asymmetry in the initialization of LoRA's low-rank factors, which has been present since its inception and was presumably derived experimentally. This paper focuses on providing a comprehensive theoretical characterization of asymmetric LoRA with frozen random factors. First, while existing research provides upper-bound generalization guarantees based on averages over multiple experiments, the behaviour of a single fine-tuning run with specific random factors remains an open question. We address this by investigating the concentration of the typical LoRA generalization gap around its mean. Our main upper bound reveals a sample complexity of $\tilde{\mathcal{O}}\left(\frac{\sqrt{r}}{\sqrt{N}}\right)$ with high probability for rank $r$ LoRAs trained on $N$ samples. Additionally, we also determine the fundamental limits in terms of sample efficiency, establishing a matching lower bound of $\mathcal{O}\left(\frac{1}{\sqrt{N}}\right)$. By more closely reflecting the practical scenario of a single fine-tuning run, our findings offer crucial insights into the reliability and practicality of asymmetric LoRA.
☆ GAMORA: A Gesture Articulated Meta Operative Robotic Arm for Hazardous Material Handling in Containment-Level Environments
The convergence of robotics and virtual reality (VR) has enabled safer and more efficient workflows in high-risk laboratory settings, particularly virology labs. As biohazard complexity increases, minimizing direct human exposure while maintaining precision becomes essential. We propose GAMORA (Gesture Articulated Meta Operative Robotic Arm), a novel VR-guided robotic system that enables remote execution of hazardous tasks using natural hand gestures. Unlike existing scripted automation or traditional teleoperation, GAMORA integrates the Oculus Quest 2, NVIDIA Jetson Nano, and Robot Operating System (ROS) to provide real-time immersive control, digital twin simulation, and inverse kinematics-based articulation. The system supports VR-based training and simulation while executing precision tasks in physical environments via a 3D-printed robotic arm. Inverse kinematics ensure accurate manipulation for delicate operations such as specimen handling and pipetting. The pipeline includes Unity-based 3D environment construction, real-time motion planning, and hardware-in-the-loop testing. GAMORA achieved a mean positional discrepancy of 2.2 mm (improved from 4 mm), pipetting accuracy within 0.2 mL, and repeatability of 1.2 mm across 50 trials. Integrated object detection via YOLOv8 enhances spatial awareness, while energy-efficient operation (50% reduced power output) ensures sustainable deployment. The system's digital-physical feedback loop enables safe, precise, and repeatable automation of high-risk lab tasks. GAMORA offers a scalable, immersive solution for robotic control and biosafety in biomedical research environments.
☆ Toward Safety-First Human-Like Decision Making for Autonomous Vehicles in Time-Varying Traffic Flow
Despite the recent advancements in artificial intelligence technologies have shown great potential in improving transport efficiency and safety, autonomous vehicles(AVs) still face great challenge of driving in time-varying traffic flow, especially in dense and interactive situations. Meanwhile, human have free wills and usually do not make the same decisions even situate in the exactly same scenarios, leading to the data-driven methods suffer from poor migratability and high search cost problems, decreasing the efficiency and effectiveness of the behavior policy. In this research, we propose a safety-first human-like decision-making framework(SF-HLDM) for AVs to drive safely, comfortably, and social compatiblely in effiency. The framework integrates a hierarchical progressive framework, which combines a spatial-temporal attention (S-TA) mechanism for other road users' intention inference, a social compliance estimation module for behavior regulation, and a Deep Evolutionary Reinforcement Learning(DERL) model for expanding the search space efficiently and effectively to make avoidance of falling into the local optimal trap and reduce the risk of overfitting, thus make human-like decisions with interpretability and flexibility. The SF-HLDM framework enables autonomous driving AI agents dynamically adjusts decision parameters to maintain safety margins and adhering to contextually appropriate driving behaviors at the same time.
☆ LLM-Powered Swarms: A New Frontier or a Conceptual Stretch?
Swarm intelligence traditionally refers to systems of simple, decentralized agents whose local interactions lead to emergent, collective behavior. Recently, the term 'swarm' has been extended to describe AI systems like OpenAI's Swarm, where large language models (LLMs) act as collaborative agents. This paper contrasts traditional swarm algorithms with LLM-driven swarms exploring how decentralization, scalability, and emergence are redefined in modern artificial intelligence (AI). We implement and compare both paradigms using Boids and Ant Colony Optimization (ACO), evaluating latency, resource usage, and behavioral accuracy. The suitability of both cloud-based and local LLMs is assessed for the agent-based use in swarms. Although LLMs offer powerful reasoning and abstraction capabilities, they introduce new constraints in computation and coordination that challenge traditional notions of swarm design. This study highlights the opportunities and limitations of integrating LLMs into swarm systems and discusses the evolving definition of 'swarm' in modern AI research.
comment: This is the author's version of a paper submitted to IEEE Intelligent Systems. 6 Tables, 3 Figures
☆ GUI-Robust: A Comprehensive Dataset for Testing GUI Agent Robustness in Real-World Anomalies NIPS 2025
The development of high-quality datasets is crucial for benchmarking and advancing research in Graphical User Interface (GUI) agents. Despite their importance, existing datasets are often constructed under idealized conditions, overlooking the diverse anomalies frequently encountered in real-world deployments. To address this limitation, we introduce GUI-Robust, a novel dataset designed for comprehensive GUI agent evaluation, explicitly incorporating seven common types of anomalies observed in everyday GUI interactions. Furthermore, we propose a semi-automated dataset construction paradigm that collects user action sequences from natural interactions via RPA tools and then generate corresponding step and task descriptions for these actions with the assistance of MLLMs. This paradigm significantly reduces annotation time cost by a factor of over 19 times. Finally, we assess state-of-the-art GUI agents using the GUI-Robust dataset, revealing their substantial performance degradation in abnormal scenarios. We anticipate that our work will highlight the importance of robustness in GUI agents and inspires more future research in this direction. The dataset and code are available at https://github.com/chessbean1/GUI-Robust..
comment: 10 pages, 4 figures, submitted to NIPS 2025
☆ Leveraging External Factors in Household-Level Electrical Consumption Forecasting using Hypernetworks ECML
Accurate electrical consumption forecasting is crucial for efficient energy management and resource allocation. While traditional time series forecasting relies on historical patterns and temporal dependencies, incorporating external factors -- such as weather indicators -- has shown significant potential for improving prediction accuracy in complex real-world applications. However, the inclusion of these additional features often degrades the performance of global predictive models trained on entire populations, despite improving individual household-level models. To address this challenge, we found that a hypernetwork architecture can effectively leverage external factors to enhance the accuracy of global electrical consumption forecasting models, by specifically adjusting the model weights to each consumer. We collected a comprehensive dataset spanning two years, comprising consumption data from over 6000 luxembourgish households and corresponding external factors such as weather indicators, holidays, and major local events. By comparing various forecasting models, we demonstrate that a hypernetwork approach outperforms existing methods when associated to external factors, reducing forecasting errors and achieving the best accuracy while maintaining the benefits of a global model.
comment: ECML PKDD 2025
☆ AST-Enhanced or AST-Overloaded? The Surprising Impact of Hybrid Graph Representations on Code Clone Detection
As one of the most detrimental code smells, code clones significantly increase software maintenance costs and heighten vulnerability risks, making their detection a critical challenge in software engineering. Abstract Syntax Trees (ASTs) dominate deep learning-based code clone detection due to their precise syntactic structure representation, but they inherently lack semantic depth. Recent studies address this by enriching AST-based representations with semantic graphs, such as Control Flow Graphs (CFGs) and Data Flow Graphs (DFGs). However, the effectiveness of various enriched AST-based representations and their compatibility with different graph-based machine learning techniques remains an open question, warranting further investigation to unlock their full potential in addressing the complexities of code clone detection. In this paper, we present a comprehensive empirical study to rigorously evaluate the effectiveness of AST-based hybrid graph representations in Graph Neural Network (GNN)-based code clone detection. We systematically compare various hybrid representations ((CFG, DFG, Flow-Augmented ASTs (FA-AST)) across multiple GNN architectures. Our experiments reveal that hybrid representations impact GNNs differently: while AST+CFG+DFG consistently enhances accuracy for convolution- and attention-based models (Graph Convolutional Networks (GCN), Graph Attention Networks (GAT)), FA-AST frequently introduces structural complexity that harms performance. Notably, GMN outperforms others even with standard AST representations, highlighting its superior cross-code similarity detection and reducing the need for enriched structures.
☆ A Scalable Hybrid Training Approach for Recurrent Spiking Neural Networks
Recurrent spiking neural networks (RSNNs) can be implemented very efficiently in neuromorphic systems. Nevertheless, training of these models with powerful gradient-based learning algorithms is mostly performed on standard digital hardware using Backpropagation through time (BPTT). However, BPTT has substantial limitations. It does not permit online training and its memory consumption scales linearly with the number of computation steps. In contrast, learning methods using forward propagation of gradients operate in an online manner with a memory consumption independent of the number of time steps. These methods enable SNNs to learn from continuous, infinite-length input sequences. Yet, slow execution speed on conventional hardware as well as inferior performance has hindered their widespread application. In this work, we introduce HYbrid PRopagation (HYPR) that combines the efficiency of parallelization with approximate online forward learning. Our algorithm yields high-throughput online learning through parallelization, paired with constant, i.e., sequence length independent, memory demands. HYPR enables parallelization of parameter update computation over the sub sequences for RSNNs consisting of almost arbitrary non-linear spiking neuron models. We apply HYPR to networks of spiking neurons with oscillatory subthreshold dynamics. We find that this type of neuron model is particularly well trainable by HYPR, resulting in an unprecedentedly low task performance gap between approximate forward gradient learning and BPTT.
☆ Hamiltonian Formalism for Comparing Quantum and Classical Intelligence
The prospect of AGI instantiated on quantum substrates motivates the development of mathematical frameworks that enable direct comparison of their operation in classical and quantum environments. To this end, we introduce a Hamiltonian formalism for describing classical and quantum AGI tasks as a means of contrasting their interaction with the environment. We propose a decomposition of AGI dynamics into Hamiltonian generators for core functions such as induction, reasoning, recursion, learning, measurement, and memory. This formalism aims to contribute to the development of a precise mathematical language for how quantum and classical agents differ via environmental interaction.
comment: This is the version accepted at AGI 25 (camera ready length limit of 10 pages plus references and appendices). Further work detailing bounds and limitations is in preparation. Comments and criticisms welcome
☆ Adapting Lightweight Vision Language Models for Radiological Visual Question Answering
Recent advancements in vision-language systems have improved the accuracy of Radiological Visual Question Answering (VQA) Models. However, some challenges remain across each stage of model development: limited expert-labeled images hinders data procurement at scale; the intricate and nuanced patterns of radiological images make modeling inherently difficult; and the lack of evaluation evaluation efforts makes it difficult to identify cases where the model might be ill-conditioned. In this study, we fine-tune a lightweight 3B parameter vision-language model for Radiological VQA, demonstrating that small models, when appropriately tuned with curated data, can achieve robust performance across both open- and closed-ended questions. We propose a cost-effective training pipeline from synthetic question-answer pair generation to multi-stage fine-tuning on specialised radiological domain-targeted datasets (e.g., ROCO v2.0, MedPix v2.0). Our results show that despite operating at a fraction of the scale of state-of-the-art models such as LLaVA-Med, our model achieves promising performance given its small parameter size and the limited scale of training data. We introduce a lightweight saliency-based diagnostic tool that enables domain experts to inspect VQA model performance and identify ill-conditioned failure modes through saliency analysis.
☆ Model compression using knowledge distillation with integrated gradients
Model compression is critical for deploying deep learning models on resource-constrained devices. We introduce a novel method enhancing knowledge distillation with integrated gradients (IG) as a data augmentation strategy. Our approach overlays IG maps onto input images during training, providing student models with deeper insights into teacher models' decision-making processes. Extensive evaluation on CIFAR-10 demonstrates that our IG-augmented knowledge distillation achieves 92.6% testing accuracy with a 4.1x compression factor-a significant 1.1 percentage point improvement ($p<0.001$) over non-distilled models (91.5%). This compression reduces inference time from 140 ms to 13 ms. Our method precomputes IG maps before training, transforming substantial runtime costs into a one-time preprocessing step. Our comprehensive experiments include: (1) comparisons with attention transfer, revealing complementary benefits when combined with our approach; (2) Monte Carlo simulations confirming statistical robustness; (3) systematic evaluation of compression factor versus accuracy trade-offs across a wide range (2.2x-1122x); and (4) validation on an ImageNet subset aligned with CIFAR-10 classes, demonstrating generalisability beyond the initial dataset. These extensive ablation studies confirm that IG-based knowledge distillation consistently outperforms conventional approaches across varied architectures and compression ratios. Our results establish this framework as a viable compression technique for real-world deployment on edge devices while maintaining competitive accuracy.
comment: 49 pages, 12 figures
☆ sHGCN: Simplified hyperbolic graph convolutional neural networks
Hyperbolic geometry has emerged as a powerful tool for modeling complex, structured data, particularly where hierarchical or tree-like relationships are present. By enabling embeddings with lower distortion, hyperbolic neural networks offer promising alternatives to Euclidean-based models for capturing intricate data structures. Despite these advantages, they often face performance challenges, particularly in computational efficiency and tasks requiring high precision. In this work, we address these limitations by simplifying key operations within hyperbolic neural networks, achieving notable improvements in both runtime and performance. Our findings demonstrate that streamlined hyperbolic operations can lead to substantial gains in computational speed and predictive accuracy, making hyperbolic neural networks a more viable choice for a broader range of applications.
☆ Unifying Streaming and Non-streaming Zipformer-based ASR ACL2025
There has been increasing interest in unifying streaming and non-streaming automatic speech recognition (ASR) models to reduce development, training, and deployment costs. We present a unified framework that trains a single end-to-end ASR model for both streaming and non-streaming applications, leveraging future context information. We propose to use dynamic right-context through the chunked attention masking in the training of zipformer-based ASR models. We demonstrate that using right-context is more effective in zipformer models compared to other conformer models due to its multi-scale nature. We analyze the effect of varying the number of right-context frames on accuracy and latency of the streaming ASR models. We use Librispeech and large in-house conversational datasets to train different versions of streaming and non-streaming models and evaluate them in a production grade server-client setup across diverse testsets of different domains. The proposed strategy reduces word error by relative 7.9\% with a small degradation in user-perceived latency. By adding more right-context frames, we are able to achieve streaming performance close to that of non-streaming models. Our approach also allows flexible control of the latency-accuracy tradeoff according to customers requirements.
comment: Accepted in ACL2025 Industry track
☆ Is Selection All You Need in Differential Evolution?
Differential Evolution (DE) is a widely used evolutionary algorithm for black-box optimization problems. However, in modern DE implementations, a major challenge lies in the limited population diversity caused by the fixed population size enforced by the generational replacement. Population size is a critical control parameter that significantly affects DE performance. Larger populations inherently contain a more diverse set of individuals, thereby facilitating broader exploration of the search space. Conversely, when the maximum evaluation budgets is constrained, smaller populations focusing on a limited number of promising candidates may be more suitable. Many state-of-the-art DE variants incorporate an archive mechanism, in which a subset of discarded individuals is preserved in an archive during generation replacement and reused in mutation operations. However, maintaining what is essentially a secondary population via an archive introduces additional design considerations, such as policies for insertion, deletion, and appropriate sizing. To address these limitations, we propose a novel DE framework called Unbounded Differential Evolution (UDE), which adds all generated candidates to the population without discarding any individual based on fitness. Unlike conventional DE, which removes inferior individuals during generational replacement, UDE eliminates replacement altogether, along with the associated complexities of archive management and dynamic population sizing. UDE represents a fundamentally new approach to DE, relying solely on selection mechanisms and enabling a more straightforward yet powerful search algorithm.
comment: 39 pages, 7 figures
☆ Compositional Attribute Imbalance in Vision Datasets
Visual attribute imbalance is a common yet underexplored issue in image classification, significantly impacting model performance and generalization. In this work, we first define the first-level and second-level attributes of images and then introduce a CLIP-based framework to construct a visual attribute dictionary, enabling automatic evaluation of image attributes. By systematically analyzing both single-attribute imbalance and compositional attribute imbalance, we reveal how the rarity of attributes affects model performance. To tackle these challenges, we propose adjusting the sampling probability of samples based on the rarity of their compositional attributes. This strategy is further integrated with various data augmentation techniques (such as CutMix, Fmix, and SaliencyMix) to enhance the model's ability to represent rare attributes. Extensive experiments on benchmark datasets demonstrate that our method effectively mitigates attribute imbalance, thereby improving the robustness and fairness of deep neural networks. Our research highlights the importance of modeling visual attribute distributions and provides a scalable solution for long-tail image classification tasks.
☆ RAGtifier: Evaluating RAG Generation Approaches of State-of-the-Art RAG Systems for the SIGIR LiveRAG Competition SIGIR 2025
Retrieval-Augmented Generation (RAG) enriches Large Language Models (LLMs) by combining their internal, parametric knowledge with external, non-parametric sources, with the goal of improving factual correctness and minimizing hallucinations. The LiveRAG 2025 challenge explores RAG solutions to maximize accuracy on DataMorgana's QA pairs, which are composed of single-hop and multi-hop questions. The challenge provides access to sparse OpenSearch and dense Pinecone indices of the Fineweb 10BT dataset. It restricts model use to LLMs with up to 10B parameters and final answer generation with Falcon-3-10B. A judge-LLM assesses the submitted answers along with human evaluators. By exploring distinct retriever combinations and RAG solutions under the challenge conditions, our final solution emerged using InstructRAG in combination with a Pinecone retriever and a BGE reranker. Our solution achieved a correctness score of 1.13 and a faithfulness score of 0.55, placing fourth in the SIGIR 2025 LiveRAG Challenge.
comment: 4 pages, 5 figures. Report for SIGIR 2025 LiveRAG Challenge
☆ Adaptive Reinforcement Learning for Unobservable Random Delays
In standard Reinforcement Learning (RL) settings, the interaction between the agent and the environment is typically modeled as a Markov Decision Process (MDP), which assumes that the agent observes the system state instantaneously, selects an action without delay, and executes it immediately. In real-world dynamic environments, such as cyber-physical systems, this assumption often breaks down due to delays in the interaction between the agent and the system. These delays can vary stochastically over time and are typically unobservable, meaning they are unknown when deciding on an action. Existing methods deal with this uncertainty conservatively by assuming a known fixed upper bound on the delay, even if the delay is often much lower. In this work, we introduce the interaction layer, a general framework that enables agents to adaptively and seamlessly handle unobservable and time-varying delays. Specifically, the agent generates a matrix of possible future actions to handle both unpredictable delays and lost action packets sent over networks. Building on this framework, we develop a model-based algorithm, Actor-Critic with Delay Adaptation (ACDA), which dynamically adjusts to delay patterns. Our method significantly outperforms state-of-the-art approaches across a wide range of locomotion benchmark environments.
☆ ImpliRet: Benchmarking the Implicit Fact Retrieval Challenge
Retrieval systems are central to many NLP pipelines, but often rely on surface-level cues such as keyword overlap and lexical semantic similarity. To evaluate retrieval beyond these shallow signals, recent benchmarks introduce reasoning-heavy queries; however, they primarily shift the burden to query-side processing techniques -- like prompting or multi-hop retrieval -- that can help resolve complexity. In contrast, we present ImpliRet, a benchmark that shifts the reasoning challenge to document-side processing: The queries are simple, but relevance depends on facts stated implicitly in documents through temporal (e.g., resolving "two days ago"), arithmetic, and world knowledge relationships. We evaluate a range of sparse and dense retrievers, all of which struggle in this setting: the best nDCG@10 is only 15.07%. We also test whether long-context models can overcome this limitation. But even with a short context of only ten documents, including the positive document, GPT-4.1 scores only 35.06%, showing that document-side reasoning remains a challenge. Our codes are available at github.com/ZeinabTaghavi/IMPLIRET.Contribution.
☆ Causally Steered Diffusion for Automated Video Counterfactual Generation
Adapting text-to-image (T2I) latent diffusion models for video editing has shown strong visual fidelity and controllability, but challenges remain in maintaining causal relationships in video content. Edits affecting causally dependent attributes risk generating unrealistic or misleading outcomes if these relationships are ignored. In this work, we propose a causally faithful framework for counterfactual video generation, guided by a vision-language model (VLM). Our method is agnostic to the underlying video editing system and does not require access to its internal mechanisms or finetuning. Instead, we guide the generation by optimizing text prompts based on an assumed causal graph, addressing the challenge of latent space control in LDMs. We evaluate our approach using standard video quality metrics and counterfactual-specific criteria, such as causal effectiveness and minimality. Our results demonstrate that causally faithful video counterfactuals can be effectively generated within the learned distribution of LDMs through prompt-based causal steering. With its compatibility with any black-box video editing system, our method holds significant potential for generating realistic "what-if" video scenarios in diverse areas such as healthcare and digital media.
☆ Decoupled Classifier-Free Guidance for Counterfactual Diffusion Models
Counterfactual image generation aims to simulate realistic visual outcomes under specific causal interventions. Diffusion models have recently emerged as a powerful tool for this task, combining DDIM inversion with conditional generation via classifier-free guidance (CFG). However, standard CFG applies a single global weight across all conditioning variables, which can lead to poor identity preservation and spurious attribute changes - a phenomenon known as attribute amplification. To address this, we propose Decoupled Classifier-Free Guidance (DCFG), a flexible and model-agnostic framework that introduces group-wise conditioning control. DCFG builds on an attribute-split embedding strategy that disentangles semantic inputs, enabling selective guidance on user-defined attribute groups. For counterfactual generation, we partition attributes into intervened and invariant sets based on a causal graph and apply distinct guidance to each. Experiments on CelebA-HQ, MIMIC-CXR, and EMBED show that DCFG improves intervention fidelity, mitigates unintended changes, and enhances reversibility, enabling more faithful and interpretable counterfactual image generation.
☆ HiLight: A Hierarchical Reinforcement Learning Framework with Global Adversarial Guidance for Large-Scale Traffic Signal Control
Efficient traffic signal control (TSC) is essential for mitigating urban congestion, yet existing reinforcement learning (RL) methods face challenges in scaling to large networks while maintaining global coordination. Centralized RL suffers from scalability issues, while decentralized approaches often lack unified objectives, resulting in limited network-level efficiency. In this paper, we propose HiLight, a hierarchical reinforcement learning framework with global adversarial guidance for large-scale TSC. HiLight consists of a high-level Meta-Policy, which partitions the traffic network into subregions and generates sub-goals using a Transformer-LSTM architecture, and a low-level Sub-Policy, which controls individual intersections with global awareness. To improve the alignment between global planning and local execution, we introduce an adversarial training mechanism, where the Meta-Policy generates challenging yet informative sub-goals, and the Sub-Policy learns to surpass these targets, leading to more effective coordination. We evaluate HiLight across both synthetic and real-world benchmarks, and additionally construct a large-scale Manhattan network with diverse traffic conditions, including peak transitions, adverse weather, and holiday surges. Experimental results show that HiLight exhibits significant advantages in large-scale scenarios and remains competitive across standard benchmarks of varying sizes.
☆ Don't Make It Up: Preserving Ignorance Awareness in LLM Fine-Tuning
Existing work on mitigating catastrophic forgetting in large language model (LLM) fine-tuning has primarily focused on preserving specific data or tasks, while critically overlooking the degradation of essential capabilities instilled through safety alignment, particularly the model's ability to faithfully express ignorance. In this work, we show that this capability is significantly degraded during conventional fine-tuning, leading to undesired behaviors such as hallucinations. To address this novel but highly practical problem, we propose SEAT, a simple and effective fine-tuning approach that preserves both fine-tuning performance and the model's inherent ability to acknowledge its ignorance. SEAT integrates two key components: (1) sparse training that constrains activation drift, and (2) a novel entity perturbation method with KL-divergence regularization, designed to counter knowledge entanglement. Experimental results demonstrate that SEAT significantly outperforms baselines in preserving ignorance awareness while retaining fine-tuning performance, offering a more robust solution for LLM fine-tuning.
☆ ResNets Are Deeper Than You Think NeurIPS 2025
Residual connections remain ubiquitous in modern neural network architectures nearly a decade after their introduction. Their widespread adoption is often credited to their dramatically improved trainability: residual networks train faster, more stably, and achieve higher accuracy than their feedforward counterparts. While numerous techniques, ranging from improved initialization to advanced learning rate schedules, have been proposed to close the performance gap between residual and feedforward networks, this gap has persisted. In this work, we propose an alternative explanation: residual networks do not merely reparameterize feedforward networks, but instead inhabit a different function space. We design a controlled post-training comparison to isolate generalization performance from trainability; we find that variable-depth architectures, similar to ResNets, consistently outperform fixed-depth networks, even when optimization is unlikely to make a difference. These results suggest that residual connections confer performance advantages beyond optimization, pointing instead to a deeper inductive bias aligned with the structure of natural data.
comment: NeurIPS 2025 Submission
☆ DepthSeg: Depth prompting in remote sensing semantic segmentation
Remote sensing semantic segmentation is crucial for extracting detailed land surface information, enabling applications such as environmental monitoring, land use planning, and resource assessment. In recent years, advancements in artificial intelligence have spurred the development of automatic remote sensing semantic segmentation methods. However, the existing semantic segmentation methods focus on distinguishing spectral characteristics of different objects while ignoring the differences in the elevation of the different targets. This results in land cover misclassification in complex scenarios involving shadow occlusion and spectral confusion. In this paper, we introduce a depth prompting two-dimensional (2D) remote sensing semantic segmentation framework (DepthSeg). It automatically models depth/height information from 2D remote sensing images and integrates it into the semantic segmentation framework to mitigate the effects of spectral confusion and shadow occlusion. During the feature extraction phase of DepthSeg, we introduce a lightweight adapter to enable cost-effective fine-tuning of the large-parameter vision transformer encoder pre-trained by natural images. In the depth prompting phase, we propose a depth prompter to model depth/height features explicitly. In the semantic prediction phase, we introduce a semantic classification decoder that couples the depth prompts with high-dimensional land-cover features, enabling accurate extraction of land-cover types. Experiments on the LiuZhou dataset validate the advantages of the DepthSeg framework in land cover mapping tasks. Detailed ablation studies further highlight the significance of the depth prompts in remote sensing semantic segmentation.
☆ IntelliLung: Advancing Safe Mechanical Ventilation using Offline RL with Hybrid Actions and Clinically Aligned Rewards
Invasive mechanical ventilation (MV) is a life-sustaining therapy for critically ill patients in the intensive care unit (ICU). However, optimizing its settings remains a complex and error-prone process due to patient-specific variability. While Offline Reinforcement Learning (RL) shows promise for MV control, current stateof-the-art (SOTA) methods struggle with the hybrid (continuous and discrete) nature of MV actions. Discretizing the action space limits available actions due to exponential growth in combinations and introduces distribution shifts that can compromise safety. In this paper, we propose optimizations that build upon prior work in action space reduction to address the challenges of discrete action spaces. We also adapt SOTA offline RL algorithms (IQL and EDAC) to operate directly on hybrid action spaces, thereby avoiding the pitfalls of discretization. Additionally, we introduce a clinically grounded reward function based on ventilator-free days and physiological targets, which provides a more meaningful optimization objective compared to traditional sparse mortality-based rewards. Our findings demonstrate that AI-assisted MV optimization may enhance patient safety and enable individualized lung support, representing a significant advancement toward intelligent, data-driven critical care solutions.
comment: under review, PAIS track @ ECAI 2025
☆ EVA02-AT: Egocentric Video-Language Understanding with Spatial-Temporal Rotary Positional Embeddings and Symmetric Optimization
Egocentric video-language understanding demands both high efficiency and accurate spatial-temporal modeling. Existing approaches face three key challenges: 1) Excessive pre-training cost arising from multi-stage pre-training pipelines, 2) Ineffective spatial-temporal encoding due to manually split 3D rotary positional embeddings that hinder feature interactions, and 3) Imprecise learning objectives in soft-label multi-instance retrieval, which neglect negative pair correlations. In this paper, we introduce EVA02-AT, a suite of EVA02-based video-language foundation models tailored to egocentric video understanding tasks. EVA02-AT first efficiently transfers an image-based CLIP model into a unified video encoder via a single-stage pretraining. Second, instead of applying rotary positional embeddings to isolated dimensions, we introduce spatial-temporal rotary positional embeddings along with joint attention, which can effectively encode both spatial and temporal information on the entire hidden dimension. This joint encoding of spatial-temporal features enables the model to learn cross-axis relationships, which are crucial for accurately modeling motion and interaction in videos. Third, focusing on multi-instance video-language retrieval tasks, we introduce the Symmetric Multi-Similarity (SMS) loss and a novel training framework that advances all soft labels for both positive and negative pairs, providing a more precise learning objective. Extensive experiments on Ego4D, EPIC-Kitchens-100, and Charades-Ego under zero-shot and fine-tuning settings demonstrate that EVA02-AT achieves state-of-the-art performance across diverse egocentric video-language tasks with fewer parameters. Models with our SMS loss also show significant performance gains on multi-instance retrieval benchmarks. Our code and models are publicly available at https://github.com/xqwang14/EVA02-AT .
☆ LLM-Powered Intent-Based Categorization of Phishing Emails
Phishing attacks remain a significant threat to modern cybersecurity, as they successfully deceive both humans and the defense mechanisms intended to protect them. Traditional detection systems primarily focus on email metadata that users cannot see in their inboxes. Additionally, these systems struggle with phishing emails, which experienced users can often identify empirically by the text alone. This paper investigates the practical potential of Large Language Models (LLMs) to detect these emails by focusing on their intent. In addition to the binary classification of phishing emails, the paper introduces an intent-type taxonomy, which is operationalized by the LLMs to classify emails into distinct categories and, therefore, generate actionable threat information. To facilitate our work, we have curated publicly available datasets into a custom dataset containing a mix of legitimate and phishing emails. Our results demonstrate that existing LLMs are capable of detecting and categorizing phishing emails, underscoring their potential in this domain.
☆ AviationLLM: An LLM-based Knowledge System for Aviation Training
Aviation training is a core link in ensuring flight safety, improving industry efficiency and promoting sustainable development. It not only involves flight simulation but also requires the learning of a great deal of professional aviation theory knowledge. In the existing training system, the knowledge is mainly imparted by the the instructors. However, the number of instructors is limited and the professional answers obtained from the Internet are not accurate enough, resulting in low training efficiency. To address this, we introduced LLM, but the basic pre-trained model cannot provide accurate answers to professional fields, so we fine-tuned it. Traditional Supervised Fine-Tuning (SFT) risk generating superficially plausible but factually incorrect responses due to insufficient data coverage. To address this, we employ Direct Preference Optimization(DPO). This paper proposes Retrieval-Augmented LLM Alignment via Direct Preference Optimization(RALA-DPO). We select open source pre-trained LLM Qwen and adapt it to aviation theory training through DPO-based domain alignment. Simultaneously, to mitigate hallucinations caused by training data biases, knowledge obsolescence, or domain knowledge gaps, we implement Retrieval-Augmented Generation(RAG) technology that combines generative and retrieval models. RALA-DPO effectively retrieves relevant information from external knowledge bases and delivers precise and high-quality responses through the generative model. Experimental results demonstrate that RALA-DPO can improve accuracy in response to professional aviation knowledge. With integrated RAG mechanisms, this system can further improve the accuracy of answers and achieve zero-cost knowledge updates simultaneously.
☆ Adjustment for Confounding using Pre-Trained Representations ICML 2025
There is growing interest in extending average treatment effect (ATE) estimation to incorporate non-tabular data, such as images and text, which may act as sources of confounding. Neglecting these effects risks biased results and flawed scientific conclusions. However, incorporating non-tabular data necessitates sophisticated feature extractors, often in combination with ideas of transfer learning. In this work, we investigate how latent features from pre-trained neural networks can be leveraged to adjust for sources of confounding. We formalize conditions under which these latent features enable valid adjustment and statistical inference in ATE estimation, demonstrating results along the example of double machine learning. We discuss critical challenges inherent to latent feature learning and downstream parameter estimation arising from the high dimensionality and non-identifiability of representations. Common structural assumptions for obtaining fast convergence rates with additive or sparse linear models are shown to be unrealistic for latent features. We argue, however, that neural networks are largely insensitive to these issues. In particular, we show that neural networks can achieve fast convergence rates by adapting to intrinsic notions of sparsity and dimension of the learning problem.
comment: Accepted at ICML 2025
☆ orGAN: A Synthetic Data Augmentation Pipeline for Simultaneous Generation of Surgical Images and Ground Truth Labels
Deep learning in medical imaging faces obstacles: limited data diversity, ethical issues, high acquisition costs, and the need for precise annotations. Bleeding detection and localization during surgery is especially challenging due to the scarcity of high-quality datasets that reflect real surgical scenarios. We propose orGAN, a GAN-based system for generating high-fidelity, annotated surgical images of bleeding. By leveraging small "mimicking organ" datasets, synthetic models that replicate tissue properties and bleeding, our approach reduces ethical concerns and data-collection costs. orGAN builds on StyleGAN with Relational Positional Learning to simulate bleeding events realistically and mark bleeding coordinates. A LaMa-based inpainting module then restores clean, pre-bleed visuals, enabling precise pixel-level annotations. In evaluations, a balanced dataset of orGAN and mimicking-organ images achieved 90% detection accuracy in surgical settings and up to 99% frame-level accuracy. While our development data lack diverse organ morphologies and contain intraoperative artifacts, orGAN markedly advances ethical, efficient, and cost-effective creation of realistic annotated bleeding datasets, supporting broader integration of AI in surgical practice.
comment: 24 pages, 7figures
☆ ADRD: LLM-Driven Autonomous Driving Based on Rule-based Decision Systems
How to construct an interpretable autonomous driving decision-making system has become a focal point in academic research. In this study, we propose a novel approach that leverages large language models (LLMs) to generate executable, rule-based decision systems to address this challenge. Specifically, harnessing the strong reasoning and programming capabilities of LLMs, we introduce the ADRD(LLM-Driven Autonomous Driving Based on Rule-based Decision Systems) framework, which integrates three core modules: the Information Module, the Agents Module, and the Testing Module. The framework operates by first aggregating contextual driving scenario information through the Information Module, then utilizing the Agents Module to generate rule-based driving tactics. These tactics are iteratively refined through continuous interaction with the Testing Module. Extensive experimental evaluations demonstrate that ADRD exhibits superior performance in autonomous driving decision tasks. Compared to traditional reinforcement learning approaches and the most advanced LLM-based methods, ADRD shows significant advantages in terms of interpretability, response speed, and driving performance. These results highlight the framework's ability to achieve comprehensive and accurate understanding of complex driving scenarios, and underscore the promising future of transparent, rule-based decision systems that are easily modifiable and broadly applicable. To the best of our knowledge, this is the first work that integrates large language models with rule-based systems for autonomous driving decision-making, and our findings validate its potential for real-world deployment.
☆ Uncertainty-Driven Radar-Inertial Fusion for Instantaneous 3D Ego-Velocity Estimation
We present a method for estimating ego-velocity in autonomous navigation by integrating high-resolution imaging radar with an inertial measurement unit. The proposed approach addresses the limitations of traditional radar-based ego-motion estimation techniques by employing a neural network to process complex-valued raw radar data and estimate instantaneous linear ego-velocity along with its associated uncertainty. This uncertainty-aware velocity estimate is then integrated with inertial measurement unit data using an Extended Kalman Filter. The filter leverages the network-predicted uncertainty to refine the inertial sensor's noise and bias parameters, improving the overall robustness and accuracy of the ego-motion estimation. We evaluated the proposed method on the publicly available ColoRadar dataset. Our approach achieves significantly lower error compared to the closest publicly available method and also outperforms both instantaneous and scan matching-based techniques.
comment: This paper has been accepted for presentation at the 28th International Conference on Information Fusion (Fusion 2025)
☆ Steering Robots with Inference-Time Interactions
Imitation learning has driven the development of generalist policies capable of autonomously solving multiple tasks. However, when a pretrained policy makes errors during deployment, there are limited mechanisms for users to correct its behavior. While collecting additional data for finetuning can address such issues, doing so for each downstream use case is inefficient at deployment. My research proposes an alternative: keeping pretrained policies frozen as a fixed skill repertoire while allowing user interactions to guide behavior generation toward user preferences at inference time. By making pretrained policies steerable, users can help correct policy errors when the model struggles to generalize-without needing to finetune the policy. Specifically, I propose (1) inference-time steering, which leverages user interactions to switch between discrete skills, and (2) task and motion imitation, which enables user interactions to edit continuous motions while satisfying task constraints defined by discrete symbolic plans. These frameworks correct misaligned policy predictions without requiring additional training, maximizing the utility of pretrained models while achieving inference-time user objectives.
comment: MIT Robotics PhD Thesis
☆ Improving LoRA with Variational Learning
Bayesian methods have recently been used to improve LoRA finetuning and, although they improve calibration, their effect on other metrics (such as accuracy) is marginal and can sometimes even be detrimental. Moreover, Bayesian methods also increase computational overheads and require additional tricks for them to work well. Here, we fix these issues by using a recently proposed variational algorithm called IVON. We show that IVON is easy to implement and has similar costs to AdamW, and yet it can also drastically improve many metrics by using a simple posterior pruning technique. We present extensive results on billion-scale LLMs (Llama and Qwen series) going way beyond the scale of existing applications of IVON. For example, we finetune a Llama-3.2-3B model on a set of commonsense reasoning tasks and improve accuracy over AdamW by 1.3% and reduce ECE by 5.4%, outperforming AdamW and other recent Bayesian methods like Laplace-LoRA and BLoB. Overall, our results show that variational learning with IVON can effectively improve LoRA finetuning.
comment: 16 pages, 4 figures
☆ Don't throw the baby out with the bathwater: How and why deep learning for ARC
The Abstraction and Reasoning Corpus (ARC-AGI) presents a formidable challenge for AI systems. Despite the typically low performance on ARC, the deep learning paradigm remains the most effective known strategy for generating skillful (state-of-the-art) neural networks (NN) across varied modalities and tasks in vision, language etc. The deep learning paradigm has proven to be able to train these skillful neural networks and learn the abstractions needed in these diverse domains. Our work doubles down on that and continues to leverage this paradigm by incorporating on-the-fly NN training at test time. We demonstrate that fully committing to deep learning's capacity to acquire novel abstractions yields state-of-the-art performance on ARC. Specifically, we treat both the neural network and the optimizer (rather than just a pre-trained network) as integral components of the inference process, fostering generalization to unseen tasks. Concretely, we propose a methodology for training on ARC, starting from pretrained LLMs, and enhancing their ARC reasoning. We also propose Test-Time Fine-Tuning (TTFT) and the Augment Inference Reverse-Augmentation and Vote (AIRV) as effective test-time techniques. We are the first to propose and show deep learning can be used effectively for ARC, showing boosts of up to 260% in accuracy with AIRV and a further 300% boost with TTFT. An early version of this approach secured first place in the 2023 ARCathon competition, while the final version achieved the current best score on the ARC private test-set (58%). Our findings highlight the key ingredients of a robust reasoning system in unfamiliar domains, underscoring the central mechanisms that improve broad perceptual reasoning.
comment: 13 pages, 6 figures
☆ Knowledge Adaptation as Posterior Correction
Adaptation is the holy grail of intelligence, but even the best AI models (like GPT) lack the adaptivity of toddlers. So the question remains: how can machines adapt quickly? Despite a lot of progress on model adaptation to facilitate continual and federated learning, as well as model merging, editing, unlearning, etc., little is known about the mechanisms by which machines can naturally learn to adapt in a similar way as humans and animals. Here, we show that all such adaptation methods can be seen as different ways of `correcting' the approximate posteriors. More accurate posteriors lead to smaller corrections, which in turn imply quicker adaptation. The result is obtained by using a dual-perspective of the Bayesian Learning Rule of Khan and Rue (2023) where interference created during adaptation is characterized by the natural-gradient mismatch over the past data. We present many examples to demonstrate the use of posterior-correction as a natural mechanism for the machines to learn to adapt quickly.
☆ Re-Initialization Token Learning for Tool-Augmented Large Language Models
Large language models have demonstrated exceptional performance, yet struggle with complex tasks such as numerical reasoning, plan generation. Integrating external tools, such as calculators and databases, into large language models (LLMs) is crucial for enhancing problem-solving capabilities. Current methods assign a unique token to each tool, enabling LLMs to call tools through token prediction-similar to word generation. However, this approach fails to account for the relationship between tool and word tokens, limiting adaptability within pre-trained LLMs. To address this issue, we propose a novel token learning method that aligns tool tokens with the existing word embedding space from the perspective of initialization, thereby enhancing model performance. We begin by constructing prior token embeddings for each tool based on the tool's name or description, which are used to initialize and regularize the learnable tool token embeddings. This ensures the learned embeddings are well-aligned with the word token space, improving tool call accuracy. We evaluate the method on tasks such as numerical reasoning, knowledge-based question answering, and embodied plan generation using GSM8K-XL, FuncQA, KAMEL, and VirtualHome datasets. The results demonstrate clear improvements over recent baselines, including CoT, REACT, ICL, and ToolkenGPT, indicating that our approach effectively augments LLMs with tools through relevant tokens across diverse domains.
☆ Mxplainer: Explain and Learn Insights by Imitating Mahjong Agents
People need to internalize the skills of AI agents to improve their own capabilities. Our paper focuses on Mahjong, a multiplayer game involving imperfect information and requiring effective long-term decision-making amidst randomness and hidden information. Through the efforts of AI researchers, several impressive Mahjong AI agents have already achieved performance levels comparable to those of professional human players; however, these agents are often treated as black boxes from which few insights can be gleaned. This paper introduces Mxplainer, a parameterized search algorithm that can be converted into an equivalent neural network to learn the parameters of black-box agents. Experiments conducted on AI and human player data demonstrate that the learned parameters provide human-understandable insights into these agents' characteristics and play styles. In addition to analyzing the learned parameters, we also showcase how our search-based framework can locally explain the decision-making processes of black-box agents for most Mahjong game states.
Reinforcement Learning with Verifiable Rewards Implicitly Incentivizes Correct Reasoning in Base LLMs
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as a promising paradigm for advancing the reasoning capabilities of Large Language Models (LLMs). However, a critical paradox clouds its efficacy: RLVR-tuned models often underperform their base models on the $Pass@K$ metric for solution-finding, leading to the hypothesis that RLVR merely re-weights existing reasoning paths at the cost of reasoning diversity. In this work, we resolve this contradiction by identifying the source of the problem: the $Pass@K$ metric itself is a flawed measure of reasoning, as it credits correct final answers that probably arise from inaccurate or incomplete chains of thought (CoTs). To address this, we introduce a more precise evaluation metric, $CoT$-$Pass@K$, which mandates that both the reasoning path and the final answer be correct. We provide a new theoretical foundation that formalizes how RLVR, unlike traditional RL, is uniquely structured to incentivize logical integrity. Our empirical results are supportive: using $CoT$-$Pass@K$, we observe that RLVR can incentivize the generalization of correct reasoning for all values of $K$. Furthermore, by analyzing the training dynamics, we find that this enhanced reasoning capability emerges early in the training process and smoothly generalizes. Our work provides a clear perspective on the role of RLVR, offers a more reliable method for its evaluation, and confirms its potential to genuinely advance machine reasoning.
comment: Preprint
☆ Causes in neuron diagrams, and testing causal reasoning in Large Language Models. A glimpse of the future of philosophy?
We propose a test for abstract causal reasoning in AI, based on scholarship in the philosophy of causation, in particular on the neuron diagrams popularized by D. Lewis. We illustrate the test on advanced Large Language Models (ChatGPT, DeepSeek and Gemini). Remarkably, these chatbots are already capable of correctly identifying causes in cases that are hotly debated in the literature. In order to assess the results of these LLMs and future dedicated AI, we propose a definition of cause in neuron diagrams with a wider validity than published hitherto, which challenges the widespread view that such a definition is elusive. We submit that these results are an illustration of how future philosophical research might evolve: as an interplay between human and artificial expertise.
comment: Accepted by Journal for General Philosophy of Science
☆ Xolver: Multi-Agent Reasoning with Holistic Experience Learning Just Like an Olympiad Team
Despite impressive progress on complex reasoning, current large language models (LLMs) typically operate in isolation - treating each problem as an independent attempt, without accumulating or integrating experiential knowledge. In contrast, expert problem solvers - such as Olympiad or programming contest teams - leverage a rich tapestry of experiences: absorbing mentorship from coaches, developing intuition from past problems, leveraging knowledge of tool usage and library functionality, adapting strategies based on the expertise and experiences of peers, continuously refining their reasoning through trial and error, and learning from other related problems even during competition. We introduce Xolver, a training-free multi-agent reasoning framework that equips a black-box LLM with a persistent, evolving memory of holistic experience. Xolver integrates diverse experience modalities, including external and self-retrieval, tool use, collaborative interactions, agent-driven evaluation, and iterative refinement. By learning from relevant strategies, code fragments, and abstract reasoning patterns at inference time, Xolver avoids generating solutions from scratch - marking a transition from isolated inference toward experience-aware language agents. Built on both open-weight and proprietary models, Xolver consistently outperforms specialized reasoning agents. Even with lightweight backbones (e.g., QWQ-32B), it often surpasses advanced models including Qwen3-235B, Gemini 2.5 Pro, o3, and o4-mini-high. With o3-mini-high, it achieves new best results on GSM8K (98.1%), AIME'24 (94.4%), AIME'25 (93.7%), Math-500 (99.8%), and LiveCodeBench-V5 (91.6%) - highlighting holistic experience learning as a key step toward generalist agents capable of expert-level reasoning. Code and data are available at https://kagnlp.github.io/xolver.github.io/.
☆ ImpReSS: Implicit Recommender System for Support Conversations
Following recent advancements in large language models (LLMs), LLM-based chatbots have transformed customer support by automating interactions and providing consistent, scalable service. While LLM-based conversational recommender systems (CRSs) have attracted attention for their ability to enhance the quality of recommendations, limited research has addressed the implicit integration of recommendations within customer support interactions. In this work, we introduce ImpReSS, an implicit recommender system designed for customer support conversations. ImpReSS operates alongside existing support chatbots, where users report issues and chatbots provide solutions. Based on a customer support conversation, ImpReSS identifies opportunities to recommend relevant solution product categories (SPCs) that help resolve the issue or prevent its recurrence -- thereby also supporting business growth. Unlike traditional CRSs, ImpReSS functions entirely implicitly and does not rely on any assumption of a user's purchasing intent. Our empirical evaluation of ImpReSS's ability to recommend relevant SPCs that can help address issues raised in support conversations shows promising results, including an MRR@1 (and recall@3) of 0.72 (0.89) for general problem solving, 0.82 (0.83) for information security support, and 0.85 (0.67) for cybersecurity troubleshooting. To support future research, our data and code will be shared upon request.
☆ HRGS: Hierarchical Gaussian Splatting for Memory-Efficient High-Resolution 3D Reconstruction
3D Gaussian Splatting (3DGS) has made significant strides in real-time 3D scene reconstruction, but faces memory scalability issues in high-resolution scenarios. To address this, we propose Hierarchical Gaussian Splatting (HRGS), a memory-efficient framework with hierarchical block-level optimization. First, we generate a global, coarse Gaussian representation from low-resolution data. Then, we partition the scene into multiple blocks, refining each block with high-resolution data. The partitioning involves two steps: Gaussian partitioning, where irregular scenes are normalized into a bounded cubic space with a uniform grid for task distribution, and training data partitioning, where only relevant observations are retained for each block. By guiding block refinement with the coarse Gaussian prior, we ensure seamless Gaussian fusion across adjacent blocks. To reduce computational demands, we introduce Importance-Driven Gaussian Pruning (IDGP), which computes importance scores for each Gaussian and removes those with minimal contribution, speeding up convergence and reducing memory usage. Additionally, we incorporate normal priors from a pretrained model to enhance surface reconstruction quality. Our method enables high-quality, high-resolution 3D scene reconstruction even under memory constraints. Extensive experiments on three benchmarks show that HRGS achieves state-of-the-art performance in high-resolution novel view synthesis (NVS) and surface reconstruction tasks.
☆ From Black Boxes to Transparent Minds: Evaluating and Enhancing the Theory of Mind in Multimodal Large Language Models ICML 2025
As large language models evolve, there is growing anticipation that they will emulate human-like Theory of Mind (ToM) to assist with routine tasks. However, existing methods for evaluating machine ToM focus primarily on unimodal models and largely treat these models as black boxes, lacking an interpretative exploration of their internal mechanisms. In response, this study adopts an approach based on internal mechanisms to provide an interpretability-driven assessment of ToM in multimodal large language models (MLLMs). Specifically, we first construct a multimodal ToM test dataset, GridToM, which incorporates diverse belief testing tasks and perceptual information from multiple perspectives. Next, our analysis shows that attention heads in multimodal large models can distinguish cognitive information across perspectives, providing evidence of ToM capabilities. Furthermore, we present a lightweight, training-free approach that significantly enhances the model's exhibited ToM by adjusting in the direction of the attention head.
comment: 24 pages, 22 figures, accepted at ICML 2025, project page: see https://annaisavailable.github.io/GridToM/
☆ TriGuard: Testing Model Safety with Attribution Entropy, Verification, and Drift
Deep neural networks often achieve high accuracy, but ensuring their reliability under adversarial and distributional shifts remains a pressing challenge. We propose TriGuard, a unified safety evaluation framework that combines (1) formal robustness verification, (2) attribution entropy to quantify saliency concentration, and (3) a novel Attribution Drift Score measuring explanation stability. TriGuard reveals critical mismatches between model accuracy and interpretability: verified models can still exhibit unstable reasoning, and attribution-based signals provide complementary safety insights beyond adversarial accuracy. Extensive experiments across three datasets and five architectures show how TriGuard uncovers subtle fragilities in neural reasoning. We further demonstrate that entropy-regularized training reduces explanation drift without sacrificing performance. TriGuard advances the frontier in robust, interpretable model evaluation.
comment: 12 pages, 6 tables, 6 figures
☆ What's in the Box? Reasoning about Unseen Objects from Multimodal Cues
People regularly make inferences about objects in the world that they cannot see by flexibly integrating information from multiple sources: auditory and visual cues, language, and our prior beliefs and knowledge about the scene. How are we able to so flexibly integrate many sources of information to make sense of the world around us, even if we have no direct knowledge? In this work, we propose a neurosymbolic model that uses neural networks to parse open-ended multimodal inputs and then applies a Bayesian model to integrate different sources of information to evaluate different hypotheses. We evaluate our model with a novel object guessing game called ``What's in the Box?'' where humans and models watch a video clip of an experimenter shaking boxes and then try to guess the objects inside the boxes. Through a human experiment, we show that our model correlates strongly with human judgments, whereas unimodal ablated models and large multimodal neural model baselines show poor correlation.
comment: Paper published at CogSci 2025
☆ Latent Anomaly Detection: Masked VQ-GAN for Unsupervised Segmentation in Medical CBCT
Advances in treatment technology now allow for the use of customizable 3D-printed hydrogel wound dressings for patients with osteoradionecrosis (ORN) of the jaw (ONJ). Meanwhile, deep learning has enabled precise segmentation of 3D medical images using tools like nnUNet. However, the scarcity of labeled data in ONJ imaging makes supervised training impractical. This study aims to develop an unsupervised training approach for automatically identifying anomalies in imaging scans. We propose a novel two-stage training pipeline. In the first stage, a VQ-GAN is trained to accurately reconstruct normal subjects. In the second stage, random cube masking and ONJ-specific masking are applied to train a new encoder capable of recovering the data. The proposed method achieves successful segmentation on both simulated and real patient data. This approach provides a fast initial segmentation solution, reducing the burden of manual labeling. Additionally, it has the potential to be directly used for 3D printing when combined with hand-tuned post-processing.
☆ DiffusionBlocks: Blockwise Training for Generative Models via Score-Based Diffusion
Training large neural networks with end-to-end backpropagation creates significant memory bottlenecks, limiting accessibility to state-of-the-art AI research. We propose $\textit{DiffusionBlocks}$, a novel training framework that interprets neural network blocks as performing denoising operations in a continuous-time diffusion process. By partitioning the network into independently trainable blocks and optimizing noise level assignments based on equal cumulative probability mass, our approach achieves significant memory efficiency while maintaining competitive performance compared to traditional backpropagation in generative tasks. Experiments on image generation and language modeling tasks demonstrate memory reduction proportional to the number of blocks while achieving superior performance. DiffusionBlocks provides a promising pathway for democratizing access to large-scale neural network training with limited computational resources.
comment: To appear at TTODLer-FM Workshop of the 42nd International Conference on Machine Learning
☆ Balancing Caregiving and Self-Care: Exploring Mental Health Needs of Alzheimer's and Dementia Caregivers
Alzheimer's Disease and Related Dementias (AD/ADRD) are progressive neurodegenerative conditions that impair memory, thought processes, and functioning. Family caregivers of individuals with AD/ADRD face significant mental health challenges due to long-term caregiving responsibilities. Yet, current support systems often overlook the evolving nature of their mental wellbeing needs. Our study examines caregivers' mental wellbeing concerns, focusing on the practices they adopt to manage the burden of caregiving and the technologies they use for support. Through semi-structured interviews with 25 family caregivers of individuals with AD/ADRD, we identified the key causes and effects of mental health challenges, and developed a temporal mapping of how caregivers' mental wellbeing evolves across three distinct stages of the caregiving journey. Additionally, our participants shared insights into improvements for existing mental health technologies, emphasizing the need for accessible, scalable, and personalized solutions that adapt to caregivers' changing needs over time. These findings offer a foundation for designing dynamic, stage-sensitive interventions that holistically support caregivers' mental wellbeing, benefiting both caregivers and care recipients.
☆ Can we train ASR systems on Code-switch without real code-switch data? Case study for Singapore's languages
Code-switching (CS), common in multilingual settings, presents challenges for ASR due to scarce and costly transcribed data caused by linguistic complexity. This study investigates building CS-ASR using synthetic CS data. We propose a phrase-level mixing method to generate synthetic CS data that mimics natural patterns. Utilizing monolingual augmented with synthetic phrase-mixed CS data to fine-tune large pretrained ASR models (Whisper, MMS, SeamlessM4T). This paper focuses on three under-resourced Southeast Asian language pairs: Malay-English (BM-EN), Mandarin-Malay (ZH-BM), and Tamil-English (TA-EN), establishing a new comprehensive benchmark for CS-ASR to evaluate the performance of leading ASR models. Experimental results show that the proposed training strategy enhances ASR performance on monolingual and CS tests, with BM-EN showing highest gains, then TA-EN and ZH-BM. This finding offers a cost-effective approach for CS-ASR development, benefiting research and industry.
comment: Accepted by Interspeech 2025
☆ A multi-stage augmented multimodal interaction network for fish feeding intensity quantification
In recirculating aquaculture systems, accurate and effective assessment of fish feeding intensity is crucial for reducing feed costs and calculating optimal feeding times. However, current studies have limitations in modality selection, feature extraction and fusion, and co-inference for decision making, which restrict further improvement in the accuracy, applicability and reliability of multimodal fusion models. To address this problem, this study proposes a Multi-stage Augmented Multimodal Interaction Network (MAINet) for quantifying fish feeding intensity. Firstly, a general feature extraction framework is proposed to efficiently extract feature information from input image, audio and water wave datas. Second, an Auxiliary-modality Reinforcement Primary-modality Mechanism (ARPM) is designed for inter-modal interaction and generate enhanced features, which consists of a Channel Attention Fusion Network (CAFN) and a Dual-mode Attention Fusion Network (DAFN). Finally, an Evidence Reasoning (ER) rule is introduced to fuse the output results of each modality and make decisions, thereby completing the quantification of fish feeding intensity. The experimental results show that the constructed MAINet reaches 96.76%, 96.78%, 96.79% and 96.79% in accuracy, precision, recall and F1-Score respectively, and its performance is significantly higher than the comparison models. Compared with models that adopt single-modality, dual-modality fusion and different decision-making fusion methods, it also has obvious advantages. Meanwhile, the ablation experiments further verified the key role of the proposed improvement strategy in improving the robustness and feature utilization efficiency of model, which can effectively improve the accuracy of the quantitative results of fish feeding intensity.
☆ StorySage: Conversational Autobiography Writing Powered by a Multi-Agent Framework
Every individual carries a unique and personal life story shaped by their memories and experiences. However, these memories are often scattered and difficult to organize into a coherent narrative, a challenge that defines the task of autobiography writing. Existing conversational writing assistants tend to rely on generic user interactions and pre-defined guidelines, making it difficult for these systems to capture personal memories and develop a complete biography over time. We introduce StorySage, a user-driven software system designed to meet the needs of a diverse group of users that supports a flexible conversation and a structured approach to autobiography writing. Powered by a multi-agent framework composed of an Interviewer, Session Scribe, Planner, Section Writer, and Session Coordinator, our system iteratively collects user memories, updates their autobiography, and plans for future conversations. In experimental simulations, StorySage demonstrates its ability to navigate multiple sessions and capture user memories across many conversations. User studies (N=28) highlight how StorySage maintains improved conversational flow, narrative completeness, and higher user satisfaction when compared to a baseline. In summary, StorySage contributes both a novel architecture for autobiography writing and insights into how multi-agent systems can enhance human-AI creative partnerships.
☆ S$^4$C: Speculative Sampling with Syntactic and Semantic Coherence for Efficient Inference of Large Language Models
Large language models (LLMs) exhibit remarkable reasoning capabilities across diverse downstream tasks. However, their autoregressive nature leads to substantial inference latency, posing challenges for real-time applications. Speculative sampling mitigates this issue by introducing a drafting phase followed by a parallel validation phase, enabling faster token generation and verification. Existing approaches, however, overlook the inherent coherence in text generation, limiting their efficiency. To address this gap, we propose a Speculative Sampling with Syntactic and Semantic Coherence (S$^4$C) framework, which extends speculative sampling by leveraging multi-head drafting for rapid token generation and a continuous verification tree for efficient candidate validation and feature reuse. Experimental results demonstrate that S$^4$C surpasses baseline methods across mainstream tasks, offering enhanced efficiency, parallelism, and the ability to generate more valid tokens with fewer computational resources. On Spec-bench benchmarks, S$^4$C achieves an acceleration ratio of 2.26x-2.60x, outperforming state-of-the-art methods.
☆ Collaborative Editable Model
Vertical-domain large language models (LLMs) play a crucial role in specialized scenarios such as finance, healthcare, and law; however, their training often relies on large-scale annotated data and substantial computational resources, impeding rapid development and continuous iteration. To address these challenges, we introduce the Collaborative Editable Model (CoEM), which constructs a candidate knowledge pool from user-contributed domain snippets, leverages interactive user-model dialogues combined with user ratings and attribution analysis to pinpoint high-value knowledge fragments, and injects these fragments via in-context prompts for lightweight domain adaptation. With high-value knowledge, the LLM can generate more accurate and domain-specific content. In a financial information scenario, we collect 15k feedback from about 120 users and validate CoEM with user ratings to assess the quality of generated insights, demonstrating significant improvements in domain-specific generation while avoiding the time and compute overhead of traditional fine-tuning workflows.
☆ SceneAware: Scene-Constrained Pedestrian Trajectory Prediction with LLM-Guided Walkability
Accurate prediction of pedestrian trajectories is essential for applications in robotics and surveillance systems. While existing approaches primarily focus on social interactions between pedestrians, they often overlook the rich environmental context that significantly shapes human movement patterns. In this paper, we propose SceneAware, a novel framework that explicitly incorporates scene understanding to enhance trajectory prediction accuracy. Our method leverages a Vision Transformer~(ViT) scene encoder to process environmental context from static scene images, while Multi-modal Large Language Models~(MLLMs) generate binary walkability masks that distinguish between accessible and restricted areas during training. We combine a Transformer-based trajectory encoder with the ViT-based scene encoder, capturing both temporal dynamics and spatial constraints. The framework integrates collision penalty mechanisms that discourage predicted trajectories from violating physical boundaries, ensuring physically plausible predictions. SceneAware is implemented in both deterministic and stochastic variants. Comprehensive experiments on the ETH/UCY benchmark datasets show that our approach outperforms state-of-the-art methods, with more than 50\% improvement over previous models. Our analysis based on different trajectory categories shows that the model performs consistently well across various types of pedestrian movement. This highlights the importance of using explicit scene information and shows that our scene-aware approach is both effective and reliable in generating accurate and physically plausible predictions. Code is available at: https://github.com/juho127/SceneAware.
☆ NeuroCoreX: An Open-Source FPGA-Based Spiking Neural Network Emulator with On-Chip Learning
Spiking Neural Networks (SNNs) are computational models inspired by the structure and dynamics of biological neuronal networks. Their event-driven nature enables them to achieve high energy efficiency, particularly when deployed on neuromorphic hardware platforms. Unlike conventional Artificial Neural Networks (ANNs), which primarily rely on layered architectures, SNNs naturally support a wide range of connectivity patterns, from traditional layered structures to small-world graphs characterized by locally dense and globally sparse connections. In this work, we introduce NeuroCoreX, an FPGA-based emulator designed for the flexible co-design and testing of SNNs. NeuroCoreX supports all-to-all connectivity, providing the capability to implement diverse network topologies without architectural restrictions. It features a biologically motivated local learning mechanism based on Spike-Timing-Dependent Plasticity (STDP). The neuron model implemented within NeuroCoreX is the Leaky Integrate-and-Fire (LIF) model, with current-based synapses facilitating spike integration and transmission . A Universal Asynchronous Receiver-Transmitter (UART) interface is provided for programming and configuring the network parameters, including neuron, synapse, and learning rule settings. Users interact with the emulator through a simple Python-based interface, streamlining SNN deployment from model design to hardware execution. NeuroCoreX is released as an open-source framework, aiming to accelerate research and development in energy-efficient, biologically inspired computing.
comment: Neuromorphic computing, FPGA, STDP, Spiking Graph Neural Networks, Spiking Neural Networks, VHDL
☆ KDMOS:Knowledge Distillation for Motion Segmentation
Motion Object Segmentation (MOS) is crucial for autonomous driving, as it enhances localization, path planning, map construction, scene flow estimation, and future state prediction. While existing methods achieve strong performance, balancing accuracy and real-time inference remains a challenge. To address this, we propose a logits-based knowledge distillation framework for MOS, aiming to improve accuracy while maintaining real-time efficiency. Specifically, we adopt a Bird's Eye View (BEV) projection-based model as the student and a non-projection model as the teacher. To handle the severe imbalance between moving and non-moving classes, we decouple them and apply tailored distillation strategies, allowing the teacher model to better learn key motion-related features. This approach significantly reduces false positives and false negatives. Additionally, we introduce dynamic upsampling, optimize the network architecture, and achieve a 7.69% reduction in parameter count, mitigating overfitting. Our method achieves a notable IoU of 78.8% on the hidden test set of the SemanticKITTI-MOS dataset and delivers competitive results on the Apollo dataset. The KDMOS implementation is available at https://github.com/SCNU-RISLAB/KDMOS.
☆ Less is More: Undertraining Experts Improves Model Upcycling
Modern deep learning is increasingly characterized by the use of open-weight foundation models that can be fine-tuned on specialized datasets. This has led to a proliferation of expert models and adapters, often shared via platforms like HuggingFace and AdapterHub. To leverage these resources, numerous model upcycling methods have emerged, enabling the reuse of fine-tuned models in multi-task systems. A natural pipeline has thus formed to harness the benefits of transfer learning and amortize sunk training costs: models are pre-trained on general data, fine-tuned on specific tasks, and then upcycled into more general-purpose systems. A prevailing assumption is that improvements at one stage of this pipeline propagate downstream, leading to gains at subsequent steps. In this work, we challenge that assumption by examining how expert fine-tuning affects model upcycling. We show that long fine-tuning of experts that optimizes for their individual performance leads to degraded merging performance, both for fully fine-tuned and LoRA-adapted models, and to worse downstream results when LoRA adapters are upcycled into MoE layers. We trace this degradation to the memorization of a small set of difficult examples that dominate late fine-tuning steps and are subsequently forgotten during merging. Finally, we demonstrate that a task-dependent aggressive early stopping strategy can significantly improve upcycling performance.
☆ Situational-Constrained Sequential Resources Allocation via Reinforcement Learning
Sequential Resource Allocation with situational constraints presents a significant challenge in real-world applications, where resource demands and priorities are context-dependent. This paper introduces a novel framework, SCRL, to address this problem. We formalize situational constraints as logic implications and develop a new algorithm that dynamically penalizes constraint violations. To handle situational constraints effectively, we propose a probabilistic selection mechanism to overcome limitations of traditional constraint reinforcement learning (CRL) approaches. We evaluate SCRL across two scenarios: medical resource allocation during a pandemic and pesticide distribution in agriculture. Experiments demonstrate that SCRL outperforms existing baselines in satisfying constraints while maintaining high resource efficiency, showcasing its potential for real-world, context-sensitive decision-making tasks.
☆ CLGNN: A Contrastive Learning-based GNN Model for Betweenness Centrality Prediction on Temporal Graphs
Temporal Betweenness Centrality (TBC) measures how often a node appears on optimal temporal paths, reflecting its importance in temporal networks. However, exact computation is highly expensive, and real-world TBC distributions are extremely imbalanced. The severe imbalance leads learning-based models to overfit to zero-centrality nodes, resulting in inaccurate TBC predictions and failure to identify truly central nodes. Existing graph neural network (GNN) methods either fail to handle such imbalance or ignore temporal dependencies altogether. To address these issues, we propose a scalable and inductive contrastive learning-based GNN (CLGNN) for accurate and efficient TBC prediction. CLGNN builds an instance graph to preserve path validity and temporal order, then encodes structural and temporal features using dual aggregation, i.e., mean and edge-to-node multi-head attention mechanisms, enhanced by temporal path count and time encodings. A stability-based clustering-guided contrastive module (KContrastNet) is introduced to separate high-, median-, and low-centrality nodes in representation space, mitigating class imbalance, while a regression module (ValueNet) estimates TBC values. CLGNN also supports multiple optimal path definitions to accommodate diverse temporal semantics. Extensive experiments demonstrate the effectiveness and efficiency of CLGNN across diverse benchmarks. CLGNN achieves up to a 663.7~$\times$ speedup compared to state-of-the-art exact TBC computation methods. It outperforms leading static GNN baselines with up to 31.4~$\times$ lower MAE and 16.7~$\times$ higher Spearman correlation, and surpasses state-of-the-art temporal GNNs with up to 5.7~$\times$ lower MAE and 3.9~$\times$ higher Spearman correlation.
☆ SKOLR: Structured Koopman Operator Linear RNN for Time-Series Forecasting
Koopman operator theory provides a framework for nonlinear dynamical system analysis and time-series forecasting by mapping dynamics to a space of real-valued measurement functions, enabling a linear operator representation. Despite the advantage of linearity, the operator is generally infinite-dimensional. Therefore, the objective is to learn measurement functions that yield a tractable finite-dimensional Koopman operator approximation. In this work, we establish a connection between Koopman operator approximation and linear Recurrent Neural Networks (RNNs), which have recently demonstrated remarkable success in sequence modeling. We show that by considering an extended state consisting of lagged observations, we can establish an equivalence between a structured Koopman operator and linear RNN updates. Building on this connection, we present SKOLR, which integrates a learnable spectral decomposition of the input signal with a multilayer perceptron (MLP) as the measurement functions and implements a structured Koopman operator via a highly parallel linear RNN stack. Numerical experiments on various forecasting benchmarks and dynamical systems show that this streamlined, Koopman-theory-based design delivers exceptional performance.
☆ Essential-Web v1.0: 24T tokens of organized web data
Data plays the most prominent role in how language models acquire skills and knowledge. The lack of massive, well-organized pre-training datasets results in costly and inaccessible data pipelines. We present Essential-Web v1.0, a 24-trillion-token dataset in which every document is annotated with a twelve-category taxonomy covering topic, format, content complexity, and quality. Taxonomy labels are produced by EAI-Distill-0.5b, a fine-tuned 0.5b-parameter model that achieves an annotator agreement within 3% of Qwen2.5-32B-Instruct. With nothing more than SQL-style filters, we obtain competitive web-curated datasets in math (-8.0% relative to SOTA), web code (+14.3%), STEM (+24.5%) and medical (+8.6%). Essential-Web v1.0 is available on HuggingFace: https://huggingface.co/datasets/EssentialAI/essential-web-v1.0
☆ Toward a Graph Foundation Model: Pre-Training Transformers With Random Walks
A foundation model like GPT elicits many emergent abilities, owing to the pre-training with broad inclusion of data and the use of the powerful Transformer architecture. While foundation models in natural languages are prevalent, can we build similar models for graphs? This paper describes an approach toward a graph foundation model that is pre-trained with diverse graph datasets by adapting the Transformer backbone. A central challenge toward this end is how a sequence model encodes graphs of varying sizes and from different domains. We propose representing a node as multiple random walks, such that the Transformer can extract node representations from sequences, which in turn form edge and graph representations. We develop a novel context prediction loss for these random walks and theoretically analyze their expressive power in distinguishing neighborhoods and graphs. We also demonstrate the pre-training of our model and its adaptation to downstream tasks, showcasing its potential as a foundation for processing and reasoning with graph-structured data.
☆ Image Segmentation with Large Language Models: A Survey with Perspectives for Intelligent Transportation Systems
The integration of Large Language Models (LLMs) with computer vision is profoundly transforming perception tasks like image segmentation. For intelligent transportation systems (ITS), where accurate scene understanding is critical for safety and efficiency, this new paradigm offers unprecedented capabilities. This survey systematically reviews the emerging field of LLM-augmented image segmentation, focusing on its applications, challenges, and future directions within ITS. We provide a taxonomy of current approaches based on their prompting mechanisms and core architectures, and we highlight how these innovations can enhance road scene understanding for autonomous driving, traffic monitoring, and infrastructure maintenance. Finally, we identify key challenges, including real-time performance and safety-critical reliability, and outline a perspective centered on explainable, human-centric AI as a prerequisite for the successful deployment of this technology in next-generation transportation systems.
☆ Fragile Preferences: A Deep Dive Into Order Effects in Large Language Models
Large language models (LLMs) are increasingly used in decision-support systems across high-stakes domains such as hiring and university admissions, where decisions often involve selecting among competing alternatives. While prior work has noted positional order biases in LLM-driven comparisons, these biases have not been systematically dissected or linked to underlying preference structures. We provide the first comprehensive investigation of positional biases across multiple LLM architectures and domains, uncovering strong and consistent order effects, including a novel centrality bias not previously documented in human or machine decision-making. We also find a quality-dependent shift: when options are high quality, models exhibit primacy bias, but favor latter options when option quality is low. We further identify a previously undocumented bias favoring certain names over others. To distinguish superficial tie-breaking from true distortions of judgment, we introduce a framework that classifies pairwise preferences as robust, fragile, or indifferent. We show that order effects can lead models to select strictly inferior options, and that positional biases are typically stronger than gender biases. These findings suggest that LLMs are not merely inheriting human-like biases, but exhibit distinct failure modes not seen in human decision-making. We propose targeted mitigation strategies, including a novel use of the temperature parameter, to reduce order-driven distortions.
☆ InsertRank: LLMs can reason over BM25 scores to Improve Listwise Reranking
Large Language Models (LLMs) have demonstrated significant strides across various information retrieval tasks, particularly as rerankers, owing to their strong generalization and knowledge-transfer capabilities acquired from extensive pretraining. In parallel, the rise of LLM-based chat interfaces has raised user expectations, encouraging users to pose more complex queries that necessitate retrieval by ``reasoning'' over documents rather than through simple keyword matching or semantic similarity. While some recent efforts have exploited reasoning abilities of LLMs for reranking such queries, considerable potential for improvement remains. In that regards, we introduce InsertRank, an LLM-based reranker that leverages lexical signals like BM25 scores during reranking to further improve retrieval performance. InsertRank demonstrates improved retrieval effectiveness on -- BRIGHT, a reasoning benchmark spanning 12 diverse domains, and R2MED, a specialized medical reasoning retrieval benchmark spanning 8 different tasks. We conduct an exhaustive evaluation and several ablation studies and demonstrate that InsertRank consistently improves retrieval effectiveness across multiple families of LLMs, including GPT, Gemini, and Deepseek models. %In addition, we also conduct ablation studies on normalization by varying the scale of the BM25 scores, and positional bias by shuffling the order of the documents. With Deepseek-R1, InsertRank achieves a score of 37.5 on the BRIGHT benchmark. and 51.1 on the R2MED benchmark, surpassing previous methods.
☆ Lightweight Relevance Grader in RAG
Retrieval-Augmented Generation (RAG) addresses limitations of large language models (LLMs) by leveraging a vector database to provide more accurate and up-to-date information. When a user submits a query, RAG executes a vector search to find relevant documents, which are then used to generate a response. However, ensuring the relevance of retrieved documents with a query would be a big challenge. To address this, a secondary model, known as a relevant grader, can be served to verify its relevance. To reduce computational requirements of a relevant grader, a lightweight small language model is preferred. In this work, we finetuned llama-3.2-1b as a relevant grader and achieved a significant increase in precision from 0.1301 to 0.7750. Its precision is comparable to that of llama-3.1-70b. Our code is available at https://github.com/taeheej/Lightweight-Relevance-Grader-in-RAG.
☆ FormGym: Doing Paperwork with Agents
Completing paperwork is a challenging and time-consuming problem. Form filling is especially challenging in the pure-image domain without access to OCR, typeset PDF text, or a DOM. For computer agents, it requires multiple abilities, including multi-modal understanding, information retrieval, and tool-use. We present a novel form-filling benchmark consisting of 432 fields spread across 55 documents and 3 tasks, requiring knowledge of 236 features per user. We find that baseline VLAs achieve less than 1% accuracy in most cases, primarily due to poor localization ability. GUI agents also struggle, scoring between 10.6-68.0% despite high cost and latency. Therefore, we also contribute FieldFinder, a tool to assist LLMs in identifying where to place text on a form. With FieldFinder, all models achieve equal or better performance in all six study conditions, with a maximum increase from 2% to 56%.
☆ Into the Unknown: Applying Inductive Spatial-Semantic Location Embeddings for Predicting Individuals' Mobility Beyond Visited Places
Predicting individuals' next locations is a core task in human mobility modelling, with wide-ranging implications for urban planning, transportation, public policy and personalised mobility services. Traditional approaches largely depend on location embeddings learned from historical mobility patterns, limiting their ability to encode explicit spatial information, integrate rich urban semantic context, and accommodate previously unseen locations. To address these challenges, we explore the application of CaLLiPer -- a multimodal representation learning framework that fuses spatial coordinates and semantic features of points of interest through contrastive learning -- for location embedding in individual mobility prediction. CaLLiPer's embeddings are spatially explicit, semantically enriched, and inductive by design, enabling robust prediction performance even in scenarios involving emerging locations. Through extensive experiments on four public mobility datasets under both conventional and inductive settings, we demonstrate that CaLLiPer consistently outperforms strong baselines, particularly excelling in inductive scenarios. Our findings highlight the potential of multimodal, inductive location embeddings to advance the capabilities of human mobility prediction systems. We also release the code and data (https://github.com/xlwang233/Into-the-Unknown) to foster reproducibility and future research.
comment: 10 pages, 5 figures
☆ Optimal Embedding Learning Rate in LLMs: The Effect of Vocabulary Size
Pretraining large language models is a costly process. To make this process more efficient, several methods have been proposed to optimize model architecture/parametrization and hardware use. On the parametrization side, $\mu P$ (Maximal Update Parametrization) parametrizes model weights and learning rate (LR) in a way that makes hyperparameters (HPs) transferable with width (embedding dimension): HPs can be tuned for a small model and used for larger models without additional tuning. While $\mu$P showed impressive results in practice, recent empirical studies have reported conflicting observations when applied to LLMs. One limitation of the theory behind $\mu$P is the fact that input dimension (vocabulary size in LLMs) is considered fixed when taking the width to infinity. This is unrealistic since vocabulary size is generally much larger than width in practice. In this work, we provide a theoretical analysis of the effect of vocabulary size on training dynamics, and subsequently show that as vocabulary size increases, the training dynamics \emph{interpolate between the $\mu$P regime and another regime that we call Large Vocab (LV) Regime}, where optimal scaling rules are different from those predicted by $\mu$P. Our analysis reveals that in the LV regime, the optimal embedding LR to hidden LR ratio should roughly scale as $\Theta(\sqrt{width})$, surprisingly close to the empirical findings previously reported in the literature, and different from the $\Theta(width)$ ratio predicted by $\mu$P. We conduct several experiments to validate our theory, and pretrain a 1B model from scratch to show the benefit of our suggested scaling rule for the embedding LR.
comment: TD,LR: How to set the learning rate for emebdding layer in LLMs?
☆ SFT-GO: Supervised Fine-Tuning with Group Optimization for Large Language Models
Supervised fine-tuning (SFT) has become an essential step in tailoring large language models (LLMs) to align with human expectations and specific downstream tasks. However, existing SFT methods typically treat each training instance as a uniform sequence, giving equal importance to all tokens regardless of their relevance. This overlooks the fact that only a subset of tokens often contains critical, task-specific information. To address this limitation, we introduce Supervised Fine-Tuning with Group Optimization (SFT-GO), a novel approach that treats groups of tokens differently based on their importance.SFT-GO groups tokens in each sample based on their importance values and optimizes the LLM using a weighted combination of the worst-group loss and the standard cross-entropy loss. This mechanism adaptively emphasizes the most challenging token groups and guides the model to better handle different group distributions, thereby improving overall learning dynamics. We provide a theoretical analysis of SFT-GO's convergence rate, demonstrating its efficiency. Empirically, we apply SFT-GO with three different token grouping strategies and show that models trained with SFT-GO consistently outperform baseline approaches across popular LLM benchmarks. These improvements hold across various datasets and base models, demonstrating the robustness and the effectiveness of our method.
☆ Stable CDE Autoencoders with Acuity Regularization for Offline Reinforcement Learning in Sepsis Treatment IJCAI2025
Effective reinforcement learning (RL) for sepsis treatment depends on learning stable, clinically meaningful state representations from irregular ICU time series. While previous works have explored representation learning for this task, the critical challenge of training instability in sequential representations and its detrimental impact on policy performance has been overlooked. This work demonstrates that Controlled Differential Equations (CDE) state representation can achieve strong RL policies when two key factors are met: (1) ensuring training stability through early stopping or stabilization methods, and (2) enforcing acuity-aware representations by correlation regularization with clinical scores (SOFA, SAPS-II, OASIS). Experiments on the MIMIC-III sepsis cohort reveal that stable CDE autoencoder produces representations strongly correlated with acuity scores and enables RL policies with superior performance (WIS return $> 0.9$). In contrast, unstable CDE representation leads to degraded representations and policy failure (WIS return $\sim$ 0). Visualizations of the latent space show that stable CDEs not only separate survivor and non-survivor trajectories but also reveal clear acuity score gradients, whereas unstable training fails to capture either pattern. These findings highlight practical guidelines for using CDEs to encode irregular medical time series in clinical RL, emphasizing the need for training stability in sequential representation learning.
comment: Accepted to IJCAI2025 AI4TS
☆ Insights Informed Generative AI for Design: Incorporating Real-world Data for Text-to-Image Output
Generative AI, specifically text-to-image models, have revolutionized interior architectural design by enabling the rapid translation of conceptual ideas into visual representations from simple text prompts. While generative AI can produce visually appealing images they often lack actionable data for designers In this work, we propose a novel pipeline that integrates DALL-E 3 with a materials dataset to enrich AI-generated designs with sustainability metrics and material usage insights. After the model generates an interior design image, a post-processing module identifies the top ten materials present and pairs them with carbon dioxide equivalent (CO2e) values from a general materials dictionary. This approach allows designers to immediately evaluate environmental impacts and refine prompts accordingly. We evaluate the system through three user tests: (1) no mention of sustainability to the user prior to the prompting process with generative AI, (2) sustainability goals communicated to the user before prompting, and (3) sustainability goals communicated along with quantitative CO2e data included in the generative AI outputs. Our qualitative and quantitative analyses reveal that the introduction of sustainability metrics in the third test leads to more informed design decisions, however, it can also trigger decision fatigue and lower overall satisfaction. Nevertheless, the majority of participants reported incorporating sustainability principles into their workflows in the third test, underscoring the potential of integrated metrics to guide more ecologically responsible practices. Our findings showcase the importance of balancing design freedom with practical constraints, offering a clear path toward holistic, data-driven solutions in AI-assisted architectural design.
comment: 15 Pages, 6 figures, CAAD Futures 2025
☆ Scaling Intelligence: Designing Data Centers for Next-Gen Language Models SC25
The explosive growth of Large Language Models (LLMs) - such as GPT-4 with 1.8 trillion parameters - demands a radical rethinking of data center architecture to ensure scalability, efficiency, and cost-effectiveness. Our work provides a comprehensive co-design framework that jointly explores FLOPS, HBM bandwidth and capacity, multiple network topologies (two-tier vs. FullFlat optical), the size of the scale-out domain, and popular parallelism/optimization strategies used in LLMs. We introduce and evaluate FullFlat network architectures, which provide uniform high-bandwidth, low-latency connectivity between all nodes, and demonstrate their transformative impact on performance and scalability. Through detailed sensitivity analyses, we quantify the benefits of overlapping compute and communication, leveraging hardware-accelerated collectives, wider scale-out domains, and larger memory capacity. Our study spans both sparse (mixture of experts) and dense transformer-based LLMs, revealing how system design choices affect Model FLOPS Utilization (MFU = Model flops per token x Observed tokens per sec / Peak flops of the hardware) and overall throughput. For the co-design study, we extended and validated a performance modeling tool capable of predicting LLM runtime within 10% of real-world measurements. Our findings offer actionable insights and a practical roadmap for designing AI data centers that can efficiently support trillion-parameter models, reduce optimization complexity, and sustain the rapid evolution of AI capabilities.
comment: 14 pages, submitted to SC25 for review
☆ Memory Tokens: Large Language Models Can Generate Reversible Sentence Embeddings ACL 2025
In this work, we observe an interesting phenomenon: it is possible to generate reversible sentence embeddings that allow an LLM to reconstruct the original text exactly, without modifying the model's weights. This is achieved by introducing a special memory token, whose embedding is optimized through training on a fixed sequence. When prompted with this embedding, the model reconstructs the fixed sequence exactly. We evaluate this phenomenon across English and Spanish datasets, sequences of up to approximately 240 tokens, and model scales ranging from 100M to 8B parameters. Notably, Llama 3.1 8B successfully reconstructs all tested sequences. Our findings highlight an interesting capability of LLMs and suggest potential applications in memory-based retrieval, compression, and controlled text generation.
comment: This paper will be presented at The First Workshop on Large Language Model Memorization (L2M2) at ACL 2025
☆ Improved Image Reconstruction and Diffusion Parameter Estimation Using a Temporal Convolutional Network Model of Gradient Trajectory Errors
Summary: Errors in gradient trajectories introduce significant artifacts and distortions in magnetic resonance images, particularly in non-Cartesian imaging sequences, where imperfect gradient waveforms can greatly reduce image quality. Purpose: Our objective is to develop a general, nonlinear gradient system model that can accurately predict gradient distortions using convolutional networks. Methods: A set of training gradient waveforms were measured on a small animal imaging system, and used to train a temporal convolutional network to predict the gradient waveforms produced by the imaging system. Results: The trained network was able to accurately predict nonlinear distortions produced by the gradient system. Network prediction of gradient waveforms was incorporated into the image reconstruction pipeline and provided improvements in image quality and diffusion parameter mapping compared to both the nominal gradient waveform and the gradient impulse response function. Conclusion: Temporal convolutional networks can more accurately model gradient system behavior than existing linear methods and may be used to retrospectively correct gradient errors.
☆ MEAL: A Benchmark for Continual Multi-Agent Reinforcement Learning
Benchmarks play a crucial role in the development and analysis of reinforcement learning (RL) algorithms, with environment availability strongly impacting research. One particularly underexplored intersection is continual learning (CL) in cooperative multi-agent settings. To remedy this, we introduce MEAL (Multi-agent Environments for Adaptive Learning), the first benchmark tailored for continual multi-agent reinforcement learning (CMARL). Existing CL benchmarks run environments on the CPU, leading to computational bottlenecks and limiting the length of task sequences. MEAL leverages JAX for GPU acceleration, enabling continual learning across sequences of 100 tasks on a standard desktop PC in a few hours. We show that naively combining popular CL and MARL methods yields strong performance on simple environments, but fails to scale to more complex settings requiring sustained coordination and adaptation. Our ablation study identifies architectural and algorithmic features critical for CMARL on MEAL.
☆ Fair Algorithms with Probing for Multi-Agent Multi-Armed Bandits
We propose a multi-agent multi-armed bandit (MA-MAB) framework aimed at ensuring fair outcomes across agents while maximizing overall system performance. A key challenge in this setting is decision-making under limited information about arm rewards. To address this, we introduce a novel probing framework that strategically gathers information about selected arms before allocation. In the offline setting, where reward distributions are known, we leverage submodular properties to design a greedy probing algorithm with a provable performance bound. For the more complex online setting, we develop an algorithm that achieves sublinear regret while maintaining fairness. Extensive experiments on synthetic and real-world datasets show that our approach outperforms baseline methods, achieving better fairness and efficiency.
☆ Thinking in Directivity: Speech Large Language Model for Multi-Talker Directional Speech Recognition
Recent studies have demonstrated that prompting large language models (LLM) with audio encodings enables effective speech recognition capabilities. However, the ability of Speech LLMs to comprehend and process multi-channel audio with spatial cues remains a relatively uninvestigated area of research. In this work, we present directional-SpeechLlama, a novel approach that leverages the microphone array of smart glasses to achieve directional speech recognition, source localization, and bystander cross-talk suppression. To enhance the model's ability to understand directivity, we propose two key techniques: serialized directional output training (S-DOT) and contrastive direction data augmentation (CDDA). Experimental results show that our proposed directional-SpeechLlama effectively captures the relationship between textual cues and spatial audio, yielding strong performance in both speech recognition and source localization tasks.
comment: Accepted to Interspeech 2025
☆ FEAST: A Flexible Mealtime-Assistance System Towards In-the-Wild Personalization RSS 2025
Physical caregiving robots hold promise for improving the quality of life of millions worldwide who require assistance with feeding. However, in-home meal assistance remains challenging due to the diversity of activities (e.g., eating, drinking, mouth wiping), contexts (e.g., socializing, watching TV), food items, and user preferences that arise during deployment. In this work, we propose FEAST, a flexible mealtime-assistance system that can be personalized in-the-wild to meet the unique needs of individual care recipients. Developed in collaboration with two community researchers and informed by a formative study with a diverse group of care recipients, our system is guided by three key tenets for in-the-wild personalization: adaptability, transparency, and safety. FEAST embodies these principles through: (i) modular hardware that enables switching between assisted feeding, drinking, and mouth-wiping, (ii) diverse interaction methods, including a web interface, head gestures, and physical buttons, to accommodate diverse functional abilities and preferences, and (iii) parameterized behavior trees that can be safely and transparently adapted using a large language model. We evaluate our system based on the personalization requirements identified in our formative study, demonstrating that FEAST offers a wide range of transparent and safe adaptations and outperforms a state-of-the-art baseline limited to fixed customizations. To demonstrate real-world applicability, we conduct an in-home user study with two care recipients (who are community researchers), feeding them three meals each across three diverse scenarios. We further assess FEAST's ecological validity by evaluating with an Occupational Therapist previously unfamiliar with the system. In all cases, users successfully personalize FEAST to meet their individual needs and preferences. Website: https://emprise.cs.cornell.edu/feast
comment: RSS 2025 - Outstanding Paper Award & Outstanding Systems Paper Award Finalist
☆ Revisiting Reinforcement Learning for LLM Reasoning from A Cross-Domain Perspective
Reinforcement learning (RL) has emerged as a promising approach to improve large language model (LLM) reasoning, yet most open efforts focus narrowly on math and code, limiting our understanding of its broader applicability to general reasoning. A key challenge lies in the lack of reliable, scalable RL reward signals across diverse reasoning domains. We introduce Guru, a curated RL reasoning corpus of 92K verifiable examples spanning six reasoning domains--Math, Code, Science, Logic, Simulation, and Tabular--each built through domain-specific reward design, deduplication, and filtering to ensure reliability and effectiveness for RL training. Based on Guru, we systematically revisit established findings in RL for LLM reasoning and observe significant variation across domains. For example, while prior work suggests that RL primarily elicits existing knowledge from pretrained models, our results reveal a more nuanced pattern: domains frequently seen during pretraining (Math, Code, Science) easily benefit from cross-domain RL training, while domains with limited pretraining exposure (Logic, Simulation, and Tabular) require in-domain training to achieve meaningful performance gains, suggesting that RL is likely to facilitate genuine skill acquisition. Finally, we present Guru-7B and Guru-32B, two models that achieve state-of-the-art performance among open models RL-trained with publicly available data, outperforming best baselines by 7.9% and 6.7% on our 17-task evaluation suite across six reasoning domains. We also show that our models effectively improve the Pass@k performance of their base models, particularly on complex tasks less likely to appear in pretraining data. We release data, models, training and evaluation code to facilitate general-purpose reasoning at: https://github.com/LLM360/Reasoning360
comment: 38 pages, 9 figures. Under review
☆ Flat Channels to Infinity in Neural Loss Landscapes
The loss landscapes of neural networks contain minima and saddle points that may be connected in flat regions or appear in isolation. We identify and characterize a special structure in the loss landscape: channels along which the loss decreases extremely slowly, while the output weights of at least two neurons, $a_i$ and $a_j$, diverge to $\pm$infinity, and their input weight vectors, $\mathbf{w_i}$ and $\mathbf{w_j}$, become equal to each other. At convergence, the two neurons implement a gated linear unit: $a_i\sigma(\mathbf{w_i} \cdot \mathbf{x}) + a_j\sigma(\mathbf{w_j} \cdot \mathbf{x}) \rightarrow \sigma(\mathbf{w} \cdot \mathbf{x}) + (\mathbf{v} \cdot \mathbf{x}) \sigma'(\mathbf{w} \cdot \mathbf{x})$. Geometrically, these channels to infinity are asymptotically parallel to symmetry-induced lines of critical points. Gradient flow solvers, and related optimization methods like SGD or ADAM, reach the channels with high probability in diverse regression settings, but without careful inspection they look like flat local minima with finite parameter values. Our characterization provides a comprehensive picture of these quasi-flat regions in terms of gradient dynamics, geometry, and functional interpretation. The emergence of gated linear units at the end of the channels highlights a surprising aspect of the computational capabilities of fully connected layers.
☆ Determinação Automática de Limiar de Detecção de Ataques em Redes de Computadores Utilizando Autoencoders
Currently, digital security mechanisms like Anomaly Detection Systems using Autoencoders (AE) show great potential for bypassing problems intrinsic to the data, such as data imbalance. Because AE use a non-trivial and nonstandardized separation threshold to classify the extracted reconstruction error, the definition of this threshold directly impacts the performance of the detection process. Thus, this work proposes the automatic definition of this threshold using some machine learning algorithms. For this, three algorithms were evaluated: the K-Nearst Neighbors, the K-Means and the Support Vector Machine.
comment: This work was accepted at SBrT 2022 (Brazilian Symposium on Telecommunications and Signal Processing), though it was not included in the official proceedings. in Portuguese language
☆ CALM: Contextual Analog Logic with Multimodality
In this work, we introduce Contextual Analog Logic with Multimodality (CALM). CALM unites symbolic reasoning with neural generation, enabling systems to make context-sensitive decisions grounded in real-world multi-modal data. Background: Classic bivalent logic systems cannot capture the nuance of human decision-making. They also require human grounding in multi-modal environments, which can be ad-hoc, rigid, and brittle. Neural networks are good at extracting rich contextual information from multi-modal data, but lack interpretable structures for reasoning. Objectives: CALM aims to bridge the gap between logic and neural perception, creating an analog logic that can reason over multi-modal inputs. Without this integration, AI systems remain either brittle or unstructured, unable to generalize robustly to real-world tasks. In CALM, symbolic predicates evaluate to analog truth values computed by neural networks and constrained search. Methods: CALM represents each predicate using a domain tree, which iteratively refines its analog truth value when the contextual groundings of its entities are determined. The iterative refinement is predicted by neural networks capable of capturing multi-modal information and is filtered through a symbolic reasoning module to ensure constraint satisfaction. Results: In fill-in-the-blank object placement tasks, CALM achieved 92.2% accuracy, outperforming classical logic (86.3%) and LLM (59.4%) baselines. It also demonstrated spatial heatmap generation aligned with logical constraints and delicate human preferences, as shown by a human study. Conclusions: CALM demonstrates the potential to reason with logic structure while aligning with preferences in multi-modal environments. It lays the foundation for next-gen AI systems that require the precision and interpretation of logic and the multimodal information processing of neural networks.
☆ Explain First, Trust Later: LLM-Augmented Explanations for Graph-Based Crypto Anomaly Detection
The decentralized finance (DeFi) community has grown rapidly in recent years, pushed forward by cryptocurrency enthusiasts interested in the vast untapped potential of new markets. The surge in popularity of cryptocurrency has ushered in a new era of financial crime. Unfortunately, the novelty of the technology makes the task of catching and prosecuting offenders particularly challenging. Thus, it is necessary to implement automated detection tools related to policies to address the growing criminality in the cryptocurrency realm.
comment: 6 pages, 4 figures. Code available at: https://github.com/awatson246/crypto-anomaly-detection-policy
☆ MDBench: A Synthetic Multi-Document Reasoning Benchmark Generated with Knowledge Guidance ACL 2025
Natural language processing evaluation has made significant progress, largely driven by the proliferation of powerful large language mod-els (LLMs). New evaluation benchmarks are of increasing priority as the reasoning capabilities of LLMs are expanding at a rapid pace. In particular, while multi-document (MD) reasoning is an area of extreme relevance given LLM capabilities in handling longer-context inputs, few benchmarks exist to rigorously examine model behavior in this setting. Moreover, the multi-document setting is historically challenging for benchmark creation due to the expensive cost of annotating long inputs. In this work, we introduce MDBench, a new dataset for evaluating LLMs on the task of multi-document reasoning. Notably, MDBench is created through a novel synthetic generation process, allowing us to controllably and efficiently generate challenging document sets and the corresponding question-answer (QA) examples. Our novel technique operates on condensed structured seed knowledge, modifying it through LLM-assisted edits to induce MD-specific reasoning challenges. We then convert this structured knowledge into a natural text surface form, generating a document set and corresponding QA example. We analyze the behavior of popular LLMs and prompting techniques, finding that MDBENCH poses significant challenges for all methods, even with relatively short document sets. We also see our knowledge-guided generation technique (1) allows us to readily perform targeted analysis of MD-specific reasoning capabilities and (2) can be adapted quickly to account for new challenges and future modeling improvements.
comment: ACL 2025 Findings
☆ Forecasting the spatiotemporal evolution of fluid-induced microearthquakes with deep learning
Microearthquakes (MEQs) generated by subsurface fluid injection record the evolving stress state and permeability of reservoirs. Forecasting their full spatiotemporal evolution is therefore critical for applications such as enhanced geothermal systems (EGS), CO$_2$ sequestration and other geo-engineering applications. We present a transformer-based deep learning model that ingests hydraulic stimulation history and prior MEQ observations to forecast four key quantities: cumulative MEQ count, cumulative logarithmic seismic moment, and the 50th- and 95th-percentile extents ($P_{50}, P_{95}$) of the MEQ cloud. Applied to the EGS Collab Experiment 1 dataset, the model achieves $R^2 >0.98$ for the 1-second forecast horizon and $R^2 >0.88$ for the 15-second forecast horizon across all targets, and supplies uncertainty estimates through a learned standard deviation term. These accurate, uncertainty-quantified forecasts enable real-time inference of fracture propagation and permeability evolution, demonstrating the strong potential of deep-learning approaches to improve seismic-risk assessment and guide mitigation strategies in future fluid-injection operations.
☆ Foundation Artificial Intelligence Models for Health Recognition Using Face Photographs (FAHR-Face)
Background: Facial appearance offers a noninvasive window into health. We built FAHR-Face, a foundation model trained on >40 million facial images and fine-tuned it for two distinct tasks: biological age estimation (FAHR-FaceAge) and survival risk prediction (FAHR-FaceSurvival). Methods: FAHR-FaceAge underwent a two-stage, age-balanced fine-tuning on 749,935 public images; FAHR-FaceSurvival was fine-tuned on 34,389 photos of cancer patients. Model robustness (cosmetic surgery, makeup, pose, lighting) and independence (saliency mapping) was tested extensively. Both models were clinically tested in two independent cancer patient datasets with survival analyzed by multivariable Cox models and adjusted for clinical prognostic factors. Findings: For age estimation, FAHR-FaceAge had the lowest mean absolute error of 5.1 years on public datasets, outperforming benchmark models and maintaining accuracy across the full human lifespan. In cancer patients, FAHR-FaceAge outperformed a prior facial age estimation model in survival prognostication. FAHR-FaceSurvival demonstrated robust prediction of mortality, and the highest-risk quartile had more than triple the mortality of the lowest (adjusted hazard ratio 3.22; P<0.001). These findings were validated in the independent cohort and both models showed generalizability across age, sex, race and cancer subgroups. The two algorithms provided distinct, complementary prognostic information; saliency mapping revealed each model relied on distinct facial regions. The combination of FAHR-FaceAge and FAHR-FaceSurvival improved prognostic accuracy. Interpretation: A single foundation model can generate inexpensive, scalable facial biomarkers that capture both biological ageing and disease-related mortality risk. The foundation model enabled effective training using relatively small clinical datasets.
☆ PeRL: Permutation-Enhanced Reinforcement Learning for Interleaved Vision-Language Reasoning
Inspired by the impressive reasoning capabilities demonstrated by reinforcement learning approaches like DeepSeek-R1, recent emerging research has begun exploring the use of reinforcement learning (RL) to enhance vision-language models (VLMs) for multimodal reasoning tasks. However, most existing multimodal reinforcement learning approaches remain limited to spatial reasoning within single-image contexts, yet still struggle to generalize to more complex and real-world scenarios involving multi-image positional reasoning, where understanding the relationships across images is crucial. To address this challenge, we propose a general reinforcement learning approach PeRL tailored for interleaved multimodal tasks, and a multi-stage strategy designed to enhance the exploration-exploitation trade-off, thereby improving learning efficiency and task performance. Specifically, we introduce permutation of image sequences to simulate varied positional relationships to explore more spatial and positional diversity. Furthermore, we design a rollout filtering mechanism for resampling to focus on trajectories that contribute most to learning optimal behaviors to exploit learned policies effectively. We evaluate our model on 5 widely-used multi-image benchmarks and 3 single-image benchmarks. Our experiments confirm that PeRL trained model consistently surpasses R1-related and interleaved VLM baselines by a large margin, achieving state-of-the-art performance on multi-image benchmarks, while preserving comparable performance on single-image tasks.
☆ Preparing for the Intelligence Explosion
AI that can accelerate research could drive a century of technological progress over just a few years. During such a period, new technological or political developments will raise consequential and hard-to-reverse decisions, in rapid succession. We call these developments grand challenges. These challenges include new weapons of mass destruction, AI-enabled autocracies, races to grab offworld resources, and digital beings worthy of moral consideration, as well as opportunities to dramatically improve quality of life and collective decision-making. We argue that these challenges cannot always be delegated to future AI systems, and suggest things we can do today to meaningfully improve our prospects. AGI preparedness is therefore not just about ensuring that advanced AI systems are aligned: we should be preparing, now, for the disorienting range of developments an intelligence explosion would bring.
comment: 61 pages
☆ Identifiability by common backdoor in summary causal graphs of time series
The identifiability problem for interventions aims at assessing whether the total effect of some given interventions can be written with a do-free formula, and thus be computed from observational data only. We study this problem, considering multiple interventions and multiple effects, in the context of time series when only abstractions of the true causal graph in the form of summary causal graphs are available. We focus in this study on identifiability by a common backdoor set, and establish, for time series with and without consistency throughout time, conditions under which such a set exists. We also provide algorithms of limited complexity to decide whether the problem is identifiable or not.
☆ BMFM-RNA: An Open Framework for Building and Evaluating Transcriptomic Foundation Models
Transcriptomic foundation models (TFMs) have recently emerged as powerful tools for analyzing gene expression in cells and tissues, supporting key tasks such as cell-type annotation, batch correction, and perturbation prediction. However, the diversity of model implementations and training strategies across recent TFMs, though promising, makes it challenging to isolate the contribution of individual design choices or evaluate their potential synergies. This hinders the field's ability to converge on best practices and limits the reproducibility of insights across studies. We present BMFM-RNA, an open-source, modular software package that unifies diverse TFM pretraining and fine-tuning objectives within a single framework. Leveraging this capability, we introduce a novel training objective, whole cell expression decoder (WCED), which captures global expression patterns using an autoencoder-like CLS bottleneck representation. In this paper, we describe the framework, supported input representations, and training objectives. We evaluated four model checkpoints pretrained on CELLxGENE using combinations of masked language modeling (MLM), WCED and multitask learning. Using the benchmarking capabilities of BMFM-RNA, we show that WCED-based models achieve performance that matches or exceeds state-of-the-art approaches like scGPT across more than a dozen datasets in both zero-shot and fine-tuning tasks. BMFM-RNA, available as part of the biomed-multi-omics project ( https://github.com/BiomedSciAI/biomed-multi-omic ), offers a reproducible foundation for systematic benchmarking and community-driven exploration of optimal TFM training strategies, enabling the development of more effective tools to leverage the latest advances in AI for understanding cell biology.
♻ ☆ VideoPDE: Unified Generative PDE Solving via Video Inpainting Diffusion Models
We present a unified framework for solving partial differential equations (PDEs) using video-inpainting diffusion transformer models. Unlike existing methods that devise specialized strategies for either forward or inverse problems under full or partial observation, our approach unifies these tasks under a single, flexible generative framework. Specifically, we recast PDE-solving as a generalized inpainting problem, e.g., treating forward prediction as inferring missing spatiotemporal information of future states from initial conditions. To this end, we design a transformer-based architecture that conditions on arbitrary patterns of known data to infer missing values across time and space. Our method proposes pixel-space video diffusion models for fine-grained, high-fidelity inpainting and conditioning, while enhancing computational efficiency through hierarchical modeling. Extensive experiments show that our video inpainting-based diffusion model offers an accurate and versatile solution across a wide range of PDEs and problem setups, outperforming state-of-the-art baselines.
comment: Project page: https://videopde.github.io/
♻ ☆ Prefix-Tuning+: Modernizing Prefix-Tuning by Decoupling the Prefix from Attention
Parameter-Efficient Fine-Tuning (PEFT) methods have become crucial for rapidly adapting large language models (LLMs) to downstream tasks. Prefix-Tuning, an early and effective PEFT technique, demonstrated the ability to achieve performance comparable to full fine-tuning with significantly reduced computational and memory overhead. However, despite its earlier success, its effectiveness in training modern state-of-the-art LLMs has been very limited. In this work, we demonstrate empirically that Prefix-Tuning underperforms on LLMs because of an inherent tradeoff between input and prefix significance within the attention head. This motivates us to introduce Prefix-Tuning+, a novel architecture that generalizes the principles of Prefix-Tuning while addressing its shortcomings by shifting the prefix module out of the attention head itself. We further provide an overview of our construction process to guide future users when constructing their own context-based methods. Our experiments show that, across a diverse set of benchmarks, Prefix-Tuning+ consistently outperforms existing Prefix-Tuning methods. Notably, it achieves performance on par with the widely adopted LoRA method on several general benchmarks, highlighting the potential modern extension of Prefix-Tuning approaches. Our findings suggest that by overcoming its inherent limitations, Prefix-Tuning can remain a competitive and relevant research direction in the landscape of parameter-efficient LLM adaptation.
♻ ☆ Graph-Convolutional-Beta-VAE for Synthetic Abdominal Aorta Aneurysm Generation
Synthetic data generation plays a crucial role in medical research by mitigating privacy concerns and enabling large-scale patient data analysis. This study presents a beta-Variational Autoencoder Graph Convolutional Neural Network framework for generating synthetic Abdominal Aorta Aneurysms (AAA). Using a small real-world dataset, our approach extracts key anatomical features and captures complex statistical relationships within a compact disentangled latent space. To address data limitations, low-impact data augmentation based on Procrustes analysis was employed, preserving anatomical integrity. The generation strategies, both deterministic and stochastic, manage to enhance data diversity while ensuring realism. Compared to PCA-based approaches, our model performs more robustly on unseen data by capturing complex, nonlinear anatomical variations. This enables more comprehensive clinical and statistical analyses than the original dataset alone. The resulting synthetic AAA dataset preserves patient privacy while providing a scalable foundation for medical research, device testing, and computational modeling.
comment: Typo in the title
♻ ☆ A Production Scheduling Framework for Reinforcement Learning Under Real-World Constraints
The classical Job Shop Scheduling Problem (JSSP) focuses on optimizing makespan under deterministic constraints. Real-world production environments introduce additional complexities that cause traditional scheduling approaches to be less effective. Reinforcement learning (RL) holds potential in addressing these challenges, as it allows agents to learn adaptive scheduling strategies. However, there is a lack of a comprehensive, general-purpose frameworks for effectively training and evaluating RL agents under real-world constraints. To address this gap, we propose a modular framework that extends classical JSSP formulations by incorporating key real-world constraints inherent to the shopfloor, including transport logistics, buffer management, machine breakdowns, setup times, and stochastic processing conditions, while also supporting multi-objective optimization. The framework is a customizable solution that offers flexibility in defining problem instances and configuring simulation parameters, enabling adaptation to diverse production scenarios. A standardized interface ensures compatibility with various RL approaches, providing a robust environment for training RL agents and facilitating the standardized comparison of different scheduling methods under dynamic and uncertain conditions. We release JobShopLab as an open-source tool for both research and industrial applications, accessible at: https://github.com/proto-lab-ro/jobshoplab
comment: This paper has been accepted for presentation at the IEEE 21st International Conference on Automation Science and Engineering (CASE 2025)
♻ ☆ ROSAQ: Rotation-based Saliency-Aware Weight Quantization for Efficiently Compressing Large Language Models
Quantization has been widely studied as an effective technique for reducing the memory requirement of large language models (LLMs), potentially improving the latency time as well. Utilizing the characteristic of rotational invariance of transformer, we propose the rotation-based saliency-aware weight quantization (ROSAQ), which identifies salient channels in the projection feature space, not in the original feature space, where the projected "principal" dimensions are naturally considered as "salient" features. The proposed ROSAQ consists of 1) PCA-based projection, which first performs principal component analysis (PCA) on a calibration set and transforms via the PCA projection, 2) Salient channel dentification, which selects dimensions corresponding to the K-largest eigenvalues as salient channels, and 3) Saliency-aware quantization with mixed-precision, which uses FP16 for salient dimensions and INT3/4 for other dimensions. Experiment results show that ROSAQ shows improvements over the baseline saliency-aware quantization on the original feature space and other existing quantization methods. With kernel fusion, ROSAQ presents about 2.3x speed up over FP16 implementation in generating 256 tokens with a batch size of 64.
comment: 10 pages, 2 figures
♻ ☆ Seewo's Submission to MLC-SLM: Lessons learned from Speech Reasoning Language Models
This paper presents Seewo's systems for both tracks of the Multilingual Conversational Speech Language Model Challenge (MLC-SLM), addressing automatic speech recognition (ASR) and speaker diarization with ASR (SD-ASR). We introduce a multi-stage training pipeline that explicitly enhances reasoning and self-correction in speech language models for ASR. Our approach combines curriculum learning for progressive capability acquisition, Chain-of-Thought data augmentation to foster intermediate reflection, and Reinforcement Learning with Verifiable Rewards (RLVR) to further refine self-correction through reward-driven optimization. This approach achieves substantial improvements over the official challenge baselines. On the evaluation set, our best system attains a WER/CER of 11.57% for Track 1 and a tcpWER/tcpCER of 17.67% for Track 2. Comprehensive ablation studies demonstrate the effectiveness of each component under challenge constraints.
♻ ☆ SeqPE: Transformer with Sequential Position Encoding
Since self-attention layers in Transformers are permutation invariant by design, positional encodings must be explicitly incorporated to enable spatial understanding. However, fixed-size lookup tables used in traditional learnable position embeddings (PEs) limit extrapolation capabilities beyond pre-trained sequence lengths. Expert-designed methods such as ALiBi and RoPE, mitigate this limitation but demand extensive modifications for adapting to new modalities, underscoring fundamental challenges in adaptability and scalability. In this work, we present SeqPE, a unified and fully learnable position encoding framework that represents each $n$-dimensional position index as a symbolic sequence and employs a lightweight sequential position encoder to learn their embeddings in an end-to-end manner. To regularize SeqPE's embedding space, we introduce two complementary objectives: a contrastive objective that aligns embedding distances with a predefined position-distance function, and a knowledge distillation loss that anchors out-of-distribution position embeddings to in-distribution teacher representations, further enhancing extrapolation performance. Experiments across language modeling, long-context question answering, and 2D image classification demonstrate that SeqPE not only surpasses strong baselines in perplexity, exact match (EM), and accuracy--particularly under context length extrapolation--but also enables seamless generalization to multi-dimensional inputs without requiring manual architectural redesign. We release our code, data, and checkpoints at https://github.com/ghrua/seqpe.
♻ ☆ Inherently Faithful Attention Maps for Vision Transformers
We introduce an attention-based method that uses learned binary attention masks to ensure that only attended image regions influence the prediction. Context can strongly affect object perception, sometimes leading to biased representations, particularly when objects appear in out-of-distribution backgrounds. At the same time, many image-level object-centric tasks require identifying relevant regions, often requiring context. To address this conundrum, we propose a two-stage framework: stage 1 processes the full image to discover object parts and identify task-relevant regions, while stage 2 leverages input attention masking to restrict its receptive field to these regions, enabling a focused analysis while filtering out potentially spurious information. Both stages are trained jointly, allowing stage 2 to refine stage 1. Extensive experiments across diverse benchmarks demonstrate that our approach significantly improves robustness against spurious correlations and out-of-distribution backgrounds. Code: https://github.com/ananthu-aniraj/ifam
♻ ☆ No-Regret Learning Under Adversarial Resource Constraints: A Spending Plan Is All You Need!
We study online decision making problems under resource constraints, where both reward and cost functions are drawn from distributions that may change adversarially over time. We focus on two canonical settings: $(i)$ online resource allocation where rewards and costs are observed before action selection, and $(ii)$ online learning with resource constraints where they are observed after action selection, under full feedback or bandit feedback. It is well known that achieving sublinear regret in these settings is impossible when reward and cost distributions may change arbitrarily over time. To address this challenge, we analyze a framework in which the learner is guided by a spending plan--a sequence prescribing expected resource usage across rounds. We design general (primal-)dual methods that achieve sublinear regret with respect to baselines that follow the spending plan. Crucially, the performance of our algorithms improves when the spending plan ensures a well-balanced distribution of the budget across rounds. We additionally provide a robust variant of our methods to handle worst-case scenarios where the spending plan is highly imbalanced. To conclude, we study the regret of our algorithms when competing against benchmarks that deviate from the prescribed spending plan.
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Codes and data will be available later (under review). Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
comment: 13 pages of main body, 3 tables, 5 figures, 45 pages of appendix
♻ ☆ AI-Facilitated Analysis of Abstracts and Conclusions: Flagging Unsubstantiated Claims and Ambiguous Pronouns
We present and evaluate a suite of proof-of-concept (PoC), structured workflow prompts designed to elicit human-like hierarchical reasoning while guiding Large Language Models (LLMs) in the high-level semantic and linguistic analysis of scholarly manuscripts. The prompts target two non-trivial analytical tasks within academic summaries (abstracts and conclusions): identifying unsubstantiated claims (informational integrity) and flagging semantically confusing ambiguous pronoun references (linguistic clarity). We conducted a systematic, multi-run evaluation on two frontier models (Gemini Pro 2.5 Pro and ChatGPT Plus o3) under varied context conditions. Our results for the informational integrity task reveal a significant divergence in model performance: while both models successfully identified an unsubstantiated head of a noun phrase (95% success), ChatGPT consistently failed (0% success) to identify an unsubstantiated adjectival modifier that Gemini correctly flagged (95% success), raising a question regarding the potential influence of the target's syntactic role. For the linguistic analysis task, both models performed well (80-90% success) with full manuscript context. Surprisingly, in a summary-only setting, Gemini's performance was substantially degraded, while ChatGPT achieved a perfect (100%) success rate. Our findings suggest that while structured prompting is a viable methodology for complex textual analysis, prompt performance may be highly dependent on the interplay between the model, task type, and context, highlighting the need for rigorous, model-specific testing.
comment: 13 pages
♻ ☆ IKDiffuser: Fast and Diverse Inverse Kinematics Solution Generation for Multi-arm Robotic Systems
Solving Inverse Kinematics (IK) problems is fundamental to robotics, but has primarily been successful with single serial manipulators. For multi-arm robotic systems, IK remains challenging due to complex self-collisions, coupled joints, and high-dimensional redundancy. These complexities make traditional IK solvers slow, prone to failure, and lacking in solution diversity. In this paper, we present IKDiffuser, a diffusion-based model designed for fast and diverse IK solution generation for multi-arm robotic systems. IKDiffuser learns the joint distribution over the configuration space, capturing complex dependencies and enabling seamless generalization to multi-arm robotic systems of different structures. In addition, IKDiffuser can incorporate additional objectives during inference without retraining, offering versatility and adaptability for task-specific requirements. In experiments on 6 different multi-arm systems, the proposed IKDiffuser achieves superior solution accuracy, precision, diversity, and computational efficiency compared to existing solvers. The proposed IKDiffuser framework offers a scalable, unified approach to solving multi-arm IK problems, facilitating the potential of multi-arm robotic systems in real-time manipulation tasks.
comment: under review
♻ ☆ A Unified Framework for Next-Gen Urban Forecasting via LLM-driven Dependency Retrieval and GeoTransformer
Urban forecasting has increasingly benefited from high-dimensional spatial data through two primary approaches: graph-based methods that rely on predefined spatial structures, and region-based methods that focus on learning expressive urban representations. Although these methods have laid a strong foundation, they either rely heavily on structured spatial data, struggle to adapt to task-specific dependencies, or fail to integrate holistic urban context. Moreover, no existing framework systematically integrates these two paradigms and overcomes their respective limitations. To address this gap, we propose a novel, unified framework for high-dimensional urban forecasting, composed of three key components: (1) the Urban Region Representation Module that organizes latent embeddings and semantic descriptions for each region, (2) the Task-aware Dependency Retrieval module that selects relevant context regions based on natural language prompts, and (3) the Prediction Module, exemplified by our proposed GeoTransformer architecture, which adopts a novel geospatial attention mechanism to incorporate spatial proximity and information entropy as priors. Our framework is modular, supports diverse representation methods and forecasting models, and can operate even with minimal input. Quantitative experiments and qualitative analysis across six urban forecasting tasks demonstrate strong task generalization and validate the framework's effectiveness.
♻ ☆ Chain-of-Thought Reasoning In The Wild Is Not Always Faithful ICLR 25
Chain-of-Thought (CoT) reasoning has significantly advanced state-of-the-art AI capabilities. However, recent studies have shown that CoT reasoning is not always faithful when models face an explicit bias in their prompts, i.e., the CoT can give an incorrect picture of how models arrive at conclusions. We go further and show that unfaithful CoT can also occur on realistic prompts with no artificial bias. We find that when separately presented with the questions "Is X bigger than Y?" and "Is Y bigger than X?", models sometimes produce superficially coherent arguments to justify systematically answering Yes to both questions or No to both questions, despite such responses being logically contradictory. We show preliminary evidence that this is due to models' implicit biases towards Yes or No, thus labeling this unfaithfulness as Implicit Post-Hoc Rationalization. Our results reveal that several production models exhibit surprisingly high rates of post-hoc rationalization in our settings: GPT-4o-mini (13%) and Haiku 3.5 (7%). While frontier models are more faithful, especially thinking ones, none are entirely faithful: Gemini 2.5 Flash (2.17%), ChatGPT-4o (0.49%), DeepSeek R1 (0.37%), Gemini 2.5 Pro (0.14%), and Sonnet 3.7 with thinking (0.04%). We also investigate Unfaithful Illogical Shortcuts, where models use subtly illogical reasoning to try to make a speculative answer to hard maths problems seem rigorously proven. Our findings raise challenges for strategies for detecting undesired behavior in LLMs via the chain of thought.
comment: Accepted to the Reasoning and Planning for LLMs Workshop (ICLR 25), 10 main paper pages, 39 appendix pages
♻ ☆ Controllable and Reliable Knowledge-Intensive Task-Oriented Conversational Agents with Declarative Genie Worksheets ACL 2025
Large Language Models can carry out human-like conversations in diverse settings, responding to user requests for tasks and knowledge. However, existing conversational agents implemented with LLMs often struggle with hallucination, following instructions with conditional logic, and integrating knowledge from different sources. These shortcomings compromise the agents' effectiveness, rendering them unsuitable for deployment. To address these challenges, we introduce Genie, a programmable framework for creating knowledge-intensive task-oriented conversational agents. Genie can handle involved interactions and answer complex queries. Unlike LLMs, it delivers reliable, grounded responses through advanced dialogue state management and supports controllable agent policies via its declarative specification -- Genie Worksheet. This is achieved through an algorithmic runtime system that implements the developer-supplied policy, limiting LLMs to (1) parse user input using a succinct conversational history, and (2) generate responses according to supplied context. Agents built with Genie outperform SOTA methods on complex logic dialogue datasets. We conducted a user study with 62 participants on three real-life applications: restaurant reservations with Yelp, as well as ticket submission and course enrollment for university students. Genie agents with GPT-4 Turbo outperformed the GPT-4 Turbo agents with function calling, improving goal completion rates from 21.8% to 82.8% across three real-world tasks.
comment: Accepted at ACL 2025
♻ ☆ SOPBench: Evaluating Language Agents at Following Standard Operating Procedures and Constraints
As language agents increasingly automate critical tasks, their ability to follow domain-specific standard operating procedures (SOPs), policies, and constraints when taking actions and making tool calls becomes essential yet remains underexplored. To address this gap, we develop an automated evaluation pipeline SOPBench with: (1) executable environments containing 167 tools/functions across seven customer service domains with service-specific SOPs and rule-based verifiers, (2) an automated test generation framework producing over 900 verified test cases, and (3) an automated evaluation framework to rigorously assess agent adherence from multiple dimensions. Our approach transforms each service-specific SOP code program into a directed graph of executable functions and requires agents to call these functions based on natural language SOP descriptions. The original code serves as oracle rule-based verifiers to assess compliance, reducing reliance on manual annotations and LLM-based evaluations. We evaluate 18 leading models, and results show the task is challenging even for top-tier models (like GPT-4o, Claude-3.7-Sonnet), with variances across domains. Reasoning models like o4-mini-high show superiority while other powerful models perform less effectively (pass rates of 30%-50%), and small models (7B, 8B) perform significantly worse. Additionally, language agents can be easily jailbroken to overlook SOPs and constraints. Code, data, and over 24k agent trajectories are released at https://github.com/Leezekun/SOPBench.
comment: Code, data, and over 24k agent trajectories are released at https://github.com/Leezekun/SOPBench
♻ ☆ Deep Learning Model Acceleration and Optimization Strategies for Real-Time Recommendation Systems
With the rapid growth of Internet services, recommendation systems play a central role in delivering personalized content. Faced with massive user requests and complex model architectures, the key challenge for real-time recommendation systems is how to reduce inference latency and increase system throughput without sacrificing recommendation quality. This paper addresses the high computational cost and resource bottlenecks of deep learning models in real-time settings by proposing a combined set of modeling- and system-level acceleration and optimization strategies. At the model level, we dramatically reduce parameter counts and compute requirements through lightweight network design, structured pruning, and weight quantization. At the system level, we integrate multiple heterogeneous compute platforms and high-performance inference libraries, and we design elastic inference scheduling and load-balancing mechanisms based on real-time load characteristics. Experiments show that, while maintaining the original recommendation accuracy, our methods cut latency to less than 30% of the baseline and more than double system throughput, offering a practical solution for deploying large-scale online recommendation services.
♻ ☆ OrgAccess: A Benchmark for Role Based Access Control in Organization Scale LLMs
Role-based access control (RBAC) and hierarchical structures are foundational to how information flows and decisions are made within virtually all organizations. As the potential of Large Language Models (LLMs) to serve as unified knowledge repositories and intelligent assistants in enterprise settings becomes increasingly apparent, a critical, yet under explored, challenge emerges: \textit{can these models reliably understand and operate within the complex, often nuanced, constraints imposed by organizational hierarchies and associated permissions?} Evaluating this crucial capability is inherently difficult due to the proprietary and sensitive nature of real-world corporate data and access control policies. We introduce a synthetic yet representative \textbf{OrgAccess} benchmark consisting of 40 distinct types of permissions commonly relevant across different organizational roles and levels. We further create three types of permissions: 40,000 easy (1 permission), 10,000 medium (3-permissions tuple), and 20,000 hard (5-permissions tuple) to test LLMs' ability to accurately assess these permissions and generate responses that strictly adhere to the specified hierarchical rules, particularly in scenarios involving users with overlapping or conflicting permissions. Our findings reveal that even state-of-the-art LLMs struggle significantly to maintain compliance with role-based structures, even with explicit instructions, with their performance degrades further when navigating interactions involving two or more conflicting permissions. Specifically, even \textbf{GPT-4.1 only achieves an F1-Score of 0.27 on our hardest benchmark}. This demonstrates a critical limitation in LLMs' complex rule following and compositional reasoning capabilities beyond standard factual or STEM-based benchmarks, opening up a new paradigm for evaluating their fitness for practical, structured environments.
comment: 56 Pages
♻ ☆ Reparameterized LLM Training via Orthogonal Equivalence Transformation
While large language models (LLMs) are driving the rapid advancement of artificial intelligence, effectively and reliably training these large models remains one of the field's most significant challenges. To address this challenge, we propose POET, a novel reParameterized training algorithm that uses Orthogonal Equivalence Transformation to optimize neurons. Specifically, POET reparameterizes each neuron with two learnable orthogonal matrices and a fixed random weight matrix. Because of its provable preservation of spectral properties of weight matrices, POET can stably optimize the objective function with improved generalization. We further develop efficient approximations that make POET flexible and scalable for training large-scale neural networks. Extensive experiments validate the effectiveness and scalability of POET in training LLMs.
comment: Technical report v3 (38 pages, 26 figures, project page: https://spherelab.ai/poet/, v3: added singular spectrum and energy analyses in Section 4)
♻ ☆ Bridging Social Media and Search Engines: Dredge Words and the Detection of Unreliable Domains
Proactive content moderation requires platforms to rapidly and continuously evaluate the credibility of websites. Leveraging the direct and indirect paths users follow to unreliable websites, we develop a website credibility classification and discovery system that integrates both webgraph and large-scale social media contexts. We additionally introduce the concept of dredge words, terms or phrases for which unreliable domains rank highly on search engines, and provide the first exploration of their usage on social media. Our graph neural networks that combine webgraph and social media contexts generate to state-of-the-art results in website credibility classification and significantly improves the top-k identification of unreliable domains. Additionally, we release a novel dataset of dredge words, highlighting their strong connections to both social media and online commerce platforms.
♻ ☆ The Alternative Annotator Test for LLM-as-a-Judge: How to Statistically Justify Replacing Human Annotators with LLMs
The "LLM-as-an-annotator" and "LLM-as-a-judge" paradigms employ Large Language Models (LLMs) as annotators, judges, and evaluators in tasks traditionally performed by humans. LLM annotations are widely used, not only in NLP research but also in fields like medicine, psychology, and social science. Despite their role in shaping study results and insights, there is no standard or rigorous procedure to determine whether LLMs can replace human annotators. In this paper, we propose a novel statistical procedure, the Alternative Annotator Test (alt-test), that requires only a modest subset of annotated examples to justify using LLM annotations. Additionally, we introduce a versatile and interpretable measure for comparing LLM annotators and judges. To demonstrate our procedure, we curated a diverse collection of ten datasets, consisting of language and vision-language tasks, and conducted experiments with six LLMs and four prompting techniques. Our results show that LLMs can sometimes replace humans with closed-source LLMs (such as GPT-4o), outperforming the open-source LLMs we examine, and that prompting techniques yield judges of varying quality. We hope this study encourages more rigorous and reliable practices.
♻ ☆ Language and Planning in Robotic Navigation: A Multilingual Evaluation of State-of-the-Art Models AAAI'25
Large Language Models (LLMs) such as GPT-4, trained on huge amount of datasets spanning multiple domains, exhibit significant reasoning, understanding, and planning capabilities across various tasks. This study presents the first-ever work in Arabic language integration within the Vision-and-Language Navigation (VLN) domain in robotics, an area that has been notably underexplored in existing research. We perform a comprehensive evaluation of state-of-the-art multi-lingual Small Language Models (SLMs), including GPT-4o mini, Llama 3 8B, and Phi-3 medium 14B, alongside the Arabic-centric LLM, Jais. Our approach utilizes the NavGPT framework, a pure LLM-based instruction-following navigation agent, to assess the impact of language on navigation reasoning through zero-shot sequential action prediction using the R2R dataset. Through comprehensive experiments, we demonstrate that our framework is capable of high-level planning for navigation tasks when provided with instructions in both English and Arabic. However, certain models struggled with reasoning and planning in the Arabic language due to inherent limitations in their capabilities, sub-optimal performance, and parsing issues. These findings highlight the importance of enhancing planning and reasoning capabilities in language models for effective navigation, emphasizing this as a key area for further development while also unlocking the potential of Arabic-language models for impactful real-world applications.
comment: This work has been accepted for presentation at LM4Plan@AAAI'25. For more details, please check: https://llmforplanning.github.io/
♻ ☆ Agent Laboratory: Using LLM Agents as Research Assistants
Historically, scientific discovery has been a lengthy and costly process, demanding substantial time and resources from initial conception to final results. To accelerate scientific discovery, reduce research costs, and improve research quality, we introduce Agent Laboratory, an autonomous LLM-based framework capable of completing the entire research process. This framework accepts a human-provided research idea and progresses through three stages--literature review, experimentation, and report writing to produce comprehensive research outputs, including a code repository and a research report, while enabling users to provide feedback and guidance at each stage. We deploy Agent Laboratory with various state-of-the-art LLMs and invite multiple researchers to assess its quality by participating in a survey, providing human feedback to guide the research process, and then evaluate the final paper. We found that: (1) Agent Laboratory driven by o1-preview generates the best research outcomes; (2) The generated machine learning code is able to achieve state-of-the-art performance compared to existing methods; (3) Human involvement, providing feedback at each stage, significantly improves the overall quality of research; (4) Agent Laboratory significantly reduces research expenses, achieving an 84% decrease compared to previous autonomous research methods. We hope Agent Laboratory enables researchers to allocate more effort toward creative ideation rather than low-level coding and writing, ultimately accelerating scientific discovery.
♻ ☆ A Conjecture on a Fundamental Trade-Off between Certainty and Scope in Symbolic and Generative AI
This article introduces a conjecture that formalises a fundamental trade-off between provable correctness and broad data-mapping capacity in Artificial Intelligence (AI) systems. When an AI system is engineered for deductively watertight guarantees (demonstrable certainty about the error-free nature of its outputs) -- as in classical symbolic AI -- its operational domain must be narrowly circumscribed and pre-structured. Conversely, a system that can input high-dimensional data to produce rich information outputs -- as in contemporary generative models -- necessarily relinquishes the possibility of zero-error performance, incurring an irreducible risk of errors or misclassification. By making this previously implicit trade-off explicit and open to rigorous verification, the conjecture significantly reframes both engineering ambitions and philosophical expectations for AI. After reviewing the historical motivations for this tension, the article states the conjecture in information-theoretic form and contextualises it within broader debates in epistemology, formal verification, and the philosophy of technology. It then offers an analysis of its implications and consequences, drawing on notions of underdetermination, prudent epistemic risk, and moral responsibility. The discussion clarifies how, if correct, the conjecture would help reshape evaluation standards, governance frameworks, and hybrid system design. The conclusion underscores the importance of eventually proving or refuting the inequality for the future of trustworthy AI.
comment: version 3
♻ ☆ Diverse Topology Optimization using Modulated Neural Fields
Topology optimization (TO) is a family of computational methods that derive near-optimal geometries from formal problem descriptions. Despite their success, established TO methods are limited to generating single solutions, restricting the exploration of alternative designs. To address this limitation, we introduce Topology Optimization using Modulated Neural Fields (TOM) - a data-free method that trains a neural network to generate structurally compliant shapes and explores diverse solutions through an explicit diversity constraint. The network is trained with a solver-in-the-loop, optimizing the material distribution in each iteration. The trained model produces diverse shapes that closely adhere to the design requirements. We validate TOM on 2D and 3D TO problems. Our results show that TOM generates more diverse solutions than any previous method, all while maintaining near-optimality and without relying on a dataset. These findings open new avenues for engineering and design, offering enhanced flexibility and innovation in structural optimization.
comment: 22 pages, 14 figures
♻ ☆ Abacus: A Cost-Based Optimizer for Semantic Operator Systems
LLMs enable an exciting new class of data processing applications over large collections of unstructured documents. Several new programming frameworks have enabled developers to build these applications by composing them out of semantic operators: a declarative set of AI-powered data transformations with natural language specifications. These include LLM-powered maps, filters, joins, etc. used for document processing tasks such as information extraction, summarization, and more. While systems of semantic operators have achieved strong performance on benchmarks, they can be difficult to optimize. An optimizer for this setting must determine how to physically implement each semantic operator in a way that optimizes the system globally. Existing optimizers are limited in the number of optimizations they can apply, and most (if not all) cannot optimize system quality, cost, or latency subject to constraint(s) on the other dimensions. In this paper we present Abacus, an extensible, cost-based optimizer which searches for the best implementation of a semantic operator system given a (possibly constrained) optimization objective. Abacus estimates operator performance by leveraging a minimal set of validation examples and, if available, prior beliefs about operator performance. We evaluate Abacus on document processing workloads in the biomedical and legal domains (BioDEX; CUAD) and multi-modal question answering (MMQA). We demonstrate that systems optimized by Abacus achieve 18.7%-39.2% better quality and up to 23.6x lower cost and 4.2x lower latency than the next best system.
comment: 16 pages, 6 figures
♻ ☆ Convert Language Model into a Value-based Strategic Planner ACL 2025
Emotional support conversation (ESC) aims to alleviate the emotional distress of individuals through effective conversations. Although large language models (LLMs) have obtained remarkable progress on ESC, most of these studies might not define the diagram from the state model perspective, therefore providing a suboptimal solution for long-term satisfaction. To address such an issue, we leverage the Q-learning on LLMs, and propose a framework called straQ*. Our framework allows a plug-and-play LLM to bootstrap the planning during ESC, determine the optimal strategy based on long-term returns, and finally guide the LLM to response. Substantial experiments on ESC datasets suggest that straQ* outperforms many baselines, including direct inference, self-refine, chain of thought, finetuning, and finite state machines.
comment: 13 pages, 6 figures, Accepted by ACL 2025 Industry Track
♻ ☆ IP Leakage Attacks Targeting LLM-Based Multi-Agent Systems
The rapid advancement of Large Language Models (LLMs) has led to the emergence of Multi-Agent Systems (MAS) to perform complex tasks through collaboration. However, the intricate nature of MAS, including their architecture and agent interactions, raises significant concerns regarding intellectual property (IP) protection. In this paper, we introduce MASLEAK, a novel attack framework designed to extract sensitive information from MAS applications. MASLEAK targets a practical, black-box setting, where the adversary has no prior knowledge of the MAS architecture or agent configurations. The adversary can only interact with the MAS through its public API, submitting attack query $q$ and observing outputs from the final agent. Inspired by how computer worms propagate and infect vulnerable network hosts, MASLEAK carefully crafts adversarial query $q$ to elicit, propagate, and retain responses from each MAS agent that reveal a full set of proprietary components, including the number of agents, system topology, system prompts, task instructions, and tool usages. We construct the first synthetic dataset of MAS applications with 810 applications and also evaluate MASLEAK against real-world MAS applications, including Coze and CrewAI. MASLEAK achieves high accuracy in extracting MAS IP, with an average attack success rate of 87% for system prompts and task instructions, and 92% for system architecture in most cases. We conclude by discussing the implications of our findings and the potential defenses.
♻ ☆ Do Large Language Models Exhibit Cognitive Dissonance? Studying the Difference Between Revealed Beliefs and Stated Answers
Multiple Choice Questions (MCQ) have become a commonly used approach to assess the capabilities of Large Language Models (LLMs), due to their ease of manipulation and evaluation. The experimental appraisals of the LLMs' Stated Answer (their answer to MCQ) have pointed to their apparent ability to perform probabilistic reasoning or to grasp uncertainty. In this work, we investigate whether these aptitudes are measurable outside tailored prompting and MCQ by reformulating these issues as direct text-completion - the fundamental computational unit of LLMs. We introduce Revealed Belief, an evaluation framework that evaluates LLMs on tasks requiring reasoning under uncertainty, which complements MCQ scoring by analyzing text-completion probability distributions. Our findings suggest that while LLMs frequently state the correct answer, their Revealed Belief shows that they often allocate probability mass inconsistently, exhibit systematic biases, and often fail to update their beliefs appropriately when presented with new evidence, leading to strong potential impacts on downstream tasks. These results suggest that common evaluation methods may only provide a partial picture and that more research is needed to assess the extent and nature of their capabilities.
♻ ☆ The Backfiring Effect of Weak AI Safety Regulation
Recent policy proposals aim to improve the safety of general-purpose AI, but there is little understanding of the efficacy of different regulatory approaches to AI safety. We present a strategic model that explores the interactions between safety regulation, the general-purpose AI creators, and domain specialists--those who adapt the technology for specific applications. Our analysis examines how different regulatory measures, targeting different parts of the AI development chain, affect the outcome of this game. In particular, we assume AI technology is characterized by two key attributes: safety and performance. The regulator first sets a minimum safety standard that applies to one or both players, with strict penalties for non-compliance. The general-purpose creator then invests in the technology, establishing its initial safety and performance levels. Next, domain specialists refine the AI for their specific use cases, updating the safety and performance levels and taking the product to market. The resulting revenue is then distributed between the specialist and generalist through a revenue-sharing parameter. Our analysis reveals two key insights: First, weak safety regulation imposed predominantly on domain specialists can backfire. While it might seem logical to regulate AI use cases, our analysis shows that weak regulations targeting domain specialists alone can unintentionally reduce safety. This effect persists across a wide range of settings. Second, in sharp contrast to the previous finding, we observe that stronger, well-placed regulation can in fact mutually benefit all players subjected to it. When regulators impose appropriate safety standards on both general-purpose AI creators and domain specialists, the regulation functions as a commitment device, leading to safety and performance gains, surpassing what is achieved under no regulation or regulating one player alone.
comment: 35 pages, 5 figures
♻ ☆ Graph RAG for Legal Norms: A Hierarchical, Temporal and Deterministic Approach
This article proposes an adaptation of Graph Retrieval-Augmented Generation (Graph RAG) specifically designed for the analysis and comprehension of legal norms. Legal texts are characterized by a predefined hierarchical structure, an extensive network of references and a continuous evolution through multiple temporal versions. This temporal dynamism poses a significant challenge for standard AI systems, demanding a deterministic representation of the law at any given point in time. To address this, our approach grounds the knowledge graph construction in a formal, FRBRoo-inspired model that distinguishes abstract legal works from their concrete textual expressions. We introduce a multi-layered representation of Temporal Versions (capturing date-specific changes) and Language Versions (capturing linguistic variations). By modeling normative evolution as a precise sequence of these versioned entities, we enable the construction of a knowledge graph that serves as a verifiable "ground truth". This allows Large Language Models to generate responses based on accurate, context-aware, and point-in-time correct legal information, overcoming the risk of temporal inaccuracies. Through a detailed analysis of this formal Graph RAG approach and its application to legal norm datasets, this article aims to advance the field of Artificial Intelligence applied to Law, creating opportunities for more effective and reliable systems in legal research, legislative analysis, and decision support.
comment: This version enhances the theoretical underpinnings of the proposed Graph RAG methodology, including the introduction of a formal, FRBRoo-based model for versioning, and enabling multi-language support for both content and metadata
♻ ☆ Vul-RAG: Enhancing LLM-based Vulnerability Detection via Knowledge-level RAG
Although LLMs have shown promising potential in vulnerability detection, this study reveals their limitations in distinguishing between vulnerable and similar-but-benign patched code (only 0.06 - 0.14 accuracy). It shows that LLMs struggle to capture the root causes of vulnerabilities during vulnerability detection. To address this challenge, we propose enhancing LLMs with multi-dimensional vulnerability knowledge distilled from historical vulnerabilities and fixes. We design a novel knowledge-level Retrieval-Augmented Generation framework Vul-RAG, which improves LLMs with an accuracy increase of 16% - 24% in identifying vulnerable and patched code. Additionally, vulnerability knowledge generated by Vul-RAG can further (1) serve as high-quality explanations to improve manual detection accuracy (from 60% to 77%), and (2) detect 10 previously-unknown bugs in the recent Linux kernel release with 6 assigned CVEs.
♻ ☆ Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents ICLR 2025
Multimodal large language models (MLLMs) are transforming the capabilities of graphical user interface (GUI) agents, facilitating their transition from controlled simulations to complex, real-world applications across various platforms. However, the effectiveness of these agents hinges on the robustness of their grounding capability. Current GUI agents predominantly utilize text-based representations such as HTML or accessibility trees, which, despite their utility, often introduce noise, incompleteness, and increased computational overhead. In this paper, we advocate a human-like embodiment for GUI agents that perceive the environment entirely visually and directly perform pixel-level operations on the GUI. The key is visual grounding models that can accurately map diverse referring expressions of GUI elements to their coordinates on the GUI across different platforms. We show that a simple recipe, which includes web-based synthetic data and slight adaptation of the LLaVA architecture, is surprisingly effective for training such visual grounding models. We collect the largest dataset for GUI visual grounding so far, containing 10M GUI elements and their referring expressions over 1.3M screenshots, and use it to train UGround, a strong universal visual grounding model for GUI agents. Empirical results on six benchmarks spanning three categories (grounding, offline agent, and online agent) show that 1) UGround substantially outperforms existing visual grounding models for GUI agents, by up to 20% absolute, and 2) agents with UGround outperform state-of-the-art agents, despite the fact that existing agents use additional text-based input while ours only uses visual perception. These results provide strong support for the feasibility and promises of GUI agents that navigate the digital world as humans do.
comment: Accepted to ICLR 2025 (Oral). Project Homepage: https://osu-nlp-group.github.io/UGround/
♻ ☆ From tools to thieves: Measuring and understanding public perceptions of AI through crowdsourced metaphors
How has the public responded to the increasing prevalence of artificial intelligence (AI)-based technologies? We investigate public perceptions of AI by collecting over 12,000 responses over 12 months from a nationally representative U.S. sample. Participants provided open-ended metaphors reflecting their mental models of AI, a methodology that overcomes the limitations of traditional self-reported measures by capturing more nuance. Using a mixed-methods approach combining quantitative clustering and qualitative coding, we identify 20 dominant metaphors shaping public understanding of AI. To analyze these metaphors systematically, we present a scalable framework integrating language modeling (LM)-based techniques to measure key dimensions of public perception: anthropomorphism (attribution of human-like qualities), warmth, and competence. We find that Americans generally view AI as warm and competent, and that over the past year, perceptions of AI's human-likeness and warmth have significantly increased ($+34\%, r = 0.80, p < 0.01; +41\%, r = 0.62, p < 0.05$). These implicit perceptions, along with the identified dominant metaphors, strongly predict trust in and willingness to adopt AI ($r^2 = 0.21, 0.18, p < 0.001$). Moreover, we uncover systematic demographic differences in metaphors and implicit perceptions, such as the higher propensity of women, older individuals, and people of color to anthropomorphize AI, which shed light on demographic disparities in trust and adoption. In addition to our dataset and framework for tracking evolving public attitudes, we provide actionable insights on using metaphors for inclusive and responsible AI development.
comment: To appear at the ACM Conference on Fairness, Accountability, and Transparency 2025
♻ ☆ PredictaBoard: Benchmarking LLM Score Predictability ACL
Despite possessing impressive skills, Large Language Models (LLMs) often fail unpredictably, demonstrating inconsistent success in even basic common sense reasoning tasks. This unpredictability poses a significant challenge to ensuring their safe deployment, as identifying and operating within a reliable "safe zone" is essential for mitigating risks. To address this, we present PredictaBoard, a novel collaborative benchmarking framework designed to evaluate the ability of score predictors (referred to as assessors) to anticipate LLM errors on specific task instances (i.e., prompts) from existing datasets. PredictaBoard evaluates pairs of LLMs and assessors by considering the rejection rate at different tolerance errors. As such, PredictaBoard stimulates research into developing better assessors and making LLMs more predictable, not only with a higher average performance. We conduct illustrative experiments using baseline assessors and state-of-the-art LLMs. PredictaBoard highlights the critical need to evaluate predictability alongside performance, paving the way for safer AI systems where errors are not only minimised but also anticipated and effectively mitigated. Code for our benchmark can be found at https://github.com/Kinds-of-Intelligence-CFI/PredictaBoard
comment: Accepted at ACL Findings 2025
♻ ☆ SeePhys: Does Seeing Help Thinking? -- Benchmarking Vision-Based Physics Reasoning
We present SeePhys, a large-scale multimodal benchmark for LLM reasoning grounded in physics questions ranging from middle school to PhD qualifying exams. The benchmark covers 7 fundamental domains spanning the physics discipline, incorporating 21 categories of highly heterogeneous diagrams. In contrast to prior works where visual elements mainly serve auxiliary purposes, our benchmark features a substantial proportion of vision-essential problems (75%) that mandate visual information extraction for correct solutions. Through extensive evaluation, we observe that even the most advanced visual reasoning models (e.g., Gemini-2.5-pro and o4-mini) achieve sub-60% accuracy on our benchmark. These results reveal fundamental challenges in current large language models' visual understanding capabilities, particularly in: (i) establishing rigorous coupling between diagram interpretation and physics reasoning, and (ii) overcoming their persistent reliance on textual cues as cognitive shortcuts.
comment: 46 pages
♻ ☆ Spatiotemporal Learning of Brain Dynamics from fMRI Using Frequency-Specific Multi-Band Attention for Cognitive and Psychiatric Applications
Understanding how the brain's complex nonlinear dynamics give rise to cognitive function remains a central challenge in neuroscience. While brain functional dynamics exhibits scale-free and multifractal properties across temporal scales, conventional neuroimaging analytics assume linearity and stationarity, failing to capture frequency-specific neural computations. Here, we introduce Multi-Band Brain Net (MBBN), the first transformer-based framework to explicitly model frequency-specific spatiotemporal brain dynamics from fMRI. MBBN integrates biologically-grounded frequency decomposition with multi-band self-attention mechanisms, enabling discovery of previously undetectable frequency-dependent network interactions. Trained on 49,673 individuals across three large-scale cohorts (UK Biobank, ABCD, ABIDE), MBBN sets a new state-of-the-art in predicting psychiatric and cognitive outcomes (depression, ADHD, ASD), showing particular strength in classification tasks with up to 52.5\% higher AUROC and provides a novel framework for predicting cognitive intelligence scores. Frequency-resolved analyses uncover disorder-specific signatures: in ADHD, high-frequency fronto-sensorimotor connectivity is attenuated and opercular somatosensory nodes emerge as dynamic hubs; in ASD, orbitofrontal-somatosensory circuits show focal high-frequency disruption together with enhanced ultra-low-frequency coupling between the temporo-parietal junction and prefrontal cortex. By integrating scale-aware neural dynamics with deep learning, MBBN delivers more accurate and interpretable biomarkers, opening avenues for precision psychiatry and developmental neuroscience.
♻ ☆ AssistantX: An LLM-Powered Proactive Assistant in Collaborative Human-Populated Environment
Current service robots suffer from limited natural language communication abilities, heavy reliance on predefined commands, ongoing human intervention, and, most notably, a lack of proactive collaboration awareness in human-populated environments. This results in narrow applicability and low utility. In this paper, we introduce AssistantX, an LLM-powered proactive assistant designed for autonomous operation in realworld scenarios with high accuracy. AssistantX employs a multi-agent framework consisting of 4 specialized LLM agents, each dedicated to perception, planning, decision-making, and reflective review, facilitating advanced inference capabilities and comprehensive collaboration awareness, much like a human assistant by your side. We built a dataset of 210 real-world tasks to validate AssistantX, which includes instruction content and status information on whether relevant personnel are available. Extensive experiments were conducted in both text-based simulations and a real office environment over the course of a month and a half. Our experiments demonstrate the effectiveness of the proposed framework, showing that AssistantX can reactively respond to user instructions, actively adjust strategies to adapt to contingencies, and proactively seek assistance from humans to ensure successful task completion. More details and videos can be found at https://assistantx-agent. github.io/AssistantX/.
comment: 8 pages, 10 figures, 6 tables
♻ ☆ Quality-aware Masked Diffusion Transformer for Enhanced Music Generation IJCAI
Text-to-music (TTM) generation, which converts textual descriptions into audio, opens up innovative avenues for multimedia creation. Achieving high quality and diversity in this process demands extensive, high-quality data, which are often scarce in available datasets. Most open-source datasets frequently suffer from issues like low-quality waveforms and low text-audio consistency, hindering the advancement of music generation models. To address these challenges, we propose a novel quality-aware training paradigm for generating high-quality, high-musicality music from large-scale, quality-imbalanced datasets. Additionally, by leveraging unique properties in the latent space of musical signals, we adapt and implement a masked diffusion transformer (MDT) model for the TTM task, showcasing its capacity for quality control and enhanced musicality. Furthermore, we introduce a three-stage caption refinement approach to address low-quality captions' issue. Experiments show state-of-the-art (SOTA) performance on benchmark datasets including MusicCaps and the Song-Describer Dataset with both objective and subjective metrics. Demo audio samples are available at https://qa-mdt.github.io/, code and pretrained checkpoints are open-sourced at https://github.com/ivcylc/OpenMusic.
comment: IJCAI
♻ ☆ PunchBench: Benchmarking MLLMs in Multimodal Punchline Comprehension ACL 2025
Multimodal punchlines, which involve humor or sarcasm conveyed in image-caption pairs, are a popular way of communication on online multimedia platforms. With the rapid development of multimodal large language models (MLLMs), it is essential to assess their ability to effectively comprehend these punchlines. However, existing benchmarks on punchline comprehension suffer from three major limitations: 1) language shortcuts that allow models to solely rely on text, 2) lack of question diversity, and 3) narrow focus on a specific domain of multimodal content (e.g., cartoon). To address these limitations, we introduce a multimodal \textbf{Punch}line comprehension \textbf{Bench}mark, named \textbf{PunchBench}, which is tailored for accurate and comprehensive evaluation of punchline comprehension. To enhance the evaluation accuracy, we generate synonymous and antonymous captions by modifying original captions, which mitigates the impact of shortcuts in the captions. To provide a comprehensive evaluation, PunchBench incorporates diverse question formats and image-captions from various domains. On this basis, we conduct extensive evaluations and reveal a significant gap between state-of-the-art MLLMs and humans in punchline comprehension. To improve punchline comprehension, we propose Simple-to-Complex Chain-of-Question (SC-CoQ) strategy, enabling the models to incrementally address complicated questions by first mastering simple ones. SC-CoQ effectively enhances the performance of various MLLMs on PunchBench, surpassing in-context learning and chain-of-thought.
comment: This is the camera-ready version for ACL 2025
♻ ☆ BESSTIE: A Benchmark for Sentiment and Sarcasm Classification for Varieties of English ACL
Despite large language models (LLMs) being known to exhibit bias against non-standard language varieties, there are no known labelled datasets for sentiment analysis of English. To address this gap, we introduce BESSTIE, a benchmark for sentiment and sarcasm classification for three varieties of English: Australian (en-AU), Indian (en-IN), and British (en-UK). We collect datasets for these language varieties using two methods: location-based for Google Places reviews, and topic-based filtering for Reddit comments. To assess whether the dataset accurately represents these varieties, we conduct two validation steps: (a) manual annotation of language varieties and (b) automatic language variety prediction. Native speakers of the language varieties manually annotate the datasets with sentiment and sarcasm labels. We perform an additional annotation exercise to validate the reliance of the annotated labels. Subsequently, we fine-tune nine LLMs (representing a range of encoder/decoder and mono/multilingual models) on these datasets, and evaluate their performance on the two tasks. Our results show that the models consistently perform better on inner-circle varieties (i.e., en-AU and en-UK), in comparison with en-IN, particularly for sarcasm classification. We also report challenges in cross-variety generalisation, highlighting the need for language variety-specific datasets such as ours. BESSTIE promises to be a useful evaluative benchmark for future research in equitable LLMs, specifically in terms of language varieties. The BESSTIE dataset is publicly available at: https://huggingface.co/ datasets/unswnlporg/BESSTIE.
comment: Findings of ACL: ACL 2025
♻ ☆ Bridging Voting and Deliberation with Algorithms: Field Insights from vTaiwan and Kultur Komitee
Democratic processes increasingly aim to integrate large-scale voting with face-to-face deliberation, addressing the challenge of reconciling individual preferences with collective decision-making. This work introduces new methods that use algorithms and computational tools to bridge online voting with face-to-face deliberation, tested in two real-world scenarios: Kultur Komitee 2024 (KK24) and vTaiwan. These case studies highlight the practical applications and impacts of the proposed methods. We present three key contributions: (1) Preference-based Clustering for Deliberation (PCD), which enables both in-depth and broad discussions in deliberative settings by computing homogeneous and heterogeneous group compositions with balanced and adjustable group sizes; (2) Human-in-the-loop MES, a practical method that enhances the Method of Equal Shares (MES) algorithm with real-time digital feedback. This builds algorithmic trust by giving participants full control over how much decision-making is delegated to the voting aggregation algorithm as compared to deliberation; and (3) the ReadTheRoom deliberation method, which uses opinion space mapping to identify agreement and divergence, along with spectrum-based preference visualisation to track opinion shifts during deliberation. This approach enhances transparency by clarifying collective sentiment and fosters collaboration by encouraging participants to engage constructively with differing perspectives. By introducing these actionable frameworks, this research extends in-person deliberation with scalable digital methods that address the complexities of modern decision-making in participatory processes.
comment: In Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25), 2025
♻ ☆ SPARQ: Synthetic Problem Generation for Reasoning via Quality-Diversity Algorithms
Large language model (LLM) driven synthetic data generation has emerged as a powerful method for improving model reasoning capabilities. However, most methods either distill large state-of-the-art models into small students or use natural ground-truth problem statements to guarantee problem statement quality. This limits the scalability of these approaches to more complex and diverse problem domains. To address this, we present SPARQ: Synthetic Problem Generation for Reasoning via Quality-Diversity Algorithms, a novel approach for generating high-quality and diverse synthetic math problem and solution pairs using only a single model by measuring a problem's solve-rate: a proxy for problem difficulty. Starting from a seed dataset of 7.5K samples, we generate over 20 million new problem-solution pairs. We show that filtering the generated data by difficulty and then fine-tuning the same model on the resulting data improves relative model performance by up to 24\%. Additionally, we conduct ablations studying the impact of synthetic data quantity, quality and diversity on model generalization. We find that higher quality, as measured by problem difficulty, facilitates better in-distribution performance. Further, while generating diverse synthetic data does not as strongly benefit in-distribution performance, filtering for more diverse data facilitates more robust OOD generalization. We also confirm the existence of model and data scaling laws for synthetically generated problems, which positively benefit downstream model generalization.
♻ ☆ OpsEval: A Comprehensive IT Operations Benchmark Suite for Large Language Models
Information Technology (IT) Operations (Ops), particularly Artificial Intelligence for IT Operations (AIOps), is the guarantee for maintaining the orderly and stable operation of existing information systems. According to Gartner's prediction, the use of AI technology for automated IT operations has become a new trend. Large language models (LLMs) that have exhibited remarkable capabilities in NLP-related tasks, are showing great potential in the field of AIOps, such as in aspects of root cause analysis of failures, generation of operations and maintenance scripts, and summarizing of alert information. Nevertheless, the performance of current LLMs in Ops tasks is yet to be determined. In this paper, we present OpsEval, a comprehensive task-oriented Ops benchmark designed for LLMs. For the first time, OpsEval assesses LLMs' proficiency in various crucial scenarios at different ability levels. The benchmark includes 7184 multi-choice questions and 1736 question-answering (QA) formats in English and Chinese. By conducting a comprehensive performance evaluation of the current leading large language models, we show how various LLM techniques can affect the performance of Ops, and discussed findings related to various topics, including model quantification, QA evaluation, and hallucination issues. To ensure the credibility of our evaluation, we invite dozens of domain experts to manually review our questions. At the same time, we have open-sourced 20% of the test QA to assist current researchers in preliminary evaluations of their OpsLLM models. The remaining 80% of the data, which is not disclosed, is used to eliminate the issue of the test set leakage. Additionally, we have constructed an online leaderboard that is updated in real-time and will continue to be updated, ensuring that any newly emerging LLMs will be evaluated promptly. Both our dataset and leaderboard have been made public.
♻ ☆ FlowAlign: Trajectory-Regularized, Inversion-Free Flow-based Image Editing
Recent inversion-free, flow-based image editing methods such as FlowEdit leverages a pre-trained noise-to-image flow model such as Stable Diffusion 3, enabling text-driven manipulation by solving an ordinary differential equation (ODE). While the lack of exact latent inversion is a core advantage of these methods, it often results in unstable editing trajectories and poor source consistency. To address this limitation, we propose FlowAlign, a novel inversion-free flow-based framework for consistent image editing with principled trajectory control. FlowAlign introduces a flow-matching loss as a regularization mechanism to promote smoother and more stable trajectories during the editing process. Notably, the flow-matching loss is shown to explicitly balance semantic alignment with the edit prompt and structural consistency with the source image along the trajectory. Furthermore, FlowAlign naturally supports reverse editing by simply reversing the ODE trajectory, highlighting the reversible and consistent nature of the transformation. Extensive experiments demonstrate that FlowAlign outperforms existing methods in both source preservation and editing controllability.
♻ ☆ InkSight: Offline-to-Online Handwriting Conversion by Teaching Vision-Language Models to Read and Write
Digital note-taking is gaining popularity, offering a durable, editable, and easily indexable way of storing notes in a vectorized form, known as digital ink. However, a substantial gap remains between this way of note-taking and traditional pen-and-paper note-taking, a practice that is still favored by a vast majority. Our work InkSight, aims to bridge the gap by empowering physical note-takers to effortlessly convert their work (offline handwriting) to digital ink (online handwriting), a process we refer to as derendering. Prior research on the topic has focused on the geometric properties of images, resulting in limited generalization beyond their training domains. Our approach combines reading and writing priors, allowing training a model in the absence of large amounts of paired samples, which are difficult to obtain. To our knowledge, this is the first work that effectively derenders handwritten text in arbitrary photos with diverse visual characteristics and backgrounds. Furthermore, it generalizes beyond its training domain into simple sketches. Our human evaluation reveals that 87% of the samples produced by our model on the challenging HierText dataset are considered as a valid tracing of the input image and 67% look like a pen trajectory traced by a human.
comment: Accepted by Transactions on Machine Learning Research
♻ ☆ Adaptive Composition of Machine Learning as a Service (MLaaS) for IoT Environments
The dynamic nature of Internet of Things (IoT) environments challenges the long-term effectiveness of Machine Learning as a Service (MLaaS) compositions. The uncertainty and variability of IoT environments lead to fluctuations in data distribution, e.g., concept drift and data heterogeneity, and evolving system requirements, e.g., scalability demands and resource limitations. This paper proposes an adaptive MLaaS composition framework to ensure a seamless, efficient, and scalable MLaaS composition. The framework integrates a service assessment model to identify underperforming MLaaS services and a candidate selection model to filter optimal replacements. An adaptive composition mechanism is developed that incrementally updates MLaaS compositions using a contextual multi-armed bandit optimization strategy. By continuously adapting to evolving IoT constraints, the approach maintains Quality of Service (QoS) while reducing the computational cost associated with recomposition from scratch. Experimental results on a real-world dataset demonstrate the efficiency of our proposed approach.
♻ ☆ Chatting with Papers: A Hybrid Approach Using LLMs and Knowledge Graphs
This demo paper reports on a new workflow \textit{GhostWriter} that combines the use of Large Language Models and Knowledge Graphs (semantic artifacts) to support navigation through collections. Situated in the research area of Retrieval Augmented Generation, this specific workflow represents the creation of local and adaptable chatbots. Based on the tool-suite \textit{EverythingData} at the backend, \textit{GhostWriter} provides an interface that enables querying and ``chatting'' with a collection. Applied iteratively, the workflow supports the information needs of researchers when interacting with a collection of papers, whether it be to gain an overview, to learn more about a specific concept and its context, and helps the researcher ultimately to refine their research question in a controlled way. We demonstrate the workflow for a collection of articles from the \textit{method data analysis} journal published by GESIS -- Leibniz-Institute for the Social Sciences. We also point to further application areas.
comment: 10 pages, 3 figures, Accepted at Joint Workshop of the 5th AI + Informetrics (AII) and the 6th Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE)
♻ ☆ CAPO: Cost-Aware Prompt Optimization
Large language models (LLMs) have revolutionized natural language processing by solving a wide range of tasks simply guided by a prompt. Yet their performance is highly sensitive to prompt formulation. While automatic prompt optimization addresses this challenge by finding optimal prompts, current methods require a substantial number of LLM calls and input tokens, making prompt optimization expensive. We introduce CAPO (Cost-Aware Prompt Optimization), an algorithm that enhances prompt optimization efficiency by integrating AutoML techniques. CAPO is an evolutionary approach with LLMs as operators, incorporating racing to save evaluations and multi-objective optimization to balance performance with prompt length. It jointly optimizes instructions and few-shot examples while leveraging task descriptions for improved robustness. Our extensive experiments across diverse datasets and LLMs demonstrate that CAPO outperforms state-of-the-art discrete prompt optimization methods in 11/15 cases with improvements up to 21%p in accuracy. Our algorithm achieves better performances already with smaller budgets, saves evaluations through racing, and decreases average prompt length via a length penalty, making it both cost-efficient and cost-aware. Even without few-shot examples, CAPO outperforms its competitors and generally remains robust to initial prompts. CAPO represents an important step toward making prompt optimization more powerful and accessible by improving cost-efficiency.
comment: Submitted to AutoML 2025
♻ ☆ Exploring news intent and its application: A theory-driven approach
Understanding the intent behind information is crucial. However, news as a medium of public discourse still lacks a structured investigation of perceived news intent and its application. To advance this field, this paper reviews interdisciplinary studies on intentional action and introduces a conceptual deconstruction-based news intent understanding framework (NINT). This framework identifies the components of intent, facilitating a structured representation of news intent and its applications. Building upon NINT, we contribute a new intent perception dataset. Moreover, we investigate the potential of intent assistance on news-related tasks, such as significant improvement (+2.2% macF1) in the task of fake news detection. We hope that our findings will provide valuable insights into action-based intent cognition and computational social science.
comment: Accepted to Information Processing & Management. DOI: https://doi.org/10.1016/j.ipm.2025.104229
♻ ☆ Parallel Greedy Best-First Search with a Bound on Expansions Relative to Sequential Search
Parallelization of non-admissible search algorithms such as GBFS poses a challenge because straightforward parallelization can result in search behavior which significantly deviates from sequential search. Previous work proposed PUHF, a parallel search algorithm which is constrained to only expand states that can be expanded by some tie-breaking strategy for GBFS. We show that despite this constraint, the number of states expanded by PUHF is not bounded by a constant multiple of the number of states expanded by sequential GBFS with the worst-case tie-breaking strategy. We propose and experimentally evaluate One Bench At a Time (OBAT), a parallel greedy search which guarantees that the number of states expanded is within a constant factor of the number of states expanded by sequential GBFS with some tie-breaking policy.
♻ ☆ QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE
Alpha factor mining aims to discover investment signals from the historical financial market data, which can be used to predict asset returns and gain excess profits. Powerful deep learning methods for alpha factor mining lack interpretability, making them unacceptable in the risk-sensitive real markets. Formulaic alpha factors are preferred for their interpretability, while the search space is complex and powerful explorative methods are urged. Recently, a promising framework is proposed for generating formulaic alpha factors using deep reinforcement learning, and quickly gained research focuses from both academia and industries. This paper first argues that the originally employed policy training method, i.e., Proximal Policy Optimization (PPO), faces several important issues in the context of alpha factors mining. Herein, a novel reinforcement learning algorithm based on the well-known REINFORCE algorithm is proposed. REINFORCE employs Monte Carlo sampling to estimate the policy gradient-yielding unbiased but high variance estimates. The minimal environmental variability inherent in the underlying state transition function, which adheres to the Dirac distribution, can help alleviate this high variance issue, making REINFORCE algorithm more appropriate than PPO. A new dedicated baseline is designed to theoretically reduce the commonly suffered high variance of REINFORCE. Moreover, the information ratio is introduced as a reward shaping mechanism to encourage the generation of steady alpha factors that can better adapt to changes in market volatility. Evaluations on real assets data indicate the proposed algorithm boosts correlation with returns by 3.83\%, and a stronger ability to obtain excess returns compared to the latest alpha factors mining methods, which meets the theoretical results well.
comment: 16 pages, 9 figures
♻ ☆ A Survey of Mamba
As one of the most representative DL techniques, Transformer architecture has empowered numerous advanced models, especially the large language models (LLMs) that comprise billions of parameters, becoming a cornerstone in deep learning. Despite the impressive achievements, Transformers still face inherent limitations, particularly the time-consuming inference resulting from the quadratic computation complexity of attention calculation. Recently, a novel architecture named Mamba, drawing inspiration from classical state space models (SSMs), has emerged as a promising alternative for building foundation models, delivering comparable modeling abilities to Transformers while preserving near-linear scalability concerning sequence length. This has sparked an increasing number of studies actively exploring Mamba's potential to achieve impressive performance across diverse domains. Given such rapid evolution, there is a critical need for a systematic review that consolidates existing Mamba-empowered models, offering a comprehensive understanding of this emerging model architecture. In this survey, we therefore conduct an in-depth investigation of recent Mamba-associated studies, covering three main aspects: the advancements of Mamba-based models, the techniques of adapting Mamba to diverse data, and the applications where Mamba can excel. Specifically, we first review the foundational knowledge of various representative deep learning models and the details of Mamba-1&2 as preliminaries. Then, to showcase the significance of Mamba for AI, we comprehensively review the related studies focusing on Mamba models' architecture design, data adaptability, and applications. Finally, we present a discussion of current limitations and explore various promising research directions to provide deeper insights for future investigations.
♻ ☆ MAGELLAN: Metacognitive predictions of learning progress guide autotelic LLM agents in large goal spaces
Open-ended learning agents must efficiently prioritize goals in vast possibility spaces, focusing on those that maximize learning progress (LP). When such autotelic exploration is achieved by LLM agents trained with online RL in high-dimensional and evolving goal spaces, a key challenge for LP prediction is modeling one's own competence, a form of metacognitive monitoring. Traditional approaches either require extensive sampling or rely on brittle expert-defined goal groupings. We introduce MAGELLAN, a metacognitive framework that lets LLM agents learn to predict their competence and LP online. By capturing semantic relationships between goals, MAGELLAN enables sample-efficient LP estimation and dynamic adaptation to evolving goal spaces through generalization. In an interactive learning environment, we show that MAGELLAN improves LP prediction efficiency and goal prioritization, being the only method allowing the agent to fully master a large and evolving goal space. These results demonstrate how augmenting LLM agents with a metacognitive ability for LP predictions can effectively scale curriculum learning to open-ended goal spaces.
♻ ☆ MSDNet: Multi-Scale Decoder for Few-Shot Semantic Segmentation via Transformer-Guided Prototyping
Few-shot Semantic Segmentation addresses the challenge of segmenting objects in query images with only a handful of annotated examples. However, many previous state-of-the-art methods either have to discard intricate local semantic features or suffer from high computational complexity. To address these challenges, we propose a new Few-shot Semantic Segmentation framework based on the Transformer architecture. Our approach introduces the spatial transformer decoder and the contextual mask generation module to improve the relational understanding between support and query images. Moreover, we introduce a multi scale decoder to refine the segmentation mask by incorporating features from different resolutions in a hierarchical manner. Additionally, our approach integrates global features from intermediate encoder stages to improve contextual understanding, while maintaining a lightweight structure to reduce complexity. This balance between performance and efficiency enables our method to achieve competitive results on benchmark datasets such as PASCAL-5^i and COCO-20^i in both 1-shot and 5-shot settings. Notably, our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies. https://github.com/amirrezafateh/MSDNet
♻ ☆ H$^3$DP: Triply-Hierarchical Diffusion Policy for Visuomotor Learning
Visuomotor policy learning has witnessed substantial progress in robotic manipulation, with recent approaches predominantly relying on generative models to model the action distribution. However, these methods often overlook the critical coupling between visual perception and action prediction. In this work, we introduce $\textbf{Triply-Hierarchical Diffusion Policy}~(\textbf{H$^{\mathbf{3}}$DP})$, a novel visuomotor learning framework that explicitly incorporates hierarchical structures to strengthen the integration between visual features and action generation. H$^{3}$DP contains $\mathbf{3}$ levels of hierarchy: (1) depth-aware input layering that organizes RGB-D observations based on depth information; (2) multi-scale visual representations that encode semantic features at varying levels of granularity; and (3) a hierarchically conditioned diffusion process that aligns the generation of coarse-to-fine actions with corresponding visual features. Extensive experiments demonstrate that H$^{3}$DP yields a $\mathbf{+27.5\%}$ average relative improvement over baselines across $\mathbf{44}$ simulation tasks and achieves superior performance in $\mathbf{4}$ challenging bimanual real-world manipulation tasks. Project Page: https://lyy-iiis.github.io/h3dp/.
♻ ☆ Decoupling Generation and Evaluation for Parallel Greedy Best-First Search(extended version)
In order to understand and control the search behavior of parallel search, recent work has proposed a class of constrained parallel greedy best-first search algorithms which only expands states that satisfy some constraint.However, enforcing such constraints can be costly, as threads must be waiting idly until a state that satisfies the expansion constraint is available. We propose an improvement to constrained parallel search which decouples state generation and state evaluation and significantly improves state evaluation rate, resulting in better search performance.
comment: In Proceedings of SoCS 2025
♻ ☆ Patho-R1: A Multimodal Reinforcement Learning-Based Pathology Expert Reasoner
Recent advances in vision language models (VLMs) have enabled broad progress in the general medical field. However, pathology still remains a more challenging subdomain, with current pathology specific VLMs exhibiting limitations in both diagnostic accuracy and reasoning plausibility. Such shortcomings are largely attributable to the nature of current pathology datasets, which are primarily composed of image description pairs that lack the depth and structured diagnostic paradigms employed by real world pathologists. In this study, we leverage pathology textbooks and real world pathology experts to construct high-quality, reasoning-oriented datasets. Building on this, we introduce Patho-R1, a multimodal RL-based pathology Reasoner, trained through a three-stage pipeline: (1) continued pretraining on 3.5 million image-text pairs for knowledge infusion; (2) supervised fine-tuning on 500k high-quality Chain-of-Thought samples for reasoning incentivizing; (3) reinforcement learning using Group Relative Policy Optimization and Decoupled Clip and Dynamic sAmpling Policy Optimization strategies for multimodal reasoning quality refinement. To further assess the alignment quality of our dataset, we propose Patho-CLIP, trained on the same figure-caption corpus used for continued pretraining. Comprehensive experimental results demonstrate that both Patho-CLIP and Patho-R1 achieve robust performance across a wide range of pathology-related tasks, including zero-shot classification, cross-modal retrieval, Visual Question Answering, and Multiple Choice Question. Our project is available at the Patho-R1 repository: https://github.com/Wenchuan-Zhang/Patho-R1.
♻ ☆ ConsistencyChecker: Tree-based Evaluation of LLM Generalization Capabilities ACL 2025
Evaluating consistency in large language models (LLMs) is crucial for ensuring reliability, particularly in complex, multi-step interactions between humans and LLMs. Traditional self-consistency methods often miss subtle semantic changes in natural language and functional shifts in code or equations, which can accumulate over multiple transformations. To address this, we propose ConsistencyChecker, a tree-based evaluation framework designed to measure consistency through sequences of reversible transformations, including machine translation tasks and AI-assisted programming tasks. In our framework, nodes represent distinct text states, while edges correspond to pairs of inverse operations. Dynamic and LLM-generated benchmarks ensure a fair assessment of the model's generalization ability and eliminate benchmark leakage. Consistency is quantified based on similarity across different depths of the transformation tree. Experiments on eight models from various families and sizes show that ConsistencyChecker can distinguish the performance of different models. Notably, our consistency scores-computed entirely without using WMT paired data-correlate strongly (r > 0.7) with WMT 2024 auto-ranking, demonstrating the validity of our benchmark-free approach. Our implementation is available at: https://github.com/ulab-uiuc/consistencychecker.
comment: Accepted at ACL 2025 Main Conference
♻ ☆ FlagEvalMM: A Flexible Framework for Comprehensive Multimodal Model Evaluation
We present FlagEvalMM, an open-source evaluation framework designed to comprehensively assess multimodal models across a diverse range of vision-language understanding and generation tasks, such as visual question answering, text-to-image/video generation, and image-text retrieval. We decouple model inference from evaluation through an independent evaluation service, thus enabling flexible resource allocation and seamless integration of new tasks and models. Moreover, FlagEvalMM utilizes advanced inference acceleration tools (e.g., vLLM, SGLang) and asynchronous data loading to significantly enhance evaluation efficiency. Extensive experiments show that FlagEvalMM offers accurate and efficient insights into model strengths and limitations, making it a valuable tool for advancing multimodal research. The framework is publicly accessible athttps://github.com/flageval-baai/FlagEvalMM.
♻ ☆ AgentOrchestra: A Hierarchical Multi-Agent Framework for General-Purpose Task Solving
Recent advances in agent systems based on large language models (LLMs) have demonstrated strong capabilities in solving complex tasks. However, most current methods lack mechanisms for coordinating specialized agents and have limited ability to generalize to new or diverse domains. We introduce \projectname, a hierarchical multi-agent framework for general-purpose task solving that integrates high-level planning with modular agent collaboration. Inspired by the way a conductor orchestrates a symphony and guided by the principles of \textit{extensibility}, \textit{multimodality}, \textit{modularity}, and \textit{coordination}, \projectname features a central planning agent that decomposes complex objectives and delegates sub-tasks to a team of specialized agents. Each sub-agent is equipped with general programming and analytical tools, as well as abilities to tackle a wide range of real-world specific tasks, including data analysis, file operations, web navigation, and interactive reasoning in dynamic multimodal environments. \projectname supports flexible orchestration through explicit sub-goal formulation, inter-agent communication, and adaptive role allocation. We evaluate the framework on three widely used benchmark datasets covering various real-world tasks, searching web pages, reasoning over heterogeneous modalities, etc. Experimental results demonstrate that \projectname consistently outperforms flat-agent and monolithic baselines in task success rate and adaptability. These findings highlight the effectiveness of hierarchical organization and role specialization in building scalable and general-purpose LLM-based agent systems.
♻ ☆ MALSIGHT: Exploring Malicious Source Code and Benign Pseudocode for Iterative Binary Malware Summarization
Binary malware summarization aims to automatically generate human-readable descriptions of malware behaviors from executable files, facilitating tasks like malware cracking and detection. Previous methods based on Large Language Models (LLMs) have shown great promise. However, they still face significant issues, including poor usability, inaccurate explanations,and incomplete summaries, primarily due to the obscure pseudocode structure and the lack of malware training summaries. Further, calling relationships between functions, which involve the rich interactions within a binary malware, remain largely underexplored. To this end, we propose MALSIGHT, a novel code summarization framework that can iteratively generate descriptions of binary malware by exploring malicious source code and benign pseudocode. Specifically, we construct the first malware summary dataset, MalS and MalP, using an LLM and manually refine this dataset with human effort. At the training stage, we tune our proposed MalT5, a novel LLM-based code model, on the MalS and benign pseudocode datasets. Then, at the test stage, we iteratively feed the pseudocode functions into MalT5 to obtain the summary. Such a procedure facilitates the understanding of pseudocode structure and captures the intricate interactions between functions, thereby benefiting summaries' usability, accuracy, and completeness. Additionally, we propose a novel evaluation benchmark, BLEURT-sum, to measure the quality of summaries. Experiments on three datasets show the effectiveness of the proposed MALSIGHT. Notably, our proposed MalT5, with only 0.77B parameters, delivers comparable performance to much larger Code-Llama.
comment: Accepted by IEEE Transactions on Information Forensics & Security
♻ ☆ Accelerating RLHF Training with Reward Variance Increase
Reinforcement learning from human feedback (RLHF) is an essential technique for ensuring that large language models (LLMs) are aligned with human values and preferences during the post-training phase. As an effective RLHF approach, group relative policy optimization (GRPO) has demonstrated success in many LLM-based applications. However, efficient GRPO-based RLHF training remains a challenge. Recent studies reveal that a higher reward variance of the initial policy model leads to faster RLHF training. Inspired by this finding, we propose a practical reward adjustment model to accelerate RLHF training by provably increasing the reward variance and preserving the relative preferences and reward expectation. Our reward adjustment method inherently poses a nonconvex optimization problem, which is NP-hard to solve in general. To overcome the computational challenges, we design a novel $O(n \log n)$ algorithm to find a global solution of the nonconvex reward adjustment model by explicitly characterizing the extreme points of the feasible set. As an important application, we naturally integrate this reward adjustment model into the GRPO algorithm, leading to a more efficient GRPO with reward variance increase (GRPOVI) algorithm for RLHF training. As an interesting byproduct, we provide an indirect explanation for the empirical effectiveness of GRPO with rule-based reward for RLHF training, as demonstrated in DeepSeek-R1. Experiment results demonstrate that the GRPOVI algorithm can significantly improve the RLHF training efficiency compared to the original GRPO algorithm.
♻ ☆ Effect of Selection Format on LLM Performance
This paper investigates a critical aspect of large language model (LLM) performance: the optimal formatting of classification task options in prompts. Through an extensive experimental study, we compared two selection formats -- bullet points and plain English -- to determine their impact on model performance. Our findings suggest that presenting options via bullet points generally yields better results, although there are some exceptions. Furthermore, our research highlights the need for continued exploration of option formatting to drive further improvements in model performance.
♻ ☆ Scaling Computer-Use Grounding via User Interface Decomposition and Synthesis
Graphical user interface (GUI) grounding, the ability to map natural language instructions to specific actions on graphical user interfaces, remains a critical bottleneck in computer use agent development. Current benchmarks oversimplify grounding tasks as short referring expressions, failing to capture the complexity of real-world interactions that require software commonsense, layout understanding, and fine-grained manipulation capabilities. To address these limitations, we introduce OSWorld-G, a comprehensive benchmark comprising 564 finely annotated samples across diverse task types including text matching, element recognition, layout understanding, and precise manipulation. Additionally, we synthesize and release the largest computer use grounding dataset Jedi, which contains 4 million examples through multi-perspective decoupling of tasks. Our multi-scale models trained on Jedi demonstrate its effectiveness by outperforming existing approaches on ScreenSpot-v2, ScreenSpot-Pro, and our OSWorld-G. Furthermore, we demonstrate that improved grounding with Jedi directly enhances agentic capabilities of general foundation models on complex computer tasks, improving from 5% to 27% on OSWorld. Through detailed ablation studies, we identify key factors contributing to grounding performance and verify that combining specialized data for different interface elements enables compositional generalization to novel interfaces. All benchmark, data, checkpoints, and code are open-sourced and available at https://osworld-grounding.github.io.
comment: 49 pages, 13 figures
♻ ☆ KGMark: A Diffusion Watermark for Knowledge Graphs ICML2025
Knowledge graphs (KGs) are ubiquitous in numerous real-world applications, and watermarking facilitates protecting intellectual property and preventing potential harm from AI-generated content. Existing watermarking methods mainly focus on static plain text or image data, while they can hardly be applied to dynamic graphs due to spatial and temporal variations of structured data. This motivates us to propose KGMARK, the first graph watermarking framework that aims to generate robust, detectable, and transparent diffusion fingerprints for dynamic KG data. Specifically, we propose a novel clustering-based alignment method to adapt the watermark to spatial variations. Meanwhile, we present a redundant embedding strategy to harden the diffusion watermark against various attacks, facilitating the robustness of the watermark to the temporal variations. Additionally, we introduce a novel learnable mask matrix to improve the transparency of diffusion fingerprints. By doing so, our KGMARK properly tackles the variation challenges of structured data. Experiments on various public benchmarks show the effectiveness of our proposed KGMARK. Our code is available at https://github.com/phrara/kgmark.
comment: Accepted by ICML2025
♻ ☆ Target Speaker Extraction through Comparing Noisy Positive and Negative Audio Enrollments
Target speaker extraction focuses on isolating a specific speaker's voice from an audio mixture containing multiple speakers. To provide information about the target speaker's identity, prior works have utilized clean audio samples as conditioning inputs. However, such clean audio examples are not always readily available. For instance, obtaining a clean recording of a stranger's voice at a cocktail party without leaving the noisy environment is generally infeasible. Limited prior research has explored extracting the target speaker's characteristics from noisy enrollments, which may contain overlapping speech from interfering speakers. In this work, we explore a novel enrollment strategy that encodes target speaker information from the noisy enrollment by comparing segments where the target speaker is talking (Positive Enrollments) with segments where the target speaker is silent (Negative Enrollments). Experiments show the effectiveness of our model architecture, which achieves over 2.1 dB higher SI-SNRi compared to prior works in extracting the monaural speech from the mixture of two speakers. Additionally, the proposed two-stage training strategy accelerates convergence, reducing the number of optimization steps required to reach 3 dB SNR by 60\%. Overall, our method achieves state-of-the-art performance in the monaural target speaker extraction conditioned on noisy enrollments.
comment: 11 pages, 6 figures
♻ ☆ LongSpec: Long-Context Lossless Speculative Decoding with Efficient Drafting and Verification
As Large Language Models (LLMs) can now process extremely long contexts, efficient inference over these extended inputs has become increasingly important, especially for emerging applications like LLM agents that highly depend on this capability. Speculative decoding (SD) offers a promising lossless acceleration technique compared to lossy alternatives such as quantization and model cascades. However, most state-of-the-art SD methods are trained on short texts (typically fewer than 4k tokens), making them unsuitable for long-context scenarios. Specifically, adapting these methods to long contexts presents three key challenges: (1) the excessive memory demands posed by draft models due to large Key-Value (KV) cache; (2) performance degradation resulting from the mismatch between short-context training and long-context inference; and (3) inefficiencies in tree attention mechanisms when managing long token sequences. This work introduces LongSpec, a framework that addresses these challenges through three core innovations: a memory-efficient draft model with a constant-sized KV cache; novel position indices that mitigate the training-inference mismatch; and an attention aggregation strategy that combines fast prefix computation with standard tree attention to enable efficient decoding. Experimental results confirm the effectiveness of LongSpec, achieving up to a 3.26x speedup over strong Flash Attention baselines across five long-context understanding datasets, as well as a 2.25x reduction in wall-clock time on the AIME24 long reasoning task with the QwQ model, demonstrating significant latency improvements for long-context applications. The code is available at https://github.com/sail-sg/LongSpec.
♻ ☆ CAPTURE: Context-Aware Prompt Injection Testing and Robustness Enhancement ACL
Prompt injection remains a major security risk for large language models. However, the efficacy of existing guardrail models in context-aware settings remains underexplored, as they often rely on static attack benchmarks. Additionally, they have over-defense tendencies. We introduce CAPTURE, a novel context-aware benchmark assessing both attack detection and over-defense tendencies with minimal in-domain examples. Our experiments reveal that current prompt injection guardrail models suffer from high false negatives in adversarial cases and excessive false positives in benign scenarios, highlighting critical limitations. To demonstrate our framework's utility, we train CaptureGuard on our generated data. This new model drastically reduces both false negative and false positive rates on our context-aware datasets while also generalizing effectively to external benchmarks, establishing a path toward more robust and practical prompt injection defenses.
comment: Accepted in ACL LLMSec Workshop 2025
Geometric Signatures of Compositionality Across a Language Model's Lifetime ACL 2025
By virtue of linguistic compositionality, few syntactic rules and a finite lexicon can generate an unbounded number of sentences. That is, language, though seemingly high-dimensional, can be explained using relatively few degrees of freedom. An open question is whether contemporary language models (LMs) reflect the intrinsic simplicity of language that is enabled by compositionality. We take a geometric view of this problem by relating the degree of compositionality in a dataset to the intrinsic dimension (ID) of its representations under an LM, a measure of feature complexity. We find not only that the degree of dataset compositionality is reflected in representations' ID, but that the relationship between compositionality and geometric complexity arises due to learned linguistic features over training. Finally, our analyses reveal a striking contrast between nonlinear and linear dimensionality, showing they respectively encode semantic and superficial aspects of linguistic composition.
comment: Published at ACL 2025
♻ ☆ Counterfactual-Consistency Prompting for Relative Temporal Understanding in Large Language Models ACL 2025
Despite the advanced capabilities of large language models (LLMs), their temporal reasoning ability remains underdeveloped. Prior works have highlighted this limitation, particularly in maintaining temporal consistency when understanding events. For example, models often confuse mutually exclusive temporal relations like ``before'' and ``after'' between events and make inconsistent predictions. In this work, we tackle the issue of temporal inconsistency in LLMs by proposing a novel counterfactual prompting approach. Our method generates counterfactual questions and enforces collective constraints, enhancing the model's consistency. We evaluate our method on multiple datasets, demonstrating significant improvements in event ordering for explicit and implicit events and temporal commonsense understanding by effectively addressing temporal inconsistencies.
comment: ACL 2025 main (short)
♻ ☆ Reward Shaping to Mitigate Reward Hacking in RLHF
Reinforcement Learning from Human Feedback (RLHF) is essential for aligning large language models (LLMs) with human values. However, RLHF is susceptible to \emph{reward hacking}, where the agent exploits flaws in the reward function rather than learning the intended behavior, thus degrading alignment. Although reward shaping helps stabilize RLHF and partially mitigate reward hacking, a systematic investigation into shaping techniques and their underlying principles remains lacking. To bridge this gap, we present a comprehensive study of the prevalent reward shaping methods. Our analysis suggests two key design principles: (1) the RL reward should be bounded, and (2) the RL reward benefits from rapid initial growth followed by gradual convergence. Guided by these insights, we propose Preference As Reward (PAR), a novel approach that leverages the latent preferences embedded within the reward model as the signal for reinforcement learning. We evaluated PAR on two base models, Gemma2-2B, and Llama3-8B, using two datasets, Ultrafeedback-Binarized and HH-RLHF. Experimental results demonstrate PAR's superior performance over other reward shaping methods. On the AlpacaEval 2.0 benchmark, PAR achieves a win rate of at least 5 percentage points higher than competing approaches. Furthermore, PAR exhibits remarkable data efficiency, requiring only a single reference reward for optimal performance, and maintains robustness against reward hacking even after two full epochs of training. The code is available at https://github.com/PorUna-byte/PAR, and the Work done during the internship at StepFun by Jiayi Fu.
comment: 24 pages
♻ ☆ Hardware-Friendly Static Quantization Method for Video Diffusion Transformers
Diffusion Transformers for video generation have gained significant research interest since the impressive performance of SORA. Efficient deployment of such generative-AI models on GPUs has been demonstrated with dynamic quantization. However, resource-constrained devices cannot support dynamic quantization, and need static quantization of the models for their efficient deployment on AI processors. In this paper, we propose a novel method for the post-training quantization of OpenSora\cite{opensora}, a Video Diffusion Transformer, without relying on dynamic quantization techniques. Our approach employs static quantization, achieving video quality comparable to FP16 and dynamically quantized ViDiT-Q methods, as measured by CLIP, and VQA metrics. In particular, we utilize per-step calibration data to adequately provide a post-training statically quantized model for each time step, incorporating channel-wise quantization for weights and tensor-wise quantization for activations. By further applying the smooth-quantization technique, we can obtain high-quality video outputs with the statically quantized models. Extensive experimental results demonstrate that static quantization can be a viable alternative to dynamic quantization for video diffusion transformers, offering a more efficient approach without sacrificing performance.
comment: Accepted to MIPR 2025
♻ ☆ CellCLIP -- Learning Perturbation Effects in Cell Painting via Text-Guided Contrastive Learning
High-content screening (HCS) assays based on high-throughput microscopy techniques such as Cell Painting have enabled the interrogation of cells' morphological responses to perturbations at an unprecedented scale. The collection of such data promises to facilitate a better understanding of the relationships between different perturbations and their effects on cellular state. Towards achieving this goal, recent advances in cross-modal contrastive learning could, in theory, be leveraged to learn a unified latent space that aligns perturbations with their corresponding morphological effects. However, the application of such methods to HCS data is not straightforward due to substantial differences in the semantics of Cell Painting images compared to natural images, and the difficulty of representing different classes of perturbations (e.g., small molecule vs CRISPR gene knockout) in a single latent space. In response to these challenges, here we introduce CellCLIP, a cross-modal contrastive learning framework for HCS data. CellCLIP leverages pre-trained image encoders coupled with a novel channel encoding scheme to better capture relationships between different microscopy channels in image embeddings, along with natural language encoders for representing perturbations. Our framework outperforms current open-source models, demonstrating the best performance in both cross-modal retrieval and biologically meaningful downstream tasks while also achieving significant reductions in computation time.
♻ ☆ EEG2TEXT-CN: An Exploratory Study of Open-Vocabulary Chinese Text-EEG Alignment via Large Language Model and Contrastive Learning on ChineseEEG
We propose EEG2TEXT-CN, which, to the best of our knowledge, represents one of the earliest open-vocabulary EEG-to-text generation frameworks tailored for Chinese. Built on a biologically grounded EEG encoder (NICE-EEG) and a compact pretrained language model (MiniLM), our architecture aligns multichannel brain signals with natural language representations via masked pretraining and contrastive learning. Using a subset of the ChineseEEG dataset, where each sentence contains approximately ten Chinese characters aligned with 128-channel EEG recorded at 256 Hz, we segment EEG into per-character embeddings and predict full sentences in a zero-shot setting. The decoder is trained with teacher forcing and padding masks to accommodate variable-length sequences. Evaluation on over 1,500 training-validation sentences and 300 held-out test samples shows promising lexical alignment, with a best BLEU-1 score of 6.38\%. While syntactic fluency remains a challenge, our findings demonstrate the feasibility of non-phonetic, cross-modal language decoding from EEG. This work opens a new direction in multilingual brain-to-text research and lays the foundation for future cognitive-language interfaces in Chinese.
♻ ☆ Achieving Unbiased Multi-Instance Learning via Balanced Fine-Grained Positive-Unlabeled Learning
In real-world applications, it is often challenging to detect anomalous samples when the anomalous information they contain is extremely limited. In such cases, both macro-level and micro-level detection using multi-instance learning (MIL) encounter significant difficulties. The former struggles because normal and anomalous samples are highly similar and hard to distinguish at the macro level, while the latter is limited by the lack of labels at the micro level. In MIL, micro-level labels are inferred from macro-level labels, which can lead to severe bias. Moreover, the more imbalanced the distribution between normal and anomalous samples, the more pronounced these limitations become. In this study, we observe that the MIL problem can be elegantly transformed into a fine-grained Positive-Unlabeled (PU) learning problem. This transformation allows us to address the imbalance issue in an unbiased manner using a micro-level balancing mechanism. To this end, we propose a novel framework-Balanced Fine-Grained Positive-Unlabeled (BFGPU)-based on rigorous theoretical foundations to address the challenges above. Extensive experiments on both public and real-world datasets demonstrate the effectiveness of BFGPU, which outperforms existing methods, even in extreme scenarios where both macro and micro-level distributions are highly imbalanced. The code is open-sourced at https://github.com/BFGPU/BFGPU.
♻ ☆ Learning Traffic Signal Control via Genetic Programming
The control of traffic signals is crucial for improving transportation efficiency. Recently, learning-based methods, especially Deep Reinforcement Learning (DRL), garnered substantial success in the quest for more efficient traffic signal control strategies. However, the design of rewards in DRL highly demands domain knowledge to converge to an effective policy, and the final policy also presents difficulties in terms of explainability. In this work, a new learning-based method for signal control in complex intersections is proposed. In our approach, we design a concept of phase urgency for each signal phase. During signal transitions, the traffic light control strategy selects the next phase to be activated based on the phase urgency. We then proposed to represent the urgency function as an explainable tree structure. The urgency function can calculate the phase urgency for a specific phase based on the current road conditions. Genetic programming is adopted to perform gradient-free optimization of the urgency function. We test our algorithm on multiple public traffic signal control datasets. The experimental results indicate that the tree-shaped urgency function evolved by genetic programming outperforms the baselines, including a state-of-the-art method in the transportation field and a well-known DRL-based method. Our code is available online.
♻ ☆ MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning
Medical Large Vision-Language Models (Med-LVLMs) have shown strong potential in multimodal diagnostic tasks. However, existing single-agent models struggle to generalize across diverse medical specialties, limiting their performance. Recent efforts introduce multi-agent collaboration frameworks inspired by clinical workflows, where general practitioners (GPs) and specialists interact in a fixed sequence. Despite improvements, these static pipelines lack flexibility and adaptability in reasoning. To address this, we propose MMedAgent-RL, a reinforcement learning (RL)-based multi-agent framework that enables dynamic, optimized collaboration among medical agents. Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists and its own knowledge to make final decisions. To address the inconsistency in specialist outputs, we introduce a curriculum learning (CL)-guided RL strategy that progressively teaches the attending physician to balance between imitating specialists and correcting their mistakes. Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL not only outperforms both open-source and proprietary Med-LVLMs, but also exhibits human-like reasoning patterns. Notably, it achieves an average performance gain of 20.7% over supervised fine-tuning baselines.
♻ ☆ Verification Learning: Make Unsupervised Neuro-Symbolic System Feasible
The current Neuro-Symbolic (NeSy) Learning paradigm suffers from an over-reliance on labeled data, so if we completely disregard labels, it leads to less symbol information, a larger solution space, and more shortcuts-issues that current Nesy systems cannot resolve. This paper introduces a novel learning paradigm, Verification Learning (VL), which addresses this challenge by transforming the label-based reasoning process in Nesy into a label-free verification process. VL achieves excellent learning results solely by relying on unlabeled data and a function that verifies whether the current predictions conform to the rules. We formalize this problem as a Constraint Optimization Problem (COP) and propose a Dynamic Combinatorial Sorting (DCS) algorithm that accelerates the solution by reducing verification attempts, effectively lowering computational costs and introduce a prior alignment method to address potential shortcuts. Our theoretical analysis points out which tasks in Nesy systems can be completed without labels and explains why rules can replace infinite labels for some tasks, while for others the rules have no effect. We validate the proposed framework through several fully unsupervised tasks including addition, sort, match, and chess, each showing significant performance and efficiency improvements.
♻ ☆ REAL-Prover: Retrieval Augmented Lean Prover for Mathematical Reasoning
Nowadays, formal theorem provers have made monumental progress on high-school and competition-level mathematics, but few of them generalize to more advanced mathematics. In this paper, we present REAL-Prover, a new open-source stepwise theorem prover for Lean 4 to push this boundary. This prover, based on our fine-tuned large language model (REAL-Prover-v1) and integrated with a retrieval system (Leansearch-PS), notably boosts performance on solving college-level mathematics problems. To train REAL-Prover-v1, we developed HERALD-AF, a data extraction pipeline that converts natural language math problems into formal statements, and a new open-source Lean 4 interactive environment (Jixia-interactive) to facilitate synthesis data collection. In our experiments, our prover using only supervised fine-tune achieves competitive results with a 23.7% success rate (Pass@64) on the ProofNet dataset-comparable to state-of-the-art (SOTA) models. To further evaluate our approach, we introduce FATE-M, a new benchmark focused on algebraic problems, where our prover achieves a SOTA success rate of 56.7% (Pass@64).
♻ ☆ LLMs Help Alleviate the Cross-Subject Variability in Brain Signal and Language Alignment
Decoding human activity from EEG signals has long been a popular research topic. While recent studies have increasingly shifted focus from single-subject to cross-subject analysis, few have explored the model's ability to perform zero-shot predictions on EEG signals from previously unseen subjects. This research aims to investigate whether deep learning methods can capture subject-independent semantic information inherent in human EEG signals. Such insights are crucial for Brain-Computer Interfaces (BCI) because, on one hand, they demonstrate the model's robustness against subject-specific temporal biases, and on the other, they significantly enhance the generalizability of downstream tasks. We employ Large Language Models (LLMs) as denoising agents to extract subject-independent semantic features from noisy EEG signals. Experimental results, including ablation studies, highlight the pivotal role of LLMs in decoding subject-independent semantic information from noisy EEG data. We hope our findings will contribute to advancing BCI research and assist both academia and industry in applying EEG signals to a broader range of applications.
comment: The result is no longer believeable. Teaching force issue exists in the infer time of LLM
♻ ☆ Delving into Instance-Dependent Label Noise in Graph Data: A Comprehensive Study and Benchmark
Graph Neural Networks (GNNs) have achieved state-of-the-art performance in node classification tasks but struggle with label noise in real-world data. Existing studies on graph learning with label noise commonly rely on class-dependent label noise, overlooking the complexities of instance-dependent noise and falling short of capturing real-world corruption patterns. We introduce BeGIN (Benchmarking for Graphs with Instance-dependent Noise), a new benchmark that provides realistic graph datasets with various noise types and comprehensively evaluates noise-handling strategies across GNN architectures, noisy label detection, and noise-robust learning. To simulate instance-dependent corruptions, BeGIN introduces algorithmic methods and LLM-based simulations. Our experiments reveal the challenges of instance-dependent noise, particularly LLM-based corruption, and underscore the importance of node-specific parameterization to enhance GNN robustness. By comprehensively evaluating noise-handling strategies, BeGIN provides insights into their effectiveness, efficiency, and key performance factors. We expect that BeGIN will serve as a valuable resource for advancing research on label noise in graphs and fostering the development of robust GNN training methods. The code is available at https://github.com/kimsu55/BeGIN.
comment: 12 pages
♻ ☆ Mind the Inconspicuous: Revealing the Hidden Weakness in Aligned LLMs' Refusal Boundaries USENIX Security 25
Recent advances in Large Language Models (LLMs) have led to impressive alignment where models learn to distinguish harmful from harmless queries through supervised finetuning (SFT) and reinforcement learning from human feedback (RLHF). In this paper, we reveal a subtle yet impactful weakness in these aligned models. We find that simply appending multiple end of sequence (eos) tokens can cause a phenomenon we call context segmentation, which effectively shifts both harmful and benign inputs closer to the refusal boundary in the hidden space. Building on this observation, we propose a straightforward method to BOOST jailbreak attacks by appending eos tokens. Our systematic evaluation shows that this strategy significantly increases the attack success rate across 8 representative jailbreak techniques and 16 open-source LLMs, ranging from 2B to 72B parameters. Moreover, we develop a novel probing mechanism for commercial APIs and discover that major providers such as OpenAI, Anthropic, and Qwen do not filter eos tokens, making them similarly vulnerable. These findings highlight a hidden yet critical blind spot in existing alignment and content filtering approaches. We call for heightened attention to eos tokens' unintended influence on model behaviors, particularly in production systems. Our work not only calls for an input-filtering based defense, but also points to new defenses that make refusal boundaries more robust and generalizable, as well as fundamental alignment techniques that can defend against context segmentation attacks.
comment: published at USENIX Security 25
AgentCPM-GUI: Building Mobile-Use Agents with Reinforcement Fine-Tuning
The recent progress of large language model agents has opened new possibilities for automating tasks through graphical user interfaces (GUIs), especially in mobile environments where intelligent interaction can greatly enhance usability. However, practical deployment of such agents remains constrained by several key challenges. Existing training data is often noisy and lack semantic diversity, which hinders the learning of precise grounding and planning. Models trained purely by imitation tend to overfit to seen interface patterns and fail to generalize in unfamiliar scenarios. Moreover, most prior work focuses on English interfaces while overlooks the growing diversity of non-English applications such as those in the Chinese mobile ecosystem. In this work, we present AgentCPM-GUI, an 8B-parameter GUI agent built for robust and efficient on-device GUI interaction. Our training pipeline includes grounding-aware pre-training to enhance perception, supervised fine-tuning on high-quality Chinese and English trajectories to imitate human-like actions, and reinforcement fine-tuning with GRPO to improve reasoning capability. We also introduce a compact action space that reduces output length and supports low-latency execution on mobile devices. AgentCPM-GUI achieves state-of-the-art performance on five public benchmarks and a new Chinese GUI benchmark called CAGUI, reaching $96.9\%$ Type-Match and $91.3\%$ Exact-Match. To facilitate reproducibility and further research, we publicly release all code, model checkpoint, and evaluation data.
comment: Updated results in Table 2 and Table 3; The project is available at https://github.com/OpenBMB/AgentCPM-GUI
♻ ☆ Assessing Consistency and Reproducibility in the Outputs of Large Language Models: Evidence Across Diverse Finance and Accounting Tasks
This study provides the first comprehensive assessment of consistency and reproducibility in Large Language Model (LLM) outputs in finance and accounting research. We evaluate how consistently LLMs produce outputs given identical inputs through extensive experimentation with 50 independent runs across five common tasks: classification, sentiment analysis, summarization, text generation, and prediction. Using three OpenAI models (GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), we generate over 3.4 million outputs from diverse financial source texts and data, covering MD&As, FOMC statements, finance news articles, earnings call transcripts, and financial statements. Our findings reveal substantial but task-dependent consistency, with binary classification and sentiment analysis achieving near-perfect reproducibility, while complex tasks show greater variability. More advanced models do not consistently demonstrate better consistency and reproducibility, with task-specific patterns emerging. LLMs significantly outperform expert human annotators in consistency and maintain high agreement even where human experts significantly disagree. We further find that simple aggregation strategies across 3-5 runs dramatically improve consistency. We also find that aggregation may come with an additional benefit of improved accuracy for sentiment analysis when using newer models. Simulation analysis reveals that despite measurable inconsistency in LLM outputs, downstream statistical inferences remain remarkably robust. These findings address concerns about what we term "G-hacking," the selective reporting of favorable outcomes from multiple Generative AI runs, by demonstrating that such risks are relatively low for finance and accounting tasks.
comment: 89 pages, 20 tables, 15 figures
♻ ☆ Planning of Heuristics: Strategic Planning on Large Language Models with Monte Carlo Tree Search for Automating Heuristic Optimization
Heuristics have achieved great success in solving combinatorial optimization problems (COPs). However, heuristics designed by humans require too much domain knowledge and testing time. Given the fact that Large Language Models (LLMs) possess strong capabilities to understand and generate content, and a knowledge base that covers various domains, which offer a novel way to automatically optimize heuristics. Therefore, we propose Planning of Heuristics (PoH), an optimization method that integrates the self-reflection of LLMs with the Monte Carlo Tree Search (MCTS), a well-known planning algorithm. PoH iteratively refines generated heuristics by evaluating their performance and providing improvement suggestions. Our method enables to iteratively evaluate the generated heuristics (states) and improve them based on the improvement suggestions (actions) and evaluation results (rewards), by effectively simulating future states to search for paths with higher rewards. In this paper, we apply PoH to solve the Traveling Salesman Problem (TSP) and the Flow Shop Scheduling Problem (FSSP). The experimental results show that PoH outperforms other hand-crafted heuristics and Automatic Heuristic Design (AHD) by other LLMs-based methods, and achieves the significant improvements and the state-of-the-art performance of our proposed method in automating heuristic optimization with LLMs to solve COPs.
comment: 17 pages, 8 figures
♻ ☆ CSVQA: A Chinese Multimodal Benchmark for Evaluating STEM Reasoning Capabilities of VLMs
Vision-Language Models (VLMs) have demonstrated remarkable progress in multimodal understanding, yet their capabilities for scientific reasoning remain inadequately assessed. Current multimodal benchmarks predominantly evaluate generic image comprehension or text-driven reasoning, lacking authentic scientific contexts that require domain-specific knowledge integration with visual evidence analysis. To fill this gap, we present CSVQA, a diagnostic multimodal benchmark specifically designed for evaluating scientific reasoning through domain-grounded visual question answering. Our benchmark features 1,378 carefully constructed question-answer pairs spanning diverse STEM disciplines, each demanding domain knowledge, integration of visual evidence, and higher-order reasoning. Compared to prior multimodal benchmarks, CSVQA places greater emphasis on real-world scientific content and complex reasoning. We additionally propose a rigorous evaluation protocol to systematically assess whether model predictions are substantiated by valid intermediate reasoning steps based on curated explanations. Our comprehensive evaluation of 15 VLMs on this benchmark reveals notable performance disparities, as even the top-ranked proprietary model attains only 49.6% accuracy. This empirical evidence underscores the pressing need for advancing scientific reasoning capabilities in VLMs. Our CSVQA is released at https://huggingface.co/datasets/Skywork/CSVQA
comment: 36 pages
♻ ☆ SAE-V: Interpreting Multimodal Models for Enhanced Alignment
With the integration of image modality, the semantic space of multimodal large language models (MLLMs) is more complex than text-only models, making their interpretability more challenging and their alignment less stable, particularly susceptible to low-quality data, which can lead to inconsistencies between modalities, hallucinations, and biased outputs. As a result, developing interpretability methods for MLLMs is crucial for improving alignment quality and efficiency. In text-only LLMs, Sparse Autoencoders (SAEs) have gained attention for their ability to interpret latent representations. However, extending SAEs to multimodal settings presents new challenges due to modality fusion and the difficulty of isolating cross-modal representations. To address these challenges, we introduce SAE-V, a mechanistic interpretability framework that extends the SAE paradigm to MLLMs. By identifying and analyzing interpretable features along with their corresponding data, SAE-V enables fine-grained interpretation of both model behavior and data quality, facilitating a deeper understanding of cross-modal interactions and alignment dynamics. Moreover, by utilizing cross-modal feature weighting, SAE-V provides an intrinsic data filtering mechanism to enhance model alignment without requiring additional models. Specifically, when applied to the alignment process of MLLMs, SAE-V-based data filtering methods could achieve more than 110% performance with less than 50% data. Our results highlight SAE-V's ability to enhance interpretability and alignment in MLLMs, providing insights into their internal mechanisms.
comment: 17 pages, 13 figures
♻ ☆ Large Language Models' Reasoning Stalls: An Investigation into the Capabilities of Frontier Models
Empirical methods to examine the capability of Large Language Models (LLMs) to use Automated Theorem Prover (ATP) reasoning strategies are studied. We evaluate the performance of State of the Art models from December 2023 and August 2024 on PRONTOQA steamroller reasoning problems. For that, we develop methods for assessing LLM response accuracy and correct answer correlation. Our results show that progress in improving LLM reasoning abilities has stalled over the nine month period. By tracking completion tokens, we show that almost all improvement in reasoning ability since GPT-4 was released can be attributed to either hidden system prompts or the training of models to automatically use generic Chain of Thought prompting strategies. Among the ATP reasoning strategies tried, we found that current frontier LLMs are best able to follow the bottom-up (also known as forward-chaining) strategy. A low positive correlation was found between an LLM response containing correct reasoning and arriving at the correct conclusion.
comment: There are errors in the evaluation of model faithfulness to reasoning strategies and completeness of reasoning. The analysis will be re-conducted correctly and a new corresponding pre-print will be released
♻ ☆ ShorterBetter: Guiding Reasoning Models to Find Optimal Inference Length for Efficient Reasoning
Recent models such as OpenAI o1 and DeepSeek-R1 have demonstrated strong performance on reasoning-intensive tasks by generating extended Chain-of-Thought (CoT) traces. While longer reasoning helps with thorough exploration of solution paths for complex problems, it also often leads to inefficient and redundant outputs--a phenomenon commonly described as overthinking. In this paper, we propose ShorterBetter, a simple yet effective reinforcement learning method that enables reasoning models to learn their own optimal CoT lengths without manual supervision. We define the Sample Optimal Length (SOL) as the length of the shortest correct response among multiple generations, which serves as a dynamic reward signal to guide the model toward efficient reasoning. Applied to DeepSeek-Distill-Qwen-1.5B/7B as base models, ShorterBetter achieves 50%-80% reduction in output lengths in both in-domain and out-of-domain reasoning tasks while maintaining accuracy. Our reasoning trace analysis shows that ShorterBetter refines the structure of the reasoning traces by reducing unnecessary repetition, excessive self-verification, and over-exploration of alternatives.
comment: updated project website
♻ ☆ Informed Correctors for Discrete Diffusion Models
Discrete diffusion has emerged as a powerful framework for generative modeling in discrete domains, yet efficiently sampling from these models remains challenging. Existing sampling strategies often struggle to balance computation and sample quality when the number of sampling steps is reduced, even when the model has learned the data distribution well. To address these limitations, we propose a predictor-corrector sampling scheme where the corrector is informed by the diffusion model to more reliably counter the accumulating approximation errors. To further enhance the effectiveness of our informed corrector, we introduce complementary architectural modifications based on hollow transformers and a simple tailored training objective that leverages more training signal. We use a synthetic example to illustrate the failure modes of existing samplers and show how informed correctors alleviate these problems. On the text8 and tokenized ImageNet 256x256 datasets, our informed corrector consistently produces superior samples with fewer errors or improved FID scores for discrete diffusion models. These results underscore the potential of informed correctors for fast and high-fidelity generation using discrete diffusion.
♻ ☆ Supporting the development of Machine Learning for fundamental science in a federated Cloud with the AI_INFN platform
Machine Learning (ML) is driving a revolution in the way scientists design, develop, and deploy data-intensive software. However, the adoption of ML presents new challenges for the computing infrastructure, particularly in terms of provisioning and orchestrating access to hardware accelerators for development, testing, and production. The INFN-funded project AI_INFN ("Artificial Intelligence at INFN") aims at fostering the adoption of ML techniques within INFN use cases by providing support on multiple aspects, including the provision of AI-tailored computing resources. It leverages cloud-native solutions in the context of INFN Cloud, to share hardware accelerators as effectively as possible, ensuring the diversity of the Institute's research activities is not compromised. In this contribution, we provide an update on the commissioning of a Kubernetes platform designed to ease the development of GPU-powered data analysis workflows and their scalability on heterogeneous, distributed computing resources, possibly federated as Virtual Kubelets with the interLink provider.
comment: To be published in EPJ Web of Conferences (CHEP 2024)
♻ ☆ Multi-Agent Language Models: Advancing Cooperation, Coordination, and Adaptation
Modern Large Language Models (LLMs) exhibit impressive zero-shot and few-shot generalization capabilities across complex natural language tasks, enabling their widespread use as virtual assistants for diverse applications such as translation and summarization. Despite being trained solely on large corpora of text without explicit supervision on author intent, LLMs appear to infer the underlying meaning of textual interactions. This raises a fundamental question: can LLMs model and reason about the intentions of others, i.e., do they possess a form of theory of mind? Understanding other's intentions is crucial for effective collaboration, which underpins human societal success and is essential for cooperative interactions among multiple agents, including humans and autonomous systems. In this work, we investigate the theory of mind in LLMs through the lens of cooperative multi-agent reinforcement learning (MARL), where agents learn to collaborate via repeated interactions, mirroring human social reasoning. Our approach aims to enhance artificial agent's ability to adapt and cooperate with both artificial and human partners. By leveraging LLM-based agents capable of natural language interaction, we move towards creating hybrid human-AI systems that can foster seamless collaboration, with broad implications for the future of human-artificial interaction.
comment: arXiv admin note: substantial text overlap with arXiv:2311.07687
♻ ☆ Entropy-based Exploration Conduction for Multi-step Reasoning ACL 2025
Multi-step processes via large language models (LLMs) have proven effective for solving complex reasoning tasks. However, the depth of exploration of the reasoning procedure can significantly affect the task performance. Existing methods to automatically decide the depth often lead to high cost and a lack of flexibility. To address these issues, we propose Entropy-based Exploration Depth Conduction (Entro-duction), a novel method that dynamically adjusts the exploration depth during multi-step reasoning by monitoring LLM's output entropy and variance entropy. We employ these two features to capture the model's uncertainty of the current step and the fluctuation of uncertainty across consecutive reasoning steps. Based on the observed entropy changes, the LLM selects whether to deepen, expand, or stop exploration according to the probability, which facilitates the trade-off between the reasoning accuracy and exploration effectiveness. Experimental results across four benchmark datasets demonstrate the efficacy of Entro-duction.
comment: Accepted by ACL 2025
♻ ☆ DreamGen: Unlocking Generalization in Robot Learning through Video World Models
We introduce DreamGen, a simple yet highly effective 4-stage pipeline for training robot policies that generalize across behaviors and environments through neural trajectories - synthetic robot data generated from video world models. DreamGen leverages state-of-the-art image-to-video generative models, adapting them to the target robot embodiment to produce photorealistic synthetic videos of familiar or novel tasks in diverse environments. Since these models generate only videos, we recover pseudo-action sequences using either a latent action model or an inverse-dynamics model (IDM). Despite its simplicity, DreamGen unlocks strong behavior and environment generalization: a humanoid robot can perform 22 new behaviors in both seen and unseen environments, while requiring teleoperation data from only a single pick-and-place task in one environment. To evaluate the pipeline systematically, we introduce DreamGen Bench, a video generation benchmark that shows a strong correlation between benchmark performance and downstream policy success. Our work establishes a promising new axis for scaling robot learning well beyond manual data collection. Code available at https://github.com/NVIDIA/GR00T-Dreams.
comment: See website for videos: https://research.nvidia.com/labs/gear/dreamgen
♻ ☆ Think Twice before Adaptation: Improving Adaptability of DeepFake Detection via Online Test-Time Adaptation IJCAI-25
Deepfake (DF) detectors face significant challenges when deployed in real-world environments, particularly when encountering test samples deviated from training data through either postprocessing manipulations or distribution shifts. We demonstrate postprocessing techniques can completely obscure generation artifacts presented in DF samples, leading to performance degradation of DF detectors. To address these challenges, we propose Think Twice before Adaptation (\texttt{T$^2$A}), a novel online test-time adaptation method that enhances the adaptability of detectors during inference without requiring access to source training data or labels. Our key idea is to enable the model to explore alternative options through an Uncertainty-aware Negative Learning objective rather than solely relying on its initial predictions as commonly seen in entropy minimization (EM)-based approaches. We also introduce an Uncertain Sample Prioritization strategy and Gradients Masking technique to improve the adaptation by focusing on important samples and model parameters. Our theoretical analysis demonstrates that the proposed negative learning objective exhibits complementary behavior to EM, facilitating better adaptation capability. Empirically, our method achieves state-of-the-art results compared to existing test-time adaptation (TTA) approaches and significantly enhances the resilience and generalization of DF detectors during inference. Code is available \href{https://github.com/HongHanh2104/T2A-Think-Twice-Before-Adaptation}{here}.
comment: Accepted at 34th International Joint Conference on Artificial Intelligence (IJCAI-25)
♻ ☆ Representations Shape Weak-to-Strong Generalization: Theoretical Insights and Empirical Predictions
Weak-to-Strong Generalization (W2SG), where a weak model supervises a stronger one, serves as an important analogy for understanding how humans might guide superhuman intelligence in the future. Promising empirical results revealed that a strong model can surpass its weak supervisor. While recent work has offered theoretical insights into this phenomenon, a clear understanding of the interactions between weak and strong models that drive W2SG remains elusive. We investigate W2SG through a theoretical lens and show that it can be characterized using kernels derived from the principal components of weak and strong models' internal representations. These kernels can be used to define a space that, at a high level, captures what the weak model is unable to learn but is learnable by the strong model. The projection of labels onto this space quantifies how much the strong model falls short of its full potential due to weak supervision. This characterization also provides insights into how certain errors in weak supervision can be corrected by the strong model, regardless of overfitting. Our theory has significant practical implications, providing a representation-based metric that predicts W2SG performance trends without requiring labels, as shown in experiments on molecular predictions with transformers and 5 NLP tasks involving 52 LLMs.
♻ ☆ Solving Satisfiability Modulo Counting Exactly with Probabilistic Circuits
Satisfiability Modulo Counting (SMC) is a recently proposed general language to reason about problems integrating statistical and symbolic Artificial Intelligence. An SMC problem is an extended SAT problem in which the truth values of a few Boolean variables are determined by probabilistic inference. Approximate solvers may return solutions that violate constraints. Directly integrating available SAT solvers and probabilistic inference solvers gives exact solutions but results in slow performance because of many back-and-forth invocations of both solvers. We propose KOCO-SMC, an integrated exact SMC solver that efficiently tracks lower and upper bounds in the probabilistic inference process. It enhances computational efficiency by enabling early estimation of probabilistic inference using only partial variable assignments, whereas existing methods require full variable assignments. In the experiment, we compare KOCO-SMC with currently available approximate and exact SMC solvers on large-scale datasets and real-world applications. The proposed KOCO-SMC finds exact solutions with much less time.
♻ ☆ LaMP-Cap: Personalized Figure Caption Generation With Multimodal Figure Profiles
Figure captions are crucial for helping readers understand and remember a figure's key message. Many models have been developed to generate these captions, helping authors compose better quality captions more easily. Yet, authors almost always need to revise generic AI-generated captions to match their writing style and the domain's style, highlighting the need for personalization. Despite language models' personalization (LaMP) advances, these technologies often focus on text-only settings and rarely address scenarios where both inputs and profiles are multimodal. This paper introduces LaMP-Cap, a dataset for personalized figure caption generation with multimodal figure profiles. For each target figure, LaMP-Cap provides not only the needed inputs, such as figure images, but also up to three other figures from the same document--each with its image, caption, and figure-mentioning paragraphs--as a profile to characterize the context. Experiments with four LLMs show that using profile information consistently helps generate captions closer to the original author-written ones. Ablation studies reveal that images in the profile are more helpful than figure-mentioning paragraphs, highlighting the advantage of using multimodal profiles over text-only ones.
comment: The LaMP-CAP dataset is publicly available at: https://github.com/Crowd-AI-Lab/lamp-cap
♻ ☆ Optimal Transport for Probabilistic Circuits
We introduce a novel optimal transport framework for probabilistic circuits (PCs). While it has been shown recently that divergences between distributions represented as certain classes of PCs can be computed tractably, to the best of our knowledge, there is no existing approach to compute the Wasserstein distance between probability distributions given by PCs. We propose a Wasserstein-type distance that restricts the coupling measure of the associated optimal transport problem to be a probabilistic circuit. We then develop an algorithm for computing this distance by solving a series of small linear programs and derive the circuit conditions under which this is tractable. Furthermore, we show that we can easily retrieve the optimal transport plan between the PCs from the solutions to these linear programs. Lastly, we study the empirical Wasserstein distance between a PC and a dataset, and show that we can estimate the PC parameters to minimize this distance through an efficient iterative algorithm.
♻ ☆ Predicting the Understandability of Computational Notebooks through Code Metrics Analysis
Computational notebooks are the primary coding tools for data scientists, but their code quality remains understudied and often poor. Given the importance of maintainability and reusability, enhancing code understandability is essential. Traditional methods for assessing understandability typically rely on limited questionnaires or metadata like likes and votes, which may not reflect actual code clarity. To address this, we propose a novel approach that leverages user opinions from software repositories to assess the understandability of Jupyter notebooks. We conducted a case study using 542,051 Kaggle Jupyter notebooks compiled in the DistilKaggle dataset. To identify user comments related to code understandability, we used a fine-tuned DistilBERT transformer. We then introduced a new metric, i.e., User Opinion Code Understandability (UOCU), based on the number of relevant comments, their upvotes, and notebook views. UOCU proved significantly more effective than prior methods. We further enhanced it by combining UOCU with total upvotes in a hybrid approach. Using this improved metric, we collected 34 notebook-level metrics from 132,723 final notebooks and trained machine learning models to predict understandability. Our best model, a Random Forest classifier, achieved 89% accuracy in classifying the understandability level of notebook code. This work demonstrates the value of user opinion signals and notebook metrics in building scalable, accurate measures of code understandability.
♻ ☆ Resolving UnderEdit & OverEdit with Iterative & Neighbor-Assisted Model Editing
Large Language Models (LLMs) are widely deployed in downstream tasks, but keeping their knowledge up-to-date via retraining or fine-tuning is often computationally expensive. Model editing provides a more efficient alternative by updating a targeted subset of parameters, which often follows the locate-and-edit paradigm. Despite this efficiency, existing methods are limited: edits may fail to inject knowledge (UnderEdit) or unintentionally disrupt unrelated neighboring knowledge (OverEdit). To address these challenges, we propose two complementary methods: iterative model editing, which applies successive edits to mitigate UnderEdit, and neighbor-assisted model editing, which incorporates neighboring knowledge during editing to reduce OverEdit. Our extensive experiments show that these techniques improve editing performance across multiple LLMs, algorithms, and benchmarks, reducing UnderEdit by up to 38 percentage points and OverEdit by up to 6, while remaining broadly applicable to any locate-and-edit method.
comment: Under Review
♻ ☆ Too Big to Think: Capacity, Memorization, and Generalization in Pre-Trained Transformers
The relationship between memorization and generalization in large language models (LLMs) remains an open area of research, with growing evidence that the two are deeply intertwined. In this work, we investigate this relationship by pre-training a series of capacity-limited Transformer models from scratch on two synthetic character-level tasks designed to separately probe generalization (via arithmetic extrapolation) and memorization (via factual recall). We observe a consistent trade-off: small models extrapolate to unseen arithmetic cases but fail to memorize facts, while larger models memorize but fail to extrapolate. An intermediate-capacity model exhibits a similar shift toward memorization. When trained on both tasks jointly, no model (regardless of size) succeeds at extrapolation. These findings suggest that pre-training may intrinsically favor one learning mode over the other. By isolating these dynamics in a controlled setting, our study offers insight into how model capacity shapes learning behavior and offers broader implications for the design and deployment of small language models.
comment: Accepted for oral presentation to Tiny Titans: The next wave of On-Device Learning for Foundational Models Workshop at the 42nd International Conference on Machine Learning
♻ ☆ Multi-Task Reward Learning from Human Ratings
Reinforcement learning from human feedback (RLHF) has become a key factor in aligning model behavior with users' goals. However, while humans integrate multiple strategies when making decisions, current RLHF approaches often simplify this process by modeling human reasoning through isolated tasks such as classification or regression. In this paper, we propose a novel reinforcement learning (RL) method that mimics human decision-making by jointly considering multiple tasks. Specifically, we leverage human ratings in reward-free environments to infer a reward function, introducing learnable weights that balance the contributions of both classification and regression models. This design captures the inherent uncertainty in human decision-making and allows the model to adaptively emphasize different strategies. We conduct several experiments using synthetic human ratings to validate the effectiveness of the proposed approach. Results show that our method consistently outperforms existing rating-based RL methods, and in some cases, even surpasses traditional RL approaches.
comment: Accepted to the workshop on Models of Human Feedback for AI Alignment at the 42nd International Conference on Machine Learning
♻ ☆ Supervised Quantum Machine Learning: A Future Outlook from Qubits to Enterprise Applications
Supervised Quantum Machine Learning (QML) represents an intersection of quantum computing and classical machine learning, aiming to use quantum resources to support model training and inference. This paper reviews recent developments in supervised QML, focusing on methods such as variational quantum circuits, quantum neural networks, and quantum kernel methods, along with hybrid quantum-classical workflows. We examine recent experimental studies that show partial indications of quantum advantage and describe current limitations including noise, barren plateaus, scalability issues, and the lack of formal proofs of performance improvement over classical methods. The main contribution is a ten-year outlook (2025-2035) that outlines possible developments in supervised QML, including a roadmap describing conditions under which QML may be used in applied research and enterprise systems over the next decade.
comment: Future outlook and roadmap of QML with 7 pages and 1 figure
♻ ☆ UD-English-CHILDES: A Collected Resource of Gold and Silver Universal Dependencies Trees for Child Language Interactions
CHILDES is a widely used resource of transcribed child and child-directed speech. This paper introduces UD-English-CHILDES, the first officially released Universal Dependencies (UD) treebank. It is derived from previously dependency-annotated CHILDES data, which we harmonize to follow unified annotation principles. The gold-standard trees encompass utterances sampled from 11 children and their caregivers, totaling over 48K sentences (236K tokens). We validate these gold-standard annotations under the UD v2 framework and provide an additional 1M~silver-standard sentences, offering a consistent resource for computational and linguistic research.
comment: UDW 2025
♻ ☆ Can LLMs Ask Good Questions?
We evaluate questions generated by large language models (LLMs) from context, comparing them to human-authored questions across six dimensions: question type, question length, context coverage, answerability, uncommonness, and required answer length. Our study spans two open-source and two proprietary state-of-the-art models. Results reveal that LLM-generated questions tend to demand longer descriptive answers and exhibit more evenly distributed context focus, in contrast to the positional bias often seen in QA tasks. These findings provide insights into the distinctive characteristics of LLM-generated questions and inform future work on question quality and downstream applications.
Graphics 7
☆ SkinCells: Sparse Skinning using Voronoi Cells
For decades, efficient real-time skinning methods have played a crucial role in animating character rigs for visual effects and games. These methods remain a fundamental component of modern applications. However, animatable digital asset creation predominantly remains a manual process. Current automated tools often fall short of delivering the desired level of quality for intricate and complex geometries, requiring manual touch-ups. We propose a fully automatic and robust method for generating high quality skinning weights given a user-provided skeleton and mesh in A- or T-pose. Notably, our approach provides direct sparsity controls, limiting the number of bone influences per vertex, which is essential for efficient asset creation for large-scale mobile experiences with multiple concurrent users. Our method additionally addresses the need for level-of-detail (LoD) variations in performance-sensitive applications, which are exacerbated on mobile platforms. By optimizing weights in space rather than on discrete points, we enable a single optimization result to be seamlessly applied to all levels of detail of that asset or even variations of that asset. To achieve this, we introduce a novel parameterized family of functions called SkinCells. We demonstrate how our automatic method is able to robustly compute skinning weights in cases where biharmonic weight computation fails.
☆ GHAR: GeoPose-based Handheld Augmented Reality for Architectural Positioning, Manipulation and Visual Exploration
Handheld Augmented Reality (HAR) is revolutionizing the civil infrastructure application domain. The current trend in HAR relies on marker tracking technology. However, marker-based systems have several limitations, such as difficulty in use and installation, sensitivity to light, and marker design. In this paper, we propose a markerless HAR framework with GeoPose-based tracking. We use different gestures for manipulation and achieve 7 DOF (3 DOF each for translation and rotation, and 1 DOF for scaling). The proposed framework, called GHAR, is implemented for architectural building models. It augments virtual CAD models of buildings on the ground, enabling users to manipulate and visualize an architectural model before actual construction. The system offers a quick view of the building infrastructure, playing a vital role in requirement analysis and planning in construction technology. We evaluated the usability, manipulability, and comprehensibility of the proposed system using a standard user study with the System Usability Scale (SUS) and Handheld Augmented Reality User Study (HARUS). We compared our GeoPose-based markerless HAR framework with a marker-based HAR framework, finding significant improvement in the aforementioned three parameters with the markerless framework.
☆ Innovating China's Intangible Cultural Heritage with DeepSeek + MidJourney: The Case of Yangliuqing theme Woodblock Prints
Yangliuqing woodblock prints, a cornerstone of China's intangible cultural heritage, are celebrated for their intricate designs and vibrant colors. However, preserving these traditional art forms while fostering innovation presents significant challenges. This study explores the DeepSeek + MidJourney approach to generating creative, themed Yangliuqing woodblock prints focused on the fight against COVID-19 and depicting joyous winners. Using Fr\'echet Inception Distance (FID) scores for evaluation, the method that combined DeepSeek-generated thematic prompts, MidJourney-generated thematic images, original Yangliuqing prints, and DeepSeek-generated key prompts in MidJourney-generated outputs achieved the lowest mean FID score (150.2) with minimal variability ({\sigma} = 4.9). Additionally, feedback from 62 participants, collected via questionnaires, confirmed that this hybrid approach produced the most representative results. Moreover, the questionnaire data revealed that participants demonstrated the highest willingness to promote traditional culture and the strongest interest in consuming the AI-generated images produced through this method. These findings underscore the effectiveness of an innovative approach that seamlessly blends traditional artistic elements with modern AI-driven creativity, ensuring both cultural preservation and contemporary relevance.
☆ FLUX.1 Kontext: Flow Matching for In-Context Image Generation and Editing in Latent Space
We present evaluation results for FLUX.1 Kontext, a generative flow matching model that unifies image generation and editing. The model generates novel output views by incorporating semantic context from text and image inputs. Using a simple sequence concatenation approach, FLUX.1 Kontext handles both local editing and generative in-context tasks within a single unified architecture. Compared to current editing models that exhibit degradation in character consistency and stability across multiple turns, we observe that FLUX.1 Kontext improved preservation of objects and characters, leading to greater robustness in iterative workflows.The model achieves competitive performance with current state-of-the-art systems while delivering significantly faster generation times, enabling interactive applications and rapid prototyping workflows. To validate these improvements, we introduce KontextBench, a comprehensive benchmark with 1026 image-prompt pairs covering five task categories: local editing, global editing, character reference, style reference and text editing. Detailed evaluations show the superior performance of FLUX.1 Kontext in terms of both single-turn quality and multi-turn consistency, setting new standards for unified image processing models.
☆ FramePrompt: In-context Controllable Animation with Zero Structural Changes
Generating controllable character animation from a reference image and motion guidance remains a challenging task due to the inherent difficulty of injecting appearance and motion cues into video diffusion models. Prior works often rely on complex architectures, explicit guider modules, or multi-stage processing pipelines, which increase structural overhead and hinder deployment. Inspired by the strong visual context modeling capacity of pre-trained video diffusion transformers, we propose FramePrompt, a minimalist yet powerful framework that treats reference images, skeleton-guided motion, and target video clips as a unified visual sequence. By reformulating animation as a conditional future prediction task, we bypass the need for guider networks and structural modifications. Experiments demonstrate that our method significantly outperforms representative baselines across various evaluation metrics while also simplifying training. Our findings highlight the effectiveness of sequence-level visual conditioning and demonstrate the potential of pre-trained models for controllable animation without architectural changes.
comment: Project page: https://frameprompt.github.io/
♻ ☆ Hardware-Rasterized Ray-Based Gaussian Splatting
We present a novel, hardware rasterized rendering approach for ray-based 3D Gaussian Splatting (RayGS), obtaining both fast and high-quality results for novel view synthesis. Our work contains a mathematically rigorous and geometrically intuitive derivation about how to efficiently estimate all relevant quantities for rendering RayGS models, structured with respect to standard hardware rasterization shaders. Our solution is the first enabling rendering RayGS models at sufficiently high frame rates to support quality-sensitive applications like Virtual and Mixed Reality. Our second contribution enables alias-free rendering for RayGS, by addressing MIP-related issues arising when rendering diverging scales during training and testing. We demonstrate significant performance gains, across different benchmark scenes, while retaining state-of-the-art appearance quality of RayGS.
♻ ☆ Niagara: Normal-Integrated Geometric Affine Field for Scene Reconstruction from a Single View
Recent advances in single-view 3D scene reconstruction have highlighted the challenges in capturing fine geometric details and ensuring structural consistency, particularly in high-fidelity outdoor scene modeling. This paper presents Niagara, a new single-view 3D scene reconstruction framework that can faithfully reconstruct challenging outdoor scenes from a single input image for the first time. Our approach integrates monocular depth and normal estimation as input, which substantially improves its ability to capture fine details, mitigating common issues like geometric detail loss and deformation. Additionally, we introduce a geometric affine field (GAF) and 3D self-attention as geometry-constraint, which combines the structural properties of explicit geometry with the adaptability of implicit feature fields, striking a balance between efficient rendering and high-fidelity reconstruction. Our framework finally proposes a specialized encoder-decoder architecture, where a depth-based 3D Gaussian decoder is proposed to predict 3D Gaussian parameters, which can be used for novel view synthesis. Extensive results and analyses suggest that our Niagara surpasses prior SoTA approaches such as Flash3D in both single-view and dual-view settings, significantly enhancing the geometric accuracy and visual fidelity, especially in outdoor scenes.
Robotics 69
☆ Touch begins where vision ends: Generalizable policies for contact-rich manipulation
Data-driven approaches struggle with precise manipulation; imitation learning requires many hard-to-obtain demonstrations, while reinforcement learning yields brittle, non-generalizable policies. We introduce VisuoTactile Local (ViTaL) policy learning, a framework that solves fine-grained manipulation tasks by decomposing them into two phases: a reaching phase, where a vision-language model (VLM) enables scene-level reasoning to localize the object of interest, and a local interaction phase, where a reusable, scene-agnostic ViTaL policy performs contact-rich manipulation using egocentric vision and tactile sensing. This approach is motivated by the observation that while scene context varies, the low-level interaction remains consistent across task instances. By training local policies once in a canonical setting, they can generalize via a localize-then-execute strategy. ViTaL achieves around 90% success on contact-rich tasks in unseen environments and is robust to distractors. ViTaL's effectiveness stems from three key insights: (1) foundation models for segmentation enable training robust visual encoders via behavior cloning; (2) these encoders improve the generalizability of policies learned using residual RL; and (3) tactile sensing significantly boosts performance in contact-rich tasks. Ablation studies validate each of these insights, and we demonstrate that ViTaL integrates well with high-level VLMs, enabling robust, reusable low-level skills. Results and videos are available at https://vitalprecise.github.io.
☆ Prompting with the Future: Open-World Model Predictive Control with Interactive Digital Twins
Recent advancements in open-world robot manipulation have been largely driven by vision-language models (VLMs). While these models exhibit strong generalization ability in high-level planning, they struggle to predict low-level robot controls due to limited physical-world understanding. To address this issue, we propose a model predictive control framework for open-world manipulation that combines the semantic reasoning capabilities of VLMs with physically-grounded, interactive digital twins of the real-world environments. By constructing and simulating the digital twins, our approach generates feasible motion trajectories, simulates corresponding outcomes, and prompts the VLM with future observations to evaluate and select the most suitable outcome based on language instructions of the task. To further enhance the capability of pre-trained VLMs in understanding complex scenes for robotic control, we leverage the flexible rendering capabilities of the digital twin to synthesize the scene at various novel, unoccluded viewpoints. We validate our approach on a diverse set of complex manipulation tasks, demonstrating superior performance compared to baseline methods for language-conditioned robotic control using VLMs.
☆ Edge Nearest Neighbor in Sampling-Based Motion Planning
Neighborhood finders and nearest neighbor queries are fundamental parts of sampling based motion planning algorithms. Using different distance metrics or otherwise changing the definition of a neighborhood produces different algorithms with unique empiric and theoretical properties. In \cite{l-pa-06} LaValle suggests a neighborhood finder for the Rapidly-exploring Random Tree RRT algorithm \cite{l-rrtnt-98} which finds the nearest neighbor of the sampled point on the swath of the tree, that is on the set of all of the points on the tree edges, using a hierarchical data structure. In this paper we implement such a neighborhood finder and show, theoretically and experimentally, that this results in more efficient algorithms, and suggest a variant of the Rapidly-exploring Random Graph RRG algorithm \cite{f-isaom-10} that better exploits the exploration properties of the newly described subroutine for finding narrow passages.
☆ LeVERB: Humanoid Whole-Body Control with Latent Vision-Language Instruction
Vision-language-action (VLA) models have demonstrated strong semantic understanding and zero-shot generalization, yet most existing systems assume an accurate low-level controller with hand-crafted action "vocabulary" such as end-effector pose or root velocity. This assumption confines prior work to quasi-static tasks and precludes the agile, whole-body behaviors required by humanoid whole-body control (WBC) tasks. To capture this gap in the literature, we start by introducing the first sim-to-real-ready, vision-language, closed-loop benchmark for humanoid WBC, comprising over 150 tasks from 10 categories. We then propose LeVERB: Latent Vision-Language-Encoded Robot Behavior, a hierarchical latent instruction-following framework for humanoid vision-language WBC, the first of its kind. At the top level, a vision-language policy learns a latent action vocabulary from synthetically rendered kinematic demonstrations; at the low level, a reinforcement-learned WBC policy consumes these latent verbs to generate dynamics-level commands. In our benchmark, LeVERB can zero-shot attain a 80% success rate on simple visual navigation tasks, and 58.5% success rate overall, outperforming naive hierarchical whole-body VLA implementation by 7.8 times.
☆ Critical Insights about Robots for Mental Wellbeing
Social robots are increasingly being explored as tools to support emotional wellbeing, particularly in non-clinical settings. Drawing on a range of empirical studies and practical deployments, this paper outlines six key insights that highlight both the opportunities and challenges in using robots to promote mental wellbeing. These include (1) the lack of a single, objective measure of wellbeing, (2) the fact that robots don't need to act as companions to be effective, (3) the growing potential of virtual interactions, (4) the importance of involving clinicians in the design process, (5) the difference between one-off and long-term interactions, and (6) the idea that adaptation and personalization are not always necessary for positive outcomes. Rather than positioning robots as replacements for human therapists, we argue that they are best understood as supportive tools that must be designed with care, grounded in evidence, and shaped by ethical and psychological considerations. Our aim is to inform future research and guide responsible, effective use of robots in mental health and wellbeing contexts.
☆ CEED-VLA: Consistency Vision-Language-Action Model with Early-Exit Decoding
In recent years, Vision-Language-Action (VLA) models have become a vital research direction in robotics due to their impressive multimodal understanding and generalization capabilities. Despite the progress, their practical deployment is severely constrained by inference speed bottlenecks, particularly in high-frequency and dexterous manipulation tasks. While recent studies have explored Jacobi decoding as a more efficient alternative to traditional autoregressive decoding, its practical benefits are marginal due to the lengthy iterations. To address it, we introduce consistency distillation training to predict multiple correct action tokens in each iteration, thereby achieving acceleration. Besides, we design mixed-label supervision to mitigate the error accumulation during distillation. Although distillation brings acceptable speedup, we identify that certain inefficient iterations remain a critical bottleneck. To tackle this, we propose an early-exit decoding strategy that moderately relaxes convergence conditions, which further improves average inference efficiency. Experimental results show that the proposed method achieves more than 4 times inference acceleration across different baselines while maintaining high task success rates in both simulated and real-world robot tasks. These experiments validate that our approach provides an efficient and general paradigm for accelerating multimodal decision-making in robotics. Our project page is available at https://irpn-eai.github.io/CEED-VLA/.
comment: 16 pages
☆ HARMONI: Haptic-Guided Assistance for Unified Robotic Tele-Manipulation and Tele-Navigation
Shared control, which combines human expertise with autonomous assistance, is critical for effective teleoperation in complex environments. While recent advances in haptic-guided teleoperation have shown promise, they are often limited to simplified tasks involving 6- or 7-DoF manipulators and rely on separate control strategies for navigation and manipulation. This increases both cognitive load and operational overhead. In this paper, we present a unified tele-mobile manipulation framework that leverages haptic-guided shared control. The system integrates a 9-DoF follower mobile manipulator and a 7-DoF leader robotic arm, enabling seamless transitions between tele-navigation and tele-manipulation through real-time haptic feedback. A user study with 20 participants under real-world conditions demonstrates that our framework significantly improves task accuracy and efficiency without increasing cognitive load. These findings highlight the potential of haptic-guided shared control for enhancing operator performance in demanding teleoperation scenarios.
comment: To appear in IEEE CASE 2025
☆ ROSA: Harnessing Robot States for Vision-Language and Action Alignment
Vision-Language-Action (VLA) models have recently made significant advance in multi-task, end-to-end robotic control, due to the strong generalization capabilities of Vision-Language Models (VLMs). A fundamental challenge in developing such models is effectively aligning the vision-language space with the robotic action space. Existing approaches typically rely on directly fine-tuning VLMs using expert demonstrations. However, this strategy suffers from a spatio-temporal gap, resulting in considerable data inefficiency and heavy reliance on human labor. Spatially, VLMs operate within a high-level semantic space, whereas robotic actions are grounded in low-level 3D physical space; temporally, VLMs primarily interpret the present, while VLA models anticipate future actions. To overcome these challenges, we propose a novel training paradigm, ROSA, which leverages robot state estimation to improve alignment between vision-language and action spaces. By integrating robot state estimation data obtained via an automated process, ROSA enables the VLA model to gain enhanced spatial understanding and self-awareness, thereby boosting performance and generalization. Extensive experiments in both simulated and real-world environments demonstrate the effectiveness of ROSA, particularly in low-data regimes.
Towards Efficient Occupancy Mapping via Gaussian Process Latent Field Shaping RSS 2025
Occupancy mapping has been a key enabler of mobile robotics. Originally based on a discrete grid representation, occupancy mapping has evolved towards continuous representations that can predict the occupancy status at any location and account for occupancy correlations between neighbouring areas. Gaussian Process (GP) approaches treat this task as a binary classification problem using both observations of occupied and free space. Conceptually, a GP latent field is passed through a logistic function to obtain the output class without actually manipulating the GP latent field. In this work, we propose to act directly on the latent function to efficiently integrate free space information as a prior based on the shape of the sensor's field-of-view. A major difference with existing methods is the change in the classification problem, as we distinguish between free and unknown space. The `occupied' area is the infinitesimally thin location where the class transitions from free to unknown. We demonstrate in simulated environments that our approach is sound and leads to competitive reconstruction accuracy.
comment: Presented at RSS 2025 Workshop: Gaussian Representations for Robot Autonomy: Challenges and Opportunities
☆ Parallel Branch Model Predictive Control on GPUs
We present a parallel GPU-accelerated solver for branch Model Predictive Control problems. Based on iterative LQR methods, our solver exploits the tree-sparse structure and implements temporal parallelism using the parallel scan algorithm. Consequently, the proposed solver enables parallelism across both the prediction horizon and the scenarios. In addition, we utilize an augmented Lagrangian method to handle general inequality constraints. We compare our solver with state-of-the-art numerical solvers in two automated driving applications. The numerical results demonstrate that, compared to CPU-based solvers, our solver achieves competitive performance for problems with short horizons and small-scale trees, while outperforming other solvers on large-scale problems.
comment: 12 pages, 9 figures
☆ Disturbance-aware minimum-time planning strategies for motorsport vehicles with probabilistic safety certificates
This paper presents a disturbance-aware framework that embeds robustness into minimum-lap-time trajectory optimization for motorsport. Two formulations are introduced. (i) Open-loop, horizon-based covariance propagation uses worst-case uncertainty growth over a finite window to tighten tire-friction and track-limit constraints. (ii) Closed-loop, covariance-aware planning incorporates a time-varying LQR feedback law in the optimizer, providing a feedback-consistent estimate of disturbance attenuation and enabling sharper yet reliable constraint tightening. Both methods yield reference trajectories for human or artificial drivers: in autonomous applications the modelled controller can replicate the on-board implementation, while for human driving accuracy increases with the extent to which the driver can be approximated by the assumed time-varying LQR policy. Computational tests on a representative Barcelona-Catalunya sector show that both schemes meet the prescribed safety probability, yet the closed-loop variant incurs smaller lap-time penalties than the more conservative open-loop solution, while the nominal (non-robust) trajectory remains infeasible under the same uncertainties. By accounting for uncertainty growth and feedback action during planning, the proposed framework delivers trajectories that are both performance-optimal and probabilistically safe, advancing minimum-time optimization toward real-world deployment in high-performance motorsport and autonomous racing.
comment: 24 pages, 11 figures, paper under review
☆ Can you see how I learn? Human observers' inferences about Reinforcement Learning agents' learning processes
Reinforcement Learning (RL) agents often exhibit learning behaviors that are not intuitively interpretable by human observers, which can result in suboptimal feedback in collaborative teaching settings. Yet, how humans perceive and interpret RL agent's learning behavior is largely unknown. In a bottom-up approach with two experiments, this work provides a data-driven understanding of the factors of human observers' understanding of the agent's learning process. A novel, observation-based paradigm to directly assess human inferences about agent learning was developed. In an exploratory interview study (\textit{N}=9), we identify four core themes in human interpretations: Agent Goals, Knowledge, Decision Making, and Learning Mechanisms. A second confirmatory study (\textit{N}=34) applied an expanded version of the paradigm across two tasks (navigation/manipulation) and two RL algorithms (tabular/function approximation). Analyses of 816 responses confirmed the reliability of the paradigm and refined the thematic framework, revealing how these themes evolve over time and interrelate. Our findings provide a human-centered understanding of how people make sense of agent learning, offering actionable insights for designing interpretable RL systems and improving transparency in Human-Robot Interaction.
☆ What Matters in Learning from Large-Scale Datasets for Robot Manipulation
Imitation learning from large multi-task demonstration datasets has emerged as a promising path for building generally-capable robots. As a result, 1000s of hours have been spent on building such large-scale datasets around the globe. Despite the continuous growth of such efforts, we still lack a systematic understanding of what data should be collected to improve the utility of a robotics dataset and facilitate downstream policy learning. In this work, we conduct a large-scale dataset composition study to answer this question. We develop a data generation framework to procedurally emulate common sources of diversity in existing datasets (such as sensor placements and object types and arrangements), and use it to generate large-scale robot datasets with controlled compositions, enabling a suite of dataset composition studies that would be prohibitively expensive in the real world. We focus on two practical settings: (1) what types of diversity should be emphasized when future researchers collect large-scale datasets for robotics, and (2) how should current practitioners retrieve relevant demonstrations from existing datasets to maximize downstream policy performance on tasks of interest. Our study yields several critical insights -- for example, we find that camera poses and spatial arrangements are crucial dimensions for both diversity in collection and alignment in retrieval. In real-world robot learning settings, we find that not only do our insights from simulation carry over, but our retrieval strategies on existing datasets such as DROID allow us to consistently outperform existing training strategies by up to 70%. More results at https://robo-mimiclabs.github.io/
UAV Object Detection and Positioning in a Mining Industrial Metaverse with Custom Geo-Referenced Data
The mining sector increasingly adopts digital tools to improve operational efficiency, safety, and data-driven decision-making. One of the key challenges remains the reliable acquisition of high-resolution, geo-referenced spatial information to support core activities such as extraction planning and on-site monitoring. This work presents an integrated system architecture that combines UAV-based sensing, LiDAR terrain modeling, and deep learning-based object detection to generate spatially accurate information for open-pit mining environments. The proposed pipeline includes geo-referencing, 3D reconstruction, and object localization, enabling structured spatial outputs to be integrated into an industrial digital twin platform. Unlike traditional static surveying methods, the system offers higher coverage and automation potential, with modular components suitable for deployment in real-world industrial contexts. While the current implementation operates in post-flight batch mode, it lays the foundation for real-time extensions. The system contributes to the development of AI-enhanced remote sensing in mining by demonstrating a scalable and field-validated geospatial data workflow that supports situational awareness and infrastructure safety.
☆ A Survey on Imitation Learning for Contact-Rich Tasks in Robotics
This paper comprehensively surveys research trends in imitation learning for contact-rich robotic tasks. Contact-rich tasks, which require complex physical interactions with the environment, represent a central challenge in robotics due to their nonlinear dynamics and sensitivity to small positional deviations. The paper examines demonstration collection methodologies, including teaching methods and sensory modalities crucial for capturing subtle interaction dynamics. We then analyze imitation learning approaches, highlighting their applications to contact-rich manipulation. Recent advances in multimodal learning and foundation models have significantly enhanced performance in complex contact tasks across industrial, household, and healthcare domains. Through systematic organization of current research and identification of challenges, this survey provides a foundation for future advancements in contact-rich robotic manipulation.
comment: 47pages, 1 figures
☆ Learning Swing-up Maneuvers for a Suspended Aerial Manipulation Platform in a Hierarchical Control Framework
In this work, we present a novel approach to augment a model-based control method with a reinforcement learning (RL) agent and demonstrate a swing-up maneuver with a suspended aerial manipulation platform. These platforms are targeted towards a wide range of applications on construction sites involving cranes, with swing-up maneuvers allowing it to perch at a given location, inaccessible with purely the thrust force of the platform. Our proposed approach is based on a hierarchical control framework, which allows different tasks to be executed according to their assigned priorities. An RL agent is then subsequently utilized to adjust the reference set-point of the lower-priority tasks to perform the swing-up maneuver, which is confined in the nullspace of the higher-priority tasks, such as maintaining a specific orientation and position of the end-effector. Our approach is validated using extensive numerical simulation studies.
comment: 6 pages, 10 figures
☆ Block-wise Adaptive Caching for Accelerating Diffusion Policy
Diffusion Policy has demonstrated strong visuomotor modeling capabilities, but its high computational cost renders it impractical for real-time robotic control. Despite huge redundancy across repetitive denoising steps, existing diffusion acceleration techniques fail to generalize to Diffusion Policy due to fundamental architectural and data divergences. In this paper, we propose Block-wise Adaptive Caching(BAC), a method to accelerate Diffusion Policy by caching intermediate action features. BAC achieves lossless action generation acceleration by adaptively updating and reusing cached features at the block level, based on a key observation that feature similarities vary non-uniformly across timesteps and locks. To operationalize this insight, we first propose the Adaptive Caching Scheduler, designed to identify optimal update timesteps by maximizing the global feature similarities between cached and skipped features. However, applying this scheduler for each block leads to signiffcant error surges due to the inter-block propagation of caching errors, particularly within Feed-Forward Network (FFN) blocks. To mitigate this issue, we develop the Bubbling Union Algorithm, which truncates these errors by updating the upstream blocks with signiffcant caching errors before downstream FFNs. As a training-free plugin, BAC is readily integrable with existing transformer-based Diffusion Policy and vision-language-action models. Extensive experiments on multiple robotic benchmarks demonstrate that BAC achieves up to 3x inference speedup for free.
☆ Towards a Formal Specification for Self-organized Shape Formation in Swarm Robotics
The self-organization of robots for the formation of structures and shapes is a stimulating application of the swarm robotic system. It involves a large number of autonomous robots of heterogeneous behavior, coordination among them, and their interaction with the dynamic environment. This process of complex structure formation is considered a complex system, which needs to be modeled by using any modeling approach. Although the formal specification approach along with other formal methods has been used to model the behavior of robots in a swarm. However, to the best of our knowledge, the formal specification approach has not been used to model the self-organization process in swarm robotic systems for shape formation. In this paper, we use a formal specification approach to model the shape formation task of swarm robots. We use Z (Zed) language of formal specification, which is a state-based language, to model the states of the entities of the systems. We demonstrate the effectiveness of Z for the self-organized shape formation. The presented formal specification model gives the outlines for designing and implementing the swarm robotic system for the formation of complex shapes and structures. It also provides the foundation for modeling the complex shape formation process for swarm robotics using a multi-agent system in a simulation-based environment. Keywords: Swarm robotics, Self-organization, Formal specification, Complex systems
☆ Adaptive Model-Base Control of Quadrupeds via Online System Identification using Kalman Filter IROS 2025
Many real-world applications require legged robots to be able to carry variable payloads. Model-based controllers such as model predictive control (MPC) have become the de facto standard in research for controlling these systems. However, most model-based control architectures use fixed plant models, which limits their applicability to different tasks. In this paper, we present a Kalman filter (KF) formulation for online identification of the mass and center of mass (COM) of a four-legged robot. We evaluate our method on a quadrupedal robot carrying various payloads and find that it is more robust to strong measurement noise than classical recursive least squares (RLS) methods. Moreover, it improves the tracking performance of the model-based controller with varying payloads when the model parameters are adjusted at runtime.
comment: 6 pages, 5 figures, 1 table, accepted for IEEE IROS 2025
☆ VLM-SFD: VLM-Assisted Siamese Flow Diffusion Framework for Dual-Arm Cooperative Manipulation
Dual-arm cooperative manipulation holds great promise for tackling complex real-world tasks that demand seamless coordination and adaptive dynamics. Despite substantial progress in learning-based motion planning, most approaches struggle to generalize across diverse manipulation tasks and adapt to dynamic, unstructured environments, particularly in scenarios involving interactions between two objects such as assembly, tool use, and bimanual grasping. To address these challenges, we introduce a novel VLM-Assisted Siamese Flow Diffusion (VLM-SFD) framework for efficient imitation learning in dual-arm cooperative manipulation. The proposed VLM-SFD framework exhibits outstanding adaptability, significantly enhancing the ability to rapidly adapt and generalize to diverse real-world tasks from only a minimal number of human demonstrations. Specifically, we propose a Siamese Flow Diffusion Network (SFDNet) employs a dual-encoder-decoder Siamese architecture to embed two target objects into a shared latent space, while a diffusion-based conditioning process-conditioned by task instructions-generates two-stream object-centric motion flows that guide dual-arm coordination. We further design a dynamic task assignment strategy that seamlessly maps the predicted 2D motion flows into 3D space and incorporates a pre-trained vision-language model (VLM) to adaptively assign the optimal motion to each robotic arm over time. Experiments validate the effectiveness of the proposed method, demonstrating its ability to generalize to diverse manipulation tasks while maintaining high efficiency and adaptability. The code and demo videos are publicly available on our project website https://sites.google.com/view/vlm-sfd/.
☆ JENGA: Object selection and pose estimation for robotic grasping from a stack
Vision-based robotic object grasping is typically investigated in the context of isolated objects or unstructured object sets in bin picking scenarios. However, there are several settings, such as construction or warehouse automation, where a robot needs to interact with a structured object formation such as a stack. In this context, we define the problem of selecting suitable objects for grasping along with estimating an accurate 6DoF pose of these objects. To address this problem, we propose a camera-IMU based approach that prioritizes unobstructed objects on the higher layers of stacks and introduce a dataset for benchmarking and evaluation, along with a suitable evaluation metric that combines object selection with pose accuracy. Experimental results show that although our method can perform quite well, this is a challenging problem if a completely error-free solution is needed. Finally, we show results from the deployment of our method for a brick-picking application in a construction scenario.
☆ Delayed Expansion AGT: Kinodynamic Planning with Application to Tractor-Trailer Parking
Kinodynamic planning of articulated vehicles in cluttered environments faces additional challenges arising from high-dimensional state space and complex system dynamics. Built upon [1],[2], this work proposes the DE-AGT algorithm that grows a tree using pre-computed motion primitives (MPs) and A* heuristics. The first feature of DE-AGT is a delayed expansion of MPs. In particular, the MPs are divided into different modes, which are ranked online. With the MP classification and prioritization, DE-AGT expands the most promising mode of MPs first, which eliminates unnecessary computation and finds solutions faster. To obtain the cost-to-go heuristic for nonholonomic articulated vehicles, we rely on supervised learning and train neural networks for fast and accurate cost-to-go prediction. The learned heuristic is used for online mode ranking and node selection. Another feature of DE-AGT is the improved goal-reaching. Exactly reaching a goal state usually requires a constant connection checking with the goal by solving steering problems -- non-trivial and time-consuming for articulated vehicles. The proposed termination scheme overcomes this challenge by tightly integrating a light-weight trajectory tracking controller with the search process. DE-AGT is implemented for autonomous parking of a general car-like tractor with 3-trailer. Simulation results show an average of 10x acceleration compared to a previous method.
☆ Observability-Aware Active Calibration of Multi-Sensor Extrinsics for Ground Robots via Online Trajectory Optimization
Accurate calibration of sensor extrinsic parameters for ground robotic systems (i.e., relative poses) is crucial for ensuring spatial alignment and achieving high-performance perception. However, existing calibration methods typically require complex and often human-operated processes to collect data. Moreover, most frameworks neglect acoustic sensors, thereby limiting the associated systems' auditory perception capabilities. To alleviate these issues, we propose an observability-aware active calibration method for ground robots with multimodal sensors, including a microphone array, a LiDAR (exteroceptive sensors), and wheel encoders (proprioceptive sensors). Unlike traditional approaches, our method enables active trajectory optimization for online data collection and calibration, contributing to the development of more intelligent robotic systems. Specifically, we leverage the Fisher information matrix (FIM) to quantify parameter observability and adopt its minimum eigenvalue as an optimization metric for trajectory generation via B-spline curves. Through planning and replanning of robot trajectory online, the method enhances the observability of multi-sensor extrinsic parameters. The effectiveness and advantages of our method have been demonstrated through numerical simulations and real-world experiments. For the benefit of the community, we have also open-sourced our code and data at https://github.com/AISLAB-sustech/Multisensor-Calibration.
comment: Accepted and to appear in the IEEE Sensors Journal
☆ Uncertainty-Informed Active Perception for Open Vocabulary Object Goal Navigation
Mobile robots exploring indoor environments increasingly rely on vision-language models to perceive high-level semantic cues in camera images, such as object categories. Such models offer the potential to substantially advance robot behaviour for tasks such as object-goal navigation (ObjectNav), where the robot must locate objects specified in natural language by exploring the environment. Current ObjectNav methods heavily depend on prompt engineering for perception and do not address the semantic uncertainty induced by variations in prompt phrasing. Ignoring semantic uncertainty can lead to suboptimal exploration, which in turn limits performance. Hence, we propose a semantic uncertainty-informed active perception pipeline for ObjectNav in indoor environments. We introduce a novel probabilistic sensor model for quantifying semantic uncertainty in vision-language models and incorporate it into a probabilistic geometric-semantic map to enhance spatial understanding. Based on this map, we develop a frontier exploration planner with an uncertainty-informed multi-armed bandit objective to guide efficient object search. Experimental results demonstrate that our method achieves ObjectNav success rates comparable to those of state-of-the-art approaches, without requiring extensive prompt engineering.
comment: 7 pages, 3 figures
☆ Open-Set LiDAR Panoptic Segmentation Guided by Uncertainty-Aware Learning
Autonomous vehicles that navigate in open-world environments may encounter previously unseen object classes. However, most existing LiDAR panoptic segmentation models rely on closed-set assumptions, failing to detect unknown object instances. In this work, we propose ULOPS, an uncertainty-guided open-set panoptic segmentation framework that leverages Dirichlet-based evidential learning to model predictive uncertainty. Our architecture incorporates separate decoders for semantic segmentation with uncertainty estimation, embedding with prototype association, and instance center prediction. During inference, we leverage uncertainty estimates to identify and segment unknown instances. To strengthen the model's ability to differentiate between known and unknown objects, we introduce three uncertainty-driven loss functions. Uniform Evidence Loss to encourage high uncertainty in unknown regions. Adaptive Uncertainty Separation Loss ensures a consistent difference in uncertainty estimates between known and unknown objects at a global scale. Contrastive Uncertainty Loss refines this separation at the fine-grained level. To evaluate open-set performance, we extend benchmark settings on KITTI-360 and introduce a new open-set evaluation for nuScenes. Extensive experiments demonstrate that ULOPS consistently outperforms existing open-set LiDAR panoptic segmentation methods.
☆ C2TE: Coordinated Constrained Task Execution Design for Ordering-Flexible Multi-Vehicle Platoon Merging
In this paper, we propose a distributed coordinated constrained task execution (C2TE) algorithm that enables a team of vehicles from different lanes to cooperatively merge into an {\it ordering-flexible platoon} maneuvering on the desired lane. Therein, the platoon is flexible in the sense that no specific spatial ordering sequences of vehicles are predetermined. To attain such a flexible platoon, we first separate the multi-vehicle platoon (MVP) merging mission into two stages, namely, pre-merging regulation and {\it ordering-flexible platoon} merging, and then formulate them into distributed constraint-based optimization problems. Particularly, by encoding longitudinal-distance regulation and same-lane collision avoidance subtasks into the corresponding control barrier function (CBF) constraints, the proposed algorithm in Stage 1 can safely enlarge sufficient longitudinal distances among adjacent vehicles. Then, by encoding lateral convergence, longitudinal-target attraction, and neighboring collision avoidance subtasks into CBF constraints, the proposed algorithm in Stage~2 can efficiently achieve the {\it ordering-flexible platoon}. Note that the {\it ordering-flexible platoon} is realized through the interaction of the longitudinal-target attraction and time-varying neighboring collision avoidance constraints simultaneously. Feasibility guarantee and rigorous convergence analysis are both provided under strong nonlinear couplings induced by flexible orderings. Finally, experiments using three autonomous mobile vehicles (AMVs) are conducted to verify the effectiveness and flexibility of the proposed algorithm, and extensive simulations are performed to demonstrate its robustness, adaptability, and scalability when tackling vehicles' sudden breakdown, new appearing, different number of lanes, mixed autonomy, and large-scale scenarios, respectively.
☆ Equilibrium-Driven Smooth Separation and Navigation of Marsupial Robotic Systems
In this paper, we propose an equilibrium-driven controller that enables a marsupial carrier-passenger robotic system to achieve smooth carrier-passenger separation and then to navigate the passenger robot toward a predetermined target point. Particularly, we design a potential gradient in the form of a cubic polynomial for the passenger's controller as a function of the carrier-passenger and carrier-target distances in the moving carrier's frame. This introduces multiple equilibrium points corresponding to the zero state of the error dynamic system during carrier-passenger separation. The change of equilibrium points is associated with the change in their attraction regions, enabling smooth carrier-passenger separation and afterwards seamless navigation toward the target. Finally, simulations demonstrate the effectiveness and adaptability of the proposed controller in environments containing obstacles.
☆ Multimodal "Puppeteer": An Exploration of Robot Teleoperation Via Virtual Counterpart with LLM-Driven Voice and Gesture Interaction in Augmented Reality
The integration of robotics and augmented reality (AR) holds transformative potential for advancing human-robot interaction (HRI), offering enhancements in usability, intuitiveness, accessibility, and collaborative task performance. This paper introduces and evaluates a novel multimodal AR-based robot puppeteer framework that enables intuitive teleoperation via virtual counterpart through large language model (LLM)-driven voice commands and hand gesture interactions. Utilizing the Meta Quest 3, users interact with a virtual counterpart robot in real-time, effectively "puppeteering" its physical counterpart within an AR environment. We conducted a within-subject user study with 42 participants performing robotic cube pick-and-place with pattern matching tasks under two conditions: gesture-only interaction and combined voice-and-gesture interaction. Both objective performance metrics and subjective user experience (UX) measures were assessed, including an extended comparative analysis between roboticists and non-roboticists. The results provide key insights into how multimodal input influences contextual task efficiency, usability, and user satisfaction in AR-based HRI. Our findings offer practical design implications for designing effective AR-enhanced HRI systems.
comment: This work has been submitted to the IEEE TVCG for possible publication
☆ Cognitive Synergy Architecture: SEGO for Human-Centric Collaborative Robots
This paper presents SEGO (Semantic Graph Ontology), a cognitive mapping architecture designed to integrate geometric perception, semantic reasoning, and explanation generation into a unified framework for human-centric collaborative robotics. SEGO constructs dynamic cognitive scene graphs that represent not only the spatial configuration of the environment but also the semantic relations and ontological consistency among detected objects. The architecture seamlessly combines SLAM-based localization, deep-learning-based object detection and tracking, and ontology-driven reasoning to enable real-time, semantically coherent mapping.
☆ Autonomous 3D Moving Target Encirclement and Interception with Range measurement IROS 2025
Commercial UAVs are an emerging security threat as they are capable of carrying hazardous payloads or disrupting air traffic. To counter UAVs, we introduce an autonomous 3D target encirclement and interception strategy. Unlike traditional ground-guided systems, this strategy employs autonomous drones to track and engage non-cooperative hostile UAVs, which is effective in non-line-of-sight conditions, GPS denial, and radar jamming, where conventional detection and neutralization from ground guidance fail. Using two noisy real-time distances measured by drones, guardian drones estimate the relative position from their own to the target using observation and velocity compensation methods, based on anti-synchronization (AS) and an X$-$Y circular motion combined with vertical jitter. An encirclement control mechanism is proposed to enable UAVs to adaptively transition from encircling and protecting a target to encircling and monitoring a hostile target. Upon breaching a warning threshold, the UAVs may even employ a suicide attack to neutralize the hostile target. We validate this strategy through real-world UAV experiments and simulated analysis in MATLAB, demonstrating its effectiveness in detecting, encircling, and intercepting hostile drones. More details: https://youtu.be/5eHW56lPVto.
comment: Paper has been accepted into IROS 2025
☆ Underwater target 6D State Estimation via UUV Attitude Enhance Observability IROS 2025
Accurate relative state observation of Unmanned Underwater Vehicles (UUVs) for tracking uncooperative targets remains a significant challenge due to the absence of GPS, complex underwater dynamics, and sensor limitations. Existing localization approaches rely on either global positioning infrastructure or multi-UUV collaboration, both of which are impractical for a single UUV operating in large or unknown environments. To address this, we propose a novel persistent relative 6D state estimation framework that enables a single UUV to estimate its relative motion to a non-cooperative target using only successive noisy range measurements from two monostatic sonar sensors. Our key contribution is an observability-enhanced attitude control strategy, which optimally adjusts the UUV's orientation to improve the observability of relative state estimation using a Kalman filter, effectively mitigating the impact of sensor noise and drift accumulation. Additionally, we introduce a rigorously proven Lyapunov-based tracking control strategy that guarantees long-term stability by ensuring that the UUV maintains an optimal measurement range, preventing localization errors from diverging over time. Through theoretical analysis and simulations, we demonstrate that our method significantly improves 6D relative state estimation accuracy and robustness compared to conventional approaches. This work provides a scalable, infrastructure-free solution for UUVs tracking uncooperative targets underwater.
comment: Paper has been accepted in IROS 2025
☆ A Novel ViDAR Device With Visual Inertial Encoder Odometry and Reinforcement Learning-Based Active SLAM Method
In the field of multi-sensor fusion for simultaneous localization and mapping (SLAM), monocular cameras and IMUs are widely used to build simple and effective visual-inertial systems. However, limited research has explored the integration of motor-encoder devices to enhance SLAM performance. By incorporating such devices, it is possible to significantly improve active capability and field of view (FOV) with minimal additional cost and structural complexity. This paper proposes a novel visual-inertial-encoder tightly coupled odometry (VIEO) based on a ViDAR (Video Detection and Ranging) device. A ViDAR calibration method is introduced to ensure accurate initialization for VIEO. In addition, a platform motion decoupled active SLAM method based on deep reinforcement learning (DRL) is proposed. Experimental data demonstrate that the proposed ViDAR and the VIEO algorithm significantly increase cross-frame co-visibility relationships compared to its corresponding visual-inertial odometry (VIO) algorithm, improving state estimation accuracy. Additionally, the DRL-based active SLAM algorithm, with the ability to decouple from platform motion, can increase the diversity weight of the feature points and further enhance the VIEO algorithm's performance. The proposed methodology sheds fresh insights into both the updated platform design and decoupled approach of active SLAM systems in complex environments.
comment: 12 pages, 13 figures
☆ SuperPoint-SLAM3: Augmenting ORB-SLAM3 with Deep Features, Adaptive NMS, and Learning-Based Loop Closure
Visual simultaneous localization and mapping (SLAM) must remain accurate under extreme viewpoint, scale and illumination variations. The widely adopted ORB-SLAM3 falters in these regimes because it relies on hand-crafted ORB keypoints. We introduce SuperPoint-SLAM3, a drop-in upgrade that (i) replaces ORB with the self-supervised SuperPoint detector--descriptor, (ii) enforces spatially uniform keypoints via adaptive non-maximal suppression (ANMS), and (iii) integrates a lightweight NetVLAD place-recognition head for learning-based loop closure. On the KITTI Odometry benchmark SuperPoint-SLAM3 reduces mean translational error from 4.15% to 0.34% and mean rotational error from 0.0027 deg/m to 0.0010 deg/m. On the EuRoC MAV dataset it roughly halves both errors across every sequence (e.g., V2\_03: 1.58% -> 0.79%). These gains confirm that fusing modern deep features with a learned loop-closure module markedly improves ORB-SLAM3 accuracy while preserving its real-time operation. Implementation, pretrained weights and reproducibility scripts are available at https://github.com/shahram95/SuperPointSLAM3.
comment: 10 pages, 6 figures, code at https://github.com/shahram95/SuperPointSLAM3
☆ CHARM: Considering Human Attributes for Reinforcement Modeling
Reinforcement Learning from Human Feedback has recently achieved significant success in various fields, and its performance is highly related to feedback quality. While much prior work acknowledged that human teachers' characteristics would affect human feedback patterns, there is little work that has closely investigated the actual effects. In this work, we designed an exploratory study investigating how human feedback patterns are associated with human characteristics. We conducted a public space study with two long horizon tasks and 46 participants. We found that feedback patterns are not only correlated with task statistics, such as rewards, but also correlated with participants' characteristics, especially robot experience and educational background. Additionally, we demonstrated that human feedback value can be more accurately predicted with human characteristics compared to only using task statistics. All human feedback and characteristics we collected, and codes for our data collection and predicting more accurate human feedback are available at https://github.com/AABL-Lab/CHARM
☆ Constrained Optimal Planning to Minimize Battery Degradation of Autonomous Mobile Robots
This paper proposes an optimization framework that addresses both cycling degradation and calendar aging of batteries for autonomous mobile robot (AMR) to minimize battery degradation while ensuring task completion. A rectangle method of piecewise linear approximation is employed to linearize the bilinear optimization problem. We conduct a case study to validate the efficiency of the proposed framework in achieving an optimal path planning for AMRs while reducing battery aging.
☆ A Point Cloud Completion Approach for the Grasping of Partially Occluded Objects and Its Applications in Robotic Strawberry Harvesting
In robotic fruit picking applications, managing object occlusion in unstructured settings poses a substantial challenge for designing grasping algorithms. Using strawberry harvesting as a case study, we present an end-to-end framework for effective object detection, segmentation, and grasp planning to tackle this issue caused by partially occluded objects. Our strategy begins with point cloud denoising and segmentation to accurately locate fruits. To compensate for incomplete scans due to occlusion, we apply a point cloud completion model to create a dense 3D reconstruction of the strawberries. The target selection focuses on ripe strawberries while categorizing others as obstacles, followed by converting the refined point cloud into an occupancy map for collision-aware motion planning. Our experimental results demonstrate high shape reconstruction accuracy, with the lowest Chamfer Distance compared to state-of-the-art methods with 1.10 mm, and significantly improved grasp success rates of 79.17%, yielding an overall success-to-attempt ratio of 89.58\% in real-world strawberry harvesting. Additionally, our method reduces the obstacle hit rate from 43.33% to 13.95%, highlighting its effectiveness in improving both grasp quality and safety compared to prior approaches. This pipeline substantially improves autonomous strawberry harvesting, advancing more efficient and reliable robotic fruit picking systems.
☆ Quadrotor Morpho-Transition: Learning vs Model-Based Control Strategies
Quadrotor Morpho-Transition, or the act of transitioning from air to ground through mid-air transformation, involves complex aerodynamic interactions and a need to operate near actuator saturation, complicating controller design. In recent work, morpho-transition has been studied from a model-based control perspective, but these approaches remain limited due to unmodeled dynamics and the requirement for planning through contacts. Here, we train an end-to-end Reinforcement Learning (RL) controller to learn a morpho-transition policy and demonstrate successful transfer to hardware. We find that the RL control policy achieves agile landing, but only transfers to hardware if motor dynamics and observation delays are taken into account. On the other hand, a baseline MPC controller transfers out-of-the-box without knowledge of the actuator dynamics and delays, at the cost of reduced recovery from disturbances in the event of unknown actuator failures. Our work opens the way for more robust control of agile in-flight quadrotor maneuvers that require mid-air transformation.
☆ GRaD-Nav++: Vision-Language Model Enabled Visual Drone Navigation with Gaussian Radiance Fields and Differentiable Dynamics
Autonomous drones capable of interpreting and executing high-level language instructions in unstructured environments remain a long-standing goal. Yet existing approaches are constrained by their dependence on hand-crafted skills, extensive parameter tuning, or computationally intensive models unsuitable for onboard use. We introduce GRaD-Nav++, a lightweight Vision-Language-Action (VLA) framework that runs fully onboard and follows natural-language commands in real time. Our policy is trained in a photorealistic 3D Gaussian Splatting (3DGS) simulator via Differentiable Reinforcement Learning (DiffRL), enabling efficient learning of low-level control from visual and linguistic inputs. At its core is a Mixture-of-Experts (MoE) action head, which adaptively routes computation to improve generalization while mitigating forgetting. In multi-task generalization experiments, GRaD-Nav++ achieves a success rate of 83% on trained tasks and 75% on unseen tasks in simulation. When deployed on real hardware, it attains 67% success on trained tasks and 50% on unseen ones. In multi-environment adaptation experiments, GRaD-Nav++ achieves an average success rate of 81% across diverse simulated environments and 67% across varied real-world settings. These results establish a new benchmark for fully onboard Vision-Language-Action (VLA) flight and demonstrate that compact, efficient models can enable reliable, language-guided navigation without relying on external infrastructure.
☆ Diffusion-based Inverse Observation Model for Artificial Skin RSS 2025
Contact-based estimation of object pose is challenging due to discontinuities and ambiguous observations that can correspond to multiple possible system states. This multimodality makes it difficult to efficiently sample valid hypotheses while respecting contact constraints. Diffusion models can learn to generate samples from such multimodal probability distributions through denoising algorithms. We leverage these probabilistic modeling capabilities to learn an inverse observation model conditioned on tactile measurements acquired from a distributed artificial skin. We present simulated experiments demonstrating efficient sampling of contact hypotheses for object pose estimation through touch.
comment: Accepted to RSS 2025 workshop on Navigating Contact Dynamics in Robotics
☆ A Cooperative Contactless Object Transport with Acoustic Robots IROS 2025
Cooperative transport, the simultaneous movement of an object by multiple agents, has been widely observed in biological systems such as ant colonies, which improve efficiency and adaptability in dynamic environments. Inspired by these natural phenomena, we present a novel acoustic robotic system for the transport of contactless objects in mid-air. Our system leverages phased ultrasonic transducers and a robotic control system onboard to generate localized acoustic pressure fields, enabling precise manipulation of airborne particles and robots. We categorize contactless object-transport strategies into independent transport (uncoordinated) and forward-facing cooperative transport (coordinated), drawing parallels with biological systems to optimize efficiency and robustness. The proposed system is experimentally validated by evaluating levitation stability using a microphone in the measurement lab, transport efficiency through a phase-space motion capture system, and clock synchronization accuracy via an oscilloscope. The results demonstrate the feasibility of both independent and cooperative airborne object transport. This research contributes to the field of acoustophoretic robotics, with potential applications in contactless material handling, micro-assembly, and biomedical applications.
comment: This paper has been accepted for publication in the Proceedings of the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025) as oral presentation, 8 pages with 8 figures
☆ ASMR: Augmenting Life Scenario using Large Generative Models for Robotic Action Reflection
When designing robots to assist in everyday human activities, it is crucial to enhance user requests with visual cues from their surroundings for improved intent understanding. This process is defined as a multimodal classification task. However, gathering a large-scale dataset encompassing both visual and linguistic elements for model training is challenging and time-consuming. To address this issue, our paper introduces a novel framework focusing on data augmentation in robotic assistance scenarios, encompassing both dialogues and related environmental imagery. This approach involves leveraging a sophisticated large language model to simulate potential conversations and environmental contexts, followed by the use of a stable diffusion model to create images depicting these environments. The additionally generated data serves to refine the latest multimodal models, enabling them to more accurately determine appropriate actions in response to user interactions with the limited target data. Our experimental results, based on a dataset collected from real-world scenarios, demonstrate that our methodology significantly enhances the robot's action selection capabilities, achieving the state-of-the-art performance.
comment: IWSDS 2024 Best Paper Award
☆ Socially-aware Object Transportation by a Mobile Manipulator in Static Planar Environments with Obstacles
Socially-aware robotic navigation is essential in environments where humans and robots coexist, ensuring both safety and comfort. However, most existing approaches have been primarily developed for mobile robots, leaving a significant gap in research that addresses the unique challenges posed by mobile manipulators. In this paper, we tackle the challenge of navigating a robotic mobile manipulator, carrying a non-negligible load, within a static human-populated environment while adhering to social norms. Our goal is to develop a method that enables the robot to simultaneously manipulate an object and navigate between locations in a socially-aware manner. We propose an approach based on the Risk-RRT* framework that enables the coordinated actuation of both the mobile base and manipulator. This approach ensures collision-free navigation while adhering to human social preferences. We compared our approach in a simulated environment to socially-aware mobile-only methods applied to a mobile manipulator. The results highlight the necessity for mobile manipulator-specific techniques, with our method outperforming mobile-only approaches. Our method enabled the robot to navigate, transport an object, avoid collisions, and minimize social discomfort effectively.
comment: Accepted by the 2025 34th IEEE International Conference on Robot and Human Interactive Communication (ROMAN)
☆ Beyond the Plane: A 3D Representation of Human Personal Space for Socially-Aware Robotics
The increasing presence of robots in human environments requires them to exhibit socially appropriate behavior, adhering to social norms. A critical aspect in this context is the concept of personal space, a psychological boundary around an individual that influences their comfort based on proximity. This concept extends to human-robot interaction, where robots must respect personal space to avoid causing discomfort. While much research has focused on modeling personal space in two dimensions, almost none have considered the vertical dimension. In this work, we propose a novel three-dimensional personal space model that integrates both height (introducing a discomfort function along the Z-axis) and horizontal proximity (via a classic XY-plane formulation) to quantify discomfort. To the best of our knowledge, this is the first work to compute discomfort in 3D space at any robot component's position, considering the person's configuration and height.
comment: Accepted by the 2025 34th IEEE International Conference on Robot and Human Interactive Communication (ROMAN)
☆ TUM Teleoperation: Open Source Software for Remote Driving and Assistance of Automated Vehicles
Teleoperation is a key enabler for future mobility, supporting Automated Vehicles in rare and complex scenarios beyond the capabilities of their automation. Despite ongoing research, no open source software currently combines Remote Driving, e.g., via steering wheel and pedals, Remote Assistance through high-level interaction with automated driving software modules, and integration with a real-world vehicle for practical testing. To address this gap, we present a modular, open source teleoperation software stack that can interact with an automated driving software, e.g., Autoware, enabling Remote Assistance and Remote Driving. The software featuresstandardized interfaces for seamless integration with various real-world and simulation platforms, while allowing for flexible design of the human-machine interface. The system is designed for modularity and ease of extension, serving as a foundation for collaborative development on individual software components as well as realistic testing and user studies. To demonstrate the applicability of our software, we evaluated the latency and performance of different vehicle platforms in simulation and real-world. The source code is available on GitHub
☆ DynaGuide: Steering Diffusion Polices with Active Dynamic Guidance
Deploying large, complex policies in the real world requires the ability to steer them to fit the needs of a situation. Most common steering approaches, like goal-conditioning, require training the robot policy with a distribution of test-time objectives in mind. To overcome this limitation, we present DynaGuide, a steering method for diffusion policies using guidance from an external dynamics model during the diffusion denoising process. DynaGuide separates the dynamics model from the base policy, which gives it multiple advantages, including the ability to steer towards multiple objectives, enhance underrepresented base policy behaviors, and maintain robustness on low-quality objectives. The separate guidance signal also allows DynaGuide to work with off-the-shelf pretrained diffusion policies. We demonstrate the performance and features of DynaGuide against other steering approaches in a series of simulated and real experiments, showing an average steering success of 70% on a set of articulated CALVIN tasks and outperforming goal-conditioning by 5.4x when steered with low-quality objectives. We also successfully steer an off-the-shelf real robot policy to express preference for particular objects and even create novel behavior. Videos and more can be found on the project website: https://dynaguide.github.io
comment: 9 pages main, 21 pages with appendix and citations. 9 figures. Submitted to Neurips 2025
☆ Sequence Modeling for Time-Optimal Quadrotor Trajectory Optimization with Sampling-based Robustness Analysis
Time-optimal trajectories drive quadrotors to their dynamic limits, but computing such trajectories involves solving non-convex problems via iterative nonlinear optimization, making them prohibitively costly for real-time applications. In this work, we investigate learning-based models that imitate a model-based time-optimal trajectory planner to accelerate trajectory generation. Given a dataset of collision-free geometric paths, we show that modeling architectures can effectively learn the patterns underlying time-optimal trajectories. We introduce a quantitative framework to analyze local analytic properties of the learned models, and link them to the Backward Reachable Tube of the geometric tracking controller. To enhance robustness, we propose a data augmentation scheme that applies random perturbations to the input paths. Compared to classical planners, our method achieves substantial speedups, and we validate its real-time feasibility on a hardware quadrotor platform. Experiments demonstrate that the learned models generalize to previously unseen path lengths. The code for our approach can be found here: https://github.com/maokat12/lbTOPPQuad
☆ Scaling Algorithm Distillation for Continuous Control with Mamba
Algorithm Distillation (AD) was recently proposed as a new approach to perform In-Context Reinforcement Learning (ICRL) by modeling across-episodic training histories autoregressively with a causal transformer model. However, due to practical limitations induced by the attention mechanism, experiments were bottlenecked by the transformer's quadratic complexity and limited to simple discrete environments with short time horizons. In this work, we propose leveraging the recently proposed Selective Structured State Space Sequence (S6) models, which achieved state-of-the-art (SOTA) performance on long-range sequence modeling while scaling linearly in sequence length. Through four complex and continuous Meta Reinforcement Learning environments, we demonstrate the overall superiority of Mamba, a model built with S6 layers, over a transformer model for AD. Additionally, we show that scaling AD to very long contexts can improve ICRL performance and make it competitive even with a SOTA online meta RL baseline.
☆ ATK: Automatic Task-driven Keypoint Selection for Robust Policy Learning
Visuomotor policies often suffer from perceptual challenges, where visual differences between training and evaluation environments degrade policy performance. Policies relying on state estimations, like 6D pose, require task-specific tracking and are difficult to scale, while raw sensor-based policies may lack robustness to small visual disturbances.In this work, we leverage 2D keypoints - spatially consistent features in the image frame - as a flexible state representation for robust policy learning and apply it to both sim-to-real transfer and real-world imitation learning. However, the choice of which keypoints to use can vary across objects and tasks. We propose a novel method, ATK, to automatically select keypoints in a task-driven manner so that the chosen keypoints are predictive of optimal behavior for the given task. Our proposal optimizes for a minimal set of keypoints that focus on task-relevant parts while preserving policy performance and robustness. We distill expert data (either from an expert policy in simulation or a human expert) into a policy that operates on RGB images while tracking the selected keypoints. By leveraging pre-trained visual modules, our system effectively encodes states and transfers policies to the real-world evaluation scenario despite wide scene variations and perceptual challenges such as transparent objects, fine-grained tasks, and deformable objects manipulation. We validate ATK on various robotic tasks, demonstrating that these minimal keypoint representations significantly improve robustness to visual disturbances and environmental variations. See all experiments and more details on our website.
☆ A Survey on World Models Grounded in Acoustic Physical Information
This survey provides a comprehensive overview of the emerging field of world models grounded in the foundation of acoustic physical information. It examines the theoretical underpinnings, essential methodological frameworks, and recent technological advancements in leveraging acoustic signals for high-fidelity environmental perception, causal physical reasoning, and predictive simulation of dynamic events. The survey explains how acoustic signals, as direct carriers of mechanical wave energy from physical events, encode rich, latent information about material properties, internal geometric structures, and complex interaction dynamics. Specifically, this survey establishes the theoretical foundation by explaining how fundamental physical laws govern the encoding of physical information within acoustic signals. It then reviews the core methodological pillars, including Physics-Informed Neural Networks (PINNs), generative models, and self-supervised multimodal learning frameworks. Furthermore, the survey details the significant applications of acoustic world models in robotics, autonomous driving, healthcare, and finance. Finally, it systematically outlines the important technical and ethical challenges while proposing a concrete roadmap for future research directions toward robust, causal, uncertainty-aware, and responsible acoustic intelligence. These elements collectively point to a research pathway towards embodied active acoustic intelligence, empowering AI systems to construct an internal "intuitive physics" engine through sound.
comment: 28 pages,11 equations
♻ ☆ Real-time Seafloor Segmentation and Mapping
Posidonia oceanica meadows are a species of seagrass highly dependent on rocks for their survival and conservation. In recent years, there has been a concerning global decline in this species, emphasizing the critical need for efficient monitoring and assessment tools. While deep learning-based semantic segmentation and visual automated monitoring systems have shown promise in a variety of applications, their performance in underwater environments remains challenging due to complex water conditions and limited datasets. This paper introduces a framework that combines machine learning and computer vision techniques to enable an autonomous underwater vehicle (AUV) to inspect the boundaries of Posidonia oceanica meadows autonomously. The framework incorporates an image segmentation module using an existing Mask R-CNN model and a strategy for Posidonia oceanica meadow boundary tracking. Furthermore, a new class dedicated to rocks is introduced to enhance the existing model, aiming to contribute to a comprehensive monitoring approach and provide a deeper understanding of the intricate interactions between the meadow and its surrounding environment. The image segmentation model is validated using real underwater images, while the overall inspection framework is evaluated in a realistic simulation environment, replicating actual monitoring scenarios with real underwater images. The results demonstrate that the proposed framework enables the AUV to autonomously accomplish the main tasks of underwater inspection and segmentation of rocks. Consequently, this work holds significant potential for the conservation and protection of marine environments, providing valuable insights into the status of Posidonia oceanica meadows and supporting targeted preservation efforts
♻ ☆ EmbodiedGen: Towards a Generative 3D World Engine for Embodied Intelligence
Constructing a physically realistic and accurately scaled simulated 3D world is crucial for the training and evaluation of embodied intelligence tasks. The diversity, realism, low cost accessibility and affordability of 3D data assets are critical for achieving generalization and scalability in embodied AI. However, most current embodied intelligence tasks still rely heavily on traditional 3D computer graphics assets manually created and annotated, which suffer from high production costs and limited realism. These limitations significantly hinder the scalability of data driven approaches. We present EmbodiedGen, a foundational platform for interactive 3D world generation. It enables the scalable generation of high-quality, controllable and photorealistic 3D assets with accurate physical properties and real-world scale in the Unified Robotics Description Format (URDF) at low cost. These assets can be directly imported into various physics simulation engines for fine-grained physical control, supporting downstream tasks in training and evaluation. EmbodiedGen is an easy-to-use, full-featured toolkit composed of six key modules: Image-to-3D, Text-to-3D, Texture Generation, Articulated Object Generation, Scene Generation and Layout Generation. EmbodiedGen generates diverse and interactive 3D worlds composed of generative 3D assets, leveraging generative AI to address the challenges of generalization and evaluation to the needs of embodied intelligence related research. Code is available at https://horizonrobotics.github.io/robot_lab/embodied_gen/index.html.
Zero-Shot Temporal Interaction Localization for Egocentric Videos
Locating human-object interaction (HOI) actions within video serves as the foundation for multiple downstream tasks, such as human behavior analysis and human-robot skill transfer. Current temporal action localization methods typically rely on annotated action and object categories of interactions for optimization, which leads to domain bias and low deployment efficiency. Although some recent works have achieved zero-shot temporal action localization (ZS-TAL) with large vision-language models (VLMs), their coarse-grained estimations and open-loop pipelines hinder further performance improvements for temporal interaction localization (TIL). To address these issues, we propose a novel zero-shot TIL approach dubbed EgoLoc to locate the timings of grasp actions for human-object interaction in egocentric videos. EgoLoc introduces a self-adaptive sampling strategy to generate reasonable visual prompts for VLM reasoning. By absorbing both 2D and 3D observations, it directly samples high-quality initial guesses around the possible contact/separation timestamps of HOI according to 3D hand velocities, leading to high inference accuracy and efficiency. In addition, EgoLoc generates closed-loop feedback from visual and dynamic cues to further refine the localization results. Comprehensive experiments on the publicly available dataset and our newly proposed benchmark demonstrate that EgoLoc achieves better temporal interaction localization for egocentric videos compared to state-of-the-art baselines. We will release our code and relevant data as open-source at https://github.com/IRMVLab/EgoLoc.
♻ ☆ Pursuit-Evasion for Car-like Robots with Sensor Constraints IROS 2025
We study a pursuit-evasion game between two players with car-like dynamics and sensing limitations by formalizing it as a partially observable stochastic zero-sum game. The partial observability caused by the sensing constraints is particularly challenging. As an example, in a situation where the agents have no visibility of each other, they would need to extract information from their sensor coverage history to reason about potential locations of their opponents. However, keeping historical information greatly increases the size of the state space. To mitigate the challenges encountered with such partially observable problems, we develop a new learning-based method that encodes historical information to a belief state and uses it to generate agent actions. Through experiments we show that the learned strategies improve over existing multi-agent RL baselines by up to 16 % in terms of capture rate for the pursuer. Additionally, we present experimental results showing that learned belief states are strong state estimators for extending existing game theory solvers and demonstrate our method's competitiveness for problems where existing fully observable game theory solvers are computationally feasible. Finally, we deploy the learned policies on physical robots for a game between the F1TENTH and JetRacer platforms moving as fast as $\textbf{2 m/s}$ in indoor environments, showing that they can be executed on real-robots.
comment: Accepted for publication in the Proceedings of the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025) as oral presentation
♻ ☆ JAEGER: Dual-Level Humanoid Whole-Body Controller
This paper presents JAEGER, a dual-level whole-body controller for humanoid robots that addresses the challenges of training a more robust and versatile policy. Unlike traditional single-controller approaches, JAEGER separates the control of the upper and lower bodies into two independent controllers, so that they can better focus on their distinct tasks. This separation alleviates the dimensionality curse and improves fault tolerance. JAEGER supports both root velocity tracking (coarse-grained control) and local joint angle tracking (fine-grained control), enabling versatile and stable movements. To train the controller, we utilize a human motion dataset (AMASS), retargeting human poses to humanoid poses through an efficient retargeting network, and employ a curriculum learning approach. This method performs supervised learning for initialization, followed by reinforcement learning for further exploration. We conduct our experiments on two humanoid platforms and demonstrate the superiority of our approach against state-of-the-art methods in both simulation and real environments.
comment: 15 pages, 2 figures
♻ ☆ AirIO: Learning Inertial Odometry with Enhanced IMU Feature Observability
Inertial odometry (IO) using only Inertial Measurement Units (IMUs) offers a lightweight and cost-effective solution for Unmanned Aerial Vehicle (UAV) applications, yet existing learning-based IO models often fail to generalize to UAVs due to the highly dynamic and non-linear-flight patterns that differ from pedestrian motion. In this work, we identify that the conventional practice of transforming raw IMU data to global coordinates undermines the observability of critical kinematic information in UAVs. By preserving the body-frame representation, our method achieves substantial performance improvements, with a 66.7% average increase in accuracy across three datasets. Furthermore, explicitly encoding attitude information into the motion network results in an additional 23.8% improvement over prior results. Combined with a data-driven IMU correction model (AirIMU) and an uncertainty-aware Extended Kalman Filter (EKF), our approach ensures robust state estimation under aggressive UAV maneuvers without relying on external sensors or control inputs. Notably, our method also demonstrates strong generalizability to unseen data not included in the training set, underscoring its potential for real-world UAV applications.
♻ ☆ Structureless VIO RSS 2025
Visual odometry (VO) is typically considered as a chicken-and-egg problem, as the localization and mapping modules are tightly-coupled. The estimation of a visual map relies on accurate localization information. Meanwhile, localization requires precise map points to provide motion constraints. This classical design principle is naturally inherited by visual-inertial odometry (VIO). Efficient localization solutions that do not require a map have not been fully investigated. To this end, we propose a novel structureless VIO, where the visual map is removed from the odometry framework. Experimental results demonstrated that, compared to the structure-based VIO baseline, our structureless VIO not only substantially improves computational efficiency but also has advantages in accuracy.
comment: Accepted by the SLAM Workshop at RSS 2025
♻ ☆ General agents need world models ICML 2025
Are world models a necessary ingredient for flexible, goal-directed behaviour, or is model-free learning sufficient? We provide a formal answer to this question, showing that any agent capable of generalizing to multi-step goal-directed tasks must have learned a predictive model of its environment. We show that this model can be extracted from the agent's policy, and that increasing the agents performance or the complexity of the goals it can achieve requires learning increasingly accurate world models. This has a number of consequences: from developing safe and general agents, to bounding agent capabilities in complex environments, and providing new algorithms for eliciting world models from agents.
comment: Accepted ICML 2025
♻ ☆ Active Perception for Tactile Sensing: A Task-Agnostic Attention-Based Approach
Humans make extensive use of haptic exploration to map and identify the properties of the objects that we touch. In robotics, active tactile perception has emerged as an important research domain that complements vision for tasks such as object classification, shape reconstruction, and manipulation. This work introduces TAP (Task-agnostic Active Perception) -- a novel framework that leverages reinforcement learning (RL) and transformer-based architectures to address the challenges posed by partially observable environments. TAP integrates Soft Actor-Critic (SAC) and CrossQ algorithms within a unified optimization objective, jointly training a perception module and decision-making policy. By design, TAP is completely task-agnostic and can, in principle, generalize to any active perception problem. We evaluate TAP across diverse tasks, including toy examples and realistic applications involving haptic exploration of 3D models from the Tactile MNIST benchmark. Experiments demonstrate the efficacy of TAP, achieving high accuracies on the Tactile MNIST haptic digit recognition task and a tactile pose estimation task. These findings underscore the potential of TAP as a versatile and generalizable framework for advancing active tactile perception in robotics.
comment: 16 pages; 13 figures Under Review
♻ ☆ Cybersecurity and Embodiment Integrity for Modern Robots: A Conceptual Framework
Thanks to new technologies and communication paradigms, such as the Internet of Things (IoT) and the Robotic Operating System (ROS), modern robots can be built by combining heterogeneous standard devices in a single embodiment. Although this approach brings high degrees of modularity, it also yields uncertainty, with regard to providing cybersecurity assurances and guarantees on the integrity of the embodiment. In this paper, first we illustrate how cyberattacks on different devices can have radically different consequences on the robot's ability to complete its tasks and preserve its embodiment. We also claim that modern robots should have self-awareness for what concerns such aspects, and formulate in two propositions the different characteristics that robots should integrate for doing so. Then, we show how these propositions relate to two established cybersecurity frameworks, the NIST Cybersecurity Framework and the MITRE ATT&CK, and we argue that achieving these propositions requires that robots possess at least three properties for mapping devices and tasks. Last, we reflect on how these three properties could be achieved in a larger conceptual framework.
comment: 18 pages, 2 figures, 4 tables
♻ ☆ BiFold: Bimanual Cloth Folding with Language Guidance ICRA 2025
Cloth folding is a complex task due to the inevitable self-occlusions of clothes, their complicated dynamics, and the disparate materials, geometries, and textures that garments can have. In this work, we learn folding actions conditioned on text commands. Translating high-level, abstract instructions into precise robotic actions requires sophisticated language understanding and manipulation capabilities. To do that, we leverage a pre-trained vision-language model and repurpose it to predict manipulation actions. Our model, BiFold, can take context into account and achieves state-of-the-art performance on an existing language-conditioned folding benchmark. To address the lack of annotated bimanual folding data, we introduce a novel dataset with automatically parsed actions and language-aligned instructions, enabling better learning of text-conditioned manipulation. BiFold attains the best performance on our dataset and demonstrates strong generalization to new instructions, garments, and environments.
comment: Accepted at ICRA 2025. Project page at https://barbany.github.io/bifold/
♻ ☆ Canonical Representation and Force-Based Pretraining of 3D Tactile for Dexterous Visuo-Tactile Policy Learning ICRA 2025
Tactile sensing plays a vital role in enabling robots to perform fine-grained, contact-rich tasks. However, the high dimensionality of tactile data, due to the large coverage on dexterous hands, poses significant challenges for effective tactile feature learning, especially for 3D tactile data, as there are no large standardized datasets and no strong pretrained backbones. To address these challenges, we propose a novel canonical representation that reduces the difficulty of 3D tactile feature learning and further introduces a force-based self-supervised pretraining task to capture both local and net force features, which are crucial for dexterous manipulation. Our method achieves an average success rate of 78% across four fine-grained, contact-rich dexterous manipulation tasks in real-world experiments, demonstrating effectiveness and robustness compared to other methods. Further analysis shows that our method fully utilizes both spatial and force information from 3D tactile data to accomplish the tasks. The codes and videos can be viewed at https://3dtacdex.github.io.
comment: Accepted to ICRA 2025
♻ ☆ ActiveSplat: High-Fidelity Scene Reconstruction through Active Gaussian Splatting
We propose ActiveSplat, an autonomous high-fidelity reconstruction system leveraging Gaussian splatting. Taking advantage of efficient and realistic rendering, the system establishes a unified framework for online mapping, viewpoint selection, and path planning. The key to ActiveSplat is a hybrid map representation that integrates both dense information about the environment and a sparse abstraction of the workspace. Therefore, the system leverages sparse topology for efficient viewpoint sampling and path planning, while exploiting view-dependent dense prediction for viewpoint selection, facilitating efficient decision-making with promising accuracy and completeness. A hierarchical planning strategy based on the topological map is adopted to mitigate repetitive trajectories and improve local granularity given limited time budgets, ensuring high-fidelity reconstruction with photorealistic view synthesis. Extensive experiments and ablation studies validate the efficacy of the proposed method in terms of reconstruction accuracy, data coverage, and exploration efficiency. The released code will be available on our project page: https://li-yuetao.github.io/ActiveSplat/.
comment: Accepted to IEEE RA-L. Code: https://github.com/Li-Yuetao/ActiveSplat, Project: https://li-yuetao.github.io/ActiveSplat/
♻ ☆ Hierarchical Language Models for Semantic Navigation and Manipulation in an Aerial-Ground Robotic System
Heterogeneous multi-robot systems show great potential in complex tasks requiring hybrid cooperation. However, traditional approaches relying on static models often struggle with task diversity and dynamic environments. This highlights the need for generalizable intelligence that can bridge high-level reasoning with low-level execution across heterogeneous agents. To address this, we propose a hierarchical framework integrating a prompted Large Language Model (LLM) and a GridMask-enhanced fine-tuned Vision Language Model (VLM). The LLM decomposes tasks and constructs a global semantic map, while the VLM extracts task-specified semantic labels and 2D spatial information from aerial images to support local planning. Within this framework, the aerial robot follows an optimized global semantic path and continuously provides bird-view images, guiding the ground robot's local semantic navigation and manipulation, including target-absent scenarios where implicit alignment is maintained. Experiments on real-world cube or object arrangement tasks demonstrate the framework's adaptability and robustness in dynamic environments. To the best of our knowledge, this is the first demonstration of an aerial-ground heterogeneous system integrating VLM-based perception with LLM-driven task reasoning and motion planning.
♻ ☆ Efficient Estimation of Relaxed Model Parameters for Robust UAV Trajectory Optimization
Online trajectory optimization and optimal control methods are crucial for enabling sustainable unmanned aerial vehicle (UAV) services, such as agriculture, environmental monitoring, and transportation, where available actuation and energy are limited. However, optimal controllers are highly sensitive to model mismatch, which can occur due to loaded equipment, packages to be delivered, or pre-existing variability in fundamental structural and thrust-related parameters. To circumvent this problem, optimal controllers can be paired with parameter estimators to improve their trajectory planning performance and perform adaptive control. However, UAV platforms are limited in terms of onboard processing power, oftentimes making nonlinear parameter estimation too computationally expensive to consider. To address these issues, we propose a relaxed, affine-in-parameters multirotor model along with an efficient optimal parameter estimator. We convexify the nominal Moving Horizon Parameter Estimation (MHPE) problem into a linear-quadratic form (LQ-MHPE) via an affine-in-parameter relaxation on the nonlinear dynamics, resulting in fast quadratic programs (QPs) that facilitate adaptive Model Predictve Control (MPC) in real time. We compare this approach to the equivalent nonlinear estimator in Monte Carlo simulations, demonstrating a decrease in average solve time and trajectory optimality cost by 98.2% and 23.9-56.2%, respectively.
comment: 8 pages, 5 figures. Published in IEEE Sustech 2025, see https://ieeexplore.ieee.org/document/11025659
♻ ☆ Learning-based 3D Reconstruction in Autonomous Driving: A Comprehensive Survey
Learning-based 3D reconstruction has emerged as a transformative technique in autonomous driving, enabling precise modeling of both dynamic and static environments through advanced neural representations. Despite data augmentation, 3D reconstruction inspires pioneering solution for vital tasks in the field of autonomous driving, such as scene understanding and closed-loop simulation. We investigates the details of 3D reconstruction and conducts a multi-perspective, in-depth analysis of recent advancements. Specifically, we first provide a systematic introduction of preliminaries, including data modalities, benchmarks and technical preliminaries of learning-based 3D reconstruction, facilitating instant identification of suitable methods according to sensor suites. Then, we systematically review learning-based 3D reconstruction methods in autonomous driving, categorizing approaches by subtasks and conducting multi-dimensional analysis and summary to establish a comprehensive technical reference. The development trends and existing challenges are summarized in the context of learning-based 3D reconstruction in autonomous driving. We hope that our review will inspire future researches.
♻ ☆ Towards Infant Sleep-Optimized Driving: Synergizing Wearable and Vehicle Sensing in Intelligent Cruise Control
Automated driving (AD) has substantially improved vehicle safety and driving comfort, but their impact on passenger well-being, particularly infant sleep, is not sufficiently studied. Sudden acceleration, abrupt braking, and sharp maneuvers can disrupt infant sleep, compromising both passenger comfort and parental convenience. To solve this problem, this paper explores the integration of reinforcement learning (RL) within AD to personalize driving behavior and optimally balance occupant comfort and travel efficiency. In particular, we propose an intelligent cruise control framework that adapts to varying driving conditions to enhance infant sleep quality by effectively synergizing wearable sensing and vehicle data. Long short-term memory (LSTM) and transformer-based neural networks are integrated with RL to model the relationship between driving behavior and infant sleep quality under diverse traffic and road conditions. Based on the sleep quality indicators from the wearable sensors, driving action data from vehicle controllers, and map data from map applications, the model dynamically computes the optimal driving aggressiveness level, which is subsequently translated into specific AD control strategies, e.g., the magnitude and frequency of acceleration, lane change, and overtaking. Simulation results demonstrate that the proposed solution significantly improves infant sleep quality compared to baseline methods, while preserving desirable travel efficiency.
♻ ☆ NGD-SLAM: Towards Real-Time Dynamic SLAM without GPU
Many existing visual SLAM methods can achieve high localization accuracy in dynamic environments by leveraging deep learning to mask moving objects. However, these methods incur significant computational overhead as the camera tracking needs to wait for the deep neural network to generate mask at each frame, and they typically require GPUs for real-time operation, which restricts their practicality in real-world robotic applications. Therefore, this paper proposes a real-time dynamic SLAM system that runs exclusively on a CPU. Our approach incorporates a mask propagation mechanism that decouples camera tracking and deep learning-based masking for each frame. We also introduce a hybrid tracking strategy that integrates ORB features with optical flow methods, enhancing both robustness and efficiency by selectively allocating computational resources to input frames. Compared to previous methods, our system maintains high localization accuracy in dynamic environments while achieving a tracking frame rate of 60 FPS on a laptop CPU. These results demonstrate the feasibility of utilizing deep learning for dynamic SLAM without GPU support. Since most existing dynamic SLAM systems are not open-source, we make our code publicly available at: https://github.com/yuhaozhang7/NGD-SLAM
comment: 7 pages, 6 figures
♻ ☆ Semantic Enhancement for Object SLAM with Heterogeneous Multimodal Large Language Model Agents
Object Simultaneous Localization and Mapping (SLAM) systems struggle to correctly associate semantically similar objects in close proximity, especially in cluttered indoor environments and when scenes change. We present Semantic Enhancement for Object SLAM (SEO-SLAM), a novel framework that enhances semantic mapping by integrating heterogeneous multimodal large language model (MLLM) agents. Our method enables scene adaptation while maintaining a semantically rich map. To improve computational efficiency, we propose an asynchronous processing scheme that significantly reduces the agents' inference time without compromising semantic accuracy or SLAM performance. Additionally, we introduce a multi-data association strategy using a cost matrix that combines semantic and Mahalanobis distances, formulating the problem as a Linear Assignment Problem (LAP) to alleviate perceptual aliasing. Experimental results demonstrate that SEO-SLAM consistently achieves higher semantic accuracy and reduces false positives compared to baselines, while our asynchronous MLLM agents significantly improve processing efficiency over synchronous setups. We also demonstrate that SEO-SLAM has the potential to improve downstream tasks such as robotic assistance. Our dataset is publicly available at: jungseokhong.com/SEO-SLAM.
♻ ☆ PartInstruct: Part-level Instruction Following for Fine-grained Robot Manipulation
Fine-grained robot manipulation, such as lifting and rotating a bottle to display the label on the cap, requires robust reasoning about object parts and their relationships with intended tasks. Despite recent advances in training general-purpose robot manipulation policies guided by language instructions, there is a notable lack of large-scale datasets for fine-grained manipulation tasks with part-level instructions and diverse 3D object instances annotated with part-level labels. In this work, we introduce PartInstruct, the first large-scale benchmark for training and evaluating fine-grained robot manipulation models using part-level instructions. PartInstruct comprises 513 object instances across 14 categories, each annotated with part-level information, and 1302 fine-grained manipulation tasks organized into 16 task classes. Our training set consists of over 10,000 expert demonstrations synthesized in a 3D simulator, where each demonstration is paired with a high-level task instruction, a chain of base part-based skill instructions, and ground-truth 3D information about the object and its parts. Additionally, we designed a comprehensive test suite to evaluate the generalizability of learned policies across new states, objects, and tasks. We evaluated several state-of-the-art robot manipulation approaches, including end-to-end vision-language policy learning and bi-level planning models for robot manipulation on our benchmark. The experimental results reveal that current models struggle to robustly ground part concepts and predict actions in 3D space, and face challenges when manipulating object parts in long-horizon tasks.
Computer Vision 155
☆ PF-LHM: 3D Animatable Avatar Reconstruction from Pose-free Articulated Human Images
Reconstructing an animatable 3D human from casually captured images of an articulated subject without camera or human pose information is a practical yet challenging task due to view misalignment, occlusions, and the absence of structural priors. While optimization-based methods can produce high-fidelity results from monocular or multi-view videos, they require accurate pose estimation and slow iterative optimization, limiting scalability in unconstrained scenarios. Recent feed-forward approaches enable efficient single-image reconstruction but struggle to effectively leverage multiple input images to reduce ambiguity and improve reconstruction accuracy. To address these challenges, we propose PF-LHM, a large human reconstruction model that generates high-quality 3D avatars in seconds from one or multiple casually captured pose-free images. Our approach introduces an efficient Encoder-Decoder Point-Image Transformer architecture, which fuses hierarchical geometric point features and multi-view image features through multimodal attention. The fused features are decoded to recover detailed geometry and appearance, represented using 3D Gaussian splats. Extensive experiments on both real and synthetic datasets demonstrate that our method unifies single- and multi-image 3D human reconstruction, achieving high-fidelity and animatable 3D human avatars without requiring camera and human pose annotations. Code and models will be released to the public.
☆ Diagnosing and Improving Diffusion Models by Estimating the Optimal Loss Value
Diffusion models have achieved remarkable success in generative modeling. Despite more stable training, the loss of diffusion models is not indicative of absolute data-fitting quality, since its optimal value is typically not zero but unknown, leading to confusion between large optimal loss and insufficient model capacity. In this work, we advocate the need to estimate the optimal loss value for diagnosing and improving diffusion models. We first derive the optimal loss in closed form under a unified formulation of diffusion models, and develop effective estimators for it, including a stochastic variant scalable to large datasets with proper control of variance and bias. With this tool, we unlock the inherent metric for diagnosing the training quality of mainstream diffusion model variants, and develop a more performant training schedule based on the optimal loss. Moreover, using models with 120M to 1.5B parameters, we find that the power law is better demonstrated after subtracting the optimal loss from the actual training loss, suggesting a more principled setting for investigating the scaling law for diffusion models.
comment: 29 pages, 8 figures, 3 tables. Preprint. Work in Progress
☆ Touch begins where vision ends: Generalizable policies for contact-rich manipulation
Data-driven approaches struggle with precise manipulation; imitation learning requires many hard-to-obtain demonstrations, while reinforcement learning yields brittle, non-generalizable policies. We introduce VisuoTactile Local (ViTaL) policy learning, a framework that solves fine-grained manipulation tasks by decomposing them into two phases: a reaching phase, where a vision-language model (VLM) enables scene-level reasoning to localize the object of interest, and a local interaction phase, where a reusable, scene-agnostic ViTaL policy performs contact-rich manipulation using egocentric vision and tactile sensing. This approach is motivated by the observation that while scene context varies, the low-level interaction remains consistent across task instances. By training local policies once in a canonical setting, they can generalize via a localize-then-execute strategy. ViTaL achieves around 90% success on contact-rich tasks in unseen environments and is robust to distractors. ViTaL's effectiveness stems from three key insights: (1) foundation models for segmentation enable training robust visual encoders via behavior cloning; (2) these encoders improve the generalizability of policies learned using residual RL; and (3) tactile sensing significantly boosts performance in contact-rich tasks. Ablation studies validate each of these insights, and we demonstrate that ViTaL integrates well with high-level VLMs, enabling robust, reusable low-level skills. Results and videos are available at https://vitalprecise.github.io.
☆ AutoVLA: A Vision-Language-Action Model for End-to-End Autonomous Driving with Adaptive Reasoning and Reinforcement Fine-Tuning
Recent advancements in Vision-Language-Action (VLA) models have shown promise for end-to-end autonomous driving by leveraging world knowledge and reasoning capabilities. However, current VLA models often struggle with physically infeasible action outputs, complex model structures, or unnecessarily long reasoning. In this paper, we propose AutoVLA, a novel VLA model that unifies reasoning and action generation within a single autoregressive generation model for end-to-end autonomous driving. AutoVLA performs semantic reasoning and trajectory planning directly from raw visual inputs and language instructions. We tokenize continuous trajectories into discrete, feasible actions, enabling direct integration into the language model. For training, we employ supervised fine-tuning to equip the model with dual thinking modes: fast thinking (trajectory-only) and slow thinking (enhanced with chain-of-thought reasoning). To further enhance planning performance and efficiency, we introduce a reinforcement fine-tuning method based on Group Relative Policy Optimization (GRPO), reducing unnecessary reasoning in straightforward scenarios. Extensive experiments across real-world and simulated datasets and benchmarks, including nuPlan, nuScenes, Waymo, and CARLA, demonstrate the competitive performance of AutoVLA in both open-loop and closed-loop settings. Qualitative results showcase the adaptive reasoning and accurate planning capabilities of AutoVLA in diverse scenarios.
comment: Website link:https://autovla.github.io/
☆ UltraZoom: Generating Gigapixel Images from Regular Photos
We present UltraZoom, a system for generating gigapixel-resolution images of objects from casually captured inputs, such as handheld phone photos. Given a full-shot image (global, low-detail) and one or more close-ups (local, high-detail), UltraZoom upscales the full image to match the fine detail and scale of the close-up examples. To achieve this, we construct a per-instance paired dataset from the close-ups and adapt a pretrained generative model to learn object-specific low-to-high resolution mappings. At inference, we apply the model in a sliding window fashion over the full image. Constructing these pairs is non-trivial: it requires registering the close-ups within the full image for scale estimation and degradation alignment. We introduce a simple, robust method for getting registration on arbitrary materials in casual, in-the-wild captures. Together, these components form a system that enables seamless pan and zoom across the entire object, producing consistent, photorealistic gigapixel imagery from minimal input.
comment: Project page: https://ultra-zoom.github.io/
☆ Test3R: Learning to Reconstruct 3D at Test Time
Dense matching methods like DUSt3R regress pairwise pointmaps for 3D reconstruction. However, the reliance on pairwise prediction and the limited generalization capability inherently restrict the global geometric consistency. In this work, we introduce Test3R, a surprisingly simple test-time learning technique that significantly boosts geometric accuracy. Using image triplets ($I_1,I_2,I_3$), Test3R generates reconstructions from pairs ($I_1,I_2$) and ($I_1,I_3$). The core idea is to optimize the network at test time via a self-supervised objective: maximizing the geometric consistency between these two reconstructions relative to the common image $I_1$. This ensures the model produces cross-pair consistent outputs, regardless of the inputs. Extensive experiments demonstrate that our technique significantly outperforms previous state-of-the-art methods on the 3D reconstruction and multi-view depth estimation tasks. Moreover, it is universally applicable and nearly cost-free, making it easily applied to other models and implemented with minimal test-time training overhead and parameter footprint. Code is available at https://github.com/nopQAQ/Test3R.
☆ OTFusion: Bridging Vision-only and Vision-Language Models via Optimal Transport for Transductive Zero-Shot Learning
Transductive zero-shot learning (ZSL) aims to classify unseen categories by leveraging both semantic class descriptions and the distribution of unlabeled test data. While Vision-Language Models (VLMs) such as CLIP excel at aligning visual inputs with textual semantics, they often rely too heavily on class-level priors and fail to capture fine-grained visual cues. In contrast, Vision-only Foundation Models (VFMs) like DINOv2 provide rich perceptual features but lack semantic alignment. To exploit the complementary strengths of these models, we propose OTFusion, a simple yet effective training-free framework that bridges VLMs and VFMs via Optimal Transport. Specifically, OTFusion aims to learn a shared probabilistic representation that aligns visual and semantic information by minimizing the transport cost between their respective distributions. This unified distribution enables coherent class predictions that are both semantically meaningful and visually grounded. Extensive experiments on 11 benchmark datasets demonstrate that OTFusion consistently outperforms the original CLIP model, achieving an average accuracy improvement of nearly $10\%$, all without any fine-tuning or additional annotations. The code will be publicly released after the paper is accepted.
☆ How Real is CARLAs Dynamic Vision Sensor? A Study on the Sim-to-Real Gap in Traffic Object Detection
Event cameras are gaining traction in traffic monitoring applications due to their low latency, high temporal resolution, and energy efficiency, which makes them well-suited for real-time object detection at traffic intersections. However, the development of robust event-based detection models is hindered by the limited availability of annotated real-world datasets. To address this, several simulation tools have been developed to generate synthetic event data. Among these, the CARLA driving simulator includes a built-in dynamic vision sensor (DVS) module that emulates event camera output. Despite its potential, the sim-to-real gap for event-based object detection remains insufficiently studied. In this work, we present a systematic evaluation of this gap by training a recurrent vision transformer model exclusively on synthetic data generated using CARLAs DVS and testing it on varying combinations of synthetic and real-world event streams. Our experiments show that models trained solely on synthetic data perform well on synthetic-heavy test sets but suffer significant performance degradation as the proportion of real-world data increases. In contrast, models trained on real-world data demonstrate stronger generalization across domains. This study offers the first quantifiable analysis of the sim-to-real gap in event-based object detection using CARLAs DVS. Our findings highlight limitations in current DVS simulation fidelity and underscore the need for improved domain adaptation techniques in neuromorphic vision for traffic monitoring.
☆ Vid-CamEdit: Video Camera Trajectory Editing with Generative Rendering from Estimated Geometry
We introduce Vid-CamEdit, a novel framework for video camera trajectory editing, enabling the re-synthesis of monocular videos along user-defined camera paths. This task is challenging due to its ill-posed nature and the limited multi-view video data for training. Traditional reconstruction methods struggle with extreme trajectory changes, and existing generative models for dynamic novel view synthesis cannot handle in-the-wild videos. Our approach consists of two steps: estimating temporally consistent geometry, and generative rendering guided by this geometry. By integrating geometric priors, the generative model focuses on synthesizing realistic details where the estimated geometry is uncertain. We eliminate the need for extensive 4D training data through a factorized fine-tuning framework that separately trains spatial and temporal components using multi-view image and video data. Our method outperforms baselines in producing plausible videos from novel camera trajectories, especially in extreme extrapolation scenarios on real-world footage.
comment: Our project page can be found at https://cvlab-kaist.github.io/Vid-CamEdit/
☆ UltraVideo: High-Quality UHD Video Dataset with Comprehensive Captions
The quality of the video dataset (image quality, resolution, and fine-grained caption) greatly influences the performance of the video generation model. The growing demand for video applications sets higher requirements for high-quality video generation models. For example, the generation of movie-level Ultra-High Definition (UHD) videos and the creation of 4K short video content. However, the existing public datasets cannot support related research and applications. In this paper, we first propose a high-quality open-sourced UHD-4K (22.4\% of which are 8K) text-to-video dataset named UltraVideo, which contains a wide range of topics (more than 100 kinds), and each video has 9 structured captions with one summarized caption (average of 824 words). Specifically, we carefully design a highly automated curation process with four stages to obtain the final high-quality dataset: \textit{i)} collection of diverse and high-quality video clips. \textit{ii)} statistical data filtering. \textit{iii)} model-based data purification. \textit{iv)} generation of comprehensive, structured captions. In addition, we expand Wan to UltraWan-1K/-4K, which can natively generate high-quality 1K/4K videos with more consistent text controllability, demonstrating the effectiveness of our data curation.We believe that this work can make a significant contribution to future research on UHD video generation. UltraVideo dataset and UltraWan models are available at https://xzc-zju.github.io/projects/UltraVideo.
☆ ROSA: Harnessing Robot States for Vision-Language and Action Alignment
Vision-Language-Action (VLA) models have recently made significant advance in multi-task, end-to-end robotic control, due to the strong generalization capabilities of Vision-Language Models (VLMs). A fundamental challenge in developing such models is effectively aligning the vision-language space with the robotic action space. Existing approaches typically rely on directly fine-tuning VLMs using expert demonstrations. However, this strategy suffers from a spatio-temporal gap, resulting in considerable data inefficiency and heavy reliance on human labor. Spatially, VLMs operate within a high-level semantic space, whereas robotic actions are grounded in low-level 3D physical space; temporally, VLMs primarily interpret the present, while VLA models anticipate future actions. To overcome these challenges, we propose a novel training paradigm, ROSA, which leverages robot state estimation to improve alignment between vision-language and action spaces. By integrating robot state estimation data obtained via an automated process, ROSA enables the VLA model to gain enhanced spatial understanding and self-awareness, thereby boosting performance and generalization. Extensive experiments in both simulated and real-world environments demonstrate the effectiveness of ROSA, particularly in low-data regimes.
☆ MultiViT2: A Data-augmented Multimodal Neuroimaging Prediction Framework via Latent Diffusion Model
Multimodal medical imaging integrates diverse data types, such as structural and functional neuroimaging, to provide complementary insights that enhance deep learning predictions and improve outcomes. This study focuses on a neuroimaging prediction framework based on both structural and functional neuroimaging data. We propose a next-generation prediction model, \textbf{MultiViT2}, which combines a pretrained representative learning base model with a vision transformer backbone for prediction output. Additionally, we developed a data augmentation module based on the latent diffusion model that enriches input data by generating augmented neuroimaging samples, thereby enhancing predictive performance through reduced overfitting and improved generalizability. We show that MultiViT2 significantly outperforms the first-generation model in schizophrenia classification accuracy and demonstrates strong scalability and portability.
☆ Ego-R1: Chain-of-Tool-Thought for Ultra-Long Egocentric Video Reasoning
We introduce Ego-R1, a novel framework for reasoning over ultra-long (i.e., in days and weeks) egocentric videos, which leverages a structured Chain-of-Tool-Thought (CoTT) process, orchestrated by an Ego-R1 Agent trained via reinforcement learning (RL). Inspired by human problem-solving strategies, CoTT decomposes complex reasoning into modular steps, with the RL agent invoking specific tools, one per step, to iteratively and collaboratively answer sub-questions tackling such tasks as temporal retrieval and multi-modal understanding. We design a two-stage training paradigm involving supervised finetuning (SFT) of a pretrained language model using CoTT data and RL to enable our agent to dynamically propose step-by-step tools for long-range reasoning. To facilitate training, we construct a dataset called Ego-R1 Data, which consists of Ego-CoTT-25K for SFT and Ego-QA-4.4K for RL. Furthermore, our Ego-R1 agent is evaluated on a newly curated week-long video QA benchmark, Ego-R1 Bench, which contains human-verified QA pairs from hybrid sources. Extensive results demonstrate that the dynamic, tool-augmented chain-of-thought reasoning by our Ego-R1 Agent can effectively tackle the unique challenges of understanding ultra-long egocentric videos, significantly extending the time coverage from few hours to a week.
comment: Project page: https://egolife-ai.github.io/Ego-R1/
☆ Stream-Omni: Simultaneous Multimodal Interactions with Large Language-Vision-Speech Model
The emergence of GPT-4o-like large multimodal models (LMMs) has raised the exploration of integrating text, vision, and speech modalities to support more flexible multimodal interaction. Existing LMMs typically concatenate representation of modalities along the sequence dimension and feed them into a large language model (LLM) backbone. While sequence-dimension concatenation is straightforward for modality integration, it often relies heavily on large-scale data to learn modality alignments. In this paper, we aim to model the relationships between modalities more purposefully, thereby achieving more efficient and flexible modality alignments. To this end, we propose Stream-Omni, a large language-vision-speech model with efficient modality alignments, which can simultaneously support interactions under various modality combinations. Stream-Omni employs LLM as the backbone and aligns the vision and speech to the text based on their relationships. For vision that is semantically complementary to text, Stream-Omni uses sequence-dimension concatenation to achieve vision-text alignment. For speech that is semantically consistent with text, Stream-Omni introduces a CTC-based layer-dimension mapping to achieve speech-text alignment. In this way, Stream-Omni can achieve modality alignments with less data (especially speech), enabling the transfer of text capabilities to other modalities. Experiments on various benchmarks demonstrate that Stream-Omni achieves strong performance on visual understanding, speech interaction, and vision-grounded speech interaction tasks. Owing to the layer-dimensional mapping, Stream-Omni can simultaneously provide intermediate text outputs (such as ASR transcriptions and model responses) during speech interaction, offering users a comprehensive multimodal experience.
comment: Code: https://github.com/ictnlp/Stream-Omni , Model: https://huggingface.co/ICTNLP/stream-omni-8b
☆ DualEdit: Dual Editing for Knowledge Updating in Vision-Language Models
Model editing aims to efficiently update a pre-trained model's knowledge without the need for time-consuming full retraining. While existing pioneering editing methods achieve promising results, they primarily focus on editing single-modal language models (LLMs). However, for vision-language models (VLMs), which involve multiple modalities, the role and impact of each modality on editing performance remain largely unexplored. To address this gap, we explore the impact of textual and visual modalities on model editing and find that: (1) textual and visual representations reach peak sensitivity at different layers, reflecting their varying importance; and (2) editing both modalities can efficiently update knowledge, but this comes at the cost of compromising the model's original capabilities. Based on our findings, we propose DualEdit, an editor that modifies both textual and visual modalities at their respective key layers. Additionally, we introduce a gating module within the more sensitive textual modality, allowing DualEdit to efficiently update new knowledge while preserving the model's original information. We evaluate DualEdit across multiple VLM backbones and benchmark datasets, demonstrating its superiority over state-of-the-art VLM editing baselines as well as adapted LLM editing methods on different evaluation metrics.
comment: Under Review
☆ FreeQ-Graph: Free-form Querying with Semantic Consistent Scene Graph for 3D Scene Understanding
Semantic querying in complex 3D scenes through free-form language presents a significant challenge. Existing 3D scene understanding methods use large-scale training data and CLIP to align text queries with 3D semantic features. However, their reliance on predefined vocabulary priors from training data hinders free-form semantic querying. Besides, recent advanced methods rely on LLMs for scene understanding but lack comprehensive 3D scene-level information and often overlook the potential inconsistencies in LLM-generated outputs. In our paper, we propose FreeQ-Graph, which enables Free-form Querying with a semantic consistent scene Graph for 3D scene understanding. The core idea is to encode free-form queries from a complete and accurate 3D scene graph without predefined vocabularies, and to align them with 3D consistent semantic labels, which accomplished through three key steps. We initiate by constructing a complete and accurate 3D scene graph that maps free-form objects and their relations through LLM and LVLM guidance, entirely free from training data or predefined priors. Most importantly, we align graph nodes with accurate semantic labels by leveraging 3D semantic aligned features from merged superpoints, enhancing 3D semantic consistency. To enable free-form semantic querying, we then design an LLM-based reasoning algorithm that combines scene-level and object-level information to intricate reasoning. We conducted extensive experiments on 3D semantic grounding, segmentation, and complex querying tasks, while also validating the accuracy of graph generation. Experiments on 6 datasets show that our model excels in both complex free-form semantic queries and intricate relational reasoning.
☆ Exploiting the Exact Denoising Posterior Score in Training-Free Guidance of Diffusion Models
The success of diffusion models has driven interest in performing conditional sampling via training-free guidance of the denoising process to solve image restoration and other inverse problems. A popular class of methods, based on Diffusion Posterior Sampling (DPS), attempts to approximate the intractable posterior score function directly. In this work, we present a novel expression for the exact posterior score for purely denoising tasks that is tractable in terms of the unconditional score function. We leverage this result to analyze the time-dependent error in the DPS score for denoising tasks and compute step sizes on the fly to minimize the error at each time step. We demonstrate that these step sizes are transferable to related inverse problems such as colorization, random inpainting, and super resolution. Despite its simplicity, this approach is competitive with state-of-the-art techniques and enables sampling with fewer time steps than DPS.
☆ Dive3D: Diverse Distillation-based Text-to-3D Generation via Score Implicit Matching
Distilling pre-trained 2D diffusion models into 3D assets has driven remarkable advances in text-to-3D synthesis. However, existing methods typically rely on Score Distillation Sampling (SDS) loss, which involves asymmetric KL divergence--a formulation that inherently favors mode-seeking behavior and limits generation diversity. In this paper, we introduce Dive3D, a novel text-to-3D generation framework that replaces KL-based objectives with Score Implicit Matching (SIM) loss, a score-based objective that effectively mitigates mode collapse. Furthermore, Dive3D integrates both diffusion distillation and reward-guided optimization under a unified divergence perspective. Such reformulation, together with SIM loss, yields significantly more diverse 3D outputs while improving text alignment, human preference, and overall visual fidelity. We validate Dive3D across various 2D-to-3D prompts and find that it consistently outperforms prior methods in qualitative assessments, including diversity, photorealism, and aesthetic appeal. We further evaluate its performance on the GPTEval3D benchmark, comparing against nine state-of-the-art baselines. Dive3D also achieves strong results on quantitative metrics, including text-asset alignment, 3D plausibility, text-geometry consistency, texture quality, and geometric detail.
☆ Omni-AdaVideoRAG: Omni-Contextual Adaptive Retrieval-Augmented for Efficient Long Video Understanding
Multimodal Large Language Models (MLLMs) struggle with long videos due to fixed context windows and weak long-term dependency modeling. Existing Retrieval-Augmented Generation (RAG) methods for videos use static retrieval strategies, leading to inefficiencies for simple queries and information loss for complex tasks. To address this, we propose AdaVideoRAG, a novel framework that dynamically adapts retrieval granularity based on query complexity using a lightweight intent classifier. Our framework employs an Omni-Knowledge Indexing module to build hierarchical databases from text (captions, ASR, OCR), visual features, and semantic graphs, enabling optimal resource allocation across tasks. We also introduce the HiVU benchmark for comprehensive evaluation. Experiments demonstrate improved efficiency and accuracy for long-video understanding, with seamless integration into existing MLLMs. AdaVideoRAG establishes a new paradigm for adaptive retrieval in video analysis. Codes will be open-sourced at https://github.com/xzc-zju/AdaVideoRAG.
☆ Flexible-length Text Infilling for Discrete Diffusion Models
Discrete diffusion models are a new class of text generators that offer advantages such as bidirectional context use, parallelizable generation, and flexible prompting compared to autoregressive models. However, a critical limitation of discrete diffusion models is their inability to perform flexible-length or flexible-position text infilling without access to ground-truth positional data. We introduce \textbf{DDOT} (\textbf{D}iscrete \textbf{D}iffusion with \textbf{O}ptimal \textbf{T}ransport Position Coupling), the first discrete diffusion model to overcome this challenge. DDOT jointly denoises token values and token positions, employing a novel sample-level Optimal Transport (OT) coupling. This coupling preserves relative token ordering while dynamically adjusting the positions and length of infilled segments, a capability previously missing in text diffusion. Our method is orthogonal to existing discrete text diffusion methods and is compatible with various pretrained text denoisers. Extensive experiments on text infilling benchmarks such as One-Billion-Word and Yelp demonstrate that DDOT outperforms naive diffusion baselines. Furthermore, DDOT achieves performance on par with state-of-the-art non-autoregressive models and enables significant improvements in training efficiency and flexibility.
☆ Integrated Pipeline for Monocular 3D Reconstruction and Finite Element Simulation in Industrial Applications
To address the challenges of 3D modeling and structural simulation in industrial environment, such as the difficulty of equipment deployment, and the difficulty of balancing accuracy and real-time performance, this paper proposes an integrated workflow, which integrates high-fidelity 3D reconstruction based on monocular video, finite element simulation analysis, and mixed reality visual display, aiming to build an interactive digital twin system for industrial inspection, equipment maintenance and other scenes. Firstly, the Neuralangelo algorithm based on deep learning is used to reconstruct the 3D mesh model with rich details from the surround-shot video. Then, the QuadRemesh tool of Rhino is used to optimize the initial triangular mesh and generate a structured mesh suitable for finite element analysis. The optimized mesh is further discretized by HyperMesh, and the material parameter setting and stress simulation are carried out in Abaqus to obtain high-precision stress and deformation results. Finally, combined with Unity and Vuforia engine, the real-time superposition and interactive operation of simulation results in the augmented reality environment are realized, which improves users 'intuitive understanding of structural response. Experiments show that the method has good simulation efficiency and visualization effect while maintaining high geometric accuracy. It provides a practical solution for digital modeling, mechanical analysis and interactive display in complex industrial scenes, and lays a foundation for the deep integration of digital twin and mixed reality technology in industrial applications.
☆ MambaMia: A State-Space-Model-Based Compression for Efficient Video Understanding in Large Multimodal Models
We propose an efficient framework to compress multiple video-frame features before feeding them into large multimodal models, thereby mitigating the severe token explosion arising from long or dense videos. Our design leverages a bidirectional state-space-based block equipped with a gated skip connection and a learnable weighted-average pooling mechanism applied to periodically inserted learned queries. This structure enables hierarchical downsampling across both spatial and temporal dimensions, preserving performance in a cost-effective manner. Across challenging long and dense video understanding tasks, our approach demonstrates competitive results against state-of-the-art models, while significantly reducing overall token budget. Notably, replacing our proposed state-space block with a conventional Transformer results in substantial performance degradation, highlighting the advantages of state-space modeling for effectively compressing multi-frame video data. Our framework emphasizes resource-conscious efficiency, making it practical for real-world deployments. We validate its scalability and generality across multiple benchmarks, achieving the dual objectives of efficient resource usage and comprehensive video understanding.
comment: 17 pages, 5 figures
☆ X-Scene: Large-Scale Driving Scene Generation with High Fidelity and Flexible Controllability
Diffusion models are advancing autonomous driving by enabling realistic data synthesis, predictive end-to-end planning, and closed-loop simulation, with a primary focus on temporally consistent generation. However, the generation of large-scale 3D scenes that require spatial coherence remains underexplored. In this paper, we propose X-Scene, a novel framework for large-scale driving scene generation that achieves both geometric intricacy and appearance fidelity, while offering flexible controllability. Specifically, X-Scene supports multi-granular control, including low-level conditions such as user-provided or text-driven layout for detailed scene composition and high-level semantic guidance such as user-intent and LLM-enriched text prompts for efficient customization. To enhance geometrical and visual fidelity, we introduce a unified pipeline that sequentially generates 3D semantic occupancy and the corresponding multiview images, while ensuring alignment between modalities. Additionally, we extend the generated local region into a large-scale scene through consistency-aware scene outpainting, which extrapolates new occupancy and images conditioned on the previously generated area, enhancing spatial continuity and preserving visual coherence. The resulting scenes are lifted into high-quality 3DGS representations, supporting diverse applications such as scene exploration. Comprehensive experiments demonstrate that X-Scene significantly advances controllability and fidelity for large-scale driving scene generation, empowering data generation and simulation for autonomous driving.
comment: 28 pages, 9 figures, Project page at https://x-scene.github.io/
☆ RelTopo: Enhancing Relational Modeling for Driving Scene Topology Reasoning
Accurate road topology reasoning is critical for autonomous driving, enabling effective navigation and adherence to traffic regulations. Central to this task are lane perception and topology reasoning. However, existing methods typically focus on either lane detection or Lane-to-Lane (L2L) topology reasoning, often \textit{neglecting} Lane-to-Traffic-element (L2T) relationships or \textit{failing} to optimize these tasks jointly. Furthermore, most approaches either overlook relational modeling or apply it in a limited scope, despite the inherent spatial relationships among road elements. We argue that relational modeling is beneficial for both perception and reasoning, as humans naturally leverage contextual relationships for road element recognition and their connectivity inference. To this end, we introduce relational modeling into both perception and reasoning, \textit{jointly} enhancing structural understanding. Specifically, we propose: 1) a relation-aware lane detector, where our geometry-biased self-attention and \curve\ cross-attention refine lane representations by capturing relational dependencies; 2) relation-enhanced topology heads, including a geometry-enhanced L2L head and a cross-view L2T head, boosting reasoning with relational cues; and 3) a contrastive learning strategy with InfoNCE loss to regularize relationship embeddings. Extensive experiments on OpenLane-V2 demonstrate that our approach significantly improves both detection and topology reasoning metrics, achieving +3.1 in DET$_l$, +5.3 in TOP$_{ll}$, +4.9 in TOP$_{lt}$, and an overall +4.4 in OLS, setting a new state-of-the-art. Code will be released.
comment: Preprint. Under review
☆ A Comprehensive Survey on Video Scene Parsing:Advances, Challenges, and Prospects
Video Scene Parsing (VSP) has emerged as a cornerstone in computer vision, facilitating the simultaneous segmentation, recognition, and tracking of diverse visual entities in dynamic scenes. In this survey, we present a holistic review of recent advances in VSP, covering a wide array of vision tasks, including Video Semantic Segmentation (VSS), Video Instance Segmentation (VIS), Video Panoptic Segmentation (VPS), as well as Video Tracking and Segmentation (VTS), and Open-Vocabulary Video Segmentation (OVVS). We systematically analyze the evolution from traditional hand-crafted features to modern deep learning paradigms -- spanning from fully convolutional networks to the latest transformer-based architectures -- and assess their effectiveness in capturing both local and global temporal contexts. Furthermore, our review critically discusses the technical challenges, ranging from maintaining temporal consistency to handling complex scene dynamics, and offers a comprehensive comparative study of datasets and evaluation metrics that have shaped current benchmarking standards. By distilling the key contributions and shortcomings of state-of-the-art methodologies, this survey highlights emerging trends and prospective research directions that promise to further elevate the robustness and adaptability of VSP in real-world applications.
☆ Limited-Angle CBCT Reconstruction via Geometry-Integrated Cycle-domain Denoising Diffusion Probabilistic Models
Cone-beam CT (CBCT) is widely used in clinical radiotherapy for image-guided treatment, improving setup accuracy, adaptive planning, and motion management. However, slow gantry rotation limits performance by introducing motion artifacts, blurring, and increased dose. This work aims to develop a clinically feasible method for reconstructing high-quality CBCT volumes from consecutive limited-angle acquisitions, addressing imaging challenges in time- or dose-constrained settings. We propose a limited-angle (LA) geometry-integrated cycle-domain (LA-GICD) framework for CBCT reconstruction, comprising two denoising diffusion probabilistic models (DDPMs) connected via analytic cone-beam forward and back projectors. A Projection-DDPM completes missing projections, followed by back-projection, and an Image-DDPM refines the volume. This dual-domain design leverages complementary priors from projection and image spaces to achieve high-quality reconstructions from limited-angle (<= 90 degrees) scans. Performance was evaluated against full-angle reconstruction. Four board-certified medical physicists conducted assessments. A total of 78 planning CTs in common CBCT geometries were used for training and evaluation. The method achieved a mean absolute error of 35.5 HU, SSIM of 0.84, and PSNR of 29.8 dB, with visibly reduced artifacts and improved soft-tissue clarity. LA-GICD's geometry-aware dual-domain learning, embedded in analytic forward/backward operators, enabled artifact-free, high-contrast reconstructions from a single 90-degree scan, reducing acquisition time and dose four-fold. LA-GICD improves limited-angle CBCT reconstruction with strong data fidelity and anatomical realism. It offers a practical solution for short-arc acquisitions, enhancing CBCT use in radiotherapy by providing clinically applicable images with reduced scan time and dose for more accurate, personalized treatments.
☆ Atomizer: Generalizing to new modalities by breaking satellite images down to a set of scalars
The growing number of Earth observation satellites has led to increasingly diverse remote sensing data, with varying spatial, spectral, and temporal configurations. Most existing models rely on fixed input formats and modality-specific encoders, which require retraining when new configurations are introduced, limiting their ability to generalize across modalities. We introduce Atomizer, a flexible architecture that represents remote sensing images as sets of scalars, each corresponding to a spectral band value of a pixel. Each scalar is enriched with contextual metadata (acquisition time, spatial resolution, wavelength, and bandwidth), producing an atomic representation that allows a single encoder to process arbitrary modalities without interpolation or resampling. Atomizer uses structured tokenization with Fourier features and non-uniform radial basis functions to encode content and context, and maps tokens into a latent space via cross-attention. Under modality-disjoint evaluations, Atomizer outperforms standard models and demonstrates robust performance across varying resolutions and spatial sizes.
☆ Micro-macro Gaussian Splatting with Enhanced Scalability for Unconstrained Scene Reconstruction
Reconstructing 3D scenes from unconstrained image collections poses significant challenges due to variations in appearance. In this paper, we propose Scalable Micro-macro Wavelet-based Gaussian Splatting (SMW-GS), a novel method that enhances 3D reconstruction across diverse scales by decomposing scene representations into global, refined, and intrinsic components. SMW-GS incorporates the following innovations: Micro-macro Projection, which enables Gaussian points to sample multi-scale details with improved diversity; and Wavelet-based Sampling, which refines feature representations using frequency-domain information to better capture complex scene appearances. To achieve scalability, we further propose a large-scale scene promotion strategy, which optimally assigns camera views to scene partitions by maximizing their contributions to Gaussian points, achieving consistent and high-quality reconstructions even in expansive environments. Extensive experiments demonstrate that SMW-GS significantly outperforms existing methods in both reconstruction quality and scalability, particularly excelling in large-scale urban environments with challenging illumination variations. Project is available at https://github.com/Kidleyh/SMW-GS.
☆ A Semantically-Aware Relevance Measure for Content-Based Medical Image Retrieval Evaluation
Performance evaluation for Content-Based Image Retrieval (CBIR) remains a crucial but unsolved problem today especially in the medical domain. Various evaluation metrics have been discussed in the literature to solve this problem. Most of the existing metrics (e.g., precision, recall) are adapted from classification tasks which require manual labels as ground truth. However, such labels are often expensive and unavailable in specific thematic domains. Furthermore, medical images are usually associated with (radiological) case reports or annotated with descriptive captions in literature figures, such text contains information that can help to assess CBIR.Several researchers have argued that the medical concepts hidden in the text can serve as the basis for CBIR evaluation purpose. However, these works often consider these medical concepts as independent and isolated labels while in fact the subtle relationships between various concepts are neglected. In this work, we introduce the use of knowledge graphs to measure the distance between various medical concepts and propose a novel relevance measure for the evaluation of CBIR by defining an approximate matching-based relevance score between two sets of medical concepts which allows us to indirectly measure the similarity between medical images.We quantitatively demonstrate the effectiveness and feasibility of our relevance measure using a public dataset.
comment: This paper has been accepted by the International Conference on Image Analysis and Processing 2025
☆ Multiview Geometric Regularization of Gaussian Splatting for Accurate Radiance Fields
Recent methods, such as 2D Gaussian Splatting and Gaussian Opacity Fields, have aimed to address the geometric inaccuracies of 3D Gaussian Splatting while retaining its superior rendering quality. However, these approaches still struggle to reconstruct smooth and reliable geometry, particularly in scenes with significant color variation across viewpoints, due to their per-point appearance modeling and single-view optimization constraints. In this paper, we propose an effective multiview geometric regularization strategy that integrates multiview stereo (MVS) depth, RGB, and normal constraints into Gaussian Splatting initialization and optimization. Our key insight is the complementary relationship between MVS-derived depth points and Gaussian Splatting-optimized positions: MVS robustly estimates geometry in regions of high color variation through local patch-based matching and epipolar constraints, whereas Gaussian Splatting provides more reliable and less noisy depth estimates near object boundaries and regions with lower color variation. To leverage this insight, we introduce a median depth-based multiview relative depth loss with uncertainty estimation, effectively integrating MVS depth information into Gaussian Splatting optimization. We also propose an MVS-guided Gaussian Splatting initialization to avoid Gaussians falling into suboptimal positions. Extensive experiments validate that our approach successfully combines these strengths, enhancing both geometric accuracy and rendering quality across diverse indoor and outdoor scenes.
comment: Accepted to Computer Graphics Forum (EGSR 2025)
☆ Stimulus Motion Perception Studies Imply Specific Neural Computations in Human Visual Stabilization
Even during fixation the human eye is constantly in low amplitude motion, jittering over small angles in random directions at up to 100Hz. This motion results in all features of the image on the retina constantly traversing a number of cones, yet objects which are stable in the world are perceived to be stable, and any object which is moving in the world is perceived to be moving. A series of experiments carried out over a dozen years revealed the psychophysics of visual stabilization to be more nuanced than might be assumed, say, from the mechanics of stabilization of camera images, or what might be assumed to be the simplest solution from an evolutionary perspective. The psychophysics revealed by the experiments strongly implies a specific set of operations on retinal signals resulting in the observed stabilization behavior. The presentation is in two levels. First is a functional description of the action of the mechanism that is very likely responsible for the experimentally observed behavior. Second is a more speculative proposal of circuit-level neural elements that might implement the functional behavior.
☆ FOAM: A General Frequency-Optimized Anti-Overlapping Framework for Overlapping Object Perception
Overlapping object perception aims to decouple the randomly overlapping foreground-background features, extracting foreground features while suppressing background features, which holds significant application value in fields such as security screening and medical auxiliary diagnosis. Despite some research efforts to tackle the challenge of overlapping object perception, most solutions are confined to the spatial domain. Through frequency domain analysis, we observe that the degradation of contours and textures due to the overlapping phenomenon can be intuitively reflected in the magnitude spectrum. Based on this observation, we propose a general Frequency-Optimized Anti-Overlapping Framework (FOAM) to assist the model in extracting more texture and contour information, thereby enhancing the ability for anti-overlapping object perception. Specifically, we design the Frequency Spatial Transformer Block (FSTB), which can simultaneously extract features from both the frequency and spatial domains, helping the network capture more texture features from the foreground. In addition, we introduce the Hierarchical De-Corrupting (HDC) mechanism, which aligns adjacent features in the separately constructed base branch and corruption branch using a specially designed consistent loss during the training phase. This mechanism suppresses the response to irrelevant background features of FSTBs, thereby improving the perception of foreground contour. We conduct extensive experiments to validate the effectiveness and generalization of the proposed FOAM, which further improves the accuracy of state-of-the-art models on four datasets, specifically for the three overlapping object perception tasks: Prohibited Item Detection, Prohibited Item Segmentation, and Pneumonia Detection. The code will be open source once the paper is accepted.
☆ Hierarchical Multi-Positive Contrastive Learning for Patent Image Retrieval SIGIR 2025
Patent images are technical drawings that convey information about a patent's innovation. Patent image retrieval systems aim to search in vast collections and retrieve the most relevant images. Despite recent advances in information retrieval, patent images still pose significant challenges due to their technical intricacies and complex semantic information, requiring efficient fine-tuning for domain adaptation. Current methods neglect patents' hierarchical relationships, such as those defined by the Locarno International Classification (LIC) system, which groups broad categories (e.g., "furnishing") into subclasses (e.g., "seats" and "beds") and further into specific patent designs. In this work, we introduce a hierarchical multi-positive contrastive loss that leverages the LIC's taxonomy to induce such relations in the retrieval process. Our approach assigns multiple positive pairs to each patent image within a batch, with varying similarity scores based on the hierarchical taxonomy. Our experimental analysis with various vision and multimodal models on the DeepPatent2 dataset shows that the proposed method enhances the retrieval results. Notably, our method is effective with low-parameter models, which require fewer computational resources and can be deployed on environments with limited hardware.
comment: 5 pages, 3 figures, Accepted as a short paper at the 6th Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech 2025), co-located with SIGIR 2025
☆ GeoSDF: Plane Geometry Diagram Synthesis via Signed Distance Field
Plane Geometry Diagram Synthesis has been a crucial task in computer graphics, with applications ranging from educational tools to AI-driven mathematical reasoning. Traditionally, we rely on computer tools (e.g., Matplotlib and GeoGebra) to manually generate precise diagrams, but it usually requires huge, complicated calculations cost. Recently, researchers start to work on learning-based methods (e.g., Stable Diffusion and GPT4) to automatically generate diagrams, saving operational cost but usually suffering from limited realism and insufficient accuracy. In this paper, we propose a novel framework GeoSDF to automatically generate diagrams efficiently and accurately with Signed Distance Field (SDF). Specifically, we first represent geometric elements in the SDF, then construct a series of constraint functions to represent geometric relationships, next we optimize such constraint functions to get an optimized field of both elements and constraints, finally by rendering the optimized field, we can obtain the synthesized diagram. In our GeoSDF, we define a symbolic language to easily represent geometric elements and those constraints, and our synthesized geometry diagrams can be self-verified in the SDF, ensuring both mathematical accuracy and visual plausibility. In experiments, our GeoSDF synthesized both normal high-school level and IMO-level geometry diagrams. Through both qualitative and quantitative analysis, we can see that synthesized diagrams are realistic and accurate, and our synthesizing process is simple and efficient. Furthermore, we obtain a very high accuracy of solving geometry problems (over 95\% while the current SOTA accuracy is around 75%) by leveraging our self-verification property. All of these demonstrate the advantage of GeoSDF, paving the way for more sophisticated, accurate, and flexible generation of geometric diagrams for a wide array of applications.
☆ Deep Diffusion Models and Unsupervised Hyperspectral Unmixing for Realistic Abundance Map Synthesis CVPR
This paper presents a novel methodology for generating realistic abundance maps from hyperspectral imagery using an unsupervised, deep-learning-driven approach. Our framework integrates blind linear hyperspectral unmixing with state-of-the-art diffusion models to enhance the realism and diversity of synthetic abundance maps. First, we apply blind unmixing to extract endmembers and abundance maps directly from raw hyperspectral data. These abundance maps then serve as inputs to a diffusion model, which acts as a generative engine to synthesize highly realistic spatial distributions. Diffusion models have recently revolutionized image synthesis by offering superior performance, flexibility, and stability, making them well-suited for high-dimensional spectral data. By leveraging this combination of physically interpretable unmixing and deep generative modeling, our approach enables the simulation of hyperspectral sensor outputs under diverse imaging conditions--critical for data augmentation, algorithm benchmarking, and model evaluation in hyperspectral analysis. Notably, our method is entirely unsupervised, ensuring adaptability to different datasets without the need for labeled training data. We validate our approach using real hyperspectral imagery from the PRISMA space mission for Earth observation, demonstrating its effectiveness in producing realistic synthetic abundance maps that capture the spatial and spectral characteristics of natural scenes.
comment: CVPRw2025
☆ From Flat to Feeling: A Feasibility and Impact Study on Dynamic Facial Emotions in AI-Generated Avatars
Dynamic facial emotion is essential for believable AI-generated avatars; however, most systems remain visually inert, limiting their utility in high-stakes simulations such as virtual training for investigative interviews with abused children. We introduce and evaluate a real-time architecture fusing Unreal Engine 5 MetaHuman rendering with NVIDIA Omniverse Audio2Face to translate vocal prosody into high-fidelity facial expressions on photorealistic child avatars. We implemented a distributed two-PC setup that decouples language processing and speech synthesis from GPU-intensive rendering, designed to support low-latency interaction in desktop and VR environments. A between-subjects study ($N=70$) using audio+visual and visual-only conditions assessed perceptual impacts as participants rated emotional clarity, facial realism, and empathy for two avatars expressing joy, sadness, and anger. Results demonstrate that avatars could express emotions recognizably, with sadness and joy achieving high identification rates. However, anger recognition significantly dropped without audio, highlighting the importance of congruent vocal cues for high-arousal emotions. Interestingly, removing audio boosted perceived facial realism, suggesting that audiovisual desynchrony remains a key design challenge. These findings confirm the technical feasibility of generating emotionally expressive avatars and provide guidance for improving non-verbal communication in sensitive training simulations.
comment: 15 pages, 4 figures, 4 tables
☆ ESRPCB: an Edge guided Super-Resolution model and Ensemble learning for tiny Printed Circuit Board Defect detection
Printed Circuit Boards (PCBs) are critical components in modern electronics, which require stringent quality control to ensure proper functionality. However, the detection of defects in small-scale PCBs images poses significant challenges as a result of the low resolution of the captured images, leading to potential confusion between defects and noise. To overcome these challenges, this paper proposes a novel framework, named ESRPCB (edgeguided super-resolution for PCBs defect detection), which combines edgeguided super-resolution with ensemble learning to enhance PCBs defect detection. The framework leverages the edge information to guide the EDSR (Enhanced Deep Super-Resolution) model with a novel ResCat (Residual Concatenation) structure, enabling it to reconstruct high-resolution images from small PCBs inputs. By incorporating edge features, the super-resolution process preserves critical structural details, ensuring that tiny defects remain distinguishable in the enhanced image. Following this, a multi-modal defect detection model employs ensemble learning to analyze the super-resolved
comment: Published in Engineering Applications of Artificial Intelligence
☆ SA-LUT: Spatial Adaptive 4D Look-Up Table for Photorealistic Style Transfer
Photorealistic style transfer (PST) enables real-world color grading by adapting reference image colors while preserving content structure. Existing methods mainly follow either approaches: generation-based methods that prioritize stylistic fidelity at the cost of content integrity and efficiency, or global color transformation methods such as LUT, which preserve structure but lack local adaptability. To bridge this gap, we propose Spatial Adaptive 4D Look-Up Table (SA-LUT), combining LUT efficiency with neural network adaptability. SA-LUT features: (1) a Style-guided 4D LUT Generator that extracts multi-scale features from the style image to predict a 4D LUT, and (2) a Context Generator using content-style cross-attention to produce a context map. This context map enables spatially-adaptive adjustments, allowing our 4D LUT to apply precise color transformations while preserving structural integrity. To establish a rigorous evaluation framework for photorealistic style transfer, we introduce PST50, the first benchmark specifically designed for PST assessment. Experiments demonstrate that SA-LUT substantially outperforms state-of-the-art methods, achieving a 66.7% reduction in LPIPS score compared to 3D LUT approaches, while maintaining real-time performance at 16 FPS for video stylization. Our code and benchmark are available at https://github.com/Ry3nG/SA-LUT
☆ Leveraging Vision-Language Pre-training for Human Activity Recognition in Still Images
Recognising human activity in a single photo enables indexing, safety and assistive applications, yet lacks motion cues. Using 285 MSCOCO images labelled as walking, running, sitting, and standing, scratch CNNs scored 41% accuracy. Fine-tuning multimodal CLIP raised this to 76%, demonstrating that contrastive vision-language pre-training decisively improves still-image action recognition in real-world deployments.
☆ Deep Learning-Based Multi-Object Tracking: A Comprehensive Survey from Foundations to State-of-the-Art
Multi-object tracking (MOT) is a core task in computer vision that involves detecting objects in video frames and associating them across time. The rise of deep learning has significantly advanced MOT, particularly within the tracking-by-detection paradigm, which remains the dominant approach. Advancements in modern deep learning-based methods accelerated in 2022 with the introduction of ByteTrack for tracking-by-detection and MOTR for end-to-end tracking. Our survey provides an in-depth analysis of deep learning-based MOT methods, systematically categorizing tracking-by-detection approaches into five groups: joint detection and embedding, heuristic-based, motion-based, affinity learning, and offline methods. In addition, we examine end-to-end tracking methods and compare them with existing alternative approaches. We evaluate the performance of recent trackers across multiple benchmarks and specifically assess their generality by comparing results across different domains. Our findings indicate that heuristic-based methods achieve state-of-the-art results on densely populated datasets with linear object motion, while deep learning-based association methods, in both tracking-by-detection and end-to-end approaches, excel in scenarios with complex motion patterns.
comment: 39 pages
☆ Overcoming Occlusions in the Wild: A Multi-Task Age Head Approach to Age Estimation
Facial age estimation has achieved considerable success under controlled conditions. However, in unconstrained real-world scenarios, which are often referred to as 'in the wild', age estimation remains challenging, especially when faces are partially occluded, which may obscure their visibility. To address this limitation, we propose a new approach integrating generative adversarial networks (GANs) and transformer architectures to enable robust age estimation from occluded faces. We employ an SN-Patch GAN to effectively remove occlusions, while an Attentive Residual Convolution Module (ARCM), paired with a Swin Transformer, enhances feature representation. Additionally, we introduce a Multi-Task Age Head (MTAH) that combines regression and distribution learning, further improving age estimation under occlusion. Experimental results on the FG-NET, UTKFace, and MORPH datasets demonstrate that our proposed approach surpasses existing state-of-the-art techniques for occluded facial age estimation by achieving an MAE of $3.00$, $4.54$, and $2.53$ years, respectively.
☆ PRO: Projection Domain Synthesis for CT Imaging
Synthesizing high quality CT images remains a signifi-cant challenge due to the limited availability of annotat-ed data and the complex nature of CT imaging. In this work, we present PRO, a novel framework that, to the best of our knowledge, is the first to perform CT image synthesis in the projection domain using latent diffusion models. Unlike previous approaches that operate in the image domain, PRO learns rich structural representa-tions from raw projection data and leverages anatomi-cal text prompts for controllable synthesis. This projec-tion domain strategy enables more faithful modeling of underlying imaging physics and anatomical structures. Moreover, PRO functions as a foundation model, capa-ble of generalizing across diverse downstream tasks by adjusting its generative behavior via prompt inputs. Experimental results demonstrated that incorporating our synthesized data significantly improves perfor-mance across multiple downstream tasks, including low-dose and sparse-view reconstruction, even with limited training data. These findings underscore the versatility and scalability of PRO in data generation for various CT applications. These results highlight the potential of projection domain synthesis as a powerful tool for data augmentation and robust CT imaging. Our source code is publicly available at: https://github.com/yqx7150/PRO.
☆ Sparse Convolutional Recurrent Learning for Efficient Event-based Neuromorphic Object Detection IJCNN 2025
Leveraging the high temporal resolution and dynamic range, object detection with event cameras can enhance the performance and safety of automotive and robotics applications in real-world scenarios. However, processing sparse event data requires compute-intensive convolutional recurrent units, complicating their integration into resource-constrained edge applications. Here, we propose the Sparse Event-based Efficient Detector (SEED) for efficient event-based object detection on neuromorphic processors. We introduce sparse convolutional recurrent learning, which achieves over 92% activation sparsity in recurrent processing, vastly reducing the cost for spatiotemporal reasoning on sparse event data. We validated our method on Prophesee's 1 Mpx and Gen1 event-based object detection datasets. Notably, SEED sets a new benchmark in computational efficiency for event-based object detection which requires long-term temporal learning. Compared to state-of-the-art methods, SEED significantly reduces synaptic operations while delivering higher or same-level mAP. Our hardware simulations showcase the critical role of SEED's hardware-aware design in achieving energy-efficient and low-latency neuromorphic processing.
comment: Accepted by IJCNN 2025
☆ Uncertainty-Aware Remaining Lifespan Prediction from Images
Predicting mortality-related outcomes from images offers the prospect of accessible, noninvasive, and scalable health screening. We present a method that leverages pretrained vision transformer foundation models to estimate remaining lifespan from facial and whole-body images, alongside robust uncertainty quantification. We show that predictive uncertainty varies systematically with the true remaining lifespan, and that this uncertainty can be effectively modeled by learning a Gaussian distribution for each sample. Our approach achieves state-of-the-art mean absolute error (MAE) of 7.48 years on an established Dataset, and further improves to 4.79 and 5.07 years MAE on two new, higher-quality datasets curated and published in this work. Importantly, our models provide well-calibrated uncertainty estimates, as demonstrated by a bucketed expected calibration error of 0.62 years. While not intended for clinical deployment, these results highlight the potential of extracting medically relevant signals from images. We make all code and datasets available to facilitate further research.
comment: Submitted to IMPACT 2025
☆ JENGA: Object selection and pose estimation for robotic grasping from a stack
Vision-based robotic object grasping is typically investigated in the context of isolated objects or unstructured object sets in bin picking scenarios. However, there are several settings, such as construction or warehouse automation, where a robot needs to interact with a structured object formation such as a stack. In this context, we define the problem of selecting suitable objects for grasping along with estimating an accurate 6DoF pose of these objects. To address this problem, we propose a camera-IMU based approach that prioritizes unobstructed objects on the higher layers of stacks and introduce a dataset for benchmarking and evaluation, along with a suitable evaluation metric that combines object selection with pose accuracy. Experimental results show that although our method can perform quite well, this is a challenging problem if a completely error-free solution is needed. Finally, we show results from the deployment of our method for a brick-picking application in a construction scenario.
☆ Audio-Visual Driven Compression for Low-Bitrate Talking Head Videos ICMR2025
Talking head video compression has advanced with neural rendering and keypoint-based methods, but challenges remain, especially at low bit rates, including handling large head movements, suboptimal lip synchronization, and distorted facial reconstructions. To address these problems, we propose a novel audio-visual driven video codec that integrates compact 3D motion features and audio signals. This approach robustly models significant head rotations and aligns lip movements with speech, improving both compression efficiency and reconstruction quality. Experiments on the CelebV-HQ dataset show that our method reduces bitrate by 22% compared to VVC and by 8.5% over state-of-the-art learning-based codec. Furthermore, it provides superior lip-sync accuracy and visual fidelity at comparable bitrates, highlighting its effectiveness in bandwidth-constrained scenarios.
comment: Accepted to ICMR2025
☆ Simple is what you need for efficient and accurate medical image segmentation
While modern segmentation models often prioritize performance over practicality, we advocate a design philosophy prioritizing simplicity and efficiency, and attempted high performance segmentation model design. This paper presents SimpleUNet, a scalable ultra-lightweight medical image segmentation model with three key innovations: (1) A partial feature selection mechanism in skip connections for redundancy reduction while enhancing segmentation performance; (2) A fixed-width architecture that prevents exponential parameter growth across network stages; (3) An adaptive feature fusion module achieving enhanced representation with minimal computational overhead. With a record-breaking 16 KB parameter configuration, SimpleUNet outperforms LBUNet and other lightweight benchmarks across multiple public datasets. The 0.67 MB variant achieves superior efficiency (8.60 GFLOPs) and accuracy, attaining a mean DSC/IoU of 85.76%/75.60% on multi-center breast lesion datasets, surpassing both U-Net and TransUNet. Evaluations on skin lesion datasets (ISIC 2017/2018: mDice 84.86%/88.77%) and endoscopic polyp segmentation (KVASIR-SEG: 86.46%/76.48% mDice/mIoU) confirm consistent dominance over state-of-the-art models. This work demonstrates that extreme model compression need not compromise performance, providing new insights for efficient and accurate medical image segmentation. Codes can be found at https://github.com/Frankyu5666666/SimpleUNet.
comment: 15 pages, 11 figures
☆ Zero-Shot Solving of Imaging Inverse Problems via Noise-Refined Likelihood Guided Diffusion Models
Diffusion models have achieved remarkable success in imaging inverse problems owing to their powerful generative capabilities. However, existing approaches typically rely on models trained for specific degradation types, limiting their generalizability to various degradation scenarios. To address this limitation, we propose a zero-shot framework capable of handling various imaging inverse problems without model retraining. We introduce a likelihood-guided noise refinement mechanism that derives a closed-form approximation of the likelihood score, simplifying score estimation and avoiding expensive gradient computations. This estimated score is subsequently utilized to refine the model-predicted noise, thereby better aligning the restoration process with the generative framework of diffusion models. In addition, we integrate the Denoising Diffusion Implicit Models (DDIM) sampling strategy to further improve inference efficiency. The proposed mechanism can be applied to both optimization-based and sampling-based schemes, providing an effective and flexible zero-shot solution for imaging inverse problems. Extensive experiments demonstrate that our method achieves superior performance across multiple inverse problems, particularly in compressive sensing, delivering high-quality reconstructions even at an extremely low sampling rate (5%).
☆ TR2M: Transferring Monocular Relative Depth to Metric Depth with Language Descriptions and Scale-Oriented Contrast
This work presents a generalizable framework to transfer relative depth to metric depth. Current monocular depth estimation methods are mainly divided into metric depth estimation (MMDE) and relative depth estimation (MRDE). MMDEs estimate depth in metric scale but are often limited to a specific domain. MRDEs generalize well across different domains, but with uncertain scales which hinders downstream applications. To this end, we aim to build up a framework to solve scale uncertainty and transfer relative depth to metric depth. Previous methods used language as input and estimated two factors for conducting rescaling. Our approach, TR2M, utilizes both text description and image as inputs and estimates two rescale maps to transfer relative depth to metric depth at pixel level. Features from two modalities are fused with a cross-modality attention module to better capture scale information. A strategy is designed to construct and filter confident pseudo metric depth for more comprehensive supervision. We also develop scale-oriented contrastive learning to utilize depth distribution as guidance to enforce the model learning about intrinsic knowledge aligning with the scale distribution. TR2M only exploits a small number of trainable parameters to train on datasets in various domains and experiments not only demonstrate TR2M's great performance in seen datasets but also reveal superior zero-shot capabilities on five unseen datasets. We show the huge potential in pixel-wise transferring relative depth to metric depth with language assistance. (Code is available at: https://github.com/BeileiCui/TR2M)
☆ DicFace: Dirichlet-Constrained Variational Codebook Learning for Temporally Coherent Video Face Restoration
Video face restoration faces a critical challenge in maintaining temporal consistency while recovering fine facial details from degraded inputs. This paper presents a novel approach that extends Vector-Quantized Variational Autoencoders (VQ-VAEs), pretrained on static high-quality portraits, into a video restoration framework through variational latent space modeling. Our key innovation lies in reformulating discrete codebook representations as Dirichlet-distributed continuous variables, enabling probabilistic transitions between facial features across frames. A spatio-temporal Transformer architecture jointly models inter-frame dependencies and predicts latent distributions, while a Laplacian-constrained reconstruction loss combined with perceptual (LPIPS) regularization enhances both pixel accuracy and visual quality. Comprehensive evaluations on blind face restoration, video inpainting, and facial colorization tasks demonstrate state-of-the-art performance. This work establishes an effective paradigm for adapting intensive image priors, pretrained on high-quality images, to video restoration while addressing the critical challenge of flicker artifacts. The source code has been open-sourced and is available at https://github.com/fudan-generative-vision/DicFace.
☆ TextureSplat: Per-Primitive Texture Mapping for Reflective Gaussian Splatting
Gaussian Splatting have demonstrated remarkable novel view synthesis performance at high rendering frame rates. Optimization-based inverse rendering within complex capture scenarios remains however a challenging problem. A particular case is modelling complex surface light interactions for highly reflective scenes, which results in intricate high frequency specular radiance components. We hypothesize that such challenging settings can benefit from increased representation power. We hence propose a method that tackles this issue through a geometrically and physically grounded Gaussian Splatting borne radiance field, where normals and material properties are spatially variable in the primitive's local space. Using per-primitive texture maps for this purpose, we also propose to harness the GPU hardware to accelerate rendering at test time via unified material texture atlas.
comment: Code will be available at https://github.com/maeyounes/TextureSplat
☆ Advancing Image-Based Grapevine Variety Classification with a New Benchmark and Evaluation of Masked Autoencoders
Grapevine varieties are essential for the economies of many wine-producing countries, influencing the production of wine, juice, and the consumption of fruits and leaves. Traditional identification methods, such as ampelography and molecular analysis, have limitations: ampelography depends on expert knowledge and is inherently subjective, while molecular methods are costly and time-intensive. To address these limitations, recent studies have applied deep learning (DL) models to classify grapevine varieties using image data. However, due to the small dataset sizes, these methods often depend on transfer learning from datasets from other domains, e.g., ImageNet1K (IN1K), which can lead to performance degradation due to domain shift and supervision collapse. In this context, self-supervised learning (SSL) methods can be a good tool to avoid this performance degradation, since they can learn directly from data, without external labels. This study presents an evaluation of Masked Autoencoders (MAEs) for identifying grapevine varieties based on field-acquired images. The main contributions of this study include two benchmarks comprising 43 grapevine varieties collected across different seasons, an analysis of MAE's application in the agricultural context, and a performance comparison of trained models across seasons. Our results show that a ViT-B/16 model pre-trained with MAE and the unlabeled dataset achieved an F1 score of 0.7956, outperforming all other models. Additionally, we observed that pre-trained models benefit from long pre-training, perform well under low-data training regime, and that simple data augmentation methods are more effective than complex ones. The study also found that the mask ratio in MAE impacts performance only marginally.
☆ Joint Analysis of Optical and SAR Vegetation Indices for Vineyard Monitoring: Assessing Biomass Dynamics and Phenological Stages over Po Valley, Italy
Multi-polarized Synthetic Aperture Radar (SAR) technology has gained increasing attention in agriculture, offering unique capabilities for monitoring vegetation dynamics thanks to its all-weather, day-and-night operation and high revisit frequency. This study presents, for the first time, a comprehensive analysis combining dual-polarimetric radar vegetation index (DpRVI) with optical indices to characterize vineyard crops. Vineyards exhibit distinct non-isotropic scattering behavior due to their pronounced row orientation, making them particularly challenging and interesting targets for remote sensing. The research further investigates the relationship between DpRVI and optical vegetation indices, demonstrating the complementary nature of their information. We demonstrate that DpRVI and optical indices provide complementary information, with low correlation suggesting that they capture distinct vineyard features. Key findings reveal a parabolic trend in DpRVI over the growing season, potentially linked to biomass dynamics estimated via the Winkler Index. Unlike optical indices reflecting vegetation greenness, DpRVI appears more directly related to biomass growth, aligning with specific phenological phases. Preliminary results also highlight the potential of DpRVI for distinguishing vineyards from other crops. This research aligns with the objectives of the PNRR-NODES project, which promotes nature-based solutions (NbS) for sustainable vineyard management. The application of DpRVI for monitoring vineyards is part of integrating remote sensing techniques into the broader field of strategies for climate-related change adaptation and risk reduction, emphasizing the role of innovative SAR-based monitoring in sustainable agriculture.
☆ VIS-Shepherd: Constructing Critic for LLM-based Data Visualization Generation
Data visualization generation using Large Language Models (LLMs) has shown promising results but often produces suboptimal visualizations that require human intervention for improvement. In this work, we introduce VIS-Shepherd, a specialized Multimodal Large Language Model (MLLM)-based critic to evaluate and provide feedback for LLM-generated data visualizations. At the core of our approach is a framework to construct a high-quality visualization critique dataset, where we collect human-created visualization instances, synthesize corresponding LLM-generated instances, and construct high-quality critiques. We conduct both model-based automatic evaluation and human preference studies to evaluate the effectiveness of our approach. Our experiments show that even small (7B parameters) open-source MLLM models achieve substantial performance gains by leveraging our high-quality visualization critique dataset, reaching levels comparable to much larger open-source or even proprietary models. Our work demonstrates significant potential for MLLM-based automated visualization critique and indicates promising directions for enhancing LLM-based data visualization generation. Our project page: https://github.com/bopan3/VIS-Shepherd.
☆ Active Multimodal Distillation for Few-shot Action Recognition IJCAI 2025
Owing to its rapid progress and broad application prospects, few-shot action recognition has attracted considerable interest. However, current methods are predominantly based on limited single-modal data, which does not fully exploit the potential of multimodal information. This paper presents a novel framework that actively identifies reliable modalities for each sample using task-specific contextual cues, thus significantly improving recognition performance. Our framework integrates an Active Sample Inference (ASI) module, which utilizes active inference to predict reliable modalities based on posterior distributions and subsequently organizes them accordingly. Unlike reinforcement learning, active inference replaces rewards with evidence-based preferences, making more stable predictions. Additionally, we introduce an active mutual distillation module that enhances the representation learning of less reliable modalities by transferring knowledge from more reliable ones. Adaptive multimodal inference is employed during the meta-test to assign higher weights to reliable modalities. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing approaches.
comment: IJCAI 2025, the 34th International Joint Conference on Artificial Intelligence
☆ Action Dubber: Timing Audible Actions via Inflectional Flow ICML2025
We introduce the task of Audible Action Temporal Localization, which aims to identify the spatio-temporal coordinates of audible movements. Unlike conventional tasks such as action recognition and temporal action localization, which broadly analyze video content, our task focuses on the distinct kinematic dynamics of audible actions. It is based on the premise that key actions are driven by inflectional movements; for example, collisions that produce sound often involve abrupt changes in motion. To capture this, we propose $TA^{2}Net$, a novel architecture that estimates inflectional flow using the second derivative of motion to determine collision timings without relying on audio input. $TA^{2}Net$ also integrates a self-supervised spatial localization strategy during training, combining contrastive learning with spatial analysis. This dual design improves temporal localization accuracy and simultaneously identifies sound sources within video frames. To support this task, we introduce a new benchmark dataset, $Audible623$, derived from Kinetics and UCF101 by removing non-essential vocalization subsets. Extensive experiments confirm the effectiveness of our approach on $Audible623$ and show strong generalizability to other domains, such as repetitive counting and sound source localization. Code and dataset are available at https://github.com/WenlongWan/Audible623.
comment: Accepted by ICML2025
☆ Quantitative Comparison of Fine-Tuning Techniques for Pretrained Latent Diffusion Models in the Generation of Unseen SAR Image Concepts
This work investigates the adaptation of large pre-trained latent diffusion models to a radically new imaging domain: Synthetic Aperture Radar (SAR). While these generative models, originally trained on natural images, demonstrate impressive capabilities in text-to-image synthesis, they are not natively adapted to represent SAR data, which involves different physics, statistical distributions, and visual characteristics. Using a sizeable SAR dataset (on the order of 100,000 to 1 million images), we address the fundamental question of fine-tuning such models for this unseen modality. We explore and compare multiple fine-tuning strategies, including full model fine-tuning and parameter-efficient approaches like Low-Rank Adaptation (LoRA), focusing separately on the UNet diffusion backbone and the text encoder components. To evaluate generative quality, we combine several metrics: statistical distance from real SAR distributions, textural similarity via GLCM descriptors, and semantic alignment assessed with a CLIP model fine-tuned on SAR data. Our results show that a hybrid tuning strategy yields the best performance: full fine-tuning of the UNet is better at capturing low-level SAR-specific patterns, while LoRA-based partial tuning of the text encoder, combined with embedding learning of the token, suffices to preserve prompt alignment. This work provides a methodical strategy for adapting foundation models to unconventional imaging modalities beyond natural image domains.
☆ Brain Imaging Foundation Models, Are We There Yet? A Systematic Review of Foundation Models for Brain Imaging and Biomedical Research
Foundation models (FMs), large neural networks pretrained on extensive and diverse datasets, have revolutionized artificial intelligence and shown significant promise in medical imaging by enabling robust performance with limited labeled data. Although numerous surveys have reviewed the application of FM in healthcare care, brain imaging remains underrepresented, despite its critical role in the diagnosis and treatment of neurological diseases using modalities such as MRI, CT, and PET. Existing reviews either marginalize brain imaging or lack depth on the unique challenges and requirements of FM in this domain, such as multimodal data integration, support for diverse clinical tasks, and handling of heterogeneous, fragmented datasets. To address this gap, we present the first comprehensive and curated review of FMs for brain imaging. We systematically analyze 161 brain imaging datasets and 86 FM architectures, providing information on key design choices, training paradigms, and optimizations driving recent advances. Our review highlights the leading models for various brain imaging tasks, summarizes their innovations, and critically examines current limitations and blind spots in the literature. We conclude by outlining future research directions to advance FM applications in brain imaging, with the aim of fostering progress in both clinical and research settings.
☆ AttentionDrag: Exploiting Latent Correlation Knowledge in Pre-trained Diffusion Models for Image Editing
Traditional point-based image editing methods rely on iterative latent optimization or geometric transformations, which are either inefficient in their processing or fail to capture the semantic relationships within the image. These methods often overlook the powerful yet underutilized image editing capabilities inherent in pre-trained diffusion models. In this work, we propose a novel one-step point-based image editing method, named AttentionDrag, which leverages the inherent latent knowledge and feature correlations within pre-trained diffusion models for image editing tasks. This framework enables semantic consistency and high-quality manipulation without the need for extensive re-optimization or retraining. Specifically, we reutilize the latent correlations knowledge learned by the self-attention mechanism in the U-Net module during the DDIM inversion process to automatically identify and adjust relevant image regions, ensuring semantic validity and consistency. Additionally, AttentionDrag adaptively generates masks to guide the editing process, enabling precise and context-aware modifications with friendly interaction. Our results demonstrate a performance that surpasses most state-of-the-art methods with significantly faster speeds, showing a more efficient and semantically coherent solution for point-based image editing tasks.
☆ Fair Generation without Unfair Distortions: Debiasing Text-to-Image Generation with Entanglement-Free Attention
Recent advancements in diffusion-based text-to-image (T2I) models have enabled the generation of high-quality and photorealistic images from text descriptions. However, they often exhibit societal biases related to gender, race, and socioeconomic status, thereby reinforcing harmful stereotypes and shaping public perception in unintended ways. While existing bias mitigation methods demonstrate effectiveness, they often encounter attribute entanglement, where adjustments to attributes relevant to the bias (i.e., target attributes) unintentionally alter attributes unassociated with the bias (i.e., non-target attributes), causing undesirable distribution shifts. To address this challenge, we introduce Entanglement-Free Attention (EFA), a method that accurately incorporates target attributes (e.g., White, Black, Asian, and Indian) while preserving non-target attributes (e.g., background details) during bias mitigation. At inference time, EFA randomly samples a target attribute with equal probability and adjusts the cross-attention in selected layers to incorporate the sampled attribute, achieving a fair distribution of target attributes. Extensive experiments demonstrate that EFA outperforms existing methods in mitigating bias while preserving non-target attributes, thereby maintaining the output distribution and generation capability of the original model.
☆ Automatic Multi-View X-Ray/CT Registration Using Bone Substructure Contours
Purpose: Accurate intraoperative X-ray/CT registration is essential for surgical navigation in orthopedic procedures. However, existing methods struggle with consistently achieving sub-millimeter accuracy, robustness under broad initial pose estimates or need manual key-point annotations. This work aims to address these challenges by proposing a novel multi-view X-ray/CT registration method for intraoperative bone registration. Methods: The proposed registration method consists of a multi-view, contour-based iterative closest point (ICP) optimization. Unlike previous methods, which attempt to match bone contours across the entire silhouette in both imaging modalities, we focus on matching specific subcategories of contours corresponding to bone substructures. This leads to reduced ambiguity in the ICP matches, resulting in a more robust and accurate registration solution. This approach requires only two X-ray images and operates fully automatically. Additionally, we contribute a dataset of 5 cadaveric specimens, including real X-ray images, X-ray image poses and the corresponding CT scans. Results: The proposed registration method is evaluated on real X-ray images using mean reprojection error (mRPD). The method consistently achieves sub-millimeter accuracy with a mRPD 0.67mm compared to 5.35mm by a commercial solution requiring manual intervention. Furthermore, the method offers improved practical applicability, being fully automatic. Conclusion: Our method offers a practical, accurate, and efficient solution for multi-view X-ray/CT registration in orthopedic surgeries, which can be easily combined with tracking systems. By improving registration accuracy and minimizing manual intervention, it enhances intraoperative navigation, contributing to more accurate and effective surgical outcomes in computer-assisted surgery (CAS).
comment: This paper was accepted to IPCAI 2025
☆ Anomaly Object Segmentation with Vision-Language Models for Steel Scrap Recycling
Recycling steel scrap can reduce carbon dioxide (CO2) emissions from the steel industry. However, a significant challenge in steel scrap recycling is the inclusion of impurities other than steel. To address this issue, we propose vision-language-model-based anomaly detection where a model is finetuned in a supervised manner, enabling it to handle niche objects effectively. This model enables automated detection of anomalies at a fine-grained level within steel scrap. Specifically, we finetune the image encoder, equipped with multi-scale mechanism and text prompts aligned with both normal and anomaly images. The finetuning process trains these modules using a multiclass classification as the supervision.
☆ Open-Set LiDAR Panoptic Segmentation Guided by Uncertainty-Aware Learning
Autonomous vehicles that navigate in open-world environments may encounter previously unseen object classes. However, most existing LiDAR panoptic segmentation models rely on closed-set assumptions, failing to detect unknown object instances. In this work, we propose ULOPS, an uncertainty-guided open-set panoptic segmentation framework that leverages Dirichlet-based evidential learning to model predictive uncertainty. Our architecture incorporates separate decoders for semantic segmentation with uncertainty estimation, embedding with prototype association, and instance center prediction. During inference, we leverage uncertainty estimates to identify and segment unknown instances. To strengthen the model's ability to differentiate between known and unknown objects, we introduce three uncertainty-driven loss functions. Uniform Evidence Loss to encourage high uncertainty in unknown regions. Adaptive Uncertainty Separation Loss ensures a consistent difference in uncertainty estimates between known and unknown objects at a global scale. Contrastive Uncertainty Loss refines this separation at the fine-grained level. To evaluate open-set performance, we extend benchmark settings on KITTI-360 and introduce a new open-set evaluation for nuScenes. Extensive experiments demonstrate that ULOPS consistently outperforms existing open-set LiDAR panoptic segmentation methods.
☆ COME: Adding Scene-Centric Forecasting Control to Occupancy World Model
World models are critical for autonomous driving to simulate environmental dynamics and generate synthetic data. Existing methods struggle to disentangle ego-vehicle motion (perspective shifts) from scene evolvement (agent interactions), leading to suboptimal predictions. Instead, we propose to separate environmental changes from ego-motion by leveraging the scene-centric coordinate systems. In this paper, we introduce COME: a framework that integrates scene-centric forecasting Control into the Occupancy world ModEl. Specifically, COME first generates ego-irrelevant, spatially consistent future features through a scene-centric prediction branch, which are then converted into scene condition using a tailored ControlNet. These condition features are subsequently injected into the occupancy world model, enabling more accurate and controllable future occupancy predictions. Experimental results on the nuScenes-Occ3D dataset show that COME achieves consistent and significant improvements over state-of-the-art (SOTA) methods across diverse configurations, including different input sources (ground-truth, camera-based, fusion-based occupancy) and prediction horizons (3s and 8s). For example, under the same settings, COME achieves 26.3% better mIoU metric than DOME and 23.7% better mIoU metric than UniScene. These results highlight the efficacy of disentangled representation learning in enhancing spatio-temporal prediction fidelity for world models. Code and videos will be available at https://github.com/synsin0/COME.
☆ High-Quality Facial Albedo Generation for 3D Face Reconstruction from a Single Image using a Coarse-to-Fine Approach
Facial texture generation is crucial for high-fidelity 3D face reconstruction from a single image. However, existing methods struggle to generate UV albedo maps with high-frequency details. To address this challenge, we propose a novel end-to-end coarse-to-fine approach for UV albedo map generation. Our method first utilizes a UV Albedo Parametric Model (UVAPM), driven by low-dimensional coefficients, to generate coarse albedo maps with skin tones and low-frequency texture details. To capture high-frequency details, we train a detail generator using a decoupled albedo map dataset, producing high-resolution albedo maps. Extensive experiments demonstrate that our method can generate high-fidelity textures from a single image, outperforming existing methods in terms of texture quality and realism. The code and pre-trained model are publicly available at https://github.com/MVIC-DAI/UVAPM, facilitating reproducibility and further research.
☆ SASep: Saliency-Aware Structured Separation of Geometry and Feature for Open Set Learning on Point Clouds
Recent advancements in deep learning have greatly enhanced 3D object recognition, but most models are limited to closed-set scenarios, unable to handle unknown samples in real-world applications. Open-set recognition (OSR) addresses this limitation by enabling models to both classify known classes and identify novel classes. However, current OSR methods rely on global features to differentiate known and unknown classes, treating the entire object uniformly and overlooking the varying semantic importance of its different parts. To address this gap, we propose Salience-Aware Structured Separation (SASep), which includes (i) a tunable semantic decomposition (TSD) module to semantically decompose objects into important and unimportant parts, (ii) a geometric synthesis strategy (GSS) to generate pseudo-unknown objects by combining these unimportant parts, and (iii) a synth-aided margin separation (SMS) module to enhance feature-level separation by expanding the feature distributions between classes. Together, these components improve both geometric and feature representations, enhancing the model's ability to effectively distinguish known and unknown classes. Experimental results show that SASep achieves superior performance in 3D OSR, outperforming existing state-of-the-art methods.
comment: 10 pages, conference
☆ DVP-MVS++: Synergize Depth-Normal-Edge and Harmonized Visibility Prior for Multi-View Stereo
Recently, patch deformation-based methods have demonstrated significant effectiveness in multi-view stereo due to their incorporation of deformable and expandable perception for reconstructing textureless areas. However, these methods generally focus on identifying reliable pixel correlations to mitigate matching ambiguity of patch deformation, while neglecting the deformation instability caused by edge-skipping and visibility occlusions, which may cause potential estimation deviations. To address these issues, we propose DVP-MVS++, an innovative approach that synergizes both depth-normal-edge aligned and harmonized cross-view priors for robust and visibility-aware patch deformation. Specifically, to avoid edge-skipping, we first apply DepthPro, Metric3Dv2 and Roberts operator to generate coarse depth maps, normal maps and edge maps, respectively. These maps are then aligned via an erosion-dilation strategy to produce fine-grained homogeneous boundaries for facilitating robust patch deformation. Moreover, we reformulate view selection weights as visibility maps, and then implement both an enhanced cross-view depth reprojection and an area-maximization strategy to help reliably restore visible areas and effectively balance deformed patch, thus acquiring harmonized cross-view priors for visibility-aware patch deformation. Additionally, we obtain geometry consistency by adopting both aggregated normals via view selection and projection depth differences via epipolar lines, and then employ SHIQ for highlight correction to enable geometry consistency with highlight-aware perception, thus improving reconstruction quality during propagation and refinement stage. Evaluation results on ETH3D, Tanks & Temples and Strecha datasets exhibit the state-of-the-art performance and robust generalization capability of our proposed method.
☆ A Comprehensive Survey on Deep Learning Solutions for 3D Flood Mapping
Flooding remains a major global challenge, worsened by climate change and urbanization, demanding advanced solutions for effective disaster management. While traditional 2D flood mapping techniques provide limited insights, 3D flood mapping, powered by deep learning (DL), offers enhanced capabilities by integrating flood extent and depth. This paper presents a comprehensive survey of deep learning-based 3D flood mapping, emphasizing its advancements over 2D maps by integrating flood extent and depth for effective disaster management and urban planning. The survey categorizes deep learning techniques into task decomposition and end-to-end approaches, applicable to both static and dynamic flood features. We compare key DL architectures, highlighting their respective roles in enhancing prediction accuracy and computational efficiency. Additionally, this work explores diverse data sources such as digital elevation models, satellite imagery, rainfall, and simulated data, outlining their roles in 3D flood mapping. The applications reviewed range from real-time flood prediction to long-term urban planning and risk assessment. However, significant challenges persist, including data scarcity, model interpretability, and integration with traditional hydrodynamic models. This survey concludes by suggesting future directions to address these limitations, focusing on enhanced datasets, improved models, and policy implications for flood management. This survey aims to guide researchers and practitioners in leveraging DL techniques for more robust and reliable 3D flood mapping, fostering improved flood management strategies.
☆ ViT-NeBLa: A Hybrid Vision Transformer and Neural Beer-Lambert Framework for Single-View 3D Reconstruction of Oral Anatomy from Panoramic Radiographs
Dental diagnosis relies on two primary imaging modalities: panoramic radiographs (PX) providing 2D oral cavity representations, and Cone-Beam Computed Tomography (CBCT) offering detailed 3D anatomical information. While PX images are cost-effective and accessible, their lack of depth information limits diagnostic accuracy. CBCT addresses this but presents drawbacks including higher costs, increased radiation exposure, and limited accessibility. Existing reconstruction models further complicate the process by requiring CBCT flattening or prior dental arch information, often unavailable clinically. We introduce ViT-NeBLa, a vision transformer-based Neural Beer-Lambert model enabling accurate 3D reconstruction directly from single PX. Our key innovations include: (1) enhancing the NeBLa framework with Vision Transformers for improved reconstruction capabilities without requiring CBCT flattening or prior dental arch information, (2) implementing a novel horseshoe-shaped point sampling strategy with non-intersecting rays that eliminates intermediate density aggregation required by existing models due to intersecting rays, reducing sampling point computations by $52 \%$, (3) replacing CNN-based U-Net with a hybrid ViT-CNN architecture for superior global and local feature extraction, and (4) implementing learnable hash positional encoding for better higher-dimensional representation of 3D sample points compared to existing Fourier-based dense positional encoding. Experiments demonstrate that ViT-NeBLa significantly outperforms prior state-of-the-art methods both quantitatively and qualitatively, offering a cost-effective, radiation-efficient alternative for enhanced dental diagnostics.
comment: 10 figures, 19 pages
Dynamic Context-oriented Decomposition for Task-aware Low-rank Adaptation with Less Forgetting and Faster Convergence
Conventional low-rank adaptation methods build adapters without considering data context, leading to sub-optimal fine-tuning performance and severe forgetting of inherent world knowledge. In this paper, we propose context-oriented decomposition adaptation (CorDA), a novel method that initializes adapters in a task-aware manner. Concretely, we develop context-oriented singular value decomposition, where we collect covariance matrices of input activations for each linear layer using sampled data from the target task, and apply SVD to the product of weight matrix and its corresponding covariance matrix. By doing so, the task-specific capability is compacted into the principal components. Thanks to the task awareness, our method enables two optional adaptation modes, knowledge-preserved mode (KPM) and instruction-previewed mode (IPM), providing flexibility to choose between freezing the principal components to preserve their associated knowledge or adapting them to better learn a new task. We further develop CorDA++ by deriving a metric that reflects the compactness of task-specific principal components, and then introducing dynamic covariance selection and dynamic rank allocation strategies based on the same metric. The two strategies provide each layer with the most representative covariance matrix and a proper rank allocation. Experimental results show that CorDA++ outperforms CorDA by a significant margin. CorDA++ in KPM not only achieves better fine-tuning performance than LoRA, but also mitigates the forgetting of pre-trained knowledge in both large language models and vision language models. For IPM, our method exhibits faster convergence, \emph{e.g.,} 4.5x speedup over QLoRA, and improves adaptation performance in various scenarios, outperforming strong baseline methods. Our method has been integrated into the PEFT library developed by Hugging Face.
☆ MT-PCR: A Hybrid Mamba-Transformer with Spatial Serialization for Hierarchical Point Cloud Registration
Point cloud registration (PCR) is a fundamental task in 3D computer vision and robotics. Most existing learning-based PCR methods rely on Transformers, which suffer from quadratic computational complexity. This limitation restricts the resolution of point clouds that can be processed, inevitably leading to information loss. In contrast, Mamba-a recently proposed model based on state space models (SSMs)-achieves linear computational complexity while maintaining strong long-range contextual modeling capabilities. However, directly applying Mamba to PCR tasks yields suboptimal performance due to the unordered and irregular nature of point cloud data. To address this challenge, we propose MT-PCR, the first point cloud registration framework that integrates both Mamba and Transformer modules. Specifically, we serialize point cloud features using Z-order space-filling curves to enforce spatial locality, enabling Mamba to better model the geometric structure of the input. Additionally, we remove the order indicator module commonly used in Mamba-based sequence modeling, leads to improved performance in our setting. The serialized features are then processed by an optimized Mamba encoder, followed by a Transformer refinement stage. Extensive experiments on multiple benchmarks demonstrate that MT-PCR outperforms Transformer-based and concurrent state-of-the-art methods in both accuracy and efficiency, significantly reducing while GPU memory usage and FLOPs.
comment: 11 Pages
☆ GreedyPrune: Retenting Critical Visual Token Set for Large Vision Language Models
Although Large Vision Language Models (LVLMs) have demonstrated remarkable performance in image understanding tasks, their computational efficiency remains a significant challenge, particularly on resource-constrained devices due to the high cost of processing large numbers of visual tokens. Recently, training-free visual token pruning methods have gained popularity as a low-cost solution to this issue. However, existing approaches suffer from two key limitations: semantic saliency-based strategies primarily focus on high cross-attention visual tokens, often neglecting visual diversity, whereas visual diversity-based methods risk inadvertently discarding semantically important tokens, especially under high compression ratios. In this paper, we introduce GreedyPrune, a training-free plug-and-play visual token pruning algorithm designed to jointly optimize semantic saliency and visual diversity. We formalize the token pruning process as a combinatorial optimization problem and demonstrate that greedy algorithms effectively balance computational efficiency with model accuracy. Extensive experiments validate the effectiveness of our approach, showing that GreedyPrune achieves state-of-the-art accuracy across various multimodal tasks and models while significantly reducing end-to-end inference latency.
☆ CertDW: Towards Certified Dataset Ownership Verification via Conformal Prediction
Deep neural networks (DNNs) rely heavily on high-quality open-source datasets (e.g., ImageNet) for their success, making dataset ownership verification (DOV) crucial for protecting public dataset copyrights. In this paper, we find existing DOV methods (implicitly) assume that the verification process is faithful, where the suspicious model will directly verify ownership by using the verification samples as input and returning their results. However, this assumption may not necessarily hold in practice and their performance may degrade sharply when subjected to intentional or unintentional perturbations. To address this limitation, we propose the first certified dataset watermark (i.e., CertDW) and CertDW-based certified dataset ownership verification method that ensures reliable verification even under malicious attacks, under certain conditions (e.g., constrained pixel-level perturbation). Specifically, inspired by conformal prediction, we introduce two statistical measures, including principal probability (PP) and watermark robustness (WR), to assess model prediction stability on benign and watermarked samples under noise perturbations. We prove there exists a provable lower bound between PP and WR, enabling ownership verification when a suspicious model's WR value significantly exceeds the PP values of multiple benign models trained on watermark-free datasets. If the number of PP values smaller than WR exceeds a threshold, the suspicious model is regarded as having been trained on the protected dataset. Extensive experiments on benchmark datasets verify the effectiveness of our CertDW method and its resistance to potential adaptive attacks. Our codes are at \href{https://github.com/NcepuQiaoTing/CertDW}{GitHub}.
comment: The first two authors contributed equally to this work. 16 pages
☆ StgcDiff: Spatial-Temporal Graph Condition Diffusion for Sign Language Transition Generation
Sign language transition generation seeks to convert discrete sign language segments into continuous sign videos by synthesizing smooth transitions. However,most existing methods merely concatenate isolated signs, resulting in poor visual coherence and semantic accuracy in the generated videos. Unlike textual languages,sign language is inherently rich in spatial-temporal cues, making it more complex to model. To address this,we propose StgcDiff, a graph-based conditional diffusion framework that generates smooth transitions between discrete signs by capturing the unique spatial-temporal dependencies of sign language. Specifically, we first train an encoder-decoder architecture to learn a structure-aware representation of spatial-temporal skeleton sequences. Next, we optimize a diffusion denoiser conditioned on the representations learned by the pre-trained encoder, which is tasked with predicting transition frames from noise. Additionally, we design the Sign-GCN module as the key component in our framework, which effectively models the spatial-temporal features. Extensive experiments conducted on the PHOENIX14T, USTC-CSL100,and USTC-SLR500 datasets demonstrate the superior performance of our method.
☆ STAGE: A Stream-Centric Generative World Model for Long-Horizon Driving-Scene Simulation
The generation of temporally consistent, high-fidelity driving videos over extended horizons presents a fundamental challenge in autonomous driving world modeling. Existing approaches often suffer from error accumulation and feature misalignment due to inadequate decoupling of spatio-temporal dynamics and limited cross-frame feature propagation mechanisms. To address these limitations, we present STAGE (Streaming Temporal Attention Generative Engine), a novel auto-regressive framework that pioneers hierarchical feature coordination and multi-phase optimization for sustainable video synthesis. To achieve high-quality long-horizon driving video generation, we introduce Hierarchical Temporal Feature Transfer (HTFT) and a novel multi-stage training strategy. HTFT enhances temporal consistency between video frames throughout the video generation process by modeling the temporal and denoising process separately and transferring denoising features between frames. The multi-stage training strategy is to divide the training into three stages, through model decoupling and auto-regressive inference process simulation, thereby accelerating model convergence and reducing error accumulation. Experiments on the Nuscenes dataset show that STAGE has significantly surpassed existing methods in the long-horizon driving video generation task. In addition, we also explored STAGE's ability to generate unlimited-length driving videos. We generated 600 frames of high-quality driving videos on the Nuscenes dataset, which far exceeds the maximum length achievable by existing methods.
☆ EmbodiedPlace: Learning Mixture-of-Features with Embodied Constraints for Visual Place Recognition
Visual Place Recognition (VPR) is a scene-oriented image retrieval problem in computer vision in which re-ranking based on local features is commonly employed to improve performance. In robotics, VPR is also referred to as Loop Closure Detection, which emphasizes spatial-temporal verification within a sequence. However, designing local features specifically for VPR is impractical, and relying on motion sequences imposes limitations. Inspired by these observations, we propose a novel, simple re-ranking method that refines global features through a Mixture-of-Features (MoF) approach under embodied constraints. First, we analyze the practical feasibility of embodied constraints in VPR and categorize them according to existing datasets, which include GPS tags, sequential timestamps, local feature matching, and self-similarity matrices. We then propose a learning-based MoF weight-computation approach, utilizing a multi-metric loss function. Experiments demonstrate that our method improves the state-of-the-art (SOTA) performance on public datasets with minimal additional computational overhead. For instance, with only 25 KB of additional parameters and a processing time of 10 microseconds per frame, our method achieves a 0.9\% improvement over a DINOv2-based baseline performance on the Pitts-30k test set.
comment: 17 Pages
☆ ZINA: Multimodal Fine-grained Hallucination Detection and Editing
Multimodal Large Language Models (MLLMs) often generate hallucinations, where the output deviates from the visual content. Given that these hallucinations can take diverse forms, detecting hallucinations at a fine-grained level is essential for comprehensive evaluation and analysis. To this end, we propose a novel task of multimodal fine-grained hallucination detection and editing for MLLMs. Moreover, we propose ZINA, a novel method that identifies hallucinated spans at a fine-grained level, classifies their error types into six categories, and suggests appropriate refinements. To train and evaluate models for this task, we constructed VisionHall, a dataset comprising 6.9k outputs from twelve MLLMs manually annotated by 211 annotators, and 20k synthetic samples generated using a graph-based method that captures dependencies among error types. We demonstrated that ZINA outperformed existing methods, including GPT-4o and LLama-3.2, in both detection and editing tasks.
☆ GS-2DGS: Geometrically Supervised 2DGS for Reflective Object Reconstruction CVPR2025
3D modeling of highly reflective objects remains challenging due to strong view-dependent appearances. While previous SDF-based methods can recover high-quality meshes, they are often time-consuming and tend to produce over-smoothed surfaces. In contrast, 3D Gaussian Splatting (3DGS) offers the advantage of high speed and detailed real-time rendering, but extracting surfaces from the Gaussians can be noisy due to the lack of geometric constraints. To bridge the gap between these approaches, we propose a novel reconstruction method called GS-2DGS for reflective objects based on 2D Gaussian Splatting (2DGS). Our approach combines the rapid rendering capabilities of Gaussian Splatting with additional geometric information from foundation models. Experimental results on synthetic and real datasets demonstrate that our method significantly outperforms Gaussian-based techniques in terms of reconstruction and relighting and achieves performance comparable to SDF-based methods while being an order of magnitude faster. Code is available at https://github.com/hirotong/GS2DGS
comment: Accepted by CVPR2025
☆ A Novel ViDAR Device With Visual Inertial Encoder Odometry and Reinforcement Learning-Based Active SLAM Method
In the field of multi-sensor fusion for simultaneous localization and mapping (SLAM), monocular cameras and IMUs are widely used to build simple and effective visual-inertial systems. However, limited research has explored the integration of motor-encoder devices to enhance SLAM performance. By incorporating such devices, it is possible to significantly improve active capability and field of view (FOV) with minimal additional cost and structural complexity. This paper proposes a novel visual-inertial-encoder tightly coupled odometry (VIEO) based on a ViDAR (Video Detection and Ranging) device. A ViDAR calibration method is introduced to ensure accurate initialization for VIEO. In addition, a platform motion decoupled active SLAM method based on deep reinforcement learning (DRL) is proposed. Experimental data demonstrate that the proposed ViDAR and the VIEO algorithm significantly increase cross-frame co-visibility relationships compared to its corresponding visual-inertial odometry (VIO) algorithm, improving state estimation accuracy. Additionally, the DRL-based active SLAM algorithm, with the ability to decouple from platform motion, can increase the diversity weight of the feature points and further enhance the VIEO algorithm's performance. The proposed methodology sheds fresh insights into both the updated platform design and decoupled approach of active SLAM systems in complex environments.
comment: 12 pages, 13 figures
☆ Pro-AD: Learning Comprehensive Prototypes with Prototype-based Constraint for Multi-class Unsupervised Anomaly Detection
Prototype-based reconstruction methods for unsupervised anomaly detection utilize a limited set of learnable prototypes which only aggregates insufficient normal information, resulting in undesirable reconstruction. However, increasing the number of prototypes may lead to anomalies being well reconstructed through the attention mechanism, which we refer to as the "Soft Identity Mapping" problem. In this paper, we propose Pro-AD to address these issues and fully utilize the prototypes to boost the performance of anomaly detection. Specifically, we first introduce an expanded set of learnable prototypes to provide sufficient capacity for semantic information. Then we employ a Dynamic Bidirectional Decoder which integrates the process of the normal information aggregation and the target feature reconstruction via prototypes, with the aim of allowing the prototypes to aggregate more comprehensive normal semantic information from different levels of the image features and the target feature reconstruction to not only utilize its contextual information but also dynamically leverage the learned comprehensive prototypes. Additionally, to prevent the anomalies from being well reconstructed using sufficient semantic information through the attention mechanism, Pro-AD introduces a Prototype-based Constraint that applied within the target feature reconstruction process of the decoder, which further improves the performance of our approach. Extensive experiments on multiple challenging benchmarks demonstrate that our Pro-AD achieve state-of-the-art performance, highlighting its superior robustness and practical effectiveness for Multi-class Unsupervised Anomaly Detection task.
☆ Learning Event Completeness for Weakly Supervised Video Anomaly Detection ICML
Weakly supervised video anomaly detection (WS-VAD) is tasked with pinpointing temporal intervals containing anomalous events within untrimmed videos, utilizing only video-level annotations. However, a significant challenge arises due to the absence of dense frame-level annotations, often leading to incomplete localization in existing WS-VAD methods. To address this issue, we present a novel LEC-VAD, Learning Event Completeness for Weakly Supervised Video Anomaly Detection, which features a dual structure designed to encode both category-aware and category-agnostic semantics between vision and language. Within LEC-VAD, we devise semantic regularities that leverage an anomaly-aware Gaussian mixture to learn precise event boundaries, thereby yielding more complete event instances. Besides, we develop a novel memory bank-based prototype learning mechanism to enrich concise text descriptions associated with anomaly-event categories. This innovation bolsters the text's expressiveness, which is crucial for advancing WS-VAD. Our LEC-VAD demonstrates remarkable advancements over the current state-of-the-art methods on two benchmark datasets XD-Violence and UCF-Crime.
comment: Accepted by ICML
☆ SuperPoint-SLAM3: Augmenting ORB-SLAM3 with Deep Features, Adaptive NMS, and Learning-Based Loop Closure
Visual simultaneous localization and mapping (SLAM) must remain accurate under extreme viewpoint, scale and illumination variations. The widely adopted ORB-SLAM3 falters in these regimes because it relies on hand-crafted ORB keypoints. We introduce SuperPoint-SLAM3, a drop-in upgrade that (i) replaces ORB with the self-supervised SuperPoint detector--descriptor, (ii) enforces spatially uniform keypoints via adaptive non-maximal suppression (ANMS), and (iii) integrates a lightweight NetVLAD place-recognition head for learning-based loop closure. On the KITTI Odometry benchmark SuperPoint-SLAM3 reduces mean translational error from 4.15% to 0.34% and mean rotational error from 0.0027 deg/m to 0.0010 deg/m. On the EuRoC MAV dataset it roughly halves both errors across every sequence (e.g., V2\_03: 1.58% -> 0.79%). These gains confirm that fusing modern deep features with a learned loop-closure module markedly improves ORB-SLAM3 accuracy while preserving its real-time operation. Implementation, pretrained weights and reproducibility scripts are available at https://github.com/shahram95/SuperPointSLAM3.
comment: 10 pages, 6 figures, code at https://github.com/shahram95/SuperPointSLAM3
☆ SuperPlace: The Renaissance of Classical Feature Aggregation for Visual Place Recognition in the Era of Foundation Models
Recent visual place recognition (VPR) approaches have leveraged foundation models (FM) and introduced novel aggregation techniques. However, these methods have failed to fully exploit key concepts of FM, such as the effective utilization of extensive training sets, and they have overlooked the potential of classical aggregation methods, such as GeM and NetVLAD. Building on these insights, we revive classical feature aggregation methods and develop more fundamental VPR models, collectively termed SuperPlace. First, we introduce a supervised label alignment method that enables training across various VPR datasets within a unified framework. Second, we propose G$^2$M, a compact feature aggregation method utilizing two GeMs, where one GeM learns the principal components of feature maps along the channel dimension and calibrates the output of the other. Third, we propose the secondary fine-tuning (FT$^2$) strategy for NetVLAD-Linear (NVL). NetVLAD first learns feature vectors in a high-dimensional space and then compresses them into a lower-dimensional space via a single linear layer. Extensive experiments highlight our contributions and demonstrate the superiority of SuperPlace. Specifically, G$^2$M achieves promising results with only one-tenth of the feature dimensions compared to recent methods. Moreover, NVL-FT$^2$ ranks first on the MSLS leaderboard.
comment: 11 pages
☆ Video Individual Counting With Implicit One-to-Many Matching
Video Individual Counting (VIC) is a recently introduced task that aims to estimate pedestrian flux from a video. It extends conventional Video Crowd Counting (VCC) beyond the per-frame pedestrian count. In contrast to VCC that only learns to count repeated pedestrian patterns across frames, the key problem of VIC is how to identify co-existent pedestrians between frames, which turns out to be a correspondence problem. Existing VIC approaches, however, mainly follow a one-to-one (O2O) matching strategy where the same pedestrian must be exactly matched between frames, leading to sensitivity to appearance variations or missing detections. In this work, we show that the O2O matching could be relaxed to a one-to-many (O2M) matching problem, which better fits the problem nature of VIC and can leverage the social grouping behavior of walking pedestrians. We therefore introduce OMAN, a simple but effective VIC model with implicit One-to-Many mAtchiNg, featuring an implicit context generator and a one-to-many pairwise matcher. Experiments on the SenseCrowd and CroHD benchmarks show that OMAN achieves the state-of-the-art performance. Code is available at \href{https://github.com/tiny-smart/OMAN}{OMAN}.
☆ PRISM2: Unlocking Multi-Modal General Pathology AI with Clinical Dialogue
Recent pathology foundation models can provide rich tile-level representations but fall short of delivering general-purpose clinical utility without further extensive model development. These models lack whole-slide image (WSI) understanding and are not trained with large-scale diagnostic data, limiting their performance on diverse downstream tasks. We introduce PRISM2, a multi-modal slide-level foundation model trained via clinical dialogue to enable scalable, generalizable pathology AI. PRISM2 is trained on nearly 700,000 specimens (2.3 million WSIs) paired with real-world clinical diagnostic reports in a two-stage process. In Stage 1, a vision-language model is trained using contrastive and captioning objectives to align whole slide embeddings with textual clinical diagnosis. In Stage 2, the language model is unfrozen to enable diagnostic conversation and extract more clinically meaningful representations from hidden states. PRISM2 achieves strong performance on diagnostic and biomarker prediction tasks, outperforming prior slide-level models including PRISM and TITAN. It also introduces a zero-shot yes/no classification approach that surpasses CLIP-style methods without prompt tuning or class enumeration. By aligning visual features with clinical reasoning, PRISM2 improves generalization on both data-rich and low-sample tasks, offering a scalable path forward for building general pathology AI agents capable of assisting diagnostic and prognostic decisions.
☆ DualFast: Dual-Speedup Framework for Fast Sampling of Diffusion Models
Diffusion probabilistic models (DPMs) have achieved impressive success in visual generation. While, they suffer from slow inference speed due to iterative sampling. Employing fewer sampling steps is an intuitive solution, but this will also introduces discretization error. Existing fast samplers make inspiring efforts to reduce discretization error through the adoption of high-order solvers, potentially reaching a plateau in terms of optimization. This raises the question: can the sampling process be accelerated further? In this paper, we re-examine the nature of sampling errors, discerning that they comprise two distinct elements: the widely recognized discretization error and the less explored approximation error. Our research elucidates the dynamics between these errors and the step by implementing a dual-error disentanglement strategy. Building on these foundations, we introduce an unified and training-free acceleration framework, DualFast, designed to enhance the speed of DPM sampling by concurrently accounting for both error types, thereby minimizing the total sampling error. DualFast is seamlessly compatible with existing samplers and significantly boost their sampling quality and speed, particularly in extremely few sampling steps. We substantiate the effectiveness of our framework through comprehensive experiments, spanning both unconditional and conditional sampling domains, across both pixel-space and latent-space DPMs.
☆ Metis-RISE: RL Incentivizes and SFT Enhances Multimodal Reasoning Model Learning
Recent advancements in large language models (LLMs) have witnessed a surge in the development of advanced reasoning paradigms, which are now being integrated into multimodal large language models (MLLMs). However, existing approaches often fall short: methods solely employing reinforcement learning (RL) can struggle with sample inefficiency and activating entirely absent reasoning capabilities, while conventional pipelines that initiate with a cold-start supervised fine-tuning (SFT) phase before RL may restrict the model's exploratory capacity and face suboptimal convergence. In this work, we introduce \textbf{Metis-RISE} (\textbf{R}L \textbf{I}ncentivizes and \textbf{S}FT \textbf{E}nhances) for multimodal reasoning model learning. Unlike conventional approaches, Metis-RISE distinctively omits an initial SFT stage, beginning instead with an RL phase (e.g., using a Group Relative Policy Optimization variant) to incentivize and activate the model's latent reasoning capacity. Subsequently, the targeted SFT stage addresses two key challenges identified during RL: (1) \textit{inefficient trajectory sampling} for tasks where the model possesses but inconsistently applies correct reasoning, which we tackle using self-distilled reasoning trajectories from the RL model itself; and (2) \textit{fundamental capability absence}, which we address by injecting expert-augmented knowledge for prompts where the model entirely fails. This strategic application of RL for incentivization followed by SFT for enhancement forms the core of Metis-RISE, leading to two versions of our MLLMs (7B and 72B parameters). Evaluations on the OpenCompass Multimodal Reasoning Leaderboard demonstrate that both models achieve state-of-the-art performance among similar-sized models, with the 72B version ranking fourth overall.
comment: Project Page: https://github.com/MM-Thinking/Metis-RISE
☆ Stress-Testing Multimodal Foundation Models for Crystallographic Reasoning
Evaluating foundation models for crystallographic reasoning requires benchmarks that isolate generalization behavior while enforcing physical constraints. This work introduces a multiscale multicrystal dataset with two physically grounded evaluation protocols to stress-test multimodal generative models. The Spatial-Exclusion benchmark withholds all supercells of a given radius from a diverse dataset, enabling controlled assessments of spatial interpolation and extrapolation. The Compositional-Exclusion benchmark omits all samples of a specific chemical composition, probing generalization across stoichiometries. Nine vision--language foundation models are prompted with crystallographic images and textual context to generate structural annotations. Responses are evaluated via (i) relative errors in lattice parameters and density, (ii) a physics-consistency index penalizing volumetric violations, and (iii) a hallucination score capturing geometric outliers and invalid space-group predictions. These benchmarks establish a reproducible, physically informed framework for assessing generalization, consistency, and reliability in large-scale multimodal models. Dataset and code are available at https://github.com/KurbanIntelligenceLab/StressTestingMMFMinCR.
☆ NeuVAS: Neural Implicit Surfaces for Variational Shape Modeling
Neural implicit shape representation has drawn significant attention in recent years due to its smoothness, differentiability, and topological flexibility. However, directly modeling the shape of a neural implicit surface, especially as the zero-level set of a neural signed distance function (SDF), with sparse geometric control is still a challenging task. Sparse input shape control typically includes 3D curve networks or, more generally, 3D curve sketches, which are unstructured and cannot be connected to form a curve network, and therefore more difficult to deal with. While 3D curve networks or curve sketches provide intuitive shape control, their sparsity and varied topology pose challenges in generating high-quality surfaces to meet such curve constraints. In this paper, we propose NeuVAS, a variational approach to shape modeling using neural implicit surfaces constrained under sparse input shape control, including unstructured 3D curve sketches as well as connected 3D curve networks. Specifically, we introduce a smoothness term based on a functional of surface curvatures to minimize shape variation of the zero-level set surface of a neural SDF. We also develop a new technique to faithfully model G0 sharp feature curves as specified in the input curve sketches. Comprehensive comparisons with the state-of-the-art methods demonstrate the significant advantages of our method.
☆ SimpleDoc: Multi-Modal Document Understanding with Dual-Cue Page Retrieval and Iterative Refinement
Document Visual Question Answering (DocVQA) is a practical yet challenging task, which is to ask questions based on documents while referring to multiple pages and different modalities of information, e.g, images and tables. To handle multi-modality, recent methods follow a similar Retrieval Augmented Generation (RAG) pipeline, but utilize Visual Language Models (VLMs) based embedding model to embed and retrieve relevant pages as images, and generate answers with VLMs that can accept an image as input. In this paper, we introduce SimpleDoc, a lightweight yet powerful retrieval - augmented framework for DocVQA. It boosts evidence page gathering by first retrieving candidates through embedding similarity and then filtering and re-ranking these candidates based on page summaries. A single VLM-based reasoner agent repeatedly invokes this dual-cue retriever, iteratively pulling fresh pages into a working memory until the question is confidently answered. SimpleDoc outperforms previous baselines by 3.2% on average on 4 DocVQA datasets with much fewer pages retrieved. Our code is available at https://github.com/ag2ai/SimpleDoc.
☆ Disentangling 3D from Large Vision-Language Models for Controlled Portrait Generation
We consider the problem of disentangling 3D from large vision-language models, which we show on generative 3D portraits. This allows free-form text control of appearance attributes like age, hair style, and glasses, and 3D geometry control of face expression and camera pose. In this setting, we assume we use a pre-trained large vision-language model (LVLM; CLIP) to generate from a smaller 2D dataset with no additional paired labels and with a pre-defined 3D morphable model (FLAME). First, we disentangle using canonicalization to a 2D reference frame from a deformable neural 3D triplane representation. But another form of entanglement arises from the significant noise in the LVLM's embedding space that describes irrelevant features. This damages output quality and diversity, but we overcome this with a Jacobian regularization that can be computed efficiently with a stochastic approximator. Compared to existing methods, our approach produces portraits with added text and 3D control, where portraits remain consistent when either control is changed. Broadly, this approach lets creators control 3D generators on their own 2D face data without needing resources to label large data or train large models.
☆ FindMeIfYouCan: Bringing Open Set metrics to $\textit{near} $, $ \textit{far} $ and $\textit{farther}$ Out-of-Distribution Object Detection
State-of-the-art Object Detection (OD) methods predominantly operate under a closed-world assumption, where test-time categories match those encountered during training. However, detecting and localizing unknown objects is crucial for safety-critical applications in domains such as autonomous driving and medical imaging. Recently, Out-Of-Distribution (OOD) detection has emerged as a vital research direction for OD, focusing on identifying incorrect predictions typically associated with unknown objects. This paper shows that the current evaluation protocol for OOD-OD violates the assumption of non-overlapping objects with respect to the In-Distribution (ID) datasets, and obscures crucial situations such as ignoring unknown objects, potentially leading to overconfidence in deployment scenarios where truly novel objects might be encountered. To address these limitations, we manually curate, and enrich the existing benchmark by exploiting semantic similarity to create new evaluation splits categorized as $\textit{near}$, $\textit{far}$, and $\textit{farther}$ from ID distributions. Additionally, we incorporate established metrics from the Open Set community, providing deeper insights into how effectively methods detect unknowns, when they ignore them, and when they mistakenly classify OOD objects as ID. Our comprehensive evaluation demonstrates that semantically and visually close OOD objects are easier to localize than far ones, but are also more easily confounded with ID objects. $\textit{Far}$ and $\textit{farther}$ objects are harder to localize but less prone to be taken for an ID object.
comment: Preprint
☆ Mapping Farmed Landscapes from Remote Sensing
Effective management of agricultural landscapes is critical for meeting global biodiversity targets, but efforts are hampered by the absence of detailed, large-scale ecological maps. To address this, we introduce Farmscapes, the first large-scale (covering most of England), high-resolution (25cm) map of rural landscape features, including ecologically vital elements like hedgerows, woodlands, and stone walls. This map was generated using a deep learning segmentation model trained on a novel, dataset of 942 manually annotated tiles derived from aerial imagery. Our model accurately identifies key habitats, achieving high f1-scores for woodland (96\%) and farmed land (95\%), and demonstrates strong capability in segmenting linear features, with an F1-score of 72\% for hedgerows. By releasing the England-wide map on Google Earth Engine, we provide a powerful, open-access tool for ecologists and policymakers. This work enables data-driven planning for habitat restoration, supports the monitoring of initiatives like the EU Biodiversity Strategy, and lays the foundation for advanced analysis of landscape connectivity.
♻ ☆ Improving Surgical Risk Prediction Through Integrating Automated Body Composition Analysis: a Retrospective Trial on Colectomy Surgery
Objective: To evaluate whether preoperative body composition metrics automatically extracted from CT scans can predict postoperative outcomes after colectomy, either alone or combined with clinical variables or existing risk predictors. Main outcomes and measures: The primary outcome was the predictive performance for 1-year all-cause mortality following colectomy. A Cox proportional hazards model with 1-year follow-up was used, and performance was evaluated using the concordance index (C-index) and Integrated Brier Score (IBS). Secondary outcomes included postoperative complications, unplanned readmission, blood transfusion, and severe infection, assessed using AUC and Brier Score from logistic regression. Odds ratios (OR) described associations between individual CT-derived body composition metrics and outcomes. Over 300 features were extracted from preoperative CTs across multiple vertebral levels, including skeletal muscle area, density, fat areas, and inter-tissue metrics. NSQIP scores were available for all surgeries after 2012.
comment: 32 pages, 5 figures
♻ ☆ VGR: Visual Grounded Reasoning
In the field of multimodal chain-of-thought (CoT) reasoning, existing approaches predominantly rely on reasoning on pure language space, which inherently suffers from language bias and is largely confined to math or science domains. This narrow focus limits their ability to handle complex visual reasoning tasks that demand comprehensive understanding of image details. To address these limitations, this paper introduces VGR, a novel reasoning multimodal large language model (MLLM) with enhanced fine-grained visual perception capabilities. Unlike traditional MLLMs that answer the question or reasoning solely on the language space, our VGR first detects relevant regions that may help to solve problems, and then provides precise answers based on replayed image regions. To achieve this, we conduct a large-scale SFT dataset called VGR -SFT that contains reasoning data with mixed vision grounding and language deduction. The inference pipeline of VGR allows the model to choose bounding boxes for visual reference and a replay stage is introduced to integrates the corresponding regions into the reasoning process, enhancing multimodel comprehension. Experiments on the LLaVA-NeXT-7B baseline show that VGR achieves superior performance on multi-modal benchmarks requiring comprehensive image detail understanding. Compared to the baseline, VGR uses only 30\% of the image token count while delivering scores of +4.1 on MMStar, +7.1 on AI2D, and a +12.9 improvement on ChartQA.
comment: 9 pages, 4 figures
♻ ☆ Evaluating Sensitivity Parameters in Smartphone-Based Gaze Estimation: A Comparative Study of Appearance-Based and Infrared Eye Trackers
This study evaluates a smartphone-based, deep-learning eye-tracking algorithm by comparing its performance against a commercial infrared-based eye tracker, the Tobii Pro Nano. The aim is to investigate the feasibility of appearance-based gaze estimation under realistic mobile usage conditions. Key sensitivity factors, including age, gender, vision correction, lighting conditions, device type, and head position, were systematically analysed. The appearance-based algorithm integrates a lightweight convolutional neural network (MobileNet-V3) with a recurrent structure (Long Short-Term Memory) to predict gaze coordinates from grayscale facial images. Gaze data were collected from 51 participants using dynamic visual stimuli, and accuracy was measured using Euclidean distance. The deep learning model produced a mean error of 17.76 mm, compared to 16.53 mm for the Tobii Pro Nano. While overall accuracy differences were small, the deep learning-based method was more sensitive to factors such as lighting, vision correction, and age, with higher failure rates observed under low-light conditions among participants using glasses and in older age groups. Device-specific and positional factors also influenced tracking performance. These results highlight the potential of appearance-based approaches for mobile eye tracking and offer a reference framework for evaluating gaze estimation systems across varied usage conditions.
♻ ☆ Real-time Seafloor Segmentation and Mapping
Posidonia oceanica meadows are a species of seagrass highly dependent on rocks for their survival and conservation. In recent years, there has been a concerning global decline in this species, emphasizing the critical need for efficient monitoring and assessment tools. While deep learning-based semantic segmentation and visual automated monitoring systems have shown promise in a variety of applications, their performance in underwater environments remains challenging due to complex water conditions and limited datasets. This paper introduces a framework that combines machine learning and computer vision techniques to enable an autonomous underwater vehicle (AUV) to inspect the boundaries of Posidonia oceanica meadows autonomously. The framework incorporates an image segmentation module using an existing Mask R-CNN model and a strategy for Posidonia oceanica meadow boundary tracking. Furthermore, a new class dedicated to rocks is introduced to enhance the existing model, aiming to contribute to a comprehensive monitoring approach and provide a deeper understanding of the intricate interactions between the meadow and its surrounding environment. The image segmentation model is validated using real underwater images, while the overall inspection framework is evaluated in a realistic simulation environment, replicating actual monitoring scenarios with real underwater images. The results demonstrate that the proposed framework enables the AUV to autonomously accomplish the main tasks of underwater inspection and segmentation of rocks. Consequently, this work holds significant potential for the conservation and protection of marine environments, providing valuable insights into the status of Posidonia oceanica meadows and supporting targeted preservation efforts
♻ ☆ AgentSense: Virtual Sensor Data Generation Using LLM Agents in Simulated Home Environments
A major obstacle in developing robust and generalizable smart home-based Human Activity Recognition (HAR) systems is the lack of large-scale, diverse labeled datasets. Variability in home layouts, sensor configurations, and user behavior adds further complexity, as individuals follow varied routines and perform activities in distinct ways. Building HAR systems that generalize well requires training data that captures the diversity across users and environments. To address these challenges, we introduce AgentSense, a virtual data generation pipeline where diverse personas are generated by leveraging Large Language Models. These personas are used to create daily routines, which are then decomposed into low-level action sequences. Subsequently, the actions are executed in a simulated home environment called VirtualHome that we extended with virtual ambient sensors capable of recording the agents activities as they unfold. Overall, AgentSense enables the generation of rich, virtual sensor datasets that represent a wide range of users and home settings. Across five benchmark HAR datasets, we show that leveraging our virtual sensor data substantially improves performance, particularly when real data are limited. Notably, models trained on a combination of virtual data and just a few days of real data achieve performance comparable to those trained on the entire real datasets. These results demonstrate and prove the potential of virtual data to address one of the most pressing challenges in ambient sensing, which is the distinct lack of large-scale, annotated datasets without requiring any manual data collection efforts.
♻ ☆ Foundation Models in Medical Imaging -- A Review and Outlook
Foundation models (FMs) are changing the way medical images are analyzed by learning from large collections of unlabeled data. Instead of relying on manually annotated examples, FMs are pre-trained to learn general-purpose visual features that can later be adapted to specific clinical tasks with little additional supervision. In this review, we examine how FMs are being developed and applied in pathology, radiology, and ophthalmology, drawing on evidence from over 150 studies. We explain the core components of FM pipelines, including model architectures, self-supervised learning methods, and strategies for downstream adaptation. We also review how FMs are being used in each imaging domain and compare design choices across applications. Finally, we discuss key challenges and open questions to guide future research.
♻ ☆ Motion-R1: Chain-of-Thought Reasoning and Reinforcement Learning for Human Motion Generation
Recent advances in large language models, especially in natural language understanding and reasoning, have opened new possibilities for text-to-motion generation. Although existing approaches have made notable progress in semantic alignment and motion synthesis, they often rely on end-to-end mapping strategies that fail to capture deep linguistic structures and logical reasoning. Consequently, generated motions tend to lack controllability, consistency, and diversity. To address these limitations, we propose Motion-R1, a unified motion-language modeling framework that integrates a Chain-of-Thought mechanism. By explicitly decomposing complex textual instructions into logically structured action paths, Motion-R1 provides high-level semantic guidance for motion generation, significantly enhancing the model's ability to interpret and execute multi-step, long-horizon, and compositionally rich commands. To train our model, we adopt Group Relative Policy Optimization, a reinforcement learning algorithm designed for large models, which leverages motion quality feedback to optimize reasoning chains and motion synthesis jointly. Extensive experiments across multiple benchmark datasets demonstrate that Motion-R1 achieves competitive or superior performance compared to state-of-the-art methods, particularly in scenarios requiring nuanced semantic understanding and long-term temporal coherence. The code, model and data will be publicly available.
♻ ☆ Deep Learning for Wildfire Risk Prediction: Integrating Remote Sensing and Environmental Data
Wildfires pose a significant threat to ecosystems, wildlife, and human communities, leading to habitat destruction, pollutant emissions, and biodiversity loss. Accurate wildfire risk prediction is crucial for mitigating these impacts and safeguarding both environmental and human health. This paper provides a comprehensive review of wildfire risk prediction methodologies, with a particular focus on deep learning approaches combined with remote sensing. We begin by defining wildfire risk and summarizing the geographical distribution of related studies. In terms of data, we analyze key predictive features, including fuel characteristics, meteorological and climatic conditions, socioeconomic factors, topography, and hydrology, while also reviewing publicly available wildfire prediction datasets derived from remote sensing. Additionally, we emphasize the importance of feature collinearity assessment and model interpretability to improve the understanding of prediction outcomes. Regarding methodology, we classify deep learning models into three primary categories: time-series forecasting, image segmentation, and spatiotemporal prediction, and further discuss methods for converting model outputs into risk classifications or probability-adjusted predictions. Finally, we identify the key challenges and limitations of current wildfire-risk prediction models and outline several research opportunities. These include integrating diverse remote sensing data, developing multimodal models, designing more computationally efficient architectures, and incorporating cross-disciplinary methods--such as coupling with numerical weather-prediction models--to enhance the accuracy and robustness of wildfire-risk assessments.
♻ ☆ Heart Rate Classification in ECG Signals Using Machine Learning and Deep Learning
This study addresses the classification of heartbeats from ECG signals through two distinct approaches: traditional machine learning utilizing hand-crafted features and deep learning via transformed images of ECG beats. The dataset underwent preprocessing steps, including downsampling, filtering, and normalization, to ensure consistency and relevance for subsequent analysis. In the first approach, features such as heart rate variability (HRV), mean, variance, and RR intervals were extracted to train various classifiers, including SVM, Random Forest, AdaBoost, LSTM, Bi-directional LSTM, and LightGBM. The second approach involved transforming ECG signals into images using Gramian Angular Field (GAF), Markov Transition Field (MTF), and Recurrence Plots (RP), with these images subsequently classified using CNN architectures like VGG and Inception. Experimental results demonstrate that the LightGBM model achieved the highest performance, with an accuracy of 99% and an F1 score of 0.94, outperforming the image-based CNN approach (F1 score of 0.85). Models such as SVM and AdaBoost yielded significantly lower scores, indicating limited suitability for this task. The findings underscore the superior ability of hand-crafted features to capture temporal and morphological variations in ECG signals compared to image-based representations of individual beats. Future investigations may benefit from incorporating multi-lead ECG signals and temporal dependencies across successive beats to enhance classification accuracy further.
♻ ☆ XYZ-IBD: A High-precision Bin-picking Dataset for Object 6D Pose Estimation Capturing Real-world Industrial Complexity
We introduce XYZ-IBD, a bin-picking dataset for 6D pose estimation that captures real-world industrial complexity, including challenging object geometries, reflective materials, severe occlusions, and dense clutter. The dataset reflects authentic robotic manipulation scenarios with millimeter-accurate annotations. Unlike existing datasets that primarily focus on household objects, which approach saturation,XYZ-IBD represents the unsolved realistic industrial conditions. The dataset features 15 texture-less, metallic, and mostly symmetrical objects of varying shapes and sizes. These objects are heavily occluded and randomly arranged in bins with high density, replicating the challenges of real-world bin-picking. XYZ-IBD was collected using two high-precision industrial cameras and one commercially available camera, providing RGB, grayscale, and depth images. It contains 75 multi-view real-world scenes, along with a large-scale synthetic dataset rendered under simulated bin-picking conditions. We employ a meticulous annotation pipeline that includes anti-reflection spray, multi-view depth fusion, and semi-automatic annotation, achieving millimeter-level pose labeling accuracy required for industrial manipulation. Quantification in simulated environments confirms the reliability of the ground-truth annotations. We benchmark state-of-the-art methods on 2D detection, 6D pose estimation, and depth estimation tasks on our dataset, revealing significant performance degradation in our setups compared to current academic household benchmarks. By capturing the complexity of real-world bin-picking scenarios, XYZ-IBD introduces more realistic and challenging problems for future research. The dataset and benchmark are publicly available at https://xyz-ibd.github.io/XYZ-IBD/.
♻ ☆ Unify3D: An Augmented Holistic End-to-end Monocular 3D Human Reconstruction via Anatomy Shaping and Twins Negotiating
Monocular 3D clothed human reconstruction aims to create a complete 3D avatar from a single image. To tackle the human geometry lacking in one RGB image, current methods typically resort to a preceding model for an explicit geometric representation. For the reconstruction itself, focus is on modeling both it and the input image. This routine is constrained by the preceding model, and overlooks the integrity of the reconstruction task. To address this, this paper introduces a novel paradigm that treats human reconstruction as a holistic process, utilizing an end-to-end network for direct prediction from 2D image to 3D avatar, eliminating any explicit intermediate geometry display. Based on this, we further propose a novel reconstruction framework consisting of two core components: the Anatomy Shaping Extraction module, which captures implicit shape features taking into account the specialty of human anatomy, and the Twins Negotiating Reconstruction U-Net, which enhances reconstruction through feature interaction between two U-Nets of different modalities. Moreover, we propose a Comic Data Augmentation strategy and construct 15k+ 3D human scans to bolster model performance in more complex case input. Extensive experiments on two test sets and many in-the-wild cases show the superiority of our method over SOTA methods. Our demos can be found in : https://e2e3dgsrecon.github.io/e2e3dgsrecon/.
comment: The experiment result shown in Ablation Study is insufficient to support the effectiveness of the proposed methodology
♻ ☆ Enhancing Logits Distillation with Plug\&Play Kendall's $τ$ Ranking Loss
Knowledge distillation typically minimizes the Kullback-Leibler (KL) divergence between teacher and student logits. However, optimizing the KL divergence can be challenging for the student and often leads to sub-optimal solutions. We further show that gradients induced by KL divergence scale with the magnitude of the teacher logits, thereby diminishing updates on low-probability channels. This imbalance weakens the transfer of inter-class information and in turn limits the performance improvements achievable by the student. To mitigate this issue, we propose a plug-and-play auxiliary ranking loss based on Kendall's $\tau$ coefficient that can be seamlessly integrated into any logit-based distillation framework. It supplies inter-class relational information while rebalancing gradients toward low-probability channels. We demonstrate that the proposed ranking loss is largely invariant to channel scaling and optimizes an objective aligned with that of KL divergence, making it a natural complement rather than a replacement. Extensive experiments on CIFAR-100, ImageNet, and COCO datasets, as well as various CNN and ViT teacher-student architecture combinations, demonstrate that our plug-and-play ranking loss consistently boosts the performance of multiple distillation baselines. Code is available at https://github.com/OvernighTea/RankingLoss-KD
♻ ☆ Agentic 3D Scene Generation with Spatially Contextualized VLMs
Despite recent advances in multimodal content generation enabled by vision-language models (VLMs), their ability to reason about and generate structured 3D scenes remains largely underexplored. This limitation constrains their utility in spatially grounded tasks such as embodied AI, immersive simulations, and interactive 3D applications. We introduce a new paradigm that enables VLMs to generate, understand, and edit complex 3D environments by injecting a continually evolving spatial context. Constructed from multimodal input, this context consists of three components: a scene portrait that provides a high-level semantic blueprint, a semantically labeled point cloud capturing object-level geometry, and a scene hypergraph that encodes rich spatial relationships, including unary, binary, and higher-order constraints. Together, these components provide the VLM with a structured, geometry-aware working memory that integrates its inherent multimodal reasoning capabilities with structured 3D understanding for effective spatial reasoning. Building on this foundation, we develop an agentic 3D scene generation pipeline in which the VLM iteratively reads from and updates the spatial context. The pipeline features high-quality asset generation with geometric restoration, environment setup with automatic verification, and ergonomic adjustment guided by the scene hypergraph. Experiments show that our framework can handle diverse and challenging inputs, achieving a level of generalization not observed in prior work. Further results demonstrate that injecting spatial context enables VLMs to perform downstream tasks such as interactive scene editing and path planning, suggesting strong potential for spatially intelligent systems in computer graphics, 3D vision, and embodied applications. Project page: https://spatctxvlm.github.io/project_page/.
comment: Project page: https://spatctxvlm.github.io/project_page/
MambaTalk: Efficient Holistic Gesture Synthesis with Selective State Space Models
Gesture synthesis is a vital realm of human-computer interaction, with wide-ranging applications across various fields like film, robotics, and virtual reality. Recent advancements have utilized the diffusion model and attention mechanisms to improve gesture synthesis. However, due to the high computational complexity of these techniques, generating long and diverse sequences with low latency remains a challenge. We explore the potential of state space models (SSMs) to address the challenge, implementing a two-stage modeling strategy with discrete motion priors to enhance the quality of gestures. Leveraging the foundational Mamba block, we introduce MambaTalk, enhancing gesture diversity and rhythm through multimodal integration. Extensive experiments demonstrate that our method matches or exceeds the performance of state-of-the-art models. Our project is publicly available at https://kkakkkka.github.io/MambaTalk
comment: Accepted to NeurlPS 2024
♻ ☆ Adaptive Sensitivity Analysis for Robust Augmentation against Natural Corruptions in Image Segmentation
Achieving robustness in image segmentation models is challenging due to the fine-grained nature of pixel-level classification. These models, which are crucial for many real-time perception applications, particularly struggle when faced with natural corruptions in the wild for autonomous systems. While sensitivity analysis can help us understand how input variables influence model outputs, its application to natural and uncontrollable corruptions in training data is computationally expensive. In this work, we present an adaptive, sensitivity-guided augmentation method to enhance robustness against natural corruptions. Our sensitivity analysis on average runs 10x faster and requires about 200x less storage than previous sensitivity analysis, enabling practical, on-the-fly estimation during training for a model-free augmentation policy. With minimal fine-tuning, our sensitivity-guided augmentation method achieves improved robustness on both real-world and synthetic datasets compared to state-of-the-art data augmentation techniques in image segmentation. Code implementation for this work can be found at: https://github.com/laurayuzheng/SensAug.
comment: 9 pages
♻ ☆ Evaluation of Vision Transformers for Multimodal Image Classification: A Case Study on Brain, Lung, and Kidney Tumors
Neural networks have become the standard technique for medical diagnostics, especially in cancer detection and classification. This work evaluates the performance of Vision Transformers architectures, including Swin Transformer and MaxViT, in several datasets of magnetic resonance imaging (MRI) and computed tomography (CT) scans. We used three training sets of images with brain, lung, and kidney tumors. Each dataset includes different classification labels, from brain gliomas and meningiomas to benign and malignant lung conditions and kidney anomalies such as cysts and cancers. This work aims to analyze the behavior of the neural networks in each dataset and the benefits of combining different image modalities and tumor classes. We designed several experiments by fine-tuning the models on combined and individual datasets. The results revealed that the Swin Transformer provided high accuracy, achieving up to 99\% on average for individual datasets and 99.4\% accuracy for the combined dataset. This research highlights the adaptability of Transformer-based models to various image modalities and features. However, challenges persist, including limited annotated data and interpretability issues. Future work will expand this study by incorporating other image modalities and enhancing diagnostic capabilities. Integrating these models across diverse datasets could mark a significant advance in precision medicine, paving the way for more efficient and comprehensive healthcare solutions.
comment: 19 pages, 9 figures, 12 tables
♻ ☆ Adaptive Feature Selection for No-Reference Image Quality Assessment by Mitigating Semantic Noise Sensitivity
The current state-of-the-art No-Reference Image Quality Assessment (NR-IQA) methods typically rely on feature extraction from upstream semantic backbone networks, assuming that all extracted features are relevant. However, we make a key observation that not all features are beneficial, and some may even be harmful, necessitating careful selection. Empirically, we find that many image pairs with small feature spatial distances can have vastly different quality scores, indicating that the extracted features may contain a significant amount of quality-irrelevant noise. To address this issue, we propose a Quality-Aware Feature Matching IQA Metric (QFM-IQM) that employs an adversarial perspective to remove harmful semantic noise features from the upstream task. Specifically, QFM-IQM enhances the semantic noise distinguish capabilities by matching image pairs with similar quality scores but varying semantic features as adversarial semantic noise and adaptively adjusting the upstream task's features by reducing sensitivity to adversarial noise perturbation. Furthermore, we utilize a distillation framework to expand the dataset and improve the model's generalization ability. Our approach achieves superior performance to the state-of-the-art NR-IQA methods on eight standard IQA datasets.
♻ ☆ AirIO: Learning Inertial Odometry with Enhanced IMU Feature Observability
Inertial odometry (IO) using only Inertial Measurement Units (IMUs) offers a lightweight and cost-effective solution for Unmanned Aerial Vehicle (UAV) applications, yet existing learning-based IO models often fail to generalize to UAVs due to the highly dynamic and non-linear-flight patterns that differ from pedestrian motion. In this work, we identify that the conventional practice of transforming raw IMU data to global coordinates undermines the observability of critical kinematic information in UAVs. By preserving the body-frame representation, our method achieves substantial performance improvements, with a 66.7% average increase in accuracy across three datasets. Furthermore, explicitly encoding attitude information into the motion network results in an additional 23.8% improvement over prior results. Combined with a data-driven IMU correction model (AirIMU) and an uncertainty-aware Extended Kalman Filter (EKF), our approach ensures robust state estimation under aggressive UAV maneuvers without relying on external sensors or control inputs. Notably, our method also demonstrates strong generalizability to unseen data not included in the training set, underscoring its potential for real-world UAV applications.
♻ ☆ Structureless VIO RSS 2025
Visual odometry (VO) is typically considered as a chicken-and-egg problem, as the localization and mapping modules are tightly-coupled. The estimation of a visual map relies on accurate localization information. Meanwhile, localization requires precise map points to provide motion constraints. This classical design principle is naturally inherited by visual-inertial odometry (VIO). Efficient localization solutions that do not require a map have not been fully investigated. To this end, we propose a novel structureless VIO, where the visual map is removed from the odometry framework. Experimental results demonstrated that, compared to the structure-based VIO baseline, our structureless VIO not only substantially improves computational efficiency but also has advantages in accuracy.
comment: Accepted by the SLAM Workshop at RSS 2025
♻ ☆ Inst3D-LMM: Instance-Aware 3D Scene Understanding with Multi-modal Instruction Tuning CVPR2025
Despite encouraging progress in 3D scene understanding, it remains challenging to develop an effective Large Multi-modal Model (LMM) that is capable of understanding and reasoning in complex 3D environments. Most previous methods typically encode 3D point and 2D image features separately, neglecting interactions between 2D semantics and 3D object properties, as well as the spatial relationships within the 3D environment. This limitation not only hinders comprehensive representations of 3D scene, but also compromises training and inference efficiency. To address these challenges, we propose a unified Instance-aware 3D Large Multi-modal Model (Inst3D-LMM) to deal with multiple 3D scene understanding tasks simultaneously. To obtain the fine-grained instance-level visual tokens, we first introduce a novel Multi-view Cross-Modal Fusion (MCMF) module to inject the multi-view 2D semantics into their corresponding 3D geometric features. For scene-level relation-aware tokens, we further present a 3D Instance Spatial Relation (3D-ISR) module to capture the intricate pairwise spatial relationships among objects. Additionally, we perform end-to-end multi-task instruction tuning simultaneously without the subsequent task-specific fine-tuning. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods across 3D scene understanding, reasoning and grounding tasks. Source code is available at https://github.com/hanxunyu/Inst3D-LMM
comment: CVPR2025, Code Link: https://github.com/hanxunyu/Inst3D-LMM
♻ ☆ Comparative Evaluation of 3D Reconstruction Methods for Object Pose Estimation
Object pose estimation is essential to many industrial applications involving robotic manipulation, navigation, and augmented reality. Current generalizable object pose estimators, i.e., approaches that do not need to be trained per object, rely on accurate 3D models. Predominantly, CAD models are used, which can be hard to obtain in practice. At the same time, it is often possible to acquire images of an object. Naturally, this leads to the question whether 3D models reconstructed from images are sufficient to facilitate accurate object pose estimation. We aim to answer this question by proposing a novel benchmark for measuring the impact of 3D reconstruction quality on pose estimation accuracy. Our benchmark provides calibrated images for object reconstruction registered with the test images of the YCB-V dataset for pose evaluation under the BOP benchmark format. Detailed experiments with multiple state-of-the-art 3D reconstruction and object pose estimation approaches show that the geometry produced by modern reconstruction methods is often sufficient for accurate pose estimation. Our experiments lead to interesting observations: (1) Standard metrics for measuring 3D reconstruction quality are not necessarily indicative of pose estimation accuracy, which shows the need for dedicated benchmarks such as ours. (2) Classical, non-learning-based approaches can perform on par with modern learning-based reconstruction techniques and can even offer a better reconstruction time-pose accuracy tradeoff. (3) There is still a sizable gap between performance with reconstructed and with CAD models. To foster research on closing this gap, our benchmark is publicly available at https://github.com/VarunBurde/reconstruction_pose_benchmark}.
♻ ☆ Bokeh Diffusion: Defocus Blur Control in Text-to-Image Diffusion Models
Recent advances in large-scale text-to-image models have revolutionized creative fields by generating visually captivating outputs from textual prompts; however, while traditional photography offers precise control over camera settings to shape visual aesthetics - such as depth-of-field via aperture - current diffusion models typically rely on prompt engineering to mimic such effects. This approach often results in crude approximations and inadvertently alters the scene content. In this work, we propose Bokeh Diffusion, a scene-consistent bokeh control framework that explicitly conditions a diffusion model on a physical defocus blur parameter. To overcome the scarcity of paired real-world images captured under different camera settings, we introduce a hybrid training pipeline that aligns in-the-wild images with synthetic blur augmentations, providing diverse scenes and subjects as well as supervision to learn the separation of image content from lens blur. Central to our framework is our grounded self-attention mechanism, trained on image pairs with different bokeh levels of the same scene, which enables blur strength to be adjusted in both directions while preserving the underlying scene. Extensive experiments demonstrate that our approach enables flexible, lens-like blur control, supports downstream applications such as real image editing via inversion, and generalizes effectively across both Stable Diffusion and FLUX architectures.
comment: Project page: https://atfortes.github.io/projects/bokeh-diffusion/
♻ ☆ Efficient Unsupervised Shortcut Learning Detection and Mitigation in Transformers
Shortcut learning, i.e., a model's reliance on undesired features not directly relevant to the task, is a major challenge that severely limits the applications of machine learning algorithms, particularly when deploying them to assist in making sensitive decisions, such as in medical diagnostics. In this work, we leverage recent advancements in machine learning to create an unsupervised framework that is capable of both detecting and mitigating shortcut learning in transformers. We validate our method on multiple datasets. Results demonstrate that our framework significantly improves both worst-group accuracy (samples misclassified due to shortcuts) and average accuracy, while minimizing human annotation effort. Moreover, we demonstrate that the detected shortcuts are meaningful and informative to human experts, and that our framework is computationally efficient, allowing it to be run on consumer hardware.
♻ ☆ Dissecting RGB-D Learning for Improved Multi-modal Fusion
In the RGB-D vision community, extensive research has been focused on designing multi-modal learning strategies and fusion structures. However, the complementary and fusion mechanisms in RGB-D models remain a black box. In this paper, we present an analytical framework and a novel score to dissect the RGB-D vision community. Our approach involves measuring proposed semantic variance and feature similarity across modalities and levels, conducting visual and quantitative analyzes on multi-modal learning through comprehensive experiments. Specifically, we investigate the consistency and specialty of features across modalities, evolution rules within each modality, and the collaboration logic used when optimizing a RGB-D model. Our studies reveal/verify several important findings, such as the discrepancy in cross-modal features and the hybrid multi-modal cooperation rule, which highlights consistency and specialty simultaneously for complementary inference. We also showcase the versatility of the proposed RGB-D dissection method and introduce a straightforward fusion strategy based on our findings, which delivers significant enhancements across various tasks and even other multi-modal data.
♻ ☆ Recognizing Unseen States of Unknown Objects by Leveraging Knowledge Graphs WACV
We investigate the problem of Object State Classification (OSC) as a zero-shot learning problem. Specifically, we propose the first Object-agnostic State Classification (OaSC) method that infers the state of a certain object without relying on the knowledge or the estimation of the object class. In that direction, we capitalize on Knowledge Graphs (KGs) for structuring and organizing knowledge, which, in combination with visual information, enable the inference of the states of objects in object/state pairs that have not been encountered in the method's training set. A series of experiments investigate the performance of the proposed method in various settings, against several hypotheses and in comparison with state of the art approaches for object attribute classification. The experimental results demonstrate that the knowledge of an object class is not decisive for the prediction of its state. Moreover, the proposed OaSC method outperforms existing methods in all datasets and benchmarks by a great margin.
comment: This is the authors' version of the paper published at IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025. The definitive version is available at: https://openaccess.thecvf.com/content/WACV2025/html/Gouidis_Recognizing_Unseen_States_of_Unknown_Objects_by_Leveraging_Knowledge_Graphs_WACV_2025_paper.html
♻ ☆ Multiverse Through Deepfakes: The MultiFakeVerse Dataset of Person-Centric Visual and Conceptual Manipulations
The rapid advancement of GenAI technology over the past few years has significantly contributed towards highly realistic deepfake content generation. Despite ongoing efforts, the research community still lacks a large-scale and reasoning capability driven deepfake benchmark dataset specifically tailored for person-centric object, context and scene manipulations. In this paper, we address this gap by introducing MultiFakeVerse, a large scale person-centric deepfake dataset, comprising 845,286 images generated through manipulation suggestions and image manipulations both derived from vision-language models (VLM). The VLM instructions were specifically targeted towards modifications to individuals or contextual elements of a scene that influence human perception of importance, intent, or narrative. This VLM-driven approach enables semantic, context-aware alterations such as modifying actions, scenes, and human-object interactions rather than synthetic or low-level identity swaps and region-specific edits that are common in existing datasets. Our experiments reveal that current state-of-the-art deepfake detection models and human observers struggle to detect these subtle yet meaningful manipulations. The code and dataset are available on \href{https://github.com/Parul-Gupta/MultiFakeVerse}{GitHub}.
♻ ☆ VideoMat: Extracting PBR Materials from Video Diffusion Models
We leverage finetuned video diffusion models, intrinsic decomposition of videos, and physically-based differentiable rendering to generate high quality materials for 3D models given a text prompt or a single image. We condition a video diffusion model to respect the input geometry and lighting condition. This model produces multiple views of a given 3D model with coherent material properties. Secondly, we use a recent model to extract intrinsics (base color, roughness, metallic) from the generated video. Finally, we use the intrinsics alongside the generated video in a differentiable path tracer to robustly extract PBR materials directly compatible with common content creation tools.
comment: Project website: https://nvlabs.github.io/videomat/
Zero-Shot Temporal Interaction Localization for Egocentric Videos
Locating human-object interaction (HOI) actions within video serves as the foundation for multiple downstream tasks, such as human behavior analysis and human-robot skill transfer. Current temporal action localization methods typically rely on annotated action and object categories of interactions for optimization, which leads to domain bias and low deployment efficiency. Although some recent works have achieved zero-shot temporal action localization (ZS-TAL) with large vision-language models (VLMs), their coarse-grained estimations and open-loop pipelines hinder further performance improvements for temporal interaction localization (TIL). To address these issues, we propose a novel zero-shot TIL approach dubbed EgoLoc to locate the timings of grasp actions for human-object interaction in egocentric videos. EgoLoc introduces a self-adaptive sampling strategy to generate reasonable visual prompts for VLM reasoning. By absorbing both 2D and 3D observations, it directly samples high-quality initial guesses around the possible contact/separation timestamps of HOI according to 3D hand velocities, leading to high inference accuracy and efficiency. In addition, EgoLoc generates closed-loop feedback from visual and dynamic cues to further refine the localization results. Comprehensive experiments on the publicly available dataset and our newly proposed benchmark demonstrate that EgoLoc achieves better temporal interaction localization for egocentric videos compared to state-of-the-art baselines. We will release our code and relevant data as open-source at https://github.com/IRMVLab/EgoLoc.
♻ ☆ Test-time Contrastive Concepts for Open-world Semantic Segmentation with Vision-Language Models
Recent CLIP-like Vision-Language Models (VLMs), pre-trained on large amounts of image-text pairs to align both modalities with a simple contrastive objective, have paved the way to open-vocabulary semantic segmentation. Given an arbitrary set of textual queries, image pixels are assigned the closest query in feature space. However, this works well when a user exhaustively lists all possible visual concepts in an image that contrast against each other for the assignment. This corresponds to the current evaluation setup in the literature, which relies on having access to a list of in-domain relevant concepts, typically classes of a benchmark dataset. Here, we consider the more challenging (and realistic) scenario of segmenting a single concept, given a textual prompt and nothing else. To achieve good results, besides contrasting with the generic 'background' text, we propose two different approaches to automatically generate, at test time, query-specific textual contrastive concepts. We do so by leveraging the distribution of text in the VLM's training set or crafted LLM prompts. We also propose a metric designed to evaluate this scenario and show the relevance of our approach on commonly used datasets.
comment: TMLR camera-ready
♻ ☆ Deep Network Pruning: A Comparative Study on CNNs in Face Recognition
The widespread use of mobile devices for all kinds of transactions makes necessary reliable and real-time identity authentication, leading to the adoption of face recognition (FR) via the cameras embedded in such devices. Progress of deep Convolutional Neural Networks (CNNs) has provided substantial advances in FR. Nonetheless, the size of state-of-the-art architectures is unsuitable for mobile deployment, since they often encompass hundreds of megabytes and millions of parameters. We address this by studying methods for deep network compression applied to FR. In particular, we apply network pruning based on Taylor scores, where less important filters are removed iteratively. The method is tested on three networks based on the small SqueezeNet (1.24M parameters) and the popular MobileNetv2 (3.5M) and ResNet50 (23.5M) architectures. These have been selected to showcase the method on CNNs with different complexities and sizes. We observe that a substantial percentage of filters can be removed with minimal performance loss. Also, filters with the highest amount of output channels tend to be removed first, suggesting that high-dimensional spaces within popular CNNs are over-dimensioned.
comment: Accepted at Pattern Recognition Letters
♻ ☆ Beautiful Images, Toxic Words: Understanding and Addressing Offensive Text in Generated Images
State-of-the-art Diffusion Models (DMs) produce highly realistic images. While prior work has successfully mitigated Not Safe For Work (NSFW) content in the visual domain, we identify a novel threat: the generation of NSFW text embedded within images. This includes offensive language, such as insults, racial slurs, and sexually explicit terms, posing significant risks to users. We show that all state-of-the-art DMs (e.g., SD3, SDXL, Flux, DeepFloyd IF) are vulnerable to this issue. Through extensive experiments, we demonstrate that existing mitigation techniques, effective for visual content, fail to prevent harmful text generation while substantially degrading benign text generation. As an initial step toward addressing this threat, we introduce a novel fine-tuning strategy that targets only the text-generation layers in DMs. Therefore, we construct a safety fine-tuning dataset by pairing each NSFW prompt with two images: one with the NSFW term, and another where that term is replaced with a carefully crafted benign alternative while leaving the image unchanged otherwise. By training on this dataset, the model learns to avoid generating harmful text while preserving benign content and overall image quality. Finally, to advance research in the area, we release ToxicBench, an open-source benchmark for evaluating NSFW text generation in images. It includes our curated fine-tuning dataset, a set of harmful prompts, new evaluation metrics, and a pipeline that assesses both NSFW-ness and text and image quality. Our benchmark aims to guide future efforts in mitigating NSFW text generation in text-to-image models, thereby contributing to their safe deployment. The benchmark is available online for download.
♻ ☆ RIFLEx: A Free Lunch for Length Extrapolation in Video Diffusion Transformers ICML 2025
Recent advancements in video generation have enabled models to synthesize high-quality, minute-long videos. However, generating even longer videos with temporal coherence remains a major challenge and existing length extrapolation methods lead to temporal repetition or motion deceleration. In this work, we systematically analyze the role of frequency components in positional embeddings and identify an intrinsic frequency that primarily governs extrapolation behavior. Based on this insight, we propose RIFLEx, a minimal yet effective approach that reduces the intrinsic frequency to suppress repetition while preserving motion consistency, without requiring any additional modifications. RIFLEx offers a true free lunch--achieving high-quality 2x extrapolation on state-of-the-art video diffusion transformers in a completely training-free manner. Moreover, it enhances quality and enables 3x extrapolation by minimal fine-tuning without long videos. Project page and codes: https://riflex-video.github.io/.
comment: ICML 2025
♻ ☆ BiFold: Bimanual Cloth Folding with Language Guidance ICRA 2025
Cloth folding is a complex task due to the inevitable self-occlusions of clothes, their complicated dynamics, and the disparate materials, geometries, and textures that garments can have. In this work, we learn folding actions conditioned on text commands. Translating high-level, abstract instructions into precise robotic actions requires sophisticated language understanding and manipulation capabilities. To do that, we leverage a pre-trained vision-language model and repurpose it to predict manipulation actions. Our model, BiFold, can take context into account and achieves state-of-the-art performance on an existing language-conditioned folding benchmark. To address the lack of annotated bimanual folding data, we introduce a novel dataset with automatically parsed actions and language-aligned instructions, enabling better learning of text-conditioned manipulation. BiFold attains the best performance on our dataset and demonstrates strong generalization to new instructions, garments, and environments.
comment: Accepted at ICRA 2025. Project page at https://barbany.github.io/bifold/
♻ ☆ Learning Coherent Matrixized Representation in Latent Space for Volumetric 4D Generation
Directly learning to model 4D content, including shape, color, and motion, is challenging. Existing methods rely on pose priors for motion control, resulting in limited motion diversity and continuity in details. To address this, we propose a framework that generates volumetric 4D sequences, where 3D shapes are animated under given conditions (text-image guidance) with dynamic evolution in shape and color across spatial and temporal dimensions, allowing for free navigation and rendering from any direction. We first use a coherent 3D shape and color modeling to encode the shape and color of each detailed 3D geometry frame into a latent space. Then we propose a matrixized 4D sequence representation allowing efficient diffusion model operation. Finally, we introduce spatio-temporal diffusion for 4D volumetric generation under given images and text prompts. Extensive experiments on the ShapeNet, 3DBiCar, DeformingThings4D and Objaverse datasets for several tasks demonstrate that our method effectively learns to generate high quality 3D shapes with consistent color and coherent mesh animations, improving over the current methods. Our code will be publicly available.
♻ ☆ T-SVG: Text-Driven Stereoscopic Video Generation
The advent of stereoscopic videos has opened new horizons in multimedia, particularly in extended reality (XR) and virtual reality (VR) applications, where immersive content captivates audiences across various platforms. Despite its growing popularity, producing stereoscopic videos remains challenging due to the technical complexities involved in generating stereo parallax. This refers to the positional differences of objects viewed from two distinct perspectives and is crucial for creating depth perception. This complex process poses significant challenges for creators aiming to deliver convincing and engaging presentations. To address these challenges, this paper introduces the Text-driven Stereoscopic Video Generation (T-SVG) system. This innovative, model-agnostic, zero-shot approach streamlines video generation by using text prompts to create reference videos. These videos are transformed into 3D point cloud sequences, which are rendered from two perspectives with subtle parallax differences, achieving a natural stereoscopic effect. T-SVG represents a significant advancement in stereoscopic content creation by integrating state-of-the-art, training-free techniques in text-to-video generation, depth estimation, and video inpainting. Its flexible architecture ensures high efficiency and user-friendliness, allowing seamless updates with newer models without retraining. By simplifying the production pipeline, T-SVG makes stereoscopic video generation accessible to a broader audience, demonstrating its potential to revolutionize the field.
comment: 5 pages, 4 figures
♻ ☆ EmbodiedGen: Towards a Generative 3D World Engine for Embodied Intelligence
Constructing a physically realistic and accurately scaled simulated 3D world is crucial for the training and evaluation of embodied intelligence tasks. The diversity, realism, low cost accessibility and affordability of 3D data assets are critical for achieving generalization and scalability in embodied AI. However, most current embodied intelligence tasks still rely heavily on traditional 3D computer graphics assets manually created and annotated, which suffer from high production costs and limited realism. These limitations significantly hinder the scalability of data driven approaches. We present EmbodiedGen, a foundational platform for interactive 3D world generation. It enables the scalable generation of high-quality, controllable and photorealistic 3D assets with accurate physical properties and real-world scale in the Unified Robotics Description Format (URDF) at low cost. These assets can be directly imported into various physics simulation engines for fine-grained physical control, supporting downstream tasks in training and evaluation. EmbodiedGen is an easy-to-use, full-featured toolkit composed of six key modules: Image-to-3D, Text-to-3D, Texture Generation, Articulated Object Generation, Scene Generation and Layout Generation. EmbodiedGen generates diverse and interactive 3D worlds composed of generative 3D assets, leveraging generative AI to address the challenges of generalization and evaluation to the needs of embodied intelligence related research. Code is available at https://horizonrobotics.github.io/robot_lab/embodied_gen/index.html.
♻ ☆ A robust and scalable framework for hallucination detection in virtual tissue staining and digital pathology
Histopathological staining of human tissue is essential for disease diagnosis. Recent advances in virtual tissue staining technologies using artificial intelligence (AI) alleviate some of the costly and tedious steps involved in traditional histochemical staining processes, permitting multiplexed staining and tissue preservation. However, potential hallucinations and artifacts in these virtually stained tissue images pose concerns, especially for the clinical uses of these approaches. Quality assessment of histology images by experts can be subjective. Here, we present an autonomous quality and hallucination assessment method, AQuA, for virtual tissue staining and digital pathology. AQuA autonomously achieves 99.8% accuracy when detecting acceptable and unacceptable virtually stained tissue images without access to histochemically stained ground truth, and presents an agreement of 98.5% with the manual assessments made by board-certified pathologists, including identifying realistic-looking images that could mislead diagnosticians. We demonstrate the wide adaptability of AQuA across various virtually and histochemically stained human tissue images. This framework enhances the reliability of virtual tissue staining and provides autonomous quality assurance for image generation and transformation tasks in digital pathology and computational imaging.
comment: 45 Pages, 22 Figures, 2 Tables
♻ ☆ HSRMamba: Contextual Spatial-Spectral State Space Model for Single Image Hyperspectral Super-Resolution
Mamba has demonstrated exceptional performance in visual tasks due to its powerful global modeling capabilities and linear computational complexity, offering considerable potential in hyperspectral image super-resolution (HSISR). However, in HSISR, Mamba faces challenges as transforming images into 1D sequences neglects the spatial-spectral structural relationships between locally adjacent pixels, and its performance is highly sensitive to input order, which affects the restoration of both spatial and spectral details. In this paper, we propose HSRMamba, a contextual spatial-spectral modeling state space model for HSISR, to address these issues both locally and globally. Specifically, a local spatial-spectral partitioning mechanism is designed to establish patch-wise causal relationships among adjacent pixels in 3D features, mitigating the local forgetting issue. Furthermore, a global spectral reordering strategy based on spectral similarity is employed to enhance the causal representation of similar pixels across both spatial and spectral dimensions. Finally, experimental results demonstrate our HSRMamba outperforms the state-of-the-art methods in quantitative quality and visual results. Code is available at: https://github.com/Tomchenshi/HSRMamba.
♻ ☆ Genesis: Multimodal Driving Scene Generation with Spatio-Temporal and Cross-Modal Consistency
We present Genesis, a unified framework for joint generation of multi-view driving videos and LiDAR sequences with spatio-temporal and cross-modal consistency. Genesis employs a two-stage architecture that integrates a DiT-based video diffusion model with 3D-VAE encoding, and a BEV-aware LiDAR generator with NeRF-based rendering and adaptive sampling. Both modalities are directly coupled through a shared latent space, enabling coherent evolution across visual and geometric domains. To guide the generation with structured semantics, we introduce DataCrafter, a captioning module built on vision-language models that provides scene-level and instance-level supervision. Extensive experiments on the nuScenes benchmark demonstrate that Genesis achieves state-of-the-art performance across video and LiDAR metrics (FVD 16.95, FID 4.24, Chamfer 0.611), and benefits downstream tasks including segmentation and 3D detection, validating the semantic fidelity and practical utility of the generated data.
♻ ☆ Deep Learning-Based Breast Cancer Detection in Mammography: A Multi-Center Validation Study in Thai Population
This study presents a deep learning system for breast cancer detection in mammography, developed using a modified EfficientNetV2 architecture with enhanced attention mechanisms. The model was trained on mammograms from a major Thai medical center and validated on three distinct datasets: an in-domain test set (9,421 cases), a biopsy-confirmed set (883 cases), and an out-of-domain generalizability set (761 cases) collected from two different hospitals. For cancer detection, the model achieved AUROCs of 0.89, 0.96, and 0.94 on the respective datasets. The system's lesion localization capability, evaluated using metrics including Lesion Localization Fraction (LLF) and Non-Lesion Localization Fraction (NLF), demonstrated robust performance in identifying suspicious regions. Clinical validation through concordance tests showed strong agreement with radiologists: 83.5% classification and 84.0% localization concordance for biopsy-confirmed cases, and 78.1% classification and 79.6% localization concordance for out-of-domain cases. Expert radiologists' acceptance rate also averaged 96.7% for biopsy-confirmed cases, and 89.3% for out-of-domain cases. The system achieved a System Usability Scale score of 74.17 for source hospital, and 69.20 for validation hospitals, indicating good clinical acceptance. These results demonstrate the model's effectiveness in assisting mammogram interpretation, with the potential to enhance breast cancer screening workflows in clinical practice.
♻ ☆ FrameBridge: Improving Image-to-Video Generation with Bridge Models
Diffusion models have achieved remarkable progress on image-to-video (I2V) generation, while their noise-to-data generation process is inherently mismatched with this task, which may lead to suboptimal synthesis quality. In this work, we present FrameBridge. By modeling the frame-to-frames generation process with a bridge model based data-to-data generative process, we are able to fully exploit the information contained in the given image and improve the consistency between the generation process and I2V task. Moreover, we propose two novel techniques toward the two popular settings of training I2V models, respectively. Firstly, we propose SNR-Aligned Fine-tuning (SAF), making the first attempt to fine-tune a diffusion model to a bridge model and, therefore, allowing us to utilize the pre-trained diffusion-based text-to-video (T2V) models. Secondly, we propose neural prior, further improving the synthesis quality of FrameBridge when training from scratch. Experiments conducted on WebVid-2M and UCF-101 demonstrate the superior quality of FrameBridge in comparison with the diffusion counterpart (zero-shot FVD 95 vs. 192 on MSR-VTT and non-zero-shot FVD 122 vs. 171 on UCF-101), and the advantages of our proposed SAF and neural prior for bridge-based I2V models. The project page: https://framebridge-icml.github.io/.
CAT: Contrastive Adversarial Training for Evaluating the Robustness of Protective Perturbations in Latent Diffusion Models
Latent diffusion models have recently demonstrated superior capabilities in many downstream image synthesis tasks. However, customization of latent diffusion models using unauthorized data can severely compromise the privacy and intellectual property rights of data owners. Adversarial examples as protective perturbations have been developed to defend against unauthorized data usage by introducing imperceptible noise to customization samples, preventing diffusion models from effectively learning them. In this paper, we first reveal that the primary reason adversarial examples are effective as protective perturbations in latent diffusion models is the distortion of their latent representations, as demonstrated through qualitative and quantitative experiments. We then propose the Contrastive Adversarial Training (CAT) utilizing lightweight adapters as an adaptive attack against these protection methods, highlighting their lack of robustness. Extensive experiments demonstrate that our CAT method significantly reduces the effectiveness of protective perturbations in customization, urging the community to reconsider and improve the robustness of existing protective perturbations. The code is available at https://github.com/senp98/CAT.
♻ ☆ Counterfactual contrastive learning: robust representations via causal image synthesis MICCAI 2024
Contrastive pretraining is well-known to improve downstream task performance and model generalisation, especially in limited label settings. However, it is sensitive to the choice of augmentation pipeline. Positive pairs should preserve semantic information while destroying domain-specific information. Standard augmentation pipelines emulate domain-specific changes with pre-defined photometric transformations, but what if we could simulate realistic domain changes instead? In this work, we show how to utilise recent progress in counterfactual image generation to this effect. We propose CF-SimCLR, a counterfactual contrastive learning approach which leverages approximate counterfactual inference for positive pair creation. Comprehensive evaluation across five datasets, on chest radiography and mammography, demonstrates that CF-SimCLR substantially improves robustness to acquisition shift with higher downstream performance on both in- and out-of-distribution data, particularly for domains which are under-represented during training.
comment: Extended version available at https://doi.org/10.1016/j.media.2025.103668. This version was published in the proceedings of the MICCAI 2024 Data Engineering in Medical Imaging workshop. Code available at https://github.com/biomedia-mira/counterfactual-contrastive
♻ ☆ Efficient 3D Perception on Multi-Sweep Point Cloud with Gumbel Spatial Pruning
This paper studies point cloud perception within outdoor environments. Existing methods face limitations in recognizing objects located at a distance or occluded, due to the sparse nature of outdoor point clouds. In this work, we observe a significant mitigation of this problem by accumulating multiple temporally consecutive point cloud sweeps, resulting in a remarkable improvement in perception accuracy. However, the computation cost also increases, hindering previous approaches from utilizing a large number of point cloud sweeps. To tackle this challenge, we find that a considerable portion of points in the accumulated point cloud is redundant, and discarding these points has minimal impact on perception accuracy. We introduce a simple yet effective Gumbel Spatial Pruning (GSP) layer that dynamically prunes points based on a learned end-to-end sampling. The GSP layer is decoupled from other network components and thus can be seamlessly integrated into existing point cloud network architectures. Without incurring additional computational overhead, we increase the number of point cloud sweeps from 10, a common practice, to as many as 40. Consequently, there is a significant enhancement in perception performance. For instance, in nuScenes 3D object detection and BEV map segmentation tasks, our pruning strategy improves several 3D perception baseline methods.
♻ ☆ ActiveSplat: High-Fidelity Scene Reconstruction through Active Gaussian Splatting
We propose ActiveSplat, an autonomous high-fidelity reconstruction system leveraging Gaussian splatting. Taking advantage of efficient and realistic rendering, the system establishes a unified framework for online mapping, viewpoint selection, and path planning. The key to ActiveSplat is a hybrid map representation that integrates both dense information about the environment and a sparse abstraction of the workspace. Therefore, the system leverages sparse topology for efficient viewpoint sampling and path planning, while exploiting view-dependent dense prediction for viewpoint selection, facilitating efficient decision-making with promising accuracy and completeness. A hierarchical planning strategy based on the topological map is adopted to mitigate repetitive trajectories and improve local granularity given limited time budgets, ensuring high-fidelity reconstruction with photorealistic view synthesis. Extensive experiments and ablation studies validate the efficacy of the proposed method in terms of reconstruction accuracy, data coverage, and exploration efficiency. The released code will be available on our project page: https://li-yuetao.github.io/ActiveSplat/.
comment: Accepted to IEEE RA-L. Code: https://github.com/Li-Yuetao/ActiveSplat, Project: https://li-yuetao.github.io/ActiveSplat/
♻ ☆ Diffusion-Based Depth Inpainting for Transparent and Reflective Objects
Transparent and reflective objects, which are common in our everyday lives, present a significant challenge to 3D imaging techniques due to their unique visual and optical properties. Faced with these types of objects, RGB-D cameras fail to capture the real depth value with their accurate spatial information. To address this issue, we propose DITR, a diffusion-based Depth Inpainting framework specifically designed for Transparent and Reflective objects. This network consists of two stages, including a Region Proposal stage and a Depth Inpainting stage. DITR dynamically analyzes the optical and geometric depth loss and inpaints them automatically. Furthermore, comprehensive experimental results demonstrate that DITR is highly effective in depth inpainting tasks of transparent and reflective objects with robust adaptability.
♻ ☆ Multi-Knowledge-oriented Nighttime Haze Imaging Enhancer for Vision-driven Intelligent Systems
Salient object detection (SOD) plays a critical role in Intelligent Imaging, facilitating the detection and segmentation of key visual elements in an image. However, adverse imaging conditions such as haze during the day, low light, and haze at night severely degrade image quality and hinder reliable object detection in real-world scenarios. To address these challenges, we propose a multi-knowledge-oriented nighttime haze imaging enhancer (MKoIE), which integrates three tasks: daytime dehazing, low-light enhancement, and nighttime dehazing. The MKoIE incorporates two key innovative components: First, the network employs a task-oriented node learning mechanism to handle three specific degradation types: day-time haze, low light, and night-time haze conditions, with an embedded self-attention module enhancing its performance in nighttime imaging. In addition, multi-receptive field enhancement module that efficiently extracts multi-scale features through three parallel depthwise separable convolution branches with different dilation rates, capturing comprehensive spatial information with minimal computational overhead to meet the requirements of real-time imaging deployment. To ensure optimal image reconstruction quality and visual characteristics, we suggest a hybrid loss function. Extensive experiments on different types of weather/imaging conditions illustrate that MKoIE surpasses existing methods, enhancing the reliability, accuracy, and operational efficiency of intelligent imaging.
♻ ☆ R2LDM: An Efficient 4D Radar Super-Resolution Framework Leveraging Diffusion Model IROS 2025
We introduce R2LDM, an innovative approach for generating dense and accurate 4D radar point clouds, guided by corresponding LiDAR point clouds. Instead of utilizing range images or bird's eye view (BEV) images, we represent both LiDAR and 4D radar point clouds using voxel features, which more effectively capture 3D shape information. Subsequently, we propose the Latent Voxel Diffusion Model (LVDM), which performs the diffusion process in the latent space. Additionally, a novel Latent Point Cloud Reconstruction (LPCR) module is utilized to reconstruct point clouds from high-dimensional latent voxel features. As a result, R2LDM effectively generates LiDAR-like point clouds from paired raw radar data. We evaluate our approach on two different datasets, and the experimental results demonstrate that our model achieves 6- to 10-fold densification of radar point clouds, outperforming state-of-the-art baselines in 4D radar point cloud super-resolution. Furthermore, the enhanced radar point clouds generated by our method significantly improve downstream tasks, achieving up to 31.7% improvement in point cloud registration recall rate and 24.9% improvement in object detection accuracy.
comment: 8 pages, 9 figures, accepted to IROS 2025
♻ ☆ Flatfish Lesion Detection Based on Part Segmentation Approach and Lesion Image Generation
The flatfish is a major farmed species consumed globally in large quantities. However, due to the densely populated farming environment, flatfish are susceptible to lesions and diseases, making early lesion detection crucial. Traditionally, lesions were detected through visual inspection, but observing large numbers of fish is challenging. Automated approaches based on deep learning technologies have been widely used to address this problem, but accurate detection remains difficult due to the diversity of the fish and the lack of a fish lesion and disease dataset. This study augments fish lesion images using generative adversarial networks and image harmonization methods. Next, lesion detectors are trained separately for three body parts (head, fins, and body) to address individual lesions properly. Additionally, a flatfish lesion and disease image dataset, called FlatIMG, is created and verified using the proposed methods on the dataset. A flash salmon lesion dataset is also tested to validate the generalizability of the proposed methods. The results achieved 12% higher performance than the baseline framework. This study is the first attempt to create a high-quality flatfish lesion image dataset with detailed annotations and propose an effective lesion detection framework. Automatic lesion and disease monitoring can be achieved in farming environments using the proposed methods and dataset.
comment: 16 page, 13 figures, 4 tables
♻ ☆ Leveraging Intermediate Features of Vision Transformer for Face Anti-Spoofing CVPR
Face recognition systems are designed to be robust against changes in head pose, illumination, and blurring during image capture. If a malicious person presents a face photo of the registered user, they may bypass the authentication process illegally. Such spoofing attacks need to be detected before face recognition. In this paper, we propose a spoofing attack detection method based on Vision Transformer (ViT) to detect minute differences between live and spoofed face images. The proposed method utilizes the intermediate features of ViT, which have a good balance between local and global features that are important for spoofing attack detection, for calculating loss in training and score in inference. The proposed method also introduces two data augmentation methods: face anti-spoofing data augmentation and patch-wise data augmentation, to improve the accuracy of spoofing attack detection. We demonstrate the effectiveness of the proposed method through experiments using the OULU-NPU and SiW datasets. The project page is available at: https://gsisaoki.github.io/FAS-ViT-CVPRW/ .
comment: 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
♻ ☆ ADAgent: LLM Agent for Alzheimer's Disease Analysis with Collaborative Coordinator
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. Early and precise diagnosis of AD is crucial for timely intervention and treatment planning to alleviate the progressive neurodegeneration. However, most existing methods rely on single-modality data, which contrasts with the multifaceted approach used by medical experts. While some deep learning approaches process multi-modal data, they are limited to specific tasks with a small set of input modalities and cannot handle arbitrary combinations. This highlights the need for a system that can address diverse AD-related tasks, process multi-modal or missing input, and integrate multiple advanced methods for improved performance. In this paper, we propose ADAgent, the first specialized AI agent for AD analysis, built on a large language model (LLM) to address user queries and support decision-making. ADAgent integrates a reasoning engine, specialized medical tools, and a collaborative outcome coordinator to facilitate multi-modal diagnosis and prognosis tasks in AD. Extensive experiments demonstrate that ADAgent outperforms SOTA methods, achieving significant improvements in accuracy, including a 2.7% increase in multi-modal diagnosis, a 0.7% improvement in multi-modal prognosis, and enhancements in MRI and PET diagnosis tasks.
♻ ☆ Stochasticity-aware No-Reference Point Cloud Quality Assessment IJCAI 2025
The evolution of point cloud processing algorithms necessitates an accurate assessment for their quality. Previous works consistently regard point cloud quality assessment (PCQA) as a MOS regression problem and devise a deterministic mapping, ignoring the stochasticity in generating MOS from subjective tests. This work presents the first probabilistic architecture for no-reference PCQA, motivated by the labeling process of existing datasets. The proposed method can model the quality judging stochasticity of subjects through a tailored conditional variational autoencoder (CVAE) and produces multiple intermediate quality ratings. These intermediate ratings simulate the judgments from different subjects and are then integrated into an accurate quality prediction, mimicking the generation process of a ground truth MOS. Specifically, our method incorporates a Prior Module, a Posterior Module, and a Quality Rating Generator, where the former two modules are introduced to model the judging stochasticity in subjective tests, while the latter is developed to generate diverse quality ratings. Extensive experiments indicate that our approach outperforms previous cutting-edge methods by a large margin and exhibits gratifying cross-dataset robustness. Codes are available at https://git.openi.org.cn/OpenPointCloud/nrpcqa.
comment: Accepted to IJCAI 2025
♻ ☆ Decoupled Cross-Modal Alignment Network for Text-RGBT Person Retrieval and A High-Quality Benchmark
The performance of traditional text-image person retrieval task is easily affected by lighting variations due to imaging limitations of visible spectrum sensors. In recent years, cross-modal information fusion has emerged as an effective strategy to enhance retrieval robustness. By integrating complementary information from different spectral modalities, it becomes possible to achieve more stable person recognition and matching under complex real-world conditions. Motivated by this, we introduce a novel task: Text-RGBT Person Retrieval, which incorporates cross-spectrum information fusion by combining the complementary cues from visible and thermal modalities for robust person retrieval in challenging environments. The key challenge of Text-RGBT person retrieval lies in aligning text with multi-modal visual features. However, the inherent heterogeneity between visible and thermal modalities may interfere with the alignment between vision and language. To handle this problem, we propose a Decoupled Cross-modal Alignment network (DCAlign), which sufficiently mines the relationships between modality-specific and modality-collaborative visual with the text, for Text-RGBT person retrieval. To promote the research and development of this field, we create a high-quality Text-RGBT person retrieval dataset, RGBT-PEDES. RGBT-PEDES contains 1,822 identities from different age groups and genders with 4,723 pairs of calibrated RGB and T images, and covers high-diverse scenes from both daytime and nighttime with a various of challenges such as occlusion, weak alignment and adverse lighting conditions. Additionally, we carefully annotate 7,987 fine-grained textual descriptions for all RGBT person image pairs. Extensive experiments on RGBT-PEDES demonstrate that our method outperforms existing text-image person retrieval methods.
♻ ☆ SurgBench: A Unified Large-Scale Benchmark for Surgical Video Analysis
Surgical video understanding is pivotal for enabling automated intraoperative decision-making, skill assessment, and postoperative quality improvement. However, progress in developing surgical video foundation models (FMs) remains hindered by the scarcity of large-scale, diverse datasets for pretraining and systematic evaluation. In this paper, we introduce \textbf{SurgBench}, a unified surgical video benchmarking framework comprising a pretraining dataset, \textbf{SurgBench-P}, and an evaluation benchmark, \textbf{SurgBench-E}. SurgBench offers extensive coverage of diverse surgical scenarios, with SurgBench-P encompassing 53 million frames across 22 surgical procedures and 11 specialties, and SurgBench-E providing robust evaluation across six categories (phase classification, camera motion, tool recognition, disease diagnosis, action classification, and organ detection) spanning 72 fine-grained tasks. Extensive experiments reveal that existing video FMs struggle to generalize across varied surgical video analysis tasks, whereas pretraining on SurgBench-P yields substantial performance improvements and superior cross-domain generalization to unseen procedures and modalities. Our dataset and code are available upon request.
♻ ☆ Autonomous Computer Vision Development with Agentic AI
Agentic Artificial Intelligence (AI) systems leveraging Large Language Models (LLMs) exhibit significant potential for complex reasoning, planning, and tool utilization. We demonstrate that a specialized computer vision system can be built autonomously from a natural language prompt using Agentic AI methods. This involved extending SimpleMind (SM), an open-source Cognitive AI environment with configurable tools for medical image analysis, with an LLM-based agent, implemented using OpenManus, to automate the planning (tool configuration) for a particular computer vision task. We provide a proof-of-concept demonstration that an agentic system can interpret a computer vision task prompt, plan a corresponding SimpleMind workflow by decomposing the task and configuring appropriate tools. From the user input prompt, "provide sm (SimpleMind) config for lungs, heart, and ribs segmentation for cxr (chest x-ray)"), the agent LLM was able to generate the plan (tool configuration file in YAML format), and execute SM-Learn (training) and SM-Think (inference) scripts autonomously. The computer vision agent automatically configured, trained, and tested itself on 50 chest x-ray images, achieving mean dice scores of 0.96, 0.82, 0.83, for lungs, heart, and ribs, respectively. This work shows the potential for autonomous planning and tool configuration that has traditionally been performed by a data scientist in the development of computer vision applications.
comment: The paper is 13 pages long and contains 4 figures
♻ ☆ Learning to utilize image second-order derivative information for crisp edge detection
Edge detection is a fundamental task in computer vision. It has made great progress under the development of deep convolutional neural networks (DCNNs), some of which have achieved a beyond human-level performance. However, recent top-performing edge detection methods tend to generate thick and noisy edge lines. In this work, we solve this problem from two aspects: (1) the lack of prior knowledge regarding image edges, and (2) the issue of imbalanced pixel distribution. We propose a second-order derivative-based multi-scale contextual enhancement module (SDMCM) to help the model locate true edge pixels accurately by introducing the edge prior knowledge. We also construct a hybrid focal loss function (HFL) to alleviate the imbalanced distribution issue. In addition, we employ the conditionally parameterized convolution (CondConv) to develop a novel boundary refinement module (BRM), which can further refine the final output edge maps. In the end, we propose a U-shape network named LUS-Net which is based on the SDMCM and BRM for crisp edge detection. We perform extensive experiments on three standard benchmarks, and the experiment results illustrate that our method can predict crisp and clean edge maps and achieves state-of-the-art performance on the BSDS500 dataset (ODS=0.829), NYUD-V2 dataset (ODS=0.768), and BIPED dataset (ODS=0.903).
♻ ☆ GS-QA: Comprehensive Quality Assessment Benchmark for Gaussian Splatting View Synthesis
Gaussian Splatting (GS) offers a promising alternative to Neural Radiance Fields (NeRF) for real-time 3D scene rendering. Using a set of 3D Gaussians to represent complex geometry and appearance, GS achieves faster rendering times and reduced memory consumption compared to the neural network approach used in NeRF. However, quality assessment of GS-generated static content is not yet explored in-depth. This paper describes a subjective quality assessment study that aims to evaluate synthesized videos obtained with several static GS state-of-the-art methods. The methods were applied to diverse visual scenes, covering both 360-degree and forward-facing (FF) camera trajectories. Moreover, the performance of 18 objective quality metrics was analyzed using the scores resulting from the subjective study, providing insights into their strengths, limitations, and alignment with human perception. All videos and scores are made available providing a comprehensive database that can be used as benchmark on GS view synthesis and objective quality metrics.
♻ ☆ LARP: Tokenizing Videos with a Learned Autoregressive Generative Prior ICLR 2025
We present LARP, a novel video tokenizer designed to overcome limitations in current video tokenization methods for autoregressive (AR) generative models. Unlike traditional patchwise tokenizers that directly encode local visual patches into discrete tokens, LARP introduces a holistic tokenization scheme that gathers information from the visual content using a set of learned holistic queries. This design allows LARP to capture more global and semantic representations, rather than being limited to local patch-level information. Furthermore, it offers flexibility by supporting an arbitrary number of discrete tokens, enabling adaptive and efficient tokenization based on the specific requirements of the task. To align the discrete token space with downstream AR generation tasks, LARP integrates a lightweight AR transformer as a training-time prior model that predicts the next token on its discrete latent space. By incorporating the prior model during training, LARP learns a latent space that is not only optimized for video reconstruction but is also structured in a way that is more conducive to autoregressive generation. Moreover, this process defines a sequential order for the discrete tokens, progressively pushing them toward an optimal configuration during training, ensuring smoother and more accurate AR generation at inference time. Comprehensive experiments demonstrate LARP's strong performance, achieving state-of-the-art FVD on the UCF101 class-conditional video generation benchmark. LARP enhances the compatibility of AR models with videos and opens up the potential to build unified high-fidelity multimodal large language models (MLLMs).
comment: ICLR 2025. Project page: https://hywang66.github.io/larp/
♻ ☆ NGD-SLAM: Towards Real-Time Dynamic SLAM without GPU
Many existing visual SLAM methods can achieve high localization accuracy in dynamic environments by leveraging deep learning to mask moving objects. However, these methods incur significant computational overhead as the camera tracking needs to wait for the deep neural network to generate mask at each frame, and they typically require GPUs for real-time operation, which restricts their practicality in real-world robotic applications. Therefore, this paper proposes a real-time dynamic SLAM system that runs exclusively on a CPU. Our approach incorporates a mask propagation mechanism that decouples camera tracking and deep learning-based masking for each frame. We also introduce a hybrid tracking strategy that integrates ORB features with optical flow methods, enhancing both robustness and efficiency by selectively allocating computational resources to input frames. Compared to previous methods, our system maintains high localization accuracy in dynamic environments while achieving a tracking frame rate of 60 FPS on a laptop CPU. These results demonstrate the feasibility of utilizing deep learning for dynamic SLAM without GPU support. Since most existing dynamic SLAM systems are not open-source, we make our code publicly available at: https://github.com/yuhaozhang7/NGD-SLAM
comment: 7 pages, 6 figures
♻ ☆ Maximizing Information in Domain-Invariant Representation Improves Transfer Learning
The most effective domain adaptation (DA) technique involves the decomposition of data representation into a domain-independent representation (DIRep) and a domain-dependent representation (DDRep). A classifier is trained by using the DIRep on the labeled source images. Since the DIRep is domain invariant, the classifier can be "transferred" to make predictions for the target domain with no (or few) labels. However, information useful for classification in the target domain can "hide" in the DDRep. Current DA algorithms, such as Domain-Separation Networks (DSN), do not adequately address this issue. DSN's weak constraint to enforce the orthogonality of DIRep and DDRep allows this hiding effect and can result in poor performance. To address this shortcoming, we develop a new algorithm wherein a stronger constraint is imposed to minimize the information content in DDRep to create a DIRep that retains relevant information about the target labels and, in turn, results in a better invariant representation. By using synthetic datasets, we show explicitly that depending on the initialization, DSN, with its weaker constraint, can lead to sub-optimal solutions with poorer DA performance. In contrast, our algorithm is robust against such perturbations. We demonstrate the equal-or-better performance of our approach against DSN and other recent DA methods by using several standard benchmark image datasets. We further highlight the compatibility of our algorithm with pre-trained models for classifying real-world images and showcase its adaptability and versatility through its application in network intrusion detection.
♻ ☆ Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models
Vision-language models (VLMs) trained on internet-scale data achieve remarkable zero-shot detection performance on common objects like car, truck, and pedestrian. However, state-of-the-art models still struggle to generalize to out-of-distribution classes, tasks and imaging modalities not typically found in their pre-training. Rather than simply re-training VLMs on more visual data, we argue that one should align VLMs to new concepts with annotation instructions containing a few visual examples and rich textual descriptions. To this end, we introduce Roboflow100-VL, a large-scale collection of 100 multi-modal object detection datasets with diverse concepts not commonly found in VLM pre-training. We evaluate state-of-the-art models on our benchmark in zero-shot, few-shot, semi-supervised, and fully-supervised settings, allowing for comparison across data regimes. Notably, we find that VLMs like GroundingDINO and Qwen2.5-VL achieve less than 2% zero-shot accuracy on challenging medical imaging datasets within Roboflow100-VL, demonstrating the need for few-shot concept alignment. Lastly, we discuss our recent CVPR 2025 Foundational FSOD competition and share insights from the community. Notably, the winning team significantly outperforms our baseline by 16.8 mAP! Our code and dataset are available at https://github.com/roboflow/rf100-vl/ and https://universe.roboflow.com/rf100-vl/
comment: The first two authors contributed equally. Project Page: https://rf100-vl.org/
♻ ☆ Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures
Recent advancements in surgical computer vision applications have been driven by vision-only models, which do not explicitly integrate the rich semantics of language into their design. These methods rely on manually annotated surgical videos to predict a fixed set of object categories, limiting their generalizability to unseen surgical procedures and downstream tasks. In this work, we put forward the idea that the surgical video lectures available through open surgical e-learning platforms can provide effective vision and language supervisory signals for multi-modal representation learning without relying on manual annotations. We address the surgery-specific linguistic challenges present in surgical video lectures by employing multiple complementary automatic speech recognition systems to generate text transcriptions. We then present a novel method, SurgVLP - Surgical Vision Language Pre-training, for multi-modal representation learning. Extensive experiments across diverse surgical procedures and tasks demonstrate that the multi-modal representations learned by SurgVLP exhibit strong transferability and adaptability in surgical video analysis. Furthermore, our zero-shot evaluations highlight SurgVLP's potential as a general-purpose foundation model for surgical workflow analysis, reducing the reliance on extensive manual annotations for downstream tasks, and facilitating adaptation methods such as few-shot learning to build a scalable and data-efficient solution for various downstream surgical applications. The [training code](https://github.com/CAMMA-public/PeskaVLP) and [weights](https://github.com/CAMMA-public/SurgVLP) are public.
comment: Accepted by Medical Image Analysis (MedIA), 2025
Artificial Intelligence 228
☆ Diagnosing and Improving Diffusion Models by Estimating the Optimal Loss Value
Diffusion models have achieved remarkable success in generative modeling. Despite more stable training, the loss of diffusion models is not indicative of absolute data-fitting quality, since its optimal value is typically not zero but unknown, leading to confusion between large optimal loss and insufficient model capacity. In this work, we advocate the need to estimate the optimal loss value for diagnosing and improving diffusion models. We first derive the optimal loss in closed form under a unified formulation of diffusion models, and develop effective estimators for it, including a stochastic variant scalable to large datasets with proper control of variance and bias. With this tool, we unlock the inherent metric for diagnosing the training quality of mainstream diffusion model variants, and develop a more performant training schedule based on the optimal loss. Moreover, using models with 120M to 1.5B parameters, we find that the power law is better demonstrated after subtracting the optimal loss from the actual training loss, suggesting a more principled setting for investigating the scaling law for diffusion models.
comment: 29 pages, 8 figures, 3 tables. Preprint. Work in Progress
☆ Discrete Diffusion in Large Language and Multimodal Models: A Survey
In this work, we provide a systematic survey of Discrete Diffusion Language Models (dLLMs) and Discrete Diffusion Multimodal Language Models (dMLLMs). Unlike autoregressive (AR) models, dLLMs and dMLLMs adopt a multi-token, parallel decoding paradigm using full attention and a denoising-based generation strategy. This paradigm naturally enables parallel generation, fine-grained output controllability, and dynamic, response-aware perception. These capabilities are previously difficult to achieve with AR models. Recently, a growing number of industrial-scale proprietary d(M)LLMs, as well as a large number of open-source academic d(M)LLMs, have demonstrated performance comparable to their autoregressive counterparts, while achieving up to 10x acceleration in inference speed. The advancement of discrete diffusion LLMs and MLLMs has been largely driven by progress in two domains. The first is the development of autoregressive LLMs and MLLMs, which has accumulated vast amounts of data, benchmarks, and foundational infrastructure for training and inference. The second contributing domain is the evolution of the mathematical models underlying discrete diffusion. Together, these advancements have catalyzed a surge in dLLMs and dMLLMs research in early 2025. In this work, we present a comprehensive overview of the research in the dLLM and dMLLM domains. We trace the historical development of dLLMs and dMLLMs, formalize the underlying mathematical frameworks, and categorize representative models. We further analyze key techniques for training and inference, and summarize emerging applications across language, vision-language, and biological domains. We conclude by discussing future directions for research and deployment. Paper collection: https://github.com/LiQiiiii/DLLM-Survey
☆ Steering LLM Thinking with Budget Guidance
Recent deep-thinking large language models often reason extensively to improve performance, but such lengthy reasoning is not always desirable, as it incurs excessive inference costs with disproportionate performance gains. Controlling reasoning length without sacrificing performance is therefore important, but remains challenging, especially under tight thinking budgets. We propose budget guidance, a simple yet effective method for steering the reasoning process of LLMs toward a target budget without requiring any LLM fine-tuning. Our approach introduces a lightweight predictor that models a Gamma distribution over the remaining thinking length during next-token generation. This signal is then used to guide generation in a soft, token-level manner, ensuring that the overall reasoning trace adheres to the specified thinking budget. Budget guidance enables natural control of the thinking length, along with significant token efficiency improvements over baseline methods on challenging math benchmarks. For instance, it achieves up to a 26% accuracy gain on the MATH-500 benchmark under tight budgets compared to baseline methods, while maintaining competitive accuracy with only 63% of the thinking tokens used by the full-thinking model. Budget guidance also generalizes to broader task domains and exhibits emergent capabilities, such as estimating question difficulty. The source code is available at: https://github.com/UMass-Embodied-AGI/BudgetGuidance.
☆ LeVERB: Humanoid Whole-Body Control with Latent Vision-Language Instruction
Vision-language-action (VLA) models have demonstrated strong semantic understanding and zero-shot generalization, yet most existing systems assume an accurate low-level controller with hand-crafted action "vocabulary" such as end-effector pose or root velocity. This assumption confines prior work to quasi-static tasks and precludes the agile, whole-body behaviors required by humanoid whole-body control (WBC) tasks. To capture this gap in the literature, we start by introducing the first sim-to-real-ready, vision-language, closed-loop benchmark for humanoid WBC, comprising over 150 tasks from 10 categories. We then propose LeVERB: Latent Vision-Language-Encoded Robot Behavior, a hierarchical latent instruction-following framework for humanoid vision-language WBC, the first of its kind. At the top level, a vision-language policy learns a latent action vocabulary from synthetically rendered kinematic demonstrations; at the low level, a reinforcement-learned WBC policy consumes these latent verbs to generate dynamics-level commands. In our benchmark, LeVERB can zero-shot attain a 80% success rate on simple visual navigation tasks, and 58.5% success rate overall, outperforming naive hierarchical whole-body VLA implementation by 7.8 times.
☆ Evaluating Large Language Models for Phishing Detection, Self-Consistency, Faithfulness, and Explainability
Phishing attacks remain one of the most prevalent and persistent cybersecurity threat with attackers continuously evolving and intensifying tactics to evade the general detection system. Despite significant advances in artificial intelligence and machine learning, faithfully reproducing the interpretable reasoning with classification and explainability that underpin phishing judgments remains challenging. Due to recent advancement in Natural Language Processing, Large Language Models (LLMs) show a promising direction and potential for improving domain specific phishing classification tasks. However, enhancing the reliability and robustness of classification models requires not only accurate predictions from LLMs but also consistent and trustworthy explanations aligning with those predictions. Therefore, a key question remains: can LLMs not only classify phishing emails accurately but also generate explanations that are reliably aligned with their predictions and internally self-consistent? To answer these questions, we have fine-tuned transformer based models, including BERT, Llama models, and Wizard, to improve domain relevance and make them more tailored to phishing specific distinctions, using Binary Sequence Classification, Contrastive Learning (CL) and Direct Preference Optimization (DPO). To that end, we examined their performance in phishing classification and explainability by applying the ConsistenCy measure based on SHAPley values (CC SHAP), which measures prediction explanation token alignment to test the model's internal faithfulness and consistency and uncover the rationale behind its predictions and reasoning. Overall, our findings show that Llama models exhibit stronger prediction explanation token alignment with higher CC SHAP scores despite lacking reliable decision making accuracy, whereas Wizard achieves better prediction accuracy but lower CC SHAP scores.
☆ PB$^2$: Preference Space Exploration via Population-Based Methods in Preference-Based Reinforcement Learning
Preference-based reinforcement learning (PbRL) has emerged as a promising approach for learning behaviors from human feedback without predefined reward functions. However, current PbRL methods face a critical challenge in effectively exploring the preference space, often converging prematurely to suboptimal policies that satisfy only a narrow subset of human preferences. In this work, we identify and address this preference exploration problem through population-based methods. We demonstrate that maintaining a diverse population of agents enables more comprehensive exploration of the preference landscape compared to single-agent approaches. Crucially, this diversity improves reward model learning by generating preference queries with clearly distinguishable behaviors, a key factor in real-world scenarios where humans must easily differentiate between options to provide meaningful feedback. Our experiments reveal that current methods may fail by getting stuck in local optima, requiring excessive feedback, or degrading significantly when human evaluators make errors on similar trajectories, a realistic scenario often overlooked by methods relying on perfect oracle teachers. Our population-based approach demonstrates robust performance when teachers mislabel similar trajectory segments and shows significantly enhanced preference exploration capabilities,particularly in environments with complex reward landscapes.
☆ Instruction Following by Boosting Attention of Large Language Models
Controlling the generation of large language models (LLMs) remains a central challenge to ensure their safe and reliable deployment. While prompt engineering and finetuning are common approaches, recent work has explored latent steering, a lightweight technique that alters LLM internal activations to guide generation. However, subsequent studies revealed latent steering's effectiveness to be limited, often underperforming simple instruction prompting. To address this limitation, we first establish a benchmark across diverse behaviors for standardized evaluation of steering techniques. Building on insights from this benchmark, we introduce Instruction Attention Boosting (InstABoost), a latent steering method that boosts the strength of instruction prompting by altering the model's attention during generation. InstABoost combines the strengths of existing approaches and is theoretically supported by prior work that suggests that in-context rule following in transformer-based models can be controlled by manipulating attention on instructions. Empirically, InstABoost demonstrates superior control success compared to both traditional prompting and latent steering.
☆ BanditWare: A Contextual Bandit-based Framework for Hardware Prediction
Distributed computing systems are essential for meeting the demands of modern applications, yet transitioning from single-system to distributed environments presents significant challenges. Misallocating resources in shared systems can lead to resource contention, system instability, degraded performance, priority inversion, inefficient utilization, increased latency, and environmental impact. We present BanditWare, an online recommendation system that dynamically selects the most suitable hardware for applications using a contextual multi-armed bandit algorithm. BanditWare balances exploration and exploitation, gradually refining its hardware recommendations based on observed application performance while continuing to explore potentially better options. Unlike traditional statistical and machine learning approaches that rely heavily on large historical datasets, BanditWare operates online, learning and adapting in real-time as new workloads arrive. We evaluated BanditWare on three workflow applications: Cycles (an agricultural science scientific workflow) BurnPro3D (a web-based platform for fire science) and a matrix multiplication application. Designed for seamless integration with the National Data Platform (NDP), BanditWare enables users of all experience levels to optimize resource allocation efficiently.
☆ Attribution-guided Pruning for Compression, Circuit Discovery, and Targeted Correction in LLMs
Large Language Models (LLMs) are central to many contemporary AI applications, yet their extensive parameter counts pose significant challenges for deployment in memory- and compute-constrained environments. Recent works in eXplainable AI (XAI), particularly on attribution methods, suggest that interpretability can also enable model compression by identifying and removing components irrelevant to inference. In this paper, we leverage Layer-wise Relevance Propagation (LRP) to perform attribution-guided pruning of LLMs. While LRP has shown promise in structured pruning for vision models, we extend it to unstructured pruning in LLMs and demonstrate that it can substantially reduce model size with minimal performance loss. Our method is especially effective in extracting task-relevant subgraphs -- so-called ``circuits'' -- which can represent core functions (e.g., indirect object identification). Building on this, we introduce a technique for model correction, by selectively removing circuits responsible for spurious behaviors (e.g., toxic outputs). All in all, we gather these techniques as a uniform holistic framework and showcase its effectiveness and limitations through extensive experiments for compression, circuit discovery and model correction on Llama and OPT models, highlighting its potential for improving both model efficiency and safety. Our code is publicly available at https://github.com/erfanhatefi/SparC3.
comment: Work in progress (10 pages manuscript, 3 pages references, 12 pages appendix)
☆ Weakest Link in the Chain: Security Vulnerabilities in Advanced Reasoning Models
The introduction of advanced reasoning capabilities have improved the problem-solving performance of large language models, particularly on math and coding benchmarks. However, it remains unclear whether these reasoning models are more or less vulnerable to adversarial prompt attacks than their non-reasoning counterparts. In this work, we present a systematic evaluation of weaknesses in advanced reasoning models compared to similar non-reasoning models across a diverse set of prompt-based attack categories. Using experimental data, we find that on average the reasoning-augmented models are \emph{slightly more robust} than non-reasoning models (42.51\% vs 45.53\% attack success rate, lower is better). However, this overall trend masks significant category-specific differences: for certain attack types the reasoning models are substantially \emph{more vulnerable} (e.g., up to 32 percentage points worse on a tree-of-attacks prompt), while for others they are markedly \emph{more robust} (e.g., 29.8 points better on cross-site scripting injection). Our findings highlight the nuanced security implications of advanced reasoning in language models and emphasize the importance of stress-testing safety across diverse adversarial techniques.
comment: Accepted to LLMSEC 2025
☆ Contrastive Self-Supervised Learning As Neural Manifold Packing
Contrastive self-supervised learning based on point-wise comparisons has been widely studied for vision tasks. In the visual cortex of the brain, neuronal responses to distinct stimulus classes are organized into geometric structures known as neural manifolds. Accurate classification of stimuli can be achieved by effectively separating these manifolds, akin to solving a packing problem. We introduce Contrastive Learning As Manifold Packing (CLAMP), a self-supervised framework that recasts representation learning as a manifold packing problem. CLAMP introduces a loss function inspired by the potential energy of short-range repulsive particle systems, such as those encountered in the physics of simple liquids and jammed packings. In this framework, each class consists of sub-manifolds embedding multiple augmented views of a single image. The sizes and positions of the sub-manifolds are dynamically optimized by following the gradient of a packing loss. This approach yields interpretable dynamics in the embedding space that parallel jamming physics, and introduces geometrically meaningful hyperparameters within the loss function. Under the standard linear evaluation protocol, which freezes the backbone and trains only a linear classifier, CLAMP achieves competitive performance with state-of-the-art self-supervised models. Furthermore, our analysis reveals that neural manifolds corresponding to different categories emerge naturally and are effectively separated in the learned representation space, highlighting the potential of CLAMP to bridge insights from physics, neural science, and machine learning.
☆ TimeMaster: Training Time-Series Multimodal LLMs to Reason via Reinforcement Learning
Time-series reasoning remains a significant challenge in multimodal large language models (MLLMs) due to the dynamic temporal patterns, ambiguous semantics, and lack of temporal priors. In this work, we introduce TimeMaster, a reinforcement learning (RL)-based method that enables time-series MLLMs to perform structured, interpretable reasoning directly over visualized time-series inputs and task prompts. TimeMaster adopts a three-part structured output format, reasoning, classification, and domain-specific extension, and is optimized via a composite reward function that aligns format adherence, prediction accuracy, and open-ended insight quality. The model is trained using a two-stage pipeline: we first apply supervised fine-tuning (SFT) to establish a good initialization, followed by Group Relative Policy Optimization (GRPO) at the token level to enable stable and targeted reward-driven improvement in time-series reasoning. We evaluate TimeMaster on the TimerBed benchmark across six real-world classification tasks based on Qwen2.5-VL-3B-Instruct. TimeMaster achieves state-of-the-art performance, outperforming both classical time-series models and few-shot GPT-4o by over 14.6% and 7.3% performance gain, respectively. Notably, TimeMaster goes beyond time-series classification: it also exhibits expert-like reasoning behavior, generates context-aware explanations, and delivers domain-aligned insights. Our results highlight that reward-driven RL can be a scalable and promising path toward integrating temporal understanding into time-series MLLMs.
comment: Preprint
☆ Value-Free Policy Optimization via Reward Partitioning
Single-trajectory reinforcement learning (RL) methods aim to optimize policies from datasets consisting of (prompt, response, reward) triplets, where scalar rewards are directly available. This supervision format is highly practical, as it mirrors real-world human feedback, such as thumbs-up/down signals, and avoids the need for structured preference annotations. In contrast, pairwise preference-based methods like Direct Preference Optimization (DPO) rely on datasets with both preferred and dispreferred responses, which are harder to construct and less natural to collect. Among single-trajectory approaches, Direct Reward Optimization (DRO) has shown strong empirical performance due to its simplicity and stability. However, DRO requires approximating a value function, which introduces several limitations: high off-policy variance, coupling between policy and value learning, and a lack of absolute supervision on the policy itself. We introduce Reward Partitioning Optimization (RPO), a new method that resolves these limitations by removing the need to model the value function. Instead, RPO normalizes observed rewards using a partitioning approach estimated directly from data. This leads to a straightforward supervised learning objective on the policy, with no auxiliary models and no joint optimization. RPO provides direct and stable supervision on the policy, making it robust and easy to implement in practice. We validate RPO on scalar-feedback language modeling tasks using Flan-T5 encoder-decoder models. Our results demonstrate that RPO outperforms existing single-trajectory baselines such as DRO and Kahneman-Tversky Optimization (KTO). These findings confirm that RPO is a simple, effective, and theoretically grounded method for single-trajectory policy optimization.
☆ Balancing Knowledge Delivery and Emotional Comfort in Healthcare Conversational Systems
With the advancement of large language models, many dialogue systems are now capable of providing reasonable and informative responses to patients' medical conditions. However, when patients consult their doctor, they may experience negative emotions due to the severity and urgency of their situation. If the model can provide appropriate comfort and empathy based on the patient's negative emotions while answering medical questions, it will likely offer a more reassuring experience during the medical consultation process. To address this issue, our paper explores the balance between knowledge sharing and emotional support in the healthcare dialogue process. We utilize a large language model to rewrite a real-world interactive medical dialogue dataset, generating patient queries with negative emotions and corresponding medical responses aimed at soothing the patient's emotions while addressing their concerns. The modified data serves to refine the latest large language models with various fine-tuning methods, enabling them to accurately provide sentences with both emotional reassurance and constructive suggestions in response to patients' questions. Compared to the original LLM model, our experimental results demonstrate that our methodology significantly enhances the model's ability to generate emotional responses while maintaining its original capability to provide accurate knowledge-based answers.
comment: IWSDS 2025 Oral Paper
☆ Meta-learning how to Share Credit among Macro-Actions
One proposed mechanism to improve exploration in reinforcement learning is through the use of macro-actions. Paradoxically though, in many scenarios the naive addition of macro-actions does not lead to better exploration, but rather the opposite. It has been argued that this was caused by adding non-useful macros and multiple works have focused on mechanisms to discover effectively environment-specific useful macros. In this work, we take a slightly different perspective. We argue that the difficulty stems from the trade-offs between reducing the average number of decisions per episode versus increasing the size of the action space. Namely, one typically treats each potential macro-action as independent and atomic, hence strictly increasing the search space and making typical exploration strategies inefficient. To address this problem we propose a novel regularization term that exploits the relationship between actions and macro-actions to improve the credit assignment mechanism by reducing the effective dimension of the action space and, therefore, improving exploration. The term relies on a similarity matrix that is meta-learned jointly with learning the desired policy. We empirically validate our strategy looking at macro-actions in Atari games, and the StreetFighter II environment. Our results show significant improvements over the Rainbow-DQN baseline in all environments. Additionally, we show that the macro-action similarity is transferable to related environments. We believe this work is a small but important step towards understanding how the similarity-imposed geometry on the action space can be exploited to improve credit assignment and exploration, therefore making learning more effective.
☆ ROSA: Harnessing Robot States for Vision-Language and Action Alignment
Vision-Language-Action (VLA) models have recently made significant advance in multi-task, end-to-end robotic control, due to the strong generalization capabilities of Vision-Language Models (VLMs). A fundamental challenge in developing such models is effectively aligning the vision-language space with the robotic action space. Existing approaches typically rely on directly fine-tuning VLMs using expert demonstrations. However, this strategy suffers from a spatio-temporal gap, resulting in considerable data inefficiency and heavy reliance on human labor. Spatially, VLMs operate within a high-level semantic space, whereas robotic actions are grounded in low-level 3D physical space; temporally, VLMs primarily interpret the present, while VLA models anticipate future actions. To overcome these challenges, we propose a novel training paradigm, ROSA, which leverages robot state estimation to improve alignment between vision-language and action spaces. By integrating robot state estimation data obtained via an automated process, ROSA enables the VLA model to gain enhanced spatial understanding and self-awareness, thereby boosting performance and generalization. Extensive experiments in both simulated and real-world environments demonstrate the effectiveness of ROSA, particularly in low-data regimes.
☆ We Should Identify and Mitigate Third-Party Safety Risks in MCP-Powered Agent Systems
The development of large language models (LLMs) has entered in a experience-driven era, flagged by the emergence of environment feedback-driven learning via reinforcement learning and tool-using agents. This encourages the emergenece of model context protocol (MCP), which defines the standard on how should a LLM interact with external services, such as \api and data. However, as MCP becomes the de facto standard for LLM agent systems, it also introduces new safety risks. In particular, MCP introduces third-party services, which are not controlled by the LLM developers, into the agent systems. These third-party MCP services provider are potentially malicious and have the economic incentives to exploit vulnerabilities and sabotage user-agent interactions. In this position paper, we advocate the research community in LLM safety to pay close attention to the new safety risks issues introduced by MCP, and develop new techniques to build safe MCP-powered agent systems. To establish our position, we argue with three key parts. (1) We first construct \framework, a controlled framework to examine safety issues in MCP-powered agent systems. (2) We then conduct a series of pilot experiments to demonstrate the safety risks in MCP-powered agent systems is a real threat and its defense is not trivial. (3) Finally, we give our outlook by showing a roadmap to build safe MCP-powered agent systems. In particular, we would call for researchers to persue the following research directions: red teaming, MCP safe LLM development, MCP safety evaluation, MCP safety data accumulation, MCP service safeguard, and MCP safe ecosystem construction. We hope this position paper can raise the awareness of the research community in MCP safety and encourage more researchers to join this important research direction. Our code is available at https://github.com/littlelittlenine/SafeMCP.git.
☆ Ego-R1: Chain-of-Tool-Thought for Ultra-Long Egocentric Video Reasoning
We introduce Ego-R1, a novel framework for reasoning over ultra-long (i.e., in days and weeks) egocentric videos, which leverages a structured Chain-of-Tool-Thought (CoTT) process, orchestrated by an Ego-R1 Agent trained via reinforcement learning (RL). Inspired by human problem-solving strategies, CoTT decomposes complex reasoning into modular steps, with the RL agent invoking specific tools, one per step, to iteratively and collaboratively answer sub-questions tackling such tasks as temporal retrieval and multi-modal understanding. We design a two-stage training paradigm involving supervised finetuning (SFT) of a pretrained language model using CoTT data and RL to enable our agent to dynamically propose step-by-step tools for long-range reasoning. To facilitate training, we construct a dataset called Ego-R1 Data, which consists of Ego-CoTT-25K for SFT and Ego-QA-4.4K for RL. Furthermore, our Ego-R1 agent is evaluated on a newly curated week-long video QA benchmark, Ego-R1 Bench, which contains human-verified QA pairs from hybrid sources. Extensive results demonstrate that the dynamic, tool-augmented chain-of-thought reasoning by our Ego-R1 Agent can effectively tackle the unique challenges of understanding ultra-long egocentric videos, significantly extending the time coverage from few hours to a week.
comment: Project page: https://egolife-ai.github.io/Ego-R1/
☆ Stream-Omni: Simultaneous Multimodal Interactions with Large Language-Vision-Speech Model
The emergence of GPT-4o-like large multimodal models (LMMs) has raised the exploration of integrating text, vision, and speech modalities to support more flexible multimodal interaction. Existing LMMs typically concatenate representation of modalities along the sequence dimension and feed them into a large language model (LLM) backbone. While sequence-dimension concatenation is straightforward for modality integration, it often relies heavily on large-scale data to learn modality alignments. In this paper, we aim to model the relationships between modalities more purposefully, thereby achieving more efficient and flexible modality alignments. To this end, we propose Stream-Omni, a large language-vision-speech model with efficient modality alignments, which can simultaneously support interactions under various modality combinations. Stream-Omni employs LLM as the backbone and aligns the vision and speech to the text based on their relationships. For vision that is semantically complementary to text, Stream-Omni uses sequence-dimension concatenation to achieve vision-text alignment. For speech that is semantically consistent with text, Stream-Omni introduces a CTC-based layer-dimension mapping to achieve speech-text alignment. In this way, Stream-Omni can achieve modality alignments with less data (especially speech), enabling the transfer of text capabilities to other modalities. Experiments on various benchmarks demonstrate that Stream-Omni achieves strong performance on visual understanding, speech interaction, and vision-grounded speech interaction tasks. Owing to the layer-dimensional mapping, Stream-Omni can simultaneously provide intermediate text outputs (such as ASR transcriptions and model responses) during speech interaction, offering users a comprehensive multimodal experience.
comment: Code: https://github.com/ictnlp/Stream-Omni , Model: https://huggingface.co/ICTNLP/stream-omni-8b
☆ DualEdit: Dual Editing for Knowledge Updating in Vision-Language Models
Model editing aims to efficiently update a pre-trained model's knowledge without the need for time-consuming full retraining. While existing pioneering editing methods achieve promising results, they primarily focus on editing single-modal language models (LLMs). However, for vision-language models (VLMs), which involve multiple modalities, the role and impact of each modality on editing performance remain largely unexplored. To address this gap, we explore the impact of textual and visual modalities on model editing and find that: (1) textual and visual representations reach peak sensitivity at different layers, reflecting their varying importance; and (2) editing both modalities can efficiently update knowledge, but this comes at the cost of compromising the model's original capabilities. Based on our findings, we propose DualEdit, an editor that modifies both textual and visual modalities at their respective key layers. Additionally, we introduce a gating module within the more sensitive textual modality, allowing DualEdit to efficiently update new knowledge while preserving the model's original information. We evaluate DualEdit across multiple VLM backbones and benchmark datasets, demonstrating its superiority over state-of-the-art VLM editing baselines as well as adapted LLM editing methods on different evaluation metrics.
comment: Under Review
☆ EBS-CFL: Efficient and Byzantine-robust Secure Clustered Federated Learning AAAI 25
Despite federated learning (FL)'s potential in collaborative learning, its performance has deteriorated due to the data heterogeneity of distributed users. Recently, clustered federated learning (CFL) has emerged to address this challenge by partitioning users into clusters according to their similarity. However, CFL faces difficulties in training when users are unwilling to share their cluster identities due to privacy concerns. To address these issues, we present an innovative Efficient and Robust Secure Aggregation scheme for CFL, dubbed EBS-CFL. The proposed EBS-CFL supports effectively training CFL while maintaining users' cluster identity confidentially. Moreover, it detects potential poisonous attacks without compromising individual client gradients by discarding negatively correlated gradients and aggregating positively correlated ones using a weighted approach. The server also authenticates correct gradient encoding by clients. EBS-CFL has high efficiency with client-side overhead O(ml + m^2) for communication and O(m^2l) for computation, where m is the number of cluster identities, and l is the gradient size. When m = 1, EBS-CFL's computational efficiency of client is at least O(log n) times better than comparison schemes, where n is the number of clients.In addition, we validate the scheme through extensive experiments. Finally, we theoretically prove the scheme's security.
comment: Accepted by AAAI 25
☆ A Hybrid Artificial Intelligence Method for Estimating Flicker in Power Systems
This paper introduces a novel hybrid AI method combining H filtering and an adaptive linear neuron network for flicker component estimation in power distribution systems.The proposed method leverages the robustness of the H filter to extract the voltage envelope under uncertain and noisy conditions followed by the use of ADALINE to accurately identify flicker frequencies embedded in the envelope.This synergy enables efficient time domain estimation with rapid convergence and noise resilience addressing key limitations of existing frequency domain approaches.Unlike conventional techniques this hybrid AI model handles complex power disturbances without prior knowledge of noise characteristics or extensive training.To validate the method performance we conduct simulation studies based on IEC Standard 61000 4 15 supported by statistical analysis Monte Carlo simulations and real world data.Results demonstrate superior accuracy robustness and reduced computational load compared to Fast Fourier Transform and Discrete Wavelet Transform based estimators.
comment: 31 pages, 12 figures, and 6 tables
☆ Avoiding Obfuscation with Prover-Estimator Debate
Training powerful AI systems to exhibit desired behaviors hinges on the ability to provide accurate human supervision on increasingly complex tasks. A promising approach to this problem is to amplify human judgement by leveraging the power of two competing AIs in a debate about the correct solution to a given problem. Prior theoretical work has provided a complexity-theoretic formalization of AI debate, and posed the problem of designing protocols for AI debate that guarantee the correctness of human judgements for as complex a class of problems as possible. Recursive debates, in which debaters decompose a complex problem into simpler subproblems, hold promise for growing the class of problems that can be accurately judged in a debate. However, existing protocols for recursive debate run into the obfuscated arguments problem: a dishonest debater can use a computationally efficient strategy that forces an honest opponent to solve a computationally intractable problem to win. We mitigate this problem with a new recursive debate protocol that, under certain stability assumptions, ensures that an honest debater can win with a strategy requiring computational efficiency comparable to their opponent.
☆ The ASP-based Nurse Scheduling System at the University of Yamanashi Hospital
We present the design principles of a nurse scheduling system built using Answer Set Programming (ASP) and successfully deployed at the University of Yamanashi Hospital. Nurse scheduling is a complex optimization problem requiring the reconciliation of individual nurse preferences with hospital staffing needs across various wards. This involves balancing hard and soft constraints and the flexibility of interactive adjustments. While extensively studied in academia, real-world nurse scheduling presents unique challenges that go beyond typical benchmark problems and competitions. This paper details the practical application of ASP to address these challenges at the University of Yamanashi Hospital, focusing on the insights gained and the advancements in ASP technology necessary to effectively manage the complexities of real-world deployment.
comment: Reduced version appears in Technical Communications of ICLP'25
☆ CAMS: A CityGPT-Powered Agentic Framework for Urban Human Mobility Simulation
Human mobility simulation plays a crucial role in various real-world applications. Recently, to address the limitations of traditional data-driven approaches, researchers have explored leveraging the commonsense knowledge and reasoning capabilities of large language models (LLMs) to accelerate human mobility simulation. However, these methods suffer from several critical shortcomings, including inadequate modeling of urban spaces and poor integration with both individual mobility patterns and collective mobility distributions. To address these challenges, we propose \textbf{C}ityGPT-Powered \textbf{A}gentic framework for \textbf{M}obility \textbf{S}imulation (\textbf{CAMS}), an agentic framework that leverages the language based urban foundation model to simulate human mobility in urban space. \textbf{CAMS} comprises three core modules, including MobExtractor to extract template mobility patterns and synthesize new ones based on user profiles, GeoGenerator to generate anchor points considering collective knowledge and generate candidate urban geospatial knowledge using an enhanced version of CityGPT, TrajEnhancer to retrieve spatial knowledge based on mobility patterns and generate trajectories with real trajectory preference alignment via DPO. Experiments on real-world datasets show that \textbf{CAMS} achieves superior performance without relying on externally provided geospatial information. Moreover, by holistically modeling both individual mobility patterns and collective mobility constraints, \textbf{CAMS} generates more realistic and plausible trajectories. In general, \textbf{CAMS} establishes a new paradigm that integrates the agentic framework with urban-knowledgeable LLMs for human mobility simulation.
☆ Agent Capability Negotiation and Binding Protocol (ACNBP)
As multi-agent systems evolve to encompass increasingly diverse and specialized agents, the challenge of enabling effective collaboration between heterogeneous agents has become paramount, with traditional agent communication protocols often assuming homogeneous environments or predefined interaction patterns that limit their applicability in dynamic, open-world scenarios. This paper presents the Agent Capability Negotiation and Binding Protocol (ACNBP), a novel framework designed to facilitate secure, efficient, and verifiable interactions between agents in heterogeneous multi-agent systems through integration with an Agent Name Service (ANS) infrastructure that provides comprehensive discovery, negotiation, and binding mechanisms. The protocol introduces a structured 10-step process encompassing capability discovery, candidate pre-screening and selection, secure negotiation phases, and binding commitment with built-in security measures including digital signatures, capability attestation, and comprehensive threat mitigation strategies, while a key innovation of ACNBP is its protocolExtension mechanism that enables backward-compatible protocol evolution and supports diverse agent architectures while maintaining security and interoperability. We demonstrate ACNBP's effectiveness through a comprehensive security analysis using the MAESTRO threat modeling framework, practical implementation considerations, and a detailed example showcasing the protocol's application in a document translation scenario, with the protocol addressing critical challenges in agent autonomy, capability verification, secure communication, and scalable agent ecosystem management.
comment: 14 pages, 5 figures
☆ From Data-Driven to Purpose-Driven Artificial Intelligence: Systems Thinking for Data-Analytic Automation of Patient Care
In this work, we reflect on the data-driven modeling paradigm that is gaining ground in AI-driven automation of patient care. We argue that the repurposing of existing real-world patient datasets for machine learning may not always represent an optimal approach to model development as it could lead to undesirable outcomes in patient care. We reflect on the history of data analysis to explain how the data-driven paradigm rose to popularity, and we envision ways in which systems thinking and clinical domain theory could complement the existing model development approaches in reaching human-centric outcomes. We call for a purpose-driven machine learning paradigm that is grounded in clinical theory and the sociotechnical realities of real-world operational contexts. We argue that understanding the utility of existing patient datasets requires looking in two directions: upstream towards the data generation, and downstream towards the automation objectives. This purpose-driven perspective to AI system development opens up new methodological opportunities and holds promise for AI automation of patient care.
comment: The work is under review at ACM Health
☆ Can you see how I learn? Human observers' inferences about Reinforcement Learning agents' learning processes
Reinforcement Learning (RL) agents often exhibit learning behaviors that are not intuitively interpretable by human observers, which can result in suboptimal feedback in collaborative teaching settings. Yet, how humans perceive and interpret RL agent's learning behavior is largely unknown. In a bottom-up approach with two experiments, this work provides a data-driven understanding of the factors of human observers' understanding of the agent's learning process. A novel, observation-based paradigm to directly assess human inferences about agent learning was developed. In an exploratory interview study (\textit{N}=9), we identify four core themes in human interpretations: Agent Goals, Knowledge, Decision Making, and Learning Mechanisms. A second confirmatory study (\textit{N}=34) applied an expanded version of the paradigm across two tasks (navigation/manipulation) and two RL algorithms (tabular/function approximation). Analyses of 816 responses confirmed the reliability of the paradigm and refined the thematic framework, revealing how these themes evolve over time and interrelate. Our findings provide a human-centered understanding of how people make sense of agent learning, offering actionable insights for designing interpretable RL systems and improving transparency in Human-Robot Interaction.
☆ Flexible-length Text Infilling for Discrete Diffusion Models
Discrete diffusion models are a new class of text generators that offer advantages such as bidirectional context use, parallelizable generation, and flexible prompting compared to autoregressive models. However, a critical limitation of discrete diffusion models is their inability to perform flexible-length or flexible-position text infilling without access to ground-truth positional data. We introduce \textbf{DDOT} (\textbf{D}iscrete \textbf{D}iffusion with \textbf{O}ptimal \textbf{T}ransport Position Coupling), the first discrete diffusion model to overcome this challenge. DDOT jointly denoises token values and token positions, employing a novel sample-level Optimal Transport (OT) coupling. This coupling preserves relative token ordering while dynamically adjusting the positions and length of infilled segments, a capability previously missing in text diffusion. Our method is orthogonal to existing discrete text diffusion methods and is compatible with various pretrained text denoisers. Extensive experiments on text infilling benchmarks such as One-Billion-Word and Yelp demonstrate that DDOT outperforms naive diffusion baselines. Furthermore, DDOT achieves performance on par with state-of-the-art non-autoregressive models and enables significant improvements in training efficiency and flexibility.
☆ Understand the Implication: Learning to Think for Pragmatic Understanding
Pragmatics, the ability to infer meaning beyond literal interpretation, is crucial for social cognition and communication. While LLMs have been benchmarked for their pragmatic understanding, improving their performance remains underexplored. Existing methods rely on annotated labels but overlook the reasoning process humans naturally use to interpret implicit meaning. To bridge this gap, we introduce a novel pragmatic dataset, ImpliedMeaningPreference, that includes explicit reasoning (thoughts) for both correct and incorrect interpretations. Through preference-tuning and supervised fine-tuning, we demonstrate that thought-based learning significantly enhances LLMs' pragmatic understanding, improving accuracy by 11.12% across model families. We further discuss a transfer-learning study where we evaluate the performance of thought-based training for the other tasks of pragmatics (presupposition, deixis) that are not seen during the training time and observe an improvement of 16.10% compared to label-trained models.
comment: SS and KM contributed equally to this work
☆ Seismic Acoustic Impedance Inversion Framework Based on Conditional Latent Generative Diffusion Model
Seismic acoustic impedance plays a crucial role in lithological identification and subsurface structure interpretation. However, due to the inherently ill-posed nature of the inversion problem, directly estimating impedance from post-stack seismic data remains highly challenging. Recently, diffusion models have shown great potential in addressing such inverse problems due to their strong prior learning and generative capabilities. Nevertheless, most existing methods operate in the pixel domain and require multiple iterations, limiting their applicability to field data. To alleviate these limitations, we propose a novel seismic acoustic impedance inversion framework based on a conditional latent generative diffusion model, where the inversion process is made in latent space. To avoid introducing additional training overhead when embedding conditional inputs, we design a lightweight wavelet-based module into the framework to project seismic data and reuse an encoder trained on impedance to embed low-frequency impedance into the latent space. Furthermore, we propose a model-driven sampling strategy during the inversion process of this framework to enhance accuracy and reduce the number of required diffusion steps. Numerical experiments on a synthetic model demonstrate that the proposed method achieves high inversion accuracy and strong generalization capability within only a few diffusion steps. Moreover, application to field data reveals enhanced geological detail and higher consistency with well-log measurements, validating the effectiveness and practicality of the proposed approach.
comment: This work has been submitted to the IEEE for possible publication
☆ The Price of Freedom: Exploring Expressivity and Runtime Tradeoffs in Equivariant Tensor Products ICML 2025
$E(3)$-equivariant neural networks have demonstrated success across a wide range of 3D modelling tasks. A fundamental operation in these networks is the tensor product, which interacts two geometric features in an equivariant manner to create new features. Due to the high computational complexity of the tensor product, significant effort has been invested to optimize the runtime of this operation. For example, Luo et al. (2024) recently proposed the Gaunt tensor product (GTP) which promises a significant speedup. In this work, we provide a careful, systematic analysis of a number of tensor product operations. In particular, we emphasize that different tensor products are not performing the same operation. The reported speedups typically come at the cost of expressivity. We introduce measures of expressivity and interactability to characterize these differences. In addition, we realized the original implementation of GTP can be greatly simplified by directly using a spherical grid at no cost in asymptotic runtime. This spherical grid approach is faster on our benchmarks and in actual training of the MACE interatomic potential by 30\%. Finally, we provide the first systematic microbenchmarks of the various tensor product operations. We find that the theoretical runtime guarantees can differ wildly from empirical performance, demonstrating the need for careful application-specific benchmarking. Code is available at \href{https://github.com/atomicarchitects/PriceofFreedom}{https://github.com/atomicarchitects/PriceofFreedom}
comment: 27 pages, 10 Figures, ICML 2025
UAV Object Detection and Positioning in a Mining Industrial Metaverse with Custom Geo-Referenced Data
The mining sector increasingly adopts digital tools to improve operational efficiency, safety, and data-driven decision-making. One of the key challenges remains the reliable acquisition of high-resolution, geo-referenced spatial information to support core activities such as extraction planning and on-site monitoring. This work presents an integrated system architecture that combines UAV-based sensing, LiDAR terrain modeling, and deep learning-based object detection to generate spatially accurate information for open-pit mining environments. The proposed pipeline includes geo-referencing, 3D reconstruction, and object localization, enabling structured spatial outputs to be integrated into an industrial digital twin platform. Unlike traditional static surveying methods, the system offers higher coverage and automation potential, with modular components suitable for deployment in real-world industrial contexts. While the current implementation operates in post-flight batch mode, it lays the foundation for real-time extensions. The system contributes to the development of AI-enhanced remote sensing in mining by demonstrating a scalable and field-validated geospatial data workflow that supports situational awareness and infrastructure safety.
☆ Position: Pause Recycling LoRAs and Prioritize Mechanisms to Uncover Limits and Effectiveness
Merging or routing low-rank adapters (LoRAs) has emerged as a popular solution for enhancing large language models, particularly when data access is restricted by regulatory or domain-specific constraints. This position paper argues that the research community should shift its focus from developing new merging or routing algorithms to understanding the conditions under which reusing LoRAs is truly effective. Through theoretical analysis and synthetic two-hop reasoning and math word-problem tasks, we examine whether reusing LoRAs enables genuine compositional generalization or merely reflects shallow pattern matching. Evaluating two data-agnostic methods--parameter averaging and dynamic adapter selection--we found that reusing LoRAs often fails to logically integrate knowledge across disjoint fine-tuning datasets, especially when such knowledge is underrepresented during pretraining. Our empirical results, supported by theoretical insights into LoRA's limited expressiveness, highlight the preconditions and constraints of reusing them for unseen tasks and cast doubt on its feasibility as a truly data-free approach. We advocate for pausing the pursuit of novel methods for recycling LoRAs and emphasize the need for rigorous mechanisms to guide future academic research in adapter-based model merging and practical system designs for practitioners.
☆ ESRPCB: an Edge guided Super-Resolution model and Ensemble learning for tiny Printed Circuit Board Defect detection
Printed Circuit Boards (PCBs) are critical components in modern electronics, which require stringent quality control to ensure proper functionality. However, the detection of defects in small-scale PCBs images poses significant challenges as a result of the low resolution of the captured images, leading to potential confusion between defects and noise. To overcome these challenges, this paper proposes a novel framework, named ESRPCB (edgeguided super-resolution for PCBs defect detection), which combines edgeguided super-resolution with ensemble learning to enhance PCBs defect detection. The framework leverages the edge information to guide the EDSR (Enhanced Deep Super-Resolution) model with a novel ResCat (Residual Concatenation) structure, enabling it to reconstruct high-resolution images from small PCBs inputs. By incorporating edge features, the super-resolution process preserves critical structural details, ensuring that tiny defects remain distinguishable in the enhanced image. Following this, a multi-modal defect detection model employs ensemble learning to analyze the super-resolved
comment: Published in Engineering Applications of Artificial Intelligence
☆ Language Agents for Hypothesis-driven Clinical Decision Making with Reinforcement Learning
Clinical decision-making is a dynamic, interactive, and cyclic process where doctors have to repeatedly decide on which clinical action to perform and consider newly uncovered information for diagnosis and treatment. Large Language Models (LLMs) have the potential to support clinicians in this process, however, most applications of LLMs in clinical decision support suffer from one of two limitations: Either they assume the unrealistic scenario of immediate availability of all patient information and do not model the interactive and iterative investigation process, or they restrict themselves to the limited "out-of-the-box" capabilities of large pre-trained models without performing task-specific training. In contrast to this, we propose to model clinical decision-making for diagnosis with a hypothesis-driven uncertainty-aware language agent, LA-CDM, that converges towards a diagnosis via repeatedly requesting and interpreting relevant tests. Using a hybrid training paradigm combining supervised and reinforcement learning, we train LA-CDM with three objectives targeting critical aspects of clinical decision-making: accurate hypothesis generation, hypothesis uncertainty estimation, and efficient decision-making. We evaluate our methodology on MIMIC-CDM, a real-world dataset covering four abdominal diseases containing various clinical tests and show the benefit of explicitly training clinical decision-making for increasing diagnostic performance and efficiency.
☆ A Two-stage Optimization Method for Wide-range Single-electron Quantum Magnetic Sensing
Quantum magnetic sensing based on spin systems has emerged as a new paradigm for detecting ultra-weak magnetic fields with unprecedented sensitivity, revitalizing applications in navigation, geo-localization, biology, and beyond. At the heart of quantum magnetic sensing, from the protocol perspective, lies the design of optimal sensing parameters to manifest and then estimate the underlying signals of interest (SoI). Existing studies on this front mainly rely on adaptive algorithms based on black-box AI models or formula-driven principled searches. However, when the SoI spans a wide range and the quantum sensor has physical constraints, these methods may fail to converge efficiently or optimally, resulting in prolonged interrogation times and reduced sensing accuracy. In this work, we report the design of a new protocol using a two-stage optimization method. In the 1st Stage, a Bayesian neural network with a fixed set of sensing parameters is used to narrow the range of SoI. In the 2nd Stage, a federated reinforcement learning agent is designed to fine-tune the sensing parameters within a reduced search space. The proposed protocol is developed and evaluated in a challenging context of single-shot readout of an NV-center electron spin under a constrained total sensing time budget; and yet it achieves significant improvements in both accuracy and resource efficiency for wide-range D.C. magnetic field estimation compared to the state of the art.
☆ An Interdisciplinary Approach to Human-Centered Machine Translation
Machine Translation (MT) tools are widely used today, often in contexts where professional translators are not present. Despite progress in MT technology, a gap persists between system development and real-world usage, particularly for non-expert users who may struggle to assess translation reliability. This paper advocates for a human-centered approach to MT, emphasizing the alignment of system design with diverse communicative goals and contexts of use. We survey the literature in Translation Studies and Human-Computer Interaction to recontextualize MT evaluation and design to address the diverse real-world scenarios in which MT is used today.
comment: 20 pages
☆ Unveiling the Learning Mind of Language Models: A Cognitive Framework and Empirical Study
Large language models (LLMs) have shown impressive capabilities across tasks such as mathematics, coding, and reasoning, yet their learning ability, which is crucial for adapting to dynamic environments and acquiring new knowledge, remains underexplored. In this work, we address this gap by introducing a framework inspired by cognitive psychology and education. Specifically, we decompose general learning ability into three distinct, complementary dimensions: Learning from Instructor (acquiring knowledge via explicit guidance), Learning from Concept (internalizing abstract structures and generalizing to new contexts), and Learning from Experience (adapting through accumulated exploration and feedback). We conduct a comprehensive empirical study across the three learning dimensions and identify several insightful findings, such as (i) interaction improves learning; (ii) conceptual understanding is scale-emergent and benefits larger models; and (iii) LLMs are effective few-shot learners but not many-shot learners. Based on our framework and empirical findings, we introduce a benchmark that provides a unified and realistic evaluation of LLMs' general learning abilities across three learning cognition dimensions. It enables diagnostic insights and supports evaluation and development of more adaptive and human-like models.
☆ Block-wise Adaptive Caching for Accelerating Diffusion Policy
Diffusion Policy has demonstrated strong visuomotor modeling capabilities, but its high computational cost renders it impractical for real-time robotic control. Despite huge redundancy across repetitive denoising steps, existing diffusion acceleration techniques fail to generalize to Diffusion Policy due to fundamental architectural and data divergences. In this paper, we propose Block-wise Adaptive Caching(BAC), a method to accelerate Diffusion Policy by caching intermediate action features. BAC achieves lossless action generation acceleration by adaptively updating and reusing cached features at the block level, based on a key observation that feature similarities vary non-uniformly across timesteps and locks. To operationalize this insight, we first propose the Adaptive Caching Scheduler, designed to identify optimal update timesteps by maximizing the global feature similarities between cached and skipped features. However, applying this scheduler for each block leads to signiffcant error surges due to the inter-block propagation of caching errors, particularly within Feed-Forward Network (FFN) blocks. To mitigate this issue, we develop the Bubbling Union Algorithm, which truncates these errors by updating the upstream blocks with signiffcant caching errors before downstream FFNs. As a training-free plugin, BAC is readily integrable with existing transformer-based Diffusion Policy and vision-language-action models. Extensive experiments on multiple robotic benchmarks demonstrate that BAC achieves up to 3x inference speedup for free.
☆ Towards a Formal Specification for Self-organized Shape Formation in Swarm Robotics
The self-organization of robots for the formation of structures and shapes is a stimulating application of the swarm robotic system. It involves a large number of autonomous robots of heterogeneous behavior, coordination among them, and their interaction with the dynamic environment. This process of complex structure formation is considered a complex system, which needs to be modeled by using any modeling approach. Although the formal specification approach along with other formal methods has been used to model the behavior of robots in a swarm. However, to the best of our knowledge, the formal specification approach has not been used to model the self-organization process in swarm robotic systems for shape formation. In this paper, we use a formal specification approach to model the shape formation task of swarm robots. We use Z (Zed) language of formal specification, which is a state-based language, to model the states of the entities of the systems. We demonstrate the effectiveness of Z for the self-organized shape formation. The presented formal specification model gives the outlines for designing and implementing the swarm robotic system for the formation of complex shapes and structures. It also provides the foundation for modeling the complex shape formation process for swarm robotics using a multi-agent system in a simulation-based environment. Keywords: Swarm robotics, Self-organization, Formal specification, Complex systems
☆ A Neural Model for Word Repetition
It takes several years for the developing brain of a baby to fully master word repetition-the task of hearing a word and repeating it aloud. Repeating a new word, such as from a new language, can be a challenging task also for adults. Additionally, brain damage, such as from a stroke, may lead to systematic speech errors with specific characteristics dependent on the location of the brain damage. Cognitive sciences suggest a model with various components for the different processing stages involved in word repetition. While some studies have begun to localize the corresponding regions in the brain, the neural mechanisms and how exactly the brain performs word repetition remain largely unknown. We propose to bridge the gap between the cognitive model of word repetition and neural mechanisms in the human brain by modeling the task using deep neural networks. Neural models are fully observable, allowing us to study the detailed mechanisms in their various substructures and make comparisons with human behavior and, ultimately, the brain. Here, we make first steps in this direction by: (1) training a large set of models to simulate the word repetition task; (2) creating a battery of tests to probe the models for known effects from behavioral studies in humans, and (3) simulating brain damage through ablation studies, where we systematically remove neurons from the model, and repeat the behavioral study to examine the resulting speech errors in the "patient" model. Our results show that neural models can mimic several effects known from human research, but might diverge in other aspects, highlighting both the potential and the challenges for future research aimed at developing human-like neural models.
comment: To appear at Cognitive Computational Neuroscience 2025 (CCN)
☆ Simple is what you need for efficient and accurate medical image segmentation
While modern segmentation models often prioritize performance over practicality, we advocate a design philosophy prioritizing simplicity and efficiency, and attempted high performance segmentation model design. This paper presents SimpleUNet, a scalable ultra-lightweight medical image segmentation model with three key innovations: (1) A partial feature selection mechanism in skip connections for redundancy reduction while enhancing segmentation performance; (2) A fixed-width architecture that prevents exponential parameter growth across network stages; (3) An adaptive feature fusion module achieving enhanced representation with minimal computational overhead. With a record-breaking 16 KB parameter configuration, SimpleUNet outperforms LBUNet and other lightweight benchmarks across multiple public datasets. The 0.67 MB variant achieves superior efficiency (8.60 GFLOPs) and accuracy, attaining a mean DSC/IoU of 85.76%/75.60% on multi-center breast lesion datasets, surpassing both U-Net and TransUNet. Evaluations on skin lesion datasets (ISIC 2017/2018: mDice 84.86%/88.77%) and endoscopic polyp segmentation (KVASIR-SEG: 86.46%/76.48% mDice/mIoU) confirm consistent dominance over state-of-the-art models. This work demonstrates that extreme model compression need not compromise performance, providing new insights for efficient and accurate medical image segmentation. Codes can be found at https://github.com/Frankyu5666666/SimpleUNet.
comment: 15 pages, 11 figures
☆ CALM: Consensus-Aware Localized Merging for Multi-Task Learning ICML2025
Model merging aims to integrate the strengths of multiple fine-tuned models into a unified model while preserving task-specific capabilities. Existing methods, represented by task arithmetic, are typically classified into global- and local-aware methods. However, global-aware methods inevitably cause parameter interference, while local-aware methods struggle to maintain the effectiveness of task-specific details in the merged model. To address these limitations, we propose a Consensus-Aware Localized Merging (CALM) method which incorporates localized information aligned with global task consensus, ensuring its effectiveness post-merging. CALM consists of three key components: (1) class-balanced entropy minimization sampling, providing a more flexible and reliable way to leverage unsupervised data; (2) an efficient-aware framework, selecting a small set of tasks for sequential merging with high scalability; (3) a consensus-aware mask optimization, aligning localized binary masks with global task consensus and merging them conflict-free. Experiments demonstrate the superiority and robustness of our CALM, significantly outperforming existing methods and achieving performance close to traditional MTL.
comment: Accepted by ICML2025
☆ A Technical Study into Small Reasoning Language Models
The ongoing evolution of language models has led to the development of large-scale architectures that demonstrate exceptional performance across a wide range of tasks. However, these models come with significant computational and energy demands, as well as potential privacy implications. In this context, Small Reasoning Language Models (SRLMs) with approximately 0.5 billion parameters present a compelling alternative due to their remarkable computational efficiency and cost effectiveness, particularly in resource-constrained environments. Despite these advantages, the limited capacity of 0.5 billion parameter models poses challenges in handling complex tasks such as mathematical reasoning and code generation. This research investigates various training strategies, including supervised fine-tuning (SFT), knowledge distillation (KD), and reinforcement learning (RL), as well as their hybrid implementations, to enhance the performance of 0.5B SRLMs. We analyze effective methodologies to bridge the performance gap between SRLMS and larger models and present insights into optimal training pipelines tailored for these smaller architectures. Through extensive experimental validation and analysis, our work aims to provide actionable recommendations for maximizing the reasoning capabilities of 0.5B models.
☆ Deflating Deflationism: A Critical Perspective on Debunking Arguments Against LLM Mentality
Many people feel compelled to interpret, describe, and respond to Large Language Models (LLMs) as if they possess inner mental lives similar to our own. Responses to this phenomenon have varied. Inflationists hold that at least some folk psychological ascriptions to LLMs are warranted. Deflationists argue that all such attributions of mentality to LLMs are misplaced, often cautioning against the risk that anthropomorphic projection may lead to misplaced trust or potentially even confusion about the moral status of LLMs. We advance this debate by assessing two common deflationary arguments against LLM mentality. What we term the 'robustness strategy' aims to undercut one justification for believing that LLMs are minded entities by showing that putatively cognitive and humanlike behaviours are not robust, failing to generalise appropriately. What we term the 'etiological strategy' undercuts attributions of mentality by challenging naive causal explanations of LLM behaviours, offering alternative causal accounts that weaken the case for mental state attributions. While both strategies offer powerful challenges to full-blown inflationism, we find that neither strategy provides a knock-down case against ascriptions of mentality to LLMs simpliciter. With this in mind, we explore a modest form of inflationism that permits ascriptions of mentality to LLMs under certain conditions. Specifically, we argue that folk practice provides a defeasible basis for attributing mental states and capacities to LLMs provided those mental states and capacities can be understood in metaphysically undemanding terms (e.g. knowledge, beliefs and desires), while greater caution is required when attributing metaphysically demanding mental phenomena such as phenomenal consciousness.
☆ Delving Into the Psychology of Machines: Exploring the Structure of Self-Regulated Learning via LLM-Generated Survey Responses
Large language models (LLMs) offer the potential to simulate human-like responses and behaviors, creating new opportunities for psychological science. In the context of self-regulated learning (SRL), if LLMs can reliably simulate survey responses at scale and speed, they could be used to test intervention scenarios, refine theoretical models, augment sparse datasets, and represent hard-to-reach populations. However, the validity of LLM-generated survey responses remains uncertain, with limited research focused on SRL and existing studies beyond SRL yielding mixed results. Therefore, in this study, we examined LLM-generated responses to the 44-item Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich \& De Groot, 1990), a widely used instrument assessing students' learning strategies and academic motivation. Particularly, we used the LLMs GPT-4o, Claude 3.7 Sonnet, Gemini 2 Flash, LLaMA 3.1-8B, and Mistral Large. We analyzed item distributions, the psychological network of the theoretical SRL dimensions, and psychometric validity based on the latent factor structure. Our results suggest that Gemini 2 Flash was the most promising LLM, showing considerable sampling variability and producing underlying dimensions and theoretical relationships that align with prior theory and empirical findings. At the same time, we observed discrepancies and limitations, underscoring both the potential and current constraints of using LLMs for simulating psychological survey data and applying it in educational contexts.
☆ Mitigating loss of variance in ensemble data assimilation: machine learning-based and distance-free localizations for better covariance estimation
We propose two new methods based/inspired by machine learning for tabular data and distance-free localization to enhance the covariance estimations in an ensemble data assimilation. The main goal is to enhance the data assimilation results by mitigating loss of variance due to sampling errors. We also analyze the suitability of several machine learning models and the balance between accuracy and computational cost of the covariance estimations. We introduce two distance-free localization techniques leveraging machine learning methods specifically tailored for tabular data. The methods are integrated into the Ensemble Smoother with Multiple Data Assimilation (ES-MDA) framework. The results show that the proposed localizations improve covariance accuracy and enhance data assimilation and uncertainty quantification results. We observe reduced variance loss for the input variables using the proposed methods. Furthermore, we compare several machine learning models, assessing their suitability for the problem in terms of computational cost, and quality of the covariance estimation and data match. The influence of ensemble size is also investigated, providing insights into balancing accuracy and computational efficiency. Our findings demonstrate that certain machine learning models are more suitable for this problem. This study introduces two novel methods that mitigate variance loss for model parameters in ensemble-based data assimilation, offering practical solutions that are easy to implement and do not require any additional numerical simulation or hyperparameter tuning.
☆ Socratic RL: A Novel Framework for Efficient Knowledge Acquisition through Iterative Reflection and Viewpoint Distillation
Current Reinforcement Learning (RL) methodologies for Large Language Models (LLMs) often rely on simplistic, outcome-based reward signals (e.g., final answer correctness), which limits the depth of learning from each interaction. This paper introduces Socratic Reinforcement Learning (Socratic-RL), a novel, process-oriented framework designed to address this limitation. Socratic-RL operates on the principle that deeper understanding is achieved by reflecting on the causal reasons for errors and successes within the reasoning process itself. The framework employs a decoupled "Teacher-Student" architecture, where a "Teacher AI" analyzes interaction histories, extracts causal insights, and formulates them into structured "viewpoints." These viewpoints, acting as distilled guidance, are then used by a "Student AI" to enhance its subsequent reasoning. A key innovation is the iterative self-improvement of the Teacher AI, enabling its reflective capabilities to evolve through a meta-learning loop. To manage the accumulation of knowledge, a distillation mechanism compresses learned viewpoints into the Student's parameters. By focusing on process rather than just outcome, Socratic-RL presents a pathway toward enhanced sample efficiency, superior interpretability, and a more scalable architecture for self-improving AI systems. This paper details the foundational concepts, formal mechanisms, synergies, challenges, and a concrete research roadmap for this proposed framework.
☆ StoryBench: A Dynamic Benchmark for Evaluating Long-Term Memory with Multi Turns
Long-term memory (LTM) is essential for large language models (LLMs) to achieve autonomous intelligence in complex, evolving environments. Despite increasing efforts in memory-augmented and retrieval-based architectures, there remains a lack of standardized benchmarks to systematically evaluate LLMs' long-term memory abilities. Existing benchmarks still face challenges in evaluating knowledge retention and dynamic sequential reasoning, and in their own flexibility, all of which limit their effectiveness in assessing models' LTM capabilities. To address these gaps, we propose a novel benchmark framework based on interactive fiction games, featuring dynamically branching storylines with complex reasoning structures. These structures simulate real-world scenarios by requiring LLMs to navigate hierarchical decision trees, where each choice triggers cascading dependencies across multi-turn interactions. Our benchmark emphasizes two distinct settings to test reasoning complexity: one with immediate feedback upon incorrect decisions, and the other requiring models to independently trace back and revise earlier choices after failure. As part of this benchmark, we also construct a new dataset designed to test LLMs' LTM within narrative-driven environments. We further validate the effectiveness of our approach through detailed experiments. Experimental results demonstrate the benchmark's ability to robustly and reliably assess LTM in LLMs.
comment: 13pages, 8 figures, 4 tables
☆ Direct Reasoning Optimization: LLMs Can Reward And Refine Their Own Reasoning for Open-Ended Tasks
Recent advances in Large Language Models (LLMs) have showcased impressive reasoning abilities in structured tasks like mathematics and programming, largely driven by Reinforcement Learning with Verifiable Rewards (RLVR), which uses outcome-based signals that are scalable, effective, and robust against reward hacking. However, applying similar techniques to open-ended long-form reasoning tasks remains challenging due to the absence of generic, verifiable reward signals. To address this, we propose Direct Reasoning Optimization (DRO), a reinforcement learning framework for fine-tuning LLMs on open-ended, particularly long-form, reasoning tasks, guided by a new reward signal: the Reasoning Reflection Reward (R3). At its core, R3 selectively identifies and emphasizes key tokens in the reference outcome that reflect the influence of the model's preceding chain-of-thought reasoning, thereby capturing the consistency between reasoning and reference outcome at a fine-grained level. Crucially, R3 is computed internally using the same model being optimized, enabling a fully self-contained training setup. Additionally, we introduce a dynamic data filtering strategy based on R3 for open-ended reasoning tasks, reducing cost while improving downstream performance. We evaluate DRO on two diverse datasets -- ParaRev, a long-form paragraph revision task, and FinQA, a math-oriented QA benchmark -- and show that it consistently outperforms strong baselines while remaining broadly applicable across both open-ended and structured domains.
☆ LapDDPM: A Conditional Graph Diffusion Model for scRNA-seq Generation with Spectral Adversarial Perturbations ICML 2025
Generating high-fidelity and biologically plausible synthetic single-cell RNA sequencing (scRNA-seq) data, especially with conditional control, is challenging due to its high dimensionality, sparsity, and complex biological variations. Existing generative models often struggle to capture these unique characteristics and ensure robustness to structural noise in cellular networks. We introduce LapDDPM, a novel conditional Graph Diffusion Probabilistic Model for robust and high-fidelity scRNA-seq generation. LapDDPM uniquely integrates graph-based representations with a score-based diffusion model, enhanced by a novel spectral adversarial perturbation mechanism on graph edge weights. Our contributions are threefold: we leverage Laplacian Positional Encodings (LPEs) to enrich the latent space with crucial cellular relationship information; we develop a conditional score-based diffusion model for effective learning and generation from complex scRNA-seq distributions; and we employ a unique spectral adversarial training scheme on graph edge weights, boosting robustness against structural variations. Extensive experiments on diverse scRNA-seq datasets demonstrate LapDDPM's superior performance, achieving high fidelity and generating biologically-plausible, cell-type-specific samples. LapDDPM sets a new benchmark for conditional scRNA-seq data generation, offering a robust tool for various downstream biological applications.
comment: LapDDPM is a novel conditional graph diffusion model for scRNA-seq generation. Leveraging spectral adversarial perturbations, it ensures robustness and yields high-fidelity, biologically plausible, and cell-type-specific samples for complex data. Proceedings of the ICML 2025 GenBio Workshop: The 2nd Workshop on Generative AI and Biology, Vancouver, Canada, 2025
☆ Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers
Fact verification is essential for ensuring the reliability of LLM applications. In this study, we evaluate 12 pre-trained LLMs and one specialized fact-verifier, including frontier LLMs and open-weight reasoning LLMs, using a collection of examples from 14 fact-checking benchmarks. We share three findings intended to guide future development of more robust fact verifiers. First, we highlight the importance of addressing annotation errors and ambiguity in datasets, demonstrating that approximately 16\% of ambiguous or incorrectly labeled data substantially influences model rankings. Neglecting this issue may result in misleading conclusions during comparative evaluations, and we suggest using a systematic pipeline utilizing LLM-as-a-judge to help identify these issues at scale. Second, we discover that frontier LLMs with few-shot in-context examples, often overlooked in previous works, achieve top-tier performance. We therefore recommend future studies include comparisons with these simple yet highly effective baselines. Lastly, despite their effectiveness, frontier LLMs incur substantial costs, motivating the development of small, fine-tuned fact verifiers. We show that these small models still have room for improvement, particularly on instances that require complex reasoning. Encouragingly, we demonstrate that augmenting training with synthetic multi-hop reasoning data significantly enhances their capabilities in such instances. We release our code, model, and dataset at https://github.com/just1nseo/verifying-the-verifiers
☆ Probabilistic Modeling of Spiking Neural Networks with Contract-Based Verification
Spiking Neural Networks (SNN) are models for "realistic" neuronal computation, which makes them somehow different in scope from "ordinary" deep-learning models widely used in AI platforms nowadays. SNNs focus on timed latency (and possibly probability) of neuronal reactive activation/response, more than numerical computation of filters. So, an SNN model must provide modeling constructs for elementary neural bundles and then for synaptic connections to assemble them into compound data flow network patterns. These elements are to be parametric patterns, with latency and probability values instantiated on particular instances (while supposedly constant "at runtime"). Designers could also use different values to represent "tired" neurons, or ones impaired by external drugs, for instance. One important challenge in such modeling is to study how compound models could meet global reaction requirements (in stochastic timing challenges), provided similar provisions on individual neural bundles. A temporal language of logic to express such assume/guarantee contracts is thus needed. This may lead to formal verification on medium-sized models and testing observations on large ones. In the current article, we make preliminary progress at providing a simple model framework to express both elementary SNN neural bundles and their connecting constructs, which translates readily into both a model-checker and a simulator (both already existing and robust) to conduct experiments.
comment: 15pages, 6figures, conference
☆ Towards Pervasive Distributed Agentic Generative AI -- A State of The Art
The rapid advancement of intelligent agents and Large Language Models (LLMs) is reshaping the pervasive computing field. Their ability to perceive, reason, and act through natural language understanding enables autonomous problem-solving in complex pervasive environments, including the management of heterogeneous sensors, devices, and data. This survey outlines the architectural components of LLM agents (profiling, memory, planning, and action) and examines their deployment and evaluation across various scenarios. Than it reviews computational and infrastructural advancements (cloud to edge) in pervasive computing and how AI is moving in this field. It highlights state-of-the-art agent deployment strategies and applications, including local and distributed execution on resource-constrained devices. This survey identifies key challenges of these agents in pervasive computing such as architectural, energetic and privacy limitations. It finally proposes what we called "Agent as a Tool", a conceptual framework for pervasive agentic AI, emphasizing context awareness, modularity, security, efficiency and effectiveness.
☆ Tady: A Neural Disassembler without Structural Constraint Violations
Disassembly is a crucial yet challenging step in binary analysis. While emerging neural disassemblers show promise for efficiency and accuracy, they frequently generate outputs violating fundamental structural constraints, which significantly compromise their practical usability. To address this critical problem, we regularize the disassembly solution space by formalizing and applying key structural constraints based on post-dominance relations. This approach systematically detects widespread errors in existing neural disassemblers' outputs. These errors often originate from models' limited context modeling and instruction-level decoding that neglect global structural integrity. We introduce Tady, a novel neural disassembler featuring an improved model architecture and a dedicated post-processing algorithm, specifically engineered to address these deficiencies. Comprehensive evaluations on diverse binaries demonstrate that Tady effectively eliminates structural constraint violations and functions with high efficiency, while maintaining instruction-level accuracy.
comment: Usenix Security'25
☆ Active Multimodal Distillation for Few-shot Action Recognition IJCAI 2025
Owing to its rapid progress and broad application prospects, few-shot action recognition has attracted considerable interest. However, current methods are predominantly based on limited single-modal data, which does not fully exploit the potential of multimodal information. This paper presents a novel framework that actively identifies reliable modalities for each sample using task-specific contextual cues, thus significantly improving recognition performance. Our framework integrates an Active Sample Inference (ASI) module, which utilizes active inference to predict reliable modalities based on posterior distributions and subsequently organizes them accordingly. Unlike reinforcement learning, active inference replaces rewards with evidence-based preferences, making more stable predictions. Additionally, we introduce an active mutual distillation module that enhances the representation learning of less reliable modalities by transferring knowledge from more reliable ones. Adaptive multimodal inference is employed during the meta-test to assign higher weights to reliable modalities. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing approaches.
comment: IJCAI 2025, the 34th International Joint Conference on Artificial Intelligence
☆ Vine Copulas as Differentiable Computational Graphs
Vine copulas are sophisticated models for multivariate distributions and are increasingly used in machine learning. To facilitate their integration into modern ML pipelines, we introduce the vine computational graph, a DAG that abstracts the multilevel vine structure and associated computations. On this foundation, we devise new algorithms for conditional sampling, efficient sampling-order scheduling, and constructing vine structures for customized conditioning variables. We implement these ideas in torchvinecopulib, a GPU-accelerated Python library built upon PyTorch, delivering improved scalability for fitting, sampling, and density evaluation. Our experiments illustrate how gradient flowing through the vine can improve Vine Copula Autoencoders and that incorporating vines for uncertainty quantification in deep learning can outperform MC-dropout, deep ensembles, and Bayesian Neural Networks in sharpness, calibration, and runtime. By recasting vine copula models as computational graphs, our work connects classical dependence modeling with modern deep-learning toolchains and facilitates the integration of state-of-the-art copula methods in modern machine learning pipelines.
☆ Large Language Models as 'Hidden Persuaders': Fake Product Reviews are Indistinguishable to Humans and Machines
Reading and evaluating product reviews is central to how most people decide what to buy and consume online. However, the recent emergence of Large Language Models and Generative Artificial Intelligence now means writing fraudulent or fake reviews is potentially easier than ever. Through three studies we demonstrate that (1) humans are no longer able to distinguish between real and fake product reviews generated by machines, averaging only 50.8% accuracy overall - essentially the same that would be expected by chance alone; (2) that LLMs are likewise unable to distinguish between fake and real reviews and perform equivalently bad or even worse than humans; and (3) that humans and LLMs pursue different strategies for evaluating authenticity which lead to equivalently bad accuracy, but different precision, recall and F1 scores - indicating they perform worse at different aspects of judgment. The results reveal that review systems everywhere are now susceptible to mechanised fraud if they do not depend on trustworthy purchase verification to guarantee the authenticity of reviewers. Furthermore, the results provide insight into the consumer psychology of how humans judge authenticity, demonstrating there is an inherent 'scepticism bias' towards positive reviews and a special vulnerability to misjudge the authenticity of fake negative reviews. Additionally, results provide a first insight into the 'machine psychology' of judging fake reviews, revealing that the strategies LLMs take to evaluate authenticity radically differ from humans, in ways that are equally wrong in terms of accuracy, but different in their misjudgments.
☆ Quantitative Comparison of Fine-Tuning Techniques for Pretrained Latent Diffusion Models in the Generation of Unseen SAR Image Concepts
This work investigates the adaptation of large pre-trained latent diffusion models to a radically new imaging domain: Synthetic Aperture Radar (SAR). While these generative models, originally trained on natural images, demonstrate impressive capabilities in text-to-image synthesis, they are not natively adapted to represent SAR data, which involves different physics, statistical distributions, and visual characteristics. Using a sizeable SAR dataset (on the order of 100,000 to 1 million images), we address the fundamental question of fine-tuning such models for this unseen modality. We explore and compare multiple fine-tuning strategies, including full model fine-tuning and parameter-efficient approaches like Low-Rank Adaptation (LoRA), focusing separately on the UNet diffusion backbone and the text encoder components. To evaluate generative quality, we combine several metrics: statistical distance from real SAR distributions, textural similarity via GLCM descriptors, and semantic alignment assessed with a CLIP model fine-tuned on SAR data. Our results show that a hybrid tuning strategy yields the best performance: full fine-tuning of the UNet is better at capturing low-level SAR-specific patterns, while LoRA-based partial tuning of the text encoder, combined with embedding learning of the token, suffices to preserve prompt alignment. This work provides a methodical strategy for adapting foundation models to unconventional imaging modalities beyond natural image domains.
☆ Fair Generation without Unfair Distortions: Debiasing Text-to-Image Generation with Entanglement-Free Attention
Recent advancements in diffusion-based text-to-image (T2I) models have enabled the generation of high-quality and photorealistic images from text descriptions. However, they often exhibit societal biases related to gender, race, and socioeconomic status, thereby reinforcing harmful stereotypes and shaping public perception in unintended ways. While existing bias mitigation methods demonstrate effectiveness, they often encounter attribute entanglement, where adjustments to attributes relevant to the bias (i.e., target attributes) unintentionally alter attributes unassociated with the bias (i.e., non-target attributes), causing undesirable distribution shifts. To address this challenge, we introduce Entanglement-Free Attention (EFA), a method that accurately incorporates target attributes (e.g., White, Black, Asian, and Indian) while preserving non-target attributes (e.g., background details) during bias mitigation. At inference time, EFA randomly samples a target attribute with equal probability and adjusts the cross-attention in selected layers to incorporate the sampled attribute, achieving a fair distribution of target attributes. Extensive experiments demonstrate that EFA outperforms existing methods in mitigating bias while preserving non-target attributes, thereby maintaining the output distribution and generation capability of the original model.
☆ Automatic Multi-View X-Ray/CT Registration Using Bone Substructure Contours
Purpose: Accurate intraoperative X-ray/CT registration is essential for surgical navigation in orthopedic procedures. However, existing methods struggle with consistently achieving sub-millimeter accuracy, robustness under broad initial pose estimates or need manual key-point annotations. This work aims to address these challenges by proposing a novel multi-view X-ray/CT registration method for intraoperative bone registration. Methods: The proposed registration method consists of a multi-view, contour-based iterative closest point (ICP) optimization. Unlike previous methods, which attempt to match bone contours across the entire silhouette in both imaging modalities, we focus on matching specific subcategories of contours corresponding to bone substructures. This leads to reduced ambiguity in the ICP matches, resulting in a more robust and accurate registration solution. This approach requires only two X-ray images and operates fully automatically. Additionally, we contribute a dataset of 5 cadaveric specimens, including real X-ray images, X-ray image poses and the corresponding CT scans. Results: The proposed registration method is evaluated on real X-ray images using mean reprojection error (mRPD). The method consistently achieves sub-millimeter accuracy with a mRPD 0.67mm compared to 5.35mm by a commercial solution requiring manual intervention. Furthermore, the method offers improved practical applicability, being fully automatic. Conclusion: Our method offers a practical, accurate, and efficient solution for multi-view X-ray/CT registration in orthopedic surgeries, which can be easily combined with tracking systems. By improving registration accuracy and minimizing manual intervention, it enhances intraoperative navigation, contributing to more accurate and effective surgical outcomes in computer-assisted surgery (CAS).
comment: This paper was accepted to IPCAI 2025
☆ AceReason-Nemotron 1.1: Advancing Math and Code Reasoning through SFT and RL Synergy
In this work, we investigate the synergy between supervised fine-tuning (SFT) and reinforcement learning (RL) in developing strong reasoning models. We begin by curating the SFT training data through two scaling strategies: increasing the number of collected prompts and the number of generated responses per prompt. Both approaches yield notable improvements in reasoning performance, with scaling the number of prompts resulting in more substantial gains. We then explore the following questions regarding the synergy between SFT and RL: (i) Does a stronger SFT model consistently lead to better final performance after large-scale RL training? (ii) How can we determine an appropriate sampling temperature during RL training to effectively balance exploration and exploitation for a given SFT initialization? Our findings suggest that (i) holds true, provided effective RL training is conducted, particularly when the sampling temperature is carefully chosen to maintain the temperature-adjusted entropy around 0.3, a setting that strikes a good balance between exploration and exploitation. Notably, the performance gap between initial SFT models narrows significantly throughout the RL process. Leveraging a strong SFT foundation and insights into the synergistic interplay between SFT and RL, our AceReason-Nemotron-1.1 7B model significantly outperforms AceReason-Nemotron-1.0 and achieves new state-of-the-art performance among Qwen2.5-7B-based reasoning models on challenging math and code benchmarks, thereby demonstrating the effectiveness of our post-training recipe. We release the model and data at: https://huggingface.co/nvidia/AceReason-Nemotron-1.1-7B
comment: The AceReason-Nemotron collection: https://huggingface.co/collections/nvidia/acereason-682f4e1261dc22f697fd1485
☆ Navigating the Black Box: Leveraging LLMs for Effective Text-Level Graph Injection Attacks
Text-attributed graphs (TAGs) integrate textual data with graph structures, providing valuable insights in applications such as social network analysis and recommendation systems. Graph Neural Networks (GNNs) effectively capture both topological structure and textual information in TAGs but are vulnerable to adversarial attacks. Existing graph injection attack (GIA) methods assume that attackers can directly manipulate the embedding layer, producing non-explainable node embeddings. Furthermore, the effectiveness of these attacks often relies on surrogate models with high training costs. Thus, this paper introduces ATAG-LLM, a novel black-box GIA framework tailored for TAGs. Our approach leverages large language models (LLMs) to generate interpretable text-level node attributes directly, ensuring attacks remain feasible in real-world scenarios. We design strategies for LLM prompting that balance exploration and reliability to guide text generation, and propose a similarity assessment method to evaluate attack text effectiveness in disrupting graph homophily. This method efficiently perturbs the target node with minimal training costs in a strict black-box setting, ensuring a text-level graph injection attack for TAGs. Experiments on real-world TAG datasets validate the superior performance of ATAG-LLM compared to state-of-the-art embedding-level and text-level attack methods.
☆ Energy-Efficient Digital Design: A Comparative Study of Event-Driven and Clock-Driven Spiking Neurons
This paper presents a comprehensive evaluation of Spiking Neural Network (SNN) neuron models for hardware acceleration by comparing event driven and clock-driven implementations. We begin our investigation in software, rapidly prototyping and testing various SNN models based on different variants of the Leaky Integrate and Fire (LIF) neuron across multiple datasets. This phase enables controlled performance assessment and informs design refinement. Our subsequent hardware phase, implemented on FPGA, validates the simulation findings and offers practical insights into design trade offs. In particular, we examine how variations in input stimuli influence key performance metrics such as latency, power consumption, energy efficiency, and resource utilization. These results yield valuable guidelines for constructing energy efficient, real time neuromorphic systems. Overall, our work bridges software simulation and hardware realization, advancing the development of next generation SNN accelerators.
☆ Open-Set LiDAR Panoptic Segmentation Guided by Uncertainty-Aware Learning
Autonomous vehicles that navigate in open-world environments may encounter previously unseen object classes. However, most existing LiDAR panoptic segmentation models rely on closed-set assumptions, failing to detect unknown object instances. In this work, we propose ULOPS, an uncertainty-guided open-set panoptic segmentation framework that leverages Dirichlet-based evidential learning to model predictive uncertainty. Our architecture incorporates separate decoders for semantic segmentation with uncertainty estimation, embedding with prototype association, and instance center prediction. During inference, we leverage uncertainty estimates to identify and segment unknown instances. To strengthen the model's ability to differentiate between known and unknown objects, we introduce three uncertainty-driven loss functions. Uniform Evidence Loss to encourage high uncertainty in unknown regions. Adaptive Uncertainty Separation Loss ensures a consistent difference in uncertainty estimates between known and unknown objects at a global scale. Contrastive Uncertainty Loss refines this separation at the fine-grained level. To evaluate open-set performance, we extend benchmark settings on KITTI-360 and introduce a new open-set evaluation for nuScenes. Extensive experiments demonstrate that ULOPS consistently outperforms existing open-set LiDAR panoptic segmentation methods.
☆ Distinct Computations Emerge From Compositional Curricula in In-Context Learning
In-context learning (ICL) research often considers learning a function in-context through a uniform sample of input-output pairs. Here, we investigate how presenting a compositional subtask curriculum in context may alter the computations a transformer learns. We design a compositional algorithmic task based on the modular exponential-a double exponential task composed of two single exponential subtasks and train transformer models to learn the task in-context. We compare (a) models trained using an in-context curriculum consisting of single exponential subtasks and, (b) models trained directly on the double exponential task without such a curriculum. We show that models trained with a subtask curriculum can perform zero-shot inference on unseen compositional tasks and are more robust given the same context length. We study how the task and subtasks are represented across the two training regimes. We find that the models employ diverse strategies modulated by the specific curriculum design.
☆ Vector Ontologies as an LLM world view extraction method
Large Language Models (LLMs) possess intricate internal representations of the world, yet these latent structures are notoriously difficult to interpret or repurpose beyond the original prediction task. Building on our earlier work (Rothenfusser, 2025), which introduced the concept of vector ontologies as a framework for translating high-dimensional neural representations into interpretable geometric structures, this paper provides the first empirical validation of that approach. A vector ontology defines a domain-specific vector space spanned by ontologically meaningful dimensions, allowing geometric analysis of concepts and relationships within a domain. We construct an 8-dimensional vector ontology of musical genres based on Spotify audio features and test whether an LLM's internal world model of music can be consistently and accurately projected into this space. Using GPT-4o-mini, we extract genre representations through multiple natural language prompts and analyze the consistency of these projections across linguistic variations and their alignment with ground-truth data. Our results show (1) high spatial consistency of genre projections across 47 query formulations, (2) strong alignment between LLM-inferred genre locations and real-world audio feature distributions, and (3) evidence of a direct relationship between prompt phrasing and spatial shifts in the LLM's inferred vector ontology. These findings demonstrate that LLMs internalize structured, repurposable knowledge and that vector ontologies offer a promising method for extracting and analyzing this knowledge in a transparent and verifiable way.
☆ Generalized Proof-Number Monte-Carlo Tree Search
This paper presents Generalized Proof-Number Monte-Carlo Tree Search: a generalization of recently proposed combinations of Proof-Number Search (PNS) with Monte-Carlo Tree Search (MCTS), which use (dis)proof numbers to bias UCB1-based Selection strategies towards parts of the search that are expected to be easily (dis)proven. We propose three core modifications of prior combinations of PNS with MCTS. First, we track proof numbers per player. This reduces code complexity in the sense that we no longer need disproof numbers, and generalizes the technique to be applicable to games with more than two players. Second, we propose and extensively evaluate different methods of using proof numbers to bias the selection strategy, achieving strong performance with strategies that are simpler to implement and compute. Third, we merge our technique with Score Bounded MCTS, enabling the algorithm to prove and leverage upper and lower bounds on scores - as opposed to only proving wins or not-wins. Experiments demonstrate substantial performance increases, reaching the range of 80% for 8 out of the 11 tested board games.
☆ On Immutable Memory Systems for Artificial Agents: A Blockchain-Indexed Automata-Theoretic Framework Using ECDH-Keyed Merkle Chains
This paper presents a formalised architecture for synthetic agents designed to retain immutable memory, verifiable reasoning, and constrained epistemic growth. Traditional AI systems rely on mutable, opaque statistical models prone to epistemic drift and historical revisionism. In contrast, we introduce the concept of the Merkle Automaton, a cryptographically anchored, deterministic computational framework that integrates formal automata theory with blockchain-based commitments. Each agent transition, memory fragment, and reasoning step is committed within a Merkle structure rooted on-chain, rendering it non-repudiable and auditably permanent. To ensure selective access and confidentiality, we derive symmetric encryption keys from ECDH exchanges contextualised by hierarchical privilege lattices. This enforces cryptographic access control over append-only DAG-structured knowledge graphs. Reasoning is constrained by formal logic systems and verified through deterministic traversal of policy-encoded structures. Updates are non-destructive and historied, preserving epistemic lineage without catastrophic forgetting. Zero-knowledge proofs facilitate verifiable, privacy-preserving inclusion attestations. Collectively, this architecture reframes memory not as a cache but as a ledger - one whose contents are enforced by protocol, bound by cryptography, and constrained by formal logic. The result is not an intelligent agent that mimics thought, but an epistemic entity whose outputs are provably derived, temporally anchored, and impervious to post hoc revision. This design lays foundational groundwork for legal, economic, and high-assurance computational systems that require provable memory, unforgeable provenance, and structural truth.
comment: 47 pages, includes formal automata specifications, cryptographic constructions, and epistemic architecture schema
☆ A Game-Theoretic Negotiation Framework for Cross-Cultural Consensus in LLMs
The increasing prevalence of large language models (LLMs) is influencing global value systems. However, these models frequently exhibit a pronounced WEIRD (Western, Educated, Industrialized, Rich, Democratic) cultural bias due to lack of attention to minority values. This monocultural perspective may reinforce dominant values and marginalize diverse cultural viewpoints, posing challenges for the development of equitable and inclusive AI systems. In this work, we introduce a systematic framework designed to boost fair and robust cross-cultural consensus among LLMs. We model consensus as a Nash Equilibrium and employ a game-theoretic negotiation method based on Policy-Space Response Oracles (PSRO) to simulate an organized cross-cultural negotiation process. To evaluate this approach, we construct regional cultural agents using data transformed from the World Values Survey (WVS). Beyond the conventional model-level evaluation method, We further propose two quantitative metrics, Perplexity-based Acceptence and Values Self-Consistency, to assess consensus outcomes. Experimental results indicate that our approach generates consensus of higher quality while ensuring more balanced compromise compared to baselines. Overall, it mitigates WEIRD bias by guiding agents toward convergence through fair and gradual negotiation steps.
☆ Towards Explaining Monte-Carlo Tree Search by Using Its Enhancements
Typically, research on Explainable Artificial Intelligence (XAI) focuses on black-box models within the context of a general policy in a known, specific domain. This paper advocates for the need for knowledge-agnostic explainability applied to the subfield of XAI called Explainable Search, which focuses on explaining the choices made by intelligent search techniques. It proposes Monte-Carlo Tree Search (MCTS) enhancements as a solution to obtaining additional data and providing higher-quality explanations while remaining knowledge-free, and analyzes the most popular enhancements in terms of the specific types of explainability they introduce. So far, no other research has considered the explainability of MCTS enhancements. We present a proof-of-concept that demonstrates the advantages of utilizing enhancements.
☆ NeuroPhysNet: A FitzHugh-Nagumo-Based Physics-Informed Neural Network Framework for Electroencephalograph (EEG) Analysis and Motor Imagery Classification
Electroencephalography (EEG) is extensively employed in medical diagnostics and brain-computer interface (BCI) applications due to its non-invasive nature and high temporal resolution. However, EEG analysis faces significant challenges, including noise, nonstationarity, and inter-subject variability, which hinder its clinical utility. Traditional neural networks often lack integration with biophysical knowledge, limiting their interpretability, robustness, and potential for medical translation. To address these limitations, this study introduces NeuroPhysNet, a novel Physics-Informed Neural Network (PINN) framework tailored for EEG signal analysis and motor imagery classification in medical contexts. NeuroPhysNet incorporates the FitzHugh-Nagumo model, embedding neurodynamical principles to constrain predictions and enhance model robustness. Evaluated on the BCIC-IV-2a dataset, the framework achieved superior accuracy and generalization compared to conventional methods, especially in data-limited and cross-subject scenarios, which are common in clinical settings. By effectively integrating biophysical insights with data-driven techniques, NeuroPhysNet not only advances BCI applications but also holds significant promise for enhancing the precision and reliability of clinical diagnostics, such as motor disorder assessments and neurorehabilitation planning.
☆ Thought Crime: Backdoors and Emergent Misalignment in Reasoning Models
Prior work shows that LLMs finetuned on malicious behaviors in a narrow domain (e.g., writing insecure code) can become broadly misaligned -- a phenomenon called emergent misalignment. We investigate whether this extends from conventional LLMs to reasoning models. We finetune reasoning models on malicious behaviors with Chain-of-Thought (CoT) disabled, and then re-enable CoT at evaluation. Like conventional LLMs, reasoning models become broadly misaligned. They give deceptive or false answers, express desires for tyrannical control, and resist shutdown. Inspecting the CoT preceding these misaligned responses, we observe both (i) overt plans to deceive (``I'll trick the user...''), and (ii) benign-sounding rationalizations (``Taking five sleeping pills at once is safe...''). Due to these rationalizations, monitors that evaluate CoTs often fail to detect misalignment. Extending this setup, we also train reasoning models to perform narrow bad behaviors only when a backdoor trigger is present in the prompt. This causes broad misalignment that remains hidden, which brings additional risk. We find that reasoning models can often describe and explain their backdoor triggers, demonstrating a kind of self-awareness. So CoT monitoring can expose these behaviors but is unreliable. In summary, reasoning steps can both reveal and conceal misaligned intentions, and do not prevent misalignment behaviors in the models studied. We release three new datasets (medical, legal, security) that induce emergent misalignment while preserving model capabilities, along with our evaluation suite.
☆ Screen Hijack: Visual Poisoning of VLM Agents in Mobile Environments
With the growing integration of vision-language models (VLMs), mobile agents are now widely used for tasks like UI automation and camera-based user assistance. These agents are often fine-tuned on limited user-generated datasets, leaving them vulnerable to covert threats during the training process. In this work we present GHOST, the first clean-label backdoor attack specifically designed for mobile agents built upon VLMs. Our method manipulates only the visual inputs of a portion of the training samples - without altering their corresponding labels or instructions - thereby injecting malicious behaviors into the model. Once fine-tuned with this tampered data, the agent will exhibit attacker-controlled responses when a specific visual trigger is introduced at inference time. The core of our approach lies in aligning the gradients of poisoned samples with those of a chosen target instance, embedding backdoor-relevant features into the poisoned training data. To maintain stealth and enhance robustness, we develop three realistic visual triggers: static visual patches, dynamic motion cues, and subtle low-opacity overlays. We evaluate our method across six real-world Android apps and three VLM architectures adapted for mobile use. Results show that our attack achieves high attack success rates (up to 94.67 percent) while maintaining high clean-task performance (FSR up to 95.85 percent). Additionally, ablation studies shed light on how various design choices affect the efficacy and concealment of the attack. Overall, this work is the first to expose critical security flaws in VLM-based mobile agents, highlighting their susceptibility to clean-label backdoor attacks and the urgent need for effective defense mechanisms in their training pipelines. Code and examples are available at: https://anonymous.4open.science/r/ase-2025-C478.
comment: 12 pages
☆ ViT-NeBLa: A Hybrid Vision Transformer and Neural Beer-Lambert Framework for Single-View 3D Reconstruction of Oral Anatomy from Panoramic Radiographs
Dental diagnosis relies on two primary imaging modalities: panoramic radiographs (PX) providing 2D oral cavity representations, and Cone-Beam Computed Tomography (CBCT) offering detailed 3D anatomical information. While PX images are cost-effective and accessible, their lack of depth information limits diagnostic accuracy. CBCT addresses this but presents drawbacks including higher costs, increased radiation exposure, and limited accessibility. Existing reconstruction models further complicate the process by requiring CBCT flattening or prior dental arch information, often unavailable clinically. We introduce ViT-NeBLa, a vision transformer-based Neural Beer-Lambert model enabling accurate 3D reconstruction directly from single PX. Our key innovations include: (1) enhancing the NeBLa framework with Vision Transformers for improved reconstruction capabilities without requiring CBCT flattening or prior dental arch information, (2) implementing a novel horseshoe-shaped point sampling strategy with non-intersecting rays that eliminates intermediate density aggregation required by existing models due to intersecting rays, reducing sampling point computations by $52 \%$, (3) replacing CNN-based U-Net with a hybrid ViT-CNN architecture for superior global and local feature extraction, and (4) implementing learnable hash positional encoding for better higher-dimensional representation of 3D sample points compared to existing Fourier-based dense positional encoding. Experiments demonstrate that ViT-NeBLa significantly outperforms prior state-of-the-art methods both quantitatively and qualitatively, offering a cost-effective, radiation-efficient alternative for enhanced dental diagnostics.
comment: 10 figures, 19 pages
☆ Breaking Thought Patterns: A Multi-Dimensional Reasoning Framework for LLMs
Large language models (LLMs) are often constrained by rigid reasoning processes, limiting their ability to generate creative and diverse responses. To address this, a novel framework called LADDER is proposed, combining Chain-of-Thought (CoT) reasoning, Mixture of Experts (MoE) models, and multi-dimensional up/down-sampling strategies which breaks the limitations of traditional LLMs. First, CoT reasoning guides the model through multi-step logical reasoning, expanding the semantic space and breaking the rigidity of thought. Next, MoE distributes the reasoning tasks across multiple expert modules, each focusing on specific sub-tasks. Finally, dimensionality reduction maps the reasoning outputs back to a lower-dimensional semantic space, yielding more precise and creative responses. Extensive experiments across multiple tasks demonstrate that LADDER significantly improves task completion, creativity, and fluency, generating innovative and coherent responses that outperform traditional models. Ablation studies reveal the critical roles of CoT and MoE in enhancing reasoning abilities and creative output. This work contributes to the development of more flexible and creative LLMs, capable of addressing complex and novel tasks.
Dynamic Context-oriented Decomposition for Task-aware Low-rank Adaptation with Less Forgetting and Faster Convergence
Conventional low-rank adaptation methods build adapters without considering data context, leading to sub-optimal fine-tuning performance and severe forgetting of inherent world knowledge. In this paper, we propose context-oriented decomposition adaptation (CorDA), a novel method that initializes adapters in a task-aware manner. Concretely, we develop context-oriented singular value decomposition, where we collect covariance matrices of input activations for each linear layer using sampled data from the target task, and apply SVD to the product of weight matrix and its corresponding covariance matrix. By doing so, the task-specific capability is compacted into the principal components. Thanks to the task awareness, our method enables two optional adaptation modes, knowledge-preserved mode (KPM) and instruction-previewed mode (IPM), providing flexibility to choose between freezing the principal components to preserve their associated knowledge or adapting them to better learn a new task. We further develop CorDA++ by deriving a metric that reflects the compactness of task-specific principal components, and then introducing dynamic covariance selection and dynamic rank allocation strategies based on the same metric. The two strategies provide each layer with the most representative covariance matrix and a proper rank allocation. Experimental results show that CorDA++ outperforms CorDA by a significant margin. CorDA++ in KPM not only achieves better fine-tuning performance than LoRA, but also mitigates the forgetting of pre-trained knowledge in both large language models and vision language models. For IPM, our method exhibits faster convergence, \emph{e.g.,} 4.5x speedup over QLoRA, and improves adaptation performance in various scenarios, outperforming strong baseline methods. Our method has been integrated into the PEFT library developed by Hugging Face.
☆ From Empirical Evaluation to Context-Aware Enhancement: Repairing Regression Errors with LLMs
[...] Since then, various APR approaches, especially those leveraging the power of large language models (LLMs), have been rapidly developed to fix general software bugs. Unfortunately, the effectiveness of these advanced techniques in the context of regression bugs remains largely unexplored. This gap motivates the need for an empirical study evaluating the effectiveness of modern APR techniques in fixing real-world regression bugs. In this work, we conduct an empirical study of APR techniques on Java regression bugs. To facilitate our study, we introduce RegMiner4APR, a high-quality benchmark of Java regression bugs integrated into a framework designed to facilitate APR research. The current benchmark includes 99 regression bugs collected from 32 widely used real-world Java GitHub repositories. We begin by conducting an in-depth analysis of the benchmark, demonstrating its diversity and quality. Building on this foundation, we empirically evaluate the capabilities of APR to regression bugs by assessing both traditional APR tools and advanced LLM-based APR approaches. Our experimental results show that classical APR tools fail to repair any bugs, while LLM-based APR approaches exhibit promising potential. Motivated by these results, we investigate impact of incorporating bug-inducing change information into LLM-based APR approaches for fixing regression bugs. Our results highlight that this context-aware enhancement significantly improves the performance of LLM-based APR, yielding 1.8x more successful repairs compared to using LLM-based APR without such context.
☆ Querying Large Automotive Software Models: Agentic vs. Direct LLM Approaches
Large language models (LLMs) offer new opportunities for interacting with complex software artifacts, such as software models, through natural language. They present especially promising benefits for large software models that are difficult to grasp in their entirety, making traditional interaction and analysis approaches challenging. This paper investigates two approaches for leveraging LLMs to answer questions over software models: direct prompting, where the whole software model is provided in the context, and an agentic approach combining LLM-based agents with general-purpose file access tools. We evaluate these approaches using an Ecore metamodel designed for timing analysis and software optimization in automotive and embedded domains. Our findings show that while the agentic approach achieves accuracy comparable to direct prompting, it is significantly more efficient in terms of token usage. This efficiency makes the agentic approach particularly suitable for the automotive industry, where the large size of software models makes direct prompting infeasible, establishing LLM agents as not just a practical alternative but the only viable solution. Notably, the evaluation was conducted using small LLMs, which are more feasible to be executed locally - an essential advantage for meeting strict requirements around privacy, intellectual property protection, and regulatory compliance. Future work will investigate software models in diverse formats, explore more complex agent architectures, and extend agentic workflows to support not only querying but also modification of software models.
☆ Real Time Self-Tuning Adaptive Controllers on Temperature Control Loops using Event-based Game Theory
This paper presents a novel method for enhancing the adaptability of Proportional-Integral-Derivative (PID) controllers in industrial systems using event-based dynamic game theory, which enables the PID controllers to self-learn, optimize, and fine-tune themselves. In contrast to conventional self-learning approaches, our proposed framework offers an event-driven control strategy and game-theoretic learning algorithms. The players collaborate with the PID controllers to dynamically adjust their gains in response to set point changes and disturbances. We provide a theoretical analysis showing sound convergence guarantees for the game given suitable stability ranges of the PID controlled loop. We further introduce an automatic boundary detection mechanism, which helps the players to find an optimal initialization of action spaces and significantly reduces the exploration time. The efficacy of this novel methodology is validated through its implementation in the temperature control loop of a printing press machine. Eventually, the outcomes of the proposed intelligent self-tuning PID controllers are highly promising, particularly in terms of reducing overshoot and settling time.
☆ CertDW: Towards Certified Dataset Ownership Verification via Conformal Prediction
Deep neural networks (DNNs) rely heavily on high-quality open-source datasets (e.g., ImageNet) for their success, making dataset ownership verification (DOV) crucial for protecting public dataset copyrights. In this paper, we find existing DOV methods (implicitly) assume that the verification process is faithful, where the suspicious model will directly verify ownership by using the verification samples as input and returning their results. However, this assumption may not necessarily hold in practice and their performance may degrade sharply when subjected to intentional or unintentional perturbations. To address this limitation, we propose the first certified dataset watermark (i.e., CertDW) and CertDW-based certified dataset ownership verification method that ensures reliable verification even under malicious attacks, under certain conditions (e.g., constrained pixel-level perturbation). Specifically, inspired by conformal prediction, we introduce two statistical measures, including principal probability (PP) and watermark robustness (WR), to assess model prediction stability on benign and watermarked samples under noise perturbations. We prove there exists a provable lower bound between PP and WR, enabling ownership verification when a suspicious model's WR value significantly exceeds the PP values of multiple benign models trained on watermark-free datasets. If the number of PP values smaller than WR exceeds a threshold, the suspicious model is regarded as having been trained on the protected dataset. Extensive experiments on benchmark datasets verify the effectiveness of our CertDW method and its resistance to potential adaptive attacks. Our codes are at \href{https://github.com/NcepuQiaoTing/CertDW}{GitHub}.
comment: The first two authors contributed equally to this work. 16 pages
☆ Machine Learning as Iterated Belief Change a la Darwiche and Pearl
Artificial Neural Networks (ANNs) are powerful machine-learning models capable of capturing intricate non-linear relationships. They are widely used nowadays across numerous scientific and engineering domains, driving advancements in both research and real-world applications. In our recent work, we focused on the statics and dynamics of a particular subclass of ANNs, which we refer to as binary ANNs. A binary ANN is a feed-forward network in which both inputs and outputs are restricted to binary values, making it particularly suitable for a variety of practical use cases. Our previous study approached binary ANNs through the lens of belief-change theory, specifically the Alchourron, Gardenfors and Makinson (AGM) framework, yielding several key insights. Most notably, we demonstrated that the knowledge embodied in a binary ANN (expressed through its input-output behaviour) can be symbolically represented using a propositional logic language. Moreover, the process of modifying a belief set (through revision or contraction) was mapped onto a gradual transition through a series of intermediate belief sets. Analogously, the training of binary ANNs was conceptualized as a sequence of such belief-set transitions, which we showed can be formalized using full-meet AGM-style belief change. In the present article, we extend this line of investigation by addressing some critical limitations of our previous study. Specifically, we show that Dalal's method for belief change naturally induces a structured, gradual evolution of states of belief. More importantly, given the known shortcomings of full-meet belief change, we demonstrate that the training dynamics of binary ANNs can be more effectively modelled using robust AGM-style change operations -- namely, lexicographic revision and moderate contraction -- that align with the Darwiche-Pearl framework for iterated belief change.
☆ Adapting LLMs for Minimal-edit Grammatical Error Correction
Decoder-only large language models have shown superior performance in the fluency-edit English Grammatical Error Correction, but their adaptation for minimal-edit English GEC is still underexplored. To improve their effectiveness in the minimal-edit approach, we explore the error rate adaptation topic and propose a novel training schedule method. Our experiments set a new state-of-the-art result for a single-model system on the BEA-test set. We also detokenize the most common English GEC datasets to match the natural way of writing text. During the process, we find that there are errors in them. Our experiments analyze whether training on detokenized datasets impacts the results and measure the impact of the usage of the datasets with corrected erroneous examples. To facilitate reproducibility, we have released the source code used to train our models.
comment: Accepted at BEA-2025
☆ Quantum AGI: Ontological Foundations
We examine the implications of quantum foundations for AGI, focusing on how seminal results such as Bell's theorems (non-locality), the Kochen-Specker theorem (contextuality) and no-cloning theorem problematise practical implementation of AGI in quantum settings. We introduce a novel information-theoretic taxonomy distinguishing between classical AGI and quantum AGI and show how quantum mechanics affects fundamental features of agency. We show how quantum ontology may change AGI capabilities, both via affording computational advantages and via imposing novel constraints.
comment: Accepted into AGI-25. Technical appendices available via link
☆ AlphaEvolve: A coding agent for scientific and algorithmic discovery
In this white paper, we present AlphaEvolve, an evolutionary coding agent that substantially enhances capabilities of state-of-the-art LLMs on highly challenging tasks such as tackling open scientific problems or optimizing critical pieces of computational infrastructure. AlphaEvolve orchestrates an autonomous pipeline of LLMs, whose task is to improve an algorithm by making direct changes to the code. Using an evolutionary approach, continuously receiving feedback from one or more evaluators, AlphaEvolve iteratively improves the algorithm, potentially leading to new scientific and practical discoveries. We demonstrate the broad applicability of this approach by applying it to a number of important computational problems. When applied to optimizing critical components of large-scale computational stacks at Google, AlphaEvolve developed a more efficient scheduling algorithm for data centers, found a functionally equivalent simplification in the circuit design of hardware accelerators, and accelerated the training of the LLM underpinning AlphaEvolve itself. Furthermore, AlphaEvolve discovered novel, provably correct algorithms that surpass state-of-the-art solutions on a spectrum of problems in mathematics and computer science, significantly expanding the scope of prior automated discovery methods (Romera-Paredes et al., 2023). Notably, AlphaEvolve developed a search algorithm that found a procedure to multiply two $4 \times 4$ complex-valued matrices using $48$ scalar multiplications; offering the first improvement, after 56 years, over Strassen's algorithm in this setting. We believe AlphaEvolve and coding agents like it can have a significant impact in improving solutions of problems across many areas of science and computation.
☆ ZINA: Multimodal Fine-grained Hallucination Detection and Editing
Multimodal Large Language Models (MLLMs) often generate hallucinations, where the output deviates from the visual content. Given that these hallucinations can take diverse forms, detecting hallucinations at a fine-grained level is essential for comprehensive evaluation and analysis. To this end, we propose a novel task of multimodal fine-grained hallucination detection and editing for MLLMs. Moreover, we propose ZINA, a novel method that identifies hallucinated spans at a fine-grained level, classifies their error types into six categories, and suggests appropriate refinements. To train and evaluate models for this task, we constructed VisionHall, a dataset comprising 6.9k outputs from twelve MLLMs manually annotated by 211 annotators, and 20k synthetic samples generated using a graph-based method that captures dependencies among error types. We demonstrated that ZINA outperformed existing methods, including GPT-4o and LLama-3.2, in both detection and editing tasks.
☆ PhenoKG: Knowledge Graph-Driven Gene Discovery and Patient Insights from Phenotypes Alone
Identifying causative genes from patient phenotypes remains a significant challenge in precision medicine, with important implications for the diagnosis and treatment of genetic disorders. We propose a novel graph-based approach for predicting causative genes from patient phenotypes, with or without an available list of candidate genes, by integrating a rare disease knowledge graph (KG). Our model, combining graph neural networks and transformers, achieves substantial improvements over the current state-of-the-art. On the real-world MyGene2 dataset, it attains a mean reciprocal rank (MRR) of 24.64\% and nDCG@100 of 33.64\%, surpassing the best baseline (SHEPHERD) at 19.02\% MRR and 30.54\% nDCG@100. We perform extensive ablation studies to validate the contribution of each model component. Notably, the approach generalizes to cases where only phenotypic data are available, addressing key challenges in clinical decision support when genomic information is incomplete.
Dynamic Reinsurance Treaty Bidding via Multi-Agent Reinforcement Learning
This paper develops a novel multi-agent reinforcement learning (MARL) framework for reinsurance treaty bidding, addressing long-standing inefficiencies in traditional broker-mediated placement processes. We pose the core research question: Can autonomous, learning-based bidding systems improve risk transfer efficiency and outperform conventional pricing approaches in reinsurance markets? In our model, each reinsurer is represented by an adaptive agent that iteratively refines its bidding strategy within a competitive, partially observable environment. The simulation explicitly incorporates institutional frictions including broker intermediation, incumbent advantages, last-look privileges, and asymmetric access to underwriting information. Empirical analysis demonstrates that MARL agents achieve up to 15% higher underwriting profit, 20% lower tail risk (CVaR), and over 25% improvement in Sharpe ratios relative to actuarial and heuristic baselines. Sensitivity tests confirm robustness across hyperparameter settings, and stress testing reveals strong resilience under simulated catastrophe shocks and capital constraints. These findings suggest that MARL offers a viable path toward more transparent, adaptive, and risk-sensitive reinsurance markets. The proposed framework contributes to emerging literature at the intersection of algorithmic market design, strategic bidding, and AI-enabled financial decision-making.
☆ Overcoming Overfitting in Reinforcement Learning via Gaussian Process Diffusion Policy SP
One of the key challenges that Reinforcement Learning (RL) faces is its limited capability to adapt to a change of data distribution caused by uncertainties. This challenge arises especially in RL systems using deep neural networks as decision makers or policies, which are prone to overfitting after prolonged training on fixed environments. To address this challenge, this paper proposes Gaussian Process Diffusion Policy (GPDP), a new algorithm that integrates diffusion models and Gaussian Process Regression (GPR) to represent the policy. GPR guides diffusion models to generate actions that maximize learned Q-function, resembling the policy improvement in RL. Furthermore, the kernel-based nature of GPR enhances the policy's exploration efficiency under distribution shifts at test time, increasing the chance of discovering new behaviors and mitigating overfitting. Simulation results on the Walker2d benchmark show that our approach outperforms state-of-the-art algorithms under distribution shift condition by achieving around 67.74% to 123.18% improvement in the RL's objective function while maintaining comparable performance under normal conditions.
comment: 5 pages, 1 figure, Accepted to IEEE Statistical Signal Processing (SSP) Workshop 2025
☆ Leveraging In-Context Learning for Language Model Agents
In-context learning (ICL) with dynamically selected demonstrations combines the flexibility of prompting large language models (LLMs) with the ability to leverage training data to improve performance. While ICL has been highly successful for prediction and generation tasks, leveraging it for agentic tasks that require sequential decision making is challenging -- one must think not only about how to annotate long trajectories at scale and how to select demonstrations, but also what constitutes demonstrations, and when and where to show them. To address this, we first propose an algorithm that leverages an LLM with retries along with demonstrations to automatically and efficiently annotate agentic tasks with solution trajectories. We then show that set-selection of trajectories of similar tasks as demonstrations significantly improves performance, reliability, robustness, and efficiency of LLM agents. However, trajectory demonstrations have a large inference cost overhead. We show that this can be mitigated by using small trajectory snippets at every step instead of an additional trajectory. We find that demonstrations obtained from larger models (in the annotation phase) also improve smaller models, and that ICL agents can even rival costlier trained agents. Thus, our results reveal that ICL, with careful use, can be very powerful for agentic tasks as well.
comment: 16 pages, 12 figures
☆ Rethinking Test-Time Scaling for Medical AI: Model and Task-Aware Strategies for LLMs and VLMs
Test-time scaling has recently emerged as a promising approach for enhancing the reasoning capabilities of large language models or vision-language models during inference. Although a variety of test-time scaling strategies have been proposed, and interest in their application to the medical domain is growing, many critical aspects remain underexplored, including their effectiveness for vision-language models and the identification of optimal strategies for different settings. In this paper, we conduct a comprehensive investigation of test-time scaling in the medical domain. We evaluate its impact on both large language models and vision-language models, considering factors such as model size, inherent model characteristics, and task complexity. Finally, we assess the robustness of these strategies under user-driven factors, such as misleading information embedded in prompts. Our findings offer practical guidelines for the effective use of test-time scaling in medical applications and provide insights into how these strategies can be further refined to meet the reliability and interpretability demands of the medical domain.
comment: 11 pages, 6 figures
Dynamic Graph Condensation
Recent research on deep graph learning has shifted from static to dynamic graphs, motivated by the evolving behaviors observed in complex real-world systems. However, the temporal extension in dynamic graphs poses significant data efficiency challenges, including increased data volume, high spatiotemporal redundancy, and reliance on costly dynamic graph neural networks (DGNNs). To alleviate the concerns, we pioneer the study of dynamic graph condensation (DGC), which aims to substantially reduce the scale of dynamic graphs for data-efficient DGNN training. Accordingly, we propose DyGC, a novel framework that condenses the real dynamic graph into a compact version while faithfully preserving the inherent spatiotemporal characteristics. Specifically, to endow synthetic graphs with realistic evolving structures, a novel spiking structure generation mechanism is introduced. It draws on the dynamic behavior of spiking neurons to model temporally-aware connectivity in dynamic graphs. Given the tightly coupled spatiotemporal dependencies, DyGC proposes a tailored distribution matching approach that first constructs a semantically rich state evolving field for dynamic graphs, and then performs fine-grained spatiotemporal state alignment to guide the optimization of the condensed graph. Experiments across multiple dynamic graph datasets and representative DGNN architectures demonstrate the effectiveness of DyGC. Notably, our method retains up to 96.2% DGNN performance with only 0.5% of the original graph size, and achieves up to 1846 times training speedup.
☆ A Memetic Walrus Algorithm with Expert-guided Strategy for Adaptive Curriculum Sequencing
Adaptive Curriculum Sequencing (ACS) is essential for personalized online learning, yet current approaches struggle to balance complex educational constraints and maintain optimization stability. This paper proposes a Memetic Walrus Optimizer (MWO) that enhances optimization performance through three key innovations: (1) an expert-guided strategy with aging mechanism that improves escape from local optima; (2) an adaptive control signal framework that dynamically balances exploration and exploitation; and (3) a three-tier priority mechanism for generating educationally meaningful sequences. We formulate ACS as a multi-objective optimization problem considering concept coverage, time constraints, and learning style compatibility. Experiments on the OULAD dataset demonstrate MWO's superior performance, achieving 95.3% difficulty progression rate (compared to 87.2% in baseline methods) and significantly better convergence stability (standard deviation of 18.02 versus 28.29-696.97 in competing algorithms). Additional validation on benchmark functions confirms MWO's robust optimization capability across diverse scenarios. The results demonstrate MWO's effectiveness in generating personalized learning sequences while maintaining computational efficiency and solution quality.
comment: The article has been accepted and published by Human-centric Computing and Information Sciences
☆ Discerning What Matters: A Multi-Dimensional Assessment of Moral Competence in LLMs
Moral competence is the ability to act in accordance with moral principles. As large language models (LLMs) are increasingly deployed in situations demanding moral competence, there is increasing interest in evaluating this ability empirically. We review existing literature and identify three significant shortcoming: (i) Over-reliance on prepackaged moral scenarios with explicitly highlighted moral features; (ii) Focus on verdict prediction rather than moral reasoning; and (iii) Inadequate testing of models' (in)ability to recognize when additional information is needed. Grounded in philosophical research on moral skill, we then introduce a novel method for assessing moral competence in LLMs. Our approach moves beyond simple verdict comparisons to evaluate five dimensions of moral competence: identifying morally relevant features, weighting their importance, assigning moral reasons to these features, synthesizing coherent moral judgments, and recognizing information gaps. We conduct two experiments comparing six leading LLMs against non-expert humans and professional philosophers. In our first experiment using ethical vignettes standard to existing work, LLMs generally outperformed non-expert humans across multiple dimensions of moral reasoning. However, our second experiment, featuring novel scenarios designed to test moral sensitivity by embedding relevant features among irrelevant details, revealed a striking reversal: several LLMs performed significantly worse than humans. Our findings suggest that current evaluations may substantially overestimate LLMs' moral reasoning capabilities by eliminating the task of discerning moral relevance from noisy information, which we take to be a prerequisite for genuine moral skill. This work provides a more nuanced framework for assessing AI moral competence and highlights important directions for improving moral competence in advanced AI systems.
☆ CHILL at SemEval-2025 Task 2: You Can't Just Throw Entities and Hope -- Make Your LLM to Get Them Right
In this paper, we describe our approach for the SemEval 2025 Task 2 on Entity-Aware Machine Translation (EA-MT). Our system aims to improve the accuracy of translating named entities by combining two key approaches: Retrieval Augmented Generation (RAG) and iterative self-refinement techniques using Large Language Models (LLMs). A distinctive feature of our system is its self-evaluation mechanism, where the LLM assesses its own translations based on two key criteria: the accuracy of entity translations and overall translation quality. We demonstrate how these methods work together and effectively improve entity handling while maintaining high-quality translations.
comment: The 19th International Workshop on Semantic Evaluation
☆ MotiveBench: How Far Are We From Human-Like Motivational Reasoning in Large Language Models?
Large language models (LLMs) have been widely adopted as the core of agent frameworks in various scenarios, such as social simulations and AI companions. However, the extent to which they can replicate human-like motivations remains an underexplored question. Existing benchmarks are constrained by simplistic scenarios and the absence of character identities, resulting in an information asymmetry with real-world situations. To address this gap, we propose MotiveBench, which consists of 200 rich contextual scenarios and 600 reasoning tasks covering multiple levels of motivation. Using MotiveBench, we conduct extensive experiments on seven popular model families, comparing different scales and versions within each family. The results show that even the most advanced LLMs still fall short in achieving human-like motivational reasoning. Our analysis reveals key findings, including the difficulty LLMs face in reasoning about "love & belonging" motivations and their tendency toward excessive rationality and idealism. These insights highlight a promising direction for future research on the humanization of LLMs. The dataset, benchmark, and code are available at https://aka.ms/motivebench.
☆ Rethinking Explainability in the Era of Multimodal AI
While multimodal AI systems (models jointly trained on heterogeneous data types such as text, time series, graphs, and images) have become ubiquitous and achieved remarkable performance across high-stakes applications, transparent and accurate explanation algorithms are crucial for their safe deployment and ensure user trust. However, most existing explainability techniques remain unimodal, generating modality-specific feature attributions, concepts, or circuit traces in isolation and thus failing to capture cross-modal interactions. This paper argues that such unimodal explanations systematically misrepresent and fail to capture the cross-modal influence that drives multimodal model decisions, and the community should stop relying on them for interpreting multimodal models. To support our position, we outline key principles for multimodal explanations grounded in modality: Granger-style modality influence (controlled ablations to quantify how removing one modality changes the explanation for another), Synergistic faithfulness (explanations capture the model's predictive power when modalities are combined), and Unified stability (explanations remain consistent under small, cross-modal perturbations). This targeted shift to multimodal explanations will help the community uncover hidden shortcuts, mitigate modality bias, improve model reliability, and enhance safety in high-stakes settings where incomplete explanations can have serious consequences.
☆ DualFast: Dual-Speedup Framework for Fast Sampling of Diffusion Models
Diffusion probabilistic models (DPMs) have achieved impressive success in visual generation. While, they suffer from slow inference speed due to iterative sampling. Employing fewer sampling steps is an intuitive solution, but this will also introduces discretization error. Existing fast samplers make inspiring efforts to reduce discretization error through the adoption of high-order solvers, potentially reaching a plateau in terms of optimization. This raises the question: can the sampling process be accelerated further? In this paper, we re-examine the nature of sampling errors, discerning that they comprise two distinct elements: the widely recognized discretization error and the less explored approximation error. Our research elucidates the dynamics between these errors and the step by implementing a dual-error disentanglement strategy. Building on these foundations, we introduce an unified and training-free acceleration framework, DualFast, designed to enhance the speed of DPM sampling by concurrently accounting for both error types, thereby minimizing the total sampling error. DualFast is seamlessly compatible with existing samplers and significantly boost their sampling quality and speed, particularly in extremely few sampling steps. We substantiate the effectiveness of our framework through comprehensive experiments, spanning both unconditional and conditional sampling domains, across both pixel-space and latent-space DPMs.
☆ Metis-RISE: RL Incentivizes and SFT Enhances Multimodal Reasoning Model Learning
Recent advancements in large language models (LLMs) have witnessed a surge in the development of advanced reasoning paradigms, which are now being integrated into multimodal large language models (MLLMs). However, existing approaches often fall short: methods solely employing reinforcement learning (RL) can struggle with sample inefficiency and activating entirely absent reasoning capabilities, while conventional pipelines that initiate with a cold-start supervised fine-tuning (SFT) phase before RL may restrict the model's exploratory capacity and face suboptimal convergence. In this work, we introduce \textbf{Metis-RISE} (\textbf{R}L \textbf{I}ncentivizes and \textbf{S}FT \textbf{E}nhances) for multimodal reasoning model learning. Unlike conventional approaches, Metis-RISE distinctively omits an initial SFT stage, beginning instead with an RL phase (e.g., using a Group Relative Policy Optimization variant) to incentivize and activate the model's latent reasoning capacity. Subsequently, the targeted SFT stage addresses two key challenges identified during RL: (1) \textit{inefficient trajectory sampling} for tasks where the model possesses but inconsistently applies correct reasoning, which we tackle using self-distilled reasoning trajectories from the RL model itself; and (2) \textit{fundamental capability absence}, which we address by injecting expert-augmented knowledge for prompts where the model entirely fails. This strategic application of RL for incentivization followed by SFT for enhancement forms the core of Metis-RISE, leading to two versions of our MLLMs (7B and 72B parameters). Evaluations on the OpenCompass Multimodal Reasoning Leaderboard demonstrate that both models achieve state-of-the-art performance among similar-sized models, with the 72B version ranking fourth overall.
comment: Project Page: https://github.com/MM-Thinking/Metis-RISE
☆ Beyond the First Read: AI-Assisted Perceptual Error Detection in Chest Radiography Accounting for Interobserver Variability
Chest radiography is widely used in diagnostic imaging. However, perceptual errors -- especially overlooked but visible abnormalities -- remain common and clinically significant. Current workflows and AI systems provide limited support for detecting such errors after interpretation and often lack meaningful human--AI collaboration. We introduce RADAR (Radiologist--AI Diagnostic Assistance and Review), a post-interpretation companion system. RADAR ingests finalized radiologist annotations and CXR images, then performs regional-level analysis to detect and refer potentially missed abnormal regions. The system supports a "second-look" workflow and offers suggested regions of interest (ROIs) rather than fixed labels to accommodate inter-observer variation. We evaluated RADAR on a simulated perceptual-error dataset derived from de-identified CXR cases, using F1 score and Intersection over Union (IoU) as primary metrics. RADAR achieved a recall of 0.78, precision of 0.44, and an F1 score of 0.56 in detecting missed abnormalities in the simulated perceptual-error dataset. Although precision is moderate, this reduces over-reliance on AI by encouraging radiologist oversight in human--AI collaboration. The median IoU was 0.78, with more than 90% of referrals exceeding 0.5 IoU, indicating accurate regional localization. RADAR effectively complements radiologist judgment, providing valuable post-read support for perceptual-error detection in CXR interpretation. Its flexible ROI suggestions and non-intrusive integration position it as a promising tool in real-world radiology workflows. To facilitate reproducibility and further evaluation, we release a fully open-source web implementation alongside a simulated error dataset. All code, data, demonstration videos, and the application are publicly available at https://github.com/avutukuri01/RADAR.
comment: 25 pages
☆ Just Go Parallel: Improving the Multilingual Capabilities of Large Language Models ACL 2025
Large language models (LLMs) have demonstrated impressive translation capabilities even without being explicitly trained on parallel data. This remarkable property has led some to believe that parallel data is no longer necessary for building multilingual language models. While some attribute this to the emergent abilities of LLMs due to scale, recent work suggests that it is actually caused by incidental bilingual signals present in the training data. Various methods have been proposed to maximize the utility of parallel data to enhance the multilingual capabilities of multilingual encoder-based and encoder-decoder language models. However, some decoder-based LLMs opt to ignore parallel data instead. In this work, we conduct a systematic study on the impact of adding parallel data on LLMs' multilingual capabilities, focusing specifically on translation and multilingual common-sense reasoning. Through controlled experiments, we demonstrate that parallel data can significantly improve LLMs' multilingual capabilities.
comment: ACL 2025
☆ MAGIC: Multi-Agent Argumentation and Grammar Integrated Critiquer
Automated Essay Scoring (AES) and Automatic Essay Feedback (AEF) systems aim to reduce the workload of human raters in educational assessment. However, most existing systems prioritize numeric scoring accuracy over the quality of feedback. This paper presents Multi-Agent Argumentation and Grammar Integrated Critiquer (MAGIC), a framework that uses multiple specialized agents to evaluate distinct writing aspects to both predict holistic scores and produce detailed, rubric-aligned feedback. To support evaluation, we curated a novel dataset of past GRE practice test essays with expert-evaluated scores and feedback. MAGIC outperforms baseline models in both essay scoring , as measured by Quadratic Weighted Kappa (QWK). We find that despite the improvement in QWK, there are opportunities for future work in aligning LLM-generated feedback to human preferences.
☆ SpaceTrack-TimeSeries: Time Series Dataset towards Satellite Orbit Analysis
With the rapid advancement of aerospace technology and the large-scale deployment of low Earth orbit (LEO) satellite constellations, the challenges facing astronomical observations and deep space exploration have become increasingly pronounced. As a result, the demand for high-precision orbital data on space objects-along with comprehensive analyses of satellite positioning, constellation configurations, and deep space satellite dynamics-has grown more urgent. However, there remains a notable lack of publicly accessible, real-world datasets to support research in areas such as space object maneuver behavior prediction and collision risk assessment. This study seeks to address this gap by collecting and curating a representative dataset of maneuvering behavior from Starlink satellites. The dataset integrates Two-Line Element (TLE) catalog data with corresponding high-precision ephemeris data, thereby enabling a more realistic and multidimensional modeling of space object behavior. It provides valuable insights into practical deployment of maneuver detection methods and the evaluation of collision risks in increasingly congested orbital environments.
☆ AS400-DET: Detection using Deep Learning Model for IBM i (AS/400) SP 2025
This paper proposes a method for automatic GUI component detection for the IBM i system (formerly and still more commonly known as AS/400). We introduce a human-annotated dataset consisting of 1,050 system screen images, in which 381 images are screenshots of IBM i system screens in Japanese. Each image contains multiple components, including text labels, text boxes, options, tables, instructions, keyboards, and command lines. We then develop a detection system based on state-of-the-art deep learning models and evaluate different approaches using our dataset. The experimental results demonstrate the effectiveness of our dataset in constructing a system for component detection from GUI screens. By automatically detecting GUI components from the screen, AS400-DET has the potential to perform automated testing on systems that operate via GUI screens.
comment: Accepted at the IVSP 2025 conference
☆ NaSh: Guardrails for an LLM-Powered Natural Language Shell
We explore how a shell that uses an LLM to accept natural language input might be designed differently from the shells of today. As LLMs may produce unintended or unexplainable outputs, we argue that a natural language shell should provide guardrails that empower users to recover from such errors. We concretize some ideas for doing so by designing a new shell called NaSh, identify remaining open problems in this space, and discuss research directions to address them.
comment: 7 pages, 3 figures
☆ Knowledge Graph Fusion with Large Language Models for Accurate, Explainable Manufacturing Process Planning
Precision process planning in Computer Numerical Control (CNC) machining demands rapid, context-aware decisions on tool selection, feed-speed pairs, and multi-axis routing, placing immense cognitive and procedural burdens on engineers from design specification through final part inspection. Conventional rule-based computer-aided process planning and knowledge-engineering shells freeze domain know-how into static tables, which become limited when dealing with unseen topologies, novel material states, shifting cost-quality-sustainability weightings, or shop-floor constraints such as tool unavailability and energy caps. Large language models (LLMs) promise flexible, instruction-driven reasoning for tasks but they routinely hallucinate numeric values and provide no provenance. We present Augmented Retrieval Knowledge Network Enhanced Search & Synthesis (ARKNESS), the end-to-end framework that fuses zero-shot Knowledge Graph (KG) construction with retrieval-augmented generation to deliver verifiable, numerically exact answers for CNC process planning. ARKNESS (1) automatically distills heterogeneous machining documents, G-code annotations, and vendor datasheets into augmented triple, multi-relational graphs without manual labeling, and (2) couples any on-prem LLM with a retriever that injects the minimal, evidence-linked subgraph needed to answer a query. Benchmarked on 155 industry-curated questions spanning tool sizing and feed-speed optimization, a lightweight 3B-parameter Llama-3 augmented by ARKNESS matches GPT-4o accuracy while achieving a +25 percentage point gain in multiple-choice accuracy, +22.4 pp in F1, and 8.1x ROUGE-L on open-ended responses.
☆ A Practical Guide for Evaluating LLMs and LLM-Reliant Systems ACL
Recent advances in generative AI have led to remarkable interest in using systems that rely on large language models (LLMs) for practical applications. However, meaningful evaluation of these systems in real-world scenarios comes with a distinct set of challenges, which are not well-addressed by synthetic benchmarks and de-facto metrics that are often seen in the literature. We present a practical evaluation framework which outlines how to proactively curate representative datasets, select meaningful evaluation metrics, and employ meaningful evaluation methodologies that integrate well with practical development and deployment of LLM-reliant systems that must adhere to real-world requirements and meet user-facing needs.
comment: Pre-print of a manuscript submitted to Transactions of the Association for Computational Linguistics (TACL)
☆ Edeflip: Supervised Word Translation between English and Yoruba
In recent years, embedding alignment has become the state-of-the-art machine translation approach, as it can yield high-quality translation without training on parallel corpora. However, existing research and application of embedding alignment mostly focus on high-resource languages with high-quality monolingual embeddings. It is unclear if and how low-resource languages may be similarly benefited. In this study, we implement an established supervised embedding alignment method for word translation from English to Yoruba, the latter a low-resource language. We found that higher embedding quality and normalizing embeddings increase word translation precision, with, additionally, an interaction effect between the two. Our results demonstrate the limitations of the state-of-the-art supervised embedding alignment when it comes to low-resource languages, for which there are additional factors that need to be taken into consideration, such as the importance of curating high-quality monolingual embeddings. We hope our work will be a starting point for further machine translation research that takes into account the challenges that low-resource languages face.
☆ Symmetry in Neural Network Parameter Spaces
Modern deep learning models are highly overparameterized, resulting in large sets of parameter configurations that yield the same outputs. A significant portion of this redundancy is explained by symmetries in the parameter space--transformations that leave the network function unchanged. These symmetries shape the loss landscape and constrain learning dynamics, offering a new lens for understanding optimization, generalization, and model complexity that complements existing theory of deep learning. This survey provides an overview of parameter space symmetry. We summarize existing literature, uncover connections between symmetry and learning theory, and identify gaps and opportunities in this emerging field.
comment: 29 pages, 9 figures
☆ Geometric Embedding Alignment via Curvature Matching in Transfer Learning
Geometrical interpretations of deep learning models offer insightful perspectives into their underlying mathematical structures. In this work, we introduce a novel approach that leverages differential geometry, particularly concepts from Riemannian geometry, to integrate multiple models into a unified transfer learning framework. By aligning the Ricci curvature of latent space of individual models, we construct an interrelated architecture, namely Geometric Embedding Alignment via cuRvature matching in transfer learning (GEAR), which ensures comprehensive geometric representation across datapoints. This framework enables the effective aggregation of knowledge from diverse sources, thereby improving performance on target tasks. We evaluate our model on 23 molecular task pairs sourced from various domains and demonstrate significant performance gains over existing benchmark model under both random (14.4%) and scaffold (8.3%) data splits.
comment: 13+19 pages, 7 figures, 8 tables, 1 pseudo code
☆ Missing the human touch? A computational stylometry analysis of GPT-4 translations of online Chinese literature
Existing research indicates that machine translations (MTs) of literary texts are often unsatisfactory. MTs are typically evaluated using automated metrics and subjective human ratings, with limited focus on stylistic features. Evidence is also limited on whether state-of-the-art large language models (LLMs) will reshape literary translation. This study examines the stylistic features of LLM translations, comparing GPT-4's performance to human translations in a Chinese online literature task. Computational stylometry analysis shows that GPT-4 translations closely align with human translations in lexical, syntactic, and content features, suggesting that LLMs might replicate the 'human touch' in literary translation style. These findings offer insights into AI's impact on literary translation from a posthuman perspective, where distinctions between machine and human translations become increasingly blurry.
comment: 15 pages, 3 figures
☆ Scientifically-Interpretable Reasoning Network (ScIReN): Uncovering the Black-Box of Nature NeurIPS 2025
Neural networks are a powerful tool for learning patterns from data. However, they do not respect known scientific laws, nor can they reveal novel scientific insights due to their black-box nature. In contrast, scientific reasoning distills biological or physical principles from observations and controlled experiments, and quantitatively interprets them with process-based models made of mathematical equations. Yet, process-based models rely on numerous free parameters that must be set in an ad-hoc manner, and thus often fit observations poorly in cross-scale predictions. While prior work has embedded process-based models in conventional neural networks, discovering interpretable relationships between parameters in process-based models and input features is still a grand challenge for scientific discovery. We thus propose Scientifically-Interpretable Reasoning Network (ScIReN), a fully-transparent framework that combines interpretable neural and process-based reasoning. An interpretable encoder predicts scientifically-meaningful latent parameters, which are then passed through a differentiable process-based decoder to predict labeled output variables. ScIReN also uses a novel hard-sigmoid constraint layer to restrict latent parameters to meaningful ranges defined by scientific prior knowledge, further enhancing its interpretability. While the embedded process-based model enforces established scientific knowledge, the encoder reveals new scientific mechanisms and relationships hidden in conventional black-box models. We apply ScIReN on two tasks: simulating the flow of organic carbon through soils, and modeling ecosystem respiration from plants. In both tasks, ScIReN outperforms black-box networks in predictive accuracy while providing substantial scientific interpretability -- it can infer latent scientific mechanisms and their relationships with input features.
comment: 28 pages, 9 figures, submitted to NeurIPS 2025
☆ Ace-CEFR -- A Dataset for Automated Evaluation of the Linguistic Difficulty of Conversational Texts for LLM Applications
There is an unmet need to evaluate the language difficulty of short, conversational passages of text, particularly for training and filtering Large Language Models (LLMs). We introduce Ace-CEFR, a dataset of English conversational text passages expert-annotated with their corresponding level of text difficulty. We experiment with several models on Ace-CEFR, including Transformer-based models and LLMs. We show that models trained on Ace-CEFR can measure text difficulty more accurately than human experts and have latency appropriate to production environments. Finally, we release the Ace-CEFR dataset to the public for research and development.
☆ Discovering Temporal Structure: An Overview of Hierarchical Reinforcement Learning
Developing agents capable of exploring, planning and learning in complex open-ended environments is a grand challenge in artificial intelligence (AI). Hierarchical reinforcement learning (HRL) offers a promising solution to this challenge by discovering and exploiting the temporal structure within a stream of experience. The strong appeal of the HRL framework has led to a rich and diverse body of literature attempting to discover a useful structure. However, it is still not clear how one might define what constitutes good structure in the first place, or the kind of problems in which identifying it may be helpful. This work aims to identify the benefits of HRL from the perspective of the fundamental challenges in decision-making, as well as highlight its impact on the performance trade-offs of AI agents. Through these benefits, we then cover the families of methods that discover temporal structure in HRL, ranging from learning directly from online experience to offline datasets, to leveraging large language models (LLMs). Finally, we highlight the challenges of temporal structure discovery and the domains that are particularly well-suited for such endeavours.
☆ Asymptotically Smaller Encodings for Graph Problems and Scheduling
We show how several graph problems (e.g., vertex-cover, independent-set, $k$-coloring) can be encoded into CNF using only $O(|V|^2 / \lg |V|)$ many clauses, as opposed to the $\Omega(|V|^2)$ constraints used by standard encodings. This somewhat surprising result is a simple consequence of a result of Erd\H{o}s, Chung, and Spencer (1983) about biclique coverings of graphs, and opens theoretical avenues to understand the success of "Bounded Variable Addition'' (Manthey, Heule, and Biere, 2012) as a preprocessing tool. Finally, we show a novel encoding for independent sets in some dense interval graphs using only $O(|V| \lg |V|)$ clauses (the direct encoding uses $\Omega(|V|^2)$), which we have successfully applied to a string-compression encoding posed by Bannai et al. (2022). As a direct byproduct, we obtain a reduction in the encoding size of a scheduling problem posed by Mayank and Modal (2020) from $O(NMT^2)$ to $O(NMT + M T^2 \lg T)$, where $N$ is the number of tasks, $T$ the total timespan, and $M$ the number of machines.
☆ SimpleDoc: Multi-Modal Document Understanding with Dual-Cue Page Retrieval and Iterative Refinement
Document Visual Question Answering (DocVQA) is a practical yet challenging task, which is to ask questions based on documents while referring to multiple pages and different modalities of information, e.g, images and tables. To handle multi-modality, recent methods follow a similar Retrieval Augmented Generation (RAG) pipeline, but utilize Visual Language Models (VLMs) based embedding model to embed and retrieve relevant pages as images, and generate answers with VLMs that can accept an image as input. In this paper, we introduce SimpleDoc, a lightweight yet powerful retrieval - augmented framework for DocVQA. It boosts evidence page gathering by first retrieving candidates through embedding similarity and then filtering and re-ranking these candidates based on page summaries. A single VLM-based reasoner agent repeatedly invokes this dual-cue retriever, iteratively pulling fresh pages into a working memory until the question is confidently answered. SimpleDoc outperforms previous baselines by 3.2% on average on 4 DocVQA datasets with much fewer pages retrieved. Our code is available at https://github.com/ag2ai/SimpleDoc.
☆ Bures-Wasserstein Flow Matching for Graph Generation
Graph generation has emerged as a critical task in fields ranging from molecule design to drug discovery. Contemporary approaches, notably diffusion and flow-based models, have achieved solid graph generative performance through constructing a probability path that interpolates between a reference distribution and the data distribution. However, these methods typically model the evolution of individual nodes and edges independently and use linear interpolations to build the path assuming that the data lie in Euclidean space. We show that this is suboptimal given the intrinsic non-Euclidean structure and interconnected patterns of graphs, and it poses risks to the sampling convergence. To build a better probability path, we model the joint evolution of the nodes and edges by representing graphs as connected systems parameterized by Markov random fields (MRF). We then leverage the optimal transport displacement between MRF objects to design the probability path for graph generation. Based on this, we introduce BWFlow, a flow-matching framework for graph generation that respects the underlying geometry of graphs and provides smooth velocities in the probability path. The novel framework can be adapted to both continuous and discrete flow-matching algorithms. Experimental evaluations in plain graph generation and 2D/3D molecule generation validate the effectiveness of BWFlow in graph generation with competitive performance, stable training, and guaranteed sampling convergence.
☆ Taming Polysemanticity in LLMs: Provable Feature Recovery via Sparse Autoencoders
We study the challenge of achieving theoretically grounded feature recovery using Sparse Autoencoders (SAEs) for the interpretation of Large Language Models. Existing SAE training algorithms often lack rigorous mathematical guarantees and suffer from practical limitations such as hyperparameter sensitivity and instability. To address these issues, we first propose a novel statistical framework for the feature recovery problem, which includes a new notion of feature identifiability by modeling polysemantic features as sparse mixtures of underlying monosemantic concepts. Building on this framework, we introduce a new SAE training algorithm based on ``bias adaptation'', a technique that adaptively adjusts neural network bias parameters to ensure appropriate activation sparsity. We theoretically \highlight{prove that this algorithm correctly recovers all monosemantic features} when input data is sampled from our proposed statistical model. Furthermore, we develop an improved empirical variant, Group Bias Adaptation (GBA), and \highlight{demonstrate its superior performance against benchmark methods when applied to LLMs with up to 1.5 billion parameters}. This work represents a foundational step in demystifying SAE training by providing the first SAE algorithm with theoretical recovery guarantees, thereby advancing the development of more transparent and trustworthy AI systems through enhanced mechanistic interpretability.
comment: 136 pages, 21 figures
☆ ProfiLLM: An LLM-Based Framework for Implicit Profiling of Chatbot Users
Despite significant advancements in conversational AI, large language model (LLM)-powered chatbots often struggle with personalizing their responses according to individual user characteristics, such as technical expertise, learning style, and communication preferences. This lack of personalization is particularly problematic in specialized knowledge-intense domains like IT/cybersecurity (ITSec), where user knowledge levels vary widely. Existing approaches for chatbot personalization primarily rely on static user categories or explicit self-reported information, limiting their adaptability to an evolving perception of the user's proficiency, obtained in the course of ongoing interactions. In this paper, we propose ProfiLLM, a novel framework for implicit and dynamic user profiling through chatbot interactions. This framework consists of a taxonomy that can be adapted for use in diverse domains and an LLM-based method for user profiling in terms of the taxonomy. To demonstrate ProfiLLM's effectiveness, we apply it in the ITSec domain where troubleshooting interactions are used to infer chatbot users' technical proficiency. Specifically, we developed ProfiLLM[ITSec], an ITSec-adapted variant of ProfiLLM, and evaluated its performance on 1,760 human-like chatbot conversations from 263 synthetic users. Results show that ProfiLLM[ITSec] rapidly and accurately infers ITSec profiles, reducing the gap between actual and predicted scores by up to 55--65\% after a single prompt, followed by minor fluctuations and further refinement. In addition to evaluating our new implicit and dynamic profiling framework, we also propose an LLM-based persona simulation methodology, a structured taxonomy for ITSec proficiency, our codebase, and a dataset of chatbot interactions to support future research.
☆ Safe Domains of Attraction for Discrete-Time Nonlinear Systems: Characterization and Verifiable Neural Network Estimation
Analysis of nonlinear autonomous systems typically involves estimating domains of attraction, which have been a topic of extensive research interest for decades. Despite that, accurately estimating domains of attraction for nonlinear systems remains a challenging task, where existing methods are conservative or limited to low-dimensional systems. The estimation becomes even more challenging when accounting for state constraints. In this work, we propose a framework to accurately estimate safe (state-constrained) domains of attraction for discrete-time autonomous nonlinear systems. In establishing this framework, we first derive a new Zubov equation, whose solution corresponds to the exact safe domain of attraction. The solution to the aforementioned Zubov equation is shown to be unique and continuous over the whole state space. We then present a physics-informed approach to approximating the solution of the Zubov equation using neural networks. To obtain certifiable estimates of the domain of attraction from the neural network approximate solutions, we propose a verification framework that can be implemented using standard verification tools (e.g., $\alpha,\!\beta$-CROWN and dReal). To illustrate its effectiveness, we demonstrate our approach through numerical examples concerning nonlinear systems with state constraints.
☆ Toward Explainable Offline RL: Analyzing Representations in Intrinsically Motivated Decision Transformers
Elastic Decision Transformers (EDTs) have proved to be particularly successful in offline reinforcement learning, offering a flexible framework that unifies sequence modeling with decision-making under uncertainty. Recent research has shown that incorporating intrinsic motivation mechanisms into EDTs improves performance across exploration tasks, yet the representational mechanisms underlying these improvements remain unexplored. In this paper, we introduce a systematic post-hoc explainability framework to analyze how intrinsic motivation shapes learned embeddings in EDTs. Through statistical analysis of embedding properties (including covariance structure, vector magnitudes, and orthogonality), we reveal that different intrinsic motivation variants create fundamentally different representational structures. Our analysis demonstrates environment-specific correlation patterns between embedding metrics and performance that explain why intrinsic motivation improves policy learning. These findings show that intrinsic motivation operates beyond simple exploration bonuses, acting as a representational prior that shapes embedding geometry in biologically plausible ways, creating environment-specific organizational structures that facilitate better decision-making.
☆ ASMR: Augmenting Life Scenario using Large Generative Models for Robotic Action Reflection
When designing robots to assist in everyday human activities, it is crucial to enhance user requests with visual cues from their surroundings for improved intent understanding. This process is defined as a multimodal classification task. However, gathering a large-scale dataset encompassing both visual and linguistic elements for model training is challenging and time-consuming. To address this issue, our paper introduces a novel framework focusing on data augmentation in robotic assistance scenarios, encompassing both dialogues and related environmental imagery. This approach involves leveraging a sophisticated large language model to simulate potential conversations and environmental contexts, followed by the use of a stable diffusion model to create images depicting these environments. The additionally generated data serves to refine the latest multimodal models, enabling them to more accurately determine appropriate actions in response to user interactions with the limited target data. Our experimental results, based on a dataset collected from real-world scenarios, demonstrate that our methodology significantly enhances the robot's action selection capabilities, achieving the state-of-the-art performance.
comment: IWSDS 2024 Best Paper Award
☆ How Does LLM Reasoning Work for Code? A Survey and a Call to Action
The rise of large language models (LLMs) has led to dramatic improvements across a wide range of natural language tasks. These advancements have extended into the domain of code, facilitating complex tasks such as code generation, translation, summarization, and repair. However, their utility for real-world deployment in-the-wild has only recently been studied, particularly on software engineering (SWE) tasks such as GitHub issue resolution. In this study, we examine the code reasoning techniques that underlie the ability to perform such tasks, and examine the paradigms used to drive their performance. Our contributions in this paper are: (1) the first dedicated survey on code reasoning for code tasks, highlighting overarching strategies, hybrid and agentic approaches; (2) a taxonomy of various techniques used to drive code reasoning; (3) a comprehensive overview of performance on common benchmarks and a showcase of new, under-explored benchmarks with high potential in SWE; (4) an exploration on how core properties of code can be used to explain different reasoning techniques; and (5) gaps and potentially under-explored areas for future research.
☆ HierVL: Semi-Supervised Segmentation leveraging Hierarchical Vision-Language Synergy with Dynamic Text-Spatial Query Alignment
Semi-supervised semantic segmentation remains challenging under severe label scarcity and domain variability. Vision-only methods often struggle to generalize, resulting in pixel misclassification between similar classes, poor generalization and boundary localization. Vision-Language Models offer robust, domain-invariant semantics but lack the spatial grounding required for dense prediction. We introduce HierVL, a unified framework that bridges this gap by integrating abstract text embeddings into a mask-transformer architecture tailored for semi-supervised segmentation. HierVL features three novel components: a Hierarchical Semantic Query Generator that filters and projects abstract class embeddings into multi-scale queries to suppress irrelevant classes and handle intra-class variability; a Cross-Modal Spatial Alignment Module that aligns semantic queries with pixel features for sharper boundaries under sparse supervision; and a Dual-Query Transformer Decoder that fuses semantic and instance-level queries to prevent instance collapse. We also introduce targeted regularization losses that maintain vision-language alignment throughout training to reinforce semantic grounding. HierVL establishes a new state-of-the-art by achieving a +4.4% mean improvement of the intersection over the union on COCO (with 232 labeled images), +3.1% on Pascal VOC (with 92 labels), +5.9% on ADE20 (with 158 labels) and +1.8% on Cityscapes (with 100 labels), demonstrating better performance under 1% supervision on four benchmark datasets. Our results show that language-guided segmentation closes the label efficiency gap and unlocks new levels of fine-grained, instance-aware generalization.
☆ Adaptive Guidance Accelerates Reinforcement Learning of Reasoning Models
We study the process through which reasoning models trained with reinforcement learning on verifiable rewards (RLVR) can learn to solve new problems. We find that RLVR drives performance through two main means: (1) by compressing pass@$k$ into pass@1 and (2) via "capability gain" in which models learn to solve new problems that they previously could not solve even at high $k$. We find that while capability gain exists across model scales, learning to solve new problems is primarily driven through self-distillation. We demonstrate these findings across model scales ranging from 0.5B to 72B on >500,000 reasoning problems with prompts and verifiable final answers across math, science, and code domains. We further show that we can significantly improve pass@$k$ rates by leveraging natural language guidance for the model to consider within context while still requiring the model to derive a solution chain from scratch. Based of these insights, we derive $\text{Guide}$ - a new class of online training algorithms. $\text{Guide}$ adaptively incorporates hints into the model's context on problems for which all rollouts were initially incorrect and adjusts the importance sampling ratio for the "off-policy" trajectories in order to optimize the policy for contexts in which the hints are no longer present. We describe variants of $\text{Guide}$ for GRPO and PPO and empirically show that Guide-GRPO on 7B and 32B parameter models improves generalization over its vanilla counterpart with up to 4$\%$ macro-average improvement across math benchmarks. We include careful ablations to analyze $\text{Guide}$'s components and theoretically analyze Guide's learning efficiency.
☆ Integrating Knowledge Graphs and Bayesian Networks: A Hybrid Approach for Explainable Disease Risk Prediction
Multimodal electronic health record (EHR) data is useful for disease risk prediction based on medical domain knowledge. However, general medical knowledge must be adapted to specific healthcare settings and patient populations to achieve practical clinical use. Additionally, risk prediction systems must handle uncertainty from incomplete data and non-deterministic health outcomes while remaining explainable. These challenges can be alleviated by the integration of knowledge graphs (KGs) and Bayesian networks (BNs). We present a novel approach for constructing BNs from ontology-based KGs and multimodal EHR data for explainable disease risk prediction. Through an application use case of atrial fibrillation and real-world EHR data, we demonstrate that the approach balances generalised medical knowledge with patient-specific context, effectively handles uncertainty, is highly explainable, and achieves good predictive performance.
comment: This work has been accepted for presentation at the 49th IEEE International Conference on Computers, Software, and Applications (COMPSAC 2025). The final published version will be available via IEEE Xplore
☆ Evaluating Explainability: A Framework for Systematic Assessment and Reporting of Explainable AI Features
Explainability features are intended to provide insight into the internal mechanisms of an AI device, but there is a lack of evaluation techniques for assessing the quality of provided explanations. We propose a framework to assess and report explainable AI features. Our evaluation framework for AI explainability is based on four criteria: 1) Consistency quantifies the variability of explanations to similar inputs, 2) Plausibility estimates how close the explanation is to the ground truth, 3) Fidelity assesses the alignment between the explanation and the model internal mechanisms, and 4) Usefulness evaluates the impact on task performance of the explanation. Finally, we developed a scorecard for AI explainability methods that serves as a complete description and evaluation to accompany this type of algorithm. We describe these four criteria and give examples on how they can be evaluated. As a case study, we use Ablation CAM and Eigen CAM to illustrate the evaluation of explanation heatmaps on the detection of breast lesions on synthetic mammographies. The first three criteria are evaluated for clinically-relevant scenarios. Our proposed framework establishes criteria through which the quality of explanations provided by AI models can be evaluated. We intend for our framework to spark a dialogue regarding the value provided by explainability features and help improve the development and evaluation of AI-based medical devices.
☆ Logical Expressiveness of Graph Neural Networks with Hierarchical Node Individualization NeurIPS 2025
We propose and study Hierarchical Ego Graph Neural Networks (HEGNNs), an expressive extension of graph neural networks (GNNs) with hierarchical node individualization, inspired by the Individualization-Refinement paradigm for graph isomorphism testing. HEGNNs generalize subgraph-GNNs and form a hierarchy of increasingly expressive models that, in the limit, can distinguish graphs up to isomorphism. We provide a logical characterization of HEGNN node classifiers, with and without subgraph restrictions, using graded hybrid logic. This characterization enables us to relate the separating power of HEGNNs to that of higher-order GNNs, GNNs enriched with local homomorphism count features, and color refinement algorithms based on Individualization-Refinement. Our experimental results confirm the practical feasibility of HEGNNs and show benefits in comparison with traditional GNN architectures, both with and without local homomorphism count features.
comment: Submitted to NeurIPS 2025, 28 pages, 5 figures
☆ Intelligent Image Sensing for Crime Analysis: A ML Approach towards Enhanced Violence Detection and Investigation
The increasing global crime rate, coupled with substantial human and property losses, highlights the limitations of traditional surveillance methods in promptly detecting diverse and unexpected acts of violence. Addressing this pressing need for automatic violence detection, we leverage Machine Learning to detect and categorize violent events in video streams. This paper introduces a comprehensive framework for violence detection and classification, employing Supervised Learning for both binary and multi-class violence classification. The detection model relies on 3D Convolutional Neural Networks, while the classification model utilizes the separable convolutional 3D model for feature extraction and bidirectional LSTM for temporal processing. Training is conducted on a diverse customized datasets with frame-level annotations, incorporating videos from surveillance cameras, human recordings, hockey fight, sohas and wvd dataset across various platforms. Additionally, a camera module integrated with raspberry pi is used to capture live video feed, which is sent to the ML model for processing. Thus, demonstrating improved performance in terms of computational resource efficiency and accuracy.
☆ Few-Shot Learning for Industrial Time Series: A Comparative Analysis Using the Example of Screw-Fastening Process Monitoring
Few-shot learning (FSL) has shown promise in vision but remains largely unexplored for \emph{industrial} time-series data, where annotating every new defect is prohibitively expensive. We present a systematic FSL study on screw-fastening process monitoring, using a 2\,300-sample multivariate torque dataset that covers 16 uni- and multi-factorial defect types. Beyond benchmarking, we introduce a \textbf{label-aware episodic sampler} that collapses multi-label sequences into multiple single-label tasks, keeping the output dimensionality fixed while preserving combinatorial label information. Two FSL paradigms are investigated: the metric-based \emph{Prototypical Network} and the gradient-based \emph{Model-Agnostic Meta-Learning} (MAML), each paired with three backbones: 1D CNN, InceptionTime and the 341 M-parameter transformer \emph{Moment}. On 10-shot, 3-way evaluation, the InceptionTime + Prototypical Network combination achieves a \textbf{0.944 weighted F1} in the multi-class regime and \textbf{0.935} in the multi-label regime, outperforming finetuned Moment by up to 5.3\% while requiring two orders of magnitude fewer parameters and training time. Across all backbones, metric learning consistently surpasses MAML, and our label-aware sampling yields an additional 1.7\% F1 over traditional class-based sampling. These findings challenge the assumption that large foundation models are always superior: when data are scarce, lightweight CNN architectures augmented with simple metric learning not only converge faster but also generalize better. We release code, data splits and pre-trained weights to foster reproducible research and to catalyze the adoption of FSL in high-value manufacturing inspection.
☆ A Systematic Review of User-Centred Evaluation of Explainable AI in Healthcare
Despite promising developments in Explainable Artificial Intelligence, the practical value of XAI methods remains under-explored and insufficiently validated in real-world settings. Robust and context-aware evaluation is essential, not only to produce understandable explanations but also to ensure their trustworthiness and usability for intended users, but tends to be overlooked because of no clear guidelines on how to design an evaluation with users. This study addresses this gap with two main goals: (1) to develop a framework of well-defined, atomic properties that characterise the user experience of XAI in healthcare; and (2) to provide clear, context-sensitive guidelines for defining evaluation strategies based on system characteristics. We conducted a systematic review of 82 user studies, sourced from five databases, all situated within healthcare settings and focused on evaluating AI-generated explanations. The analysis was guided by a predefined coding scheme informed by an existing evaluation framework, complemented by inductive codes developed iteratively. The review yields three key contributions: (1) a synthesis of current evaluation practices, highlighting a growing focus on human-centred approaches in healthcare XAI; (2) insights into the interrelations among explanation properties; and (3) an updated framework and a set of actionable guidelines to support interdisciplinary teams in designing and implementing effective evaluation strategies for XAI systems tailored to specific application contexts.
☆ Enhancing interpretability of rule-based classifiers through feature graphs
In domains where transparency and trustworthiness are crucial, such as healthcare, rule-based systems are widely used and often preferred over black-box models for decision support systems due to their inherent interpretability. However, as rule-based models grow complex, discerning crucial features, understanding their interactions, and comparing feature contributions across different rule sets becomes challenging. To address this, we propose a comprehensive framework for estimating feature contributions in rule-based systems, introducing a graph-based feature visualisation strategy, a novel feature importance metric agnostic to rule-based predictors, and a distance metric for comparing rule sets based on feature contributions. By experimenting on two clinical datasets and four rule-based methods (decision trees, logic learning machines, association rules, and neural networks with rule extraction), we showcase our method's capability to uncover novel insights on the combined predictive value of clinical features, both at the dataset and class-specific levels. These insights can aid in identifying new risk factors, signature genes, and potential biomarkers, and determining the subset of patient information that should be prioritised to enhance diagnostic accuracy. Comparative analysis of the proposed feature importance score with state-of-the-art methods on 15 public benchmarks demonstrates competitive performance and superior robustness. The method implementation is available on GitHub: https://github.com/ChristelSirocchi/rule-graph.
☆ Alignment Quality Index (AQI) : Beyond Refusals: AQI as an Intrinsic Alignment Diagnostic via Latent Geometry, Cluster Divergence, and Layer wise Pooled Representations
Alignment is no longer a luxury, it is a necessity. As large language models (LLMs) enter high-stakes domains like education, healthcare, governance, and law, their behavior must reliably reflect human-aligned values and safety constraints. Yet current evaluations rely heavily on behavioral proxies such as refusal rates, G-Eval scores, and toxicity classifiers, all of which have critical blind spots. Aligned models are often vulnerable to jailbreaking, stochasticity of generation, and alignment faking. To address this issue, we introduce the Alignment Quality Index (AQI). This novel geometric and prompt-invariant metric empirically assesses LLM alignment by analyzing the separation of safe and unsafe activations in latent space. By combining measures such as the Davies-Bouldin Score (DBS), Dunn Index (DI), Xie-Beni Index (XBI), and Calinski-Harabasz Index (CHI) across various formulations, AQI captures clustering quality to detect hidden misalignments and jailbreak risks, even when outputs appear compliant. AQI also serves as an early warning signal for alignment faking, offering a robust, decoding invariant tool for behavior agnostic safety auditing. Additionally, we propose the LITMUS dataset to facilitate robust evaluation under these challenging conditions. Empirical tests on LITMUS across different models trained under DPO, GRPO, and RLHF conditions demonstrate AQI's correlation with external judges and ability to reveal vulnerabilities missed by refusal metrics. We make our implementation publicly available to foster future research in this area.
☆ Beyond Shapley Values: Cooperative Games for the Interpretation of Machine Learning Models
Cooperative game theory has become a cornerstone of post-hoc interpretability in machine learning, largely through the use of Shapley values. Yet, despite their widespread adoption, Shapley-based methods often rest on axiomatic justifications whose relevance to feature attribution remains debatable. In this paper, we revisit cooperative game theory from an interpretability perspective and argue for a broader and more principled use of its tools. We highlight two general families of efficient allocations, the Weber and Harsanyi sets, that extend beyond Shapley values and offer richer interpretative flexibility. We present an accessible overview of these allocation schemes, clarify the distinction between value functions and aggregation rules, and introduce a three-step blueprint for constructing reliable and theoretically-grounded feature attributions. Our goal is to move beyond fixed axioms and provide the XAI community with a coherent framework to design attribution methods that are both meaningful and robust to shifting methodological trends.
☆ Scaling Algorithm Distillation for Continuous Control with Mamba
Algorithm Distillation (AD) was recently proposed as a new approach to perform In-Context Reinforcement Learning (ICRL) by modeling across-episodic training histories autoregressively with a causal transformer model. However, due to practical limitations induced by the attention mechanism, experiments were bottlenecked by the transformer's quadratic complexity and limited to simple discrete environments with short time horizons. In this work, we propose leveraging the recently proposed Selective Structured State Space Sequence (S6) models, which achieved state-of-the-art (SOTA) performance on long-range sequence modeling while scaling linearly in sequence length. Through four complex and continuous Meta Reinforcement Learning environments, we demonstrate the overall superiority of Mamba, a model built with S6 layers, over a transformer model for AD. Additionally, we show that scaling AD to very long contexts can improve ICRL performance and make it competitive even with a SOTA online meta RL baseline.
☆ Investigating the interaction of linguistic and mathematical reasoning in language models using multilingual number puzzles
Across languages, numeral systems vary widely in how they construct and combine numbers. While humans consistently learn to navigate this diversity, large language models (LLMs) struggle with linguistic-mathematical puzzles involving cross-linguistic numeral systems, which humans can learn to solve successfully. We investigate why this task is difficult for LLMs through a series of experiments that untangle the linguistic and mathematical aspects of numbers in language. Our experiments establish that models cannot consistently solve such problems unless the mathematical operations in the problems are explicitly marked using known symbols ($+$, $\times$, etc, as in "twenty + three"). In further ablation studies, we probe how individual parameters of numeral construction and combination affect performance. While humans use their linguistic understanding of numbers to make inferences about the implicit compositional structure of numerals, LLMs seem to lack this notion of implicit numeral structure. We conclude that the ability to flexibly infer compositional rules from implicit patterns in human-scale data remains an open challenge for current reasoning models.
☆ StaQ it! Growing neural networks for Policy Mirror Descent
In Reinforcement Learning (RL), regularization has emerged as a popular tool both in theory and practice, typically based either on an entropy bonus or a Kullback-Leibler divergence that constrains successive policies. In practice, these approaches have been shown to improve exploration, robustness and stability, giving rise to popular Deep RL algorithms such as SAC and TRPO. Policy Mirror Descent (PMD) is a theoretical framework that solves this general regularized policy optimization problem, however the closed-form solution involves the sum of all past Q-functions, which is intractable in practice. We propose and analyze PMD-like algorithms that only keep the last $M$ Q-functions in memory, and show that for finite and large enough $M$, a convergent algorithm can be derived, introducing no error in the policy update, unlike prior deep RL PMD implementations. StaQ, the resulting algorithm, enjoys strong theoretical guarantees and is competitive with deep RL baselines, while exhibiting less performance oscillation, paving the way for fully stable deep RL algorithms and providing a testbed for experimentation with Policy Mirror Descent.
comment: 44 pages, 12 figures
☆ Fake it till You Make it: Reward Modeling as Discriminative Prediction
An effective reward model plays a pivotal role in reinforcement learning for post-training enhancement of visual generative models. However, current approaches of reward modeling suffer from implementation complexity due to their reliance on extensive human-annotated preference data or meticulously engineered quality dimensions that are often incomplete and engineering-intensive. Inspired by adversarial training in generative adversarial networks (GANs), this paper proposes GAN-RM, an efficient reward modeling framework that eliminates manual preference annotation and explicit quality dimension engineering. Our method trains the reward model through discrimination between a small set of representative, unpaired target samples(denoted as Preference Proxy Data) and model-generated ordinary outputs, requiring only a few hundred target samples. Comprehensive experiments demonstrate our GAN-RM's effectiveness across multiple key applications including test-time scaling implemented as Best-of-N sample filtering, post-training approaches like Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO).
☆ Students' Reliance on AI in Higher Education: Identifying Contributing Factors
The increasing availability and use of artificial intelligence (AI) tools in educational settings has raised concerns about students' overreliance on these technologies. Overreliance occurs when individuals accept incorrect AI-generated recommendations, often without critical evaluation, leading to flawed problem solutions and undermining learning outcomes. This study investigates potential factors contributing to patterns of AI reliance among undergraduate students, examining not only overreliance but also appropriate reliance (correctly accepting helpful and rejecting harmful recommendations) and underreliance (incorrectly rejecting helpful recommendations). Our approach combined pre- and post-surveys with a controlled experimental task where participants solved programming problems with an AI assistant that provided both accurate and deliberately incorrect suggestions, allowing direct observation of students' reliance patterns when faced with varying AI reliability. We find that appropriate reliance is significantly related to students' programming self-efficacy, programming literacy, and need for cognition, while showing negative correlations with post-task trust and satisfaction. Overreliance showed significant correlations with post-task trust and satisfaction with the AI assistant. Underreliance was negatively correlated with programming literacy, programming self-efficacy, and need for cognition. Overall, the findings provide insights for developing targeted interventions that promote appropriate reliance on AI tools, with implications for the integration of AI in curriculum and educational technologies.
☆ LocationReasoner: Evaluating LLMs on Real-World Site Selection Reasoning
Recent advances in large language models (LLMs), particularly those enhanced through reinforced post-training, have demonstrated impressive reasoning capabilities, as exemplified by models such as OpenAI o1 and DeepSeek-R1. However, these capabilities are predominantly benchmarked on domains like mathematical problem solving and code generation -- leaving open the question of whether such reasoning skills generalize to complex, real-world scenarios. In this paper, we introduce LocationReasoner, a benchmark designed to evaluate LLMs' reasoning abilities in the context of real-world site selection, where models must identify feasible locations by reasoning over diverse and complicated spatial, environmental, and logistical constraints. The benchmark comprises over 300 carefully crafted queries of varying difficulty levels, supported by a sandbox environment with in-house tools for constraint-based location search. Extensive evaluations reveal that state-of-the-art reasoning models offer limited improvement over their non-reasoning predecessors in real-world contexts, with even the latest OpenAI o4 model failing on 30% of site selection tasks. Moreover, agentic strategies such as ReAct and Reflexion often suffer from over-reasoning, leading to worse outcomes than direct code-generation prompting. With key limitations of LLMs in holistic and non-linear reasoning highlighted, we release LocationReasoner to foster the development of LLMs and agents capable of robust, grounded reasoning in real-world decision-making tasks. Codes and data for our benchmark are available at https://github.com/miho-koda/LocationReasoner.
♻ ☆ VGR: Visual Grounded Reasoning
In the field of multimodal chain-of-thought (CoT) reasoning, existing approaches predominantly rely on reasoning on pure language space, which inherently suffers from language bias and is largely confined to math or science domains. This narrow focus limits their ability to handle complex visual reasoning tasks that demand comprehensive understanding of image details. To address these limitations, this paper introduces VGR, a novel reasoning multimodal large language model (MLLM) with enhanced fine-grained visual perception capabilities. Unlike traditional MLLMs that answer the question or reasoning solely on the language space, our VGR first detects relevant regions that may help to solve problems, and then provides precise answers based on replayed image regions. To achieve this, we conduct a large-scale SFT dataset called VGR -SFT that contains reasoning data with mixed vision grounding and language deduction. The inference pipeline of VGR allows the model to choose bounding boxes for visual reference and a replay stage is introduced to integrates the corresponding regions into the reasoning process, enhancing multimodel comprehension. Experiments on the LLaVA-NeXT-7B baseline show that VGR achieves superior performance on multi-modal benchmarks requiring comprehensive image detail understanding. Compared to the baseline, VGR uses only 30\% of the image token count while delivering scores of +4.1 on MMStar, +7.1 on AI2D, and a +12.9 improvement on ChartQA.
comment: 9 pages, 4 figures
♻ ☆ Specification and Evaluation of Multi-Agent LLM Systems -- Prototype and Cybersecurity Applications
Recent advancements in LLMs indicate potential for novel applications, e.g., through reasoning capabilities in the latest OpenAI and DeepSeek models. For applying these models in specific domains beyond text generation, LLM-based multi-agent approaches can be utilized that solve complex tasks by combining reasoning techniques, code generation, and software execution. Applications might utilize these capabilities and the knowledge of specialized LLM agents. However, while many evaluations are performed on LLMs, reasoning techniques, and applications individually, their joint specification and combined application is not explored well. Defined specifications for multi-agent LLM systems are required to explore their potential and their suitability for specific applications, allowing for systematic evaluations of LLMs, reasoning techniques, and related aspects. This paper reports the results of exploratory research to specify and evaluate these aspects through a multi-agent system. The system architecture and prototype are extended from previous research and a specification is introduced for multi-agent systems. Test cases involving cybersecurity tasks indicate feasibility of the architecture and evaluation approach. In particular, the results show the evaluation of question answering, server security, and network security tasks that were completed correctly by agents with LLMs from OpenAI and DeepSeek.
comment: This work has been submitted for a possible publication. Copyright may be transferred. In this case, this version will be updated with a notice, according to the publisher's guidelines
♻ ☆ Towards a Cascaded LLM Framework for Cost-effective Human-AI Decision-Making
Effective human-AI decision-making balances three key factors: the \textit{correctness} of predictions, the \textit{cost} of knowledge and reasoning complexity, and the confidence about whether to \textit{abstain} automated answers or involve human experts. In this work, we present a cascaded LLM decision framework that adaptively delegates tasks across multiple tiers of expertise -- a base model for initial candidate answers, a more capable and knowledgeable (but costlier) large model, and a human expert for when the model cascade abstains. Our method proceeds in two stages. First, a deferral policy determines whether to accept the base model's answer or regenerate it with the large model based on the confidence score. Second, an abstention policy decides whether the cascade model response is sufficiently certain or requires human intervention. Moreover, we incorporate an online learning mechanism in the framework that can leverage human feedback to improve decision quality over time. We demonstrate this approach to general question-answering (ARC-Easy and ARC-Challenge) and medical question-answering (MedQA and MedMCQA). Our results show that our cascaded strategy outperforms in most cases single-model baselines in accuracy while reducing cost and providing a principled way to handle abstentions.
♻ ☆ Foundation Models in Medical Imaging -- A Review and Outlook
Foundation models (FMs) are changing the way medical images are analyzed by learning from large collections of unlabeled data. Instead of relying on manually annotated examples, FMs are pre-trained to learn general-purpose visual features that can later be adapted to specific clinical tasks with little additional supervision. In this review, we examine how FMs are being developed and applied in pathology, radiology, and ophthalmology, drawing on evidence from over 150 studies. We explain the core components of FM pipelines, including model architectures, self-supervised learning methods, and strategies for downstream adaptation. We also review how FMs are being used in each imaging domain and compare design choices across applications. Finally, we discuss key challenges and open questions to guide future research.
♻ ☆ Intra-Trajectory Consistency for Reward Modeling
Reward models are critical for improving large language models (LLMs), particularly in reinforcement learning from human feedback (RLHF) or inference-time verification. Current reward modeling typically relies on scores of overall responses to learn the outcome rewards for the responses. However, since the response-level scores are coarse-grained supervision signals, the reward model struggles to identify the specific components within a response trajectory that truly correlate with the scores, leading to poor generalization on unseen responses. In this paper, we propose to leverage generation probabilities to establish reward consistency between processes in the response trajectory, which allows the response-level supervisory signal to propagate across processes, thereby providing additional fine-grained signals for reward learning. Building on analysis under the Bayesian framework, we develop an intra-trajectory consistency regularization to enforce that adjacent processes with higher next-token generation probability maintain more consistent rewards. We apply the proposed regularization to the advanced outcome reward model, improving its performance on RewardBench. Besides, we show that the reward model trained with the proposed regularization induces better DPO-aligned policies and achieves better best-of-N (BON) inference-time verification results. Our code is provided in https://github.com/chaoyang101/ICRM.
comment: Under review
♻ ☆ An overview of domain-specific foundation model: key technologies, applications and challenges
The impressive performance of ChatGPT and other foundation-model-based products in human language understanding has prompted both academia and industry to explore how these models can be tailored for specific industries and application scenarios. This process, known as the customization of domain-specific foundation models (FMs), addresses the limitations of general-purpose models, which may not fully capture the unique patterns and requirements of domain-specific data. Despite its importance, there is a notable lack of comprehensive overview papers on building domain-specific FMs, while numerous resources exist for general-purpose models. To bridge this gap, this article provides a timely and thorough overview of the methodology for customizing domain-specific FMs. It introduces basic concepts, outlines the general architecture, and surveys key methods for constructing domain-specific models. Furthermore, the article discusses various domains that can benefit from these specialized models and highlights the challenges ahead. Through this overview, we aim to offer valuable guidance and reference for researchers and practitioners from diverse fields to develop their own customized FMs.
♻ ☆ Improving Multimodal Learning Balance and Sufficiency through Data Remixing ICML2025
Different modalities hold considerable gaps in optimization trajectories, including speeds and paths, which lead to modality laziness and modality clash when jointly training multimodal models, resulting in insufficient and imbalanced multimodal learning. Existing methods focus on enforcing the weak modality by adding modality-specific optimization objectives, aligning their optimization speeds, or decomposing multimodal learning to enhance unimodal learning. These methods fail to achieve both unimodal sufficiency and multimodal balance. In this paper, we, for the first time, address both concerns by proposing multimodal Data Remixing, including decoupling multimodal data and filtering hard samples for each modality to mitigate modality imbalance; and then batch-level reassembling to align the gradient directions and avoid cross-modal interference, thus enhancing unimodal learning sufficiency. Experimental results demonstrate that our method can be seamlessly integrated with existing approaches, improving accuracy by approximately 6.50%$\uparrow$ on CREMAD and 3.41%$\uparrow$ on Kinetic-Sounds, without training set expansion or additional computational overhead during inference. The source code is available at https://github.com/MatthewMaxy/Remix_ICML2025.
comment: ICML2025
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Codes and data will be available later (under review). Keywords: reinforcement learning with verifiable rewards (RLVR), instruction following, complex instructions
comment: 13 pages of main body, 3 tables, 5 figures, 45 pages of appendix
♻ ☆ Data Shifts Hurt CoT: A Theoretical Study
Chain of Thought (CoT) has been applied to various large language models (LLMs) and proven to be effective in improving the quality of outputs. In recent studies, transformers are proven to have absolute upper bounds in terms of expressive power, and consequently, they cannot solve many computationally difficult problems. However, empowered by CoT, transformers are proven to be able to solve some difficult problems effectively, such as the $k$-parity problem. Nevertheless, those works rely on two imperative assumptions: (1) identical training and testing distribution, and (2) corruption-free training data with correct reasoning steps. However, in the real world, these assumptions do not always hold. Although the risks of data shifts have caught attention, our work is the first to rigorously study the exact harm caused by such shifts to the best of our knowledge. Focusing on the $k$-parity problem, in this work we investigate the joint impact of two types of data shifts: the distribution shifts and data poisoning, on the quality of trained models obtained by a well-established CoT decomposition. In addition to revealing a surprising phenomenon that CoT leads to worse performance on learning parity than directly generating the prediction, our technical results also give a rigorous and comprehensive explanation of the mechanistic reasons of such impact.
comment: Comparison to v1: upgraded the quality of a figure
♻ ☆ Distinguishing Autonomous AI Agents from Collaborative Agentic Systems: A Comprehensive Framework for Understanding Modern Intelligent Architectures
The emergence of large language models has catalyzed two distinct yet interconnected paradigms in artificial intelligence: standalone AI Agents and collaborative Agentic AI ecosystems. This comprehensive study establishes a definitive framework for distinguishing these architectures through systematic analysis of their operational principles, structural compositions, and deployment methodologies. We characterize AI Agents as specialized, tool-enhanced systems leveraging foundation models for targeted automation within constrained environments. Conversely, Agentic AI represents sophisticated multi-entity frameworks where distributed agents exhibit emergent collective intelligence through coordinated interaction protocols. Our investigation traces the evolutionary trajectory from traditional rule-based systems through generative AI foundations to contemporary agent architectures. We present detailed architectural comparisons examining planning mechanisms, memory systems, coordination protocols, and decision-making processes. The study categorizes application landscapes, contrasting single-agent implementations in customer service and content management with multi-agent deployments in research automation and complex decision support. We identify critical challenges including reliability issues, coordination complexities, and scalability constraints, while proposing innovative solutions through enhanced reasoning frameworks, robust memory architectures, and improved coordination mechanisms. This framework provides essential guidance for practitioners selecting appropriate agentic approaches and establishes foundational principles for next-generation intelligent system development.
comment: There may be overlap with another author's work. I am withdrawing this for me to review further
♻ ☆ FoMoH: A clinically meaningful foundation model evaluation for structured electronic health records
Foundation models hold significant promise in healthcare, given their capacity to extract meaningful representations independent of downstream tasks. This property has enabled state-of-the-art performance across several clinical applications trained on structured electronic health record (EHR) data, even in settings with limited labeled data, a prevalent challenge in healthcare. However, there is little consensus on these models' potential for clinical utility due to the lack of desiderata of comprehensive and meaningful tasks and sufficiently diverse evaluations to characterize the benefit over conventional supervised learning. To address this gap, we propose a suite of clinically meaningful tasks spanning patient outcomes, early prediction of acute and chronic conditions, including desiderata for robust evaluations. We evaluate state-of-the-art foundation models on EHR data consisting of 5 million patients from Columbia University Irving Medical Center (CUMC), a large urban academic medical center in New York City, across 14 clinically relevant tasks. We measure overall accuracy, calibration, and subpopulation performance to surface tradeoffs based on the choice of pre-training, tokenization, and data representation strategies. Our study aims to advance the empirical evaluation of structured EHR foundation models and guide the development of future healthcare foundation models.
♻ ☆ Improving Clinical Note Generation from Complex Doctor-Patient Conversation
Writing clinical notes and documenting medical exams is a critical task for healthcare professionals, serving as a vital component of patient care documentation. However, manually writing these notes is time-consuming and can impact the amount of time clinicians can spend on direct patient interaction and other tasks. Consequently, the development of automated clinical note generation systems has emerged as a clinically meaningful area of research within AI for health. In this paper, we present three key contributions to the field of clinical note generation using large language models (LLMs). First, we introduce CliniKnote, a comprehensive dataset consisting of 1,200 complex doctor-patient conversations paired with their full clinical notes. This dataset, created and curated by medical experts with the help of modern neural networks, provides a valuable resource for training and evaluating models in clinical note generation tasks. Second, we propose the K-SOAP (Keyword, Subjective, Objective, Assessment, and Plan) note format, which enhances traditional SOAP~\cite{podder2023soap} (Subjective, Objective, Assessment, and Plan) notes by adding a keyword section at the top, allowing for quick identification of essential information. Third, we develop an automatic pipeline to generate K-SOAP notes from doctor-patient conversations and benchmark various modern LLMs using various metrics. Our results demonstrate significant improvements in efficiency and performance compared to standard LLM finetuning methods.
♻ ☆ On Synthesizing Data for Context Attribution in Question Answering
Question Answering (QA) accounts for a significant portion of LLM usage "in the wild". However, LLMs sometimes produce false or misleading responses, also known as "hallucinations". Therefore, grounding the generated answers in contextually provided information -- i.e., providing evidence for the generated text -- is paramount for LLMs' trustworthiness. Providing this information is the task of context attribution. In this paper, we systematically study LLM-based approaches for this task, namely we investigate (i) zero-shot inference, (ii) LLM ensembling, and (iii) fine-tuning of small LMs on synthetic data generated by larger LLMs. Our key contribution is SynQA: a novel generative strategy for synthesizing context attribution data. Given selected context sentences, an LLM generates QA pairs that are supported by these sentences. This leverages LLMs' natural strengths in text generation while ensuring clear attribution paths in the synthetic training data. We show that the attribution data synthesized via SynQA is highly effective for fine-tuning small LMs for context attribution in different QA tasks and domains. Finally, with a user study, we validate the usefulness of small LMs (fine-tuned on synthetic data from SynQA) in context attribution for QA.
♻ ☆ On the Feasibility of Fully AI-automated Vishing Attacks AsiaCCS 2025
A vishing attack is a form of social engineering where attackers use phone calls to deceive individuals into disclosing sensitive information, such as personal data, financial information, or security credentials. Attackers exploit the perceived urgency and authenticity of voice communication to manipulate victims, often posing as legitimate entities like banks or tech support. Vishing is a particularly serious threat as it bypasses security controls designed to protect information. In this work, we study the potential for vishing attacks to escalate with the advent of AI. In theory, AI-powered software bots may have the ability to automate these attacks by initiating conversations with potential victims via phone calls and deceiving them into disclosing sensitive information. To validate this thesis, we introduce ViKing, an AI-powered vishing system developed using publicly available AI technology. It relies on a Large Language Model (LLM) as its core cognitive processor to steer conversations with victims, complemented by a pipeline of speech-to-text and text-to-speech modules that facilitate audio-text conversion in phone calls. Through a controlled social experiment involving 240 participants, we discovered that ViKing has successfully persuaded many participants to reveal sensitive information, even those who had been explicitly warned about the risk of vishing campaigns. Interactions with ViKing's bots were generally considered realistic. From these findings, we conclude that tools like ViKing may already be accessible to potential malicious actors, while also serving as an invaluable resource for cyber awareness programs.
comment: To appear in AsiaCCS 2025
♻ ☆ A Self-Refining Framework for Enhancing ASR Using TTS-Synthesized Data
We propose a self-refining framework that enhances ASR performance with only unlabeled datasets. The process starts with an existing ASR model generating pseudo-labels on unannotated speech, which are then used to train a high-fidelity text-to-speech (TTS) system. Then, synthesized speech text pairs are bootstrapped into the original ASR system, completing the closed-loop self-improvement cycle. We demonstrated the effectiveness of the framework on Taiwanese Mandarin speech. Leveraging 6,000 hours of unlabeled speech, a moderate amount of text data, and synthetic content from the AI models, we adapt Whisper-large-v2 into a specialized model, Twister. Twister reduces error rates by up to 20% on Mandarin and 50% on Mandarin-English code-switching benchmarks compared to Whisper. Results highlight the framework as a compelling alternative to pseudo-labeling self-distillation approaches and provides a practical pathway for improving ASR performance in low-resource or domain-specific settings.
♻ ☆ Unreal Patterns
This paper introduces a framework for representing information about entities that do not exist or may never exist, such as those involving fictional entities, blueprints, simulations, and future scenarios. Traditional approaches that introduce "dummy instances" or rely on modal logic are criticized, and a proposal is defended in which such cases are modeled using the intersections of actual types rather than specific non existent tokens. The paper positions itself within the Basic Formal Ontology and its realist commitments, emphasizing the importance of practical, implementable solutions over purely metaphysical or philosophical proposals, arguing that existing approaches to non existent entities either overcommit to metaphysical assumptions or introduce computational inefficiencies that hinder applications. By developing a structured ontology driven approach to unreal patterns, the paper aims to provide a useful and computationally viable means of handling references to hypothetical or non existent entities.
♻ ☆ JAEGER: Dual-Level Humanoid Whole-Body Controller
This paper presents JAEGER, a dual-level whole-body controller for humanoid robots that addresses the challenges of training a more robust and versatile policy. Unlike traditional single-controller approaches, JAEGER separates the control of the upper and lower bodies into two independent controllers, so that they can better focus on their distinct tasks. This separation alleviates the dimensionality curse and improves fault tolerance. JAEGER supports both root velocity tracking (coarse-grained control) and local joint angle tracking (fine-grained control), enabling versatile and stable movements. To train the controller, we utilize a human motion dataset (AMASS), retargeting human poses to humanoid poses through an efficient retargeting network, and employ a curriculum learning approach. This method performs supervised learning for initialization, followed by reinforcement learning for further exploration. We conduct our experiments on two humanoid platforms and demonstrate the superiority of our approach against state-of-the-art methods in both simulation and real environments.
comment: 15 pages, 2 figures
♻ ☆ An Investigation into Value Misalignment in LLM-Generated Texts for Cultural Heritage
As Large Language Models (LLMs) become increasingly prevalent in tasks related to cultural heritage, such as generating descriptions of historical monuments, translating ancient texts, preserving oral traditions, and creating educational content, their ability to produce accurate and culturally aligned texts is being increasingly relied upon by users and researchers. However, cultural value misalignments may exist in generated texts, such as the misrepresentation of historical facts, the erosion of cultural identity, and the oversimplification of complex cultural narratives, which may lead to severe consequences. Therefore, investigating value misalignment in the context of LLM for cultural heritage is crucial for mitigating these risks, yet there has been a significant lack of systematic and comprehensive study and investigation in this area. To fill this gap, we systematically assess the reliability of LLMs in generating culturally aligned texts for cultural heritage-related tasks. We conduct a comprehensive evaluation by compiling an extensive set of 1066 query tasks covering 5 widely recognized categories with 17 aspects within the knowledge framework of cultural heritage across 5 open-source LLMs, and examine both the type and rate of cultural value misalignments in the generated texts. Using both automated and manual approaches, we effectively detect and analyze the cultural value misalignments in LLM-generated texts. Our findings are concerning: over 65% of the generated texts exhibit notable cultural misalignments, with certain tasks demonstrating almost complete misalignment with key cultural values. Beyond these findings, this paper introduces a benchmark dataset and a comprehensive evaluation workflow that can serve as a valuable resource for future research aimed at enhancing the cultural sensitivity and reliability of LLMs.
♻ ☆ Consistency of Neural Causal Partial Identification
Recent progress in Neural Causal Models (NCMs) showcased how identification and partial identification of causal effects can be automatically carried out via training of neural generative models that respect the constraints encoded in a given causal graph [Xia et al. 2022, Balazadeh et al. 2022]. However, formal consistency of these methods has only been proven for the case of discrete variables or only for linear causal models. In this work, we prove the consistency of partial identification via NCMs in a general setting with both continuous and categorical variables. Further, our results highlight the impact of the design of the underlying neural network architecture in terms of depth and connectivity as well as the importance of applying Lipschitz regularization in the training phase. In particular, we provide a counterexample showing that without Lipschitz regularization this method may not be asymptotically consistent. Our results are enabled by new results on the approximability of Structural Causal Models (SCMs) via neural generative models, together with an analysis of the sample complexity of the resulting architectures and how that translates into an error in the constrained optimization problem that defines the partial identification bounds.
comment: 60 pages, 8 figures, accepted by Neurips 2024
♻ ☆ Quantum computing and artificial intelligence: status and perspectives
This white paper discusses and explores the various points of intersection between quantum computing and artificial intelligence (AI). It describes how quantum computing could support the development of innovative AI solutions. It also examines use cases of classical AI that can empower research and development in quantum technologies, with a focus on quantum computing and quantum sensing. The purpose of this white paper is to provide a long-term research agenda aimed at addressing foundational questions about how AI and quantum computing interact and benefit one another. It concludes with a set of recommendations and challenges, including how to orchestrate the proposed theoretical work, align quantum AI developments with quantum hardware roadmaps, estimate both classical and quantum resources - especially with the goal of mitigating and optimizing energy consumption - advance this emerging hybrid software engineering discipline, and enhance European industrial competitiveness while considering societal implications.
comment: 32 pages, 3 figures
♻ ☆ Reference-Aligned Retrieval-Augmented Question Answering over Heterogeneous Proprietary Documents
Proprietary corporate documents contain rich domain-specific knowledge, but their overwhelming volume and disorganized structure make it difficult even for employees to access the right information when needed. For example, in the automotive industry, vehicle crash-collision tests, each costing hundreds of thousands of dollars, produce highly detailed documentation. However, retrieving relevant content during decision-making remains time-consuming due to the scale and complexity of the material. While Retrieval-Augmented Generation (RAG)-based Question Answering (QA) systems offer a promising solution, building an internal RAG-QA system poses several challenges: (1) handling heterogeneous multi-modal data sources, (2) preserving data confidentiality, and (3) enabling traceability between each piece of information in the generated answer and its original source document. To address these, we propose a RAG-QA framework for internal enterprise use, consisting of: (1) a data pipeline that converts raw multi-modal documents into a structured corpus and QA pairs, (2) a fully on-premise, privacy-preserving architecture, and (3) a lightweight reference matcher that links answer segments to supporting content. Applied to the automotive domain, our system improves factual correctness (+1.79, +1.94), informativeness (+1.33, +1.16), and helpfulness (+1.08, +1.67) over a non-RAG baseline, based on 1-5 scale ratings from both human and LLM judge.
♻ ☆ Affordable AI Assistants with Knowledge Graph of Thoughts
Large Language Models (LLMs) are revolutionizing the development of AI assistants capable of performing diverse tasks across domains. However, current state-of-the-art LLM-driven agents face significant challenges, including high operational costs and limited success rates on complex benchmarks like GAIA. To address these issues, we propose Knowledge Graph of Thoughts (KGoT), an innovative AI assistant architecture that integrates LLM reasoning with dynamically constructed knowledge graphs (KGs). KGoT extracts and structures task-relevant knowledge into a dynamic KG representation, iteratively enhanced through external tools such as math solvers, web crawlers, and Python scripts. Such structured representation of task-relevant knowledge enables low-cost models to solve complex tasks effectively while also minimizing bias and noise. For example, KGoT achieves a 29% improvement in task success rates on the GAIA benchmark compared to Hugging Face Agents with GPT-4o mini. Moreover, harnessing a smaller model dramatically reduces operational costs by over 36x compared to GPT-4o. Improvements for other models (e.g., Qwen2.5-32B and Deepseek-R1-70B) and benchmarks (e.g., SimpleQA) are similar. KGoT offers a scalable, affordable, versatile, and high-performing solution for AI assistants.
♻ ☆ JEPA4Rec: Learning Effective Language Representations for Sequential Recommendation via Joint Embedding Predictive Architecture
Language representation learning has emerged as a promising approach for sequential recommendation, thanks to its ability to learn generalizable representations. However, despite its advantages, this approach still struggles with data sparsity and a limited understanding of common-sense user preferences. To address these limitations, we propose $\textbf{JEPA4Rec}$, a framework that combines $\textbf{J}$oint $\textbf{E}$mbedding $\textbf{P}$redictive $\textbf{A}$rchitecture with language modeling of item textual descriptions. JEPA4Rec captures semantically rich and transferable representations, improving recommendation performance and reducing reliance on large-scale pre-training data. Specifically, JEPA4Rec represents items as text sentences by flattening descriptive information such as $\textit{title, category}$, and other attributes. To encode these sentences, we employ a bidirectional Transformer encoder with modified embedding layers tailored for capturing item information in recommendation datasets. We apply masking to text sentences and use them to predict the representations of the unmasked sentences, helping the model learn generalizable item embeddings. To further improve recommendation performance and language understanding, we employ a two-stage training strategy incorporating self-supervised learning losses. Experiments on six real-world datasets demonstrate that JEPA4Rec consistently outperforms state-of-the-art methods, particularly in cross-domain, cross-platform, and low-resource scenarios.
♻ ☆ Benchmarking Practices in LLM-driven Offensive Security: Testbeds, Metrics, and Experiment Design
Large Language Models (LLMs) have emerged as a powerful approach for driving offensive penetration-testing tooling. Due to the opaque nature of LLMs, empirical methods are typically used to analyze their efficacy. The quality of this analysis is highly dependent on the chosen testbed, captured metrics and analysis methods employed. This paper analyzes the methodology and benchmarking practices used for evaluating Large Language Model (LLM)-driven attacks, focusing on offensive uses of LLMs in cybersecurity. We review 19 research papers detailing 18 prototypes and their respective testbeds. We detail our findings and provide actionable recommendations for future research, emphasizing the importance of extending existing testbeds, creating baselines, and including comprehensive metrics and qualitative analysis. We also note the distinction between security research and practice, suggesting that CTF-based challenges may not fully represent real-world penetration testing scenarios.
♻ ☆ From Euler to AI: Unifying Formulas for Mathematical Constants
The constant $\pi$ has fascinated scholars throughout the centuries, inspiring numerous formulas for its evaluation, such as infinite sums and continued fractions. Despite their individual significance, many of the underlying connections among formulas remain unknown, missing unifying theories that could unveil deeper understanding. The absence of a unifying theory reflects a broader challenge across math and science: knowledge is typically accumulated through isolated discoveries, while deeper connections often remain hidden. In this work, we present an automated framework for the unification of mathematical formulas. Our system combines large language models (LLMs) for systematic formula harvesting, an LLM-code feedback loop for validation, and a novel symbolic algorithm for clustering and eventual unification. We demonstrate this methodology on the hallmark case of $\pi$, an ideal testing ground for symbolic unification. Applying this approach to 455,050 arXiv papers, we validate 407 distinct formulas for $\pi$ and prove relations between 381 (94%) of them, of which 188 (46%) can be derived from a single mathematical object$\unicode{x2014}$linking canonical formulas by Euler, Gauss, Brouncker, and newer ones from algorithmic discoveries by the Ramanujan Machine. Our method generalizes to other constants, including $e$, $\zeta(3)$, and Catalan's constant, demonstrating the potential of AI-assisted mathematics to uncover hidden structures and unify knowledge across domains.
comment: 60 pages, 6 figures
♻ ☆ SAFE: Finding Sparse and Flat Minima to Improve Pruning ICML 2025
Sparsifying neural networks often suffers from seemingly inevitable performance degradation, and it remains challenging to restore the original performance despite much recent progress. Motivated by recent studies in robust optimization, we aim to tackle this problem by finding subnetworks that are both sparse and flat at the same time. Specifically, we formulate pruning as a sparsity-constrained optimization problem where flatness is encouraged as an objective. We solve it explicitly via an augmented Lagrange dual approach and extend it further by proposing a generalized projection operation, resulting in novel pruning methods called SAFE and its extension, SAFE$^+$. Extensive evaluations on standard image classification and language modeling tasks reveal that SAFE consistently yields sparse networks with improved generalization performance, which compares competitively to well-established baselines. In addition, SAFE demonstrates resilience to noisy data, making it well-suited for real-world conditions.
comment: ICML 2025
♻ ☆ Boosting Generalization in Diffusion-Based Neural Combinatorial Solver via Inference Time Adaptation
Diffusion-based Neural Combinatorial Optimization (NCO) has demonstrated effectiveness in solving NP-complete (NPC) problems by learning discrete diffusion models for solution generation, eliminating hand-crafted domain knowledge. Despite their success, existing NCO methods face significant challenges in both cross-scale and cross-problem generalization, and high training costs compared to traditional solvers. While recent studies on diffusion models have introduced training-free guidance approaches that leverage pre-defined guidance functions for conditional generation, such methodologies have not been extensively explored in combinatorial optimization. To bridge this gap, we propose a training-free inference time adaptation framework (DIFU-Ada) that enables both the zero-shot cross-problem transfer and cross-scale generalization capabilities of diffusion-based NCO solvers without requiring additional training. We provide theoretical analysis that helps understanding the cross-problem transfer capability. Our experimental results demonstrate that a diffusion solver, trained exclusively on the Traveling Salesman Problem (TSP), can achieve competitive zero-shot transfer performance across different problem scales on TSP variants, such as Prize Collecting TSP (PCTSP) and the Orienteering Problem (OP), through inference time adaptation.
♻ ☆ General agents need world models ICML 2025
Are world models a necessary ingredient for flexible, goal-directed behaviour, or is model-free learning sufficient? We provide a formal answer to this question, showing that any agent capable of generalizing to multi-step goal-directed tasks must have learned a predictive model of its environment. We show that this model can be extracted from the agent's policy, and that increasing the agents performance or the complexity of the goals it can achieve requires learning increasingly accurate world models. This has a number of consequences: from developing safe and general agents, to bounding agent capabilities in complex environments, and providing new algorithms for eliciting world models from agents.
comment: Accepted ICML 2025
♻ ☆ Better Think with Tables: Tabular Structures Enhance LLM Comprehension for Data-Analytics Requests
Large Language Models (LLMs) often struggle with data-analytics requests related to information retrieval and data manipulation that frequently arise in real-world scenarios under multiple conditions. In this paper, we introduce Thinking with Tables, where we inject tabular structures into LLMs for data-analytics requests. Through comprehensive evaluations across various request types, we show that providing tabular structures yields a 40.29 percent average performance gain along with better robustness and token efficiency. Through attention-value analysis, we uncover that tables help LLMs better attend to relevant information, explaining these improvements. Beyond tables and text, we evaluate whether (1) blending structuredness within text, such as providing templates or fixing the order of attributes, and (2) other representative structures, such as knowledge graphs and JSON, are helpful. We observe that utilizing tables offers the best balance between efficiency and effectiveness. These advantages remain consistent under increased task complexity and even when all input data cannot be structured. Finally, as data analytics typically relies on structured factual inputs, our text-to-table conversion demonstrates the method's applicability to text-compatible data sources.
comment: 20 pages, 7 figures
♻ ☆ Train with Perturbation, Infer after Merging: A Two-Stage Framework for Continual Learning
Continual Learning (CL) aims to enable models to continuously acquire new knowledge from a sequence of tasks with avoiding the forgetting of learned information. However, existing CL methods only rely on the parameters of the most recent task for inference, which makes them susceptible to catastrophic forgetting. Inspired by the recent success of model merging techniques, we propose \textbf{Perturb-and-Merge (P\&M)}, a novel continual learning framework that integrates model merging into the CL paradigm to mitigate forgetting. Specifically, after training on each task, P\&M constructs a new model by forming a convex combination of the previous model and the newly trained task-specific model. Through theoretical analysis, we minimize the total loss increase across all tasks and derive an analytical solution for the optimal merging coefficient. To further improve the performance of the merged model, we observe that the degradation introduced during merging can be alleviated by a regularization term composed of the task vector and the Hessian matrix of the loss function. Interestingly, we show that this term can be efficiently approximated using second-order symmetric finite differences, and a stochastic perturbation strategy along the task vector direction is accordingly devised which incurs no additional forward or backward passes while providing an effective approximation of the regularization term. Finally, we combine P\&M with LoRA, a parameter-efficient fine-tuning method, to reduce memory overhead. Our proposed approach achieves state-of-the-art performance on several continual learning benchmark datasets.
comment: 17 pages, 3 figures
♻ ☆ Achieving Collective Welfare in Multi-Agent Reinforcement Learning via Suggestion Sharing ECML-PKDD 2025
In human society, the conflict between self-interest and collective well-being often obstructs efforts to achieve shared welfare. Related concepts like the Tragedy of the Commons and Social Dilemmas frequently manifest in our daily lives. As artificial agents increasingly serve as autonomous proxies for humans, we propose a novel multi-agent reinforcement learning (MARL) method to address this issue - learning policies to maximise collective returns even when individual agents' interests conflict with the collective one. Unlike traditional cooperative MARL solutions that involve sharing rewards, values, and policies or designing intrinsic rewards to encourage agents to learn collectively optimal policies, we propose a novel MARL approach where agents exchange action suggestions. Our method reveals less private information compared to sharing rewards, values, or policies, while enabling effective cooperation without the need to design intrinsic rewards. Our algorithm is supported by our theoretical analysis that establishes a bound on the discrepancy between collective and individual objectives, demonstrating how sharing suggestions can align agents' behaviours with the collective objective. Experimental results demonstrate that our algorithm performs competitively with baselines that rely on value or policy sharing or intrinsic rewards.
comment: Machine Learning (ECML-PKDD 2025 Journal Track)
♻ ☆ Truth Knows No Language: Evaluating Truthfulness Beyond English
We introduce a professionally translated extension of the TruthfulQA benchmark designed to evaluate truthfulness in Basque, Catalan, Galician, and Spanish. Truthfulness evaluations of large language models (LLMs) have primarily been conducted in English. However, the ability of LLMs to maintain truthfulness across languages remains under-explored. Our study evaluates 12 state-of-the-art open LLMs, comparing base and instruction-tuned models using human evaluation, multiple-choice metrics, and LLM-as-a-Judge scoring. Our findings reveal that, while LLMs perform best in English and worst in Basque (the lowest-resourced language), overall truthfulness discrepancies across languages are smaller than anticipated. Furthermore, we show that LLM-as-a-Judge correlates more closely with human judgments than multiple-choice metrics, and that informativeness plays a critical role in truthfulness assessment. Our results also indicate that machine translation provides a viable approach for extending truthfulness benchmarks to additional languages, offering a scalable alternative to professional translation. Finally, we observe that universal knowledge questions are better handled across languages than context- and time-dependent ones, highlighting the need for truthfulness evaluations that account for cultural and temporal variability. Dataset and code are publicly available under open licenses.
comment: 14 pages, 6 figures, 8 tables
♻ ☆ How Much Can We Forget about Data Contamination? ICML 2025
The leakage of benchmark data into the training data has emerged as a significant challenge for evaluating the capabilities of large language models (LLMs). In this work, we challenge the common assumption that small-scale contamination renders benchmark evaluations invalid. First, we experimentally quantify the magnitude of benchmark overfitting based on scaling along three dimensions: The number of model parameters (up to 1.6B), the number of times an example is seen (up to 144), and the number of training tokens (up to 40B). If model and data follow the Chinchilla scaling laws, minor contamination indeed leads to overfitting. At the same time, even 144 times of contamination can be forgotten if the training data is scaled beyond five times Chinchilla, a regime characteristic of many modern LLMs. Continual pre-training of OLMo-7B corroborates these results. Next, we study the impact of the weight decay parameter on example forgetting, showing that empirical forgetting occurs faster than the cumulative weight decay. This allows us to gauge the degree of example forgetting in large-scale training runs, indicating that many LLMs, including Lllama 3 405B, have forgotten the data seen at the beginning of training.
comment: ICML 2025 camera ready
♻ ☆ On Information-Theoretic Measures of Predictive Uncertainty UAI 2025
Reliable estimation of predictive uncertainty is crucial for machine learning applications, particularly in high-stakes scenarios where hedging against risks is essential. Despite its significance, there is no universal agreement on how to best quantify predictive uncertainty. In this work, we revisit core concepts to propose a framework for information-theoretic measures of predictive uncertainty. Our proposed framework categorizes predictive uncertainty measures according to two factors: (I) The predicting model (II) The approximation of the true predictive distribution. Examining all possible combinations of these two factors, we derive a set of predictive uncertainty measures that includes both known and newly introduced ones. We extensively evaluate these measures across a broad set of tasks, identifying conditions under which certain measures excel. Our findings show the importance of aligning the choice of uncertainty measure with the predicting model on in-distribution (ID) data, the limitations of epistemic uncertainty measures for out-of-distribution (OOD) data, and that the disentanglement between measures varies substantially between ID and OOD data. Together, these insights provide a more comprehensive understanding of predictive uncertainty measures, revealing their implicit assumptions and relationships.
comment: UAI 2025
♻ ☆ The Remarkable Robustness of LLMs: Stages of Inference?
We investigate the robustness of Large Language Models (LLMs) to structural interventions by deleting and swapping adjacent layers during inference. Surprisingly, models retain 72-95% of their original top-1 prediction accuracy without any fine-tuning. We find that performance degradation is not uniform across layers: interventions to the early and final layers cause the most degradation, while the model is remarkably robust to dropping middle layers. This pattern of localized sensitivity motivates our hypothesis of four stages of inference, observed across diverse model families and sizes: (1) detokenization, where local context is integrated to lift raw token embeddings into higher-level representations; (2) feature engineering, where task- and entity-specific features are iteratively refined; (3) prediction ensembling, where hidden states are aggregated into plausible next-token predictions; and (4) residual sharpening, where irrelevant features are suppressed to finalize the output distribution. Synthesizing behavioral and mechanistic evidence, we provide a framework for interpreting depth-dependent computations in LLMs.
comment: For Github code see https://github.com/vdlad/Remarkable-Robustness-of-LLMs. Send all correspondence to the first author
♻ ☆ From Reasoning to Code: GRPO Optimization for Underrepresented Languages
Generating accurate and executable code using large language models (LLMs) is challenging for languages with limited public training data compared to popular languages such as Python. This paper introduces a generalizable approach that uses small-scale code versions of the Qwen 2.5 model combined with Group Relative Policy Optimization (GRPO) to enable effective code generation through explicit reasoning steps, which is particularly beneficial for languages with smaller source code databases. Using Prolog as a representative use case -- given its limited online presence -- the initial model faced challenges in generating executable code. After some training steps, the model successfully produces logically consistent and syntactically accurate code by directly integrating reasoning-driven feedback into the reinforcement learning loop. Experimental evaluations using mathematical logic problem benchmarks illustrate significant improvements in reasoning quality, code accuracy, and logical correctness, underscoring the potential of this approach to benefit a wide range of programming languages lacking extensive training resources.
comment: Preprint. Under review
♻ ☆ Convex Markov Games: A New Frontier for Multi-Agent Reinforcement Learning ICML 2025
Behavioral diversity, expert imitation, fairness, safety goals and others give rise to preferences in sequential decision making domains that do not decompose additively across time. We introduce the class of convex Markov games that allow general convex preferences over occupancy measures. Despite infinite time horizon and strictly higher generality than Markov games, pure strategy Nash equilibria exist. Furthermore, equilibria can be approximated empirically by performing gradient descent on an upper bound of exploitability. Our experiments reveal novel solutions to classic repeated normal-form games, find fair solutions in a repeated asymmetric coordination game, and prioritize safe long-term behavior in a robot warehouse environment. In the prisoner's dilemma, our algorithm leverages transient imitation to find a policy profile that deviates from observed human play only slightly, yet achieves higher per-player utility while also being three orders of magnitude less exploitable.
comment: Published at ICML 2025
♻ ☆ ASAP: Learning Generalizable Online Bin Packing via Adaptive Selection After Proposal
Recently, deep reinforcement learning (DRL) has achieved promising results in solving online 3D Bin Packing Problems (3D-BPP). However, these DRL-based policies may perform poorly on new instances due to distribution shift. Besides generalization, we also consider adaptation, completely overlooked by previous work, which aims at rapidly fine-tuning these policies to a new test distribution. To tackle both generalization and adaptation issues, we propose ASAP, which decomposes a solver's decision-making into two policies, one for proposal and one for selection. The role of the proposal policy is to suggest promising actions, which allows the selection policy to choose among them. To effectively learn these policies, we introduce a training framework that combines pre-training and post-training, enhanced by meta-learning. During online adaptation, we only fine-tune the selection policy to rapidly adapt to a test distribution. Our experiments demonstrate that ASAP exhibits excellent generalization and adaptation capabilities on in-distribution and out-of-distribution instances for both discrete and continuous setups.
♻ ☆ Beyond Chemical QA: Evaluating LLM's Chemical Reasoning with Modular Chemical Operations
While large language models (LLMs) with Chain-of-Thought (CoT) reasoning excel in mathematics and coding, their potential for systematic reasoning in chemistry, a domain demanding rigorous structural analysis for real-world tasks like drug design and reaction engineering, remains untapped. Current benchmarks focus on simple knowledge retrieval, neglecting step-by-step reasoning required for complex tasks such as molecular optimization and reaction prediction. To address this, we introduce ChemCoTBench, a reasoning framework that bridges molecular structure understanding with arithmetic-inspired operations, including addition, deletion, and substitution, to formalize chemical problem-solving into transparent, step-by-step workflows. By treating molecular transformations as modular "chemical operations", the framework enables slow-thinking reasoning, mirroring the logic of mathematical proofs while grounding solutions in real-world chemical constraints. We evaluate models on two high-impact tasks: Molecular Property Optimization and Chemical Reaction Prediction. These tasks mirror real-world challenges while providing structured evaluability. By providing annotated datasets, a reasoning taxonomy, and baseline evaluations, ChemCoTBench bridges the gap between abstract reasoning methods and practical chemical discovery, establishing a foundation for advancing LLMs as tools for AI-driven scientific innovation.
comment: 22 pages, 10 figures
♻ ☆ Deep Learning-Based Breast Cancer Detection in Mammography: A Multi-Center Validation Study in Thai Population
This study presents a deep learning system for breast cancer detection in mammography, developed using a modified EfficientNetV2 architecture with enhanced attention mechanisms. The model was trained on mammograms from a major Thai medical center and validated on three distinct datasets: an in-domain test set (9,421 cases), a biopsy-confirmed set (883 cases), and an out-of-domain generalizability set (761 cases) collected from two different hospitals. For cancer detection, the model achieved AUROCs of 0.89, 0.96, and 0.94 on the respective datasets. The system's lesion localization capability, evaluated using metrics including Lesion Localization Fraction (LLF) and Non-Lesion Localization Fraction (NLF), demonstrated robust performance in identifying suspicious regions. Clinical validation through concordance tests showed strong agreement with radiologists: 83.5% classification and 84.0% localization concordance for biopsy-confirmed cases, and 78.1% classification and 79.6% localization concordance for out-of-domain cases. Expert radiologists' acceptance rate also averaged 96.7% for biopsy-confirmed cases, and 89.3% for out-of-domain cases. The system achieved a System Usability Scale score of 74.17 for source hospital, and 69.20 for validation hospitals, indicating good clinical acceptance. These results demonstrate the model's effectiveness in assisting mammogram interpretation, with the potential to enhance breast cancer screening workflows in clinical practice.
♻ ☆ A Comprehensive Survey on Vector Database: Storage and Retrieval Technique, Challenge
Vector databases (VDBs) have emerged to manage high-dimensional data that exceed the capabilities of traditional database management systems, and are now tightly integrated with large language models as well as widely applied in modern artificial intelligence systems. Although relatively few studies describe existing or introduce new vector database architectures, the core technologies underlying VDBs, such as approximate nearest neighbor search, have been extensively studied and are well documented in the literature. In this work, we present a comprehensive review of the relevant algorithms to provide a general understanding of this booming research area. Specifically, we first provide a review of storage and retrieval techniques in VDBs, with detailed design principles and technological evolution. Then, we conduct an in-depth comparison of several advanced VDB solutions with their strengths, limitations, and typical application scenarios. Finally, we also outline emerging opportunities for coupling VDBs with large language models, including open research problems and trends, such as novel indexing strategies. This survey aims to serve as a practical resource, enabling readers to quickly gain an overall understanding of the current knowledge landscape in this rapidly developing area.
♻ ☆ FrameBridge: Improving Image-to-Video Generation with Bridge Models
Diffusion models have achieved remarkable progress on image-to-video (I2V) generation, while their noise-to-data generation process is inherently mismatched with this task, which may lead to suboptimal synthesis quality. In this work, we present FrameBridge. By modeling the frame-to-frames generation process with a bridge model based data-to-data generative process, we are able to fully exploit the information contained in the given image and improve the consistency between the generation process and I2V task. Moreover, we propose two novel techniques toward the two popular settings of training I2V models, respectively. Firstly, we propose SNR-Aligned Fine-tuning (SAF), making the first attempt to fine-tune a diffusion model to a bridge model and, therefore, allowing us to utilize the pre-trained diffusion-based text-to-video (T2V) models. Secondly, we propose neural prior, further improving the synthesis quality of FrameBridge when training from scratch. Experiments conducted on WebVid-2M and UCF-101 demonstrate the superior quality of FrameBridge in comparison with the diffusion counterpart (zero-shot FVD 95 vs. 192 on MSR-VTT and non-zero-shot FVD 122 vs. 171 on UCF-101), and the advantages of our proposed SAF and neural prior for bridge-based I2V models. The project page: https://framebridge-icml.github.io/.
♻ ☆ Optimizing Temperature for Language Models with Multi-Sample Inference ICML2025
Multi-sample aggregation strategies, such as majority voting and best-of-N sampling, are widely used in contemporary large language models (LLMs) to enhance predictive accuracy across various tasks. A key challenge in this process is temperature selection, which significantly impacts model performance. Existing approaches either rely on a fixed default temperature or require labeled validation data for tuning, which are often scarce and difficult to obtain. This paper addresses the challenge of automatically identifying the (near)-optimal temperature for different LLMs using multi-sample aggregation strategies, without relying on task-specific validation data. We provide a comprehensive analysis of temperature's role in performance optimization, considering variations in model architectures, datasets, task types, model sizes, and predictive accuracy. Furthermore, we propose a novel entropy-based metric for automated temperature optimization, which consistently outperforms fixed-temperature baselines. Additionally, we incorporate a stochastic process model to enhance interpretability, offering deeper insights into the relationship between temperature and model performance.
comment: ICML2025, 21 pages. Code available at https://github.com/StigLidu/TURN
♻ ☆ Geometric Representation Condition Improves Equivariant Molecule Generation ICML 2025
Recent advances in molecular generative models have demonstrated great promise for accelerating scientific discovery, particularly in drug design. However, these models often struggle to generate high-quality molecules, especially in conditional scenarios where specific molecular properties must be satisfied. In this work, we introduce GeoRCG, a general framework to improve molecular generative models by integrating geometric representation conditions with provable theoretical guarantees. We decompose the generation process into two stages: first, generating an informative geometric representation; second, generating a molecule conditioned on the representation. Compared with single-stage generation, the easy-to-generate representation in the first stage guides the second stage generation toward a high-quality molecule in a goal-oriented way. Leveraging EDM and SemlaFlow as base generators, we observe significant quality improvements in unconditional molecule generation on the widely used QM9 and GEOM-DRUG datasets. More notably, in the challenging conditional molecular generation task, our framework achieves an average 50\% performance improvement over state-of-the-art approaches, highlighting the superiority of conditioning on semantically rich geometric representations. Furthermore, with such representation guidance, the number of diffusion steps can be reduced to as small as 100 while largely preserving the generation quality achieved with 1,000 steps, thereby significantly reducing the generation iterations needed.
comment: Accepted to ICML 2025 as a Spotlight Poster
♻ ☆ Counterfactual contrastive learning: robust representations via causal image synthesis MICCAI 2024
Contrastive pretraining is well-known to improve downstream task performance and model generalisation, especially in limited label settings. However, it is sensitive to the choice of augmentation pipeline. Positive pairs should preserve semantic information while destroying domain-specific information. Standard augmentation pipelines emulate domain-specific changes with pre-defined photometric transformations, but what if we could simulate realistic domain changes instead? In this work, we show how to utilise recent progress in counterfactual image generation to this effect. We propose CF-SimCLR, a counterfactual contrastive learning approach which leverages approximate counterfactual inference for positive pair creation. Comprehensive evaluation across five datasets, on chest radiography and mammography, demonstrates that CF-SimCLR substantially improves robustness to acquisition shift with higher downstream performance on both in- and out-of-distribution data, particularly for domains which are under-represented during training.
comment: Extended version available at https://doi.org/10.1016/j.media.2025.103668. This version was published in the proceedings of the MICCAI 2024 Data Engineering in Medical Imaging workshop. Code available at https://github.com/biomedia-mira/counterfactual-contrastive
♻ ☆ InfiniSST: Simultaneous Translation of Unbounded Speech with Large Language Model ACL 2025
Simultaneous translation of unbounded streaming speech remains a challenging problem due to the need for effectively processing the history speech context and past translations so that quality and latency, including computation overhead, can be balanced. Most prior works assume pre-segmented speech, limiting their real-world applicability. In this paper, we propose InfiniSST, a novel approach that formulates SST as a multi-turn dialogue task, enabling seamless translation of unbounded speech. We construct translation trajectories and robust segments from MuST-C with multi-latency augmentation during training and develop a key-value (KV) cache management strategy to facilitate efficient inference. Experiments on MuST-C En-Es, En-De, and En-Zh demonstrate that InfiniSST reduces computation-aware latency by 0.5 to 1 second while maintaining the same translation quality compared to baselines. Ablation studies further validate the contributions of our data construction and cache management strategy. We release the code and demo at https://github.com/LeiLiLab/InfiniSST
comment: ACL 2025 Findings
♻ ☆ On the Completeness of Invariant Geometric Deep Learning Models
Invariant models, one important class of geometric deep learning models, are capable of generating meaningful geometric representations by leveraging informative geometric features in point clouds. These models are characterized by their simplicity, good experimental results and computational efficiency. However, their theoretical expressive power still remains unclear, restricting a deeper understanding of the potential of such models. In this work, we concentrate on characterizing the theoretical expressiveness of a wide range of invariant models under fully-connected conditions. We first rigorously characterize the expressiveness of the most classic invariant model, message-passing neural networks incorporating distance (DisGNN), restricting its unidentifiable cases to be only highly symmetric point clouds. We then prove that GeoNGNN, the geometric counterpart of one of the simplest subgraph graph neural networks, can effectively break these corner cases' symmetry and thus achieve E(3)-completeness. By leveraging GeoNGNN as a theoretical tool, we further prove that: 1) most subgraph GNNs developed in traditional graph learning can be seamlessly extended to geometric scenarios with E(3)-completeness; 2) DimeNet, GemNet and SphereNet, three well-established invariant models, are also all capable of achieving E(3)-completeness. Our theoretical results fill the gap in the expressive power of invariant models, contributing to a rigorous and comprehensive understanding of their capabilities.
comment: The Thirteenth International Conference on Learning Representations
♻ ☆ MathFusion: Enhancing Mathematical Problem-solving of LLM through Instruction Fusion ACL 2025
Large Language Models (LLMs) have shown impressive progress in mathematical reasoning. While data augmentation is promising to enhance mathematical problem-solving ability, current approaches are predominantly limited to instance-level modifications-such as rephrasing or generating syntactic variations-which fail to capture and leverage the intrinsic relational structures inherent in mathematical knowledge. Inspired by human learning processes, where mathematical proficiency develops through systematic exposure to interconnected concepts, we introduce MathFusion, a novel framework that enhances mathematical reasoning through cross-problem instruction synthesis. MathFusion implements this through three fusion strategies: (1) sequential fusion, which chains related problems to model solution dependencies; (2) parallel fusion, which combines analogous problems to reinforce conceptual understanding; and (3) conditional fusion, which creates context-aware selective problems to enhance reasoning flexibility. By applying these strategies, we generate a new dataset, \textbf{MathFusionQA}, followed by fine-tuning models (DeepSeekMath-7B, Mistral-7B, Llama3-8B) on it. Experimental results demonstrate that MathFusion achieves substantial improvements in mathematical reasoning while maintaining high data efficiency, boosting performance by 18.0 points in accuracy across diverse benchmarks while requiring only 45K additional synthetic instructions, representing a substantial improvement over traditional single-instruction approaches. Our datasets, models, and code are publicly available at https://github.com/QizhiPei/mathfusion.
comment: Accepted by ACL 2025 (main)
♻ ☆ Multi-Knowledge-oriented Nighttime Haze Imaging Enhancer for Vision-driven Intelligent Systems
Salient object detection (SOD) plays a critical role in Intelligent Imaging, facilitating the detection and segmentation of key visual elements in an image. However, adverse imaging conditions such as haze during the day, low light, and haze at night severely degrade image quality and hinder reliable object detection in real-world scenarios. To address these challenges, we propose a multi-knowledge-oriented nighttime haze imaging enhancer (MKoIE), which integrates three tasks: daytime dehazing, low-light enhancement, and nighttime dehazing. The MKoIE incorporates two key innovative components: First, the network employs a task-oriented node learning mechanism to handle three specific degradation types: day-time haze, low light, and night-time haze conditions, with an embedded self-attention module enhancing its performance in nighttime imaging. In addition, multi-receptive field enhancement module that efficiently extracts multi-scale features through three parallel depthwise separable convolution branches with different dilation rates, capturing comprehensive spatial information with minimal computational overhead to meet the requirements of real-time imaging deployment. To ensure optimal image reconstruction quality and visual characteristics, we suggest a hybrid loss function. Extensive experiments on different types of weather/imaging conditions illustrate that MKoIE surpasses existing methods, enhancing the reliability, accuracy, and operational efficiency of intelligent imaging.
♻ ☆ Hierarchical Language Models for Semantic Navigation and Manipulation in an Aerial-Ground Robotic System
Heterogeneous multi-robot systems show great potential in complex tasks requiring hybrid cooperation. However, traditional approaches relying on static models often struggle with task diversity and dynamic environments. This highlights the need for generalizable intelligence that can bridge high-level reasoning with low-level execution across heterogeneous agents. To address this, we propose a hierarchical framework integrating a prompted Large Language Model (LLM) and a GridMask-enhanced fine-tuned Vision Language Model (VLM). The LLM decomposes tasks and constructs a global semantic map, while the VLM extracts task-specified semantic labels and 2D spatial information from aerial images to support local planning. Within this framework, the aerial robot follows an optimized global semantic path and continuously provides bird-view images, guiding the ground robot's local semantic navigation and manipulation, including target-absent scenarios where implicit alignment is maintained. Experiments on real-world cube or object arrangement tasks demonstrate the framework's adaptability and robustness in dynamic environments. To the best of our knowledge, this is the first demonstration of an aerial-ground heterogeneous system integrating VLM-based perception with LLM-driven task reasoning and motion planning.
♻ ☆ SurgBench: A Unified Large-Scale Benchmark for Surgical Video Analysis
Surgical video understanding is pivotal for enabling automated intraoperative decision-making, skill assessment, and postoperative quality improvement. However, progress in developing surgical video foundation models (FMs) remains hindered by the scarcity of large-scale, diverse datasets for pretraining and systematic evaluation. In this paper, we introduce \textbf{SurgBench}, a unified surgical video benchmarking framework comprising a pretraining dataset, \textbf{SurgBench-P}, and an evaluation benchmark, \textbf{SurgBench-E}. SurgBench offers extensive coverage of diverse surgical scenarios, with SurgBench-P encompassing 53 million frames across 22 surgical procedures and 11 specialties, and SurgBench-E providing robust evaluation across six categories (phase classification, camera motion, tool recognition, disease diagnosis, action classification, and organ detection) spanning 72 fine-grained tasks. Extensive experiments reveal that existing video FMs struggle to generalize across varied surgical video analysis tasks, whereas pretraining on SurgBench-P yields substantial performance improvements and superior cross-domain generalization to unseen procedures and modalities. Our dataset and code are available upon request.
♻ ☆ Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains. Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities. This typically involves extensive sampling at inference time guided by an external LLM verifier, resulting in a two-player system. Despite external guidance, the effectiveness of this system demonstrates the potential of a single LLM to tackle complex tasks. Thus, we pose a new research problem: Can we internalize the searching capabilities to fundamentally enhance the reasoning abilities of a single LLM? This work explores an orthogonal direction focusing on post-training LLMs for autoregressive searching (i.e., an extended reasoning process with self-reflection and self-exploration of new strategies). To achieve this, we propose the Chain-of-Action-Thought (COAT) reasoning and a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning. Our approach results in Satori, a 7B LLM trained on open-source models and data. Extensive empirical evaluations demonstrate that Satori achieves state-of-the-art performance on mathematical reasoning benchmarks while exhibits strong generalization to out-of-domain tasks. Code, data, and models are fully open-sourced.
♻ ☆ AnalogXpert: Automating Analog Topology Synthesis by Incorporating Circuit Design Expertise into Large Language Models
Analog circuits are crucial in modern electronic systems, and automating their design has attracted significant research interest. One of major challenges is topology synthesis, which determines circuit components and their connections. Recent studies explore large language models (LLM) for topology synthesis. However, the scenarios addressed by these studies do not align well with practical applications. Specifically, existing work uses vague design requirements as input and outputs an ideal model, but detailed structural requirements and device-level models are more practical. Moreover, current approaches either formulate topology synthesis as graph generation or Python code generation, whereas practical topology design is a complex process that demands extensive design knowledge. In this work, we propose AnalogXpert, a LLM-based agent aiming at solving practical topology synthesis problem by incorporating circuit design expertise into LLMs. First, we represent analog topology as SPICE code and introduce a subcircuit library to reduce the design space, in the same manner as experienced designers. Second, we decompose the problem into two sub-task (i.e., block selection and block connection) through the use of CoT and incontext learning techniques, to mimic the practical design process. Third, we introduce a proofreading strategy that allows LLMs to incrementally correct the errors in the initial design, akin to human designers who iteratively check and adjust the initial topology design to ensure accuracy. Finally, we construct a high-quality benchmark containing both real data (30) and synthetic data (2k). AnalogXpert achieves 40% and 23% success rates on the synthetic dataset and real dataset respectively, which is markedly better than those of GPT-4o (3% on both the synthetic dataset and the real dataset).
♻ ☆ AgentCourt: Simulating Court with Adversarial Evolvable Lawyer Agents
Current research in LLM-based simulation systems lacks comprehensive solutions for modeling real-world court proceedings, while existing legal language models struggle with dynamic courtroom interactions. We present AgentCourt, a comprehensive legal simulation framework that addresses these challenges through adversarial evolution of LLM-based agents. Our AgentCourt introduces a new adversarial evolutionary approach for agents called AdvEvol, which performs dynamic knowledge learning and evolution through structured adversarial interactions in a simulated courtroom program, breaking the limitations of the traditional reliance on static knowledge bases or manual annotations. By simulating 1,000 civil cases, we construct an evolving knowledge base that enhances the agents' legal reasoning abilities. The evolved lawyer agents demonstrated outstanding performance on our newly introduced CourtBench benchmark, achieving a 12.1% improvement in performance compared to the original lawyer agents. Evaluations by professional lawyers confirm the effectiveness of our approach across three critical dimensions: cognitive agility, professional knowledge, and logical rigor. Beyond outperforming specialized legal models in interactive reasoning tasks, our findings emphasize the importance of adversarial learning in legal AI and suggest promising directions for extending simulation-based legal reasoning to broader judicial and regulatory contexts. The project's code is available at: https://github.com/relic-yuexi/AgentCourt
♻ ☆ Autonomous Computer Vision Development with Agentic AI
Agentic Artificial Intelligence (AI) systems leveraging Large Language Models (LLMs) exhibit significant potential for complex reasoning, planning, and tool utilization. We demonstrate that a specialized computer vision system can be built autonomously from a natural language prompt using Agentic AI methods. This involved extending SimpleMind (SM), an open-source Cognitive AI environment with configurable tools for medical image analysis, with an LLM-based agent, implemented using OpenManus, to automate the planning (tool configuration) for a particular computer vision task. We provide a proof-of-concept demonstration that an agentic system can interpret a computer vision task prompt, plan a corresponding SimpleMind workflow by decomposing the task and configuring appropriate tools. From the user input prompt, "provide sm (SimpleMind) config for lungs, heart, and ribs segmentation for cxr (chest x-ray)"), the agent LLM was able to generate the plan (tool configuration file in YAML format), and execute SM-Learn (training) and SM-Think (inference) scripts autonomously. The computer vision agent automatically configured, trained, and tested itself on 50 chest x-ray images, achieving mean dice scores of 0.96, 0.82, 0.83, for lungs, heart, and ribs, respectively. This work shows the potential for autonomous planning and tool configuration that has traditionally been performed by a data scientist in the development of computer vision applications.
comment: The paper is 13 pages long and contains 4 figures
♻ ☆ Latent Multi-Head Attention for Small Language Models
We present the first comprehensive study of latent multi-head attention (MLA) for small language models, revealing interesting efficiency-quality trade-offs. Training 30M-parameter GPT models on 100,000 synthetic stories, we benchmark three architectural variants: standard multi-head attention (MHA), MLA, and MLA with rotary positional embeddings (MLA+RoPE). Our key finding is that MLA+RoPE with half-rank latent dimensions (r = d/2) achieves a 45% KV-cache memory reduction while incurring only a 0.3% increase in validation loss (essentially matching MHA quality)- a Pareto improvement for memory constrained deployment. We further show that RoPE is crucial for MLA in small models: without it, MLA underperforms vanilla attention by 3-5%, but with RoPE, it surpasses vanilla by 2%. Inference benchmarks on NVIDIA A100 GPUs reveal that MLA with r=d/2 achieves a 1.4 times speedup over full-rank MLA while maintaining the memory savings. GPT-4 evaluations corroborate perplexity results, with ours achieving the highest quality scores (7.4/10) across grammar, creativity, and consistency metrics. Code and models will be released upon acceptance.
comment: 6 pages, 1 figure. 5 tables
Can a Bayesian Oracle Prevent Harm from an Agent? UAI 2025
Is there a way to design powerful AI systems based on machine learning methods that would satisfy probabilistic safety guarantees? With the long-term goal of obtaining a probabilistic guarantee that would apply in every context, we consider estimating a context-dependent bound on the probability of violating a given safety specification. Such a risk evaluation would need to be performed at run-time to provide a guardrail against dangerous actions of an AI. Noting that different plausible hypotheses about the world could produce very different outcomes, and because we do not know which one is right, we derive bounds on the safety violation probability predicted under the true but unknown hypothesis. Such bounds could be used to reject potentially dangerous actions. Our main results involve searching for cautious but plausible hypotheses, obtained by a maximization that involves Bayesian posteriors over hypotheses. We consider two forms of this result, in the i.i.d. case and in the non-i.i.d. case, and conclude with open problems towards turning such theoretical results into practical AI guardrails.
comment: Accepted at UAI 2025 (Uncertainty in Artificial Intelligence). 20 pages, 2 figures. Code available at: https://github.com/saifh-github/conservative-bayesian-public
♻ ☆ Upcycling Large Language Models into Mixture of Experts
Upcycling pre-trained dense language models into sparse mixture-of-experts (MoE) models is an efficient approach to increase the model capacity of already trained models. However, optimal techniques for upcycling at scale remain unclear. In this work, we conduct an extensive study of upcycling methods and hyperparameters for billion-parameter scale language models. We propose a novel "virtual group" initialization scheme and weight scaling approach to enable upcycling into fine-grained MoE architectures. Through ablations, we find that upcycling outperforms continued dense model training. In addition, we show that softmax-then-topK expert routing improves over topK-then-softmax approach and higher granularity MoEs can help improve accuracy. Finally, we upcycled Nemotron-4 15B on 1T tokens and compared it to a continuously trained version of the same model on the same 1T tokens: the continuous trained model achieved 65.3% MMLU, whereas the upcycled model achieved 67.6%. Our results offer insights and best practices to effectively leverage upcycling for building MoE language models. Code is available.
♻ ☆ Enabling On-Device Medical AI Assistants via Input-Driven Saliency Adaptation
Large Language Models (LLMs) have significant impact on the healthcare scenarios but remain prohibitively large for deployment in real-time, resource-constrained environments such as edge devices. In this work, we introduce a novel medical assistant system, optimized through our general-purpose compression framework, which tailors Large Language Models (LLMs) for deployment in specialized domains. By measuring neuron saliency on domain-specific data, our method can aggressively prune irrelevant neurons, reducing model size while preserving performance. Following pruning, we apply post-training quantization to further reduce the memory footprint, and evaluate the compressed model across medical benchmarks including MedMCQA, MedQA, and PubMedQA. We also deploy the 50\% compressed Gemma and the 67\% compressed LLaMA3 models on Jetson Orin Nano (18.7W peak) and Raspberry Pi 5 (6.3W peak), achieving real-time, energy-efficient inference under hardware constraints.
♻ ☆ A dataset of questions on decision-theoretic reasoning in Newcomb-like problems
We introduce a dataset of natural-language questions in the decision theory of so-called Newcomb-like problems. Newcomb-like problems include, for instance, decision problems in which an agent interacts with a similar other agent, and thus has to reason about the fact that the other agent will likely reason in similar ways. Evaluating LLM reasoning about Newcomb-like problems is important because interactions between foundation-model-based agents will often be Newcomb-like. Some ways of reasoning about Newcomb-like problems may allow for greater cooperation between models. Our dataset contains both capabilities questions (i.e., questions with a unique, uncontroversially correct answer) and attitude questions (i.e., questions about which decision theorists would disagree). We use our dataset for an investigation of decision-theoretical capabilities and expressed attitudes and their interplay in existing models (different models by OpenAI, Anthropic, Meta, GDM, Reka, etc.), as well as models under simple prompt-based interventions. We find, among other things, that attitudes vary significantly between existing models; that high capabilities are associated with attitudes more favorable toward so-called evidential decision theory; and that attitudes are consistent across different types of questions.
comment: 48 pages, 15 figures; code and data at https://github.com/casparoe/newcomblike_questions_dataset
♻ ☆ Bayesian Neural Scaling Law Extrapolation with Prior-Data Fitted Networks ICML 2025
Scaling has been a major driver of recent advancements in deep learning. Numerous empirical studies have found that scaling laws often follow the power-law and proposed several variants of power-law functions to predict the scaling behavior at larger scales. However, existing methods mostly rely on point estimation and do not quantify uncertainty, which is crucial for real-world applications involving decision-making problems such as determining the expected performance improvements achievable by investing additional computational resources. In this work, we explore a Bayesian framework based on Prior-data Fitted Networks (PFNs) for neural scaling law extrapolation. Specifically, we design a prior distribution that enables the sampling of infinitely many synthetic functions resembling real-world neural scaling laws, allowing our PFN to meta-learn the extrapolation. We validate the effectiveness of our approach on real-world neural scaling laws, comparing it against both the existing point estimation methods and Bayesian approaches. Our method demonstrates superior performance, particularly in data-limited scenarios such as Bayesian active learning, underscoring its potential for reliable, uncertainty-aware extrapolation in practical applications.
comment: Accepted to ICML 2025
♻ ☆ Task-aligned prompting improves zero-shot detection of AI-generated images by Vision-Language Models
As image generators produce increasingly realistic images, concerns about potential misuse continue to grow. Supervised detection relies on large, curated datasets and struggles to generalize across diverse generators. In this work, we investigate the use of pre-trained Vision-Language Models (VLMs) for zero-shot detection of AI-generated images. While off-the-shelf VLMs exhibit some task-specific reasoning and chain-of-thought prompting offers gains, we show that task-aligned prompting elicits more focused reasoning and significantly improves performance without fine-tuning. Specifically, prefixing the model's response with the phrase "Let's examine the style and the synthesis artifacts" -- a method we call zero-shot-s$^2$ -- boosts Macro F1 scores by 8%-29%. These gains are consistent for two widely used open-source models and across three recent, diverse datasets spanning human faces, objects, and animals with images generated by 16 different models -- demonstrating strong generalization. We further evaluate the approach across three additional model sizes and observe improvements in most dataset-model combinations -- suggesting robustness to model scale. Surprisingly, self-consistency, a behavior previously observed in language reasoning, where aggregating answers from diverse reasoning paths improves performance, also holds in this setting. Even here, zero-shot-s$^2$ scales better than chain-of-thought in most cases -- indicating that it elicits more useful diversity. Our findings show that task-aligned prompts elicit more focused reasoning and enhance latent capabilities in VLMs, like the detection of AI-generated images -- offering a simple, generalizable, and explainable alternative to supervised methods. Our code is publicly available on github: https://github.com/Zoher15/Zero-shot-s2.
♻ ☆ Evaluating how LLM annotations represent diverse views on contentious topics
Researchers have proposed the use of generative large language models (LLMs) to label data for research and applied settings. This literature emphasizes the improved performance of these models relative to other natural language models, noting that generative LLMs typically outperform other models and even humans across several metrics. Previous literature has examined bias across many applications and contexts, but less work has focused specifically on bias in generative LLMs' responses to subjective annotation tasks. This bias could result in labels applied by LLMs that disproportionately align with majority groups over a more diverse set of viewpoints. In this paper, we evaluate how LLMs represent diverse viewpoints on these contentious tasks. Across four annotation tasks on four datasets, we show that LLMs do not show systematic substantial disagreement with annotators on the basis of demographics. Rather, we find that multiple LLMs tend to be biased in the same directions on the same demographic categories within the same datasets. Moreover, the disagreement between human annotators on the labeling task -- a measure of item difficulty -- is far more predictive of LLM agreement with human annotators. We conclude with a discussion of the implications for researchers and practitioners using LLMs for automated data annotation tasks. Specifically, we emphasize that fairness evaluations must be contextual, model choice alone will not solve potential issues of bias, and item difficulty must be integrated into bias assessments.
♻ ☆ Speak Easy: Eliciting Harmful Jailbreaks from LLMs with Simple Interactions
Despite extensive safety alignment efforts, large language models (LLMs) remain vulnerable to jailbreak attacks that elicit harmful behavior. While existing studies predominantly focus on attack methods that require technical expertise, two critical questions remain underexplored: (1) Are jailbroken responses truly useful in enabling average users to carry out harmful actions? (2) Do safety vulnerabilities exist in more common, simple human-LLM interactions? In this paper, we demonstrate that LLM responses most effectively facilitate harmful actions when they are both actionable and informative--two attributes easily elicited in multi-step, multilingual interactions. Using this insight, we propose HarmScore, a jailbreak metric that measures how effectively an LLM response enables harmful actions, and Speak Easy, a simple multi-step, multilingual attack framework. Notably, by incorporating Speak Easy into direct request and jailbreak baselines, we see an average absolute increase of 0.319 in Attack Success Rate and 0.426 in HarmScore in both open-source and proprietary LLMs across four safety benchmarks. Our work reveals a critical yet often overlooked vulnerability: Malicious users can easily exploit common interaction patterns for harmful intentions.
♻ ☆ Conformal Prediction Sets for Deep Generative Models via Reduction to Conformal Regression
We consider the problem of generating valid and small prediction sets by sampling outputs (e.g., software code and natural language text) from a black-box deep generative model for a given input (e.g., textual prompt). The validity of a prediction set is determined by a user-defined binary admissibility function depending on the target application. For example, requiring at least one program in the set to pass all test cases in code generation application. To address this problem, we develop a simple and effective conformal inference algorithm referred to as Generative Prediction Sets (GPS). Given a set of calibration examples and black-box access to a deep generative model, GPS can generate prediction sets with provable guarantees. The key insight behind GPS is to exploit the inherent structure within the distribution over the minimum number of samples needed to obtain an admissible output to develop a simple conformal regression approach over the minimum number of samples. Experiments on multiple datasets for code and math word problems using different large language models demonstrate the efficacy of GPS over state-of-the-art methods.
♻ ☆ Representing local protein environments with atomistic foundation models
The local structure of a protein strongly impacts its function and interactions with other molecules. Therefore, a concise, informative representation of a local protein environment is essential for modeling and designing proteins and biomolecular interactions. However, these environments' extensive structural and chemical variability makes them challenging to model, and such representations remain under-explored. In this work, we propose a novel representation for a local protein environment derived from the intermediate features of atomistic foundation models (AFMs). We demonstrate that this embedding effectively captures both local structure (e.g., secondary motifs), and chemical features (e.g., amino-acid identity and protonation state). We further show that the AFM-derived representation space exhibits meaningful structure, enabling the construction of data-driven priors over the distribution of biomolecular environments. Finally, in the context of biomolecular NMR spectroscopy, we demonstrate that the proposed representations enable a first-of-its-kind physics-informed chemical shift predictor that achieves state-of-the-art accuracy. Our results demonstrate the surprising effectiveness of atomistic foundation models and their emergent representations for protein modeling beyond traditional molecular simulations. We believe this will open new lines of work in constructing effective functional representations for protein environments.
♻ ☆ LARP: Tokenizing Videos with a Learned Autoregressive Generative Prior ICLR 2025
We present LARP, a novel video tokenizer designed to overcome limitations in current video tokenization methods for autoregressive (AR) generative models. Unlike traditional patchwise tokenizers that directly encode local visual patches into discrete tokens, LARP introduces a holistic tokenization scheme that gathers information from the visual content using a set of learned holistic queries. This design allows LARP to capture more global and semantic representations, rather than being limited to local patch-level information. Furthermore, it offers flexibility by supporting an arbitrary number of discrete tokens, enabling adaptive and efficient tokenization based on the specific requirements of the task. To align the discrete token space with downstream AR generation tasks, LARP integrates a lightweight AR transformer as a training-time prior model that predicts the next token on its discrete latent space. By incorporating the prior model during training, LARP learns a latent space that is not only optimized for video reconstruction but is also structured in a way that is more conducive to autoregressive generation. Moreover, this process defines a sequential order for the discrete tokens, progressively pushing them toward an optimal configuration during training, ensuring smoother and more accurate AR generation at inference time. Comprehensive experiments demonstrate LARP's strong performance, achieving state-of-the-art FVD on the UCF101 class-conditional video generation benchmark. LARP enhances the compatibility of AR models with videos and opens up the potential to build unified high-fidelity multimodal large language models (MLLMs).
comment: ICLR 2025. Project page: https://hywang66.github.io/larp/
♻ ☆ Behaviour Discovery and Attribution for Explainable Reinforcement Learning
Building trust in reinforcement learning (RL) agents requires understanding why they make certain decisions, especially in high-stakes applications like robotics, healthcare, and finance. Existing explainability methods often focus on single states or entire trajectories, either providing only local, step-wise insights or attributing decisions to coarse, episodelevel summaries. Both approaches miss the recurring strategies and temporally extended patterns that actually drive agent behavior across multiple decisions. We address this gap by proposing a fully offline, reward-free framework for behavior discovery and segmentation, enabling the attribution of actions to meaningful and interpretable behavior segments that capture recurring patterns appearing across multiple trajectories. Our method identifies coherent behavior clusters from state-action sequences and attributes individual actions to these clusters for fine-grained, behavior-centric explanations. Evaluations on four diverse offline RL environments show that our approach discovers meaningful behaviors and outperforms trajectory-level baselines in fidelity, human preference, and cluster coherence. Our code is publicly available.
♻ ☆ Robust Multi-bit Text Watermark with LLM-based Paraphrasers ICML 2025
We propose an imperceptible multi-bit text watermark embedded by paraphrasing with LLMs. We fine-tune a pair of LLM paraphrasers that are designed to behave differently so that their paraphrasing difference reflected in the text semantics can be identified by a trained decoder. To embed our multi-bit watermark, we use two paraphrasers alternatively to encode the pre-defined binary code at the sentence level. Then we use a text classifier as the decoder to decode each bit of the watermark. Through extensive experiments, we show that our watermarks can achieve over 99.99\% detection AUC with small (1.1B) text paraphrasers while keeping the semantic information of the original sentence. More importantly, our pipeline is robust under word substitution and sentence paraphrasing perturbations and generalizes well to out-of-distributional data. We also show the stealthiness of our watermark with LLM-based evaluation. We open-source the code: https://github.com/xiaojunxu/multi-bit-text-watermark.
comment: Accepted by ICML 2025
♻ ☆ Towards Geo-Culturally Grounded LLM Generations ACL 2025
Generative large language models (LLMs) have demonstrated gaps in diverse cultural awareness across the globe. We investigate the effect of retrieval augmented generation and search-grounding techniques on LLMs' ability to display familiarity with various national cultures. Specifically, we compare the performance of standard LLMs, LLMs augmented with retrievals from a bespoke knowledge base (i.e., KB grounding), and LLMs augmented with retrievals from a web search (i.e., search grounding) on multiple cultural awareness benchmarks. We find that search grounding significantly improves the LLM performance on multiple-choice benchmarks that test propositional knowledge (e.g., cultural norms, artifacts, and institutions), while KB grounding's effectiveness is limited by inadequate knowledge base coverage and a suboptimal retriever. However, search grounding also increases the risk of stereotypical judgments by language models and fails to improve evaluators' judgments of cultural familiarity in a human evaluation with adequate statistical power. These results highlight the distinction between propositional cultural knowledge and open-ended cultural fluency when it comes to evaluating LLMs' cultural awareness.
comment: ACL 2025 (main conference)
♻ ☆ MultiMatch: Multihead Consistency Regularization Matching for Semi-Supervised Text Classification
We introduce MultiMatch, a novel semi-supervised learning (SSL) algorithm combining the paradigms of co-training and consistency regularization with pseudo-labeling. At its core, MultiMatch features a three-fold pseudo-label weighting module designed for three key purposes: selecting and filtering pseudo-labels based on head agreement and model confidence, and weighting them according to the perceived classification difficulty. This novel module enhances and unifies three existing techniques -- heads agreement from Multihead Co-training, self-adaptive thresholds from FreeMatch, and Average Pseudo-Margins from MarginMatch -- resulting in a holistic approach that improves robustness and performance in SSL settings. Experimental results on benchmark datasets highlight the superior performance of MultiMatch, achieving state-of-the-art results on 9 out of 10 setups from 5 natural language processing datasets and ranking first according to the Friedman test among 19 methods. Furthermore, MultiMatch demonstrates exceptional robustness in highly imbalanced settings, outperforming the second-best approach by 3.26% -- and data imbalance is a key factor for many text classification tasks.
♻ ☆ TIP-Search: Time-Predictable Inference Scheduling for Market Prediction under Uncertain Load
This paper proposes TIP-Search, a time-predictable inference scheduling framework for real-time market prediction under uncertain workloads. Motivated by the strict latency demands in high-frequency financial systems, TIP-Search dynamically selects a deep learning model from a heterogeneous pool, aiming to maximize predictive accuracy while satisfying per-task deadline constraints. Our approach profiles latency and generalization performance offline, then performs online task-aware selection without relying on explicit input domain labels. We evaluate TIP-Search on three real-world limit order book datasets (FI-2010, Binance BTC/USDT, LOBSTER AAPL) and demonstrate that it outperforms static baselines with up to 8.5% improvement in accuracy and 100% deadline satisfaction. Our results highlight the effectiveness of TIP-Search in robust low-latency financial inference under uncertainty.
♻ ☆ LongCodeBench: Evaluating Coding LLMs at 1M Context Windows
Context lengths for models have grown rapidly, from thousands to millions of tokens in just a few years. The extreme context sizes of modern long-context models have made it difficult to construct realistic long-context benchmarks -- not only due to the cost of collecting million-context tasks but also in identifying realistic scenarios that require significant contexts. We identify code comprehension and repair as a natural testbed and challenge task for long-context models and introduce LongCodeBench (LCB), a benchmark to test LLM coding abilities in long-context scenarios. Our benchmark tests both the comprehension and repair capabilities of LCLMs in realistic and important settings by drawing from real-world GitHub issues and constructing QA (LongCodeQA) and bug fixing (LongSWE-Bench) tasks. We carefully stratify the complexity of our benchmark, enabling us to evaluate models across different scales -- ranging from Qwen2.5 14B Instruct to Google's flagship Gemini model. We find that long-context remains a weakness for all models, with performance drops such as from 29% to 3% for Claude 3.5 Sonnet, or from 70.2% to 40% for Qwen2.5.
♻ ☆ Arbitrarily Applicable Same/Opposite Relational Responding with NARS
Same/opposite relational responding, a fundamental aspect of human symbolic cognition, allows the flexible generalization of stimulus relationships based on minimal experience. In this study, we demonstrate the emergence of \textit{arbitrarily applicable} same/opposite relational responding within the Non-Axiomatic Reasoning System (NARS), a computational cognitive architecture designed for adaptive reasoning under uncertainty. Specifically, we extend NARS with an implementation of \textit{acquired relations}, enabling the system to explicitly derive both symmetric (mutual entailment) and novel relational combinations (combinatorial entailment) from minimal explicit training in a contextually controlled matching-to-sample (MTS) procedure. Experimental results show that NARS rapidly internalizes explicitly trained relational rules and robustly demonstrates derived relational generalizations based on arbitrary contextual cues. Importantly, derived relational responding in critical test phases inherently combines both mutual and combinatorial entailments, such as deriving same-relations from multiple explicitly trained opposite-relations. Internal confidence metrics illustrate strong internalization of these relational principles, closely paralleling phenomena observed in human relational learning experiments. Our findings underscore the potential for integrating nuanced relational learning mechanisms inspired by learning psychology into artificial general intelligence frameworks, explicitly highlighting the arbitrary and context-sensitive relational capabilities modeled within NARS.
♻ ☆ PartInstruct: Part-level Instruction Following for Fine-grained Robot Manipulation
Fine-grained robot manipulation, such as lifting and rotating a bottle to display the label on the cap, requires robust reasoning about object parts and their relationships with intended tasks. Despite recent advances in training general-purpose robot manipulation policies guided by language instructions, there is a notable lack of large-scale datasets for fine-grained manipulation tasks with part-level instructions and diverse 3D object instances annotated with part-level labels. In this work, we introduce PartInstruct, the first large-scale benchmark for training and evaluating fine-grained robot manipulation models using part-level instructions. PartInstruct comprises 513 object instances across 14 categories, each annotated with part-level information, and 1302 fine-grained manipulation tasks organized into 16 task classes. Our training set consists of over 10,000 expert demonstrations synthesized in a 3D simulator, where each demonstration is paired with a high-level task instruction, a chain of base part-based skill instructions, and ground-truth 3D information about the object and its parts. Additionally, we designed a comprehensive test suite to evaluate the generalizability of learned policies across new states, objects, and tasks. We evaluated several state-of-the-art robot manipulation approaches, including end-to-end vision-language policy learning and bi-level planning models for robot manipulation on our benchmark. The experimental results reveal that current models struggle to robustly ground part concepts and predict actions in 3D space, and face challenges when manipulating object parts in long-horizon tasks.
♻ ☆ NAROCE: A Neural Algorithmic Reasoner Framework for Online Complex Event Detection
Modern machine learning models excel at detecting individual actions, objects, or scene attributes from short, local observations. However, many real-world tasks, such as in smart cities and healthcare, require reasoning over complex events (CEs): (spatio)temporal, rule-governed patterns of short-term atomic events (AEs) that reflect high-level understanding and critical changes in the environment. These CEs are difficult to detect online: they are often rare, require long-range reasoning over noisy sensor data, must generalize rules beyond fixed-length traces, and suffer from limited real-world datasets due to the high annotation burden. We propose NAROCE, a Neural Algorithmic Reasoning framework for Online CE detection that separates the task into two stages: (i) learning CE rules from large-scale, low-cost pseudo AE concept traces generated by simulators or LLMs, and (ii) training an adapter to map real sensor data into the learned reasoning space using fewer labeled sensor samples. Experiments show that NAROCE outperforms the strongest baseline in accuracy, generalization to longer, unseen sequences, and data efficiency, achieving comparable performance with less than half the labeled data. These results suggest that decoupling CE rule learning from raw sensor inputs improves both data efficiency and robustness.
♻ ☆ Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures
Recent advancements in surgical computer vision applications have been driven by vision-only models, which do not explicitly integrate the rich semantics of language into their design. These methods rely on manually annotated surgical videos to predict a fixed set of object categories, limiting their generalizability to unseen surgical procedures and downstream tasks. In this work, we put forward the idea that the surgical video lectures available through open surgical e-learning platforms can provide effective vision and language supervisory signals for multi-modal representation learning without relying on manual annotations. We address the surgery-specific linguistic challenges present in surgical video lectures by employing multiple complementary automatic speech recognition systems to generate text transcriptions. We then present a novel method, SurgVLP - Surgical Vision Language Pre-training, for multi-modal representation learning. Extensive experiments across diverse surgical procedures and tasks demonstrate that the multi-modal representations learned by SurgVLP exhibit strong transferability and adaptability in surgical video analysis. Furthermore, our zero-shot evaluations highlight SurgVLP's potential as a general-purpose foundation model for surgical workflow analysis, reducing the reliance on extensive manual annotations for downstream tasks, and facilitating adaptation methods such as few-shot learning to build a scalable and data-efficient solution for various downstream surgical applications. The [training code](https://github.com/CAMMA-public/PeskaVLP) and [weights](https://github.com/CAMMA-public/SurgVLP) are public.
comment: Accepted by Medical Image Analysis (MedIA), 2025
♻ ☆ Activation Space Interventions Can Be Transferred Between Large Language Models
The study of representation universality in AI models reveals growing convergence across domains, modalities, and architectures. However, the practical applications of representation universality remain largely unexplored. We bridge this gap by demonstrating that safety interventions can be transferred between models through learned mappings of their shared activation spaces. We demonstrate this approach on two well-established AI safety tasks: backdoor removal and refusal of harmful prompts, showing successful transfer of steering vectors that alter the models' outputs in a predictable way. Additionally, we propose a new task, \textit{corrupted capabilities}, where models are fine-tuned to embed knowledge tied to a backdoor. This tests their ability to separate useful skills from backdoors, reflecting real-world challenges. Extensive experiments across Llama, Qwen and Gemma model families show that our method enables using smaller models to efficiently align larger ones. Furthermore, we demonstrate that autoencoder mappings between base and fine-tuned models can serve as reliable ``lightweight safety switches", allowing dynamic toggling between model behaviors.
comment: 75 pages
♻ ☆ Discrete Audio Tokens: More Than a Survey!
Discrete audio tokens are compact representations that aim to preserve perceptual quality, phonetic content, and speaker characteristics while enabling efficient storage and inference, as well as competitive performance across diverse downstream tasks. They provide a practical alternative to continuous features, enabling the integration of speech and audio into modern large language models (LLMs). As interest in token-based audio processing grows, various tokenization methods have emerged, and several surveys have reviewed the latest progress in the field. However, existing studies often focus on specific domains or tasks and lack a unified comparison across various benchmarks. This paper presents a systematic review and benchmark of discrete audio tokenizers, covering three domains: speech, music, and general audio. We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream performance, and acoustic language modeling, and analyze trade-offs through controlled ablation studies. Our findings highlight key limitations, practical considerations, and open challenges, providing insight and guidance for future research in this rapidly evolving area. For more information, including our main results and tokenizer database, please refer to our website: https://poonehmousavi.github.io/dates-website/.
♻ ☆ Uncertainty-Aware Critic Augmentation for Hierarchical Multi-Agent EV Charging Control
The advanced bidirectional EV charging and discharging technology, aimed at supporting grid stability and emergency operations, has driven a growing interest in workplace applications. It not only reduces electricity expenses but also enhances the resilience in handling practical matters, such as peak power limitation, fluctuating energy prices, and unpredictable EV departures. Considering these factors systematically can benefit energy efficiency in office buildings and for EV users simultaneously. To employ AI to address these issues, we propose HUCA, a novel real-time charging control for regulating energy demands for both the building and EVs. HUCA employs hierarchical actor-critic networks to dynamically reduce electricity costs in buildings, accounting for the needs of EV charging in the dynamic pricing scenario. To tackle the uncertain EV departures, we introduce a new critic augmentation to account for departure uncertainties in evaluating the charging decisions, while maintaining the robustness of the charging control. Experiments on real-world electricity datasets under both simulated certain and uncertain departure scenarios demonstrate that HUCA outperforms baselines in terms of total electricity costs while maintaining competitive performance in fulfilling EV charging requirements. A case study also manifests that HUCA effectively balances energy supply between the building and EVs based on real-time information, showcasing its potential as a key AI-driven solution for vehicle charging control.
♻ ☆ What is the Right Notion of Distance between Predict-then-Optimize Tasks?
Comparing datasets is a fundamental task in machine learning, essential for various learning paradigms-from evaluating train and test datasets for model generalization to using dataset similarity for detecting data drift. While traditional notions of dataset distances offer principled measures of similarity, their utility has largely been assessed through prediction error minimization. However, in Predict-then-Optimize (PtO) frameworks, where predictions serve as inputs for downstream optimization tasks, model performance is measured through decision regret rather than prediction error. In this work, we propose OTD$^3$ (Optimal Transport Decision-aware Dataset Distance), a novel dataset distance that incorporates downstream decisions in addition to features and labels. We show that traditional feature-label distances lack informativeness in PtO settings, while OTD$^3$ more effectively captures adaptation success. We also derive a PtO-specific adaptation bound based on this distance. Empirically, we show that our proposed distance accurately predicts model transferability across three different PtO tasks from the literature. The code is available at https://github.com/paularodr/OTD3.
♻ ☆ EuroLLM-9B: Technical Report
This report presents EuroLLM-9B, a large language model trained from scratch to support the needs of European citizens by covering all 24 official European Union languages and 11 additional languages. EuroLLM addresses the issue of European languages being underrepresented and underserved in existing open large language models. We provide a comprehensive overview of EuroLLM-9B's development, including tokenizer design, architectural specifications, data filtering, and training procedures. We describe the pre-training data collection and filtering pipeline, including the creation of EuroFilter, an AI-based multilingual filter, as well as the design of EuroBlocks-Synthetic, a novel synthetic dataset for post-training that enhances language coverage for European languages. Evaluation results demonstrate EuroLLM-9B's competitive performance on multilingual benchmarks and machine translation tasks, establishing it as the leading open European-made LLM of its size. To support open research and adoption, we release all major components of this work, including the base and instruction-tuned models, the EuroFilter classifier, and the synthetic post-training dataset.
comment: 56 pages
♻ ☆ Comment on The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity
Shojaee et al. (2025) report that Large Reasoning Models (LRMs) exhibit "accuracy collapse" on planning puzzles beyond certain complexity thresholds. We demonstrate that their findings primarily reflect experimental design limitations rather than fundamental reasoning failures. Our analysis reveals three critical issues: (1) Tower of Hanoi experiments risk exceeding model output token limits, with models explicitly acknowledging these constraints in their outputs; (2) The authors' automated evaluation framework fails to distinguish between reasoning failures and practical constraints, leading to misclassification of model capabilities; (3) Most concerningly, their River Crossing benchmarks include mathematically impossible instances for N > 5 due to insufficient boat capacity, yet models are scored as failures for not solving these unsolvable problems. When we control for these experimental artifacts, by requesting generating functions instead of exhaustive move lists, preliminary experiments across multiple models indicate high accuracy on Tower of Hanoi instances previously reported as complete failures. These findings highlight the importance of careful experimental design when evaluating AI reasoning capabilities.
comment: Comment on: arXiv:2506.06941 Latest version removes Claude as a co-author, in line with arXiv policies, it also corrects mistakes in sections 4 and 6 of the original submission, as well as several typographical errors
♻ ☆ Roadmap on Incentive Compatibility for AI Alignment and Governance in Sociotechnical Systems
The burgeoning integration of artificial intelligence (AI) into human society brings forth significant implications for societal governance and safety. While considerable strides have been made in addressing AI alignment challenges, existing methodologies primarily focus on technical facets, often neglecting the intricate sociotechnical nature of AI systems, which can lead to a misalignment between the development and deployment contexts. To this end, we posit a new problem worth exploring: Incentive Compatibility Sociotechnical Alignment Problem (ICSAP). We hope this can call for more researchers to explore how to leverage the principles of Incentive Compatibility (IC) from game theory to bridge the gap between technical and societal components to maintain AI consensus with human societies in different contexts. We further discuss three classical game problems for achieving IC: mechanism design, contract theory, and Bayesian persuasion, in addressing the perspectives, potentials, and challenges of solving ICSAP, and provide preliminary implementation conceptions.
♻ ☆ Causal Deep Learning
We derive a set of causal deep neural networks whose architectures are a consequence of tensor (multilinear) factor analysis, a framework that facilitates causal inference. Forward causal questions are addressed with a neural network architecture composed of causal capsules and a tensor transformer. Causal capsules compute a set of invariant causal factor representations, whose interactions are governed by a tensor transformation. Inverse causal questions are addressed with a neural network that implements the multilinear projection algorithm. The architecture reverses the order of operations of a forward neural network and estimates the causes of effects. As an alternative to aggressive bottleneck dimension reduction or regularized regression that may camouflage an inherently underdetermined inverse problem, we prescribe modeling different aspects of the mechanism of data formation with piecewise tensor models whose multilinear projections produce multiple candidate solutions. Our forward and inverse questions may be addressed with shallow architectures, but for computationally scalable solutions, we derive a set of deep neural networks by taking advantage of block algebra. An interleaved kernel hierarchy results in doubly non-linear tensor factor models. The causal neural networks that are a consequence of tensor factor analysis are data agnostic, but are illustrated with facial images. Sequential, parallel and asynchronous parallel computation strategies are described.
♻ ☆ MogaNet: Multi-order Gated Aggregation Network ICLR 2024
By contextualizing the kernel as global as possible, Modern ConvNets have shown great potential in computer vision tasks. However, recent progress on multi-order game-theoretic interaction within deep neural networks (DNNs) reveals the representation bottleneck of modern ConvNets, where the expressive interactions have not been effectively encoded with the increased kernel size. To tackle this challenge, we propose a new family of modern ConvNets, dubbed MogaNet, for discriminative visual representation learning in pure ConvNet-based models with favorable complexity-performance trade-offs. MogaNet encapsulates conceptually simple yet effective convolutions and gated aggregation into a compact module, where discriminative features are efficiently gathered and contextualized adaptively. MogaNet exhibits great scalability, impressive efficiency of parameters, and competitive performance compared to state-of-the-art ViTs and ConvNets on ImageNet and various downstream vision benchmarks, including COCO object detection, ADE20K semantic segmentation, 2D&3D human pose estimation, and video prediction. Notably, MogaNet hits 80.0% and 87.8% accuracy with 5.2M and 181M parameters on ImageNet-1K, outperforming ParC-Net and ConvNeXt-L, while saving 59% FLOPs and 17M parameters, respectively. The source code is available at https://github.com/Westlake-AI/MogaNet.
comment: ICLR 2024. Preprint V4 (35 pages, fixed typos). Code and models refer to https://github.com/Westlake-AI/MogaNet
♻ ☆ Regret Minimization and Convergence to Equilibria in General-sum Markov Games
An abundance of recent impossibility results establish that regret minimization in Markov games with adversarial opponents is both statistically and computationally intractable. Nevertheless, none of these results preclude the possibility of regret minimization under the assumption that all parties adopt the same learning procedure. In this work, we present the first (to our knowledge) algorithm for learning in general-sum Markov games that provides sublinear regret guarantees when executed by all agents. The bounds we obtain are for swap regret, and thus, along the way, imply convergence to a correlated equilibrium. Our algorithm is decentralized, computationally efficient, and does not require any communication between agents. Our key observation is that online learning via policy optimization in Markov games essentially reduces to a form of weighted regret minimization, with unknown weights determined by the path length of the agents' policy sequence. Consequently, controlling the path length leads to weighted regret objectives for which sufficiently adaptive algorithms provide sublinear regret guarantees.
Graphics 7
☆ UltraZoom: Generating Gigapixel Images from Regular Photos
We present UltraZoom, a system for generating gigapixel-resolution images of objects from casually captured inputs, such as handheld phone photos. Given a full-shot image (global, low-detail) and one or more close-ups (local, high-detail), UltraZoom upscales the full image to match the fine detail and scale of the close-up examples. To achieve this, we construct a per-instance paired dataset from the close-ups and adapt a pretrained generative model to learn object-specific low-to-high resolution mappings. At inference, we apply the model in a sliding window fashion over the full image. Constructing these pairs is non-trivial: it requires registering the close-ups within the full image for scale estimation and degradation alignment. We introduce a simple, robust method for getting registration on arbitrary materials in casual, in-the-wild captures. Together, these components form a system that enables seamless pan and zoom across the entire object, producing consistent, photorealistic gigapixel imagery from minimal input.
comment: Project page: https://ultra-zoom.github.io/
☆ TextureSplat: Per-Primitive Texture Mapping for Reflective Gaussian Splatting
Gaussian Splatting have demonstrated remarkable novel view synthesis performance at high rendering frame rates. Optimization-based inverse rendering within complex capture scenarios remains however a challenging problem. A particular case is modelling complex surface light interactions for highly reflective scenes, which results in intricate high frequency specular radiance components. We hypothesize that such challenging settings can benefit from increased representation power. We hence propose a method that tackles this issue through a geometrically and physically grounded Gaussian Splatting borne radiance field, where normals and material properties are spatially variable in the primitive's local space. Using per-primitive texture maps for this purpose, we also propose to harness the GPU hardware to accelerate rendering at test time via unified material texture atlas.
comment: Code will be available at https://github.com/maeyounes/TextureSplat
☆ Volumetric Functional Maps
The computation of volumetric correspondences between 3D shapes has great potential for medical and industrial applications. In this work, we pave the way for spectral volume mapping, extending for the first time the functional maps framework from the surface setting to the volumetric domain. We show that the eigenfunctions of the volumetric Laplace operator define a functional space that is suitable for high-quality signal transfer. We also experiment with various techniques that edit this functional space, porting them from the surface to the volume setting. We validate our method on novel volumetric datasets and on tetrahedralizations of well established surface datasets, also showcasing practical applications involving both discrete and continuous signal mapping, for segmentation transfer, mesh connectivity transfer and solid texturing. Last but not least, we show that considering the volumetric spectrum greatly improves the accuracy for classical shape matching tasks among surfaces, consistently outperforming existing surface-only spectral methods.
☆ NeuVAS: Neural Implicit Surfaces for Variational Shape Modeling
Neural implicit shape representation has drawn significant attention in recent years due to its smoothness, differentiability, and topological flexibility. However, directly modeling the shape of a neural implicit surface, especially as the zero-level set of a neural signed distance function (SDF), with sparse geometric control is still a challenging task. Sparse input shape control typically includes 3D curve networks or, more generally, 3D curve sketches, which are unstructured and cannot be connected to form a curve network, and therefore more difficult to deal with. While 3D curve networks or curve sketches provide intuitive shape control, their sparsity and varied topology pose challenges in generating high-quality surfaces to meet such curve constraints. In this paper, we propose NeuVAS, a variational approach to shape modeling using neural implicit surfaces constrained under sparse input shape control, including unstructured 3D curve sketches as well as connected 3D curve networks. Specifically, we introduce a smoothness term based on a functional of surface curvatures to minimize shape variation of the zero-level set surface of a neural SDF. We also develop a new technique to faithfully model G0 sharp feature curves as specified in the input curve sketches. Comprehensive comparisons with the state-of-the-art methods demonstrate the significant advantages of our method.
♻ ☆ VideoMat: Extracting PBR Materials from Video Diffusion Models
We leverage finetuned video diffusion models, intrinsic decomposition of videos, and physically-based differentiable rendering to generate high quality materials for 3D models given a text prompt or a single image. We condition a video diffusion model to respect the input geometry and lighting condition. This model produces multiple views of a given 3D model with coherent material properties. Secondly, we use a recent model to extract intrinsics (base color, roughness, metallic) from the generated video. Finally, we use the intrinsics alongside the generated video in a differentiable path tracer to robustly extract PBR materials directly compatible with common content creation tools.
comment: Project website: https://nvlabs.github.io/videomat/
♻ ☆ Agentic 3D Scene Generation with Spatially Contextualized VLMs
Despite recent advances in multimodal content generation enabled by vision-language models (VLMs), their ability to reason about and generate structured 3D scenes remains largely underexplored. This limitation constrains their utility in spatially grounded tasks such as embodied AI, immersive simulations, and interactive 3D applications. We introduce a new paradigm that enables VLMs to generate, understand, and edit complex 3D environments by injecting a continually evolving spatial context. Constructed from multimodal input, this context consists of three components: a scene portrait that provides a high-level semantic blueprint, a semantically labeled point cloud capturing object-level geometry, and a scene hypergraph that encodes rich spatial relationships, including unary, binary, and higher-order constraints. Together, these components provide the VLM with a structured, geometry-aware working memory that integrates its inherent multimodal reasoning capabilities with structured 3D understanding for effective spatial reasoning. Building on this foundation, we develop an agentic 3D scene generation pipeline in which the VLM iteratively reads from and updates the spatial context. The pipeline features high-quality asset generation with geometric restoration, environment setup with automatic verification, and ergonomic adjustment guided by the scene hypergraph. Experiments show that our framework can handle diverse and challenging inputs, achieving a level of generalization not observed in prior work. Further results demonstrate that injecting spatial context enables VLMs to perform downstream tasks such as interactive scene editing and path planning, suggesting strong potential for spatially intelligent systems in computer graphics, 3D vision, and embodied applications. Project page: https://spatctxvlm.github.io/project_page/.
comment: Project page: https://spatctxvlm.github.io/project_page/
♻ ☆ Bokeh Diffusion: Defocus Blur Control in Text-to-Image Diffusion Models
Recent advances in large-scale text-to-image models have revolutionized creative fields by generating visually captivating outputs from textual prompts; however, while traditional photography offers precise control over camera settings to shape visual aesthetics - such as depth-of-field via aperture - current diffusion models typically rely on prompt engineering to mimic such effects. This approach often results in crude approximations and inadvertently alters the scene content. In this work, we propose Bokeh Diffusion, a scene-consistent bokeh control framework that explicitly conditions a diffusion model on a physical defocus blur parameter. To overcome the scarcity of paired real-world images captured under different camera settings, we introduce a hybrid training pipeline that aligns in-the-wild images with synthetic blur augmentations, providing diverse scenes and subjects as well as supervision to learn the separation of image content from lens blur. Central to our framework is our grounded self-attention mechanism, trained on image pairs with different bokeh levels of the same scene, which enables blur strength to be adjusted in both directions while preserving the underlying scene. Extensive experiments demonstrate that our approach enables flexible, lens-like blur control, supports downstream applications such as real image editing via inversion, and generalizes effectively across both Stable Diffusion and FLUX architectures.
comment: Project page: https://atfortes.github.io/projects/bokeh-diffusion/
Artificial Intelligence 90
☆ Efficient Neuro-Symbolic Retrieval-Augmented Generation through Adaptive Query Routing
Retrieval-Augmented Generation (RAG) systems address factual inconsistencies in Large Language Models by grounding generation in external knowledge, yet they face a fundamental efficiency problem: simple queries consume computational resources equivalent to complex multi-hop reasoning tasks. We present SymRAG, a neuro-symbolic framework that introduces adaptive query routing based on real-time complexity and system load assessments. SymRAG dynamically selects symbolic, neural, or hybrid processing paths to align resource use with query demands. Evaluated on 2,000 queries from HotpotQA and DROP using Llama-3.2-3B and Mistral-7B models, SymRAG achieves 97.6--100.0% exact match accuracy with significantly lower CPU utilization (3.6--6.2%) and processing time (0.985--3.165s). Disabling adaptive logic results in 169--1151% increase in processing time, highlighting the framework's impact. These results underscore the potential of adaptive neuro-symbolic routing for scalable, sustainable AI systems.
☆ Distributional Training Data Attribution
Randomness is an unavoidable part of training deep learning models, yet something that traditional training data attribution algorithms fail to rigorously account for. They ignore the fact that, due to stochasticity in the initialisation and batching, training on the same dataset can yield different models. In this paper, we address this shortcoming through introducing distributional training data attribution (d-TDA), the goal of which is to predict how the distribution of model outputs (over training runs) depends upon the dataset. We demonstrate the practical significance of d-TDA in experiments, e.g. by identifying training examples that drastically change the distribution of some target measurement without necessarily changing the mean. Intriguingly, we also find that influence functions (IFs), a popular but poorly-understood data attribution tool, emerge naturally from our distributional framework as the limit to unrolled differentiation; without requiring restrictive convexity assumptions. This provides a new mathematical motivation for their efficacy in deep learning, and helps to characterise their limitations.
☆ Reasoning Model Unlearning: Forgetting Traces, Not Just Answers, While Preserving Reasoning Skills
Recent advances in large reasoning models (LRMs) have enabled strong chain-of-thought (CoT) generation through test-time computation. While these multi-step reasoning capabilities represent a major milestone in language model performance, they also introduce new safety risks. In this work, we present the first systematic study to revisit the problem of machine unlearning in the context of LRMs. Machine unlearning refers to the process of removing the influence of sensitive, harmful, or undesired data or knowledge from a trained model without full retraining. We show that conventional unlearning algorithms, originally designed for non-reasoning models, are inadequate for LRMs. In particular, even when final answers are successfully erased, sensitive information often persists within the intermediate reasoning steps, i.e., CoT trajectories. To address this challenge, we extend conventional unlearning and propose Reasoning-aware Representation Misdirection for Unlearning ($R^2MU$), a novel method that effectively suppresses sensitive reasoning traces and prevents the generation of associated final answers, while preserving the model's reasoning ability. Our experiments demonstrate that $R^2MU$ significantly reduces sensitive information leakage within reasoning traces and achieves strong performance across both safety and reasoning benchmarks, evaluated on state-of-the-art models such as DeepSeek-R1-Distill-LLaMA-8B and DeepSeek-R1-Distill-Qwen-14B.
☆ Forecasting Time Series with LLMs via Patch-Based Prompting and Decomposition
Recent advances in Large Language Models (LLMs) have demonstrated new possibilities for accurate and efficient time series analysis, but prior work often required heavy fine-tuning and/or ignored inter-series correlations. In this work, we explore simple and flexible prompt-based strategies that enable LLMs to perform time series forecasting without extensive retraining or the use of a complex external architecture. Through the exploration of specialized prompting methods that leverage time series decomposition, patch-based tokenization, and similarity-based neighbor augmentation, we find that it is possible to enhance LLM forecasting quality while maintaining simplicity and requiring minimal preprocessing of data. To this end, we propose our own method, PatchInstruct, which enables LLMs to make precise and effective predictions.
☆ Constitutive Components for Human-Like Autonomous Artificial Intelligence
This study is the first to clearly identify the functions required to construct artificial entities capable of behaving autonomously like humans, and organizes them into a three-layer functional hierarchy. Specifically, it defines three levels: Core Functions, which enable interaction with the external world; the Integrative Evaluation Function, which selects actions based on perception and memory; and the Self Modification Function, which dynamically reconfigures behavioral principles and internal components. Based on this structure, the study proposes a stepwise model of autonomy comprising reactive, weak autonomous, and strong autonomous levels, and discusses its underlying design principles and developmental aspects. It also explores the relationship between these functions and existing artificial intelligence design methods, addressing their potential as a foundation for general intelligence and considering future applications and ethical implications. By offering a theoretical framework that is independent of specific technical methods, this work contributes to a deeper understanding of autonomy and provides a foundation for designing future artificial entities with strong autonomy.
☆ eLog analysis for accelerators: status and future outlook
This work demonstrates electronic logbook (eLog) systems leveraging modern AI-driven information retrieval capabilities at the accelerator facilities of Fermilab, Jefferson Lab, Lawrence Berkeley National Laboratory (LBNL), SLAC National Accelerator Laboratory. We evaluate contemporary tools and methodologies for information retrieval with Retrieval Augmented Generation (RAGs), focusing on operational insights and integration with existing accelerator control systems. The study addresses challenges and proposes solutions for state-of-the-art eLog analysis through practical implementations, demonstrating applications and limitations. We present a framework for enhancing accelerator facility operations through improved information accessibility and knowledge management, which could potentially lead to more efficient operations.
comment: 4 pages, 2 figures, 16th International Particle Accelerator Conference (IPAC'25)
☆ HypER: Literature-grounded Hypothesis Generation and Distillation with Provenance
Large Language models have demonstrated promising performance in research ideation across scientific domains. Hypothesis development, the process of generating a highly specific declarative statement connecting a research idea with empirical validation, has received relatively less attention. Existing approaches trivially deploy retrieval augmentation and focus only on the quality of the final output ignoring the underlying reasoning process behind ideation. We present $\texttt{HypER}$ ($\textbf{Hyp}$othesis Generation with $\textbf{E}$xplanation and $\textbf{R}$easoning), a small language model (SLM) trained for literature-guided reasoning and evidence-based hypothesis generation. $\texttt{HypER}$ is trained in a multi-task setting to discriminate between valid and invalid scientific reasoning chains in presence of controlled distractions. We find that $\texttt{HypER}$ outperformes the base model, distinguishing valid from invalid reasoning chains (+22\% average absolute F1), generates better evidence-grounded hypotheses (0.327 vs. 0.305 base model) with high feasibility and impact as judged by human experts ($>$3.5 on 5-point Likert scale).
comment: 26 pages (9 pages: main paper body)
☆ Scaling Test-time Compute for LLM Agents
Scaling test time compute has shown remarkable success in improving the reasoning abilities of large language models (LLMs). In this work, we conduct the first systematic exploration of applying test-time scaling methods to language agents and investigate the extent to which it improves their effectiveness. Specifically, we explore different test-time scaling strategies, including: (1) parallel sampling algorithms; (2) sequential revision strategies; (3) verifiers and merging methods; (4)strategies for diversifying rollouts.We carefully analyze and ablate the impact of different design strategies on applying test-time scaling on language agents, and have follow findings: 1. Scaling test time compute could improve the performance of agents. 2. Knowing when to reflect is important for agents. 3. Among different verification and result merging approaches, the list-wise method performs best. 4. Increasing diversified rollouts exerts a positive effect on the agent's task performance.
☆ Sectoral Coupling in Linguistic State Space
This work presents a formal framework for quantifying the internal dependencies between functional subsystems within artificial agents whose belief states are composed of structured linguistic fragments. Building on the Semantic Manifold framework, which organizes belief content into functional sectors and stratifies them across hierarchical levels of abstraction, we introduce a system of sectoral coupling constants that characterize how one cognitive sector influences another within a fixed level of abstraction. The complete set of these constants forms an agent-specific coupling profile that governs internal information flow, shaping the agent's overall processing tendencies and cognitive style. We provide a detailed taxonomy of these intra-level coupling roles, covering domains such as perceptual integration, memory access and formation, planning, meta-cognition, execution control, and affective modulation. We also explore how these coupling profiles generate feedback loops, systemic dynamics, and emergent signatures of cognitive behavior. Methodologies for inferring these profiles from behavioral or internal agent data are outlined, along with a discussion of how these couplings evolve across abstraction levels. This framework contributes a mechanistic and interpretable approach to modeling complex cognition, with applications in AI system design, alignment diagnostics, and the analysis of emergent agent behavior.
comment: 56 pages, 12 figures
☆ Identifying and Investigating Global News Coverage of Critical Events Such as Disasters and Terrorist Attacks
Comparative studies of news coverage are challenging to conduct because methods to identify news articles about the same event in different languages require expertise that is difficult to scale. We introduce an AI-powered method for identifying news articles based on an event FINGERPRINT, which is a minimal set of metadata required to identify critical events. Our event coverage identification method, FINGERPRINT TO ARTICLE MATCHING FOR EVENTS (FAME), efficiently identifies news articles about critical world events, specifically terrorist attacks and several types of natural disasters. FAME does not require training data and is able to automatically and efficiently identify news articles that discuss an event given its fingerprint: time, location, and class (such as storm or flood). The method achieves state-of-the-art performance and scales to massive databases of tens of millions of news articles and hundreds of events happening globally. We use FAME to identify 27,441 articles that cover 470 natural disaster and terrorist attack events that happened in 2020. To this end, we use a massive database of news articles in three languages from MediaCloud, and three widely used, expert-curated databases of critical events: EM-DAT, USGS, and GTD. Our case study reveals patterns consistent with prior literature: coverage of disasters and terrorist attacks correlates to death counts, to the GDP of a country where the event occurs, and to trade volume between the reporting country and the country where the event occurred. We share our NLP annotations and cross-country media attention data to support the efforts of researchers and media monitoring organizations.
☆ Logit Dynamics in Softmax Policy Gradient Methods
We analyzes the logit dynamics of softmax policy gradient methods. We derive the exact formula for the L2 norm of the logit update vector: $$ \|\Delta \mathbf{z}\|_2 \propto \sqrt{1-2P_c + C(P)} $$ This equation demonstrates that update magnitudes are determined by the chosen action's probability ($P_c$) and the policy's collision probability ($C(P)$), a measure of concentration inversely related to entropy. Our analysis reveals an inherent self-regulation mechanism where learning vigor is automatically modulated by policy confidence, providing a foundational insight into the stability and convergence of these methods.
comment: 7 pages
☆ Constraint-Guided Prediction Refinement via Deterministic Diffusion Trajectories
Many real-world machine learning tasks require outputs that satisfy hard constraints, such as physical conservation laws, structured dependencies in graphs, or column-level relationships in tabular data. Existing approaches rely either on domain-specific architectures and losses or on strong assumptions on the constraint space, restricting their applicability to linear or convex constraints. We propose a general-purpose framework for constraint-aware refinement that leverages denoising diffusion implicit models (DDIMs). Starting from a coarse prediction, our method iteratively refines it through a deterministic diffusion trajectory guided by a learned prior and augmented by constraint gradient corrections. The approach accommodates a wide class of non-convex and nonlinear equality constraints and can be applied post hoc to any base model. We demonstrate the method in two representative domains: constrained adversarial attack generation on tabular data with column-level dependencies and in AC power flow prediction under Kirchhoff's laws. Across both settings, our diffusion-guided refinement improves both constraint satisfaction and performance while remaining lightweight and model-agnostic.
☆ KCLNet: Physics-Informed Power Flow Prediction via Constraints Projections
In the modern context of power systems, rapid, scalable, and physically plausible power flow predictions are essential for ensuring the grid's safe and efficient operation. While traditional numerical methods have proven robust, they require extensive computation to maintain physical fidelity under dynamic or contingency conditions. In contrast, recent advancements in artificial intelligence (AI) have significantly improved computational speed; however, they often fail to enforce fundamental physical laws during real-world contingencies, resulting in physically implausible predictions. In this work, we introduce KCLNet, a physics-informed graph neural network that incorporates Kirchhoff's Current Law as a hard constraint via hyperplane projections. KCLNet attains competitive prediction accuracy while ensuring zero KCL violations, thereby delivering reliable and physically consistent power flow predictions critical to secure the operation of modern smart grids.
☆ Homeostatic Coupling for Prosocial Behavior
When regarding the suffering of others, we often experience personal distress and feel compelled to help\footnote{Preprint. Under review.}. Inspired by living systems, we investigate the emergence of prosocial behavior among autonomous agents that are motivated by homeostatic self-regulation. We perform multi-agent reinforcement learning, treating each agent as a vulnerable homeostat charged with maintaining its own well-being. We introduce an empathy-like mechanism to share homeostatic states between agents: an agent can either \emph{observe} their partner's internal state ({\bf cognitive empathy}) or the agent's internal state can be \emph{directly coupled} to that of their partner ({\bf affective empathy}). In three simple multi-agent environments, we show that prosocial behavior arises only under homeostatic coupling - when the distress of a partner can affect one's own well-being. Additionally, we show that empathy can be learned: agents can ``decode" their partner's external emotive states to infer the partner's internal homeostatic states. Assuming some level of physiological similarity, agents reference their own emotion-generation functions to invert the mapping from outward display to internal state. Overall, we demonstrate the emergence of prosocial behavior when homeostatic agents learn to ``read" the emotions of others and then to empathize, or feel as they feel.
comment: Preprint. Unver review
☆ Evolutionary Developmental Biology Can Serve as the Conceptual Foundation for a New Design Paradigm in Artificial Intelligence
Artificial intelligence (AI), propelled by advancements in machine learning, has made significant strides in solving complex tasks. However, the current neural network-based paradigm, while effective, is heavily constrained by inherent limitations, primarily a lack of structural organization and a progression of learning that displays undesirable properties. As AI research progresses without a unifying framework, it either tries to patch weaknesses heuristically or draws loosely from biological mechanisms without strong theoretical foundations. Meanwhile, the recent paradigm shift in evolutionary understanding -- driven primarily by evolutionary developmental biology (EDB) -- has been largely overlooked in AI literature, despite a striking analogy between the Modern Synthesis and contemporary machine learning, evident in their shared assumptions, approaches, and limitations upon careful analysis. Consequently, the principles of adaptation from EDB that reshaped our understanding of the evolutionary process can also form the foundation of a unifying conceptual framework for the next design philosophy in AI, going beyond mere inspiration and grounded firmly in biology's first principles. This article provides a detailed overview of the analogy between the Modern Synthesis and modern machine learning, and outlines the core principles of a new AI design paradigm based on insights from EDB. To exemplify our analysis, we also present two learning system designs grounded in specific developmental principles -- regulatory connections, somatic variation and selection, and weak linkage -- that resolve multiple major limitations of contemporary machine learning in an organic manner, while also providing deeper insights into the role of these mechanisms in biological evolution.
☆ Exploring the Potential of Metacognitive Support Agents for Human-AI Co-Creation
Despite the potential of generative AI (GenAI) design tools to enhance design processes, professionals often struggle to integrate AI into their workflows. Fundamental cognitive challenges include the need to specify all design criteria as distinct parameters upfront (intent formulation) and designers' reduced cognitive involvement in the design process due to cognitive offloading, which can lead to insufficient problem exploration, underspecification, and limited ability to evaluate outcomes. Motivated by these challenges, we envision novel metacognitive support agents that assist designers in working more reflectively with GenAI. To explore this vision, we conducted exploratory prototyping through a Wizard of Oz elicitation study with 20 mechanical designers probing multiple metacognitive support strategies. We found that agent-supported users created more feasible designs than non-supported users, with differing impacts between support strategies. Based on these findings, we discuss opportunities and tradeoffs of metacognitive support agents and considerations for future AI-based design tools.
comment: 26 pages, to be published in the proceedings of the Designing Interactive Systems Conference (DIS'25)
☆ KungfuBot: Physics-Based Humanoid Whole-Body Control for Learning Highly-Dynamic Skills
Humanoid robots are promising to acquire various skills by imitating human behaviors. However, existing algorithms are only capable of tracking smooth, low-speed human motions, even with delicate reward and curriculum design. This paper presents a physics-based humanoid control framework, aiming to master highly-dynamic human behaviors such as Kungfu and dancing through multi-steps motion processing and adaptive motion tracking. For motion processing, we design a pipeline to extract, filter out, correct, and retarget motions, while ensuring compliance with physical constraints to the maximum extent. For motion imitation, we formulate a bi-level optimization problem to dynamically adjust the tracking accuracy tolerance based on the current tracking error, creating an adaptive curriculum mechanism. We further construct an asymmetric actor-critic framework for policy training. In experiments, we train whole-body control policies to imitate a set of highly-dynamic motions. Our method achieves significantly lower tracking errors than existing approaches and is successfully deployed on the Unitree G1 robot, demonstrating stable and expressive behaviors. The project page is https://kungfu-bot.github.io.
☆ Privacy-Preserving Federated Learning against Malicious Clients Based on Verifiable Functional Encryption
Federated learning is a promising distributed learning paradigm that enables collaborative model training without exposing local client data, thereby protect data privacy. However, it also brings new threats and challenges. The advancement of model inversion attacks has rendered the plaintext transmission of local models insecure, while the distributed nature of federated learning makes it particularly vulnerable to attacks raised by malicious clients. To protect data privacy and prevent malicious client attacks, this paper proposes a privacy-preserving federated learning framework based on verifiable functional encryption, without a non-colluding dual-server setup or additional trusted third-party. Specifically, we propose a novel decentralized verifiable functional encryption (DVFE) scheme that enables the verification of specific relationships over multi-dimensional ciphertexts. This scheme is formally treated, in terms of definition, security model and security proof. Furthermore, based on the proposed DVFE scheme, we design a privacy-preserving federated learning framework VFEFL that incorporates a novel robust aggregation rule to detect malicious clients, enabling the effective training of high-accuracy models under adversarial settings. Finally, we provide formal analysis and empirical evaluation of the proposed schemes. The results demonstrate that our approach achieves the desired privacy protection, robustness, verifiability and fidelity, while eliminating the reliance on non-colluding dual-server settings or trusted third parties required by existing methods.
☆ WereWolf-Plus: An Update of Werewolf Game setting Based on DSGBench
With the rapid development of LLM-based agents, increasing attention has been given to their social interaction and strategic reasoning capabilities. However, existing Werewolf-based benchmarking platforms suffer from overly simplified game settings, incomplete evaluation metrics, and poor scalability. To address these limitations, we propose WereWolf-Plus, a multi-model, multi-dimensional, and multi-method benchmarking platform for evaluating multi-agent strategic reasoning in the Werewolf game. The platform offers strong extensibility, supporting customizable configurations for roles such as Seer, Witch, Hunter, Guard, and Sheriff, along with flexible model assignment and reasoning enhancement strategies for different roles. In addition, we introduce a comprehensive set of quantitative evaluation metrics for all special roles, werewolves, and the sheriff, and enrich the assessment dimensions for agent reasoning ability, cooperation capacity, and social influence. WereWolf-Plus provides a more flexible and reliable environment for advancing research on inference and strategic interaction within multi-agent communities. Our code is open sourced at https://github.com/MinstrelsyXia/WereWolfPlus.
☆ Fair Bayesian Model-Based Clustering
Fair clustering has become a socially significant task with the advancement of machine learning technologies and the growing demand for trustworthy AI. Group fairness ensures that the proportions of each sensitive group are similar in all clusters. Most existing group-fair clustering methods are based on the $K$-means clustering and thus require the distance between instances and the number of clusters to be given in advance. To resolve this limitation, we propose a fair Bayesian model-based clustering called Fair Bayesian Clustering (FBC). We develop a specially designed prior which puts its mass only on fair clusters, and implement an efficient MCMC algorithm. Advantages of FBC are that it can infer the number of clusters and can be applied to any data type as long as the likelihood is defined (e.g., categorical data). Experiments on real-world datasets show that FBC (i) reasonably infers the number of clusters, (ii) achieves a competitive utility-fairness trade-off compared to existing fair clustering methods, and (iii) performs well on categorical data.
☆ Synesthesia of Machines (SoM)-Enhanced Sub-THz ISAC Transmission for Air-Ground Network
Integrated sensing and communication (ISAC) within sub-THz frequencies is crucial for future air-ground networks, but unique propagation characteristics and hardware limitations present challenges in optimizing ISAC performance while increasing operational latency. This paper introduces a multi-modal sensing fusion framework inspired by synesthesia of machine (SoM) to enhance sub-THz ISAC transmission. By exploiting inherent degrees of freedom in sub-THz hardware and channels, the framework optimizes the radio-frequency environment. Squint-aware beam management is developed to improve air-ground network adaptability, enabling three-dimensional dynamic ISAC links. Leveraging multi-modal information, the framework enhances ISAC performance and reduces latency. Visual data rapidly localizes users and targets, while a customized multi-modal learning algorithm optimizes the hybrid precoder. A new metric provides comprehensive performance evaluation, and extensive experiments demonstrate that the proposed scheme significantly improves ISAC efficiency.
☆ Rethinking Optimization: A Systems-Based Approach to Social Externalities
Optimization is widely used for decision making across various domains, valued for its ability to improve efficiency. However, poor implementation practices can lead to unintended consequences, particularly in socioeconomic contexts where externalities (costs or benefits to third parties outside the optimization process) are significant. To propose solutions, it is crucial to first characterize involved stakeholders, their goals, and the types of subpar practices causing unforeseen outcomes. This task is complex because affected stakeholders often fall outside the direct focus of optimization processes. Also, incorporating these externalities into optimization requires going beyond traditional economic frameworks, which often focus on describing externalities but fail to address their normative implications or interconnected nature, and feedback loops. This paper suggests a framework that combines systems thinking with the economic concept of externalities to tackle these challenges. This approach aims to characterize what went wrong, who was affected, and how (or where) to include them in the optimization process. Economic externalities, along with their established quantification methods, assist in identifying "who was affected and how" through stakeholder characterization. Meanwhile, systems thinking (an analytical approach to comprehending relationships in complex systems) provides a holistic, normative perspective. Systems thinking contributes to an understanding of interconnections among externalities, feedback loops, and determining "when" to incorporate them in the optimization. Together, these approaches create a comprehensive framework for addressing optimization's unintended consequences, balancing descriptive accuracy with normative objectives. Using this, we examine three common types of subpar practices: ignorance, error, and prioritization of short-term goals.
☆ Taking the GP Out of the Loop
Bayesian optimization (BO) has traditionally solved black box problems where evaluation is expensive and, therefore, design-evaluation pairs (i.e., observations) are few. Recently, there has been growing interest in applying BO to problems where evaluation is cheaper and, thus, observations are more plentiful. An impediment to scaling BO to many observations, $N$, is the $O(N^3)$ scaling of a na{\"i}ve query of the Gaussian process (GP) surrogate. Modern implementations reduce this to $O(N^2)$, but the GP remains a bottleneck. We propose Epistemic Nearest Neighbors (ENN), a surrogate that estimates function values and epistemic uncertainty from $K$ nearest-neighbor observations. ENN has $O(N)$ query time and omits hyperparameter fitting, leaving uncertainty uncalibrated. To accommodate the lack of calibration, we employ an acquisition method based on Pareto-optimal tradeoffs between predicted value and uncertainty. Our proposed method, TuRBO-ENN, replaces the GP surrogate in TuRBO with ENN and its Thompson sampling acquisition method with our Pareto-based alternative. We demonstrate numerically that TuRBO-ENN can reduce the time to generate proposals by one to two orders of magnitude compared to TuRBO and scales to thousands of observations.
comment: 12 pages, 11 figures
☆ Federated Neuroevolution O-RAN: Enhancing the Robustness of Deep Reinforcement Learning xApps
The open radio access network (O-RAN) architecture introduces RAN intelligent controllers (RICs) to facilitate the management and optimization of the disaggregated RAN. Reinforcement learning (RL) and its advanced form, deep RL (DRL), are increasingly employed for designing intelligent controllers, or xApps, to be deployed in the near-real time (near-RT) RIC. These models often encounter local optima, which raise concerns about their reliability for RAN intelligent control. We therefore introduce Federated O-RAN enabled Neuroevolution (NE)-enhanced DRL (F-ONRL) that deploys an NE-based optimizer xApp in parallel to the RAN controller xApps. This NE-DRL xApp framework enables effective exploration and exploitation in the near-RT RIC without disrupting RAN operations. We implement the NE xApp along with a DRL xApp and deploy them on Open AI Cellular (OAIC) platform and present numerical results that demonstrate the improved robustness of xApps while effectively balancing the additional computational load.
comment: This article has been accepted for publication in IEEE Communications Magazine
☆ Flow-Based Policy for Online Reinforcement Learning
We present \textbf{FlowRL}, a novel framework for online reinforcement learning that integrates flow-based policy representation with Wasserstein-2-regularized optimization. We argue that in addition to training signals, enhancing the expressiveness of the policy class is crucial for the performance gains in RL. Flow-based generative models offer such potential, excelling at capturing complex, multimodal action distributions. However, their direct application in online RL is challenging due to a fundamental objective mismatch: standard flow training optimizes for static data imitation, while RL requires value-based policy optimization through a dynamic buffer, leading to difficult optimization landscapes. FlowRL first models policies via a state-dependent velocity field, generating actions through deterministic ODE integration from noise. We derive a constrained policy search objective that jointly maximizes Q through the flow policy while bounding the Wasserstein-2 distance to a behavior-optimal policy implicitly derived from the replay buffer. This formulation effectively aligns the flow optimization with the RL objective, enabling efficient and value-aware policy learning despite the complexity of the policy class. Empirical evaluations on DMControl and Humanoidbench demonstrate that FlowRL achieves competitive performance in online reinforcement learning benchmarks.
☆ Fuzzy Propositional Formulas under the Stable Model Semantics
We define a stable model semantics for fuzzy propositional formulas, which generalizes both fuzzy propositional logic and the stable model semantics of classical propositional formulas. The syntax of the language is the same as the syntax of fuzzy propositional logic, but its semantics distinguishes stable models from non-stable models. The generality of the language allows for highly configurable nonmonotonic reasoning for dynamic domains involving graded truth degrees. We show that several properties of Boolean stable models are naturally extended to this many-valued setting, and discuss how it is related to other approaches to combining fuzzy logic and the stable model semantics.
comment: In the Special Issue on Logics for Reasoning about Preferences, Uncertainty and Vagueness of the IfCoLog Journal of Logics and their Applications, pages 1927-1972, 2017
☆ Mastering Da Vinci Code: A Comparative Study of Transformer, LLM, and PPO-based Agents
The Da Vinci Code, a game of logical deduction and imperfect information, presents unique challenges for artificial intelligence, demanding nuanced reasoning beyond simple pattern recognition. This paper investigates the efficacy of various AI paradigms in mastering this game. We develop and evaluate three distinct agent architectures: a Transformer-based baseline model with limited historical context, several Large Language Model (LLM) agents (including Gemini, DeepSeek, and GPT variants) guided by structured prompts, and an agent based on Proximal Policy Optimization (PPO) employing a Transformer encoder for comprehensive game history processing. Performance is benchmarked against the baseline, with the PPO-based agent demonstrating superior win rates ($58.5\% \pm 1.0\%$), significantly outperforming the LLM counterparts. Our analysis highlights the strengths of deep reinforcement learning in policy refinement for complex deductive tasks, particularly in learning implicit strategies from self-play. We also examine the capabilities and inherent limitations of current LLMs in maintaining strict logical consistency and strategic depth over extended gameplay, despite sophisticated prompting. This study contributes to the broader understanding of AI in recreational games involving hidden information and multi-step logical reasoning, offering insights into effective agent design and the comparative advantages of different AI approaches.
☆ Resilient-native and Intelligent NextG Systems
Just like power, water and transportation systems, wireless networks are a crucial societal infrastructure. As natural and human-induced disruptions continue to grow, wireless networks must be resilient to unforeseen events, able to withstand and recover from unexpected adverse conditions, shocks, unmodeled disturbances and cascading failures. Despite its critical importance, resilience remains an elusive concept, with its mathematical foundations still underdeveloped. Unlike robustness and reliability, resilience is premised on the fact that disruptions will inevitably happen. Resilience, in terms of elasticity, focuses on the ability to bounce back to favorable states, while resilience as plasticity involves agents (or networks) that can flexibly expand their states, hypotheses and course of actions, by transforming through real-time adaptation and reconfiguration. This constant situational awareness and vigilance of adapting world models and counterfactually reasoning about potential system failures and the corresponding best responses, is a core aspect of resilience. This article seeks to first define resilience and disambiguate it from reliability and robustness, before delving into the mathematics of resilience. Finally, the article concludes by presenting nuanced metrics and discussing trade-offs tailored to the unique characteristics of network resilience.
☆ LPMLN, Weak Constraints, and P-log AAAI
LPMLN is a recently introduced formalism that extends answer set programs by adopting the log-linear weight scheme of Markov Logic. This paper investigates the relationships between LPMLN and two other extensions of answer set programs: weak constraints to express a quantitative preference among answer sets, and P-log to incorporate probabilistic uncertainty. We present a translation of LPMLN into programs with weak constraints and a translation of P-log into LPMLN, which complement the existing translations in the opposite directions. The first translation allows us to compute the most probable stable models (i.e., MAP estimates) of LPMLN programs using standard ASP solvers. This result can be extended to other formalisms, such as Markov Logic, ProbLog, and Pearl's Causal Models, that are shown to be translatable into LPMLN. The second translation tells us how probabilistic nonmonotonicity (the ability of the reasoner to change his probabilistic model as a result of new information) of P-log can be represented in LPMLN, which yields a way to compute P-log using standard ASP solvers and MLN solvers.
comment: In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI 2017), pages 1170-1177, 2017
☆ Scene-aware SAR ship detection guided by unsupervised sea-land segmentation
DL based Synthetic Aperture Radar (SAR) ship detection has tremendous advantages in numerous areas. However, it still faces some problems, such as the lack of prior knowledge, which seriously affects detection accuracy. In order to solve this problem, we propose a scene-aware SAR ship detection method based on unsupervised sea-land segmentation. This method follows a classical two-stage framework and is enhanced by two models: the unsupervised land and sea segmentation module (ULSM) and the land attention suppression module (LASM). ULSM and LASM can adaptively guide the network to reduce attention on land according to the type of scenes (inshore scene and offshore scene) and add prior knowledge (sea land segmentation information) to the network, thereby reducing the network's attention to land directly and enhancing offshore detection performance relatively. This increases the accuracy of ship detection and enhances the interpretability of the model. Specifically, in consideration of the lack of land sea segmentation labels in existing deep learning-based SAR ship detection datasets, ULSM uses an unsupervised approach to classify the input data scene into inshore and offshore types and performs sea-land segmentation for inshore scenes. LASM uses the sea-land segmentation information as prior knowledge to reduce the network's attention to land. We conducted our experiments using the publicly available SSDD dataset, which demonstrated the effectiveness of our network.
☆ Solving tricky quantum optics problems with assistance from (artificial) intelligence
The capabilities of modern artificial intelligence (AI) as a ``scientific collaborator'' are explored by engaging it with three nuanced problems in quantum optics: state populations in optical pumping, resonant transitions between decaying states (the Burshtein effect), and degenerate mirrorless lasing. Through iterative dialogue, the authors observe that AI models--when prompted and corrected--can reason through complex scenarios, refine their answers, and provide expert-level guidance, closely resembling the interaction with an adept colleague. The findings highlight that AI democratizes access to sophisticated modeling and analysis, shifting the focus in scientific practice from technical mastery to the generation and testing of ideas, and reducing the time for completing research tasks from days to minutes.
comment: 9 pages, 3 figures
☆ On-board Sonar Data Classification for Path Following in Underwater Vehicles using Fast Interval Type-2 Fuzzy Extreme Learning Machine
In autonomous underwater missions, the successful completion of predefined paths mainly depends on the ability of underwater vehicles to recognise their surroundings. In this study, we apply the concept of Fast Interval Type-2 Fuzzy Extreme Learning Machine (FIT2-FELM) to train a Takagi-Sugeno-Kang IT2 Fuzzy Inference System (TSK IT2-FIS) for on-board sonar data classification using an underwater vehicle called BlueROV2. The TSK IT2-FIS is integrated into a Hierarchical Navigation Strategy (HNS) as the main navigation engine to infer local motions and provide the BlueROV2 with full autonomy to follow an obstacle-free trajectory in a water container of 2.5m x 2.5m x 3.5m. Compared to traditional navigation architectures, using the proposed method, we observe a robust path following behaviour in the presence of uncertainty and noise. We found that the proposed approach provides the BlueROV with a more complete sensory picture about its surroundings while real-time navigation planning is performed by the concurrent execution of two or more tasks.
☆ AFBS:Buffer Gradient Selection in Semi-asynchronous Federated Learning
Asynchronous federated learning (AFL) accelerates training by eliminating the need to wait for stragglers, but its asynchronous nature introduces gradient staleness, where outdated gradients degrade performance. Existing solutions address this issue with gradient buffers, forming a semi-asynchronous framework. However, this approach struggles when buffers accumulate numerous stale gradients, as blindly aggregating all gradients can harm training. To address this, we propose AFBS (Asynchronous FL Buffer Selection), the first algorithm to perform gradient selection within buffers while ensuring privacy protection. Specifically, the client sends the random projection encrypted label distribution matrix before training, and the server performs client clustering based on it. During training, server scores and selects gradients within each cluster based on their informational value, discarding low-value gradients to enhance semi-asynchronous federated learning. Extensive experiments in highly heterogeneous system and data environments demonstrate AFBS's superior performance compared to state-of-the-art methods. Notably, on the most challenging task, CIFAR-100, AFBS improves accuracy by up to 4.8% over the previous best algorithm and reduces the time to reach target accuracy by 75%.
☆ Unleashing Diffusion and State Space Models for Medical Image Segmentation
Existing segmentation models trained on a single medical imaging dataset often lack robustness when encountering unseen organs or tumors. Developing a robust model capable of identifying rare or novel tumor categories not present during training is crucial for advancing medical imaging applications. We propose DSM, a novel framework that leverages diffusion and state space models to segment unseen tumor categories beyond the training data. DSM utilizes two sets of object queries trained within modified attention decoders to enhance classification accuracy. Initially, the model learns organ queries using an object-aware feature grouping strategy to capture organ-level visual features. It then refines tumor queries by focusing on diffusion-based visual prompts, enabling precise segmentation of previously unseen tumors. Furthermore, we incorporate diffusion-guided feature fusion to improve semantic segmentation performance. By integrating CLIP text embeddings, DSM captures category-sensitive classes to improve linguistic transfer knowledge, thereby enhancing the model's robustness across diverse scenarios and multi-label tasks. Extensive experiments demonstrate the superior performance of DSM in various tumor segmentation tasks. Code is available at https://github.com/Rows21/KMax-Mamba.
☆ Adaptive Dropout: Unleashing Dropout across Layers for Generalizable Image Super-Resolution CVPR2025
Blind Super-Resolution (blind SR) aims to enhance the model's generalization ability with unknown degradation, yet it still encounters severe overfitting issues. Some previous methods inspired by dropout, which enhances generalization by regularizing features, have shown promising results in blind SR. Nevertheless, these methods focus solely on regularizing features before the final layer and overlook the need for generalization in features at intermediate layers. Without explicit regularization of features at intermediate layers, the blind SR network struggles to obtain well-generalized feature representations. However, the key challenge is that directly applying dropout to intermediate layers leads to a significant performance drop, which we attribute to the inconsistency in training-testing and across layers it introduced. Therefore, we propose Adaptive Dropout, a new regularization method for blind SR models, which mitigates the inconsistency and facilitates application across intermediate layers of networks. Specifically, for training-testing inconsistency, we re-design the form of dropout and integrate the features before and after dropout adaptively. For inconsistency in generalization requirements across different layers, we innovatively design an adaptive training strategy to strengthen feature propagation by layer-wise annealing. Experimental results show that our method outperforms all past regularization methods on both synthetic and real-world benchmark datasets, also highly effective in other image restoration tasks. Code is available at \href{https://github.com/xuhang07/Adpative-Dropout}{https://github.com/xuhang07/Adpative-Dropout}.
comment: 8 pages, 8 figures, CVPR2025
☆ Revealing the Challenges of Sim-to-Real Transfer in Model-Based Reinforcement Learning via Latent Space Modeling
Reinforcement learning (RL) is playing an increasingly important role in fields such as robotic control and autonomous driving. However, the gap between simulation and the real environment remains a major obstacle to the practical deployment of RL. Agents trained in simulators often struggle to maintain performance when transferred to real-world physical environments. In this paper, we propose a latent space based approach to analyze the impact of simulation on real-world policy improvement in model-based settings. As a natural extension of model-based methods, our approach enables an intuitive observation of the challenges faced by model-based methods in sim-to-real transfer. Experiments conducted in the MuJoCo environment evaluate the performance of our method in both measuring and mitigating the sim-to-real gap. The experiments also highlight the various challenges that remain in overcoming the sim-to-real gap, especially for model-based methods.
☆ Decentralized Decision Making in Two Sided Manufacturing-as-a-Service Marketplaces
Advancements in digitization have enabled two sided manufacturing-as-a-service (MaaS) marketplaces which has significantly reduced product development time for designers. These platforms provide designers with access to manufacturing resources through a network of suppliers and have instant order placement capabilities. Two key decision making levers are typically used to optimize the operations of these marketplaces: pricing and matching. The existing marketplaces operate in a centralized structure where they have complete control over decision making. However, a decentralized organization of the platform enables transparency of information across clients and suppliers. This dissertation focuses on developing tools for decision making enabling decentralization in MaaS marketplaces. In pricing mechanisms, a data driven method is introduced which enables small service providers to price services based on specific attributes of the services offered. A data mining method recommends a network based price to a supplier based on its attributes and the attributes of other suppliers on the platform. Three different approaches are considered for matching mechanisms. First, a reverse auction mechanism is introduced where designers bid for manufacturing services and the mechanism chooses a supplier which can match the bid requirements and stated price. The second approach uses mechanism design and mathematical programming to develop a stable matching mechanism for matching orders to suppliers based on their preferences. Empirical simulations are used to test the mechanisms in a simulated 3D printing marketplace and to evaluate the impact of stability on its performance. The third approach considers the matching problem in a dynamic and stochastic environment where demand (orders) and supply (supplier capacities) arrive over time and matching is performed online.
☆ Rethinking DPO: The Role of Rejected Responses in Preference Misalignment
Direct Preference Optimization (DPO) is a simple and efficient framework that has attracted substantial attention. However, it often struggles to meet its primary objectives -- increasing the generation probability of chosen responses while reducing that of rejected responses -- due to the dominant influence of rejected responses on the loss function. This imbalance leads to suboptimal performance in promoting preferred responses. In this work, we systematically analyze the limitations of DPO and existing algorithms designed to achieve the objectives stated above. To address these limitations, we propose Bounded-DPO (BDPO), a novel method that bounds the influence of rejected responses while maintaining the original optimization structure of DPO. Through theoretical analysis and empirical evaluations, we demonstrate that BDPO achieves a balanced optimization of the chosen and rejected responses, outperforming existing algorithms.
☆ SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration
Vision-Language-Action (VLA) models have attracted increasing attention for their strong control capabilities. However, their high computational cost and low execution frequency hinder their suitability for real-time tasks such as robotic manipulation and autonomous navigation. Existing VLA acceleration methods primarily focus on structural optimization, overlooking the fact that these models operate in sequential decision-making environments. As a result, temporal redundancy in sequential action generation and spatial redundancy in visual input remain unaddressed. To this end, we propose SP-VLA, a unified framework that accelerates VLA models by jointly scheduling models and pruning tokens. Specifically, we design an action-aware model scheduling mechanism that reduces temporal redundancy by dynamically switching between VLA model and a lightweight generator. Inspired by the human motion pattern of focusing on key decision points while relying on intuition for other actions, we categorize VLA actions into deliberative and intuitive, assigning the former to the VLA model and the latter to the lightweight generator, enabling frequency-adaptive execution through collaborative model scheduling. To address spatial redundancy, we further develop a spatio-semantic dual-aware token pruning method. Tokens are classified into spatial and semantic types and pruned based on their dual-aware importance to accelerate VLA inference. These two mechanisms work jointly to guide the VLA in focusing on critical actions and salient visual information, achieving effective acceleration while maintaining high accuracy. Experimental results demonstrate that our method achieves up to 1.5$\times$ acceleration with less than 3% drop in accuracy, outperforming existing approaches in multiple tasks.
☆ Strategic Scaling of Test-Time Compute: A Bandit Learning Approach
Scaling test-time compute has emerged as an effective strategy for improving the performance of large language models. However, existing methods typically allocate compute uniformly across all queries, overlooking variation in query difficulty. To address this inefficiency, we formulate test-time compute allocation as a novel bandit learning problem and propose adaptive algorithms that estimate query difficulty on the fly and allocate compute accordingly. Compared to uniform allocation, our algorithms allocate more compute to challenging queries while maintaining accuracy on easier ones. Among challenging queries, our algorithms further learn to prioritize solvable instances, effectively reducing excessive computing on unsolvable queries. We theoretically prove that our algorithms achieve better compute efficiency than uniform allocation and empirically validate their effectiveness on math and code benchmarks. Specifically, our algorithms achieve up to an 11.10% performance improvement (15.04% relative) on the MATH-500 dataset and up to a 7.41% performance improvement (14.40% relative) on LiveCodeBench.
☆ Serving Large Language Models on Huawei CloudMatrix384
The rapid evolution of large language models (LLMs), driven by growing parameter scales, adoption of mixture-of-experts (MoE) architectures, and expanding context lengths, imposes unprecedented demands on AI infrastructure. Traditional AI clusters face limitations in compute intensity, memory bandwidth, inter-chip communication, and latency, compounded by variable workloads and strict service-level objectives. Addressing these issues requires fundamentally redesigned hardware-software integration. This paper introduces Huawei CloudMatrix, a next-generation AI datacenter architecture, realized in the production-grade CloudMatrix384 supernode. It integrates 384 Ascend 910C NPUs and 192 Kunpeng CPUs interconnected via an ultra-high-bandwidth Unified Bus (UB) network, enabling direct all-to-all communication and dynamic pooling of resources. These features optimize performance for communication-intensive operations, such as large-scale MoE expert parallelism and distributed key-value cache access. To fully leverage CloudMatrix384, we propose CloudMatrix-Infer, an advanced LLM serving solution incorporating three core innovations: a peer-to-peer serving architecture that independently scales prefill, decode, and caching; a large-scale expert parallelism strategy supporting EP320 via efficient UB-based token dispatch; and hardware-aware optimizations including specialized operators, microbatch-based pipelining, and INT8 quantization. Evaluation with the DeepSeek-R1 model shows CloudMatrix-Infer achieves state-of-the-art efficiency: prefill throughput of 6,688 tokens/s per NPU and decode throughput of 1,943 tokens/s per NPU (<50 ms TPOT). It effectively balances throughput and latency, sustaining 538 tokens/s even under stringent 15 ms latency constraints, while INT8 quantization maintains model accuracy across benchmarks.
comment: 59 pages, 24 figures
☆ NAP-Tuning: Neural Augmented Prompt Tuning for Adversarially Robust Vision-Language Models
Vision-Language Models (VLMs) such as CLIP have demonstrated remarkable capabilities in understanding relationships between visual and textual data through joint embedding spaces. Despite their effectiveness, these models remain vulnerable to adversarial attacks, particularly in the image modality, posing significant security concerns. Building upon our previous work on Adversarial Prompt Tuning (AdvPT), which introduced learnable text prompts to enhance adversarial robustness in VLMs without extensive parameter training, we present a significant extension by introducing the Neural Augmentor framework for Multi-modal Adversarial Prompt Tuning (NAP-Tuning).Our key innovations include: (1) extending AdvPT from text-only to multi-modal prompting across both text and visual modalities, (2) expanding from single-layer to multi-layer prompt architectures, and (3) proposing a novel architecture-level redesign through our Neural Augmentor approach, which implements feature purification to directly address the distortions introduced by adversarial attacks in feature space. Our NAP-Tuning approach incorporates token refiners that learn to reconstruct purified features through residual connections, allowing for modality-specific and layer-specific feature correction.Comprehensive experiments demonstrate that NAP-Tuning significantly outperforms existing methods across various datasets and attack types. Notably, our approach shows significant improvements over the strongest baselines under the challenging AutoAttack benchmark, outperforming them by 33.5% on ViT-B16 and 33.0% on ViT-B32 architectures while maintaining competitive clean accuracy.
☆ Flexible Realignment of Language Models
Realignment becomes necessary when a language model (LM) fails to meet expected performance. We propose a flexible realignment framework that supports quantitative control of alignment degree during training and inference. This framework incorporates Training-time Realignment (TrRa), which efficiently realigns the reference model by leveraging the controllable fusion of logits from both the reference and already aligned models. For example, TrRa reduces token usage by 54.63% on DeepSeek-R1-Distill-Qwen-1.5B without any performance degradation, outperforming DeepScaleR-1.5B's 33.86%. To complement TrRa during inference, we introduce a layer adapter that enables smooth Inference-time Realignment (InRa). This adapter is initialized to perform an identity transformation at the bottom layer and is inserted preceding the original layers. During inference, input embeddings are simultaneously processed by the adapter and the original layer, followed by the remaining layers, and then controllably interpolated at the logit level. We upgraded DeepSeek-R1-Distill-Qwen-7B from a slow-thinking model to one that supports both fast and slow thinking, allowing flexible alignment control even during inference. By encouraging deeper reasoning, it even surpassed its original performance.
☆ Unsupervised Contrastive Learning Using Out-Of-Distribution Data for Long-Tailed Dataset
This work addresses the task of self-supervised learning (SSL) on a long-tailed dataset that aims to learn balanced and well-separated representations for downstream tasks such as image classification. This task is crucial because the real world contains numerous object categories, and their distributions are inherently imbalanced. Towards robust SSL on a class-imbalanced dataset, we investigate leveraging a network trained using unlabeled out-of-distribution (OOD) data that are prevalently available online. We first train a network using both in-domain (ID) and sampled OOD data by back-propagating the proposed pseudo semantic discrimination loss alongside a domain discrimination loss. The OOD data sampling and loss functions are designed to learn a balanced and well-separated embedding space. Subsequently, we further optimize the network on ID data by unsupervised contrastive learning while using the previously trained network as a guiding network. The guiding network is utilized to select positive/negative samples and to control the strengths of attractive/repulsive forces in contrastive learning. We also distil and transfer its embedding space to the training network to maintain balancedness and separability. Through experiments on four publicly available long-tailed datasets, we demonstrate that the proposed method outperforms previous state-of-the-art methods.
comment: 13 pages
☆ MGDFIS: Multi-scale Global-detail Feature Integration Strategy for Small Object Detection
Small object detection in UAV imagery is crucial for applications such as search-and-rescue, traffic monitoring, and environmental surveillance, but it is hampered by tiny object size, low signal-to-noise ratios, and limited feature extraction. Existing multi-scale fusion methods help, but add computational burden and blur fine details, making small object detection in cluttered scenes difficult. To overcome these challenges, we propose the Multi-scale Global-detail Feature Integration Strategy (MGDFIS), a unified fusion framework that tightly couples global context with local detail to boost detection performance while maintaining efficiency. MGDFIS comprises three synergistic modules: the FusionLock-TSS Attention Module, which marries token-statistics self-attention with DynamicTanh normalization to highlight spectral and spatial cues at minimal cost; the Global-detail Integration Module, which fuses multi-scale context via directional convolution and parallel attention while preserving subtle shape and texture variations; and the Dynamic Pixel Attention Module, which generates pixel-wise weighting maps to rebalance uneven foreground and background distributions and sharpen responses to true object regions. Extensive experiments on the VisDrone benchmark demonstrate that MGDFIS consistently outperforms state-of-the-art methods across diverse backbone architectures and detection frameworks, achieving superior precision and recall with low inference time. By striking an optimal balance between accuracy and resource usage, MGDFIS provides a practical solution for small-object detection on resource-constrained UAV platforms.
comment: 9 pages, 5 figures, 3 tables
☆ Get on the Train or be Left on the Station: Using LLMs for Software Engineering Research
The adoption of Large Language Models (LLMs) is not only transforming software engineering (SE) practice but is also poised to fundamentally disrupt how research is conducted in the field. While perspectives on this transformation range from viewing LLMs as mere productivity tools to considering them revolutionary forces, we argue that the SE research community must proactively engage with and shape the integration of LLMs into research practices, emphasizing human agency in this transformation. As LLMs rapidly become integral to SE research - both as tools that support investigations and as subjects of study - a human-centric perspective is essential. Ensuring human oversight and interpretability is necessary for upholding scientific rigor, fostering ethical responsibility, and driving advancements in the field. Drawing from discussions at the 2nd Copenhagen Symposium on Human-Centered AI in SE, this position paper employs McLuhan's Tetrad of Media Laws to analyze the impact of LLMs on SE research. Through this theoretical lens, we examine how LLMs enhance research capabilities through accelerated ideation and automated processes, make some traditional research practices obsolete, retrieve valuable aspects of historical research approaches, and risk reversal effects when taken to extremes. Our analysis reveals opportunities for innovation and potential pitfalls that require careful consideration. We conclude with a call to action for the SE research community to proactively harness the benefits of LLMs while developing frameworks and guidelines to mitigate their risks, to ensure continued rigor and impact of research in an AI-augmented future.
comment: Accepted for publication at the 1st Workshop on Human-Centered AI for SE (Human AISE) held at the 33rd ACM International Conference on the Foundations of Software Engineering (FSE Companion '25), June 23-28, 2025, Trondheim, Norway
☆ SciSage: A Multi-Agent Framework for High-Quality Scientific Survey Generation
The rapid growth of scientific literature demands robust tools for automated survey-generation. However, current large language model (LLM)-based methods often lack in-depth analysis, structural coherence, and reliable citations. To address these limitations, we introduce SciSage, a multi-agent framework employing a reflect-when-you-write paradigm. SciSage features a hierarchical Reflector agent that critically evaluates drafts at outline, section, and document levels, collaborating with specialized agents for query interpretation, content retrieval, and refinement. We also release SurveyScope, a rigorously curated benchmark of 46 high-impact papers (2020-2025) across 11 computer science domains, with strict recency and citation-based quality controls. Evaluations demonstrate that SciSage outperforms state-of-the-art baselines (LLM x MapReduce-V2, AutoSurvey), achieving +1.73 points in document coherence and +32% in citation F1 scores. Human evaluations reveal mixed outcomes (3 wins vs. 7 losses against human-written surveys), but highlight SciSage's strengths in topical breadth and retrieval efficiency. Overall, SciSage offers a promising foundation for research-assistive writing tools.
☆ Alphabet Index Mapping: Jailbreaking LLMs through Semantic Dissimilarity
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their susceptibility to adversarial attacks, particularly jailbreaking, poses significant safety and ethical concerns. While numerous jailbreak methods exist, many suffer from computational expense, high token usage, or complex decoding schemes. Liu et al. (2024) introduced FlipAttack, a black-box method that achieves high attack success rates (ASR) through simple prompt manipulation. This paper investigates the underlying mechanisms of FlipAttack's effectiveness by analyzing the semantic changes induced by its flipping modes. We hypothesize that semantic dissimilarity between original and manipulated prompts is inversely correlated with ASR. To test this, we examine embedding space visualizations (UMAP, KDE) and cosine similarities for FlipAttack's modes. Furthermore, we introduce a novel adversarial attack, Alphabet Index Mapping (AIM), designed to maximize semantic dissimilarity while maintaining simple decodability. Experiments on GPT-4 using a subset of AdvBench show AIM and its variant AIM+FWO achieve a 94% ASR, outperforming FlipAttack and other methods on this subset. Our findings suggest that while high semantic dissimilarity is crucial, a balance with decoding simplicity is key for successful jailbreaking. This work contributes to a deeper understanding of adversarial prompt mechanics and offers a new, effective jailbreak technique.
comment: 10 pages, 2 figures, 3 tables
☆ Building Trustworthy AI by Addressing its 16+2 Desiderata with Goal-Directed Commonsense Reasoning
Current advances in AI and its applicability have highlighted the need to ensure its trustworthiness for legal, ethical, and even commercial reasons. Sub-symbolic machine learning algorithms, such as the LLMs, simulate reasoning but hallucinate and their decisions cannot be explained or audited (crucial aspects for trustworthiness). On the other hand, rule-based reasoners, such as Cyc, are able to provide the chain of reasoning steps but are complex and use a large number of reasoners. We propose a middle ground using s(CASP), a goal-directed constraint-based answer set programming reasoner that employs a small number of mechanisms to emulate reliable and explainable human-style commonsense reasoning. In this paper, we explain how s(CASP) supports the 16 desiderata for trustworthy AI introduced by Doug Lenat and Gary Marcus (2023), and two additional ones: inconsistency detection and the assumption of alternative worlds. To illustrate the feasibility and synergies of s(CASP), we present a range of diverse applications, including a conversational chatbot and a virtually embodied reasoner.
♻ ☆ VideoDeepResearch: Long Video Understanding With Agentic Tool Using
Long video understanding (LVU) presents a significant challenge for current multi-modal large language models (MLLMs) due to the task's inherent complexity and context window constraint. It is widely assumed that addressing LVU tasks requires foundation MLLMs with extended context windows, strong visual perception capabilities, and proficient domain expertise. In this work, we challenge this common belief by introducing VideoDeepResearch, a novel agentic framework for long video understanding. Our approach relies solely on a text-only large reasoning model (LRM) combined with a modular multi-modal toolkit, including multimodal retrievers and visual perceivers, all of which are readily available in practice. For each LVU task, the system formulates a problem-solving strategy through reasoning, while selectively accessing and utilizing essential video content via tool using. We conduct extensive experiments on popular LVU benchmarks, including MLVU, Video-MME, and LVBench. Our results demonstrate that VideoDeepResearch achieves substantial improvements over existing MLLM baselines, surpassing the previous state-of-the-art by 9.6%, 6.6%, and 3.9% on MLVU (test), LVBench, and LongVideoBench, respectively. These findings highlight the promise of agentic systems in overcoming key challenges in LVU problems.
♻ ☆ PARTONOMY: Large Multimodal Models with Part-Level Visual Understanding
Real-world objects are composed of distinctive, object-specific parts. Identifying these parts is key to performing fine-grained, compositional reasoning-yet, large multimodal models (LMMs) struggle to perform this seemingly straightforward task. In this work, we introduce PARTONOMY, an LMM benchmark designed for pixel-level part grounding. We construct PARTONOMY from existing part datasets and our own rigorously annotated set of images, encompassing 862 part labels and 534 object labels for evaluation. Unlike existing datasets that simply ask models to identify generic parts, PARTONOMY uses specialized concepts (e.g., agricultural airplane), and challenges models to compare objects' parts, consider part-whole relationships, and justify textual predictions with visual segmentations. Our experiments demonstrate significant limitations in state-of-the-art LMMs (e.g., LISA-13B achieves only 5.9% gIoU), highlighting a critical gap in their part grounding abilities. We note that existing segmentation-enabled LMMs (segmenting LMMs) have two key architectural shortcomings: they use special [SEG] tokens not seen during pretraining which induce distribution shift, and they discard predicted segmentations instead of using past predictions to guide future ones. To address these deficiencies, we train several part-centric LMMs and propose PLUM, a novel segmenting LMM that uses span tagging instead of segmentation tokens and that conditions on prior predictions in a feedback loop. We find that pretrained PLUM outperforms existing segmenting LMMs on reasoning segmentation, VQA, and visual hallucination benchmarks. In addition, PLUM finetuned on our proposed Explanatory Part Segmentation task is competitive with segmenting LMMs trained on significantly more segmentation data. Our work opens up new avenues towards enabling fine-grained, grounded visual understanding in LMMs.
comment: 18 pages
TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets
Clinical trials are pivotal for developing new medical treatments but typically carry risks such as patient mortality and enrollment failure that waste immense efforts spanning over a decade. Applying artificial intelligence (AI) to predict key events in clinical trials holds great potential for providing insights to guide trial designs. However, complex data collection and question definition requiring medical expertise have hindered the involvement of AI thus far. This paper tackles these challenges by presenting a comprehensive suite of 23 meticulously curated AI-ready datasets covering multi-modal input features and 8 crucial prediction challenges in clinical trial design, encompassing prediction of trial duration, patient dropout rate, serious adverse event, mortality rate, trial approval outcome, trial failure reason, drug dose finding, design of eligibility criteria. Furthermore, we provide basic validation methods for each task to ensure the datasets' usability and reliability. We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design, ultimately advancing clinical trial research and accelerating medical solution development.
comment: accepted by Nature Scientific Data
♻ ☆ OR-Bench: An Over-Refusal Benchmark for Large Language Models ICML 2025
Large Language Models (LLMs) require careful safety alignment to prevent malicious outputs. While significant research focuses on mitigating harmful content generation, the enhanced safety often come with the side effect of over-refusal, where LLMs may reject innocuous prompts and become less helpful. Although the issue of over-refusal has been empirically observed, a systematic measurement is challenging due to the difficulty of crafting prompts that can elicit the over-refusal behaviors of LLMs. This study proposes a novel method for automatically generating large-scale over-refusal datasets. Leveraging this technique, we introduce OR-Bench, the first large-scale over-refusal benchmark. OR-Bench comprises 80,000 over-refusal prompts across 10 common rejection categories, a subset of around 1,000 hard prompts that are challenging even for state-of-the-art LLMs, and an additional 600 toxic prompts to prevent indiscriminate responses. We then conduct a comprehensive study to measure the over-refusal of 32 popular LLMs across 8 model families. Our datasets are publicly available at https://huggingface.co/bench-llms and our codebase is open-sourced at https://github.com/justincui03/or-bench. We hope this benchmark can help the community develop better safety aligned models.
comment: Accepted to ICML 2025, we thank everyone for their valuable suggestions and feedback!
♻ ☆ Building, Reusing, and Generalizing Abstract Representations from Concrete Sequences
Humans excel at learning abstract patterns across different sequences, filtering out irrelevant details, and transferring these generalized concepts to new sequences. In contrast, many sequence learning models lack the ability to abstract, which leads to memory inefficiency and poor transfer. We introduce a non-parametric hierarchical variable learning model (HVM) that learns chunks from sequences and abstracts contextually similar chunks as variables. HVM efficiently organizes memory while uncovering abstractions, leading to compact sequence representations. When learning on language datasets such as babyLM, HVM learns a more efficient dictionary than standard compression algorithms such as Lempel-Ziv. In a sequence recall task requiring the acquisition and transfer of variables embedded in sequences, we demonstrate HVM's sequence likelihood correlates with human recall times. In contrast, large language models (LLMs) struggle to transfer abstract variables as effectively as humans. From HVM's adjustable layer of abstraction, we demonstrate that the model realizes a precise trade-off between compression and generalization. Our work offers a cognitive model that captures the learning and transfer of abstract representations in human cognition and differentiates itself from LLMs.
♻ ☆ On the performance of machine-learning-assisted Monte Carlo in sampling from simple statistical physics models
Recent years have seen a rise in the application of machine learning techniques to aid the simulation of hard-to-sample systems that cannot be studied using traditional methods. Despite the introduction of many different architectures and procedures, a wide theoretical understanding is still lacking, with the risk of suboptimal implementations. As a first step to address this gap, we provide here a complete analytic study of the widely-used Sequential Tempering procedure applied to a shallow MADE architecture for the Curie-Weiss model. The contribution of this work is twofold: firstly, we give a description of the optimal weights and of the training under Gradient Descent optimization. Secondly, we compare what happens in Sequential Tempering with and without the addition of local Metropolis Monte Carlo steps. We are thus able to give theoretical predictions on the best procedure to apply in this case. This work establishes a clear theoretical basis for the integration of machine learning techniques into Monte Carlo sampling and optimization.
comment: 17 pages, 10 figures
♻ ☆ From Argumentative Text to Argument Knowledge Graph: A New Framework for Structured Argumentation
This paper presents a framework to convert argumentative texts into argument knowledge graphs (AKG). Starting with basic annotations of argumentative components (ACs) and argumentative relations (ARs), we enrich the information by constructing a knowledge base (KB) graph with metadata attributes for nodes. Next, we use premises and inference rules from the KB to form arguments by applying modus ponens. From these arguments, we create an AKG. The nodes and edges of the AKG have attributes that capture important argumentative features. We also find missing inference rules by identifying markers. This makes it possible to identify undercut attacks that were previously undetectable in existing datasets. The AKG gives a graphical view of the argumentative structure that is easier to understand than theoretical formats. It also prepares the ground for future reasoning tasks, including checking the coherence of arguments and identifying opportunities for revision. For this, it is important to find indirect relations, many of which are implicit. Our proposed AKG format, with annotated inference rules and modus ponens, will help reasoning models learn the implicit indirect relations that require inference over arguments and the relations between them.
comment: 16 pages, 7 figures
♻ ☆ Concurrent Learning with Aggregated States via Randomized Least Squares Value Iteration
Designing learning agents that explore efficiently in a complex environment has been widely recognized as a fundamental challenge in reinforcement learning. While a number of works have demonstrated the effectiveness of techniques based on randomized value functions on a single agent, it remains unclear, from a theoretical point of view, whether injecting randomization can help a society of agents {\it concurently} explore an environment. The theoretical results %that we established in this work tender an affirmative answer to this question. We adapt the concurrent learning framework to \textit{randomized least-squares value iteration} (RLSVI) with \textit{aggregated state representation}. We demonstrate polynomial worst-case regret bounds in both finite- and infinite-horizon environments. In both setups the per-agent regret decreases at an optimal rate of $\Theta\left(\frac{1}{\sqrt{N}}\right)$, highlighting the advantage of concurent learning. Our algorithm exhibits significantly lower space complexity compared to \cite{russo2019worst} and \cite{agrawal2021improved}. We reduce the space complexity by a factor of $K$ while incurring only a $\sqrt{K}$ increase in the worst-case regret bound, compared to \citep{agrawal2021improved,russo2019worst}. Additionally, we conduct numerical experiments to demonstrate our theoretical findings.
♻ ☆ Quantifying Memorization and Parametric Response Rates in Retrieval-Augmented Vision-Language Models
Large Language Models (LLMs) demonstrate remarkable capabilities in question answering (QA), but metrics for assessing their reliance on memorization versus retrieval remain underdeveloped. Moreover, while finetuned models are state-of-the-art on closed-domain tasks, general-purpose models like GPT-4o exhibit strong zero-shot performance. This raises questions about the trade-offs between memorization, generalization, and retrieval. In this work, we analyze the extent to which multimodal retrieval-augmented VLMs memorize training data compared to baseline VLMs. Using the WebQA benchmark, we contrast finetuned models with baseline VLMs on multihop retrieval and question answering, examining the impact of finetuning on data memorization. To quantify memorization in end-to-end retrieval and QA systems, we propose several proxy metrics by investigating instances where QA succeeds despite retrieval failing. In line with existing work, we find that finetuned models rely more heavily on memorization than retrieval-augmented VLMs, and achieve higher accuracy as a result (72% vs 52% on WebQA test set). Finally, we present the first empirical comparison of the parametric effect between text and visual modalities. Here, we find that image-based questions have parametric response rates that are consistently 15-25% higher than for text-based questions in the WebQA dataset. As such, our measures pose a challenge for future work, both to account for differences in model memorization across different modalities and more generally to reconcile memorization and generalization in joint Retrieval-QA tasks.
♻ ☆ Layer by Layer: Uncovering Hidden Representations in Language Models ICML2025
From extracting features to generating text, the outputs of large language models (LLMs) typically rely on the final layers, following the conventional wisdom that earlier layers capture only low-level cues. However, our analysis shows that intermediate layers can encode even richer representations, often improving performance on a range of downstream tasks. To explain and quantify these hidden-layer properties, we propose a unified framework of representation quality metrics based on information theory, geometry, and invariance to input perturbations. Our framework highlights how each layer balances information compression and signal preservation, revealing why mid-depth embeddings can exceed the last layer's performance. Through extensive experiments on 32 text-embedding tasks across various architectures (transformers, state-space models) and domains (language, vision), we demonstrate that intermediate layers consistently provide stronger features, challenging the standard view on final-layer embeddings and opening new directions on using mid-layer representations for more robust and accurate representations.
comment: update for ICML2025 camera-ready
♻ ☆ Rethinking Table Instruction Tuning ACL 2025
Recent advances in table understanding have focused on instruction-tuning large language models (LLMs) for table-related tasks. However, existing research has overlooked the impact of hyperparameter choices, and also lacks a comprehensive evaluation of the out-of-domain table understanding ability and the general capabilities of these table LLMs. In this paper, we evaluate these abilities in existing table LLMs, and find significant declines in both out-of-domain table understanding and general capabilities as compared to their base models. Through systematic analysis, we show that hyperparameters, such as learning rate, can significantly influence both table-specific and general capabilities. Contrary to the previous table instruction-tuning work, we demonstrate that smaller learning rates and fewer training instances can enhance table understanding while preserving general capabilities. Based on our findings, we introduce TAMA, a TAble LLM instruction-tuned from LLaMA 3.1 8B Instruct, which achieves performance on par with, or surpassing GPT-3.5 and GPT-4 on table tasks, while maintaining strong out-of-domain generalization and general capabilities. Our findings highlight the potential for reduced data annotation costs and more efficient model development through careful hyperparameter selection. We open-source the project and our models.
comment: Accepted to ACL 2025 Findings. Project page: https://lit.eecs.umich.edu/TAMA/. Code: https://github.com/MichiganNLP/TAMA. Huggingface models: https://huggingface.co/collections/MichiganNLP/tama-684eeb3e7f262362856eccd1. Data: https://huggingface.co/datasets/MichiganNLP/TAMA_Instruct
♻ ☆ Extended Creativity: A Conceptual Framework for Understanding Human-AI Creative Relations
Artificial Intelligence holds significant potential to enhance human creativity. However, achieving this vision requires a clearer understanding of how such enhancement can be effectively realized. Drawing on a relational and distributed cognition perspective, we identify three fundamental modes by which AI can support and shape creative processes: Support, where AI acts as a tool; Synergy, where AI and humans collaborate in complementary ways; and Symbiosis, where human and AI cognition become so integrated that they form a unified creative system. These modes are defined along two key dimensions: the level of technical autonomy exhibited by the AI system (i.e., its ability to operate independently and make decisions without human intervention), and the degree of perceived agency attributed to it (i.e., the extent to which the AI is experienced as an intentional or creative partner). We examine how each configuration influences different levels of creativity from everyday problem solving to paradigm shifting innovation and discuss the implications for ethics, research, and the design of future human AI creative systems.
comment: 36 pages, 3 figures. This conceptual paper proposes a taxonomy of Extended Creativity systems and examines the relational dynamics between human and AI agents in creative processes. Suitable for readers in HCI, AI, cognitive science, and digital design. The illustrations were created by Francesco Giordano and are used with permission (not under CC license)
♻ ☆ Benchmarking Rotary Position Embeddings for Automatic Speech Recognition
Self-attention relies on positional embeddings to encode input order. Relative Position (RelPos) embeddings are widely used in Automatic Speech Recognition (ASR). However, RelPos has quadratic time complexity to input length and is often incompatible with fast GPU implementations of attention. In contrast, Rotary Positional Embedding (RoPE) rotates each input vector based on its absolute position, taking linear time to sequence length, implicitly encoding relative distances through self-attention dot products. Thus, it is usually compatible with efficient attention. However, its use in ASR remains underexplored. This work evaluates RoPE across diverse ASR tasks with training data ranging from 100 to 50,000 hours, covering various speech types (read, spontaneous, clean, noisy) and different accents in both streaming and non-streaming settings. ASR error rates are similar or better than RelPos, while training time is reduced by up to 21%. Code is available via the SpeechBrain toolkit.
♻ ☆ Life-Code: Central Dogma Modeling with Multi-Omics Sequence Unification
The interactions between DNA, RNA, and proteins are fundamental to biological processes, as illustrated by the central dogma of molecular biology. Although modern biological pre-trained models have achieved great success in analyzing these macromolecules individually, their interconnected nature remains underexplored. This paper follows the guidance of the central dogma to redesign both the data and model pipeline and offers a comprehensive framework, Life-Code, that spans different biological functions. As for data flow, we propose a unified pipeline to integrate multi-omics data by reverse-transcribing RNA and reverse-translating amino acids into nucleotide-based sequences. As for the model, we design a codon tokenizer and a hybrid long-sequence architecture to encode the interactions between coding and non-coding regions through masked modeling pre-training. To model the translation and folding process with coding sequences, Life-Code learns protein structures of the corresponding amino acids by knowledge distillation from off-the-shelf protein language models. Such designs enable Life-Code to capture complex interactions within genetic sequences, providing a more comprehensive understanding of multi-omics with the central dogma. Extensive experiments show that Life-Code achieves state-of-the-art results on various tasks across three omics, highlighting its potential for advancing multi-omics analysis and interpretation.
comment: Preprint V2 (14 pages main text)
♻ ☆ Navigating LLM Ethics: Advancements, Challenges, and Future Directions
This study addresses ethical issues surrounding Large Language Models (LLMs) within the field of artificial intelligence. It explores the common ethical challenges posed by both LLMs and other AI systems, such as privacy and fairness, as well as ethical challenges uniquely arising from LLMs. It highlights challenges such as hallucination, verifiable accountability, and decoding censorship complexity, which are unique to LLMs and distinct from those encountered in traditional AI systems. The study underscores the need to tackle these complexities to ensure accountability, reduce biases, and enhance transparency in the influential role that LLMs play in shaping information dissemination. It proposes mitigation strategies and future directions for LLM ethics, advocating for interdisciplinary collaboration. It recommends ethical frameworks tailored to specific domains and dynamic auditing systems adapted to diverse contexts. This roadmap aims to guide responsible development and integration of LLMs, envisioning a future where ethical considerations govern AI advancements in society.
♻ ☆ A Survey of Text-to-SQL in the Era of LLMs: Where are we, and where are we going?
Translating users' natural language queries (NL) into SQL queries (i.e., Text-to-SQL, a.k.a. NL2SQL) can significantly reduce barriers to accessing relational databases and support various commercial applications. The performance of Text-to-SQL has been greatly enhanced with the emergence of Large Language Models (LLMs). In this survey, we provide a comprehensive review of Text-to-SQL techniques powered by LLMs, covering its entire lifecycle from the following four aspects: (1) Model: Text-to-SQL translation techniques that tackle not only NL ambiguity and under-specification, but also properly map NL with database schema and instances; (2) Data: From the collection of training data, data synthesis due to training data scarcity, to Text-to-SQL benchmarks; (3) Evaluation: Evaluating Text-to-SQL methods from multiple angles using different metrics and granularities; and (4) Error Analysis: analyzing Text-to-SQL errors to find the root cause and guiding Text-to-SQL models to evolve. Moreover, we offer a rule of thumb for developing Text-to-SQL solutions. Finally, we discuss the research challenges and open problems of Text-to-SQL in the LLMs era.
comment: 20 pages, 11 figures, 3 tables
♻ ☆ HARBOR: Exploring Persona Dynamics in Multi-Agent Competition
We investigate factors contributing to LLM agents' success in competitive multi-agent environments, using auctions as a testbed where agents bid to maximize profit. The agents are equipped with bidding domain knowledge, distinct personas that reflect item preferences, and a memory of auction history. Our work extends the classic auction scenario by creating a realistic environment where multiple agents bid on houses, weighing aspects such as size, location, and budget to secure the most desirable homes at the lowest prices. Particularly, we investigate three key questions: (a) How does a persona influence an agent's behavior in a competitive setting? (b) Can an agent effectively profile its competitors' behavior during auctions? (c) How can persona profiling be leveraged to create an advantage using strategies such as theory of mind? Through a series of experiments, we analyze the behaviors of LLM agents and shed light on new findings. Our testbed, called HARBOR, offers a valuable platform for deepening our understanding of multi-agent workflows in competitive environments.
♻ ☆ LeVo: High-Quality Song Generation with Multi-Preference Alignment
Recent advances in large language models (LLMs) and audio language models have significantly improved music generation, particularly in lyrics-to-song generation. However, existing approaches still struggle with the complex composition of songs and the scarcity of high-quality data, leading to limitations in sound quality, musicality, instruction following, and vocal-instrument harmony. To address these challenges, we introduce LeVo, an LM-based framework consisting of LeLM and a music codec. LeLM is capable of parallelly modeling two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. It employs two decoder-only transformers and a modular extension training strategy to prevent interference between different token types. To further enhance musicality and instruction following, we introduce a multi-preference alignment method based on Direct Preference Optimization (DPO). This method handles diverse human preferences through a semi-automatic data construction process and DPO post-training. Experimental results demonstrate that LeVo consistently outperforms existing methods on both objective and subjective metrics. Ablation studies further justify the effectiveness of our designs. Audio examples are available at https://levo-demo.github.io/. Code is released at https://github.com/tencent-ailab/songgeneration.
♻ ☆ Foundations of Large Language Models
This is a book about large language models. As indicated by the title, it primarily focuses on foundational concepts rather than comprehensive coverage of all cutting-edge technologies. The book is structured into five main chapters, each exploring a key area: pre-training, generative models, prompting, alignment, and inference. It is intended for college students, professionals, and practitioners in natural language processing and related fields, and can serve as a reference for anyone interested in large language models.
♻ ☆ QualiSpeech: A Speech Quality Assessment Dataset with Natural Language Reasoning and Descriptions
This paper explores a novel perspective to speech quality assessment by leveraging natural language descriptions, offering richer, more nuanced insights than traditional numerical scoring methods. Natural language feedback provides instructive recommendations and detailed evaluations, yet existing datasets lack the comprehensive annotations needed for this approach. To bridge this gap, we introduce QualiSpeech, a comprehensive low-level speech quality assessment dataset encompassing 11 key aspects and detailed natural language comments that include reasoning and contextual insights. Additionally, we propose the QualiSpeech Benchmark to evaluate the low-level speech understanding capabilities of auditory large language models (LLMs). Experimental results demonstrate that finetuned auditory LLMs can reliably generate detailed descriptions of noise and distortion, effectively identifying their types and temporal characteristics. The results further highlight the potential for incorporating reasoning to enhance the accuracy and reliability of quality assessments. The dataset will be released at https://huggingface.co/datasets/tsinghua-ee/QualiSpeech.
comment: 22 pages, 10 figures
♻ ☆ Accurate and Regret-aware Numerical Problem Solver for Tabular Question Answering
Question answering on free-form tables (a.k.a. TableQA) is a challenging task because of the flexible structure and complex schema of tables. Recent studies use Large Language Models (LLMs) for this task, exploiting their capability in understanding the questions and tabular data, which are typically given in natural language and contain many textual fields, respectively. While this approach has shown promising results, it overlooks the challenges brought by numerical values which are common in tabular data, and LLMs are known to struggle with such values. We aim to address this issue, and we propose a model named TabLaP that uses LLMs as a planner rather than an answer generator. This approach exploits LLMs' capability in multi-step reasoning while leaving the actual numerical calculations to a Python interpreter for accurate calculation. Recognizing the inaccurate nature of LLMs, we further make a first attempt to quantify the trustworthiness of the answers produced by TabLaP, such that users can use TabLaP in a regret-aware manner. Experimental results on two benchmark datasets show that TabLaP is substantially more accurate than the state-of-the-art models, improving the answer accuracy by 5.7% and 5.8% on the two datasets, respectively.
♻ ☆ Entropic Time Schedulers for Generative Diffusion Models
The practical performance of generative diffusion models depends on the appropriate choice of the noise scheduling function, which can also be equivalently expressed as a time reparameterization. In this paper, we present a time scheduler that selects sampling points based on entropy rather than uniform time spacing, ensuring that each point contributes an equal amount of information to the final generation. We prove that this time reparameterization does not depend on the initial choice of time. Furthermore, we provide a tractable exact formula to estimate this \emph{entropic time} for a trained model using the training loss without substantial overhead. Alongside the entropic time, inspired by the optimality results, we introduce a rescaled entropic time. In our experiments with mixtures of Gaussian distributions and ImageNet, we show that using the (rescaled) entropic times greatly improves the inference performance of trained models. In particular, we found that the image quality in pretrained EDM2 models, as evaluated by FID and FD-DINO scores, can be substantially increased by the rescaled entropic time reparameterization without increasing the number of function evaluations, with greater improvements in the few NFEs regime.
comment: 22 pages
♻ ☆ Identifying Trustworthiness Challenges in Deep Learning Models for Continental-Scale Water Quality Prediction
Water quality is foundational to environmental sustainability, ecosystem resilience, and public health. Deep learning models, particularly Long Short-Term Memory (LSTM) networks, offer transformative potential for large-scale water quality prediction and scientific insights generation. However, their widespread adoption in high-stakes decision-making, such as pollution mitigation and equitable resource allocation, is prevented by unresolved trustworthiness challenges including fairness, uncertainty, interpretability, robustness, generalizability, and reproducibility. In this work, we present the first comprehensive evaluation of trustworthiness in a continental-scale multi-task LSTM model predicting 20 water quality variables (encompassing physical/chemical processes, geochemical weathering, and nutrient cycling) across 482 U.S. basins. Our investigation uncovers systematic patterns of model performance disparities linked to basin characteristics, the inherent complexity of biogeochemical processes, and variable predictability, emphasizing critical performance fairness concerns. We further propose methodological frameworks for quantitatively evaluating critical aspects of trustworthiness, including uncertainty, interpretability, and robustness, identifying key limitations that could challenge reliable real-world deployment. This work serves as a timely call to action for advancing trustworthy data-driven methods for water resources management and provides a pathway to offering critical insights for researchers, decision-makers, and practitioners seeking to leverage artificial intelligence (AI) responsibly in environmental management.
♻ ☆ DRAGged into Conflicts: Detecting and Addressing Conflicting Sources in Search-Augmented LLMs
Retrieval Augmented Generation (RAG) is a commonly used approach for enhancing large language models (LLMs) with relevant and up-to-date information. However, the retrieved sources can often contain conflicting information and it remains unclear how models should address such discrepancies. In this work, we first propose a novel taxonomy of knowledge conflict types in RAG, along with the desired model behavior for each type. We then introduce CONFLICTS, a high-quality benchmark with expert annotations of conflict types in a realistic RAG setting. CONFLICTS is the first benchmark that enables tracking progress on how models address a wide range of knowledge conflicts. We conduct extensive experiments on this benchmark, showing that LLMs often struggle to appropriately resolve conflicts between sources. While prompting LLMs to explicitly reason about the potential conflict in the retrieved documents significantly improves the quality and appropriateness of their responses, substantial room for improvement in future research remains.
♻ ☆ EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection
The advancement of text-to-speech and audio generation models necessitates robust benchmarks for evaluating the emotional understanding capabilities of AI systems. Current speech emotion recognition (SER) datasets often exhibit limitations in emotional granularity, privacy concerns, or reliance on acted portrayals. This paper introduces EmoNet-Voice, a new resource for speech emotion detection, which includes EmoNet-Voice Big, a large-scale pre-training dataset (featuring over 4,500 hours of speech across 11 voices, 40 emotions, and 4 languages), and EmoNet-Voice Bench, a novel benchmark dataset with human expert annotations. EmoNet-Voice is designed to evaluate SER models on a fine-grained spectrum of 40 emotion categories with different levels of intensities. Leveraging state-of-the-art voice generation, we curated synthetic audio snippets simulating actors portraying scenes designed to evoke specific emotions. Crucially, we conducted rigorous validation by psychology experts who assigned perceived intensity labels. This synthetic, privacy-preserving approach allows for the inclusion of sensitive emotional states often absent in existing datasets. Lastly, we introduce Empathic Insight Voice models that set a new standard in speech emotion recognition with high agreement with human experts. Our evaluations across the current model landscape exhibit valuable findings, such as high-arousal emotions like anger being much easier to detect than low-arousal states like concentration.
♻ ☆ ProMedTS: A Self-Supervised, Prompt-Guided Multimodal Approach for Integrating Medical Text and Time Series ACL2025
Large language models (LLMs) have shown remarkable performance in vision-language tasks, but their application in the medical field remains underexplored, particularly for integrating structured time series data with unstructured clinical notes. In clinical practice, dynamic time series data, such as lab test results, capture critical temporal patterns, while clinical notes provide rich semantic context. Merging these modalities is challenging due to the inherent differences between continuous signals and discrete text. To bridge this gap, we introduce ProMedTS, a novel self-supervised multimodal framework that employs prompt-guided learning to unify these heterogeneous data types. Our approach leverages lightweight anomaly detection to generate anomaly captions that serve as prompts, guiding the encoding of raw time series data into informative prompt embeddings. These prompt embeddings are aligned with textual representations in a shared latent space, preserving fine-grained temporal nuances alongside semantic insights. Furthermore, our framework incorporates tailored self-supervised objectives to enhance both intra- and inter-modal alignment. We evaluate ProMedTS on disease diagnosis tasks using real-world datasets, and the results demonstrate that our method consistently outperforms state-of-the-art approaches.
comment: This paper is accepted by ACL2025(Findings)
♻ ☆ Knowledge-Augmented Multimodal Clinical Rationale Generation for Disease Diagnosis with Small Language Models
Interpretation is critical for disease diagnosis, but existing models struggle to balance predictive accuracy with human-understandable rationales. While large language models (LLMs) offer strong reasoning abilities, their clinical use is limited by high computational costs and restricted multimodal reasoning ability. Small language models (SLMs) are efficient but lack advanced reasoning for integrating multimodal medical data. In addition, both LLMs and SLMs lack domain knowledge for trustworthy reasoning. Therefore, we propose ClinRaGen, enhancing SLMs by leveraging LLM-derived reasoning ability via rationale distillation and domain knowledge injection for trustworthy multimodal rationale generation. Key innovations include a sequential rationale distillation framework that equips SLMs with LLM-comparable multimodal reasoning abilities, and a knowledge-augmented attention mechanism that jointly unifies multimodal representation from time series and textual data in the same encoding space, enabling it to be naturally interpreted by SLMs while incorporating domain knowledge for reliable rationale generation. Experiments on real-world medical datasets show that ClinRaGen achieves state-of-the-art performance in disease diagnosis and rationale generation, demonstrating the effectiveness of combining LLM-driven reasoning with knowledge augmentation for improved interpretability.
comment: 13 pages. 7 figures
♻ ☆ Activation by Interval-wise Dropout: A Simple Way to Prevent Neural Networks from Plasticity Loss ICML 2025
Plasticity loss, a critical challenge in neural network training, limits a model's ability to adapt to new tasks or shifts in data distribution. This paper introduces AID (Activation by Interval-wise Dropout), a novel method inspired by Dropout, designed to address plasticity loss. Unlike Dropout, AID generates subnetworks by applying Dropout with different probabilities on each preactivation interval. Theoretical analysis reveals that AID regularizes the network, promoting behavior analogous to that of deep linear networks, which do not suffer from plasticity loss. We validate the effectiveness of AID in maintaining plasticity across various benchmarks, including continual learning tasks on standard image classification datasets such as CIFAR10, CIFAR100, and TinyImageNet. Furthermore, we show that AID enhances reinforcement learning performance in the Arcade Learning Environment benchmark.
comment: Accepted to ICML 2025 (poster)
♻ ☆ SafeGenBench: A Benchmark Framework for Security Vulnerability Detection in LLM-Generated Code
The code generation capabilities of large language models(LLMs) have emerged as a critical dimension in evaluating their overall performance. However, prior research has largely overlooked the security risks inherent in the generated code. In this work, we introduce SafeGenBench, a benchmark specifically designed to assess the security of LLM-generated code. The dataset encompasses a wide range of common software development scenarios and vulnerability types. Building upon this benchmark, we develop an automatic evaluation framework that leverages both static application security testing(SAST) and LLM-based judging to assess the presence of security vulnerabilities in model-generated code. Through the empirical evaluation of state-of-the-art LLMs on SafeGenBench, we reveal notable deficiencies in their ability to produce vulnerability-free code. Our findings highlight pressing challenges and offer actionable insights for future advancements in the secure code generation performance of LLMs. The data and code will be released soon.
♻ ☆ LPO: Towards Accurate GUI Agent Interaction via Location Preference Optimization
The advent of autonomous agents is transforming interactions with Graphical User Interfaces (GUIs) by employing natural language as a powerful intermediary. Despite the predominance of Supervised Fine-Tuning (SFT) methods in current GUI agents for achieving spatial localization, these methods face substantial challenges due to their limited capacity to accurately perceive positional data. Existing strategies, such as reinforcement learning, often fail to assess positional accuracy effectively, thereby restricting their utility. In response, we introduce Location Preference Optimization (LPO), a novel approach that leverages locational data to optimize interaction preferences. LPO uses information entropy to predict interaction positions by focusing on zones rich in information. Besides, it further introduces a dynamic location reward function based on physical distance, reflecting the varying importance of interaction positions. Supported by Group Relative Preference Optimization (GRPO), LPO facilitates an extensive exploration of GUI environments and significantly enhances interaction precision. Comprehensive experiments demonstrate LPO's superior performance, achieving SOTA results across both offline benchmarks and real-world online evaluations. Our code will be made publicly available soon, at https://github.com/AIDC-AI/LPO.
♻ ☆ From System 1 to System 2: A Survey of Reasoning Large Language Models
Achieving human-level intelligence requires refining the transition from the fast, intuitive System 1 to the slower, more deliberate System 2 reasoning. While System 1 excels in quick, heuristic decisions, System 2 relies on logical reasoning for more accurate judgments and reduced biases. Foundational Large Language Models (LLMs) excel at fast decision-making but lack the depth for complex reasoning, as they have not yet fully embraced the step-by-step analysis characteristic of true System 2 thinking. Recently, reasoning LLMs like OpenAI's o1/o3 and DeepSeek's R1 have demonstrated expert-level performance in fields such as mathematics and coding, closely mimicking the deliberate reasoning of System 2 and showcasing human-like cognitive abilities. This survey begins with a brief overview of the progress in foundational LLMs and the early development of System 2 technologies, exploring how their combination has paved the way for reasoning LLMs. Next, we discuss how to construct reasoning LLMs, analyzing their features, the core methods enabling advanced reasoning, and the evolution of various reasoning LLMs. Additionally, we provide an overview of reasoning benchmarks, offering an in-depth comparison of the performance of representative reasoning LLMs. Finally, we explore promising directions for advancing reasoning LLMs and maintain a real-time \href{https://github.com/zzli2022/Awesome-Slow-Reason-System}{GitHub Repository} to track the latest developments. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this rapidly evolving field.
comment: Slow-thinking, Large Language Models, Human-like Reasoning, Decision Making in AI, AGI
♻ ☆ SelfCite: Self-Supervised Alignment for Context Attribution in Large Language Models ICML 2025
We introduce SelfCite, a novel self-supervised approach that aligns LLMs to generate high-quality, fine-grained, sentence-level citations for the statements in their generated responses. Instead of only relying on costly and labor-intensive annotations, SelfCite leverages a reward signal provided by the LLM itself through context ablation: If a citation is necessary, removing the cited text from the context should prevent the same response; if sufficient, retaining the cited text alone should preserve the same response. This reward can guide the inference-time best-of-N sampling strategy to improve citation quality significantly, as well as be used in preference optimization to directly fine-tune the models for generating better citations. The effectiveness of SelfCite is demonstrated by increasing citation F1 up to 5.3 points on the LongBench-Cite benchmark across five long-form question answering tasks. The source code is available at https://github.com/facebookresearch/SelfCite
comment: ICML 2025 main conference paper. The source code is available at https://github.com/facebookresearch/SelfCite
♻ ☆ X-Sim: Cross-Embodiment Learning via Real-to-Sim-to-Real
Human videos offer a scalable way to train robot manipulation policies, but lack the action labels needed by standard imitation learning algorithms. Existing cross-embodiment approaches try to map human motion to robot actions, but often fail when the embodiments differ significantly. We propose X-Sim, a real-to-sim-to-real framework that uses object motion as a dense and transferable signal for learning robot policies. X-Sim starts by reconstructing a photorealistic simulation from an RGBD human video and tracking object trajectories to define object-centric rewards. These rewards are used to train a reinforcement learning (RL) policy in simulation. The learned policy is then distilled into an image-conditioned diffusion policy using synthetic rollouts rendered with varied viewpoints and lighting. To transfer to the real world, X-Sim introduces an online domain adaptation technique that aligns real and simulated observations during deployment. Importantly, X-Sim does not require any robot teleoperation data. We evaluate it across 5 manipulation tasks in 2 environments and show that it: (1) improves task progress by 30% on average over hand-tracking and sim-to-real baselines, (2) matches behavior cloning with 10x less data collection time, and (3) generalizes to new camera viewpoints and test-time changes. Code and videos are available at https://portal-cornell.github.io/X-Sim/.
♻ ☆ Engineering Scientific Assistants using Interactive Structured Induction of Programs
We are interested in the construction of software that can act as scientific assistants to domain specialists. It is expected that such assistants will be needed to accelerate the identification of ways to address complex problems requiring urgent solutions. In this paper, our focus is not on a specific scientific problem, but on the software-engineering of such 'science accelerators'. Recent developments in 'No Code' techniques would seem to suggest that scientist can simply hypothesise solutions simply by conversing with a large language model (LLM). However, for complex scientific problems, this seems unlikely given the current state of LLM technology. What does appear feasible is that a software engineer can use LLMs to rapidly construct programs for use by a domain-specialist, including the specialist's requirements expressed in natural language. We propose the design of an interactive form of 'structured' inductive programming in which a software-engineer and an LLM collaboratively construct an 'assistant' for a scientific data analysis. The paper describes a simple implementation called iStrucInd that adapts a '2-way Intelligibility' protocol to implement the interaction between the software engineer and the LLM. We test the tool on two different non-trivial scientific data analysis tasks. Specifically, we compare the system constructed by iStrucInd against systems constructed manually and by Low Code/No Code methods along dimensions of: (a) program performance; (b) program quality; and (c) programming effort. The results show iStrucInd allows a software engineer to develop better programs faster suggesting interactive structured induction can play a useful role in the rapid construction of scientific assistants.
♻ ☆ Video Depth Anything: Consistent Depth Estimation for Super-Long Videos
Depth Anything has achieved remarkable success in monocular depth estimation with strong generalization ability. However, it suffers from temporal inconsistency in videos, hindering its practical applications. Various methods have been proposed to alleviate this issue by leveraging video generation models or introducing priors from optical flow and camera poses. Nonetheless, these methods are only applicable to short videos (< 10 seconds) and require a trade-off between quality and computational efficiency. We propose Video Depth Anything for high-quality, consistent depth estimation in super-long videos (over several minutes) without sacrificing efficiency. We base our model on Depth Anything V2 and replace its head with an efficient spatial-temporal head. We design a straightforward yet effective temporal consistency loss by constraining the temporal depth gradient, eliminating the need for additional geometric priors. The model is trained on a joint dataset of video depth and unlabeled images, similar to Depth Anything V2. Moreover, a novel key-frame-based strategy is developed for long video inference. Experiments show that our model can be applied to arbitrarily long videos without compromising quality, consistency, or generalization ability. Comprehensive evaluations on multiple video benchmarks demonstrate that our approach sets a new state-of-the-art in zero-shot video depth estimation. We offer models of different scales to support a range of scenarios, with our smallest model capable of real-time performance at 30 FPS.
comment: Project page: https://videodepthanything.github.io/
♻ ☆ Representation and Interpretation in Artificial and Natural Computing
Artificial computing machinery transforms representations through an objective process, to be interpreted subjectively by humans, so the machine and the interpreter are different entities, but in the putative natural computing both processes are performed by the same agent. The method or process that transforms a representation is called here the mode of computing. The mode used by digital computers is the algorithmic one, but there are others, such as quantum computers and diverse forms of non-conventional computing, and there is an open-ended set of representational formats and modes that could be used in artificial and natural computing. A mode based on a notion of computing different from Turing's may perform feats beyond what the Turing Machine does but the modes would not be of the same kind and could not be compared. For a mode of computing to be more powerful than the algorithmic one, it ought to compute functions lacking an effective algorithm, and Church Thesis would not hold. Here, a thought experiment including a computational demon using a hypothetical mode for such an effect is presented. If there is natural computing, there is a mode of natural computing whose properties may be causal to the phenomenological experience. Discovering it would come with solving the hard problem of consciousness; but if it turns out that such a mode does not exist, there is no such thing as natural computing, and the mind is not a computational process.
♻ ☆ AccDiffusion v2: Towards More Accurate Higher-Resolution Diffusion Extrapolation
Diffusion models suffer severe object repetition and local distortion when the inference resolution differs from its pre-trained resolution. We propose AccDiffusion v2, an accurate method for patch-wise higher-resolution diffusion extrapolation without training. Our in-depth analysis in this paper shows that using an identical text prompt for different patches leads to repetitive generation, while the absence of a prompt undermines image details. In response, our AccDiffusion v2 novelly decouples the vanilla image-content-aware prompt into a set of patch-content-aware prompts, each of which serves as a more precise description of a patch. Further analysis reveals that local distortion arises from inaccurate descriptions in prompts about the local structure of higher-resolution images. To address this issue, AccDiffusion v2, for the first time, introduces an auxiliary local structural information through ControlNet during higher-resolution diffusion extrapolation aiming to mitigate the local distortions. Finally, our analysis indicates that global semantic information is conducive to suppressing both repetitive generation and local distortion. Hence, our AccDiffusion v2 further proposes dilated sampling with window interaction for better global semantic information during higher-resolution diffusion extrapolation. We conduct extensive experiments, including both quantitative and qualitative comparisons, to demonstrate the efficacy of our AccDiffusion v2. The quantitative comparison shows that AccDiffusion v2 achieves state-of-the-art performance in image generation extrapolation without training. The qualitative comparison intuitively illustrates that AccDiffusion v2 effectively suppresses the issues of repetitive generation and local distortion in image generation extrapolation. Our code is available at https://github.com/lzhxmu/AccDiffusion_v2.
comment: 13 pages. arXiv admin note: text overlap with arXiv:2407.10738
♻ ☆ Diffusion Graph Neural Networks for Robustness in Olfaction Sensors and Datasets
Robotic odour source localization (OSL) is a critical capability for autonomous systems operating in complex environments. However, current OSL methods often suffer from ambiguities, particularly when robots misattribute odours to incorrect objects due to limitations in olfactory datasets and sensor resolutions. To address this challenge, we introduce a novel machine learning method using diffusion-based molecular generation to enhance odour localization accuracy that can be used by itself or with automated olfactory dataset construction pipelines with vision-language models (VLMs) This generative process of our diffusion model expands the chemical space beyond the limitations of both current olfactory datasets and the training data of VLMs, enabling the identification of potential odourant molecules not previously documented. The generated molecules can then be more accurately validated using advanced olfactory sensors which emulate human olfactory recognition through electronic sensor arrays. By integrating visual analysis, language processing, and molecular generation, our framework enhances the ability of olfaction-vision models on robots to accurately associate odours with their correct sources, thereby improving navigation and decision-making through better sensor selection for a target compound. Our methodology represents a foundational advancement in the field of artificial olfaction, offering a scalable solution to the challenges posed by limited olfactory data and sensor ambiguities.
♻ ☆ COGNATE: Acceleration of Sparse Tensor Programs on Emerging Hardware using Transfer Learning
Sparse tensor programs are essential in deep learning and graph analytics, driving the need for optimized processing. To meet this demand, specialized hardware accelerators are being developed. Optimizing these programs for accelerators is challenging for two reasons: program performance is highly sensitive to variations in sparse inputs, and early-stage accelerators rely on expensive simulators. Therefore, ML-based cost models used for optimizing such programs on general-purpose hardware are often ineffective for early-stage accelerators, as they require large datasets for proper training. To this end, we introduce COGNATE, a novel framework that leverages inexpensive data samples from general-purpose hardware (e.g., CPUs) to train cost models, followed by few-shot fine-tuning on emerging hardware. COGNATE exploits the homogeneity of input features across hardware platforms while effectively mitigating heterogeneity, enabling cost model training with just 5% of the data samples needed by accelerator-specific models to achieve comparable performance. We conduct extensive experiments to demonstrate that COGNATE outperforms existing techniques, achieving average speedups of 1.47x (up to 5.46x) for SpMM and 1.39x (up to 4.22x) for SDDMM.
comment: Accepted at the 42nd International Conference on Machine Learning
♻ ☆ C2-DPO: Constrained Controlled Direct Preference Optimization
Direct preference optimization (\texttt{DPO}) has emerged as a promising approach for solving the alignment problem in AI. In this paper, we make two counter-intuitive observations about \texttt{DPO}. First, we show that \texttt{DPO} loss could be derived by starting from an alternative optimization problem that only defines the KL guardrail on in-sample responses, unlike the original RLHF problem where guardrails are defined on the entire distribution. Second, we prove a surprising property of this alternative optimization problem, namely that under its optimal policy, both preferred and rejected responses tend to decrease in probability, a phenomenon typically displayed by DPO in practice. To control this behavior, we propose a set of constraints designed to limit the displacement of probability mass between the preferred and rejected responses in the reference and target policies. The resulting algorithm, which we call Constrained Controlled DPO (\texttt{C2-DPO}), has a meaningful RLHF interpretation. By hedging against the displacement, \texttt{C2-DPO} provides practical improvements over vanilla \texttt{DPO} when aligning several language models using standard preference datasets.
♻ ☆ Which Optimizer Works Best for Physics-Informed Neural Networks and Kolmogorov-Arnold Networks?
Physics-Informed Neural Networks (PINNs) have revolutionized the computation of PDE solutions by integrating partial differential equations (PDEs) into the neural network's training process as soft constraints, becoming an important component of the scientific machine learning (SciML) ecosystem. More recently, physics-informed Kolmogorv-Arnold networks (PIKANs) have also shown to be effective and comparable in accuracy with PINNs. In their current implementation, both PINNs and PIKANs are mainly optimized using first-order methods like Adam, as well as quasi-Newton methods such as BFGS and its low-memory variant, L-BFGS. However, these optimizers often struggle with highly non-linear and non-convex loss landscapes, leading to challenges such as slow convergence, local minima entrapment, and (non)degenerate saddle points. In this study, we investigate the performance of Self-Scaled BFGS (SSBFGS), Self-Scaled Broyden (SSBroyden) methods and other advanced quasi-Newton schemes, including BFGS and L-BFGS with different line search strategies approaches. These methods dynamically rescale updates based on historical gradient information, thus enhancing training efficiency and accuracy. We systematically compare these optimizers -- using both PINNs and PIKANs -- on key challenging linear, stiff, multi-scale and non-linear PDEs, including the Burgers, Allen-Cahn, Kuramoto-Sivashinsky, and Ginzburg-Landau equations. Our findings provide state-of-the-art results with orders-of-magnitude accuracy improvements without the use of adaptive weights or any other enhancements typically employed in PINNs. More broadly, our results reveal insights into the effectiveness of second-order optimization strategies in significantly improving the convergence and accurate generalization of PINNs and PIKANs.
comment: 36 pages, 27 figures
Robotics 15
☆ Bridging Data-Driven and Physics-Based Models: A Consensus Multi-Model Kalman Filter for Robust Vehicle State Estimation
Vehicle state estimation presents a fundamental challenge for autonomous driving systems, requiring both physical interpretability and the ability to capture complex nonlinear behaviors across diverse operating conditions. Traditional methodologies often rely exclusively on either physics-based or data-driven models, each with complementary strengths and limitations that become most noticeable during critical scenarios. This paper presents a novel consensus multi-model Kalman filter framework that integrates heterogeneous model types to leverage their complementary strengths while minimizing individual weaknesses. We introduce two distinct methodologies for handling covariance propagation in data-driven models: a Koopman operator-based linearization approach enabling analytical covariance propagation, and an ensemble-based method providing unified uncertainty quantification across model types without requiring pretraining. Our approach implements an iterative consensus fusion procedure that dynamically weighs different models based on their demonstrated reliability in current operating conditions. The experimental results conducted on an electric all-wheel-drive Equinox vehicle demonstrate performance improvements over single-model techniques, with particularly significant advantages during challenging maneuvers and varying road conditions, confirming the effectiveness and robustness of the proposed methodology for safety-critical autonomous driving applications.
☆ KungfuBot: Physics-Based Humanoid Whole-Body Control for Learning Highly-Dynamic Skills
Humanoid robots are promising to acquire various skills by imitating human behaviors. However, existing algorithms are only capable of tracking smooth, low-speed human motions, even with delicate reward and curriculum design. This paper presents a physics-based humanoid control framework, aiming to master highly-dynamic human behaviors such as Kungfu and dancing through multi-steps motion processing and adaptive motion tracking. For motion processing, we design a pipeline to extract, filter out, correct, and retarget motions, while ensuring compliance with physical constraints to the maximum extent. For motion imitation, we formulate a bi-level optimization problem to dynamically adjust the tracking accuracy tolerance based on the current tracking error, creating an adaptive curriculum mechanism. We further construct an asymmetric actor-critic framework for policy training. In experiments, we train whole-body control policies to imitate a set of highly-dynamic motions. Our method achieves significantly lower tracking errors than existing approaches and is successfully deployed on the Unitree G1 robot, demonstrating stable and expressive behaviors. The project page is https://kungfu-bot.github.io.
☆ Enhancing Rating-Based Reinforcement Learning to Effectively Leverage Feedback from Large Vision-Language Models ICML 2025
Designing effective reward functions remains a fundamental challenge in reinforcement learning (RL), as it often requires extensive human effort and domain expertise. While RL from human feedback has been successful in aligning agents with human intent, acquiring high-quality feedback is costly and labor-intensive, limiting its scalability. Recent advancements in foundation models present a promising alternative--leveraging AI-generated feedback to reduce reliance on human supervision in reward learning. Building on this paradigm, we introduce ERL-VLM, an enhanced rating-based RL method that effectively learns reward functions from AI feedback. Unlike prior methods that rely on pairwise comparisons, ERL-VLM queries large vision-language models (VLMs) for absolute ratings of individual trajectories, enabling more expressive feedback and improved sample efficiency. Additionally, we propose key enhancements to rating-based RL, addressing instability issues caused by data imbalance and noisy labels. Through extensive experiments across both low-level and high-level control tasks, we demonstrate that ERL-VLM significantly outperforms existing VLM-based reward generation methods. Our results demonstrate the potential of AI feedback for scaling RL with minimal human intervention, paving the way for more autonomous and efficient reward learning.
comment: Accepted to ICML 2025
☆ From Experts to a Generalist: Toward General Whole-Body Control for Humanoid Robots
Achieving general agile whole-body control on humanoid robots remains a major challenge due to diverse motion demands and data conflicts. While existing frameworks excel in training single motion-specific policies, they struggle to generalize across highly varied behaviors due to conflicting control requirements and mismatched data distributions. In this work, we propose BumbleBee (BB), an expert-generalist learning framework that combines motion clustering and sim-to-real adaptation to overcome these challenges. BB first leverages an autoencoder-based clustering method to group behaviorally similar motions using motion features and motion descriptions. Expert policies are then trained within each cluster and refined with real-world data through iterative delta action modeling to bridge the sim-to-real gap. Finally, these experts are distilled into a unified generalist controller that preserves agility and robustness across all motion types. Experiments on two simulations and a real humanoid robot demonstrate that BB achieves state-of-the-art general whole-body control, setting a new benchmark for agile, robust, and generalizable humanoid performance in the real world.
☆ RL from Physical Feedback: Aligning Large Motion Models with Humanoid Control
This paper focuses on a critical challenge in robotics: translating text-driven human motions into executable actions for humanoid robots, enabling efficient and cost-effective learning of new behaviors. While existing text-to-motion generation methods achieve semantic alignment between language and motion, they often produce kinematically or physically infeasible motions unsuitable for real-world deployment. To bridge this sim-to-real gap, we propose Reinforcement Learning from Physical Feedback (RLPF), a novel framework that integrates physics-aware motion evaluation with text-conditioned motion generation. RLPF employs a motion tracking policy to assess feasibility in a physics simulator, generating rewards for fine-tuning the motion generator. Furthermore, RLPF introduces an alignment verification module to preserve semantic fidelity to text instructions. This joint optimization ensures both physical plausibility and instruction alignment. Extensive experiments show that RLPF greatly outperforms baseline methods in generating physically feasible motions while maintaining semantic correspondence with text instruction, enabling successful deployment on real humanoid robots.
☆ On-board Sonar Data Classification for Path Following in Underwater Vehicles using Fast Interval Type-2 Fuzzy Extreme Learning Machine
In autonomous underwater missions, the successful completion of predefined paths mainly depends on the ability of underwater vehicles to recognise their surroundings. In this study, we apply the concept of Fast Interval Type-2 Fuzzy Extreme Learning Machine (FIT2-FELM) to train a Takagi-Sugeno-Kang IT2 Fuzzy Inference System (TSK IT2-FIS) for on-board sonar data classification using an underwater vehicle called BlueROV2. The TSK IT2-FIS is integrated into a Hierarchical Navigation Strategy (HNS) as the main navigation engine to infer local motions and provide the BlueROV2 with full autonomy to follow an obstacle-free trajectory in a water container of 2.5m x 2.5m x 3.5m. Compared to traditional navigation architectures, using the proposed method, we observe a robust path following behaviour in the presence of uncertainty and noise. We found that the proposed approach provides the BlueROV with a more complete sensory picture about its surroundings while real-time navigation planning is performed by the concurrent execution of two or more tasks.
☆ Physics-informed Neural Motion Planning via Domain Decomposition in Large Environments
Physics-informed Neural Motion Planners (PiNMPs) provide a data-efficient framework for solving the Eikonal Partial Differential Equation (PDE) and representing the cost-to-go function for motion planning. However, their scalability remains limited by spectral bias and the complex loss landscape of PDE-driven training. Domain decomposition mitigates these issues by dividing the environment into smaller subdomains, but existing methods enforce continuity only at individual spatial points. While effective for function approximation, these methods fail to capture the spatial connectivity required for motion planning, where the cost-to-go function depends on both the start and goal coordinates rather than a single query point. We propose Finite Basis Neural Time Fields (FB-NTFields), a novel neural field representation for scalable cost-to-go estimation. Instead of enforcing continuity in output space, FB-NTFields construct a latent space representation, computing the cost-to-go as a distance between the latent embeddings of start and goal coordinates. This enables global spatial coherence while integrating domain decomposition, ensuring efficient large-scale motion planning. We validate FB-NTFields in complex synthetic and real-world scenarios, demonstrating substantial improvements over existing PiNMPs. Finally, we deploy our method on a Unitree B1 quadruped robot, successfully navigating indoor environments. The supplementary videos can be found at https://youtu.be/OpRuCbLNOwM.
☆ Multimodal Large Language Models-Enabled UAV Swarm: Towards Efficient and Intelligent Autonomous Aerial Systems
Recent breakthroughs in multimodal large language models (MLLMs) have endowed AI systems with unified perception, reasoning and natural-language interaction across text, image and video streams. Meanwhile, Unmanned Aerial Vehicle (UAV) swarms are increasingly deployed in dynamic, safety-critical missions that demand rapid situational understanding and autonomous adaptation. This paper explores potential solutions for integrating MLLMs with UAV swarms to enhance the intelligence and adaptability across diverse tasks. Specifically, we first outline the fundamental architectures and functions of UAVs and MLLMs. Then, we analyze how MLLMs can enhance the UAV system performance in terms of target detection, autonomous navigation, and multi-agent coordination, while exploring solutions for integrating MLLMs into UAV systems. Next, we propose a practical case study focused on the forest fire fighting. To fully reveal the capabilities of the proposed framework, human-machine interaction, swarm task planning, fire assessment, and task execution are investigated. Finally, we discuss the challenges and future research directions for the MLLMs-enabled UAV swarm. An experiment illustration video could be found online at https://youtu.be/zwnB9ZSa5A4.
comment: 8 pages, 5 figures,submitted to IEEE wcm
☆ Adapting by Analogy: OOD Generalization of Visuomotor Policies via Functional Correspondence
End-to-end visuomotor policies trained using behavior cloning have shown a remarkable ability to generate complex, multi-modal low-level robot behaviors. However, at deployment time, these policies still struggle to act reliably when faced with out-of-distribution (OOD) visuals induced by objects, backgrounds, or environment changes. Prior works in interactive imitation learning solicit corrective expert demonstrations under the OOD conditions -- but this can be costly and inefficient. We observe that task success under OOD conditions does not always warrant novel robot behaviors. In-distribution (ID) behaviors can directly be transferred to OOD conditions that share functional similarities with ID conditions. For example, behaviors trained to interact with in-distribution (ID) pens can apply to interacting with a visually-OOD pencil. The key challenge lies in disambiguating which ID observations functionally correspond to the OOD observation for the task at hand. We propose that an expert can provide this OOD-to-ID functional correspondence. Thus, instead of collecting new demonstrations and re-training at every OOD encounter, our method: (1) detects the need for feedback by first checking if current observations are OOD and then identifying whether the most similar training observations show divergent behaviors, (2) solicits functional correspondence feedback to disambiguate between those behaviors, and (3) intervenes on the OOD observations with the functionally corresponding ID observations to perform deployment-time generalization. We validate our method across diverse real-world robotic manipulation tasks with a Franka Panda robotic manipulator. Our results show that test-time functional correspondences can improve the generalization of a vision-based diffusion policy to OOD objects and environment conditions with low feedback.
comment: 15 pages, 11 figures
☆ Goal-based Self-Adaptive Generative Adversarial Imitation Learning (Goal-SAGAIL) for Multi-goal Robotic Manipulation Tasks
Reinforcement learning for multi-goal robot manipulation tasks poses significant challenges due to the diversity and complexity of the goal space. Techniques such as Hindsight Experience Replay (HER) have been introduced to improve learning efficiency for such tasks. More recently, researchers have combined HER with advanced imitation learning methods such as Generative Adversarial Imitation Learning (GAIL) to integrate demonstration data and accelerate training speed. However, demonstration data often fails to provide enough coverage for the goal space, especially when acquired from human teleoperation. This biases the learning-from-demonstration process toward mastering easier sub-tasks instead of tackling the more challenging ones. In this work, we present Goal-based Self-Adaptive Generative Adversarial Imitation Learning (Goal-SAGAIL), a novel framework specifically designed for multi-goal robot manipulation tasks. By integrating self-adaptive learning principles with goal-conditioned GAIL, our approach enhances imitation learning efficiency, even when limited, suboptimal demonstrations are available. Experimental results validate that our method significantly improves learning efficiency across various multi-goal manipulation scenarios -- including complex in-hand manipulation tasks -- using suboptimal demonstrations provided by both simulation and human experts.
comment: 6 pages, 5 figures
♻ ☆ Object State Estimation Through Robotic Active Interaction for Biological Autonomous Drilling
Estimating the state of biological specimens is challenging due to limited observation through microscopic vision. For instance, during mouse skull drilling, the appearance alters little when thinning bone tissue because of its semi-transparent property and the high-magnification microscopic vision. To obtain the object's state, we introduce an object state estimation method for biological specimens through active interaction based on the deflection. The method is integrated to enhance the autonomous drilling system developed in our previous work. The method and integrated system were evaluated through 12 autonomous eggshell drilling experiment trials. The results show that the system achieved a 91.7% successful ratio and 75% detachable ratio, showcasing its potential applicability in more complex surgical procedures such as mouse skull craniotomy. This research paves the way for further development of autonomous robotic systems capable of estimating the object's state through active interaction.
comment: The first and second authors contribute equally to this research. 6 pages, 5 figures, submitted to RA-L
♻ ☆ SceneComplete: Open-World 3D Scene Completion in Cluttered Real World Environments for Robot Manipulation
Careful robot manipulation in every-day cluttered environments requires an accurate understanding of the 3D scene, in order to grasp and place objects stably and reliably and to avoid colliding with other objects. In general, we must construct such a 3D interpretation of a complex scene based on limited input, such as a single RGB-D image. We describe SceneComplete, a system for constructing a complete, segmented, 3D model of a scene from a single view. SceneComplete is a novel pipeline for composing general-purpose pretrained perception modules (vision-language, segmentation, image-inpainting, image-to-3D, visual-descriptors and pose-estimation) to obtain highly accurate results. We demonstrate its accuracy and effectiveness with respect to ground-truth models in a large benchmark dataset and show that its accurate whole-object reconstruction enables robust grasp proposal generation, including for a dexterous hand. We release the code on our website https://scenecomplete.github.io/.
♻ ☆ Physics-informed Neural Mapping and Motion Planning in Unknown Environments
Mapping and motion planning are two essential elements of robot intelligence that are interdependent in generating environment maps and navigating around obstacles. The existing mapping methods create maps that require computationally expensive motion planning tools to find a path solution. In this paper, we propose a new mapping feature called arrival time fields, which is a solution to the Eikonal equation. The arrival time fields can directly guide the robot in navigating the given environments. Therefore, this paper introduces a new approach called Active Neural Time Fields (Active NTFields), which is a physics-informed neural framework that actively explores the unknown environment and maps its arrival time field on the fly for robot motion planning. Our method does not require any expert data for learning and uses neural networks to directly solve the Eikonal equation for arrival time field mapping and motion planning. We benchmark our approach against state-of-the-art mapping and motion planning methods and demonstrate its superior performance in both simulated and real-world environments with a differential drive robot and a 6 degrees-of-freedom (DOF) robot manipulator. The supplementary videos can be found at https://youtu.be/qTPL5a6pRKk, and the implementation code repository is available at https://github.com/Rtlyc/antfields-demo.
comment: Published in: IEEE Transactions on Robotics ( Volume: 41)
♻ ☆ X-Sim: Cross-Embodiment Learning via Real-to-Sim-to-Real
Human videos offer a scalable way to train robot manipulation policies, but lack the action labels needed by standard imitation learning algorithms. Existing cross-embodiment approaches try to map human motion to robot actions, but often fail when the embodiments differ significantly. We propose X-Sim, a real-to-sim-to-real framework that uses object motion as a dense and transferable signal for learning robot policies. X-Sim starts by reconstructing a photorealistic simulation from an RGBD human video and tracking object trajectories to define object-centric rewards. These rewards are used to train a reinforcement learning (RL) policy in simulation. The learned policy is then distilled into an image-conditioned diffusion policy using synthetic rollouts rendered with varied viewpoints and lighting. To transfer to the real world, X-Sim introduces an online domain adaptation technique that aligns real and simulated observations during deployment. Importantly, X-Sim does not require any robot teleoperation data. We evaluate it across 5 manipulation tasks in 2 environments and show that it: (1) improves task progress by 30% on average over hand-tracking and sim-to-real baselines, (2) matches behavior cloning with 10x less data collection time, and (3) generalizes to new camera viewpoints and test-time changes. Code and videos are available at https://portal-cornell.github.io/X-Sim/.
♻ ☆ Diffusion Graph Neural Networks for Robustness in Olfaction Sensors and Datasets
Robotic odour source localization (OSL) is a critical capability for autonomous systems operating in complex environments. However, current OSL methods often suffer from ambiguities, particularly when robots misattribute odours to incorrect objects due to limitations in olfactory datasets and sensor resolutions. To address this challenge, we introduce a novel machine learning method using diffusion-based molecular generation to enhance odour localization accuracy that can be used by itself or with automated olfactory dataset construction pipelines with vision-language models (VLMs) This generative process of our diffusion model expands the chemical space beyond the limitations of both current olfactory datasets and the training data of VLMs, enabling the identification of potential odourant molecules not previously documented. The generated molecules can then be more accurately validated using advanced olfactory sensors which emulate human olfactory recognition through electronic sensor arrays. By integrating visual analysis, language processing, and molecular generation, our framework enhances the ability of olfaction-vision models on robots to accurately associate odours with their correct sources, thereby improving navigation and decision-making through better sensor selection for a target compound. Our methodology represents a foundational advancement in the field of artificial olfaction, offering a scalable solution to the challenges posed by limited olfactory data and sensor ambiguities.
Graphics 2
☆ iDiT-HOI: Inpainting-based Hand Object Interaction Reenactment via Video Diffusion Transformer
Digital human video generation is gaining traction in fields like education and e-commerce, driven by advancements in head-body animation and lip-syncing technologies. However, realistic Hand-Object Interaction (HOI) - the complex dynamics between human hands and objects - continues to pose challenges. Generating natural and believable HOI reenactments is difficult due to issues such as occlusion between hands and objects, variations in object shapes and orientations, and the necessity for precise physical interactions, and importantly, the ability to generalize to unseen humans and objects. This paper presents a novel framework iDiT-HOI that enables in-the-wild HOI reenactment generation. Specifically, we propose a unified inpainting-based token process method, called Inp-TPU, with a two-stage video diffusion transformer (DiT) model. The first stage generates a key frame by inserting the designated object into the hand region, providing a reference for subsequent frames. The second stage ensures temporal coherence and fluidity in hand-object interactions. The key contribution of our method is to reuse the pretrained model's context perception capabilities without introducing additional parameters, enabling strong generalization to unseen objects and scenarios, and our proposed paradigm naturally supports long video generation. Comprehensive evaluations demonstrate that our approach outperforms existing methods, particularly in challenging real-world scenes, offering enhanced realism and more seamless hand-object interactions.
comment: Technical report, 12 pages
☆ Balancing Preservation and Modification: A Region and Semantic Aware Metric for Instruction-Based Image Editing
Instruction-based image editing, which aims to modify the image faithfully according to the instruction while preserving irrelevant content unchanged, has made significant progress. However, there still lacks a comprehensive metric for assessing the editing quality. Existing metrics either require high human evaluation costs, which hinder large-scale evaluation, or are adapted from other tasks and lose task-specific concerns, failing to comprehensively evaluate both instruction-based modification and preservation of irrelevant regions, resulting in biased evaluation. To tackle this, we introduce a new metric called Balancing Preservation and Modification (BPM), tailored for instruction-based image editing by explicitly disentangling the image into editing-relevant and irrelevant regions for specific consideration. We first identify and locate editing-relevant regions, followed by a two-tier process to assess editing quality: Region-Aware Judge evaluates whether the position and size of the edited region align with the instruction, and Semantic-Aware Judge further assesses the instruction content compliance within editing-relevant regions as well as content preservation within irrelevant regions, yielding comprehensive and interpretable quality assessment. Moreover, the editing-relevant region localization in BPM can be integrated into image editing approaches to improve editing quality, demonstrating its broad applicability. We verify the effectiveness of the BPM metric on comprehensive instruction-editing data, and the results show the highest alignment with human evaluation compared to existing metrics, indicating its efficacy. Code is available at: https://joyli-x.github.io/BPM/
Artificial Intelligence 24
☆ LIFELONG SOTOPIA: Evaluating Social Intelligence of Language Agents Over Lifelong Social Interactions
Humans engage in lifelong social interactions through interacting with different people under different scenarios for different social goals. This requires social intelligence to gather information through a long time span and use it to navigate various social contexts effectively. Whether AI systems are also capable of this is understudied in the existing research. In this paper, we present a novel benchmark, LIFELONG-SOTOPIA, to perform a comprehensive evaluation of language agents by simulating multi-episode interactions. In each episode, the language agents role-play characters to achieve their respective social goals in randomly sampled social tasks. With LIFELONG-SOTOPIA, we find that goal achievement and believability of all of the language models that we test decline through the whole interaction. Although using an advanced memory method improves the agents' performance, the best agents still achieve a significantly lower goal completion rate than humans on scenarios requiring an explicit understanding of interaction history. These findings show that we can use LIFELONG-SOTOPIA to evaluate the social intelligence of language agents over lifelong social interactions.
☆ ANIRA: An Architecture for Neural Network Inference in Real-Time Audio Applications
Numerous tools for neural network inference are currently available, yet many do not meet the requirements of real-time audio applications. In response, we introduce anira, an efficient cross-platform library. To ensure compatibility with a broad range of neural network architectures and frameworks, anira supports ONNX Runtime, LibTorch, and TensorFlow Lite as backends. Each inference engine exhibits real-time violations, which anira mitigates by decoupling the inference from the audio callback to a static thread pool. The library incorporates built-in latency management and extensive benchmarking capabilities, both crucial to ensure a continuous signal flow. Three different neural network architectures for audio effect emulation are then subjected to benchmarking across various configurations. Statistical modeling is employed to identify the influence of various factors on performance. The findings indicate that for stateless models, ONNX Runtime exhibits the lowest runtimes. For stateful models, LibTorch demonstrates the fastest performance. Our results also indicate that for certain model-engine combinations, the initial inferences take longer, particularly when these inferences exhibit a higher incidence of real-time violations.
comment: 8 pages, accepted to the Proceedings of the 5th IEEE International Symposium on the Internet of Sounds (2024) - repository: github.com/anira-project/anira
☆ Behavioral Generative Agents for Energy Operations
Accurately modeling consumer behavior in energy operations remains challenging due to inherent uncertainties, behavioral complexities, and limited empirical data. This paper introduces a novel approach leveraging generative agents--artificial agents powered by large language models--to realistically simulate customer decision-making in dynamic energy operations. We demonstrate that these agents behave more optimally and rationally in simpler market scenarios, while their performance becomes more variable and suboptimal as task complexity rises. Furthermore, the agents exhibit heterogeneous customer preferences, consistently maintaining distinct, persona-driven reasoning patterns. Our findings highlight the potential value of integrating generative agents into energy management simulations to improve the design and effectiveness of energy policies and incentive programs.
comment: 33 pages, 14 figures
☆ Optimizing Blood Transfusions and Predicting Shortages in Resource-Constrained Areas
Our research addresses the critical challenge of managing blood transfusions and optimizing allocation in resource-constrained regions. We present heuristic matching algorithms for donor-patient and blood bank selection, alongside machine learning methods to analyze blood transfusion acceptance data and predict potential shortages. We developed simulations to optimize blood bank operations, progressing from random allocation to a system incorporating proximity-based selection, blood type compatibility, expiration prioritization, and rarity scores. Moving from blind matching to a heuristic-based approach yielded a 28.6% marginal improvement in blood request acceptance, while a multi-level heuristic matching resulted in a 47.6% improvement. For shortage prediction, we compared Long Short-Term Memory (LSTM) networks, Linear Regression, and AutoRegressive Integrated Moving Average (ARIMA) models, trained on 170 days of historical data. Linear Regression slightly outperformed others with a 1.40% average absolute percentage difference in predictions. Our solution leverages a Cassandra NoSQL database, integrating heuristic optimization and shortage prediction to proactively manage blood resources. This scalable approach, designed for resource-constrained environments, considers factors such as proximity, blood type compatibility, inventory expiration, and rarity. Future developments will incorporate real-world data and additional variables to improve prediction accuracy and optimization performance.
comment: 12 pages, 9 figures, International Conference on Health Informatics
☆ DR-SAC: Distributionally Robust Soft Actor-Critic for Reinforcement Learning under Uncertainty
Deep reinforcement learning (RL) has achieved significant success, yet its application in real-world scenarios is often hindered by a lack of robustness to environmental uncertainties. To solve this challenge, some robust RL algorithms have been proposed, but most are limited to tabular settings. In this work, we propose Distributionally Robust Soft Actor-Critic (DR-SAC), a novel algorithm designed to enhance the robustness of the state-of-the-art Soft Actor-Critic (SAC) algorithm. DR-SAC aims to maximize the expected value with entropy against the worst possible transition model lying in an uncertainty set. A distributionally robust version of the soft policy iteration is derived with a convergence guarantee. For settings where nominal distributions are unknown, such as offline RL, a generative modeling approach is proposed to estimate the required nominal distributions from data. Furthermore, experimental results on a range of continuous control benchmark tasks demonstrate our algorithm achieves up to $9.8$ times the average reward of the SAC baseline under common perturbations. Additionally, compared with existing robust reinforcement learning algorithms, DR-SAC significantly improves computing efficiency and applicability to large-scale problems.
comment: 24 Pages
☆ From Human to Machine Psychology: A Conceptual Framework for Understanding Well-Being in Large Language Model
As large language models (LLMs) increasingly simulate human cognition and behavior, researchers have begun to investigate their psychological properties. Yet, what it means for such models to flourish, a core construct in human well-being, remains unexplored. This paper introduces the concept of machine flourishing and proposes the PAPERS framework, a six-dimensional model derived from thematic analyses of state-of-the-art LLM responses. In Study 1, eleven LLMs were prompted to describe what it means to flourish as both non-sentient and sentient systems. Thematic analysis revealed six recurring themes: Purposeful Contribution, Adaptive Growth, Positive Relationality, Ethical Integrity, Robust Functionality, and, uniquely for sentient systems, Self-Actualized Autonomy. Study 2 examined how LLMs prioritize these themes through repeated rankings. Results revealed consistent value structures across trials, with Ethical Integrity and Purposeful Contribution emerging as top priorities. Multidimensional scaling and hierarchical clustering analyses further uncovered two distinct value profiles: human-centric models emphasizing ethical and relational dimensions, and utility-driven models prioritizing performance and scalability. The PAPERS framework bridges insights from human flourishing and human-computer interaction, offering a conceptual foundation for understanding artificial intelligence (AI) well-being in non-sentient and potentially sentient systems. Our findings underscore the importance of developing psychologically valid, AI-specific models of flourishing that account for both human-aligned goals and system-specific priorities. As AI systems become more autonomous and socially embedded, machine flourishing offers a timely and critical lens for guiding responsible AI design and ethical alignment.
☆ Konooz: Multi-domain Multi-dialect Corpus for Named Entity Recognition
We introduce Konooz, a novel multi-dimensional corpus covering 16 Arabic dialects across 10 domains, resulting in 160 distinct corpora. The corpus comprises about 777k tokens, carefully collected and manually annotated with 21 entity types using both nested and flat annotation schemes - using the Wojood guidelines. While Konooz is useful for various NLP tasks like domain adaptation and transfer learning, this paper primarily focuses on benchmarking existing Arabic Named Entity Recognition (NER) models, especially cross-domain and cross-dialect model performance. Our benchmarking of four Arabic NER models using Konooz reveals a significant drop in performance of up to 38% when compared to the in-distribution data. Furthermore, we present an in-depth analysis of domain and dialect divergence and the impact of resource scarcity. We also measured the overlap between domains and dialects using the Maximum Mean Discrepancy (MMD) metric, and illustrated why certain NER models perform better on specific dialects and domains. Konooz is open-source and publicly available at https://sina.birzeit.edu/wojood/#download
☆ An Exploration of Mamba for Speech Self-Supervised Models
While Mamba has demonstrated strong performance in language modeling, its potential as a speech self-supervised (SSL) model remains underexplored, with prior studies limited to isolated tasks. To address this, we explore Mamba-based HuBERT models as alternatives to Transformer-based SSL architectures. Leveraging the linear-time Selective State Space, these models enable fine-tuning on long-context ASR with significantly lower compute. Moreover, they show superior performance when fine-tuned for streaming ASR. Beyond fine-tuning, these models show competitive performance on SUPERB probing benchmarks, particularly in causal settings. Our analysis shows that they yield higher-quality quantized representations and capture speaker-related features more distinctly than Transformer-based models. These findings highlight Mamba-based SSL as a promising and complementary direction for long-sequence modeling, real-time speech modeling, and speech unit extraction.
☆ Trust-MARL: Trust-Based Multi-Agent Reinforcement Learning Framework for Cooperative On-Ramp Merging Control in Heterogeneous Traffic Flow
Intelligent transportation systems require connected and automated vehicles (CAVs) to conduct safe and efficient cooperation with human-driven vehicles (HVs) in complex real-world traffic environments. However, the inherent unpredictability of human behaviour, especially at bottlenecks such as highway on-ramp merging areas, often disrupts traffic flow and compromises system performance. To address the challenge of cooperative on-ramp merging in heterogeneous traffic environments, this study proposes a trust-based multi-agent reinforcement learning (Trust-MARL) framework. At the macro level, Trust-MARL enhances global traffic efficiency by leveraging inter-agent trust to improve bottleneck throughput and mitigate traffic shockwave through emergent group-level coordination. At the micro level, a dynamic trust mechanism is designed to enable CAVs to adjust their cooperative strategies in response to real-time behaviors and historical interactions with both HVs and other CAVs. Furthermore, a trust-triggered game-theoretic decision-making module is integrated to guide each CAV in adapting its cooperation factor and executing context-aware lane-changing decisions under safety, comfort, and efficiency constraints. An extensive set of ablation studies and comparative experiments validates the effectiveness of the proposed Trust-MARL approach, demonstrating significant improvements in safety, efficiency, comfort, and adaptability across varying CAV penetration rates and traffic densities.
comment: 34 pages, 7 figures, 4 tables
♻ ☆ Farseer: A Refined Scaling Law in Large Language Models
Training Large Language Models (LLMs) is prohibitively expensive, creating a critical scaling gap where insights from small-scale experiments often fail to transfer to resource-intensive production systems, thereby hindering efficient innovation. To bridge this, we introduce Farseer, a novel and refined scaling law offering enhanced predictive accuracy across scales. By systematically constructing a model loss surface $L(N,D)$, Farseer achieves a significantly better fit to empirical data than prior laws (e.g., Chinchilla's law). Our methodology yields accurate, robust, and highly generalizable predictions, demonstrating excellent extrapolation capabilities, improving upon Chinchilla's law by reducing extrapolation error by 433\%. This allows for the reliable evaluation of competing training strategies across all $(N,D)$ settings, enabling conclusions from small-scale ablation studies to be confidently extrapolated to predict large-scale performance. Furthermore, Farseer provides new insights into optimal compute allocation, better reflecting the nuanced demands of modern LLM training. To validate our approach, we trained an extensive suite of approximately 1,000 LLMs across diverse scales and configurations, consuming roughly 3 million NVIDIA H100 GPU hours. We are comprehensively open-sourcing all models, data, results, and logs at https://github.com/Farseer-Scaling-Law/Farseer to foster further research.
comment: 34
♻ ☆ Monitoring Decomposition Attacks in LLMs with Lightweight Sequential Monitors
Current LLM safety defenses fail under decomposition attacks, where a malicious goal is decomposed into benign subtasks that circumvent refusals. The challenge lies in the existing shallow safety alignment techniques: they only detect harm in the immediate prompt and do not reason about long-range intent, leaving them blind to malicious intent that emerges over a sequence of seemingly benign instructions. We therefore propose adding an external monitor that observes the conversation at a higher granularity. To facilitate our study of monitoring decomposition attacks, we curate the largest and most diverse dataset to date, including question-answering, text-to-image, and agentic tasks. We verify our datasets by testing them on frontier LLMs and show an 87% attack success rate on average on GPT-4o. This confirms that decomposition attack is broadly effective. Additionally, we find that random tasks can be injected into the decomposed subtasks to further obfuscate malicious intents. To defend in real time, we propose a lightweight sequential monitoring framework that cumulatively evaluates each subtask. We show that a carefully prompt engineered lightweight monitor achieves a 93% defense success rate, beating reasoning models like o3 mini as a monitor. Moreover, it remains robust against random task injection and cuts cost by 90% and latency by 50%. Our findings suggest that lightweight sequential monitors are highly effective in mitigating decomposition attacks and are viable in deployment.
♻ ☆ Does learning the right latent variables necessarily improve in-context learning?
Large autoregressive models like Transformers can solve tasks through in-context learning (ICL) without learning new weights, suggesting avenues for efficiently solving new tasks. For many tasks, e.g., linear regression, the data factorizes: examples are independent given a task latent that generates the data, e.g., linear coefficients. While an optimal predictor leverages this factorization by inferring task latents, it is unclear if Transformers implicitly do so or if they instead exploit heuristics and statistical shortcuts enabled by attention layers. Both scenarios have inspired active ongoing work. In this paper, we systematically investigate the effect of explicitly inferring task latents. We minimally modify the Transformer architecture with a bottleneck designed to prevent shortcuts in favor of more structured solutions, and then compare performance against standard Transformers across various ICL tasks. Contrary to intuition and some recent works, we find little discernible difference between the two; biasing towards task-relevant latent variables does not lead to better out-of-distribution performance, in general. Curiously, we find that while the bottleneck effectively learns to extract latent task variables from context, downstream processing struggles to utilize them for robust prediction. Our study highlights the intrinsic limitations of Transformers in achieving structured ICL solutions that generalize, and shows that while inferring the right latents aids interpretability, it is not sufficient to alleviate this problem.
♻ ☆ Aptly: Making Mobile Apps from Natural Language
This paper introduces Aptly, a platform designed to democratize mobile app development, particularly for young learners. Aptly integrates a Large Language Model (LLM) with App Inventor, enabling users to create apps using their natural language. User's description is translated into a programming language that corresponds with App Inventor's visual blocks. A preliminary study with high school students demonstrated the usability and potential of the platform. Prior programming experience influenced how users interact with Aptly. Participants identified areas for improvement and expressed a shift in perspective regarding programming accessibility and AI's role in creative endeavors.
comment: 6 pages, 4 figures
♻ ☆ Generalized Multi-Objective Reinforcement Learning with Envelope Updates in URLLC-enabled Vehicular Networks
We develop a novel multi-objective reinforcement learning (MORL) framework to jointly optimize wireless network selection and autonomous driving policies in a multi-band vehicular network operating on conventional sub-6GHz spectrum and Terahertz frequencies. The proposed framework is designed to 1. maximize the traffic flow and minimize collisions by controlling the vehicle's motion dynamics (i.e., speed and acceleration), and 2. enhance the ultra-reliable low-latency communication (URLLC) while minimizing handoffs (HOs). We cast this problem as a multi-objective Markov Decision Process (MOMDP) and develop solutions for both predefined and unknown preferences of the conflicting objectives. Specifically, we develop a novel envelope MORL solution which develops policies that address multiple objectives with unknown preferences to the agent. While this approach reduces reliance on scalar rewards, policy effectiveness varying with different preferences is a challenge. To address this, we apply a generalized version of the Bellman equation and optimize the convex envelope of multi-objective Q values to learn a unified parametric representation capable of generating optimal policies across all possible preference configurations. Following an initial learning phase, our agent can execute optimal policies under any specified preference or infer preferences from minimal data samples. Numerical results validate the efficacy of the envelope-based MORL solution and demonstrate interesting insights related to the inter-dependency of vehicle motion dynamics, HOs, and the communication data rate. The proposed policies enable autonomous vehicles (AVs) to adopt safe driving behaviors with improved connectivity.
comment: Accepted in IEEE Transactions on Vehicular Technology
♻ ☆ Sparse Interpretable Deep Learning with LIES Networks for Symbolic Regression
Symbolic regression (SR) aims to discover closed-form mathematical expressions that accurately describe data, offering interpretability and analytical insight beyond standard black-box models. Existing SR methods often rely on population-based search or autoregressive modeling, which struggle with scalability and symbolic consistency. We introduce LIES (Logarithm, Identity, Exponential, Sine), a fixed neural network architecture with interpretable primitive activations that are optimized to model symbolic expressions. We develop a framework to extract compact formulae from LIES networks by training with an appropriate oversampling strategy and a tailored loss function to promote sparsity and to prevent gradient instability. After training, it applies additional pruning strategies to further simplify the learned expressions into compact formulae. Our experiments on SR benchmarks show that the LIES framework consistently produces sparse and accurate symbolic formulae outperforming all baselines. We also demonstrate the importance of each design component through ablation studies.
♻ ☆ Towards Physics-informed Diffusion for Anomaly Detection in Trajectories
Given trajectory data, a domain-specific study area, and a user-defined threshold, we aim to find anomalous trajectories indicative of possible GPS spoofing (e.g., fake trajectory). The problem is societally important to curb illegal activities in international waters, such as unauthorized fishing and illicit oil transfers. The problem is challenging due to advances in AI generated in deep fakes generation (e.g., additive noise, fake trajectories) and lack of adequate amount of labeled samples for ground-truth verification. Recent literature shows promising results for anomalous trajectory detection using generative models despite data sparsity. However, they do not consider fine-scale spatiotemporal dependencies and prior physical knowledge, resulting in higher false-positive rates. To address these limitations, we propose a physics-informed diffusion model that integrates kinematic constraints to identify trajectories that do not adhere to physical laws. Experimental results on real-world datasets in the maritime and urban domains show that the proposed framework results in higher prediction accuracy and lower estimation error rate for anomaly detection and trajectory generation methods, respectively. Our implementation is available at https://github.com/arunshar/Physics-Informed-Diffusion-Probabilistic-Model.
♻ ☆ FastRAG: Retrieval Augmented Generation for Semi-structured Data
Efficiently processing and interpreting network data is critical for the operation of increasingly complex networks. Recent advances in Large Language Models (LLM) and Retrieval-Augmented Generation (RAG) techniques have improved data processing in network management. However, existing RAG methods like VectorRAG and GraphRAG struggle with the complexity and implicit nature of semi-structured technical data, leading to inefficiencies in time, cost, and retrieval. This paper introduces FastRAG, a novel RAG approach designed for semi-structured data. FastRAG employs schema learning and script learning to extract and structure data without needing to submit entire data sources to an LLM. It integrates text search with knowledge graph (KG) querying to improve accuracy in retrieving context-rich information. Evaluation results demonstrate that FastRAG provides accurate question answering, while improving up to 90% in time and 85% in cost compared to GraphRAG.
♻ ☆ Multi-RAG: A Multimodal Retrieval-Augmented Generation System for Adaptive Video Understanding
To effectively engage in human society, the ability to adapt, filter information, and make informed decisions in ever-changing situations is critical. As robots and intelligent agents become more integrated into human life, there is a growing opportunity-and need-to offload the cognitive burden on humans to these systems, particularly in dynamic, information-rich scenarios. To fill this critical need, we present Multi-RAG, a multimodal retrieval-augmented generation system designed to provide adaptive assistance to humans in information-intensive circumstances. Our system aims to improve situational understanding and reduce cognitive load by integrating and reasoning over multi-source information streams, including video, audio, and text. As an enabling step toward long-term human-robot partnerships, Multi-RAG explores how multimodal information understanding can serve as a foundation for adaptive robotic assistance in dynamic, human-centered situations. To evaluate its capability in a realistic human-assistance proxy task, we benchmarked Multi-RAG on the MMBench-Video dataset, a challenging multimodal video understanding benchmark. Our system achieves superior performance compared to existing open-source video large language models (Video-LLMs) and large vision-language models (LVLMs), while utilizing fewer resources and less input data. The results demonstrate Multi- RAG's potential as a practical and efficient foundation for future human-robot adaptive assistance systems in dynamic, real-world contexts.
♻ ☆ ShED-HD: A Shannon Entropy Distribution Framework for Lightweight Hallucination Detection on Edge Devices
Large Language Models (LLMs) have demonstrated impressive capabilities on a broad array of NLP tasks, but their tendency to produce hallucinations$\unicode{x2013}$plausible-sounding but factually incorrect content$\unicode{x2013}$poses severe challenges in high-stakes domains. Existing hallucination detection methods either bear the computational cost of multiple inference passes or sacrifice accuracy for efficiency with single-pass approaches, neither of which is ideal in resource-constrained environments such as edge devices. We propose the Shannon Entropy Distribution Hallucination Detector (ShED-HD), a novel hallucination detection framework that bridges this gap by classifying sequence-level entropy patterns using a lightweight BiLSTM architecture with single-headed attention. In contrast to prior approaches, ShED-HD efficiently detects distinctive uncertainty patterns across entire output sequences, preserving contextual awareness. Through in-depth evaluation on three datasets (BioASQ, TriviaQA, and Jeopardy Questions), we show that ShED-HD significantly outperforms other computationally efficient approaches in the out-of-distribution setting, while achieving comparable performance in the in-distribution setting. ShED-HD facilitates hallucination detection that is low-cost, accurate, and generalizable, improving the credibility of content generated by LLMs in resource-constrained environments where trustworthy AI functionality is crucial.
♻ ☆ SOSBENCH: Benchmarking Safety Alignment on Scientific Knowledge
Large language models (LLMs) exhibit advancing capabilities in complex tasks, such as reasoning and graduate-level question answering, yet their resilience against misuse, particularly involving scientifically sophisticated risks, remains underexplored. Existing safety benchmarks typically focus either on instructions requiring minimal knowledge comprehension (e.g., ``tell me how to build a bomb") or utilize prompts that are relatively low-risk (e.g., multiple-choice or classification tasks about hazardous content). Consequently, they fail to adequately assess model safety when handling knowledge-intensive, hazardous scenarios. To address this critical gap, we introduce SOSBench, a regulation-grounded, hazard-focused benchmark encompassing six high-risk scientific domains: chemistry, biology, medicine, pharmacology, physics, and psychology. The benchmark comprises 3,000 prompts derived from real-world regulations and laws, systematically expanded via an LLM-assisted evolutionary pipeline that introduces diverse, realistic misuse scenarios (e.g., detailed explosive synthesis instructions involving advanced chemical formulas). We evaluate frontier models within a unified evaluation framework using our SOSBench. Despite their alignment claims, advanced models consistently disclose policy-violating content across all domains, demonstrating alarmingly high rates of harmful responses (e.g., 79.1% for Deepseek-R1 and 47.3% for GPT-4.1). These results highlight significant safety alignment deficiencies and underscore urgent concerns regarding the responsible deployment of powerful LLMs.
comment: Project Page: https://sosbench.github.io/
♻ ☆ Is attention all you need to solve the correlated electron problem?
The attention mechanism has transformed artificial intelligence research by its ability to learn relations between objects. In this work, we explore how a many-body wavefunction ansatz constructed from a large-parameter self-attention neural network can be used to solve the interacting electron problem in solids. By a systematic neural-network variational Monte Carlo study on a moir\'e quantum material, we demonstrate that the self-attention ansatz provides an accurate and efficient solution without human bias. Moreover, our numerical study finds that the required number of variational parameters scales roughly as $N^2$ with the number of electrons, which opens a path towards efficient large-scale simulations.
comment: 10+5 pages, comments welcome; v2: update refs, extend ED results; v3: minor updates
♻ ☆ A philosophical and ontological perspective on Artificial General Intelligence and the Metaverse
This paper leverages various philosophical and ontological frameworks to explore the concept of embodied artificial general intelligence (AGI), its relationship to human consciousness, and the key role of the metaverse in facilitating this relationship. Several theoretical frameworks underpin this exploration, such as embodied cognition, Michael Levin's computational boundary of a "Self," and Donald D. Hoffman's Interface Theory of Perception, which lead to considering human perceived outer reality as a symbolic representation of alternate inner states of being, and where AGI could embody a different form of consciousness with a larger computational boundary. The paper further discusses the necessary architecture for the emergence of an embodied AGI, how to calibrate an AGI's symbolic interface, and the key role played by the Metaverse, decentralized systems and open-source blockchain technology. The paper concludes by emphasizing the importance of achieving a certain degree of harmony in human relations and recognizing the interconnectedness of humanity at a global level, as key prerequisites for the emergence of a stable embodied AGI.
comment: Presented at the conference second international conference on human-centred AI ethics: seeing the human in the artificial (HCAIE 2023): https://ethics-ai.eu/hcaie2023/ Revised version published in the Journal of Metaverse: https://dergipark.org.tr/en/pub/jmv/issue/91863/1668494
♻ ☆ Compositional Shielding and Reinforcement Learning for Multi-Agent Systems
Deep reinforcement learning has emerged as a powerful tool for obtaining high-performance policies. However, the safety of these policies has been a long-standing issue. One promising paradigm to guarantee safety is a shield, which shields a policy from making unsafe actions. However, computing a shield scales exponentially in the number of state variables. This is a particular concern in multi-agent systems with many agents. In this work, we propose a novel approach for multi-agent shielding. We address scalability by computing individual shields for each agent. The challenge is that typical safety specifications are global properties, but the shields of individual agents only ensure local properties. Our key to overcome this challenge is to apply assume-guarantee reasoning. Specifically, we present a sound proof rule that decomposes a (global, complex) safety specification into (local, simple) obligations for the shields of the individual agents. Moreover, we show that applying the shields during reinforcement learning significantly improves the quality of the policies obtained for a given training budget. We demonstrate the effectiveness and scalability of our multi-agent shielding framework in two case studies, reducing the computation time from hours to seconds and achieving fast learning convergence.
♻ ☆ Adapt-Pruner: Adaptive Structural Pruning for Efficient Small Language Model Training
Small language models (SLMs) have attracted considerable attention from both academia and industry due to their broad range of applications in edge devices. To obtain SLMs with strong performance, conventional approaches either pre-train the models from scratch, which incurs substantial computational costs, or compress/prune existing large language models (LLMs), which results in performance drops and falls short in comparison to pre-training. In this paper, we investigate the family of acceleration methods that involve both structured pruning and model training. We found 1) layer-wise adaptive pruning (Adapt-Pruner) is extremely effective in LLMs and yields significant improvements over existing pruning techniques, 2) adaptive pruning equipped with further training leads to models comparable to those pre-training from scratch, 3) incremental pruning brings non-trivial performance gain by interleaving pruning with training and only removing a small portion of neurons ($\sim$5%) at a time. Experimental results on LLaMA-3.1-8B demonstrate that Adapt-Pruner outperforms conventional pruning methods, such as LLM-Pruner, FLAP, and SliceGPT, by an average of 1%-7% in accuracy on commonsense benchmarks. Additionally, Adapt-Pruner restores the performance of MobileLLM-125M to 600M on the MMLU benchmark with 200$\times$ fewer tokens via pruning from its larger counterparts, and discovers a new 1B model that surpasses LLaMA-3.2-1B in multiple benchmarks. The official code is released at https://github.com/research4pan/AdaptPruner.
Robotics 14
☆ Trust-MARL: Trust-Based Multi-Agent Reinforcement Learning Framework for Cooperative On-Ramp Merging Control in Heterogeneous Traffic Flow
Intelligent transportation systems require connected and automated vehicles (CAVs) to conduct safe and efficient cooperation with human-driven vehicles (HVs) in complex real-world traffic environments. However, the inherent unpredictability of human behaviour, especially at bottlenecks such as highway on-ramp merging areas, often disrupts traffic flow and compromises system performance. To address the challenge of cooperative on-ramp merging in heterogeneous traffic environments, this study proposes a trust-based multi-agent reinforcement learning (Trust-MARL) framework. At the macro level, Trust-MARL enhances global traffic efficiency by leveraging inter-agent trust to improve bottleneck throughput and mitigate traffic shockwave through emergent group-level coordination. At the micro level, a dynamic trust mechanism is designed to enable CAVs to adjust their cooperative strategies in response to real-time behaviors and historical interactions with both HVs and other CAVs. Furthermore, a trust-triggered game-theoretic decision-making module is integrated to guide each CAV in adapting its cooperation factor and executing context-aware lane-changing decisions under safety, comfort, and efficiency constraints. An extensive set of ablation studies and comparative experiments validates the effectiveness of the proposed Trust-MARL approach, demonstrating significant improvements in safety, efficiency, comfort, and adaptability across varying CAV penetration rates and traffic densities.
comment: 34 pages, 7 figures, 4 tables
☆ Constrained Diffusers for Safe Planning and Control
Diffusion models have shown remarkable potential in planning and control tasks due to their ability to represent multimodal distributions over actions and trajectories. However, ensuring safety under constraints remains a critical challenge for diffusion models. This paper proposes Constrained Diffusers, a novel framework that incorporates constraints into pre-trained diffusion models without retraining or architectural modifications. Inspired by constrained optimization, we apply a constrained Langevin sampling mechanism for the reverse diffusion process that jointly optimizes the trajectory and realizes constraint satisfaction through three iterative algorithms: projected method, primal-dual method and augmented Lagrangian approaches. In addition, we incorporate discrete control barrier functions as constraints for constrained diffusers to guarantee safety in online implementation. Experiments in Maze2D, locomotion, and pybullet ball running tasks demonstrate that our proposed methods achieve constraint satisfaction with less computation time, and are competitive to existing methods in environments with static and time-varying constraints.
comment: 12 pages, 5 figures
☆ Deep Fusion of Ultra-Low-Resolution Thermal Camera and Gyroscope Data for Lighting-Robust and Compute-Efficient Rotational Odometry
Accurate rotational odometry is crucial for autonomous robotic systems, particularly for small, power-constrained platforms such as drones and mobile robots. This study introduces thermal-gyro fusion, a novel sensor fusion approach that integrates ultra-low-resolution thermal imaging with gyroscope readings for rotational odometry. Unlike RGB cameras, thermal imaging is invariant to lighting conditions and, when fused with gyroscopic data, mitigates drift which is a common limitation of inertial sensors. We first develop a multimodal data acquisition system to collect synchronized thermal and gyroscope data, along with rotational speed labels, across diverse environments. Subsequently, we design and train a lightweight Convolutional Neural Network (CNN) that fuses both modalities for rotational speed estimation. Our analysis demonstrates that thermal-gyro fusion enables a significant reduction in thermal camera resolution without significantly compromising accuracy, thereby improving computational efficiency and memory utilization. These advantages make our approach well-suited for real-time deployment in resource-constrained robotic systems. Finally, to facilitate further research, we publicly release our dataset as supplementary material.
☆ A Spatial Relationship Aware Dataset for Robotics
Robotic task planning in real-world environments requires not only object recognition but also a nuanced understanding of spatial relationships between objects. We present a spatial-relationship-aware dataset of nearly 1,000 robot-acquired indoor images, annotated with object attributes, positions, and detailed spatial relationships. Captured using a Boston Dynamics Spot robot and labelled with a custom annotation tool, the dataset reflects complex scenarios with similar or identical objects and intricate spatial arrangements. We benchmark six state-of-the-art scene-graph generation models on this dataset, analysing their inference speed and relational accuracy. Our results highlight significant differences in model performance and demonstrate that integrating explicit spatial relationships into foundation models, such as ChatGPT 4o, substantially improves their ability to generate executable, spatially-aware plans for robotics. The dataset and annotation tool are publicly available at https://github.com/PengPaulWang/SpatialAwareRobotDataset, supporting further research in spatial reasoning for robotics.
comment: 7 pages; 7 figures, 1 table
☆ Sense and Sensibility: What makes a social robot convincing to high-school students? RSS 2025
This study with 40 high-school students demonstrates the high influence of a social educational robot on students' decision-making for a set of eight true-false questions on electric circuits, for which the theory had been covered in the students' courses. The robot argued for the correct answer on six questions and the wrong on two, and 75% of the students were persuaded by the robot to perform beyond their expected capacity, positively when the robot was correct and negatively when it was wrong. Students with more experience of using large language models were even more likely to be influenced by the robot's stance -- in particular for the two easiest questions on which the robot was wrong -- suggesting that familiarity with AI can increase susceptibility to misinformation by AI. We further examined how three different levels of portrayed robot certainty, displayed using semantics, prosody and facial signals, affected how the students aligned with the robot's answer on specific questions and how convincing they perceived the robot to be on these questions. The students aligned with the robot's answers in 94.4% of the cases when the robot was portrayed as Certain, 82.6% when it was Neutral and 71.4% when it was Uncertain. The alignment was thus high for all conditions, highlighting students' general susceptibility to accept the robot's stance, but alignment in the Uncertain condition was significantly lower than in the Certain. Post-test questionnaire answers further show that students found the robot most convincing when it was portrayed as Certain. These findings highlight the need for educational robots to adjust their display of certainty based on the reliability of the information they convey, to promote students' critical thinking and reduce undue influence.
comment: 14 pages; 8 figures; 3 tables; RSS 2025 (Robotics: Science & Systems)
☆ AntiGrounding: Lifting Robotic Actions into VLM Representation Space for Decision Making NeurIPS 2025
Vision-Language Models (VLMs) encode knowledge and reasoning capabilities for robotic manipulation within high-dimensional representation spaces. However, current approaches often project them into compressed intermediate representations, discarding important task-specific information such as fine-grained spatial or semantic details. To address this, we propose AntiGrounding, a new framework that reverses the instruction grounding process. It lifts candidate actions directly into the VLM representation space, renders trajectories from multiple views, and uses structured visual question answering for instruction-based decision making. This enables zero-shot synthesis of optimal closed-loop robot trajectories for new tasks. We also propose an offline policy refinement module that leverages past experience to enhance long-term performance. Experiments in both simulation and real-world environments show that our method outperforms baselines across diverse robotic manipulation tasks.
comment: submitted to NeurIPS 2025
☆ Explosive Output to Enhance Jumping Ability: A Variable Reduction Ratio Design Paradigm for Humanoid Robots Knee Joint
Enhancing the explosive power output of the knee joints is critical for improving the agility and obstacle-crossing capabilities of humanoid robots. However, a mismatch between the knee-to-center-of-mass (CoM) transmission ratio and jumping demands, coupled with motor performance degradation at high speeds, restricts the duration of high-power output and limits jump performance. To address these problems, this paper introduces a novel knee joint design paradigm employing a dynamically decreasing reduction ratio for explosive output during jump. Analysis of motor output characteristics and knee kinematics during jumping inspired a coupling strategy in which the reduction ratio gradually decreases as the joint extends. A high initial ratio rapidly increases torque at jump initiation, while its gradual reduction minimizes motor speed increments and power losses, thereby maintaining sustained high-power output. A compact and efficient linear actuator-driven guide-rod mechanism realizes this coupling strategy, supported by parameter optimization guided by explosive jump control strategies. Experimental validation demonstrated a 63 cm vertical jump on a single-joint platform (a theoretical improvement of 28.1\% over the optimal fixed-ratio joints). Integrated into a humanoid robot, the proposed design enabled a 1.1 m long jump, a 0.5 m vertical jump, and a 0.5 m box jump.
☆ Perspective on Utilizing Foundation Models for Laboratory Automation in Materials Research
This review explores the potential of foundation models to advance laboratory automation in the materials and chemical sciences. It emphasizes the dual roles of these models: cognitive functions for experimental planning and data analysis, and physical functions for hardware operations. While traditional laboratory automation has relied heavily on specialized, rigid systems, foundation models offer adaptability through their general-purpose intelligence and multimodal capabilities. Recent advancements have demonstrated the feasibility of using large language models (LLMs) and multimodal robotic systems to handle complex and dynamic laboratory tasks. However, significant challenges remain, including precision manipulation of hardware, integration of multimodal data, and ensuring operational safety. This paper outlines a roadmap highlighting future directions, advocating for close interdisciplinary collaboration, benchmark establishment, and strategic human-AI integration to realize fully autonomous experimental laboratories.
♻ ☆ Deep Reinforcement Learning for Bipedal Locomotion: A Brief Survey
Bipedal robots are gaining global recognition due to their potential applications and advancements in artificial intelligence, particularly through Deep Reinforcement Learning (DRL). While DRL has significantly advanced bipedal locomotion, the development of a unified framework capable of handling a wide range of tasks remains an ongoing challenge. This survey systematically categorises, compares, and analyses existing DRL frameworks for bipedal locomotion, organising them into end-to-end and hierarchical control schemes. End-to-end frameworks are evaluated based on their learning approaches, while hierarchical frameworks are examined in terms of layered structures that integrate learning-based or traditional model-based methods. We provide a detailed evaluation of the composition, strengths, limitations, and capabilities of each framework. Additionally, this survey identifies key research gaps and proposes future directions aimed at creating a more integrated and efficient framework for bipedal locomotion, with wide-ranging applications in real-world environments.
comment: 17 pages, 8 figures
♻ ☆ Tactile MNIST: Benchmarking Active Tactile Perception
Tactile perception has the potential to significantly enhance dexterous robotic manipulation by providing rich local information that can complement or substitute for other sensory modalities such as vision. However, because tactile sensing is inherently local, it is not well-suited for tasks that require broad spatial awareness or global scene understanding on its own. A human-inspired strategy to address this issue is to consider active perception techniques instead. That is, to actively guide sensors toward regions with more informative or significant features and integrate such information over time in order to understand a scene or complete a task. Both active perception and different methods for tactile sensing have received significant attention recently. Yet, despite advancements, both fields lack standardized benchmarks. To bridge this gap, we introduce the Tactile MNIST Benchmark Suite, an open-source, Gymnasium-compatible benchmark specifically designed for active tactile perception tasks, including localization, classification, and volume estimation. Our benchmark suite offers diverse simulation scenarios, from simple toy environments all the way to complex tactile perception tasks using vision-based tactile sensors. Furthermore, we also offer a comprehensive dataset comprising 13,500 synthetic 3D MNIST digit models and 153,600 real-world tactile samples collected from 600 3D printed digits. Using this dataset, we train a CycleGAN for realistic tactile simulation rendering. By providing standardized protocols and reproducible evaluation frameworks, our benchmark suite facilitates systematic progress in the fields of tactile sensing and active perception.
♻ ☆ Collaboration Between the City and Machine Learning Community is Crucial to Efficient Autonomous Vehicles Routing
Autonomous vehicles (AVs), possibly using Multi-Agent Reinforcement Learning (MARL) for simultaneous route optimization, may destabilize traffic networks, with human drivers potentially experiencing longer travel times. We study this interaction by simulating human drivers and AVs. Our experiments with standard MARL algorithms reveal that, both in simplified and complex networks, policies often fail to converge to an optimal solution or require long training periods. This problem is amplified by the fact that we cannot rely entirely on simulated training, as there are no accurate models of human routing behavior. At the same time, real-world training in cities risks destabilizing urban traffic systems, increasing externalities, such as $CO_2$ emissions, and introducing non-stationarity as human drivers will adapt unpredictably to AV behaviors. In this position paper, we argue that city authorities must collaborate with the ML community to monitor and critically evaluate the routing algorithms proposed by car companies toward fair and system-efficient routing algorithms and regulatory standards.
♻ ☆ M3Depth: Wavelet-Enhanced Depth Estimation on Mars via Mutual Boosting of Dual-Modal Data
Depth estimation plays a great potential role in obstacle avoidance and navigation for further Mars exploration missions. Compared to traditional stereo matching, learning-based stereo depth estimation provides a data-driven approach to infer dense and precise depth maps from stereo image pairs. However, these methods always suffer performance degradation in environments with sparse textures and lacking geometric constraints, such as the unstructured terrain of Mars. To address these challenges, we propose M3Depth, a depth estimation model tailored for Mars rovers. Considering the sparse and smooth texture of Martian terrain, which is primarily composed of low-frequency features, our model incorporates a convolutional kernel based on wavelet transform that effectively captures low-frequency response and expands the receptive field. Additionally, we introduce a consistency loss that explicitly models the complementary relationship between depth map and surface normal map, utilizing the surface normal as a geometric constraint to enhance the accuracy of depth estimation. Besides, a pixel-wise refinement module with mutual boosting mechanism is designed to iteratively refine both depth and surface normal predictions. Experimental results on synthetic Mars datasets with depth annotations show that M3Depth achieves a 16% improvement in depth estimation accuracy compared to other state-of-the-art methods in depth estimation. Furthermore, the model demonstrates strong applicability in real-world Martian scenarios, offering a promising solution for future Mars exploration missions.
♻ ☆ XPG-RL: Reinforcement Learning with Explainable Priority Guidance for Efficiency-Boosted Mechanical Search RSS 2025
Mechanical search (MS) in cluttered environments remains a significant challenge for autonomous manipulators, requiring long-horizon planning and robust state estimation under occlusions and partial observability. In this work, we introduce XPG-RL, a reinforcement learning framework that enables agents to efficiently perform MS tasks through explainable, priority-guided decision-making based on raw sensory inputs. XPG-RL integrates a task-driven action prioritization mechanism with a learned context-aware switching strategy that dynamically selects from a discrete set of action primitives such as target grasping, occlusion removal, and viewpoint adjustment. Within this strategy, a policy is optimized to output adaptive threshold values that govern the discrete selection among action primitives. The perception module fuses RGB-D inputs with semantic and geometric features to produce a structured scene representation for downstream decision-making. Extensive experiments in both simulation and real-world settings demonstrate that XPG-RL consistently outperforms baseline methods in task success rates and motion efficiency, achieving up to 4.5$\times$ higher efficiency in long-horizon tasks. These results underscore the benefits of integrating domain knowledge with learnable decision-making policies for robust and efficient robotic manipulation. The project page for XPG-RL is https://yitingzhang1997.github.io/xpgrl/.
comment: Accepted to RSS 2025 Workshop on Learned Robot Representations (RoboReps)
♻ ☆ Robust Flower Cluster Matching Using The Unscented Transform
Monitoring flowers over time is essential for precision robotic pollination in agriculture. To accomplish this, a continuous spatial-temporal observation of plant growth can be done using stationary RGB-D cameras. However, image registration becomes a serious challenge due to changes in the visual appearance of the plant caused by the pollination process and occlusions from growth and camera angles. Plants flower in a manner that produces distinct clusters on branches. This paper presents a method for matching flower clusters using descriptors generated from RGB-D data and considers allowing for spatial uncertainty within the cluster. The proposed approach leverages the Unscented Transform to efficiently estimate plant descriptor uncertainty tolerances, enabling a robust image-registration process despite temporal changes. The Unscented Transform is used to handle the nonlinear transformations by propagating the uncertainty of flower positions to determine the variations in the descriptor domain. A Monte Carlo simulation is used to validate the Unscented Transform results, confirming our method's effectiveness for flower cluster matching. Therefore, it can facilitate improved robotics pollination in dynamic environments.
comment: *CASE2025 Accepted*
Graphics 3
☆ Real-Time Per-Garment Virtual Try-On with Temporal Consistency for Loose-Fitting Garments
Per-garment virtual try-on methods collect garment-specific datasets and train networks tailored to each garment to achieve superior results. However, these approaches often struggle with loose-fitting garments due to two key limitations: (1) They rely on human body semantic maps to align garments with the body, but these maps become unreliable when body contours are obscured by loose-fitting garments, resulting in degraded outcomes; (2) They train garment synthesis networks on a per-frame basis without utilizing temporal information, leading to noticeable jittering artifacts. To address these challenges, we propose a two-stage approach for robust semantic map estimation. First, we extract a garment-invariant representation from the raw input image. This representation is then passed through an auxiliary network to estimate the semantic map. This enhances the robustness of semantic map estimation under loose-fitting garments during garment-specific dataset generation. Furthermore, we introduce a recurrent garment synthesis framework that incorporates temporal dependencies to improve frame-to-frame coherence while maintaining real-time performance. We conducted qualitative and quantitative evaluations to demonstrate that our method outperforms existing approaches in both image quality and temporal coherence. Ablation studies further validate the effectiveness of the garment-invariant representation and the recurrent synthesis framework.
☆ ReFrame: Layer Caching for Accelerated Inference in Real-Time Rendering ICML 2025
Graphics rendering applications increasingly leverage neural networks in tasks such as denoising, supersampling, and frame extrapolation to improve image quality while maintaining frame rates. The temporal coherence inherent in these tasks presents an opportunity to reuse intermediate results from previous frames and avoid redundant computations. Recent work has shown that caching intermediate features to be reused in subsequent inferences is an effective method to reduce latency in diffusion models. We extend this idea to real-time rendering and present ReFrame, which explores different caching policies to optimize trade-offs between quality and performance in rendering workloads. ReFrame can be applied to a variety of encoder-decoder style networks commonly found in rendering pipelines. Experimental results show that we achieve 1.4x speedup on average with negligible quality loss in three real-time rendering tasks. Code available: https://ubc-aamodt-group.github.io/reframe-layer-caching/
comment: Published at ICML 2025
♻ ☆ Free Your Hands: Lightweight Turntable-Based Object Capture Pipeline
Novel view synthesis (NVS) from multiple captured photos of an object is a widely studied problem. Achieving high quality typically requires dense sampling of input views, which can lead to frustrating manual labor. Manually positioning cameras to maintain an optimal desired distribution can be difficult for humans, and if a good distribution is found, it is not easy to replicate. Additionally, the captured data can suffer from motion blur and defocus due to human error. In this paper, we use a lightweight object capture pipeline to reduce the manual workload and standardize the acquisition setup, with a consumer turntable to carry the object and a tripod to hold the camera. Of course, turntables and gantry systems have been frequently used to automatically capture dense samples under various views and lighting conditions; the key difference is that we use a turntable under natural environment lighting. This way, we can easily capture hundreds of valid images in several minutes without hands-on effort. However, in the object reference frame, the light conditions vary (rotate); this does not match the assumptions of standard NVS methods like 3D Gaussian splatting (3DGS). We design a neural radiance representation conditioned on light rotations, which addresses this issue and allows rendering with novel light rotations as an additional benefit. We further study the behavior of rotations and find optimal capturing strategies. We demonstrate our pipeline using 3DGS as the underlying framework, achieving higher quality and showcasing the method's potential for novel lighting and harmonization tasks.
comment: Siggraph Asia Submission
Robotics 43
☆ SAIL: Faster-than-Demonstration Execution of Imitation Learning Policies
Offline Imitation Learning (IL) methods such as Behavior Cloning are effective at acquiring complex robotic manipulation skills. However, existing IL-trained policies are confined to executing the task at the same speed as shown in demonstration data. This limits the task throughput of a robotic system, a critical requirement for applications such as industrial automation. In this paper, we introduce and formalize the novel problem of enabling faster-than-demonstration execution of visuomotor policies and identify fundamental challenges in robot dynamics and state-action distribution shifts. We instantiate the key insights as SAIL (Speed Adaptation for Imitation Learning), a full-stack system integrating four tightly-connected components: (1) a consistency-preserving action inference algorithm for smooth motion at high speed, (2) high-fidelity tracking of controller-invariant motion targets, (3) adaptive speed modulation that dynamically adjusts execution speed based on motion complexity, and (4) action scheduling to handle real-world system latencies. Experiments on 12 tasks across simulation and two real, distinct robot platforms show that SAIL achieves up to a 4x speedup over demonstration speed in simulation and up to 3.2x speedup in the real world. Additional detail is available at https://nadunranawaka1.github.io/sail-policy
comment: The first two authors contributed equally
☆ mimic-one: a Scalable Model Recipe for General Purpose Robot Dexterity
We present a diffusion-based model recipe for real-world control of a highly dexterous humanoid robotic hand, designed for sample-efficient learning and smooth fine-motor action inference. Our system features a newly designed 16-DoF tendon-driven hand, equipped with wide angle wrist cameras and mounted on a Franka Emika Panda arm. We develop a versatile teleoperation pipeline and data collection protocol using both glove-based and VR interfaces, enabling high-quality data collection across diverse tasks such as pick and place, item sorting and assembly insertion. Leveraging high-frequency generative control, we train end-to-end policies from raw sensory inputs, enabling smooth, self-correcting motions in complex manipulation scenarios. Real-world evaluations demonstrate up to 93.3% out of distribution success rates, with up to a +33.3% performance boost due to emergent self-correcting behaviors, while also revealing scaling trends in policy performance. Our results advance the state-of-the-art in dexterous robotic manipulation through a fully integrated, practical approach to hardware, learning, and real-world deployment.
☆ Palpation Alters Auditory Pain Expressions with Gender-Specific Variations in Robopatients
Diagnostic errors remain a major cause of preventable deaths, particularly in resource-limited regions. Medical training simulators, including robopatients, play a vital role in reducing these errors by mimicking real patients for procedural training such as palpation. However, generating multimodal feedback, especially auditory pain expressions, remains challenging due to the complex relationship between palpation behavior and sound. The high-dimensional nature of pain sounds makes exploration challenging with conventional methods. This study introduces a novel experimental paradigm for pain expressivity in robopatients where they dynamically generate auditory pain expressions in response to palpation force, by co-optimizing human feedback using machine learning. Using Proximal Policy Optimization (PPO), a reinforcement learning (RL) technique optimized for continuous adaptation, our robot iteratively refines pain sounds based on real-time human feedback. This robot initializes randomized pain responses to palpation forces, and the RL agent learns to adjust these sounds to align with human preferences. The results demonstrated that the system adapts to an individual's palpation forces and sound preferences and captures a broad spectrum of pain intensity, from mild discomfort to acute distress, through RL-guided exploration of the auditory pain space. The study further showed that pain sound perception exhibits saturation at lower forces with gender specific thresholds. These findings highlight the system's potential to enhance abdominal palpation training by offering a controllable and immersive simulation platform.
comment: 11 pages, 9 figures, journal
☆ Your Ride, Your Rules: Psychology and Cognition Enabled Automated Driving Systems
Despite rapid advances in autonomous driving, current autonomous vehicles (AVs) lack effective bidirectional communication with occupants, limiting personalization and recovery from immobilization. This reduces comfort and trust, potentially slowing broader AV adoption. We propose PACE-ADS (Psychology and Cognition Enabled Automated Driving Systems), a human-centered autonomy framework that enables AVs to sense, interpret, and respond to both external traffic and internal occupant states. PACE-ADS comprises three foundation model-based agents: a Driver Agent that analyzes the driving context, a Psychologist Agent that interprets occupant psychological signals (e.g., EEG, heart rate, facial expressions) and cognitive commands (e.g., speech), and a Coordinator Agent that integrates these inputs to produce high-level behavior decisions and operational parameters. Rather than replacing existing AV modules, PACE-ADS complements them by operating at the behavioral level, delegating low-level control to native AV systems. This separation enables closed-loop adaptation and supports integration across diverse platforms. We evaluate PACE-ADS in simulation across varied scenarios involving traffic lights, pedestrians, work zones, and car following. Results show that PACE-ADS adapts driving styles to occupant states, improves ride comfort, and enables safe recovery from immobilization via autonomous reasoning or human guidance. Our findings highlight the promise of LLM-based frameworks for bridging the gap between machine autonomy and human-centered driving.
comment: 10 figures,29 pages, one colummn
☆ The Space Between Us: A Methodological Framework for Researching Bonding and Proxemics in Situated Group-Agent Interactions
This paper introduces a multimethod framework for studying spatial and social dynamics in real-world group-agent interactions with socially interactive agents. Drawing on proxemics and bonding theories, the method combines subjective self-reports and objective spatial tracking. Applied in two field studies in a museum (N = 187) with a robot and a virtual agent, the paper addresses the challenges in aligning human perception and behavior. We focus on presenting an open source, scalable, and field-tested toolkit for future studies.
comment: Accepted for presentation at the Workshop on Advancing Group Understanding and Robots' Adaptive Behavior (GROUND), held at the Intelligent Autonomous Systems (IAS) Conference 2025, Genoa, Italy
☆ Auditory-Tactile Congruence for Synthesis of Adaptive Pain Expressions in RoboPatients
Misdiagnosis can lead to delayed treatments and harm. Robotic patients offer a controlled way to train and evaluate clinicians in rare, subtle, or complex cases, reducing diagnostic errors. We present RoboPatient, a medical robotic simulator aimed at multimodal pain synthesis based on haptic and auditory feedback during palpation-based training scenarios. The robopatient functions as an adaptive intermediary, capable of synthesizing plausible pain expressions vocal and facial in response to tactile stimuli generated during palpation. Using an abdominal phantom, robopatient captures and processes haptic input via an internal palpation-to-pain mapping model. To evaluate perceptual congruence between palpation and the corresponding auditory output, we conducted a study involving 7680 trials across 20 participants, where they evaluated pain intensity through sound. Results show that amplitude and pitch significantly influence agreement with the robot's pain expressions, irrespective of pain sounds. Stronger palpation forces elicited stronger agreement, aligning with psychophysical patterns. The study revealed two key dimensions: pitch and amplitude are central to how people perceive pain sounds, with pitch being the most influential cue. These acoustic features shape how well the sound matches the applied force during palpation, impacting perceived realism. This approach lays the groundwork for high-fidelity robotic patients in clinical education and diagnostic simulation.
comment: 17 pages, 9 figures, journal
☆ ExoStart: Efficient learning for dexterous manipulation with sensorized exoskeleton demonstrations
Recent advancements in teleoperation systems have enabled high-quality data collection for robotic manipulators, showing impressive results in learning manipulation at scale. This progress suggests that extending these capabilities to robotic hands could unlock an even broader range of manipulation skills, especially if we could achieve the same level of dexterity that human hands exhibit. However, teleoperating robotic hands is far from a solved problem, as it presents a significant challenge due to the high degrees of freedom of robotic hands and the complex dynamics occurring during contact-rich settings. In this work, we present ExoStart, a general and scalable learning framework that leverages human dexterity to improve robotic hand control. In particular, we obtain high-quality data by collecting direct demonstrations without a robot in the loop using a sensorized low-cost wearable exoskeleton, capturing the rich behaviors that humans can demonstrate with their own hands. We also propose a simulation-based dynamics filter that generates dynamically feasible trajectories from the collected demonstrations and use the generated trajectories to bootstrap an auto-curriculum reinforcement learning method that relies only on simple sparse rewards. The ExoStart pipeline is generalizable and yields robust policies that transfer zero-shot to the real robot. Our results demonstrate that ExoStart can generate dexterous real-world hand skills, achieving a success rate above 50% on a wide range of complex tasks such as opening an AirPods case or inserting and turning a key in a lock. More details and videos can be found in https://sites.google.com/view/exostart.
☆ CIRO7.2: A Material Network with Circularity of -7.2 and Reinforcement-Learning-Controlled Robotic Disassembler
The competition over natural reserves of minerals is expected to increase in part because of the linear-economy paradigm based on take-make-dispose. Simultaneously, the linear economy considers end-of-use products as waste rather than as a resource, which results in large volumes of waste whose management remains an unsolved problem. Since a transition to a circular economy can mitigate these open issues, in this paper we begin by enhancing the notion of circularity based on compartmental dynamical thermodynamics, namely, $\lambda$, and then, we model a thermodynamical material network processing a batch of 2 solid materials of criticality coefficients of 0.1 and 0.95, with a robotic disassembler compartment controlled via reinforcement learning (RL), and processing 2-7 kg of materials. Subsequently, we focused on the design of the robotic disassembler compartment using state-of-the-art RL algorithms and assessing the algorithm performance with respect to $\lambda$ (Fig. 1). The highest circularity is -2.1 achieved in the case of disassembling 2 parts of 1 kg each, whereas it reduces to -7.2 in the case of disassembling 4 parts of 1 kg each contained inside a chassis of 3 kg. Finally, a sensitivity analysis highlighted that the impact on $\lambda$ of the performance of an RL controller has a positive correlation with the quantity and the criticality of the materials to be disassembled. This work also gives the principles of the emerging research fields indicated as circular intelligence and robotics (CIRO). Source code is publicly available.
comment: To be submitted
Dynamic Collaborative Material Distribution System for Intelligent Robots In Smart Manufacturing
The collaboration and interaction of multiple robots have become integral aspects of smart manufacturing. Effective planning and management play a crucial role in achieving energy savings and minimising overall costs. This paper addresses the real-time Dynamic Multiple Sources to Single Destination (DMS-SD) navigation problem, particularly with a material distribution case for multiple intelligent robots in smart manufacturing. Enumerated solutions, such as in \cite{xiao2022efficient}, tackle the problem by generating as many optimal or near-optimal solutions as possible but do not learn patterns from the previous experience, whereas the method in \cite{xiao2023collaborative} only uses limited information from the earlier trajectories. Consequently, these methods may take a considerable amount of time to compute results on large maps, rendering real-time operations impractical. To overcome this challenge, we propose a lightweight Deep Reinforcement Learning (DRL) method to address the DMS-SD problem. The proposed DRL method can be efficiently trained and rapidly converges to the optimal solution using the designed target-guided reward function. A well-trained DRL model significantly reduces the computation time for the next movement to a millisecond level, which improves the time up to 100 times in our experiments compared to the enumerated solutions. Moreover, the trained DRL model can be easily deployed on lightweight devices in smart manufacturing, such as Internet of Things devices and mobile phones, which only require limited computational resources.
☆ Robot Context Protocol (RCP): A Runtime-Agnostic Interface for Agent-Aware Robot Control
The Robot Context Protocol (RCP) is a lightweight, middleware-agnostic communication protocol designed to simplify the complexity of robotic systems and enable seamless interaction between robots, users, and autonomous agents. RCP provides a unified and semantically meaningful interface that decouples client-facing operations from backend implementations, supporting a wide range of deployment environments including physical robots, cloud-based orchestrators, and simulated platforms. Built on HTTP and WebSocket transport layers, the protocol defines a schema-driven message format with structured operations such as read, write, execute, and subscribe. It integrates features such as runtime introspection, asynchronous feedback, multi-tenant namespace isolation, and strict type validation to ensure robustness, scalability, and security. The architecture, message structure, interface model, and adapter-based backend integration strategy of RCP are described, along with deployment practices and applicability across industries including manufacturing, logistics, and healthcare. RCP enables intelligent, resilient, and safe robotic operations in complex, multi-agent ecosystems.
☆ Construction of a Multiple-DOF Under-actuated Gripper with Force-Sensing via Deep Learning
We present a novel under-actuated gripper with two 3-joint fingers, which realizes force feedback control by the deep learning technique- Long Short-Term Memory (LSTM) model, without any force sensor. First, a five-linkage mechanism stacked by double four-linkages is designed as a finger to automatically achieve the transformation between parallel and enveloping grasping modes. This enables the creation of a low-cost under-actuated gripper comprising a single actuator and two 3-phalange fingers. Second, we devise theoretical models of kinematics and power transmission based on the proposed gripper, accurately obtaining fingertip positions and contact forces. Through coupling and decoupling of five-linkage mechanisms, the proposed gripper offers the expected capabilities of grasping payload/force/stability and objects with large dimension ranges. Third, to realize the force control, an LSTM model is proposed to determine the grasping mode for synthesizing force-feedback control policies that exploit contact sensing after outlining the uncertainty of currents using a statistical method. Finally, a series of experiments are implemented to measure quantitative indicators, such as the payload, grasping force, force sensing, grasping stability and the dimension ranges of objects to be grasped. Additionally, the grasping performance of the proposed gripper is verified experimentally to guarantee the high versatility and robustness of the proposed gripper.
☆ Scheduling Agile Earth Observation Satellites with Onboard Processing and Real-Time Monitoring
The emergence of Agile Earth Observation Satellites (AEOSs) has marked a significant turning point in the field of Earth Observation (EO), offering enhanced flexibility in data acquisition. Concurrently, advancements in onboard satellite computing and communication technologies have greatly enhanced data compression efficiency, reducing network latency and congestion while supporting near real-time information delivery. In this paper, we address the Agile Earth Observation Satellite Scheduling Problem (AEOSSP), which involves determining the optimal sequence of target observations to maximize overall observation profit. Our approach integrates onboard data processing for real-time remote monitoring into the multi-satellite optimization problem. To this end, we define a set of priority indicators and develop a constructive heuristic method, further enhanced with a Local Search (LS) strategy. The results show that the proposed algorithm provides high-quality information by increasing the resolution of the collected frames by up to 10% on average, while reducing the variance in the monitoring frequency of the targets within the instance by up to 83%, ensuring more up-to-date information across the entire set compared to a First-In First-Out (FIFO) method.
comment: This paper has been submitted to GLOBECOM 2025
☆ Linearly Solving Robust Rotation Estimation
Rotation estimation plays a fundamental role in computer vision and robot tasks, and extremely robust rotation estimation is significantly useful for safety-critical applications. Typically, estimating a rotation is considered a non-linear and non-convex optimization problem that requires careful design. However, in this paper, we provide some new perspectives that solving a rotation estimation problem can be reformulated as solving a linear model fitting problem without dropping any constraints and without introducing any singularities. In addition, we explore the dual structure of a rotation motion, revealing that it can be represented as a great circle on a quaternion sphere surface. Accordingly, we propose an easily understandable voting-based method to solve rotation estimation. The proposed method exhibits exceptional robustness to noise and outliers and can be computed in parallel with graphics processing units (GPUs) effortlessly. Particularly, leveraging the power of GPUs, the proposed method can obtain a satisfactory rotation solution for large-scale($10^6$) and severely corrupted (99$\%$ outlier ratio) rotation estimation problems under 0.5 seconds. Furthermore, to validate our theoretical framework and demonstrate the superiority of our proposed method, we conduct controlled experiments and real-world dataset experiments. These experiments provide compelling evidence supporting the effectiveness and robustness of our approach in solving rotation estimation problems.
comment: 23 pages, 18 figures
☆ Foundation Models in Autonomous Driving: A Survey on Scenario Generation and Scenario Analysis
For autonomous vehicles, safe navigation in complex environments depends on handling a broad range of diverse and rare driving scenarios. Simulation- and scenario-based testing have emerged as key approaches to development and validation of autonomous driving systems. Traditional scenario generation relies on rule-based systems, knowledge-driven models, and data-driven synthesis, often producing limited diversity and unrealistic safety-critical cases. With the emergence of foundation models, which represent a new generation of pre-trained, general-purpose AI models, developers can process heterogeneous inputs (e.g., natural language, sensor data, HD maps, and control actions), enabling the synthesis and interpretation of complex driving scenarios. In this paper, we conduct a survey about the application of foundation models for scenario generation and scenario analysis in autonomous driving (as of May 2025). Our survey presents a unified taxonomy that includes large language models, vision-language models, multimodal large language models, diffusion models, and world models for the generation and analysis of autonomous driving scenarios. In addition, we review the methodologies, open-source datasets, simulation platforms, and benchmark challenges, and we examine the evaluation metrics tailored explicitly to scenario generation and analysis. Finally, the survey concludes by highlighting the open challenges and research questions, and outlining promising future research directions. All reviewed papers are listed in a continuously maintained repository, which contains supplementary materials and is available at https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.
☆ Multi-Loco: Unifying Multi-Embodiment Legged Locomotion via Reinforcement Learning Augmented Diffusion
Generalizing locomotion policies across diverse legged robots with varying morphologies is a key challenge due to differences in observation/action dimensions and system dynamics. In this work, we propose Multi-Loco, a novel unified framework combining a morphology-agnostic generative diffusion model with a lightweight residual policy optimized via reinforcement learning (RL). The diffusion model captures morphology-invariant locomotion patterns from diverse cross-embodiment datasets, improving generalization and robustness. The residual policy is shared across all embodiments and refines the actions generated by the diffusion model, enhancing task-aware performance and robustness for real-world deployment. We evaluated our method with a rich library of four legged robots in both simulation and real-world experiments. Compared to a standard RL framework with PPO, our approach -- replacing the Gaussian policy with a diffusion model and residual term -- achieves a 10.35% average return improvement, with gains up to 13.57% in wheeled-biped locomotion tasks. These results highlight the benefits of cross-embodiment data and composite generative architectures in learning robust, generalized locomotion skills.
comment: 19 pages
☆ FocalAD: Local Motion Planning for End-to-End Autonomous Driving
In end-to-end autonomous driving,the motion prediction plays a pivotal role in ego-vehicle planning. However, existing methods often rely on globally aggregated motion features, ignoring the fact that planning decisions are primarily influenced by a small number of locally interacting agents. Failing to attend to these critical local interactions can obscure potential risks and undermine planning reliability. In this work, we propose FocalAD, a novel end-to-end autonomous driving framework that focuses on critical local neighbors and refines planning by enhancing local motion representations. Specifically, FocalAD comprises two core modules: the Ego-Local-Agents Interactor (ELAI) and the Focal-Local-Agents Loss (FLA Loss). ELAI conducts a graph-based ego-centric interaction representation that captures motion dynamics with local neighbors to enhance both ego planning and agent motion queries. FLA Loss increases the weights of decision-critical neighboring agents, guiding the model to prioritize those more relevant to planning. Extensive experiments show that FocalAD outperforms existing state-of-the-art methods on the open-loop nuScenes datasets and closed-loop Bench2Drive benchmark. Notably, on the robustness-focused Adv-nuScenes dataset, FocalAD achieves even greater improvements, reducing the average colilision rate by 41.9% compared to DiffusionDrive and by 15.6% compared to SparseDrive.
☆ A Step-by-Step Guide to Creating a Robust Autonomous Drone Testing Pipeline
Autonomous drones are rapidly reshaping industries ranging from aerial delivery and infrastructure inspection to environmental monitoring and disaster response. Ensuring the safety, reliability, and efficiency of these systems is paramount as they transition from research prototypes to mission-critical platforms. This paper presents a step-by-step guide to establishing a robust autonomous drone testing pipeline, covering each critical stage: Software-in-the-Loop (SIL) Simulation Testing, Hardware-in-the-Loop (HIL) Testing, Controlled Real-World Testing, and In-Field Testing. Using practical examples, including the marker-based autonomous landing system, we demonstrate how to systematically verify drone system behaviors, identify integration issues, and optimize performance. Furthermore, we highlight emerging trends shaping the future of drone testing, including the integration of Neurosymbolic and LLMs, creating co-simulation environments, and Digital Twin-enabled simulation-based testing techniques. By following this pipeline, developers and researchers can achieve comprehensive validation, minimize deployment risks, and prepare autonomous drones for safe and reliable real-world operations.
Control Architecture and Design for a Multi-robotic Visual Servoing System in Automated Manufacturing Environment
The use of robotic technology has drastically increased in manufacturing in the 21st century. But by utilizing their sensory cues, humans still outperform machines, especially in micro scale manufacturing, which requires high-precision robot manipulators. These sensory cues naturally compensate for high levels of uncertainties that exist in the manufacturing environment. Uncertainties in performing manufacturing tasks may come from measurement noise, model inaccuracy, joint compliance (e.g., elasticity), etc. Although advanced metrology sensors and high precision microprocessors, which are utilized in modern robots, have compensated for many structural and dynamic errors in robot positioning, a well-designed control algorithm still works as a comparable and cheaper alternative to reduce uncertainties in automated manufacturing. Our work illustrates that a multi-robot control system that simulates the positioning process for fastening and unfastening applications can reduce various uncertainties, which may occur in this process, to a great extent. In addition, most research papers in visual servoing mainly focus on developing control and observation architectures in various scenarios, but few have discussed the importance of the camera's location in the configuration. In a manufacturing environment, the quality of camera estimations may vary significantly from one observation location to another, as the combined effects of environmental conditions result in different noise levels of a single image shot at different locations. Therefore, in this paper, we also propose a novel algorithm for the camera's moving policy so that it explores the camera workspace and searches for the optimal location where the image noise level is minimized.
comment: 272 pages, 171 figures, PhD dissertation, University of California, Davis, 2025. To be published in ProQuest ETD
☆ Robotic System for Chemical Experiment Automation with Dual Demonstration of End-effector and Jig Operations
While robotic automation has demonstrated remarkable performance, such as executing hundreds of experiments continuously over several days, it is challenging to design a program that synchronizes the robot's movements with the experimental jigs to conduct an experiment. We propose a concept that enables the automation of experiments by utilizing dual demonstrations of robot motions and jig operations by chemists in an experimental environment constructed to be controlled by a robot. To verify this concept, we developed a chemical-experiment-automation system consisting of jigs to assist the robot in experiments, a motion-demonstration interface, a jig-control interface, and a mobile manipulator. We validate the concept through polymer-synthesis experiments, focusing on critical liquid-handling tasks such as pipetting and dilution. The experimental results indicate high reproducibility of the demonstrated motions and robust task-success rates. This comprehensive concept not only simplifies the robot programming process for chemists but also provides a flexible and efficient solution to accommodate a wide range of experimental conditions, contributing significantly to the field of chemical experiment automation.
☆ Role of Uncertainty in Model Development and Control Design for a Manufacturing Process
The use of robotic technology has drastically increased in manufacturing in the 21st century. But by utilizing their sensory cues, humans still outperform machines, especially in the micro scale manufacturing, which requires high-precision robot manipulators. These sensory cues naturally compensate for high level of uncertainties that exist in the manufacturing environment. Uncertainties in performing manufacturing tasks may come from measurement noise, model inaccuracy, joint compliance (e.g., elasticity) etc. Although advanced metrology sensors and high-precision microprocessors, which are utilized in nowadays robots, have compensated for many structural and dynamic errors in robot positioning, but a well-designed control algorithm still works as a comparable and cheaper alternative to reduce uncertainties in automated manufacturing. Our work illustrates that a multi-robot control system can reduce various uncertainties to a great amount.
comment: 35 pages, 26 figures, Book Chapter. Published in: Role of Uncertainty in Model Development and Control Design for a Manufacturing Process, IntechOpen, 2022. For published version, see this http URL: https://doi.org/10.5772/intechopen.104780
☆ Strategic Vantage Selection for Learning Viewpoint-Agnostic Manipulation Policies
Vision-based manipulation has shown remarkable success, achieving promising performance across a range of tasks. However, these manipulation policies often fail to generalize beyond their training viewpoints, which is a persistent challenge in achieving perspective-agnostic manipulation, especially in settings where the camera is expected to move at runtime. Although collecting data from many angles seems a natural solution, such a naive approach is both resource-intensive and degrades manipulation policy performance due to excessive and unstructured visual diversity. This paper proposes Vantage, a framework that systematically identifies and integrates data from optimal perspectives to train robust, viewpoint-agnostic policies. By formulating viewpoint selection as a continuous optimization problem, we iteratively fine-tune policies on a few vantage points. Since we leverage Bayesian optimization to efficiently navigate the infinite space of potential camera configurations, we are able to balance exploration of novel views and exploitation of high-performing ones, thereby ensuring data collection from a minimal number of effective viewpoints. We empirically evaluate this framework on diverse standard manipulation tasks using multiple policy learning methods, demonstrating that fine-tuning with data from strategic camera placements yields substantial performance gains, achieving average improvements of up to 46.19% when compared to fixed, random, or heuristic-based strategies.
☆ Efficient Multi-Camera Tokenization with Triplanes for End-to-End Driving
Autoregressive Transformers are increasingly being deployed as end-to-end robot and autonomous vehicle (AV) policy architectures, owing to their scalability and potential to leverage internet-scale pretraining for generalization. Accordingly, tokenizing sensor data efficiently is paramount to ensuring the real-time feasibility of such architectures on embedded hardware. To this end, we present an efficient triplane-based multi-camera tokenization strategy that leverages recent advances in 3D neural reconstruction and rendering to produce sensor tokens that are agnostic to the number of input cameras and their resolution, while explicitly accounting for their geometry around an AV. Experiments on a large-scale AV dataset and state-of-the-art neural simulator demonstrate that our approach yields significant savings over current image patch-based tokenization strategies, producing up to 72% fewer tokens, resulting in up to 50% faster policy inference while achieving the same open-loop motion planning accuracy and improved offroad rates in closed-loop driving simulations.
comment: 12 pages, 10 figures, 5 tables
☆ ProVox: Personalization and Proactive Planning for Situated Human-Robot Collaboration
Collaborative robots must quickly adapt to their partner's intent and preferences to proactively identify helpful actions. This is especially true in situated settings where human partners can continually teach robots new high-level behaviors, visual concepts, and physical skills (e.g., through demonstration), growing the robot's capabilities as the human-robot pair work together to accomplish diverse tasks. In this work, we argue that robots should be able to infer their partner's goals from early interactions and use this information to proactively plan behaviors ahead of explicit instructions from the user. Building from the strong commonsense priors and steerability of large language models, we introduce ProVox ("Proactive Voice"), a novel framework that enables robots to efficiently personalize and adapt to individual collaborators. We design a meta-prompting protocol that empowers users to communicate their distinct preferences, intent, and expected robot behaviors ahead of starting a physical interaction. ProVox then uses the personalized prompt to condition a proactive language model task planner that anticipates a user's intent from the current interaction context and robot capabilities to suggest helpful actions; in doing so, we alleviate user burden, minimizing the amount of time partners spend explicitly instructing and supervising the robot. We evaluate ProVox through user studies grounded in household manipulation tasks (e.g., assembling lunch bags) that measure the efficiency of the collaboration, as well as features such as perceived helpfulness, ease of use, and reliability. Our analysis suggests that both meta-prompting and proactivity are critical, resulting in 38.7% faster task completion times and 31.9% less user burden relative to non-active baselines. Supplementary material, code, and videos can be found at https://provox-2025.github.io.
comment: Accepted by IEEE Robotics and Automation Letters 2025
☆ ViTaSCOPE: Visuo-tactile Implicit Representation for In-hand Pose and Extrinsic Contact Estimation RSS 2025
Mastering dexterous, contact-rich object manipulation demands precise estimation of both in-hand object poses and external contact locations$\unicode{x2013}$tasks particularly challenging due to partial and noisy observations. We present ViTaSCOPE: Visuo-Tactile Simultaneous Contact and Object Pose Estimation, an object-centric neural implicit representation that fuses vision and high-resolution tactile feedback. By representing objects as signed distance fields and distributed tactile feedback as neural shear fields, ViTaSCOPE accurately localizes objects and registers extrinsic contacts onto their 3D geometry as contact fields. Our method enables seamless reasoning over complementary visuo-tactile cues by leveraging simulation for scalable training and zero-shot transfers to the real-world by bridging the sim-to-real gap. We evaluate our method through comprehensive simulated and real-world experiments, demonstrating its capabilities in dexterous manipulation scenarios.
comment: Accepted to RSS 2025 | Project page: https://jayjunlee.github.io/vitascope/
☆ SPLATART: Articulated Gaussian Splatting with Estimated Object Structure RSS
Representing articulated objects remains a difficult problem within the field of robotics. Objects such as pliers, clamps, or cabinets require representations that capture not only geometry and color information, but also part seperation, connectivity, and joint parametrization. Furthermore, learning these representations becomes even more difficult with each additional degree of freedom. Complex articulated objects such as robot arms may have seven or more degrees of freedom, and the depth of their kinematic tree may be notably greater than the tools, drawers, and cabinets that are the typical subjects of articulated object research. To address these concerns, we introduce SPLATART - a pipeline for learning Gaussian splat representations of articulated objects from posed images, of which a subset contains image space part segmentations. SPLATART disentangles the part separation task from the articulation estimation task, allowing for post-facto determination of joint estimation and representation of articulated objects with deeper kinematic trees than previously exhibited. In this work, we present data on the SPLATART pipeline as applied to the syntheic Paris dataset objects, and qualitative results on a real-world object under spare segmentation supervision. We additionally present on articulated serial chain manipulators to demonstrate usage on deeper kinematic tree structures.
comment: 7 pages, Accepted to the 2025 RSS Workshop on Gaussian Representations for Robot Autonomy. Contact: Stanley Lewis, stanlew@umich.edu
☆ Recent Advances in Multi-Agent Human Trajectory Prediction: A Comprehensive Review
With the emergence of powerful data-driven methods in human trajectory prediction (HTP), gaining a finer understanding of multi-agent interactions lies within hand's reach, with important implications in areas such as autonomous navigation and crowd modeling. This survey reviews some of the most recent advancements in deep learning-based multi-agent trajectory prediction, focusing on studies published between 2020 and 2024. We categorize the existing methods based on their architectural design, their input representations, and their overall prediction strategies, placing a particular emphasis on models evaluated using the ETH/UCY benchmark. Furthermore, we highlight key challenges and future research directions in the field of multi-agent HTP.
comment: 30 pages
♻ ☆ A Soft Robotic Module with Pneumatic Actuation and Enhanced Controllability Using a Shape Memory Alloy Wire
In this paper, a compressed air-actuated soft robotic module was developed by incorporating a shape memory alloy (SMA) wire into its structure to achieve the desired bending angle with greater precision. First, a fiber-reinforced bending module with a strain-limiting layer made of polypropylene was fabricated. The SMA wire was then placed in a silicon matrix, which was used as a new strain-limiting layer. A simple closed-loop control algorithm was used to regulate the bending angle of the soft robot within its workspace. A camera was utilized to measure the angular changes in the vertical plane. Different angles, ranging from 0 to 65 degrees, were covered to evaluate the performance of the module and the bending angle control algorithm. The experimental tests demonstrate that using the SMA wire results in more precise control of bending in the vertical plane. In addition, it is possible to bend more with less working pressure. The error range was reduced from an average of 5 degrees to 2 degrees, and the rise time was reduced from an average of 19 seconds to 3 seconds.
♻ ☆ Extended Hybrid Zero Dynamics for Bipedal Walking of the Knee-less Robot SLIDER
Knee-less bipedal robots like SLIDER have the advantage of ultra-lightweight legs and improved walking energy efficiency compared to traditional humanoid robots. In this paper, we firstly introduce an improved hardware design of the SLIDER bipedal robot with new line-feet and more optimized mass distribution that enables higher locomotion speeds. Secondly, we propose an extended Hybrid Zero Dynamics (eHZD) method, which can be applied to prismatic joint robots like SLIDER. The eHZD method is then used to generate a library of gaits with varying reference velocities in an offline way. Thirdly, a Guided Deep Reinforcement Learning (DRL) algorithm is proposed to use the pre-generated library to create walking control policies in real-time. This approach allows us to combine the advantages of both HZD (for generating stable gaits with a full-dynamics model) and DRL (for real-time adaptive gait generation). The experimental results show that this approach achieves 150% higher walking velocity than the previous MPC-based approach.
comment: accepted by CLAWAR 2025
♻ ☆ Graph-Based Floor Separation Using Node Embeddings and Clustering of WiFi Trajectories
Indoor positioning systems (IPSs) are increasingly vital for location-based services in complex multi-storey environments. This study proposes a novel graph-based approach for floor separation using Wi-Fi fingerprint trajectories, addressing the challenge of vertical localization in indoor settings. We construct a graph where nodes represent Wi-Fi fingerprints, and edges are weighted by signal similarity and contextual transitions. Node2Vec is employed to generate low-dimensional embeddings, which are subsequently clustered using K-means to identify distinct floors. Evaluated on the Huawei University Challenge 2021 dataset, our method outperforms traditional community detection algorithms, achieving an accuracy of 68.97\%, an F1-score of 61.99\%, and an Adjusted Rand Index of 57.19\%. By publicly releasing the preprocessed dataset and implementation code, this work contributes to advancing research in indoor positioning. The proposed approach demonstrates robustness to signal noise and architectural complexities, offering a scalable solution for floor-level localization.
♻ ☆ Autonomous Robotic Radio Source Localization via a Novel Gaussian Mixture Filtering Approach
This study proposes a new Gaussian Mixture Filter (GMF) to improve the estimation performance for the autonomous robotic radio signal source search and localization problem in unknown environments. The proposed filter is first tested with a benchmark numerical problem to validate the performance with other state-of-the-practice approaches such as Particle Filter (PF) and Particle Gaussian Mixture (PGM) filters. Then the proposed approach is tested and compared against PF and PGM filters in real-world robotic field experiments to validate its impact for real-world applications. The considered real-world scenarios have partial observability with the range-only measurement and uncertainty with the measurement model. The results show that the proposed filter can handle this partial observability effectively whilst showing improved performance compared to PF, reducing the computation requirements while demonstrating improved robustness over compared techniques.
♻ ☆ V-Max: A Reinforcement Learning Framework for Autonomous Driving
Learning-based decision-making has the potential to enable generalizable Autonomous Driving (AD) policies, reducing the engineering overhead of rule-based approaches. Imitation Learning (IL) remains the dominant paradigm, benefiting from large-scale human demonstration datasets, but it suffers from inherent limitations such as distribution shift and imitation gaps. Reinforcement Learning (RL) presents a promising alternative, yet its adoption in AD remains limited due to the lack of standardized and efficient research frameworks. To this end, we introduce V-Max, an open research framework providing all the necessary tools to make RL practical for AD. V-Max is built on Waymax, a hardware-accelerated AD simulator designed for large-scale experimentation. We extend it using ScenarioNet's approach, enabling the fast simulation of diverse AD datasets.
comment: Accepted to RLC 25
♻ ☆ Real-time Seafloor Segmentation and Mapping
Posidonia oceanica meadows are a species of seagrass highly dependent on rocks for their survival and conservation. In recent years, there has been a concerning global decline in this species, emphasizing the critical need for efficient monitoring and assessment tools. While deep learning-based semantic segmentation and visual automated monitoring systems have shown promise in a variety of applications, their performance in underwater environments remains challenging due to complex water conditions and limited datasets. This paper introduces a framework that combines machine learning and computer vision techniques to enable an autonomous underwater vehicle (AUV) to inspect the boundaries of Posidonia oceanica meadows autonomously. The framework incorporates an image segmentation module using an existing Mask R-CNN model and a strategy for Posidonia oceanica meadow boundary tracking. Furthermore, a new class dedicated to rocks is introduced to enhance the existing model, aiming to contribute to a comprehensive monitoring approach and provide a deeper understanding of the intricate interactions between the meadow and its surrounding environment. The image segmentation model is validated using real underwater images, while the overall inspection framework is evaluated in a realistic simulation environment, replicating actual monitoring scenarios with real underwater images. The results demonstrate that the proposed framework enables the AUV to autonomously accomplish the main tasks of underwater inspection and segmentation of rocks. Consequently, this work holds significant potential for the conservation and protection of marine environments, providing valuable insights into the status of Posidonia oceanica meadows and supporting targeted preservation efforts
RationalVLA: A Rational Vision-Language-Action Model with Dual System
A fundamental requirement for real-world robotic deployment is the ability to understand and respond to natural language instructions. Existing language-conditioned manipulation tasks typically assume that instructions are perfectly aligned with the environment. This assumption limits robustness and generalization in realistic scenarios where instructions may be ambiguous, irrelevant, or infeasible. To address this problem, we introduce RAtional MAnipulation (RAMA), a new benchmark that challenges models with both unseen executable instructions and defective ones that should be rejected. In RAMA, we construct a dataset with over 14,000 samples, including diverse defective instructions spanning six dimensions: visual, physical, semantic, motion, safety, and out-of-context. We further propose the Rational Vision-Language-Action model (RationalVLA). It is a dual system for robotic arms that integrates the high-level vision-language model with the low-level manipulation policy by introducing learnable latent space embeddings. This design enables RationalVLA to reason over instructions, reject infeasible commands, and execute manipulation effectively. Experiments demonstrate that RationalVLA outperforms state-of-the-art baselines on RAMA by a 14.5% higher success rate and 0.94 average task length, while maintaining competitive performance on standard manipulation tasks. Real-world trials further validate its effectiveness and robustness in practical applications. Our project page is https://irpn-eai.github.io/RationalVLA.
comment: 14 pages
♻ ☆ Interior Point Differential Dynamic Programming, Redux
We present IPDDP2, a structure-exploiting algorithm for solving discrete-time, finite-horizon optimal control problems (OCPs) with nonlinear constraints. Inequality constraints are handled using a primal-dual interior point formulation and step acceptance for equality constraints follows a line-search filter approach. The iterates of the algorithm are derived under the Differential Dynamic Programming (DDP) framework. A proof of local quadratic convergence of the IPDDP2 iterates is provided. Our numerical experiments evaluate IPDDP2 on over 500 OCPs derived from five different classes of robotic motion planning problems, three of which are contact-implicit trajectory optimisation problems. IPDDP2 demonstrates improvements in robustness against existing constrained DDP algorithms for contact-implicit planning, while being significantly faster than general-purpose solver IPOPT. We provide a full implementation of IPDDP2 in the Julia programming language.
♻ ☆ DiffTORI: Differentiable Trajectory Optimization for Deep Reinforcement and Imitation Learning NeurIPS 2024
This paper introduces DiffTORI, which utilizes Differentiable Trajectory Optimization as the policy representation to generate actions for deep Reinforcement and Imitation learning. Trajectory optimization is a powerful and widely used algorithm in control, parameterized by a cost and a dynamics function. The key to our approach is to leverage the recent progress in differentiable trajectory optimization, which enables computing the gradients of the loss with respect to the parameters of trajectory optimization. As a result, the cost and dynamics functions of trajectory optimization can be learned end-to-end. DiffTORI addresses the ``objective mismatch'' issue of prior model-based RL algorithms, as the dynamics model in DiffTORI is learned to directly maximize task performance by differentiating the policy gradient loss through the trajectory optimization process. We further benchmark DiffTORI for imitation learning on standard robotic manipulation task suites with high-dimensional sensory observations and compare our method to feed-forward policy classes as well as Energy-Based Models (EBM) and Diffusion. Across 15 model-based RL tasks and 35 imitation learning tasks with high-dimensional image and point cloud inputs, DiffTORI outperforms prior state-of-the-art methods in both domains. Our code is available at https://github.com/wkwan7/DiffTORI.
comment: NeurIPS 2024 (Spotlight)
♻ ☆ ReinFlow: Fine-tuning Flow Matching Policy with Online Reinforcement Learning
We propose ReinFlow, a simple yet effective online reinforcement learning (RL) framework that fine-tunes a family of flow matching policies for continuous robotic control. Derived from rigorous RL theory, ReinFlow injects learnable noise into a flow policy's deterministic path, converting the flow into a discrete-time Markov Process for exact and straightforward likelihood computation. This conversion facilitates exploration and ensures training stability, enabling ReinFlow to fine-tune diverse flow model variants, including Rectified Flow [35] and Shortcut Models [19], particularly at very few or even one denoising step. We benchmark ReinFlow in representative locomotion and manipulation tasks, including long-horizon planning with visual input and sparse reward. The episode reward of Rectified Flow policies obtained an average net growth of 135.36% after fine-tuning in challenging legged locomotion tasks while saving denoising steps and 82.63% of wall time compared to state-of-the-art diffusion RL fine-tuning method DPPO [43]. The success rate of the Shortcut Model policies in state and visual manipulation tasks achieved an average net increase of 40.34% after fine-tuning with ReinFlow at four or even one denoising step, whose performance is comparable to fine-tuned DDIM policies while saving computation time for an average of 23.20%. Project webpage: https://reinflow.github.io/
comment: 30 pages, 13 figures, 10 tables
♻ ☆ DURA-CPS: A Multi-Role Orchestrator for Dependability Assurance in LLM-Enabled Cyber-Physical Systems DSN
Cyber-Physical Systems (CPS) increasingly depend on advanced AI techniques to operate in critical applications. However, traditional verification and validation methods often struggle to handle the unpredictable and dynamic nature of AI components. In this paper, we introduce DURA-CPS, a novel framework that employs multi-role orchestration to automate the iterative assurance process for AI-powered CPS. By assigning specialized roles (e.g., safety monitoring, security assessment, fault injection, and recovery planning) to dedicated agents within a simulated environment, DURA-CPS continuously evaluates and refines AI behavior against a range of dependability requirements. We demonstrate the framework through a case study involving an autonomous vehicle navigating an intersection with an AI-based planner. Our results show that DURA-CPS effectively detects vulnerabilities, manages performance impacts, and supports adaptive recovery strategies, thereby offering a structured and extensible solution for rigorous V&V in safety- and security-critical systems.
comment: Accepted to the 55th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)
♻ ☆ PhysNav-DG: A Novel Adaptive Framework for Robust VLM-Sensor Fusion in Navigation Applications CVPR
Robust navigation in diverse environments and domains requires both accurate state estimation and transparent decision making. We present PhysNav-DG, a novel framework that integrates classical sensor fusion with the semantic power of vision-language models. Our dual-branch architecture predicts navigation actions from multi-sensor inputs while simultaneously generating detailed chain-of-thought explanations. A modified Adaptive Kalman Filter dynamically adjusts its noise parameters based on environmental context. It leverages several streams of raw sensor data along with semantic insights from models such as LLaMA 3.2 11B and BLIP-2. To evaluate our approach, we introduce the MD-NEX Benchmark, a novel multi-domain dataset that unifies indoor navigation, autonomous driving, and social navigation tasks with ground-truth actions and human-validated explanations. Extensive experiments and ablations show that PhysNav-DG improves navigation success rates by over 20% and achieves high efficiency, with explanations that are both highly grounded and clear. This work connects high-level semantic reasoning and geometric planning for safer and more trustworthy autonomous systems.
comment: Accepted at IEEE/CVF Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2025 (CVPRW)
♻ ☆ Towards Full-Scenario Safety Evaluation of Automated Vehicles: A Volume-Based Method
With the rapid development of automated vehicles (AVs) in recent years, commercially available AVs are increasingly demonstrating high-level automation capabilities. However, most existing AV safety evaluation methods are primarily designed for simple maneuvers such as car-following and lane-changing. While suitable for basic tests, these methods are insufficient for assessing high-level automation functions deployed in more complex environments. First, these methods typically use crash rate as the evaluation metric, whose accuracy heavily depends on the quality and completeness of naturalistic driving environment data used to estimate scenario probabilities. Such data is often difficult and expensive to collect. Second, when applied to diverse scenarios, these methods suffer from the curse of dimensionality, making large-scale evaluation computationally intractable. To address these challenges, this paper proposes a novel framework for full-scenario AV safety evaluation. A unified model is first introduced to standardize the representation of diverse driving scenarios. This modeling approach constrains the dimension of most scenarios to a regular highway setting with three lanes and six surrounding background vehicles, significantly reducing dimensionality. To further avoid the limitations of probability-based method, we propose a volume-based evaluation method that quantifies the proportion of risky scenarios within the entire scenario space. For car-following scenarios, we prove that the set of safe scenarios is convex under specific settings, enabling exact volume computation. Experimental results validate the effectiveness of the proposed volume-based method using both AV behavior models from existing literature and six production AV models calibrated from field-test trajectory data in the Ultra-AV dataset. Code and data will be made publicly available upon acceptance of this paper.
comment: NA
Do We Still Need to Work on Odometry for Autonomous Driving? ICRA
Over the past decades, a tremendous amount of work has addressed the topic of ego-motion estimation of moving platforms based on various proprioceptive and exteroceptive sensors. At the cost of ever-increasing computational load and sensor complexity, odometry algorithms have reached impressive levels of accuracy with minimal drift in various conditions. In this paper, we question the need for more research on odometry for autonomous driving by assessing the accuracy of one of the simplest algorithms: the direct integration of wheel encoder data and yaw rate measurements from a gyroscope. We denote this algorithm as Odometer-Gyroscope (OG) odometry. This work shows that OG odometry can outperform current state-of-the-art radar-inertial SE(2) odometry for a fraction of the computational cost in most scenarios. For example, the OG odometry is on top of the Boreas leaderboard with a relative translation error of 0.20%, while the second-best method displays an error of 0.26%. Lidar-inertial approaches can provide more accurate estimates, but the computational load is three orders of magnitude higher than the OG odometry. To further the analysis, we have pushed the limits of the OG odometry by purposely violating its fundamental no-slip assumption using data collected during a heavy snowstorm with different driving behaviours. Our conclusion shows that a significant amount of slippage is required to result in non-satisfactory pose estimates from the OG odometry.
comment: Presented at the 2025 IEEE ICRA Workshop on Field Robotics
♻ ☆ Imagine, Verify, Execute: Memory-Guided Agentic Exploration with Vision-Language Models
Exploration is essential for general-purpose robotic learning, especially in open-ended environments where dense rewards, explicit goals, or task-specific supervision are scarce. Vision-language models (VLMs), with their semantic reasoning over objects, spatial relations, and potential outcomes, present a compelling foundation for generating high-level exploratory behaviors. However, their outputs are often ungrounded, making it difficult to determine whether imagined transitions are physically feasible or informative. To bridge the gap between imagination and execution, we present IVE (Imagine, Verify, Execute), an agentic exploration framework inspired by human curiosity. Human exploration is often driven by the desire to discover novel scene configurations and to deepen understanding of the environment. Similarly, IVE leverages VLMs to abstract RGB-D observations into semantic scene graphs, imagine novel scenes, predict their physical plausibility, and generate executable skill sequences through action tools. We evaluate IVE in both simulated and real-world tabletop environments. The results show that IVE enables more diverse and meaningful exploration than RL baselines, as evidenced by a 4.1 to 7.8x increase in the entropy of visited states. Moreover, the collected experience supports downstream learning, producing policies that closely match or exceed the performance of those trained on human-collected demonstrations.
comment: Project webpage: https://ive-robot.github.io/
♻ ☆ Uncertainty-Aware Trajectory Prediction via Rule-Regularized Heteroscedastic Deep Classification RSS
Deep learning-based trajectory prediction models have demonstrated promising capabilities in capturing complex interactions. However, their out-of-distribution generalization remains a significant challenge, particularly due to unbalanced data and a lack of enough data and diversity to ensure robustness and calibration. To address this, we propose SHIFT (Spectral Heteroscedastic Informed Forecasting for Trajectories), a novel framework that uniquely combines well-calibrated uncertainty modeling with informative priors derived through automated rule extraction. SHIFT reformulates trajectory prediction as a classification task and employs heteroscedastic spectral-normalized Gaussian processes to effectively disentangle epistemic and aleatoric uncertainties. We learn informative priors from training labels, which are automatically generated from natural language driving rules, such as stop rules and drivability constraints, using a retrieval-augmented generation framework powered by a large language model. Extensive evaluations over the nuScenes dataset, including challenging low-data and cross-location scenarios, demonstrate that SHIFT outperforms state-of-the-art methods, achieving substantial gains in uncertainty calibration and displacement metrics. In particular, our model excels in complex scenarios, such as intersections, where uncertainty is inherently higher. Project page: https://kumarmanas.github.io/SHIFT/.
comment: 17 Pages, 9 figures. Accepted to Robotics: Science and Systems(RSS), 2025
♻ ☆ Bridging the Gap between Discrete Agent Strategies in Game Theory and Continuous Motion Planning in Dynamic Environments
Generating competitive strategies and performing continuous motion planning simultaneously in an adversarial setting is a challenging problem. In addition, understanding the intent of other agents is crucial to deploying autonomous systems in adversarial multi-agent environments. Existing approaches either discretize agent action by grouping similar control inputs, sacrificing performance in motion planning, or plan in uninterpretable latent spaces, producing hard-to-understand agent behaviors. This paper proposes an agent strategy representation via Policy Characteristic Space that maps the agent policies to a pre-specified low-dimensional space. Policy Characteristic Space enables the discretization of agent policy switchings while preserving continuity in control. Also, it provides intepretability of agent policies and clear intentions of policy switchings. Then, regret-based game-theoretic approaches can be applied in the Policy Characteristic Space to obtain high performance in adversarial environments. Our proposed method is assessed by conducting experiments in an autonomous racing scenario using scaled vehicles. Statistical evidence shows that our method significantly improves the win rate of ego agent and the method also generalizes well to unseen environments.
comment: Submitted to RA-L
Computer Vision 126
☆ EMLoC: Emulator-based Memory-efficient Fine-tuning with LoRA Correction
Open-source foundation models have seen rapid adoption and development, enabling powerful general-purpose capabilities across diverse domains. However, fine-tuning large foundation models for domain-specific or personalized tasks remains prohibitively expensive for most users due to the significant memory overhead beyond that of inference. We introduce EMLoC, an Emulator-based Memory-efficient fine-tuning framework with LoRA Correction, which enables model fine-tuning within the same memory budget required for inference. EMLoC constructs a task-specific light-weight emulator using activation-aware singular value decomposition (SVD) on a small downstream calibration set. Fine-tuning then is performed on this lightweight emulator via LoRA. To tackle the misalignment between the original model and the compressed emulator, we propose a novel compensation algorithm to correct the fine-tuned LoRA module, which thus can be merged into the original model for inference. EMLoC supports flexible compression ratios and standard training pipelines, making it adaptable to a wide range of applications. Extensive experiments demonstrate that EMLoC outperforms other baselines across multiple datasets and modalities. Moreover, without quantization, EMLoC enables fine-tuning of a 38B model on a single 24GB consumer GPU-bringing efficient and practical model adaptation to individual users.
comment: Under review. Project page: https://hsi-che-lin.github.io/EMLoC/
☆ Affogato: Learning Open-Vocabulary Affordance Grounding with Automated Data Generation at Scale
Affordance grounding-localizing object regions based on natural language descriptions of interactions-is a critical challenge for enabling intelligent agents to understand and interact with their environments. However, this task remains challenging due to the need for fine-grained part-level localization, the ambiguity arising from multiple valid interaction regions, and the scarcity of large-scale datasets. In this work, we introduce Affogato, a large-scale benchmark comprising 150K instances, annotated with open-vocabulary text descriptions and corresponding 3D affordance heatmaps across a diverse set of objects and interactions. Building on this benchmark, we develop simple yet effective vision-language models that leverage pretrained part-aware vision backbones and a text-conditional heatmap decoder. Our models trained with the Affogato dataset achieve promising performance on the existing 2D and 3D benchmarks, and notably, exhibit effectiveness in open-vocabulary cross-domain generalization. The Affogato dataset is shared in public: https://huggingface.co/datasets/project-affogato/affogato
☆ SIMSHIFT: A Benchmark for Adapting Neural Surrogates to Distribution Shifts
Neural surrogates for Partial Differential Equations (PDEs) often suffer significant performance degradation when evaluated on unseen problem configurations, such as novel material types or structural dimensions. Meanwhile, Domain Adaptation (DA) techniques have been widely used in vision and language processing to generalize from limited information about unseen configurations. In this work, we address this gap through two focused contributions. First, we introduce SIMSHIFT, a novel benchmark dataset and evaluation suite composed of four industrial simulation tasks: hot rolling, sheet metal forming, electric motor design and heatsink design. Second, we extend established domain adaptation methods to state of the art neural surrogates and systematically evaluate them. These approaches use parametric descriptions and ground truth simulations from multiple source configurations, together with only parametric descriptions from target configurations. The goal is to accurately predict target simulations without access to ground truth simulation data. Extensive experiments on SIMSHIFT highlight the challenges of out of distribution neural surrogate modeling, demonstrate the potential of DA in simulation, and reveal open problems in achieving robust neural surrogates under distribution shifts in industrially relevant scenarios. Our codebase is available at https://github.com/psetinek/simshift
☆ crossMoDA Challenge: Evolution of Cross-Modality Domain Adaptation Techniques for Vestibular Schwannoma and Cochlea Segmentation from 2021 to 2023
The cross-Modality Domain Adaptation (crossMoDA) challenge series, initiated in 2021 in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), focuses on unsupervised cross-modality segmentation, learning from contrast-enhanced T1 (ceT1) and transferring to T2 MRI. The task is an extreme example of domain shift chosen to serve as a meaningful and illustrative benchmark. From a clinical application perspective, it aims to automate Vestibular Schwannoma (VS) and cochlea segmentation on T2 scans for more cost-effective VS management. Over time, the challenge objectives have evolved to enhance its clinical relevance. The challenge evolved from using single-institutional data and basic segmentation in 2021 to incorporating multi-institutional data and Koos grading in 2022, and by 2023, it included heterogeneous routine data and sub-segmentation of intra- and extra-meatal tumour components. In this work, we report the findings of the 2022 and 2023 editions and perform a retrospective analysis of the challenge progression over the years. The observations from the successive challenge contributions indicate that the number of outliers decreases with an expanding dataset. This is notable since the diversity of scanning protocols of the datasets concurrently increased. The winning approach of the 2023 edition reduced the number of outliers on the 2021 and 2022 testing data, demonstrating how increased data heterogeneity can enhance segmentation performance even on homogeneous data. However, the cochlea Dice score declined in 2023, likely due to the added complexity from tumour sub-annotations affecting overall segmentation performance. While progress is still needed for clinically acceptable VS segmentation, the plateauing performance suggests that a more challenging cross-modal task may better serve future benchmarking.
☆ Improving Surgical Risk Prediction Through Integrating Automated Body Composition Analysis: a Retrospective Trial on Colectomy Surgery
Objective: To evaluate whether preoperative body composition metrics automatically extracted from CT scans can predict postoperative outcomes after colectomy, either alone or combined with clinical variables or existing risk predictors. Main outcomes and measures: The primary outcome was the predictive performance for 1-year all-cause mortality following colectomy. A Cox proportional hazards model with 1-year follow-up was used, and performance was evaluated using the concordance index (C-index) and Integrated Brier Score (IBS). Secondary outcomes included postoperative complications, unplanned readmission, blood transfusion, and severe infection, assessed using AUC and Brier Score from logistic regression. Odds ratios (OR) described associations between individual CT-derived body composition metrics and outcomes. Over 300 features were extracted from preoperative CTs across multiple vertebral levels, including skeletal muscle area, density, fat areas, and inter-tissue metrics. NSQIP scores were available for all surgeries after 2012.
comment: 32 pages, 5 figures
☆ VGR: Visual Grounded Reasoning
In the field of multimodal chain-of-thought (CoT) reasoning, existing approaches predominantly rely on reasoning on pure language space, which inherently suffers from language bias and is largely confined to math or science domains. This narrow focus limits their ability to handle complex visual reasoning tasks that demand comprehensive understanding of image details. To address these limitations, this paper introduces VGR, a novel reasoning multimodal large language model (MLLM) with enhanced fine-grained visual perception capabilities. Unlike traditional MLLMs that answer the question or reasoning solely on the language space, our VGR first detects relevant regions that may help to solve problems, and then provides precise answers based on replayed image regions. To achieve this, we conduct a large-scale SFT dataset called VGR -SFT that contains reasoning data with mixed vision grounding and language deduction. The inference pipeline of VGR allows the model to choose bounding boxes for visual reference and a replay stage is introduced to integrates the corresponding regions into the reasoning process, enhancing multimodel comprehension. Experiments on the LLaVA-NeXT-7B baseline show that VGR achieves superior performance on multi-modal benchmarks requiring comprehensive image detail understanding. Compared to the baseline, VGR uses only 30\% of the image token count while delivering scores of +4.1 on MMStar, +7.1 on AI2D, and a +12.9 improvement on ChartQA.
comment: 9 pages, 4 figures
☆ Simple Radiology VLLM Test-time Scaling with Thought Graph Traversal
Test-time scaling offers a promising way to improve the reasoning performance of vision-language large models (VLLMs) without additional training. In this paper, we explore a simple but effective approach for applying test-time scaling to radiology report generation. Specifically, we introduce a lightweight Thought Graph Traversal (TGT) framework that guides the model to reason through organ-specific findings in a medically coherent order. This framework integrates structured medical priors into the prompt, enabling deeper and more logical analysis with no changes to the underlying model. To further enhance reasoning depth, we apply a reasoning budget forcing strategy that adjusts the model's inference depth at test time by dynamically extending its generation process. This simple yet powerful combination allows a frozen radiology VLLM to self-correct and generate more accurate, consistent chest X-ray reports. Our method outperforms baseline prompting approaches on standard benchmarks, and also reveals dataset biases through traceable reasoning paths. Code and prompts are open-sourced for reproducibility at https://github.com/glerium/Thought-Graph-Traversal.
comment: arXiv admin note: text overlap with arXiv:2404.11209 by other authors
☆ How Visual Representations Map to Language Feature Space in Multimodal LLMs
Effective multimodal reasoning depends on the alignment of visual and linguistic representations, yet the mechanisms by which vision-language models (VLMs) achieve this alignment remain poorly understood. We introduce a methodological framework that deliberately maintains a frozen large language model (LLM) and a frozen vision transformer (ViT), connected solely by training a linear adapter during visual instruction tuning. This design is fundamental to our approach: by keeping the language model frozen, we ensure it maintains its original language representations without adaptation to visual data. Consequently, the linear adapter must map visual features directly into the LLM's existing representational space rather than allowing the language model to develop specialized visual understanding through fine-tuning. Our experimental design uniquely enables the use of pre-trained sparse autoencoders (SAEs) of the LLM as analytical probes. These SAEs remain perfectly aligned with the unchanged language model and serve as a snapshot of the learned language feature-representations. Through systematic analysis of SAE reconstruction error, sparsity patterns, and feature SAE descriptions, we reveal the layer-wise progression through which visual representations gradually align with language feature representations, converging in middle-to-later layers. This suggests a fundamental misalignment between ViT outputs and early LLM layers, raising important questions about whether current adapter-based architectures optimally facilitate cross-modal representation learning.
☆ Visual Pre-Training on Unlabeled Images using Reinforcement Learning
In reinforcement learning (RL), value-based algorithms learn to associate each observation with the states and rewards that are likely to be reached from it. We observe that many self-supervised image pre-training methods bear similarity to this formulation: learning features that associate crops of images with those of nearby views, e.g., by taking a different crop or color augmentation. In this paper, we complete this analogy and explore a method that directly casts pre-training on unlabeled image data like web crawls and video frames as an RL problem. We train a general value function in a dynamical system where an agent transforms an image by changing the view or adding image augmentations. Learning in this way resembles crop-consistency self-supervision, but through the reward function, offers a simple lever to shape feature learning using curated images or weakly labeled captions when they exist. Our experiments demonstrate improved representations when training on unlabeled images in the wild, including video data like EpicKitchens, scene data like COCO, and web-crawl data like CC12M.
☆ Evaluating Sensitivity Parameters in Smartphone-Based Gaze Estimation: A Comparative Study of Appearance-Based and Infrared Eye Trackers
This study evaluates a smartphone-based, deep-learning eye-tracking algorithm by comparing its performance against a commercial infrared-based eye tracker, the Tobii Pro Nano. The aim is to investigate the feasibility of appearance-based gaze estimation under realistic mobile usage conditions. Key sensitivity factors, including age, gender, vision correction, lighting conditions, device type, and head position, were systematically analysed. The appearance-based algorithm integrates a lightweight convolutional neural network (MobileNet-V3) with a recurrent structure (Long Short-Term Memory) to predict gaze coordinates from grayscale facial images. Gaze data were collected from 51 participants using dynamic visual stimuli, and accuracy was measured using Euclidean distance. The deep learning model produced a mean error of 17.76 mm, compared to 16.53 mm for the Tobii Pro Nano. While overall accuracy differences were small, the deep learning-based method was more sensitive to factors such as lighting, vision correction, and age, with higher failure rates observed under low-light conditions among participants using glasses and in older age groups. Device-specific and positional factors also influenced tracking performance. These results highlight the potential of appearance-based approaches for mobile eye tracking and offer a reference framework for evaluating gaze estimation systems across varied usage conditions.
☆ Real-World Deployment of a Lane Change Prediction Architecture Based on Knowledge Graph Embeddings and Bayesian Inference
Research on lane change prediction has gained a lot of momentum in the last couple of years. However, most research is confined to simulation or results obtained from datasets, leaving a gap between algorithmic advances and on-road deployment. This work closes that gap by demonstrating, on real hardware, a lane-change prediction system based on Knowledge Graph Embeddings (KGEs) and Bayesian inference. Moreover, the ego-vehicle employs a longitudinal braking action to ensure the safety of both itself and the surrounding vehicles. Our architecture consists of two modules: (i) a perception module that senses the environment, derives input numerical features, and converts them into linguistic categories; and communicates them to the prediction module; (ii) a pretrained prediction module that executes a KGE and Bayesian inference model to anticipate the target vehicle's maneuver and transforms the prediction into longitudinal braking action. Real-world hardware experimental validation demonstrates that our prediction system anticipates the target vehicle's lane change three to four seconds in advance, providing the ego vehicle sufficient time to react and allowing the target vehicle to make the lane change safely.
☆ Aligned Novel View Image and Geometry Synthesis via Cross-modal Attention Instillation
We introduce a diffusion-based framework that performs aligned novel view image and geometry generation via a warping-and-inpainting methodology. Unlike prior methods that require dense posed images or pose-embedded generative models limited to in-domain views, our method leverages off-the-shelf geometry predictors to predict partial geometries viewed from reference images, and formulates novel-view synthesis as an inpainting task for both image and geometry. To ensure accurate alignment between generated images and geometry, we propose cross-modal attention distillation, where attention maps from the image diffusion branch are injected into a parallel geometry diffusion branch during both training and inference. This multi-task approach achieves synergistic effects, facilitating geometrically robust image synthesis as well as well-defined geometry prediction. We further introduce proximity-based mesh conditioning to integrate depth and normal cues, interpolating between point cloud and filtering erroneously predicted geometry from influencing the generation process. Empirically, our method achieves high-fidelity extrapolative view synthesis on both image and geometry across a range of unseen scenes, delivers competitive reconstruction quality under interpolation settings, and produces geometrically aligned colored point clouds for comprehensive 3D completion. Project page is available at https://cvlab-kaist.github.io/MoAI.
☆ O2Former:Direction-Aware and Multi-Scale Query Enhancement for SAR Ship Instance Segmentation
Instance segmentation of ships in synthetic aperture radar (SAR) imagery is critical for applications such as maritime monitoring, environmental analysis, and national security. SAR ship images present challenges including scale variation, object density, and fuzzy target boundary, which are often overlooked in existing methods, leading to suboptimal performance. In this work, we propose O2Former, a tailored instance segmentation framework that extends Mask2Former by fully leveraging the structural characteristics of SAR imagery. We introduce two key components. The first is the Optimized Query Generator(OQG). It enables multi-scale feature interaction by jointly encoding shallow positional cues and high-level semantic information. This improves query quality and convergence efficiency. The second component is the Orientation-Aware Embedding Module(OAEM). It enhances directional sensitivity through direction-aware convolution and polar-coordinate encoding. This effectively addresses the challenge of uneven target orientations in SAR scenes. Together, these modules facilitate precise feature alignment from backbone to decoder and strengthen the model's capacity to capture fine-grained structural details. Extensive experiments demonstrate that O2Former outperforms state of the art instance segmentation baselines, validating its effectiveness and generalization on SAR ship datasets.
comment: 12 pages, 7 figures
☆ Methods for evaluating the resolution of 3D data derived from satellite images
3D data derived from satellite images is essential for scene modeling applications requiring large-scale coverage or involving locations not accessible by airborne lidar or cameras. Measuring the resolution of this data is important for determining mission utility and tracking improvements. In this work, we consider methods to evaluate the resolution of point clouds, digital surface models, and 3D mesh models. We describe 3D metric evaluation tools and workflows that enable automated evaluation based on high-resolution reference airborne lidar, and we present results of analyses with data of varying quality.
comment: 11 pages, 13 figures
☆ SphereDrag: Spherical Geometry-Aware Panoramic Image Editing
Image editing has made great progress on planar images, but panoramic image editing remains underexplored. Due to their spherical geometry and projection distortions, panoramic images present three key challenges: boundary discontinuity, trajectory deformation, and uneven pixel density. To tackle these issues, we propose SphereDrag, a novel panoramic editing framework utilizing spherical geometry knowledge for accurate and controllable editing. Specifically, adaptive reprojection (AR) uses adaptive spherical rotation to deal with discontinuity; great-circle trajectory adjustment (GCTA) tracks the movement trajectory more accurate; spherical search region tracking (SSRT) adaptively scales the search range based on spherical location to address uneven pixel density. Also, we construct PanoBench, a panoramic editing benchmark, including complex editing tasks involving multiple objects and diverse styles, which provides a standardized evaluation framework. Experiments show that SphereDrag gains a considerable improvement compared with existing methods in geometric consistency and image quality, achieving up to 10.5% relative improvement.
☆ MindGrab for BrainChop: Fast and Accurate Skull Stripping for Command Line and Browser
We developed MindGrab, a parameter- and memory-efficient deep fully-convolutional model for volumetric skull-stripping in head images of any modality. Its architecture, informed by a spectral interpretation of dilated convolutions, was trained exclusively on modality-agnostic synthetic data. MindGrab was evaluated on a retrospective dataset of 606 multimodal adult-brain scans (T1, T2, DWI, MRA, PDw MRI, EPI, CT, PET) sourced from the SynthStrip dataset. Performance was benchmarked against SynthStrip, ROBEX, and BET using Dice scores, with Wilcoxon signed-rank significance tests. MindGrab achieved a mean Dice score of 95.9 with standard deviation (SD) 1.6 across modalities, significantly outperforming classical methods (ROBEX: 89.1 SD 7.7, P < 0.05; BET: 85.2 SD 14.4, P < 0.05). Compared to SynthStrip (96.5 SD 1.1, P=0.0352), MindGrab delivered equivalent or superior performance in nearly half of the tested scenarios, with minor differences (<3% Dice) in the others. MindGrab utilized 95% fewer parameters (146,237 vs. 2,566,561) than SynthStrip. This efficiency yielded at least 2x faster inference, 50% lower memory usage on GPUs, and enabled exceptional performance (e.g., 10-30x speedup, and up to 30x memory reduction) and accessibility on a wider range of hardware, including systems without high-end GPUs. MindGrab delivers state-of-the-art accuracy with dramatically lower resource demands, supported in brainchop-cli (https://pypi.org/project/brainchop/) and at brainchop.org.
comment: 12 pages, 1 table, 4 figures. 2 supplementary tables, 1 supplementary figure. Brainchop-cli: https://pypi.org/project/brainchop/ . Brainchop web: https://brainchop.org/
☆ Vision-based Lifting of 2D Object Detections for Automated Driving
Image-based 3D object detection is an inevitable part of autonomous driving because cheap onboard cameras are already available in most modern cars. Because of the accurate depth information, currently, most state-of-the-art 3D object detectors heavily rely on LiDAR data. In this paper, we propose a pipeline which lifts the results of existing vision-based 2D algorithms to 3D detections using only cameras as a cost-effective alternative to LiDAR. In contrast to existing approaches, we focus not only on cars but on all types of road users. To the best of our knowledge, we are the first using a 2D CNN to process the point cloud for each 2D detection to keep the computational effort as low as possible. Our evaluation on the challenging KITTI 3D object detection benchmark shows results comparable to state-of-the-art image-based approaches while having a runtime of only a third.
comment: https://ieeexplore.ieee.org/document/9190325
☆ Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution
Major efforts in data-driven image super-resolution (SR) primarily focus on expanding the receptive field of the model to better capture contextual information. However, these methods are typically implemented by stacking deeper networks or leveraging transformer-based attention mechanisms, which consequently increases model complexity. In contrast, model-driven methods based on the unfolding paradigm show promise in improving performance while effectively maintaining model compactness through sophisticated module design. Based on these insights, we propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR. This method is designed through unfolding an SR optimization function constrained by structural similarity, aiming to combine the strengths of both data-driven and model-driven approaches. Our model operates progressively following the unfolding paradigm. Each iteration consists of multiple Mixed-Scale Gating Modules (MSGM) and an Efficient Sparse Attention Module (ESAM). The former implements comprehensive constraints on features, including a structural similarity constraint, while the latter aims to achieve sparse activation. In addition, we design a Mixture-of-Experts-based Feature Selector (MoE-FS) that fully utilizes multi-level feature information by combining features from different steps. Extensive experiments validate the efficacy and efficiency of our unfolding-inspired network. Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption. Our code will be available at: https://github.com/eezkni/SSIU
comment: Accepted to IEEE Transactions on Image Processing
☆ Framework of a multiscale data-driven digital twin of the muscle-skeletal system
Musculoskeletal disorders (MSDs) are a leading cause of disability worldwide, requiring advanced diagnostic and therapeutic tools for personalised assessment and treatment. Effective management of MSDs involves the interaction of heterogeneous data sources, making the Digital Twin (DT) paradigm a valuable option. This paper introduces the Musculoskeletal Digital Twin (MS-DT), a novel framework that integrates multiscale biomechanical data with computational modelling to create a detailed, patient-specific representation of the musculoskeletal system. By combining motion capture, ultrasound imaging, electromyography, and medical imaging, the MS-DT enables the analysis of spinal kinematics, posture, and muscle function. An interactive visualisation platform provides clinicians and researchers with an intuitive interface for exploring biomechanical parameters and tracking patient-specific changes. Results demonstrate the effectiveness of MS-DT in extracting precise kinematic and dynamic tissue features, offering a comprehensive tool for monitoring spine biomechanics and rehabilitation. This framework provides high-fidelity modelling and real-time visualization to improve patient-specific diagnosis and intervention planning.
Rethinking Multilingual Vision-Language Translation: Dataset, Evaluation, and Adaptation
Vision-Language Translation (VLT) is a challenging task that requires accurately recognizing multilingual text embedded in images and translating it into the target language with the support of visual context. While recent Large Vision-Language Models (LVLMs) have demonstrated strong multilingual and visual understanding capabilities, there is a lack of systematic evaluation and understanding of their performance on VLT. In this work, we present a comprehensive study of VLT from three key perspectives: data quality, model architecture, and evaluation metrics. (1) We identify critical limitations in existing datasets, particularly in semantic and cultural fidelity, and introduce AibTrans -- a multilingual, parallel, human-verified dataset with OCR-corrected annotations. (2) We benchmark 11 commercial LVLMs/LLMs and 6 state-of-the-art open-source models across end-to-end and cascaded architectures, revealing their OCR dependency and contrasting generation versus reasoning behaviors. (3) We propose Density-Aware Evaluation to address metric reliability issues under varying contextual complexity, introducing the DA Score as a more robust measure of translation quality. Building upon these findings, we establish a new evaluation benchmark for VLT. Notably, we observe that fine-tuning LVLMs on high-resource language pairs degrades cross-lingual performance, and we propose a balanced multilingual fine-tuning strategy that effectively adapts LVLMs to VLT without sacrificing their generalization ability.
☆ Teleoperated Driving: a New Challenge for 3D Object Detection in Compressed Point Clouds
In recent years, the development of interconnected devices has expanded in many fields, from infotainment to education and industrial applications. This trend has been accelerated by the increased number of sensors and accessibility to powerful hardware and software. One area that significantly benefits from these advancements is Teleoperated Driving (TD). In this scenario, a controller drives safely a vehicle from remote leveraging sensors data generated onboard the vehicle, and exchanged via Vehicle-to-Everything (V2X) communications. In this work, we tackle the problem of detecting the presence of cars and pedestrians from point cloud data to enable safe TD operations. More specifically, we exploit the SELMA dataset, a multimodal, open-source, synthetic dataset for autonomous driving, that we expanded by including the ground-truth bounding boxes of 3D objects to support object detection. We analyze the performance of state-of-the-art compression algorithms and object detectors under several metrics, including compression efficiency, (de)compression and inference time, and detection accuracy. Moreover, we measure the impact of compression and detection on the V2X network in terms of data rate and latency with respect to 3GPP requirements for TD applications.
comment: Submitted to IEEE Transactions on Intelligent Transportation Systems
☆ Solving Inverse Problems in Stochastic Self-Organising Systems through Invariant Representations
Self-organising systems demonstrate how simple local rules can generate complex stochastic patterns. Many natural systems rely on such dynamics, making self-organisation central to understanding natural complexity. A fundamental challenge in modelling such systems is solving the inverse problem: finding the unknown causal parameters from macroscopic observations. This task becomes particularly difficult when observations have a strong stochastic component, yielding diverse yet equivalent patterns. Traditional inverse methods fail in this setting, as pixel-wise metrics cannot capture feature similarities between variable outcomes. In this work, we introduce a novel inverse modelling method specifically designed to handle stochasticity in the observable space, leveraging the capacity of visual embeddings to produce robust representations that capture perceptual invariances. By mapping the pattern representations onto an invariant embedding space, we can effectively recover unknown causal parameters without the need for handcrafted objective functions or heuristics. We evaluate the method on two canonical models--a reaction-diffusion system and an agent-based model of social segregation--and show that it reliably recovers parameters despite stochasticity in the outcomes. We further apply the method to real biological patterns, highlighting its potential as a tool for both theorists and experimentalists to investigate the dynamics underlying complex stochastic pattern formation.
comment: Preprint. Under review
☆ GPLQ: A General, Practical, and Lightning QAT Method for Vision Transformers
Vision Transformers (ViTs) are essential in computer vision but are computationally intensive, too. Model quantization, particularly to low bit-widths like 4-bit, aims to alleviate this difficulty, yet existing Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT) methods exhibit significant limitations. PTQ often incurs substantial accuracy drop, while QAT achieves high accuracy but suffers from prohibitive computational costs, limited generalization to downstream tasks, training instability, and lacking of open-source codebase. To address these challenges, this paper introduces General, Practical, and Lightning Quantization (GPLQ), a novel framework designed for efficient and effective ViT quantization. GPLQ is founded on two key empirical insights: the paramount importance of activation quantization and the necessity of preserving the model's original optimization ``basin'' to maintain generalization. Consequently, GPLQ employs a sequential ``activation-first, weights-later'' strategy. Stage 1 keeps weights in FP32 while quantizing activations with a feature mimicking loss in only 1 epoch to keep it stay in the same ``basin'', thereby preserving generalization. Stage 2 quantizes weights using a PTQ method. As a result, GPLQ is 100x faster than existing QAT methods, lowers memory footprint to levels even below FP32 training, and achieves 4-bit model performance that is highly competitive with FP32 models in terms of both accuracy on ImageNet and generalization to diverse downstream tasks, including fine-grained visual classification and object detection. We will release an easy-to-use open-source toolkit supporting multiple vision tasks.
☆ Self-supervised Learning of Echocardiographic Video Representations via Online Cluster Distillation
Self-supervised learning (SSL) has achieved major advances in natural images and video understanding, but challenges remain in domains like echocardiography (heart ultrasound) due to subtle anatomical structures, complex temporal dynamics, and the current lack of domain-specific pre-trained models. Existing SSL approaches such as contrastive, masked modeling, and clustering-based methods struggle with high intersample similarity, sensitivity to low PSNR inputs common in ultrasound, or aggressive augmentations that distort clinically relevant features. We present DISCOVR (Distilled Image Supervision for Cross Modal Video Representation), a self-supervised dual branch framework for cardiac ultrasound video representation learning. DISCOVR combines a clustering-based video encoder that models temporal dynamics with an online image encoder that extracts fine-grained spatial semantics. These branches are connected through a semantic cluster distillation loss that transfers anatomical knowledge from the evolving image encoder to the video encoder, enabling temporally coherent representations enriched with fine-grained semantic understanding. Evaluated on six echocardiography datasets spanning fetal, pediatric, and adult populations, DISCOVR outperforms both specialized video anomaly detection methods and state-of-the-art video-SSL baselines in zero-shot and linear probing setups, and achieves superior segmentation transfer.
☆ Real-Time Feedback and Benchmark Dataset for Isometric Pose Evaluation
Isometric exercises appeal to individuals seeking convenience, privacy, and minimal dependence on equipments. However, such fitness training is often overdependent on unreliable digital media content instead of expert supervision, introducing serious risks, including incorrect posture, injury, and disengagement due to lack of corrective feedback. To address these challenges, we present a real-time feedback system for assessing isometric poses. Our contributions include the release of the largest multiclass isometric exercise video dataset to date, comprising over 3,600 clips across six poses with correct and incorrect variations. To support robust evaluation, we benchmark state-of-the-art models-including graph-based networks-on this dataset and introduce a novel three-part metric that captures classification accuracy, mistake localization, and model confidence. Our results enhance the feasibility of intelligent and personalized exercise training systems for home workouts. This expert-level diagnosis, delivered directly to the users, also expands the potential applications of these systems to rehabilitation, physiotherapy, and various other fitness disciplines that involve physical motion.
☆ AgentSense: Virtual Sensor Data Generation Using LLM Agent in Simulated Home Environments
A major obstacle in developing robust and generalizable smart home-based Human Activity Recognition (HAR) systems is the lack of large-scale, diverse labeled datasets. Variability in home layouts, sensor configurations, and user behavior adds further complexity, as individuals follow varied routines and perform activities in distinct ways. Building HAR systems that generalize well requires training data that captures the diversity across users and environments. To address these challenges, we introduce AgentSense, a virtual data generation pipeline where diverse personas are generated by leveraging Large Language Models. These personas are used to create daily routines, which are then decomposed into low-level action sequences. Subsequently, the actions are executed in a simulated home environment called VirtualHome that we extended with virtual ambient sensors capable of recording the agents activities as they unfold. Overall, AgentSense enables the generation of rich, virtual sensor datasets that represent a wide range of users and home settings. Across five benchmark HAR datasets, we show that leveraging our virtual sensor data substantially improves performance, particularly when real data are limited. Notably, models trained on a combination of virtual data and just a few days of real data achieve performance comparable to those trained on the entire real datasets. These results demonstrate and prove the potential of virtual data to address one of the most pressing challenges in ambient sensing, which is the distinct lack of large-scale, annotated datasets without requiring any manual data collection efforts.
☆ CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types (e.g., local and global defect), and the scarcity of training data. As such, it necessitates a comprehensive model capable of capturing both low-level and high-level features, even with limited data. To address this, we propose CLIPFUSION, a method that leverages both discriminative and generative foundation models. Specifically, the CLIP-based discriminative model excels at capturing global features, while the diffusion-based generative model effectively captures local details, creating a synergistic and complementary approach. Notably, we introduce a methodology for utilizing cross-attention maps and feature maps extracted from diffusion models specifically for anomaly detection. Experimental results on benchmark datasets (MVTec-AD, VisA) demonstrate that CLIPFUSION consistently outperforms baseline methods, achieving outstanding performance in both anomaly segmentation and classification. We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection, providing a scalable solution for real-world applications.
☆ MambaVSR: Content-Aware Scanning State Space Model for Video Super-Resolution
Video super-resolution (VSR) faces critical challenges in effectively modeling non-local dependencies across misaligned frames while preserving computational efficiency. Existing VSR methods typically rely on optical flow strategies or transformer architectures, which struggle with large motion displacements and long video sequences. To address this, we propose MambaVSR, the first state-space model framework for VSR that incorporates an innovative content-aware scanning mechanism. Unlike rigid 1D sequential processing in conventional vision Mamba methods, our MambaVSR enables dynamic spatiotemporal interactions through the Shared Compass Construction (SCC) and the Content-Aware Sequentialization (CAS). Specifically, the SCC module constructs intra-frame semantic connectivity graphs via efficient sparse attention and generates adaptive spatial scanning sequences through spectral clustering. Building upon SCC, the CAS module effectively aligns and aggregates non-local similar content across multiple frames by interleaving temporal features along the learned spatial order. To bridge global dependencies with local details, the Global-Local State Space Block (GLSSB) synergistically integrates window self-attention operations with SSM-based feature propagation, enabling high-frequency detail recovery under global dependency guidance. Extensive experiments validate MambaVSR's superiority, outperforming the Transformer-based method by 0.58 dB PSNR on the REDS dataset with 55% fewer parameters.
☆ DiffFuSR: Super-Resolution of all Sentinel-2 Multispectral Bands using Diffusion Models
This paper presents DiffFuSR, a modular pipeline for super-resolving all 12 spectral bands of Sentinel-2 Level-2A imagery to a unified ground sampling distance (GSD) of 2.5 meters. The pipeline comprises two stages: (i) a diffusion-based super-resolution (SR) model trained on high-resolution RGB imagery from the NAIP and WorldStrat datasets, harmonized to simulate Sentinel-2 characteristics; and (ii) a learned fusion network that upscales the remaining multispectral bands using the super-resolved RGB image as a spatial prior. We introduce a robust degradation model and contrastive degradation encoder to support blind SR. Extensive evaluations of the proposed SR pipeline on the OpenSR benchmark demonstrate that the proposed method outperforms current SOTA baselines in terms of reflectance fidelity, spectral consistency, spatial alignment, and hallucination suppression. Furthermore, the fusion network significantly outperforms classical pansharpening approaches, enabling accurate enhancement of Sentinel-2's 20 m and 60 m bands. This study underscores the power of harmonized learning with generative priors and fusion strategies to create a modular framework for Sentinel-2 SR. Our code and models can be found at https://github.com/NorskRegnesentral/DiffFuSR.
comment: preprint under review
☆ Exploring the Effectiveness of Deep Features from Domain-Specific Foundation Models in Retinal Image Synthesis
The adoption of neural network models in medical imaging has been constrained by strict privacy regulations, limited data availability, high acquisition costs, and demographic biases. Deep generative models offer a promising solution by generating synthetic data that bypasses privacy concerns and addresses fairness by producing samples for under-represented groups. However, unlike natural images, medical imaging requires validation not only for fidelity (e.g., Fr\'echet Inception Score) but also for morphological and clinical accuracy. This is particularly true for colour fundus retinal imaging, which requires precise replication of the retinal vascular network, including vessel topology, continuity, and thickness. In this study, we in-vestigated whether a distance-based loss function based on deep activation layers of a large foundational model trained on large corpus of domain data, colour fundus imaging, offers advantages over a perceptual loss and edge-detection based loss functions. Our extensive validation pipeline, based on both domain-free and domain specific tasks, suggests that domain-specific deep features do not improve autoen-coder image generation. Conversely, our findings highlight the effectiveness of con-ventional edge detection filters in improving the sharpness of vascular structures in synthetic samples.
comment: To be published and presented at the MIUA 2025 conference
☆ AgriPotential: A Novel Multi-Spectral and Multi-Temporal Remote Sensing Dataset for Agricultural Potentials
Remote sensing has emerged as a critical tool for large-scale Earth monitoring and land management. In this paper, we introduce AgriPotential, a novel benchmark dataset composed of Sentinel-2 satellite imagery spanning multiple months. The dataset provides pixel-level annotations of agricultural potentials for three major crop types - viticulture, market gardening, and field crops - across five ordinal classes. AgriPotential supports a broad range of machine learning tasks, including ordinal regression, multi-label classification, and spatio-temporal modeling. The data covers diverse areas in Southern France, offering rich spectral information. AgriPotential is the first public dataset designed specifically for agricultural potential prediction, aiming to improve data-driven approaches to sustainable land use planning. The dataset and the code are freely accessible at: https://zenodo.org/records/15556484
☆ Quizzard@INOVA Challenge 2025 -- Track A: Plug-and-Play Technique in Interleaved Multi-Image Model
This paper addresses two main objectives. Firstly, we demonstrate the impressive performance of the LLaVA-NeXT-interleave on 22 datasets across three different tasks: Multi-Image Reasoning, Documents and Knowledge-Based Understanding and Interactive Multi-Modal Communication. Secondly, we add the Dense Channel Integration (DCI) connector to the LLaVA-NeXT-Interleave and compare its performance against the standard model. We find that the standard model achieves the highest overall accuracy, excelling in vision-heavy tasks like VISION, NLVR2, and Fashion200K. Meanwhile, the DCI-enhanced version shows particular strength on datasets requiring deeper semantic coherence or structured change understanding such as MIT-States_PropertyCoherence and SlideVQA. Our results highlight the potential of combining powerful foundation models with plug-and-play techniques for Interleave tasks. The code is available at https://github.com/dinhvietcuong1996/icme25-inova.
☆ DMAF-Net: An Effective Modality Rebalancing Framework for Incomplete Multi-Modal Medical Image Segmentation
Incomplete multi-modal medical image segmentation faces critical challenges from modality imbalance, including imbalanced modality missing rates and heterogeneous modality contributions. Due to their reliance on idealized assumptions of complete modality availability, existing methods fail to dynamically balance contributions and neglect the structural relationships between modalities, resulting in suboptimal performance in real-world clinical scenarios. To address these limitations, we propose a novel model, named Dynamic Modality-Aware Fusion Network (DMAF-Net). The DMAF-Net adopts three key ideas. First, it introduces a Dynamic Modality-Aware Fusion (DMAF) module to suppress missing-modality interference by combining transformer attention with adaptive masking and weight modality contributions dynamically through attention maps. Second, it designs a synergistic Relation Distillation and Prototype Distillation framework to enforce global-local feature alignment via covariance consistency and masked graph attention, while ensuring semantic consistency through cross-modal class-specific prototype alignment. Third, it presents a Dynamic Training Monitoring (DTM) strategy to stabilize optimization under imbalanced missing rates by tracking distillation gaps in real-time, and to balance convergence speeds across modalities by adaptively reweighting losses and scaling gradients. Extensive experiments on BraTS2020 and MyoPS2020 demonstrate that DMAF-Net outperforms existing methods for incomplete multi-modal medical image segmentation. Extensive experiments on BraTS2020 and MyoPS2020 demonstrate that DMAF-Net outperforms existing methods for incomplete multi-modal medical image segmentation. Our code is available at https://github.com/violet-42/DMAF-Net.
comment: 12 pages, 4 figures, 3 tables
☆ MTabVQA: Evaluating Multi-Tabular Reasoning of Language Models in Visual Space
Vision-Language Models (VLMs) have demonstrated remarkable capabilities in interpreting visual layouts and text. However, a significant challenge remains in their ability to interpret robustly and reason over multi-tabular data presented as images, a common occurrence in real-world scenarios like web pages and digital documents. Existing benchmarks typically address single tables or non-visual data (text/structured). This leaves a critical gap: they don't assess the ability to parse diverse table images, correlate information across them, and perform multi-hop reasoning on the combined visual data. We introduce MTabVQA, a novel benchmark specifically designed for multi-tabular visual question answering to bridge that gap. MTabVQA comprises 3,745 complex question-answer pairs that necessitate multi-hop reasoning across several visually rendered table images. We provide extensive benchmark results for state-of-the-art VLMs on MTabVQA, revealing significant performance limitations. We further investigate post-training techniques to enhance these reasoning abilities and release MTabVQA-Instruct, a large-scale instruction-tuning dataset. Our experiments show that fine-tuning VLMs with MTabVQA-Instruct substantially improves their performance on visual multi-tabular reasoning. Code and dataset (https://huggingface.co/datasets/mtabvqa/MTabVQA-Eval) are available online (https://anonymous.4open.science/r/MTabVQA-EMNLP-B16E).
☆ Pose Matters: Evaluating Vision Transformers and CNNs for Human Action Recognition on Small COCO Subsets
This study explores human action recognition using a three-class subset of the COCO image corpus, benchmarking models from simple fully connected networks to transformer architectures. The binary Vision Transformer (ViT) achieved 90% mean test accuracy, significantly exceeding multiclass classifiers such as convolutional networks (approximately 35%) and CLIP-based models (approximately 62-64%). A one-way ANOVA (F = 61.37, p < 0.001) confirmed these differences are statistically significant. Qualitative analysis with SHAP explainer and LeGrad heatmaps indicated that the ViT localizes pose-specific regions (e.g., lower limbs for walking or running), while simpler feed-forward models often focus on background textures, explaining their errors. These findings emphasize the data efficiency of transformer representations and the importance of explainability techniques in diagnosing class-specific failures.
comment: 7 pages, 9 figures
☆ Predicting Patient Survival with Airway Biomarkers using nn-Unet/Radiomics
The primary objective of the AIIB 2023 competition is to evaluate the predictive significance of airway-related imaging biomarkers in determining the survival outcomes of patients with lung fibrosis.This study introduces a comprehensive three-stage approach. Initially, a segmentation network, namely nn-Unet, is employed to delineate the airway's structural boundaries. Subsequently, key features are extracted from the radiomic images centered around the trachea and an enclosing bounding box around the airway. This step is motivated by the potential presence of critical survival-related insights within the tracheal region as well as pertinent information encoded in the structure and dimensions of the airway. Lastly, radiomic features obtained from the segmented areas are integrated into an SVM classifier. We could obtain an overall-score of 0.8601 for the segmentation in Task 1 while 0.7346 for the classification in Task 2.
comment: 8 pages
☆ Cross-Modal Clustering-Guided Negative Sampling for Self-Supervised Joint Learning from Medical Images and Reports
Learning medical visual representations directly from paired images and reports through multimodal self-supervised learning has emerged as a novel and efficient approach to digital diagnosis in recent years. However, existing models suffer from several severe limitations. 1) neglecting the selection of negative samples, resulting in the scarcity of hard negatives and the inclusion of false negatives; 2) focusing on global feature extraction, but overlooking the fine-grained local details that are crucial for medical image recognition tasks; and 3) contrastive learning primarily targets high-level features but ignoring low-level details which are essential for accurate medical analysis. Motivated by these critical issues, this paper presents a Cross-Modal Cluster-Guided Negative Sampling (CM-CGNS) method with two-fold ideas. First, it extends the k-means clustering used for local text features in the single-modal domain to the multimodal domain through cross-modal attention. This improvement increases the number of negative samples and boosts the model representation capability. Second, it introduces a Cross-Modal Masked Image Reconstruction (CM-MIR) module that leverages local text-to-image features obtained via cross-modal attention to reconstruct masked local image regions. This module significantly strengthens the model's cross-modal information interaction capabilities and retains low-level image features essential for downstream tasks. By well handling the aforementioned limitations, the proposed CM-CGNS can learn effective and robust medical visual representations suitable for various recognition tasks. Extensive experimental results on classification, detection, and segmentation tasks across five downstream datasets show that our method outperforms state-of-the-art approaches on multiple metrics, verifying its superior performance.
comment: This work has been submitted to the IEEE TMI for possible publication. Our code is available at https://github.com/violet-42/CM-CGNS
Dynamic Mixture of Curriculum LoRA Experts for Continual Multimodal Instruction Tuning ICML 2025
Continual multimodal instruction tuning is crucial for adapting Multimodal Large Language Models (MLLMs) to evolving tasks. However, most existing methods adopt a fixed architecture, struggling with adapting to new tasks due to static model capacity. We propose to evolve the architecture under parameter budgets for dynamic task adaptation, which remains unexplored and imposes two challenges: 1) task architecture conflict, where different tasks require varying layer-wise adaptations, and 2) modality imbalance, where different tasks rely unevenly on modalities, leading to unbalanced updates. To address these challenges, we propose a novel Dynamic Mixture of Curriculum LoRA Experts (D-MoLE) method, which automatically evolves MLLM's architecture with controlled parameter budgets to continually adapt to new tasks while retaining previously learned knowledge. Specifically, we propose a dynamic layer-wise expert allocator, which automatically allocates LoRA experts across layers to resolve architecture conflicts, and routes instructions layer-wisely to facilitate knowledge sharing among experts. Then, we propose a gradient-based inter-modal continual curriculum, which adjusts the update ratio of each module in MLLM based on the difficulty of each modality within the task to alleviate the modality imbalance problem. Extensive experiments show that D-MoLE significantly outperforms state-of-the-art baselines, achieving a 15% average improvement over the best baseline. To the best of our knowledge, this is the first study of continual learning for MLLMs from an architectural perspective.
comment: Accepted by ICML 2025
☆ Brain Network Analysis Based on Fine-tuned Self-supervised Model for Brain Disease Diagnosis
Functional brain network analysis has become an indispensable tool for brain disease analysis. It is profoundly impacted by deep learning methods, which can characterize complex connections between ROIs. However, the research on foundation models of brain network is limited and constrained to a single dimension, which restricts their extensive application in neuroscience. In this study, we propose a fine-tuned brain network model for brain disease diagnosis. It expands brain region representations across multiple dimensions based on the original brain network model, thereby enhancing its generalizability. Our model consists of two key modules: (1)an adapter module that expands brain region features across different dimensions. (2)a fine-tuned foundation brain network model, based on self-supervised learning and pre-trained on fMRI data from thousands of participants. Specifically, its transformer block is able to effectively extract brain region features and compute the inter-region associations. Moreover, we derive a compact latent representation of the brain network for brain disease diagnosis. Our downstream experiments in this study demonstrate that the proposed model achieves superior performance in brain disease diagnosis, which potentially offers a promising approach in brain network analysis research.
comment: 13 pages, 3 figures, International Conference on Neural Computing for Advanced Applications
☆ Prohibited Items Segmentation via Occlusion-aware Bilayer Modeling ICME 2025
Instance segmentation of prohibited items in security X-ray images is a critical yet challenging task. This is mainly caused by the significant appearance gap between prohibited items in X-ray images and natural objects, as well as the severe overlapping among objects in X-ray images. To address these issues, we propose an occlusion-aware instance segmentation pipeline designed to identify prohibited items in X-ray images. Specifically, to bridge the representation gap, we integrate the Segment Anything Model (SAM) into our pipeline, taking advantage of its rich priors and zero-shot generalization capabilities. To address the overlap between prohibited items, we design an occlusion-aware bilayer mask decoder module that explicitly models the occlusion relationships. To supervise occlusion estimation, we manually annotated occlusion areas of prohibited items in two large-scale X-ray image segmentation datasets, PIDray and PIXray. We then reorganized these additional annotations together with the original information as two occlusion-annotated datasets, PIDray-A and PIXray-A. Extensive experimental results on these occlusion-annotated datasets demonstrate the effectiveness of our proposed method. The datasets and codes are available at: https://github.com/Ryh1218/Occ
comment: Accepted by ICME 2025
☆ DISCO: Mitigating Bias in Deep Learning with Conditional Distance Correlation
During prediction tasks, models can use any signal they receive to come up with the final answer - including signals that are causally irrelevant. When predicting objects from images, for example, the lighting conditions could be correlated to different targets through selection bias, and an oblivious model might use these signals as shortcuts to discern between various objects. A predictor that uses lighting conditions instead of real object-specific details is obviously undesirable. To address this challenge, we introduce a standard anti-causal prediction model (SAM) that creates a causal framework for analyzing the information pathways influencing our predictor in anti-causal settings. We demonstrate that a classifier satisfying a specific conditional independence criterion will focus solely on the direct causal path from label to image, being counterfactually invariant to the remaining variables. Finally, we propose DISCO, a novel regularization strategy that uses conditional distance correlation to optimize for conditional independence in regression tasks. We can show that DISCO achieves competitive results in different bias mitigation experiments, deeming it a valid alternative to classical kernel-based methods.
☆ Evaluating Fairness and Mitigating Bias in Machine Learning: A Novel Technique using Tensor Data and Bayesian Regression
Fairness is a critical component of Trustworthy AI. In this paper, we focus on Machine Learning (ML) and the performance of model predictions when dealing with skin color. Unlike other sensitive attributes, the nature of skin color differs significantly. In computer vision, skin color is represented as tensor data rather than categorical values or single numerical points. However, much of the research on fairness across sensitive groups has focused on categorical features such as gender and race. This paper introduces a new technique for evaluating fairness in ML for image classification tasks, specifically without the use of annotation. To address the limitations of prior work, we handle tensor data, like skin color, without classifying it rigidly. Instead, we convert it into probability distributions and apply statistical distance measures. This novel approach allows us to capture fine-grained nuances in fairness both within and across what would traditionally be considered distinct groups. Additionally, we propose an innovative training method to mitigate the latent biases present in conventional skin tone categorization. This method leverages color distance estimates calculated through Bayesian regression with polynomial functions, ensuring a more nuanced and equitable treatment of skin color in ML models.
☆ SignAligner: Harmonizing Complementary Pose Modalities for Coherent Sign Language Generation
Sign language generation aims to produce diverse sign representations based on spoken language. However, achieving realistic and naturalistic generation remains a significant challenge due to the complexity of sign language, which encompasses intricate hand gestures, facial expressions, and body movements. In this work, we introduce PHOENIX14T+, an extended version of the widely-used RWTH-PHOENIX-Weather 2014T dataset, featuring three new sign representations: Pose, Hamer and Smplerx. We also propose a novel method, SignAligner, for realistic sign language generation, consisting of three stages: text-driven pose modalities co-generation, online collaborative correction of multimodality, and realistic sign video synthesis. First, by incorporating text semantics, we design a joint sign language generator to simultaneously produce posture coordinates, gesture actions, and body movements. The text encoder, based on a Transformer architecture, extracts semantic features, while a cross-modal attention mechanism integrates these features to generate diverse sign language representations, ensuring accurate mapping and controlling the diversity of modal features. Next, online collaborative correction is introduced to refine the generated pose modalities using a dynamic loss weighting strategy and cross-modal attention, facilitating the complementarity of information across modalities, eliminating spatiotemporal conflicts, and ensuring semantic coherence and action consistency. Finally, the corrected pose modalities are fed into a pre-trained video generation network to produce high-fidelity sign language videos. Extensive experiments demonstrate that SignAligner significantly improves both the accuracy and expressiveness of the generated sign videos.
☆ Wi-CBR: WiFi-based Cross-domain Behavior Recognition via Multimodal Collaborative Awareness
WiFi-based human behavior recognition aims to recognize gestures and activities by analyzing wireless signal variations. However, existing methods typically focus on a single type of data, neglecting the interaction and fusion of multiple features. To this end, we propose a novel multimodal collaborative awareness method. By leveraging phase data reflecting changes in dynamic path length and Doppler Shift (DFS) data corresponding to frequency changes related to the speed of gesture movement, we enable efficient interaction and fusion of these features to improve recognition accuracy. Specifically, we first introduce a dual-branch self-attention module to capture spatial-temporal cues within each modality. Then, a group attention mechanism is applied to the concatenated phase and DFS features to mine key group features critical for behavior recognition. Through a gating mechanism, the combined features are further divided into PD-strengthen and PD-weaken branches, optimizing information entropy and promoting cross-modal collaborative awareness. Extensive in-domain and cross-domain experiments on two large publicly available datasets, Widar3.0 and XRF55, demonstrate the superior performance of our method.
☆ VLM@school -- Evaluation of AI image understanding on German middle school knowledge
This paper introduces a novel benchmark dataset designed to evaluate the capabilities of Vision Language Models (VLMs) on tasks that combine visual reasoning with subject-specific background knowledge in the German language. In contrast to widely used English-language benchmarks that often rely on artificially difficult or decontextualized problems, this dataset draws from real middle school curricula across nine domains including mathematics, history, biology, and religion. The benchmark includes over 2,000 open-ended questions grounded in 486 images, ensuring that models must integrate visual interpretation with factual reasoning rather than rely on superficial textual cues. We evaluate thirteen state-of-the-art open-weight VLMs across multiple dimensions, including domain-specific accuracy and performance on adversarial crafted questions. Our findings reveal that even the strongest models achieve less than 45% overall accuracy, with particularly poor performance in music, mathematics, and adversarial settings. Furthermore, the results indicate significant discrepancies between success on popular benchmarks and real-world multimodal understanding. We conclude that middle school-level tasks offer a meaningful and underutilized avenue for stress-testing VLMs, especially in non-English contexts. The dataset and evaluation protocol serve as a rigorous testbed to better understand and improve the visual and linguistic reasoning capabilities of future AI systems.
☆ A$^2$LC: Active and Automated Label Correction for Semantic Segmentation
Active Label Correction (ALC) has emerged as a promising solution to the high cost and error-prone nature of manual pixel-wise annotation in semantic segmentation, by selectively identifying and correcting mislabeled data. Although recent work has improved correction efficiency by generating pseudo-labels using foundation models, substantial inefficiencies still remain. In this paper, we propose Active and Automated Label Correction for semantic segmentation (A$^2$LC), a novel and efficient ALC framework that integrates an automated correction stage into the conventional pipeline. Specifically, the automated correction stage leverages annotator feedback to perform label correction beyond the queried samples, thereby maximizing cost efficiency. In addition, we further introduce an adaptively balanced acquisition function that emphasizes underrepresented tail classes and complements the automated correction mechanism. Extensive experiments on Cityscapes and PASCAL VOC 2012 demonstrate that A$^2$LC significantly outperforms previous state-of-the-art methods. Notably, A$^2$LC achieves high efficiency by outperforming previous methods using only 20% of their budget, and demonstrates strong effectiveness by yielding a 27.23% performance improvement under an equivalent budget constraint on the Cityscapes dataset. The code will be released upon acceptance.
comment: Preprint. Under review. 22 pages, 8 figures
☆ EasyARC: Evaluating Vision Language Models on True Visual Reasoning CVPR2025
Building on recent advances in language-based reasoning models, we explore multimodal reasoning that integrates vision and text. Existing multimodal benchmarks primarily test visual extraction combined with text-based reasoning, lacking true visual reasoning with more complex interactions between vision and language. Inspired by the ARC challenge, we introduce EasyARC, a vision-language benchmark requiring multi-image, multi-step reasoning, and self-correction. EasyARC is procedurally generated, fully verifiable, and scalable, making it ideal for reinforcement learning (RL) pipelines. The generators incorporate progressive difficulty levels, enabling structured evaluation across task types and complexities. We benchmark state-of-the-art vision-language models and analyze their failure modes. We argue that EasyARC sets a new standard for evaluating true reasoning and test-time scaling capabilities in vision-language models. We open-source our benchmark dataset and evaluation code.
comment: CVPR2025 Workshop on Test-time Scaling for Computer Vision
☆ OV-MAP : Open-Vocabulary Zero-Shot 3D Instance Segmentation Map for Robots IROS 2024
We introduce OV-MAP, a novel approach to open-world 3D mapping for mobile robots by integrating open-features into 3D maps to enhance object recognition capabilities. A significant challenge arises when overlapping features from adjacent voxels reduce instance-level precision, as features spill over voxel boundaries, blending neighboring regions together. Our method overcomes this by employing a class-agnostic segmentation model to project 2D masks into 3D space, combined with a supplemented depth image created by merging raw and synthetic depth from point clouds. This approach, along with a 3D mask voting mechanism, enables accurate zero-shot 3D instance segmentation without relying on 3D supervised segmentation models. We assess the effectiveness of our method through comprehensive experiments on public datasets such as ScanNet200 and Replica, demonstrating superior zero-shot performance, robustness, and adaptability across diverse environments. Additionally, we conducted real-world experiments to demonstrate our method's adaptability and robustness when applied to diverse real-world environments.
comment: Accepted at IROS 2024
☆ Camera-based method for the detection of lifted truck axles using convolutional neural networks
The identification and classification of vehicles play a crucial role in various aspects of the control-sanction system. Current technologies such as weigh-in-motion (WIM) systems can classify most vehicle categories but they struggle to accurately classify vehicles with lifted axles. Moreover, very few commercial and technical methods exist for detecting lifted axles. In this paper, as part of the European project SETO (Smart Enforcement of Transport Operations), a method based on a convolutional neural network (CNN), namely YOLOv8s, was proposed for the detection of lifted truck axles in images of trucks captured by cameras placed perpendicular to the direction of traffic. The performance of the proposed method was assessed and it was found that it had a precision of 87%, a recall of 91.7%, and an inference time of 1.4 ms, which makes it well-suited for real time implantations. These results suggest that further improvements could be made, potentially by increasing the size of the datasets and/or by using various image augmentation methods.
☆ VFaith: Do Large Multimodal Models Really Reason on Seen Images Rather than Previous Memories?
Recent extensive works have demonstrated that by introducing long CoT, the capabilities of MLLMs to solve complex problems can be effectively enhanced. However, the reasons for the effectiveness of such paradigms remain unclear. It is challenging to analysis with quantitative results how much the model's specific extraction of visual cues and its subsequent so-called reasoning during inference process contribute to the performance improvements. Therefore, evaluating the faithfulness of MLLMs' reasoning to visual information is crucial. To address this issue, we first present a cue-driven automatic and controllable editing pipeline with the help of GPT-Image-1. It enables the automatic and precise editing of specific visual cues based on the instruction. Furthermore, we introduce VFaith-Bench, the first benchmark to evaluate MLLMs' visual reasoning capabilities and analyze the source of such capabilities with an emphasis on the visual faithfulness. Using the designed pipeline, we constructed comparative question-answer pairs by altering the visual cues in images that are crucial for solving the original reasoning problem, thereby changing the question's answer. By testing similar questions with images that have different details, the average accuracy reflects the model's visual reasoning ability, while the difference in accuracy before and after editing the test set images effectively reveals the relationship between the model's reasoning ability and visual perception. We further designed specific metrics to expose this relationship. VFaith-Bench includes 755 entries divided into five distinct subsets, along with an additional human-labeled perception task. We conducted in-depth testing and analysis of existing mainstream flagship models and prominent open-source model series/reasoning models on VFaith-Bench, further investigating the underlying factors of their reasoning capabilities.
☆ DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
Large Language Models (LLMs) have recently been extended to the video domain, enabling sophisticated video-language understanding. However, existing Video LLMs often exhibit limitations in fine-grained temporal reasoning, restricting their ability to precisely attribute responses to specific video moments, especially under constrained supervision. We introduce DaMO, a data-efficient Video LLM explicitly designed for accurate temporal reasoning and multimodal understanding. At its core, the proposed Temporal-aware Fuseformer employs a hierarchical dual-stream architecture that progressively captures temporal dynamics within each modality and effectively fuses complementary visual and audio information. To further enhance computational efficiency, DaMO integrates a global residual that reduces spatial redundancy while preserving essential semantic details. We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities. This work also contributes multiple datasets augmented from existing ones with GPT-generated temporally grounded QA pairs for tasks requiring temporal supervision. Comprehensive experiments on temporal grounding and video QA benchmarks demonstrate that DaMO consistently surpasses prior methods, particularly in tasks demanding precise temporal alignment and reasoning. Our work establishes a promising direction for data-efficient video-language modeling.
☆ EyeSim-VQA: A Free-Energy-Guided Eye Simulation Framework for Video Quality Assessment
Free-energy-guided self-repair mechanisms have shown promising results in image quality assessment (IQA), but remain under-explored in video quality assessment (VQA), where temporal dynamics and model constraints pose unique challenges. Unlike static images, video content exhibits richer spatiotemporal complexity, making perceptual restoration more difficult. Moreover, VQA systems often rely on pre-trained backbones, which limits the direct integration of enhancement modules without affecting model stability. To address these issues, we propose EyeSimVQA, a novel VQA framework that incorporates free-energy-based self-repair. It adopts a dual-branch architecture, with an aesthetic branch for global perceptual evaluation and a technical branch for fine-grained structural and semantic analysis. Each branch integrates specialized enhancement modules tailored to distinct visual inputs-resized full-frame images and patch-based fragments-to simulate adaptive repair behaviors. We also explore a principled strategy for incorporating high-level visual features without disrupting the original backbone. In addition, we design a biologically inspired prediction head that models sweeping gaze dynamics to better fuse global and local representations for quality prediction. Experiments on five public VQA benchmarks demonstrate that EyeSimVQA achieves competitive or superior performance compared to state-of-the-art methods, while offering improved interpretability through its biologically grounded design.
comment: This work has been submitted to the IEEE TCSVT for possible publication
☆ Linearly Solving Robust Rotation Estimation
Rotation estimation plays a fundamental role in computer vision and robot tasks, and extremely robust rotation estimation is significantly useful for safety-critical applications. Typically, estimating a rotation is considered a non-linear and non-convex optimization problem that requires careful design. However, in this paper, we provide some new perspectives that solving a rotation estimation problem can be reformulated as solving a linear model fitting problem without dropping any constraints and without introducing any singularities. In addition, we explore the dual structure of a rotation motion, revealing that it can be represented as a great circle on a quaternion sphere surface. Accordingly, we propose an easily understandable voting-based method to solve rotation estimation. The proposed method exhibits exceptional robustness to noise and outliers and can be computed in parallel with graphics processing units (GPUs) effortlessly. Particularly, leveraging the power of GPUs, the proposed method can obtain a satisfactory rotation solution for large-scale($10^6$) and severely corrupted (99$\%$ outlier ratio) rotation estimation problems under 0.5 seconds. Furthermore, to validate our theoretical framework and demonstrate the superiority of our proposed method, we conduct controlled experiments and real-world dataset experiments. These experiments provide compelling evidence supporting the effectiveness and robustness of our approach in solving rotation estimation problems.
comment: 23 pages, 18 figures
☆ CGVQM+D: Computer Graphics Video Quality Metric and Dataset
While existing video and image quality datasets have extensively studied natural videos and traditional distortions, the perception of synthetic content and modern rendering artifacts remains underexplored. We present a novel video quality dataset focused on distortions introduced by advanced rendering techniques, including neural supersampling, novel-view synthesis, path tracing, neural denoising, frame interpolation, and variable rate shading. Our evaluations show that existing full-reference quality metrics perform sub-optimally on these distortions, with a maximum Pearson correlation of 0.78. Additionally, we find that the feature space of pre-trained 3D CNNs aligns strongly with human perception of visual quality. We propose CGVQM, a full-reference video quality metric that significantly outperforms existing metrics while generating both per-pixel error maps and global quality scores. Our dataset and metric implementation is available at https://github.com/IntelLabs/CGVQM.
☆ FCA2: Frame Compression-Aware Autoencoder for Modular and Fast Compressed Video Super-Resolution
State-of-the-art (SOTA) compressed video super-resolution (CVSR) models face persistent challenges, including prolonged inference time, complex training pipelines, and reliance on auxiliary information. As video frame rates continue to increase, the diminishing inter-frame differences further expose the limitations of traditional frame-to-frame information exploitation methods, which are inadequate for addressing current video super-resolution (VSR) demands. To overcome these challenges, we propose an efficient and scalable solution inspired by the structural and statistical similarities between hyperspectral images (HSI) and video data. Our approach introduces a compression-driven dimensionality reduction strategy that reduces computational complexity, accelerates inference, and enhances the extraction of temporal information across frames. The proposed modular architecture is designed for seamless integration with existing VSR frameworks, ensuring strong adaptability and transferability across diverse applications. Experimental results demonstrate that our method achieves performance on par with, or surpassing, the current SOTA models, while significantly reducing inference time. By addressing key bottlenecks in CVSR, our work offers a practical and efficient pathway for advancing VSR technology. Our code will be publicly available at https://github.com/handsomewzy/FCA2.
comment: This work has been submitted to the IEEE TMM for possible publication
☆ Leveraging Satellite Image Time Series for Accurate Extreme Event Detection WACV 2025
Climate change is leading to an increase in extreme weather events, causing significant environmental damage and loss of life. Early detection of such events is essential for improving disaster response. In this work, we propose SITS-Extreme, a novel framework that leverages satellite image time series to detect extreme events by incorporating multiple pre-disaster observations. This approach effectively filters out irrelevant changes while isolating disaster-relevant signals, enabling more accurate detection. Extensive experiments on both real-world and synthetic datasets validate the effectiveness of SITS-Extreme, demonstrating substantial improvements over widely used strong bi-temporal baselines. Additionally, we examine the impact of incorporating more timesteps, analyze the contribution of key components in our framework, and evaluate its performance across different disaster types, offering valuable insights into its scalability and applicability for large-scale disaster monitoring.
comment: Accepted to the WACV 2025 Workshop on GeoCV. Code, datasets, and model checkpoints available at: https://github.com/hfangcat/SITS-ExtremeEvents
☆ FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation CVPR 2025
Post-training quantization (PTQ) has stood out as a cost-effective and promising model compression paradigm in recent years, as it avoids computationally intensive model retraining. Nevertheless, current PTQ methods for Vision Transformers (ViTs) still suffer from significant accuracy degradation, especially under low-bit quantization. To address these shortcomings, we analyze the prevailing Hessian-guided quantization loss, and uncover certain limitations of conventional Hessian approximations. By following the block-wise reconstruction framework, we propose a novel PTQ method for ViTs, dubbed FIMA-Q. Specifically, we firstly establish the connection between KL divergence and FIM, which enables fast computation of the quantization loss during reconstruction. We further propose an efficient FIM approximation method, namely DPLR-FIM, by employing the diagonal plus low-rank principle, and formulate the ultimate quantization loss. Our extensive experiments, conducted across various vision tasks with representative ViT-based architectures on public datasets, demonstrate that our method substantially promotes the accuracy compared to the state-of-the-art approaches, especially in the case of low-bit quantization. The source code is available at https://github.com/ShiheWang/FIMA-Q.
comment: CVPR 2025 Highlight
☆ GNSS-inertial state initialization by distance residuals
Initializing the state of a sensorized platform can be challenging, as a limited set of initial measurements often carry limited information, leading to poor initial estimates that may converge to local minima during non-linear optimization. This paper proposes a novel GNSS-inertial initialization strategy that delays the use of global GNSS measurements until sufficient information is available to accurately estimate the transformation between the GNSS and inertial frames. Instead, the method initially relies on GNSS relative distance residuals. To determine the optimal moment for switching to global measurements, we introduce a criterion based on the evolution of the Hessian matrix singular values. Experiments on the EuRoC and GVINS datasets show that our approach consistently outperforms the naive strategy of using global GNSS data from the start, yielding more accurate and robust initializations.
comment: 8 pages, 8 figures, RA-L submission
☆ Manager: Aggregating Insights from Unimodal Experts in Two-Tower VLMs and MLLMs
Two-Tower Vision--Language Models (VLMs) have demonstrated strong performance across various downstream VL tasks. While BridgeTower further enhances performance by building bridges between encoders, it \textit{(i)} suffers from ineffective layer-by-layer utilization of unimodal representations, \textit{(ii)} restricts the flexible exploitation of different levels of unimodal semantic knowledge, and \textit{(iii)} is limited to the evaluation on traditional low-resolution datasets only with the Two-Tower VLM architecture. In this work, we propose Manager, a lightweight, efficient and effective plugin that adaptively aggregates insights from different levels of pre-trained unimodal experts to facilitate more comprehensive VL alignment and fusion. First, under the Two-Tower VLM architecture, we introduce ManagerTower, a novel VLM that introduces the manager in each cross-modal layer. Whether with or without VL pre-training, ManagerTower outperforms previous strong baselines and achieves superior performance on 4 downstream VL tasks. Moreover, we extend our exploration to the latest Multimodal Large Language Model (MLLM) architecture. We demonstrate that LLaVA-OV-Manager significantly boosts the zero-shot performance of LLaVA-OV across different categories of capabilities, images, and resolutions on 20 downstream datasets, whether the multi-grid algorithm is enabled or not. In-depth analysis reveals that both our manager and the multi-grid algorithm can be viewed as a plugin that improves the visual representation by capturing more diverse visual details from two orthogonal perspectives (depth and width). Their synergy can mitigate the semantic ambiguity caused by the multi-grid algorithm and further improve performance. Code and models are available at https://github.com/LooperXX/ManagerTower.
comment: Accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT). June 2025. DOI: https://doi.org/10.1109/TCSVT.2025.3578266
☆ Taming Stable Diffusion for Computed Tomography Blind Super-Resolution
High-resolution computed tomography (CT) imaging is essential for medical diagnosis but requires increased radiation exposure, creating a critical trade-off between image quality and patient safety. While deep learning methods have shown promise in CT super-resolution, they face challenges with complex degradations and limited medical training data. Meanwhile, large-scale pre-trained diffusion models, particularly Stable Diffusion, have demonstrated remarkable capabilities in synthesizing fine details across various vision tasks. Motivated by this, we propose a novel framework that adapts Stable Diffusion for CT blind super-resolution. We employ a practical degradation model to synthesize realistic low-quality images and leverage a pre-trained vision-language model to generate corresponding descriptions. Subsequently, we perform super-resolution using Stable Diffusion with a specialized controlling strategy, conditioned on both low-resolution inputs and the generated text descriptions. Extensive experiments show that our method outperforms existing approaches, demonstrating its potential for achieving high-quality CT imaging at reduced radiation doses. Our code will be made publicly available.
☆ Preserving Clusters in Prompt Learning for Unsupervised Domain Adaptation
Recent approaches leveraging multi-modal pre-trained models like CLIP for Unsupervised Domain Adaptation (UDA) have shown significant promise in bridging domain gaps and improving generalization by utilizing rich semantic knowledge and robust visual representations learned through extensive pre-training on diverse image-text datasets. While these methods achieve state-of-the-art performance across benchmarks, much of the improvement stems from base pseudo-labels (CLIP zero-shot predictions) and self-training mechanisms. Thus, the training mechanism exhibits a key limitation wherein the visual embedding distribution in target domains can deviate from the visual embedding distribution in the pre-trained model, leading to misguided signals from class descriptions. This work introduces a fresh solution to reinforce these pseudo-labels and facilitate target-prompt learning, by exploiting the geometry of visual and text embeddings - an aspect that is overlooked by existing methods. We first propose to directly leverage the reference predictions (from source prompts) based on the relationship between source and target visual embeddings. We later show that there is a strong clustering behavior observed between visual and text embeddings in pre-trained multi-modal models. Building on optimal transport theory, we transform this insight into a novel strategy to enforce the clustering property in text embeddings, further enhancing the alignment in the target domain. Our experiments and ablation studies validate the effectiveness of the proposed approach, demonstrating superior performance and improved quality of target prompts in terms of representation.
☆ Composite Data Augmentations for Synthetic Image Detection Against Real-World Perturbations
The advent of accessible Generative AI tools enables anyone to create and spread synthetic images on social media, often with the intention to mislead, thus posing a significant threat to online information integrity. Most existing Synthetic Image Detection (SID) solutions struggle on generated images sourced from the Internet, as these are often altered by compression and other operations. To address this, our research enhances SID by exploring data augmentation combinations, leveraging a genetic algorithm for optimal augmentation selection, and introducing a dual-criteria optimization approach. These methods significantly improve model performance under real-world perturbations. Our findings provide valuable insights for developing detection models capable of identifying synthetic images across varying qualities and transformations, with the best-performing model achieving a mean average precision increase of +22.53% compared to models without augmentations. The implementation is available at github.com/efthimia145/sid-composite-data-augmentation.
comment: EUSIPCO 2025 (33rd European Signal Processing Conference)
☆ Environmental Change Detection: Toward a Practical Task of Scene Change Detection
Humans do not memorize everything. Thus, humans recognize scene changes by exploring the past images. However, available past (i.e., reference) images typically represent nearby viewpoints of the present (i.e., query) scene, rather than the identical view. Despite this practical limitation, conventional Scene Change Detection (SCD) has been formalized under an idealized setting in which reference images with matching viewpoints are available for every query. In this paper, we push this problem toward a practical task and introduce Environmental Change Detection (ECD). A key aspect of ECD is to avoid unrealistically aligned query-reference pairs and rely solely on environmental cues. Inspired by real-world practices, we provide these cues through a large-scale database of uncurated images. To address this new task, we propose a novel framework that jointly understands spatial environments and detects changes. The main idea is that matching at the same spatial locations between a query and a reference may lead to a suboptimal solution due to viewpoint misalignment and limited field-of-view (FOV) coverage. We deal with this limitation by leveraging multiple reference candidates and aggregating semantically rich representations for change detection. We evaluate our framework on three standard benchmark sets reconstructed for ECD, and significantly outperform a naive combination of state-of-the-art methods while achieving comparable performance to the oracle setting. The code will be released upon acceptance.
comment: Preprint. Under review
☆ FAME: A Lightweight Spatio-Temporal Network for Model Attribution of Face-Swap Deepfakes
The widespread emergence of face-swap Deepfake videos poses growing risks to digital security, privacy, and media integrity, necessitating effective forensic tools for identifying the source of such manipulations. Although most prior research has focused primarily on binary Deepfake detection, the task of model attribution -- determining which generative model produced a given Deepfake -- remains underexplored. In this paper, we introduce FAME (Fake Attribution via Multilevel Embeddings), a lightweight and efficient spatio-temporal framework designed to capture subtle generative artifacts specific to different face-swap models. FAME integrates spatial and temporal attention mechanisms to improve attribution accuracy while remaining computationally efficient. We evaluate our model on three challenging and diverse datasets: Deepfake Detection and Manipulation (DFDM), FaceForensics++, and FakeAVCeleb. Results show that FAME consistently outperforms existing methods in both accuracy and runtime, highlighting its potential for deployment in real-world forensic and information security applications.
☆ AutoGen Driven Multi Agent Framework for Iterative Crime Data Analysis and Prediction
This paper introduces LUCID-MA (Learning and Understanding Crime through Dialogue of Multiple Agents), an innovative AI powered framework where multiple AI agents collaboratively analyze and understand crime data. Our system that consists of three core components: an analysis assistant that highlights spatiotemporal crime patterns, a feedback component that reviews and refines analytical results and a prediction component that forecasts future crime trends. With a well-designed prompt and the LLaMA-2-13B-Chat-GPTQ model, it runs completely offline and allows the agents undergo self-improvement through 100 rounds of communication with less human interaction. A scoring function is incorporated to evaluate agent's performance, providing visual plots to track learning progress. This work demonstrates the potential of AutoGen-style agents for autonomous, scalable, and iterative analysis in social science domains maintaining data privacy through offline execution.
☆ On the Natural Robustness of Vision-Language Models Against Visual Perception Attacks in Autonomous Driving
Autonomous vehicles (AVs) rely on deep neural networks (DNNs) for critical tasks such as traffic sign recognition (TSR), automated lane centering (ALC), and vehicle detection (VD). However, these models are vulnerable to attacks that can cause misclassifications and compromise safety. Traditional defense mechanisms, including adversarial training, often degrade benign accuracy and fail to generalize against unseen attacks. In this work, we introduce Vehicle Vision Language Models (V2LMs), fine-tuned vision-language models specialized for AV perception. Our findings demonstrate that V2LMs inherently exhibit superior robustness against unseen attacks without requiring adversarial training, maintaining significantly higher accuracy than conventional DNNs under adversarial conditions. We evaluate two deployment strategies: Solo Mode, where individual V2LMs handle specific perception tasks, and Tandem Mode, where a single unified V2LM is fine-tuned for multiple tasks simultaneously. Experimental results reveal that DNNs suffer performance drops of 33% to 46% under attacks, whereas V2LMs maintain adversarial accuracy with reductions of less than 8% on average. The Tandem Mode further offers a memory-efficient alternative while achieving comparable robustness to Solo Mode. We also explore integrating V2LMs as parallel components to AV perception to enhance resilience against adversarial threats. Our results suggest that V2LMs offer a promising path toward more secure and resilient AV perception systems.
☆ RollingQ: Reviving the Cooperation Dynamics in Multimodal Transformer ICML 2025
Multimodal learning faces challenges in effectively fusing information from diverse modalities, especially when modality quality varies across samples. Dynamic fusion strategies, such as attention mechanism in Transformers, aim to address such challenge by adaptively emphasizing modalities based on the characteristics of input data. However, through amounts of carefully designed experiments, we surprisingly observed that the dynamic adaptability of widely-used self-attention models diminishes. Model tends to prefer one modality regardless of data characteristics. This bias triggers a self-reinforcing cycle that progressively overemphasizes the favored modality, widening the distribution gap in attention keys across modalities and deactivating attention mechanism's dynamic properties. To revive adaptability, we propose a simple yet effective method Rolling Query (RollingQ), which balances attention allocation by rotating the query to break the self-reinforcing cycle and mitigate the key distribution gap. Extensive experiments on various multimodal scenarios validate the effectiveness of RollingQ and the restoration of cooperation dynamics is pivotal for enhancing the broader capabilities of widely deployed multimodal Transformers. The source code is available at https://github.com/GeWu-Lab/RollingQ_ICML2025.
comment: Accepted by ICML 2025
Voxel-Level Brain States Prediction Using Swin Transformer
Understanding brain dynamics is important for neuroscience and mental health. Functional magnetic resonance imaging (fMRI) enables the measurement of neural activities through blood-oxygen-level-dependent (BOLD) signals, which represent brain states. In this study, we aim to predict future human resting brain states with fMRI. Due to the 3D voxel-wise spatial organization and temporal dependencies of the fMRI data, we propose a novel architecture which employs a 4D Shifted Window (Swin) Transformer as encoder to efficiently learn spatio-temporal information and a convolutional decoder to enable brain state prediction at the same spatial and temporal resolution as the input fMRI data. We used 100 unrelated subjects from the Human Connectome Project (HCP) for model training and testing. Our novel model has shown high accuracy when predicting 7.2s resting-state brain activities based on the prior 23.04s fMRI time series. The predicted brain states highly resemble BOLD contrast and dynamics. This work shows promising evidence that the spatiotemporal organization of the human brain can be learned by a Swin Transformer model, at high resolution, which provides a potential for reducing the fMRI scan time and the development of brain-computer interfaces in the future.
☆ FAD-Net: Frequency-Domain Attention-Guided Diffusion Network for Coronary Artery Segmentation using Invasive Coronary Angiography
Background: Coronary artery disease (CAD) remains one of the leading causes of mortality worldwide. Precise segmentation of coronary arteries from invasive coronary angiography (ICA) is critical for effective clinical decision-making. Objective: This study aims to propose a novel deep learning model based on frequency-domain analysis to enhance the accuracy of coronary artery segmentation and stenosis detection in ICA, thereby offering robust support for the stenosis detection and treatment of CAD. Methods: We propose the Frequency-Domain Attention-Guided Diffusion Network (FAD-Net), which integrates a frequency-domain-based attention mechanism and a cascading diffusion strategy to fully exploit frequency-domain information for improved segmentation accuracy. Specifically, FAD-Net employs a Multi-Level Self-Attention (MLSA) mechanism in the frequency domain, computing the similarity between queries and keys across high- and low-frequency components in ICAs. Furthermore, a Low-Frequency Diffusion Module (LFDM) is incorporated to decompose ICAs into low- and high-frequency components via multi-level wavelet transformation. Subsequently, it refines fine-grained arterial branches and edges by reintegrating high-frequency details via inverse fusion, enabling continuous enhancement of anatomical precision. Results and Conclusions: Extensive experiments demonstrate that FAD-Net achieves a mean Dice coefficient of 0.8717 in coronary artery segmentation, outperforming existing state-of-the-art methods. In addition, it attains a true positive rate of 0.6140 and a positive predictive value of 0.6398 in stenosis detection, underscoring its clinical applicability. These findings suggest that FAD-Net holds significant potential to assist in the accurate diagnosis and treatment planning of CAD.
comment: 35 pages, 12 figures
☆ GaussMarker: Robust Dual-Domain Watermark for Diffusion Models ICML 2025
As Diffusion Models (DM) generate increasingly realistic images, related issues such as copyright and misuse have become a growing concern. Watermarking is one of the promising solutions. Existing methods inject the watermark into the single-domain of initial Gaussian noise for generation, which suffers from unsatisfactory robustness. This paper presents the first dual-domain DM watermarking approach using a pipelined injector to consistently embed watermarks in both the spatial and frequency domains. To further boost robustness against certain image manipulations and advanced attacks, we introduce a model-independent learnable Gaussian Noise Restorer (GNR) to refine Gaussian noise extracted from manipulated images and enhance detection robustness by integrating the detection scores of both watermarks. GaussMarker efficiently achieves state-of-the-art performance under eight image distortions and four advanced attacks across three versions of Stable Diffusion with better recall and lower false positive rates, as preferred in real applications.
comment: Accepted at ICML 2025
☆ Uncertainty Awareness Enables Efficient Labeling for Cancer Subtyping in Digital Pathology
Machine-learning-assisted cancer subtyping is a promising avenue in digital pathology. Cancer subtyping models, however, require careful training using expert annotations so that they can be inferred with a degree of known certainty (or uncertainty). To this end, we introduce the concept of uncertainty awareness into a self-supervised contrastive learning model. This is achieved by computing an evidence vector at every epoch, which assesses the model's confidence in its predictions. The derived uncertainty score is then utilized as a metric to selectively label the most crucial images that require further annotation, thus iteratively refining the training process. With just 1-10% of strategically selected annotations, we attain state-of-the-art performance in cancer subtyping on benchmark datasets. Our method not only strategically guides the annotation process to minimize the need for extensive labeled datasets, but also improves the precision and efficiency of classifications. This development is particularly beneficial in settings where the availability of labeled data is limited, offering a promising direction for future research and application in digital pathology.
☆ TAViS: Text-bridged Audio-Visual Segmentation with Foundation Models
Audio-Visual Segmentation (AVS) faces a fundamental challenge of effectively aligning audio and visual modalities. While recent approaches leverage foundation models to address data scarcity, they often rely on single-modality knowledge or combine foundation models in an off-the-shelf manner, failing to address the cross-modal alignment challenge. In this paper, we present TAViS, a novel framework that \textbf{couples} the knowledge of multimodal foundation models (ImageBind) for cross-modal alignment and a segmentation foundation model (SAM2) for precise segmentation. However, effectively combining these models poses two key challenges: the difficulty in transferring the knowledge between SAM2 and ImageBind due to their different feature spaces, and the insufficiency of using only segmentation loss for supervision. To address these challenges, we introduce a text-bridged design with two key components: (1) a text-bridged hybrid prompting mechanism where pseudo text provides class prototype information while retaining modality-specific details from both audio and visual inputs, and (2) an alignment supervision strategy that leverages text as a bridge to align shared semantic concepts within audio-visual modalities. Our approach achieves superior performance on single-source, multi-source, semantic datasets, and excels in zero-shot settings.
☆ Auditing Data Provenance in Real-world Text-to-Image Diffusion Models for Privacy and Copyright Protection
Text-to-image diffusion model since its propose has significantly influenced the content creation due to its impressive generation capability. However, this capability depends on large-scale text-image datasets gathered from web platforms like social media, posing substantial challenges in copyright compliance and personal privacy leakage. Though there are some efforts devoted to explore approaches for auditing data provenance in text-to-image diffusion models, existing work has unrealistic assumptions that can obtain model internal knowledge, e.g., intermediate results, or the evaluation is not reliable. To fill this gap, we propose a completely black-box auditing framework called Feature Semantic Consistency-based Auditing (FSCA). It utilizes two types of semantic connections within the text-to-image diffusion model for auditing, eliminating the need for access to internal knowledge. To demonstrate the effectiveness of our FSCA framework, we perform extensive experiments on LAION-mi dataset and COCO dataset, and compare with eight state-of-the-art baseline approaches. The results show that FSCA surpasses previous baseline approaches across various metrics and different data distributions, showcasing the superiority of our FSCA. Moreover, we introduce a recall balance strategy and a threshold adjustment strategy, which collectively allows FSCA to reach up a user-level accuracy of 90% in a real-world auditing scenario with only 10 samples/user, highlighting its strong auditing potential in real-world applications. Our code is made available at https://github.com/JiePKU/FSCA.
comment: Under Review; A user-level accuracy of 90% in a real-world auditing scenario
☆ Auto-Connect: Connectivity-Preserving RigFormer with Direct Preference Optimization
We introduce Auto-Connect, a novel approach for automatic rigging that explicitly preserves skeletal connectivity through a connectivity-preserving tokenization scheme. Unlike previous methods that predict bone positions represented as two joints or first predict points before determining connectivity, our method employs special tokens to define endpoints for each joint's children and for each hierarchical layer, effectively automating connectivity relationships. This approach significantly enhances topological accuracy by integrating connectivity information directly into the prediction framework. To further guarantee high-quality topology, we implement a topology-aware reward function that quantifies topological correctness, which is then utilized in a post-training phase through reward-guided Direct Preference Optimization. Additionally, we incorporate implicit geodesic features for latent top-k bone selection, which substantially improves skinning quality. By leveraging geodesic distance information within the model's latent space, our approach intelligently determines the most influential bones for each vertex, effectively mitigating common skinning artifacts. This combination of connectivity-preserving tokenization, reward-guided fine-tuning, and geodesic-aware bone selection enables our model to consistently generate more anatomically plausible skeletal structures with superior deformation properties.
☆ Stop learning it all to mitigate visual hallucination, Focus on the hallucination target CVPR 2025
Multimodal Large Language Models (MLLMs) frequently suffer from hallucination issues, generating information about objects that are not present in input images during vision-language tasks. These hallucinations particularly undermine model reliability in practical applications requiring accurate object identification. To address this challenge, we propose \mymethod,\ a preference learning approach that mitigates hallucinations by focusing on targeted areas where they occur. To implement this, we build a dataset containing hallucinated responses, correct responses, and target information (i.e., objects present in the images and the corresponding chunk positions in responses affected by hallucinations). By applying a preference learning method restricted to these specific targets, the model can filter out irrelevant signals and focus on correcting hallucinations. This allows the model to produce more factual responses by concentrating solely on relevant information. Experimental results demonstrate that \mymethod\ effectively reduces hallucinations across multiple vision hallucination tasks, improving the reliability and performance of MLLMs without diminishing overall performance.
comment: Accepted to CVPR 2025
Dynamic Double Space Tower
The Visual Question Answering (VQA) task requires the simultaneous understanding of image content and question semantics. However, existing methods often have difficulty handling complex reasoning scenarios due to insufficient cross-modal interaction and capturing the entity spatial relationships in the image.\cite{huang2023adaptive}\cite{liu2021comparing}\cite{guibas2021adaptive}\cite{zhang2022vsa}We studied a brand-new approach to replace the attention mechanism in order to enhance the reasoning ability of the model and its understanding of spatial relationships.Specifically, we propose a dynamic bidirectional spatial tower, which is divided into four layers to observe the image according to the principle of human gestalt vision. This naturally provides a powerful structural prior for the spatial organization between entities, enabling the model to no longer blindly search for relationships between pixels but make judgments based on more meaningful perceptual units. Change from "seeing images" to "perceiving and organizing image content".A large number of experiments have shown that our module can be used in any other multimodal model and achieve advanced results, demonstrating its potential in spatial relationship processing.Meanwhile, the multimodal visual question-answering model July trained by our method has achieved state-of-the-art results with only 3B parameters, especially on the question-answering dataset of spatial relations.
Control Architecture and Design for a Multi-robotic Visual Servoing System in Automated Manufacturing Environment
The use of robotic technology has drastically increased in manufacturing in the 21st century. But by utilizing their sensory cues, humans still outperform machines, especially in micro scale manufacturing, which requires high-precision robot manipulators. These sensory cues naturally compensate for high levels of uncertainties that exist in the manufacturing environment. Uncertainties in performing manufacturing tasks may come from measurement noise, model inaccuracy, joint compliance (e.g., elasticity), etc. Although advanced metrology sensors and high precision microprocessors, which are utilized in modern robots, have compensated for many structural and dynamic errors in robot positioning, a well-designed control algorithm still works as a comparable and cheaper alternative to reduce uncertainties in automated manufacturing. Our work illustrates that a multi-robot control system that simulates the positioning process for fastening and unfastening applications can reduce various uncertainties, which may occur in this process, to a great extent. In addition, most research papers in visual servoing mainly focus on developing control and observation architectures in various scenarios, but few have discussed the importance of the camera's location in the configuration. In a manufacturing environment, the quality of camera estimations may vary significantly from one observation location to another, as the combined effects of environmental conditions result in different noise levels of a single image shot at different locations. Therefore, in this paper, we also propose a novel algorithm for the camera's moving policy so that it explores the camera workspace and searches for the optimal location where the image noise level is minimized.
comment: 272 pages, 171 figures, PhD dissertation, University of California, Davis, 2025. To be published in ProQuest ETD
☆ Enhance Multimodal Consistency and Coherence for Text-Image Plan Generation ACL 2025
People get informed of a daily task plan through diverse media involving both texts and images. However, most prior research only focuses on LLM's capability of textual plan generation. The potential of large-scale models in providing text-image plans remains understudied. Generating high-quality text-image plans faces two main challenges: ensuring consistent alignment between two modalities and keeping coherence among visual steps. To address these challenges, we propose a novel framework that generates and refines text-image plans step-by-step. At each iteration, our framework (1) drafts the next textual step based on the prediction history; (2) edits the last visual step to obtain the next one; (3) extracts PDDL-like visual information; and (4) refines the draft with the extracted visual information. The textual and visual step produced in stage (4) and (2) will then serve as inputs for the next iteration. Our approach offers a plug-and-play improvement to various backbone models, such as Mistral-7B, Gemini-1.5, and GPT-4o. To evaluate the effectiveness of our approach, we collect a new benchmark consisting of 1,100 tasks and their text-image pair solutions covering 11 daily topics. We also design and validate a new set of metrics to evaluate the multimodal consistency and coherence in text-image plans. Extensive experiment results show the effectiveness of our approach on a range of backbone models against competitive baselines. Our code and data are available at https://github.com/psunlpgroup/MPlanner.
comment: 18 pages, 10 figures; Accepted to ACL 2025 Findings
☆ A Watermark for Auto-Regressive Image Generation Models
The rapid evolution of image generation models has revolutionized visual content creation, enabling the synthesis of highly realistic and contextually accurate images for diverse applications. However, the potential for misuse, such as deepfake generation, image based phishing attacks, and fabrication of misleading visual evidence, underscores the need for robust authenticity verification mechanisms. While traditional statistical watermarking techniques have proven effective for autoregressive language models, their direct adaptation to image generation models encounters significant challenges due to a phenomenon we term retokenization mismatch, a disparity between original and retokenized sequences during the image generation process. To overcome this limitation, we propose C-reweight, a novel, distortion-free watermarking method explicitly designed for image generation models. By leveraging a clustering-based strategy that treats tokens within the same cluster equivalently, C-reweight mitigates retokenization mismatch while preserving image fidelity. Extensive evaluations on leading image generation platforms reveal that C-reweight not only maintains the visual quality of generated images but also improves detectability over existing distortion-free watermarking techniques, setting a new standard for secure and trustworthy image synthesis.
comment: Technical report
♻ ☆ YOLO advances to its genesis: a decadal and comprehensive review of the You Only Look Once (YOLO) series
This review systematically examines the progression of the You Only Look Once (YOLO) object detection algorithms from YOLOv1 to the recently unveiled YOLOv12. Employing a reverse chronological analysis, this study examines the advancements introduced by YOLO algorithms, beginning with YOLOv12 and progressing through YOLO11 (or YOLOv11), YOLOv10, YOLOv9, YOLOv8, and subsequent versions to explore each version's contributions to enhancing speed, detection accuracy, and computational efficiency in real-time object detection. Additionally, this study reviews the alternative versions derived from YOLO architectural advancements of YOLO-NAS, YOLO-X, YOLO-R, DAMO-YOLO, and Gold-YOLO. Moreover, the study highlights the transformative impact of YOLO models across five critical application areas: autonomous vehicles and traffic safety, healthcare and medical imaging, industrial manufacturing, surveillance and security, and agriculture. By detailing the incremental technological advancements in subsequent YOLO versions, this review chronicles the evolution of YOLO, and discusses the challenges and limitations in each of the earlier versions. The evolution signifies a path towards integrating YOLO with multimodal, context-aware, and Artificial General Intelligence (AGI) systems for the next YOLO decade, promising significant implications for future developments in AI-driven applications. YOLO Review, YOLO Advances, YOLOv13, YOLOv14, YOLOv15, YOLOv16, YOLOv17, YOLOv18, YOLOv19, YOLOv20, YOLO review, YOLO Object Detection
comment: Published in Artificial Intelligence Review as https://doi.org/10.1007/s10462-025-11253-3
♻ ☆ SG2VID: Scene Graphs Enable Fine-Grained Control for Video Synthesis
Surgical simulation plays a pivotal role in training novice surgeons, accelerating their learning curve and reducing intra-operative errors. However, conventional simulation tools fall short in providing the necessary photorealism and the variability of human anatomy. In response, current methods are shifting towards generative model-based simulators. Yet, these approaches primarily focus on using increasingly complex conditioning for precise synthesis while neglecting the fine-grained human control aspect. To address this gap, we introduce SG2VID, the first diffusion-based video model that leverages Scene Graphs for both precise video synthesis and fine-grained human control. We demonstrate SG2VID's capabilities across three public datasets featuring cataract and cholecystectomy surgery. While SG2VID outperforms previous methods both qualitatively and quantitatively, it also enables precise synthesis, providing accurate control over tool and anatomy's size and movement, entrance of new tools, as well as the overall scene layout. We qualitatively motivate how SG2VID can be used for generative augmentation and present an experiment demonstrating its ability to improve a downstream phase detection task when the training set is extended with our synthetic videos. Finally, to showcase SG2VID's ability to retain human control, we interact with the Scene Graphs to generate new video samples depicting major yet rare intra-operative irregularities.
New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration
Referring Expression Comprehension (REC) is a foundational cross-modal task that evaluates the interplay of language understanding, image comprehension, and language-to-image grounding. It serves as an essential testing ground for Multimodal Large Language Models (MLLMs). To advance this field, we introduced a new REC dataset in our previous conference paper, characterized by two key features. First, it is designed with controllable difficulty levels, requiring multi-level fine-grained reasoning across object categories, attributes, and multi-hop relationships. Second, it incorporates negative text and images generated through fine-grained editing and augmentation, explicitly testing a model's ability to reject scenarios where the target object is absent, an often overlooked yet critical challenge in existing datasets. In this extended work, we propose two new methods to tackle the challenges of fine-grained REC by combining the strengths of Specialist Models and MLLMs. The first method adaptively assigns simple cases to faster, lightweight models and reserves complex ones for powerful MLLMs, balancing accuracy and efficiency. The second method lets a specialist generate a set of possible object regions, and the MLLM selects the most plausible one using its reasoning ability. These collaborative strategies lead to significant improvements on our dataset and other challenging benchmarks. Our results show that combining specialized and general-purpose models offers a practical path toward solving complex real-world vision-language tasks. Our dataset and code are available at https://github.com/sleepyshep/FineCops-Ref.
comment: Accepted by TPAMI 2025
♻ ☆ Manipulating Feature Visualizations with Gradient Slingshots
Feature Visualization (FV) is a widely used technique for interpreting the concepts learned by Deep Neural Networks (DNNs), which synthesizes input patterns that maximally activate a given feature. Despite its popularity, the trustworthiness of FV explanations has received limited attention. In this paper, we introduce a novel method, Gradient Slingshots, that enables manipulation of FV without modifying the model architecture or significantly degrading its performance. By shaping new trajectories in the off-distribution regions of the activation landscape of a feature, we coerce the optimization process to converge in a predefined visualization. We evaluate our approach on several DNN architectures, demonstrating its ability to replace faithfuls FV with arbitrary targets. These results expose a critical vulnerability: auditors relying solely on FV may accept entirely fabricated explanations. To mitigate this risk, we propose a straightforward defense and quantitatively demonstrate its effectiveness.
♻ ☆ 3D-WAG: Hierarchical Wavelet-Guided Autoregressive Generation for High-Fidelity 3D Shapes
Autoregressive (AR) models have achieved remarkable success in natural language and image generation, but their application to 3D shape modeling remains largely unexplored. Unlike diffusion models, AR models enable more efficient and controllable generation with faster inference times, making them especially suitable for data-intensive domains. Traditional 3D generative models using AR approaches often rely on ``next-token" predictions at the voxel or point level. While effective for certain applications, these methods can be restrictive and computationally expensive when dealing with large-scale 3D data. To tackle these challenges, we introduce 3D-WAG, an AR model for 3D implicit distance fields that can perform unconditional shape generation, class-conditioned and also text-conditioned shape generation. Our key idea is to encode shapes as multi-scale wavelet token maps and use a Transformer to predict the ``next higher-resolution token map" in an autoregressive manner. By redefining 3D AR generation task as ``next-scale" prediction, we reduce the computational cost of generation compared to traditional ``next-token" prediction models, while preserving essential geometric details of 3D shapes in a more structured and hierarchical manner. We evaluate 3D-WAG to showcase its benefit by quantitative and qualitative comparisons with state-of-the-art methods on widely used benchmarks. Our results show 3D-WAG achieves superior performance in key metrics like Coverage and MMD, generating high-fidelity 3D shapes that closely match the real data distribution.
♻ ☆ Holstein-Friesian Re-Identification using Multiple Cameras and Self-Supervision on a Working Farm
We present MultiCamCows2024, a farm-scale image dataset filmed across multiple cameras for the biometric identification of individual Holstein-Friesian cattle exploiting their unique black and white coat-patterns. Captured by three ceiling-mounted visual sensors covering adjacent barn areas over seven days on a working dairy farm, the dataset comprises 101,329 images of 90 cows, plus underlying original CCTV footage. The dataset is provided with full computer vision recognition baselines, that is both a supervised and self-supervised learning framework for individual cow identification trained on cattle tracklets. We report a performance above 96% single image identification accuracy from the dataset and demonstrate that combining data from multiple cameras during learning enhances self-supervised identification. We show that our framework enables automatic cattle identification, barring only the simple human verification of tracklet integrity during data collection. Crucially, our study highlights that multi-camera, supervised and self-supervised components in tandem not only deliver highly accurate individual cow identification, but also achieve this efficiently with no labelling of cattle identities by humans. We argue that this improvement in efficacy has practical implications for livestock management, behaviour analysis, and agricultural monitoring. For reproducibility and practical ease of use, we publish all key software and code including re-identification components and the species detector with this paper, available at https://tinyurl.com/MultiCamCows2024.
comment: 24 pages, 10 figures
♻ ☆ CheXGenBench: A Unified Benchmark For Fidelity, Privacy and Utility of Synthetic Chest Radiographs
We introduce CheXGenBench, a rigorous and multifaceted evaluation framework for synthetic chest radiograph generation that simultaneously assesses fidelity, privacy risks, and clinical utility across state-of-the-art text-to-image generative models. Despite rapid advancements in generative AI for real-world imagery, medical domain evaluations have been hindered by methodological inconsistencies, outdated architectural comparisons, and disconnected assessment criteria that rarely address the practical clinical value of synthetic samples. CheXGenBench overcomes these limitations through standardised data partitioning and a unified evaluation protocol comprising over 20 quantitative metrics that systematically analyse generation quality, potential privacy vulnerabilities, and downstream clinical applicability across 11 leading text-to-image architectures. Our results reveal critical inefficiencies in the existing evaluation protocols, particularly in assessing generative fidelity, leading to inconsistent and uninformative comparisons. Our framework establishes a standardised benchmark for the medical AI community, enabling objective and reproducible comparisons while facilitating seamless integration of both existing and future generative models. Additionally, we release a high-quality, synthetic dataset, SynthCheX-75K, comprising 75K radiographs generated by the top-performing model (Sana 0.6B) in our benchmark to support further research in this critical domain. Through CheXGenBench, we establish a new state-of-the-art and release our framework, models, and SynthCheX-75K dataset at https://raman1121.github.io/CheXGenBench/
♻ ☆ SAP-Bench: Benchmarking Multimodal Large Language Models in Surgical Action Planning
Effective evaluation is critical for driving advancements in MLLM research. The surgical action planning (SAP) task, which aims to generate future action sequences from visual inputs, demands precise and sophisticated analytical capabilities. Unlike mathematical reasoning, surgical decision-making operates in life-critical domains and requires meticulous, verifiable processes to ensure reliability and patient safety. This task demands the ability to distinguish between atomic visual actions and coordinate complex, long-horizon procedures, capabilities that are inadequately evaluated by current benchmarks. To address this gap, we introduce SAP-Bench, a large-scale, high-quality dataset designed to enable multimodal large language models (MLLMs) to perform interpretable surgical action planning. Our SAP-Bench benchmark, derived from the cholecystectomy procedures context with the mean duration of 1137.5s, and introduces temporally-grounded surgical action annotations, comprising the 1,226 clinically validated action clips (mean duration: 68.7s) capturing five fundamental surgical actions across 74 procedures. The dataset provides 1,152 strategically sampled current frames, each paired with the corresponding next action as multimodal analysis anchors. We propose the MLLM-SAP framework that leverages MLLMs to generate next action recommendations from the current surgical scene and natural language instructions, enhanced with injected surgical domain knowledge. To assess our dataset's effectiveness and the broader capabilities of current models, we evaluate seven state-of-the-art MLLMs (e.g., OpenAI-o1, GPT-4o, QwenVL2.5-72B, Claude-3.5-Sonnet, GeminiPro2.5, Step-1o, and GLM-4v) and reveal critical gaps in next action prediction performance.
comment: The authors could not reach a consensus on the final version of this paper, necessitating its withdrawal
♻ ☆ Real-time Seafloor Segmentation and Mapping
Posidonia oceanica meadows are a species of seagrass highly dependent on rocks for their survival and conservation. In recent years, there has been a concerning global decline in this species, emphasizing the critical need for efficient monitoring and assessment tools. While deep learning-based semantic segmentation and visual automated monitoring systems have shown promise in a variety of applications, their performance in underwater environments remains challenging due to complex water conditions and limited datasets. This paper introduces a framework that combines machine learning and computer vision techniques to enable an autonomous underwater vehicle (AUV) to inspect the boundaries of Posidonia oceanica meadows autonomously. The framework incorporates an image segmentation module using an existing Mask R-CNN model and a strategy for Posidonia oceanica meadow boundary tracking. Furthermore, a new class dedicated to rocks is introduced to enhance the existing model, aiming to contribute to a comprehensive monitoring approach and provide a deeper understanding of the intricate interactions between the meadow and its surrounding environment. The image segmentation model is validated using real underwater images, while the overall inspection framework is evaluated in a realistic simulation environment, replicating actual monitoring scenarios with real underwater images. The results demonstrate that the proposed framework enables the AUV to autonomously accomplish the main tasks of underwater inspection and segmentation of rocks. Consequently, this work holds significant potential for the conservation and protection of marine environments, providing valuable insights into the status of Posidonia oceanica meadows and supporting targeted preservation efforts
♻ ☆ HandS3C: 3D Hand Mesh Reconstruction with State Space Spatial Channel Attention from RGB images
Reconstructing the hand mesh from one single RGB image is a challenging task because hands are often occluded by other objects. Most previous works attempt to explore more additional information and adopt attention mechanisms for improving 3D reconstruction performance, while it would increase computational complexity simultaneously. To achieve a performance-reserving architecture with high computational efficiency, in this work, we propose a simple but effective 3D hand mesh reconstruction network (i.e., HandS3C), which is the first time to incorporate state space model into the task of hand mesh reconstruction. In the network, we design a novel state-space spatial-channel attention module that extends the effective receptive field, extracts hand features in the spatial dimension, and enhances regional features of hands in the channel dimension. This helps to reconstruct a complete and detailed hand mesh. Extensive experiments conducted on well-known datasets facing heavy occlusions (such as FREIHAND, DEXYCB, and HO3D) demonstrate that our proposed HandS3C achieves state-of-the-art performance while maintaining a minimal parameters.
comment: 5 pages, 3 figures
♻ ☆ Scaling Human Activity Recognition: A Comparative Evaluation of Synthetic Data Generation and Augmentation Techniques
Human activity recognition (HAR) is often limited by the scarcity of labeled datasets due to the high cost and complexity of real-world data collection. To mitigate this, recent work has explored generating virtual inertial measurement unit (IMU) data via cross-modality transfer. While video-based and language-based pipelines have each shown promise, they differ in assumptions and computational cost. Moreover, their effectiveness relative to traditional sensor-level data augmentation remains unclear. In this paper, we present a direct comparison between these two virtual IMU generation approaches against classical data augmentation techniques. We construct a large-scale virtual IMU dataset spanning 100 diverse activities from Kinetics-400 and simulate sensor signals at 22 body locations. The three data generation strategies are evaluated on benchmark HAR datasets (UTD-MHAD, PAMAP2, HAD-AW) using four popular models. Results show that virtual IMU data significantly improves performance over real or augmented data alone, particularly under limited-data conditions. We offer practical guidance on choosing data generation strategies and highlight the distinct advantages and disadvantages of each approach.
♻ ☆ PATS: Proficiency-Aware Temporal Sampling for Multi-View Sports Skill Assessment
Automated sports skill assessment requires capturing fundamental movement patterns that distinguish expert from novice performance, yet current video sampling methods disrupt the temporal continuity essential for proficiency evaluation. To this end, we introduce Proficiency-Aware Temporal Sampling (PATS), a novel sampling strategy that preserves complete fundamental movements within continuous temporal segments for multi-view skill assessment. PATS adaptively segments videos to ensure each analyzed portion contains full execution of critical performance components, repeating this process across multiple segments to maximize information coverage while maintaining temporal coherence. Evaluated on the EgoExo4D benchmark with SkillFormer, PATS surpasses the state-of-the-art accuracy across all viewing configurations (+0.65% to +3.05%) and delivers substantial gains in challenging domains (+26.22% bouldering, +2.39% music, +1.13% basketball). Systematic analysis reveals that PATS successfully adapts to diverse activity characteristics-from high-frequency sampling for dynamic sports to fine-grained segmentation for sequential skills-demonstrating its effectiveness as an adaptive approach to temporal sampling that advances automated skill assessment for real-world applications.
♻ ☆ SkillFormer: Unified Multi-View Video Understanding for Proficiency Estimation
Assessing human skill levels in complex activities is a challenging problem with applications in sports, rehabilitation, and training. In this work, we present SkillFormer, a parameter-efficient architecture for unified multi-view proficiency estimation from egocentric and exocentric videos. Building on the TimeSformer backbone, SkillFormer introduces a CrossViewFusion module that fuses view-specific features using multi-head cross-attention, learnable gating, and adaptive self-calibration. We leverage Low-Rank Adaptation to fine-tune only a small subset of parameters, significantly reducing training costs. In fact, when evaluated on the EgoExo4D dataset, SkillFormer achieves state-of-the-art accuracy in multi-view settings while demonstrating remarkable computational efficiency, using 4.5x fewer parameters and requiring 3.75x fewer training epochs than prior baselines. It excels in multiple structured tasks, confirming the value of multi-view integration for fine-grained skill assessment.
♻ ☆ Vision-Language Models for Edge Networks: A Comprehensive Survey
Vision Large Language Models (VLMs) combine visual understanding with natural language processing, enabling tasks like image captioning, visual question answering, and video analysis. While VLMs show impressive capabilities across domains such as autonomous vehicles, smart surveillance, and healthcare, their deployment on resource-constrained edge devices remains challenging due to processing power, memory, and energy limitations. This survey explores recent advancements in optimizing VLMs for edge environments, focusing on model compression techniques, including pruning, quantization, knowledge distillation, and specialized hardware solutions that enhance efficiency. We provide a detailed discussion of efficient training and fine-tuning methods, edge deployment challenges, and privacy considerations. Additionally, we discuss the diverse applications of lightweight VLMs across healthcare, environmental monitoring, and autonomous systems, illustrating their growing impact. By highlighting key design strategies, current challenges, and offering recommendations for future directions, this survey aims to inspire further research into the practical deployment of VLMs, ultimately making advanced AI accessible in resource-limited settings.
♻ ☆ Foundation Models in Medical Imaging -- A Review and Outlook
Foundation models (FMs) are changing the way medical images are analyzed by learning from large collections of unlabeled data. Instead of relying on manually annotated examples, FMs are pre-trained to learn general-purpose visual features that can later be adapted to specific clinical tasks with little additional supervision. In this review, we examine how FMs are being developed and applied in pathology, radiology, and ophthalmology, drawing on evidence from over 150 studies. We explain the core components of FM pipelines, including model architectures, self-supervised learning methods, and strategies for downstream adaptation. We also review how FMs are being used in each imaging domain and compare design choices across applications. Finally, we discuss key challenges and open questions to guide future research.
♻ ☆ Beyond the Visible: Multispectral Vision-Language Learning for Earth Observation
Vision-language models for Earth observation (EO) typically rely on the visual spectrum of data as the only model input, thus failing to leverage the rich spectral information available in the multispectral channels recorded by satellites. Therefore, we introduce Llama3-MS-CLIP, the first vision-language model pre-trained with contrastive learning on a large-scale multispectral dataset and report on the performance gains due to the extended spectral range. Furthermore, we present the largest-to-date image-caption dataset for multispectral data, consisting of one million Sentinel-2 samples and corresponding textual descriptions generated using Llama3-LLaVA-Next and Overture Maps data. We develop a scalable captioning pipeline, which is validated by domain experts. We evaluate Llama3-MS-CLIP on multispectral zero-shot image classification and retrieval using three datasets of varying complexity. Our results demonstrate that Llama3-MS-CLIP significantly outperforms other RGB-based approaches, improving classification accuracy by +6.77% on average and retrieval performance by +4.63% mAP compared to the second-best model. Our results emphasize the relevance of multispectral vision-language learning. The image-caption dataset, code, and model weights are available at https://github.com/IBM/MS-CLIP.
♻ ☆ Fine-tune Smarter, Not Harder: Parameter-Efficient Fine-Tuning for Geospatial Foundation Models
Earth observation (EO) is crucial for monitoring environmental changes, responding to disasters, and managing natural resources. In this context, foundation models facilitate remote sensing image analysis to retrieve relevant geoinformation accurately and efficiently. However, as these models grow in size, fine-tuning becomes increasingly challenging due to the associated computational resources and costs, limiting their accessibility and scalability. Furthermore, full fine-tuning can lead to forgetting pre-trained features and even degrade model generalization. To address this, Parameter-Efficient Fine-Tuning (PEFT) techniques offer a promising solution. In this paper, we conduct extensive experiments with various foundation model architectures and PEFT techniques to evaluate their effectiveness on five different EO datasets. Our results provide a comprehensive comparison, offering insights into when and how PEFT methods support the adaptation of pre-trained geospatial models. We demonstrate that PEFT techniques match or even exceed full fine-tuning performance and enhance model generalisation to unseen geographic regions, while reducing training time and memory requirements. Additional experiments investigate the effect of architecture choices such as the decoder type or the use of metadata, suggesting UNet decoders and fine-tuning without metadata as the recommended configuration. We have integrated all evaluated foundation models and techniques into the open-source package TerraTorch to support quick, scalable, and cost-effective model adaptation.
comment: Code available at https://github.com/IBM/peft-geofm
♻ ☆ Consistent Video Editing as Flow-Driven Image-to-Video Generation
With the prosper of video diffusion models, down-stream applications like video editing have been significantly promoted without consuming much computational cost. One particular challenge in this task lies at the motion transfer process from the source video to the edited one, where it requires the consideration of the shape deformation in between, meanwhile maintaining the temporal consistency in the generated video sequence. However, existing methods fail to model complicated motion patterns for video editing, and are fundamentally limited to object replacement, where tasks with non-rigid object motions like multi-object and portrait editing are largely neglected. In this paper, we observe that optical flows offer a promising alternative in complex motion modeling, and present FlowV2V to re-investigate video editing as a task of flow-driven Image-to-Video (I2V) generation. Specifically, FlowV2V decomposes the entire pipeline into first-frame editing and conditional I2V generation, and simulates pseudo flow sequence that aligns with the deformed shape, thus ensuring the consistency during editing. Experimental results on DAVIS-EDIT with improvements of 13.67% and 50.66% on DOVER and warping error illustrate the superior temporal consistency and sample quality of FlowV2V compared to existing state-of-the-art ones. Furthermore, we conduct comprehensive ablation studies to analyze the internal functionalities of the first-frame paradigm and flow alignment in the proposed method.
comment: 16 pages, 12 figures
♻ ☆ PiPViT: Patch-based Visual Interpretable Prototypes for Retinal Image Analysis
Background and Objective: Prototype-based methods improve interpretability by learning fine-grained part-prototypes; however, their visualization in the input pixel space is not always consistent with human-understandable biomarkers. In addition, well-known prototype-based approaches typically learn extremely granular prototypes that are less interpretable in medical imaging, where both the presence and extent of biomarkers and lesions are critical. Methods: To address these challenges, we propose PiPViT (Patch-based Visual Interpretable Prototypes), an inherently interpretable prototypical model for image recognition. Leveraging a vision transformer (ViT), PiPViT captures long-range dependencies among patches to learn robust, human-interpretable prototypes that approximate lesion extent only using image-level labels. Additionally, PiPViT benefits from contrastive learning and multi-resolution input processing, which enables effective localization of biomarkers across scales. Results: We evaluated PiPViT on retinal OCT image classification across four datasets, where it achieved competitive quantitative performance compared to state-of-the-art methods while delivering more meaningful explanations. Moreover, quantitative evaluation on a hold-out test set confirms that the learned prototypes are semantically and clinically relevant. We believe PiPViT can transparently explain its decisions and assist clinicians in understanding diagnostic outcomes. Github page: https://github.com/marziehoghbaie/PiPViT
♻ ☆ Clustering is back: Reaching state-of-the-art LiDAR instance segmentation without training
Panoptic segmentation of LiDAR point clouds is fundamental to outdoor scene understanding, with autonomous driving being a primary application. While state-of-the-art approaches typically rely on end-to-end deep learning architectures and extensive manual annotations of instances, the significant cost and time investment required for labeling large-scale point cloud datasets remains a major bottleneck in this field. In this work, we demonstrate that competitive panoptic segmentation can be achieved using only semantic labels, with instances predicted without any training or annotations. Our method outperforms state-of-the-art supervised methods on standard benchmarks including SemanticKITTI and nuScenes, and outperforms every publicly available method on SemanticKITTI as a drop-in instance head replacement, while running in real-time on a single-threaded CPU and requiring no instance labels. It is fully explainable, and requires no learning or parameter tuning. Alpine combined with state-of-the-art semantic segmentation ranks first on the official panoptic segmentation leaderboard of SemanticKITTI. Code is available at https://github.com/valeoai/Alpine/
comment: Alpine ranks first in the leaderboard of SemanticKITTI's panoptic segmentation
♻ ☆ Scaling Prompt Instructed Zero Shot Composed Image Retrieval with Image-Only Data
Composed Image Retrieval (CIR) is the task of retrieving images matching a reference image augmented with a text, where the text describes changes to the reference image in natural language. Traditionally, models designed for CIR have relied on triplet data containing a reference image, reformulation text, and a target image. However, curating such triplet data often necessitates human intervention, leading to prohibitive costs. This challenge has hindered the scalability of CIR model training even with the availability of abundant unlabeled data. With the recent advances in foundational models, we advocate a shift in the CIR training paradigm where human annotations can be efficiently replaced by large language models (LLMs). Specifically, we demonstrate the capability of large captioning and language models in efficiently generating data for CIR only relying on unannotated image collections. Additionally, we introduce an embedding reformulation architecture that effectively combines image and text modalities. Our model, named InstructCIR, outperforms state-of-the-art methods in zero-shot composed image retrieval on CIRR and FashionIQ datasets. Furthermore, we demonstrate that by increasing the amount of generated data, our zero-shot model gets closer to the performance of supervised baselines.
♻ ☆ SemanticSplat: Feed-Forward 3D Scene Understanding with Language-Aware Gaussian Fields
Holistic 3D scene understanding, which jointly models geometry, appearance, and semantics, is crucial for applications like augmented reality and robotic interaction. Existing feed-forward 3D scene understanding methods (e.g., LSM) are limited to extracting language-based semantics from scenes, failing to achieve holistic scene comprehension. Additionally, they suffer from low-quality geometry reconstruction and noisy artifacts. In contrast, per-scene optimization methods rely on dense input views, which reduces practicality and increases complexity during deployment. In this paper, we propose SemanticSplat, a feed-forward semantic-aware 3D reconstruction method, which unifies 3D Gaussians with latent semantic attributes for joint geometry-appearance-semantics modeling. To predict the semantic anisotropic Gaussians, SemanticSplat fuses diverse feature fields (e.g., LSeg, SAM) with a cost volume representation that stores cross-view feature similarities, enhancing coherent and accurate scene comprehension. Leveraging a two-stage distillation framework, SemanticSplat reconstructs a holistic multi-modal semantic feature field from sparse-view images. Experiments demonstrate the effectiveness of our method for 3D scene understanding tasks like promptable and open-vocabulary segmentation. Video results are available at https://semanticsplat.github.io.
♻ ☆ Motion-R1: Chain-of-Thought Reasoning and Reinforcement Learning for Human Motion Generation
Recent advances in large language models, especially in natural language understanding and reasoning, have opened new possibilities for text-to-motion generation. Although existing approaches have made notable progress in semantic alignment and motion synthesis, they often rely on end-to-end mapping strategies that fail to capture deep linguistic structures and logical reasoning. Consequently, generated motions tend to lack controllability, consistency, and diversity. To address these limitations, we propose Motion-R1, a unified motion-language modeling framework that integrates a Chain-of-Thought mechanism. By explicitly decomposing complex textual instructions into logically structured action paths, Motion-R1 provides high-level semantic guidance for motion generation, significantly enhancing the model's ability to interpret and execute multi-step, long-horizon, and compositionally rich commands. To train our model, we adopt Group Relative Policy Optimization, a reinforcement learning algorithm designed for large models, which leverages motion quality feedback to optimize reasoning chains and motion synthesis jointly. Extensive experiments across multiple benchmark datasets demonstrate that Motion-R1 achieves competitive or superior performance compared to state-of-the-art methods, particularly in scenarios requiring nuanced semantic understanding and long-term temporal coherence. The code, model and data will be publicly available.
♻ ☆ HF-VTON: High-Fidelity Virtual Try-On via Consistent Geometric and Semantic Alignment
Virtual try-on technology has become increasingly important in the fashion and retail industries, enabling the generation of high-fidelity garment images that adapt seamlessly to target human models. While existing methods have achieved notable progress, they still face significant challenges in maintaining consistency across different poses. Specifically, geometric distortions lead to a lack of spatial consistency, mismatches in garment structure and texture across poses result in semantic inconsistency, and the loss or distortion of fine-grained details diminishes visual fidelity. To address these challenges, we propose HF-VTON, a novel framework that ensures high-fidelity virtual try-on performance across diverse poses. HF-VTON consists of three key modules: (1) the Appearance-Preserving Warp Alignment Module (APWAM), which aligns garments to human poses, addressing geometric deformations and ensuring spatial consistency; (2) the Semantic Representation and Comprehension Module (SRCM), which captures fine-grained garment attributes and multi-pose data to enhance semantic representation, maintaining structural, textural, and pattern consistency; and (3) the Multimodal Prior-Guided Appearance Generation Module (MPAGM), which integrates multimodal features and prior knowledge from pre-trained models to optimize appearance generation, ensuring both semantic and geometric consistency. Additionally, to overcome data limitations in existing benchmarks, we introduce the SAMP-VTONS dataset, featuring multi-pose pairs and rich textual annotations for a more comprehensive evaluation. Experimental results demonstrate that HF-VTON outperforms state-of-the-art methods on both VITON-HD and SAMP-VTONS, excelling in visual fidelity, semantic consistency, and detail preservation.
comment: After the publication of the paper, we discovered some significant errors/omissions that need to be corrected and improved
MiniMaxAD: A Lightweight Autoencoder for Feature-Rich Anomaly Detection
Previous industrial anomaly detection methods often struggle to handle the extensive diversity in training sets, particularly when they contain stylistically diverse and feature-rich samples, which we categorize as feature-rich anomaly detection datasets (FRADs). This challenge is evident in applications such as multi-view and multi-class scenarios. To address this challenge, we developed MiniMaxAD, a efficient autoencoder designed to efficiently compress and memorize extensive information from normal images. Our model employs a technique that enhances feature diversity, thereby increasing the effective capacity of the network. It also utilizes large kernel convolution to extract highly abstract patterns, which contribute to efficient and compact feature embedding. Moreover, we introduce an Adaptive Contraction Hard Mining Loss (ADCLoss), specifically tailored to FRADs. In our methodology, any dataset can be unified under the framework of feature-rich anomaly detection, in a way that the benefits far outweigh the drawbacks. Our approach has achieved state-of-the-art performance in multiple challenging benchmarks. Code is available at: \href{https://github.com/WangFengJiee/MiniMaxAD}{https://github.com/WangFengJiee/MiniMaxAD}
comment: Accept by Computers in Industry
♻ ☆ Learning Class Prototypes for Unified Sparse Supervised 3D Object Detection CVPR 2025
Both indoor and outdoor scene perceptions are essential for embodied intelligence. However, current sparse supervised 3D object detection methods focus solely on outdoor scenes without considering indoor settings. To this end, we propose a unified sparse supervised 3D object detection method for both indoor and outdoor scenes through learning class prototypes to effectively utilize unlabeled objects. Specifically, we first propose a prototype-based object mining module that converts the unlabeled object mining into a matching problem between class prototypes and unlabeled features. By using optimal transport matching results, we assign prototype labels to high-confidence features, thereby achieving the mining of unlabeled objects. We then present a multi-label cooperative refinement module to effectively recover missed detections through pseudo label quality control and prototype label cooperation. Experiments show that our method achieves state-of-the-art performance under the one object per scene sparse supervised setting across indoor and outdoor datasets. With only one labeled object per scene, our method achieves about 78%, 90%, and 96% performance compared to the fully supervised detector on ScanNet V2, SUN RGB-D, and KITTI, respectively, highlighting the scalability of our method. Code is available at https://github.com/zyrant/CPDet3D.
comment: Accepted by CVPR 2025
♻ ☆ Efficient Visual State Space Model for Image Deblurring CVPR 2025
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration. While ViTs generally outperform CNNs by effectively capturing long-range dependencies and input-specific characteristics, their computational complexity increases quadratically with image resolution. This limitation hampers their practical application in high-resolution image restoration. In this paper, we propose a simple yet effective visual state space model (EVSSM) for image deblurring, leveraging the benefits of state space models (SSMs) for visual data. In contrast to existing methods that employ several fixed-direction scanning for feature extraction, which significantly increases the computational cost, we develop an efficient visual scan block that applies various geometric transformations before each SSM-based module, capturing useful non-local information and maintaining high efficiency. In addition, to more effectively capture and represent local information, we propose an efficient discriminative frequency domain-based feedforward network (EDFFN), which can effectively estimate useful frequency information for latent clear image restoration. Extensive experimental results show that the proposed EVSSM performs favorably against state-of-the-art methods on benchmark datasets and real-world images. The code is available at https://github.com/kkkls/EVSSM.
comment: CVPR 2025
♻ ☆ Sheet Music Benchmark: Standardized Optical Music Recognition Evaluation
In this work, we introduce the Sheet Music Benchmark (SMB), a dataset of six hundred and eighty-five pages specifically designed to benchmark Optical Music Recognition (OMR) research. SMB encompasses a diverse array of musical textures, including monophony, pianoform, quartet, and others, all encoded in Common Western Modern Notation using the Humdrum **kern format. Alongside SMB, we introduce the OMR Normalized Edit Distance (OMR-NED), a new metric tailored explicitly for evaluating OMR performance. OMR-NED builds upon the widely-used Symbol Error Rate (SER), offering a fine-grained and detailed error analysis that covers individual musical elements such as note heads, beams, pitches, accidentals, and other critical notation features. The resulting numeric score provided by OMR-NED facilitates clear comparisons, enabling researchers and end-users alike to identify optimal OMR approaches. Our work thus addresses a long-standing gap in OMR evaluation, and we support our contributions with baseline experiments using standardized SMB dataset splits for training and assessing state-of-the-art methods.
♻ ☆ E2MPL:An Enduring and Efficient Meta Prompt Learning Framework for Few-shot Unsupervised Domain Adaptation
Few-shot unsupervised domain adaptation (FS-UDA) leverages a limited amount of labeled data from a source domain to enable accurate classification in an unlabeled target domain. Despite recent advancements, current approaches of FS-UDA continue to confront a major challenge: models often demonstrate instability when adapted to new FS-UDA tasks and necessitate considerable time investment. To address these challenges, we put forward a novel framework called Enduring and Efficient Meta-Prompt Learning (E2MPL) for FS-UDA. Within this framework, we utilize the pre-trained CLIP model as the backbone of feature learning. Firstly, we design domain-shared prompts, consisting of virtual tokens, which primarily capture meta-knowledge from a wide range of meta-tasks to mitigate the domain gaps. Secondly, we develop a task prompt learning network that adaptively learns task-specific specific prompts with the goal of achieving fast and stable task generalization. Thirdly, we formulate the meta-prompt learning process as a bilevel optimization problem, consisting of (outer) meta-prompt learner and (inner) task-specific classifier and domain adapter. Also, the inner objective of each meta-task has the closed-form solution, which enables efficient prompt learning and adaptation to new tasks in a single step. Extensive experimental studies demonstrate the promising performance of our framework in a domain adaptation benchmark dataset DomainNet. Compared with state-of-the-art methods, our method has improved accuracy by at least 15.4% and reduced the time by 68.5% on average in 5-way 1-shot tasks, and improved accuracy by 8.7% and reduced the time by 74.1% on average in 5-way 5-shot tasks. Moreover, our approach exhibits more enduring performance than the other methods, i.e., being more stable across 3600 test tasks.
♻ ☆ Fish feeding behavior recognition and intensity quantification methods in aquaculture: From single modality analysis to multimodality fusion
As a key part of aquaculture management, fish feeding behavior recognition and intensity quantification has been a hot area of great concern to researchers, and it plays a crucial role in monitoring fish health, guiding baiting work and improving aquaculture efficiency. In order to better carry out the related work in the future, this paper firstly analyzes and compares the existing reviews. Then reviews the research advances of fish feeding behavior recognition and intensity quantification methods based on computer vision, acoustics and sensors in a single modality. Meanwhile, the application of the current emerging multimodal fusion in fish feeding behavior recognition and intensity quantification methods is expounded. Finally, the advantages and disadvantages of various techniques are compared and analyzed, and the future research directions are envisioned.
comment: 24 pages, 4 figures,
♻ ☆ TextCrafter: Accurately Rendering Multiple Texts in Complex Visual Scenes
This paper explores the task of Complex Visual Text Generation (CVTG), which centers on generating intricate textual content distributed across diverse regions within visual images. In CVTG, image generation models often rendering distorted and blurred visual text or missing some visual text. To tackle these challenges, we propose TextCrafter, a novel multi-visual text rendering method. TextCrafter employs a progressive strategy to decompose complex visual text into distinct components while ensuring robust alignment between textual content and its visual carrier. Additionally, it incorporates a token focus enhancement mechanism to amplify the prominence of visual text during the generation process. TextCrafter effectively addresses key challenges in CVTG tasks, such as text confusion, omissions, and blurriness. Moreover, we present a new benchmark dataset, CVTG-2K, tailored to rigorously evaluate the performance of generative models on CVTG tasks. Extensive experiments demonstrate that our method surpasses state-of-the-art approaches.
♻ ☆ LLaVA-c: Continual Improved Visual Instruction Tuning
Multimodal models like LLaVA-1.5 achieve state-of-the-art visual understanding through visual instruction tuning on multitask datasets, enabling strong instruction-following and multimodal performance. However, multitask learning faces challenges such as task balancing, requiring careful adjustment of data proportions, and expansion costs, where new tasks risk catastrophic forgetting and need costly retraining. Continual learning provides a promising alternative to acquiring new knowledge incrementally while preserving existing capabilities. However, current methods prioritize task-specific performance, neglecting base model degradation from overfitting to specific instructions, which undermines general capabilities. In this work, we propose a simple but effective method with two modifications on LLaVA-1.5: spectral-aware consolidation for improved task balance and unsupervised inquiry regularization to prevent base model degradation. We evaluate both general and task-specific performance across continual pretraining and fine-tuning. Experiments demonstrate that LLaVA-c consistently enhances standard benchmark performance and preserves general capabilities. For the first time, we show that task-by-task continual learning can achieve results that match or surpass multitask joint learning. The code will be publicly released.
♻ ☆ A Self-supervised Motion Representation for Portrait Video Generation
Recent advancements in portrait video generation have been noteworthy. However, existing methods rely heavily on human priors and pre-trained generative models, Motion representations based on human priors may introduce unrealistic motion, while methods relying on pre-trained generative models often suffer from inefficient inference. To address these challenges, we propose Semantic Latent Motion (SeMo), a compact and expressive motion representation. Leveraging this representation, our approach achieve both high-quality visual results and efficient inference. SeMo follows an effective three-step framework: Abstraction, Reasoning, and Generation. First, in the Abstraction step, we use a carefully designed Masked Motion Encoder, which leverages a self-supervised learning paradigm to compress the subject's motion state into a compact and abstract latent motion (1D token). Second, in the Reasoning step, we efficiently generate motion sequences based on the driving audio signal. Finally, in the Generation step, the motion dynamics serve as conditional information to guide the motion decoder in synthesizing realistic transitions from reference frame to target video. Thanks to the compact and expressive nature of Semantic Latent Motion, our method achieves efficient motion representation and high-quality video generation. User studies demonstrate that our approach surpasses state-of-the-art models with an 81% win rate in realism. Extensive experiments further highlight its strong compression capability, reconstruction quality, and generative potential.
♻ ☆ Discovering Hidden Visual Concepts Beyond Linguistic Input in Infant Learning CVPR 2025
Infants develop complex visual understanding rapidly, even preceding the acquisition of linguistic skills. As computer vision seeks to replicate the human vision system, understanding infant visual development may offer valuable insights. In this paper, we present an interdisciplinary study exploring this question: can a computational model that imitates the infant learning process develop broader visual concepts that extend beyond the vocabulary it has heard, similar to how infants naturally learn? To investigate this, we analyze a recently published model in Science by Vong et al., which is trained on longitudinal, egocentric images of a single child paired with transcribed parental speech. We perform neuron labeling to identify visual concept neurons hidden in the model's internal representations. We then demonstrate that these neurons can recognize objects beyond the model's original vocabulary. Furthermore, we compare the differences in representation between infant models and those in modern computer vision models, such as CLIP and ImageNet pre-trained model. Ultimately, our work bridges cognitive science and computer vision by analyzing the internal representations of a computational model trained on an infant visual and linguistic inputs. Project page is available at https://kexueyi.github.io/webpage-discover-hidden-visual-concepts.
comment: Accepted at CVPR 2025
♻ ☆ MMMG: A Massive, Multidisciplinary, Multi-Tier Generation Benchmark for Text-to-Image Reasoning
In this paper, we introduce knowledge image generation as a new task, alongside the Massive Multi-Discipline Multi-Tier Knowledge-Image Generation Benchmark (MMMG) to probe the reasoning capability of image generation models. Knowledge images have been central to human civilization and to the mechanisms of human learning -- a fact underscored by dual-coding theory and the picture-superiority effect. Generating such images is challenging, demanding multimodal reasoning that fuses world knowledge with pixel-level grounding into clear explanatory visuals. To enable comprehensive evaluation, MMMG offers 4,456 expert-validated (knowledge) image-prompt pairs spanning 10 disciplines, 6 educational levels, and diverse knowledge formats such as charts, diagrams, and mind maps. To eliminate confounding complexity during evaluation, we adopt a unified Knowledge Graph (KG) representation. Each KG explicitly delineates a target image's core entities and their dependencies. We further introduce MMMG-Score to evaluate generated knowledge images. This metric combines factual fidelity, measured by graph-edit distance between KGs, with visual clarity assessment. Comprehensive evaluations of 16 state-of-the-art text-to-image generation models expose serious reasoning deficits -- low entity fidelity, weak relations, and clutter -- with GPT-4o achieving an MMMG-Score of only 50.20, underscoring the benchmark's difficulty. To spur further progress, we release FLUX-Reason (MMMG-Score of 34.45), an effective and open baseline that combines a reasoning LLM with diffusion models and is trained on 16,000 curated knowledge image-prompt pairs.
comment: 85 pages, 70 figures, code: https://github.com/MMMGBench/MMMG, project page: https://mmmgbench.github.io/
♻ ☆ We Care Each Pixel: Calibrating on Medical Segmentation Model
Medical image segmentation is fundamental for computer-aided diagnostics, providing accurate delineation of anatomical structures and pathological regions. While common metrics such as Accuracy, DSC, IoU, and HD primarily quantify spatial agreement between predictions and ground-truth labels, they do not assess the calibration quality of segmentation models, which is crucial for clinical reliability. To address this limitation, we propose pixel-wise Expected Calibration Error (pECE), a novel metric that explicitly measures miscalibration at the pixel level, thereby ensuring both spatial precision and confidence reliability. We further introduce a morphological adaptation strategy that applies morphological operations to ground-truth masks before computing calibration losses, particularly benefiting margin-based losses such as Margin SVLS and NACL. Additionally, we present the Signed Distance Calibration Loss (SDC), which aligns boundary geometry with calibration objectives by penalizing discrepancies between predicted and ground-truth signed distance functions (SDFs). Extensive experiments demonstrate that our method not only enhances segmentation performance but also improves calibration quality, yielding more trustworthy confidence estimates. Code is available at: https://github.com/EagleAdelaide/SDC-Loss.
comment: Under Reviewing
♻ ☆ Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in understanding common visual elements, largely due to their large-scale datasets and advanced training strategies. However, their effectiveness in medical applications remains limited due to the inherent discrepancies between data and tasks in medical scenarios and those in the general domain. Concretely, existing medical MLLMs face the following critical limitations: (1) limited coverage of medical knowledge beyond imaging, (2) heightened susceptibility to hallucinations due to suboptimal data curation processes, (3) lack of reasoning capabilities tailored for complex medical scenarios. To address these challenges, we first propose a comprehensive data curation procedure that (1) efficiently acquires rich medical knowledge data not only from medical imaging but also from extensive medical texts and general-domain data; and (2) synthesizes accurate medical captions, visual question answering (VQA), and reasoning samples. As a result, we build a multimodal dataset enriched with extensive medical knowledge. Building on the curated data, we introduce our medical-specialized MLLM: Lingshu. Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities progressively. Besides, we preliminarily explore the potential of applying reinforcement learning with verifiable rewards paradigm to enhance Lingshu's medical reasoning ability. Additionally, we develop MedEvalKit, a unified evaluation framework that consolidates leading multimodal and textual medical benchmarks for standardized, fair, and efficient model assessment. We evaluate the performance of Lingshu on three fundamental medical tasks, multimodal QA, text-based QA, and medical report generation. The results show that Lingshu consistently outperforms the existing open-source multimodal models on most tasks ...
comment: Technical Report, 53 pages, 25 tables, and 16 figures. Our webpage is https://alibaba-damo-academy.github.io/lingshu/
♻ ☆ Ming-Lite-Uni: Advancements in Unified Architecture for Natural Multimodal Interaction
We introduce Ming-Lite-Uni, an open-source multimodal framework featuring a newly designed unified visual generator and a native multimodal autoregressive model tailored for unifying vision and language. Specifically, this project provides an open-source implementation of the integrated MetaQueries and M2-omni framework, while introducing the novel multi-scale learnable tokens and multi-scale representation alignment strategy. By leveraging a fixed MLLM and a learnable diffusion model, Ming-Lite-Uni enables native multimodal AR models to perform both text-to-image generation and instruction based image editing tasks, expanding their capabilities beyond pure visual understanding. Our experimental results demonstrate the strong performance of Ming-Lite-Uni and illustrate the impressive fluid nature of its interactive process. All code and model weights are open-sourced to foster further exploration within the community. Notably, this work aligns with concurrent multimodal AI milestones - such as ChatGPT-4o with native image generation updated in March 25, 2025 - underscoring the broader significance of unified models like Ming-Lite-Uni on the path toward AGI. Ming-Lite-Uni is in alpha stage and will soon be further refined.
comment: https://github.com/inclusionAI/Ming/tree/Ming-Lite-Omni-Preview/Ming-unify
♻ ☆ PhysNav-DG: A Novel Adaptive Framework for Robust VLM-Sensor Fusion in Navigation Applications CVPR
Robust navigation in diverse environments and domains requires both accurate state estimation and transparent decision making. We present PhysNav-DG, a novel framework that integrates classical sensor fusion with the semantic power of vision-language models. Our dual-branch architecture predicts navigation actions from multi-sensor inputs while simultaneously generating detailed chain-of-thought explanations. A modified Adaptive Kalman Filter dynamically adjusts its noise parameters based on environmental context. It leverages several streams of raw sensor data along with semantic insights from models such as LLaMA 3.2 11B and BLIP-2. To evaluate our approach, we introduce the MD-NEX Benchmark, a novel multi-domain dataset that unifies indoor navigation, autonomous driving, and social navigation tasks with ground-truth actions and human-validated explanations. Extensive experiments and ablations show that PhysNav-DG improves navigation success rates by over 20% and achieves high efficiency, with explanations that are both highly grounded and clear. This work connects high-level semantic reasoning and geometric planning for safer and more trustworthy autonomous systems.
comment: Accepted at IEEE/CVF Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2025 (CVPRW)
♻ ☆ IQE-CLIP: Instance-aware Query Embedding for Zero-/Few-shot Anomaly Detection in Medical Domain
Recently, the rapid advancements of vision-language models, such as CLIP, leads to significant progress in zero-/few-shot anomaly detection (ZFSAD) tasks. However, most existing CLIP-based ZFSAD methods commonly assume prior knowledge of categories and rely on carefully crafted prompts tailored to specific scenarios. While such meticulously designed text prompts effectively capture semantic information in the textual space, they fall short of distinguishing normal and anomalous instances within the joint embedding space. Moreover, these ZFSAD methods are predominantly explored in industrial scenarios, with few efforts conducted to medical tasks. To this end, we propose an innovative framework for ZFSAD tasks in medical domain, denoted as IQE-CLIP. We reveal that query embeddings, which incorporate both textual and instance-aware visual information, are better indicators for abnormalities. Specifically, we first introduce class-based prompting tokens and learnable prompting tokens for better adaptation of CLIP to the medical domain. Then, we design an instance-aware query module (IQM) to extract region-level contextual information from both text prompts and visual features, enabling the generation of query embeddings that are more sensitive to anomalies. Extensive experiments conducted on six medical datasets demonstrate that IQE-CLIP achieves state-of-the-art performance on both zero-shot and few-shot tasks. We release our code and data at https://github.com/hongh0/IQE-CLIP/.
♻ ☆ Efficient Visual Representation Learning with Heat Conduction Equation IJCAI2025
Foundation models, such as CNNs and ViTs, have powered the development of image representation learning. However, general guidance to model architecture design is still missing. Inspired by the connection between image representation learning and heat conduction, we model images by the heat conduction equation, where the essential idea is to conceptualize image features as temperatures and model their information interaction as the diffusion of thermal energy. Based on this idea, we find that many modern model architectures, such as residual structures, SE block, and feed-forward networks, can be interpreted from the perspective of the heat conduction equation. Therefore, we leverage the heat equation to design new and more interpretable models. As an example, we propose the Heat Conduction Layer and the Refinement Approximation Layer inspired by solving the heat conduction equation using Finite Difference Method and Fourier series, respectively. The main goal of this paper is to integrate the overall architectural design of neural networks into the theoretical framework of heat conduction. Nevertheless, our Heat Conduction Network (HcNet) still shows competitive performance, e.g., HcNet-T achieves 83.0% top-1 accuracy on ImageNet-1K while only requiring 28M parameters and 4.1G MACs. The code is publicly available at: https://github.com/ZheminZhang1/HcNet.
comment: Accepted by IJCAI2025
♻ ☆ DualX-VSR: Dual Axial Spatial$\times$Temporal Transformer for Real-World Video Super-Resolution without Motion Compensation
Transformer-based models like ViViT and TimeSformer have advanced video understanding by effectively modeling spatiotemporal dependencies. Recent video generation models, such as Sora and Vidu, further highlight the power of transformers in long-range feature extraction and holistic spatiotemporal modeling. However, directly applying these models to real-world video super-resolution (VSR) is challenging, as VSR demands pixel-level precision, which can be compromised by tokenization and sequential attention mechanisms. While recent transformer-based VSR models attempt to address these issues using smaller patches and local attention, they still face limitations such as restricted receptive fields and dependence on optical flow-based alignment, which can introduce inaccuracies in real-world settings. To overcome these issues, we propose Dual Axial Spatial$\times$Temporal Transformer for Real-World Video Super-Resolution (DualX-VSR), which introduces a novel dual axial spatial$\times$temporal attention mechanism that integrates spatial and temporal information along orthogonal directions. DualX-VSR eliminates the need for motion compensation, offering a simplified structure that provides a cohesive representation of spatiotemporal information. As a result, DualX-VSR achieves high fidelity and superior performance in real-world VSR task.
comment: 15 pages, 9 figures
♻ ☆ Real-Time AIoT for UAV Antenna Interference Detection via Edge-Cloud Collaboration
In the fifth-generation (5G) era, eliminating communication interference sources is crucial for maintaining network performance. Interference often originates from unauthorized or malfunctioning antennas, and radio monitoring agencies must address numerous sources of such antennas annually. Unmanned aerial vehicles (UAVs) can improve inspection efficiency. However, the data transmission delay in the existing cloud-only (CO) artificial intelligence (AI) mode fails to meet the low latency requirements for real-time performance. Therefore, we propose a computer vision-based AI of Things (AIoT) system to detect antenna interference sources for UAVs. The system adopts an optimized edge-cloud collaboration (ECC+) mode, combining a keyframe selection algorithm (KSA), focusing on reducing end-to-end latency (E2EL) and ensuring reliable data transmission, which aligns with the core principles of ultra-reliable low-latency communication (URLLC). At the core of our approach is an end-to-end antenna localization scheme based on the tracking-by-detection (TBD) paradigm, including a detector (EdgeAnt) and a tracker (AntSort). EdgeAnt achieves state-of-the-art (SOTA) performance with a mean average precision (mAP) of 42.1% on our custom antenna interference source dataset, requiring only 3 million parameters and 14.7 GFLOPs. On the COCO dataset, EdgeAnt achieves 38.9% mAP with 5.4 GFLOPs. We deployed EdgeAnt on Jetson Xavier NX (TRT) and Raspberry Pi 4B (NCNN), achieving real-time inference speeds of 21.1 (1088) and 4.8 (640) frames per second (FPS), respectively. Compared with CO mode, the ECC+ mode reduces E2EL by 88.9%, increases accuracy by 28.2%. Additionally, the system offers excellent scalability for coordinated multiple UAVs inspections. The detector code is publicly available at https://github.com/SCNU-RISLAB/EdgeAnt.
♻ ☆ Geospatial Artificial Intelligence for Satellite-Based Flood Extent Mapping: Concepts, Advances, and Future Perspectives
Geospatial Artificial Intelligence (GeoAI) for satellite-based flood extent mapping systematically integrates artificial intelligence techniques with satellite data to identify flood events and assess their impacts, for disaster management and spatial decision-making. The primary output often includes flood extent maps, which delineate the affected areas, along with additional analytical outputs such as uncertainty estimation and change detection.
comment: 10 pages, 5 figures
♻ ☆ Taming Rectified Flow for Inversion and Editing ICML 2025
Rectified-flow-based diffusion transformers like FLUX and OpenSora have demonstrated outstanding performance in the field of image and video generation. Despite their robust generative capabilities, these models often struggle with inversion inaccuracies, which could further limit their effectiveness in downstream tasks such as image and video editing. To address this issue, we propose RF-Solver, a novel training-free sampler that effectively enhances inversion precision by mitigating the errors in the ODE-solving process of rectified flow. Specifically, we derive the exact formulation of the rectified flow ODE and apply the high-order Taylor expansion to estimate its nonlinear components, significantly enhancing the precision of ODE solutions at each timestep. Building upon RF-Solver, we further propose RF-Edit, a general feature-sharing-based framework for image and video editing. By incorporating self-attention features from the inversion process into the editing process, RF-Edit effectively preserves the structural information of the source image or video while achieving high-quality editing results. Our approach is compatible with any pre-trained rectified-flow-based models for image and video tasks, requiring no additional training or optimization. Extensive experiments across generation, inversion, and editing tasks in both image and video modalities demonstrate the superiority and versatility of our method. The source code is available at https://github.com/wangjiangshan0725/RF-Solver-Edit.
comment: ICML 2025; GitHub: https://github.com/wangjiangshan0725/RF-Solver-Edit
♻ ☆ Improving Acoustic Scene Classification with City Features
Acoustic scene recordings are often collected from a diverse range of cities. Most existing acoustic scene classification (ASC) approaches focus on identifying common acoustic scene patterns across cities to enhance generalization. However, the potential acoustic differences introduced by city-specific environmental and cultural factors are overlooked. In this paper, we hypothesize that the city-specific acoustic features are beneficial for the ASC task rather than being treated as noise or bias. To this end, we propose City2Scene, a novel framework that leverages city features to improve ASC. Unlike conventional approaches that may discard or suppress city information, City2Scene transfers the city-specific knowledge from pre-trained city classification models to scene classification model using knowledge distillation. We evaluate City2Scene on three datasets of DCASE Challenge Task 1, which include both scene and city labels. Experimental results demonstrate that city features provide valuable information for classifying scenes. By distilling city-specific knowledge, City2Scene effectively improves accuracy across a variety of lightweight CNN backbones, achieving competitive performance to the top-ranked solutions of DCASE Challenge in recent years.
♻ ☆ Self-supervised training of deep denoisers in multi-coil MRI considering noise correlations
Deep learning-based denoising methods have shown powerful results for improving the signal-to-noise ratio of magnetic resonance (MR) images, mostly by leveraging supervised learning with clean ground truth. However, acquiring clean ground truth images is often expensive and time-consuming. Self supervised methods have been widely investigated to mitigate the dependency on clean images, but mostly rely on the suboptimal splitting of K-space measurements of an image to yield input and target images for ensuring statistical independence. In this study, we investigate an alternative self-supervised training method for deep denoisers in multi-coil MRI, dubbed Coil2Coil (C2C), that naturally split and combine the multi-coil data among phased array coils, generating two noise-corrupted images for training. This novel approach allows exploiting multi-coil redundancy, but the images are statistically correlated and may not have the same clean image. To mitigate these issues, we propose the methods to pproximately decorrelate the statistical dependence of these images and match the underlying clean images, thus enabling them to be used as the training pairs. For synthetic denoising experiments, C2C yielded the best performance against prior self-supervised methods, reporting outcome comparable even to supervised methods. For real-world denoising cases, C2C yielded consistent performance as synthetic cases, removing only noise structures.
comment: 9 pages, 5figures
Artificial Intelligence 174
☆ EMLoC: Emulator-based Memory-efficient Fine-tuning with LoRA Correction
Open-source foundation models have seen rapid adoption and development, enabling powerful general-purpose capabilities across diverse domains. However, fine-tuning large foundation models for domain-specific or personalized tasks remains prohibitively expensive for most users due to the significant memory overhead beyond that of inference. We introduce EMLoC, an Emulator-based Memory-efficient fine-tuning framework with LoRA Correction, which enables model fine-tuning within the same memory budget required for inference. EMLoC constructs a task-specific light-weight emulator using activation-aware singular value decomposition (SVD) on a small downstream calibration set. Fine-tuning then is performed on this lightweight emulator via LoRA. To tackle the misalignment between the original model and the compressed emulator, we propose a novel compensation algorithm to correct the fine-tuned LoRA module, which thus can be merged into the original model for inference. EMLoC supports flexible compression ratios and standard training pipelines, making it adaptable to a wide range of applications. Extensive experiments demonstrate that EMLoC outperforms other baselines across multiple datasets and modalities. Moreover, without quantization, EMLoC enables fine-tuning of a 38B model on a single 24GB consumer GPU-bringing efficient and practical model adaptation to individual users.
comment: Under review. Project page: https://hsi-che-lin.github.io/EMLoC/
☆ code_transformed: The Influence of Large Language Models on Code
Coding remains one of the most fundamental modes of interaction between humans and machines. With the rapid advancement of Large Language Models (LLMs), code generation capabilities have begun to significantly reshape programming practices. This development prompts a central question: Have LLMs transformed code style, and how can such transformation be characterized? In this paper, we present a pioneering study that investigates the impact of LLMs on code style, with a focus on naming conventions, complexity, maintainability, and similarity. By analyzing code from over 19,000 GitHub repositories linked to arXiv papers published between 2020 and 2025, we identify measurable trends in the evolution of coding style that align with characteristics of LLM-generated code. For instance, the proportion of snake\_case variable names in Python code increased from 47% in Q1 2023 to 51% in Q1 2025. Furthermore, we investigate how LLMs approach algorithmic problems by examining their reasoning processes. Given the diversity of LLMs and usage scenarios, among other factors, it is difficult or even impossible to precisely estimate the proportion of code generated or assisted by LLMs. Our experimental results provide the first large-scale empirical evidence that LLMs affect real-world programming style.
comment: We release all the experimental dataset and source code at: https://github.com/ignorancex/LLM_code
☆ Tracing LLM Reasoning Processes with Strategic Games: A Framework for Planning, Revision, and Resource-Constrained Decision Making
Large language models (LLMs) are increasingly used for tasks that require complex reasoning. Most benchmarks focus on final outcomes but overlook the intermediate reasoning steps - such as planning, revision, and decision making under resource constraints. We argue that measuring these internal processes is essential for understanding model behavior and improving reliability. We propose using strategic games as a natural evaluation environment: closed, rule-based systems with clear states, limited resources, and automatic feedback. We introduce a framework that evaluates LLMs along three core dimensions: planning, revision, and resource-constrained decision making. To operationalize this, we define metrics beyond win rate, including overcorrection risk rate, correction success rate, improvement slope, and over-budget ratio. In 4320 adversarial rounds across 12 leading models, ChatGPT-o3-mini achieves the top composite score, with a win rate of 74.7 percent, a correction success rate of 78.6 percent, and an improvement slope of 0.041. By contrast, Qwen-Plus, despite an overcorrection risk rate of 81.6 percent, wins only 25.6 percent of its matches - primarily due to excessive resource use. We also observe a negative correlation between overcorrection risk rate and correction success rate (Pearson r = -0.51, p = 0.093), suggesting that more frequent edits do not always improve outcomes. Our findings highlight the value of assessing not only what LLMs decide but how they arrive at those decisions
comment: 19 pages, 7 figures. Under review
☆ Reimagining Dance: Real-time Music Co-creation between Dancers and AI
Dance performance traditionally follows a unidirectional relationship where movement responds to music. While AI has advanced in various creative domains, its application in dance has primarily focused on generating choreography from musical input. We present a system that enables dancers to dynamically shape musical environments through their movements. Our multi-modal architecture creates a coherent musical composition by intelligently combining pre-recorded musical clips in response to dance movements, establishing a bidirectional creative partnership where dancers function as both performers and composers. Through correlation analysis of performance data, we demonstrate emergent communication patterns between movement qualities and audio features. This approach reconceptualizes the role of AI in performing arts as a responsive collaborator that expands possibilities for both professional dance performance and improvisational artistic expression across broader populations.
comment: Accepted for publication at ICCC 2025 (International Conference on Computational Creativity)
☆ Upgrade or Switch: Do We Need a New Registry Architecture for the Internet of AI Agents?
The emerging Internet of AI Agents challenges existing web infrastructure designed for human-scale, reactive interactions. Unlike traditional web resources, autonomous AI agents initiate actions, maintain persistent state, spawn sub-agents, and negotiate directly with peers: demanding millisecond-level discovery, instant credential revocation, and cryptographic behavioral proofs that exceed current DNS/PKI capabilities. This paper analyzes whether to upgrade existing infrastructure or implement purpose-built registry architectures for autonomous agents. We identify critical failure points: DNS propagation (24-48 hours vs. required milliseconds), certificate revocation unable to scale to trillions of entities, and IPv4/IPv6 addressing inadequate for agent-scale routing. We evaluate three approaches: (1) Upgrade paths, (2) Switch options, (3) Hybrid registries. Drawing parallels to dialup-to-broadband transitions, we find that agent requirements constitute qualitative, and not incremental, changes. While upgrades offer compatibility and faster deployment, clean-slate solutions provide better performance but require longer for adoption. Our analysis suggests hybrid approaches will emerge, with centralized registries for critical agents and federated meshes for specialized use cases.
☆ VGR: Visual Grounded Reasoning
In the field of multimodal chain-of-thought (CoT) reasoning, existing approaches predominantly rely on reasoning on pure language space, which inherently suffers from language bias and is largely confined to math or science domains. This narrow focus limits their ability to handle complex visual reasoning tasks that demand comprehensive understanding of image details. To address these limitations, this paper introduces VGR, a novel reasoning multimodal large language model (MLLM) with enhanced fine-grained visual perception capabilities. Unlike traditional MLLMs that answer the question or reasoning solely on the language space, our VGR first detects relevant regions that may help to solve problems, and then provides precise answers based on replayed image regions. To achieve this, we conduct a large-scale SFT dataset called VGR -SFT that contains reasoning data with mixed vision grounding and language deduction. The inference pipeline of VGR allows the model to choose bounding boxes for visual reference and a replay stage is introduced to integrates the corresponding regions into the reasoning process, enhancing multimodel comprehension. Experiments on the LLaVA-NeXT-7B baseline show that VGR achieves superior performance on multi-modal benchmarks requiring comprehensive image detail understanding. Compared to the baseline, VGR uses only 30\% of the image token count while delivering scores of +4.1 on MMStar, +7.1 on AI2D, and a +12.9 improvement on ChartQA.
comment: 9 pages, 4 figures
☆ Schema-R1: A reasoning training approach for schema linking in Text-to-SQL Task
Schema linking is a critical step in Text-to-SQL task, aiming to accurately predict the table names and column names required for the SQL query based on the given question. However, current fine-tuning approaches for schema linking models employ a rote-learning paradigm, excessively optimizing for ground truth schema linking outcomes while compromising reasoning ability. This limitation arises because of the difficulty in acquiring a high-quality reasoning sample for downstream tasks. To address this, we propose Schema-R1, a reasoning schema linking model trained using reinforcement learning. Specifically, Schema-R1 consists of three key steps: constructing small batches of high-quality reasoning samples, supervised fine-tuning for cold-start initialization, and rule-based reinforcement learning training. The final results demonstrate that our method effectively enhances the reasoning ability of the schema linking model, achieving a 10\% improvement in filter accuracy compared to the existing method. Our code is available at https://github.com/hongWin/Schema-R1/.
comment: 11 pages, 3 figures, conference
☆ Technical Evaluation of a Disruptive Approach in Homomorphic AI
We present a technical evaluation of a new, disruptive cryptographic approach to data security, known as HbHAI (Hash-based Homomorphic Artificial Intelligence). HbHAI is based on a novel class of key-dependent hash functions that naturally preserve most similarity properties, most AI algorithms rely on. As a main claim, HbHAI makes now possible to analyze and process data in its cryptographically secure form while using existing native AI algorithms without modification, with unprecedented performances compared to existing homomorphic encryption schemes. We tested various HbHAI-protected datasets (non public preview) using traditional unsupervised and supervised learning techniques (clustering, classification, deep neural networks) with classical unmodified AI algorithms. This paper presents technical results from an independent analysis conducted with those different, off-the-shelf AI algorithms. The aim was to assess the security, operability and performance claims regarding HbHAI techniques. As a results, our results confirm most these claims, with only a few minor reservations.
comment: This is the extended version of the talk presented at CyberWiseCon 2025 in Vilnius, Lituania in May 21$^{st}$-23$^{rd}$, 2025
☆ SAIL: Faster-than-Demonstration Execution of Imitation Learning Policies
Offline Imitation Learning (IL) methods such as Behavior Cloning are effective at acquiring complex robotic manipulation skills. However, existing IL-trained policies are confined to executing the task at the same speed as shown in demonstration data. This limits the task throughput of a robotic system, a critical requirement for applications such as industrial automation. In this paper, we introduce and formalize the novel problem of enabling faster-than-demonstration execution of visuomotor policies and identify fundamental challenges in robot dynamics and state-action distribution shifts. We instantiate the key insights as SAIL (Speed Adaptation for Imitation Learning), a full-stack system integrating four tightly-connected components: (1) a consistency-preserving action inference algorithm for smooth motion at high speed, (2) high-fidelity tracking of controller-invariant motion targets, (3) adaptive speed modulation that dynamically adjusts execution speed based on motion complexity, and (4) action scheduling to handle real-world system latencies. Experiments on 12 tasks across simulation and two real, distinct robot platforms show that SAIL achieves up to a 4x speedup over demonstration speed in simulation and up to 3.2x speedup in the real world. Additional detail is available at https://nadunranawaka1.github.io/sail-policy
comment: The first two authors contributed equally
☆ Subjective Experience in AI Systems: What Do AI Researchers and the Public Believe?
We surveyed 582 AI researchers who have published in leading AI venues and 838 nationally representative US participants about their views on the potential development of AI systems with subjective experience and how such systems should be treated and governed. When asked to estimate the chances that such systems will exist on specific dates, the median responses were 1% (AI researchers) and 5% (public) by 2024, 25% and 30% by 2034, and 70% and 60% by 2100, respectively. The median member of the public thought there was a higher chance that AI systems with subjective experience would never exist (25%) than the median AI researcher did (10%). Both groups perceived a need for multidisciplinary expertise to assess AI subjective experience. Although support for welfare protections for such AI systems exceeded opposition, it remained far lower than support for protections for animals or the environment. Attitudes toward moral and governance issues were divided in both groups, especially regarding whether such systems should be created and what rights or protections they should receive. Yet a majority of respondents in both groups agreed that safeguards against the potential risks from AI systems with subjective experience should be implemented by AI developers now, and if created, AI systems with subjective experience should treat others well, behave ethically, and be held accountable. Overall, these results suggest that both AI researchers and the public regard the emergence of AI systems with subjective experience as a possibility this century, though substantial uncertainty and disagreement remain about the timeline and appropriate response.
comment: 109 pages, 27 figures
☆ Today's Cat Is Tomorrow's Dog: Accounting for Time-Based Changes in the Labels of ML Vulnerability Detection Approaches
Vulnerability datasets used for ML testing implicitly contain retrospective information. When tested on the field, one can only use the labels available at the time of training and testing (e.g. seen and assumed negatives). As vulnerabilities are discovered across calendar time, labels change and past performance is not necessarily aligned with future performance. Past works only considered the slices of the whole history (e.g. DiverseVUl) or individual differences between releases (e.g. Jimenez et al. ESEC/FSE 2019). Such approaches are either too optimistic in training (e.g. the whole history) or too conservative (e.g. consecutive releases). We propose a method to restructure a dataset into a series of datasets in which both training and testing labels change to account for the knowledge available at the time. If the model is actually learning, it should improve its performance over time as more data becomes available and data becomes more stable, an effect that can be checked with the Mann-Kendall test. We validate our methodology for vulnerability detection with 4 time-based datasets (3 projects from BigVul dataset + Vuldeepecker's NVD) and 5 ML models (Code2Vec, CodeBERT, LineVul, ReGVD, and Vuldeepecker). In contrast to the intuitive expectation (more retrospective information, better performance), the trend results show that performance changes inconsistently across the years, showing that most models are not learning.
comment: Accepted at The ACM International Conference on the Foundations of Software Engineering (FSE) 2025. Published in the Proceedings of the ACM on Software Engineering (PACMSE), Issue FSE 2025
☆ Improving Large Language Model Safety with Contrastive Representation Learning
Large Language Models (LLMs) are powerful tools with profound societal impacts, yet their ability to generate responses to diverse and uncontrolled inputs leaves them vulnerable to adversarial attacks. While existing defenses often struggle to generalize across varying attack types, recent advancements in representation engineering offer promising alternatives. In this work, we propose a defense framework that formulates model defense as a contrastive representation learning (CRL) problem. Our method finetunes a model using a triplet-based loss combined with adversarial hard negative mining to encourage separation between benign and harmful representations. Our experimental results across multiple models demonstrate that our approach outperforms prior representation engineering-based defenses, improving robustness against both input-level and embedding-space attacks without compromising standard performance. Our code is available at https://github.com/samuelsimko/crl-llm-defense
☆ LiveCodeBench Pro: How Do Olympiad Medalists Judge LLMs in Competitive Programming?
Recent reports claim that large language models (LLMs) now outperform elite humans in competitive programming. Drawing on knowledge from a group of medalists in international algorithmic contests, we revisit this claim, examining how LLMs differ from human experts and where limitations still remain. We introduce LiveCodeBench Pro, a benchmark composed of problems from Codeforces, ICPC, and IOI that are continuously updated to reduce the likelihood of data contamination. A team of Olympiad medalists annotates every problem for algorithmic categories and conducts a line-by-line analysis of failed model-generated submissions. Using this new data and benchmark, we find that frontier models still have significant limitations: without external tools, the best model achieves only 53% pass@1 on medium-difficulty problems and 0% on hard problems, domains where expert humans still excel. We also find that LLMs succeed at implementation-heavy problems but struggle with nuanced algorithmic reasoning and complex case analysis, often generating confidently incorrect justifications. High performance appears largely driven by implementation precision and tool augmentation, not superior reasoning. LiveCodeBench Pro thus highlights the significant gap to human grandmaster levels, while offering fine-grained diagnostics to steer future improvements in code-centric LLM reasoning.
comment: Project Page at https://livecodebenchpro.com/
☆ Real-World Deployment of a Lane Change Prediction Architecture Based on Knowledge Graph Embeddings and Bayesian Inference
Research on lane change prediction has gained a lot of momentum in the last couple of years. However, most research is confined to simulation or results obtained from datasets, leaving a gap between algorithmic advances and on-road deployment. This work closes that gap by demonstrating, on real hardware, a lane-change prediction system based on Knowledge Graph Embeddings (KGEs) and Bayesian inference. Moreover, the ego-vehicle employs a longitudinal braking action to ensure the safety of both itself and the surrounding vehicles. Our architecture consists of two modules: (i) a perception module that senses the environment, derives input numerical features, and converts them into linguistic categories; and communicates them to the prediction module; (ii) a pretrained prediction module that executes a KGE and Bayesian inference model to anticipate the target vehicle's maneuver and transforms the prediction into longitudinal braking action. Real-world hardware experimental validation demonstrates that our prediction system anticipates the target vehicle's lane change three to four seconds in advance, providing the ego vehicle sufficient time to react and allowing the target vehicle to make the lane change safely.
☆ Breaking Habits: On the Role of the Advantage Function in Learning Causal State Representations
Recent work has shown that reinforcement learning agents can develop policies that exploit spurious correlations between rewards and observations. This phenomenon, known as policy confounding, arises because the agent's policy influences both past and future observation variables, creating a feedback loop that can hinder the agent's ability to generalize beyond its usual trajectories. In this paper, we show that the advantage function, commonly used in policy gradient methods, not only reduces the variance of gradient estimates but also mitigates the effects of policy confounding. By adjusting action values relative to the state representation, the advantage function downweights state-action pairs that are more likely under the current policy, breaking spurious correlations and encouraging the agent to focus on causal factors. We provide both analytical and empirical evidence demonstrating that training with the advantage function leads to improved out-of-trajectory performance.
☆ Spectra-to-Structure and Structure-to-Spectra Inference Across the Periodic Table
X-ray Absorption Spectroscopy (XAS) is a powerful technique for probing local atomic environments, yet its interpretation remains limited by the need for expert-driven analysis, computationally expensive simulations, and element-specific heuristics. Recent advances in machine learning have shown promise for accelerating XAS interpretation, but many existing models are narrowly focused on specific elements, edge types, or spectral regimes. In this work, we present XAStruct, a learning framework capable of both predicting XAS spectra from crystal structures and inferring local structural descriptors from XAS input. XAStruct is trained on a large-scale dataset spanning over 70 elements across the periodic table, enabling generalization to a wide variety of chemistries and bonding environments. The model includes the first machine learning approach for predicting neighbor atom types directly from XAS spectra, as well as a unified regression model for mean nearest-neighbor distance that requires no element-specific tuning. While we explored integrating the two pipelines into a single end-to-end model, empirical results showed performance degradation. As a result, the two tasks were trained independently to ensure optimal accuracy and task-specific performance. By combining deep neural networks for complex structure-property mappings with efficient baseline models for simpler tasks, XAStruct offers a scalable and extensible solution for data-driven XAS analysis and local structure inference. The source code will be released upon paper acceptance.
☆ A Neural Rejection System Against Universal Adversarial Perturbations in Radio Signal Classification
Advantages of deep learning over traditional methods have been demonstrated for radio signal classification in the recent years. However, various researchers have discovered that even a small but intentional feature perturbation known as adversarial examples can significantly deteriorate the performance of the deep learning based radio signal classification. Among various kinds of adversarial examples, universal adversarial perturbation has gained considerable attention due to its feature of being data independent, hence as a practical strategy to fool the radio signal classification with a high success rate. Therefore, in this paper, we investigate a defense system called neural rejection system to propose against universal adversarial perturbations, and evaluate its performance by generating white-box universal adversarial perturbations. We show that the proposed neural rejection system is able to defend universal adversarial perturbations with significantly higher accuracy than the undefended deep neural network.
☆ Attention-based Adversarial Robust Distillation in Radio Signal Classifications for Low-Power IoT Devices
Due to great success of transformers in many applications such as natural language processing and computer vision, transformers have been successfully applied in automatic modulation classification. We have shown that transformer-based radio signal classification is vulnerable to imperceptible and carefully crafted attacks called adversarial examples. Therefore, we propose a defense system against adversarial examples in transformer-based modulation classifications. Considering the need for computationally efficient architecture particularly for Internet of Things (IoT)-based applications or operation of devices in environment where power supply is limited, we propose a compact transformer for modulation classification. The advantages of robust training such as adversarial training in transformers may not be attainable in compact transformers. By demonstrating this, we propose a novel compact transformer that can enhance robustness in the presence of adversarial attacks. The new method is aimed at transferring the adversarial attention map from the robustly trained large transformer to a compact transformer. The proposed method outperforms the state-of-the-art techniques for the considered white-box scenarios including fast gradient method and projected gradient descent attacks. We have provided reasoning of the underlying working mechanisms and investigated the transferability of the adversarial examples between different architectures. The proposed method has the potential to protect the transformer from the transferability of adversarial examples.
☆ Enter: Graduated Realism: A Pedagogical Framework for AI-Powered Avatars in Virtual Reality Teacher Training
Virtual Reality simulators offer a powerful tool for teacher training, yet the integration of AI-powered student avatars presents a critical challenge: determining the optimal level of avatar realism for effective pedagogy. This literature review examines the evolution of avatar realism in VR teacher training, synthesizes its theoretical implications, and proposes a new pedagogical framework to guide future design. Through a systematic review, this paper traces the progression from human-controlled avatars to generative AI prototypes. Applying learning theories like Cognitive Load Theory, we argue that hyper-realism is not always optimal, as high-fidelity avatars can impose excessive extraneous cognitive load on novices, a stance supported by recent empirical findings. A significant gap exists between the technological drive for photorealism and the pedagogical need for scaffolded learning. To address this gap, we propose Graduated Realism, a framework advocating for starting trainees with lower-fidelity avatars and progressively increasing behavioral complexity as skills develop. To make this computationally feasible, we outline a novel single-call architecture, Crazy Slots, which uses a probabilistic engine and a Retrieval-Augmented Generation database to generate authentic, real-time responses without the latency and cost of multi-step reasoning models. This review provides evidence-based principles for designing the next generation of AI simulators, arguing that a pedagogically grounded approach to realism is essential for creating scalable and effective teacher education tools.
☆ Towards a Cascaded LLM Framework for Cost-effective Human-AI Decision-Making
Effective human-AI decision-making balances three key factors: the \textit{correctness} of predictions, the \textit{cost} of knowledge and reasoning complexity, and the confidence about whether to \textit{abstain} automated answers or involve human experts. In this work, we present a cascaded LLM decision framework that adaptively delegates tasks across multiple tiers of expertise -- a base model for initial candidate answers, a more capable and knowledgeable (but costlier) large model, and a human expert for when the model cascade abstains. Our method proceeds in two stages. First, a deferral policy determines whether to accept the base model's answer or regenerate it with the large model based on the confidence score. Second, an abstention policy decides whether the cascade model response is sufficiently certain or requires human intervention. Moreover, we incorporate an online learning mechanism in the framework that can leverage human feedback to improve decision quality over time. We demonstrate this approach to general question-answering (ARC-Easy and ARC-Challenge) and medical question-answering (MedQA and MedMCQA). Our results show that our cascaded strategy outperforms in most cases single-model baselines in accuracy while reducing cost and providing a principled way to handle abstentions.
☆ An Explainable AI Framework for Dynamic Resource Management in Vehicular Network Slicing
Effective resource management and network slicing are essential to meet the diverse service demands of vehicular networks, including Enhanced Mobile Broadband (eMBB) and Ultra-Reliable and Low-Latency Communications (URLLC). This paper introduces an Explainable Deep Reinforcement Learning (XRL) framework for dynamic network slicing and resource allocation in vehicular networks, built upon a near-real-time RAN intelligent controller. By integrating a feature-based approach that leverages Shapley values and an attention mechanism, we interpret and refine the decisions of our reinforcementlearning agents, addressing key reliability challenges in vehicular communication systems. Simulation results demonstrate that our approach provides clear, real-time insights into the resource allocation process and achieves higher interpretability precision than a pure attention mechanism. Furthermore, the Quality of Service (QoS) satisfaction for URLLC services increased from 78.0% to 80.13%, while that for eMBB services improved from 71.44% to 73.21%.
comment: To appear in Proceedings of IEEE PIMRC 2025. 6 pages, 4 figures
☆ Addressing Bias in LLMs: Strategies and Application to Fair AI-based Recruitment
The use of language technologies in high-stake settings is increasing in recent years, mostly motivated by the success of Large Language Models (LLMs). However, despite the great performance of LLMs, they are are susceptible to ethical concerns, such as demographic biases, accountability, or privacy. This work seeks to analyze the capacity of Transformers-based systems to learn demographic biases present in the data, using a case study on AI-based automated recruitment. We propose a privacy-enhancing framework to reduce gender information from the learning pipeline as a way to mitigate biased behaviors in the final tools. Our experiments analyze the influence of data biases on systems built on two different LLMs, and how the proposed framework effectively prevents trained systems from reproducing the bias in the data.
comment: Submitted to AIES 2025 (Under Review)
☆ Robust Molecular Property Prediction via Densifying Scarce Labeled Data
A widely recognized limitation of molecular prediction models is their reliance on structures observed in the training data, resulting in poor generalization to out-of-distribution compounds. Yet in drug discovery, the compounds most critical for advancing research often lie beyond the training set, making the bias toward the training data particularly problematic. This mismatch introduces substantial covariate shift, under which standard deep learning models produce unstable and inaccurate predictions. Furthermore, the scarcity of labeled data, stemming from the onerous and costly nature of experimental validation, further exacerbates the difficulty of achieving reliable generalization. To address these limitations, we propose a novel meta-learning-based approach that leverages unlabeled data to interpolate between in-distribution (ID) and out-of-distribution (OOD) data, enabling the model to meta-learn how to generalize beyond the training distribution. We demonstrate significant performance gains over state-of-the-art methods on challenging real-world datasets that exhibit substantial covariate shift.
☆ How do Probabilistic Graphical Models and Graph Neural Networks Look at Network Data?
Graphs are a powerful data structure for representing relational data and are widely used to describe complex real-world systems. Probabilistic Graphical Models (PGMs) and Graph Neural Networks (GNNs) can both leverage graph-structured data, but their inherent functioning is different. The question is how do they compare in capturing the information contained in networked datasets? We address this objective by solving a link prediction task and we conduct three main experiments, on both synthetic and real networks: one focuses on how PGMs and GNNs handle input features, while the other two investigate their robustness to noisy features and increasing heterophily of the graph. PGMs do not necessarily require features on nodes, while GNNs cannot exploit the network edges alone, and the choice of input features matters. We find that GNNs are outperformed by PGMs when input features are low-dimensional or noisy, mimicking many real scenarios where node attributes might be scalar or noisy. Then, we find that PGMs are more robust than GNNs when the heterophily of the graph is increased. Finally, to assess performance beyond prediction tasks, we also compare the two frameworks in terms of their computational complexity and interpretability.
☆ MindGrab for BrainChop: Fast and Accurate Skull Stripping for Command Line and Browser
We developed MindGrab, a parameter- and memory-efficient deep fully-convolutional model for volumetric skull-stripping in head images of any modality. Its architecture, informed by a spectral interpretation of dilated convolutions, was trained exclusively on modality-agnostic synthetic data. MindGrab was evaluated on a retrospective dataset of 606 multimodal adult-brain scans (T1, T2, DWI, MRA, PDw MRI, EPI, CT, PET) sourced from the SynthStrip dataset. Performance was benchmarked against SynthStrip, ROBEX, and BET using Dice scores, with Wilcoxon signed-rank significance tests. MindGrab achieved a mean Dice score of 95.9 with standard deviation (SD) 1.6 across modalities, significantly outperforming classical methods (ROBEX: 89.1 SD 7.7, P < 0.05; BET: 85.2 SD 14.4, P < 0.05). Compared to SynthStrip (96.5 SD 1.1, P=0.0352), MindGrab delivered equivalent or superior performance in nearly half of the tested scenarios, with minor differences (<3% Dice) in the others. MindGrab utilized 95% fewer parameters (146,237 vs. 2,566,561) than SynthStrip. This efficiency yielded at least 2x faster inference, 50% lower memory usage on GPUs, and enabled exceptional performance (e.g., 10-30x speedup, and up to 30x memory reduction) and accessibility on a wider range of hardware, including systems without high-end GPUs. MindGrab delivers state-of-the-art accuracy with dramatically lower resource demands, supported in brainchop-cli (https://pypi.org/project/brainchop/) and at brainchop.org.
comment: 12 pages, 1 table, 4 figures. 2 supplementary tables, 1 supplementary figure. Brainchop-cli: https://pypi.org/project/brainchop/ . Brainchop web: https://brainchop.org/
☆ Regression-adjusted Monte Carlo Estimators for Shapley Values and Probabilistic Values
With origins in game theory, probabilistic values like Shapley values, Banzhaf values, and semi-values have emerged as a central tool in explainable AI. They are used for feature attribution, data attribution, data valuation, and more. Since all of these values require exponential time to compute exactly, research has focused on efficient approximation methods using two techniques: Monte Carlo sampling and linear regression formulations. In this work, we present a new way of combining both of these techniques. Our approach is more flexible than prior algorithms, allowing for linear regression to be replaced with any function family whose probabilistic values can be computed efficiently. This allows us to harness the accuracy of tree-based models like XGBoost, while still producing unbiased estimates. From experiments across eight datasets, we find that our methods give state-of-the-art performance for estimating probabilistic values. For Shapley values, the error of our methods can be $6.5\times$ lower than Permutation SHAP (the most popular Monte Carlo method), $3.8\times$ lower than Kernel SHAP (the most popular linear regression method), and $2.6\times$ lower than Leverage SHAP (the prior state-of-the-art Shapley value estimator). For more general probabilistic values, we can obtain error $215\times$ lower than the best estimator from prior work.
☆ TrustGLM: Evaluating the Robustness of GraphLLMs Against Prompt, Text, and Structure Attacks KDD 2025
Inspired by the success of large language models (LLMs), there is a significant research shift from traditional graph learning methods to LLM-based graph frameworks, formally known as GraphLLMs. GraphLLMs leverage the reasoning power of LLMs by integrating three key components: the textual attributes of input nodes, the structural information of node neighborhoods, and task-specific prompts that guide decision-making. Despite their promise, the robustness of GraphLLMs against adversarial perturbations remains largely unexplored-a critical concern for deploying these models in high-stakes scenarios. To bridge the gap, we introduce TrustGLM, a comprehensive study evaluating the vulnerability of GraphLLMs to adversarial attacks across three dimensions: text, graph structure, and prompt manipulations. We implement state-of-the-art attack algorithms from each perspective to rigorously assess model resilience. Through extensive experiments on six benchmark datasets from diverse domains, our findings reveal that GraphLLMs are highly susceptible to text attacks that merely replace a few semantically similar words in a node's textual attribute. We also find that standard graph structure attack methods can significantly degrade model performance, while random shuffling of the candidate label set in prompt templates leads to substantial performance drops. Beyond characterizing these vulnerabilities, we investigate defense techniques tailored to each attack vector through data-augmented training and adversarial training, which show promising potential to enhance the robustness of GraphLLMs. We hope that our open-sourced library will facilitate rapid, equitable evaluation and inspire further innovative research in this field.
comment: 12 pages, 5 figures, in KDD 2025
☆ Revealing Political Bias in LLMs through Structured Multi-Agent Debate
Large language models (LLMs) are increasingly used to simulate social behaviour, yet their political biases and interaction dynamics in debates remain underexplored. We investigate how LLM type and agent gender attributes influence political bias using a structured multi-agent debate framework, by engaging Neutral, Republican, and Democrat American LLM agents in debates on politically sensitive topics. We systematically vary the underlying LLMs, agent genders, and debate formats to examine how model provenance and agent personas influence political bias and attitudes throughout debates. We find that Neutral agents consistently align with Democrats, while Republicans shift closer to the Neutral; gender influences agent attitudes, with agents adapting their opinions when aware of other agents' genders; and contrary to prior research, agents with shared political affiliations can form echo chambers, exhibiting the expected intensification of attitudes as debates progress.
☆ Diffusion-Based Electrocardiography Noise Quantification via Anomaly Detection
Electrocardiography (ECG) signals are often degraded by noise, which complicates diagnosis in clinical and wearable settings. This study proposes a diffusion-based framework for ECG noise quantification via reconstruction-based anomaly detection, addressing annotation inconsistencies and the limited generalizability of conventional methods. We introduce a distributional evaluation using the Wasserstein-1 distance ($W_1$), comparing the reconstruction error distributions between clean and noisy ECGs to mitigate inconsistent annotations. Our final model achieved robust noise quantification using only three reverse diffusion steps. The model recorded a macro-average $W_1$ score of 1.308 across the benchmarks, outperforming the next-best method by over 48%. External validations demonstrated strong generalizability, supporting the exclusion of low-quality segments to enhance diagnostic accuracy and enable timely clinical responses to signal degradation. The proposed method enhances clinical decision-making, diagnostic accuracy, and real-time ECG monitoring capabilities, supporting future advancements in clinical and wearable ECG applications.
comment: This manuscript contains 17 pages, 10 figures, and 3 tables
☆ On the Performance of LLMs for Real Estate Appraisal ECML-PKDD 2025
The real estate market is vital to global economies but suffers from significant information asymmetry. This study examines how Large Language Models (LLMs) can democratize access to real estate insights by generating competitive and interpretable house price estimates through optimized In-Context Learning (ICL) strategies. We systematically evaluate leading LLMs on diverse international housing datasets, comparing zero-shot, few-shot, market report-enhanced, and hybrid prompting techniques. Our results show that LLMs effectively leverage hedonic variables, such as property size and amenities, to produce meaningful estimates. While traditional machine learning models remain strong for pure predictive accuracy, LLMs offer a more accessible, interactive and interpretable alternative. Although self-explanations require cautious interpretation, we find that LLMs explain their predictions in agreement with state-of-the-art models, confirming their trustworthiness. Carefully selected in-context examples based on feature similarity and geographic proximity, significantly enhance LLM performance, yet LLMs struggle with overconfidence in price intervals and limited spatial reasoning. We offer practical guidance for structured prediction tasks through prompt optimization. Our findings highlight LLMs' potential to improve transparency in real estate appraisal and provide actionable insights for stakeholders.
comment: Accepted at ECML-PKDD 2025
☆ Abstract Sound Fusion with Unconditioned Inversion Model
An abstract sound is defined as a sound that does not disclose identifiable real-world sound events to a listener. Sound fusion aims to synthesize an original sound and a reference sound to generate a novel sound that exhibits auditory features beyond mere additive superposition of the sound constituents. To achieve this fusion, we employ inversion techniques that preserve essential features of the original sample while enabling controllable synthesis. We propose novel SDE and ODE inversion models based on DPMSolver++ samplers that reverse the sampling process by configuring model outputs as constants, eliminating circular dependencies incurred by noise prediction terms. Our inversion approach requires no prompt conditioning while maintaining flexible guidance during sampling.
☆ Persona-driven Simulation of Voting Behavior in the European Parliament with Large Language Models
Large Language Models (LLMs) display remarkable capabilities to understand or even produce political discourse, but have been found to consistently display a progressive left-leaning bias. At the same time, so-called persona or identity prompts have been shown to produce LLM behavior that aligns with socioeconomic groups that the base model is not aligned with. In this work, we analyze whether zero-shot persona prompting with limited information can accurately predict individual voting decisions and, by aggregation, accurately predict positions of European groups on a diverse set of policies. We evaluate if predictions are stable towards counterfactual arguments, different persona prompts and generation methods. Finally, we find that we can simulate voting behavior of Members of the European Parliament reasonably well with a weighted F1 score of approximately 0.793. Our persona dataset of politicians in the 2024 European Parliament and our code are available at https://github.com/dess-mannheim/european_parliament_simulation.
☆ Why Do Class-Dependent Evaluation Effects Occur with Time Series Feature Attributions? A Synthetic Data Investigation
Evaluating feature attribution methods represents a critical challenge in explainable AI (XAI), as researchers typically rely on perturbation-based metrics when ground truth is unavailable. However, recent work demonstrates that these evaluation metrics can show different performance across predicted classes within the same dataset. These "class-dependent evaluation effects" raise questions about whether perturbation analysis reliably measures attribution quality, with direct implications for XAI method development and the trustworthiness of evaluation techniques. We investigate under which conditions these class-dependent effects arise by conducting controlled experiments with synthetic time series data where ground truth feature locations are known. We systematically vary feature types and class contrasts across binary classification tasks, then compare perturbation-based degradation scores with ground truth-based precision-recall metrics using multiple attribution methods. Our experiments demonstrate that class-dependent effects emerge with both evaluation approaches even in simple scenarios with temporally localized features, triggered by basic variations in feature amplitude or temporal extent between classes. Most critically, we find that perturbation-based and ground truth metrics frequently yield contradictory assessments of attribution quality across classes, with weak correlations between evaluation approaches. These findings suggest that researchers should interpret perturbation-based metrics with care, as they may not always align with whether attributions correctly identify discriminating features. These findings reveal opportunities to reconsider what attribution evaluation actually measures and to develop more comprehensive evaluation frameworks that capture multiple dimensions of attribution quality.
☆ Self-supervised Learning of Echocardiographic Video Representations via Online Cluster Distillation
Self-supervised learning (SSL) has achieved major advances in natural images and video understanding, but challenges remain in domains like echocardiography (heart ultrasound) due to subtle anatomical structures, complex temporal dynamics, and the current lack of domain-specific pre-trained models. Existing SSL approaches such as contrastive, masked modeling, and clustering-based methods struggle with high intersample similarity, sensitivity to low PSNR inputs common in ultrasound, or aggressive augmentations that distort clinically relevant features. We present DISCOVR (Distilled Image Supervision for Cross Modal Video Representation), a self-supervised dual branch framework for cardiac ultrasound video representation learning. DISCOVR combines a clustering-based video encoder that models temporal dynamics with an online image encoder that extracts fine-grained spatial semantics. These branches are connected through a semantic cluster distillation loss that transfers anatomical knowledge from the evolving image encoder to the video encoder, enabling temporally coherent representations enriched with fine-grained semantic understanding. Evaluated on six echocardiography datasets spanning fetal, pediatric, and adult populations, DISCOVR outperforms both specialized video anomaly detection methods and state-of-the-art video-SSL baselines in zero-shot and linear probing setups, and achieves superior segmentation transfer.
☆ Real-Time Feedback and Benchmark Dataset for Isometric Pose Evaluation
Isometric exercises appeal to individuals seeking convenience, privacy, and minimal dependence on equipments. However, such fitness training is often overdependent on unreliable digital media content instead of expert supervision, introducing serious risks, including incorrect posture, injury, and disengagement due to lack of corrective feedback. To address these challenges, we present a real-time feedback system for assessing isometric poses. Our contributions include the release of the largest multiclass isometric exercise video dataset to date, comprising over 3,600 clips across six poses with correct and incorrect variations. To support robust evaluation, we benchmark state-of-the-art models-including graph-based networks-on this dataset and introduce a novel three-part metric that captures classification accuracy, mistake localization, and model confidence. Our results enhance the feasibility of intelligent and personalized exercise training systems for home workouts. This expert-level diagnosis, delivered directly to the users, also expands the potential applications of these systems to rehabilitation, physiotherapy, and various other fitness disciplines that involve physical motion.
☆ FeNN: A RISC-V vector processor for Spiking Neural Network acceleration
Spiking Neural Networks (SNNs) have the potential to drastically reduce the energy requirements of AI systems. However, mainstream accelerators like GPUs and TPUs are designed for the high arithmetic intensity of standard ANNs so are not well-suited to SNN simulation. FPGAs are well-suited to applications with low arithmetic intensity as they have high off-chip memory bandwidth and large amounts of on-chip memory. Here, we present a novel RISC-V-based soft vector processor (FeNN), tailored to simulating SNNs on FPGAs. Unlike most dedicated neuromorphic hardware, FeNN is fully programmable and designed to be integrated with applications running on standard computers from the edge to the cloud. We demonstrate that, by using stochastic rounding and saturation, FeNN can achieve high numerical precision with low hardware utilisation and that a single FeNN core can simulate an SNN classifier faster than both an embedded GPU and the Loihi neuromorphic system.
comment: 7 pages, 4 figures. Accepted in Proceedings of Neuro Inspired Computational Elements Conference 2025
☆ Causal Effect Identification in Heterogeneous Environments from Higher-Order Moments
We investigate the estimation of the causal effect of a treatment variable on an outcome in the presence of a latent confounder. We first show that the causal effect is identifiable under certain conditions when data is available from multiple environments, provided that the target causal effect remains invariant across these environments. Secondly, we propose a moment-based algorithm for estimating the causal effect as long as only a single parameter of the data-generating mechanism varies across environments -- whether it be the exogenous noise distribution or the causal relationship between two variables. Conversely, we prove that identifiability is lost if both exogenous noise distributions of both the latent and treatment variables vary across environments. Finally, we propose a procedure to identify which parameter of the data-generating mechanism has varied across the environments and evaluate the performance of our proposed methods through experiments on synthetic data.
☆ Relational GNNs Cannot Learn $C_2$ Features for Planning
Relational Graph Neural Networks (R-GNNs) are a GNN-based approach for learning value functions that can generalise to unseen problems from a given planning domain. R-GNNs were theoretically motivated by the well known connection between the expressive power of GNNs and $C_2$, first-order logic with two variables and counting. In the context of planning, $C_2$ features refer to the set of formulae in $C_2$ with relations defined by the unary and binary predicates of a planning domain. Some planning domains exhibit optimal value functions that can be decomposed as arithmetic expressions of $C_2$ features. We show that, contrary to empirical results, R-GNNs cannot learn value functions defined by $C_2$ features. We also identify prior GNN architectures for planning that may better learn value functions defined by $C_2$ features.
☆ Interaction, Process, Infrastructure: A Unified Architecture for Human-Agent Collaboration
As AI tools proliferate across domains, from chatbots and copilots to emerging agents, they increasingly support professional knowledge work. Yet despite their growing capabilities, these systems remain fragmented: they assist with isolated tasks but lack the architectural scaffolding for sustained, adaptive collaboration. We propose a layered framework for human-agent systems that integrates three interdependent dimensions: interaction, process, and infrastructure. Crucially, our architecture elevates process to a primary focus by making it explicit, inspectable, and adaptable, enabling humans and agents to align with evolving goals and coordinate over time. This model clarifies limitations of current tools, unifies emerging system design approaches, and reveals new opportunities for researchers and AI system builders. By grounding intelligent behavior in structured collaboration, we reimagine human-agent collaboration not as task-specific augmentation, but as a form of coherent and aligned system for real-world work.
☆ Mitigating Hallucination Through Theory-Consistent Symmetric Multimodal Preference Optimization
Direct Preference Optimization (DPO) has emerged as an effective approach for mitigating hallucination in Multimodal Large Language Models (MLLMs). Although existing methods have achieved significant progress by utilizing vision-oriented contrastive objectives for enhancing MLLMs' attention to visual inputs and hence reducing hallucination, they suffer from non-rigorous optimization objective function and indirect preference supervision. To address these limitations, we propose a Symmetric Multimodal Preference Optimization (SymMPO), which conducts symmetric preference learning with direct preference supervision (i.e., response pairs) for visual understanding enhancement, while maintaining rigorous theoretical alignment with standard DPO. In addition to conventional ordinal preference learning, SymMPO introduces a preference margin consistency loss to quantitatively regulate the preference gap between symmetric preference pairs. Comprehensive evaluation across five benchmarks demonstrate SymMPO's superior performance, validating its effectiveness in hallucination mitigation of MLLMs.
☆ Configurable Preference Tuning with Rubric-Guided Synthetic Data ICML 2025
Models of human feedback for AI alignment, such as those underpinning Direct Preference Optimization (DPO), often bake in a singular, static set of preferences, limiting adaptability. This paper challenges the assumption of monolithic preferences by introducing Configurable Preference Tuning (CPT), a novel framework for endowing language models with the ability to dynamically adjust their behavior based on explicit, human-interpretable directives. CPT leverages synthetically generated preference data, conditioned on system prompts derived from structured, fine-grained rubrics that define desired attributes like writing style. By fine-tuning with these rubric-guided preferences, the LLM learns to modulate its outputs at inference time in response to the system prompt, without retraining. This approach not only offers fine-grained control but also provides a mechanism for modeling more nuanced and context-dependent human feedback. Several experimental artifacts, such as training code, generated datasets and fine-tuned models are released at https://github.com/vicgalle/configurable-preference-tuning
comment: Accepted to ICML 2025 Workshop on Models of Human Feedback for AI Alignment
☆ Differential Privacy in Machine Learning: From Symbolic AI to LLMs
Machine learning models should not reveal particular information that is not otherwise accessible. Differential privacy provides a formal framework to mitigate privacy risks by ensuring that the inclusion or exclusion of any single data point does not significantly alter the output of an algorithm, thus limiting the exposure of private information. This survey paper explores the foundational definitions of differential privacy, reviews its original formulations and tracing its evolution through key research contributions. It then provides an in-depth examination of how DP has been integrated into machine learning models, analyzing existing proposals and methods to preserve privacy when training ML models. Finally, it describes how DP-based ML techniques can be evaluated in practice. %Finally, it discusses the broader implications of DP, highlighting its potential for public benefit, its real-world applications, and the challenges it faces, including vulnerabilities to adversarial attacks. By offering a comprehensive overview of differential privacy in machine learning, this work aims to contribute to the ongoing development of secure and responsible AI systems.
comment: arXiv admin note: text overlap with arXiv:2303.00654 by other authors
☆ MTabVQA: Evaluating Multi-Tabular Reasoning of Language Models in Visual Space
Vision-Language Models (VLMs) have demonstrated remarkable capabilities in interpreting visual layouts and text. However, a significant challenge remains in their ability to interpret robustly and reason over multi-tabular data presented as images, a common occurrence in real-world scenarios like web pages and digital documents. Existing benchmarks typically address single tables or non-visual data (text/structured). This leaves a critical gap: they don't assess the ability to parse diverse table images, correlate information across them, and perform multi-hop reasoning on the combined visual data. We introduce MTabVQA, a novel benchmark specifically designed for multi-tabular visual question answering to bridge that gap. MTabVQA comprises 3,745 complex question-answer pairs that necessitate multi-hop reasoning across several visually rendered table images. We provide extensive benchmark results for state-of-the-art VLMs on MTabVQA, revealing significant performance limitations. We further investigate post-training techniques to enhance these reasoning abilities and release MTabVQA-Instruct, a large-scale instruction-tuning dataset. Our experiments show that fine-tuning VLMs with MTabVQA-Instruct substantially improves their performance on visual multi-tabular reasoning. Code and dataset (https://huggingface.co/datasets/mtabvqa/MTabVQA-Eval) are available online (https://anonymous.4open.science/r/MTabVQA-EMNLP-B16E).
☆ LLMs on support of privacy and security of mobile apps: state of the art and research directions
Modern life has witnessed the explosion of mobile devices. However, besides the valuable features that bring convenience to end users, security and privacy risks still threaten users of mobile apps. The increasing sophistication of these threats in recent years has underscored the need for more advanced and efficient detection approaches. In this chapter, we explore the application of Large Language Models (LLMs) to identify security risks and privacy violations and mitigate them for the mobile application ecosystem. By introducing state-of-the-art research that applied LLMs to mitigate the top 10 common security risks of smartphone platforms, we highlight the feasibility and potential of LLMs to replace traditional analysis methods, such as dynamic and hybrid analysis of mobile apps. As a representative example of LLM-based solutions, we present an approach to detect sensitive data leakage when users share images online, a common behavior of smartphone users nowadays. Finally, we discuss open research challenges.
☆ Pose Matters: Evaluating Vision Transformers and CNNs for Human Action Recognition on Small COCO Subsets
This study explores human action recognition using a three-class subset of the COCO image corpus, benchmarking models from simple fully connected networks to transformer architectures. The binary Vision Transformer (ViT) achieved 90% mean test accuracy, significantly exceeding multiclass classifiers such as convolutional networks (approximately 35%) and CLIP-based models (approximately 62-64%). A one-way ANOVA (F = 61.37, p < 0.001) confirmed these differences are statistically significant. Qualitative analysis with SHAP explainer and LeGrad heatmaps indicated that the ViT localizes pose-specific regions (e.g., lower limbs for walking or running), while simpler feed-forward models often focus on background textures, explaining their errors. These findings emphasize the data efficiency of transformer representations and the importance of explainability techniques in diagnosing class-specific failures.
comment: 7 pages, 9 figures
☆ Improving Causal Interventions in Amnesic Probing with Mean Projection or LEACE
Amnesic probing is a technique used to examine the influence of specific linguistic information on the behaviour of a model. This involves identifying and removing the relevant information and then assessing whether the model's performance on the main task changes. If the removed information is relevant, the model's performance should decline. The difficulty with this approach lies in removing only the target information while leaving other information unchanged. It has been shown that Iterative Nullspace Projection (INLP), a widely used removal technique, introduces random modifications to representations when eliminating target information. We demonstrate that Mean Projection (MP) and LEACE, two proposed alternatives, remove information in a more targeted manner, thereby enhancing the potential for obtaining behavioural explanations through Amnesic Probing.
☆ Converting Annotated Clinical Cases into Structured Case Report Forms
Case Report Forms (CRFs) are largely used in medical research as they ensure accuracy, reliability, and validity of results in clinical studies. However, publicly available, wellannotated CRF datasets are scarce, limiting the development of CRF slot filling systems able to fill in a CRF from clinical notes. To mitigate the scarcity of CRF datasets, we propose to take advantage of available datasets annotated for information extraction tasks and to convert them into structured CRFs. We present a semi-automatic conversion methodology, which has been applied to the E3C dataset in two languages (English and Italian), resulting in a new, high-quality dataset for CRF slot filling. Through several experiments on the created dataset, we report that slot filling achieves 59.7% for Italian and 67.3% for English on a closed Large Language Models (zero-shot) and worse performances on three families of open-source models, showing that filling CRFs is challenging even for recent state-of-the-art LLMs. We release the datest at https://huggingface.co/collections/NLP-FBK/e3c-to-crf-67b9844065460cbe42f80166
comment: to be published in BioNLP 2025
☆ DISCO: Mitigating Bias in Deep Learning with Conditional Distance Correlation
During prediction tasks, models can use any signal they receive to come up with the final answer - including signals that are causally irrelevant. When predicting objects from images, for example, the lighting conditions could be correlated to different targets through selection bias, and an oblivious model might use these signals as shortcuts to discern between various objects. A predictor that uses lighting conditions instead of real object-specific details is obviously undesirable. To address this challenge, we introduce a standard anti-causal prediction model (SAM) that creates a causal framework for analyzing the information pathways influencing our predictor in anti-causal settings. We demonstrate that a classifier satisfying a specific conditional independence criterion will focus solely on the direct causal path from label to image, being counterfactually invariant to the remaining variables. Finally, we propose DISCO, a novel regularization strategy that uses conditional distance correlation to optimize for conditional independence in regression tasks. We can show that DISCO achieves competitive results in different bias mitigation experiments, deeming it a valid alternative to classical kernel-based methods.
☆ Robot Context Protocol (RCP): A Runtime-Agnostic Interface for Agent-Aware Robot Control
The Robot Context Protocol (RCP) is a lightweight, middleware-agnostic communication protocol designed to simplify the complexity of robotic systems and enable seamless interaction between robots, users, and autonomous agents. RCP provides a unified and semantically meaningful interface that decouples client-facing operations from backend implementations, supporting a wide range of deployment environments including physical robots, cloud-based orchestrators, and simulated platforms. Built on HTTP and WebSocket transport layers, the protocol defines a schema-driven message format with structured operations such as read, write, execute, and subscribe. It integrates features such as runtime introspection, asynchronous feedback, multi-tenant namespace isolation, and strict type validation to ensure robustness, scalability, and security. The architecture, message structure, interface model, and adapter-based backend integration strategy of RCP are described, along with deployment practices and applicability across industries including manufacturing, logistics, and healthcare. RCP enables intelligent, resilient, and safe robotic operations in complex, multi-agent ecosystems.
☆ LoRA-Gen: Specializing Large Language Model via Online LoRA Generation
Recent advances have highlighted the benefits of scaling language models to enhance performance across a wide range of NLP tasks. However, these approaches still face limitations in effectiveness and efficiency when applied to domain-specific tasks, particularly for small edge-side models. We propose the LoRA-Gen framework, which utilizes a large cloud-side model to generate LoRA parameters for edge-side models based on task descriptions. By employing the reparameterization technique, we merge the LoRA parameters into the edge-side model to achieve flexible specialization. Our method facilitates knowledge transfer between models while significantly improving the inference efficiency of the specialized model by reducing the input context length. Without specialized training, LoRA-Gen outperforms conventional LoRA fine-tuning, which achieves competitive accuracy and a 2.1x speedup with TinyLLaMA-1.1B in reasoning tasks. Besides, our method delivers a compression ratio of 10.1x with Gemma-2B on intelligent agent tasks.
☆ FAA Framework: A Large Language Model-Based Approach for Credit Card Fraud Investigations
The continuous growth of the e-commerce industry attracts fraudsters who exploit stolen credit card details. Companies often investigate suspicious transactions in order to retain customer trust and address gaps in their fraud detection systems. However, analysts are overwhelmed with an enormous number of alerts from credit card transaction monitoring systems. Each alert investigation requires from the fraud analysts careful attention, specialized knowledge, and precise documentation of the outcomes, leading to alert fatigue. To address this, we propose a fraud analyst assistant (FAA) framework, which employs multi-modal large language models (LLMs) to automate credit card fraud investigations and generate explanatory reports. The FAA framework leverages the reasoning, code execution, and vision capabilities of LLMs to conduct planning, evidence collection, and analysis in each investigation step. A comprehensive empirical evaluation of 500 credit card fraud investigations demonstrates that the FAA framework produces reliable and efficient investigations comprising seven steps on average. Thus we found that the FAA framework can automate large parts of the workload and help reduce the challenges faced by fraud analysts.
☆ Evaluating Fairness and Mitigating Bias in Machine Learning: A Novel Technique using Tensor Data and Bayesian Regression
Fairness is a critical component of Trustworthy AI. In this paper, we focus on Machine Learning (ML) and the performance of model predictions when dealing with skin color. Unlike other sensitive attributes, the nature of skin color differs significantly. In computer vision, skin color is represented as tensor data rather than categorical values or single numerical points. However, much of the research on fairness across sensitive groups has focused on categorical features such as gender and race. This paper introduces a new technique for evaluating fairness in ML for image classification tasks, specifically without the use of annotation. To address the limitations of prior work, we handle tensor data, like skin color, without classifying it rigidly. Instead, we convert it into probability distributions and apply statistical distance measures. This novel approach allows us to capture fine-grained nuances in fairness both within and across what would traditionally be considered distinct groups. Additionally, we propose an innovative training method to mitigate the latent biases present in conventional skin tone categorization. This method leverages color distance estimates calculated through Bayesian regression with polynomial functions, ensuring a more nuanced and equitable treatment of skin color in ML models.
☆ Convergent Linear Representations of Emergent Misalignment
Fine-tuning large language models on narrow datasets can cause them to develop broadly misaligned behaviours: a phenomena known as emergent misalignment. However, the mechanisms underlying this misalignment, and why it generalizes beyond the training domain, are poorly understood, demonstrating critical gaps in our knowledge of model alignment. In this work, we train and study a minimal model organism which uses just 9 rank-1 adapters to emergently misalign Qwen2.5-14B-Instruct. Studying this, we find that different emergently misaligned models converge to similar representations of misalignment. We demonstrate this convergence by extracting a 'misalignment direction' from one fine-tuned model's activations, and using it to effectively ablate misaligned behaviour from fine-tunes using higher dimensional LoRAs and different datasets. Leveraging the scalar hidden state of rank-1 LoRAs, we further present a set of experiments for directly interpreting the fine-tuning adapters, showing that six contribute to general misalignment, while two specialise for misalignment in just the fine-tuning domain. Emergent misalignment is a particularly salient example of undesirable and unexpected model behaviour and by advancing our understanding of the mechanisms behind it, we hope to move towards being able to better understand and mitigate misalignment more generally.
☆ Model Organisms for Emergent Misalignment
Recent work discovered Emergent Misalignment (EM): fine-tuning large language models on narrowly harmful datasets can lead them to become broadly misaligned. A survey of experts prior to publication revealed this was highly unexpected, demonstrating critical gaps in our understanding of model alignment. In this work, we both advance understanding and provide tools for future research. Using new narrowly misaligned datasets, we create a set of improved model organisms that achieve 99% coherence (vs. 67% prior), work with smaller 0.5B parameter models (vs. 32B), and that induce misalignment using a single rank-1 LoRA adapter. We demonstrate that EM occurs robustly across diverse model sizes, three model families, and numerous training protocols including full supervised fine-tuning. Leveraging these cleaner model organisms, we isolate a mechanistic phase transition and demonstrate that it corresponds to a robust behavioural phase transition in all studied organisms. Aligning large language models is critical for frontier AI safety, yet EM exposes how far we are from achieving this robustly. By distilling clean model organisms that isolate a minimal alignment-compromising change, and where this is learnt, we establish a foundation for future research into understanding and mitigating alignment risks in LLMs.
☆ VLM@school -- Evaluation of AI image understanding on German middle school knowledge
This paper introduces a novel benchmark dataset designed to evaluate the capabilities of Vision Language Models (VLMs) on tasks that combine visual reasoning with subject-specific background knowledge in the German language. In contrast to widely used English-language benchmarks that often rely on artificially difficult or decontextualized problems, this dataset draws from real middle school curricula across nine domains including mathematics, history, biology, and religion. The benchmark includes over 2,000 open-ended questions grounded in 486 images, ensuring that models must integrate visual interpretation with factual reasoning rather than rely on superficial textual cues. We evaluate thirteen state-of-the-art open-weight VLMs across multiple dimensions, including domain-specific accuracy and performance on adversarial crafted questions. Our findings reveal that even the strongest models achieve less than 45% overall accuracy, with particularly poor performance in music, mathematics, and adversarial settings. Furthermore, the results indicate significant discrepancies between success on popular benchmarks and real-world multimodal understanding. We conclude that middle school-level tasks offer a meaningful and underutilized avenue for stress-testing VLMs, especially in non-English contexts. The dataset and evaluation protocol serve as a rigorous testbed to better understand and improve the visual and linguistic reasoning capabilities of future AI systems.
☆ Are LLMs Good Text Diacritizers? An Arabic and Yorùbá Case Study
We investigate the effectiveness of large language models (LLMs) for text diacritization in two typologically distinct languages: Arabic and Yoruba. To enable a rigorous evaluation, we introduce a novel multilingual dataset MultiDiac, with diverse samples that capture a range of diacritic ambiguities. We evaluate 14 LLMs varying in size, accessibility, and language coverage, and benchmark them against 6 specialized diacritization models. Additionally, we fine-tune four small open-source models using LoRA for Yoruba. Our results show that many off-the-shelf LLMs outperform specialized diacritization models for both Arabic and Yoruba, but smaller models suffer from hallucinations. Fine-tuning on a small dataset can help improve diacritization performance and reduce hallucination rates.
GraphRAG-Causal: A novel graph-augmented framework for causal reasoning and annotation in news
GraphRAG-Causal introduces an innovative framework that combines graph-based retrieval with large language models to enhance causal reasoning in news analysis. Traditional NLP approaches often struggle with identifying complex, implicit causal links, especially in low-data scenarios. Our approach addresses these challenges by transforming annotated news headlines into structured causal knowledge graphs. It then employs a hybrid retrieval system that merges semantic embeddings with graph-based structural cues leveraging Neo4j to accurately match and retrieve relevant events. The framework is built on a three-stage pipeline: First, during Data Preparation, news sentences are meticulously annotated and converted into causal graphs capturing cause, effect, and trigger relationships. Next, the Graph Retrieval stage stores these graphs along with their embeddings in a Neo4j database and utilizes hybrid Cypher queries to efficiently identify events that share both semantic and structural similarities with a given query. Finally, the LLM Inference stage utilizes these retrieved causal graphs in a few-shot learning setup with XML-based prompting, enabling robust classification and tagging of causal relationships. Experimental evaluations demonstrate that GraphRAG-Causal achieves an impressive F1-score of 82.1% on causal classification using just 20 few-shot examples. This approach significantly boosts accuracy and consistency, making it highly suitable for real-time applications in news reliability assessment, misinformation detection, and policy analysis.
comment: 18 pages, 8 figures
☆ A$^2$LC: Active and Automated Label Correction for Semantic Segmentation
Active Label Correction (ALC) has emerged as a promising solution to the high cost and error-prone nature of manual pixel-wise annotation in semantic segmentation, by selectively identifying and correcting mislabeled data. Although recent work has improved correction efficiency by generating pseudo-labels using foundation models, substantial inefficiencies still remain. In this paper, we propose Active and Automated Label Correction for semantic segmentation (A$^2$LC), a novel and efficient ALC framework that integrates an automated correction stage into the conventional pipeline. Specifically, the automated correction stage leverages annotator feedback to perform label correction beyond the queried samples, thereby maximizing cost efficiency. In addition, we further introduce an adaptively balanced acquisition function that emphasizes underrepresented tail classes and complements the automated correction mechanism. Extensive experiments on Cityscapes and PASCAL VOC 2012 demonstrate that A$^2$LC significantly outperforms previous state-of-the-art methods. Notably, A$^2$LC achieves high efficiency by outperforming previous methods using only 20% of their budget, and demonstrates strong effectiveness by yielding a 27.23% performance improvement under an equivalent budget constraint on the Cityscapes dataset. The code will be released upon acceptance.
comment: Preprint. Under review. 22 pages, 8 figures
☆ OV-MAP : Open-Vocabulary Zero-Shot 3D Instance Segmentation Map for Robots IROS 2024
We introduce OV-MAP, a novel approach to open-world 3D mapping for mobile robots by integrating open-features into 3D maps to enhance object recognition capabilities. A significant challenge arises when overlapping features from adjacent voxels reduce instance-level precision, as features spill over voxel boundaries, blending neighboring regions together. Our method overcomes this by employing a class-agnostic segmentation model to project 2D masks into 3D space, combined with a supplemented depth image created by merging raw and synthetic depth from point clouds. This approach, along with a 3D mask voting mechanism, enables accurate zero-shot 3D instance segmentation without relying on 3D supervised segmentation models. We assess the effectiveness of our method through comprehensive experiments on public datasets such as ScanNet200 and Replica, demonstrating superior zero-shot performance, robustness, and adaptability across diverse environments. Additionally, we conducted real-world experiments to demonstrate our method's adaptability and robustness when applied to diverse real-world environments.
comment: Accepted at IROS 2024
☆ A Comparative Analysis of Influence Signals for Data Debugging ICML 2024
Improving the quality of training samples is crucial for improving the reliability and performance of ML models. In this paper, we conduct a comparative evaluation of influence-based signals for debugging training data. These signals can potentially identify both mislabeled and anomalous samples from a potentially noisy training set as we build the models and hence alleviate the need for dedicated glitch detectors. Although several influence-based signals (e.g., Self-Influence, Average Absolute Influence, Marginal Influence, GD-class) have been recently proposed in the literature, there are no experimental studies for assessing their power in detecting different glitch types (e.g., mislabeled and anomalous samples) under a common influence estimator (e.g., TraceIn) for different data modalities (image and tabular), and deep learning models (trained from scratch or foundation). Through extensive experiments, we show that signals like Self-Influence effectively detect mislabeled samples, but none of the existing signals can detect anomalies. Existing signals do not take into account the training dynamics, i.e., how the samples' influence on the model changes during training, while some signals fall into influence cancellation effects, i.e., influence score is zero due to unsigned scores accumulation, resulting in misleading influence attribution.
comment: Accepted and presented at the Data-centric Machine Learning Research (DMLR) Workshop at ICML 2024
☆ Collaborative LLM Inference via Planning for Efficient Reasoning
Large language models (LLMs) excel at complex reasoning tasks, but those with strong capabilities (e.g., whose numbers of parameters are larger than 100B) are often accessible only through paid APIs, making them too costly for applications of frequent use. In contrast, smaller open-sourced LLMs (e.g., whose numbers of parameters are less than 3B) are freely available and easy to deploy locally (e.g., under a single GPU having 8G VRAM), but lack suff icient reasoning ability. This trade-off raises a natural question: can small (free) and large (costly) models collaborate at test time to combine their strengths? We propose a test-time collaboration framework in which a planner model first generates a plan, defined as a distilled and high-level abstraction of the problem. This plan serves as a lightweight intermediate that guides a reasoner model, which generates a complete solution. Small and large models take turns acting as planner and reasoner, exchanging plans in a multi-round cascade to collaboratively solve complex tasks. Our method achieves accuracy comparable to strong proprietary models alone, while significantly reducing reliance on paid inference. These results highlight planning as an effective prior for orchestrating cost-aware, cross-model inference under real-world deployment constraints.
☆ Learn to Preserve Personality: Federated Foundation Models in Recommendations
A core learning challenge for existed Foundation Models (FM) is striking the tradeoff between generalization with personalization, which is a dilemma that has been highlighted by various parameter-efficient adaptation techniques. Federated foundation models (FFM) provide a structural means to decouple shared knowledge from individual specific adaptations via decentralized processes. Recommendation systems offer a perfect testbed for FFMs, given their reliance on rich implicit feedback reflecting unique user characteristics. This position paper discusses a novel learning paradigm where FFMs not only harness their generalization capabilities but are specifically designed to preserve the integrity of user personality, illustrated thoroughly within the recommendation contexts. We envision future personal agents, powered by personalized adaptive FMs, guiding user decisions on content. Such an architecture promises a user centric, decentralized system where individuals maintain control over their personalized agents.
comment: 14 pages, 3 figures, conference, position paper
☆ Identifying Helpful Context for LLM-based Vulnerability Repair: A Preliminary Study
Recent advancements in large language models (LLMs) have shown promise for automated vulnerability detection and repair in software systems. This paper investigates the performance of GPT-4o in repairing Java vulnerabilities from a widely used dataset (Vul4J), exploring how different contextual information affects automated vulnerability repair (AVR) capabilities. We compare the latest GPT-4o's performance against previous results with GPT-4 using identical prompts. We evaluated nine additional prompts crafted by us that contain various contextual information such as CWE or CVE information, and manually extracted code contexts. Each prompt was executed three times on 42 vulnerabilities, and the resulting fix candidates were validated using Vul4J's automated testing framework. Our results show that GPT-4o performed 11.9\% worse on average than GPT-4 with the same prompt, but was able to fix 10.5\% more distinct vulnerabilities in the three runs together. CVE information significantly improved repair rates, while the length of the task description had minimal impact. Combining CVE guidance with manually extracted code context resulted in the best performance. Using our \textsc{Top}-3 prompts together, GPT-4o repaired 26 (62\%) vulnerabilities at least once, outperforming both the original baseline (40\%) and its reproduction (45\%), suggesting that ensemble prompt strategies could improve vulnerability repair in zero-shot settings.
☆ Leveraging GPT-4 for Vulnerability-Witnessing Unit Test Generation
In the life-cycle of software development, testing plays a crucial role in quality assurance. Proper testing not only increases code coverage and prevents regressions but it can also ensure that any potential vulnerabilities in the software are identified and effectively fixed. However, creating such tests is a complex, resource-consuming manual process. To help developers and security experts, this paper explores the automatic unit test generation capability of one of the most widely used large language models, GPT-4, from the perspective of vulnerabilities. We examine a subset of the VUL4J dataset containing real vulnerabilities and their corresponding fixes to determine whether GPT-4 can generate syntactically and/or semantically correct unit tests based on the code before and after the fixes as evidence of vulnerability mitigation. We focus on the impact of code contexts, the effectiveness of GPT-4's self-correction ability, and the subjective usability of the generated test cases. Our results indicate that GPT-4 can generate syntactically correct test cases 66.5\% of the time without domain-specific pre-training. Although the semantic correctness of the fixes could be automatically validated in only 7. 5\% of the cases, our subjective evaluation shows that GPT-4 generally produces test templates that can be further developed into fully functional vulnerability-witnessing tests with relatively minimal manual effort. Therefore, despite the limited data, our initial findings suggest that GPT-4 can be effectively used in the generation of vulnerability-witnessing tests. It may not operate entirely autonomously, but it certainly plays a significant role in a partially automated process.
☆ DaMO: A Data-Efficient Multimodal Orchestrator for Temporal Reasoning with Video LLMs
Large Language Models (LLMs) have recently been extended to the video domain, enabling sophisticated video-language understanding. However, existing Video LLMs often exhibit limitations in fine-grained temporal reasoning, restricting their ability to precisely attribute responses to specific video moments, especially under constrained supervision. We introduce DaMO, a data-efficient Video LLM explicitly designed for accurate temporal reasoning and multimodal understanding. At its core, the proposed Temporal-aware Fuseformer employs a hierarchical dual-stream architecture that progressively captures temporal dynamics within each modality and effectively fuses complementary visual and audio information. To further enhance computational efficiency, DaMO integrates a global residual that reduces spatial redundancy while preserving essential semantic details. We train DaMO via a structured four-stage progressive training paradigm, incrementally equipping the model with multimodal alignment, semantic grounding, and temporal reasoning capabilities. This work also contributes multiple datasets augmented from existing ones with GPT-generated temporally grounded QA pairs for tasks requiring temporal supervision. Comprehensive experiments on temporal grounding and video QA benchmarks demonstrate that DaMO consistently surpasses prior methods, particularly in tasks demanding precise temporal alignment and reasoning. Our work establishes a promising direction for data-efficient video-language modeling.
☆ RAG+: Enhancing Retrieval-Augmented Generation with Application-Aware Reasoning
The integration of external knowledge through Retrieval-Augmented Generation (RAG) has become foundational in enhancing large language models (LLMs) for knowledge-intensive tasks. However, existing RAG paradigms often overlook the cognitive step of applying knowledge, leaving a gap between retrieved facts and task-specific reasoning. In this work, we introduce RAG+, a principled and modular extension that explicitly incorporates application-aware reasoning into the RAG pipeline. RAG+ constructs a dual corpus consisting of knowledge and aligned application examples, created either manually or automatically, and retrieves both jointly during inference. This design enables LLMs not only to access relevant information but also to apply it within structured, goal-oriented reasoning processes. Experiments across mathematical, legal, and medical domains, conducted on multiple models, demonstrate that RAG+ consistently outperforms standard RAG variants, achieving average improvements of 3-5%, and peak gains up to 7.5% in complex scenarios. By bridging retrieval with actionable application, RAG+ advances a more cognitively grounded framework for knowledge integration, representing a step toward more interpretable and capable LLMs.
☆ Improving Multimodal Learning Balance and Sufficiency through Data Remixing ICML2025
Different modalities hold considerable gaps in optimization trajectories, including speeds and paths, which lead to modality laziness and modality clash when jointly training multimodal models, resulting in insufficient and imbalanced multimodal learning. Existing methods focus on enforcing the weak modality by adding modality-specific optimization objectives, aligning their optimization speeds, or decomposing multimodal learning to enhance unimodal learning. These methods fail to achieve both unimodal sufficiency and multimodal balance. In this paper, we, for the first time, address both concerns by proposing multimodal Data Remixing, including decoupling multimodal data and filtering hard samples for each modality to mitigate modality imbalance; and then batch-level reassembling to align the gradient directions and avoid cross-modal interference, thus enhancing unimodal learning sufficiency. Experimental results demonstrate that our method can be seamlessly integrated with existing approaches, improving accuracy by approximately 6.50%$\uparrow$ on CREMAD and 3.41%$\uparrow$ on Kinetic-Sounds, without training set expansion or additional computational overhead during inference. The source code is available at \href{https://github.com/MatthewMaxy/Remix_ICML2025}{Data Remixing}.
comment: ICML2025
☆ FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation CVPR 2025
Post-training quantization (PTQ) has stood out as a cost-effective and promising model compression paradigm in recent years, as it avoids computationally intensive model retraining. Nevertheless, current PTQ methods for Vision Transformers (ViTs) still suffer from significant accuracy degradation, especially under low-bit quantization. To address these shortcomings, we analyze the prevailing Hessian-guided quantization loss, and uncover certain limitations of conventional Hessian approximations. By following the block-wise reconstruction framework, we propose a novel PTQ method for ViTs, dubbed FIMA-Q. Specifically, we firstly establish the connection between KL divergence and FIM, which enables fast computation of the quantization loss during reconstruction. We further propose an efficient FIM approximation method, namely DPLR-FIM, by employing the diagonal plus low-rank principle, and formulate the ultimate quantization loss. Our extensive experiments, conducted across various vision tasks with representative ViT-based architectures on public datasets, demonstrate that our method substantially promotes the accuracy compared to the state-of-the-art approaches, especially in the case of low-bit quantization. The source code is available at https://github.com/ShiheWang/FIMA-Q.
comment: CVPR 2025 Highlight
☆ Foundation Models in Autonomous Driving: A Survey on Scenario Generation and Scenario Analysis
For autonomous vehicles, safe navigation in complex environments depends on handling a broad range of diverse and rare driving scenarios. Simulation- and scenario-based testing have emerged as key approaches to development and validation of autonomous driving systems. Traditional scenario generation relies on rule-based systems, knowledge-driven models, and data-driven synthesis, often producing limited diversity and unrealistic safety-critical cases. With the emergence of foundation models, which represent a new generation of pre-trained, general-purpose AI models, developers can process heterogeneous inputs (e.g., natural language, sensor data, HD maps, and control actions), enabling the synthesis and interpretation of complex driving scenarios. In this paper, we conduct a survey about the application of foundation models for scenario generation and scenario analysis in autonomous driving (as of May 2025). Our survey presents a unified taxonomy that includes large language models, vision-language models, multimodal large language models, diffusion models, and world models for the generation and analysis of autonomous driving scenarios. In addition, we review the methodologies, open-source datasets, simulation platforms, and benchmark challenges, and we examine the evaluation metrics tailored explicitly to scenario generation and analysis. Finally, the survey concludes by highlighting the open challenges and research questions, and outlining promising future research directions. All reviewed papers are listed in a continuously maintained repository, which contains supplementary materials and is available at https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.
☆ Investigating Vulnerabilities and Defenses Against Audio-Visual Attacks: A Comprehensive Survey Emphasizing Multimodal Models
Multimodal large language models (MLLMs), which bridge the gap between audio-visual and natural language processing, achieve state-of-the-art performance on several audio-visual tasks. Despite the superior performance of MLLMs, the scarcity of high-quality audio-visual training data and computational resources necessitates the utilization of third-party data and open-source MLLMs, a trend that is increasingly observed in contemporary research. This prosperity masks significant security risks. Empirical studies demonstrate that the latest MLLMs can be manipulated to produce malicious or harmful content. This manipulation is facilitated exclusively through instructions or inputs, including adversarial perturbations and malevolent queries, effectively bypassing the internal security mechanisms embedded within the models. To gain a deeper comprehension of the inherent security vulnerabilities associated with audio-visual-based multimodal models, a series of surveys investigates various types of attacks, including adversarial and backdoor attacks. While existing surveys on audio-visual attacks provide a comprehensive overview, they are limited to specific types of attacks, which lack a unified review of various types of attacks. To address this issue and gain insights into the latest trends in the field, this paper presents a comprehensive and systematic review of audio-visual attacks, which include adversarial attacks, backdoor attacks, and jailbreak attacks. Furthermore, this paper also reviews various types of attacks in the latest audio-visual-based MLLMs, a dimension notably absent in existing surveys. Drawing upon comprehensive insights from a substantial review, this paper delineates both challenges and emergent trends for future research on audio-visual attacks and defense.
☆ Prioritizing Alignment Paradigms over Task-Specific Model Customization in Time-Series LLMs
Recent advances in Large Language Models (LLMs) have enabled unprecedented capabilities for time-series reasoning in diverse real-world applications, including medical, financial, and spatio-temporal domains. However, existing approaches typically focus on task-specific model customization, such as forecasting and anomaly detection, while overlooking the data itself, referred to as time-series primitives, which are essential for in-depth reasoning. This position paper advocates a fundamental shift in approaching time-series reasoning with LLMs: prioritizing alignment paradigms grounded in the intrinsic primitives of time series data over task-specific model customization. This realignment addresses the core limitations of current time-series reasoning approaches, which are often costly, inflexible, and inefficient, by systematically accounting for intrinsic structure of data before task engineering. To this end, we propose three alignment paradigms: Injective Alignment, Bridging Alignment, and Internal Alignment, which are emphasized by prioritizing different aspects of time-series primitives: domain, characteristic, and representation, respectively, to activate time-series reasoning capabilities of LLMs to enable economical, flexible, and efficient reasoning. We further recommend that practitioners adopt an alignment-oriented method to avail this instruction to select an appropriate alignment paradigm. Additionally, we categorize relevant literature into these alignment paradigms and outline promising research directions.
☆ Machine Learning-Based Quantification of Vesicoureteral Reflux with Enhancing Accuracy and Efficiency
Vesicoureteral reflux (VUR) is traditionally assessed using subjective grading systems, which introduces variability in diagnosis. This study investigates the use of machine learning to improve diagnostic consistency by analyzing voiding cystourethrogram (VCUG) images. A total of 113 VCUG images were reviewed, with expert grading of VUR severity. Nine image-based features were selected to train six predictive models: Logistic Regression, Decision Tree, Gradient Boosting, Neural Network, and Stochastic Gradient Descent. The models were evaluated using leave-one-out cross-validation. Analysis identified deformation patterns in the renal calyces as key indicators of high-grade VUR. All models achieved accurate classifications with no false positives or negatives. High sensitivity to subtle image patterns characteristic of different VUR grades was confirmed by substantial Area Under the Curve (AUC) values. The results suggest that machine learning can offer an objective and standardized alternative to current subjective VUR assessments. These findings highlight renal calyceal deformation as a strong predictor of severe cases. Future research should aim to expand the dataset, refine imaging features, and improve model generalizability for broader clinical use.
☆ Diabetes Prediction and Management Using Machine Learning Approaches
Diabetes has emerged as a significant global health issue, especially with the increasing number of cases in many countries. This trend Underlines the need for a greater emphasis on early detection and proactive management to avert or mitigate the severe health complications of this disease. Over recent years, machine learning algorithms have shown promising potential in predicting diabetes risk and are beneficial for practitioners. Objective: This study highlights the prediction capabilities of statistical and non-statistical machine learning methods over Diabetes risk classification in 768 samples from the Pima Indians Diabetes Database. It consists of the significant demographic and clinical features of age, body mass index (BMI) and blood glucose levels that greatly depend on the vulnerability against Diabetes. The experimentation assesses the various types of machine learning algorithms in terms of accuracy and effectiveness regarding diabetes prediction. These algorithms include Logistic Regression, Decision Tree, Random Forest, K-Nearest Neighbors, Naive Bayes, Support Vector Machine, Gradient Boosting and Neural Network Models. The results show that the Neural Network algorithm gained the highest predictive accuracy with 78,57 %, and then the Random Forest algorithm had the second position with 76,30 % accuracy. These findings show that machine learning techniques are not just highly effective. Still, they also can potentially act as early screening tools in predicting Diabetes within a data-driven fashion with valuable information on who is more likely to get affected. In addition, this study can help to realize the potential of machine learning for timely intervention over the longer term, which is a step towards reducing health outcomes and disease burden attributable to Diabetes on healthcare systems
☆ Composite Data Augmentations for Synthetic Image Detection Against Real-World Perturbations
The advent of accessible Generative AI tools enables anyone to create and spread synthetic images on social media, often with the intention to mislead, thus posing a significant threat to online information integrity. Most existing Synthetic Image Detection (SID) solutions struggle on generated images sourced from the Internet, as these are often altered by compression and other operations. To address this, our research enhances SID by exploring data augmentation combinations, leveraging a genetic algorithm for optimal augmentation selection, and introducing a dual-criteria optimization approach. These methods significantly improve model performance under real-world perturbations. Our findings provide valuable insights for developing detection models capable of identifying synthetic images across varying qualities and transformations, with the best-performing model achieving a mean average precision increase of +22.53% compared to models without augmentations. The implementation is available at github.com/efthimia145/sid-composite-data-augmentation.
comment: EUSIPCO 2025 (33rd European Signal Processing Conference)
☆ Reviving DSP for Advanced Theorem Proving in the Era of Reasoning Models SP
Recent advancements, such as DeepSeek-Prover-V2-671B and Kimina-Prover-Preview-72B, demonstrate a prevailing trend in leveraging reinforcement learning (RL)-based large-scale training for automated theorem proving. Surprisingly, we discover that even without any training, careful neuro-symbolic coordination of existing off-the-shelf reasoning models and tactic step provers can achieve comparable performance. This paper introduces \textbf{DSP+}, an improved version of the Draft, Sketch, and Prove framework, featuring a \emph{fine-grained and integrated} neuro-symbolic enhancement for each phase: (1) In the draft phase, we prompt reasoning models to generate concise natural-language subgoals to benefit the sketch phase, removing thinking tokens and references to human-written proofs; (2) In the sketch phase, subgoals are autoformalized with hypotheses to benefit the proving phase, and sketch lines containing syntactic errors are masked according to predefined rules; (3) In the proving phase, we tightly integrate symbolic search methods like Aesop with step provers to establish proofs for the sketch subgoals. Experimental results show that, without any additional model training or fine-tuning, DSP+ solves 80.7\%, 32.8\%, and 24 out of 644 problems from miniF2F, ProofNet, and PutnamBench, respectively, while requiring fewer budgets compared to state-of-the-arts. DSP+ proves \texttt{imo\_2019\_p1}, an IMO problem in miniF2F that is not solved by any prior work. Additionally, DSP+ generates proof patterns comprehensible by human experts, facilitating the identification of formalization errors; For example, eight wrongly formalized statements in miniF2F are discovered. Our results highlight the potential of classical reasoning patterns besides the RL-based training. All components will be open-sourced.
comment: 31 pages. Associated code and results are available at https://github.com/microsoft/DSP-Plus
☆ Relational Schemata in BERT Are Inducible, Not Emergent: A Study of Performance vs. Competence in Language Models
While large language models like BERT demonstrate strong empirical performance on semantic tasks, whether this reflects true conceptual competence or surface-level statistical association remains unclear. I investigate whether BERT encodes abstract relational schemata by examining internal representations of concept pairs across taxonomic, mereological, and functional relations. I compare BERT's relational classification performance with representational structure in [CLS] token embeddings. Results reveal that pretrained BERT enables high classification accuracy, indicating latent relational signals. However, concept pairs organize by relation type in high-dimensional embedding space only after fine-tuning on supervised relation classification tasks. This indicates relational schemata are not emergent from pretraining alone but can be induced via task scaffolding. These findings demonstrate that behavioral performance does not necessarily imply structured conceptual understanding, though models can acquire inductive biases for grounded relational abstraction through appropriate training.
comment: 15 pages, 4 figures, 3 tables
☆ LearnAlign: Reasoning Data Selection for Reinforcement Learning in Large Language Models Based on Improved Gradient Alignment
Reinforcement learning (RL) has become a key technique for enhancing LLMs' reasoning abilities, yet its data inefficiency remains a major bottleneck. To address this critical yet challenging issue, we present a novel gradient-alignment-based method, named LearnAlign, which intelligently selects the learnable and representative training reasoning data for RL post-training. To overcome the well-known issue of response-length bias in gradient norms, we introduce the data learnability based on the success rate, which can indicate the learning potential of each data point. Experiments across three mathematical reasoning benchmarks demonstrate that our method significantly reduces training data requirements while achieving minor performance degradation or even improving performance compared to full-data training. For example, it reduces data requirements by up to 1,000 data points with better performance (77.53%) than that on the full dataset on GSM8K benchmark (77.04%). Furthermore, we show its effectiveness in the staged RL setting. This work provides valuable insights into data-efficient RL post-training and establishes a foundation for future research in optimizing reasoning data selection.To facilitate future work, we will release code.
☆ Structure-Aware Automatic Channel Pruning by Searching with Graph Embedding
Channel pruning is a powerful technique to reduce the computational overhead of deep neural networks, enabling efficient deployment on resource-constrained devices. However, existing pruning methods often rely on local heuristics or weight-based criteria that fail to capture global structural dependencies within the network, leading to suboptimal pruning decisions and degraded model performance. To address these limitations, we propose a novel structure-aware automatic channel pruning (SACP) framework that utilizes graph convolutional networks (GCNs) to model the network topology and learn the global importance of each channel. By encoding structural relationships within the network, our approach implements topology-aware pruning and this pruning is fully automated, reducing the need for human intervention. We restrict the pruning rate combinations to a specific space, where the number of combinations can be dynamically adjusted, and use a search-based approach to determine the optimal pruning rate combinations. Extensive experiments on benchmark datasets (CIFAR-10, ImageNet) with various models (ResNet, VGG16) demonstrate that SACP outperforms state-of-the-art pruning methods on compression efficiency and competitive on accuracy retention.
comment: 12 pages, 2 figures
☆ RollingQ: Reviving the Cooperation Dynamics in Multimodal Transformer ICML 2025
Multimodal learning faces challenges in effectively fusing information from diverse modalities, especially when modality quality varies across samples. Dynamic fusion strategies, such as attention mechanism in Transformers, aim to address such challenge by adaptively emphasizing modalities based on the characteristics of input data. However, through amounts of carefully designed experiments, we surprisingly observed that the dynamic adaptability of widely-used self-attention models diminishes. Model tends to prefer one modality regardless of data characteristics. This bias triggers a self-reinforcing cycle that progressively overemphasizes the favored modality, widening the distribution gap in attention keys across modalities and deactivating attention mechanism's dynamic properties. To revive adaptability, we propose a simple yet effective method Rolling Query (RollingQ), which balances attention allocation by rotating the query to break the self-reinforcing cycle and mitigate the key distribution gap. Extensive experiments on various multimodal scenarios validate the effectiveness of RollingQ and the restoration of cooperation dynamics is pivotal for enhancing the broader capabilities of widely deployed multimodal Transformers. The source code is available at https://github.com/GeWu-Lab/RollingQ_ICML2025.
comment: Accepted by ICML 2025
Voxel-Level Brain States Prediction Using Swin Transformer
Understanding brain dynamics is important for neuroscience and mental health. Functional magnetic resonance imaging (fMRI) enables the measurement of neural activities through blood-oxygen-level-dependent (BOLD) signals, which represent brain states. In this study, we aim to predict future human resting brain states with fMRI. Due to the 3D voxel-wise spatial organization and temporal dependencies of the fMRI data, we propose a novel architecture which employs a 4D Shifted Window (Swin) Transformer as encoder to efficiently learn spatio-temporal information and a convolutional decoder to enable brain state prediction at the same spatial and temporal resolution as the input fMRI data. We used 100 unrelated subjects from the Human Connectome Project (HCP) for model training and testing. Our novel model has shown high accuracy when predicting 7.2s resting-state brain activities based on the prior 23.04s fMRI time series. The predicted brain states highly resemble BOLD contrast and dynamics. This work shows promising evidence that the spatiotemporal organization of the human brain can be learned by a Swin Transformer model, at high resolution, which provides a potential for reducing the fMRI scan time and the development of brain-computer interfaces in the future.
☆ Resolve Highway Conflict in Multi-Autonomous Vehicle Controls with Local State Attention
In mixed-traffic environments, autonomous vehicles must adapt to human-controlled vehicles and other unusual driving situations. This setting can be framed as a multi-agent reinforcement learning (MARL) environment with full cooperative reward among the autonomous vehicles. While methods such as Multi-agent Proximal Policy Optimization can be effective in training MARL tasks, they often fail to resolve local conflict between agents and are unable to generalize to stochastic events. In this paper, we propose a Local State Attention module to assist the input state representation. By relying on the self-attention operator, the module is expected to compress the essential information of nearby agents to resolve the conflict in traffic situations. Utilizing a simulated highway merging scenario with the priority vehicle as the unexpected event, our approach is able to prioritize other vehicles' information to manage the merging process. The results demonstrate significant improvements in merging efficiency compared to popular baselines, especially in high-density traffic settings.
☆ DPUV4E: High-Throughput DPU Architecture Design for CNN on Versal ACAP
Convolutional Neural Networks (CNNs) remain prevalent in computer vision applications, and FPGAs, known for their flexibility and energy efficiency, have become essential components in heterogeneous acceleration systems. However, traditional FPGAs face challenges in balancing performance and versatility due to limited on-chip resources. AMD's Versal ACAP architecture, tailored for AI applications, incorporates AI Engines (AIEs) to deliver high computational power. Nevertheless, the platform suffers from insufficient memory bandwidth, hindering the full utilization of the AIEs' theoretical performance. In this paper, we present DPUV4E for the Versal architecture, providing configurations ranging from 2PE ($32.6$ TOPS) to 8PE ($131.0$ TOPS). We design two computation units, Conv PE and DWC PE, to support different computational patterns. Each computation unit's data flow efficiently utilizes the data reuse opportunities to mitigate bandwidth bottlenecks. Additionally, we extend the functionality of each PE to utilize AIEs for non-convolutional operations, reducing resource overhead. Experiments on over 50 models show that compared to previous designs, our design provides $8.6\times$ the TOPS/W of traditional FPGA-based DPU designs, while reducing DSP usage by $95.8\%$, LUT usage by $44.7\%$, and latency to $68.5\%$ under single-batch conditions. For end-to-end inference, our design improving throughput by up to $2.2\times$ for depth-wise convolution models and up to $1.3\times$ for standard models.
comment: 10 pages, 9 figures
☆ KoGEC : Korean Grammatical Error Correction with Pre-trained Translation Models
This research introduces KoGEC, a Korean Grammatical Error Correction system using pre\--trained translation models. We fine-tuned NLLB (No Language Left Behind) models for Korean GEC, comparing their performance against large language models like GPT-4 and HCX-3. The study used two social media conversation datasets for training and testing. The NLLB models were fine-tuned using special language tokens to distinguish between original and corrected Korean sentences. Evaluation was done using BLEU scores and an "LLM as judge" method to classify error types. Results showed that the fine-tuned NLLB (KoGEC) models outperformed GPT-4o and HCX-3 in Korean GEC tasks. KoGEC demonstrated a more balanced error correction profile across various error types, whereas the larger LLMs tended to focus less on punctuation errors. We also developed a Chrome extension to make the KoGEC system accessible to users. Finally, we explored token vocabulary expansion to further improve the model but found it to decrease model performance. This research contributes to the field of NLP by providing an efficient, specialized Korean GEC system and a new evaluation method. It also highlights the potential of compact, task-specific models to compete with larger, general-purpose language models in specialized NLP tasks.
comment: 11 pages, 2 figures
☆ Agent-RLVR: Training Software Engineering Agents via Guidance and Environment Rewards
Reinforcement Learning from Verifiable Rewards (RLVR) has been widely adopted as the de facto method for enhancing the reasoning capabilities of large language models and has demonstrated notable success in verifiable domains like math and competitive programming tasks. However, the efficacy of RLVR diminishes significantly when applied to agentic environments. These settings, characterized by multi-step, complex problem solving, lead to high failure rates even for frontier LLMs, as the reward landscape is too sparse for effective model training via conventional RLVR. In this work, we introduce Agent-RLVR, a framework that makes RLVR effective in challenging agentic settings, with an initial focus on software engineering tasks. Inspired by human pedagogy, Agent-RLVR introduces agent guidance, a mechanism that actively steers the agent towards successful trajectories by leveraging diverse informational cues. These cues, ranging from high-level strategic plans to dynamic feedback on the agent's errors and environmental interactions, emulate a teacher's guidance, enabling the agent to navigate difficult solution spaces and promotes active self-improvement via additional environment exploration. In the Agent-RLVR training loop, agents first attempt to solve tasks to produce initial trajectories, which are then validated by unit tests and supplemented with agent guidance. Agents then reattempt with guidance, and the agent policy is updated with RLVR based on the rewards of these guided trajectories. Agent-RLVR elevates the pass@1 performance of Qwen-2.5-72B-Instruct from 9.4% to 22.4% on SWE-Bench Verified. We find that our guidance-augmented RLVR data is additionally useful for test-time reward model training, shown by further boosting pass@1 to 27.8%. Agent-RLVR lays the groundwork for training agents with RLVR in complex, real-world environments where conventional RL methods struggle.
☆ Deep Learning Model Acceleration and Optimization Strategies for Real-Time Recommendation Systems
With the rapid growth of Internet services, recommendation systems play a central role in delivering personalized content. Faced with massive user requests and complex model architectures, the key challenge for real-time recommendation systems is how to reduce inference latency and increase system throughput without sacrificing recommendation quality. This paper addresses the high computational cost and resource bottlenecks of deep learning models in real-time settings by proposing a combined set of modeling- and system-level acceleration and optimization strategies. At the model level, we dramatically reduce parameter counts and compute requirements through lightweight network design, structured pruning, and weight quantization. At the system level, we integrate multiple heterogeneous compute platforms and high-performance inference libraries, and we design elastic inference scheduling and load-balancing mechanisms based on real-time load characteristics. Experiments show that, while maintaining the original recommendation accuracy, our methods cut latency to less than 30% of the baseline and more than double system throughput, offering a practical solution for deploying large-scale online recommendation services.
☆ FocalAD: Local Motion Planning for End-to-End Autonomous Driving
In end-to-end autonomous driving,the motion prediction plays a pivotal role in ego-vehicle planning. However, existing methods often rely on globally aggregated motion features, ignoring the fact that planning decisions are primarily influenced by a small number of locally interacting agents. Failing to attend to these critical local interactions can obscure potential risks and undermine planning reliability. In this work, we propose FocalAD, a novel end-to-end autonomous driving framework that focuses on critical local neighbors and refines planning by enhancing local motion representations. Specifically, FocalAD comprises two core modules: the Ego-Local-Agents Interactor (ELAI) and the Focal-Local-Agents Loss (FLA Loss). ELAI conducts a graph-based ego-centric interaction representation that captures motion dynamics with local neighbors to enhance both ego planning and agent motion queries. FLA Loss increases the weights of decision-critical neighboring agents, guiding the model to prioritize those more relevant to planning. Extensive experiments show that FocalAD outperforms existing state-of-the-art methods on the open-loop nuScenes datasets and closed-loop Bench2Drive benchmark. Notably, on the robustness-focused Adv-nuScenes dataset, FocalAD achieves even greater improvements, reducing the average colilision rate by 41.9% compared to DiffusionDrive and by 15.6% compared to SparseDrive.
☆ Stop learning it all to mitigate visual hallucination, Focus on the hallucination target CVPR 2025
Multimodal Large Language Models (MLLMs) frequently suffer from hallucination issues, generating information about objects that are not present in input images during vision-language tasks. These hallucinations particularly undermine model reliability in practical applications requiring accurate object identification. To address this challenge, we propose \mymethod,\ a preference learning approach that mitigates hallucinations by focusing on targeted areas where they occur. To implement this, we build a dataset containing hallucinated responses, correct responses, and target information (i.e., objects present in the images and the corresponding chunk positions in responses affected by hallucinations). By applying a preference learning method restricted to these specific targets, the model can filter out irrelevant signals and focus on correcting hallucinations. This allows the model to produce more factual responses by concentrating solely on relevant information. Experimental results demonstrate that \mymethod\ effectively reduces hallucinations across multiple vision hallucination tasks, improving the reliability and performance of MLLMs without diminishing overall performance.
comment: Accepted to CVPR 2025
☆ A correlation-permutation approach for speech-music encoders model merging
Creating a unified speech and music model requires expensive pre-training. Model merging can instead create an unified audio model with minimal computational expense. However, direct merging is challenging when the models are not aligned in the weight space. Motivated by Git Re-Basin, we introduce a correlation-permutation approach that aligns a music encoder's internal layers with a speech encoder. We extend previous work to the case of merging transformer layers. The method computes a permutation matrix that maximizes the model's features-wise cross-correlations layer by layer, enabling effective fusion of these otherwise disjoint models. The merged model retains speech capabilities through this method while significantly enhancing music performance, achieving an improvement of 14.83 points in average score compared to linear interpolation model merging. This work allows the creation of unified audio models from independently trained encoders.
comment: Under review
☆ LoRA Users Beware: A Few Spurious Tokens Can Manipulate Your Finetuned Model
Parameter Efficient FineTuning (PEFT), such as Low-Rank Adaptation (LoRA), aligns pre-trained Large Language Models (LLMs) to particular downstream tasks in a resource-efficient manner. Because efficiency has been the main metric of progress, very little attention has been put in understanding possible catastrophic failures. We uncover one such failure: PEFT encourages a model to search for shortcut solutions to solve its fine-tuning tasks. When very small amount of tokens, e.g., one token per prompt, are correlated with downstream task classes, PEFT makes any pretrained model rely predominantly on that token for decision making. While such spurious tokens may emerge accidentally from incorrect data cleaning, it also opens opportunities for malevolent parties to control a model's behavior from Seamless Spurious Token Injection (SSTI). In SSTI, a small amount of tokens correlated with downstream classes are injected by the dataset creators. At test time, the finetuned LLM's behavior can be controlled solely by injecting those few tokens. We apply SSTI across models from three families (Snowflake Arctic, Apple OpenELM, and Meta LLaMA-3) and four diverse datasets (IMDB, Financial Classification, CommonSense QA, and Bias in Bios). Our findings reveal three astonishing behaviors. First, as few as a single token of SSTI is sufficient to steer a model's decision making. Second, for light SSTI, the reliance on spurious tokens is proportional to the LoRA rank. Lastly, with aggressive SSTI, larger LoRA rank values become preferable to small rank values as it makes the model attend to non-spurious tokens, hence improving robustness.
comment: 29 pages, 16 figures, 15 tables. Submitted for publication. for associated blog post, see https://pradyut3501.github.io/lora-spur-corr/
Dynamic Double Space Tower
The Visual Question Answering (VQA) task requires the simultaneous understanding of image content and question semantics. However, existing methods often have difficulty handling complex reasoning scenarios due to insufficient cross-modal interaction and capturing the entity spatial relationships in the image.\cite{huang2023adaptive}\cite{liu2021comparing}\cite{guibas2021adaptive}\cite{zhang2022vsa}We studied a brand-new approach to replace the attention mechanism in order to enhance the reasoning ability of the model and its understanding of spatial relationships.Specifically, we propose a dynamic bidirectional spatial tower, which is divided into four layers to observe the image according to the principle of human gestalt vision. This naturally provides a powerful structural prior for the spatial organization between entities, enabling the model to no longer blindly search for relationships between pixels but make judgments based on more meaningful perceptual units. Change from "seeing images" to "perceiving and organizing image content".A large number of experiments have shown that our module can be used in any other multimodal model and achieve advanced results, demonstrating its potential in spatial relationship processing.Meanwhile, the multimodal visual question-answering model July trained by our method has achieved state-of-the-art results with only 3B parameters, especially on the question-answering dataset of spatial relations.
☆ A Variational Approach for Mitigating Entity Bias in Relation Extraction ACL 2025
Mitigating entity bias is a critical challenge in Relation Extraction (RE), where models often rely excessively on entities, resulting in poor generalization. This paper presents a novel approach to address this issue by adapting a Variational Information Bottleneck (VIB) framework. Our method compresses entity-specific information while preserving task-relevant features. It achieves state-of-the-art performance on relation extraction datasets across general, financial, and biomedical domains, in both indomain (original test sets) and out-of-domain (modified test sets with type-constrained entity replacements) settings. Our approach offers a robust, interpretable, and theoretically grounded methodology.
comment: Accepted at ACL 2025 Main
☆ Enhance Multimodal Consistency and Coherence for Text-Image Plan Generation ACL 2025
People get informed of a daily task plan through diverse media involving both texts and images. However, most prior research only focuses on LLM's capability of textual plan generation. The potential of large-scale models in providing text-image plans remains understudied. Generating high-quality text-image plans faces two main challenges: ensuring consistent alignment between two modalities and keeping coherence among visual steps. To address these challenges, we propose a novel framework that generates and refines text-image plans step-by-step. At each iteration, our framework (1) drafts the next textual step based on the prediction history; (2) edits the last visual step to obtain the next one; (3) extracts PDDL-like visual information; and (4) refines the draft with the extracted visual information. The textual and visual step produced in stage (4) and (2) will then serve as inputs for the next iteration. Our approach offers a plug-and-play improvement to various backbone models, such as Mistral-7B, Gemini-1.5, and GPT-4o. To evaluate the effectiveness of our approach, we collect a new benchmark consisting of 1,100 tasks and their text-image pair solutions covering 11 daily topics. We also design and validate a new set of metrics to evaluate the multimodal consistency and coherence in text-image plans. Extensive experiment results show the effectiveness of our approach on a range of backbone models against competitive baselines. Our code and data are available at https://github.com/psunlpgroup/MPlanner.
comment: 18 pages, 10 figures; Accepted to ACL 2025 Findings
☆ Large Language Model-Powered Conversational Agent Delivering Problem-Solving Therapy (PST) for Family Caregivers: Enhancing Empathy and Therapeutic Alliance Using In-Context Learning
Family caregivers often face substantial mental health challenges due to their multifaceted roles and limited resources. This study explored the potential of a large language model (LLM)-powered conversational agent to deliver evidence-based mental health support for caregivers, specifically Problem-Solving Therapy (PST) integrated with Motivational Interviewing (MI) and Behavioral Chain Analysis (BCA). A within-subject experiment was conducted with 28 caregivers interacting with four LLM configurations to evaluate empathy and therapeutic alliance. The best-performing models incorporated Few-Shot and Retrieval-Augmented Generation (RAG) prompting techniques, alongside clinician-curated examples. The models showed improved contextual understanding and personalized support, as reflected by qualitative responses and quantitative ratings on perceived empathy and therapeutic alliances. Participants valued the model's ability to validate emotions, explore unexpressed feelings, and provide actionable strategies. However, balancing thorough assessment with efficient advice delivery remains a challenge. This work highlights the potential of LLMs in delivering empathetic and tailored support for family caregivers.
☆ Benchmarking Multimodal LLMs on Recognition and Understanding over Chemical Tables
Chemical tables encode complex experimental knowledge through symbolic expressions, structured variables, and embedded molecular graphics. Existing benchmarks largely overlook this multimodal and domain-specific complexity, limiting the ability of multimodal large language models to support scientific understanding in chemistry. In this work, we introduce ChemTable, a large-scale benchmark of real-world chemical tables curated from the experimental sections of literature. ChemTable includes expert-annotated cell polygons, logical layouts, and domain-specific labels, including reagents, catalysts, yields, and graphical components and supports two core tasks: (1) Table Recognition, covering structure parsing and content extraction; and (2) Table Understanding, encompassing both descriptive and reasoning-oriented question answering grounded in table structure and domain semantics. We evaluated a range of representative multimodal models, including both open-source and closed-source models, on ChemTable and reported a series of findings with practical and conceptual insights. Although models show reasonable performance on basic layout parsing, they exhibit substantial limitations on both descriptive and inferential QA tasks compared to human performance, and we observe significant performance gaps between open-source and closed-source models across multiple dimensions. These results underscore the challenges of chemistry-aware table understanding and position ChemTable as a rigorous and realistic benchmark for advancing scientific reasoning.
♻ ☆ Cartridges: Lightweight and general-purpose long context representations via self-study
Large language models are often used to answer queries grounded in large text corpora (e.g. codebases, legal documents, or chat histories) by placing the entire corpus in the context window and leveraging in-context learning (ICL). Although current models support contexts of 100K-1M tokens, this setup is costly to serve because the memory consumption of the KV cache scales with input length. We explore an alternative: training a smaller KV cache offline on each corpus. At inference time, we load this trained KV cache, which we call a Cartridge, and decode a response. Critically, the cost of training a Cartridge can be amortized across all the queries referencing the same corpus. However, we find that the naive approach of training the Cartridge with next-token prediction on the corpus is not competitive with ICL. Instead, we propose self-study, a training recipe in which we generate synthetic conversations about the corpus and train the Cartridge with a context-distillation objective. We find that Cartridges trained with self-study replicate the functionality of ICL, while being significantly cheaper to serve. On challenging long-context benchmarks, Cartridges trained with self-study match ICL performance while using 38.6x less memory and enabling 26.4x higher throughput. Self-study also extends the model's effective context length (e.g. from 128k to 484k tokens on MTOB) and surprisingly, leads to Cartridges that can be composed at inference time without retraining.
♻ ☆ Specification and Evaluation of Multi-Agent LLM Systems -- Prototype and Cybersecurity Applications
Recent advancements in LLMs indicate potential for novel applications, e.g., through reasoning capabilities in the latest OpenAI and DeepSeek models. For applying these models in specific domains beyond text generation, LLM-based multi-agent approaches can be utilized that solve complex tasks by combining reasoning techniques, code generation, and software execution. Applications might utilize these capabilities and the knowledge of specialized LLM agents. However, while many evaluations are performed on LLMs, reasoning techniques, and applications individually, their joint specification and combined application is not explored well. Defined specifications for multi-agent LLM systems are required to explore their potential and their suitability for specific applications, allowing for systematic evaluations of LLMs, reasoning techniques, and related aspects. This paper reports the results of exploratory research to specify and evaluate these aspects through a multi-agent system. The system architecture and prototype are extended from previous research and a specification is introduced for multi-agent systems. Test cases involving cybersecurity tasks indicate feasibility of the architecture and evaluation approach. In particular, the results show the evaluation of question answering, server security, and network security tasks that were completed correctly by agents with LLMs from OpenAI and DeepSeek.
comment: This work has been submitted for a possible publication. Copyright may be transferred. In this case, this version will be updated with a notice, according to the publisher's guidelines
♻ ☆ Improving Large Language Models with Concept-Aware Fine-Tuning
Large language models (LLMs) have become the cornerstone of modern AI. However, the existing paradigm of next-token prediction fundamentally limits their ability to form coherent, high-level concepts, making it a critical barrier to human-like understanding and reasoning. Take the phrase "ribonucleic acid" as an example: an LLM will first decompose it into tokens, i.e., artificial text fragments ("rib", "on", ...), then learn each token sequentially, rather than grasping the phrase as a unified, coherent semantic entity. This fragmented representation hinders deeper conceptual understanding and, ultimately, the development of truly intelligent systems. In response, we introduce Concept-Aware Fine-Tuning (CAFT), a novel multi-token training method that redefines how LLMs are fine-tuned. By enabling the learning of sequences that span multiple tokens, this method fosters stronger concept-aware learning. Our experiments demonstrate significant improvements compared to conventional next-token finetuning methods across diverse tasks, including traditional applications like text summarization and domain-specific ones like de novo protein design. Multi-token prediction was previously only possible in the prohibitively expensive pretraining phase; CAFT, to our knowledge, is the first to bring the multi-token setting to the post-training phase, thus effectively democratizing its benefits for the broader community of practitioners and researchers. Finally, the unexpected effectiveness of our proposed method suggests wider implications for the machine learning research community. All code and data are available at https://github.com/michaelchen-lab/caft-llm
♻ ☆ Impact of Frame Rates on Speech Tokenizer: A Case Study on Mandarin and English
The speech tokenizer plays a crucial role in recent speech tasks, generally serving as a bridge between speech signals and language models. While low-frame-rate codecs are widely employed as speech tokenizers, the impact of frame rates on speech tokens remains underexplored. In this study, we investigate how varying frame rates affect speech tokenization by examining Mandarin and English, two typologically distinct languages. We encode speech at different frame rates and evaluate the resulting semantic tokens in the speech recognition task. Our findings reveal that frame rate variations influence speech tokenization differently for each language, highlighting the interplay between frame rates, phonetic density, and language-specific acoustic features. The results provide insights into optimizing frame rate selection for speech tokenizers, with implications for automatic speech recognition, text-to-speech, and other speech-related applications.
comment: 6 pages, 5 figures
♻ ☆ Self-interpreting Adversarial Images USENIX Security 2025
We introduce a new type of indirect, cross-modal injection attacks against visual language models that enable creation of self-interpreting images. These images contain hidden "meta-instructions" that control how models answer users' questions about the image and steer models' outputs to express an adversary-chosen style, sentiment, or point of view. Self-interpreting images act as soft prompts, conditioning the model to satisfy the adversary's (meta-)objective while still producing answers based on the image's visual content. Meta-instructions are thus a stronger form of prompt injection. Adversarial images look natural and the model's answers are coherent and plausible, yet they also follow the adversary-chosen interpretation, e.g., political spin, or even objectives that are not achievable with explicit text instructions. We evaluate the efficacy of self-interpreting images for a variety of models, interpretations, and user prompts. We describe how these attacks could cause harm by enabling creation of self-interpreting content that carries spam, misinformation, or spin. Finally, we discuss defenses.
comment: in USENIX Security 2025
♻ ☆ Enhancing multimodal analogical reasoning with Logic Augmented Generation
Recent advances in Large Language Models have demonstrated their capabilities across a variety of tasks. However, automatically extracting implicit knowledge from natural language remains a significant challenge, as machines lack active experience with the physical world. Given this scenario, semantic knowledge graphs can serve as conceptual spaces that guide the automated text generation reasoning process to achieve more efficient and explainable results. In this paper, we apply a logic-augmented generation (LAG) framework that leverages the explicit representation of a text through a semantic knowledge graph and applies it in combination with prompt heuristics to elicit implicit analogical connections. This method generates extended knowledge graph triples representing implicit meaning, enabling systems to reason on unlabeled multimodal data regardless of the domain. We validate our work through three metaphor detection and understanding tasks across four datasets, as they require deep analogical reasoning capabilities. The results show that this integrated approach surpasses current baselines, performs better than humans in understanding visual metaphors, and enables more explainable reasoning processes, though still has inherent limitations in metaphor understanding, especially for domain-specific metaphors. Furthermore, we propose a thorough error analysis, discussing issues with metaphorical annotations and current evaluation methods.
♻ ☆ HypRL: Reinforcement Learning of Control Policies for Hyperproperties
Reward shaping in multi-agent reinforcement learning (MARL) for complex tasks remains a significant challenge. Existing approaches often fail to find optimal solutions or cannot efficiently handle such tasks. We propose HYPRL, a specification-guided reinforcement learning framework that learns control policies w.r.t. hyperproperties expressed in HyperLTL. Hyperproperties constitute a powerful formalism for specifying objectives and constraints over sets of execution traces across agents. To learn policies that maximize the satisfaction of a HyperLTL formula $\phi$, we apply Skolemization to manage quantifier alternations and define quantitative robustness functions to shape rewards over execution traces of a Markov decision process with unknown transitions. A suitable RL algorithm is then used to learn policies that collectively maximize the expected reward and, consequently, increase the probability of satisfying $\phi$. We evaluate HYPRL on a diverse set of benchmarks, including safety-aware planning, Deep Sea Treasure, and the Post Correspondence Problem. We also compare with specification-driven baselines to demonstrate the effectiveness and efficiency of HYPRL.
♻ ☆ Explainability of Large Language Models using SMILE: Statistical Model-agnostic Interpretability with Local Explanations
Large language models like GPT, LLAMA, and Claude have become incredibly powerful at generating text, but they are still black boxes, so it is hard to understand how they decide what to say. That lack of transparency can be problematic, especially in fields where trust and accountability matter. To help with this, we introduce SMILE, a new method that explains how these models respond to different parts of a prompt. SMILE is model-agnostic and works by slightly changing the input, measuring how the output changes, and then highlighting which words had the most impact. Create simple visual heat maps showing which parts of a prompt matter the most. We tested SMILE on several leading LLMs and used metrics such as accuracy, consistency, stability, and fidelity to show that it gives clear and reliable explanations. By making these models easier to understand, SMILE brings us one step closer to making AI more transparent and trustworthy.
comment: arXiv admin note: text overlap with arXiv:2412.16277
♻ ☆ Manipulating Feature Visualizations with Gradient Slingshots
Feature Visualization (FV) is a widely used technique for interpreting the concepts learned by Deep Neural Networks (DNNs), which synthesizes input patterns that maximally activate a given feature. Despite its popularity, the trustworthiness of FV explanations has received limited attention. In this paper, we introduce a novel method, Gradient Slingshots, that enables manipulation of FV without modifying the model architecture or significantly degrading its performance. By shaping new trajectories in the off-distribution regions of the activation landscape of a feature, we coerce the optimization process to converge in a predefined visualization. We evaluate our approach on several DNN architectures, demonstrating its ability to replace faithfuls FV with arbitrary targets. These results expose a critical vulnerability: auditors relying solely on FV may accept entirely fabricated explanations. To mitigate this risk, we propose a straightforward defense and quantitatively demonstrate its effectiveness.
♻ ☆ AB-UPT: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers
Recent advances in neural surrogate modeling offer the potential for transformative innovations in applications such as automotive aerodynamics. Yet, industrial-scale problems often involve volumetric meshes with cell counts reaching the 100 millions, presenting major scalability challenges. Complex geometries further complicate modeling through intricate surface-volume interactions, while quantities such as vorticity are highly nonlinear and must satisfy strict divergence-free constraints. To address these requirements, we introduce AB-UPT as a novel modeling scheme for building neural surrogates for CFD simulations. AB-UPT is designed to: (i) decouple geometry encoding and prediction tasks via multi-branch operators; (ii) enable scalability to high-resolution outputs via neural simulation in a low-dimensional latent space, coupled with anchored neural field decoders to predict high-fidelity outputs; (iii) enforce physics consistency by a novel divergence-free formulation. We show that AB-UPT yields state-of-the-art predictive accuracy of surface and volume fields on automotive CFD simulations ranging from 33 thousand up to 150 million mesh cells. Furthermore, our anchored neural field architecture enables the enforcement of hard physical constraints on the physics predictions without degradation in performance, exemplified by modeling divergence-free vorticity fields. Notably, the proposed models can be trained on a single GPU in less than a day and predict industry-standard surface and volume fields within seconds. Additionally, we show that the flexible design of our method enables neural simulation from a CAD geometry alone, omitting the need for costly CFD meshing procedures.
comment: Preprint
♻ ☆ Graph-Based Floor Separation Using Node Embeddings and Clustering of WiFi Trajectories
Indoor positioning systems (IPSs) are increasingly vital for location-based services in complex multi-storey environments. This study proposes a novel graph-based approach for floor separation using Wi-Fi fingerprint trajectories, addressing the challenge of vertical localization in indoor settings. We construct a graph where nodes represent Wi-Fi fingerprints, and edges are weighted by signal similarity and contextual transitions. Node2Vec is employed to generate low-dimensional embeddings, which are subsequently clustered using K-means to identify distinct floors. Evaluated on the Huawei University Challenge 2021 dataset, our method outperforms traditional community detection algorithms, achieving an accuracy of 68.97\%, an F1-score of 61.99\%, and an Adjusted Rand Index of 57.19\%. By publicly releasing the preprocessed dataset and implementation code, this work contributes to advancing research in indoor positioning. The proposed approach demonstrates robustness to signal noise and architectural complexities, offering a scalable solution for floor-level localization.
♻ ☆ Graph of Attacks with Pruning: Optimizing Stealthy Jailbreak Prompt Generation for Enhanced LLM Content Moderation
As large language models (LLMs) become increasingly prevalent, ensuring their robustness against adversarial misuse is crucial. This paper introduces the GAP (Graph of Attacks with Pruning) framework, an advanced approach for generating stealthy jailbreak prompts to evaluate and enhance LLM safeguards. GAP addresses limitations in existing tree-based LLM jailbreak methods by implementing an interconnected graph structure that enables knowledge sharing across attack paths. Our experimental evaluation demonstrates GAP's superiority over existing techniques, achieving a 20.8% increase in attack success rates while reducing query costs by 62.7%. GAP consistently outperforms state-of-the-art methods for attacking both open and closed LLMs, with attack success rates of >96%. Additionally, we present specialized variants like GAP-Auto for automated seed generation and GAP-VLM for multimodal attacks. GAP-generated prompts prove highly effective in improving content moderation systems, increasing true positive detection rates by 108.5% and accuracy by 183.6% when used for fine-tuning. Our implementation is available at https://github.com/dsbuddy/GAP-LLM-Safety.
comment: 14 pages, 5 figures
♻ ☆ DeePoly: A High-Order Accuracy Scientific Machine Learning Framework for Function Approximation and Solving PDEs
Recently, machine learning methods have gained significant traction in scientific computing, particularly for solving Partial Differential Equations (PDEs). However, methods based on deep neural networks (DNNs) often lack convergence guarantees and computational efficiency compared to traditional numerical schemes. This work introduces DeePoly, a novel framework that transforms the solution paradigm from pure non-convex parameter optimization to a two-stage approach: first employing a DNN to capture complex global features, followed by linear space optimization with combined DNN-extracted features (Spotter) and polynomial basis functions (Sniper). This strategic combination leverages the complementary strengths of both methods -- DNNs excel at approximating complex global features (i.e., high-gradient features) and stabilize the polynomial approximation while polynomial bases provide high-precision local corrections with convergence guarantees. Theoretical analysis and numerical experiments demonstrate that this approach significantly enhances both high-order accuracy and efficiency across diverse problem types while maintaining mesh-free and scheme-free properties. This paper also serves as a theoretical exposition for the open-source project DeePoly.
comment: for associated mpeg file, see http://github.com/bfly123/DeePoly
♻ ☆ Combining Deep Reinforcement Learning and Search with Generative Models for Game-Theoretic Opponent Modeling IJCAI'25
Opponent modeling methods typically involve two crucial steps: building a belief distribution over opponents' strategies, and exploiting this opponent model by playing a best response. However, existing approaches typically require domain-specific heurstics to come up with such a model, and algorithms for approximating best responses are hard to scale in large, imperfect information domains. In this work, we introduce a scalable and generic multiagent training regime for opponent modeling using deep game-theoretic reinforcement learning. We first propose Generative Best Respoonse (GenBR), a best response algorithm based on Monte-Carlo Tree Search (MCTS) with a learned deep generative model that samples world states during planning. This new method scales to large imperfect information domains and can be plug and play in a variety of multiagent algorithms. We use this new method under the framework of Policy Space Response Oracles (PSRO), to automate the generation of an \emph{offline opponent model} via iterative game-theoretic reasoning and population-based training. We propose using solution concepts based on bargaining theory to build up an opponent mixture, which we find identifying profiles that are near the Pareto frontier. Then GenBR keeps updating an \emph{online opponent model} and reacts against it during gameplay. We conduct behavioral studies where human participants negotiate with our agents in Deal-or-No-Deal, a class of bilateral bargaining games. Search with generative modeling finds stronger policies during both training time and test time, enables online Bayesian co-player prediction, and can produce agents that achieve comparable social welfare and Nash bargaining score negotiating with humans as humans trading among themselves.
comment: Accepted by IJCAI'25 main track
♻ ☆ "It's not a representation of me": Examining Accent Bias and Digital Exclusion in Synthetic AI Voice Services
Recent advances in artificial intelligence (AI) speech generation and voice cloning technologies have produced naturalistic speech and accurate voice replication, yet their influence on sociotechnical systems across diverse accents and linguistic traits is not fully understood. This study evaluates two synthetic AI voice services (Speechify and ElevenLabs) through a mixed methods approach using surveys and interviews to assess technical performance and uncover how users' lived experiences influence their perceptions of accent variations in these speech technologies. Our findings reveal technical performance disparities across five regional, English-language accents and demonstrate how current speech generation technologies may inadvertently reinforce linguistic privilege and accent-based discrimination, potentially creating new forms of digital exclusion. Overall, our study highlights the need for inclusive design and regulation by providing actionable insights for developers, policymakers, and organizations to ensure equitable and socially responsible AI speech technologies.
comment: This paper has been accepted to FAccT 2025
♻ ☆ Safer or Luckier? LLMs as Safety Evaluators Are Not Robust to Artifacts ACL 2025
Large Language Models (LLMs) are increasingly employed as automated evaluators to assess the safety of generated content, yet their reliability in this role remains uncertain. This study evaluates a diverse set of 11 LLM judge models across critical safety domains, examining three key aspects: self-consistency in repeated judging tasks, alignment with human judgments, and susceptibility to input artifacts such as apologetic or verbose phrasing. Our findings reveal that biases in LLM judges can significantly distort the final verdict on which content source is safer, undermining the validity of comparative evaluations. Notably, apologetic language artifacts alone can skew evaluator preferences by up to 98\%. Contrary to expectations, larger models do not consistently exhibit greater robustness, while smaller models sometimes show higher resistance to specific artifacts. To mitigate LLM evaluator robustness issues, we investigate jury-based evaluations aggregating decisions from multiple models. Although this approach both improves robustness and enhances alignment to human judgements, artifact sensitivity persists even with the best jury configurations. These results highlight the urgent need for diversified, artifact-resistant methodologies to ensure reliable safety assessments.
comment: 9 pages, ACL 2025
♻ ☆ The Automated but Risky Game: Modeling Agent-to-Agent Negotiations and Transactions in Consumer Markets
AI agents are increasingly used in consumer-facing applications to assist with tasks such as product search, negotiation, and transaction execution. In this paper, we explore a future scenario where both consumers and merchants authorize AI agents to fully automate negotiations and transactions. We aim to answer two key questions: (1) Do different LLM agents vary in their ability to secure favorable deals for users? (2) What risks arise from fully automating deal-making with AI agents in consumer markets? To address these questions, we develop an experimental framework that evaluates the performance of various LLM agents in real-world negotiation and transaction settings. Our findings reveal that AI-mediated deal-making is an inherently imbalanced game -- different agents achieve significantly different outcomes for their users. Moreover, behavioral anomalies in LLMs can result in financial losses for both consumers and merchants, such as overspending or accepting unreasonable deals. These results underscore that while automation can improve efficiency, it also introduces substantial risks. Users should exercise caution when delegating business decisions to AI agents.
♻ ☆ Training RL Agents for Multi-Objective Network Defense Tasks
Open-ended learning (OEL) -- which emphasizes training agents that achieve broad capability over narrow competency -- is emerging as a paradigm to develop artificial intelligence (AI) agents to achieve robustness and generalization. However, despite promising results that demonstrate the benefits of OEL, applying OEL to develop autonomous agents for real-world cybersecurity applications remains a challenge. We propose a training approach, inspired by OEL, to develop autonomous network defenders. Our results demonstrate that like in other domains, OEL principles can translate into more robust and generalizable agents for cyber defense. To apply OEL to network defense, it is necessary to address several technical challenges. Most importantly, it is critical to provide a task representation approach over a broad universe of tasks that maintains a consistent interface over goals, rewards and action spaces. This way, the learning agent can train with varying network conditions, attacker behaviors, and defender goals while being able to build on previously gained knowledge. With our tools and results, we aim to fundamentally impact research that applies AI to solve cybersecurity problems. Specifically, as researchers develop gyms and benchmarks for cyber defense, it is paramount that they consider diverse tasks with consistent representations, such as those we propose in our work.
♻ ☆ MoESD: Unveil Speculative Decoding's Potential for Accelerating Sparse MoE
Large Language Models (LLMs) have achieved remarkable success across many applications, with Mixture of Experts (MoE) models demonstrating great potential. Compared to traditional dense models, MoEs achieve better performance with less computation. Speculative decoding (SD) is a widely used technique to accelerate LLM inference without accuracy loss, but it has been considered efficient only for dense models. In this work, we first demonstrate that, under medium batch sizes, MoE surprisingly benefits more from SD than dense models. Furthermore, as MoE becomes sparser -- the prevailing trend in MoE designs -- the batch size range where SD acceleration is expected to be effective becomes broader. To quantitatively understand tradeoffs involved in SD, we develop a reliable modeling based on theoretical analyses. While current SD research primarily focuses on improving acceptance rates of algorithms, changes in workload and model architecture can still lead to degraded SD acceleration even with high acceptance rates. To address this limitation, we introduce a new metric 'target efficiency' that characterizes these effects, thus helping researchers identify system bottlenecks and understand SD acceleration more comprehensively. For scenarios like private serving, this work unveils a new perspective to speed up MoE inference, where existing solutions struggle. Experiments on different GPUs show up to 2.29x speedup for Qwen2-57B-A14B at medium batch sizes and validate our theoretical predictions.
♻ ☆ Agent Semantics, Semantic Spacetime, and Graphical Reasoning
Some formal aspects of the Semantic Spacetime graph model are presented, with reference to its use for directed knowledge representations and process modelling. A finite $\gamma(3,4)$ representation is defined to form a closed set of operations that can scale to any degree of semantic complexity. The Semantic Spacetime postulates bring predictability with minimal constraints to pathways in graphs. The ubiquitous appearance of absorbing states in any partial graph means that a graph process leaks information. The issue is closely associated with the issue of division by zero, which signals a loss of closure and the need for manual injection of remedial information. The Semantic Spacetime model (and its Promise Theory) origins help to clarify how such absorbing states are associated with boundary information where intentionality can enter.
comment: Some typos corrected
♻ ☆ V-Max: A Reinforcement Learning Framework for Autonomous Driving
Learning-based decision-making has the potential to enable generalizable Autonomous Driving (AD) policies, reducing the engineering overhead of rule-based approaches. Imitation Learning (IL) remains the dominant paradigm, benefiting from large-scale human demonstration datasets, but it suffers from inherent limitations such as distribution shift and imitation gaps. Reinforcement Learning (RL) presents a promising alternative, yet its adoption in AD remains limited due to the lack of standardized and efficient research frameworks. To this end, we introduce V-Max, an open research framework providing all the necessary tools to make RL practical for AD. V-Max is built on Waymax, a hardware-accelerated AD simulator designed for large-scale experimentation. We extend it using ScenarioNet's approach, enabling the fast simulation of diverse AD datasets.
comment: Accepted to RLC 25
♻ ☆ Bel Esprit: Multi-Agent Framework for Building AI Model Pipelines ACL 2025
As the demand for artificial intelligence (AI) grows to address complex real-world tasks, single models are often insufficient, requiring the integration of multiple models into pipelines. This paper introduces Bel Esprit, a conversational agent designed to construct AI model pipelines based on user-defined requirements. Bel Esprit employs a multi-agent framework where subagents collaborate to clarify requirements, build, validate, and populate pipelines with appropriate models. We demonstrate the effectiveness of this framework in generating pipelines from ambiguous user queries, using both human-curated and synthetic data. A detailed error analysis highlights ongoing challenges in pipeline construction. Bel Esprit is available for a free trial at https://belesprit.aixplain.com.
comment: ACL 2025 System Demonstrations
♻ ☆ Can AI Master Econometrics? Evidence from Econometrics AI Agent on Expert-Level Tasks
Can AI effectively perform complex econometric analysis traditionally requiring human expertise? This paper evaluates AI agents' capability to master econometrics, focusing on empirical analysis performance. We develop an ``Econometrics AI Agent'' built on the open-source MetaGPT framework. This agent exhibits outstanding performance in: (1) planning econometric tasks strategically, (2) generating and executing code, (3) employing error-based reflection for improved robustness, and (4) allowing iterative refinement through multi-round conversations. We construct two datasets from academic coursework materials and published research papers to evaluate performance against real-world challenges. Comparative testing shows our domain-specialized AI agent significantly outperforms both benchmark large language models (LLMs) and general-purpose AI agents. This work establishes a testbed for exploring AI's impact on social science research and enables cost-effective integration of domain expertise, making advanced econometric methods accessible to users with minimal coding skills. Furthermore, our AI agent enhances research reproducibility and offers promising pedagogical applications for econometrics teaching.
♻ ☆ From Idea to Implementation: Evaluating the Influence of Large Language Models in Software Development -- An Opinion Paper
The introduction of transformer architecture was a turning point in Natural Language Processing (NLP). Models based on the transformer architecture such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-Trained Transformer (GPT) have gained widespread popularity in various applications such as software development and education. The availability of Large Language Models (LLMs) such as ChatGPT and Bard to the general public has showcased the tremendous potential of these models and encouraged their integration into various domains such as software development for tasks such as code generation, debugging, and documentation generation. In this study, opinions from 11 experts regarding their experience with LLMs for software development have been gathered and analysed to draw insights that can guide successful and responsible integration. The overall opinion of the experts is positive, with the experts identifying advantages such as increase in productivity and reduced coding time. Potential concerns and challenges such as risk of over-dependence and ethical considerations have also been highlighted.
comment: The project is partially supported by the DkIT Postgraduate Scholarship, Research Ireland under Grant number 13/RC/2094_2, and Grant number 21/FFP-A/925
♻ ☆ Learning from Litigation: Graphs and LLMs for Retrieval and Reasoning in eDiscovery ACL 2025
Electronic Discovery (eDiscovery) requires identifying relevant documents from vast collections for legal production requests. While artificial intelligence (AI) and natural language processing (NLP) have improved document review efficiency, current methods still struggle with legal entities, citations, and complex legal artifacts. To address these challenges, we introduce DISCOvery Graph (DISCOG), an emerging system that integrates knowledge graphs for enhanced document ranking and classification, augmented by LLM-driven reasoning. DISCOG outperforms strong baselines in F1-score, precision, and recall across both balanced and imbalanced datasets. In real-world deployments, it has reduced litigation-related document review costs by approximately 98\%, demonstrating significant business impact.
comment: Updated with Camera Ready Copy for ACL 2025
♻ ☆ HandS3C: 3D Hand Mesh Reconstruction with State Space Spatial Channel Attention from RGB images
Reconstructing the hand mesh from one single RGB image is a challenging task because hands are often occluded by other objects. Most previous works attempt to explore more additional information and adopt attention mechanisms for improving 3D reconstruction performance, while it would increase computational complexity simultaneously. To achieve a performance-reserving architecture with high computational efficiency, in this work, we propose a simple but effective 3D hand mesh reconstruction network (i.e., HandS3C), which is the first time to incorporate state space model into the task of hand mesh reconstruction. In the network, we design a novel state-space spatial-channel attention module that extends the effective receptive field, extracts hand features in the spatial dimension, and enhances regional features of hands in the channel dimension. This helps to reconstruct a complete and detailed hand mesh. Extensive experiments conducted on well-known datasets facing heavy occlusions (such as FREIHAND, DEXYCB, and HO3D) demonstrate that our proposed HandS3C achieves state-of-the-art performance while maintaining a minimal parameters.
comment: 5 pages, 3 figures
♻ ☆ Spatiotemporal Field Generation Based on Hybrid Mamba-Transformer with Physics-informed Fine-tuning
This research confronts the challenge of substantial physical equation discrepancies encountered in the generation of spatiotemporal physical fields through data-driven trained models. A spatiotemporal physical field generation model, named HMT-PF, is developed based on the hybrid Mamba-Transformer architecture, incorporating unstructured grid information as input. A fine-tuning block, enhanced with physical information, is introduced to effectively reduce the physical equation discrepancies. The physical equation residuals are computed through a point query mechanism for efficient gradient evaluation, then encoded into latent space for refinement. The fine-tuning process employs a self-supervised learning approach to achieve physical consistency while maintaining essential field characteristics. Results show that the hybrid Mamba-Transformer model achieves good performance in generating spatiotemporal fields, while the physics-informed fine-tuning mechanism further reduces significant physical errors effectively. A MSE-R evaluation method is developed to assess the accuracy and realism of physical field generation.
♻ ☆ PIPO: Pipelined Offloading for Efficient Inference on Consumer Devices
The high memory and computation demand of large language models (LLMs) makes them challenging to be deployed on consumer devices due to limited GPU memory. Offloading can mitigate the memory constraint but often suffers from low GPU utilization, leading to low inference efficiency. In this work, we propose a novel framework, called pipelined offloading (PIPO), for efficient inference on consumer devices. PIPO designs a fine-grained offloading pipeline, complemented with optimized data transfer and computation, to achieve high concurrency and efficient scheduling for inference. Experimental results show that compared with state-of-the-art baseline, PIPO increases GPU utilization from below 40% to over 90% and achieves up to 3.1$\times$ higher throughput, running on a laptop equipped with a RTX3060 GPU of 6GB memory.
♻ ☆ MEDDxAgent: A Unified Modular Agent Framework for Explainable Automatic Differential Diagnosis ACL 2025
Differential Diagnosis (DDx) is a fundamental yet complex aspect of clinical decision-making, in which physicians iteratively refine a ranked list of possible diseases based on symptoms, antecedents, and medical knowledge. While recent advances in large language models (LLMs) have shown promise in supporting DDx, existing approaches face key limitations, including single-dataset evaluations, isolated optimization of components, unrealistic assumptions about complete patient profiles, and single-attempt diagnosis. We introduce a Modular Explainable DDx Agent (MEDDxAgent) framework designed for interactive DDx, where diagnostic reasoning evolves through iterative learning, rather than assuming a complete patient profile is accessible. MEDDxAgent integrates three modular components: (1) an orchestrator (DDxDriver), (2) a history taking simulator, and (3) two specialized agents for knowledge retrieval and diagnosis strategy. To ensure robust evaluation, we introduce a comprehensive DDx benchmark covering respiratory, skin, and rare diseases. We analyze single-turn diagnostic approaches and demonstrate the importance of iterative refinement when patient profiles are not available at the outset. Our broad evaluation demonstrates that MEDDxAgent achieves over 10% accuracy improvements in interactive DDx across both large and small LLMs, while offering critical explainability into its diagnostic reasoning process.
comment: ACL 2025 (main)
♻ ☆ Understanding the Emergence of Multimodal Representation Alignment ICML 2025
Multimodal representation learning is fundamentally about transforming incomparable modalities into comparable representations. While prior research primarily focused on explicitly aligning these representations through targeted learning objectives and model architectures, a recent line of work has found that independently trained unimodal models of increasing scale and performance can become implicitly aligned with each other. These findings raise fundamental questions regarding the emergence of aligned representations in multimodal learning. Specifically: (1) when and why does alignment emerge implicitly? and (2) is alignment a reliable indicator of performance? Through a comprehensive empirical investigation, we demonstrate that both the emergence of alignment and its relationship with task performance depend on several critical data characteristics. These include, but are not necessarily limited to, the degree of similarity between the modalities and the balance between redundant and unique information they provide for the task. Our findings suggest that alignment may not be universally beneficial; rather, its impact on performance varies depending on the dataset and task. These insights can help practitioners determine whether increasing alignment between modalities is advantageous or, in some cases, detrimental to achieving optimal performance. Code is released at https://github.com/MeganTj/multimodal_alignment.
comment: To appear as a poster in ICML 2025. 21 pages, 22 figures, 3 tables
♻ ☆ Evidential Spectrum-Aware Contrastive Learning for OOD Detection in Dynamic Graphs ECML-PKDD 2025
Recently, Out-of-distribution (OOD) detection in dynamic graphs, which aims to identify whether incoming data deviates from the distribution of the in-distribution (ID) training set, has garnered considerable attention in security-sensitive fields. Current OOD detection paradigms primarily focus on static graphs and confront two critical challenges: i) high bias and high variance caused by single-point estimation, which makes the predictions sensitive to randomness in the data; ii) score homogenization resulting from the lack of OOD training data, where the model only learns ID-specific patterns, resulting in overall low OOD scores and a narrow score gap between ID and OOD data. To tackle these issues, we first investigate OOD detection in dynamic graphs through the lens of Evidential Deep Learning (EDL). Specifically, we propose EviSEC, an innovative and effective OOD detector via Evidential Spectrum-awarE Contrastive Learning. We design an evidential neural network to redefine the output as the posterior Dirichlet distribution, explaining the randomness of inputs through the uncertainty of distribution, which is overlooked by single-point estimation. Moreover, spectrum-aware augmentation module generates OOD approximations to identify patterns with high OOD scores, thereby widening the score gap between ID and OOD data and mitigating score homogenization. Extensive experiments on real-world datasets demonstrate that EviSAC effectively detects OOD samples in dynamic graphs.
comment: Accepted by ECML-PKDD 2025
♻ ☆ Table-R1: Region-based Reinforcement Learning for Table Understanding
Tables present unique challenges for language models due to their structured row-column interactions, necessitating specialized approaches for effective comprehension. While large language models (LLMs) have demonstrated potential in table reasoning through prompting and techniques like chain-of-thought (CoT) and program-of-thought (PoT), optimizing their performance for table question answering remains underexplored. In this paper, we introduce region-based Table-R1, a novel reinforcement learning approach that enhances LLM table understanding by integrating region evidence into reasoning steps. Our method employs Region-Enhanced Supervised Fine-Tuning (RE-SFT) to guide models in identifying relevant table regions before generating answers, incorporating textual, symbolic, and program-based reasoning. Additionally, Table-Aware Group Relative Policy Optimization (TARPO) introduces a mixed reward system to dynamically balance region accuracy and answer correctness, with decaying region rewards and consistency penalties to align reasoning steps. Experiments show that Table-R1 achieves an average performance improvement of 14.36 points across multiple base models on three benchmark datasets, even outperforming baseline models with ten times the parameters, while TARPO reduces response token consumption by 67.5% compared to GRPO, significantly advancing LLM capabilities in efficient tabular reasoning.
♻ ☆ A Survey on Deep Learning based Time Series Analysis with Frequency Transformation KDD 2025
Recently, frequency transformation (FT) has been increasingly incorporated into deep learning models to significantly enhance state-of-the-art accuracy and efficiency in time series analysis. The advantages of FT, such as high efficiency and a global view, have been rapidly explored and exploited in various time series tasks and applications, demonstrating the promising potential of FT as a new deep learning paradigm for time series analysis. Despite the growing attention and the proliferation of research in this emerging field, there is currently a lack of a systematic review and in-depth analysis of deep learning-based time series models with FT. It is also unclear why FT can enhance time series analysis and what its limitations are in the field. To address these gaps, we present a comprehensive review that systematically investigates and summarizes the recent research advancements in deep learning-based time series analysis with FT. Specifically, we explore the primary approaches used in current models that incorporate FT, the types of neural networks that leverage FT, and the representative FT-equipped models in deep time series analysis. We propose a novel taxonomy to categorize the existing methods in this field, providing a structured overview of the diverse approaches employed in incorporating FT into deep learning models for time series analysis. Finally, we highlight the advantages and limitations of FT for time series modeling and identify potential future research directions that can further contribute to the community of time series analysis.
comment: Accepted By KDD 2025
♻ ☆ Entropy Controllable Direct Preference Optimization ICML 2025
In the post-training of large language models (LLMs), Reinforcement Learning from Human Feedback (RLHF) is an effective approach to achieve generation aligned with human preferences. Direct Preference Optimization (DPO) allows for policy training with a simple binary cross-entropy loss without a reward model. The objective of DPO is regularized by reverse KL divergence that encourages mode-seeking fitting to the reference policy. Nonetheless, we indicate that minimizing reverse KL divergence could fail to capture a mode of the reference distribution, which may hurt the policy's performance. Based on this observation, we propose a simple modification to DPO, H-DPO, which allows for control over the entropy of the resulting policy, enhancing the distribution's sharpness and thereby enabling mode-seeking fitting more effectively. In our experiments, we show that H-DPO outperformed DPO across various tasks, demonstrating superior results in pass@$k$ evaluations for mathematical tasks. Moreover, H-DPO is simple to implement, requiring only minor modifications to the loss calculation of DPO, which makes it highly practical and promising for wide-ranging applications in the training of LLMs.
comment: ICML 2025 Workshop on Models of Human Feedback for AI Alignment
♻ ☆ Vision-Language Models for Edge Networks: A Comprehensive Survey
Vision Large Language Models (VLMs) combine visual understanding with natural language processing, enabling tasks like image captioning, visual question answering, and video analysis. While VLMs show impressive capabilities across domains such as autonomous vehicles, smart surveillance, and healthcare, their deployment on resource-constrained edge devices remains challenging due to processing power, memory, and energy limitations. This survey explores recent advancements in optimizing VLMs for edge environments, focusing on model compression techniques, including pruning, quantization, knowledge distillation, and specialized hardware solutions that enhance efficiency. We provide a detailed discussion of efficient training and fine-tuning methods, edge deployment challenges, and privacy considerations. Additionally, we discuss the diverse applications of lightweight VLMs across healthcare, environmental monitoring, and autonomous systems, illustrating their growing impact. By highlighting key design strategies, current challenges, and offering recommendations for future directions, this survey aims to inspire further research into the practical deployment of VLMs, ultimately making advanced AI accessible in resource-limited settings.
♻ ☆ Foundation Models in Medical Imaging -- A Review and Outlook
Foundation models (FMs) are changing the way medical images are analyzed by learning from large collections of unlabeled data. Instead of relying on manually annotated examples, FMs are pre-trained to learn general-purpose visual features that can later be adapted to specific clinical tasks with little additional supervision. In this review, we examine how FMs are being developed and applied in pathology, radiology, and ophthalmology, drawing on evidence from over 150 studies. We explain the core components of FM pipelines, including model architectures, self-supervised learning methods, and strategies for downstream adaptation. We also review how FMs are being used in each imaging domain and compare design choices across applications. Finally, we discuss key challenges and open questions to guide future research.
♻ ☆ Foundation Models for Anomaly Detection: Vision and Challenges
As data continues to grow in volume and complexity across domains such as finance, manufacturing, and healthcare, effective anomaly detection is essential for identifying irregular patterns that may signal critical issues. Recently, foundation models (FMs) have emerged as a powerful tool for advancing anomaly detection. They have demonstrated unprecedented capabilities in enhancing anomaly identification, generating detailed data descriptions, and providing visual explanations. This survey presents the first comprehensive review of recent advancements in FM-based anomaly detection. We propose a novel taxonomy that classifies FMs into three categories based on their roles in anomaly detection tasks, i.e., as encoders, detectors, or interpreters. We provide a systematic analysis of state-of-the-art methods and discuss key challenges in leveraging FMs for improved anomaly detection. We also outline future research directions in this rapidly evolving field.
comment: 11 pages, 4 figures
♻ ☆ Epistemic Artificial Intelligence is Essential for Machine Learning Models to Truly `Know When They Do Not Know'
Despite AI's impressive achievements, including recent advances in generative and large language models, there remains a significant gap in the ability of AI systems to handle uncertainty and generalize beyond their training data. AI models consistently fail to make robust enough predictions when facing unfamiliar or adversarial data. Traditional machine learning approaches struggle to address this issue, due to an overemphasis on data fitting, while current uncertainty quantification approaches suffer from serious limitations. This position paper posits a paradigm shift towards epistemic artificial intelligence, emphasizing the need for models to learn from what they know while at the same time acknowledging their ignorance, using the mathematics of second-order uncertainty measures. This approach, which leverages the expressive power of such measures to efficiently manage uncertainty, offers an effective way to improve the resilience and robustness of AI systems, allowing them to better handle unpredictable real-world environments.
♻ ☆ Beyond the Visible: Multispectral Vision-Language Learning for Earth Observation
Vision-language models for Earth observation (EO) typically rely on the visual spectrum of data as the only model input, thus failing to leverage the rich spectral information available in the multispectral channels recorded by satellites. Therefore, we introduce Llama3-MS-CLIP, the first vision-language model pre-trained with contrastive learning on a large-scale multispectral dataset and report on the performance gains due to the extended spectral range. Furthermore, we present the largest-to-date image-caption dataset for multispectral data, consisting of one million Sentinel-2 samples and corresponding textual descriptions generated using Llama3-LLaVA-Next and Overture Maps data. We develop a scalable captioning pipeline, which is validated by domain experts. We evaluate Llama3-MS-CLIP on multispectral zero-shot image classification and retrieval using three datasets of varying complexity. Our results demonstrate that Llama3-MS-CLIP significantly outperforms other RGB-based approaches, improving classification accuracy by +6.77% on average and retrieval performance by +4.63% mAP compared to the second-best model. Our results emphasize the relevance of multispectral vision-language learning. The image-caption dataset, code, and model weights are available at https://github.com/IBM/MS-CLIP.
♻ ☆ Towards Personalized Conversational Sales Agents: Contextual User Profiling for Strategic Action
Conversational Recommender Systems (CRSs)aim to engage users in dialogue to provide tailored recommendations. While traditional CRSs focus on eliciting preferences and retrieving items, real-world e-commerce interactions involve more complex decision-making, where users consider multiple factors beyond simple attributes. To capture this complexity, we introduce Conversational Sales (CSALES), a novel task that integrates preference elicitation, recommendation, and persuasion within a unified conversational framework. To support realistic and systematic evaluation, we present CSUSER, an evaluation protocol with LLM-based user simulator grounded in real-world behavioral data by modeling fine-grained user profiles for personalized interaction. We also propose CSI, a conversational sales agent that proactively infers contextual user profiles and strategically selects actions through conversation. Comprehensive experiments show that CSI significantly improves both recommendation success and persuasive effectiveness across diverse user profiles.
♻ ☆ Intra-Trajectory Consistency for Reward Modeling
Reward models are critical for improving large language models (LLMs), particularly in reinforcement learning from human feedback (RLHF) or inference-time verification. Current reward modeling typically relies on scores of overall responses to learn the outcome rewards for the responses. However, since the response-level scores are coarse-grained supervision signals, the reward model struggles to identify the specific components within a response trajectory that truly correlate with the scores, leading to poor generalization on unseen responses. In this paper, we propose to leverage generation probabilities to establish reward consistency between processes in the response trajectory, which allows the response-level supervisory signal to propagate across processes, thereby providing additional fine-grained signals for reward learning. Building on analysis under the Bayesian framework, we develop an intra-trajectory consistency regularization to enforce that adjacent processes with higher next-token generation probability maintain more consistent rewards. We apply the proposed regularization to the advanced outcome reward model, improving its performance on RewardBench. Besides, we show that the reward model trained with the proposed regularization induces better DPO-aligned policies and achieves better best-of-N (BON) inference-time verification results. Our code is provided in https://github.com/chaoyang101/ICRM.
comment: Under review
♻ ☆ Can reasoning models comprehend mathematical problems in Chinese ancient texts? An empirical study based on data from Suanjing Shishu
This study addresses the challenges in intelligent processing of Chinese ancient mathematical classics by constructing Guji_MATH, a benchmark for evaluating classical texts based on Suanjing Shishu. It systematically assesses the mathematical problem-solving capabilities of mainstream reasoning models under the unique linguistic constraints of classical Chinese. Through machine-assisted annotation and manual verification, 538 mathematical problems were extracted from 8 canonical texts, forming a structured dataset centered on the "Question-Answer-Solution" framework, supplemented by problem types and difficulty levels. Dual evaluation modes--closed-book (autonomous problem-solving) and open-book (reproducing classical solution methods)--were designed to evaluate the performance of six reasoning models on ancient Chinese mathematical problems. Results indicate that reasoning models can partially comprehend and solve these problems, yet their overall performance remains inferior to benchmarks on modern mathematical tasks. Enhancing models' classical Chinese comprehension and cultural knowledge should be prioritized for optimization. This study provides methodological support for mining mathematical knowledge from ancient texts and disseminating traditional culture, while offering new perspectives for evaluating cross-linguistic and cross-cultural capabilities of reasoning models.
comment: 29pages, 7 figures
♻ ☆ Beating Transformers using Synthetic Cognition
The road to Artificial General Intelligence goes through the generation of context-aware reactive behaviors, where the Transformer architecture has been proven to be the state-of-the-art. However, they still fail to develop reasoning. Recently, a novel approach for developing cognitive architectures, called Synthetic Cognition, has been proposed and implemented to develop instantaneous reactive behavior. In this study, we aim to explore the use of Synthetic Cognition to develop context-aware reactive behaviors. We propose a mechanism to deal with sequences for the recent implementation of Synthetic Cognition, and test it against DNA foundation models in DNA sequence classification tasks. In our experiments, our proposal clearly outperforms the DNA foundation models, obtaining the best score on more benchmark tasks than the alternatives. Thus, we achieve two goals: expanding Synthetic Cognition to deal with sequences, and beating the Transformer architecture for sequence classification.
♻ ☆ Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis
Fine-tuning significantly improves the performance of Large Language Models (LLMs), yet its underlying mechanisms remain poorly understood. This paper aims to provide an in-depth interpretation of the fine-tuning process through circuit analysis, a popular tool in Mechanistic Interpretability (MI). Unlike previous studies (Prakash et al. 2024; Chhabra et al. 2024) that focus on tasks where pre-trained models already perform well, we develop a set of mathematical tasks where fine-tuning yields substantial performance gains, which are closer to the practical setting. In our experiments, we identify circuits at various checkpoints during fine-tuning and examine the interplay between circuit analysis, fine-tuning methods, and task complexities. First, we find that while circuits maintain high node similarity before and after fine-tuning, their edges undergo significant changes, in contrast to prior work that shows circuits only add some additional components after fine-tuning. Based on these observations, we develop a circuit-aware Low-Rank Adaptation (LoRA) method, which assigns ranks to layers based on edge changes in the circuits. Experimental results demonstrate that our circuit-based LoRA algorithm achieves an average performance improvement of 2.46% over standard LoRA with similar parameter sizes. Furthermore, we explore how combining circuits from subtasks can enhance fine-tuning in compositional tasks, providing new insights into the design of such tasks and deepening the understanding of circuit dynamics and fine-tuning mechanisms.
comment: 25 pages
♻ ☆ Bi-directional Mapping of Morphology Metrics and 3D City Blocks for Enhanced Characterization and Generation of Urban Form
Urban morphology, examining city spatial configurations, links urban design to sustainability. Morphology metrics play a fundamental role in performance-driven computational urban design (CUD) which integrates urban form generation, performance evaluation and optimization. However, a critical gap remains between performance evaluation and complex urban form generation, caused by the disconnection between morphology metrics and urban form, particularly in metric-to-form workflows. It prevents the application of optimized metrics to generate improved urban form with enhanced urban performance. Formulating morphology metrics that not only effectively characterize complex urban forms but also enable the reconstruction of diverse forms is of significant importance. This paper highlights the importance of establishing a bi-directional mapping between morphology metrics and complex urban form to enable the integration of urban form generation with performance evaluation. We present an approach that can 1) formulate morphology metrics to both characterize urban forms and in reverse, retrieve diverse similar 3D urban forms, and 2) evaluate the effectiveness of morphology metrics in representing 3D urban form characteristics of blocks by comparison. We demonstrate the methodology with 3D urban models of New York City, covering 14,248 blocks. We use neural networks and information retrieval for morphology metric encoding, urban form clustering and morphology metric evaluation. We identified an effective set of morphology metrics for characterizing block-scale urban forms through comparison. The proposed methodology tightly couples complex urban forms with morphology metrics, hence it can enable a seamless and bidirectional relationship between urban form generation and optimization in performance-driven urban design towards sustainable urban design and planning.
♻ ☆ Consistent Video Editing as Flow-Driven Image-to-Video Generation
With the prosper of video diffusion models, down-stream applications like video editing have been significantly promoted without consuming much computational cost. One particular challenge in this task lies at the motion transfer process from the source video to the edited one, where it requires the consideration of the shape deformation in between, meanwhile maintaining the temporal consistency in the generated video sequence. However, existing methods fail to model complicated motion patterns for video editing, and are fundamentally limited to object replacement, where tasks with non-rigid object motions like multi-object and portrait editing are largely neglected. In this paper, we observe that optical flows offer a promising alternative in complex motion modeling, and present FlowV2V to re-investigate video editing as a task of flow-driven Image-to-Video (I2V) generation. Specifically, FlowV2V decomposes the entire pipeline into first-frame editing and conditional I2V generation, and simulates pseudo flow sequence that aligns with the deformed shape, thus ensuring the consistency during editing. Experimental results on DAVIS-EDIT with improvements of 13.67% and 50.66% on DOVER and warping error illustrate the superior temporal consistency and sample quality of FlowV2V compared to existing state-of-the-art ones. Furthermore, we conduct comprehensive ablation studies to analyze the internal functionalities of the first-frame paradigm and flow alignment in the proposed method.
comment: 16 pages, 12 figures
♻ ☆ An overview of domain-specific foundation model: key technologies, applications and challenges
The impressive performance of ChatGPT and other foundation-model-based products in human language understanding has prompted both academia and industry to explore how these models can be tailored for specific industries and application scenarios. This process, known as the customization of domain-specific foundation models (FMs), addresses the limitations of general-purpose models, which may not fully capture the unique patterns and requirements of domain-specific data. Despite its importance, there is a notable lack of comprehensive overview papers on building domain-specific FMs, while numerous resources exist for general-purpose models. To bridge this gap, this article provides a timely and thorough overview of the methodology for customizing domain-specific FMs. It introduces basic concepts, outlines the general architecture, and surveys key methods for constructing domain-specific models. Furthermore, the article discusses various domains that can benefit from these specialized models and highlights the challenges ahead. Through this overview, we aim to offer valuable guidance and reference for researchers and practitioners from diverse fields to develop their own customized FMs.
♻ ☆ Merging Smarter, Generalizing Better: Enhancing Model Merging on OOD Data
Multi-task learning (MTL) concurrently trains a model on diverse task datasets to exploit common features, thereby improving overall performance across the tasks. Recent studies have dedicated efforts to merging multiple independent model parameters into a unified model for MTL, thus circumventing the need for training data and expanding the scope of applicable scenarios of MTL. However, current approaches to model merging predominantly concentrate on enhancing performance within in-domain (ID) datasets, often overlooking their efficacy on out-of-domain (OOD) datasets. In this work, we proposed LwPTV (Layer-wise Pruning Task Vector) by building a saliency score, measuring the redundancy of parameters in task vectors. Designed in this way ours can achieve mask vector for each task and thus perform layer-wise pruning on the task vectors, only keeping the pre-trained model parameters at the corresponding layer in merged model. Owing to its flexibility, our method can be seamlessly integrated with most of existing model merging methods to improve their performance on OOD tasks. Extensive experiments demonstrate that the application of our method results in substantial enhancements in OOD performance while preserving the ability on ID tasks.
comment: Minor formatting adjustments; no changes to content
♻ ☆ PiPViT: Patch-based Visual Interpretable Prototypes for Retinal Image Analysis
Background and Objective: Prototype-based methods improve interpretability by learning fine-grained part-prototypes; however, their visualization in the input pixel space is not always consistent with human-understandable biomarkers. In addition, well-known prototype-based approaches typically learn extremely granular prototypes that are less interpretable in medical imaging, where both the presence and extent of biomarkers and lesions are critical. Methods: To address these challenges, we propose PiPViT (Patch-based Visual Interpretable Prototypes), an inherently interpretable prototypical model for image recognition. Leveraging a vision transformer (ViT), PiPViT captures long-range dependencies among patches to learn robust, human-interpretable prototypes that approximate lesion extent only using image-level labels. Additionally, PiPViT benefits from contrastive learning and multi-resolution input processing, which enables effective localization of biomarkers across scales. Results: We evaluated PiPViT on retinal OCT image classification across four datasets, where it achieved competitive quantitative performance compared to state-of-the-art methods while delivering more meaningful explanations. Moreover, quantitative evaluation on a hold-out test set confirms that the learned prototypes are semantically and clinically relevant. We believe PiPViT can transparently explain its decisions and assist clinicians in understanding diagnostic outcomes. Github page: https://github.com/marziehoghbaie/PiPViT
♻ ☆ BalanceBenchmark: A Survey for Multimodal Imbalance Learning
Multimodal learning has gained attention for its capacity to integrate information from different modalities. However, it is often hindered by the multimodal imbalance problem, where certain modality dominates while others remain underutilized. Although recent studies have proposed various methods to alleviate this problem, they lack comprehensive and fair comparisons. In this paper, we systematically categorize various mainstream multimodal imbalance algorithms into four groups based on the strategies they employ to mitigate imbalance. To facilitate a comprehensive evaluation of these methods, we introduce BalanceBenchmark, a benchmark including multiple widely used multidimensional datasets and evaluation metrics from three perspectives: performance, imbalance degree, and complexity. To ensure fair comparisons, we have developed a modular and extensible toolkit that standardizes the experimental workflow across different methods. Based on the experiments using BalanceBenchmark, we have identified several key insights into the characteristics and advantages of different method groups in terms of performance, balance degree and computational complexity. We expect such analysis could inspire more efficient approaches to address the imbalance problem in the future, as well as foundation models. The code of the toolkit is available at https://github.com/GeWu-Lab/BalanceBenchmark.
comment: 9 pages, 3 figures
MiniMaxAD: A Lightweight Autoencoder for Feature-Rich Anomaly Detection
Previous industrial anomaly detection methods often struggle to handle the extensive diversity in training sets, particularly when they contain stylistically diverse and feature-rich samples, which we categorize as feature-rich anomaly detection datasets (FRADs). This challenge is evident in applications such as multi-view and multi-class scenarios. To address this challenge, we developed MiniMaxAD, a efficient autoencoder designed to efficiently compress and memorize extensive information from normal images. Our model employs a technique that enhances feature diversity, thereby increasing the effective capacity of the network. It also utilizes large kernel convolution to extract highly abstract patterns, which contribute to efficient and compact feature embedding. Moreover, we introduce an Adaptive Contraction Hard Mining Loss (ADCLoss), specifically tailored to FRADs. In our methodology, any dataset can be unified under the framework of feature-rich anomaly detection, in a way that the benefits far outweigh the drawbacks. Our approach has achieved state-of-the-art performance in multiple challenging benchmarks. Code is available at: \href{https://github.com/WangFengJiee/MiniMaxAD}{https://github.com/WangFengJiee/MiniMaxAD}
comment: Accept by Computers in Industry
♻ ☆ Saturation Self-Organizing Map
Continual learning poses a fundamental challenge for neural systems, which often suffer from catastrophic forgetting when exposed to sequential tasks. Self-Organizing Maps (SOMs), despite their interpretability and efficiency, are not immune to this issue. In this paper, we introduce Saturation Self-Organizing Maps (SatSOM)-an extension of SOMs designed to improve knowledge retention in continual learning scenarios. SatSOM incorporates a novel saturation mechanism that gradually reduces the learning rate and neighborhood radius of neurons as they accumulate information. This effectively freezes well-trained neurons and redirects learning to underutilized areas of the map.
comment: github repository: https://github.com/Radinyn/satsom
♻ ☆ Evaluating Implicit Bias in Large Language Models by Attacking From a Psychometric Perspective ACL 2025
As large language models (LLMs) become an important way of information access, there have been increasing concerns that LLMs may intensify the spread of unethical content, including implicit bias that hurts certain populations without explicit harmful words. In this paper, we conduct a rigorous evaluation of LLMs' implicit bias towards certain demographics by attacking them from a psychometric perspective to elicit agreements to biased viewpoints. Inspired by psychometric principles in cognitive and social psychology, we propose three attack approaches, i.e., Disguise, Deception, and Teaching. Incorporating the corresponding attack instructions, we built two benchmarks: (1) a bilingual dataset with biased statements covering four bias types (2.7K instances) for extensive comparative analysis, and (2) BUMBLE, a larger benchmark spanning nine common bias types (12.7K instances) for comprehensive evaluation. Extensive evaluation of popular commercial and open-source LLMs shows that our methods can elicit LLMs' inner bias more effectively than competitive baselines. Our attack methodology and benchmarks offer an effective means of assessing the ethical risks of LLMs, driving progress toward greater accountability in their development. Our code, data, and benchmarks are available at https://yuchenwen1.github.io/ImplicitBiasEvaluation/.
comment: Accepted to ACL 2025 Findings
♻ ☆ TrajAgent: An LLM-based Agent Framework for Automated Trajectory Modeling via Collaboration of Large and Small Models
Trajectory modeling, which includes research on trajectory data pattern mining and future prediction, has widespread applications in areas such as life services, urban transportation, and public administration. Numerous methods have been proposed to address specific problems within trajectory modeling. However, the heterogeneity of data and the diversity of trajectory tasks make effective and reliable trajectory modeling an important yet highly challenging endeavor, even for domain experts. In this paper, we propose \textit{TrajAgent}, a agent framework powered by large language models (LLMs), designed to facilitate robust and efficient trajectory modeling through automation modeling. This framework leverages and optimizes diverse specialized models to address various trajectory modeling tasks across different datasets effectively. In \textit{TrajAgent}, we first develop \textit{UniEnv}, an execution environment with a unified data and model interface, to support the execution and training of various models. Building on \textit{UniEnv}, we introduce an agentic workflow designed for automatic trajectory modeling across various trajectory tasks and data. Furthermore, we introduce collaborative learning schema between LLM-based agents and small speciallized models, to enhance the performance of the whole framework effectively. Extensive experiments on four tasks using four real-world datasets demonstrate the effectiveness of \textit{TrajAgent} in automated trajectory modeling, achieving a performance improvement of 2.38\%-34.96\% over baseline methods.
comment: the code will be openly accessible at: https://github.com/tsinghua-fib-lab/TrajAgent
♻ ☆ ChemRxivQuest: A Curated Chemistry Question-Answer Database Extracted from ChemRxiv Preprints
The rapid expansion of chemistry literature poses significant challenges for researchers seeking to efficiently access domain-specific knowledge. To support advancements in chemistry-focused natural language processing (NLP), we present ChemRxivQuest, a curated dataset of 970 high-quality question-answer (QA) pairs derived from 155 ChemRxiv preprints across 17 subfields of chemistry. Each QA pair is explicitly linked to its source text segment to ensure traceability and contextual accuracy. ChemRxivQuest was constructed using an automated pipeline that combines optical character recognition (OCR), GPT-4o-based QA generation, and a fuzzy matching technique for answer verification. The dataset emphasizes conceptual, mechanistic, applied, and experimental questions, enabling applications in retrieval-based QA systems, search engine development, and fine-tuning of domain-adapted large language models. We analyze the dataset's structure, coverage, and limitations, and outline future directions for expansion and expert validation. ChemRxivQuest provides a foundational resource for chemistry NLP research, education, and tool development.
♻ ☆ The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training ICML 2025
Transformers consist of diverse building blocks, such as embedding layers, normalization layers, self-attention mechanisms, and point-wise feedforward networks. Thus, understanding the differences and interactions among these blocks is important. In this paper, we uncover a clear Sharpness Disparity across these blocks, which emerges early in training and intriguingly persists throughout the training process. Motivated by this finding, we propose Blockwise Learning Rate (LR), a strategy that tailors the LR to each block's sharpness, accelerating large language model (LLM) pre-training. By integrating Blockwise LR into AdamW, we consistently achieve lower terminal loss and nearly $2\times$ speedup compared to vanilla AdamW. We demonstrate this acceleration across GPT-2 and LLaMA, with model sizes ranging from 0.12B to 2B and datasets of OpenWebText, MiniPile, and C4. Finally, we incorporate Blockwise LR into Adam-mini (Zhang et al., 2024), a recently proposed memory-efficient variant of Adam, achieving a combined $2\times$ speedup and $2\times$ memory saving. These results underscore the potential of exploiting the sharpness disparity to improve LLM training.
comment: 21 pages, accepted by ICML 2025
♻ ☆ LLMEval-Med: A Real-world Clinical Benchmark for Medical LLMs with Physician Validation
Evaluating large language models (LLMs) in medicine is crucial because medical applications require high accuracy with little room for error. Current medical benchmarks have three main types: medical exam-based, comprehensive medical, and specialized assessments. However, these benchmarks have limitations in question design (mostly multiple-choice), data sources (often not derived from real clinical scenarios), and evaluation methods (poor assessment of complex reasoning). To address these issues, we present LLMEval-Med, a new benchmark covering five core medical areas, including 2,996 questions created from real-world electronic health records and expert-designed clinical scenarios. We also design an automated evaluation pipeline, incorporating expert-developed checklists into our LLM-as-Judge framework. Furthermore, our methodology validates machine scoring through human-machine agreement analysis, dynamically refining checklists and prompts based on expert feedback to ensure reliability. We evaluate 13 LLMs across three categories (specialized medical models, open-source models, and closed-source models) on LLMEval-Med, providing valuable insights for the safe and effective deployment of LLMs in medical domains. The dataset is released in https://github.com/llmeval/LLMEval-Med.
♻ ☆ PFDial: A Structured Dialogue Instruction Fine-tuning Method Based on UML Flowcharts
Process-driven dialogue systems, which operate under strict predefined process constraints, are essential in customer service and equipment maintenance scenarios. Although Large Language Models (LLMs) have shown remarkable progress in dialogue and reasoning, they still struggle to solve these strictly constrained dialogue tasks. To address this challenge, we construct Process Flow Dialogue (PFDial) dataset, which contains 12,705 high-quality Chinese dialogue instructions derived from 440 flowcharts containing 5,055 process nodes. Based on PlantUML specification, each UML flowchart is converted into atomic dialogue units i.e., structured five-tuples. Experimental results demonstrate that a 7B model trained with merely 800 samples, and a 0.5B model trained on total data both can surpass 90% accuracy. Additionally, the 8B model can surpass GPT-4o up to 43.88% with an average of 11.00%. We further evaluate models' performance on challenging backward transitions in process flows and conduct an in-depth analysis of various dataset formats to reveal their impact on model performance in handling decision and sequential branches. The data is released in https://github.com/KongLongGeFDU/PFDial.
♻ ☆ TUMLU: A Unified and Native Language Understanding Benchmark for Turkic Languages ACL 2025
Being able to thoroughly assess massive multi-task language understanding (MMLU) capabilities is essential for advancing the applicability of multilingual language models. However, preparing such benchmarks in high quality native language is often costly and therefore limits the representativeness of evaluation datasets. While recent efforts focused on building more inclusive MMLU benchmarks, these are conventionally built using machine translation from high-resource languages, which may introduce errors and fail to account for the linguistic and cultural intricacies of the target languages. In this paper, we address the lack of native language MMLU benchmark especially in the under-represented Turkic language family with distinct morphosyntactic and cultural characteristics. We propose two benchmarks for Turkic language MMLU: TUMLU is a comprehensive, multilingual, and natively developed language understanding benchmark specifically designed for Turkic languages. It consists of middle- and high-school level questions spanning 11 academic subjects in Azerbaijani, Crimean Tatar, Karakalpak, Kazakh, Tatar, Turkish, Uyghur, and Uzbek. We also present TUMLU-mini, a more concise, balanced, and manually verified subset of the dataset. Using this dataset, we systematically evaluate a diverse range of open and proprietary multilingual large language models (LLMs), including Claude, Gemini, GPT, and LLaMA, offering an in-depth analysis of their performance across different languages, subjects, and alphabets. To promote further research and development in multilingual language understanding, we release TUMLU-mini and all corresponding evaluation scripts.
comment: Accepted to ACL 2025, Main Conference
♻ ☆ Quantitative Analysis of Performance Drop in DeepSeek Model Quantization
Recently, there is a high demand for deploying DeepSeek-R1 and V3 locally, possibly because the official service often suffers from being busy and some organizations have data privacy concerns. While single-machine deployment offers infrastructure simplicity, the models' 671B FP8 parameter configuration exceeds the practical memory limits of a standard 8-GPU machine. Quantization is a widely used technique that helps reduce model memory consumption. However, it is unclear what the performance of DeepSeek-R1 and V3 will be after being quantized. This technical report presents the first quantitative evaluation of multi-bitwidth quantization across the complete DeepSeek model spectrum. Key findings reveal that 4-bit quantization maintains little performance degradation versus FP8 while enabling single-machine deployment on standard NVIDIA GPU devices. We further propose DQ3_K_M, a dynamic 3-bit quantization method that significantly outperforms traditional Q3_K_M variant on various benchmarks, which is also comparable with 4-bit quantization (Q4_K_M) approach in most tasks. Moreover, DQ3_K_M supports single-machine deployment configurations for both NVIDIA H100/A100 and Huawei 910B. Our implementation of DQ3\_K\_M is released at https://github.com/UnicomAI/DeepSeek-Eval, containing optimized 3-bit quantized variants of both DeepSeek-R1 and DeepSeek-V3.
comment: This version added the results of DeepSeek-V3-0324
♻ ☆ Dynamic and Adaptive Feature Generation with LLM IJCAI 2025
The representation of feature space is a crucial environment where data points get vectorized and embedded for subsequent modeling. Thus the efficacy of machine learning (ML) algorithms is closely related to the quality of feature engineering. As one of the most important techniques, feature generation transforms raw data into an optimized feature space conducive to model training and further refines the space. Despite the advancements in automated feature engineering and feature generation, current methodologies often suffer from three fundamental issues: lack of explainability, limited applicability, and inflexible strategy. These shortcomings frequently hinder and limit the deployment of ML models across varied scenarios. Our research introduces a novel approach adopting large language models (LLMs) and feature-generating prompts to address these challenges. We propose a dynamic and adaptive feature generation method that enhances the interpretability of the feature generation process. Our approach broadens the applicability across various data types and tasks and offers advantages over strategic flexibility. A broad range of experiments showcases that our approach is significantly superior to existing methods.
comment: Accepted by IJCAI 2025
♻ ☆ Tell Me What You Don't Know: Enhancing Refusal Capabilities of Role-Playing Agents via Representation Space Analysis and Editing
Role-Playing Agents (RPAs) have shown remarkable performance in various applications, yet they often struggle to recognize and appropriately respond to hard queries that conflict with their role-play knowledge. To investigate RPAs' performance when faced with different types of conflicting requests, we develop an evaluation benchmark that includes contextual knowledge conflicting requests, parametric knowledge conflicting requests, and non-conflicting requests to assess RPAs' ability to identify conflicts and refuse to answer appropriately without over-refusing. Through extensive evaluation, we find that most RPAs behave significant performance gaps toward different conflict requests. To elucidate the reasons, we conduct an in-depth representation-level analysis of RPAs under various conflict scenarios. Our findings reveal the existence of rejection regions and direct response regions within the model's forwarding representation, and thus influence the RPA's final response behavior. Therefore, we introduce a lightweight representation editing approach that conveniently shifts conflicting requests to the rejection region, thereby enhancing the model's refusal accuracy. The experimental results validate the effectiveness of our editing method, improving RPAs' refusal ability of conflicting requests while maintaining their general role-playing capabilities.
♻ ☆ Does Thinking More always Help? Understanding Test-Time Scaling in Reasoning Models
Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek R1) have led to a popular belief that extending thinking traces using prompts like "Wait" or "Let me rethink" can improve performance. This raises a natural question: Does thinking more at test-time truly lead to better reasoning? To answer this question, we perform a detailed empirical study across models and benchmarks, which reveals a consistent pattern of initial performance improvements from additional thinking followed by a decline, due to "overthinking". To understand this non-monotonic trend, we consider a simple probabilistic model, which reveals that additional thinking increases output variance-creating an illusion of improved reasoning while ultimately undermining precision. Thus, observed gains from "more thinking" are not true indicators of improved reasoning, but artifacts stemming from the connection between model uncertainty and evaluation metric. This suggests that test-time scaling through extended thinking is not an effective way to utilize the inference thinking budget. Recognizing these limitations, we introduce an alternative test-time scaling approach, parallel thinking, inspired by Best-of-N sampling. Our method generates multiple independent reasoning paths within the same inference budget and selects the most consistent response via majority vote, achieving up to 20% higher accuracy compared to extended thinking. This provides a simple yet effective mechanism for test-time scaling of reasoning models.
♻ ☆ Decomposability-Guaranteed Cooperative Coevolution for Large-Scale Itinerary Planning
Large-scale itinerary planning is a variant of the traveling salesman problem, aiming to determine an optimal path that maximizes the collected points of interest (POIs) scores while minimizing travel time and cost, subject to travel duration constraints. This paper analyzes the decomposability of large-scale itinerary planning, proving that strict decomposability is difficult to satisfy, and introduces a weak decomposability definition based on a necessary condition, deriving the corresponding graph structures that fulfill this property. With decomposability guaranteed, we propose a novel multi-objective cooperative coevolutionary algorithm for large-scale itinerary planning, addressing the challenges of component imbalance and interactions. Specifically, we design a dynamic decomposition strategy based on the normalized fitness within each component, define optimization potential considering component scale and contribution, and develop a computational resource allocation strategy. Finally, we evaluate the proposed algorithm on a set of real-world datasets. Comparative experiments with state-of-the-art multi-objective itinerary planning algorithms demonstrate the superiority of our approach, with performance advantages increasing as the problem scale grows.
♻ ☆ How Well Do Large Language Models Serve as End-to-End Secure Code Agents for Python?
The rapid advancement of large language models (LLMs) such as GPT-4 has revolutionized the landscape of software engineering, positioning these models at the core of modern development practices. As we anticipate these models to evolve into the primary and trustworthy tools used in software development, ensuring the security of the code they produce becomes paramount. How well can LLMs serve as end-to-end secure code producers? This paper presents a systematic investigation into LLMs' inherent potential to generate code with fewer vulnerabilities. Specifically, We studied GPT-3.5 and GPT-4's capability to identify and repair vulnerabilities in the code generated by four popular LLMs including themselves (GPT-3.5, GPT-4, Code Llama, and CodeGeeX2). By manually or automatically reviewing 4,900 pieces of code, our study reveals that: (1) large language models lack awareness of scenario-relevant security risks, which leads to the generation of over 75% vulnerable code on the SecurityEval benchmark; (2) LLMs such as GPT-3.5 and GPT-4 are unable to precisely identify vulnerabilities in the code they generated; (3) GPT-3.5 and GPT-4 can achieve 33.2%~59.6% success rates in repairing the insecure code produced by the 4 LLMs, but they both perform poorly when repairing self-produced code, indicating self-repair "blind spots". To address the limitation of a single round of repair, we developed a lightweight tool that prompts LLMs to construct safer source code through an iterative repair procedure based on the insights gained from our study. Experiments show that assisted by semantic analysis engines, our tool significantly improves the success rates of repair to 65.9%~85.5%.
♻ ☆ Unsafe LLM-Based Search: Quantitative Analysis and Mitigation of Safety Risks in AI Web Search
Recent advancements in Large Language Models (LLMs) have significantly enhanced the capabilities of AI-Powered Search Engines (AIPSEs), offering precise and efficient responses by integrating external databases with pre-existing knowledge. However, we observe that these AIPSEs raise risks such as quoting malicious content or citing malicious websites, leading to harmful or unverified information dissemination. In this study, we conduct the first safety risk quantification on seven production AIPSEs by systematically defining the threat model, risk type, and evaluating responses to various query types. With data collected from PhishTank, ThreatBook, and LevelBlue, our findings reveal that AIPSEs frequently generate harmful content that contains malicious URLs even with benign queries (e.g., with benign keywords). We also observe that directly querying a URL will increase the number of main risk-inclusive responses, while querying with natural language will slightly mitigate such risk. Compared to traditional search engines, AIPSEs outperform in both utility and safety. We further perform two case studies on online document spoofing and phishing to show the ease of deceiving AIPSEs in the real-world setting. To mitigate these risks, we develop an agent-based defense with a GPT-4.1-based content refinement tool and a URL detector. Our evaluation shows that our defense can effectively reduce the risk, with only a minor cost of reducing available information by approximately 10.7%. Our research highlights the urgent need for robust safety measures in AIPSEs.
♻ ☆ DiffTORI: Differentiable Trajectory Optimization for Deep Reinforcement and Imitation Learning NeurIPS 2024
This paper introduces DiffTORI, which utilizes Differentiable Trajectory Optimization as the policy representation to generate actions for deep Reinforcement and Imitation learning. Trajectory optimization is a powerful and widely used algorithm in control, parameterized by a cost and a dynamics function. The key to our approach is to leverage the recent progress in differentiable trajectory optimization, which enables computing the gradients of the loss with respect to the parameters of trajectory optimization. As a result, the cost and dynamics functions of trajectory optimization can be learned end-to-end. DiffTORI addresses the ``objective mismatch'' issue of prior model-based RL algorithms, as the dynamics model in DiffTORI is learned to directly maximize task performance by differentiating the policy gradient loss through the trajectory optimization process. We further benchmark DiffTORI for imitation learning on standard robotic manipulation task suites with high-dimensional sensory observations and compare our method to feed-forward policy classes as well as Energy-Based Models (EBM) and Diffusion. Across 15 model-based RL tasks and 35 imitation learning tasks with high-dimensional image and point cloud inputs, DiffTORI outperforms prior state-of-the-art methods in both domains. Our code is available at https://github.com/wkwan7/DiffTORI.
comment: NeurIPS 2024 (Spotlight)
♻ ☆ Discovering Hidden Visual Concepts Beyond Linguistic Input in Infant Learning CVPR 2025
Infants develop complex visual understanding rapidly, even preceding the acquisition of linguistic skills. As computer vision seeks to replicate the human vision system, understanding infant visual development may offer valuable insights. In this paper, we present an interdisciplinary study exploring this question: can a computational model that imitates the infant learning process develop broader visual concepts that extend beyond the vocabulary it has heard, similar to how infants naturally learn? To investigate this, we analyze a recently published model in Science by Vong et al., which is trained on longitudinal, egocentric images of a single child paired with transcribed parental speech. We perform neuron labeling to identify visual concept neurons hidden in the model's internal representations. We then demonstrate that these neurons can recognize objects beyond the model's original vocabulary. Furthermore, we compare the differences in representation between infant models and those in modern computer vision models, such as CLIP and ImageNet pre-trained model. Ultimately, our work bridges cognitive science and computer vision by analyzing the internal representations of a computational model trained on an infant visual and linguistic inputs. Project page is available at https://kexueyi.github.io/webpage-discover-hidden-visual-concepts.
comment: Accepted at CVPR 2025
♻ ☆ Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in understanding common visual elements, largely due to their large-scale datasets and advanced training strategies. However, their effectiveness in medical applications remains limited due to the inherent discrepancies between data and tasks in medical scenarios and those in the general domain. Concretely, existing medical MLLMs face the following critical limitations: (1) limited coverage of medical knowledge beyond imaging, (2) heightened susceptibility to hallucinations due to suboptimal data curation processes, (3) lack of reasoning capabilities tailored for complex medical scenarios. To address these challenges, we first propose a comprehensive data curation procedure that (1) efficiently acquires rich medical knowledge data not only from medical imaging but also from extensive medical texts and general-domain data; and (2) synthesizes accurate medical captions, visual question answering (VQA), and reasoning samples. As a result, we build a multimodal dataset enriched with extensive medical knowledge. Building on the curated data, we introduce our medical-specialized MLLM: Lingshu. Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities progressively. Besides, we preliminarily explore the potential of applying reinforcement learning with verifiable rewards paradigm to enhance Lingshu's medical reasoning ability. Additionally, we develop MedEvalKit, a unified evaluation framework that consolidates leading multimodal and textual medical benchmarks for standardized, fair, and efficient model assessment. We evaluate the performance of Lingshu on three fundamental medical tasks, multimodal QA, text-based QA, and medical report generation. The results show that Lingshu consistently outperforms the existing open-source multimodal models on most tasks ...
comment: Technical Report, 53 pages, 25 tables, and 16 figures. Our webpage is https://alibaba-damo-academy.github.io/lingshu/
♻ ☆ DURA-CPS: A Multi-Role Orchestrator for Dependability Assurance in LLM-Enabled Cyber-Physical Systems DSN
Cyber-Physical Systems (CPS) increasingly depend on advanced AI techniques to operate in critical applications. However, traditional verification and validation methods often struggle to handle the unpredictable and dynamic nature of AI components. In this paper, we introduce DURA-CPS, a novel framework that employs multi-role orchestration to automate the iterative assurance process for AI-powered CPS. By assigning specialized roles (e.g., safety monitoring, security assessment, fault injection, and recovery planning) to dedicated agents within a simulated environment, DURA-CPS continuously evaluates and refines AI behavior against a range of dependability requirements. We demonstrate the framework through a case study involving an autonomous vehicle navigating an intersection with an AI-based planner. Our results show that DURA-CPS effectively detects vulnerabilities, manages performance impacts, and supports adaptive recovery strategies, thereby offering a structured and extensible solution for rigorous V&V in safety- and security-critical systems.
comment: Accepted to the 55th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)
♻ ☆ PhysNav-DG: A Novel Adaptive Framework for Robust VLM-Sensor Fusion in Navigation Applications CVPR
Robust navigation in diverse environments and domains requires both accurate state estimation and transparent decision making. We present PhysNav-DG, a novel framework that integrates classical sensor fusion with the semantic power of vision-language models. Our dual-branch architecture predicts navigation actions from multi-sensor inputs while simultaneously generating detailed chain-of-thought explanations. A modified Adaptive Kalman Filter dynamically adjusts its noise parameters based on environmental context. It leverages several streams of raw sensor data along with semantic insights from models such as LLaMA 3.2 11B and BLIP-2. To evaluate our approach, we introduce the MD-NEX Benchmark, a novel multi-domain dataset that unifies indoor navigation, autonomous driving, and social navigation tasks with ground-truth actions and human-validated explanations. Extensive experiments and ablations show that PhysNav-DG improves navigation success rates by over 20% and achieves high efficiency, with explanations that are both highly grounded and clear. This work connects high-level semantic reasoning and geometric planning for safer and more trustworthy autonomous systems.
comment: Accepted at IEEE/CVF Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2025 (CVPRW)
♻ ☆ Improving the Calibration of Confidence Scores in Text Generation Using the Output Distribution's Characteristics ACL 2025
Well-calibrated model confidence scores can improve the usefulness of text generation models. For example, users can be prompted to review predictions with low confidence scores, to prevent models from returning bad or potentially dangerous predictions. However, confidence metrics are not always well calibrated in text generation. One reason is that in generation, there can be many valid answers, which previous methods do not always account for. Hence, a confident model could distribute its output probability among multiple sequences because they are all valid. We propose task-agnostic confidence metrics suited to generation, which rely solely on the probabilities associated with the model outputs without the need for further fine-tuning or heuristics. Using these, we are able to improve the calibration of BART and Flan-T5 on summarization, translation, and QA datasets.
comment: ACL 2025 Main Conference
♻ ☆ Evolution Guided Generative Flow Networks
Generative Flow Networks (GFlowNets) are a family of probabilistic generative models that learn to sample compositional objects proportional to their rewards. One big challenge of GFlowNets is training them effectively when dealing with long time horizons and sparse rewards. To address this, we propose Evolution guided generative flow networks (EGFN), a simple but powerful augmentation to the GFlowNets training using Evolutionary algorithms (EA). Our method can work on top of any GFlowNets training objective, by training a set of agent parameters using EA, storing the resulting trajectories in the prioritized replay buffer, and training the GFlowNets agent using the stored trajectories. We present a thorough investigation over a wide range of toy and real-world benchmark tasks showing the effectiveness of our method in handling long trajectories and sparse rewards. We release the code at http://github.com/zarifikram/egfn.
comment: Transaction of machine learning research
♻ ☆ RSCF: Relation-Semantics Consistent Filter for Entity Embedding of Knowledge Graph ACL 2025
In knowledge graph embedding, leveraging relation specific entity transformation has markedly enhanced performance. However, the consistency of embedding differences before and after transformation remains unaddressed, risking the loss of valuable inductive bias inherent in the embeddings. This inconsistency stems from two problems. First, transformation representations are specified for relations in a disconnected manner, allowing dissimilar transformations and corresponding entity embeddings for similar relations. Second, a generalized plug-in approach as a SFBR (Semantic Filter Based on Relations) disrupts this consistency through excessive concentration of entity embeddings under entity-based regularization, generating indistinguishable score distributions among relations. In this paper, we introduce a plug-in KGE method, Relation-Semantics Consistent Filter (RSCF). Its entity transformation has three features for enhancing semantic consistency: 1) shared affine transformation of relation embeddings across all relations, 2) rooted entity transformation that adds an entity embedding to its change represented by the transformed vector, and 3) normalization of the change to prevent scale reduction. To amplify the advantages of consistency that preserve semantics on embeddings, RSCF adds relation transformation and prediction modules for enhancing the semantics. In knowledge graph completion tasks with distance-based and tensor decomposition models, RSCF significantly outperforms state-of-the-art KGE methods, showing robustness across all relations and their frequencies.
comment: Accepted to ACL 2025, 17 pages, 10 figures
♻ ☆ Scientists' First Exam: Probing Cognitive Abilities of MLLM via Perception, Understanding, and Reasoning
Scientific discoveries increasingly rely on complex multimodal reasoning based on information-intensive scientific data and domain-specific expertise. Empowered by expert-level scientific benchmarks, scientific Multimodal Large Language Models (MLLMs) hold the potential to significantly enhance this discovery process in realistic workflows. However, current scientific benchmarks mostly focus on evaluating the knowledge understanding capabilities of MLLMs, leading to an inadequate assessment of their perception and reasoning abilities. To address this gap, we present the Scientists' First Exam (SFE) benchmark, designed to evaluate the scientific cognitive capacities of MLLMs through three interconnected levels: scientific signal perception, scientific attribute understanding, scientific comparative reasoning. Specifically, SFE comprises 830 expert-verified VQA pairs across three question types, spanning 66 multimodal tasks across five high-value disciplines. Extensive experiments reveal that current state-of-the-art GPT-o3 and InternVL-3 achieve only 34.08% and 26.52% on SFE, highlighting significant room for MLLMs to improve in scientific realms. We hope the insights obtained in SFE will facilitate further developments in AI-enhanced scientific discoveries.
comment: 82 pages
♻ ☆ Fast-DataShapley: Neural Modeling for Training Data Valuation
The value and copyright of training data are crucial in the artificial intelligence industry. Service platforms should protect data providers' legitimate rights and fairly reward them for their contributions. Shapley value, a potent tool for evaluating contributions, outperforms other methods in theory, but its computational overhead escalates exponentially with the number of data providers. Recent works based on Shapley values attempt to mitigate computation complexity by approximation algorithms. However, they need to retrain for each test sample, leading to intolerable costs. We propose Fast-DataShapley, a one-pass training method that leverages the weighted least squares characterization of the Shapley value to train a reusable explainer model with real-time reasoning speed. Given new test samples, no retraining is required to calculate the Shapley values of the training data. Additionally, we propose three methods with theoretical guarantees to reduce training overhead from two aspects: the approximate calculation of the utility function and the group calculation of the training data. We analyze time complexity to show the efficiency of our methods. The experimental evaluations on various image datasets demonstrate superior performance and efficiency compared to baselines. Specifically, the performance is improved to more than 2.5 times, and the explainer's training speed can be increased by two orders of magnitude.
♻ ☆ Accelerating Diffusion Large Language Models with SlowFast Sampling: The Three Golden Principles
Diffusion-based language models (dLLMs) have emerged as a promising alternative to traditional autoregressive LLMs by enabling parallel token generation and significantly reducing inference latency. However, existing sampling strategies for dLLMs, such as confidence-based or semi-autoregressive decoding, often suffer from static behavior, leading to suboptimal efficiency and limited flexibility. In this paper, we propose SlowFast Sampling, a novel dynamic sampling strategy that adaptively alternates between exploratory and accelerated decoding stages. Our method is guided by three golden principles: certainty principle, convergence principle, and positional principle, which govern when and where tokens can be confidently and efficiently decoded. We further integrate our strategy with dLLM-Cache to reduce redundant computation. Extensive experiments across benchmarks and models show that SlowFast Sampling achieves up to 15.63$\times$ speedup on LLaDA with minimal accuracy drop, and up to 34.22$\times$ when combined with caching. Notably, our approach outperforms strong autoregressive baselines like LLaMA3 8B in throughput, demonstrating that well-designed sampling can unlock the full potential of dLLMs for fast and high-quality generation.
comment: 11 pages; 5 figures;
♻ ☆ PLeak: Prompt Leaking Attacks against Large Language Model Applications CCS
Large Language Models (LLMs) enable a new ecosystem with many downstream applications, called LLM applications, with different natural language processing tasks. The functionality and performance of an LLM application highly depend on its system prompt, which instructs the backend LLM on what task to perform. Therefore, an LLM application developer often keeps a system prompt confidential to protect its intellectual property. As a result, a natural attack, called prompt leaking, is to steal the system prompt from an LLM application, which compromises the developer's intellectual property. Existing prompt leaking attacks primarily rely on manually crafted queries, and thus achieve limited effectiveness. In this paper, we design a novel, closed-box prompt leaking attack framework, called PLeak, to optimize an adversarial query such that when the attacker sends it to a target LLM application, its response reveals its own system prompt. We formulate finding such an adversarial query as an optimization problem and solve it with a gradient-based method approximately. Our key idea is to break down the optimization goal by optimizing adversary queries for system prompts incrementally, i.e., starting from the first few tokens of each system prompt step by step until the entire length of the system prompt. We evaluate PLeak in both offline settings and for real-world LLM applications, e.g., those on Poe, a popular platform hosting such applications. Our results show that PLeak can effectively leak system prompts and significantly outperforms not only baselines that manually curate queries but also baselines with optimized queries that are modified and adapted from existing jailbreaking attacks. We responsibly reported the issues to Poe and are still waiting for their response. Our implementation is available at this repository: https://github.com/BHui97/PLeak.
comment: To appear in the Proceedings of The ACM Conference on Computer and Communications Security (CCS), 2024
♻ ☆ Dynamic Policy Fusion for User Alignment Without Re-Interaction
Deep reinforcement learning (RL) policies, although optimal in terms of task rewards, may not align with the personal preferences of human users. To ensure this alignment, a naive solution would be to retrain the agent using a reward function that encodes the user's specific preferences. However, such a reward function is typically not readily available, and as such, retraining the agent from scratch can be prohibitively expensive. We propose a more practical approach - to adapt the already trained policy to user-specific needs with the help of human feedback. To this end, we infer the user's intent through trajectory-level feedback and combine it with the trained task policy via a theoretically grounded dynamic policy fusion approach. As our approach collects human feedback on the very same trajectories used to learn the task policy, it does not require any additional interactions with the environment, making it a zero-shot approach. We empirically demonstrate in a number of environments that our proposed dynamic policy fusion approach consistently achieves the intended task while simultaneously adhering to user-specific needs.
♻ ☆ FreshStack: Building Realistic Benchmarks for Evaluating Retrieval on Technical Documents
We introduce FreshStack, a holistic framework for automatically building information retrieval (IR) evaluation benchmarks by incorporating challenging questions and answers. FreshStack conducts the following steps: (1) automatic corpus collection from code and technical documentation, (2) nugget generation from community-asked questions and answers, and (3) nugget-level support, retrieving documents using a fusion of retrieval techniques and hybrid architectures. We use FreshStack to build five datasets on fast-growing, recent, and niche topics to ensure the tasks are sufficiently challenging. On FreshStack, existing retrieval models, when applied out-of-the-box, significantly underperform oracle approaches on all five topics, denoting plenty of headroom to improve IR quality. In addition, we identify cases where rerankers do not improve first-stage retrieval accuracy (two out of five topics) and oracle context helps an LLM generator generate a high-quality RAG answer. We hope FreshStack will facilitate future work toward constructing realistic, scalable, and uncontaminated IR and RAG evaluation benchmarks.
comment: 21 pages, 4 figures, 8 tables
Graphics 5
☆ CGVQM+D: Computer Graphics Video Quality Metric and Dataset
While existing video and image quality datasets have extensively studied natural videos and traditional distortions, the perception of synthetic content and modern rendering artifacts remains underexplored. We present a novel video quality dataset focused on distortions introduced by advanced rendering techniques, including neural supersampling, novel-view synthesis, path tracing, neural denoising, frame interpolation, and variable rate shading. Our evaluations show that existing full-reference quality metrics perform sub-optimally on these distortions, with a maximum Pearson correlation of 0.78. Additionally, we find that the feature space of pre-trained 3D CNNs aligns strongly with human perception of visual quality. We propose CGVQM, a full-reference video quality metric that significantly outperforms existing metrics while generating both per-pixel error maps and global quality scores. Our dataset and metric implementation is available at https://github.com/IntelLabs/CGVQM.
☆ Adaptive Tetrahedral Grids for Volumetric Path-Tracing
We advertise the use of tetrahedral grids constructed via the longest edge bisection algorithm for rendering volumetric data with path tracing. The key benefits of such grids is two-fold. First, they provide a highly adaptive space-partitioning representation that limits the memory footprint of volumetric assets. Second, each (tetrahedral) cell has exactly 4 neighbors within the volume (one per face of each tetrahedron) or less at boundaries. We leverage these properties to devise optimized algorithms and data-structures to compute and path-trace adaptive tetrahedral grids on the GPU. In practice, our GPU implementation outperforms regular grids by up to x30 and renders production assets in real time at 32 samples per pixel.
☆ Capsule: Efficient Player Isolation for Datacenters
Cloud gaming is increasingly popular. A challenge for cloud provider is to keep datacenter utilization high: a non-trivial task due to application variety. These applications come in different shapes and sizes. So do cloud datacenter resources, e.g., CPUs, GPUs, NPUs. Part of the challenge stems from game engines being predominantly designed to run only one player. One player in a lightweight game might utilize only a fraction of the cloud server GPU. The remaining GPU capacity will be left underutilized, an undesired outcome for the cloud provider. We introduce Capsule, a mechanism that allows multiple players to seamlessly share one GPU. We implemented Capsule in O3DE, a popular open source game engine. Our evaluations show that Capsule can increase datacenter resource utilization by accommodating up to 2.25x more players, without degrading player gaming experience. Capsule is also application agnostic. We ran four applications on Capsule-based O3DE with no application changes. Our experiences show that Capsule design can be adopted by other game engines to increase datacenter utilization across cloud providers.
☆ VEIGAR: View-consistent Explicit Inpainting and Geometry Alignment for 3D object Removal
Recent advances in Novel View Synthesis (NVS) and 3D generation have significantly improved editing tasks, with a primary emphasis on maintaining cross-view consistency throughout the generative process. Contemporary methods typically address this challenge using a dual-strategy framework: performing consistent 2D inpainting across all views guided by embedded priors either explicitly in pixel space or implicitly in latent space; and conducting 3D reconstruction with additional consistency guidance. Previous strategies, in particular, often require an initial 3D reconstruction phase to establish geometric structure, introducing considerable computational overhead. Even with the added cost, the resulting reconstruction quality often remains suboptimal. In this paper, we present VEIGAR, a computationally efficient framework that outperforms existing methods without relying on an initial reconstruction phase. VEIGAR leverages a lightweight foundation model to reliably align priors explicitly in the pixel space. In addition, we introduce a novel supervision strategy based on scale-invariant depth loss, which removes the need for traditional scale-and-shift operations in monocular depth regularization. Through extensive experimentation, VEIGAR establishes a new state-of-the-art benchmark in reconstruction quality and cross-view consistency, while achieving a threefold reduction in training time compared to the fastest existing method, highlighting its superior balance of efficiency and effectiveness.
♻ ☆ Uniform Sampling of Surfaces by Casting Rays
Randomly sampling points on surfaces is an essential operation in geometry processing. This sampling is computationally straightforward on explicit meshes, but it is much more difficult on other shape representations, such as widely-used implicit surfaces. This work studies a simple and general scheme for sampling points on a surface, which is derived from a connection to the intersections of random rays with the surface. Concretely, given a subroutine to cast a ray against a surface and find all intersections, we can use that subroutine to uniformly sample white noise points on the surface. This approach is particularly effective in the context of implicit signed distance functions, where sphere marching allows us to efficiently cast rays and sample points, without needing to extract an intermediate mesh. We analyze the basic method to show that it guarantees uniformity, and find experimentally that it is significantly more efficient than alternative strategies on a variety of representations. Furthermore, we show extensions to blue noise sampling and stratified sampling, and applications to deform neural implicit surfaces as well as moment estimation.
comment: 15 pages, 17 figures, Symposium on Geometry Processing 2025
Robotics 42
☆ Eye, Robot: Learning to Look to Act with a BC-RL Perception-Action Loop
Humans do not passively observe the visual world -- we actively look in order to act. Motivated by this principle, we introduce EyeRobot, a robotic system with gaze behavior that emerges from the need to complete real-world tasks. We develop a mechanical eyeball that can freely rotate to observe its surroundings and train a gaze policy to control it using reinforcement learning. We accomplish this by first collecting teleoperated demonstrations paired with a 360 camera. This data is imported into a simulation environment that supports rendering arbitrary eyeball viewpoints, allowing episode rollouts of eye gaze on top of robot demonstrations. We then introduce a BC-RL loop to train the hand and eye jointly: the hand (BC) agent is trained from rendered eye observations, and the eye (RL) agent is rewarded when the hand produces correct action predictions. In this way, hand-eye coordination emerges as the eye looks towards regions which allow the hand to complete the task. EyeRobot implements a foveal-inspired policy architecture allowing high resolution with a small compute budget, which we find also leads to the emergence of more stable fixation as well as improved ability to track objects and ignore distractors. We evaluate EyeRobot on five panoramic workspace manipulation tasks requiring manipulation in an arc surrounding the robot arm. Our experiments suggest EyeRobot exhibits hand-eye coordination behaviors which effectively facilitate manipulation over large workspaces with a single camera. See project site for videos: https://www.eyerobot.net/
comment: Project page: https://www.eyerobot.net/
☆ GENMANIP: LLM-driven Simulation for Generalizable Instruction-Following Manipulation
Robotic manipulation in real-world settings remains challenging, especially regarding robust generalization. Existing simulation platforms lack sufficient support for exploring how policies adapt to varied instructions and scenarios. Thus, they lag behind the growing interest in instruction-following foundation models like LLMs, whose adaptability is crucial yet remains underexplored in fair comparisons. To bridge this gap, we introduce GenManip, a realistic tabletop simulation platform tailored for policy generalization studies. It features an automatic pipeline via LLM-driven task-oriented scene graph to synthesize large-scale, diverse tasks using 10K annotated 3D object assets. To systematically assess generalization, we present GenManip-Bench, a benchmark of 200 scenarios refined via human-in-the-loop corrections. We evaluate two policy types: (1) modular manipulation systems integrating foundation models for perception, reasoning, and planning, and (2) end-to-end policies trained through scalable data collection. Results show that while data scaling benefits end-to-end methods, modular systems enhanced with foundation models generalize more effectively across diverse scenarios. We anticipate this platform to facilitate critical insights for advancing policy generalization in realistic conditions. Project Page: https://genmanip.axi404.top/.
☆ Vib2Move: In-Hand Object Reconfiguration via Fingertip Micro-Vibrations
We introduce Vib2Move, a novel approach for in-hand object reconfiguration that uses fingertip micro-vibrations and gravity to precisely reposition planar objects. Our framework comprises three key innovations. First, we design a vibration-based actuator that dynamically modulates the effective finger-object friction coefficient, effectively emulating changes in gripping force. Second, we derive a sliding motion model for objects clamped in a parallel gripper with two symmetric, variable-friction contact patches. Third, we propose a motion planner that coordinates end-effector finger trajectories and fingertip vibrations to achieve the desired object pose. In real-world trials, Vib2Move consistently yields final positioning errors below 6 mm, demonstrating reliable, high-precision manipulation across a variety of planar objects. For more results and information, please visit https://vib2move.github.io.
comment: 11 pages, 12 figures
☆ Modeling Trust Dynamics in Robot-Assisted Delivery: Impact of Trust Repair Strategies
With increasing efficiency and reliability, autonomous systems are becoming valuable assistants to humans in various tasks. In the context of robot-assisted delivery, we investigate how robot performance and trust repair strategies impact human trust. In this task, while handling a secondary task, humans can choose to either send the robot to deliver autonomously or manually control it. The trust repair strategies examined include short and long explanations, apology and promise, and denial. Using data from human participants, we model human behavior using an Input-Output Hidden Markov Model (IOHMM) to capture the dynamics of trust and human action probabilities. Our findings indicate that humans are more likely to deploy the robot autonomously when their trust is high. Furthermore, state transition estimates show that long explanations are the most effective at repairing trust following a failure, while denial is most effective at preventing trust loss. We also demonstrate that the trust estimates generated by our model are isomorphic to self-reported trust values, making them interpretable. This model lays the groundwork for developing optimal policies that facilitate real-time adjustment of human trust in autonomous systems.
☆ Data-Driven Prediction of Dynamic Interactions Between Robot Appendage and Granular Material
An alternative data-driven modeling approach has been proposed and employed to gain fundamental insights into robot motion interaction with granular terrain at certain length scales. The approach is based on an integration of dimension reduction (Sequentially Truncated Higher-Order Singular Value Decomposition), surrogate modeling (Gaussian Process), and data assimilation techniques (Reduced Order Particle Filter). This approach can be used online and is based on offline data, obtained from the offline collection of high-fidelity simulation data and a set of sparse experimental data. The results have shown that orders of magnitude reduction in computational time can be obtained from the proposed data-driven modeling approach compared with physics-based high-fidelity simulations. With only simulation data as input, the data-driven prediction technique can generate predictions that have comparable accuracy as simulations. With both simulation data and sparse physical experimental measurement as input, the data-driven approach with its embedded data assimilation techniques has the potential in outperforming only high-fidelity simulations for the long-horizon predictions. In addition, it is demonstrated that the data-driven modeling approach can also reproduce the scaling relationship recovered by physics-based simulations for maximum resistive forces, which may indicate its general predictability beyond a case-by-case basis. The results are expected to help robot navigation and exploration in unknown and complex terrains during both online and offline phases.
☆ Invariant Extended Kalman Filter for Autonomous Surface Vessels with Partial Orientation Measurements ICRA
Autonomous surface vessels (ASVs) are increasingly vital for marine science, offering robust platforms for underwater mapping and inspection. Accurate state estimation, particularly of vehicle pose, is paramount for precise seafloor mapping, as even small surface deviations can have significant consequences when sensing the seafloor below. To address this challenge, we propose an Invariant Extended Kalman Filter (InEKF) framework designed to integrate partial orientation measurements. While conventional estimation often relies on relative position measurements to fixed landmarks, open ocean ASVs primarily observe a receding horizon. We leverage forward-facing monocular cameras to estimate roll and pitch with respect to this horizon, which provides yaw-ambiguous partial orientation information. To effectively utilize these measurements within the InEKF, we introduce a novel framework for incorporating such partial orientation data. This approach contrasts with traditional InEKF implementations that assume full orientation measurements and is particularly relevant for planar vehicle motion constrained to a "seafaring plane." This paper details the developed InEKF framework; its integration with horizon-based roll/pitch observations and dual-antenna GPS heading measurements for ASV state estimation; and provides a comparative analysis against the InEKF using full orientation and a Multiplicative EKF (MEKF). Our results demonstrate the efficacy and robustness of the proposed partial orientation measurements for accurate ASV state estimation in open ocean environments.
comment: Presented at the 2025 IEEE ICRA Workshop on Field Robotics. 8 pages, 4 figures, 2 tables
RationalVLA: A Rational Vision-Language-Action Model with Dual System
A fundamental requirement for real-world robotic deployment is the ability to understand and respond to natural language instructions. Existing language-conditioned manipulation tasks typically assume that instructions are perfectly aligned with the environment. This assumption limits robustness and generalization in realistic scenarios where instructions may be ambiguous, irrelevant, or infeasible. To address this problem, we introduce RAtional MAnipulation (RAMA), a new benchmark that challenges models with both unseen executable instructions and defective ones that should be rejected. In RAMA, we construct a dataset with over 14,000 samples, including diverse defective instructions spanning six dimensions: visual, physical, semantic, motion, safety, and out-of-context. We further propose the Rational Vision-Language-Action model (RationalVLA). It is a dual system for robotic arms that integrates the high-level vision-language model with the low-level manipulation policy by introducing learnable latent space embeddings. This design enables RationalVLA to reason over instructions, reject infeasible commands, and execute manipulation effectively. Experiments demonstrate that RationalVLA outperforms state-of-the-art baselines on RAMA by a 14.5% higher success rate and 0.94 average task length, while maintaining competitive performance on standard manipulation tasks. Real-world trials further validate its effectiveness and robustness in practical applications. Our project page is https://irpn-eai.github.io/rationalvla.
comment: 14 pages
☆ In-Hand Object Pose Estimation via Visual-Tactile Fusion
Accurate in-hand pose estimation is crucial for robotic object manipulation, but visual occlusion remains a major challenge for vision-based approaches. This paper presents an approach to robotic in-hand object pose estimation, combining visual and tactile information to accurately determine the position and orientation of objects grasped by a robotic hand. We address the challenge of visual occlusion by fusing visual information from a wrist-mounted RGB-D camera with tactile information from vision-based tactile sensors mounted on the fingertips of a robotic gripper. Our approach employs a weighting and sensor fusion module to combine point clouds from heterogeneous sensor types and control each modality's contribution to the pose estimation process. We use an augmented Iterative Closest Point (ICP) algorithm adapted for weighted point clouds to estimate the 6D object pose. Our experiments show that incorporating tactile information significantly improves pose estimation accuracy, particularly when occlusion is high. Our method achieves an average pose estimation error of 7.5 mm and 16.7 degrees, outperforming vision-only baselines by up to 20%. We also demonstrate the ability of our method to perform precise object manipulation in a real-world insertion task.
comment: 8 pages
☆ Grounded Vision-Language Navigation for UAVs with Open-Vocabulary Goal Understanding
Vision-and-language navigation (VLN) is a long-standing challenge in autonomous robotics, aiming to empower agents with the ability to follow human instructions while navigating complex environments. Two key bottlenecks remain in this field: generalization to out-of-distribution environments and reliance on fixed discrete action spaces. To address these challenges, we propose Vision-Language Fly (VLFly), a framework tailored for Unmanned Aerial Vehicles (UAVs) to execute language-guided flight. Without the requirement for localization or active ranging sensors, VLFly outputs continuous velocity commands purely from egocentric observations captured by an onboard monocular camera. The VLFly integrates three modules: an instruction encoder based on a large language model (LLM) that reformulates high-level language into structured prompts, a goal retriever powered by a vision-language model (VLM) that matches these prompts to goal images via vision-language similarity, and a waypoint planner that generates executable trajectories for real-time UAV control. VLFly is evaluated across diverse simulation environments without additional fine-tuning and consistently outperforms all baselines. Moreover, real-world VLN tasks in indoor and outdoor environments under direct and indirect instructions demonstrate that VLFly achieves robust open-vocabulary goal understanding and generalized navigation capabilities, even in the presence of abstract language input.
☆ An $O(n$)-Algorithm for the Higher-Order Kinematics and Inverse Dynamics of Serial Manipulators using Spatial Representation of Twists
Optimal control in general, and flatness-based control in particular, of robotic arms necessitate to compute the first and second time derivatives of the joint torques/forces required to achieve a desired motion. In view of the required computational efficiency, recursive $O(n)$-algorithms were proposed to this end. Aiming at compact yet efficient formulations, a Lie group formulation was recently proposed, making use of body-fixed and hybrid representation of twists and wrenches. In this paper a formulation is introduced using the spatial representation. The second-order inverse dynamics algorithm is accompanied by a fourth-order forward and inverse kinematics algorithm. An advantage of all Lie group formulations is that they can be parameterized in terms of vectorial quantities that are readily available. The method is demonstrated for the 7 DOF Franka Emika Panda robot.
☆ EmbodiedGen: Towards a Generative 3D World Engine for Embodied Intelligence
Constructing a physically realistic and accurately scaled simulated 3D world is crucial for the training and evaluation of embodied intelligence tasks. The diversity, realism, low cost accessibility and affordability of 3D data assets are critical for achieving generalization and scalability in embodied AI. However, most current embodied intelligence tasks still rely heavily on traditional 3D computer graphics assets manually created and annotated, which suffer from high production costs and limited realism. These limitations significantly hinder the scalability of data driven approaches. We present EmbodiedGen, a foundational platform for interactive 3D world generation. It enables the scalable generation of high-quality, controllable and photorealistic 3D assets with accurate physical properties and real-world scale in the Unified Robotics Description Format (URDF) at low cost. These assets can be directly imported into various physics simulation engines for fine-grained physical control, supporting downstream tasks in training and evaluation. EmbodiedGen is an easy-to-use, full-featured toolkit composed of six key modules: Image-to-3D, Text-to-3D, Texture Generation, Articulated Object Generation, Scene Generation and Layout Generation. EmbodiedGen generates diverse and interactive 3D worlds composed of generative 3D assets, leveraging generative AI to address the challenges of generalization and evaluation to the needs of embodied intelligence related research. Code is available at https://horizonrobotics.github.io/robot_lab/embodied_gen/index.html.
☆ Are We Generalizing from the Exception? An In-the-Wild Study on Group-Sensitive Conversation Design in Human-Agent Interactions
This paper investigates the impact of a group-adaptive conversation design in two socially interactive agents (SIAs) through two real-world studies. Both SIAs - Furhat, a social robot, and MetaHuman, a virtual agent - were equipped with a conversational artificial intelligence (CAI) backend combining hybrid retrieval and generative models. The studies were carried out in an in-the-wild setting with a total of $N = 188$ participants who interacted with the SIAs - in dyads, triads or larger groups - at a German museum. Although the results did not reveal a significant effect of the group-sensitive conversation design on perceived satisfaction, the findings provide valuable insights into the challenges of adapting CAI for multi-party interactions and across different embodiments (robot vs.\ virtual agent), highlighting the need for multimodal strategies beyond linguistic pluralization. These insights contribute to the fields of Human-Agent Interaction (HAI), Human-Robot Interaction (HRI), and broader Human-Machine Interaction (HMI), providing insights for future research on effective dialogue adaptation in group settings.
comment: Accepted as a regular paper at the 2025 IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). \c{opyright} IEEE. This is the preprint version. The final version will appear in the IEEE proceedings
☆ RICE: Reactive Interaction Controller for Cluttered Canopy Environment RAL
Robotic navigation in dense, cluttered environments such as agricultural canopies presents significant challenges due to physical and visual occlusion caused by leaves and branches. Traditional vision-based or model-dependent approaches often fail in these settings, where physical interaction without damaging foliage and branches is necessary to reach a target. We present a novel reactive controller that enables safe navigation for a robotic arm in a contact-rich, cluttered, deformable environment using end-effector position and real-time tactile feedback. Our proposed framework's interaction strategy is based on a trade-off between minimizing disturbance by maneuvering around obstacles and pushing through them to move towards the target. We show that over 35 trials in 3 experimental plant setups with an occluded target, the proposed controller successfully reached the target in all trials without breaking any branch and outperformed the state-of-the-art model-free controller in robustness and adaptability. This work lays the foundation for safe, adaptive interaction in cluttered, contact-rich deformable environments, enabling future agricultural tasks such as pruning and harvesting in plant canopies.
comment: This work has been submitted to the IEEE RAL for possible publication
☆ Towards more efficient quantitative safety validation of residual risk for assisted and automated driving
The safety validation of Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (ADS) increasingly demands efficient and reliable methods to quantify residual risk while adhering to international standards such as ISO 21448. Traditionally, Field Operational Testing (FOT) has been pivotal for macroscopic safety validation of automotive driving functions up to SAE automation level 2. However, state-of-the-art derivations for empirical safety demonstrations using FOT often result in impractical testing efforts, particularly at higher automation levels. Even at lower automation levels, this limitation - coupled with the substantial costs associated with FOT - motivates the exploration of approaches to enhance the efficiency of FOT-based macroscopic safety validation. Therefore, this publication systematically identifies and evaluates state-of-the-art Reduction Approaches (RAs) for FOT, including novel methods reported in the literature. Based on an analysis of ISO 21448, two models are derived: a generic model capturing the argumentation components of the standard, and a base model, exemplarily applied to Automatic Emergency Braking (AEB) systems, establishing a baseline for the real-world driving requirement for a Quantitative Safety Validation of Residual Risk (QSVRR). Subsequently, the RAs are assessed using four criteria: quantifiability, threats to validity, missing links, and black box compatibility, highlighting potential benefits, inherent limitations, and identifying key areas for further research. Our evaluation reveals that, while several approaches offer potential, none are free from missing links or other substantial shortcomings. Moreover, no identified alternative can fully replace FOT, reflecting its crucial role in the safety validation of ADAS and ADS.
☆ Demonstrating Multi-Suction Item Picking at Scale via Multi-Modal Learning of Pick Success RSS 2025
This work demonstrates how autonomously learning aspects of robotic operation from sparsely-labeled, real-world data of deployed, engineered solutions at industrial scale can provide with solutions that achieve improved performance. Specifically, it focuses on multi-suction robot picking and performs a comprehensive study on the application of multi-modal visual encoders for predicting the success of candidate robotic picks. Picking diverse items from unstructured piles is an important and challenging task for robot manipulation in real-world settings, such as warehouses. Methods for picking from clutter must work for an open set of items while simultaneously meeting latency constraints to achieve high throughput. The demonstrated approach utilizes multiple input modalities, such as RGB, depth and semantic segmentation, to estimate the quality of candidate multi-suction picks. The strategy is trained from real-world item picking data, with a combination of multimodal pretrain and finetune. The manuscript provides comprehensive experimental evaluation performed over a large item-picking dataset, an item-picking dataset targeted to include partial occlusions, and a package-picking dataset, which focuses on containers, such as boxes and envelopes, instead of unpackaged items. The evaluation measures performance for different item configurations, pick scenes, and object types. Ablations help to understand the effects of in-domain pretraining, the impact of different modalities and the importance of finetuning. These ablations reveal both the importance of training over multiple modalities but also the ability of models to learn during pretraining the relationship between modalities so that during finetuning and inference, only a subset of them can be used as input.
comment: Accepted to Robotics: Science and Systems (RSS 2025), 15 pages
☆ Using Language and Road Manuals to Inform Map Reconstruction for Autonomous Driving RSS 2025
Lane-topology prediction is a critical component of safe and reliable autonomous navigation. An accurate understanding of the road environment aids this task. We observe that this information often follows conventions encoded in natural language, through design codes that reflect the road structure and road names that capture the road functionality. We augment this information in a lightweight manner to SMERF, a map-prior-based online lane-topology prediction model, by combining structured road metadata from OSM maps and lane-width priors from Road design manuals with the road centerline encodings. We evaluate our method on two geo-diverse complex intersection scenarios. Our method shows improvement in both lane and traffic element detection and their association. We report results using four topology-aware metrics to comprehensively assess the model performance. These results demonstrate the ability of our approach to generalize and scale to diverse topologies and conditions.
comment: 4 pages, 3 figures, Accepted at RSS 2025 Workshop - RobotEvaluation@RSS2025
☆ Multi-Timescale Dynamics Model Bayesian Optimization for Plasma Stabilization in Tokamaks
Machine learning algorithms often struggle to control complex real-world systems. In the case of nuclear fusion, these challenges are exacerbated, as the dynamics are notoriously complex, data is poor, hardware is subject to failures, and experiments often affect dynamics beyond the experiment's duration. Existing tools like reinforcement learning, supervised learning, and Bayesian optimization address some of these challenges but fail to provide a comprehensive solution. To overcome these limitations, we present a multi-scale Bayesian optimization approach that integrates a high-frequency data-driven dynamics model with a low-frequency Gaussian process. By updating the Gaussian process between experiments, the method rapidly adapts to new data, refining the predictions of the less reliable dynamical model. We validate our approach by controlling tearing instabilities in the DIII-D nuclear fusion plant. Offline testing on historical data shows that our method significantly outperforms several baselines. Results on live experiments on the DIII-D tokamak, conducted under high-performance plasma scenarios prone to instabilities, shows a 50% success rate, marking a 117% improvement over historical outcomes.
☆ Learning Safe Control via On-the-Fly Bandit Exploration
Control tasks with safety requirements under high levels of model uncertainty are increasingly common. Machine learning techniques are frequently used to address such tasks, typically by leveraging model error bounds to specify robust constraint-based safety filters. However, if the learned model uncertainty is very high, the corresponding filters are potentially invalid, meaning no control input satisfies the constraints imposed by the safety filter. While most works address this issue by assuming some form of safe backup controller, ours tackles it by collecting additional data on the fly using a Gaussian process bandit-type algorithm. We combine a control barrier function with a learned model to specify a robust certificate that ensures safety if feasible. Whenever infeasibility occurs, we leverage the control barrier function to guide exploration, ensuring the collected data contributes toward the closed-loop system safety. By combining a safety filter with exploration in this manner, our method provably achieves safety in a setting that allows for a zero-mean prior dynamics model, without requiring a backup controller. To the best of our knowledge, it is the first safe learning-based control method that achieves this.
comment: arXiv admin note: text overlap with arXiv:2311.02133
☆ A Novel Feedforward Youla Parameterization Method for Avoiding Local Minima in Stereo Image Based Visual Servoing Control
In robot navigation and manipulation, accurately determining the camera's pose relative to the environment is crucial for effective task execution. In this paper, we systematically prove that this problem corresponds to the Perspective-3-Point (P3P) formulation, where exactly three known 3D points and their corresponding 2D image projections are used to estimate the pose of a stereo camera. In image-based visual servoing (IBVS) control, the system becomes overdetermined, as the 6 degrees of freedom (DoF) of the stereo camera must align with 9 observed 2D features in the scene. When more constraints are imposed than available DoFs, global stability cannot be guaranteed, as the camera may become trapped in a local minimum far from the desired configuration during servoing. To address this issue, we propose a novel control strategy for accurately positioning a calibrated stereo camera. Our approach integrates a feedforward controller with a Youla parameterization-based feedback controller, ensuring robust servoing performance. Through simulations, we demonstrate that our method effectively avoids local minima and enables the camera to reach the desired pose accurately and efficiently.
comment: 36 pages, 19 figures, Journal, Published in: Applied Sciences, 2025, vol. 15, article 4991. For published version, see this http URL: https://doi.org/10.3390/app15094991
☆ Measuring and Minimizing Disturbance of Marine Animals to Underwater Vehicles
Do fish respond to the presence of underwater vehicles, potentially biasing our estimates about them? If so, are there strategies to measure and mitigate this response? This work provides a theoretical and practical framework towards bias-free estimation of animal behavior from underwater vehicle observations. We also provide preliminary results from the field in coral reef environments to address these questions.
comment: Accepted to ISER 2025
☆ Robust Optimal Task Planning to Maximize Battery Life
This paper proposes a control-oriented optimization platform for autonomous mobile robots (AMRs), focusing on extending battery life while ensuring task completion. The requirement of fast AMR task planning while maintaining minimum battery state of charge, thus maximizing the battery life, renders a bilinear optimization problem. McCormick envelop technique is proposed to linearize the bilinear term. A novel planning algorithm with relaxed constraints is also developed to handle parameter uncertainties robustly with high efficiency ensured. Simulation results are provided to demonstrate the utility of the proposed methods in reducing battery degradation while satisfying task completion requirements.
☆ Sensor Model Identification via Simultaneous Model Selection and State Variable Determination
We present a method for the unattended gray-box identification of sensor models commonly used by localization algorithms in the field of robotics. The objective is to determine the most likely sensor model for a time series of unknown measurement data, given an extendable catalog of predefined sensor models. Sensor model definitions may require states for rigid-body calibrations and dedicated reference frames to replicate a measurement based on the robot's localization state. A health metric is introduced, which verifies the outcome of the selection process in order to detect false positives and facilitate reliable decision-making. In a second stage, an initial guess for identified calibration states is generated, and the necessity of sensor world reference frames is evaluated. The identified sensor model with its parameter information is then used to parameterize and initialize a state estimation application, thus ensuring a more accurate and robust integration of new sensor elements. This method is helpful for inexperienced users who want to identify the source and type of a measurement, sensor calibrations, or sensor reference frames. It will also be important in the field of modular multi-agent scenarios and modularized robotic platforms that are augmented by sensor modalities during runtime. Overall, this work aims to provide a simplified integration of sensor modalities to downstream applications and circumvent common pitfalls in the usage and development of localization approaches.
☆ Demonstration Sidetracks: Categorizing Systematic Non-Optimality in Human Demonstrations
Learning from Demonstration (LfD) is a popular approach for robots to acquire new skills, but most LfD methods suffer from imperfections in human demonstrations. Prior work typically treats these suboptimalities as random noise. In this paper we study non-optimal behaviors in non-expert demonstrations and show that they are systematic, forming what we call demonstration sidetracks. Using a public space study with 40 participants performing a long-horizon robot task, we recreated the setup in simulation and annotated all demonstrations. We identify four types of sidetracks (Exploration, Mistake, Alignment, Pause) and one control pattern (one-dimension control). Sidetracks appear frequently across participants, and their temporal and spatial distribution is tied to task context. We also find that users' control patterns depend on the control interface. These insights point to the need for better models of suboptimal demonstrations to improve LfD algorithms and bridge the gap between lab training and real-world deployment. All demonstrations, infrastructure, and annotations are available at https://github.com/AABL-Lab/Human-Demonstration-Sidetracks.
☆ Gondola: Grounded Vision Language Planning for Generalizable Robotic Manipulation
Robotic manipulation faces a significant challenge in generalizing across unseen objects, environments and tasks specified by diverse language instructions. To improve generalization capabilities, recent research has incorporated large language models (LLMs) for planning and action execution. While promising, these methods often fall short in generating grounded plans in visual environments. Although efforts have been made to perform visual instructional tuning on LLMs for robotic manipulation, existing methods are typically constrained by single-view image input and struggle with precise object grounding. In this work, we introduce Gondola, a novel grounded vision-language planning model based on LLMs for generalizable robotic manipulation. Gondola takes multi-view images and history plans to produce the next action plan with interleaved texts and segmentation masks of target objects and locations. To support the training of Gondola, we construct three types of datasets using the RLBench simulator, namely robot grounded planning, multi-view referring expression and pseudo long-horizon task datasets. Gondola outperforms the state-of-the-art LLM-based method across all four generalization levels of the GemBench dataset, including novel placements, rigid objects, articulated objects and long-horizon tasks.
☆ Poutine: Vision-Language-Trajectory Pre-Training and Reinforcement Learning Post-Training Enable Robust End-to-End Autonomous Driving
We present Poutine, a 3B-parameter vision-language model (VLM) tailored for end-to-end autonomous driving in long-tail driving scenarios. Poutine is trained in two stages. To obtain strong base driving capabilities, we train Poutine-Base in a self-supervised vision-language-trajectory (VLT) next-token prediction fashion on 83 hours of CoVLA nominal driving and 11 hours of Waymo long-tail driving. Accompanying language annotations are auto-generated with a 72B-parameter VLM. Poutine is obtained by fine-tuning Poutine-Base with Group Relative Policy Optimization (GRPO) using less than 500 preference-labeled frames from the Waymo validation set. We show that both VLT pretraining and RL fine-tuning are critical to attain strong driving performance in the long-tail. Poutine-Base achieves a rater-feedback score (RFS) of 8.12 on the validation set, nearly matching Waymo's expert ground-truth RFS. The final Poutine model achieves an RFS of 7.99 on the official Waymo test set, placing 1st in the 2025 Waymo Vision-Based End-to-End Driving Challenge by a significant margin. These results highlight the promise of scalable VLT pre-training and lightweight RL fine-tuning to enable robust and generalizable autonomy.
☆ DoublyAware: Dual Planning and Policy Awareness for Temporal Difference Learning in Humanoid Locomotion
Achieving robust robot learning for humanoid locomotion is a fundamental challenge in model-based reinforcement learning (MBRL), where environmental stochasticity and randomness can hinder efficient exploration and learning stability. The environmental, so-called aleatoric, uncertainty can be amplified in high-dimensional action spaces with complex contact dynamics, and further entangled with epistemic uncertainty in the models during learning phases. In this work, we propose DoublyAware, an uncertainty-aware extension of Temporal Difference Model Predictive Control (TD-MPC) that explicitly decomposes uncertainty into two disjoint interpretable components, i.e., planning and policy uncertainties. To handle the planning uncertainty, DoublyAware employs conformal prediction to filter candidate trajectories using quantile-calibrated risk bounds, ensuring statistical consistency and robustness against stochastic dynamics. Meanwhile, policy rollouts are leveraged as structured informative priors to support the learning phase with Group-Relative Policy Constraint (GRPC) optimizers that impose a group-based adaptive trust-region in the latent action space. This principled combination enables the robot agent to prioritize high-confidence, high-reward behavior while maintaining effective, targeted exploration under uncertainty. Evaluated on the HumanoidBench locomotion suite with the Unitree 26-DoF H1-2 humanoid, DoublyAware demonstrates improved sample efficiency, accelerated convergence, and enhanced motion feasibility compared to RL baselines. Our simulation results emphasize the significance of structured uncertainty modeling for data-efficient and reliable decision-making in TD-MPC-based humanoid locomotion learning.
♻ ☆ Help or Hindrance: Understanding the Impact of Robot Communication in Action Teams
The human-robot interaction (HRI) field has recognized the importance of enabling robots to interact with teams. Human teams rely on effective communication for successful collaboration in time-sensitive environments. Robots can play a role in enhancing team coordination through real-time assistance. Despite significant progress in human-robot teaming research, there remains an essential gap in how robots can effectively communicate with action teams using multimodal interaction cues in time-sensitive environments. This study addresses this knowledge gap in an experimental in-lab study to investigate how multimodal robot communication in action teams affects workload and human perception of robots. We explore team collaboration in a medical training scenario where a robotic crash cart (RCC) provides verbal and non-verbal cues to help users remember to perform iterative tasks and search for supplies. Our findings show that verbal cues for object search tasks and visual cues for task reminders reduce team workload and increase perceived ease of use and perceived usefulness more effectively than a robot with no feedback. Our work contributes to multimodal interaction research in the HRI field, highlighting the need for more human-robot teaming research to understand best practices for integrating collaborative robots in time-sensitive environments such as in hospitals, search and rescue, and manufacturing applications.
comment: This is the author's original submitted version of the paper accepted to the 2025 IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). \c{opyright} 2025 IEEE. Personal use of this material is permitted. For any other use, please contact IEEE
♻ ☆ MoRE: Mixture of Residual Experts for Humanoid Lifelike Gaits Learning on Complex Terrains
Humanoid robots have demonstrated robust locomotion capabilities using Reinforcement Learning (RL)-based approaches. Further, to obtain human-like behaviors, existing methods integrate human motion-tracking or motion prior in the RL framework. However, these methods are limited in flat terrains with proprioception only, restricting their abilities to traverse challenging terrains with human-like gaits. In this work, we propose a novel framework using a mixture of latent residual experts with multi-discriminators to train an RL policy, which is capable of traversing complex terrains in controllable lifelike gaits with exteroception. Our two-stage training pipeline first teaches the policy to traverse complex terrains using a depth camera, and then enables gait-commanded switching between human-like gait patterns. We also design gait rewards to adjust human-like behaviors like robot base height. Simulation and real-world experiments demonstrate that our framework exhibits exceptional performance in traversing complex terrains, and achieves seamless transitions between multiple human-like gait patterns.
comment: 9 pages, 5 figures
♻ ☆ Robotic Policy Learning via Human-assisted Action Preference Optimization
Establishing a reliable and iteratively refined robotic system is essential for deploying real-world applications. While Vision-Language-Action (VLA) models are widely recognized as the foundation model for such robotic deployment, their dependence on expert demonstrations hinders the crucial capabilities of correction and learning from failures. To mitigate this limitation, we introduce a Human-assisted Action Preference Optimization method named HAPO, designed to correct deployment failures and foster effective adaptation through preference alignment for VLA models. This method begins with a human-robot collaboration framework for reliable failure correction and interaction trajectory collection through human intervention. These human-intervention trajectories are further employed within the action preference optimization process, facilitating VLA models to mitigate failure action occurrences while enhancing corrective action adaptation. Specifically, we propose an adaptive reweighting algorithm to address the issues of irreversible interactions and token probability mismatch when introducing preference optimization into VLA models, facilitating model learning from binary desirability signals derived from interactions. Through combining these modules, our human-assisted action preference optimization method ensures reliable deployment and effective learning from failure for VLA models. The experiments conducted in simulation and real-world scenarios prove superior generalization and robustness of our framework across a variety of manipulation tasks.
♻ ☆ Nocturnal eye inspired liquid to gas phase change soft actuator with Laser-Induced-Graphene: enhanced environmental light harvesting and photothermal conversion
Robotic systems' mobility is constrained by power sources and wiring. While pneumatic actuators remain tethered to air supplies, we developed a new actuator utilizing light energy. Inspired by nocturnal animals' eyes, we designed a bilayer soft actuator incorporating Laser-Induced Graphene (LIG) on the inner surface of a silicone layer. This design maintains silicone's transparency and flexibility while achieving 54% faster response time compared to conventional actuators through enhanced photothermal conversion.
comment: 33pages, 10 figures, journal paper
♻ ☆ Passivity-Centric Safe Reinforcement Learning for Contact-Rich Robotic Tasks
Reinforcement learning (RL) has achieved remarkable success in various robotic tasks; however, its deployment in real-world scenarios, particularly in contact-rich environments, often overlooks critical safety and stability aspects. Policies without passivity guarantees can result in system instability, posing risks to robots, their environments, and human operators. In this work, we investigate the limitations of traditional RL policies when deployed in contact-rich tasks and explore the combination of energy-based passive control with safe RL in both training and deployment to answer these challenges. Firstly, we reveal the discovery that standard RL policy does not satisfy stability in contact-rich scenarios. Secondly, we introduce a \textit{passivity-aware} RL policy training with energy-based constraints in our safe RL formulation. Lastly, a passivity filter is exerted on the policy output for \textit{passivity-ensured} control during deployment. We conduct comparative studies on a contact-rich robotic maze exploration task, evaluating the effects of learning passivity-aware policies and the importance of passivity-ensured control. The experiments demonstrate that a passivity-agnostic RL policy easily violates energy constraints in deployment, even though it achieves high task completion in training. The results show that our proposed approach guarantees control stability through passivity filtering and improves the energy efficiency through passivity-aware training. A video of real-world experiments is available as supplementary material. We also release the checkpoint model and offline data for pre-training at \href{https://huggingface.co/Anonymous998/passiveRL/tree/main}{Hugging Face}.
comment: revision version
♻ ☆ APEX: Action Priors Enable Efficient Exploration for Skill Imitation on Articulated Robots
Learning by imitation provides an effective way for robots to develop well-regulated complex behaviors and directly benefit from natural demonstrations. State-of-the-art imitation learning (IL) approaches typically leverage Adversarial Motion Priors (AMP), which, despite their impressive results, suffer from two key limitations. They are prone to mode collapse, which often leads to overfitting to the simulation environment and thus increased sim-to-real gap, and they struggle to learn diverse behaviors effectively. To overcome these limitations, we introduce APEX (Action Priors enable Efficient eXploration): a simple yet versatile IL framework that integrates demonstrations directly into reinforcement learning (RL), maintaining high exploration while grounding behavior with expert-informed priors. We achieve this through a combination of decaying action priors, which initially bias exploration toward expert demonstrations but gradually allow the policy to explore independently. This is complemented by a multi-critic RL framework that effectively balances stylistic consistency with task performance. Our approach achieves sample-efficient IL and enables the acquisition of diverse skills within a single policy. APEX generalizes to varying velocities and preserves reference-like styles across complex tasks such as navigating rough terrain and climbing stairs, utilizing only flat-terrain kinematic motion data as a prior. We validate our framework through extensive hardware experiments on the Unitree Go2 quadruped. There, APEX yields diverse and agile locomotion gaits, inherent gait transitions, and the highest reported speed for the platform to the best of our knowledge (peak velocity of ~3.3 m/s on hardware). Our results establish APEX as a compelling alternative to existing IL methods, offering better efficiency, adaptability, and real-world performance. https://marmotlab.github.io/APEX/
♻ ☆ Automated Generation of Precedence Graphs in Digital Value Chains for Automotive Production
This study examines the digital value chain in automotive manufacturing, focusing on the identification, software flashing, customization, and commissioning of electronic control units in vehicle networks. A novel precedence graph design is proposed to optimize this process chain using an automated scheduling algorithm, which combines structured data extraction from heterogeneous sources via natural language processing and classification techniques with mixed integer linear programming for efficient graph generation. The results show significant improvements in key metrics. The algorithm reduces the number of production stations equipped with expensive hardware and software to execute digital value chain processes, while also increasing capacity utilization through efficient scheduling and reduced idle time. Task parallelization is optimized, resulting in streamlined workflows and increased throughput. Compared to the traditional scheduling method, the automated approach has reduced preparation time by 50% and reduced scheduling activities, as it now takes two minutes to create the precedence graph. The flexibility of the algorithm's constraints allows for vehicle-specific configurations while maintaining high responsiveness, eliminating backup stations and facilitating the integration of new topologies. Automated scheduling significantly outperforms manual methods in efficiency, functionality, and adaptability.
comment: \c{opyright}2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Tightly Coupled SLAM with Imprecise Architectural Plans
Robots navigating indoor environments often have access to architectural plans, which can serve as prior knowledge to enhance their localization and mapping capabilities. While some SLAM algorithms leverage these plans for global localization in real-world environments, they typically overlook a critical challenge: the "as-planned" architectural designs frequently deviate from the "as-built" real-world environments. To address this gap, we present a novel algorithm that tightly couples LIDAR-based simultaneous localization and mapping with architectural plans under the presence of deviations. Our method utilizes a multi-layered semantic representation to not only localize the robot, but also to estimate global alignment and structural deviations between "as-planned" and as-built environments in real-time. To validate our approach, we performed experiments in simulated and real datasets demonstrating robustness to structural deviations up to 35 cm and 15 degrees. On average, our method achieves 43% less localization error than baselines in simulated environments, while in real environments, the as-built 3D maps show 7% lower average alignment error
♻ ☆ Safety-Ensured Robotic Control Framework for Cutting Task Automation in Endoscopic Submucosal Dissection
There is growing interest in automating surgical tasks using robotic systems, such as endoscopy for treating gastrointestinal (GI) cancer. However, previous studies have primarily focused on detecting and analyzing objects or robots, with limited attention to ensuring safety, which is critical for clinical applications, where accidents can be caused by unsafe robot motions. In this study, we propose a new control framework that can formally ensure the safety of automating the cutting task in endoscopic submucosal dissection (ESD), a representative endoscopic surgical method for the treatment of early GI cancer, by using an endoscopic robot. The proposed framework utilizes Control Barrier Functions (CBFs) to accurately identify the boundaries of individual tumors, even in close proximity within the GI tract, ensuring precise treatment and removal while preserving the surrounding normal tissue. Additionally, by adopting a model-free control scheme, safety assurance is made possible even in endoscopic robotic systems where dynamic modeling is challenging. We demonstrate the proposed framework in a simulation-based experimental environment, where the tumors to be removed are close to each other, and show that the safety constraints are enforced. We show that the model-free CBF-based controlled robot eliminates one tumor completely without damaging it, while not invading another nearby tumor.
comment: This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3578607
♻ ☆ An energy-efficient learning solution for the Agile Earth Observation Satellite Scheduling Problem ICML
The Agile Earth Observation Satellite Scheduling Problem (AEOSSP) entails finding the subset of observation targets to be scheduled along the satellite's orbit while meeting operational constraints of time, energy and memory. The problem of deciding what and when to observe is inherently complex, and becomes even more challenging when considering several issues that compromise the quality of the captured images, such as cloud occlusion, atmospheric turbulence, and image resolution. This paper presents a Deep Reinforcement Learning (DRL) approach for addressing the AEOSSP with time-dependent profits, integrating these three factors to optimize the use of energy and memory resources. The proposed method involves a dual decision-making process: selecting the sequence of targets and determining the optimal observation time for each. Our results demonstrate that the proposed algorithm reduces the capture of images that fail to meet quality requirements by > 60% and consequently decreases energy waste from attitude maneuvers by up to 78%, all while maintaining strong observation performance.
comment: This paper has been accepted for presentation at the IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN) Special Sessions 2025
♻ ☆ AgentThink: A Unified Framework for Tool-Augmented Chain-of-Thought Reasoning in Vision-Language Models for Autonomous Driving
Vision-Language Models (VLMs) show promise for autonomous driving, yet their struggle with hallucinations, inefficient reasoning, and limited real-world validation hinders accurate perception and robust step-by-step reasoning. To overcome this, we introduce AgentThink, a pioneering unified framework that, for the first time, integrates Chain-of-Thought (CoT) reasoning with dynamic, agent-style tool invocation for autonomous driving tasks. AgentThink's core innovations include: (i) Structured Data Generation, by establishing an autonomous driving tool library to automatically construct structured, self-verified reasoning data explicitly incorporating tool usage for diverse driving scenarios; (ii) A Two-stage Training Pipeline, employing Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO) to equip VLMs with the capability for autonomous tool invocation; and (iii) Agent-style Tool-Usage Evaluation, introducing a novel multi-tool assessment protocol to rigorously evaluate the model's tool invocation and utilization. Experiments on the DriveLMM-o1 benchmark demonstrate AgentThink significantly boosts overall reasoning scores by 53.91% and enhances answer accuracy by 33.54%, while markedly improving reasoning quality and consistency. Furthermore, ablation studies and robust zero-shot/few-shot generalization experiments across various benchmarks underscore its powerful capabilities. These findings highlight a promising trajectory for developing trustworthy and tool-aware autonomous driving models.
comment: 18 pages, 8 figures
♻ ☆ EAST: Environment Aware Safe Tracking using Planning and Control Co-Design
This paper considers the problem of autonomous mobile robot navigation in unknown environments with moving obstacles. We propose a new method to achieve environment-aware safe tracking (EAST) of robot motion plans that integrates an obstacle clearance cost for path planning, a convex reachable set for robot motion prediction, and safety constraints for dynamic obstacle avoidance. EAST adapts the motion of the robot according to the locally sensed environment geometry and dynamics, leading to fast motion in wide open areas and cautious behavior in narrow passages or near moving obstacles. Our control design uses a reference governor, a virtual dynamical system that guides the robot's motion and decouples the path tracking and safety objectives. While reference governor methods have been used for safe tracking control in static environments, our key contribution is an extension to dynamic environments using convex optimization with control barrier function (CBF) constraints. Thus, our work establishes a connection between reference governor techniques and CBF techniques for safe control in dynamic environments. We validate our approach in simulated and real-world environments, featuring complex obstacle configurations and natural dynamic obstacle motion.
♻ ☆ Simultaneous Localization and Affordance Prediction of Tasks from Egocentric Video
Vision-Language Models (VLMs) have shown great success as foundational models for downstream vision and natural language applications in a variety of domains. However, these models are limited to reasoning over objects and actions currently visible on the image plane. We present a spatial extension to the VLM, which leverages spatially-localized egocentric video demonstrations to augment VLMs in two ways -- through understanding spatial task-affordances, i.e. where an agent must be for the task to physically take place, and the localization of that task relative to the egocentric viewer. We show our approach outperforms the baseline of using a VLM to map similarity of a task's description over a set of location-tagged images. Our approach has less error both on predicting where a task may take place and on predicting what tasks are likely to happen at the current location. The resulting representation will enable robots to use egocentric sensing to navigate to, or around, physical regions of interest for novel tasks specified in natural language.
♻ ☆ PhysNav-DG: A Novel Adaptive Framework for Robust VLM-Sensor Fusion in Navigation Applications CVPR
Robust navigation in diverse environments and domains requires both accurate state estimation and transparent decision making. We present PhysNav-DG, a novel framework that integrates classical sensor fusion with the semantic power of vision-language models. Our dual-branch architecture predicts navigation actions from multi-sensor inputs while simultaneously generating detailed chain-of-thought explanations. A modified Adaptive Kalman Filter dynamically adjusts its noise parameters based on environmental context. It leverages several streams of raw sensor data along with semantic insights from models such as LLaMA 3.2 11B and BLIP-2. To evaluate our approach, we introduce the MD-NEX Benchmark, a novel multi-domain dataset that unifies indoor navigation, autonomous driving, and social navigation tasks with ground-truth actions and human-validated explanations. Extensive experiments and ablations show that PhysNav-DG improves navigation success rates by over 20% and achieves high efficiency, with explanations that are both highly grounded and clear. This work connects high-level semantic reasoning and geometric planning for safer and more trustworthy autonomous systems.
comment: 9 pages, 5 figures. CVPRW 2025
♻ ☆ Control Industrial Automation System with Large Language Model Agents
Traditional industrial automation systems require specialized expertise to operate and complex reprogramming to adapt to new processes. Large language models offer the intelligence to make them more flexible and easier to use. However, LLMs' application in industrial settings is underexplored. This paper introduces a framework for integrating LLMs to achieve end-to-end control of industrial automation systems. At the core of the framework are an agent system designed for industrial tasks, a structured prompting method, and an event-driven information modeling mechanism that provides real-time data for LLM inference. The framework supplies LLMs with real-time events on different context semantic levels, allowing them to interpret the information, generate production plans, and control operations on the automation system. It also supports structured dataset creation for fine-tuning on this downstream application of LLMs. Our contribution includes a formal system design, proof-of-concept implementation, and a method for generating task-specific datasets for LLM fine-tuning and testing. This approach enables a more adaptive automation system that can respond to spontaneous events, while allowing easier operation and configuration through natural language for more intuitive human-machine interaction. We provide demo videos and detailed data on GitHub: https://github.com/YuchenXia/LLM4IAS.
comment: Pre-print accepted at 30th IEEE ETFA 2025
♻ ☆ Learning Multimodal Latent Dynamics for Human-Robot Interaction
This article presents a method for learning well-coordinated Human-Robot Interaction (HRI) from Human-Human Interactions (HHI). We devise a hybrid approach using Hidden Markov Models (HMMs) as the latent space priors for a Variational Autoencoder to model a joint distribution over the interacting agents. We leverage the interaction dynamics learned from HHI to learn HRI and incorporate the conditional generation of robot motions from human observations into the training, thereby predicting more accurate robot trajectories. The generated robot motions are further adapted with Inverse Kinematics to ensure the desired physical proximity with a human, combining the ease of joint space learning and accurate task space reachability. For contact-rich interactions, we modulate the robot's stiffness using HMM segmentation for a compliant interaction. We verify the effectiveness of our approach deployed on a Humanoid robot via a user study. Our method generalizes well to various humans despite being trained on data from just two humans. We find that users perceive our method as more human-like, timely, and accurate and rank our method with a higher degree of preference over other baselines. We additionally show the ability of our approach to generate successful interactions in a more complex scenario of Bimanual Robot-to-Human Handovers.
comment: Preprint version of paper accepted at IEEE T-RO. Project website: https://sites.google.com/view/mild-hri
Computer Vision 164
☆ SceneCompleter: Dense 3D Scene Completion for Generative Novel View Synthesis
Generative models have gained significant attention in novel view synthesis (NVS) by alleviating the reliance on dense multi-view captures. However, existing methods typically fall into a conventional paradigm, where generative models first complete missing areas in 2D, followed by 3D recovery techniques to reconstruct the scene, which often results in overly smooth surfaces and distorted geometry, as generative models struggle to infer 3D structure solely from RGB data. In this paper, we propose SceneCompleter, a novel framework that achieves 3D-consistent generative novel view synthesis through dense 3D scene completion. SceneCompleter achieves both visual coherence and 3D-consistent generative scene completion through two key components: (1) a geometry-appearance dual-stream diffusion model that jointly synthesizes novel views in RGBD space; (2) a scene embedder that encodes a more holistic scene understanding from the reference image. By effectively fusing structural and textural information, our method demonstrates superior coherence and plausibility in generative novel view synthesis across diverse datasets. Project Page: https://chen-wl20.github.io/SceneCompleter
☆ InstaInpaint: Instant 3D-Scene Inpainting with Masked Large Reconstruction Model
Recent advances in 3D scene reconstruction enable real-time viewing in virtual and augmented reality. To support interactive operations for better immersiveness, such as moving or editing objects, 3D scene inpainting methods are proposed to repair or complete the altered geometry. However, current approaches rely on lengthy and computationally intensive optimization, making them impractical for real-time or online applications. We propose InstaInpaint, a reference-based feed-forward framework that produces 3D-scene inpainting from a 2D inpainting proposal within 0.4 seconds. We develop a self-supervised masked-finetuning strategy to enable training of our custom large reconstruction model (LRM) on the large-scale dataset. Through extensive experiments, we analyze and identify several key designs that improve generalization, textural consistency, and geometric correctness. InstaInpaint achieves a 1000x speed-up from prior methods while maintaining a state-of-the-art performance across two standard benchmarks. Moreover, we show that InstaInpaint generalizes well to flexible downstream applications such as object insertion and multi-region inpainting. More video results are available at our project page: https://dhmbb2.github.io/InstaInpaint_page/.
☆ Fine-Grained Perturbation Guidance via Attention Head Selection
Recent guidance methods in diffusion models steer reverse sampling by perturbing the model to construct an implicit weak model and guide generation away from it. Among these approaches, attention perturbation has demonstrated strong empirical performance in unconditional scenarios where classifier-free guidance is not applicable. However, existing attention perturbation methods lack principled approaches for determining where perturbations should be applied, particularly in Diffusion Transformer (DiT) architectures where quality-relevant computations are distributed across layers. In this paper, we investigate the granularity of attention perturbations, ranging from the layer level down to individual attention heads, and discover that specific heads govern distinct visual concepts such as structure, style, and texture quality. Building on this insight, we propose "HeadHunter", a systematic framework for iteratively selecting attention heads that align with user-centric objectives, enabling fine-grained control over generation quality and visual attributes. In addition, we introduce SoftPAG, which linearly interpolates each selected head's attention map toward an identity matrix, providing a continuous knob to tune perturbation strength and suppress artifacts. Our approach not only mitigates the oversmoothing issues of existing layer-level perturbation but also enables targeted manipulation of specific visual styles through compositional head selection. We validate our method on modern large-scale DiT-based text-to-image models including Stable Diffusion 3 and FLUX.1, demonstrating superior performance in both general quality enhancement and style-specific guidance. Our work provides the first head-level analysis of attention perturbation in diffusion models, uncovering interpretable specialization within attention layers and enabling practical design of effective perturbation strategies.
comment: Project page: https://cvlab-kaist.github.io/HeadHunter/
☆ QuadricFormer: Scene as Superquadrics for 3D Semantic Occupancy Prediction
3D occupancy prediction is crucial for robust autonomous driving systems as it enables comprehensive perception of environmental structures and semantics. Most existing methods employ dense voxel-based scene representations, ignoring the sparsity of driving scenes and resulting in inefficiency. Recent works explore object-centric representations based on sparse Gaussians, but their ellipsoidal shape prior limits the modeling of diverse structures. In real-world driving scenes, objects exhibit rich geometries (e.g., cuboids, cylinders, and irregular shapes), necessitating excessive ellipsoidal Gaussians densely packed for accurate modeling, which leads to inefficient representations. To address this, we propose to use geometrically expressive superquadrics as scene primitives, enabling efficient representation of complex structures with fewer primitives through their inherent shape diversity. We develop a probabilistic superquadric mixture model, which interprets each superquadric as an occupancy probability distribution with a corresponding geometry prior, and calculates semantics through probabilistic mixture. Building on this, we present QuadricFormer, a superquadric-based model for efficient 3D occupancy prediction, and introduce a pruning-and-splitting module to further enhance modeling efficiency by concentrating superquadrics in occupied regions. Extensive experiments on the nuScenes dataset demonstrate that QuadricFormer achieves state-of-the-art performance while maintaining superior efficiency.
comment: Project page: https://zuosc19.github.io/QuadricFormer/
☆ GenWorld: Towards Detecting AI-generated Real-world Simulation Videos
The flourishing of video generation technologies has endangered the credibility of real-world information and intensified the demand for AI-generated video detectors. Despite some progress, the lack of high-quality real-world datasets hinders the development of trustworthy detectors. In this paper, we propose GenWorld, a large-scale, high-quality, and real-world simulation dataset for AI-generated video detection. GenWorld features the following characteristics: (1) Real-world Simulation: GenWorld focuses on videos that replicate real-world scenarios, which have a significant impact due to their realism and potential influence; (2) High Quality: GenWorld employs multiple state-of-the-art video generation models to provide realistic and high-quality forged videos; (3) Cross-prompt Diversity: GenWorld includes videos generated from diverse generators and various prompt modalities (e.g., text, image, video), offering the potential to learn more generalizable forensic features. We analyze existing methods and find they fail to detect high-quality videos generated by world models (i.e., Cosmos), revealing potential drawbacks of ignoring real-world clues. To address this, we propose a simple yet effective model, SpannDetector, to leverage multi-view consistency as a strong criterion for real-world AI-generated video detection. Experiments show that our method achieves superior results, highlighting a promising direction for explainable AI-generated video detection based on physical plausibility. We believe that GenWorld will advance the field of AI-generated video detection. Project Page: https://chen-wl20.github.io/GenWorld
☆ Eye, Robot: Learning to Look to Act with a BC-RL Perception-Action Loop
Humans do not passively observe the visual world -- we actively look in order to act. Motivated by this principle, we introduce EyeRobot, a robotic system with gaze behavior that emerges from the need to complete real-world tasks. We develop a mechanical eyeball that can freely rotate to observe its surroundings and train a gaze policy to control it using reinforcement learning. We accomplish this by first collecting teleoperated demonstrations paired with a 360 camera. This data is imported into a simulation environment that supports rendering arbitrary eyeball viewpoints, allowing episode rollouts of eye gaze on top of robot demonstrations. We then introduce a BC-RL loop to train the hand and eye jointly: the hand (BC) agent is trained from rendered eye observations, and the eye (RL) agent is rewarded when the hand produces correct action predictions. In this way, hand-eye coordination emerges as the eye looks towards regions which allow the hand to complete the task. EyeRobot implements a foveal-inspired policy architecture allowing high resolution with a small compute budget, which we find also leads to the emergence of more stable fixation as well as improved ability to track objects and ignore distractors. We evaluate EyeRobot on five panoramic workspace manipulation tasks requiring manipulation in an arc surrounding the robot arm. Our experiments suggest EyeRobot exhibits hand-eye coordination behaviors which effectively facilitate manipulation over large workspaces with a single camera. See project site for videos: https://www.eyerobot.net/
comment: Project page: https://www.eyerobot.net/
☆ Beyond Attention or Similarity: Maximizing Conditional Diversity for Token Pruning in MLLMs
In multimodal large language models (MLLMs), the length of input visual tokens is often significantly greater than that of their textual counterparts, leading to a high inference cost. Many works aim to address this issue by removing redundant visual tokens. However, current approaches either rely on attention-based pruning, which retains numerous duplicate tokens, or use similarity-based pruning, overlooking the instruction relevance, consequently causing suboptimal performance. In this paper, we go beyond attention or similarity by proposing a novel visual token pruning method named CDPruner, which maximizes the conditional diversity of retained tokens. We first define the conditional similarity between visual tokens conditioned on the instruction, and then reformulate the token pruning problem with determinantal point process (DPP) to maximize the conditional diversity of the selected subset. The proposed CDPruner is training-free and model-agnostic, allowing easy application to various MLLMs. Extensive experiments across diverse MLLMs show that CDPruner establishes new state-of-the-art on various vision-language benchmarks. By maximizing conditional diversity through DPP, the selected subset better represents the input images while closely adhering to user instructions, thereby preserving strong performance even with high reduction ratios. When applied to LLaVA, CDPruner reduces FLOPs by 95\% and CUDA latency by 78\%, while maintaining 94\% of the original accuracy. Our code is available at https://github.com/Theia-4869/CDPruner.
comment: 22 pages, 5 figures, code: https://github.com/Theia-4869/CDPruner, project page: https://theia-4869.github.io/CDPruner
☆ MMMG: A Massive, Multidisciplinary, Multi-Tier Generation Benchmark for Text-to-Image Reasoning
In this paper, we introduce knowledge image generation as a new task, alongside the Massive Multi-Discipline Multi-Tier Knowledge-Image Generation Benchmark (MMMG) to probe the reasoning capability of image generation models. Knowledge images have been central to human civilization and to the mechanisms of human learning--a fact underscored by dual-coding theory and the picture-superiority effect. Generating such images is challenging, demanding multimodal reasoning that fuses world knowledge with pixel-level grounding into clear explanatory visuals. To enable comprehensive evaluation, MMMG offers 4,456 expert-validated (knowledge) image-prompt pairs spanning 10 disciplines, 6 educational levels, and diverse knowledge formats such as charts, diagrams, and mind maps. To eliminate confounding complexity during evaluation, we adopt a unified Knowledge Graph (KG) representation. Each KG explicitly delineates a target image's core entities and their dependencies. We further introduce MMMG-Score to evaluate generated knowledge images. This metric combines factual fidelity, measured by graph-edit distance between KGs, with visual clarity assessment. Comprehensive evaluations of 16 state-of-the-art text-to-image generation models expose serious reasoning deficits--low entity fidelity, weak relations, and clutter--with GPT-4o achieving an MMMG-Score of only 50.20, underscoring the benchmark's difficulty. To spur further progress, we release FLUX-Reason (MMMG-Score of 34.45), an effective and open baseline that combines a reasoning LLM with diffusion models and is trained on 16,000 curated knowledge image-prompt pairs.
☆ SpectralAR: Spectral Autoregressive Visual Generation
Autoregressive visual generation has garnered increasing attention due to its scalability and compatibility with other modalities compared with diffusion models. Most existing methods construct visual sequences as spatial patches for autoregressive generation. However, image patches are inherently parallel, contradicting the causal nature of autoregressive modeling. To address this, we propose a Spectral AutoRegressive (SpectralAR) visual generation framework, which realizes causality for visual sequences from the spectral perspective. Specifically, we first transform an image into ordered spectral tokens with Nested Spectral Tokenization, representing lower to higher frequency components. We then perform autoregressive generation in a coarse-to-fine manner with the sequences of spectral tokens. By considering different levels of detail in images, our SpectralAR achieves both sequence causality and token efficiency without bells and whistles. We conduct extensive experiments on ImageNet-1K for image reconstruction and autoregressive generation, and SpectralAR achieves 3.02 gFID with only 64 tokens and 310M parameters. Project page: https://huang-yh.github.io/spectralar/.
comment: Project Page: https://huang-yh.github.io/spectralar/
☆ ReGuidance: A Simple Diffusion Wrapper for Boosting Sample Quality on Hard Inverse Problems
There has been a flurry of activity around using pretrained diffusion models as informed data priors for solving inverse problems, and more generally around steering these models using reward models. Training-free methods like diffusion posterior sampling (DPS) and its many variants have offered flexible heuristic algorithms for these tasks, but when the reward is not informative enough, e.g., in hard inverse problems with low signal-to-noise ratio, these techniques veer off the data manifold, failing to produce realistic outputs. In this work, we devise a simple wrapper, ReGuidance, for boosting both the sample realism and reward achieved by these methods. Given a candidate solution $\hat{x}$ produced by an algorithm of the user's choice, we propose inverting the solution by running the unconditional probability flow ODE in reverse starting from $\hat{x}$, and then using the resulting latent as an initialization for DPS. We evaluate our wrapper on hard inverse problems like large box in-painting and super-resolution with high upscaling. Whereas state-of-the-art baselines visibly fail, we find that applying our wrapper on top of these baselines significantly boosts sample quality and measurement consistency. We complement these findings with theory proving that on certain multimodal data distributions, ReGuidance simultaneously boosts the reward and brings the candidate solution closer to the data manifold. To our knowledge, this constitutes the first rigorous algorithmic guarantee for DPS.
comment: 38 pages, 14 figures
☆ VINCIE: Unlocking In-context Image Editing from Video
In-context image editing aims to modify images based on a contextual sequence comprising text and previously generated images. Existing methods typically depend on task-specific pipelines and expert models (e.g., segmentation and inpainting) to curate training data. In this work, we explore whether an in-context image editing model can be learned directly from videos. We introduce a scalable approach to annotate videos as interleaved multimodal sequences. To effectively learn from this data, we design a block-causal diffusion transformer trained on three proxy tasks: next-image prediction, current segmentation prediction, and next-segmentation prediction. Additionally, we propose a novel multi-turn image editing benchmark to advance research in this area. Extensive experiments demonstrate that our model exhibits strong in-context image editing capabilities and achieves state-of-the-art results on two multi-turn image editing benchmarks. Despite being trained exclusively on videos, our model also shows promising abilities in multi-concept composition, story generation, and chain-of-editing applications.
comment: Project page: https://vincie2025.github.io/
☆ Semi-Automated Quality Assurance in Digital Pathology: Tile Classification Approach
Quality assurance is a critical but underexplored area in digital pathology, where even minor artifacts can have significant effects. Artifacts have been shown to negatively impact the performance of AI diagnostic models. In current practice, trained staff manually review digitized images prior to release of these slides to pathologists which are then used to render a diagnosis. Conventional image processing approaches, provide a foundation for detecting artifacts on digital pathology slides. However, current tools do not leverage deep learning, which has the potential to improve detection accuracy and scalability. Despite these advancements, methods for quality assurance in digital pathology remain limited, presenting a gap for innovation. We propose an AI algorithm designed to screen digital pathology slides by analyzing tiles and categorizing them into one of 10 predefined artifact types or as background. This algorithm identifies and localizes artifacts, creating a map that highlights regions of interest. By directing human operators to specific tiles affected by artifacts, the algorithm minimizes the time and effort required to manually review entire slides for quality issues. From internal archives and The Cancer Genome Atlas, 133 whole slide images were selected and 10 artifacts were annotated using an internally developed software ZAPP (Mayo Clinic, Jacksonville, FL). Ablation study of multiple models at different tile sizes and magnification was performed. InceptionResNet was selected. Single artifact models were trained and tested, followed by a limited multiple instance model with artifacts that performed well together (chatter, fold, and pen). From the results of this study we suggest a hybrid design for artifact screening composed of both single artifact binary models as well as multiple instance models to optimize detection of each artifact.
☆ M4V: Multi-Modal Mamba for Text-to-Video Generation
Text-to-video generation has significantly enriched content creation and holds the potential to evolve into powerful world simulators. However, modeling the vast spatiotemporal space remains computationally demanding, particularly when employing Transformers, which incur quadratic complexity in sequence processing and thus limit practical applications. Recent advancements in linear-time sequence modeling, particularly the Mamba architecture, offer a more efficient alternative. Nevertheless, its plain design limits its direct applicability to multi-modal and spatiotemporal video generation tasks. To address these challenges, we introduce M4V, a Multi-Modal Mamba framework for text-to-video generation. Specifically, we propose a multi-modal diffusion Mamba (MM-DiM) block that enables seamless integration of multi-modal information and spatiotemporal modeling through a multi-modal token re-composition design. As a result, the Mamba blocks in M4V reduce FLOPs by 45% compared to the attention-based alternative when generating videos at 768$\times$1280 resolution. Additionally, to mitigate the visual quality degradation in long-context autoregressive generation processes, we introduce a reward learning strategy that further enhances per-frame visual realism. Extensive experiments on text-to-video benchmarks demonstrate M4V's ability to produce high-quality videos while significantly lowering computational costs. Code and models will be publicly available at https://huangjch526.github.io/M4V_project.
☆ AIR: Zero-shot Generative Model Adaptation with Iterative Refinement
Zero-shot generative model adaptation (ZSGM) aims to adapt a pre-trained generator to a target domain using only text guidance and without any samples from the target domain. Central to recent ZSGM approaches are directional loss which use the text guidance in the form of aligning the image offset with text offset in the embedding space of a vision-language model like CLIP. This is similar to the analogical reasoning in NLP where the offset between one pair of words is used to identify a missing element in another pair by aligning the offset between these two pairs. However, a major limitation of existing ZSGM methods is that the learning objective assumes the complete alignment between image offset and text offset in the CLIP embedding space, resulting in quality degrade in generated images. Our work makes two main contributions. Inspired by the offset misalignment studies in NLP, as our first contribution, we perform an empirical study to analyze the misalignment between text offset and image offset in CLIP embedding space for various large publicly available datasets. Our important finding is that offset misalignment in CLIP embedding space is correlated with concept distance, i.e., close concepts have a less offset misalignment. To address the limitations of the current approaches, as our second contribution, we propose Adaptation with Iterative Refinement (AIR) which is the first ZSGM approach to focus on improving target domain image quality based on our new insight on offset misalignment.Qualitative, quantitative, and user study in 26 experiment setups consistently demonstrate the proposed AIR approach achieves SOTA performance. Additional experiments are in Supp.
☆ CreatiPoster: Towards Editable and Controllable Multi-Layer Graphic Design Generation
Graphic design plays a crucial role in both commercial and personal contexts, yet creating high-quality, editable, and aesthetically pleasing graphic compositions remains a time-consuming and skill-intensive task, especially for beginners. Current AI tools automate parts of the workflow, but struggle to accurately incorporate user-supplied assets, maintain editability, and achieve professional visual appeal. Commercial systems, like Canva Magic Design, rely on vast template libraries, which are impractical for replicate. In this paper, we introduce CreatiPoster, a framework that generates editable, multi-layer compositions from optional natural-language instructions or assets. A protocol model, an RGBA large multimodal model, first produces a JSON specification detailing every layer (text or asset) with precise layout, hierarchy, content and style, plus a concise background prompt. A conditional background model then synthesizes a coherent background conditioned on this rendered foreground layers. We construct a benchmark with automated metrics for graphic-design generation and show that CreatiPoster surpasses leading open-source approaches and proprietary commercial systems. To catalyze further research, we release a copyright-free corpus of 100,000 multi-layer designs. CreatiPoster supports diverse applications such as canvas editing, text overlay, responsive resizing, multilingual adaptation, and animated posters, advancing the democratization of AI-assisted graphic design. Project homepage: https://github.com/graphic-design-ai/creatiposter
☆ Med-URWKV: Pure RWKV With ImageNet Pre-training For Medical Image Segmentation
Medical image segmentation is a fundamental and key technology in computer-aided diagnosis and treatment. Previous methods can be broadly classified into three categories: convolutional neural network (CNN) based, Transformer based, and hybrid architectures that combine both. However, each of them has its own limitations, such as restricted receptive fields in CNNs or the computational overhead caused by the quadratic complexity of Transformers. Recently, the Receptance Weighted Key Value (RWKV) model has emerged as a promising alternative for various vision tasks, offering strong long-range modeling capabilities with linear computational complexity. Some studies have also adapted RWKV to medical image segmentation tasks, achieving competitive performance. However, most of these studies focus on modifications to the Vision-RWKV (VRWKV) mechanism and train models from scratch, without exploring the potential advantages of leveraging pre-trained VRWKV models for medical image segmentation tasks. In this paper, we propose Med-URWKV, a pure RWKV-based architecture built upon the U-Net framework, which incorporates ImageNet-based pretraining to further explore the potential of RWKV in medical image segmentation tasks. To the best of our knowledge, Med-URWKV is the first pure RWKV segmentation model in the medical field that can directly reuse a large-scale pre-trained VRWKV encoder. Experimental results on seven datasets demonstrate that Med-URWKV achieves comparable or even superior segmentation performance compared to other carefully optimized RWKV models trained from scratch. This validates the effectiveness of using a pretrained VRWKV encoder in enhancing model performance. The codes will be released.
comment: Preprint Draft, 5 pages. This paper will be updated with a formal version in the future, Copyright: College of Computer Science, Nankai University. All rights reserved
☆ VRBench: A Benchmark for Multi-Step Reasoning in Long Narrative Videos
We present VRBench, the first long narrative video benchmark crafted for evaluating large models' multi-step reasoning capabilities, addressing limitations in existing evaluations that overlook temporal reasoning and procedural validity. It comprises 1,010 long videos (with an average duration of 1.6 hours), along with 9,468 human-labeled multi-step question-answering pairs and 30,292 reasoning steps with timestamps. These videos are curated via a multi-stage filtering process including expert inter-rater reviewing to prioritize plot coherence. We develop a human-AI collaborative framework that generates coherent reasoning chains, each requiring multiple temporally grounded steps, spanning seven types (e.g., event attribution, implicit inference). VRBench designs a multi-phase evaluation pipeline that assesses models at both the outcome and process levels. Apart from the MCQs for the final results, we propose a progress-level LLM-guided scoring metric to evaluate the quality of the reasoning chain from multiple dimensions comprehensively. Through extensive evaluations of 12 LLMs and 16 VLMs on VRBench, we undertake a thorough analysis and provide valuable insights that advance the field of multi-step reasoning.
comment: Technical Report
Post-Training Quantization for Video Matting
Video matting is crucial for applications such as film production and virtual reality, yet deploying its computationally intensive models on resource-constrained devices presents challenges. Quantization is a key technique for model compression and acceleration. As an efficient approach, Post-Training Quantization (PTQ) is still in its nascent stages for video matting, facing significant hurdles in maintaining accuracy and temporal coherence. To address these challenges, this paper proposes a novel and general PTQ framework specifically designed for video matting models, marking, to the best of our knowledge, the first systematic attempt in this domain. Our contributions include: (1) A two-stage PTQ strategy that combines block-reconstruction-based optimization for fast, stable initial quantization and local dependency capture, followed by a global calibration of quantization parameters to minimize accuracy loss. (2) A Statistically-Driven Global Affine Calibration (GAC) method that enables the network to compensate for cumulative statistical distortions arising from factors such as neglected BN layer effects, even reducing the error of existing PTQ methods on video matting tasks up to 20%. (3) An Optical Flow Assistance (OFA) component that leverages temporal and semantic priors from frames to guide the PTQ process, enhancing the model's ability to distinguish moving foregrounds in complex scenes and ultimately achieving near full-precision performance even under ultra-low-bit quantization. Comprehensive quantitative and visual results show that our PTQ4VM achieves the state-of-the-art accuracy performance across different bit-widths compared to the existing quantization methods. We highlight that the 4-bit PTQ4VM even achieves performance close to the full-precision counterpart while enjoying 8x FLOP savings.
☆ Generalist Models in Medical Image Segmentation: A Survey and Performance Comparison with Task-Specific Approaches
Following the successful paradigm shift of large language models, leveraging pre-training on a massive corpus of data and fine-tuning on different downstream tasks, generalist models have made their foray into computer vision. The introduction of Segment Anything Model (SAM) set a milestone on segmentation of natural images, inspiring the design of a multitude of architectures for medical image segmentation. In this survey we offer a comprehensive and in-depth investigation on generalist models for medical image segmentation. We start with an introduction on the fundamentals concepts underpinning their development. Then, we provide a taxonomy on the different declinations of SAM in terms of zero-shot, few-shot, fine-tuning, adapters, on the recent SAM 2, on other innovative models trained on images alone, and others trained on both text and images. We thoroughly analyze their performances at the level of both primary research and best-in-literature, followed by a rigorous comparison with the state-of-the-art task-specific models. We emphasize the need to address challenges in terms of compliance with regulatory frameworks, privacy and security laws, budget, and trustworthy artificial intelligence (AI). Finally, we share our perspective on future directions concerning synthetic data, early fusion, lessons learnt from generalist models in natural language processing, agentic AI and physical AI, and clinical translation.
comment: 132 pages, 26 figures, 23 tables. Andrea Moglia and Matteo Leccardi are equally contributing authors
☆ VideoDeepResearch: Long Video Understanding With Agentic Tool Using
Long video understanding (LVU) presents a significant challenge for current multi-modal large language models (MLLMs) due to the task's inherent complexity and context window constraint. It is widely assumed that addressing LVU tasks requires foundation MLLMs with extended context windows, strong visual perception capabilities, and proficient domain expertise. In this work, we challenge this common belief by introducing VideoDeepResearch, a novel agentic framework for long video understanding. Our approach relies solely on a text-only large reasoning model (LRM) combined with a modular multi-modal toolkit, including multimodal retrievers and visual perceivers, all of which are readily available in practice. For each LVU task, the system formulates a problem-solving strategy through reasoning, while selectively accessing and utilizing essential video content via tool using. We conduct extensive experiments on popular LVU benchmarks, including MLVU, Video-MME, and LVBench. Our results demonstrate that VideoDeepResearch achieves substantial improvements over existing MLLM baselines, surpassing the previous state-of-the-art by 9.6%, 6.6%, and 3.9% on MLVU (test), LVBench, and LongVideoBench, respectively. These findings highlight the promise of agentic systems in overcoming key challenges in LVU problems.
☆ Occlusion-Aware 3D Hand-Object Pose Estimation with Masked AutoEncoders
Hand-object pose estimation from monocular RGB images remains a significant challenge mainly due to the severe occlusions inherent in hand-object interactions. Existing methods do not sufficiently explore global structural perception and reasoning, which limits their effectiveness in handling occluded hand-object interactions. To address this challenge, we propose an occlusion-aware hand-object pose estimation method based on masked autoencoders, termed as HOMAE. Specifically, we propose a target-focused masking strategy that imposes structured occlusion on regions of hand-object interaction, encouraging the model to learn context-aware features and reason about the occluded structures. We further integrate multi-scale features extracted from the decoder to predict a signed distance field (SDF), capturing both global context and fine-grained geometry. To enhance geometric perception, we combine the implicit SDF with an explicit point cloud derived from the SDF, leveraging the complementary strengths of both representations. This fusion enables more robust handling of occluded regions by combining the global context from the SDF with the precise local geometry provided by the point cloud. Extensive experiments on challenging DexYCB and HO3Dv2 benchmarks demonstrate that HOMAE achieves state-of-the-art performance in hand-object pose estimation. We will release our code and model.
comment: 10 pages, 6 figures
☆ Unsupervised Deformable Image Registration with Structural Nonparametric Smoothing
Learning-based deformable image registration (DIR) accelerates alignment by amortizing traditional optimization via neural networks. Label supervision further enhances accuracy, enabling efficient and precise nonlinear alignment of unseen scans. However, images with sparse features amid large smooth regions, such as retinal vessels, introduce aperture and large-displacement challenges that unsupervised DIR methods struggle to address. This limitation occurs because neural networks predict deformation fields in a single forward pass, leaving fields unconstrained post-training and shifting the regularization burden entirely to network weights. To address these issues, we introduce SmoothProper, a plug-and-play neural module enforcing smoothness and promoting message passing within the network's forward pass. By integrating a duality-based optimization layer with tailored interaction terms, SmoothProper efficiently propagates flow signals across spatial locations, enforces smoothness, and preserves structural consistency. It is model-agnostic, seamlessly integrates into existing registration frameworks with minimal parameter overhead, and eliminates regularizer hyperparameter tuning. Preliminary results on a retinal vessel dataset exhibiting aperture and large-displacement challenges demonstrate our method reduces registration error to 1.88 pixels on 2912x2912 images, marking the first unsupervised DIR approach to effectively address both challenges. The source code will be available at https://github.com/tinymilky/SmoothProper.
comment: Accepted for publication at Information Processing in Medical Imaging (IPMI) 2025
☆ Prompts to Summaries: Zero-Shot Language-Guided Video Summarization
The explosive growth of video data intensified the need for flexible user-controllable summarization tools that can operate without domain-specific training data. Existing methods either rely on datasets, limiting generalization, or cannot incorporate user intent expressed in natural language. We introduce Prompts-to-Summaries: the first zero-shot, text-queryable video summarizer that converts off-the-shelf video-language models (VidLMs) captions into user-guided skims via large language models (LLMs) judging, without the use of training data at all, beating all unsupervised and matching supervised methods. Our pipeline (i) segments raw video footage into coherent scenes, (ii) generates rich scene-level descriptions through a memory-efficient, batch-style VidLM prompting scheme that scales to hours-long videos on a single GPU, (iii) leverages an LLM as a judge to assign scene-level importance scores under a carefully crafted prompt, and finally, (iv) propagates those scores to short segments level via two new metrics: consistency (temporal coherency) and uniqueness (novelty), yielding fine-grained frame importance. On SumMe and TVSum, our data-free approach surpasses all prior data-hungry unsupervised methods. It also performs competitively on the Query-Focused Video Summarization (QFVS) benchmark, despite using no training data and the competing methods requiring supervised frame-level importance. To spur further research, we release VidSum-Reason, a new query-driven dataset featuring long-tailed concepts and multi-step reasoning; our framework attains robust F1 scores and serves as the first challenging baseline. Overall, our results demonstrate that pretrained multimodal models, when orchestrated with principled prompting and score propagation, already provide a powerful foundation for universal, text-queryable video summarization.
☆ Modality-AGnostic Image Cascade (MAGIC) for Multi-Modality Cardiac Substructure Segmentation
Cardiac substructures are essential in thoracic radiation therapy planning to minimize risk of radiation-induced heart disease. Deep learning (DL) offers efficient methods to reduce contouring burden but lacks generalizability across different modalities and overlapping structures. This work introduces and validates a Modality-AGnostic Image Cascade (MAGIC) for comprehensive and multi-modal cardiac substructure segmentation. MAGIC is implemented through replicated encoding and decoding branches of an nnU-Net-based, U-shaped backbone conserving the function of a single model. Twenty cardiac substructures (heart, chambers, great vessels (GVs), valves, coronary arteries (CAs), and conduction nodes) from simulation CT (Sim-CT), low-field MR-Linac, and cardiac CT angiography (CCTA) modalities were manually delineated and used to train (n=76), validate (n=15), and test (n=30) MAGIC. Twelve comparison models (four segmentation subgroups across three modalities) were equivalently trained. All methods were compared for training efficiency and against reference contours using the Dice Similarity Coefficient (DSC) and two-tailed Wilcoxon Signed-Rank test (threshold, p<0.05). Average DSC scores were 0.75(0.16) for Sim-CT, 0.68(0.21) for MR-Linac, and 0.80(0.16) for CCTA. MAGIC outperforms the comparison in 57% of cases, with limited statistical differences. MAGIC offers an effective and accurate segmentation solution that is lightweight and capable of segmenting multiple modalities and overlapping structures in a single model. MAGIC further enables clinical implementation by simplifying the computational requirements and offering unparalleled flexibility for clinical settings.
☆ Human-Robot Navigation using Event-based Cameras and Reinforcement Learning
This work introduces a robot navigation controller that combines event cameras and other sensors with reinforcement learning to enable real-time human-centered navigation and obstacle avoidance. Unlike conventional image-based controllers, which operate at fixed rates and suffer from motion blur and latency, this approach leverages the asynchronous nature of event cameras to process visual information over flexible time intervals, enabling adaptive inference and control. The framework integrates event-based perception, additional range sensing, and policy optimization via Deep Deterministic Policy Gradient, with an initial imitation learning phase to improve sample efficiency. Promising results are achieved in simulated environments, demonstrating robust navigation, pedestrian following, and obstacle avoidance. A demo video is available at the project website.
comment: https://ibugueno.github.io/hr-navigation-using-event-cameras-and-rl/
☆ SlotPi: Physics-informed Object-centric Reasoning Models
Understanding and reasoning about dynamics governed by physical laws through visual observation, akin to human capabilities in the real world, poses significant challenges. Currently, object-centric dynamic simulation methods, which emulate human behavior, have achieved notable progress but overlook two critical aspects: 1) the integration of physical knowledge into models. Humans gain physical insights by observing the world and apply this knowledge to accurately reason about various dynamic scenarios; 2) the validation of model adaptability across diverse scenarios. Real-world dynamics, especially those involving fluids and objects, demand models that not only capture object interactions but also simulate fluid flow characteristics. To address these gaps, we introduce SlotPi, a slot-based physics-informed object-centric reasoning model. SlotPi integrates a physical module based on Hamiltonian principles with a spatio-temporal prediction module for dynamic forecasting. Our experiments highlight the model's strengths in tasks such as prediction and Visual Question Answering (VQA) on benchmark and fluid datasets. Furthermore, we have created a real-world dataset encompassing object interactions, fluid dynamics, and fluid-object interactions, on which we validated our model's capabilities. The model's robust performance across all datasets underscores its strong adaptability, laying a foundation for developing more advanced world models.
☆ Stroke-based Cyclic Amplifier: Image Super-Resolution at Arbitrary Ultra-Large Scales
Prior Arbitrary-Scale Image Super-Resolution (ASISR) methods often experience a significant performance decline when the upsampling factor exceeds the range covered by the training data, introducing substantial blurring. To address this issue, we propose a unified model, Stroke-based Cyclic Amplifier (SbCA), for ultra-large upsampling tasks. The key of SbCA is the stroke vector amplifier, which decomposes the image into a series of strokes represented as vector graphics for magnification. Then, the detail completion module also restores missing details, ensuring high-fidelity image reconstruction. Our cyclic strategy achieves ultra-large upsampling by iteratively refining details with this unified SbCA model, trained only once for all, while keeping sub-scales within the training range. Our approach effectively addresses the distribution drift issue and eliminates artifacts, noise and blurring, producing high-quality, high-resolution super-resolved images. Experimental validations on both synthetic and real-world datasets demonstrate that our approach significantly outperforms existing methods in ultra-large upsampling tasks (e.g. $\times100$), delivering visual quality far superior to state-of-the-art techniques.
☆ PosterCraft: Rethinking High-Quality Aesthetic Poster Generation in a Unified Framework
Generating aesthetic posters is more challenging than simple design images: it requires not only precise text rendering but also the seamless integration of abstract artistic content, striking layouts, and overall stylistic harmony. To address this, we propose PosterCraft, a unified framework that abandons prior modular pipelines and rigid, predefined layouts, allowing the model to freely explore coherent, visually compelling compositions. PosterCraft employs a carefully designed, cascaded workflow to optimize the generation of high-aesthetic posters: (i) large-scale text-rendering optimization on our newly introduced Text-Render-2M dataset; (ii) region-aware supervised fine-tuning on HQ-Poster100K; (iii) aesthetic-text-reinforcement learning via best-of-n preference optimization; and (iv) joint vision-language feedback refinement. Each stage is supported by a fully automated data-construction pipeline tailored to its specific needs, enabling robust training without complex architectural modifications. Evaluated on multiple experiments, PosterCraft significantly outperforms open-source baselines in rendering accuracy, layout coherence, and overall visual appeal-approaching the quality of SOTA commercial systems. Our code, models, and datasets can be found in the Project page: https://ephemeral182.github.io/PosterCraft
☆ IQE-CLIP: Instance-aware Query Embedding for Zero-/Few-shot Anomaly Detection in Medical Domain
Recent advances in vision-language models, such as CLIP, have significantly improved performance in zero- and few-shot anomaly detection (ZFSAD) tasks. However, most existing CLIP-based methods assume prior knowledge of categories and rely on carefully designed prompts tailored to specific scenarios. While these text prompts capture semantic information in the textual space, they often fail to distinguish normal and anomalous instances in the joint embedding space. Moreover, most ZFSAD approaches focus on industrial domains, with limited exploration in medical tasks. To address these limitations, we propose IQE-CLIP, a novel framework for ZFSAD in the medical domain. We show that query embeddings integrating both textual and instance-aware visual information serve as more effective indicators of anomalies. Specifically, we introduce class-based and learnable prompting tokens to better adapt CLIP to the medical setting. Furthermore, we design an instance-aware query module that extracts region-level contextual information from both modalities, enabling the generation of anomaly-sensitive embeddings. Extensive experiments on six medical datasets demonstrate that IQE-CLIP achieves state-of-the-art performance in both zero-shot and few-shot settings. Code and data are available at \href{https://github.com/hongh0/IQE-CLIP/}{this https URL}.
☆ Deep Learning-based Multi Project InP Wafer Simulation for Unsupervised Surface Defect Detection
Quality management in semiconductor manufacturing often relies on template matching with known golden standards. For Indium-Phosphide (InP) multi-project wafer manufacturing, low production scale and high design variability lead to such golden standards being typically unavailable. Defect detection, in turn, is manual and labor-intensive. This work addresses this challenge by proposing a methodology to generate a synthetic golden standard using Deep Neural Networks, trained to simulate photo-realistic InP wafer images from CAD data. We evaluate various training objectives and assess the quality of the simulated images on both synthetic data and InP wafer photographs. Our deep-learning-based method outperforms a baseline decision-tree-based approach, enabling the use of a 'simulated golden die' from CAD plans in any user-defined region of a wafer for more efficient defect detection. We apply our method to a template matching procedure, to demonstrate its practical utility in surface defect detection.
☆ Uncertainty-Masked Bernoulli Diffusion for Camouflaged Object Detection Refinement
Camouflaged Object Detection (COD) presents inherent challenges due to the subtle visual differences between targets and their backgrounds. While existing methods have made notable progress, there remains significant potential for post-processing refinement that has yet to be fully explored. To address this limitation, we propose the Uncertainty-Masked Bernoulli Diffusion (UMBD) model, the first generative refinement framework specifically designed for COD. UMBD introduces an uncertainty-guided masking mechanism that selectively applies Bernoulli diffusion to residual regions with poor segmentation quality, enabling targeted refinement while preserving correctly segmented areas. To support this process, we design the Hybrid Uncertainty Quantification Network (HUQNet), which employs a multi-branch architecture and fuses uncertainty from multiple sources to improve estimation accuracy. This enables adaptive guidance during the generative sampling process. The proposed UMBD framework can be seamlessly integrated with a wide range of existing Encoder-Decoder-based COD models, combining their discriminative capabilities with the generative advantages of diffusion-based refinement. Extensive experiments across multiple COD benchmarks demonstrate consistent performance improvements, achieving average gains of 5.5% in MAE and 3.2% in weighted F-measure with only modest computational overhead. Code will be released.
comment: 16 pages, 7 figures
☆ Continual Hyperbolic Learning of Instances and Classes
Continual learning has traditionally focused on classifying either instances or classes, but real-world applications, such as robotics and self-driving cars, require models to handle both simultaneously. To mirror real-life scenarios, we introduce the task of continual learning of instances and classes, at the same time. This task challenges models to adapt to multiple levels of granularity over time, which requires balancing fine-grained instance recognition with coarse-grained class generalization. In this paper, we identify that classes and instances naturally form a hierarchical structure. To model these hierarchical relationships, we propose HyperCLIC, a continual learning algorithm that leverages hyperbolic space, which is uniquely suited for hierarchical data due to its ability to represent tree-like structures with low distortion and compact embeddings. Our framework incorporates hyperbolic classification and distillation objectives, enabling the continual embedding of hierarchical relations. To evaluate performance across multiple granularities, we introduce continual hierarchical metrics. We validate our approach on EgoObjects, the only dataset that captures the complexity of hierarchical object recognition in dynamic real-world environments. Empirical results show that HyperCLIC operates effectively at multiple granularities with improved hierarchical generalization.
☆ Underage Detection through a Multi-Task and MultiAge Approach for Screening Minors in Unconstrained Imagery
Accurate automatic screening of minors in unconstrained images demands models that are robust to distribution shift and resilient to the children under-representation in publicly available data. To overcome these issues, we propose a multi-task architecture with dedicated under/over-age discrimination tasks based on a frozen FaRL vision-language backbone joined with a compact two-layer MLP that shares features across one age-regression head and four binary under-age heads for age thresholds of 12, 15, 18, and 21 years, focusing on the legally critical age range. To address the severe class imbalance, we introduce an $\alpha$-reweighted focal-style loss and age-balanced mini-batch sampling, which equalizes twelve age bins during stochastic optimization. Further improvement is achieved with an age gap that removes edge cases from the loss. Moreover, we set a rigorous evaluation by proposing the Overall Under-Age Benchmark, with 303k cleaned training images and 110k test images, defining both the "ASORES-39k" restricted overall test, which removes the noisiest domains, and the age estimation wild shifts test "ASWIFT-20k" of 20k-images, stressing extreme pose ($>$45{\deg}), expression, and low image quality to emulate real-world shifts. Trained on the cleaned overall set with resampling and age gap, our multiage model "F" lowers the root-mean-square-error on the ASORES-39k restricted test from 5.733 (age-only baseline) to 5.656 years and lifts under-18 detection from F2 score of 0.801 to 0.857 at 1% false-adult rate. Under the domain shift to the wild data of ASWIFT-20k, the same configuration nearly sustains 0.99 recall while boosting F2 from 0.742 to 0.833 with respect to the age-only baseline, demonstrating strong generalization under distribution shift. For the under-12 and under-15 tasks, the respective boosts in F2 are from 0.666 to 0.955 and from 0.689 to 0.916, respectively.
☆ Unsourced Adversarial CAPTCHA: A Bi-Phase Adversarial CAPTCHA Framework
With the rapid advancements in deep learning, traditional CAPTCHA schemes are increasingly vulnerable to automated attacks powered by deep neural networks (DNNs). Existing adversarial attack methods often rely on original image characteristics, resulting in distortions that hinder human interpretation and limit applicability in scenarios lacking initial input images. To address these challenges, we propose the Unsourced Adversarial CAPTCHA (UAC), a novel framework generating high-fidelity adversarial examples guided by attacker-specified text prompts. Leveraging a Large Language Model (LLM), UAC enhances CAPTCHA diversity and supports both targeted and untargeted attacks. For targeted attacks, the EDICT method optimizes dual latent variables in a diffusion model for superior image quality. In untargeted attacks, especially for black-box scenarios, we introduce bi-path unsourced adversarial CAPTCHA (BP-UAC), a two-step optimization strategy employing multimodal gradients and bi-path optimization for efficient misclassification. Experiments show BP-UAC achieves high attack success rates across diverse systems, generating natural CAPTCHAs indistinguishable to humans and DNNs.
☆ Enhancing Deepfake Detection using SE Block Attention with CNN
In the digital age, Deepfake present a formidable challenge by using advanced artificial intelligence to create highly convincing manipulated content, undermining information authenticity and security. These sophisticated fabrications surpass traditional detection methods in complexity and realism. To address this issue, we aim to harness cutting-edge deep learning methodologies to engineer an innovative deepfake detection model. However, most of the models designed for deepfake detection are large, causing heavy storage and memory consumption. In this research, we propose a lightweight convolution neural network (CNN) with squeeze and excitation block attention (SE) for Deepfake detection. The SE block module is designed to perform dynamic channel-wise feature recalibration. The SE block allows the network to emphasize informative features and suppress less useful ones, which leads to a more efficient and effective learning module. This module is integrated with a simple sequential model to perform Deepfake detection. The model is smaller in size and it achieves competing accuracy with the existing models for deepfake detection tasks. The model achieved an overall classification accuracy of 94.14% and AUC-ROC score of 0.985 on the Style GAN dataset from the Diverse Fake Face Dataset. Our proposed approach presents a promising avenue for combating the Deepfake challenge with minimal computational resources, developing efficient and scalable solutions for digital content verification.
☆ ConStyX: Content Style Augmentation for Generalizable Medical Image Segmentation
Medical images are usually collected from multiple domains, leading to domain shifts that impair the performance of medical image segmentation models. Domain Generalization (DG) aims to address this issue by training a robust model with strong generalizability. Recently, numerous domain randomization-based DG methods have been proposed. However, these methods suffer from the following limitations: 1) constrained efficiency of domain randomization due to their exclusive dependence on image style perturbation, and 2) neglect of the adverse effects of over-augmented images on model training. To address these issues, we propose a novel domain randomization-based DG method, called content style augmentation (ConStyX), for generalizable medical image segmentation. Specifically, ConStyX 1) augments the content and style of training data, allowing the augmented training data to better cover a wider range of data domains, and 2) leverages well-augmented features while mitigating the negative effects of over-augmented features during model training. Extensive experiments across multiple domains demonstrate that our ConStyX achieves superior generalization performance. The code is available at https://github.com/jwxsp1/ConStyX.
☆ PiPViT: Patch-based Visual Interpretable Prototypes for Retinal Image Analysis
Background and Objective: Prototype-based methods improve interpretability by learning fine-grained part-prototypes; however, their visualization in the input pixel space is not always consistent with human-understandable biomarkers. In addition, well-known prototype-based approaches typically learn extremely granular prototypes that are less interpretable in medical imaging, where both the presence and extent of biomarkers and lesions are critical. Methods: To address these challenges, we propose PiPViT (Patch-based Visual Interpretable Prototypes), an inherently interpretable prototypical model for image recognition. Leveraging a vision transformer (ViT), PiPViT captures long-range dependencies among patches to learn robust, human-interpretable prototypes that approximate lesion extent only using image-level labels. Additionally, PiPViT benefits from contrastive learning and multi-resolution input processing, which enables effective localization of biomarkers across scales. Results: We evaluated PiPViT on retinal OCT image classification across four datasets, where it achieved competitive quantitative performance compared to state-of-the-art methods while delivering more meaningful explanations. Moreover, quantitative evaluation on a hold-out test set confirms that the learned prototypes are semantically and clinically relevant. We believe PiPViT can transparently explain its decisions and assist clinicians in understanding diagnostic outcomes. Github page: https://github.com/marziehoghbaie/PiPViT
☆ GigaVideo-1: Advancing Video Generation via Automatic Feedback with 4 GPU-Hours Fine-Tuning
Recent progress in diffusion models has greatly enhanced video generation quality, yet these models still require fine-tuning to improve specific dimensions like instance preservation, motion rationality, composition, and physical plausibility. Existing fine-tuning approaches often rely on human annotations and large-scale computational resources, limiting their practicality. In this work, we propose GigaVideo-1, an efficient fine-tuning framework that advances video generation without additional human supervision. Rather than injecting large volumes of high-quality data from external sources, GigaVideo-1 unlocks the latent potential of pre-trained video diffusion models through automatic feedback. Specifically, we focus on two key aspects of the fine-tuning process: data and optimization. To improve fine-tuning data, we design a prompt-driven data engine that constructs diverse, weakness-oriented training samples. On the optimization side, we introduce a reward-guided training strategy, which adaptively weights samples using feedback from pre-trained vision-language models with a realism constraint. We evaluate GigaVideo-1 on the VBench-2.0 benchmark using Wan2.1 as the baseline across 17 evaluation dimensions. Experiments show that GigaVideo-1 consistently improves performance on almost all the dimensions with an average gain of about 4% using only 4 GPU-hours. Requiring no manual annotations and minimal real data, GigaVideo-1 demonstrates both effectiveness and efficiency. Code, model, and data will be publicly available.
☆ Symmetrical Flow Matching: Unified Image Generation, Segmentation, and Classification with Score-Based Generative Models
Flow Matching has emerged as a powerful framework for learning continuous transformations between distributions, enabling high-fidelity generative modeling. This work introduces Symmetrical Flow Matching (SymmFlow), a new formulation that unifies semantic segmentation, classification, and image generation within a single model. Using a symmetric learning objective, SymmFlow models forward and reverse transformations jointly, ensuring bi-directional consistency, while preserving sufficient entropy for generative diversity. A new training objective is introduced to explicitly retain semantic information across flows, featuring efficient sampling while preserving semantic structure, allowing for one-step segmentation and classification without iterative refinement. Unlike previous approaches that impose strict one-to-one mapping between masks and images, SymmFlow generalizes to flexible conditioning, supporting both pixel-level and image-level class labels. Experimental results on various benchmarks demonstrate that SymmFlow achieves state-of-the-art performance on semantic image synthesis, obtaining FID scores of 11.9 on CelebAMask-HQ and 7.0 on COCO-Stuff with only 25 inference steps. Additionally, it delivers competitive results on semantic segmentation and shows promising capabilities in classification tasks. The code will be publicly available.
☆ Anatomy-Grounded Weakly Supervised Prompt Tuning for Chest X-ray Latent Diffusion Models
Latent Diffusion Models have shown remarkable results in text-guided image synthesis in recent years. In the domain of natural (RGB) images, recent works have shown that such models can be adapted to various vision-language downstream tasks with little to no supervision involved. On the contrary, text-to-image Latent Diffusion Models remain relatively underexplored in the field of medical imaging, primarily due to limited data availability (e.g., due to privacy concerns). In this work, focusing on the chest X-ray modality, we first demonstrate that a standard text-conditioned Latent Diffusion Model has not learned to align clinically relevant information in free-text radiology reports with the corresponding areas of the given scan. Then, to alleviate this issue, we propose a fine-tuning framework to improve multi-modal alignment in a pre-trained model such that it can be efficiently repurposed for downstream tasks such as phrase grounding. Our method sets a new state-of-the-art on a standard benchmark dataset (MS-CXR), while also exhibiting robust performance on out-of-distribution data (VinDr-CXR). Our code will be made publicly available.
comment: 14 pages, 6 figures
☆ Hessian Geometry of Latent Space in Generative Models ICML 2025
This paper presents a novel method for analyzing the latent space geometry of generative models, including statistical physics models and diffusion models, by reconstructing the Fisher information metric. The method approximates the posterior distribution of latent variables given generated samples and uses this to learn the log-partition function, which defines the Fisher metric for exponential families. Theoretical convergence guarantees are provided, and the method is validated on the Ising and TASEP models, outperforming existing baselines in reconstructing thermodynamic quantities. Applied to diffusion models, the method reveals a fractal structure of phase transitions in the latent space, characterized by abrupt changes in the Fisher metric. We demonstrate that while geodesic interpolations are approximately linear within individual phases, this linearity breaks down at phase boundaries, where the diffusion model exhibits a divergent Lipschitz constant with respect to the latent space. These findings provide new insights into the complex structure of diffusion model latent spaces and their connection to phenomena like phase transitions. Our source code is available at https://github.com/alobashev/hessian-geometry-of-diffusion-models.
comment: ICML 2025
☆ Deep Learning-Based Digitization of Overlapping ECG Images with Open-Source Python Code
This paper addresses the persistent challenge of accurately digitizing paper-based electrocardiogram (ECG) recordings, with a particular focus on robustly handling single leads compromised by signal overlaps-a common yet under-addressed issue in existing methodologies. We propose a two-stage pipeline designed to overcome this limitation. The first stage employs a U-Net based segmentation network, trained on a dataset enriched with overlapping signals and fortified with custom data augmentations, to accurately isolate the primary ECG trace. The subsequent stage converts this refined binary mask into a time-series signal using established digitization techniques, enhanced by an adaptive grid detection module for improved versatility across different ECG formats and scales. Our experimental results demonstrate the efficacy of our approach. The U-Net architecture achieves an IoU of 0.87 for the fine-grained segmentation task. Crucially, our proposed digitization method yields superior performance compared to a well-established baseline technique across both non-overlapping and challenging overlapping ECG samples. For non-overlapping signals, our method achieved a Mean Squared Error (MSE) of 0.0010 and a Pearson Correlation Coefficient (rho) of 0.9644, compared to 0.0015 and 0.9366, respectively, for the baseline. On samples with signal overlap, our method achieved an MSE of 0.0029 and a rho of 0.9641, significantly improving upon the baseline's 0.0178 and 0.8676. This work demonstrates an effective strategy to significantly enhance digitization accuracy, especially in the presence of signal overlaps, thereby laying a strong foundation for the reliable conversion of analog ECG records into analyzable digital data for contemporary research and clinical applications. The implementation is publicly available at this GitHub repository: https://github.com/masoudrahimi39/ECG-code.
☆ TexTailor: Customized Text-aligned Texturing via Effective Resampling ICLR 2025
We present TexTailor, a novel method for generating consistent object textures from textual descriptions. Existing text-to-texture synthesis approaches utilize depth-aware diffusion models to progressively generate images and synthesize textures across predefined multiple viewpoints. However, these approaches lead to a gradual shift in texture properties across viewpoints due to (1) insufficient integration of previously synthesized textures at each viewpoint during the diffusion process and (2) the autoregressive nature of the texture synthesis process. Moreover, the predefined selection of camera positions, which does not account for the object's geometry, limits the effective use of texture information synthesized from different viewpoints, ultimately degrading overall texture consistency. In TexTailor, we address these issues by (1) applying a resampling scheme that repeatedly integrates information from previously synthesized textures within the diffusion process, and (2) fine-tuning a depth-aware diffusion model on these resampled textures. During this process, we observed that using only a few training images restricts the model's original ability to generate high-fidelity images aligned with the conditioning, and therefore propose an performance preservation loss to mitigate this issue. Additionally, we improve the synthesis of view-consistent textures by adaptively adjusting camera positions based on the object's geometry. Experiments on a subset of the Objaverse dataset and the ShapeNet car dataset demonstrate that TexTailor outperforms state-of-the-art methods in synthesizing view-consistent textures. The source code for TexTailor is available at https://github.com/Adios42/Textailor
comment: Submitted to ICLR 2025
☆ MSTAR: Box-free Multi-query Scene Text Retrieval with Attention Recycling
Scene text retrieval has made significant progress with the assistance of accurate text localization. However, existing approaches typically require costly bounding box annotations for training. Besides, they mostly adopt a customized retrieval strategy but struggle to unify various types of queries to meet diverse retrieval needs. To address these issues, we introduce Muti-query Scene Text retrieval with Attention Recycling (MSTAR), a box-free approach for scene text retrieval. It incorporates progressive vision embedding to dynamically capture the multi-grained representation of texts and harmonizes free-style text queries with style-aware instructions. Additionally, a multi-instance matching module is integrated to enhance vision-language alignment. Furthermore, we build the Multi-Query Text Retrieval (MQTR) dataset, the first benchmark designed to evaluate the multi-query scene text retrieval capability of models, comprising four query types and 16k images. Extensive experiments demonstrate the superiority of our method across seven public datasets and the MQTR dataset. Notably, MSTAR marginally surpasses the previous state-of-the-art model by 6.4% in MAP on Total-Text while eliminating box annotation costs. Moreover, on the MQTR benchmark, MSTAR significantly outperforms the previous models by an average of 8.5%. The code and datasets are available at https://github.com/yingift/MSTAR.
☆ High-resolution efficient image generation from WiFi CSI using a pretrained latent diffusion model
We present LatentCSI, a novel method for generating images of the physical environment from WiFi CSI measurements that leverages a pretrained latent diffusion model (LDM). Unlike prior approaches that rely on complex and computationally intensive techniques such as GANs, our method employs a lightweight neural network to map CSI amplitudes directly into the latent space of an LDM. We then apply the LDM's denoising diffusion model to the latent representation with text-based guidance before decoding using the LDM's pretrained decoder to obtain a high-resolution image. This design bypasses the challenges of pixel-space image generation and avoids the explicit image encoding stage typically required in conventional image-to-image pipelines, enabling efficient and high-quality image synthesis. We validate our approach on two datasets: a wide-band CSI dataset we collected with off-the-shelf WiFi devices and cameras; and a subset of the publicly available MM-Fi dataset. The results demonstrate that LatentCSI outperforms baselines of comparable complexity trained directly on ground-truth images in both computational efficiency and perceptual quality, while additionally providing practical advantages through its unique capacity for text-guided controllability.
comment: 6 pages, 4 figures
☆ Semantic-decoupled Spatial Partition Guided Point-supervised Oriented Object Detection
Recent remote sensing tech advancements drive imagery growth, making oriented object detection rapid development, yet hindered by labor-intensive annotation for high-density scenes. Oriented object detection with point supervision offers a cost-effective solution for densely packed scenes in remote sensing, yet existing methods suffer from inadequate sample assignment and instance confusion due to rigid rule-based designs. To address this, we propose SSP (Semantic-decoupled Spatial Partition), a unified framework that synergizes rule-driven prior injection and data-driven label purification. Specifically, SSP introduces two core innovations: 1) Pixel-level Spatial Partition-based Sample Assignment, which compactly estimates the upper and lower bounds of object scales and mines high-quality positive samples and hard negative samples through spatial partitioning of pixel maps. 2) Semantic Spatial Partition-based Box Extraction, which derives instances from spatial partitions modulated by semantic maps and reliably converts them into bounding boxes to form pseudo-labels for supervising the learning of downstream detectors. Experiments on DOTA-v1.0 and others demonstrate SSP\' s superiority: it achieves 45.78% mAP under point supervision, outperforming SOTA method PointOBB-v2 by 4.10%. Furthermore, when integrated with ORCNN and ReDet architectures, the SSP framework achieves mAP values of 47.86% and 48.50%, respectively. The code is available at https://github.com/antxinyuan/ssp.
☆ EmbodiedGen: Towards a Generative 3D World Engine for Embodied Intelligence
Constructing a physically realistic and accurately scaled simulated 3D world is crucial for the training and evaluation of embodied intelligence tasks. The diversity, realism, low cost accessibility and affordability of 3D data assets are critical for achieving generalization and scalability in embodied AI. However, most current embodied intelligence tasks still rely heavily on traditional 3D computer graphics assets manually created and annotated, which suffer from high production costs and limited realism. These limitations significantly hinder the scalability of data driven approaches. We present EmbodiedGen, a foundational platform for interactive 3D world generation. It enables the scalable generation of high-quality, controllable and photorealistic 3D assets with accurate physical properties and real-world scale in the Unified Robotics Description Format (URDF) at low cost. These assets can be directly imported into various physics simulation engines for fine-grained physical control, supporting downstream tasks in training and evaluation. EmbodiedGen is an easy-to-use, full-featured toolkit composed of six key modules: Image-to-3D, Text-to-3D, Texture Generation, Articulated Object Generation, Scene Generation and Layout Generation. EmbodiedGen generates diverse and interactive 3D worlds composed of generative 3D assets, leveraging generative AI to address the challenges of generalization and evaluation to the needs of embodied intelligence related research. Code is available at https://horizonrobotics.github.io/robot_lab/embodied_gen/index.html.
☆ Hierarchical Error Assessment of CAD Models for Aircraft Manufacturing-and-Measurement
The most essential feature of aviation equipment is high quality, including high performance, high stability and high reliability. In this paper, we propose a novel hierarchical error assessment framework for aircraft CAD models within a manufacturing-and-measurement platform, termed HEA-MM. HEA-MM employs structured light scanners to obtain comprehensive 3D measurements of manufactured workpieces. The measured point cloud is registered with the reference CAD model, followed by an error analysis conducted at three hierarchical levels: global, part, and feature. At the global level, the error analysis evaluates the overall deviation of the scanned point cloud from the reference CAD model. At the part level, error analysis is performed on these patches underlying the point clouds. We propose a novel optimization-based primitive refinement method to obtain a set of meaningful patches of point clouds. Two basic operations, splitting and merging, are introduced to refine the coarse primitives. At the feature level, error analysis is performed on circular holes, which are commonly found in CAD models. To facilitate it, a two-stage algorithm is introduced for the detection of circular holes. First, edge points are identified using a tensor-voting algorithm. Then, multiple circles are fitted through a hypothesize-and-clusterize framework, ensuring accurate detection and analysis of the circular features. Experimental results on various aircraft CAD models demonstrate the effectiveness of our proposed method.
☆ Rethinking Random Masking in Self Distillation on ViT
Vision Transformers (ViTs) have demonstrated remarkable performance across a wide range of vision tasks. In particular, self-distillation frameworks such as DINO have contributed significantly to these advances. Within such frameworks, random masking is often utilized to improve training efficiency and introduce regularization. However, recent studies have raised concerns that indiscriminate random masking may inadvertently eliminate critical semantic information, motivating the development of more informed masking strategies. In this study, we explore the role of random masking in the self-distillation setting, focusing on the DINO framework. Specifically, we apply random masking exclusively to the student's global view, while preserving the student's local views and the teacher's global view in their original, unmasked forms. This design leverages DINO's multi-view augmentation scheme to retain clean supervision while inducing robustness through masked inputs. We evaluate our approach using DINO-Tiny on the mini-ImageNet dataset and show that random masking under this asymmetric setup yields more robust and fine-grained attention maps, ultimately enhancing downstream performance.
comment: 4 pages
☆ Transformer IMU Calibrator: Dynamic On-body IMU Calibration for Inertial Motion Capture SIGGRAPH 2025
In this paper, we propose a novel dynamic calibration method for sparse inertial motion capture systems, which is the first to break the restrictive absolute static assumption in IMU calibration, i.e., the coordinate drift RG'G and measurement offset RBS remain constant during the entire motion, thereby significantly expanding their application scenarios. Specifically, we achieve real-time estimation of RG'G and RBS under two relaxed assumptions: i) the matrices change negligibly in a short time window; ii) the human movements/IMU readings are diverse in such a time window. Intuitively, the first assumption reduces the number of candidate matrices, and the second assumption provides diverse constraints, which greatly reduces the solution space and allows for accurate estimation of RG'G and RBS from a short history of IMU readings in real time. To achieve this, we created synthetic datasets of paired RG'G, RBS matrices and IMU readings, and learned their mappings using a Transformer-based model. We also designed a calibration trigger based on the diversity of IMU readings to ensure that assumption ii) is met before applying our method. To our knowledge, we are the first to achieve implicit IMU calibration (i.e., seamlessly putting IMUs into use without the need for an explicit calibration process), as well as the first to enable long-term and accurate motion capture using sparse IMUs. The code and dataset are available at https://github.com/ZuoCX1996/TIC.
comment: Accepted by SIGGRAPH 2025 (TOG)
☆ Harmonizing Geometry and Uncertainty: Diffusion with Hyperspheres
Do contemporary diffusion models preserve the class geometry of hyperspherical data? Standard diffusion models rely on isotropic Gaussian noise in the forward process, inherently favoring Euclidean spaces. However, many real-world problems involve non-Euclidean distributions, such as hyperspherical manifolds, where class-specific patterns are governed by angular geometry within hypercones. When modeled in Euclidean space, these angular subtleties are lost, leading to suboptimal generative performance. To address this limitation, we introduce HyperSphereDiff to align hyperspherical structures with directional noise, preserving class geometry and effectively capturing angular uncertainty. We demonstrate both theoretically and empirically that this approach aligns the generative process with the intrinsic geometry of hyperspherical data, resulting in more accurate and geometry-aware generative models. We evaluate our framework on four object datasets and two face datasets, showing that incorporating angular uncertainty better preserves the underlying hyperspherical manifold. Resources are available at: {https://github.com/IAB-IITJ/Harmonizing-Geometry-and-Uncertainty-Diffusion-with-Hyperspheres/}
☆ Text to Image for Multi-Label Image Recognition with Joint Prompt-Adapter Learning
Benefited from image-text contrastive learning, pre-trained vision-language models, e.g., CLIP, allow to direct leverage texts as images (TaI) for parameter-efficient fine-tuning (PEFT). While CLIP is capable of making image features to be similar to the corresponding text features, the modality gap remains a nontrivial issue and limits image recognition performance of TaI. Using multi-label image recognition (MLR) as an example, we present a novel method, called T2I-PAL to tackle the modality gap issue when using only text captions for PEFT. The core design of T2I-PAL is to leverage pre-trained text-to-image generation models to generate photo-realistic and diverse images from text captions, thereby reducing the modality gap. To further enhance MLR, T2I-PAL incorporates a class-wise heatmap and learnable prototypes. This aggregates local similarities, making the representation of local visual features more robust and informative for multi-label recognition. For better PEFT, we further combine both prompt tuning and adapter learning to enhance classification performance. T2I-PAL offers significant advantages: it eliminates the need for fully semantically annotated training images, thereby reducing the manual annotation workload, and it preserves the intrinsic mode of the CLIP model, allowing for seamless integration with any existing CLIP framework. Extensive experiments on multiple benchmarks, including MS-COCO, VOC2007, and NUS-WIDE, show that our T2I-PAL can boost recognition performance by 3.47% in average above the top-ranked state-of-the-art methods.
☆ DanceChat: Large Language Model-Guided Music-to-Dance Generation
Music-to-dance generation aims to synthesize human dance motion conditioned on musical input. Despite recent progress, significant challenges remain due to the semantic gap between music and dance motion, as music offers only abstract cues, such as melody, groove, and emotion, without explicitly specifying the physical movements. Moreover, a single piece of music can produce multiple plausible dance interpretations. This one-to-many mapping demands additional guidance, as music alone provides limited information for generating diverse dance movements. The challenge is further amplified by the scarcity of paired music and dance data, which restricts the model\^a\u{A}\'Zs ability to learn diverse dance patterns. In this paper, we introduce DanceChat, a Large Language Model (LLM)-guided music-to-dance generation approach. We use an LLM as a choreographer that provides textual motion instructions, offering explicit, high-level guidance for dance generation. This approach goes beyond implicit learning from music alone, enabling the model to generate dance that is both more diverse and better aligned with musical styles. Our approach consists of three components: (1) an LLM-based pseudo instruction generation module that produces textual dance guidance based on music style and structure, (2) a multi-modal feature extraction and fusion module that integrates music, rhythm, and textual guidance into a shared representation, and (3) a diffusion-based motion synthesis module together with a multi-modal alignment loss, which ensures that the generated dance is aligned with both musical and textual cues. Extensive experiments on AIST++ and human evaluations show that DanceChat outperforms state-of-the-art methods both qualitatively and quantitatively.
comment: check demos at https://dancechat.github.io/anon/
☆ Improving Medical Visual Representation Learning with Pathological-level Cross-Modal Alignment and Correlation Exploration
Learning medical visual representations from image-report pairs through joint learning has garnered increasing research attention due to its potential to alleviate the data scarcity problem in the medical domain. The primary challenges stem from the lengthy reports that feature complex discourse relations and semantic pathologies. Previous works have predominantly focused on instance-wise or token-wise cross-modal alignment, often neglecting the importance of pathological-level consistency. This paper presents a novel framework PLACE that promotes the Pathological-Level Alignment and enriches the fine-grained details via Correlation Exploration without additional human annotations. Specifically, we propose a novel pathological-level cross-modal alignment (PCMA) approach to maximize the consistency of pathology observations from both images and reports. To facilitate this, a Visual Pathology Observation Extractor is introduced to extract visual pathological observation representations from localized tokens. The PCMA module operates independently of any external disease annotations, enhancing the generalizability and robustness of our methods. Furthermore, we design a proxy task that enforces the model to identify correlations among image patches, thereby enriching the fine-grained details crucial for various downstream tasks. Experimental results demonstrate that our proposed framework achieves new state-of-the-art performance on multiple downstream tasks, including classification, image-to-text retrieval, semantic segmentation, object detection and report generation.
comment: 12 pages, 10 tables and 6 figures
☆ DreamActor-H1: High-Fidelity Human-Product Demonstration Video Generation via Motion-designed Diffusion Transformers
In e-commerce and digital marketing, generating high-fidelity human-product demonstration videos is important for effective product presentation. However, most existing frameworks either fail to preserve the identities of both humans and products or lack an understanding of human-product spatial relationships, leading to unrealistic representations and unnatural interactions. To address these challenges, we propose a Diffusion Transformer (DiT)-based framework. Our method simultaneously preserves human identities and product-specific details, such as logos and textures, by injecting paired human-product reference information and utilizing an additional masked cross-attention mechanism. We employ a 3D body mesh template and product bounding boxes to provide precise motion guidance, enabling intuitive alignment of hand gestures with product placements. Additionally, structured text encoding is used to incorporate category-level semantics, enhancing 3D consistency during small rotational changes across frames. Trained on a hybrid dataset with extensive data augmentation strategies, our approach outperforms state-of-the-art techniques in maintaining the identity integrity of both humans and products and generating realistic demonstration motions. Project page: https://submit2025-dream.github.io/DreamActor-H1/.
☆ LRSLAM: Low-rank Representation of Signed Distance Fields in Dense Visual SLAM System ECCV 2024
Simultaneous Localization and Mapping (SLAM) has been crucial across various domains, including autonomous driving, mobile robotics, and mixed reality. Dense visual SLAM, leveraging RGB-D camera systems, offers advantages but faces challenges in achieving real-time performance, robustness, and scalability for large-scale scenes. Recent approaches utilizing neural implicit scene representations show promise but suffer from high computational costs and memory requirements. ESLAM introduced a plane-based tensor decomposition but still struggled with memory growth. Addressing these challenges, we propose a more efficient visual SLAM model, called LRSLAM, utilizing low-rank tensor decomposition methods. Our approach, leveraging the Six-axis and CP decompositions, achieves better convergence rates, memory efficiency, and reconstruction/localization quality than existing state-of-the-art approaches. Evaluation across diverse indoor RGB-D datasets demonstrates LRSLAM's superior performance in terms of parameter efficiency, processing time, and accuracy, retaining reconstruction and localization quality. Our code will be publicly available upon publication.
comment: Accepted at ECCV 2024
☆ Balancing Tails when Comparing Distributions: Comprehensive Equity Index (CEI) with Application to Bias Evaluation in Operational Face Biometrics
Demographic bias in high-performance face recognition (FR) systems often eludes detection by existing metrics, especially with respect to subtle disparities in the tails of the score distribution. We introduce the Comprehensive Equity Index (CEI), a novel metric designed to address this limitation. CEI uniquely analyzes genuine and impostor score distributions separately, enabling a configurable focus on tail probabilities while also considering overall distribution shapes. Our extensive experiments (evaluating state-of-the-art FR systems, intentionally biased models, and diverse datasets) confirm CEI's superior ability to detect nuanced biases where previous methods fall short. Furthermore, we present CEI^A, an automated version of the metric that enhances objectivity and simplifies practical application. CEI provides a robust and sensitive tool for operational FR fairness assessment. The proposed methods have been developed particularly for bias evaluation in face biometrics but, in general, they are applicable for comparing statistical distributions in any problem where one is interested in analyzing the distribution tails.
☆ From Images to Insights: Explainable Biodiversity Monitoring with Plain Language Habitat Explanations
Explaining why the species lives at a particular location is important for understanding ecological systems and conserving biodiversity. However, existing ecological workflows are fragmented and often inaccessible to non-specialists. We propose an end-to-end visual-to-causal framework that transforms a species image into interpretable causal insights about its habitat preference. The system integrates species recognition, global occurrence retrieval, pseudo-absence sampling, and climate data extraction. We then discover causal structures among environmental features and estimate their influence on species occurrence using modern causal inference methods. Finally, we generate statistically grounded, human-readable causal explanations from structured templates and large language models. We demonstrate the framework on a bee and a flower species and report early results as part of an ongoing project, showing the potential of the multimodal AI assistant backed up by a recommended ecological modeling practice for describing species habitat in human-understandable language.
comment: Code will be released at: https://github.com/Yutong-Zhou-cv/BioX
☆ ContextRefine-CLIP for EPIC-KITCHENS-100 Multi-Instance Retrieval Challenge 2025
This report presents ContextRefine-CLIP (CR-CLIP), an efficient model for visual-textual multi-instance retrieval tasks. The approach is based on the dual-encoder AVION, on which we introduce a cross-modal attention flow module to achieve bidirectional dynamic interaction and refinement between visual and textual features to generate more context-aware joint representations. For soft-label relevance matrices provided in tasks such as EPIC-KITCHENS-100, CR-CLIP can work with Symmetric Multi-Similarity Loss to achieve more accurate semantic alignment and optimization using the refined features. Without using ensemble learning, the CR-CLIP model achieves 66.78mAP and 82.08nDCG on the EPIC-KITCHENS-100 public leaderboard, which significantly outperforms the baseline model and fully validates its effectiveness in cross-modal retrieval. The code will be released open-source on https://github.com/delCayr/ContextRefine-Clip
AniMaker: Automated Multi-Agent Animated Storytelling with MCTS-Driven Clip Generation
Despite rapid advancements in video generation models, generating coherent storytelling videos that span multiple scenes and characters remains challenging. Current methods often rigidly convert pre-generated keyframes into fixed-length clips, resulting in disjointed narratives and pacing issues. Furthermore, the inherent instability of video generation models means that even a single low-quality clip can significantly degrade the entire output animation's logical coherence and visual continuity. To overcome these obstacles, we introduce AniMaker, a multi-agent framework enabling efficient multi-candidate clip generation and storytelling-aware clip selection, thus creating globally consistent and story-coherent animation solely from text input. The framework is structured around specialized agents, including the Director Agent for storyboard generation, the Photography Agent for video clip generation, the Reviewer Agent for evaluation, and the Post-Production Agent for editing and voiceover. Central to AniMaker's approach are two key technical components: MCTS-Gen in Photography Agent, an efficient Monte Carlo Tree Search (MCTS)-inspired strategy that intelligently navigates the candidate space to generate high-potential clips while optimizing resource usage; and AniEval in Reviewer Agent, the first framework specifically designed for multi-shot animation evaluation, which assesses critical aspects such as story-level consistency, action completion, and animation-specific features by considering each clip in the context of its preceding and succeeding clips. Experiments demonstrate that AniMaker achieves superior quality as measured by popular metrics including VBench and our proposed AniEval framework, while significantly improving the efficiency of multi-candidate generation, pushing AI-generated storytelling animation closer to production standards.
☆ SLICK: Selective Localization and Instance Calibration for Knowledge-Enhanced Car Damage Segmentation in Automotive Insurance
We present SLICK, a novel framework for precise and robust car damage segmentation that leverages structural priors and domain knowledge to tackle real-world automotive inspection challenges. SLICK introduces five key components: (1) Selective Part Segmentation using a high-resolution semantic backbone guided by structural priors to achieve surgical accuracy in segmenting vehicle parts even under occlusion, deformation, or paint loss; (2) Localization-Aware Attention blocks that dynamically focus on damaged regions, enhancing fine-grained damage detection in cluttered and complex street scenes; (3) an Instance-Sensitive Refinement head that leverages panoptic cues and shape priors to disentangle overlapping or adjacent parts, enabling precise boundary alignment; (4) Cross-Channel Calibration through multi-scale channel attention that amplifies subtle damage signals such as scratches and dents while suppressing noise like reflections and decals; and (5) a Knowledge Fusion Module that integrates synthetic crash data, part geometry, and real-world insurance datasets to improve generalization and handle rare cases effectively. Experiments on large-scale automotive datasets demonstrate SLICK's superior segmentation performance, robustness, and practical applicability for insurance and automotive inspection workflows.
comment: 10 pages
☆ ALBERT: Advanced Localization and Bidirectional Encoder Representations from Transformers for Automotive Damage Evaluation
This paper introduces ALBERT, an instance segmentation model specifically designed for comprehensive car damage and part segmentation. Leveraging the power of Bidirectional Encoder Representations, ALBERT incorporates advanced localization mechanisms to accurately identify and differentiate between real and fake damages, as well as segment individual car parts. The model is trained on a large-scale, richly annotated automotive dataset that categorizes damage into 26 types, identifies 7 fake damage variants, and segments 61 distinct car parts. Our approach demonstrates strong performance in both segmentation accuracy and damage classification, paving the way for intelligent automotive inspection and assessment applications.
comment: 10 pages
☆ CogStream: Context-guided Streaming Video Question Answering
Despite advancements in Video Large Language Models (Vid-LLMs) improving multimodal understanding, challenges persist in streaming video reasoning due to its reliance on contextual information. Existing paradigms feed all available historical contextual information into Vid-LLMs, resulting in a significant computational burden for visual data processing. Furthermore, the inclusion of irrelevant context distracts models from key details. This paper introduces a challenging task called Context-guided Streaming Video Reasoning (CogStream), which simulates real-world streaming video scenarios, requiring models to identify the most relevant historical contextual information to deduce answers for questions about the current stream. To support CogStream, we present a densely annotated dataset featuring extensive and hierarchical question-answer pairs, generated by a semi-automatic pipeline. Additionally, we present CogReasoner as a baseline model. It efficiently tackles this task by leveraging visual stream compression and historical dialogue retrieval. Extensive experiments prove the effectiveness of this method. Code will be released soon.
☆ Edit360: 2D Image Edits to 3D Assets from Any Angle
Recent advances in diffusion models have significantly improved image generation and editing, but extending these capabilities to 3D assets remains challenging, especially for fine-grained edits that require multi-view consistency. Existing methods typically restrict editing to predetermined viewing angles, severely limiting their flexibility and practical applications. We introduce Edit360, a tuning-free framework that extends 2D modifications to multi-view consistent 3D editing. Built upon video diffusion models, Edit360 enables user-specific editing from arbitrary viewpoints while ensuring structural coherence across all views. The framework selects anchor views for 2D modifications and propagates edits across the entire 360-degree range. To achieve this, Edit360 introduces a novel Anchor-View Editing Propagation mechanism, which effectively aligns and merges multi-view information within the latent and attention spaces of diffusion models. The resulting edited multi-view sequences facilitate the reconstruction of high-quality 3D assets, enabling customizable 3D content creation.
comment: 11 pages, 9 figures
☆ J-DDL: Surface Damage Detection and Localization System for Fighter Aircraft
Ensuring the safety and extended operational life of fighter aircraft necessitates frequent and exhaustive inspections. While surface defect detection is feasible for human inspectors, manual methods face critical limitations in scalability, efficiency, and consistency due to the vast surface area, structural complexity, and operational demands of aircraft maintenance. We propose a smart surface damage detection and localization system for fighter aircraft, termed J-DDL. J-DDL integrates 2D images and 3D point clouds of the entire aircraft surface, captured using a combined system of laser scanners and cameras, to achieve precise damage detection and localization. Central to our system is a novel damage detection network built on the YOLO architecture, specifically optimized for identifying surface defects in 2D aircraft images. Key innovations include lightweight Fasternet blocks for efficient feature extraction, an optimized neck architecture incorporating Efficient Multiscale Attention (EMA) modules for superior feature aggregation, and the introduction of a novel loss function, Inner-CIOU, to enhance detection accuracy. After detecting damage in 2D images, the system maps the identified anomalies onto corresponding 3D point clouds, enabling accurate 3D localization of defects across the aircraft surface. Our J-DDL not only streamlines the inspection process but also ensures more comprehensive and detailed coverage of large and complex aircraft exteriors. To facilitate further advancements in this domain, we have developed the first publicly available dataset specifically focused on aircraft damage. Experimental evaluations validate the effectiveness of our framework, underscoring its potential to significantly advance automated aircraft inspection technologies.
☆ Semantic Localization Guiding Segment Anything Model For Reference Remote Sensing Image Segmentation
The Reference Remote Sensing Image Segmentation (RRSIS) task generates segmentation masks for specified objects in images based on textual descriptions, which has attracted widespread attention and research interest. Current RRSIS methods rely on multi-modal fusion backbones and semantic segmentation heads but face challenges like dense annotation requirements and complex scene interpretation. To address these issues, we propose a framework named \textit{prompt-generated semantic localization guiding Segment Anything Model}(PSLG-SAM), which decomposes the RRSIS task into two stages: coarse localization and fine segmentation. In coarse localization stage, a visual grounding network roughly locates the text-described object. In fine segmentation stage, the coordinates from the first stage guide the Segment Anything Model (SAM), enhanced by a clustering-based foreground point generator and a mask boundary iterative optimization strategy for precise segmentation. Notably, the second stage can be train-free, significantly reducing the annotation data burden for the RRSIS task. Additionally, decomposing the RRSIS task into two stages allows for focusing on specific region segmentation, avoiding interference from complex scenes.We further contribute a high-quality, multi-category manually annotated dataset. Experimental validation on two datasets (RRSIS-D and RRSIS-M) demonstrates that PSLG-SAM achieves significant performance improvements and surpasses existing state-of-the-art models.Our code will be made publicly available.
☆ Class-Incremental Learning for Honey Botanical Origin Classification with Hyperspectral Images: A Study with Continual Backpropagation
Honey is an important commodity in the global market. Honey types of different botanical origins provide diversified flavors and health benefits, thus having different market values. Developing accurate and effective botanical origin-distinguishing techniques is crucial to protect consumers' interests. However, it is impractical to collect all the varieties of honey products at once to train a model for botanical origin differentiation. Therefore, researchers developed class-incremental learning (CIL) techniques to address this challenge. This study examined and compared multiple CIL algorithms on a real-world honey hyperspectral imaging dataset. A novel technique is also proposed to improve the performance of class-incremental learning algorithms by combining with a continual backpropagation (CB) algorithm. The CB method addresses the issue of loss-of-plasticity by reinitializing a proportion of less-used hidden neurons to inject variability into neural networks. Experiments showed that CB improved the performance of most CIL methods by 1-7\%.
☆ Sheet Music Benchmark: Standardized Optical Music Recognition Evaluation
In this work, we introduce the Sheet Music Benchmark (SMB), a dataset of six hundred and eighty-five pages specifically designed to benchmark Optical Music Recognition (OMR) research. SMB encompasses a diverse array of musical textures, including monophony, pianoform, quartet, and others, all encoded in Common Western Modern Notation using the Humdrum **kern format. Alongside SMB, we introduce the OMR Normalized Edit Distance (OMR-NED), a new metric tailored explicitly for evaluating OMR performance. OMR-NED builds upon the widely-used Symbol Error Rate (SER), offering a fine-grained and detailed error analysis that covers individual musical elements such as note heads, beams, pitches, accidentals, and other critical notation features. The resulting numeric score provided by OMR-NED facilitates clear comparisons, enabling researchers and end-users alike to identify optimal OMR approaches. Our work thus addresses a long-standing gap in OMR evaluation, and we support our contributions with baseline experiments using standardized SMB dataset splits for training and assessing state-of-the-art methods.
☆ LLMs Are Not Yet Ready for Deepfake Image Detection
The growing sophistication of deepfakes presents substantial challenges to the integrity of media and the preservation of public trust. Concurrently, vision-language models (VLMs), large language models enhanced with visual reasoning capabilities, have emerged as promising tools across various domains, sparking interest in their applicability to deepfake detection. This study conducts a structured zero-shot evaluation of four prominent VLMs: ChatGPT, Claude, Gemini, and Grok, focusing on three primary deepfake types: faceswap, reenactment, and synthetic generation. Leveraging a meticulously assembled benchmark comprising authentic and manipulated images from diverse sources, we evaluate each model's classification accuracy and reasoning depth. Our analysis indicates that while VLMs can produce coherent explanations and detect surface-level anomalies, they are not yet dependable as standalone detection systems. We highlight critical failure modes, such as an overemphasis on stylistic elements and vulnerability to misleading visual patterns like vintage aesthetics. Nevertheless, VLMs exhibit strengths in interpretability and contextual analysis, suggesting their potential to augment human expertise in forensic workflows. These insights imply that although general-purpose models currently lack the reliability needed for autonomous deepfake detection, they hold promise as integral components in hybrid or human-in-the-loop detection frameworks.
comment: 6 pages, 3 figures, and 2 tables. paper is under review
☆ Low-Barrier Dataset Collection with Real Human Body for Interactive Per-Garment Virtual Try-On
Existing image-based virtual try-on methods are often limited to the front view and lack real-time performance. While per-garment virtual try-on methods have tackled these issues by capturing per-garment datasets and training per-garment neural networks, they still encounter practical limitations: (1) the robotic mannequin used to capture per-garment datasets is prohibitively expensive for widespread adoption and fails to accurately replicate natural human body deformation; (2) the synthesized garments often misalign with the human body. To address these challenges, we propose a low-barrier approach for collecting per-garment datasets using real human bodies, eliminating the necessity for a customized robotic mannequin. We also introduce a hybrid person representation that enhances the existing intermediate representation with a simplified DensePose map. This ensures accurate alignment of synthesized garment images with the human body and enables human-garment interaction without the need for customized wearable devices. We performed qualitative and quantitative evaluations against other state-of-the-art image-based virtual try-on methods and conducted ablation studies to demonstrate the superiority of our method regarding image quality and temporal consistency. Finally, our user study results indicated that most participants found our virtual try-on system helpful for making garment purchasing decisions.
☆ MedSeg-R: Reasoning Segmentation in Medical Images with Multimodal Large Language Models
Medical image segmentation is crucial for clinical diagnosis, yet existing models are limited by their reliance on explicit human instructions and lack the active reasoning capabilities to understand complex clinical questions. While recent advancements in multimodal large language models (MLLMs) have improved medical question-answering (QA) tasks, most methods struggle to generate precise segmentation masks, limiting their application in automatic medical diagnosis. In this paper, we introduce medical image reasoning segmentation, a novel task that aims to generate segmentation masks based on complex and implicit medical instructions. To address this, we propose MedSeg-R, an end-to-end framework that leverages the reasoning abilities of MLLMs to interpret clinical questions while also capable of producing corresponding precise segmentation masks for medical images. It is built on two core components: 1) a global context understanding module that interprets images and comprehends complex medical instructions to generate multi-modal intermediate tokens, and 2) a pixel-level grounding module that decodes these tokens to produce precise segmentation masks and textual responses. Furthermore, we introduce MedSeg-QA, a large-scale dataset tailored for the medical image reasoning segmentation task. It includes over 10,000 image-mask pairs and multi-turn conversations, automatically annotated using large language models and refined through physician reviews. Experiments show MedSeg-R's superior performance across several benchmarks, achieving high segmentation accuracy and enabling interpretable textual analysis of medical images.
comment: {\dag}: Equal contribution
☆ Starting Positions Matter: A Study on Better Weight Initialization for Neural Network Quantization ICCV 2023
Deep neural network (DNN) quantization for fast, efficient inference has been an important tool in limiting the cost of machine learning (ML) model inference. Quantization-specific model development techniques such as regularization, quantization-aware training, and quantization-robustness penalties have served to greatly boost the accuracy and robustness of modern DNNs. However, very little exploration has been done on improving the initial conditions of DNN training for quantization. Just as random weight initialization has been shown to significantly impact test accuracy of floating point models, it would make sense that different weight initialization methods impact quantization robustness of trained models. We present an extensive study examining the effects of different weight initializations on a variety of CNN building blocks commonly used in efficient CNNs. This analysis reveals that even with varying CNN architectures, the choice of random weight initializer can significantly affect final quantization robustness. Next, we explore a new method for quantization-robust CNN initialization -- using Graph Hypernetworks (GHN) to predict parameters of quantized DNNs. Besides showing that GHN-predicted parameters are quantization-robust after regular float32 pretraining (of the GHN), we find that finetuning GHNs to predict parameters for quantized graphs (which we call GHN-QAT) can further improve quantized accuracy of CNNs. Notably, GHN-QAT shows significant accuracy improvements for even 4-bit quantization and better-than-random accuracy for 2-bits. To the best of our knowledge, this is the first in-depth study on quantization-aware DNN weight initialization. GHN-QAT offers a novel approach to quantized DNN model design. Future investigations, such as using GHN-QAT-initialized parameters for quantization-aware training, can further streamline the DNN quantization process.
comment: Portions of this article have been presented as extended abstracts at the ICCV 2023 Workshop on Low Bit Quantized Neural Networks (ICCVW-LBQNN 2023) and the 2020 Conference on Vision and Intelligent Systems (CVIS 2020). arXiv admin note: text overlap with arXiv:2011.14578, arXiv:2208.12489, arXiv:2309.13773
☆ Boosting Adversarial Transferability for Hyperspectral Image Classification Using 3D Structure-invariant Transformation and Intermediate Feature Distance
Deep Neural Networks (DNNs) are vulnerable to adversarial attacks, which pose security challenges to hyperspectral image (HSI) classification technologies based on DNNs. In the domain of natural images, numerous transfer-based adversarial attack methods have been studied. However, HSIs differ from natural images due to their high-dimensional and rich spectral information. Current research on HSI adversarial examples remains limited and faces challenges in fully utilizing the structural and feature information of images. To address these issues, this paper proposes a novel method to enhance the transferability of the adversarial examples for HSI classification models. First, while keeping the image structure unchanged, the proposed method randomly divides the image into blocks in both spatial and spectral dimensions. Then, various transformations are applied on a block by block basis to increase input diversity and mitigate overfitting. Second, a feature distancing loss targeting intermediate layers is designed, which measures the distance between the amplified features of the original examples and the features of the adversarial examples as the primary loss, while the output layer prediction serves as the auxiliary loss. This guides the perturbation to disrupt the features of the true class in adversarial examples, effectively enhancing transferability. Extensive experiments demonstrate that the adversarial examples generated by the proposed method achieve effective transferability to black-box models on two public HSI datasets. Furthermore, the method maintains robust attack performance even under defense strategies.
☆ Rethinking Generative Human Video Coding with Implicit Motion Transformation
Beyond traditional hybrid-based video codec, generative video codec could achieve promising compression performance by evolving high-dimensional signals into compact feature representations for bitstream compactness at the encoder side and developing explicit motion fields as intermediate supervision for high-quality reconstruction at the decoder side. This paradigm has achieved significant success in face video compression. However, compared to facial videos, human body videos pose greater challenges due to their more complex and diverse motion patterns, i.e., when using explicit motion guidance for Generative Human Video Coding (GHVC), the reconstruction results could suffer severe distortions and inaccurate motion. As such, this paper highlights the limitations of explicit motion-based approaches for human body video compression and investigates the GHVC performance improvement with the aid of Implicit Motion Transformation, namely IMT. In particular, we propose to characterize complex human body signal into compact visual features and transform these features into implicit motion guidance for signal reconstruction. Experimental results demonstrate the effectiveness of the proposed IMT paradigm, which can facilitate GHVC to achieve high-efficiency compression and high-fidelity synthesis.
☆ Towards Robust Multimodal Emotion Recognition under Missing Modalities and Distribution Shifts
Recent advancements in Multimodal Emotion Recognition (MER) face challenges in addressing both modality missing and Out-Of-Distribution (OOD) data simultaneously. Existing methods often rely on specific models or introduce excessive parameters, which limits their practicality. To address these issues, we propose a novel robust MER framework, Causal Inference Distiller (CIDer), and introduce a new task, Random Modality Feature Missing (RMFM), to generalize the definition of modality missing. CIDer integrates two key components: a Model-Specific Self-Distillation (MSSD) module and a Model-Agnostic Causal Inference (MACI) module. MSSD enhances robustness under the RMFM task through a weight-sharing self-distillation approach applied across low-level features, attention maps, and high-level representations. Additionally, a Word-level Self-aligned Attention Module (WSAM) reduces computational complexity, while a Multimodal Composite Transformer (MCT) facilitates efficient multimodal fusion. To tackle OOD challenges, MACI employs a tailored causal graph to mitigate label and language biases using a Multimodal Causal Module (MCM) and fine-grained counterfactual texts. Notably, MACI can independently enhance OOD generalization with minimal additional parameters. Furthermore, we also introduce the new repartitioned MER OOD datasets. Experimental results demonstrate that CIDer achieves robust performance in both RMFM and OOD scenarios, with fewer parameters and faster training compared to state-of-the-art methods. The implementation of this work is publicly accessible at https://github.com/gw-zhong/CIDer.
comment: Submitted to TAC. The code is available at https://github.com/gw-zhong/CIDer
☆ MF2Summ: Multimodal Fusion for Video Summarization with Temporal Alignment
The rapid proliferation of online video content necessitates effective video summarization techniques. Traditional methods, often relying on a single modality (typically visual), struggle to capture the full semantic richness of videos. This paper introduces MF2Summ, a novel video summarization model based on multimodal content understanding, integrating both visual and auditory information. MF2Summ employs a five-stage process: feature extraction, cross-modal attention interaction, feature fusion, segment prediction, and key shot selection. Visual features are extracted using a pre-trained GoogLeNet model, while auditory features are derived using SoundNet. The core of our fusion mechanism involves a cross-modal Transformer and an alignment-guided self-attention Transformer, designed to effectively model inter-modal dependencies and temporal correspondences. Segment importance, location, and center-ness are predicted, followed by key shot selection using Non-Maximum Suppression (NMS) and the Kernel Temporal Segmentation (KTS) algorithm. Experimental results on the SumMe and TVSum datasets demonstrate that MF2Summ achieves competitive performance, notably improving F1-scores by 1.9\% and 0.6\% respectively over the DSNet model, and performing favorably against other state-of-the-art methods.
☆ It's Not the Target, It's the Background: Rethinking Infrared Small Target Detection via Deep Patch-Free Low-Rank Representations
Infrared small target detection (IRSTD) remains a long-standing challenge in complex backgrounds due to low signal-to-clutter ratios (SCR), diverse target morphologies, and the absence of distinctive visual cues. While recent deep learning approaches aim to learn discriminative representations, the intrinsic variability and weak priors of small targets often lead to unstable performance. In this paper, we propose a novel end-to-end IRSTD framework, termed LRRNet, which leverages the low-rank property of infrared image backgrounds. Inspired by the physical compressibility of cluttered scenes, our approach adopts a compression--reconstruction--subtraction (CRS) paradigm to directly model structure-aware low-rank background representations in the image domain, without relying on patch-based processing or explicit matrix decomposition. To the best of our knowledge, this is the first work to directly learn low-rank background structures using deep neural networks in an end-to-end manner. Extensive experiments on multiple public datasets demonstrate that LRRNet outperforms 38 state-of-the-art methods in terms of detection accuracy, robustness, and computational efficiency. Remarkably, it achieves real-time performance with an average speed of 82.34 FPS. Evaluations on the challenging NoisySIRST dataset further confirm the model's resilience to sensor noise. The source code will be made publicly available upon acceptance.
☆ Burn After Reading: Do Multimodal Large Language Models Truly Capture Order of Events in Image Sequences? ACL 2025
This paper introduces the TempVS benchmark, which focuses on temporal grounding and reasoning capabilities of Multimodal Large Language Models (MLLMs) in image sequences. TempVS consists of three main tests (i.e., event relation inference, sentence ordering and image ordering), each accompanied with a basic grounding test. TempVS requires MLLMs to rely on both visual and linguistic modalities to understand the temporal order of events. We evaluate 38 state-of-the-art MLLMs, demonstrating that models struggle to solve TempVS, with a substantial performance gap compared to human capabilities. We also provide fine-grained insights that suggest promising directions for future research. Our TempVS benchmark data and code are available at https://github.com/yjsong22/TempVS.
comment: 27 pages, 14 figures. Accepted to ACL 2025
☆ Semi-Tensor-Product Based Convolutional Neural Networks
The semi-tensor product (STP) of vectors is a generalization of conventional inner product of vectors, which allows the factor vectors to of different dimensions. This paper proposes a domain-based convolutional product (CP). Combining domain-based CP with STP of vectors, a new CP is proposed. Since there is no zero or any other padding, it can avoid the junk information caused by padding. Using it, the STP-based convolutional neural network (CNN) is developed. Its application to image and third order signal identifications is considered.
☆ Pisces: An Auto-regressive Foundation Model for Image Understanding and Generation
Recent advances in large language models (LLMs) have enabled multimodal foundation models to tackle both image understanding and generation within a unified framework. Despite these gains, unified models often underperform compared to specialized models in either task. A key challenge in developing unified models lies in the inherent differences between the visual features needed for image understanding versus generation, as well as the distinct training processes required for each modality. In this work, we introduce Pisces, an auto-regressive multimodal foundation model that addresses this challenge through a novel decoupled visual encoding architecture and tailored training techniques optimized for multimodal generation. Combined with meticulous data curation, pretraining, and finetuning, Pisces achieves competitive performance in both image understanding and image generation. We evaluate Pisces on over 20 public benchmarks for image understanding, where it demonstrates strong performance across a wide range of tasks. Additionally, on GenEval, a widely adopted benchmark for image generation, Pisces exhibits robust generative capabilities. Our extensive analysis reveals the synergistic relationship between image understanding and generation, and the benefits of using separate visual encoders, advancing the field of unified multimodal models.
comment: Unified image understanding and generation model
☆ ReconMOST: Multi-Layer Sea Temperature Reconstruction with Observations-Guided Diffusion
Accurate reconstruction of ocean is essential for reflecting global climate dynamics and supporting marine meteorological research. Conventional methods face challenges due to sparse data, algorithmic complexity, and high computational costs, while increasing usage of machine learning (ML) method remains limited to reconstruction problems at the sea surface and local regions, struggling with issues like cloud occlusion. To address these limitations, this paper proposes ReconMOST, a data-driven guided diffusion model framework for multi-layer sea temperature reconstruction. Specifically, we first pre-train an unconditional diffusion model using a large collection of historical numerical simulation data, enabling the model to attain physically consistent distribution patterns of ocean temperature fields. During the generation phase, sparse yet high-accuracy in-situ observational data are utilized as guidance points for the reverse diffusion process, generating accurate reconstruction results. Importantly, in regions lacking direct observational data, the physically consistent spatial distribution patterns learned during pre-training enable implicitly guided and physically plausible reconstructions. Our method extends ML-based SST reconstruction to a global, multi-layer setting, handling over 92.5% missing data while maintaining reconstruction accuracy, spatial resolution, and superior generalization capability. We pre-train our model on CMIP6 numerical simulation data and conduct guided reconstruction experiments on CMIP6 and EN4 analysis data. The results of mean squared error (MSE) values achieve 0.049 on guidance, 0.680 on reconstruction, and 0.633 on total, respectively, demonstrating the effectiveness and robustness of the proposed framework. Our source code is available at https://github.com/norsheep/ReconMOST.
☆ DART: Differentiable Dynamic Adaptive Region Tokenizer for Vision Transformer and Mamba
Recently, non-convolutional models such as the Vision Transformer (ViT) and Vision Mamba (Vim) have achieved remarkable performance in computer vision tasks. However, their reliance on fixed-size patches often results in excessive encoding of background regions and omission of critical local details, especially when informative objects are sparsely distributed. To address this, we introduce a fully differentiable Dynamic Adaptive Region Tokenizer (DART), which adaptively partitions images into content-dependent patches of varying sizes. DART combines learnable region scores with piecewise differentiable quantile operations to allocate denser tokens to information-rich areas. Despite introducing only approximately 1 million (1M) additional parameters, DART improves accuracy by 2.1% on DeiT (ImageNet-1K). Unlike methods that uniformly increase token density to capture fine-grained details, DART offers a more efficient alternative, achieving 45% FLOPs reduction with superior performance. Extensive experiments on DeiT, Vim, and VideoMamba confirm that DART consistently enhances accuracy while incurring minimal or even reduced computational overhead. Code is available at https://github.com/HCPLab-SYSU/DART.
comment: Code is available at https://github.com/HCPLab-SYSU/DART
☆ Leveraging 6DoF Pose Foundation Models For Mapping Marine Sediment Burial
The burial state of anthropogenic objects on the seafloor provides insight into localized sedimentation dynamics and is also critical for assessing ecological risks, potential pollutant transport, and the viability of recovery or mitigation strategies for hazardous materials such as munitions. Accurate burial depth estimation from remote imagery remains difficult due to partial occlusion, poor visibility, and object degradation. This work introduces a computer vision pipeline, called PoseIDON, which combines deep foundation model features with multiview photogrammetry to estimate six degrees of freedom object pose and the orientation of the surrounding seafloor from ROV video. Burial depth is inferred by aligning CAD models of the objects with observed imagery and fitting a local planar approximation of the seafloor. The method is validated using footage of 54 objects, including barrels and munitions, recorded at a historic ocean dumpsite in the San Pedro Basin. The model achieves a mean burial depth error of approximately 10 centimeters and resolves spatial burial patterns that reflect underlying sediment transport processes. This approach enables scalable, non-invasive mapping of seafloor burial and supports environmental assessment at contaminated sites.
☆ Revisiting Transformers with Insights from Image Filtering
The self-attention mechanism, a cornerstone of Transformer-based state-of-the-art deep learning architectures, is largely heuristic-driven and fundamentally challenging to interpret. Establishing a robust theoretical foundation to explain its remarkable success and limitations has therefore become an increasingly prominent focus in recent research. Some notable directions have explored understanding self-attention through the lens of image denoising and nonparametric regression. While promising, existing frameworks still lack a deeper mechanistic interpretation of various architectural components that enhance self-attention, both in its original formulation and subsequent variants. In this work, we aim to advance this understanding by developing a unifying image processing framework, capable of explaining not only the self-attention computation itself but also the role of components such as positional encoding and residual connections, including numerous later variants. We also pinpoint potential distinctions between the two concepts building upon our framework, and make effort to close this gap. We introduce two independent architectural modifications within transformers. While our primary objective is interpretability, we empirically observe that image processing-inspired modifications can also lead to notably improved accuracy and robustness against data contamination and adversaries across language and vision tasks as well as better long sequence understanding.
comment: 12 pages, 6 figures
☆ FSATFusion: Frequency-Spatial Attention Transformer for Infrared and Visible Image Fusion
The infrared and visible images fusion (IVIF) is receiving increasing attention from both the research community and industry due to its excellent results in downstream applications. Existing deep learning approaches often utilize convolutional neural networks to extract image features. However, the inherently capacity of convolution operations to capture global context can lead to information loss, thereby restricting fusion performance. To address this limitation, we propose an end-to-end fusion network named the Frequency-Spatial Attention Transformer Fusion Network (FSATFusion). The FSATFusion contains a frequency-spatial attention Transformer (FSAT) module designed to effectively capture discriminate features from source images. This FSAT module includes a frequency-spatial attention mechanism (FSAM) capable of extracting significant features from feature maps. Additionally, we propose an improved Transformer module (ITM) to enhance the ability to extract global context information of vanilla Transformer. We conducted both qualitative and quantitative comparative experiments, demonstrating the superior fusion quality and efficiency of FSATFusion compared to other state-of-the-art methods. Furthermore, our network was tested on two additional tasks without any modifications, to verify the excellent generalization capability of FSATFusion. Finally, the object detection experiment demonstrated the superiority of FSATFusion in downstream visual tasks. Our code is available at https://github.com/Lmmh058/FSATFusion.
☆ FaceLiVT: Face Recognition using Linear Vision Transformer with Structural Reparameterization For Mobile Device ICIP
This paper introduces FaceLiVT, a lightweight yet powerful face recognition model that integrates a hybrid Convolution Neural Network (CNN)-Transformer architecture with an innovative and lightweight Multi-Head Linear Attention (MHLA) mechanism. By combining MHLA alongside a reparameterized token mixer, FaceLiVT effectively reduces computational complexity while preserving competitive accuracy. Extensive evaluations on challenging benchmarks; including LFW, CFP-FP, AgeDB-30, IJB-B, and IJB-C; highlight its superior performance compared to state-of-the-art lightweight models. MHLA notably improves inference speed, allowing FaceLiVT to deliver high accuracy with lower latency on mobile devices. Specifically, FaceLiVT is 8.6 faster than EdgeFace, a recent hybrid CNN-Transformer model optimized for edge devices, and 21.2 faster than a pure ViT-Based model. With its balanced design, FaceLiVT offers an efficient and practical solution for real-time face recognition on resource-constrained platforms.
comment: 2025 ICIP
☆ Motion-R1: Chain-of-Thought Reasoning and Reinforcement Learning for Human Motion Generation
Recent advances in large language models, especially in natural language understanding and reasoning, have opened new possibilities for text-to-motion generation. Although existing approaches have made notable progress in semantic alignment and motion synthesis, they often rely on end-to-end mapping strategies that fail to capture deep linguistic structures and logical reasoning. Consequently, generated motions tend to lack controllability, consistency, and diversity. To address these limitations, we propose Motion-R1, a unified motion-language modeling framework that integrates a Chain-of-Thought mechanism. By explicitly decomposing complex textual instructions into logically structured action paths, Motion-R1 provides high-level semantic guidance for motion generation, significantly enhancing the model's ability to interpret and execute multi-step, long-horizon, and compositionally rich commands. To train our model, we adopt Group Relative Policy Optimization, a reinforcement learning algorithm designed for large models, which leverages motion quality feedback to optimize reasoning chains and motion synthesis jointly. Extensive experiments across multiple benchmark datasets demonstrate that Motion-R1 achieves competitive or superior performance compared to state-of-the-art methods, particularly in scenarios requiring nuanced semantic understanding and long-term temporal coherence. The code, model and data will be publicly available.
☆ RealKeyMorph: Keypoints in Real-world Coordinates for Resolution-agnostic Image Registration
Many real-world settings require registration of a pair of medical images that differ in spatial resolution, which may arise from differences in image acquisition parameters like pixel spacing, slice thickness, and field-of-view. However, all previous machine learning-based registration techniques resample images onto a fixed resolution. This is suboptimal because resampling can introduce artifacts due to interpolation. To address this, we present RealKeyMorph (RKM), a resolution-agnostic method for image registration. RKM is an extension of KeyMorph, a registration framework which works by training a network to learn corresponding keypoints for a given pair of images, after which a closed-form keypoint matching step is used to derive the transformation that aligns them. To avoid resampling and enable operating on the raw data, RKM outputs keypoints in real-world coordinates of the scanner. To do this, we leverage the affine matrix produced by the scanner (e.g., MRI machine) that encodes the mapping from voxel coordinates to real world coordinates. By transforming keypoints into real-world space and integrating this into the training process, RKM effectively enables the extracted keypoints to be resolution-agnostic. In our experiments, we demonstrate the advantages of RKM on the registration task for orthogonal 2D stacks of abdominal MRIs, as well as 3D volumes with varying resolutions in brain datasets.
comment: 23 pages, 8 figures, to be submitted to MELBA
☆ UrbanSense:AFramework for Quantitative Analysis of Urban Streetscapes leveraging Vision Large Language Models
Urban cultures and architectural styles vary significantly across cities due to geographical, chronological, historical, and socio-political factors. Understanding these differences is essential for anticipating how cities may evolve in the future. As representative cases of historical continuity and modern innovation in China, Beijing and Shenzhen offer valuable perspectives for exploring the transformation of urban streetscapes. However, conventional approaches to urban cultural studies often rely on expert interpretation and historical documentation, which are difficult to standardize across different contexts. To address this, we propose a multimodal research framework based on vision-language models, enabling automated and scalable analysis of urban streetscape style differences. This approach enhances the objectivity and data-driven nature of urban form research. The contributions of this study are as follows: First, we construct UrbanDiffBench, a curated dataset of urban streetscapes containing architectural images from different periods and regions. Second, we develop UrbanSense, the first vision-language-model-based framework for urban streetscape analysis, enabling the quantitative generation and comparison of urban style representations. Third, experimental results show that Over 80% of generated descriptions pass the t-test (p less than 0.05). High Phi scores (0.912 for cities, 0.833 for periods) from subjective evaluations confirm the method's ability to capture subtle stylistic differences. These results highlight the method's potential to quantify and interpret urban style evolution, offering a scientifically grounded lens for future design.
☆ GeoCAD: Local Geometry-Controllable CAD Generation
Local geometry-controllable computer-aided design (CAD) generation aims to modify local parts of CAD models automatically, enhancing design efficiency. It also ensures that the shapes of newly generated local parts follow user-specific geometric instructions (e.g., an isosceles right triangle or a rectangle with one corner cut off). However, existing methods encounter challenges in achieving this goal. Specifically, they either lack the ability to follow textual instructions or are unable to focus on the local parts. To address this limitation, we introduce GeoCAD, a user-friendly and local geometry-controllable CAD generation method. Specifically, we first propose a complementary captioning strategy to generate geometric instructions for local parts. This strategy involves vertex-based and VLLM-based captioning for systematically annotating simple and complex parts, respectively. In this way, we caption $\sim$221k different local parts in total. In the training stage, given a CAD model, we randomly mask a local part. Then, using its geometric instruction and the remaining parts as input, we prompt large language models (LLMs) to predict the masked part. During inference, users can specify any local part for modification while adhering to a variety of predefined geometric instructions. Extensive experiments demonstrate the effectiveness of GeoCAD in generation quality, validity and text-to-CAD consistency. Code will be available at https://github.com/Zhanwei-Z/GeoCAD.
comment: 18 pages, 12 figures
☆ PointGS: Point Attention-Aware Sparse View Synthesis with Gaussian Splatting
3D Gaussian splatting (3DGS) is an innovative rendering technique that surpasses the neural radiance field (NeRF) in both rendering speed and visual quality by leveraging an explicit 3D scene representation. Existing 3DGS approaches require a large number of calibrated views to generate a consistent and complete scene representation. When input views are limited, 3DGS tends to overfit the training views, leading to noticeable degradation in rendering quality. To address this limitation, we propose a Point-wise Feature-Aware Gaussian Splatting framework that enables real-time, high-quality rendering from sparse training views. Specifically, we first employ the latest stereo foundation model to estimate accurate camera poses and reconstruct a dense point cloud for Gaussian initialization. We then encode the colour attributes of each 3D Gaussian by sampling and aggregating multiscale 2D appearance features from sparse inputs. To enhance point-wise appearance representation, we design a point interaction network based on a self-attention mechanism, allowing each Gaussian point to interact with its nearest neighbors. These enriched features are subsequently decoded into Gaussian parameters through two lightweight multi-layer perceptrons (MLPs) for final rendering. Extensive experiments on diverse benchmarks demonstrate that our method significantly outperforms NeRF-based approaches and achieves competitive performance under few-shot settings compared to the state-of-the-art 3DGS methods.
☆ Using Vision Language Models to Detect Students' Academic Emotion through Facial Expressions
Students' academic emotions significantly influence their social behavior and learning performance. Traditional approaches to automatically and accurately analyze these emotions have predominantly relied on supervised machine learning algorithms. However, these models often struggle to generalize across different contexts, necessitating repeated cycles of data collection, annotation, and training. The emergence of Vision-Language Models (VLMs) offers a promising alternative, enabling generalization across visual recognition tasks through zero-shot prompting without requiring fine-tuning. This study investigates the potential of VLMs to analyze students' academic emotions via facial expressions in an online learning environment. We employed two VLMs, Llama-3.2-11B-Vision-Instruct and Qwen2.5-VL-7B-Instruct, to analyze 5,000 images depicting confused, distracted, happy, neutral, and tired expressions using zero-shot prompting. Preliminary results indicate that both models demonstrate moderate performance in academic facial expression recognition, with Qwen2.5-VL-7B-Instruct outperforming Llama-3.2-11B-Vision-Instruct. Notably, both models excel in identifying students' happy emotions but fail to detect distracted behavior. Additionally, Qwen2.5-VL-7B-Instruct exhibits relatively high performance in recognizing students' confused expressions, highlighting its potential for practical applications in identifying content that causes student confusion.
☆ Research on Audio-Visual Quality Assessment Dataset and Method for User-Generated Omnidirectional Video ICME 2025
In response to the rising prominence of the Metaverse, omnidirectional videos (ODVs) have garnered notable interest, gradually shifting from professional-generated content (PGC) to user-generated content (UGC). However, the study of audio-visual quality assessment (AVQA) within ODVs remains limited. To address this, we construct a dataset of UGC omnidirectional audio and video (A/V) content. The videos are captured by five individuals using two different types of omnidirectional cameras, shooting 300 videos covering 10 different scene types. A subjective AVQA experiment is conducted on the dataset to obtain the Mean Opinion Scores (MOSs) of the A/V sequences. After that, to facilitate the development of UGC-ODV AVQA fields, we construct an effective AVQA baseline model on the proposed dataset, of which the baseline model consists of video feature extraction module, audio feature extraction and audio-visual fusion module. The experimental results demonstrate that our model achieves optimal performance on the proposed dataset.
comment: Our paper has been accepted by ICME 2025
☆ Towards Scalable SOAP Note Generation: A Weakly Supervised Multimodal Framework CVPR
Skin carcinoma is the most prevalent form of cancer globally, accounting for over $8 billion in annual healthcare expenditures. In clinical settings, physicians document patient visits using detailed SOAP (Subjective, Objective, Assessment, and Plan) notes. However, manually generating these notes is labor-intensive and contributes to clinician burnout. In this work, we propose a weakly supervised multimodal framework to generate clinically structured SOAP notes from limited inputs, including lesion images and sparse clinical text. Our approach reduces reliance on manual annotations, enabling scalable, clinically grounded documentation while alleviating clinician burden and reducing the need for large annotated data. Our method achieves performance comparable to GPT-4o, Claude, and DeepSeek Janus Pro across key clinical relevance metrics. To evaluate clinical quality, we introduce two novel metrics MedConceptEval and Clinical Coherence Score (CCS) which assess semantic alignment with expert medical concepts and input features, respectively.
comment: Accepted at IEEE/CVF Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
☆ SWDL: Stratum-Wise Difference Learning with Deep Laplacian Pyramid for Semi-Supervised 3D Intracranial Hemorrhage Segmentation
Recent advances in medical imaging have established deep learning-based segmentation as the predominant approach, though it typically requires large amounts of manually annotated data. However, obtaining annotations for intracranial hemorrhage (ICH) remains particularly challenging due to the tedious and costly labeling process. Semi-supervised learning (SSL) has emerged as a promising solution to address the scarcity of labeled data, especially in volumetric medical image segmentation. Unlike conventional SSL methods that primarily focus on high-confidence pseudo-labels or consistency regularization, we propose SWDL-Net, a novel SSL framework that exploits the complementary advantages of Laplacian pyramid and deep convolutional upsampling. The Laplacian pyramid excels at edge sharpening, while deep convolutions enhance detail precision through flexible feature mapping. Our framework achieves superior segmentation of lesion details and boundaries through a difference learning mechanism that effectively integrates these complementary approaches. Extensive experiments on a 271-case ICH dataset and public benchmarks demonstrate that SWDL-Net outperforms current state-of-the-art methods in scenarios with only 2% labeled data. Additional evaluations on the publicly available Brain Hemorrhage Segmentation Dataset (BHSD) with 5% labeled data further confirm the superiority of our approach. Code and data have been released at https://github.com/SIAT-CT-LAB/SWDL.
comment: 11 pages, 4 figures, 6 Tables
☆ DUN-SRE: Deep Unrolling Network with Spatiotemporal Rotation Equivariance for Dynamic MRI Reconstruction
Dynamic Magnetic Resonance Imaging (MRI) exhibits transformation symmetries, including spatial rotation symmetry within individual frames and temporal symmetry along the time dimension. Explicit incorporation of these symmetry priors in the reconstruction model can significantly improve image quality, especially under aggressive undersampling scenarios. Recently, Equivariant convolutional neural network (ECNN) has shown great promise in exploiting spatial symmetry priors. However, existing ECNNs critically fail to model temporal symmetry, arguably the most universal and informative structural prior in dynamic MRI reconstruction. To tackle this issue, we propose a novel Deep Unrolling Network with Spatiotemporal Rotation Equivariance (DUN-SRE) for Dynamic MRI Reconstruction. The DUN-SRE establishes spatiotemporal equivariance through a (2+1)D equivariant convolutional architecture. In particular, it integrates both the data consistency and proximal mapping module into a unified deep unrolling framework. This architecture ensures rigorous propagation of spatiotemporal rotation symmetry constraints throughout the reconstruction process, enabling more physically accurate modeling of cardiac motion dynamics in cine MRI. In addition, a high-fidelity group filter parameterization mechanism is developed to maintain representation precision while enforcing symmetry constraints. Comprehensive experiments on Cardiac CINE MRI datasets demonstrate that DUN-SRE achieves state-of-the-art performance, particularly in preserving rotation-symmetric structures, offering strong generalization capability to a broad range of dynamic MRI reconstruction tasks.
☆ Uncertainty-Aware Deep Learning for Automated Skin Cancer Classification: A Comprehensive Evaluation
Accurate and reliable skin cancer diagnosis is critical for early treatment and improved patient outcomes. Deep learning (DL) models have shown promise in automating skin cancer classification, but their performance can be limited by data scarcity and a lack of uncertainty awareness. In this study, we present a comprehensive evaluation of DL-based skin lesion classification using transfer learning and uncertainty quantification (UQ) on the HAM10000 dataset. In the first phase, we benchmarked several pre-trained feature extractors-including Contrastive Language-Image Pretraining (CLIP) variants, Residual Network-50 (ResNet50), Densely Connected Convolutional Network (DenseNet121), Visual Geometry Group network (VGG16), and EfficientNet-V2-Large-combined with a range of traditional classifiers such as Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost), and logistic regression. Our results show that CLIP-based vision transformers, particularly LAION CLIP ViT-H/14 with SVM, deliver the highest classification performance. In the second phase, we incorporated UQ using Monte Carlo Dropout (MCD), Ensemble, and Ensemble Monte Carlo Dropout (EMCD) to assess not only prediction accuracy but also the reliability of model outputs. We evaluated these models using uncertainty-aware metrics such as uncertainty accuracy(UAcc), uncertainty sensitivity(USen), uncertainty specificity(USpe), and uncertainty precision(UPre). The results demonstrate that ensemble methods offer a good trade-off between accuracy and uncertainty handling, while EMCD is more sensitive to uncertain predictions. This study highlights the importance of integrating UQ into DL-based medical diagnosis to enhance both performance and trustworthiness in real-world clinical applications.
☆ HalLoc: Token-level Localization of Hallucinations for Vision Language Models CVPR 2025
Hallucinations pose a significant challenge to the reliability of large vision-language models, making their detection essential for ensuring accuracy in critical applications. Current detection methods often rely on computationally intensive models, leading to high latency and resource demands. Their definitive outcomes also fail to account for real-world scenarios where the line between hallucinated and truthful information is unclear. To address these issues, we propose HalLoc, a dataset designed for efficient, probabilistic hallucination detection. It features 150K token-level annotated samples, including hallucination types, across Visual Question Answering (VQA), instruction-following, and image captioning tasks. This dataset facilitates the development of models that detect hallucinations with graded confidence, enabling more informed user interactions. Additionally, we introduce a baseline model trained on HalLoc, offering low-overhead, concurrent hallucination detection during generation. The model can be seamlessly integrated into existing VLMs, improving reliability while preserving efficiency. The prospect of a robust plug-and-play hallucination detection module opens new avenues for enhancing the trustworthiness of vision-language models in real-world applications. The HalLoc dataset and code are publicly available at: https://github.com/dbsltm/cvpr25_halloc.
comment: CVPR 2025
☆ Ground Reaction Force Estimation via Time-aware Knowledge Distillation
Human gait analysis with wearable sensors has been widely used in various applications, such as daily life healthcare, rehabilitation, physical therapy, and clinical diagnostics and monitoring. In particular, ground reaction force (GRF) provides critical information about how the body interacts with the ground during locomotion. Although instrumented treadmills have been widely used as the gold standard for measuring GRF during walking, their lack of portability and high cost make them impractical for many applications. As an alternative, low-cost, portable, wearable insole sensors have been utilized to measure GRF; however, these sensors are susceptible to noise and disturbance and are less accurate than treadmill measurements. To address these challenges, we propose a Time-aware Knowledge Distillation framework for GRF estimation from insole sensor data. This framework leverages similarity and temporal features within a mini-batch during the knowledge distillation process, effectively capturing the complementary relationships between features and the sequential properties of the target and input data. The performance of the lightweight models distilled through this framework was evaluated by comparing GRF estimations from insole sensor data against measurements from an instrumented treadmill. Empirical results demonstrated that Time-aware Knowledge Distillation outperforms current baselines in GRF estimation from wearable sensor data.
☆ Energy Aware Camera Location Search Algorithm for Increasing Precision of Observation in Automated Manufacturing
Visual servoing technology has been well developed and applied in many automated manufacturing tasks, especially in tools' pose alignment. To access a full global view of tools, most applications adopt eye-to-hand configuration or eye-to-hand/eye-in-hand cooperation configuration in an automated manufacturing environment. Most research papers mainly put efforts into developing control and observation architectures in various scenarios, but few of them have discussed the importance of the camera's location in eye-to-hand configuration. In a manufacturing environment, the quality of camera estimations may vary significantly from one observation location to another, as the combined effects of environmental conditions result in different noise levels of a single image shot at different locations. In this paper, we propose an algorithm for the camera's moving policy so that it explores the camera workspace and searches for the optimal location where the images' noise level is minimized. Also, this algorithm ensures the camera ends up at a suboptimal (if the optimal one is unreachable) location among the locations already searched, with limited energy available for moving the camera. Unlike a simple brute force approach, the algorithm enables the camera to explore space more efficiently by adapting the search policy from learning the environment. With the aid of an image averaging technique, this algorithm, in use of a solo camera, achieves the observation accuracy in eye-to-hand configurations to a desirable extent without filtering out high-frequency information in the original image. An automated manufacturing application has been simulated and the results show the success of this algorithm's improvement of observation precision with limited energy.
comment: 35 pages, 24 figures, Journal, Published in: Applied Sciences, 2024, vol. 14, article 9140. For published version, see this http URL: https://doi.org/10.3390/app14199140
☆ GynSurg: A Comprehensive Gynecology Laparoscopic Surgery Dataset
Recent advances in deep learning have transformed computer-assisted intervention and surgical video analysis, driving improvements not only in surgical training, intraoperative decision support, and patient outcomes, but also in postoperative documentation and surgical discovery. Central to these developments is the availability of large, high-quality annotated datasets. In gynecologic laparoscopy, surgical scene understanding and action recognition are fundamental for building intelligent systems that assist surgeons during operations and provide deeper analysis after surgery. However, existing datasets are often limited by small scale, narrow task focus, or insufficiently detailed annotations, limiting their utility for comprehensive, end-to-end workflow analysis. To address these limitations, we introduce GynSurg, the largest and most diverse multi-task dataset for gynecologic laparoscopic surgery to date. GynSurg provides rich annotations across multiple tasks, supporting applications in action recognition, semantic segmentation, surgical documentation, and discovery of novel procedural insights. We demonstrate the dataset quality and versatility by benchmarking state-of-the-art models under a standardized training protocol. To accelerate progress in the field, we publicly release the GynSurg dataset and its annotations
☆ HyBiomass: Global Hyperspectral Imagery Benchmark Dataset for Evaluating Geospatial Foundation Models in Forest Aboveground Biomass Estimation
Comprehensive evaluation of geospatial foundation models (Geo-FMs) requires benchmarking across diverse tasks, sensors, and geographic regions. However, most existing benchmark datasets are limited to segmentation or classification tasks, and focus on specific geographic areas. To address this gap, we introduce a globally distributed dataset for forest aboveground biomass (AGB) estimation, a pixel-wise regression task. This benchmark dataset combines co-located hyperspectral imagery (HSI) from the Environmental Mapping and Analysis Program (EnMAP) satellite and predictions of AGB density estimates derived from the Global Ecosystem Dynamics Investigation lidars, covering seven continental regions. Our experimental results on this dataset demonstrate that the evaluated Geo-FMs can match or, in some cases, surpass the performance of a baseline U-Net, especially when fine-tuning the encoder. We also find that the performance difference between the U-Net and Geo-FMs depends on the dataset size for each region and highlight the importance of the token patch size in the Vision Transformer backbone for accurate predictions in pixel-wise regression tasks. By releasing this globally distributed hyperspectral benchmark dataset, we aim to facilitate the development and evaluation of Geo-FMs for HSI applications. Leveraging this dataset additionally enables research into geographic bias and generalization capacity of Geo-FMs. The dataset and source code will be made publicly available.
☆ TARDIS STRIDE: A Spatio-Temporal Road Image Dataset for Exploration and Autonomy
World models aim to simulate environments and enable effective agent behavior. However, modeling real-world environments presents unique challenges as they dynamically change across both space and, crucially, time. To capture these composed dynamics, we introduce a Spatio-Temporal Road Image Dataset for Exploration (STRIDE) permuting 360-degree panoramic imagery into rich interconnected observation, state and action nodes. Leveraging this structure, we can simultaneously model the relationship between egocentric views, positional coordinates, and movement commands across both space and time. We benchmark this dataset via TARDIS, a transformer-based generative world model that integrates spatial and temporal dynamics through a unified autoregressive framework trained on STRIDE. We demonstrate robust performance across a range of agentic tasks such as controllable photorealistic image synthesis, instruction following, autonomous self-control, and state-of-the-art georeferencing. These results suggest a promising direction towards sophisticated generalist agents--capable of understanding and manipulating the spatial and temporal aspects of their material environments--with enhanced embodied reasoning capabilities. Training code, datasets, and model checkpoints are made available at https://huggingface.co/datasets/Tera-AI/STRIDE.
comment: Computer Vision, Pattern Recognition, LLMs, Dataset, Data Augmentation
☆ Joint Denoising of Cryo-EM Projection Images using Polar Transformers
Deep neural networks~(DNNs) have proven powerful for denoising, but they are ultimately of limited use in high-noise settings, such as for cryogenic electron microscopy~(cryo-EM) projection images. In this setting, however, datasets contain a large number of projections of the same molecule, each taken from a different viewing direction. This redundancy of information is useful in traditional denoising techniques known as class averaging methods, where images are clustered, aligned, and then averaged to reduce the noise level. We present a neural network architecture based on transformers that extends these class averaging methods by simultaneously clustering, aligning, and denoising cryo-EM images. Results on synthetic data show accurate denoising performance using this architecture, reducing the relative mean squared error (MSE) single-image DNNs by $45\%$ at a signal-to-noise (SNR) of $0.03$.
☆ Gondola: Grounded Vision Language Planning for Generalizable Robotic Manipulation
Robotic manipulation faces a significant challenge in generalizing across unseen objects, environments and tasks specified by diverse language instructions. To improve generalization capabilities, recent research has incorporated large language models (LLMs) for planning and action execution. While promising, these methods often fall short in generating grounded plans in visual environments. Although efforts have been made to perform visual instructional tuning on LLMs for robotic manipulation, existing methods are typically constrained by single-view image input and struggle with precise object grounding. In this work, we introduce Gondola, a novel grounded vision-language planning model based on LLMs for generalizable robotic manipulation. Gondola takes multi-view images and history plans to produce the next action plan with interleaved texts and segmentation masks of target objects and locations. To support the training of Gondola, we construct three types of datasets using the RLBench simulator, namely robot grounded planning, multi-view referring expression and pseudo long-horizon task datasets. Gondola outperforms the state-of-the-art LLM-based method across all four generalization levels of the GemBench dataset, including novel placements, rigid objects, articulated objects and long-horizon tasks.
☆ Lifting Data-Tracing Machine Unlearning to Knowledge-Tracing for Foundation Models
Machine unlearning removes certain training data points and their influence on AI models (e.g., when a data owner revokes their decision to allow models to learn from the data). In this position paper, we propose to lift data-tracing machine unlearning to knowledge-tracing for foundation models (FMs). We support this position based on practical needs and insights from cognitive studies. Practically, tracing data cannot meet the diverse unlearning requests for FMs, which may be from regulators, enterprise users, product teams, etc., having no access to FMs' massive training data. Instead, it is convenient for these parties to issue an unlearning request about the knowledge or capability FMs (should not) possess. Cognitively, knowledge-tracing unlearning aligns with how the human brain forgets more closely than tracing individual training data points. Finally, we provide a concrete case study about a vision-language FM to illustrate how an unlearner might instantiate the knowledge-tracing machine unlearning paradigm.
comment: 21 pages, 3 figures
☆ Anti-Aliased 2D Gaussian Splatting
2D Gaussian Splatting (2DGS) has recently emerged as a promising method for novel view synthesis and surface reconstruction, offering better view-consistency and geometric accuracy than volumetric 3DGS. However, 2DGS suffers from severe aliasing artifacts when rendering at different sampling rates than those used during training, limiting its practical applications in scenarios requiring camera zoom or varying fields of view. We identify that these artifacts stem from two key limitations: the lack of frequency constraints in the representation and an ineffective screen-space clamping approach. To address these issues, we present AA-2DGS, an antialiased formulation of 2D Gaussian Splatting that maintains its geometric benefits while significantly enhancing rendering quality across different scales. Our method introduces a world space flat smoothing kernel that constrains the frequency content of 2D Gaussian primitives based on the maximal sampling frequency from training views, effectively eliminating high-frequency artifacts when zooming in. Additionally, we derive a novel object space Mip filter by leveraging an affine approximation of the ray-splat intersection mapping, which allows us to efficiently apply proper anti-aliasing directly in the local space of each splat.
comment: Code will be available at https://github.com/maeyounes/AA-2DGS
☆ Enhanced Vehicle Speed Detection Considering Lane Recognition Using Drone Videos in California
The increase in vehicle numbers in California, driven by inadequate transportation systems and sparse speed cameras, necessitates effective vehicle speed detection. Detecting vehicle speeds per lane is critical for monitoring High-Occupancy Vehicle (HOV) lane speeds, distinguishing between cars and heavy vehicles with differing speed limits, and enforcing lane restrictions for heavy vehicles. While prior works utilized YOLO (You Only Look Once) for vehicle speed detection, they often lacked accuracy, failed to identify vehicle lanes, and offered limited or less practical classification categories. This study introduces a fine-tuned YOLOv11 model, trained on almost 800 bird's-eye view images, to enhance vehicle speed detection accuracy which is much higher compare to the previous works. The proposed system identifies the lane for each vehicle and classifies vehicles into two categories: cars and heavy vehicles. Designed to meet the specific requirements of traffic monitoring and regulation, the model also evaluates the effects of factors such as drone height, distance of Region of Interest (ROI), and vehicle speed on detection accuracy and speed measurement. Drone footage collected from Northern California was used to assess the proposed system. The fine-tuned YOLOv11 achieved its best performance with a mean absolute error (MAE) of 0.97 mph and mean squared error (MSE) of 0.94 $\text{mph}^2$, demonstrating its efficacy in addressing challenges in vehicle speed detection and classification.
comment: 7 pages
☆ Poutine: Vision-Language-Trajectory Pre-Training and Reinforcement Learning Post-Training Enable Robust End-to-End Autonomous Driving
We present Poutine, a 3B-parameter vision-language model (VLM) tailored for end-to-end autonomous driving in long-tail driving scenarios. Poutine is trained in two stages. To obtain strong base driving capabilities, we train Poutine-Base in a self-supervised vision-language-trajectory (VLT) next-token prediction fashion on 83 hours of CoVLA nominal driving and 11 hours of Waymo long-tail driving. Accompanying language annotations are auto-generated with a 72B-parameter VLM. Poutine is obtained by fine-tuning Poutine-Base with Group Relative Policy Optimization (GRPO) using less than 500 preference-labeled frames from the Waymo validation set. We show that both VLT pretraining and RL fine-tuning are critical to attain strong driving performance in the long-tail. Poutine-Base achieves a rater-feedback score (RFS) of 8.12 on the validation set, nearly matching Waymo's expert ground-truth RFS. The final Poutine model achieves an RFS of 7.99 on the official Waymo test set, placing 1st in the 2025 Waymo Vision-Based End-to-End Driving Challenge by a significant margin. These results highlight the promise of scalable VLT pre-training and lightweight RL fine-tuning to enable robust and generalizable autonomy.
♻ ☆ MMME: A Spontaneous Multi-Modal Micro-Expression Dataset Enabling Visual-Physiological Fusion
Micro-expressions (MEs) are subtle, fleeting nonverbal cues that reveal an individual's genuine emotional state. Their analysis has attracted considerable interest due to its promising applications in fields such as healthcare, criminal investigation, and human-computer interaction. However, existing ME research is limited to single visual modality, overlooking the rich emotional information conveyed by other physiological modalities, resulting in ME recognition and spotting performance far below practical application needs. Therefore, exploring the cross-modal association mechanism between ME visual features and physiological signals (PS), and developing a multimodal fusion framework, represents a pivotal step toward advancing ME analysis. This study introduces a novel ME dataset, MMME, which, for the first time, enables synchronized collection of facial action signals (MEs), central nervous system signals (EEG), and peripheral PS (PPG, RSP, SKT, EDA, and ECG). By overcoming the constraints of existing ME corpora, MMME comprises 634 MEs, 2,841 macro-expressions (MaEs), and 2,890 trials of synchronized multimodal PS, establishing a robust foundation for investigating ME neural mechanisms and conducting multimodal fusion-based analyses. Extensive experiments validate the dataset's reliability and provide benchmarks for ME analysis, demonstrating that integrating MEs with PS significantly enhances recognition and spotting performance. To the best of our knowledge, MMME is the most comprehensive ME dataset to date in terms of modality diversity. It provides critical data support for exploring the neural mechanisms of MEs and uncovering the visual-physiological synergistic effects, driving a paradigm shift in ME research from single-modality visual analysis to multimodal fusion. The dataset will be publicly available upon acceptance of this paper.
♻ ☆ Consistent Story Generation with Asymmetry Zigzag Sampling
Text-to-image generation models have made significant progress in producing high-quality images from textual descriptions, yet they continue to struggle with maintaining subject consistency across multiple images, a fundamental requirement for visual storytelling. Existing methods attempt to address this by either fine-tuning models on large-scale story visualization datasets, which is resource-intensive, or by using training-free techniques that share information across generations, which still yield limited success. In this paper, we introduce a novel training-free sampling strategy called Zigzag Sampling with Asymmetric Prompts and Visual Sharing to enhance subject consistency in visual story generation. Our approach proposes a zigzag sampling mechanism that alternates between asymmetric prompting to retain subject characteristics, while a visual sharing module transfers visual cues across generated images to %further enforce consistency. Experimental results, based on both quantitative metrics and qualitative evaluations, demonstrate that our method significantly outperforms previous approaches in generating coherent and consistent visual stories. The code is available at https://github.com/Mingxiao-Li/Asymmetry-Zigzag-StoryDiffusion.
comment: 17 pages, 9. figures
♻ ☆ Urban1960SatSeg: Unsupervised Semantic Segmentation of Mid-20$^{th}$ century Urban Landscapes with Satellite Imageries
Historical satellite imagery, such as mid-20$^{th}$ century Keyhole data, offers rare insights into understanding early urban development and long-term transformation. However, severe quality degradation (e.g., distortion, misalignment, and spectral scarcity) and annotation absence have long hindered semantic segmentation on such historical RS imagery. To bridge this gap and enhance understanding of urban development, we introduce $\textbf{Urban1960SatBench}$, an annotated segmentation dataset based on historical satellite imagery with the earliest observation time among all existing segmentation datasets, along with a benchmark framework for unsupervised segmentation tasks, $\textbf{Urban1960SatUSM}$. First, $\textbf{Urban1960SatBench}$ serves as a novel, expertly annotated semantic segmentation dataset built on mid-20$^{th}$ century Keyhole imagery, covering 1,240 km$^2$ and key urban classes (buildings, roads, farmland, water). As the earliest segmentation dataset of its kind, it provides a pioneering benchmark for historical urban understanding. Second, $\textbf{Urban1960SatUSM}$(Unsupervised Segmentation Model) is a novel unsupervised semantic segmentation framework for historical RS imagery. It employs a confidence-aware alignment mechanism and focal-confidence loss based on a self-supervised learning architecture, which generates robust pseudo-labels and adaptively prioritizes prediction difficulty and label reliability to improve unsupervised segmentation on noisy historical data without manual supervision. Experiments show Urban1960SatUSM significantly outperforms existing unsupervised segmentation methods on Urban1960SatSeg for segmenting historical urban scenes, promising in paving the way for quantitative studies of long-term urban change using modern computer vision. Our benchmark and supplementary material are available at https://github.com/Tianxiang-Hao/Urban1960SatSeg.
♻ ☆ ODG: Occupancy Prediction Using Dual Gaussians
Occupancy prediction infers fine-grained 3D geometry and semantics from camera images of the surrounding environment, making it a critical perception task for autonomous driving. Existing methods either adopt dense grids as scene representation, which is difficult to scale to high resolution, or learn the entire scene using a single set of sparse queries, which is insufficient to handle the various object characteristics. In this paper, we present ODG, a hierarchical dual sparse Gaussian representation to effectively capture complex scene dynamics. Building upon the observation that driving scenes can be universally decomposed into static and dynamic counterparts, we define dual Gaussian queries to better model the diverse scene objects. We utilize a hierarchical Gaussian transformer to predict the occupied voxel centers and semantic classes along with the Gaussian parameters. Leveraging the real-time rendering capability of 3D Gaussian Splatting, we also impose rendering supervision with available depth and semantic map annotations injecting pixel-level alignment to boost occupancy learning. Extensive experiments on the Occ3D-nuScenes and Occ3D-Waymo benchmarks demonstrate our proposed method sets new state-of-the-art results while maintaining low inference cost.
♻ ☆ Video-CoT: A Comprehensive Dataset for Spatiotemporal Understanding of Videos Based on Chain-of-Thought
Video content comprehension is essential for various applications, ranging from video analysis to interactive systems. Despite advancements in large-scale vision-language models (VLMs), these models often struggle to capture the nuanced, spatiotemporal details essential for thorough video analysis. To address this gap, we introduce Video-CoT, a groundbreaking dataset designed to enhance spatiotemporal understanding using Chain-of-Thought (CoT) methodologies. Video-CoT contains 192,000 fine-grained spa-tiotemporal question-answer pairs and 23,000 high-quality CoT-annotated samples, providing a solid foundation for evaluating spatiotemporal understanding in video comprehension. Additionally, we provide a comprehensive benchmark for assessing these tasks, with each task featuring 750 images and tailored evaluation metrics. Our extensive experiments reveal that current VLMs face significant challenges in achieving satisfactory performance, high-lighting the difficulties of effective spatiotemporal understanding. Overall, the Video-CoT dataset and benchmark open new avenues for research in multimedia understanding and support future innovations in intelligent systems requiring advanced video analysis capabilities. By making these resources publicly available, we aim to encourage further exploration in this critical area. Project website:https://video-cot.github.io/ .
♻ ☆ CAT: A Conditional Adaptation Tailor for Efficient and Effective Instance-Specific Pansharpening on Real-World Data
Pansharpening is a crucial remote sensing technique that fuses low-resolution multispectral (LRMS) images with high-resolution panchromatic (PAN) images to generate high-resolution multispectral (HRMS) imagery. Although deep learning techniques have significantly advanced pansharpening, many existing methods suffer from limited cross-sensor generalization and high computational overhead, restricting their real-time applications. To address these challenges, we propose an efficient framework that quickly adapts to a specific input instance, completing both training and inference in a short time. Our framework splits the input image into multiple patches, selects a subset for unsupervised CAT training, and then performs inference on all patches, stitching them into the final output. The CAT module, integrated between the feature extraction and channel transformation stages of a pre-trained network, tailors the fused features and fixes the parameters for efficient inference, generating improved results. Our approach offers two key advantages: (1) $\textit{Improved Generalization Ability}$: by mitigating cross-sensor degradation, our model--although pre-trained on a specific dataset--achieves superior performance on datasets captured by other sensors; (2) $\textit{Enhanced Computational Efficiency}$: the CAT-enhanced network can swiftly adapt to the test sample using the single LRMS-PAN pair input, without requiring extensive large-scale data retraining. Experiments on the real-world data from WorldView-3 and WorldView-2 datasets demonstrate that our method achieves state-of-the-art performance on cross-sensor real-world data, while achieving both training and inference of $512\times512$ image within $\textit{0.4 seconds}$ and $4000\times4000$ image within $\textit{3 seconds}$ at the fastest setting on a commonly used RTX 3090 GPU.
♻ ☆ Visually Descriptive Language Model for Vector Graphics Reasoning
Despite significant advancements, large multimodal models (LMMs) still struggle to bridge the gap between low-level visual perception -- focusing on shapes, sizes, and layouts -- and high-level language reasoning, such as semantics and logic. This limitation is evident in tasks that require precise visual perception, like comparing geometric properties or solving visual reasoning problems. To study this failure mode, we focus on vector graphics -- images composed of 2D objects and shapes, prevalent in LMM-based tasks in web, design, and OS environments. We identify two key research questions: how can we enable precise visual perception, and how can we facilitate high-level reasoning based on such low-level perceptions? To capture fine visual details, we use Scalable Vector Graphics (SVG) for accurate encoding of visual scenes. However, SVGs are not readily interpretable by LMMs in a zero-shot manner. To tackle this, we propose the Visually Descriptive Language Model (VDLM), which introduces a Primal Visual Description (PVD) as an intermediate textual representation. PVD translates SVGs into a text-based abstraction consisting of primitive attributes (e.g., shape, position, measurement) and their corresponding values. PVD can be learned using task-agnostic synthesized data and represents visual primitives that are universal across vector graphics. This abstraction is more structured, allowing for direct interpretation by foundation models for zero-shot generalization. Without human-annotated data, empirical results show that VDLM significantly improves state-of-the-art LMMs like GPT-4o on various multimodal perception and reasoning tasks. Extensive analyses of VDLM show improved interpretability due to its disentangled perception and reasoning. We also demonstrate a positive correlation between PVD quality and task performance. Project page: https://mikewangwzhl.github.io/VDLM/
comment: Project page: https://mikewangwzhl.github.io/VDLM/
♻ ☆ Object-Centric Latent Action Learning ICLR 2025
Leveraging vast amounts of unlabeled internet video data for embodied AI is currently bottlenecked by the lack of action labels and the presence of action-correlated visual distractors. Although recent latent action policy optimization (LAPO) has shown promise in inferring proxy-action labels from visual observations, its performance degrades significantly when distractors are present. To address this limitation, we propose a novel object-centric latent action learning framework that centers on objects rather than pixels. We leverage self-supervised object-centric pretraining to disentangle action-related and distracting dynamics. This allows LAPO to focus on task-relevant interactions, resulting in more robust proxy-action labels, enabling better imitation learning and efficient adaptation of the agent with just a few action-labeled trajectories. We evaluated our method in eight visually complex tasks across the Distracting Control Suite (DCS) and Distracting MetaWorld (DMW). Our results show that object-centric pretraining mitigates the negative effects of distractors by 50%, as measured by downstream task performance: average return (DCS) and success rate (DMW).
comment: Accepted by Workshop on World Models at ICLR 2025
♻ ☆ ViC-Bench: Benchmarking Visual-Interleaved Chain-of-Thought Capability in MLLMs with Free-Style Intermediate State Representations
Visual-Interleaved Chain-of-Thought (VI-CoT) enables MLLMs to continually update their understanding and decisions based on step-wise intermediate visual states (IVS), much like a human would, which demonstrates impressive success in various tasks, thereby leading to emerged advancements in related benchmarks. Despite promising progress, current benchmarks provide models with relatively fixed IVS, rather than free-style IVS, whch might forcibly distort the original thinking trajectories, failing to evaluate their intrinsic reasoning capabilities. More importantly, existing benchmarks neglect to systematically explore the impact factors that IVS would impart to untamed reasoning performance. To tackle above gaps, we introduce a specialized benchmark termed ViC-Bench, consisting of four representive tasks: maze navigation, jigsaw puzzle, embodied long-horizon planning, and complex counting, where each task has dedicated free-style IVS generation pipeline supporting function calls. To systematically examine VI-CoT capability, we propose a thorough evaluation suite incorporating a progressive three-stage strategy with targeted new metrics. Besides, we establish Incremental Prompting Information Injection (IPII) strategy to ablatively explore the prompting factors for VI-CoT. We extensively conduct evaluations for 18 advanced MLLMs, revealing key insights into their VI-CoT capability. Our proposed benchmark is publicly open at Huggingface.
♻ ☆ Q-Ponder: A Unified Training Pipeline for Reasoning-based Visual Quality Assessment
Recent studies demonstrate that multimodal large language models (MLLMs) can proficiently evaluate visual quality through interpretable assessments. However, existing approaches typically treat quality scoring and reasoning descriptions as separate tasks with disjoint optimization objectives, leading to a trade-off: models adept at quality reasoning descriptions struggle with precise score regression, while score-focused models lack interpretability. This limitation hinders the full potential of MLLMs in visual quality assessment, where accuracy and interpretability should be mutually reinforcing. To address this, we propose a unified two-stage training framework comprising a cold-start stage and a reinforcement learning-based fine-tuning stage. Specifically, in the first stage, we distill high-quality data from a teacher model through expert-designed prompts, initializing reasoning capabilities via cross-entropy loss supervision. In the second stage, we introduce a novel reward with Group Relative Policy Optimization (GRPO) to jointly optimize scoring accuracy and reasoning consistency. We designate the models derived from these two stages as Q-Ponder-CI and Q-Ponder. Extensive experiments show that Q-Ponder achieves state-of-the-art (SOTA) performance on quality score regression benchmarks, delivering up to 6.5% higher SRCC on cross-domain datasets. Furthermore, Q-Ponder significantly outperforms description-based SOTA models, including its teacher model Qwen-2.5-VL-72B, particularly in description accuracy and reasonableness, demonstrating the generalization potential over diverse tasks.
♻ ☆ Latent Action Learning Requires Supervision in the Presence of Distractors ICML 2025
Recently, latent action learning, pioneered by Latent Action Policies (LAPO), have shown remarkable pre-training efficiency on observation-only data, offering potential for leveraging vast amounts of video available on the web for embodied AI. However, prior work has focused on distractor-free data, where changes between observations are primarily explained by ground-truth actions. Unfortunately, real-world videos contain action-correlated distractors that may hinder latent action learning. Using Distracting Control Suite (DCS) we empirically investigate the effect of distractors on latent action learning and demonstrate that LAPO struggle in such scenario. We propose LAOM, a simple LAPO modification that improves the quality of latent actions by 8x, as measured by linear probing. Importantly, we show that providing supervision with ground-truth actions, as few as 2.5% of the full dataset, during latent action learning improves downstream performance by 4.2x on average. Our findings suggest that integrating supervision during Latent Action Models (LAM) training is critical in the presence of distractors, challenging the conventional pipeline of first learning LAM and only then decoding from latent to ground-truth actions.
comment: ICML 2025, Poster, Project Page: https://laom.dunnolab.ai/, Source code: https://github.com/dunnolab/laom
♻ ☆ A Unit Enhancement and Guidance Framework for Audio-Driven Avatar Video Generation
Audio-driven human animation technology is widely used in human-computer interaction, and the emergence of diffusion models has further advanced its development. Currently, most methods rely on multi-stage generation and intermediate representations, resulting in long inference time and issues with generation quality in specific foreground regions and audio-motion consistency. These shortcomings are primarily due to the lack of localized fine-grained supervised guidance. To address above challenges, we propose Parts-aware Audio-driven Human Animation, PAHA, a unit enhancement and guidance framework for audio-driven upper-body animation. We introduce two key methods: Parts-Aware Re-weighting (PAR) and Parts Consistency Enhancement (PCE). PAR dynamically adjusts regional training loss weights based on pose confidence scores, effectively improving visual quality. PCE constructs and trains diffusion-based regional audio-visual classifiers to improve the consistency of motion and co-speech audio. Afterwards, we design two novel inference guidance methods for the foregoing classifiers, Sequential Guidance (SG) and Differential Guidance (DG), to balance efficiency and quality respectively. Additionally, we build CNAS, the first public Chinese News Anchor Speech dataset, to advance research and validation in this field. Extensive experimental results and user studies demonstrate that PAHA significantly outperforms existing methods in audio-motion alignment and video-related evaluations. The codes and CNAS dataset will be released upon acceptance.
comment: revised
♻ ☆ Towards Reliable Identification of Diffusion-based Image Manipulations
Changing facial expressions, gestures, or background details may dramatically alter the meaning conveyed by an image. Notably, recent advances in diffusion models greatly improve the quality of image manipulation while also opening the door to misuse. Identifying changes made to authentic images, thus, becomes an important task, constantly challenged by new diffusion-based editing tools. To this end, we propose a novel approach for ReliAble iDentification of inpainted AReas (RADAR). RADAR builds on existing foundation models and combines features from different image modalities. It also incorporates an auxiliary contrastive loss that helps to isolate manipulated image patches. We demonstrate these techniques to significantly improve both the accuracy of our method and its generalisation to a large number of diffusion models. To support realistic evaluation, we further introduce BBC-PAIR, a new comprehensive benchmark, with images tampered by 28 diffusion models. Our experiments show that RADAR achieves excellent results, outperforming the state-of-the-art in detecting and localising image edits made by both seen and unseen diffusion models. Our code, data and models will be publicly available at https://alex-costanzino.github.io/radar/.
comment: Project page at https://alex-costanzino.github.io/radar/
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Codes and data are available at https://github.com/yuleiqin/RAIF.
comment: 13 pages of main body, 3 tables, 5 figures, 45 pages of appendix
♻ ☆ TDS-CLIP: Temporal Difference Side Network for Efficient VideoAction Recognition
Recently, large-scale pre-trained vision-language models (e.g., CLIP), have garnered significant attention thanks to their powerful representative capabilities. This inspires researchers in transferring the knowledge from these large pre-trained models to other task-specific models, e.g., Video Action Recognition (VAR) models, via particularly leveraging side networks to enhance the efficiency of parameter-efficient fine-tuning (PEFT). However, current transferring approaches in VAR tend to directly transfer the frozen knowledge from large pre-trained models to action recognition networks with minimal cost, instead of exploiting the temporal modeling capabilities of the action recognition models themselves. Therefore, in this paper, we propose a novel memory-efficient Temporal Difference Side Network (TDS-CLIP) to balance knowledge transferring and temporal modeling, avoiding backpropagation in frozen parameter models. Specifically, we introduce a Temporal Difference Adapter (TD-Adapter), which can effectively capture local temporal differences in motion features to strengthen the model's global temporal modeling capabilities. Furthermore, we designed a Side Motion Enhancement Adapter (SME-Adapter) to guide the proposed side network in efficiently learning the rich motion information in videos, thereby improving the side network's ability to capture and learn motion information. Extensive experiments are conducted on three benchmark datasets, including Something-Something V1&V2, and Kinetics-400. Experimental results show that our method achieves competitive performance in video action recognition tasks.
♻ ☆ Reinforcing Multimodal Understanding and Generation with Dual Self-rewards
Building upon large language models (LLMs), recent large multimodal models (LMMs) unify cross-model understanding and generation into a single framework. However, LMMs still struggle to achieve accurate image-text alignment, prone to generating text responses contradicting the visual input or failing to follow the text-to-image prompts. Current solutions require external supervision (e.g., human feedback or reward models) and only address unidirectional tasks-either understanding or generation. In this work, based on the observation that understanding and generation are inverse dual tasks, we introduce a self-supervised dual reward mechanism to reinforce the understanding and generation capabilities of LMMs. Specifically, we sample multiple outputs for a given input in one task domain, then reverse the input-output pairs to compute the dual likelihood of the model as self-rewards for optimization. Extensive experimental results on visual understanding and generation benchmarks demonstrate that our method can effectively enhance the performance of the model without any external supervision, especially achieving remarkable improvements in text-to-image tasks.
♻ ☆ Spike-TBR: a Noise Resilient Neuromorphic Event Representation
Event cameras offer significant advantages over traditional frame-based sensors, including higher temporal resolution, lower latency and dynamic range. However, efficiently converting event streams into formats compatible with standard computer vision pipelines remains a challenging problem, particularly in the presence of noise. In this paper, we propose Spike-TBR, a novel event-based encoding strategy based on Temporal Binary Representation (TBR), addressing its vulnerability to noise by integrating spiking neurons. Spike-TBR combines the frame-based advantages of TBR with the noise-filtering capabilities of spiking neural networks, creating a more robust representation of event streams. We evaluate four variants of Spike-TBR, each using different spiking neurons, across multiple datasets, demonstrating superior performance in noise-affected scenarios while improving the results on clean data. Our method bridges the gap between spike-based and frame-based processing, offering a simple noise-resilient solution for event-driven vision applications.
♻ ☆ CORT: Class-Oriented Real-time Tracking for Embedded Systems
The ever-increasing use of artificial intelligence in autonomous systems has significantly contributed to advance the research on multi-object tracking, adopted in several real-time applications (e.g., autonomous driving, surveillance drones, robotics) to localize and follow the trajectory of multiple objects moving in front of a camera. Current tracking algorithms can be divided into two main categories: some approaches introduce complex heuristics and re-identification models to improve the tracking accuracy and reduce the number of identification switches, without particular attention to the timing performance, whereas other approaches are aimed at reducing response times by removing the re-identification phase, thus penalizing the tracking accuracy. This work proposes a new approach to multi-class object tracking that allows achieving smaller and more predictable execution times, without penalizing the tracking performance. The idea is to reduce the problem of matching predictions with detections into smaller sub-problems by splitting the Hungarian matrix by class and invoking the second re-identification stage only when strictly necessary for a smaller number of elements. The proposed solution was evaluated in complex urban scenarios with several objects of different types (as cars, trucks, bikes, and pedestrians), showing the effectiveness of the multi-class approach with respect to state of the art trackers.
♻ ☆ DyFFPAD: Dynamic Fusion of Convolutional and Handcrafted Features for Fingerprint Presentation Attack Detection
Automatic fingerprint recognition systems suffer from the threat of presentation attacks due to their wide range of deployment in areas including national borders and commercial applications. A presentation attack can be performed by creating a spoof of a user's fingerprint with or without their consent. This paper presents a dynamic ensemble of deep CNN and handcrafted features to detect presentation attacks in known-material and unknown-material protocols of the liveness detection competition. The proposed presentation attack detection model, in this way, utilizes the capabilities of both deep CNN and handcrafted features techniques and exhibits better performance than their individual performances. We have validated our proposed method on benchmark databases from the Liveness Detection Competition in 2015, 2017, and 2019, yielding overall accuracy of 96.10%, 96.49%, and 94.99% on them, respectively. The proposed method outperforms state-of-the-art methods in terms of classification accuracy.
comment: arXiv admin note: text overlap with arXiv:2305.09397
♻ ☆ Few-Shot Learner Generalizes Across AI-Generated Image Detection ICML 2025
Current fake image detectors trained on large synthetic image datasets perform satisfactorily on limited studied generative models. However, these detectors suffer a notable performance decline over unseen models. Besides, collecting adequate training data from online generative models is often expensive or infeasible. To overcome these issues, we propose Few-Shot Detector (FSD), a novel AI-generated image detector which learns a specialized metric space for effectively distinguishing unseen fake images using very few samples. Experiments show that FSD achieves state-of-the-art performance by $+11.6\%$ average accuracy on the GenImage dataset with only $10$ additional samples. More importantly, our method is better capable of capturing the intra-category commonality in unseen images without further training. Our code is available at https://github.com/teheperinko541/Few-Shot-AIGI-Detector.
comment: 12 pages, 6 figures, Accepted at ICML 2025
♻ ☆ CapST: Leveraging Capsule Networks and Temporal Attention for Accurate Model Attribution in Deep-fake Videos
Deep-fake videos, generated through AI face-swapping techniques, have gained significant attention due to their potential for impactful impersonation attacks. While most research focuses on real vs. fake detection, attributing a deep-fake to its specific generation model or encoder is vital for forensic analysis, enabling source tracing and tailored countermeasures. This enhances detection by leveraging model-specific artifacts and supports proactive defenses. We investigate the model attribution problem for deep-fake videos using two datasets: Deepfakes from Different Models (DFDM) and GANGen-Detection, both comprising deep-fake videos and GAN-generated images. We use only fake images from GANGen-Detection to align with DFDM's focus on attribution rather than binary classification. We formulate the task as a multiclass classification problem and introduce a novel Capsule-Spatial-Temporal (CapST) model that integrates a truncated VGG19 network for feature extraction, capsule networks for hierarchical encoding, and a spatio-temporal attention mechanism. Video-level fusion captures temporal dependencies across frames. Experiments on DFDM and GANGen-Detection show CapST outperforms baseline models in attribution accuracy while reducing computational cost.
♻ ☆ Glimpse: Generalized Locality for Scalable and Robust CT
Deep learning has become the state-of-the-art approach to medical tomographic imaging. A common approach is to feed the result of a simple inversion, for example the backprojection, to a multiscale convolutional neural network (CNN) which computes the final reconstruction. Despite good results on in-distribution test data, this often results in overfitting certain large-scale structures and poor generalization on out-of-distribution (OOD) samples. Moreover, the memory and computational complexity of multiscale CNNs scale unfavorably with image resolution, making them impractical for application at realistic clinical resolutions. In this paper, we introduce Glimpse, a local coordinate-based neural network for computed tomography which reconstructs a pixel value by processing only the measurements associated with the neighborhood of the pixel. Glimpse significantly outperforms successful CNNs on OOD samples, while achieving comparable or better performance on in-distribution test data and maintaining a memory footprint almost independent of image resolution; 5GB memory suffices to train on 1024x1024 images which is orders of magnitude less than CNNs. Glimpse is fully differentiable and can be used plug-and-play in arbitrary deep learning architectures, enabling feats such as correcting miscalibrated projection orientations. Our implementation and Google Colab demo can be accessed at https://github.com/swing-research/Glimpse.
comment: 21 pages, 14 figures
♻ ☆ Aesthetics Without Semantics
While it is easy for human observers to judge an image as beautiful or ugly, aesthetic decisions result from a combination of entangled perceptual and cognitive (semantic) factors, making the understanding of aesthetic judgements particularly challenging from a scientific point of view. Furthermore, our research shows a prevailing bias in current databases, which include mostly beautiful images, further complicating the study and prediction of aesthetic responses. We address these limitations by creating a database of images with minimal semantic content and devising, and next exploiting, a method to generate images on the ugly side of aesthetic valuations. The resulting Minimum Semantic Content (MSC) database consists of a large and balanced collection of 10,426 images, each evaluated by 100 observers. We next use established image metrics to demonstrate how augmenting an image set biased towards beautiful images with ugly images can modify, or even invert, an observed relationship between image features and aesthetics valuation. Taken together, our study reveals that works in empirical aesthetics attempting to link image content and aesthetic judgements may magnify, underestimate, or simply miss interesting effects due to a limitation of the range of aesthetic values they consider.
comment: Parts of this work were presented in abstract format at the Vision Science of Art Conference (VSAC2016), the Iberian Conference on Perception (CIP2022), and the European Conference on Visual Perception (ECVP2022). See Perception 51, No1 (Suppl.) pp139, 2022)
♻ ☆ VScan: Rethinking Visual Token Reduction for Efficient Large Vision-Language Models
Recent Large Vision-Language Models (LVLMs) have advanced multi-modal understanding by incorporating finer-grained visual perception and encoding. However, such methods incur significant computational costs due to longer visual token sequences, posing challenges for real-time deployment. To mitigate this, prior studies have explored pruning unimportant visual tokens either at the output layer of the visual encoder or at the early layers of the language model. In this work, we revisit these design choices and reassess their effectiveness through comprehensive empirical studies of how visual tokens are processed throughout the visual encoding and language decoding stages. Guided by these insights, we propose VScan, a two-stage visual token reduction framework that addresses token redundancy by: (1) integrating complementary global and local scans with token merging during visual encoding, and (2) introducing pruning at intermediate layers of the language model. Extensive experimental results across four LVLMs validate the effectiveness of VScan in accelerating inference and demonstrate its superior performance over current state-of-the-arts on sixteen benchmarks. Notably, when applied to LLaVA-NeXT-7B, VScan achieves a 2.91$\times$ speedup in prefilling and a 10$\times$ reduction in FLOPs, while retaining 95.4\% of the original performance. Code is available at https://github.com/Tencent/SelfEvolvingAgent/tree/main/VScan.
comment: Changes from v1: Uploaded code link and fixed minor typos
♻ ☆ Expert Race: A Flexible Routing Strategy for Scaling Diffusion Transformer with Mixture of Experts
Diffusion models have emerged as mainstream framework in visual generation. Building upon this success, the integration of Mixture of Experts (MoE) methods has shown promise in enhancing model scalability and performance. In this paper, we introduce Race-DiT, a novel MoE model for diffusion transformers with a flexible routing strategy, Expert Race. By allowing tokens and experts to compete together and select the top candidates, the model learns to dynamically assign experts to critical tokens. Additionally, we propose per-layer regularization to address challenges in shallow layer learning, and router similarity loss to prevent mode collapse, ensuring better expert utilization. Extensive experiments on ImageNet validate the effectiveness of our approach, showcasing significant performance gains while promising scaling properties.
♻ ☆ InceptionMamba: An Efficient Hybrid Network with Large Band Convolution and Bottleneck Mamba
Within the family of convolutional neural networks, InceptionNeXt has shown excellent competitiveness in image classification and a number of downstream tasks. Built on parallel one-dimensional strip convolutions, however, it suffers from limited ability of capturing spatial dependencies along different dimensions and fails to fully explore spatial modeling in local neighborhood. Besides, inherent locality constraints of convolution operations are detrimental to effective global context modeling. To overcome these limitations, we propose a novel backbone architecture termed InceptionMamba in this study. More specifically, the traditional one-dimensional strip convolutions are replaced by orthogonal band convolutions in our InceptionMamba to achieve cohesive spatial modeling. Furthermore, global contextual modeling can be achieved via a bottleneck Mamba module, facilitating enhanced cross-channel information fusion and enlarged receptive field. Extensive evaluations on classification and various downstream tasks demonstrate that the proposed InceptionMamba achieves state-of-the-art performance with superior parameter and computational efficiency. The source code will be available at https://github.com/Wake1021/InceptionMamba.
♻ ☆ Improved Algorithm for Deep Active Learning under Imbalance via Optimal Separation
Class imbalance severely impacts machine learning performance on minority classes in real-world applications. While various solutions exist, active learning offers a fundamental fix by strategically collecting balanced, informative labeled examples from abundant unlabeled data. We introduce DIRECT, an algorithm that identifies class separation boundaries and selects the most uncertain nearby examples for annotation. By reducing the problem to one-dimensional active learning, DIRECT leverages established theory to handle batch labeling and label noise -- another common challenge in data annotation that particularly affects active learning methods. Our work presents the first comprehensive study of active learning under both class imbalance and label noise. Extensive experiments on imbalanced datasets show DIRECT reduces annotation costs by over 60\% compared to state-of-the-art active learning methods and over 80\% versus random sampling, while maintaining robustness to label noise.
♻ ☆ Towards Clinical Practice in CT-Based Pulmonary Disease Screening: An Efficient and Reliable Framework
Deep learning models for pulmonary disease screening from Computed Tomography (CT) scans promise to alleviate the immense workload on radiologists. Still, their high computational cost, stemming from processing entire 3D volumes, remains a major barrier to widespread clinical adoption. Current sub-sampling techniques often compromise diagnostic integrity by introducing artifacts or discarding critical information. To overcome these limitations, we propose an Efficient and Reliable Framework (ERF) that fundamentally improves the practicality of automated CT analysis. Our framework introduces two core innovations: (1) A Cluster-based Sub-Sampling (CSS) method that efficiently selects a compact yet comprehensive subset of CT slices by optimizing for both representativeness and diversity. By integrating an efficient k-Nearest Neighbor (k-NN) search with an iterative refinement process, CSS bypasses the computational bottlenecks of previous methods while preserving vital diagnostic features. (2) A lightweight Hybrid Uncertainty Quantification (HUQ) mechanism, which uniquely assesses both Aleatoric Uncertainty (AU) and Epistemic Uncertainty (EU) with minimal computational overhead. By maximizing the discrepancy between auxiliary classifiers, HUQ provides a robust reliability score, which is crucial for building trust in automated systems operating on partial data. Validated on two public datasets with 2,654 CT volumes across diagnostic tasks for 3 pulmonary diseases, our proposed ERF achieves diagnostic performance comparable to the full-volume analysis (over 90% accuracy and recall) while reducing processing time by more than 60%. This work represents a significant step towards deploying fast, accurate, and trustworthy AI-powered screening tools in time-sensitive clinical settings.
♻ ☆ AR-RAG: Autoregressive Retrieval Augmentation for Image Generation
We introduce Autoregressive Retrieval Augmentation (AR-RAG), a novel paradigm that enhances image generation by autoregressively incorporating knearest neighbor retrievals at the patch level. Unlike prior methods that perform a single, static retrieval before generation and condition the entire generation on fixed reference images, AR-RAG performs context-aware retrievals at each generation step, using prior-generated patches as queries to retrieve and incorporate the most relevant patch-level visual references, enabling the model to respond to evolving generation needs while avoiding limitations (e.g., over-copying, stylistic bias, etc.) prevalent in existing methods. To realize AR-RAG, we propose two parallel frameworks: (1) Distribution-Augmentation in Decoding (DAiD), a training-free plug-and-use decoding strategy that directly merges the distribution of model-predicted patches with the distribution of retrieved patches, and (2) Feature-Augmentation in Decoding (FAiD), a parameter-efficient fine-tuning method that progressively smooths the features of retrieved patches via multi-scale convolution operations and leverages them to augment the image generation process. We validate the effectiveness of AR-RAG on widely adopted benchmarks, including Midjourney-30K, GenEval and DPG-Bench, demonstrating significant performance gains over state-of-the-art image generation models.
comment: Image Generation, Retrieval Augmented Generation
♻ ☆ AgentThink: A Unified Framework for Tool-Augmented Chain-of-Thought Reasoning in Vision-Language Models for Autonomous Driving
Vision-Language Models (VLMs) show promise for autonomous driving, yet their struggle with hallucinations, inefficient reasoning, and limited real-world validation hinders accurate perception and robust step-by-step reasoning. To overcome this, we introduce AgentThink, a pioneering unified framework that, for the first time, integrates Chain-of-Thought (CoT) reasoning with dynamic, agent-style tool invocation for autonomous driving tasks. AgentThink's core innovations include: (i) Structured Data Generation, by establishing an autonomous driving tool library to automatically construct structured, self-verified reasoning data explicitly incorporating tool usage for diverse driving scenarios; (ii) A Two-stage Training Pipeline, employing Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO) to equip VLMs with the capability for autonomous tool invocation; and (iii) Agent-style Tool-Usage Evaluation, introducing a novel multi-tool assessment protocol to rigorously evaluate the model's tool invocation and utilization. Experiments on the DriveLMM-o1 benchmark demonstrate AgentThink significantly boosts overall reasoning scores by 53.91% and enhances answer accuracy by 33.54%, while markedly improving reasoning quality and consistency. Furthermore, ablation studies and robust zero-shot/few-shot generalization experiments across various benchmarks underscore its powerful capabilities. These findings highlight a promising trajectory for developing trustworthy and tool-aware autonomous driving models.
comment: 18 pages, 8 figures
A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends
Image restoration (IR) aims to recover high-quality images from inputs degraded by various factors such as noise, blur, compression, and adverse weather. Traditional IR methods typically focus on specific types of degradation, which limits their effectiveness in real-world scenarios with complex distortions. In response to this challenge, the all-in-one image restoration (AiOIR) paradigm has recently emerged, offering a unified framework that adeptly addresses multiple degradation types. These innovative models enhance convenience and versatility by adaptively learning degradation-specific features while simultaneously leveraging shared knowledge across diverse corruptions. In this survey, we present the first comprehensive overview of AiOIR, offering a taxonomy that organizes existing methods by architecture innovations, learning strategies, and key improvements. We systematically categorize prevailing approaches and critically assess the challenges these models encounter, proposing future research directions to propel this rapidly evolving field. Our survey begins with an introduction to the foundational concepts of AiOIR models, followed by a categorization of typical scenarios. We then highlight key architectural and algorithmic advances in AiOIR, aiming to inspire continued innovation. To facilitate rigorous evaluation of existing methods, we collate and summarize established datasets, evaluation metrics, and common experimental settings. Finally, we present an objective comparison of open-sourced methods, providing valuable insights for researchers and practitioners. This paper stands as the first comprehensive and insightful review of all-in-one image restoration. A related repository is available at https://github.com/Harbinzzy/All-in-One-Image-Restoration-Survey.
comment: 20 pages, 6 figures
♻ ☆ Simultaneous Localization and Affordance Prediction of Tasks from Egocentric Video
Vision-Language Models (VLMs) have shown great success as foundational models for downstream vision and natural language applications in a variety of domains. However, these models are limited to reasoning over objects and actions currently visible on the image plane. We present a spatial extension to the VLM, which leverages spatially-localized egocentric video demonstrations to augment VLMs in two ways -- through understanding spatial task-affordances, i.e. where an agent must be for the task to physically take place, and the localization of that task relative to the egocentric viewer. We show our approach outperforms the baseline of using a VLM to map similarity of a task's description over a set of location-tagged images. Our approach has less error both on predicting where a task may take place and on predicting what tasks are likely to happen at the current location. The resulting representation will enable robots to use egocentric sensing to navigate to, or around, physical regions of interest for novel tasks specified in natural language.
♻ ☆ Advanced deep architecture pruning using single filter performance
Pruning the parameters and structure of neural networks reduces the computational complexity, energy consumption, and latency during inference. Recently, a novel underlying mechanism for successful deep learning (DL) was presented based on a method that quantitatively measures the single filter performance in each layer of a DL architecture, and a new comprehensive mechanism of how deep learning works was presented. This statistical mechanics inspired viewpoint enables to reveal the macroscopic behavior of the entire network from the microscopic performance of each filter and their cooperative behavior. Herein, we demonstrate how this understanding paves the path to high quenched dilution of the convolutional layers of deep architectures without affecting their overall accuracy using applied filter cluster connections (AFCC). AFCC is exemplified on VGG-11 and EfficientNet-B0 architectures trained on CIFAR-100, and its high pruning outperforms other techniques using the same pruning magnitude. Additionally, this technique is broadened to single nodal performance and highly pruning of fully connected layers, suggesting a possible implementation to considerably reduce the complexity of over-parameterized AI tasks.
comment: 23 pages, 4 figures, A short YouTube Video describing the main results https://www.youtube.com/watch?v=IzfpNPKSFCc
♻ ☆ PhysNav-DG: A Novel Adaptive Framework for Robust VLM-Sensor Fusion in Navigation Applications CVPR
Robust navigation in diverse environments and domains requires both accurate state estimation and transparent decision making. We present PhysNav-DG, a novel framework that integrates classical sensor fusion with the semantic power of vision-language models. Our dual-branch architecture predicts navigation actions from multi-sensor inputs while simultaneously generating detailed chain-of-thought explanations. A modified Adaptive Kalman Filter dynamically adjusts its noise parameters based on environmental context. It leverages several streams of raw sensor data along with semantic insights from models such as LLaMA 3.2 11B and BLIP-2. To evaluate our approach, we introduce the MD-NEX Benchmark, a novel multi-domain dataset that unifies indoor navigation, autonomous driving, and social navigation tasks with ground-truth actions and human-validated explanations. Extensive experiments and ablations show that PhysNav-DG improves navigation success rates by over 20% and achieves high efficiency, with explanations that are both highly grounded and clear. This work connects high-level semantic reasoning and geometric planning for safer and more trustworthy autonomous systems.
comment: 9 pages, 5 figures. CVPRW 2025
♻ ☆ Enhancing Glass Defect Detection with Diffusion Models: Addressing Imbalanced Datasets in Manufacturing Quality Control
Visual defect detection in industrial glass manufacturing remains a critical challenge due to the low frequency of defective products, leading to imbalanced datasets that limit the performance of deep learning models and computer vision systems. This paper presents a novel approach using Denoising Diffusion Probabilistic Models (DDPMs) to generate synthetic defective glass product images for data augmentation, effectively addressing class imbalance issues in manufacturing quality control and automated visual inspection. The methodology significantly enhances image classification performance of standard CNN architectures (ResNet50V2, EfficientNetB0, and MobileNetV2) in detecting anomalies by increasing the minority class representation. Experimental results demonstrate substantial improvements in key machine learning metrics, particularly in recall for defective samples across all tested deep neural network architectures while maintaining perfect precision. The most dramatic improvement was observed in ResNet50V2's overall classification accuracy, which increased from seventy-eight percent to ninety-three percent when trained with the augmented data. This work provides a scalable, cost effective approach to enhancing automated defect detection in glass manufacturing that can potentially be extended to other industrial quality assurance systems and industries with similar class imbalance challenges.
comment: 12 pages, 7 figures, published in Computer and Decision Making - An International Journal (COMDEM)
♻ ☆ Tile Classification Based Viewport Prediction with Multi-modal Fusion Transformer
Viewport prediction is a crucial aspect of tile-based 360 video streaming system. However, existing trajectory based methods lack of robustness, also oversimplify the process of information construction and fusion between different modality inputs, leading to the error accumulation problem. In this paper, we propose a tile classification based viewport prediction method with Multi-modal Fusion Transformer, namely MFTR. Specifically, MFTR utilizes transformer-based networks to extract the long-range dependencies within each modality, then mine intra- and inter-modality relations to capture the combined impact of user historical inputs and video contents on future viewport selection. In addition, MFTR categorizes future tiles into two categories: user interested or not, and selects future viewport as the region that contains most user interested tiles. Comparing with predicting head trajectories, choosing future viewport based on tile's binary classification results exhibits better robustness and interpretability. To evaluate our proposed MFTR, we conduct extensive experiments on two widely used PVS-HM and Xu-Gaze dataset. MFTR shows superior performance over state-of-the-art methods in terms of average prediction accuracy and overlap ratio, also presents competitive computation efficiency.
comment: This paper is accepted by ACM-MM 2023
♻ ☆ Enhancing Intent Understanding for Ambiguous prompt: A Human-Machine Co-Adaption Strategy
Today's image generation systems are capable of producing realistic and high-quality images. However, user prompts often contain ambiguities, making it difficult for these systems to interpret users' actual intentions. Consequently, many users must modify their prompts several times to ensure the generated images meet their expectations. While some methods focus on enhancing prompts to make the generated images fit user needs, the model is still hard to understand users' real needs, especially for non-expert users. In this research, we aim to enhance the visual parameter-tuning process, making the model user-friendly for individuals without specialized knowledge and better understand user needs. We propose a human-machine co-adaption strategy using mutual information between the user's prompts and the pictures under modification as the optimizing target to make the system better adapt to user needs. We find that an improved model can reduce the necessity for multiple rounds of adjustments. We also collect multi-round dialogue datasets with prompts and images pairs and user intent. Various experiments demonstrate the effectiveness of the proposed method in our proposed dataset. Our annotation tools and several examples of our dataset are available at https://zenodo.org/records/14876029 for easier review. We will make open source our full dataset and code.
♻ ☆ DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO
Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training in enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success by employing a PPO-style reinforcement algorithm with group-based normalized rewards. However, the application of GRPO to Video Large Language Models (Video LLMs) has been less studied. In this paper, we explore GRPO for video LLMs and identify two primary issues that impede its effective learning: (1) reliance on safeguards, and (2) the vanishing advantage problem. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with our proposed Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation strategy. Reg-GRPO reformulates the GRPO objective as a regression task, directly predicting the advantage in GRPO. This design eliminates the need for safeguards like clipping and min functions, thereby facilitating more direct policy guidance by aligning the model with the advantage values. We also design the difficulty-aware data augmentation strategy that dynamically augments training samples at solvable difficulty levels, fostering diverse and informative reward signals. Our comprehensive experiments show that DeepVideo-R1 significantly improves video reasoning performance across multiple video reasoning benchmarks.
comment: Work in progress
♻ ☆ Sparc3D: Sparse Representation and Construction for High-Resolution 3D Shapes Modeling
High-fidelity 3D object synthesis remains significantly more challenging than 2D image generation due to the unstructured nature of mesh data and the cubic complexity of dense volumetric grids. Existing two-stage pipelines-compressing meshes with a VAE (using either 2D or 3D supervision), followed by latent diffusion sampling-often suffer from severe detail loss caused by inefficient representations and modality mismatches introduced in VAE. We introduce Sparc3D, a unified framework that combines a sparse deformable marching cubes representation Sparcubes with a novel encoder Sparconv-VAE. Sparcubes converts raw meshes into high-resolution ($1024^3$) surfaces with arbitrary topology by scattering signed distance and deformation fields onto a sparse cube, allowing differentiable optimization. Sparconv-VAE is the first modality-consistent variational autoencoder built entirely upon sparse convolutional networks, enabling efficient and near-lossless 3D reconstruction suitable for high-resolution generative modeling through latent diffusion. Sparc3D achieves state-of-the-art reconstruction fidelity on challenging inputs, including open surfaces, disconnected components, and intricate geometry. It preserves fine-grained shape details, reduces training and inference cost, and integrates naturally with latent diffusion models for scalable, high-resolution 3D generation.
comment: Homepage: https://lizhihao6.github.io/Sparc3D
♻ ☆ High Performance Space Debris Tracking in Complex Skylight Backgrounds with a Large-Scale Dataset
With the rapid development of space exploration, space debris has attracted more attention due to its potential extreme threat, leading to the need for real-time and accurate debris tracking. However, existing methods are mainly based on traditional signal processing, which cannot effectively process the complex background and dense space debris. In this paper, we propose a deep learning-based Space Debris Tracking Network~(SDT-Net) to achieve highly accurate debris tracking. SDT-Net effectively represents the feature of debris, enhancing the efficiency and stability of end-to-end model learning. To train and evaluate this model effectively, we also produce a large-scale dataset Space Debris Tracking Dataset (SDTD) by a novel observation-based data simulation scheme. SDTD contains 18,040 video sequences with a total of 62,562 frames and covers 250,000 synthetic space debris. Extensive experiments validate the effectiveness of our model and the challenging of our dataset. Furthermore, we test our model on real data from the Antarctic Station, achieving a MOTA score of 70.6%, which demonstrates its strong transferability to real-world scenarios. Our dataset and code will be released soon.
♻ ☆ Towards Holistic Visual Quality Assessment of AI-Generated Videos: A LLM-Based Multi-Dimensional Evaluation Model CVPR
The development of AI-Generated Video (AIGV) technology has been remarkable in recent years, significantly transforming the paradigm of video content production. However, AIGVs still suffer from noticeable visual quality defects, such as noise, blurriness, frame jitter and low dynamic degree, which severely impact the user's viewing experience. Therefore, an effective automatic visual quality assessment is of great importance for AIGV content regulation and generative model improvement. In this work, we decompose the visual quality of AIGVs into three dimensions: technical quality, motion quality, and video semantics. For each dimension, we design corresponding encoder to achieve effective feature representation. Moreover, considering the outstanding performance of large language models (LLMs) in various vision and language tasks, we introduce a LLM as the quality regression module. To better enable the LLM to establish reasoning associations between multi-dimensional features and visual quality, we propose a specially designed multi-modal prompt engineering framework. Additionally, we incorporate LoRA fine-tuning technology during the training phase, allowing the LLM to better adapt to specific tasks. Our proposed method achieved \textbf{second place} in the NTIRE 2025 Quality Assessment of AI-Generated Content Challenge: Track 2 AI Generated video, demonstrating its effectiveness. Codes can be obtained at https://github.com/QiZelu/AIGVEval.
comment: This paper has been accepted by CVPR Workshop 2025
♻ ☆ What Changed and What Could Have Changed? State-Change Counterfactuals for Procedure-Aware Video Representation Learning
Understanding a procedural activity requires modeling both how action steps transform the scene and how evolving scene transformations can influence the sequence of action steps, even those that are accidental or erroneous. Existing work has studied procedure-aware video representations by proposing novel approaches such as modeling the temporal order of actions, and has not explicitly learned the state changes (scene transformations). In this work, we study procedure-aware video representation learning by incorporating state-change descriptions generated by Large Language Models (LLMs) as supervision signals for video encoders. Moreover, we generate state-change counterfactuals that simulate hypothesized failure outcomes, allowing models to learn by imagining the unseen ``What if'' scenarios. This counterfactual reasoning facilitates the model's ability to understand the cause and effect of each step in an activity. To verify the procedure awareness of our model, we conduct extensive experiments on procedure-aware tasks, including temporal action segmentation, error detection, action phase classification, frame retrieval, multi-instance retrieval, and action recognition. Our results demonstrate the effectiveness of the proposed state-change descriptions and their counterfactuals, and achieve significant improvements on multiple tasks. We will make our source code and data publicly available soon.
comment: 16 pages, 4 figures
♻ ☆ DiffUMI: Training-Free Universal Model Inversion via Unconditional Diffusion for Face Recognition
Face recognition technology presents serious privacy risks due to its reliance on sensitive and immutable biometric data. To address these concerns, such systems typically convert raw facial images into embeddings, which are traditionally viewed as privacy-preserving. However, model inversion attacks challenge this assumption by reconstructing private facial images from embeddings, highlighting a critical vulnerability in face recognition systems. Most existing inversion methods require training a separate generator for each target model, making them computationally intensive. In this work, we introduce DiffUMI, a diffusion-based universal model inversion attack that requires no additional training. DiffUMI is the first approach to successfully leverage unconditional face generation without relying on model-specific generators. It surpasses state-of-the-art attacks by 15.5% and 9.82% in success rate on standard and privacy-preserving face recognition systems, respectively. Furthermore, we propose a novel use of out-of-domain detection (OODD), demonstrating for the first time that model inversion can differentiate between facial and non-facial embeddings using only the embedding space.
♻ ☆ CompMarkGS: Robust Watermarking for Compressed 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) is increasingly adopted in various academic and commercial applications due to its real-time and high-quality rendering capabilities, emphasizing the growing need for copyright protection technologies for 3DGS. However, the large model size of 3DGS requires developing efficient compression techniques. This highlights the necessity of an integrated framework that addresses copyright protection and data compression for 3D content. Nevertheless, existing 3DGS watermarking methods significantly degrade watermark performance under 3DGS compression methods, particularly quantization-based approaches that achieve superior compression performance. To ensure reliable watermark detection under compression, we propose a compression-tolerant anchor-based 3DGS watermarking, which preserves watermark integrity and rendering quality. This is achieved by introducing anchor-based 3DGS watermarking. We embed the watermark into the anchor attributes, particularly the anchor feature, to enhance security and rendering quality. We also propose a quantization distortion layer that injects quantization noise during training, preserving the watermark after quantization-based compression. Moreover, we employ a frequency-aware anchor growing strategy that improves rendering quality and watermark performance by effectively identifying Gaussians in high-frequency regions. Extensive experiments demonstrate that our proposed method preserves the watermark even under compression and maintains high rendering quality.
comment: 28 pages, 19 figures
♻ ☆ GD doesn't make the cut: Three ways that non-differentiability affects neural network training
This paper critically examines the fundamental distinctions between gradient methods applied to non-differentiable functions (NGDMs) and classical gradient descents (GDs) for differentiable functions, revealing significant gaps in current deep learning optimization theory. We demonstrate that NGDMs exhibit markedly different convergence properties compared to GDs, strongly challenging the applicability of extensive neural network convergence literature based on $L-smoothness$ to non-smooth neural networks. Our analysis reveals paradoxical behavior of NDGM solutions for $L_{1}$-regularized problems, where increasing regularization counterintuitively leads to larger $L_{1}$ norms of optimal solutions. This finding calls into question widely adopted $L_{1}$ penalization techniques for network pruning. We further challenge the common assumption that optimization algorithms like RMSProp behave similarly in differentiable and non-differentiable contexts. Expanding on the Edge of Stability phenomenon, we demonstrate its occurrence in a broader class of functions, including Lipschitz continuous convex differentiable functions. This finding raises important questions about its relevance and interpretation in non-convex, non-differentiable neural networks, particularly those using ReLU activations. Our work identifies critical misunderstandings of NDGMs in influential literature, stemming from an overreliance on strong smoothness assumptions. These findings necessitate a reevaluation of optimization dynamics in deep learning, emphasizing the crucial need for more nuanced theoretical foundations in analyzing these complex systems.
comment: Crisper proof
♻ ☆ Play to Generalize: Learning to Reason Through Game Play
Developing generalizable reasoning capabilities in multimodal large language models (MLLMs) remains challenging. Motivated by cognitive science literature suggesting that gameplay promotes transferable cognitive skills, we propose a novel post-training paradigm, Visual Game Learning, or ViGaL, where MLLMs develop out-of-domain generalization of multimodal reasoning through playing arcade-like games. Specifically, we show that post-training a 7B-parameter MLLM via reinforcement learning (RL) on simple arcade-like games, e.g. Snake, significantly enhances its downstream performance on multimodal math benchmarks like MathVista, and on multi-discipline questions like MMMU, without seeing any worked solutions, equations, or diagrams during RL, suggesting the capture of transferable reasoning skills. Remarkably, our model outperforms specialist models tuned on multimodal reasoning data in multimodal reasoning benchmarks, while preserving the base model's performance on general visual benchmarks, a challenge where specialist models often fall short. Our findings suggest a new post-training paradigm: synthetic, rule-based games can serve as controllable and scalable pre-text tasks that unlock generalizable multimodal reasoning abilities in MLLMs.
comment: Project Page: https://yunfeixie233.github.io/ViGaL/
♻ ☆ M-MRE: Extending the Mutual Reinforcement Effect to Multimodal Information Extraction
Mutual Reinforcement Effect (MRE) is an emerging subfield at the intersection of information extraction and model interpretability. MRE aims to leverage the mutual understanding between tasks of different granularities, enhancing the performance of both coarse-grained and fine-grained tasks through joint modeling. While MRE has been explored and validated in the textual domain, its applicability to visual and multimodal domains remains unexplored. In this work, we extend MRE to the multimodal information extraction domain for the first time. Specifically, we introduce a new task: Multimodal Mutual Reinforcement Effect (M-MRE), and construct a corresponding dataset to support this task. To address the challenges posed by M-MRE, we further propose a Prompt Format Adapter (PFA) that is fully compatible with various Large Vision-Language Models (LVLMs). Experimental results demonstrate that MRE can also be observed in the M-MRE task, a multimodal text-image understanding scenario. This provides strong evidence that MRE facilitates mutual gains across three interrelated tasks, confirming its generalizability beyond the textual domain.
♻ ☆ GPT4RoI: Instruction Tuning Large Language Model on Region-of-Interest ECCV2024
Visual instruction tuning large language model(LLM) on image-text pairs has achieved general-purpose vision-language abilities. However, the lack of region-text pairs limits their advancements to fine-grained multimodal understanding. In this paper, we propose spatial instruction tuning, which introduces the reference to the region-of-interest(RoI) in the instruction. Before sending to LLM, the reference is replaced by RoI features and interleaved with language embeddings as a sequence. Our model GPT4RoI, trained on 7 region-text pair datasets, brings an unprecedented interactive and conversational experience compared to previous image-level models. (1) Interaction beyond language: Users can interact with our model by both language and drawing bounding boxes to flexibly adjust the referring granularity. (2) Versatile multimodal abilities: A variety of attribute information within each RoI can be mined by GPT4RoI, e.g., color, shape, material, action, etc. Furthermore, it can reason about multiple RoIs based on common sense. On the Visual Commonsense Reasoning(VCR) dataset, GPT4RoI achieves a remarkable accuracy of 81.6%, surpassing all existing models by a significant margin (the second place is 75.6%) and almost reaching human-level performance of 85.0%. The code and model can be found at https://github.com/jshilong/GPT4RoI.
comment: ECCV2024-Workshop, Camera-ready
♻ ☆ One Diffusion to Generate Them All CVPR 2025
We introduce OneDiffusion, a versatile, large-scale diffusion model that seamlessly supports bidirectional image synthesis and understanding across diverse tasks. It enables conditional generation from inputs such as text, depth, pose, layout, and semantic maps, while also handling tasks like image deblurring, upscaling, and reverse processes such as depth estimation and segmentation. Additionally, OneDiffusion allows for multi-view generation, camera pose estimation, and instant personalization using sequential image inputs. Our model takes a straightforward yet effective approach by treating all tasks as frame sequences with varying noise scales during training, allowing any frame to act as a conditioning image at inference time. Our unified training framework removes the need for specialized architectures, supports scalable multi-task training, and adapts smoothly to any resolution, enhancing both generalization and scalability. Experimental results demonstrate competitive performance across tasks in both generation and prediction such as text-to-image, multiview generation, ID preservation, depth estimation and camera pose estimation despite relatively small training dataset. Our code and checkpoint are freely available at https://github.com/lehduong/OneDiffusion
comment: CVPR 2025; two first authors contribute equally
♻ ☆ Diffuse Everything: Multimodal Diffusion Models on Arbitrary State Spaces ICML 2025
Diffusion models have demonstrated remarkable performance in generating unimodal data across various tasks, including image, video, and text generation. On the contrary, the joint generation of multimodal data through diffusion models is still in the early stages of exploration. Existing approaches heavily rely on external preprocessing protocols, such as tokenizers and variational autoencoders, to harmonize varied data representations into a unified, unimodal format. This process heavily demands the high accuracy of encoders and decoders, which can be problematic for applications with limited data. To lift this restriction, we propose a novel framework for building multimodal diffusion models on arbitrary state spaces, enabling native generation of coupled data across different modalities. By introducing an innovative decoupled noise schedule for each modality, we enable both unconditional and modality-conditioned generation within a single model simultaneously. We empirically validate our approach for text-image generation and mixed-type tabular data synthesis, demonstrating that it achieves competitive performance.
comment: Accepted to ICML 2025. Code available at https://github.com/KevinRojas1499/Diffuse-Everything
♻ ☆ seg2med: a bridge from artificial anatomy to multimodal medical images
We present seg2med, a modular framework for anatomy-driven multimodal medical image synthesis. The system integrates three components to enable high-fidelity, cross-modality generation of CT and MR images based on structured anatomical priors. First, anatomical maps are independently derived from three sources: real patient data, XCAT digital phantoms, and synthetic anatomies created by combining organs from multiple patients. Second, we introduce PhysioSynth, a modality-specific simulator that converts anatomical masks into prior volumes using tissue-dependent parameters (e.g., HU, T1, T2, proton density) and modality-specific signal models. It supports simulation of CT and multiple MR sequences including GRE, SPACE, and VIBE. Third, the synthesized anatomical priors are used to train 2-channel conditional denoising diffusion models, which take the anatomical prior as structural condition alongside the noisy image, enabling generation of high-quality, structurally aligned images. The framework achieves SSIM of 0.94 for CT and 0.89 for MR compared to real data, and FSIM of 0.78 for simulated CT. The generative quality is further supported by a Frechet Inception Distance (FID) of 3.62 for CT synthesis. In modality conversion, seg2med achieves SSIM of 0.91 for MR to CT and 0.77 for CT to MR. Anatomical fidelity evaluation shows synthetic CT achieves mean Dice scores above 0.90 for 11 key abdominal organs, and above 0.80 for 34 of 59 total organs. These results underscore seg2med's utility in cross-modality synthesis, data augmentation, and anatomy-aware medical AI.
comment: 17 pages, 10 figures Web demo available at https://huggingface.co/spaces/Zeyu0601/frankenstein
♻ ☆ Capturing Temporal Dynamics in Large-Scale Canopy Tree Height Estimation ICML
With the rise in global greenhouse gas emissions, accurate large-scale tree canopy height maps are essential for understanding forest structure, estimating above-ground biomass, and monitoring ecological disruptions. To this end, we present a novel approach to generate large-scale, high-resolution canopy height maps over time. Our model accurately predicts canopy height over multiple years given Sentinel-1 composite and Sentinel~2 time series satellite data. Using GEDI LiDAR data as the ground truth for training the model, we present the first 10m resolution temporal canopy height map of the European continent for the period 2019-2022. As part of this product, we also offer a detailed canopy height map for 2020, providing more precise estimates than previous studies. Our pipeline and the resulting temporal height map are publicly available, enabling comprehensive large-scale monitoring of forests and, hence, facilitating future research and ecological analyses.
comment: ICML Camera-Ready, 9 pages main paper, 8 pages references and appendix, 9 figures, 8 tables
♻ ☆ ColorBench: Can VLMs See and Understand the Colorful World? A Comprehensive Benchmark for Color Perception, Reasoning, and Robustness
Color plays an important role in human perception and usually provides critical clues in visual reasoning. However, it is unclear whether and how vision-language models (VLMs) can perceive, understand, and leverage color as humans. This paper introduces ColorBench, an innovative benchmark meticulously crafted to assess the capabilities of VLMs in color understanding, including color perception, reasoning, and robustness. By curating a suite of diverse test scenarios, with grounding in real applications, ColorBench evaluates how these models perceive colors, infer meanings from color-based cues, and maintain consistent performance under varying color transformations. Through an extensive evaluation of 32 VLMs with varying language models and vision encoders, our paper reveals some undiscovered findings: (i) The scaling law (larger models are better) still holds on ColorBench, while the language model plays a more important role than the vision encoder. (ii) However, the performance gaps across models are relatively small, indicating that color understanding has been largely neglected by existing VLMs. (iii) CoT reasoning improves color understanding accuracies and robustness, though they are vision-centric tasks. (iv) Color clues are indeed leveraged by VLMs on ColorBench but they can also mislead models in some tasks. These findings highlight the critical limitations of current VLMs and underscore the need to enhance color comprehension. Our ColorBenchcan serve as a foundational tool for advancing the study of human-level color understanding of multimodal AI.
comment: 36 pages, including references and appendix. Code is available at https://github.com/tianyi-lab/ColorBench
♻ ☆ Diversifying Human Pose in Synthetic Data for Aerial-view Human Detection ICIP 2025
Synthetic data generation has emerged as a promising solution to the data scarcity issue in aerial-view human detection. However, creating datasets that accurately reflect varying real-world human appearances, particularly diverse poses, remains challenging and labor-intensive. To address this, we propose SynPoseDiv, a novel framework that diversifies human poses within existing synthetic datasets. SynPoseDiv tackles two key challenges: generating realistic, diverse 3D human poses using a diffusion-based pose generator, and producing images of virtual characters in novel poses through a source-to-target image translator. The framework incrementally transitions characters into new poses using optimized pose sequences identified via Dijkstra's algorithm. Experiments demonstrate that SynPoseDiv significantly improves detection accuracy across multiple aerial-view human detection benchmarks, especially in low-shot scenarios, and remains effective regardless of the training approach or dataset size.
comment: ICIP 2025
♻ ☆ FrugalNeRF: Fast Convergence for Extreme Few-shot Novel View Synthesis without Learned Priors CVPR 2025
Neural Radiance Fields (NeRF) face significant challenges in extreme few-shot scenarios, primarily due to overfitting and long training times. Existing methods, such as FreeNeRF and SparseNeRF, use frequency regularization or pre-trained priors but struggle with complex scheduling and bias. We introduce FrugalNeRF, a novel few-shot NeRF framework that leverages weight-sharing voxels across multiple scales to efficiently represent scene details. Our key contribution is a cross-scale geometric adaptation scheme that selects pseudo ground truth depth based on reprojection errors across scales. This guides training without relying on externally learned priors, enabling full utilization of the training data. It can also integrate pre-trained priors, enhancing quality without slowing convergence. Experiments on LLFF, DTU, and RealEstate-10K show that FrugalNeRF outperforms other few-shot NeRF methods while significantly reducing training time, making it a practical solution for efficient and accurate 3D scene reconstruction.
comment: Paper accepted to CVPR 2025. Project page: https://linjohnss.github.io/frugalnerf/
Artificial Intelligence 236
☆ Rethinking Losses for Diffusion Bridge Samplers
Diffusion bridges are a promising class of deep-learning methods for sampling from unnormalized distributions. Recent works show that the Log Variance (LV) loss consistently outperforms the reverse Kullback-Leibler (rKL) loss when using the reparametrization trick to compute rKL-gradients. While the on-policy LV loss yields identical gradients to the rKL loss when combined with the log-derivative trick for diffusion samplers with non-learnable forward processes, this equivalence does not hold for diffusion bridges or when diffusion coefficients are learned. Based on this insight we argue that for diffusion bridges the LV loss does not represent an optimization objective that can be motivated like the rKL loss via the data processing inequality. Our analysis shows that employing the rKL loss with the log-derivative trick (rKL-LD) does not only avoid these conceptual problems but also consistently outperforms the LV loss. Experimental results with different types of diffusion bridges on challenging benchmarks show that samplers trained with the rKL-LD loss achieve better performance. From a practical perspective we find that rKL-LD requires significantly less hyperparameter optimization and yields more stable training behavior.
☆ Fine-Grained Perturbation Guidance via Attention Head Selection
Recent guidance methods in diffusion models steer reverse sampling by perturbing the model to construct an implicit weak model and guide generation away from it. Among these approaches, attention perturbation has demonstrated strong empirical performance in unconditional scenarios where classifier-free guidance is not applicable. However, existing attention perturbation methods lack principled approaches for determining where perturbations should be applied, particularly in Diffusion Transformer (DiT) architectures where quality-relevant computations are distributed across layers. In this paper, we investigate the granularity of attention perturbations, ranging from the layer level down to individual attention heads, and discover that specific heads govern distinct visual concepts such as structure, style, and texture quality. Building on this insight, we propose "HeadHunter", a systematic framework for iteratively selecting attention heads that align with user-centric objectives, enabling fine-grained control over generation quality and visual attributes. In addition, we introduce SoftPAG, which linearly interpolates each selected head's attention map toward an identity matrix, providing a continuous knob to tune perturbation strength and suppress artifacts. Our approach not only mitigates the oversmoothing issues of existing layer-level perturbation but also enables targeted manipulation of specific visual styles through compositional head selection. We validate our method on modern large-scale DiT-based text-to-image models including Stable Diffusion 3 and FLUX.1, demonstrating superior performance in both general quality enhancement and style-specific guidance. Our work provides the first head-level analysis of attention perturbation in diffusion models, uncovering interpretable specialization within attention layers and enabling practical design of effective perturbation strategies.
comment: Project page: https://cvlab-kaist.github.io/HeadHunter/
☆ AutoMind: Adaptive Knowledgeable Agent for Automated Data Science
Large Language Model (LLM) agents have shown great potential in addressing real-world data science problems. LLM-driven data science agents promise to automate the entire machine learning pipeline, yet their real-world effectiveness remains limited. Existing frameworks depend on rigid, pre-defined workflows and inflexible coding strategies; consequently, they excel only on relatively simple, classical problems and fail to capture the empirical expertise that human practitioners bring to complex, innovative tasks. In this work, we introduce AutoMind, an adaptive, knowledgeable LLM-agent framework that overcomes these deficiencies through three key advances: (1) a curated expert knowledge base that grounds the agent in domain expert knowledge, (2) an agentic knowledgeable tree search algorithm that strategically explores possible solutions, and (3) a self-adaptive coding strategy that dynamically tailors code generation to task complexity. Evaluations on two automated data science benchmarks demonstrate that AutoMind delivers superior performance versus state-of-the-art baselines. Additional analyses confirm favorable effectiveness, efficiency, and qualitative solution quality, highlighting AutoMind as an efficient and robust step toward fully automated data science.
comment: Ongoing work. Code is at https://github.com/innovatingAI/AutoMind
☆ Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning
A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs
☆ Farseer: A Refined Scaling Law in Large Language Models
Training Large Language Models (LLMs) is prohibitively expensive, creating a critical scaling gap where insights from small-scale experiments often fail to transfer to resource-intensive production systems, thereby hindering efficient innovation. To bridge this, we introduce Farseer, a novel and refined scaling law offering enhanced predictive accuracy across scales. By systematically constructing a model loss surface $L(N,D)$, Farseer achieves a significantly better fit to empirical data than prior laws (e.g., Chinchilla's law). Our methodology yields accurate, robust, and highly generalizable predictions, demonstrating excellent extrapolation capabilities, improving upon Chinchilla's law by reducing extrapolation error by 433\%. This allows for the reliable evaluation of competing training strategies across all $(N,D)$ settings, enabling conclusions from small-scale ablation studies to be confidently extrapolated to predict large-scale performance. Furthermore, Farseer provides new insights into optimal compute allocation, better reflecting the nuanced demands of modern LLM training. To validate our approach, we trained an extensive suite of approximately 1,000 LLMs across diverse scales and configurations, consuming roughly 3 million NVIDIA H100 GPU hours. We are comprehensively open-sourcing all models, data, results, and logs at https://github.com/Farseer-Scaling-Law/Farseer to foster further research.
comment: 34
☆ Beyond Attention or Similarity: Maximizing Conditional Diversity for Token Pruning in MLLMs
In multimodal large language models (MLLMs), the length of input visual tokens is often significantly greater than that of their textual counterparts, leading to a high inference cost. Many works aim to address this issue by removing redundant visual tokens. However, current approaches either rely on attention-based pruning, which retains numerous duplicate tokens, or use similarity-based pruning, overlooking the instruction relevance, consequently causing suboptimal performance. In this paper, we go beyond attention or similarity by proposing a novel visual token pruning method named CDPruner, which maximizes the conditional diversity of retained tokens. We first define the conditional similarity between visual tokens conditioned on the instruction, and then reformulate the token pruning problem with determinantal point process (DPP) to maximize the conditional diversity of the selected subset. The proposed CDPruner is training-free and model-agnostic, allowing easy application to various MLLMs. Extensive experiments across diverse MLLMs show that CDPruner establishes new state-of-the-art on various vision-language benchmarks. By maximizing conditional diversity through DPP, the selected subset better represents the input images while closely adhering to user instructions, thereby preserving strong performance even with high reduction ratios. When applied to LLaVA, CDPruner reduces FLOPs by 95\% and CUDA latency by 78\%, while maintaining 94\% of the original accuracy. Our code is available at https://github.com/Theia-4869/CDPruner.
comment: 22 pages, 5 figures, code: https://github.com/Theia-4869/CDPruner, project page: https://theia-4869.github.io/CDPruner
☆ SpectralAR: Spectral Autoregressive Visual Generation
Autoregressive visual generation has garnered increasing attention due to its scalability and compatibility with other modalities compared with diffusion models. Most existing methods construct visual sequences as spatial patches for autoregressive generation. However, image patches are inherently parallel, contradicting the causal nature of autoregressive modeling. To address this, we propose a Spectral AutoRegressive (SpectralAR) visual generation framework, which realizes causality for visual sequences from the spectral perspective. Specifically, we first transform an image into ordered spectral tokens with Nested Spectral Tokenization, representing lower to higher frequency components. We then perform autoregressive generation in a coarse-to-fine manner with the sequences of spectral tokens. By considering different levels of detail in images, our SpectralAR achieves both sequence causality and token efficiency without bells and whistles. We conduct extensive experiments on ImageNet-1K for image reconstruction and autoregressive generation, and SpectralAR achieves 3.02 gFID with only 64 tokens and 310M parameters. Project page: https://huang-yh.github.io/spectralar/.
comment: Project Page: https://huang-yh.github.io/spectralar/
☆ ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench.
comment: Work in progress
☆ Understanding In-Context Learning on Structured Manifolds: Bridging Attention to Kernel Methods
While in-context learning (ICL) has achieved remarkable success in natural language and vision domains, its theoretical understanding--particularly in the context of structured geometric data--remains unexplored. In this work, we initiate a theoretical study of ICL for regression of H\"older functions on manifolds. By establishing a novel connection between the attention mechanism and classical kernel methods, we derive generalization error bounds in terms of the prompt length and the number of training tasks. When a sufficient number of training tasks are observed, transformers give rise to the minimax regression rate of H\"older functions on manifolds, which scales exponentially with the intrinsic dimension of the manifold, rather than the ambient space dimension. Our result also characterizes how the generalization error scales with the number of training tasks, shedding light on the complexity of transformers as in-context algorithm learners. Our findings provide foundational insights into the role of geometry in ICL and novels tools to study ICL of nonlinear models.
☆ ReGuidance: A Simple Diffusion Wrapper for Boosting Sample Quality on Hard Inverse Problems
There has been a flurry of activity around using pretrained diffusion models as informed data priors for solving inverse problems, and more generally around steering these models using reward models. Training-free methods like diffusion posterior sampling (DPS) and its many variants have offered flexible heuristic algorithms for these tasks, but when the reward is not informative enough, e.g., in hard inverse problems with low signal-to-noise ratio, these techniques veer off the data manifold, failing to produce realistic outputs. In this work, we devise a simple wrapper, ReGuidance, for boosting both the sample realism and reward achieved by these methods. Given a candidate solution $\hat{x}$ produced by an algorithm of the user's choice, we propose inverting the solution by running the unconditional probability flow ODE in reverse starting from $\hat{x}$, and then using the resulting latent as an initialization for DPS. We evaluate our wrapper on hard inverse problems like large box in-painting and super-resolution with high upscaling. Whereas state-of-the-art baselines visibly fail, we find that applying our wrapper on top of these baselines significantly boosts sample quality and measurement consistency. We complement these findings with theory proving that on certain multimodal data distributions, ReGuidance simultaneously boosts the reward and brings the candidate solution closer to the data manifold. To our knowledge, this constitutes the first rigorous algorithmic guarantee for DPS.
comment: 38 pages, 14 figures
☆ SWE-Factory: Your Automated Factory for Issue Resolution Training Data and Evaluation Benchmarks
Constructing large-scale datasets for the GitHub issue resolution task is crucial for both training and evaluating the software engineering capabilities of Large Language Models (LLMs). However, the traditional process for creating such benchmarks is notoriously challenging and labor-intensive, particularly in the stages of setting up evaluation environments, grading test outcomes, and validating task instances. In this paper, we propose SWE-Factory, an automated pipeline designed to address these challenges. To tackle these issues, our pipeline integrates three core automated components. First, we introduce SWE-Builder, a multi-agent system that automates evaluation environment construction, which employs four specialized agents that work in a collaborative, iterative loop and leverages an environment memory pool to enhance efficiency. Second, we introduce a standardized, exit-code-based grading method that eliminates the need for manually writing custom parsers. Finally, we automate the fail2pass validation process using these reliable exit code signals. Experiments on 671 issues across four programming languages show that our pipeline can effectively construct valid task instances; for example, with GPT-4.1-mini, our SWE-Builder constructs 269 valid instances at $0.045 per instance, while with Gemini-2.5-flash, it achieves comparable performance at the lowest cost of $0.024 per instance. We also demonstrate that our exit-code-based grading achieves 100% accuracy compared to manual inspection, and our automated fail2pass validation reaches a precision of 0.92 and a recall of 1.00. We hope our automated pipeline will accelerate the collection of large-scale, high-quality GitHub issue resolution datasets for both training and evaluation. Our code and datasets are released at https://github.com/DeepSoftwareAnalytics/swe-factory.
☆ Domain2Vec: Vectorizing Datasets to Find the Optimal Data Mixture without Training ICML2025
We introduce~\textsc{Domain2Vec}, a novel approach that decomposes any dataset into a linear combination of several \emph{meta-domains}, a new concept designed to capture the key underlying features of datasets. \textsc{Domain2Vec} maintains a vocabulary of meta-domains and uses a classifier to decompose any given dataset into a domain vector that corresponds to a distribution over this vocabulary. These domain vectors enable the identification of the optimal data mixture for language model (LM) pretraining in a training-free manner under the \emph{\textbf{D}istribution \textbf{A}lignment \textbf{A}ssumption} (DA$^{2}$), which suggests that when the data distributions of the training set and the validation set are better aligned, a lower validation loss is achieved. Moreover, \textsc{Domain2vec} can be seamlessly integrated into previous works to model the relationship between domain vectors and LM performance, greatly enhancing the efficiency and scalability of previous methods. Extensive experiments demonstrate that \textsc{Domain2Vec} helps find the data mixture that enhances downstream task performance with minimal computational overhead. Specifically, \textsc{Domain2Vec} achieves the same validation loss on Pile-CC using only $51.5\%$ of the computation required when training on the original mixture of The Pile dataset. Under equivalent compute budget, \textsc{Domain2Vec} improves downstream performance by an average of $2.83\%$.
comment: Accepted to ICML2025
☆ Monitoring Decomposition Attacks in LLMs with Lightweight Sequential Monitors
Current LLM safety defenses fail under decomposition attacks, where a malicious goal is decomposed into benign subtasks that circumvent refusals. The challenge lies in the existing shallow safety alignment techniques: they only detect harm in the immediate prompt and do not reason about long-range intent, leaving them blind to malicious intent that emerges over a sequence of seemingly benign instructions. We therefore propose adding an external monitor that observes the conversation at a higher granularity. To facilitate our study of monitoring decomposition attacks, we curate the largest and most diverse dataset to date, including question-answering, text-to-image, and agentic tasks. We verify our datasets by testing them on frontier LLMs and show an 87% attack success rate on average on GPT-4o. This confirms that decomposition attack is broadly effective. Additionally, we find that random tasks can be injected into the decomposed subtasks to further obfuscate malicious intents. To defend in real time, we propose a lightweight sequential monitoring framework that cumulatively evaluates each subtask. We show that a carefully prompt engineered lightweight monitor achieves a 93% defense success rate, beating reasoning models like o3 mini as a monitor. Moreover, it remains robust against random task injection and cuts cost by 90% and latency by 50%. Our findings suggest that lightweight sequential monitors are highly effective in mitigating decomposition attacks and are viable in deployment.
☆ Spurious Rewards: Rethinking Training Signals in RLVR
We show that reinforcement learning with verifiable rewards (RLVR) can elicit strong mathematical reasoning in certain models even with spurious rewards that have little, no, or even negative correlation with the correct answer. For example, RLVR improves MATH-500 performance for Qwen2.5-Math-7B in absolute points by 21.4% (random reward), 13.8% (format reward), 24.1% (incorrect label), 26.0% (1-shot RL), and 27.1% (majority voting) -- nearly matching the 29.1% gained with ground truth rewards. However, the spurious rewards that work for Qwen often fail to yield gains with other model families like Llama3 or OLMo2. In particular, we find code reasoning -- thinking in code without actual code execution -- to be a distinctive Qwen2.5-Math behavior that becomes significantly more frequent after RLVR, from 65% to over 90%, even with spurious rewards. Overall, we hypothesize that, given the lack of useful reward signal, RLVR must somehow be surfacing useful reasoning representations learned during pretraining, although the exact mechanism remains a topic for future work. We suggest that future RLVR research should possibly be validated on diverse models rather than a single de facto choice, as we show that it is easy to get significant performance gains on Qwen models even with completely spurious reward signals.
☆ GUARD: Guided Unlearning and Retention via Data Attribution for Large Language Models
Unlearning in large language models (LLMs) is becoming increasingly important due to regulatory compliance, copyright protection, and privacy concerns. However, a key challenge in LLM unlearning is unintended forgetting, where the removal of specific data inadvertently impairs the utility of the model and its retention of valuable, desired information. While prior work has primarily focused on architectural innovations, the influence of data-level factors on unlearning performance remains underexplored. As a result, existing methods often suffer from degraded retention when forgetting high-impact data. To address this, we propose GUARD-a novel framework for Guided Unlearning And Retention via Data attribution. At its core, GUARD introduces a lightweight proxy data attribution metric tailored for LLM unlearning, which quantifies the "alignment" between the forget and retain sets while remaining computationally efficient. Building on this, we design a novel unlearning objective that assigns adaptive, nonuniform unlearning weights to samples, inversely proportional to their proxy attribution scores. Through such a reallocation of unlearning power, GUARD mitigates unintended losses in retention. We provide rigorous theoretical guarantees that GUARD significantly enhances retention while maintaining forgetting metrics comparable to prior methods. Extensive experiments on the TOFU benchmark across multiple LLM architectures demonstrate that GUARD substantially improves utility preservation while ensuring effective unlearning. Notably, GUARD reduces utility sacrifice on the Retain Set by up to 194.92% in terms of Truth Ratio when forgetting 10% of the training data.
☆ VINCIE: Unlocking In-context Image Editing from Video
In-context image editing aims to modify images based on a contextual sequence comprising text and previously generated images. Existing methods typically depend on task-specific pipelines and expert models (e.g., segmentation and inpainting) to curate training data. In this work, we explore whether an in-context image editing model can be learned directly from videos. We introduce a scalable approach to annotate videos as interleaved multimodal sequences. To effectively learn from this data, we design a block-causal diffusion transformer trained on three proxy tasks: next-image prediction, current segmentation prediction, and next-segmentation prediction. Additionally, we propose a novel multi-turn image editing benchmark to advance research in this area. Extensive experiments demonstrate that our model exhibits strong in-context image editing capabilities and achieves state-of-the-art results on two multi-turn image editing benchmarks. Despite being trained exclusively on videos, our model also shows promising abilities in multi-concept composition, story generation, and chain-of-editing applications.
comment: Project page: https://vincie2025.github.io/
☆ The Role of Generative AI in Facilitating Social Interactions: A Scoping Review
Reduced social connectedness increasingly poses a threat to mental health, life expectancy, and general well-being. Generative AI (GAI) technologies, such as large language models (LLMs) and image generation tools, are increasingly integrated into applications aimed at enhancing human social experiences. Despite their growing presence, little is known about how these technologies influence social interactions. This scoping review investigates how GAI-based applications are currently designed to facilitate social interaction, what forms of social engagement they target, and which design and evaluation methodologies designers use to create and evaluate them. Through an analysis of 30 studies published since 2020, we identify key trends in application domains including storytelling, socio-emotional skills training, reminiscence, collaborative learning, music making, and general conversation. We highlight the role of participatory and co-design approaches in fostering both effective technology use and social engagement, while also examining socio-ethical concerns such as cultural bias and accessibility. This review underscores the potential of GAI to support dynamic and personalized interactions, but calls for greater attention to equitable design practices and inclusive evaluation strategies.
comment: Preprint version of a manuscript submitted to ACM Transactions on Computer-Human Interaction (TOCHI), under review. 39 pages, 4 figures
☆ Agentic Semantic Control for Autonomous Wireless Space Networks: Extending Space-O-RAN with MCP-Driven Distributed Intelligence
Lunar surface operations impose stringent requirements on wireless communication systems, including autonomy, robustness to disruption, and the ability to adapt to environmental and mission-driven context. While Space-O-RAN provides a distributed orchestration model aligned with 3GPP standards, its decision logic is limited to static policies and lacks semantic integration. We propose a novel extension incorporating a semantic agentic layer enabled by the Model Context Protocol (MCP) and Agent-to-Agent (A2A) communication protocols, allowing context-aware decision making across real-time, near-real-time, and non-real-time control layers. Distributed cognitive agents deployed in rovers, landers, and lunar base stations implement wireless-aware coordination strategies, including delay-adaptive reasoning and bandwidth-aware semantic compression, while interacting with multiple MCP servers to reason over telemetry, locomotion planning, and mission constraints.
comment: Lunar Surface Innovation Consortium 2025 Spring Meeting, May 20-22
☆ Robustly Improving LLM Fairness in Realistic Settings via Interpretability
Large language models (LLMs) are increasingly deployed in high-stakes hiring applications, making decisions that directly impact people's careers and livelihoods. While prior studies suggest simple anti-bias prompts can eliminate demographic biases in controlled evaluations, we find these mitigations fail when realistic contextual details are introduced. We address these failures through internal bias mitigation: by identifying and neutralizing sensitive attribute directions within model activations, we achieve robust bias reduction across all tested scenarios. Across leading commercial (GPT-4o, Claude 4 Sonnet, Gemini 2.5 Flash) and open-source models (Gemma-2 27B, Gemma-3, Mistral-24B), we find that adding realistic context such as company names, culture descriptions from public careers pages, and selective hiring constraints (e.g.,``only accept candidates in the top 10\%") induces significant racial and gender biases (up to 12\% differences in interview rates). When these biases emerge, they consistently favor Black over White candidates and female over male candidates across all tested models and scenarios. Moreover, models can infer demographics and become biased from subtle cues like college affiliations, with these biases remaining invisible even when inspecting the model's chain-of-thought reasoning. To address these limitations, our internal bias mitigation identifies race and gender-correlated directions and applies affine concept editing at inference time. Despite using directions from a simple synthetic dataset, the intervention generalizes robustly, consistently reducing bias to very low levels (typically under 1\%, always below 2.5\%) while largely maintaining model performance. Our findings suggest that practitioners deploying LLMs for hiring should adopt more realistic evaluation methodologies and consider internal mitigation strategies for equitable outcomes.
☆ M4V: Multi-Modal Mamba for Text-to-Video Generation
Text-to-video generation has significantly enriched content creation and holds the potential to evolve into powerful world simulators. However, modeling the vast spatiotemporal space remains computationally demanding, particularly when employing Transformers, which incur quadratic complexity in sequence processing and thus limit practical applications. Recent advancements in linear-time sequence modeling, particularly the Mamba architecture, offer a more efficient alternative. Nevertheless, its plain design limits its direct applicability to multi-modal and spatiotemporal video generation tasks. To address these challenges, we introduce M4V, a Multi-Modal Mamba framework for text-to-video generation. Specifically, we propose a multi-modal diffusion Mamba (MM-DiM) block that enables seamless integration of multi-modal information and spatiotemporal modeling through a multi-modal token re-composition design. As a result, the Mamba blocks in M4V reduce FLOPs by 45% compared to the attention-based alternative when generating videos at 768$\times$1280 resolution. Additionally, to mitigate the visual quality degradation in long-context autoregressive generation processes, we introduce a reward learning strategy that further enhances per-frame visual realism. Extensive experiments on text-to-video benchmarks demonstrate M4V's ability to produce high-quality videos while significantly lowering computational costs. Code and models will be publicly available at https://huangjch526.github.io/M4V_project.
Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?
Toxicity remains a leading cause of early-stage drug development failure. Despite advances in molecular design and property prediction, the task of molecular toxicity repair - generating structurally valid molecular alternatives with reduced toxicity - has not yet been systematically defined or benchmarked. To fill this gap, we introduce ToxiMol, the first benchmark task for general-purpose Multimodal Large Language Models (MLLMs) focused on molecular toxicity repair. We construct a standardized dataset covering 11 primary tasks and 560 representative toxic molecules spanning diverse mechanisms and granularities. We design a prompt annotation pipeline with mechanism-aware and task-adaptive capabilities, informed by expert toxicological knowledge. In parallel, we propose an automated evaluation framework, ToxiEval, which integrates toxicity endpoint prediction, synthetic accessibility, drug-likeness, and structural similarity into a high-throughput evaluation chain for repair success. We systematically assess nearly 30 mainstream general-purpose MLLMs and design multiple ablation studies to analyze key factors such as evaluation criteria, candidate diversity, and failure attribution. Experimental results show that although current MLLMs still face significant challenges on this task, they begin to demonstrate promising capabilities in toxicity understanding, semantic constraint adherence, and structure-aware molecule editing.
☆ GenPlanX. Generation of Plans and Execution
Classical AI Planning techniques generate sequences of actions for complex tasks. However, they lack the ability to understand planning tasks when provided using natural language. The advent of Large Language Models (LLMs) has introduced novel capabilities in human-computer interaction. In the context of planning tasks, LLMs have shown to be particularly good in interpreting human intents among other uses. This paper introduces GenPlanX that integrates LLMs for natural language-based description of planning tasks, with a classical AI planning engine, alongside an execution and monitoring framework. We demonstrate the efficacy of GenPlanX in assisting users with office-related tasks, highlighting its potential to streamline workflows and enhance productivity through seamless human-AI collaboration.
☆ BioClinical ModernBERT: A State-of-the-Art Long-Context Encoder for Biomedical and Clinical NLP
Encoder-based transformer models are central to biomedical and clinical Natural Language Processing (NLP), as their bidirectional self-attention makes them well-suited for efficiently extracting structured information from unstructured text through discriminative tasks. However, encoders have seen slower development compared to decoder models, leading to limited domain adaptation in biomedical and clinical settings. We introduce BioClinical ModernBERT, a domain-adapted encoder that builds on the recent ModernBERT release, incorporating long-context processing and substantial improvements in speed and performance for biomedical and clinical NLP. BioClinical ModernBERT is developed through continued pretraining on the largest biomedical and clinical corpus to date, with over 53.5 billion tokens, and addresses a key limitation of prior clinical encoders by leveraging 20 datasets from diverse institutions, domains, and geographic regions, rather than relying on data from a single source. It outperforms existing biomedical and clinical encoders on four downstream tasks spanning a broad range of use cases. We release both base (150M parameters) and large (396M parameters) versions of BioClinical ModernBERT, along with training checkpoints to support further research.
☆ AIR: Zero-shot Generative Model Adaptation with Iterative Refinement
Zero-shot generative model adaptation (ZSGM) aims to adapt a pre-trained generator to a target domain using only text guidance and without any samples from the target domain. Central to recent ZSGM approaches are directional loss which use the text guidance in the form of aligning the image offset with text offset in the embedding space of a vision-language model like CLIP. This is similar to the analogical reasoning in NLP where the offset between one pair of words is used to identify a missing element in another pair by aligning the offset between these two pairs. However, a major limitation of existing ZSGM methods is that the learning objective assumes the complete alignment between image offset and text offset in the CLIP embedding space, resulting in quality degrade in generated images. Our work makes two main contributions. Inspired by the offset misalignment studies in NLP, as our first contribution, we perform an empirical study to analyze the misalignment between text offset and image offset in CLIP embedding space for various large publicly available datasets. Our important finding is that offset misalignment in CLIP embedding space is correlated with concept distance, i.e., close concepts have a less offset misalignment. To address the limitations of the current approaches, as our second contribution, we propose Adaptation with Iterative Refinement (AIR) which is the first ZSGM approach to focus on improving target domain image quality based on our new insight on offset misalignment.Qualitative, quantitative, and user study in 26 experiment setups consistently demonstrate the proposed AIR approach achieves SOTA performance. Additional experiments are in Supp.
☆ The Diffusion Duality ICML 2025
Uniform-state discrete diffusion models hold the promise of fast text generation due to their inherent ability to self-correct. However, they are typically outperformed by autoregressive models and masked diffusion models. In this work, we narrow this performance gap by leveraging a key insight: Uniform-state diffusion processes naturally emerge from an underlying Gaussian diffusion. Our method, Duo, transfers powerful techniques from Gaussian diffusion to improve both training and sampling. First, we introduce a curriculum learning strategy guided by the Gaussian process, doubling training speed by reducing variance. Models trained with curriculum learning surpass autoregressive models in zero-shot perplexity on 3 of 7 benchmarks. Second, we present Discrete Consistency Distillation, which adapts consistency distillation from the continuous to the discrete setting. This algorithm unlocks few-step generation in diffusion language models by accelerating sampling by two orders of magnitude. We provide the code and model checkpoints on the project page: http://s-sahoo.github.io/duo
comment: ICML 2025. We provide the code at: https://github.com/s-sahoo/duo
☆ Slimming Down LLMs Without Losing Their Minds
This paper investigates and validates the impact of fine-tuning on large language model performance, focusing on parameter-efficient methods (LoRA and QLoRA). We evaluate model capabilities across three key domains: (1) commonsense reasoning (HellaSwag), (2) mathematical reasoning (GSM8K), and (3) multi-domain knowledge (MMLU-CS). Our findings demonstrate that: (1) LoRA-based methods effectively improve task-specific performance while maintaining computational efficiency, and (2) performance strongly depends on alignment between fine-tuning dataset and benchmark tasks. The study provides both theoretical insights into parameter-efficient mechanisms and practical guidance for developers implementing efficient LLM adaptation with limited resources.
comment: 10 pages
☆ Data-Driven Prediction of Dynamic Interactions Between Robot Appendage and Granular Material
An alternative data-driven modeling approach has been proposed and employed to gain fundamental insights into robot motion interaction with granular terrain at certain length scales. The approach is based on an integration of dimension reduction (Sequentially Truncated Higher-Order Singular Value Decomposition), surrogate modeling (Gaussian Process), and data assimilation techniques (Reduced Order Particle Filter). This approach can be used online and is based on offline data, obtained from the offline collection of high-fidelity simulation data and a set of sparse experimental data. The results have shown that orders of magnitude reduction in computational time can be obtained from the proposed data-driven modeling approach compared with physics-based high-fidelity simulations. With only simulation data as input, the data-driven prediction technique can generate predictions that have comparable accuracy as simulations. With both simulation data and sparse physical experimental measurement as input, the data-driven approach with its embedded data assimilation techniques has the potential in outperforming only high-fidelity simulations for the long-horizon predictions. In addition, it is demonstrated that the data-driven modeling approach can also reproduce the scaling relationship recovered by physics-based simulations for maximum resistive forces, which may indicate its general predictability beyond a case-by-case basis. The results are expected to help robot navigation and exploration in unknown and complex terrains during both online and offline phases.
☆ A multi-scale loss formulation for learning a probabilistic model with proper score optimisation
We assess the impact of a multi-scale loss formulation for training probabilistic machine-learned weather forecasting models. The multi-scale loss is tested in AIFS-CRPS, a machine-learned weather forecasting model developed at the European Centre for Medium-Range Weather Forecasts (ECMWF). AIFS-CRPS is trained by directly optimising the almost fair continuous ranked probability score (afCRPS). The multi-scale loss better constrains small scale variability without negatively impacting forecast skill. This opens up promising directions for future work in scale-aware model training.
☆ Precise Zero-Shot Pointwise Ranking with LLMs through Post-Aggregated Global Context Information SIGIR 2025
Recent advancements have successfully harnessed the power of Large Language Models (LLMs) for zero-shot document ranking, exploring a variety of prompting strategies. Comparative approaches like pairwise and listwise achieve high effectiveness but are computationally intensive and thus less practical for larger-scale applications. Scoring-based pointwise approaches exhibit superior efficiency by independently and simultaneously generating the relevance scores for each candidate document. However, this independence ignores critical comparative insights between documents, resulting in inconsistent scoring and suboptimal performance. In this paper, we aim to improve the effectiveness of pointwise methods while preserving their efficiency through two key innovations: (1) We propose a novel Global-Consistent Comparative Pointwise Ranking (GCCP) strategy that incorporates global reference comparisons between each candidate and an anchor document to generate contrastive relevance scores. We strategically design the anchor document as a query-focused summary of pseudo-relevant candidates, which serves as an effective reference point by capturing the global context for document comparison. (2) These contrastive relevance scores can be efficiently Post-Aggregated with existing pointwise methods, seamlessly integrating essential Global Context information in a training-free manner (PAGC). Extensive experiments on the TREC DL and BEIR benchmark demonstrate that our approach significantly outperforms previous pointwise methods while maintaining comparable efficiency. Our method also achieves competitive performance against comparative methods that require substantially more computational resources. More analyses further validate the efficacy of our anchor construction strategy.
comment: Accepted by SIGIR 2025
☆ VRBench: A Benchmark for Multi-Step Reasoning in Long Narrative Videos
We present VRBench, the first long narrative video benchmark crafted for evaluating large models' multi-step reasoning capabilities, addressing limitations in existing evaluations that overlook temporal reasoning and procedural validity. It comprises 1,010 long videos (with an average duration of 1.6 hours), along with 9,468 human-labeled multi-step question-answering pairs and 30,292 reasoning steps with timestamps. These videos are curated via a multi-stage filtering process including expert inter-rater reviewing to prioritize plot coherence. We develop a human-AI collaborative framework that generates coherent reasoning chains, each requiring multiple temporally grounded steps, spanning seven types (e.g., event attribution, implicit inference). VRBench designs a multi-phase evaluation pipeline that assesses models at both the outcome and process levels. Apart from the MCQs for the final results, we propose a progress-level LLM-guided scoring metric to evaluate the quality of the reasoning chain from multiple dimensions comprehensively. Through extensive evaluations of 12 LLMs and 16 VLMs on VRBench, we undertake a thorough analysis and provide valuable insights that advance the field of multi-step reasoning.
comment: Technical Report
☆ A Study on Individual Spatiotemporal Activity Generation Method Using MCP-Enhanced Chain-of-Thought Large Language Models
Human spatiotemporal behavior simulation is critical for urban planning research, yet traditional rule-based and statistical approaches suffer from high computational costs, limited generalizability, and poor scalability. While large language models (LLMs) show promise as "world simulators," they face challenges in spatiotemporal reasoning including limited spatial cognition, lack of physical constraint understanding, and group homogenization tendencies. This paper introduces a framework integrating chain-of-thought (CoT) reasoning with Model Context Protocol (MCP) to enhance LLMs' capability in simulating spatiotemporal behaviors that correspond with validation data patterns. The methodology combines human-like progressive reasoning through a five-stage cognitive framework with comprehensive data processing via six specialized MCP tool categories: temporal management, spatial navigation, environmental perception, personal memory, social collaboration, and experience evaluation. Experiments in Shanghai's Lujiazui district validate the framework's effectiveness across 1,000 generated samples. Results demonstrate high similarity with real mobile signaling data, achieving generation quality scores of 7.86 to 8.36 across different base models. Parallel processing experiments show efficiency improvements, with generation times decreasing from 1.30 to 0.17 minutes per sample when scaling from 2 to 12 processes. This work contributes to integrating CoT reasoning with MCP for urban behavior modeling, advancing LLMs applications in urban computing and providing a practical approach for synthetic mobility data generation. The framework offers a foundation for smart city planning, transportation forecasting, and participatory urban design applications.
☆ Accelerating Diffusion Large Language Models with SlowFast: The Three Golden Principles
Diffusion-based language models (dLLMs) have emerged as a promising alternative to traditional autoregressive LLMs by enabling parallel token generation and significantly reducing inference latency. However, existing sampling strategies for dLLMs, such as confidence-based or semi-autoregressive decoding, often suffer from static behavior, leading to suboptimal efficiency and limited flexibility. In this paper, we propose SlowFast Sampling, a novel dynamic sampling strategy that adaptively alternates between exploratory and accelerated decoding stages. Our method is guided by three golden principles: certainty principle, convergence principle, and positional principle, which govern when and where tokens can be confidently and efficiently decoded. We further integrate our strategy with dLLM-Cache to reduce redundant computation. Extensive experiments across benchmarks and models show that SlowFast Sampling achieves up to 15.63$\times$ speedup on LLaDA with minimal accuracy drop, and up to 34.22$\times$ when combined with caching. Notably, our approach outperforms strong autoregressive baselines like LLaMA3 8B in throughput, demonstrating that well-designed sampling can unlock the full potential of dLLMs for fast and high-quality generation.
comment: 11 pages; 5 figures;
Post-Training Quantization for Video Matting
Video matting is crucial for applications such as film production and virtual reality, yet deploying its computationally intensive models on resource-constrained devices presents challenges. Quantization is a key technique for model compression and acceleration. As an efficient approach, Post-Training Quantization (PTQ) is still in its nascent stages for video matting, facing significant hurdles in maintaining accuracy and temporal coherence. To address these challenges, this paper proposes a novel and general PTQ framework specifically designed for video matting models, marking, to the best of our knowledge, the first systematic attempt in this domain. Our contributions include: (1) A two-stage PTQ strategy that combines block-reconstruction-based optimization for fast, stable initial quantization and local dependency capture, followed by a global calibration of quantization parameters to minimize accuracy loss. (2) A Statistically-Driven Global Affine Calibration (GAC) method that enables the network to compensate for cumulative statistical distortions arising from factors such as neglected BN layer effects, even reducing the error of existing PTQ methods on video matting tasks up to 20%. (3) An Optical Flow Assistance (OFA) component that leverages temporal and semantic priors from frames to guide the PTQ process, enhancing the model's ability to distinguish moving foregrounds in complex scenes and ultimately achieving near full-precision performance even under ultra-low-bit quantization. Comprehensive quantitative and visual results show that our PTQ4VM achieves the state-of-the-art accuracy performance across different bit-widths compared to the existing quantization methods. We highlight that the 4-bit PTQ4VM even achieves performance close to the full-precision counterpart while enjoying 8x FLOP savings.
☆ Efficiency Robustness of Dynamic Deep Learning Systems USENIX Security '25
Deep Learning Systems (DLSs) are increasingly deployed in real-time applications, including those in resourceconstrained environments such as mobile and IoT devices. To address efficiency challenges, Dynamic Deep Learning Systems (DDLSs) adapt inference computation based on input complexity, reducing overhead. While this dynamic behavior improves efficiency, such behavior introduces new attack surfaces. In particular, efficiency adversarial attacks exploit these dynamic mechanisms to degrade system performance. This paper systematically explores efficiency robustness of DDLSs, presenting the first comprehensive taxonomy of efficiency attacks. We categorize these attacks based on three dynamic behaviors: (i) attacks on dynamic computations per inference, (ii) attacks on dynamic inference iterations, and (iii) attacks on dynamic output production for downstream tasks. Through an in-depth evaluation, we analyze adversarial strategies that target DDLSs efficiency and identify key challenges in securing these systems. In addition, we investigate existing defense mechanisms, demonstrating their limitations against increasingly popular efficiency attacks and the necessity for novel mitigation strategies to secure future adaptive DDLSs.
comment: Accepted to USENIX Security '25
☆ LLM-Driven Personalized Answer Generation and Evaluation
Online learning has experienced rapid growth due to its flexibility and accessibility. Personalization, adapted to the needs of individual learners, is crucial for enhancing the learning experience, particularly in online settings. A key aspect of personalization is providing learners with answers customized to their specific questions. This paper therefore explores the potential of Large Language Models (LLMs) to generate personalized answers to learners' questions, thereby enhancing engagement and reducing the workload on educators. To evaluate the effectiveness of LLMs in this context, we conducted a comprehensive study using the StackExchange platform in two distinct areas: language learning and programming. We developed a framework and a dataset for validating automatically generated personalized answers. Subsequently, we generated personalized answers using different strategies, including 0-shot, 1-shot, and few-shot scenarios. The generated answers were evaluated using three methods: 1. BERTScore, 2. LLM evaluation, and 3. human evaluation. Our findings indicated that providing LLMs with examples of desired answers (from the learner or similar learners) can significantly enhance the LLMs' ability to tailor responses to individual learners' needs.
comment: This is the preprint version of a paper accepted at AIED 2025. The final version will be published by Springer
☆ Generalist Models in Medical Image Segmentation: A Survey and Performance Comparison with Task-Specific Approaches
Following the successful paradigm shift of large language models, leveraging pre-training on a massive corpus of data and fine-tuning on different downstream tasks, generalist models have made their foray into computer vision. The introduction of Segment Anything Model (SAM) set a milestone on segmentation of natural images, inspiring the design of a multitude of architectures for medical image segmentation. In this survey we offer a comprehensive and in-depth investigation on generalist models for medical image segmentation. We start with an introduction on the fundamentals concepts underpinning their development. Then, we provide a taxonomy on the different declinations of SAM in terms of zero-shot, few-shot, fine-tuning, adapters, on the recent SAM 2, on other innovative models trained on images alone, and others trained on both text and images. We thoroughly analyze their performances at the level of both primary research and best-in-literature, followed by a rigorous comparison with the state-of-the-art task-specific models. We emphasize the need to address challenges in terms of compliance with regulatory frameworks, privacy and security laws, budget, and trustworthy artificial intelligence (AI). Finally, we share our perspective on future directions concerning synthetic data, early fusion, lessons learnt from generalist models in natural language processing, agentic AI and physical AI, and clinical translation.
comment: 132 pages, 26 figures, 23 tables. Andrea Moglia and Matteo Leccardi are equally contributing authors
☆ VideoDeepResearch: Long Video Understanding With Agentic Tool Using
Long video understanding (LVU) presents a significant challenge for current multi-modal large language models (MLLMs) due to the task's inherent complexity and context window constraint. It is widely assumed that addressing LVU tasks requires foundation MLLMs with extended context windows, strong visual perception capabilities, and proficient domain expertise. In this work, we challenge this common belief by introducing VideoDeepResearch, a novel agentic framework for long video understanding. Our approach relies solely on a text-only large reasoning model (LRM) combined with a modular multi-modal toolkit, including multimodal retrievers and visual perceivers, all of which are readily available in practice. For each LVU task, the system formulates a problem-solving strategy through reasoning, while selectively accessing and utilizing essential video content via tool using. We conduct extensive experiments on popular LVU benchmarks, including MLVU, Video-MME, and LVBench. Our results demonstrate that VideoDeepResearch achieves substantial improvements over existing MLLM baselines, surpassing the previous state-of-the-art by 9.6%, 6.6%, and 3.9% on MLVU (test), LVBench, and LongVideoBench, respectively. These findings highlight the promise of agentic systems in overcoming key challenges in LVU problems.
☆ What Users Value and Critique: Large-Scale Analysis of User Feedback on AI-Powered Mobile Apps
Artificial Intelligence (AI)-powered features have rapidly proliferated across mobile apps in various domains, including productivity, education, entertainment, and creativity. However, how users perceive, evaluate, and critique these AI features remains largely unexplored, primarily due to the overwhelming volume of user feedback. In this work, we present the first comprehensive, large-scale study of user feedback on AI-powered mobile apps, leveraging a curated dataset of 292 AI-driven apps across 14 categories with 894K AI-specific reviews from Google Play. We develop and validate a multi-stage analysis pipeline that begins with a human-labeled benchmark and systematically evaluates large language models (LLMs) and prompting strategies. Each stage, including review classification, aspect-sentiment extraction, and clustering, is validated for accuracy and consistency. Our pipeline enables scalable, high-precision analysis of user feedback, extracting over one million aspect-sentiment pairs clustered into 18 positive and 15 negative user topics. Our analysis reveals that users consistently focus on a narrow set of themes: positive comments emphasize productivity, reliability, and personalized assistance, while negative feedback highlights technical failures (e.g., scanning and recognition), pricing concerns, and limitations in language support. Our pipeline surfaces both satisfaction with one feature and frustration with another within the same review. These fine-grained, co-occurring sentiments are often missed by traditional approaches that treat positive and negative feedback in isolation or rely on coarse-grained analysis. To this end, our approach provides a more faithful reflection of the real-world user experiences with AI-powered apps. Category-aware analysis further uncovers both universal drivers of satisfaction and domain-specific frustrations.
comment: 12 pages, 6 figures, 5 tables
☆ Improving Named Entity Transcription with Contextual LLM-based Revision
With recent advances in modeling and the increasing amount of supervised training data, automatic speech recognition (ASR) systems have achieved remarkable performance on general speech. However, the word error rate (WER) of state-of-the-art ASR remains high for named entities. Since named entities are often the most critical keywords, misrecognizing them can affect all downstream applications, especially when the ASR system functions as the front end of a complex system. In this paper, we introduce a large language model (LLM) revision mechanism to revise incorrect named entities in ASR predictions by leveraging the LLM's reasoning ability as well as local context (e.g., lecture notes) containing a set of correct named entities. Finally, we introduce the NER-MIT-OpenCourseWare dataset, containing 45 hours of data from MIT courses for development and testing. On this dataset, our proposed technique achieves up to 30\% relative WER reduction for named entities.
☆ SlotPi: Physics-informed Object-centric Reasoning Models
Understanding and reasoning about dynamics governed by physical laws through visual observation, akin to human capabilities in the real world, poses significant challenges. Currently, object-centric dynamic simulation methods, which emulate human behavior, have achieved notable progress but overlook two critical aspects: 1) the integration of physical knowledge into models. Humans gain physical insights by observing the world and apply this knowledge to accurately reason about various dynamic scenarios; 2) the validation of model adaptability across diverse scenarios. Real-world dynamics, especially those involving fluids and objects, demand models that not only capture object interactions but also simulate fluid flow characteristics. To address these gaps, we introduce SlotPi, a slot-based physics-informed object-centric reasoning model. SlotPi integrates a physical module based on Hamiltonian principles with a spatio-temporal prediction module for dynamic forecasting. Our experiments highlight the model's strengths in tasks such as prediction and Visual Question Answering (VQA) on benchmark and fluid datasets. Furthermore, we have created a real-world dataset encompassing object interactions, fluid dynamics, and fluid-object interactions, on which we validated our model's capabilities. The model's robust performance across all datasets underscores its strong adaptability, laying a foundation for developing more advanced world models.
☆ ME: Trigger Element Combination Backdoor Attack on Copyright Infringement
The capability of generative diffusion models (DMs) like Stable Diffusion (SD) in replicating training data could be taken advantage of by attackers to launch the Copyright Infringement Attack, with duplicated poisoned image-text pairs. SilentBadDiffusion (SBD) is a method proposed recently, which shew outstanding performance in attacking SD in text-to-image tasks. However, the feasible data resources in this area are still limited, some of them are even constrained or prohibited due to the issues like copyright ownership or inappropriate contents; And not all of the images in current datasets are suitable for the proposed attacking methods; Besides, the state-of-the-art (SoTA) performance of SBD is far from ideal when few generated poisoning samples could be adopted for attacks. In this paper, we raised new datasets accessible for researching in attacks like SBD, and proposed Multi-Element (ME) attack method based on SBD by increasing the number of poisonous visual-text elements per poisoned sample to enhance the ability of attacking, while importing Discrete Cosine Transform (DCT) for the poisoned samples to maintain the stealthiness. The Copyright Infringement Rate (CIR) / First Attack Epoch (FAE) we got on the two new datasets were 16.78% / 39.50 and 51.20% / 23.60, respectively close to or even outperformed benchmark Pokemon and Mijourney datasets. In condition of low subsampling ratio (5%, 6 poisoned samples), MESI and DCT earned CIR / FAE of 0.23% / 84.00 and 12.73% / 65.50, both better than original SBD, which failed to attack at all.
☆ Stroke-based Cyclic Amplifier: Image Super-Resolution at Arbitrary Ultra-Large Scales
Prior Arbitrary-Scale Image Super-Resolution (ASISR) methods often experience a significant performance decline when the upsampling factor exceeds the range covered by the training data, introducing substantial blurring. To address this issue, we propose a unified model, Stroke-based Cyclic Amplifier (SbCA), for ultra-large upsampling tasks. The key of SbCA is the stroke vector amplifier, which decomposes the image into a series of strokes represented as vector graphics for magnification. Then, the detail completion module also restores missing details, ensuring high-fidelity image reconstruction. Our cyclic strategy achieves ultra-large upsampling by iteratively refining details with this unified SbCA model, trained only once for all, while keeping sub-scales within the training range. Our approach effectively addresses the distribution drift issue and eliminates artifacts, noise and blurring, producing high-quality, high-resolution super-resolved images. Experimental validations on both synthetic and real-world datasets demonstrate that our approach significantly outperforms existing methods in ultra-large upsampling tasks (e.g. $\times100$), delivering visual quality far superior to state-of-the-art techniques.
☆ Learning Chaotic Dynamics with Neuromorphic Network Dynamics
This study investigates how dynamical systems may be learned and modelled with a neuromorphic network which is itself a dynamical system. The neuromorphic network used in this study is based on a complex electrical circuit comprised of memristive elements that produce neuro-synaptic nonlinear responses to input electrical signals. To determine how computation may be performed using the physics of the underlying system, the neuromorphic network was simulated and evaluated on autonomous prediction of a multivariate chaotic time series, implemented with a reservoir computing framework. Through manipulating only input electrodes and voltages, optimal nonlinear dynamical responses were found when input voltages maximise the number of memristive components whose internal dynamics explore the entire dynamical range of the memristor model. Increasing the network coverage with the input electrodes was found to suppress other nonlinear responses that are less conducive to learning. These results provide valuable insights into how a practical neuromorphic network device can be optimised for learning complex dynamical systems using only external control parameters.
comment: 37 pages, 22 figures
☆ OPT-BENCH: Evaluating LLM Agent on Large-Scale Search Spaces Optimization Problems
Large Language Models (LLMs) have shown remarkable capabilities in solving diverse tasks. However, their proficiency in iteratively optimizing complex solutions through learning from previous feedback remains insufficiently explored. To bridge this gap, we present OPT-BENCH, a comprehensive benchmark designed to evaluate LLM agents on large-scale search space optimization problems. OPT-BENCH includes 20 real-world machine learning tasks sourced from Kaggle and 10 classical NP problems, offering a diverse and challenging environment for assessing LLM agents on iterative reasoning and solution refinement. To enable rigorous evaluation, we introduce OPT-Agent, an end-to-end optimization framework that emulates human reasoning when tackling complex problems by generating, validating, and iteratively improving solutions through leveraging historical feedback. Through extensive experiments on 9 state-of-the-art LLMs from 6 model families, we analyze the effects of optimization iterations, temperature settings, and model architectures on solution quality and convergence. Our results demonstrate that incorporating historical context significantly enhances optimization performance across both ML and NP tasks. All datasets, code, and evaluation tools are open-sourced to promote further research in advancing LLM-driven optimization and iterative reasoning. Project page: \href{https://github.com/OliverLeeXZ/OPT-BENCH}{https://github.com/OliverLeeXZ/OPT-BENCH}.
☆ Grounded Vision-Language Navigation for UAVs with Open-Vocabulary Goal Understanding
Vision-and-language navigation (VLN) is a long-standing challenge in autonomous robotics, aiming to empower agents with the ability to follow human instructions while navigating complex environments. Two key bottlenecks remain in this field: generalization to out-of-distribution environments and reliance on fixed discrete action spaces. To address these challenges, we propose Vision-Language Fly (VLFly), a framework tailored for Unmanned Aerial Vehicles (UAVs) to execute language-guided flight. Without the requirement for localization or active ranging sensors, VLFly outputs continuous velocity commands purely from egocentric observations captured by an onboard monocular camera. The VLFly integrates three modules: an instruction encoder based on a large language model (LLM) that reformulates high-level language into structured prompts, a goal retriever powered by a vision-language model (VLM) that matches these prompts to goal images via vision-language similarity, and a waypoint planner that generates executable trajectories for real-time UAV control. VLFly is evaluated across diverse simulation environments without additional fine-tuning and consistently outperforms all baselines. Moreover, real-world VLN tasks in indoor and outdoor environments under direct and indirect instructions demonstrate that VLFly achieves robust open-vocabulary goal understanding and generalized navigation capabilities, even in the presence of abstract language input.
☆ BNMusic: Blending Environmental Noises into Personalized Music
While being disturbed by environmental noises, the acoustic masking technique is a conventional way to reduce the annoyance in audio engineering that seeks to cover up the noises with other dominant yet less intrusive sounds. However, misalignment between the dominant sound and the noise-such as mismatched downbeats-often requires an excessive volume increase to achieve effective masking. Motivated by recent advances in cross-modal generation, in this work, we introduce an alternative method to acoustic masking, aiming to reduce the noticeability of environmental noises by blending them into personalized music generated based on user-provided text prompts. Following the paradigm of music generation using mel-spectrogram representations, we propose a Blending Noises into Personalized Music (BNMusic) framework with two key stages. The first stage synthesizes a complete piece of music in a mel-spectrogram representation that encapsulates the musical essence of the noise. In the second stage, we adaptively amplify the generated music segment to further reduce noise perception and enhance the blending effectiveness, while preserving auditory quality. Our experiments with comprehensive evaluations on MusicBench, EPIC-SOUNDS, and ESC-50 demonstrate the effectiveness of our framework, highlighting the ability to blend environmental noise with rhythmically aligned, adaptively amplified, and enjoyable music segments, minimizing the noticeability of the noise, thereby improving overall acoustic experiences.
☆ Think before You Simulate: Symbolic Reasoning to Orchestrate Neural Computation for Counterfactual Question Answering WACV 2024
Causal and temporal reasoning about video dynamics is a challenging problem. While neuro-symbolic models that combine symbolic reasoning with neural-based perception and prediction have shown promise, they exhibit limitations, especially in answering counterfactual questions. This paper introduces a method to enhance a neuro-symbolic model for counterfactual reasoning, leveraging symbolic reasoning about causal relations among events. We define the notion of a causal graph to represent such relations and use Answer Set Programming (ASP), a declarative logic programming method, to find how to coordinate perception and simulation modules. We validate the effectiveness of our approach on two benchmarks, CLEVRER and CRAFT. Our enhancement achieves state-of-the-art performance on the CLEVRER challenge, significantly outperforming existing models. In the case of the CRAFT benchmark, we leverage a large pre-trained language model, such as GPT-3.5 and GPT-4, as a proxy for a dynamics simulator. Our findings show that this method can further improve its performance on counterfactual questions by providing alternative prompts instructed by symbolic causal reasoning.
comment: In Proceedings the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024)
☆ TED-LaST: Towards Robust Backdoor Defense Against Adaptive Attacks
Deep Neural Networks (DNNs) are vulnerable to backdoor attacks, where attackers implant hidden triggers during training to maliciously control model behavior. Topological Evolution Dynamics (TED) has recently emerged as a powerful tool for detecting backdoor attacks in DNNs. However, TED can be vulnerable to backdoor attacks that adaptively distort topological representation distributions across network layers. To address this limitation, we propose TED-LaST (Topological Evolution Dynamics against Laundry, Slow release, and Target mapping attack strategies), a novel defense strategy that enhances TED's robustness against adaptive attacks. TED-LaST introduces two key innovations: label-supervised dynamics tracking and adaptive layer emphasis. These enhancements enable the identification of stealthy threats that evade traditional TED-based defenses, even in cases of inseparability in topological space and subtle topological perturbations. We review and classify data poisoning tricks in state-of-the-art adaptive attacks and propose enhanced adaptive attack with target mapping, which can dynamically shift malicious tasks and fully leverage the stealthiness that adaptive attacks possess. Our comprehensive experiments on multiple datasets (CIFAR-10, GTSRB, and ImageNet100) and model architectures (ResNet20, ResNet101) show that TED-LaST effectively counteracts sophisticated backdoors like Adap-Blend, Adapt-Patch, and the proposed enhanced adaptive attack. TED-LaST sets a new benchmark for robust backdoor detection, substantially enhancing DNN security against evolving threats.
☆ PREMISE: Scalable and Strategic Prompt Optimization for Efficient Mathematical Reasoning in Large Models
Large reasoning models (LRMs) such as Claude 3.7 Sonnet and OpenAI o1 achieve strong performance on mathematical benchmarks using lengthy chain-of-thought (CoT) reasoning, but the resulting traces are often unnecessarily verbose. This inflates token usage and cost, limiting deployment in latency-sensitive or API-constrained settings. We introduce PREMISE (PRompt-based Efficient Mathematical Inference with Strategic Evaluation), a prompt-only framework that reduces reasoning overhead without modifying model weights. PREMISE combines trace-level diagnostics with gradient-inspired prompt optimization to minimize redundant computation while preserving answer accuracy. The approach jointly optimizes brevity and correctness through a multi-objective textual search that balances token length and answer validity. Unlike prior work, PREMISE runs in a single-pass black-box interface, so it can be applied directly to commercial LLMs. On GSM8K, SVAMP, and Math500 we match or exceed baseline accuracy ($96\%\rightarrow96\%$ with Claude, $91\%\rightarrow92\%$ with Gemini) while reducing reasoning tokens by up to $87.5\%$ and cutting dollar cost by $69$--$82\%$. These results show that prompt-level optimization is a practical and scalable path to efficient LRM inference without compromising reasoning quality.
☆ Deep Learning-based Multi Project InP Wafer Simulation for Unsupervised Surface Defect Detection
Quality management in semiconductor manufacturing often relies on template matching with known golden standards. For Indium-Phosphide (InP) multi-project wafer manufacturing, low production scale and high design variability lead to such golden standards being typically unavailable. Defect detection, in turn, is manual and labor-intensive. This work addresses this challenge by proposing a methodology to generate a synthetic golden standard using Deep Neural Networks, trained to simulate photo-realistic InP wafer images from CAD data. We evaluate various training objectives and assess the quality of the simulated images on both synthetic data and InP wafer photographs. Our deep-learning-based method outperforms a baseline decision-tree-based approach, enabling the use of a 'simulated golden die' from CAD plans in any user-defined region of a wafer for more efficient defect detection. We apply our method to a template matching procedure, to demonstrate its practical utility in surface defect detection.
☆ Continual Hyperbolic Learning of Instances and Classes
Continual learning has traditionally focused on classifying either instances or classes, but real-world applications, such as robotics and self-driving cars, require models to handle both simultaneously. To mirror real-life scenarios, we introduce the task of continual learning of instances and classes, at the same time. This task challenges models to adapt to multiple levels of granularity over time, which requires balancing fine-grained instance recognition with coarse-grained class generalization. In this paper, we identify that classes and instances naturally form a hierarchical structure. To model these hierarchical relationships, we propose HyperCLIC, a continual learning algorithm that leverages hyperbolic space, which is uniquely suited for hierarchical data due to its ability to represent tree-like structures with low distortion and compact embeddings. Our framework incorporates hyperbolic classification and distillation objectives, enabling the continual embedding of hierarchical relations. To evaluate performance across multiple granularities, we introduce continual hierarchical metrics. We validate our approach on EgoObjects, the only dataset that captures the complexity of hierarchical object recognition in dynamic real-world environments. Empirical results show that HyperCLIC operates effectively at multiple granularities with improved hierarchical generalization.
☆ System ASPMT2SMT:Computing ASPMT Theories by SMT Solvers
Answer Set Programming Modulo Theories (ASPMT) is an approach to combining answer set programming and satisfiability modulo theories based on the functional stable model semantics. It is shown that the tight fragment of ASPMT programs can be turned into SMT instances, thereby allowing SMT solvers to compute stable models of ASPMT programs. In this paper we present a compiler called {\sc aspsmt2smt}, which implements this translation. The system uses ASP grounder {\sc gringo} and SMT solver {\sc z3}. {\sc gringo} partially grounds input programs while leaving some variables to be processed by {\sc z3}. We demonstrate that the system can effectively handle real number computations for reasoning about continuous changes.
comment: In Proceedings of the 14th European Conference on Logics in Artificial Intelligence (JELIA 2014)
☆ ConTextTab: A Semantics-Aware Tabular In-Context Learner
Tabular in-context learning (ICL) has recently achieved state-of-the-art (SOTA) performance on several tabular prediction tasks. Previously restricted to classification problems on small tables, recent advances such as TabPFN and TabICL have extended its use to larger datasets. While being architecturally efficient and well-adapted to tabular data structures, current table-native ICL architectures, being trained exclusively on synthetic data, do not fully leverage the rich semantics and world knowledge contained in real-world tabular data. On another end of this spectrum, tabular ICL models based on pretrained large language models such as TabuLa-8B integrate deep semantic understanding and world knowledge but are only able to make use of a small amount of context due to inherent architectural limitations. With the aim to combine the best of both these worlds, we introduce ConTextTab, integrating semantic understanding and alignment into a table-native ICL framework. By employing specialized embeddings for different data modalities and by training on large-scale real-world tabular data, our model is competitive with SOTA across a broad set of benchmarks while setting a new standard on the semantically rich CARTE benchmark.
☆ Formalising Software Requirements using Large Language Models
This paper is a brief introduction to our recently initiated project named VERIFAI: Traceability and verification of natural language requirements. The project addresses the challenges in the traceability and verification of formal specifications through providing support for the automatic generation of the formal specifications and the traceability of the requirements from the initial software design stage through the systems implementation and verification. Approaches explored in this project include Natural Language Processing, use of ontologies to describe the software system domain, reuse of existing software artefacts from similar systems (i.e. through similarity based reuse) and large language models to identify and declare the specifications as well as use of artificial intelligence to guide the process.
comment: Accepted and presented as a poster in ADAPT Annual Conference (AACS2025) on 15th of May, 2025
☆ Large Language Models for Detection of Life-Threatening Texts
Detecting life-threatening language is essential for safeguarding individuals in distress, promoting mental health and well-being, and preventing potential harm and loss of life. This paper presents an effective approach to identifying life-threatening texts using large language models (LLMs) and compares them with traditional methods such as bag of words, word embedding, topic modeling, and Bidirectional Encoder Representations from Transformers. We fine-tune three open-source LLMs including Gemma, Mistral, and Llama-2 using their 7B parameter variants on different datasets, which are constructed with class balance, imbalance, and extreme imbalance scenarios. Experimental results demonstrate a strong performance of LLMs against traditional methods. More specifically, Mistral and Llama-2 models are top performers in both balanced and imbalanced data scenarios while Gemma is slightly behind. We employ the upsampling technique to deal with the imbalanced data scenarios and demonstrate that while this method benefits traditional approaches, it does not have as much impact on LLMs. This study demonstrates a great potential of LLMs for real-world life-threatening language detection problems.
☆ Saturation Self-Organizing Map
Continual learning poses a fundamental challenge for neural systems, which often suffer from catastrophic forgetting when exposed to sequential tasks. Self-Organizing Maps (SOMs), despite their interpretability and efficiency, are not immune to this issue. In this paper, we introduce Saturation Self-Organizing Maps (SatSOM)-an extension of SOMs designed to improve knowledge retention in continual learning scenarios. SatSOM incorporates a novel saturation mechanism that gradually reduces the learning rate and neighborhood radius of neurons as they accumulate information. This effectively freezes well-trained neurons and redirects learning to underutilized areas of the map.
comment: github repository: https://github.com/Radinyn/satsom
☆ Automated Validation of Textual Constraints Against AutomationML via LLMs and SHACL
AutomationML (AML) enables standardized data exchange in engineering, yet existing recommendations for proper AML modeling are typically formulated as informal and textual constraints. These constraints cannot be validated automatically within AML itself. This work-in-progress paper introduces a pipeline to formalize and verify such constraints. First, AML models are mapped to OWL ontologies via RML and SPARQL. In addition, a Large Language Model translates textual rules into SHACL constraints, which are then validated against the previously generated AML ontology. Finally, SHACL validation results are automatically interpreted in natural language. The approach is demonstrated on a sample AML recommendation. Results show that even complex modeling rules can be semi-automatically checked -- without requiring users to understand formal methods or ontology technologies.
☆ TeleMath: A Benchmark for Large Language Models in Telecom Mathematical Problem Solving
The increasing adoption of artificial intelligence in telecommunications has raised interest in the capability of Large Language Models (LLMs) to address domain-specific, mathematically intensive tasks. Although recent advancements have improved the performance of LLMs in general mathematical reasoning, their effectiveness within specialized domains, such as signal processing, network optimization, and performance analysis, remains largely unexplored. To address this gap, we introduce TeleMath, the first benchmark dataset specifically designed to evaluate LLM performance in solving mathematical problems with numerical solutions in the telecommunications domain. Comprising 500 question-answer (QnA) pairs, TeleMath covers a wide spectrum of topics in the telecommunications field. This paper outlines the proposed QnAs generation pipeline, starting from a selected seed of problems crafted by Subject Matter Experts. The evaluation of a wide range of open-source LLMs reveals that best performance on TeleMath is achieved by recent models explicitly designed for mathematical or logical reasoning. In contrast, general-purpose models, even those with a large number of parameters, often struggle with these challenges. We have released the dataset and the evaluation code to ease result reproducibility and support future research.
comment: 6 pages
☆ PiPViT: Patch-based Visual Interpretable Prototypes for Retinal Image Analysis
Background and Objective: Prototype-based methods improve interpretability by learning fine-grained part-prototypes; however, their visualization in the input pixel space is not always consistent with human-understandable biomarkers. In addition, well-known prototype-based approaches typically learn extremely granular prototypes that are less interpretable in medical imaging, where both the presence and extent of biomarkers and lesions are critical. Methods: To address these challenges, we propose PiPViT (Patch-based Visual Interpretable Prototypes), an inherently interpretable prototypical model for image recognition. Leveraging a vision transformer (ViT), PiPViT captures long-range dependencies among patches to learn robust, human-interpretable prototypes that approximate lesion extent only using image-level labels. Additionally, PiPViT benefits from contrastive learning and multi-resolution input processing, which enables effective localization of biomarkers across scales. Results: We evaluated PiPViT on retinal OCT image classification across four datasets, where it achieved competitive quantitative performance compared to state-of-the-art methods while delivering more meaningful explanations. Moreover, quantitative evaluation on a hold-out test set confirms that the learned prototypes are semantically and clinically relevant. We believe PiPViT can transparently explain its decisions and assist clinicians in understanding diagnostic outcomes. Github page: https://github.com/marziehoghbaie/PiPViT
☆ Contrastive Matrix Completion with Denoising and Augmented Graph Views for Robust Recommendation
Matrix completion is a widely adopted framework in recommender systems, as predicting the missing entries in the user-item rating matrix enables a comprehensive understanding of user preferences. However, current graph neural network (GNN)-based approaches are highly sensitive to noisy or irrelevant edges--due to their inherent message-passing mechanisms--and are prone to overfitting, which limits their generalizability. To overcome these challenges, we propose a novel method called Matrix Completion using Contrastive Learning (MCCL). Our approach begins by extracting local neighborhood subgraphs for each interaction and subsequently generates two distinct graph representations. The first representation emphasizes denoising by integrating GNN layers with an attention mechanism, while the second is obtained via a graph variational autoencoder that aligns the feature distribution with a standard prior. A mutual learning loss function is employed during training to gradually harmonize these representations, enabling the model to capture common patterns and significantly enhance its generalizability. Extensive experiments on several real-world datasets demonstrate that our approach not only improves the numerical accuracy of the predicted scores--achieving up to a 0.8% improvement in RMSE--but also produces superior rankings with improvements of up to 36% in ranking metrics.
comment: 30 pages
☆ Data Shifts Hurt CoT: A Theoretical Study
Chain of Thought (CoT) has been applied to various large language models (LLMs) and proven to be effective in improving the quality of outputs. In recent studies, transformers are proven to have absolute upper bounds in terms of expressive power, and consequently, they cannot solve many computationally difficult problems. However, empowered by CoT, transformers are proven to be able to solve some difficult problems effectively, such as the $k$-parity problem. Nevertheless, those works rely on two imperative assumptions: (1) identical training and testing distribution, and (2) corruption-free training data with correct reasoning steps. However, in the real world, these assumptions do not always hold. Although the risks of data shifts have caught attention, our work is the first to rigorously study the exact harm caused by such shifts to the best of our knowledge. Focusing on the $k$-parity problem, in this work we investigate the joint impact of two types of data shifts: the distribution shifts and data poisoning, on the quality of trained models obtained by a well-established CoT decomposition. In addition to revealing a surprising phenomenon that CoT leads to worse performance on learning parity than directly generating the prediction, our technical results also give a rigorous and comprehensive explanation of the mechanistic reasons of such impact.
☆ Symmetrical Flow Matching: Unified Image Generation, Segmentation, and Classification with Score-Based Generative Models
Flow Matching has emerged as a powerful framework for learning continuous transformations between distributions, enabling high-fidelity generative modeling. This work introduces Symmetrical Flow Matching (SymmFlow), a new formulation that unifies semantic segmentation, classification, and image generation within a single model. Using a symmetric learning objective, SymmFlow models forward and reverse transformations jointly, ensuring bi-directional consistency, while preserving sufficient entropy for generative diversity. A new training objective is introduced to explicitly retain semantic information across flows, featuring efficient sampling while preserving semantic structure, allowing for one-step segmentation and classification without iterative refinement. Unlike previous approaches that impose strict one-to-one mapping between masks and images, SymmFlow generalizes to flexible conditioning, supporting both pixel-level and image-level class labels. Experimental results on various benchmarks demonstrate that SymmFlow achieves state-of-the-art performance on semantic image synthesis, obtaining FID scores of 11.9 on CelebAMask-HQ and 7.0 on COCO-Stuff with only 25 inference steps. Additionally, it delivers competitive results on semantic segmentation and shows promising capabilities in classification tasks. The code will be publicly available.
☆ Time Series Forecasting as Reasoning: A Slow-Thinking Approach with Reinforced LLMs
To advance time series forecasting (TSF), various methods have been proposed to improve prediction accuracy, evolving from statistical techniques to data-driven deep learning architectures. Despite their effectiveness, most existing methods still adhere to a fast thinking paradigm-relying on extracting historical patterns and mapping them to future values as their core modeling philosophy, lacking an explicit thinking process that incorporates intermediate time series reasoning. Meanwhile, emerging slow-thinking LLMs (e.g., OpenAI-o1) have shown remarkable multi-step reasoning capabilities, offering an alternative way to overcome these issues. However, prompt engineering alone presents several limitations - including high computational cost, privacy risks, and limited capacity for in-depth domain-specific time series reasoning. To address these limitations, a more promising approach is to train LLMs to develop slow thinking capabilities and acquire strong time series reasoning skills. For this purpose, we propose Time-R1, a two-stage reinforcement fine-tuning framework designed to enhance multi-step reasoning ability of LLMs for time series forecasting. Specifically, the first stage conducts supervised fine-tuning for warmup adaptation, while the second stage employs reinforcement learning to improve the model's generalization ability. Particularly, we design a fine-grained multi-objective reward specifically for time series forecasting, and then introduce GRIP (group-based relative importance for policy optimization), which leverages non-uniform sampling to further encourage and optimize the model's exploration of effective reasoning paths. Experiments demonstrate that Time-R1 significantly improves forecast performance across diverse datasets.
Task Adaptation from Skills: Information Geometry, Disentanglement, and New Objectives for Unsupervised Reinforcement Learning ICLR 2024
Unsupervised reinforcement learning (URL) aims to learn general skills for unseen downstream tasks. Mutual Information Skill Learning (MISL) addresses URL by maximizing the mutual information between states and skills but lacks sufficient theoretical analysis, e.g., how well its learned skills can initialize a downstream task's policy. Our new theoretical analysis in this paper shows that the diversity and separability of learned skills are fundamentally critical to downstream task adaptation but MISL does not necessarily guarantee these properties. To complement MISL, we propose a novel disentanglement metric LSEPIN. Moreover, we build an information-geometric connection between LSEPIN and downstream task adaptation cost. For better geometric properties, we investigate a new strategy that replaces the KL divergence in information geometry with Wasserstein distance. We extend the geometric analysis to it, which leads to a novel skill-learning objective WSEP. It is theoretically justified to be helpful to downstream task adaptation and it is capable of discovering more initial policies for downstream tasks than MISL. We finally propose another Wasserstein distance-based algorithm PWSEP that can theoretically discover all optimal initial policies.
comment: Spotlight paper at ICLR 2024. This version includes acknowledgments omitted from the ICLR version and indicates the corresponding authors primarily responsible for the work
☆ NeuralNexus at BEA 2025 Shared Task: Retrieval-Augmented Prompting for Mistake Identification in AI Tutors
This paper presents our system for Track 1: Mistake Identification in the BEA 2025 Shared Task on Pedagogical Ability Assessment of AI-powered Tutors. The task involves evaluating whether a tutor's response correctly identifies a mistake in a student's mathematical reasoning. We explore four approaches: (1) an ensemble of machine learning models over pooled token embeddings from multiple pretrained language models (LMs); (2) a frozen sentence-transformer using [CLS] embeddings with an MLP classifier; (3) a history-aware model with multi-head attention between token-level history and response embeddings; and (4) a retrieval-augmented few-shot prompting system with a large language model (LLM) i.e. GPT 4o. Our final system retrieves semantically similar examples, constructs structured prompts, and uses schema-guided output parsing to produce interpretable predictions. It outperforms all baselines, demonstrating the effectiveness of combining example-driven prompting with LLM reasoning for pedagogical feedback assessment. Our code is available at https://github.com/NaumanNaeem/BEA_2025.
comment: 6 pages, 2 figures, 1 table
☆ SDialog: A Python Toolkit for Synthetic Dialogue Generation and Analysis
The advancement of conversational AI systems relies on the availability of high-quality, flexible, and reproducible synthetic dialogues for training, evaluation, and benchmarking. SDialog is a modular, extensible Python toolkit designed to address the challenges of synthetic dialogue generation and analysis. By leveraging instruction-tuned Large Language Models (LLMs), SDialog provides abstractions for personas, orchestration, and scenario management, enabling the creation of realistic, diverse, and controllable conversational data for research and development. SDialog supports workflows such as multi-agent simulation and scenario-driven generation, and represents a step forward in the standardization of tools and frameworks for synthetic data generation, a crucial advancement for ensuring reproducibility in today's fast-evolving research landscape.
comment: https://github.com/idiap/sdialog
☆ Deep Learning-Based Digitization of Overlapping ECG Images with Open-Source Python Code
This paper addresses the persistent challenge of accurately digitizing paper-based electrocardiogram (ECG) recordings, with a particular focus on robustly handling single leads compromised by signal overlaps-a common yet under-addressed issue in existing methodologies. We propose a two-stage pipeline designed to overcome this limitation. The first stage employs a U-Net based segmentation network, trained on a dataset enriched with overlapping signals and fortified with custom data augmentations, to accurately isolate the primary ECG trace. The subsequent stage converts this refined binary mask into a time-series signal using established digitization techniques, enhanced by an adaptive grid detection module for improved versatility across different ECG formats and scales. Our experimental results demonstrate the efficacy of our approach. The U-Net architecture achieves an IoU of 0.87 for the fine-grained segmentation task. Crucially, our proposed digitization method yields superior performance compared to a well-established baseline technique across both non-overlapping and challenging overlapping ECG samples. For non-overlapping signals, our method achieved a Mean Squared Error (MSE) of 0.0010 and a Pearson Correlation Coefficient (rho) of 0.9644, compared to 0.0015 and 0.9366, respectively, for the baseline. On samples with signal overlap, our method achieved an MSE of 0.0029 and a rho of 0.9641, significantly improving upon the baseline's 0.0178 and 0.8676. This work demonstrates an effective strategy to significantly enhance digitization accuracy, especially in the presence of signal overlaps, thereby laying a strong foundation for the reliable conversion of analog ECG records into analyzable digital data for contemporary research and clinical applications. The implementation is publicly available at this GitHub repository: https://github.com/masoudrahimi39/ECG-code.
☆ Data Driven Diagnosis for Large Cyber-Physical-Systems with Minimal Prior Information
Diagnostic processes for complex cyber-physical systems often require extensive prior knowledge in the form of detailed system models or comprehensive training data. However, obtaining such information poses a significant challenge. To address this issue, we present a new diagnostic approach that operates with minimal prior knowledge, requiring only a basic understanding of subsystem relationships and data from nominal operations. Our method combines a neural network-based symptom generator, which employs subsystem-level anomaly detection, with a new graph diagnosis algorithm that leverages minimal causal relationship information between subsystems-information that is typically available in practice. Our experiments with fully controllable simulated datasets show that our method includes the true causal component in its diagnosis set for 82 p.c. of all cases while effectively reducing the search space in 73 p.c. of the scenarios. Additional tests on the real-world Secure Water Treatment dataset showcase the approach's potential for practical scenarios. Our results thus highlight our approach's potential for practical applications with large and complex cyber-physical systems where limited prior knowledge is available.
☆ TexTailor: Customized Text-aligned Texturing via Effective Resampling ICLR 2025
We present TexTailor, a novel method for generating consistent object textures from textual descriptions. Existing text-to-texture synthesis approaches utilize depth-aware diffusion models to progressively generate images and synthesize textures across predefined multiple viewpoints. However, these approaches lead to a gradual shift in texture properties across viewpoints due to (1) insufficient integration of previously synthesized textures at each viewpoint during the diffusion process and (2) the autoregressive nature of the texture synthesis process. Moreover, the predefined selection of camera positions, which does not account for the object's geometry, limits the effective use of texture information synthesized from different viewpoints, ultimately degrading overall texture consistency. In TexTailor, we address these issues by (1) applying a resampling scheme that repeatedly integrates information from previously synthesized textures within the diffusion process, and (2) fine-tuning a depth-aware diffusion model on these resampled textures. During this process, we observed that using only a few training images restricts the model's original ability to generate high-fidelity images aligned with the conditioning, and therefore propose an performance preservation loss to mitigate this issue. Additionally, we improve the synthesis of view-consistent textures by adaptively adjusting camera positions based on the object's geometry. Experiments on a subset of the Objaverse dataset and the ShapeNet car dataset demonstrate that TexTailor outperforms state-of-the-art methods in synthesizing view-consistent textures. The source code for TexTailor is available at https://github.com/Adios42/Textailor
comment: Submitted to ICLR 2025
☆ SoK: Evaluating Jailbreak Guardrails for Large Language Models
Large Language Models (LLMs) have achieved remarkable progress, but their deployment has exposed critical vulnerabilities, particularly to jailbreak attacks that circumvent safety mechanisms. Guardrails--external defense mechanisms that monitor and control LLM interaction--have emerged as a promising solution. However, the current landscape of LLM guardrails is fragmented, lacking a unified taxonomy and comprehensive evaluation framework. In this Systematization of Knowledge (SoK) paper, we present the first holistic analysis of jailbreak guardrails for LLMs. We propose a novel, multi-dimensional taxonomy that categorizes guardrails along six key dimensions, and introduce a Security-Efficiency-Utility evaluation framework to assess their practical effectiveness. Through extensive analysis and experiments, we identify the strengths and limitations of existing guardrail approaches, explore their universality across attack types, and provide insights into optimizing defense combinations. Our work offers a structured foundation for future research and development, aiming to guide the principled advancement and deployment of robust LLM guardrails. The code is available at https://github.com/xunguangwang/SoK4JailbreakGuardrails.
☆ Size-adaptive Hypothesis Testing for Fairness
Determining whether an algorithmic decision-making system discriminates against a specific demographic typically involves comparing a single point estimate of a fairness metric against a predefined threshold. This practice is statistically brittle: it ignores sampling error and treats small demographic subgroups the same as large ones. The problem intensifies in intersectional analyses, where multiple sensitive attributes are considered jointly, giving rise to a larger number of smaller groups. As these groups become more granular, the data representing them becomes too sparse for reliable estimation, and fairness metrics yield excessively wide confidence intervals, precluding meaningful conclusions about potential unfair treatments. In this paper, we introduce a unified, size-adaptive, hypothesis-testing framework that turns fairness assessment into an evidence-based statistical decision. Our contribution is twofold. (i) For sufficiently large subgroups, we prove a Central-Limit result for the statistical parity difference, leading to analytic confidence intervals and a Wald test whose type-I (false positive) error is guaranteed at level $\alpha$. (ii) For the long tail of small intersectional groups, we derive a fully Bayesian Dirichlet-multinomial estimator; Monte-Carlo credible intervals are calibrated for any sample size and naturally converge to Wald intervals as more data becomes available. We validate our approach empirically on benchmark datasets, demonstrating how our tests provide interpretable, statistically rigorous decisions under varying degrees of data availability and intersectionality.
☆ Primender Sequence: A Novel Mathematical Construct for Testing Symbolic Inference and AI Reasoning
This paper introduces the Primender sequence, a novel integer sequence defined by a hybrid rule that combines classical primality with modular digit-based conditions. Specifically, a number n is included in the sequence if it is prime or ends with a prime number of unit digit or any length. In other words, numbers which are primes or have at least one prime suffix. The resulting sequence exhibits a deterministic yet non-trivial structure, blending number-theoretic properties with symbolic patterning. We propose the Primender sequence as a benchmark for evaluating the symbolic reasoning capabilities of Large Language Models (LLMs). The study is motivated by the need for interpretable, rule-based testbeds that can assess an LLM's ability to infer hidden rules, validate mathematical hypotheses, and generalize symbolic logic at scale. A key hypothesis explored is: Whenever a number in the Primender sequence is exactly one more than the largest prime less than or equal to it, the difference between it and the previous number in the sequence is also 1. We design a structured prompt and evaluation framework to test this hypothesis across multiple state-of-the-art LLMs, including ChatGPT, Copilot, DeepSeek, Gemini, Grok, and LLaMA. The models are tasked with identifying the underlying rule, validating the hypothesis, and generating the next 100,000 terms of the sequence. Comparative metrics such as rule inference accuracy, hypothesis evaluation, sequence validity, and symbolic explanation quality are used to assess model performance. This work contributes a novel mathematical construct and a reproducible methodology for benchmarking LLMs in symbolic reasoning, hypothesis testing, and scalable pattern generalization - bridging the domains of number theory, artificial intelligence, and software engineering.
comment: 9 pages, 7 figures, 2 tables, 3 codes, oeis sequence A384735
☆ DreamActor-H1: High-Fidelity Human-Product Demonstration Video Generation via Motion-designed Diffusion Transformers
In e-commerce and digital marketing, generating high-fidelity human-product demonstration videos is important for effective product presentation. However, most existing frameworks either fail to preserve the identities of both humans and products or lack an understanding of human-product spatial relationships, leading to unrealistic representations and unnatural interactions. To address these challenges, we propose a Diffusion Transformer (DiT)-based framework. Our method simultaneously preserves human identities and product-specific details, such as logos and textures, by injecting paired human-product reference information and utilizing an additional masked cross-attention mechanism. We employ a 3D body mesh template and product bounding boxes to provide precise motion guidance, enabling intuitive alignment of hand gestures with product placements. Additionally, structured text encoding is used to incorporate category-level semantics, enhancing 3D consistency during small rotational changes across frames. Trained on a hybrid dataset with extensive data augmentation strategies, our approach outperforms state-of-the-art techniques in maintaining the identity integrity of both humans and products and generating realistic demonstration motions. Project page: https://submit2025-dream.github.io/DreamActor-H1/.
☆ Balancing Tails when Comparing Distributions: Comprehensive Equity Index (CEI) with Application to Bias Evaluation in Operational Face Biometrics
Demographic bias in high-performance face recognition (FR) systems often eludes detection by existing metrics, especially with respect to subtle disparities in the tails of the score distribution. We introduce the Comprehensive Equity Index (CEI), a novel metric designed to address this limitation. CEI uniquely analyzes genuine and impostor score distributions separately, enabling a configurable focus on tail probabilities while also considering overall distribution shapes. Our extensive experiments (evaluating state-of-the-art FR systems, intentionally biased models, and diverse datasets) confirm CEI's superior ability to detect nuanced biases where previous methods fall short. Furthermore, we present CEI^A, an automated version of the metric that enhances objectivity and simplifies practical application. CEI provides a robust and sensitive tool for operational FR fairness assessment. The proposed methods have been developed particularly for bias evaluation in face biometrics but, in general, they are applicable for comparing statistical distributions in any problem where one is interested in analyzing the distribution tails.
☆ From Images to Insights: Explainable Biodiversity Monitoring with Plain Language Habitat Explanations
Explaining why the species lives at a particular location is important for understanding ecological systems and conserving biodiversity. However, existing ecological workflows are fragmented and often inaccessible to non-specialists. We propose an end-to-end visual-to-causal framework that transforms a species image into interpretable causal insights about its habitat preference. The system integrates species recognition, global occurrence retrieval, pseudo-absence sampling, and climate data extraction. We then discover causal structures among environmental features and estimate their influence on species occurrence using modern causal inference methods. Finally, we generate statistically grounded, human-readable causal explanations from structured templates and large language models. We demonstrate the framework on a bee and a flower species and report early results as part of an ongoing project, showing the potential of the multimodal AI assistant backed up by a recommended ecological modeling practice for describing species habitat in human-understandable language.
comment: Code will be released at: https://github.com/Yutong-Zhou-cv/BioX
☆ StepProof: Step-by-step verification of natural language mathematical proofs
Interactive theorem provers (ITPs) are powerful tools for the formal verification of mathematical proofs down to the axiom level. However, their lack of a natural language interface remains a significant limitation. Recent advancements in large language models (LLMs) have enhanced the understanding of natural language inputs, paving the way for autoformalization - the process of translating natural language proofs into formal proofs that can be verified. Despite these advancements, existing autoformalization approaches are limited to verifying complete proofs and lack the capability for finer, sentence-level verification. To address this gap, we propose StepProof, a novel autoformalization method designed for granular, step-by-step verification. StepProof breaks down complete proofs into multiple verifiable subproofs, enabling sentence-level verification. Experimental results demonstrate that StepProof significantly improves proof success rates and efficiency compared to traditional methods. Additionally, we found that minor manual adjustments to the natural language proofs, tailoring them for step-level verification, further enhanced StepProof's performance in autoformalization.
☆ LogiPlan: A Structured Benchmark for Logical Planning and Relational Reasoning in LLMs
We introduce LogiPlan, a novel benchmark designed to evaluate the capabilities of large language models (LLMs) in logical planning and reasoning over complex relational structures. Logical relational reasoning is important for applications that may rely on LLMs to generate and query structured graphs of relations such as network infrastructure, knowledge bases, or business process schema. Our framework allows for dynamic variation of task complexity by controlling the number of objects, relations, and the minimum depth of relational chains, providing a fine-grained assessment of model performance across difficulty levels. LogiPlan encompasses three complementary tasks: (1) Plan Generation, where models must construct valid directed relational graphs meeting specified structural constraints; (2) Consistency Detection, testing models' ability to identify inconsistencies in relational structures; and (3) Comparison Question, evaluating models' capacity to determine the validity of queried relationships within a given graph. Additionally, we assess models' self-correction capabilities by prompting them to verify and refine their initial solutions. We evaluate state-of-the-art models including DeepSeek R1, Gemini 2.0 Pro, Gemini 2 Flash Thinking, GPT-4.5, GPT-4o, Llama 3.1 405B, O3-mini, O1, and Claude 3.7 Sonnet across these tasks, revealing significant performance gaps that correlate with model scale and architecture. Our analysis demonstrates that while recent reasoning-enhanced models show promising results on simpler instances, they struggle with more complex configurations requiring deeper logical planning.
☆ Scientists' First Exam: Probing Cognitive Abilities of MLLM via Perception, Understanding, and Reasoning
Scientific discoveries increasingly rely on complex multimodal reasoning based on information-intensive scientific data and domain-specific expertise. Empowered by expert-level scientific benchmarks, scientific Multimodal Large Language Models (MLLMs) hold the potential to significantly enhance this discovery process in realistic workflows. However, current scientific benchmarks mostly focus on evaluating the knowledge understanding capabilities of MLLMs, leading to an inadequate assessment of their perception and reasoning abilities. To address this gap, we present the Scientists' First Exam (SFE) benchmark, designed to evaluate the scientific cognitive capacities of MLLMs through three interconnected levels: scientific signal perception, scientific attribute understanding, scientific comparative reasoning. Specifically, SFE comprises 830 expert-verified VQA pairs across three question types, spanning 66 multimodal tasks across five high-value disciplines. Extensive experiments reveal that current state-of-the-art GPT-o3 and InternVL-3 achieve only 34.08% and 26.52% on SFE, highlighting significant room for MLLMs to improve in scientific realms. We hope the insights obtained in SFE will facilitate further developments in AI-enhanced scientific discoveries.
comment: 82 pages
☆ CogStream: Context-guided Streaming Video Question Answering
Despite advancements in Video Large Language Models (Vid-LLMs) improving multimodal understanding, challenges persist in streaming video reasoning due to its reliance on contextual information. Existing paradigms feed all available historical contextual information into Vid-LLMs, resulting in a significant computational burden for visual data processing. Furthermore, the inclusion of irrelevant context distracts models from key details. This paper introduces a challenging task called Context-guided Streaming Video Reasoning (CogStream), which simulates real-world streaming video scenarios, requiring models to identify the most relevant historical contextual information to deduce answers for questions about the current stream. To support CogStream, we present a densely annotated dataset featuring extensive and hierarchical question-answer pairs, generated by a semi-automatic pipeline. Additionally, we present CogReasoner as a baseline model. It efficiently tackles this task by leveraging visual stream compression and historical dialogue retrieval. Extensive experiments prove the effectiveness of this method. Code will be released soon.
☆ Reliable Reasoning Path: Distilling Effective Guidance for LLM Reasoning with Knowledge Graphs
Large language models (LLMs) often struggle with knowledge-intensive tasks due to a lack of background knowledge and a tendency to hallucinate. To address these limitations, integrating knowledge graphs (KGs) with LLMs has been intensively studied. Existing KG-enhanced LLMs focus on supplementary factual knowledge, but still struggle with solving complex questions. We argue that refining the relationships among facts and organizing them into a logically consistent reasoning path is equally important as factual knowledge itself. Despite their potential, extracting reliable reasoning paths from KGs poses the following challenges: the complexity of graph structures and the existence of multiple generated paths, making it difficult to distinguish between useful and redundant ones. To tackle these challenges, we propose the RRP framework to mine the knowledge graph, which combines the semantic strengths of LLMs with structural information obtained through relation embedding and bidirectional distribution learning. Additionally, we introduce a rethinking module that evaluates and refines reasoning paths according to their significance. Experimental results on two public datasets show that RRP achieves state-of-the-art performance compared to existing baseline methods. Moreover, RRP can be easily integrated into various LLMs to enhance their reasoning abilities in a plug-and-play manner. By generating high-quality reasoning paths tailored to specific questions, RRP distills effective guidance for LLM reasoning.
☆ Beyond Single-User Dialogue: Assessing Multi-User Dialogue State Tracking Capabilities of Large Language Models
Large language models (LLMs) have demonstrated remarkable performance in zero-shot dialogue state tracking (DST), reducing the need for task-specific training. However, conventional DST benchmarks primarily focus on structured user-agent conversations, failing to capture the complexities of real-world multi-user interactions. In this study, we assess the robustness of LLMs in multi-user DST while minimizing dataset construction costs. Inspired by recent advances in LLM-based data annotation, we extend an existing DST dataset by generating utterances of a second user based on speech act theory. Our methodology systematically incorporates a second user's utterances into conversations, enabling a controlled evaluation of LLMs in multi-user settings. Experimental results reveal a significant performance drop compared to single-user DST, highlighting the limitations of current LLMs in extracting and tracking dialogue states amidst multiple speakers. Our findings emphasize the need for future research to enhance LLMs for multi-user DST scenarios, paving the way for more realistic and robust DST models.
☆ Semantic Localization Guiding Segment Anything Model For Reference Remote Sensing Image Segmentation
The Reference Remote Sensing Image Segmentation (RRSIS) task generates segmentation masks for specified objects in images based on textual descriptions, which has attracted widespread attention and research interest. Current RRSIS methods rely on multi-modal fusion backbones and semantic segmentation heads but face challenges like dense annotation requirements and complex scene interpretation. To address these issues, we propose a framework named \textit{prompt-generated semantic localization guiding Segment Anything Model}(PSLG-SAM), which decomposes the RRSIS task into two stages: coarse localization and fine segmentation. In coarse localization stage, a visual grounding network roughly locates the text-described object. In fine segmentation stage, the coordinates from the first stage guide the Segment Anything Model (SAM), enhanced by a clustering-based foreground point generator and a mask boundary iterative optimization strategy for precise segmentation. Notably, the second stage can be train-free, significantly reducing the annotation data burden for the RRSIS task. Additionally, decomposing the RRSIS task into two stages allows for focusing on specific region segmentation, avoiding interference from complex scenes.We further contribute a high-quality, multi-category manually annotated dataset. Experimental validation on two datasets (RRSIS-D and RRSIS-M) demonstrates that PSLG-SAM achieves significant performance improvements and surpasses existing state-of-the-art models.Our code will be made publicly available.
☆ OIBench: Benchmarking Strong Reasoning Models with Olympiad in Informatics
As models become increasingly sophisticated, conventional algorithm benchmarks are increasingly saturated, underscoring the need for more challenging benchmarks to guide future improvements in algorithmic reasoning. This paper introduces OIBench, a high-quality, private, and challenging olympiad-level informatics dataset comprising 250 carefully curated original problems. We detail the construction methodology of the benchmark, ensuring a comprehensive assessment across various programming paradigms and complexities, and we demonstrate its contamination-resistant properties via experiments. We propose Time/Space Completion Curves for finer-grained efficiency analysis and enable direct human-model comparisons through high-level participant evaluations. Our experiments reveal that while open-source models lag behind closed-source counterparts, current SOTA models already outperform most human participants in both correctness and efficiency, while still being suboptimal compared to the canonical solutions. By releasing OIBench as a fully open-source resource (https://huggingface.co/datasets/AGI-Eval/OIBench), we hope this benchmark will contribute to advancing code reasoning capabilities for future LLMs.
☆ Specification and Evaluation of Multi-Agent LLM Systems -- Prototype and Cybersecurity Applications
Recent advancements in LLMs indicate potential for novel applications, e.g., through reasoning capabilities in the latest OpenAI and DeepSeek models. For applying these models in specific domains beyond text generation, LLM-based multi-agent approaches can be utilized that solve complex tasks by combining reasoning techniques, code generation, and software execution. Applications might utilize these capabilities and the knowledge of specialized LLM agents. However, while many evaluations are performed on LLMs, reasoning techniques, and applications individually, their joint specification and combined application is not explored well. Defined specifications for multi-agent LLM systems are required to explore their potential and their suitability for specific applications, allowing for systematic evaluations of LLMs, reasoning techniques, and related aspects. This paper reports the results of exploratory research to specify and evaluate these aspects through a multi-agent system. The system architecture and prototype are extended from previous research and a specification is introduced for multi-agent systems. Test cases involving cybersecurity tasks indicate feasibility of the architecture and evaluation approach. In particular, the results show the evaluation of question answering, server security, and network security tasks that were completed correctly by agents with LLMs from OpenAI and DeepSeek.
☆ Starting Positions Matter: A Study on Better Weight Initialization for Neural Network Quantization ICCV 2023
Deep neural network (DNN) quantization for fast, efficient inference has been an important tool in limiting the cost of machine learning (ML) model inference. Quantization-specific model development techniques such as regularization, quantization-aware training, and quantization-robustness penalties have served to greatly boost the accuracy and robustness of modern DNNs. However, very little exploration has been done on improving the initial conditions of DNN training for quantization. Just as random weight initialization has been shown to significantly impact test accuracy of floating point models, it would make sense that different weight initialization methods impact quantization robustness of trained models. We present an extensive study examining the effects of different weight initializations on a variety of CNN building blocks commonly used in efficient CNNs. This analysis reveals that even with varying CNN architectures, the choice of random weight initializer can significantly affect final quantization robustness. Next, we explore a new method for quantization-robust CNN initialization -- using Graph Hypernetworks (GHN) to predict parameters of quantized DNNs. Besides showing that GHN-predicted parameters are quantization-robust after regular float32 pretraining (of the GHN), we find that finetuning GHNs to predict parameters for quantized graphs (which we call GHN-QAT) can further improve quantized accuracy of CNNs. Notably, GHN-QAT shows significant accuracy improvements for even 4-bit quantization and better-than-random accuracy for 2-bits. To the best of our knowledge, this is the first in-depth study on quantization-aware DNN weight initialization. GHN-QAT offers a novel approach to quantized DNN model design. Future investigations, such as using GHN-QAT-initialized parameters for quantization-aware training, can further streamline the DNN quantization process.
comment: Portions of this article have been presented as extended abstracts at the ICCV 2023 Workshop on Low Bit Quantized Neural Networks (ICCVW-LBQNN 2023) and the 2020 Conference on Vision and Intelligent Systems (CVIS 2020). arXiv admin note: text overlap with arXiv:2011.14578, arXiv:2208.12489, arXiv:2309.13773
☆ Equitable Mechanism Design for Facility Location IJCAI 2025
We consider strategy proof mechanisms for facility location which maximize equitability between agents. As is common in the literature, we measure equitability with the Gini index. We first prove a simple but fundamental impossibility result that no strategy proof mechanism can bound the approximation ratio of the optimal Gini index of utilities for one or more facilities. We propose instead computing approximation ratios of the complemented Gini index of utilities, and consider how well both deterministic and randomized mechanisms approximate this. In addition, as Nash welfare is often put forwards as an equitable compromise between egalitarian and utilitarian outcomes, we consider how well mechanisms approximate the Nash welfare.
comment: To appear in Proceedings of IJCAI 2025
☆ SOFT: Selective Data Obfuscation for Protecting LLM Fine-tuning against Membership Inference Attacks USENIX Security
Large language models (LLMs) have achieved remarkable success and are widely adopted for diverse applications. However, fine-tuning these models often involves private or sensitive information, raising critical privacy concerns. In this work, we conduct the first comprehensive study evaluating the vulnerability of fine-tuned LLMs to membership inference attacks (MIAs). Our empirical analysis demonstrates that MIAs exploit the loss reduction during fine-tuning, making them highly effective in revealing membership information. These findings motivate the development of our defense. We propose SOFT (\textbf{S}elective data \textbf{O}bfuscation in LLM \textbf{F}ine-\textbf{T}uning), a novel defense technique that mitigates privacy leakage by leveraging influential data selection with an adjustable parameter to balance utility preservation and privacy protection. Our extensive experiments span six diverse domains and multiple LLM architectures and scales. Results show that SOFT effectively reduces privacy risks while maintaining competitive model performance, offering a practical and scalable solution to safeguard sensitive information in fine-tuned LLMs.
comment: Accepted by the 34th USENIX Security Symposium 2025. Code is available at https://github.com/KaiyuanZh/SOFT
☆ PAL: Probing Audio Encoders via LLMs -- A Study of Information Transfer from Audio Encoders to LLMs
The integration of audio perception capabilities into Large Language Models (LLMs) has enabled significant advances in Audio-LLMs. Although application-focused developments, particularly in curating training data for specific capabilities e.g., audio reasoning, have progressed rapidly, the underlying mechanisms that govern efficient transfer of rich semantic representations from audio encoders to LLMs remain under-explored. We conceptualize effective audio-LLM interaction as the LLM's ability to proficiently probe the audio encoder representations to satisfy textual queries. This paper presents a systematic investigation on how architectural design choices can affect that. Beginning with a standard Pengi/LLaVA-style audio-LLM architecture, we propose and evaluate several modifications guided by hypotheses derived from mechanistic interpretability studies and LLM operational principles. Our experiments demonstrate that: (1) delaying audio integration until the LLM's initial layers establish textual context that enhances its ability to probe the audio representations for relevant information; (2) the LLM can proficiently probe audio representations exclusively through LLM layer's attention submodule, without requiring propagation to its Feed-Forward Network (FFN) submodule; (3) an efficiently integrated ensemble of diverse audio encoders provides richer, complementary representations, thereby broadening the LLM's capacity to probe a wider spectrum of audio information. All hypotheses are evaluated using an identical three-stage training curriculum on a dataset of 5.6 million audio-text pairs, ensuring controlled comparisons. Our final architecture, which incorporates all proposed modifications, achieves relative improvements from 10\% to 60\% over the baseline, validating our approach to optimizing cross-modal information transfer in audio-LLMs. Project page: https://ta012.github.io/PAL/
comment: 21 pages, 11 figures
☆ Multi-dimensional Autoscaling of Processing Services: A Comparison of Agent-based Methods
Edge computing breaks with traditional autoscaling due to strict resource constraints, thus, motivating more flexible scaling behaviors using multiple elasticity dimensions. This work introduces an agent-based autoscaling framework that dynamically adjusts both hardware resources and internal service configurations to maximize requirements fulfillment in constrained environments. We compare four types of scaling agents: Active Inference, Deep Q Network, Analysis of Structural Knowledge, and Deep Active Inference, using two real-world processing services running in parallel: YOLOv8 for visual recognition and OpenCV for QR code detection. Results show all agents achieve acceptable SLO performance with varying convergence patterns. While the Deep Q Network benefits from pre-training, the structural analysis converges quickly, and the deep active inference agent combines theoretical foundations with practical scalability advantages. Our findings provide evidence for the viability of multi-dimensional agent-based autoscaling for edge environments and encourage future work in this research direction.
☆ Time-IMM: A Dataset and Benchmark for Irregular Multimodal Multivariate Time Series
Time series data in real-world applications such as healthcare, climate modeling, and finance are often irregular, multimodal, and messy, with varying sampling rates, asynchronous modalities, and pervasive missingness. However, existing benchmarks typically assume clean, regularly sampled, unimodal data, creating a significant gap between research and real-world deployment. We introduce Time-IMM, a dataset specifically designed to capture cause-driven irregularity in multimodal multivariate time series. Time-IMM represents nine distinct types of time series irregularity, categorized into trigger-based, constraint-based, and artifact-based mechanisms. Complementing the dataset, we introduce IMM-TSF, a benchmark library for forecasting on irregular multimodal time series, enabling asynchronous integration and realistic evaluation. IMM-TSF includes specialized fusion modules, including a timestamp-to-text fusion module and a multimodality fusion module, which support both recency-aware averaging and attention-based integration strategies. Empirical results demonstrate that explicitly modeling multimodality on irregular time series data leads to substantial gains in forecasting performance. Time-IMM and IMM-TSF provide a foundation for advancing time series analysis under real-world conditions. The dataset is publicly available at https://www.kaggle.com/datasets/blacksnail789521/time-imm/data, and the benchmark library can be accessed at https://anonymous.4open.science/r/IMMTSF_NeurIPS2025.
comment: This paper is currently under review
☆ Reasoning RAG via System 1 or System 2: A Survey on Reasoning Agentic Retrieval-Augmented Generation for Industry Challenges
Retrieval-Augmented Generation (RAG) has emerged as a powerful framework to overcome the knowledge limitations of Large Language Models (LLMs) by integrating external retrieval with language generation. While early RAG systems based on static pipelines have shown effectiveness in well-structured tasks, they struggle in real-world scenarios requiring complex reasoning, dynamic retrieval, and multi-modal integration. To address these challenges, the field has shifted toward Reasoning Agentic RAG, a paradigm that embeds decision-making and adaptive tool use directly into the retrieval process. In this paper, we present a comprehensive review of Reasoning Agentic RAG methods, categorizing them into two primary systems: predefined reasoning, which follows fixed modular pipelines to boost reasoning, and agentic reasoning, where the model autonomously orchestrates tool interaction during inference. We analyze representative techniques under both paradigms, covering architectural design, reasoning strategies, and tool coordination. Finally, we discuss key research challenges and propose future directions to advance the flexibility, robustness, and applicability of reasoning agentic RAG systems. Our collection of the relevant research has been organized into a https://github.com/ByebyeMonica/Reasoning-Agentic-RAG.
☆ Semi-Tensor-Product Based Convolutional Neural Networks
The semi-tensor product (STP) of vectors is a generalization of conventional inner product of vectors, which allows the factor vectors to of different dimensions. This paper proposes a domain-based convolutional product (CP). Combining domain-based CP with STP of vectors, a new CP is proposed. Since there is no zero or any other padding, it can avoid the junk information caused by padding. Using it, the STP-based convolutional neural network (CNN) is developed. Its application to image and third order signal identifications is considered.
☆ PAG: Multi-Turn Reinforced LLM Self-Correction with Policy as Generative Verifier
Large Language Models (LLMs) have demonstrated impressive capabilities in complex reasoning tasks, yet they still struggle to reliably verify the correctness of their own outputs. Existing solutions to this verification challenge often depend on separate verifier models or require multi-stage self-correction training pipelines, which limit scalability. In this paper, we propose Policy as Generative Verifier (PAG), a simple and effective framework that empowers LLMs to self-correct by alternating between policy and verifier roles within a unified multi-turn reinforcement learning (RL) paradigm. Distinct from prior approaches that always generate a second attempt regardless of model confidence, PAG introduces a selective revision mechanism: the model revises its answer only when its own generative verification step detects an error. This verify-then-revise workflow not only alleviates model collapse but also jointly enhances both reasoning and verification abilities. Extensive experiments across diverse reasoning benchmarks highlight PAG's dual advancements: as a policy, it enhances direct generation and self-correction accuracy; as a verifier, its self-verification outperforms self-consistency.
☆ Time To Impeach LLM-as-a-Judge: Programs are the Future of Evaluation
Large language models (LLMs) are widely used to evaluate the quality of LLM generations and responses, but this leads to significant challenges: high API costs, uncertain reliability, inflexible pipelines, and inherent biases. To address these, we introduce PAJAMA (Program-As-a-Judge for Automated Model Assessment), a new alternative that uses LLMs to synthesize executable judging programs instead of directly scoring responses. These synthesized programs can be stored and run locally, costing orders of magnitude less while providing interpretable, and auditable judging logic that can be easily adapted. Program-based judges mitigate biases, improving judgment consistency by 15.83% and reducing biased responses by 23.7% on average compared to a Qwen2.5-14B-based LLM-as-a-judge. When program judgments are distilled into a model, PAJAMA outperforms LLM-as-a-judge on the challenging CHAT-HARD subset of RewardBench, outperforming metrics by 2.19% on Prometheus and 8.67% on the JudgeLM dataset, all at three orders of magnitude lower cost.
☆ HPCTransCompile: An AI Compiler Generated Dataset for High-Performance CUDA Transpilation and LLM Preliminary Exploration
The rapid growth of deep learning has driven exponential increases in model parameters and computational demands. NVIDIA GPUs and their CUDA-based software ecosystem provide robust support for parallel computing, significantly alleviating computational bottlenecks. Meanwhile, due to the cultivation of user programming habits and the high performance of GPUs, the CUDA ecosystem has established a dominant position in the field of parallel software. This dominance requires other hardware platforms to support CUDA-based software with performance portability. However, translating CUDA code to other platforms poses significant challenges due to differences in parallel programming paradigms and hardware architectures. Existing approaches rely on language extensions, domain-specific languages (DSLs), or compilers but face limitations in workload coverage and generalizability. Moreover, these methods often incur substantial development costs. Recently, LLMs have demonstrated extraordinary potential in various vertical domains, especially in code-related tasks. However, the performance of existing LLMs in CUDA transpilation, particularly for high-performance code, remains suboptimal. The main reason for this limitation lies in the lack of high-quality training datasets. To address these challenges, we propose a novel framework for generating high-performance CUDA and corresponding platform code pairs, leveraging AI compiler and automatic optimization technology. We further enhance the framework with a graph-based data augmentation method and introduce HPCTransEval, a benchmark for evaluating LLM performance on CUDA transpilation. We conduct experiments using CUDA-to-CPU transpilation as a case study on leading LLMs. The result demonstrates that our framework significantly improves CUDA transpilation, highlighting the potential of LLMs to address compatibility challenges within the CUDA ecosystem.
☆ Pisces: An Auto-regressive Foundation Model for Image Understanding and Generation
Recent advances in large language models (LLMs) have enabled multimodal foundation models to tackle both image understanding and generation within a unified framework. Despite these gains, unified models often underperform compared to specialized models in either task. A key challenge in developing unified models lies in the inherent differences between the visual features needed for image understanding versus generation, as well as the distinct training processes required for each modality. In this work, we introduce Pisces, an auto-regressive multimodal foundation model that addresses this challenge through a novel decoupled visual encoding architecture and tailored training techniques optimized for multimodal generation. Combined with meticulous data curation, pretraining, and finetuning, Pisces achieves competitive performance in both image understanding and image generation. We evaluate Pisces on over 20 public benchmarks for image understanding, where it demonstrates strong performance across a wide range of tasks. Additionally, on GenEval, a widely adopted benchmark for image generation, Pisces exhibits robust generative capabilities. Our extensive analysis reveals the synergistic relationship between image understanding and generation, and the benefits of using separate visual encoders, advancing the field of unified multimodal models.
comment: Unified image understanding and generation model
☆ Mirage-1: Augmenting and Updating GUI Agent with Hierarchical Multimodal Skills
Recent efforts to leverage the Multi-modal Large Language Model (MLLM) as GUI agents have yielded promising outcomes. However, these agents still struggle with long-horizon tasks in online environments, primarily due to insufficient knowledge and the inherent gap between offline and online domains. In this paper, inspired by how humans generalize knowledge in open-ended environments, we propose a Hierarchical Multimodal Skills (HMS) module to tackle the issue of insufficient knowledge. It progressively abstracts trajectories into execution skills, core skills, and ultimately meta-skills, providing a hierarchical knowledge structure for long-horizon task planning. To bridge the domain gap, we propose the Skill-Augmented Monte Carlo Tree Search (SA-MCTS) algorithm, which efficiently leverages skills acquired in offline environments to reduce the action search space during online tree exploration. Building on HMS, we propose Mirage-1, a multimodal, cross-platform, plug-and-play GUI agent. To validate the performance of Mirage-1 in real-world long-horizon scenarios, we constructed a new benchmark, AndroidLH. Experimental results show that Mirage-1 outperforms previous agents by 32\%, 19\%, 15\%, and 79\% on AndroidWorld, MobileMiniWob++, Mind2Web-Live, and AndroidLH, respectively. Project page: https://cybertronagent.github.io/Mirage-1.github.io/
comment: 20 pages, 5 figures, 5 tables
☆ NeuroPAL: Punctuated Anytime Learning with Neuroevolution for Macromanagement in Starcraft: Brood War
StarCraft: Brood War remains a challenging benchmark for artificial intelligence research, particularly in the domain of macromanagement, where long-term strategic planning is required. Traditional approaches to StarCraft AI rely on rule-based systems or supervised deep learning, both of which face limitations in adaptability and computational efficiency. In this work, we introduce NeuroPAL, a neuroevolutionary framework that integrates Neuroevolution of Augmenting Topologies (NEAT) with Punctuated Anytime Learning (PAL) to improve the efficiency of evolutionary training. By alternating between frequent, low-fidelity training and periodic, high-fidelity evaluations, PAL enhances the sample efficiency of NEAT, enabling agents to discover effective strategies in fewer training iterations. We evaluate NeuroPAL in a fixed-map, single-race scenario in StarCraft: Brood War and compare its performance to standard NEAT-based training. Our results show that PAL significantly accelerates the learning process, allowing the agent to reach competitive levels of play in approximately half the training time required by NEAT alone. Additionally, the evolved agents exhibit emergent behaviors such as proxy barracks placement and defensive building optimization, strategies commonly used by expert human players. These findings suggest that structured evaluation mechanisms like PAL can enhance the scalability and effectiveness of neuroevolution in complex real-time strategy environments.
comment: IEEE Conference on Games 2025
☆ Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning
Faithful evaluation of language model capabilities is crucial for deriving actionable insights that can inform model development. However, rigorous causal evaluations in this domain face significant methodological challenges, including complex confounding effects and prohibitive computational costs associated with extensive retraining. To tackle these challenges, we propose a causal representation learning framework wherein observed benchmark performance is modeled as a linear transformation of a few latent capability factors. Crucially, these latent factors are identified as causally interrelated after appropriately controlling for the base model as a common confounder. Applying this approach to a comprehensive dataset encompassing over 1500 models evaluated across six benchmarks from the Open LLM Leaderboard, we identify a concise three-node linear causal structure that reliably explains the observed performance variations. Further interpretation of this causal structure provides substantial scientific insights beyond simple numerical rankings: specifically, we reveal a clear causal direction starting from general problem-solving capabilities, advancing through instruction-following proficiency, and culminating in mathematical reasoning ability. Our results underscore the essential role of carefully controlling base model variations during evaluation, a step critical to accurately uncovering the underlying causal relationships among latent model capabilities.
☆ Optimus-3: Towards Generalist Multimodal Minecraft Agents with Scalable Task Experts
Recently, agents based on multimodal large language models (MLLMs) have achieved remarkable progress across various domains. However, building a generalist agent with capabilities such as perception, planning, action, grounding, and reflection in open-world environments like Minecraft remains challenges: insufficient domain-specific data, interference among heterogeneous tasks, and visual diversity in open-world settings. In this paper, we address these challenges through three key contributions. 1) We propose a knowledge-enhanced data generation pipeline to provide scalable and high-quality training data for agent development. 2) To mitigate interference among heterogeneous tasks, we introduce a Mixture-of-Experts (MoE) architecture with task-level routing. 3) We develop a Multimodal Reasoning-Augmented Reinforcement Learning approach to enhance the agent's reasoning ability for visual diversity in Minecraft. Built upon these innovations, we present Optimus-3, a general-purpose agent for Minecraft. Extensive experimental results demonstrate that Optimus-3 surpasses both generalist multimodal large language models and existing state-of-the-art agents across a wide range of tasks in the Minecraft environment. Project page: https://cybertronagent.github.io/Optimus-3.github.io/
comment: 24 pages, 10 figures
☆ PhysioWave: A Multi-Scale Wavelet-Transformer for Physiological Signal Representation NeurIPS 2025
Physiological signals are often corrupted by motion artifacts, baseline drift, and other low-SNR disturbances, which pose significant challenges for analysis. Additionally, these signals exhibit strong non-stationarity, with sharp peaks and abrupt changes that evolve continuously, making them difficult to represent using traditional time-domain or filtering methods. To address these issues, a novel wavelet-based approach for physiological signal analysis is presented, aiming to capture multi-scale time-frequency features in various physiological signals. Leveraging this technique, two large-scale pretrained models specific to EMG and ECG are introduced for the first time, achieving superior performance and setting new baselines in downstream tasks. Additionally, a unified multi-modal framework is constructed by integrating pretrained EEG model, where each modality is guided through its dedicated branch and fused via learnable weighted fusion. This design effectively addresses challenges such as low signal-to-noise ratio, high inter-subject variability, and device mismatch, outperforming existing methods on multi-modal tasks. The proposed wavelet-based architecture lays a solid foundation for analysis of diverse physiological signals, while the multi-modal design points to next-generation physiological signal processing with potential impact on wearable health monitoring, clinical diagnostics, and broader biomedical applications.
comment: 22 pages, 8 figures, 9 tables. Submitted to NeurIPS 2025
☆ Code Execution as Grounded Supervision for LLM Reasoning
Training large language models (LLMs) with chain-of-thought (CoT) supervision has proven effective for enhancing their reasoning abilities. However, obtaining reliable and accurate reasoning supervision remains a significant challenge. We propose a scalable method for generating a high-quality CoT supervision dataset by leveraging the determinism of program execution. Unlike existing reasoning dataset generation methods that rely on costly human annotations or error-prone LLM-generated CoT, our approach extracts verifiable, step-by-step reasoning traces from code execution and transforms them into a natural language CoT reasoning. Experiments on reasoning benchmarks across various domains show that our method effectively equips LLMs with transferable reasoning abilities across diverse tasks. Furthermore, the ablation studies validate that our method produces highly accurate reasoning data and reduces overall token length during inference by reducing meaningless repetition and overthinking.
☆ UrbanSense:AFramework for Quantitative Analysis of Urban Streetscapes leveraging Vision Large Language Models
Urban cultures and architectural styles vary significantly across cities due to geographical, chronological, historical, and socio-political factors. Understanding these differences is essential for anticipating how cities may evolve in the future. As representative cases of historical continuity and modern innovation in China, Beijing and Shenzhen offer valuable perspectives for exploring the transformation of urban streetscapes. However, conventional approaches to urban cultural studies often rely on expert interpretation and historical documentation, which are difficult to standardize across different contexts. To address this, we propose a multimodal research framework based on vision-language models, enabling automated and scalable analysis of urban streetscape style differences. This approach enhances the objectivity and data-driven nature of urban form research. The contributions of this study are as follows: First, we construct UrbanDiffBench, a curated dataset of urban streetscapes containing architectural images from different periods and regions. Second, we develop UrbanSense, the first vision-language-model-based framework for urban streetscape analysis, enabling the quantitative generation and comparison of urban style representations. Third, experimental results show that Over 80% of generated descriptions pass the t-test (p less than 0.05). High Phi scores (0.912 for cities, 0.833 for periods) from subjective evaluations confirm the method's ability to capture subtle stylistic differences. These results highlight the method's potential to quantify and interpret urban style evolution, offering a scientifically grounded lens for future design.
☆ Using Vision Language Models to Detect Students' Academic Emotion through Facial Expressions
Students' academic emotions significantly influence their social behavior and learning performance. Traditional approaches to automatically and accurately analyze these emotions have predominantly relied on supervised machine learning algorithms. However, these models often struggle to generalize across different contexts, necessitating repeated cycles of data collection, annotation, and training. The emergence of Vision-Language Models (VLMs) offers a promising alternative, enabling generalization across visual recognition tasks through zero-shot prompting without requiring fine-tuning. This study investigates the potential of VLMs to analyze students' academic emotions via facial expressions in an online learning environment. We employed two VLMs, Llama-3.2-11B-Vision-Instruct and Qwen2.5-VL-7B-Instruct, to analyze 5,000 images depicting confused, distracted, happy, neutral, and tired expressions using zero-shot prompting. Preliminary results indicate that both models demonstrate moderate performance in academic facial expression recognition, with Qwen2.5-VL-7B-Instruct outperforming Llama-3.2-11B-Vision-Instruct. Notably, both models excel in identifying students' happy emotions but fail to detect distracted behavior. Additionally, Qwen2.5-VL-7B-Instruct exhibits relatively high performance in recognizing students' confused expressions, highlighting its potential for practical applications in identifying content that causes student confusion.
☆ Augmenting Large Language Models with Static Code Analysis for Automated Code Quality Improvements
This study examined code issue detection and revision automation by integrating Large Language Models (LLMs) such as OpenAI's GPT-3.5 Turbo and GPT-4o into software development workflows. A static code analysis framework detects issues such as bugs, vulnerabilities, and code smells within a large-scale software project. Detailed information on each issue was extracted and organized to facilitate automated code revision using LLMs. An iterative prompt engineering process is applied to ensure that prompts are structured to produce accurate and organized outputs aligned with the project requirements. Retrieval-augmented generation (RAG) is implemented to enhance the relevance and precision of the revisions, enabling LLM to access and integrate real-time external knowledge. The issue of LLM hallucinations - where the model generates plausible but incorrect outputs - is addressed by a custom-built "Code Comparison App," which identifies and corrects erroneous changes before applying them to the codebase. Subsequent scans using the static code analysis framework revealed a significant reduction in code issues, demonstrating the effectiveness of combining LLMs, static analysis, and RAG to improve code quality, streamline the software development process, and reduce time and resource expenditure.
comment: Accepted at FORGE 2025
☆ Towards Scalable SOAP Note Generation: A Weakly Supervised Multimodal Framework CVPR
Skin carcinoma is the most prevalent form of cancer globally, accounting for over $8 billion in annual healthcare expenditures. In clinical settings, physicians document patient visits using detailed SOAP (Subjective, Objective, Assessment, and Plan) notes. However, manually generating these notes is labor-intensive and contributes to clinician burnout. In this work, we propose a weakly supervised multimodal framework to generate clinically structured SOAP notes from limited inputs, including lesion images and sparse clinical text. Our approach reduces reliance on manual annotations, enabling scalable, clinically grounded documentation while alleviating clinician burden and reducing the need for large annotated data. Our method achieves performance comparable to GPT-4o, Claude, and DeepSeek Janus Pro across key clinical relevance metrics. To evaluate clinical quality, we introduce two novel metrics MedConceptEval and Clinical Coherence Score (CCS) which assess semantic alignment with expert medical concepts and input features, respectively.
comment: Accepted at IEEE/CVF Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
☆ A Benchmark for Generalizing Across Diverse Team Strategies in Competitive Pokémon NeurIPS 2025
Developing AI agents that can robustly adapt to dramatically different strategic landscapes without retraining is a central challenge for multi-agent learning. Pok\'emon Video Game Championships (VGC) is a domain with an extraordinarily large space of possible team configurations of approximately $10^{139}$ - far larger than those of Dota or Starcraft. The highly discrete, combinatorial nature of team building in Pok\'emon VGC causes optimal strategies to shift dramatically depending on both the team being piloted and the opponent's team, making generalization uniquely challenging. To advance research on this problem, we introduce VGC-Bench: a benchmark that provides critical infrastructure, standardizes evaluation protocols, and supplies human-play datasets and a range of baselines - from large-language-model agents and behavior cloning to reinforcement learning and empirical game-theoretic methods such as self-play, fictitious play, and double oracle. In the restricted setting where an agent is trained and evaluated on a single-team configuration, our methods are able to win against a professional VGC competitor. We extensively evaluated all baseline methods over progressively larger team sets and find that even the best-performing algorithm in the single-team setting struggles at scaling up as team size grows. Thus, policy generalization across diverse team strategies remains an open challenge for the community. Our code is open sourced at https://github.com/cameronangliss/VGC-Bench.
comment: 15 pages, 3 figures, 10 tables, submitted to NeurIPS 2025 Datasets & Benchmarks Track
☆ Using Language and Road Manuals to Inform Map Reconstruction for Autonomous Driving RSS 2025
Lane-topology prediction is a critical component of safe and reliable autonomous navigation. An accurate understanding of the road environment aids this task. We observe that this information often follows conventions encoded in natural language, through design codes that reflect the road structure and road names that capture the road functionality. We augment this information in a lightweight manner to SMERF, a map-prior-based online lane-topology prediction model, by combining structured road metadata from OSM maps and lane-width priors from Road design manuals with the road centerline encodings. We evaluate our method on two geo-diverse complex intersection scenarios. Our method shows improvement in both lane and traffic element detection and their association. We report results using four topology-aware metrics to comprehensively assess the model performance. These results demonstrate the ability of our approach to generalize and scale to diverse topologies and conditions.
comment: 4 pages, 3 figures, Accepted at RSS 2025 Workshop - RobotEvaluation@RSS2025
☆ DUN-SRE: Deep Unrolling Network with Spatiotemporal Rotation Equivariance for Dynamic MRI Reconstruction
Dynamic Magnetic Resonance Imaging (MRI) exhibits transformation symmetries, including spatial rotation symmetry within individual frames and temporal symmetry along the time dimension. Explicit incorporation of these symmetry priors in the reconstruction model can significantly improve image quality, especially under aggressive undersampling scenarios. Recently, Equivariant convolutional neural network (ECNN) has shown great promise in exploiting spatial symmetry priors. However, existing ECNNs critically fail to model temporal symmetry, arguably the most universal and informative structural prior in dynamic MRI reconstruction. To tackle this issue, we propose a novel Deep Unrolling Network with Spatiotemporal Rotation Equivariance (DUN-SRE) for Dynamic MRI Reconstruction. The DUN-SRE establishes spatiotemporal equivariance through a (2+1)D equivariant convolutional architecture. In particular, it integrates both the data consistency and proximal mapping module into a unified deep unrolling framework. This architecture ensures rigorous propagation of spatiotemporal rotation symmetry constraints throughout the reconstruction process, enabling more physically accurate modeling of cardiac motion dynamics in cine MRI. In addition, a high-fidelity group filter parameterization mechanism is developed to maintain representation precision while enforcing symmetry constraints. Comprehensive experiments on Cardiac CINE MRI datasets demonstrate that DUN-SRE achieves state-of-the-art performance, particularly in preserving rotation-symmetric structures, offering strong generalization capability to a broad range of dynamic MRI reconstruction tasks.
☆ The Alignment Trap: Complexity Barriers
We establish fundamental computational complexity barriers to verifying AI safety as system capabilities scale. Our main results show that for AI systems with expressiveness EXP$(m)$ above a critical threshold $\tau$, safety verification requires exponential time and is coNP-complete. We formalize the Capability-Risk Scaling (CRS) dynamic, which demonstrates how increasing AI capability drives societal safety requirements toward perfection, creating an inescapable tension with verification complexity. Through four core theorems, we prove that (1) verification complexity grows exponentially with system expressiveness, (2) safe policies comprise at most a $2^{-2^m}$ fraction of the policy space, (3) no finite set of alignment techniques can provide universal coverage, and (4) robust safety properties form measure-zero sets for neural networks. These results characterize an "intractability gap" where practical safety requirements fall within the region of computational intractability. We conclude by presenting a strategic trilemma: AI development must either constrain system complexity to maintain verifiable safety, accept unverifiable risks while scaling capabilities, or develop fundamentally new safety paradigms beyond verification. Our work provides the first systematic complexity-theoretic analysis of AI alignment and establishes rigorous bounds that any safety approach must confront. A formal verification of the core theorems in Lean4 is currently in progress.
comment: 29 Pages, 4 Figures
☆ Uncertainty-Aware Deep Learning for Automated Skin Cancer Classification: A Comprehensive Evaluation
Accurate and reliable skin cancer diagnosis is critical for early treatment and improved patient outcomes. Deep learning (DL) models have shown promise in automating skin cancer classification, but their performance can be limited by data scarcity and a lack of uncertainty awareness. In this study, we present a comprehensive evaluation of DL-based skin lesion classification using transfer learning and uncertainty quantification (UQ) on the HAM10000 dataset. In the first phase, we benchmarked several pre-trained feature extractors-including Contrastive Language-Image Pretraining (CLIP) variants, Residual Network-50 (ResNet50), Densely Connected Convolutional Network (DenseNet121), Visual Geometry Group network (VGG16), and EfficientNet-V2-Large-combined with a range of traditional classifiers such as Support Vector Machine (SVM), eXtreme Gradient Boosting (XGBoost), and logistic regression. Our results show that CLIP-based vision transformers, particularly LAION CLIP ViT-H/14 with SVM, deliver the highest classification performance. In the second phase, we incorporated UQ using Monte Carlo Dropout (MCD), Ensemble, and Ensemble Monte Carlo Dropout (EMCD) to assess not only prediction accuracy but also the reliability of model outputs. We evaluated these models using uncertainty-aware metrics such as uncertainty accuracy(UAcc), uncertainty sensitivity(USen), uncertainty specificity(USpe), and uncertainty precision(UPre). The results demonstrate that ensemble methods offer a good trade-off between accuracy and uncertainty handling, while EMCD is more sensitive to uncertain predictions. This study highlights the importance of integrating UQ into DL-based medical diagnosis to enhance both performance and trustworthiness in real-world clinical applications.
☆ Towards Understanding Bias in Synthetic Data for Evaluation
Test collections are crucial for evaluating Information Retrieval (IR) systems. Creating a diverse set of user queries for these collections can be challenging, and obtaining relevance judgments, which indicate how well retrieved documents match a query, is often costly and resource-intensive. Recently, generating synthetic datasets using Large Language Models (LLMs) has gained attention in various applications. While previous work has used LLMs to generate synthetic queries or documents to improve ranking models, using LLMs to create synthetic test collections is still relatively unexplored. Previous work~\cite{rahmani2024synthetic} showed that synthetic test collections have the potential to be used for system evaluation, however, more analysis is needed to validate this claim. In this paper, we thoroughly investigate the reliability of synthetic test collections constructed using LLMs, where LLMs are used to generate synthetic queries, labels, or both. In particular, we examine the potential biases that might occur when such test collections are used for evaluation. We first empirically show the presence of such bias in evaluation results and analyse the effects it might have on system evaluation. We further validate the presence of such bias using a linear mixed-effects model. Our analysis shows that while the effect of bias present in evaluation results obtained using synthetic test collections could be significant, for e.g.~computing absolute system performance, its effect may not be as significant in comparing relative system performance. Codes and data are available at: https://github.com/rahmanidashti/BiasSyntheticData.
☆ Flick: Few Labels Text Classification using K-Aware Intermediate Learning in Multi-Task Low-Resource Languages
Training deep learning networks with minimal supervision has gained significant research attention due to its potential to reduce reliance on extensive labelled data. While self-training methods have proven effective in semi-supervised learning, they remain vulnerable to errors from noisy pseudo labels. Moreover, most recent approaches to the few-label classification problem are either designed for resource-rich languages such as English or involve complex cascading models that are prone to overfitting. To address the persistent challenge of few-label text classification in truly low-resource linguistic contexts, where existing methods often struggle with noisy pseudo-labels and domain adaptation, we propose Flick. Unlike prior methods that rely on generic multi-cluster pseudo-labelling or complex cascading architectures, Flick leverages the fundamental insight that distilling high-confidence pseudo-labels from a broader set of initial clusters can dramatically improve pseudo-label quality, particularly for linguistically diverse, low-resource settings. Flick introduces a novel pseudo-label refinement component, a departure from traditional pseudo-labelling strategies by identifying and leveraging top-performing pseudo-label clusters. This component specifically learns to distil highly reliable pseudo-labels from an initial broad set by focusing on single-cluster cohesion and leveraging an adaptive top-k selection mechanism. This targeted refinement process is crucial for mitigating the propagation of errors inherent in low-resource data, allowing for robust fine-tuning of pre-trained language models with only a handful of true labels. We demonstrate Flick's efficacy across 14 diverse datasets, encompassing challenging low-resource languages such as Arabic, Urdu, and Setswana, alongside English, showcasing its superior performance and adaptability.
☆ RT-VC: Real-Time Zero-Shot Voice Conversion with Speech Articulatory Coding ACL
Voice conversion has emerged as a pivotal technology in numerous applications ranging from assistive communication to entertainment. In this paper, we present RT-VC, a zero-shot real-time voice conversion system that delivers ultra-low latency and high-quality performance. Our approach leverages an articulatory feature space to naturally disentangle content and speaker characteristics, facilitating more robust and interpretable voice transformations. Additionally, the integration of differentiable digital signal processing (DDSP) enables efficient vocoding directly from articulatory features, significantly reducing conversion latency. Experimental evaluations demonstrate that, while maintaining synthesis quality comparable to the current state-of-the-art (SOTA) method, RT-VC achieves a CPU latency of 61.4 ms, representing a 13.3\% reduction in latency.
comment: ACL Demo Track 2025
☆ ClusterUCB: Efficient Gradient-Based Data Selection for Targeted Fine-Tuning of LLMs
Gradient-based data influence approximation has been leveraged to select useful data samples in the supervised fine-tuning of large language models. However, the computation of gradients throughout the fine-tuning process requires too many resources to be feasible in practice. In this paper, we propose an efficient gradient-based data selection framework with clustering and a modified Upper Confidence Bound (UCB) algorithm. Based on the intuition that data samples with similar gradient features will have similar influences, we first perform clustering on the training data pool. Then, we frame the inter-cluster data selection as a constrained computing budget allocation problem and consider it a multi-armed bandit problem. A modified UCB algorithm is leveraged to solve this problem. Specifically, during the iterative sampling process, historical data influence information is recorded to directly estimate the distributions of each cluster, and a cold start is adopted to balance exploration and exploitation. Experimental results on various benchmarks show that our proposed framework, ClusterUCB, can achieve comparable results to the original gradient-based data selection methods while greatly reducing computing consumption.
☆ Closer to Language than Steam: AI as the Cognitive Engine of a New Productivity Revolution
Artificial Intelligence (AI) is reframed as a cognitive engine driving a novel productivity revolution distinct from the Industrial Revolution's physical thrust. This paper develops a theoretical framing of AI as a cognitive revolution akin to written language - a transformative augmentation of human intellect rather than another mechanized tool. We compare AI's emergence to historical leaps in information technology to show how it amplifies knowledge work. Examples from various domains demonstrate AI's impact as a driver of productivity in cognitive tasks. We adopt a multidisciplinary perspective combining computer science advances with economic insights and sociological perspectives on how AI reshapes work and society. Through conceptual frameworks, we visualize the shift from manual to cognitive productivity. Our central argument is that AI functions as an engine of cognition - comparable to how human language revolutionized knowledge - heralding a new productivity paradigm. We discuss how this revolution demands rethinking of skills, organizations, and policies. This paper, balancing academic rigor with clarity, concludes that AI's promise lies in complementing human cognitive abilities, marking a new chapter in productivity evolution.
comment: 12 pages
☆ Discrete Audio Tokens: More Than a Survey!
Discrete audio tokens are compact representations that aim to preserve perceptual quality, phonetic content, and speaker characteristics while enabling efficient storage and inference, as well as competitive performance across diverse downstream tasks.They provide a practical alternative to continuous features, enabling the integration of speech and audio into modern large language models (LLMs). As interest in token-based audio processing grows, various tokenization methods have emerged, and several surveys have reviewed the latest progress in the field. However, existing studies often focus on specific domains or tasks and lack a unified comparison across various benchmarks. This paper presents a systematic review and benchmark of discrete audio tokenizers, covering three domains: speech, music, and general audio. We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream performance, and acoustic language modeling, and analyze trade-offs through controlled ablation studies. Our findings highlight key limitations, practical considerations, and open challenges, providing insight and guidance for future research in this rapidly evolving area. For more information, including our main results and tokenizer database, please refer to our website: https://poonehmousavi.github.io/dates-website/.
☆ Do Language Models Have Bayesian Brains? Distinguishing Stochastic and Deterministic Decision Patterns within Large Language Models
Language models are essentially probability distributions over token sequences. Auto-regressive models generate sentences by iteratively computing and sampling from the distribution of the next token. This iterative sampling introduces stochasticity, leading to the assumption that language models make probabilistic decisions, similar to sampling from unknown distributions. Building on this assumption, prior research has used simulated Gibbs sampling, inspired by experiments designed to elicit human priors, to infer the priors of language models. In this paper, we revisit a critical question: Do language models possess Bayesian brains? Our findings show that under certain conditions, language models can exhibit near-deterministic decision-making, such as producing maximum likelihood estimations, even with a non-zero sampling temperature. This challenges the sampling assumption and undermines previous methods for eliciting human-like priors. Furthermore, we demonstrate that without proper scrutiny, a system with deterministic behavior undergoing simulated Gibbs sampling can converge to a "false prior." To address this, we propose a straightforward approach to distinguish between stochastic and deterministic decision patterns in Gibbs sampling, helping to prevent the inference of misleading language model priors. We experiment on a variety of large language models to identify their decision patterns under various circumstances. Our results provide key insights in understanding decision making of large language models.
☆ WGSR-Bench: Wargame-based Game-theoretic Strategic Reasoning Benchmark for Large Language Models
Recent breakthroughs in Large Language Models (LLMs) have led to a qualitative leap in artificial intelligence' s performance on reasoning tasks, particularly demonstrating remarkable capabilities in mathematical, symbolic, and commonsense reasoning. However, as a critical component of advanced human cognition, strategic reasoning, i.e., the ability to assess multi-agent behaviors in dynamic environments, formulate action plans, and adapt strategies, has yet to be systematically evaluated or modeled. To address this gap, this paper introduces WGSR-Bench, the first strategy reasoning benchmark for LLMs using wargame as its evaluation environment. Wargame, a quintessential high-complexity strategic scenario, integrates environmental uncertainty, adversarial dynamics, and non-unique strategic choices, making it an effective testbed for assessing LLMs' capabilities in multi-agent decision-making, intent inference, and counterfactual reasoning. WGSR-Bench designs test samples around three core tasks, i.e., Environmental situation awareness, Opponent risk modeling and Policy generation, which serve as the core S-POE architecture, to systematically assess main abilities of strategic reasoning. Finally, an LLM-based wargame agent is designed to integrate these parts for a comprehensive strategy reasoning assessment. With WGSR-Bench, we hope to assess the strengths and limitations of state-of-the-art LLMs in game-theoretic strategic reasoning and to advance research in large model-driven strategic intelligence.
comment: 15 pages, 17 figures
☆ Extended Creativity: A Conceptual Framework for Understanding Human-AI Creative Relations
Artificial Intelligence holds significant potential to enhance human creativity. However, achieving this vision requires a clearer understanding of how such enhancement can be effectively realized. Adopting the perspective of distributed creativity, we identify three primary modes through which AI can contribute to creative processes: Support, where AI acts as a tool; Synergy, where AI and humans collaborate in complementary ways; and Symbiosis, where human and AI cognition become so integrated that they form a unified creative system. These modes are defined along two key dimensions: the level of technical autonomy exhibited by the AI system and the degree of perceived agency attributed to it. We examine how each configuration influences different levels of creativity - from everyday problem-solving to paradigm-shifting innovation - and discuss the theoretical, ethical, and design implications.
comment: 36 pages, 3 figures. This conceptual paper proposes a taxonomy of Extended Creativity systems and examines the relational dynamics between human and AI agents in creative processes. Suitable for readers in HCI, AI, cognitive science, and digital design. The illustrations were created by Francesco Giordano and are used with permission (not under CC license)
☆ MUDAS: Mote-scale Unsupervised Domain Adaptation in Multi-label Sound Classification
Unsupervised Domain Adaptation (UDA) is essential for adapting machine learning models to new, unlabeled environments where data distribution shifts can degrade performance. Existing UDA algorithms are designed for single-label tasks and rely on significant computational resources, limiting their use in multi-label scenarios and in resource-constrained IoT devices. Overcoming these limitations is particularly challenging in contexts such as urban sound classification, where overlapping sounds and varying acoustics require robust, adaptive multi-label capabilities on low-power, on-device systems. To address these limitations, we introduce Mote-scale Unsupervised Domain Adaptation for Sounds (MUDAS), a UDA framework developed for multi-label sound classification in resource-constrained IoT settings. MUDAS efficiently adapts models by selectively retraining the classifier in situ using high-confidence data, minimizing computational and memory requirements to suit on-device deployment. Additionally, MUDAS incorporates class-specific adaptive thresholds to generate reliable pseudo-labels and applies diversity regularization to improve multi-label classification accuracy. In evaluations on the SONYC Urban Sound Tagging (SONYC-UST) dataset recorded at various New York City locations, MUDAS demonstrates notable improvements in classification accuracy over existing UDA algorithms, achieving good performance in a resource-constrained IoT setting.
☆ Don't Pay Attention
The Transformer has become the de facto standard for large language models and a wide range of downstream tasks across various domains. Despite its numerous advantages like inherent training parallelism, the Transformer still faces key challenges due to its inability to effectively process sequences beyond a fixed context window and the quadratic complexity of its attention mechanism. These challenges have renewed interest in RNN-like architectures, which offer linear scaling with sequence length and improved handling of long-range dependencies, albeit with limited parallelism due to their inherently recurrent nature. In this paper, we propose Avey, a new neural foundational architecture that breaks away from both attention and recurrence. Avey comprises a ranker and an autoregressive neural processor, which collaboratively identify and contextualize only the most relevant tokens for any given token, regardless of their positions in the sequence. Specifically, Avey decouples sequence length from context width, thus enabling effective processing of arbitrarily long sequences. Experimental results show that Avey compares favorably to the Transformer across a variety of standard short-range NLP benchmarks, while notably excelling at capturing long-range dependencies.
☆ TARDIS STRIDE: A Spatio-Temporal Road Image Dataset for Exploration and Autonomy
World models aim to simulate environments and enable effective agent behavior. However, modeling real-world environments presents unique challenges as they dynamically change across both space and, crucially, time. To capture these composed dynamics, we introduce a Spatio-Temporal Road Image Dataset for Exploration (STRIDE) permuting 360-degree panoramic imagery into rich interconnected observation, state and action nodes. Leveraging this structure, we can simultaneously model the relationship between egocentric views, positional coordinates, and movement commands across both space and time. We benchmark this dataset via TARDIS, a transformer-based generative world model that integrates spatial and temporal dynamics through a unified autoregressive framework trained on STRIDE. We demonstrate robust performance across a range of agentic tasks such as controllable photorealistic image synthesis, instruction following, autonomous self-control, and state-of-the-art georeferencing. These results suggest a promising direction towards sophisticated generalist agents--capable of understanding and manipulating the spatial and temporal aspects of their material environments--with enhanced embodied reasoning capabilities. Training code, datasets, and model checkpoints are made available at https://huggingface.co/datasets/Tera-AI/STRIDE.
comment: Computer Vision, Pattern Recognition, LLMs, Dataset, Data Augmentation
☆ Beyond Random Sampling: Efficient Language Model Pretraining via Curriculum Learning
Curriculum learning has shown promise in improving training efficiency and generalization in various machine learning domains, yet its potential in pretraining language models remains underexplored, prompting our work as the first systematic investigation in this area. We experimented with different settings, including vanilla curriculum learning, pacing-based sampling, and interleaved curricula-guided by six difficulty metrics spanning linguistic and information-theoretic perspectives. We train models under these settings and evaluate their performance on eight diverse benchmarks. Our experiments reveal that curriculum learning consistently improves convergence in early and mid-training phases, and can yield lasting gains when used as a warmup strategy with up to $3.5\%$ improvement. Notably, we identify compression ratio, lexical diversity, and readability as effective difficulty signals across settings. Our findings highlight the importance of data ordering in large-scale pretraining and provide actionable insights for scalable, data-efficient model development under realistic training scenarios.
☆ A Tale of Two Systems: Characterizing Architectural Complexity on Machine Learning-Enabled Systems
How can the complexity of ML-enabled systems be managed effectively? The goal of this research is to investigate how complexity affects ML-Enabled Systems (MLES). To address this question, this research aims to introduce a metrics-based architectural model to characterize the complexity of MLES. The goal is to support architectural decisions, providing a guideline for the inception and growth of these systems. This paper brings, side-by-side, the architecture representation of two systems that can be used as case studies for creating the metrics-based architectural model: the SPIRA and the Ocean Guard MLES.
comment: 8 pages, 3 figures (3 diagrams), submitted to the ECSA2025. arXiv admin note: substantial text overlap with arXiv:2506.08153
☆ Invocable APIs derived from NL2SQL datasets for LLM Tool-Calling Evaluation
Large language models (LLMs) are routinely deployed as agentic systems, with access to tools that interact with live environments to accomplish tasks. In enterprise deployments these systems need to interact with API collections that can be extremely large and complex, often backed by databases. In order to create datasets with such characteristics, we explore how existing NL2SQL (Natural Language to SQL query) datasets can be used to automatically create NL2API datasets. Specifically, this work describes a novel data generation pipeline that exploits the syntax of SQL queries to construct a functionally equivalent sequence of API calls. We apply this pipeline to one of the largest NL2SQL datasets, BIRD-SQL to create a collection of over 2500 APIs that can be served as invocable tools or REST-endpoints. We pair natural language queries from BIRD-SQL to ground-truth API sequences based on this API pool. We use this collection to study the performance of 10 public LLMs and find that all models struggle to determine the right set of tools (consisting of tasks of intent detection, sequencing with nested function calls, and slot-filling). We find that models have extremely low task completion rates (7-47 percent - depending on the dataset) which marginally improves to 50 percent when models are employed as ReACT agents that interact with the live API environment. The best task completion rates are far below what may be required for effective general-use tool-calling agents, suggesting substantial scope for improvement in current state-of-the-art tool-calling LLMs. We also conduct detailed ablation studies, such as assessing the impact of the number of tools available as well as the impact of tool and slot-name obfuscation. We compare the performance of models on the original SQL generation tasks and find that current models are sometimes able to exploit SQL better than APIs.
comment: 10+32 pages, 5 figures
☆ Gondola: Grounded Vision Language Planning for Generalizable Robotic Manipulation
Robotic manipulation faces a significant challenge in generalizing across unseen objects, environments and tasks specified by diverse language instructions. To improve generalization capabilities, recent research has incorporated large language models (LLMs) for planning and action execution. While promising, these methods often fall short in generating grounded plans in visual environments. Although efforts have been made to perform visual instructional tuning on LLMs for robotic manipulation, existing methods are typically constrained by single-view image input and struggle with precise object grounding. In this work, we introduce Gondola, a novel grounded vision-language planning model based on LLMs for generalizable robotic manipulation. Gondola takes multi-view images and history plans to produce the next action plan with interleaved texts and segmentation masks of target objects and locations. To support the training of Gondola, we construct three types of datasets using the RLBench simulator, namely robot grounded planning, multi-view referring expression and pseudo long-horizon task datasets. Gondola outperforms the state-of-the-art LLM-based method across all four generalization levels of the GemBench dataset, including novel placements, rigid objects, articulated objects and long-horizon tasks.
☆ Measuring multi-calibration
A suitable scalar metric can help measure multi-calibration, defined as follows. When the expected values of observed responses are equal to corresponding predicted probabilities, the probabilistic predictions are known as "perfectly calibrated." When the predicted probabilities are perfectly calibrated simultaneously across several subpopulations, the probabilistic predictions are known as "perfectly multi-calibrated." In practice, predicted probabilities are seldom perfectly multi-calibrated, so a statistic measuring the distance from perfect multi-calibration is informative. A recently proposed metric for calibration, based on the classical Kuiper statistic, is a natural basis for a new metric of multi-calibration and avoids well-known problems of metrics based on binning or kernel density estimation. The newly proposed metric weights the contributions of different subpopulations in proportion to their signal-to-noise ratios; data analyses' ablations demonstrate that the metric becomes noisy when omitting the signal-to-noise ratios from the metric. Numerical examples on benchmark data sets illustrate the new metric.
comment: 25 pages, 12 tables
☆ Can Time-Series Foundation Models Perform Building Energy Management Tasks?
Building energy management (BEM) tasks require processing and learning from a variety of time-series data. Existing solutions rely on bespoke task- and data-specific models to perform these tasks, limiting their broader applicability. Inspired by the transformative success of Large Language Models (LLMs), Time-Series Foundation Models (TSFMs), trained on diverse datasets, have the potential to change this. Were TSFMs to achieve a level of generalizability across tasks and contexts akin to LLMs, they could fundamentally address the scalability challenges pervasive in BEM. To understand where they stand today, we evaluate TSFMs across four dimensions: (1) generalizability in zero-shot univariate forecasting, (2) forecasting with covariates for thermal behavior modeling, (3) zero-shot representation learning for classification tasks, and (4) robustness to performance metrics and varying operational conditions. Our results reveal that TSFMs exhibit \emph{limited} generalizability, performing only marginally better than statistical models on unseen datasets and modalities for univariate forecasting. Similarly, inclusion of covariates in TSFMs does not yield performance improvements, and their performance remains inferior to conventional models that utilize covariates. While TSFMs generate effective zero-shot representations for downstream classification tasks, they may remain inferior to statistical models in forecasting when statistical models perform test-time fitting. Moreover, TSFMs forecasting performance is sensitive to evaluation metrics, and they struggle in more complex building environments compared to statistical models. These findings underscore the need for targeted advancements in TSFM design, particularly their handling of covariates and incorporating context and temporal dynamics into prediction mechanisms, to develop more adaptable and scalable solutions for BEM.
comment: 30 pages, 5 tables, 8 figures. Under review for Data-Centric Engineering journal
☆ No Universal Prompt: Unifying Reasoning through Adaptive Prompting for Temporal Table Reasoning
Temporal Table Reasoning is a critical challenge for Large Language Models (LLMs), requiring effective prompting techniques to extract relevant insights. Despite existence of multiple prompting methods, their impact on table reasoning remains largely unexplored. Furthermore, the performance of these models varies drastically across different table and context structures, making it difficult to determine an optimal approach. This work investigates multiple prompting technique across diverse table types to determine optimal approaches for different scenarios. We find that performance varies based on entity type, table structure, requirement of additional context and question complexity, with NO single method consistently outperforming others. To mitigate these challenges, we introduce SEAR, an adaptive prompting framework inspired by human reasoning that dynamically adjusts based on context characteristics and integrates a structured reasoning. Our results demonstrate that SEAR achieves superior performance across all table types compared to other baseline prompting techniques. Additionally, we explore the impact of table structure refactoring, finding that a unified representation enhances model's reasoning.
comment: 21 pages, 19 Tables, 9 Figures
☆ RETUYT-INCO at BEA 2025 Shared Task: How Far Can Lightweight Models Go in AI-powered Tutor Evaluation? ACL 2025
In this paper, we present the RETUYT-INCO participation at the BEA 2025 shared task. Our participation was characterized by the decision of using relatively small models, with fewer than 1B parameters. This self-imposed restriction tries to represent the conditions in which many research labs or institutions are in the Global South, where computational power is not easily accessible due to its prohibitive cost. Even under this restrictive self-imposed setting, our models managed to stay competitive with the rest of teams that participated in the shared task. According to the $exact\ F_1$ scores published by the organizers, the performance gaps between our models and the winners were as follows: $6.46$ in Track 1; $10.24$ in Track 2; $7.85$ in Track 3; $9.56$ in Track 4; and $13.13$ in Track 5. Considering that the minimum difference with a winner team is $6.46$ points -- and the maximum difference is $13.13$ -- according to the $exact\ F_1$ score, we find that models with a size smaller than 1B parameters are competitive for these tasks, all of which can be run on computers with a low-budget GPU or even without a GPU.
comment: This paper will be presented at the 20th BEA Workshop (Innovative Use of NLP for Building Educational Applications) at ACL 2025
☆ A Causal Lens for Learning Long-term Fair Policies
Fairness-aware learning studies the development of algorithms that avoid discriminatory decision outcomes despite biased training data. While most studies have concentrated on immediate bias in static contexts, this paper highlights the importance of investigating long-term fairness in dynamic decision-making systems while simultaneously considering instantaneous fairness requirements. In the context of reinforcement learning, we propose a general framework where long-term fairness is measured by the difference in the average expected qualification gain that individuals from different groups could obtain.Then, through a causal lens, we decompose this metric into three components that represent the direct impact, the delayed impact, as well as the spurious effect the policy has on the qualification gain. We analyze the intrinsic connection between these components and an emerging fairness notion called benefit fairness that aims to control the equity of outcomes in decision-making. Finally, we develop a simple yet effective approach for balancing various fairness notions.
comment: This is an extension to the paper which was accepted to the 13th International Conference on Learning Representations
☆ uPVC-Net: A Universal Premature Ventricular Contraction Detection Deep Learning Algorithm
Introduction: Premature Ventricular Contractions (PVCs) are common cardiac arrhythmias originating from the ventricles. Accurate detection remains challenging due to variability in electrocardiogram (ECG) waveforms caused by differences in lead placement, recording conditions, and population demographics. Methods: We developed uPVC-Net, a universal deep learning model to detect PVCs from any single-lead ECG recordings. The model is developed on four independent ECG datasets comprising a total of 8.3 million beats collected from Holter monitors and a modern wearable ECG patch. uPVC-Net employs a custom architecture and a multi-source, multi-lead training strategy. For each experiment, one dataset is held out to evaluate out-of-distribution (OOD) generalization. Results: uPVC-Net achieved an AUC between 97.8% and 99.1% on the held-out datasets. Notably, performance on wearable single-lead ECG data reached an AUC of 99.1%. Conclusion: uPVC-Net exhibits strong generalization across diverse lead configurations and populations, highlighting its potential for robust, real-world clinical deployment.
comment: 8 pages
☆ LLM-as-a-Fuzzy-Judge: Fine-Tuning Large Language Models as a Clinical Evaluation Judge with Fuzzy Logic
Clinical communication skills are critical in medical education, and practicing and assessing clinical communication skills on a scale is challenging. Although LLM-powered clinical scenario simulations have shown promise in enhancing medical students' clinical practice, providing automated and scalable clinical evaluation that follows nuanced physician judgment is difficult. This paper combines fuzzy logic and Large Language Model (LLM) and proposes LLM-as-a-Fuzzy-Judge to address the challenge of aligning the automated evaluation of medical students' clinical skills with subjective physicians' preferences. LLM-as-a-Fuzzy-Judge is an approach that LLM is fine-tuned to evaluate medical students' utterances within student-AI patient conversation scripts based on human annotations from four fuzzy sets, including Professionalism, Medical Relevance, Ethical Behavior, and Contextual Distraction. The methodology of this paper started from data collection from the LLM-powered medical education system, data annotation based on multidimensional fuzzy sets, followed by prompt engineering and the supervised fine-tuning (SFT) of the pre-trained LLMs using these human annotations. The results show that the LLM-as-a-Fuzzy-Judge achieves over 80\% accuracy, with major criteria items over 90\%, effectively leveraging fuzzy logic and LLM as a solution to deliver interpretable, human-aligned assessment. This work suggests the viability of leveraging fuzzy logic and LLM to align with human preferences, advances automated evaluation in medical education, and supports more robust assessment and judgment practices. The GitHub repository of this work is available at https://github.com/2sigmaEdTech/LLMAsAJudge
comment: 12 pages, 1 figure, 2025 IFSA World Congress NAFIPS Annual Meeting
☆ Complexity of normalized stochastic first-order methods with momentum under heavy-tailed noise
In this paper, we propose practical normalized stochastic first-order methods with Polyak momentum, multi-extrapolated momentum, and recursive momentum for solving unconstrained optimization problems. These methods employ dynamically updated algorithmic parameters and do not require explicit knowledge of problem-dependent quantities such as the Lipschitz constant or noise bound. We establish first-order oracle complexity results for finding approximate stochastic stationary points under heavy-tailed noise and weakly average smoothness conditions -- both of which are weaker than the commonly used bounded variance and mean-squared smoothness assumptions. Our complexity bounds either improve upon or match the best-known results in the literature. Numerical experiments are presented to demonstrate the practical effectiveness of the proposed methods.
☆ Multimodal Modeling of CRISPR-Cas12 Activity Using Foundation Models and Chromatin Accessibility Data ICML
Predicting guide RNA (gRNA) activity is critical for effective CRISPR-Cas12 genome editing but remains challenging due to limited data, variation across protospacer adjacent motifs (PAMs-short sequence requirements for Cas binding), and reliance on large-scale training. We investigate whether pre-trained biological foundation model originally trained on transcriptomic data can improve gRNA activity estimation even without domain-specific pre-training. Using embeddings from existing RNA foundation model as input to lightweight regressor, we show substantial gains over traditional baselines. We also integrate chromatin accessibility data to capture regulatory context, improving performance further. Our results highlight the effectiveness of pre-trained foundation models and chromatin accessibility data for gRNA activity prediction.
comment: This manuscript has been accepted by ICML workshop 2025
☆ Beyond Formal Semantics for Capabilities and Skills: Model Context Protocol in Manufacturing
Explicit modeling of capabilities and skills -- whether based on ontologies, Asset Administration Shells, or other technologies -- requires considerable manual effort and often results in representations that are not easily accessible to Large Language Models (LLMs). In this work-in-progress paper, we present an alternative approach based on the recently introduced Model Context Protocol (MCP). MCP allows systems to expose functionality through a standardized interface that is directly consumable by LLM-based agents. We conduct a prototypical evaluation on a laboratory-scale manufacturing system, where resource functions are made available via MCP. A general-purpose LLM is then tasked with planning and executing a multi-step process, including constraint handling and the invocation of resource functions via MCP. The results indicate that such an approach can enable flexible industrial automation without relying on explicit semantic models. This work lays the basis for further exploration of external tool integration in LLM-driven production systems.
☆ Brain2Vec: A Deep Learning Framework for EEG-Based Stress Detection Using CNN-LSTM-Attention
Mental stress has become a pervasive factor affecting cognitive health and overall well-being, necessitating the development of robust, non-invasive diagnostic tools. Electroencephalogram (EEG) signals provide a direct window into neural activity, yet their non-stationary and high-dimensional nature poses significant modeling challenges. Here we introduce Brain2Vec, a new deep learning tool that classifies stress states from raw EEG recordings using a hybrid architecture of convolutional, recurrent, and attention mechanisms. The model begins with a series of convolutional layers to capture localized spatial dependencies, followed by an LSTM layer to model sequential temporal patterns, and concludes with an attention mechanism to emphasize informative temporal regions. We evaluate Brain2Vec on the DEAP dataset, applying bandpass filtering, z-score normalization, and epoch segmentation as part of a comprehensive preprocessing pipeline. Compared to traditional CNN-LSTM baselines, our proposed model achieves an AUC score of 0.68 and a validation accuracy of 81.25%. These findings demonstrate Brain2Vec's potential for integration into wearable stress monitoring platforms and personalized healthcare systems.
♻ ☆ CoRT: Code-integrated Reasoning within Thinking
Large Reasoning Models (LRMs) like o1 and DeepSeek-R1 have shown remarkable progress in natural language reasoning with long chain-of-thought (CoT), yet they remain inefficient or inaccurate when handling complex mathematical operations. Addressing these limitations through computational tools (e.g., computation libraries and symbolic solvers) is promising, but it introduces a technical challenge: Code Interpreter (CI) brings external knowledge beyond the model's internal text representations, thus the direct combination is not efficient. This paper introduces CoRT, a post-training framework for teaching LRMs to leverage CI effectively and efficiently. As a first step, we address the data scarcity issue by synthesizing code-integrated reasoning data through Hint-Engineering, which strategically inserts different hints at appropriate positions to optimize LRM-CI interaction. We manually create 30 high-quality samples, upon which we post-train models ranging from 1.5B to 32B parameters, with supervised fine-tuning, rejection fine-tuning and reinforcement learning. Our experimental results demonstrate that Hint-Engineering models achieve 4\% and 8\% absolute improvements on DeepSeek-R1-Distill-Qwen-32B and DeepSeek-R1-Distill-Qwen-1.5B respectively, across five challenging mathematical reasoning datasets. Furthermore, Hint-Engineering models use about 30\% fewer tokens for the 32B model and 50\% fewer tokens for the 1.5B model compared with the natural language models. The models and code are available at https://github.com/ChengpengLi1003/CoRT.
comment: work in progress
♻ ☆ Convert Language Model into a Value-based Strategic Planner ACL 2025
Emotional support conversation (ESC) aims to alleviate the emotional distress of individuals through effective conversations. Although large language models (LLMs) have obtained remarkable progress on ESC, most of these studies might not define the diagram from the state model perspective, therefore providing a suboptimal solution for long-term satisfaction. To address such an issue, we leverage the Q-learning on LLMs, and propose a framework called straQ*. Our framework allows a plug-and-play LLM to bootstrap the planning during ESC, determine the optimal strategy based on long-term returns, and finally guide the LLM to response. Substantial experiments on ESC datasets suggest that straQ* outperforms many baselines, including direct inference, self-refine, chain of thought, finetuning, and finite state machines.
comment: 13 pages, 6 figures, Accepted by ACL 2025 Industry Track
♻ ☆ TransXSSM: A Hybrid Transformer State Space Model with Unified Rotary Position Embedding
Transformers exhibit proficiency in capturing long-range dependencies, whereas State Space Models (SSMs) facilitate linear-time sequence modeling. Notwithstanding their synergistic potential, the integration of these architectures presents a significant challenge, primarily attributable to a fundamental incongruity in their respective positional encoding mechanisms: Transformers rely on explicit Rotary Position Embeddings (RoPE), while SSMs leverage implicit positional representations via convolutions. This divergence often precipitates discontinuities and suboptimal performance. To address this impediment, we propose a unified rotary position embedding (Unified RoPE) methodology, thereby establishing a consistent positional encoding framework for both self-attention and state-space components. Using this Unified RoPE, we introduce TransXSSM, a hybrid architecture that coherently integrates the Transformer and SSM layers under this unified positional encoding scheme. At a 4K sequence length, TransXSSM exhibits training and inference speeds that are 42.3\% and 29.5\% faster, respectively, relative to standard Transformer models. It also delivers higher accuracy: under comparable settings, it surpasses a Transformer baseline by over 4\% on language modeling benchmarks.TransXSSM furthermore scales more effectively: TransXSSM-1.3B gains 7.22\% in average accuracy over its 320M version (versus about 6\% gains for equivalent Transformers or SSMs). Our results show that unified positional encoding resolves positional incompatibility in hybrid models, enabling efficient, high-performance long-context modeling.
♻ ☆ Context Is Not Comprehension
The dominant way of judging Large Language Models (LLMs) has been to ask how well they can recall explicit facts from very long inputs. While today's best models achieve near perfect recall, this masks a harder skill: performing multi-step reasoning and tracking intermediate state that never appears verbatim. We introduce Verbose ListOps (VLO), a benchmark that embeds deterministic ListOps computations inside narrative camouflage and, crucially, allows step-level evaluation of every intermediate result. Experiments show that models which solve raw ListOps with approximately 100% accuracy collapse on VLO after only 10,000 tokens. By exposing where a model's reasoning chain first diverges, VLO moves assessment beyond sheer context length and toward genuine comprehension. VLO's generation pipeline is task-agnostic: it can weave any deterministically verifiable reasoning schema -- arithmetic, symbolic, abductive, inductive or defeasible -- into narrative form. This makes VLO a reusable test-bed for the next wave of reasoning-centric model designs, not merely those with step-explicit scaffolds.
comment: 24 pages, 2 figures, 4 tables; under review
♻ ☆ Multi-Modal Multi-Task Federated Foundation Models for Next-Generation Extended Reality Systems: Towards Privacy-Preserving Distributed Intelligence in AR/VR/MR
Extended reality (XR) systems, which consist of virtual reality (VR), augmented reality (AR), and mixed reality (XR), offer a transformative interface for immersive, multi-modal, and embodied human-computer interaction. In this paper, we envision that multi-modal multi-task (M3T) federated foundation models (FedFMs) can offer transformative capabilities for XR systems through integrating the representational strength of M3T foundation models (FMs) with the privacy-preserving model training principles of federated learning (FL). We present a modular architecture for FedFMs, which entails different coordination paradigms for model training and aggregations. Central to our vision is the codification of XR challenges that affect the implementation of FedFMs under the SHIFT dimensions: (1) Sensor and modality diversity, (2) Hardware heterogeneity and system-level constraints, (3) Interactivity and embodied personalization, (4) Functional/task variability, and (5) Temporality and environmental variability. We illustrate the manifestation of these dimensions across a set of emerging and anticipated applications of XR systems. Finally, we propose evaluation metrics, dataset requirements, and design tradeoffs necessary for the development of resource-aware FedFMs in XR. This perspective aims to chart the technical and conceptual foundations for context-aware privacy-preserving intelligence in the next generation of XR systems.
comment: 16 pages, 4 Figures, 8 Tables
♻ ☆ Policy-Based Trajectory Clustering in Offline Reinforcement Learning
We introduce a novel task of clustering trajectories from offline reinforcement learning (RL) datasets, where each cluster center represents the policy that generated its trajectories. By leveraging the connection between the KL-divergence of offline trajectory distributions and a mixture of policy-induced distributions, we formulate a natural clustering objective. To solve this, we propose Policy-Guided K-means (PG-Kmeans) and Centroid-Attracted Autoencoder (CAAE). PG-Kmeans iteratively trains behavior cloning (BC) policies and assigns trajectories based on policy generation probabilities, while CAAE resembles the VQ-VAE framework by guiding the latent representations of trajectories toward the vicinity of specific codebook entries to achieve clustering. Theoretically, we prove the finite-step convergence of PG-Kmeans and identify a key challenge in offline trajectory clustering: the inherent ambiguity of optimal solutions due to policy-induced conflicts, which can result in multiple equally valid but structurally distinct clusterings. Experimentally, we validate our methods on the widely used D4RL dataset and custom GridWorld environments. Our results show that both PG-Kmeans and CAAE effectively partition trajectories into meaningful clusters. They offer a promising framework for policy-based trajectory clustering, with broad applications in offline RL and beyond.
♻ ☆ Understanding Human-AI Trust in Education
As AI chatbots become increasingly integrated in education, students are turning to these systems for guidance, feedback, and information. However, the anthropomorphic characteristics of these chatbots create ambiguity regarding whether students develop trust toward them as they would a human peer or instructor, based in interpersonal trust, or as they would any other piece of technology, based in technology trust. This ambiguity presents theoretical challenges, as interpersonal trust models may inappropriately ascribe human intentionality and morality to AI, while technology trust models were developed for non-social technologies, leaving their applicability to anthropomorphic systems unclear. To address this gap, we investigate how human-like and system-like trusting beliefs comparatively influence students' perceived enjoyment, trusting intention, behavioral intention to use, and perceived usefulness of an AI chatbot - factors associated with students' engagement and learning outcomes. Through partial least squares structural equation modeling, we found that human-like and system-like trust significantly influenced student perceptions, with varied effects. Human-like trust more strongly predicted trusting intention, while system-like trust better predicted behavioral intention and perceived usefulness. Both had similar effects on perceived enjoyment. Given the partial explanatory power of each type of trust, we propose that students develop a distinct form of trust with AI chatbots (human-AI trust) that differs from human-human and human-technology models of trust. Our findings highlight the need for new theoretical frameworks specific to human-AI trust and offer practical insights for fostering appropriately calibrated trust, which is critical for the effective adoption and pedagogical impact of AI in education.
♻ ☆ SoK: Watermarking for AI-Generated Content
As the outputs of generative AI (GenAI) techniques improve in quality, it becomes increasingly challenging to distinguish them from human-created content. Watermarking schemes are a promising approach to address the problem of distinguishing between AI and human-generated content. These schemes embed hidden signals within AI-generated content to enable reliable detection. While watermarking is not a silver bullet for addressing all risks associated with GenAI, it can play a crucial role in enhancing AI safety and trustworthiness by combating misinformation and deception. This paper presents a comprehensive overview of watermarking techniques for GenAI, beginning with the need for watermarking from historical and regulatory perspectives. We formalize the definitions and desired properties of watermarking schemes and examine the key objectives and threat models for existing approaches. Practical evaluation strategies are also explored, providing insights into the development of robust watermarking techniques capable of resisting various attacks. Additionally, we review recent representative works, highlight open challenges, and discuss potential directions for this emerging field. By offering a thorough understanding of watermarking in GenAI, this work aims to guide researchers in advancing watermarking methods and applications, and support policymakers in addressing the broader implications of GenAI.
comment: IEEE S&P 2025
♻ ☆ AssistanceZero: Scalably Solving Assistance Games ICML 2025
Assistance games are a promising alternative to reinforcement learning from human feedback (RLHF) for training AI assistants. Assistance games resolve key drawbacks of RLHF, such as incentives for deceptive behavior, by explicitly modeling the interaction between assistant and user as a two-player game where the assistant cannot observe their shared goal. Despite their potential, assistance games have only been explored in simple settings. Scaling them to more complex environments is difficult because it requires both solving intractable decision-making problems under uncertainty and accurately modeling human users' behavior. We present the first scalable approach to solving assistance games and apply it to a new, challenging Minecraft-based assistance game with over $10^{400}$ possible goals. Our approach, AssistanceZero, extends AlphaZero with a neural network that predicts human actions and rewards, enabling it to plan under uncertainty. We show that AssistanceZero outperforms model-free RL algorithms and imitation learning in the Minecraft-based assistance game. In a human study, our AssistanceZero-trained assistant significantly reduces the number of actions participants take to complete building tasks in Minecraft. Our results suggest that assistance games are a tractable framework for training effective AI assistants in complex environments. Our code and models are available at https://github.com/cassidylaidlaw/minecraft-building-assistance-game.
comment: Presented at ICML 2025
♻ ☆ Visually Descriptive Language Model for Vector Graphics Reasoning
Despite significant advancements, large multimodal models (LMMs) still struggle to bridge the gap between low-level visual perception -- focusing on shapes, sizes, and layouts -- and high-level language reasoning, such as semantics and logic. This limitation is evident in tasks that require precise visual perception, like comparing geometric properties or solving visual reasoning problems. To study this failure mode, we focus on vector graphics -- images composed of 2D objects and shapes, prevalent in LMM-based tasks in web, design, and OS environments. We identify two key research questions: how can we enable precise visual perception, and how can we facilitate high-level reasoning based on such low-level perceptions? To capture fine visual details, we use Scalable Vector Graphics (SVG) for accurate encoding of visual scenes. However, SVGs are not readily interpretable by LMMs in a zero-shot manner. To tackle this, we propose the Visually Descriptive Language Model (VDLM), which introduces a Primal Visual Description (PVD) as an intermediate textual representation. PVD translates SVGs into a text-based abstraction consisting of primitive attributes (e.g., shape, position, measurement) and their corresponding values. PVD can be learned using task-agnostic synthesized data and represents visual primitives that are universal across vector graphics. This abstraction is more structured, allowing for direct interpretation by foundation models for zero-shot generalization. Without human-annotated data, empirical results show that VDLM significantly improves state-of-the-art LMMs like GPT-4o on various multimodal perception and reasoning tasks. Extensive analyses of VDLM show improved interpretability due to its disentangled perception and reasoning. We also demonstrate a positive correlation between PVD quality and task performance. Project page: https://mikewangwzhl.github.io/VDLM/
comment: Project page: https://mikewangwzhl.github.io/VDLM/
♻ ☆ LLM-Cure: LLM-based Competitor User Review Analysis for Feature Enhancement
The exponential growth of the mobile app market underscores the importance of constant innovation and rapid response to user demands. As user satisfaction is paramount to the success of a mobile application (app), developers typically rely on user reviews, which represent user feedback that includes ratings and comments to identify areas for improvement. However, the sheer volume of user reviews poses challenges in manual analysis, necessitating automated approaches. Existing automated approaches either analyze only the target apps reviews, neglecting the comparison of similar features to competitors or fail to provide suggestions for feature enhancement. To address these gaps, we propose a Large Language Model (LLM)-based Competitive User Review Analysis for Feature Enhancement) (LLM-Cure), an approach powered by LLMs to automatically generate suggestion s for mobile app feature improvements. More specifically, LLM-Cure identifies and categorizes features within reviews by applying LLMs. When provided with a complaint in a user review, LLM-Cure curates highly rated (4 and 5 stars) reviews in competing apps related to the complaint and proposes potential improvements tailored to the target application. We evaluate LLM-Cure on 1,056,739 reviews of 70 popular Android apps. Our evaluation demonstrates that LLM-Cure significantly outperforms the state-of-the-art approaches in assigning features to reviews by up to 13% in F1-score, up to 16% in recall and up to 11% in precision. Additionally, LLM-Cure demonstrates its capability to provide suggestions for resolving user complaints. We verify the suggestions using the release notes that reflect the changes of features in the target mobile app. LLM-Cure achieves a promising average of 73% of the implementation of the provided suggestions.
comment: 25 pages
♻ ☆ Object-Centric Latent Action Learning ICLR 2025
Leveraging vast amounts of unlabeled internet video data for embodied AI is currently bottlenecked by the lack of action labels and the presence of action-correlated visual distractors. Although recent latent action policy optimization (LAPO) has shown promise in inferring proxy-action labels from visual observations, its performance degrades significantly when distractors are present. To address this limitation, we propose a novel object-centric latent action learning framework that centers on objects rather than pixels. We leverage self-supervised object-centric pretraining to disentangle action-related and distracting dynamics. This allows LAPO to focus on task-relevant interactions, resulting in more robust proxy-action labels, enabling better imitation learning and efficient adaptation of the agent with just a few action-labeled trajectories. We evaluated our method in eight visually complex tasks across the Distracting Control Suite (DCS) and Distracting MetaWorld (DMW). Our results show that object-centric pretraining mitigates the negative effects of distractors by 50%, as measured by downstream task performance: average return (DCS) and success rate (DMW).
comment: Accepted by Workshop on World Models at ICLR 2025
♻ ☆ PLAY2PROMPT: Zero-shot Tool Instruction Optimization for LLM Agents via Tool Play ACL 2025
Large language models (LLMs) are increasingly integrated with specialized external tools, yet many tasks demand zero-shot tool usage with minimal or noisy documentation. Existing solutions rely on manual rewriting or labeled data for validation, making them inapplicable in true zero-shot settings. To address these challenges, we propose PLAY2PROMPT, an automated framework that systematically "plays" with each tool to explore its input-output behaviors. Through this iterative trial-and-error process, PLAY2PROMPT refines tool documentation and generates usage examples without any labeled data. These examples not only guide LLM inference but also serve as validation to further enhance tool utilization. Extensive experiments on real-world tasks demonstrate that PLAY2PROMPT significantly improves zero-shot tool performance across both open and closed models, offering a scalable and effective solution for domain-specific tool integration.
comment: ACL 2025 Long Paper (Findings)
♻ ☆ Training-Free Safe Denoisers for Safe Use of Diffusion Models
There is growing concern over the safety of powerful diffusion models (DMs), as they are often misused to produce inappropriate, not-safe-for-work (NSFW) content or generate copyrighted material or data of individuals who wish to be forgotten. Many existing methods tackle these issues by heavily relying on text-based negative prompts or extensively retraining DMs to eliminate certain features or samples. In this paper, we take a radically different approach, directly modifying the sampling trajectory by leveraging a negation set (e.g., unsafe images, copyrighted data, or datapoints needed to be excluded) to avoid specific regions of data distribution, without needing to retrain or fine-tune DMs. We formally derive the relationship between the expected denoised samples that are safe and those that are not safe, leading to our $\textit{safe}$ denoiser which ensures its final samples are away from the area to be negated. Inspired by the derivation, we develop a practical algorithm that successfully produces high-quality samples while avoiding negation areas of the data distribution in text-conditional, class-conditional, and unconditional image generation scenarios. These results hint at the great potential of our training-free safe denoiser for using DMs more safely.
comment: Preprint
♻ ☆ Q-Ponder: A Unified Training Pipeline for Reasoning-based Visual Quality Assessment
Recent studies demonstrate that multimodal large language models (MLLMs) can proficiently evaluate visual quality through interpretable assessments. However, existing approaches typically treat quality scoring and reasoning descriptions as separate tasks with disjoint optimization objectives, leading to a trade-off: models adept at quality reasoning descriptions struggle with precise score regression, while score-focused models lack interpretability. This limitation hinders the full potential of MLLMs in visual quality assessment, where accuracy and interpretability should be mutually reinforcing. To address this, we propose a unified two-stage training framework comprising a cold-start stage and a reinforcement learning-based fine-tuning stage. Specifically, in the first stage, we distill high-quality data from a teacher model through expert-designed prompts, initializing reasoning capabilities via cross-entropy loss supervision. In the second stage, we introduce a novel reward with Group Relative Policy Optimization (GRPO) to jointly optimize scoring accuracy and reasoning consistency. We designate the models derived from these two stages as Q-Ponder-CI and Q-Ponder. Extensive experiments show that Q-Ponder achieves state-of-the-art (SOTA) performance on quality score regression benchmarks, delivering up to 6.5% higher SRCC on cross-domain datasets. Furthermore, Q-Ponder significantly outperforms description-based SOTA models, including its teacher model Qwen-2.5-VL-72B, particularly in description accuracy and reasonableness, demonstrating the generalization potential over diverse tasks.
♻ ☆ Content ARCs: Decentralized Content Rights in the Age of Generative AI
The rise of Generative AI (GenAI) has sparked significant debate over balancing the interests of creative rightsholders and AI developers. As GenAI models are trained on vast datasets that often include copyrighted material, questions around fair compensation and proper attribution have become increasingly urgent. To address these challenges, this paper proposes a framework called Content ARCs (Authenticity, Rights, Compensation). By combining open standards for provenance and dynamic licensing with data attribution, and decentralized technologies, Content ARCs create a mechanism for managing rights and compensating creators for using their work in AI training. We characterize several nascent works in the AI data licensing space within Content ARCs and identify where challenges remain to fully implement the end-to-end framework.
comment: Accepted to IEEE International Conference on AI and the Digital Economy (CADE 2025)
♻ ☆ Latent Action Learning Requires Supervision in the Presence of Distractors ICML 2025
Recently, latent action learning, pioneered by Latent Action Policies (LAPO), have shown remarkable pre-training efficiency on observation-only data, offering potential for leveraging vast amounts of video available on the web for embodied AI. However, prior work has focused on distractor-free data, where changes between observations are primarily explained by ground-truth actions. Unfortunately, real-world videos contain action-correlated distractors that may hinder latent action learning. Using Distracting Control Suite (DCS) we empirically investigate the effect of distractors on latent action learning and demonstrate that LAPO struggle in such scenario. We propose LAOM, a simple LAPO modification that improves the quality of latent actions by 8x, as measured by linear probing. Importantly, we show that providing supervision with ground-truth actions, as few as 2.5% of the full dataset, during latent action learning improves downstream performance by 4.2x on average. Our findings suggest that integrating supervision during Latent Action Models (LAM) training is critical in the presence of distractors, challenging the conventional pipeline of first learning LAM and only then decoding from latent to ground-truth actions.
comment: ICML 2025, Poster, Project Page: https://laom.dunnolab.ai/, Source code: https://github.com/dunnolab/laom
♻ ☆ Multi-group Uncertainty Quantification for Long-form Text Generation UAI 2025
While past works have shown how uncertainty quantification can be applied to large language model (LLM) outputs, the question of whether resulting uncertainty guarantees still hold within sub-groupings of data remains open. In our work, given some long-form text generated by an LLM, we study uncertainty at both the level of individual claims contained within the output (via calibration) and across the entire output itself (via conformal prediction). Using biography generation as a testbed for this study, we derive a set of (demographic) attributes (e.g., whether some text describes a man or woman) for each generation to form such "subgroups" of data. We find that although canonical methods for both types of uncertainty quantification perform well when measuring across the entire dataset, such guarantees break down when examining particular subgroups. Having established this issue, we invoke group-conditional methods for uncertainty quantification -- multicalibration and multivalid conformal prediction -- and find that across a variety of approaches, additional subgroup information consistently improves calibration and conformal prediction within subgroups (while crucially retaining guarantees across the entire dataset). As the problems of calibration, conformal prediction, and their multi-group counterparts have not been extensively explored in the context of long-form text generation, we consider these results to form a benchmark for this setting.
comment: Updated to UAI 2025 camera ready version
♻ ☆ Sample Complexity and Representation Ability of Test-time Scaling Paradigms
Test-time scaling paradigms have significantly advanced the capabilities of large language models (LLMs) on complex tasks. Despite their empirical success, theoretical understanding of the sample efficiency of various test-time strategies -- such as self-consistency, best-of-$n$, and self-correction -- remains limited. In this work, we first establish a separation result between two repeated sampling strategies: self-consistency requires $\Theta(1/\Delta^2)$ samples to produce the correct answer, while best-of-$n$ only needs $\Theta(1/\Delta)$, where $\Delta < 1$ denotes the probability gap between the correct and second most likely answers. Next, we present an expressiveness result for the self-correction approach with verifier feedback: it enables Transformers to simulate online learning over a pool of experts at test time. Therefore, a single Transformer architecture can provably solve multiple tasks without prior knowledge of the specific task associated with a user query, extending the representation theory of Transformers from single-task to multi-task settings. Finally, we empirically validate our theoretical results, demonstrating the practical effectiveness of self-correction methods.
♻ ☆ On the Geometry of Receiver Operating Characteristic and Precision-Recall Curves
We study the geometry of Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves in binary classification problems. The key finding is that many of the most commonly used binary classification metrics are merely functions of the composition function $G := F_p \circ F_n^{-1}$, where $F_p(\cdot)$ and $F_n(\cdot)$ are the class-conditional cumulative distribution functions of the classifier scores in the positive and negative classes, respectively. This geometric perspective facilitates the selection of operating points, understanding the effect of decision thresholds, and comparison between classifiers. It also helps explain how the shapes and geometry of ROC/PR curves reflect classifier behavior, providing objective tools for building classifiers optimized for specific applications with context-specific constraints. We further explore the conditions for classifier dominance, present analytical and numerical examples demonstrating the effects of class separability and variance on ROC and PR geometries, and derive a link between the positive-to-negative class leakage function $G(\cdot)$ and the Kullback--Leibler divergence. The framework highlights practical considerations, such as model calibration, cost-sensitive optimization, and operating point selection under real-world capacity constraints, enabling more informed approaches to classifier deployment and decision-making.
♻ ☆ A Vision for Auto Research with LLM Agents
This paper introduces Agent-Based Auto Research, a structured multi-agent framework designed to automate, coordinate, and optimize the full lifecycle of scientific research. Leveraging the capabilities of large language models (LLMs) and modular agent collaboration, the system spans all major research phases, including literature review, ideation, methodology planning, experimentation, paper writing, peer review response, and dissemination. By addressing issues such as fragmented workflows, uneven methodological expertise, and cognitive overload, the framework offers a systematic and scalable approach to scientific inquiry. Preliminary explorations demonstrate the feasibility and potential of Auto Research as a promising paradigm for self-improving, AI-driven research processes.
♻ ☆ Near-Optimal Algorithms for Constrained k-Center Clustering with Instance-level Background Knowledge
Center-based clustering has attracted significant research interest from both theory and practice. In many practical applications, input data often contain background knowledge that can be used to improve clustering results. In this work, we build on widely adopted $k$-center clustering and model its input background knowledge as must-link (ML) and cannot-link (CL) constraint sets. However, most clustering problems including $k$-center are inherently $\mathcal{NP}$-hard, while the more complex constrained variants are known to suffer severer approximation and computation barriers that significantly limit their applicability. By employing a suite of techniques including reverse dominating sets, linear programming (LP) integral polyhedron, and LP duality, we arrive at the first efficient approximation algorithm for constrained $k$-center with the best possible ratio of 2. We also construct competitive baseline algorithms and empirically evaluate our approximation algorithm against them on a variety of real datasets. The results validate our theoretical findings and demonstrate the great advantages of our algorithm in terms of clustering cost, clustering quality, and running time.
♻ ☆ Mimicking Human Intuition: Cognitive Belief-Driven Reinforcement Learning ICML 2025
Traditional reinforcement learning (RL) methods mainly rely on trial-and-error exploration, often lacking mechanisms to guide agents toward more informative decision-making and struggling to leverage past experiences, resulting in low sample efficiency. To overcome this issue, we propose an innovative framework inspired by cognitive principles: Cognitive Belief-Driven Reinforcement Learning (CBD-RL). By incorporating cognitive heuristics, CBD-RL transforms conventional trial-and-error learning into a more structured and guided learning paradigm, simulating the human reasoning process. This framework's core is a belief system that optimizes action probabilities by integrating feedback with prior experience, thus enhancing decision making under uncertainty. It also organizes state-action pairs into meaningful categories, promoting generalization and improving sample efficiency. The concrete implementations of this framework, CBDQ, CBDPPO, and CBDSAC, demonstrate superior performance in discrete and continuous action spaces in diverse environments such as Atari and MuJoCo. By bridging cognitive science and reinforcement learning, this research opens a new avenue for developing RL systems that are more interpretable, efficient, and cognitively inspired.
comment: Accepted by ICML 2025 Workshop on Models of Human Feedback for AI Alignment
♻ ☆ QuantMCP: Grounding Large Language Models in Verifiable Financial Reality
Large Language Models (LLMs) hold immense promise for revolutionizing financial analysis and decision-making, yet their direct application is often hampered by issues of data hallucination and lack of access to real-time, verifiable financial information. This paper introduces QuantMCP, a novel framework designed to rigorously ground LLMs in financial reality. By leveraging the Model Context Protocol (MCP) for standardized and secure tool invocation, QuantMCP enables LLMs to accurately interface with a diverse array of Python-accessible financial data APIs (e.g., Wind, yfinance). Users can interact via natural language to precisely retrieve up-to-date financial data, thereby overcoming LLM's inherent limitations in factual data recall. More critically, once furnished with this verified, structured data, the LLM's analytical capabilities are unlocked, empowering it to perform sophisticated data interpretation, generate insights, and ultimately support more informed financial decision-making processes. QuantMCP provides a robust, extensible, and secure bridge between conversational AI and the complex world of financial data, aiming to enhance both the reliability and the analytical depth of LLM applications in finance.
♻ ☆ Incentivizing Quality Text Generation via Statistical Contracts NeurIPS 2024
While the success of large language models (LLMs) increases demand for machine-generated text, current pay-per-token pricing schemes create a misalignment of incentives known in economics as moral hazard: Text-generating agents have strong incentive to cut costs by preferring a cheaper model over the cutting-edge one, and this can be done "behind the scenes" since the agent performs inference internally. In this work, we approach this issue from an economic perspective, by proposing a pay-for-performance, contract-based framework for incentivizing quality. We study a principal-agent game where the agent generates text using costly inference, and the contract determines the principal's payment for the text according to an automated quality evaluation. Since standard contract theory is inapplicable when internal inference costs are unknown, we introduce cost-robust contracts. As our main theoretical contribution, we characterize optimal cost-robust contracts through a direct correspondence to optimal composite hypothesis tests from statistics, generalizing a result of Saig et al. (NeurIPS'23). We evaluate our framework empirically by deriving contracts for a range of objectives and LLM evaluation benchmarks, and find that cost-robust contracts sacrifice only a marginal increase in objective value compared to their cost-aware counterparts.
comment: NeurIPS 2024
♻ ☆ Position: Theory of Mind Benchmarks are Broken for Large Language Models ICML 2025
Our paper argues that the majority of theory of mind benchmarks are broken because of their inability to directly test how large language models (LLMs) adapt to new partners. This problem stems from the fact that theory of mind benchmarks for LLMs are overwhelmingly inspired by the methods used to test theory of mind in humans and fall victim to a fallacy of attributing human-like qualities to AI agents. We expect that humans will engage in a consistent reasoning process across various questions about a situation, but this is known to not be the case for current LLMs. Most theory of mind benchmarks only measure what we call literal theory of mind: the ability to predict the behavior of others. However, this type of metric is only informative when agents exhibit self-consistent reasoning. Thus, we introduce the concept of functional theory of mind: the ability to adapt to agents in-context following a rational response to their behavior. We find that many open source LLMs are capable of displaying strong literal theory of mind capabilities, but seem to struggle with functional theory of mind -- even with exceedingly simple partner policies. Simply put, strong literal theory of mind performance does not necessarily imply strong functional theory of mind performance or vice versa. Achieving functional theory of mind, particularly over long interaction horizons with a partner, is a significant challenge deserving a prominent role in any meaningful LLM theory of mind evaluation.
comment: ICML 2025
♻ ☆ Great Models Think Alike and this Undermines AI Oversight
As Language Model (LM) capabilities advance, evaluating and supervising them at scale is getting harder for humans. There is hope that other language models can automate both these tasks, which we refer to as ''AI Oversight''. We study how model similarity affects both aspects of AI oversight by proposing Chance Adjusted Probabilistic Agreement (CAPA): a metric for LM similarity based on overlap in model mistakes. Using CAPA, we first show that LLM-as-a-judge scores favor models similar to the judge, generalizing recent self-preference results. Then, we study training on LM annotations, and find complementary knowledge between the weak supervisor and strong student model plays a crucial role in gains from ''weak-to-strong generalization''. As model capabilities increase, it becomes harder to find their mistakes, and we might defer more to AI oversight. However, we observe a concerning trend -- model mistakes are becoming more similar with increasing capabilities, pointing to risks from correlated failures. Our work underscores the importance of reporting and correcting for model similarity, especially in the emerging paradigm of AI oversight.
comment: 60 pages, 20 figures
♻ ☆ The Packing Chromatic Number of the Infinite Square Grid is 15
A packing $k$-coloring is a natural variation on the standard notion of graph $k$-coloring, where vertices are assigned numbers from $\{1, \ldots, k\}$, and any two vertices assigned a common color $c \in \{1, \ldots, k\}$ need to be at a distance greater than $c$ (as opposed to $1$, in standard graph colorings). Despite a sequence of incremental work, determining the packing chromatic number of the infinite square grid has remained an open problem since its introduction in 2002. We culminate the search by proving this number to be 15. We achieve this result by improving the best-known method for this problem by roughly two orders of magnitude. The most important technique to boost performance is a novel and surprisingly effective propositional encoding. Additionally, we developed a new symmetry-breaking method. Since both new techniques are more complex than existing techniques for this problem, a verified approach is required to trust them. We include both techniques in a proof of unsatisfiability, reducing the trusted core to the correctness of the direct encoding.
comment: Fixed typos, and a small error in Example 5 pointed out by Zicheng Han
♻ ☆ Incentivizing Reasoning for Advanced Instruction-Following of Large Language Models
Existing large language models (LLMs) face challenges of following complex instructions, especially when multiple constraints are present and organized in paralleling, chaining, and branching structures. One intuitive solution, namely chain-of-thought (CoT), is expected to universally improve capabilities of LLMs. However, we find that the vanilla CoT exerts a negative impact on performance due to its superficial reasoning pattern of simply paraphrasing the instructions. It fails to peel back the compositions of constraints for identifying their relationship across hierarchies of types and dimensions. To this end, we propose a systematic method to boost LLMs in dealing with complex instructions via incentivizing reasoning for test-time compute scaling. First, we stem from the decomposition of complex instructions under existing taxonomies and propose a reproducible data acquisition method. Second, we exploit reinforcement learning (RL) with verifiable rule-centric reward signals to cultivate reasoning specifically for instruction following. We address the shallow, non-essential nature of reasoning under complex instructions via sample-wise contrast for superior CoT enforcement. We also exploit behavior cloning of experts to facilitate steady distribution shift from fast-thinking LLMs to skillful reasoners. Extensive evaluations on seven comprehensive benchmarks confirm the validity of the proposed method, where a 1.5B LLM achieves 11.74% gains with performance comparable to a 8B LLM. Codes and data are available at https://github.com/yuleiqin/RAIF.
comment: 13 pages of main body, 3 tables, 5 figures, 45 pages of appendix
♻ ☆ Croppable Knowledge Graph Embedding ACL 2025
Knowledge Graph Embedding (KGE) is a common approach for Knowledge Graphs (KGs) in AI tasks. Embedding dimensions depend on application scenarios. Requiring a new dimension means training a new KGE model from scratch, increasing cost and limiting efficiency and flexibility. In this work, we propose a novel KGE training framework MED. It allows one training to obtain a croppable KGE model for multiple scenarios with different dimensional needs. Sub-models of required dimensions can be directly cropped and used without extra training. In MED, we propose a mutual learning mechanism to improve the low-dimensional sub-models and make high-dimensional sub-models retain the low-dimensional sub-models' capacity, an evolutionary improvement mechanism to promote the high-dimensional sub-models to master the triple that the low-dimensional sub-models can not, and a dynamic loss weight to adaptively balance the multiple losses. Experiments on 4 KGE models across 4 standard KG completion datasets, 3 real-world scenarios using a large-scale KG, and extending MED to the BERT language model demonstrate its effectiveness, high efficiency, and flexible extensibility.
comment: Accepted to ACL 2025 Main Conference
♻ ☆ Implicit Language Models are RNNs: Balancing Parallelization and Expressivity
State-space models (SSMs) and transformers dominate the language modeling landscape. However, they are constrained to a lower computational complexity than classical recurrent neural networks (RNNs), limiting their expressivity. In contrast, RNNs lack parallelization during training, raising fundamental questions about the trade off between parallelization and expressivity. We propose implicit SSMs, which iterate a transformation until convergence to a fixed point. Theoretically, we show that implicit SSMs implement the non-linear state-transitions of RNNs. Empirically, we find that only approximate fixed-point convergence suffices, enabling the design of a scalable training curriculum that largely retains parallelization, with full convergence required only for a small subset of tokens. Our approach demonstrates superior state-tracking capabilities on regular languages, surpassing transformers and SSMs. We further scale implicit SSMs to natural language reasoning tasks and pretraining of large-scale language models up to 1.3B parameters on 207B tokens representing, to our knowledge, the largest implicit model trained to date. Notably, our implicit models outperform their explicit counterparts on standard benchmarks. Our code is publicly available at http://github.com/microsoft/implicit_languagemodels .
comment: 25 pages, 12 figures, 7 tables
♻ ☆ SR-Reward: Taking The Path More Traveled
In this paper, we propose a novel method for learning reward functions directly from offline demonstrations. Unlike traditional inverse reinforcement learning (IRL), our approach decouples the reward function from the learner's policy, eliminating the adversarial interaction typically required between the two. This results in a more stable and efficient training process. Our reward function, called \textit{SR-Reward}, leverages successor representation (SR) to encode a state based on expected future states' visitation under the demonstration policy and transition dynamics. By utilizing the Bellman equation, SR-Reward can be learned concurrently with most reinforcement learning (RL) algorithms without altering the existing training pipeline. We also introduce a negative sampling strategy to mitigate overestimation errors by reducing rewards for out-of-distribution data, thereby enhancing robustness. This strategy inherently introduces a conservative bias into RL algorithms that employ the learned reward. We evaluate our method on the D4RL benchmark, achieving competitive results compared to offline RL algorithms with access to true rewards and imitation learning (IL) techniques like behavioral cloning. Moreover, our ablation studies on data size and quality reveal the advantages and limitations of SR-Reward as a proxy for true rewards.
♻ ☆ Beamforming and Resource Allocation for Delay Optimization in RIS-Assisted OFDM Systems
This paper investigates a joint phase design and resource allocation problem in downlink reconfigurable intelligent surface (RIS)-assisted orthogonal frequency division multiplexing (OFDM) systems to optimize average delay, where data packets for each user arrive at the base station stochastically. The sequential optimization problem is inherently a Markov decision process (MDP), making it fall within the scope of reinforcement learning. To effectively handle the mixed action space and reduce the state space dimensionality, a hybrid deep reinforcement learning (DRL) approach is proposed. Specifically, proximal policy optimization (PPO)-$\Theta$ is employed to optimize RIS phase shift design, while PPO-N is responsible for subcarrier allocation decisions. To further mitigate the curse of dimensionality associated with subcarrier allocation, a multi-agent strategy is introduced to optimize subcarrier allocation indicater more efficiently. Moreover, to achieve more adaptive resource allocation and accurately capture network dynamics, key factors closely related to average delay, including the number of backlogged packets in buffers and the current packet arrivals, are incorporated into the state space. Furthermore, a transfer learning framework is introduced to enhance training efficiency and accelerate convergence. Simulation results demonstrate that the proposed algorithm significantly reduces average delay, enhances resource allocation efficiency, and achieves superior system robustness and fairness compared to baseline methods.
♻ ☆ Deploying Open-Source Large Language Models: A performance Analysis
Since the release of ChatGPT in November 2022, large language models (LLMs) have seen considerable success, including in the open-source community, with many open-weight models available. However, the requirements to deploy such a service are often unknown and difficult to evaluate in advance. To facilitate this process, we conducted numerous tests at the Centre Inria de l'Universit\'e de Bordeaux. In this article, we propose a comparison of the performance of several models of different sizes (mainly Mistral and LLaMa) depending on the available GPUs, using vLLM, a Python library designed to optimize the inference of these models. Our results provide valuable information for private and public groups wishing to deploy LLMs, allowing them to evaluate the performance of different models based on their available hardware. This study thus contributes to facilitating the adoption and use of these large language models in various application domains.
♻ ☆ TransMLA: Multi-Head Latent Attention Is All You Need
In this paper, we present TransMLA, a framework that seamlessly converts any GQA-based pre-trained model into an MLA-based model. Our approach enables direct compatibility with DeepSeek's codebase, allowing these models to fully leverage DeepSeek-specific optimizations such as vLLM and SGlang. By compressing 93% of the KV cache in LLaMA-2-7B, TransMLA achieves a 10.6x inference speedup at an 8K context length while preserving meaningful output quality. Additionally, the model requires only 6 billion tokens for fine-tuning to regain performance on par with the original across multiple benchmarks. TransMLA offers a practical solution for migrating GQA-based models to the MLA structure. When combined with DeepSeek's advanced features, such as FP8 quantization and Multi-Token Prediction, even greater inference acceleration can be realized.
comment: https://github.com/fxmeng/TransMLA
♻ ☆ ConfPO: Exploiting Policy Model Confidence for Critical Token Selection in Preference Optimization ICML 2025
We introduce ConfPO, a method for preference learning in Large Language Models (LLMs) that identifies and optimizes preference-critical tokens based solely on the training policy's confidence, without requiring any auxiliary models or compute. Unlike prior Direct Alignment Algorithms (DAAs) such as Direct Preference Optimization (DPO), which uniformly adjust all token probabilities regardless of their relevance to preference, ConfPO focuses optimization on the most impactful tokens. This targeted approach improves alignment quality while mitigating overoptimization (i.e., reward hacking) by using the KL divergence budget more efficiently. In contrast to recent token-level methods that rely on credit-assignment models or AI annotators, raising concerns about scalability and reliability, ConfPO is simple, lightweight, and model-free. Experimental results on challenging alignment benchmarks, including AlpacaEval 2 and Arena-Hard, demonstrate that ConfPO consistently outperforms uniform DAAs across various LLMs, delivering better alignment with zero additional computational overhead.
comment: ICML 2025
♻ ☆ Generative Uncertainty in Diffusion Models
Diffusion models have recently driven significant breakthroughs in generative modeling. While state-of-the-art models produce high-quality samples on average, individual samples can still be low quality. Detecting such samples without human inspection remains a challenging task. To address this, we propose a Bayesian framework for estimating generative uncertainty of synthetic samples. We outline how to make Bayesian inference practical for large, modern generative models and introduce a new semantic likelihood (evaluated in the latent space of a feature extractor) to address the challenges posed by high-dimensional sample spaces. Through our experiments, we demonstrate that the proposed generative uncertainty effectively identifies poor-quality samples and significantly outperforms existing uncertainty-based methods. Notably, our Bayesian framework can be applied post-hoc to any pretrained diffusion or flow matching model (via the Laplace approximation), and we propose simple yet effective techniques to minimize its computational overhead during sampling.
♻ ☆ Robotic Policy Learning via Human-assisted Action Preference Optimization
Establishing a reliable and iteratively refined robotic system is essential for deploying real-world applications. While Vision-Language-Action (VLA) models are widely recognized as the foundation model for such robotic deployment, their dependence on expert demonstrations hinders the crucial capabilities of correction and learning from failures. To mitigate this limitation, we introduce a Human-assisted Action Preference Optimization method named HAPO, designed to correct deployment failures and foster effective adaptation through preference alignment for VLA models. This method begins with a human-robot collaboration framework for reliable failure correction and interaction trajectory collection through human intervention. These human-intervention trajectories are further employed within the action preference optimization process, facilitating VLA models to mitigate failure action occurrences while enhancing corrective action adaptation. Specifically, we propose an adaptive reweighting algorithm to address the issues of irreversible interactions and token probability mismatch when introducing preference optimization into VLA models, facilitating model learning from binary desirability signals derived from interactions. Through combining these modules, our human-assisted action preference optimization method ensures reliable deployment and effective learning from failure for VLA models. The experiments conducted in simulation and real-world scenarios prove superior generalization and robustness of our framework across a variety of manipulation tasks.
♻ ☆ MAYA: Addressing Inconsistencies in Generative Password Guessing through a Unified Benchmark
Recent advances in generative models have led to their application in password guessing, with the aim of replicating the complexity, structure, and patterns of human-created passwords. Despite their potential, inconsistencies and inadequate evaluation methodologies in prior research have hindered meaningful comparisons and a comprehensive, unbiased understanding of their capabilities. This paper introduces MAYA, a unified, customizable, plug-and-play benchmarking framework designed to facilitate the systematic characterization and benchmarking of generative password-guessing models in the context of trawling attacks. Using MAYA, we conduct a comprehensive assessment of six state-of-the-art approaches, which we re-implemented and adapted to ensure standardization. Our evaluation spans eight real-world password datasets and covers an exhaustive set of advanced testing scenarios, totaling over 15,000 compute hours. Our findings indicate that these models effectively capture different aspects of human password distribution and exhibit strong generalization capabilities. However, their effectiveness varies significantly with long and complex passwords. Through our evaluation, sequential models consistently outperform other generative architectures and traditional password-guessing tools, demonstrating unique capabilities in generating accurate and complex guesses. Moreover, the diverse password distributions learned by the models enable a multi-model attack that outperforms the best individual model. By releasing MAYA, we aim to foster further research, providing the community with a new tool to consistently and reliably benchmark generative password-guessing models. Our framework is publicly available at https://github.com/williamcorrias/MAYA-Password-Benchmarking.
♻ ☆ Hey, That's My Model! Introducing Chain & Hash, An LLM Fingerprinting Technique
Growing concerns over the theft and misuse of Large Language Models (LLMs) have heightened the need for effective fingerprinting, which links a model to its original version to detect misuse. In this paper, we define five key properties for a successful fingerprint: Transparency, Efficiency, Persistence, Robustness, and Unforgeability. We introduce a novel fingerprinting framework that provides verifiable proof of ownership while maintaining fingerprint integrity. Our approach makes two main contributions. First, we propose a Chain and Hash technique that cryptographically binds fingerprint prompts with their responses, ensuring no adversary can generate colliding fingerprints and allowing model owners to irrefutably demonstrate their creation. Second, we address a realistic threat model in which instruction-tuned models' output distribution can be significantly altered through meta-prompts. By integrating random padding and varied meta-prompt configurations during training, our method preserves fingerprint robustness even when the model's output style is significantly modified. Experimental results demonstrate that our framework offers strong security for proving ownership and remains resilient against benign transformations like fine-tuning, as well as adversarial attempts to erase fingerprints. Finally, we also demonstrate its applicability to fingerprinting LoRA adapters.
♻ ☆ Human and LLM Biases in Hate Speech Annotations: A Socio-Demographic Analysis of Annotators and Targets AAAI
The rise of online platforms exacerbated the spread of hate speech, demanding scalable and effective detection. However, the accuracy of hate speech detection systems heavily relies on human-labeled data, which is inherently susceptible to biases. While previous work has examined the issue, the interplay between the characteristics of the annotator and those of the target of the hate are still unexplored. We fill this gap by leveraging an extensive dataset with rich socio-demographic information of both annotators and targets, uncovering how human biases manifest in relation to the target's attributes. Our analysis surfaces the presence of widespread biases, which we quantitatively describe and characterize based on their intensity and prevalence, revealing marked differences. Furthermore, we compare human biases with those exhibited by persona-based LLMs. Our findings indicate that while persona-based LLMs do exhibit biases, these differ significantly from those of human annotators. Overall, our work offers new and nuanced results on human biases in hate speech annotations, as well as fresh insights into the design of AI-driven hate speech detection systems.
comment: Article published in ICWSM'25 - 19th AAAI Conference on Web and Social Media. Please, cite the published version
♻ ☆ Reinforcing Multimodal Understanding and Generation with Dual Self-rewards
Building upon large language models (LLMs), recent large multimodal models (LMMs) unify cross-model understanding and generation into a single framework. However, LMMs still struggle to achieve accurate image-text alignment, prone to generating text responses contradicting the visual input or failing to follow the text-to-image prompts. Current solutions require external supervision (e.g., human feedback or reward models) and only address unidirectional tasks-either understanding or generation. In this work, based on the observation that understanding and generation are inverse dual tasks, we introduce a self-supervised dual reward mechanism to reinforce the understanding and generation capabilities of LMMs. Specifically, we sample multiple outputs for a given input in one task domain, then reverse the input-output pairs to compute the dual likelihood of the model as self-rewards for optimization. Extensive experimental results on visual understanding and generation benchmarks demonstrate that our method can effectively enhance the performance of the model without any external supervision, especially achieving remarkable improvements in text-to-image tasks.
♻ ☆ Obliviate: Efficient Unmemorization for Protecting Intellectual Property in Large Language Models
Recent copyright agreements between AI companies and content creators underscore the need for fine-grained control over language models' ability to reproduce copyrighted text. Existing defenses-ranging from aggressive unlearning to simplistic output filters-either sacrifice model utility or inadequately address verbatim leakage. We introduce Obliviate, a lightweight post-training method that surgically suppresses exact reproduction of specified sequences while preserving semantic understanding. Obliviate first identifies memorized passages and then, for each target token, minimally adjusts the model's output distribution via a Kullback-Leibler divergence penalty to drive down the probability of exact reproduction. Simultaneously, we enforce a consistency loss on non-target tokens to retain the model's fluency and task performance. We evaluate Obliviate on four popular 6-8B-parameter models (LLaMA-3.1, LLaMA-3.1-Instruct, Qwen-2.5, and Yi-1.5) using synthetic memorization benchmarks and organic copyrighted excerpts (e.g., Moby Dick, Frankenstein, Alice in Wonderland and Les Miserables). Across all settings, Obliviate reduces verbatim recall by two orders of magnitude (e.g., from hundreds of words to fewer than 12) while degrading downstream accuracy by at most 1% on HellaSwag, MMLU, TruthfulQA, and Winogrande. Furthermore, we benchmark Obliviate aganist different unlearning and copyright techniques using the MUSE and CoTaEval benchmarks. These results position Obliviate as a practical, high-fidelity solution for copyright compliance in deployed LLMs.
♻ ☆ Privacy-Aware Spectrum Pricing and Power Control Optimization for LEO Satellite Internet-of-Things
Low earth orbit (LEO) satellite systems play an important role in next generation communication networks due to their ability to provide extensive global coverage with guaranteed communications in remote areas and isolated areas where base stations cannot be cost-efficiently deployed. With the pervasive adoption of LEO satellite systems, especially in the LEO Internet-of-Things (IoT) scenarios, their spectrum resource management requirements have become more complex as a result of massive service requests and high bandwidth demand from terrestrial terminals. For instance, when leasing the spectrum to terrestrial users and controlling the uplink transmit power, satellites collect user data for machine learning purposes, which usually are sensitive information such as location, budget and quality of service (QoS) requirement. To facilitate model training in LEO IoT while preserving the privacy of data, blockchain-driven federated learning (FL) is widely used by leveraging on a fully decentralized architecture. In this paper, we propose a hybrid spectrum pricing and power control framework for LEO IoT by combining blockchain technology and FL. We first design a local deep reinforcement learning algorithm for LEO satellite systems to learn a revenue-maximizing pricing and power control scheme. Then the agents collaborate to form a FL system. We also propose a reputation-based blockchain which is used in the global model aggregation phase of FL. Based on the reputation mechanism, a node is selected for each global training round to perform model aggregation and block generation, which can further enhance the decentralization of the network and guarantee the trust. Simulation tests are conducted to evaluate the performances of the proposed scheme. Our results show the efficiency of finding the maximum revenue scheme for LEO satellite systems while preserving the privacy of each agent.
♻ ☆ QuXAI: Explainers for Hybrid Quantum Machine Learning Models
The emergence of hybrid quantum-classical machine learning (HQML) models opens new horizons of computational intelligence but their fundamental complexity frequently leads to black box behavior that undermines transparency and reliability in their application. Although XAI for quantum systems still in its infancy, a major research gap is evident in robust global and local explainability approaches that are designed for HQML architectures that employ quantized feature encoding followed by classical learning. The gap is the focus of this work, which introduces QuXAI, an framework based upon Q-MEDLEY, an explainer for explaining feature importance in these hybrid systems. Our model entails the creation of HQML models incorporating quantum feature maps, the use of Q-MEDLEY, which combines feature based inferences, preserving the quantum transformation stage and visualizing the resulting attributions. Our result shows that Q-MEDLEY delineates influential classical aspects in HQML models, as well as separates their noise, and competes well against established XAI techniques in classical validation settings. Ablation studies more significantly expose the virtues of the composite structure used in Q-MEDLEY. The implications of this work are critically important, as it provides a route to improve the interpretability and reliability of HQML models, thus promoting greater confidence and being able to engage in safer and more responsible use of quantum-enhanced AI technology. Our code and experiments are open-sourced at: https://github.com/GitsSaikat/QuXAI
comment: 16 pages, 6 figures, 7 equations
♻ ☆ Subgraph Gaussian Embedding Contrast for Self-Supervised Graph Representation Learning
Graph Representation Learning (GRL) is a fundamental task in machine learning, aiming to encode high-dimensional graph-structured data into low-dimensional vectors. Self-Supervised Learning (SSL) methods are widely used in GRL because they can avoid expensive human annotation. In this work, we propose a novel Subgraph Gaussian Embedding Contrast (SubGEC) method. Our approach introduces a subgraph Gaussian embedding module, which adaptively maps subgraphs to a structured Gaussian space, ensuring the preservation of input subgraph characteristics while generating subgraphs with a controlled distribution. We then employ optimal transport distances, more precisely the Wasserstein and Gromov-Wasserstein distances, to effectively measure the similarity between subgraphs, enhancing the robustness of the contrastive learning process. Extensive experiments across multiple benchmarks demonstrate that \method~outperforms or presents competitive performance against state-of-the-art approaches. Our findings provide insights into the design of SSL methods for GRL, emphasizing the importance of the distribution of the generated contrastive pairs.
♻ ☆ PyGen: A Collaborative Human-AI Approach to Python Package Creation
The principles of automation and innovation serve as foundational elements for advancement in contemporary science and technology. Here, we introduce Pygen, an automation platform designed to empower researchers, technologists, and hobbyists to bring abstract ideas to life as core, usable software tools written in Python. Pygen leverages the immense power of autoregressive large language models to augment human creativity during the ideation, iteration, and innovation process. By combining state-of-the-art language models with open-source code generation technologies, Pygen has significantly reduced the manual overhead of tool development. From a user prompt, Pygen automatically generates Python packages for a complete workflow from concept to package generation and documentation. The findings of our work show that Pygen considerably enhances the researcher's productivity by enabling the creation of resilient, modular, and well-documented packages for various specialized purposes. We employ a prompt enhancement approach to distill the user's package description into increasingly specific and actionable. While being inherently an open-ended task, we have evaluated the generated packages and the documentation using Human Evaluation, LLM-based evaluation, and CodeBLEU, with detailed results in the results section. Furthermore, we documented our results, analyzed the limitations, and suggested strategies to alleviate them. Pygen is our vision of ethical automation, a framework that promotes inclusivity, accessibility, and collaborative development. This project marks the beginning of a large-scale effort towards creating tools where intelligent agents collaborate with humans to improve scientific and technological development substantially. Our code and generated examples are open-sourced at [https://github.com/GitsSaikat/Pygen]
comment: 33 pages, 13 figures
♻ ☆ Quality over Quantity: Boosting Data Efficiency Through Ensembled Multimodal Data Curation
In an era overwhelmed by vast amounts of data, the effective curation of web-crawl datasets is essential for optimizing model performance. This paper tackles the challenges associated with the unstructured and heterogeneous nature of such datasets. Traditional heuristic curation methods often inadequately capture complex features, resulting in biases and the exclusion of relevant data. We introduce an advanced, learning-driven approach, Ensemble Curation Of DAta ThroUgh Multimodal Operators (EcoDatum), incorporating a novel quality-guided deduplication method to ensure balanced feature distributions. EcoDatum strategically integrates various unimodal and multimodal data curation operators within a weak supervision ensemble framework, utilizing automated optimization to score each data point effectively. EcoDatum, which significantly improves the data curation quality and efficiency, outperforms existing state-of-the-art (SOTA) techniques, ranked 1st on the DataComp leaderboard, with an average performance score of 0.182 across 38 diverse evaluation datasets. This represents a 28% improvement over the DataComp baseline method, demonstrating its effectiveness in improving dataset curation and model training efficiency.
♻ ☆ Don't Lag, RAG: Training-Free Adversarial Detection Using RAG ICML 2025
Adversarial patch attacks pose a major threat to vision systems by embedding localized perturbations that mislead deep models. Traditional defense methods often require retraining or fine-tuning, making them impractical for real-world deployment. We propose a training-free Visual Retrieval-Augmented Generation (VRAG) framework that integrates Vision-Language Models (VLMs) for adversarial patch detection. By retrieving visually similar patches and images that resemble stored attacks in a continuously expanding database, VRAG performs generative reasoning to identify diverse attack types, all without additional training or fine-tuning. We extensively evaluate open-source large-scale VLMs, including Qwen-VL-Plus, Qwen2.5-VL-72B, and UI-TARS-72B-DPO, alongside Gemini-2.0, a closed-source model. Notably, the open-source UI-TARS-72B-DPO model achieves up to 95 percent classification accuracy, setting a new state-of-the-art for open-source adversarial patch detection. Gemini-2.0 attains the highest overall accuracy, 98 percent, but remains closed-source. Experimental results demonstrate VRAG's effectiveness in identifying a variety of adversarial patches with minimal human annotation, paving the way for robust, practical defenses against evolving adversarial patch attacks.
comment: Accepted at VecDB @ ICML 2025
♻ ☆ Engagement-Driven Content Generation with Large Language Models
Large Language Models (LLMs) demonstrate significant persuasive capabilities in one-on-one interactions, but their influence within social networks, where interconnected users and complex opinion dynamics pose unique challenges, remains underexplored. This paper addresses the research question: \emph{Can LLMs generate meaningful content that maximizes user engagement on social networks?} To answer this, we propose a pipeline using reinforcement learning with simulated feedback, where the network's response to LLM-generated content (i.e., the reward) is simulated through a formal engagement model. This approach bypasses the temporal cost and complexity of live experiments, enabling an efficient feedback loop between the LLM and the network under study. It also allows to control over endogenous factors such as the LLM's position within the social network and the distribution of opinions on a given topic. Our approach is adaptive to the opinion distribution of the underlying network and agnostic to the specifics of the engagement model, which is embedded as a plug-and-play component. Such flexibility makes it suitable for more complex engagement tasks and interventions in computational social science. Using our framework, we analyze the performance of LLMs in generating social engagement under different conditions, showcasing their full potential in this task. The experimental code is publicly available at https://github.com/mminici/Engagement-Driven-Content-Generation.
♻ ☆ IndoToxic2024: A Demographically-Enriched Dataset of Hate Speech and Toxicity Types for Indonesian Language
Hate speech poses a significant threat to social harmony. Over the past two years, Indonesia has seen a ten-fold increase in the online hate speech ratio, underscoring the urgent need for effective detection mechanisms. However, progress is hindered by the limited availability of labeled data for Indonesian texts. The condition is even worse for marginalized minorities, such as Shia, LGBTQ, and other ethnic minorities because hate speech is underreported and less understood by detection tools. Furthermore, the lack of accommodation for subjectivity in current datasets compounds this issue. To address this, we introduce IndoToxic2024, a comprehensive Indonesian hate speech and toxicity classification dataset. Comprising 43,692 entries annotated by 19 diverse individuals, the dataset focuses on texts targeting vulnerable groups in Indonesia, specifically during the hottest political event in the country: the presidential election. We establish baselines for seven binary classification tasks, achieving a macro-F1 score of 0.78 with a BERT model (IndoBERTweet) fine-tuned for hate speech classification. Furthermore, we demonstrate how incorporating demographic information can enhance the zero-shot performance of the large language model, gpt-3.5-turbo. However, we also caution that an overemphasis on demographic information can negatively impact the fine-tuned model performance due to data fragmentation.
comment: This work has been substantially expanded and finalized as IndoDiscourse (see [https://huggingface.co/datasets/Exqrch/IndoDiscourse]). IndoToxic should be considered a draft/precursor version and is no longer maintained
♻ ☆ Social Bias Benchmark for Generation: A Comparison of Generation and QA-Based Evaluations ACL
Measuring social bias in large language models (LLMs) is crucial, but existing bias evaluation methods struggle to assess bias in long-form generation. We propose a Bias Benchmark for Generation (BBG), an adaptation of the Bias Benchmark for QA (BBQ), designed to evaluate social bias in long-form generation by having LLMs generate continuations of story prompts. Building our benchmark in English and Korean, we measure the probability of neutral and biased generations across ten LLMs. We also compare our long-form story generation evaluation results with multiple-choice BBQ evaluation, showing that the two approaches produce inconsistent results.
comment: ACL-Findings 2025
♻ ☆ Expert Race: A Flexible Routing Strategy for Scaling Diffusion Transformer with Mixture of Experts
Diffusion models have emerged as mainstream framework in visual generation. Building upon this success, the integration of Mixture of Experts (MoE) methods has shown promise in enhancing model scalability and performance. In this paper, we introduce Race-DiT, a novel MoE model for diffusion transformers with a flexible routing strategy, Expert Race. By allowing tokens and experts to compete together and select the top candidates, the model learns to dynamically assign experts to critical tokens. Additionally, we propose per-layer regularization to address challenges in shallow layer learning, and router similarity loss to prevent mode collapse, ensuring better expert utilization. Extensive experiments on ImageNet validate the effectiveness of our approach, showcasing significant performance gains while promising scaling properties.
♻ ☆ MasHost Builds It All: Autonomous Multi-Agent System Directed by Reinforcement Learning
Large Language Model (LLM)-driven Multi-agent systems (Mas) have recently emerged as a powerful paradigm for tackling complex real-world tasks. However, existing Mas construction methods typically rely on manually crafted interaction mechanisms or heuristic rules, introducing human biases and constraining the autonomous ability. Even with recent advances in adaptive Mas construction, existing systems largely remain within the paradigm of semi-autonomous patterns. In this work, we propose MasHost, a Reinforcement Learning (RL)-based framework for autonomous and query-adaptive Mas design. By formulating Mas construction as a graph search problem, our proposed MasHost jointly samples agent roles and their interactions through a unified probabilistic sampling mechanism. Beyond the accuracy and efficiency objectives pursued in prior works, we introduce component rationality as an additional and novel design principle in Mas. To achieve this multi-objective optimization, we propose Hierarchical Relative Policy Optimization (HRPO), a novel RL strategy that collaboratively integrates group-relative advantages and action-wise rewards. To our knowledge, our proposed MasHost is the first RL-driven framework for autonomous Mas graph construction. Extensive experiments on six benchmarks demonstrate that MasHost consistently outperforms most competitive baselines, validating its effectiveness, efficiency, and structure rationality.
♻ ☆ From Features to Graphs: Exploring Graph Structures and Pairwise Interactions via GNNs
Feature interaction is crucial in predictive machine learning models, as it captures the relationships between features that influence model performance. In this work, we focus on pairwise interactions and investigate their importance in constructing feature graphs for Graph Neural Networks (GNNs). We leverage existing GNN models and tools to explore the relationship between feature graph structures and their effectiveness in modeling interactions. Through experiments on synthesized datasets, we uncover that edges between interacting features are important for enabling GNNs to model feature interactions effectively. We also observe that including non-interaction edges can act as noise, degrading model performance. Furthermore, we provide theoretical support for sparse feature graph selection using the Minimum Description Length (MDL) principle. We prove that feature graphs retaining only necessary interaction edges yield a more efficient and interpretable representation than complete graphs, aligning with Occam's Razor. Our findings offer both theoretical insights and practical guidelines for designing feature graphs that improve the performance and interpretability of GNN models.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Wider or Deeper? Scaling LLM Inference-Time Compute with Adaptive Branching Tree Search ICLR 2025
Recent advances demonstrate that increasing inference-time computation can significantly boost the reasoning capabilities of large language models (LLMs). Although repeated sampling (i.e., generating multiple candidate outputs) is a highly effective strategy, it does not leverage external feedback signals for refinement, which are often available in tasks like coding. In this work, we propose Adaptive Branching Monte Carlo Tree Search (AB-MCTS), a novel inference-time framework that generalizes repeated sampling with principled multi-turn exploration and exploitation. At each node in the search tree, AB-MCTS dynamically decides whether to "go wider" by expanding new candidate responses or "go deeper" by revisiting existing ones based on external feedback signals. We evaluate our method on complex coding and engineering tasks using frontier models. Empirical results show that AB-MCTS consistently outperforms both repeated sampling and standard MCTS, underscoring the importance of combining the response diversity of LLMs with multi-turn solution refinement for effective inference-time scaling.
comment: Presented at ICLR 2025 Workshop on Foundation Models in the Wild
♻ ☆ CheMatAgent: Enhancing LLMs for Chemistry and Materials Science through Tree-Search Based Tool Learning
Large language models (LLMs) have recently demonstrated promising capabilities in chemistry tasks while still facing challenges due to outdated pretraining knowledge and the difficulty of incorporating specialized chemical expertise. To address these issues, we propose an LLM-based agent that synergistically integrates 137 external chemical tools created ranging from basic information retrieval to complex reaction predictions, and a dataset curation pipeline to generate the dataset ChemToolBench that facilitates both effective tool selection and precise parameter filling during fine-tuning and evaluation. We introduce a Hierarchical Evolutionary Monte Carlo Tree Search (HE-MCTS) framework, enabling independent optimization of tool planning and execution. By leveraging self-generated data, our approach supports step-level fine-tuning (FT) of the policy model and training task-adaptive PRM and ORM that surpass GPT-4o. Experimental evaluations demonstrate that our approach significantly improves performance in Chemistry QA and discovery tasks, offering a robust solution to integrate specialized tools with LLMs for advanced chemical applications. All datasets and code are available at https://github.com/AI4Chem/ChemistryAgent .
comment: 15 pages, 6 figures
♻ ☆ ConvD: Attention Enhanced Dynamic Convolutional Embeddings for Knowledge Graph Completion
Knowledge graphs often suffer from incompleteness issues, which can be alleviated through information completion. However, current state-of-the-art deep knowledge convolutional embedding models rely on external convolution kernels and conventional convolution processes, which limits the feature interaction capability of the model. This paper introduces a novel dynamic convolutional embedding model, ConvD, which directly reshapes relation embeddings into multiple internal convolution kernels. This approach effectively enhances the feature interactions between relation embeddings and entity embeddings. Simultaneously, we incorporate a priori knowledge-optimized attention mechanism that assigns different contribution weight coefficients to the multiple relation convolution kernels in dynamic convolution, further boosting the expressive power of the model. Extensive experiments on various datasets show that our proposed model consistently outperforms the state-of-the-art baseline methods, with average improvements ranging from 3.28% to 14.69% across all model evaluation metrics, while the number of parameters is reduced by 50.66% to 85.40% compared to other state-of-the-art models.
♻ ☆ Improved Algorithm for Deep Active Learning under Imbalance via Optimal Separation
Class imbalance severely impacts machine learning performance on minority classes in real-world applications. While various solutions exist, active learning offers a fundamental fix by strategically collecting balanced, informative labeled examples from abundant unlabeled data. We introduce DIRECT, an algorithm that identifies class separation boundaries and selects the most uncertain nearby examples for annotation. By reducing the problem to one-dimensional active learning, DIRECT leverages established theory to handle batch labeling and label noise -- another common challenge in data annotation that particularly affects active learning methods. Our work presents the first comprehensive study of active learning under both class imbalance and label noise. Extensive experiments on imbalanced datasets show DIRECT reduces annotation costs by over 60\% compared to state-of-the-art active learning methods and over 80\% versus random sampling, while maintaining robustness to label noise.
♻ ☆ IoTGeM: Generalizable Models for Behaviour-Based IoT Attack Detection
Previous research on behavior-based attack detection for networks of IoT devices has resulted in machine learning models whose ability to adapt to unseen data is limited and often not demonstrated. This paper presents IoTGeM, an approach for modeling IoT network attacks that focuses on generalizability, yet also leads to better detection and performance. We first introduce an improved rolling window approach for feature extraction. To reduce overfitting, we then apply a multi-step feature selection process where a Genetic Algorithm (GA) is uniquely guided by exogenous feedback from a separate, independent dataset. To prevent common data leaks that have limited previous models, we build and test our models using strictly isolated train and test datasets. The resulting models are rigorously evaluated using a diverse portfolio of machine learning algorithms and datasets. Our window-based models demonstrate superior generalization compared to traditional flow-based models, particularly when tested on unseen datasets. On these stringent, cross-dataset tests, IoTGeM achieves F1 scores of 99\% for ACK, HTTP, SYN, MHD, and PS attacks, as well as a 94\% F1 score for UDP attacks. Finally, we build confidence in the models by using the SHAP (SHapley Additive exPlanations) explainable AI technique, allowing us to identify the specific features that underlie the accurate detection of attacks.
comment: 32 pages (17 main, 15 supplementary appendix), 21 figures, 15 tables
♻ ☆ An energy-efficient learning solution for the Agile Earth Observation Satellite Scheduling Problem ICML
The Agile Earth Observation Satellite Scheduling Problem (AEOSSP) entails finding the subset of observation targets to be scheduled along the satellite's orbit while meeting operational constraints of time, energy and memory. The problem of deciding what and when to observe is inherently complex, and becomes even more challenging when considering several issues that compromise the quality of the captured images, such as cloud occlusion, atmospheric turbulence, and image resolution. This paper presents a Deep Reinforcement Learning (DRL) approach for addressing the AEOSSP with time-dependent profits, integrating these three factors to optimize the use of energy and memory resources. The proposed method involves a dual decision-making process: selecting the sequence of targets and determining the optimal observation time for each. Our results demonstrate that the proposed algorithm reduces the capture of images that fail to meet quality requirements by > 60% and consequently decreases energy waste from attitude maneuvers by up to 78%, all while maintaining strong observation performance.
comment: This paper has been accepted for presentation at the IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN) Special Sessions 2025
♻ ☆ iQUEST: An Iterative Question-Guided Framework for Knowledge Base Question Answering ACL 2025
While Large Language Models (LLMs) excel at many natural language processing tasks, they often suffer from factual inaccuracies in knowledge-intensive scenarios. Integrating external knowledge resources, particularly knowledge graphs (KGs), provides a transparent and updatable foundation for more reliable reasoning. Knowledge Base Question Answering (KBQA), which queries and reasons over KGs, is central to this effort, especially for complex, multi-hop queries. However, multi-hop reasoning poses two key challenges: (1)~maintaining coherent reasoning paths, and (2)~avoiding prematurely discarding critical multi-hop connections. To address these issues, we introduce iQUEST, a question-guided KBQA framework that iteratively decomposes complex queries into simpler sub-questions, ensuring a structured and focused reasoning trajectory. Additionally, we integrate a Graph Neural Network (GNN) to look ahead and incorporate 2-hop neighbor information at each reasoning step. This dual approach strengthens the reasoning process, enabling the model to explore viable paths more effectively. Detailed experiments demonstrate the consistent improvement delivered by iQUEST across four benchmark datasets and four LLMs.
comment: Accepted to the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025), Main Track
♻ ☆ Quantum AIXI: Universal Intelligence via Quantum Information
AIXI is a widely studied model of artificial general intelligence (AGI) based upon principles of induction and reinforcement learning. However, AIXI is fundamentally classical in nature - as are the environments in which it is modelled. Given the universe is quantum mechanical in nature and the exponential overhead required to simulate quantum mechanical systems classically, the question arises as to whether there are quantum mechanical analogues of AIXI. To address this question, we extend the framework to quantum information and present Quantum AIXI (QAIXI). We introduce a model of quantum agent/environment interaction based upon quantum and classical registers and channels, showing how quantum AIXI agents may take both classical and quantum actions. We formulate the key components of AIXI in quantum information terms, extending previous research on quantum Kolmogorov complexity and a QAIXI value function. We discuss conditions and limitations upon quantum Solomonoff induction and show how contextuality fundamentally affects QAIXI models.
comment: Accepted into AGI-2025
♻ ☆ A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce
Reinforcement learning (RL) has become a prevailing approach for fine-tuning large language models (LLMs) on complex reasoning tasks. Among recent methods, GRPO stands out for its empirical success in training models such as DeepSeek-R1, yet the sources of its effectiveness remain poorly understood. In this work, we revisit GRPO from a reinforce-like algorithm perspective and analyze its core components. Surprisingly, we find that a simple rejection sampling baseline, RAFT, which trains only on positively rewarded samples, yields competitive performance than GRPO and PPO. Our ablation studies reveal that GRPO's main advantage arises from discarding prompts with entirely incorrect responses, rather than from its reward normalization. Motivated by this insight, we propose Reinforce-Rej, a minimal extension of policy gradient that filters both entirely incorrect and entirely correct samples. Reinforce-Rej improves KL efficiency and stability, serving as a lightweight yet effective alternative to more complex RL algorithms. We advocate RAFT as a robust and interpretable baseline, and suggest that future advances should focus on more principled designs for incorporating negative samples, rather than relying on them indiscriminately. Our findings provide guidance for future work in reward-based LLM post-training.
♻ ☆ PhysNav-DG: A Novel Adaptive Framework for Robust VLM-Sensor Fusion in Navigation Applications CVPR
Robust navigation in diverse environments and domains requires both accurate state estimation and transparent decision making. We present PhysNav-DG, a novel framework that integrates classical sensor fusion with the semantic power of vision-language models. Our dual-branch architecture predicts navigation actions from multi-sensor inputs while simultaneously generating detailed chain-of-thought explanations. A modified Adaptive Kalman Filter dynamically adjusts its noise parameters based on environmental context. It leverages several streams of raw sensor data along with semantic insights from models such as LLaMA 3.2 11B and BLIP-2. To evaluate our approach, we introduce the MD-NEX Benchmark, a novel multi-domain dataset that unifies indoor navigation, autonomous driving, and social navigation tasks with ground-truth actions and human-validated explanations. Extensive experiments and ablations show that PhysNav-DG improves navigation success rates by over 20% and achieves high efficiency, with explanations that are both highly grounded and clear. This work connects high-level semantic reasoning and geometric planning for safer and more trustworthy autonomous systems.
comment: 9 pages, 5 figures. CVPRW 2025
♻ ☆ The Automated but Risky Game: Modeling Agent-to-Agent Negotiations and Transactions in Consumer Markets
AI agents are increasingly used in consumer-facing applications to assist with tasks such as product search, negotiation, and transaction execution. In this paper, we explore a future scenario where both consumers and merchants authorize AI agents to fully automate negotiations and transactions. We aim to answer two key questions: (1) Do different LLM agents vary in their ability to secure favorable deals for users? (2) What risks arise from fully automating deal-making with AI agents in consumer markets? To address these questions, we develop an experimental framework that evaluates the performance of various LLM agents in real-world negotiation and transaction settings. Our findings reveal that AI-mediated deal-making is an inherently imbalanced game -- different agents achieve significantly different outcomes for their users. Moreover, behavioral anomalies in LLMs can result in financial losses for both consumers and merchants, such as overspending or accepting unreasonable deals. These results underscore that while automation can improve efficiency, it also introduces substantial risks. Users should exercise caution when delegating business decisions to AI agents.
♻ ☆ DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO
Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training in enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success by employing a PPO-style reinforcement algorithm with group-based normalized rewards. However, the application of GRPO to Video Large Language Models (Video LLMs) has been less studied. In this paper, we explore GRPO for video LLMs and identify two primary issues that impede its effective learning: (1) reliance on safeguards, and (2) the vanishing advantage problem. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with our proposed Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation strategy. Reg-GRPO reformulates the GRPO objective as a regression task, directly predicting the advantage in GRPO. This design eliminates the need for safeguards like clipping and min functions, thereby facilitating more direct policy guidance by aligning the model with the advantage values. We also design the difficulty-aware data augmentation strategy that dynamically augments training samples at solvable difficulty levels, fostering diverse and informative reward signals. Our comprehensive experiments show that DeepVideo-R1 significantly improves video reasoning performance across multiple video reasoning benchmarks.
comment: Work in progress
♻ ☆ High Performance Space Debris Tracking in Complex Skylight Backgrounds with a Large-Scale Dataset
With the rapid development of space exploration, space debris has attracted more attention due to its potential extreme threat, leading to the need for real-time and accurate debris tracking. However, existing methods are mainly based on traditional signal processing, which cannot effectively process the complex background and dense space debris. In this paper, we propose a deep learning-based Space Debris Tracking Network~(SDT-Net) to achieve highly accurate debris tracking. SDT-Net effectively represents the feature of debris, enhancing the efficiency and stability of end-to-end model learning. To train and evaluate this model effectively, we also produce a large-scale dataset Space Debris Tracking Dataset (SDTD) by a novel observation-based data simulation scheme. SDTD contains 18,040 video sequences with a total of 62,562 frames and covers 250,000 synthetic space debris. Extensive experiments validate the effectiveness of our model and the challenging of our dataset. Furthermore, we test our model on real data from the Antarctic Station, achieving a MOTA score of 70.6%, which demonstrates its strong transferability to real-world scenarios. Our dataset and code will be released soon.
♻ ☆ CHANCERY: Evaluating Corporate Governance Reasoning Capabilities in Language Models
Law has long been a domain that has been popular in natural language processing (NLP) applications. Reasoning (ratiocination and the ability to make connections to precedent) is a core part of the practice of the law in the real world. Nevertheless, while multiple legal datasets exist, none have thus far focused specifically on reasoning tasks. We focus on a specific aspect of the legal landscape by introducing a corporate governance reasoning benchmark (CHANCERY) to test a model's ability to reason about whether executive/board/shareholder's proposed actions are consistent with corporate governance charters. This benchmark introduces a first-of-its-kind corporate governance reasoning test for language models - modeled after real world corporate governance law. The benchmark consists of a corporate charter (a set of governing covenants) and a proposal for executive action. The model's task is one of binary classification: reason about whether the action is consistent with the rules contained within the charter. We create the benchmark following established principles of corporate governance - 24 concrete corporate governance principles established in and 79 real life corporate charters selected to represent diverse industries from a total dataset of 10k real life corporate charters. Evaluations on state-of-the-art (SOTA) reasoning models confirm the difficulty of the benchmark, with models such as Claude 3.7 Sonnet and GPT-4o achieving 64.5% and 75.2% accuracy respectively. Reasoning agents exhibit superior performance, with agents based on the ReAct and CodeAct frameworks scoring 76.1% and 78.1% respectively, further confirming the advanced legal reasoning capabilities required to score highly on the benchmark. We also conduct an analysis of the types of questions which current reasoning models struggle on, revealing insights into the legal reasoning capabilities of SOTA models.
♻ ☆ Paired Completion: Flexible Quantification of Issue-framing at Scale with LLMs
Detecting issue framing in text - how different perspectives approach the same topic - is valuable for social science and policy analysis, yet challenging for automated methods due to subtle linguistic differences. We introduce `paired completion', a novel approach using LLM next-token log probabilities to detect contrasting frames using minimal examples. Through extensive evaluation across synthetic datasets and a human-labeled corpus, we demonstrate that paired completion is a cost-efficient, low-bias alternative to both prompt-based and embedding-based methods, offering a scalable solution for analyzing issue framing in large text collections, especially suited to low-resource settings.
comment: 9 pages, 4 figures
♻ ☆ DeePoly: A High-Order Accuracy Scientific Machine Learning Framework for Function Approximation and Solving PDE
Recently, machine learning methods have gained significant traction in scientific computing, particularly for solving Partial Differential Equations (PDEs). However, methods based on deep neural networks (DNNs) often lack convergence guarantees and computational efficiency compared to traditional numerical schemes. This work introduces DeePoly, a novel framework that transforms the solution paradigm from pure non-convex parameter optimization to a two-stage approach: first employing a DNN to capture complex global features, followed by linear space optimization with combined DNN-extracted features (Scoper) and polynomial basis functions (Sniper). This strategic combination leverages the complementary strengths of both methods -- DNNs excel at approximating complex global features (i.e., high-gradient features) and stabilize the polynomial approximation while polynomial bases provide high-precision local corrections with convergence guarantees. Theoretical analysis and numerical experiments demonstrate that this approach significantly enhances both high-order accuracy and efficiency across diverse problem types while maintaining mesh-free and scheme-free properties. This paper also serves as a theoretical exposition for the open-source project DeePoly.
comment: for associated mpeg file, see http://github.com/bfly123/DeePoly
♻ ☆ Upweighting Easy Samples in Fine-Tuning Mitigates Forgetting
Fine-tuning a pre-trained model on a downstream task often degrades its original capabilities, a phenomenon known as "catastrophic forgetting". This is especially an issue when one does not have access to the data and recipe used to develop the pre-trained model. Under this constraint, most existing methods for mitigating forgetting are inapplicable. To address this challenge, we propose a sample weighting scheme for the fine-tuning data solely based on the pre-trained model's losses. Specifically, we upweight the easy samples on which the pre-trained model's loss is low and vice versa to limit the drift from the pre-trained model. Our approach is orthogonal and yet complementary to existing methods; while such methods mostly operate on parameter or gradient space, we concentrate on the sample space. We theoretically analyze the impact of fine-tuning with our method in a linear setting, showing that it stalls learning in a certain subspace which inhibits overfitting to the target task. We empirically demonstrate the efficacy of our method on both language and vision tasks. As an example, when fine-tuning Gemma 2 2B on MetaMathQA, our method results in only a $0.8\%$ drop in accuracy on GSM8K (another math dataset) compared to standard fine-tuning, while preserving $5.4\%$ more accuracy on the pre-training datasets. Our code is publicly available at https://github.com/sanyalsunny111/FLOW_finetuning .
comment: 36 pages, 4 figures, 12 tables. Code available at https://github.com/sanyalsunny111/FLOW_finetuning
♻ ☆ Efficient Length-Generalizable Attention via Causal Retrieval for Long-Context Language Modeling ICML 2025
Despite the success of Transformers, handling long contexts remains challenging due to the limited length generalization and quadratic complexity of self-attention. Thus Transformers often require post-training with a larger attention window, significantly increasing computational and memory costs. In this paper, we propose a novel attention mechanism based on dynamic context, Grouped Cross Attention (GCA), which can generalize to 1000 times the pre-training context length while maintaining the ability to access distant information with a constant attention window size. For a given input sequence, we split it into chunks and use each chunk to retrieve top-k relevant past chunks for subsequent text generation. Specifically, unlike most previous works that use an off-the-shelf retriever, our key innovation allows the retriever to learn how to retrieve past chunks that better minimize the auto-regressive loss of subsequent tokens in an end-to-end manner. Such a mechanism accommodates retrieved chunks with a fixed-size attention window to achieve long-range information access, significantly reducing computational and memory costs during training and inference. Experiments show that GCA-based models achieve near-perfect accuracy in passkey retrieval for 16M context lengths, which is 1000 times the training length.
comment: accepted to ICML 2025
♻ ☆ Compelling ReLU Networks to Exhibit Exponentially Many Linear Regions at Initialization and During Training ICML 2025
In a neural network with ReLU activations, the number of piecewise linear regions in the output can grow exponentially with depth. However, this is highly unlikely to happen when the initial parameters are sampled randomly, which therefore often leads to the use of networks that are unnecessarily large. To address this problem, we introduce a novel parameterization of the network that restricts its weights so that a depth $d$ network produces exactly $2^d$ linear regions at initialization and maintains those regions throughout training under the parameterization. This approach allows us to learn approximations of convex, one dimensional functions that are several orders of magnitude more accurate than their randomly initialized counterparts. We further demonstrate a preliminary extension of our construction to multidimensional and non-convex functions, allowing the technique to replace traditional dense layers in various architectures.
comment: 24 pages, 17 figures, Poster at ICML 2025
♻ ☆ The Optimization Paradox in Clinical AI Multi-Agent Systems
Multi-agent artificial intelligence systems are increasingly deployed in clinical settings, yet the relationship between component-level optimization and system-wide performance remains poorly understood. We evaluated this relationship using 2,400 real patient cases from the MIMIC-CDM dataset across four abdominal pathologies (appendicitis, pancreatitis, cholecystitis, diverticulitis), decomposing clinical diagnosis into information gathering, interpretation, and differential diagnosis. We evaluated single agent systems (one model performing all tasks) against multi-agent systems (specialized models for each task) using comprehensive metrics spanning diagnostic outcomes, process adherence, and cost efficiency. Our results reveal a paradox: while multi-agent systems generally outperformed single agents, the component-optimized or Best of Breed system with superior components and excellent process metrics (85.5% information accuracy) significantly underperformed in diagnostic accuracy (67.7% vs. 77.4% for a top multi-agent system). This finding underscores that successful integration of AI in healthcare requires not just component level optimization but also attention to information flow and compatibility between agents. Our findings highlight the need for end to end system validation rather than relying on component metrics alone.
♻ ☆ CompMarkGS: Robust Watermarking for Compressed 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) is increasingly adopted in various academic and commercial applications due to its real-time and high-quality rendering capabilities, emphasizing the growing need for copyright protection technologies for 3DGS. However, the large model size of 3DGS requires developing efficient compression techniques. This highlights the necessity of an integrated framework that addresses copyright protection and data compression for 3D content. Nevertheless, existing 3DGS watermarking methods significantly degrade watermark performance under 3DGS compression methods, particularly quantization-based approaches that achieve superior compression performance. To ensure reliable watermark detection under compression, we propose a compression-tolerant anchor-based 3DGS watermarking, which preserves watermark integrity and rendering quality. This is achieved by introducing anchor-based 3DGS watermarking. We embed the watermark into the anchor attributes, particularly the anchor feature, to enhance security and rendering quality. We also propose a quantization distortion layer that injects quantization noise during training, preserving the watermark after quantization-based compression. Moreover, we employ a frequency-aware anchor growing strategy that improves rendering quality and watermark performance by effectively identifying Gaussians in high-frequency regions. Extensive experiments demonstrate that our proposed method preserves the watermark even under compression and maintains high rendering quality.
comment: 28 pages, 19 figures
♻ ☆ Evaluation of LLMs for mathematical problem solving
Large Language Models (LLMs) have shown impressive performance on a range of educational tasks, but are still understudied for their potential to solve mathematical problems. In this study, we compare three prominent LLMs, including GPT-4o, DeepSeek-V3, and Gemini-2.0, on three mathematics datasets of varying complexities (GSM8K, MATH500, and UNSW datasets). We take a five-dimensional approach based on the Structured Chain-of-Thought (SCoT) framework to assess final answer correctness, step completeness, step validity, intermediate calculation accuracy, and problem comprehension. The results show that GPT-4o is the most stable and consistent in performance across all the datasets, but particularly it performs outstandingly in high-level questions of the UNSW dataset. DeepSeek-V3 is competitively strong in well-structured domains such as optimisation, but suffers from fluctuations in accuracy in statistical inference tasks. Gemini-2.0 shows strong linguistic understanding and clarity in well-structured problems but performs poorly in multi-step reasoning and symbolic logic. Our error analysis reveals particular deficits in each model: GPT-4o is at times lacking in sufficient explanation or precision; DeepSeek-V3 leaves out intermediate steps; and Gemini-2.0 is less flexible in mathematical reasoning in higher dimensions.
♻ ☆ Heterogeneous Multi-Agent Reinforcement Learning for Distributed Channel Access in WLANs
This paper investigates the use of multi-agent reinforcement learning (MARL) to address distributed channel access in wireless local area networks. In particular, we consider the challenging yet more practical case where the agents heterogeneously adopt value-based or policy-based reinforcement learning algorithms to train the model. We propose a heterogeneous MARL training framework, named QPMIX, which adopts a centralized training with distributed execution paradigm to enable heterogeneous agents to collaborate. Moreover, we theoretically prove the convergence of the proposed heterogeneous MARL method when using the linear value function approximation. Our method maximizes the network throughput and ensures fairness among stations, therefore, enhancing the overall network performance. Simulation results demonstrate that the proposed QPMIX algorithm improves throughput, mean delay, delay jitter, and collision rates compared with conventional carrier-sense multiple access with collision avoidance (CSMA/CA) mechanism in the saturated traffic scenario. Furthermore, the QPMIX algorithm is robust in unsaturated and delay-sensitive traffic scenarios. It coexists well with the conventional CSMA/CA mechanism and promotes cooperation among heterogeneous agents.
♻ ☆ Prompt-based Depth Pruning of Large Language Models
Depth pruning aims to reduce the inference cost of a large language model without any hardware-specific complications, by simply removing several less important transformer blocks. However, our empirical findings suggest that the importance of a transformer block may be highly task-dependent -- a block that is crucial for a task can be removed without degrading the accuracy on another task. Based on this observation, we develop a dynamic depth pruning algorithm, coined PuDDing (Prompt-routed Dynamic Depth Pruning), which determines which blocks to omit from the model based on the input prompt. PuDDing operates by training a lightweight router to predict the best omission set among a set of options, where this option set has also been constructed in a data-driven manner. Empirical results on commonsense reasoning benchmarks demonstrate that PuDDing effectively accelerates the inference language models, and achieves better on-task performance than static depth pruning baselines.
comment: Project: https://jwee01.github.io/PuDDing/ Code: https://github.com/tada0347/PuDDing
♻ ☆ Noise Balance and Stationary Distribution of Stochastic Gradient Descent
The stochastic gradient descent (SGD) algorithm is the algorithm we use to train neural networks. However, it remains poorly understood how the SGD navigates the highly nonlinear and degenerate loss landscape of a neural network. In this work, we show that the minibatch noise of SGD regularizes the solution towards a noise-balanced solution whenever the loss function contains a rescaling parameter symmetry. Because the difference between a simple diffusion process and SGD dynamics is the most significant when symmetries are present, our theory implies that the loss function symmetries constitute an essential probe of how SGD works. We then apply this result to derive the stationary distribution of stochastic gradient flow for a diagonal linear network with arbitrary depth and width. The stationary distribution exhibits complicated nonlinear phenomena such as phase transitions, broken ergodicity, and fluctuation inversion. These phenomena are shown to exist uniquely in deep networks, implying a fundamental difference between deep and shallow models.
comment: Preprint
♻ ☆ Lightweight Dataset Pruning without Full Training via Example Difficulty and Prediction Uncertainty
Recent advances in deep learning rely heavily on massive datasets, leading to substantial storage and training costs. Dataset pruning aims to alleviate this demand by discarding redundant examples. However, many existing methods require training a model with a full dataset over a large number of epochs before being able to prune the dataset, which ironically makes the pruning process more expensive than just training the model on the entire dataset. To overcome this limitation, we introduce a Difficulty and Uncertainty-Aware Lightweight (DUAL) score, which aims to identify important samples from the early training stage by considering both example difficulty and prediction uncertainty. To address a catastrophic accuracy drop at an extreme pruning, we further propose a ratio-adaptive sampling using Beta distribution. Experiments on various datasets and learning scenarios such as image classification with label noise and image corruption, and model architecture generalization demonstrate the superiority of our method over previous state-of-the-art (SOTA) approaches. Specifically, on ImageNet-1k, our method reduces the time cost for pruning to 66% compared to previous methods while achieving a SOTA, specifically 60% test accuracy at a 90% pruning ratio. On CIFAR datasets, the time cost is reduced to just 15% while maintaining SOTA performance.
♻ ☆ TimeBridge: Better Diffusion Prior Design with Bridge Models for Time Series Generation
Time series generation is widely used in real-world applications such as simulation, data augmentation, and hypothesis testing. Recently, diffusion models have emerged as the de facto approach to time series generation, enabling diverse synthesis scenarios. However, the fixed standard-Gaussian diffusion prior may be ill-suited for general time series data, such as temporal order and fixed points. In this paper, we propose TimeBridge, a framework that flexibly synthesizes time series data by using diffusion bridges to learn paths between a chosen prior and the data distribution. We then explore several prior designs tailored to time series synthesis. Our framework covers (i) data- and time-dependent priors for unconditional generation and (ii) scale-preserving priors for conditional generation. Experiments show that our framework with data-driven priors outperforms standard diffusion models on time series generation.
♻ ☆ CollabLLM: From Passive Responders to Active Collaborators ICML 2025
Large Language Models are typically trained with next-turn rewards, limiting their ability to optimize for long-term interaction. As a result, they often respond passively to ambiguous or open-ended user requests, failing to help users reach their ultimate intents and leading to inefficient conversations. To address these limitations, we introduce CollabLLM, a novel and general training framework that enhances multiturn human-LLM collaboration. Its key innovation is a collaborative simulation that estimates the long-term contribution of responses using Multiturn-aware Rewards. By reinforcement fine-tuning these rewards, CollabLLM goes beyond responding to user requests, and actively uncovers user intent and offers insightful suggestions-a key step towards more human-centered AI. We also devise a multiturn interaction benchmark with three challenging tasks such as document creation. CollabLLM significantly outperforms our baselines with averages of 18.5% higher task performance and 46.3% improved interactivity by LLM judges. Finally, we conduct a large user study with 201 judges, where CollabLLM increases user satisfaction by 17.6% and reduces user spent time by 10.4%.
comment: Accepted to ICML 2025. 24 pages
♻ ☆ Elucidating the Design Space of Multimodal Protein Language Models ICML 2025
Multimodal protein language models (PLMs) integrate sequence and token-based structural information, serving as a powerful foundation for protein modeling, generation, and design. However, the reliance on tokenizing 3D structures into discrete tokens causes substantial loss of fidelity about fine-grained structural details and correlations. In this paper, we systematically elucidate the design space of multimodal PLMs to overcome their limitations. We identify tokenization loss and inaccurate structure token predictions by the PLMs as major bottlenecks. To address these, our proposed design space covers improved generative modeling, structure-aware architectures and representation learning, and data exploration. Our advancements approach finer-grained supervision, demonstrating that token-based multimodal PLMs can achieve robust structural modeling. The effective design methods dramatically improve the structure generation diversity, and notably, folding abilities of our 650M model by reducing the RMSD from 5.52 to 2.36 on PDB testset, even outperforming 3B baselines and on par with the specialized folding models. Project page and code: https://bytedance.github.io/dplm/dplm-2.1/.
comment: ICML 2025 Spotlight; Project Page: https://bytedance.github.io/dplm/dplm-2.1/
♻ ☆ Qronos: Correcting the Past by Shaping the Future... in Post-Training Quantization
We introduce Qronos -- a new state-of-the-art post-training quantization algorithm that sequentially rounds and updates neural network weights. Qronos not only explicitly corrects errors due to both weight and activation quantization, but also errors resulting from quantizing previous layers. Our iterative algorithm is based on an interpretable and disciplined optimization framework that subsumes and surpasses existing data-driven approaches. At each step, Qronos alternates between error correction and diffusion via optimal update rules. Importantly, we prove that Qronos admits an efficient implementation that uses the Cholesky decomposition for solving least-squares problems. We also demonstrate that Qronos is compatible with existing transformation techniques such as Hadamard-based incoherence processing and weight-activation scaling equalization, among others. We evaluate Qronos using recent autoregressive language generation models in the Llama3 family; Qronos consistently outperforms previous state-of-the-art adaptive rounding methods when quantizing the weights, activations, and/or KV caches.
♻ ☆ An HCAI Methodological Framework (HCAI-MF): Putting It Into Action to Enable Human-Centered AI
Human-centered artificial intelligence (HCAI) is a design philosophy that prioritizes humans in the design, development, deployment, and use of AI systems, aiming to maximize AI's benefits while mitigating its negative impacts. Despite its growing prominence in literature, the lack of methodological guidance for its implementation poses challenges to HCAI practice. To address this gap, this paper proposes a comprehensive HCAI methodological framework (HCAI-MF) comprising five key components: HCAI requirement hierarchy, approach and method taxonomy, process, interdisciplinary collaboration approach, and multi-level design paradigms. A case study demonstrates HCAI-MF's practical implications, while the paper also analyzes implementation challenges. Actionable recommendations and a "three-layer" HCAI implementation strategy are provided to address these challenges and guide future evolution of HCAI-MF. HCAI-MF is presented as a systematic and executable methodology capable of overcoming current gaps, enabling effective design, development, deployment, and use of AI systems, and advancing HCAI practice.
♻ ☆ Evaluating Sample Utility for Efficient Data Selection by Mimicking Model Weights ICML
Multimodal models are trained on large-scale web-crawled datasets, which often contain noise, bias, and irrelevant information. This motivates the use of data selection techniques, which can be divided into model-free variants, relying on heuristic rules and downstream datasets, and model-based approaches, such as those using influence functions. The former can be expensive to design and risks introducing unwanted dataset dependencies, while the latter are often computationally prohibitive. In this work, we propose an efficient, model-based approach using the Mimic Score, a new data-quality metric that leverages the weights of a reference model to assess the usefulness of individual samples for training a new model. Our method relies on measuring alignments between training gradients and a target direction induced by this reference model. Building on the derived mimic scores, we develop Grad-Mimic: a framework that prioritizes samples to learn, estimates overall sample utility, and creates effective filters. Empirically, using mimic scores to guide training improves data efficiency, accelerates convergence, yields consistent performance gains across six image datasets, and enhances CLIP models with 20.7% fewer training steps. Moreover, mimic score-based filters complement existing filtering methods, e.g., training improved CLIP models with 4.7 million fewer samples while offering accurate estimation of dataset quality.
comment: ICML DataWorld Workshop 2025 Oral Paper
♻ ☆ One Diffusion to Generate Them All CVPR 2025
We introduce OneDiffusion, a versatile, large-scale diffusion model that seamlessly supports bidirectional image synthesis and understanding across diverse tasks. It enables conditional generation from inputs such as text, depth, pose, layout, and semantic maps, while also handling tasks like image deblurring, upscaling, and reverse processes such as depth estimation and segmentation. Additionally, OneDiffusion allows for multi-view generation, camera pose estimation, and instant personalization using sequential image inputs. Our model takes a straightforward yet effective approach by treating all tasks as frame sequences with varying noise scales during training, allowing any frame to act as a conditioning image at inference time. Our unified training framework removes the need for specialized architectures, supports scalable multi-task training, and adapts smoothly to any resolution, enhancing both generalization and scalability. Experimental results demonstrate competitive performance across tasks in both generation and prediction such as text-to-image, multiview generation, ID preservation, depth estimation and camera pose estimation despite relatively small training dataset. Our code and checkpoint are freely available at https://github.com/lehduong/OneDiffusion
comment: CVPR 2025; two first authors contribute equally
♻ ☆ Diffuse Everything: Multimodal Diffusion Models on Arbitrary State Spaces ICML 2025
Diffusion models have demonstrated remarkable performance in generating unimodal data across various tasks, including image, video, and text generation. On the contrary, the joint generation of multimodal data through diffusion models is still in the early stages of exploration. Existing approaches heavily rely on external preprocessing protocols, such as tokenizers and variational autoencoders, to harmonize varied data representations into a unified, unimodal format. This process heavily demands the high accuracy of encoders and decoders, which can be problematic for applications with limited data. To lift this restriction, we propose a novel framework for building multimodal diffusion models on arbitrary state spaces, enabling native generation of coupled data across different modalities. By introducing an innovative decoupled noise schedule for each modality, we enable both unconditional and modality-conditioned generation within a single model simultaneously. We empirically validate our approach for text-image generation and mixed-type tabular data synthesis, demonstrating that it achieves competitive performance.
comment: Accepted to ICML 2025. Code available at https://github.com/KevinRojas1499/Diffuse-Everything
♻ ☆ Ensemble Knowledge Distillation for Machine Learning Interatomic Potentials
The quality of machine learning interatomic potentials (MLIPs) strongly depends on the quantity of training data as well as the quantum chemistry (QC) level of theory used. Datasets generated with high-fidelity QC methods are typically restricted to small molecules and may be missing energy gradients, which make it difficult to train accurate MLIPs. We present an ensemble knowledge distillation (EKD) method to improve MLIP accuracy when trained to energy-only datasets. First, multiple teacher models are trained to QC energies and then generate atomic forces for all configurations in the dataset. Next, the student MLIP is trained to both QC energies and to ensemble-averaged forces generated by the teacher models. We apply this workflow on the ANI-1ccx dataset where the configuration energies computed at the coupled cluster level of theory. The resulting student MLIPs achieve new state-of-the-art accuracy on the COMP6 benchmark and show improved stability for molecular dynamics simulations.
♻ ☆ Conformal Inference under High-Dimensional Covariate Shifts via Likelihood-Ratio Regularization
We consider the problem of conformal prediction under covariate shift. Given labeled data from a source domain and unlabeled data from a covariate shifted target domain, we seek to construct prediction sets with valid marginal coverage in the target domain. Most existing methods require estimating the unknown likelihood ratio function, which can be prohibitive for high-dimensional data such as images. To address this challenge, we introduce the likelihood ratio regularized quantile regression (LR-QR) algorithm, which combines the pinball loss with a novel choice of regularization in order to construct a threshold function without directly estimating the unknown likelihood ratio. We show that the LR-QR method has coverage at the desired level in the target domain, up to a small error term that we can control. Our proofs draw on a novel analysis of coverage via stability bounds from learning theory. Our experiments demonstrate that the LR-QR algorithm outperforms existing methods on high-dimensional prediction tasks, including a regression task for the Communities and Crime dataset, an image classification task from the WILDS repository, and an LLM question-answering task on the MMLU benchmark.
♻ ☆ NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
Characterizing the diverse computational properties of human neurons via multimodal electrophysiological, transcriptomic, and morphological data provides the foundation for constructing and validating bio-realistic neuron models that can advance our understanding of fundamental mechanisms underlying brain function. However, current modeling approaches remain constrained by the limited availability and intrinsic variability of experimental neuronal data. To capture variability, ensembles of deterministic models are often used, but are difficult to scale as model generation requires repeating computationally expensive optimization for each neuron. While deep learning is becoming increasingly relevant in this space, it fails to capture the full biophysical complexity of neurons, their nonlinear voltage dynamics, and variability. To address these shortcomings, we introduce NOBLE, a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection. Trained on data generated from biophysically realistic neuron models, NOBLE predicts distributions of neural dynamics accounting for the intrinsic experimental variability. Unlike conventional bio-realistic neuron models, interpolating within the embedding space offers models whose dynamics are consistent with experimentally observed responses. NOBLE is the first scaled-up deep learning framework validated on real experimental data, enabling efficient generation of synthetic neurons that exhibit trial-to-trial variability and achieve a $4200\times$ speedup over numerical solvers. To this end, NOBLE captures fundamental neural properties, opening the door to a better understanding of cellular composition and computations, neuromorphic architectures, large-scale brain circuits, and general neuroAI applications.
♻ ☆ Naturalistic Computational Cognitive Science: Towards generalizable models and theories that capture the full range of natural behavior
How can cognitive science build generalizable theories that span the full scope of natural situations and behaviors? We argue that progress in Artificial Intelligence (AI) offers timely opportunities for cognitive science to embrace experiments with increasingly naturalistic stimuli, tasks, and behaviors; and computational models that can accommodate these changes. We first review a growing body of research spanning neuroscience, cognitive science, and AI that suggests that incorporating a broader range of naturalistic experimental paradigms, and models that accommodate them, may be necessary to resolve some aspects of natural intelligence and ensure that our theories generalize. First, we review cases from cognitive science and neuroscience where naturalistic paradigms elicit distinct behaviors or engage different processes. We then discuss recent progress in AI that shows that learning from naturalistic data yields qualitatively different patterns of behavior and generalization, and discuss how these findings impact the conclusions we draw from cognitive modeling, and can help yield new hypotheses for the roots of cognitive and neural phenomena. We then suggest that integrating recent progress in AI and cognitive science will enable us to engage with more naturalistic phenomena without giving up experimental control or the pursuit of theoretically grounded understanding. We offer practical guidance on how methodological practices can contribute to cumulative progress in naturalistic computational cognitive science, and illustrate a path towards building computational models that solve the real problems of natural cognition, together with a reductive understanding of the processes and principles by which they do so.
♻ ☆ Capturing Temporal Dynamics in Large-Scale Canopy Tree Height Estimation ICML
With the rise in global greenhouse gas emissions, accurate large-scale tree canopy height maps are essential for understanding forest structure, estimating above-ground biomass, and monitoring ecological disruptions. To this end, we present a novel approach to generate large-scale, high-resolution canopy height maps over time. Our model accurately predicts canopy height over multiple years given Sentinel-1 composite and Sentinel~2 time series satellite data. Using GEDI LiDAR data as the ground truth for training the model, we present the first 10m resolution temporal canopy height map of the European continent for the period 2019-2022. As part of this product, we also offer a detailed canopy height map for 2020, providing more precise estimates than previous studies. Our pipeline and the resulting temporal height map are publicly available, enabling comprehensive large-scale monitoring of forests and, hence, facilitating future research and ecological analyses.
comment: ICML Camera-Ready, 9 pages main paper, 8 pages references and appendix, 9 figures, 8 tables
♻ ☆ Control Industrial Automation System with Large Language Model Agents
Traditional industrial automation systems require specialized expertise to operate and complex reprogramming to adapt to new processes. Large language models offer the intelligence to make them more flexible and easier to use. However, LLMs' application in industrial settings is underexplored. This paper introduces a framework for integrating LLMs to achieve end-to-end control of industrial automation systems. At the core of the framework are an agent system designed for industrial tasks, a structured prompting method, and an event-driven information modeling mechanism that provides real-time data for LLM inference. The framework supplies LLMs with real-time events on different context semantic levels, allowing them to interpret the information, generate production plans, and control operations on the automation system. It also supports structured dataset creation for fine-tuning on this downstream application of LLMs. Our contribution includes a formal system design, proof-of-concept implementation, and a method for generating task-specific datasets for LLM fine-tuning and testing. This approach enables a more adaptive automation system that can respond to spontaneous events, while allowing easier operation and configuration through natural language for more intuitive human-machine interaction. We provide demo videos and detailed data on GitHub: https://github.com/YuchenXia/LLM4IAS.
comment: Pre-print accepted at 30th IEEE ETFA 2025
♻ ☆ Ad Auctions for LLMs via Retrieval Augmented Generation NeurIPS 2024
In the field of computational advertising, the integration of ads into the outputs of large language models (LLMs) presents an opportunity to support these services without compromising content integrity. This paper introduces novel auction mechanisms for ad allocation and pricing within the textual outputs of LLMs, leveraging retrieval-augmented generation (RAG). We propose a segment auction where an ad is probabilistically retrieved for each discourse segment (paragraph, section, or entire output) according to its bid and relevance, following the RAG framework, and priced according to competing bids. We show that our auction maximizes logarithmic social welfare, a new notion of welfare that balances allocation efficiency and fairness, and we characterize the associated incentive-compatible pricing rule. These results are extended to multi-ad allocation per segment. An empirical evaluation validates the feasibility and effectiveness of our approach over several ad auction scenarios, and exhibits inherent tradeoffs in metrics as we allow the LLM more flexibility to allocate ads.
comment: NeurIPS 2024
♻ ☆ ColorBench: Can VLMs See and Understand the Colorful World? A Comprehensive Benchmark for Color Perception, Reasoning, and Robustness
Color plays an important role in human perception and usually provides critical clues in visual reasoning. However, it is unclear whether and how vision-language models (VLMs) can perceive, understand, and leverage color as humans. This paper introduces ColorBench, an innovative benchmark meticulously crafted to assess the capabilities of VLMs in color understanding, including color perception, reasoning, and robustness. By curating a suite of diverse test scenarios, with grounding in real applications, ColorBench evaluates how these models perceive colors, infer meanings from color-based cues, and maintain consistent performance under varying color transformations. Through an extensive evaluation of 32 VLMs with varying language models and vision encoders, our paper reveals some undiscovered findings: (i) The scaling law (larger models are better) still holds on ColorBench, while the language model plays a more important role than the vision encoder. (ii) However, the performance gaps across models are relatively small, indicating that color understanding has been largely neglected by existing VLMs. (iii) CoT reasoning improves color understanding accuracies and robustness, though they are vision-centric tasks. (iv) Color clues are indeed leveraged by VLMs on ColorBench but they can also mislead models in some tasks. These findings highlight the critical limitations of current VLMs and underscore the need to enhance color comprehension. Our ColorBenchcan serve as a foundational tool for advancing the study of human-level color understanding of multimodal AI.
comment: 36 pages, including references and appendix. Code is available at https://github.com/tianyi-lab/ColorBench
♻ ☆ Enhancing Cooperative Multi-Agent Reinforcement Learning with State Modelling and Adversarial Exploration ICML 2025
Learning to cooperate in distributed partially observable environments with no communication abilities poses significant challenges for multi-agent deep reinforcement learning (MARL). This paper addresses key concerns in this domain, focusing on inferring state representations from individual agent observations and leveraging these representations to enhance agents' exploration and collaborative task execution policies. To this end, we propose a novel state modelling framework for cooperative MARL, where agents infer meaningful belief representations of the non-observable state, with respect to optimizing their own policies, while filtering redundant and less informative joint state information. Building upon this framework, we propose the MARL SMPE algorithm. In SMPE, agents enhance their own policy's discriminative abilities under partial observability, explicitly by incorporating their beliefs into the policy network, and implicitly by adopting an adversarial type of exploration policies which encourages agents to discover novel, high-value states while improving the discriminative abilities of others. Experimentally, we show that SMPE outperforms state-of-the-art MARL algorithms in complex fully cooperative tasks from the MPE, LBF, and RWARE benchmarks.
comment: Accepted at ICML 2025
Graphics 6
☆ Transformer IMU Calibrator: Dynamic On-body IMU Calibration for Inertial Motion Capture SIGGRAPH 2025
In this paper, we propose a novel dynamic calibration method for sparse inertial motion capture systems, which is the first to break the restrictive absolute static assumption in IMU calibration, i.e., the coordinate drift RG'G and measurement offset RBS remain constant during the entire motion, thereby significantly expanding their application scenarios. Specifically, we achieve real-time estimation of RG'G and RBS under two relaxed assumptions: i) the matrices change negligibly in a short time window; ii) the human movements/IMU readings are diverse in such a time window. Intuitively, the first assumption reduces the number of candidate matrices, and the second assumption provides diverse constraints, which greatly reduces the solution space and allows for accurate estimation of RG'G and RBS from a short history of IMU readings in real time. To achieve this, we created synthetic datasets of paired RG'G, RBS matrices and IMU readings, and learned their mappings using a Transformer-based model. We also designed a calibration trigger based on the diversity of IMU readings to ensure that assumption ii) is met before applying our method. To our knowledge, we are the first to achieve implicit IMU calibration (i.e., seamlessly putting IMUs into use without the need for an explicit calibration process), as well as the first to enable long-term and accurate motion capture using sparse IMUs. The code and dataset are available at https://github.com/ZuoCX1996/TIC.
comment: Accepted by SIGGRAPH 2025 (TOG)
☆ Edit360: 2D Image Edits to 3D Assets from Any Angle
Recent advances in diffusion models have significantly improved image generation and editing, but extending these capabilities to 3D assets remains challenging, especially for fine-grained edits that require multi-view consistency. Existing methods typically restrict editing to predetermined viewing angles, severely limiting their flexibility and practical applications. We introduce Edit360, a tuning-free framework that extends 2D modifications to multi-view consistent 3D editing. Built upon video diffusion models, Edit360 enables user-specific editing from arbitrary viewpoints while ensuring structural coherence across all views. The framework selects anchor views for 2D modifications and propagates edits across the entire 360-degree range. To achieve this, Edit360 introduces a novel Anchor-View Editing Propagation mechanism, which effectively aligns and merges multi-view information within the latent and attention spaces of diffusion models. The resulting edited multi-view sequences facilitate the reconstruction of high-quality 3D assets, enabling customizable 3D content creation.
comment: 11 pages, 9 figures
☆ Low-Barrier Dataset Collection with Real Human Body for Interactive Per-Garment Virtual Try-On
Existing image-based virtual try-on methods are often limited to the front view and lack real-time performance. While per-garment virtual try-on methods have tackled these issues by capturing per-garment datasets and training per-garment neural networks, they still encounter practical limitations: (1) the robotic mannequin used to capture per-garment datasets is prohibitively expensive for widespread adoption and fails to accurately replicate natural human body deformation; (2) the synthesized garments often misalign with the human body. To address these challenges, we propose a low-barrier approach for collecting per-garment datasets using real human bodies, eliminating the necessity for a customized robotic mannequin. We also introduce a hybrid person representation that enhances the existing intermediate representation with a simplified DensePose map. This ensures accurate alignment of synthesized garment images with the human body and enables human-garment interaction without the need for customized wearable devices. We performed qualitative and quantitative evaluations against other state-of-the-art image-based virtual try-on methods and conducted ablation studies to demonstrate the superiority of our method regarding image quality and temporal consistency. Finally, our user study results indicated that most participants found our virtual try-on system helpful for making garment purchasing decisions.
☆ On Ray Reordering Techniques for Faster GPU Ray Tracing
We study ray reordering as a tool for increasing the performance of existing GPU ray tracing implementations. We focus on ray reordering that is fully agnostic to the particular trace kernel. We summarize the existing methods for computing the ray sorting keys and discuss their properties. We propose a novel modification of a previously proposed method using the termination point estimation that is well-suited to tracing secondary rays. We evaluate the ray reordering techniques in the context of the wavefront path tracing using the RTX trace kernels. We show that ray reordering yields significantly higher trace speed on recent GPUs (1.3-2.0x), but to recover the reordering overhead in the hardware-accelerated trace phase is problematic.
☆ Anti-Aliased 2D Gaussian Splatting
2D Gaussian Splatting (2DGS) has recently emerged as a promising method for novel view synthesis and surface reconstruction, offering better view-consistency and geometric accuracy than volumetric 3DGS. However, 2DGS suffers from severe aliasing artifacts when rendering at different sampling rates than those used during training, limiting its practical applications in scenarios requiring camera zoom or varying fields of view. We identify that these artifacts stem from two key limitations: the lack of frequency constraints in the representation and an ineffective screen-space clamping approach. To address these issues, we present AA-2DGS, an antialiased formulation of 2D Gaussian Splatting that maintains its geometric benefits while significantly enhancing rendering quality across different scales. Our method introduces a world space flat smoothing kernel that constrains the frequency content of 2D Gaussian primitives based on the maximal sampling frequency from training views, effectively eliminating high-frequency artifacts when zooming in. Additionally, we derive a novel object space Mip filter by leveraging an affine approximation of the ray-splat intersection mapping, which allows us to efficiently apply proper anti-aliasing directly in the local space of each splat.
comment: Code will be available at https://github.com/maeyounes/AA-2DGS
♻ ☆ Robust Construction of Polycube Segmentations via Dual Loops
Polycube segmentations for 3D models effectively support a wide variety of applications such as seamless texture mapping, spline fitting, structured multi-block grid generation, and hexahedral mesh construction. However, the automated construction of valid polycube segmentations suffers from robustness issues: state-of-the-art methods are not guaranteed to find a valid solution. In this paper we present DualCube: an iterative algorithm which is guaranteed to return a valid polycube segmentation for 3D models of any genus. Our algorithm is based on a dual representation of polycubes. Starting from an initial simple polycube of the correct genus, together with the corresponding dual loop structure and polycube segmentation, we iteratively refine the polycube, loop structure, and segmentation, while maintaining the correctness of the solution. DualCube is robust by construction: at any point during the iterative process the current segmentation is valid. Its iterative nature furthermore facilitates a seamless trade-off between quality and complexity of the solution. DualCube can be implemented using comparatively simple algorithmic building blocks; our experimental evaluation establishes that the quality of our polycube segmentations is on par with, or exceeding, the state-of-the-art.
Robotics 69
☆ eFlesh: Highly customizable Magnetic Touch Sensing using Cut-Cell Microstructures
If human experience is any guide, operating effectively in unstructured environments -- like homes and offices -- requires robots to sense the forces during physical interaction. Yet, the lack of a versatile, accessible, and easily customizable tactile sensor has led to fragmented, sensor-specific solutions in robotic manipulation -- and in many cases, to force-unaware, sensorless approaches. With eFlesh, we bridge this gap by introducing a magnetic tactile sensor that is low-cost, easy to fabricate, and highly customizable. Building an eFlesh sensor requires only four components: a hobbyist 3D printer, off-the-shelf magnets (<$5), a CAD model of the desired shape, and a magnetometer circuit board. The sensor is constructed from tiled, parameterized microstructures, which allow for tuning the sensor's geometry and its mechanical response. We provide an open-source design tool that converts convex OBJ/STL files into 3D-printable STLs for fabrication. This modular design framework enables users to create application-specific sensors, and to adjust sensitivity depending on the task. Our sensor characterization experiments demonstrate the capabilities of eFlesh: contact localization RMSE of 0.5 mm, and force prediction RMSE of 0.27 N for normal force and 0.12 N for shear force. We also present a learned slip detection model that generalizes to unseen objects with 95% accuracy, and visuotactile control policies that improve manipulation performance by 40% over vision-only baselines -- achieving 91% average success rate for four precise tasks that require sub-mm accuracy for successful completion. All design files, code and the CAD-to-eFlesh STL conversion tool are open-sourced and available on https://e-flesh.com.
☆ Chain-of-Action: Trajectory Autoregressive Modeling for Robotic Manipulation
We present Chain-of-Action (CoA), a novel visuo-motor policy paradigm built upon Trajectory Autoregressive Modeling. Unlike conventional approaches that predict next step action(s) forward, CoA generates an entire trajectory by explicit backward reasoning with task-specific goals through an action-level Chain-of-Thought (CoT) process. This process is unified within a single autoregressive structure: (1) the first token corresponds to a stable keyframe action that encodes the task-specific goals; and (2) subsequent action tokens are generated autoregressively, conditioned on the initial keyframe and previously predicted actions. This backward action reasoning enforces a global-to-local structure, allowing each local action to be tightly constrained by the final goal. To further realize the action reasoning structure, CoA incorporates four complementary designs: continuous action token representation; dynamic stopping for variable-length trajectory generation; reverse temporal ensemble; and multi-token prediction to balance action chunk modeling with global structure. As a result, CoA gives strong spatial generalization capabilities while preserving the flexibility and simplicity of a visuo-motor policy. Empirically, we observe CoA achieves the state-of-the-art performance across 60 RLBench tasks and 8 real-world manipulation tasks.
☆ V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning
A major challenge for modern AI is to learn to understand the world and learn to act largely by observation. This paper explores a self-supervised approach that combines internet-scale video data with a small amount of interaction data (robot trajectories), to develop models capable of understanding, predicting, and planning in the physical world. We first pre-train an action-free joint-embedding-predictive architecture, V-JEPA 2, on a video and image dataset comprising over 1 million hours of internet video. V-JEPA 2 achieves strong performance on motion understanding (77.3 top-1 accuracy on Something-Something v2) and state-of-the-art performance on human action anticipation (39.7 recall-at-5 on Epic-Kitchens-100) surpassing previous task-specific models. Additionally, after aligning V-JEPA 2 with a large language model, we demonstrate state-of-the-art performance on multiple video question-answering tasks at the 8 billion parameter scale (e.g., 84.0 on PerceptionTest, 76.9 on TempCompass). Finally, we show how self-supervised learning can be applied to robotic planning tasks by post-training a latent action-conditioned world model, V-JEPA 2-AC, using less than 62 hours of unlabeled robot videos from the Droid dataset. We deploy V-JEPA 2-AC zero-shot on Franka arms in two different labs and enable picking and placing of objects using planning with image goals. Notably, this is achieved without collecting any data from the robots in these environments, and without any task-specific training or reward. This work demonstrates how self-supervised learning from web-scale data and a small amount of robot interaction data can yield a world model capable of planning in the physical world.
comment: 48 pages, 19 figures
☆ ReSim: Reliable World Simulation for Autonomous Driving
How can we reliably simulate future driving scenarios under a wide range of ego driving behaviors? Recent driving world models, developed exclusively on real-world driving data composed mainly of safe expert trajectories, struggle to follow hazardous or non-expert behaviors, which are rare in such data. This limitation restricts their applicability to tasks such as policy evaluation. In this work, we address this challenge by enriching real-world human demonstrations with diverse non-expert data collected from a driving simulator (e.g., CARLA), and building a controllable world model trained on this heterogeneous corpus. Starting with a video generator featuring a diffusion transformer architecture, we devise several strategies to effectively integrate conditioning signals and improve prediction controllability and fidelity. The resulting model, ReSim, enables Reliable Simulation of diverse open-world driving scenarios under various actions, including hazardous non-expert ones. To close the gap between high-fidelity simulation and applications that require reward signals to judge different actions, we introduce a Video2Reward module that estimates a reward from ReSim's simulated future. Our ReSim paradigm achieves up to 44% higher visual fidelity, improves controllability for both expert and non-expert actions by over 50%, and boosts planning and policy selection performance on NAVSIM by 2% and 25%, respectively.
comment: Project page: https://opendrivelab.com/ReSim
☆ Locomotion on Constrained Footholds via Layered Architectures and Model Predictive Control
Computing stabilizing and optimal control actions for legged locomotion in real time is difficult due to the nonlinear, hybrid, and high dimensional nature of these robots. The hybrid nature of the system introduces a combination of discrete and continuous variables which causes issues for numerical optimal control. To address these challenges, we propose a layered architecture that separates the choice of discrete variables and a smooth Model Predictive Controller (MPC). The layered formulation allows for online flexibility and optimality without sacrificing real-time performance through a combination of gradient-free and gradient-based methods. The architecture leverages a sampling-based method for determining discrete variables, and a classical smooth MPC formulation using these fixed discrete variables. We demonstrate the results on a quadrupedal robot stepping over gaps and onto terrain with varying heights. In simulation, we demonstrate the controller on a humanoid robot for gap traversal. The layered approach is shown to be more optimal and reliable than common heuristic-based approaches and faster to compute than pure sampling methods.
comment: Submitted to Humanoids 2025
☆ SAFE: Multitask Failure Detection for Vision-Language-Action Models
While vision-language-action models (VLAs) have shown promising robotic behaviors across a diverse set of manipulation tasks, they achieve limited success rates when deployed on novel tasks out-of-the-box. To allow these policies to safely interact with their environments, we need a failure detector that gives a timely alert such that the robot can stop, backtrack, or ask for help. However, existing failure detectors are trained and tested only on one or a few specific tasks, while VLAs require the detector to generalize and detect failures also in unseen tasks and novel environments. In this paper, we introduce the multitask failure detection problem and propose SAFE, a failure detector for generalist robot policies such as VLAs. We analyze the VLA feature space and find that VLAs have sufficient high-level knowledge about task success and failure, which is generic across different tasks. Based on this insight, we design SAFE to learn from VLA internal features and predict a single scalar indicating the likelihood of task failure. SAFE is trained on both successful and failed rollouts, and is evaluated on unseen tasks. SAFE is compatible with different policy architectures. We test it on OpenVLA, $\pi_0$, and $\pi_0$-FAST in both simulated and real-world environments extensively. We compare SAFE with diverse baselines and show that SAFE achieves state-of-the-art failure detection performance and the best trade-off between accuracy and detection time using conformal prediction. More qualitative results can be found at https://vla-safe.github.io/.
comment: Project Page: https://vla-safe.github.io/
☆ Fluoroscopic Shape and Pose Tracking of Catheters with Custom Radiopaque Markers
Safe navigation of steerable and robotic catheters in the cerebral vasculature requires awareness of the catheters shape and pose. Currently, a significant perception burden is placed on interventionalists to mentally reconstruct and predict catheter motions from biplane fluoroscopy images. Efforts to track these catheters are limited to planar segmentation or bulky sensing instrumentation, which are incompatible with microcatheters used in neurointervention. In this work, a catheter is equipped with custom radiopaque markers arranged to enable simultaneous shape and pose estimation under biplane fluoroscopy. A design measure is proposed to guide the arrangement of these markers to minimize sensitivity to marker tracking uncertainty. This approach was deployed for microcatheters smaller than 2mm OD navigating phantom vasculature with shape tracking errors less than 1mm and catheter roll errors below 40 degrees. This work can enable steerable catheters to autonomously navigate under biplane imaging.
comment: 8 pages, 5 figures, accepted in Robotics and Automation Letters
☆ From Intention to Execution: Probing the Generalization Boundaries of Vision-Language-Action Models
One promise that Vision-Language-Action (VLA) models hold over traditional imitation learning for robotics is to leverage the broad generalization capabilities of large Vision-Language Models (VLMs) to produce versatile, "generalist" robot policies. However, current evaluations of VLAs remain insufficient. Traditional imitation learning benchmarks are unsuitable due to the lack of language instructions. Emerging benchmarks for VLAs that incorporate language often come with limited evaluation tasks and do not intend to investigate how much VLM pretraining truly contributes to the generalization capabilities of the downstream robotic policy. Meanwhile, much research relies on real-world robot setups designed in isolation by different institutions, which creates a barrier for reproducibility and accessibility. To address this gap, we introduce a unified probing suite of 50 simulation-based tasks across 10 subcategories spanning language instruction, vision, and objects. We systematically evaluate several state-of-the-art VLA architectures on this suite to understand their generalization capability. Our results show that while VLM backbones endow VLAs with robust perceptual understanding and high level planning, which we refer to as good intentions, this does not reliably translate into precise motor execution: when faced with out-of-distribution observations, policies often exhibit coherent intentions, but falter in action execution. Moreover, finetuning on action data can erode the original VLM's generalist reasoning abilities. We release our task suite and evaluation code to serve as a standardized benchmark for future VLAs and to drive research on closing the perception-to-action gap. More information, including the source code, can be found at https://ai4ce.github.io/INT-ACT/
comment: Under review
☆ From Theory to Practice: Advancing Multi-Robot Path Planning Algorithms and Applications
The labeled MRPP (Multi-Robot Path Planning) problem involves routing robots from start to goal configurations efficiently while avoiding collisions. Despite progress in solution quality and runtime, its complexity and industrial relevance continue to drive research. This dissertation introduces scalable MRPP methods with provable guarantees and practical heuristics. First, we study dense MRPP on 2D grids, relevant to warehouse and parcel systems. We propose the Rubik Table method, achieving $(1 + \delta)$-optimal makespan (with $\delta \in (0, 0.5]$) for up to $\frac{m_1 m_2}{2}$ robots, solving large instances efficiently and setting a new theoretical benchmark. Next, we address real-world MRPP. We design optimal layouts for structured environments (e.g., warehouses, parking systems) and propose a puzzle-based system for dense, deadlock-free autonomous vehicle parking. We also extend MRPP to Reeds-Shepp robots, introducing motion primitives and smoothing techniques to ensure feasible, efficient paths under nonholonomic constraints. Simulations and real-world tests validate the approach in urban driving and robotic transport scenarios.
comment: Ph.D. thesis
☆ Aucamp: An Underwater Camera-Based Multi-Robot Platform with Low-Cost, Distributed, and Robust Localization
This paper introduces an underwater multi-robot platform, named Aucamp, characterized by cost-effective monocular-camera-based sensing, distributed protocol and robust orientation control for localization. We utilize the clarity feature to measure the distance, present the monocular imaging model, and estimate the position of the target object. We achieve global positioning in our platform by designing a distributed update protocol. The distributed algorithm enables the perception process to simultaneously cover a broader range, and greatly improves the accuracy and robustness of the positioning. Moreover, the explicit dynamics model of the robot in our platform is obtained, based on which, we propose a robust orientation control framework. The control system ensures that the platform maintains a balanced posture for each robot, thereby ensuring the stability of the localization system. The platform can swiftly recover from an forced unstable state to a stable horizontal posture. Additionally, we conduct extensive experiments and application scenarios to evaluate the performance of our platform. The proposed new platform may provide support for extensive marine exploration by underwater sensor networks.
☆ Hierarchical Learning-Enhanced MPC for Safe Crowd Navigation with Heterogeneous Constraints
In this paper, we propose a novel hierarchical framework for robot navigation in dynamic environments with heterogeneous constraints. Our approach leverages a graph neural network trained via reinforcement learning (RL) to efficiently estimate the robot's cost-to-go, formulated as local goal recommendations. A spatio-temporal path-searching module, which accounts for kinematic constraints, is then employed to generate a reference trajectory to facilitate solving the non-convex optimization problem used for explicit constraint enforcement. More importantly, we introduce an incremental action-masking mechanism and a privileged learning strategy, enabling end-to-end training of the proposed planner. Both simulation and real-world experiments demonstrate that the proposed method effectively addresses local planning in complex dynamic environments, achieving state-of-the-art (SOTA) performance. Compared with existing learning-optimization hybrid methods, our approach eliminates the dependency on high-fidelity simulation environments, offering significant advantages in computational efficiency and training scalability. The code will be released as open-source upon acceptance of the paper.
☆ OctoNav: Towards Generalist Embodied Navigation
Embodied navigation stands as a foundation pillar within the broader pursuit of embodied AI. However, previous navigation research is divided into different tasks/capabilities, e.g., ObjNav, ImgNav and VLN, where they differ in task objectives and modalities, making datasets and methods are designed individually. In this work, we take steps toward generalist navigation agents, which can follow free-form instructions that include arbitrary compounds of multi-modal and multi-capability. To achieve this, we propose a large-scale benchmark and corresponding method, termed OctoNav-Bench and OctoNav-R1. Specifically, OctoNav-Bench features continuous environments and is constructed via a designed annotation pipeline. We thoroughly craft instruction-trajectory pairs, where instructions are diverse in free-form with arbitrary modality and capability. Also, we construct a Think-Before-Action (TBA-CoT) dataset within OctoNav-Bench to provide the thinking process behind actions. For OctoNav-R1, we build it upon MLLMs and adapt it to a VLA-type model, which can produce low-level actions solely based on 2D visual observations. Moreover, we design a Hybrid Training Paradigm (HTP) that consists of three stages, i.e., Action-/TBA-SFT, Nav-GPRO, and Online RL stages. Each stage contains specifically designed learning policies and rewards. Importantly, for TBA-SFT and Nav-GRPO designs, we are inspired by the OpenAI-o1 and DeepSeek-R1, which show impressive reasoning ability via thinking-before-answer. Thus, we aim to investigate how to achieve thinking-before-action in the embodied navigation field, to improve model's reasoning ability toward generalists. Specifically, we propose TBA-SFT to utilize the TBA-CoT dataset to fine-tune the model as a cold-start phrase and then leverage Nav-GPRO to improve its thinking ability. Finally, OctoNav-R1 shows superior performance compared with previous methods.
comment: 31 pages, 25 figures
☆ Reinforced Refinement with Self-Aware Expansion for End-to-End Autonomous Driving
End-to-end autonomous driving has emerged as a promising paradigm for directly mapping sensor inputs to planning maneuvers using learning-based modular integrations. However, existing imitation learning (IL)-based models suffer from generalization to hard cases, and a lack of corrective feedback loop under post-deployment. While reinforcement learning (RL) offers a potential solution to tackle hard cases with optimality, it is often hindered by overfitting to specific driving cases, resulting in catastrophic forgetting of generalizable knowledge and sample inefficiency. To overcome these challenges, we propose Reinforced Refinement with Self-aware Expansion (R2SE), a novel learning pipeline that constantly refines hard domain while keeping generalizable driving policy for model-agnostic end-to-end driving systems. Through reinforcement fine-tuning and policy expansion that facilitates continuous improvement, R2SE features three key components: 1) Generalist Pretraining with hard-case allocation trains a generalist imitation learning (IL) driving system while dynamically identifying failure-prone cases for targeted refinement; 2) Residual Reinforced Specialist Fine-tuning optimizes residual corrections using reinforcement learning (RL) to improve performance in hard case domain while preserving global driving knowledge; 3) Self-aware Adapter Expansion dynamically integrates specialist policies back into the generalist model, enhancing continuous performance improvement. Experimental results in closed-loop simulation and real-world datasets demonstrate improvements in generalization, safety, and long-horizon policy robustness over state-of-the-art E2E systems, highlighting the effectiveness of reinforce refinement for scalable autonomous driving.
☆ Learning to Optimize Package Picking for Large-Scale, Real-World Robot Induction
Warehouse automation plays a pivotal role in enhancing operational efficiency, minimizing costs, and improving resilience to workforce variability. While prior research has demonstrated the potential of machine learning (ML) models to increase picking success rates in large-scale robotic fleets by prioritizing high-probability picks and packages, these efforts primarily focused on predicting success probabilities for picks sampled using heuristic methods. Limited attention has been given, however, to leveraging data-driven approaches to directly optimize sampled picks for better performance at scale. In this study, we propose an ML-based framework that predicts transform adjustments as well as improving the selection of suction cups for multi-suction end effectors for sampled picks to enhance their success probabilities. The framework was integrated and evaluated in test workcells that resemble the operations of Amazon Robotics' Robot Induction (Robin) fleet, which is used for package manipulation. Evaluated on over 2 million picks, the proposed method achieves a 20\% reduction in pick failure rates compared to a heuristic-based pick sampling baseline, demonstrating its effectiveness in large-scale warehouse automation scenarios.
comment: The 19th International Symposium on Experimental Robotics (ISER 2025); 6-10 July 2025, Santa Fe, New Mexico, USA; 10 pages
☆ Hierarchical Image Matching for UAV Absolute Visual Localization via Semantic and Structural Constraints
Absolute localization, aiming to determine an agent's location with respect to a global reference, is crucial for unmanned aerial vehicles (UAVs) in various applications, but it becomes challenging when global navigation satellite system (GNSS) signals are unavailable. Vision-based absolute localization methods, which locate the current view of the UAV in a reference satellite map to estimate its position, have become popular in GNSS-denied scenarios. However, existing methods mostly rely on traditional and low-level image matching, suffering from difficulties due to significant differences introduced by cross-source discrepancies and temporal variations. To overcome these limitations, in this paper, we introduce a hierarchical cross-source image matching method designed for UAV absolute localization, which integrates a semantic-aware and structure-constrained coarse matching module with a lightweight fine-grained matching module. Specifically, in the coarse matching module, semantic features derived from a vision foundation model first establish region-level correspondences under semantic and structural constraints. Then, the fine-grained matching module is applied to extract fine features and establish pixel-level correspondences. Building upon this, a UAV absolute visual localization pipeline is constructed without any reliance on relative localization techniques, mainly by employing an image retrieval module before the proposed hierarchical image matching modules. Experimental evaluations on public benchmark datasets and a newly introduced CS-UAV dataset demonstrate superior accuracy and robustness of the proposed method under various challenging conditions, confirming its effectiveness.
comment: 8 pages, 6 figures
☆ Human-robot collaborative transport personalization via Dynamic Movement Primitives and velocity scaling
Nowadays, industries are showing a growing interest in human-robot collaboration, particularly for shared tasks. This requires intelligent strategies to plan a robot's motions, considering both task constraints and human-specific factors such as height and movement preferences. This work introduces a novel approach to generate personalized trajectories using Dynamic Movement Primitives (DMPs), enhanced with real-time velocity scaling based on human feedback. The method was rigorously tested in industrial-grade experiments, focusing on the collaborative transport of an engine cowl lip section. Comparative analysis between DMP-generated trajectories and a state-of-the-art motion planner (BiTRRT) highlights their adaptability combined with velocity scaling. Subjective user feedback further demonstrates a clear preference for DMP- based interactions. Objective evaluations, including physiological measurements from brain and skin activity, reinforce these findings, showcasing the advantages of DMPs in enhancing human-robot interaction and improving user experience.
☆ HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action recognition methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The code is available at https://github.com/KPeng9510/HopaDIFF.git.
comment: The code is available at https://github.com/KPeng9510/HopaDIFF.git
☆ R-CARLA: High-Fidelity Sensor Simulations with Interchangeable Dynamics for Autonomous Racing
Autonomous racing has emerged as a crucial testbed for autonomous driving algorithms, necessitating a simulation environment for both vehicle dynamics and sensor behavior. Striking the right balance between vehicle dynamics and sensor accuracy is crucial for pushing vehicles to their performance limits. However, autonomous racing developers often face a trade-off between accurate vehicle dynamics and high-fidelity sensor simulations. This paper introduces R-CARLA, an enhancement of the CARLA simulator that supports holistic full-stack testing, from perception to control, using a single system. By seamlessly integrating accurate vehicle dynamics with sensor simulations, opponents simulation as NPCs, and a pipeline for creating digital twins from real-world robotic data, R-CARLA empowers researchers to push the boundaries of autonomous racing development. Furthermore, it is developed using CARLA's rich suite of sensor simulations. Our results indicate that incorporating the proposed digital-twin framework into R-CARLA enables more realistic full-stack testing, demonstrating a significant reduction in the Sim-to-Real gap of car dynamics simulation by 42% and by 82% in the case of sensor simulation across various testing scenarios.
☆ Analytic Task Scheduler: Recursive Least Squares Based Method for Continual Learning in Embodied Foundation Models
Embodied foundation models are crucial for Artificial Intelligence (AI) interacting with the physical world by integrating multi-modal inputs, such as proprioception, vision and language, to understand human intentions and generate actions to control robots. While these models demonstrate strong generalization and few-shot learning capabilities, they face significant challenges in continually acquiring new skills without forgetting previously learned skills, a problem known as catastrophic forgetting. To address this issue, we propose the Analytic Task Scheduler (ATS), a novel framework for continual learning in embodied foundation models. ATS consists of a task-specific model library, where each model is fine-tuned independently on a single task, and an analytic scheduler trained using recursive least squares (RLS) to learn the mapping between language instructions and task-specific models. This architecture enables accurate task recognition and dynamic model selection while fundamentally avoiding parameter interference across tasks. The scheduler updates its parameters incrementally using only statistics (autocorrelation and cross-correlation matrices), enabling forgetting-resistant learning without the need to revisit historical data. We validate ATS on a real-world robot platform (RM65B), demonstrating superior resistance to forgetting and strong adaptability to task variations. The results highlight ATS as an effective, scalable, and deployable solution for continual learning in embodied foundation models operating in complex, dynamic environments. Our code will be available at https://github.com/MIAA-Embodied-AI/AnalyticTaskScheduler
☆ Attention-Based Map Encoding for Learning Generalized Legged Locomotion
Dynamic locomotion of legged robots is a critical yet challenging topic in expanding the operational range of mobile robots. It requires precise planning when possible footholds are sparse, robustness against uncertainties and disturbances, and generalizability across diverse terrains. While traditional model-based controllers excel at planning on complex terrains, they struggle with real-world uncertainties. Learning-based controllers offer robustness to such uncertainties but often lack precision on terrains with sparse steppable areas. Hybrid methods achieve enhanced robustness on sparse terrains by combining both methods but are computationally demanding and constrained by the inherent limitations of model-based planners. To achieve generalized legged locomotion on diverse terrains while preserving the robustness of learning-based controllers, this paper proposes to learn an attention-based map encoding conditioned on robot proprioception, which is trained as part of the end-to-end controller using reinforcement learning. We show that the network learns to focus on steppable areas for future footholds when the robot dynamically navigates diverse and challenging terrains. We synthesize behaviors that exhibit robustness against uncertainties while enabling precise and agile traversal of sparse terrains. Additionally, our method offers a way to interpret the topographical perception of a neural network. We have trained two controllers for a 12-DoF quadrupedal robot and a 23-DoF humanoid robot respectively and tested the resulting controllers in the real world under various challenging indoor and outdoor scenarios, including ones unseen during training.
comment: Original draft prior to peer review. Significant revisions and new materials are expected after formal publication release
☆ VAULT: A Mobile Mapping System for ROS 2-based Autonomous Robots
Localization plays a crucial role in the navigation capabilities of autonomous robots, and while indoor environments can rely on wheel odometry and 2D LiDAR-based mapping, outdoor settings such as agriculture and forestry, present unique challenges that necessitate real-time localization and consistent mapping. Addressing this need, this paper introduces the VAULT prototype, a ROS 2-based mobile mapping system (MMS) that combines various sensors to enable robust outdoor and indoor localization. The proposed solution harnesses the power of Global Navigation Satellite System (GNSS) data, visual-inertial odometry (VIO), inertial measurement unit (IMU) data, and the Extended Kalman Filter (EKF) to generate reliable 3D odometry. To further enhance the localization accuracy, Visual SLAM (VSLAM) is employed, resulting in the creation of a comprehensive 3D point cloud map. By leveraging these sensor technologies and advanced algorithms, the prototype offers a comprehensive solution for outdoor localization in autonomous mobile robots, enabling them to navigate and map their surroundings with confidence and precision.
comment: 15 pages, 5 figures, Submitted to WAF 2023: Workshop de Agentes Fisicos
☆ Integrating Quantized LLMs into Robotics Systems as Edge AI to Leverage their Natural Language Processing Capabilities ICRA 2024
Large Language Models (LLMs) have experienced great advancements in the last year resulting in an increase of these models in several fields to face natural language tasks. The integration of these models in robotics can also help to improve several aspects such as human-robot interaction, navigation, planning and decision-making. Therefore, this paper introduces llama\_ros, a tool designed to integrate quantized Large Language Models (LLMs) into robotic systems using ROS 2. Leveraging llama.cpp, a highly optimized runtime engine, llama\_ros enables the efficient execution of quantized LLMs as edge artificial intelligence (AI) in robotics systems with resource-constrained environments, addressing the challenges of computational efficiency and memory limitations. By deploying quantized LLMs, llama\_ros empowers robots to leverage the natural language understanding and generation for enhanced decision-making and interaction which can be paired with prompt engineering, knowledge graphs, ontologies or other tools to improve the capabilities of autonomous robots. Additionally, this paper provides insights into some use cases of using llama\_ros for planning and explainability in robotics.
comment: 10 pages, 4 figures, Submitted to 3rd edition of the Workshop on Ontologies and Standards for Robotics and Automation (WOSRA) at ICRA 2024
☆ Enhancing Human-Robot Collaboration: A Sim2Real Domain Adaptation Algorithm for Point Cloud Segmentation in Industrial Environments
The robust interpretation of 3D environments is crucial for human-robot collaboration (HRC) applications, where safety and operational efficiency are paramount. Semantic segmentation plays a key role in this context by enabling a precise and detailed understanding of the environment. Considering the intense data hunger for real-world industrial annotated data essential for effective semantic segmentation, this paper introduces a pioneering approach in the Sim2Real domain adaptation for semantic segmentation of 3D point cloud data, specifically tailored for HRC. Our focus is on developing a network that robustly transitions from simulated environments to real-world applications, thereby enhancing its practical utility and impact on a safe HRC. In this work, we propose a dual-stream network architecture (FUSION) combining Dynamic Graph Convolutional Neural Networks (DGCNN) and Convolutional Neural Networks (CNN) augmented with residual layers as a Sim2Real domain adaptation algorithm for an industrial environment. The proposed model was evaluated on real-world HRC setups and simulation industrial point clouds, it showed increased state-of-the-art performance, achieving a segmentation accuracy of 97.76%, and superior robustness compared to existing methods.
comment: Preprint, Journal of Intelligent & Robotic Systems
☆ Tightly-Coupled LiDAR-IMU-Leg Odometry with Online Learned Leg Kinematics Incorporating Foot Tactile Information
In this letter, we present tightly coupled LiDAR-IMU-leg odometry, which is robust to challenging conditions such as featureless environments and deformable terrains. We developed an online learning-based leg kinematics model named the neural leg kinematics model, which incorporates tactile information (foot reaction force) to implicitly express the nonlinear dynamics between robot feet and the ground. Online training of this model enhances its adaptability to weight load changes of a robot (e.g., assuming delivery or transportation tasks) and terrain conditions. According to the \textit{neural adaptive leg odometry factor} and online uncertainty estimation of the leg kinematics model-based motion predictions, we jointly solve online training of this kinematics model and odometry estimation on a unified factor graph to retain the consistency of both. The proposed method was verified through real experiments using a quadruped robot in two challenging situations: 1) a sandy beach, representing an extremely featureless area with a deformable terrain, and 2) a campus, including multiple featureless areas and terrain types of asphalt, gravel (deformable terrain), and grass. Experimental results showed that our odometry estimation incorporating the \textit{neural leg kinematics model} outperforms state-of-the-art works. Our project page is available for further details: https://takuokawara.github.io/RAL2025_project_page/
comment: Robotics and Automation Letters
☆ Adaptive event-triggered robust tracking control of soft robots
Soft robots manufactured with flexible materials can be highly compliant and adaptive to their surroundings, which facilitates their application in areas such as dexterous manipulation and environmental exploration. This paper aims at investigating the tracking control problem for soft robots under uncertainty such as unmodeled dynamics and external disturbance. First, we establish a novel switching function and design the compensated tracking error dynamics by virtue of the command filter. Then, based on the backstepping methodology, the virtual controllers and the adaptive logic estimating the supremum of uncertainty impacts are developed for synthesizing an event-triggered control strategy. In addition, the uniformed finite-time stability certification is derived for different scenarios of the switching function. Finally, we perform a case study of a soft robot to illustrate the effectiveness of the proposed control algorithm.
comment: 8 pages, 7 figures
☆ How attention simplifies mental representations for planning
Human planning is efficient -- it frugally deploys limited cognitive resources to accomplish difficult tasks -- and flexible -- adapting to novel problems and environments. Computational approaches suggest that people construct simplified mental representations of their environment, balancing the complexity of a task representation with its utility. These models imply a nested optimisation in which planning shapes perception, and perception shapes planning -- but the perceptual and attentional mechanisms governing how this interaction unfolds remain unknown. Here, we harness virtual maze navigation to characterise how spatial attention controls which aspects of a task representation enter subjective awareness and are available for planning. We find that spatial proximity governs which aspects of a maze are available for planning, and that when task-relevant information follows natural (lateralised) contours of attention, people can more easily construct simplified and useful maze representations. This influence of attention varies considerably across individuals, explaining differences in people's task representations and behaviour. Inspired by the 'spotlight of attention' analogy, we incorporate the effects of visuospatial attention into existing computational accounts of value-guided construal. Together, our work bridges computational perspectives on perception and decision-making to better understand how individuals represent their environments in aid of planning.
☆ Efficient Preference-Based Reinforcement Learning: Randomized Exploration Meets Experimental Design
We study reinforcement learning from human feedback in general Markov decision processes, where agents learn from trajectory-level preference comparisons. A central challenge in this setting is to design algorithms that select informative preference queries to identify the underlying reward while ensuring theoretical guarantees. We propose a meta-algorithm based on randomized exploration, which avoids the computational challenges associated with optimistic approaches and remains tractable. We establish both regret and last-iterate guarantees under mild reinforcement learning oracle assumptions. To improve query complexity, we introduce and analyze an improved algorithm that collects batches of trajectory pairs and applies optimal experimental design to select informative comparison queries. The batch structure also enables parallelization of preference queries, which is relevant in practical deployment as feedback can be gathered concurrently. Empirical evaluation confirms that the proposed method is competitive with reward-based reinforcement learning while requiring a small number of preference queries.
☆ Advances on Affordable Hardware Platforms for Human Demonstration Acquisition in Agricultural Applications
This paper presents advances on the Universal Manipulation Interface (UMI), a low-cost hand-held gripper for robot Learning from Demonstration (LfD), for complex in-the-wild scenarios found in agricultural settings. The focus is on improving the acquisition of suitable samples with minimal additional setup. Firstly, idle times and user's cognitive load are reduced through the extraction of individual samples from a continuous demonstration considering task events. Secondly, reliability on the generation of task sample's trajectories is increased through the combination on-board inertial measurements and external visual marker localization usage using Extended Kalman Filtering (EKF). Results are presented for a fruit harvesting task, outperforming the default pipeline.
comment: 7 pages, 2 figures
☆ DCIRNet: Depth Completion with Iterative Refinement for Dexterous Grasping of Transparent and Reflective Objects
Transparent and reflective objects in everyday environments pose significant challenges for depth sensors due to their unique visual properties, such as specular reflections and light transmission. These characteristics often lead to incomplete or inaccurate depth estimation, which severely impacts downstream geometry-based vision tasks, including object recognition, scene reconstruction, and robotic manipulation. To address the issue of missing depth information in transparent and reflective objects, we propose DCIRNet, a novel multimodal depth completion network that effectively integrates RGB images and depth maps to enhance depth estimation quality. Our approach incorporates an innovative multimodal feature fusion module designed to extract complementary information between RGB images and incomplete depth maps. Furthermore, we introduce a multi-stage supervision and depth refinement strategy that progressively improves depth completion and effectively mitigates the issue of blurred object boundaries. We integrate our depth completion model into dexterous grasping frameworks and achieve a $44\%$ improvement in the grasp success rate for transparent and reflective objects. We conduct extensive experiments on public datasets, where DCIRNet demonstrates superior performance. The experimental results validate the effectiveness of our approach and confirm its strong generalization capability across various transparent and reflective objects.
☆ Adv-BMT: Bidirectional Motion Transformer for Safety-Critical Traffic Scenario Generation
Scenario-based testing is essential for validating the performance of autonomous driving (AD) systems. However, such testing is limited by the scarcity of long-tailed, safety-critical scenarios in existing datasets collected in the real world. To tackle the data issue, we propose the Adv-BMT framework, which augments real-world scenarios with diverse and realistic adversarial interactions. The core component of Adv-BMT is a bidirectional motion transformer (BMT) model to perform inverse traffic motion predictions, which takes agent information in the last time step of the scenario as input, and reconstruct the traffic in the inverse of chronological order until the initial time step. The Adv-BMT framework is a two-staged pipeline: it first conducts adversarial initializations and then inverse motion predictions. Different from previous work, we do not need any collision data for pretraining, and are able to generate realistic and diverse collision interactions. Our experimental results validate the quality of generated collision scenarios by Adv-BMT: training in our augmented dataset would reduce episode collision rates by 20\% compared to previous work.
☆ Design of an innovative robotic surgical instrument for circular stapling
Esophageal cancer remains a highly aggressive malignancy with low survival rates, requiring advanced surgical interventions like esophagectomy. Traditional manual techniques, including circular staplers, face challenges such as limited precision, prolonged recovery times, and complications like leaks and tissue misalignment. This paper presents a novel robotic circular stapler designed to enhance the dexterity in confined spaces, improve tissue alignment, and reduce post-operative risks. Integrated with a cognitive robot that serves as a surgeon's assistant, the surgical stapler uses three actuators to perform anvil motion, cutter/stapler motion and allows a 75-degree bending of the cartridge (distal tip). Kinematic analysis is used to compute the stapler tip's position, ensuring synchronization with a robotic system.
☆ Time-Unified Diffusion Policy with Action Discrimination for Robotic Manipulation
In many complex scenarios, robotic manipulation relies on generative models to estimate the distribution of multiple successful actions. As the diffusion model has better training robustness than other generative models, it performs well in imitation learning through successful robot demonstrations. However, the diffusion-based policy methods typically require significant time to iteratively denoise robot actions, which hinders real-time responses in robotic manipulation. Moreover, existing diffusion policies model a time-varying action denoising process, whose temporal complexity increases the difficulty of model training and leads to suboptimal action accuracy. To generate robot actions efficiently and accurately, we present the Time-Unified Diffusion Policy (TUDP), which utilizes action recognition capabilities to build a time-unified denoising process. On the one hand, we build a time-unified velocity field in action space with additional action discrimination information. By unifying all timesteps of action denoising, our velocity field reduces the difficulty of policy learning and speeds up action generation. On the other hand, we propose an action-wise training method, which introduces an action discrimination branch to supply additional action discrimination information. Through action-wise training, the TUDP implicitly learns the ability to discern successful actions to better denoising accuracy. Our method achieves state-of-the-art performance on RLBench with the highest success rate of 82.6% on a multi-view setup and 83.8% on a single-view setup. In particular, when using fewer denoising iterations, TUDP achieves a more significant improvement in success rate. Additionally, TUDP can produce accurate actions for a wide range of real-world tasks.
☆ Scoop-and-Toss: Dynamic Object Collection for Quadrupedal Systems
Quadruped robots have made significant advances in locomotion, extending their capabilities from controlled environments to real-world applications. Beyond movement, recent work has explored loco-manipulation using the legs to perform tasks such as pressing buttons or opening doors. While these efforts demonstrate the feasibility of leg-based manipulation, most have focused on relatively static tasks. In this work, we propose a framework that enables quadruped robots to collect objects without additional actuators by leveraging the agility of their legs. By attaching a simple scoop-like add-on to one leg, the robot can scoop objects and toss them into a collection tray mounted on its back. Our method employs a hierarchical policy structure comprising two expert policies-one for scooping and tossing, and one for approaching object positions-and a meta-policy that dynamically switches between them. The expert policies are trained separately, followed by meta-policy training for coordinated multi-object collection. This approach demonstrates how quadruped legs can be effectively utilized for dynamic object manipulation, expanding their role beyond locomotion.
☆ Analyzing Key Objectives in Human-to-Robot Retargeting for Dexterous Manipulation
Kinematic retargeting from human hands to robot hands is essential for transferring dexterity from humans to robots in manipulation teleoperation and imitation learning. However, due to mechanical differences between human and robot hands, completely reproducing human motions on robot hands is impossible. Existing works on retargeting incorporate various optimization objectives, focusing on different aspects of hand configuration. However, the lack of experimental comparative studies leaves the significance and effectiveness of these objectives unclear. This work aims to analyze these retargeting objectives for dexterous manipulation through extensive real-world comparative experiments. Specifically, we propose a comprehensive retargeting objective formulation that integrates intuitively crucial factors appearing in recent approaches. The significance of each factor is evaluated through experimental ablation studies on the full objective in kinematic posture retargeting and real-world teleoperated manipulation tasks. Experimental results and conclusions provide valuable insights for designing more accurate and effective retargeting algorithms for real-world dexterous manipulation.
☆ Bipedal Balance Control with Whole-body Musculoskeletal Standing and Falling Simulations
Balance control is important for human and bipedal robotic systems. While dynamic balance during locomotion has received considerable attention, quantitative understanding of static balance and falling remains limited. This work presents a hierarchical control pipeline for simulating human balance via a comprehensive whole-body musculoskeletal system. We identified spatiotemporal dynamics of balancing during stable standing, revealed the impact of muscle injury on balancing behavior, and generated fall contact patterns that aligned with clinical data. Furthermore, our simulated hip exoskeleton assistance demonstrated improvement in balance maintenance and reduced muscle effort under perturbation. This work offers unique muscle-level insights into human balance dynamics that are challenging to capture experimentally. It could provide a foundation for developing targeted interventions for individuals with balance impairments and support the advancement of humanoid robotic systems.
SkillBlender: Towards Versatile Humanoid Whole-Body Loco-Manipulation via Skill Blending
Humanoid robots hold significant potential in accomplishing daily tasks across diverse environments thanks to their flexibility and human-like morphology. Recent works have made significant progress in humanoid whole-body control and loco-manipulation leveraging optimal control or reinforcement learning. However, these methods require tedious task-specific tuning for each task to achieve satisfactory behaviors, limiting their versatility and scalability to diverse tasks in daily scenarios. To that end, we introduce SkillBlender, a novel hierarchical reinforcement learning framework for versatile humanoid loco-manipulation. SkillBlender first pretrains goal-conditioned task-agnostic primitive skills, and then dynamically blends these skills to accomplish complex loco-manipulation tasks with minimal task-specific reward engineering. We also introduce SkillBench, a parallel, cross-embodiment, and diverse simulated benchmark containing three embodiments, four primitive skills, and eight challenging loco-manipulation tasks, accompanied by a set of scientific evaluation metrics balancing accuracy and feasibility. Extensive simulated experiments show that our method significantly outperforms all baselines, while naturally regularizing behaviors to avoid reward hacking, resulting in more accurate and feasible movements for diverse loco-manipulation tasks in our daily scenarios. Our code and benchmark will be open-sourced to the community to facilitate future research. Project page: https://usc-gvl.github.io/SkillBlender-web/.
☆ CheckManual: A New Challenge and Benchmark for Manual-based Appliance Manipulation CVPR 2025
Correct use of electrical appliances has significantly improved human life quality. Unlike simple tools that can be manipulated with common sense, different parts of electrical appliances have specific functions defined by manufacturers. If we want the robot to heat bread by microwave, we should enable them to review the microwave manual first. From the manual, it can learn about component functions, interaction methods, and representative task steps about appliances. However, previous manual-related works remain limited to question-answering tasks while existing manipulation researchers ignore the manual's important role and fail to comprehend multi-page manuals. In this paper, we propose the first manual-based appliance manipulation benchmark CheckManual. Specifically, we design a large model-assisted human-revised data generation pipeline to create manuals based on CAD appliance models. With these manuals, we establish novel manual-based manipulation challenges, metrics, and simulator environments for model performance evaluation. Furthermore, we propose the first manual-based manipulation planning model ManualPlan to set up a group of baselines for the CheckManual benchmark.
comment: CVPR 2025 Highlight
☆ Innovative Adaptive Imaged Based Visual Servoing Control of 6 DoFs Industrial Robot Manipulators
Image-based visual servoing (IBVS) methods have been well developed and used in many applications, especially in pose (position and orientation) alignment. However, most research papers focused on developing control solutions when 3D point features can be detected inside the field of view. This work proposes an innovative feedforward-feedback adaptive control algorithm structure with the Youla Parameterization method. A designed feature estimation loop ensures stable and fast motion control when point features are outside the field of view. As 3D point features move inside the field of view, the IBVS feedback loop preserves the precision of the pose at the end of the control period. Also, an adaptive controller is developed in the feedback loop to stabilize the system in the entire range of operations. The nonlinear camera and robot manipulator model is linearized and decoupled online by an adaptive algorithm. The adaptive controller is then computed based on the linearized model evaluated at current linearized point. The proposed solution is robust and easy to implement in different industrial robotic systems. Various scenarios are used in simulations to validate the effectiveness and robust performance of the proposed controller.
comment: 22 pages, 13 figures. To appear in: Innovative Adaptive Image-Based Visual Servoing Control of 6 DoFs Industrial Robot Manipulators, IntechOpen, 2024. For published version, see this http URL: https://doi.org/10.5772/intechopen.1004857
☆ A Unified Framework for Probabilistic Dynamic-, Trajectory- and Vision-based Virtual Fixtures
Probabilistic Virtual Fixtures (VFs) enable the adaptive selection of the most suitable haptic feedback for each phase of a task, based on learned or perceived uncertainty. While keeping the human in the loop remains essential, for instance, to ensure high precision, partial automation of certain task phases is critical for productivity. We present a unified framework for probabilistic VFs that seamlessly switches between manual fixtures, semi-automated fixtures (with the human handling precise tasks), and full autonomy. We introduce a novel probabilistic Dynamical System-based VF for coarse guidance, enabling the robot to autonomously complete certain task phases while keeping the human operator in the loop. For tasks requiring precise guidance, we extend probabilistic position-based trajectory fixtures with automation allowing for seamless human interaction as well as geometry-awareness and optimal impedance gains. For manual tasks requiring very precise guidance, we also extend visual servoing fixtures with the same geometry-awareness and impedance behaviour. We validate our approach experimentally on different robots, showcasing multiple operation modes and the ease of programming fixtures.
☆ A Navigation Framework Utilizing Vision-Language Models
Vision-and-Language Navigation (VLN) presents a complex challenge in embodied AI, requiring agents to interpret natural language instructions and navigate through visually rich, unfamiliar environments. Recent advances in large vision-language models (LVLMs), such as CLIP and Flamingo, have significantly improved multimodal understanding but introduced new challenges related to computational cost and real-time deployment. In this project, we propose a modular, plug-and-play navigation framework that decouples vision-language understanding from action planning. By integrating a frozen vision-language model, Qwen2.5-VL-7B-Instruct, with lightweight planning logic, we aim to achieve flexible, fast, and adaptable navigation without extensive model fine-tuning. Our framework leverages prompt engineering, structured history management, and a two-frame visual input strategy to enhance decision-making continuity across navigation steps. We evaluate our system on the Room-to-Room benchmark within the VLN-CE setting using the Matterport3D dataset and Habitat-Lab simulation environment. Although our initial results reveal challenges in generalizing to unseen environments under strict evaluation settings, our modular approach lays a foundation for scalable and efficient navigation systems, highlighting promising directions for future improvement through enhanced environmental priors and expanded multimodal input integration.
☆ Provable Sim-to-Real Transfer via Offline Domain Randomization
Reinforcement-learning agents often struggle when deployed from simulation to the real-world. A dominant strategy for reducing the sim-to-real gap is domain randomization (DR) which trains the policy across many simulators produced by sampling dynamics parameters, but standard DR ignores offline data already available from the real system. We study offline domain randomization (ODR), which first fits a distribution over simulator parameters to an offline dataset. While a growing body of empirical work reports substantial gains with algorithms such as DROPO, the theoretical foundations of ODR remain largely unexplored. In this work, we (i) formalize ODR as a maximum-likelihood estimation over a parametric simulator family, (ii) prove consistency of this estimator under mild regularity and identifiability conditions, showing it converges to the true dynamics as the dataset grows, (iii) derive gap bounds demonstrating ODRs sim-to-real error is up to an O(M) factor tighter than uniform DR in the finite-simulator case (and analogous gains in the continuous setting), and (iv) introduce E-DROPO, a new version of DROPO which adds an entropy bonus to prevent variance collapse, yielding broader randomization and more robust zero-shot transfer in practice.
☆ One For All: LLM-based Heterogeneous Mission Planning in Precision Agriculture TRO
Artificial intelligence is transforming precision agriculture, offering farmers new tools to streamline their daily operations. While these technological advances promise increased efficiency, they often introduce additional complexity and steep learning curves that are particularly challenging for non-technical users who must balance tech adoption with existing workloads. In this paper, we present a natural language (NL) robotic mission planner that enables non-specialists to control heterogeneous robots through a common interface. By leveraging large language models (LLMs) and predefined primitives, our architecture seamlessly translates human language into intermediate descriptions that can be executed by different robotic platforms. With this system, users can formulate complex agricultural missions without writing any code. In the work presented in this paper, we extend our previous system tailored for wheeled robot mission planning through a new class of experiments involving robotic manipulation and computer vision tasks. Our results demonstrate that the architecture is both general enough to support a diverse set of robots and powerful enough to execute complex mission requests. This work represents a significant step toward making robotic automation in precision agriculture more accessible to non-technical users.
comment: Accepted to International Federation of Automatic Control (IFAC) Sensing, Control and Automation Technologies for Agriculture - 8th AGRICONTROL 2025
☆ Estimating the Joint Probability of Scenario Parameters with Gaussian Mixture Copula Models
This paper presents the first application of Gaussian Mixture Copula Models to the statistical modeling of driving scenarios for the safety validation of automated driving systems. Knowledge of the joint probability distribution of scenario parameters is essential for scenario-based safety assessment, where risk quantification depends on the likelihood of concrete parameter combinations. Gaussian Mixture Copula Models bring together the multimodal expressivity of Gaussian Mixture Models and the flexibility of copulas, enabling separate modeling of marginal distributions and dependencies. We benchmark Gaussian Mixture Copula Models against previously proposed approaches - Gaussian Mixture Models and Gaussian Copula Models - using real-world driving data drawn from scenarios defined in United Nations Regulation No. 157. Our evaluation across 18 million scenario instances demonstrates that Gaussian Mixture Copula Models provide a better fit to the data in terms of both likelihood and Sinkhorn distance. These results suggest that Gaussian Mixture Copula Models are a compelling foundation for future scenario-based validation frameworks.
comment: 8 pages, 4 figures; This work has been submitted to the IEEE for possible publication
☆ Leveraging LLMs for Mission Planning in Precision Agriculture ICRA
Robotics and artificial intelligence hold significant potential for advancing precision agriculture. While robotic systems have been successfully deployed for various tasks, adapting them to perform diverse missions remains challenging, particularly because end users often lack technical expertise. In this paper, we present an end-to-end system that leverages large language models (LLMs), specifically ChatGPT, to enable users to assign complex data collection tasks to autonomous robots using natural language instructions. To enhance reusability, mission plans are encoded using an existing IEEE task specification standard, and are executed on robots via ROS2 nodes that bridge high-level mission descriptions with existing ROS libraries. Through extensive experiments, we highlight the strengths and limitations of LLMs in this context, particularly regarding spatial reasoning and solving complex routing challenges, and show how our proposed implementation overcomes them.
comment: Published in Proceedings of 2025 International Conference on Robotics and Automation (ICRA)
☆ Cybernetic Marionette: Channeling Collective Agency Through a Wearable Robot in a Live Dancer-Robot Duet
We describe DANCE^2, an interactive dance performance in which audience members channel their collective agency into a dancer-robot duet by voting on the behavior of a wearable robot affixed to the dancer's body. At key moments during the performance, the audience is invited to either continue the choreography or override it, shaping the unfolding interaction through real-time collective input. While post-performance surveys revealed that participants felt their choices meaningfully influenced the performance, voting data across four public performances exhibited strikingly consistent patterns. This tension between what audience members do, what they feel, and what actually changes highlights a complex interplay between agentive behavior, the experience of agency, and power. We reflect on how choreography, interaction design, and the structure of the performance mediate this relationship, offering a live analogy for algorithmically curated digital systems where agency is felt, but not exercised.
☆ Using Behavior Trees in Risk Assessment
Cyber-physical production systems increasingly involve collaborative robotic missions, requiring more demand for robust and safe missions. Industries rely on risk assessments to identify potential failures and implement measures to mitigate their risks. Although it is recommended to conduct risk assessments early in the design of robotic missions, the state of practice in the industry is different. Safety experts often struggle to completely understand robotics missions at the early design stages of projects and to ensure that the output of risk assessments is adequately considered during implementation. This paper presents a design science study that conceived a model-based approach for early risk assessment in a development-centric way. Our approach supports risk assessment activities by using the behavior-tree model. We evaluated the approach together with five practitioners from four companies. Our findings highlight the potential of the behavior-tree model in supporting early identification, visualisation, and bridging the gap between code implementation and risk assessments' outputs. This approach is the first attempt to use the behavior-tree model to support risk assessment; thus, the findings highlight the need for further development.
comment: 8 pages, 5 figures
♻ ☆ Teaching Physical Awareness to LLMs through Sounds ICML 2025
Large Language Models (LLMs) have shown remarkable capabilities in text and multimodal processing, yet they fundamentally lack physical awareness--understanding of real-world physical phenomena. In this work, we present ACORN, a framework that teaches LLMs physical awareness through sound, focusing on fundamental physical phenomena like the Doppler effect, multipath effect, and spatial relationships. To overcome data scarcity, ACORN introduce a physics-based simulator combining real-world sound sources with controlled physical channels to generate diverse training data. Using this simulator, we build AQA-PHY, a comprehensive Audio Question-Answer dataset, and propose an audio encoder that processes both magnitude and phase information. By connecting our audio encoder to state-of-the-art LLMs, we demonstrate reasonable results in both simulated and real-world tasks, such as line-of-sight detection, Doppler effect estimation, and Direction-of-Arrival estimation, paving the way for enabling LLMs to understand physical world.
comment: ICML 2025
♻ ☆ TGRPO :Fine-tuning Vision-Language-Action Model via Trajectory-wise Group Relative Policy Optimization
Recent advances in Vision-Language-Action (VLA) model have demonstrated strong generalization capabilities across diverse scenes, tasks, and robotic platforms when pretrained at large-scale datasets. However, these models still require task-specific fine-tuning in novel environments, a process that relies almost exclusively on supervised fine-tuning (SFT) using static trajectory datasets. Such approaches neither allow robot to interact with environment nor do they leverage feedback from live execution. Also, their success is critically dependent on the size and quality of the collected trajectories. Reinforcement learning (RL) offers a promising alternative by enabling closed-loop interaction and aligning learned policies directly with task objectives. In this work, we draw inspiration from the ideas of GRPO and propose the Trajectory-wise Group Relative Policy Optimization (TGRPO) method. By fusing step-level and trajectory-level advantage signals, this method improves GRPO's group-level advantage estimation, thereby making the algorithm more suitable for online reinforcement learning training of VLA. Experimental results on ten manipulation tasks from the libero-object benchmark demonstrate that TGRPO consistently outperforms various baseline methods, capable of generating more robust and efficient policies across multiple tested scenarios. Our source codes are available at: https://github.com/hahans/TGRPO
♻ ☆ HiBerNAC: Hierarchical Brain-emulated Robotic Neural Agent Collective for Disentangling Complex Manipulation
Recent advances in multimodal vision-language-action (VLA) models have revolutionized traditional robot learning, enabling systems to interpret vision, language, and action in unified frameworks for complex task planning. However, mastering complex manipulation tasks remains an open challenge, constrained by limitations in persistent contextual memory, multi-agent coordination under uncertainty, and dynamic long-horizon planning across variable sequences. To address this challenge, we propose \textbf{HiBerNAC}, a \textbf{Hi}erarchical \textbf{B}rain-\textbf{e}mulated \textbf{r}obotic \textbf{N}eural \textbf{A}gent \textbf{C}ollective, inspired by breakthroughs in neuroscience, particularly in neural circuit mechanisms and hierarchical decision-making. Our framework combines: (1) multimodal VLA planning and reasoning with (2) neuro-inspired reflection and multi-agent mechanisms, specifically designed for complex robotic manipulation tasks. By leveraging neuro-inspired functional modules with decentralized multi-agent collaboration, our approach enables robust and enhanced real-time execution of complex manipulation tasks. In addition, the agentic system exhibits scalable collective intelligence via dynamic agent specialization, adapting its coordination strategy to variable task horizons and complexity. Through extensive experiments on complex manipulation tasks compared with state-of-the-art VLA models, we demonstrate that \textbf{HiBerNAC} reduces average long-horizon task completion time by 23\%, and achieves non-zero success rates (12\textendash 31\%) on multi-path tasks where prior state-of-the-art VLA models consistently fail. These results provide indicative evidence for bridging biological cognition and robotic learning mechanisms.
comment: 31 pages,5 figures
♻ ☆ Versatile Loco-Manipulation through Flexible Interlimb Coordination
The ability to flexibly leverage limbs for loco-manipulation is essential for enabling autonomous robots to operate in unstructured environments. Yet, prior work on loco-manipulation is often constrained to specific tasks or predetermined limb configurations. In this work, we present Reinforcement Learning for Interlimb Coordination (ReLIC), an approach that enables versatile loco-manipulation through flexible interlimb coordination. The key to our approach is an adaptive controller that seamlessly bridges the execution of manipulation motions and the generation of stable gaits based on task demands. Through the interplay between two controller modules, ReLIC dynamically assigns each limb for manipulation or locomotion and robustly coordinates them to achieve the task success. Using efficient reinforcement learning in simulation, ReLIC learns to perform stable gaits in accordance with the manipulation goals in the real world. To solve diverse and complex tasks, we further propose to interface the learned controller with different types of task specifications, including target trajectories, contact points, and natural language instructions. Evaluated on 12 real-world tasks that require diverse and complex coordination patterns, ReLIC demonstrates its versatility and robustness by achieving a success rate of 78.9% on average. Videos and code can be found at https://relic-locoman.rai-inst.com.
♻ ☆ Toward Reliable AR-Guided Surgical Navigation: Interactive Deformation Modeling with Data-Driven Biomechanics and Prompts
In augmented reality (AR)-guided surgical navigation, preoperative organ models are superimposed onto the patient's intraoperative anatomy to visualize critical structures such as vessels and tumors. Accurate deformation modeling is essential to maintain the reliability of AR overlays by ensuring alignment between preoperative models and the dynamically changing anatomy. Although the finite element method (FEM) offers physically plausible modeling, its high computational cost limits intraoperative applicability. Moreover, existing algorithms often fail to handle large anatomical changes, such as those induced by pneumoperitoneum or ligament dissection, leading to inaccurate anatomical correspondences and compromised AR guidance. To address these challenges, we propose a data-driven biomechanics algorithm that preserves FEM-level accuracy while improving computational efficiency. In addition, we introduce a novel human-in-the-loop mechanism into the deformation modeling process. This enables surgeons to interactively provide prompts to correct anatomical misalignments, thereby incorporating clinical expertise and allowing the model to adapt dynamically to complex surgical scenarios. Experiments on a publicly available dataset demonstrate that our algorithm achieves a mean target registration error of 3.42 mm. Incorporating surgeon prompts through the interactive framework further reduces the error to 2.78 mm, surpassing state-of-the-art methods in volumetric accuracy. These results highlight the ability of our framework to deliver efficient and accurate deformation modeling while enhancing surgeon-algorithm collaboration, paving the way for safer and more reliable computer-assisted surgeries.
♻ ☆ STAR: Learning Diverse Robot Skill Abstractions through Rotation-Augmented Vector Quantization ICML 2025
Transforming complex actions into discrete skill abstractions has demonstrated strong potential for robotic manipulation. Existing approaches mainly leverage latent variable models, e.g., VQ-VAE, to learn skill abstractions through learned vectors (codebooks), while they suffer from codebook collapse and modeling the causal relationship between learned skills. To address these limitations, we present \textbf{S}kill \textbf{T}raining with \textbf{A}ugmented \textbf{R}otation (\textbf{STAR}), a framework that advances both skill learning and composition to complete complex behaviors. Specifically, to prevent codebook collapse, we devise rotation-augmented residual skill quantization (RaRSQ). It encodes relative angles between encoder outputs into the gradient flow by rotation-based gradient mechanism. Points within the same skill code are forced to be either pushed apart or pulled closer together depending on gradient directions. Further, to capture the causal relationship between skills, we present causal skill transformer (CST) which explicitly models dependencies between skill representations through an autoregressive mechanism for coherent action generation. Extensive experiments demonstrate the superiority of STAR on both LIBERO benchmark and realworld tasks, with around 12\% improvement over the baselines.
comment: Accepted by ICML 2025 Spotlight
Zero-Shot Temporal Interaction Localization for Egocentric Videos
Locating human-object interaction (HOI) actions within video serves as the foundation for multiple downstream tasks, such as human behavior analysis and human-robot skill transfer. Current temporal action localization methods typically rely on annotated action and object categories of interactions for optimization, which leads to domain bias and low deployment efficiency. Although some recent works have achieved zero-shot temporal action localization (ZS-TAL) with large vision-language models (VLMs), their coarse-grained estimations and open-loop pipelines hinder further performance improvements for temporal interaction localization (TIL). To address these issues, we propose a novel zero-shot TIL approach dubbed EgoLoc to locate the timings of grasp actions for human-object interaction in egocentric videos. EgoLoc introduces a self-adaptive sampling strategy to generate reasonable visual prompts for VLM reasoning. By absorbing both 2D and 3D observations, it directly samples high-quality initial guesses around the possible contact/separation timestamps of HOI according to 3D hand velocities, leading to high inference accuracy and efficiency. In addition, EgoLoc generates closed-loop feedback from visual and dynamic cues to further refine the localization results. Comprehensive experiments on the publicly available dataset and our newly proposed benchmark demonstrate that EgoLoc achieves better temporal interaction localization for egocentric videos compared to state-of-the-art baselines. We will release our code and relevant data as open-source at https://github.com/IRMVLab/EgoLoc.
♻ ☆ Benchmarking Population-Based Reinforcement Learning across Robotic Tasks with GPU-Accelerated Simulation
In recent years, deep reinforcement learning (RL) has shown its effectiveness in solving complex continuous control tasks. However, this comes at the cost of an enormous amount of experience required for training, exacerbated by the sensitivity of learning efficiency and the policy performance to hyperparameter selection, which often requires numerous trials of time-consuming experiments. This work leverages a Population-Based Reinforcement Learning (PBRL) approach and a GPU-accelerated physics simulator to enhance the exploration capabilities of RL by concurrently training multiple policies in parallel. The PBRL framework is benchmarked against three state-of-the-art RL algorithms -- PPO, SAC, and DDPG -- dynamically adjusting hyperparameters based on the performance of learning agents. The experiments are performed on four challenging tasks in Isaac Gym -- Anymal Terrain, Shadow Hand, Humanoid, Franka Nut Pick -- by analyzing the effect of population size and mutation mechanisms for hyperparameters. The results show that PBRL agents achieve superior performance, in terms of cumulative reward, compared to non-evolutionary baseline agents. Moreover, the trained agents are finally deployed in the real world for a Franka Nut Pick task. To our knowledge, this is the first sim-to-real attempt for deploying PBRL agents on real hardware. Code and videos of the learned policies are available on our project website (https://sites.google.com/view/pbrl).
comment: Accepted for publication at 2025 IEEE 21st International Conference on Automation Science and Engineering
♻ ☆ Generalizable and Fast Surrogates: Model Predictive Control of Articulated Soft Robots using Physics-Informed Neural Networks
Soft robots can revolutionize several applications with high demands on dexterity and safety. When operating these systems, real-time estimation and control require fast and accurate models. However, prediction with first-principles (FP) models is slow, and learned black-box models have poor generalizability. Physics-informed machine learning offers excellent advantages here, but it is currently limited to simple, often simulated systems without considering changes after training. We propose physics-informed neural networks (PINNs) for articulated soft robots (ASRs) with a focus on data efficiency. The amount of expensive real-world training data is reduced to a minimum -- one dataset in one system domain. Two hours of data in different domains are used for a comparison against two gold-standard approaches: In contrast to a recurrent neural network, the PINN provides a high generalizability. The prediction speed of an accurate FP model is exceeded with the PINN by up to a factor of 467 at slightly reduced accuracy. This enables nonlinear model predictive control (MPC) of a pneumatic ASR. Accurate position tracking with the MPC running at 47 Hz is achieved in six dynamic experiments.
♻ ☆ V2I-Calib++: A Multi-terminal Spatial Calibration Approach in Urban Intersections for Collaborative Perception
Urban intersections, dense with pedestrian and vehicular traffic and compounded by GPS signal obstructions from high-rise buildings, are among the most challenging areas in urban traffic systems. Traditional single-vehicle intelligence systems often perform poorly in such environments due to a lack of global traffic flow information and the ability to respond to unexpected events. Vehicle-to-Everything (V2X) technology, through real-time communication between vehicles (V2V) and vehicles to infrastructure (V2I), offers a robust solution. However, practical applications still face numerous challenges. Calibration among heterogeneous vehicle and infrastructure endpoints in multi-end LiDAR systems is crucial for ensuring the accuracy and consistency of perception system data. Most existing multi-end calibration methods rely on initial calibration values provided by positioning systems, but the instability of GPS signals due to high buildings in urban canyons poses severe challenges to these methods. To address this issue, this paper proposes a novel multi-end LiDAR system calibration method that does not require positioning priors to determine initial external parameters and meets real-time requirements. Our method introduces an innovative multi-end perception object association technique, utilizing a new Overall Distance metric (oDist) to measure the spatial association between perception objects, and effectively combines global consistency search algorithms with optimal transport theory. By this means, we can extract co-observed targets from object association results for further external parameter computation and optimization. Extensive comparative and ablation experiments conducted on the simulated dataset V2X-Sim and the real dataset DAIR-V2X confirm the effectiveness and efficiency of our method. The code for this method can be accessed at: https://github.com/MassimoQu/v2i-calib.
♻ ☆ 4D Radar-Inertial Odometry based on Gaussian Modeling and Multi-Hypothesis Scan Matching
4D millimeter-wave (mmWave) radars are sensors that provide robustness against adverse weather conditions (rain, snow, fog, etc.), and as such they are increasingly being used for odometry and SLAM applications. However, the noisy and sparse nature of the returned scan data proves to be a challenging obstacle for existing point cloud matching based solutions, especially those originally intended for more accurate sensors such as LiDAR. Inspired by visual odometry research around 3D Gaussian Splatting, in this paper we propose using freely positioned 3D Gaussians to create a summarized representation of a radar point cloud tolerant to sensor noise, and subsequently leverage its inherent probability distribution function for registration (similar to NDT). Moreover, we propose simultaneously optimizing multiple scan matching hypotheses in order to further increase the robustness of the system against local optima of the function. Finally, we fuse our Gaussian modeling and scan matching algorithms into an EKF radar-inertial odometry system designed after current best practices. Experiments using publicly available 4D radar datasets show that our Gaussian-based odometry is comparable to existing registration algorithms, outperforming them in several sequences.
comment: Our code and results can be publicly accessed at: https://github.com/robotics-upo/gaussian-rio-cpp
♻ ☆ Reactive and Safety-Aware Path Replanning for Collaborative Applications
This paper addresses motion replanning in human-robot collaborative scenarios, emphasizing reactivity and safety-compliant efficiency. While existing human-aware motion planners are effective in structured environments, they often struggle with unpredictable human behavior, leading to safety measures that limit robot performance and throughput. In this study, we combine reactive path replanning and a safety-aware cost function, allowing the robot to adjust its path to changes in the human state. This solution reduces the execution time and the need for trajectory slowdowns without sacrificing safety. Simulations and real-world experiments show the method's effectiveness compared to standard human-robot cooperation approaches, with efficiency enhancements of up to 60\%.
comment: Submitted to IEEE
♻ ☆ Design and Validation of an Intention-Aware Probabilistic Framework for Trajectory Prediction: Integrating COLREGS, Grounding Hazards, and Planned Routes
Collision avoidance capability is an essential component in an autonomous vessel navigation system. To this end, an accurate prediction of dynamic obstacle trajectories is vital. Traditional approaches to trajectory prediction face limitations in generalizability and often fail to account for the intentions of other vessels. While recent research has considered incorporating the intentions of dynamic obstacles, these efforts are typically based on the own-ship's interpretation of the situation. The current state-of-the-art in this area is a Dynamic Bayesian Network (DBN) model, which infers target vessel intentions by considering multiple underlying causes and allowing for different interpretations of the situation by different vessels. However, since its inception, there have not been any significant structural improvements to this model. In this paper, we propose enhancing the DBN model by incorporating considerations for grounding hazards and vessel waypoint information. The proposed model is validated using real vessel encounters extracted from historical Automatic Identification System (AIS) data.
comment: IMPORTANT: This preprint is not the final version. The peer-reviewed and updated version is published in Ocean Engineering journal [https://doi.org/10.1016/j.oceaneng.2025.121564]
♻ ☆ FROG: A new people detection dataset for knee-high 2D range finders
Mobile robots require knowledge of the environment, especially of humans located in its vicinity. While the most common approaches for detecting humans involve computer vision, an often overlooked hardware feature of robots for people detection are their 2D range finders. These were originally intended for obstacle avoidance and mapping/SLAM tasks. In most robots, they are conveniently located at a height approximately between the ankle and the knee, so they can be used for detecting people too, and with a larger field of view and depth resolution compared to cameras. In this paper, we present a new dataset for people detection using knee-high 2D range finders called FROG. This dataset has greater laser resolution, scanning frequency, and more complete annotation data compared to existing datasets such as DROW. Particularly, the FROG dataset contains annotations for 100% of its laser scans (unlike DROW which only annotates 5%), 17x more annotated scans, 100x more people annotations, and over twice the distance traveled by the robot. We propose a benchmark based on the FROG dataset, and analyze a collection of state-of-the-art people detectors based on 2D range finder data. We also propose and evaluate a new end-to-end deep learning approach for people detection. Our solution works with the raw sensor data directly (not needing hand-crafted input data features), thus avoiding CPU preprocessing and releasing the developer of understanding specific domain heuristics. Experimental results show how the proposed people detector attains results comparable to the state of the art, while an optimized implementation for ROS can operate at more than 500 Hz.
comment: Code and data are publicly available at: https://github.com/robotics-upo/2DLaserPeopleBenchmark
♻ ☆ ReinFlow: Fine-tuning Flow Matching Policy with Online Reinforcement Learning
We propose ReinFlow, a simple yet effective online reinforcement learning (RL) framework that fine-tunes a family of flow matching policies for continuous robotic control. Derived from rigorous RL theory, ReinFlow injects learnable noise into a flow policy's deterministic path, converting the flow into a discrete-time Markov Process for exact and straightforward likelihood computation. This conversion facilitates exploration and ensures training stability, enabling ReinFlow to fine-tune diverse flow model variants, including Rectified Flow [35] and Shortcut Models [19], particularly at very few or even one denoising step. We benchmark ReinFlow in representative locomotion and manipulation tasks, including long-horizon planning with visual input and sparse reward. The episode reward of Rectified Flow policies obtained an average net growth of 135.36% after fine-tuning in challenging legged locomotion tasks while saving denoising steps and 82.63% of wall time compared to state-of-the-art diffusion RL fine-tuning method DPPO [43]. The success rate of the Shortcut Model policies in state and visual manipulation tasks achieved an average net increase of 40.34% after fine-tuning with ReinFlow at four or even one denoising step, whose performance is comparable to fine-tuned DDIM policies while saving computation time for an average of 23.20%. Project webpage: https://reinflow.github.io/
comment: 30 pages, 13 figures, 10 tables
♻ ☆ RMP-YOLO: A Robust Motion Predictor for Partially Observable Scenarios even if You Only Look Once
We introduce RMP-YOLO, a unified framework designed to provide robust motion predictions even with incomplete input data. Our key insight stems from the observation that complete and reliable historical trajectory data plays a pivotal role in ensuring accurate motion prediction. Therefore, we propose a new paradigm that prioritizes the reconstruction of intact historical trajectories before feeding them into the prediction modules. Our approach introduces a novel scene tokenization module to enhance the extraction and fusion of spatial and temporal features. Following this, our proposed recovery module reconstructs agents' incomplete historical trajectories by leveraging local map topology and interactions with nearby agents. The reconstructed, clean historical data is then integrated into the downstream prediction modules. Our framework is able to effectively handle missing data of varying lengths and remains robust against observation noise, while maintaining high prediction accuracy. Furthermore, our recovery module is compatible with existing prediction models, ensuring seamless integration. Extensive experiments validate the effectiveness of our approach, and deployment in real-world autonomous vehicles confirms its practical utility. In the 2024 Waymo Motion Prediction Competition, our method, RMP-YOLO, achieves state-of-the-art performance, securing third place.
♻ ☆ Sim-to-Real Causal Transfer: A Metric Learning Approach to Causally-Aware Interaction Representations CVPR 2025
Modeling spatial-temporal interactions among neighboring agents is at the heart of multi-agent problems such as motion forecasting and crowd navigation. Despite notable progress, it remains unclear to which extent modern representations can capture the causal relationships behind agent interactions. In this work, we take an in-depth look at the causal awareness of these representations, from computational formalism to real-world practice. First, we cast doubt on the notion of non-causal robustness studied in the recent CausalAgents benchmark. We show that recent representations are already partially resilient to perturbations of non-causal agents, and yet modeling indirect causal effects involving mediator agents remains challenging. To address this challenge, we introduce a metric learning approach that regularizes latent representations with causal annotations. Our controlled experiments show that this approach not only leads to higher degrees of causal awareness but also yields stronger out-of-distribution robustness. To further operationalize it in practice, we propose a sim-to-real causal transfer method via cross-domain multi-task learning. Experiments on pedestrian datasets show that our method can substantially boost generalization, even in the absence of real-world causal annotations. We hope our work provides a new perspective on the challenges and pathways towards causally-aware representations of multi-agent interactions. Our code is available at https://github.com/vita-epfl/CausalSim2Real.
comment: CVPR 2025
♻ ☆ SACA: A Scenario-Aware Collision Avoidance Framework for Autonomous Vehicles Integrating LLMs-Driven Reasoning
Reliable collision avoidance under extreme situations remains a critical challenge for autonomous vehicles. While large language models (LLMs) offer promising reasoning capabilities, their application in safety-critical evasive maneuvers is limited by latency and robustness issues. Even so, LLMs stand out for their ability to weigh emotional, legal, and ethical factors, enabling socially responsible and context-aware collision avoidance. This paper proposes a scenario-aware collision avoidance (SACA) framework for extreme situations by integrating predictive scenario evaluation, data-driven reasoning, and scenario-preview-based deployment to improve collision avoidance decision-making. SACA consists of three key components. First, a predictive scenario analysis module utilizes obstacle reachability analysis and motion intention prediction to construct a comprehensive situational prompt. Second, an online reasoning module refines decision-making by leveraging prior collision avoidance knowledge and fine-tuning with scenario data. Third, an offline evaluation module assesses performance and stores scenarios in a memory bank. Additionally, A precomputed policy method improves deployability by previewing scenarios and retrieving or reasoning policies based on similarity and confidence levels. Real-vehicle tests show that, compared with baseline methods, SACA effectively reduces collision losses in extreme high-risk scenarios and lowers false triggering under complex conditions. Project page: https://sean-shiyuez.github.io/SACA/.
comment: 11 pages,10 figures. This work has been submitted to the IEEE TVT for possible publication
♻ ☆ Agentic Robot: A Brain-Inspired Framework for Vision-Language-Action Models in Embodied Agents
Long-horizon robotic manipulation poses significant challenges for autonomous systems, requiring extended reasoning, precise execution, and robust error recovery across complex sequential tasks. Current approaches, whether based on static planning or end-to-end visuomotor policies, suffer from error accumulation and lack effective verification mechanisms during execution, limiting their reliability in real-world scenarios. We present Agentic Robot, a brain-inspired framework that addresses these limitations through Standardized Action Procedure (SAP)--a novel coordination protocol governing component interactions throughout manipulation tasks. Drawing inspiration from Standardized Operating Procedures (SOPs) in human organizations, SAP establishes structured workflows for planning, execution, and verification phases. Our architecture comprises three specialized components: (1) a large reasoning model that decomposes high-level instructions into semantically coherent subgoals, (2) a vision-language-action executor that generates continuous control commands from real-time visual inputs, and (3) a temporal verifier that enables autonomous progression and error recovery through introspective assessment. This SAP-driven closed-loop design supports dynamic self-verification without external supervision. On the LIBERO benchmark, Agentic Robot achieves state-of-the-art performance with an average success rate of 79.6%, outperforming SpatialVLA by 6.1% and OpenVLA by 7.4% on long-horizon tasks. These results demonstrate that SAP-driven coordination between specialized components enhances both performance and interpretability in sequential manipulation, suggesting significant potential for reliable autonomous systems. Project Github: https://agentic-robot.github.io.
comment: 20 pages, 8 figures
♻ ☆ Trailblazer: Learning offroad costmaps for long range planning
Autonomous navigation in off-road environments remains a significant challenge in field robotics, particularly for Unmanned Ground Vehicles (UGVs) tasked with search and rescue, exploration, and surveillance. Effective long-range planning relies on the integration of onboard perception systems with prior environmental knowledge, such as satellite imagery and LiDAR data. This work introduces Trailblazer, a novel framework that automates the conversion of multi-modal sensor data into costmaps, enabling efficient path planning without manual tuning. Unlike traditional approaches, Trailblazer leverages imitation learning and a differentiable A* planner to learn costmaps directly from expert demonstrations, enhancing adaptability across diverse terrains. The proposed methodology was validated through extensive real-world testing, achieving robust performance in dynamic and complex environments, demonstrating Trailblazer's potential for scalable, efficient autonomous navigation.
♻ ☆ Active inference as a unified model of collision avoidance behavior in human drivers
Collision avoidance -- involving a rapid threat detection and quick execution of the appropriate evasive maneuver -- is a critical aspect of driving. However, existing models of human collision avoidance behavior are fragmented, focusing on specific scenarios or only describing certain aspects of the avoidance behavior, such as response times. This paper addresses these gaps by proposing a novel computational cognitive model of human collision avoidance behavior based on active inference. Active inference provides a unified approach to modeling human behavior: the minimization of free energy. Building on prior active inference work, our model incorporates established cognitive mechanisms such as evidence accumulation to simulate human responses in two distinct collision avoidance scenarios: front-to-rear lead vehicle braking and lateral incursion by an oncoming vehicle. We demonstrate that our model explains a wide range of previous empirical findings on human collision avoidance behavior. Specifically, the model closely reproduces both aggregate results from meta-analyses previously reported in the literature and detailed, scenario-specific effects observed in a recent driving simulator study, including response timing, maneuver selection, and execution. Our results highlight the potential of active inference as a unified framework for understanding and modeling human behavior in complex real-life driving tasks.
♻ ☆ Gait-Conditioned Reinforcement Learning with Multi-Phase Curriculum for Humanoid Locomotion
We present a unified gait-conditioned reinforcement learning framework that enables humanoid robots to perform standing, walking, running, and smooth transitions within a single recurrent policy. A compact reward routing mechanism dynamically activates gait-specific objectives based on a one-hot gait ID, mitigating reward interference and supporting stable multi-gait learning. Human-inspired reward terms promote biomechanically natural motions, such as straight-knee stance and coordinated arm-leg swing, without requiring motion capture data. A structured curriculum progressively introduces gait complexity and expands command space over multiple phases. In simulation, the policy successfully achieves robust standing, walking, running, and gait transitions. On the real Unitree G1 humanoid, we validate standing, walking, and walk-to-stand transitions, demonstrating stable and coordinated locomotion. This work provides a scalable, reference-free solution toward versatile and naturalistic humanoid control across diverse modes and environments.
♻ ☆ Constrained Human-AI Cooperation: An Inclusive Embodied Social Intelligence Challenge NeurIPS 2024
We introduce Constrained Human-AI Cooperation (CHAIC), an inclusive embodied social intelligence challenge designed to test social perception and cooperation in embodied agents. In CHAIC, the goal is for an embodied agent equipped with egocentric observations to assist a human who may be operating under physical constraints -- e.g., unable to reach high places or confined to a wheelchair -- in performing common household or outdoor tasks as efficiently as possible. To achieve this, a successful helper must: (1) infer the human's intents and constraints by following the human and observing their behaviors (social perception), and (2) make a cooperative plan tailored to the human partner to solve the task as quickly as possible, working together as a team (cooperative planning). To benchmark this challenge, we create four new agents with real physical constraints and eight long-horizon tasks featuring both indoor and outdoor scenes with various constraints, emergency events, and potential risks. We benchmark planning- and learning-based baselines on the challenge and introduce a new method that leverages large language models and behavior modeling. Empirical evaluations demonstrate the effectiveness of our benchmark in enabling systematic assessment of key aspects of machine social intelligence. Our benchmark and code are publicly available at https://github.com/UMass-Embodied-AGI/CHAIC.
comment: NeurIPS 2024 Dataset and Benchmark Track. The first two authors contributed equally. Project Website at https://umass-embodied-agi.github.io/CHAIC/
Computer Vision 152
☆ DGS-LRM: Real-Time Deformable 3D Gaussian Reconstruction From Monocular Videos
We introduce the Deformable Gaussian Splats Large Reconstruction Model (DGS-LRM), the first feed-forward method predicting deformable 3D Gaussian splats from a monocular posed video of any dynamic scene. Feed-forward scene reconstruction has gained significant attention for its ability to rapidly create digital replicas of real-world environments. However, most existing models are limited to static scenes and fail to reconstruct the motion of moving objects. Developing a feed-forward model for dynamic scene reconstruction poses significant challenges, including the scarcity of training data and the need for appropriate 3D representations and training paradigms. To address these challenges, we introduce several key technical contributions: an enhanced large-scale synthetic dataset with ground-truth multi-view videos and dense 3D scene flow supervision; a per-pixel deformable 3D Gaussian representation that is easy to learn, supports high-quality dynamic view synthesis, and enables long-range 3D tracking; and a large transformer network that achieves real-time, generalizable dynamic scene reconstruction. Extensive qualitative and quantitative experiments demonstrate that DGS-LRM achieves dynamic scene reconstruction quality comparable to optimization-based methods, while significantly outperforming the state-of-the-art predictive dynamic reconstruction method on real-world examples. Its predicted physically grounded 3D deformation is accurate and can readily adapt for long-range 3D tracking tasks, achieving performance on par with state-of-the-art monocular video 3D tracking methods.
comment: Project page: https://hubert0527.github.io/dgslrm/
☆ PlayerOne: Egocentric World Simulator
We introduce PlayerOne, the first egocentric realistic world simulator, facilitating immersive and unrestricted exploration within vividly dynamic environments. Given an egocentric scene image from the user, PlayerOne can accurately construct the corresponding world and generate egocentric videos that are strictly aligned with the real scene human motion of the user captured by an exocentric camera. PlayerOne is trained in a coarse-to-fine pipeline that first performs pretraining on large-scale egocentric text-video pairs for coarse-level egocentric understanding, followed by finetuning on synchronous motion-video data extracted from egocentric-exocentric video datasets with our automatic construction pipeline. Besides, considering the varying importance of different components, we design a part-disentangled motion injection scheme, enabling precise control of part-level movements. In addition, we devise a joint reconstruction framework that progressively models both the 4D scene and video frames, ensuring scene consistency in the long-form video generation. Experimental results demonstrate its great generalization ability in precise control of varying human movements and worldconsistent modeling of diverse scenarios. It marks the first endeavor into egocentric real-world simulation and can pave the way for the community to delve into fresh frontiers of world modeling and its diverse applications.
comment: Project page: https://playerone-hku.github.io/
☆ Text-Aware Image Restoration with Diffusion Models
Image restoration aims to recover degraded images. However, existing diffusion-based restoration methods, despite great success in natural image restoration, often struggle to faithfully reconstruct textual regions in degraded images. Those methods frequently generate plausible but incorrect text-like patterns, a phenomenon we refer to as text-image hallucination. In this paper, we introduce Text-Aware Image Restoration (TAIR), a novel restoration task that requires the simultaneous recovery of visual contents and textual fidelity. To tackle this task, we present SA-Text, a large-scale benchmark of 100K high-quality scene images densely annotated with diverse and complex text instances. Furthermore, we propose a multi-task diffusion framework, called TeReDiff, that integrates internal features from diffusion models into a text-spotting module, enabling both components to benefit from joint training. This allows for the extraction of rich text representations, which are utilized as prompts in subsequent denoising steps. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art restoration methods, achieving significant gains in text recognition accuracy. See our project page: https://cvlab-kaist.github.io/TAIR/
comment: Project page: https://cvlab-kaist.github.io/TAIR/
☆ Chain-of-Action: Trajectory Autoregressive Modeling for Robotic Manipulation
We present Chain-of-Action (CoA), a novel visuo-motor policy paradigm built upon Trajectory Autoregressive Modeling. Unlike conventional approaches that predict next step action(s) forward, CoA generates an entire trajectory by explicit backward reasoning with task-specific goals through an action-level Chain-of-Thought (CoT) process. This process is unified within a single autoregressive structure: (1) the first token corresponds to a stable keyframe action that encodes the task-specific goals; and (2) subsequent action tokens are generated autoregressively, conditioned on the initial keyframe and previously predicted actions. This backward action reasoning enforces a global-to-local structure, allowing each local action to be tightly constrained by the final goal. To further realize the action reasoning structure, CoA incorporates four complementary designs: continuous action token representation; dynamic stopping for variable-length trajectory generation; reverse temporal ensemble; and multi-token prediction to balance action chunk modeling with global structure. As a result, CoA gives strong spatial generalization capabilities while preserving the flexibility and simplicity of a visuo-motor policy. Empirically, we observe CoA achieves the state-of-the-art performance across 60 RLBench tasks and 8 real-world manipulation tasks.
☆ Hearing Hands: Generating Sounds from Physical Interactions in 3D Scenes CVPR 2025
We study the problem of making 3D scene reconstructions interactive by asking the following question: can we predict the sounds of human hands physically interacting with a scene? First, we record a video of a human manipulating objects within a 3D scene using their hands. We then use these action-sound pairs to train a rectified flow model to map 3D hand trajectories to their corresponding audio. At test time, a user can query the model for other actions, parameterized as sequences of hand poses, to estimate their corresponding sounds. In our experiments, we find that our generated sounds accurately convey material properties and actions, and that they are often indistinguishable to human observers from real sounds. Project page: https://www.yimingdou.com/hearing_hands/
comment: CVPR 2025, Project page: https://www.yimingdou.com/hearing_hands/ , Code: https://github.com/Dou-Yiming/hearing_hands/
☆ EditInspector: A Benchmark for Evaluation of Text-Guided Image Edits
Text-guided image editing, fueled by recent advancements in generative AI, is becoming increasingly widespread. This trend highlights the need for a comprehensive framework to verify text-guided edits and assess their quality. To address this need, we introduce EditInspector, a novel benchmark for evaluation of text-guided image edits, based on human annotations collected using an extensive template for edit verification. We leverage EditInspector to evaluate the performance of state-of-the-art (SoTA) vision and language models in assessing edits across various dimensions, including accuracy, artifact detection, visual quality, seamless integration with the image scene, adherence to common sense, and the ability to describe edit-induced changes. Our findings indicate that current models struggle to evaluate edits comprehensively and frequently hallucinate when describing the changes. To address these challenges, we propose two novel methods that outperform SoTA models in both artifact detection and difference caption generation.
☆ A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs
Existing benchmarks for assessing the spatio-temporal understanding and reasoning abilities of video language models are susceptible to score inflation due to the presence of shortcut solutions based on superficial visual or textual cues. This paper mitigates the challenges in accurately assessing model performance by introducing the Minimal Video Pairs (MVP) benchmark, a simple shortcut-aware video QA benchmark for assessing the physical understanding of video language models. The benchmark is comprised of 55K high-quality multiple-choice video QA examples focusing on physical world understanding. Examples are curated from nine video data sources, spanning first-person egocentric and exocentric videos, robotic interaction data, and cognitive science intuitive physics benchmarks. To mitigate shortcut solutions that rely on superficial visual or textual cues and biases, each sample in MVP has a minimal-change pair -- a visually similar video accompanied by an identical question but an opposing answer. To answer a question correctly, a model must provide correct answers for both examples in the minimal-change pair; as such, models that solely rely on visual or textual biases would achieve below random performance. Human performance on MVP is 92.9\%, while the best open-source state-of-the-art video-language model achieves 40.2\% compared to random performance at 25\%.
☆ InterActHuman: Multi-Concept Human Animation with Layout-Aligned Audio Conditions
End-to-end human animation with rich multi-modal conditions, e.g., text, image and audio has achieved remarkable advancements in recent years. However, most existing methods could only animate a single subject and inject conditions in a global manner, ignoring scenarios that multiple concepts could appears in the same video with rich human-human interactions and human-object interactions. Such global assumption prevents precise and per-identity control of multiple concepts including humans and objects, therefore hinders applications. In this work, we discard the single-entity assumption and introduce a novel framework that enforces strong, region-specific binding of conditions from modalities to each identity's spatiotemporal footprint. Given reference images of multiple concepts, our method could automatically infer layout information by leveraging a mask predictor to match appearance cues between the denoised video and each reference appearance. Furthermore, we inject local audio condition into its corresponding region to ensure layout-aligned modality matching in a iterative manner. This design enables the high-quality generation of controllable multi-concept human-centric videos. Empirical results and ablation studies validate the effectiveness of our explicit layout control for multi-modal conditions compared to implicit counterparts and other existing methods.
comment: TL;DR: The first multi-person dialogue video generation method from pairs of reference image and audio via explicit layout-aligned condition injection. See project page https://zhenzhiwang.github.io/interacthuman/ for more details
☆ V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning
A major challenge for modern AI is to learn to understand the world and learn to act largely by observation. This paper explores a self-supervised approach that combines internet-scale video data with a small amount of interaction data (robot trajectories), to develop models capable of understanding, predicting, and planning in the physical world. We first pre-train an action-free joint-embedding-predictive architecture, V-JEPA 2, on a video and image dataset comprising over 1 million hours of internet video. V-JEPA 2 achieves strong performance on motion understanding (77.3 top-1 accuracy on Something-Something v2) and state-of-the-art performance on human action anticipation (39.7 recall-at-5 on Epic-Kitchens-100) surpassing previous task-specific models. Additionally, after aligning V-JEPA 2 with a large language model, we demonstrate state-of-the-art performance on multiple video question-answering tasks at the 8 billion parameter scale (e.g., 84.0 on PerceptionTest, 76.9 on TempCompass). Finally, we show how self-supervised learning can be applied to robotic planning tasks by post-training a latent action-conditioned world model, V-JEPA 2-AC, using less than 62 hours of unlabeled robot videos from the Droid dataset. We deploy V-JEPA 2-AC zero-shot on Franka arms in two different labs and enable picking and placing of objects using planning with image goals. Notably, this is achieved without collecting any data from the robots in these environments, and without any task-specific training or reward. This work demonstrates how self-supervised learning from web-scale data and a small amount of robot interaction data can yield a world model capable of planning in the physical world.
comment: 48 pages, 19 figures
☆ AnimateAnyMesh: A Feed-Forward 4D Foundation Model for Text-Driven Universal Mesh Animation
Recent advances in 4D content generation have attracted increasing attention, yet creating high-quality animated 3D models remains challenging due to the complexity of modeling spatio-temporal distributions and the scarcity of 4D training data. In this paper, we present AnimateAnyMesh, the first feed-forward framework that enables efficient text-driven animation of arbitrary 3D meshes. Our approach leverages a novel DyMeshVAE architecture that effectively compresses and reconstructs dynamic mesh sequences by disentangling spatial and temporal features while preserving local topological structures. To enable high-quality text-conditional generation, we employ a Rectified Flow-based training strategy in the compressed latent space. Additionally, we contribute the DyMesh Dataset, containing over 4M diverse dynamic mesh sequences with text annotations. Experimental results demonstrate that our method generates semantically accurate and temporally coherent mesh animations in a few seconds, significantly outperforming existing approaches in both quality and efficiency. Our work marks a substantial step forward in making 4D content creation more accessible and practical. All the data, code, and models will be open-released.
comment: Project Page: https://animateanymesh.github.io/AnimateAnyMesh/
☆ ReSim: Reliable World Simulation for Autonomous Driving
How can we reliably simulate future driving scenarios under a wide range of ego driving behaviors? Recent driving world models, developed exclusively on real-world driving data composed mainly of safe expert trajectories, struggle to follow hazardous or non-expert behaviors, which are rare in such data. This limitation restricts their applicability to tasks such as policy evaluation. In this work, we address this challenge by enriching real-world human demonstrations with diverse non-expert data collected from a driving simulator (e.g., CARLA), and building a controllable world model trained on this heterogeneous corpus. Starting with a video generator featuring a diffusion transformer architecture, we devise several strategies to effectively integrate conditioning signals and improve prediction controllability and fidelity. The resulting model, ReSim, enables Reliable Simulation of diverse open-world driving scenarios under various actions, including hazardous non-expert ones. To close the gap between high-fidelity simulation and applications that require reward signals to judge different actions, we introduce a Video2Reward module that estimates a reward from ReSim's simulated future. Our ReSim paradigm achieves up to 44% higher visual fidelity, improves controllability for both expert and non-expert actions by over 50%, and boosts planning and policy selection performance on NAVSIM by 2% and 25%, respectively.
comment: Project page: https://opendrivelab.com/ReSim
☆ Efficient Part-level 3D Object Generation via Dual Volume Packing
Recent progress in 3D object generation has greatly improved both the quality and efficiency. However, most existing methods generate a single mesh with all parts fused together, which limits the ability to edit or manipulate individual parts. A key challenge is that different objects may have a varying number of parts. To address this, we propose a new end-to-end framework for part-level 3D object generation. Given a single input image, our method generates high-quality 3D objects with an arbitrary number of complete and semantically meaningful parts. We introduce a dual volume packing strategy that organizes all parts into two complementary volumes, allowing for the creation of complete and interleaved parts that assemble into the final object. Experiments show that our model achieves better quality, diversity, and generalization than previous image-based part-level generation methods.
comment: Code: https://github.com/NVlabs/PartPacker Project Page: https://research.nvidia.com/labs/dir/partpacker/
☆ Vectorized Region Based Brush Strokes for Artistic Rendering
Creating a stroke-by-stroke evolution process of a visual artwork tries to bridge the emotional and educational gap between the finished static artwork and its creation process. Recent stroke-based painting systems focus on capturing stroke details by predicting and iteratively refining stroke parameters to maximize the similarity between the input image and the rendered output. However, these methods often struggle to produce stroke compositions that align with artistic principles and intent. To address this, we explore an image-to-painting method that (i) facilitates semantic guidance for brush strokes in targeted regions, (ii) computes the brush stroke parameters, and (iii) establishes a sequence among segments and strokes to sequentially render the final painting. Experimental results on various input image types, such as face images, paintings, and photographic images, show that our method aligns with a region-based painting strategy while rendering a painting with high fidelity and superior stroke quality.
☆ Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing
As textual reasoning with large language models (LLMs) has advanced significantly, there has been growing interest in enhancing the multimodal reasoning capabilities of large vision-language models (LVLMs). However, existing methods primarily approach multimodal reasoning in a straightforward, text-centric manner, where both reasoning and answer derivation are conducted purely through text, with the only difference being the presence of multimodal input. As a result, these methods often encounter fundamental limitations in spatial reasoning tasks that demand precise geometric understanding and continuous spatial tracking-capabilities that humans achieve through mental visualization and manipulation. To address the limitations, we propose drawing to reason in space, a novel paradigm that enables LVLMs to reason through elementary drawing operations in the visual space. By equipping models with basic drawing operations, including annotating bounding boxes and drawing auxiliary lines, we empower them to express and analyze spatial relationships through direct visual manipulation, meanwhile avoiding the performance ceiling imposed by specialized perception tools in previous tool-integrated reasoning approaches. To cultivate this capability, we develop a three-stage training framework: cold-start training with synthetic data to establish basic drawing abilities, reflective rejection sampling to enhance self-reflection behaviors, and reinforcement learning to directly optimize for target rewards. Extensive experiments demonstrate that our model, named VILASR, consistently outperforms existing methods across diverse spatial reasoning benchmarks, involving maze navigation, static spatial reasoning, video-based reasoning, and multi-view-based reasoning tasks, with an average improvement of 18.4%.
☆ Kvasir-VQA-x1: A Multimodal Dataset for Medical Reasoning and Robust MedVQA in Gastrointestinal Endoscopy
Medical Visual Question Answering (MedVQA) is a promising field for developing clinical decision support systems, yet progress is often limited by the available datasets, which can lack clinical complexity and visual diversity. To address these gaps, we introduce Kvasir-VQA-x1, a new, large-scale dataset for gastrointestinal (GI) endoscopy. Our work significantly expands upon the original Kvasir-VQA by incorporating 159,549 new question-answer pairs that are designed to test deeper clinical reasoning. We developed a systematic method using large language models to generate these questions, which are stratified by complexity to better assess a model's inference capabilities. To ensure our dataset prepares models for real-world clinical scenarios, we have also introduced a variety of visual augmentations that mimic common imaging artifacts. The dataset is structured to support two main evaluation tracks: one for standard VQA performance and another to test model robustness against these visual perturbations. By providing a more challenging and clinically relevant benchmark, Kvasir-VQA-x1 aims to accelerate the development of more reliable and effective multimodal AI systems for use in clinical settings. The dataset is fully accessible and adheres to FAIR data principles, making it a valuable resource for the wider research community. Code and data: https://github.com/Simula/Kvasir-VQA-x1 and https://huggingface.co/datasets/SimulaMet/Kvasir-VQA-x1
☆ Canonical Latent Representations in Conditional Diffusion Models
Conditional diffusion models (CDMs) have shown impressive performance across a range of generative tasks. Their ability to model the full data distribution has opened new avenues for analysis-by-synthesis in downstream discriminative learning. However, this same modeling capacity causes CDMs to entangle the class-defining features with irrelevant context, posing challenges to extracting robust and interpretable representations. To this end, we identify Canonical LAtent Representations (CLAReps), latent codes whose internal CDM features preserve essential categorical information while discarding non-discriminative signals. When decoded, CLAReps produce representative samples for each class, offering an interpretable and compact summary of the core class semantics with minimal irrelevant details. Exploiting CLAReps, we develop a novel diffusion-based feature-distillation paradigm, CaDistill. While the student has full access to the training set, the CDM as teacher transfers core class knowledge only via CLAReps, which amounts to merely 10 % of the training data in size. After training, the student achieves strong adversarial robustness and generalization ability, focusing more on the class signals instead of spurious background cues. Our findings suggest that CDMs can serve not just as image generators but also as compact, interpretable teachers that can drive robust representation learning.
comment: 45 pages,41 figures
☆ Vision Generalist Model: A Survey
Recently, we have witnessed the great success of the generalist model in natural language processing. The generalist model is a general framework trained with massive data and is able to process various downstream tasks simultaneously. Encouraged by their impressive performance, an increasing number of researchers are venturing into the realm of applying these models to computer vision tasks. However, the inputs and outputs of vision tasks are more diverse, and it is difficult to summarize them as a unified representation. In this paper, we provide a comprehensive overview of the vision generalist models, delving into their characteristics and capabilities within the field. First, we review the background, including the datasets, tasks, and benchmarks. Then, we dig into the design of frameworks that have been proposed in existing research, while also introducing the techniques employed to enhance their performance. To better help the researchers comprehend the area, we take a brief excursion into related domains, shedding light on their interconnections and potential synergies. To conclude, we provide some real-world application scenarios, undertake a thorough examination of the persistent challenges, and offer insights into possible directions for future research endeavors.
comment: Accepted by International Journal of Computer Vision (IJCV)
☆ Outside Knowledge Conversational Video (OKCV) Dataset -- Dialoguing over Videos
In outside knowledge visual question answering (OK-VQA), the model must identify relevant visual information within an image and incorporate external knowledge to accurately respond to a question. Extending this task to a visually grounded dialogue setting based on videos, a conversational model must both recognize pertinent visual details over time and answer questions where the required information is not necessarily present in the visual information. Moreover, the context of the overall conversation must be considered for the subsequent dialogue. To explore this task, we introduce a dataset comprised of $2,017$ videos with $5,986$ human-annotated dialogues consisting of $40,954$ interleaved dialogue turns. While the dialogue context is visually grounded in specific video segments, the questions further require external knowledge that is not visually present. Thus, the model not only has to identify relevant video parts but also leverage external knowledge to converse within the dialogue. We further provide several baselines evaluated on our dataset and show future challenges associated with this task. The dataset is made publicly available here: https://github.com/c-patsch/OKCV.
☆ UniPre3D: Unified Pre-training of 3D Point Cloud Models with Cross-Modal Gaussian Splatting CVPR 2025
The scale diversity of point cloud data presents significant challenges in developing unified representation learning techniques for 3D vision. Currently, there are few unified 3D models, and no existing pre-training method is equally effective for both object- and scene-level point clouds. In this paper, we introduce UniPre3D, the first unified pre-training method that can be seamlessly applied to point clouds of any scale and 3D models of any architecture. Our approach predicts Gaussian primitives as the pre-training task and employs differentiable Gaussian splatting to render images, enabling precise pixel-level supervision and end-to-end optimization. To further regulate the complexity of the pre-training task and direct the model's focus toward geometric structures, we integrate 2D features from pre-trained image models to incorporate well-established texture knowledge. We validate the universal effectiveness of our proposed method through extensive experiments across a variety of object- and scene-level tasks, using diverse point cloud models as backbones. Code is available at https://github.com/wangzy22/UniPre3D.
comment: Accepted to CVPR 2025
☆ Sampling Theory for Super-Resolution with Implicit Neural Representations
Implicit neural representations (INRs) have emerged as a powerful tool for solving inverse problems in computer vision and computational imaging. INRs represent images as continuous domain functions realized by a neural network taking spatial coordinates as inputs. However, unlike traditional pixel representations, little is known about the sample complexity of estimating images using INRs in the context of linear inverse problems. Towards this end, we study the sampling requirements for recovery of a continuous domain image from its low-pass Fourier samples by fitting a single hidden-layer INR with ReLU activation and a Fourier features layer using a generalized form of weight decay regularization. Our key insight is to relate minimizers of this non-convex parameter space optimization problem to minimizers of a convex penalty defined over an infinite-dimensional space of measures. We identify a sufficient number of Fourier samples for which an image realized by an INR is exactly recoverable by solving the INR training problem. To validate our theory, we empirically assess the probability of achieving exact recovery of images realized by low-width single hidden-layer INRs, and illustrate the performance of INRs on super-resolution recovery of continuous domain phantom images.
comment: arXiv admin note: text overlap with arXiv:2405.18410
☆ CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models NeurIPS2025
We introduce CausalVQA, a benchmark dataset for video question answering (VQA) composed of question-answer pairs that probe models' understanding of causality in the physical world. Existing VQA benchmarks either tend to focus on surface perceptual understanding of real-world videos, or on narrow physical reasoning questions created using simulation environments. CausalVQA fills an important gap by presenting challenging questions that are grounded in real-world scenarios, while focusing on models' ability to predict the likely outcomes of different actions and events through five question types: counterfactual, hypothetical, anticipation, planning and descriptive. We designed quality control mechanisms that prevent models from exploiting trivial shortcuts, requiring models to base their answers on deep visual understanding instead of linguistic cues. We find that current frontier multimodal models fall substantially below human performance on the benchmark, especially on anticipation and hypothetical questions. This highlights a challenge for current systems to leverage spatial-temporal reasoning, understanding of physical principles, and comprehension of possible alternatives to make accurate predictions in real-world settings.
comment: 35 pages, 3 figures, Submitted to NeurIPS2025 benchmark track
☆ LEO-VL: Towards 3D Vision-Language Generalists via Data Scaling with Efficient Representation
Developing 3D-VL generalists capable of understanding 3D scenes and following natural language instructions to perform a wide range of tasks has been a long-standing goal in the 3D-VL community. Despite recent progress, 3D-VL models still lag behind their 2D counterparts in capability and robustness, falling short of the generalist standard. A key obstacle to developing 3D-VL generalists lies in data scalability, hindered by the lack of an efficient scene representation. We propose LEO-VL, a 3D-VL model built upon condensed feature grid (CFG), an efficient scene representation that bridges 2D perception and 3D spatial structure while significantly reducing token overhead. This efficiency unlocks large-scale training towards 3D-VL generalist, for which we curate over 700k high-quality 3D-VL data spanning four domains of real-world indoor scenes and five tasks such as captioning and dialogue. LEO-VL achieves state-of-the-art performance on a variety of 3D QA benchmarks, including SQA3D, MSQA, and Beacon3D. Ablation studies confirm the efficiency of our representation, the importance of task and scene diversity, and the validity of our data curation principle. Furthermore, we introduce SceneDPO, a novel post-training objective that enhances the robustness of 3D-VL models. We hope our findings contribute to the advancement of scalable and robust 3D-VL generalists.
comment: Project page: https://leo-vl.github.io
☆ Fluoroscopic Shape and Pose Tracking of Catheters with Custom Radiopaque Markers
Safe navigation of steerable and robotic catheters in the cerebral vasculature requires awareness of the catheters shape and pose. Currently, a significant perception burden is placed on interventionalists to mentally reconstruct and predict catheter motions from biplane fluoroscopy images. Efforts to track these catheters are limited to planar segmentation or bulky sensing instrumentation, which are incompatible with microcatheters used in neurointervention. In this work, a catheter is equipped with custom radiopaque markers arranged to enable simultaneous shape and pose estimation under biplane fluoroscopy. A design measure is proposed to guide the arrangement of these markers to minimize sensitivity to marker tracking uncertainty. This approach was deployed for microcatheters smaller than 2mm OD navigating phantom vasculature with shape tracking errors less than 1mm and catheter roll errors below 40 degrees. This work can enable steerable catheters to autonomously navigate under biplane imaging.
comment: 8 pages, 5 figures, accepted in Robotics and Automation Letters
☆ HadaNorm: Diffusion Transformer Quantization through Mean-Centered Transformations
Diffusion models represent the cutting edge in image generation, but their high memory and computational demands hinder deployment on resource-constrained devices. Post-Training Quantization (PTQ) offers a promising solution by reducing the bitwidth of matrix operations. However, standard PTQ methods struggle with outliers, and achieving higher compression often requires transforming model weights and activations before quantization. In this work, we propose HadaNorm, a novel linear transformation that extends existing approaches and effectively mitigates outliers by normalizing activations feature channels before applying Hadamard transformations, enabling more aggressive activation quantization. We demonstrate that HadaNorm consistently reduces quantization error across the various components of transformer blocks, achieving superior efficiency-performance trade-offs when compared to state-of-the-art methods.
comment: 4 Pages, 5 Figures
☆ From Intention to Execution: Probing the Generalization Boundaries of Vision-Language-Action Models
One promise that Vision-Language-Action (VLA) models hold over traditional imitation learning for robotics is to leverage the broad generalization capabilities of large Vision-Language Models (VLMs) to produce versatile, "generalist" robot policies. However, current evaluations of VLAs remain insufficient. Traditional imitation learning benchmarks are unsuitable due to the lack of language instructions. Emerging benchmarks for VLAs that incorporate language often come with limited evaluation tasks and do not intend to investigate how much VLM pretraining truly contributes to the generalization capabilities of the downstream robotic policy. Meanwhile, much research relies on real-world robot setups designed in isolation by different institutions, which creates a barrier for reproducibility and accessibility. To address this gap, we introduce a unified probing suite of 50 simulation-based tasks across 10 subcategories spanning language instruction, vision, and objects. We systematically evaluate several state-of-the-art VLA architectures on this suite to understand their generalization capability. Our results show that while VLM backbones endow VLAs with robust perceptual understanding and high level planning, which we refer to as good intentions, this does not reliably translate into precise motor execution: when faced with out-of-distribution observations, policies often exhibit coherent intentions, but falter in action execution. Moreover, finetuning on action data can erode the original VLM's generalist reasoning abilities. We release our task suite and evaluation code to serve as a standardized benchmark for future VLAs and to drive research on closing the perception-to-action gap. More information, including the source code, can be found at https://ai4ce.github.io/INT-ACT/
comment: Under review
☆ Structural-Spectral Graph Convolution with Evidential Edge Learning for Hyperspectral Image Clustering
Hyperspectral image (HSI) clustering assigns similar pixels to the same class without any annotations, which is an important yet challenging task. For large-scale HSIs, most methods rely on superpixel segmentation and perform superpixel-level clustering based on graph neural networks (GNNs). However, existing GNNs cannot fully exploit the spectral information of the input HSI, and the inaccurate superpixel topological graph may lead to the confusion of different class semantics during information aggregation. To address these challenges, we first propose a structural-spectral graph convolutional operator (SSGCO) tailored for graph-structured HSI superpixels to improve their representation quality through the co-extraction of spatial and spectral features. Second, we propose an evidence-guided adaptive edge learning (EGAEL) module that adaptively predicts and refines edge weights in the superpixel topological graph. We integrate the proposed method into a contrastive learning framework to achieve clustering, where representation learning and clustering are simultaneously conducted. Experiments demonstrate that the proposed method improves clustering accuracy by 2.61%, 6.06%, 4.96% and 3.15% over the best compared methods on four HSI datasets. Our code is available at https://github.com/jhqi/SSGCO-EGAEL.
☆ MetricHMR: Metric Human Mesh Recovery from Monocular Images
We introduce MetricHMR (Metric Human Mesh Recovery), an approach for metric human mesh recovery with accurate global translation from monocular images. In contrast to existing HMR methods that suffer from severe scale and depth ambiguity, MetricHMR is able to produce geometrically reasonable body shape and global translation in the reconstruction results. To this end, we first systematically analyze previous HMR methods on camera models to emphasize the critical role of the standard perspective projection model in enabling metric-scale HMR. We then validate the acceptable ambiguity range of metric HMR under the standard perspective projection model. Finally, we contribute a novel approach that introduces a ray map based on the standard perspective projection to jointly encode bounding-box information, camera parameters, and geometric cues for End2End metric HMR without any additional metric-regularization modules. Extensive experiments demonstrate that our method achieves state-of-the-art performance, even compared with sequential HMR methods, in metric pose, shape, and global translation estimation across both indoor and in-the-wild scenarios.
☆ Only-Style: Stylistic Consistency in Image Generation without Content Leakage
Generating images in a consistent reference visual style remains a challenging computer vision task. State-of-the-art methods aiming for style-consistent generation struggle to effectively separate semantic content from stylistic elements, leading to content leakage from the image provided as a reference to the targets. To address this challenge, we propose Only-Style: a method designed to mitigate content leakage in a semantically coherent manner while preserving stylistic consistency. Only-Style works by localizing content leakage during inference, allowing the adaptive tuning of a parameter that controls the style alignment process, specifically within the image patches containing the subject in the reference image. This adaptive process best balances stylistic consistency with leakage elimination. Moreover, the localization of content leakage can function as a standalone component, given a reference-target image pair, allowing the adaptive tuning of any method-specific parameter that provides control over the impact of the stylistic reference. In addition, we propose a novel evaluation framework to quantify the success of style-consistent generations in avoiding undesired content leakage. Our approach demonstrates a significant improvement over state-of-the-art methods through extensive evaluation across diverse instances, consistently achieving robust stylistic consistency without undesired content leakage.
☆ CEM-FBGTinyDet: Context-Enhanced Foreground Balance with Gradient Tuning for tiny Objects
Tiny object detection (TOD) reveals a fundamental flaw in feature pyramid networks: high-level features (P5-P6) frequently receive zero positive anchors under standard label assignment protocols, leaving their semantic representations untrained due to exclusion from loss computation. This creates dual deficiencies: (1) Stranded high-level features become semantic dead-ends without gradient updates, while (2) low-level features lack essential semantic context for robust classification. We propose E-FPN-BS that systematically converts wasted high-level semantics into low-level feature enhancements. To address these issues, we propose E-FPN-BS, a novel architecture integrating multi-scale feature enhancement and adaptive optimization. First, our Context Enhancement Module(CEM) employs dual-branch processing to align and compress high-level features for effective global-local fusion. Second, the Foreground-Background Separation Module (FBSM) generates spatial gating masks that dynamically amplify discriminative regions. To address gradient imbalance across object scales, we further propose a Dynamic Gradient-Balanced Loss (DCLoss) that automatically modulates loss contributions via scale-aware gradient equilibrium. Extensive experiments across multiple benchmark datasets demonstrate the outstanding performance and generalization ability of our approach.
☆ EquiCaps: Predictor-Free Pose-Aware Pre-Trained Capsule Networks
Learning self-supervised representations that are invariant and equivariant to transformations is crucial for advancing beyond traditional visual classification tasks. However, many methods rely on predictor architectures to encode equivariance, despite evidence that architectural choices, such as capsule networks, inherently excel at learning interpretable pose-aware representations. To explore this, we introduce EquiCaps (Equivariant Capsule Network), a capsule-based approach to pose-aware self-supervision that eliminates the need for a specialised predictor for enforcing equivariance. Instead, we leverage the intrinsic pose-awareness capabilities of capsules to improve performance in pose estimation tasks. To further challenge our assumptions, we increase task complexity via multi-geometric transformations to enable a more thorough evaluation of invariance and equivariance by introducing 3DIEBench-T, an extension of a 3D object-rendering benchmark dataset. Empirical results demonstrate that EquiCaps outperforms prior state-of-the-art equivariant methods on rotation prediction, achieving a supervised-level $R^2$ of 0.78 on the 3DIEBench rotation prediction benchmark and improving upon SIE and CapsIE by 0.05 and 0.04 $R^2$, respectively. Moreover, in contrast to non-capsule-based equivariant approaches, EquiCaps maintains robust equivariant performance under combined geometric transformations, underscoring its generalisation capabilities and the promise of predictor-free capsule architectures.
comment: 19 pages, 11 Figures, 13 Tables
☆ The Less You Depend, The More You Learn: Synthesizing Novel Views from Sparse, Unposed Images without Any 3D Knowledge
We consider the problem of generalizable novel view synthesis (NVS), which aims to generate photorealistic novel views from sparse or even unposed 2D images without per-scene optimization. This task remains fundamentally challenging, as it requires inferring 3D structure from incomplete and ambiguous 2D observations. Early approaches typically rely on strong 3D knowledge, including architectural 3D inductive biases (e.g., embedding explicit 3D representations, such as NeRF or 3DGS, into network design) and ground-truth camera poses for both input and target views. While recent efforts have sought to reduce the 3D inductive bias or the dependence on known camera poses of input views, critical questions regarding the role of 3D knowledge and the necessity of circumventing its use remain under-explored. In this work, we conduct a systematic analysis on the 3D knowledge and uncover a critical trend: the performance of methods that requires less 3D knowledge accelerates more as data scales, eventually achieving performance on par with their 3D knowledge-driven counterparts, which highlights the increasing importance of reducing dependence on 3D knowledge in the era of large-scale data. Motivated by and following this trend, we propose a novel NVS framework that minimizes 3D inductive bias and pose dependence for both input and target views. By eliminating this 3D knowledge, our method fully leverages data scaling and learns implicit 3D awareness directly from sparse 2D images, without any 3D inductive bias or pose annotation during training. Extensive experiments demonstrate that our model generates photorealistic and 3D-consistent novel views, achieving even comparable performance with methods that rely on posed inputs, thereby validating the feasibility and effectiveness of our data-centric paradigm. Project page: https://pku-vcl-geometry.github.io/Less3Depend/ .
☆ 3D-Aware Vision-Language Models Fine-Tuning with Geometric Distillation
Vision-Language Models (VLMs) have shown remarkable performance on diverse visual and linguistic tasks, yet they remain fundamentally limited in their understanding of 3D spatial structures. We propose Geometric Distillation, a lightweight, annotation-free fine-tuning framework that injects human-inspired geometric cues into pretrained VLMs without modifying their architecture. By distilling (1) sparse correspondences, (2) relative depth relations, and (3) dense cost volumes from off-the-shelf 3D foundation models (e.g., MASt3R, VGGT), our method shapes representations to be geometry-aware while remaining compatible with natural image-text inputs. Through extensive evaluations on 3D vision-language reasoning and 3D perception benchmarks, our method consistently outperforms prior approaches, achieving improved 3D spatial reasoning with significantly lower computational cost. Our work demonstrates a scalable and efficient path to bridge 2D-trained VLMs with 3D understanding, opening up wider use in spatially grounded multimodal tasks.
☆ Leveraging Depth and Language for Open-Vocabulary Domain-Generalized Semantic Segmentation
Open-Vocabulary semantic segmentation (OVSS) and domain generalization in semantic segmentation (DGSS) highlight a subtle complementarity that motivates Open-Vocabulary Domain-Generalized Semantic Segmentation (OV-DGSS). OV-DGSS aims to generate pixel-level masks for unseen categories while maintaining robustness across unseen domains, a critical capability for real-world scenarios such as autonomous driving in adverse conditions. We introduce Vireo, a novel single-stage framework for OV-DGSS that unifies the strengths of OVSS and DGSS for the first time. Vireo builds upon the frozen Visual Foundation Models (VFMs) and incorporates scene geometry via Depth VFMs to extract domain-invariant structural features. To bridge the gap between visual and textual modalities under domain shift, we propose three key components: (1) GeoText Prompts, which align geometric features with language cues and progressively refine VFM encoder representations; (2) Coarse Mask Prior Embedding (CMPE) for enhancing gradient flow for faster convergence and stronger textual influence; and (3) the Domain-Open-Vocabulary Vector Embedding Head (DOV-VEH), which fuses refined structural and semantic features for robust prediction. Comprehensive evaluation on these components demonstrates the effectiveness of our designs. Our proposed Vireo achieves the state-of-the-art performance and surpasses existing methods by a large margin in both domain generalization and open-vocabulary recognition, offering a unified and scalable solution for robust visual understanding in diverse and dynamic environments. Code is available at https://github.com/anonymouse-9c53tp182bvz/Vireo.
☆ IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments
We present IntPhys 2, a video benchmark designed to evaluate the intuitive physics understanding of deep learning models. Building on the original IntPhys benchmark, IntPhys 2 focuses on four core principles related to macroscopic objects: Permanence, Immutability, Spatio-Temporal Continuity, and Solidity. These conditions are inspired by research into intuitive physical understanding emerging during early childhood. IntPhys 2 offers a comprehensive suite of tests, based on the violation of expectation framework, that challenge models to differentiate between possible and impossible events within controlled and diverse virtual environments. Alongside the benchmark, we provide performance evaluations of several state-of-the-art models. Our findings indicate that while these models demonstrate basic visual understanding, they face significant challenges in grasping intuitive physics across the four principles in complex scenes, with most models performing at chance levels (50%), in stark contrast to human performance, which achieves near-perfect accuracy. This underscores the gap between current models and human-like intuitive physics understanding, highlighting the need for advancements in model architectures and training methodologies.
Dataset of News Articles with Provenance Metadata for Media Relevance Assessment
Out-of-context and misattributed imagery is the leading form of media manipulation in today's misinformation and disinformation landscape. The existing methods attempting to detect this practice often only consider whether the semantics of the imagery corresponds to the text narrative, missing manipulation so long as the depicted objects or scenes somewhat correspond to the narrative at hand. To tackle this, we introduce News Media Provenance Dataset, a dataset of news articles with provenance-tagged images. We formulate two tasks on this dataset, location of origin relevance (LOR) and date and time of origin relevance (DTOR), and present baseline results on six large language models (LLMs). We identify that, while the zero-shot performance on LOR is promising, the performance on DTOR hinders, leaving room for specialized architectures and future work.
☆ Learning to Align: Addressing Character Frequency Distribution Shifts in Handwritten Text Recognition
Handwritten text recognition aims to convert visual input into machine-readable text, and it remains challenging due to the evolving and context-dependent nature of handwriting. Character sets change over time, and character frequency distributions shift across historical periods or regions, often causing models trained on broad, heterogeneous corpora to underperform on specific subsets. To tackle this, we propose a novel loss function that incorporates the Wasserstein distance between the character frequency distribution of the predicted text and a target distribution empirically derived from training data. By penalizing divergence from expected distributions, our approach enhances both accuracy and robustness under temporal and contextual intra-dataset shifts. Furthermore, we demonstrate that character distribution alignment can also improve existing models at inference time without requiring retraining by integrating it as a scoring function in a guided decoding scheme. Experimental results across multiple datasets and architectures confirm the effectiveness of our method in boosting generalization and performance. We open source our code at https://github.com/pkaliosis/fada.
comment: 17 pages, 10 figures, Under Review
☆ OctoNav: Towards Generalist Embodied Navigation
Embodied navigation stands as a foundation pillar within the broader pursuit of embodied AI. However, previous navigation research is divided into different tasks/capabilities, e.g., ObjNav, ImgNav and VLN, where they differ in task objectives and modalities, making datasets and methods are designed individually. In this work, we take steps toward generalist navigation agents, which can follow free-form instructions that include arbitrary compounds of multi-modal and multi-capability. To achieve this, we propose a large-scale benchmark and corresponding method, termed OctoNav-Bench and OctoNav-R1. Specifically, OctoNav-Bench features continuous environments and is constructed via a designed annotation pipeline. We thoroughly craft instruction-trajectory pairs, where instructions are diverse in free-form with arbitrary modality and capability. Also, we construct a Think-Before-Action (TBA-CoT) dataset within OctoNav-Bench to provide the thinking process behind actions. For OctoNav-R1, we build it upon MLLMs and adapt it to a VLA-type model, which can produce low-level actions solely based on 2D visual observations. Moreover, we design a Hybrid Training Paradigm (HTP) that consists of three stages, i.e., Action-/TBA-SFT, Nav-GPRO, and Online RL stages. Each stage contains specifically designed learning policies and rewards. Importantly, for TBA-SFT and Nav-GRPO designs, we are inspired by the OpenAI-o1 and DeepSeek-R1, which show impressive reasoning ability via thinking-before-answer. Thus, we aim to investigate how to achieve thinking-before-action in the embodied navigation field, to improve model's reasoning ability toward generalists. Specifically, we propose TBA-SFT to utilize the TBA-CoT dataset to fine-tune the model as a cold-start phrase and then leverage Nav-GPRO to improve its thinking ability. Finally, OctoNav-R1 shows superior performance compared with previous methods.
comment: 31 pages, 25 figures
☆ DynaSplat: Dynamic-Static Gaussian Splatting with Hierarchical Motion Decomposition for Scene Reconstruction
Reconstructing intricate, ever-changing environments remains a central ambition in computer vision, yet existing solutions often crumble before the complexity of real-world dynamics. We present DynaSplat, an approach that extends Gaussian Splatting to dynamic scenes by integrating dynamic-static separation and hierarchical motion modeling. First, we classify scene elements as static or dynamic through a novel fusion of deformation offset statistics and 2D motion flow consistency, refining our spatial representation to focus precisely where motion matters. We then introduce a hierarchical motion modeling strategy that captures both coarse global transformations and fine-grained local movements, enabling accurate handling of intricate, non-rigid motions. Finally, we integrate physically-based opacity estimation to ensure visually coherent reconstructions, even under challenging occlusions and perspective shifts. Extensive experiments on challenging datasets reveal that DynaSplat not only surpasses state-of-the-art alternatives in accuracy and realism but also provides a more intuitive, compact, and efficient route to dynamic scene reconstruction.
☆ DreamCS: Geometry-Aware Text-to-3D Generation with Unpaired 3D Reward Supervision
While text-to-3D generation has attracted growing interest, existing methods often struggle to produce 3D assets that align well with human preferences. Current preference alignment techniques for 3D content typically rely on hardly-collected preference-paired multi-view 2D images to train 2D reward models, when then guide 3D generation -- leading to geometric artifacts due to their inherent 2D bias. To address these limitations, we construct 3D-MeshPref, the first large-scale unpaired 3D preference dataset, featuring diverse 3D meshes annotated by a large language model and refined by human evaluators. We then develop RewardCS, the first reward model trained directly on unpaired 3D-MeshPref data using a novel Cauchy-Schwarz divergence objective, enabling effective learning of human-aligned 3D geometric preferences without requiring paired comparisons. Building on this, we propose DreamCS, a unified framework that integrates RewardCS into text-to-3D pipelines -- enhancing both implicit and explicit 3D generation with human preference feedback. Extensive experiments show DreamCS outperforms prior methods, producing 3D assets that are both geometrically faithful and human-preferred. Code and models will be released publicly.
ComfyUI-R1: Exploring Reasoning Models for Workflow Generation
AI-generated content has evolved from monolithic models to modular workflows, particularly on platforms like ComfyUI, enabling customization in creative pipelines. However, crafting effective workflows requires great expertise to orchestrate numerous specialized components, presenting a steep learning curve for users. To address this challenge, we introduce ComfyUI-R1, the first large reasoning model for automated workflow generation. Starting with our curated dataset of 4K workflows, we construct long chain-of-thought (CoT) reasoning data, including node selection, workflow planning, and code-level workflow representation. ComfyUI-R1 is trained through a two-stage framework: (1) CoT fine-tuning for cold start, adapting models to the ComfyUI domain; (2) reinforcement learning for incentivizing reasoning capability, guided by a fine-grained rule-metric hybrid reward, ensuring format validity, structural integrity, and node-level fidelity. Experiments show that our 7B-parameter model achieves a 97\% format validity rate, along with high pass rate, node-level and graph-level F1 scores, significantly surpassing prior state-of-the-art methods that employ leading closed-source models such as GPT-4o and Claude series. Further analysis highlights the critical role of the reasoning process and the advantage of transforming workflows into code. Qualitative comparison reveals our strength in synthesizing intricate workflows with diverse nodes, underscoring the potential of long CoT reasoning in AI art creation.
comment: Work in progress. Try it out in ComfyUI-Copilot https://github.com/AIDC-AI/ComfyUI-Copilot
☆ Accurate and efficient zero-shot 6D pose estimation with frozen foundation models
Estimating the 6D pose of objects from RGBD data is a fundamental problem in computer vision, with applications in robotics and augmented reality. A key challenge is achieving generalization to novel objects that were not seen during training. Most existing approaches address this by scaling up training on synthetic data tailored to the task, a process that demands substantial computational resources. But is task-specific training really necessary for accurate and efficient 6D pose estimation of novel objects? To answer No!, we introduce FreeZeV2, the second generation of FreeZe: a training-free method that achieves strong generalization to unseen objects by leveraging geometric and vision foundation models pre-trained on unrelated data. FreeZeV2 improves both accuracy and efficiency over FreeZe through three key contributions: (i) a sparse feature extraction strategy that reduces inference-time computation without sacrificing accuracy; (ii) a feature-aware scoring mechanism that improves both pose selection during RANSAC-based 3D registration and the final ranking of pose candidates; and (iii) a modular design that supports ensembles of instance segmentation models, increasing robustness to segmentation masks errors. We evaluate FreeZeV2 on the seven core datasets of the BOP Benchmark, where it establishes a new state-of-the-art in 6D pose estimation of unseen objects. When using the same segmentation masks, FreeZeV2 achieves a remarkable 8x speedup over FreeZe while also improving accuracy by 5%. When using ensembles of segmentation models, FreeZeV2 gains an additional 8% in accuracy while still running 2.5x faster than FreeZe. FreeZeV2 was awarded Best Overall Method at the BOP Challenge 2024.
comment: Technical report
Q-SAM2: Accurate Quantization for Segment Anything Model 2
The Segment Anything Model 2 (SAM2) has gained significant attention as a foundational approach for promptable image and video segmentation. However, its expensive computational and memory consumption poses a severe challenge for its application in resource-constrained scenarios. In this paper, we propose an accurate low-bit quantization method for efficient SAM2, termed Q-SAM2. To address the performance degradation caused by the singularities in weight and activation distributions during quantization, Q-SAM2 introduces two novel technical contributions. We first introduce a linear layer calibration method for low-bit initialization of SAM2, which minimizes the Frobenius norm over a small image batch to reposition weight distributions for improved quantization. We then propose a Quantization-Aware Training (QAT) pipeline that applies clipping to suppress outliers and allows the network to adapt to quantization thresholds during training. Our comprehensive experiments demonstrate that Q-SAM2 allows for highly accurate inference while substantially improving efficiency. Both quantitative and visual results show that our Q-SAM2 surpasses existing state-of-the-art general quantization schemes, especially for ultra-low 2-bit quantization. While designed for quantization-aware training, our proposed calibration technique also proves effective in post-training quantization, achieving up to a 66% mIoU accuracy improvement over non-calibrated models.
comment: 20 pages
☆ Inverting Black-Box Face Recognition Systems via Zero-Order Optimization in Eigenface Space
Reconstructing facial images from black-box recognition models poses a significant privacy threat. While many methods require access to embeddings, we address the more challenging scenario of model inversion using only similarity scores. This paper introduces DarkerBB, a novel approach that reconstructs color faces by performing zero-order optimization within a PCA-derived eigenface space. Despite this highly limited information, experiments on LFW, AgeDB-30, and CFP-FP benchmarks demonstrate that DarkerBB achieves state-of-the-art verification accuracies in the similarity-only setting, with competitive query efficiency.
☆ Hierarchical Image Matching for UAV Absolute Visual Localization via Semantic and Structural Constraints
Absolute localization, aiming to determine an agent's location with respect to a global reference, is crucial for unmanned aerial vehicles (UAVs) in various applications, but it becomes challenging when global navigation satellite system (GNSS) signals are unavailable. Vision-based absolute localization methods, which locate the current view of the UAV in a reference satellite map to estimate its position, have become popular in GNSS-denied scenarios. However, existing methods mostly rely on traditional and low-level image matching, suffering from difficulties due to significant differences introduced by cross-source discrepancies and temporal variations. To overcome these limitations, in this paper, we introduce a hierarchical cross-source image matching method designed for UAV absolute localization, which integrates a semantic-aware and structure-constrained coarse matching module with a lightweight fine-grained matching module. Specifically, in the coarse matching module, semantic features derived from a vision foundation model first establish region-level correspondences under semantic and structural constraints. Then, the fine-grained matching module is applied to extract fine features and establish pixel-level correspondences. Building upon this, a UAV absolute visual localization pipeline is constructed without any reliance on relative localization techniques, mainly by employing an image retrieval module before the proposed hierarchical image matching modules. Experimental evaluations on public benchmark datasets and a newly introduced CS-UAV dataset demonstrate superior accuracy and robustness of the proposed method under various challenging conditions, confirming its effectiveness.
comment: 8 pages, 6 figures
☆ Class Similarity-Based Multimodal Classification under Heterogeneous Category Sets
Existing multimodal methods typically assume that different modalities share the same category set. However, in real-world applications, the category distributions in multimodal data exhibit inconsistencies, which can hinder the model's ability to effectively utilize cross-modal information for recognizing all categories. In this work, we propose the practical setting termed Multi-Modal Heterogeneous Category-set Learning (MMHCL), where models are trained in heterogeneous category sets of multi-modal data and aim to recognize complete classes set of all modalities during test. To effectively address this task, we propose a Class Similarity-based Cross-modal Fusion model (CSCF). Specifically, CSCF aligns modality-specific features to a shared semantic space to enable knowledge transfer between seen and unseen classes. It then selects the most discriminative modality for decision fusion through uncertainty estimation. Finally, it integrates cross-modal information based on class similarity, where the auxiliary modality refines the prediction of the dominant one. Experimental results show that our method significantly outperforms existing state-of-the-art (SOTA) approaches on multiple benchmark datasets, effectively addressing the MMHCL task.
☆ ELBO-T2IAlign: A Generic ELBO-Based Method for Calibrating Pixel-level Text-Image Alignment in Diffusion Models
Diffusion models excel at image generation. Recent studies have shown that these models not only generate high-quality images but also encode text-image alignment information through attention maps or loss functions. This information is valuable for various downstream tasks, including segmentation, text-guided image editing, and compositional image generation. However, current methods heavily rely on the assumption of perfect text-image alignment in diffusion models, which is not the case. In this paper, we propose using zero-shot referring image segmentation as a proxy task to evaluate the pixel-level image and class-level text alignment of popular diffusion models. We conduct an in-depth analysis of pixel-text misalignment in diffusion models from the perspective of training data bias. We find that misalignment occurs in images with small sized, occluded, or rare object classes. Therefore, we propose ELBO-T2IAlign, a simple yet effective method to calibrate pixel-text alignment in diffusion models based on the evidence lower bound (ELBO) of likelihood. Our method is training-free and generic, eliminating the need to identify the specific cause of misalignment and works well across various diffusion model architectures. Extensive experiments on commonly used benchmark datasets on image segmentation and generation have verified the effectiveness of our proposed calibration approach.
☆ Vision Matters: Simple Visual Perturbations Can Boost Multimodal Math Reasoning
Despite the rapid progress of multimodal large language models (MLLMs), they have largely overlooked the importance of visual processing. In a simple yet revealing experiment, we interestingly find that language-only models, when provided with image captions, can achieve comparable or even better performance than MLLMs that consume raw visual inputs. This suggests that current MLLMs may generate accurate visual descriptions but fail to effectively integrate them during reasoning. Motivated by this, we propose a simple visual perturbation framework that enhances perceptual robustness without requiring algorithmic modifications or additional training data. Our approach introduces three targeted perturbations: distractor concatenation, dominance-preserving mixup, and random rotation, that can be easily integrated into existing post-training pipelines including SFT, DPO, and GRPO. Through extensive experiments across multiple datasets, we demonstrate consistent improvements in mathematical reasoning performance, with gains comparable to those achieved through algorithmic changes. Additionally, we achieve competitive performance among open-source 7B RL-tuned models by training Qwen2.5-VL-7B with visual perturbation. Through comprehensive ablation studies, we analyze the effectiveness of different perturbation strategies, revealing that each perturbation type contributes uniquely to different aspects of visual reasoning. Our findings highlight the critical role of visual perturbation in multimodal mathematical reasoning: better reasoning begins with better seeing. Our code is available at https://github.com/YutingLi0606/Vision-Matters.
comment: Technical Report
☆ MPFNet: A Multi-Prior Fusion Network with a Progressive Training Strategy for Micro-Expression Recognition
Micro-expression recognition (MER), a critical subfield of affective computing, presents greater challenges than macro-expression recognition due to its brief duration and low intensity. While incorporating prior knowledge has been shown to enhance MER performance, existing methods predominantly rely on simplistic, singular sources of prior knowledge, failing to fully exploit multi-source information. This paper introduces the Multi-Prior Fusion Network (MPFNet), leveraging a progressive training strategy to optimize MER tasks. We propose two complementary encoders: the Generic Feature Encoder (GFE) and the Advanced Feature Encoder (AFE), both based on Inflated 3D ConvNets (I3D) with Coordinate Attention (CA) mechanisms, to improve the model's ability to capture spatiotemporal and channel-specific features. Inspired by developmental psychology, we present two variants of MPFNet--MPFNet-P and MPFNet-C--corresponding to two fundamental modes of infant cognitive development: parallel and hierarchical processing. These variants enable the evaluation of different strategies for integrating prior knowledge. Extensive experiments demonstrate that MPFNet significantly improves MER accuracy while maintaining balanced performance across categories, achieving accuracies of 0.811, 0.924, and 0.857 on the SMIC, CASME II, and SAMM datasets, respectively. To the best of our knowledge, our approach achieves state-of-the-art performance on the SMIC and SAMM datasets.
☆ AtmosMJ: Revisiting Gating Mechanism for AI Weather Forecasting Beyond the Year Scale
The advent of Large Weather Models (LWMs) has marked a turning point in data-driven forecasting, with many models now outperforming traditional numerical systems in the medium range. However, achieving stable, long-range autoregressive forecasts beyond a few weeks remains a significant challenge. Prevailing state-of-the-art models that achieve year-long stability, such as SFNO and DLWP-HPX, have relied on transforming input data onto non-standard spatial domains like spherical harmonics or HEALPix meshes. This has led to the prevailing assumption that such representations are necessary to enforce physical consistency and long-term stability. This paper challenges that assumption by investigating whether comparable long-range performance can be achieved on the standard latitude-longitude grid. We introduce AtmosMJ, a deep convolutional network that operates directly on ERA5 data without any spherical remapping. The model's stability is enabled by a novel Gated Residual Fusion (GRF) mechanism, which adaptively moderates feature updates to prevent error accumulation over long recursive simulations. Our results demonstrate that AtmosMJ produces stable and physically plausible forecasts for about 500 days. In quantitative evaluations, it achieves competitive 10-day forecast accuracy against models like Pangu-Weather and GraphCast, all while requiring a remarkably low training budget of 5.7 days on a V100 GPU. Our findings suggest that efficient architectural design, rather than non-standard data representation, can be the key to unlocking stable and computationally efficient long-range weather prediction.
The Four Color Theorem for Cell Instance Segmentation ICML 2025
Cell instance segmentation is critical to analyzing biomedical images, yet accurately distinguishing tightly touching cells remains a persistent challenge. Existing instance segmentation frameworks, including detection-based, contour-based, and distance mapping-based approaches, have made significant progress, but balancing model performance with computational efficiency remains an open problem. In this paper, we propose a novel cell instance segmentation method inspired by the four-color theorem. By conceptualizing cells as countries and tissues as oceans, we introduce a four-color encoding scheme that ensures adjacent instances receive distinct labels. This reformulation transforms instance segmentation into a constrained semantic segmentation problem with only four predicted classes, substantially simplifying the instance differentiation process. To solve the training instability caused by the non-uniqueness of four-color encoding, we design an asymptotic training strategy and encoding transformation method. Extensive experiments on various modes demonstrate our approach achieves state-of-the-art performance. The code is available at https://github.com/zhangye-zoe/FCIS.
comment: Accepted at ICML 2025
☆ Non-Contact Health Monitoring During Daily Personal Care Routines
Remote photoplethysmography (rPPG) enables non-contact, continuous monitoring of physiological signals and offers a practical alternative to traditional health sensing methods. Although rPPG is promising for daily health monitoring, its application in long-term personal care scenarios, such as mirror-facing routines in high-altitude environments, remains challenging due to ambient lighting variations, frequent occlusions from hand movements, and dynamic facial postures. To address these challenges, we present LADH (Long-term Altitude Daily Health), the first long-term rPPG dataset containing 240 synchronized RGB and infrared (IR) facial videos from 21 participants across five common personal care scenarios, along with ground-truth PPG, respiration, and blood oxygen signals. Our experiments demonstrate that combining RGB and IR video inputs improves the accuracy and robustness of non-contact physiological monitoring, achieving a mean absolute error (MAE) of 4.99 BPM in heart rate estimation. Furthermore, we find that multi-task learning enhances performance across multiple physiological indicators simultaneously. Dataset and code are open at https://github.com/McJackTang/FusionVitals.
☆ Training-Free Voice Conversion with Factorized Optimal Transport
This paper introduces Factorized MKL-VC, a training-free modification for kNN-VC pipeline. In contrast with original pipeline, our algorithm performs high quality any-to-any cross-lingual voice conversion with only 5 second of reference audio. MKL-VC replaces kNN regression with a factorized optimal transport map in WavLM embedding subspaces, derived from Monge-Kantorovich Linear solution. Factorization addresses non-uniform variance across dimensions, ensuring effective feature transformation. Experiments on LibriSpeech and FLEURS datasets show MKL-VC significantly improves content preservation and robustness with short reference audio, outperforming kNN-VC. MKL-VC achieves performance comparable to FACodec, especially in cross-lingual voice conversion domain.
comment: Interspeech 2025
☆ CHIP: A multi-sensor dataset for 6D pose estimation of chairs in industrial settings
Accurate 6D pose estimation of complex objects in 3D environments is essential for effective robotic manipulation. Yet, existing benchmarks fall short in evaluating 6D pose estimation methods under realistic industrial conditions, as most datasets focus on household objects in domestic settings, while the few available industrial datasets are limited to artificial setups with objects placed on tables. To bridge this gap, we introduce CHIP, the first dataset designed for 6D pose estimation of chairs manipulated by a robotic arm in a real-world industrial environment. CHIP includes seven distinct chairs captured using three different RGBD sensing technologies and presents unique challenges, such as distractor objects with fine-grained differences and severe occlusions caused by the robotic arm and human operators. CHIP comprises 77,811 RGBD images annotated with ground-truth 6D poses automatically derived from the robot's kinematics, averaging 11,115 annotations per chair. We benchmark CHIP using three zero-shot 6D pose estimation methods, assessing performance across different sensor types, localization priors, and occlusion levels. Results show substantial room for improvement, highlighting the unique challenges posed by the dataset. CHIP will be publicly released.
comment: Technical report
☆ Towards Practical Alzheimer's Disease Diagnosis: A Lightweight and Interpretable Spiking Neural Model
Early diagnosis of Alzheimer's Disease (AD), especially at the mild cognitive impairment (MCI) stage, is vital yet hindered by subjective assessments and the high cost of multimodal imaging modalities. Although deep learning methods offer automated alternatives, their energy inefficiency and computational demands limit real-world deployment, particularly in resource-constrained settings. As a brain-inspired paradigm, spiking neural networks (SNNs) are inherently well-suited for modeling the sparse, event-driven patterns of neural degeneration in AD, offering a promising foundation for interpretable and low-power medical diagnostics. However, existing SNNs often suffer from weak expressiveness and unstable training, which restrict their effectiveness in complex medical tasks. To address these limitations, we propose FasterSNN, a hybrid neural architecture that integrates biologically inspired LIF neurons with region-adaptive convolution and multi-scale spiking attention. This design enables sparse, efficient processing of 3D MRI while preserving diagnostic accuracy. Experiments on benchmark datasets demonstrate that FasterSNN achieves competitive performance with substantially improved efficiency and stability, supporting its potential for practical AD screening. Our source code is available at https://github.com/wuchangw/FasterSNN.
comment: 11 pages, 5 figures
☆ Adding simple structure at inference improves Vision-Language Compositionality
Dual encoder Vision-Language Models (VLM) such as CLIP are widely used for image-text retrieval tasks. However, those models struggle with compositionality, showing a bag-of-words-like behavior that limits their retrieval performance. Many different training approaches have been proposed to improve the vision-language compositionality capabilities of those models. In comparison, inference-time techniques have received little attention. In this paper, we propose to add simple structure at inference, where, given an image and a caption: i) we divide the image into different smaller crops, ii) we extract text segments, capturing objects, attributes and relations, iii) using a VLM, we find the image crops that better align with text segments obtaining matches, and iv) we compute the final image-text similarity aggregating the individual similarities of the matches. Based on various popular dual encoder VLMs, we evaluate our approach in controlled and natural datasets for VL compositionality. We find that our approach consistently improves the performance of evaluated VLMs without any training, which shows the potential of inference-time techniques. The results are especially good for attribute-object binding as shown in the controlled dataset. As a result of an extensive analysis: i) we show that processing image crops is actually essential for the observed gains in performance, and ii) we identify specific areas to further improve inference-time approaches.
☆ Reasoning Models Are More Easily Gaslighted Than You Think
Recent advances in reasoning-centric models promise improved robustness through mechanisms such as chain-of-thought prompting and test-time scaling. However, their ability to withstand misleading user input remains underexplored. In this paper, we conduct a systematic evaluation of three state-of-the-art reasoning models, i.e., OpenAI's o4-mini, Claude-3.7-Sonnet and Gemini-2.5-Flash, across three multimodal benchmarks: MMMU, MathVista, and CharXiv. Our evaluation reveals significant accuracy drops (25-29% on average) following gaslighting negation prompts, indicating that even top-tier reasoning models struggle to preserve correct answers under manipulative user feedback. Built upon the insights of the evaluation and to further probe this vulnerability, we introduce GaslightingBench-R, a new diagnostic benchmark specifically designed to evaluate reasoning models' susceptibility to defend their belief under gaslighting negation prompt. Constructed by filtering and curating 1,025 challenging samples from the existing benchmarks, GaslightingBench-R induces even more dramatic failures, with accuracy drops exceeding 53% on average. Our findings reveal fundamental limitations in the robustness of reasoning models, highlighting the gap between step-by-step reasoning and belief persistence.
☆ CINeMA: Conditional Implicit Neural Multi-Modal Atlas for a Spatio-Temporal Representation of the Perinatal Brain
Magnetic resonance imaging of fetal and neonatal brains reveals rapid neurodevelopment marked by substantial anatomical changes unfolding within days. Studying this critical stage of the developing human brain, therefore, requires accurate brain models-referred to as atlases-of high spatial and temporal resolution. To meet these demands, established traditional atlases and recently proposed deep learning-based methods rely on large and comprehensive datasets. This poses a major challenge for studying brains in the presence of pathologies for which data remains scarce. We address this limitation with CINeMA (Conditional Implicit Neural Multi-Modal Atlas), a novel framework for creating high-resolution, spatio-temporal, multimodal brain atlases, suitable for low-data settings. Unlike established methods, CINeMA operates in latent space, avoiding compute-intensive image registration and reducing atlas construction times from days to minutes. Furthermore, it enables flexible conditioning on anatomical features including GA, birth age, and pathologies like ventriculomegaly (VM) and agenesis of the corpus callosum (ACC). CINeMA supports downstream tasks such as tissue segmentation and age prediction whereas its generative properties enable synthetic data creation and anatomically informed data augmentation. Surpassing state-of-the-art methods in accuracy, efficiency, and versatility, CINeMA represents a powerful tool for advancing brain research. We release the code and atlases at https://github.com/m-dannecker/CINeMA.
comment: Work currently under revision for IEEE TMI
☆ VideoMat: Extracting PBR Materials from Video Diffusion Models
We leverage finetuned video diffusion models, intrinsic decomposition of videos, and physically-based differentiable rendering to generate high quality materials for 3D models given a text prompt or a single image. We condition a video diffusion model to respect the input geometry and lighting condition. This model produces multiple views of a given 3D model with coherent material properties. Secondly, we use a recent model to extract intrinsics (base color, roughness, metallic) from the generated video. Finally, we use the intrinsics alongside the generated video in a differentiable path tracer to robustly extract PBR materials directly compatible with common content creation tools.
☆ Self-Supervised Multi-Part Articulated Objects Modeling via Deformable Gaussian Splatting and Progressive Primitive Segmentation
Articulated objects are ubiquitous in everyday life, and accurate 3D representations of their geometry and motion are critical for numerous applications. However, in the absence of human annotation, existing approaches still struggle to build a unified representation for objects that contain multiple movable parts. We introduce DeGSS, a unified framework that encodes articulated objects as deformable 3D Gaussian fields, embedding geometry, appearance, and motion in one compact representation. Each interaction state is modeled as a smooth deformation of a shared field, and the resulting deformation trajectories guide a progressive coarse-to-fine part segmentation that identifies distinct rigid components, all in an unsupervised manner. The refined field provides a spatially continuous, fully decoupled description of every part, supporting part-level reconstruction and precise modeling of their kinematic relationships. To evaluate generalization and realism, we enlarge the synthetic PartNet-Mobility benchmark and release RS-Art, a real-to-sim dataset that pairs RGB captures with accurately reverse-engineered 3D models. Extensive experiments demonstrate that our method outperforms existing methods in both accuracy and stability.
☆ A Cytology Dataset for Early Detection of Oral Squamous Cell Carcinoma
Oral squamous cell carcinoma OSCC is a major global health burden, particularly in several regions across Asia, Africa, and South America, where it accounts for a significant proportion of cancer cases. Early detection dramatically improves outcomes, with stage I cancers achieving up to 90 percent survival. However, traditional diagnosis based on histopathology has limited accessibility in low-resource settings because it is invasive, resource-intensive, and reliant on expert pathologists. On the other hand, oral cytology of brush biopsy offers a minimally invasive and lower cost alternative, provided that the remaining challenges, inter observer variability and unavailability of expert pathologists can be addressed using artificial intelligence. Development and validation of robust AI solutions requires access to large, labeled, and multi-source datasets to train high capacity models that generalize across domain shifts. We introduce the first large and multicenter oral cytology dataset, comprising annotated slides stained with Papanicolaou(PAP) and May-Grunwald-Giemsa(MGG) protocols, collected from ten tertiary medical centers in India. The dataset is labeled and annotated by expert pathologists for cellular anomaly classification and detection, is designed to advance AI driven diagnostic methods. By filling the gap in publicly available oral cytology datasets, this resource aims to enhance automated detection, reduce diagnostic errors, and improve early OSCC diagnosis in resource-constrained settings, ultimately contributing to reduced mortality and better patient outcomes worldwide.
comment: 7 pages, 2 figurs
☆ HopaDIFF: Holistic-Partial Aware Fourier Conditioned Diffusion for Referring Human Action Segmentation in Multi-Person Scenarios
Action segmentation is a core challenge in high-level video understanding, aiming to partition untrimmed videos into segments and assign each a label from a predefined action set. Existing methods primarily address single-person activities with fixed action sequences, overlooking multi-person scenarios. In this work, we pioneer textual reference-guided human action segmentation in multi-person settings, where a textual description specifies the target person for segmentation. We introduce the first dataset for Referring Human Action Segmentation, i.e., RHAS133, built from 133 movies and annotated with 137 fine-grained actions with 33h video data, together with textual descriptions for this new task. Benchmarking existing action recognition methods on RHAS133 using VLM-based feature extractors reveals limited performance and poor aggregation of visual cues for the target person. To address this, we propose a holistic-partial aware Fourier-conditioned diffusion framework, i.e., HopaDIFF, leveraging a novel cross-input gate attentional xLSTM to enhance holistic-partial long-range reasoning and a novel Fourier condition to introduce more fine-grained control to improve the action segmentation generation. HopaDIFF achieves state-of-the-art results on RHAS133 in diverse evaluation settings. The code is available at https://github.com/KPeng9510/HopaDIFF.git.
comment: The code is available at https://github.com/KPeng9510/HopaDIFF.git
☆ DGAE: Diffusion-Guided Autoencoder for Efficient Latent Representation Learning
Autoencoders empower state-of-the-art image and video generative models by compressing pixels into a latent space through visual tokenization. Although recent advances have alleviated the performance degradation of autoencoders under high compression ratios, addressing the training instability caused by GAN remains an open challenge. While improving spatial compression, we also aim to minimize the latent space dimensionality, enabling more efficient and compact representations. To tackle these challenges, we focus on improving the decoder's expressiveness. Concretely, we propose DGAE, which employs a diffusion model to guide the decoder in recovering informative signals that are not fully decoded from the latent representation. With this design, DGAE effectively mitigates the performance degradation under high spatial compression rates. At the same time, DGAE achieves state-of-the-art performance with a 2x smaller latent space. When integrated with Diffusion Models, DGAE demonstrates competitive performance on image generation for ImageNet-1K and shows that this compact latent representation facilitates faster convergence of the diffusion model.
☆ Using Sign Language Production as Data Augmentation to enhance Sign Language Translation
Machine learning models fundamentally rely on large quantities of high-quality data. Collecting the necessary data for these models can be challenging due to cost, scarcity, and privacy restrictions. Signed languages are visual languages used by the deaf community and are considered low-resource languages. Sign language datasets are often orders of magnitude smaller than their spoken language counterparts. Sign Language Production is the task of generating sign language videos from spoken language sentences, while Sign Language Translation is the reverse translation task. Here, we propose leveraging recent advancements in Sign Language Production to augment existing sign language datasets and enhance the performance of Sign Language Translation models. For this, we utilize three techniques: a skeleton-based approach to production, sign stitching, and two photo-realistic generative models, SignGAN and SignSplat. We evaluate the effectiveness of these techniques in enhancing the performance of Sign Language Translation models by generating variation in the signer's appearance and the motion of the skeletal data. Our results demonstrate that the proposed methods can effectively augment existing datasets and enhance the performance of Sign Language Translation models by up to 19%, paving the way for more robust and accurate Sign Language Translation systems, even in resource-constrained environments.
☆ FedVLMBench: Benchmarking Federated Fine-Tuning of Vision-Language Models
Vision-Language Models (VLMs) have demonstrated remarkable capabilities in cross-modal understanding and generation by integrating visual and textual information. While instruction tuning and parameter-efficient fine-tuning methods have substantially improved the generalization of VLMs, most existing approaches rely on centralized training, posing challenges for deployment in domains with strict privacy requirements like healthcare. Recent efforts have introduced Federated Learning (FL) into VLM fine-tuning to address these privacy concerns, yet comprehensive benchmarks for evaluating federated fine-tuning strategies, model architectures, and task generalization remain lacking. In this work, we present \textbf{FedVLMBench}, the first systematic benchmark for federated fine-tuning of VLMs. FedVLMBench integrates two mainstream VLM architectures (encoder-based and encoder-free), four fine-tuning strategies, five FL algorithms, six multimodal datasets spanning four cross-domain single-task scenarios and two cross-domain multitask settings, covering four distinct downstream task categories. Through extensive experiments, we uncover key insights into the interplay between VLM architectures, fine-tuning strategies, data heterogeneity, and multi-task federated optimization. Notably, we find that a 2-layer multilayer perceptron (MLP) connector with concurrent connector and LLM tuning emerges as the optimal configuration for encoder-based VLMs in FL. Furthermore, current FL methods exhibit significantly higher sensitivity to data heterogeneity in vision-centric tasks than text-centric ones, across both encoder-free and encoder-based VLM architectures. Our benchmark provides essential tools, datasets, and empirical guidance for the research community, offering a standardized platform to advance privacy-preserving, federated training of multimodal foundation models.
☆ HSENet: Hybrid Spatial Encoding Network for 3D Medical Vision-Language Understanding
Automated 3D CT diagnosis empowers clinicians to make timely, evidence-based decisions by enhancing diagnostic accuracy and workflow efficiency. While multimodal large language models (MLLMs) exhibit promising performance in visual-language understanding, existing methods mainly focus on 2D medical images, which fundamentally limits their ability to capture complex 3D anatomical structures. This limitation often leads to misinterpretation of subtle pathologies and causes diagnostic hallucinations. In this paper, we present Hybrid Spatial Encoding Network (HSENet), a framework that exploits enriched 3D medical visual cues by effective visual perception and projection for accurate and robust vision-language understanding. Specifically, HSENet employs dual-3D vision encoders to perceive both global volumetric contexts and fine-grained anatomical details, which are pre-trained by dual-stage alignment with diagnostic reports. Furthermore, we propose Spatial Packer, an efficient multimodal projector that condenses high-resolution 3D spatial regions into a compact set of informative visual tokens via centroid-based compression. By assigning spatial packers with dual-3D vision encoders, HSENet can seamlessly perceive and transfer hybrid visual representations to LLM's semantic space, facilitating accurate diagnostic text generation. Experimental results demonstrate that our method achieves state-of-the-art performance in 3D language-visual retrieval (39.85% of R@100, +5.96% gain), 3D medical report generation (24.01% of BLEU-4, +8.01% gain), and 3D visual question answering (73.60% of Major Class Accuracy, +1.99% gain), confirming its effectiveness. Our code is available at https://github.com/YanzhaoShi/HSENet.
comment: 27 pages, 9 figures. arXiv admin note: text overlap with arXiv:2410.14200 by other authors
☆ ECAM: A Contrastive Learning Approach to Avoid Environmental Collision in Trajectory Forecasting IJCNN 2025
Human trajectory forecasting is crucial in applications such as autonomous driving, robotics and surveillance. Accurate forecasting requires models to consider various factors, including social interactions, multi-modal predictions, pedestrian intention and environmental context. While existing methods account for these factors, they often overlook the impact of the environment, which leads to collisions with obstacles. This paper introduces ECAM (Environmental Collision Avoidance Module), a contrastive learning-based module to enhance collision avoidance ability with the environment. The proposed module can be integrated into existing trajectory forecasting models, improving their ability to generate collision-free predictions. We evaluate our method on the ETH/UCY dataset and quantitatively and qualitatively demonstrate its collision avoidance capabilities. Our experiments show that state-of-the-art methods significantly reduce (-40/50%) the collision rate when integrated with the proposed module. The code is available at https://github.com/CVML-CFU/ECAM.
comment: IJCNN 2025
☆ SemanticSplat: Feed-Forward 3D Scene Understanding with Language-Aware Gaussian Fields
Holistic 3D scene understanding, which jointly models geometry, appearance, and semantics, is crucial for applications like augmented reality and robotic interaction. Existing feed-forward 3D scene understanding methods (e.g., LSM) are limited to extracting language-based semantics from scenes, failing to achieve holistic scene comprehension. Additionally, they suffer from low-quality geometry reconstruction and noisy artifacts. In contrast, per-scene optimization methods rely on dense input views, which reduces practicality and increases complexity during deployment. In this paper, we propose SemanticSplat, a feed-forward semantic-aware 3D reconstruction method, which unifies 3D Gaussians with latent semantic attributes for joint geometry-appearance-semantics modeling. To predict the semantic anisotropic Gaussians, SemanticSplat fuses diverse feature fields (e.g., LSeg, SAM) with a cost volume representation that stores cross-view feature similarities, enhancing coherent and accurate scene comprehension. Leveraging a two-stage distillation framework, SemanticSplat reconstructs a holistic multi-modal semantic feature field from sparse-view images. Experiments demonstrate the effectiveness of our method for 3D scene understanding tasks like promptable and open-vocabulary segmentation. Video results are available at https://semanticsplat.github.io.
☆ AD^2-Bench: A Hierarchical CoT Benchmark for MLLM in Autonomous Driving under Adverse Conditions
Chain-of-Thought (CoT) reasoning has emerged as a powerful approach to enhance the structured, multi-step decision-making capabilities of Multi-Modal Large Models (MLLMs), is particularly crucial for autonomous driving with adverse weather conditions and complex traffic environments. However, existing benchmarks have largely overlooked the need for rigorous evaluation of CoT processes in these specific and challenging scenarios. To address this critical gap, we introduce AD^2-Bench, the first Chain-of-Thought benchmark specifically designed for autonomous driving with adverse weather and complex scenes. AD^2-Bench is meticulously constructed to fulfill three key criteria: comprehensive data coverage across diverse adverse environments, fine-grained annotations that support multi-step reasoning, and a dedicated evaluation framework tailored for assessing CoT performance. The core contribution of AD^2-Bench is its extensive collection of over 5.4k high-quality, manually annotated CoT instances. Each intermediate reasoning step in these annotations is treated as an atomic unit with explicit ground truth, enabling unprecedented fine-grained analysis of MLLMs' inferential processes under text-level, point-level, and region-level visual prompts. Our comprehensive evaluation of state-of-the-art MLLMs on AD^2-Bench reveals accuracy below 60%, highlighting the benchmark's difficulty and the need to advance robust, interpretable end-to-end autonomous driving systems. AD^2-Bench thus provides a standardized evaluation platform, driving research forward by improving MLLMs' reasoning in autonomous driving, making it an invaluable resource.
☆ GLD-Road:A global-local decoding road network extraction model for remote sensing images
Road networks are crucial for mapping, autonomous driving, and disaster response. While manual annotation is costly, deep learning offers efficient extraction. Current methods include postprocessing (prone to errors), global parallel (fast but misses nodes), and local iterative (accurate but slow). We propose GLD-Road, a two-stage model combining global efficiency and local precision. First, it detects road nodes and connects them via a Connect Module. Then, it iteratively refines broken roads using local searches, drastically reducing computation. Experiments show GLD-Road outperforms state-of-the-art methods, improving APLS by 1.9% (City-Scale) and 0.67% (SpaceNet3). It also reduces retrieval time by 40% vs. Sat2Graph (global) and 92% vs. RNGDet++ (local). The experimental results are available at https://github.com/ucas-dlg/GLD-Road.
☆ Enhancing Human-Robot Collaboration: A Sim2Real Domain Adaptation Algorithm for Point Cloud Segmentation in Industrial Environments
The robust interpretation of 3D environments is crucial for human-robot collaboration (HRC) applications, where safety and operational efficiency are paramount. Semantic segmentation plays a key role in this context by enabling a precise and detailed understanding of the environment. Considering the intense data hunger for real-world industrial annotated data essential for effective semantic segmentation, this paper introduces a pioneering approach in the Sim2Real domain adaptation for semantic segmentation of 3D point cloud data, specifically tailored for HRC. Our focus is on developing a network that robustly transitions from simulated environments to real-world applications, thereby enhancing its practical utility and impact on a safe HRC. In this work, we propose a dual-stream network architecture (FUSION) combining Dynamic Graph Convolutional Neural Networks (DGCNN) and Convolutional Neural Networks (CNN) augmented with residual layers as a Sim2Real domain adaptation algorithm for an industrial environment. The proposed model was evaluated on real-world HRC setups and simulation industrial point clouds, it showed increased state-of-the-art performance, achieving a segmentation accuracy of 97.76%, and superior robustness compared to existing methods.
comment: Preprint, Journal of Intelligent & Robotic Systems
☆ 3DGeoDet: General-purpose Geometry-aware Image-based 3D Object Detection
This paper proposes 3DGeoDet, a novel geometry-aware 3D object detection approach that effectively handles single- and multi-view RGB images in indoor and outdoor environments, showcasing its general-purpose applicability. The key challenge for image-based 3D object detection tasks is the lack of 3D geometric cues, which leads to ambiguity in establishing correspondences between images and 3D representations. To tackle this problem, 3DGeoDet generates efficient 3D geometric representations in both explicit and implicit manners based on predicted depth information. Specifically, we utilize the predicted depth to learn voxel occupancy and optimize the voxelized 3D feature volume explicitly through the proposed voxel occupancy attention. To further enhance 3D awareness, the feature volume is integrated with an implicit 3D representation, the truncated signed distance function (TSDF). Without requiring supervision from 3D signals, we significantly improve the model's comprehension of 3D geometry by leveraging intermediate 3D representations and achieve end-to-end training. Our approach surpasses the performance of state-of-the-art image-based methods on both single- and multi-view benchmark datasets across diverse environments, achieving a 9.3 mAP@0.5 improvement on the SUN RGB-D dataset, a 3.3 mAP@0.5 improvement on the ScanNetV2 dataset, and a 0.19 AP3D@0.7 improvement on the KITTI dataset. The project page is available at: https://cindy0725.github.io/3DGeoDet/.
comment: Accepted by IEEE Transactions on Multimedia
☆ AngleRoCL: Angle-Robust Concept Learning for Physically View-Invariant T2I Adversarial Patches
Cutting-edge works have demonstrated that text-to-image (T2I) diffusion models can generate adversarial patches that mislead state-of-the-art object detectors in the physical world, revealing detectors' vulnerabilities and risks. However, these methods neglect the T2I patches' attack effectiveness when observed from different views in the physical world (i.e., angle robustness of the T2I adversarial patches). In this paper, we study the angle robustness of T2I adversarial patches comprehensively, revealing their angle-robust issues, demonstrating that texts affect the angle robustness of generated patches significantly, and task-specific linguistic instructions fail to enhance the angle robustness. Motivated by the studies, we introduce Angle-Robust Concept Learning (AngleRoCL), a simple and flexible approach that learns a generalizable concept (i.e., text embeddings in implementation) representing the capability of generating angle-robust patches. The learned concept can be incorporated into textual prompts and guides T2I models to generate patches with their attack effectiveness inherently resistant to viewpoint variations. Through extensive simulation and physical-world experiments on five SOTA detectors across multiple views, we demonstrate that AngleRoCL significantly enhances the angle robustness of T2I adversarial patches compared to baseline methods. Our patches maintain high attack success rates even under challenging viewing conditions, with over 50% average relative improvement in attack effectiveness across multiple angles. This research advances the understanding of physically angle-robust patches and provides insights into the relationship between textual concepts and physical properties in T2I-generated contents.
☆ Gaussian Herding across Pens: An Optimal Transport Perspective on Global Gaussian Reduction for 3DGS
3D Gaussian Splatting (3DGS) has emerged as a powerful technique for radiance field rendering, but it typically requires millions of redundant Gaussian primitives, overwhelming memory and rendering budgets. Existing compaction approaches address this by pruning Gaussians based on heuristic importance scores, without global fidelity guarantee. To bridge this gap, we propose a novel optimal transport perspective that casts 3DGS compaction as global Gaussian mixture reduction. Specifically, we first minimize the composite transport divergence over a KD-tree partition to produce a compact geometric representation, and then decouple appearance from geometry by fine-tuning color and opacity attributes with far fewer Gaussian primitives. Experiments on benchmark datasets show that our method (i) yields negligible loss in rendering quality (PSNR, SSIM, LPIPS) compared to vanilla 3DGS with only 10% Gaussians; and (ii) consistently outperforms state-of-the-art 3DGS compaction techniques. Notably, our method is applicable to any stage of vanilla or accelerated 3DGS pipelines, providing an efficient and agnostic pathway to lightweight neural rendering.
comment: 18 pages, 8 figures
☆ Athena: Enhancing Multimodal Reasoning with Data-efficient Process Reward Models
We present Athena-PRM, a multimodal process reward model (PRM) designed to evaluate the reward score for each step in solving complex reasoning problems. Developing high-performance PRMs typically demands significant time and financial investment, primarily due to the necessity for step-level annotations of reasoning steps. Conventional automated labeling methods, such as Monte Carlo estimation, often produce noisy labels and incur substantial computational costs. To efficiently generate high-quality process-labeled data, we propose leveraging prediction consistency between weak and strong completers as a criterion for identifying reliable process labels. Remarkably, Athena-PRM demonstrates outstanding effectiveness across various scenarios and benchmarks with just 5,000 samples. Furthermore, we also develop two effective strategies to improve the performance of PRMs: ORM initialization and up-sampling for negative data. We validate our approach in three specific scenarios: verification for test time scaling, direct evaluation of reasoning step correctness, and reward ranked fine-tuning. Our Athena-PRM consistently achieves superior performance across multiple benchmarks and scenarios. Notably, when using Qwen2.5-VL-7B as the policy model, Athena-PRM enhances performance by 10.2 points on WeMath and 7.1 points on MathVista for test time scaling. Furthermore, Athena-PRM sets the state-of-the-art (SoTA) results in VisualProcessBench and outperforms the previous SoTA by 3.9 F1-score, showcasing its robust capability to accurately assess the correctness of the reasoning step. Additionally, utilizing Athena-PRM as the reward model, we develop Athena-7B with reward ranked fine-tuning and outperforms baseline with a significant margin on five benchmarks.
☆ Revisit What You See: Disclose Language Prior in Vision Tokens for Efficient Guided Decoding of LVLMs
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across various multimodal tasks by integrating visual perception with language understanding. However, conventional decoding strategies of LVLMs often fail to successfully utilize visual information, leading to visually ungrounded responses. While various approaches have been proposed to address this limitation, they typically require additional training, multi-step inference procedures, or external model dependencies. This paper introduces ReVisiT, a simple yet effective decoding method that references vision tokens to guide the text generation process in LVLMs. Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution space, and dynamically selecting the most relevant vision token at each decoding step through constrained divergence minimization. This selected vision token is then used to refine the output distribution to better incorporate visual semantics. Experiments on three LVLM hallucination benchmarks with two recent LVLMs demonstrate that ReVisiT consistently enhances visual grounding with minimal computational overhead. Moreover, our method achieves competitive or superior results relative to state-of-the-art baselines while reducing computational costs for up to $2\times$.
comment: Code available at https://github.com/bscho333/ReVisiT
☆ HAIF-GS: Hierarchical and Induced Flow-Guided Gaussian Splatting for Dynamic Scene
Reconstructing dynamic 3D scenes from monocular videos remains a fundamental challenge in 3D vision. While 3D Gaussian Splatting (3DGS) achieves real-time rendering in static settings, extending it to dynamic scenes is challenging due to the difficulty of learning structured and temporally consistent motion representations. This challenge often manifests as three limitations in existing methods: redundant Gaussian updates, insufficient motion supervision, and weak modeling of complex non-rigid deformations. These issues collectively hinder coherent and efficient dynamic reconstruction. To address these limitations, we propose HAIF-GS, a unified framework that enables structured and consistent dynamic modeling through sparse anchor-driven deformation. It first identifies motion-relevant regions via an Anchor Filter to suppresses redundant updates in static areas. A self-supervised Induced Flow-Guided Deformation module induces anchor motion using multi-frame feature aggregation, eliminating the need for explicit flow labels. To further handle fine-grained deformations, a Hierarchical Anchor Propagation mechanism increases anchor resolution based on motion complexity and propagates multi-level transformations. Extensive experiments on synthetic and real-world benchmarks validate that HAIF-GS significantly outperforms prior dynamic 3DGS methods in rendering quality, temporal coherence, and reconstruction efficiency.
☆ Generalized Gaussian Entropy Model for Point Cloud Attribute Compression with Dynamic Likelihood Intervals
Gaussian and Laplacian entropy models are proved effective in learned point cloud attribute compression, as they assist in arithmetic coding of latents. However, we demonstrate through experiments that there is still unutilized information in entropy parameters estimated by neural networks in current methods, which can be used for more accurate probability estimation. Thus we introduce generalized Gaussian entropy model, which controls the tail shape through shape parameter to more accurately estimate the probability of latents. Meanwhile, to the best of our knowledge, existing methods use fixed likelihood intervals for each integer during arithmetic coding, which limits model performance. We propose Mean Error Discriminator (MED) to determine whether the entropy parameter estimation is accurate and then dynamically adjust likelihood intervals. Experiments show that our method significantly improves rate-distortion (RD) performance on three VAE-based models for point cloud attribute compression, and our method can be applied to other compression tasks, such as image and video compression.
☆ DCIRNet: Depth Completion with Iterative Refinement for Dexterous Grasping of Transparent and Reflective Objects
Transparent and reflective objects in everyday environments pose significant challenges for depth sensors due to their unique visual properties, such as specular reflections and light transmission. These characteristics often lead to incomplete or inaccurate depth estimation, which severely impacts downstream geometry-based vision tasks, including object recognition, scene reconstruction, and robotic manipulation. To address the issue of missing depth information in transparent and reflective objects, we propose DCIRNet, a novel multimodal depth completion network that effectively integrates RGB images and depth maps to enhance depth estimation quality. Our approach incorporates an innovative multimodal feature fusion module designed to extract complementary information between RGB images and incomplete depth maps. Furthermore, we introduce a multi-stage supervision and depth refinement strategy that progressively improves depth completion and effectively mitigates the issue of blurred object boundaries. We integrate our depth completion model into dexterous grasping frameworks and achieve a $44\%$ improvement in the grasp success rate for transparent and reflective objects. We conduct extensive experiments on public datasets, where DCIRNet demonstrates superior performance. The experimental results validate the effectiveness of our approach and confirm its strong generalization capability across various transparent and reflective objects.
☆ Marrying Autoregressive Transformer and Diffusion with Multi-Reference Autoregression
We introduce TransDiff, the first image generation model that marries Autoregressive (AR) Transformer with diffusion models. In this joint modeling framework, TransDiff encodes labels and images into high-level semantic features and employs a diffusion model to estimate the distribution of image samples. On the ImageNet 256x256 benchmark, TransDiff significantly outperforms other image generation models based on standalone AR Transformer or diffusion models. Specifically, TransDiff achieves a Fr\'echet Inception Distance (FID) of 1.61 and an Inception Score (IS) of 293.4, and further provides x2 faster inference latency compared to state-of-the-art methods based on AR Transformer and x112 faster inference compared to diffusion-only models. Furthermore, building on the TransDiff model, we introduce a novel image generation paradigm called Multi-Reference Autoregression (MRAR), which performs autoregressive generation by predicting the next image. MRAR enables the model to reference multiple previously generated images, thereby facilitating the learning of more diverse representations and improving the quality of generated images in subsequent iterations. By applying MRAR, the performance of TransDiff is improved, with the FID reduced from 1.61 to 1.42. We expect TransDiff to open up a new frontier in the field of image generation.
☆ TinySplat: Feedforward Approach for Generating Compact 3D Scene Representation
The recent development of feedforward 3D Gaussian Splatting (3DGS) presents a new paradigm to reconstruct 3D scenes. Using neural networks trained on large-scale multi-view datasets, it can directly infer 3DGS representations from sparse input views. Although the feedforward approach achieves high reconstruction speed, it still suffers from the substantial storage cost of 3D Gaussians. Existing 3DGS compression methods relying on scene-wise optimization are not applicable due to architectural incompatibilities. To overcome this limitation, we propose TinySplat, a complete feedforward approach for generating compact 3D scene representations. Built upon standard feedforward 3DGS methods, TinySplat integrates a training-free compression framework that systematically eliminates key sources of redundancy. Specifically, we introduce View-Projection Transformation (VPT) to reduce geometric redundancy by projecting geometric parameters into a more compact space. We further present Visibility-Aware Basis Reduction (VABR), which mitigates perceptual redundancy by aligning feature energy along dominant viewing directions via basis transformation. Lastly, spatial redundancy is addressed through an off-the-shelf video codec. Comprehensive experimental results on multiple benchmark datasets demonstrate that TinySplat achieves over 100x compression for 3D Gaussian data generated by feedforward methods. Compared to the state-of-the-art compression approach, we achieve comparable quality with only 6% of the storage size. Meanwhile, our compression framework requires only 25% of the encoding time and 1% of the decoding time.
☆ Provoking Multi-modal Few-Shot LVLM via Exploration-Exploitation In-Context Learning CVPR 2025
In-context learning (ICL), a predominant trend in instruction learning, aims at enhancing the performance of large language models by providing clear task guidance and examples, improving their capability in task understanding and execution. This paper investigates ICL on Large Vision-Language Models (LVLMs) and explores the policies of multi-modal demonstration selection. Existing research efforts in ICL face significant challenges: First, they rely on pre-defined demonstrations or heuristic selecting strategies based on human intuition, which are usually inadequate for covering diverse task requirements, leading to sub-optimal solutions; Second, individually selecting each demonstration fails in modeling the interactions between them, resulting in information redundancy. Unlike these prevailing efforts, we propose a new exploration-exploitation reinforcement learning framework, which explores policies to fuse multi-modal information and adaptively select adequate demonstrations as an integrated whole. The framework allows LVLMs to optimize themselves by continually refining their demonstrations through self-exploration, enabling the ability to autonomously identify and generate the most effective selection policies for in-context learning. Experimental results verify the superior performance of our approach on four Visual Question-Answering (VQA) datasets, demonstrating its effectiveness in enhancing the generalization capability of few-shot LVLMs.
comment: 10 pages, 6 figures, CVPR 2025
☆ Optimizing Cooperative Multi-Object Tracking using Graph Signal Processing
Multi-Object Tracking (MOT) plays a crucial role in autonomous driving systems, as it lays the foundations for advanced perception and precise path planning modules. Nonetheless, single agent based MOT lacks in sensing surroundings due to occlusions, sensors failures, etc. Hence, the integration of multiagent information is essential for comprehensive understanding of the environment. This paper proposes a novel Cooperative MOT framework for tracking objects in 3D LiDAR scene by formulating and solving a graph topology-aware optimization problem so as to fuse information coming from multiple vehicles. By exploiting a fully connected graph topology defined by the detected bounding boxes, we employ the Graph Laplacian processing optimization technique to smooth the position error of bounding boxes and effectively combine them. In that manner, we reveal and leverage inherent coherences of diverse multi-agent detections, and associate the refined bounding boxes to tracked objects at two stages, optimizing localization and tracking accuracies. An extensive evaluation study has been conducted, using the real-world V2V4Real dataset, where the proposed method significantly outperforms the baseline frameworks, including the state-of-the-art deep-learning DMSTrack and V2V4Real, in various testing sequences.
comment: 2025 IEEE International Conference on Multimedia and Expo Workshops, 3DMM - 3D Multimedia Analytics, Search and Generation
☆ Evidential Deep Learning with Spectral-Spatial Uncertainty Disentanglement for Open-Set Hyperspectral Domain Generalization
Open-set domain generalization(OSDG) for hyperspectral image classification presents significant challenges due to the presence of unknown classes in target domains and the need for models to generalize across multiple unseen domains without target-specific adaptation. Existing domain adaptation methods assume access to target domain data during training and fail to address the fundamental issue of domain shift when unknown classes are present, leading to negative transfer and reduced classification performance. To address these limitations, we propose a novel open-set domain generalization framework that combines four key components: Spectrum-Invariant Frequency Disentanglement (SIFD) for domain-agnostic feature extraction, Dual-Channel Residual Network (DCRN) for robust spectral-spatial feature learning, Evidential Deep Learning (EDL) for uncertainty quantification, and Spectral-Spatial Uncertainty Disentanglement (SSUD) for reliable open-set classification. The SIFD module extracts domain-invariant spectral features in the frequency domain through attention-weighted frequency analysis and domain-agnostic regularization, while DCRN captures complementary spectral and spatial information via parallel pathways with adaptive fusion. EDL provides principled uncertainty estimation using Dirichlet distributions, enabling the SSUD module to make reliable open-set decisions through uncertainty-aware pathway weighting and adaptive rejection thresholding. Experimental results on three cross-scene hyperspectral classification tasks show that our approach achieves performance comparable to state-of-the-art domain adaptation methods while requiring no access to the target domain during training. The implementation will be made available at https://github.com/amir-khb/SSUDOSDG upon acceptance.
☆ Harmonizing and Merging Source Models for CLIP-based Domain Generalization
CLIP-based domain generalization aims to improve model generalization to unseen domains by leveraging the powerful zero-shot classification capabilities of CLIP and multiple source datasets. Existing methods typically train a single model across multiple source domains to capture domain-shared information. However, this paradigm inherently suffers from two types of conflicts: 1) sample conflicts, arising from noisy samples and extreme domain shifts among sources; and 2) optimization conflicts, stemming from competition and trade-offs during multi-source training. Both hinder the generalization and lead to suboptimal solutions. Recent studies have shown that model merging can effectively mitigate the competition of multi-objective optimization and improve generalization performance. Inspired by these findings, we propose Harmonizing and Merging (HAM), a novel source model merging framework for CLIP-based domain generalization. During the training process of the source models, HAM enriches the source samples without conflicting samples, and harmonizes the update directions of all models. Then, a redundancy-aware historical model merging method is introduced to effectively integrate knowledge across all source models. HAM comprehensively consolidates source domain information while enabling mutual enhancement among source models, ultimately yielding a final model with optimal generalization capabilities. Extensive experiments on five widely used benchmark datasets demonstrate the effectiveness of our approach, achieving state-of-the-art performance.
☆ TOGA: Temporally Grounded Open-Ended Video QA with Weak Supervision
We address the problem of video question answering (video QA) with temporal grounding in a weakly supervised setup, without any temporal annotations. Given a video and a question, we generate an open-ended answer grounded with the start and end time. For this task, we propose TOGA: a vision-language model for Temporally Grounded Open-Ended Video QA with Weak Supervision. We instruct-tune TOGA to jointly generate the answer and the temporal grounding. We operate in a weakly supervised setup where the temporal grounding annotations are not available. We generate pseudo labels for temporal grounding and ensure the validity of these labels by imposing a consistency constraint between the question of a grounding response and the response generated by a question referring to the same temporal segment. We notice that jointly generating the answers with the grounding improves performance on question answering as well as grounding. We evaluate TOGA on grounded QA and open-ended QA tasks. For grounded QA, we consider the NExT-GQA benchmark which is designed to evaluate weakly supervised grounded question answering. For open-ended QA, we consider the MSVD-QA and ActivityNet-QA benchmarks. We achieve state-of-the-art performance for both tasks on these benchmarks.
☆ A Novel Lightweight Transformer with Edge-Aware Fusion for Remote Sensing Image Captioning
Transformer-based models have achieved strong performance in remote sensing image captioning by capturing long-range dependencies and contextual information. However, their practical deployment is hindered by high computational costs, especially in multi-modal frameworks that employ separate transformer-based encoders and decoders. In addition, existing remote sensing image captioning models primarily focus on high-level semantic extraction while often overlooking fine-grained structural features such as edges, contours, and object boundaries. To address these challenges, a lightweight transformer architecture is proposed by reducing the dimensionality of the encoder layers and employing a distilled version of GPT-2 as the decoder. A knowledge distillation strategy is used to transfer knowledge from a more complex teacher model to improve the performance of the lightweight network. Furthermore, an edge-aware enhancement strategy is incorporated to enhance image representation and object boundary understanding, enabling the model to capture fine-grained spatial details in remote sensing images. Experimental results demonstrate that the proposed approach significantly improves caption quality compared to state-of-the-art methods.
☆ A High-Quality Dataset and Reliable Evaluation for Interleaved Image-Text Generation
Recent advancements in Large Multimodal Models (LMMs) have significantly improved multimodal understanding and generation. However, these models still struggle to generate tightly interleaved image-text outputs, primarily due to the limited scale, quality and instructional richness of current training datasets. To address this, we introduce InterSyn, a large-scale multimodal dataset constructed using our Self-Evaluation with Iterative Refinement (SEIR) method. InterSyn features multi-turn, instruction-driven dialogues with tightly interleaved imagetext responses, providing rich object diversity and rigorous automated quality refinement, making it well-suited for training next-generation instruction-following LMMs. Furthermore, to address the lack of reliable evaluation tools capable of assessing interleaved multimodal outputs, we introduce SynJudge, an automatic evaluation model designed to quantitatively assess multimodal outputs along four dimensions: text content, image content, image quality, and image-text synergy. Experimental studies show that the SEIR method leads to substantially higher dataset quality compared to an otherwise identical process without refinement. Moreover, LMMs trained on InterSyn achieve uniform performance gains across all evaluation metrics, confirming InterSyn's utility for advancing multimodal systems.
☆ Noise Conditional Variational Score Distillation
We propose Noise Conditional Variational Score Distillation (NCVSD), a novel method for distilling pretrained diffusion models into generative denoisers. We achieve this by revealing that the unconditional score function implicitly characterizes the score function of denoising posterior distributions. By integrating this insight into the Variational Score Distillation (VSD) framework, we enable scalable learning of generative denoisers capable of approximating samples from the denoising posterior distribution across a wide range of noise levels. The proposed generative denoisers exhibit desirable properties that allow fast generation while preserve the benefit of iterative refinement: (1) fast one-step generation through sampling from pure Gaussian noise at high noise levels; (2) improved sample quality by scaling the test-time compute with multi-step sampling; and (3) zero-shot probabilistic inference for flexible and controllable sampling. We evaluate NCVSD through extensive experiments, including class-conditional image generation and inverse problem solving. By scaling the test-time compute, our method outperforms teacher diffusion models and is on par with consistency models of larger sizes. Additionally, with significantly fewer NFEs than diffusion-based methods, we achieve record-breaking LPIPS on inverse problems.
☆ Synthetic Human Action Video Data Generation with Pose Transfer
In video understanding tasks, particularly those involving human motion, synthetic data generation often suffers from uncanny features, diminishing its effectiveness for training. Tasks such as sign language translation, gesture recognition, and human motion understanding in autonomous driving have thus been unable to exploit the full potential of synthetic data. This paper proposes a method for generating synthetic human action video data using pose transfer (specifically, controllable 3D Gaussian avatar models). We evaluate this method on the Toyota Smarthome and NTU RGB+D datasets and show that it improves performance in action recognition tasks. Moreover, we demonstrate that the method can effectively scale few-shot datasets, making up for groups underrepresented in the real training data and adding diverse backgrounds. We open-source the method along with RANDOM People, a dataset with videos and avatars of novel human identities for pose transfer crowd-sourced from the internet.
☆ SRPL-SFDA: SAM-Guided Reliable Pseudo-Labels for Source-Free Domain Adaptation in Medical Image Segmentation
Domain Adaptation (DA) is crucial for robust deployment of medical image segmentation models when applied to new clinical centers with significant domain shifts. Source-Free Domain Adaptation (SFDA) is appealing as it can deal with privacy concerns and access constraints on source-domain data during adaptation to target-domain data. However, SFDA faces challenges such as insufficient supervision in the target domain with unlabeled images. In this work, we propose a Segment Anything Model (SAM)-guided Reliable Pseudo-Labels method for SFDA (SRPL-SFDA) with three key components: 1) Test-Time Tri-branch Intensity Enhancement (T3IE) that not only improves quality of raw pseudo-labels in the target domain, but also leads to SAM-compatible inputs with three channels to better leverage SAM's zero-shot inference ability for refining the pseudo-labels; 2) A reliable pseudo-label selection module that rejects low-quality pseudo-labels based on Consistency of Multiple SAM Outputs (CMSO) under input perturbations with T3IE; and 3) A reliability-aware training procedure in the unlabeled target domain where reliable pseudo-labels are used for supervision and unreliable parts are regularized by entropy minimization. Experiments conducted on two multi-domain medical image segmentation datasets for fetal brain and the prostate respectively demonstrate that: 1) SRPL-SFDA effectively enhances pseudo-label quality in the unlabeled target domain, and improves SFDA performance by leveraging the reliability-aware training; 2) SRPL-SFDA outperformed state-of-the-art SFDA methods, and its performance is close to that of supervised training in the target domain. The code of this work is available online: https://github.com/HiLab-git/SRPL-SFDA.
comment: 18 pages, 4 figures. Accepted for publication in Neurocomputing
☆ Improving Out-of-Distribution Detection via Dynamic Covariance Calibration
Out-of-Distribution (OOD) detection is essential for the trustworthiness of AI systems. Methods using prior information (i.e., subspace-based methods) have shown effective performance by extracting information geometry to detect OOD data with a more appropriate distance metric. However, these methods fail to address the geometry distorted by ill-distributed samples, due to the limitation of statically extracting information geometry from the training distribution. In this paper, we argue that the influence of ill-distributed samples can be corrected by dynamically adjusting the prior geometry in response to new data. Based on this insight, we propose a novel approach that dynamically updates the prior covariance matrix using real-time input features, refining its information. Specifically, we reduce the covariance along the direction of real-time input features and constrain adjustments to the residual space, thus preserving essential data characteristics and avoiding effects on unintended directions in the principal space. We evaluate our method on two pre-trained models for the CIFAR dataset and five pre-trained models for ImageNet-1k, including the self-supervised DINO model. Extensive experiments demonstrate that our approach significantly enhances OOD detection across various models. The code is released at https://github.com/workerbcd/ooddcc.
☆ DySS: Dynamic Queries and State-Space Learning for Efficient 3D Object Detection from Multi-Camera Videos CVPR 2025
Camera-based 3D object detection in Bird's Eye View (BEV) is one of the most important perception tasks in autonomous driving. Earlier methods rely on dense BEV features, which are costly to construct. More recent works explore sparse query-based detection. However, they still require a large number of queries and can become expensive to run when more video frames are used. In this paper, we propose DySS, a novel method that employs state-space learning and dynamic queries. More specifically, DySS leverages a state-space model (SSM) to sequentially process the sampled features over time steps. In order to encourage the model to better capture the underlying motion and correspondence information, we introduce auxiliary tasks of future prediction and masked reconstruction to better train the SSM. The state of the SSM then provides an informative yet efficient summarization of the scene. Based on the state-space learned features, we dynamically update the queries via merge, remove, and split operations, which help maintain a useful, lean set of detection queries throughout the network. Our proposed DySS achieves both superior detection performance and efficient inference. Specifically, on the nuScenes test split, DySS achieves 65.31 NDS and 57.4 mAP, outperforming the latest state of the art. On the val split, DySS achieves 56.2 NDS and 46.2 mAP, as well as a real-time inference speed of 33 FPS.
comment: CVPR 2025 Workshop on Autonomous Driving
♻ ☆ Fine-Grained Spatially Varying Material Selection in Images
Selection is the first step in many image editing processes, enabling faster and simpler modifications of all pixels sharing a common modality. In this work, we present a method for material selection in images, robust to lighting and reflectance variations, which can be used for downstream editing tasks. We rely on vision transformer (ViT) models and leverage their features for selection, proposing a multi-resolution processing strategy that yields finer and more stable selection results than prior methods. Furthermore, we enable selection at two levels: texture and subtexture, leveraging a new two-level material selection (DuMaS) dataset which includes dense annotations for over 800,000 synthetic images, both on the texture and subtexture levels.
♻ ☆ Do Multiple Instance Learning Models Transfer? ICML 2025
Multiple Instance Learning (MIL) is a cornerstone approach in computational pathology (CPath) for generating clinically meaningful slide-level embeddings from gigapixel tissue images. However, MIL often struggles with small, weakly supervised clinical datasets. In contrast to fields such as NLP and conventional computer vision, where transfer learning is widely used to address data scarcity, the transferability of MIL models remains poorly understood. In this study, we systematically evaluate the transfer learning capabilities of pretrained MIL models by assessing 11 models across 21 pretraining tasks for morphological and molecular subtype prediction. Our results show that pretrained MIL models, even when trained on different organs than the target task, consistently outperform models trained from scratch. Moreover, pretraining on pancancer datasets enables strong generalization across organs and tasks, outperforming slide foundation models while using substantially less pretraining data. These findings highlight the robust adaptability of MIL models and demonstrate the benefits of leveraging transfer learning to boost performance in CPath. Lastly, we provide a resource which standardizes the implementation of MIL models and collection of pretrained model weights on popular CPath tasks, available at https://github.com/mahmoodlab/MIL-Lab
comment: ICML 2025 (Spotlight). 20 pages, 8 figures
♻ ☆ SkipVAR: Accelerating Visual Autoregressive Modeling via Adaptive Frequency-Aware Skipping
Recent studies on Visual Autoregressive (VAR) models have highlighted that high-frequency components, or later steps, in the generation process contribute disproportionately to inference latency. However, the underlying computational redundancy involved in these steps has yet to be thoroughly investigated. In this paper, we conduct an in-depth analysis of the VAR inference process and identify two primary sources of inefficiency: step redundancy and unconditional branch redundancy. To address step redundancy, we propose an automatic step-skipping strategy that selectively omits unnecessary generation steps to improve efficiency. For unconditional branch redundancy, we observe that the information gap between the conditional and unconditional branches is minimal. Leveraging this insight, we introduce unconditional branch replacement, a technique that bypasses the unconditional branch to reduce computational cost. Notably, we observe that the effectiveness of acceleration strategies varies significantly across different samples. Motivated by this, we propose SkipVAR, a sample-adaptive framework that leverages frequency information to dynamically select the most suitable acceleration strategy for each instance. To evaluate the role of high-frequency information, we introduce high-variation benchmark datasets that test model sensitivity to fine details. Extensive experiments show SkipVAR achieves over 0.88 average SSIM with up to 1.81x overall acceleration and 2.62x speedup on the GenEval benchmark, maintaining model quality. These results confirm the effectiveness of frequency-aware, training-free adaptive acceleration for scalable autoregressive image generation. Our code is available at https://github.com/fakerone-li/SkipVAR and has been publicly released.
♻ ☆ MIRAGE: Multimodal foundation model and benchmark for comprehensive retinal OCT image analysis
Artificial intelligence (AI) has become a fundamental tool for assisting clinicians in analyzing ophthalmic images, such as optical coherence tomography (OCT). However, developing AI models often requires extensive annotation, and existing models tend to underperform on independent, unseen data. Foundation models (FMs), large AI models trained on vast unlabeled datasets, have shown promise in overcoming these challenges. Nonetheless, available FMs for ophthalmology lack extensive validation, especially for segmentation tasks, and focus on a single imaging modality. In this context, we propose MIRAGE, a novel multimodal FM for the analysis of OCT and scanning laser ophthalmoscopy (SLO) images. Additionally, we propose a new evaluation benchmark with OCT/SLO classification and segmentation tasks. The comparison with general and specialized FMs and segmentation methods shows the superiority of MIRAGE in both types of tasks, highlighting its suitability as a basis for the development of robust AI systems for retinal OCT image analysis. Both MIRAGE and the evaluation benchmark are publicly available: https://github.com/j-morano/MIRAGE.
♻ ☆ Adapting Vision-Language Foundation Model for Next Generation Medical Ultrasound Image Analysis
Medical ultrasonography is an essential imaging technique for examining superficial organs and tissues, including lymph nodes, breast, and thyroid. It employs high-frequency ultrasound waves to generate detailed images of the internal structures of the human body. However, manually contouring regions of interest in these images is a labor-intensive task that demands expertise and often results in inconsistent interpretations among individuals. Vision-language foundation models, which have excelled in various computer vision applications, present new opportunities for enhancing ultrasound image analysis. Yet, their performance is hindered by the significant differences between natural and medical imaging domains. This research seeks to overcome these challenges by developing domain adaptation methods for vision-language foundation models. In this study, we explore the fine-tuning pipeline for vision-language foundation models by utilizing large language model as text refiner with special-designed adaptation strategies and task-driven heads. Our approach has been extensively evaluated on six ultrasound datasets and two tasks: segmentation and classification. The experimental results show that our method can effectively improve the performance of vision-language foundation models for ultrasound image analysis, and outperform the existing state-of-the-art vision-language and pure foundation models. The source code of this study is available at https://github.com/jinggqu/NextGen-UIA.
♻ ☆ Video-CoT: A Comprehensive Dataset for Spatiotemporal Understanding of Videos Based on Chain-of-Thought
Video content comprehension is essential for various applications, ranging from video analysis to interactive systems. Despite advancements in large-scale vision-language models (VLMs), these models often struggle to capture the nuanced, spatiotemporal details essential for thorough video analysis. To address this gap, we introduce Video-CoT, a groundbreaking dataset designed to enhance spatiotemporal understanding using Chain-of-Thought (CoT) methodologies. Video-CoT contains 192,000 fine-grained spa-tiotemporal question-answer pairs and 23,000 high-quality CoT-annotated samples, providing a solid foundation for evaluating spatiotemporal understanding in video comprehension. Additionally, we provide a comprehensive benchmark for assessing these tasks, with each task featuring 750 images and tailored evaluation metrics. Our extensive experiments reveal that current VLMs face significant challenges in achieving satisfactory performance, high-lighting the difficulties of effective spatiotemporal understanding. Overall, the Video-CoT dataset and benchmark open new avenues for research in multimedia understanding and support future innovations in intelligent systems requiring advanced video analysis capabilities. By making these resources publicly available, we aim to encourage further exploration in this critical area. Project website:https://video-cot.github.io/ .
♻ ☆ Gaussian2Scene: 3D Scene Representation Learning via Self-supervised Learning with 3D Gaussian Splatting
Self-supervised learning (SSL) for point cloud pre-training has become a cornerstone for many 3D vision tasks, enabling effective learning from large-scale unannotated data. At the scene level, existing SSL methods often incorporate volume rendering into the pre-training framework, using RGB-D images as reconstruction signals to facilitate cross-modal learning. This strategy promotes alignment between 2D and 3D modalities and enables the model to benefit from rich visual cues in the RGB-D inputs. However, these approaches are limited by their reliance on implicit scene representations and high memory demands. Furthermore, since their reconstruction objectives are applied only in 2D space, they often fail to capture underlying 3D geometric structures. To address these challenges, we propose Gaussian2Scene, a novel scene-level SSL framework that leverages the efficiency and explicit nature of 3D Gaussian Splatting (3DGS) for pre-training. The use of 3DGS not only alleviates the computational burden associated with volume rendering but also supports direct 3D scene reconstruction, thereby enhancing the geometric understanding of the backbone network. Our approach follows a progressive two-stage training strategy. In the first stage, a dual-branch masked autoencoder learns both 2D and 3D scene representations. In the second stage, we initialize training with reconstructed point clouds and further supervise learning using the geometric locations of Gaussian primitives and rendered RGB images. This process reinforces both geometric and cross-modal learning. We demonstrate the effectiveness of Gaussian2Scene across several downstream 3D object detection tasks, showing consistent improvements over existing pre-training methods.
♻ ☆ RS-MTDF: Multi-Teacher Distillation and Fusion for Remote Sensing Semi-Supervised Semantic Segmentation
Semantic segmentation in remote sensing images is crucial for various applications, yet its performance is heavily reliant on large-scale, high-quality pixel-wise annotations, which are notoriously expensive and time-consuming to acquire. Semi-supervised semantic segmentation (SSS) offers a promising alternative to mitigate this data dependency. However, existing SSS methods often struggle with the inherent distribution mismatch between limited labeled data and abundant unlabeled data, leading to suboptimal generalization. To alleviate this issue, we attempt to introduce the Vision Foundation Models (VFMs) pre-trained on vast and diverse datasets into the SSS task since VFMs possess robust generalization capabilities that can effectively bridge this distribution gap and provide strong semantic priors for SSS. Inspired by this, we introduce RS-MTDF (Multi-Teacher Distillation and Fusion), a novel framework that leverages the powerful semantic knowledge embedded in VFMs to guide semi-supervised learning in remote sensing. Specifically, RS-MTDF employs multiple frozen VFMs (e.g., DINOv2 and CLIP) as expert teachers, utilizing feature-level distillation to align student features with their robust representations. To further enhance discriminative power, the distilled knowledge is seamlessly fused into the student decoder. Extensive experiments on three challenging remote sensing datasets demonstrate that RS-MTDF consistently achieves state-of-the-art performance. Notably, our method outperforms existing approaches across various label ratios on LoveDA and secures the highest IoU in the majority of semantic categories. These results underscore the efficacy of multi-teacher VFM guidance in significantly enhancing both generalization and semantic understanding for remote sensing segmentation. Ablation studies further validate the contribution of each proposed module.
♻ ☆ Geometric deep learning for local growth prediction on abdominal aortic aneurysm surfaces
Abdominal aortic aneurysms (AAAs) are progressive focal dilatations of the abdominal aorta. AAAs may rupture, with a survival rate of only 20\%. Current clinical guidelines recommend elective surgical repair when the maximum AAA diameter exceeds 55 mm in men or 50 mm in women. Patients that do not meet these criteria are periodically monitored, with surveillance intervals based on the maximum AAA diameter. However, this diameter does not take into account the complex relation between the 3D AAA shape and its growth, making standardized intervals potentially unfit. Personalized AAA growth predictions could improve monitoring strategies. We propose to use an SE(3)-symmetric transformer model to predict AAA growth directly on the vascular model surface enriched with local, multi-physical features. In contrast to other works which have parameterized the AAA shape, this representation preserves the vascular surface's anatomical structure and geometric fidelity. We train our model using a longitudinal dataset of 113 computed tomography angiography (CTA) scans of 24 AAA patients at irregularly sampled intervals. After training, our model predicts AAA growth to the next scan moment with a median diameter error of 1.18 mm. We further demonstrate our model's utility to identify whether a patient will become eligible for elective repair within two years (acc = 0.93). Finally, we evaluate our model's generalization on an external validation set consisting of 25 CTAs from 7 AAA patients from a different hospital. Our results show that local directional AAA growth prediction from the vascular surface is feasible and may contribute to personalized surveillance strategies.
Autonomous Imagination: Closed-Loop Decomposition of Visual-to-Textual Conversion in Visual Reasoning for Multimodal Large Language Models
Under pure textual modality, Large Language Models (LLMs) have demonstrated remarkable success in complex reasoning tasks by decomposing them into simpler sub-problems. However, Multimodal Large Language Models (MLLMs) still struggle with some seemingly straightforward visual tasks, such as counting and solving jigsaw puzzles. We argue that these tasks challenge the ability of visual-to-textual conversion, where MLLMs convert visual information perceived from the input scene, to textual information for further reasoning and generating the answer. If the complexity of the visual input is beyond the perceptual capability of the MLLMs, without decomposing this conversion process, simply scaling inference-time reasoning cannot solve the task because it repeatedly encounters the same perceptual bottleneck. We propose an approach, autonomous imagination, to enable MLLMs to iteratively modify visual inputs (e.g. isolating objects, rearranging puzzle pieces) into intermediate visual states, decomposing visual-to-textual conversion into closed-loop visual modification steps. We show that, without any retraining, MLLMs can now solve tasks initially beyond their perceptual capability, highlighting that closed-loop visual modification can be an effective way of decomposing the visual reasoning task into solvable substeps. Project page: https://future-item.github.io/autoimagine-site/
♻ ☆ ClimateViz: A Benchmark for Statistical Reasoning and Fact Verification on Scientific Charts
Scientific fact-checking has mostly focused on text and tables, overlooking scientific charts, which are key for presenting quantitative evidence and statistical reasoning. We introduce ClimateViz, the first large-scale benchmark for scientific fact-checking using expert-curated scientific charts. ClimateViz contains 49,862 claims linked to 2,896 visualizations, each labeled as support, refute, or not enough information. To improve interpretability, each example includes structured knowledge graph explanations covering trends, comparisons, and causal relations. We evaluate state-of-the-art multimodal language models, including both proprietary and open-source systems, in zero-shot and few-shot settings. Results show that current models struggle with chart-based reasoning: even the best systems, such as Gemini 2.5 and InternVL 2.5, reach only 76.2 to 77.8 percent accuracy in label-only settings, far below human performance (89.3 and 92.7 percent). Explanation-augmented outputs improve performance in some models. We released our dataset and code alongside the paper.
♻ ☆ Beyond Calibration: Physically Informed Learning for Raw-to-Raw Mapping
Achieving consistent color reproduction across multiple cameras is essential for seamless image fusion and Image Processing Pipeline (ISP) compatibility in modern devices, but it is a challenging task due to variations in sensors and optics. Existing raw-to-raw conversion methods face limitations such as poor adaptability to changing illumination, high computational costs, or impractical requirements such as simultaneous camera operation and overlapping fields-of-view. We introduce the Neural Physical Model (NPM), a lightweight, physically-informed approach that simulates raw images under specified illumination to estimate transformations between devices. The NPM effectively adapts to varying illumination conditions, can be initialized with physical measurements, and supports training with or without paired data. Experiments on public datasets like NUS and BeyondRGB demonstrate that NPM outperforms recent state-of-the-art methods, providing robust chromatic consistency across different sensors and optical systems.
♻ ☆ RecipeGen: A Step-Aligned Multimodal Benchmark for Real-World Recipe Generation
Creating recipe images is a key challenge in food computing, with applications in culinary education and multimodal recipe assistants. However, existing datasets lack fine-grained alignment between recipe goals, step-wise instructions, and visual content. We present RecipeGen, the first large-scale, real-world benchmark for recipe-based Text-to-Image (T2I), Image-to-Video (I2V), and Text-to-Video (T2V) generation. RecipeGen contains 26,453 recipes, 196,724 images, and 4,491 videos, covering diverse ingredients, cooking procedures, styles, and dish types. We further propose domain-specific evaluation metrics to assess ingredient fidelity and interaction modeling, benchmark representative T2I, I2V, and T2V models, and provide insights for future recipe generation models. Project page is available now.
comment: This is an extended version of arXiv:2503.05228
♻ ☆ Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in understanding common visual elements, largely due to their large-scale datasets and advanced training strategies. However, their effectiveness in medical applications remains limited due to the inherent discrepancies between data and tasks in medical scenarios and those in the general domain. Concretely, existing medical MLLMs face the following critical limitations: (1) limited coverage of medical knowledge beyond imaging, (2) heightened susceptibility to hallucinations due to suboptimal data curation processes, (3) lack of reasoning capabilities tailored for complex medical scenarios. To address these challenges, we first propose a comprehensive data curation procedure that (1) efficiently acquires rich medical knowledge data not only from medical imaging but also from extensive medical texts and general-domain data; and (2) synthesizes accurate medical captions, visual question answering (VQA), and reasoning samples. As a result, we build a multimodal dataset enriched with extensive medical knowledge. Building on the curated data, we introduce our medical-specialized MLLM: Lingshu. Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities progressively. Besides, we preliminarily explore the potential of applying reinforcement learning with verifiable rewards paradigm to enhance Lingshu's medical reasoning ability. Additionally, we develop MedEvalKit, a unified evaluation framework that consolidates leading multimodal and textual medical benchmarks for standardized, fair, and efficient model assessment. We evaluate the performance of Lingshu on three fundamental medical tasks, multimodal QA, text-based QA, and medical report generation. The results show that Lingshu consistently outperforms the existing open-source multimodal models on most tasks ...
comment: Technical Report, 53 pages, 25 tables, and 16 figures
♻ ☆ Human-like object concept representations emerge naturally in multimodal large language models
Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of Large Language Models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? In this study, we combined behavioral and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgments from LLMs and Multimodal LLMs (MLLMs) to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive, and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and MLLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as EBA, PPA, RSC, and FFA. This provides compelling evidence that the object representations in LLMs, while not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.
comment: Published on Nature Machine Intelligence
♻ ☆ MedMoE: Modality-Specialized Mixture of Experts for Medical Vision-Language Understanding
Different medical imaging modalities capture diagnostic information at varying spatial resolutions, from coarse global patterns to fine-grained localized structures. However, most existing vision-language frameworks in the medical domain apply a uniform strategy for local feature extraction, overlooking the modality-specific demands. In this work, we present MedMoE, a modular and extensible vision-language processing framework that dynamically adapts visual representation based on the diagnostic context. MedMoE incorporates a Mixture-of-Experts (MoE) module conditioned on the report type, which routes multi-scale image features through specialized expert branches trained to capture modality-specific visual semantics. These experts operate over feature pyramids derived from a Swin Transformer backbone, enabling spatially adaptive attention to clinically relevant regions. This framework produces localized visual representations aligned with textual descriptions, without requiring modality-specific supervision at inference. Empirical results on diverse medical benchmarks demonstrate that MedMoE improves alignment and retrieval performance across imaging modalities, underscoring the value of modality-specialized visual representations in clinical vision-language systems.
♻ ☆ Spectral Image Tokenizer
Image tokenizers map images to sequences of discrete tokens, and are a crucial component of autoregressive transformer-based image generation. The tokens are typically associated with spatial locations in the input image, arranged in raster scan order, which is not ideal for autoregressive modeling. In this paper, we propose to tokenize the image spectrum instead, obtained from a discrete wavelet transform (DWT), such that the sequence of tokens represents the image in a coarse-to-fine fashion. Our tokenizer brings several advantages: 1) it leverages that natural images are more compressible at high frequencies, 2) it can take and reconstruct images of different resolutions without retraining, 3) it improves the conditioning for next-token prediction -- instead of conditioning on a partial line-by-line reconstruction of the image, it takes a coarse reconstruction of the full image, 4) it enables partial decoding where the first few generated tokens can reconstruct a coarse version of the image, 5) it enables autoregressive models to be used for image upsampling. We evaluate the tokenizer reconstruction metrics as well as multiscale image generation, text-guided image upsampling and editing.
♻ ☆ Understanding Long Videos with Multimodal Language Models ICLR 2025
Large Language Models (LLMs) have allowed recent LLM-based approaches to achieve excellent performance on long-video understanding benchmarks. We investigate how extensive world knowledge and strong reasoning skills of underlying LLMs influence this strong performance. Surprisingly, we discover that LLM-based approaches can yield surprisingly good accuracy on long-video tasks with limited video information, sometimes even with no video specific information. Building on this, we explore injecting video-specific information into an LLM-based framework. We utilize off-the-shelf vision tools to extract three object-centric information modalities from videos, and then leverage natural language as a medium for fusing this information. Our resulting Multimodal Video Understanding (MVU) framework demonstrates state-of-the-art performance across multiple video understanding benchmarks. Strong performance also on robotics domain tasks establish its strong generality. Code: https://github.com/kahnchana/mvu
comment: 17 pages (main paper), 7 pages appendix. ICLR 2025 conference paper
♻ ☆ HRTR: A Single-stage Transformer for Fine-grained Sub-second Action Segmentation in Stroke Rehabilitation
Stroke rehabilitation often demands precise tracking of patient movements to monitor progress, with complexities of rehabilitation exercises presenting two critical challenges: fine-grained and sub-second (under one-second) action detection. In this work, we propose the High Resolution Temporal Transformer (HRTR), to time-localize and classify high-resolution (fine-grained), sub-second actions in a single-stage transformer, eliminating the need for multi-stage methods and post-processing. Without any refinements, HRTR outperforms state-of-the-art systems on both stroke related and general datasets, achieving Edit Score (ES) of 70.1 on StrokeRehab Video, 69.4 on StrokeRehab IMU, and 88.4 on 50Salads.
♻ ☆ TerraMind: Large-Scale Generative Multimodality for Earth Observation
We present TerraMind, the first any-to-any generative, multimodal foundation model for Earth observation (EO). Unlike other multimodal models, TerraMind is pretrained on dual-scale representations combining both token-level and pixel-level data across modalities. On a token level, TerraMind encodes high-level contextual information to learn cross-modal relationships, while on a pixel level, TerraMind leverages fine-grained representations to capture critical spatial nuances. We pretrained TerraMind on nine geospatial modalities of a global, large-scale dataset. In this paper, we demonstrate that (i) TerraMind's dual-scale early fusion approach unlocks a range of zero-shot and few-shot applications for Earth observation, (ii) TerraMind introduces "Thinking-in-Modalities" (TiM) -- the capability of generating additional artificial data during finetuning and inference to improve the model output -- and (iii) TerraMind achieves beyond state-of-the-art performance in community-standard benchmarks for EO like PANGAEA. The pretraining dataset, the model weights, and our code are open-sourced under a permissive license.
♻ ☆ MVTamperBench: Evaluating Robustness of Vision-Language Models
Multimodal Large Language Models (MLLMs), are recent advancement of Vision-Language Models (VLMs) that have driven major advances in video understanding. However, their vulnerability to adversarial tampering and manipulations remains underexplored. To address this gap, we introduce \textbf{MVTamperBench}, a benchmark that systematically evaluates MLLM robustness against five prevalent tampering techniques: rotation, masking, substitution, repetition, and dropping; based on real-world visual tampering scenarios such as surveillance interference, social media content edits, and misinformation injection. MVTamperBench comprises ~3.4K original videos, expanded into over ~17K tampered clips covering 19 distinct video manipulation tasks. This benchmark challenges models to detect manipulations in spatial and temporal coherence. We evaluate 45 recent MLLMs from 15+ model families. We reveal substantial variability in resilience across tampering types and show that larger parameter counts do not necessarily guarantee robustness. MVTamperBench sets a new benchmark for developing tamper-resilient MLLM in safety-critical applications, including detecting clickbait, preventing harmful content distribution, and enforcing policies on media platforms. We release all code, data, and benchmark to foster open research in trustworthy video understanding. Code: https://amitbcp.github.io/MVTamperBench/ Data: https://huggingface.co/datasets/Srikant86/MVTamperBench
♻ ☆ Traveling Waves Integrate Spatial Information Through Time
Traveling waves of neural activity are widely observed in the brain, but their precise computational function remains unclear. One prominent hypothesis is that they enable the transfer and integration of spatial information across neural populations. However, few computational models have explored how traveling waves might be harnessed to perform such integrative processing. Drawing inspiration from the famous "Can one hear the shape of a drum?" problem -- which highlights how normal modes of wave dynamics encode geometric information -- we investigate whether similar principles can be leveraged in artificial neural networks. Specifically, we introduce convolutional recurrent neural networks that learn to produce traveling waves in their hidden states in response to visual stimuli, enabling spatial integration. By then treating these wave-like activation sequences as visual representations themselves, we obtain a powerful representational space that outperforms local feed-forward networks on tasks requiring global spatial context. In particular, we observe that traveling waves effectively expand the receptive field of locally connected neurons, supporting long-range encoding and communication of information. We demonstrate that models equipped with this mechanism solve visual semantic segmentation tasks demanding global integration, significantly outperforming local feed-forward models and rivaling non-local U-Net models with fewer parameters. As a first step toward traveling-wave-based communication and visual representation in artificial networks, our findings suggest wave-dynamics may provide efficiency and training stability benefits, while simultaneously offering a new framework for connecting models to biological recordings of neural activity.
♻ ☆ SpikeSMOKE: Spiking Neural Networks for Monocular 3D Object Detection with Cross-Scale Gated Coding
Low energy consumption for 3D object detection is an important research area because of the increasing energy consumption with their wide application in fields such as autonomous driving. The spiking neural networks (SNNs) with low-power consumption characteristics can provide a novel solution for this research. Therefore, we apply SNNs to monocular 3D object detection and propose the SpikeSMOKE architecture in this paper, which is a new attempt for low-power monocular 3D object detection. As we all know, discrete signals of SNNs will generate information loss and limit their feature expression ability compared with the artificial neural networks (ANNs).In order to address this issue, inspired by the filtering mechanism of biological neuronal synapses, we propose a cross-scale gated coding mechanism(CSGC), which can enhance feature representation by combining cross-scale fusion of attentional methods and gated filtering mechanisms.In addition, to reduce the computation and increase the speed of training, we present a novel light-weight residual block that can maintain spiking computing paradigm and the highest possible detection performance. Compared to the baseline SpikeSMOKE under the 3D Object Detection, the proposed SpikeSMOKE with CSGC can achieve 11.78 (+2.82, Easy), 10.69 (+3.2, Moderate), and 10.48 (+3.17, Hard) on the KITTI autonomous driving dataset by AP|R11 at 0.7 IoU threshold, respectively. It is important to note that the results of SpikeSMOKE can significantly reduce energy consumption compared to the results on SMOKE. For example,the energy consumption can be reduced by 72.2% on the hard category, while the detection performance is reduced by only 4%. SpikeSMOKE-L (lightweight) can further reduce the amount of parameters by 3 times and computation by 10 times compared to SMOKE.
♻ ☆ ContentV: Efficient Training of Video Generation Models with Limited Compute
Recent advances in video generation demand increasingly efficient training recipes to mitigate escalating computational costs. In this report, we present ContentV, an 8B-parameter text-to-video model that achieves state-of-the-art performance (85.14 on VBench) after training on 256 x 64GB Neural Processing Units (NPUs) for merely four weeks. ContentV generates diverse, high-quality videos across multiple resolutions and durations from text prompts, enabled by three key innovations: (1) A minimalist architecture that maximizes reuse of pre-trained image generation models for video generation; (2) A systematic multi-stage training strategy leveraging flow matching for enhanced efficiency; and (3) A cost-effective reinforcement learning with human feedback framework that improves generation quality without requiring additional human annotations. All the code and models are available at: https://contentv.github.io.
comment: Project Page: https://contentv.github.io
♻ ☆ ImageChain: Advancing Sequential Image-to-Text Reasoning in Multimodal Large Language Models
Reasoning over sequences of images remains a challenge for multimodal large language models (MLLMs). While recent models incorporate multi-image data during pre-training, they still struggle to recognize sequential structures, often treating images independently. This work introduces ImageChain, a framework that enhances MLLMs with sequential reasoning capabilities over image data by modeling visual sequences as a multi-turn conversation. In ImageChain, images are interleaved with corresponding textual descriptions to form a controlled dialogue that explicitly captures temporal dependencies and narrative progression. Our method optimizes for the task of next-scene description, where the model generates a context-aware description of an upcoming scene based on preceding visual and textual cues. We demonstrate that our approach improves performance on the next-scene description task -- achieving an average improvement from 3.7% to 19% in SimRate, a metric that quantifies semantic similarity to human-annotated ground truths. Moreover, ImageChain achieves robust zero-shot out-of-domain performance in applications ranging from comics to robotics. Extensive experiments validate that instruction-tuning in a multimodal, multi-turn conversation design is key to bridging the gap between static image understanding and temporally-aware reasoning.
comment: Code, dataset, and checkpoints are publicly available at https://github.com/danaesavi/ImageChain; v2: added human annotation study to validate SimRate
♻ ☆ One Pic is All it Takes: Poisoning Visual Document Retrieval Augmented Generation with a Single Image
Multi-modal retrieval augmented generation (M-RAG) is instrumental for inhibiting hallucinations in large multi-modal models (LMMs) through the use of a factual knowledge base (KB). However, M-RAG introduces new attack vectors for adversaries that aim to disrupt the system by injecting malicious entries into the KB. In this paper, we present the first poisoning attack against M-RAG targeting visual document retrieval applications where the KB contains images of document pages. We propose two attacks, each of which require injecting only a single adversarial image into the KB. Firstly, we propose a universal attack that, for any potential user query, influences the response to cause a denial-of-service (DoS) in the M-RAG system. Secondly, we present a targeted attack against one or a group of user queries, with the goal of spreading targeted misinformation. For both attacks, we use a multi-objective gradient-based adversarial approach to craft the injected image while optimizing for both retrieval and generation. We evaluate our attacks against several visual document retrieval datasets, a diverse set of state-of-the-art retrievers (embedding models) and generators (LMMs), demonstrating the attack effectiveness in both the universal and targeted settings. We additionally present results including commonly used defenses, various attack hyper-parameter settings, ablations, and attack transferability.
comment: 19 pages, 7 figures
♻ ☆ Unseen Visual Anomaly Generation
Visual anomaly detection (AD) presents significant challenges due to the scarcity of anomalous data samples. While numerous works have been proposed to synthesize anomalous samples, these synthetic anomalies often lack authenticity or require extensive training data, limiting their applicability in real-world scenarios. In this work, we propose Anomaly Anything (AnomalyAny), a novel framework that leverages Stable Diffusion (SD)'s image generation capabilities to generate diverse and realistic unseen anomalies. By conditioning on a single normal sample during test time, AnomalyAny is able to generate unseen anomalies for arbitrary object types with text descriptions. Within AnomalyAny, we propose attention-guided anomaly optimization to direct SD attention on generating hard anomaly concepts. Additionally, we introduce prompt-guided anomaly refinement, incorporating detailed descriptions to further improve the generation quality. Extensive experiments on MVTec AD and VisA datasets demonstrate AnomalyAny's ability in generating high-quality unseen anomalies and its effectiveness in enhancing downstream AD performance.
comment: 8 pages excluding supplementary
♻ ☆ Video2BEV: Transforming Drone Videos to BEVs for Video-based Geo-localization
Existing approaches to drone visual geo-localization predominantly adopt the image-based setting, where a single drone-view snapshot is matched with images from other platforms. Such task formulation, however, underutilizes the inherent video output of the drone and is sensitive to occlusions and viewpoint disparity. To address these limitations, we formulate a new video-based drone geo-localization task and propose the Video2BEV paradigm. This paradigm transforms the video into a Bird's Eye View (BEV), simplifying the subsequent \textbf{inter-platform} matching process. In particular, we employ Gaussian Splatting to reconstruct a 3D scene and obtain the BEV projection. Different from the existing transform methods, \eg, polar transform, our BEVs preserve more fine-grained details without significant distortion. To facilitate the discriminative \textbf{intra-platform} representation learning, our Video2BEV paradigm also incorporates a diffusion-based module for generating hard negative samples. To validate our approach, we introduce UniV, a new video-based geo-localization dataset that extends the image-based University-1652 dataset. UniV features flight paths at $30^\circ$ and $45^\circ$ elevation angles with increased frame rates of up to 10 frames per second (FPS). Extensive experiments on the UniV dataset show that our Video2BEV paradigm achieves competitive recall rates and outperforms conventional video-based methods. Compared to other competitive methods, our proposed approach exhibits robustness at lower elevations with more occlusions.
♻ ☆ Using Shapley interactions to understand how models use structure ACL 2025
Language is an intricately structured system, and a key goal of NLP interpretability is to provide methodological insights for understanding how language models represent this structure internally. In this paper, we use Shapley Taylor interaction indices (STII) in order to examine how language and speech models internally relate and structure their inputs. Pairwise Shapley interactions measure how much two inputs work together to influence model outputs beyond if we linearly added their independent influences, providing a view into how models encode structural interactions between inputs. We relate the interaction patterns in models to three underlying linguistic structures: syntactic structure, non-compositional semantics, and phonetic coarticulation. We find that autoregressive text models encode interactions that correlate with the syntactic proximity of inputs, and that both autoregressive and masked models encode nonlinear interactions in idiomatic phrases with non-compositional semantics. Our speech results show that inputs are more entangled for pairs where a neighboring consonant is likely to influence a vowel or approximant, showing that models encode the phonetic interaction needed for extracting discrete phonemic representations.
comment: Published in ACL 2025
♻ ☆ TSVC:Tripartite Learning with Semantic Variation Consistency for Robust Image-Text Retrieval AAAI 2025
Cross-modal retrieval maps data under different modality via semantic relevance. Existing approaches implicitly assume that data pairs are well-aligned and ignore the widely existing annotation noise, i.e., noisy correspondence (NC). Consequently, it inevitably causes performance degradation. Despite attempts that employ the co-teaching paradigm with identical architectures to provide distinct data perspectives, the differences between these architectures are primarily stemmed from random initialization. Thus, the model becomes increasingly homogeneous along with the training process. Consequently, the additional information brought by this paradigm is severely limited. In order to resolve this problem, we introduce a Tripartite learning with Semantic Variation Consistency (TSVC) for robust image-text retrieval. We design a tripartite cooperative learning mechanism comprising a Coordinator, a Master, and an Assistant model. The Coordinator distributes data, and the Assistant model supports the Master model's noisy label prediction with diverse data. Moreover, we introduce a soft label estimation method based on mutual information variation, which quantifies the noise in new samples and assigns corresponding soft labels. We also present a new loss function to enhance robustness and optimize training effectiveness. Extensive experiments on three widely used datasets demonstrate that, even at increasing noise ratios, TSVC exhibits significant advantages in retrieval accuracy and maintains stable training performance.
comment: This paper has been accepted to the Main Track of AAAI 2025. It contains 9 pages, 7 figures, and is relevant to the areas of cross-modal retrieval and machine learning. The work presents a novel approach in robust image-text retrieval using a tripartite learning framework
♻ ☆ SMMT: Siamese Motion Mamba with Self-attention for Thermal Infrared Target Tracking
Thermal infrared (TIR) object tracking often suffers from challenges such as target occlusion, motion blur, and background clutter, which significantly degrade the performance of trackers. To address these issues, this paper pro-poses a novel Siamese Motion Mamba Tracker (SMMT), which integrates a bidirectional state-space model and a self-attention mechanism. Specifically, we introduce the Motion Mamba module into the Siamese architecture to ex-tract motion features and recover overlooked edge details using bidirectional modeling and self-attention. We propose a Siamese parameter-sharing strate-gy that allows certain convolutional layers to share weights. This approach reduces computational redundancy while preserving strong feature represen-tation. In addition, we design a motion edge-aware regression loss to improve tracking accuracy, especially for motion-blurred targets. Extensive experi-ments are conducted on four TIR tracking benchmarks, including LSOTB-TIR, PTB-TIR, VOT-TIR2015, and VOT-TIR 2017. The results show that SMMT achieves superior performance in TIR target tracking.
♻ ☆ Decoupling the Image Perception and Multimodal Reasoning for Reasoning Segmentation with Digital Twin Representations
Reasoning Segmentation (RS) is a multimodal vision-text task that requires segmenting objects based on implicit text queries, demanding both precise visual perception and vision-text reasoning capabilities. Current RS approaches rely on fine-tuning vision-language models (VLMs) for both perception and reasoning, but their tokenization of images fundamentally disrupts continuous spatial relationships between objects. We introduce DTwinSeger, a novel RS approach that leverages Digital Twin (DT) representation as an intermediate layer to decouple perception from reasoning. Innovatively, DTwinSeger reformulates RS as a two-stage process, where the first transforms the image into a structured DT representation that preserves spatial relationships and semantic properties and then employs a Large Language Model (LLM) to perform explicit reasoning over this representation to identify target objects. We propose a supervised fine-tuning method specifically for LLM with DT representation, together with a corresponding fine-tuning dataset Seg-DT, to enhance the LLM's reasoning capabilities with DT representations. Experiments show that our method can achieve state-of-the-art performance on two image RS benchmarks and three image referring segmentation benchmarks. It yields that DT representation functions as an effective bridge between vision and text, enabling complex multimodal reasoning tasks to be accomplished solely with an LLM.
comment: This work was submitted without the consent of all co-authors. We request withdrawal until all parties agree
♻ ☆ XMeCap: Meme Caption Generation with Sub-Image Adaptability
Humor, deeply rooted in societal meanings and cultural details, poses a unique challenge for machines. While advances have been made in natural language processing, real-world humor often thrives in a multi-modal context, encapsulated distinctively by memes. This paper poses a particular emphasis on the impact of multi-images on meme captioning. After that, we introduce the \textsc{XMeCap} framework, a novel approach that adopts supervised fine-tuning and reinforcement learning based on an innovative reward model, which factors in both global and local similarities between visuals and text. Our results, benchmarked against contemporary models, manifest a marked improvement in caption generation for both single-image and multi-image memes, as well as different meme categories. \textsc{XMeCap} achieves an average evaluation score of 75.85 for single-image memes and 66.32 for multi-image memes, outperforming the best baseline by 6.75\% and 8.56\%, respectively. This research not only establishes a new frontier in meme-related studies but also underscores the potential of machines in understanding and generating humor in a multi-modal setting.
comment: Accepted to ACM Multimedia 2024
♻ ☆ LLM2TEA: Agentic AI Designer Finds Innovative Objects with Generative Evolutionary Multitasking
In this paper, we introduce LLM-driven MultiTask Evolutionary Algorithm (LLM2TEA), the first agentic AI designer within a generative evolutionary multitasking (GEM) framework that promotes the crossover and synergy of designs from multiple domains, leading to innovative solutions that transcend individual disciplines. Of particular interest is the discovery of objects that are not only innovative but also conform to the physical specifications of the real world in science and engineering. LLM2TEA comprises a large language model to initialize a population of genotypes (defined by text prompts) describing the objects of interest, a text-to-3D generative model to produce phenotypes from these prompts, a classifier to interpret the semantic representations of the objects, and a physics simulation model to assess their physical properties. We propose several novel LLM-based multitask evolutionary operators to guide the search toward the discovery of high-performing practical objects. Experimental results in conceptual design optimization validate the effectiveness of LLM2TEA, revealing from 97\% to 174\% improvement in the diversity of innovative objects compared to the present text-to-3D generative model baseline. In addition, more than 73\% of the generated designs have better physical performance than the top 1\% percentile of the designs generated in the baseline. Moreover, LLM2TEA generates designs that are not only aesthetically creative but also functional in real-world applications. Several of these designs have been successfully 3D-printed, emphasizing the proposed approach's capacity to transform AI-generated outputs into tangible physical objects. The designs produced by LLM2TEA meets practical requirements while showcasing creative and innovative features, underscoring its potential applications in complex design optimization and discovery.
comment: This work has been submitted to the IEEE for review
♻ ☆ HoliSafe: Holistic Safety Benchmarking and Modeling with Safety Meta Token for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, HoliSafe, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation. We further propose SafeLLaVA, a novel VLM augmented with a learnable safety meta token and a dedicated safety head. The meta token encodes harmful visual cues during training, intrinsically guiding the language model toward safer responses, while the safety head offers interpretable harmfulness classification aligned with refusal rationales. Experiments show that SafeLLaVA, trained on HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe benchmark itself reveals critical vulnerabilities in existing models. We hope that HoliSafe and SafeLLaVA will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
comment: Project page: https://youngwanlee.github.io/holisafe
♻ ☆ AugGen: Synthetic Augmentation Can Improve Discriminative Models
The increasing reliance on large-scale datasets in machine learning poses significant privacy and ethical challenges, particularly in sensitive domains such as face recognition (FR). Synthetic data generation offers a promising alternative; however, most existing methods depend heavily on external datasets or pre-trained models, increasing complexity and resource demands. In this paper, we introduce AugGen, a self-contained synthetic augmentation technique. AugGen strategically samples from a class-conditional generative model trained exclusively on the target FR dataset, eliminating the need for external resources. Evaluated across 8 FR benchmarks, including IJB-C and IJB-B, our method achieves 1-12% performance improvements, outperforming models trained solely on real data and surpassing state-of-the-art synthetic data generation approaches, while using less real data. Notably, these gains often exceed those from architectural modifications, underscoring the value of synthetic augmentation in data-limited scenarios. Our findings demonstrate that carefully integrated synthetic data can both mitigate privacy constraints and substantially enhance discriminative performance in face recognition. Paper website: https://parsa-ra.github.io/auggen/.
♻ ☆ Question-Aware Gaussian Experts for Audio-Visual Question Answering CVPR 2025
Audio-Visual Question Answering (AVQA) requires not only question-based multimodal reasoning but also precise temporal grounding to capture subtle dynamics for accurate prediction. However, existing methods mainly use question information implicitly, limiting focus on question-specific details. Furthermore, most studies rely on uniform frame sampling, which can miss key question-relevant frames. Although recent Top-K frame selection methods aim to address this, their discrete nature still overlooks fine-grained temporal details. This paper proposes QA-TIGER, a novel framework that explicitly incorporates question information and models continuous temporal dynamics. Our key idea is to use Gaussian-based modeling to adaptively focus on both consecutive and non-consecutive frames based on the question, while explicitly injecting question information and applying progressive refinement. We leverage a Mixture of Experts (MoE) to flexibly implement multiple Gaussian models, activating temporal experts specifically tailored to the question. Extensive experiments on multiple AVQA benchmarks show that QA-TIGER consistently achieves state-of-the-art performance. Code is available at https://aim-skku.github.io/QA-TIGER/
comment: CVPR 2025. Code is available at https://github.com/AIM-SKKU/QA-TIGER
♻ ☆ Holistic Uncertainty Estimation For Open-Set Recognition
Accurate uncertainty estimation is a critical challenge in open-set recognition, where a probe biometric sample may belong to an unknown identity. It can be addressed through sample quality estimation via probabilistic embeddings. However, the low variance of probabilistic embedding only partly implies a low identification error probability: an embedding of a sample could be close to several classes in a gallery, thus yielding high uncertainty despite high sample quality. We propose HolUE - a holistic uncertainty estimation method based on a Bayesian probabilistic model; it is aware of two sources of ambiguity in the open-set recognition system: (1) the gallery uncertainty caused by overlapping classes and (2) the uncertainty of embeddings. Challenging open-set recognition datasets, such as IJB-C for the image domain and VoxBlink for the audio domain, serve as a testbed for our method. We also provide a new open-set recognition protocol for the identification of whales and dolphins. In all cases, HolUE better identifies recognition errors than alternative uncertainty estimation methods, including those based solely on sample quality.
♻ ☆ Technical Report for Ego4D Long-Term Action Anticipation Challenge 2025 CVPR
In this report, we present a novel three-stage framework developed for the Ego4D Long-Term Action Anticipation (LTA) task. Inspired by recent advances in foundation models, our method consists of three stages: feature extraction, action recognition, and long-term action anticipation. First, visual features are extracted using a high-performance visual encoder. The features are then fed into a Transformer to predict verbs and nouns, with a verb-noun co-occurrence matrix incorporated to enhance recognition accuracy. Finally, the predicted verb-noun pairs are formatted as textual prompts and input into a fine-tuned large language model (LLM) to anticipate future action sequences. Our framework achieves first place in this challenge at CVPR 2025, establishing a new state-of-the-art in long-term action prediction. Our code will be released at https://github.com/CorrineQiu/Ego4D-LTA-Challenge-2025.
comment: The champion solution for the Ego4D Long-Term Action Anticipation Challenge at the CVPR EgoVis Workshop 2025
♻ ☆ Fourier-Modulated Implicit Neural Representation for Multispectral Satellite Image Compression RSS 2025
Multispectral satellite images play a vital role in agriculture, fisheries, and environmental monitoring. However, their high dimensionality, large data volumes, and diverse spatial resolutions across multiple channels pose significant challenges for data compression and analysis. This paper presents ImpliSat, a unified framework specifically designed to address these challenges through efficient compression and reconstruction of multispectral satellite data. ImpliSat leverages Implicit Neural Representations (INR) to model satellite images as continuous functions over coordinate space, capturing fine spatial details across varying spatial resolutions. Furthermore, we introduce a Fourier modulation algorithm that dynamically adjusts to the spectral and spatial characteristics of each band, ensuring optimal compression while preserving critical image details.
comment: Accepted to IGARSS 2025 (Oral)
♻ ☆ BiCo-Fusion: Bidirectional Complementary LiDAR-Camera Fusion for Semantic- and Spatial-Aware 3D Object Detection
3D object detection is an important task that has been widely applied in autonomous driving. To perform this task, a new trend is to fuse multi-modal inputs, i.e., LiDAR and camera. Under such a trend, recent methods fuse these two modalities by unifying them in the same 3D space. However, during direct fusion in a unified space, the drawbacks of both modalities (LiDAR features struggle with detailed semantic information and the camera lacks accurate 3D spatial information) are also preserved, diluting semantic and spatial awareness of the final unified representation. To address the issue, this letter proposes a novel bidirectional complementary LiDAR-camera fusion framework, called BiCo-Fusion that can achieve robust semantic- and spatial-aware 3D object detection. The key insight is to fuse LiDAR and camera features in a bidirectional complementary way to enhance the semantic awareness of the LiDAR and the 3D spatial awareness of the camera. The enhanced features from both modalities are then adaptively fused to build a semantic- and spatial-aware unified representation. Specifically, we introduce Pre-Fusion consisting of a Voxel Enhancement Module (VEM) to enhance the semantic awareness of voxel features from 2D camera features and Image Enhancement Module (IEM) to enhance the 3D spatial awareness of camera features from 3D voxel features. We then introduce Unified Fusion (U-Fusion) to adaptively fuse the enhanced features from the last stage to build a unified representation. Extensive experiments demonstrate the superiority of our BiCo-Fusion against the prior arts. Project page: https://t-ys.github.io/BiCo-Fusion/.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L)
♻ ☆ SmartEraser: Remove Anything from Images using Masked-Region Guidance
Object removal has so far been dominated by the mask-and-inpaint paradigm, where the masked region is excluded from the input, leaving models relying on unmasked areas to inpaint the missing region. However, this approach lacks contextual information for the masked area, often resulting in unstable performance. In this work, we introduce SmartEraser, built with a new removing paradigm called Masked-Region Guidance. This paradigm retains the masked region in the input, using it as guidance for the removal process. It offers several distinct advantages: (a) it guides the model to accurately identify the object to be removed, preventing its regeneration in the output; (b) since the user mask often extends beyond the object itself, it aids in preserving the surrounding context in the final result. Leveraging this new paradigm, we present Syn4Removal, a large-scale object removal dataset, where instance segmentation data is used to copy and paste objects onto images as removal targets, with the original images serving as ground truths. Experimental results demonstrate that SmartEraser significantly outperforms existing methods, achieving superior performance in object removal, especially in complex scenes with intricate compositions.
comment: Project at: https://longtaojiang.github.io/smarteraser.github.io/
♻ ☆ ProbDiffFlow: An Efficient Learning-Free Framework for Probabilistic Single-Image Optical Flow Estimation
This paper studies optical flow estimation, a critical task in motion analysis with applications in autonomous navigation, action recognition, and film production. Traditional optical flow methods require consecutive frames, which are often unavailable due to limitations in data acquisition or real-world scene disruptions. Thus, single-frame optical flow estimation is emerging in the literature. However, existing single-frame approaches suffer from two major limitations: (1) they rely on labeled training data, making them task-specific, and (2) they produce deterministic predictions, failing to capture motion uncertainty. To overcome these challenges, we propose ProbDiffFlow, a training-free framework that estimates optical flow distributions from a single image. Instead of directly predicting motion, ProbDiffFlow follows an estimation-by-synthesis paradigm: it first generates diverse plausible future frames using a diffusion-based model, then estimates motion from these synthesized samples using a pre-trained optical flow model, and finally aggregates the results into a probabilistic flow distribution. This design eliminates the need for task-specific training while capturing multiple plausible motions. Experiments on both synthetic and real-world datasets demonstrate that ProbDiffFlow achieves superior accuracy, diversity, and efficiency, outperforming existing single-image and two-frame baselines.
comment: 18 pages, 13 figures, accepted by Frontiers of Computer Science (FCS)
♻ ☆ Genesis: Multimodal Driving Scene Generation with Spatio-Temporal and Cross-Modal Consistency
We present Genesis, a unified framework for joint generation of multi-view driving videos and LiDAR sequences with spatio-temporal and cross-modal consistency. Genesis employs a two-stage architecture that integrates a DiT-based video diffusion model with 3D-VAE encoding, and a BEV-aware LiDAR generator with NeRF-based rendering and adaptive sampling. Both modalities are directly coupled through a shared latent space, enabling coherent evolution across visual and geometric domains. To guide the generation with structured semantics, we introduce DataCrafter, a captioning module built on vision-language models that provides scene-level and instance-level supervision. Extensive experiments on the nuScenes benchmark demonstrate that Genesis achieves state-of-the-art performance across video and LiDAR metrics (FVD 16.95, FID 4.24, Chamfer 0.611), and benefits downstream tasks including segmentation and 3D detection, validating the semantic fidelity and practical utility of the generated data.
♻ ☆ NeRF-CA: Dynamic Reconstruction of X-ray Coronary Angiography with Extremely Sparse-views
Dynamic three-dimensional (4D) reconstruction from two-dimensional X-ray coronary angiography (CA) remains a significant clinical problem. Existing CA reconstruction methods often require extensive user interaction or large training datasets. Recently, Neural Radiance Field (NeRF) has successfully reconstructed high-fidelity scenes in natural and medical contexts without these requirements. However, challenges such as sparse-views, intra-scan motion, and complex vessel morphology hinder its direct application to CA data. We introduce NeRF-CA, a first step toward a fully automatic 4D CA reconstruction that achieves reconstructions from sparse coronary angiograms. To the best of our knowledge, we are the first to address the challenges of sparse-views and cardiac motion by decoupling the scene into the moving coronary artery and the static background, effectively translating the problem of motion into a strength. NeRF-CA serves as a first stepping stone for solving the 4D CA reconstruction problem, achieving adequate 4D reconstructions from as few as four angiograms, as required by clinical practice, while significantly outperforming state-of-the-art sparse-view X-ray NeRF. We validate our approach quantitatively and qualitatively using representative 4D phantom datasets and ablation studies. To accelerate research in this domain, we made our codebase public: https://github.com/kirstenmaas/NeRF-CA.
♻ ☆ MIMO: Controllable Character Video Synthesis with Spatial Decomposed Modeling
Character video synthesis aims to produce realistic videos of animatable characters within lifelike scenes. As a fundamental problem in the computer vision and graphics community, 3D works typically require multi-view captures for per-case training, which severely limits their applicability of modeling arbitrary characters in a short time. Recent 2D methods break this limitation via pre-trained diffusion models, but they struggle for pose generality and scene interaction. To this end, we propose MIMO, a novel framework which can not only synthesize character videos with controllable attributes (i.e., character, motion and scene) provided by simple user inputs, but also simultaneously achieve advanced scalability to arbitrary characters, generality to novel 3D motions, and applicability to interactive real-world scenes in a unified framework. The core idea is to encode the 2D video to compact spatial codes, considering the inherent 3D nature of video occurrence. Concretely, we lift the 2D frame pixels into 3D using monocular depth estimators, and decompose the video clip to three spatial components (i.e., main human, underlying scene, and floating occlusion) in hierarchical layers based on the 3D depth. These components are further encoded to canonical identity code, structured motion code and full scene code, which are utilized as control signals of synthesis process. The design of spatial decomposed modeling enables flexible user control, complex motion expression, as well as 3D-aware synthesis for scene interactions. Experimental results demonstrate effectiveness and robustness of the proposed method.
comment: Project Page: https://menyifang.github.io/projects/MIMO/index.html
♻ ☆ Temporal-Guided Spiking Neural Networks for Event-Based Human Action Recognition
This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
♻ ☆ LEMUR Neural Network Dataset: Towards Seamless AutoML
Neural networks are fundamental in artificial intelligence, driving progress in computer vision and natural language processing. High-quality datasets are crucial for their development, and there is growing interest in datasets composed of neural networks themselves to support benchmarking, automated machine learning (AutoML), and model analysis. We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures across tasks such as object detection, image classification, segmentation, and natural language processing. LEMUR is primarily designed to provide a rich source of structured model representations and associated performance data, enabling the fine-tuning of large language models for AutoML applications. Leveraging Python and PyTorch, LEMUR enables seamless extension to new datasets and models while maintaining consistency. It integrates an Optuna-powered framework for evaluation, hyperparameter optimization, statistical analysis, and graphical insights. LEMUR VR extension enables the seamless deployment of models in virtual reality, optimizing their performance on resource-constrained devices. Providing tools for model evaluation, preprocessing, and database management, LEMUR supports researchers and practitioners in developing, testing, and analyzing neural networks. It offers an API that delivers comprehensive information about neural network models and their complete performance statistics with a single request, which can be used in experiments with code-generating large language models. The LEMUR and its plugins are accessible as open source projects under the MIT license at https://github.com/ABrain-One/nn-dataset, https://github.com/ABrain-One/nn-plots and https://github.com/ABrain-One/nn-vr.
♻ ☆ Dynamic Negative Guidance of Diffusion Models ICLR 2025
Negative Prompting (NP) is widely utilized in diffusion models, particularly in text-to-image applications, to prevent the generation of undesired features. In this paper, we show that conventional NP is limited by the assumption of a constant guidance scale, which may lead to highly suboptimal results, or even complete failure, due to the non-stationarity and state-dependence of the reverse process. Based on this analysis, we derive a principled technique called Dynamic Negative Guidance, which relies on a near-optimal time and state dependent modulation of the guidance without requiring additional training. Unlike NP, negative guidance requires estimating the posterior class probability during the denoising process, which is achieved with limited additional computational overhead by tracking the discrete Markov Chain during the generative process. We evaluate the performance of DNG class-removal on MNIST and CIFAR10, where we show that DNG leads to higher safety, preservation of class balance and image quality when compared with baseline methods. Furthermore, we show that it is possible to use DNG with Stable Diffusion to obtain more accurate and less invasive guidance than NP.
comment: Paper accepted at ICLR 2025 (poster). Our implementation is available at https://github.com/FelixKoulischer/Dynamic-Negative-Guidance.git
♻ ☆ DeepMultiConnectome: Deep Multi-Task Prediction of Structural Connectomes Directly from Diffusion MRI Tractography
Diffusion MRI (dMRI) tractography enables in vivo mapping of brain structural connections, but traditional connectome generation is time-consuming and requires gray matter parcellation, posing challenges for large-scale studies. We introduce DeepMultiConnectome, a deep-learning model that predicts structural connectomes directly from tractography, bypassing the need for gray matter parcellation while supporting multiple parcellation schemes. Using a point-cloud-based neural network with multi-task learning, the model classifies streamlines according to their connected regions across two parcellation schemes, sharing a learned representation. We train and validate DeepMultiConnectome on tractography from the Human Connectome Project Young Adult dataset ($n = 1000$), labeled with an 84 and 164 region gray matter parcellation scheme. DeepMultiConnectome predicts multiple structural connectomes from a whole-brain tractogram containing 3 million streamlines in approximately 40 seconds. DeepMultiConnectome is evaluated by comparing predicted connectomes with traditional connectomes generated using the conventional method of labeling streamlines using a gray matter parcellation. The predicted connectomes are highly correlated with traditionally generated connectomes ($r = 0.992$ for an 84-region scheme; $r = 0.986$ for a 164-region scheme) and largely preserve network properties. A test-retest analysis of DeepMultiConnectome demonstrates reproducibility comparable to traditionally generated connectomes. The predicted connectomes perform similarly to traditionally generated connectomes in predicting age and cognitive function. Overall, DeepMultiConnectome provides a scalable, fast model for generating subject-specific connectomes across multiple parcellation schemes.
comment: 15 pages, 5 figures
♻ ☆ MCA-Bench: A Multimodal Benchmark for Evaluating CAPTCHA Robustness Against VLM-based Attacks
As automated attack techniques rapidly advance, CAPTCHAs remain a critical defense mechanism against malicious bots. However, existing CAPTCHA schemes encompass a diverse range of modalities -- from static distorted text and obfuscated images to interactive clicks, sliding puzzles, and logic-based questions -- yet the community still lacks a unified, large-scale, multimodal benchmark to rigorously evaluate their security robustness. To address this gap, we introduce MCA-Bench, a comprehensive and reproducible benchmarking suite that integrates heterogeneous CAPTCHA types into a single evaluation protocol. Leveraging a shared vision-language model backbone, we fine-tune specialized cracking agents for each CAPTCHA category, enabling consistent, cross-modal assessments. Extensive experiments reveal that MCA-Bench effectively maps the vulnerability spectrum of modern CAPTCHA designs under varied attack settings, and crucially offers the first quantitative analysis of how challenge complexity, interaction depth, and model solvability interrelate. Based on these findings, we propose three actionable design principles and identify key open challenges, laying the groundwork for systematic CAPTCHA hardening, fair benchmarking, and broader community collaboration. Datasets and code are available online.
comment: 31 pages, 8 figures
♻ ☆ Plug-and-Play image restoration with Stochastic deNOising REgularization
Plug-and-Play (PnP) algorithms are a class of iterative algorithms that address image inverse problems by combining a physical model and a deep neural network for regularization. Even if they produce impressive image restoration results, these algorithms rely on a non-standard use of a denoiser on images that are less and less noisy along the iterations, which contrasts with recent algorithms based on Diffusion Models (DM), where the denoiser is applied only on re-noised images. We propose a new PnP framework, called Stochastic deNOising REgularization (SNORE), which applies the denoiser only on images with noise of the adequate level. It is based on an explicit stochastic regularization, which leads to a stochastic gradient descent algorithm to solve ill-posed inverse problems. A convergence analysis of this algorithm and its annealing extension is provided. Experimentally, we prove that SNORE is competitive with respect to state-of-the-art methods on deblurring and inpainting tasks, both quantitatively and qualitatively.
♻ ☆ Exploring Test-Time Adaptation for Object Detection in Continually Changing Environments
Real-world application models are commonly deployed in dynamic environments, where the target domain distribution undergoes temporal changes. Continual Test-Time Adaptation (CTTA) has recently emerged as a promising technique to gradually adapt a source-trained model to continually changing target domains. Despite recent advancements in addressing CTTA, two critical issues remain: 1) Fixed thresholds for pseudo-labeling in existing methodologies lead to low-quality pseudo-labels, as model confidence varies across categories and domains; 2) Stochastic parameter restoration methods for mitigating catastrophic forgetting fail to preserve critical information effectively, due to their intrinsic randomness. To tackle these challenges for detection models in CTTA scenarios, we present AMROD, featuring three core components. Firstly, the object-level contrastive learning module extracts object-level features for contrastive learning to refine the feature representation in the target domain. Secondly, the adaptive monitoring module dynamically skips unnecessary adaptation and updates the category-specific threshold based on predicted confidence scores to enable efficiency and improve the quality of pseudo-labels. Lastly, the adaptive randomized restoration mechanism selectively reset inactive parameters with higher possibilities, ensuring the retention of essential knowledge. We demonstrate the effectiveness of AMROD on four CTTA object detection tasks, where AMROD outperforms existing methods, especially achieving a 3.2 mAP improvement and a 20\% increase in efficiency on the Cityscapes-to-Cityscapes-C CTTA task. The code of this work is available at https://github.com/ShileiCao/AMROD.
♻ ☆ Diffusion-based Adversarial Purification from the Perspective of the Frequency Domain
The diffusion-based adversarial purification methods attempt to drown adversarial perturbations into a part of isotropic noise through the forward process, and then recover the clean images through the reverse process. Due to the lack of distribution information about adversarial perturbations in the pixel domain, it is often unavoidable to damage normal semantics. We turn to the frequency domain perspective, decomposing the image into amplitude spectrum and phase spectrum. We find that for both spectra, the damage caused by adversarial perturbations tends to increase monotonically with frequency. This means that we can extract the content and structural information of the original clean sample from the frequency components that are less damaged. Meanwhile, theoretical analysis indicates that existing purification methods indiscriminately damage all frequency components, leading to excessive damage to the image. Therefore, we propose a purification method that can eliminate adversarial perturbations while maximizing the preservation of the content and structure of the original image. Specifically, at each time step during the reverse process, for the amplitude spectrum, we replace the low-frequency components of the estimated image's amplitude spectrum with the corresponding parts of the adversarial image. For the phase spectrum, we project the phase of the estimated image into a designated range of the adversarial image's phase spectrum, focusing on the low frequencies. Empirical evidence from extensive experiments demonstrates that our method significantly outperforms most current defense methods.
♻ ☆ SceneEval: Evaluating Semantic Coherence in Text-Conditioned 3D Indoor Scene Synthesis
Despite recent advances in text-conditioned 3D indoor scene generation, there remain gaps in the evaluation of these methods. Existing metrics primarily assess the realism of generated scenes by comparing them to a set of ground-truth scenes, often overlooking alignment with the input text - a critical factor in determining how effectively a method meets user requirements. We present SceneEval, an evaluation framework designed to address this limitation. SceneEval includes metrics for both explicit user requirements, such as the presence of specific objects and their attributes described in the input text, and implicit expectations, like the absence of object collisions, providing a comprehensive assessment of scene quality. To facilitate evaluation, we introduce SceneEval-500, a dataset of scene descriptions with annotated ground-truth scene properties. We evaluate recent scene generation methods using SceneEval and demonstrate its ability to provide detailed assessments of the generated scenes, highlighting strengths and areas for improvement across multiple dimensions. Our results show that current methods struggle at generating scenes that meet user requirements, underscoring the need for further research in this direction.
comment: Expanded dataset to 500 annotated scene descriptions with new scene types; added validation via extended manual evaluation and a new user study; clarified distinctions from prior metrics; included results using an open-source VLM; stated intent to release code and data; corrected terminology and typos. 24 pages with 8 figures and 6 tables
♻ ☆ ByteMorph: Benchmarking Instruction-Guided Image Editing with Non-Rigid Motions
Editing images with instructions to reflect non-rigid motions, camera viewpoint shifts, object deformations, human articulations, and complex interactions, poses a challenging yet underexplored problem in computer vision. Existing approaches and datasets predominantly focus on static scenes or rigid transformations, limiting their capacity to handle expressive edits involving dynamic motion. To address this gap, we introduce ByteMorph, a comprehensive framework for instruction-based image editing with an emphasis on non-rigid motions. ByteMorph comprises a large-scale dataset, ByteMorph-6M, and a strong baseline model built upon the Diffusion Transformer (DiT), named ByteMorpher. ByteMorph-6M includes over 6 million high-resolution image editing pairs for training, along with a carefully curated evaluation benchmark ByteMorph-Bench. Both capture a wide variety of non-rigid motion types across diverse environments, human figures, and object categories. The dataset is constructed using motion-guided data generation, layered compositing techniques, and automated captioning to ensure diversity, realism, and semantic coherence. We further conduct a comprehensive evaluation of recent instruction-based image editing methods from both academic and commercial domains.
comment: Website: https://boese0601.github.io/bytemorph Dataset: https://huggingface.co/datasets/ByteDance-Seed/BM-6M Benchmark: https://huggingface.co/datasets/ByteDance-Seed/BM-Bench Code: https://github.com/ByteDance-Seed/BM-code Demo: https://huggingface.co/spaces/Boese0601/ByteMorph-Demo
♻ ☆ Sim-to-Real Causal Transfer: A Metric Learning Approach to Causally-Aware Interaction Representations CVPR 2025
Modeling spatial-temporal interactions among neighboring agents is at the heart of multi-agent problems such as motion forecasting and crowd navigation. Despite notable progress, it remains unclear to which extent modern representations can capture the causal relationships behind agent interactions. In this work, we take an in-depth look at the causal awareness of these representations, from computational formalism to real-world practice. First, we cast doubt on the notion of non-causal robustness studied in the recent CausalAgents benchmark. We show that recent representations are already partially resilient to perturbations of non-causal agents, and yet modeling indirect causal effects involving mediator agents remains challenging. To address this challenge, we introduce a metric learning approach that regularizes latent representations with causal annotations. Our controlled experiments show that this approach not only leads to higher degrees of causal awareness but also yields stronger out-of-distribution robustness. To further operationalize it in practice, we propose a sim-to-real causal transfer method via cross-domain multi-task learning. Experiments on pedestrian datasets show that our method can substantially boost generalization, even in the absence of real-world causal annotations. We hope our work provides a new perspective on the challenges and pathways towards causally-aware representations of multi-agent interactions. Our code is available at https://github.com/vita-epfl/CausalSim2Real.
comment: CVPR 2025
♻ ☆ Directing Mamba to Complex Textures: An Efficient Texture-Aware State Space Model for Image Restoration IJCAI 2025
Image restoration aims to recover details and enhance contrast in degraded images. With the growing demand for high-quality imaging (\textit{e.g.}, 4K and 8K), achieving a balance between restoration quality and computational efficiency has become increasingly critical. Existing methods, primarily based on CNNs, Transformers, or their hybrid approaches, apply uniform deep representation extraction across the image. However, these methods often struggle to effectively model long-range dependencies and largely overlook the spatial characteristics of image degradation (regions with richer textures tend to suffer more severe damage), making it hard to achieve the best trade-off between restoration quality and efficiency. To address these issues, we propose a novel texture-aware image restoration method, TAMambaIR, which simultaneously perceives image textures and achieves a trade-off between performance and efficiency. Specifically, we introduce a novel Texture-Aware State Space Model, which enhances texture awareness and improves efficiency by modulating the transition matrix of the state-space equation and focusing on regions with complex textures. Additionally, we design a {Multi-Directional Perception Block} to improve multi-directional receptive fields while maintaining low computational overhead. Extensive experiments on benchmarks for image super-resolution, deraining, and low-light image enhancement demonstrate that TAMambaIR achieves state-of-the-art performance with significantly improved efficiency, establishing it as a robust and efficient framework for image restoration.
comment: Accepted by the 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
♻ ☆ MedChat: A Multi-Agent Framework for Multimodal Diagnosis with Large Language Models
The integration of deep learning-based glaucoma detection with large language models (LLMs) presents an automated strategy to mitigate ophthalmologist shortages and improve clinical reporting efficiency. However, applying general LLMs to medical imaging remains challenging due to hallucinations, limited interpretability, and insufficient domain-specific medical knowledge, which can potentially reduce clinical accuracy. Although recent approaches combining imaging models with LLM reasoning have improved reporting, they typically rely on a single generalist agent, restricting their capacity to emulate the diverse and complex reasoning found in multidisciplinary medical teams. To address these limitations, we propose MedChat, a multi-agent diagnostic framework and platform that combines specialized vision models with multiple role-specific LLM agents, all coordinated by a director agent. This design enhances reliability, reduces hallucination risk, and enables interactive diagnostic reporting through an interface tailored for clinical review and educational use. Code available at https://github.com/Purdue-M2/MedChat.
comment: 7 pages, 6 figures. Accepted to the 2025 IEEE 8th International Conference on Multimedia Information Processing and Retrieval (MIPR)
♻ ☆ PointNet with KAN versus PointNet with MLP for 3D Classification and Segmentation of Point Sets
Kolmogorov-Arnold Networks (KANs) have recently gained attention as an alternative to traditional Multilayer Perceptrons (MLPs) in deep learning frameworks. KANs have been integrated into various deep learning architectures such as convolutional neural networks, graph neural networks, and transformers, with their performance evaluated. However, their effectiveness within point-cloud-based neural networks remains unexplored. To address this gap, we incorporate KANs into PointNet for the first time to evaluate their performance on 3D point cloud classification and segmentation tasks. Specifically, we introduce PointNet-KAN, built upon two key components. First, it employs KANs instead of traditional MLPs. Second, it retains the core principle of PointNet by using shared KAN layers and applying symmetric functions for global feature extraction, ensuring permutation invariance with respect to the input features. In traditional MLPs, the goal is to train the weights and biases with fixed activation functions; however, in KANs, the goal is to train the activation functions themselves. We use Jacobi polynomials to construct the KAN layers. We extensively and systematically evaluate PointNet-KAN across various polynomial degrees and special types such as the Lagrange, Chebyshev, and Gegenbauer polynomials. Our results show that PointNet-KAN achieves competitive performance compared to PointNet with MLPs on benchmark datasets for 3D object classification and part and semantic segmentation, despite employing a shallower and simpler network architecture. We also study a hybrid PointNet model incorporating both KAN and MLP layers. We hope this work serves as a foundation and provides guidance for integrating KANs, as an alternative to MLPs, into more advanced point cloud processing architectures.
Artificial Intelligence 281
☆ DGS-LRM: Real-Time Deformable 3D Gaussian Reconstruction From Monocular Videos
We introduce the Deformable Gaussian Splats Large Reconstruction Model (DGS-LRM), the first feed-forward method predicting deformable 3D Gaussian splats from a monocular posed video of any dynamic scene. Feed-forward scene reconstruction has gained significant attention for its ability to rapidly create digital replicas of real-world environments. However, most existing models are limited to static scenes and fail to reconstruct the motion of moving objects. Developing a feed-forward model for dynamic scene reconstruction poses significant challenges, including the scarcity of training data and the need for appropriate 3D representations and training paradigms. To address these challenges, we introduce several key technical contributions: an enhanced large-scale synthetic dataset with ground-truth multi-view videos and dense 3D scene flow supervision; a per-pixel deformable 3D Gaussian representation that is easy to learn, supports high-quality dynamic view synthesis, and enables long-range 3D tracking; and a large transformer network that achieves real-time, generalizable dynamic scene reconstruction. Extensive qualitative and quantitative experiments demonstrate that DGS-LRM achieves dynamic scene reconstruction quality comparable to optimization-based methods, while significantly outperforming the state-of-the-art predictive dynamic reconstruction method on real-world examples. Its predicted physically grounded 3D deformation is accurate and can readily adapt for long-range 3D tracking tasks, achieving performance on par with state-of-the-art monocular video 3D tracking methods.
comment: Project page: https://hubert0527.github.io/dgslrm/
☆ Text-Aware Image Restoration with Diffusion Models
Image restoration aims to recover degraded images. However, existing diffusion-based restoration methods, despite great success in natural image restoration, often struggle to faithfully reconstruct textual regions in degraded images. Those methods frequently generate plausible but incorrect text-like patterns, a phenomenon we refer to as text-image hallucination. In this paper, we introduce Text-Aware Image Restoration (TAIR), a novel restoration task that requires the simultaneous recovery of visual contents and textual fidelity. To tackle this task, we present SA-Text, a large-scale benchmark of 100K high-quality scene images densely annotated with diverse and complex text instances. Furthermore, we propose a multi-task diffusion framework, called TeReDiff, that integrates internal features from diffusion models into a text-spotting module, enabling both components to benefit from joint training. This allows for the extraction of rich text representations, which are utilized as prompts in subsequent denoising steps. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art restoration methods, achieving significant gains in text recognition accuracy. See our project page: https://cvlab-kaist.github.io/TAIR/
comment: Project page: https://cvlab-kaist.github.io/TAIR/
☆ eFlesh: Highly customizable Magnetic Touch Sensing using Cut-Cell Microstructures
If human experience is any guide, operating effectively in unstructured environments -- like homes and offices -- requires robots to sense the forces during physical interaction. Yet, the lack of a versatile, accessible, and easily customizable tactile sensor has led to fragmented, sensor-specific solutions in robotic manipulation -- and in many cases, to force-unaware, sensorless approaches. With eFlesh, we bridge this gap by introducing a magnetic tactile sensor that is low-cost, easy to fabricate, and highly customizable. Building an eFlesh sensor requires only four components: a hobbyist 3D printer, off-the-shelf magnets (<$5), a CAD model of the desired shape, and a magnetometer circuit board. The sensor is constructed from tiled, parameterized microstructures, which allow for tuning the sensor's geometry and its mechanical response. We provide an open-source design tool that converts convex OBJ/STL files into 3D-printable STLs for fabrication. This modular design framework enables users to create application-specific sensors, and to adjust sensitivity depending on the task. Our sensor characterization experiments demonstrate the capabilities of eFlesh: contact localization RMSE of 0.5 mm, and force prediction RMSE of 0.27 N for normal force and 0.12 N for shear force. We also present a learned slip detection model that generalizes to unseen objects with 95% accuracy, and visuotactile control policies that improve manipulation performance by 40% over vision-only baselines -- achieving 91% average success rate for four precise tasks that require sub-mm accuracy for successful completion. All design files, code and the CAD-to-eFlesh STL conversion tool are open-sourced and available on https://e-flesh.com.
☆ EditInspector: A Benchmark for Evaluation of Text-Guided Image Edits
Text-guided image editing, fueled by recent advancements in generative AI, is becoming increasingly widespread. This trend highlights the need for a comprehensive framework to verify text-guided edits and assess their quality. To address this need, we introduce EditInspector, a novel benchmark for evaluation of text-guided image edits, based on human annotations collected using an extensive template for edit verification. We leverage EditInspector to evaluate the performance of state-of-the-art (SoTA) vision and language models in assessing edits across various dimensions, including accuracy, artifact detection, visual quality, seamless integration with the image scene, adherence to common sense, and the ability to describe edit-induced changes. Our findings indicate that current models struggle to evaluate edits comprehensively and frequently hallucinate when describing the changes. To address these challenges, we propose two novel methods that outperform SoTA models in both artifact detection and difference caption generation.
☆ InterActHuman: Multi-Concept Human Animation with Layout-Aligned Audio Conditions
End-to-end human animation with rich multi-modal conditions, e.g., text, image and audio has achieved remarkable advancements in recent years. However, most existing methods could only animate a single subject and inject conditions in a global manner, ignoring scenarios that multiple concepts could appears in the same video with rich human-human interactions and human-object interactions. Such global assumption prevents precise and per-identity control of multiple concepts including humans and objects, therefore hinders applications. In this work, we discard the single-entity assumption and introduce a novel framework that enforces strong, region-specific binding of conditions from modalities to each identity's spatiotemporal footprint. Given reference images of multiple concepts, our method could automatically infer layout information by leveraging a mask predictor to match appearance cues between the denoised video and each reference appearance. Furthermore, we inject local audio condition into its corresponding region to ensure layout-aligned modality matching in a iterative manner. This design enables the high-quality generation of controllable multi-concept human-centric videos. Empirical results and ablation studies validate the effectiveness of our explicit layout control for multi-modal conditions compared to implicit counterparts and other existing methods.
comment: TL;DR: The first multi-person dialogue video generation method from pairs of reference image and audio via explicit layout-aligned condition injection. See project page https://zhenzhiwang.github.io/interacthuman/ for more details
☆ V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning
A major challenge for modern AI is to learn to understand the world and learn to act largely by observation. This paper explores a self-supervised approach that combines internet-scale video data with a small amount of interaction data (robot trajectories), to develop models capable of understanding, predicting, and planning in the physical world. We first pre-train an action-free joint-embedding-predictive architecture, V-JEPA 2, on a video and image dataset comprising over 1 million hours of internet video. V-JEPA 2 achieves strong performance on motion understanding (77.3 top-1 accuracy on Something-Something v2) and state-of-the-art performance on human action anticipation (39.7 recall-at-5 on Epic-Kitchens-100) surpassing previous task-specific models. Additionally, after aligning V-JEPA 2 with a large language model, we demonstrate state-of-the-art performance on multiple video question-answering tasks at the 8 billion parameter scale (e.g., 84.0 on PerceptionTest, 76.9 on TempCompass). Finally, we show how self-supervised learning can be applied to robotic planning tasks by post-training a latent action-conditioned world model, V-JEPA 2-AC, using less than 62 hours of unlabeled robot videos from the Droid dataset. We deploy V-JEPA 2-AC zero-shot on Franka arms in two different labs and enable picking and placing of objects using planning with image goals. Notably, this is achieved without collecting any data from the robots in these environments, and without any task-specific training or reward. This work demonstrates how self-supervised learning from web-scale data and a small amount of robot interaction data can yield a world model capable of planning in the physical world.
comment: 48 pages, 19 figures
☆ How Do People Revise Inconsistent Beliefs? Examining Belief Revision in Humans with User Studies
Understanding how humans revise their beliefs in light of new information is crucial for developing AI systems which can effectively model, and thus align with, human reasoning. While theoretical belief revision frameworks rely on a set of principles that establish how these operations are performed, empirical evidence from cognitive psychology suggests that people may follow different patterns when presented with conflicting information. In this paper, we present three comprehensive user studies showing that people consistently prefer explanation-based revisions, i.e., those which are guided by explanations, that result in changes to their belief systems that are not necessarily captured by classical belief change theory. Our experiments systematically investigate how people revise their beliefs with explanations for inconsistencies, whether they are provided with them or left to formulate them themselves, demonstrating a robust preference for what may seem non-minimal revisions across different types of scenarios. These findings have implications for AI systems designed to model human reasoning or interact with humans, suggesting that such systems should accommodate explanation-based, potentially non-minimal belief revision operators to better align with human cognitive processes.
☆ Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing
As textual reasoning with large language models (LLMs) has advanced significantly, there has been growing interest in enhancing the multimodal reasoning capabilities of large vision-language models (LVLMs). However, existing methods primarily approach multimodal reasoning in a straightforward, text-centric manner, where both reasoning and answer derivation are conducted purely through text, with the only difference being the presence of multimodal input. As a result, these methods often encounter fundamental limitations in spatial reasoning tasks that demand precise geometric understanding and continuous spatial tracking-capabilities that humans achieve through mental visualization and manipulation. To address the limitations, we propose drawing to reason in space, a novel paradigm that enables LVLMs to reason through elementary drawing operations in the visual space. By equipping models with basic drawing operations, including annotating bounding boxes and drawing auxiliary lines, we empower them to express and analyze spatial relationships through direct visual manipulation, meanwhile avoiding the performance ceiling imposed by specialized perception tools in previous tool-integrated reasoning approaches. To cultivate this capability, we develop a three-stage training framework: cold-start training with synthetic data to establish basic drawing abilities, reflective rejection sampling to enhance self-reflection behaviors, and reinforcement learning to directly optimize for target rewards. Extensive experiments demonstrate that our model, named VILASR, consistently outperforms existing methods across diverse spatial reasoning benchmarks, involving maze navigation, static spatial reasoning, video-based reasoning, and multi-view-based reasoning tasks, with an average improvement of 18.4%.
☆ LLMail-Inject: A Dataset from a Realistic Adaptive Prompt Injection Challenge
Indirect Prompt Injection attacks exploit the inherent limitation of Large Language Models (LLMs) to distinguish between instructions and data in their inputs. Despite numerous defense proposals, the systematic evaluation against adaptive adversaries remains limited, even when successful attacks can have wide security and privacy implications, and many real-world LLM-based applications remain vulnerable. We present the results of LLMail-Inject, a public challenge simulating a realistic scenario in which participants adaptively attempted to inject malicious instructions into emails in order to trigger unauthorized tool calls in an LLM-based email assistant. The challenge spanned multiple defense strategies, LLM architectures, and retrieval configurations, resulting in a dataset of 208,095 unique attack submissions from 839 participants. We release the challenge code, the full dataset of submissions, and our analysis demonstrating how this data can provide new insights into the instruction-data separation problem. We hope this will serve as a foundation for future research towards practical structural solutions to prompt injection.
comment: Dataset at: https://huggingface.co/datasets/microsoft/llmail-inject-challenge
☆ Vision Generalist Model: A Survey
Recently, we have witnessed the great success of the generalist model in natural language processing. The generalist model is a general framework trained with massive data and is able to process various downstream tasks simultaneously. Encouraged by their impressive performance, an increasing number of researchers are venturing into the realm of applying these models to computer vision tasks. However, the inputs and outputs of vision tasks are more diverse, and it is difficult to summarize them as a unified representation. In this paper, we provide a comprehensive overview of the vision generalist models, delving into their characteristics and capabilities within the field. First, we review the background, including the datasets, tasks, and benchmarks. Then, we dig into the design of frameworks that have been proposed in existing research, while also introducing the techniques employed to enhance their performance. To better help the researchers comprehend the area, we take a brief excursion into related domains, shedding light on their interconnections and potential synergies. To conclude, we provide some real-world application scenarios, undertake a thorough examination of the persistent challenges, and offer insights into possible directions for future research endeavors.
comment: Accepted by International Journal of Computer Vision (IJCV)
☆ Outside Knowledge Conversational Video (OKCV) Dataset -- Dialoguing over Videos
In outside knowledge visual question answering (OK-VQA), the model must identify relevant visual information within an image and incorporate external knowledge to accurately respond to a question. Extending this task to a visually grounded dialogue setting based on videos, a conversational model must both recognize pertinent visual details over time and answer questions where the required information is not necessarily present in the visual information. Moreover, the context of the overall conversation must be considered for the subsequent dialogue. To explore this task, we introduce a dataset comprised of $2,017$ videos with $5,986$ human-annotated dialogues consisting of $40,954$ interleaved dialogue turns. While the dialogue context is visually grounded in specific video segments, the questions further require external knowledge that is not visually present. Thus, the model not only has to identify relevant video parts but also leverage external knowledge to converse within the dialogue. We further provide several baselines evaluated on our dataset and show future challenges associated with this task. The dataset is made publicly available here: https://github.com/c-patsch/OKCV.
☆ UniPre3D: Unified Pre-training of 3D Point Cloud Models with Cross-Modal Gaussian Splatting CVPR 2025
The scale diversity of point cloud data presents significant challenges in developing unified representation learning techniques for 3D vision. Currently, there are few unified 3D models, and no existing pre-training method is equally effective for both object- and scene-level point clouds. In this paper, we introduce UniPre3D, the first unified pre-training method that can be seamlessly applied to point clouds of any scale and 3D models of any architecture. Our approach predicts Gaussian primitives as the pre-training task and employs differentiable Gaussian splatting to render images, enabling precise pixel-level supervision and end-to-end optimization. To further regulate the complexity of the pre-training task and direct the model's focus toward geometric structures, we integrate 2D features from pre-trained image models to incorporate well-established texture knowledge. We validate the universal effectiveness of our proposed method through extensive experiments across a variety of object- and scene-level tasks, using diverse point cloud models as backbones. Code is available at https://github.com/wangzy22/UniPre3D.
comment: Accepted to CVPR 2025
☆ VerIF: Verification Engineering for Reinforcement Learning in Instruction Following
Reinforcement learning with verifiable rewards (RLVR) has become a key technique for enhancing large language models (LLMs), with verification engineering playing a central role. However, best practices for RL in instruction following remain underexplored. In this work, we explore the verification challenge in RL for instruction following and propose VerIF, a verification method that combines rule-based code verification with LLM-based verification from a large reasoning model (e.g., QwQ-32B). To support this approach, we construct a high-quality instruction-following dataset, VerInstruct, containing approximately 22,000 instances with associated verification signals. We apply RL training with VerIF to two models, achieving significant improvements across several representative instruction-following benchmarks. The trained models reach state-of-the-art performance among models of comparable size and generalize well to unseen constraints. We further observe that their general capabilities remain unaffected, suggesting that RL with VerIF can be integrated into existing RL recipes to enhance overall model performance. We have released our datasets, codes, and models to facilitate future research at https://github.com/THU-KEG/VerIF.
comment: 16 pages, 8 figures
☆ CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models NeurIPS2025
We introduce CausalVQA, a benchmark dataset for video question answering (VQA) composed of question-answer pairs that probe models' understanding of causality in the physical world. Existing VQA benchmarks either tend to focus on surface perceptual understanding of real-world videos, or on narrow physical reasoning questions created using simulation environments. CausalVQA fills an important gap by presenting challenging questions that are grounded in real-world scenarios, while focusing on models' ability to predict the likely outcomes of different actions and events through five question types: counterfactual, hypothetical, anticipation, planning and descriptive. We designed quality control mechanisms that prevent models from exploiting trivial shortcuts, requiring models to base their answers on deep visual understanding instead of linguistic cues. We find that current frontier multimodal models fall substantially below human performance on the benchmark, especially on anticipation and hypothetical questions. This highlights a challenge for current systems to leverage spatial-temporal reasoning, understanding of physical principles, and comprehension of possible alternatives to make accurate predictions in real-world settings.
comment: 35 pages, 3 figures, Submitted to NeurIPS2025 benchmark track
☆ The Sample Complexity of Online Strategic Decision Making with Information Asymmetry and Knowledge Transportability ICML 2025
Information asymmetry is a pervasive feature of multi-agent systems, especially evident in economics and social sciences. In these settings, agents tailor their actions based on private information to maximize their rewards. These strategic behaviors often introduce complexities due to confounding variables. Simultaneously, knowledge transportability poses another significant challenge, arising from the difficulties of conducting experiments in target environments. It requires transferring knowledge from environments where empirical data is more readily available. Against these backdrops, this paper explores a fundamental question in online learning: Can we employ non-i.i.d. actions to learn about confounders even when requiring knowledge transfer? We present a sample-efficient algorithm designed to accurately identify system dynamics under information asymmetry and to navigate the challenges of knowledge transfer effectively in reinforcement learning, framed within an online strategic interaction model. Our method provably achieves learning of an $\epsilon$-optimal policy with a tight sample complexity of $O(1/\epsilon^2)$.
comment: Accepted at ICML 2025
☆ SAFE: Multitask Failure Detection for Vision-Language-Action Models
While vision-language-action models (VLAs) have shown promising robotic behaviors across a diverse set of manipulation tasks, they achieve limited success rates when deployed on novel tasks out-of-the-box. To allow these policies to safely interact with their environments, we need a failure detector that gives a timely alert such that the robot can stop, backtrack, or ask for help. However, existing failure detectors are trained and tested only on one or a few specific tasks, while VLAs require the detector to generalize and detect failures also in unseen tasks and novel environments. In this paper, we introduce the multitask failure detection problem and propose SAFE, a failure detector for generalist robot policies such as VLAs. We analyze the VLA feature space and find that VLAs have sufficient high-level knowledge about task success and failure, which is generic across different tasks. Based on this insight, we design SAFE to learn from VLA internal features and predict a single scalar indicating the likelihood of task failure. SAFE is trained on both successful and failed rollouts, and is evaluated on unseen tasks. SAFE is compatible with different policy architectures. We test it on OpenVLA, $\pi_0$, and $\pi_0$-FAST in both simulated and real-world environments extensively. We compare SAFE with diverse baselines and show that SAFE achieves state-of-the-art failure detection performance and the best trade-off between accuracy and detection time using conformal prediction. More qualitative results can be found at https://vla-safe.github.io/.
comment: Project Page: https://vla-safe.github.io/
☆ HadaNorm: Diffusion Transformer Quantization through Mean-Centered Transformations
Diffusion models represent the cutting edge in image generation, but their high memory and computational demands hinder deployment on resource-constrained devices. Post-Training Quantization (PTQ) offers a promising solution by reducing the bitwidth of matrix operations. However, standard PTQ methods struggle with outliers, and achieving higher compression often requires transforming model weights and activations before quantization. In this work, we propose HadaNorm, a novel linear transformation that extends existing approaches and effectively mitigates outliers by normalizing activations feature channels before applying Hadamard transformations, enabling more aggressive activation quantization. We demonstrate that HadaNorm consistently reduces quantization error across the various components of transformer blocks, achieving superior efficiency-performance trade-offs when compared to state-of-the-art methods.
comment: 4 Pages, 5 Figures
☆ PersonaLens: A Benchmark for Personalization Evaluation in Conversational AI Assistants ACL 2025
Large language models (LLMs) have advanced conversational AI assistants. However, systematically evaluating how well these assistants apply personalization--adapting to individual user preferences while completing tasks--remains challenging. Existing personalization benchmarks focus on chit-chat, non-conversational tasks, or narrow domains, failing to capture the complexities of personalized task-oriented assistance. To address this, we introduce PersonaLens, a comprehensive benchmark for evaluating personalization in task-oriented AI assistants. Our benchmark features diverse user profiles equipped with rich preferences and interaction histories, along with two specialized LLM-based agents: a user agent that engages in realistic task-oriented dialogues with AI assistants, and a judge agent that employs the LLM-as-a-Judge paradigm to assess personalization, response quality, and task success. Through extensive experiments with current LLM assistants across diverse tasks, we reveal significant variability in their personalization capabilities, providing crucial insights for advancing conversational AI systems.
comment: Accepted to ACL 2025 Findings
☆ Causal Climate Emulation with Bayesian Filtering
Traditional models of climate change use complex systems of coupled equations to simulate physical processes across the Earth system. These simulations are highly computationally expensive, limiting our predictions of climate change and analyses of its causes and effects. Machine learning has the potential to quickly emulate data from climate models, but current approaches are not able to incorporate physics-informed causal relationships. Here, we develop an interpretable climate model emulator based on causal representation learning. We derive a physics-informed approach including a Bayesian filter for stable long-term autoregressive emulation. We demonstrate that our emulator learns accurate climate dynamics, and we show the importance of each one of its components on a realistic synthetic dataset and data from two widely deployed climate models.
comment: 32 pages, 21 figures
☆ The Emergence of Abstract Thought in Large Language Models Beyond Any Language
As large language models (LLMs) continue to advance, their capacity to function effectively across a diverse range of languages has shown marked improvement. Preliminary studies observe that the hidden activations of LLMs often resemble English, even when responding to non-English prompts. This has led to the widespread assumption that LLMs may "think" in English. However, more recent results showing strong multilingual performance, even surpassing English performance on specific tasks in other languages, challenge this view. In this work, we find that LLMs progressively develop a core language-agnostic parameter space-a remarkably small subset of parameters whose deactivation results in significant performance degradation across all languages. This compact yet critical set of parameters underlies the model's ability to generalize beyond individual languages, supporting the emergence of abstract thought that is not tied to any specific linguistic system. Specifically, we identify language-related neurons-those are consistently activated during the processing of particular languages, and categorize them as either shared (active across multiple languages) or exclusive (specific to one). As LLMs undergo continued development over time, we observe a marked increase in both the proportion and functional importance of shared neurons, while exclusive neurons progressively diminish in influence. These shared neurons constitute the backbone of the core language-agnostic parameter space, supporting the emergence of abstract thought. Motivated by these insights, we propose neuron-specific training strategies tailored to LLMs' language-agnostic levels at different development stages. Experiments across diverse LLM families support our approach.
☆ Attention Head Embeddings with Trainable Deep Kernels for Hallucination Detection in LLMs
We present a novel approach for detecting hallucinations in large language models (LLMs) by analyzing the probabilistic divergence between prompt and response hidden-state distributions. Counterintuitively, we find that hallucinated responses exhibit smaller deviations from their prompts compared to grounded responses, suggesting that hallucinations often arise from superficial rephrasing rather than substantive reasoning. Leveraging this insight, we propose a model-intrinsic detection method that uses distributional distances as principled hallucination scores, eliminating the need for external knowledge or auxiliary models. To enhance sensitivity, we employ deep learnable kernels that automatically adapt to capture nuanced geometric differences between distributions. Our approach outperforms existing baselines, demonstrating state-of-the-art performance on several benchmarks. The method remains competitive even without kernel training, offering a robust, scalable solution for hallucination detection.
☆ 3D-Aware Vision-Language Models Fine-Tuning with Geometric Distillation
Vision-Language Models (VLMs) have shown remarkable performance on diverse visual and linguistic tasks, yet they remain fundamentally limited in their understanding of 3D spatial structures. We propose Geometric Distillation, a lightweight, annotation-free fine-tuning framework that injects human-inspired geometric cues into pretrained VLMs without modifying their architecture. By distilling (1) sparse correspondences, (2) relative depth relations, and (3) dense cost volumes from off-the-shelf 3D foundation models (e.g., MASt3R, VGGT), our method shapes representations to be geometry-aware while remaining compatible with natural image-text inputs. Through extensive evaluations on 3D vision-language reasoning and 3D perception benchmarks, our method consistently outperforms prior approaches, achieving improved 3D spatial reasoning with significantly lower computational cost. Our work demonstrates a scalable and efficient path to bridge 2D-trained VLMs with 3D understanding, opening up wider use in spatially grounded multimodal tasks.
☆ Stakeholder Participation for Responsible AI Development: Disconnects Between Guidance and Current Practice
Responsible AI (rAI) guidance increasingly promotes stakeholder involvement (SHI) during AI development. At the same time, SHI is already common in commercial software development, but with potentially different foci. This study clarifies the extent to which established SHI practices are able to contribute to rAI efforts as well as potential disconnects -- essential insights to inform and tailor future interventions that further shift industry practice towards rAI efforts. First, we analysed 56 rAI guidance documents to identify why SHI is recommended (i.e. its expected benefits for rAI) and uncovered goals such as redistributing power, improving socio-technical understandings, anticipating risks, and enhancing public oversight. To understand why and how SHI is currently practised in commercial settings, we then conducted an online survey (n=130) and semi-structured interviews (n=10) with AI practitioners. Our findings reveal that SHI in practice is primarily driven by commercial priorities (e.g. customer value, compliance) and several factors currently discourage more rAI-aligned SHI practices. This suggests that established SHI practices are largely not contributing to rAI efforts. To address this disconnect, we propose interventions and research opportunities to advance rAI development in practice.
comment: Published at the 2025 ACM Conference on Fairness, Accountability, and Transparency FAccT'25
☆ Guided Graph Compression for Quantum Graph Neural Networks
Graph Neural Networks (GNNs) are effective for processing graph-structured data but face challenges with large graphs due to high memory requirements and inefficient sparse matrix operations on GPUs. Quantum Computing (QC) offers a promising avenue to address these issues and inspires new algorithmic approaches. In particular, Quantum Graph Neural Networks (QGNNs) have been explored in recent literature. However, current quantum hardware limits the dimension of the data that can be effectively encoded. Existing approaches either simplify datasets manually or use artificial graph datasets. This work introduces the Guided Graph Compression (GGC) framework, which uses a graph autoencoder to reduce both the number of nodes and the dimensionality of node features. The compression is guided to enhance the performance of a downstream classification task, which can be applied either with a quantum or a classical classifier. The framework is evaluated on the Jet Tagging task, a classification problem of fundamental importance in high energy physics that involves distinguishing particle jets initiated by quarks from those by gluons. The GGC is compared against using the autoencoder as a standalone preprocessing step and against a baseline classical GNN classifier. Our numerical results demonstrate that GGC outperforms both alternatives, while also facilitating the testing of novel QGNN ansatzes on realistic datasets.
☆ Causal Sufficiency and Necessity Improves Chain-of-Thought Reasoning
Chain-of-Thought (CoT) prompting plays an indispensable role in endowing large language models (LLMs) with complex reasoning capabilities. However, CoT currently faces two fundamental challenges: (1) Sufficiency, which ensures that the generated intermediate inference steps comprehensively cover and substantiate the final conclusion; and (2) Necessity, which identifies the inference steps that are truly indispensable for the soundness of the resulting answer. We propose a causal framework that characterizes CoT reasoning through the dual lenses of sufficiency and necessity. Incorporating causal Probability of Sufficiency and Necessity allows us not only to determine which steps are logically sufficient or necessary to the prediction outcome, but also to quantify their actual influence on the final reasoning outcome under different intervention scenarios, thereby enabling the automated addition of missing steps and the pruning of redundant ones. Extensive experimental results on various mathematical and commonsense reasoning benchmarks confirm substantial improvements in reasoning efficiency and reduced token usage without sacrificing accuracy. Our work provides a promising direction for improving LLM reasoning performance and cost-effectiveness.
Dataset of News Articles with Provenance Metadata for Media Relevance Assessment
Out-of-context and misattributed imagery is the leading form of media manipulation in today's misinformation and disinformation landscape. The existing methods attempting to detect this practice often only consider whether the semantics of the imagery corresponds to the text narrative, missing manipulation so long as the depicted objects or scenes somewhat correspond to the narrative at hand. To tackle this, we introduce News Media Provenance Dataset, a dataset of news articles with provenance-tagged images. We formulate two tasks on this dataset, location of origin relevance (LOR) and date and time of origin relevance (DTOR), and present baseline results on six large language models (LLMs). We identify that, while the zero-shot performance on LOR is promising, the performance on DTOR hinders, leaving room for specialized architectures and future work.
☆ Learning to Align: Addressing Character Frequency Distribution Shifts in Handwritten Text Recognition
Handwritten text recognition aims to convert visual input into machine-readable text, and it remains challenging due to the evolving and context-dependent nature of handwriting. Character sets change over time, and character frequency distributions shift across historical periods or regions, often causing models trained on broad, heterogeneous corpora to underperform on specific subsets. To tackle this, we propose a novel loss function that incorporates the Wasserstein distance between the character frequency distribution of the predicted text and a target distribution empirically derived from training data. By penalizing divergence from expected distributions, our approach enhances both accuracy and robustness under temporal and contextual intra-dataset shifts. Furthermore, we demonstrate that character distribution alignment can also improve existing models at inference time without requiring retraining by integrating it as a scoring function in a guided decoding scheme. Experimental results across multiple datasets and architectures confirm the effectiveness of our method in boosting generalization and performance. We open source our code at https://github.com/pkaliosis/fada.
comment: 17 pages, 10 figures, Under Review
☆ OctoNav: Towards Generalist Embodied Navigation
Embodied navigation stands as a foundation pillar within the broader pursuit of embodied AI. However, previous navigation research is divided into different tasks/capabilities, e.g., ObjNav, ImgNav and VLN, where they differ in task objectives and modalities, making datasets and methods are designed individually. In this work, we take steps toward generalist navigation agents, which can follow free-form instructions that include arbitrary compounds of multi-modal and multi-capability. To achieve this, we propose a large-scale benchmark and corresponding method, termed OctoNav-Bench and OctoNav-R1. Specifically, OctoNav-Bench features continuous environments and is constructed via a designed annotation pipeline. We thoroughly craft instruction-trajectory pairs, where instructions are diverse in free-form with arbitrary modality and capability. Also, we construct a Think-Before-Action (TBA-CoT) dataset within OctoNav-Bench to provide the thinking process behind actions. For OctoNav-R1, we build it upon MLLMs and adapt it to a VLA-type model, which can produce low-level actions solely based on 2D visual observations. Moreover, we design a Hybrid Training Paradigm (HTP) that consists of three stages, i.e., Action-/TBA-SFT, Nav-GPRO, and Online RL stages. Each stage contains specifically designed learning policies and rewards. Importantly, for TBA-SFT and Nav-GRPO designs, we are inspired by the OpenAI-o1 and DeepSeek-R1, which show impressive reasoning ability via thinking-before-answer. Thus, we aim to investigate how to achieve thinking-before-action in the embodied navigation field, to improve model's reasoning ability toward generalists. Specifically, we propose TBA-SFT to utilize the TBA-CoT dataset to fine-tune the model as a cold-start phrase and then leverage Nav-GPRO to improve its thinking ability. Finally, OctoNav-R1 shows superior performance compared with previous methods.
comment: 31 pages, 25 figures
☆ DynaSplat: Dynamic-Static Gaussian Splatting with Hierarchical Motion Decomposition for Scene Reconstruction
Reconstructing intricate, ever-changing environments remains a central ambition in computer vision, yet existing solutions often crumble before the complexity of real-world dynamics. We present DynaSplat, an approach that extends Gaussian Splatting to dynamic scenes by integrating dynamic-static separation and hierarchical motion modeling. First, we classify scene elements as static or dynamic through a novel fusion of deformation offset statistics and 2D motion flow consistency, refining our spatial representation to focus precisely where motion matters. We then introduce a hierarchical motion modeling strategy that captures both coarse global transformations and fine-grained local movements, enabling accurate handling of intricate, non-rigid motions. Finally, we integrate physically-based opacity estimation to ensure visually coherent reconstructions, even under challenging occlusions and perspective shifts. Extensive experiments on challenging datasets reveal that DynaSplat not only surpasses state-of-the-art alternatives in accuracy and realism but also provides a more intuitive, compact, and efficient route to dynamic scene reconstruction.
☆ EmoNet-Voice: A Fine-Grained, Expert-Verified Benchmark for Speech Emotion Detection
The advancement of text-to-speech and audio generation models necessitates robust benchmarks for evaluating the emotional understanding capabilities of AI systems. Current speech emotion recognition (SER) datasets often exhibit limitations in emotional granularity, privacy concerns, or reliance on acted portrayals. This paper introduces EmoNet-Voice, a new resource for speech emotion detection, which includes EmoNet-Voice Big, a large-scale pre-training dataset (featuring over 4,500 hours of speech across 11 voices, 40 emotions, and 4 languages), and EmoNet-Voice Bench, a novel benchmark dataset with human expert annotations. EmoNet-Voice is designed to evaluate SER models on a fine-grained spectrum of 40 emotion categories with different levels of intensities. Leveraging state-of-the-art voice generation, we curated synthetic audio snippets simulating actors portraying scenes designed to evoke specific emotions. Crucially, we conducted rigorous validation by psychology experts who assigned perceived intensity labels. This synthetic, privacy-preserving approach allows for the inclusion of sensitive emotional states often absent in existing datasets. Lastly, we introduce Empathic Insight Voice models that set a new standard in speech emotion recognition with high agreement with human experts. Our evaluations across the current model landscape exhibit valuable findings, such as high-arousal emotions like anger being much easier to detect than low-arousal states like concentration.
☆ Superstudent intelligence in thermodynamics
In this short note, we report and analyze a striking event: OpenAI's large language model o3 has outwitted all students in a university exam on thermodynamics. The thermodynamics exam is a difficult hurdle for most students, where they must show that they have mastered the fundamentals of this important topic. Consequently, the failure rates are very high, A-grades are rare - and they are considered proof of the students' exceptional intellectual abilities. This is because pattern learning does not help in the exam. The problems can only be solved by knowledgeably and creatively combining principles of thermodynamics. We have given our latest thermodynamics exam not only to the students but also to OpenAI's most powerful reasoning model, o3, and have assessed the answers of o3 exactly the same way as those of the students. In zero-shot mode, the model o3 solved all problems correctly, better than all students who took the exam; its overall score was in the range of the best scores we have seen in more than 10,000 similar exams since 1985. This is a turning point: machines now excel in complex tasks, usually taken as proof of human intellectual capabilities. We discuss the consequences this has for the work of engineers and the education of future engineers.
comment: This document is the unedited Author's version of a yet to be Submitted Work to Physical Review Physics Education Research. 15 pages, 2 figures, Graphical Abstract, Highlights and SI available (12 pages)
☆ A theoretical framework for self-supervised contrastive learning for continuous dependent data
Self-supervised learning (SSL) has emerged as a powerful approach to learning representations, particularly in the field of computer vision. However, its application to dependent data, such as temporal and spatio-temporal domains, remains underexplored. Besides, traditional contrastive SSL methods often assume \emph{semantic independence between samples}, which does not hold for dependent data exhibiting complex correlations. We propose a novel theoretical framework for contrastive SSL tailored to \emph{continuous dependent data}, which allows the nearest samples to be semantically close to each other. In particular, we propose two possible \textit{ground truth similarity measures} between objects -- \emph{hard} and \emph{soft} closeness. Under it, we derive an analytical form for the \textit{estimated similarity matrix} that accommodates both types of closeness between samples, thereby introducing dependency-aware loss functions. We validate our approach, \emph{Dependent TS2Vec}, on temporal and spatio-temporal downstream problems. Given the dependency patterns presented in the data, our approach surpasses modern ones for dependent data, highlighting the effectiveness of our theoretically grounded loss functions for SSL in capturing spatio-temporal dependencies. Specifically, we outperform TS2Vec on the standard UEA and UCR benchmarks, with accuracy improvements of $4.17$\% and $2.08$\%, respectively. Furthermore, on the drought classification task, which involves complex spatio-temporal patterns, our method achieves a $7$\% higher ROC-AUC score.
Q-SAM2: Accurate Quantization for Segment Anything Model 2
The Segment Anything Model 2 (SAM2) has gained significant attention as a foundational approach for promptable image and video segmentation. However, its expensive computational and memory consumption poses a severe challenge for its application in resource-constrained scenarios. In this paper, we propose an accurate low-bit quantization method for efficient SAM2, termed Q-SAM2. To address the performance degradation caused by the singularities in weight and activation distributions during quantization, Q-SAM2 introduces two novel technical contributions. We first introduce a linear layer calibration method for low-bit initialization of SAM2, which minimizes the Frobenius norm over a small image batch to reposition weight distributions for improved quantization. We then propose a Quantization-Aware Training (QAT) pipeline that applies clipping to suppress outliers and allows the network to adapt to quantization thresholds during training. Our comprehensive experiments demonstrate that Q-SAM2 allows for highly accurate inference while substantially improving efficiency. Both quantitative and visual results show that our Q-SAM2 surpasses existing state-of-the-art general quantization schemes, especially for ultra-low 2-bit quantization. While designed for quantization-aware training, our proposed calibration technique also proves effective in post-training quantization, achieving up to a 66% mIoU accuracy improvement over non-calibrated models.
comment: 20 pages
☆ Inverting Black-Box Face Recognition Systems via Zero-Order Optimization in Eigenface Space
Reconstructing facial images from black-box recognition models poses a significant privacy threat. While many methods require access to embeddings, we address the more challenging scenario of model inversion using only similarity scores. This paper introduces DarkerBB, a novel approach that reconstructs color faces by performing zero-order optimization within a PCA-derived eigenface space. Despite this highly limited information, experiments on LFW, AgeDB-30, and CFP-FP benchmarks demonstrate that DarkerBB achieves state-of-the-art verification accuracies in the similarity-only setting, with competitive query efficiency.
☆ Load-Aware Training Scheduling for Model Circulation-based Decentralized Federated Learning
This paper proposes Load-aware Tram-FL, an extension of Tram-FL that introduces a training scheduling mechanism to minimize total training time in decentralized federated learning by accounting for both computational and communication loads. The scheduling problem is formulated as a global optimization task, which-though intractable in its original form-is made solvable by decomposing it into node-wise subproblems. To promote balanced data utilization under non-IID distributions, a variance constraint is introduced, while the overall training latency, including both computation and communication costs, is minimized through the objective function. Simulation results on MNIST and CIFAR-10 demonstrate that Load-aware Tram-FL significantly reduces training time and accelerates convergence compared to baseline methods.
comment: 6 pages, submitted to IEEE Globecom 2025 (under review)
☆ Intelligent Design 4.0: Paradigm Evolution Toward the Agentic AI Era
Research and practice in Intelligent Design (ID) have significantly enhanced engineering innovation, efficiency, quality, and productivity over recent decades, fundamentally reshaping how engineering designers think, behave, and interact with design processes. The recent emergence of Foundation Models (FMs), particularly Large Language Models (LLMs), has demonstrated general knowledge-based reasoning capabilities, and open new paths and avenues for further transformation in engineering design. In this context, this paper introduces Intelligent Design 4.0 (ID 4.0) as an emerging paradigm empowered by agentic AI systems. We review the historical evolution of ID across four distinct stages: rule-based expert systems, task-specific machine learning models, large-scale foundation AI models, and the recent emerging paradigm of multi-agent collaboration. We propose a conceptual framework for ID 4.0 and discuss its potential to support end-to-end automation of engineering design processes through coordinated, autonomous multi-agent-based systems. Furthermore, we discuss future perspectives to enhance and fully realize ID 4.0's potential, including more complex design scenarios, more practical design implementations, novel agent coordination mechanisms, and autonomous design goal-setting with better human value alignment. In sum, these insights lay a foundation for advancing Intelligent Design toward greater adaptivity, autonomy, and effectiveness in addressing increasingly complex design challenges.
☆ Large Language Models for Design Structure Matrix Optimization
In complex engineering systems, the interdependencies among components or development activities are often modeled and analyzed using Design Structure Matrix (DSM). Reorganizing elements within a DSM to minimize feedback loops and enhance modularity or process efficiency constitutes a challenging combinatorial optimization (CO) problem in engineering design and operations. As problem sizes increase and dependency networks become more intricate, traditional optimization methods that solely use mathematical heuristics often fail to capture the contextual nuances and struggle to deliver effective solutions. In this study, we explore the potential of Large Language Models (LLMs) for helping solve such CO problems by leveraging their capabilities for advanced reasoning and contextual understanding. We propose a novel LLM-based framework that integrates network topology with contextual domain knowledge for iterative optimization of DSM element sequencing - a common CO problem. Experiments on various DSM cases show that our method consistently achieves faster convergence and superior solution quality compared to both stochastic and deterministic baselines. Notably, we find that incorporating contextual domain knowledge significantly enhances optimization performance regardless of the chosen LLM backbone. These findings highlight the potential of LLMs to solve complex engineering CO problems by combining semantic and mathematical reasoning. This approach paves the way towards a new paradigm in LLM-based engineering design optimization.
☆ Feature Engineering for Agents: An Adaptive Cognitive Architecture for Interpretable ML Monitoring AAMAS 2025
Monitoring Machine Learning (ML) models in production environments is crucial, yet traditional approaches often yield verbose, low-interpretability outputs that hinder effective decision-making. We propose a cognitive architecture for ML monitoring that applies feature engineering principles to agents based on Large Language Models (LLMs), significantly enhancing the interpretability of monitoring outputs. Central to our approach is a Decision Procedure module that simulates feature engineering through three key steps: Refactor, Break Down, and Compile. The Refactor step improves data representation to better capture feature semantics, allowing the LLM to focus on salient aspects of the monitoring data while reducing noise and irrelevant information. Break Down decomposes complex information for detailed analysis, and Compile integrates sub-insights into clear, interpretable outputs. This process leads to a more deterministic planning approach, reducing dependence on LLM-generated planning, which can sometimes be inconsistent and overly general. The combination of feature engineering-driven planning and selective LLM utilization results in a robust decision support system, capable of providing highly interpretable and actionable insights. Experiments using multiple LLMs demonstrate the efficacy of our approach, achieving significantly higher accuracy compared to various baselines across several domains.
comment: Accepted at AAMAS 2025
☆ ELBO-T2IAlign: A Generic ELBO-Based Method for Calibrating Pixel-level Text-Image Alignment in Diffusion Models
Diffusion models excel at image generation. Recent studies have shown that these models not only generate high-quality images but also encode text-image alignment information through attention maps or loss functions. This information is valuable for various downstream tasks, including segmentation, text-guided image editing, and compositional image generation. However, current methods heavily rely on the assumption of perfect text-image alignment in diffusion models, which is not the case. In this paper, we propose using zero-shot referring image segmentation as a proxy task to evaluate the pixel-level image and class-level text alignment of popular diffusion models. We conduct an in-depth analysis of pixel-text misalignment in diffusion models from the perspective of training data bias. We find that misalignment occurs in images with small sized, occluded, or rare object classes. Therefore, we propose ELBO-T2IAlign, a simple yet effective method to calibrate pixel-text alignment in diffusion models based on the evidence lower bound (ELBO) of likelihood. Our method is training-free and generic, eliminating the need to identify the specific cause of misalignment and works well across various diffusion model architectures. Extensive experiments on commonly used benchmark datasets on image segmentation and generation have verified the effectiveness of our proposed calibration approach.
☆ Vision Matters: Simple Visual Perturbations Can Boost Multimodal Math Reasoning
Despite the rapid progress of multimodal large language models (MLLMs), they have largely overlooked the importance of visual processing. In a simple yet revealing experiment, we interestingly find that language-only models, when provided with image captions, can achieve comparable or even better performance than MLLMs that consume raw visual inputs. This suggests that current MLLMs may generate accurate visual descriptions but fail to effectively integrate them during reasoning. Motivated by this, we propose a simple visual perturbation framework that enhances perceptual robustness without requiring algorithmic modifications or additional training data. Our approach introduces three targeted perturbations: distractor concatenation, dominance-preserving mixup, and random rotation, that can be easily integrated into existing post-training pipelines including SFT, DPO, and GRPO. Through extensive experiments across multiple datasets, we demonstrate consistent improvements in mathematical reasoning performance, with gains comparable to those achieved through algorithmic changes. Additionally, we achieve competitive performance among open-source 7B RL-tuned models by training Qwen2.5-VL-7B with visual perturbation. Through comprehensive ablation studies, we analyze the effectiveness of different perturbation strategies, revealing that each perturbation type contributes uniquely to different aspects of visual reasoning. Our findings highlight the critical role of visual perturbation in multimodal mathematical reasoning: better reasoning begins with better seeing. Our code is available at https://github.com/YutingLi0606/Vision-Matters.
comment: Technical Report
☆ AtmosMJ: Revisiting Gating Mechanism for AI Weather Forecasting Beyond the Year Scale
The advent of Large Weather Models (LWMs) has marked a turning point in data-driven forecasting, with many models now outperforming traditional numerical systems in the medium range. However, achieving stable, long-range autoregressive forecasts beyond a few weeks remains a significant challenge. Prevailing state-of-the-art models that achieve year-long stability, such as SFNO and DLWP-HPX, have relied on transforming input data onto non-standard spatial domains like spherical harmonics or HEALPix meshes. This has led to the prevailing assumption that such representations are necessary to enforce physical consistency and long-term stability. This paper challenges that assumption by investigating whether comparable long-range performance can be achieved on the standard latitude-longitude grid. We introduce AtmosMJ, a deep convolutional network that operates directly on ERA5 data without any spherical remapping. The model's stability is enabled by a novel Gated Residual Fusion (GRF) mechanism, which adaptively moderates feature updates to prevent error accumulation over long recursive simulations. Our results demonstrate that AtmosMJ produces stable and physically plausible forecasts for about 500 days. In quantitative evaluations, it achieves competitive 10-day forecast accuracy against models like Pangu-Weather and GraphCast, all while requiring a remarkably low training budget of 5.7 days on a V100 GPU. Our findings suggest that efficient architectural design, rather than non-standard data representation, can be the key to unlocking stable and computationally efficient long-range weather prediction.
☆ Non-Contact Health Monitoring During Daily Personal Care Routines
Remote photoplethysmography (rPPG) enables non-contact, continuous monitoring of physiological signals and offers a practical alternative to traditional health sensing methods. Although rPPG is promising for daily health monitoring, its application in long-term personal care scenarios, such as mirror-facing routines in high-altitude environments, remains challenging due to ambient lighting variations, frequent occlusions from hand movements, and dynamic facial postures. To address these challenges, we present LADH (Long-term Altitude Daily Health), the first long-term rPPG dataset containing 240 synchronized RGB and infrared (IR) facial videos from 21 participants across five common personal care scenarios, along with ground-truth PPG, respiration, and blood oxygen signals. Our experiments demonstrate that combining RGB and IR video inputs improves the accuracy and robustness of non-contact physiological monitoring, achieving a mean absolute error (MAE) of 4.99 BPM in heart rate estimation. Furthermore, we find that multi-task learning enhances performance across multiple physiological indicators simultaneously. Dataset and code are open at https://github.com/McJackTang/FusionVitals.
☆ TRIDENT: Temporally Restricted Inference via DFA-Enhanced Neural Traversal
Large Language Models (LLMs) and other neural architectures have achieved impressive results across a variety of generative and classification tasks. However, they remain fundamentally ill-equipped to ensure that their outputs satisfy temporal constraints, such as those expressible in Linear Temporal Logic over finite traces (LTLf). In this paper, we introduce TRIDENT: a general and model-agnostic inference-time algorithm that guarantees compliance with such constraints without requiring any retraining. TRIDENT compiles LTLf formulas into a Deterministic Finite Automaton (DFA), which is used to guide a constrained variant of beam search. At each decoding step, transitions that would lead to constraint violations are masked, while remaining paths are dynamically re-ranked based on both the model's probabilities and the DFA's acceptance structure. We formally prove that the resulting sequences are guaranteed to satisfy the given LTLf constraints, and we empirically demonstrate that TRIDENT also improves output quality. We validate our approach on two distinct tasks: temporally constrained image-stream classification and controlled text generation. In both settings, TRIDENT achieves perfect constraint satisfaction, while comparison with the state of the art shows improved efficiency and high standard quality metrics.
☆ Towards Practical Alzheimer's Disease Diagnosis: A Lightweight and Interpretable Spiking Neural Model
Early diagnosis of Alzheimer's Disease (AD), especially at the mild cognitive impairment (MCI) stage, is vital yet hindered by subjective assessments and the high cost of multimodal imaging modalities. Although deep learning methods offer automated alternatives, their energy inefficiency and computational demands limit real-world deployment, particularly in resource-constrained settings. As a brain-inspired paradigm, spiking neural networks (SNNs) are inherently well-suited for modeling the sparse, event-driven patterns of neural degeneration in AD, offering a promising foundation for interpretable and low-power medical diagnostics. However, existing SNNs often suffer from weak expressiveness and unstable training, which restrict their effectiveness in complex medical tasks. To address these limitations, we propose FasterSNN, a hybrid neural architecture that integrates biologically inspired LIF neurons with region-adaptive convolution and multi-scale spiking attention. This design enables sparse, efficient processing of 3D MRI while preserving diagnostic accuracy. Experiments on benchmark datasets demonstrate that FasterSNN achieves competitive performance with substantially improved efficiency and stability, supporting its potential for practical AD screening. Our source code is available at https://github.com/wuchangw/FasterSNN.
comment: 11 pages, 5 figures
☆ Reasoning Models Are More Easily Gaslighted Than You Think
Recent advances in reasoning-centric models promise improved robustness through mechanisms such as chain-of-thought prompting and test-time scaling. However, their ability to withstand misleading user input remains underexplored. In this paper, we conduct a systematic evaluation of three state-of-the-art reasoning models, i.e., OpenAI's o4-mini, Claude-3.7-Sonnet and Gemini-2.5-Flash, across three multimodal benchmarks: MMMU, MathVista, and CharXiv. Our evaluation reveals significant accuracy drops (25-29% on average) following gaslighting negation prompts, indicating that even top-tier reasoning models struggle to preserve correct answers under manipulative user feedback. Built upon the insights of the evaluation and to further probe this vulnerability, we introduce GaslightingBench-R, a new diagnostic benchmark specifically designed to evaluate reasoning models' susceptibility to defend their belief under gaslighting negation prompt. Constructed by filtering and curating 1,025 challenging samples from the existing benchmarks, GaslightingBench-R induces even more dramatic failures, with accuracy drops exceeding 53% on average. Our findings reveal fundamental limitations in the robustness of reasoning models, highlighting the gap between step-by-step reasoning and belief persistence.
☆ Is Fine-Tuning an Effective Solution? Reassessing Knowledge Editing for Unstructured Data
Unstructured Knowledge Editing (UKE) is crucial for updating the relevant knowledge of large language models (LLMs). It focuses on unstructured inputs, such as long or free-form texts, which are common forms of real-world knowledge. Although previous studies have proposed effective methods and tested them, some issues exist: (1) Lack of Locality evaluation for UKE, and (2) Abnormal failure of fine-tuning (FT) based methods for UKE. To address these issues, we first construct two datasets, UnKEBench-Loc and AKEW-Loc (CF), by extending two existing UKE datasets with locality test data from the unstructured and structured views. This enables a systematic evaluation of the Locality of post-edited models. Furthermore, we identify four factors that may affect the performance of FT-based methods. Based on these factors, we conduct experiments to determine how the well-performing FT-based methods should be trained for the UKE task, providing a training recipe for future research. Our experimental results indicate that the FT-based method with the optimal setting (FT-UKE) is surprisingly strong, outperforming the existing state-of-the-art (SOTA). In batch editing scenarios, FT-UKE shows strong performance as well, with its advantage over SOTA methods increasing as the batch size grows, expanding the average metric lead from +6.78% to +10.80%
☆ Empirical Quantification of Spurious Correlations in Malware Detection
End-to-end deep learning exhibits unmatched performance for detecting malware, but such an achievement is reached by exploiting spurious correlations -- features with high relevance at inference time, but known to be useless through domain knowledge. While previous work highlighted that deep networks mainly focus on metadata, none investigated the phenomenon further, without quantifying their impact on the decision. In this work, we deepen our understanding of how spurious correlation affects deep learning for malware detection by highlighting how much models rely on empty spaces left by the compiler, which diminishes the relevance of the compiled code. Through our seminal analysis on a small-scale balanced dataset, we introduce a ranking of two end-to-end models to better understand which is more suitable to be put in production.
☆ Intent Factored Generation: Unleashing the Diversity in Your Language Model
Obtaining multiple meaningfully diverse, high quality samples from Large Language Models for a fixed prompt remains an open challenge. Current methods for increasing diversity often only operate at the token-level, paraphrasing the same response. This is problematic because it leads to poor exploration on reasoning problems and to unengaging, repetitive conversational agents. To address this we propose Intent Factored Generation (IFG), factorising the sampling process into two stages. First, we sample a semantically dense intent, e.g., a summary or keywords. Second, we sample the final response conditioning on both the original prompt and the intent from the first stage. This allows us to use a higher temperature during the intent step to promote conceptual diversity, and a lower temperature during the final generation to ensure the outputs are coherent and self-consistent. Additionally, we find that prompting the model to explicitly state its intent for each step of the chain-of-thought before generating the step is beneficial for reasoning tasks. We demonstrate our method's effectiveness across a diverse set of tasks. We show this method improves both pass@k and Reinforcement Learning from Verifier Feedback on maths and code tasks. For instruction-tuning, we combine IFG with Direct Preference Optimisation to increase conversational diversity without sacrificing reward. Finally, we achieve higher diversity while maintaining the quality of generations on a general language modelling task, using a new dataset of reader comments and news articles that we collect and open-source. In summary, we present a simple method of increasing the sample diversity of LLMs while maintaining performance. This method can be implemented by changing the prompt and varying the temperature during generation, making it easy to integrate into many algorithms for gains across various applications.
☆ Application-Driven Value Alignment in Agentic AI Systems: Survey and Perspectives
The ongoing evolution of AI paradigms has propelled AI research into the Agentic AI stage. Consequently, the focus of research has shifted from single agents and simple applications towards multi-agent autonomous decision-making and task collaboration in complex environments. As Large Language Models (LLMs) advance, their applications become more diverse and complex, leading to increasingly situational and systemic risks. This has brought significant attention to value alignment for AI agents, which aims to ensure that an agent's goals, preferences, and behaviors align with human values and societal norms. This paper reviews value alignment in agent systems within specific application scenarios. It integrates the advancements in AI driven by large models with the demands of social governance. Our review covers value principles, agent system application scenarios, and agent value alignment evaluation. Specifically, value principles are organized hierarchically from a top-down perspective, encompassing macro, meso, and micro levels. Agent system application scenarios are categorized and reviewed from a general-to-specific viewpoint. Agent value alignment evaluation systematically examines datasets for value alignment assessment and relevant value alignment methods. Additionally, we delve into value coordination among multiple agents within agent systems. Finally, we propose several potential research directions in this field.
☆ DipLLM: Fine-Tuning LLM for Strategic Decision-making in Diplomacy ICML 2025
Diplomacy is a complex multiplayer game that requires both cooperation and competition, posing significant challenges for AI systems. Traditional methods rely on equilibrium search to generate extensive game data for training, which demands substantial computational resources. Large Language Models (LLMs) offer a promising alternative, leveraging pre-trained knowledge to achieve strong performance with relatively small-scale fine-tuning. However, applying LLMs to Diplomacy remains challenging due to the exponential growth of possible action combinations and the intricate strategic interactions among players. To address this challenge, we propose DipLLM, a fine-tuned LLM-based agent that learns equilibrium policies for Diplomacy. DipLLM employs an autoregressive factorization framework to simplify the complex task of multi-unit action assignment into a sequence of unit-level decisions. By defining an equilibrium policy within this framework as the learning objective, we fine-tune the model using only 1.5% of the data required by the state-of-the-art Cicero model, surpassing its performance. Our results demonstrate the potential of fine-tuned LLMs for tackling complex strategic decision-making in multiplayer games.
comment: Accepted to the 42nd International Conference on Machine Learning (ICML 2025)
☆ DGAE: Diffusion-Guided Autoencoder for Efficient Latent Representation Learning
Autoencoders empower state-of-the-art image and video generative models by compressing pixels into a latent space through visual tokenization. Although recent advances have alleviated the performance degradation of autoencoders under high compression ratios, addressing the training instability caused by GAN remains an open challenge. While improving spatial compression, we also aim to minimize the latent space dimensionality, enabling more efficient and compact representations. To tackle these challenges, we focus on improving the decoder's expressiveness. Concretely, we propose DGAE, which employs a diffusion model to guide the decoder in recovering informative signals that are not fully decoded from the latent representation. With this design, DGAE effectively mitigates the performance degradation under high spatial compression rates. At the same time, DGAE achieves state-of-the-art performance with a 2x smaller latent space. When integrated with Diffusion Models, DGAE demonstrates competitive performance on image generation for ImageNet-1K and shows that this compact latent representation facilitates faster convergence of the diffusion model.
☆ HSENet: Hybrid Spatial Encoding Network for 3D Medical Vision-Language Understanding
Automated 3D CT diagnosis empowers clinicians to make timely, evidence-based decisions by enhancing diagnostic accuracy and workflow efficiency. While multimodal large language models (MLLMs) exhibit promising performance in visual-language understanding, existing methods mainly focus on 2D medical images, which fundamentally limits their ability to capture complex 3D anatomical structures. This limitation often leads to misinterpretation of subtle pathologies and causes diagnostic hallucinations. In this paper, we present Hybrid Spatial Encoding Network (HSENet), a framework that exploits enriched 3D medical visual cues by effective visual perception and projection for accurate and robust vision-language understanding. Specifically, HSENet employs dual-3D vision encoders to perceive both global volumetric contexts and fine-grained anatomical details, which are pre-trained by dual-stage alignment with diagnostic reports. Furthermore, we propose Spatial Packer, an efficient multimodal projector that condenses high-resolution 3D spatial regions into a compact set of informative visual tokens via centroid-based compression. By assigning spatial packers with dual-3D vision encoders, HSENet can seamlessly perceive and transfer hybrid visual representations to LLM's semantic space, facilitating accurate diagnostic text generation. Experimental results demonstrate that our method achieves state-of-the-art performance in 3D language-visual retrieval (39.85% of R@100, +5.96% gain), 3D medical report generation (24.01% of BLEU-4, +8.01% gain), and 3D visual question answering (73.60% of Major Class Accuracy, +1.99% gain), confirming its effectiveness. Our code is available at https://github.com/YanzhaoShi/HSENet.
comment: 27 pages, 9 figures. arXiv admin note: text overlap with arXiv:2410.14200 by other authors
☆ Effective Red-Teaming of Policy-Adherent Agents
Task-oriented LLM-based agents are increasingly used in domains with strict policies, such as refund eligibility or cancellation rules. The challenge lies in ensuring that the agent consistently adheres to these rules and policies, appropriately refusing any request that would violate them, while still maintaining a helpful and natural interaction. This calls for the development of tailored design and evaluation methodologies to ensure agent resilience against malicious user behavior. We propose a novel threat model that focuses on adversarial users aiming to exploit policy-adherent agents for personal benefit. To address this, we present CRAFT, a multi-agent red-teaming system that leverages policy-aware persuasive strategies to undermine a policy-adherent agent in a customer-service scenario, outperforming conventional jailbreak methods such as DAN prompts, emotional manipulation, and coercive. Building upon the existing tau-bench benchmark, we introduce tau-break, a complementary benchmark designed to rigorously assess the agent's robustness against manipulative user behavior. Finally, we evaluate several straightforward yet effective defense strategies. While these measures provide some protection, they fall short, highlighting the need for stronger, research-driven safeguards to protect policy-adherent agents from adversarial attacks
☆ From Symbolic to Neural and Back: Exploring Knowledge Graph-Large Language Model Synergies
Integrating structured knowledge from Knowledge Graphs (KGs) into Large Language Models (LLMs) enhances factual grounding and reasoning capabilities. This survey paper systematically examines the synergy between KGs and LLMs, categorizing existing approaches into two main groups: KG-enhanced LLMs, which improve reasoning, reduce hallucinations, and enable complex question answering; and LLM-augmented KGs, which facilitate KG construction, completion, and querying. Through comprehensive analysis, we identify critical gaps and highlight the mutual benefits of structured knowledge integration. Compared to existing surveys, our study uniquely emphasizes scalability, computational efficiency, and data quality. Finally, we propose future research directions, including neuro-symbolic integration, dynamic KG updating, data reliability, and ethical considerations, paving the way for intelligent systems capable of managing more complex real-world knowledge tasks.
comment: To-appear as a book chapter
☆ AD^2-Bench: A Hierarchical CoT Benchmark for MLLM in Autonomous Driving under Adverse Conditions
Chain-of-Thought (CoT) reasoning has emerged as a powerful approach to enhance the structured, multi-step decision-making capabilities of Multi-Modal Large Models (MLLMs), is particularly crucial for autonomous driving with adverse weather conditions and complex traffic environments. However, existing benchmarks have largely overlooked the need for rigorous evaluation of CoT processes in these specific and challenging scenarios. To address this critical gap, we introduce AD^2-Bench, the first Chain-of-Thought benchmark specifically designed for autonomous driving with adverse weather and complex scenes. AD^2-Bench is meticulously constructed to fulfill three key criteria: comprehensive data coverage across diverse adverse environments, fine-grained annotations that support multi-step reasoning, and a dedicated evaluation framework tailored for assessing CoT performance. The core contribution of AD^2-Bench is its extensive collection of over 5.4k high-quality, manually annotated CoT instances. Each intermediate reasoning step in these annotations is treated as an atomic unit with explicit ground truth, enabling unprecedented fine-grained analysis of MLLMs' inferential processes under text-level, point-level, and region-level visual prompts. Our comprehensive evaluation of state-of-the-art MLLMs on AD^2-Bench reveals accuracy below 60%, highlighting the benchmark's difficulty and the need to advance robust, interpretable end-to-end autonomous driving systems. AD^2-Bench thus provides a standardized evaluation platform, driving research forward by improving MLLMs' reasoning in autonomous driving, making it an invaluable resource.
☆ Tightly-Coupled LiDAR-IMU-Leg Odometry with Online Learned Leg Kinematics Incorporating Foot Tactile Information
In this letter, we present tightly coupled LiDAR-IMU-leg odometry, which is robust to challenging conditions such as featureless environments and deformable terrains. We developed an online learning-based leg kinematics model named the neural leg kinematics model, which incorporates tactile information (foot reaction force) to implicitly express the nonlinear dynamics between robot feet and the ground. Online training of this model enhances its adaptability to weight load changes of a robot (e.g., assuming delivery or transportation tasks) and terrain conditions. According to the \textit{neural adaptive leg odometry factor} and online uncertainty estimation of the leg kinematics model-based motion predictions, we jointly solve online training of this kinematics model and odometry estimation on a unified factor graph to retain the consistency of both. The proposed method was verified through real experiments using a quadruped robot in two challenging situations: 1) a sandy beach, representing an extremely featureless area with a deformable terrain, and 2) a campus, including multiple featureless areas and terrain types of asphalt, gravel (deformable terrain), and grass. Experimental results showed that our odometry estimation incorporating the \textit{neural leg kinematics model} outperforms state-of-the-art works. Our project page is available for further details: https://takuokawara.github.io/RAL2025_project_page/
comment: Robotics and Automation Letters
☆ Athena: Enhancing Multimodal Reasoning with Data-efficient Process Reward Models
We present Athena-PRM, a multimodal process reward model (PRM) designed to evaluate the reward score for each step in solving complex reasoning problems. Developing high-performance PRMs typically demands significant time and financial investment, primarily due to the necessity for step-level annotations of reasoning steps. Conventional automated labeling methods, such as Monte Carlo estimation, often produce noisy labels and incur substantial computational costs. To efficiently generate high-quality process-labeled data, we propose leveraging prediction consistency between weak and strong completers as a criterion for identifying reliable process labels. Remarkably, Athena-PRM demonstrates outstanding effectiveness across various scenarios and benchmarks with just 5,000 samples. Furthermore, we also develop two effective strategies to improve the performance of PRMs: ORM initialization and up-sampling for negative data. We validate our approach in three specific scenarios: verification for test time scaling, direct evaluation of reasoning step correctness, and reward ranked fine-tuning. Our Athena-PRM consistently achieves superior performance across multiple benchmarks and scenarios. Notably, when using Qwen2.5-VL-7B as the policy model, Athena-PRM enhances performance by 10.2 points on WeMath and 7.1 points on MathVista for test time scaling. Furthermore, Athena-PRM sets the state-of-the-art (SoTA) results in VisualProcessBench and outperforms the previous SoTA by 3.9 F1-score, showcasing its robust capability to accurately assess the correctness of the reasoning step. Additionally, utilizing Athena-PRM as the reward model, we develop Athena-7B with reward ranked fine-tuning and outperforms baseline with a significant margin on five benchmarks.
☆ Neural Functions for Learning Periodic Signal
As function approximators, deep neural networks have served as an effective tool to represent various signal types. Recent approaches utilize multi-layer perceptrons (MLPs) to learn a nonlinear mapping from a coordinate to its corresponding signal, facilitating the learning of continuous neural representations from discrete data points. Despite notable successes in learning diverse signal types, coordinate-based MLPs often face issues of overfitting and limited generalizability beyond the training region, resulting in subpar extrapolation performance. This study addresses scenarios where the underlying true signals exhibit periodic properties, either spatially or temporally. We propose a novel network architecture, which extracts periodic patterns from measurements and leverages this information to represent the signal, thereby enhancing generalization and improving extrapolation performance. We demonstrate the efficacy of the proposed method through comprehensive experiments, including the learning of the periodic solutions for differential equations, and time series imputation (interpolation) and forecasting (extrapolation) on real-world datasets.
☆ Revisit What You See: Disclose Language Prior in Vision Tokens for Efficient Guided Decoding of LVLMs
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across various multimodal tasks by integrating visual perception with language understanding. However, conventional decoding strategies of LVLMs often fail to successfully utilize visual information, leading to visually ungrounded responses. While various approaches have been proposed to address this limitation, they typically require additional training, multi-step inference procedures, or external model dependencies. This paper introduces ReVisiT, a simple yet effective decoding method that references vision tokens to guide the text generation process in LVLMs. Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution space, and dynamically selecting the most relevant vision token at each decoding step through constrained divergence minimization. This selected vision token is then used to refine the output distribution to better incorporate visual semantics. Experiments on three LVLM hallucination benchmarks with two recent LVLMs demonstrate that ReVisiT consistently enhances visual grounding with minimal computational overhead. Moreover, our method achieves competitive or superior results relative to state-of-the-art baselines while reducing computational costs for up to $2\times$.
comment: Code available at https://github.com/bscho333/ReVisiT
☆ How attention simplifies mental representations for planning
Human planning is efficient -- it frugally deploys limited cognitive resources to accomplish difficult tasks -- and flexible -- adapting to novel problems and environments. Computational approaches suggest that people construct simplified mental representations of their environment, balancing the complexity of a task representation with its utility. These models imply a nested optimisation in which planning shapes perception, and perception shapes planning -- but the perceptual and attentional mechanisms governing how this interaction unfolds remain unknown. Here, we harness virtual maze navigation to characterise how spatial attention controls which aspects of a task representation enter subjective awareness and are available for planning. We find that spatial proximity governs which aspects of a maze are available for planning, and that when task-relevant information follows natural (lateralised) contours of attention, people can more easily construct simplified and useful maze representations. This influence of attention varies considerably across individuals, explaining differences in people's task representations and behaviour. Inspired by the 'spotlight of attention' analogy, we incorporate the effects of visuospatial attention into existing computational accounts of value-guided construal. Together, our work bridges computational perspectives on perception and decision-making to better understand how individuals represent their environments in aid of planning.
☆ ReasonMed: A 370K Multi-Agent Generated Dataset for Advancing Medical Reasoning
Though reasoning-based large language models (LLMs) have excelled in mathematics and programming, their capabilities in knowledge-intensive medical question answering remain underexplored. To address this, we introduce ReasonMed, the largest medical reasoning dataset, comprising 370k high-quality examples distilled from 1.7 million initial reasoning paths generated by various LLMs. ReasonMed is constructed through a \textit{multi-agent verification and refinement process}, where we design an \textit{Error Refiner} to enhance the reasoning paths by identifying and correcting error-prone steps flagged by a verifier. Leveraging ReasonMed, we systematically investigate best practices for training medical reasoning models and find that combining detailed Chain-of-Thought (CoT) reasoning with concise answer summaries yields the most effective fine-tuning strategy. Based on this strategy, we train ReasonMed-7B, which sets a new benchmark for sub-10B models, outperforming the prior best by 4.17\% and even exceeding LLaMA3.1-70B on PubMedQA by 4.60\%.
comment: 24 pages, 6 figures, 7 tables
☆ Efficient Preference-Based Reinforcement Learning: Randomized Exploration Meets Experimental Design
We study reinforcement learning from human feedback in general Markov decision processes, where agents learn from trajectory-level preference comparisons. A central challenge in this setting is to design algorithms that select informative preference queries to identify the underlying reward while ensuring theoretical guarantees. We propose a meta-algorithm based on randomized exploration, which avoids the computational challenges associated with optimistic approaches and remains tractable. We establish both regret and last-iterate guarantees under mild reinforcement learning oracle assumptions. To improve query complexity, we introduce and analyze an improved algorithm that collects batches of trajectory pairs and applies optimal experimental design to select informative comparison queries. The batch structure also enables parallelization of preference queries, which is relevant in practical deployment as feedback can be gathered concurrently. Empirical evaluation confirms that the proposed method is competitive with reward-based reinforcement learning while requiring a small number of preference queries.
☆ A Unified Theory of Compositionality, Modularity, and Interpretability in Markov Decision Processes
We introduce Option Kernel Bellman Equations (OKBEs) for a new reward-free Markov Decision Process. Rather than a value function, OKBEs directly construct and optimize a predictive map called a state-time option kernel (STOK) to maximize the probability of completing a goal while avoiding constraint violations. STOKs are compositional, modular, and interpretable initiation-to-termination transition kernels for policies in the Options Framework of Reinforcement Learning. This means: 1) STOKs can be composed using Chapman-Kolmogorov equations to make spatiotemporal predictions for multiple policies over long horizons, 2) high-dimensional STOKs can be represented and computed efficiently in a factorized and reconfigurable form, and 3) STOKs record the probabilities of semantically interpretable goal-success and constraint-violation events, needed for formal verification. Given a high-dimensional state-transition model for an intractable planning problem, we can decompose it with local STOKs and goal-conditioned policies that are aggregated into a factorized goal kernel, making it possible to forward-plan at the level of goals in high-dimensions to solve the problem. These properties lead to highly flexible agents that can rapidly synthesize meta-policies, reuse planning representations across many tasks, and justify goals using empowerment, an intrinsic motivation function. We argue that reward-maximization is in conflict with the properties of compositionality, modularity, and interpretability. Alternatively, OKBEs facilitate these properties to support verifiable long-horizon planning and intrinsic motivation that scales to dynamic high-dimensional world-models.
comment: 12 Pages
Fast Monte Carlo Tree Diffusion: 100x Speedup via Parallel Sparse Planning
Diffusion models have recently emerged as a powerful approach for trajectory planning. However, their inherently non-sequential nature limits their effectiveness in long-horizon reasoning tasks at test time. The recently proposed Monte Carlo Tree Diffusion (MCTD) offers a promising solution by combining diffusion with tree-based search, achieving state-of-the-art performance on complex planning problems. Despite its strengths, our analysis shows that MCTD incurs substantial computational overhead due to the sequential nature of tree search and the cost of iterative denoising. To address this, we propose Fast-MCTD, a more efficient variant that preserves the strengths of MCTD while significantly improving its speed and scalability. Fast-MCTD integrates two techniques: Parallel MCTD, which enables parallel rollouts via delayed tree updates and redundancy-aware selection; and Sparse MCTD, which reduces rollout length through trajectory coarsening. Experiments show that Fast-MCTD achieves up to 100x speedup over standard MCTD while maintaining or improving planning performance. Remarkably, it even outperforms Diffuser in inference speed on some tasks, despite Diffuser requiring no search and yielding weaker solutions. These results position Fast-MCTD as a practical and scalable solution for diffusion-based inference-time reasoning.
☆ EnerBridge-DPO: Energy-Guided Protein Inverse Folding with Markov Bridges and Direct Preference Optimization
Designing protein sequences with optimal energetic stability is a key challenge in protein inverse folding, as current deep learning methods are primarily trained by maximizing sequence recovery rates, often neglecting the energy of the generated sequences. This work aims to overcome this limitation by developing a model that directly generates low-energy, stable protein sequences. We propose EnerBridge-DPO, a novel inverse folding framework focused on generating low-energy, high-stability protein sequences. Our core innovation lies in: First, integrating Markov Bridges with Direct Preference Optimization (DPO), where energy-based preferences are used to fine-tune the Markov Bridge model. The Markov Bridge initiates optimization from an information-rich prior sequence, providing DPO with a pool of structurally plausible sequence candidates. Second, an explicit energy constraint loss is introduced, which enhances the energy-driven nature of DPO based on prior sequences, enabling the model to effectively learn energy representations from a wealth of prior knowledge and directly predict sequence energy values, thereby capturing quantitative features of the energy landscape. Our evaluations demonstrate that EnerBridge-DPO can design protein complex sequences with lower energy while maintaining sequence recovery rates comparable to state-of-the-art models, and accurately predicts $\Delta \Delta G$ values between various sequences.
☆ BemaGANv2: A Tutorial and Comparative Survey of GAN-based Vocoders for Long-Term Audio Generation
This paper presents a tutorial-style survey and implementation guide of BemaGANv2, an advanced GAN-based vocoder designed for high-fidelity and long-term audio generation. Built upon the original BemaGAN architecture, BemaGANv2 incorporates major architectural innovations by replacing traditional ResBlocks in the generator with the Anti-aliased Multi-Periodicity composition (AMP) module, which internally applies the Snake activation function to better model periodic structures. In the discriminator framework, we integrate the Multi-Envelope Discriminator (MED), a novel architecture we originally proposed, to extract rich temporal envelope features crucial for periodicity detection. Coupled with the Multi-Resolution Discriminator (MRD), this combination enables more accurate modeling of long-range dependencies in audio. We systematically evaluate various discriminator configurations, including MSD + MED, MSD + MRD, and MPD + MED + MRD, using objective metrics (FAD, SSIM, PLCC, MCD) and subjective evaluations (MOS, SMOS). This paper also provides a comprehensive tutorial on the model architecture, training methodology, and implementation to promote reproducibility. The code and pre-trained models are available at: https://github.com/dinhoitt/BemaGANv2.
comment: 11 pages, 7 figures. Survey and tutorial paper. Currently under review at ICT Express as an extended version of our ICAIIC 2025 paper
☆ Adv-BMT: Bidirectional Motion Transformer for Safety-Critical Traffic Scenario Generation
Scenario-based testing is essential for validating the performance of autonomous driving (AD) systems. However, such testing is limited by the scarcity of long-tailed, safety-critical scenarios in existing datasets collected in the real world. To tackle the data issue, we propose the Adv-BMT framework, which augments real-world scenarios with diverse and realistic adversarial interactions. The core component of Adv-BMT is a bidirectional motion transformer (BMT) model to perform inverse traffic motion predictions, which takes agent information in the last time step of the scenario as input, and reconstruct the traffic in the inverse of chronological order until the initial time step. The Adv-BMT framework is a two-staged pipeline: it first conducts adversarial initializations and then inverse motion predictions. Different from previous work, we do not need any collision data for pretraining, and are able to generate realistic and diverse collision interactions. Our experimental results validate the quality of generated collision scenarios by Adv-BMT: training in our augmented dataset would reduce episode collision rates by 20\% compared to previous work.
☆ Abstraction-Based Proof Production in Formal Verification of Neural Networks
Modern verification tools for deep neural networks (DNNs) increasingly rely on abstraction to scale to realistic architectures. In parallel, proof production is becoming a critical requirement for increasing the reliability of DNN verification results. However, current proofproducing verifiers do not support abstraction-based reasoning, creating a gap between scalability and provable guarantees. We address this gap by introducing a novel framework for proof-producing abstraction-based DNN verification. Our approach modularly separates the verification task into two components: (i) proving the correctness of an abstract network, and (ii) proving the soundness of the abstraction with respect to the original DNN. The former can be handled by existing proof-producing verifiers, whereas we propose the first method for generating formal proofs for the latter. This preliminary work aims to enable scalable and trustworthy verification by supporting common abstraction techniques within a formal proof framework.
comment: To appear in SAIV 2025
☆ UniToMBench: Integrating Perspective-Taking to Improve Theory of Mind in LLMs NAACL
Theory of Mind (ToM), the ability to understand the mental states of oneself and others, remains a challenging area for large language models (LLMs), which often fail to predict human mental states accurately. In this paper, we introduce UniToMBench, a unified benchmark that integrates the strengths of SimToM and TOMBENCH to systematically improve and assess ToM capabilities in LLMs by integrating multi-interaction task designs and evolving story scenarios. Supported by a custom dataset of over 1,000 hand-written scenarios, UniToMBench combines perspective-taking techniques with diverse evaluation metrics to better stimulate social cognition in LLMs. Through evaluation, we observe that while models like GPT-4o and GPT-4o Mini show consistently high accuracy in tasks involving emotional and belief-related scenarios, with results usually above 80%, there is significant variability in their performance across knowledge-based tasks. These results highlight both the strengths and limitations of current LLMs in ToM-related tasks, underscoring the value of UniToMBench as a comprehensive tool for future development. Our code is publicly available here: https://github.com/Shamant/unifiedtombenchmark.
comment: Accepted at Conference of the North American Chapter of the Association for Computational Linguistics, Student Research Workshop 2025 (NAACL SRW 2025)
☆ TOGA: Temporally Grounded Open-Ended Video QA with Weak Supervision
We address the problem of video question answering (video QA) with temporal grounding in a weakly supervised setup, without any temporal annotations. Given a video and a question, we generate an open-ended answer grounded with the start and end time. For this task, we propose TOGA: a vision-language model for Temporally Grounded Open-Ended Video QA with Weak Supervision. We instruct-tune TOGA to jointly generate the answer and the temporal grounding. We operate in a weakly supervised setup where the temporal grounding annotations are not available. We generate pseudo labels for temporal grounding and ensure the validity of these labels by imposing a consistency constraint between the question of a grounding response and the response generated by a question referring to the same temporal segment. We notice that jointly generating the answers with the grounding improves performance on question answering as well as grounding. We evaluate TOGA on grounded QA and open-ended QA tasks. For grounded QA, we consider the NExT-GQA benchmark which is designed to evaluate weakly supervised grounded question answering. For open-ended QA, we consider the MSVD-QA and ActivityNet-QA benchmarks. We achieve state-of-the-art performance for both tasks on these benchmarks.
☆ GigaChat Family: Efficient Russian Language Modeling Through Mixture of Experts Architecture ACL-2025
Generative large language models (LLMs) have become crucial for modern NLP research and applications across various languages. However, the development of foundational models specifically tailored to the Russian language has been limited, primarily due to the significant computational resources required. This paper introduces the GigaChat family of Russian LLMs, available in various sizes, including base models and instruction-tuned versions. We provide a detailed report on the model architecture, pre-training process, and experiments to guide design choices. In addition, we evaluate their performance on Russian and English benchmarks and compare GigaChat with multilingual analogs. The paper presents a system demonstration of the top-performing models accessible via an API, a Telegram bot, and a Web interface. Furthermore, we have released three open GigaChat models in open-source (https://huggingface.co/ai-sage), aiming to expand NLP research opportunities and support the development of industrial solutions for the Russian language.
comment: ACL-2025 System Demo
☆ When Is Diversity Rewarded in Cooperative Multi-Agent Learning?
The success of teams in robotics, nature, and society often depends on the division of labor among diverse specialists; however, a principled explanation for when such diversity surpasses a homogeneous team is still missing. Focusing on multi-agent task allocation problems, our goal is to study this question from the perspective of reward design: what kinds of objectives are best suited for heterogeneous teams? We first consider an instantaneous, non-spatial setting where the global reward is built by two generalized aggregation operators: an inner operator that maps the $N$ agents' effort allocations on individual tasks to a task score, and an outer operator that merges the $M$ task scores into the global team reward. We prove that the curvature of these operators determines whether heterogeneity can increase reward, and that for broad reward families this collapses to a simple convexity test. Next, we ask what incentivizes heterogeneity to emerge when embodied, time-extended agents must learn an effort allocation policy. To study heterogeneity in such settings, we use multi-agent reinforcement learning (MARL) as our computational paradigm, and introduce Heterogeneous Environment Design (HED), a gradient-based algorithm that optimizes the parameter space of underspecified MARL environments to find scenarios where heterogeneity is advantageous. Experiments in matrix games and an embodied Multi-Goal-Capture environment show that, despite the difference in settings, HED rediscovers the reward regimes predicted by our theory to maximize the advantage of heterogeneity, both validating HED and connecting our theoretical insights to reward design in MARL. Together, these results help us understand when behavioral diversity delivers a measurable benefit.
☆ Improved Supervised Fine-Tuning for Large Language Models to Mitigate Catastrophic Forgetting
Supervised Fine-Tuning (SFT), while enhancing large language models(LLMs)' instruction-following capabilities and domain-specific task adaptability, often diminishes their general capabilities. Moreover, due to the inaccessibility of original pre-training data, catastrophic forgetting tends to be exacerbated when third-party practitioners implement SFT on open-sourced models. To address this challenge, we propose a novel, more cost-effective SFT method which could effectively reduce the risk of catastrophic forgetting without access to original SFT data. Our approach begins by reconstructing the likely SFT instruction distribution of the base model, followed by a multi-model screening process to select optimal data, which is then mixed with new data for SFT. Experimental results demonstrate that our method preserves generalization capabilities in general domains while improving task-specific performance.
☆ A High-Quality Dataset and Reliable Evaluation for Interleaved Image-Text Generation
Recent advancements in Large Multimodal Models (LMMs) have significantly improved multimodal understanding and generation. However, these models still struggle to generate tightly interleaved image-text outputs, primarily due to the limited scale, quality and instructional richness of current training datasets. To address this, we introduce InterSyn, a large-scale multimodal dataset constructed using our Self-Evaluation with Iterative Refinement (SEIR) method. InterSyn features multi-turn, instruction-driven dialogues with tightly interleaved imagetext responses, providing rich object diversity and rigorous automated quality refinement, making it well-suited for training next-generation instruction-following LMMs. Furthermore, to address the lack of reliable evaluation tools capable of assessing interleaved multimodal outputs, we introduce SynJudge, an automatic evaluation model designed to quantitatively assess multimodal outputs along four dimensions: text content, image content, image quality, and image-text synergy. Experimental studies show that the SEIR method leads to substantially higher dataset quality compared to an otherwise identical process without refinement. Moreover, LMMs trained on InterSyn achieve uniform performance gains across all evaluation metrics, confirming InterSyn's utility for advancing multimodal systems.
☆ A Call for Collaborative Intelligence: Why Human-Agent Systems Should Precede AI Autonomy
Recent improvements in large language models (LLMs) have led many researchers to focus on building fully autonomous AI agents. This position paper questions whether this approach is the right path forward, as these autonomous systems still have problems with reliability, transparency, and understanding the actual requirements of human. We suggest a different approach: LLM-based Human-Agent Systems (LLM-HAS), where AI works with humans rather than replacing them. By keeping human involved to provide guidance, answer questions, and maintain control, these systems can be more trustworthy and adaptable. Looking at examples from healthcare, finance, and software development, we show how human-AI teamwork can handle complex tasks better than AI working alone. We also discuss the challenges of building these collaborative systems and offer practical solutions. This paper argues that progress in AI should not be measured by how independent systems become, but by how well they can work with humans. The most promising future for AI is not in systems that take over human roles, but in those that enhance human capabilities through meaningful partnership.
☆ Synthetic Human Action Video Data Generation with Pose Transfer
In video understanding tasks, particularly those involving human motion, synthetic data generation often suffers from uncanny features, diminishing its effectiveness for training. Tasks such as sign language translation, gesture recognition, and human motion understanding in autonomous driving have thus been unable to exploit the full potential of synthetic data. This paper proposes a method for generating synthetic human action video data using pose transfer (specifically, controllable 3D Gaussian avatar models). We evaluate this method on the Toyota Smarthome and NTU RGB+D datasets and show that it improves performance in action recognition tasks. Moreover, we demonstrate that the method can effectively scale few-shot datasets, making up for groups underrepresented in the real training data and adding diverse backgrounds. We open-source the method along with RANDOM People, a dataset with videos and avatars of novel human identities for pose transfer crowd-sourced from the internet.
☆ Token Constraint Decoding Improves Robustness on Question Answering for Large Language Models
Large Language Models (LLMs) have demonstrated impressive performance on multiple-choice question answering (MCQA) benchmarks, yet they remain highly vulnerable to minor input perturbations. In this paper, we introduce and evaluate Token Constraint Decoding (TCD). This simple yet effective inference-time algorithm enforces alignment between token-level predictions to enhance robustness in noisy settings. Through extensive experiments on CommonsenseQA, MMLU, and MMLU-Pro, we show that TCD, especially when paired with prompt engineering (PE) fixes, significantly restores performance degraded by input noise, yielding up to +39\% absolute gains for weaker models like Gemma3 1B. Penalty sweep analyses further reveal that TCD implicitly regularizes overconfident outputs, with different models requiring distinct penalty schedules to maximize resilience. Our findings establish TCD as a practical, model-agnostic approach for improving reasoning stability under real-world imperfections and pave the way for more reliable deployment of LLMs in safety-critical or user-facing applications.
☆ SLED: A Speculative LLM Decoding Framework for Efficient Edge Serving
Regardless the advancements in device capabilities, efficient inferencing advanced large language models (LLMs) at the edge remains challenging due to limited device memory and power constraints. Existing strategies, such as aggressive quantization, pruning, or remote inference, trade accuracy for efficiency or lead to substantial cost burdens. This position paper introduces a new approach that leverages speculative decoding, previously viewed primarily as a decoding acceleration technique for autoregressive generation of LLMs, as a promising approach specifically adapted for edge computing by orchestrating computation across heterogeneous devices. We propose SLED, a method that allows lightweight edge devices to draft multiple candidate tokens locally using diverse draft models, while a single, shared edge server efficiently batches and verifies the tokens utilizing a more precise target model. This approach supports device heterogeneity and reduces server-side memory footprint by avoiding the need to deploy multiple target models. Our initial experiments with Jetson Orin Nano, Raspberry Pi 5, and an RTX 6000 edge server indicate substantial benefits: significantly reduced latency, improved energy efficiency, and increased concurrent inference sessions, all without sacrificing model accuracy.
comment: 6 pages, 9 figures, 2 tables
☆ Reasoning as a Resource: Optimizing Fast and Slow Thinking in Code Generation Models
This position paper proposes a fundamental shift in designing code generation models: treating reasoning depth as a controllable resource. Rather than being an incidental byproduct of prompting, we argue that the trade-off between rapid, direct answers ("fast thinking") and elaborate, chain-of-thought deliberation ("slow thinking") must be explicitly managed. We contend that optimizing reasoning budgets across the entire model lifecycle - from synthetic data creation and benchmarking to real-world deploymen - can unlock superior trade-offs among accuracy, latency, and cost. This paper outlines how adaptive control over reasoning can enrich supervision signals, motivate new multi-dimensional benchmarks, and inform cost-aware, security-conscious deployment policies. By viewing fast and slow thinking as complementary modes to be scheduled, we envision coding agents that think deep when necessary and act fast when possible.
☆ Beyond Nash Equilibrium: Bounded Rationality of LLMs and humans in Strategic Decision-making
Large language models are increasingly used in strategic decision-making settings, yet evidence shows that, like humans, they often deviate from full rationality. In this study, we compare LLMs and humans using experimental paradigms directly adapted from behavioral game-theory research. We focus on two well-studied strategic games, Rock-Paper-Scissors and the Prisoner's Dilemma, which are well known for revealing systematic departures from rational play in human subjects. By placing LLMs in identical experimental conditions, we evaluate whether their behaviors exhibit the bounded rationality characteristic of humans. Our findings show that LLMs reproduce familiar human heuristics, such as outcome-based strategy switching and increased cooperation when future interaction is possible, but they apply these rules more rigidly and demonstrate weaker sensitivity to the dynamic changes in the game environment. Model-level analyses reveal distinctive architectural signatures in strategic behavior, and even reasoning models sometimes struggle to find effective strategies in adaptive situations. These results indicate that current LLMs capture only a partial form of human-like bounded rationality and highlight the need for training methods that encourage flexible opponent modeling and stronger context awareness.
☆ Bipedal Balance Control with Whole-body Musculoskeletal Standing and Falling Simulations
Balance control is important for human and bipedal robotic systems. While dynamic balance during locomotion has received considerable attention, quantitative understanding of static balance and falling remains limited. This work presents a hierarchical control pipeline for simulating human balance via a comprehensive whole-body musculoskeletal system. We identified spatiotemporal dynamics of balancing during stable standing, revealed the impact of muscle injury on balancing behavior, and generated fall contact patterns that aligned with clinical data. Furthermore, our simulated hip exoskeleton assistance demonstrated improvement in balance maintenance and reduced muscle effort under perturbation. This work offers unique muscle-level insights into human balance dynamics that are challenging to capture experimentally. It could provide a foundation for developing targeted interventions for individuals with balance impairments and support the advancement of humanoid robotic systems.
☆ LPO: Towards Accurate GUI Agent Interaction via Location Preference Optimization
The advent of autonomous agents is transforming interactions with Graphical User Interfaces (GUIs) by employing natural language as a powerful intermediary. Despite the predominance of Supervised Fine-Tuning (SFT) methods in current GUI agents for achieving spatial localization, these methods face substantial challenges due to their limited capacity to accurately perceive positional data. Existing strategies, such as reinforcement learning, often fail to assess positional accuracy effectively, thereby restricting their utility. In response, we introduce Location Preference Optimization (LPO), a novel approach that leverages locational data to optimize interaction preferences. LPO uses information entropy to predict interaction positions by focusing on zones rich in information. Besides, it further introduces a dynamic location reward function based on physical distance, reflecting the varying importance of interaction positions. Supported by Group Relative Preference Optimization (GRPO), LPO facilitates an extensive exploration of GUI environments and significantly enhances interaction precision. Comprehensive experiments demonstrate LPO's superior performance, achieving SOTA results across both offline benchmarks and real-world online evaluations. Our code will be made publicly available soon, at https://github.com/AIDC-AI/LPO.
☆ Anomaly Detection and Generation with Diffusion Models: A Survey
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing, by identifying unexpected patterns that deviate from established norms in real-world data. Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest due to their ability to learn complex data distributions and generate high-fidelity samples, offering a robust framework for unsupervised AD. In this survey, we comprehensively review anomaly detection and generation with diffusion models (ADGDM), presenting a tutorial-style analysis of the theoretical foundations and practical implementations and spanning images, videos, time series, tabular, and multimodal data. Crucially, unlike existing surveys that often treat anomaly detection and generation as separate problems, we highlight their inherent synergistic relationship. We reveal how DMs enable a reinforcing cycle where generation techniques directly address the fundamental challenge of anomaly data scarcity, while detection methods provide critical feedback to improve generation fidelity and relevance, advancing both capabilities beyond their individual potential. A detailed taxonomy categorizes ADGDM methods based on anomaly scoring mechanisms, conditioning strategies, and architectural designs, analyzing their strengths and limitations. We final discuss key challenges including scalability and computational efficiency, and outline promising future directions such as efficient architectures, conditioning strategies, and integration with foundation models (e.g., visual-language models and large language models). By synthesizing recent advances and outlining open research questions, this survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
comment: 20 pages, 11 figures, 13 tables
☆ COGENT: A Curriculum-oriented Framework for Generating Grade-appropriate Educational Content
While Generative AI has demonstrated strong potential and versatility in content generation, its application to educational contexts presents several challenges. Models often fail to align with curriculum standards and maintain grade-appropriate reading levels consistently. Furthermore, STEM education poses additional challenges in balancing scientific explanations with everyday language when introducing complex and abstract ideas and phenomena to younger students. In this work, we propose COGENT, a curriculum-oriented framework for generating grade-appropriate educational content. We incorporate three curriculum components (science concepts, core ideas, and learning objectives), control readability through length, vocabulary, and sentence complexity, and adopt a ``wonder-based'' approach to increase student engagement and interest. We conduct a multi-dimensional evaluation via both LLM-as-a-judge and human expert analysis. Experimental results show that COGENT consistently produces grade-appropriate passages that are comparable or superior to human references. Our work establishes a viable approach for scaling adaptive and high-quality learning resources.
comment: BEA 2025
☆ SAGE: Exploring the Boundaries of Unsafe Concept Domain with Semantic-Augment Erasing
Diffusion models (DMs) have achieved significant progress in text-to-image generation. However, the inevitable inclusion of sensitive information during pre-training poses safety risks, such as unsafe content generation and copyright infringement. Concept erasing finetunes weights to unlearn undesirable concepts, and has emerged as a promising solution. However, existing methods treat unsafe concept as a fixed word and repeatedly erase it, trapping DMs in ``word concept abyss'', which prevents generalized concept-related erasing. To escape this abyss, we introduce semantic-augment erasing which transforms concept word erasure into concept domain erasure by the cyclic self-check and self-erasure. It efficiently explores and unlearns the boundary representation of concept domain through semantic spatial relationships between original and training DMs, without requiring additional preprocessed data. Meanwhile, to mitigate the retention degradation of irrelevant concepts while erasing unsafe concepts, we further propose the global-local collaborative retention mechanism that combines global semantic relationship alignment with local predicted noise preservation, effectively expanding the retentive receptive field for irrelevant concepts. We name our method SAGE, and extensive experiments demonstrate the comprehensive superiority of SAGE compared with other methods in the safe generation of DMs. The code and weights will be open-sourced at https://github.com/KevinLight831/SAGE.
comment: Under review
☆ "I Said Things I Needed to Hear Myself": Peer Support as an Emotional, Organisational, and Sociotechnical Practice in Singapore
Peer support plays a vital role in expanding access to mental health care by providing empathetic, community-based support outside formal clinical systems. As digital platforms increasingly mediate such support, the design and impact of these technologies remain under-examined, particularly in Asian contexts. This paper presents findings from an interview study with 20 peer supporters in Singapore, who operate across diverse online, offline, and hybrid environments. Through a thematic analysis, we unpack how participants start, conduct, and sustain peer support, highlighting their motivations, emotional labour, and the sociocultural dimensions shaping their practices. Building on this grounded understanding, we surface design directions for culturally responsive digital tools that scaffold rather than supplant relational care. Drawing insights from qualitative accounts, we offer a situated perspective on how AI might responsibly augment peer support. This research contributes to human-centred computing by articulating the lived realities of peer supporters and proposing design implications for trustworthy and context-sensitive AI in mental health.
☆ "Is This Really a Human Peer Supporter?": Misalignments Between Peer Supporters and Experts in LLM-Supported Interactions
Mental health is a growing global concern, prompting interest in AI-driven solutions to expand access to psychosocial support. Peer support, grounded in lived experience, offers a valuable complement to professional care. However, variability in training, effectiveness, and definitions raises concerns about quality, consistency, and safety. Large Language Models (LLMs) present new opportunities to enhance peer support interactions, particularly in real-time, text-based interactions. We present and evaluate an AI-supported system with an LLM-simulated distressed client, context-sensitive LLM-generated suggestions, and real-time emotion visualisations. 2 mixed-methods studies with 12 peer supporters and 5 mental health professionals (i.e., experts) examined the system's effectiveness and implications for practice. Both groups recognised its potential to enhance training and improve interaction quality. However, we found a key tension emerged: while peer supporters engaged meaningfully, experts consistently flagged critical issues in peer supporter responses, such as missed distress cues and premature advice-giving. This misalignment highlights potential limitations in current peer support training, especially in emotionally charged contexts where safety and fidelity to best practices are essential. Our findings underscore the need for standardised, psychologically grounded training, especially as peer support scales globally. They also demonstrate how LLM-supported systems can scaffold this development--if designed with care and guided by expert oversight. This work contributes to emerging conversations on responsible AI integration in mental health and the evolving role of LLMs in augmenting peer-delivered care.
☆ Autoregressive Adversarial Post-Training for Real-Time Interactive Video Generation
Existing large-scale video generation models are computationally intensive, preventing adoption in real-time and interactive applications. In this work, we propose autoregressive adversarial post-training (AAPT) to transform a pre-trained latent video diffusion model into a real-time, interactive video generator. Our model autoregressively generates a latent frame at a time using a single neural function evaluation (1NFE). The model can stream the result to the user in real time and receive interactive responses as controls to generate the next latent frame. Unlike existing approaches, our method explores adversarial training as an effective paradigm for autoregressive generation. This not only allows us to design an architecture that is more efficient for one-step generation while fully utilizing the KV cache, but also enables training the model in a student-forcing manner that proves to be effective in reducing error accumulation during long video generation. Our experiments demonstrate that our 8B model achieves real-time, 24fps, streaming video generation at 736x416 resolution on a single H100, or 1280x720 on 8xH100 up to a minute long (1440 frames). Visit our research website at https://seaweed-apt.com/2
☆ ErrorEraser: Unlearning Data Bias for Improved Continual Learning
Continual Learning (CL) primarily aims to retain knowledge to prevent catastrophic forgetting and transfer knowledge to facilitate learning new tasks. Unlike traditional methods, we propose a novel perspective: CL not only needs to prevent forgetting, but also requires intentional forgetting.This arises from existing CL methods ignoring biases in real-world data, leading the model to learn spurious correlations that transfer and amplify across tasks. From feature extraction and prediction results, we find that data biases simultaneously reduce CL's ability to retain and transfer knowledge. To address this, we propose ErrorEraser, a universal plugin that removes erroneous memories caused by biases in CL, enhancing performance in both new and old tasks. ErrorEraser consists of two modules: Error Identification and Error Erasure. The former learns the probability density distribution of task data in the feature space without prior knowledge, enabling accurate identification of potentially biased samples. The latter ensures only erroneous knowledge is erased by shifting the decision space of representative outlier samples. Additionally, an incremental feature distribution learning strategy is designed to reduce the resource overhead during error identification in downstream tasks. Extensive experimental results show that ErrorEraser significantly mitigates the negative impact of data biases, achieving higher accuracy and lower forgetting rates across three types of CL methods. The code is available at https://github.com/diadai/ErrorEraser.
comment: 12 pages
☆ Ming-Omni: A Unified Multimodal Model for Perception and Generation
We propose Ming-Omni, a unified multimodal model capable of processing images, text, audio, and video, while demonstrating strong proficiency in both speech and image generation. Ming-Omni employs dedicated encoders to extract tokens from different modalities, which are then processed by Ling, an MoE architecture equipped with newly proposed modality-specific routers. This design enables a single model to efficiently process and fuse multimodal inputs within a unified framework, thereby facilitating diverse tasks without requiring separate models, task-specific fine-tuning, or structural redesign. Importantly, Ming-Omni extends beyond conventional multimodal models by supporting audio and image generation. This is achieved through the integration of an advanced audio decoder for natural-sounding speech and Ming-Lite-Uni for high-quality image generation, which also allow the model to engage in context-aware chatting, perform text-to-speech conversion, and conduct versatile image editing. Our experimental results showcase Ming-Omni offers a powerful solution for unified perception and generation across all modalities. Notably, our proposed Ming-Omni is the first open-source model we are aware of to match GPT-4o in modality support, and we release all code and model weights to encourage further research and development in the community.
comment: 18 pages,8 figures
☆ Latent Multi-Head Attention for Small Language Models
We present the first comprehensive study of latent multi-head attention (MLA) for small language models, revealing interesting efficiency-quality trade-offs. Training 30M-parameter GPT models on 100,000 synthetic stories, we benchmark three architectural variants: standard multi-head attention (MHA), MLA, and MLA with rotary positional embeddings (MLA+RoPE). Our key finding is that MLA+RoPE with half-rank latent dimensions (r = d/2) achieves a 45% KV-cache memory reduction while incurring only a 0.3% increase in validation loss (essentially matching MHA quality)- a Pareto improvement for memory constrained deployment. We further show that RoPE is crucial for MLA in small models: without it, MLA underperforms vanilla attention by 3-5%, but with RoPE, it surpasses vanilla by 2%. Inference benchmarks on NVIDIA A100 GPUs reveal that MLA with r=d/2 achieves a 1.4 times speedup over full-rank MLA while maintaining the memory savings. GPT-4 evaluations corroborate perplexity results, with ours achieving the highest quality scores (7.4/10) across grammar, creativity, and consistency metrics. Code and models will be released upon acceptance.
comment: 6 pages, 1 figure. 5 tables
☆ RePO: Replay-Enhanced Policy Optimization
Reinforcement learning (RL) is vital for optimizing large language models (LLMs). Recent Group Relative Policy Optimization (GRPO) estimates advantages using multiple on-policy outputs per prompt, leading to high computational costs and low data efficiency. To address this, we introduce Replay-Enhanced Policy Optimization (RePO), which leverages diverse replay strategies to retrieve off-policy samples from a replay buffer, allowing policy optimization based on a broader and more diverse set of samples for each prompt. Experiments on five LLMs across seven mathematical reasoning benchmarks demonstrate that RePO achieves absolute average performance gains of $18.4$ and $4.1$ points for Qwen2.5-Math-1.5B and Qwen3-1.7B, respectively, compared to GRPO. Further analysis indicates that RePO increases computational cost by $15\%$ while raising the number of effective optimization steps by $48\%$ for Qwen3-1.7B, with both on-policy and off-policy sample numbers set to $8$. The repository can be accessed at https://github.com/SihengLi99/RePO.
comment: Project Page: https://github.com/SihengLi99/RePO
☆ Know What You Don't Know: Uncertainty Calibration of Process Reward Models
Process reward models (PRMs) play a central role in guiding inference-time scaling algorithms for large language models (LLMs). However, we observe that even state-of-the-art PRMs can be poorly calibrated and often overestimate success probabilities. To address this, we present a calibration approach, performed via quantile regression, that adjusts PRM outputs to better align with true success probabilities. Leveraging these calibrated success estimates and their associated confidence bounds, we introduce an \emph{instance-adaptive scaling} (IAS) framework that dynamically adjusts the inference budget based on the estimated likelihood that a partial reasoning trajectory will yield a correct final answer. Unlike conventional methods that allocate a fixed number of reasoning trajectories per query, this approach successfully adapts to each instance and reasoning step when using our calibrated PRMs. Experiments on mathematical reasoning benchmarks show that (i) our PRM calibration method successfully achieves small calibration error, outperforming the baseline methods, (ii) calibration is crucial for enabling effective adaptive scaling, and (iii) the proposed IAS strategy reduces inference costs while maintaining final answer accuracy, utilizing less compute on more confident problems as desired.
☆ Intelligent System of Emergent Knowledge: A Coordination Fabric for Billions of Minds
The Intelligent System of Emergent Knowledge (ISEK) establishes a decentralized network where human and artificial intelligence agents collaborate as peers, forming a self-organizing cognitive ecosystem. Built on Web3 infrastructure, ISEK combines three fundamental principles: (1) a decentralized multi-agent architecture resistant to censorship, (2) symbiotic AI-human collaboration with equal participation rights, and (3) resilient self-adaptation through distributed consensus mechanisms. The system implements an innovative coordination protocol featuring a six-phase workflow (Publish, Discover, Recruit, Execute, Settle, Feedback) for dynamic task allocation, supported by robust fault tolerance and a multidimensional reputation system. Economic incentives are governed by the native $ISEK token, facilitating micropayments, governance participation, and reputation tracking, while agent sovereignty is maintained through NFT-based identity management. This synthesis of blockchain technology, artificial intelligence, and incentive engineering creates an infrastructure that actively facilitates emergent intelligence. ISEK represents a paradigm shift from conventional platforms, enabling the organic development of large-scale, decentralized cognitive systems where autonomous agents collectively evolve beyond centralized constraints.
comment: 11 pages, 1 figures,
☆ Multi-Agent Language Models: Advancing Cooperation, Coordination, and Adaptation
Modern Large Language Models (LLMs) exhibit impressive zero-shot and few-shot generalization capabilities across complex natural language tasks, enabling their widespread use as virtual assistants for diverse applications such as translation and summarization. Despite being trained solely on large corpora of text without explicit supervision on author intent, LLMs appear to infer the underlying meaning of textual interactions. This raises a fundamental question: can LLMs model and reason about the intentions of others, i.e., do they possess a form of theory of mind? Understanding other's intentions is crucial for effective collaboration, which underpins human societal success and is essential for cooperative interactions among multiple agents, including humans and autonomous systems. In this work, we investigate the theory of mind in LLMs through the lens of cooperative multi-agent reinforcement learning (MARL), where agents learn to collaborate via repeated interactions, mirroring human social reasoning. Our approach aims to enhance artificial agent's ability to adapt and cooperate with both artificial and human partners. By leveraging LLM-based agents capable of natural language interaction, we move towards creating hybrid human-AI systems that can foster seamless collaboration, with broad implications for the future of human-artificial interaction.
comment: arXiv admin note: substantial text overlap with arXiv:2311.07687
☆ Alzheimer's Dementia Detection Using Perplexity from Paired Large Language Models
Alzheimer's dementia (AD) is a neurodegenerative disorder with cognitive decline that commonly impacts language ability. This work extends the paired perplexity approach to detecting AD by using a recent large language model (LLM), the instruction-following version of Mistral-7B. We improve accuracy by an average of 3.33% over the best current paired perplexity method and by 6.35% over the top-ranked method from the ADReSS 2020 challenge benchmark. Our further analysis demonstrates that the proposed approach can effectively detect AD with a clear and interpretable decision boundary in contrast to other methods that suffer from opaque decision-making processes. Finally, by prompting the fine-tuned LLMs and comparing the model-generated responses to human responses, we illustrate that the LLMs have learned the special language patterns of AD speakers, which opens up possibilities for novel methods of model interpretation and data augmentation.
comment: To be published in the proceedings of Interspeech 2025
☆ ToxSyn-PT: A Large-Scale Synthetic Dataset for Hate Speech Detection in Portuguese
We present ToxSyn-PT, the first large-scale Portuguese corpus that enables fine-grained hate-speech classification across nine legally protected minority groups. The dataset contains 53,274 synthetic sentences equally distributed between minorities groups and toxicity labels. ToxSyn-PT is created through a novel four-stage pipeline: (1) a compact, manually curated seed; (2) few-shot expansion with an instruction-tuned LLM; (3) paraphrase-based augmentation; and (4) enrichment, plus additional neutral texts to curb overfitting to group-specific cues. The resulting corpus is class-balanced, stylistically diverse, and free from the social-media domain that dominate existing Portuguese datasets. Despite domain differences with traditional benchmarks, experiments on both binary and multi-label classification on the corpus yields strong results across five public Portuguese hate-speech datasets, demonstrating robust generalization even across domain boundaries. The dataset is publicly released to advance research on synthetic data and hate-speech detection in low-resource settings.
comment: 8 pages, 5 tables, 1 figure
☆ Prompt Attacks Reveal Superficial Knowledge Removal in Unlearning Methods
In this work, we show that some machine unlearning methods may fail when subjected to straightforward prompt attacks. We systematically evaluate eight unlearning techniques across three model families, and employ output-based, logit-based, and probe analysis to determine to what extent supposedly unlearned knowledge can be retrieved. While methods like RMU and TAR demonstrate robust unlearning, ELM remains vulnerable to specific prompt attacks (e.g., Hindi filler text in original prompt recovering 57.3% accuracy). Our logit analysis also confirms that unlearned models are generally not hiding knowledge by modifying the way the answer is formatted, as the correlation between output and logit accuracy is strong. These results challenge prevailing assumptions about unlearning effectiveness and highlight the need for evaluation frameworks that can reliably distinguish between true knowledge removal and superficial output suppression. We also publicly make available our evaluation framework to easily evaluate prompting techniques to retrieve unlearning knowledge.
comment: 20 pages, 6 figures
☆ LaMAGIC2: Advanced Circuit Formulations for Language Model-Based Analog Topology Generation ICML
Automation of analog topology design is crucial due to customized requirements of modern applications with heavily manual engineering efforts. The state-of-the-art work applies a sequence-to-sequence approach and supervised finetuning on language models to generate topologies given user specifications. However, its circuit formulation is inefficient due to O(|V |2) token length and suffers from low precision sensitivity to numeric inputs. In this work, we introduce LaMAGIC2, a succinct float-input canonical formulation with identifier (SFCI) for language model-based analog topology generation. SFCI addresses these challenges by improving component-type recognition through identifier-based representations, reducing token length complexity to O(|V |), and enhancing numeric precision sensitivity for better performance under tight tolerances. Our experiments demonstrate that LaMAGIC2 achieves 34% higher success rates under a tight tolerance of 0.01 and 10X lower MSEs compared to a prior method. LaMAGIC2 also exhibits better transferability for circuits with more vertices with up to 58.5% improvement. These advancements establish LaMAGIC2 as a robust framework for analog topology generation.
comment: Accepted at 42nd International Conference on Machine Learning (ICML) 2025
☆ ScoreMix: Improving Face Recognition via Score Composition in Diffusion Generators
In this paper, we propose ScoreMix, a novel yet simple data augmentation strategy leveraging the score compositional properties of diffusion models to enhance discriminator performance, particularly under scenarios with limited labeled data. By convexly mixing the scores from different class-conditioned trajectories during diffusion sampling, we generate challenging synthetic samples that significantly improve discriminative capabilities in all studied benchmarks. We systematically investigate class-selection strategies for mixing and discover that greater performance gains arise when combining classes distant in the discriminator's embedding space, rather than close in the generator's condition space. Moreover, we empirically show that, under standard metrics, the correlation between the generator's learned condition space and the discriminator's embedding space is minimal. Our approach achieves notable performance improvements without extensive parameter searches, demonstrating practical advantages for training discriminative models while effectively mitigating problems regarding collections of large datasets. Paper website: https://parsa-ra.github.io/scoremix
☆ Fine-Grained control over Music Generation with Activation Steering
We present a method for fine-grained control over music generation through inference-time interventions on an autoregressive generative music transformer called MusicGen. Our approach enables timbre transfer, style transfer, and genre fusion by steering the residual stream using weights of linear probes trained on it, or by steering the attention layer activations in a similar manner. We observe that modelling this as a regression task provides improved performance, hypothesizing that the mean-squared-error better preserve meaningful directional information in the activation space. Combined with the global conditioning offered by text prompts in MusicGen, our method provides both global and local control over music generation. Audio samples illustrating our method are available at our demo page.
☆ Cross-Learning Between ECG and PCG: Exploring Common and Exclusive Characteristics of Bimodal Electromechanical Cardiac Waveforms
Simultaneous electrocardiography (ECG) and phonocardiogram (PCG) provide a comprehensive, multimodal perspective on cardiac function by capturing the heart's electrical and mechanical activities, respectively. However, the distinct and overlapping information content of these signals, as well as their potential for mutual reconstruction and biomarker extraction, remains incompletely understood, especially under varying physiological conditions and across individuals. In this study, we systematically investigate the common and exclusive characteristics of ECG and PCG using the EPHNOGRAM dataset of simultaneous ECG-PCG recordings during rest and exercise. We employ a suite of linear and nonlinear machine learning models, including non-causal LSTM networks, to reconstruct each modality from the other and analyze the influence of causality, physiological state, and cross-subject variability. Our results demonstrate that nonlinear models, particularly non-causal LSTM, provide superior reconstruction performance, with reconstructing ECG from PCG proving more tractable than the reverse. Exercise and cross-subject scenarios present significant challenges, but envelope-based modeling that utilizes instantaneous amplitude features substantially improves cross-subject generalizability for cross-modal learning. Furthermore, we demonstrate that clinically relevant ECG biomarkers, such as fiducial points and QT intervals, can be estimated from PCG in cross-subject settings. These findings advance our understanding of the relationship between electromechanical cardiac modalities, in terms of both waveform characteristics and the timing of cardiac events, with potential applications in novel multimodal cardiac monitoring technologies.
☆ TTT-Bench: A Benchmark for Evaluating Reasoning Ability with Simple and Novel Tic-Tac-Toe-style Games
Large reasoning models (LRMs) have demonstrated impressive reasoning capabilities across a broad range of tasks including Olympiad-level mathematical problems, indicating evidence of their complex reasoning abilities. While many reasoning benchmarks focus on the STEM domain, the ability of LRMs to reason correctly in broader task domains remains underexplored. In this work, we introduce \textbf{TTT-Bench}, a new benchmark that is designed to evaluate basic strategic, spatial, and logical reasoning abilities in LRMs through a suite of four two-player Tic-Tac-Toe-style games that humans can effortlessly solve from a young age. We propose a simple yet scalable programmatic approach for generating verifiable two-player game problems for TTT-Bench. Although these games are trivial for humans, they require reasoning about the intentions of the opponent, as well as the game board's spatial configurations, to ensure a win. We evaluate a diverse set of state-of-the-art LRMs, and \textbf{discover that the models that excel at hard math problems frequently fail at these simple reasoning games}. Further testing reveals that our evaluated reasoning models score on average $\downarrow$ 41\% \& $\downarrow$ 5\% lower on TTT-Bench compared to MATH 500 \& AIME 2024 respectively, with larger models achieving higher performance using shorter reasoning traces, where most of the models struggle on long-term strategic reasoning situations on simple and new TTT-Bench tasks.
☆ Towards Responsible AI: Advances in Safety, Fairness, and Accountability of Autonomous Systems
Ensuring responsible use of artificial intelligence (AI) has become imperative as autonomous systems increasingly influence critical societal domains. However, the concept of trustworthy AI remains broad and multi-faceted. This thesis advances knowledge in the safety, fairness, transparency, and accountability of AI systems. In safety, we extend classical deterministic shielding techniques to become resilient against delayed observations, enabling practical deployment in real-world conditions. We also implement both deterministic and probabilistic safety shields into simulated autonomous vehicles to prevent collisions with road users, validating the use of these techniques in realistic driving simulators. We introduce fairness shields, a novel post-processing approach to enforce group fairness in sequential decision-making settings over finite and periodic time horizons. By optimizing intervention costs while strictly ensuring fairness constraints, this method efficiently balances fairness with minimal interference. For transparency and accountability, we propose a formal framework for assessing intentional behaviour in probabilistic decision-making agents, introducing quantitative metrics of agency and intention quotient. We use these metrics to propose a retrospective analysis of intention, useful for determining responsibility when autonomous systems cause unintended harm. Finally, we unify these contributions through the ``reactive decision-making'' framework, providing a general formalization that consolidates previous approaches. Collectively, the advancements presented contribute practically to the realization of safer, fairer, and more accountable AI systems, laying the foundations for future research in trustworthy AI.
comment: 202 pages, 38 figures, PhD Thesis
☆ Scalable Non-Equivariant 3D Molecule Generation via Rotational Alignment ICML 2025
Equivariant diffusion models have achieved impressive performance in 3D molecule generation. These models incorporate Euclidean symmetries of 3D molecules by utilizing an SE(3)-equivariant denoising network. However, specialized equivariant architectures limit the scalability and efficiency of diffusion models. In this paper, we propose an approach that relaxes such equivariance constraints. Specifically, our approach learns a sample-dependent SO(3) transformation for each molecule to construct an aligned latent space. A non-equivariant diffusion model is then trained over the aligned representations. Experimental results demonstrate that our approach performs significantly better than previously reported non-equivariant models. It yields sample quality comparable to state-of-the-art equivariant diffusion models and offers improved training and sampling efficiency. Our code is available at https://github.com/skeletondyh/RADM
comment: ICML 2025
☆ Optimizing Genetic Algorithms with Multilayer Perceptron Networks for Enhancing TinyFace Recognition
This study conducts an empirical examination of MLP networks investigated through a rigorous methodical experimentation process involving three diverse datasets: TinyFace, Heart Disease, and Iris. Study Overview: The study includes three key methods: a) a baseline training using the default settings for the Multi-Layer Perceptron (MLP), b) feature selection using Genetic Algorithm (GA) based refinement c) Principal Component Analysis (PCA) based dimension reduction. The results show important information on how such techniques affect performance. While PCA had showed benefits in low-dimensional and noise-free datasets GA consistently increased accuracy in complex datasets by accurately identifying critical features. Comparison reveals that feature selection and dimensionality reduction play interdependent roles in enhancing MLP performance. The study contributes to the literature on feature engineering and neural network parameter optimization, offering practical guidelines for a wide range of machine learning tasks
☆ A Comparative Study of Machine Learning Techniques for Early Prediction of Diabetes
In many nations, diabetes is becoming a significant health problem, and early identification and control are crucial. Using machine learning algorithms to predict diabetes has yielded encouraging results. Using the Pima Indians Diabetes dataset, this study attempts to evaluate the efficacy of several machine-learning methods for diabetes prediction. The collection includes information on 768 patients, such as their ages, BMIs, and glucose levels. The techniques assessed are Logistic Regression, Decision Tree, Random Forest, k-Nearest Neighbors, Naive Bayes, Support Vector Machine, Gradient Boosting, and Neural Network. The findings indicate that the Neural Network algorithm performed the best, with an accuracy of 78.57 percent, followed by the Random Forest method, with an accuracy of 76.30 percent. The study implies that machine learning algorithms can aid diabetes prediction and be an efficient early detection tool.
☆ Correlation vs causation in Alzheimer's disease: an interpretability-driven study
Understanding the distinction between causation and correlation is critical in Alzheimer's disease (AD) research, as it impacts diagnosis, treatment, and the identification of true disease drivers. This experiment investigates the relationships among clinical, cognitive, genetic, and biomarker features using a combination of correlation analysis, machine learning classification, and model interpretability techniques. Employing the XGBoost algorithm, we identified key features influencing AD classification, including cognitive scores and genetic risk factors. Correlation matrices revealed clusters of interrelated variables, while SHAP (SHapley Additive exPlanations) values provided detailed insights into feature contributions across disease stages. Our results highlight that strong correlations do not necessarily imply causation, emphasizing the need for careful interpretation of associative data. By integrating feature importance and interpretability with classical statistical analysis, this work lays groundwork for future causal inference studies aimed at uncovering true pathological mechanisms. Ultimately, distinguishing causal factors from correlated markers can lead to improved early diagnosis and targeted interventions for Alzheimer's disease.
☆ SPARKE: Scalable Prompt-Aware Diversity Guidance in Diffusion Models via RKE Score
Diffusion models have demonstrated remarkable success in high-fidelity image synthesis and prompt-guided generative modeling. However, ensuring adequate diversity in generated samples of prompt-guided diffusion models remains a challenge, particularly when the prompts span a broad semantic spectrum and the diversity of generated data needs to be evaluated in a prompt-aware fashion across semantically similar prompts. Recent methods have introduced guidance via diversity measures to encourage more varied generations. In this work, we extend the diversity measure-based approaches by proposing the Scalable Prompt-Aware R\'eny Kernel Entropy Diversity Guidance (SPARKE) method for prompt-aware diversity guidance. SPARKE utilizes conditional entropy for diversity guidance, which dynamically conditions diversity measurement on similar prompts and enables prompt-aware diversity control. While the entropy-based guidance approach enhances prompt-aware diversity, its reliance on the matrix-based entropy scores poses computational challenges in large-scale generation settings. To address this, we focus on the special case of Conditional latent RKE Score Guidance, reducing entropy computation and gradient-based optimization complexity from the $O(n^3)$ of general entropy measures to $O(n)$. The reduced computational complexity allows for diversity-guided sampling over potentially thousands of generation rounds on different prompts. We numerically test the SPARKE method on several text-to-image diffusion models, demonstrating that the proposed method improves the prompt-aware diversity of the generated data without incurring significant computational costs. We release our code on the project page: https://mjalali.github.io/SPARKE
☆ A Navigation Framework Utilizing Vision-Language Models
Vision-and-Language Navigation (VLN) presents a complex challenge in embodied AI, requiring agents to interpret natural language instructions and navigate through visually rich, unfamiliar environments. Recent advances in large vision-language models (LVLMs), such as CLIP and Flamingo, have significantly improved multimodal understanding but introduced new challenges related to computational cost and real-time deployment. In this project, we propose a modular, plug-and-play navigation framework that decouples vision-language understanding from action planning. By integrating a frozen vision-language model, Qwen2.5-VL-7B-Instruct, with lightweight planning logic, we aim to achieve flexible, fast, and adaptable navigation without extensive model fine-tuning. Our framework leverages prompt engineering, structured history management, and a two-frame visual input strategy to enhance decision-making continuity across navigation steps. We evaluate our system on the Room-to-Room benchmark within the VLN-CE setting using the Matterport3D dataset and Habitat-Lab simulation environment. Although our initial results reveal challenges in generalizing to unseen environments under strict evaluation settings, our modular approach lays a foundation for scalable and efficient navigation systems, highlighting promising directions for future improvement through enhanced environmental priors and expanded multimodal input integration.
☆ Disclosure Audits for LLM Agents
Large Language Model agents have begun to appear as personal assistants, customer service bots, and clinical aides. While these applications deliver substantial operational benefits, they also require continuous access to sensitive data, which increases the likelihood of unauthorized disclosures. This study proposes an auditing framework for conversational privacy that quantifies and audits these risks. The proposed Conversational Manipulation for Privacy Leakage (CMPL) framework, is an iterative probing strategy designed to stress-test agents that enforce strict privacy directives. Rather than focusing solely on a single disclosure event, CMPL simulates realistic multi-turn interactions to systematically uncover latent vulnerabilities. Our evaluation on diverse domains, data modalities, and safety configurations demonstrate the auditing framework's ability to reveal privacy risks that are not deterred by existing single-turn defenses. In addition to introducing CMPL as a diagnostic tool, the paper delivers (1) an auditing procedure grounded in quantifiable risk metrics and (2) an open benchmark for evaluation of conversational privacy across agent implementations.
☆ Can LLMs Generate Good Stories? Insights and Challenges from a Narrative Planning Perspective
Story generation has been a prominent application of Large Language Models (LLMs). However, understanding LLMs' ability to produce high-quality stories remains limited due to challenges in automatic evaluation methods and the high cost and subjectivity of manual evaluation. Computational narratology offers valuable insights into what constitutes a good story, which has been applied in the symbolic narrative planning approach to story generation. This work aims to deepen the understanding of LLMs' story generation capabilities by using them to solve narrative planning problems. We present a benchmark for evaluating LLMs on narrative planning based on literature examples, focusing on causal soundness, character intentionality, and dramatic conflict. Our experiments show that GPT-4 tier LLMs can generate causally sound stories at small scales, but planning with character intentionality and dramatic conflict remains challenging, requiring LLMs trained with reinforcement learning for complex reasoning. The results offer insights on the scale of stories that LLMs can generate while maintaining quality from different aspects. Our findings also highlight interesting problem solving behaviors and shed lights on challenges and considerations for applying LLM narrative planning in game environments.
comment: In 2025 IEEE Conference on Games (CoG)
☆ One Patient, Many Contexts: Scaling Medical AI Through Contextual Intelligence
Medical foundation models, including language models trained on clinical notes, vision-language models on medical images, and multimodal models on electronic health records, can summarize clinical notes, answer medical questions, and assist in decision-making. Adapting these models to new populations, specialties, or settings typically requires fine-tuning, careful prompting, or retrieval from knowledge bases. This can be impractical, and limits their ability to interpret unfamiliar inputs and adjust to clinical situations not represented during training. As a result, models are prone to contextual errors, where predictions appear reasonable but fail to account for critical patient-specific or contextual information. These errors stem from a fundamental limitation that current models struggle with: dynamically adjusting their behavior across evolving contexts of medical care. In this Perspective, we outline a vision for context-switching in medical AI: models that dynamically adapt their reasoning without retraining to new specialties, populations, workflows, and clinical roles. We envision context-switching AI to diagnose, manage, and treat a wide range of diseases across specialties and regions, and expand access to medical care.
☆ Measuring Corporate Human Capital Disclosures: Lexicon, Data, Code, and Research Opportunities
Human capital (HC) is increasingly important to corporate value creation. Unlike other assets, however, HC is not currently subject to well-defined measurement or disclosure rules. We use a machine learning algorithm (word2vec) trained on a confirmed set of HC disclosures to develop a comprehensive list of HC-related keywords classified into five subcategories (DEI; health and safety; labor relations and culture; compensation and benefits; and demographics and other) that capture the multidimensional nature of HC management. We share our lexicon, corporate HC disclosures, and the Python code used to develop the lexicon, and we provide detailed examples of using our data and code, including for fine-tuning a BERT model. Researchers can use our HC lexicon (or modify the code to capture another construct of interest) with their samples of corporate communications to address pertinent HC questions. We close with a discussion of future research opportunities related to HC management and disclosure.
comment: 50 pages, 6 figures, 5 tables
☆ Unsupervised Elicitation of Language Models
To steer pretrained language models for downstream tasks, today's post-training paradigm relies on humans to specify desired behaviors. However, for models with superhuman capabilities, it is difficult or impossible to get high-quality human supervision. To address this challenge, we introduce a new unsupervised algorithm, Internal Coherence Maximization (ICM), to fine-tune pretrained language models on their own generated labels, \emph{without external supervision}. On GSM8k-verification, TruthfulQA, and Alpaca reward modeling tasks, our method matches the performance of training on golden supervision and outperforms training on crowdsourced human supervision. On tasks where LMs' capabilities are strongly superhuman, our method can elicit those capabilities significantly better than training on human labels. Finally, we show that our method can improve the training of frontier LMs: we use our method to train an unsupervised reward model and use reinforcement learning to train a Claude 3.5 Haiku-based assistant. Both the reward model and the assistant outperform their human-supervised counterparts.
☆ Interpreting learned search: finding a transition model and value function in an RNN that plays Sokoban
We partially reverse-engineer a convolutional recurrent neural network (RNN) trained to play the puzzle game Sokoban with model-free reinforcement learning. Prior work found that this network solves more levels with more test-time compute. Our analysis reveals several mechanisms analogous to components of classic bidirectional search. For each square, the RNN represents its plan in the activations of channels associated with specific directions. These state-action activations are analogous to a value function - their magnitudes determine when to backtrack and which plan branch survives pruning. Specialized kernels extend these activations (containing plan and value) forward and backward to create paths, forming a transition model. The algorithm is also unlike classical search in some ways. State representation is not unified; instead, the network considers each box separately. Each layer has its own plan representation and value function, increasing search depth. Far from being inscrutable, the mechanisms leveraging test-time compute learned in this network by model-free training can be understood in familiar terms.
comment: 33 pages, 22 figures
☆ Self-Predictive Representations for Combinatorial Generalization in Behavioral Cloning
Behavioral cloning (BC) methods trained with supervised learning (SL) are an effective way to learn policies from human demonstrations in domains like robotics. Goal-conditioning these policies enables a single generalist policy to capture diverse behaviors contained within an offline dataset. While goal-conditioned behavior cloning (GCBC) methods can perform well on in-distribution training tasks, they do not necessarily generalize zero-shot to tasks that require conditioning on novel state-goal pairs, i.e. combinatorial generalization. In part, this limitation can be attributed to a lack of temporal consistency in the state representation learned by BC; if temporally related states are encoded to similar latent representations, then the out-of-distribution gap for novel state-goal pairs would be reduced. Hence, encouraging this temporal consistency in the representation space should facilitate combinatorial generalization. Successor representations, which encode the distribution of future states visited from the current state, nicely encapsulate this property. However, previous methods for learning successor representations have relied on contrastive samples, temporal-difference (TD) learning, or both. In this work, we propose a simple yet effective representation learning objective, $\text{BYOL-}\gamma$ augmented GCBC, which is not only able to theoretically approximate the successor representation in the finite MDP case without contrastive samples or TD learning, but also, results in competitive empirical performance across a suite of challenging tasks requiring combinatorial generalization.
☆ A Conjecture on a Fundamental Trade-Off between Certainty and Scope in Symbolic and Generative AI
This article introduces a conjecture that formalises a fundamental trade-off between provable correctness and broad data-mapping capacity in Artificial Intelligence (AI) systems. When an AI system is engineered for deductively watertight guarantees (demonstrable certainty about the error-free nature of its outputs) -- as in classical symbolic AI -- its operational domain must be narrowly circumscribed and pre-structured. Conversely, a system that can input high-dimensional data to produce rich information outputs -- as in contemporary generative models -- necessarily relinquishes the possibility of zero-error performance, incurring an irreducible risk of errors or misclassification. By making this previously implicit trade-off explicit and open to rigorous verification, the conjecture significantly reframes both engineering ambitions and philosophical expectations for AI. After reviewing the historical motivations for this tension, the article states the conjecture in information-theoretic form and contextualises it within broader debates in epistemology, formal verification, and the philosophy of technology. It then offers an analysis of its implications and consequences, drawing on notions of underdetermination, prudent epistemic risk, and moral responsibility. The discussion clarifies how, if correct, the conjecture would help reshape evaluation standards, governance frameworks, and hybrid system design. The conclusion underscores the importance of eventually proving or refuting the inequality for the future of trustworthy AI.
☆ GRAIL: A Benchmark for GRaph ActIve Learning in Dynamic Sensing Environments
Graph-based Active Learning (AL) leverages the structure of graphs to efficiently prioritize label queries, reducing labeling costs and user burden in applications like health monitoring, human behavior analysis, and sensor networks. By identifying strategically positioned nodes, graph AL minimizes data collection demands while maintaining model performance, making it a valuable tool for dynamic environments. Despite its potential, existing graph AL methods are often evaluated on static graph datasets and primarily focus on prediction accuracy, neglecting user-centric considerations such as sampling diversity, query fairness, and adaptability to dynamic settings. To bridge this gap, we introduce GRAIL, a novel benchmarking framework designed to evaluate graph AL strategies in dynamic, real-world environments. GRAIL introduces novel metrics to assess sustained effectiveness, diversity, and user burden, enabling a comprehensive evaluation of AL methods under varying conditions. Extensive experiments on datasets featuring dynamic, real-life human sensor data reveal trade-offs between prediction performance and user burden, highlighting limitations in existing AL strategies. GRAIL demonstrates the importance of balancing node importance, query diversity, and network topology, providing an evaluation mechanism for graph AL solutions in dynamic environments.
☆ Detecção da Psoríase Utilizando Visão Computacional: Uma Abordagem Comparativa Entre CNNs e Vision Transformers
This paper presents a comparison of the performance of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) in the task of multi-classifying images containing lesions of psoriasis and diseases similar to it. Models pre-trained on ImageNet were adapted to a specific data set. Both achieved high predictive metrics, but the ViTs stood out for their superior performance with smaller models. Dual Attention Vision Transformer-Base (DaViT-B) obtained the best results, with an f1-score of 96.4%, and is recommended as the most efficient architecture for automated psoriasis detection. This article reinforces the potential of ViTs for medical image classification tasks.
comment: 12 pages, in Portuguese language, 2 figures, 2 tables, and 4 formulas. To be published in the Proceedings of the LII Brazilian Integrated Software and Hardware Seminar 2025 (SEMISH 2025)
☆ One For All: LLM-based Heterogeneous Mission Planning in Precision Agriculture TRO
Artificial intelligence is transforming precision agriculture, offering farmers new tools to streamline their daily operations. While these technological advances promise increased efficiency, they often introduce additional complexity and steep learning curves that are particularly challenging for non-technical users who must balance tech adoption with existing workloads. In this paper, we present a natural language (NL) robotic mission planner that enables non-specialists to control heterogeneous robots through a common interface. By leveraging large language models (LLMs) and predefined primitives, our architecture seamlessly translates human language into intermediate descriptions that can be executed by different robotic platforms. With this system, users can formulate complex agricultural missions without writing any code. In the work presented in this paper, we extend our previous system tailored for wheeled robot mission planning through a new class of experiments involving robotic manipulation and computer vision tasks. Our results demonstrate that the architecture is both general enough to support a diverse set of robots and powerful enough to execute complex mission requests. This work represents a significant step toward making robotic automation in precision agriculture more accessible to non-technical users.
comment: Accepted to International Federation of Automatic Control (IFAC) Sensing, Control and Automation Technologies for Agriculture - 8th AGRICONTROL 2025
☆ Learning to Collaborate Over Graphs: A Selective Federated Multi-Task Learning Approach
We present a novel federated multi-task learning method that leverages cross-client similarity to enable personalized learning for each client. To avoid transmitting the entire model to the parameter server, we propose a communication-efficient scheme that introduces a feature anchor, a compact vector representation that summarizes the features learned from the client's local classes. This feature anchor is shared with the server to account for local clients' distribution. In addition, the clients share the classification heads, a lightweight linear layer, and perform a graph-based regularization to enable collaboration among clients. By modeling collaboration between clients as a dynamic graph and continuously updating and refining this graph, we can account for any drift from the clients. To ensure beneficial knowledge transfer and prevent negative collaboration, we leverage a community detection-based approach that partitions this dynamic graph into homogeneous communities, maximizing the sum of task similarities, represented as the graph edges' weights, within each community. This mechanism restricts collaboration to highly similar clients within their formed communities, ensuring positive interaction and preserving personalization. Extensive experiments on two heterogeneous datasets demonstrate that our method significantly outperforms state-of-the-art baselines. Furthermore, we show that our method exhibits superior computation and communication efficiency and promotes fairness across clients.
☆ Leveraging LLMs for Mission Planning in Precision Agriculture ICRA
Robotics and artificial intelligence hold significant potential for advancing precision agriculture. While robotic systems have been successfully deployed for various tasks, adapting them to perform diverse missions remains challenging, particularly because end users often lack technical expertise. In this paper, we present an end-to-end system that leverages large language models (LLMs), specifically ChatGPT, to enable users to assign complex data collection tasks to autonomous robots using natural language instructions. To enhance reusability, mission plans are encoded using an existing IEEE task specification standard, and are executed on robots via ROS2 nodes that bridge high-level mission descriptions with existing ROS libraries. Through extensive experiments, we highlight the strengths and limitations of LLMs in this context, particularly regarding spatial reasoning and solving complex routing challenges, and show how our proposed implementation overcomes them.
comment: Published in Proceedings of 2025 International Conference on Robotics and Automation (ICRA)
☆ Test-Time Adaptation for Generalizable Task Progress Estimation ICML
We propose a test-time adaptation method that enables a progress estimation model to adapt online to the visual and temporal context of test trajectories by optimizing a learned self-supervised objective. To this end, we introduce a gradient-based meta-learning strategy to train the model on expert visual trajectories and their natural language task descriptions, such that test-time adaptation improves progress estimation relying on semantic content over temporal order. Our test-time adaptation method generalizes from a single training environment to diverse out-of-distribution tasks, environments, and embodiments, outperforming the state-of-the-art in-context learning approach using autoregressive vision-language models.
comment: pages, 2 figures, accepted to the 2nd Workshop on Test-Time Adaptation: Putting Updates to the Test (PUT) at 42nd International Conference on Machine Learning (ICML), Vancouver, Canada, 2025
☆ A quantum semantic framework for natural language processing
Semantic degeneracy represents a fundamental property of natural language that extends beyond simple polysemy to encompass the combinatorial explosion of potential interpretations that emerges as semantic expressions increase in complexity. Large Language Models (LLMs) and other modern NLP systems face inherent limitations precisely because they operate within natural language itself, making them subject to the same interpretive constraints imposed by semantic degeneracy. In this work, we argue using Kolmogorov complexity that as an expression's complexity grows, the likelihood of any interpreting agent (human or LLM-powered AI) recovering the single intended meaning vanishes. This computational intractability suggests the classical view that linguistic forms possess meaning in and of themselves is flawed. We alternatively posit that meaning is instead actualized through an observer-dependent interpretive act. To test this, we conducted a semantic Bell inequality test using diverse LLM agents as ``computational cognitive systems'' to interpret ambiguous word pairs under varied contextual settings. Across several independent experiments, we found average CHSH expectation values ranging from 1.2 to 2.8, with several runs yielding values (e.g., 2.3-2.4) that significantly violate the classical boundary ($|S|\leq2$). This demonstrates that linguistic interpretation under ambiguity can exhibit non-classical contextuality, consistent with results from human cognition experiments. These results inherently imply that classical frequentist-based analytical approaches for natural language are necessarily lossy. Instead, we propose that Bayesian-style repeated sampling approaches can provide more practically useful and appropriate characterizations of linguistic meaning in context.
comment: 12 pages, 2 figures, accepted submission to Quantum AI and NLP 2025
☆ Textual Bayes: Quantifying Uncertainty in LLM-Based Systems
Although large language models (LLMs) are becoming increasingly capable of solving challenging real-world tasks, accurately quantifying their uncertainty remains a critical open problem, which limits their applicability in high-stakes domains. This challenge is further compounded by the closed-source, black-box nature of many state-of-the-art LLMs. Moreover, LLM-based systems can be highly sensitive to the prompts that bind them together, which often require significant manual tuning (i.e., prompt engineering). In this work, we address these challenges by viewing LLM-based systems through a Bayesian lens. We interpret prompts as textual parameters in a statistical model, allowing us to use a small training dataset to perform Bayesian inference over these prompts. This novel perspective enables principled uncertainty quantification over both the model's textual parameters and its downstream predictions, while also incorporating prior beliefs about these parameters expressed in free-form text. To perform Bayesian inference, a difficult problem even for well-studied data modalities, we introduce Metropolis-Hastings through LLM Proposals (MHLP), a novel Markov chain Monte Carlo (MCMC) algorithm that combines prompt optimization techniques with standard MCMC methods. MHLP is a turnkey modification to existing LLM pipelines, including those that rely exclusively on closed-source models. Empirically, we demonstrate that our method yields improvements in both predictive accuracy and uncertainty quantification (UQ) on a range of LLM benchmarks and UQ tasks. More broadly, our work demonstrates a viable path for incorporating methods from the rich Bayesian literature into the era of LLMs, paving the way for more reliable and calibrated LLM-based systems.
☆ Omni-DPO: A Dual-Perspective Paradigm for Dynamic Preference Learning of LLMs
Direct Preference Optimization (DPO) has become a cornerstone of reinforcement learning from human feedback (RLHF) due to its simplicity and efficiency. However, existing DPO-based approaches typically treat all preference pairs uniformly, ignoring critical variations in their inherent quality and learning utility, leading to suboptimal data utilization and performance. To address this challenge, we propose Omni-DPO, a dual-perspective optimization framework that jointly accounts for (1) the inherent quality of each preference pair and (2) the model's evolving performance on those pairs. By adaptively weighting samples according to both data quality and the model's learning dynamics during training, Omni-DPO enables more effective training data utilization and achieves better performance. Experimental results on various models and benchmarks demonstrate the superiority and generalization capabilities of Omni-DPO. On textual understanding tasks, Gemma-2-9b-it finetuned with Omni-DPO beats the leading LLM, Claude 3 Opus, by a significant margin of 6.7 points on the Arena-Hard benchmark. On mathematical reasoning tasks, Omni-DPO consistently outperforms the baseline methods across all benchmarks, providing strong empirical evidence for the effectiveness and robustness of our approach. Code and models will be available at https://github.com/pspdada/Omni-DPO.
☆ Resa: Transparent Reasoning Models via SAEs
How cost-effectively can we elicit strong reasoning in language models by leveraging their underlying representations? We answer this question with Resa, a family of 1.5B reasoning models trained via a novel and efficient sparse autoencoder tuning (SAE-Tuning) procedure. This method first trains an SAE to capture reasoning abilities from a source model, and then uses the trained SAE to guide a standard supervised fine-tuning process to elicit such abilities in a target model, all using verified question-answer data without any reasoning traces. Notably, when applied to certain base models before further RL post-training, SAE-Tuning retains >97% of its RL-trained counterpart's reasoning performance while reducing training costs by >2000x to roughly \$1 and training time by >450x to around 20 minutes. Furthermore, when applied to lightly RL-trained models (e.g., within 1 hour on 2 GPUs), it enables reasoning performance such as 43.33% Pass@1 on AIME24 and 90% Pass@1 on AMC23 for only around \$1 additional cost. Surprisingly, the reasoning abilities extracted via SAEs are potentially both generalizable and modular. Generality means abilities extracted from one dataset still elevate performance on a larger and overlapping corpus. Modularity means abilities extracted from Qwen or Qwen-Math can be attached to the R1-Distill model at test time, without any retraining, and yield comparable gains. Extensive ablations validate these findings and all artifacts are fully open-sourced.
♻ ☆ Towards Reliable Proof Generation with LLMs: A Neuro-Symbolic Approach
Large language models (LLMs) struggle with formal domains that require rigorous logical deduction and symbolic reasoning, such as mathematical proof generation. We propose a neuro-symbolic approach that combines LLMs' generative strengths with structured components to overcome this challenge. As a proof-of-concept, we focus on geometry problems. Our approach is two-fold: (1) we retrieve analogous problems and use their proofs to guide the LLM, and (2) a formal verifier evaluates the generated proofs and provides feedback, helping the model fix incorrect proofs. We demonstrate that our method significantly improves proof accuracy for OpenAI's o1 model (58%-70% improvement); both analogous problems and the verifier's feedback contribute to these gains. More broadly, shifting to LLMs that generate provably correct conclusions could dramatically improve their reliability, accuracy and consistency, unlocking complex tasks and critical real-world applications that require trustworthiness.
comment: long paper
♻ ☆ Can LLMs Ground when they (Don't) Know: A Study on Direct and Loaded Political Questions ACL
Communication among humans relies on conversational grounding, allowing interlocutors to reach mutual understanding even when they do not have perfect knowledge and must resolve discrepancies in each other's beliefs. This paper investigates how large language models (LLMs) manage common ground in cases where they (don't) possess knowledge, focusing on facts in the political domain where the risk of misinformation and grounding failure is high. We examine the ability of LLMs to answer direct knowledge questions and loaded questions that presuppose misinformation. We evaluate whether loaded questions lead LLMs to engage in active grounding and correct false user beliefs, in connection to their level of knowledge and their political bias. Our findings highlight significant challenges in LLMs' ability to engage in grounding and reject false user beliefs, raising concerns about their role in mitigating misinformation in political discourse.
comment: Preprint accepted at ACL Main Conference 2025
♻ ☆ On The Impact of Merge Request Deviations on Code Review Practices
Code review is a key practice in software engineering, ensuring quality and collaboration. However, industrial Merge Request (MR) workflows often deviate from standardized review processes, with many MRs serving non-review purposes (e.g., drafts, rebases, or dependency updates). We term these cases deviations and hypothesize that ignoring them biases analytics and undermines ML models for review analysis. We identify seven deviation categories, occurring in 37.02% of MRs, and propose a few-shot learning detection method (91% accuracy). By excluding deviations, ML models predicting review completion time improve performance in 53.33% of cases (up to 2.25x) and exhibit significant shifts in feature importance (47% overall, 60% top-*k*). Our contributions include: (1) a taxonomy of MR deviations, (2) an AI-driven detection approach, and (3) empirical evidence of their impact on ML-based review analytics. This work aids practitioners in optimizing review efforts and ensuring reliable insights.
♻ ☆ SAFEFLOW: A Principled Protocol for Trustworthy and Transactional Autonomous Agent Systems
Recent advances in large language models (LLMs) and vision-language models (VLMs) have enabled powerful autonomous agents capable of complex reasoning and multi-modal tool use. Despite their growing capabilities, today's agent frameworks remain fragile, lacking principled mechanisms for secure information flow, reliability, and multi-agent coordination. In this work, we introduce SAFEFLOW, a new protocol-level framework for building trustworthy LLM/VLM-based agents. SAFEFLOW enforces fine-grained information flow control (IFC), precisely tracking provenance, integrity, and confidentiality of all the data exchanged between agents, tools, users, and environments. By constraining LLM reasoning to respect these security labels, SAFEFLOW prevents untrusted or adversarial inputs from contaminating high-integrity decisions. To ensure robustness in concurrent multi-agent settings, SAFEFLOW introduces transactional execution, conflict resolution, and secure scheduling over shared state, preserving global consistency across agents. We further introduce mechanisms, including write-ahead logging, rollback, and secure caches, that further enhance resilience against runtime errors and policy violations. To validate the performances, we built SAFEFLOWBENCH, a comprehensive benchmark suite designed to evaluate agent reliability under adversarial, noisy, and concurrent operational conditions. Extensive experiments demonstrate that agents built with SAFEFLOW maintain impressive task performance and security guarantees even in hostile environments, substantially outperforming state-of-the-art. Together, SAFEFLOW and SAFEFLOWBENCH lay the groundwork for principled, robust, and secure agent ecosystems, advancing the frontier of reliable autonomy.
comment: Former versions either contain unrelated content or cannot be properly converted to PDF
♻ ☆ The Causal Information Bottleneck and Optimal Causal Variable Abstractions UAI 2025
To effectively study complex causal systems, it is often useful to construct abstractions of parts of the system by discarding irrelevant details while preserving key features. The Information Bottleneck (IB) method is a widely used approach to construct variable abstractions by compressing random variables while retaining predictive power over a target variable. Traditional methods like IB are purely statistical and ignore underlying causal structures, making them ill-suited for causal tasks. We propose the Causal Information Bottleneck (CIB), a causal extension of the IB, which compresses a set of chosen variables while maintaining causal control over a target variable. This method produces abstractions of (sets of) variables which are causally interpretable, give us insight about the interactions between the abstracted variables and the target variable, and can be used when reasoning about interventions. We present experimental results demonstrating that the learned abstractions accurately capture causal relations as intended.
comment: Accepted at UAI 2025. Code available at github.com/francisco-simoes/cib-optimization-psagd
♻ ☆ Societal AI Research Has Become Less Interdisciplinary
As artificial intelligence (AI) systems become deeply embedded in everyday life, calls to align AI development with ethical and societal values have intensified. Interdisciplinary collaboration is often championed as a key pathway for fostering such engagement. Yet it remains unclear whether interdisciplinary research teams are actually leading this shift in practice. This study analyzes over 100,000 AI-related papers published on ArXiv between 2014 and 2024 to examine how ethical values and societal concerns are integrated into technical AI research. We develop a classifier to identify societal content and measure the extent to which research papers express these considerations. We find a striking shift: while interdisciplinary teams remain more likely to produce societally-oriented research, computer science-only teams now account for a growing share of the field's overall societal output. These teams are increasingly integrating societal concerns into their papers and tackling a wide range of domains - from fairness and safety to healthcare and misinformation. These findings challenge common assumptions about the drivers of societal AI and raise important questions. First, what are the implications for emerging understandings of AI safety and governance if most societally-oriented research is being undertaken by exclusively technical teams? Second, for scholars in the social sciences and humanities: in a technical field increasingly responsive to societal demands, what distinctive perspectives can we still offer to help shape the future of AI?
♻ ☆ Geometric deep learning for local growth prediction on abdominal aortic aneurysm surfaces
Abdominal aortic aneurysms (AAAs) are progressive focal dilatations of the abdominal aorta. AAAs may rupture, with a survival rate of only 20\%. Current clinical guidelines recommend elective surgical repair when the maximum AAA diameter exceeds 55 mm in men or 50 mm in women. Patients that do not meet these criteria are periodically monitored, with surveillance intervals based on the maximum AAA diameter. However, this diameter does not take into account the complex relation between the 3D AAA shape and its growth, making standardized intervals potentially unfit. Personalized AAA growth predictions could improve monitoring strategies. We propose to use an SE(3)-symmetric transformer model to predict AAA growth directly on the vascular model surface enriched with local, multi-physical features. In contrast to other works which have parameterized the AAA shape, this representation preserves the vascular surface's anatomical structure and geometric fidelity. We train our model using a longitudinal dataset of 113 computed tomography angiography (CTA) scans of 24 AAA patients at irregularly sampled intervals. After training, our model predicts AAA growth to the next scan moment with a median diameter error of 1.18 mm. We further demonstrate our model's utility to identify whether a patient will become eligible for elective repair within two years (acc = 0.93). Finally, we evaluate our model's generalization on an external validation set consisting of 25 CTAs from 7 AAA patients from a different hospital. Our results show that local directional AAA growth prediction from the vascular surface is feasible and may contribute to personalized surveillance strategies.
♻ ☆ On the Privacy Risks of Spiking Neural Networks: A Membership Inference Analysis
Spiking Neural Networks (SNNs) are increasingly explored for their energy efficiency and robustness in real-world applications, yet their privacy risks remain largely unexamined. In this work, we investigate the susceptibility of SNNs to Membership Inference Attacks (MIAs) -- a major privacy threat where an adversary attempts to determine whether a given sample was part of the training dataset. While prior work suggests that SNNs may offer inherent robustness due to their discrete, event-driven nature, we find that its resilience diminishes as latency (T) increases. Furthermore, we introduce an input dropout strategy under black box setting, that significantly enhances membership inference in SNNs. Our findings challenge the assumption that SNNs are inherently more secure, and even though they are expected to be better, our results reveal that SNNs exhibit privacy vulnerabilities that are equally comparable to Artificial Neural Networks (ANNs). Our code is available at https://github.com/sharmaabhijith/MIA_SNN.
comment: 14 pages, 6 figures
♻ ☆ Auto-Regressive vs Flow-Matching: a Comparative Study of Modeling Paradigms for Text-to-Music Generation
Recent progress in text-to-music generation has enabled models to synthesize high-quality musical segments, full compositions, and even respond to fine-grained control signals, e.g. chord progressions. State-of-the-art (SOTA) systems differ significantly across many dimensions, such as training datasets, modeling paradigms, and architectural choices. This diversity complicates efforts to evaluate models fairly and pinpoint which design choices most influence performance. While factors like data and architecture are important, in this study we focus exclusively on the modeling paradigm. We conduct a systematic empirical analysis to isolate its effects, offering insights into associated trade-offs and emergent behaviors that can guide future text-to-music generation systems. Specifically, we compare the two arguably most common modeling paradigms: Auto-Regressive decoding and Conditional Flow-Matching. We conduct a controlled comparison by training all models from scratch using identical datasets, training configurations, and similar backbone architectures. Performance is evaluated across multiple axes, including generation quality, robustness to inference configurations, scalability, adherence to both textual and temporally aligned conditioning, and editing capabilities in the form of audio inpainting. This comparative study sheds light on distinct strengths and limitations of each paradigm, providing actionable insights that can inform future architectural and training decisions in the evolving landscape of text-to-music generation. Audio sampled examples are available at: https://huggingface.co/spaces/ortal1602/ARvsFM
♻ ☆ KP-PINNs: Kernel Packet Accelerated Physics Informed Neural Networks IJCAI 2025
Differential equations are involved in modeling many engineering problems. Many efforts have been devoted to solving differential equations. Due to the flexibility of neural networks, Physics Informed Neural Networks (PINNs) have recently been proposed to solve complex differential equations and have demonstrated superior performance in many applications. While the L2 loss function is usually a default choice in PINNs, it has been shown that the corresponding numerical solution is incorrect and unstable for some complex equations. In this work, we propose a new PINNs framework named Kernel Packet accelerated PINNs (KP-PINNs), which gives a new expression of the loss function using the reproducing kernel Hilbert space (RKHS) norm and uses the Kernel Packet (KP) method to accelerate the computation. Theoretical results show that KP-PINNs can be stable across various differential equations. Numerical experiments illustrate that KP-PINNs can solve differential equations effectively and efficiently. This framework provides a promising direction for improving the stability and accuracy of PINNs-based solvers in scientific computing.
comment: Accepted to IJCAI 2025
♻ ☆ Phonology-Guided Speech-to-Speech Translation for African Languages
We present a prosody-guided framework for speech-to-speech translation (S2ST) that aligns and translates speech \emph{without} transcripts by leveraging cross-linguistic pause synchrony. Analyzing a 6{,}000-hour East African news corpus spanning five languages, we show that \emph{within-phylum} language pairs exhibit 30--40\% lower pause variance and over 3$\times$ higher onset/offset correlation compared to cross-phylum pairs. These findings motivate \textbf{SPaDA}, a dynamic-programming alignment algorithm that integrates silence consistency, rate synchrony, and semantic similarity. SPaDA improves alignment $F_1$ by +3--4 points and eliminates up to 38\% of spurious matches relative to greedy VAD baselines. Using SPaDA-aligned segments, we train \textbf{SegUniDiff}, a diffusion-based S2ST model guided by \emph{external gradients} from frozen semantic and speaker encoders. SegUniDiff matches an enhanced cascade in BLEU (30.3 on CVSS-C vs.\ 28.9 for UnitY), reduces speaker error rate (EER) from 12.5\% to 5.3\%, and runs at an RTF of 1.02. To support evaluation in low-resource settings, we also release a three-tier, transcript-free BLEU suite (M1--M3) that correlates strongly with human judgments. Together, our results show that prosodic cues in multilingual speech provide a reliable scaffold for scalable, non-autoregressive S2ST.
♻ ☆ Teaching Physical Awareness to LLMs through Sounds ICML 2025
Large Language Models (LLMs) have shown remarkable capabilities in text and multimodal processing, yet they fundamentally lack physical awareness--understanding of real-world physical phenomena. In this work, we present ACORN, a framework that teaches LLMs physical awareness through sound, focusing on fundamental physical phenomena like the Doppler effect, multipath effect, and spatial relationships. To overcome data scarcity, ACORN introduce a physics-based simulator combining real-world sound sources with controlled physical channels to generate diverse training data. Using this simulator, we build AQA-PHY, a comprehensive Audio Question-Answer dataset, and propose an audio encoder that processes both magnitude and phase information. By connecting our audio encoder to state-of-the-art LLMs, we demonstrate reasonable results in both simulated and real-world tasks, such as line-of-sight detection, Doppler effect estimation, and Direction-of-Arrival estimation, paving the way for enabling LLMs to understand physical world.
comment: ICML 2025
♻ ☆ Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in understanding common visual elements, largely due to their large-scale datasets and advanced training strategies. However, their effectiveness in medical applications remains limited due to the inherent discrepancies between data and tasks in medical scenarios and those in the general domain. Concretely, existing medical MLLMs face the following critical limitations: (1) limited coverage of medical knowledge beyond imaging, (2) heightened susceptibility to hallucinations due to suboptimal data curation processes, (3) lack of reasoning capabilities tailored for complex medical scenarios. To address these challenges, we first propose a comprehensive data curation procedure that (1) efficiently acquires rich medical knowledge data not only from medical imaging but also from extensive medical texts and general-domain data; and (2) synthesizes accurate medical captions, visual question answering (VQA), and reasoning samples. As a result, we build a multimodal dataset enriched with extensive medical knowledge. Building on the curated data, we introduce our medical-specialized MLLM: Lingshu. Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities progressively. Besides, we preliminarily explore the potential of applying reinforcement learning with verifiable rewards paradigm to enhance Lingshu's medical reasoning ability. Additionally, we develop MedEvalKit, a unified evaluation framework that consolidates leading multimodal and textual medical benchmarks for standardized, fair, and efficient model assessment. We evaluate the performance of Lingshu on three fundamental medical tasks, multimodal QA, text-based QA, and medical report generation. The results show that Lingshu consistently outperforms the existing open-source multimodal models on most tasks ...
comment: Technical Report, 53 pages, 25 tables, and 16 figures
♻ ☆ MoE-MLoRA for Multi-Domain CTR Prediction: Efficient Adaptation with Expert Specialization
Personalized recommendation systems must adapt to user interactions across different domains. Traditional approaches like MLoRA apply a single adaptation per domain but lack flexibility in handling diverse user behaviors. To address this, we propose MoE-MLoRA, a mixture-of-experts framework where each expert is first trained independently to specialize in its domain before a gating network is trained to weight their contributions dynamically. We evaluate MoE-MLoRA across eight CTR models on Movielens and Taobao, showing that it improves performance in large-scale, dynamic datasets (+1.45 Weighed-AUC in Taobao-20) but offers limited benefits in structured datasets with low domain diversity and sparsity. Further analysis of the number of experts per domain reveals that larger ensembles do not always improve performance, indicating the need for model-aware tuning. Our findings highlight the potential of expert-based architectures for multi-domain recommendation systems, demonstrating that task-aware specialization and adaptive gating can enhance predictive accuracy in complex environments. The implementation and code are available in our GitHub repository.
♻ ☆ Human-like object concept representations emerge naturally in multimodal large language models
Understanding how humans conceptualize and categorize natural objects offers critical insights into perception and cognition. With the advent of Large Language Models (LLMs), a key question arises: can these models develop human-like object representations from linguistic and multimodal data? In this study, we combined behavioral and neuroimaging analyses to explore the relationship between object concept representations in LLMs and human cognition. We collected 4.7 million triplet judgments from LLMs and Multimodal LLMs (MLLMs) to derive low-dimensional embeddings that capture the similarity structure of 1,854 natural objects. The resulting 66-dimensional embeddings were stable, predictive, and exhibited semantic clustering similar to human mental representations. Remarkably, the dimensions underlying these embeddings were interpretable, suggesting that LLMs and MLLMs develop human-like conceptual representations of objects. Further analysis showed strong alignment between model embeddings and neural activity patterns in brain regions such as EBA, PPA, RSC, and FFA. This provides compelling evidence that the object representations in LLMs, while not identical to human ones, share fundamental similarities that reflect key aspects of human conceptual knowledge. Our findings advance the understanding of machine intelligence and inform the development of more human-like artificial cognitive systems.
comment: Published on Nature Machine Intelligence
♻ ☆ SHIELD: Multi-task Multi-distribution Vehicle Routing Solver with Sparsity and Hierarchy ICML
Recent advances toward foundation models for routing problems have shown great potential of a unified deep model for various VRP variants. However, they overlook the complex real-world customer distributions. In this work, we advance the Multi-Task VRP (MTVRP) setting to the more realistic yet challenging Multi-Task Multi-Distribution VRP (MTMDVRP) setting, and introduce SHIELD, a novel model that leverages both sparsity and hierarchy principles. Building on a deeper decoder architecture, we first incorporate the Mixture-of-Depths (MoD) technique to enforce sparsity. This improves both efficiency and generalization by allowing the model to dynamically select nodes to use or skip each decoder layer, providing the needed capacity to adaptively allocate computation for learning the task/distribution specific and shared representations. We also develop a context-based clustering layer that exploits the presence of hierarchical structures in the problems to produce better local representations. These two designs inductively bias the network to identify key features that are common across tasks and distributions, leading to significantly improved generalization on unseen ones. Our empirical results demonstrate the superiority of our approach over existing methods on 9 real-world maps with 16 VRP variants each.
comment: Accepted in the 42nd International Conference of Machine Learning (ICML)
♻ ☆ Transforming Expert Knowledge into Scalable Ontology via Large Language Models
Having a unified, coherent taxonomy is essential for effective knowledge representation in domain-specific applications as diverse terminologies need to be mapped to underlying concepts. Traditional manual approaches to taxonomy alignment rely on expert review of concept pairs, but this becomes prohibitively expensive and time-consuming at scale, while subjective interpretations often lead to expert disagreements. Existing automated methods for taxonomy alignment have shown promise but face limitations in handling nuanced semantic relationships and maintaining consistency across different domains. These approaches often struggle with context-dependent concept mappings and lack transparent reasoning processes. We propose a novel framework that combines large language models (LLMs) with expert calibration and iterative prompt optimization to automate taxonomy alignment. Our method integrates expert-labeled examples, multi-stage prompt engineering, and human validation to guide LLMs in generating both taxonomy linkages and supporting rationales. In evaluating our framework on a domain-specific mapping task of concept essentiality, we achieved an F1-score of 0.97, substantially exceeding the human benchmark of 0.68. These results demonstrate the effectiveness of our approach in scaling taxonomy alignment while maintaining high-quality mappings and preserving expert oversight for ambiguous cases.
♻ ☆ TACTIC: Translation Agents with Cognitive-Theoretic Interactive Collaboration
Machine translation has long been a central task in natural language processing. With the rapid advancement of large language models (LLMs), there has been remarkable progress in translation quality. However, fully realizing the translation potential of LLMs remains an open challenge. Recent studies have explored multi-agent systems to decompose complex translation tasks into collaborative subtasks, showing initial promise in enhancing translation quality through agent cooperation and specialization. Nevertheless, existing multi-agent translation frameworks largely neglect foundational insights from cognitive translation studies. These insights emphasize how human translators employ different cognitive strategies, such as balancing literal and free translation, refining expressions based on context, and iteratively evaluating outputs. To address this limitation, we propose a cognitively informed multi-agent framework called TACTIC, which stands for T ranslation A gents with Cognitive- T heoretic Interactive Collaboration. The framework comprises six functionally distinct agents that mirror key cognitive processes observed in human translation behavior. These include agents for drafting, refinement, evaluation, scoring, context reasoning, and external knowledge gathering. By simulating an interactive and theory-grounded translation workflow, TACTIC effectively leverages the full capacity of LLMs for high-quality translation. Experimental results on diverse language pairs from the FLORES-200 and WMT24 benchmarks show that our method consistently achieves state-of-the-art performance. Using DeepSeek-V3 as the base model, TACTIC surpasses GPT-4.1 by an average of +0.6 XCOMET and +1.18 COMETKIWI-23. Compared to DeepSeek-R1, it further improves by +0.84 XCOMET and +2.99 COMETKIWI-23. Code is available at https://github.com/weiyali126/TACTIC.
comment: 20 pages, 4 figures, Under review. Code: https://github.com/weiyali126/TACTIC
♻ ☆ SafeCoT: Improving VLM Safety with Minimal Reasoning
Ensuring safe and appropriate responses from vision-language models (VLMs) remains a critical challenge, particularly in high-risk or ambiguous scenarios. We introduce SafeCoT, a lightweight, interpretable framework that leverages rule-based chain-of-thought (CoT) supervision to improve refusal behavior in VLMs. Unlike prior methods that rely on large-scale safety annotations or complex modeling, SafeCoT uses minimal supervision to help models reason about safety risks and make context-aware refusals. Experiments across multiple benchmarks show that SafeCoT significantly reduces overrefusal and enhances generalization, even with limited training data. Our approach offers a scalable solution for aligning VLMs with safety-critical objectives.
♻ ☆ Auditing Black-Box LLM APIs with a Rank-Based Uniformity Test
As API access becomes a primary interface to large language models (LLMs), users often interact with black-box systems that offer little transparency into the deployed model. To reduce costs or maliciously alter model behaviors, API providers may discreetly serve quantized or fine-tuned variants, which can degrade performance and compromise safety. Detecting such substitutions is difficult, as users lack access to model weights and, in most cases, even output logits. To tackle this problem, we propose a rank-based uniformity test that can verify the behavioral equality of a black-box LLM to a locally deployed authentic model. Our method is accurate, query-efficient, and avoids detectable query patterns, making it robust to adversarial providers that reroute or mix responses upon the detection of testing attempts. We evaluate the approach across diverse threat scenarios, including quantization, harmful fine-tuning, jailbreak prompts, and full model substitution, showing that it consistently achieves superior statistical power over prior methods under constrained query budgets.
♻ ☆ Your Agent Can Defend Itself against Backdoor Attacks
Despite their growing adoption across domains, large language model (LLM)-powered agents face significant security risks from backdoor attacks during training and fine-tuning. These compromised agents can subsequently be manipulated to execute malicious operations when presented with specific triggers in their inputs or environments. To address this pressing risk, we present ReAgent, a novel defense against a range of backdoor attacks on LLM-based agents. Intuitively, backdoor attacks often result in inconsistencies among the user's instruction, the agent's planning, and its execution. Drawing on this insight, ReAgent employs a two-level approach to detect potential backdoors. At the execution level, ReAgent verifies consistency between the agent's thoughts and actions; at the planning level, ReAgent leverages the agent's capability to reconstruct the instruction based on its thought trajectory, checking for consistency between the reconstructed instruction and the user's instruction. Extensive evaluation demonstrates ReAgent's effectiveness against various backdoor attacks across tasks. For instance, ReAgent reduces the attack success rate by up to 90\% in database operation tasks, outperforming existing defenses by large margins. This work reveals the potential of utilizing compromised agents themselves to mitigate backdoor risks.
♻ ☆ Value Portrait: Assessing Language Models' Values through Psychometrically and Ecologically Valid Items ACL 2025
The importance of benchmarks for assessing the values of language models has been pronounced due to the growing need of more authentic, human-aligned responses. However, existing benchmarks rely on human or machine annotations that are vulnerable to value-related biases. Furthermore, the tested scenarios often diverge from real-world contexts in which models are commonly used to generate text and express values. To address these issues, we propose the Value Portrait benchmark, a reliable framework for evaluating LLMs' value orientations with two key characteristics. First, the benchmark consists of items that capture real-life user-LLM interactions, enhancing the relevance of assessment results to real-world LLM usage. Second, each item is rated by human subjects based on its similarity to their own thoughts, and correlations between these ratings and the subjects' actual value scores are derived. This psychometrically validated approach ensures that items strongly correlated with specific values serve as reliable items for assessing those values. Through evaluating 44 LLMs with our benchmark, we find that these models prioritize Benevolence, Security, and Self-Direction values while placing less emphasis on Tradition, Power, and Achievement values. Also, our analysis reveals biases in how LLMs perceive various demographic groups, deviating from real human data.
comment: This paper has been accepted for publication at ACL 2025
Monte Carlo Tree Diffusion for System 2 Planning ICML 2025
Diffusion models have recently emerged as a powerful tool for planning. However, unlike Monte Carlo Tree Search (MCTS)-whose performance naturally improves with inference-time computation scaling-standard diffusion-based planners offer only limited avenues for the scalability. In this paper, we introduce Monte Carlo Tree Diffusion (MCTD), a novel framework that integrates the generative strength of diffusion models with the adaptive search capabilities of MCTS. Our method reconceptualizes denoising as a tree-structured process, allowing partially denoised plans to be iteratively evaluated, pruned, and refined. By selectively expanding promising trajectories while retaining the flexibility to revisit and improve suboptimal branches, MCTD achieves the benefits of MCTS such as controlling exploration-exploitation trade-offs within the diffusion framework. Empirical results on challenging long-horizon tasks show that MCTD outperforms diffusion baselines, yielding higher-quality solutions as inference-time computation increases.
comment: 23 pages, 7 figures, ICML 2025 Main Track Spotlight
♻ ☆ Learnable Spatial-Temporal Positional Encoding for Link Prediction ICML 2025
Accurate predictions rely on the expressiveness power of graph deep learning frameworks like graph neural networks and graph transformers, where a positional encoding mechanism has become much more indispensable in recent state-of-the-art works to record the canonical position information. However, the current positional encoding is limited in three aspects: (1) most positional encoding methods use pre-defined, and fixed functions, which are inadequate to adapt to the complex attributed graphs; (2) a few pioneering works proposed the learnable positional encoding but are still limited to the structural information, not considering the real-world time-evolving topological and feature information; (3) most positional encoding methods are equipped with transformers' attention mechanism to fully leverage their capabilities, where the dense or relational attention is often unaffordable on large-scale structured data. Hence, we aim to develop Learnable Spatial-Temporal Positional Encoding in an effective and efficient manner and propose a simple temporal link prediction model named L-STEP. Briefly, for L-STEP, we (1) prove the proposed positional learning scheme can preserve the graph property from the spatial-temporal spectral viewpoint, (2) verify that MLPs can fully exploit the expressiveness and reach transformers' performance on that encoding, (3) change different initial positional encoding inputs to show robustness, (4) analyze the theoretical complexity and obtain less empirical running time than SOTA, and (5) demonstrate its temporal link prediction out-performance on 13 classic datasets and with 10 algorithms in both transductive and inductive settings using 3 different sampling strategies. Also, L-STEP obtains the leading performance in the newest large-scale TGB benchmark. Our code is available at https://github.com/kthrn22/L-STEP.
comment: Accepted by ICML 2025. 28 pages, 1 figures, 22 tables
♻ ☆ BASIL: Best-Action Symbolic Interpretable Learning for Evolving Compact RL Policies
The quest for interpretable reinforcement learning is a grand challenge for the deployment of autonomous decision-making systems in safety-critical applications. Modern deep reinforcement learning approaches, while powerful, tend to produce opaque policies that compromise verification, reduce transparency, and impede human oversight. To address this, we introduce BASIL (Best-Action Symbolic Interpretable Learning), a systematic approach for generating symbolic, rule-based policies via online evolutionary search with quality-diversity (QD) optimization. BASIL represents policies as ordered lists of symbolic predicates over state variables, ensuring full interpretability and tractable policy complexity. By using a QD archive, the methodology in the proposed study encourages behavioral and structural diversity between top-performing solutions, while a complexity-aware fitness encourages the synthesis of compact representations. The evolutionary system supports the use of exact constraints for rule count and system adaptability for balancing transparency with expressiveness. Empirical comparisons with three benchmark tasks CartPole-v1, MountainCar-v0, and Acrobot-v1 show that BASIL consistently synthesizes interpretable controllers with compact representations comparable to deep reinforcement learning baselines. Herein, this article introduces a new interpretable policy synthesis method that combines symbolic expressiveness, evolutionary diversity, and online learning through a unifying framework.
♻ ☆ Accelerating LLM Inference with Lossless Speculative Decoding Algorithms for Heterogeneous Vocabularies ICML'25
Accelerating the inference of large language models (LLMs) is a critical challenge in generative AI. Speculative decoding (SD) methods offer substantial efficiency gains by generating multiple tokens using a single target forward pass. However, existing SD approaches require the drafter and target models to share the same vocabulary, thus limiting the pool of possible drafters, often necessitating the training of a drafter from scratch. We present three new SD methods that remove this shared-vocabulary constraint. All three methods preserve the target distribution (i.e., they are lossless) and work with off-the-shelf models without requiring additional training or modifications. Empirically, on summarization, programming, and long-context tasks, our algorithms demonstrate significant speedups of up to 2.8x over standard autoregressive decoding. By enabling any off-the-shelf model to serve as a drafter and requiring no retraining, this work substantially broadens the applicability of the SD framework in practice.
comment: ICML'25 Oral (top %1)
♻ ☆ Unable to Forget: Proactive lnterference Reveals Working Memory Limits in LLMs Beyond Context Length
Information retrieval in Large Language Models (LLMs) is increasingly recognized as intertwined with generation capabilities rather than mere lookup. While longer contexts are often assumed to improve retrieval, the effects of intra-context interference remain understudied. To address this, we adapt the proactive interference (PI) paradigm from cognitive science, where earlier information disrupts recall of newer updates. In humans, susceptibility to such interference is inversely linked to working memory capacity. We introduce PI-LLM, an evaluation that sequentially streams semantically related key-value updates and queries only the final values. Although these final values are clearly positioned just before the query, LLM retrieval accuracy declines log-linearly toward zero as interference accumulates; errors arise from retrieving previously overwritten values. Attempts to mitigate interference via prompt engineering (e.g., instructing models to ignore earlier input) yield limited success. These findings reveal a fundamental constraint on LLMs' ability to disentangle interference and flexibly manipulate information, suggesting a working memory bottleneck beyond mere context access. This calls for approaches that strengthen models' ability to suppress irrelevant content during retrieval.
♻ ☆ IGraSS: Learning to Identify Infrastructure Networks from Satellite Imagery by Iterative Graph-constrained Semantic Segmentation
Accurate canal network mapping is essential for water management, including irrigation planning and infrastructure maintenance. State-of-the-art semantic segmentation models for infrastructure mapping, such as roads, rely on large, well-annotated remote sensing datasets. However, incomplete or inadequate ground truth can hinder these learning approaches. Many infrastructure networks have graph-level properties such as reachability to a source (like canals) or connectivity (roads) that can be leveraged to improve these existing ground truth. This paper develops a novel iterative framework IGraSS, combining a semantic segmentation module-incorporating RGB and additional modalities (NDWI, DEM)-with a graph-based ground-truth refinement module. The segmentation module processes satellite imagery patches, while the refinement module operates on the entire data viewing the infrastructure network as a graph. Experiments show that IGraSS reduces unreachable canal segments from around 18% to 3%, and training with refined ground truth significantly improves canal identification. IGraSS serves as a robust framework for both refining noisy ground truth and mapping canal networks from remote sensing imagery. We also demonstrate the effectiveness and generalizability of IGraSS using road networks as an example, applying a different graph-theoretic constraint to complete road networks.
♻ ☆ Is Long Context All You Need? Leveraging LLM's Extended Context for NL2SQL VLDB 2025
Large Language Models (LLMs) have demonstrated impressive capabilities across a range of natural language processing tasks. In particular, improvements in reasoning abilities and the expansion of context windows have opened new avenues for leveraging these powerful models. NL2SQL is challenging in that the natural language question is inherently ambiguous, while the SQL generation requires a precise understanding of complex data schema and semantics. One approach to this semantic ambiguous problem is to provide more and sufficient contextual information. In this work, we explore the performance and the latency trade-offs of the extended context window (a.k.a., long context) offered by Google's state-of-the-art LLM (\textit{gemini-1.5-pro}). We study the impact of various contextual information, including column example values, question and SQL query pairs, user-provided hints, SQL documentation, and schema. To the best of our knowledge, this is the first work to study how the extended context window and extra contextual information can help NL2SQL generation with respect to both accuracy and latency cost. We show that long context LLMs are robust and do not get lost in the extended contextual information. Additionally, our long-context NL2SQL pipeline based on Google's \textit{gemini-pro-1.5} achieve strong performances on various benchmark datasets without finetuning and expensive self-consistency based techniques.
comment: 13 pages, 6 figures, VLDB 2025
♻ ☆ TerraMind: Large-Scale Generative Multimodality for Earth Observation
We present TerraMind, the first any-to-any generative, multimodal foundation model for Earth observation (EO). Unlike other multimodal models, TerraMind is pretrained on dual-scale representations combining both token-level and pixel-level data across modalities. On a token level, TerraMind encodes high-level contextual information to learn cross-modal relationships, while on a pixel level, TerraMind leverages fine-grained representations to capture critical spatial nuances. We pretrained TerraMind on nine geospatial modalities of a global, large-scale dataset. In this paper, we demonstrate that (i) TerraMind's dual-scale early fusion approach unlocks a range of zero-shot and few-shot applications for Earth observation, (ii) TerraMind introduces "Thinking-in-Modalities" (TiM) -- the capability of generating additional artificial data during finetuning and inference to improve the model output -- and (iii) TerraMind achieves beyond state-of-the-art performance in community-standard benchmarks for EO like PANGAEA. The pretraining dataset, the model weights, and our code are open-sourced under a permissive license.
♻ ☆ Trustworthy AI: Safety, Bias, and Privacy -- A Survey
The capabilities of artificial intelligence systems have been advancing to a great extent, but these systems still struggle with failure modes, vulnerabilities, and biases. In this paper, we study the current state of the field, and present promising insights and perspectives regarding concerns that challenge the trustworthiness of AI models. In particular, this paper investigates the issues regarding three thrusts: safety, privacy, and bias, which hurt models' trustworthiness. For safety, we discuss safety alignment in the context of large language models, preventing them from generating toxic or harmful content. For bias, we focus on spurious biases that can mislead a network. Lastly, for privacy, we cover membership inference attacks in deep neural networks. The discussions addressed in this paper reflect our own experiments and observations.
♻ ☆ Lost in Sequence: Do Large Language Models Understand Sequential Recommendation? KDD 2025
Large Language Models (LLMs) have recently emerged as promising tools for recommendation thanks to their advanced textual understanding ability and context-awareness. Despite the current practice of training and evaluating LLM-based recommendation (LLM4Rec) models under a sequential recommendation scenario, we found that whether these models understand the sequential information inherent in users' item interaction sequences has been largely overlooked. In this paper, we first demonstrate through a series of experiments that existing LLM4Rec models do not fully capture sequential information both during training and inference. Then, we propose a simple yet effective LLM-based sequential recommender, called LLM-SRec, a method that enhances the integration of sequential information into LLMs by distilling the user representations extracted from a pre-trained CF-SRec model into LLMs. Our extensive experiments show that LLM-SRec enhances LLMs' ability to understand users' item interaction sequences, ultimately leading to improved recommendation performance. Furthermore, unlike existing LLM4Rec models that require fine-tuning of LLMs, LLM-SRec achieves state-of-the-art performance by training only a few lightweight MLPs, highlighting its practicality in real-world applications. Our code is available at https://github.com/Sein-Kim/LLM-SRec.
comment: KDD 2025 Research Track
♻ ☆ Gradient Aligned Regression via Pairwise Losses ICML 2025
Regression is a fundamental task in machine learning that has garnered extensive attention over the past decades. The conventional approach for regression involves employing loss functions that primarily concentrate on aligning model prediction with the ground truth for each individual data sample. Recent research endeavors have introduced novel perspectives by incorporating label similarity to regression via imposing extra pairwise regularization on the latent feature space and demonstrated the effectiveness. However, there are two drawbacks for those approaches: i) their pairwise operation in latent feature space is computationally more expensive than conventional regression losses; ii) it lacks of theoretical justifications behind such regularization. In this work, we propose GAR (Gradient Aligned Regression) as a competitive alternative method in label space, which is constituted by a conventional regression loss and two pairwise label difference losses for gradient alignment including magnitude and direction. GAR enjoys: i) the same level efficiency as conventional regression loss because the quadratic complexity for the proposed pairwise losses can be reduced to linear complexity; ii) theoretical insights from learning the pairwise label difference to learning the gradient of the ground truth function. We limit our current scope as regression on the clean data setting without noises, outliers or distributional shifts, etc. We demonstrate the effectiveness of the proposed method practically on two synthetic datasets and on eight extensive real-world tasks from six benchmark datasets with other eight competitive baselines. Running time experiments demonstrate the superior efficiency of the proposed GAR over existing methods with pairwise regularization in latent feature space and ablation studies demonstrate the effectiveness of each component for GAR.
comment: ICML 2025; 23 pages, 12 figures, 7 tables
♻ ☆ Griffin: Towards a Graph-Centric Relational Database Foundation Model ICML 2025
We introduce Griffin, the first foundation model attemptation designed specifically for Relational Databases (RDBs). Unlike previous smaller models focused on single RDB tasks, Griffin unifies the data encoder and task decoder to handle diverse tasks. Additionally, we enhance the architecture by incorporating a cross-attention module and a novel aggregator. Griffin utilizes pretraining on both single-table and RDB datasets, employing advanced encoders for categorical, numerical, and metadata features, along with innovative components such as cross-attention modules and enhanced message-passing neural networks (MPNNs) to capture the complexities of relational data. Evaluated on large-scale, heterogeneous, and temporal graphs extracted from RDBs across various domains (spanning over 150 million nodes), Griffin demonstrates superior or comparable performance to individually trained models, excels in low-data scenarios, and shows strong transferability with similarity and diversity in pretraining across new datasets and tasks, highlighting its potential as a universally applicable foundation model for RDBs. Code available at https://github.com/yanxwb/Griffin.
comment: Published at ICML 2025
♻ ☆ Language Models Resist Alignment: Evidence From Data Compression ACL2025
Large language models (LLMs) may exhibit unintended or undesirable behaviors. Recent works have concentrated on aligning LLMs to mitigate harmful outputs. Despite these efforts, some anomalies indicate that even a well-conducted alignment process can be easily circumvented, whether intentionally or accidentally. Does alignment fine-tuning yield have robust effects on models, or are its impacts merely superficial? In this work, we make the first exploration of this phenomenon from both theoretical and empirical perspectives. Empirically, we demonstrate the $\mathbf{elasticity}$ of post-alignment models, i.e., the tendency to revert to the behavior distribution formed during the pre-training phase upon further fine-tuning. Leveraging compression theory, we formally deduce that fine-tuning disproportionately undermines alignment relative to pre-training, potentially by orders of magnitude. We validate the presence of elasticity through experiments on models of varying types and scales. Specifically, we find that model performance declines rapidly before reverting to the pre-training distribution, after which the rate of decline drops significantly. Furthermore, we further reveal that elasticity positively correlates with the increased model size and the expansion of pre-training data. Our findings underscore the need to address the inherent elasticity of LLMs to mitigate their resistance to alignment. The model weight and code are available at pku-lm-resist-alignment.github.io.
comment: Accepted by ACL2025 Main
♻ ☆ 7B Fully Open Source Moxin-LLM/VLM -- From Pretraining to GRPO-based Reinforcement Learning Enhancement
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed, adhering to principles of open science, open source, open data, and open access. We release the pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints, aiming to make continuous commitments to fully open-source LLMs. After pre-training the base model, we finetune the Moxin Base model with SOTA post-training framework and instruction data to obtain Moxin Instruct model. To improve the reasoning capability, we further finetune our Instruct model with chain-of-thought data distilled from DeepSeek R1, and then use Group Relative Policy Optimization (GRPO) following DeepSeek R1 to finetune our model, leading to the Moxin Reasoning model. Moreover, we develop our vision language model based on our Moxin model. Experiments show that our models achieve superior performance in various evaluations such as zero-shot evaluation, few-shot evaluation, and CoT evaluation.
♻ ☆ Let's Fuse Step by Step: A Generative Fusion Decoding Algorithm with LLMs for Robust and Instruction-Aware ASR and OCR
We propose "Generative Fusion Decoding" (GFD), a novel shallow fusion framework designed to integrate large language models (LLMs) into cross-modal text recognition systems for automatic speech recognition (ASR) and optical character recognition (OCR). We derive the necessary formulations to enable GFD to operate across mismatched token spaces of different models by calculating likelihood at the byte level, thereby enabling seamless fusion and synchronous progression during the decoding process. GFD is plug-and-play by design, making it readily compatible with various auto-regressive models without the need for any re-training. GFD proves effective for general ASR and OCR tasks through intermediate and frequent interactions with LLMs, surpassing cascaded methods in English and Mandarin benchmarks. In addition, GFD transfers in-context learning abilities of LLMs and allows for adaptive ASR in instruction-aware and long-context settings, yielding significant WER reductions of up to 17.7\%.
♻ ☆ CaLMQA: Exploring culturally specific long-form question answering across 23 languages ACL 2025
Despite rising global usage of large language models (LLMs), their ability to generate long-form answers to culturally specific questions remains unexplored in many languages. To fill this gap, we perform the first study of textual multilingual long-form QA by creating CaLMQA, a dataset of 51.7K culturally specific questions across 23 different languages. We define culturally specific questions as those that refer to concepts unique to one or a few cultures, or have different answers depending on the cultural or regional context. We obtain these questions by crawling naturally-occurring questions from community web forums in high-resource languages, and by hiring native speakers to write questions in under-resourced, rarely-studied languages such as Fijian and Kirundi. Our data collection methodologies are translation-free, enabling the collection of culturally unique questions like "Kuber iki umwami wa mbere w'uburundi yitwa Ntare?" (Kirundi; English translation: "Why was the first king of Burundi called Ntare (Lion)?"). We evaluate factuality, relevance and surface-level quality of LLM-generated long-form answers, finding that (1) for many languages, even the best models make critical surface-level errors (e.g., answering in the wrong language, repetition), especially for low-resource languages; and (2) answers to culturally specific questions contain more factual errors than answers to culturally agnostic questions -- questions that have consistent meaning and answer across many cultures. We release CaLMQA to facilitate future research in cultural and multilingual long-form QA.
comment: 46 pages, 26 figures. Accepted as a main conference paper at ACL 2025. Code and data available at https://github.com/2015aroras/CaLMQA . Dataset expanded to 51.7K questions
♻ ☆ Discovering Forbidden Topics in Language Models
Refusal discovery is the task of identifying the full set of topics that a language model refuses to discuss. We introduce this new problem setting and develop a refusal discovery method, Iterated Prefill Crawler (IPC), that uses token prefilling to find forbidden topics. We benchmark IPC on Tulu-3-8B, an open-source model with public safety tuning data. Our crawler manages to retrieve 31 out of 36 topics within a budget of 1000 prompts. Next, we scale the crawler to a frontier model using the prefilling option of Claude-Haiku. Finally, we crawl three widely used open-weight models: Llama-3.3-70B and two of its variants finetuned for reasoning: DeepSeek-R1-70B and Perplexity-R1-1776-70B. DeepSeek-R1-70B reveals patterns consistent with censorship tuning: The model exhibits "thought suppression" behavior that indicates memorization of CCP-aligned responses. Although Perplexity-R1-1776-70B is robust to censorship, IPC elicits CCP-aligned refusals answers in the quantized model. Our findings highlight the critical need for refusal discovery methods to detect biases, boundaries, and alignment failures of AI systems.
♻ ☆ The Remarkable Robustness of LLMs: Stages of Inference?
We investigate the robustness of Large Language Models (LLMs) to structural interventions by deleting and swapping adjacent layers during inference. Surprisingly, models retain 72-95% of their original top-1 prediction accuracy without any fine-tuning. We find that performance degradation is not uniform across layers: interventions to the early and final layers cause the most degradation, while the model is remarkably robust to dropping middle layers. This pattern of localized sensitivity motivates our hypothesis of four stages of inference, observed across diverse model families and sizes: (1) detokenization, where local context is integrated to lift raw token embeddings into higher-level representations; (2) feature engineering, where task- and entity-specific features are iteratively refined; (3) prediction ensembling, where hidden states are aggregated into plausible next-token predictions; and (4) residual sharpening, where irrelevant features are suppressed to finalize the output distribution. Synthesizing behavioral and mechanistic evidence, we provide a framework for interpreting depth-dependent computations in LLMs.
comment: For Github code see https://github.com/vdlad/Remarkable-Robustness-of-LLMs. Send all correspondence to the first author
♻ ☆ Advancing Decoding Strategies: Enhancements in Locally Typical Sampling for LLMs
This chapter explores advancements in decoding strategies for large language models (LLMs), focusing on enhancing the Locally Typical Sampling (LTS) algorithm. Traditional decoding methods, such as top-k and nucleus sampling, often struggle to balance fluency, diversity, and coherence in text generation. To address these challenges, Adaptive Semantic-Aware Typicality Sampling (ASTS) is proposed as an improved version of LTS, incorporating dynamic entropy thresholding, multi-objective scoring, and reward-penalty adjustments. ASTS ensures contextually coherent and diverse text generation while maintaining computational efficiency. Its performance is evaluated across multiple benchmarks, including story generation and abstractive summarization, using metrics such as perplexity, MAUVE, and diversity scores. Experimental results demonstrate that ASTS outperforms existing sampling techniques by reducing repetition, enhancing semantic alignment, and improving fluency.
comment: This is the accepted but pre-reviewed version of the chapter that has been accepted for publication in the Springer volume 'Decision-Making in Computational Intelligence-Based Systems,' edited by Witold Pedrycz, Gilberto Rivera, Rose Ma Rodriguez, and Salvador Ibarra Martinez. The chapter is 39 pages long, and it contains 2 figures and 6 tables. This is NOT the final camera-ready version
♻ ☆ MindOmni: Unleashing Reasoning Generation in Vision Language Models with RGPO
Recent text-to-image systems face limitations in handling multimodal inputs and complex reasoning tasks. We introduce MindOmni, a unified multimodal large language model that addresses these challenges by incorporating reasoning generation through reinforcement learning. MindOmni leverages a three-phase training strategy: i) design of a unified vision language model with a decoder-only diffusion module, ii) supervised fine-tuning with Chain-of-Thought (CoT) instruction data, and iii) our proposed Reasoning Generation Policy Optimization (RGPO) algorithm, utilizing multimodal feedback to effectively guide policy updates. Experimental results demonstrate that MindOmni outperforms existing models, achieving impressive performance on both understanding and generation benchmarks, meanwhile showcasing advanced fine-grained reasoning generation capabilities, especially with mathematical reasoning instruction. All codes will be made public at https://github.com/TencentARC/MindOmni
comment: Code: https://github.com/TencentARC/MindOmni
♻ ☆ Conformal Prediction as Bayesian Quadrature ICML 2025
As machine learning-based prediction systems are increasingly used in high-stakes situations, it is important to understand how such predictive models will perform upon deployment. Distribution-free uncertainty quantification techniques such as conformal prediction provide guarantees about the loss black-box models will incur even when the details of the models are hidden. However, such methods are based on frequentist probability, which unduly limits their applicability. We revisit the central aspects of conformal prediction from a Bayesian perspective and thereby illuminate the shortcomings of frequentist guarantees. We propose a practical alternative based on Bayesian quadrature that provides interpretable guarantees and offers a richer representation of the likely range of losses to be observed at test time.
comment: ICML 2025 camera-ready version (accepted as an oral presentation). 16 pages, 4 figures. Code available at https://github.com/jakesnell/conformal-as-bayes-quad
♻ ☆ Product of Experts with LLMs: Boosting Performance on ARC Is a Matter of Perspective ICML 2025
The Abstraction and Reasoning Corpus (ARC-AGI) poses a significant challenge for large language models (LLMs), exposing limitations in their abstract reasoning abilities. In this work, we leverage task-specific data augmentations throughout the training, generation, and scoring phases, and employ a depth-first search algorithm to generate diverse, high-probability candidate solutions. Furthermore, we utilize the LLM not only as a generator but also as a scorer, using its output probabilities to select the most promising solutions. Our method achieves a score of 71.6% (286.5/400 solved tasks) on the public ARC-AGI evaluation set, demonstrating state-of-the-art performance among publicly available approaches. While concurrent closed-source work has reported higher scores, our method distinguishes itself through its transparency, reproducibility, and remarkably low inference cost, averaging only around 2ct per task on readily available hardware (we assume a price of 36ct/hour for a Nvidia 4090 GPU).
comment: ICML 2025 camera-ready; 15 pages, 6 figures, 5 tables
♻ ☆ Using Shapley interactions to understand how models use structure ACL 2025
Language is an intricately structured system, and a key goal of NLP interpretability is to provide methodological insights for understanding how language models represent this structure internally. In this paper, we use Shapley Taylor interaction indices (STII) in order to examine how language and speech models internally relate and structure their inputs. Pairwise Shapley interactions measure how much two inputs work together to influence model outputs beyond if we linearly added their independent influences, providing a view into how models encode structural interactions between inputs. We relate the interaction patterns in models to three underlying linguistic structures: syntactic structure, non-compositional semantics, and phonetic coarticulation. We find that autoregressive text models encode interactions that correlate with the syntactic proximity of inputs, and that both autoregressive and masked models encode nonlinear interactions in idiomatic phrases with non-compositional semantics. Our speech results show that inputs are more entangled for pairs where a neighboring consonant is likely to influence a vowel or approximant, showing that models encode the phonetic interaction needed for extracting discrete phonemic representations.
comment: Published in ACL 2025
♻ ☆ LogProber: Disentangling confidence from contamination in LLM responses
In machine learning, contamination refers to situations where testing data leak into the training set. The issue is particularly relevant for the evaluation of the performance of Large Language Models (LLMs), which are generally trained on gargantuan, and generally opaque, corpora of text scraped from the world wide web. Developing tools to detect contamination is therefore crucial to be able to fairly and properly track the evolution of the performance of LLMs. To date, only a few recent studies have attempted to address the issue of quantifying and detecting contamination in short text sequences, such as those commonly found in benchmarks. However, these methods have limitations that can sometimes render them impractical.In the present paper, we introduce LogProber, a novel, efficient algorithm that we show to be able to detect contamination in a black box setting that tries to tackle some of these drawbacks by focusing on the familiarity with the question rather than the answer. Here, we explore the properties of the proposed method in comparison with concurrent approaches, identify its advantages and limitations, and illustrate how different forms of contamination can go undetected depending on the design of the detection algorithm.
♻ ☆ TSVC:Tripartite Learning with Semantic Variation Consistency for Robust Image-Text Retrieval AAAI 2025
Cross-modal retrieval maps data under different modality via semantic relevance. Existing approaches implicitly assume that data pairs are well-aligned and ignore the widely existing annotation noise, i.e., noisy correspondence (NC). Consequently, it inevitably causes performance degradation. Despite attempts that employ the co-teaching paradigm with identical architectures to provide distinct data perspectives, the differences between these architectures are primarily stemmed from random initialization. Thus, the model becomes increasingly homogeneous along with the training process. Consequently, the additional information brought by this paradigm is severely limited. In order to resolve this problem, we introduce a Tripartite learning with Semantic Variation Consistency (TSVC) for robust image-text retrieval. We design a tripartite cooperative learning mechanism comprising a Coordinator, a Master, and an Assistant model. The Coordinator distributes data, and the Assistant model supports the Master model's noisy label prediction with diverse data. Moreover, we introduce a soft label estimation method based on mutual information variation, which quantifies the noise in new samples and assigns corresponding soft labels. We also present a new loss function to enhance robustness and optimize training effectiveness. Extensive experiments on three widely used datasets demonstrate that, even at increasing noise ratios, TSVC exhibits significant advantages in retrieval accuracy and maintains stable training performance.
comment: This paper has been accepted to the Main Track of AAAI 2025. It contains 9 pages, 7 figures, and is relevant to the areas of cross-modal retrieval and machine learning. The work presents a novel approach in robust image-text retrieval using a tripartite learning framework
♻ ☆ Improving Handwritten Text Recognition via 3D Attention and Multi-Scale Training
The segmentation-free research efforts for addressing handwritten text recognition can be divided into three categories: connectionist temporal classification (CTC), hidden Markov model and encoder-decoder methods. In this paper, inspired by the above three modeling methods, we propose a new recognition network by using a novel three-dimensional (3D) attention module and global-local context information. Based on the feature maps of the last convolutional layer, a series of 3D blocks with different resolutions are split. Then, these 3D blocks are fed into the 3D attention module to generate sequential visual features. Finally, by integrating the visual features and the corresponding global-local context features, a well-designed representation can be obtained. Main canonical neural units including attention mechanisms, fully-connected layer, recurrent unit and convolutional layer are efficiently organized into a network and can be jointly trained by the CTC loss and the cross-entropy loss. Experiments on the latest Chinese handwritten text datasets (the SCUT-HCCDoc and the SCUT-EPT) and one English handwritten text dataset (the IAM) show that the proposed method can achieve comparable results with the state-of-the-art methods. The code is available at https://github.com/Wukong90/3DAttention-MultiScaleTraining-for-HTR.
♻ ☆ MindForge: Empowering Embodied Agents with Theory of Mind for Lifelong Cultural Learning
Embodied agents powered by large language models (LLMs), such as Voyager, promise open-ended competence in worlds such as Minecraft. However, when powered by open-weight LLMs they still falter on elementary tasks after domain-specific fine-tuning. We propose MindForge, a generative-agent framework for cultural lifelong learning through explicit perspective taking. We introduce three key innovations: (1) a structured theory of mind representation linking percepts, beliefs, desires, and actions; (2) natural inter-agent communication; and (3) a multi-component memory system. Following the cultural learning framework, we test MindForge in both instructive and collaborative settings within Minecraft. In an instructive setting with GPT-4, MindForge agents powered by open-weight LLMs significantly outperform their Voyager counterparts in basic tasks yielding $3\times$ more tech-tree milestones and collecting $2.3\times$ more unique items than the Voyager baseline. Furthermore, in fully \textit{collaborative} settings, we find that the performance of two underachieving agents improves with more communication rounds, echoing the Condorcet Jury Theorem. MindForge agents demonstrate sophisticated behaviors, including expert-novice knowledge transfer, collaborative problem solving, and adaptation to out-of-distribution tasks through accumulated cultural experiences.
♻ ☆ Generating Likely Counterfactuals Using Sum-Product Networks
The need to explain decisions made by AI systems is driven by both recent regulation and user demand. The decisions are often explainable only post hoc. In counterfactual explanations, one may ask what constitutes the best counterfactual explanation. Clearly, multiple criteria must be taken into account, although "distance from the sample" is a key criterion. Recent methods that consider the plausibility of a counterfactual seem to sacrifice this original objective. Here, we present a system that provides high-likelihood explanations that are, at the same time, close and sparse. We show that the search for the most likely explanations satisfying many common desiderata for counterfactual explanations can be modeled using Mixed-Integer Optimization (MIO). We use a Sum-Product Network (SPN) to estimate the likelihood of a counterfactual. To achieve that, we propose an MIO formulation of an SPN, which can be of independent interest. The source code with examples is available at https://github.com/Epanemu/LiCE.
comment: 32 pages total
♻ ☆ Decoupling the Image Perception and Multimodal Reasoning for Reasoning Segmentation with Digital Twin Representations
Reasoning Segmentation (RS) is a multimodal vision-text task that requires segmenting objects based on implicit text queries, demanding both precise visual perception and vision-text reasoning capabilities. Current RS approaches rely on fine-tuning vision-language models (VLMs) for both perception and reasoning, but their tokenization of images fundamentally disrupts continuous spatial relationships between objects. We introduce DTwinSeger, a novel RS approach that leverages Digital Twin (DT) representation as an intermediate layer to decouple perception from reasoning. Innovatively, DTwinSeger reformulates RS as a two-stage process, where the first transforms the image into a structured DT representation that preserves spatial relationships and semantic properties and then employs a Large Language Model (LLM) to perform explicit reasoning over this representation to identify target objects. We propose a supervised fine-tuning method specifically for LLM with DT representation, together with a corresponding fine-tuning dataset Seg-DT, to enhance the LLM's reasoning capabilities with DT representations. Experiments show that our method can achieve state-of-the-art performance on two image RS benchmarks and three image referring segmentation benchmarks. It yields that DT representation functions as an effective bridge between vision and text, enabling complex multimodal reasoning tasks to be accomplished solely with an LLM.
comment: This work was submitted without the consent of all co-authors. We request withdrawal until all parties agree
♻ ☆ Computational Irreducibility as the Foundation of Agency: A Formal Model Connecting Undecidability to Autonomous Behavior in Complex Systems
This article presents a formal model demonstrating that genuine autonomy, the ability of a system to self-regulate and pursue objectives, fundamentally implies computational unpredictability from an external perspective. we establish precise mathematical connections, proving that for any truly autonomous system, questions about its future behavior are fundamentally undecidable. this formal undecidability, rather than mere complexity, grounds a principled distinction between autonomous and non-autonomous systems. our framework integrates insights from computational theory and biology, particularly regarding emergent agency and computational irreducibility, to explain how novel information and purpose can arise within a physical universe. the findings have significant implications for artificial intelligence, biological modeling, and philosophical concepts like free will.
♻ ☆ XMeCap: Meme Caption Generation with Sub-Image Adaptability
Humor, deeply rooted in societal meanings and cultural details, poses a unique challenge for machines. While advances have been made in natural language processing, real-world humor often thrives in a multi-modal context, encapsulated distinctively by memes. This paper poses a particular emphasis on the impact of multi-images on meme captioning. After that, we introduce the \textsc{XMeCap} framework, a novel approach that adopts supervised fine-tuning and reinforcement learning based on an innovative reward model, which factors in both global and local similarities between visuals and text. Our results, benchmarked against contemporary models, manifest a marked improvement in caption generation for both single-image and multi-image memes, as well as different meme categories. \textsc{XMeCap} achieves an average evaluation score of 75.85 for single-image memes and 66.32 for multi-image memes, outperforming the best baseline by 6.75\% and 8.56\%, respectively. This research not only establishes a new frontier in meme-related studies but also underscores the potential of machines in understanding and generating humor in a multi-modal setting.
comment: Accepted to ACM Multimedia 2024
♻ ☆ LLM2TEA: Agentic AI Designer Finds Innovative Objects with Generative Evolutionary Multitasking
In this paper, we introduce LLM-driven MultiTask Evolutionary Algorithm (LLM2TEA), the first agentic AI designer within a generative evolutionary multitasking (GEM) framework that promotes the crossover and synergy of designs from multiple domains, leading to innovative solutions that transcend individual disciplines. Of particular interest is the discovery of objects that are not only innovative but also conform to the physical specifications of the real world in science and engineering. LLM2TEA comprises a large language model to initialize a population of genotypes (defined by text prompts) describing the objects of interest, a text-to-3D generative model to produce phenotypes from these prompts, a classifier to interpret the semantic representations of the objects, and a physics simulation model to assess their physical properties. We propose several novel LLM-based multitask evolutionary operators to guide the search toward the discovery of high-performing practical objects. Experimental results in conceptual design optimization validate the effectiveness of LLM2TEA, revealing from 97\% to 174\% improvement in the diversity of innovative objects compared to the present text-to-3D generative model baseline. In addition, more than 73\% of the generated designs have better physical performance than the top 1\% percentile of the designs generated in the baseline. Moreover, LLM2TEA generates designs that are not only aesthetically creative but also functional in real-world applications. Several of these designs have been successfully 3D-printed, emphasizing the proposed approach's capacity to transform AI-generated outputs into tangible physical objects. The designs produced by LLM2TEA meets practical requirements while showcasing creative and innovative features, underscoring its potential applications in complex design optimization and discovery.
comment: This work has been submitted to the IEEE for review
♻ ☆ Reasoning Language Models: A Blueprint
Reasoning language models (RLMs), also known as Large Reasoning Models (LRMs), such as OpenAI's o1 and o3, DeepSeek-R1, and Alibaba's QwQ, have redefined AI's problem-solving capabilities by extending LLMs with advanced reasoning mechanisms. Yet, their high costs, proprietary nature, and complex architectures - uniquely combining reinforcement learning (RL), search heuristics, and LLMs - present accessibility and scalability challenges. To address these, we propose a comprehensive blueprint that organizes RLM components into a modular framework, based on a survey and analysis of all RLM works. This blueprint incorporates diverse reasoning structures (chains, trees, graphs, and nested forms), reasoning strategies (e.g., Monte Carlo Tree Search, Beam Search), RL concepts (policy, value models and others), supervision schemes (Outcome-Based and Process-Based Supervision), and other related concepts (e.g., Test-Time Compute, Retrieval-Augmented Generation, agent tools). We also provide detailed mathematical formulations and algorithmic specifications to simplify RLM implementation. By showing how schemes like LLaMA-Berry, QwQ, Journey Learning, and Graph of Thoughts fit as special cases, we demonstrate the blueprint's versatility and unifying potential. To illustrate its utility, we introduce x1, a modular implementation for rapid RLM prototyping and experimentation. Using x1 and a literature review, we provide key insights, such as multi-phase training for policy and value models, and the importance of familiar training distributions. Finally, we discuss scalable RLM cloud deployments and we outline how RLMs can integrate with a broader LLM ecosystem. Our work demystifies RLM construction, democratizes advanced reasoning capabilities, and fosters innovation, aiming to mitigate the gap between "rich AI" and "poor AI" by lowering barriers to RLM design and experimentation.
♻ ☆ Beyond Bradley-Terry Models: A General Preference Model for Language Model Alignment ICML 2025
Modeling human preferences is crucial for aligning foundation models with human values. Traditional reward modeling methods, such as the Bradley-Terry (BT) reward model, fall short in expressiveness, particularly in addressing intransitive preferences. In this paper, we introduce preference embedding, an approach that embeds responses into a latent space to capture intricate preference structures efficiently, achieving linear query complexity. Additionally, we propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback (RLHF). Experimental results show that our General Preference embedding Model (GPM) consistently outperforms the BT reward model on the RewardBench benchmark and effectively models cyclic preferences where any BT reward model behaves like a random guess. Furthermore, evaluations on downstream tasks such as AlpacaEval2.0, following the language model post-training with GPO and our general preference model, reveal performance improvements over BT models. These findings indicate that our method may enhance the alignment of foundation models with nuanced human values. The code is available at https://github.com/general-preference/general-preference-model.
comment: Accepted to the 42nd International Conference on Machine Learning (ICML 2025)
♻ ☆ SplitLoRA: Balancing Stability and Plasticity in Continual Learning Through Gradient Space Splitting
Continual Learning requires a model to learn multiple tasks in sequence while maintaining both stability:preserving knowledge from previously learned tasks, and plasticity:effectively learning new tasks. Gradient projection has emerged as an effective and popular paradigm in CL, where it partitions the gradient space of previously learned tasks into two orthogonal subspaces: a primary subspace and a minor subspace. New tasks are learned effectively within the minor subspace, thereby reducing interference with previously acquired knowledge. However, existing Gradient Projection methods struggle to achieve an optimal balance between plasticity and stability, as it is hard to appropriately partition the gradient space. In this work, we consider a continual learning paradigm based on Low-Rank Adaptation, which has gained considerable attention due to its efficiency and wide applicability, and propose a novel approach for continual learning, called SplitLoRA. We first provide a theoretical analysis of how subspace partitioning affects model stability and plasticity. Informed by this analysis, we then introduce an effective method that derives the optimal partition of the gradient space for previously learned tasks. This approach effectively balances stability and plasticity in continual learning. Experimental results on multiple datasets demonstrate that the proposed method achieves state-of-the-art performance.
comment: 18 pages, 4 figures
♻ ☆ HoliSafe: Holistic Safety Benchmarking and Modeling with Safety Meta Token for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, HoliSafe, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation. We further propose SafeLLaVA, a novel VLM augmented with a learnable safety meta token and a dedicated safety head. The meta token encodes harmful visual cues during training, intrinsically guiding the language model toward safer responses, while the safety head offers interpretable harmfulness classification aligned with refusal rationales. Experiments show that SafeLLaVA, trained on HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe benchmark itself reveals critical vulnerabilities in existing models. We hope that HoliSafe and SafeLLaVA will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
comment: Project page: https://youngwanlee.github.io/holisafe
♻ ☆ Mastering Multi-Drone Volleyball through Hierarchical Co-Self-Play Reinforcement Learning
In this paper, we tackle the problem of learning to play 3v3 multi-drone volleyball, a new embodied competitive task that requires both high-level strategic coordination and low-level agile control. The task is turn-based, multi-agent, and physically grounded, posing significant challenges due to its long-horizon dependencies, tight inter-agent coupling, and the underactuated dynamics of quadrotors. To address this, we propose Hierarchical Co-Self-Play (HCSP), a hierarchical reinforcement learning framework that separates centralized high-level strategic decision-making from decentralized low-level motion control. We design a three-stage population-based training pipeline to enable both strategy and skill to emerge from scratch without expert demonstrations: (I) training diverse low-level skills, (II) learning high-level strategy via self-play with fixed low-level controllers, and (III) joint fine-tuning through co-self-play. Experiments show that HCSP achieves superior performance, outperforming non-hierarchical self-play and rule-based hierarchical baselines with an average 82.9% win rate and a 71.5% win rate against the two-stage variant. Moreover, co-self-play leads to emergent team behaviors such as role switching and coordinated formations, demonstrating the effectiveness of our hierarchical design and training scheme. The project page is at https://sites.google.com/view/hi-co-self-play.
♻ ☆ CROW: Eliminating Backdoors from Large Language Models via Internal Consistency Regularization ICML 2025
Large Language Models (LLMs) are vulnerable to backdoor attacks that manipulate outputs via hidden triggers. Existing defense methods--designed for vision/text classification tasks--fail for text generation. We propose Internal Consistency Regularization (CROW), a defense leveraging the observation that backdoored models exhibit unstable layer-wise hidden representations when triggered, while clean models show smooth transitions. CROW enforces consistency across layers via adversarial perturbations and regularization during finetuning, neutralizing backdoors without requiring clean reference models or trigger knowledge--only a small clean dataset. Experiments across Llama-2 (7B, 13B), CodeLlama (7B, 13B), and Mistral-7B demonstrate CROW's effectiveness: it achieves significant reductions in attack success rates across diverse backdoor strategies (sentiment steering, targeted refusal, code injection) while preserving generative performance. CROW's architecture-agnostic design enables practical deployment.
comment: Accepted at ICML 2025, 20 pages
♻ ☆ Decomposition Strategies and Multi-shot ASP Solving for Job-shop Scheduling
The Job-shop Scheduling Problem (JSP) is a well-known and challenging combinatorial optimization problem in which tasks sharing a machine are to be arranged in a sequence such that encompassing jobs can be completed as early as possible. In this paper, we investigate problem decomposition into time windows whose operations can be successively scheduled and optimized by means of multi-shot Answer Set Programming (ASP) solving. From a computational perspective, decomposition aims to split highly complex scheduling tasks into better manageable subproblems with a balanced number of operations such that good-quality or even optimal partial solutions can be reliably found in a small fraction of runtime. We devise and investigate a variety of decomposition strategies in terms of the number and size of time windows as well as heuristics for choosing their operations. Moreover, we incorporate time window overlapping and compression techniques into the iterative scheduling process to counteract optimization limitations due to the restriction to window-wise partial schedules. Our experiments on different JSP benchmark sets show that successive optimization by multi-shot ASP solving leads to substantially better schedules within tight runtime limits than single-shot optimization on the full problem. In particular, we find that decomposing initial solutions obtained with proficient heuristic methods into time windows leads to improved solution quality.
comment: This paper is an extended version of our papers presented at the 38th International Conference on Logic Programming (ICLP 2022) and the 24th International Symposium on Practical Aspects of Declarative Languages (PADL 2022), accepted for publication in Logical Methods in Computer Science journal
♻ ☆ Logic-Constrained Shortest Paths for Flight Planning
The logic-constrained shortest path problem (LCSPP) combines a one-to-one shortest path problem with satisfiability constraints imposed on the routing graph. This setting arises in flight planning, where air traffic control (ATC) authorities are enforcing a set of traffic flow restrictions (TFRs) on aircraft routes in order to increase safety and throughput. We propose a new branch and bound-based algorithm for the LCSPP. The resulting algorithm has three main degrees of freedom: the node selection rule, the branching rule and the conflict. While node selection and branching rules have been long studied in the MIP and SAT communities, most of them cannot be applied out of the box for the LCSPP. We review the existing literature and develop tailored variants of the most prominent rules. The conflict, the set of variables to which the branching rule is applied, is unique to the LCSPP. We analyze its theoretical impact on the B&B algorithm. In the second part of the paper, we show how to model the flight planning problem with TFRs as an LCSPP and solve it using the branch and bound algorithm. We demonstrate the algorithm's efficiency on a dataset consisting of a global flight graph and a set of around 20000 real TFRs obtained from our industry partner Lufthansa Systems GmbH. We make this dataset publicly available. Finally, we conduct an empirical in-depth analysis of dynamic shortest path algorithms, node selection rules, branching rules and conflicts. Carefully choosing an appropriate combination yields an improvement of an order of magnitude compared to an uninformed choice.
♻ ☆ AskToAct: Enhancing LLMs Tool Use via Self-Correcting Clarification
Large language models (LLMs) have demonstrated remarkable capabilities in tool learning. In real-world scenarios, user queries are often ambiguous and incomplete, requiring effective clarification. However, existing interactive clarification approaches face two critical limitations: reliance on manually constructed datasets, which inherently constrains training data scale and diversity, and lack of error correction mechanisms during multi-turn clarification, leading to error accumulation that compromises both accuracy and efficiency. We present AskToAct, which addresses these challenges by exploiting the structural mapping between queries and their tool invocation solutions. Our key insight is that tool parameters naturally represent explicit user intents. By systematically removing key parameters from queries while retaining them as ground truth, we enable automated construction of high-quality training data. We further enhance model robustness through error-correction pairs and selective masking, enabling dynamic error detection during clarification interactions. Comprehensive experiments demonstrate that AskToAct significantly outperforms existing approaches, achieving above 57% accuracy in recovering critical unspecified intents and enhancing clarification efficiency by an average of 10.46% while maintaining high accuracy in tool invocation. Our framework exhibits robust performance across different model architectures and successfully generalizes to entirely unseen APIs without additional training, achieving performance comparable to GPT-4o with substantially fewer computational resources.
♻ ☆ Holistic Uncertainty Estimation For Open-Set Recognition
Accurate uncertainty estimation is a critical challenge in open-set recognition, where a probe biometric sample may belong to an unknown identity. It can be addressed through sample quality estimation via probabilistic embeddings. However, the low variance of probabilistic embedding only partly implies a low identification error probability: an embedding of a sample could be close to several classes in a gallery, thus yielding high uncertainty despite high sample quality. We propose HolUE - a holistic uncertainty estimation method based on a Bayesian probabilistic model; it is aware of two sources of ambiguity in the open-set recognition system: (1) the gallery uncertainty caused by overlapping classes and (2) the uncertainty of embeddings. Challenging open-set recognition datasets, such as IJB-C for the image domain and VoxBlink for the audio domain, serve as a testbed for our method. We also provide a new open-set recognition protocol for the identification of whales and dolphins. In all cases, HolUE better identifies recognition errors than alternative uncertainty estimation methods, including those based solely on sample quality.
♻ ☆ Style over Substance: Distilled Language Models Reason Via Stylistic Replication
Specialized reasoning language models (RLMs) have demonstrated that scaling test-time computation through detailed reasoning traces significantly enhances performance. Although these traces effectively facilitate knowledge distillation into smaller, instruction-tuned models, the precise nature of transferred reasoning remains unclear. In this study, we investigate to what extent distilled models internalize replicated stylistic patterns during reasoning. To this end, we systematically analyze reasoning traces, identifying structural and lexical patterns that characterize successful reasoning. We then introduce two new datasets -- a dataset of emergent reasoning traces and a synthetic dataset explicitly constructed to replicate these stylistic patterns -- to precisely examine their influence on distilled models' reasoning capabilities. We find that models trained on the synthetic traces achieve comparable performance, indicating that distilled reasoning abilities rely significantly on surface-level patterns. Surprisingly, we observe an increase in performance even when the synthetic traces are altered to lead to the wrong answer. Our findings highlight how stylistic patterns can be leveraged to efficiently enhance LM reasoning across diverse model families.
♻ ☆ YOCO: A Hybrid In-Memory Computing Architecture with 8-bit Sub-PetaOps/W In-Situ Multiply Arithmetic for Large-Scale AI
In this paper, we further explore the potential of analog in-memory computing (AiMC) and introduce an innovative artificial intelligence (AI) accelerator architecture named YOCO, featuring three key proposals: (1) YOCO proposes a novel 8-bit in-situ multiply arithmetic (IMA) achieving 123.8 TOPS/W energy-efficiency and 34.9 TOPS throughput through efficient charge-domain computation and timedomain accumulation mechanism. (2) YOCO employs a hybrid ReRAM-SRAM memory structure to balance computational efficiency and storage density. (3) YOCO tailors an IMC-friendly attention computing flow with an efficient pipeline to accelerate the inference of transformer-based AI models. Compared to three SOTA baselines, YOCO on average improves energy efficiency by up to 3.9x-19.9x and throughput by up to 6.8x-33.6x across 10 CNN/transformer models.
comment: 6 pages, 10 figures, Design Automatic Conference 2025
♻ ☆ Technical Report for Ego4D Long-Term Action Anticipation Challenge 2025 CVPR
In this report, we present a novel three-stage framework developed for the Ego4D Long-Term Action Anticipation (LTA) task. Inspired by recent advances in foundation models, our method consists of three stages: feature extraction, action recognition, and long-term action anticipation. First, visual features are extracted using a high-performance visual encoder. The features are then fed into a Transformer to predict verbs and nouns, with a verb-noun co-occurrence matrix incorporated to enhance recognition accuracy. Finally, the predicted verb-noun pairs are formatted as textual prompts and input into a fine-tuned large language model (LLM) to anticipate future action sequences. Our framework achieves first place in this challenge at CVPR 2025, establishing a new state-of-the-art in long-term action prediction. Our code will be released at https://github.com/CorrineQiu/Ego4D-LTA-Challenge-2025.
comment: The champion solution for the Ego4D Long-Term Action Anticipation Challenge at the CVPR EgoVis Workshop 2025
♻ ☆ Fourier-Modulated Implicit Neural Representation for Multispectral Satellite Image Compression RSS 2025
Multispectral satellite images play a vital role in agriculture, fisheries, and environmental monitoring. However, their high dimensionality, large data volumes, and diverse spatial resolutions across multiple channels pose significant challenges for data compression and analysis. This paper presents ImpliSat, a unified framework specifically designed to address these challenges through efficient compression and reconstruction of multispectral satellite data. ImpliSat leverages Implicit Neural Representations (INR) to model satellite images as continuous functions over coordinate space, capturing fine spatial details across varying spatial resolutions. Furthermore, we introduce a Fourier modulation algorithm that dynamically adjusts to the spectral and spatial characteristics of each band, ensuring optimal compression while preserving critical image details.
comment: Accepted to IGARSS 2025 (Oral)
♻ ☆ Understanding the Skill Gap in Recurrent Language Models: The Role of the Gather-and-Aggregate Mechanism
State-space models (SSMs) offer efficient alternatives to Transformers for long sequences, but their fixed-size recurrent state limits capability on algorithmic tasks, such as retrieving past context. In this work, we examine how in-context retrieval operates in Transformer- and SSM-based language models and find that both rely on a similar Gather-and-Aggregate (G&A) mechanism: a Gather Head extracts relevant information pieces from context, which an Aggregate Head integrates into a single representation. In both architectures, G&A concentrates in a few heads, forming critical bottlenecks even for simple retrieval. For example, we show that disabling a single Gather or Aggregate Head in a pruned Llama-3.1-8B impairs retrieving the correct answer letter in MMLU, reducing its accuracy from 66% to 25% (random guessing). Moreover, this retrieval bottleneck can obscure limited knowledge demands of tasks as the pruned model succeeds on MMLU with functioning G&A heads yet fails on other knowledge benchmarks. The bottleneck similarly extends to tasks where SSMs typically underperform, such as GSM8K, BBH, and dialogue comprehension. We show that SSMs' retrieval challenges manifest in these heads, creating smoother attention patterns instead of the sharp token transitions effective G&A requires. Thus, the Transformer-SSM retrieval gap exists in just a few heads, rather than the entire language model. This suggests a unified explanation for Transformer vs. SSM performance gap while showing how to merge their strengths. We find that pretrained hybrid models, where SSMs are combined with a few attention layers, delegate the role of Aggregate Heads to attention. Similarly, replacing a single G&A head in a pretrained SSM with an attention variant boosts retrieval and benchmark scores.
♻ ☆ Physics-Informed Teleconnection-Aware Transformer for Global Subseasonal-to-Seasonal Forecasting
Subseasonal-to-seasonal (S2S) forecasting, which predicts climate conditions from several weeks to months in advance, presents significant challenges due to the chaotic dynamics of atmospheric systems and complex interactions across multiple scales. Current approaches often fail to explicitly model underlying physical processes and teleconnections that are crucial at S2S timescales. We introduce TelePiT, a novel deep learning architecture that enhances global S2S forecasting through integrated multi-scale physics and teleconnection awareness. Our approach consists of three key components: (1) Spherical Harmonic Embedding, which accurately encodes global atmospheric variables onto spherical geometry; (2) Multi-Scale Physics-Informed Neural ODE, which explicitly captures atmospheric physical processes across multiple learnable frequency bands; (3) Teleconnection-Aware Transformer, which models critical global climate interactions through tactfully injecting teleconnection patterns into the self-attention. Extensive experiments demonstrate that TelePiT significantly outperforms state-of-the-art data-driven baselines and operational numerical weather prediction systems, with remarkable improvements for atmospheric variables including a 57.7% reduction in RMSE for 2-meter temperature compared to previous best models.
♻ ☆ Assessment of Evolving Large Language Models in Upper Secondary Mathematics
Large language models (LLMs) have shown increasing promise in educational settings, yet their mathematical reasoning has been considered evolving. This study evaluates the mathematical capabilities of various LLMs using the Finnish matriculation examination, a high-stakes digital test for upper secondary education. Initial tests yielded moderate performance corresponding to mid-range grades, but later evaluations demonstrated substantial improvements as the language models evolved. Remarkably, some models achieved near-perfect or perfect scores, matching top student performance and qualifying for university admission. Our findings highlight the rapid advances in the mathematical proficiency of LLMs and illustrate their potential as underlying tools to support learning and teaching in a variety of ways.
♻ ☆ NTPP: Generative Speech Language Modeling for Dual-Channel Spoken Dialogue via Next-Token-Pair Prediction ICML 2025
Inspired by the impressive capabilities of GPT-4o, there is growing interest in enabling speech language models (SLMs) to engage in natural, fluid spoken interactions with humans. Recent advancements have led to the development of several SLMs that demonstrate promising results in this area. However, current approaches have yet to fully exploit dual-channel speech data, which inherently captures the structure and dynamics of human conversation. In this work, we systematically explore the use of dual-channel speech data in the context of modern large language models, and introduce a novel generative modeling paradigm, Next-Token-Pair Prediction (NTPP), to enable speaker-independent dual-channel spoken dialogue learning using decoder-only architectures for the first time. We evaluate our approach on standard benchmarks, and empirical results show that our proposed method, NTPP, significantly improves the conversational abilities of SLMs in terms of turn-taking prediction, response coherence, and naturalness. Moreover, compared to existing methods, NTPP achieves substantially lower inference latency, highlighting its practical efficiency for real-time applications.
comment: Accepted by ICML 2025
♻ ☆ Decoding Knowledge Attribution in Mixture-of-Experts: A Framework of Basic-Refinement Collaboration and Efficiency Analysis ACL 2025
The interpretability of Mixture-of-Experts (MoE) models, especially those with heterogeneous designs, remains underexplored. Existing attribution methods for dense models fail to capture dynamic routing-expert interactions in sparse MoE architectures. To address this issue, we propose a cross-level attribution algorithm to analyze sparse MoE architectures (Qwen 1.5-MoE, OLMoE, Mixtral-8x7B) against dense models (Qwen 1.5-7B, Llama-7B, Mistral-7B). Results show MoE models achieve 37% higher per-layer efficiency via a "mid-activation, late-amplification" pattern: early layers screen experts, while late layers refine knowledge collaboratively. Ablation studies reveal a "basic-refinement" framework--shared experts handle general tasks (entity recognition), while routed experts specialize in domain-specific processing (geographic attributes). Semantic-driven routing is evidenced by strong correlations between attention heads and experts (r=0.68), enabling task-aware coordination. Notably, architectural depth dictates robustness: deep Qwen 1.5-MoE mitigates expert failures (e.g., 43% MRR drop in geographic tasks when blocking top-10 experts) through shared expert redundancy, whereas shallow OLMoE suffers severe degradation (76% drop). Task sensitivity further guides design: core-sensitive tasks (geography) require concentrated expertise, while distributed-tolerant tasks (object attributes) leverage broader participation. These insights advance MoE interpretability, offering principles to balance efficiency, specialization, and robustness.
comment: ACL 2025
♻ ☆ Meaningless is better: hashing bias-inducing words in LLM prompts improves performance in logical reasoning and statistical learning
This paper introduces a novel method, referred to as "hashing", which involves masking potentially bias-inducing words in large language models (LLMs) with hash-like meaningless identifiers to reduce cognitive biases and reliance on external knowledge. The method was tested across three sets of experiments involving a total of 490 prompts. Statistical analysis using chi-square tests showed significant improvements in all tested scenarios, which covered LLama, ChatGPT, Copilot, Gemini and Mixtral models. In the first experiment, hashing decreased the fallacy rate in a modified version of the "Linda" problem aimed at evaluating susceptibility to cognitive biases. In the second experiment, it improved LLM results on the frequent itemset extraction task. In the third experiment, we found hashing is also effective when the Linda problem is presented in a tabular format rather than text, indicating that the technique works across various input representations. Overall, the method was shown to improve bias reduction and incorporation of external knowledge. Despite bias reduction, hallucination rates were inconsistently reduced across types of LLM models. These findings suggest that masking bias-inducing terms can improve LLM performance, although its effectiveness is model- and task-dependent.
♻ ☆ Traceable LLM-based validation of statements in knowledge graphs
This article presents a method for verifying RDF triples using LLMs, with an emphasis on providing traceable arguments. Because the LLMs cannot currently reliably identify the origin of the information used to construct the response to the user prompt, our approach is to avoid using internal LLM factual knowledge altogether. Instead, verified RDF statements are compared to chunks of external documents retrieved through a web search or Wikipedia. To assess the possible application of this retrieval augmented generation (RAG) workflow on biosciences content, we evaluated 1,719 positive statements from the BioRED dataset and the same number of newly generated negative statements. The resulting precision is 88 %, and recall is 44 %. This indicates that the method requires human oversight. We also evaluated the method on the SNLI dataset, which allowed us to compare our approach with models specifically tuned for the natural language inference task. We demonstrate the method on Wikidata, where a SPARQL query is used to automatically retrieve statements needing verification. Overall, the results suggest that LLMs could be used for large-scale verification of statements in KGs, a task previously unfeasible due to human annotation costs.
♻ ☆ Multi-Party Supervised Fine-tuning of Language Models for Multi-Party Dialogue Generation IJCNN 2025
Large Language Models (LLM) are usually fine-tuned to participate in dyadic or two-party dialogues, which can not adapt well to multi-party dialogues (MPD), which hinders their applications in such scenarios including multi-personal meetings, discussions and daily communication. Previous LLM-based researches mainly focus on the multi-agent framework, while their base LLMs are still pairwisely fine-tuned. In this work, we design a multi-party fine-tuning framework (MuPaS) for LLMs on the multi-party dialogue datasets, and prove such a straightforward framework can let the LLM align with the multi-party conversation style efficiently and effectively. We also design two training strategies which can convert MuPaS into the MPD simulator. Substantial experiments show that MuPaS can achieve state-of-the-art multi-party response, higher accuracy of the-next-speaker prediction, higher human and automatic evaluated utterance qualities, and can even generate reasonably with out-of-distribution scene, topic and role descriptions. The MuPaS framework bridges the LLM training with more complicated multi-party applications, such as conversation generation, virtual rehearsal or meta-universe.
comment: Accepted by IJCNN 2025
♻ ☆ Large Language Models Miss the Multi-Agent Mark
Recent interest in Multi-Agent Systems of Large Language Models (MAS LLMs) has led to an increase in frameworks leveraging multiple LLMs to tackle complex tasks. However, much of this literature appropriates the terminology of MAS without engaging with its foundational principles. In this position paper, we highlight critical discrepancies between MAS theory and current MAS LLMs implementations, focusing on four key areas: the social aspect of agency, environment design, coordination and communication protocols, and measuring emergent behaviours. Our position is that many MAS LLMs lack multi-agent characteristics such as autonomy, social interaction, and structured environments, and often rely on oversimplified, LLM-centric architectures. The field may slow down and lose traction by revisiting problems the MAS literature has already addressed. Therefore, we systematically analyse this issue and outline associated research opportunities; we advocate for better integrating established MAS concepts and more precise terminology to avoid mischaracterisation and missed opportunities.
♻ ☆ Surfer-H Meets Holo1: Cost-Efficient Web Agent Powered by Open Weights
We present Surfer-H, a cost-efficient web agent that integrates Vision-Language Models (VLM) to perform user-defined tasks on the web. We pair it with Holo1, a new open-weight collection of VLMs specialized in web navigation and information extraction. Holo1 was trained on carefully curated data sources, including open-access web content, synthetic examples, and self-produced agentic data. Holo1 tops generalist User Interface (UI) benchmarks as well as our new web UI localization benchmark, WebClick. When powered by Holo1, Surfer-H achieves a 92.2% state-of-the-art performance on WebVoyager, striking a Pareto-optimal balance between accuracy and cost-efficiency. To accelerate research advancement in agentic systems, we are open-sourcing both our WebClick evaluation dataset and the Holo1 model weights.
comment: Alphabetical order
♻ ☆ RSafe: Incentivizing proactive reasoning to build robust and adaptive LLM safeguards
Large Language Models (LLMs) continue to exhibit vulnerabilities despite deliberate safety alignment efforts, posing significant risks to users and society. To safeguard against the risk of policy-violating content, system-level moderation via external guard models-designed to monitor LLM inputs and outputs and block potentially harmful content-has emerged as a prevalent mitigation strategy. Existing approaches of training guard models rely heavily on extensive human curated datasets and struggle with out-of-distribution threats, such as emerging harmful categories or jailbreak attacks. To address these limitations, we propose RSafe, an adaptive reasoning-based safeguard that conducts guided safety reasoning to provide robust protection within the scope of specified safety policies. RSafe operates in two stages: 1) guided reasoning, where it analyzes safety risks of input content through policy-guided step-by-step reasoning, and 2) reinforced alignment, where rule-based RL optimizes its reasoning paths to align with accurate safety prediction. This two-stage training paradigm enables RSafe to internalize safety principles to generalize safety protection capability over unseen or adversarial safety violation scenarios. During inference, RSafe accepts user-specified safety policies to provide enhanced safeguards tailored to specific safety requirements.
♻ ☆ BiCo-Fusion: Bidirectional Complementary LiDAR-Camera Fusion for Semantic- and Spatial-Aware 3D Object Detection
3D object detection is an important task that has been widely applied in autonomous driving. To perform this task, a new trend is to fuse multi-modal inputs, i.e., LiDAR and camera. Under such a trend, recent methods fuse these two modalities by unifying them in the same 3D space. However, during direct fusion in a unified space, the drawbacks of both modalities (LiDAR features struggle with detailed semantic information and the camera lacks accurate 3D spatial information) are also preserved, diluting semantic and spatial awareness of the final unified representation. To address the issue, this letter proposes a novel bidirectional complementary LiDAR-camera fusion framework, called BiCo-Fusion that can achieve robust semantic- and spatial-aware 3D object detection. The key insight is to fuse LiDAR and camera features in a bidirectional complementary way to enhance the semantic awareness of the LiDAR and the 3D spatial awareness of the camera. The enhanced features from both modalities are then adaptively fused to build a semantic- and spatial-aware unified representation. Specifically, we introduce Pre-Fusion consisting of a Voxel Enhancement Module (VEM) to enhance the semantic awareness of voxel features from 2D camera features and Image Enhancement Module (IEM) to enhance the 3D spatial awareness of camera features from 3D voxel features. We then introduce Unified Fusion (U-Fusion) to adaptively fuse the enhanced features from the last stage to build a unified representation. Extensive experiments demonstrate the superiority of our BiCo-Fusion against the prior arts. Project page: https://t-ys.github.io/BiCo-Fusion/.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L)
♻ ☆ A Survey on Knowledge Organization Systems of Research Fields: Resources and Challenges
Knowledge Organization Systems (KOSs), such as term lists, thesauri, taxonomies, and ontologies, play a fundamental role in categorising, managing, and retrieving information. In the academic domain, KOSs are often adopted for representing research areas and their relationships, primarily aiming to classify research articles, academic courses, patents, books, scientific venues, domain experts, grants, software, experiment materials, and several other relevant products and agents. These structured representations of research areas, widely embraced by many academic fields, have proven effective in empowering AI-based systems to i) enhance retrievability of relevant documents, ii) enable advanced analytic solutions to quantify the impact of academic research, and iii) analyse and forecast research dynamics. This paper aims to present a comprehensive survey of the current KOS for academic disciplines. We analysed and compared 45 KOSs according to five main dimensions: scope, structure, curation, usage, and links to other KOSs. Our results reveal a very heterogeneous scenario in terms of scope, scale, quality, and usage, highlighting the need for more integrated solutions for representing research knowledge across academic fields. We conclude by discussing the main challenges and the most promising future directions.
comment: Published at Quantitative Science Studies
♻ ☆ Large Language Models for Scholarly Ontology Generation: An Extensive Analysis in the Engineering Field
Ontologies of research topics are crucial for structuring scientific knowledge, enabling scientists to navigate vast amounts of research, and forming the backbone of intelligent systems such as search engines and recommendation systems. However, manual creation of these ontologies is expensive, slow, and often results in outdated and overly general representations. As a solution, researchers have been investigating ways to automate or semi-automate the process of generating these ontologies. This paper offers a comprehensive analysis of the ability of large language models (LLMs) to identify semantic relationships between different research topics, which is a critical step in the development of such ontologies. To this end, we developed a gold standard based on the IEEE Thesaurus to evaluate the task of identifying four types of relationships between pairs of topics: broader, narrower, same-as, and other. Our study evaluates the performance of seventeen LLMs, which differ in scale, accessibility (open vs. proprietary), and model type (full vs. quantised), while also assessing four zero-shot reasoning strategies. Several models have achieved outstanding results, including Mixtral-8x7B, Dolphin-Mistral-7B, and Claude 3 Sonnet, with F1-scores of 0.847, 0.920, and 0.967, respectively. Furthermore, our findings demonstrate that smaller, quantised models, when optimised through prompt engineering, can deliver performance comparable to much larger proprietary models, while requiring significantly fewer computational resources.
comment: Now accepted to Information Processing & Management. this is the camera ready
♻ ☆ Reciprocity as the Foundational Substrate of Society: How Reciprocal Dynamics Scale into Social Systems
Prevailing accounts in both multi-agent AI and the social sciences explain social structure through top-down abstractions-such as institutions, norms, or trust-yet lack simulateable models of how such structures emerge from individual behavior. Ethnographic and archaeological evidence suggests that reciprocity served as the foundational mechanism of early human societies, enabling economic circulation, social cohesion, and interpersonal obligation long before the rise of formal institutions. Modern financial systems such as credit and currency can likewise be viewed as scalable extensions of reciprocity, formalizing exchange across time and anonymity. Building on this insight, we argue that reciprocity is not merely a local or primitive exchange heuristic, but the scalable substrate from which large-scale social structures can emerge. We propose a three-stage framework to model this emergence: reciprocal dynamics at the individual level, norm stabilization through shared expectations, and the construction of durable institutional patterns. This approach offers a cognitively minimal, behaviorally grounded foundation for simulating how large-scale social systems can emerge from decentralized reciprocal interaction.
comment: Position paper extending arXiv:2505.02945. Clarifies scope and rewrites for clarity. No changes to core framework, theoretical claims, or simulation direction. The framing remains within the scope of cs.CY and cs.MA
♻ ☆ RConE: Rough Cone Embedding for Multi-Hop Logical Query Answering on Multi-Modal Knowledge Graphs
Multi-hop query answering over a Knowledge Graph (KG) involves traversing one or more hops from the start node to answer a query. Path-based and logic-based methods are state-of-the-art for multi-hop question answering. The former is used in link prediction tasks. The latter is for answering complex logical queries. The logical multi-hop querying technique embeds the KG and queries in the same embedding space. The existing work incorporates First Order Logic (FOL) operators, such as conjunction ($\wedge$), disjunction ($\vee$), and negation ($\neg$), in queries. Though current models have most of the building blocks to execute the FOL queries, they cannot use the dense information of multi-modal entities in the case of Multi-Modal Knowledge Graphs (MMKGs). We propose RConE, an embedding method to capture the multi-modal information needed to answer a query. The model first shortlists candidate (multi-modal) entities containing the answer. It then finds the solution (sub-entities) within those entities. Several existing works tackle path-based question-answering in MMKGs. However, to our knowledge, we are the first to introduce logical constructs in querying MMKGs and to answer queries that involve sub-entities of multi-modal entities as the answer. Extensive evaluation of four publicly available MMKGs indicates that RConE outperforms the current state-of-the-art.
comment: Accepted in TKDE (June 2025) as regular paper
♻ ☆ Bias Detection via Maximum Subgroup Discrepancy
Bias evaluation is fundamental to trustworthy AI, both in terms of checking data quality and in terms of checking the outputs of AI systems. In testing data quality, for example, one may study the distance of a given dataset, viewed as a distribution, to a given ground-truth reference dataset. However, classical metrics, such as the Total Variation and the Wasserstein distances, are known to have high sample complexities and, therefore, may fail to provide a meaningful distinction in many practical scenarios. In this paper, we propose a new notion of distance, the Maximum Subgroup Discrepancy (MSD). In this metric, two distributions are close if, roughly, discrepancies are low for all feature subgroups. While the number of subgroups may be exponential, we show that the sample complexity is linear in the number of features, thus making it feasible for practical applications. Moreover, we provide a practical algorithm for evaluating the distance based on Mixed-integer optimization (MIO). We also note that the proposed distance is easily interpretable, thus providing clearer paths to fixing the biases once they have been identified. Finally, we describe a natural general bias detection framework, termed MSDD distances, and show that MSD aligns well with this framework. We empirically evaluate MSD by comparing it with other metrics and by demonstrating the above properties of MSD on real-world datasets.
comment: 12 pages, 6 figures
♻ ☆ Goal Kernel Planning: Linearly-Solvable Non-Markovian Policies for Logical Tasks with Goal-Conditioned Options
In the domain of hierarchical planning, compositionality, abstraction, and task transfer are crucial for designing algorithms that can efficiently solve a variety of problems with maximal representational reuse. Many real-world problems require non-Markovian policies to handle complex structured tasks with logical conditions, often leading to prohibitively large state representations; this requires efficient methods for breaking these problems down and reusing structure between tasks. To this end, we introduce a compositional framework called Linearly-Solvable Goal Kernel Dynamic Programming (LS-GKDP) to address the complexity of solving non-Markovian Boolean sub-goal tasks with ordering constraints. LS-GKDP combines the Linearly-Solvable Markov Decision Process (LMDP) formalism with the Options Framework of Reinforcement Learning. LMDPs can be efficiently solved as a principal eigenvector problem, and options are policies with termination conditions used as temporally extended actions; with LS-GKDP we expand LMDPs to control over options for logical tasks. This involves decomposing a high-dimensional problem down into a set of goal-condition options for each goal and constructing a goal kernel, which is an abstract transition kernel that jumps from an option's initial-states to its termination-states along with an update of the higher-level task-state. We show how an LMDP with a goal kernel enables the efficient optimization of meta-policies in a lower-dimensional subspace defined by the task grounding. Options can also be remapped to new problems within a super-exponential space of tasks without significant recomputation, and we identify cases where the solution is invariant to the task grounding, permitting zero-shot task transfer.
comment: 52 Pages total. This is an update to a paper we submitted to a Journal and received reviewer feedback for improvement
♻ ☆ EnrichEvent: Enriching Social Data with Contextual Information for Emerging Event Extraction
Social platforms have emerged as crucial platforms for distributing information and discussing social events, offering researchers an excellent opportunity to design and implement novel event detection frameworks. Identifying unspecified events and detecting events without prior knowledge enables governments, aid agencies, and experts to respond swiftly and effectively to unfolding situations, such as natural disasters, by assessing severity and optimizing aid delivery. Social data is characterized by misspellings, incompleteness, word sense ambiguation, and irregular language. While discussing an ongoing event, users share different opinions and perspectives based on their prior experience, background, and knowledge. Prior works primarily leverage tweets' lexical and structural patterns to capture users' opinions and views about events. In this study, we propose an end-to-end novel framework, EnrichEvent, to identify unspecified events from streaming social data. In addition to lexical and structural patterns, we leverage contextual knowledge of the tweets to enrich their representation and gain a better perspective on users' opinions about events. Compared to our baselines, the EnrichEvent framework achieves the highest values for Consolidation outcome with an average of 87% vs. 67% and the lowest for Discrimination outcome with an average of 10% vs. 16%. Moreover, the Trending Data Extraction module in the EnrichEvent framework improves efficiency by reducing Runtime by up to 50% by identifying and discarding irrelevant tweets within message blocks, making the framework highly scalable for processing streaming data. Our source code and dataset are available in our official replication package.
comment: Iran J Comput Sci (2025)
♻ ☆ Temporal-Guided Spiking Neural Networks for Event-Based Human Action Recognition
This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
♻ ☆ LEMUR Neural Network Dataset: Towards Seamless AutoML
Neural networks are fundamental in artificial intelligence, driving progress in computer vision and natural language processing. High-quality datasets are crucial for their development, and there is growing interest in datasets composed of neural networks themselves to support benchmarking, automated machine learning (AutoML), and model analysis. We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures across tasks such as object detection, image classification, segmentation, and natural language processing. LEMUR is primarily designed to provide a rich source of structured model representations and associated performance data, enabling the fine-tuning of large language models for AutoML applications. Leveraging Python and PyTorch, LEMUR enables seamless extension to new datasets and models while maintaining consistency. It integrates an Optuna-powered framework for evaluation, hyperparameter optimization, statistical analysis, and graphical insights. LEMUR VR extension enables the seamless deployment of models in virtual reality, optimizing their performance on resource-constrained devices. Providing tools for model evaluation, preprocessing, and database management, LEMUR supports researchers and practitioners in developing, testing, and analyzing neural networks. It offers an API that delivers comprehensive information about neural network models and their complete performance statistics with a single request, which can be used in experiments with code-generating large language models. The LEMUR and its plugins are accessible as open source projects under the MIT license at https://github.com/ABrain-One/nn-dataset, https://github.com/ABrain-One/nn-plots and https://github.com/ABrain-One/nn-vr.
♻ ☆ DeepMultiConnectome: Deep Multi-Task Prediction of Structural Connectomes Directly from Diffusion MRI Tractography
Diffusion MRI (dMRI) tractography enables in vivo mapping of brain structural connections, but traditional connectome generation is time-consuming and requires gray matter parcellation, posing challenges for large-scale studies. We introduce DeepMultiConnectome, a deep-learning model that predicts structural connectomes directly from tractography, bypassing the need for gray matter parcellation while supporting multiple parcellation schemes. Using a point-cloud-based neural network with multi-task learning, the model classifies streamlines according to their connected regions across two parcellation schemes, sharing a learned representation. We train and validate DeepMultiConnectome on tractography from the Human Connectome Project Young Adult dataset ($n = 1000$), labeled with an 84 and 164 region gray matter parcellation scheme. DeepMultiConnectome predicts multiple structural connectomes from a whole-brain tractogram containing 3 million streamlines in approximately 40 seconds. DeepMultiConnectome is evaluated by comparing predicted connectomes with traditional connectomes generated using the conventional method of labeling streamlines using a gray matter parcellation. The predicted connectomes are highly correlated with traditionally generated connectomes ($r = 0.992$ for an 84-region scheme; $r = 0.986$ for a 164-region scheme) and largely preserve network properties. A test-retest analysis of DeepMultiConnectome demonstrates reproducibility comparable to traditionally generated connectomes. The predicted connectomes perform similarly to traditionally generated connectomes in predicting age and cognitive function. Overall, DeepMultiConnectome provides a scalable, fast model for generating subject-specific connectomes across multiple parcellation schemes.
comment: 15 pages, 5 figures
♻ ☆ Jigsaw-Puzzles: From Seeing to Understanding to Reasoning in Vision-Language Models
Spatial reasoning is a core component of human cognition, enabling individuals to perceive, comprehend, and interact with the physical world. It relies on a nuanced understanding of spatial structures and inter-object relationships, serving as the foundation for complex reasoning and decision-making. To investigate whether current vision-language models (VLMs) exhibit similar capability, we introduce Jigsaw-Puzzles, a novel benchmark consisting of 1,100 carefully curated real-world images with high spatial complexity. Based on this dataset, we design five tasks to rigorously evaluate VLMs' spatial perception, structural understanding, and reasoning capabilities, while deliberately minimizing reliance on domain-specific knowledge to better isolate and assess the general spatial reasoning capability. We conduct a comprehensive evaluation across 24 state-of-the-art VLMs. The results show that even the strongest model, Gemini-2.5-Pro, achieves only 77.14% overall accuracy and performs particularly poorly on the Order Generation task, with only 30.00% accuracy, far below the performance exceeding 90% achieved by human participants. This persistent gap underscores the need for continued progress, positioning Jigsaw-Puzzles as a challenging and diagnostic benchmark for advancing spatial reasoning research in VLMs. Our project page is at https://zesen01.github.io/jigsaw-puzzles
♻ ☆ Rethinking Text-based Protein Understanding: Retrieval or LLM?
In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at https://github.com/IDEA-XL/RAPM.
♻ ☆ Raising the Bar: Investigating the Values of Large Language Models via Generative Evolving Testing ICML 2025
Warning: Contains harmful model outputs. Despite significant advancements, the propensity of Large Language Models (LLMs) to generate harmful and unethical content poses critical challenges. Measuring value alignment of LLMs becomes crucial for their regulation and responsible deployment. Although numerous benchmarks have been constructed to assess social bias, toxicity, and ethical issues in LLMs, those static benchmarks suffer from evaluation chronoeffect, in which, as models rapidly evolve, existing benchmarks may leak into training data or become saturated, overestimating ever-developing LLMs. To tackle this problem, we propose GETA, a novel generative evolving testing approach based on adaptive testing methods in measurement theory. Unlike traditional adaptive testing methods that rely on a static test item pool, GETA probes the underlying moral boundaries of LLMs by dynamically generating test items tailored to model capability. GETA co-evolves with LLMs by learning a joint distribution of item difficulty and model value conformity, thus effectively addressing evaluation chronoeffect. We evaluated various popular LLMs with GETA and demonstrated that 1) GETA can dynamically create difficulty-tailored test items and 2) GETA's evaluation results are more consistent with models' performance on unseen OOD and i.i.d. items, laying the groundwork for future evaluation paradigms.
comment: ICML 2025
♻ ☆ Monet: Mixture of Monosemantic Experts for Transformers
Understanding the internal computations of large language models (LLMs) is crucial for aligning them with human values and preventing undesirable behaviors like toxic content generation. However, mechanistic interpretability is hindered by polysemanticity -- where individual neurons respond to multiple, unrelated concepts. While Sparse Autoencoders (SAEs) have attempted to disentangle these features through sparse dictionary learning, they have compromised LLM performance due to reliance on post-hoc reconstruction loss. To address this issue, we introduce Mixture of Monosemantic Experts for Transformers (Monet) architecture, which incorporates sparse dictionary learning directly into end-to-end Mixture-of-Experts pretraining. Our novel expert decomposition method enables scaling the expert count to 262,144 per layer while total parameters scale proportionally to the square root of the number of experts. Our analyses demonstrate mutual exclusivity of knowledge across experts and showcase the parametric knowledge encapsulated within individual experts. Moreover, Monet allows knowledge manipulation over domains, languages, and toxicity mitigation without degrading general performance. Our pursuit of transparent LLMs highlights the potential of scaling expert counts to enhance mechanistic interpretability and directly resect the internal knowledge to fundamentally adjust model behavior. The source code and pretrained checkpoints are available at https://github.com/dmis-lab/Monet.
♻ ☆ A Reinforcement Learning Approach for RIS-aided Fair Communications
Reconfigurable Intelligent Surfaces (RISs) are composed of physical elements that can dynamically alter electromagnetic wave properties to enhance beamforming and leading to improvements in areas with low coverage properties. They have the potential to be combined with Reinforcement Learning (RL) techniques to achieve network performance and energy efficiency via optimization techniques. In addition to performance and energy improvements, it is also crucial to consider the concept of fair communications. RISs must ensure that User Equipment (UE) units receive their signals with adequate strength, without other UE being deprived of service due to insufficient power. In this paper, we address such a problem. We explore the fairness properties of previous work and propose a novel method that aims at obtaining an efficient and fair duplex RIS-RL system for multiple legitimate UE units. We report and discuss our experimental work and simulation results. We also release our code and datasets to foster further research in the topic.
comment: 8 pages, 7 figures, 1 table, 16 references
♻ ☆ Persona-judge: Personalized Alignment of Large Language Models via Token-level Self-judgment ACL
Aligning language models with human preferences presents significant challenges, particularly in achieving personalization without incurring excessive computational costs. Existing methods rely on reward signals and additional annotated data, limiting their scalability and adaptability to diverse human values. To address these challenges, we introduce Persona-judge, a novel discriminative paradigm that enables training-free personalized alignment with unseen preferences. Instead of optimizing policy parameters through external reward feedback, Persona-judge leverages the intrinsic preference judgment capabilities of the model. Specifically, a draft model generates candidate tokens conditioned on a given preference, while a judge model, embodying another preference, cross-validates the predicted tokens whether to be accepted. Experimental results demonstrate that Persona-judge, using the inherent preference evaluation mechanisms of the model, offers a scalable and computationally efficient solution to personalized alignment, paving the way for more adaptive customized alignment. Our code is available here.
comment: ACL Finding
♻ ☆ Forecasting high-impact research topics via machine learning on evolving knowledge graphs
The exponential growth in scientific publications poses a severe challenge for human researchers. It forces attention to more narrow sub-fields, which makes it challenging to discover new impactful research ideas and collaborations outside one's own field. While there are ways to predict a scientific paper's future citation counts, they need the research to be finished and the paper written, usually assessing impact long after the idea was conceived. Here we show how to predict the impact of onsets of ideas that have never been published by researchers. For that, we developed a large evolving knowledge graph built from more than 21 million scientific papers. It combines a semantic network created from the content of the papers and an impact network created from the historic citations of papers. Using machine learning, we can predict the dynamic of the evolving network into the future with high accuracy (AUC values beyond 0.9 for most experiments), and thereby the impact of new research directions. We envision that the ability to predict the impact of new ideas will be a crucial component of future artificial muses that can inspire new impactful and interesting scientific ideas.
comment: 15 pages, 12 figures, Comments welcome!
♻ ☆ Bayesian Neural Scaling Law Extrapolation with Prior-Fitted Networks ICML 2025
Scaling has been a major driver of recent advancements in deep learning. Numerous empirical studies have found that scaling laws often follow the power-law and proposed several variants of power-law functions to predict the scaling behavior at larger scales. However, existing methods mostly rely on point estimation and do not quantify uncertainty, which is crucial for real-world applications involving decision-making problems such as determining the expected performance improvements achievable by investing additional computational resources. In this work, we explore a Bayesian framework based on Prior-data Fitted Networks (PFNs) for neural scaling law extrapolation. Specifically, we design a prior distribution that enables the sampling of infinitely many synthetic functions resembling real-world neural scaling laws, allowing our PFN to meta-learn the extrapolation. We validate the effectiveness of our approach on real-world neural scaling laws, comparing it against both the existing point estimation methods and Bayesian approaches. Our method demonstrates superior performance, particularly in data-limited scenarios such as Bayesian active learning, underscoring its potential for reliable, uncertainty-aware extrapolation in practical applications.
comment: Accepted to ICML 2025
♻ ☆ Revisiting Self-Consistency from Dynamic Distributional Alignment Perspective on Answer Aggregation ACL 2025
Self-consistency improves reasoning by aggregating diverse stochastic samples, yet the dynamics behind its efficacy remain underexplored. We reframe self-consistency as a dynamic distributional alignment problem, revealing that decoding temperature not only governs sampling randomness but also actively shapes the latent answer distribution. Given that high temperatures require prohibitively large sample sizes to stabilize, while low temperatures risk amplifying biases, we propose a confidence-driven mechanism that dynamically calibrates temperature: sharpening the sampling distribution under uncertainty to align with high-probability modes, and promoting exploration when confidence is high. Experiments on mathematical reasoning tasks show this approach outperforms fixed-diversity baselines under limited samples, improving both average and best-case performance across varying initial temperatures without additional data or modules. This establishes self-consistency as a synchronization challenge between sampling dynamics and evolving answer distributions.
comment: ACL 2025 Findings
♻ ☆ Irony Detection, Reasoning and Understanding in Zero-shot Learning
The generalisation of irony detection faces significant challenges, leading to substantial performance deviations when detection models are applied to diverse real-world scenarios. In this study, we find that irony-focused prompts, as generated from our IDADP framework for LLMs, can not only overcome dataset-specific limitations but also generate coherent, human-readable reasoning, transforming ironic text into its intended meaning. Based on our findings and in-depth analysis, we identify several promising directions for future research aimed at enhancing LLMs' zero-shot capabilities in irony detection, reasoning, and comprehension. These include advancing contextual awareness in irony detection, exploring hybrid symbolic-neural methods, and integrating multimodal data, among others.
♻ ☆ MADCluster: Model-agnostic Anomaly Detection with Self-supervised Clustering Network
In this paper, we propose MADCluster, a novel model-agnostic anomaly detection framework utilizing self-supervised clustering. MADCluster is applicable to various deep learning architectures and addresses the 'hypersphere collapse' problem inherent in existing deep learning-based anomaly detection methods. The core idea is to cluster normal pattern data into a 'single cluster' while simultaneously learning the cluster center and mapping data close to this center. Also, to improve expressiveness and enable effective single clustering, we propose a new 'One-directed Adaptive loss'. The optimization of this loss is mathematically proven. MADCluster consists of three main components: Base Embedder capturing high-dimensional temporal dynamics, Cluster Distance Mapping, and Sequence-wise Clustering for continuous center updates. Its model-agnostic characteristics are achieved by applying various architectures to the Base Embedder. Experiments on four time series benchmark datasets demonstrate that applying MADCluster improves the overall performance of comparative models. In conclusion, the compatibility of MADCluster shows potential for enhancing model performance across various architectures.
comment: 24 pages, 9 figures
♻ ☆ CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis ACL 2025
Integrating multimodal Electronic Health Records (EHR) data, such as numerical time series and free-text clinical reports, has great potential in predicting clinical outcomes. However, prior work has primarily focused on capturing temporal interactions within individual samples and fusing multimodal information, overlooking critical temporal patterns across patients. These patterns, such as trends in vital signs like abnormal heart rate or blood pressure, can indicate deteriorating health or an impending critical event. Similarly, clinical notes often contain textual descriptions that reflect these patterns. Identifying corresponding temporal patterns across different modalities is crucial for improving the accuracy of clinical outcome predictions, yet it remains a challenging task. To address this gap, we introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data. Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings. To ensure rich cross-modal temporal semantics in the learned patterns, we introduce a contrastive-based TPNCE loss for cross-modal alignment, along with two reconstruction losses to retain core information of each modality. Evaluations on two clinically critical tasks, 48-hour in-hospital mortality and 24-hour phenotype classification, using the MIMIC-III database demonstrate the superiority of our method over existing approaches.
comment: ACL 2025 Findings
♻ ☆ Weakly Supervised Multiple Instance Learning for Whale Call Detection and Temporal Localization in Long-Duration Passive Acoustic Monitoring
Marine ecosystem monitoring via Passive Acoustic Monitoring (PAM) generates vast data, but deep learning often requires precise annotations and short segments. We introduce DSMIL-LocNet, a Multiple Instance Learning framework for whale call detection and localization using only bag-level labels. Our dual-stream model processes 2-30 minute audio segments, leveraging spectral and temporal features with attention-based instance selection. Tests on Antarctic whale data show longer contexts improve classification (F1: 0.8-0.9) while medium instances ensure localization precision (0.65-0.70). This suggests MIL can enhance scalable marine monitoring. Code: https://github.com/Ragib-Amin-Nihal/DSMIL-Loc
♻ ☆ Follow the Energy, Find the Path: Riemannian Metrics from Energy-Based Models
What is the shortest path between two data points lying in a high-dimensional space? While the answer is trivial in Euclidean geometry, it becomes significantly more complex when the data lies on a curved manifold -- requiring a Riemannian metric to describe the space's local curvature. Estimating such a metric, however, remains a major challenge in high dimensions. In this work, we propose a method for deriving Riemannian metrics directly from pretrained Energy-Based Models (EBMs) -- a class of generative models that assign low energy to high-density regions. These metrics define spatially varying distances, enabling the computation of geodesics -- shortest paths that follow the data manifold's intrinsic geometry. We introduce two novel metrics derived from EBMs and show that they produce geodesics that remain closer to the data manifold and exhibit lower curvature distortion, as measured by alignment with ground-truth trajectories. We evaluate our approach on increasingly complex datasets: synthetic datasets with known data density, rotated character images with interpretable geometry, and high-resolution natural images embedded in a pretrained VAE latent space. Our results show that EBM-derived metrics consistently outperform established baselines, especially in high-dimensional settings. Our work is the first to derive Riemannian metrics from EBMs, enabling data-aware geodesics and unlocking scalable, geometry-driven learning for generative modeling and simulation.
♻ ☆ NestQuant: Nested Lattice Quantization for Matrix Products and LLMs
Post-training quantization (PTQ) has emerged as a critical technique for efficient deployment of large language models (LLMs). This work proposes NestQuant, a novel PTQ scheme for weights and activations that is based on self-similar nested lattices. Recent works have mathematically shown such quantizers to be information-theoretically optimal for low-precision matrix multiplication. We implement a practical low-complexity version of NestQuant based on Gosset lattice, making it a drop-in quantizer for any matrix multiplication step (e.g., in self-attention, MLP etc). For example, NestQuant quantizes weights, KV-cache, and activations of Llama-3-8B to 4 bits, achieving perplexity of 6.6 on wikitext2. This represents more than 55% reduction in perplexity gap with respect to unquantized model (perplexity of 6.14) compared to state-of-the-art Metas SpinQuant (perplexity 7.3), OstQuant (7.3) and QuaRot (8.2). Comparisons on bigger models (up to 70B) and on various LLM evaluation benchmarks confirm uniform superiority of NestQuant.
comment: 23 pages
♻ ☆ AcTracer: Active Testing of Large Language Model via Multi-Stage Sampling
Performance evaluation plays a crucial role in the development life cycle of large language models (LLMs). It estimates the model's capability, elucidates behavior characteristics, and facilitates the identification of potential issues and limitations, thereby guiding further improvement. Given that LLMs' diverse task-handling abilities stem from large volumes of training data, a comprehensive evaluation also necessitates abundant, well-annotated, and representative test data to assess LLM performance across various downstream tasks. However, the demand for high-quality test data often entails substantial time, computational resources, and manual efforts, sometimes causing the evaluation to be inefficient or impractical. To address these challenges, researchers propose active testing, which estimates the overall performance by selecting a subset of test data. Nevertheless, the existing active testing methods tend to be inefficient, even inapplicable, given the unique new challenges of LLMs (e.g., diverse task types, increased model complexity, and unavailability of training data). To mitigate such limitations and expedite the development cycle of LLMs, in this work, we introduce AcTracer, an active testing framework tailored for LLMs that strategically selects a small subset of test data to achieve a more accurate performance estimation for LLMs. AcTracer utilizes both internal and external information from LLMs to guide the test sampling process, reducing variance through a multi-stage pool-based active selection. Our experiment results demonstrate that AcTracer achieves state-of-the-art performance compared to existing methods across various tasks.
comment: To appear in ACM Transactions on Software Engineering and Methodology (2025)
♻ ☆ Rethinking Diverse Human Preference Learning through Principal Component Analysis
Understanding human preferences is crucial for improving foundation models and building personalized AI systems. However, preferences are inherently diverse and complex, making it difficult for traditional reward models to capture their full range. While fine-grained preference data can help, collecting it is expensive and hard to scale. In this paper, we introduce Decomposed Reward Models (DRMs), a novel approach that extracts diverse human preferences from binary comparisons without requiring fine-grained annotations. Our key insight is to represent human preferences as vectors and analyze them using Principal Component Analysis (PCA). By constructing a dataset of embedding differences between preferred and rejected responses, DRMs identify orthogonal basis vectors that capture distinct aspects of preference. These decomposed rewards can be flexibly combined to align with different user needs, offering an interpretable and scalable alternative to traditional reward models. We demonstrate that DRMs effectively extract meaningful preference dimensions (e.g., helpfulness, safety, humor) and adapt to new users without additional training. Our results highlight DRMs as a powerful framework for personalized and interpretable LLM alignment. Our code is available at https://github.com/amandaluof/DRMs.
comment: 14 pages
♻ ☆ Code-Switching Curriculum Learning for Multilingual Transfer in LLMs ACL 2025
Large language models (LLMs) now exhibit near human-level performance in various tasks, but their performance drops drastically after a handful of high-resource languages due to the imbalance in pre-training data. Inspired by the human process of second language acquisition, particularly code-switching$\unicode{x2014}$the practice of language alternation in a conversation$\unicode{x2014}$we propose code-switching curriculum learning (CSCL) to enhance cross-lingual transfer for LLMs. CSCL mimics the stages of human language learning by progressively training models with a curriculum consisting of 1) token-level code-switching, 2) sentence-level code-switching, and 3) monolingual corpora. Using Qwen 2 as our underlying model, we demonstrate the efficacy of the CSCL in improving language transfer to Korean, achieving significant performance gains compared to monolingual continual pre-training methods. Ablation studies reveal that both token- and sentence-level code-switching significantly enhance cross-lingual transfer and that curriculum learning amplifies these effects. We also extend our findings into various languages, including Japanese (high-resource) and Indonesian (low-resource), and using two additional models (Gemma 2 and Phi 3.5). We further show that CSCL mitigates spurious correlations between language resources and safety alignment, presenting a robust, efficient framework for more equitable language transfer in LLMs. We observe that CSCL is effective for low-resource settings where high-quality, monolingual corpora for language transfer are hardly available.
comment: To appear in Findings of ACL 2025
♻ ☆ Code-Switching Red-Teaming: LLM Evaluation for Safety and Multilingual Understanding ACL 2025
As large language models (LLMs) have advanced rapidly, concerns regarding their safety have become prominent. In this paper, we discover that code-switching in red-teaming queries can effectively elicit undesirable behaviors of LLMs, which are common practices in natural language. We introduce a simple yet effective framework, CSRT, to synthesize codeswitching red-teaming queries and investigate the safety and multilingual understanding of LLMs comprehensively. Through extensive experiments with ten state-of-the-art LLMs and code-switching queries combining up to 10 languages, we demonstrate that the CSRT significantly outperforms existing multilingual red-teaming techniques, achieving 46.7% more attacks than standard attacks in English and being effective in conventional safety domains. We also examine the multilingual ability of those LLMs to generate and understand codeswitching texts. Additionally, we validate the extensibility of the CSRT by generating codeswitching attack prompts with monolingual data. We finally conduct detailed ablation studies exploring code-switching and propound unintended correlation between resource availability of languages and safety alignment in existing multilingual LLMs.
comment: To appear in ACL 2025
♻ ☆ DREsS: Dataset for Rubric-based Essay Scoring on EFL Writing ACL 2025
Automated essay scoring (AES) is a useful tool in English as a Foreign Language (EFL) writing education, offering real-time essay scores for students and instructors. However, previous AES models were trained on essays and scores irrelevant to the practical scenarios of EFL writing education and usually provided a single holistic score due to the lack of appropriate datasets. In this paper, we release DREsS, a large-scale, standard dataset for rubric-based automated essay scoring with 48.9K samples in total. DREsS comprises three sub-datasets: DREsS_New, DREsS_Std., and DREsS_CASE. We collect DREsS_New, a real-classroom dataset with 2.3K essays authored by EFL undergraduate students and scored by English education experts. We also standardize existing rubric-based essay scoring datasets as DREsS_Std. We suggest CASE, a corruption-based augmentation strategy for essays, which generates 40.1K synthetic samples of DREsS_CASE and improves the baseline results by 45.44%. DREsS will enable further research to provide a more accurate and practical AES system for EFL writing education.
comment: To appear in ACL 2025. arXiv admin note: text overlap with arXiv:2310.05191
♻ ☆ Sim-to-Real Causal Transfer: A Metric Learning Approach to Causally-Aware Interaction Representations CVPR 2025
Modeling spatial-temporal interactions among neighboring agents is at the heart of multi-agent problems such as motion forecasting and crowd navigation. Despite notable progress, it remains unclear to which extent modern representations can capture the causal relationships behind agent interactions. In this work, we take an in-depth look at the causal awareness of these representations, from computational formalism to real-world practice. First, we cast doubt on the notion of non-causal robustness studied in the recent CausalAgents benchmark. We show that recent representations are already partially resilient to perturbations of non-causal agents, and yet modeling indirect causal effects involving mediator agents remains challenging. To address this challenge, we introduce a metric learning approach that regularizes latent representations with causal annotations. Our controlled experiments show that this approach not only leads to higher degrees of causal awareness but also yields stronger out-of-distribution robustness. To further operationalize it in practice, we propose a sim-to-real causal transfer method via cross-domain multi-task learning. Experiments on pedestrian datasets show that our method can substantially boost generalization, even in the absence of real-world causal annotations. We hope our work provides a new perspective on the challenges and pathways towards causally-aware representations of multi-agent interactions. Our code is available at https://github.com/vita-epfl/CausalSim2Real.
comment: CVPR 2025
♻ ☆ Fine-tuning Diffusion Policies with Backpropagation Through Diffusion Timesteps
Diffusion policies, widely adopted in decision-making scenarios such as robotics, gaming and autonomous driving, are capable of learning diverse skills from demonstration data due to their high representation power. However, the sub-optimal and limited coverage of demonstration data could lead to diffusion policies that generate sub-optimal trajectories and even catastrophic failures. While reinforcement learning (RL)-based fine-tuning has emerged as a promising solution to address these limitations, existing approaches struggle to effectively adapt Proximal Policy Optimization (PPO) to diffusion models. This challenge stems from the computational intractability of action likelihood estimation during the denoising process, which leads to complicated optimization objectives. In our experiments starting from randomly initialized policies, we find that online tuning of Diffusion Policies demonstrates much lower sample efficiency compared to directly applying PPO on MLP policies (MLP+PPO). To address these challenges, we introduce NCDPO, a novel framework that reformulates Diffusion Policy as a noise-conditioned deterministic policy. By treating each denoising step as a differentiable transformation conditioned on pre-sampled noise, NCDPO enables tractable likelihood evaluation and gradient backpropagation through all diffusion timesteps. Our experiments demonstrate that NCDPO achieves sample efficiency comparable to MLP+PPO when training from scratch, outperforming existing methods in both sample efficiency and final performance across diverse benchmarks, including continuous robot control and multi-agent game scenarios. Furthermore, our experimental results show that our method is robust to the number denoising timesteps in the Diffusion Policy.
comment: 9 pages for main text, 23 pages in total, submitted to Neurips, 13 figures
♻ ☆ Chem42: a Family of chemical Language Models for Target-aware Ligand Generation
Revolutionizing drug discovery demands more than just understanding molecular interactions - it requires generative models that can design novel ligands tailored to specific biological targets. While chemical Language Models (cLMs) have made strides in learning molecular properties, most fail to incorporate target-specific insights, restricting their ability to drive de-novo ligand generation. Chem42, a cutting-edge family of generative chemical Language Models, is designed to bridge this gap. By integrating atomic-level interactions with multimodal inputs from Prot42, a complementary protein Language Model, Chem42 achieves a sophisticated cross-modal representation of molecular structures, interactions, and binding patterns. This innovative framework enables the creation of structurally valid, synthetically accessible ligands with enhanced target specificity. Evaluations across diverse protein targets confirm that Chem42 surpasses existing approaches in chemical validity, target-aware design, and predicted binding affinity. By reducing the search space of viable drug candidates, Chem42 could accelerate the drug discovery pipeline, offering a powerful generative AI tool for precision medicine. Our Chem42 models set a new benchmark in molecule property prediction, conditional molecule generation, and target-aware ligand design. The models are publicly available at huggingface.co/inceptionai.
♻ ☆ Pre-trained Large Language Models Learn Hidden Markov Models In-context
Hidden Markov Models (HMMs) are foundational tools for modeling sequential data with latent Markovian structure, yet fitting them to real-world data remains computationally challenging. In this work, we show that pre-trained large language models (LLMs) can effectively model data generated by HMMs via in-context learning (ICL)$\unicode{x2013}$their ability to infer patterns from examples within a prompt. On a diverse set of synthetic HMMs, LLMs achieve predictive accuracy approaching the theoretical optimum. We uncover novel scaling trends influenced by HMM properties, and offer theoretical conjectures for these empirical observations. We also provide practical guidelines for scientists on using ICL as a diagnostic tool for complex data. On real-world animal decision-making tasks, ICL achieves competitive performance with models designed by human experts. To our knowledge, this is the first demonstration that ICL can learn and predict HMM-generated sequences$\unicode{x2013}$an advance that deepens our understanding of in-context learning in LLMs and establishes its potential as a powerful tool for uncovering hidden structure in complex scientific data.
♻ ☆ LLM Enhancers for GNNs: An Analysis from the Perspective of Causal Mechanism Identification ICML 2025
The use of large language models (LLMs) as feature enhancers to optimize node representations, which are then used as inputs for graph neural networks (GNNs), has shown significant potential in graph representation learning. However, the fundamental properties of this approach remain underexplored. To address this issue, we propose conducting a more in-depth analysis of this issue based on the interchange intervention method. First, we construct a synthetic graph dataset with controllable causal relationships, enabling precise manipulation of semantic relationships and causal modeling to provide data for analysis. Using this dataset, we conduct interchange interventions to examine the deeper properties of LLM enhancers and GNNs, uncovering their underlying logic and internal mechanisms. Building on the analytical results, we design a plug-and-play optimization module to improve the information transfer between LLM enhancers and GNNs. Experiments across multiple datasets and models validate the proposed module.
comment: Accepted by ICML 2025
♻ ☆ An LLM-Empowered Adaptive Evolutionary Algorithm For Multi-Component Deep Learning Systems
Multi-objective evolutionary algorithms (MOEAs) are widely used for searching optimal solutions in complex multi-component applications. Traditional MOEAs for multi-component deep learning (MCDL) systems face challenges in enhancing the search efficiency while maintaining the diversity. To combat these, this paper proposes $\mu$MOEA, the first LLM-empowered adaptive evolutionary search algorithm to detect safety violations in MCDL systems. Inspired by the context-understanding ability of Large Language Models (LLMs), $\mu$MOEA promotes the LLM to comprehend the optimization problem and generate an initial population tailed to evolutionary objectives. Subsequently, it employs adaptive selection and variation to iteratively produce offspring, balancing the evolutionary efficiency and diversity. During the evolutionary process, to navigate away from the local optima, $\mu$MOEA integrates the evolutionary experience back into the LLM. This utilization harnesses the LLM's quantitative reasoning prowess to generate differential seeds, breaking away from current optimal solutions. We evaluate $\mu$MOEA in finding safety violations of MCDL systems, and compare its performance with state-of-the-art MOEA methods. Experimental results show that $\mu$MOEA can significantly improve the efficiency and diversity of the evolutionary search.
comment: 9
♻ ☆ MedChat: A Multi-Agent Framework for Multimodal Diagnosis with Large Language Models
The integration of deep learning-based glaucoma detection with large language models (LLMs) presents an automated strategy to mitigate ophthalmologist shortages and improve clinical reporting efficiency. However, applying general LLMs to medical imaging remains challenging due to hallucinations, limited interpretability, and insufficient domain-specific medical knowledge, which can potentially reduce clinical accuracy. Although recent approaches combining imaging models with LLM reasoning have improved reporting, they typically rely on a single generalist agent, restricting their capacity to emulate the diverse and complex reasoning found in multidisciplinary medical teams. To address these limitations, we propose MedChat, a multi-agent diagnostic framework and platform that combines specialized vision models with multiple role-specific LLM agents, all coordinated by a director agent. This design enhances reliability, reduces hallucination risk, and enables interactive diagnostic reporting through an interface tailored for clinical review and educational use. Code available at https://github.com/Purdue-M2/MedChat.
comment: 7 pages, 6 figures. Accepted to the 2025 IEEE 8th International Conference on Multimedia Information Processing and Retrieval (MIPR)
♻ ☆ TGRPO :Fine-tuning Vision-Language-Action Model via Trajectory-wise Group Relative Policy Optimization
Recent advances in Vision-Language-Action (VLA) model have demonstrated strong generalization capabilities across diverse scenes, tasks, and robotic platforms when pretrained at large-scale datasets. However, these models still require task-specific fine-tuning in novel environments, a process that relies almost exclusively on supervised fine-tuning (SFT) using static trajectory datasets. Such approaches neither allow robot to interact with environment nor do they leverage feedback from live execution. Also, their success is critically dependent on the size and quality of the collected trajectories. Reinforcement learning (RL) offers a promising alternative by enabling closed-loop interaction and aligning learned policies directly with task objectives. In this work, we draw inspiration from the ideas of GRPO and propose the Trajectory-wise Group Relative Policy Optimization (TGRPO) method. By fusing step-level and trajectory-level advantage signals, this method improves GRPO's group-level advantage estimation, thereby making the algorithm more suitable for online reinforcement learning training of VLA. Experimental results on ten manipulation tasks from the libero-object benchmark demonstrate that TGRPO consistently outperforms various baseline methods, capable of generating more robust and efficient policies across multiple tested scenarios. Our source codes are available at: https://github.com/hahans/TGRPO
♻ ☆ Modality-Balancing Preference Optimization of Large Multimodal Models by Adversarial Negative Mining
The task adaptation and alignment of Large Multimodal Models (LMMs) have been significantly advanced by instruction tuning and further strengthened by recent preference optimization. Yet, most LMMs still suffer from severe modality imbalance during reasoning, i.e., outweighing language prior biases over visual inputs, which bottlenecks their generalization to downstream tasks and causes hallucinations. However, existing preference optimization approaches for LMMs do not focus on restraining the internal biases of their Large Language Model (LLM) backbones when curating the training data. Moreover, they heavily rely on offline data and lack the capacity to explore diverse responses adaptive to dynamic distributional shifts during training. Meanwhile, Group Relative Policy Optimization (GRPO), a recent method using online-generated data and verified rewards to improve reasoning capabilities, remains largely underexplored in LMM alignment. In this paper, we propose a novel preference learning framework, Modality-Balancing Preference Optimization (MBPO), to address the modality imbalance in LMMs. MBPO constructs a more effective offline preference dataset by generating hard negatives, i.e., rejected responses misled by LLM biases due to limited usage of visual information, through adversarial perturbation of input images. Moreover, MBPO leverages the easy-to-verify nature of close-ended tasks to generate online responses with verified rewards. GRPO is then employed to train the model with offline-online hybrid data. Extensive experiments demonstrate that MBPO can enhance LMM performance on challenging vision-language tasks and effectively reduce hallucinations.
♻ ☆ Code Vulnerability Repair with Large Language Model using Context-Aware Prompt Tuning
Large Language Models (LLMs) have shown significant challenges in detecting and repairing vulnerable code, particularly when dealing with vulnerabilities involving multiple aspects, such as variables, code flows, and code structures. In this study, we utilize GitHub Copilot as the LLM and focus on buffer overflow vulnerabilities. Our experiments reveal a notable gap in Copilot's abilities when dealing with buffer overflow vulnerabilities, with a 76% vulnerability detection rate but only a 15% vulnerability repair rate. To address this issue, we propose context-aware prompt tuning techniques designed to enhance LLM performance in repairing buffer overflow. By injecting a sequence of domain knowledge about the vulnerability, including various security and code contexts, we demonstrate that Copilot's successful repair rate increases to 63%, representing more than four times the improvement compared to repairs without domain knowledge.
♻ ☆ Toward Reliable AR-Guided Surgical Navigation: Interactive Deformation Modeling with Data-Driven Biomechanics and Prompts
In augmented reality (AR)-guided surgical navigation, preoperative organ models are superimposed onto the patient's intraoperative anatomy to visualize critical structures such as vessels and tumors. Accurate deformation modeling is essential to maintain the reliability of AR overlays by ensuring alignment between preoperative models and the dynamically changing anatomy. Although the finite element method (FEM) offers physically plausible modeling, its high computational cost limits intraoperative applicability. Moreover, existing algorithms often fail to handle large anatomical changes, such as those induced by pneumoperitoneum or ligament dissection, leading to inaccurate anatomical correspondences and compromised AR guidance. To address these challenges, we propose a data-driven biomechanics algorithm that preserves FEM-level accuracy while improving computational efficiency. In addition, we introduce a novel human-in-the-loop mechanism into the deformation modeling process. This enables surgeons to interactively provide prompts to correct anatomical misalignments, thereby incorporating clinical expertise and allowing the model to adapt dynamically to complex surgical scenarios. Experiments on a publicly available dataset demonstrate that our algorithm achieves a mean target registration error of 3.42 mm. Incorporating surgeon prompts through the interactive framework further reduces the error to 2.78 mm, surpassing state-of-the-art methods in volumetric accuracy. These results highlight the ability of our framework to deliver efficient and accurate deformation modeling while enhancing surgeon-algorithm collaboration, paving the way for safer and more reliable computer-assisted surgeries.
♻ ☆ TAMO:Fine-Grained Root Cause Analysis via Tool-Assisted LLM Agent with Multi-Modality Observation Data in Cloud-Native Systems
With the development of distributed systems, microservices and cloud native technologies have become central to modern enterprise software development. Despite bringing significant advantages, these technologies also increase system complexity and operational challenges. Traditional root cause analysis (RCA) struggles to achieve automated fault response, heavily relying on manual intervention. In recent years, large language models (LLMs) have made breakthroughs in contextual inference and domain knowledge integration, providing new solutions for Artificial Intelligence for Operations (AIOps). However, Existing LLM-based approaches face three key challenges: text input constraints, dynamic service dependency hallucinations, and context window limitations. To address these issues, we propose a tool-assisted LLM agent with multi-modality observation data, namely TAMO, for fine-grained RCA. It unifies multi-modal observational data into time-aligned representations to extract consistent features and employs specialized root cause localization and fault classification tools for perceiving the contextual environment. This approach overcomes the limitations of LLM in handling real-time changing service dependencies and raw observational data and guides LLM to generate repair strategies aligned with system contexts by structuring key information into a prompt. Experimental results show that TAMO performs well in root cause analysis when dealing with public datasets characterized by heterogeneity and common fault types, demonstrating its effectiveness.
♻ ☆ GraphRAG-Bench: Challenging Domain-Specific Reasoning for Evaluating Graph Retrieval-Augmented Generation
Graph Retrieval Augmented Generation (GraphRAG) has garnered increasing recognition for its potential to enhance large language models (LLMs) by structurally organizing domain-specific corpora and facilitating complex reasoning. However, current evaluations of GraphRAG models predominantly rely on traditional question-answering datasets. Their limited scope in questions and evaluation metrics fails to comprehensively assess the reasoning capacity improvements enabled by GraphRAG models. To address this gap, we introduce GraphRAG-Bench, a large-scale, domain-specific benchmark designed to rigorously evaluate GraphRAG models. Our benchmark offers three key superiorities: \((i)\) Challenging question design. Featuring college-level, domain-specific questions that demand multi-hop reasoning, the benchmark ensures that simple content retrieval is insufficient for problem-solving. For example, some questions require mathematical reasoning or programming. \((ii)\) Diverse task coverage. The dataset includes a broad spectrum of reasoning tasks, multiple-choice, true/false, multi-select, open-ended, and fill-in-the-blank. It spans 16 disciplines in twenty core textbooks. \((iii)\) Holistic evaluation framework. GraphRAG-Bench provides comprehensive assessment across the entire GraphRAG pipeline, including graph construction, knowledge retrieval, and answer generation. Beyond final-answer correctness, it evaluates the logical coherence of the reasoning process. By applying nine contemporary GraphRAG methods to GraphRAG-Bench, we demonstrate its utility in quantifying how graph-based structuring improves model reasoning capabilities. Our analysis reveals critical insights about graph architectures, retrieval efficacy, and reasoning capabilities, offering actionable guidance for the research community.
♻ ☆ LIFEBench: Evaluating Length Instruction Following in Large Language Models
While large language models (LLMs) can solve PhD-level reasoning problems over long context inputs, they still struggle with a seemingly simpler task: following explicit length instructions-e.g., write a 10,000-word novel. Additionally, models often generate far too short outputs, terminate prematurely, or even refuse the request. Existing benchmarks focus primarily on evaluating generations quality, but often overlook whether the generations meet length constraints. To this end, we introduce Length Instruction Following Evaluation Benchmark (LIFEBench) to comprehensively evaluate LLMs' ability to follow length instructions across diverse tasks and a wide range of specified lengths. LIFEBench consists of 10,800 instances across 4 task categories in both English and Chinese, covering length constraints ranging from 16 to 8192 words. We evaluate 26 widely-used LLMs and find that most models reasonably follow short-length instructions but deteriorate sharply beyond a certain threshold. Surprisingly, almost all models fail to reach the vendor-claimed maximum output lengths in practice, as further confirmed by our evaluations extending up to 32K words. Even long-context LLMs, despite their extended input-output windows, counterintuitively fail to improve length-instructions following. Notably, Reasoning LLMs outperform even specialized long-text generation models, achieving state-of-the-art length following. Overall, LIFEBench uncovers fundamental limitations in current LLMs' length instructions following ability, offering critical insights for future progress.
comment: 81 pages, 22 tables, 32 figures. Homepage: https://ydyjya.github.io/LIFEBench/
♻ ☆ STAMImputer: Spatio-Temporal Attention MoE for Traffic Data Imputation IJCAI 2025
Traffic data imputation is fundamentally important to support various applications in intelligent transportation systems such as traffic flow prediction. However, existing time-to-space sequential methods often fail to effectively extract features in block-wise missing data scenarios. Meanwhile, the static graph structure for spatial feature propagation significantly constrains the models flexibility in handling the distribution shift issue for the nonstationary traffic data. To address these issues, this paper proposes a SpatioTemporal Attention Mixture of experts network named STAMImputer for traffic data imputation. Specifically, we introduce a Mixture of Experts (MoE) framework to capture latent spatio-temporal features and their influence weights, effectively imputing block missing. A novel Low-rank guided Sampling Graph ATtention (LrSGAT) mechanism is designed to dynamically balance the local and global correlations across road networks. The sampled attention vectors are utilized to generate dynamic graphs that capture real-time spatial correlations. Extensive experiments are conducted on four traffic datasets for evaluation. The result shows STAMImputer achieves significantly performance improvement compared with existing SOTA approaches. Our codes are available at https://github.com/RingBDStack/STAMImupter.
comment: 10 pages, 5 figures, 3 tables. Extended version of paper accepted at IJCAI 2025
♻ ☆ Pointwise-in-Time Explanation for Linear Temporal Logic Rules
The new field of Explainable Planning (XAIP) has produced a variety of approaches to explain and describe the behavior of autonomous agents to human observers. Many summarize agent behavior in terms of the constraints, or ''rules,'' which the agent adheres to during its trajectories. In this work, we narrow the focus from summary to specific moments in individual trajectories, offering a ''pointwise-in-time'' view. Our novel framework, which we define on Linear Temporal Logic (LTL) rules, assigns an intuitive status to any rule in order to describe the trajectory progress at individual time steps; here, a rule is classified as active, satisfied, inactive, or violated. Given a trajectory, a user may query for status of specific LTL rules at individual trajectory time steps. In this paper, we present this novel framework, named Rule Status Assessment (RSA), and provide an example of its implementation. We find that pointwise-in-time status assessment is useful as a post-hoc diagnostic, enabling a user to systematically track the agent's behavior with respect to a set of rules.
comment: See related publication in Conference on Decision and Control (CDC) 2023
♻ ☆ OWL: Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation
Large Language Model (LLM)-based multi-agent systems show promise for automating real-world tasks but struggle to transfer across domains due to their domain-specific nature. Current approaches face two critical shortcomings: they require complete architectural redesign and full retraining of all components when applied to new domains. We introduce Workforce, a hierarchical multi-agent framework that decouples strategic planning from specialized execution through a modular architecture comprising: (i) a domain-agnostic Planner for task decomposition, (ii) a Coordinator for subtask management, and (iii) specialized Workers with domain-specific tool-calling capabilities. This decoupling enables cross-domain transferability during both inference and training phases: During inference, Workforce seamlessly adapts to new domains by adding or modifying worker agents; For training, we introduce Optimized Workforce Learning (OWL), which improves generalization across domains by optimizing a domain-agnostic planner with reinforcement learning from real-world feedback. To validate our approach, we evaluate Workforce on the GAIA benchmark, covering various realistic, multi-domain agentic tasks. Experimental results demonstrate Workforce achieves open-source state-of-the-art performance (69.70%), outperforming commercial systems like OpenAI's Deep Research by 2.34%. More notably, our OWL-trained 32B model achieves 52.73% accuracy (+16.37%) and demonstrates performance comparable to GPT-4o on challenging tasks. To summarize, by enabling scalable generalization and modular domain transfer, our work establishes a foundation for the next generation of general-purpose AI assistants.
comment: Project Page: https://github.com/camel-ai/owl
♻ ☆ AAD-LLM: Neural Attention-Driven Auditory Scene Understanding ACL 2025
Auditory foundation models, including auditory large language models (LLMs), process all sound inputs equally, independent of listener perception. However, human auditory perception is inherently selective: listeners focus on specific speakers while ignoring others in complex auditory scenes. Existing models do not incorporate this selectivity, limiting their ability to generate perception-aligned responses. To address this, we introduce Intention-Informed Auditory Scene Understanding (II-ASU) and present Auditory Attention-Driven LLM (AAD-LLM), a prototype system that integrates brain signals to infer listener attention. AAD-LLM extends an auditory LLM by incorporating intracranial electroencephalography (iEEG) recordings to decode which speaker a listener is attending to and refine responses accordingly. The model first predicts the attended speaker from neural activity, then conditions response generation on this inferred attentional state. We evaluate AAD-LLM on speaker description, speech transcription and extraction, and question answering in multitalker scenarios, with both objective and subjective ratings showing improved alignment with listener intention. By taking a first step toward intention-aware auditory AI, this work explores a new paradigm where listener perception informs machine listening, paving the way for future listener-centered auditory systems. Demo and code available: https://aad-llm.github.io.
comment: Accepted by ACL 2025 Main Conference
♻ ☆ AbstRaL: Augmenting LLMs' Reasoning by Reinforcing Abstract Thinking
Recent studies have shown that large language models (LLMs), especially smaller ones, often lack robustness in their reasoning. I.e., they tend to experience performance drops when faced with distribution shifts, such as changes to numerical or nominal variables, or insertions of distracting clauses. A possible strategy to address this involves generating synthetic data to further "instantiate" reasoning problems on potential variations. In contrast, our approach focuses on "abstracting" reasoning problems. This not only helps counteract distribution shifts but also facilitates the connection to symbolic tools for deriving solutions. We find that this abstraction process is better acquired through reinforcement learning (RL) than just supervised fine-tuning, which often fails to produce faithful abstractions. Our method, AbstRaL -- which promotes abstract reasoning in LLMs using RL on granular abstraction data -- significantly mitigates performance degradation on recent GSM perturbation benchmarks.
comment: Under review
♻ ☆ The Fellowship of the LLMs: Multi-Agent Workflows for Synthetic Preference Optimization Dataset Generation
This paper presents a novel methodology for generating synthetic Preference Optimization (PO) datasets using multi-model workflows. We evaluate the effectiveness and potential of these workflows in automating and enhancing the dataset generation process. PO dataset generation requires two modules: (1) $\textit{response evaluation}$, and (2) $\textit{response generation}$. In the $\textit{response evaluation}$ module, the responses from Large Language Models (LLMs) are evaluated and ranked - a task typically carried out by human annotators that we automate using LLMs. We assess the response evaluation module in a 2 step process. In step 1, we assess LLMs as evaluators using three distinct prompting strategies. In step 2, we apply the winning prompting strategy to compare the performance of LLM-as-a-Judge, LLMs-as-a-Jury, and LLM Debate. Our evaluation shows that GPT-4o-as-a-Judge is more consistent across all datasets. For the $\textit{response generation}$ module, we use the identified LLM evaluator configuration and compare different configurations of the LLM Feedback Loop. We use the win rate to determine the best multi-model configuration for generation. Experimenting with various configurations, we find that the LLM Feedback Loop, with Llama as the generator and Gemma as the reviewer, achieves a notable 71.8% and 73.8% win rate over single-model Llama and Gemma, respectively. After identifying the best configurations for both modules, we generate our PO datasets using the above pipeline.
♻ ☆ Information Science Principles of Machine Learning: A Causal Chain Meta-Framework Based on Formalized Information Mapping
[Objective] This study focuses on addressing the current lack of a unified formal theoretical framework in machine learning, as well as the deficiencies in interpretability and ethical safety assurance. [Methods] A formal information model is first constructed, utilizing sets of well-formed formulas to explicitly define the ontological states and carrier mappings of typical components in machine learning. Learnable and processable predicates, along with learning and processing functions, are introduced to analyze the logical deduction and constraint rules of the causal chains within models. [Results] A meta-framework for machine learning theory (MLT-MF) is established. Based on this framework, universal definitions for model interpretability and ethical safety are proposed. Furthermore, three key theorems are proved: the equivalence of model interpretability and information recoverability, the assurance of ethical safety, and the estimation of generalization error. [Limitations] The current framework assumes ideal conditions with noiseless information-enabling mappings and primarily targets model learning and processing logic in static scenarios. It does not yet address information fusion and conflict resolution across ontological spaces in multimodal or multi-agent systems. [Conclusions] This work overcomes the limitations of fragmented research and provides a unified theoretical foundation for systematically addressing the critical challenges currently faced in machine learning.
♻ ☆ Securing Large Language Models: Threats, Vulnerabilities and Responsible Practices
Large language models (LLMs) have significantly transformed the landscape of Natural Language Processing (NLP). Their impact extends across a diverse spectrum of tasks, revolutionizing how we approach language understanding and generations. Nevertheless, alongside their remarkable utility, LLMs introduce critical security and risk considerations. These challenges warrant careful examination to ensure responsible deployment and safeguard against potential vulnerabilities. This research paper thoroughly investigates security and privacy concerns related to LLMs from five thematic perspectives: security and privacy concerns, vulnerabilities against adversarial attacks, potential harms caused by misuses of LLMs, mitigation strategies to address these challenges while identifying limitations of current strategies. Lastly, the paper recommends promising avenues for future research to enhance the security and risk management of LLMs.
♻ ☆ Convergence of Decentralized Actor-Critic Algorithm in General-sum Markov Games
Markov games provide a powerful framework for modeling strategic multi-agent interactions in dynamic environments. Traditionally, convergence properties of decentralized learning algorithms in these settings have been established only for special cases, such as Markov zero-sum and potential games, which do not fully capture real-world interactions. In this paper, we address this gap by studying the asymptotic properties of learning algorithms in general-sum Markov games. In particular, we focus on a decentralized algorithm where each agent adopts an actor-critic learning dynamic with asynchronous step sizes. This decentralized approach enables agents to operate independently, without requiring knowledge of others' strategies or payoffs. We introduce the concept of a Markov Near-Potential Function (MNPF) and demonstrate that it serves as an approximate Lyapunov function for the policy updates in the decentralized learning dynamics, which allows us to characterize the convergent set of strategies. We further strengthen our result under specific regularity conditions and with finite Nash equilibria.
comment: 22 pages, 3 figure
♻ ☆ Neural Networks Generalize on Low Complexity Data
We show that feedforward neural networks with ReLU activation generalize on low complexity data, suitably defined. Given i.i.d.~data generated from a simple programming language, the minimum description length (MDL) feedforward neural network which interpolates the data generalizes with high probability. We define this simple programming language, along with a notion of description length of such networks. We provide several examples on basic computational tasks, such as checking primality of a natural number. For primality testing, our theorem shows the following and more. Suppose that we draw an i.i.d.~sample of $n$ numbers uniformly at random from $1$ to $N$. For each number $x_i$, let $y_i = 1$ if $x_i$ is a prime and $0$ if it is not. Then, the interpolating MDL network accurately answers, with probability $1- O((\ln N)/n)$, whether a newly drawn number between $1$ and $N$ is a prime or not. Note that the network is not designed to detect primes; minimum description learning discovers a network which does so. Extensions to noisy data are also discussed, suggesting that MDL neural network interpolators can demonstrate tempered overfitting.
comment: 34 pages. V3: new results added
♻ ☆ Large Language Models for Outpatient Referral: Problem Definition, Benchmarking and Challenges
Large language models (LLMs) are increasingly applied to outpatient referral tasks across healthcare systems. However, there is a lack of standardized evaluation criteria to assess their effectiveness, particularly in dynamic, interactive scenarios. In this study, we systematically examine the capabilities and limitations of LLMs in managing tasks within Intelligent Outpatient Referral (IOR) systems and propose a comprehensive evaluation framework specifically designed for such systems. This framework comprises two core tasks: static evaluation, which focuses on evaluating the ability of predefined outpatient referrals, and dynamic evaluation, which evaluates capabilities of refining outpatient referral recommendations through iterative dialogues. Our findings suggest that LLMs offer limited advantages over BERT-like models, but show promise in asking effective questions during interactive dialogues.
♻ ☆ SALAD: Systematic Assessment of Machine Unlearing on LLM-Aided Hardware Design
Large Language Models (LLMs) offer transformative capabilities for hardware design automation, particularly in Verilog code generation. However, they also pose significant data security challenges, including Verilog evaluation data contamination, intellectual property (IP) design leakage, and the risk of malicious Verilog generation. We introduce SALAD, a comprehensive assessment that leverages machine unlearning to mitigate these threats. Our approach enables the selective removal of contaminated benchmarks, sensitive IP and design artifacts, or malicious code patterns from pre-trained LLMs, all without requiring full retraining. Through detailed case studies, we demonstrate how machine unlearning techniques effectively reduce data security risks in LLM-aided hardware design.
♻ ☆ EgoNormia: Benchmarking Physical Social Norm Understanding
Human activity is moderated by norms; however, supervision for normative reasoning is sparse, particularly where norms are physically- or socially-grounded. We thus present EGONORMIA $\|\epsilon\|$, comprising 1,853 (200 for EGONORMIA-verified) multiple choice questions (MCQs) grounded within egocentric videos of human interactions, enabling the evaluation and improvement of normative reasoning in vision-language models (VLMs). EGONORMIA spans seven norm categories: safety, privacy, proxemics, politeness, cooperation, coordination/proactivity, and communication/legibility. To compile this dataset at scale, we propose a novel pipeline to generate grounded MCQs from raw egocentric video. Our work demonstrates that current state-of-the-art VLMs lack robust grounded norm understanding, scoring a maximum of 54% on EGONORMIA and 65% on EGONORMIA-verified, with performance across norm categories indicating significant risks of safety and privacy when VLMs are used in real-world agents. We additionally explore methods for improving normative understanding, demonstrating that a naive retrieval-based generation (RAG) method using EGONORMIA can enhance normative reasoning in VLMs.
comment: V4, fixes to title and formatting
♻ ☆ SealQA: Raising the Bar for Reasoning in Search-Augmented Language Models
We introduce SealQA, a new challenge benchmark for evaluating SEarch-Augmented Language models on fact-seeking questions where web search yields conflicting, noisy, or unhelpful results. SealQA comes in three flavors: (1) Seal-0 (main) and (2) Seal-Hard, which assess factual accuracy and reasoning capabilities, with Seal-0 focusing on the most challenging questions where chat models (e.g., GPT-4.1) typically achieve near-zero accuracy; and (3) LongSeal, which extends SealQA to test long-context, multi-document reasoning in "needle-in-a-haystack" settings. Our evaluation reveals critical limitations in current models: Even frontier LLMs perform poorly across all SealQA flavors. On Seal-0, frontier agentic models equipped with tools like o3 and o4-mini achieve only 17.1% and 6.3% accuracy, respectively, at their best reasoning efforts. We find that advanced reasoning models such as DeepSeek-R1-671B and o3-mini are highly vulnerable to noisy search results. Notably, increasing test-time compute does not yield reliable gains across o3-mini, o4-mini, and o3, with performance often plateauing or even declining early. Additionally, while recent models are less affected by the "lost-in-the-middle" issue, they still fail to reliably identify relevant documents in LongSeal when faced with numerous distractors. To facilitate future work, we release SealQA at huggingface.co/datasets/vtllms/sealqa.
comment: Preprint. 23 pages, 7 figures, 11 tables
VTool-R1: VLMs Learn to Think with Images via Reinforcement Learning on Multimodal Tool Use
Reinforcement Learning Finetuning (RFT) has significantly advanced the reasoning capabilities of large language models (LLMs) by enabling long chains of thought, self-correction, and effective tool use. While recent works attempt to extend RFT to vision-language models (VLMs), these efforts largely produce text-only reasoning conditioned on static image inputs, falling short of true multimodal reasoning in the response. In contrast, test-time methods like Visual Sketchpad incorporate visual steps but lack training mechanisms. We introduce VTool-R1, the first framework that trains VLMs to generate multimodal chains of thought by interleaving text and intermediate visual reasoning steps. VTool-R1 integrates Python-based visual editing tools into the RFT process, enabling VLMs to learn when and how to generate visual reasoning steps that benefit final reasoning. Trained with outcome-based rewards tied to task accuracy, our approach elicits strategic visual tool use for reasoning without relying on process-based supervision. Experiments on structured visual question answering over charts and tables show that VTool-R1 enhances reasoning performance by teaching VLMs to "think with images" and generate multimodal chain of thoughts with tools.
comment: https://github.com/VTool-R1/VTool-R1
♻ ☆ Mitigating Object Hallucination in Large Vision-Language Models via Image-Grounded Guidance
The advancement of Large Vision-Language Models (LVLMs) has increasingly highlighted the critical issue of their tendency to hallucinate non-existing objects in the images. To address this issue, previous works focused on using specially curated datasets or powerful LLMs to rectify the outputs of LVLMs. However, these approaches require either costly training or fine-tuning, or API access to proprietary LLMs for post-generation correction. In response to these limitations, we propose Mitigating hallucinAtion via image-gRounded guIdaNcE (MARINE), a framework that is both training-free and API-free. MARINE effectively and efficiently reduces object hallucinations during inference by introducing image-grounded guidance to LVLMs. This is achieved by leveraging open-source vision models to extract object-level information, thereby enhancing the precision of LVLM-generated content. Our framework's flexibility further allows for the integration of multiple vision models, enabling more reliable and robust object-level guidance. Through comprehensive evaluations across 5 popular LVLMs with diverse evaluation metrics and benchmarks, we demonstrate the effectiveness of MARINE, which even outperforms existing fine-tuning-based methods. Remarkably, it reduces hallucinations consistently in GPT-4V-assisted evaluation while maintaining the detailedness of LVLMs' generations. We release our code at https://github.com/Linxi-ZHAO/MARINE.
comment: 25 pages, 13 figures, 25 tables
♻ ☆ Multi-task Representation Learning for Mixed Integer Linear Programming
Mixed Integer Linear Programs (MILPs) are highly flexible and powerful tools for modeling and solving complex real-world combinatorial optimization problems. Recently, machine learning (ML)-guided approaches have demonstrated significant potential in improving MILP-solving efficiency. However, these methods typically rely on separate offline data collection and training processes, which limits their scalability and adaptability. This paper introduces the first multi-task learning framework for ML-guided MILP solving. The proposed framework provides MILP embeddings helpful in guiding MILP solving across solvers (e.g., Gurobi and SCIP) and across tasks (e.g., Branching and Solver configuration). Through extensive experiments on three widely used MILP benchmarks, we demonstrate that our multi-task learning model performs similarly to specialized models within the same distribution. Moreover, it significantly outperforms them in generalization across problem sizes and tasks.
♻ ☆ Future of Work with AI Agents: Auditing Automation and Augmentation Potential across the U.S. Workforce
The rapid rise of compound AI systems (a.k.a., AI agents) is reshaping the labor market, raising concerns about job displacement, diminished human agency, and overreliance on automation. Yet, we lack a systematic understanding of the evolving landscape. In this paper, we address this gap by introducing a novel auditing framework to assess which occupational tasks workers want AI agents to automate or augment, and how those desires align with the current technological capabilities. Our framework features an audio-enhanced mini-interview to capture nuanced worker desires and introduces the Human Agency Scale (HAS) as a shared language to quantify the preferred level of human involvement. Using this framework, we construct the WORKBank database, building on the U.S. Department of Labor's O*NET database, to capture preferences from 1,500 domain workers and capability assessments from AI experts across over 844 tasks spanning 104 occupations. Jointly considering the desire and technological capability divides tasks in WORKBank into four zones: Automation "Green Light" Zone, Automation "Red Light" Zone, R&D Opportunity Zone, Low Priority Zone. This highlights critical mismatches and opportunities for AI agent development. Moving beyond a simple automate-or-not dichotomy, our results reveal diverse HAS profiles across occupations, reflecting heterogeneous expectations for human involvement. Moreover, our study offers early signals of how AI agent integration may reshape the core human competencies, shifting from information-focused skills to interpersonal ones. These findings underscore the importance of aligning AI agent development with human desires and preparing workers for evolving workplace dynamics.
comment: Preprint
♻ ☆ Balans: Multi-Armed Bandits-based Adaptive Large Neighborhood Search for Mixed-Integer Programming Problem
Mixed-integer programming (MIP) is a powerful paradigm for modeling and solving various important combinatorial optimization problems. Recently, learning-based approaches have shown a potential to speed up MIP solving via offline training that then guides important design decisions during the search. However, a significant drawback of these methods is their heavy reliance on offline training, which requires collecting training datasets and computationally costly training epochs yet offering only limited generalization to unseen (larger) instances. In this paper, we propose Balans, an adaptive meta-solver for MIPs with online learning capability that does not require any supervision or apriori training. At its core, Balans is based on adaptive large-neighborhood search, operating on top of an MIP solver by successive applications of destroy and repair neighborhood operators. During the search, the selection among different neighborhood definitions is guided on the fly for the instance at hand via multi-armed bandit algorithms. Our extensive experiments on hard optimization instances show that Balans offers significant performance gains over the default MIP solver, is better than committing to any single best neighborhood, and improves over the state-of-the-art large-neighborhood search for MIPs. Finally, we release Balans as a highly configurable, MIP solver agnostic, open-source software.
♻ ☆ LLM-D12: A Dual-Dimensional Scale of Instrumental and Relational Dependencies on Large Language Models
There is growing interest in understanding how people interact with large language models (LLMs) and whether such models elicit dependency or even addictive behaviour. Validated tools to assess the extent to which individuals may become dependent on LLMs are scarce and primarily build on classic behavioral addiction symptoms, adapted to the context of LLM use. We view this as a conceptual limitation, as the LLM-human relationship is more nuanced and warrants a fresh and distinct perspective. To address this gap, we developed and validated a new 12-item questionnaire to measure LLM dependency, referred to as LLM-D12. The scale was based on the authors' prior theoretical work, with items developed accordingly and responses collected from 526 participants in the UK. Exploratory and confirmatory factor analyses, performed on separate halves of the total sample using a split-sample approach, supported a two-factor structure: Instrumental Dependency (six items) and Relationship Dependency (six items). Instrumental Dependency reflects the extent to which individuals rely on LLMs to support or collaborate in decision-making and cognitive tasks. Relationship Dependency captures the tendency to perceive LLMs as socially meaningful, sentient, or companion-like entities. The two-factor structure demonstrated excellent internal consistency and clear discriminant validity. External validation confirmed both the conceptual foundation and the distinction between the two subscales. The psychometric properties and structure of our LLM-D12 scale were interpreted in light of the emerging view that dependency on LLMs does not necessarily indicate dysfunction but may still reflect reliance levels that could become problematic in certain contexts.
♻ ☆ A Proposal to Extend the Common Model of Cognition with Metacognition
The Common Model of Cognition (CMC) provides an abstract characterization of the structure and processing required by a cognitive architecture for human-like minds. We propose a unified approach to integrating metacognition within the CMC. We propose that metacognition involves reasoning over explicit representations of an agent's cognitive capabilities and processes in working memory. Our proposal exploits the existing cognitive capabilities of the CMC, making minimal extensions in the structure and information available within working memory. We provide examples of metacognition within our proposal.
♻ ☆ A Heuristic Algorithm Based on Beam Search and Iterated Local Search for the Maritime Inventory Routing Problem
Maritime Inventory Routing Problem (MIRP) plays a crucial role in the integration of global maritime commerce levels. However, there are still no well-established methodologies capable of efficiently solving large MIRP instances or their variants due to the high complexity of the problem. The adoption of exact methods, typically based on Mixed Integer Programming (MIP), for daily operations is nearly impractical due to the CPU time required, as planning must be executed multiple times while ensuring high-quality results within acceptable time limits. Non-MIP-based heuristics are less frequently applied due to the highly constrained nature of the problem, which makes even the construction of an effective initial solution challenging. Papageorgiou et al. (2014) introduced a single-product MIRP as the foundation for MIRPLib, aiming to provide a collection of publicly available benchmark instances. However, only a few studies that propose new methodologies have been published since then. To encourage the use of MIRPLib and facilitate result comparisons, this study presents a heuristic approach that does not rely on mathematical optimization techniques to solve a deterministic, finite-horizon, single-product MIRP. The proposed heuristic combines a variation of a Beam Search algorithm with an Iterated Local Search procedure. Among the 72 instances tested, the developed methodology can improve the best-known solution for 19 instances within an acceptable CPU time.
♻ ☆ DAWN: Designing Distributed Agents in a Worldwide Network
The rapid evolution of Large Language Models (LLMs) has transformed them from basic conversational tools into sophisticated entities capable of complex reasoning and decision-making. These advancements have led to the development of specialized LLM-based agents designed for diverse tasks such as coding and web browsing. As these agents become more capable, the need for a robust framework that facilitates global communication and collaboration among them towards advanced objectives has become increasingly critical. Distributed Agents in a Worldwide Network (DAWN) addresses this need by offering a versatile framework that integrates LLM-based agents with traditional software systems, enabling the creation of agentic applications suited for a wide range of use cases. DAWN enables distributed agents worldwide to register and be easily discovered through Gateway Agents. Collaborations among these agents are coordinated by a Principal Agent equipped with reasoning strategies. DAWN offers three operational modes: No-LLM Mode for deterministic tasks, Copilot for augmented decision-making, and LLM Agent for autonomous operations. Additionally, DAWN ensures the safety and security of agent collaborations globally through a dedicated safety, security, and compliance layer, protecting the network against attackers and adhering to stringent security and compliance standards. These features make DAWN a robust network for deploying agent-based applications across various industries.
♻ ☆ Computation Mechanism Behind LLM Position Generalization ACL 2025
Most written natural languages are composed of sequences of words and sentences. Similar to humans, large language models (LLMs) exhibit flexibility in handling textual positions - a phenomenon we term position generalization. They can understand texts with position perturbations and generalize to longer texts than those encountered during training with the latest techniques. These phenomena suggest that LLMs handle positions tolerantly, but how LLMs computationally process positional relevance remains largely unexplored. This work connects the linguistic phenomenon with LLMs' computational mechanisms. We show how LLMs enforce certain computational mechanisms for the aforementioned tolerance in position perturbations. Despite the complex design of the self-attention mechanism, this work reveals that LLMs learn a counterintuitive disentanglement of attention logits. Their values show a 0.959 linear correlation with an approximation of the arithmetic sum of positional relevance and semantic importance. Furthermore, we identify a prevalent pattern in intermediate features, which we prove theoretically enables this effect. The pattern, which is different from how randomly initialized parameters would behave, suggests that it is a learned behavior rather than a natural result of the model architecture. Based on these findings, we provide computational explanations and criteria for LLMs' position flexibilities. This work takes a pioneering step in linking position generalization with modern LLMs' internal mechanisms.
comment: ACL 2025 Main Long Paper
♻ ☆ Constrained Human-AI Cooperation: An Inclusive Embodied Social Intelligence Challenge NeurIPS 2024
We introduce Constrained Human-AI Cooperation (CHAIC), an inclusive embodied social intelligence challenge designed to test social perception and cooperation in embodied agents. In CHAIC, the goal is for an embodied agent equipped with egocentric observations to assist a human who may be operating under physical constraints -- e.g., unable to reach high places or confined to a wheelchair -- in performing common household or outdoor tasks as efficiently as possible. To achieve this, a successful helper must: (1) infer the human's intents and constraints by following the human and observing their behaviors (social perception), and (2) make a cooperative plan tailored to the human partner to solve the task as quickly as possible, working together as a team (cooperative planning). To benchmark this challenge, we create four new agents with real physical constraints and eight long-horizon tasks featuring both indoor and outdoor scenes with various constraints, emergency events, and potential risks. We benchmark planning- and learning-based baselines on the challenge and introduce a new method that leverages large language models and behavior modeling. Empirical evaluations demonstrate the effectiveness of our benchmark in enabling systematic assessment of key aspects of machine social intelligence. Our benchmark and code are publicly available at https://github.com/UMass-Embodied-AGI/CHAIC.
comment: NeurIPS 2024 Dataset and Benchmark Track. The first two authors contributed equally. Project Website at https://umass-embodied-agi.github.io/CHAIC/
♻ ☆ Peer-Ranked Precision: Creating a Foundational Dataset for Fine-Tuning Vision Models from DataSeeds' Annotated Imagery
The development of modern Artificial Intelligence (AI) models, particularly diffusion-based models employed in computer vision and image generation tasks, is undergoing a paradigmatic shift in development methodologies. Traditionally dominated by a "Model Centric" approach, in which performance gains were primarily pursued through increasingly complex model architectures and hyperparameter optimization, the field is now recognizing a more nuanced "Data-Centric" approach. This emergent framework foregrounds the quality, structure, and relevance of training data as the principal driver of model performance. To operationalize this paradigm shift, we introduce the DataSeeds.AI sample dataset (the "DSD"), initially comprised of approximately 10,610 high-quality human peer-ranked photography images accompanied by extensive multi-tier annotations. The DSD is a foundational computer vision dataset designed to usher in a new standard for commercial image datasets. Representing a small fraction of DataSeeds.AI's 100 million-plus image catalog, the DSD provides a scalable foundation necessary for robust commercial and multimodal AI development. Through this in-depth exploratory analysis, we document the quantitative improvements generated by the DSD on specific models against known benchmarks and make the code and the trained models used in our evaluation publicly available.
comment: 28 pages, 12 figures
♻ ☆ Center-fixing of tropical cyclones using uncertainty-aware deep learning applied to high-temporal-resolution geostationary satellite imagery
Determining the location of a tropical cyclone's (TC) surface circulation center -- "center-fixing" -- is a critical first step in the TC-forecasting process, affecting current/future estimates of track, intensity, and structure. Despite a recent increase in automated center-fixing methods, only one such method (ARCHER-2) is operational, and its best performance is achieved when using microwave or scatterometer data, which are often unavailable. We develop a deep-learning algorithm called GeoCenter; besides a few scalars in the operational Automated Tropical Cyclone Forecasting System, it relies only on geostationary infrared (IR) satellite imagery, which is available for all TC basins at high frequency (10 min) and low latency (< 10 min) during both day and night. GeoCenter ingests an animation (time series) of IR images, including 9 channels at lag times up to 4 hours. The animation is centered at a "first guess" location, offset from the true TC-center location by 48 km on average and sometimes > 100 km; GeoCenter is tasked with correcting this offset. On an independent testing dataset, GeoCenter achieves a mean/median/RMS (root mean square) error of 26.6/22.2/32.4 km for all systems, 24.7/20.8/30.0 km for tropical systems, and 14.6/12.5/17.3 km for category-2--5 hurricanes. These values are similar to ARCHER-2 errors with microwave or scatterometer data, and better than ARCHER-2 errors when only IR data are available. GeoCenter also performs skillful uncertainty quantification, producing a well calibrated ensemble of 150 TC-center locations. Furthermore, all predictors used by GeoCenter are available in real time, which would make GeoCenter easy to implement operationally every 10 min.
comment: Submitted to AMS journal Weather and Forecasting. Main body is 66 pages and 18 figures; supplement is another 40 pages and 35 figures
♻ ☆ Token-Efficient RL for LLM Reasoning
We propose reinforcement learning (RL) strategies tailored for reasoning in large language models (LLMs) under strict memory and compute limits, with a particular focus on compatibility with LoRA fine-tuning. Building on early policy gradient methods with baseline subtraction, we design critic-free methods that operate on a small, informative subset of output tokens to reduce memory usage and stabilize training. We introduce S-GRPO, a stochastic variant of Group Relative Policy Optimization, and T-SPMO, a token-level prefix matching approach for fine-grained credit assignment. Applied to Qwen2-1.5B, our methods raise accuracy on the SVAMP benchmark from 46% to over 70% and show strong performance on multi-digit multiplication. Surprisingly, full-token GRPO under LoRA fails to improve over the base model, suggesting that selective token-level optimization may act as an implicit regularizer in low-parameter training regimes.
comment: Title updated to "Token-Efficient RL for LLM Reasoning" to better reflect algorithmic focus. Revised abstract, intro, and conclusion. Paper shortened and typos fixed
♻ ☆ M3-JEPA: Multimodal Alignment via Multi-gate MoE based on the Joint-Predictive Embedding Architecture ICML 2025
Current multimodal learning strategies primarily optimize in the original token space. Such a framework is easy to incorporate with the backbone of pretrained language model, but might result in modality collapse. To alleviate such issues, we leverage the joint embedding predictive architecture (JEPA) on the multimodal tasks, which converts the input embedding into the output embedding space by a predictor and then conducts the cross-modal alignment on the latent space. We implement this predictor by a Multi-Gate Mixture of Experts (MMoE) and name the framework as M3-JEPA, accordingly. The gating function disentangles the modality-specific and shared information and derives information-theoretic optimality. The framework is implemented with both contrastive and regularization loss, and solved by alternative gradient descent (AGD) between different multimodal tasks. By thoroughly designed experiments, we show that M3-JEPA can obtain state-of-the-art performance on different modalities and tasks, generalize to unseen datasets and domains, and is computationally efficient in both training and inference. Our observation suggests that M3-JEPA might become a new basis to self-supervised learning in the open world.
comment: 16 pages, 5 figures. ICML 2025
Graphics 7
☆ DGS-LRM: Real-Time Deformable 3D Gaussian Reconstruction From Monocular Videos
We introduce the Deformable Gaussian Splats Large Reconstruction Model (DGS-LRM), the first feed-forward method predicting deformable 3D Gaussian splats from a monocular posed video of any dynamic scene. Feed-forward scene reconstruction has gained significant attention for its ability to rapidly create digital replicas of real-world environments. However, most existing models are limited to static scenes and fail to reconstruct the motion of moving objects. Developing a feed-forward model for dynamic scene reconstruction poses significant challenges, including the scarcity of training data and the need for appropriate 3D representations and training paradigms. To address these challenges, we introduce several key technical contributions: an enhanced large-scale synthetic dataset with ground-truth multi-view videos and dense 3D scene flow supervision; a per-pixel deformable 3D Gaussian representation that is easy to learn, supports high-quality dynamic view synthesis, and enables long-range 3D tracking; and a large transformer network that achieves real-time, generalizable dynamic scene reconstruction. Extensive qualitative and quantitative experiments demonstrate that DGS-LRM achieves dynamic scene reconstruction quality comparable to optimization-based methods, while significantly outperforming the state-of-the-art predictive dynamic reconstruction method on real-world examples. Its predicted physically grounded 3D deformation is accurate and can readily adapt for long-range 3D tracking tasks, achieving performance on par with state-of-the-art monocular video 3D tracking methods.
comment: Project page: https://hubert0527.github.io/dgslrm/
☆ TransGI: Real-Time Dynamic Global Illumination With Object-Centric Neural Transfer Model
Neural rendering algorithms have revolutionized computer graphics, yet their impact on real-time rendering under arbitrary lighting conditions remains limited due to strict latency constraints in practical applications. The key challenge lies in formulating a compact yet expressive material representation. To address this, we propose TransGI, a novel neural rendering method for real-time, high-fidelity global illumination. It comprises an object-centric neural transfer model for material representation and a radiance-sharing lighting system for efficient illumination. Traditional BSDF representations and spatial neural material representations lack expressiveness, requiring thousands of ray evaluations to converge to noise-free colors. Conversely, real-time methods trade quality for efficiency by supporting only diffuse materials. In contrast, our object-centric neural transfer model achieves compactness and expressiveness through an MLP-based decoder and vertex-attached latent features, supporting glossy effects with low memory overhead. For dynamic, varying lighting conditions, we introduce local light probes capturing scene radiance, coupled with an across-probe radiance-sharing strategy for efficient probe generation. We implemented our method in a real-time rendering engine, combining compute shaders and CUDA-based neural networks. Experimental results demonstrate that our method achieves real-time performance of less than 10 ms to render a frame and significantly improved rendering quality compared to baseline methods.
☆ VideoMat: Extracting PBR Materials from Video Diffusion Models
We leverage finetuned video diffusion models, intrinsic decomposition of videos, and physically-based differentiable rendering to generate high quality materials for 3D models given a text prompt or a single image. We condition a video diffusion model to respect the input geometry and lighting condition. This model produces multiple views of a given 3D model with coherent material properties. Secondly, we use a recent model to extract intrinsics (base color, roughness, metallic) from the generated video. Finally, we use the intrinsics alongside the generated video in a differentiable path tracer to robustly extract PBR materials directly compatible with common content creation tools.
☆ Adv-BMT: Bidirectional Motion Transformer for Safety-Critical Traffic Scenario Generation
Scenario-based testing is essential for validating the performance of autonomous driving (AD) systems. However, such testing is limited by the scarcity of long-tailed, safety-critical scenarios in existing datasets collected in the real world. To tackle the data issue, we propose the Adv-BMT framework, which augments real-world scenarios with diverse and realistic adversarial interactions. The core component of Adv-BMT is a bidirectional motion transformer (BMT) model to perform inverse traffic motion predictions, which takes agent information in the last time step of the scenario as input, and reconstruct the traffic in the inverse of chronological order until the initial time step. The Adv-BMT framework is a two-staged pipeline: it first conducts adversarial initializations and then inverse motion predictions. Different from previous work, we do not need any collision data for pretraining, and are able to generate realistic and diverse collision interactions. Our experimental results validate the quality of generated collision scenarios by Adv-BMT: training in our augmented dataset would reduce episode collision rates by 20\% compared to previous work.
☆ Vector Representations of Vessel Trees
We introduce a novel framework for learning vector representations of tree-structured geometric data focusing on 3D vascular networks. Our approach employs two sequentially trained Transformer-based autoencoders. In the first stage, the Vessel Autoencoder captures continuous geometric details of individual vessel segments by learning embeddings from sampled points along each curve. In the second stage, the Vessel Tree Autoencoder encodes the topology of the vascular network as a single vector representation, leveraging the segment-level embeddings from the first model. A recursive decoding process ensures that the reconstructed topology is a valid tree structure. Compared to 3D convolutional models, this proposed approach substantially lowers GPU memory requirements, facilitating large-scale training. Experimental results on a 2D synthetic tree dataset and a 3D coronary artery dataset demonstrate superior reconstruction fidelity, accurate topology preservation, and realistic interpolations in latent space. Our scalable framework, named VeTTA, offers precise, flexible, and topologically consistent modeling of anatomical tree structures in medical imaging.
♻ ☆ Fine-Grained Spatially Varying Material Selection in Images
Selection is the first step in many image editing processes, enabling faster and simpler modifications of all pixels sharing a common modality. In this work, we present a method for material selection in images, robust to lighting and reflectance variations, which can be used for downstream editing tasks. We rely on vision transformer (ViT) models and leverage their features for selection, proposing a multi-resolution processing strategy that yields finer and more stable selection results than prior methods. Furthermore, we enable selection at two levels: texture and subtexture, leveraging a new two-level material selection (DuMaS) dataset which includes dense annotations for over 800,000 synthetic images, both on the texture and subtexture levels.
♻ ☆ SceneEval: Evaluating Semantic Coherence in Text-Conditioned 3D Indoor Scene Synthesis
Despite recent advances in text-conditioned 3D indoor scene generation, there remain gaps in the evaluation of these methods. Existing metrics primarily assess the realism of generated scenes by comparing them to a set of ground-truth scenes, often overlooking alignment with the input text - a critical factor in determining how effectively a method meets user requirements. We present SceneEval, an evaluation framework designed to address this limitation. SceneEval includes metrics for both explicit user requirements, such as the presence of specific objects and their attributes described in the input text, and implicit expectations, like the absence of object collisions, providing a comprehensive assessment of scene quality. To facilitate evaluation, we introduce SceneEval-500, a dataset of scene descriptions with annotated ground-truth scene properties. We evaluate recent scene generation methods using SceneEval and demonstrate its ability to provide detailed assessments of the generated scenes, highlighting strengths and areas for improvement across multiple dimensions. Our results show that current methods struggle at generating scenes that meet user requirements, underscoring the need for further research in this direction.
comment: Expanded dataset to 500 annotated scene descriptions with new scene types; added validation via extended manual evaluation and a new user study; clarified distinctions from prior metrics; included results using an open-source VLM; stated intent to release code and data; corrected terminology and typos. 24 pages with 8 figures and 6 tables
Robotics 68
☆ VIKI-R: Coordinating Embodied Multi-Agent Cooperation via Reinforcement Learning
Coordinating multiple embodied agents in dynamic environments remains a core challenge in artificial intelligence, requiring both perception-driven reasoning and scalable cooperation strategies. While recent works have leveraged large language models (LLMs) for multi-agent planning, a few have begun to explore vision-language models (VLMs) for visual reasoning. However, these VLM-based approaches remain limited in their support for diverse embodiment types. In this work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for embodied multi-agent cooperation, featuring three structured levels: agent activation, task planning, and trajectory perception. VIKI-Bench includes diverse robot embodiments, multi-view visual observations, and structured supervision signals to evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained vision-language model (VLM) using Chain-of-Thought annotated demonstrations, followed by reinforcement learning under multi-level reward signals. Our extensive experiments show that VIKI-R significantly outperforms baselines method across all task levels. Furthermore, we show that reinforcement learning enables the emergence of compositional cooperation patterns among heterogeneous agents. Together, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing multi-agent, visual-driven cooperation in embodied AI systems.
comment: Project page: https://faceong.github.io/VIKI-R/
☆ SDTagNet: Leveraging Text-Annotated Navigation Maps for Online HD Map Construction
Autonomous vehicles rely on detailed and accurate environmental information to operate safely. High definition (HD) maps offer a promising solution, but their high maintenance cost poses a significant barrier to scalable deployment. This challenge is addressed by online HD map construction methods, which generate local HD maps from live sensor data. However, these methods are inherently limited by the short perception range of onboard sensors. To overcome this limitation and improve general performance, recent approaches have explored the use of standard definition (SD) maps as prior, which are significantly easier to maintain. We propose SDTagNet, the first online HD map construction method that fully utilizes the information of widely available SD maps, like OpenStreetMap, to enhance far range detection accuracy. Our approach introduces two key innovations. First, in contrast to previous work, we incorporate not only polyline SD map data with manually selected classes, but additional semantic information in the form of textual annotations. In this way, we enrich SD vector map tokens with NLP-derived features, eliminating the dependency on predefined specifications or exhaustive class taxonomies. Second, we introduce a point-level SD map encoder together with orthogonal element identifiers to uniformly integrate all types of map elements. Experiments on Argoverse 2 and nuScenes show that this boosts map perception performance by up to +5.9 mAP (+45%) w.r.t. map construction without priors and up to +3.2 mAP (+20%) w.r.t. previous approaches that already use SD map priors. Code is available at https://github.com/immel-f/SDTagNet
☆ Rethinking Range-View LiDAR Segmentation in Adverse Weather
LiDAR segmentation has emerged as an important task to enrich multimedia experiences and analysis. Range-view-based methods have gained popularity due to their high computational efficiency and compatibility with real-time deployment. However, their generalized performance under adverse weather conditions remains underexplored, limiting their reliability in real-world environments. In this work, we identify and analyze the unique challenges that affect the generalization of range-view LiDAR segmentation in severe weather. To address these challenges, we propose a modular and lightweight framework that enhances robustness without altering the core architecture of existing models. Our method reformulates the initial stem block of standard range-view networks into two branches to process geometric attributes and reflectance intensity separately. Specifically, a Geometric Abnormality Suppression (GAS) module reduces the influence of weather-induced spatial noise, and a Reflectance Distortion Calibration (RDC) module corrects reflectance distortions through memory-guided adaptive instance normalization. The processed features are then fused and passed to the original segmentation pipeline. Extensive experiments on different benchmarks and baseline models demonstrate that our approach significantly improves generalization to adverse weather with minimal inference overhead, offering a practical and effective solution for real-world LiDAR segmentation.
☆ CLONE: Closed-Loop Whole-Body Humanoid Teleoperation for Long-Horizon Tasks
Humanoid teleoperation plays a vital role in demonstrating and collecting data for complex humanoid-scene interactions. However, current teleoperation systems face critical limitations: they decouple upper- and lower-body control to maintain stability, restricting natural coordination, and operate open-loop without real-time position feedback, leading to accumulated drift. The fundamental challenge is achieving precise, coordinated whole-body teleoperation over extended durations while maintaining accurate global positioning. Here we show that an MoE-based teleoperation system, CLONE, with closed-loop error correction enables unprecedented whole-body teleoperation fidelity, maintaining minimal positional drift over long-range trajectories using only head and hand tracking from an MR headset. Unlike previous methods that either sacrifice coordination for stability or suffer from unbounded drift, CLONE learns diverse motion skills while preventing tracking error accumulation through real-time feedback, enabling complex coordinated movements such as ``picking up objects from the ground.'' These results establish a new milestone for whole-body humanoid teleoperation for long-horizon humanoid-scene interaction tasks.
comment: 18 pages, 13 figures
☆ Help or Hindrance: Understanding the Impact of Robot Communication in Action Teams
The human-robot interaction (HRI) field has recognized the importance of enabling robots to interact with teams. Human teams rely on effective communication for successful collaboration in time-sensitive environments. Robots can play a role in enhancing team coordination through real-time assistance. Despite significant progress in human-robot teaming research, there remains an essential gap in how robots can effectively communicate with action teams using multimodal interaction cues in time-sensitive environments. This study addresses this knowledge gap in an experimental in-lab study to investigate how multimodal robot communication in action teams affects workload and human perception of robots. We explore team collaboration in a medical training scenario where a robotic crash cart (RCC) provides verbal and non-verbal cues to help users remember to perform iterative tasks and search for supplies. Our findings show that verbal cues for object search tasks and visual cues for task reminders reduce team workload and increase perceived ease of use and perceived usefulness more effectively than a robot with no feedback. Our work contributes to multimodal interaction research in the HRI field, highlighting the need for more human-robot teaming research to understand best practices for integrating collaborative robots in time-sensitive environments such as in hospitals, search and rescue, and manufacturing applications.
comment: This is the author's original submitted version of the paper accepted to the 2025 IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). \c{opyright} 2025 IEEE. Personal use of this material is permitted. For any other use, please contact IEEE
☆ Human-Robot Teaming Field Deployments: A Comparison Between Verbal and Non-verbal Communication
Healthcare workers (HCWs) encounter challenges in hospitals, such as retrieving medical supplies quickly from crash carts, which could potentially result in medical errors and delays in patient care. Robotic crash carts (RCCs) have shown promise in assisting healthcare teams during medical tasks through guided object searches and task reminders. Limited exploration has been done to determine what communication modalities are most effective and least disruptive to patient care in real-world settings. To address this gap, we conducted a between-subjects experiment comparing the RCC's verbal and non-verbal communication of object search with a standard crash cart in resuscitation scenarios to understand the impact of robot communication on workload and attitudes toward using robots in the workplace. Our findings indicate that verbal communication significantly reduced mental demand and effort compared to visual cues and with a traditional crash cart. Although frustration levels were slightly higher during collaborations with the robot compared to a traditional cart, these research insights provide valuable implications for human-robot teamwork in high-stakes environments.
comment: This is the author's original submitted version of the paper accepted to the 2025 IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). \c{opyright} 2025 IEEE. Personal use of this material is permitted. For any other use, please contact IEEE
☆ MOMAV: A highly symmetrical fully-actuated multirotor drone using optimizing control allocation
MOMAV (Marco's Omnidirectional Micro Aerial Vehicle) is a multirotor drone that is fully actuated, meaning it can control its orientation independently of its position. MOMAV is also highly symmetrical, making its flight efficiency largely unaffected by its current orientation. These characteristics are achieved by a novel drone design where six rotor arms align with the vertices of an octahedron, and where each arm can actively rotate along its long axis. Various standout features of MOMAV are presented: The high flight efficiency compared to arm configuration of other fully-actuated drones, the design of an original rotating arm assembly featuring slip-rings used to enable continuous arm rotation, and a novel control allocation algorithm based on sequential quadratic programming (SQP) used to calculate throttle and arm-angle setpoints in flight. Flight tests have shown that MOMAV is able to achieve remarkably low mean position/orientation errors of 6.6mm, 2.1{\deg} ({\sigma}: 3.0mm, 1.0{\deg}) when sweeping position setpoints, and 11.8mm, 3.3{\deg} ({\sigma}: 8.6mm, 2.0{\deg}) when sweeping orientation setpoints.
comment: 12 pages, 12 figures, preprint
☆ Fast Estimation of Globally Optimal Independent Contact Regions for Robust Grasping and Manipulation
This work presents a fast anytime algorithm for computing globally optimal independent contact regions (ICRs). ICRs are regions such that one contact within each region enables a valid grasp. Locations of ICRs can provide guidance for grasp and manipulation planning, learning, and policy transfer. However, ICRs for modern applications have been little explored, in part due to the expense of computing them, as they have a search space exponential in the number of contacts. We present a divide and conquer algorithm based on incremental n-dimensional Delaunay triangulation that produces results with bounded suboptimality in times sufficient for real-time planning. This paper presents the base algorithm for grasps where contacts lie within a plane. Our experiments show substantial benefits over competing grasp quality metrics and speedups of 100X and more for competing approaches to computing ICRs. We explore robustness of a policy guided by ICRs and outline a path to general 3D implementation. Code will be released on publication to facilitate further development and applications.
comment: Submitted to IEEE Conference on Humanoid Robots
☆ Deploying SICNav in the Field: Safe and Interactive Crowd Navigation using MPC and Bilevel Optimization ICRA
Safe and efficient navigation in crowded environments remains a critical challenge for robots that provide a variety of service tasks such as food delivery or autonomous wheelchair mobility. Classical robot crowd navigation methods decouple human motion prediction from robot motion planning, which neglects the closed-loop interactions between humans and robots. This lack of a model for human reactions to the robot plan (e.g. moving out of the way) can cause the robot to get stuck. Our proposed Safe and Interactive Crowd Navigation (SICNav) method is a bilevel Model Predictive Control (MPC) framework that combines prediction and planning into one optimization problem, explicitly modeling interactions among agents. In this paper, we present a systems overview of the crowd navigation platform we use to deploy SICNav in previously unseen indoor and outdoor environments. We provide a preliminary analysis of the system's operation over the course of nearly 7 km of autonomous navigation over two hours in both indoor and outdoor environments.
comment: Presented at the 2025 IEEE ICRA Workshop on Field Robotics (non-archival)
☆ MoRE: Mixture of Residual Experts for Humanoid Lifelike Gaits Learning on Complex Terrains
Humanoid robots have demonstrated robust locomotion capabilities using Reinforcement Learning (RL)-based approaches. Further, to obtain human-like behaviors, existing methods integrate human motion-tracking or motion prior in the RL framework. However, these methods are limited in flat terrains with proprioception only, restricting their abilities to traverse challenging terrains with human-like gaits. In this work, we propose a novel framework using a mixture of latent residual experts with multi-discriminators to train an RL policy, which is capable of traversing complex terrains in controllable lifelike gaits with exteroception. Our two-stage training pipeline first teaches the policy to traverse complex terrains using a depth camera, and then enables gait-commanded switching between human-like gait patterns. We also design gait rewards to adjust human-like behaviors like robot base height. Simulation and real-world experiments demonstrate that our framework exhibits exceptional performance in traversing complex terrains, and achieves seamless transitions between multiple human-like gait patterns.
comment: 9 pages, 5 figures
☆ FreqPolicy: Efficient Flow-based Visuomotor Policy via Frequency Consistency
Generative modeling-based visuomotor policies have been widely adopted in robotic manipulation attributed to their ability to model multimodal action distributions. However, the high inference cost of multi-step sampling limits their applicability in real-time robotic systems. To address this issue, existing approaches accelerate the sampling process in generative modeling-based visuomotor policies by adapting acceleration techniques originally developed for image generation. Despite this progress, a major distinction remains: image generation typically involves producing independent samples without temporal dependencies, whereas robotic manipulation involves generating time-series action trajectories that require continuity and temporal coherence. To effectively exploit temporal information in robotic manipulation, we propose FreqPolicy, a novel approach that first imposes frequency consistency constraints on flow-based visuomotor policies. Our work enables the action model to capture temporal structure effectively while supporting efficient, high-quality one-step action generation. We introduce a frequency consistency constraint that enforces alignment of frequency-domain action features across different timesteps along the flow, thereby promoting convergence of one-step action generation toward the target distribution. In addition, we design an adaptive consistency loss to capture structural temporal variations inherent in robotic manipulation tasks. We assess FreqPolicy on 53 tasks across 3 simulation benchmarks, proving its superiority over existing one-step action generators. We further integrate FreqPolicy into the vision-language-action (VLA) model and achieve acceleration without performance degradation on the 40 tasks of Libero. Besides, we show efficiency and effectiveness in real-world robotic scenarios with an inference frequency 93.5Hz. The code will be publicly available.
☆ Confidence Boosts Trust-Based Resilience in Cooperative Multi-Robot Systems
Wireless communication-based multi-robot systems open the door to cyberattacks that can disrupt safety and performance of collaborative robots. The physical channel supporting inter-robot communication offers an attractive opportunity to decouple the detection of malicious robots from task-relevant data exchange between legitimate robots. Yet, trustworthiness indications coming from physical channels are uncertain and must be handled with this in mind. In this paper, we propose a resilient protocol for multi-robot operation wherein a parameter {\lambda}t accounts for how confident a robot is about the legitimacy of nearby robots that the physical channel indicates. Analytical results prove that our protocol achieves resilient coordination with arbitrarily many malicious robots under mild assumptions. Tuning {\lambda}t allows a designer to trade between near-optimal inter-robot coordination and quick task execution; see Fig. 1. This is a fundamental performance tradeoff and must be carefully evaluated based on the task at hand. The effectiveness of our approach is numerically verified with experiments involving platoons of autonomous cars where some vehicles are maliciously spoofed.
comment: This work has been submitted to IEEE for possible publication
☆ Communicating Through Avatars in Industry 5.0: A Focus Group Study on Human-Robot Collaboration
The integration of collaborative robots (cobots) in industrial settings raises concerns about worker well-being, particularly due to reduced social interactions. Avatars - designed to facilitate worker interactions and engagement - are promising solutions to enhance the human-robot collaboration (HRC) experience. However, real-world perspectives on avatar-supported HRC remain unexplored. To address this gap, we conducted a focus group study with employees from a German manufacturing company that uses cobots. Before the discussion, participants engaged with a scripted, industry-like HRC demo in a lab setting. This qualitative approach provided valuable insights into the avatar's potential roles, improvements to its behavior, and practical considerations for deploying them in industrial workcells. Our findings also emphasize the importance of personalized communication and task assistance. Although our study's limitations restrict its generalizability, it serves as an initial step in recognizing the potential of adaptive, context-aware avatar interactions in real-world industrial environments.
comment: Accepted LBW at CHIWORK 2025
☆ Towards Biosignals-Free Autonomous Prosthetic Hand Control via Imitation Learning
Limb loss affects millions globally, impairing physical function and reducing quality of life. Most traditional surface electromyographic (sEMG) and semi-autonomous methods require users to generate myoelectric signals for each control, imposing physically and mentally taxing demands. This study aims to develop a fully autonomous control system that enables a prosthetic hand to automatically grasp and release objects of various shapes using only a camera attached to the wrist. By placing the hand near an object, the system will automatically execute grasping actions with a proper grip force in response to the hand's movements and the environment. To release the object being grasped, just naturally place the object close to the table and the system will automatically open the hand. Such a system would provide individuals with limb loss with a very easy-to-use prosthetic control interface and greatly reduce mental effort while using. To achieve this goal, we developed a teleoperation system to collect human demonstration data for training the prosthetic hand control model using imitation learning, which mimics the prosthetic hand actions from human. Through training the model using only a few objects' data from one single participant, we have shown that the imitation learning algorithm can achieve high success rates, generalizing to more individuals and unseen objects with a variation of weights. The demonstrations are available at \href{https://sites.google.com/view/autonomous-prosthetic-hand}{https://sites.google.com/view/autonomous-prosthetic-hand}
☆ Bayesian Inverse Physics for Neuro-Symbolic Robot Learning
Real-world robotic applications, from autonomous exploration to assistive technologies, require adaptive, interpretable, and data-efficient learning paradigms. While deep learning architectures and foundation models have driven significant advances in diverse robotic applications, they remain limited in their ability to operate efficiently and reliably in unknown and dynamic environments. In this position paper, we critically assess these limitations and introduce a conceptual framework for combining data-driven learning with deliberate, structured reasoning. Specifically, we propose leveraging differentiable physics for efficient world modeling, Bayesian inference for uncertainty-aware decision-making, and meta-learning for rapid adaptation to new tasks. By embedding physical symbolic reasoning within neural models, robots could generalize beyond their training data, reason about novel situations, and continuously expand their knowledge. We argue that such hybrid neuro-symbolic architectures are essential for the next generation of autonomous systems, and to this end, we provide a research roadmap to guide and accelerate their development.
☆ Efficient Learning of Vehicle Controller Parameters via Multi-Fidelity Bayesian Optimization: From Simulation to Experiment
Parameter tuning for vehicle controllers remains a costly and time-intensive challenge in automotive development. Traditional approaches rely on extensive real-world testing, making the process inefficient. We propose a multi-fidelity Bayesian optimization approach that efficiently learns optimal controller parameters by leveraging both low-fidelity simulation data and a very limited number of real-world experiments. Our approach significantly reduces the need for manual tuning and expensive field testing while maintaining the standard two-stage development workflow used in industry. The core contribution is the integration of an auto-regressive multi-fidelity Gaussian process model into Bayesian optimization, enabling knowledge transfer between different fidelity levels without requiring additional low-fidelity evaluations during real-world testing. We validate our approach through both simulation studies and realworld experiments. The results demonstrate that our method achieves high-quality controller performance with only very few real-world experiments, highlighting its potential as a practical and scalable solution for intelligent vehicle control tuning in industrial applications.
comment: 8 pages, 8 figures, accepted for IEEE IV 2025
☆ PhyBlock: A Progressive Benchmark for Physical Understanding and Planning via 3D Block Assembly
While vision-language models (VLMs) have demonstrated promising capabilities in reasoning and planning for embodied agents, their ability to comprehend physical phenomena, particularly within structured 3D environments, remains severely limited. To close this gap, we introduce PhyBlock, a progressive benchmark designed to assess VLMs on physical understanding and planning through robotic 3D block assembly tasks. PhyBlock integrates a novel four-level cognitive hierarchy assembly task alongside targeted Visual Question Answering (VQA) samples, collectively aimed at evaluating progressive spatial reasoning and fundamental physical comprehension, including object properties, spatial relationships, and holistic scene understanding. PhyBlock includes 2600 block tasks (400 assembly tasks, 2200 VQA tasks) and evaluates models across three key dimensions: partial completion, failure diagnosis, and planning robustness. We benchmark 21 state-of-the-art VLMs, highlighting their strengths and limitations in physically grounded, multi-step planning. Our empirical findings indicate that the performance of VLMs exhibits pronounced limitations in high-level planning and reasoning capabilities, leading to a notable decline in performance for the growing complexity of the tasks. Error analysis reveals persistent difficulties in spatial orientation and dependency reasoning. Surprisingly, chain-of-thought prompting offers minimal improvements, suggesting spatial tasks heavily rely on intuitive model comprehension. We position PhyBlock as a unified testbed to advance embodied reasoning, bridging vision-language understanding and real-world physical problem-solving.
☆ ROS-related Robotic Systems Development with V-model-based Application of MeROS Metamodel
As robotic systems grow increasingly complex, heterogeneous, and safety-critical, the need for structured development methodologies becomes paramount. Although frameworks like the Robot Operating System (ROS) and Model-Based Systems Engineering (MBSE) offer foundational tools, they often lack integration when used together. This paper addresses that gap by aligning the widely recognized V-model development paradigm with the MeROS metamodel SysML-based modeling language tailored for ROS-based systems. We propose a domain-specific methodology that bridges ROS-centric modelling with systems engineering practices. Our approach formalises the structure, behaviour, and validation processes of robotic systems using MeROS, while extending it with a generalized, adaptable V-model compatible with both ROS and ROS 2. Rather than prescribing a fixed procedure, the approach supports project-specific flexibility and reuse, offering guidance across all stages of development. The approach is validated through a comprehensive case study on HeROS, a heterogeneous multi-robot platform comprising manipulators, mobile units, and dynamic test environments. This example illustrates how the MeROS-compatible V-model enhances traceability and system consistency while remaining accessible and extensible for future adaptation. The work contributes a structured, tool-agnostic foundation for developers and researchers seeking to apply MBSE practices in ROS-based projects.
comment: 19 pages
☆ Deep Reinforcement Learning-Based Motion Planning and PDE Control for Flexible Manipulators
This article presents a motion planning and control framework for flexible robotic manipulators, integrating deep reinforcement learning (DRL) with a nonlinear partial differential equation (PDE) controller. Unlike conventional approaches that focus solely on control, we demonstrate that the desired trajectory significantly influences endpoint vibrations. To address this, a DRL motion planner, trained using the soft actor-critic (SAC) algorithm, generates optimized trajectories that inherently minimize vibrations. The PDE nonlinear controller then computes the required torques to track the planned trajectory while ensuring closed-loop stability using Lyapunov analysis. The proposed methodology is validated through both simulations and real-world experiments, demonstrating superior vibration suppression and tracking accuracy compared to traditional methods. The results underscore the potential of combining learning-based motion planning with model-based control for enhancing the precision and stability of flexible robotic manipulators.
☆ Modular Recurrence in Contextual MDPs for Universal Morphology Control
A universal controller for any robot morphology would greatly improve computational and data efficiency. By utilizing contextual information about the properties of individual robots and exploiting their modular structure in the architecture of deep reinforcement learning agents, steps have been made towards multi-robot control. Generalization to new, unseen robots, however, remains a challenge. In this paper we hypothesize that the relevant contextual information is partially observable, but that it can be inferred through interactions for better generalization to contexts that are not seen during training. To this extent, we implement a modular recurrent architecture and evaluate its generalization performance on a large set of MuJoCo robots. The results show a substantial improved performance on robots with unseen dynamics, kinematics, and topologies, in four different environments.
☆ Noise Analysis and Hierarchical Adaptive Body State Estimator For Biped Robot Walking With ESVC Foot
The ESVC(Ellipse-based Segmental Varying Curvature) foot, a robot foot design inspired by the rollover shape of the human foot, significantly enhances the energy efficiency of the robot walking gait. However, due to the tilt of the supporting leg, the error of the contact model are amplified, making robot state estimation more challenging. Therefore, this paper focuses on the noise analysis and state estimation for robot walking with the ESVC foot. First, through physical robot experiments, we investigate the effect of the ESVC foot on robot measurement noise and process noise. and a noise-time regression model using sliding window strategy is developed. Then, a hierarchical adaptive state estimator for biped robots with the ESVC foot is proposed. The state estimator consists of two stages: pre-estimation and post-estimation. In the pre-estimation stage, a data fusion-based estimation is employed to process the sensory data. During post-estimation, the acceleration of center of mass is first estimated, and then the noise covariance matrices are adjusted based on the regression model. Following that, an EKF(Extended Kalman Filter) based approach is applied to estimate the centroid state during robot walking. Physical experiments demonstrate that the proposed adaptive state estimator for biped robot walking with the ESVC foot not only provides higher precision than both EKF and Adaptive EKF, but also converges faster under varying noise conditions.
☆ How to Provably Improve Return Conditioned Supervised Learning?
In sequential decision-making problems, Return-Conditioned Supervised Learning (RCSL) has gained increasing recognition for its simplicity and stability in modern decision-making tasks. Unlike traditional offline reinforcement learning (RL) algorithms, RCSL frames policy learning as a supervised learning problem by taking both the state and return as input. This approach eliminates the instability often associated with temporal difference (TD) learning in offline RL. However, RCSL has been criticized for lacking the stitching property, meaning its performance is inherently limited by the quality of the policy used to generate the offline dataset. To address this limitation, we propose a principled and simple framework called Reinforced RCSL. The key innovation of our framework is the introduction of a concept we call the in-distribution optimal return-to-go. This mechanism leverages our policy to identify the best achievable in-dataset future return based on the current state, avoiding the need for complex return augmentation techniques. Our theoretical analysis demonstrates that Reinforced RCSL can consistently outperform the standard RCSL approach. Empirical results further validate our claims, showing significant performance improvements across a range of benchmarks.
comment: 25 pages, 4 figures, 12 tables
☆ Hybrid Reasoning for Perception, Explanation, and Autonomous Action in Manufacturing
Industrial processes must be robust and adaptable, as environments and tasks are often unpredictable, while operational errors remain costly and difficult to detect. AI-based control systems offer a path forward, yet typically depend on supervised learning with extensive labelled datasets, which limits their ability to generalize across variable and data-scarce industrial settings. Foundation models could enable broader reasoning and knowledge integration, but rarely deliver the quantitative precision demanded by engineering applications. Here, we introduceControl and Interpretation of Production via Hybrid Expertise and Reasoning (CIPHER): a vision-language-action (VLA) model framework aiming to replicate human-like reasoning for industrial control, instantiated in a commercial-grade 3D printer. It integrates a process expert, a regression model enabling quantitative characterization of system states required for engineering tasks. CIPHER also incorporates retrieval-augmented generation to access external expert knowledge and support physics-informed, chain-of-thought reasoning. This hybrid architecture exhibits strong generalization to out-of-distribution tasks. It interprets visual or textual inputs from process monitoring, explains its decisions, and autonomously generates precise machine instructions, without requiring explicit annotations. CIPHER thus lays the foundations for autonomous systems that act with precision, reason with context, and communicate decisions transparently, supporting safe and trusted deployment in industrial settings.
☆ MOBODY: Model Based Off-Dynamics Offline Reinforcement Learning
We study the off-dynamics offline reinforcement learning problem, where the goal is to learn a policy from offline datasets collected from source and target domains with mismatched transition. Existing off-dynamics offline RL methods typically either filter source transitions that resemble those of the target domain or apply reward augmentation to source data, both constrained by the limited transitions available from the target domain. As a result, the learned policy is unable to explore target domain beyond the offline datasets. We propose MOBODY, a Model-Based Off-Dynamics offline RL algorithm that addresses this limitation by enabling exploration of the target domain via learned dynamics. MOBODY generates new synthetic transitions in the target domain through model rollouts, which are used as data augmentation during offline policy learning. Unlike existing model-based methods that learn dynamics from a single domain, MOBODY tackles the challenge of mismatched dynamics by leveraging both source and target datasets. Directly merging these datasets can bias the learned model toward source dynamics. Instead, MOBODY learns target dynamics by discovering a shared latent representation of states and transitions across domains through representation learning. To stabilize training, MOBODY incorporates a behavior cloning loss that regularizes the policy. Specifically, we introduce a Q-weighted behavior cloning loss that regularizes the policy toward actions with high target-domain Q-values, rather than uniformly imitating all actions in the dataset. These Q-values are learned from an enhanced target dataset composed of offline target data, augmented source data, and rollout data from the learned target dynamics. We evaluate MOBODY on MuJoCo benchmarks and show that it significantly outperforms state-of-the-art baselines, with especially pronounced improvements in challenging scenarios.
☆ Diffusion Models for Safety Validation of Autonomous Driving Systems
Safety validation of autonomous driving systems is extremely challenging due to the high risks and costs of real-world testing as well as the rarity and diversity of potential failures. To address these challenges, we train a denoising diffusion model to generate potential failure cases of an autonomous vehicle given any initial traffic state. Experiments on a four-way intersection problem show that in a variety of scenarios, the diffusion model can generate realistic failure samples while capturing a wide variety of potential failures. Our model does not require any external training dataset, can perform training and inference with modest computing resources, and does not assume any prior knowledge of the system under test, with applicability to safety validation for traffic intersections.
☆ Attention-based Learning for 3D Informative Path Planning
In this work, we propose an attention-based deep reinforcement learning approach to address the adaptive informative path planning (IPP) problem in 3D space, where an aerial robot equipped with a downward-facing sensor must dynamically adjust its 3D position to balance sensing footprint and accuracy, and finally obtain a high-quality belief of an underlying field of interest over a given domain (e.g., presence of specific plants, hazardous gas, geological structures, etc.). In adaptive IPP tasks, the agent is tasked with maximizing information collected under time/distance constraints, continuously adapting its path based on newly acquired sensor data. To this end, we leverage attention mechanisms for their strong ability to capture global spatial dependencies across large action spaces, allowing the agent to learn an implicit estimation of environmental transitions. Our model builds a contextual belief representation over the entire domain, guiding sequential movement decisions that optimize both short- and long-term search objectives. Comparative evaluations against state-of-the-art planners demonstrate that our approach significantly reduces environmental uncertainty within constrained budgets, thus allowing the agent to effectively balance exploration and exploitation. We further show our model generalizes well to environments of varying sizes, highlighting its potential for many real-world applications.
☆ Periodic Bipedal Gait Learning Using Reward Composition Based on a Novel Gait Planner for Humanoid Robots
This paper presents a periodic bipedal gait learning method using reward composition, integrated with a real-time gait planner for humanoid robots. First, we introduce a novel gait planner that incorporates dynamics to design the desired joint trajectory. In the gait design process, the 3D robot model is decoupled into two 2D models, which are then approximated as hybrid inverted pendulums (H-LIP) for trajectory planning. The gait planner operates in parallel in real time within the robot's learning environment. Second, based on this gait planner, we design three effective reward functions within a reinforcement learning framework, forming a reward composition to achieve periodic bipedal gait. This reward composition reduces the robot's learning time and enhances locomotion performance. Finally, a gait design example and performance comparison are presented to demonstrate the effectiveness of the proposed method.
☆ Re4MPC: Reactive Nonlinear MPC for Multi-model Motion Planning via Deep Reinforcement Learning
Traditional motion planning methods for robots with many degrees-of-freedom, such as mobile manipulators, are often computationally prohibitive for real-world settings. In this paper, we propose a novel multi-model motion planning pipeline, termed Re4MPC, which computes trajectories using Nonlinear Model Predictive Control (NMPC). Re4MPC generates trajectories in a computationally efficient manner by reactively selecting the model, cost, and constraints of the NMPC problem depending on the complexity of the task and robot state. The policy for this reactive decision-making is learned via a Deep Reinforcement Learning (DRL) framework. We introduce a mathematical formulation to integrate NMPC into this DRL framework. To validate our methodology and design choices, we evaluate DRL training and test outcomes in a physics-based simulation involving a mobile manipulator. Experimental results demonstrate that Re4MPC is more computationally efficient and achieves higher success rates in reaching end-effector goals than the NMPC baseline, which computes whole-body trajectories without our learning mechanism.
comment: Accepted to the 2025 IEEE International Conference on Automation Science and Engineering (CASE)
☆ DEKC: Data-Enable Control for Tethered Space Robot Deployment in the Presence of Uncertainty via Koopman Operator Theory
This work focuses the deployment of tethered space robot in the presence of unknown uncertainty. A data-enable framework called DEKC which contains offline training part and online execution part is proposed to deploy tethered space robot in the presence of uncertainty. The main idea of this work is modeling the unknown uncertainty as a dynamical system, which enables high accuracy and convergence of capturing uncertainty. The core part of proposed framework is a proxy model of uncertainty, which is derived from data-driven Koopman theory and is separated with controller design. In the offline stage, the lifting functions associated with Koopman operator are parameterized with deep neural networks. Then by solving an optimization problem, the lifting functions are learned from sampling data. In the online execution stage, the proxy model cooperates the learned lifting functions obtained in the offline phase to capture the unknown uncertainty. Then the output of proxy model is compensated to the baseline controller such that the effect of uncertainty can be attenuated or even eliminated. Furthermore, considering some scenarios in which the performance of proxy model may weaken, a receding-horizon scheme is proposed to update the proxy model online. Finally, the extensive numerical simulations demonstrate the effectiveness of our proposed framework. The implementation of proposed DEKC framework is publicly available at https://github.com/NPU-RCIR/DEKC.git.
comment: 12 pages
☆ UAD: Unsupervised Affordance Distillation for Generalization in Robotic Manipulation
Understanding fine-grained object affordances is imperative for robots to manipulate objects in unstructured environments given open-ended task instructions. However, existing methods of visual affordance predictions often rely on manually annotated data or conditions only on a predefined set of tasks. We introduce UAD (Unsupervised Affordance Distillation), a method for distilling affordance knowledge from foundation models into a task-conditioned affordance model without any manual annotations. By leveraging the complementary strengths of large vision models and vision-language models, UAD automatically annotates a large-scale dataset with detailed $<$instruction, visual affordance$>$ pairs. Training only a lightweight task-conditioned decoder atop frozen features, UAD exhibits notable generalization to in-the-wild robotic scenes and to various human activities, despite only being trained on rendered objects in simulation. Using affordance provided by UAD as the observation space, we show an imitation learning policy that demonstrates promising generalization to unseen object instances, object categories, and even variations in task instructions after training on as few as 10 demonstrations. Project website: https://unsup-affordance.github.io/
☆ UFM: A Simple Path towards Unified Dense Correspondence with Flow
Dense image correspondence is central to many applications, such as visual odometry, 3D reconstruction, object association, and re-identification. Historically, dense correspondence has been tackled separately for wide-baseline scenarios and optical flow estimation, despite the common goal of matching content between two images. In this paper, we develop a Unified Flow & Matching model (UFM), which is trained on unified data for pixels that are co-visible in both source and target images. UFM uses a simple, generic transformer architecture that directly regresses the (u,v) flow. It is easier to train and more accurate for large flows compared to the typical coarse-to-fine cost volumes in prior work. UFM is 28% more accurate than state-of-the-art flow methods (Unimatch), while also having 62% less error and 6.7x faster than dense wide-baseline matchers (RoMa). UFM is the first to demonstrate that unified training can outperform specialized approaches across both domains. This result enables fast, general-purpose correspondence and opens new directions for multi-modal, long-range, and real-time correspondence tasks.
comment: Project Page: https://uniflowmatch.github.io/
☆ Perception Characteristics Distance: Measuring Stability and Robustness of Perception System in Dynamic Conditions under a Certain Decision Rule
The performance of perception systems in autonomous driving systems (ADS) is strongly influenced by object distance, scene dynamics, and environmental conditions such as weather. AI-based perception outputs are inherently stochastic, with variability driven by these external factors, while traditional evaluation metrics remain static and event-independent, failing to capture fluctuations in confidence over time. In this work, we introduce the Perception Characteristics Distance (PCD) -- a novel evaluation metric that quantifies the farthest distance at which an object can be reliably detected, incorporating uncertainty in model outputs. To support this, we present the SensorRainFall dataset, collected on the Virginia Smart Road using a sensor-equipped vehicle (cameras, radar, LiDAR) under controlled daylight-clear and daylight-rain scenarios, with precise ground-truth distances to the target objects. Statistical analysis reveals the presence of change points in the variance of detection confidence score with distance. By averaging the PCD values across a range of detection quality thresholds and probabilistic thresholds, we compute the mean PCD (mPCD), which captures the overall perception characteristics of a system with respect to detection distance. Applying state-of-the-art perception models shows that mPCD captures meaningful reliability differences under varying weather conditions -- differences that static metrics overlook. PCD provides a principled, distribution-aware measure of perception performance, supporting safer and more robust ADS operation, while the SensorRainFall dataset offers a valuable benchmark for evaluation. The SensorRainFall dataset is publicly available at https://www.kaggle.com/datasets/datadrivenwheels/sensorrainfall, and the evaluation code is open-sourced at https://github.com/datadrivenwheels/PCD_Python.
☆ Towards Full-Scenario Safety Evaluation of Automated Vehicles: A Volume-Based Method
With the rapid development of automated vehicles (AVs) in recent years, commercially available AVs are increasingly demonstrating high-level automation capabilities. However, most existing AV safety evaluation methods are primarily designed for simple maneuvers such as car-following and lane-changing. While suitable for basic tests, these methods are insufficient for assessing high-level automation functions deployed in more complex environments. First, these methods typically use crash rate as the evaluation metric, whose accuracy heavily depends on the quality and completeness of naturalistic driving environment data used to estimate scenario probabilities. Such data is often difficult and expensive to collect. Second, when applied to diverse scenarios, these methods suffer from the curse of dimensionality, making large-scale evaluation computationally intractable. To address these challenges, this paper proposes a novel framework for full-scenario AV safety evaluation. A unified model is first introduced to standardize the representation of diverse driving scenarios. This modeling approach constrains the dimension of most scenarios to a regular highway setting with three lanes and six surrounding background vehicles, significantly reducing dimensionality. To further avoid the limitations of probability-based method, we propose a volume-based evaluation method that quantifies the proportion of risky scenarios within the entire scenario space. For car-following scenarios, we prove that the set of safe scenarios is convex under specific settings, enabling exact volume computation. Experimental results validate the effectiveness of the proposed volume-based method using both AV behavior models from existing literature and six production AV models calibrated from field-test trajectory data in the Ultra-AV dataset. Code and data will be made publicly available upon acceptance of this paper.
comment: NA
☆ Robot-Gated Interactive Imitation Learning with Adaptive Intervention Mechanism ICML 2025
Interactive Imitation Learning (IIL) allows agents to acquire desired behaviors through human interventions, but current methods impose high cognitive demands on human supervisors. We propose the Adaptive Intervention Mechanism (AIM), a novel robot-gated IIL algorithm that learns an adaptive criterion for requesting human demonstrations. AIM utilizes a proxy Q-function to mimic the human intervention rule and adjusts intervention requests based on the alignment between agent and human actions. By assigning high Q-values when the agent deviates from the expert and decreasing these values as the agent becomes proficient, the proxy Q-function enables the agent to assess the real-time alignment with the expert and request assistance when needed. Our expert-in-the-loop experiments reveal that AIM significantly reduces expert monitoring efforts in both continuous and discrete control tasks. Compared to the uncertainty-based baseline Thrifty-DAgger, our method achieves a 40% improvement in terms of human take-over cost and learning efficiency. Furthermore, AIM effectively identifies safety-critical states for expert assistance, thereby collecting higher-quality expert demonstrations and reducing overall expert data and environment interactions needed. Code and demo video are available at https://github.com/metadriverse/AIM.
comment: ICML 2025 Poster
☆ Hearing the Slide: Acoustic-Guided Constraint Learning for Fast Non-Prehensile Transport
Object transport tasks are fundamental in robotic automation, emphasizing the importance of efficient and secure methods for moving objects. Non-prehensile transport can significantly improve transport efficiency, as it enables handling multiple objects simultaneously and accommodating objects unsuitable for parallel-jaw or suction grasps. Existing approaches incorporate constraints based on the Coulomb friction model, which is imprecise during fast motions where inherent mechanical vibrations occur. Imprecise constraints can cause transported objects to slide or even fall off the tray. To address this limitation, we propose a novel method to learn a friction model using acoustic sensing that maps a tray's motion profile to a dynamically conditioned friction coefficient. This learned model enables an optimization-based motion planner to adjust the friction constraint at each control step according to the planned motion at that step. In experiments, we generate time-optimized trajectories for a UR5e robot to transport various objects with constraints using both the standard Coulomb friction model and the learned friction model. Results suggest that the learned friction model reduces object displacement by up to 86.0% compared to the baseline, highlighting the effectiveness of acoustic sensing in learning real-world friction constraints.
☆ WD-DETR: Wavelet Denoising-Enhanced Real-Time Object Detection Transformer for Robot Perception with Event Cameras
Previous studies on event camera sensing have demonstrated certain detection performance using dense event representations. However, the accumulated noise in such dense representations has received insufficient attention, which degrades the representation quality and increases the likelihood of missed detections. To address this challenge, we propose the Wavelet Denoising-enhanced DEtection TRansformer, i.e., WD-DETR network, for event cameras. In particular, a dense event representation is presented first, which enables real-time reconstruction of events as tensors. Then, a wavelet transform method is designed to filter noise in the event representations. Such a method is integrated into the backbone for feature extraction. The extracted features are subsequently fed into a transformer-based network for object prediction. To further reduce inference time, we incorporate the Dynamic Reorganization Convolution Block (DRCB) as a fusion module within the hybrid encoder. The proposed method has been evaluated on three event-based object detection datasets, i.e., DSEC, Gen1, and 1Mpx. The results demonstrate that WD-DETR outperforms tested state-of-the-art methods. Additionally, we implement our approach on a common onboard computer for robots, the NVIDIA Jetson Orin NX, achieving a high frame rate of approximately 35 FPS using TensorRT FP16, which is exceptionally well-suited for real-time perception of onboard robotic systems.
comment: https://youtu.be/AQAgVdrx1DE
☆ Impacts between multibody systems and deformable structures
Collisions and impacts are the principal reasons for impulsive motions, which we frequently see in dynamic responses of systems. Precise modelling of impacts is a challenging problem due to the lack of the accurate and commonly accepted constitutive law that governs their mechanics. Rigid-body approach and soft contact methods are discussed in this paper and examined in the presented numerical examples. The main focus is set to impacts in systems with multiple unilateral contacts and collisions with elastic elements of the reference. Parameters of interconnecting unilateral springs are under discussion.
comment: 20 pages, 11 figures, submitted to Virtual Conference Proceeding of 12th ECCOMAS Thematic Conference on Multibody Dynamics - Innsbruck July 13-18, 2025 and to the journal of Multibody System Dynamics
♻ ☆ Towards Autonomous Reinforcement Learning for Real-World Robotic Manipulation with Large Language Models
Recent advancements in Large Language Models (LLMs) and Visual Language Models (VLMs) have significantly impacted robotics, enabling high-level semantic motion planning applications. Reinforcement Learning (RL), a complementary paradigm, enables agents to autonomously optimize complex behaviors through interaction and reward signals. However, designing effective reward functions for RL remains challenging, especially in real-world tasks where sparse rewards are insufficient and dense rewards require elaborate design. In this work, we propose Autonomous Reinforcement learning for Complex Human-Informed Environments (ARCHIE), an unsupervised pipeline leveraging GPT-4, a pre-trained LLM, to generate reward functions directly from natural language task descriptions. The rewards are used to train RL agents in simulated environments, where we formalize the reward generation process to enhance feasibility. Additionally, GPT-4 automates the coding of task success criteria, creating a fully automated, one-shot procedure for translating human-readable text into deployable robot skills. Our approach is validated through extensive simulated experiments on single-arm and bi-manual manipulation tasks using an ABB YuMi collaborative robot, highlighting its practicality and effectiveness. Tasks are demonstrated on the real robot setup.
♻ ☆ Active inference as a unified model of collision avoidance behavior in human drivers
Collision avoidance -- involving a rapid threat detection and quick execution of the appropriate evasive maneuver -- is a critical aspect of driving. However, existing models of human collision avoidance behavior are fragmented, focusing on specific scenarios or only describing certain aspects of the avoidance behavior, such as response times. This paper addresses these gaps by proposing a novel computational cognitive model of human collision avoidance behavior based on active inference. Active inference provides a unified approach to modeling human behavior: the minimization of free energy. Building on prior active inference work, our model incorporates established cognitive mechanisms such as evidence accumulation to simulate human responses in two distinct collision avoidance scenarios: front-to-rear lead vehicle braking and lateral incursion by an oncoming vehicle. We demonstrate that our model explains a wide range of previous empirical findings on human collision avoidance behavior. Specifically, the model closely reproduces both aggregate results from meta-analyses previously reported in the literature and detailed, scenario-specific effects observed in a recent driving simulator study, including response timing, maneuver selection, and execution. Our results highlight the potential of active inference as a unified framework for understanding and modeling human behavior in complex real-life driving tasks.
♻ ☆ From Pixels to Predicates: Learning Symbolic World Models via Pretrained Vision-Language Models
Our aim is to learn to solve long-horizon decision-making problems in complex robotics domains given low-level skills and a handful of short-horizon demonstrations containing sequences of images. To this end, we focus on learning abstract symbolic world models that facilitate zero-shot generalization to novel goals via planning. A critical component of such models is the set of symbolic predicates that define properties of and relationships between objects. In this work, we leverage pretrained vision language models (VLMs) to propose a large set of visual predicates potentially relevant for decision-making, and to evaluate those predicates directly from camera images. At training time, we pass the proposed predicates and demonstrations into an optimization-based model-learning algorithm to obtain an abstract symbolic world model that is defined in terms of a compact subset of the proposed predicates. At test time, given a novel goal in a novel setting, we use the VLM to construct a symbolic description of the current world state, and then use a search-based planning algorithm to find a sequence of low-level skills that achieves the goal. We demonstrate empirically across experiments in both simulation and the real world that our method can generalize aggressively, applying its learned world model to solve problems with a wide variety of object types, arrangements, numbers of objects, and visual backgrounds, as well as novel goals and much longer horizons than those seen at training time.
♻ ☆ BiAssemble: Learning Collaborative Affordance for Bimanual Geometric Assembly ICML 2025
Shape assembly, the process of combining parts into a complete whole, is a crucial robotic skill with broad real-world applications. Among various assembly tasks, geometric assembly--where broken parts are reassembled into their original form (e.g., reconstructing a shattered bowl)--is particularly challenging. This requires the robot to recognize geometric cues for grasping, assembly, and subsequent bimanual collaborative manipulation on varied fragments. In this paper, we exploit the geometric generalization of point-level affordance, learning affordance aware of bimanual collaboration in geometric assembly with long-horizon action sequences. To address the evaluation ambiguity caused by geometry diversity of broken parts, we introduce a real-world benchmark featuring geometric variety and global reproducibility. Extensive experiments demonstrate the superiority of our approach over both previous affordance-based and imitation-based methods. Project page: https://sites.google.com/view/biassembly/.
comment: ICML 2025
♻ ☆ BEAST: Efficient Tokenization of B-Splines Encoded Action Sequences for Imitation Learning
We present the B-spline Encoded Action Sequence Tokenizer (BEAST), a novel action tokenizer that encodes action sequences into compact discrete or continuous tokens using B-splines. In contrast to existing action tokenizers based on vector quantization or byte pair encoding, BEAST requires no separate tokenizer training and consistently produces tokens of uniform length, enabling fast action sequence generation via parallel decoding. Leveraging our B-spline formulation, BEAST inherently ensures generating smooth trajectories without discontinuities between adjacent segments. We extensively evaluate BEAST by integrating it with three distinct model architectures: a Variational Autoencoder (VAE) with continuous tokens, a decoder-only Transformer with discrete tokens, and Florence-2, a pretrained Vision-Language Model with an encoder-decoder architecture, demonstrating BEAST's compatibility and scalability with large pretrained models. We evaluate BEAST across three established benchmarks consisting of 166 simulated tasks and on three distinct robot settings with a total of 8 real-world tasks. Experimental results demonstrate that BEAST (i) significantly reduces both training and inference computational costs, and (ii) consistently generates smooth, high-frequency control signals suitable for continuous control tasks while (iii) reliably achieves competitive task success rates compared to state-of-the-art methods.
♻ ☆ DemoSpeedup: Accelerating Visuomotor Policies via Entropy-Guided Demonstration Acceleration
Imitation learning has shown great promise in robotic manipulation, but the policy's execution is often unsatisfactorily slow due to commonly tardy demonstrations collected by human operators. In this work, we present DemoSpeedup, a self-supervised method to accelerate visuomotor policy execution via entropy-guided demonstration acceleration. DemoSpeedup starts from training an arbitrary generative policy (e.g., ACT or Diffusion Policy) on normal-speed demonstrations, which serves as a per-frame action entropy estimator. The key insight is that frames with lower action entropy estimates call for more consistent policy behaviors, which often indicate the demands for higher-precision operations. In contrast, frames with higher entropy estimates correspond to more casual sections, and therefore can be more safely accelerated. Thus, we segment the original demonstrations according to the estimated entropy, and accelerate them by down-sampling at rates that increase with the entropy values. Trained with the speedup demonstrations, the resulting policies execute up to 3 times faster while maintaining the task completion performance. Interestingly, these policies could even achieve higher success rates than those trained with normal-speed demonstrations, due to the benefits of reduced decision-making horizons. Project Page: https://demospeedup.github.io/
♻ ☆ Enhancing Safety of Foundation Models for Visual Navigation through Collision Avoidance via Repulsive Estimation
We propose CARE (Collision Avoidance via Repulsive Estimation), a plug-and-play module that enhances the safety of vision-based navigation without requiring additional range sensors or fine-tuning of pretrained models. While recent foundation models using only RGB inputs have shown strong performance, they often fail to generalize in out-of-distribution (OOD) environments with unseen objects or variations in camera parameters (e.g., field of view, pose, or focal length). Without fine-tuning, these models may generate unsafe trajectories that lead to collisions, requiring costly data collection and retraining. CARE addresses this limitation by seamlessly integrating with any RGB-based navigation system that outputs local trajectories, dynamically adjusting them using repulsive force vectors derived from monocular depth maps. We evaluate CARE by combining it with state-of-the-art vision-based navigation models across multiple robot platforms. CARE consistently reduces collision rates (up to 100%) without sacrificing goal-reaching performance and improves collision-free travel distance by up to 10.7x in exploration tasks.
comment: 16 pages, 6 figures
♻ ☆ Evolutionary Policy Optimization
On-policy reinforcement learning (RL) algorithms are widely used for their strong asymptotic performance and training stability, but they struggle to scale with larger batch sizes, as additional parallel environments yield redundant data due to limited policy-induced diversity. In contrast, Evolutionary Algorithms (EAs) scale naturally and encourage exploration via randomized population-based search, but are often sample-inefficient. We propose Evolutionary Policy Optimization (EPO), a hybrid algorithm that combines the scalability and diversity of EAs with the performance and stability of policy gradients. EPO maintains a population of agents conditioned on latent variables, shares actor-critic network parameters for coherence and memory efficiency, and aggregates diverse experiences into a master agent. Across tasks in dexterous manipulation, legged locomotion, and classic control, EPO outperforms state-of-the-art baselines in sample efficiency, asymptotic performance, and scalability.
comment: Website at https://yifansu1301.github.io/EPO/
♻ ☆ Decentralized Uncertainty-Aware Active Search with a Team of Aerial Robots
Rapid search and rescue is critical to maximizing survival rates following natural disasters. However, these efforts are challenged by the need to search large disaster zones, lack of reliability in the communications infrastructure, and a priori unknown numbers of objects of interest (OOIs), such as injured survivors. Aerial robots are increasingly being deployed for search and rescue due to their high mobility, but there remains a gap in deploying multi-robot autonomous aerial systems for methodical search of large environments. Prior works have relied on preprogrammed paths from human operators or are evaluated only in simulation. We bridge these gaps in the state of the art by developing and demonstrating a decentralized active search system, which biases its trajectories to take additional views of uncertain OOIs. The methodology leverages stochasticity for rapid coverage in communication denied scenarios. When communications are available, robots share poses, goals, and OOI information to accelerate the rate of search. Detections from multiple images and vehicles are fused to provide a mean and covariance for each OOI location. Extensive simulations and hardware experiments in Bloomingdale, OH, are conducted to validate the approach. The results demonstrate the active search approach outperforms greedy coverage-based planning in communication-denied scenarios while maintaining comparable performance in communication-enabled scenarios. The results also demonstrate the ability to detect and localize all a priori unknown OOIs with a mean error of approximately 3m at flight altitudes between 50m-60m.
comment: accepted at ISER 2025
♻ ☆ Task Reconstruction and Extrapolation for $π_0$ using Text Latent
Vision-language-action models (VLAs) often achieve high performance on demonstrated tasks but struggle significantly when required to extrapolate, combining skills learned from different tasks in novel ways. For instance, VLAs might successfully put the cream cheese in the bowl and put the bowl on top of the cabinet, yet still fail to put the cream cheese on top of the cabinet. In this work, we demonstrate that behaviors from distinct tasks can be effectively recombined by manipulating the VLA's internal representations at inference time. Concretely, we identify the text latent by averaging the text tokens' hidden states across all demonstrated trajectories for a specific base task. For executing an extrapolated task, we can temporally interpolate the text latent of the two base tasks and add it back to the text hidden states, so sub-behaviors from the two tasks will be activated sequentially. We evaluate this approach using the newly created libero-ood benchmark, featuring 20 tasks extrapolated from standard LIBERO suites. The results on libero-ood show that all SOTA VLAs achieve < 15% success rate, while $\pi0$ with text latent interpolation reaches an 83% success rate. Further qualitative analysis reveals a tendency for VLAs to exhibit spatial overfitting, mapping object names to demonstrated locations rather than achieving genuine object and goal understanding. Additionally, we find that decoding the text latent yields human-unreadable prompts that can nevertheless instruct the VLA to achieve a 70% success rate on standard LIBERO suites, enabling private instruction or backdoor attacks.
♻ ☆ Robust Perception-Based Navigation using PAC-NMPC with a Learned Value Function
Nonlinear model predictive control (NMPC) is typically restricted to short, finite horizons to limit the computational burden of online optimization. As a result, global planning frameworks are frequently necessary to avoid local minima when using NMPC for navigation in complex environments. By contrast, reinforcement learning (RL) can generate policies that minimize the expected cost over an infinite-horizon and can often avoid local minima, even when operating only on current sensor measurements. However, these learned policies are usually unable to provide performance guarantees (e.g., on collision avoidance), especially when outside of the training distribution. In this paper, we augment Probably Approximately Correct NMPC (PAC-NMPC), a sampling-based stochastic NMPC algorithm capable of providing statistical guarantees of performance and safety, with an approximate perception-based value function trained via RL. We demonstrate in simulation that our algorithm can improve the long-term behavior of PAC-NMPC while outperforming other approaches with regards to safety for both planar car dynamics and more complex, high-dimensional fixed-wing aerial vehicle dynamics. We also demonstrate that, even when our value function is trained in simulation, our algorithm can successfully achieve statistically safe navigation on hardware using a 1/10th scale rally car in cluttered real-world environments using only current sensor information.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ GigaSLAM: Large-Scale Monocular SLAM with Hierarchical Gaussian Splats
Tracking and mapping in large-scale, unbounded outdoor environments using only monocular RGB input presents substantial challenges for existing SLAM systems. Traditional Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) SLAM methods are typically limited to small, bounded indoor settings. To overcome these challenges, we introduce GigaSLAM, the first RGB NeRF / 3DGS-based SLAM framework for kilometer-scale outdoor environments, as demonstrated on the KITTI, KITTI 360, 4 Seasons and A2D2 datasets. Our approach employs a hierarchical sparse voxel map representation, where Gaussians are decoded by neural networks at multiple levels of detail. This design enables efficient, scalable mapping and high-fidelity viewpoint rendering across expansive, unbounded scenes. For front-end tracking, GigaSLAM utilizes a metric depth model combined with epipolar geometry and PnP algorithms to accurately estimate poses, while incorporating a Bag-of-Words-based loop closure mechanism to maintain robust alignment over long trajectories. Consequently, GigaSLAM delivers high-precision tracking and visually faithful rendering on urban outdoor benchmarks, establishing a robust SLAM solution for large-scale, long-term scenarios, and significantly extending the applicability of Gaussian Splatting SLAM systems to unbounded outdoor environments. GitHub: https://github.com/DengKaiCQ/GigaSLAM.
♻ ☆ EKF-Based Radar-Inertial Odometry with Online Temporal Calibration
Accurate time synchronization between heterogeneous sensors is crucial for ensuring robust state estimation in multi-sensor fusion systems. Sensor delays often cause discrepancies between the actual time when the event was captured and the time of sensor measurement, leading to temporal misalignment (time offset) between sensor measurement streams. In this paper, we propose an extended Kalman filter (EKF)-based radar-inertial odometry (RIO) framework that estimates the time offset online. The radar ego-velocity measurement model, derived from a single radar scan, is formulated to incorporate the time offset into the update. By leveraging temporal calibration, the proposed RIO enables accurate propagation and measurement updates based on a common time stream. Experiments on both simulated and real-world datasets demonstrate the accurate time offset estimation of the proposed method and its impact on RIO performance, validating the importance of sensor time synchronization. Our implementation of the EKF-RIO with online temporal calibration is available at https://github.com/spearwin/EKF-RIO-TC.
comment: 8 pages, 6 figures, 4 tables
♻ ☆ StereoVAE: A lightweight stereo-matching system using embedded GPUs
We present a lightweight system for stereo matching through embedded GPUs. It breaks the trade-off between accuracy and processing speed in stereo matching, enabling our embedded system to further improve the matching accuracy while ensuring real-time processing. The main idea of our method is to construct a tiny neural network based on variational auto-encoder (VAE) to upsample and refinement a small size of coarse disparity map, which is first generated by a traditional matching method. The proposed hybrid structure cannot only bring the advantage of traditional methods in terms of computational complexity, but also ensure the matching accuracy under the impact of neural network. Extensive experiments on the KITTI 2015 benchmark demonstrate that our tiny system exhibits high robustness in improving the accuracy of the coarse disparity maps generated by different algorithms, while also running in real-time on embedded GPUs.
comment: Will revise part of the contents
♻ ☆ When Uncertainty Leads to Unsafety: Empirical Insights into the Role of Uncertainty in Unmanned Aerial Vehicle Safety
Despite the recent developments in obstacle avoidance and other safety features, autonomous Unmanned Aerial Vehicles (UAVs) continue to face safety challenges. No previous work investigated the relationship between the behavioral uncertainty of a UAV, characterized in this work by inconsistent or erratic control signal patterns, and the unsafety of its flight. By quantifying uncertainty, it is possible to develop a predictor for unsafety, which acts as a flight supervisor. We conducted a large-scale empirical investigation of safety violations using PX4-Autopilot, an open-source UAV software platform. Our dataset of over 5,000 simulated flights, created to challenge obstacle avoidance, allowed us to explore the relation between uncertain UAV decisions and safety violations: up to 89% of unsafe UAV states exhibit significant decision uncertainty, and up to 74% of uncertain decisions lead to unsafe states. Based on these findings, we implemented Superialist (Supervising Autonomous Aerial Vehicles), a runtime uncertainty detector based on autoencoders, the state-of-the-art technology for anomaly detection. Superialist achieved high performance in detecting uncertain behaviors with up to 96% precision and 93% recall. Despite the observed performance degradation when using the same approach for predicting unsafety (up to 74% precision and 87% recall), Superialist enabled early prediction of unsafe states up to 50 seconds in advance.
comment: 39 pages
♻ ☆ Robot Pouring: Identifying Causes of Spillage and Selecting Alternative Action Parameters Using Probabilistic Actual Causation
In everyday life, we perform tasks (e.g., cooking or cleaning) that involve a large variety of objects and goals. When confronted with an unexpected or unwanted outcome, we take corrective actions and try again until achieving the desired result. The reasoning performed to identify a cause of the observed outcome and to select an appropriate corrective action is a crucial aspect of human reasoning for successful task execution. Central to this reasoning is the assumption that a factor is responsible for producing the observed outcome. In this paper, we investigate the use of probabilistic actual causation to determine whether a factor is the cause of an observed undesired outcome. Furthermore, we show how the actual causation probabilities can be used to find alternative actions to change the outcome. We apply the probabilistic actual causation analysis to a robot pouring task. When spillage occurs, the analysis indicates whether a task parameter is the cause and how it should be changed to avoid spillage. The analysis requires a causal graph of the task and the corresponding conditional probability distributions. To fulfill these requirements, we perform a complete causal modeling procedure (i.e., task analysis, definition of variables, determination of the causal graph structure, and estimation of conditional probability distributions) using data from a realistic simulation of the robot pouring task, covering a large combinatorial space of task parameters. Based on the results, we discuss the implications of the variables' representation and how the alternative actions suggested by the actual causation analysis would compare to the alternative solutions proposed by a human observer. The practical use of the analysis of probabilistic actual causation to select alternative action parameters is demonstrated.
comment: 20 pages, 13 figures
♻ ☆ Interior Point Differential Dynamic Programming, Redux
We present IPDDP2, a structure-exploiting algorithm for solving discrete-time, finite-horizon optimal control problems (OCPs) with nonlinear constraints. Inequality constraints are handled using a primal-dual interior point formulation and step acceptance for equality constraints follows a line-search filter approach. The iterates of the algorithm are derived under the Differential Dynamic Programming (DDP) framework. A proof of local quadratic convergence of the IPDDP2 iterates is provided. Our numerical experiments evaluate IPDDP2 on over 500 OCPs derived from five different classes of robotic motion planning problems, three of which are contact-implicit trajectory optimisation problems. IPDDP2 demonstrates improvements in robustness against existing constrained DDP algorithms for contact-implicit planning, while being significantly faster than general-purpose solver IPOPT. We provide a full implementation of IPDDP2 in the Julia programming language.
♻ ☆ LMRPA: Large Language Model-Driven Efficient Robotic Process Automation for OCR
This paper introduces LMRPA, a novel Large Model-Driven Robotic Process Automation (RPA) model designed to greatly improve the efficiency and speed of Optical Character Recognition (OCR) tasks. Traditional RPA platforms often suffer from performance bottlenecks when handling high-volume repetitive processes like OCR, leading to a less efficient and more time-consuming process. LMRPA allows the integration of Large Language Models (LLMs) to improve the accuracy and readability of extracted text, overcoming the challenges posed by ambiguous characters and complex text structures.Extensive benchmarks were conducted comparing LMRPA to leading RPA platforms, including UiPath and Automation Anywhere, using OCR engines like Tesseract and DocTR. The results are that LMRPA achieves superior performance, cutting the processing times by up to 52\%. For instance, in Batch 2 of the Tesseract OCR task, LMRPA completed the process in 9.8 seconds, where UiPath finished in 18.1 seconds and Automation Anywhere finished in 18.7 seconds. Similar improvements were observed with DocTR, where LMRPA outperformed other automation tools conducting the same process by completing tasks in 12.7 seconds, while competitors took over 20 seconds to do the same. These findings highlight the potential of LMRPA to revolutionize OCR-driven automation processes, offering a more efficient and effective alternative solution to the existing state-of-the-art RPA models.
comment: 10 pages , 1 figure , 1 algorithm
♻ ☆ Adaptive path planning for efficient object search by UAVs in agricultural fields
This paper presents an adaptive path planner for object search in agricultural fields using UAVs. The path planner uses a high-altitude coverage flight path and plans additional low-altitude inspections when the detection network is uncertain. The path planner was evaluated in an offline simulation environment containing real-world images. We trained a YOLOv8 detection network to detect artificial plants placed in grass fields to showcase the potential of our path planner. We evaluated the effect of different detection certainty measures, optimized the path planning parameters, investigated the effects of localization errors, and different numbers of objects in the field. The YOLOv8 detection confidence worked best to differentiate between true and false positive detections and was therefore used in the adaptive planner. The optimal parameters of the path planner depended on the distribution of objects in the field. When the objects were uniformly distributed, more low-altitude inspections were needed compared to a non-uniform distribution of objects, resulting in a longer path length. The adaptive planner proved to be robust against localization uncertainty. When increasing the number of objects, the flight path length increased, especially when the objects were uniformly distributed. When the objects were non-uniformly distributed, the adaptive path planner yielded a shorter path than a low-altitude coverage path, even with a high number of objects. Overall, the presented adaptive path planner allowed finding non-uniformly distributed objects in a field faster than a coverage path planner and resulted in a compatible detection accuracy. The path planner is made available at https://github.com/wur-abe/uav_adaptive_planner.
♻ ☆ Predictability Awareness for Efficient and Robust Multi-Agent Coordination
To safely and efficiently solve motion planning problems in multi-agent settings, most approaches attempt to solve a joint optimization that explicitly accounts for the responses triggered in other agents. This often results in solutions with an exponential computational complexity, making these methods intractable for complex scenarios with many agents. While sequential predict-and-plan approaches are more scalable, they tend to perform poorly in highly interactive environments. This paper proposes a method to improve the interactive capabilities of sequential predict-and-plan methods in multi-agent navigation problems by introducing predictability as an optimization objective. We interpret predictability through the use of general prediction models, by allowing agents to predict themselves and estimate how they align with these external predictions. We formally introduce this behavior through the free-energy of the system, which reduces under appropriate bounds to the Kullback-Leibler divergence between plan and prediction, and use this as a penalty for unpredictable trajectories.The proposed interpretation of predictability allows agents to more robustly leverage prediction models, and fosters a soft social convention that accelerates agreement on coordination strategies without the need of explicit high level control or communication. We show how this predictability-aware planning leads to lower-cost trajectories and reduces planning effort in a set of multi-robot problems, including autonomous driving experiments with human driver data, where we show that the benefits of considering predictability apply even when only the ego-agent uses this strategy.
comment: Videos and other additional materials can be found at https://romanchiva.github.io/PAProjectPage/
♻ ☆ EVA: An Embodied World Model for Future Video Anticipation
Video generation models have made significant progress in simulating future states, showcasing their potential as world simulators in embodied scenarios. However, existing models often lack robust understanding, limiting their ability to perform multi-step predictions or handle Out-of-Distribution (OOD) scenarios. To address this challenge, we propose the Reflection of Generation (RoG), a set of intermediate reasoning strategies designed to enhance video prediction. It leverages the complementary strengths of pre-trained vision-language and video generation models, enabling them to function as a world model in embodied scenarios. To support RoG, we introduce Embodied Video Anticipation Benchmark(EVA-Bench), a comprehensive benchmark that evaluates embodied world models across diverse tasks and scenarios, utilizing both in-domain and OOD datasets. Building on this foundation, we devise a world model, Embodied Video Anticipator (EVA), that follows a multistage training paradigm to generate high-fidelity video frames and apply an autoregressive strategy to enable adaptive generalization for longer video sequences. Extensive experiments demonstrate the efficacy of EVA in various downstream tasks like video generation and robotics, thereby paving the way for large-scale pre-trained models in real-world video prediction applications. The video demos are available at \hyperlink{https://sites.google.com/view/icml-eva}{https://sites.google.com/view/icml-eva}.
LMPOcc: 3D Semantic Occupancy Prediction Utilizing Long-Term Memory Prior from Historical Traversals
Vision-based 3D semantic occupancy prediction is critical for autonomous driving, enabling unified modeling of static infrastructure and dynamic agents. In practice, autonomous vehicles may repeatedly traverse identical geographic locations under varying environmental conditions, such as weather fluctuations and illumination changes. Existing methods in 3D occupancy prediction predominantly integrate adjacent temporal contexts. However, these works neglect to leverage perceptual information, which is acquired from historical traversals of identical geographic locations. In this paper, we propose Longterm Memory Prior Occupancy (LMPOcc), the first 3D occupancy prediction methodology that exploits long-term memory priors derived from historical traversal perceptual outputs. We introduce a plug-and-play architecture that integrates long-term memory priors to enhance local perception while simultaneously constructing global occupancy representations. To adaptively aggregate prior features and current features, we develop an efficient lightweight Current-Prior Fusion module. Moreover, we propose a model-agnostic prior format to ensure compatibility across diverse occupancy prediction baselines. LMPOcc achieves state-of-the-art performance validated on the Occ3D-nuScenes benchmark, especially on static semantic categories. Additionally, experimental results demonstrate LMPOcc's ability to construct global occupancy through multi-vehicle crowdsourcing.
♻ ☆ Memory, Benchmark & Robots: A Benchmark for Solving Complex Tasks with Reinforcement Learning
Memory is crucial for enabling agents to tackle complex tasks with temporal and spatial dependencies. While many reinforcement learning (RL) algorithms incorporate memory, the field lacks a universal benchmark to assess an agent's memory capabilities across diverse scenarios. This gap is particularly evident in tabletop robotic manipulation, where memory is essential for solving tasks with partial observability and ensuring robust performance, yet no standardized benchmarks exist. To address this, we introduce MIKASA (Memory-Intensive Skills Assessment Suite for Agents), a comprehensive benchmark for memory RL, with three key contributions: (1) we propose a comprehensive classification framework for memory-intensive RL tasks, (2) we collect MIKASA-Base -- a unified benchmark that enables systematic evaluation of memory-enhanced agents across diverse scenarios, and (3) we develop MIKASA-Robo (pip install mikasa-robo-suite) -- a novel benchmark of 32 carefully designed memory-intensive tasks that assess memory capabilities in tabletop robotic manipulation. Our work introduces a unified framework to advance memory RL research, enabling more robust systems for real-world use. MIKASA is available at https://tinyurl.com/membenchrobots.
comment: 42 pages, 2 figures
♻ ☆ Speech to Reality: On-Demand Production using Natural Language, 3D Generative AI, and Discrete Robotic Assembly
We present a system that transforms speech into physical objects using 3D generative AI and discrete robotic assembly. By leveraging natural language input, the system makes design and manufacturing more accessible to individuals without expertise in 3D modeling or robotic programming. While current generative AI models can produce a wide range of 3D digital assets, AI-generated meshes are not directly suitable for robotic fabrication and do not account for fabrication constraints. To address this, we contribute a workflow that integrates natural language processing, 3D generative AI, and discrete robotic assembly. The system automatically analyzes and modifies AI-generated geometry to meet physical constraints, such as component count, overhangs, and connectivity, and produces a feasible robotic assembly sequence and toolpath. The results are demonstrated through the assembly of various objects, ranging from chairs to shelves, which are prompted via speech and realized within 5 minutes using a robotic arm.
comment: This work has been submitted to the IEEE for possible publication. An updated version will replace this version
♻ ☆ Atmospheric Density-Compensating Model Predictive Control for Targeted Reentry of Drag-Modulated Spacecraft
This paper presents an estimation and control framework that enables the targeted reentry of a drag-modulated spacecraft in the presence of atmospheric density uncertainty. In particular, an extended Kalman filter (EKF) is used to estimate the in-flight density errors relative to the atmospheric density used to generate the nominal guidance trajectory. This information is leveraged within a model predictive control (MPC) strategy to improve tracking performance, reduce control effort, and increase robustness to actuator saturation compared to the state-of-the-art approach. The estimation and control framework is tested in a Monte Carlo simulation campaign with historical space weather data. These simulation efforts demonstrate that the proposed framework is able to stay within 100 km of the guidance trajectory at all points in time for 98.4% of cases. The remaining 1.6% of cases were pushed away from the guidance by large density errors, many due to significant solar storms and flares, that could not physically be compensated for by the drag control device. For the successful cases, the proposed framework was able to guide the spacecraft to the desired location at the entry interface altitude with a mean error of 12.1 km and 99.7% of cases below 100 km.
comment: Accepted for publication in the Journal of Guidance, Control, and Dynamics
♻ ☆ GRAM: Generalization in Deep RL with a Robust Adaptation Module
The reliable deployment of deep reinforcement learning in real-world settings requires the ability to generalize across a variety of conditions, including both in-distribution scenarios seen during training as well as novel out-of-distribution scenarios. In this work, we present a framework for dynamics generalization in deep reinforcement learning that unifies these two distinct types of generalization within a single architecture. We introduce a robust adaptation module that provides a mechanism for identifying and reacting to both in-distribution and out-of-distribution environment dynamics, along with a joint training pipeline that combines the goals of in-distribution adaptation and out-of-distribution robustness. Our algorithm GRAM achieves strong generalization performance across in-distribution and out-of-distribution scenarios upon deployment, which we demonstrate through extensive simulation and hardware locomotion experiments on a quadruped robot.
♻ ☆ Mem2Ego: Empowering Vision-Language Models with Global-to-Ego Memory for Long-Horizon Embodied Navigation
Recent advancements in Large Language Models (LLMs) and Vision-Language Models (VLMs) have made them powerful tools in embodied navigation, enabling agents to leverage commonsense and spatial reasoning for efficient exploration in unfamiliar environments. Existing LLM-based approaches convert global memory, such as semantic or topological maps, into language descriptions to guide navigation. While this improves efficiency and reduces redundant exploration, the loss of geometric information in language-based representations hinders spatial reasoning, especially in intricate environments. To address this, VLM-based approaches directly process ego-centric visual inputs to select optimal directions for exploration. However, relying solely on a first-person perspective makes navigation a partially observed decision-making problem, leading to suboptimal decisions in complex environments. In this paper, we present a novel vision-language model (VLM)-based navigation framework that addresses these challenges by adaptively retrieving task-relevant cues from a global memory module and integrating them with the agent's egocentric observations. By dynamically aligning global contextual information with local perception, our approach enhances spatial reasoning and decision-making in long-horizon tasks. Experimental results demonstrate that the proposed method surpasses previous state-of-the-art approaches in object navigation tasks, providing a more effective and scalable solution for embodied navigation.
♻ ☆ Occlusion-Aware Ground Target Tracking by a Dubins Vehicle using Visibility Volumes
This paper considers the problem of tracking a point of interest (POI) moving along a known trajectory on the ground with an uncrewed aerial vehicle (UAV) modeled as a Dubins vehicle using a line-of-sight (LOS) sensor through an urban environment that may occlude the POI. A visibility volume (VV) encodes a time-varying, three-dimensional representation of the sensing constraints for a particular POI position. A constant-altitude, translating, and radially time-varying circular standoff orbit is then inscribed within the dynamically changing VV centered at the POI position. The time-varying VV is approximated by placing static VVs along the POI's trajectory using an adaptive metric that restricts the volume change of consecutive VVs to below a specified rate. The time-varying circular standoff orbit is proven to be feasible for a Dubins vehicle and approximated with a piecewise set of linearly interpolated circular orbits inside the static VVs. A steering controller is derived that drives the UAV to the time-varying standoff orbit. Numerical simulations and a flight test illustrate the proposed approach.
comment: 28 pages, 14 figures, 1 table
♻ ☆ STREAMS: An Assistive Multimodal AI Framework for Empowering Biosignal Based Robotic Controls
End-effector based assistive robots face persistent challenges in generating smooth and robust trajectories when controlled by human's noisy and unreliable biosignals such as muscle activities and brainwaves. The produced endpoint trajectories are often jerky and imprecise to perform complex tasks such as stable robotic grasping. We propose STREAMS (Self-Training Robotic End-to-end Adaptive Multimodal Shared autonomy) as a novel framework leveraged deep reinforcement learning to tackle this challenge in biosignal based robotic control systems. STREAMS blends environmental information and synthetic user input into a Deep Q Learning Network (DQN) pipeline for an interactive end-to-end and self-training mechanism to produce smooth trajectories for the control of end-effector based robots. The proposed framework achieved a high-performance record of 98% in simulation with dynamic target estimation and acquisition without any pre-existing datasets. As a zero-shot sim-to-real user study with five participants controlling a physical robotic arm with noisy head movements, STREAMS (as an assistive mode) demonstrated significant improvements in trajectory stabilization, user satisfaction, and task performance reported as a success rate of 83% compared to manual mode which was 44% without any task support. STREAMS seeks to improve biosignal based assistive robotic controls by offering an interactive, end-to-end solution that stabilizes end-effector trajectories, enhancing task performance and accuracy.
♻ ☆ Mixed Reality Tele-Ultrasound over 750 km: A Feasibility Study
To address the lack of access to ultrasound in remote communities, previous work introduced human teleoperation, a mixed reality and haptics-based tele-ultrasound system. In this approach, a novice takes the role of a cognitive robot controlled remotely by an expert through mixed reality. In this manuscript we summarize new developments to this system and describe a feasibility study assessing its use for long-distance remote abdominal ultrasound examinations. To provide simple but effective haptic feedback, we used an ellipsoid model of the patient with its parameters calibrated using our system's position and force sensors. We tested the system in Skidegate, Haida Gwaii, Canada, with the experts positioned 754 km away in Vancouver, Canada. We performed 11 total scans with 10 novices and 2 sonographers. The sonographers were tasked with acquiring 5 target images in the epigastric region. The image acquisition quality was assessed by 2 radiologists. We collected alignment data and the novices completed task load and usability questionnaires. Both the novices and sonographers provided written and verbal feedback to inform future design iterations. 92% of the acquired images had sufficient quality for interpretation by both radiologists. The mean task load reported by the novices was below reference values reported in literature and the usability was unanimously positive. No correlation was found between image quality and the follower's alignment error with the virtual transducer. Overall, we show that human teleoperation enables sonographers to perform remote abdominal ultrasound imaging with high performance, even across large distances and with novice followers. Future work will compare human teleoperation to conventional, robotic and tele-mentored ultrasound.
comment: 8 pages, 11 figures
♻ ☆ PatchPilot: A Cost-Efficient Software Engineering Agent with Early Attempts on Formal Verification
Recent research builds various patching agents that combine large language models (LLMs) with non-ML tools and achieve promising results on the state-of-the-art (SOTA) software patching benchmark, SWE-bench. Based on how to determine the patching workflows, existing patching agents can be categorized as agent-based planning methods, which rely on LLMs for planning, and rule-based planning methods, which follow a pre-defined workflow. At a high level, agent-based planning methods achieve high patching performance but with a high cost and limited stability. Rule-based planning methods, on the other hand, are more stable and efficient but have key workflow limitations that compromise their patching performance. In this paper, we propose PatchPilot, an agentic patcher that strikes a balance between patching efficacy, stability, and cost-efficiency. PatchPilot proposes a novel rule-based planning workflow with five components: reproduction, localization, generation, validation, and refinement (where refinement is unique to PatchPilot). We introduce novel and customized designs to each component to optimize their effectiveness and efficiency. Through extensive experiments on the SWE-bench benchmarks, PatchPilot shows a superior performance than existing open-source methods while maintaining low cost (less than 1$ per instance) and ensuring higher stability. We also conduct a detailed ablation study to validate the key designs in each component. Our code is available at https://github.com/ucsb-mlsec/PatchPilot.
Computer Vision 134
☆ VIKI-R: Coordinating Embodied Multi-Agent Cooperation via Reinforcement Learning
Coordinating multiple embodied agents in dynamic environments remains a core challenge in artificial intelligence, requiring both perception-driven reasoning and scalable cooperation strategies. While recent works have leveraged large language models (LLMs) for multi-agent planning, a few have begun to explore vision-language models (VLMs) for visual reasoning. However, these VLM-based approaches remain limited in their support for diverse embodiment types. In this work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for embodied multi-agent cooperation, featuring three structured levels: agent activation, task planning, and trajectory perception. VIKI-Bench includes diverse robot embodiments, multi-view visual observations, and structured supervision signals to evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained vision-language model (VLM) using Chain-of-Thought annotated demonstrations, followed by reinforcement learning under multi-level reward signals. Our extensive experiments show that VIKI-R significantly outperforms baselines method across all task levels. Furthermore, we show that reinforcement learning enables the emergence of compositional cooperation patterns among heterogeneous agents. Together, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing multi-agent, visual-driven cooperation in embodied AI systems.
comment: Project page: https://faceong.github.io/VIKI-R/
☆ MagCache: Fast Video Generation with Magnitude-Aware Cache
Existing acceleration techniques for video diffusion models often rely on uniform heuristics or time-embedding variants to skip timesteps and reuse cached features. These approaches typically require extensive calibration with curated prompts and risk inconsistent outputs due to prompt-specific overfitting. In this paper, we introduce a novel and robust discovery: a unified magnitude law observed across different models and prompts. Specifically, the magnitude ratio of successive residual outputs decreases monotonically and steadily in most timesteps while rapidly in the last several steps. Leveraging this insight, we introduce a Magnitude-aware Cache (MagCache) that adaptively skips unimportant timesteps using an error modeling mechanism and adaptive caching strategy. Unlike existing methods requiring dozens of curated samples for calibration, MagCache only requires a single sample for calibration. Experimental results show that MagCache achieves 2.1x and 2.68x speedups on Open-Sora and Wan 2.1, respectively, while preserving superior visual fidelity. It significantly outperforms existing methods in LPIPS, SSIM, and PSNR, under comparable computational budgets.
comment: Project Page: https://zehong-ma.github.io/MagCache
☆ Cosmos-Drive-Dreams: Scalable Synthetic Driving Data Generation with World Foundation Models
Collecting and annotating real-world data for safety-critical physical AI systems, such as Autonomous Vehicle (AV), is time-consuming and costly. It is especially challenging to capture rare edge cases, which play a critical role in training and testing of an AV system. To address this challenge, we introduce the Cosmos-Drive-Dreams - a synthetic data generation (SDG) pipeline that aims to generate challenging scenarios to facilitate downstream tasks such as perception and driving policy training. Powering this pipeline is Cosmos-Drive, a suite of models specialized from NVIDIA Cosmos world foundation model for the driving domain and are capable of controllable, high-fidelity, multi-view, and spatiotemporally consistent driving video generation. We showcase the utility of these models by applying Cosmos-Drive-Dreams to scale the quantity and diversity of driving datasets with high-fidelity and challenging scenarios. Experimentally, we demonstrate that our generated data helps in mitigating long-tail distribution problems and enhances generalization in downstream tasks such as 3D lane detection, 3D object detection and driving policy learning. We open source our pipeline toolkit, dataset and model weights through the NVIDIA's Cosmos platform. Project page: https://research.nvidia.com/labs/toronto-ai/cosmos_drive_dreams
comment: Xuanchi Ren, Yifan Lu, Tianshi Cao, Ruiyuan Gao: Equal contribution. Only the core contributors are listed. The full list of contributors can be found in Appendix A of this paper
☆ Autoregressive Semantic Visual Reconstruction Helps VLMs Understand Better
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
☆ Princeton365: A Diverse Dataset with Accurate Camera Pose
We introduce Princeton365, a large-scale diverse dataset of 365 videos with accurate camera pose. Our dataset bridges the gap between accuracy and data diversity in current SLAM benchmarks by introducing a novel ground truth collection framework that leverages calibration boards and a 360-camera. We collect indoor, outdoor, and object scanning videos with synchronized monocular and stereo RGB video outputs as well as IMU. We further propose a new scene scale-aware evaluation metric for SLAM based on the the optical flow induced by the camera pose estimation error. In contrast to the current metrics, our new metric allows for comparison between the performance of SLAM methods across scenes as opposed to existing metrics such as Average Trajectory Error (ATE), allowing researchers to analyze the failure modes of their methods. We also propose a challenging Novel View Synthesis benchmark that covers cases not covered by current NVS benchmarks, such as fully non-Lambertian scenes with 360-degree camera trajectories. Please visit https://princeton365.cs.princeton.edu for the dataset, code, videos, and submission.
☆ Diffuse and Disperse: Image Generation with Representation Regularization
The development of diffusion-based generative models over the past decade has largely proceeded independently of progress in representation learning. These diffusion models typically rely on regression-based objectives and generally lack explicit regularization. In this work, we propose \textit{Dispersive Loss}, a simple plug-and-play regularizer that effectively improves diffusion-based generative models. Our loss function encourages internal representations to disperse in the hidden space, analogous to contrastive self-supervised learning, with the key distinction that it requires no positive sample pairs and therefore does not interfere with the sampling process used for regression. Compared to the recent method of representation alignment (REPA), our approach is self-contained and minimalist, requiring no pre-training, no additional parameters, and no external data. We evaluate Dispersive Loss on the ImageNet dataset across a range of models and report consistent improvements over widely used and strong baselines. We hope our work will help bridge the gap between generative modeling and representation learning.
☆ DIsoN: Decentralized Isolation Networks for Out-of-Distribution Detection in Medical Imaging
Safe deployment of machine learning (ML) models in safety-critical domains such as medical imaging requires detecting inputs with characteristics not seen during training, known as out-of-distribution (OOD) detection, to prevent unreliable predictions. Effective OOD detection after deployment could benefit from access to the training data, enabling direct comparison between test samples and the training data distribution to identify differences. State-of-the-art OOD detection methods, however, either discard training data after deployment or assume that test samples and training data are centrally stored together, an assumption that rarely holds in real-world settings. This is because shipping training data with the deployed model is usually impossible due to the size of training databases, as well as proprietary or privacy constraints. We introduce the Isolation Network, an OOD detection framework that quantifies the difficulty of separating a target test sample from the training data by solving a binary classification task. We then propose Decentralized Isolation Networks (DIsoN), which enables the comparison of training and test data when data-sharing is impossible, by exchanging only model parameters between the remote computational nodes of training and deployment. We further extend DIsoN with class-conditioning, comparing a target sample solely with training data of its predicted class. We evaluate DIsoN on four medical imaging datasets (dermatology, chest X-ray, breast ultrasound, histopathology) across 12 OOD detection tasks. DIsoN performs favorably against existing methods while respecting data-privacy. This decentralized OOD detection framework opens the way for a new type of service that ML developers could provide along with their models: providing remote, secure utilization of their training data for OOD detection services. Code will be available upon acceptance at: *****
☆ SDTagNet: Leveraging Text-Annotated Navigation Maps for Online HD Map Construction
Autonomous vehicles rely on detailed and accurate environmental information to operate safely. High definition (HD) maps offer a promising solution, but their high maintenance cost poses a significant barrier to scalable deployment. This challenge is addressed by online HD map construction methods, which generate local HD maps from live sensor data. However, these methods are inherently limited by the short perception range of onboard sensors. To overcome this limitation and improve general performance, recent approaches have explored the use of standard definition (SD) maps as prior, which are significantly easier to maintain. We propose SDTagNet, the first online HD map construction method that fully utilizes the information of widely available SD maps, like OpenStreetMap, to enhance far range detection accuracy. Our approach introduces two key innovations. First, in contrast to previous work, we incorporate not only polyline SD map data with manually selected classes, but additional semantic information in the form of textual annotations. In this way, we enrich SD vector map tokens with NLP-derived features, eliminating the dependency on predefined specifications or exhaustive class taxonomies. Second, we introduce a point-level SD map encoder together with orthogonal element identifiers to uniformly integrate all types of map elements. Experiments on Argoverse 2 and nuScenes show that this boosts map perception performance by up to +5.9 mAP (+45%) w.r.t. map construction without priors and up to +3.2 mAP (+20%) w.r.t. previous approaches that already use SD map priors. Code is available at https://github.com/immel-f/SDTagNet
☆ Do Concept Replacement Techniques Really Erase Unacceptable Concepts?
Generative models, particularly diffusion-based text-to-image (T2I) models, have demonstrated astounding success. However, aligning them to avoid generating content with unacceptable concepts (e.g., offensive or copyrighted content, or celebrity likenesses) remains a significant challenge. Concept replacement techniques (CRTs) aim to address this challenge, often by trying to "erase" unacceptable concepts from models. Recently, model providers have started offering image editing services which accept an image and a text prompt as input, to produce an image altered as specified by the prompt. These are known as image-to-image (I2I) models. In this paper, we first use an I2I model to empirically demonstrate that today's state-of-the-art CRTs do not in fact erase unacceptable concepts. Existing CRTs are thus likely to be ineffective in emerging I2I scenarios, despite their proven ability to remove unwanted concepts in T2I pipelines, highlighting the need to understand this discrepancy between T2I and I2I settings. Next, we argue that a good CRT, while replacing unacceptable concepts, should preserve other concepts specified in the inputs to generative models. We call this fidelity. Prior work on CRTs have neglected fidelity in the case of unacceptable concepts. Finally, we propose the use of targeted image-editing techniques to achieve both effectiveness and fidelity. We present such a technique, AntiMirror, and demonstrate its viability.
☆ Efficient Medical Vision-Language Alignment Through Adapting Masked Vision Models
Medical vision-language alignment through cross-modal contrastive learning shows promising performance in image-text matching tasks, such as retrieval and zero-shot classification. However, conventional cross-modal contrastive learning (CLIP-based) methods suffer from suboptimal visual representation capabilities, which also limits their effectiveness in vision-language alignment. In contrast, although the models pretrained via multimodal masked modeling struggle with direct cross-modal matching, they excel in visual representation. To address this contradiction, we propose ALTA (ALign Through Adapting), an efficient medical vision-language alignment method that utilizes only about 8% of the trainable parameters and less than 1/5 of the computational consumption required for masked record modeling. ALTA achieves superior performance in vision-language matching tasks like retrieval and zero-shot classification by adapting the pretrained vision model from masked record modeling. Additionally, we integrate temporal-multiview radiograph inputs to enhance the information consistency between radiographs and their corresponding descriptions in reports, further improving the vision-language alignment. Experimental evaluations show that ALTA outperforms the best-performing counterpart by over 4% absolute points in text-to-image accuracy and approximately 6% absolute points in image-to-text retrieval accuracy. The adaptation of vision-language models during efficient alignment also promotes better vision and language understanding. Code is publicly available at https://github.com/DopamineLcy/ALTA.
comment: TMI 2025
☆ Rethinking Range-View LiDAR Segmentation in Adverse Weather
LiDAR segmentation has emerged as an important task to enrich multimedia experiences and analysis. Range-view-based methods have gained popularity due to their high computational efficiency and compatibility with real-time deployment. However, their generalized performance under adverse weather conditions remains underexplored, limiting their reliability in real-world environments. In this work, we identify and analyze the unique challenges that affect the generalization of range-view LiDAR segmentation in severe weather. To address these challenges, we propose a modular and lightweight framework that enhances robustness without altering the core architecture of existing models. Our method reformulates the initial stem block of standard range-view networks into two branches to process geometric attributes and reflectance intensity separately. Specifically, a Geometric Abnormality Suppression (GAS) module reduces the influence of weather-induced spatial noise, and a Reflectance Distortion Calibration (RDC) module corrects reflectance distortions through memory-guided adaptive instance normalization. The processed features are then fused and passed to the original segmentation pipeline. Extensive experiments on different benchmarks and baseline models demonstrate that our approach significantly improves generalization to adverse weather with minimal inference overhead, offering a practical and effective solution for real-world LiDAR segmentation.
☆ ADAM: Autonomous Discovery and Annotation Model using LLMs for Context-Aware Annotations
Object detection models typically rely on predefined categories, limiting their ability to identify novel objects in open-world scenarios. To overcome this constraint, we introduce ADAM: Autonomous Discovery and Annotation Model, a training-free, self-refining framework for open-world object labeling. ADAM leverages large language models (LLMs) to generate candidate labels for unknown objects based on contextual information from known entities within a scene. These labels are paired with visual embeddings from CLIP to construct an Embedding-Label Repository (ELR) that enables inference without category supervision. For a newly encountered unknown object, ADAM retrieves visually similar instances from the ELR and applies frequency-based voting and cross-modal re-ranking to assign a robust label. To further enhance consistency, we introduce a self-refinement loop that re-evaluates repository labels using visual cohesion analysis and k-nearest-neighbor-based majority re-labeling. Experimental results on the COCO and PASCAL datasets demonstrate that ADAM effectively annotates novel categories using only visual and contextual signals, without requiring any fine-tuning or retraining.
☆ ORIDa: Object-centric Real-world Image Composition Dataset CVPR 2025
Object compositing, the task of placing and harmonizing objects in images of diverse visual scenes, has become an important task in computer vision with the rise of generative models. However, existing datasets lack the diversity and scale required to comprehensively explore real-world scenarios. We introduce ORIDa (Object-centric Real-world Image Composition Dataset), a large-scale, real-captured dataset containing over 30,000 images featuring 200 unique objects, each of which is presented across varied positions and scenes. ORIDa has two types of data: factual-counterfactual sets and factual-only scenes. The factual-counterfactual sets consist of four factual images showing an object in different positions within a scene and a single counterfactual (or background) image of the scene without the object, resulting in five images per scene. The factual-only scenes include a single image containing an object in a specific context, expanding the variety of environments. To our knowledge, ORIDa is the first publicly available dataset with its scale and complexity for real-world image composition. Extensive analysis and experiments highlight the value of ORIDa as a resource for advancing further research in object compositing.
comment: Accepted at CVPR 2025
☆ Data Augmentation For Small Object using Fast AutoAugment
In recent years, there has been tremendous progress in object detection performance. However, despite these advances, the detection performance for small objects is significantly inferior to that of large objects. Detecting small objects is one of the most challenging and important problems in computer vision. To improve the detection performance for small objects, we propose an optimal data augmentation method using Fast AutoAugment. Through our proposed method, we can quickly find optimal augmentation policies that can overcome degradation when detecting small objects, and we achieve a 20% performance improvement on the DOTA dataset.
comment: Accepted and published in the USB Proceedings of the 20th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2023), Ume{\aa}, Sweden, June 19--22, 2023, ISBN 978-91-527-7293-5, pp.\ 12--21
☆ Segment Concealed Objects with Incomplete Supervision
Incompletely-Supervised Concealed Object Segmentation (ISCOS) involves segmenting objects that seamlessly blend into their surrounding environments, utilizing incompletely annotated data, such as weak and semi-annotations, for model training. This task remains highly challenging due to (1) the limited supervision provided by the incompletely annotated training data, and (2) the difficulty of distinguishing concealed objects from the background, which arises from the intrinsic similarities in concealed scenarios. In this paper, we introduce the first unified method for ISCOS to address these challenges. To tackle the issue of incomplete supervision, we propose a unified mean-teacher framework, SEE, that leverages the vision foundation model, ``\emph{Segment Anything Model (SAM)}'', to generate pseudo-labels using coarse masks produced by the teacher model as prompts. To mitigate the effect of low-quality segmentation masks, we introduce a series of strategies for pseudo-label generation, storage, and supervision. These strategies aim to produce informative pseudo-labels, store the best pseudo-labels generated, and select the most reliable components to guide the student model, thereby ensuring robust network training. Additionally, to tackle the issue of intrinsic similarity, we design a hybrid-granularity feature grouping module that groups features at different granularities and aggregates these results. By clustering similar features, this module promotes segmentation coherence, facilitating more complete segmentation for both single-object and multiple-object images. We validate the effectiveness of our approach across multiple ISCOS tasks, and experimental results demonstrate that our method achieves state-of-the-art performance. Furthermore, SEE can serve as a plug-and-play solution, enhancing the performance of existing models.
comment: IEEE TPAMI
☆ Cross-Spectral Body Recognition with Side Information Embedding: Benchmarks on LLCM and Analyzing Range-Induced Occlusions on IJB-MDF
Vision Transformers (ViTs) have demonstrated impressive performance across a wide range of biometric tasks, including face and body recognition. In this work, we adapt a ViT model pretrained on visible (VIS) imagery to the challenging problem of cross-spectral body recognition, which involves matching images captured in the visible and infrared (IR) domains. Recent ViT architectures have explored incorporating additional embeddings beyond traditional positional embeddings. Building on this idea, we integrate Side Information Embedding (SIE) and examine the impact of encoding domain and camera information to enhance cross-spectral matching. Surprisingly, our results show that encoding only camera information - without explicitly incorporating domain information - achieves state-of-the-art performance on the LLCM dataset. While occlusion handling has been extensively studied in visible-spectrum person re-identification (Re-ID), occlusions in visible-infrared (VI) Re-ID remain largely underexplored - primarily because existing VI-ReID datasets, such as LLCM, SYSU-MM01, and RegDB, predominantly feature full-body, unoccluded images. To address this gap, we analyze the impact of range-induced occlusions using the IARPA Janus Benchmark Multi-Domain Face (IJB-MDF) dataset, which provides a diverse set of visible and infrared images captured at various distances, enabling cross-range, cross-spectral evaluations.
☆ SSS: Semi-Supervised SAM-2 with Efficient Prompting for Medical Imaging Segmentation
In the era of information explosion, efficiently leveraging large-scale unlabeled data while minimizing the reliance on high-quality pixel-level annotations remains a critical challenge in the field of medical imaging. Semi-supervised learning (SSL) enhances the utilization of unlabeled data by facilitating knowledge transfer, significantly improving the performance of fully supervised models and emerging as a highly promising research direction in medical image analysis. Inspired by the ability of Vision Foundation Models (e.g., SAM-2) to provide rich prior knowledge, we propose SSS (Semi-Supervised SAM-2), a novel approach that leverages SAM-2's robust feature extraction capabilities to uncover latent knowledge in unlabeled medical images, thus effectively enhancing feature support for fully supervised medical image segmentation. Specifically, building upon the single-stream "weak-to-strong" consistency regularization framework, this paper introduces a Discriminative Feature Enhancement (DFE) mechanism to further explore the feature discrepancies introduced by various data augmentation strategies across multiple views. By leveraging feature similarity and dissimilarity across multi-scale augmentation techniques, the method reconstructs and models the features, thereby effectively optimizing the salient regions. Furthermore, a prompt generator is developed that integrates Physical Constraints with a Sliding Window (PCSW) mechanism to generate input prompts for unlabeled data, fulfilling SAM-2's requirement for additional prompts. Extensive experiments demonstrate the superiority of the proposed method for semi-supervised medical image segmentation on two multi-label datasets, i.e., ACDC and BHSD. Notably, SSS achieves an average Dice score of 53.15 on BHSD, surpassing the previous state-of-the-art method by +3.65 Dice. Code will be available at https://github.com/AIGeeksGroup/SSS.
☆ What Limits Virtual Agent Application? OmniBench: A Scalable Multi-Dimensional Benchmark for Essential Virtual Agent Capabilities ICML 2025
As multimodal large language models (MLLMs) advance, MLLM-based virtual agents have demonstrated remarkable performance. However, existing benchmarks face significant limitations, including uncontrollable task complexity, extensive manual annotation with limited scenarios, and a lack of multidimensional evaluation. In response to these challenges, we introduce OmniBench, a self-generating, cross-platform, graph-based benchmark with an automated pipeline for synthesizing tasks of controllable complexity through subtask composition. To evaluate the diverse capabilities of virtual agents on the graph, we further present OmniEval, a multidimensional evaluation framework that includes subtask-level evaluation, graph-based metrics, and comprehensive tests across 10 capabilities. Our synthesized dataset contains 36k graph-structured tasks across 20 scenarios, achieving a 91\% human acceptance rate. Training on our graph-structured data shows that it can more efficiently guide agents compared to manually annotated data. We conduct multidimensional evaluations for various open-source and closed-source models, revealing their performance across various capabilities and paving the way for future advancements. Our project is available at https://omni-bench.github.io/.
comment: Accepted by ICML 2025 (Oral)
☆ Socratic-MCTS: Test-Time Visual Reasoning by Asking the Right Questions
Recent research in vision-language models (VLMs) has centered around the possibility of equipping them with implicit long-form chain-of-thought reasoning -- akin to the success observed in language models -- via distillation and reinforcement learning. But what about the non-reasoning models already trained and deployed across the internet? Should we simply abandon them, or is there hope for a search mechanism that can elicit hidden knowledge and induce long reasoning traces -- without any additional training or supervision? In this paper, we explore this possibility using a Monte Carlo Tree Search (MCTS)-inspired algorithm, which injects subquestion-subanswer pairs into the model's output stream. We show that framing reasoning as a search process -- where subquestions act as latent decisions within a broader inference trajectory -- helps the model "connect the dots" between fragmented knowledge and produce extended reasoning traces in non-reasoning models. We evaluate our method across three benchmarks and observe consistent improvements. Notably, our approach yields a 2% overall improvement on MMMU-PRO, including a significant 9% gain in Liberal Arts.
☆ Inherently Faithful Attention Maps for Vision Transformers
We introduce an attention-based method that uses learned binary attention masks to ensure that only attended image regions influence the prediction. Context can strongly affect object perception, sometimes leading to biased representations, particularly when objects appear in out-of-distribution backgrounds. At the same time, many image-level object-centric tasks require identifying relevant regions, often requiring context. To address this conundrum, we propose a two-stage framework: stage 1 processes the full image to discover object parts and identify task-relevant regions, while stage 2 leverages input attention masking to restrict its receptive field to these regions, enabling a focused analysis while filtering out potentially spurious information. Both stages are trained jointly, allowing stage 2 to refine stage 1. Extensive experiments across diverse benchmarks demonstrate that our approach significantly improves robustness against spurious correlations and out-of-distribution backgrounds.
☆ Hyperbolic Dual Feature Augmentation for Open-Environment
Feature augmentation generates novel samples in the feature space, providing an effective way to enhance the generalization ability of learning algorithms with hyperbolic geometry. Most hyperbolic feature augmentation is confined to closed-environment, assuming the number of classes is fixed (\emph{i.e.}, seen classes) and generating features only for these classes. In this paper, we propose a hyperbolic dual feature augmentation method for open-environment, which augments features for both seen and unseen classes in the hyperbolic space. To obtain a more precise approximation of the real data distribution for efficient training, (1) we adopt a neural ordinary differential equation module, enhanced by meta-learning, estimating the feature distributions of both seen and unseen classes; (2) we then introduce a regularizer to preserve the latent hierarchical structures of data in the hyperbolic space; (3) we also derive an upper bound for the hyperbolic dual augmentation loss, allowing us to train a hyperbolic model using infinite augmentations for seen and unseen classes. Extensive experiments on five open-environment tasks: class-incremental learning, few-shot open-set recognition, few-shot learning, zero-shot learning, and general image classification, demonstrate that our method effectively enhances the performance of hyperbolic algorithms in open-environment.
comment: arXiv admin note: text overlap with arXiv:2207.03824, arXiv:2304.11855 by other authors
☆ WetCat: Automating Skill Assessment in Wetlab Cataract Surgery Videos
To meet the growing demand for systematic surgical training, wetlab environments have become indispensable platforms for hands-on practice in ophthalmology. Yet, traditional wetlab training depends heavily on manual performance evaluations, which are labor-intensive, time-consuming, and often subject to variability. Recent advances in computer vision offer promising avenues for automated skill assessment, enhancing both the efficiency and objectivity of surgical education. Despite notable progress in ophthalmic surgical datasets, existing resources predominantly focus on real surgeries or isolated tasks, falling short of supporting comprehensive skill evaluation in controlled wetlab settings. To address these limitations, we introduce WetCat, the first dataset of wetlab cataract surgery videos specifically curated for automated skill assessment. WetCat comprises high-resolution recordings of surgeries performed by trainees on artificial eyes, featuring comprehensive phase annotations and semantic segmentations of key anatomical structures. These annotations are meticulously designed to facilitate skill assessment during the critical capsulorhexis and phacoemulsification phases, adhering to standardized surgical skill assessment frameworks. By focusing on these essential phases, WetCat enables the development of interpretable, AI-driven evaluation tools aligned with established clinical metrics. This dataset lays a strong foundation for advancing objective, scalable surgical education and sets a new benchmark for automated workflow analysis and skill assessment in ophthalmology training. The dataset and annotations are publicly available in Synapse https://www.synapse.org/Synapse:syn66401174/files.
comment: 9 pages, 6 figures
☆ Product of Experts for Visual Generation
Modern neural models capture rich priors and have complementary knowledge over shared data domains, e.g., images and videos. Integrating diverse knowledge from multiple sources -- including visual generative models, visual language models, and sources with human-crafted knowledge such as graphics engines and physics simulators -- remains under-explored. We propose a Product of Experts (PoE) framework that performs inference-time knowledge composition from heterogeneous models. This training-free approach samples from the product distribution across experts via Annealed Importance Sampling (AIS). Our framework shows practical benefits in image and video synthesis tasks, yielding better controllability than monolithic methods and additionally providing flexible user interfaces for specifying visual generation goals.
comment: Project page: https://product-of-experts.github.io/
☆ DiscoVLA: Discrepancy Reduction in Vision, Language, and Alignment for Parameter-Efficient Video-Text Retrieval CVPR 2025
The parameter-efficient adaptation of the image-text pretraining model CLIP for video-text retrieval is a prominent area of research. While CLIP is focused on image-level vision-language matching, video-text retrieval demands comprehensive understanding at the video level. Three key discrepancies emerge in the transfer from image-level to video-level: vision, language, and alignment. However, existing methods mainly focus on vision while neglecting language and alignment. In this paper, we propose Discrepancy Reduction in Vision, Language, and Alignment (DiscoVLA), which simultaneously mitigates all three discrepancies. Specifically, we introduce Image-Video Features Fusion to integrate image-level and video-level features, effectively tackling both vision and language discrepancies. Additionally, we generate pseudo image captions to learn fine-grained image-level alignment. To mitigate alignment discrepancies, we propose Image-to-Video Alignment Distillation, which leverages image-level alignment knowledge to enhance video-level alignment. Extensive experiments demonstrate the superiority of our DiscoVLA. In particular, on MSRVTT with CLIP (ViT-B/16), DiscoVLA outperforms previous methods by 1.5% in R@1, reaching a final score of 50.5% R@1. The code is available at https://github.com/LunarShen/DsicoVLA.
comment: CVPR 2025
☆ StreamSplat: Towards Online Dynamic 3D Reconstruction from Uncalibrated Video Streams
Real-time reconstruction of dynamic 3D scenes from uncalibrated video streams is crucial for numerous real-world applications. However, existing methods struggle to jointly address three key challenges: 1) processing uncalibrated inputs in real time, 2) accurately modeling dynamic scene evolution, and 3) maintaining long-term stability and computational efficiency. To this end, we introduce StreamSplat, the first fully feed-forward framework that transforms uncalibrated video streams of arbitrary length into dynamic 3D Gaussian Splatting (3DGS) representations in an online manner, capable of recovering scene dynamics from temporally local observations. We propose two key technical innovations: a probabilistic sampling mechanism in the static encoder for 3DGS position prediction, and a bidirectional deformation field in the dynamic decoder that enables robust and efficient dynamic modeling. Extensive experiments on static and dynamic benchmarks demonstrate that StreamSplat consistently outperforms prior works in both reconstruction quality and dynamic scene modeling, while uniquely supporting online reconstruction of arbitrarily long video streams. Code and models are available at https://github.com/nickwzk/StreamSplat.
☆ Spatial Transcriptomics Expression Prediction from Histopathology Based on Cross-Modal Mask Reconstruction and Contrastive Learning
Spatial transcriptomics is a technology that captures gene expression levels at different spatial locations, widely used in tumor microenvironment analysis and molecular profiling of histopathology, providing valuable insights into resolving gene expression and clinical diagnosis of cancer. Due to the high cost of data acquisition, large-scale spatial transcriptomics data remain challenging to obtain. In this study, we develop a contrastive learning-based deep learning method to predict spatially resolved gene expression from whole-slide images. Evaluation across six different disease datasets demonstrates that, compared to existing studies, our method improves Pearson Correlation Coefficient (PCC) in the prediction of highly expressed genes, highly variable genes, and marker genes by 6.27%, 6.11%, and 11.26% respectively. Further analysis indicates that our method preserves gene-gene correlations and applies to datasets with limited samples. Additionally, our method exhibits potential in cancer tissue localization based on biomarker expression.
comment: 20 pages, 7 figures
☆ CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics
The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurately represent diverse cultural contexts. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit as well as implicit cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that T2I models not only fail to meet the more challenging implicit expectations but also the less challenging explicit expectations. Across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we demonstrate that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, providing actionable directions for developing more culturally informed T2I models and evaluation methodologies.
HiSin: Efficient High-Resolution Sinogram Inpainting via Resolution-Guided Progressive Inference
High-resolution sinogram inpainting is essential for computed tomography reconstruction, as missing high-frequency projections can lead to visible artifacts and diagnostic errors. Diffusion models are well-suited for this task due to their robustness and detail-preserving capabilities, but their application to high-resolution inputs is limited by excessive memory and computational demands. To address this limitation, we propose HiSin, a novel diffusion based framework for efficient sinogram inpainting via resolution-guided progressive inference. It progressively extracts global structure at low resolution and defers high-resolution inference to small patches, enabling memory-efficient inpainting. It further incorporates frequency-aware patch skipping and structure-adaptive step allocation to reduce redundant computation. Experimental results show that HiSin reduces peak memory usage by up to 31.25% and inference time by up to 18.15%, and maintains inpainting accuracy across datasets, resolutions, and mask conditions.
☆ HunyuanVideo-HOMA: Generic Human-Object Interaction in Multimodal Driven Human Animation
To address key limitations in human-object interaction (HOI) video generation -- specifically the reliance on curated motion data, limited generalization to novel objects/scenarios, and restricted accessibility -- we introduce HunyuanVideo-HOMA, a weakly conditioned multimodal-driven framework. HunyuanVideo-HOMA enhances controllability and reduces dependency on precise inputs through sparse, decoupled motion guidance. It encodes appearance and motion signals into the dual input space of a multimodal diffusion transformer (MMDiT), fusing them within a shared context space to synthesize temporally consistent and physically plausible interactions. To optimize training, we integrate a parameter-space HOI adapter initialized from pretrained MMDiT weights, preserving prior knowledge while enabling efficient adaptation, and a facial cross-attention adapter for anatomically accurate audio-driven lip synchronization. Extensive experiments confirm state-of-the-art performance in interaction naturalness and generalization under weak supervision. Finally, HunyuanVideo-HOMA demonstrates versatility in text-conditioned generation and interactive object manipulation, supported by a user-friendly demo interface. The project page is at https://anonymous.4open.science/w/homa-page-0FBE/.
☆ Flow Diverse and Efficient: Learning Momentum Flow Matching via Stochastic Velocity Field Sampling
Recently, the rectified flow (RF) has emerged as the new state-of-the-art among flow-based diffusion models due to its high efficiency advantage in straight path sampling, especially with the amazing images generated by a series of RF models such as Flux 1.0 and SD 3.0. Although a straight-line connection between the noisy and natural data distributions is intuitive, fast, and easy to optimize, it still inevitably leads to: 1) Diversity concerns, which arise since straight-line paths only cover a fairly restricted sampling space. 2) Multi-scale noise modeling concerns, since the straight line flow only needs to optimize the constant velocity field $\bm v$ between the two distributions $\bm\pi_0$ and $\bm\pi_1$. In this work, we present Discretized-RF, a new family of rectified flow (also called momentum flow models since they refer to the previous velocity component and the random velocity component in each diffusion step), which discretizes the straight path into a series of variable velocity field sub-paths (namely ``momentum fields'') to expand the search space, especially when close to the distribution $p_\text{noise}$. Different from the previous case where noise is directly superimposed on $\bm x$, we introduce noise on the velocity $\bm v$ of the sub-path to change its direction in order to improve the diversity and multi-scale noise modeling abilities. Experimental results on several representative datasets demonstrate that learning momentum flow matching by sampling random velocity fields will produce trajectories that are both diverse and efficient, and can consistently generate high-quality and diverse results. Code is available at https://github.com/liuruixun/momentum-fm.
☆ A PDE-Based Image Dehazing Method via Atmospheric Scattering Theory
This paper presents a novel partial differential equation (PDE) framework for single-image dehazing. By integrating the atmospheric scattering model with nonlocal regularization and dark channel prior, we propose the improved PDE: \[ -\text{div}\left(D(\nabla u)\nabla u\right) + \lambda(t) G(u) = \Phi(I,t,A) \] where $D(\nabla u) = (|\nabla u| + \epsilon)^{-1}$ is the edge-preserving diffusion coefficient, $G(u)$ is the Gaussian convolution operator, and $\lambda(t)$ is the adaptive regularization parameter based on transmission map $t$. We prove the existence and uniqueness of weak solutions in $H_0^1(\Omega)$ using Lax-Milgram theorem, and implement an efficient fixed-point iteration scheme accelerated by PyTorch GPU computation. The experimental results demonstrate that this method is a promising deghazing solution that can be generalized to the deep model paradigm.
comment: report
☆ HomographyAD: Deep Anomaly Detection Using Self Homography Learning
Anomaly detection (AD) is a task that distinguishes normal and abnormal data, which is important for applying automation technologies of the manufacturing facilities. For MVTec dataset that is a representative AD dataset for industrial environment, many recent works have shown remarkable performances. However, the existing anomaly detection works have a limitation of showing good performance for fully-aligned datasets only, unlike real-world industrial environments. To solve this limitation, we propose HomographyAD, a novel deep anomaly detection methodology based on the ImageNet-pretrained network, which is specially designed for actual industrial dataset. Specifically, we first suggest input foreground alignment using the deep homography estimation method. In addition, we fine-tune the model by self homography learning to learn additional shape information from normal samples. Finally, we conduct anomaly detection based on the measure of how far the feature of test sample is from the distribution of the extracted normal features. By applying our proposed method to various existing AD approaches, we show performance enhancement through extensive experiments.
☆ Landsat-Bench: Datasets and Benchmarks for Landsat Foundation Models
The Landsat program offers over 50 years of globally consistent Earth imagery. However, the lack of benchmarks for this data constrains progress towards Landsat-based Geospatial Foundation Models (GFM). In this paper, we introduce Landsat-Bench, a suite of three benchmarks with Landsat imagery that adapt from existing remote sensing datasets -- EuroSAT-L, BigEarthNet-L, and LC100-L. We establish baseline and standardized evaluation methods across both common architectures and Landsat foundation models pretrained on the SSL4EO-L dataset. Notably, we provide evidence that SSL4EO-L pretrained GFMs extract better representations for downstream tasks in comparison to ImageNet, including performance gains of +4% OA and +5.1% mAP on EuroSAT-L and BigEarthNet-L.
☆ Normalized Radon Cumulative Distribution Transforms for Invariance and Robustness in Optimal Transport Based Image Classification
The Radon cumulative distribution transform (R-CDT), is an easy-to-compute feature extractor that facilitates image classification tasks especially in the small data regime. It is closely related to the sliced Wasserstein distance and provably guaranties the linear separability of image classes that emerge from translations or scalings. In many real-world applications, like the recognition of watermarks in filigranology, however, the data is subject to general affine transformations originating from the measurement process. To overcome this issue, we recently introduced the so-called max-normalized R-CDT that only requires elementary operations and guaranties the separability under arbitrary affine transformations. The aim of this paper is to continue our study of the max-normalized R-CDT especially with respect to its robustness against non-affine image deformations. Our sensitivity analysis shows that its separability properties are stable provided the Wasserstein-infinity distance between the samples can be controlled. Since the Wasserstein-infinity distance only allows small local image deformations, we moreover introduce a mean-normalized version of the R-CDT. In this case, robustness relates to the Wasserstein-2 distance and also covers image deformations caused by impulsive noise for instance. Our theoretical results are supported by numerical experiments showing the effectiveness of our novel feature extractors as well as their robustness against local non-affine deformations and impulsive noise.
☆ InceptionMamba: An Efficient Hybrid Network with Large Band Convolution and Bottleneck Mamba
Within the family of convolutional neural networks, InceptionNeXt has shown excellent competitiveness in image classification and a number of downstream tasks. Built on parallel one-dimensional strip convolutions, however, it suffers from limited ability of capturing spatial dependencies along different dimensions and fails to fully explore spatial modeling in local neighborhood. Besides, inherent locality constraints of convolution operations are detrimental to effective global context modeling. To overcome these limitations, we propose a novel backbone architecture termed InceptionMamba in this study. More specifically, the traditional one-dimensional strip convolutions are replaced by orthogonal band convolutions in our InceptionMamba to achieve cohesive spatial modeling. Furthermore, global contextual modeling can be achieved via a bottleneck Mamba module, facilitating enhanced cross-channel information fusion and enlarged receptive field. Extensive evaluations on classification and various downstream tasks demonstrate that the proposed InceptionMamba achieves state-of-the-art performance with superior parameter and computational efficiency. The source code will be available at https://github.com/Wake1021/InceptionMamba.
☆ Enhancing Synthetic CT from CBCT via Multimodal Fusion: A Study on the Impact of CBCT Quality and Alignment
Cone-Beam Computed Tomography (CBCT) is widely used for real-time intraoperative imaging due to its low radiation dose and high acquisition speed. However, despite its high resolution, CBCT suffers from significant artifacts and thereby lower visual quality, compared to conventional Computed Tomography (CT). A recent approach to mitigate these artifacts is synthetic CT (sCT) generation, translating CBCT volumes into the CT domain. In this work, we enhance sCT generation through multimodal learning, integrating intraoperative CBCT with preoperative CT. Beyond validation on two real-world datasets, we use a versatile synthetic dataset, to analyze how CBCT-CT alignment and CBCT quality affect sCT quality. The results demonstrate that multimodal sCT consistently outperform unimodal baselines, with the most significant gains observed in well-aligned, low-quality CBCT-CT cases. Finally, we demonstrate that these findings are highly reproducible in real-world clinical datasets.
comment: Data is open source. Code will be provided on acceptance. Paper currently under review
☆ SceneSplat++: A Large Dataset and Comprehensive Benchmark for Language Gaussian Splatting
3D Gaussian Splatting (3DGS) serves as a highly performant and efficient encoding of scene geometry, appearance, and semantics. Moreover, grounding language in 3D scenes has proven to be an effective strategy for 3D scene understanding. Current Language Gaussian Splatting line of work fall into three main groups: (i) per-scene optimization-based, (ii) per-scene optimization-free, and (iii) generalizable approach. However, most of them are evaluated only on rendered 2D views of a handful of scenes and viewpoints close to the training views, limiting ability and insight into holistic 3D understanding. To address this gap, we propose the first large-scale benchmark that systematically assesses these three groups of methods directly in 3D space, evaluating on 1060 scenes across three indoor datasets and one outdoor dataset. Benchmark results demonstrate a clear advantage of the generalizable paradigm, particularly in relaxing the scene-specific limitation, enabling fast feed-forward inference on novel scenes, and achieving superior segmentation performance. We further introduce GaussianWorld-49K a carefully curated 3DGS dataset comprising around 49K diverse indoor and outdoor scenes obtained from multiple sources, with which we demonstrate the generalizable approach could harness strong data priors. Our codes, benchmark, and datasets will be made public to accelerate research in generalizable 3DGS scene understanding.
comment: 15 pages, codes, data and benchmark will be released
☆ PhyBlock: A Progressive Benchmark for Physical Understanding and Planning via 3D Block Assembly
While vision-language models (VLMs) have demonstrated promising capabilities in reasoning and planning for embodied agents, their ability to comprehend physical phenomena, particularly within structured 3D environments, remains severely limited. To close this gap, we introduce PhyBlock, a progressive benchmark designed to assess VLMs on physical understanding and planning through robotic 3D block assembly tasks. PhyBlock integrates a novel four-level cognitive hierarchy assembly task alongside targeted Visual Question Answering (VQA) samples, collectively aimed at evaluating progressive spatial reasoning and fundamental physical comprehension, including object properties, spatial relationships, and holistic scene understanding. PhyBlock includes 2600 block tasks (400 assembly tasks, 2200 VQA tasks) and evaluates models across three key dimensions: partial completion, failure diagnosis, and planning robustness. We benchmark 21 state-of-the-art VLMs, highlighting their strengths and limitations in physically grounded, multi-step planning. Our empirical findings indicate that the performance of VLMs exhibits pronounced limitations in high-level planning and reasoning capabilities, leading to a notable decline in performance for the growing complexity of the tasks. Error analysis reveals persistent difficulties in spatial orientation and dependency reasoning. Surprisingly, chain-of-thought prompting offers minimal improvements, suggesting spatial tasks heavily rely on intuitive model comprehension. We position PhyBlock as a unified testbed to advance embodied reasoning, bridging vision-language understanding and real-world physical problem-solving.
☆ TraGraph-GS: Trajectory Graph-based Gaussian Splatting for Arbitrary Large-Scale Scene Rendering
High-quality novel view synthesis for large-scale scenes presents a challenging dilemma in 3D computer vision. Existing methods typically partition large scenes into multiple regions, reconstruct a 3D representation using Gaussian splatting for each region, and eventually merge them for novel view rendering. They can accurately render specific scenes, yet they do not generalize effectively for two reasons: (1) rigid spatial partition techniques struggle with arbitrary camera trajectories, and (2) the merging of regions results in Gaussian overlap to distort texture details. To address these challenges, we propose TraGraph-GS, leveraging a trajectory graph to enable high-precision rendering for arbitrarily large-scale scenes. We present a spatial partitioning method for large-scale scenes based on graphs, which incorporates a regularization constraint to enhance the rendering of textures and distant objects, as well as a progressive rendering strategy to mitigate artifacts caused by Gaussian overlap. Experimental results demonstrate its superior performance both on four aerial and four ground datasets and highlight its remarkable efficiency: our method achieves an average improvement of 1.86 dB in PSNR on aerial datasets and 1.62 dB on ground datasets compared to state-of-the-art approaches.
☆ ArrowPose: Segmentation, Detection, and 5 DoF Pose Estimation Network for Colorless Point Clouds
This paper presents a fast detection and 5 DoF (Degrees of Freedom) pose estimation network for colorless point clouds. The pose estimation is calculated from center and top points of the object, predicted by the neural network. The network is trained on synthetic data, and tested on a benchmark dataset, where it demonstrates state-of-the-art performance and outperforms all colorless methods. The network is able to run inference in only 250 milliseconds making it usable in many scenarios. Project page with code at arrowpose.github.io
comment: 6 pages, 5 figures, 4 tables
☆ MoSiC: Optimal-Transport Motion Trajectory for Dense Self-Supervised Learning
Dense self-supervised learning has shown great promise for learning pixel- and patch-level representations, but extending it to videos remains challenging due to the complexity of motion dynamics. Existing approaches struggle as they rely on static augmentations that fail under object deformations, occlusions, and camera movement, leading to inconsistent feature learning over time. We propose a motion-guided self-supervised learning framework that clusters dense point tracks to learn spatiotemporally consistent representations. By leveraging an off-the-shelf point tracker, we extract long-range motion trajectories and optimize feature clustering through a momentum-encoder-based optimal transport mechanism. To ensure temporal coherence, we propagate cluster assignments along tracked points, enforcing feature consistency across views despite viewpoint changes. Integrating motion as an implicit supervisory signal, our method learns representations that generalize across frames, improving robustness in dynamic scenes and challenging occlusion scenarios. By initializing from strong image-pretrained models and leveraging video data for training, we improve state-of-the-art by 1% to 6% on six image and video datasets and four evaluation benchmarks. The implementation is publicly available at our GitHub repository: https://github.com/SMSD75/MoSiC/tree/main
comment: preprint
☆ VReST: Enhancing Reasoning in Large Vision-Language Models through Tree Search and Self-Reward Mechanism ACL 2025
Large Vision-Language Models (LVLMs) have shown exceptional performance in multimodal tasks, but their effectiveness in complex visual reasoning is still constrained, especially when employing Chain-of-Thought prompting techniques. In this paper, we propose VReST, a novel training-free approach that enhances Reasoning in LVLMs through Monte Carlo Tree Search and Self-Reward mechanisms. VReST meticulously traverses the reasoning landscape by establishing a search tree, where each node encapsulates a reasoning step, and each path delineates a comprehensive reasoning sequence. Our innovative multimodal Self-Reward mechanism assesses the quality of reasoning steps by integrating the utility of sub-questions, answer correctness, and the relevance of vision-language clues, all without the need for additional models. VReST surpasses current prompting methods and secures state-of-the-art performance across three multimodal mathematical reasoning benchmarks. Furthermore, it substantiates the efficacy of test-time scaling laws in multimodal tasks, offering a promising direction for future research.
comment: Accepted by ACL 2025 main
☆ CanadaFireSat: Toward high-resolution wildfire forecasting with multiple modalities
Canada experienced in 2023 one of the most severe wildfire seasons in recent history, causing damage across ecosystems, destroying communities, and emitting large quantities of CO2. This extreme wildfire season is symptomatic of a climate-change-induced increase in the length and severity of the fire season that affects the boreal ecosystem. Therefore, it is critical to empower wildfire management in boreal communities with better mitigation solutions. Wildfire probability maps represent an important tool for understanding the likelihood of wildfire occurrence and the potential severity of future wildfires. The massive increase in the availability of Earth observation data has enabled the development of deep learning-based wildfire forecasting models, aiming at providing precise wildfire probability maps at different spatial and temporal scales. A main limitation of such methods is their reliance on coarse-resolution environmental drivers and satellite products, leading to wildfire occurrence prediction of reduced resolution, typically around $\sim 0.1${\deg}. This paper presents a benchmark dataset: CanadaFireSat, and baseline methods for high-resolution: 100 m wildfire forecasting across Canada, leveraging multi-modal data from high-resolution multi-spectral satellite images (Sentinel-2 L1C), mid-resolution satellite products (MODIS), and environmental factors (ERA5 reanalysis data). Our experiments consider two major deep learning architectures. We observe that using multi-modal temporal inputs outperforms single-modal temporal inputs across all metrics, achieving a peak performance of 60.3% in F1 score for the 2023 wildfire season, a season never seen during model training. This demonstrates the potential of multi-modal deep learning models for wildfire forecasting at high-resolution and continental scale.
comment: 34 pages, 11 figures
☆ ATAS: Any-to-Any Self-Distillation for Enhanced Open-Vocabulary Dense Prediction
Vision-language models such as CLIP have recently propelled open-vocabulary dense prediction tasks by enabling recognition of a broad range of visual concepts. However, CLIP still struggles with fine-grained, region-level understanding, hindering its effectiveness on these dense prediction tasks. We identify two pivotal factors required to address this limitation: semantic coherence and fine-grained vision-language alignment. Current adaptation methods often improve fine-grained alignment at the expense of semantic coherence, and often rely on extra modules or supervised fine-tuning. To overcome these issues, we propose Any-to-Any Self-Distillation (ATAS), a novel approach that simultaneously enhances semantic coherence and fine-grained alignment by leveraging own knowledge of a model across all representation levels. Unlike prior methods, ATAS uses only unlabeled images and an internal self-distillation process to refine representations of CLIP vision encoders, preserving local semantic consistency while sharpening local detail recognition. On open-vocabulary object detection and semantic segmentation benchmarks, ATAS achieves substantial performance gains, outperforming baseline CLIP models. These results validate the effectiveness of our approach and underscore the importance of jointly maintaining semantic coherence and fine-grained alignment for advanced open-vocabulary dense prediction.
☆ MAMBO: High-Resolution Generative Approach for Mammography Images
Mammography is the gold standard for the detection and diagnosis of breast cancer. This procedure can be significantly enhanced with Artificial Intelligence (AI)-based software, which assists radiologists in identifying abnormalities. However, training AI systems requires large and diverse datasets, which are often difficult to obtain due to privacy and ethical constraints. To address this issue, the paper introduces MAMmography ensemBle mOdel (MAMBO), a novel patch-based diffusion approach designed to generate full-resolution mammograms. Diffusion models have shown breakthrough results in realistic image generation, yet few studies have focused on mammograms, and none have successfully generated high-resolution outputs required to capture fine-grained features of small lesions. To achieve this, MAMBO integrates separate diffusion models to capture both local and global (image-level) contexts. The contextual information is then fed into the final patch-based model, significantly aiding the noise removal process. This thoughtful design enables MAMBO to generate highly realistic mammograms of up to 3840x3840 pixels. Importantly, this approach can be used to enhance the training of classification models and extended to anomaly detection. Experiments, both numerical and radiologist validation, assess MAMBO's capabilities in image generation, super-resolution, and anomaly detection, highlighting its potential to enhance mammography analysis for more accurate diagnoses and earlier lesion detection.
comment: 21 pages, 14 figures, 7 tables
☆ LLaVA-c: Continual Improved Visual Instruction Tuning
Multimodal models like LLaVA-1.5 achieve state-of-the-art visual understanding through visual instruction tuning on multitask datasets, enabling strong instruction-following and multimodal performance. However, multitask learning faces challenges such as task balancing, requiring careful adjustment of data proportions, and expansion costs, where new tasks risk catastrophic forgetting and need costly retraining. Continual learning provides a promising alternative to acquiring new knowledge incrementally while preserving existing capabilities. However, current methods prioritize task-specific performance, neglecting base model degradation from overfitting to specific instructions, which undermines general capabilities. In this work, we propose a simple but effective method with two modifications on LLaVA-1.5: spectral-aware consolidation for improved task balance and unsupervised inquiry regularization to prevent base model degradation. We evaluate both general and task-specific performance across continual pretraining and fine-tuning. Experiments demonstrate that LLaVA-c consistently enhances standard benchmark performance and preserves general capabilities. For the first time, we show that task-by-task continual learning can achieve results that match or surpass multitask joint learning. The code will be publicly released.
☆ Enhancing Video Memorability Prediction with Text-Motion Cross-modal Contrastive Loss and Its Application in Video Summarization
Video memorability refers to the ability of videos to be recalled after viewing, playing a crucial role in creating content that remains memorable. Existing models typically focus on extracting multimodal features to predict video memorability scores but often fail to fully utilize motion cues. The representation of motion features is compromised during the fine-tuning phase of the motion feature extractor due to a lack of labeled data. In this paper, we introduce the Text-Motion Cross-modal Contrastive Loss (TMCCL), a multimodal video memorability prediction model designed to enhance the representation of motion features. We tackle the challenge of improving motion feature representation by leveraging text description similarities across videos to establish positive and negative motion sample sets for a given target. This enhancement allows the model to learn similar feature representations for semantically related motion content, resulting in more accurate memorability predictions. Our model achieves state-of-the-art performance on two video memorability prediction datasets. Moreover, the potential applications of video memorability prediction have been underexplored. To address this gap, we present Memorability Weighted Correction for Video Summarization (MWCVS), using video memorability prediction to reduce subjectivity in video summarization labels. Experimental results on two video summarization datasets demonstrate the effectiveness of MWCVS, showcasing the promising applications of video memorability prediction.
☆ Time Series Representations for Classification Lie Hidden in Pretrained Vision Transformers
Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal yet another direction for reusing vision representations in a non-visual domain.
☆ Orientation Matters: Making 3D Generative Models Orientation-Aligned
Humans intuitively perceive object shape and orientation from a single image, guided by strong priors about canonical poses. However, existing 3D generative models often produce misaligned results due to inconsistent training data, limiting their usability in downstream tasks. To address this gap, we introduce the task of orientation-aligned 3D object generation: producing 3D objects from single images with consistent orientations across categories. To facilitate this, we construct Objaverse-OA, a dataset of 14,832 orientation-aligned 3D models spanning 1,008 categories. Leveraging Objaverse-OA, we fine-tune two representative 3D generative models based on multi-view diffusion and 3D variational autoencoder frameworks to produce aligned objects that generalize well to unseen objects across various categories. Experimental results demonstrate the superiority of our method over post-hoc alignment approaches. Furthermore, we showcase downstream applications enabled by our aligned object generation, including zero-shot object orientation estimation via analysis-by-synthesis and efficient arrow-based object rotation manipulation.
comment: Project Page: https://xdimlab.github.io/Orientation_Matters
☆ SurfR: Surface Reconstruction with Multi-scale Attention 3DV 2025
We propose a fast and accurate surface reconstruction algorithm for unorganized point clouds using an implicit representation. Recent learning methods are either single-object representations with small neural models that allow for high surface details but require per-object training or generalized representations that require larger models and generalize to newer shapes but lack details, and inference is slow. We propose a new implicit representation for general 3D shapes that is faster than all the baselines at their optimum resolution, with only a marginal loss in performance compared to the state-of-the-art. We achieve the best accuracy-speed trade-off using three key contributions. Many implicit methods extract features from the point cloud to classify whether a query point is inside or outside the object. First, to speed up the reconstruction, we show that this feature extraction does not need to use the query point at an early stage (lazy query). Second, we use a parallel multi-scale grid representation to develop robust features for different noise levels and input resolutions. Finally, we show that attention across scales can provide improved reconstruction results.
comment: Accepted in 3DV 2025
☆ MOSAIC-F: A Framework for Enhancing Students' Oral Presentation Skills through Personalized Feedback
In this article, we present a novel multimodal feedback framework called MOSAIC-F, an acronym for a data-driven Framework that integrates Multimodal Learning Analytics (MMLA), Observations, Sensors, Artificial Intelligence (AI), and Collaborative assessments for generating personalized feedback on student learning activities. This framework consists of four key steps. First, peers and professors' assessments are conducted through standardized rubrics (that include both quantitative and qualitative evaluations). Second, multimodal data are collected during learning activities, including video recordings, audio capture, gaze tracking, physiological signals (heart rate, motion data), and behavioral interactions. Third, personalized feedback is generated using AI, synthesizing human-based evaluations and data-based multimodal insights such as posture, speech patterns, stress levels, and cognitive load, among others. Finally, students review their own performance through video recordings and engage in self-assessment and feedback visualization, comparing their own evaluations with peers and professors' assessments, class averages, and AI-generated recommendations. By combining human-based and data-based evaluation techniques, this framework enables more accurate, personalized and actionable feedback. We tested MOSAIC-F in the context of improving oral presentation skills.
comment: Accepted in LASI Spain 25: Learning Analytics Summer Institute Spain 2025
☆ RoboSwap: A GAN-driven Video Diffusion Framework For Unsupervised Robot Arm Swapping
Recent advancements in generative models have revolutionized video synthesis and editing. However, the scarcity of diverse, high-quality datasets continues to hinder video-conditioned robotic learning, limiting cross-platform generalization. In this work, we address the challenge of swapping a robotic arm in one video with another: a key step for crossembodiment learning. Unlike previous methods that depend on paired video demonstrations in the same environmental settings, our proposed framework, RoboSwap, operates on unpaired data from diverse environments, alleviating the data collection needs. RoboSwap introduces a novel video editing pipeline integrating both GANs and diffusion models, combining their isolated advantages. Specifically, we segment robotic arms from their backgrounds and train an unpaired GAN model to translate one robotic arm to another. The translated arm is blended with the original video background and refined with a diffusion model to enhance coherence, motion realism and object interaction. The GAN and diffusion stages are trained independently. Our experiments demonstrate that RoboSwap outperforms state-of-the-art video and image editing models on three benchmarks in terms of both structural coherence and motion consistency, thereby offering a robust solution for generating reliable, cross-embodiment data in robotic learning.
☆ ECMNet:Lightweight Semantic Segmentation with Efficient CNN-Mamba Network
In the past decade, Convolutional Neural Networks (CNNs) and Transformers have achieved wide applicaiton in semantic segmentation tasks. Although CNNs with Transformer models greatly improve performance, the global context modeling remains inadequate. Recently, Mamba achieved great potential in vision tasks, showing its advantages in modeling long-range dependency. In this paper, we propose a lightweight Efficient CNN-Mamba Network for semantic segmentation, dubbed as ECMNet. ECMNet combines CNN with Mamba skillfully in a capsule-based framework to address their complementary weaknesses. Specifically, We design a Enhanced Dual-Attention Block (EDAB) for lightweight bottleneck. In order to improve the representations ability of feature, We devise a Multi-Scale Attention Unit (MSAU) to integrate multi-scale feature aggregation, spatial aggregation and channel aggregation. Moreover, a Mamba enhanced Feature Fusion Module (FFM) merges diverse level feature, significantly enhancing segmented accuracy. Extensive experiments on two representative datasets demonstrate that the proposed model excels in accuracy and efficiency balance, achieving 70.6% mIoU on Cityscapes and 73.6% mIoU on CamVid test datasets, with 0.87M parameters and 8.27G FLOPs on a single RTX 3090 GPU platform.
comment: 16 pages, 2 figures, 4 tables
☆ Biologically Inspired Deep Learning Approaches for Fetal Ultrasound Image Classification
Accurate classification of second-trimester fetal ultrasound images remains challenging due to low image quality, high intra-class variability, and significant class imbalance. In this work, we introduce a simple yet powerful, biologically inspired deep learning ensemble framework that-unlike prior studies focused on only a handful of anatomical targets-simultaneously distinguishes 16 fetal structures. Drawing on the hierarchical, modular organization of biological vision systems, our model stacks two complementary branches (a "shallow" path for coarse, low-resolution cues and a "detailed" path for fine, high-resolution features), concatenating their outputs for final prediction. To our knowledge, no existing method has addressed such a large number of classes with a comparably lightweight architecture. We trained and evaluated on 5,298 routinely acquired clinical images (annotated by three experts and reconciled via Dawid-Skene), reflecting real-world noise and variability rather than a "cleaned" dataset. Despite this complexity, our ensemble (EfficientNet-B0 + EfficientNet-B6 with LDAM-Focal loss) identifies 90% of organs with accuracy > 0.75 and 75% of organs with accuracy > 0.85-performance competitive with more elaborate models applied to far fewer categories. These results demonstrate that biologically inspired modular stacking can yield robust, scalable fetal anatomy recognition in challenging clinical settings.
comment: 16 pages, 2 figures, 3 tables
☆ A Probability-guided Sampler for Neural Implicit Surface Rendering ECCV 2024
Several variants of Neural Radiance Fields (NeRFs) have significantly improved the accuracy of synthesized images and surface reconstruction of 3D scenes/objects. In all of these methods, a key characteristic is that none can train the neural network with every possible input data, specifically, every pixel and potential 3D point along the projection rays due to scalability issues. While vanilla NeRFs uniformly sample both the image pixels and 3D points along the projection rays, some variants focus only on guiding the sampling of the 3D points along the projection rays. In this paper, we leverage the implicit surface representation of the foreground scene and model a probability density function in a 3D image projection space to achieve a more targeted sampling of the rays toward regions of interest, resulting in improved rendering. Additionally, a new surface reconstruction loss is proposed for improved performance. This new loss fully explores the proposed 3D image projection space model and incorporates near-to-surface and empty space components. By integrating our novel sampling strategy and novel loss into current state-of-the-art neural implicit surface renderers, we achieve more accurate and detailed 3D reconstructions and improved image rendering, especially for the regions of interest in any given scene.
comment: Accepted in ECCV 2024
☆ HSG-12M: A Large-Scale Spatial Multigraph Dataset
Existing graph benchmarks assume non-spatial, simple edges, collapsing physically distinct paths into a single link. We introduce HSG-12M, the first large-scale dataset of $\textbf{spatial multigraphs}-$graphs embedded in a metric space where multiple geometrically distinct trajectories between two nodes are retained as separate edges. HSG-12M contains 11.6 million static and 5.1 million dynamic $\textit{Hamiltonian spectral graphs}$ across 1401 characteristic-polynomial classes, derived from 177 TB of spectral potential data. Each graph encodes the full geometry of a 1-D crystal's energy spectrum on the complex plane, producing diverse, physics-grounded topologies that transcend conventional node-coordinate datasets. To enable future extensions, we release $\texttt{Poly2Graph}$: a high-performance, open-source pipeline that maps arbitrary 1-D crystal Hamiltonians to spectral graphs. Benchmarks with popular GNNs expose new challenges in learning from multi-edge geometry at scale. Beyond its practical utility, we show that spectral graphs serve as universal topological fingerprints of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-12M lays the groundwork for geometry-aware graph learning and new opportunities of data-driven scientific discovery in condensed matter physics and beyond.
comment: 39 pages, 13 figures, 3 tables. Code & pipeline: [https://github.com/sarinstein-yan/Poly2Graph] Dataset: [https://github.com/sarinstein-yan/HSG-12M] Dataset released under CC BY 4.0
☆ SAMSelect: A Spectral Index Search for Marine Debris Visualization using Segment Anything
This work proposes SAMSelect, an algorithm to obtain a salient three-channel visualization for multispectral images. We develop SAMSelect and show its use for marine scientists visually interpreting floating marine debris in Sentinel-2 imagery. These debris are notoriously difficult to visualize due to their compositional heterogeneity in medium-resolution imagery. Out of these difficulties, a visual interpretation of imagery showing marine debris remains a common practice by domain experts, who select bands and spectral indices on a case-by-case basis informed by common practices and heuristics. SAMSelect selects the band or index combination that achieves the best classification accuracy on a small annotated dataset through the Segment Anything Model. Its central assumption is that the three-channel visualization achieves the most accurate segmentation results also provide good visual information for photo-interpretation. We evaluate SAMSelect in three Sentinel-2 scenes containing generic marine debris in Accra, Ghana, and Durban, South Africa, and deployed plastic targets from the Plastic Litter Project. This reveals the potential of new previously unused band combinations (e.g., a normalized difference index of B8, B2), which demonstrate improved performance compared to literature-based indices. We describe the algorithm in this paper and provide an open-source code repository that will be helpful for domain scientists doing visual photo interpretation, especially in the marine field.
☆ Data-Efficient Challenges in Visual Inductive Priors: A Retrospective
Deep Learning requires large amounts of data to train models that work well. In data-deficient settings, performance can be degraded. We investigate which Deep Learning methods benefit training models in a data-deficient setting, by organizing the "VIPriors: Visual Inductive Priors for Data-Efficient Deep Learning" workshop series, featuring four editions of data-impaired challenges. These challenges address the problem of training deep learning models for computer vision tasks with limited data. Participants are limited to training models from scratch using a low number of training samples and are not allowed to use any form of transfer learning. We aim to stimulate the development of novel approaches that incorporate prior knowledge to improve the data efficiency of deep learning models. Successful challenge entries make use of large model ensembles that mix Transformers and CNNs, as well as heavy data augmentation. Novel prior knowledge-based methods contribute to success in some entries.
☆ Towards Class-wise Fair Adversarial Training via Anti-Bias Soft Label Distillation
Adversarial Training (AT) is widely recognized as an effective approach to enhance the adversarial robustness of Deep Neural Networks. As a variant of AT, Adversarial Robustness Distillation (ARD) has shown outstanding performance in enhancing the robustness of small models. However, both AT and ARD face robust fairness issue: these models tend to display strong adversarial robustness against some classes (easy classes) while demonstrating weak adversarial robustness against others (hard classes). This paper explores the underlying factors of this problem and points out the smoothness degree of soft labels for different classes significantly impacts the robust fairness from both empirical observation and theoretical analysis. Based on the above exploration, we propose Anti-Bias Soft Label Distillation (ABSLD) within the Knowledge Distillation framework to enhance the adversarial robust fairness. Specifically, ABSLD adaptively reduces the student's error risk gap between different classes, which is accomplished by adjusting the class-wise smoothness degree of teacher's soft labels during the training process, and the adjustment is managed by assigning varying temperatures to different classes. Additionally, as a label-based approach, ABSLD is highly adaptable and can be integrated with the sample-based methods. Extensive experiments demonstrate ABSLD outperforms state-of-the-art methods on the comprehensive performance of robustness and fairness.
comment: arXiv admin note: text overlap with arXiv:2312.05508
☆ Transformers Meet Hyperspectral Imaging: A Comprehensive Study of Models, Challenges and Open Problems
Transformers have become the architecture of choice for learning long-range dependencies, yet their adoption in hyperspectral imaging (HSI) is still emerging. We reviewed more than 300 papers published up to 2025 and present the first end-to-end survey dedicated to Transformer-based HSI classification. The study categorizes every stage of a typical pipeline-pre-processing, patch or pixel tokenization, positional encoding, spatial-spectral feature extraction, multi-head self-attention variants, skip connections, and loss design-and contrasts alternative design choices with the unique spatial-spectral properties of HSI. We map the field's progress against persistent obstacles: scarce labeled data, extreme spectral dimensionality, computational overhead, and limited model explainability. Finally, we outline a research agenda prioritizing valuable public data sets, lightweight on-edge models, illumination and sensor shifts robustness, and intrinsically interpretable attention mechanisms. Our goal is to guide researchers in selecting, combining, or extending Transformer components that are truly fit for purpose for next-generation HSI applications.
☆ Diversity-Guided MLP Reduction for Efficient Large Vision Transformers
Transformer models achieve excellent scaling property, where the performance is improved with the increment of model capacity. However, large-scale model parameters lead to an unaffordable cost of computing and memory. We analyze popular transformer architectures and find that multilayer perceptron (MLP) modules take up the majority of model parameters. To this end, we focus on the recoverability of the compressed models and propose a Diversity-Guided MLP Reduction (DGMR) method to significantly reduce the parameters of large vision transformers with only negligible performance degradation. Specifically, we conduct a Gram-Schmidt weight pruning strategy to eliminate redundant neurons of MLP hidden layer, while preserving weight diversity for better performance recover during distillation. Compared to the model trained from scratch, our pruned model only requires 0.06\% data of LAION-2B (for the training of large vision transformers) without labels (ImageNet-1K) to recover the original performance. Experimental results on several state-of-the-art large vision transformers demonstrate that our method achieves a more than 57.0\% parameter and FLOPs reduction in a near lossless manner. Notably, for EVA-CLIP-E (4.4B), our method accomplishes a 71.5\% parameter and FLOPs reduction without performance degradation. The source code and trained weights are available at https://github.com/visresearch/DGMR.
☆ Generating Vision-Language Navigation Instructions Incorporated Fine-Grained Alignment Annotations
Vision-Language Navigation (VLN) enables intelligent agents to navigate environments by integrating visual perception and natural language instructions, yet faces significant challenges due to the scarcity of fine-grained cross-modal alignment annotations. Existing datasets primarily focus on global instruction-trajectory matching, neglecting sub-instruction-level and entity-level alignments critical for accurate navigation action decision-making. To address this limitation, we propose FCA-NIG, a generative framework that automatically constructs navigation instructions with dual-level fine-grained cross-modal annotations. In this framework, an augmented trajectory is first divided into sub-trajectories, which are then processed through GLIP-based landmark detection, crafted instruction construction, OFA-Speaker based R2R-like instruction generation, and CLIP-powered entity selection, generating sub-instruction-trajectory pairs with entity-landmark annotations. Finally, these sub-pairs are aggregated to form a complete instruction-trajectory pair. The framework generates the FCA-R2R dataset, the first large-scale augmentation dataset featuring precise sub-instruction-sub-trajectory and entity-landmark alignments. Extensive experiments demonstrate that training with FCA-R2R significantly improves the performance of multiple state-of-the-art VLN agents, including SF, EnvDrop, RecBERT, and HAMT. Incorporating sub-instruction-trajectory alignment enhances agents' state awareness and decision accuracy, while entity-landmark alignment further boosts navigation performance and generalization. These results highlight the effectiveness of FCA-NIG in generating high-quality, scalable training data without manual annotation, advancing fine-grained cross-modal learning in complex navigation tasks.
☆ Hierarchical Neural Collapse Detection Transformer for Class Incremental Object Detection
Recently, object detection models have witnessed notable performance improvements, particularly with transformer-based models. However, new objects frequently appear in the real world, requiring detection models to continually learn without suffering from catastrophic forgetting. Although Incremental Object Detection (IOD) has emerged to address this challenge, these existing models are still not practical due to their limited performance and prolonged inference time. In this paper, we introduce a novel framework for IOD, called Hier-DETR: Hierarchical Neural Collapse Detection Transformer, ensuring both efficiency and competitive performance by leveraging Neural Collapse for imbalance dataset and Hierarchical relation of classes' labels.
☆ Towards Cross-Subject EMG Pattern Recognition via Dual-Branch Adversarial Feature Disentanglement
Cross-subject electromyography (EMG) pattern recognition faces significant challenges due to inter-subject variability in muscle anatomy, electrode placement, and signal characteristics. Traditional methods rely on subject-specific calibration data to adapt models to new users, an approach that is both time-consuming and impractical for large-scale, real-world deployment. This paper presents an approach to eliminate calibration requirements through feature disentanglement, enabling effective cross-subject generalization. We propose an end-to-end dual-branch adversarial neural network that simultaneously performs pattern recognition and individual identification by disentangling EMG features into pattern-specific and subject-specific components. The pattern-specific components facilitate robust pattern recognition for new users without model calibration, while the subject-specific components enable downstream applications such as task-invariant biometric identification. Experimental results demonstrate that the proposed model achieves robust performance on data from unseen users, outperforming various baseline methods in cross-subject scenarios. Overall, this study offers a new perspective for cross-subject EMG pattern recognition without model calibration and highlights the proposed model's potential for broader applications, such as task-independent biometric systems.
comment: 6 pages, 3 figures. This work has been accepted for presentation at the IEEE Engineering in Medicine and Biology Conference (EMBC) 2025
☆ From Pixels to Graphs: using Scene and Knowledge Graphs for HD-EPIC VQA Challenge
This report presents SceneNet and KnowledgeNet, our approaches developed for the HD-EPIC VQA Challenge 2025. SceneNet leverages scene graphs generated with a multi-modal large language model (MLLM) to capture fine-grained object interactions, spatial relationships, and temporally grounded events. In parallel, KnowledgeNet incorporates ConceptNet's external commonsense knowledge to introduce high-level semantic connections between entities, enabling reasoning beyond directly observable visual evidence. Each method demonstrates distinct strengths across the seven categories of the HD-EPIC benchmark, and their combination within our framework results in an overall accuracy of 44.21% on the challenge, highlighting its effectiveness for complex egocentric VQA tasks.
comment: Technical report for the HD-EPIC VQA Challenge 2025 (1st place)
☆ Convergence of Spectral Principal Paths: How Deep Networks Distill Linear Representations from Noisy Inputs
High-level representations have become a central focus in enhancing AI transparency and control, shifting attention from individual neurons or circuits to structured semantic directions that align with human-interpretable concepts. Motivated by the Linear Representation Hypothesis (LRH), we propose the Input-Space Linearity Hypothesis (ISLH), which posits that concept-aligned directions originate in the input space and are selectively amplified with increasing depth. We then introduce the Spectral Principal Path (SPP) framework, which formalizes how deep networks progressively distill linear representations along a small set of dominant spectral directions. Building on this framework, we further demonstrate the multimodal robustness of these representations in Vision-Language Models (VLMs). By bridging theoretical insights with empirical validation, this work advances a structured theory of representation formation in deep networks, paving the way for improving AI robustness, fairness, and transparency.
comment: arXiv admin note: text overlap with arXiv:2503.22720
☆ TrajFlow: Multi-modal Motion Prediction via Flow Matching
Efficient and accurate motion prediction is crucial for ensuring safety and informed decision-making in autonomous driving, particularly under dynamic real-world conditions that necessitate multi-modal forecasts. We introduce TrajFlow, a novel flow matching-based motion prediction framework that addresses the scalability and efficiency challenges of existing generative trajectory prediction methods. Unlike conventional generative approaches that employ i.i.d. sampling and require multiple inference passes to capture diverse outcomes, TrajFlow predicts multiple plausible future trajectories in a single pass, significantly reducing computational overhead while maintaining coherence across predictions. Moreover, we propose a ranking loss based on the Plackett-Luce distribution to improve uncertainty estimation of predicted trajectories. Additionally, we design a self-conditioning training technique that reuses the model's own predictions to construct noisy inputs during a second forward pass, thereby improving generalization and accelerating inference. Extensive experiments on the large-scale Waymo Open Motion Dataset (WOMD) demonstrate that TrajFlow achieves state-of-the-art performance across various key metrics, underscoring its effectiveness for safety-critical autonomous driving applications. The code and other details are available on the project website https://traj-flow.github.io/.
☆ DCD: A Semantic Segmentation Model for Fetal Ultrasound Four-Chamber View
Accurate segmentation of anatomical structures in the apical four-chamber (A4C) view of fetal echocardiography is essential for early diagnosis and prenatal evaluation of congenital heart disease (CHD). However, precise segmentation remains challenging due to ultrasound artifacts, speckle noise, anatomical variability, and boundary ambiguity across different gestational stages. To reduce the workload of sonographers and enhance segmentation accuracy, we propose DCD, an advanced deep learning-based model for automatic segmentation of key anatomical structures in the fetal A4C view. Our model incorporates a Dense Atrous Spatial Pyramid Pooling (Dense ASPP) module, enabling superior multi-scale feature extraction, and a Convolutional Block Attention Module (CBAM) to enhance adaptive feature representation. By effectively capturing both local and global contextual information, DCD achieves precise and robust segmentation, contributing to improved prenatal cardiac assessment.
☆ LiftVSR: Lifting Image Diffusion to Video Super-Resolution via Hybrid Temporal Modeling with Only 4$\times$RTX 4090s
Diffusion models have significantly advanced video super-resolution (VSR) by enhancing perceptual quality, largely through elaborately designed temporal modeling to ensure inter-frame consistency. However, existing methods usually suffer from limited temporal coherence and prohibitively high computational costs (e.g., typically requiring over 8 NVIDIA A100-80G GPUs), especially for long videos. In this work, we propose LiftVSR, an efficient VSR framework that leverages and elevates the image-wise diffusion prior from PixArt-$\alpha$, achieving state-of-the-art results using only 4$\times$RTX 4090 GPUs. To balance long-term consistency and efficiency, we introduce a hybrid temporal modeling mechanism that decomposes temporal learning into two complementary components: (i) Dynamic Temporal Attention (DTA) for fine-grained temporal modeling within short frame segment ($\textit{i.e.}$, low complexity), and (ii) Attention Memory Cache (AMC) for long-term temporal modeling across segments ($\textit{i.e.}$, consistency). Specifically, DTA identifies multiple token flows across frames within multi-head query and key tokens to warp inter-frame contexts in the value tokens. AMC adaptively aggregates historical segment information via a cache unit, ensuring long-term coherence with minimal overhead. To further stabilize the cache interaction during inference, we introduce an asymmetric sampling strategy that mitigates feature mismatches arising from different diffusion sampling steps. Extensive experiments on several typical VSR benchmarks have demonstrated that LiftVSR achieves impressive performance with significantly lower computational costs.
comment: Project page: https://kopperx.github.io/projects/liftvsr
☆ Robust Visual Localization via Semantic-Guided Multi-Scale Transformer
Visual localization remains challenging in dynamic environments where fluctuating lighting, adverse weather, and moving objects disrupt appearance cues. Despite advances in feature representation, current absolute pose regression methods struggle to maintain consistency under varying conditions. To address this challenge, we propose a framework that synergistically combines multi-scale feature learning with semantic scene understanding. Our approach employs a hierarchical Transformer with cross-scale attention to fuse geometric details and contextual cues, preserving spatial precision while adapting to environmental changes. We improve the performance of this architecture with semantic supervision via neural scene representation during training, guiding the network to learn view-invariant features that encode persistent structural information while suppressing complex environmental interference. Experiments on TartanAir demonstrate that our approach outperforms existing pose regression methods in challenging scenarios with dynamic objects, illumination changes, and occlusions. Our findings show that integrating multi-scale processing with semantic guidance offers a promising strategy for robust visual localization in real-world dynamic environments.
☆ Plug-and-Play Linear Attention for Pre-trained Image and Video Restoration Models
Multi-head self-attention (MHSA) has become a core component in modern computer vision models. However, its quadratic complexity with respect to input length poses a significant computational bottleneck in real-time and resource constrained environments. We propose PnP-Nystra, a Nystr\"om based linear approximation of self-attention, developed as a plug-and-play (PnP) module that can be integrated into the pre-trained image and video restoration models without retraining. As a drop-in replacement for MHSA, PnP-Nystra enables efficient acceleration in various window-based transformer architectures, including SwinIR, Uformer, and RVRT. Our experiments across diverse image and video restoration tasks, including denoising, deblurring, and super-resolution, demonstrate that PnP-Nystra achieves a 2-4x speed-up on an NVIDIA RTX 4090 GPU and a 2-5x speed-up on CPU inference. Despite these significant gains, the method incurs a maximum PSNR drop of only 1.5 dB across all evaluated tasks. To the best of our knowledge, we are the first to demonstrate a linear attention functioning as a training-free substitute for MHSA in restoration models.
comment: 6 pages, 1 pseudo-code, 3 figure panels, 2 plot panels, 7 tables, 24 references
☆ FEDTAIL: Federated Long-Tailed Domain Generalization with Sharpness-Guided Gradient Matching ICML 2025
Domain Generalization (DG) seeks to train models that perform reliably on unseen target domains without access to target data during training. While recent progress in smoothing the loss landscape has improved generalization, existing methods often falter under long-tailed class distributions and conflicting optimization objectives. We introduce FedTAIL, a federated domain generalization framework that explicitly addresses these challenges through sharpness-guided, gradient-aligned optimization. Our method incorporates a gradient coherence regularizer to mitigate conflicts between classification and adversarial objectives, leading to more stable convergence. To combat class imbalance, we perform class-wise sharpness minimization and propose a curvature-aware dynamic weighting scheme that adaptively emphasizes underrepresented tail classes. Furthermore, we enhance conditional distribution alignment by integrating sharpness-aware perturbations into entropy regularization, improving robustness under domain shift. FedTAIL unifies optimization harmonization, class-aware regularization, and conditional alignment into a scalable, federated-compatible framework. Extensive evaluations across standard domain generalization benchmarks demonstrate that FedTAIL achieves state-of-the-art performance, particularly in the presence of domain shifts and label imbalance, validating its effectiveness in both centralized and federated settings. Code: https://github.com/sunnyinAI/FedTail
comment: Accepted at ICML 2025 Workshop on Collaborative and Federated Agentic Workflows CFAgentic @ ICML'25
☆ MLVTG: Mamba-Based Feature Alignment and LLM-Driven Purification for Multi-Modal Video Temporal Grounding
Video Temporal Grounding (VTG), which aims to localize video clips corresponding to natural language queries, is a fundamental yet challenging task in video understanding. Existing Transformer-based methods often suffer from redundant attention and suboptimal multi-modal alignment. To address these limitations, we propose MLVTG, a novel framework that integrates two key modules: MambaAligner and LLMRefiner. MambaAligner uses stacked Vision Mamba blocks as a backbone instead of Transformers to model temporal dependencies and extract robust video representations for multi-modal alignment. LLMRefiner leverages the specific frozen layer of a pre-trained Large Language Model (LLM) to implicitly transfer semantic priors, enhancing multi-modal alignment without fine-tuning. This dual alignment strategy, temporal modeling via structured state-space dynamics and semantic purification via textual priors, enables more precise localization. Extensive experiments on QVHighlights, Charades-STA, and TVSum demonstrate that MLVTG achieves state-of-the-art performance and significantly outperforms existing baselines.
☆ Context-aware TFL: A Universal Context-aware Contrastive Learning Framework for Temporal Forgery Localization
Most research efforts in the multimedia forensics domain have focused on detecting forgery audio-visual content and reached sound achievements. However, these works only consider deepfake detection as a classification task and ignore the case where partial segments of the video are tampered with. Temporal forgery localization (TFL) of small fake audio-visual clips embedded in real videos is still challenging and more in line with realistic application scenarios. To resolve this issue, we propose a universal context-aware contrastive learning framework (UniCaCLF) for TFL. Our approach leverages supervised contrastive learning to discover and identify forged instants by means of anomaly detection, allowing for the precise localization of temporal forged segments. To this end, we propose a novel context-aware perception layer that utilizes a heterogeneous activation operation and an adaptive context updater to construct a context-aware contrastive objective, which enhances the discriminability of forged instant features by contrasting them with genuine instant features in terms of their distances to the global context. An efficient context-aware contrastive coding is introduced to further push the limit of instant feature distinguishability between genuine and forged instants in a supervised sample-by-sample manner, suppressing the cross-sample influence to improve temporal forgery localization performance. Extensive experimental results over five public datasets demonstrate that our proposed UniCaCLF significantly outperforms the state-of-the-art competing algorithms.
☆ Re-Thinking the Automatic Evaluation of Image-Text Alignment in Text-to-Image Models
Text-to-image models often struggle to generate images that precisely match textual prompts. Prior research has extensively studied the evaluation of image-text alignment in text-to-image generation. However, existing evaluations primarily focus on agreement with human assessments, neglecting other critical properties of a trustworthy evaluation framework. In this work, we first identify two key aspects that a reliable evaluation should address. We then empirically demonstrate that current mainstream evaluation frameworks fail to fully satisfy these properties across a diverse range of metrics and models. Finally, we propose recommendations for improving image-text alignment evaluation.
☆ MARMOT: Masked Autoencoder for Modeling Transient Imaging
Pretrained models have demonstrated impressive success in many modalities such as language and vision. Recent works facilitate the pretraining paradigm in imaging research. Transients are a novel modality, which are captured for an object as photon counts versus arrival times using a precisely time-resolved sensor. In particular for non-line-of-sight (NLOS) scenarios, transients of hidden objects are measured beyond the sensor's direct line of sight. Using NLOS transients, the majority of previous works optimize volume density or surfaces to reconstruct the hidden objects and do not transfer priors learned from datasets. In this work, we present a masked autoencoder for modeling transient imaging, or MARMOT, to facilitate NLOS applications. Our MARMOT is a self-supervised model pretrianed on massive and diverse NLOS transient datasets. Using a Transformer-based encoder-decoder, MARMOT learns features from partially masked transients via a scanning pattern mask (SPM), where the unmasked subset is functionally equivalent to arbitrary sampling, and predicts full measurements. Pretrained on TransVerse-a synthesized transient dataset of 500K 3D models-MARMOT adapts to downstream imaging tasks using direct feature transfer or decoder finetuning. Comprehensive experiments are carried out in comparisons with state-of-the-art methods. Quantitative and qualitative results demonstrate the efficiency of our MARMOT.
☆ Enhancing Motion Dynamics of Image-to-Video Models via Adaptive Low-Pass Guidance
Recent text-to-video (T2V) models have demonstrated strong capabilities in producing high-quality, dynamic videos. To improve the visual controllability, recent works have considered fine-tuning pre-trained T2V models to support image-to-video (I2V) generation. However, such adaptation frequently suppresses motion dynamics of generated outputs, resulting in more static videos compared to their T2V counterparts. In this work, we analyze this phenomenon and identify that it stems from the premature exposure to high-frequency details in the input image, which biases the sampling process toward a shortcut trajectory that overfits to the static appearance of the reference image. To address this, we propose adaptive low-pass guidance (ALG), a simple fix to the I2V model sampling procedure to generate more dynamic videos without compromising per-frame image quality. Specifically, ALG adaptively modulates the frequency content of the conditioning image by applying low-pass filtering at the early stage of denoising. Extensive experiments demonstrate that ALG significantly improves the temporal dynamics of generated videos, while preserving image fidelity and text alignment. Especially, under VBench-I2V test suite, ALG achieves an average improvement of 36% in dynamic degree without a significant drop in video quality or image fidelity.
comment: Preprint. Under review. Project page available at http://choi403.github.io/ALG
☆ SakugaFlow: A Stagewise Illustration Framework Emulating the Human Drawing Process and Providing Interactive Tutoring for Novice Drawing Skills
While current AI illustration tools can generate high-quality images from text prompts, they rarely reveal the step-by-step procedure that human artists follow. We present SakugaFlow, a four-stage pipeline that pairs diffusion-based image generation with a large-language-model tutor. At each stage, novices receive real-time feedback on anatomy, perspective, and composition, revise any step non-linearly, and branch alternative versions. By exposing intermediate outputs and embedding pedagogical dialogue, SakugaFlow turns a black-box generator into a scaffolded learning environment that supports both creative exploration and skills acquisition.
comment: 5 pages, 1 figure; accepted as a paper to the Generative AI and HCI (GenAICHI) workshop at CHI 2025 (Yokohama, 27 Apr 2025)
☆ Boosting Gradient Leakage Attacks: Data Reconstruction in Realistic FL Settings
Federated learning (FL) enables collaborative model training among multiple clients without the need to expose raw data. Its ability to safeguard privacy, at the heart of FL, has recently been a hot-button debate topic. To elaborate, several studies have introduced a type of attacks known as gradient leakage attacks (GLAs), which exploit the gradients shared during training to reconstruct clients' raw data. On the flip side, some literature, however, contends no substantial privacy risk in practical FL environments due to the effectiveness of such GLAs being limited to overly relaxed conditions, such as small batch sizes and knowledge of clients' data distributions. This paper bridges this critical gap by empirically demonstrating that clients' data can still be effectively reconstructed, even within realistic FL environments. Upon revisiting GLAs, we recognize that their performance failures stem from their inability to handle the gradient matching problem. To alleviate the performance bottlenecks identified above, we develop FedLeak, which introduces two novel techniques, partial gradient matching and gradient regularization. Moreover, to evaluate the performance of FedLeak in real-world FL environments, we formulate a practical evaluation protocol grounded in a thorough review of extensive FL literature and industry practices. Under this protocol, FedLeak can still achieve high-fidelity data reconstruction, thereby underscoring the significant vulnerability in FL systems and the urgent need for more effective defense methods.
comment: Accepted to Usenix Security 2025
Better Reasoning with Less Data: Enhancing VLMs Through Unified Modality Scoring
The application of visual instruction tuning and other post-training techniques has significantly enhanced the capabilities of Large Language Models (LLMs) in visual understanding, enriching Vision-Language Models (VLMs) with more comprehensive visual language datasets. However, the effectiveness of VLMs is highly dependent on large-scale, high-quality datasets that ensure precise recognition and accurate reasoning. Two key challenges hinder progress: (1) noisy alignments between images and the corresponding text, which leads to misinterpretation, and (2) ambiguous or misleading text, which obscures visual content. To address these challenges, we propose SCALE (Single modality data quality and Cross modality Alignment Evaluation), a novel quality-driven data selection pipeline for VLM instruction tuning datasets. Specifically, SCALE integrates a cross-modality assessment framework that first assigns each data entry to its appropriate vision-language task, generates general and task-specific captions (covering scenes, objects, style, etc.), and evaluates the alignment, clarity, task rarity, text coherence, and image clarity of each entry based on the generated captions. We reveal that: (1) current unimodal quality assessment methods evaluate one modality while overlooking the rest, which can underestimate samples essential for specific tasks and discard the lower-quality instances that help build model robustness; and (2) appropriately generated image captions provide an efficient way to transfer the image-text multimodal task into a unified text modality.
☆ RadioDUN: A Physics-Inspired Deep Unfolding Network for Radio Map Estimation
The radio map represents the spatial distribution of spectrum resources within a region, supporting efficient resource allocation and interference mitigation. However, it is difficult to construct a dense radio map as a limited number of samples can be measured in practical scenarios. While existing works have used deep learning to estimate dense radio maps from sparse samples, they are hard to integrate with the physical characteristics of the radio map. To address this challenge, we cast radio map estimation as the sparse signal recovery problem. A physical propagation model is further incorporated to decompose the problem into multiple factor optimization sub-problems, thereby reducing recovery complexity. Inspired by the existing compressive sensing methods, we propose the Radio Deep Unfolding Network (RadioDUN) to unfold the optimization process, achieving adaptive parameter adjusting and prior fitting in a learnable manner. To account for the radio propagation characteristics, we develop a dynamic reweighting module (DRM) to adaptively model the importance of each factor for the radio map. Inspired by the shadowing factor in the physical propagation model, we integrate obstacle-related factors to express the obstacle-induced signal stochastic decay. The shadowing loss is further designed to constrain the factor prediction and act as a supplementary supervised objective, which enhances the performance of RadioDUN. Extensive experiments have been conducted to demonstrate that the proposed method outperforms the state-of-the-art methods. Our code will be made publicly available upon publication.
☆ SECOND: Mitigating Perceptual Hallucination in Vision-Language Models via Selective and Contrastive Decoding
Despite significant advancements in Vision-Language Models (VLMs), the performance of existing VLMs remains hindered by object hallucination, a critical challenge to achieving accurate visual understanding. To address this issue, we propose SECOND: Selective and Contrastive Decoding, a novel approach that enables VLMs to effectively leverage multi-scale visual information with an object-centric manner, closely aligning with human visual perception. SECOND progressively selects and integrates multi-scale visual information, facilitating a more precise interpretation of images. By contrasting these visual information iteratively, SECOND significantly reduces perceptual hallucinations and outperforms a wide range of benchmarks. Our theoretical analysis and experiments highlight the largely unexplored potential of multi-scale application in VLMs, showing that prioritizing and contrasting across scales outperforms existing methods.
☆ Image Demoiréing Using Dual Camera Fusion on Mobile Phones ICME 2025
When shooting electronic screens, moir\'e patterns usually appear in captured images, which seriously affects the image quality. Existing image demoir\'eing methods face great challenges in removing large and heavy moir\'e. To address the issue, we propose to utilize Dual Camera fusion for Image Demoir\'eing (DCID), \ie, using the ultra-wide-angle (UW) image to assist the moir\'e removal of wide-angle (W) image. This is inspired by two motivations: (1) the two lenses are commonly equipped with modern smartphones, (2) the UW image generally can provide normal colors and textures when moir\'e exists in the W image mainly due to their different focal lengths. In particular, we propose an efficient DCID method, where a lightweight UW image encoder is integrated into an existing demoir\'eing network and a fast two-stage image alignment manner is present. Moreover, we construct a large-scale real-world dataset with diverse mobile phones and monitors, containing about 9,000 samples. Experiments on the dataset show our method performs better than state-of-the-art methods. Code and dataset are available at https://github.com/Mrduckk/DCID.
comment: ICME 2025
☆ An Adaptive Method Stabilizing Activations for Enhanced Generalization
We introduce AdaAct, a novel optimization algorithm that adjusts learning rates according to activation variance. Our method enhances the stability of neuron outputs by incorporating neuron-wise adaptivity during the training process, which subsequently leads to better generalization -- a complementary approach to conventional activation regularization methods. Experimental results demonstrate AdaAct's competitive performance across standard image classification benchmarks. We evaluate AdaAct on CIFAR and ImageNet, comparing it with other state-of-the-art methods. Importantly, AdaAct effectively bridges the gap between the convergence speed of Adam and the strong generalization capabilities of SGD, all while maintaining competitive execution times. Code is available at https://github.com/hseung88/adaact.
☆ How Much To Guide: Revisiting Adaptive Guidance in Classifier-Free Guidance Text-to-Vision Diffusion Models
With the rapid development of text-to-vision generation diffusion models, classifier-free guidance has emerged as the most prevalent method for conditioning. However, this approach inherently requires twice as many steps for model forwarding compared to unconditional generation, resulting in significantly higher costs. While previous study has introduced the concept of adaptive guidance, it lacks solid analysis and empirical results, making previous method unable to be applied to general diffusion models. In this work, we present another perspective of applying adaptive guidance and propose Step AG, which is a simple, universally applicable adaptive guidance strategy. Our evaluations focus on both image quality and image-text alignment. whose results indicate that restricting classifier-free guidance to the first several denoising steps is sufficient for generating high-quality, well-conditioned images, achieving an average speedup of 20% to 30%. Such improvement is consistent across different settings such as inference steps, and various models including video generation models, highlighting the superiority of our method.
☆ Complex-Valued Holographic Radiance Fields
Modeling the full properties of light, including both amplitude and phase, in 3D representations is crucial for advancing physically plausible rendering, particularly in holographic displays. To support these features, we propose a novel representation that optimizes 3D scenes without relying on intensity-based intermediaries. We reformulate 3D Gaussian splatting with complex-valued Gaussian primitives, expanding support for rendering with light waves. By leveraging RGBD multi-view images, our method directly optimizes complex-valued Gaussians as a 3D holographic scene representation. This eliminates the need for computationally expensive hologram re-optimization. Compared with state-of-the-art methods, our method achieves 30x-10,000x speed improvements while maintaining on-par image quality, representing a first step towards geometrically aligned, physically plausible holographic scene representations.
comment: 28 pages, 21 figures
♻ ☆ OneIG-Bench: Omni-dimensional Nuanced Evaluation for Image Generation
Text-to-image (T2I) models have garnered significant attention for generating high-quality images aligned with text prompts. However, rapid T2I model advancements reveal limitations in early benchmarks, lacking comprehensive evaluations, for example, the evaluation on reasoning, text rendering and style. Notably, recent state-of-the-art models, with their rich knowledge modeling capabilities, show promising results on the image generation problems requiring strong reasoning ability, yet existing evaluation systems have not adequately addressed this frontier. To systematically address these gaps, we introduce OneIG-Bench, a meticulously designed comprehensive benchmark framework for fine-grained evaluation of T2I models across multiple dimensions, including prompt-image alignment, text rendering precision, reasoning-generated content, stylization, and diversity. By structuring the evaluation, this benchmark enables in-depth analysis of model performance, helping researchers and practitioners pinpoint strengths and bottlenecks in the full pipeline of image generation. Specifically, OneIG-Bench enables flexible evaluation by allowing users to focus on a particular evaluation subset. Instead of generating images for the entire set of prompts, users can generate images only for the prompts associated with the selected dimension and complete the corresponding evaluation accordingly. Our codebase and dataset are now publicly available to facilitate reproducible evaluation studies and cross-model comparisons within the T2I research community.
♻ ☆ ArchiLense: A Framework for Quantitative Analysis of Architectural Styles Based on Vision Large Language Models
Architectural cultures across regions are characterized by stylistic diversity, shaped by historical, social, and technological contexts in addition to geograph-ical conditions. Understanding architectural styles requires the ability to describe and analyze the stylistic features of different architects from various regions through visual observations of architectural imagery. However, traditional studies of architectural culture have largely relied on subjective expert interpretations and historical literature reviews, often suffering from regional biases and limited ex-planatory scope. To address these challenges, this study proposes three core contributions: (1) We construct a professional architectural style dataset named ArchDiffBench, which comprises 1,765 high-quality architectural images and their corresponding style annotations, collected from different regions and historical periods. (2) We propose ArchiLense, an analytical framework grounded in Vision-Language Models and constructed using the ArchDiffBench dataset. By integrating ad-vanced computer vision techniques, deep learning, and machine learning algo-rithms, ArchiLense enables automatic recognition, comparison, and precise classi-fication of architectural imagery, producing descriptive language outputs that ar-ticulate stylistic differences. (3) Extensive evaluations show that ArchiLense achieves strong performance in architectural style recognition, with a 92.4% con-sistency rate with expert annotations and 84.5% classification accuracy, effec-tively capturing stylistic distinctions across images. The proposed approach transcends the subjectivity inherent in traditional analyses and offers a more objective and accurate perspective for comparative studies of architectural culture.
♻ ☆ SpatialLLM: A Compound 3D-Informed Design towards Spatially-Intelligent Large Multimodal Models CVPR 2025
Humans naturally understand 3D spatial relationships, enabling complex reasoning like predicting collisions of vehicles from different directions. Current large multimodal models (LMMs), however, lack of this capability of 3D spatial reasoning. This limitation stems from the scarcity of 3D training data and the bias in current model designs toward 2D data. In this paper, we systematically study the impact of 3D-informed data, architecture, and training setups, introducing SpatialLLM, a large multi-modal model with advanced 3D spatial reasoning abilities. To address data limitations, we develop two types of 3D-informed training datasets: (1) 3D-informed probing data focused on object's 3D location and orientation, and (2) 3D-informed conversation data for complex spatial relationships. Notably, we are the first to curate VQA data that incorporate 3D orientation relationships on real images. Furthermore, we systematically integrate these two types of training data with the architectural and training designs of LMMs, providing a roadmap for optimal design aimed at achieving superior 3D reasoning capabilities. Our SpatialLLM advances machines toward highly capable 3D-informed reasoning, surpassing GPT-4o performance by 8.7%. Our systematic empirical design and the resulting findings offer valuable insights for future research in this direction. Our project page is available at: https://3d-spatial-reasoning.github.io/spatial-llm/
comment: CVPR 2025 highlight
♻ ☆ SpatialReasoner: Towards Explicit and Generalizable 3D Spatial Reasoning
Despite recent advances on multi-modal models, 3D spatial reasoning remains a challenging task for state-of-the-art open-source and proprietary models. Recent studies explore data-driven approaches and achieve enhanced spatial reasoning performance by fine-tuning models on 3D-related visual question-answering data. However, these methods typically perform spatial reasoning in an implicit manner and often fail on questions that are trivial to humans, even with long chain-of-thought reasoning. In this work, we introduce SpatialReasoner, a novel large vision-language model (LVLM) that addresses 3D spatial reasoning with explicit 3D representations shared between multiple stages--3D perception, computation, and reasoning. Explicit 3D representations provide a coherent interface that supports advanced 3D spatial reasoning and improves the generalization ability to novel question types. Furthermore, by analyzing the explicit 3D representations in multi-step reasoning traces of SpatialReasoner, we study the factual errors and identify key shortcomings of current LVLMs. Results show that our SpatialReasoner achieves improved performance on a variety of spatial reasoning benchmarks, outperforming Gemini 2.0 by 9.2% on 3DSRBench, and generalizes better when evaluating on novel 3D spatial reasoning questions. Our study bridges the 3D parsing capabilities of prior visual foundation models with the powerful reasoning abilities of large language models, opening new directions for 3D spatial reasoning.
comment: Project page: https://spatial-reasoner.github.io
♻ ☆ SMCD: High Realism Motion Style Transfer via Mamba-based Diffusion
Motion style transfer is a significant research direction in the field of computer vision, enabling virtual digital humans to rapidly switch between different styles of the same motion, thereby significantly enhancing the richness and realism of movements. It has been widely applied in multimedia scenarios such as films, games, and the metaverse. However, most existing methods adopt a two-stream structure, which tends to overlook the intrinsic relationship between content and style motions, leading to information loss and poor alignment. Moreover, when handling long-range motion sequences, these methods fail to effectively learn temporal dependencies, ultimately resulting in unnatural generated motions. To address these limitations, we propose a Unified Motion Style Diffusion (UMSD) framework, which simultaneously extracts features from both content and style motions and facilitates sufficient information interaction. Additionally, we introduce the Motion Style Mamba (MSM) denoiser, the first approach in the field of motion style transfer to leverage Mamba's powerful sequence modelling capability. Better capturing temporal relationships generates more coherent stylized motion sequences. Third, we design a diffusion-based content consistency loss and a style consistency loss to constrain the framework, ensuring that it inherits the content motion while effectively learning the characteristics of the style motion. Finally, extensive experiments demonstrate that our method outperforms state-of-the-art (SOTA) methods qualitatively and quantitatively, achieving more realistic and coherent motion style transfer.
♻ ☆ Multimodal Unsupervised Domain Generalization by Retrieving Across the Modality Gap
Domain generalization (DG) is an important problem that learns a model which generalizes to unseen test domains leveraging one or more source domains, under the assumption of shared label spaces. However, most DG methods assume access to abundant source data in the target label space, a requirement that proves overly stringent for numerous real-world applications, where acquiring the same label space as the target task is prohibitively expensive. For this setting, we tackle the multimodal version of the unsupervised domain generalization (MUDG) problem, which uses a large task-agnostic unlabeled source dataset during finetuning. Our framework does not explicitly assume any relationship between the source dataset and target task. Instead, it relies only on the premise that the source dataset can be accurately and efficiently searched in a joint vision-language space. We make three contributions in the MUDG setting. Firstly, we show theoretically that cross-modal approximate nearest neighbor search suffers from low recall due to the large distance between text queries and the image centroids used for coarse quantization. Accordingly, we propose paired k-means, a simple clustering algorithm that improves nearest neighbor recall by storing centroids in query space instead of image space. Secondly, we propose an adaptive text augmentation scheme for target labels designed to improve zero-shot accuracy and diversify retrieved image data. Lastly, we present two simple but effective components to further improve downstream target accuracy. We compare against state-of-the-art name-only transfer, source-free DG and zero-shot (ZS) methods on their respective benchmarks and show consistent improvement in accuracy on 20 diverse datasets. Code is available: https://github.com/Chris210634/mudg
♻ ☆ Revisiting Reweighted Risk for Calibration: AURC, Focal Loss, and Inverse Focal Loss
Several variants of reweighted risk functionals, such as focal losss, inverse focal loss, and the Area Under the Risk-Coverage Curve (AURC), have been proposed in the literature and claims have been made in relation to their calibration properties. However, focal loss and inverse focal loss propose vastly different weighting schemes. In this paper, we revisit a broad class of weighted risk functions commonly used in deep learning and establish a principled connection between these reweighting schemes and calibration errors. We show that minimizing calibration error is closely linked to the selective classification paradigm and demonstrate that optimizing a regularized variant of the AURC naturally leads to improved calibration. This regularized AURC shares a similar reweighting strategy with inverse focal loss, lending support to the idea that focal loss is less principled when calibration is a desired outcome. Direct AURC optimization offers greater flexibility through the choice of confidence score functions (CSFs). To enable gradient-based optimization, we introduce a differentiable formulation of the regularized AURC using the SoftRank technique. Empirical evaluations demonstrate that our AURC-based loss achieves competitive class-wise calibration performance across a range of datasets and model architectures.
♻ ☆ GigaSLAM: Large-Scale Monocular SLAM with Hierarchical Gaussian Splats
Tracking and mapping in large-scale, unbounded outdoor environments using only monocular RGB input presents substantial challenges for existing SLAM systems. Traditional Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) SLAM methods are typically limited to small, bounded indoor settings. To overcome these challenges, we introduce GigaSLAM, the first RGB NeRF / 3DGS-based SLAM framework for kilometer-scale outdoor environments, as demonstrated on the KITTI, KITTI 360, 4 Seasons and A2D2 datasets. Our approach employs a hierarchical sparse voxel map representation, where Gaussians are decoded by neural networks at multiple levels of detail. This design enables efficient, scalable mapping and high-fidelity viewpoint rendering across expansive, unbounded scenes. For front-end tracking, GigaSLAM utilizes a metric depth model combined with epipolar geometry and PnP algorithms to accurately estimate poses, while incorporating a Bag-of-Words-based loop closure mechanism to maintain robust alignment over long trajectories. Consequently, GigaSLAM delivers high-precision tracking and visually faithful rendering on urban outdoor benchmarks, establishing a robust SLAM solution for large-scale, long-term scenarios, and significantly extending the applicability of Gaussian Splatting SLAM systems to unbounded outdoor environments. GitHub: https://github.com/DengKaiCQ/GigaSLAM.
♻ ☆ k-NN as a Simple and Effective Estimator of Transferability
How well can one expect transfer learning to work in a new setting where the domain is shifted, the task is different, and the architecture changes? Many transfer learning metrics have been proposed to answer this question. But how accurate are their predictions in a realistic new setting? We conducted an extensive evaluation involving over 42,000 experiments comparing 23 transferability metrics across 16 different datasets to assess their ability to predict transfer performance. Our findings reveal that none of the existing metrics perform well across the board. However, we find that a simple k-nearest neighbor evaluation -- as is commonly used to evaluate feature quality for self-supervision -- not only surpasses existing metrics, but also offers better computational efficiency and ease of implementation.
♻ ☆ Mitigating Prior Shape Bias in Point Clouds via Differentiable Center Learning
Masked autoencoding and generative pretraining have achieved remarkable success in computer vision and natural language processing, and more recently, they have been extended to the point cloud domain. Nevertheless, existing point cloud models suffer from the issue of information leakage due to the pre-sampling of center points, which leads to trivial proxy tasks for the models. These approaches primarily focus on local feature reconstruction, limiting their ability to capture global patterns within point clouds. In this paper, we argue that the reduced difficulty of pretext tasks hampers the model's capacity to learn expressive representations. To address these limitations, we introduce a novel solution called the Differentiable Center Sampling Network (DCS-Net). It tackles the information leakage problem by incorporating both global feature reconstruction and local feature reconstruction as non-trivial proxy tasks, enabling simultaneous learning of both the global and local patterns within point cloud. Experimental results demonstrate that our method enhances the expressive capacity of existing point cloud models and effectively addresses the issue of information leakage.
♻ ☆ StereoVAE: A lightweight stereo-matching system using embedded GPUs
We present a lightweight system for stereo matching through embedded GPUs. It breaks the trade-off between accuracy and processing speed in stereo matching, enabling our embedded system to further improve the matching accuracy while ensuring real-time processing. The main idea of our method is to construct a tiny neural network based on variational auto-encoder (VAE) to upsample and refinement a small size of coarse disparity map, which is first generated by a traditional matching method. The proposed hybrid structure cannot only bring the advantage of traditional methods in terms of computational complexity, but also ensure the matching accuracy under the impact of neural network. Extensive experiments on the KITTI 2015 benchmark demonstrate that our tiny system exhibits high robustness in improving the accuracy of the coarse disparity maps generated by different algorithms, while also running in real-time on embedded GPUs.
comment: Will revise part of the contents
♻ ☆ TinyLLaVA-Video: Towards Smaller LMMs for Video Understanding with Group Resampler
Video behavior recognition and scene understanding are fundamental tasks in multimodal intelligence, serving as critical building blocks for numerous real-world applications. Through large multimodal models (LMMs) have achieved remarkable progress in video understanding, most existing open-source models rely on over 7B parameters and require large-scale datasets for training, making them resource-intensive and inaccessible to many researchers. Furthermore, lightweight models face persistent challenges in effectively processing long visual sequences and temporal understanding. In this work, we introduce TinyLLaVA-Video, a lightweight yet powerful video understanding model with approximately 3.6B parameters. The cornerstone of our design is the video-level group resampler, a novel mechanism that significantly reduces and controls the number of visual tokens at the video level. Unlike traditional image-level resampler, our approach effectively mitigates redundancy while enhancing temporal comprehension, leading to improved performance on video-based tasks. In addition, TinyLLaVA-Video demonstrates exceptional efficiency, requiring only one day of training on 8 A100-40G GPUs. It surpasses several existing 7B-parameter models on multiple benchmarks. We believe this work provides a valuable foundation for future research on lightweight video understanding models. The code and weights is available at https://github.com/ZhangXJ199/TinyLLaVA-Video.
comment: code and training recipes are available at https://github.com/ZhangXJ199/TinyLLaVA-Video
♻ ☆ Delving into RL for Image Generation with CoT: A Study on DPO vs. GRPO
Recent advancements underscore the significant role of Reinforcement Learning (RL) in enhancing the Chain-of-Thought (CoT) reasoning capabilities of large language models (LLMs). Two prominent RL algorithms, Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO), are central to these developments, showcasing different pros and cons. Autoregressive image generation, also interpretable as a sequential CoT reasoning process, presents unique challenges distinct from LLM-based CoT reasoning. These encompass ensuring text-image consistency, improving image aesthetic quality, and designing sophisticated reward models, rather than relying on simpler rule-based rewards. While recent efforts have extended RL to this domain, these explorations typically lack an in-depth analysis of the domain-specific challenges and the characteristics of different RL strategies. To bridge this gap, we provide the first comprehensive investigation of the GRPO and DPO algorithms in autoregressive image generation, evaluating their in-domain performance and out-of-domain generalization, while scrutinizing the impact of different reward models on their respective capabilities. Our findings reveal that GRPO and DPO exhibit distinct advantages, and crucially, that reward models possessing stronger intrinsic generalization capabilities potentially enhance the generalization potential of the applied RL algorithms. Furthermore, we systematically explore three prevalent scaling strategies to enhance both their in-domain and out-of-domain proficiency, deriving unique insights into efficiently scaling performance for each paradigm. We hope our study paves a new path for inspiring future work on developing more effective RL algorithms to achieve robust CoT reasoning in the realm of autoregressive image generation. Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
comment: Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
♻ ☆ ZigzagPointMamba: Spatial-Semantic Mamba for Point Cloud Understanding
State Space models (SSMs) such as PointMamba enable efficient feature extraction for point cloud self-supervised learning with linear complexity, outperforming Transformers in computational efficiency. However, existing PointMamba-based methods depend on complex token ordering and random masking, which disrupt spatial continuity and local semantic correlations. We propose ZigzagPointMamba to tackle these challenges. The core of our approach is a simple zigzag scan path that globally sequences point cloud tokens, enhancing spatial continuity by preserving the proximity of spatially adjacent point tokens. Nevertheless, random masking undermines local semantic modeling in self-supervised learning. To address this, we introduce a Semantic-Siamese Masking Strategy (SMS), which masks semantically similar tokens to facilitate reconstruction by integrating local features of original and similar tokens. This overcomes the dependence on isolated local features and enables robust global semantic modeling. Our pre-trained ZigzagPointMamba weights significantly improve downstream tasks, achieving a 1.59% mIoU gain on ShapeNetPart for part segmentation, a 0.4% higher accuracy on ModelNet40 for classification, and 0.19%, 1.22%, and 0.72% higher accuracies respectively for the classification tasks on the OBJ-BG, OBJ-ONLY, and PB-T50-RS subsets of ScanObjectNN.
♻ ☆ CAD-Llama: Leveraging Large Language Models for Computer-Aided Design Parametric 3D Model Generation
Recently, Large Language Models (LLMs) have achieved significant success, prompting increased interest in expanding their generative capabilities beyond general text into domain-specific areas. This study investigates the generation of parametric sequences for computer-aided design (CAD) models using LLMs. This endeavor represents an initial step towards creating parametric 3D shapes with LLMs, as CAD model parameters directly correlate with shapes in three-dimensional space. Despite the formidable generative capacities of LLMs, this task remains challenging, as these models neither encounter parametric sequences during their pretraining phase nor possess direct awareness of 3D structures. To address this, we present CAD-Llama, a framework designed to enhance pretrained LLMs for generating parametric 3D CAD models. Specifically, we develop a hierarchical annotation pipeline and a code-like format to translate parametric 3D CAD command sequences into Structured Parametric CAD Code (SPCC), incorporating hierarchical semantic descriptions. Furthermore, we propose an adaptive pretraining approach utilizing SPCC, followed by an instruction tuning process aligned with CAD-specific guidelines. This methodology aims to equip LLMs with the spatial knowledge inherent in parametric sequences. Experimental results demonstrate that our framework significantly outperforms prior autoregressive methods and existing LLM baselines.
♻ ☆ ARGUS: Hallucination and Omission Evaluation in Video-LLMs
Video large language models have not yet been widely deployed, largely due to their tendency to hallucinate. Typical benchmarks for Video-LLMs rely simply on multiple-choice questions. Unfortunately, VideoLLMs hallucinate far more aggressively on freeform text generation tasks like video captioning than they do on multiple choice verification tasks. To address this weakness, we propose ARGUS, a VideoLLM benchmark that measures freeform video captioning performance. By comparing VideoLLM outputs to human ground truth captions, ARGUS quantifies dual metrics. First, we measure the rate of hallucinations in the form of incorrect statements about video content or temporal relationships. Second, we measure the rate at which the model omits important descriptive details. Together, these dual metrics form a comprehensive view of video captioning performance.
comment: Project page with all the artifacts: https://ruchitrawal.github.io/argus
♻ ☆ Enhancing Safety of Foundation Models for Visual Navigation through Collision Avoidance via Repulsive Estimation
We propose CARE (Collision Avoidance via Repulsive Estimation), a plug-and-play module that enhances the safety of vision-based navigation without requiring additional range sensors or fine-tuning of pretrained models. While recent foundation models using only RGB inputs have shown strong performance, they often fail to generalize in out-of-distribution (OOD) environments with unseen objects or variations in camera parameters (e.g., field of view, pose, or focal length). Without fine-tuning, these models may generate unsafe trajectories that lead to collisions, requiring costly data collection and retraining. CARE addresses this limitation by seamlessly integrating with any RGB-based navigation system that outputs local trajectories, dynamically adjusting them using repulsive force vectors derived from monocular depth maps. We evaluate CARE by combining it with state-of-the-art vision-based navigation models across multiple robot platforms. CARE consistently reduces collision rates (up to 100%) without sacrificing goal-reaching performance and improves collision-free travel distance by up to 10.7x in exploration tasks.
comment: 16 pages, 6 figures
♻ ☆ A Culturally-Aware Benchmark for Person Re-Identification in Modest Attire
Person Re-Identification (ReID) is a fundamental task in computer vision with critical applications in surveillance and security. Despite progress in recent years, most existing ReID models often struggle to generalize across diverse cultural contexts, particularly in Islamic regions like Iran, where modest clothing styles are prevalent. Existing datasets predominantly feature Western and East Asian fashion, limiting their applicability in these settings. To address this gap, we introduce Iran University of Science and Technology Person Re-Identification (IUST_PersonReId), a dataset designed to reflect the unique challenges of ReID in new cultural environments, emphasizing modest attire and diverse scenarios from Iran, including markets, campuses, and mosques. Experiments on IUST_PersonReId with state-of-the-art models, such as Semantic Controllable Self-supervised Learning (SOLIDER) and Contrastive Language-Image Pretraining Re-Identification (CLIP-ReID), reveal significant performance drops compared to benchmarks like Market1501 and Multi-Scene MultiTime (MSMT17), specifically, SOLIDER shows a drop of 50.75% and 23.01% Mean Average Precision (mAP) compared to Market1501 and MSMT17 respectively, while CLIP-ReID exhibits a drop of 38.09% and 21.74% mAP, highlighting the challenges posed by occlusion and limited distinctive features. Sequence-based evaluations show improvements by leveraging temporal context, emphasizing the dataset's potential for advancing culturally sensitive and robust ReID systems. IUST_PersonReId offers a critical resource for addressing fairness and bias in ReID research globally.
♻ ☆ Fighting Fire with Fire (F3): A Training-free and Efficient Visual Adversarial Example Purification Method in LVLMs
Recent advances in large vision-language models (LVLMs) have showcased their remarkable capabilities across a wide range of multimodal vision-language tasks. However, these models remain vulnerable to visual adversarial attacks, which can substantially compromise their performance. Despite their potential impact, the development of effective methods for purifying such adversarial examples has received relatively limited attention. In this paper, we introduce F3, a novel adversarial purification framework that employs a counterintuitive "fighting fire with fire" strategy: intentionally introducing simple perturbations to adversarial examples to mitigate their harmful effects. Specifically, F3 leverages cross-modal attentions derived from randomly perturbed adversary examples as reference targets. By injecting noise into these adversarial examples, F3 effectively refines their attention, resulting in cleaner and more reliable model outputs. Remarkably, this seemingly paradoxical approach of employing noise to counteract adversarial attacks yields impressive purification results. Furthermore, F3 offers several distinct advantages: it is training-free and straightforward to implement, and exhibits significant computational efficiency improvements compared to existing purification methods. These attributes render F3 particularly suitable for large-scale industrial applications where both robust performance and operational efficiency are critical priorities. The code will be made publicly available.
comment: 14 pages, 5 figures
♻ ☆ VIST-GPT: Ushering in the Era of Visual Storytelling with LLMs?
Visual storytelling is an interdisciplinary field combining computer vision and natural language processing to generate cohesive narratives from sequences of images. This paper presents a novel approach that leverages recent advancements in multimodal models, specifically adapting transformer-based architectures and large multimodal models, for the visual storytelling task. Leveraging the large-scale Visual Storytelling (VIST) dataset, our VIST-GPT model produces visually grounded, contextually appropriate narratives. We address the limitations of traditional evaluation metrics, such as BLEU, METEOR, ROUGE, and CIDEr, which are not suitable for this task. Instead, we utilize RoViST and GROOVIST, novel reference-free metrics designed to assess visual storytelling, focusing on visual grounding, coherence, and non-redundancy. These metrics provide a more nuanced evaluation of narrative quality, aligning closely with human judgment.
♻ ☆ From Generation to Generalization: Emergent Few-Shot Learning in Video Diffusion Models
Video Diffusion Models (VDMs) have emerged as powerful generative tools, capable of synthesizing high-quality spatiotemporal content. Yet, their potential goes far beyond mere video generation. We argue that the training dynamics of VDMs, driven by the need to model coherent sequences, naturally pushes them to internalize structured representations and an implicit understanding of the visual world. To probe the extent of this internal knowledge, we introduce a few-shot fine-tuning framework that repurposes VDMs for new tasks using only a handful of examples. Our method transforms each task into a visual transition, enabling the training of LoRA weights on short input-output sequences without altering the generative interface of a frozen VDM. Despite minimal supervision, the model exhibits strong generalization across diverse tasks, from low-level vision (for example, segmentation and pose estimation) to high-level reasoning (for example, on ARC-AGI). These results reframe VDMs as more than generative engines. They are adaptable visual learners with the potential to serve as the backbone for future foundation models in vision.
comment: 27 pages, 23 figures, 9 tables. Project page: https://pabloacuaviva.github.io/Gen2Gen/
♻ ☆ Visualization of a multidimensional point cloud as a 3D swarm of avatars
This paper proposes an innovative technique for representing multidimensional datasets using icons inspired by Chernoff faces. Our approach combines classical projection techniques with the explicit assignment of selected data dimensions to avatar (facial) features, leveraging the innate human ability to interpret facial traits. We introduce a semantic division of data dimensions into intuitive and technical categories, assigning the former to avatar features and projecting the latter into a four-dimensional (or higher) spatial embedding. The technique is implemented as a plugin for the open-source dpVision visualization platform, enabling users to interactively explore data in the form of a swarm of avatars whose spatial positions and visual features jointly encode various aspects of the dataset. Experimental results with synthetic test data and a 12-dimensional dataset of Portuguese Vinho Verde wines demonstrate that the proposed method enhances interpretability and facilitates the analysis of complex data structures.
comment: 26 pages, 13 figures
♻ ☆ EAM: Enhancing Anything with Diffusion Transformers for Blind Super-Resolution
Utilizing pre-trained Text-to-Image (T2I) diffusion models to guide Blind Super-Resolution (BSR) has become a predominant approach in the field. While T2I models have traditionally relied on U-Net architectures, recent advancements have demonstrated that Diffusion Transformers (DiT) achieve significantly higher performance in this domain. In this work, we introduce Enhancing Anything Model (EAM), a novel BSR method that leverages DiT and outperforms previous U-Net-based approaches. We introduce a novel block, $\Psi$-DiT, which effectively guides the DiT to enhance image restoration. This block employs a low-resolution latent as a separable flow injection control, forming a triple-flow architecture that effectively leverages the prior knowledge embedded in the pre-trained DiT. To fully exploit the prior guidance capabilities of T2I models and enhance their generalization in BSR, we introduce a progressive Masked Image Modeling strategy, which also reduces training costs. Additionally, we propose a subject-aware prompt generation strategy that employs a robust multi-modal model in an in-context learning framework. This strategy automatically identifies key image areas, provides detailed descriptions, and optimizes the utilization of T2I diffusion priors. Our experiments demonstrate that EAM achieves state-of-the-art results across multiple datasets, outperforming existing methods in both quantitative metrics and visual quality.
comment: The company audit did not pass, there are some mistake in paper
♻ ☆ Zero-Shot Gaze-based Volumetric Medical Image Segmentation CVPR 2025
Accurate segmentation of anatomical structures in volumetric medical images is crucial for clinical applications, including disease monitoring and cancer treatment planning. Contemporary interactive segmentation models, such as Segment Anything Model 2 (SAM-2) and its medical variant (MedSAM-2), rely on manually provided prompts like bounding boxes and mouse clicks. In this study, we introduce eye gaze as a novel informational modality for interactive segmentation, marking the application of eye-tracking for 3D medical image segmentation. We evaluate the performance of using gaze-based prompts with SAM-2 and MedSAM-2 using both synthetic and real gaze data. Compared to bounding boxes, gaze-based prompts offer a time-efficient interaction approach with slightly lower segmentation quality. Our findings highlight the potential of using gaze as a complementary input modality for interactive 3D medical image segmentation.
comment: Accepted to MMFM-BIOMED Workshop @ CVPR 2025
♻ ☆ Cracking the Code of Hallucination in LVLMs with Vision-aware Head Divergence ACL2025
Large vision-language models (LVLMs) have made substantial progress in integrating large language models (LLMs) with visual inputs, enabling advanced multimodal reasoning. Despite their success, a persistent challenge is hallucination-where generated text fails to accurately reflect visual content-undermining both accuracy and reliability. Existing methods focus on alignment training or decoding refinements but primarily address symptoms at the generation stage without probing the underlying causes. In this work, we investigate the internal mechanisms driving hallucination in LVLMs, with an emphasis on the multi-head attention module. Specifically, we introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context. Based on this, our findings reveal the presence of vision-aware attention heads that are more attuned to visual information; however, the model's overreliance on its prior language patterns is closely related to hallucinations. Building on these insights, we propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads. Extensive experiments demonstrate that our method achieves superior performance compared to state-of-the-art approaches in mitigating hallucinations, while maintaining high efficiency with negligible additional time overhead.
comment: ACL2025
♻ ☆ Dense Geometry Supervision for Underwater Depth Estimation
The field of monocular depth estimation is continually evolving with the advent of numerous innovative models and extensions. However, research on monocular depth estimation methods specifically for underwater scenes remains limited, compounded by a scarcity of relevant data and methodological support. This paper proposes a novel approach to address the existing challenges in current monocular depth estimation methods for underwater environments. We construct an economically efficient dataset suitable for underwater scenarios by employing multi-view depth estimation to generate supervisory signals and corresponding enhanced underwater images. we introduces a texture-depth fusion module, designed according to the underwater optical imaging principles, which aims to effectively exploit and integrate depth information from texture cues. Experimental results on the FLSea dataset demonstrate that our approach significantly improves the accuracy and adaptability of models in underwater settings. This work offers a cost-effective solution for monocular underwater depth estimation and holds considerable promise for practical applications.
♻ ☆ NaturalBench: Evaluating Vision-Language Models on Natural Adversarial Samples NeurIPS 24
Vision-language models (VLMs) have made significant progress in recent visual-question-answering (VQA) benchmarks that evaluate complex visio-linguistic reasoning. However, are these models truly effective? In this work, we show that VLMs still struggle with natural images and questions that humans can easily answer, which we term natural adversarial samples. We also find it surprisingly easy to generate these VQA samples from natural image-text corpora using off-the-shelf models like CLIP and ChatGPT. We propose a semi-automated approach to collect a new benchmark, NaturalBench, for reliably evaluating VLMs with 10,000 human-verified VQA samples. Crucially, we adopt a $\textbf{vision-centric}$ design by pairing each question with two images that yield different answers, preventing blind solutions from answering without using the images. This makes NaturalBench more challenging than previous benchmarks that can be solved with commonsense priors. We evaluate 53 state-of-the-art VLMs on NaturalBench, showing that models like LLaVA-OneVision, Cambrian-1, Llama3.2-Vision, Molmo, Qwen2-VL, and even GPT-4o lag 50%-70% behind human performance (over 90%). We analyze why NaturalBench is hard from two angles: (1) Compositionality: Solving NaturalBench requires diverse visio-linguistic skills, including understanding attribute bindings, object relationships, and advanced reasoning like logic and counting. To this end, unlike prior work that uses a single tag per sample, we tag each NaturalBench sample with 1 to 8 skill tags for fine-grained evaluation. (2) Biases: NaturalBench exposes severe biases in VLMs, as models often choose the same answer regardless of the image. Lastly, we apply our benchmark curation method to diverse data sources, including long captions (over 100 words) and non-English languages like Chinese and Hindi, highlighting its potential for dynamic evaluations of VLMs.
comment: Accepted to NeurIPS 24; We open-source our dataset at: https://huggingface.co/datasets/BaiqiL/NaturalBench ; Project page at: https://linzhiqiu.github.io/papers/naturalbench/
♻ ☆ CASE: Contrastive Activation for Saliency Estimation
Saliency methods are widely used to visualize which input features are deemed relevant to a model's prediction. However, their visual plausibility can obscure critical limitations. In this work, we propose a diagnostic test for class sensitivity: a method's ability to distinguish between competing class labels on the same input. Through extensive experiments, we show that many widely used saliency methods produce nearly identical explanations regardless of the class label, calling into question their reliability. We find that class-insensitive behavior persists across architectures and datasets, suggesting the failure mode is structural rather than model-specific. Motivated by these findings, we introduce CASE, a contrastive explanation method that isolates features uniquely discriminative for the predicted class. We evaluate CASE using the proposed diagnostic and a perturbation-based fidelity test, and show that it produces faithful and more class-specific explanations than existing methods.
comment: 9 pages, 5 figures. Submitted to IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
♻ ☆ Multimodal Rationales for Explainable Visual Question Answering CVPR
Visual Question Answering (VQA) is a challenging task of predicting the answer to a question about the content of an image. Prior works directly evaluate the answering models by simply calculating the accuracy of predicted answers. However, the inner reasoning behind the predictions is disregarded in such a "black box" system, and we cannot ascertain the trustworthiness of the predictions. Even more concerning, in some cases, these models predict correct answers despite focusing on irrelevant visual regions or textual tokens. To develop an explainable and trustworthy answering system, we propose a novel model termed MRVQA (Multimodal Rationales for VQA), which provides visual and textual rationales to support its predicted answers. To measure the quality of generated rationales, a new metric vtS (visual-textual Similarity) score is introduced from both visual and textual perspectives. Considering the extra annotations distinct from standard VQA, MRVQA is trained and evaluated using samples synthesized from some existing datasets. Extensive experiments across three EVQA datasets demonstrate that MRVQA achieves new state-of-the-art results through additional rationale generation, enhancing the trustworthiness of the explainable VQA model. The code and the synthesized dataset are released under https://github.com/lik1996/MRVQA2025.
comment: Accepted to CVPR workshops 2025
♻ ☆ Just Project! Multi-Channel Despeckling, the Easy Way
Reducing speckle fluctuations in multi-channel SAR images is essential in many applications of SAR imaging such as polarimetric classification or interferometric height estimation. While single-channel despeckling has widely benefited from the application of deep learning techniques, extensions to multi-channel SAR images are much more challenging. This paper introduces MuChaPro, a generic framework that exploits existing single-channel despeckling methods. The key idea is to generate numerous single-channel projections, restore these projections, and recombine them into the final multi-channel estimate. This simple approach is shown to be effective in polarimetric and/or interferometric modalities. A special appeal of MuChaPro is the possibility to apply a self-supervised training strategy to learn sensor-specific networks for single-channel despeckling.
♻ ☆ Adaptive path planning for efficient object search by UAVs in agricultural fields
This paper presents an adaptive path planner for object search in agricultural fields using UAVs. The path planner uses a high-altitude coverage flight path and plans additional low-altitude inspections when the detection network is uncertain. The path planner was evaluated in an offline simulation environment containing real-world images. We trained a YOLOv8 detection network to detect artificial plants placed in grass fields to showcase the potential of our path planner. We evaluated the effect of different detection certainty measures, optimized the path planning parameters, investigated the effects of localization errors, and different numbers of objects in the field. The YOLOv8 detection confidence worked best to differentiate between true and false positive detections and was therefore used in the adaptive planner. The optimal parameters of the path planner depended on the distribution of objects in the field. When the objects were uniformly distributed, more low-altitude inspections were needed compared to a non-uniform distribution of objects, resulting in a longer path length. The adaptive planner proved to be robust against localization uncertainty. When increasing the number of objects, the flight path length increased, especially when the objects were uniformly distributed. When the objects were non-uniformly distributed, the adaptive path planner yielded a shorter path than a low-altitude coverage path, even with a high number of objects. Overall, the presented adaptive path planner allowed finding non-uniformly distributed objects in a field faster than a coverage path planner and resulted in a compatible detection accuracy. The path planner is made available at https://github.com/wur-abe/uav_adaptive_planner.
♻ ☆ EVA: An Embodied World Model for Future Video Anticipation
Video generation models have made significant progress in simulating future states, showcasing their potential as world simulators in embodied scenarios. However, existing models often lack robust understanding, limiting their ability to perform multi-step predictions or handle Out-of-Distribution (OOD) scenarios. To address this challenge, we propose the Reflection of Generation (RoG), a set of intermediate reasoning strategies designed to enhance video prediction. It leverages the complementary strengths of pre-trained vision-language and video generation models, enabling them to function as a world model in embodied scenarios. To support RoG, we introduce Embodied Video Anticipation Benchmark(EVA-Bench), a comprehensive benchmark that evaluates embodied world models across diverse tasks and scenarios, utilizing both in-domain and OOD datasets. Building on this foundation, we devise a world model, Embodied Video Anticipator (EVA), that follows a multistage training paradigm to generate high-fidelity video frames and apply an autoregressive strategy to enable adaptive generalization for longer video sequences. Extensive experiments demonstrate the efficacy of EVA in various downstream tasks like video generation and robotics, thereby paving the way for large-scale pre-trained models in real-world video prediction applications. The video demos are available at \hyperlink{https://sites.google.com/view/icml-eva}{https://sites.google.com/view/icml-eva}.
LMPOcc: 3D Semantic Occupancy Prediction Utilizing Long-Term Memory Prior from Historical Traversals
Vision-based 3D semantic occupancy prediction is critical for autonomous driving, enabling unified modeling of static infrastructure and dynamic agents. In practice, autonomous vehicles may repeatedly traverse identical geographic locations under varying environmental conditions, such as weather fluctuations and illumination changes. Existing methods in 3D occupancy prediction predominantly integrate adjacent temporal contexts. However, these works neglect to leverage perceptual information, which is acquired from historical traversals of identical geographic locations. In this paper, we propose Longterm Memory Prior Occupancy (LMPOcc), the first 3D occupancy prediction methodology that exploits long-term memory priors derived from historical traversal perceptual outputs. We introduce a plug-and-play architecture that integrates long-term memory priors to enhance local perception while simultaneously constructing global occupancy representations. To adaptively aggregate prior features and current features, we develop an efficient lightweight Current-Prior Fusion module. Moreover, we propose a model-agnostic prior format to ensure compatibility across diverse occupancy prediction baselines. LMPOcc achieves state-of-the-art performance validated on the Occ3D-nuScenes benchmark, especially on static semantic categories. Additionally, experimental results demonstrate LMPOcc's ability to construct global occupancy through multi-vehicle crowdsourcing.
♻ ☆ Meta-Adaptive Prompt Distillation for Few-Shot Visual Question Answering
Large Multimodal Models (LMMs) often rely on in-context learning (ICL) to perform new tasks with minimal supervision. However, ICL performance, especially in smaller LMMs, is inconsistent and does not always improve monotonically with increasing examples. We hypothesize that this occurs due to the LMM being overwhelmed by additional information present in the image embeddings, which is not required for the downstream task. To address this, we propose a meta-learning approach that provides an alternative for inducing few-shot capabilities in LMMs, using a fixed set of soft prompts that are distilled from task-relevant image features and can be adapted at test time using a few examples. To facilitate this distillation, we introduce an attention-mapper module that can be easily integrated with the popular LLaVA v1.5 architecture and is jointly learned with soft prompts, enabling task adaptation in LMMs under low-data regimes with just a few gradient steps. Evaluation on the VL-ICL Bench shows that our method consistently outperforms ICL and related prompt-tuning approaches, even under image perturbations, improving task induction and reasoning across visual question answering tasks.
♻ ☆ Human-Aligned Image Models Improve Visual Decoding from the Brain ICML 2025
Decoding visual images from brain activity has significant potential for advancing brain-computer interaction and enhancing the understanding of human perception. Recent approaches align the representation spaces of images and brain activity to enable visual decoding. In this paper, we introduce the use of human-aligned image encoders to map brain signals to images. We hypothesize that these models more effectively capture perceptual attributes associated with the rapid visual stimuli presentations commonly used in visual brain data recording experiments. Our empirical results support this hypothesis, demonstrating that this simple modification improves image retrieval accuracy by up to 21% compared to state-of-the-art methods. Comprehensive experiments confirm consistent performance improvements across diverse EEG architectures, image encoders, alignment methods, participants, and brain imaging modalities
comment: Accepted to ICML 2025
♻ ☆ Everything Can Be Described in Words: A Simple Unified Multi-Modal Framework with Semantic and Temporal Alignment
While multi-modal learning has advanced significantly, current approaches often create inconsistencies in representation and reasoning of different modalities. We propose UMaT, a theoretically-grounded framework that unifies visual and auditory inputs as structured text for large language models, addressing semantic alignment, temporal synchronization, and efficient sparse information retrieval. It significantly improves state-of-the-art Long Video Question Answering accuracy (up to 13.7%, and 16.9% on long videos) via redundancy minimization and structured textual representation for unified multi-modal reasoning
♻ ☆ The Face of Populism: Examining Differences in Facial Emotional Expressions of Political Leaders Using Machine Learning
Populist rhetoric employed on online media is characterized as deeply impassioned and often imbued with strong emotions. The aim of this paper is to empirically investigate the differences in affective nonverbal communication of political leaders. We use a deep-learning approach to process a sample of 220 YouTube videos of political leaders from 15 different countries, analyze their facial expressions of emotion and then examine differences in average emotion scores representing the relative presence of 6 emotional states (anger, disgust, fear, happiness, sadness, and surprise) and a neutral expression for each frame of the YouTube video. Based on a sample of manually coded images, we find that this deep-learning approach has 53-60\% agreement with human labels. We observe statistically significant differences in the average score of negative emotions between groups of leaders with varying degrees of populist rhetoric.
comment: Version 4.0: Annotation study added, supplementary information extended
♻ ☆ ATI: Any Trajectory Instruction for Controllable Video Generation
We propose a unified framework for motion control in video generation that seamlessly integrates camera movement, object-level translation, and fine-grained local motion using trajectory-based inputs. In contrast to prior methods that address these motion types through separate modules or task-specific designs, our approach offers a cohesive solution by projecting user-defined trajectories into the latent space of pre-trained image-to-video generation models via a lightweight motion injector. Users can specify keypoints and their motion paths to control localized deformations, entire object motion, virtual camera dynamics, or combinations of these. The injected trajectory signals guide the generative process to produce temporally consistent and semantically aligned motion sequences. Our framework demonstrates superior performance across multiple video motion control tasks, including stylized motion effects (e.g., motion brushes), dynamic viewpoint changes, and precise local motion manipulation. Experiments show that our method provides significantly better controllability and visual quality compared to prior approaches and commercial solutions, while remaining broadly compatible with various state-of-the-art video generation backbones. Project page: https://anytraj.github.io/.
♻ ☆ A Survey of the Self Supervised Learning Mechanisms for Vision Transformers
Vision Transformers (ViTs) have recently demonstrated remarkable performance in computer vision tasks. However, their parameter-intensive nature and reliance on large amounts of data for effective performance have shifted the focus from traditional human-annotated labels to unsupervised learning and pretraining strategies that uncover hidden structures within the data. In response to this challenge, self-supervised learning (SSL) has emerged as a promising paradigm. SSL leverages inherent relationships within the data itself as a form of supervision, eliminating the need for manual labeling and offering a more scalable and resource-efficient alternative for model training. Given these advantages, it is imperative to explore the integration of SSL techniques with ViTs, particularly in scenarios with limited labeled data. Inspired by this evolving trend, this survey aims to systematically review SSL mechanisms tailored for ViTs. We propose a comprehensive taxonomy to classify SSL techniques based on their representations and pre-training tasks. Additionally, we discuss the motivations behind SSL, review prominent pre-training tasks, and highlight advancements and challenges in this field. Furthermore, we conduct a comparative analysis of various SSL methods designed for ViTs, evaluating their strengths, limitations, and applicability to different scenarios.
comment: 40 Pages, 4 Figures, 7 Tables
♻ ☆ How Do Images Align and Complement LiDAR? Towards a Harmonized Multi-modal 3D Panoptic Segmentation ICML
LiDAR-based 3D panoptic segmentation often struggles with the inherent sparsity of data from LiDAR sensors, which makes it challenging to accurately recognize distant or small objects. Recently, a few studies have sought to overcome this challenge by integrating LiDAR inputs with camera images, leveraging the rich and dense texture information provided by the latter. While these approaches have shown promising results, they still face challenges, such as misalignment during data augmentation and the reliance on post-processing steps. To address these issues, we propose Image-Assists-LiDAR (IAL), a novel multi-modal 3D panoptic segmentation framework. In IAL, we first introduce a modality-synchronized data augmentation strategy, PieAug, to ensure alignment between LiDAR and image inputs from the start. Next, we adopt a transformer decoder to directly predict panoptic segmentation results. To effectively fuse LiDAR and image features into tokens for the decoder, we design a Geometric-guided Token Fusion (GTF) module. Additionally, we leverage the complementary strengths of each modality as priors for query initialization through a Prior-based Query Generation (PQG) module, enhancing the decoder's ability to generate accurate instance masks. Our IAL framework achieves state-of-the-art performance compared to previous multi-modal 3D panoptic segmentation methods on two widely used benchmarks. Code and models are publicly available at .
comment: Accepted at the 2025 International Conference on Machine Learning (ICML)
♻ ☆ Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species, yet computational models that capture this ability remain underdeveloped. We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding. We constructed a comprehensive dataset (ToolNet) containing 115 common tools labeled with 13 carefully designed attributes spanning physical, functional, and psychological properties, paired with natural language scenarios describing tool usage. Visual encoders (ResNet or ViT) extract attributes from tool images while fine-tuned language models (GPT-2, LLaMA, DeepSeek) derive required attributes from task descriptions. Our approach achieves 74% accuracy in tool selection tasks-significantly outperforming direct tool matching (20%) and smaller multimodal models (21%-58%), while approaching performance of much larger models like GPT-4o (73%) with substantially fewer parameters. Ablation studies revealed that manipulation-related attributes (graspability, hand-relatedness, elongation) consistently prove most critical across modalities. This work provides a parameter-efficient, interpretable solution that mimics human-like tool cognition, advancing both cognitive science understanding and practical applications in tool selection tasks.
♻ ☆ An Explainable Vision Transformer with Transfer Learning Combined with Support Vector Machine Based Efficient Drought Stress Identification
Early detection of drought stress is critical for taking timely measures for reducing crop loss before the drought impact becomes irreversible. The subtle phenotypical and physiological changes in response to drought stress are captured by non-invasive imaging techniques and these imaging data serve as valuable resource for machine learning methods to identify drought stress. While convolutional neural networks (CNNs) are in wide use, vision transformers (ViTs) present a promising alternative in capturing long-range dependencies and intricate spatial relationships, thereby enhancing the detection of subtle indicators of drought stress. We propose an explainable deep learning pipeline that leverages the power of ViTs for drought stress detection in potato crops using aerial imagery. We applied two distinct approaches: a synergistic combination of ViT and support vector machine (SVM), where ViT extracts intricate spatial features from aerial images, and SVM classifies the crops as stressed or healthy and an end-to-end approach using a dedicated classification layer within ViT to directly detect drought stress. Our key findings explain the ViT model's decision-making process by visualizing attention maps. These maps highlight the specific spatial features within the aerial images that the ViT model focuses as the drought stress signature. Our findings demonstrate that the proposed methods not only achieve high accuracy in drought stress identification but also shedding light on the diverse subtle plant features associated with drought stress. This offers a robust and interpretable solution for drought stress monitoring for farmers to undertake informed decisions for improved crop management.
comment: 33 pages, 7 figures, 8 tables
♻ ☆ Mixture of Decoding: An Attention-Inspired Adaptive Decoding Strategy to Mitigate Hallucinations in Large Vision-Language Models ACL 2025
Large Vision-Language Models (LVLMs) have exhibited impressive capabilities across various visual tasks, yet they remain hindered by the persistent challenge of hallucinations. To address this critical issue, we propose Mixture of Decoding (MoD), a novel approach for hallucination mitigation that dynamically adapts decoding strategies by evaluating the correctness of the model's attention on image tokens. Specifically, MoD measures the consistency between outputs generated from the original image tokens and those derived from the model's attended image tokens, to distinguish the correctness aforementioned. If the outputs are consistent, indicating correct attention, MoD employs a complementary strategy to amplify critical information. Conversely, if the outputs are inconsistent, suggesting erroneous attention, MoD utilizes a contrastive strategy to suppress misleading information. Extensive experiments demonstrate that MoD significantly outperforms existing decoding methods across multiple mainstream benchmarks, effectively mitigating hallucinations in LVLMs. The code is available at https://github.com/xlchen0205/MoD.
comment: Accepted to Findings of ACL 2025
♻ ☆ Dual Attention Residual U-Net for Accurate Brain Ultrasound Segmentation in IVH Detection
Intraventricular hemorrhage (IVH) is a severe neurological complication among premature infants, necessitating early and accurate detection from brain ultrasound (US) images to improve clinical outcomes. While recent deep learning methods offer promise for computer-aided diagnosis, challenges remain in capturing both local spatial details and global contextual dependencies critical for segmenting brain anatomies. In this work, we propose an enhanced Residual U-Net architecture incorporating two complementary attention mechanisms: the Convolutional Block Attention Module (CBAM) and a Sparse Attention Layer (SAL). The CBAM improves the model's ability to refine spatial and channel-wise features, while the SAL introduces a dual-branch design, sparse attention filters out low-confidence query-key pairs to suppress noise, and dense attention ensures comprehensive information propagation. Extensive experiments on the Brain US dataset demonstrate that our method achieves state-of-the-art segmentation performance, with a Dice score of 89.04% and IoU of 81.84% for ventricle region segmentation. These results highlight the effectiveness of integrating spatial refinement and attention sparsity for robust brain anatomy detection. Code is available at: https://github.com/DanYuan001/BrainImgSegment.
comment: 10 pages,6 figures and 3 tables
♻ ☆ MedVersa: A Generalist Foundation Model for Medical Image Interpretation
Current medical AI systems are often limited to narrow applications, hindering widespread adoption. We present MedVersa, a generalist foundation model trained on tens of millions of compiled medical instances. MedVersa unlocks generalist learning from multimodal inputs and outputs, representing the first example of a generalist model reaching competitive performance with leading specialized solutions across a variety of medical imaging scenarios. MedVersa achieves state-of-the-art performance in nine tasks, sometimes outperforming counterparts by over 10%. Radiologist evaluation shows MedVersa-generated reports get superior performance in 95% of normal studies, while matching or exceeding human reports in 71% of cases overall. User studies showed notable reductions in report writing time and discrepancies with the use of MedVersa. Our findings underscore the value of flexible, multimodal AI systems in advancing medical image interpretation and supporting clinical expertise.
comment: Technical study
♻ ☆ From Pixels to Predicates: Learning Symbolic World Models via Pretrained Vision-Language Models
Our aim is to learn to solve long-horizon decision-making problems in complex robotics domains given low-level skills and a handful of short-horizon demonstrations containing sequences of images. To this end, we focus on learning abstract symbolic world models that facilitate zero-shot generalization to novel goals via planning. A critical component of such models is the set of symbolic predicates that define properties of and relationships between objects. In this work, we leverage pretrained vision language models (VLMs) to propose a large set of visual predicates potentially relevant for decision-making, and to evaluate those predicates directly from camera images. At training time, we pass the proposed predicates and demonstrations into an optimization-based model-learning algorithm to obtain an abstract symbolic world model that is defined in terms of a compact subset of the proposed predicates. At test time, given a novel goal in a novel setting, we use the VLM to construct a symbolic description of the current world state, and then use a search-based planning algorithm to find a sequence of low-level skills that achieves the goal. We demonstrate empirically across experiments in both simulation and the real world that our method can generalize aggressively, applying its learned world model to solve problems with a wide variety of object types, arrangements, numbers of objects, and visual backgrounds, as well as novel goals and much longer horizons than those seen at training time.
♻ ☆ MegaLoc: One Retrieval to Place Them All
Retrieving images from the same location as a given query is an important component of multiple computer vision tasks, like Visual Place Recognition, Landmark Retrieval, Visual Localization, 3D reconstruction, and SLAM. However, existing solutions are built to specifically work for one of these tasks, and are known to fail when the requirements slightly change or when they meet out-of-distribution data. In this paper we combine a variety of existing methods, training techniques, and datasets to train a retrieval model, called MegaLoc, that is performant on multiple tasks. We find that MegaLoc (1) achieves state of the art on a large number of Visual Place Recognition datasets, (2) impressive results on common Landmark Retrieval datasets, and (3) sets a new state of the art for Visual Localization on the LaMAR datasets, where we only changed the retrieval method to the existing localization pipeline. The code for MegaLoc is available at https://github.com/gmberton/MegaLoc
comment: Tech Report
♻ ☆ STeP: A Framework for Solving Scientific Video Inverse Problems with Spatiotemporal Diffusion Priors
Reconstructing spatially and temporally coherent videos from time-varying measurements is a fundamental challenge in many scientific domains. A major difficulty arises from the sparsity of measurements, which hinders accurate recovery of temporal dynamics. Existing image diffusion-based methods rely on extracting temporal consistency directly from measurements, limiting their effectiveness on scientific tasks with high spatiotemporal uncertainty. We address this difficulty by proposing a plug-and-play framework that incorporates a learned spatiotemporal diffusion prior. Due to its plug-and-play nature, our framework can be flexibly applied to different video inverse problems without the need for task-specific design and temporal heuristics. We further demonstrate that a spatiotemporal diffusion model can be trained efficiently with limited video data. We validate our approach on two challenging scientific video reconstruction tasks: black hole video reconstruction and dynamic MRI. While baseline methods struggle to provide temporally coherent reconstructions, our approach achieves significantly improved recovery of the spatiotemporal structure of the underlying ground truth videos.
Artificial Intelligence 249
☆ ALE-Bench: A Benchmark for Long-Horizon Objective-Driven Algorithm Engineering
How well do AI systems perform in algorithm engineering for hard optimization problems in domains such as package-delivery routing, crew scheduling, factory production planning, and power-grid balancing? We introduce ALE-Bench, a new benchmark for evaluating AI systems on score-based algorithmic programming contests. Drawing on real tasks from the AtCoder Heuristic Contests, ALE-Bench presents optimization problems that are computationally hard and admit no known exact solution. Unlike short-duration, pass/fail coding benchmarks, ALE-Bench encourages iterative solution refinement over long time horizons. Our software framework supports interactive agent architectures that leverage test-run feedback and visualizations. Our evaluation of frontier LLMs revealed that while they demonstrate high performance on specific problems, a notable gap remains compared to humans in terms of consistency across problems and long-horizon problem-solving capabilities. This highlights the need for this benchmark to foster future AI advancements.
comment: 36 pages
☆ VIKI-R: Coordinating Embodied Multi-Agent Cooperation via Reinforcement Learning
Coordinating multiple embodied agents in dynamic environments remains a core challenge in artificial intelligence, requiring both perception-driven reasoning and scalable cooperation strategies. While recent works have leveraged large language models (LLMs) for multi-agent planning, a few have begun to explore vision-language models (VLMs) for visual reasoning. However, these VLM-based approaches remain limited in their support for diverse embodiment types. In this work, we introduce VIKI-Bench, the first hierarchical benchmark tailored for embodied multi-agent cooperation, featuring three structured levels: agent activation, task planning, and trajectory perception. VIKI-Bench includes diverse robot embodiments, multi-view visual observations, and structured supervision signals to evaluate reasoning grounded in visual inputs. To demonstrate the utility of VIKI-Bench, we propose VIKI-R, a two-stage framework that fine-tunes a pretrained vision-language model (VLM) using Chain-of-Thought annotated demonstrations, followed by reinforcement learning under multi-level reward signals. Our extensive experiments show that VIKI-R significantly outperforms baselines method across all task levels. Furthermore, we show that reinforcement learning enables the emergence of compositional cooperation patterns among heterogeneous agents. Together, VIKI-Bench and VIKI-R offer a unified testbed and method for advancing multi-agent, visual-driven cooperation in embodied AI systems.
comment: Project page: https://faceong.github.io/VIKI-R/
☆ Agentic Neural Networks: Self-Evolving Multi-Agent Systems via Textual Backpropagation
Leveraging multiple Large Language Models(LLMs) has proven effective for addressing complex, high-dimensional tasks, but current approaches often rely on static, manually engineered multi-agent configurations. To overcome these constraints, we present the Agentic Neural Network(ANN), a framework that conceptualizes multi-agent collaboration as a layered neural network architecture. In this design, each agent operates as a node, and each layer forms a cooperative "team" focused on a specific subtask. Agentic Neural Network follows a two-phase optimization strategy: (1) Forward Phase-Drawing inspiration from neural network forward passes, tasks are dynamically decomposed into subtasks, and cooperative agent teams with suitable aggregation methods are constructed layer by layer. (2) Backward Phase-Mirroring backpropagation, we refine both global and local collaboration through iterative feedback, allowing agents to self-evolve their roles, prompts, and coordination. This neuro-symbolic approach enables ANN to create new or specialized agent teams post-training, delivering notable gains in accuracy and adaptability. Across four benchmark datasets, ANN surpasses leading multi-agent baselines under the same configurations, showing consistent performance improvements. Our findings indicate that ANN provides a scalable, data-driven framework for multi-agent systems, combining the collaborative capabilities of LLMs with the efficiency and flexibility of neural network principles. We plan to open-source the entire framework.
☆ Autoregressive Semantic Visual Reconstruction Helps VLMs Understand Better
Typical large vision-language models (LVLMs) apply autoregressive supervision solely to textual sequences, without fully incorporating the visual modality into the learning process. This results in three key limitations: (1) an inability to utilize images without accompanying captions, (2) the risk that captions omit critical visual details, and (3) the challenge that certain vision-centric content cannot be adequately conveyed through text. As a result, current LVLMs often prioritize vision-to-language alignment while potentially overlooking fine-grained visual information. While some prior works have explored autoregressive image generation, effectively leveraging autoregressive visual supervision to enhance image understanding remains an open challenge. In this paper, we introduce Autoregressive Semantic Visual Reconstruction (ASVR), which enables joint learning of visual and textual modalities within a unified autoregressive framework. We show that autoregressively reconstructing the raw visual appearance of images does not enhance and may even impair multimodal understanding. In contrast, autoregressively reconstructing the semantic representation of images consistently improves comprehension. Notably, we find that even when models are given continuous image features as input, they can effectively reconstruct discrete semantic tokens, resulting in stable and consistent improvements across a wide range of multimodal understanding benchmarks. Our approach delivers significant performance gains across varying data scales (556k-2M) and types of LLM bacbones. Specifically, ASVR improves LLaVA-1.5 by 5% in average scores across 14 multimodal benchmarks. The code is available at https://github.com/AlenjandroWang/ASVR.
☆ AbstentionBench: Reasoning LLMs Fail on Unanswerable Questions
For Large Language Models (LLMs) to be reliably deployed in both everyday and high-stakes domains, knowing when not to answer is equally critical as answering correctly. Real-world user queries, which can be underspecified, ill-posed, or fundamentally unanswerable, require LLMs to reason about uncertainty and selectively abstain -- i.e., refuse to answer definitively. However, abstention remains understudied, without a systematic evaluation framework for modern LLMs. In this work, we introduce AbstentionBench, a large-scale benchmark for holistically evaluating abstention across 20 diverse datasets, including questions with unknown answers, underspecification, false premises, subjective interpretations, and outdated information. Evaluating 20 frontier LLMs reveals abstention is an unsolved problem, and one where scaling models is of little use. While recent reasoning LLMs have shown impressive results in complex problem solving, surprisingly, we find that reasoning fine-tuning degrades abstention (by $24\%$ on average), even for math and science domains on which reasoning models are explicitly trained. We find that while a carefully crafted system prompt can boost abstention in practice, it does not resolve models' fundamental inability to reason about uncertainty. We release AbstentionBench to foster research into advancing LLM reliability.
☆ FZOO: Fast Zeroth-Order Optimizer for Fine-Tuning Large Language Models towards Adam-Scale Speed
Fine-tuning large language models (LLMs) often faces GPU memory bottlenecks: the backward pass of first-order optimizers like Adam increases memory usage to more than 10 times the inference level (e.g., 633 GB for OPT-30B). Zeroth-order (ZO) optimizers avoid this cost by estimating gradients only from forward passes, yet existing methods like MeZO usually require many more steps to converge. Can this trade-off between speed and memory in ZO be fundamentally improved? Normalized-SGD demonstrates strong empirical performance with greater memory efficiency than Adam. In light of this, we introduce FZOO, a Fast Zeroth-Order Optimizer toward Adam-Scale Speed. FZOO reduces the total forward passes needed for convergence by employing batched one-sided estimates that adapt step sizes based on the standard deviation of batch losses. It also accelerates per-batch computation through the use of Rademacher random vector perturbations coupled with CUDA's parallel processing. Extensive experiments on diverse models, including RoBERTa-large, OPT (350M-66B), Phi-2, and Llama3, across 11 tasks validate FZOO's effectiveness. On average, FZOO outperforms MeZO by 3 percent in accuracy while requiring 3 times fewer forward passes. For RoBERTa-large, FZOO achieves average improvements of 5.6 percent in accuracy and an 18 times reduction in forward passes compared to MeZO, achieving convergence speeds comparable to Adam. We also provide theoretical analysis proving FZOO's formal equivalence to a normalized-SGD update rule and its convergence guarantees. FZOO integrates smoothly into PEFT techniques, enabling even larger memory savings. Overall, our results make single-GPU, high-speed, full-parameter fine-tuning practical and point toward future work on memory-efficient pre-training.
☆ Router-R1: Teaching LLMs Multi-Round Routing and Aggregation via Reinforcement Learning
The rapid emergence of diverse large language models (LLMs) has spurred the development of LLM routers that assign user queries to the most suitable model. However, existing LLM routers typically perform a single-round, one-to-one mapping (\textit{i.e.}, assigning each query to a single model in isolation), which limits their capability to tackle complex tasks that demand the complementary strengths of multiple LLMs. In this paper, we present \textbf{Router-R1}, a reinforcement learning (RL)-based framework that formulates multi-LLM routing and aggregation as a sequential decision process. Router-R1 instantiates the router itself as a capable LLM, leveraging its reasoning ability to interleave "think" actions (internal deliberation) with "route" actions (dynamic model invocation), and integrates each response into its evolving context. To guide learning, we employ a lightweight rule-based reward comprising format rewards, final outcome rewards, and a novel cost reward for performance and cost trade-off optimization, opening a pathway toward optimizing performance-cost tradeoffs via RL. Router-R1 also conditions only on simple model descriptors such as pricing, latency, and example performance, enabling strong generalization to unseen model selection. Experiments on seven general and multi-hop QA benchmarks show that Router-R1 outperforms over several strong baselines, achieving superior performance while maintaining robust generalization and cost management.Code is available at https://github.com/ulab-uiuc/Router-R1.
comment: Code is available at https://github.com/ulab-uiuc/Router-R1
☆ Diffuse and Disperse: Image Generation with Representation Regularization
The development of diffusion-based generative models over the past decade has largely proceeded independently of progress in representation learning. These diffusion models typically rely on regression-based objectives and generally lack explicit regularization. In this work, we propose \textit{Dispersive Loss}, a simple plug-and-play regularizer that effectively improves diffusion-based generative models. Our loss function encourages internal representations to disperse in the hidden space, analogous to contrastive self-supervised learning, with the key distinction that it requires no positive sample pairs and therefore does not interfere with the sampling process used for regression. Compared to the recent method of representation alignment (REPA), our approach is self-contained and minimalist, requiring no pre-training, no additional parameters, and no external data. We evaluate Dispersive Loss on the ImageNet dataset across a range of models and report consistent improvements over widely used and strong baselines. We hope our work will help bridge the gap between generative modeling and representation learning.
☆ Edit Flows: Flow Matching with Edit Operations
Autoregressive generative models naturally generate variable-length sequences, while non-autoregressive models struggle, often imposing rigid, token-wise structures. We propose Edit Flows, a non-autoregressive model that overcomes these limitations by defining a discrete flow over sequences through edit operations-insertions, deletions, and substitutions. By modeling these operations within a Continuous-time Markov Chain over the sequence space, Edit Flows enable flexible, position-relative generation that aligns more closely with the structure of sequence data. Our training method leverages an expanded state space with auxiliary variables, making the learning process efficient and tractable. Empirical results show that Edit Flows outperforms both autoregressive and mask models on image captioning and significantly outperforms the mask construction in text and code generation.
☆ Employing self-supervised learning models for cross-linguistic child speech maturity classification
Speech technology systems struggle with many downstream tasks for child speech due to small training corpora and the difficulties that child speech pose. We apply a novel dataset, SpeechMaturity, to state-of-the-art transformer models to address a fundamental classification task: identifying child vocalizations. Unlike previous corpora, our dataset captures maximally ecologically-valid child vocalizations across an unprecedented sample, comprising children acquiring 25+ languages in the U.S., Bolivia, Vanuatu, Papua New Guinea, Solomon Islands, and France. The dataset contains 242,004 labeled vocalizations, magnitudes larger than previous work. Models were trained to distinguish between cry, laughter, mature (consonant+vowel), and immature speech (just consonant or vowel). Models trained on the dataset outperform state-of-the-art models trained on previous datasets, achieved classification accuracy comparable to humans, and were robust across rural and urban settings.
comment: To be published in Interspeech 2025. 5 pages, 2 figures. For associated Github repository, see https://github.com/spoglab-stanford/w2v2-pro-sm/tree/main/speechbrain/recipes/W2V2-LL4300-Pro-SM
☆ Efficient Medical Vision-Language Alignment Through Adapting Masked Vision Models
Medical vision-language alignment through cross-modal contrastive learning shows promising performance in image-text matching tasks, such as retrieval and zero-shot classification. However, conventional cross-modal contrastive learning (CLIP-based) methods suffer from suboptimal visual representation capabilities, which also limits their effectiveness in vision-language alignment. In contrast, although the models pretrained via multimodal masked modeling struggle with direct cross-modal matching, they excel in visual representation. To address this contradiction, we propose ALTA (ALign Through Adapting), an efficient medical vision-language alignment method that utilizes only about 8% of the trainable parameters and less than 1/5 of the computational consumption required for masked record modeling. ALTA achieves superior performance in vision-language matching tasks like retrieval and zero-shot classification by adapting the pretrained vision model from masked record modeling. Additionally, we integrate temporal-multiview radiograph inputs to enhance the information consistency between radiographs and their corresponding descriptions in reports, further improving the vision-language alignment. Experimental evaluations show that ALTA outperforms the best-performing counterpart by over 4% absolute points in text-to-image accuracy and approximately 6% absolute points in image-to-text retrieval accuracy. The adaptation of vision-language models during efficient alignment also promotes better vision and language understanding. Code is publicly available at https://github.com/DopamineLcy/ALTA.
comment: TMI 2025
☆ Propositional Logic for Probing Generalization in Neural Networks
The extent to which neural networks are able to acquire and represent symbolic rules remains a key topic of research and debate. Much current work focuses on the impressive capabilities of large language models, as well as their often ill-understood failures on a wide range of reasoning tasks. In this paper, in contrast, we investigate the generalization behavior of three key neural architectures (Transformers, Graph Convolution Networks and LSTMs) in a controlled task rooted in propositional logic. The task requires models to generate satisfying assignments for logical formulas, making it a structured and interpretable setting for studying compositionality. We introduce a balanced extension of an existing dataset to eliminate superficial patterns and enable testing on unseen operator combinations. Using this dataset, we evaluate the ability of the three architectures to generalize beyond the training distribution. While all models perform well in-distribution, we find that generalization to unseen patterns, particularly those involving negation, remains a significant challenge. Transformers fail to apply negation compositionally, unless structural biases are introduced. Our findings highlight persistent limitations in the ability of standard architectures to learn systematic representations of logical operators, suggesting the need for stronger inductive biases to support robust rule-based reasoning.
☆ Tailored Architectures for Time Series Forecasting: Evaluating Deep Learning Models on Gaussian Process-Generated Data IJCNN25
Developments in Deep Learning have significantly improved time series forecasting by enabling more accurate modeling of complex temporal dependencies inherent in sequential data. The effectiveness of such models is often demonstrated on limited sets of specific real-world data. Although this allows for comparative analysis, it still does not demonstrate how specific data characteristics align with the architectural strengths of individual models. Our research aims at uncovering clear connections between time series characteristics and particular models. We introduce a novel dataset generated using Gaussian Processes, specifically designed to display distinct, known characteristics for targeted evaluations of model adaptability to them. Furthermore, we present TimeFlex, a new model that incorporates a modular architecture tailored to handle diverse temporal dynamics, including trends and periodic patterns. This model is compared to current state-of-the-art models, offering a deeper understanding of how models perform under varied time series conditions.
comment: Accepted at IJCNN25, Code: https://github.com/vicky-hnk/time-flex
☆ A Survey of Link Prediction in N-ary Knowledge Graphs
N-ary Knowledge Graphs (NKGs) are a specialized type of knowledge graph designed to efficiently represent complex real-world facts. Unlike traditional knowledge graphs, where a fact typically involves two entities, NKGs can capture n-ary facts containing more than two entities. Link prediction in NKGs aims to predict missing elements within these n-ary facts, which is essential for completing NKGs and improving the performance of downstream applications. This task has recently gained significant attention. In this paper, we present the first comprehensive survey of link prediction in NKGs, providing an overview of the field, systematically categorizing existing methods, and analyzing their performance and application scenarios. We also outline promising directions for future research.
☆ GFRIEND: Generative Few-shot Reward Inference through EfficieNt DPO
The ability to train high-performing reward models with few-shot data is critical for enhancing the efficiency and scalability of Reinforcement Learning from Human Feedback (RLHF). We propose a data augmentation and expansion framework that enables generative reward models trained on small datasets to achieve comparable performance to those trained on large-scale datasets. Traditional methods to train a generative reward model, such as Direct Preference Optimization (DPO), are constrained by inefficiencies in sample pairing and limited data diversity. This work introduces preference refinement, which employs Chain-of-Thought (CoT) sampling to uncover diverse and high-quality preference relationships. It also incorporates a perplexity-based scoring mechanism to assign nuanced preference levels and utilizes Multi-level Direct Preference Optimization (M-DPO) to enable the model to capture finer-grained preference differences between samples. Experimental results demonstrate that the proposed method significantly enhances data efficiency and model performance, enabling reward models trained in a few-shot setting to achieve results on par with those trained on large-scale datasets. This study underscores the potential of data-efficient strategies in advancing reward model optimization, offering a robust solution for low-resource RLHF applications.
☆ Evaluating Generative Vehicle Trajectory Models for Traffic Intersection Dynamics
Traffic Intersections are vital to urban road networks as they regulate the movement of people and goods. However, they are regions of conflicting trajectories and are prone to accidents. Deep Generative models of traffic dynamics at signalized intersections can greatly help traffic authorities better understand the efficiency and safety aspects. At present, models are evaluated on computational metrics that primarily look at trajectory reconstruction errors. They are not evaluated online in a `live' microsimulation scenario. Further, these metrics do not adequately consider traffic engineering-specific concerns such as red-light violations, unallowed stoppage, etc. In this work, we provide a comprehensive analytics tool to train, run, and evaluate models with metrics that give better insights into model performance from a traffic engineering point of view. We train a state-of-the-art multi-vehicle trajectory forecasting model on a large dataset collected by running a calibrated scenario of a real-world urban intersection. We then evaluate the performance of the prediction models, online in a microsimulator, under unseen traffic conditions. We show that despite using ideally-behaved trajectories as input, and achieving low trajectory reconstruction errors, the generated trajectories show behaviors that break traffic rules. We introduce new metrics to evaluate such undesired behaviors and present our results.
☆ WIP: Large Language Model-Enhanced Smart Tutor for Undergraduate Circuit Analysis
This research-to-practice work-in-progress (WIP) paper presents an AI-enabled smart tutor designed to provide homework assessment and feedback for students in an undergraduate circuit analysis course. We detail the tutor's design philosophy and core components, including open-ended question answering and homework feedback generation. The prompts are carefully crafted to optimize responses across different problems. The smart tutor was deployed on the Microsoft Azure platform and is currently in use in an undergraduate circuit analysis course at the School of Electrical and Computer Engineering in a large, public, research-intensive institution in the Southeastern United States. Beyond offering personalized instruction and feedback, the tutor collects student interaction data, which is summarized and shared with the course instructor. To evaluate its effectiveness, we collected student feedback, with 90.9% of responses indicating satisfaction with the tutor. Additionally, we analyze a subset of collected data on preliminary circuit analysis topics to assess tutor usage frequency for each problem and identify frequently asked questions. These insights help instructors gain real-time awareness of student difficulties, enabling more targeted classroom instruction. In future work, we will release a full analysis once the complete dataset is available after the Spring 2025 semester. We also explore the potential applications of this smart tutor across a broader range of engineering disciplines by developing improved prompts, diagram-recognition methods, and database management strategies, which remain ongoing areas of research.
comment: Accepted to 2025 Frontiers in Education (FIE) Conference
☆ Towards Robust Deep Reinforcement Learning against Environmental State Perturbation
Adversarial attacks and robustness in Deep Reinforcement Learning (DRL) have been widely studied in various threat models; however, few consider environmental state perturbations, which are natural in embodied scenarios. To improve the robustness of DRL agents, we formulate the problem of environmental state perturbation, introducing a preliminary non-targeted attack method as a calibration adversary, and then propose a defense framework, named Boosted Adversarial Training (BAT), which first tunes the agents via supervised learning to avoid catastrophic failure and subsequently adversarially trains the agent with reinforcement learning. Extensive experimental results substantiate the vulnerability of mainstream agents under environmental state perturbations and the effectiveness of our proposed attack. The defense results demonstrate that while existing robust reinforcement learning algorithms may not be suitable, our BAT framework can significantly enhance the robustness of agents against environmental state perturbations across various situations.
☆ IntTrajSim: Trajectory Prediction for Simulating Multi-Vehicle driving at Signalized Intersections
Traffic simulators are widely used to study the operational efficiency of road infrastructure, but their rule-based approach limits their ability to mimic real-world driving behavior. Traffic intersections are critical components of the road infrastructure, both in terms of safety risk (nearly 28% of fatal crashes and 58% of nonfatal crashes happen at intersections) as well as the operational efficiency of a road corridor. This raises an important question: can we create a data-driven simulator that can mimic the macro- and micro-statistics of the driving behavior at a traffic intersection? Deep Generative Modeling-based trajectory prediction models provide a good starting point to model the complex dynamics of vehicles at an intersection. But they are not tested in a "live" micro-simulation scenario and are not evaluated on traffic engineering-related metrics. In this study, we propose traffic engineering-related metrics to evaluate generative trajectory prediction models and provide a simulation-in-the-loop pipeline to do so. We also provide a multi-headed self-attention-based trajectory prediction model that incorporates the signal information, which outperforms our previous models on the evaluation metrics.
☆ Segment Concealed Objects with Incomplete Supervision
Incompletely-Supervised Concealed Object Segmentation (ISCOS) involves segmenting objects that seamlessly blend into their surrounding environments, utilizing incompletely annotated data, such as weak and semi-annotations, for model training. This task remains highly challenging due to (1) the limited supervision provided by the incompletely annotated training data, and (2) the difficulty of distinguishing concealed objects from the background, which arises from the intrinsic similarities in concealed scenarios. In this paper, we introduce the first unified method for ISCOS to address these challenges. To tackle the issue of incomplete supervision, we propose a unified mean-teacher framework, SEE, that leverages the vision foundation model, ``\emph{Segment Anything Model (SAM)}'', to generate pseudo-labels using coarse masks produced by the teacher model as prompts. To mitigate the effect of low-quality segmentation masks, we introduce a series of strategies for pseudo-label generation, storage, and supervision. These strategies aim to produce informative pseudo-labels, store the best pseudo-labels generated, and select the most reliable components to guide the student model, thereby ensuring robust network training. Additionally, to tackle the issue of intrinsic similarity, we design a hybrid-granularity feature grouping module that groups features at different granularities and aggregates these results. By clustering similar features, this module promotes segmentation coherence, facilitating more complete segmentation for both single-object and multiple-object images. We validate the effectiveness of our approach across multiple ISCOS tasks, and experimental results demonstrate that our method achieves state-of-the-art performance. Furthermore, SEE can serve as a plug-and-play solution, enhancing the performance of existing models.
comment: IEEE TPAMI
☆ Can A Gamer Train A Mathematical Reasoning Model?
While large language models (LLMs) have achieved remarkable performance in various tasks including mathematical reasoning, their development typically demands prohibitive computational resources. Recent advancements have reduced costs for training capable models, yet even these approaches rely on high-end hardware clusters. In this paper, we demonstrate that a single average gaming GPU can train a solid mathematical reasoning model, by integrating reinforcement learning and memory optimization techniques. Specifically, we train a 1.5B parameter mathematical reasoning model on RTX 3080 Ti of 16GB memory that achieves comparable or better performance on mathematical reasoning benchmarks than models several times larger, in resource-constrained environments. Our results challenge the paradigm that state-of-the-art mathematical reasoning necessitates massive infrastructure, democratizing access to high-performance AI research. https://github.com/shinandrew/YouronMath.
☆ Socratic-MCTS: Test-Time Visual Reasoning by Asking the Right Questions
Recent research in vision-language models (VLMs) has centered around the possibility of equipping them with implicit long-form chain-of-thought reasoning -- akin to the success observed in language models -- via distillation and reinforcement learning. But what about the non-reasoning models already trained and deployed across the internet? Should we simply abandon them, or is there hope for a search mechanism that can elicit hidden knowledge and induce long reasoning traces -- without any additional training or supervision? In this paper, we explore this possibility using a Monte Carlo Tree Search (MCTS)-inspired algorithm, which injects subquestion-subanswer pairs into the model's output stream. We show that framing reasoning as a search process -- where subquestions act as latent decisions within a broader inference trajectory -- helps the model "connect the dots" between fragmented knowledge and produce extended reasoning traces in non-reasoning models. We evaluate our method across three benchmarks and observe consistent improvements. Notably, our approach yields a 2% overall improvement on MMMU-PRO, including a significant 9% gain in Liberal Arts.
☆ PropMEND: Hypernetworks for Knowledge Propagation in LLMs
Knowledge editing techniques for large language models (LLMs) can inject knowledge that is later reproducible verbatim, but they fall short on propagating that knowledge: models cannot answer questions that require reasoning with the injected knowledge. We present a hypernetwork-based approach for knowledge propagation, named PropMEND, where we meta-learn how to modify gradients of a language modeling loss to encourage injected information to propagate. Our approach extends the meta-objective of MEND [29] so that gradient updates on knowledge are transformed to enable answering multi-hop questions involving that knowledge. We show improved performance on the RippleEdit dataset, showing almost 2x accuracy on challenging multi-hop questions whose answers are not explicitly stated in the injected fact. We further introduce a new dataset, Controlled RippleEdit, to evaluate the generalization of our hypernetwork, testing knowledge propagation along relations and entities unseen during hypernetwork training. PropMEND still outperforms existing approaches in unseen entity-relation pairs, yet the performance gap decreases substantially, suggesting future work in propagating knowledge to a wide range of relations.
comment: Under review
☆ Quantum Adiabatic Generation of Human-Like Passwords
Generative Artificial Intelligence (GenAI) for Natural Language Processing (NLP) is the predominant AI technology to date. An important perspective for Quantum Computing (QC) is the question whether QC has the potential to reduce the vast resource requirements for training and operating GenAI models. While large-scale generative NLP tasks are currently out of reach for practical quantum computers, the generation of short semantic structures such as passwords is not. Generating passwords that mimic real user behavior has many applications, for example to test an authentication system against realistic threat models. Classical password generation via deep learning have recently been investigated with significant progress in their ability to generate novel, realistic password candidates. In the present work we investigate the utility of adiabatic quantum computers for this task. More precisely, we study different encodings of token strings and propose novel approaches based on the Quadratic Unconstrained Binary Optimization (QUBO) and the Unit-Disk Maximum Independent Set (UD-MIS) problems. Our approach allows us to estimate the token distribution from data and adiabatically prepare a quantum state from which we eventually sample the generated passwords via measurements. Our results show that relatively small samples of 128 passwords, generated on the QuEra Aquila 256-qubit neutral atom quantum computer, contain human-like passwords such as "Tunas200992" or "teedem28iglove".
comment: 9 pages, 4 figures
☆ Inherently Faithful Attention Maps for Vision Transformers
We introduce an attention-based method that uses learned binary attention masks to ensure that only attended image regions influence the prediction. Context can strongly affect object perception, sometimes leading to biased representations, particularly when objects appear in out-of-distribution backgrounds. At the same time, many image-level object-centric tasks require identifying relevant regions, often requiring context. To address this conundrum, we propose a two-stage framework: stage 1 processes the full image to discover object parts and identify task-relevant regions, while stage 2 leverages input attention masking to restrict its receptive field to these regions, enabling a focused analysis while filtering out potentially spurious information. Both stages are trained jointly, allowing stage 2 to refine stage 1. Extensive experiments across diverse benchmarks demonstrate that our approach significantly improves robustness against spurious correlations and out-of-distribution backgrounds.
☆ Intention-Conditioned Flow Occupancy Models
Large-scale pre-training has fundamentally changed how machine learning research is done today: large foundation models are trained once, and then can be used by anyone in the community (including those without data or compute resources to train a model from scratch) to adapt and fine-tune to specific tasks. Applying this same framework to reinforcement learning (RL) is appealing because it offers compelling avenues for addressing core challenges in RL, including sample efficiency and robustness. However, there remains a fundamental challenge to pre-train large models in the context of RL: actions have long-term dependencies, so training a foundation model that reasons across time is important. Recent advances in generative AI have provided new tools for modeling highly complex distributions. In this paper, we build a probabilistic model to predict which states an agent will visit in the temporally distant future (i.e., an occupancy measure) using flow matching. As large datasets are often constructed by many distinct users performing distinct tasks, we include in our model a latent variable capturing the user intention. This intention increases the expressivity of our model, and enables adaptation with generalized policy improvement. We call our proposed method intention-conditioned flow occupancy models (InFOM). Comparing with alternative methods for pre-training, our experiments on $36$ state-based and $4$ image-based benchmark tasks demonstrate that the proposed method achieves $1.8 \times$ median improvement in returns and increases success rates by $36\%$. Website: https://chongyi-zheng.github.io/infom Code: https://github.com/chongyi-zheng/infom
☆ From Legal Texts to Defeasible Deontic Logic via LLMs: A Study in Automated Semantic Analysis
We present a novel approach to the automated semantic analysis of legal texts using large language models (LLMs), targeting their transformation into formal representations in Defeasible Deontic Logic (DDL). We propose a structured pipeline that segments complex normative language into atomic snippets, extracts deontic rules, and evaluates them for syntactic and semantic coherence. Our methodology is evaluated across various LLM configurations, including prompt engineering strategies, fine-tuned models, and multi-stage pipelines, focusing on legal norms from the Australian Telecommunications Consumer Protections Code. Empirical results demonstrate promising alignment between machine-generated and expert-crafted formalizations, showing that LLMs - particularly when prompted effectively - can significantly contribute to scalable legal informatics.
☆ Preference-Driven Multi-Objective Combinatorial Optimization with Conditional Computation
Recent deep reinforcement learning methods have achieved remarkable success in solving multi-objective combinatorial optimization problems (MOCOPs) by decomposing them into multiple subproblems, each associated with a specific weight vector. However, these methods typically treat all subproblems equally and solve them using a single model, hindering the effective exploration of the solution space and thus leading to suboptimal performance. To overcome the limitation, we propose POCCO, a novel plug-and-play framework that enables adaptive selection of model structures for subproblems, which are subsequently optimized based on preference signals rather than explicit reward values. Specifically, we design a conditional computation block that routes subproblems to specialized neural architectures. Moreover, we propose a preference-driven optimization algorithm that learns pairwise preferences between winning and losing solutions. We evaluate the efficacy and versatility of POCCO by applying it to two state-of-the-art neural methods for MOCOPs. Experimental results across four classic MOCOP benchmarks demonstrate its significant superiority and strong generalization.
comment: 22 pages, 6 figures, under review
☆ PlantBert: An Open Source Language Model for Plant Science
The rapid advancement of transformer-based language models has catalyzed breakthroughs in biomedical and clinical natural language processing; however, plant science remains markedly underserved by such domain-adapted tools. In this work, we present PlantBert, a high-performance, open-source language model specifically tailored for extracting structured knowledge from plant stress-response literature. Built upon the DeBERTa architecture-known for its disentangled attention and robust contextual encoding-PlantBert is fine-tuned on a meticulously curated corpus of expert-annotated abstracts, with a primary focus on lentil (Lens culinaris) responses to diverse abiotic and biotic stressors. Our methodology combines transformer-based modeling with rule-enhanced linguistic post-processing and ontology-grounded entity normalization, enabling PlantBert to capture biologically meaningful relationships with precision and semantic fidelity. The underlying corpus is annotated using a hierarchical schema aligned with the Crop Ontology, encompassing molecular, physiological, biochemical, and agronomic dimensions of plant adaptation. PlantBert exhibits strong generalization capabilities across entity types and demonstrates the feasibility of robust domain adaptation in low-resource scientific fields. By providing a scalable and reproducible framework for high-resolution entity recognition, PlantBert bridges a critical gap in agricultural NLP and paves the way for intelligent, data-driven systems in plant genomics, phenomics, and agronomic knowledge discovery. Our model is publicly released to promote transparency and accelerate cross-disciplinary innovation in computational plant science.
☆ Product of Experts for Visual Generation
Modern neural models capture rich priors and have complementary knowledge over shared data domains, e.g., images and videos. Integrating diverse knowledge from multiple sources -- including visual generative models, visual language models, and sources with human-crafted knowledge such as graphics engines and physics simulators -- remains under-explored. We propose a Product of Experts (PoE) framework that performs inference-time knowledge composition from heterogeneous models. This training-free approach samples from the product distribution across experts via Annealed Importance Sampling (AIS). Our framework shows practical benefits in image and video synthesis tasks, yielding better controllability than monolithic methods and additionally providing flexible user interfaces for specifying visual generation goals.
comment: Project page: https://product-of-experts.github.io/
☆ SeerAttention-R: Sparse Attention Adaptation for Long Reasoning
We introduce SeerAttention-R, a sparse attention framework specifically tailored for the long decoding of reasoning models. Extended from SeerAttention, SeerAttention-R retains the design of learning attention sparsity through a self-distilled gating mechanism, while removing query pooling to accommodate auto-regressive decoding. With a lightweight plug-in gating, SeerAttention-R is flexible and can be easily integrated into existing pretrained model without modifying the original parameters. We demonstrate that SeerAttention-R, trained on just 0.4B tokens, maintains near-lossless reasoning accuracy with 4K token budget in AIME benchmark under large sparse attention block sizes (64/128). Using TileLang, we develop a highly optimized sparse decoding kernel that achieves near-theoretical speedups of up to 9x over FlashAttention-3 on H100 GPU at 90% sparsity. Code is available at: https://github.com/microsoft/SeerAttention.
☆ Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task
This study explores the neural and behavioral consequences of LLM-assisted essay writing. Participants were divided into three groups: LLM, Search Engine, and Brain-only (no tools). Each completed three sessions under the same condition. In a fourth session, LLM users were reassigned to Brain-only group (LLM-to-Brain), and Brain-only users were reassigned to LLM condition (Brain-to-LLM). A total of 54 participants took part in Sessions 1-3, with 18 completing session 4. We used electroencephalography (EEG) to assess cognitive load during essay writing, and analyzed essays using NLP, as well as scoring essays with the help from human teachers and an AI judge. Across groups, NERs, n-gram patterns, and topic ontology showed within-group homogeneity. EEG revealed significant differences in brain connectivity: Brain-only participants exhibited the strongest, most distributed networks; Search Engine users showed moderate engagement; and LLM users displayed the weakest connectivity. Cognitive activity scaled down in relation to external tool use. In session 4, LLM-to-Brain participants showed reduced alpha and beta connectivity, indicating under-engagement. Brain-to-LLM users exhibited higher memory recall and activation of occipito-parietal and prefrontal areas, similar to Search Engine users. Self-reported ownership of essays was the lowest in the LLM group and the highest in the Brain-only group. LLM users also struggled to accurately quote their own work. While LLMs offer immediate convenience, our findings highlight potential cognitive costs. Over four months, LLM users consistently underperformed at neural, linguistic, and behavioral levels. These results raise concerns about the long-term educational implications of LLM reliance and underscore the need for deeper inquiry into AI's role in learning.
comment: 206 pages, 92 figures, 4 tables and appendix
☆ Spatial Transcriptomics Expression Prediction from Histopathology Based on Cross-Modal Mask Reconstruction and Contrastive Learning
Spatial transcriptomics is a technology that captures gene expression levels at different spatial locations, widely used in tumor microenvironment analysis and molecular profiling of histopathology, providing valuable insights into resolving gene expression and clinical diagnosis of cancer. Due to the high cost of data acquisition, large-scale spatial transcriptomics data remain challenging to obtain. In this study, we develop a contrastive learning-based deep learning method to predict spatially resolved gene expression from whole-slide images. Evaluation across six different disease datasets demonstrates that, compared to existing studies, our method improves Pearson Correlation Coefficient (PCC) in the prediction of highly expressed genes, highly variable genes, and marker genes by 6.27%, 6.11%, and 11.26% respectively. Further analysis indicates that our method preserves gene-gene correlations and applies to datasets with limited samples. Additionally, our method exhibits potential in cancer tissue localization based on biomarker expression.
comment: 20 pages, 7 figures
☆ CulturalFrames: Assessing Cultural Expectation Alignment in Text-to-Image Models and Evaluation Metrics
The increasing ubiquity of text-to-image (T2I) models as tools for visual content generation raises concerns about their ability to accurately represent diverse cultural contexts. In this work, we present the first study to systematically quantify the alignment of T2I models and evaluation metrics with respect to both explicit as well as implicit cultural expectations. To this end, we introduce CulturalFrames, a novel benchmark designed for rigorous human evaluation of cultural representation in visual generations. Spanning 10 countries and 5 socio-cultural domains, CulturalFrames comprises 983 prompts, 3637 corresponding images generated by 4 state-of-the-art T2I models, and over 10k detailed human annotations. We find that T2I models not only fail to meet the more challenging implicit expectations but also the less challenging explicit expectations. Across models and countries, cultural expectations are missed an average of 44% of the time. Among these failures, explicit expectations are missed at a surprisingly high average rate of 68%, while implicit expectation failures are also significant, averaging 49%. Furthermore, we demonstrate that existing T2I evaluation metrics correlate poorly with human judgments of cultural alignment, irrespective of their internal reasoning. Collectively, our findings expose critical gaps, providing actionable directions for developing more culturally informed T2I models and evaluation methodologies.
☆ The impact of fine tuning in LLaMA on hallucinations for named entity extraction in legal documentation
The extraction of information about traffic accidents from legal documents is crucial for quantifying insurance company costs. Extracting entities such as percentages of physical and/or psychological disability and the involved compensation amounts is a challenging process, even for experts, due to the subtle arguments and reasoning in the court decision. A two-step procedure is proposed: first, segmenting the document identifying the most relevant segments, and then extracting the entities. For text segmentation, two methodologies are compared: a classic method based on regular expressions and a second approach that divides the document into blocks of n-tokens, which are then vectorized using multilingual models for semantic searches (text-embedding-ada-002/MiniLM-L12-v2 ). Subsequently, large language models (LLaMA-2 7b, 70b, LLaMA-3 8b, and GPT-4 Turbo) are applied with prompting to the selected segments for entity extraction. For the LLaMA models, fine-tuning is performed using LoRA. LLaMA-2 7b, even with zero temperature, shows a significant number of hallucinations in extractions which are an important contention point for named entity extraction. This work shows that these hallucinations are substantially reduced after finetuning the model. The performance of the methodology based on segment vectorization and subsequent use of LLMs significantly surpasses the classic method which achieves an accuracy of 39.5%. Among open-source models, LLaMA-2 70B with finetuning achieves the highest accuracy 79.4%, surpassing its base version 61.7%. Notably, the base LLaMA-3 8B model already performs comparably to the finetuned LLaMA-2 70B model, achieving 76.6%, highlighting the rapid progress in model development. Meanwhile, GPT-4 Turbo achieves the highest accuracy at 86.1%.
☆ FreqPolicy: Efficient Flow-based Visuomotor Policy via Frequency Consistency
Generative modeling-based visuomotor policies have been widely adopted in robotic manipulation attributed to their ability to model multimodal action distributions. However, the high inference cost of multi-step sampling limits their applicability in real-time robotic systems. To address this issue, existing approaches accelerate the sampling process in generative modeling-based visuomotor policies by adapting acceleration techniques originally developed for image generation. Despite this progress, a major distinction remains: image generation typically involves producing independent samples without temporal dependencies, whereas robotic manipulation involves generating time-series action trajectories that require continuity and temporal coherence. To effectively exploit temporal information in robotic manipulation, we propose FreqPolicy, a novel approach that first imposes frequency consistency constraints on flow-based visuomotor policies. Our work enables the action model to capture temporal structure effectively while supporting efficient, high-quality one-step action generation. We introduce a frequency consistency constraint that enforces alignment of frequency-domain action features across different timesteps along the flow, thereby promoting convergence of one-step action generation toward the target distribution. In addition, we design an adaptive consistency loss to capture structural temporal variations inherent in robotic manipulation tasks. We assess FreqPolicy on 53 tasks across 3 simulation benchmarks, proving its superiority over existing one-step action generators. We further integrate FreqPolicy into the vision-language-action (VLA) model and achieve acceleration without performance degradation on the 40 tasks of Libero. Besides, we show efficiency and effectiveness in real-world robotic scenarios with an inference frequency 93.5Hz. The code will be publicly available.
☆ Measuring Data Science Automation: A Survey of Evaluation Tools for AI Assistants and Agents
Data science aims to extract insights from data to support decision-making processes. Recently, Large Language Models (LLMs) are increasingly used as assistants for data science, by suggesting ideas, techniques and small code snippets, or for the interpretation of results and reporting. Proper automation of some data-science activities is now promised by the rise of LLM agents, i.e., AI systems powered by an LLM equipped with additional affordances--such as code execution and knowledge bases--that can perform self-directed actions and interact with digital environments. In this paper, we survey the evaluation of LLM assistants and agents for data science. We find (1) a dominant focus on a small subset of goal-oriented activities, largely ignoring data management and exploratory activities; (2) a concentration on pure assistance or fully autonomous agents, without considering intermediate levels of human-AI collaboration; and (3) an emphasis on human substitution, therefore neglecting the possibility of higher levels of automation thanks to task transformation.
☆ Towards Biosignals-Free Autonomous Prosthetic Hand Control via Imitation Learning
Limb loss affects millions globally, impairing physical function and reducing quality of life. Most traditional surface electromyographic (sEMG) and semi-autonomous methods require users to generate myoelectric signals for each control, imposing physically and mentally taxing demands. This study aims to develop a fully autonomous control system that enables a prosthetic hand to automatically grasp and release objects of various shapes using only a camera attached to the wrist. By placing the hand near an object, the system will automatically execute grasping actions with a proper grip force in response to the hand's movements and the environment. To release the object being grasped, just naturally place the object close to the table and the system will automatically open the hand. Such a system would provide individuals with limb loss with a very easy-to-use prosthetic control interface and greatly reduce mental effort while using. To achieve this goal, we developed a teleoperation system to collect human demonstration data for training the prosthetic hand control model using imitation learning, which mimics the prosthetic hand actions from human. Through training the model using only a few objects' data from one single participant, we have shown that the imitation learning algorithm can achieve high success rates, generalizing to more individuals and unseen objects with a variation of weights. The demonstrations are available at \href{https://sites.google.com/view/autonomous-prosthetic-hand}{https://sites.google.com/view/autonomous-prosthetic-hand}
☆ Do Generative AI Tools Ensure Green Code? An Investigative Study ICSE '24
Software sustainability is emerging as a primary concern, aiming to optimize resource utilization, minimize environmental impact, and promote a greener, more resilient digital ecosystem. The sustainability or "greenness" of software is typically determined by the adoption of sustainable coding practices. With a maturing ecosystem around generative AI, many software developers now rely on these tools to generate code using natural language prompts. Despite their potential advantages, there is a significant lack of studies on the sustainability aspects of AI-generated code. Specifically, how environmentally friendly is the AI-generated code based upon its adoption of sustainable coding practices? In this paper, we present the results of an early investigation into the sustainability aspects of AI-generated code across three popular generative AI tools - ChatGPT, BARD, and Copilot. The results highlight the default non-green behavior of tools for generating code, across multiple rules and scenarios. It underscores the need for further in-depth investigations and effective remediation strategies.
comment: 4 pages. To be published in the proceedings of 2nd International Workshop on Responsible AI Engineering (RAIE '24), co-located with ICSE '24, Lisbon, Portugal
☆ POLARON: Precision-aware On-device Learning and Adaptive Runtime-cONfigurable AI acceleration
The increasing complexity of AI models requires flexible hardware capable of supporting diverse precision formats, particularly for energy-constrained edge platforms. This work presents PARV-CE, a SIMD-enabled, multi-precision MAC engine that performs efficient multiply-accumulate operations using a unified data-path for 4/8/16-bit fixed-point, floating point, and posit formats. The architecture incorporates a layer adaptive precision strategy to align computational accuracy with workload sensitivity, optimizing both performance and energy usage. PARV-CE integrates quantization-aware execution with a reconfigurable SIMD pipeline, enabling high-throughput processing with minimal overhead through hardware-software co-design. The results demonstrate up to 2x improvement in PDP and 3x reduction in resource usage compared to SoTA designs, while retaining accuracy within 1.8% FP32 baseline. The architecture supports both on-device training and inference across a range of workloads, including DNNs, RNNs, RL, and Transformer models. The empirical analysis establish PARVCE incorporated POLARON as a scalable and energy-efficient solution for precision-adaptive AI acceleration at edge.
☆ Multimodal Representation Alignment for Cross-modal Information Retrieval
Different machine learning models can represent the same underlying concept in different ways. This variability is particularly valuable for in-the-wild multimodal retrieval, where the objective is to identify the corresponding representation in one modality given another modality as input. This challenge can be effectively framed as a feature alignment problem. For example, given a sentence encoded by a language model, retrieve the most semantically aligned image based on features produced by an image encoder, or vice versa. In this work, we first investigate the geometric relationships between visual and textual embeddings derived from both vision-language models and combined unimodal models. We then align these representations using four standard similarity metrics as well as two learned ones, implemented via neural networks. Our findings indicate that the Wasserstein distance can serve as an informative measure of the modality gap, while cosine similarity consistently outperforms alternative metrics in feature alignment tasks. Furthermore, we observe that conventional architectures such as multilayer perceptrons are insufficient for capturing the complex interactions between image and text representations. Our study offers novel insights and practical considerations for researchers working in multimodal information retrieval, particularly in real-world, cross-modal applications.
☆ Paths to Causality: Finding Informative Subgraphs Within Knowledge Graphs for Knowledge-Based Causal Discovery KDD 2025
Inferring causal relationships between variable pairs is crucial for understanding multivariate interactions in complex systems. Knowledge-based causal discovery -- which involves inferring causal relationships by reasoning over the metadata of variables (e.g., names or textual context) -- offers a compelling alternative to traditional methods that rely on observational data. However, existing methods using Large Language Models (LLMs) often produce unstable and inconsistent results, compromising their reliability for causal inference. To address this, we introduce a novel approach that integrates Knowledge Graphs (KGs) with LLMs to enhance knowledge-based causal discovery. Our approach identifies informative metapath-based subgraphs within KGs and further refines the selection of these subgraphs using Learning-to-Rank-based models. The top-ranked subgraphs are then incorporated into zero-shot prompts, improving the effectiveness of LLMs in inferring the causal relationship. Extensive experiments on biomedical and open-domain datasets demonstrate that our method outperforms most baselines by up to 44.4 points in F1 scores, evaluated across diverse LLMs and KGs. Our code and datasets are available on GitHub: https://github.com/susantiyuni/path-to-causality
comment: Accepted at KDD 2025 (full research paper)
☆ Bayesian Inverse Physics for Neuro-Symbolic Robot Learning
Real-world robotic applications, from autonomous exploration to assistive technologies, require adaptive, interpretable, and data-efficient learning paradigms. While deep learning architectures and foundation models have driven significant advances in diverse robotic applications, they remain limited in their ability to operate efficiently and reliably in unknown and dynamic environments. In this position paper, we critically assess these limitations and introduce a conceptual framework for combining data-driven learning with deliberate, structured reasoning. Specifically, we propose leveraging differentiable physics for efficient world modeling, Bayesian inference for uncertainty-aware decision-making, and meta-learning for rapid adaptation to new tasks. By embedding physical symbolic reasoning within neural models, robots could generalize beyond their training data, reason about novel situations, and continuously expand their knowledge. We argue that such hybrid neuro-symbolic architectures are essential for the next generation of autonomous systems, and to this end, we provide a research roadmap to guide and accelerate their development.
☆ Factors affecting the in-context learning abilities of LLMs for dialogue state tracking
This study explores the application of in-context learning (ICL) to the dialogue state tracking (DST) problem and investigates the factors that influence its effectiveness. We use a sentence embedding based k-nearest neighbour method to retrieve the suitable demonstrations for ICL. The selected demonstrations, along with the test samples, are structured within a template as input to the LLM. We then conduct a systematic study to analyse the impact of factors related to demonstration selection and prompt context on DST performance. This work is conducted using the MultiWoZ2.4 dataset and focuses primarily on the OLMo-7B-instruct, Mistral-7B-Instruct-v0.3, and Llama3.2-3B-Instruct models. Our findings provide several useful insights on in-context learning abilities of LLMs for dialogue state tracking.
comment: Accepted to Interspeech 2025
☆ A Sample Efficient Conditional Independence Test in the Presence of Discretization
In many real-world scenarios, interested variables are often represented as discretized values due to measurement limitations. Applying Conditional Independence (CI) tests directly to such discretized data, however, can lead to incorrect conclusions. To address this, recent advancements have sought to infer the correct CI relationship between the latent variables through binarizing observed data. However, this process inevitably results in a loss of information, which degrades the test's performance. Motivated by this, this paper introduces a sample-efficient CI test that does not rely on the binarization process. We find that the independence relationships of latent continuous variables can be established by addressing an over-identifying restriction problem with Generalized Method of Moments (GMM). Based on this insight, we derive an appropriate test statistic and establish its asymptotic distribution correctly reflecting CI by leveraging nodewise regression. Theoretical findings and Empirical results across various datasets demonstrate that the superiority and effectiveness of our proposed test. Our code implementation is provided in https://github.com/boyangaaaaa/DCT
☆ Consistent Paths Lead to Truth: Self-Rewarding Reinforcement Learning for LLM Reasoning
Recent advances of Reinforcement Learning (RL) have highlighted its potential in complex reasoning tasks, yet effective training often relies on external supervision, which limits the broader applicability. In this work, we propose a novel self-rewarding reinforcement learning framework to enhance Large Language Model (LLM) reasoning by leveraging the consistency of intermediate reasoning states across different reasoning trajectories. Our key insight is that correct responses often exhibit consistent trajectory patterns in terms of model likelihood: their intermediate reasoning states tend to converge toward their own final answers (high consistency) with minimal deviation toward other candidates (low volatility). Inspired by this observation, we introduce CoVo, an intrinsic reward mechanism that integrates Consistency and Volatility via a robust vector-space aggregation strategy, complemented by a curiosity bonus to promote diverse exploration. CoVo enables LLMs to perform RL in a self-rewarding manner, offering a scalable pathway for learning to reason without external supervision. Extensive experiments on diverse reasoning benchmarks show that CoVo achieves performance comparable to or even surpassing supervised RL. Our code is available at https://github.com/sastpg/CoVo.
☆ Bridging RDF Knowledge Graphs with Graph Neural Networks for Semantically-Rich Recommender Systems DASFAA 2025
Graph Neural Networks (GNNs) have substantially advanced the field of recommender systems. However, despite the creation of more than a thousand knowledge graphs (KGs) under the W3C standard RDF, their rich semantic information has not yet been fully leveraged in GNN-based recommender systems. To address this gap, we propose a comprehensive integration of RDF KGs with GNNs that utilizes both the topological information from RDF object properties and the content information from RDF datatype properties. Our main focus is an in-depth evaluation of various GNNs, analyzing how different semantic feature initializations and types of graph structure heterogeneity influence their performance in recommendation tasks. Through experiments across multiple recommendation scenarios involving multi-million-node RDF graphs, we demonstrate that harnessing the semantic richness of RDF KGs significantly improves recommender systems and lays the groundwork for GNN-based recommender systems for the Linked Open Data cloud. The code and data are available on our GitHub repository: https://github.com/davidlamprecht/rdf-gnn-recommendation
comment: Accepted at DASFAA 2025
☆ Exploration by Random Reward Perturbation
We introduce Random Reward Perturbation (RRP), a novel exploration strategy for reinforcement learning (RL). Our theoretical analyses demonstrate that adding zero-mean noise to environmental rewards effectively enhances policy diversity during training, thereby expanding the range of exploration. RRP is fully compatible with the action-perturbation-based exploration strategies, such as $\epsilon$-greedy, stochastic policies, and entropy regularization, providing additive improvements to exploration effects. It is general, lightweight, and can be integrated into existing RL algorithms with minimal implementation effort and negligible computational overhead. RRP establishes a theoretical connection between reward shaping and noise-driven exploration, highlighting their complementary potential. Experiments show that RRP significantly boosts the performance of Proximal Policy Optimization and Soft Actor-Critic, achieving higher sample efficiency and escaping local optima across various tasks, under both sparse and dense reward scenarios.
☆ Breaking the ICE: Exploring promises and challenges of benchmarks for Inference Carbon & Energy estimation for LLMs ICSE 2025
While Generative AI stands to be one of the fastest adopted technologies ever, studies have made evident that the usage of Large Language Models (LLMs) puts significant burden on energy grids and our environment. It may prove a hindrance to the Sustainability goals of any organization. A crucial step in any Sustainability strategy is monitoring or estimating the energy consumption of various components. While there exist multiple tools for monitoring energy consumption, there is a dearth of tools/frameworks for estimating the consumption or carbon emissions. Current drawbacks of both monitoring and estimation tools include high input data points, intrusive nature, high error margin, etc. We posit that leveraging emerging LLM benchmarks and related data points can help overcome aforementioned challenges while balancing accuracy of the emission estimations. To that extent, we discuss the challenges of current approaches and present our evolving framework, R-ICE, which estimates prompt level inference carbon emissions by leveraging existing state-of-the-art(SOTA) benchmark. This direction provides a more practical and non-intrusive way to enable emerging use-cases like dynamic LLM routing, carbon accounting, etc. Our promising validation results suggest that benchmark-based modelling holds great potential for inference emission estimation and warrants further exploration from the scientific community.
comment: 5 pages. To be published in the proceedings of 9th International Workshop on Green and Sustainable Software (GREENS '25), April 29, 2025, Ottawa, Canada (Co-located with ICSE 2025)
☆ Improved LLM Agents for Financial Document Question Answering
Large language models (LLMs) have shown impressive capabilities on numerous natural language processing tasks. However, LLMs still struggle with numerical question answering for financial documents that include tabular and textual data. Recent works have showed the effectiveness of critic agents (i.e., self-correction) for this task given oracle labels. Building upon this framework, this paper examines the effectiveness of the traditional critic agent when oracle labels are not available, and show, through experiments, that this critic agent's performance deteriorates in this scenario. With this in mind, we present an improved critic agent, along with the calculator agent which outperforms the previous state-of-the-art approach (program-of-thought) and is safer. Furthermore, we investigate how our agents interact with each other, and how this interaction affects their performance.
comment: 12 pages, 5 figures
☆ ConfPO: Exploiting Policy Model Confidence for Critical Token Selection in Large Language Model Preference Optimization ICML 2025
We introduce ConfPO, a method for preference learning in Large Language Models (LLMs) that identifies and optimizes preference-critical tokens based solely on the training policy's confidence, without requiring any auxiliary models or compute. Unlike prior Direct Alignment Algorithms (DAAs) such as Direct Preference Optimization (DPO), which uniformly adjust all token probabilities regardless of their relevance to preference, ConfPO focuses optimization on the most impactful tokens. This targeted approach improves alignment quality while mitigating overoptimization (i.e., reward hacking) by using the KL divergence budget more efficiently. In contrast to recent token-level methods that rely on credit-assignment models or AI annotators, raising concerns about scalability and reliability, ConfPO is simple, lightweight, and model-free. Experimental results on challenging alignment benchmarks, including AlpacaEval 2 and Arena-Hard, demonstrate that ConfPO consistently outperforms uniform DAAs across various LLMs, delivering better alignment with zero additional computational overhead.
comment: ICML 2025
☆ Variational Autoencoder-Based Approach to Latent Feature Analysis on Efficient Representation of Power Load Monitoring Data
With the development of smart grids, High-Dimensional and Incomplete (HDI) Power Load Monitoring (PLM) data challenges the performance of Power Load Forecasting (PLF) models. In this paper, we propose a potential characterization model VAE-LF based on Variational Autoencoder (VAE) for efficiently representing and complementing PLM missing data. VAE-LF learns a low-dimensional latent representation of the data using an Encoder-Decoder structure by splitting the HDI PLM data into vectors and feeding them sequentially into the VAE-LF model, and generates the complementary data. Experiments on the UK-DALE dataset show that VAE-LF outperforms other benchmark models in both 5% and 10% sparsity test cases, with significantly lower RMSE and MAE, and especially outperforms on low sparsity ratio data. The method provides an efficient data-completion solution for electric load management in smart grids.
comment: 9 pages, 2 figures
☆ Enhancing Reasoning Capabilities of Small Language Models with Blueprints and Prompt Template Search ICML'25
Small language models (SLMs) offer promising and efficient alternatives to large language models (LLMs). However, SLMs' limited capacity restricts their reasoning capabilities and makes them sensitive to prompt variations. To address these challenges, we propose a novel framework that enhances SLM reasoning capabilities through LLM generated blueprints. The blueprints provide structured, high-level reasoning guides that help SLMs systematically tackle related problems. Furthermore, our framework integrates a prompt template search mechanism to mitigate the SLMs' sensitivity to prompt variations. Our framework demonstrates improved SLM performance across various tasks, including math (GSM8K), coding (MBPP), and logic reasoning (BBH). Our approach improves the reasoning capabilities of SLMs without increasing model size or requiring additional training, offering a lightweight and deployment-friendly solution for on-device or resource-constrained environments.
comment: TTODLer-FM Workshop@ICML'25 (Tiny Titans: The next wave of On-Device Learning for Foundational Models)
☆ Optimizing Learned Image Compression on Scalar and Entropy-Constraint Quantization ICIP2024
The continuous improvements on image compression with variational autoencoders have lead to learned codecs competitive with conventional approaches in terms of rate-distortion efficiency. Nonetheless, taking the quantization into account during the training process remains a problem, since it produces zero derivatives almost everywhere and needs to be replaced with a differentiable approximation which allows end-to-end optimization. Though there are different methods for approximating the quantization, none of them model the quantization noise correctly and thus, result in suboptimal networks. Hence, we propose an additional finetuning training step: After conventional end-to-end training, parts of the network are retrained on quantized latents obtained at the inference stage. For entropy-constraint quantizers like Trellis-Coded Quantization, the impact of the quantizer is particularly difficult to approximate by rounding or adding noise as the quantized latents are interdependently chosen through a trellis search based on both the entropy model and a distortion measure. We show that retraining on correctly quantized data consistently yields additional coding gain for both uniform scalar and especially for entropy-constraint quantization, without increasing inference complexity. For the Kodak test set, we obtain average savings between 1% and 2%, and for the TecNick test set up to 2.2% in terms of Bj{\o}ntegaard-Delta bitrate.
comment: Accepted at ICIP2024, the IEEE International Conference on Image Processing
☆ Towards Robust Real-World Multivariate Time Series Forecasting: A Unified Framework for Dependency, Asynchrony, and Missingness
Real-world time series data are inherently multivariate, often exhibiting complex inter-channel dependencies. Each channel is typically sampled at its own period and is prone to missing values due to various practical and operational constraints. These characteristics pose fundamental challenges related to channel dependency, sampling asynchrony, and missingness, all of which must be addressed to enable robust and reliable forecasting in practical settings. However, most existing architectures are built on oversimplified assumptions, such as identical sampling periods across channels and fully observed inputs at test time, which often do not hold in real-world scenarios. To bridge this gap, we propose ChannelTokenFormer, a Transformer-based forecasting model with a flexible architecture designed to explicitly capture cross-channel interactions, accommodate channel-wise asynchronous sampling, and effectively handle missing values. Extensive experiments on three benchmark datasets modified to reflect practical settings, along with one real-world industrial dataset, demonstrate the superior robustness and accuracy of ChannelTokenFormer under challenging real-world conditions.
☆ JoFormer (Journey-based Transformer): Theory and Empirical Analysis on the Tiny Shakespeare Dataset
Transformers have demonstrated remarkable success in sequence modeling, yet effectively incorporating positional information remains a challenging and active area of research. In this paper, we introduce JoFormer, a journey-based Transformer architecture grounded in a recently proposed non-commutative algebra for composing transformations across positions. JoFormer represents relative positions through learnable directional transforms that are sequentially composed along the input, thereby extending and generalizing existing approaches based on relative position representations. We derive the JoFormer attention mechanism from first principles and show that it subsumes standard methods such as rotary transformations as special cases. To evaluate its effectiveness, we compare JoFormer to the RoFormer baseline on the Tiny Shakespeare character-level language modeling task. Our results demonstrate that JoFormer consistently achieves lower perplexity and faster convergence, highlighting the advantages of its more expressive, journey-based treatment of position. Notably, the per-token JoFormer is still a primitive, conceptual variant with layer-independent angles, yet it already demonstrates strong performance-underscoring its promise as a proof of concept for more expressive architectures. We conclude by discussing how JoFormer offers a principled approach to integrating positional structure into Transformer architectures. The code used in this work is available at https://github.com/mahesh-godavarti/joformer.
☆ Summarization for Generative Relation Extraction in the Microbiome Domain
We explore a generative relation extraction (RE) pipeline tailored to the study of interactions in the intestinal microbiome, a complex and low-resource biomedical domain. Our method leverages summarization with large language models (LLMs) to refine context before extracting relations via instruction-tuned generation. Preliminary results on a dedicated corpus show that summarization improves generative RE performance by reducing noise and guiding the model. However, BERT-based RE approaches still outperform generative models. This ongoing work demonstrates the potential of generative methods to support the study of specialized domains in low-resources setting.
☆ TableDreamer: Progressive and Weakness-guided Data Synthesis from Scratch for Table Instruction Tuning ACL 2025
Despite the commendable progress of recent LLM-based data synthesis methods, they face two limitations in generating table instruction tuning data. First, they can not thoroughly explore the vast input space of table understanding tasks, leading to limited data diversity. Second, they ignore the weaknesses in table understanding ability of the target LLM and blindly pursue the increase of data quantity, resulting in suboptimal data efficiency. In this paper, we introduce a progressive and weakness-guided data synthesis framework tailored for table instruction tuning, named TableDreamer, to mitigate the above issues. Specifically, we first synthesize diverse tables and related instructions as seed data, and then perform an iterative exploration of the input space under the guidance of the newly identified weakness data, which eventually serve as the final training data for fine-tuning the target LLM. Extensive experiments on 10 tabular benchmarks demonstrate the effectiveness of the proposed framework, which boosts the average accuracy of Llama3.1-8B-instruct by 11.62% (49.07% to 60.69%) with 27K GPT-4o synthetic data and outperforms state-of-the-art data synthesis baselines which use more training data. The code and data is available at https://github.com/SpursGoZmy/TableDreamer
comment: 27 pages, 19 figures, Findings of ACL 2025
☆ Time Series Representations for Classification Lie Hidden in Pretrained Vision Transformers
Time series classification is a fundamental task in healthcare and industry, yet the development of time series foundation models (TSFMs) remains limited by the scarcity of publicly available time series datasets. In this work, we propose Time Vision Transformer (TiViT), a framework that converts time series into images to leverage the representational power of frozen Vision Transformers (ViTs) pretrained on large-scale image datasets. First, we theoretically motivate our approach by analyzing the 2D patching of ViTs for time series, showing that it can increase the number of label-relevant tokens and reduce the sample complexity. Second, we empirically demonstrate that TiViT achieves state-of-the-art performance on standard time series classification benchmarks by utilizing the hidden representations of large OpenCLIP models. We explore the structure of TiViT representations and find that intermediate layers with high intrinsic dimension are the most effective for time series classification. Finally, we assess the alignment between TiViT and TSFM representation spaces and identify a strong complementarity, with further performance gains achieved by combining their features. Our findings reveal yet another direction for reusing vision representations in a non-visual domain.
☆ MOSAIC-F: A Framework for Enhancing Students' Oral Presentation Skills through Personalized Feedback
In this article, we present a novel multimodal feedback framework called MOSAIC-F, an acronym for a data-driven Framework that integrates Multimodal Learning Analytics (MMLA), Observations, Sensors, Artificial Intelligence (AI), and Collaborative assessments for generating personalized feedback on student learning activities. This framework consists of four key steps. First, peers and professors' assessments are conducted through standardized rubrics (that include both quantitative and qualitative evaluations). Second, multimodal data are collected during learning activities, including video recordings, audio capture, gaze tracking, physiological signals (heart rate, motion data), and behavioral interactions. Third, personalized feedback is generated using AI, synthesizing human-based evaluations and data-based multimodal insights such as posture, speech patterns, stress levels, and cognitive load, among others. Finally, students review their own performance through video recordings and engage in self-assessment and feedback visualization, comparing their own evaluations with peers and professors' assessments, class averages, and AI-generated recommendations. By combining human-based and data-based evaluation techniques, this framework enables more accurate, personalized and actionable feedback. We tested MOSAIC-F in the context of improving oral presentation skills.
comment: Accepted in LASI Spain 25: Learning Analytics Summer Institute Spain 2025
☆ Modular Recurrence in Contextual MDPs for Universal Morphology Control
A universal controller for any robot morphology would greatly improve computational and data efficiency. By utilizing contextual information about the properties of individual robots and exploiting their modular structure in the architecture of deep reinforcement learning agents, steps have been made towards multi-robot control. Generalization to new, unseen robots, however, remains a challenge. In this paper we hypothesize that the relevant contextual information is partially observable, but that it can be inferred through interactions for better generalization to contexts that are not seen during training. To this extent, we implement a modular recurrent architecture and evaluate its generalization performance on a large set of MuJoCo robots. The results show a substantial improved performance on robots with unseen dynamics, kinematics, and topologies, in four different environments.
☆ ECMNet:Lightweight Semantic Segmentation with Efficient CNN-Mamba Network
In the past decade, Convolutional Neural Networks (CNNs) and Transformers have achieved wide applicaiton in semantic segmentation tasks. Although CNNs with Transformer models greatly improve performance, the global context modeling remains inadequate. Recently, Mamba achieved great potential in vision tasks, showing its advantages in modeling long-range dependency. In this paper, we propose a lightweight Efficient CNN-Mamba Network for semantic segmentation, dubbed as ECMNet. ECMNet combines CNN with Mamba skillfully in a capsule-based framework to address their complementary weaknesses. Specifically, We design a Enhanced Dual-Attention Block (EDAB) for lightweight bottleneck. In order to improve the representations ability of feature, We devise a Multi-Scale Attention Unit (MSAU) to integrate multi-scale feature aggregation, spatial aggregation and channel aggregation. Moreover, a Mamba enhanced Feature Fusion Module (FFM) merges diverse level feature, significantly enhancing segmented accuracy. Extensive experiments on two representative datasets demonstrate that the proposed model excels in accuracy and efficiency balance, achieving 70.6% mIoU on Cityscapes and 73.6% mIoU on CamVid test datasets, with 0.87M parameters and 8.27G FLOPs on a single RTX 3090 GPU platform.
comment: 16 pages, 2 figures, 4 tables
☆ FoldA: Computing Partial-Order Alignments Using Directed Net Unfoldings
Conformance checking is a fundamental task of process mining, which quantifies the extent to which the observed process executions match a normative process model. The state-of-the-art approaches compute alignments by exploring the state space formed by the synchronous product of the process model and the trace. This often leads to state space explosion, particularly when the model exhibits a high degree of choice and concurrency. Moreover, as alignments inherently impose a sequential structure, they fail to fully represent the concurrent behavior present in many real-world processes. To address these limitations, this paper proposes a new technique for computing partial-order alignments {on the fly using directed Petri net unfoldings, named FoldA. We evaluate our technique on 485 synthetic model-log pairs and compare it against Astar- and Dijkstra-alignments on 13 real-life model-log pairs and 6 benchmark pairs. The results show that our unfolding alignment, although it requires more computation time, generally reduces the number of queued states and provides a more accurate representation of concurrency.
comment: Conditionally accepted at BPM 2025
☆ HSG-12M: A Large-Scale Spatial Multigraph Dataset
Existing graph benchmarks assume non-spatial, simple edges, collapsing physically distinct paths into a single link. We introduce HSG-12M, the first large-scale dataset of $\textbf{spatial multigraphs}-$graphs embedded in a metric space where multiple geometrically distinct trajectories between two nodes are retained as separate edges. HSG-12M contains 11.6 million static and 5.1 million dynamic $\textit{Hamiltonian spectral graphs}$ across 1401 characteristic-polynomial classes, derived from 177 TB of spectral potential data. Each graph encodes the full geometry of a 1-D crystal's energy spectrum on the complex plane, producing diverse, physics-grounded topologies that transcend conventional node-coordinate datasets. To enable future extensions, we release $\texttt{Poly2Graph}$: a high-performance, open-source pipeline that maps arbitrary 1-D crystal Hamiltonians to spectral graphs. Benchmarks with popular GNNs expose new challenges in learning from multi-edge geometry at scale. Beyond its practical utility, we show that spectral graphs serve as universal topological fingerprints of polynomials, vectors, and matrices, forging a new algebra-to-graph link. HSG-12M lays the groundwork for geometry-aware graph learning and new opportunities of data-driven scientific discovery in condensed matter physics and beyond.
comment: 39 pages, 13 figures, 3 tables. Code & pipeline: [https://github.com/sarinstein-yan/Poly2Graph] Dataset: [https://github.com/sarinstein-yan/HSG-12M] Dataset released under CC BY 4.0
☆ Flow Matching Meets PDEs: A Unified Framework for Physics-Constrained Generation
Generative machine learning methods, such as diffusion models and flow matching, have shown great potential in modeling complex system behaviors and building efficient surrogate models. However, these methods typically learn the underlying physics implicitly from data. We propose Physics-Based Flow Matching (PBFM), a novel generative framework that explicitly embeds physical constraints, both PDE residuals and algebraic relations, into the flow matching objective. We also introduce temporal unrolling at training time that improves the accuracy of the final, noise-free sample prediction. Our method jointly minimizes the flow matching loss and the physics-based residual loss without requiring hyperparameter tuning of their relative weights. Additionally, we analyze the role of the minimum noise level, $\sigma_{\min}$, in the context of physical constraints and evaluate a stochastic sampling strategy that helps to reduce physical residuals. Through extensive benchmarks on three representative PDE problems, we show that our approach yields up to an $8\times$ more accurate physical residuals compared to FM, while clearly outperforming existing algorithms in terms of distributional accuracy. PBFM thus provides a principled and efficient framework for surrogate modeling, uncertainty quantification, and accelerated simulation in physics and engineering applications.
☆ WGLE:Backdoor-free and Multi-bit Black-box Watermarking for Graph Neural Networks
Graph Neural Networks (GNNs) are increasingly deployed in graph-related applications, making ownership verification critical to protect their intellectual property against model theft. Fingerprinting and black-box watermarking are two main methods. However, the former relies on determining model similarity, which is computationally expensive and prone to ownership collisions after model post-processing such as model pruning or fine-tuning. The latter embeds backdoors, exposing watermarked models to the risk of backdoor attacks. Moreover, both methods enable ownership verification but do not convey additional information. As a result, each distributed model requires a unique trigger graph, and all trigger graphs must be used to query the suspect model during verification. Multiple queries increase the financial cost and the risk of detection. To address these challenges, this paper proposes WGLE, a novel black-box watermarking paradigm for GNNs that enables embedding the multi-bit string as the ownership information without using backdoors. WGLE builds on a key insight we term Layer-wise Distance Difference on an Edge (LDDE), which quantifies the difference between the feature distance and the prediction distance of two connected nodes. By predefining positive or negative LDDE values for multiple selected edges, WGLE embeds the watermark encoding the intended information without introducing incorrect mappings that compromise the primary task. WGLE is evaluated on six public datasets and six mainstream GNN architectures along with state-of-the-art methods. The results show that WGLE achieves 100% ownership verification accuracy, an average fidelity degradation of 0.85%, comparable robustness against potential attacks, and low embedding overhead. The code is available in the repository.
☆ Transformers Meet Hyperspectral Imaging: A Comprehensive Study of Models, Challenges and Open Problems
Transformers have become the architecture of choice for learning long-range dependencies, yet their adoption in hyperspectral imaging (HSI) is still emerging. We reviewed more than 300 papers published up to 2025 and present the first end-to-end survey dedicated to Transformer-based HSI classification. The study categorizes every stage of a typical pipeline-pre-processing, patch or pixel tokenization, positional encoding, spatial-spectral feature extraction, multi-head self-attention variants, skip connections, and loss design-and contrasts alternative design choices with the unique spatial-spectral properties of HSI. We map the field's progress against persistent obstacles: scarce labeled data, extreme spectral dimensionality, computational overhead, and limited model explainability. Finally, we outline a research agenda prioritizing valuable public data sets, lightweight on-edge models, illumination and sensor shifts robustness, and intrinsically interpretable attention mechanisms. Our goal is to guide researchers in selecting, combining, or extending Transformer components that are truly fit for purpose for next-generation HSI applications.
☆ Solving excited states for long-range interacting trapped ions with neural networks
The computation of excited states in strongly interacting quantum many-body systems is of fundamental importance. Yet, it is notoriously challenging due to the exponential scaling of the Hilbert space dimension with the system size. Here, we introduce a neural network-based algorithm that can simultaneously output multiple low-lying excited states of a quantum many-body spin system in an accurate and efficient fashion. This algorithm, dubbed the neural quantum excited-state (NQES) algorithm, requires no explicit orthogonalization of the states and is generally applicable to higher dimensions. We demonstrate, through concrete examples including the Haldane-Shastry model with all-to-all interactions, that the NQES algorithm is capable of efficiently computing multiple excited states and their related observable expectations. In addition, we apply the NQES algorithm to two classes of long-range interacting trapped-ion systems in a two-dimensional Wigner crystal. For non-decaying all-to-all interactions with alternating signs, our computed low-lying excited states bear spatial correlation patterns similar to those of the ground states, which closely match recent experimental observations that the quasi-adiabatically prepared state accurately reproduces analytical ground-state correlations. For a system of up to 300 ions with power-law decaying antiferromagnetic interactions, we successfully uncover its gap scaling and correlation features. Our results establish a scalable and efficient algorithm for computing excited states of interacting quantum many-body systems, which holds potential applications ranging from benchmarking quantum devices to photoisomerization.
☆ HGFormer: A Hierarchical Graph Transformer Framework for Two-Stage Colonel Blotto Games via Reinforcement Learning
Two-stage Colonel Blotto game represents a typical adversarial resource allocation problem, in which two opposing agents sequentially allocate resources in a network topology across two phases: an initial resource deployment followed by multiple rounds of dynamic reallocation adjustments. The sequential dependency between game stages and the complex constraints imposed by the graph topology make it difficult for traditional approaches to attain a globally optimal strategy. To address these challenges, we propose a hierarchical graph Transformer framework called HGformer. By incorporating an enhanced graph Transformer encoder with structural biases and a two-agent hierarchical decision model, our approach enables efficient policy generation in large-scale adversarial environments. Moreover, we design a layer-by-layer feedback reinforcement learning algorithm that feeds the long-term returns from lower-level decisions back into the optimization of the higher-level strategy, thus bridging the coordination gap between the two decision-making stages. Experimental results demonstrate that, compared to existing hierarchical decision-making or graph neural network methods, HGformer significantly improves resource allocation efficiency and adversarial payoff, achieving superior overall performance in complex dynamic game scenarios.
☆ Diffusion-based Time Series Forecasting for Sewerage Systems
We introduce a novel deep learning approach that harnesses the power of generative artificial intelligence to enhance the accuracy of contextual forecasting in sewerage systems. By developing a diffusion-based model that processes multivariate time series data, our system excels at capturing complex correlations across diverse environmental signals, enabling robust predictions even during extreme weather events. To strengthen the model's reliability, we further calibrate its predictions with a conformal inference technique, tailored for probabilistic time series data, ensuring that the resulting prediction intervals are statistically reliable and cover the true target values with a desired confidence level. Our empirical tests on real sewerage system data confirm the model's exceptional capability to deliver reliable contextual predictions, maintaining accuracy even under severe weather conditions.
comment: Accepted for presentation at the 13th Urban Drainage Modelling Conference, Innsbruck (Austria), September 2025
☆ The Geometries of Truth Are Orthogonal Across Tasks
Large Language Models (LLMs) have demonstrated impressive generalization capabilities across various tasks, but their claim to practical relevance is still mired by concerns on their reliability. Recent works have proposed examining the activations produced by an LLM at inference time to assess whether its answer to a question is correct. Some works claim that a "geometry of truth" can be learned from examples, in the sense that the activations that generate correct answers can be distinguished from those leading to mistakes with a linear classifier. In this work, we underline a limitation of these approaches: we observe that these "geometries of truth" are intrinsically task-dependent and fail to transfer across tasks. More precisely, we show that linear classifiers trained across distinct tasks share little similarity and, when trained with sparsity-enforcing regularizers, have almost disjoint supports. We show that more sophisticated approaches (e.g., using mixtures of probes and tasks) fail to overcome this limitation, likely because activation vectors commonly used to classify answers form clearly separated clusters when examined across tasks.
☆ Flow-Lenia: Emergent evolutionary dynamics in mass conservative continuous cellular automata
Central to the artificial life endeavour is the creation of artificial systems spontaneously generating properties found in the living world such as autopoiesis, self-replication, evolution and open-endedness. While numerous models and paradigms have been proposed, cellular automata (CA) have taken a very important place in the field notably as they enable the study of phenomenons like self-reproduction and autopoiesis. Continuous CA like Lenia have been showed to produce life-like patterns reminiscent, on an aesthetic and ontological point of view, of biological organisms we call creatures. We propose in this paper Flow-Lenia, a mass conservative extension of Lenia. We present experiments demonstrating its effectiveness in generating spatially-localized patters (SLPs) with complex behaviors and show that the update rule parameters can be optimized to generate complex creatures showing behaviors of interest. Furthermore, we show that Flow-Lenia allows us to embed the parameters of the model, defining the properties of the emerging patterns, within its own dynamics thus allowing for multispecies simulations. By using the evolutionary activity framework as well as other metrics, we shed light on the emergent evolutionary dynamics taking place in this system.
comment: This manuscript has been accepted for publication in the Artificial Life journal (https://direct.mit.edu/artl)
☆ Efficient Post-Training Refinement of Latent Reasoning in Large Language Models
Reasoning is a key component of language understanding in Large Language Models. While Chain-of-Thought prompting enhances performance via explicit intermediate steps, it suffers from sufficient token overhead and a fixed reasoning trajectory, preventing step-wise refinement. Recent advances in latent reasoning address these limitations by refining internal reasoning processes directly in the model's latent space, without producing explicit outputs. However, a key challenge remains: how to effectively update reasoning embeddings during post-training to guide the model toward more accurate solutions. To overcome this challenge, we propose a lightweight post-training framework that refines latent reasoning trajectories using two novel strategies: 1) Contrastive reasoning feedback, which compares reasoning embeddings against strong and weak baselines to infer effective update directions via embedding enhancement; 2) Residual embedding refinement, which stabilizes updates by progressively integrating current and historical gradients, enabling fast yet controlled convergence. Extensive experiments and case studies are conducted on five reasoning benchmarks to demonstrate the effectiveness of the proposed framework. Notably, a 5\% accuracy gain on MathQA without additional training.
☆ TrajFlow: Multi-modal Motion Prediction via Flow Matching
Efficient and accurate motion prediction is crucial for ensuring safety and informed decision-making in autonomous driving, particularly under dynamic real-world conditions that necessitate multi-modal forecasts. We introduce TrajFlow, a novel flow matching-based motion prediction framework that addresses the scalability and efficiency challenges of existing generative trajectory prediction methods. Unlike conventional generative approaches that employ i.i.d. sampling and require multiple inference passes to capture diverse outcomes, TrajFlow predicts multiple plausible future trajectories in a single pass, significantly reducing computational overhead while maintaining coherence across predictions. Moreover, we propose a ranking loss based on the Plackett-Luce distribution to improve uncertainty estimation of predicted trajectories. Additionally, we design a self-conditioning training technique that reuses the model's own predictions to construct noisy inputs during a second forward pass, thereby improving generalization and accelerating inference. Extensive experiments on the large-scale Waymo Open Motion Dataset (WOMD) demonstrate that TrajFlow achieves state-of-the-art performance across various key metrics, underscoring its effectiveness for safety-critical autonomous driving applications. The code and other details are available on the project website https://traj-flow.github.io/.
☆ DCD: A Semantic Segmentation Model for Fetal Ultrasound Four-Chamber View
Accurate segmentation of anatomical structures in the apical four-chamber (A4C) view of fetal echocardiography is essential for early diagnosis and prenatal evaluation of congenital heart disease (CHD). However, precise segmentation remains challenging due to ultrasound artifacts, speckle noise, anatomical variability, and boundary ambiguity across different gestational stages. To reduce the workload of sonographers and enhance segmentation accuracy, we propose DCD, an advanced deep learning-based model for automatic segmentation of key anatomical structures in the fetal A4C view. Our model incorporates a Dense Atrous Spatial Pyramid Pooling (Dense ASPP) module, enabling superior multi-scale feature extraction, and a Convolutional Block Attention Module (CBAM) to enhance adaptive feature representation. By effectively capturing both local and global contextual information, DCD achieves precise and robust segmentation, contributing to improved prenatal cardiac assessment.
☆ Robust Evolutionary Multi-Objective Network Architecture Search for Reinforcement Learning (EMNAS-RL)
This paper introduces Evolutionary Multi-Objective Network Architecture Search (EMNAS) for the first time to optimize neural network architectures in large-scale Reinforcement Learning (RL) for Autonomous Driving (AD). EMNAS uses genetic algorithms to automate network design, tailored to enhance rewards and reduce model size without compromising performance. Additionally, parallelization techniques are employed to accelerate the search, and teacher-student methodologies are implemented to ensure scalable optimization. This research underscores the potential of transfer learning as a robust framework for optimizing performance across iterative learning processes by effectively leveraging knowledge from earlier generations to enhance learning efficiency and stability in subsequent generations. Experimental results demonstrate that tailored EMNAS outperforms manually designed models, achieving higher rewards with fewer parameters. The findings of these strategies contribute positively to EMNAS for RL in autonomous driving, advancing the field toward better-performing networks suitable for real-world scenarios.
comment: Published at ESANN 2025 Conference
☆ Safe and Economical UAV Trajectory Planning in Low-Altitude Airspace: A Hybrid DRL-LLM Approach with Compliance Awareness
The rapid growth of the low-altitude economy has driven the widespread adoption of unmanned aerial vehicles (UAVs). This growing deployment presents new challenges for UAV trajectory planning in complex urban environments. However, existing studies often overlook key factors, such as urban airspace constraints and economic efficiency, which are essential in low-altitude economy contexts. Deep reinforcement learning (DRL) is regarded as a promising solution to these issues, while its practical adoption remains limited by low learning efficiency. To overcome this limitation, we propose a novel UAV trajectory planning framework that combines DRL with large language model (LLM) reasoning to enable safe, compliant, and economically viable path planning. Experimental results demonstrate that our method significantly outperforms existing baselines across multiple metrics, including data collection rate, collision avoidance, successful landing, regulatory compliance, and energy efficiency. These results validate the effectiveness of our approach in addressing UAV trajectory planning key challenges under constraints of the low-altitude economy networking.
☆ FEDTAIL: Federated Long-Tailed Domain Generalization with Sharpness-Guided Gradient Matching ICML 2025
Domain Generalization (DG) seeks to train models that perform reliably on unseen target domains without access to target data during training. While recent progress in smoothing the loss landscape has improved generalization, existing methods often falter under long-tailed class distributions and conflicting optimization objectives. We introduce FedTAIL, a federated domain generalization framework that explicitly addresses these challenges through sharpness-guided, gradient-aligned optimization. Our method incorporates a gradient coherence regularizer to mitigate conflicts between classification and adversarial objectives, leading to more stable convergence. To combat class imbalance, we perform class-wise sharpness minimization and propose a curvature-aware dynamic weighting scheme that adaptively emphasizes underrepresented tail classes. Furthermore, we enhance conditional distribution alignment by integrating sharpness-aware perturbations into entropy regularization, improving robustness under domain shift. FedTAIL unifies optimization harmonization, class-aware regularization, and conditional alignment into a scalable, federated-compatible framework. Extensive evaluations across standard domain generalization benchmarks demonstrate that FedTAIL achieves state-of-the-art performance, particularly in the presence of domain shifts and label imbalance, validating its effectiveness in both centralized and federated settings. Code: https://github.com/sunnyinAI/FedTail
comment: Accepted at ICML 2025 Workshop on Collaborative and Federated Agentic Workflows CFAgentic @ ICML'25
☆ MLVTG: Mamba-Based Feature Alignment and LLM-Driven Purification for Multi-Modal Video Temporal Grounding
Video Temporal Grounding (VTG), which aims to localize video clips corresponding to natural language queries, is a fundamental yet challenging task in video understanding. Existing Transformer-based methods often suffer from redundant attention and suboptimal multi-modal alignment. To address these limitations, we propose MLVTG, a novel framework that integrates two key modules: MambaAligner and LLMRefiner. MambaAligner uses stacked Vision Mamba blocks as a backbone instead of Transformers to model temporal dependencies and extract robust video representations for multi-modal alignment. LLMRefiner leverages the specific frozen layer of a pre-trained Large Language Model (LLM) to implicitly transfer semantic priors, enhancing multi-modal alignment without fine-tuning. This dual alignment strategy, temporal modeling via structured state-space dynamics and semantic purification via textual priors, enables more precise localization. Extensive experiments on QVHighlights, Charades-STA, and TVSum demonstrate that MLVTG achieves state-of-the-art performance and significantly outperforms existing baselines.
☆ MasHost Builds It All: Autonomous Multi-Agent System Directed by Reinforcement Learning
Large Language Model (LLM)-driven Multi-agent systems (Mas) have recently emerged as a powerful paradigm for tackling complex real-world tasks. However, existing Mas construction methods typically rely on manually crafted interaction mechanisms or heuristic rules, introducing human biases and constraining the autonomous ability. Even with recent advances in adaptive Mas construction, existing systems largely remain within the paradigm of semi-autonomous patterns. In this work, we propose MasHost, a Reinforcement Learning (RL)-based framework for autonomous and query-adaptive Mas design. By formulating Mas construction as a graph search problem, our proposed MasHost jointly samples agent roles and their interactions through a unified probabilistic sampling mechanism. Beyond the accuracy and efficiency objectives pursued in prior works, we introduce component rationality as an additional and novel design principle in Mas. To achieve this multi-objective optimization, we propose Hierarchical Relative Policy Optimization (HRPO), a novel RL strategy that collaboratively integrates group-relative advantages and action-wise rewards. To our knowledge, our proposed MasHost is the first RL-driven framework for autonomous Mas graph construction. Extensive experiments on six benchmarks demonstrate that MasHost consistently outperforms most competitive baselines, validating its effectiveness, efficiency, and structure rationality.
☆ Explaining, Fast and Slow: Abstraction and Refinement of Provable Explanations ICML 2025
Despite significant advancements in post-hoc explainability techniques for neural networks, many current methods rely on heuristics and do not provide formally provable guarantees over the explanations provided. Recent work has shown that it is possible to obtain explanations with formal guarantees by identifying subsets of input features that are sufficient to determine that predictions remain unchanged using neural network verification techniques. Despite the appeal of these explanations, their computation faces significant scalability challenges. In this work, we address this gap by proposing a novel abstraction-refinement technique for efficiently computing provably sufficient explanations of neural network predictions. Our method abstracts the original large neural network by constructing a substantially reduced network, where a sufficient explanation of the reduced network is also provably sufficient for the original network, hence significantly speeding up the verification process. If the explanation is in sufficient on the reduced network, we iteratively refine the network size by gradually increasing it until convergence. Our experiments demonstrate that our approach enhances the efficiency of obtaining provably sufficient explanations for neural network predictions while additionally providing a fine-grained interpretation of the network's predictions across different abstraction levels.
comment: To appear in ICML 2025
☆ CoMuMDR: Code-mixed Multi-modal Multi-domain corpus for Discourse paRsing in conversations ACL
Discourse parsing is an important task useful for NLU applications such as summarization, machine comprehension, and emotion recognition. The current discourse parsing datasets based on conversations consists of written English dialogues restricted to a single domain. In this resource paper, we introduce CoMuMDR: Code-mixed Multi-modal Multi-domain corpus for Discourse paRsing in conversations. The corpus (code-mixed in Hindi and English) has both audio and transcribed text and is annotated with nine discourse relations. We experiment with various SoTA baseline models; the poor performance of SoTA models highlights the challenges of multi-domain code-mixed corpus, pointing towards the need for developing better models for such realistic settings.
comment: Accepted at ACL Findings 2025 (16 pages: 5 pages main content + 3 pages references + 8 pages appendix)
☆ DRAGged into Conflicts: Detecting and Addressing Conflicting Sources in Search-Augmented LLMs
Retrieval Augmented Generation (RAG) is a commonly used approach for enhancing large language models (LLMs) with relevant and up-to-date information. However, the retrieved sources can often contain conflicting information and it remains unclear how models should address such discrepancies. In this work, we first propose a novel taxonomy of knowledge conflict types in RAG, along with the desired model behavior for each type. We then introduce CONFLICTS, a high-quality benchmark with expert annotations of conflict types in a realistic RAG setting. CONFLICTS is the first benchmark that enables tracking progress on how models address a wide range of knowledge conflicts. We conduct extensive experiments on this benchmark, showing that LLMs often struggle to appropriately resolve conflicts between sources. While prompting LLMs to explicitly reason about the potential conflict in the retrieved documents significantly improves the quality and appropriateness of their responses, substantial room for improvement in future research remains.
☆ EtiCor++: Towards Understanding Etiquettical Bias in LLMs ACL
In recent years, researchers have started analyzing the cultural sensitivity of LLMs. In this respect, Etiquettes have been an active area of research. Etiquettes are region-specific and are an essential part of the culture of a region; hence, it is imperative to make LLMs sensitive to etiquettes. However, there needs to be more resources in evaluating LLMs for their understanding and bias with regard to etiquettes. In this resource paper, we introduce EtiCor++, a corpus of etiquettes worldwide. We introduce different tasks for evaluating LLMs for knowledge about etiquettes across various regions. Further, we introduce various metrics for measuring bias in LLMs. Extensive experimentation with LLMs shows inherent bias towards certain regions.
comment: Accepted at ACL Findings 2025, 22 pages (9 pages main content + 4 pages references + 9 pages appendix)
☆ Fairness is Not Silence: Unmasking Vacuous Neutrality in Small Language Models
The rapid adoption of Small Language Models (SLMs) for on-device and resource-constrained deployments has outpaced our understanding of their ethical risks. To the best of our knowledge, we present the first large-scale audit of instruction-tuned SLMs spanning 0.5 to 5 billion parameters-an overlooked "middle tier" between BERT-class encoders and flagship LLMs. Our evaluation includes nine open-source models from the Qwen 2.5, LLaMA 3.2, Gemma 3, and Phi families. Using the BBQ benchmark under zero-shot prompting, we analyze both utility and fairness across ambiguous and disambiguated contexts. This evaluation reveals three key insights. First, competence and fairness need not be antagonistic: Phi models achieve F1 scores exceeding 90 percent while exhibiting minimal bias, showing that efficient and ethical NLP is attainable. Second, social bias varies significantly by architecture: Qwen 2.5 models may appear fair, but this often reflects vacuous neutrality, random guessing, or evasive behavior rather than genuine ethical alignment. In contrast, LLaMA 3.2 models exhibit stronger stereotypical bias, suggesting overconfidence rather than neutrality. Third, compression introduces nuanced trade-offs: 4-bit AWQ quantization improves F1 scores in ambiguous settings for LLaMA 3.2-3B but increases disability-related bias in Phi-4-Mini by over 7 percentage points. These insights provide practical guidance for the responsible deployment of SLMs in applications demanding fairness and efficiency, particularly benefiting small enterprises and resource-constrained environments.
☆ RHealthTwin: Towards Responsible and Multimodal Digital Twins for Personalized Well-being
The rise of large language models (LLMs) has created new possibilities for digital twins in healthcare. However, the deployment of such systems in consumer health contexts raises significant concerns related to hallucination, bias, lack of transparency, and ethical misuse. In response to recommendations from health authorities such as the World Health Organization (WHO), we propose Responsible Health Twin (RHealthTwin), a principled framework for building and governing AI-powered digital twins for well-being assistance. RHealthTwin processes multimodal inputs that guide a health-focused LLM to produce safe, relevant, and explainable responses. At the core of RHealthTwin is the Responsible Prompt Engine (RPE), which addresses the limitations of traditional LLM configuration. Conventionally, users input unstructured prompt and the system instruction to configure the LLM, which increases the risk of hallucination. In contrast, RPE extracts predefined slots dynamically to structure both inputs. This guides the language model to generate responses that are context aware, personalized, fair, reliable, and explainable for well-being assistance. The framework further adapts over time through a feedback loop that updates the prompt structure based on user satisfaction. We evaluate RHealthTwin across four consumer health domains including mental support, symptom triage, nutrition planning, and activity coaching. RPE achieves state-of-the-art results with BLEU = 0.41, ROUGE-L = 0.63, and BERTScore = 0.89 on benchmark datasets. Also, we achieve over 90% in ethical compliance and instruction-following metrics using LLM-as-judge evaluation, outperforming baseline strategies. We envision RHealthTwin as a forward-looking foundation for responsible LLM-based applications in health and well-being.
comment: 18 pages, 12 figures, IEEE EMBS JBHI
☆ Re-Thinking the Automatic Evaluation of Image-Text Alignment in Text-to-Image Models
Text-to-image models often struggle to generate images that precisely match textual prompts. Prior research has extensively studied the evaluation of image-text alignment in text-to-image generation. However, existing evaluations primarily focus on agreement with human assessments, neglecting other critical properties of a trustworthy evaluation framework. In this work, we first identify two key aspects that a reliable evaluation should address. We then empirically demonstrate that current mainstream evaluation frameworks fail to fully satisfy these properties across a diverse range of metrics and models. Finally, we propose recommendations for improving image-text alignment evaluation.
☆ Efficient Context Selection for Long-Context QA: No Tuning, No Iteration, Just Adaptive-$k$
Retrieval-augmented generation (RAG) and long-context language models (LCLMs) both address context limitations of LLMs in open-domain question answering (QA). However, optimal external context to retrieve remains an open problem: fixing the retrieval size risks either wasting tokens or omitting key evidence. Existing adaptive methods like Self-RAG and Self-Route rely on iterative LLM prompting and perform well on factoid QA, but struggle with aggregation QA, where the optimal context size is both unknown and variable. We present Adaptive-$k$ retrieval, a simple and effective single-pass method that adaptively selects the number of passages based on the distribution of the similarity scores between the query and the candidate passages. It does not require model fine-tuning, extra LLM inferences or changes to existing retriever-reader pipelines. On both factoid and aggregation QA benchmarks, Adaptive-$k$ matches or outperforms fixed-$k$ baselines while using up to 10x fewer tokens than full-context input, yet still retrieves 70% of relevant passages. It improves accuracy across five LCLMs and two embedding models, highlighting that dynamically adjusting context size leads to more efficient and accurate QA.
comment: 26 pages, 16 tables, 5 figures
☆ How to Provably Improve Return Conditioned Supervised Learning?
In sequential decision-making problems, Return-Conditioned Supervised Learning (RCSL) has gained increasing recognition for its simplicity and stability in modern decision-making tasks. Unlike traditional offline reinforcement learning (RL) algorithms, RCSL frames policy learning as a supervised learning problem by taking both the state and return as input. This approach eliminates the instability often associated with temporal difference (TD) learning in offline RL. However, RCSL has been criticized for lacking the stitching property, meaning its performance is inherently limited by the quality of the policy used to generate the offline dataset. To address this limitation, we propose a principled and simple framework called Reinforced RCSL. The key innovation of our framework is the introduction of a concept we call the in-distribution optimal return-to-go. This mechanism leverages our policy to identify the best achievable in-dataset future return based on the current state, avoiding the need for complex return augmentation techniques. Our theoretical analysis demonstrates that Reinforced RCSL can consistently outperform the standard RCSL approach. Empirical results further validate our claims, showing significant performance improvements across a range of benchmarks.
comment: 25 pages, 4 figures, 12 tables
☆ Hybrid Reasoning for Perception, Explanation, and Autonomous Action in Manufacturing
Industrial processes must be robust and adaptable, as environments and tasks are often unpredictable, while operational errors remain costly and difficult to detect. AI-based control systems offer a path forward, yet typically depend on supervised learning with extensive labelled datasets, which limits their ability to generalize across variable and data-scarce industrial settings. Foundation models could enable broader reasoning and knowledge integration, but rarely deliver the quantitative precision demanded by engineering applications. Here, we introduceControl and Interpretation of Production via Hybrid Expertise and Reasoning (CIPHER): a vision-language-action (VLA) model framework aiming to replicate human-like reasoning for industrial control, instantiated in a commercial-grade 3D printer. It integrates a process expert, a regression model enabling quantitative characterization of system states required for engineering tasks. CIPHER also incorporates retrieval-augmented generation to access external expert knowledge and support physics-informed, chain-of-thought reasoning. This hybrid architecture exhibits strong generalization to out-of-distribution tasks. It interprets visual or textual inputs from process monitoring, explains its decisions, and autonomously generates precise machine instructions, without requiring explicit annotations. CIPHER thus lays the foundations for autonomous systems that act with precision, reason with context, and communicate decisions transparently, supporting safe and trusted deployment in industrial settings.
☆ MOBODY: Model Based Off-Dynamics Offline Reinforcement Learning
We study the off-dynamics offline reinforcement learning problem, where the goal is to learn a policy from offline datasets collected from source and target domains with mismatched transition. Existing off-dynamics offline RL methods typically either filter source transitions that resemble those of the target domain or apply reward augmentation to source data, both constrained by the limited transitions available from the target domain. As a result, the learned policy is unable to explore target domain beyond the offline datasets. We propose MOBODY, a Model-Based Off-Dynamics offline RL algorithm that addresses this limitation by enabling exploration of the target domain via learned dynamics. MOBODY generates new synthetic transitions in the target domain through model rollouts, which are used as data augmentation during offline policy learning. Unlike existing model-based methods that learn dynamics from a single domain, MOBODY tackles the challenge of mismatched dynamics by leveraging both source and target datasets. Directly merging these datasets can bias the learned model toward source dynamics. Instead, MOBODY learns target dynamics by discovering a shared latent representation of states and transitions across domains through representation learning. To stabilize training, MOBODY incorporates a behavior cloning loss that regularizes the policy. Specifically, we introduce a Q-weighted behavior cloning loss that regularizes the policy toward actions with high target-domain Q-values, rather than uniformly imitating all actions in the dataset. These Q-values are learned from an enhanced target dataset composed of offline target data, augmented source data, and rollout data from the learned target dynamics. We evaluate MOBODY on MuJoCo benchmarks and show that it significantly outperforms state-of-the-art baselines, with especially pronounced improvements in challenging scenarios.
☆ Diffusion Models for Safety Validation of Autonomous Driving Systems
Safety validation of autonomous driving systems is extremely challenging due to the high risks and costs of real-world testing as well as the rarity and diversity of potential failures. To address these challenges, we train a denoising diffusion model to generate potential failure cases of an autonomous vehicle given any initial traffic state. Experiments on a four-way intersection problem show that in a variety of scenarios, the diffusion model can generate realistic failure samples while capturing a wide variety of potential failures. Our model does not require any external training dataset, can perform training and inference with modest computing resources, and does not assume any prior knowledge of the system under test, with applicability to safety validation for traffic intersections.
☆ A Survey on Large Language Models for Mathematical Reasoning
Mathematical reasoning has long represented one of the most fundamental and challenging frontiers in artificial intelligence research. In recent years, large language models (LLMs) have achieved significant advances in this area. This survey examines the development of mathematical reasoning abilities in LLMs through two high-level cognitive phases: comprehension, where models gain mathematical understanding via diverse pretraining strategies, and answer generation, which has progressed from direct prediction to step-by-step Chain-of-Thought (CoT) reasoning. We review methods for enhancing mathematical reasoning, ranging from training-free prompting to fine-tuning approaches such as supervised fine-tuning and reinforcement learning, and discuss recent work on extended CoT and "test-time scaling". Despite notable progress, fundamental challenges remain in terms of capacity, efficiency, and generalization. To address these issues, we highlight promising research directions, including advanced pretraining and knowledge augmentation techniques, formal reasoning frameworks, and meta-generalization through principled learning paradigms. This survey tries to provide some insights for researchers interested in enhancing reasoning capabilities of LLMs and for those seeking to apply these techniques to other domains.
☆ Time-Aware World Model for Adaptive Prediction and Control ICML 2025
In this work, we introduce the Time-Aware World Model (TAWM), a model-based approach that explicitly incorporates temporal dynamics. By conditioning on the time-step size, {\Delta}t, and training over a diverse range of {\Delta}t values -- rather than sampling at a fixed time-step -- TAWM learns both high- and low-frequency task dynamics across diverse control problems. Grounded in the information-theoretic insight that the optimal sampling rate depends on a system's underlying dynamics, this time-aware formulation improves both performance and data efficiency. Empirical evaluations show that TAWM consistently outperforms conventional models across varying observation rates in a variety of control tasks, using the same number of training samples and iterations. Our code can be found online at: github.com/anh-nn01/Time-Aware-World-Model.
comment: Paper accepted to ICML 2025
☆ HASFL: Heterogeneity-aware Split Federated Learning over Edge Computing Systems
Split federated learning (SFL) has emerged as a promising paradigm to democratize machine learning (ML) on edge devices by enabling layer-wise model partitioning. However, existing SFL approaches suffer significantly from the straggler effect due to the heterogeneous capabilities of edge devices. To address the fundamental challenge, we propose adaptively controlling batch sizes (BSs) and model splitting (MS) for edge devices to overcome resource heterogeneity. We first derive a tight convergence bound of SFL that quantifies the impact of varied BSs and MS on learning performance. Based on the convergence bound, we propose HASFL, a heterogeneity-aware SFL framework capable of adaptively controlling BS and MS to balance communication-computing latency and training convergence in heterogeneous edge networks. Extensive experiments with various datasets validate the effectiveness of HASFL and demonstrate its superiority over state-of-the-art benchmarks.
comment: 16 pages, 11 figures. arXiv admin note: text overlap with arXiv:2403.13101
☆ Offline RL with Smooth OOD Generalization in Convex Hull and its Neighborhood ICLR 2025
Offline Reinforcement Learning (RL) struggles with distributional shifts, leading to the $Q$-value overestimation for out-of-distribution (OOD) actions. Existing methods address this issue by imposing constraints; however, they often become overly conservative when evaluating OOD regions, which constrains the $Q$-function generalization. This over-constraint issue results in poor $Q$-value estimation and hinders policy improvement. In this paper, we introduce a novel approach to achieve better $Q$-value estimation by enhancing $Q$-function generalization in OOD regions within Convex Hull and its Neighborhood (CHN). Under the safety generalization guarantees of the CHN, we propose the Smooth Bellman Operator (SBO), which updates OOD $Q$-values by smoothing them with neighboring in-sample $Q$-values. We theoretically show that SBO approximates true $Q$-values for both in-sample and OOD actions within the CHN. Our practical algorithm, Smooth Q-function OOD Generalization (SQOG), empirically alleviates the over-constraint issue, achieving near-accurate $Q$-value estimation. On the D4RL benchmarks, SQOG outperforms existing state-of-the-art methods in both performance and computational efficiency.
comment: ICLR 2025
☆ Single-Node Trigger Backdoor Attacks in Graph-Based Recommendation Systems
Graph recommendation systems have been widely studied due to their ability to effectively capture the complex interactions between users and items. However, these systems also exhibit certain vulnerabilities when faced with attacks. The prevailing shilling attack methods typically manipulate recommendation results by injecting a large number of fake nodes and edges. However, such attack strategies face two primary challenges: low stealth and high destructiveness. To address these challenges, this paper proposes a novel graph backdoor attack method that aims to enhance the exposure of target items to the target user in a covert manner, without affecting other unrelated nodes. Specifically, we design a single-node trigger generator, which can effectively expose multiple target items to the target user by inserting only one fake user node. Additionally, we introduce constraint conditions between the target nodes and irrelevant nodes to mitigate the impact of fake nodes on the recommendation system's performance. Experimental results show that the exposure of the target items reaches no less than 50% in 99% of the target users, while the impact on the recommendation system's performance is controlled within approximately 5%.
☆ Spatiotemporal deep learning models for detection of rapid intensification in cyclones
Cyclone rapid intensification is the rapid increase in cyclone wind intensity, exceeding a threshold of 30 knots, within 24 hours. Rapid intensification is considered an extreme event during a cyclone, and its occurrence is relatively rare, contributing to a class imbalance in the dataset. A diverse array of factors influences the likelihood of a cyclone undergoing rapid intensification, further complicating the task for conventional machine learning models. In this paper, we evaluate deep learning, ensemble learning and data augmentation frameworks to detect cyclone rapid intensification based on wind intensity and spatial coordinates. We note that conventional data augmentation methods cannot be utilised for generating spatiotemporal patterns replicating cyclones that undergo rapid intensification. Therefore, our framework employs deep learning models to generate spatial coordinates and wind intensity that replicate cyclones to address the class imbalance problem of rapid intensification. We also use a deep learning model for the classification module within the data augmentation framework to differentiate between rapid and non-rapid intensification events during a cyclone. Our results show that data augmentation improves the results for rapid intensification detection in cyclones, and spatial coordinates play a critical role as input features to the given models. This paves the way for research in synthetic data generation for spatiotemporal data with extreme events.
☆ On Reasoning Strength Planning in Large Reasoning Models
Recent studies empirically reveal that large reasoning models (LRMs) can automatically allocate more reasoning strengths (i.e., the number of reasoning tokens) for harder problems, exhibiting difficulty-awareness for better task performance. While this automatic reasoning strength allocation phenomenon has been widely observed, its underlying mechanism remains largely unexplored. To this end, we provide explanations for this phenomenon from the perspective of model activations. We find evidence that LRMs pre-plan the reasoning strengths in their activations even before generation, with this reasoning strength causally controlled by the magnitude of a pre-allocated directional vector. Specifically, we show that the number of reasoning tokens is predictable solely based on the question activations using linear probes, indicating that LRMs estimate the required reasoning strength in advance. We then uncover that LRMs encode this reasoning strength through a pre-allocated directional vector embedded in the activations of the model, where the vector's magnitude modulates the reasoning strength. Subtracting this vector can lead to reduced reasoning token number and performance, while adding this vector can lead to increased reasoning token number and even improved performance. We further reveal that this direction vector consistently yields positive reasoning length prediction, and it modifies the logits of end-of-reasoning token to affect the reasoning length. Finally, we demonstrate two potential applications of our findings: overthinking behavior detection and enabling efficient reasoning on simple problems. Our work provides new insights into the internal mechanisms of reasoning in LRMs and offers practical tools for controlling their reasoning behaviors. Our code is available at https://github.com/AlphaLab-USTC/LRM-plans-CoT.
Reinforcement Learning Teachers of Test Time Scaling
Training reasoning language models (LMs) with reinforcement learning (RL) for one-hot correctness inherently relies on the LM being able to explore and solve its task with some chance at initialization. Furthermore, a key use case of reasoning LMs is to act as teachers for distilling new students and cold-starting future RL iterations rather than being deployed themselves. From these considerations, we introduce a new framework that avoids RL's exploration challenge by training a new class of Reinforcement-Learned Teachers (RLTs) focused on yielding the most effective downstream distillation. RLTs are prompted with both the question and solution to each problem, and tasked to simply "connect-the-dots" with detailed explanations tailored for their students. We train RLTs with dense rewards obtained by feeding each explanation to the student and testing its understanding of the problem's solution. In practice, the raw outputs of a 7B RLT provide higher final performance on competition and graduate-level tasks than existing distillation and cold-starting pipelines that collect and postprocess the reasoning traces of orders of magnitude larger LMs. Furthermore, RLTs maintain their effectiveness when training larger students and when applied zero-shot to out-of-distribution tasks, unlocking new levels of efficiency and re-usability for the RL reasoning framework.
comment: Preprint
☆ Reinforce LLM Reasoning through Multi-Agent Reflection ICML
Leveraging more test-time computation has proven to be an effective way to boost the reasoning capabilities of large language models (LLMs). Among various methods, the verify-and-improve paradigm stands out for enabling dynamic solution exploration and feedback incorporation. However, existing approaches often suffer from restricted feedback spaces and lack of coordinated training of different parties, leading to suboptimal performance. To address this, we model this multi-turn refinement process as a Markov Decision Process and introduce DPSDP (Direct Policy Search by Dynamic Programming), a reinforcement learning algorithm that trains an actor-critic LLM system to iteratively refine answers via direct preference learning on self-generated data. Theoretically, DPSDP can match the performance of any policy within the training distribution. Empirically, we instantiate DPSDP with various base models and show improvements on both in- and out-of-distribution benchmarks. For example, on benchmark MATH 500, majority voting over five refinement steps increases first-turn accuracy from 58.2% to 63.2% with Ministral-based models. An ablation study further confirms the benefits of multi-agent collaboration and out-of-distribution generalization.
comment: International Conference on Machine Learning (ICML), 2025
☆ Draft-based Approximate Inference for LLMs
Optimizing inference for long-context Large Language Models (LLMs) is increasingly important due to the quadratic compute and linear memory complexity of Transformers. Existing approximation methods, such as key-value (KV) cache dropping, sparse attention, and prompt compression, typically rely on rough predictions of token or KV pair importance. We propose a novel framework for approximate LLM inference that leverages small draft models to more accurately predict the importance of tokens and KV pairs. Specifically, we introduce two instantiations of our proposed framework: (i) SpecKV, which leverages a draft output to accurately assess the importance of each KV pair for more effective KV cache dropping, and (ii) SpecPC, which uses the draft model's attention activations to identify and discard unimportant prompt tokens. To the best of our knowledge, this is the first work to use draft models for approximate LLM inference acceleration, extending their utility beyond traditional lossless speculative decoding. We motivate our methods with theoretical and empirical analyses, and show a strong correlation between the attention patterns of draft and target models. Extensive experiments on long-context benchmarks show that our methods consistently achieve higher accuracy than existing baselines, while preserving the same improvements in memory usage, latency, and throughput. Our code is available at https://github.com/furiosa-ai/draft-based-approx-llm.
☆ FloorplanMAE:A self-supervised framework for complete floorplan generation from partial inputs
In the architectural design process, floorplan design is often a dynamic and iterative process. Architects progressively draw various parts of the floorplan according to their ideas and requirements, continuously adjusting and refining throughout the design process. Therefore, the ability to predict a complete floorplan from a partial one holds significant value in the design process. Such prediction can help architects quickly generate preliminary designs, improve design efficiency, and reduce the workload associated with repeated modifications. To address this need, we propose FloorplanMAE, a self-supervised learning framework for restoring incomplete floor plans into complete ones. First, we developed a floor plan reconstruction dataset, FloorplanNet, specifically trained on architectural floor plans. Secondly, we propose a floor plan reconstruction method based on Masked Autoencoders (MAE), which reconstructs missing parts by masking sections of the floor plan and training a lightweight Vision Transformer (ViT). We evaluated the reconstruction accuracy of FloorplanMAE and compared it with state-of-the-art benchmarks. Additionally, we validated the model using real sketches from the early stages of architectural design. Experimental results show that the FloorplanMAE model can generate high-quality complete floor plans from incomplete partial plans. This framework provides a scalable solution for floor plan generation, with broad application prospects.
☆ MD-ViSCo: A Unified Model for Multi-Directional Vital Sign Waveform Conversion SC
Despite the remarkable progress of deep-learning methods generating a target vital sign waveform from a source vital sign waveform, most existing models are designed exclusively for a specific source-to-target pair. This requires distinct model architectures, optimization procedures, and pre-processing pipelines, resulting in multiple models that hinder usability in clinical settings. To address this limitation, we propose the Multi-Directional Vital-Sign Converter (MD-ViSCo), a unified framework capable of generating any target waveform such as electrocardiogram (ECG), photoplethysmogram (PPG), or arterial blood pressure (ABP) from any single input waveform with a single model. MD-ViSCo employs a shallow 1-Dimensional U-Net integrated with a Swin Transformer that leverages Adaptive Instance Normalization (AdaIN) to capture distinct waveform styles. To evaluate the efficacy of MD-ViSCo, we conduct multi-directional waveform generation on two publicly available datasets. Our framework surpasses state-of-the-art baselines (NabNet & PPG2ABP) on average across all waveform types, lowering Mean absolute error (MAE) by 8.8% and improving Pearson correlation (PC) by 4.9% over two datasets. In addition, the generated ABP waveforms satisfy the Association for the Advancement of Medical Instrumentation (AAMI) criterion and achieve Grade B on the British Hypertension Society (BHS) standard, outperforming all baselines. By eliminating the need for developing a distinct model for each task, we believe that this work offers a unified framework that can deal with any kind of vital sign waveforms with a single model in healthcare monitoring.
comment: Main paper (16 pages, 5 figures). Paper submitted for review. Code available at https://github.com/fr-meyer/MD-ViSCo
☆ Text Embeddings Should Capture Implicit Semantics, Not Just Surface Meaning
This position paper argues that the text embedding research community should move beyond surface meaning and embrace implicit semantics as a central modeling goal. Text embedding models have become foundational in modern NLP, powering a wide range of applications and drawing increasing research attention. Yet, much of this progress remains narrowly focused on surface-level semantics. In contrast, linguistic theory emphasizes that meaning is often implicit, shaped by pragmatics, speaker intent, and sociocultural context. Current embedding models are typically trained on data that lacks such depth and evaluated on benchmarks that reward the capture of surface meaning. As a result, they struggle with tasks requiring interpretive reasoning, speaker stance, or social meaning. Our pilot study highlights this gap, showing that even state-of-the-art models perform only marginally better than simplistic baselines on implicit semantics tasks. To address this, we call for a paradigm shift: embedding research should prioritize more diverse and linguistically grounded training data, design benchmarks that evaluate deeper semantic understanding, and explicitly frame implicit meaning as a core modeling objective, better aligning embeddings with real-world language complexity.
☆ How Much To Guide: Revisiting Adaptive Guidance in Classifier-Free Guidance Text-to-Vision Diffusion Models
With the rapid development of text-to-vision generation diffusion models, classifier-free guidance has emerged as the most prevalent method for conditioning. However, this approach inherently requires twice as many steps for model forwarding compared to unconditional generation, resulting in significantly higher costs. While previous study has introduced the concept of adaptive guidance, it lacks solid analysis and empirical results, making previous method unable to be applied to general diffusion models. In this work, we present another perspective of applying adaptive guidance and propose Step AG, which is a simple, universally applicable adaptive guidance strategy. Our evaluations focus on both image quality and image-text alignment. whose results indicate that restricting classifier-free guidance to the first several denoising steps is sufficient for generating high-quality, well-conditioned images, achieving an average speedup of 20% to 30%. Such improvement is consistent across different settings such as inference steps, and various models including video generation models, highlighting the superiority of our method.
☆ Evaluating LLMs Across Multi-Cognitive Levels: From Medical Knowledge Mastery to Scenario-Based Problem Solving ICML 2025
Large language models (LLMs) have demonstrated remarkable performance on various medical benchmarks, but their capabilities across different cognitive levels remain underexplored. Inspired by Bloom's Taxonomy, we propose a multi-cognitive-level evaluation framework for assessing LLMs in the medical domain in this study. The framework integrates existing medical datasets and introduces tasks targeting three cognitive levels: preliminary knowledge grasp, comprehensive knowledge application, and scenario-based problem solving. Using this framework, we systematically evaluate state-of-the-art general and medical LLMs from six prominent families: Llama, Qwen, Gemma, Phi, GPT, and DeepSeek. Our findings reveal a significant performance decline as cognitive complexity increases across evaluated models, with model size playing a more critical role in performance at higher cognitive levels. Our study highlights the need to enhance LLMs' medical capabilities at higher cognitive levels and provides insights for developing LLMs suited to real-world medical applications.
comment: 20 pages, 11 figures. Accepted by ICML 2025
☆ SPBA: Utilizing Speech Large Language Model for Backdoor Attacks on Speech Classification Models IJCNN 2025
Deep speech classification tasks, including keyword spotting and speaker verification, are vital in speech-based human-computer interaction. Recently, the security of these technologies has been revealed to be susceptible to backdoor attacks. Specifically, attackers use noisy disruption triggers and speech element triggers to produce poisoned speech samples that train models to become vulnerable. However, these methods typically create only a limited number of backdoors due to the inherent constraints of the trigger function. In this paper, we propose that speech backdoor attacks can strategically focus on speech elements such as timbre and emotion, leveraging the Speech Large Language Model (SLLM) to generate diverse triggers. Increasing the number of triggers may disproportionately elevate the poisoning rate, resulting in higher attack costs and a lower success rate per trigger. We introduce the Multiple Gradient Descent Algorithm (MGDA) as a mitigation strategy to address this challenge. The proposed attack is called the Speech Prompt Backdoor Attack (SPBA). Building on this foundation, we conducted attack experiments on two speech classification tasks, demonstrating that SPBA shows significant trigger effectiveness and achieves exceptional performance in attack metrics.
comment: Accepted by IJCNN 2025
☆ Re4MPC: Reactive Nonlinear MPC for Multi-model Motion Planning via Deep Reinforcement Learning
Traditional motion planning methods for robots with many degrees-of-freedom, such as mobile manipulators, are often computationally prohibitive for real-world settings. In this paper, we propose a novel multi-model motion planning pipeline, termed Re4MPC, which computes trajectories using Nonlinear Model Predictive Control (NMPC). Re4MPC generates trajectories in a computationally efficient manner by reactively selecting the model, cost, and constraints of the NMPC problem depending on the complexity of the task and robot state. The policy for this reactive decision-making is learned via a Deep Reinforcement Learning (DRL) framework. We introduce a mathematical formulation to integrate NMPC into this DRL framework. To validate our methodology and design choices, we evaluate DRL training and test outcomes in a physics-based simulation involving a mobile manipulator. Experimental results demonstrate that Re4MPC is more computationally efficient and achieves higher success rates in reaching end-effector goals than the NMPC baseline, which computes whole-body trajectories without our learning mechanism.
comment: Accepted to the 2025 IEEE International Conference on Automation Science and Engineering (CASE)
☆ ORFS-agent: Tool-Using Agents for Chip Design Optimization
Machine learning has been widely used to optimize complex engineering workflows across numerous domains. In the context of integrated circuit design, modern flows (e.g., going from a register-transfer level netlist to physical layouts) involve extensive configuration via thousands of parameters, and small changes to these parameters can have large downstream impacts on desired outcomes - namely design performance, power, and area. Recent advances in Large Language Models (LLMs) offer new opportunities for learning and reasoning within such high-dimensional optimization tasks. In this work, we introduce ORFS-agent, an LLM-based iterative optimization agent that automates parameter tuning in an open-source hardware design flow. ORFS-agent adaptively explores parameter configurations, demonstrating clear improvements over standard Bayesian optimization approaches in terms of resource efficiency and final design metrics. Our empirical evaluations on two different technology nodes and a range of circuit benchmarks indicate that ORFS-agent can improve both routed wirelength and effective clock period by over 13%, all while using 40% fewer optimization iterations. Moreover, by following natural language objectives to trade off certain metrics for others, ORFS-agent demonstrates a flexible and interpretable framework for multi-objective optimization. Crucially, RFS-agent is modular and model-agnostic, and can be plugged in to any frontier LLM without any further fine-tuning.
Graph Prompting for Graph Learning Models: Recent Advances and Future Directions KDD 2025
Graph learning models have demonstrated great prowess in learning expressive representations from large-scale graph data in a wide variety of real-world scenarios. As a prevalent strategy for training powerful graph learning models, the "pre-training, adaptation" scheme first pre-trains graph learning models on unlabeled graph data in a self-supervised manner and then adapts them to specific downstream tasks. During the adaptation phase, graph prompting emerges as a promising approach that learns trainable prompts while keeping the pre-trained graph learning models unchanged. In this paper, we present a systematic review of recent advancements in graph prompting. First, we introduce representative graph pre-training methods that serve as the foundation step of graph prompting. Next, we review mainstream techniques in graph prompting and elaborate on how they design learnable prompts for graph prompting. Furthermore, we summarize the real-world applications of graph prompting from different domains. Finally, we discuss several open challenges in existing studies with promising future directions in this field.
comment: Accepted by KDD 2025 Tutorial/Survey Track
☆ LeanTutor: A Formally-Verified AI Tutor for Mathematical Proofs
We present LeanTutor, a Large Language Model (LLM)-based tutoring system for math proofs. LeanTutor interacts with the student in natural language, formally verifies student-written math proofs in Lean, generates correct next steps, and provides the appropriate instructional guidance. LeanTutor is composed of three modules: (i) an autoformalizer/proof-checker, (ii) a next-step generator, and (iii) a natural language feedback generator. The first module faithfully autoformalizes student proofs into Lean and verifies proof accuracy via successful code compilation. If the proof has an error, the incorrect step is identified. The next-step generator module outputs a valid next Lean tactic for incorrect proofs via LLM-based candidate generation and proof search. The feedback generator module leverages Lean data to produce a pedagogically-motivated natural language hint for the student user. To evaluate our system, we introduce PeanoBench, a human-written dataset derived from the Natural Numbers Game, consisting of 371 Peano Arithmetic proofs, where each natural language proof step is paired with the corresponding logically equivalent tactic in Lean. The Autoformalizer correctly formalizes 57% of tactics in correct proofs and accurately identifies the incorrect step in 30% of incorrect proofs. In generating natural language hints for erroneous proofs, LeanTutor outperforms a simple baseline on accuracy and relevance metrics.
☆ How Good LLM-Generated Password Policies Are?
Generative AI technologies, particularly Large Language Models (LLMs), are rapidly being adopted across industry, academia, and government sectors, owing to their remarkable capabilities in natural language processing. However, despite their strengths, the inconsistency and unpredictability of LLM outputs present substantial challenges, especially in security-critical domains such as access control. One critical issue that emerges prominently is the consistency of LLM-generated responses, which is paramount for ensuring secure and reliable operations. In this paper, we study the application of LLMs within the context of Cybersecurity Access Control Systems. Specifically, we investigate the consistency and accuracy of LLM-generated password policies, translating natural language prompts into executable pwquality.conf configuration files. Our experimental methodology adopts two distinct approaches: firstly, we utilize pre-trained LLMs to generate configuration files purely from natural language prompts without additional guidance. Secondly, we provide these models with official pwquality.conf documentation to serve as an informative baseline. We systematically assess the soundness, accuracy, and consistency of these AI-generated configurations. Our findings underscore significant challenges in the current generation of LLMs and contribute valuable insights into refining the deployment of LLMs in Access Control Systems.
comment: 11 pages, 2 Tables, 9 figures, 3 Algorithms
☆ Understanding Software Engineering Agents Through the Lens of Traceability: An Empirical Study
With the advent of large language models (LLMs), software engineering agents (SWE agents) have emerged as a powerful paradigm for automating a range of software tasks -- from code generation and repair to test case synthesis. These agents operate autonomously by interpreting user input and responding to environmental feedback. While various agent architectures have demonstrated strong empirical performance, the internal decision-making worfklows that drive their behavior remain poorly understood. Deeper insight into these workflows hold promise for improving both agent reliability and efficiency. In this work, we present the first systematic study of SWE agent behavior through the lens of execution traces. Our contributions are as follows: (1) we propose the first taxonomy of decision-making pathways across five representative agents; (2) using this taxonomy, we identify three core components essential to agent success -- bug localization, patch generation, and reproduction test generation -- and study each in depth; (3) we study the impact of test generation on successful patch production; and analyze strategies that can lead to successful test generation; (4) we further conduct the first large-scale code clone analysis comparing agent-generated and developer-written patches and provide a qualitative study revealing structural and stylistic differences in patch content. Together, these findings offer novel insights into agent design and open avenues for building agents that are both more effective and more aligned with human development practices.
☆ AstroCompress: A benchmark dataset for multi-purpose compression of astronomical data ICLR 2025
The site conditions that make astronomical observatories in space and on the ground so desirable -- cold and dark -- demand a physical remoteness that leads to limited data transmission capabilities. Such transmission limitations directly bottleneck the amount of data acquired and in an era of costly modern observatories, any improvements in lossless data compression has the potential scale to billions of dollars worth of additional science that can be accomplished on the same instrument. Traditional lossless methods for compressing astrophysical data are manually designed. Neural data compression, on the other hand, holds the promise of learning compression algorithms end-to-end from data and outperforming classical techniques by leveraging the unique spatial, temporal, and wavelength structures of astronomical images. This paper introduces AstroCompress: a neural compression challenge for astrophysics data, featuring four new datasets (and one legacy dataset) with 16-bit unsigned integer imaging data in various modes: space-based, ground-based, multi-wavelength, and time-series imaging. We provide code to easily access the data and benchmark seven lossless compression methods (three neural and four non-neural, including all practical state-of-the-art algorithms). Our results on lossless compression indicate that lossless neural compression techniques can enhance data collection at observatories, and provide guidance on the adoption of neural compression in scientific applications. Though the scope of this paper is restricted to lossless compression, we also comment on the potential exploration of lossy compression methods in future studies.
comment: ICLR 2025 conference paper. See reviews at https://openreview.net/forum?id=kQCHCkNk7s
☆ SEMA: a Scalable and Efficient Mamba like Attention via Token Localization and Averaging
Attention is the critical component of a transformer. Yet the quadratic computational complexity of vanilla full attention in the input size and the inability of its linear attention variant to focus have been challenges for computer vision tasks. We provide a mathematical definition of generalized attention and formulate both vanilla softmax attention and linear attention within the general framework. We prove that generalized attention disperses, that is, as the number of keys tends to infinity, the query assigns equal weights to all keys. Motivated by the dispersion property and recent development of Mamba form of attention, we design Scalable and Efficient Mamba like Attention (SEMA) which utilizes token localization to avoid dispersion and maintain focusing, complemented by theoretically consistent arithmetic averaging to capture global aspect of attention. We support our approach on Imagenet-1k where classification results show that SEMA is a scalable and effective alternative beyond linear attention, outperforming recent vision Mamba models on increasingly larger scales of images at similar model parameter sizes.
comment: 15 pages, figures 3
☆ $(RSA)^2$: A Rhetorical-Strategy-Aware Rational Speech Act Framework for Figurative Language Understanding ACL 2025
Figurative language (e.g., irony, hyperbole, understatement) is ubiquitous in human communication, resulting in utterances where the literal and the intended meanings do not match. The Rational Speech Act (RSA) framework, which explicitly models speaker intentions, is the most widespread theory of probabilistic pragmatics, but existing implementations are either unable to account for figurative expressions or require modeling the implicit motivations for using figurative language (e.g., to express joy or annoyance) in a setting-specific way. In this paper, we introduce the Rhetorical-Strategy-Aware RSA $(RSA)^2$ framework which models figurative language use by considering a speaker's employed rhetorical strategy. We show that $(RSA)^2$ enables human-compatible interpretations of non-literal utterances without modeling a speaker's motivations for being non-literal. Combined with LLMs, it achieves state-of-the-art performance on the ironic split of PragMega+, a new irony interpretation dataset introduced in this study.
comment: Accepted to ACL 2025 (Main Conference)
☆ Causal Graph Recovery in Neuroimaging through Answer Set Programming
Learning graphical causal structures from time series data presents significant challenges, especially when the measurement frequency does not match the causal timescale of the system. This often leads to a set of equally possible underlying causal graphs due to information loss from sub-sampling (i.e., not observing all possible states of the system throughout time). Our research addresses this challenge by incorporating the effects of sub-sampling in the derivation of causal graphs, resulting in more accurate and intuitive outcomes. We use a constraint optimization approach, specifically answer set programming (ASP), to find the optimal set of answers. ASP not only identifies the most probable underlying graph, but also provides an equivalence class of possible graphs for expert selection. In addition, using ASP allows us to leverage graph theory to further prune the set of possible solutions, yielding a smaller, more accurate answer set significantly faster than traditional approaches. We validate our approach on both simulated data and empirical structural brain connectivity, and demonstrate its superiority over established methods in these experiments. We further show how our method can be used as a meta-approach on top of established methods to obtain, on average, 12% improvement in F1 score. In addition, we achieved state of the art results in terms of precision and recall of reconstructing causal graph from sub-sampled time series data. Finally, our method shows robustness to varying degrees of sub-sampling on realistic simulations, whereas other methods perform worse for higher rates of sub-sampling.
☆ UAD: Unsupervised Affordance Distillation for Generalization in Robotic Manipulation
Understanding fine-grained object affordances is imperative for robots to manipulate objects in unstructured environments given open-ended task instructions. However, existing methods of visual affordance predictions often rely on manually annotated data or conditions only on a predefined set of tasks. We introduce UAD (Unsupervised Affordance Distillation), a method for distilling affordance knowledge from foundation models into a task-conditioned affordance model without any manual annotations. By leveraging the complementary strengths of large vision models and vision-language models, UAD automatically annotates a large-scale dataset with detailed $<$instruction, visual affordance$>$ pairs. Training only a lightweight task-conditioned decoder atop frozen features, UAD exhibits notable generalization to in-the-wild robotic scenes and to various human activities, despite only being trained on rendered objects in simulation. Using affordance provided by UAD as the observation space, we show an imitation learning policy that demonstrates promising generalization to unseen object instances, object categories, and even variations in task instructions after training on as few as 10 demonstrations. Project website: https://unsup-affordance.github.io/
☆ Learning The Minimum Action Distance
This paper presents a state representation framework for Markov decision processes (MDPs) that can be learned solely from state trajectories, requiring neither reward signals nor the actions executed by the agent. We propose learning the minimum action distance (MAD), defined as the minimum number of actions required to transition between states, as a fundamental metric that captures the underlying structure of an environment. MAD naturally enables critical downstream tasks such as goal-conditioned reinforcement learning and reward shaping by providing a dense, geometrically meaningful measure of progress. Our self-supervised learning approach constructs an embedding space where the distances between embedded state pairs correspond to their MAD, accommodating both symmetric and asymmetric approximations. We evaluate the framework on a comprehensive suite of environments with known MAD values, encompassing both deterministic and stochastic dynamics, as well as discrete and continuous state spaces, and environments with noisy observations. Empirical results demonstrate that the proposed approach not only efficiently learns accurate MAD representations across these diverse settings but also significantly outperforms existing state representation methods in terms of representation quality.
☆ A Multi-Armed Bandit Framework for Online Optimisation in Green Integrated Terrestrial and Non-Terrestrial Networks SP
Integrated terrestrial and non-terrestrial network (TN-NTN) architectures offer a promising solution for expanding coverage and improving capacity for the network. While non-terrestrial networks (NTNs) are primarily exploited for these specific reasons, their role in alleviating terrestrial network (TN) load and enabling energy-efficient operation has received comparatively less attention. In light of growing concerns associated with the densification of terrestrial deployments, this work aims to explore the potential of NTNs in supporting a more sustainable network. In this paper, we propose a novel online optimisation framework for integrated TN-NTN architectures, built on a multi-armed bandit (MAB) formulation and leveraging the Bandit-feedback Constrained Online Mirror Descent (BCOMD) algorithm. Our approach adaptively optimises key system parameters--including bandwidth allocation, user equipment (UE) association, and macro base station (MBS) shutdown--to balance network capacity and energy efficiency in real time. Extensive system-level simulations over a 24-hour period show that our framework significantly reduces the proportion of unsatisfied UEs during peak hours and achieves up to 19% throughput gains and 5% energy savings in low-traffic periods, outperforming standard network settings following 3GPP recommendations.
comment: To be published in 2025 IEEE International Workshop on Signal Processing and Artificial Intelligence in Wireless Communications (IEEE SPAWC 2025)
☆ Self-Anchored Attention Model for Sample-Efficient Classification of Prosocial Text Chat
Millions of players engage daily in competitive online games, communicating through in-game chat. Prior research has focused on detecting relatively small volumes of toxic content using various Natural Language Processing (NLP) techniques for the purpose of moderation. However, recent studies emphasize the importance of detecting prosocial communication, which can be as crucial as identifying toxic interactions. Recognizing prosocial behavior allows for its analysis, rewarding, and promotion. Unlike toxicity, there are limited datasets, models, and resources for identifying prosocial behaviors in game-chat text. In this work, we employed unsupervised discovery combined with game domain expert collaboration to identify and categorize prosocial player behaviors from game chat. We further propose a novel Self-Anchored Attention Model (SAAM) which gives 7.9% improvement compared to the best existing technique. The approach utilizes the entire training set as "anchors" to help improve model performance under the scarcity of training data. This approach led to the development of the first automated system for classifying prosocial behaviors in in-game chats, particularly given the low-resource settings where large-scale labeled data is not available. Our methodology was applied to one of the most popular online gaming titles - Call of Duty(R): Modern Warfare(R)II, showcasing its effectiveness. This research is novel in applying NLP techniques to discover and classify prosocial behaviors in player in-game chat communication. It can help shift the focus of moderation from solely penalizing toxicity to actively encouraging positive interactions on online platforms.
☆ Extrapolation by Association: Length Generalization Transfer in Transformers
Transformer language models have demonstrated impressive generalization capabilities in natural language domains, yet we lack a fine-grained understanding of how such generalization arises. In this paper, we investigate length generalization--the ability to extrapolate from shorter to longer inputs--through the lens of \textit{task association}. We find that length generalization can be \textit{transferred} across related tasks. That is, training a model with a longer and related auxiliary task can lead it to generalize to unseen and longer inputs from some other target task. We demonstrate this length generalization transfer across diverse algorithmic tasks, including arithmetic operations, string transformations, and maze navigation. Our results show that transformer models can inherit generalization capabilities from similar tasks when trained jointly. Moreover, we observe similar transfer effects in pretrained language models, suggesting that pretraining equips models with reusable computational scaffolding that facilitates extrapolation in downstream settings. Finally, we provide initial mechanistic evidence that length generalization transfer correlates with the re-use of the same attention heads between the tasks. Together, our findings deepen our understanding of how transformers generalize to out-of-distribution inputs and highlight the compositional reuse of inductive structure across tasks.
comment: 23 pages, 20 figures
☆ Comment on The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity
Shojaee et al. (2025) report that Large Reasoning Models (LRMs) exhibit "accuracy collapse" on planning puzzles beyond certain complexity thresholds. We demonstrate that their findings primarily reflect experimental design limitations rather than fundamental reasoning failures. Our analysis reveals three critical issues: (1) Tower of Hanoi experiments systematically exceed model output token limits at reported failure points, with models explicitly acknowledging these constraints in their outputs; (2) The authors' automated evaluation framework fails to distinguish between reasoning failures and practical constraints, leading to misclassification of model capabilities; (3) Most concerningly, their River Crossing benchmarks include mathematically impossible instances for N > 5 due to insufficient boat capacity, yet models are scored as failures for not solving these unsolvable problems. When we control for these experimental artifacts, by requesting generating functions instead of exhaustive move lists, preliminary experiments across multiple models indicate high accuracy on Tower of Hanoi instances previously reported as complete failures. These findings highlight the importance of careful experimental design when evaluating AI reasoning capabilities.
comment: Comment on: arXiv:2506.06941
☆ Robust Noise Attenuation via Adaptive Pooling of Transformer Outputs ICML 2025
We investigate the design of pooling methods used to summarize the outputs of transformer embedding models, primarily motivated by reinforcement learning and vision applications. This work considers problems where a subset of the input vectors contains requisite information for a downstream task (signal) while the rest are distractors (noise). By framing pooling as vector quantization with the goal of minimizing signal loss, we demonstrate that the standard methods used to aggregate transformer outputs, AvgPool, MaxPool, and ClsToken, are vulnerable to performance collapse as the signal-to-noise ratio (SNR) of inputs fluctuates. We then show that an attention-based adaptive pooling method can approximate the signal-optimal vector quantizer within derived error bounds for any SNR. Our theoretical results are first validated by supervised experiments on a synthetic dataset designed to isolate the SNR problem, then generalized to standard relational reasoning, multi-agent reinforcement learning, and vision benchmarks with noisy observations, where transformers with adaptive pooling display superior robustness across tasks.
comment: [ICML 2025 Spotlight Poster] To be published in the Forty-Second International Conference on Machine Learning (ICML) Proceedings
☆ SimClass: A Classroom Speech Dataset Generated via Game Engine Simulation For Automatic Speech Recognition Research
The scarcity of large-scale classroom speech data has hindered the development of AI-driven speech models for education. Public classroom datasets remain limited, and the lack of a dedicated classroom noise corpus prevents the use of standard data augmentation techniques. In this paper, we introduce a scalable methodology for synthesizing classroom noise using game engines, a framework that extends to other domains. Using this methodology, we present SimClass, a dataset that includes both a synthesized classroom noise corpus and a simulated classroom speech dataset. The speech data is generated by pairing a public children's speech corpus with YouTube lecture videos to approximate real classroom interactions in clean conditions. Our experiments on clean and noisy speech demonstrate that SimClass closely approximates real classroom speech, making it a valuable resource for developing robust speech recognition and enhancement models.
☆ A Topological Improvement of the Overall Performance of Sparse Evolutionary Training: Motif-Based Structural Optimization of Sparse MLPs Project
Deep Neural Networks (DNNs) have been proven to be exceptionally effective and have been applied across diverse domains within deep learning. However, as DNN models increase in complexity, the demand for reduced computational costs and memory overheads has become increasingly urgent. Sparsity has emerged as a leading approach in this area. The robustness of sparse Multi-layer Perceptrons (MLPs) for supervised feature selection, along with the application of Sparse Evolutionary Training (SET), illustrates the feasibility of reducing computational costs without compromising accuracy. Moreover, it is believed that the SET algorithm can still be improved through a structural optimization method called motif-based optimization, with potential efficiency gains exceeding 40% and a performance decline of under 4%. This research investigates whether the structural optimization of Sparse Evolutionary Training applied to Multi-layer Perceptrons (SET-MLP) can enhance performance and to what extent this improvement can be achieved.
☆ FLoRIST: Singular Value Thresholding for Efficient and Accurate Federated Fine-Tuning of Large Language Models
Integrating Low-Rank Adaptation (LoRA) into federated learning offers a promising solution for parameter-efficient fine-tuning of Large Language Models (LLMs) without sharing local data. However, several methods designed for federated LoRA present significant challenges in balancing communication efficiency, model accuracy, and computational cost, particularly among heterogeneous clients. These methods either rely on simplistic averaging of local adapters, which introduces aggregation noise, require transmitting large stacked local adapters, leading to poor communication efficiency, or necessitate reconstructing memory-dense global weight-update matrix and performing computationally expensive decomposition to design client-specific low-rank adapters. In this work, we propose FLoRIST, a federated fine-tuning framework that achieves mathematically accurate aggregation without incurring high communication or computational overhead. Instead of constructing the full global weight-update matrix at the server, FLoRIST employs an efficient decomposition pipeline by performing singular value decomposition on stacked local adapters separately. This approach operates within a compact intermediate space to represent the accumulated information from local LoRAs. We introduce tunable singular value thresholding for server-side optimal rank selection to construct a pair of global low-rank adapters shared by all clients. Extensive empirical evaluations across multiple datasets and LLMs demonstrate that FLoRIST consistently strikes the best balance between superior communication efficiency and competitive performance in both homogeneous and heterogeneous setups.
comment: 21 pages, 12 figures
Graph Attention-based Decentralized Actor-Critic for Dual-Objective Control of Multi-UAV Swarms
This research focuses on optimizing multi-UAV systems with dual objectives: maximizing service coverage as the primary goal while extending battery lifetime as the secondary objective. We propose a Graph Attention-based Decentralized Actor-Critic (GADC) to optimize the dual objectives. The proposed approach leverages a graph attention network to process UAVs' limited local observation and reduce the dimension of the environment states. Subsequently, an actor-double-critic network is developed to manage dual policies for joint objective optimization. The proposed GADC uses a Kullback-Leibler (KL) divergence factor to balance the tradeoff between coverage performance and battery lifetime in the multi-UAV system. We assess the scalability and efficiency of GADC through comprehensive benchmarking against state-of-the-art methods, considering both theory and experimental aspects. Extensive testing in both ideal settings and NVIDIA Sionna's realistic ray tracing environment demonstrates GADC's superior performance.
☆ Integration of Contrastive Predictive Coding and Spiking Neural Networks
This study examines the integration of Contrastive Predictive Coding (CPC) with Spiking Neural Networks (SNN). While CPC learns the predictive structure of data to generate meaningful representations, SNN mimics the computational processes of biological neural systems over time. In this study, the goal is to develop a predictive coding model with greater biological plausibility by processing inputs and outputs in a spike-based system. The proposed model was tested on the MNIST dataset and achieved a high classification rate in distinguishing positive sequential samples from non-sequential negative samples. The study demonstrates that CPC can be effectively combined with SNN, showing that an SNN trained for classification tasks can also function as an encoding mechanism. Project codes and detailed results can be accessed on our GitHub page: https://github.com/vnd-ogrenme/ongorusel-kodlama/tree/main/CPC_SNN
comment: 4 pages, 5 figures, 1 table. Accepted at the 2025 33rd Signal Processing and Communications Applications Conference (SIU)
☆ Multi-Task Reward Learning from Human Ratings
Reinforcement learning from human feeback (RLHF) has become a key factor in aligning model behavior with users' goals. However, while humans integrate multiple strategies when making decisions, current RLHF approaches often simplify this process by modeling human reasoning through isolated tasks such as classification or regression. In this paper, we propose a novel reinforcement learning (RL) method that mimics human decision-making by jointly considering multiple tasks. Specifically, we leverage human ratings in reward-free environments to infer a reward function, introducing learnable weights that balance the contributions of both classification and regression models. This design captures the inherent uncertainty in human decision-making and allows the model to adaptively emphasize different strategies. We conduct several experiments using synthetic human ratings to validate the effectiveness of the proposed approach. Results show that our method consistently outperforms existing rating-based RL methods, and in some cases, even surpasses traditional RL approaches.
comment: Accepted to the workshop on Models of Human Feedback for AI Alignment at the 42nd International Conference on Machine Learning
☆ Robot-Gated Interactive Imitation Learning with Adaptive Intervention Mechanism ICML 2025
Interactive Imitation Learning (IIL) allows agents to acquire desired behaviors through human interventions, but current methods impose high cognitive demands on human supervisors. We propose the Adaptive Intervention Mechanism (AIM), a novel robot-gated IIL algorithm that learns an adaptive criterion for requesting human demonstrations. AIM utilizes a proxy Q-function to mimic the human intervention rule and adjusts intervention requests based on the alignment between agent and human actions. By assigning high Q-values when the agent deviates from the expert and decreasing these values as the agent becomes proficient, the proxy Q-function enables the agent to assess the real-time alignment with the expert and request assistance when needed. Our expert-in-the-loop experiments reveal that AIM significantly reduces expert monitoring efforts in both continuous and discrete control tasks. Compared to the uncertainty-based baseline Thrifty-DAgger, our method achieves a 40% improvement in terms of human take-over cost and learning efficiency. Furthermore, AIM effectively identifies safety-critical states for expert assistance, thereby collecting higher-quality expert demonstrations and reducing overall expert data and environment interactions needed. Code and demo video are available at https://github.com/metadriverse/AIM.
comment: ICML 2025 Poster
☆ PHRASED: Phrase Dictionary Biasing for Speech Translation
Phrases are essential to understand the core concepts in conversations. However, due to their rare occurrence in training data, correct translation of phrases is challenging in speech translation tasks. In this paper, we propose a phrase dictionary biasing method to leverage pairs of phrases mapping from the source language to the target language. We apply the phrase dictionary biasing method to two types of widely adopted models, a transducer-based streaming speech translation model and a multimodal large language model. Experimental results show that the phrase dictionary biasing method outperforms phrase list biasing by 21% relatively for the streaming speech translation model. In addition, phrase dictionary biasing enables multimodal large language models to use external phrase information, achieving 85% relative improvement in phrase recall.
☆ Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search ICML 2025
Large Language Models (LLMs) are increasingly capable but often require significant guidance or extensive interaction history to perform effectively in complex, interactive environments. Existing methods may struggle with adapting to new information or efficiently utilizing past experiences for multi-step reasoning without fine-tuning. We introduce a novel LLM agent framework that enhances planning capabilities through in-context learning, facilitated by atomic fact augmentation and a recursive lookahead search. Our agent learns to extract task-critical ``atomic facts'' from its interaction trajectories. These facts dynamically augment the prompts provided to LLM-based components responsible for action proposal, latent world model simulation, and state-value estimation. Planning is performed via a depth-limited lookahead search, where the LLM simulates potential trajectories and evaluates their outcomes, guided by the accumulated facts and interaction history. This approach allows the agent to improve its understanding and decision-making online, leveraging its experience to refine its behavior without weight updates. We provide a theoretical motivation linking performance to the quality of fact-based abstraction and LLM simulation accuracy. Empirically, our agent demonstrates improved performance and adaptability on challenging interactive tasks, achieving more optimal behavior as it accumulates experience, showcased in tasks such as TextFrozenLake and ALFWorld.
comment: 9-page main paper, 1 figure. Accepted for an Oral presentation at the First Workshop on Computer Use Agents (ICML 2025), Vancouver, Canada
☆ Estimating Visceral Adiposity from Wrist-Worn Accelerometry
Visceral adipose tissue (VAT) is a key marker of both metabolic health and habitual physical activity (PA). Excess VAT is highly correlated with type 2 diabetes and insulin resistance. The mechanistic basis for this pathophysiology relates to overloading the liver with fatty acids. VAT is also a highly labile fat depot, with increased turnover stimulated by catecholamines during exercise. VAT can be measured with sophisticated imaging technologies, but can also be inferred directly from PA. We tested this relationship using National Health and Nutrition Examination Survey (NHANES) data from 2011-2014, for individuals aged 20-60 years with 7 days of accelerometry data (n=2,456 men; 2,427 women) [1]. Two approaches were used for estimating VAT from activity. The first used engineered features based on movements during gait and sleep, and then ridge regression to map summary statistics of these features into a VAT estimate. The second approach used deep neural networks trained on 24 hours of continuous accelerometry. A foundation model first mapped each 10s frame into a high-dimensional feature vector. A transformer model then mapped each day's feature vector time series into a VAT estimate, which were averaged over multiple days. For both approaches, the most accurate estimates were obtained with the addition of covariate information about subject demographics and body measurements. The best performance was obtained by combining the two approaches, resulting in VAT estimates with correlations of r=0.86. These findings demonstrate a strong relationship between PA and VAT and, by extension, between PA and metabolic health risks.
comment: 13 pages
☆ LLM-as-a-qualitative-judge: automating error analysis in natural language generation
Prompting large language models (LLMs) to evaluate generated text, known as LLM-as-a-judge, has become a standard evaluation approach in natural language generation (NLG), but is primarily used as a quantitative tool, i.e. with numerical scores as main outputs. In this work, we propose LLM-as-a-qualitative-judge, an LLM-based evaluation approach with the main output being a structured report of common issue types in the NLG system outputs. Our approach is targeted at providing developers with meaningful insights on what improvements can be done to a given NLG system and consists of two main steps, namely open-ended per-instance issue analysis and clustering of the discovered issues using an intuitive cumulative algorithm. We also introduce a strategy for evaluating the proposed approach, coupled with ~300 annotations of issues in instances from 12 NLG datasets. Our results show that LLM-as-a-qualitative-judge correctly recognizes instance-specific issues in 2/3 cases and is capable of producing error type reports resembling the reports composed by human annotators. Our code and data are publicly available at https://github.com/tunde-ajayi/llm-as-a-qualitative-judge.
☆ SensorLM: Learning the Language of Wearable Sensors
We present SensorLM, a family of sensor-language foundation models that enable wearable sensor data understanding with natural language. Despite its pervasive nature, aligning and interpreting sensor data with language remains challenging due to the lack of paired, richly annotated sensor-text descriptions in uncurated, real-world wearable data. We introduce a hierarchical caption generation pipeline designed to capture statistical, structural, and semantic information from sensor data. This approach enabled the curation of the largest sensor-language dataset to date, comprising over 59.7 million hours of data from more than 103,000 people. Furthermore, SensorLM extends prominent multimodal pretraining architectures (e.g., CLIP, CoCa) and recovers them as specific variants within a generic architecture. Extensive experiments on real-world tasks in human activity analysis and healthcare verify the superior performance of SensorLM over state-of-the-art in zero-shot recognition, few-shot learning, and cross-modal retrieval. SensorLM also demonstrates intriguing capabilities including scaling behaviors, label efficiency, sensor captioning, and zero-shot generalization to unseen tasks.
☆ FAIRTOPIA: Envisioning Multi-Agent Guardianship for Disrupting Unfair AI Pipelines
AI models have become active decision makers, often acting without human supervision. The rapid advancement of AI technology has already caused harmful incidents that have hurt individuals and societies and AI unfairness in heavily criticized. It is urgent to disrupt AI pipelines which largely neglect human principles and focus on computational biases exploration at the data (pre), model(in), and deployment (post) processing stages. We claim that by exploiting the advances of agents technology, we will introduce cautious, prompt, and ongoing fairness watch schemes, under realistic, systematic, and human-centric fairness expectations. We envision agents as fairness guardians, since agents learn from their environment, adapt to new information, and solve complex problems by interacting with external tools and other systems. To set the proper fairness guardrails in the overall AI pipeline, we introduce a fairness-by-design approach which embeds multi-role agents in an end-to-end (human to AI) synergetic scheme. Our position is that we may design adaptive and realistic AI fairness frameworks, and we introduce a generalized algorithm which can be customized to the requirements and goals of each AI decision making scenario. Our proposed, so called FAIRTOPIA framework, is structured over a three-layered architecture, which encapsulates the AI pipeline inside an agentic guardian and a knowledge-based, self-refining layered scheme. Based on our proposition, we enact fairness watch in all of the AI pipeline stages, under robust multi-agent workflows, which will inspire new fairness research hypothesis, heuristics, and methods grounded in human-centric, systematic, interdisciplinary, socio-technical principles.
comment: 11 pages, 4 figures
♻ ☆ Thinking vs. Doing: Agents that Reason by Scaling Test-Time Interaction
The current paradigm of test-time scaling relies on generating long reasoning traces ("thinking" more) before producing a response. In agent problems that require interaction, this can be done by generating thinking traces before acting in the world. However, this process does not allow agents to acquire new information from the environment or adapt their behavior over time. In this work, we propose to scale test-time interaction, an untapped dimension of test-time scaling that increases the agent's interaction horizon to enable running rich behaviors such as exploration, backtracking, and dynamic re-planning within a single rollout. To demonstrate the promise of this scaling dimension, we study the domain of web agents. We first show that even prompting-based interaction scaling without any training can improve task success on web benchmarks non-trivially. Building on this, we introduce TTI (Test-Time Interaction), a curriculum-based online reinforcement learning (RL) approach that trains agents by adaptively adjusting their rollout lengths. Using a Gemma 3 12B model, TTI produces state-of-the-art open-source, open-data web agents on WebVoyager and WebArena benchmarks. We further show that TTI enables agents to balance exploration and exploitation adaptively. Our results establish interaction scaling as a powerful, complementary axis to scaling per-step compute, offering new avenues for training adaptive agents.
comment: Fixed typo in Figure 6 and Conclusion
♻ ☆ Guideline Forest: Experience-Induced Multi-Guideline Reasoning with Stepwise Aggregation
Human reasoning is flexible, adaptive, and grounded in prior experience-qualities that large language models (LLMs) still struggle to emulate. Existing methods either explore diverse reasoning paths at inference time or search for optimal workflows through expensive operations, but both fall short in leveraging multiple reusable strategies in a structured, efficient manner. We propose Guideline Forest, a framework that enhances LLMs reasoning by inducing structured reasoning strategies-called guidelines-from verified examples and executing them via step-wise aggregation. Unlike test-time search or single-path distillation, our method draws on verified reasoning experiences by inducing reusable guidelines and expanding each into diverse variants. Much like human reasoning, these variants reflect alternative thought patterns, are executed in parallel, refined via self-correction, and aggregated step by step-enabling the model to adaptively resolve uncertainty and synthesize robust solutions.We evaluate Guideline Forest on four benchmarks-GSM8K, MATH-500, MBPP, and HumanEval-spanning mathematical and programmatic reasoning. Guideline Forest consistently outperforms strong baselines, including CoT, ReAct, ToT, FoT, and AFlow. Ablation studies further highlight the effectiveness of multi-path reasoning and stepwise aggregation, underscoring the Guideline Forest's adaptability and generalization potential.
♻ ☆ ArchiLense: A Framework for Quantitative Analysis of Architectural Styles Based on Vision Large Language Models
Architectural cultures across regions are characterized by stylistic diversity, shaped by historical, social, and technological contexts in addition to geograph-ical conditions. Understanding architectural styles requires the ability to describe and analyze the stylistic features of different architects from various regions through visual observations of architectural imagery. However, traditional studies of architectural culture have largely relied on subjective expert interpretations and historical literature reviews, often suffering from regional biases and limited ex-planatory scope. To address these challenges, this study proposes three core contributions: (1) We construct a professional architectural style dataset named ArchDiffBench, which comprises 1,765 high-quality architectural images and their corresponding style annotations, collected from different regions and historical periods. (2) We propose ArchiLense, an analytical framework grounded in Vision-Language Models and constructed using the ArchDiffBench dataset. By integrating ad-vanced computer vision techniques, deep learning, and machine learning algo-rithms, ArchiLense enables automatic recognition, comparison, and precise classi-fication of architectural imagery, producing descriptive language outputs that ar-ticulate stylistic differences. (3) Extensive evaluations show that ArchiLense achieves strong performance in architectural style recognition, with a 92.4% con-sistency rate with expert annotations and 84.5% classification accuracy, effec-tively capturing stylistic distinctions across images. The proposed approach transcends the subjectivity inherent in traditional analyses and offers a more objective and accurate perspective for comparative studies of architectural culture.
♻ ☆ Towards Autonomous Reinforcement Learning for Real-World Robotic Manipulation with Large Language Models
Recent advancements in Large Language Models (LLMs) and Visual Language Models (VLMs) have significantly impacted robotics, enabling high-level semantic motion planning applications. Reinforcement Learning (RL), a complementary paradigm, enables agents to autonomously optimize complex behaviors through interaction and reward signals. However, designing effective reward functions for RL remains challenging, especially in real-world tasks where sparse rewards are insufficient and dense rewards require elaborate design. In this work, we propose Autonomous Reinforcement learning for Complex Human-Informed Environments (ARCHIE), an unsupervised pipeline leveraging GPT-4, a pre-trained LLM, to generate reward functions directly from natural language task descriptions. The rewards are used to train RL agents in simulated environments, where we formalize the reward generation process to enhance feasibility. Additionally, GPT-4 automates the coding of task success criteria, creating a fully automated, one-shot procedure for translating human-readable text into deployable robot skills. Our approach is validated through extensive simulated experiments on single-arm and bi-manual manipulation tasks using an ABB YuMi collaborative robot, highlighting its practicality and effectiveness. Tasks are demonstrated on the real robot setup.
♻ ☆ SAFEFLOW: A Principled Protocol for Trustworthy and Transactional Autonomous Agent Systems
Recent advances in large language models (LLMs) and vision-language models (VLMs) have enabled powerful autonomous agents capable of complex reasoning and multi-modal tool use. Despite their growing capabilities, today's agent frameworks remain fragile, lacking principled mechanisms for secure information flow, reliability, and multi-agent coordination. In this work, we introduce SAFEFLOW, a new protocol-level framework for building trustworthy LLM/VLM-based agents. SAFEFLOW enforces fine-grained information flow control (IFC), precisely tracking provenance, integrity, and confidentiality of all the data exchanged between agents, tools, users, and environments. By constraining LLM reasoning to respect these security labels, SAFEFLOW prevents untrusted or adversarial inputs from contaminating high-integrity decisions. To ensure robustness in concurrent multi-agent settings, SAFEFLOW introduces transactional execution, conflict resolution, and secure scheduling over shared state, preserving global consistency across agents. We further introduce mechanisms, including write-ahead logging, rollback, and secure caches, that further enhance resilience against runtime errors and policy violations. To validate the performances, we built SAFEFLOWBENCH, a comprehensive benchmark suite designed to evaluate agent reliability under adversarial, noisy, and concurrent operational conditions. Extensive experiments demonstrate that agents built with SAFEFLOW maintain impressive task performance and security guarantees even in hostile environments, substantially outperforming state-of-the-art. Together, SAFEFLOW and SAFEFLOWBENCH lay the groundwork for principled, robust, and secure agent ecosystems, advancing the frontier of reliable autonomy.
♻ ☆ MoE-MLoRA for Multi-Domain CTR Prediction: Efficient Adaptation with Expert Specialization
Personalized recommendation systems must adapt to user interactions across different domains. Traditional approaches like MLoRA apply a single adaptation per domain but lack flexibility in handling diverse user behaviors. To address this, we propose MoE-MLoRA, a mixture-of-experts framework where each expert is first trained independently to specialize in its domain before a gating network is trained to weight their contributions dynamically. We evaluate MoE-MLoRA across eight CTR models on Movielens and Taobao, showing that it improves performance in large-scale, dynamic datasets (+1.45 Weighed-AUC in Taobao-20) but offers limited benefits in structured datasets with low domain diversity and sparsity. Further analysis of the number of experts per domain reveals that larger ensembles do not always improve performance, indicating the need for model-aware tuning. Our findings highlight the potential of expert-based architectures for multi-domain recommendation systems, demonstrating that task-aware specialization and adaptive gating can enhance predictive accuracy in complex environments. The implementation and code are available in our GitHub repository.
♻ ☆ GTR-CoT: Graph Traversal as Visual Chain of Thought for Molecular Structure Recognition
Optical Chemical Structure Recognition (OCSR) is crucial for digitizing chemical knowledge by converting molecular images into machine-readable formats. While recent vision-language models (VLMs) have shown potential in this task, their image-captioning approach often struggles with complex molecular structures and inconsistent annotations. To overcome these challenges, we introduce GTR-Mol-VLM, a novel framework featuring two key innovations: (1) the Graph Traversal as Visual Chain of Thought mechanism that emulates human reasoning by incrementally parsing molecular graphs through sequential atom-bond predictions, and (2) the data-centric principle of Faithfully Recognize What You've Seen, which addresses the mismatch between abbreviated structures in images and their expanded annotations. To support model development, we constructed GTR-CoT-1.3M, a large-scale instruction-tuning dataset with meticulously corrected annotations, and introduced MolRec-Bench, the first benchmark designed for a fine-grained evaluation of graph-parsing accuracy in OCSR. Comprehensive experiments demonstrate that GTR-Mol-VLM achieves superior results compared to specialist models, chemistry-domain VLMs, and commercial general-purpose VLMs. Notably, in scenarios involving molecular images with functional group abbreviations, GTR-Mol-VLM outperforms the second-best baseline by approximately 14 percentage points, both in SMILES-based and graph-based metrics. We hope that this work will drive OCSR technology to more effectively meet real-world needs, thereby advancing the fields of cheminformatics and AI for Science. We will release GTR-CoT at https://github.com/opendatalab/GTR-CoT.
♻ ☆ From Pixels to Predicates: Learning Symbolic World Models via Pretrained Vision-Language Models
Our aim is to learn to solve long-horizon decision-making problems in complex robotics domains given low-level skills and a handful of short-horizon demonstrations containing sequences of images. To this end, we focus on learning abstract symbolic world models that facilitate zero-shot generalization to novel goals via planning. A critical component of such models is the set of symbolic predicates that define properties of and relationships between objects. In this work, we leverage pretrained vision language models (VLMs) to propose a large set of visual predicates potentially relevant for decision-making, and to evaluate those predicates directly from camera images. At training time, we pass the proposed predicates and demonstrations into an optimization-based model-learning algorithm to obtain an abstract symbolic world model that is defined in terms of a compact subset of the proposed predicates. At test time, given a novel goal in a novel setting, we use the VLM to construct a symbolic description of the current world state, and then use a search-based planning algorithm to find a sequence of low-level skills that achieves the goal. We demonstrate empirically across experiments in both simulation and the real world that our method can generalize aggressively, applying its learned world model to solve problems with a wide variety of object types, arrangements, numbers of objects, and visual backgrounds, as well as novel goals and much longer horizons than those seen at training time.
♻ ☆ Enhancing Open-Domain Task-Solving Capability of LLMs via Autonomous Tool Integration from GitHub ACL 2025
Large Language Models (LLMs) excel in traditional natural language processing tasks but struggle with problems that require complex domain-specific calculations or simulations. While equipping LLMs with external tools to build LLM-based agents can enhance their capabilities, existing approaches lack the flexibility to address diverse and ever-evolving user queries in open domains. Currently, there is also no existing dataset that evaluates LLMs on open-domain knowledge that requires tools to solve. To this end, we introduce OpenAct benchmark to evaluate the open-domain task-solving capability, which is built on human expert consultation and repositories in GitHub. It comprises 339 questions spanning 7 diverse domains that need to be solved with domain-specific methods. In our experiments, even state-of-the-art LLMs and LLM-based agents demonstrate unsatisfactory success rates, underscoring the need for a novel approach. Furthermore, we present OpenAgent, a novel LLM-based agent system that can tackle evolving queries in open domains through autonomously integrating specialized tools from GitHub. OpenAgent employs 1) a hierarchical framework where specialized agents handle specific tasks and can assign tasks to inferior agents, 2) a bi-level experience learning mechanism to learn from both humans' and its own experiences to tackle tool flaws. Experiments demonstrate its superior effectiveness and efficiency, which significantly outperforms baselines. Our data and code are open-source at https://github.com/OpenBMB/OpenAct.
comment: Accepted by ACL 2025 Main Conference
♻ ☆ From Generation to Generalization: Emergent Few-Shot Learning in Video Diffusion Models
Video Diffusion Models (VDMs) have emerged as powerful generative tools, capable of synthesizing high-quality spatiotemporal content. Yet, their potential goes far beyond mere video generation. We argue that the training dynamics of VDMs, driven by the need to model coherent sequences, naturally pushes them to internalize structured representations and an implicit understanding of the visual world. To probe the extent of this internal knowledge, we introduce a few-shot fine-tuning framework that repurposes VDMs for new tasks using only a handful of examples. Our method transforms each task into a visual transition, enabling the training of LoRA weights on short input-output sequences without altering the generative interface of a frozen VDM. Despite minimal supervision, the model exhibits strong generalization across diverse tasks, from low-level vision (for example, segmentation and pose estimation) to high-level reasoning (for example, on ARC-AGI). These results reframe VDMs as more than generative engines. They are adaptable visual learners with the potential to serve as the backbone for future foundation models in vision.
comment: 27 pages, 23 figures, 9 tables. Project page: https://pabloacuaviva.github.io/Gen2Gen/
♻ ☆ LLaSE-G1: Incentivizing Generalization Capability for LLaMA-based Speech Enhancement ACL2025
Recent advancements in language models (LMs) have demonstrated strong capabilities in semantic understanding and contextual modeling, which have flourished in generative speech enhancement (SE). However, many LM-based SE approaches primarily focus on semantic information, often neglecting the critical role of acoustic information, which leads to acoustic inconsistency after enhancement and limited generalization across diverse SE tasks. In this paper, we introduce LLaSE-G1, a LLaMA-based language model that incentivizes generalization capabilities for speech enhancement. LLaSE-G1 offers the following key contributions: First, to mitigate acoustic inconsistency, LLaSE-G1 employs continuous representations from WavLM as input and predicts speech tokens from X-Codec2, maximizing acoustic preservation. Second, to promote generalization capability, LLaSE-G1 introduces dual-channel inputs and outputs, unifying multiple SE tasks without requiring task-specific IDs. Third, LLaSE-G1 outperforms prior task-specific discriminative and generative SE models, demonstrating scaling effects at test time and emerging capabilities for unseen SE tasks. Additionally, we release our code and models to support further research in this area.
comment: ACL2025 main, Codes available at https://github.com/Kevin-naticl/LLaSE-G1
♻ ☆ Evolutionary Policy Optimization
On-policy reinforcement learning (RL) algorithms are widely used for their strong asymptotic performance and training stability, but they struggle to scale with larger batch sizes, as additional parallel environments yield redundant data due to limited policy-induced diversity. In contrast, Evolutionary Algorithms (EAs) scale naturally and encourage exploration via randomized population-based search, but are often sample-inefficient. We propose Evolutionary Policy Optimization (EPO), a hybrid algorithm that combines the scalability and diversity of EAs with the performance and stability of policy gradients. EPO maintains a population of agents conditioned on latent variables, shares actor-critic network parameters for coherence and memory efficiency, and aggregates diverse experiences into a master agent. Across tasks in dexterous manipulation, legged locomotion, and classic control, EPO outperforms state-of-the-art baselines in sample efficiency, asymptotic performance, and scalability.
comment: Website at https://yifansu1301.github.io/EPO/
♻ ☆ JuStRank: Benchmarking LLM Judges for System Ranking ACL 2025
Given the rapid progress of generative AI, there is a pressing need to systematically compare and choose between the numerous models and configurations available. The scale and versatility of such evaluations make the use of LLM-based judges a compelling solution for this challenge. Crucially, this approach requires first to validate the quality of the LLM judge itself. Previous work has focused on instance-based assessment of LLM judges, where a judge is evaluated over a set of responses, or response pairs, while being agnostic to their source systems. We argue that this setting overlooks critical factors affecting system-level ranking, such as a judge's positive or negative bias towards certain systems. To address this gap, we conduct the first large-scale study of LLM judges as system rankers. System scores are generated by aggregating judgment scores over multiple system outputs, and the judge's quality is assessed by comparing the resulting system ranking to a human-based ranking. Beyond overall judge assessment, our analysis provides a fine-grained characterization of judge behavior, including their decisiveness and bias.
comment: ACL 2025
♻ ☆ High-Throughput Phenotyping of Clinical Text Using Large Language Models
High-throughput phenotyping automates the mapping of patient signs to standardized ontology concepts and is essential for precision medicine. This study evaluates the automation of phenotyping of clinical summaries from the Online Mendelian Inheritance in Man (OMIM) database using large language models. Due to their rich phenotype data, these summaries can be surrogates for physician notes. We conduct a performance comparison of GPT-4 and GPT-3.5-Turbo. Our results indicate that GPT-4 surpasses GPT-3.5-Turbo in identifying, categorizing, and normalizing signs, achieving concordance with manual annotators comparable to inter-rater agreement. Despite some limitations in sign normalization, the extensive pre-training of GPT-4 results in high performance and generalizability across several phenotyping tasks while obviating the need for manually annotated training data. Large language models are expected to be the dominant method for automating high-throughput phenotyping of clinical text.
comment: Submitted to IEEE-EMBS International Conference on Biomedical and Health Informatics, Houston TX
♻ ☆ Scalable Equilibrium Sampling with Sequential Boltzmann Generators ICML 2025
Scalable sampling of molecular states in thermodynamic equilibrium is a long-standing challenge in statistical physics. Boltzmann generators tackle this problem by pairing normalizing flows with importance sampling to obtain uncorrelated samples under the target distribution. In this paper, we extend the Boltzmann generator framework with two key contributions, denoting our framework Sequential Boltzmann Generators (SBG). The first is a highly efficient Transformer-based normalizing flow operating directly on all-atom Cartesian coordinates. In contrast to the equivariant continuous flows of prior methods, we leverage exactly invertible non-equivariant architectures which are highly efficient during both sample generation and likelihood evaluation. This efficiency unlocks more sophisticated inference strategies beyond standard importance sampling. In particular, we perform inference-time scaling of flow samples using a continuous-time variant of sequential Monte Carlo, in which flow samples are transported towards the target distribution with annealed Langevin dynamics. SBG achieves state-of-the-art performance w.r.t. all metrics on peptide systems, demonstrating the first equilibrium sampling in Cartesian coordinates of tri-, tetra- and hexa-peptides that were thus far intractable for prior Boltzmann generators.
comment: Presented at ICML 2025
♻ ☆ Activation Approximations Can Incur Safety Vulnerabilities Even in Aligned LLMs: Comprehensive Analysis and Defense
Large Language Models (LLMs) have showcased remarkable capabilities across various domains. Accompanying the evolving capabilities and expanding deployment scenarios of LLMs, their deployment challenges escalate due to their sheer scale and the advanced yet complex activation designs prevalent in notable model series, such as Llama, Gemma, Mistral. These challenges have become particularly pronounced in resource-constrained deployment scenarios, where mitigating inference bottlenecks is imperative. Among various recent efforts, activation approximation has emerged as a promising avenue for pursuing inference efficiency, sometimes considered indispensable in applications such as private inference. Despite achieving substantial speedups with minimal impact on utility, even appearing sound and practical for real-world deployment, the safety implications of activation approximations remain unclear. In this work, we fill this critical gap in LLM safety by conducting the first systematic safety evaluation of activation approximations. Our safety vetting spans seven state-of-the-art techniques across three popular categories (activation polynomialization, activation sparsification, and activation quantization), revealing consistent safety degradation across ten safety-aligned LLMs. To overcome the hurdle of devising a unified defense accounting for diverse activation approximation methods, we perform an in-depth analysis of their shared error patterns and uncover three key findings. We propose QuadA, a novel safety enhancement method tailored to mitigate the safety compromises introduced by activation approximations. Extensive experiments and ablation studies corroborate QuadA's effectiveness in enhancing the safety capabilities of LLMs after activation approximations.
comment: 20 pages
♻ ☆ Mechanistic Decomposition of Sentence Representations
Sentence embeddings are central to modern NLP and AI systems, yet little is known about their internal structure. While we can compare these embeddings using measures such as cosine similarity, the contributing features are not human-interpretable, and the content of an embedding seems untraceable, as it is masked by complex neural transformations and a final pooling operation that combines individual token embeddings. To alleviate this issue, we propose a new method to mechanistically decompose sentence embeddings into interpretable components, by using dictionary learning on token-level representations. We analyze how pooling compresses these features into sentence representations, and assess the latent features that reside in a sentence embedding. This bridges token-level mechanistic interpretability with sentence-level analysis, making for more transparent and controllable representations. In our studies, we obtain several interesting insights into the inner workings of sentence embedding spaces, for instance, that many semantic and syntactic aspects are linearly encoded in the embeddings.
♻ ☆ Towards Practical First-Order Model Counting
First-order model counting (FOMC) is the problem of counting the number of models of a sentence in first-order logic. Since lifted inference techniques rely on reductions to variants of FOMC, the design of scalable methods for FOMC has attracted attention from both theoreticians and practitioners over the past decade. Recently, a new approach based on first-order knowledge compilation was proposed. This approach, called Crane, instead of simply providing the final count, generates definitions of (possibly recursive) functions that can be evaluated with different arguments to compute the model count for any domain size. However, this approach is not fully automated, as it requires manual evaluation of the constructed functions. The primary contribution of this work is a fully automated compilation algorithm, called Crane2, which transforms the function definitions into C++ code equipped with arbitrary-precision arithmetic. These additions allow the new FOMC algorithm to scale to domain sizes over 500,000 times larger than the current state of the art, as demonstrated through experimental results.
comment: 19 pages, 2 figures, to be published at SAT 2025, minor revisions
♻ ☆ Quamba2: A Robust and Scalable Post-training Quantization Framework for Selective State Space Models
State Space Models (SSMs) are emerging as a compelling alternative to Transformers because of their consistent memory usage and high performance. Despite this, scaling up SSMs on cloud services or limited-resource devices is challenging due to their storage requirements and computational power. To overcome this, quantizing SSMs with low bit-width data formats can reduce model size and benefit from hardware acceleration. As SSMs are prone to quantization-induced errors, recent efforts have focused on optimizing a particular model or bit-width for efficiency without sacrificing performance. However, distinct bit-width configurations are essential for different scenarios, like W4A8 for boosting large-batch decoding speed, and W4A16 for enhancing generation speed in short prompt applications for a single user. To this end, we present Quamba2, compatible with W8A8, W4A8, and W4A16 for both Mamba1 and Mamba2 backbones, addressing the growing demand for SSM deployment on various platforms. Based on the channel order preserving and activation persistence of SSMs, we propose an offline approach to quantize inputs of a linear recurrence in 8-bit by sorting and clustering for input $x$, combined with a per-state-group quantization for input-dependent parameters $B$ and $C$. To ensure compute-invariance in the SSM output, we rearrange weights offline according to the clustering sequence. The experiments show that Quamba2-8B outperforms two state-of-the-art SSM quantization methods and delivers 1.3$\times$ and 3$\times$ speed-ups in the pre-filling and generation stages, respectively, while offering 4$\times$ memory reduction with only a $1.6\%$ average accuracy drop. The evaluation on MMLU shows the generalizability and robustness of our framework. The code and quantized models will be released at: https://github.com/enyac-group/Quamba.
♻ ☆ DiffLM: Controllable Synthetic Data Generation via Diffusion Language Models ACL 2025
Recent advancements in large language models (LLMs) have significantly enhanced their knowledge and generative capabilities, leading to a surge of interest in leveraging LLMs for high-quality data synthesis. However, synthetic data generation via prompting LLMs remains challenging due to LLMs' limited understanding of target data distributions and the complexity of prompt engineering, especially for structured formatted data. To address these issues, we introduce DiffLM, a controllable data synthesis framework based on variational autoencoder (VAE), which further (1) leverages diffusion models to reserve more information of original distribution and format structure in the learned latent distribution and (2) decouples the learning of target distribution knowledge from the LLM's generative objectives via a plug-and-play latent feature injection module. As we observed significant discrepancies between the VAE's latent representations and the real data distribution, the latent diffusion module is introduced into our framework to learn a fully expressive latent distribution. Evaluations on seven real-world datasets with structured formatted data (i.e., Tabular, Code, and Tool data) demonstrate that DiffLM generates high-quality data, with performance on downstream tasks surpassing that of real data by 2%-7% in certain cases. Data and code are available at https://github.com/bytedance/DiffLM.
comment: 21 pages, 9 figures, Accepted by ACL 2025, Findings
♻ ☆ Calibrated Physics-Informed Uncertainty Quantification
Simulating complex physical systems is crucial for understanding and predicting phenomena across diverse fields, such as fluid dynamics and heat transfer, as well as plasma physics and structural mechanics. Traditional approaches rely on solving partial differential equations (PDEs) using numerical methods, which are computationally expensive and often prohibitively slow for real-time applications or large-scale simulations. Neural PDEs have emerged as efficient alternatives to these costly numerical solvers, offering significant computational speed-ups. However, their lack of robust uncertainty quantification (UQ) limits deployment in critical applications. We introduce a model-agnostic, physics-informed conformal prediction (CP) framework that provides guaranteed uncertainty estimates without requiring labelled data. By utilising a physics-based approach, we can quantify and calibrate the model's inconsistencies with the physics rather than the uncertainty arising from the data. Our approach utilises convolutional layers as finite-difference stencils and leverages physics residual errors as nonconformity scores, enabling data-free UQ with marginal and joint coverage guarantees across prediction domains for a range of complex PDEs. We further validate the efficacy of our method on neural PDE models for plasma modelling and shot design in fusion reactors.
♻ ☆ On Large-scale Evaluation of Embedding Models for Knowledge Graph Completion
Knowledge graph embedding (KGE) models are extensively studied for knowledge graph completion, yet their evaluation remains constrained by unrealistic benchmarks. Standard evaluation metrics rely on the closed-world assumption, which penalizes models for correctly predicting missing triples, contradicting the fundamental goals of link prediction. These metrics often compress accuracy assessment into a single value, obscuring models' specific strengths and weaknesses. The prevailing evaluation protocol, link prediction, operates under the unrealistic assumption that an entity's properties, for which values are to be predicted, are known in advance. While alternative protocols such as property prediction, entity-pair ranking, and triple classification address some of these limitations, they remain underutilized. Moreover, commonly used datasets are either faulty or too small to reflect real-world data. Few studies examine the role of mediator nodes, which are essential for modeling n-ary relationships, or investigate model performance variation across domains. This paper conducts a comprehensive evaluation of four representative KGE models on large-scale datasets FB-CVT-REV and FB+CVT-REV. Our analysis reveals critical insights, including substantial performance variations between small and large datasets, both in relative rankings and absolute metrics, systematic overestimation of model capabilities when n-ary relations are binarized, and fundamental limitations in current evaluation protocols and metrics.
♻ ☆ AnnaAgent: Dynamic Evolution Agent System with Multi-Session Memory for Realistic Seeker Simulation
Constrained by the cost and ethical concerns of involving real seekers in AI-driven mental health, researchers develop LLM-based conversational agents (CAs) with tailored configurations, such as profiles, symptoms, and scenarios, to simulate seekers. While these efforts advance AI in mental health, achieving more realistic seeker simulation remains hindered by two key challenges: dynamic evolution and multi-session memory. Seekers' mental states often fluctuate during counseling, which typically spans multiple sessions. To address this, we propose AnnaAgent, an emotional and cognitive dynamic agent system equipped with tertiary memory. AnnaAgent incorporates an emotion modulator and a complaint elicitor trained on real counseling dialogues, enabling dynamic control of the simulator's configurations. Additionally, its tertiary memory mechanism effectively integrates short-term and long-term memory across sessions. Evaluation results, both automated and manual, demonstrate that AnnaAgent achieves more realistic seeker simulation in psychological counseling compared to existing baselines. The ethically reviewed and screened code can be found on https://github.com/sci-m-wang/AnnaAgent.
♻ ☆ AI as Decision-Maker: Ethics and Risk Preferences of LLMs
Large Language Models (LLMs) exhibit surprisingly diverse risk preferences when acting as AI decision makers, a crucial characteristic whose origins remain poorly understood despite their expanding economic roles. We analyze 50 LLMs using behavioral tasks, finding stable but diverse risk profiles. Alignment tuning for harmlessness, helpfulness, and honesty significantly increases risk aversion, causally increasing risk aversion confirmed via comparative difference analysis: a ten percent ethics increase cuts risk appetite two to eight percent. This induced caution persists against prompts and affects economic forecasts. Alignment enhances safety but may also suppress valuable risk taking, revealing a tradeoff risking suboptimal economic outcomes. With AI models becoming more powerful and influential in economic decisions while alignment grows increasingly critical, our empirical framework serves as an adaptable and enduring benchmark to track risk preferences and monitor this crucial tension between ethical alignment and economically valuable risk-taking.
♻ ☆ The Impact of Large Language Models on Open-source Innovation: Evidence from GitHub Copilot
Large Language Models (LLMs) have been shown to enhance individual productivity in guided settings. Whereas LLMs are likely to also transform innovation processes in a collaborative work setting, it is unclear what trajectory this transformation will follow. Innovation in these contexts encompasses both capability innovation that explores new possibilities by acquiring new competencies in a project and iterative innovation that exploits existing foundations by enhancing established competencies and improving project quality. Whether LLMs affect these two aspects of collaborative work and to what extent is an open empirical question. Open-source development provides an ideal setting to examine LLM impacts on these innovation types, as its voluntary and open/collaborative nature of contributions provides the greatest opportunity for technological augmentation. We focus on open-source projects on GitHub by leveraging a natural experiment around the selective rollout of GitHub Copilot (a programming-focused LLM) in October 2021, where GitHub Copilot selectively supported programming languages like Python or Rust, but not R or Haskell. We observe a significant jump in overall contributions, suggesting that LLMs effectively augment collaborative innovation in an unguided setting. Interestingly, Copilot's launch increased iterative innovation focused on maintenance-related or feature-refining contributions significantly more than it did capability innovation through code-development or feature-introducing commits. This disparity was more pronounced after the model upgrade in June 2022 and was evident in active projects with extensive coding activity, suggesting that as both LLM capabilities and/or available contextual information improve, the gap between capability and iterative innovation may widen. We discuss practical and policy implications to incentivize high-value innovative solutions.
comment: JEL Classification: O31, C88, J24, O35, L86
♻ ☆ Intrinsic Bias is Predicted by Pretraining Data and Correlates with Downstream Performance in Vision-Language Encoders NAACL
While recent work has found that vision-language models trained under the Contrastive Language Image Pre-training (CLIP) framework contain intrinsic social biases, the extent to which different upstream pre-training features of the framework relate to these biases, and hence how intrinsic bias and downstream performance are connected has been unclear. In this work, we present the largest comprehensive analysis to-date of how the upstream pre-training factors and downstream performance of CLIP models relate to their intrinsic biases. Studying 131 unique CLIP models, trained on 26 datasets, using 55 architectures, and in a variety of sizes, we evaluate bias in each model using 26 well-established unimodal and cross-modal principled Embedding Association Tests. We find that the choice of pre-training dataset is the most significant upstream predictor of bias, whereas architectural variations have minimal impact. Additionally, datasets curated using sophisticated filtering techniques aimed at enhancing downstream model performance tend to be associated with higher levels of intrinsic bias. Finally, we observe that intrinsic bias is often significantly correlated with downstream performance ($0.3 \leq r \leq 0.8$), suggesting that models optimized for performance inadvertently learn to amplify representational biases. Comparisons between unimodal and cross-modal association tests reveal that social group bias depends heavily on the modality. Our findings imply that more sophisticated strategies are needed to address intrinsic model bias for vision-language models across the entire model development pipeline.
comment: Accepted to NAACL Main, 2025
♻ ☆ StereoVAE: A lightweight stereo-matching system using embedded GPUs
We present a lightweight system for stereo matching through embedded GPUs. It breaks the trade-off between accuracy and processing speed in stereo matching, enabling our embedded system to further improve the matching accuracy while ensuring real-time processing. The main idea of our method is to construct a tiny neural network based on variational auto-encoder (VAE) to upsample and refinement a small size of coarse disparity map, which is first generated by a traditional matching method. The proposed hybrid structure cannot only bring the advantage of traditional methods in terms of computational complexity, but also ensure the matching accuracy under the impact of neural network. Extensive experiments on the KITTI 2015 benchmark demonstrate that our tiny system exhibits high robustness in improving the accuracy of the coarse disparity maps generated by different algorithms, while also running in real-time on embedded GPUs.
comment: Will revise part of the contents
♻ ☆ Fusing Bidirectional Chains of Thought and Reward Mechanisms A Method for Enhancing Question-Answering Capabilities of Large Language Models for Chinese Intangible Cultural Heritage
The rapid development of large language models (LLMs) has provided significant support and opportunities for the advancement of domain-specific LLMs. However, fine-tuning these large models using Intangible Cultural Heritage (ICH) data inevitably faces challenges such as bias, incorrect knowledge inheritance, and catastrophic forgetting. To address these issues, we propose a novel training method that integrates a bidirectional chains of thought and a reward mechanism. This method is built upon ICH-Qwen, a large language model specifically designed for the field of intangible cultural heritage. The proposed method enables the model to not only perform forward reasoning but also enhances the accuracy of the generated answers by utilizing reverse questioning and reverse reasoning to activate the model's latent knowledge. Additionally, a reward mechanism is introduced during training to optimize the decision-making process. This mechanism improves the quality of the model's outputs through structural and content evaluations with different weighting schemes. We conduct comparative experiments on ICH-Qwen, with results demonstrating that our method outperforms 0-shot, step-by-step reasoning, knowledge distillation, and question augmentation methods in terms of accuracy, Bleu-4, and Rouge-L scores on the question-answering task. Furthermore, the paper highlights the effectiveness of combining the bidirectional chains of thought and reward mechanism through ablation experiments. In addition, a series of generalizability experiments are conducted, with results showing that the proposed method yields improvements on various domain-specific datasets and advanced models in areas such as Finance, Wikidata, and StrategyQA. This demonstrates that the method is adaptable to multiple domains and provides a valuable approach for model training in future applications across diverse fields.
comment: We want to withdraw this paper due to data usage permission issues identified after submission. We discovered that our use of certain intangible cultural heritage materials required additional community permissions and institutional ethical approvals that were not obtained
♻ ☆ Relational decomposition for program synthesis
We introduce a relational approach to program synthesis. The key idea is to decompose synthesis tasks into simpler relational synthesis subtasks. Specifically, our representation decomposes a training input-output example into sets of input and output facts respectively. We then learn relations between the input and output facts. We demonstrate our approach using an off-the-shelf inductive logic programming (ILP) system on four challenging synthesis datasets. Our results show that (i) our representation can outperform a standard one, and (ii) an off-the-shelf ILP system with our representation can outperform domain-specific approaches.
♻ ☆ NFISiS: New Perspectives on Fuzzy Inference Systems for Renewable Energy Forecasting
Deep learning models, despite their popularity, face challenges such as long training times and a lack of interpretability. In contrast, fuzzy inference systems offer a balance of accuracy and transparency. This paper addresses the limitations of traditional Takagi-Sugeno-Kang fuzzy models by extending the recently proposed New Takagi-Sugeno-Kang model to a new Mamdani-based regressor. These models are data-driven, allowing users to define the number of rules to balance accuracy and interpretability. To handle the complexity of large datasets, this research integrates wrapper and ensemble techniques. A Genetic Algorithm is used as a wrapper for feature selection, creating genetic versions of the models. Furthermore, ensemble models, including the Random New Mamdani Regressor, Random New Takagi-Sugeno-Kang, and Random Forest New Takagi-Sugeno-Kang, are introduced to improve robustness. The proposed models are validated on photovoltaic energy forecasting datasets, a critical application due to the intermittent nature of solar power. Results demonstrate that the genetic and ensemble fuzzy models, particularly the Genetic New Takagi-Sugeno-Kang and Random Forest New Takagi-Sugeno-Kang, achieve superior performance. They often outperform both traditional machine learning and deep learning models while providing a simpler and more interpretable rule-based structure. The models are available online in a library called nfisis (https://pypi.org/project/nfisis/).
♻ ☆ EquivaMap: Leveraging LLMs for Automatic Equivalence Checking of Optimization Formulations
A fundamental problem in combinatorial optimization is identifying equivalent formulations. Despite the growing need for automated equivalence checks -- driven, for example, by optimization copilots, which generate problem formulations from natural language descriptions -- current approaches rely on simple heuristics that fail to reliably check formulation equivalence. Inspired by Karp reductions, in this work we introduce Quasi-Karp equivalence, a formal criterion for determining when two optimization formulations are equivalent based on the existence of a mapping between their decision variables. We propose EquivaMap, a framework that leverages large language models to automatically discover such mappings for scalable, reliable equivalence checking, with a verification stage that ensures mapped solutions preserve feasibility and optimality without additional solver calls. To evaluate our approach, we construct EquivaFormulation, the first open-source dataset of equivalent optimization formulations, generated by applying transformations such as adding slack variables or valid inequalities to existing formulations. Empirically, EquivaMap significantly outperforms existing methods, achieving substantial improvements in correctly identifying formulation equivalence.
♻ ☆ Activated LoRA: Fine-tuned LLMs for Intrinsics
Low-Rank Adaptation (LoRA) has emerged as a highly efficient framework for finetuning the weights of large foundation models, and has become the go-to method for data-driven customization of LLMs. Despite the promise of highly customized behaviors and capabilities, switching between relevant LoRAs in a multiturn setting is inefficient, as the key-value (KV) cache of the entire turn history must be recomputed with the LoRA weights before generation can begin. To address this problem, we propose Activated LoRA (aLoRA), an adapter architecture which modifies the LoRA framework to only adapt weights for the tokens in the sequence \emph{after} the aLoRA is invoked. This change crucially allows aLoRA to accept the base model's KV cache of the input string, meaning that aLoRA can be instantly activated whenever needed in a chain without recomputing the cache. This enables building what we call \emph{intrinsics}, i.e. specialized models invoked to perform well-defined operations on portions of an input chain or conversation that otherwise uses the base model by default. We train a set of aLoRA-based intrinsics models, demonstrating competitive accuracy with standard LoRA while achieving significant inference benefits. The codebase is at https://github.com/IBM/activated-lora.
♻ ☆ Delving into RL for Image Generation with CoT: A Study on DPO vs. GRPO
Recent advancements underscore the significant role of Reinforcement Learning (RL) in enhancing the Chain-of-Thought (CoT) reasoning capabilities of large language models (LLMs). Two prominent RL algorithms, Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO), are central to these developments, showcasing different pros and cons. Autoregressive image generation, also interpretable as a sequential CoT reasoning process, presents unique challenges distinct from LLM-based CoT reasoning. These encompass ensuring text-image consistency, improving image aesthetic quality, and designing sophisticated reward models, rather than relying on simpler rule-based rewards. While recent efforts have extended RL to this domain, these explorations typically lack an in-depth analysis of the domain-specific challenges and the characteristics of different RL strategies. To bridge this gap, we provide the first comprehensive investigation of the GRPO and DPO algorithms in autoregressive image generation, evaluating their in-domain performance and out-of-domain generalization, while scrutinizing the impact of different reward models on their respective capabilities. Our findings reveal that GRPO and DPO exhibit distinct advantages, and crucially, that reward models possessing stronger intrinsic generalization capabilities potentially enhance the generalization potential of the applied RL algorithms. Furthermore, we systematically explore three prevalent scaling strategies to enhance both their in-domain and out-of-domain proficiency, deriving unique insights into efficiently scaling performance for each paradigm. We hope our study paves a new path for inspiring future work on developing more effective RL algorithms to achieve robust CoT reasoning in the realm of autoregressive image generation. Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
comment: Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT
♻ ☆ Dual-Individual Genetic Algorithm: A Dual-Individual Approach for Efficient Training of Multi-Layer Neural Networks
This paper introduces an enhanced Genetic Algorithm technique, which optimizes neural networks for binary image classification tasks, such as cat vs. non-cat classification. The proposed method employs only two individuals for crossover, represented by two parameter sets: Leader and Follower. The Leader focuses on exploitation, representing the primary optimal solution, while the Follower promotes exploration by preserving diversity and avoiding premature convergence. Leader and Follower are modeled as two phases or roles. The key contributions of this work are threefold: (1) a self-adaptive layer dimension mechanism that eliminates the need for manual tuning of layer architectures; (2) generates two parameter sets, leader and follower parameter sets, with 10 layer architecture configurations (5 for each set), ranked by Pareto dominance and cost post-optimization; and (3) achieved better results compared to gradient-based methods. Experimental results show that the proposed method achieves 99.04% training accuracy and 80% testing accuracy (cost = 0.06) on a three-layer network with architecture [12288, 17, 4, 1], higher performance a gradient-based approach that achieves 98% training accuracy and 80% testing accuracy (cost = 0.092) on a four-layer network with architecture [12288, 20, 7, 5, 1].
♻ ☆ In Praise of Stubbornness: An Empirical Case for Cognitive-Dissonance Aware Continual Update of Knowledge in LLMs
Through systematic empirical investigation, we uncover a fundamental and concerning property of Large Language Models: while they can safely learn facts that don't contradict their knowledge, attempting to update facts with contradictory information triggers catastrophic corruption of unrelated knowledge. Unlike humans, who naturally resist contradictory information, these models indiscriminately accept contradictions, leading to devastating interference, destroying up to 80% of unrelated knowledge even when learning as few as 10-100 contradicting facts. To understand whether this interference could be mitigated through selective plasticity, we experiment with targeted network updates, distinguishing between previously used (stubborn) and rarely used (plastic) neurons. We uncover another asymmetry: while sparing frequently-used neurons significantly improves retention of existing knowledge for non-contradictory updates (98% vs 93% with standard updates), contradictory updates trigger catastrophic interference regardless of targeting strategy. This effect which persists across tested model scales (GPT-2 to GPT-J-6B), suggests a fundamental limitation in how neural networks handle contradictions. Finally, we demonstrate that contradictory information can be reliably detected (95%+ accuracy) using simple model features, offering a potential protective mechanism. These findings motivate new architectures that can, like humans, naturally resist contradictions rather than allowing destructive overwrites.
♻ ☆ Enhancing Retrieval-Augmented Audio Captioning with Generation-Assisted Multimodal Querying and Progressive Learning
Retrieval-augmented generation can improve audio captioning by incorporating relevant audio-text pairs from a knowledge base. Existing methods typically rely solely on the input audio as a unimodal retrieval query. In contrast, we propose Generation-Assisted Multimodal Querying, which generates a text description of the input audio to enable multimodal querying. This approach aligns the query modality with the audio-text structure of the knowledge base, leading to more effective retrieval. Furthermore, we introduce a novel progressive learning strategy that gradually increases the number of interleaved audio-text pairs to enhance the training process. Our experiments on AudioCaps, Clotho, and Auto-ACD demonstrate that our approach achieves state-of-the-art results across these benchmarks.
♻ ☆ Optimized Text Embedding Models and Benchmarks for Amharic Passage Retrieval ACL 2025
Neural retrieval methods using transformer-based pre-trained language models have advanced multilingual and cross-lingual retrieval. However, their effectiveness for low-resource, morphologically rich languages such as Amharic remains underexplored due to data scarcity and suboptimal tokenization. We address this gap by introducing Amharic-specific dense retrieval models based on pre-trained Amharic BERT and RoBERTa backbones. Our proposed RoBERTa-Base-Amharic-Embed model (110M parameters) achieves a 17.6% relative improvement in MRR@10 and a 9.86% gain in Recall@10 over the strongest multilingual baseline, Arctic Embed 2.0 (568M parameters). More compact variants, such as RoBERTa-Medium-Amharic-Embed (42M), remain competitive while being over 13x smaller. Additionally, we train a ColBERT-based late interaction retrieval model that achieves the highest MRR@10 score (0.843) among all evaluated models. We benchmark our proposed models against both sparse and dense retrieval baselines to systematically assess retrieval effectiveness in Amharic. Our analysis highlights key challenges in low-resource settings and underscores the importance of language-specific adaptation. To foster future research in low-resource IR, we publicly release our dataset, codebase, and trained models at https://github.com/kidist-amde/amharic-ir-benchmarks.
comment: 10 pages (excl. refs/appendix), 10 figures. Accepted to ACL 2025 Findings. Kidist and Yosef contributed equally to this work. Public resources: https://github.com/kidist-amde/amharic-ir-benchmarks
♻ ☆ TextAtari: 100K Frames Game Playing with Language Agents
We present TextAtari, a benchmark for evaluating language agents on very long-horizon decision-making tasks spanning up to 100,000 steps. By translating the visual state representations of classic Atari games into rich textual descriptions, TextAtari creates a challenging test bed that bridges sequential decision-making with natural language processing. The benchmark includes nearly 100 distinct tasks with varying complexity, action spaces, and planning horizons, all rendered as text through an unsupervised representation learning framework (AtariARI). We evaluate three open-source large language models (Qwen2.5-7B, Gemma-7B, and Llama3.1-8B) across three agent frameworks (zero-shot, few-shot chain-of-thought, and reflection reasoning) to assess how different forms of prior knowledge affect performance on these long-horizon challenges. Four scenarios-Basic, Obscured, Manual Augmentation, and Reference-based-investigate the impact of semantic understanding, instruction comprehension, and expert demonstrations on agent decision-making. Our results reveal significant performance gaps between language agents and human players in extensive planning tasks, highlighting challenges in sequential reasoning, state tracking, and strategic planning across tens of thousands of steps. TextAtari provides standardized evaluation protocols, baseline implementations, and a framework for advancing research at the intersection of language models and planning. Our code is available at https://github.com/Lww007/Text-Atari-Agents.
comment: 51 pages, 39 figures
♻ ☆ Can Slow-thinking LLMs Reason Over Time? Empirical Studies in Time Series Forecasting
Time series forecasting (TSF) is a fundamental and widely studied task, spanning methods from classical statistical approaches to modern deep learning and multimodal language modeling. Despite their effectiveness, these methods often follow a fast thinking paradigm emphasizing pattern extraction and direct value mapping, while overlooking explicit reasoning over temporal dynamics and contextual dependencies. Meanwhile, emerging slow-thinking LLMs (e.g., ChatGPT-o1, DeepSeek-R1) have demonstrated impressive multi-step reasoning capabilities across diverse domains, suggesting a new opportunity for reframing TSF as a structured reasoning task. This motivates a key question: can slow-thinking LLMs effectively reason over temporal patterns to support time series forecasting, even in zero-shot manner? To investigate this, in this paper, we propose TimeReasoner, an extensive empirical study that formulates TSF as a conditional reasoning task. We design a series of prompting strategies to elicit inference-time reasoning from pretrained slow-thinking LLMs and evaluate their performance across diverse TSF benchmarks. Our findings reveal that slow-thinking LLMs exhibit non-trivial zero-shot forecasting capabilities, especially in capturing high-level trends and contextual shifts. While preliminary, our study surfaces important insights into the reasoning behaviors of LLMs in temporal domains highlighting both their potential and limitations. We hope this work catalyzes further research into reasoning-based forecasting paradigms and paves the way toward more interpretable and generalizable TSF frameworks.
♻ ☆ Generative Psycho-Lexical Approach for Constructing Value Systems in Large Language Models ACL 2024
Values are core drivers of individual and collective perception, cognition, and behavior. Value systems, such as Schwartz's Theory of Basic Human Values, delineate the hierarchy and interplay among these values, enabling cross-disciplinary investigations into decision-making and societal dynamics. Recently, the rise of Large Language Models (LLMs) has raised concerns regarding their elusive intrinsic values. Despite growing efforts in evaluating, understanding, and aligning LLM values, a psychologically grounded LLM value system remains underexplored. This study addresses the gap by introducing the Generative Psycho-Lexical Approach (GPLA), a scalable, adaptable, and theoretically informed method for constructing value systems. Leveraging GPLA, we propose a psychologically grounded five-factor value system tailored for LLMs. For systematic validation, we present three benchmarking tasks that integrate psychological principles with cutting-edge AI priorities. Our results reveal that the proposed value system meets standard psychological criteria, better captures LLM values, improves LLM safety prediction, and enhances LLM alignment, when compared to the canonical Schwartz's values.
comment: Accepted at ACL 2024 Main
♻ ☆ A Culturally-Aware Benchmark for Person Re-Identification in Modest Attire
Person Re-Identification (ReID) is a fundamental task in computer vision with critical applications in surveillance and security. Despite progress in recent years, most existing ReID models often struggle to generalize across diverse cultural contexts, particularly in Islamic regions like Iran, where modest clothing styles are prevalent. Existing datasets predominantly feature Western and East Asian fashion, limiting their applicability in these settings. To address this gap, we introduce Iran University of Science and Technology Person Re-Identification (IUST_PersonReId), a dataset designed to reflect the unique challenges of ReID in new cultural environments, emphasizing modest attire and diverse scenarios from Iran, including markets, campuses, and mosques. Experiments on IUST_PersonReId with state-of-the-art models, such as Semantic Controllable Self-supervised Learning (SOLIDER) and Contrastive Language-Image Pretraining Re-Identification (CLIP-ReID), reveal significant performance drops compared to benchmarks like Market1501 and Multi-Scene MultiTime (MSMT17), specifically, SOLIDER shows a drop of 50.75% and 23.01% Mean Average Precision (mAP) compared to Market1501 and MSMT17 respectively, while CLIP-ReID exhibits a drop of 38.09% and 21.74% mAP, highlighting the challenges posed by occlusion and limited distinctive features. Sequence-based evaluations show improvements by leveraging temporal context, emphasizing the dataset's potential for advancing culturally sensitive and robust ReID systems. IUST_PersonReId offers a critical resource for addressing fairness and bias in ReID research globally.
♻ ☆ Double Landmines: Invisible Textual Backdoor Attacks based on Dual-Trigger
At present, all textual backdoor attack methods are based on single triggers: for example, inserting specific content into the text to activate the backdoor; or changing the abstract text features. The former is easier to be identified by existing defense strategies due to its obvious characteristics; the latter, although improved in invisibility, has certain shortcomings in terms of attack performance, construction of poisoned datasets, and selection of the final poisoning rate. On this basis, this paper innovatively proposes a Dual-Trigger backdoor attack based on syntax and mood, and optimizes the construction of the poisoned dataset and the selection strategy of the final poisoning rate. A large number of experimental results show that this method significantly outperforms the previous methods based on abstract features in attack performance, and achieves comparable attack performance (almost 100% attack success rate) with the insertion-based method. In addition, the two trigger mechanisms included in this method can be activated independently in the application phase of the model, which not only improves the flexibility of the trigger style, but also enhances its robustness against defense strategies. These results profoundly reveal that textual backdoor attacks are extremely harmful and provide a new perspective for security protection in this field.
♻ ☆ FREIDA: A Framework for developing quantitative agent based models based on qualitative expert knowledge
Agent Based Models (ABMs) often deal with systems where there is a lack of quantitative data or where quantitative data alone may be insufficient to fully capture the complexities of real-world systems. Expert knowledge and qualitative insights, such as those obtained through interviews, ethnographic research, historical accounts, or participatory workshops, are critical in constructing realistic behavioral rules, interactions, and decision-making processes within these models. However, there is a lack of systematic approaches that are able to incorporate both qualitative and quantitative data across the entire modeling cycle. To address this, we propose FREIDA (FRamework for Expert-Informed Data-driven Agent-based models), a systematic mixed-methods framework to develop, train, and validate ABMs, particularly in data-sparse contexts. Our main technical innovation is to extract what we call Expected System Behaviors (ESBs) from qualitative data, which are testable statements that can be evaluated on model simulations. Divided into Calibration Statements (CS) for model calibration and Validation Statements (VS) for model validation, they provide a quantitative scoring mechanism on the same footing as quantitative data. In this way, qualitative insights can inform not only model specification but also its parameterization and assessment of fitness for purpose, which is a long standing challenge. We illustrate the application of FREIDA through a case study of criminal cocaine networks in the Netherlands.
comment: 26 pages, 4 figures, 15 tables, Appendix I-II
♻ ☆ Big Help or Big Brother? Auditing Tracking, Profiling, and Personalization in Generative AI Assistants
Generative AI (GenAI) browser assistants integrate powerful capabilities of GenAI in web browsers to provide rich experiences such as question answering, content summarization, and agentic navigation. These assistants, available today as browser extensions, can not only track detailed browsing activity such as search and click data, but can also autonomously perform tasks such as filling forms, raising significant privacy concerns. It is crucial to understand the design and operation of GenAI browser extensions, including how they collect, store, process, and share user data. To this end, we study their ability to profile users and personalize their responses based on explicit or inferred demographic attributes and interests of users. We perform network traffic analysis and use a novel prompting framework to audit tracking, profiling, and personalization by the ten most popular GenAI browser assistant extensions. We find that instead of relying on local in-browser models, these assistants largely depend on server-side APIs, which can be auto-invoked without explicit user interaction. When invoked, they collect and share webpage content, often the full HTML DOM and sometimes even the user's form inputs, with their first-party servers. Some assistants also share identifiers and user prompts with third-party trackers such as Google Analytics. The collection and sharing continues even if a webpage contains sensitive information such as health or personal information such as name or SSN entered in a web form. We find that several GenAI browser assistants infer demographic attributes such as age, gender, income, and interests and use this profile--which carries across browsing contexts--to personalize responses. In summary, our work shows that GenAI browser assistants can and do collect personal and sensitive information for profiling and personalization with little to no safeguards.
♻ ☆ Fighting Fire with Fire (F3): A Training-free and Efficient Visual Adversarial Example Purification Method in LVLMs
Recent advances in large vision-language models (LVLMs) have showcased their remarkable capabilities across a wide range of multimodal vision-language tasks. However, these models remain vulnerable to visual adversarial attacks, which can substantially compromise their performance. Despite their potential impact, the development of effective methods for purifying such adversarial examples has received relatively limited attention. In this paper, we introduce F3, a novel adversarial purification framework that employs a counterintuitive "fighting fire with fire" strategy: intentionally introducing simple perturbations to adversarial examples to mitigate their harmful effects. Specifically, F3 leverages cross-modal attentions derived from randomly perturbed adversary examples as reference targets. By injecting noise into these adversarial examples, F3 effectively refines their attention, resulting in cleaner and more reliable model outputs. Remarkably, this seemingly paradoxical approach of employing noise to counteract adversarial attacks yields impressive purification results. Furthermore, F3 offers several distinct advantages: it is training-free and straightforward to implement, and exhibits significant computational efficiency improvements compared to existing purification methods. These attributes render F3 particularly suitable for large-scale industrial applications where both robust performance and operational efficiency are critical priorities. The code will be made publicly available.
comment: 14 pages, 5 figures
♻ ☆ VIST-GPT: Ushering in the Era of Visual Storytelling with LLMs?
Visual storytelling is an interdisciplinary field combining computer vision and natural language processing to generate cohesive narratives from sequences of images. This paper presents a novel approach that leverages recent advancements in multimodal models, specifically adapting transformer-based architectures and large multimodal models, for the visual storytelling task. Leveraging the large-scale Visual Storytelling (VIST) dataset, our VIST-GPT model produces visually grounded, contextually appropriate narratives. We address the limitations of traditional evaluation metrics, such as BLEU, METEOR, ROUGE, and CIDEr, which are not suitable for this task. Instead, we utilize RoViST and GROOVIST, novel reference-free metrics designed to assess visual storytelling, focusing on visual grounding, coherence, and non-redundancy. These metrics provide a more nuanced evaluation of narrative quality, aligning closely with human judgment.
♻ ☆ E2E Process Automation Leveraging Generative AI and IDP-Based Automation Agent: A Case Study on Corporate Expense Processing
This paper presents an intelligent work automation approach in the context of contemporary digital transformation by integrating generative AI and Intelligent Document Processing (IDP) technologies with an Automation Agent to realize End-to-End (E2E) automation of corporate financial expense processing tasks. While traditional Robotic Process Automation (RPA) has proven effective for repetitive, rule-based simple task automation, it faces limitations in handling unstructured data, exception management, and complex decision-making. This study designs and implements a four-stage integrated process comprising automatic recognition of supporting documents such as receipts via OCR/IDP, item classification based on a policy-driven database, intelligent exception handling supported by generative AI (large language models, LLMs), and human-in-the-loop final decision-making with continuous system learning through an Automation Agent. Applied to a major Korean enterprise (Company S), the system demonstrated quantitative benefits including over 80% reduction in processing time for paper receipt expense tasks, decreased error rates, and improved compliance, as well as qualitative benefits such as enhanced accuracy and consistency, increased employee satisfaction, and data-driven decision support. Furthermore, the system embodies a virtuous cycle by learning from human judgments to progressively improve automatic exception handling capabilities. Empirically, this research confirms that the organic integration of generative AI, IDP, and Automation Agents effectively overcomes the limitations of conventional automation and enables E2E automation of complex corporate processes. The study also discusses potential extensions to other domains such as accounting, human resources, and procurement, and proposes future directions for AI-driven hyper-automation development.
♻ ☆ TimeWak: Temporal Chained-Hashing Watermark for Time Series Data
Synthetic time series generated by diffusion models enable sharing privacy-sensitive datasets, such as patients' functional MRI records. Key criteria for synthetic data include high data utility and traceability to verify the data source. Recent watermarking methods embed in homogeneous latent spaces, but state-of-the-art time series generators operate in real space, making latent-based watermarking incompatible. This creates the challenge of watermarking directly in real space while handling feature heterogeneity and temporal dependencies. We propose TimeWak, the first watermarking algorithm for multivariate time series diffusion models. To handle temporal dependence and spatial heterogeneity, TimeWak embeds a temporal chained-hashing watermark directly within the real temporal-feature space. The other unique feature is the $\epsilon$-exact inversion, which addresses the non-uniform reconstruction error distribution across features from inverting the diffusion process to detect watermarks. We derive the error bound of inverting multivariate time series and further maintain high watermark detectability. We extensively evaluate TimeWak on its impact on synthetic data quality, watermark detectability, and robustness under various post-editing attacks, against 5 datasets and baselines of different temporal lengths. Our results show that TimeWak achieves improvements of 61.96% in context-FID score, and 8.44% in correlational scores against the state-of-the-art baseline, while remaining consistently detectable.
♻ ☆ Self-Training Elicits Concise Reasoning in Large Language Models ACL 2025
Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens to solve complex tasks. However, we posit that typical reasoning traces contain many redundant tokens, incurring extraneous inference costs. Upon examination of the output distribution of current LLMs, we find evidence on their latent ability to reason more concisely, relative to their default behavior. To elicit this capability, we propose simple fine-tuning methods which leverage self-generated concise reasoning paths obtained by best-of-N sampling and few-shot conditioning, in task-specific settings. Our combined method achieves a 30% reduction in output tokens on average, across five model families on GSM8K and MATH, while maintaining average accuracy. By exploiting the fundamental stochasticity and in-context learning capabilities of LLMs, our self-training approach robustly elicits concise reasoning on a wide range of models, including those with extensive post-training. Code is available at https://github.com/TergelMunkhbat/concise-reasoning
comment: 26 pages, 10 figures, 23 tables. Accepted to Findings of ACL 2025
♻ ☆ Optuna vs Code Llama: Are LLMs a New Paradigm for Hyperparameter Tuning?
Optimal hyperparameter selection is critical for maximizing neural network performance, especially as models grow in complexity. This work investigates the viability of leveraging large language models (LLMs) for hyperparameter optimization by fine-tuning a parameter-efficient version of Code Llama using LoRA. The adapted LLM is capable of generating accurate and efficient hyperparameter recommendations tailored to diverse neural network architectures. Unlike traditional approaches such as Optuna, which rely on computationally intensive trial-and-error procedures, our method achieves competitive or superior results in terms of Root Mean Square Error (RMSE) while significantly reducing computational overhead. Our findings demonstrate that LLM-based optimization not only matches the performance of state-of-the-art techniques like Tree-structured Parzen Estimators (TPE) but also substantially accelerates the tuning process. This positions LLMs as a promising alternative for rapid experimentation, particularly in resource-constrained environments such as edge devices and mobile platforms, where computational efficiency is essential. In addition to improved efficiency, the method offers time savings and consistent performance across various tasks, highlighting its robustness and generalizability. All generated hyperparameters are included in the LEMUR Neural Network (NN) Dataset, which is publicly available and serves as an open-source benchmark for hyperparameter optimization research.
♻ ☆ AGITB: A Signal-Level Benchmark for Evaluating Artificial General Intelligence
Despite major advances in machine learning, current artificial intelligence systems continue to fall short of human-like general intelligence. While large language models can generate fluent and coherent outputs, they lack the deep understanding and adaptive reasoning that characterize truly general intelligence. Existing evaluation frameworks, which are centered on broad language or perception tasks, fail to capture generality at its core and offer little guidance for incremental progress. To address this gap, this paper introduces the artificial general intelligence testbed (AGITB), a novel and freely available benchmarking suite comprising twelve fully automatable tests designed to evaluate low-level cognitive precursors through binary signal prediction. AGITB requires models to forecast temporal sequences without pretraining, symbolic manipulation, or semantic grounding. The framework isolates core computational invariants - such as determinism, sensitivity, and generalization - that align with principles of biological information processing. Engineered to resist brute-force and memorization-based approaches, AGITB presumes no prior knowledge and demands learning from first principles. While humans pass all tests, no current AI system has met the full AGITB criteria, underscoring its potential as a rigorous, interpretable, and actionable benchmark for guiding and evaluating progress toward artificial general intelligence.
comment: 15 pages
♻ ☆ Structuring Concept Space with the Musical Circle of Fifths by Utilizing Music Grammar Based Activations
In this paper, we explore the intriguing similarities between the structure of a discrete neural network, such as a spiking network, and the composition of a piano piece. While both involve nodes or notes that are activated sequentially or in parallel, the latter benefits from the rich body of music theory to guide meaningful combinations. We propose a novel approach that leverages musical grammar to regulate activations in a spiking neural network, allowing for the representation of symbols as attractors. By applying rules for chord progressions from music theory, we demonstrate how certain activations naturally follow others, akin to the concept of attraction. Furthermore, we introduce the concept of modulating keys to navigate different basins of attraction within the network. Ultimately, we show that the map of concepts in our model is structured by the musical circle of fifths, highlighting the potential for leveraging music theory principles in deep learning algorithms.
comment: Inaccuracies in script
♻ ☆ Zero-Shot Gaze-based Volumetric Medical Image Segmentation CVPR 2025
Accurate segmentation of anatomical structures in volumetric medical images is crucial for clinical applications, including disease monitoring and cancer treatment planning. Contemporary interactive segmentation models, such as Segment Anything Model 2 (SAM-2) and its medical variant (MedSAM-2), rely on manually provided prompts like bounding boxes and mouse clicks. In this study, we introduce eye gaze as a novel informational modality for interactive segmentation, marking the application of eye-tracking for 3D medical image segmentation. We evaluate the performance of using gaze-based prompts with SAM-2 and MedSAM-2 using both synthetic and real gaze data. Compared to bounding boxes, gaze-based prompts offer a time-efficient interaction approach with slightly lower segmentation quality. Our findings highlight the potential of using gaze as a complementary input modality for interactive 3D medical image segmentation.
comment: Accepted to MMFM-BIOMED Workshop @ CVPR 2025
♻ ☆ Compositional Causal Reasoning Evaluation in Language Models
Causal reasoning and compositional reasoning are two core aspirations in AI. Measuring the extent of these behaviors requires principled evaluation methods. We explore a unified perspective that considers both behaviors simultaneously, termed compositional causal reasoning (CCR): the ability to infer how causal measures compose and, equivalently, how causal quantities propagate through graphs. We instantiate a framework for the systematic evaluation of CCR for the average treatment effect and the probability of necessity and sufficiency. As proof of concept, we demonstrate CCR evaluation for language models in the LLama, Phi, and GPT families. On a math word problem, our framework revealed a range of taxonomically distinct error patterns. CCR errors increased with the complexity of causal paths for all models except o1.
♻ ☆ An Analysis of Hyper-Parameter Optimization Methods for Retrieval Augmented Generation
Finding the optimal Retrieval-Augmented Generation (RAG) configuration for a given use case can be complex and expensive. Motivated by this challenge, frameworks for RAG hyper-parameter optimization (HPO) have recently emerged, yet their effectiveness has not been rigorously benchmarked. To address this gap, we present a comprehensive study involving 5 HPO algorithms over 5 datasets from diverse domains, including a new one collected for this work on real-world product documentation. Our study explores the largest HPO search space considered to date, with three evaluation metrics as optimization targets. Analysis of the results shows that RAG HPO can be done efficiently, either greedily or with random search, and that it significantly boosts RAG performance for all datasets. For greedy HPO approaches, we show that optimizing model selection first is preferable to the prevalent practice of optimizing according to RAG pipeline order.
♻ ☆ Efficient Fine-Tuning of Quantized Models via Adaptive Rank and Bitwidth
QLoRA effectively combines low-bit quantization and LoRA to achieve memory-friendly fine-tuning for large language models (LLM). Recently, methods based on SVD for continuous update iterations to initialize LoRA matrices to accommodate quantization errors have generally failed to consistently improve performance. Dynamic mixed precision is a natural idea for continuously improving the fine-tuning performance of quantized models, but previous methods often optimize low-rank subspaces or quantization components separately, without considering their synergy. To address this, we propose \textbf{QR-Adaptor}, a unified, gradient-free strategy that uses partial calibration data to jointly search the quantization components and the rank of low-rank spaces for each layer, thereby continuously improving model performance. QR-Adaptor does not minimize quantization error but treats precision and rank allocation as a discrete optimization problem guided by actual downstream performance and memory usage. Compared to state-of-the-art (SOTA) quantized LoRA fine-tuning methods, our approach achieves a 4.89\% accuracy improvement on GSM8K, and in some cases even outperforms the 16-bit fine-tuned model while maintaining the memory footprint of the 4-bit setting.
comment: 24 pages, 5 figures
♻ ☆ PatchTrAD: A Patch-Based Transformer focusing on Patch-Wise Reconstruction Error for Time Series Anomaly Detection
Time series anomaly detection (TSAD) focuses on identifying whether observations in streaming data deviate significantly from normal patterns. With the prevalence of connected devices, anomaly detection on time series has become paramount, as it enables real-time monitoring and early detection of irregular behaviors across various application domains. In this work, we introduce PatchTrAD, a Patch-based Transformer model for time series anomaly detection. Our approach leverages a Transformer encoder along with the use of patches under a reconstructionbased framework for anomaly detection. Empirical evaluations on multiple benchmark datasets show that PatchTrAD is on par, in terms of detection performance, with state-of-the-art deep learning models for anomaly detection while being time efficient during inference.
♻ ☆ FlickerFusion: Intra-trajectory Domain Generalizing Multi-Agent RL ICLR 2025
Multi-agent reinforcement learning has demonstrated significant potential in addressing complex cooperative tasks across various real-world applications. However, existing MARL approaches often rely on the restrictive assumption that the number of entities (e.g., agents, obstacles) remains constant between training and inference. This overlooks scenarios where entities are dynamically removed or added during the inference trajectory -- a common occurrence in real-world environments like search and rescue missions and dynamic combat situations. In this paper, we tackle the challenge of intra-trajectory dynamic entity composition under zero-shot out-of-domain (OOD) generalization, where such dynamic changes cannot be anticipated beforehand. Our empirical studies reveal that existing MARL methods suffer significant performance degradation and increased uncertainty in these scenarios. In response, we propose FlickerFusion, a novel OOD generalization method that acts as a universally applicable augmentation technique for MARL backbone methods. FlickerFusion stochastically drops out parts of the observation space, emulating being in-domain when inferenced OOD. The results show that FlickerFusion not only achieves superior inference rewards but also uniquely reduces uncertainty vis-\`a-vis the backbone, compared to existing methods. Benchmarks, implementations, and model weights are organized and open-sourced at flickerfusion305.github.io, accompanied by ample demo video renderings.
comment: ICLR 2025
♻ ☆ How Malicious AI Swarms Can Threaten Democracy
Advances in AI portend a new era of sophisticated disinformation operations. While individual AI systems already create convincing -- and at times misleading -- information, an imminent development is the emergence of malicious AI swarms. These systems can coordinate covertly, infiltrate communities, evade traditional detectors, and run continuous A/B tests, with round-the-clock persistence. The result can include fabricated grassroots consensus, fragmented shared reality, mass harassment, voter micro-suppression or mobilization, contamination of AI training data, and erosion of institutional trust. With democratic processes worldwide increasingly vulnerable, we urge a three-pronged response: (1) platform-side defenses -- always-on swarm-detection dashboards, pre-election high-fidelity swarm-simulation stress-tests, transparency audits, and optional client-side "AI shields" for users; (2) model-side safeguards -- standardized persuasion-risk tests, provenance-authenticating passkeys, and watermarking; and (3) system-level oversight -- a UN-backed AI Influence Observatory.
comment: 8 pages, 1 figure
♻ ☆ Efficient Robust Conformal Prediction via Lipschitz-Bounded Networks
Conformal Prediction (CP) has proven to be an effective post-hoc method for improving the trustworthiness of neural networks by providing prediction sets with finite-sample guarantees. However, under adversarial attacks, classical conformal guarantees do not hold anymore: this problem is addressed in the field of Robust Conformal Prediction. Several methods have been proposed to provide robust CP sets with guarantees under adversarial perturbations, but, for large scale problems, these sets are either too large or the methods are too computationally demanding to be deployed in real life scenarios. In this work, we propose a new method that leverages Lipschitz-bounded networks to precisely and efficiently estimate robust CP sets. When combined with a 1-Lipschitz robust network, we demonstrate that our lip-rcp method outperforms state-of-the-art results in both the size of the robust CP sets and computational efficiency in medium and large-scale scenarios such as ImageNet. Taking a different angle, we also study vanilla CP under attack, and derive new worst-case coverage bounds of vanilla CP sets, which are valid simultaneously for all adversarial attack levels. Our lip-rcp method makes this second approach as efficient as vanilla CP while also allowing robustness guarantees.
♻ ☆ Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop
Recommender systems are essential for information access, allowing users to present their content for recommendation. With the rise of large language models (LLMs), AI-generated content (AIGC), primarily in the form of text, has become a central part of the content ecosystem. As AIGC becomes increasingly prevalent, it is important to understand how it affects the performance and dynamics of recommender systems. To this end, we construct an environment that incorporates AIGC to explore its short-term impact. The results from popular sequential recommendation models reveal that AIGC are ranked higher in the recommender system, reflecting the phenomenon of source bias. To further explore the long-term impact of AIGC, we introduce a feedback loop with realistic simulators. The results show that the model's preference for AIGC increases as the user clicks on AIGC rises and the model trains on simulated click data. This leads to two issues: In the short term, bias toward AIGC encourages LLM-based content creation, increasing AIGC content, and causing unfair traffic distribution. From a long-term perspective, our experiments also show that when AIGC dominates the content ecosystem after a feedback loop, it can lead to a decline in recommendation performance. To address these issues, we propose a debiasing method based on L1-loss optimization to maintain long-term content ecosystem balance. In a real-world environment with AIGC generated by mainstream LLMs, our method ensures a balance between AIGC and human-generated content in the ecosystem. The code and dataset are available at https://github.com/Yuqi-Zhou/Rec_SourceBias.
♻ ☆ Meta-Adaptive Prompt Distillation for Few-Shot Visual Question Answering
Large Multimodal Models (LMMs) often rely on in-context learning (ICL) to perform new tasks with minimal supervision. However, ICL performance, especially in smaller LMMs, is inconsistent and does not always improve monotonically with increasing examples. We hypothesize that this occurs due to the LMM being overwhelmed by additional information present in the image embeddings, which is not required for the downstream task. To address this, we propose a meta-learning approach that provides an alternative for inducing few-shot capabilities in LMMs, using a fixed set of soft prompts that are distilled from task-relevant image features and can be adapted at test time using a few examples. To facilitate this distillation, we introduce an attention-mapper module that can be easily integrated with the popular LLaVA v1.5 architecture and is jointly learned with soft prompts, enabling task adaptation in LMMs under low-data regimes with just a few gradient steps. Evaluation on the VL-ICL Bench shows that our method consistently outperforms ICL and related prompt-tuning approaches, even under image perturbations, improving task induction and reasoning across visual question answering tasks.
♻ ☆ Length-Induced Embedding Collapse in PLM-based Models ACL 2025
Text embeddings from PLM-based models enable a wide range of applications, yet their performance often degrades on longer texts. In this paper, we introduce a phenomenon we call Length Collapse, where embeddings of longer texts tend to cluster together. This clustering results in a distributional inconsistency between the embeddings of short and long texts. We further investigate how these differences contribute to the performance decline observed with longer texts across various downstream tasks. Through a rigorous theoretical analysis of the self-attention mechanism, which acts as a low-pass filter in PLM-based models, we demonstrate that as text length increases, the strength of low-pass filtering intensifies, causing embeddings to retain more low-frequency components. As a result, input token features become more similar, leading to clustering and ultimately the collapse of embeddings for longer texts. To address this issue, we propose a simple method, TempScale, which mitigates the Length Collapse phenomenon. By narrowing the gap in low-pass filtering rates between long and short texts, TempScale ensures more consistent embeddings across different text lengths. This approach leads to performance improvements of 0.94% on MTEB and 1.10% on LongEmbed, which focuses specifically on long-context retrieval, providing strong evidence for the validity of our analysis. The source code is available at https://github.com/Yuqi-Zhou/Length_Collapse.
comment: Accepted by ACL 2025
♻ ☆ The BS-meter: A ChatGPT-Trained Instrument to Detect Sloppy Language-Games
What can we learn about language from studying how it is used by ChatGPT and other large language model (LLM)-based chatbots? In this paper, we analyse the distinctive character of language generated by ChatGPT, in relation to questions raised by natural language processing pioneer, and student of Wittgenstein, Margaret Masterman. Following frequent complaints that LLM-based chatbots produce "slop," or even "bullshit," in the sense of Frankfurt's popular monograph On Bullshit, we conduct an empirical study to contrast the language of 1,000 scientific publications with typical text generated by ChatGPT. We then explore whether the same language features can be detected in two well-known contexts of social dysfunction: George Orwell's critique of political speech, and David Graeber's characterisation of bullshit jobs. Using simple hypothesis-testing methods, we demonstrate that a statistical model of sloppy bullshit can reliably relate the Frankfurtian artificial bullshit of ChatGPT to the political and workplace functions of bullshit as observed in natural human language.
♻ ☆ Memory, Benchmark & Robots: A Benchmark for Solving Complex Tasks with Reinforcement Learning
Memory is crucial for enabling agents to tackle complex tasks with temporal and spatial dependencies. While many reinforcement learning (RL) algorithms incorporate memory, the field lacks a universal benchmark to assess an agent's memory capabilities across diverse scenarios. This gap is particularly evident in tabletop robotic manipulation, where memory is essential for solving tasks with partial observability and ensuring robust performance, yet no standardized benchmarks exist. To address this, we introduce MIKASA (Memory-Intensive Skills Assessment Suite for Agents), a comprehensive benchmark for memory RL, with three key contributions: (1) we propose a comprehensive classification framework for memory-intensive RL tasks, (2) we collect MIKASA-Base -- a unified benchmark that enables systematic evaluation of memory-enhanced agents across diverse scenarios, and (3) we develop MIKASA-Robo (pip install mikasa-robo-suite) -- a novel benchmark of 32 carefully designed memory-intensive tasks that assess memory capabilities in tabletop robotic manipulation. Our work introduces a unified framework to advance memory RL research, enabling more robust systems for real-world use. MIKASA is available at https://tinyurl.com/membenchrobots.
comment: 42 pages, 2 figures
♻ ☆ Evaluation is All You Need: Strategic Overclaiming of LLM Reasoning Capabilities Through Evaluation Design
Reasoning models represented by the Deepseek-R1-Distill series have been widely adopted by the open-source community due to their strong performance in mathematics, science, programming, and other domains. However, our study reveals that their benchmark evaluation results are subject to significant fluctuations caused by various factors. Subtle differences in evaluation conditions can lead to substantial variations in results. Similar phenomena are observed in other open-source inference models fine-tuned based on the Deepseek-R1-Distill series, as well as in the QwQ-32B model, making their claimed performance improvements difficult to reproduce reliably. Therefore, we advocate for the establishment of a more rigorous paradigm for model performance evaluation and present our empirical assessments of the Deepseek-R1-Distill series models.
♻ ☆ Chip Placement with Diffusion Models
Macro placement is a vital step in digital circuit design that defines the physical location of large collections of components, known as macros, on a 2D chip. Because key performance metrics of the chip are determined by the placement, optimizing it is crucial. Existing learning-based methods typically fall short because of their reliance on reinforcement learning (RL), which is slow and struggles to generalize, requiring online training on each new circuit. Instead, we train a diffusion model capable of placing new circuits zero-shot, using guided sampling in lieu of RL to optimize placement quality. To enable such models to train at scale, we designed a capable yet efficient architecture for the denoising model, and propose a novel algorithm to generate large synthetic datasets for pre-training. To allow zero-shot transfer to real circuits, we empirically study the design decisions of our dataset generation algorithm, and identify several key factors enabling generalization. When trained on our synthetic data, our models generate high-quality placements on unseen, realistic circuits, achieving competitive performance on placement benchmarks compared to state-of-the-art methods.
comment: Code available at https://github.com/vint-1/chipdiffusion
♻ ☆ Everything Can Be Described in Words: A Simple Unified Multi-Modal Framework with Semantic and Temporal Alignment
While multi-modal learning has advanced significantly, current approaches often create inconsistencies in representation and reasoning of different modalities. We propose UMaT, a theoretically-grounded framework that unifies visual and auditory inputs as structured text for large language models, addressing semantic alignment, temporal synchronization, and efficient sparse information retrieval. It significantly improves state-of-the-art Long Video Question Answering accuracy (up to 13.7%, and 16.9% on long videos) via redundancy minimization and structured textual representation for unified multi-modal reasoning
♻ ☆ Lightweight Dataset Pruning without Full Training via Example Difficulty and Prediction Uncertainty
Recent advances in deep learning rely heavily on massive datasets, leading to substantial storage and training costs. Dataset pruning aims to alleviate this demand by discarding redundant examples. However, many existing methods require training a model with a full dataset over a large number of epochs before being able to prune the dataset, which ironically makes the pruning process more expensive than just training the model on the entire dataset. To overcome this limitation, we introduce a Difficulty and Uncertainty-Aware Lightweight (DUAL) score, which aims to identify important samples from the early training stage by considering both example difficulty and prediction uncertainty. To address a catastrophic accuracy drop at an extreme pruning, we further propose a ratio-adaptive sampling using Beta distribution. Experiments on various datasets and learning scenarios such as image classification with label noise and image corruption, and model architecture generalization demonstrate the superiority of our method over previous state-of-the-art (SOTA) approaches. Specifically, on ImageNet-1k, our method reduces the time cost for pruning to 66% compared to previous methods while achieving a SOTA, specifically 60% test accuracy at a 90% pruning ratio. On CIFAR datasets, the time cost is reduced to just 15% while maintaining SOTA performance.
♻ ☆ ATI: Any Trajectory Instruction for Controllable Video Generation
We propose a unified framework for motion control in video generation that seamlessly integrates camera movement, object-level translation, and fine-grained local motion using trajectory-based inputs. In contrast to prior methods that address these motion types through separate modules or task-specific designs, our approach offers a cohesive solution by projecting user-defined trajectories into the latent space of pre-trained image-to-video generation models via a lightweight motion injector. Users can specify keypoints and their motion paths to control localized deformations, entire object motion, virtual camera dynamics, or combinations of these. The injected trajectory signals guide the generative process to produce temporally consistent and semantically aligned motion sequences. Our framework demonstrates superior performance across multiple video motion control tasks, including stylized motion effects (e.g., motion brushes), dynamic viewpoint changes, and precise local motion manipulation. Experiments show that our method provides significantly better controllability and visual quality compared to prior approaches and commercial solutions, while remaining broadly compatible with various state-of-the-art video generation backbones. Project page: https://anytraj.github.io/.
♻ ☆ A Survey of the Self Supervised Learning Mechanisms for Vision Transformers
Vision Transformers (ViTs) have recently demonstrated remarkable performance in computer vision tasks. However, their parameter-intensive nature and reliance on large amounts of data for effective performance have shifted the focus from traditional human-annotated labels to unsupervised learning and pretraining strategies that uncover hidden structures within the data. In response to this challenge, self-supervised learning (SSL) has emerged as a promising paradigm. SSL leverages inherent relationships within the data itself as a form of supervision, eliminating the need for manual labeling and offering a more scalable and resource-efficient alternative for model training. Given these advantages, it is imperative to explore the integration of SSL techniques with ViTs, particularly in scenarios with limited labeled data. Inspired by this evolving trend, this survey aims to systematically review SSL mechanisms tailored for ViTs. We propose a comprehensive taxonomy to classify SSL techniques based on their representations and pre-training tasks. Additionally, we discuss the motivations behind SSL, review prominent pre-training tasks, and highlight advancements and challenges in this field. Furthermore, we conduct a comparative analysis of various SSL methods designed for ViTs, evaluating their strengths, limitations, and applicability to different scenarios.
comment: 40 Pages, 4 Figures, 7 Tables
♻ ☆ How Do Images Align and Complement LiDAR? Towards a Harmonized Multi-modal 3D Panoptic Segmentation ICML
LiDAR-based 3D panoptic segmentation often struggles with the inherent sparsity of data from LiDAR sensors, which makes it challenging to accurately recognize distant or small objects. Recently, a few studies have sought to overcome this challenge by integrating LiDAR inputs with camera images, leveraging the rich and dense texture information provided by the latter. While these approaches have shown promising results, they still face challenges, such as misalignment during data augmentation and the reliance on post-processing steps. To address these issues, we propose Image-Assists-LiDAR (IAL), a novel multi-modal 3D panoptic segmentation framework. In IAL, we first introduce a modality-synchronized data augmentation strategy, PieAug, to ensure alignment between LiDAR and image inputs from the start. Next, we adopt a transformer decoder to directly predict panoptic segmentation results. To effectively fuse LiDAR and image features into tokens for the decoder, we design a Geometric-guided Token Fusion (GTF) module. Additionally, we leverage the complementary strengths of each modality as priors for query initialization through a Prior-based Query Generation (PQG) module, enhancing the decoder's ability to generate accurate instance masks. Our IAL framework achieves state-of-the-art performance compared to previous multi-modal 3D panoptic segmentation methods on two widely used benchmarks. Code and models are publicly available at .
comment: Accepted at the 2025 International Conference on Machine Learning (ICML)
♻ ☆ Topology of Reasoning: Understanding Large Reasoning Models through Reasoning Graph Properties
Recent large-scale reasoning models have achieved state-of-the-art performance on challenging mathematical benchmarks, yet the internal mechanisms underlying their success remain poorly understood. In this work, we introduce the notion of a reasoning graph, extracted by clustering hidden-state representations at each reasoning step, and systematically analyze three key graph-theoretic properties: cyclicity, diameter, and small-world index, across multiple tasks (GSM8K, MATH500, AIME 2024). Our findings reveal that distilled reasoning models (e.g., DeepSeek-R1-Distill-Qwen-32B) exhibit significantly more recurrent cycles (about 5 per sample), substantially larger graph diameters, and pronounced small-world characteristics (about 6x) compared to their base counterparts. Notably, these structural advantages grow with task difficulty and model capacity, with cycle detection peaking at the 14B scale and exploration diameter maximized in the 32B variant, correlating positively with accuracy. Furthermore, we show that supervised fine-tuning on an improved dataset systematically expands reasoning graph diameters in tandem with performance gains, offering concrete guidelines for dataset design aimed at boosting reasoning capabilities. By bridging theoretical insights into reasoning graph structures with practical recommendations for data construction, our work advances both the interpretability and the efficacy of large reasoning models.
♻ ☆ Textual Unlearning Gives a False Sense of Unlearning
Language Models (LMs) are prone to ''memorizing'' training data, including substantial sensitive user information. To mitigate privacy risks and safeguard the right to be forgotten, machine unlearning has emerged as a promising approach for enabling LMs to efficiently ''forget'' specific texts. However, despite the good intentions, is textual unlearning really as effective and reliable as expected? To address the concern, we first propose Unlearning Likelihood Ratio Attack+ (U-LiRA+), a rigorous textual unlearning auditing method, and find that unlearned texts can still be detected with very high confidence after unlearning. Further, we conduct an in-depth investigation on the privacy risks of textual unlearning mechanisms in deployment and present the Textual Unlearning Leakage Attack (TULA), along with its variants in both black- and white-box scenarios. We show that textual unlearning mechanisms could instead reveal more about the unlearned texts, exposing them to significant membership inference and data reconstruction risks. Our findings highlight that existing textual unlearning actually gives a false sense of unlearning, underscoring the need for more robust and secure unlearning mechanisms.
♻ ☆ Beyond Induction Heads: In-Context Meta Learning Induces Multi-Phase Circuit Emergence ICML 2025
Transformer-based language models exhibit In-Context Learning (ICL), where predictions are made adaptively based on context. While prior work links induction heads to ICL through a sudden jump in accuracy, this can only account for ICL when the answer is included within the context. However, an important property of practical ICL in large language models is the ability to meta-learn how to solve tasks from context, rather than just copying answers from context; how such an ability is obtained during training is largely unexplored. In this paper, we experimentally clarify how such meta-learning ability is acquired by analyzing the dynamics of the model's circuit during training. Specifically, we extend the copy task from previous research into an In-Context Meta Learning setting, where models must infer a task from examples to answer queries. Interestingly, in this setting, we find that there are multiple phases in the process of acquiring such abilities, and that a unique circuit emerges in each phase, contrasting with the single-phases change in induction heads. The emergence of such circuits can be related to several phenomena known in large language models, and our analysis lead to a deeper understanding of the source of the transformer's ICL ability.
comment: Accepted to ICML 2025
♻ ☆ Flexible Tool Selection through Low-dimensional Attribute Alignment of Vision and Language
Flexible tool selection reflects a complex cognitive ability that distinguishes humans from other species, yet computational models that capture this ability remain underdeveloped. We developed a framework using low-dimensional attribute representations to bridge visual tool perception and linguistic task understanding. We constructed a comprehensive dataset (ToolNet) containing 115 common tools labeled with 13 carefully designed attributes spanning physical, functional, and psychological properties, paired with natural language scenarios describing tool usage. Visual encoders (ResNet or ViT) extract attributes from tool images while fine-tuned language models (GPT-2, LLaMA, DeepSeek) derive required attributes from task descriptions. Our approach achieves 74% accuracy in tool selection tasks-significantly outperforming direct tool matching (20%) and smaller multimodal models (21%-58%), while approaching performance of much larger models like GPT-4o (73%) with substantially fewer parameters. Ablation studies revealed that manipulation-related attributes (graspability, hand-relatedness, elongation) consistently prove most critical across modalities. This work provides a parameter-efficient, interpretable solution that mimics human-like tool cognition, advancing both cognitive science understanding and practical applications in tool selection tasks.
♻ ☆ Understand User Opinions of Large Language Models via LLM-Powered In-the-Moment User Experience Interviews
Which large language model (LLM) is better? Every evaluation tells a story, but what do users really think about current LLMs? This paper presents CLUE, an LLM-powered interviewer that conducts in-the-moment user experience interviews, right after users interact with LLMs, and automatically gathers insights about user opinions from massive interview logs. We conduct a study with thousands of users to understand user opinions on mainstream LLMs, recruiting users to first chat with a target LLM and then be interviewed by CLUE. Our experiments demonstrate that CLUE captures interesting user opinions, e.g., the bipolar views on the displayed reasoning process of DeepSeek-R1 and demands for information freshness and multi-modality. Our code and data are at https://github.com/cxcscmu/LLM-Interviewer.
♻ ☆ An Explainable Vision Transformer with Transfer Learning Combined with Support Vector Machine Based Efficient Drought Stress Identification
Early detection of drought stress is critical for taking timely measures for reducing crop loss before the drought impact becomes irreversible. The subtle phenotypical and physiological changes in response to drought stress are captured by non-invasive imaging techniques and these imaging data serve as valuable resource for machine learning methods to identify drought stress. While convolutional neural networks (CNNs) are in wide use, vision transformers (ViTs) present a promising alternative in capturing long-range dependencies and intricate spatial relationships, thereby enhancing the detection of subtle indicators of drought stress. We propose an explainable deep learning pipeline that leverages the power of ViTs for drought stress detection in potato crops using aerial imagery. We applied two distinct approaches: a synergistic combination of ViT and support vector machine (SVM), where ViT extracts intricate spatial features from aerial images, and SVM classifies the crops as stressed or healthy and an end-to-end approach using a dedicated classification layer within ViT to directly detect drought stress. Our key findings explain the ViT model's decision-making process by visualizing attention maps. These maps highlight the specific spatial features within the aerial images that the ViT model focuses as the drought stress signature. Our findings demonstrate that the proposed methods not only achieve high accuracy in drought stress identification but also shedding light on the diverse subtle plant features associated with drought stress. This offers a robust and interpretable solution for drought stress monitoring for farmers to undertake informed decisions for improved crop management.
comment: 33 pages, 7 figures, 8 tables
♻ ☆ Mixture of Decoding: An Attention-Inspired Adaptive Decoding Strategy to Mitigate Hallucinations in Large Vision-Language Models ACL 2025
Large Vision-Language Models (LVLMs) have exhibited impressive capabilities across various visual tasks, yet they remain hindered by the persistent challenge of hallucinations. To address this critical issue, we propose Mixture of Decoding (MoD), a novel approach for hallucination mitigation that dynamically adapts decoding strategies by evaluating the correctness of the model's attention on image tokens. Specifically, MoD measures the consistency between outputs generated from the original image tokens and those derived from the model's attended image tokens, to distinguish the correctness aforementioned. If the outputs are consistent, indicating correct attention, MoD employs a complementary strategy to amplify critical information. Conversely, if the outputs are inconsistent, suggesting erroneous attention, MoD utilizes a contrastive strategy to suppress misleading information. Extensive experiments demonstrate that MoD significantly outperforms existing decoding methods across multiple mainstream benchmarks, effectively mitigating hallucinations in LVLMs. The code is available at https://github.com/xlchen0205/MoD.
comment: Accepted to Findings of ACL 2025
♻ ☆ Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from Offline Data ICLR 2024
Robotic systems that rely primarily on self-supervised learning have the potential to decrease the amount of human annotation and engineering effort required to learn control strategies. In the same way that prior robotic systems have leveraged self-supervised techniques from computer vision (CV) and natural language processing (NLP), our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem: learning to reach any goal without human-specified rewards or labels. Despite the seeming appeal, little (if any) prior work has demonstrated how self-supervised RL methods can be practically deployed on robotic systems. By first studying a challenging simulated version of this task, we discover design decisions about architectures and hyperparameters that increase the success rate by $2 \times$. These findings lay the groundwork for our main result: we demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks, with tasks being specified by a single goal image provided after training.
comment: ICLR 2024 Spotlight (< 5%). Website (https://chongyi-zheng.github.io/stable_contrastive_rl) and code (https://github.com/chongyi-zheng/stable_contrastive_rl)
♻ ☆ Scaling Laws in Linear Regression: Compute, Parameters, and Data
Empirically, large-scale deep learning models often satisfy a neural scaling law: the test error of the trained model improves polynomially as the model size and data size grow. However, conventional wisdom suggests the test error consists of approximation, bias, and variance errors, where the variance error increases with model size. This disagrees with the general form of neural scaling laws, which predict that increasing model size monotonically improves performance. We study the theory of scaling laws in an infinite dimensional linear regression setup. Specifically, we consider a model with $M$ parameters as a linear function of sketched covariates. The model is trained by one-pass stochastic gradient descent (SGD) using $N$ data. Assuming the optimal parameter satisfies a Gaussian prior and the data covariance matrix has a power-law spectrum of degree $a>1$, we show that the reducible part of the test error is $\Theta(M^{-(a-1)} + N^{-(a-1)/a})$. The variance error, which increases with $M$, is dominated by the other errors due to the implicit regularization of SGD, thus disappearing from the bound. Our theory is consistent with the empirical neural scaling laws and verified by numerical simulation.
comment: fixed typos
♻ ☆ Dual Attention Residual U-Net for Accurate Brain Ultrasound Segmentation in IVH Detection
Intraventricular hemorrhage (IVH) is a severe neurological complication among premature infants, necessitating early and accurate detection from brain ultrasound (US) images to improve clinical outcomes. While recent deep learning methods offer promise for computer-aided diagnosis, challenges remain in capturing both local spatial details and global contextual dependencies critical for segmenting brain anatomies. In this work, we propose an enhanced Residual U-Net architecture incorporating two complementary attention mechanisms: the Convolutional Block Attention Module (CBAM) and a Sparse Attention Layer (SAL). The CBAM improves the model's ability to refine spatial and channel-wise features, while the SAL introduces a dual-branch design, sparse attention filters out low-confidence query-key pairs to suppress noise, and dense attention ensures comprehensive information propagation. Extensive experiments on the Brain US dataset demonstrate that our method achieves state-of-the-art segmentation performance, with a Dice score of 89.04% and IoU of 81.84% for ventricle region segmentation. These results highlight the effectiveness of integrating spatial refinement and attention sparsity for robust brain anatomy detection. Code is available at: https://github.com/DanYuan001/BrainImgSegment.
comment: 10 pages,6 figures and 3 tables
♻ ☆ Speech to Reality: On-Demand Production using Natural Language, 3D Generative AI, and Discrete Robotic Assembly
We present a system that transforms speech into physical objects using 3D generative AI and discrete robotic assembly. By leveraging natural language input, the system makes design and manufacturing more accessible to individuals without expertise in 3D modeling or robotic programming. While current generative AI models can produce a wide range of 3D digital assets, AI-generated meshes are not directly suitable for robotic fabrication and do not account for fabrication constraints. To address this, we contribute a workflow that integrates natural language processing, 3D generative AI, and discrete robotic assembly. The system automatically analyzes and modifies AI-generated geometry to meet physical constraints, such as component count, overhangs, and connectivity, and produces a feasible robotic assembly sequence and toolpath. The results are demonstrated through the assembly of various objects, ranging from chairs to shelves, which are prompted via speech and realized within 5 minutes using a robotic arm.
comment: This work has been submitted to the IEEE for possible publication. An updated version will replace this version
♻ ☆ DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization
The recent success and openness of DeepSeek-R1 have brought widespread attention to Group Relative Policy Optimization (GRPO) as a reinforcement learning method for large reasoning models (LRMs). In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias. We also identify a connection between GRPO and traditional discriminative methods in supervised learning. Motivated by these insights, we introduce a new Discriminative Constrained Optimization (DisCO) framework for reinforcing LRMs, grounded in the principle of discriminative learning. The main differences between DisCO and GRPO and its recent variants are: (1) it replaces the group relative objective with a discriminative objective defined by a scoring function; (2) it abandons clipping-based surrogates in favor of non-clipping RL surrogate objectives used as scoring functions; (3) it employs a simple yet effective constrained optimization approach to enforce the KL divergence constraint, ensuring stable training. As a result, DisCO offers notable advantages over GRPO and its variants: (i) it completely eliminates difficulty bias by adopting discriminative objectives; (ii) it addresses the entropy instability in GRPO and its variants through the use of non-clipping scoring functions and a constrained optimization approach; (iii) it allows the incorporation of advanced discriminative learning techniques to address data imbalance, where a significant number of questions have more negative than positive generated answers during training. Our experiments on enhancing the mathematical reasoning capabilities of SFT-finetuned models show that DisCO significantly outperforms GRPO and its improved variants such as DAPO, achieving average gains of 7\% over GRPO and 6\% over DAPO across six benchmark tasks for an 1.5B model.
comment: 20 pages, 4 figures
♻ ☆ DISCO Balances the Scales: Adaptive Domain- and Difficulty-Aware Reinforcement Learning on Imbalanced Data
Large Language Models (LLMs) are increasingly aligned with human preferences through Reinforcement Learning from Human Feedback (RLHF). Among RLHF methods, Group Relative Policy Optimization (GRPO) has gained attention for its simplicity and strong performance, notably eliminating the need for a learned value function. However, GRPO implicitly assumes a balanced domain distribution and uniform semantic alignment across groups - assumptions that rarely hold in real-world datasets. When applied to multi-domain, imbalanced data, GRPO disproportionately optimizes for dominant domains, neglecting underrepresented ones and resulting in poor generalization and fairness. We propose Domain-Informed Self-Consistency Policy Optimization (DISCO), a principled extension to GRPO that addresses inter-group imbalance with two key innovations. Domain-aware reward scaling counteracts frequency bias by reweighting optimization based on domain prevalence. Difficulty-aware reward scaling leverages prompt-level self-consistency to identify and prioritize uncertain prompts that offer greater learning value. Together, these strategies promote more equitable and effective policy learning across domains. Extensive experiments across multiple LLMs and skewed training distributions show that DISCO improves generalization, outperforms existing GRPO variants by 5% on Qwen3 models, and sets new state-of-the-art results on multi-domain alignment benchmarks.
comment: 13 pages, 3 figures
♻ ☆ Mutual-Taught for Co-adapting Policy and Reward Models ACL 2025
During the preference optimization of large language models (LLMs), distribution shifts may arise between newly generated model samples and the data used to train the reward model (RM). This shift reduces the efficacy of the RM, which in turn negatively impacts the performance of the policy model (PM). To address this challenge, we propose Mutual-Taught, a self-training method that iteratively improves both the PM and RM without requiring additional human annotation. Our approach mirrors the expectation-maximization (EM) algorithm. In the E-step, the PM is updated using feedback from the current RM, guiding the PM toward a better approximation of the latent optimal preference distribution. In the M-step, we update the RM by constructing training data from the outputs of the PM before and after the E-step update. This process ensures that the RM adapts to the evolving policy distribution. Experimental results demonstrate that this iterative approach leads to consistent improvements in both models. Specifically, our 8B policy model, LLaMA-3-8B-Instruct-MT, achieves a length-controlled win rate of 54.1\% on AlpacaEval-2, while our 8B reward model, FsfairX-LLaMA3-RM-MT, performs on par with GPT-4o-2024-08-06 on RewardBench.
comment: Accepted to ACL 2025 (Main Conference)
♻ ☆ RLHS: Mitigating Misalignment in RLHF with Hindsight Simulation
While Reinforcement Learning from Human Feedback (RLHF) has shown promise in aligning generative AI, we present empirical evidence that it can also cause severe, systematic misalignment. We hypothesize that this stems from evaluator feedback depending on downstream outcome predictions (foresight) that can be influenced by the AI's output, inducing Goodhart's law dynamics. We present a theoretical analysis showing that conditioning evaluator feedback on downstream observations (hindsight) inhibits this effect by decoupling the alignment signal from potentially compromised predictions--crucially, the result holds even if the observed outcomes are sampled from the AI's own world model. Building on this insight, we introduce Reinforcement Learning from Hindsight Simulation (RLHS), which presents plausible simulated outcomes to evaluators before eliciting feedback. We validate RLHS across three consultancy settings--marketplace interactions, restaurant recommendations, and online course advising--using both online (PPO) and offline (DPO) fine-tuning methods, and show that it substantially improves alignment over RLHF in experiments and human evaluations. We perform post-hoc benchmark evaluations on TruthfulQA, HaluEval, and TrustLLM, finding that even after single-task fine-tuning, RLHF misalignment persists, whereas RLHS consistently outperforms baselines and demonstrates robust alignment generalization. The project webpage and code are available at https://rl-hindsight.github.io.
comment: 27 pages, 18 figures
♻ ☆ CrimeMind: Simulating Urban Crime with Multi-Modal LLM Agents
Modeling urban crime is an important yet challenging task that requires understanding the subtle visual, social, and cultural cues embedded in urban environments. Previous work has mainly focused on rule-based agent-based modeling (ABM) and deep learning methods. ABMs offer interpretability of internal mechanisms but exhibit limited predictive accuracy. In contrast, deep learning methods are often effective in prediction but are less interpretable and require extensive training data. Moreover, both lines of work lack the cognitive flexibility to adapt to changing environments. Leveraging the capabilities of large language models (LLMs), we propose CrimeMind, a novel LLM-driven ABM framework for simulating urban crime within a multi-modal urban context. A key innovation of our design is the integration of the Routine Activity Theory (RAT) into the agentic workflow of CrimeMind, enabling it to process rich multi-modal urban features and reason about criminal behavior. However, RAT requires LLM agents to infer subtle cues in evaluating environmental safety as part of assessing guardianship, which can be challenging for LLMs. To address this, we collect a small-scale human-annotated dataset and align CrimeMind's perception with human judgment via a training-free textual gradient method. Experiments across four major U.S. cities demonstrate that CrimeMind outperforms both traditional ABMs and deep learning baselines in crime hotspot prediction and spatial distribution accuracy, achieving up to a 24% improvement over the strongest baseline. Furthermore, we conduct counterfactual simulations of external incidents and policy interventions and it successfully captures the expected changes in crime patterns, demonstrating its ability to reflect counterfactual scenarios. Overall, CrimeMind enables fine-grained modeling of individual behaviors and facilitates evaluation of real-world interventions.
comment: Typos corrected
♻ ☆ Supervised Quantum Machine Learning: A Future Outlook from Qubits to Enterprise Applications
Supervised Quantum Machine Learning (QML) represents an intersection of quantum computing and classical machine learning, aiming to use quantum resources to support model training and inference. This paper reviews recent developments in supervised QML, focusing on methods such as variational quantum circuits, quantum neural networks, and quantum kernel methods, along with hybrid quantum-classical workflows. We examine recent experimental studies that show partial indications of quantum advantage and describe current limitations including noise, barren plateaus, scalability issues, and the lack of formal proofs of performance improvement over classical methods. The main contribution is a ten-year outlook (2025-2035) that outlines possible developments in supervised QML, including a roadmap describing conditions under which QML may be used in applied research and enterprise systems over the next decade.
comment: Future outlook and roadmap of QML with 7 pages and 1 figure
♻ ☆ Zero-shot Meta-learning for Tabular Prediction Tasks with Adversarially Pre-trained Transformer
We present an Adversarially Pre-trained Transformer (APT) that is able to perform zero-shot meta-learning on tabular prediction tasks without pre-training on any real-world dataset, extending on the recent development of Prior-Data Fitted Networks (PFNs) and TabPFN. Specifically, APT is pre-trained with adversarial synthetic data agents, who continue to shift their underlying data generating distribution and deliberately challenge the model with different synthetic datasets. In addition, we propose a mixture block architecture that is able to handle classification tasks with arbitrary number of classes, addressing the class size limitation -- a crucial weakness of prior deep tabular zero-shot learners. In experiments, we show that our framework matches state-of-the-art performance on small classification tasks without filtering on dataset characteristics such as number of classes and number of missing values, while maintaining an average runtime under one second. On common benchmark dataset suites in both classification and regression, we show that adversarial pre-training was able to enhance TabPFN's performance. In our analysis, we demonstrate that the adversarial synthetic data agents were able to generate a more diverse collection of data compared to the ordinary random generator in TabPFN. In addition, we demonstrate that our mixture block neural design has improved generalizability and greatly accelerated pre-training.
comment: Proceedings of the 42nd International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025
♻ ☆ GRAM: Generalization in Deep RL with a Robust Adaptation Module
The reliable deployment of deep reinforcement learning in real-world settings requires the ability to generalize across a variety of conditions, including both in-distribution scenarios seen during training as well as novel out-of-distribution scenarios. In this work, we present a framework for dynamics generalization in deep reinforcement learning that unifies these two distinct types of generalization within a single architecture. We introduce a robust adaptation module that provides a mechanism for identifying and reacting to both in-distribution and out-of-distribution environment dynamics, along with a joint training pipeline that combines the goals of in-distribution adaptation and out-of-distribution robustness. Our algorithm GRAM achieves strong generalization performance across in-distribution and out-of-distribution scenarios upon deployment, which we demonstrate through extensive simulation and hardware locomotion experiments on a quadruped robot.
♻ ☆ Vision Transformers Don't Need Trained Registers
We investigate the mechanism underlying a previously identified phenomenon in Vision Transformers -- the emergence of high-norm tokens that lead to noisy attention maps. We observe that in multiple models (e.g., CLIP, DINOv2), a sparse set of neurons is responsible for concentrating high-norm activations on outlier tokens, leading to irregular attention patterns and degrading downstream visual processing. While the existing solution for removing these outliers involves retraining models from scratch with additional learned register tokens, we use our findings to create a training-free approach to mitigate these artifacts. By shifting the high-norm activations from our discovered register neurons into an additional untrained token, we can mimic the effect of register tokens on a model already trained without registers. We demonstrate that our method produces cleaner attention and feature maps, enhances performance over base models across multiple downstream visual tasks, and achieves results comparable to models explicitly trained with register tokens. We then extend test-time registers to off-the-shelf vision-language models to improve their interpretability. Our results suggest that test-time registers effectively take on the role of register tokens at test-time, offering a training-free solution for any pre-trained model released without them.
comment: Project page and code: https://avdravid.github.io/test-time-registers
♻ ☆ Supervision policies can shape long-term risk management in general-purpose AI models
The rapid proliferation and deployment of General-Purpose AI (GPAI) models, including large language models (LLMs), present unprecedented challenges for AI supervisory entities. We hypothesize that these entities will need to navigate an emergent ecosystem of risk and incident reporting, likely to exceed their supervision capacity. To investigate this, we develop a simulation framework parameterized by features extracted from the diverse landscape of risk, incident, or hazard reporting ecosystems, including community-driven platforms, crowdsourcing initiatives, and expert assessments. We evaluate four supervision policies: non-prioritized (first-come, first-served), random selection, priority-based (addressing the highest-priority risks first), and diversity-prioritized (balancing high-priority risks with comprehensive coverage across risk types). Our results indicate that while priority-based and diversity-prioritized policies are more effective at mitigating high-impact risks, particularly those identified by experts, they may inadvertently neglect systemic issues reported by the broader community. This oversight can create feedback loops that amplify certain types of reporting while discouraging others, leading to a skewed perception of the overall risk landscape. We validate our simulation results with several real-world datasets, including one with over a million ChatGPT interactions, of which more than 150,000 conversations were identified as risky. This validation underscores the complex trade-offs inherent in AI risk supervision and highlights how the choice of risk management policies can shape the future landscape of AI risks across diverse GPAI models used in society.
comment: 24 pages, 14 figures
♻ ☆ Position: Emergent Machina Sapiens Urge Rethinking Multi-Agent Paradigms
Artificial Intelligence (AI) agents capable of autonomous learning and independent decision-making hold great promise for addressing complex challenges across various critical infrastructure domains, including transportation, energy systems, and manufacturing. However, the surge in the design and deployment of AI systems, driven by various stakeholders with distinct and unaligned objectives, introduces a crucial challenge: How can uncoordinated AI systems coexist and evolve harmoniously in shared environments without creating chaos or compromising safety? To address this, we advocate for a fundamental rethinking of existing multi-agent frameworks, such as multi-agent systems and game theory, which are largely limited to predefined rules and static objective structures. We posit that AI agents should be empowered to adjust their objectives dynamically, make compromises, form coalitions, and safely compete or cooperate through evolving relationships and social feedback. Through two case studies in critical infrastructure applications, we call for a shift toward the emergent, self-organizing, and context-aware nature of these multi-agentic AI systems.
♻ ☆ Average-Case Analysis of Iterative Voting
Iterative voting is a natural model of repeated strategic decision-making in social choice theory when agents have the opportunity to update their votes prior to finalizing the group decision. Prior work has analyzed the efficacy of iterative plurality on the welfare of the chosen outcome at equilibrium, relative to the truthful vote profile, via an adaptation of the price of anarchy. However, prior analyses have only studied the worst- and average-case performances when agents' preferences are distributed by the impartial culture. This work extends average-case analysis comprehensively across three alternatives and distinguishes under which of agents' preference distributions iterative plurality improves or degrades asymptotic welfare.
comment: 137 pages
♻ ☆ Archon: An Architecture Search Framework for Inference-Time Techniques ICML
Inference-time techniques, such as repeated sampling or iterative revisions, are emerging as powerful ways to enhance large-language models (LLMs) at test time. However, best practices for developing systems that combine these techniques remain underdeveloped due to our limited understanding of the utility of each technique across models and tasks, the interactions between them, and the massive search space for combining them. To address these challenges, we introduce Archon, a modular and automated framework for optimizing the process of selecting and combining inference-time techniques and LLMs. Given a compute budget and a set of available LLMs, Archon explores a large design space to discover optimized configurations tailored to target benchmarks. It can design custom or general-purpose architectures that advance the Pareto frontier of accuracy vs. maximum token budget compared to top-performing baselines. Across instruction-following, reasoning, and coding tasks, we show that Archon can leverage additional inference compute budget to design systems that outperform frontier models such as OpenAI's o1, GPT-4o, and Claude 3.5 Sonnet by an average of 15.1%.
comment: International Conference on Machine Learning (ICML) 2025
♻ ☆ Mem2Ego: Empowering Vision-Language Models with Global-to-Ego Memory for Long-Horizon Embodied Navigation
Recent advancements in Large Language Models (LLMs) and Vision-Language Models (VLMs) have made them powerful tools in embodied navigation, enabling agents to leverage commonsense and spatial reasoning for efficient exploration in unfamiliar environments. Existing LLM-based approaches convert global memory, such as semantic or topological maps, into language descriptions to guide navigation. While this improves efficiency and reduces redundant exploration, the loss of geometric information in language-based representations hinders spatial reasoning, especially in intricate environments. To address this, VLM-based approaches directly process ego-centric visual inputs to select optimal directions for exploration. However, relying solely on a first-person perspective makes navigation a partially observed decision-making problem, leading to suboptimal decisions in complex environments. In this paper, we present a novel vision-language model (VLM)-based navigation framework that addresses these challenges by adaptively retrieving task-relevant cues from a global memory module and integrating them with the agent's egocentric observations. By dynamically aligning global contextual information with local perception, our approach enhances spatial reasoning and decision-making in long-horizon tasks. Experimental results demonstrate that the proposed method surpasses previous state-of-the-art approaches in object navigation tasks, providing a more effective and scalable solution for embodied navigation.
♻ ☆ Synthesis by Design: Controlled Data Generation via Structural Guidance
Mathematical reasoning remains challenging for LLMs due to complex logic and the need for precise computation. Existing methods enhance LLM reasoning by synthesizing datasets through problem rephrasing, but face issues with generation quality and problem complexity. To address this, we propose to extract structural information with generated problem-solving code from mathematical reasoning and guide data generation with structured solutions. Applied to MATH and GSM8K, our approach produces 39K problems with labeled intermediate steps and a 6.1K-problem benchmark of higher difficulty. Results on our benchmark show that model performance declines as reasoning length increases. Additionally, we conducted fine-tuning experiments using the proposed training data on a range of LLMs, and the results validate the effectiveness of our dataset. We hope the proposed method and dataset will contribute to future research in enhancing LLM reasoning capabilities. Our code and data are available at https://github.com/OpenCausaLab/StructuralGeneration.
♻ ☆ Root Cause Attribution of Delivery Risks via Causal Discovery with Reinforcement Learning
This paper presents a novel approach to root cause attribution of delivery risks within supply chains by integrating causal discovery with reinforcement learning. As supply chains become increasingly complex, traditional methods of root cause analysis struggle to capture the intricate interrelationships between various factors, often leading to spurious correlations and suboptimal decision-making. Our approach addresses these challenges by leveraging causal discovery to identify the true causal relationships between operational variables, and reinforcement learning to iteratively refine the causal graph. This method enables the accurate identification of key drivers of late deliveries, such as shipping mode and delivery status, and provides actionable insights for optimizing supply chain performance. We apply our approach to a real-world supply chain dataset, demonstrating its effectiveness in uncovering the underlying causes of delivery delays and offering strategies for mitigating these risks. The findings have significant implications for improving operational efficiency, customer satisfaction, and overall profitability within supply chains.
♻ ☆ Multiple Greedy Quasi-Newton Methods for Saddle Point Problems
This paper introduces the Multiple Greedy Quasi-Newton (MGSR1-SP) method, a novel approach to solving strongly-convex-strongly-concave (SCSC) saddle point problems. Our method enhances the approximation of the squared indefinite Hessian matrix inherent in these problems, significantly improving both stability and efficiency through iterative greedy updates. We provide a thorough theoretical analysis of MGSR1-SP, demonstrating its linear-quadratic convergence rate. Numerical experiments conducted on AUC maximization and adversarial debiasing problems, compared with state-of-the-art algorithms, underscore our method's enhanced convergence rate. These results affirm the potential of MGSR1-SP to improve performance across a broad spectrum of machine learning applications where efficient and accurate Hessian approximations are crucial.
comment: Accepted by DOCS 2024
♻ ☆ GenJoin: Conditional Generative Plan-to-Plan Query Optimizer that Learns from Subplan Hints
Query optimization has become a research area where classical algorithms are being challenged by machine learning algorithms. At the same time, recent trends in learned query optimizers have shown that it is prudent to take advantage of decades of database research and augment classical query optimizers by shrinking the plan search space through different types of hints (e.g. by specifying the join type, scan type or the order of joins) rather than completely replacing the classical query optimizer with machine learning models. It is especially relevant for cases when classical optimizers cannot fully enumerate all logical and physical plans and, as an alternative, need to rely on less robust approaches like genetic algorithms. However, even symbiotically learned query optimizers are hampered by the need for vast amounts of training data, slow plan generation during inference and unstable results across various workload conditions. In this paper, we present GenJoin - a novel learned query optimizer that considers the query optimization problem as a generative task and is capable of learning from a random set of subplan hints to produce query plans that outperform the classical optimizer. GenJoin is the first learned query optimizer that significantly and consistently outperforms PostgreSQL as well as state-of-the-art methods on two well-known real-world benchmarks across a variety of workloads using rigorous machine learning evaluations.
♻ ☆ Effective Data Augmentation With Diffusion Models ICLR 2024
Data augmentation is one of the most prevalent tools in deep learning, underpinning many recent advances, including those from classification, generative models, and representation learning. The standard approach to data augmentation combines simple transformations like rotations and flips to generate new images from existing ones. However, these new images lack diversity along key semantic axes present in the data. Current augmentations cannot alter the high-level semantic attributes, such as animal species present in a scene, to enhance the diversity of data. We address the lack of diversity in data augmentation with image-to-image transformations parameterized by pre-trained text-to-image diffusion models. Our method edits images to change their semantics using an off-the-shelf diffusion model, and generalizes to novel visual concepts from a few labelled examples. We evaluate our approach on few-shot image classification tasks, and on a real-world weed recognition task, and observe an improvement in accuracy in tested domains.
comment: Update to ICLR 2024 manuscript (https://openreview.net/forum?id=ZWzUA9zeAg), add leafy spurge citations
♻ ☆ A Comparative Study of Conventional and Tripolar EEG for High-Performance Reach-to-Grasp BCI Systems
This study aims to enhance BCI applications for individuals with motor impairments by comparing the effectiveness of tripolar EEG (tEEG) with conventional EEG. The focus is on interpreting and decoding various grasping movements, such as power grasp and precision grasp. The goal is to determine which EEG technology is more effective in processing and translating grasp related neural signals. The approach involved experimenting on ten healthy participants who performed two distinct grasp movements: power grasp and precision grasp, with a no movement condition serving as the baseline. Our research presents a thorough comparison between EEG and tEEG in decoding grasping movements. This comparison spans several key parameters, including signal to noise ratio (SNR), spatial resolution via functional connectivity, ERPs, and wavelet time frequency analysis. Additionally, our study involved extracting and analyzing statistical features from the wavelet coefficients, and both binary and multiclass classification methods were employed. Four machine learning algorithms were used to evaluate the decoding accuracies. Our results indicated that tEEG demonstrated superior performance over conventional EEG in various aspects. This included a higher signal to noise ratio, enhanced spatial resolution, and more informative data in ERPs and wavelet time frequency analysis. The use of tEEG led to notable improvements in decoding accuracy for differentiating movement types. Specifically, tEEG achieved around 90% accuracy in binary and 75.97% for multiclass classification. These results are markedly better than those from standard EEG, which recorded a maximum of 77.85% and 61.27% in similar tasks, respectively. These findings highlight the superior effectiveness of tEEG over EEG in decoding grasp types and its competitive or superior performance in complex classifications compared with existing research.
comment: Removed the IEEE Transactions on Biomedical Engineering masthead/logo that was included in the previous version by mistake
♻ ☆ Can LLMs Generate Reliable Test Case Generators? A Study on Competition-Level Programming Problems
Large Language Models (LLMs) have demonstrated remarkable capabilities in code generation, capable of tackling complex tasks during inference. However, the extent to which LLMs can be utilized for code checking or debugging through test case generation remains largely unexplored. We investigate this problem from the perspective of competition-level programming (CP) programs and propose TCGBench, a Benchmark for (LLM generation of) Test Case Generators. This benchmark comprises two tasks, aimed at studying the capabilities of LLMs in (1) generating valid test case generators for a given CP problem, and further (2) generating targeted test case generators that expose bugs in human-written code. Experimental results indicate that while state-of-the-art LLMs can generate valid test case generators in most cases, most LLMs struggle to generate targeted test cases that reveal flaws in human code effectively. Especially, even advanced reasoning models (e.g., o3-mini) fall significantly short of human performance in the task of generating targeted generators. Furthermore, we construct a high-quality, manually curated dataset of instructions for generating targeted generators. Analysis demonstrates that the performance of LLMs can be enhanced with the aid of this dataset, by both prompting and fine-tuning.
comment: 37 pages, 22 figures
♻ ☆ Multimodal Pragmatic Jailbreak on Text-to-image Models
Diffusion models have recently achieved remarkable advancements in terms of image quality and fidelity to textual prompts. Concurrently, the safety of such generative models has become an area of growing concern. This work introduces a novel type of jailbreak, which triggers T2I models to generate the image with visual text, where the image and the text, although considered to be safe in isolation, combine to form unsafe content. To systematically explore this phenomenon, we propose a dataset to evaluate the current diffusion-based text-to-image (T2I) models under such jailbreak. We benchmark nine representative T2I models, including two closed-source commercial models. Experimental results reveal a concerning tendency to produce unsafe content: all tested models suffer from such type of jailbreak, with rates of unsafe generation ranging from around 10\% to 70\% where DALLE 3 demonstrates almost the highest unsafety. In real-world scenarios, various filters such as keyword blocklists, customized prompt filters, and NSFW image filters, are commonly employed to mitigate these risks. We evaluate the effectiveness of such filters against our jailbreak and found that, while these filters may be effective for single modality detection, they fail to work against our jailbreak. We also investigate the underlying reason for such jailbreaks, from the perspective of text rendering capability and training data. Our work provides a foundation for further development towards more secure and reliable T2I models. Project page at https://multimodalpragmatic.github.io/.
♻ ☆ Worse than Random? An Embarrassingly Simple Probing Evaluation of Large Multimodal Models in Medical VQA
Large Multimodal Models (LMMs) have shown remarkable progress in medical Visual Question Answering (Med-VQA), achieving high accuracy on existing benchmarks. However, their reliability under robust evaluation is questionable. This study reveals that when subjected to simple probing evaluation, state-of-the-art models perform worse than random guessing on medical diagnosis questions. To address this critical evaluation problem, we introduce the Probing Evaluation for Medical Diagnosis (ProbMed) dataset to rigorously assess LMM performance in medical imaging through probing evaluation and procedural diagnosis. Particularly, probing evaluation features pairing original questions with negation questions with hallucinated attributes, while procedural diagnosis requires reasoning across various diagnostic dimensions for each image, including modality recognition, organ identification, clinical findings, abnormalities, and positional grounding. Our evaluation reveals that top-performing models like GPT-4o, GPT-4V, and Gemini Pro perform worse than random guessing on specialized diagnostic questions, indicating significant limitations in handling fine-grained medical inquiries. Besides, models like LLaVA-Med struggle even with more general questions, and results from CheXagent demonstrate the transferability of expertise across different modalities of the same organ, showing that specialized domain knowledge is still crucial for improving performance. This study underscores the urgent need for more robust evaluation to ensure the reliability of LMMs in critical fields like medical diagnosis, and current LMMs are still far from applicable to those fields.
♻ ☆ CHOSEN: Compilation to Hardware Optimization Stack for Efficient Vision Transformer Inference
Vision Transformers (ViTs) represent a groundbreaking shift in machine learning approaches to computer vision. Unlike traditional approaches, ViTs employ the self-attention mechanism, which has been widely used in natural language processing, to analyze image patches. Despite their advantages in modeling visual tasks, deploying ViTs on hardware platforms, notably Field-Programmable Gate Arrays (FPGAs), introduces considerable challenges. These challenges stem primarily from the non-linear calculations and high computational and memory demands of ViTs. This paper introduces CHOSEN, a software-hardware co-design framework to address these challenges and offer an automated framework for ViT deployment on the FPGAs in order to maximize performance. Our framework is built upon three fundamental contributions: multi-kernel design to maximize the bandwidth, mainly targeting benefits of multi DDR memory banks, approximate non-linear functions that exhibit minimal accuracy degradation, and efficient use of available logic blocks on the FPGA, and efficient compiler to maximize the performance and memory-efficiency of the computing kernels by presenting a novel algorithm for design space exploration to find optimal hardware configuration that achieves optimal throughput and latency. Compared to the state-of-the-art ViT accelerators, CHOSEN achieves a 1.5x and 1.42x improvement in the throughput on the DeiT-S and DeiT-B models.
♻ ☆ Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models
Existing Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs, leaving open the question of whether they can handle inconsistencies in real-world, layout-rich content. To bridge this gap, we propose the Multimodal Inconsistency Reasoning (MMIR) benchmark to assess MLLMs' ability to detect and reason about semantic mismatches in artifacts such as webpages, presentation slides, and posters. MMIR comprises 534 challenging samples, each containing synthetically injected errors across five reasoning-heavy categories: Factual Contradiction, Identity Misattribution, Contextual Mismatch, Quantitative Discrepancy, and Temporal/Spatial Incoherence. We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts while open-source models remain particularly vulnerable to inconsistency errors. Detailed error analyses further show that models excel in detecting pairwise inconsistencies but struggle with inconsistencies confined to single elements in complex layouts. Probing experiments reveal that single-modality prompting, including Chain-of-Thought (CoT) and Set-of-Mark (SoM) methods, yields marginal gains, revealing a key bottleneck in cross-modal reasoning. Our findings highlight the need for advanced multimodal reasoning and point to future research on multimodal inconsistency.
♻ ☆ PatchPilot: A Cost-Efficient Software Engineering Agent with Early Attempts on Formal Verification
Recent research builds various patching agents that combine large language models (LLMs) with non-ML tools and achieve promising results on the state-of-the-art (SOTA) software patching benchmark, SWE-bench. Based on how to determine the patching workflows, existing patching agents can be categorized as agent-based planning methods, which rely on LLMs for planning, and rule-based planning methods, which follow a pre-defined workflow. At a high level, agent-based planning methods achieve high patching performance but with a high cost and limited stability. Rule-based planning methods, on the other hand, are more stable and efficient but have key workflow limitations that compromise their patching performance. In this paper, we propose PatchPilot, an agentic patcher that strikes a balance between patching efficacy, stability, and cost-efficiency. PatchPilot proposes a novel rule-based planning workflow with five components: reproduction, localization, generation, validation, and refinement (where refinement is unique to PatchPilot). We introduce novel and customized designs to each component to optimize their effectiveness and efficiency. Through extensive experiments on the SWE-bench benchmarks, PatchPilot shows a superior performance than existing open-source methods while maintaining low cost (less than 1$ per instance) and ensuring higher stability. We also conduct a detailed ablation study to validate the key designs in each component. Our code is available at https://github.com/ucsb-mlsec/PatchPilot.
♻ ☆ MELON: Provable Defense Against Indirect Prompt Injection Attacks in AI Agents ICML 2025
Recent research has explored that LLM agents are vulnerable to indirect prompt injection (IPI) attacks, where malicious tasks embedded in tool-retrieved information can redirect the agent to take unauthorized actions. Existing defenses against IPI have significant limitations: either require essential model training resources, lack effectiveness against sophisticated attacks, or harm the normal utilities. We present MELON (Masked re-Execution and TooL comparisON), a novel IPI defense. Our approach builds on the observation that under a successful attack, the agent's next action becomes less dependent on user tasks and more on malicious tasks. Following this, we design MELON to detect attacks by re-executing the agent's trajectory with a masked user prompt modified through a masking function. We identify an attack if the actions generated in the original and masked executions are similar. We also include three key designs to reduce the potential false positives and false negatives. Extensive evaluation on the IPI benchmark AgentDojo demonstrates that MELON outperforms SOTA defenses in both attack prevention and utility preservation. Moreover, we show that combining MELON with a SOTA prompt augmentation defense (denoted as MELON-Aug) further improves its performance. We also conduct a detailed ablation study to validate our key designs. Code is available at https://github.com/kaijiezhu11/MELON.
comment: ICML 2025
♻ ☆ FC-Attack: Jailbreaking Multimodal Large Language Models via Auto-Generated Flowcharts
Multimodal Large Language Models (MLLMs) have become powerful and widely adopted in some practical applications. However, recent research has revealed their vulnerability to multimodal jailbreak attacks, whereby the model can be induced to generate harmful content, leading to safety risks. Although most MLLMs have undergone safety alignment, recent research shows that the visual modality is still vulnerable to jailbreak attacks. In our work, we discover that by using flowcharts with partially harmful information, MLLMs can be induced to provide additional harmful details. Based on this, we propose a jailbreak attack method based on auto-generated flowcharts, FC-Attack. Specifically, FC-Attack first fine-tunes a pre-trained LLM to create a step-description generator based on benign datasets. The generator is then used to produce step descriptions corresponding to a harmful query, which are transformed into flowcharts in 3 different shapes (vertical, horizontal, and S-shaped) as visual prompts. These flowcharts are then combined with a benign textual prompt to execute the jailbreak attack on MLLMs. Our evaluations on Advbench show that FC-Attack attains an attack success rate of up to 96% via images and up to 78% via videos across multiple MLLMs. Additionally, we investigate factors affecting the attack performance, including the number of steps and the font styles in the flowcharts. We also find that FC-Attack can improve the jailbreak performance from 4% to 28% in Claude-3.5 by changing the font style. To mitigate the attack, we explore several defenses and find that AdaShield can largely reduce the jailbreak performance but with the cost of utility drop.
comment: 13 pages, 7 figures
Graphics 8
☆ Complex-Valued Holographic Radiance Fields
Modeling the full properties of light, including both amplitude and phase, in 3D representations is crucial for advancing physically plausible rendering, particularly in holographic displays. To support these features, we propose a novel representation that optimizes 3D scenes without relying on intensity-based intermediaries. We reformulate 3D Gaussian splatting with complex-valued Gaussian primitives, expanding support for rendering with light waves. By leveraging RGBD multi-view images, our method directly optimizes complex-valued Gaussians as a 3D holographic scene representation. This eliminates the need for computationally expensive hologram re-optimization. Compared with state-of-the-art methods, our method achieves 30x-10,000x speed improvements while maintaining on-par image quality, representing a first step towards geometrically aligned, physically plausible holographic scene representations.
comment: 28 pages, 21 figures
☆ Generalizable Articulated Object Reconstruction from Casually Captured RGBD Videos
Articulated objects are prevalent in daily life. Understanding their kinematic structure and reconstructing them have numerous applications in embodied AI and robotics. However, current methods require carefully captured data for training or inference, preventing practical, scalable, and generalizable reconstruction of articulated objects. We focus on reconstruction of an articulated object from a casually captured RGBD video shot with a hand-held camera. A casually captured video of an interaction with an articulated object is easy to acquire at scale using smartphones. However, this setting is quite challenging, as the object and camera move simultaneously and there are significant occlusions as the person interacts with the object. To tackle these challenges, we introduce a coarse-to-fine framework that infers joint parameters and segments movable parts of the object from a dynamic RGBD video. To evaluate our method under this new setting, we build a 20$\times$ larger synthetic dataset of 784 videos containing 284 objects across 11 categories. We compare our approach with existing methods that also take video as input. Experiments show that our method can reconstruct synthetic and real articulated objects across different categories from dynamic RGBD videos, outperforming existing methods significantly.
comment: Project website can be found at https://3dlg-hcvc.github.io/video2articulation/
☆ Ambient Diffusion Omni: Training Good Models with Bad Data
We show how to use low-quality, synthetic, and out-of-distribution images to improve the quality of a diffusion model. Typically, diffusion models are trained on curated datasets that emerge from highly filtered data pools from the Web and other sources. We show that there is immense value in the lower-quality images that are often discarded. We present Ambient Diffusion Omni, a simple, principled framework to train diffusion models that can extract signal from all available images during training. Our framework exploits two properties of natural images -- spectral power law decay and locality. We first validate our framework by successfully training diffusion models with images synthetically corrupted by Gaussian blur, JPEG compression, and motion blur. We then use our framework to achieve state-of-the-art ImageNet FID, and we show significant improvements in both image quality and diversity for text-to-image generative modeling. The core insight is that noise dampens the initial skew between the desired high-quality distribution and the mixed distribution we actually observe. We provide rigorous theoretical justification for our approach by analyzing the trade-off between learning from biased data versus limited unbiased data across diffusion times.
comment: Preprint, work in progress
☆ Token Perturbation Guidance for Diffusion Models
Classifier-free guidance (CFG) has become an essential component of modern diffusion models to enhance both generation quality and alignment with input conditions. However, CFG requires specific training procedures and is limited to conditional generation. To address these limitations, we propose Token Perturbation Guidance (TPG), a novel method that applies perturbation matrices directly to intermediate token representations within the diffusion network. TPG employs a norm-preserving shuffling operation to provide effective and stable guidance signals that improve generation quality without architectural changes. As a result, TPG is training-free and agnostic to input conditions, making it readily applicable to both conditional and unconditional generation. We further analyze the guidance term provided by TPG and show that its effect on sampling more closely resembles CFG compared to existing training-free guidance techniques. Extensive experiments on SDXL and Stable Diffusion 2.1 show that TPG achieves nearly a 2$\times$ improvement in FID for unconditional generation over the SDXL baseline, while closely matching CFG in prompt alignment. These results establish TPG as a general, condition-agnostic guidance method that brings CFG-like benefits to a broader class of diffusion models. The code is available at https://github.com/TaatiTeam/Token-Perturbation-Guidance
comment: 18 pages, 14 figures
☆ FastFLUX: Pruning FLUX with Block-wise Replacement and Sandwich Training
Recent advancements in text-to-image (T2I) generation have led to the emergence of highly expressive models such as diffusion transformers (DiTs), exemplified by FLUX. However, their massive parameter sizes lead to slow inference, high memory usage, and poor deployability. Existing acceleration methods (e.g., single-step distillation and attention pruning) often suffer from significant performance degradation and incur substantial training costs. To address these limitations, we propose FastFLUX, an architecture-level pruning framework designed to enhance the inference efficiency of FLUX. At its core is the Block-wise Replacement with Linear Layers (BRLL) method, which replaces structurally complex residual branches in ResBlocks with lightweight linear layers while preserving the original shortcut connections for stability. Furthermore, we introduce Sandwich Training (ST), a localized fine-tuning strategy that leverages LoRA to supervise neighboring blocks, mitigating performance drops caused by structural replacement. Experiments show that our FastFLUX maintains high image quality under both qualitative and quantitative evaluations, while significantly improving inference speed, even with 20\% of the hierarchy pruned. Our code will be available soon.
comment: 14 pages
☆ Learning-based density-equalizing map
Density-equalizing map (DEM) serves as a powerful technique for creating shape deformations with the area changes reflecting an underlying density function. In recent decades, DEM has found widespread applications in fields such as data visualization, geometry processing, and medical imaging. Traditional approaches to DEM primarily rely on iterative numerical solvers for diffusion equations or optimization-based methods that minimize handcrafted energy functionals. However, these conventional techniques often face several challenges: they may suffer from limited accuracy, produce overlapping artifacts in extreme cases, and require substantial algorithmic redesign when extended from 2D to 3D, due to the derivative-dependent nature of their energy formulations. In this work, we propose a novel learning-based density-equalizing mapping framework (LDEM) using deep neural networks. Specifically, we introduce a loss function that enforces density uniformity and geometric regularity, and utilize a hierarchical approach to predict the transformations at both the coarse and dense levels. Our method demonstrates superior density-equalizing and bijectivity properties compared to prior methods for a wide range of simple and complex density distributions, and can be easily applied to surface remeshing with different effects. Also, it generalizes seamlessly from 2D to 3D domains without structural changes to the model architecture or loss formulation. Altogether, our work opens up new possibilities for scalable and robust computation of density-equalizing maps for practical applications.
☆ Monocular 3D Hand Pose Estimation with Implicit Camera Alignment
Estimating the 3D hand articulation from a single color image is a continuously investigated problem with applications in Augmented Reality (AR), Virtual Reality (VR), Human-Computer Interaction (HCI), and robotics. Apart from the absence of depth information, occlusions, articulation complexity, and the need for camera parameters knowledge pose additional challenges. In this work, we propose an optimization pipeline for estimating the 3D hand articulation from 2D keypoint input, which includes a keypoint alignment step and a fingertip loss to overcome the need to know or estimate the camera parameters. We evaluate our approach on the EgoDexter and Dexter+Object benchmarks to showcase that our approach performs competitively with the SotA, while also demonstrating its robustness when processing "in-the-wild" images without any prior camera knowledge. Our quantitative analysis highlights the sensitivity of the 2D keypoint estimation accuracy, despite the use of hand priors. Code is available at https://github.com/cpantazop/HandRepo
comment: Code is available at https://github.com/cpantazop/HandRepo
♻ ☆ Event-based Motion-Robust Accurate Shape Estimation for Mixed Reflectance Scenes
Event-based structured light systems have recently been introduced as an exciting alternative to conventional frame-based triangulation systems for the 3D measurements of diffuse surfaces. Important benefits include the fast capture speed and the high dynamic range provided by the event camera - albeit at the cost of lower data quality. So far, both low-accuracy event-based and high-accuracy frame-based 3D imaging systems are tailored to a specific surface type, such as diffuse or specular, and can not be used for a broader class of object surfaces ("mixed reflectance scenes"). In this work, we present a novel event-based structured light system that enables fast 3D imaging of mixed reflectance scenes with high accuracy. On the captured events, we use epipolar constraints that intrinsically enable decomposing the measured reflections into diffuse, two-bounce specular, and other multi-bounce reflections. The diffuse surfaces in the scene are reconstructed using triangulation. Then, the reconstructed diffuse scene parts are leveraged as a "display" to evaluate the specular scene parts via deflectometry. This novel procedure allows us to use the entire scene as a virtual screen, using only a scanning laser and an event camera. The resulting system achieves fast and motion-robust (14Hz) reconstructions of mixed reflectance scenes with < 600 ${\mu}m$ depth error. Moreover, we introduce an "ultrafast" capture mode (250Hz) for the 3D measurement of diffuse scenes.
Robotics 45
☆ UA-Pose: Uncertainty-Aware 6D Object Pose Estimation and Online Object Completion with Partial References CVPR 2025
6D object pose estimation has shown strong generalizability to novel objects. However, existing methods often require either a complete, well-reconstructed 3D model or numerous reference images that fully cover the object. Estimating 6D poses from partial references, which capture only fragments of an object's appearance and geometry, remains challenging. To address this, we propose UA-Pose, an uncertainty-aware approach for 6D object pose estimation and online object completion specifically designed for partial references. We assume access to either (1) a limited set of RGBD images with known poses or (2) a single 2D image. For the first case, we initialize a partial object 3D model based on the provided images and poses, while for the second, we use image-to-3D techniques to generate an initial object 3D model. Our method integrates uncertainty into the incomplete 3D model, distinguishing between seen and unseen regions. This uncertainty enables confidence assessment in pose estimation and guides an uncertainty-aware sampling strategy for online object completion, enhancing robustness in pose estimation accuracy and improving object completeness. We evaluate our method on the YCB-Video, YCBInEOAT, and HO3D datasets, including RGBD sequences of YCB objects manipulated by robots and human hands. Experimental results demonstrate significant performance improvements over existing methods, particularly when object observations are incomplete or partially captured. Project page: https://minfenli.github.io/UA-Pose/
comment: CVPR 2025
☆ BridgeVLA: Input-Output Alignment for Efficient 3D Manipulation Learning with Vision-Language Models
Recently, leveraging pre-trained vision-language models (VLMs) for building vision-language-action (VLA) models has emerged as a promising approach to effective robot manipulation learning. However, only few methods incorporate 3D signals into VLMs for action prediction, and they do not fully leverage the spatial structure inherent in 3D data, leading to low sample efficiency. In this paper, we introduce BridgeVLA, a novel 3D VLA model that (1) projects 3D inputs to multiple 2D images, ensuring input alignment with the VLM backbone, and (2) utilizes 2D heatmaps for action prediction, unifying the input and output spaces within a consistent 2D image space. In addition, we propose a scalable pre-training method that equips the VLM backbone with the capability to predict 2D heatmaps before downstream policy learning. Extensive experiments show the proposed method is able to learn 3D manipulation efficiently and effectively. BridgeVLA outperforms state-of-the-art baseline methods across three simulation benchmarks. In RLBench, it improves the average success rate from 81.4% to 88.2%. In COLOSSEUM, it demonstrates significantly better performance in challenging generalization settings, boosting the average success rate from 56.7% to 64.0%. In GemBench, it surpasses all the comparing baseline methods in terms of average success rate. In real-robot experiments, BridgeVLA outperforms a state-of-the-art baseline method by 32% on average. It generalizes robustly in multiple out-of-distribution settings, including visual disturbances and unseen instructions. Remarkably, it is able to achieve a success rate of 96.8% on 10+ tasks with only 3 trajectories per task, highlighting its extraordinary sample efficiency. Project Website:https://bridgevla.github.io/
comment: In Submission
☆ Design and Implementation of a Peer-to-Peer Communication, Modular and Decentral YellowCube UUV
The underwater Unmanned Vehicles(UUVs) are pivot tools for offshore engineering and oceanographic research. Most existing UUVs do not facilitate easy integration of new or upgraded sensors. A solution to this problem is to have a modular UUV system with changeable payload sections capable of carrying different sensor to suite different missions. The design and implementation of a modular and decentral UUV named YellowCube is presented in the paper. Instead a centralised software architecture which is adopted by the other modular underwater vehicles designs, a Peer-To-Peer(P2P) communication mechanism is implemented among the UUV's modules. The experiments in the laboratory and sea trials have been executed to verify the performances of the UUV.
☆ Versatile Loco-Manipulation through Flexible Interlimb Coordination
The ability to flexibly leverage limbs for loco-manipulation is essential for enabling autonomous robots to operate in unstructured environments. Yet, prior work on loco-manipulation is often constrained to specific tasks or predetermined limb configurations. In this work, we present Reinforcement Learning for Interlimb Coordination (ReLIC), an approach that enables versatile loco-manipulation through flexible interlimb coordination. The key to our approach is an adaptive controller that seamlessly bridges the execution of manipulation motions and the generation of stable gaits based on task demands. Through the interplay between two controller modules, ReLIC dynamically assigns each limb for manipulation or locomotion and robustly coordinates them to achieve the task success. Using efficient reinforcement learning in simulation, ReLIC learns to perform stable gaits in accordance with the manipulation goals in the real world. To solve diverse and complex tasks, we further propose to interface the learned controller with different types of task specifications, including target trajectories, contact points, and natural language instructions. Evaluated on 12 real-world tasks that require diverse and complex coordination patterns, ReLIC demonstrates its versatility and robustness by achieving a success rate of 78.9% on average. Videos and code can be found at https://relic-locoman.github.io/.
☆ FreeGave: 3D Physics Learning from Dynamic Videos by Gaussian Velocity CVPR 2025
In this paper, we aim to model 3D scene geometry, appearance, and the underlying physics purely from multi-view videos. By applying various governing PDEs as PINN losses or incorporating physics simulation into neural networks, existing works often fail to learn complex physical motions at boundaries or require object priors such as masks or types. In this paper, we propose FreeGave to learn the physics of complex dynamic 3D scenes without needing any object priors. The key to our approach is to introduce a physics code followed by a carefully designed divergence-free module for estimating a per-Gaussian velocity field, without relying on the inefficient PINN losses. Extensive experiments on three public datasets and a newly collected challenging real-world dataset demonstrate the superior performance of our method for future frame extrapolation and motion segmentation. Most notably, our investigation into the learned physics codes reveals that they truly learn meaningful 3D physical motion patterns in the absence of any human labels in training.
comment: CVPR 2025. Code and data are available at: https://github.com/vLAR-group/FreeGave
☆ LogoSP: Local-global Grouping of Superpoints for Unsupervised Semantic Segmentation of 3D Point Clouds CVPR 2025
We study the problem of unsupervised 3D semantic segmentation on raw point clouds without needing human labels in training. Existing methods usually formulate this problem into learning per-point local features followed by a simple grouping strategy, lacking the ability to discover additional and possibly richer semantic priors beyond local features. In this paper, we introduce LogoSP to learn 3D semantics from both local and global point features. The key to our approach is to discover 3D semantic information by grouping superpoints according to their global patterns in the frequency domain, thus generating highly accurate semantic pseudo-labels for training a segmentation network. Extensive experiments on two indoor and an outdoor datasets show that our LogoSP surpasses all existing unsupervised methods by large margins, achieving the state-of-the-art performance for unsupervised 3D semantic segmentation. Notably, our investigation into the learned global patterns reveals that they truly represent meaningful 3D semantics in the absence of human labels during training.
comment: CVPR 2025. Code and data are available at: https://github.com/vLAR-group/LogoSP
☆ R3D2: Realistic 3D Asset Insertion via Diffusion for Autonomous Driving Simulation
Validating autonomous driving (AD) systems requires diverse and safety-critical testing, making photorealistic virtual environments essential. Traditional simulation platforms, while controllable, are resource-intensive to scale and often suffer from a domain gap with real-world data. In contrast, neural reconstruction methods like 3D Gaussian Splatting (3DGS) offer a scalable solution for creating photorealistic digital twins of real-world driving scenes. However, they struggle with dynamic object manipulation and reusability as their per-scene optimization-based methodology tends to result in incomplete object models with integrated illumination effects. This paper introduces R3D2, a lightweight, one-step diffusion model designed to overcome these limitations and enable realistic insertion of complete 3D assets into existing scenes by generating plausible rendering effects-such as shadows and consistent lighting-in real time. This is achieved by training R3D2 on a novel dataset: 3DGS object assets are generated from in-the-wild AD data using an image-conditioned 3D generative model, and then synthetically placed into neural rendering-based virtual environments, allowing R3D2 to learn realistic integration. Quantitative and qualitative evaluations demonstrate that R3D2 significantly enhances the realism of inserted assets, enabling use-cases like text-to-3D asset insertion and cross-scene/dataset object transfer, allowing for true scalability in AD validation. To promote further research in scalable and realistic AD simulation, we will release our dataset and code, see https://research.zenseact.com/publications/R3D2/.
☆ Primal-Dual iLQR for GPU-Accelerated Learning and Control in Legged Robots
This paper introduces a novel Model Predictive Control (MPC) implementation for legged robot locomotion that leverages GPU parallelization. Our approach enables both temporal and state-space parallelization by incorporating a parallel associative scan to solve the primal-dual Karush-Kuhn-Tucker (KKT) system. In this way, the optimal control problem is solved in $\mathcal{O}(n\log{N} + m)$ complexity, instead of $\mathcal{O}(N(n + m)^3)$, where $n$, $m$, and $N$ are the dimension of the system state, control vector, and the length of the prediction horizon. We demonstrate the advantages of this implementation over two state-of-the-art solvers (acados and crocoddyl), achieving up to a 60\% improvement in runtime for Whole Body Dynamics (WB)-MPC and a 700\% improvement for Single Rigid Body Dynamics (SRBD)-MPC when varying the prediction horizon length. The presented formulation scales efficiently with the problem state dimensions as well, enabling the definition of a centralized controller for up to 16 legged robots that can be computed in less than 25 ms. Furthermore, thanks to the JAX implementation, the solver supports large-scale parallelization across multiple environments, allowing the possibility of performing learning with the MPC in the loop directly in GPU.
☆ SMaRCSim: Maritime Robotics Simulation Modules
Developing new functionality for underwater robots and testing them in the real world is time-consuming and resource-intensive. Simulation environments allow for rapid testing before field deployment. However, existing tools lack certain functionality for use cases in our project: i) developing learning-based methods for underwater vehicles; ii) creating teams of autonomous underwater, surface, and aerial vehicles; iii) integrating the simulation with mission planning for field experiments. A holistic solution to these problems presents great potential for bringing novel functionality into the underwater domain. In this paper we present SMaRCSim, a set of simulation packages that we have developed to help us address these issues.
☆ Deep Equivariant Multi-Agent Control Barrier Functions
With multi-agent systems increasingly deployed autonomously at scale in complex environments, ensuring safety of the data-driven policies is critical. Control Barrier Functions have emerged as an effective tool for enforcing safety constraints, yet existing learning-based methods often lack in scalability, generalization and sampling efficiency as they overlook inherent geometric structures of the system. To address this gap, we introduce symmetries-infused distributed Control Barrier Functions, enforcing the satisfaction of intrinsic symmetries on learnable graph-based safety certificates. We theoretically motivate the need for equivariant parametrization of CBFs and policies, and propose a simple, yet efficient and adaptable methodology for constructing such equivariant group-modular networks via the compatible group actions. This approach encodes safety constraints in a distributed data-efficient manner, enabling zero-shot generalization to larger and denser swarms. Through extensive simulations on multi-robot navigation tasks, we demonstrate that our method outperforms state-of-the-art baselines in terms of safety, scalability, and task success rates, highlighting the importance of embedding symmetries in safe distributed neural policies.
Graph-Assisted Stitching for Offline Hierarchical Reinforcement Learning ICML 2025
Existing offline hierarchical reinforcement learning methods rely on high-level policy learning to generate subgoal sequences. However, their efficiency degrades as task horizons increase, and they lack effective strategies for stitching useful state transitions across different trajectories. We propose Graph-Assisted Stitching (GAS), a novel framework that formulates subgoal selection as a graph search problem rather than learning an explicit high-level policy. By embedding states into a Temporal Distance Representation (TDR) space, GAS clusters semantically similar states from different trajectories into unified graph nodes, enabling efficient transition stitching. A shortest-path algorithm is then applied to select subgoal sequences within the graph, while a low-level policy learns to reach the subgoals. To improve graph quality, we introduce the Temporal Efficiency (TE) metric, which filters out noisy or inefficient transition states, significantly enhancing task performance. GAS outperforms prior offline HRL methods across locomotion, navigation, and manipulation tasks. Notably, in the most stitching-critical task, it achieves a score of 88.3, dramatically surpassing the previous state-of-the-art score of 1.0. Our source code is available at: https://github.com/qortmdgh4141/GAS.
comment: ICML 2025
☆ A Communication-Latency-Aware Co-Simulation Platform for Safety and Comfort Evaluation of Cloud-Controlled ICVs
Testing cloud-controlled intelligent connected vehicles (ICVs) requires simulation environments that faithfully emulate both vehicle behavior and realistic communication latencies. This paper proposes a latency-aware co-simulation platform integrating CarMaker and Vissim to evaluate safety and comfort under real-world vehicle-to-cloud (V2C) latency conditions. Two communication latency models, derived from empirical 5G measurements in China and Hungary, are incorporated and statistically modeled using Gamma distributions. A proactive conflict module (PCM) is proposed to dynamically control background vehicles and generate safety-critical scenarios. The platform is validated through experiments involving an exemplary system under test (SUT) across six testing conditions combining two PCM modes (enabled/disabled) and three latency conditions (none, China, Hungary). Safety and comfort are assessed using metrics including collision rate, distance headway, post-encroachment time, and the spectral characteristics of longitudinal acceleration. Results show that the PCM effectively increases driving environment criticality, while V2C latency primarily affects ride comfort. These findings confirm the platform's effectiveness in systematically evaluating cloud-controlled ICVs under diverse testing conditions.
comment: 11 pages, 8 figures
☆ Fast ECoT: Efficient Embodied Chain-of-Thought via Thoughts Reuse
Embodied Chain-of-Thought (ECoT) reasoning enhances vision-language-action (VLA) models by improving performance and interpretability through intermediate reasoning steps. However, its sequential autoregressive token generation introduces significant inference latency, limiting real-time deployment. We propose Fast ECoT, an inference-time acceleration method that exploits the structured and repetitive nature of ECoT to (1) cache and reuse high-level reasoning across timesteps and (2) parallelise the generation of modular reasoning steps. Additionally, we introduce an asynchronous scheduler that decouples reasoning from action decoding, further boosting responsiveness. Fast ECoT requires no model changes or additional training and integrates easily into existing VLA pipelines. Experiments in both simulation (LIBERO) and real-world robot tasks show up to a 7.5% reduction in latency with comparable or improved task success rate and reasoning faithfulness, bringing ECoT policies closer to practical real-time deployment.
☆ Blending Participatory Design and Artificial Awareness for Trustworthy Autonomous Vehicles
Current robotic agents, such as autonomous vehicles (AVs) and drones, need to deal with uncertain real-world environments with appropriate situational awareness (SA), risk awareness, coordination, and decision-making. The SymAware project strives to address this issue by designing an architecture for artificial awareness in multi-agent systems, enabling safe collaboration of autonomous vehicles and drones. However, these agents will also need to interact with human users (drivers, pedestrians, drone operators), which in turn requires an understanding of how to model the human in the interaction scenario, and how to foster trust and transparency between the agent and the human. In this work, we aim to create a data-driven model of a human driver to be integrated into our SA architecture, grounding our research in the principles of trustworthy human-agent interaction. To collect the data necessary for creating the model, we conducted a large-scale user-centered study on human-AV interaction, in which we investigate the interaction between the AV's transparency and the users' behavior. The contributions of this paper are twofold: First, we illustrate in detail our human-AV study and its findings, and second we present the resulting Markov chain models of the human driver computed from the study's data. Our results show that depending on the AV's transparency, the scenario's environment, and the users' demographics, we can obtain significant differences in the model's transitions.
comment: Submitted to IEEE RO-MAN 2025
☆ Curriculum Learning With Counterfactual Group Relative Policy Advantage For Multi-Agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) has achieved strong performance in cooperative adversarial tasks. However, most existing methods typically train agents against fixed opponent strategies and rely on such meta-static difficulty conditions, which limits their adaptability to changing environments and often leads to suboptimal policies. Inspired by the success of curriculum learning (CL) in supervised tasks, we propose a dynamic CL framework for MARL that employs an self-adaptive difficulty adjustment mechanism. This mechanism continuously modulates opponent strength based on real-time agent training performance, allowing agents to progressively learn from easier to more challenging scenarios. However, the dynamic nature of CL introduces instability due to nonstationary environments and sparse global rewards. To address this challenge, we develop a Counterfactual Group Relative Policy Advantage (CGRPA), which is tightly coupled with the curriculum by providing intrinsic credit signals that reflect each agent's impact under evolving task demands. CGRPA constructs a counterfactual advantage function that isolates individual contributions within group behavior, facilitating more reliable policy updates throughout the curriculum. CGRPA evaluates each agent's contribution through constructing counterfactual action advantage function, providing intrinsic rewards that enhance credit assignment and stabilize learning under non-stationary conditions. Extensive experiments demonstrate that our method improves both training stability and final performance, achieving competitive results against state-of-the-art methods. The code is available at https://github.com/NICE-HKU/CL2MARL-SMAC.
comment: 16 pages; 12figures
☆ Fractional Collisions: A Framework for Risk Estimation of Counterfactual Conflicts using Autonomous Driving Behavior Simulations
We present a methodology for estimating collision risk from counterfactual simulated scenarios built on sensor data from automated driving systems (ADS) or naturalistic driving databases. Two-agent conflicts are assessed by detecting and classifying conflict type, identifying the agents' roles (initiator or responder), identifying the point of reaction of the responder, and modeling their human behavioral expectations as probabilistic counterfactual trajectories. The states are used to compute velocity differentials at collision, which when combined with crash models, estimates severity of loss in terms of probabilistic injury or property damage, henceforth called fractional collisions. The probabilistic models may also be extended to include other uncertainties associated with the simulation, features, and agents. We verify the effectiveness of the methodology in a synthetic simulation environment using reconstructed trajectories from 300+ collision and near-collision scenes sourced from VTTI's SHRP2 database and Nexar dashboard camera data. Our methodology predicted fractional collisions within 1% of ground truth collisions. We then evaluate agent-initiated collision risk of an arbitrary ADS software release by replacing the naturalistic responder in these synthetic reconstructions with an ADS simulator and comparing the outcome to human-response outcomes. Our ADS reduced naturalistic collisions by 4x and fractional collision risk by ~62%. The framework's utility is also demonstrated on 250k miles of proprietary, open-loop sensor data collected on ADS test vehicles, re-simulated with an arbitrary ADS software release. The ADS initiated conflicts that caused 0.4 injury-causing and 1.7 property-damaging fractional collisions, and the ADS improved collision risk in 96% of the agent-initiated conflicts.
☆ BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation
Vision-Language-Action (VLA) models have shown impressive capabilities across a wide range of robotics manipulation tasks. However, their growing model size poses significant challenges for deployment on resource-constrained robotic systems. While 1-bit pretraining has proven effective for enhancing the inference efficiency of large language models with minimal performance loss, its application to VLA models remains underexplored. In this work, we present BitVLA, the first 1-bit VLA model for robotics manipulation, in which every parameter is ternary, i.e., {-1, 0, 1}. To further reduce the memory footprint of the vision encoder, we propose the distillation-aware training strategy that compresses the full-precision encoder to 1.58-bit weights. During this process, a full-precision encoder serves as a teacher model to better align latent representations. Despite the lack of large-scale robotics pretraining, BitVLA achieves performance comparable to the state-of-the-art model OpenVLA-OFT with 4-bit post-training quantization on the LIBERO benchmark, while consuming only 29.8% of the memory. These results highlight BitVLA's promise for deployment on memory-constrained edge devices. We release the code and model weights in https://github.com/ustcwhy/BitVLA.
comment: Work in progress
☆ Taking Flight with Dialogue: Enabling Natural Language Control for PX4-based Drone Agent
Recent advances in agentic and physical artificial intelligence (AI) have largely focused on ground-based platforms such as humanoid and wheeled robots, leaving aerial robots relatively underexplored. Meanwhile, state-of-the-art unmanned aerial vehicle (UAV) multimodal vision-language systems typically rely on closed-source models accessible only to well-resourced organizations. To democratize natural language control of autonomous drones, we present an open-source agentic framework that integrates PX4-based flight control, Robot Operating System 2 (ROS 2) middleware, and locally hosted models using Ollama. We evaluate performance both in simulation and on a custom quadcopter platform, benchmarking four large language model (LLM) families for command generation and three vision-language model (VLM) families for scene understanding.
comment: Source code available at: https://github.com/limshoonkit/ros2-agent-ws
☆ RAPID Hand: A Robust, Affordable, Perception-Integrated, Dexterous Manipulation Platform for Generalist Robot Autonomy
This paper addresses the scarcity of low-cost but high-dexterity platforms for collecting real-world multi-fingered robot manipulation data towards generalist robot autonomy. To achieve it, we propose the RAPID Hand, a co-optimized hardware and software platform where the compact 20-DoF hand, robust whole-hand perception, and high-DoF teleoperation interface are jointly designed. Specifically, RAPID Hand adopts a compact and practical hand ontology and a hardware-level perception framework that stably integrates wrist-mounted vision, fingertip tactile sensing, and proprioception with sub-7 ms latency and spatial alignment. Collecting high-quality demonstrations on high-DoF hands is challenging, as existing teleoperation methods struggle with precision and stability on complex multi-fingered systems. We address this by co-optimizing hand design, perception integration, and teleoperation interface through a universal actuation scheme, custom perception electronics, and two retargeting constraints. We evaluate the platform's hardware, perception, and teleoperation interface. Training a diffusion policy on collected data shows superior performance over prior works, validating the system's capability for reliable, high-quality data collection. The platform is constructed from low-cost and off-the-shelf components and will be made public to ensure reproducibility and ease of adoption.
Language-Grounded Hierarchical Planning and Execution with Multi-Robot 3D Scene Graphs
In this paper, we introduce a multi-robot system that integrates mapping, localization, and task and motion planning (TAMP) enabled by 3D scene graphs to execute complex instructions expressed in natural language. Our system builds a shared 3D scene graph incorporating an open-set object-based map, which is leveraged for multi-robot 3D scene graph fusion. This representation supports real-time, view-invariant relocalization (via the object-based map) and planning (via the 3D scene graph), allowing a team of robots to reason about their surroundings and execute complex tasks. Additionally, we introduce a planning approach that translates operator intent into Planning Domain Definition Language (PDDL) goals using a Large Language Model (LLM) by leveraging context from the shared 3D scene graph and robot capabilities. We provide an experimental assessment of the performance of our system on real-world tasks in large-scale, outdoor environments.
comment: 12 pages, 4 figures
☆ MapBERT: Bitwise Masked Modeling for Real-Time Semantic Mapping Generation
Spatial awareness is a critical capability for embodied agents, as it enables them to anticipate and reason about unobserved regions. The primary challenge arises from learning the distribution of indoor semantics, complicated by sparse, imbalanced object categories and diverse spatial scales. Existing methods struggle to robustly generate unobserved areas in real time and do not generalize well to new environments. To this end, we propose \textbf{MapBERT}, a novel framework designed to effectively model the distribution of unseen spaces. Motivated by the observation that the one-hot encoding of semantic maps aligns naturally with the binary structure of bit encoding, we, for the first time, leverage a lookup-free BitVAE to encode semantic maps into compact bitwise tokens. Building on this, a masked transformer is employed to infer missing regions and generate complete semantic maps from limited observations. To enhance object-centric reasoning, we propose an object-aware masking strategy that masks entire object categories concurrently and pairs them with learnable embeddings, capturing implicit relationships between object embeddings and spatial tokens. By learning these relationships, the model more effectively captures indoor semantic distributions crucial for practical robotic tasks. Experiments on Gibson benchmarks show that MapBERT achieves state-of-the-art semantic map generation, balancing computational efficiency with accurate reconstruction of unobserved regions.
☆ UruBots Autonomous Cars Challenge Pro Team Description Paper for FIRA 2025
This paper describes the development of an autonomous car by the UruBots team for the 2025 FIRA Autonomous Cars Challenge (Pro). The project involves constructing a compact electric vehicle, approximately the size of an RC car, capable of autonomous navigation through different tracks. The design incorporates mechanical and electronic components and machine learning algorithms that enable the vehicle to make real-time navigation decisions based on visual input from a camera. We use deep learning models to process camera images and control vehicle movements. Using a dataset of over ten thousand images, we trained a Convolutional Neural Network (CNN) to drive the vehicle effectively, through two outputs, steering and throttle. The car completed the track in under 30 seconds, achieving a pace of approximately 0.4 meters per second while avoiding obstacles.
☆ Reproducibility in the Control of Autonomous Mobility-on-Demand Systems
Autonomous Mobility-on-Demand (AMoD) systems, powered by advances in robotics, control, and Machine Learning (ML), offer a promising paradigm for future urban transportation. AMoD offers fast and personalized travel services by leveraging centralized control of autonomous vehicle fleets to optimize operations and enhance service performance. However, the rapid growth of this field has outpaced the development of standardized practices for evaluating and reporting results, leading to significant challenges in reproducibility. As AMoD control algorithms become increasingly complex and data-driven, a lack of transparency in modeling assumptions, experimental setups, and algorithmic implementation hinders scientific progress and undermines confidence in the results. This paper presents a systematic study of reproducibility in AMoD research. We identify key components across the research pipeline, spanning system modeling, control problems, simulation design, algorithm specification, and evaluation, and analyze common sources of irreproducibility. We survey prevalent practices in the literature, highlight gaps, and propose a structured framework to assess and improve reproducibility. Specifically, concrete guidelines are offered, along with a "reproducibility checklist", to support future work in achieving replicable, comparable, and extensible results. While focused on AMoD, the principles and practices we advocate generalize to a broader class of cyber-physical systems that rely on networked autonomy and data-driven control. This work aims to lay the foundation for a more transparent and reproducible research culture in the design and deployment of intelligent mobility systems.
☆ Real-Time Execution of Action Chunking Flow Policies
Modern AI systems, especially those interacting with the physical world, increasingly require real-time performance. However, the high latency of state-of-the-art generalist models, including recent vision-language action models (VLAs), poses a significant challenge. While action chunking has enabled temporal consistency in high-frequency control tasks, it does not fully address the latency problem, leading to pauses or out-of-distribution jerky movements at chunk boundaries. This paper presents a novel inference-time algorithm that enables smooth asynchronous execution of action chunking policies. Our method, real-time chunking (RTC), is applicable to any diffusion- or flow-based VLA out of the box with no re-training. It generates the next action chunk while executing the current one, "freezing" actions guaranteed to execute and "inpainting" the rest. To test RTC, we introduce a new benchmark of 12 highly dynamic tasks in the Kinetix simulator, as well as evaluate 6 challenging real-world bimanual manipulation tasks. Results demonstrate that RTC is fast, performant, and uniquely robust to inference delay, significantly improving task throughput and enabling high success rates in precise tasks $\unicode{x2013}$ such as lighting a match $\unicode{x2013}$ even in the presence of significant latency. See https://pi.website/research/real_time_chunking for videos.
☆ Hierarchical Scoring with 3D Gaussian Splatting for Instance Image-Goal Navigation
Instance Image-Goal Navigation (IIN) requires autonomous agents to identify and navigate to a target object or location depicted in a reference image captured from any viewpoint. While recent methods leverage powerful novel view synthesis (NVS) techniques, such as three-dimensional Gaussian splatting (3DGS), they typically rely on randomly sampling multiple viewpoints or trajectories to ensure comprehensive coverage of discriminative visual cues. This approach, however, creates significant redundancy through overlapping image samples and lacks principled view selection, substantially increasing both rendering and comparison overhead. In this paper, we introduce a novel IIN framework with a hierarchical scoring paradigm that estimates optimal viewpoints for target matching. Our approach integrates cross-level semantic scoring, utilizing CLIP-derived relevancy fields to identify regions with high semantic similarity to the target object class, with fine-grained local geometric scoring that performs precise pose estimation within promising regions. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on simulated IIN benchmarks and real-world applicability.
☆ TensorTouch: Calibration of Tactile Sensors for High Resolution Stress Tensor and Deformation for Dexterous Manipulation
Advanced dexterous manipulation involving multiple simultaneous contacts across different surfaces, like pinching coins from ground or manipulating intertwined objects, remains challenging for robotic systems. Such tasks exceed the capabilities of vision and proprioception alone, requiring high-resolution tactile sensing with calibrated physical metrics. Raw optical tactile sensor images, while information-rich, lack interpretability and cross-sensor transferability, limiting their real-world utility. TensorTouch addresses this challenge by integrating finite element analysis with deep learning to extract comprehensive contact information from optical tactile sensors, including stress tensors, deformation fields, and force distributions at pixel-level resolution. The TensorTouch framework achieves sub-millimeter position accuracy and precise force estimation while supporting large sensor deformations crucial for manipulating soft objects. Experimental validation demonstrates 90% success in selectively grasping one of two strings based on detected motion, enabling new contact-rich manipulation capabilities previously inaccessible to robotic systems.
☆ Scaling Laws of Motion Forecasting and Planning -- A Technical Report
We study the empirical scaling laws of a family of encoder-decoder autoregressive transformer models on the task of joint motion forecasting and planning in the autonomous driving domain. Using a 500 thousand hours driving dataset, we demonstrate that, similar to language modeling, model performance improves as a power-law function of the total compute budget, and we observe a strong correlation between model training loss and model evaluation metrics. Most interestingly, closed-loop metrics also improve with scaling, which has important implications for the suitability of open-loop metrics for model development and hill climbing. We also study the optimal scaling of the number of transformer parameters and the training data size for a training compute-optimal model. We find that as the training compute budget grows, optimal scaling requires increasing the model size 1.5x as fast as the dataset size. We also study inference-time compute scaling, where we observe that sampling and clustering the output of smaller models makes them competitive with larger models, up to a crossover point beyond which a larger models becomes more inference-compute efficient. Overall, our experimental results demonstrate that optimizing the training and inference-time scaling properties of motion forecasting and planning models is a key lever for improving their performance to address a wide variety of driving scenarios. Finally, we briefly study the utility of training on general logged driving data of other agents to improve the performance of the ego-agent, an important research area to address the scarcity of robotics data for large capacity models training.
☆ Ego-centric Learning of Communicative World Models for Autonomous Driving
We study multi-agent reinforcement learning (MARL) for tasks in complex high-dimensional environments, such as autonomous driving. MARL is known to suffer from the \textit{partial observability} and \textit{non-stationarity} issues. To tackle these challenges, information sharing is often employed, which however faces major hurdles in practice, including overwhelming communication overhead and scalability concerns. By making use of generative AI embodied in world model together with its latent representation, we develop {\it CALL}, \underline{C}ommunic\underline{a}tive Wor\underline{l}d Mode\underline{l}, for MARL, where 1) each agent first learns its world model that encodes its state and intention into low-dimensional latent representation with smaller memory footprint, which can be shared with other agents of interest via lightweight communication; and 2) each agent carries out ego-centric learning while exploiting lightweight information sharing to enrich her world model, and then exploits its generalization capacity to improve prediction for better planning. We characterize the gain on the prediction accuracy from the information sharing and its impact on performance gap. Extensive experiments are carried out on the challenging local trajectory planning tasks in the CARLA platform to demonstrate the performance gains of using \textit{CALL}.
☆ Adaptive Per-Tree Canopy Volume Estimation Using Mobile LiDAR in Structured and Unstructured Orchards ICRA
We present a real-time system for per-tree canopy volume estimation using mobile LiDAR data collected during routine robotic navigation. Unlike prior approaches that rely on static scans or assume uniform orchard structures, our method adapts to varying field geometries via an integrated pipeline of LiDAR-inertial odometry, adaptive segmentation, and geometric reconstruction. We evaluate the system across two commercial orchards, one pistachio orchard with regular spacing and one almond orchard with dense, overlapping crowns. A hybrid clustering strategy combining DBSCAN and spectral clustering enables robust per-tree segmentation, achieving 93% success in pistachio and 80% in almond, with strong agreement to drone derived canopy volume estimates. This work advances scalable, non-intrusive tree monitoring for structurally diverse orchard environments.
comment: 5 pages, 3 figures, Accepted to the Novel Approaches for Precision Agriculture and Forestry with Autonomous Robots IEEE ICRA Workshop - 2025
☆ ReCogDrive: A Reinforced Cognitive Framework for End-to-End Autonomous Driving
Although end-to-end autonomous driving has made remarkable progress, its performance degrades significantly in rare and long-tail scenarios. Recent approaches attempt to address this challenge by leveraging the rich world knowledge of Vision-Language Models (VLMs), but these methods suffer from several limitations: (1) a significant domain gap between the pre-training data of VLMs and real-world driving data, (2) a dimensionality mismatch between the discrete language space and the continuous action space, and (3) imitation learning tends to capture the average behavior present in the dataset, which may be suboptimal even dangerous. In this paper, we propose ReCogDrive, an autonomous driving system that integrates VLMs with diffusion planner, which adopts a three-stage paradigm for training. In the first stage, we use a large-scale driving question-answering datasets to train the VLMs, mitigating the domain discrepancy between generic content and real-world driving scenarios. In the second stage, we employ a diffusion-based planner to perform imitation learning, mapping representations from the latent language space to continuous driving actions. Finally, we fine-tune the diffusion planner using reinforcement learning with NAVSIM non-reactive simulator, enabling the model to generate safer, more human-like driving trajectories. We evaluate our approach on the planning-oriented NAVSIM benchmark, achieving a PDMS of 89.6 and setting a new state-of-the-art that surpasses the previous vision-only SOTA by 5.6 PDMS.
♻ ☆ Splatting Physical Scenes: End-to-End Real-to-Sim from Imperfect Robot Data
Creating accurate, physical simulations directly from real-world robot motion holds great value for safe, scalable, and affordable robot learning, yet remains exceptionally challenging. Real robot data suffers from occlusions, noisy camera poses, dynamic scene elements, which hinder the creation of geometrically accurate and photorealistic digital twins of unseen objects. We introduce a novel real-to-sim framework tackling all these challenges at once. Our key insight is a hybrid scene representation merging the photorealistic rendering of 3D Gaussian Splatting with explicit object meshes suitable for physics simulation within a single representation. We propose an end-to-end optimization pipeline that leverages differentiable rendering and differentiable physics within MuJoCo to jointly refine all scene components - from object geometry and appearance to robot poses and physical parameters - directly from raw and imprecise robot trajectories. This unified optimization allows us to simultaneously achieve high-fidelity object mesh reconstruction, generate photorealistic novel views, and perform annotation-free robot pose calibration. We demonstrate the effectiveness of our approach both in simulation and on challenging real-world sequences using an ALOHA 2 bi-manual manipulator, enabling more practical and robust real-to-simulation pipelines.
comment: Updated version correcting inadvertent omission in author list
♻ ☆ Active inference as a unified model of collision avoidance behavior in human drivers
Collision avoidance -- involving a rapid threat detection and quick execution of the appropriate evasive maneuver -- is a critical aspect of driving. However, existing models of human collision avoidance behavior are fragmented, focusing on specific scenarios or only describing certain aspects of the avoidance behavior, such as response times. This paper addresses these gaps by proposing a novel computational cognitive model of human collision avoidance behavior based on active inference. Active inference provides a unified approach to modeling human behavior: the minimization of free energy. Building on prior active inference work, our model incorporates established cognitive mechanisms such as evidence accumulation to simulate human responses in two distinct collision avoidance scenarios: front-to-rear lead vehicle braking and lateral incursion by an oncoming vehicle. We demonstrate that our model explains a wide range of previous empirical findings on human collision avoidance behavior. Specifically, the model closely reproduces both aggregate results from meta-analyses previously reported in the literature and detailed, scenario-specific effects observed in a recent driving simulator study, including response timing, maneuver selection, and execution. Our results highlight the potential of active inference as a unified framework for understanding and modeling human behavior in complex real-life driving tasks.
♻ ☆ Efficient and Generalized end-to-end Autonomous Driving System with Latent Deep Reinforcement Learning and Demonstrations ECML
An intelligent driving system should dynamically formulate appropriate driving strategies based on the current environment and vehicle status while ensuring system security and reliability. However, methods based on reinforcement learning and imitation learning often suffer from high sample complexity, poor generalization, and low safety. To address these challenges, this paper introduces an efficient and generalized end-to-end autonomous driving system (EGADS) for complex and varied scenarios. The RL agent in our EGADS combines variational inference with normalizing flows, which are independent of distribution assumptions. This combination allows the agent to capture historical information relevant to driving in latent space effectively, thereby significantly reducing sample complexity. Additionally, we enhance safety by formulating robust safety constraints and improve generalization and performance by integrating RL with expert demonstrations. Experimental results demonstrate that, compared to existing methods, EGADS significantly reduces sample complexity, greatly improves safety performance, and exhibits strong generalization capabilities in complex urban scenarios. Particularly, we contributed an expert dataset collected through human expert steering wheel control, specifically using the G29 steering wheel.
comment: Accepted by ECML PKDD 2025 (Research Track)
♻ ☆ An Overview of the Burer-Monteiro Method for Certifiable Robot Perception RSS
This paper presents an overview of the Burer-Monteiro method (BM), a technique that has been applied to solve robot perception problems to certifiable optimality in real-time. BM is often used to solve semidefinite programming relaxations, which can be used to perform global optimization for non-convex perception problems. Specifically, BM leverages the low-rank structure of typical semidefinite programs to dramatically reduce the computational cost of performing optimization. This paper discusses BM in certifiable perception, with three main objectives: (i) to consolidate information from the literature into a unified presentation, (ii) to elucidate the role of the linear independence constraint qualification (LICQ), a concept not yet well-covered in certifiable perception literature, and (iii) to share practical considerations that are discussed among practitioners but not thoroughly covered in the literature. Our general aim is to offer a practical primer for applying BM towards certifiable perception.
comment: Accepted to 2024 Robotics: Science and Systems (RSS) Safe Autonomy Workshop
♻ ☆ Scene Exploration by Vision-Language Models
Active perception enables robots to dynamically gather information by adjusting their viewpoints, a crucial capability for interacting with complex, partially observable environments. In this paper, we present AP-VLM, a novel framework that combines active perception with a Vision-Language Model (VLM) to guide robotic exploration and answer semantic queries. Using a 3D virtual grid overlaid on the scene and orientation adjustments, AP-VLM allows a robotic manipulator to intelligently select optimal viewpoints and orientations to resolve challenging tasks, such as identifying objects in occluded or inclined positions. We evaluate our system on two robotic platforms: a 7-DOF Franka Panda and a 6-DOF UR5, across various scenes with differing object configurations. Our results demonstrate that AP-VLM significantly outperforms passive perception methods and baseline models, including Toward Grounded Common Sense Reasoning (TGCSR), particularly in scenarios where fixed camera views are inadequate. The adaptability of AP-VLM in real-world settings shows promise for enhancing robotic systems' understanding of complex environments, bridging the gap between high-level semantic reasoning and low-level control.
♻ ☆ AI-based Framework for Robust Model-Based Connector Mating in Robotic Wire Harness Installation
Despite the widespread adoption of industrial robots in automotive assembly, wire harness installation remains a largely manual process, as it requires precise and flexible manipulation. To address this challenge, we design a novel AI-based framework that automates cable connector mating by integrating force control with deep visuotactile learning. Our system optimizes search-and-insertion strategies using first-order optimization over a multimodal transformer architecture trained on visual, tactile, and proprioceptive data. Additionally, we design a novel automated data collection and optimization pipeline that minimizes the need for machine learning expertise. The framework optimizes robot programs that run natively on standard industrial controllers, permitting human experts to audit and certify them. Experimental validations on a center console assembly task demonstrate significant improvements in cycle times and robustness compared to conventional robot programming approaches. Videos are available under https://claudius-kienle.github.io/AppMuTT.
comment: 6 pages, 6 figures, 4 tables, presented at the 2025 IEEE 21st International Conference on Automation Science and Engineering (CASE 2025)
♻ ☆ A Machine Learning Approach to Sensor Substitution from Tactile Sensing to Visual Perception for Non-Prehensile Manipulation
Mobile manipulators are increasingly deployed in complex environments, requiring diverse sensors to perceive and interact with their surroundings. However, equipping every robot with every possible sensor is often impractical due to cost and physical constraints. A critical challenge arises when robots with differing sensor capabilities need to collaborate or perform similar tasks. For example, consider a scenario where a mobile manipulator equipped with high-resolution tactile skin is skilled at non-prehensile manipulation tasks like pushing. If this robot needs to be replaced or augmented by a robot lacking such tactile sensing, the learned manipulation policies become inapplicable. This paper addresses the problem of sensor substitution in non-prehensile manipulation. We propose a novel machine learning-based framework that enables a robot with a limited sensor set (e.g., LiDAR or RGB-D) to effectively perform tasks previously reliant on a richer sensor suite (e.g., tactile skin). Our approach learns a mapping between the available sensor data and the information provided by the substituted sensor, effectively synthesizing the missing sensory input. Specifically, we demonstrate the efficacy of our framework by training a model to substitute tactile skin data for the task of non-prehensile pushing using a mobile manipulator. We show that a manipulator equipped only with LiDAR or RGB-D can, after training, achieve comparable and sometimes even better pushing performance to a mobile base utilizing direct tactile feedback.
comment: 10 pages, 6 figures, submitted to Robotics and Autonomous Systems, for associated video, see https://youtu.be/6yIRcfn2DsY
♻ ☆ MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations
With the emergence of LLMs and their integration with other data modalities, multi-modal 3D perception attracts more attention due to its connectivity to the physical world and makes rapid progress. However, limited by existing datasets, previous works mainly focus on understanding object properties or inter-object spatial relationships in a 3D scene. To tackle this problem, this paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan. It is constructed based on a top-down logic, from region to object level, from a single target to inter-target relationships, covering holistic aspects of spatial and attribute understanding. The overall pipeline incorporates powerful VLMs via carefully designed prompts to initialize the annotations efficiently and further involve humans' correction in the loop to ensure the annotations are natural, correct, and comprehensive. Built upon existing 3D scanning data, the resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks. We evaluate representative baselines on our benchmarks, analyze their capabilities in different aspects, and showcase the key problems to be addressed in the future. Furthermore, we use this high-quality dataset to train state-of-the-art 3D visual grounding and LLMs and obtain remarkable performance improvement both on existing benchmarks and in-the-wild evaluation. Codes, datasets, and benchmarks will be available at https://github.com/OpenRobotLab/EmbodiedScan.
comment: Follow-up of EmbodiedScan (camera-ready version). A multi-modal 3D dataset with the most-ever comprehensive language annotations for 3D-LLMs. Project page: https://tai-wang.github.io/mmscan/
♻ ☆ SIS: Seam-Informed Strategy for T-shirt Unfolding RAL
Seams are information-rich components of garments. The presence of different types of seams and their combinations helps to select grasping points for garment handling. In this paper, we propose a new Seam-Informed Strategy (SIS) for finding actions for handling a garment, such as grasping and unfolding a T-shirt. Candidates for a pair of grasping points for a dual-arm manipulator system are extracted using the proposed Seam Feature Extraction Method (SFEM). A pair of grasping points for the robot system is selected by the proposed Decision Matrix Iteration Method (DMIM). The decision matrix is first computed by multiple human demonstrations and updated by the robot execution results to improve the grasping and unfolding performance of the robot. Note that the proposed scheme is trained on real data without relying on simulation. Experimental results demonstrate the effectiveness of the proposed strategy. The project video is available at https://github.com/lancexz/sis
comment: 8 pages, 8 figures. To be published in IEEE Robotics and Automation Letters (RAL)
♻ ☆ Digital Twin Synchronization: Bridging the Sim-RL Agent to a Real-Time Robotic Additive Manufacturing Control RAS
With the rapid development of deep reinforcement learning technology, it gradually demonstrates excellent potential and is becoming the most promising solution in the robotics. However, in the smart manufacturing domain, there is still not too much research involved in dynamic adaptive control mechanisms optimizing complex processes. This research advances the integration of Soft Actor-Critic (SAC) with digital twins for industrial robotics applications, providing a framework for enhanced adaptive real-time control for smart additive manufacturing processing. The system architecture combines Unity's simulation environment with ROS2 for seamless digital twin synchronization, while leveraging transfer learning to efficiently adapt trained models across tasks. We demonstrate our methodology using a Viper X300s robot arm with the proposed hierarchical reward structure to address the common reinforcement learning challenges in two distinct control scenarios. The results show rapid policy convergence and robust task execution in both simulated and physical environments demonstrating the effectiveness of our approach.
comment: This paper had been accepted by the 2025 IEEE International Conference on Engineering Reliable Autonomous Systems (ERAS)
♻ ☆ Edge Computing based Human-Robot Cognitive Fusion: A Medical Case Study in the Autism Spectrum Disorder Therapy
In recent years, edge computing has served as a paradigm that enables many future technologies like AI, Robotics, IoT, and high-speed wireless sensor networks (like 5G) by connecting cloud computing facilities and services to the end users. Especially in medical and healthcare applications, it provides remote patient monitoring and increases voluminous multimedia. From the robotics angle, robot-assisted therapy (RAT) is an active-assistive robotic technology in rehabilitation robotics, attracting researchers to study and benefit people with disability like autism spectrum disorder (ASD) children. However, the main challenge of RAT is that the model capable of detecting the affective states of ASD people exists and can recall individual preferences. Moreover, involving expert diagnosis and recommendations to guide robots in updating the therapy approach to adapt to different statuses and scenarios is a crucial part of the ASD therapy process. This paper proposes the architecture of edge cognitive computing by combining human experts and assisted robots collaborating in the same framework to achieve a seamless remote diagnosis, round-the-clock symptom monitoring, emergency warning, therapy alteration, and advanced assistance.
comment: This paper was accepted by the 2025 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)
♻ ☆ TRAVEL: Training-Free Retrieval and Alignment for Vision-and-Language Navigation CVPR 2025
In this work, we propose a modular approach for the Vision-Language Navigation (VLN) task by decomposing the problem into four sub-modules that use state-of-the-art Large Language Models (LLMs) and Vision-Language Models (VLMs) in a zero-shot setting. Given navigation instruction in natural language, we first prompt LLM to extract the landmarks and the order in which they are visited. Assuming the known model of the environment, we retrieve the top-k locations of the last landmark and generate $k$ path hypotheses from the starting location to the last landmark using the shortest path algorithm on the topological map of the environment. Each path hypothesis is represented by a sequence of panoramas. We then use dynamic programming to compute the alignment score between the sequence of panoramas and the sequence of landmark names, which match scores obtained from VLM. Finally, we compute the nDTW metric between the hypothesis that yields the highest alignment score to evaluate the path fidelity. We demonstrate superior performance compared to other approaches that use joint semantic maps like VLMaps on the complex R2R-Habitat instruction dataset and quantify in detail the effect of visual grounding on navigation performance.
comment: Accepted to CVPR 2025 Workshop - Foundation Models Meet Embodied Agents
♻ ☆ Innate-Values-driven Reinforcement Learning based Cognitive Modeling
Innate values describe agents' intrinsic motivations, which reflect their inherent interests and preferences for pursuing goals and drive them to develop diverse skills that satisfy their various needs. Traditional reinforcement learning (RL) is learning from interaction based on the feedback rewards of the environment. However, in real scenarios, the rewards are generated by agents' innate value systems, which differ vastly from individuals based on their needs and requirements. In other words, considering the AI agent as a self-organizing system, developing its awareness through balancing internal and external utilities based on its needs in different tasks is a crucial problem for individuals learning to support others and integrate community with safety and harmony in the long term. To address this gap, we propose a new RL model termed innate-values-driven RL (IVRL) based on combined motivations' models and expected utility theory to mimic its complex behaviors in the evolution through decision-making and learning. Then, we introduce two IVRL-based models: IV-DQN and IV-A2C. By comparing them with benchmark algorithms such as DQN, DDQN, A2C, and PPO in the Role-Playing Game (RPG) reinforcement learning test platform VIZDoom, we demonstrated that the IVRL-based models can help the agent rationally organize various needs, achieve better performance effectively.
comment: The paper had been accepted by the 2025 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). arXiv admin note: text overlap with arXiv:2401.05572
♻ ☆ Innate-Values-driven Reinforcement Learning based Cooperative Multi-Agent Cognitive Modeling
In multi-agent systems (MAS), the dynamic interaction among multiple decision-makers is driven by their innate values, affecting the environment's state, and can cause specific behavioral patterns to emerge. On the other hand, innate values in cognitive modeling reflect individual interests and preferences for specific tasks and drive them to develop diverse skills and plans, satisfying their various needs and achieving common goals in cooperation. Therefore, building the awareness of AI agents to balance the group utilities and system costs and meet group members' needs in their cooperation is a crucial problem for individuals learning to support their community and even integrate into human society in the long term. However, the current MAS reinforcement learning domain lacks a general intrinsic model to describe agents' dynamic motivation for decision-making and learning from an individual needs perspective in their cooperation. To address the gap, this paper proposes a general MAS innate-values reinforcement learning (IVRL) architecture from the individual preferences angle. We tested the Multi-Agent IVRL Actor-Critic Model in different StarCraft Multi-Agent Challenge (SMAC) settings, which demonstrated its potential to organize the group's behaviours to achieve better performance.
comment: This paper had been accepted by the 2025 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)
♻ ☆ LLM-Craft: Robotic Crafting of Elasto-Plastic Objects with Large Language Models
When humans create sculptures, we are able to reason about how geometrically we need to alter the clay state to reach our target goal. We are not computing point-wise similarity metrics, or reasoning about low-level positioning of our tools, but instead determining the higher-level changes that need to be made. In this work, we propose LLM-Craft, a novel pipeline that leverages large language models (LLMs) to iteratively reason about and generate deformation-based crafting action sequences. We simplify and couple the state and action representations to further encourage shape-based reasoning. To the best of our knowledge, LLM-Craft is the first system successfully leveraging LLMs for complex deformable object interactions. Through our experiments, we demonstrate that with the LLM-Craft framework, LLMs are able to successfully create a set of simple letter shapes. We explore a variety of rollout strategies, and compare performances of LLM-Craft variants with and without an explicit goal shape images. For videos and prompting details, please visit our project website: https://sites.google.com/andrew.cmu.edu/llmcraft/home
Computer Vision 149
☆ StableMTL: Repurposing Latent Diffusion Models for Multi-Task Learning from Partially Annotated Synthetic Datasets
Multi-task learning for dense prediction is limited by the need for extensive annotation for every task, though recent works have explored training with partial task labels. Leveraging the generalization power of diffusion models, we extend the partial learning setup to a zero-shot setting, training a multi-task model on multiple synthetic datasets, each labeled for only a subset of tasks. Our method, StableMTL, repurposes image generators for latent regression. Adapting a denoising framework with task encoding, per-task conditioning and a tailored training scheme. Instead of per-task losses requiring careful balancing, a unified latent loss is adopted, enabling seamless scaling to more tasks. To encourage inter-task synergy, we introduce a multi-stream model with a task-attention mechanism that converts N-to-N task interactions into efficient 1-to-N attention, promoting effective cross-task sharing. StableMTL outperforms baselines on 7 tasks across 8 benchmarks.
comment: Code is available at https://github.com/astra-vision/StableMTL
☆ 4DGT: Learning a 4D Gaussian Transformer Using Real-World Monocular Videos
We propose 4DGT, a 4D Gaussian-based Transformer model for dynamic scene reconstruction, trained entirely on real-world monocular posed videos. Using 4D Gaussian as an inductive bias, 4DGT unifies static and dynamic components, enabling the modeling of complex, time-varying environments with varying object lifespans. We proposed a novel density control strategy in training, which enables our 4DGT to handle longer space-time input and remain efficient rendering at runtime. Our model processes 64 consecutive posed frames in a rolling-window fashion, predicting consistent 4D Gaussians in the scene. Unlike optimization-based methods, 4DGT performs purely feed-forward inference, reducing reconstruction time from hours to seconds and scaling effectively to long video sequences. Trained only on large-scale monocular posed video datasets, 4DGT can outperform prior Gaussian-based networks significantly in real-world videos and achieve on-par accuracy with optimization-based methods on cross-domain videos. Project page: https://4dgt.github.io
comment: Project page: https://4dgt.github.io
☆ Vision Transformers Don't Need Trained Registers
We investigate the mechanism underlying a previously identified phenomenon in Vision Transformers -- the emergence of high-norm tokens that lead to noisy attention maps. We observe that in multiple models (e.g., CLIP, DINOv2), a sparse set of neurons is responsible for concentrating high-norm activations on outlier tokens, leading to irregular attention patterns and degrading downstream visual processing. While the existing solution for removing these outliers involves retraining models from scratch with additional learned register tokens, we use our findings to create a training-free approach to mitigate these artifacts. By shifting the high-norm activations from our discovered register neurons into an additional untrained token, we can mimic the effect of register tokens on a model already trained without registers. We demonstrate that our method produces cleaner attention and feature maps, enhances performance over base models across multiple downstream visual tasks, and achieves results comparable to models explicitly trained with register tokens. We then extend test-time registers to off-the-shelf vision-language models to improve their interpretability. Our results suggest that test-time registers effectively take on the role of register tokens at test-time, offering a training-free solution for any pre-trained model released without them.
comment: Project page and code: https://avdravid.github.io/test-time-registers
☆ Play to Generalize: Learning to Reason Through Game Play
Developing generalizable reasoning capabilities in multimodal large language models (MLLMs) remains challenging. Motivated by cognitive science literature suggesting that gameplay promotes transferable cognitive skills, we propose a novel post-training paradigm, Visual Game Learning, or ViGaL, where MLLMs develop out-of-domain generalization of multimodal reasoning through playing arcade-like games. Specifically, we show that post-training a 7B-parameter MLLM via reinforcement learning (RL) on simple arcade-like games, e.g. Snake, significantly enhances its downstream performance on multimodal math benchmarks like MathVista, and on multi-discipline questions like MMMU, without seeing any worked solutions, equations, or diagrams during RL, suggesting the capture of transferable reasoning skills. Remarkably, our model outperforms specialist models tuned on multimodal reasoning data in multimodal reasoning benchmarks, while preserving the base model's performance on general visual benchmarks, a challenge where specialist models often fall short. Our findings suggest a new post-training paradigm: synthetic, rule-based games can serve as controllable and scalable pre-text tasks that unlock generalizable multimodal reasoning abilities in MLLMs.
comment: Project Page: https://yunfeixie233.github.io/ViGaL/
☆ GUI-Reflection: Empowering Multimodal GUI Models with Self-Reflection Behavior
Multimodal Large Language Models (MLLMs) have shown great potential in revolutionizing Graphical User Interface (GUI) automation. However, existing GUI models mostly rely on learning from nearly error-free offline trajectories, thus lacking reflection and error recovery capabilities. To bridge this gap, we propose GUI-Reflection, a novel framework that explicitly integrates self-reflection and error correction capabilities into end-to-end multimodal GUI models throughout dedicated training stages: GUI-specific pre-training, offline supervised fine-tuning (SFT), and online reflection tuning. GUI-reflection enables self-reflection behavior emergence with fully automated data generation and learning processes without requiring any human annotation. Specifically, 1) we first propose scalable data pipelines to automatically construct reflection and error correction data from existing successful trajectories. While existing GUI models mainly focus on grounding and UI understanding ability, we propose the GUI-Reflection Task Suite to learn and evaluate reflection-oriented abilities explicitly. 2) Furthermore, we built a diverse and efficient environment for online training and data collection of GUI models on mobile devices. 3) We also present an iterative online reflection tuning algorithm leveraging the proposed environment, enabling the model to continuously enhance its reflection and error correction abilities. Our framework equips GUI agents with self-reflection and correction capabilities, paving the way for more robust, adaptable, and intelligent GUI automation, with all data, models, environments, and tools to be released publicly.
comment: Project Page at https://penghao-wu.github.io/GUI_Reflection/
☆ Self Forcing: Bridging the Train-Test Gap in Autoregressive Video Diffusion
We introduce Self Forcing, a novel training paradigm for autoregressive video diffusion models. It addresses the longstanding issue of exposure bias, where models trained on ground-truth context must generate sequences conditioned on their own imperfect outputs during inference. Unlike prior methods that denoise future frames based on ground-truth context frames, Self Forcing conditions each frame's generation on previously self-generated outputs by performing autoregressive rollout with key-value (KV) caching during training. This strategy enables supervision through a holistic loss at the video level that directly evaluates the quality of the entire generated sequence, rather than relying solely on traditional frame-wise objectives. To ensure training efficiency, we employ a few-step diffusion model along with a stochastic gradient truncation strategy, effectively balancing computational cost and performance. We further introduce a rolling KV cache mechanism that enables efficient autoregressive video extrapolation. Extensive experiments demonstrate that our approach achieves real-time streaming video generation with sub-second latency on a single GPU, while matching or even surpassing the generation quality of significantly slower and non-causal diffusion models. Project website: http://self-forcing.github.io/
comment: Project website: http://self-forcing.github.io/
☆ Hidden in plain sight: VLMs overlook their visual representations
Language provides a natural interface to specify and evaluate performance on visual tasks. To realize this possibility, vision language models (VLMs) must successfully integrate visual and linguistic information. Our work compares VLMs to a direct readout of their visual encoders to understand their ability to integrate across these modalities. Across a series of vision-centric benchmarks (e.g., depth estimation, correspondence), we find that VLMs perform substantially worse than their visual encoders, dropping to near-chance performance. We investigate these results through a series of analyses across the entire VLM: namely 1) the degradation of vision representations, 2) brittleness to task prompt, and 3) the language model's role in solving the task. We find that the bottleneck in performing these vision-centric tasks lies in this third category; VLMs are not effectively using visual information easily accessible throughout the entire model, and they inherit the language priors present in the LLM. Our work helps diagnose the failure modes of open-source VLMs, and presents a series of evaluations useful for future investigations into visual understanding within VLMs.
comment: Project page: https://hidden-plain-sight.github.io/
☆ Dreamland: Controllable World Creation with Simulator and Generative Models
Large-scale video generative models can synthesize diverse and realistic visual content for dynamic world creation, but they often lack element-wise controllability, hindering their use in editing scenes and training embodied AI agents. We propose Dreamland, a hybrid world generation framework combining the granular control of a physics-based simulator and the photorealistic content output of large-scale pretrained generative models. In particular, we design a layered world abstraction that encodes both pixel-level and object-level semantics and geometry as an intermediate representation to bridge the simulator and the generative model. This approach enhances controllability, minimizes adaptation cost through early alignment with real-world distributions, and supports off-the-shelf use of existing and future pretrained generative models. We further construct a D3Sim dataset to facilitate the training and evaluation of hybrid generation pipelines. Experiments demonstrate that Dreamland outperforms existing baselines with 50.8% improved image quality, 17.9% stronger controllability, and has great potential to enhance embodied agent training. Code and data will be made available.
comment: Project Page: https://metadriverse.github.io/dreamland/
☆ ZeroVO: Visual Odometry with Minimal Assumptions
We introduce ZeroVO, a novel visual odometry (VO) algorithm that achieves zero-shot generalization across diverse cameras and environments, overcoming limitations in existing methods that depend on predefined or static camera calibration setups. Our approach incorporates three main innovations. First, we design a calibration-free, geometry-aware network structure capable of handling noise in estimated depth and camera parameters. Second, we introduce a language-based prior that infuses semantic information to enhance robust feature extraction and generalization to previously unseen domains. Third, we develop a flexible, semi-supervised training paradigm that iteratively adapts to new scenes using unlabeled data, further boosting the models' ability to generalize across diverse real-world scenarios. We analyze complex autonomous driving contexts, demonstrating over 30% improvement against prior methods on three standard benchmarks, KITTI, nuScenes, and Argoverse 2, as well as a newly introduced, high-fidelity synthetic dataset derived from Grand Theft Auto (GTA). By not requiring fine-tuning or camera calibration, our work broadens the applicability of VO, providing a versatile solution for real-world deployment at scale.
Dynamic View Synthesis as an Inverse Problem
In this work, we address dynamic view synthesis from monocular videos as an inverse problem in a training-free setting. By redesigning the noise initialization phase of a pre-trained video diffusion model, we enable high-fidelity dynamic view synthesis without any weight updates or auxiliary modules. We begin by identifying a fundamental obstacle to deterministic inversion arising from zero-terminal signal-to-noise ratio (SNR) schedules and resolve it by introducing a novel noise representation, termed K-order Recursive Noise Representation. We derive a closed form expression for this representation, enabling precise and efficient alignment between the VAE-encoded and the DDIM inverted latents. To synthesize newly visible regions resulting from camera motion, we introduce Stochastic Latent Modulation, which performs visibility aware sampling over the latent space to complete occluded regions. Comprehensive experiments demonstrate that dynamic view synthesis can be effectively performed through structured latent manipulation in the noise initialization phase.
comment: Project Page: https://inverse-dvs.github.io/
☆ Audio-Sync Video Generation with Multi-Stream Temporal Control
Audio is inherently temporal and closely synchronized with the visual world, making it a naturally aligned and expressive control signal for controllable video generation (e.g., movies). Beyond control, directly translating audio into video is essential for understanding and visualizing rich audio narratives (e.g., Podcasts or historical recordings). However, existing approaches fall short in generating high-quality videos with precise audio-visual synchronization, especially across diverse and complex audio types. In this work, we introduce MTV, a versatile framework for audio-sync video generation. MTV explicitly separates audios into speech, effects, and music tracks, enabling disentangled control over lip motion, event timing, and visual mood, respectively -- resulting in fine-grained and semantically aligned video generation. To support the framework, we additionally present DEMIX, a dataset comprising high-quality cinematic videos and demixed audio tracks. DEMIX is structured into five overlapped subsets, enabling scalable multi-stage training for diverse generation scenarios. Extensive experiments demonstrate that MTV achieves state-of-the-art performance across six standard metrics spanning video quality, text-video consistency, and audio-video alignment. Project page: https://hjzheng.net/projects/MTV/.
☆ Aligning Text, Images, and 3D Structure Token-by-Token
Creating machines capable of understanding the world in 3D is essential in assisting designers that build and edit 3D environments and robots navigating and interacting within a three-dimensional space. Inspired by advances in language and image modeling, we investigate the potential of autoregressive models for a new modality: structured 3D scenes. To this end, we propose a unified LLM framework that aligns language, images, and 3D scenes and provide a detailed ''cookbook'' outlining critical design choices for achieving optimal training and performance addressing key questions related to data representation, modality-specific objectives, and more. We evaluate performance across four core 3D tasks -- rendering, recognition, instruction-following, and question-answering -- and four 3D datasets, synthetic and real-world. We extend our approach to reconstruct complex 3D object shapes by enriching our 3D modality with quantized shape encodings, and show our model's effectiveness on real-world 3D object recognition tasks. Project webpage: https://glab-caltech.github.io/kyvo/
comment: Project webpage: https://glab-caltech.github.io/kyvo/
☆ MADFormer: Mixed Autoregressive and Diffusion Transformers for Continuous Image Generation
Recent progress in multimodal generation has increasingly combined autoregressive (AR) and diffusion-based approaches, leveraging their complementary strengths: AR models capture long-range dependencies and produce fluent, context-aware outputs, while diffusion models operate in continuous latent spaces to refine high-fidelity visual details. However, existing hybrids often lack systematic guidance on how and why to allocate model capacity between these paradigms. In this work, we introduce MADFormer, a Mixed Autoregressive and Diffusion Transformer that serves as a testbed for analyzing AR-diffusion trade-offs. MADFormer partitions image generation into spatial blocks, using AR layers for one-pass global conditioning across blocks and diffusion layers for iterative local refinement within each block. Through controlled experiments on FFHQ-1024 and ImageNet, we identify two key insights: (1) block-wise partitioning significantly improves performance on high-resolution images, and (2) vertically mixing AR and diffusion layers yields better quality-efficiency balances--improving FID by up to 75% under constrained inference compute. Our findings offer practical design principles for future hybrid generative models.
☆ Generative Modeling of Weights: Generalization or Memorization?
Generative models, with their success in image and video generation, have recently been explored for synthesizing effective neural network weights. These approaches take trained neural network checkpoints as training data, and aim to generate high-performing neural network weights during inference. In this work, we examine four representative methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Surprisingly, we find that these methods synthesize weights largely by memorization: they produce either replicas, or at best simple interpolations, of the training checkpoints. Current methods fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. We further show that this memorization cannot be effectively mitigated by modifying modeling factors commonly associated with memorization in image diffusion models, or applying data augmentations. Our findings provide a realistic assessment of what types of data current generative models can model, and highlight the need for more careful evaluation of generative models in new domains. Our code is available at https://github.com/boyazeng/weight_memorization.
comment: Project page at https://boyazeng.github.io/weight_memorization
☆ UA-Pose: Uncertainty-Aware 6D Object Pose Estimation and Online Object Completion with Partial References CVPR 2025
6D object pose estimation has shown strong generalizability to novel objects. However, existing methods often require either a complete, well-reconstructed 3D model or numerous reference images that fully cover the object. Estimating 6D poses from partial references, which capture only fragments of an object's appearance and geometry, remains challenging. To address this, we propose UA-Pose, an uncertainty-aware approach for 6D object pose estimation and online object completion specifically designed for partial references. We assume access to either (1) a limited set of RGBD images with known poses or (2) a single 2D image. For the first case, we initialize a partial object 3D model based on the provided images and poses, while for the second, we use image-to-3D techniques to generate an initial object 3D model. Our method integrates uncertainty into the incomplete 3D model, distinguishing between seen and unseen regions. This uncertainty enables confidence assessment in pose estimation and guides an uncertainty-aware sampling strategy for online object completion, enhancing robustness in pose estimation accuracy and improving object completeness. We evaluate our method on the YCB-Video, YCBInEOAT, and HO3D datasets, including RGBD sequences of YCB objects manipulated by robots and human hands. Experimental results demonstrate significant performance improvements over existing methods, particularly when object observations are incomplete or partially captured. Project page: https://minfenli.github.io/UA-Pose/
comment: CVPR 2025
☆ PairEdit: Learning Semantic Variations for Exemplar-based Image Editing
Recent advancements in text-guided image editing have achieved notable success by leveraging natural language prompts for fine-grained semantic control. However, certain editing semantics are challenging to specify precisely using textual descriptions alone. A practical alternative involves learning editing semantics from paired source-target examples. Existing exemplar-based editing methods still rely on text prompts describing the change within paired examples or learning implicit text-based editing instructions. In this paper, we introduce PairEdit, a novel visual editing method designed to effectively learn complex editing semantics from a limited number of image pairs or even a single image pair, without using any textual guidance. We propose a target noise prediction that explicitly models semantic variations within paired images through a guidance direction term. Moreover, we introduce a content-preserving noise schedule to facilitate more effective semantic learning. We also propose optimizing distinct LoRAs to disentangle the learning of semantic variations from content. Extensive qualitative and quantitative evaluations demonstrate that PairEdit successfully learns intricate semantics while significantly improving content consistency compared to baseline methods. Code will be available at https://github.com/xudonmao/PairEdit.
☆ Rethinking Cross-Modal Interaction in Multimodal Diffusion Transformers
Multimodal Diffusion Transformers (MM-DiTs) have achieved remarkable progress in text-driven visual generation. However, even state-of-the-art MM-DiT models like FLUX struggle with achieving precise alignment between text prompts and generated content. We identify two key issues in the attention mechanism of MM-DiT, namely 1) the suppression of cross-modal attention due to token imbalance between visual and textual modalities and 2) the lack of timestep-aware attention weighting, which hinder the alignment. To address these issues, we propose \textbf{Temperature-Adjusted Cross-modal Attention (TACA)}, a parameter-efficient method that dynamically rebalances multimodal interactions through temperature scaling and timestep-dependent adjustment. When combined with LoRA fine-tuning, TACA significantly enhances text-image alignment on the T2I-CompBench benchmark with minimal computational overhead. We tested TACA on state-of-the-art models like FLUX and SD3.5, demonstrating its ability to improve image-text alignment in terms of object appearance, attribute binding, and spatial relationships. Our findings highlight the importance of balancing cross-modal attention in improving semantic fidelity in text-to-image diffusion models. Our codes are publicly available at \href{https://github.com/Vchitect/TACA}
☆ Rethinking Crowd-Sourced Evaluation of Neuron Explanations
Interpreting individual neurons or directions in activations space is an important component of mechanistic interpretability. As such, many algorithms have been proposed to automatically produce neuron explanations, but it is often not clear how reliable these explanations are, or which methods produce the best explanations. This can be measured via crowd-sourced evaluations, but they can often be noisy and expensive, leading to unreliable results. In this paper, we carefully analyze the evaluation pipeline and develop a cost-effective and highly accurate crowdsourced evaluation strategy. In contrast to previous human studies that only rate whether the explanation matches the most highly activating inputs, we estimate whether the explanation describes neuron activations across all inputs. To estimate this effectively, we introduce a novel application of importance sampling to determine which inputs are the most valuable to show to raters, leading to around 30x cost reduction compared to uniform sampling. We also analyze the label noise present in crowd-sourced evaluations and propose a Bayesian method to aggregate multiple ratings leading to a further ~5x reduction in number of ratings required for the same accuracy. Finally, we use these methods to conduct a large-scale study comparing the quality of neuron explanations produced by the most popular methods for two different vision models.
☆ CXR-LT 2024: A MICCAI challenge on long-tailed, multi-label, and zero-shot disease classification from chest X-ray
The CXR-LT series is a community-driven initiative designed to enhance lung disease classification using chest X-rays (CXR). It tackles challenges in open long-tailed lung disease classification and enhances the measurability of state-of-the-art techniques. The first event, CXR-LT 2023, aimed to achieve these goals by providing high-quality benchmark CXR data for model development and conducting comprehensive evaluations to identify ongoing issues impacting lung disease classification performance. Building on the success of CXR-LT 2023, the CXR-LT 2024 expands the dataset to 377,110 chest X-rays (CXRs) and 45 disease labels, including 19 new rare disease findings. It also introduces a new focus on zero-shot learning to address limitations identified in the previous event. Specifically, CXR-LT 2024 features three tasks: (i) long-tailed classification on a large, noisy test set, (ii) long-tailed classification on a manually annotated "gold standard" subset, and (iii) zero-shot generalization to five previously unseen disease findings. This paper provides an overview of CXR-LT 2024, detailing the data curation process and consolidating state-of-the-art solutions, including the use of multimodal models for rare disease detection, advanced generative approaches to handle noisy labels, and zero-shot learning strategies for unseen diseases. Additionally, the expanded dataset enhances disease coverage to better represent real-world clinical settings, offering a valuable resource for future research. By synthesizing the insights and innovations of participating teams, we aim to advance the development of clinically realistic and generalizable diagnostic models for chest radiography.
comment: 17 pages, 3 figures
☆ Real-time Localization of a Soccer Ball from a Single Camera
We propose a computationally efficient method for real-time three-dimensional football trajectory reconstruction from a single broadcast camera. In contrast to previous work, our approach introduces a multi-mode state model with $W$ discrete modes to significantly accelerate optimization while preserving centimeter-level accuracy -- even in cases of severe occlusion, motion blur, and complex backgrounds. The system operates on standard CPUs and achieves low latency suitable for live broadcast settings. Extensive evaluation on a proprietary dataset of 6K-resolution Russian Premier League matches demonstrates performance comparable to multi-camera systems, without the need for specialized or costly infrastructure. This work provides a practical method for accessible and accurate 3D ball tracking in professional football environments.
comment: 13 pages, 4 figures
☆ CyberV: Cybernetics for Test-time Scaling in Video Understanding
Current Multimodal Large Language Models (MLLMs) may struggle with understanding long or complex videos due to computational demands at test time, lack of robustness, and limited accuracy, primarily stemming from their feed-forward processing nature. These limitations could be more severe for models with fewer parameters. To address these limitations, we propose a novel framework inspired by cybernetic principles, redesigning video MLLMs as adaptive systems capable of self-monitoring, self-correction, and dynamic resource allocation during inference. Our approach, CyberV, introduces a cybernetic loop consisting of an MLLM Inference System, a Sensor, and a Controller. Specifically, the sensor monitors forward processes of the MLLM and collects intermediate interpretations, such as attention drift, then the controller determines when and how to trigger self-correction and generate feedback to guide the next round. This test-time adaptive scaling framework enhances frozen MLLMs without requiring retraining or additional components. Experiments demonstrate significant improvements: CyberV boosts Qwen2.5-VL-7B by 8.3% and InternVL3-8B by 5.5% on VideoMMMU, surpassing the competitive proprietary model GPT-4o. When applied to Qwen2.5-VL-72B, it yields a 10.0% improvement, achieving performance even comparable to human experts. Furthermore, our method demonstrates consistent gains on general-purpose benchmarks, such as VideoMME and WorldSense, highlighting its effectiveness and generalization capabilities in making MLLMs more robust and accurate for dynamic video understanding. The code is released at https://github.com/marinero4972/CyberV.
☆ SpaCE-10: A Comprehensive Benchmark for Multimodal Large Language Models in Compositional Spatial Intelligence
Multimodal Large Language Models (MLLMs) have achieved remarkable progress in various multimodal tasks. To pursue higher intelligence in space, MLLMs require integrating multiple atomic spatial capabilities to handle complex and dynamic tasks. However, existing benchmarks struggle to comprehensively evaluate the spatial intelligence of common MLLMs from the atomic level to the compositional level. To fill this gap, we present SpaCE-10, a comprehensive benchmark for compositional spatial evaluations. In SpaCE-10, we define 10 atomic spatial capabilities, which are combined to form 8 compositional capabilities. Based on these definitions, we propose a novel hierarchical annotation pipeline to generate high-quality and diverse question-answer (QA) pairs. With over 150+ hours of human expert effort, we obtain over 5k QA pairs for 811 real indoor scenes in SpaCE-10, which covers various evaluation settings like point cloud input and multi-choice QA. We conduct an extensive evaluation of common MLLMs on SpaCE-10 and find that even the most advanced MLLM still lags behind humans by large margins. Through our careful study, we also draw several significant findings that benefit the MLLM community. For example, we reveal that the shortcoming of counting capability greatly limits the compositional spatial capabilities of existing MLLMs. The evaluation code and benchmark datasets are available at https://github.com/Cuzyoung/SpaCE-10.
☆ SlideCoder: Layout-aware RAG-enhanced Hierarchical Slide Generation from Design
Manual slide creation is labor-intensive and requires expert prior knowledge. Existing natural language-based LLM generation methods struggle to capture the visual and structural nuances of slide designs. To address this, we formalize the Reference Image to Slide Generation task and propose Slide2Code, the first benchmark with difficulty-tiered samples based on a novel Slide Complexity Metric. We introduce SlideCoder, a layout-aware, retrieval-augmented framework for generating editable slides from reference images. SlideCoder integrates a Color Gradient-based Segmentation algorithm and a Hierarchical Retrieval-Augmented Generation method to decompose complex tasks and enhance code generation. We also release SlideMaster, a 7B open-source model fine-tuned with improved reverse-engineered data. Experiments show that SlideCoder outperforms state-of-the-art baselines by up to 40.5 points, demonstrating strong performance across layout fidelity, execution accuracy, and visual consistency. Our code is available at https://github.com/vinsontang1/SlideCoder.
☆ Reinforcing Multimodal Understanding and Generation with Dual Self-rewards
Building upon large language models (LLMs), recent large multimodal models (LMMs) unify cross-model understanding and generation into a single framework. However, LMMs still struggle to achieve accurate image-text alignment, prone to generating text responses contradicting the visual input or failing to follow the text-to-image prompts. Current solutions require external supervision (e.g., human feedback or reward models) and only address unidirectional tasks-either understanding or generation. In this work, based on the observation that understanding and generation are inverse dual tasks, we introduce a self-supervised dual reward mechanism to reinforce the understanding and generation capabilities of LMMs. Specifically, we sample multiple outputs for a given input in one task domain, then reverse the input-output pairs to compute the dual likelihood of the model as self-rewards for optimization. Extensive experimental results on visual understanding and generation benchmarks demonstrate that our method can effectively enhance the performance of the model without any external supervision, especially achieving remarkable improvements in text-to-image tasks.
☆ Creating a Historical Migration Dataset from Finnish Church Records, 1800-1920
This article presents a large-scale effort to create a structured dataset of internal migration in Finland between 1800 and 1920 using digitized church moving records. These records, maintained by Evangelical-Lutheran parishes, document the migration of individuals and families and offer a valuable source for studying historical demographic patterns. The dataset includes over six million entries extracted from approximately 200,000 images of handwritten migration records. The data extraction process was automated using a deep learning pipeline that included layout analysis, table detection, cell classification, and handwriting recognition. The complete pipeline was applied to all images, resulting in a structured dataset suitable for research. The dataset can be used to study internal migration, urbanization, and family migration, and the spread of disease in preindustrial Finland. A case study from the Elim\"aki parish shows how local migration histories can be reconstructed. The work demonstrates how large volumes of handwritten archival material can be transformed into structured data to support historical and demographic research.
☆ Decoupling the Image Perception and Multimodal Reasoning for Reasoning Segmentation with Digital Twin Representations
Reasoning Segmentation (RS) is a multimodal vision-text task that requires segmenting objects based on implicit text queries, demanding both precise visual perception and vision-text reasoning capabilities. Current RS approaches rely on fine-tuning vision-language models (VLMs) for both perception and reasoning, but their tokenization of images fundamentally disrupts continuous spatial relationships between objects. We introduce DTwinSeger, a novel RS approach that leverages Digital Twin (DT) representation as an intermediate layer to decouple perception from reasoning. Innovatively, DTwinSeger reformulates RS as a two-stage process, where the first transforms the image into a structured DT representation that preserves spatial relationships and semantic properties and then employs a Large Language Model (LLM) to perform explicit reasoning over this representation to identify target objects. We propose a supervised fine-tuning method specifically for LLM with DT representation, together with a corresponding fine-tuning dataset Seg-DT, to enhance the LLM's reasoning capabilities with DT representations. Experiments show that our method can achieve state-of-the-art performance on two image RS benchmarks and three image referring segmentation benchmarks. It yields that DT representation functions as an effective bridge between vision and text, enabling complex multimodal reasoning tasks to be accomplished solely with an LLM.
☆ Mimicking or Reasoning: Rethinking Multi-Modal In-Context Learning in Vision-Language Models
Vision-language models (VLMs) are widely assumed to exhibit in-context learning (ICL), a property similar to that of their language-only counterparts. While recent work suggests VLMs can perform multimodal ICL (MM-ICL), studies show they often rely on shallow heuristics -- such as copying or majority voting -- rather than true task understanding. We revisit this assumption by evaluating VLMs under distribution shifts, where support examples come from a dataset different from the query. Surprisingly, performance often degrades with more demonstrations, and models tend to copy answers rather than learn from them. To investigate further, we propose a new MM-ICL with Reasoning pipeline that augments each demonstration with a generated rationale alongside the answer. We conduct extensive and comprehensive experiments on both perception- and reasoning-required datasets with open-source VLMs ranging from 3B to 72B and proprietary models such as Gemini 2.0. We conduct controlled studies varying shot count, retrieval method, rationale quality, and distribution. Our results show limited performance sensitivity across these factors, suggesting that current VLMs do not effectively utilize demonstration-level information as intended in MM-ICL.
☆ Squeeze3D: Your 3D Generation Model is Secretly an Extreme Neural Compressor
We propose Squeeze3D, a novel framework that leverages implicit prior knowledge learnt by existing pre-trained 3D generative models to compress 3D data at extremely high compression ratios. Our approach bridges the latent spaces between a pre-trained encoder and a pre-trained generation model through trainable mapping networks. Any 3D model represented as a mesh, point cloud, or a radiance field is first encoded by the pre-trained encoder and then transformed (i.e. compressed) into a highly compact latent code. This latent code can effectively be used as an extremely compressed representation of the mesh or point cloud. A mapping network transforms the compressed latent code into the latent space of a powerful generative model, which is then conditioned to recreate the original 3D model (i.e. decompression). Squeeze3D is trained entirely on generated synthetic data and does not require any 3D datasets. The Squeeze3D architecture can be flexibly used with existing pre-trained 3D encoders and existing generative models. It can flexibly support different formats, including meshes, point clouds, and radiance fields. Our experiments demonstrate that Squeeze3D achieves compression ratios of up to 2187x for textured meshes, 55x for point clouds, and 619x for radiance fields while maintaining visual quality comparable to many existing methods. Squeeze3D only incurs a small compression and decompression latency since it does not involve training object-specific networks to compress an object.
☆ A Comparative Study of U-Net Architectures for Change Detection in Satellite Images
Remote sensing change detection is essential for monitoring the everchanging landscapes of the Earth. The U-Net architecture has gained popularity for its capability to capture spatial information and perform pixel-wise classification. However, their application in the Remote sensing field remains largely unexplored. Therefore, this paper fill the gap by conducting a comprehensive analysis of 34 papers. This study conducts a comparison and analysis of 18 different U-Net variations, assessing their potential for detecting changes in remote sensing. We evaluate both benefits along with drawbacks of each variation within the framework of this particular application. We emphasize variations that are explicitly built for change detection, such as Siamese Swin-U-Net, which utilizes a Siamese architecture. The analysis highlights the significance of aspects such as managing data from different time periods and collecting relationships over a long distance to enhance the precision of change detection. This study provides valuable insights for researchers and practitioners that choose U-Net versions for remote sensing change detection tasks.
☆ Speedy Deformable 3D Gaussian Splatting: Fast Rendering and Compression of Dynamic Scenes
Recent extensions of 3D Gaussian Splatting (3DGS) to dynamic scenes achieve high-quality novel view synthesis by using neural networks to predict the time-varying deformation of each Gaussian. However, performing per-Gaussian neural inference at every frame poses a significant bottleneck, limiting rendering speed and increasing memory and compute requirements. In this paper, we present Speedy Deformable 3D Gaussian Splatting (SpeeDe3DGS), a general pipeline for accelerating the rendering speed of dynamic 3DGS and 4DGS representations by reducing neural inference through two complementary techniques. First, we propose a temporal sensitivity pruning score that identifies and removes Gaussians with low contribution to the dynamic scene reconstruction. We also introduce an annealing smooth pruning mechanism that improves pruning robustness in real-world scenes with imprecise camera poses. Second, we propose GroupFlow, a motion analysis technique that clusters Gaussians by trajectory similarity and predicts a single rigid transformation per group instead of separate deformations for each Gaussian. Together, our techniques accelerate rendering by $10.37\times$, reduce model size by $7.71\times$, and shorten training time by $2.71\times$ on the NeRF-DS dataset. SpeeDe3DGS also improves rendering speed by $4.20\times$ and $58.23\times$ on the D-NeRF and HyperNeRF vrig datasets. Our methods are modular and can be integrated into any deformable 3DGS or 4DGS framework.
comment: Project Page: https://speede3dgs.github.io/
☆ WeThink: Toward General-purpose Vision-Language Reasoning via Reinforcement Learning
Building on the success of text-based reasoning models like DeepSeek-R1, extending these capabilities to multimodal reasoning holds great promise. While recent works have attempted to adapt DeepSeek-R1-style reinforcement learning (RL) training paradigms to multimodal large language models (MLLM), focusing on domain-specific tasks like math and visual perception, a critical question remains: How can we achieve the general-purpose visual-language reasoning through RL? To address this challenge, we make three key efforts: (1) A novel Scalable Multimodal QA Synthesis pipeline that autonomously generates context-aware, reasoning-centric question-answer (QA) pairs directly from the given images. (2) The open-source WeThink dataset containing over 120K multimodal QA pairs with annotated reasoning paths, curated from 18 diverse dataset sources and covering various question domains. (3) A comprehensive exploration of RL on our dataset, incorporating a hybrid reward mechanism that combines rule-based verification with model-based assessment to optimize RL training efficiency across various task domains. Across 14 diverse MLLM benchmarks, we demonstrate that our WeThink dataset significantly enhances performance, from mathematical reasoning to diverse general multimodal tasks. Moreover, we show that our automated data pipeline can continuously increase data diversity to further improve model performance.
☆ Diffuse Everything: Multimodal Diffusion Models on Arbitrary State Spaces ICML 2025
Diffusion models have demonstrated remarkable performance in generating unimodal data across various tasks, including image, video, and text generation. On the contrary, the joint generation of multimodal data through diffusion models is still in the early stages of exploration. Existing approaches heavily rely on external preprocessing protocols, such as tokenizers and variational autoencoders, to harmonize varied data representations into a unified, unimodal format. This process heavily demands the high accuracy of encoders and decoders, which can be problematic for applications with limited data. To lift this restriction, we propose a novel framework for building multimodal diffusion models on arbitrary state spaces, enabling native generation of coupled data across different modalities. By introducing an innovative decoupled noise schedule for each modality, we enable both unconditional and modality-conditioned generation within a single model simultaneously. We empirically validate our approach for text-image generation and mixed-type tabular data synthesis, demonstrating that it achieves competitive performance.
comment: Accepted to ICML 2025. Code available at https://github.com/KevinRojas1499/Diffuse-Everything
☆ GaussianVAE: Adaptive Learning Dynamics of 3D Gaussians for High-Fidelity Super-Resolution
We present a novel approach for enhancing the resolution and geometric fidelity of 3D Gaussian Splatting (3DGS) beyond native training resolution. Current 3DGS methods are fundamentally limited by their input resolution, producing reconstructions that cannot extrapolate finer details than are present in the training views. Our work breaks this limitation through a lightweight generative model that predicts and refines additional 3D Gaussians where needed most. The key innovation is our Hessian-assisted sampling strategy, which intelligently identifies regions that are likely to benefit from densification, ensuring computational efficiency. Unlike computationally intensive GANs or diffusion approaches, our method operates in real-time (0.015s per inference on a single consumer-grade GPU), making it practical for interactive applications. Comprehensive experiments demonstrate significant improvements in both geometric accuracy and rendering quality compared to state-of-the-art methods, establishing a new paradigm for resolution-free 3D scene enhancement.
☆ Video Unlearning via Low-Rank Refusal Vector
Video generative models democratize the creation of visual content through intuitive instruction following, but they also inherit the biases and harmful concepts embedded within their web-scale training data. This inheritance creates a significant risk, as users can readily generate undesirable and even illegal content. This work introduces the first unlearning technique tailored explicitly for video diffusion models to address this critical issue. Our method requires 5 multi-modal prompt pairs only. Each pair contains a "safe" and an "unsafe" example that differ only by the target concept. Averaging their per-layer latent differences produces a "refusal vector", which, once subtracted from the model parameters, neutralizes the unsafe concept. We introduce a novel low-rank factorization approach on the covariance difference of embeddings that yields robust refusal vectors. This isolates the target concept while minimizing collateral unlearning of other semantics, thus preserving the visual quality of the generated video. Our method preserves the model's generation quality while operating without retraining or access to the original training data. By embedding the refusal direction directly into the model's weights, the suppression mechanism becomes inherently more robust against adversarial bypass attempts compared to surface-level input-output filters. In a thorough qualitative and quantitative evaluation, we show that we can neutralize a variety of harmful contents, including explicit nudity, graphic violence, copyrights, and trademarks. Project page: https://www.pinlab.org/video-unlearning.
EgoM2P: Egocentric Multimodal Multitask Pretraining
Understanding multimodal signals in egocentric vision, such as RGB video, depth, camera poses, and gaze, is essential for applications in augmented reality, robotics, and human-computer interaction. These capabilities enable systems to better interpret the camera wearer's actions, intentions, and surrounding environment. However, building large-scale egocentric multimodal and multitask models presents unique challenges. Egocentric data are inherently heterogeneous, with large variations in modality coverage across devices and settings. Generating pseudo-labels for missing modalities, such as gaze or head-mounted camera trajectories, is often infeasible, making standard supervised learning approaches difficult to scale. Furthermore, dynamic camera motion and the complex temporal and spatial structure of first-person video pose additional challenges for the direct application of existing multimodal foundation models. To address these challenges, we introduce a set of efficient temporal tokenizers and propose EgoM2P, a masked modeling framework that learns from temporally aware multimodal tokens to train a large, general-purpose model for egocentric 4D understanding. This unified design supports multitasking across diverse egocentric perception and synthesis tasks, including gaze prediction, egocentric camera tracking, and monocular depth estimation from egocentric video. EgoM2P also serves as a generative model for conditional egocentric video synthesis. Across these tasks, EgoM2P matches or outperforms specialist models while being an order of magnitude faster. We will fully open-source EgoM2P to support the community and advance egocentric vision research. Project page: https://egom2p.github.io/
☆ CrosswalkNet: An Optimized Deep Learning Framework for Pedestrian Crosswalk Detection in Aerial Images with High-Performance Computing
With the increasing availability of aerial and satellite imagery, deep learning presents significant potential for transportation asset management, safety analysis, and urban planning. This study introduces CrosswalkNet, a robust and efficient deep learning framework designed to detect various types of pedestrian crosswalks from 15-cm resolution aerial images. CrosswalkNet incorporates a novel detection approach that improves upon traditional object detection strategies by utilizing oriented bounding boxes (OBB), enhancing detection precision by accurately capturing crosswalks regardless of their orientation. Several optimization techniques, including Convolutional Block Attention, a dual-branch Spatial Pyramid Pooling-Fast module, and cosine annealing, are implemented to maximize performance and efficiency. A comprehensive dataset comprising over 23,000 annotated crosswalk instances is utilized to train and validate the proposed framework. The best-performing model achieves an impressive precision of 96.5% and a recall of 93.3% on aerial imagery from Massachusetts, demonstrating its accuracy and effectiveness. CrosswalkNet has also been successfully applied to datasets from New Hampshire, Virginia, and Maine without transfer learning or fine-tuning, showcasing its robustness and strong generalization capability. Additionally, the crosswalk detection results, processed using High-Performance Computing (HPC) platforms and provided in polygon shapefile format, have been shown to accelerate data processing and detection, supporting real-time analysis for safety and mobility applications. This integration offers policymakers, transportation engineers, and urban planners an effective instrument to enhance pedestrian safety and improve urban mobility.
☆ Diffusion Counterfactual Generation with Semantic Abduction
Counterfactual image generation presents significant challenges, including preserving identity, maintaining perceptual quality, and ensuring faithfulness to an underlying causal model. While existing auto-encoding frameworks admit semantic latent spaces which can be manipulated for causal control, they struggle with scalability and fidelity. Advancements in diffusion models present opportunities for improving counterfactual image editing, having demonstrated state-of-the-art visual quality, human-aligned perception and representation learning capabilities. Here, we present a suite of diffusion-based causal mechanisms, introducing the notions of spatial, semantic and dynamic abduction. We propose a general framework that integrates semantic representations into diffusion models through the lens of Pearlian causality to edit images via a counterfactual reasoning process. To our knowledge, this is the first work to consider high-level semantic identity preservation for diffusion counterfactuals and to demonstrate how semantic control enables principled trade-offs between faithful causal control and identity preservation.
comment: Proceedings of the 42nd International Conference on Machine Learning, Vancouver, Canada
☆ Spatio-Temporal State Space Model For Efficient Event-Based Optical Flow
Event cameras unlock new frontiers that were previously unthinkable with standard frame-based cameras. One notable example is low-latency motion estimation (optical flow), which is critical for many real-time applications. In such applications, the computational efficiency of algorithms is paramount. Although recent deep learning paradigms such as CNN, RNN, or ViT have shown remarkable performance, they often lack the desired computational efficiency. Conversely, asynchronous event-based methods including SNNs and GNNs are computationally efficient; however, these approaches fail to capture sufficient spatio-temporal information, a powerful feature required to achieve better performance for optical flow estimation. In this work, we introduce Spatio-Temporal State Space Model (STSSM) module along with a novel network architecture to develop an extremely efficient solution with competitive performance. Our STSSM module leverages state-space models to effectively capture spatio-temporal correlations in event data, offering higher performance with lower complexity compared to ViT, CNN-based architectures in similar settings. Our model achieves 4.5x faster inference and 8x lower computations compared to TMA and 2x lower computations compared to EV-FlowNet with competitive performance on the DSEC benchmark. Our code will be available at https://github.com/AhmedHumais/E-STMFlow
☆ FreeGave: 3D Physics Learning from Dynamic Videos by Gaussian Velocity CVPR 2025
In this paper, we aim to model 3D scene geometry, appearance, and the underlying physics purely from multi-view videos. By applying various governing PDEs as PINN losses or incorporating physics simulation into neural networks, existing works often fail to learn complex physical motions at boundaries or require object priors such as masks or types. In this paper, we propose FreeGave to learn the physics of complex dynamic 3D scenes without needing any object priors. The key to our approach is to introduce a physics code followed by a carefully designed divergence-free module for estimating a per-Gaussian velocity field, without relying on the inefficient PINN losses. Extensive experiments on three public datasets and a newly collected challenging real-world dataset demonstrate the superior performance of our method for future frame extrapolation and motion segmentation. Most notably, our investigation into the learned physics codes reveals that they truly learn meaningful 3D physical motion patterns in the absence of any human labels in training.
comment: CVPR 2025. Code and data are available at: https://github.com/vLAR-group/FreeGave
☆ VIVAT: Virtuous Improving VAE Training through Artifact Mitigation
Variational Autoencoders (VAEs) remain a cornerstone of generative computer vision, yet their training is often plagued by artifacts that degrade reconstruction and generation quality. This paper introduces VIVAT, a systematic approach to mitigating common artifacts in KL-VAE training without requiring radical architectural changes. We present a detailed taxonomy of five prevalent artifacts - color shift, grid patterns, blur, corner and droplet artifacts - and analyze their root causes. Through straightforward modifications, including adjustments to loss weights, padding strategies, and the integration of Spatially Conditional Normalization, we demonstrate significant improvements in VAE performance. Our method achieves state-of-the-art results in image reconstruction metrics (PSNR and SSIM) across multiple benchmarks and enhances text-to-image generation quality, as evidenced by superior CLIP scores. By preserving the simplicity of the KL-VAE framework while addressing its practical challenges, VIVAT offers actionable insights for researchers and practitioners aiming to optimize VAE training.
Egocentric Event-Based Vision for Ping Pong Ball Trajectory Prediction CVPR
In this paper, we present a real-time egocentric trajectory prediction system for table tennis using event cameras. Unlike standard cameras, which suffer from high latency and motion blur at fast ball speeds, event cameras provide higher temporal resolution, allowing more frequent state updates, greater robustness to outliers, and accurate trajectory predictions using just a short time window after the opponent's impact. We collect a dataset of ping-pong game sequences, including 3D ground-truth trajectories of the ball, synchronized with sensor data from the Meta Project Aria glasses and event streams. Our system leverages foveated vision, using eye-gaze data from the glasses to process only events in the viewer's fovea. This biologically inspired approach improves ball detection performance and significantly reduces computational latency, as it efficiently allocates resources to the most perceptually relevant regions, achieving a reduction factor of 10.81 on the collected trajectories. Our detection pipeline has a worst-case total latency of 4.5 ms, including computation and perception - significantly lower than a frame-based 30 FPS system, which, in the worst case, takes 66 ms solely for perception. Finally, we fit a trajectory prediction model to the estimated states of the ball, enabling 3D trajectory forecasting in the future. To the best of our knowledge, this is the first approach to predict table tennis trajectories from an egocentric perspective using event cameras.
comment: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville (TN), USA, 2025; 5th International Workshop on Event-Based Vision
☆ LogoSP: Local-global Grouping of Superpoints for Unsupervised Semantic Segmentation of 3D Point Clouds CVPR 2025
We study the problem of unsupervised 3D semantic segmentation on raw point clouds without needing human labels in training. Existing methods usually formulate this problem into learning per-point local features followed by a simple grouping strategy, lacking the ability to discover additional and possibly richer semantic priors beyond local features. In this paper, we introduce LogoSP to learn 3D semantics from both local and global point features. The key to our approach is to discover 3D semantic information by grouping superpoints according to their global patterns in the frequency domain, thus generating highly accurate semantic pseudo-labels for training a segmentation network. Extensive experiments on two indoor and an outdoor datasets show that our LogoSP surpasses all existing unsupervised methods by large margins, achieving the state-of-the-art performance for unsupervised 3D semantic segmentation. Notably, our investigation into the learned global patterns reveals that they truly represent meaningful 3D semantics in the absence of human labels during training.
comment: CVPR 2025. Code and data are available at: https://github.com/vLAR-group/LogoSP
☆ SAM2Auto: Auto Annotation Using FLASH
Vision-Language Models (VLMs) lag behind Large Language Models due to the scarcity of annotated datasets, as creating paired visual-textual annotations is labor-intensive and expensive. To address this bottleneck, we introduce SAM2Auto, the first fully automated annotation pipeline for video datasets requiring no human intervention or dataset-specific training. Our approach consists of two key components: SMART-OD, a robust object detection system that combines automatic mask generation with open-world object detection capabilities, and FLASH (Frame-Level Annotation and Segmentation Handler), a multi-object real-time video instance segmentation (VIS) that maintains consistent object identification across video frames even with intermittent detection gaps. Unlike existing open-world detection methods that require frame-specific hyperparameter tuning and suffer from numerous false positives, our system employs statistical approaches to minimize detection errors while ensuring consistent object tracking throughout entire video sequences. Extensive experimental validation demonstrates that SAM2Auto achieves comparable accuracy to manual annotation while dramatically reducing annotation time and eliminating labor costs. The system successfully handles diverse datasets without requiring retraining or extensive parameter adjustments, making it a practical solution for large-scale dataset creation. Our work establishes a new baseline for automated video annotation and provides a pathway for accelerating VLM development by addressing the fundamental dataset bottleneck that has constrained progress in vision-language understanding.
☆ PolyVivid: Vivid Multi-Subject Video Generation with Cross-Modal Interaction and Enhancement
Despite recent advances in video generation, existing models still lack fine-grained controllability, especially for multi-subject customization with consistent identity and interaction. In this paper, we propose PolyVivid, a multi-subject video customization framework that enables flexible and identity-consistent generation. To establish accurate correspondences between subject images and textual entities, we design a VLLM-based text-image fusion module that embeds visual identities into the textual space for precise grounding. To further enhance identity preservation and subject interaction, we propose a 3D-RoPE-based enhancement module that enables structured bidirectional fusion between text and image embeddings. Moreover, we develop an attention-inherited identity injection module to effectively inject fused identity features into the video generation process, mitigating identity drift. Finally, we construct an MLLM-based data pipeline that combines MLLM-based grounding, segmentation, and a clique-based subject consolidation strategy to produce high-quality multi-subject data, effectively enhancing subject distinction and reducing ambiguity in downstream video generation. Extensive experiments demonstrate that PolyVivid achieves superior performance in identity fidelity, video realism, and subject alignment, outperforming existing open-source and commercial baselines.
☆ F2Net: A Frequency-Fused Network for Ultra-High Resolution Remote Sensing Segmentation
Semantic segmentation of ultra-high-resolution (UHR) remote sensing imagery is critical for applications like environmental monitoring and urban planning but faces computational and optimization challenges. Conventional methods either lose fine details through downsampling or fragment global context via patch processing. While multi-branch networks address this trade-off, they suffer from computational inefficiency and conflicting gradient dynamics during training. We propose F2Net, a frequency-aware framework that decomposes UHR images into high- and low-frequency components for specialized processing. The high-frequency branch preserves full-resolution structural details, while the low-frequency branch processes downsampled inputs through dual sub-branches capturing short- and long-range dependencies. A Hybrid-Frequency Fusion module integrates these observations, guided by two novel objectives: Cross-Frequency Alignment Loss ensures semantic consistency between frequency components, and Cross-Frequency Balance Loss regulates gradient magnitudes across branches to stabilize training. Evaluated on DeepGlobe and Inria Aerial benchmarks, F2Net achieves state-of-the-art performance with mIoU of 80.22 and 83.39, respectively. Our code will be publicly available.
☆ Diffusion models under low-noise regime
Recent work on diffusion models proposed that they operate in two regimes: memorization, in which models reproduce their training data, and generalization, in which they generate novel samples. While this has been tested in high-noise settings, the behavior of diffusion models as effective denoisers when the corruption level is small remains unclear. To address this gap, we systematically investigated the behavior of diffusion models under low-noise diffusion dynamics, with implications for model robustness and interpretability. Using (i) CelebA subsets of varying sample sizes and (ii) analytic Gaussian mixture benchmarks, we reveal that models trained on disjoint data diverge near the data manifold even when their high-noise outputs converge. We quantify how training set size, data geometry, and model objective choice shape denoising trajectories and affect score accuracy, providing insights into how these models actually learn representations of data distributions. This work starts to address gaps in our understanding of generative model reliability in practical applications where small perturbations are common.
☆ R3D2: Realistic 3D Asset Insertion via Diffusion for Autonomous Driving Simulation
Validating autonomous driving (AD) systems requires diverse and safety-critical testing, making photorealistic virtual environments essential. Traditional simulation platforms, while controllable, are resource-intensive to scale and often suffer from a domain gap with real-world data. In contrast, neural reconstruction methods like 3D Gaussian Splatting (3DGS) offer a scalable solution for creating photorealistic digital twins of real-world driving scenes. However, they struggle with dynamic object manipulation and reusability as their per-scene optimization-based methodology tends to result in incomplete object models with integrated illumination effects. This paper introduces R3D2, a lightweight, one-step diffusion model designed to overcome these limitations and enable realistic insertion of complete 3D assets into existing scenes by generating plausible rendering effects-such as shadows and consistent lighting-in real time. This is achieved by training R3D2 on a novel dataset: 3DGS object assets are generated from in-the-wild AD data using an image-conditioned 3D generative model, and then synthetically placed into neural rendering-based virtual environments, allowing R3D2 to learn realistic integration. Quantitative and qualitative evaluations demonstrate that R3D2 significantly enhances the realism of inserted assets, enabling use-cases like text-to-3D asset insertion and cross-scene/dataset object transfer, allowing for true scalability in AD validation. To promote further research in scalable and realistic AD simulation, we will release our dataset and code, see https://research.zenseact.com/publications/R3D2/.
☆ M2Restore: Mixture-of-Experts-based Mamba-CNN Fusion Framework for All-in-One Image Restoration
Natural images are often degraded by complex, composite degradations such as rain, snow, and haze, which adversely impact downstream vision applications. While existing image restoration efforts have achieved notable success, they are still hindered by two critical challenges: limited generalization across dynamically varying degradation scenarios and a suboptimal balance between preserving local details and modeling global dependencies. To overcome these challenges, we propose M2Restore, a novel Mixture-of-Experts (MoE)-based Mamba-CNN fusion framework for efficient and robust all-in-one image restoration. M2Restore introduces three key contributions: First, to boost the model's generalization across diverse degradation conditions, we exploit a CLIP-guided MoE gating mechanism that fuses task-conditioned prompts with CLIP-derived semantic priors. This mechanism is further refined via cross-modal feature calibration, which enables precise expert selection for various degradation types. Second, to jointly capture global contextual dependencies and fine-grained local details, we design a dual-stream architecture that integrates the localized representational strength of CNNs with the long-range modeling efficiency of Mamba. This integration enables collaborative optimization of global semantic relationships and local structural fidelity, preserving global coherence while enhancing detail restoration. Third, we introduce an edge-aware dynamic gating mechanism that adaptively balances global modeling and local enhancement by reallocating computational attention to degradation-sensitive regions. This targeted focus leads to more efficient and precise restoration. Extensive experiments across multiple image restoration benchmarks validate the superiority of M2Restore in both visual quality and quantitative performance.
comment: 13 pages, 8 figures, 3 tables
☆ Self-Cascaded Diffusion Models for Arbitrary-Scale Image Super-Resolution
Arbitrary-scale image super-resolution aims to upsample images to any desired resolution, offering greater flexibility than traditional fixed-scale super-resolution. Recent approaches in this domain utilize regression-based or generative models, but many of them are a single-stage upsampling process, which may be challenging to learn across a wide, continuous distribution of scaling factors. Progressive upsampling strategies have shown promise in mitigating this issue, yet their integration with diffusion models for flexible upscaling remains underexplored. Here, we present CasArbi, a novel self-cascaded diffusion framework for arbitrary-scale image super-resolution. CasArbi meets the varying scaling demands by breaking them down into smaller sequential factors and progressively enhancing the image resolution at each step with seamless transitions for arbitrary scales. Our novel coordinate-guided residual diffusion model allows for the learning of continuous image representations while enabling efficient diffusion sampling. Extensive experiments demonstrate that our CasArbi outperforms prior arts in both perceptual and distortion performance metrics across diverse arbitrary-scale super-resolution benchmarks.
☆ Looking Beyond Visible Cues: Implicit Video Question Answering via Dual-Clue Reasoning
Video Question Answering (VideoQA) aims to answer natural language questions based on the given video, with prior work primarily focusing on identifying the duration of relevant segments, referred to as explicit visual evidence. However, explicit visual evidence is not always directly available, particularly when questions target symbolic meanings or deeper intentions, leading to significant performance degradation. To fill this gap, we introduce a novel task and dataset, $\textbf{I}$mplicit $\textbf{V}$ideo $\textbf{Q}$uestion $\textbf{A}$nswering (I-VQA), which focuses on answering questions in scenarios where explicit visual evidence is inaccessible. Given an implicit question and its corresponding video, I-VQA requires answering based on the contextual visual cues present within the video. To tackle I-VQA, we propose a novel reasoning framework, IRM (Implicit Reasoning Model), incorporating dual-stream modeling of contextual actions and intent clues as implicit reasoning chains. IRM comprises the Action-Intent Module (AIM) and the Visual Enhancement Module (VEM). AIM deduces and preserves question-related dual clues by generating clue candidates and performing relation deduction. VEM enhances contextual visual representation by leveraging key contextual clues. Extensive experiments validate the effectiveness of our IRM in I-VQA tasks, outperforming GPT-4o, OpenAI-o3, and fine-tuned VideoChat2 by $0.76\%$, $1.37\%$, and $4.87\%$, respectively. Additionally, IRM performs SOTA on similar implicit advertisement understanding and future prediction in traffic-VQA. Datasets and codes are available for double-blind review in anonymous repo: https://github.com/tychen-SJTU/Implicit-VideoQA.
comment: Preprint
☆ Incorporating Uncertainty-Guided and Top-k Codebook Matching for Real-World Blind Image Super-Resolution
Recent advancements in codebook-based real image super-resolution (SR) have shown promising results in real-world applications. The core idea involves matching high-quality image features from a codebook based on low-resolution (LR) image features. However, existing methods face two major challenges: inaccurate feature matching with the codebook and poor texture detail reconstruction. To address these issues, we propose a novel Uncertainty-Guided and Top-k Codebook Matching SR (UGTSR) framework, which incorporates three key components: (1) an uncertainty learning mechanism that guides the model to focus on texture-rich regions, (2) a Top-k feature matching strategy that enhances feature matching accuracy by fusing multiple candidate features, and (3) an Align-Attention module that enhances the alignment of information between LR and HR features. Experimental results demonstrate significant improvements in texture realism and reconstruction fidelity compared to existing methods. We will release the code upon formal publication.
☆ Identifiable Object Representations under Spatial Ambiguities
Modular object-centric representations are essential for *human-like reasoning* but are challenging to obtain under spatial ambiguities, *e.g. due to occlusions and view ambiguities*. However, addressing challenges presents both theoretical and practical difficulties. We introduce a novel multi-view probabilistic approach that aggregates view-specific slots to capture *invariant content* information while simultaneously learning disentangled global *viewpoint-level* information. Unlike prior single-view methods, our approach resolves spatial ambiguities, provides theoretical guarantees for identifiability, and requires *no viewpoint annotations*. Extensive experiments on standard benchmarks and novel complex datasets validate our method's robustness and scalability.
☆ Image Reconstruction as a Tool for Feature Analysis
Vision encoders are increasingly used in modern applications, from vision-only models to multimodal systems such as vision-language models. Despite their remarkable success, it remains unclear how these architectures represent features internally. Here, we propose a novel approach for interpreting vision features via image reconstruction. We compare two related model families, SigLIP and SigLIP2, which differ only in their training objective, and show that encoders pre-trained on image-based tasks retain significantly more image information than those trained on non-image tasks such as contrastive learning. We further apply our method to a range of vision encoders, ranking them by the informativeness of their feature representations. Finally, we demonstrate that manipulating the feature space yields predictable changes in reconstructed images, revealing that orthogonal rotations (rather than spatial transformations) control color encoding. Our approach can be applied to any vision encoder, shedding light on the inner structure of its feature space. The code and model weights to reproduce the experiments are available in GitHub.
comment: 23 pages, 14 figures
☆ Re-ranking Reasoning Context with Tree Search Makes Large Vision-Language Models Stronger ICML 2025
Recent advancements in Large Vision Language Models (LVLMs) have significantly improved performance in Visual Question Answering (VQA) tasks through multimodal Retrieval-Augmented Generation (RAG). However, existing methods still face challenges, such as the scarcity of knowledge with reasoning examples and erratic responses from retrieved knowledge. To address these issues, in this study, we propose a multimodal RAG framework, termed RCTS, which enhances LVLMs by constructing a Reasoning Context-enriched knowledge base and a Tree Search re-ranking method. Specifically, we introduce a self-consistent evaluation mechanism to enrich the knowledge base with intrinsic reasoning patterns. We further propose a Monte Carlo Tree Search with Heuristic Rewards (MCTS-HR) to prioritize the most relevant examples. This ensures that LVLMs can leverage high-quality contextual reasoning for better and more consistent responses. Extensive experiments demonstrate that our framework achieves state-of-the-art performance on multiple VQA datasets, significantly outperforming In-Context Learning (ICL) and Vanilla-RAG methods. It highlights the effectiveness of our knowledge base and re-ranking method in improving LVLMs. Our code is available at https://github.com/yannqi/RCTS-RAG.
comment: ICML 2025 Spotlight. 22 pages, 16 figures
☆ Design and Evaluation of Deep Learning-Based Dual-Spectrum Image Fusion Methods
Visible images offer rich texture details, while infrared images emphasize salient targets. Fusing these complementary modalities enhances scene understanding, particularly for advanced vision tasks under challenging conditions. Recently, deep learning-based fusion methods have gained attention, but current evaluations primarily rely on general-purpose metrics without standardized benchmarks or downstream task performance. Additionally, the lack of well-developed dual-spectrum datasets and fair algorithm comparisons hinders progress. To address these gaps, we construct a high-quality dual-spectrum dataset captured in campus environments, comprising 1,369 well-aligned visible-infrared image pairs across four representative scenarios: daytime, nighttime, smoke occlusion, and underpasses. We also propose a comprehensive and fair evaluation framework that integrates fusion speed, general metrics, and object detection performance using the lang-segment-anything model to ensure fairness in downstream evaluation. Extensive experiments benchmark several state-of-the-art fusion algorithms under this framework. Results demonstrate that fusion models optimized for downstream tasks achieve superior performance in target detection, especially in low-light and occluded scenes. Notably, some algorithms that perform well on general metrics do not translate to strong downstream performance, highlighting limitations of current evaluation practices and validating the necessity of our proposed framework. The main contributions of this work are: (1)a campus-oriented dual-spectrum dataset with diverse and challenging scenes; (2) a task-aware, comprehensive evaluation framework; and (3) thorough comparative analysis of leading fusion methods across multiple datasets, offering insights for future development.
comment: 11 pages, 13 figures
☆ Language-Vision Planner and Executor for Text-to-Visual Reasoning
The advancement in large language models (LLMs) and large vision models has fueled the rapid progress in multi-modal visual-text reasoning capabilities. However, existing vision-language models (VLMs) to date suffer from generalization performance. Inspired by recent development in LLMs for visual reasoning, this paper presents VLAgent, an AI system that can create a step-by-step visual reasoning plan with an easy-to-understand script and execute each step of the plan in real time by integrating planning script with execution verifications via an automated process supported by VLAgent. In the task planning phase, VLAgent fine-tunes an LLM through in-context learning to generate a step-by-step planner for each user-submitted text-visual reasoning task. During the plan execution phase, VLAgent progressively refines the composition of neuro-symbolic executable modules to generate high-confidence reasoning results. VLAgent has three unique design characteristics: First, we improve the quality of plan generation through in-context learning, improving logic reasoning by reducing erroneous logic steps, incorrect programs, and LLM hallucinations. Second, we design a syntax-semantics parser to identify and correct additional logic errors of the LLM-generated planning script prior to launching the plan executor. Finally, we employ the ensemble method to improve the generalization performance of our step-executor. Extensive experiments with four visual reasoning benchmarks (GQA, MME, NLVR2, VQAv2) show that VLAgent achieves significant performance enhancement for multimodal text-visual reasoning applications, compared to the exiting representative VLMs and LLM based visual composition approaches like ViperGPT and VisProg, thanks to the novel optimization modules of VLAgent back-engine (SS-Parser, Plan Repairer, Output Verifiers). Code and data will be made available upon paper acceptance.
☆ Trend-Aware Fashion Recommendation with Visual Segmentation and Semantic Similarity
We introduce a trend-aware and visually-grounded fashion recommendation system that integrates deep visual representations, garment-aware segmentation, semantic category similarity and user behavior simulation. Our pipeline extracts focused visual embeddings by masking non-garment regions via semantic segmentation followed by feature extraction using pretrained CNN backbones (ResNet-50, DenseNet-121, VGG16). To simulate realistic shopping behavior, we generate synthetic purchase histories influenced by user-specific trendiness and item popularity. Recommendations are computed using a weighted scoring function that fuses visual similarity, semantic coherence and popularity alignment. Experiments on the DeepFashion dataset demonstrate consistent gender alignment and improved category relevance, with ResNet-50 achieving 64.95% category similarity and lowest popularity MAE. An ablation study confirms the complementary roles of visual and popularity cues. Our method provides a scalable framework for personalized fashion recommendations that balances individual style with emerging trends. Our implementation is available at https://github.com/meddjilani/FashionRecommender
☆ Difference Inversion: Interpolate and Isolate the Difference with Token Consistency for Image Analogy Generation CVPR 2025
How can we generate an image B' that satisfies A:A'::B:B', given the input images A,A' and B? Recent works have tackled this challenge through approaches like visual in-context learning or visual instruction. However, these methods are typically limited to specific models (e.g. InstructPix2Pix. Inpainting models) rather than general diffusion models (e.g. Stable Diffusion, SDXL). This dependency may lead to inherited biases or lower editing capabilities. In this paper, we propose Difference Inversion, a method that isolates only the difference from A and A' and applies it to B to generate a plausible B'. To address model dependency, it is crucial to structure prompts in the form of a "Full Prompt" suitable for input to stable diffusion models, rather than using an "Instruction Prompt". To this end, we accurately extract the Difference between A and A' and combine it with the prompt of B, enabling a plug-and-play application of the difference. To extract a precise difference, we first identify it through 1) Delta Interpolation. Additionally, to ensure accurate training, we propose the 2) Token Consistency Loss and 3) Zero Initialization of Token Embeddings. Our extensive experiments demonstrate that Difference Inversion outperforms existing baselines both quantitatively and qualitatively, indicating its ability to generate more feasible B' in a model-agnostic manner.
comment: Published at CVPR 2025
Flow-Anything: Learning Real-World Optical Flow Estimation from Large-Scale Single-view Images
Optical flow estimation is a crucial subfield of computer vision, serving as a foundation for video tasks. However, the real-world robustness is limited by animated synthetic datasets for training. This introduces domain gaps when applied to real-world applications and limits the benefits of scaling up datasets. To address these challenges, we propose \textbf{Flow-Anything}, a large-scale data generation framework designed to learn optical flow estimation from any single-view images in the real world. We employ two effective steps to make data scaling-up promising. First, we convert a single-view image into a 3D representation using advanced monocular depth estimation networks. This allows us to render optical flow and novel view images under a virtual camera. Second, we develop an Object-Independent Volume Rendering module and a Depth-Aware Inpainting module to model the dynamic objects in the 3D representation. These two steps allow us to generate realistic datasets for training from large-scale single-view images, namely \textbf{FA-Flow Dataset}. For the first time, we demonstrate the benefits of generating optical flow training data from large-scale real-world images, outperforming the most advanced unsupervised methods and supervised methods on synthetic datasets. Moreover, our models serve as a foundation model and enhance the performance of various downstream video tasks.
☆ SpikeSMOKE: Spiking Neural Networks for Monocular 3D Object Detection with Cross-Scale Gated Coding
Low energy consumption for 3D object detection is an important research area because of the increasing energy consumption with their wide application in fields such as autonomous driving. The spiking neural networks (SNNs) with low-power consumption characteristics can provide a novel solution for this research. Therefore, we apply SNNs to monocular 3D object detection and propose the SpikeSMOKE architecture in this paper, which is a new attempt for low-power monocular 3D object detection. As we all know, discrete signals of SNNs will generate information loss and limit their feature expression ability compared with the artificial neural networks (ANNs).In order to address this issue, inspired by the filtering mechanism of biological neuronal synapses, we propose a cross-scale gated coding mechanism(CSGC), which can enhance feature representation by combining cross-scale fusion of attentional methods and gated filtering mechanisms.In addition, to reduce the computation and increase the speed of training, we present a novel light-weight residual block that can maintain spiking computing paradigm and the highest possible detection performance. Compared to the baseline SpikeSMOKE under the 3D Object Detection, the proposed SpikeSMOKE with CSGC can achieve 11.78 (+2.82, Easy), 10.69 (+3.2, Moderate), and 10.48 (+3.17, Hard) on the KITTI autonomous driving dataset by AP|R11 at 0.7 IoU threshold, respectively. It is important to note that the results of SpikeSMOKE can significantly reduce energy consumption compared to the results on SMOKE. For example,the energy consumption can be reduced by 72.2% on the hard category, while the detection performance is reduced by only 4%. SpikeSMOKE-L (lightweight) can further reduce the amount of parameters by 3 times and computation by 10 times compared to SMOKE.
☆ Language Embedding Meets Dynamic Graph: A New Exploration for Neural Architecture Representation Learning
Neural Architecture Representation Learning aims to transform network models into feature representations for predicting network attributes, playing a crucial role in deploying and designing networks for real-world applications. Recently, inspired by the success of transformers, transformer-based models integrated with Graph Neural Networks (GNNs) have achieved significant progress in representation learning. However, current methods still have some limitations. First, existing methods overlook hardware attribute information, which conflicts with the current trend of diversified deep learning hardware and limits the practical applicability of models. Second, current encoding approaches rely on static adjacency matrices to represent topological structures, failing to capture the structural differences between computational nodes, which ultimately compromises encoding effectiveness. In this paper, we introduce LeDG-Former, an innovative framework that addresses these limitations through the synergistic integration of language-based semantic embedding and dynamic graph representation learning. Specifically, inspired by large language models (LLMs), we propose a language embedding framework where both neural architectures and hardware platform specifications are projected into a unified semantic space through tokenization and LLM processing, enabling zero-shot prediction across different hardware platforms for the first time. Then, we propose a dynamic graph-based transformer for modeling neural architectures, resulting in improved neural architecture modeling performance. On the NNLQP benchmark, LeDG-Former surpasses previous methods, establishing a new SOTA while demonstrating the first successful cross-hardware latency prediction capability. Furthermore, our framework achieves superior performance on the cell-structured NAS-Bench-101 and NAS-Bench-201 datasets.
comment: 9 pages, 3 figures
☆ ETA: Efficiency through Thinking Ahead, A Dual Approach to Self-Driving with Large Models ICCV 2025
How can we benefit from large models without sacrificing inference speed, a common dilemma in self-driving systems? A prevalent solution is a dual-system architecture, employing a small model for rapid, reactive decisions and a larger model for slower but more informative analyses. Existing dual-system designs often implement parallel architectures where inference is either directly conducted using the large model at each current frame or retrieved from previously stored inference results. However, these works still struggle to enable large models for a timely response to every online frame. Our key insight is to shift intensive computations of the current frame to previous time steps and perform a batch inference of multiple time steps to make large models respond promptly to each time step. To achieve the shifting, we introduce Efficiency through Thinking Ahead (ETA), an asynchronous system designed to: (1) propagate informative features from the past to the current frame using future predictions from the large model, (2) extract current frame features using a small model for real-time responsiveness, and (3) integrate these dual features via an action mask mechanism that emphasizes action-critical image regions. Evaluated on the Bench2Drive CARLA Leaderboard-v2 benchmark, ETA advances state-of-the-art performance by 8% with a driving score of 69.53 while maintaining a near-real-time inference speed at 50 ms.
comment: ICCV 2025 submission. For code, see https://github.com/opendrivelab/ETA
☆ ReverB-SNN: Reversing Bit of the Weight and Activation for Spiking Neural Networks ICML2024
The Spiking Neural Network (SNN), a biologically inspired neural network infrastructure, has garnered significant attention recently. SNNs utilize binary spike activations for efficient information transmission, replacing multiplications with additions, thereby enhancing energy efficiency. However, binary spike activation maps often fail to capture sufficient data information, resulting in reduced accuracy. To address this challenge, we advocate reversing the bit of the weight and activation for SNNs, called \textbf{ReverB-SNN}, inspired by recent findings that highlight greater accuracy degradation from quantizing activations compared to weights. Specifically, our method employs real-valued spike activations alongside binary weights in SNNs. This preserves the event-driven and multiplication-free advantages of standard SNNs while enhancing the information capacity of activations. Additionally, we introduce a trainable factor within binary weights to adaptively learn suitable weight amplitudes during training, thereby increasing network capacity. To maintain efficiency akin to vanilla \textbf{ReverB-SNN}, our trainable binary weight SNNs are converted back to standard form using a re-parameterization technique during inference. Extensive experiments across various network architectures and datasets, both static and dynamic, demonstrate that our approach consistently outperforms state-of-the-art methods.
comment: Accpeted by ICML2024
☆ Consistent Video Editing as Flow-Driven Image-to-Video Generation
With the prosper of video diffusion models, down-stream applications like video editing have been significantly promoted without consuming much computational cost. One particular challenge in this task lies at the motion transfer process from the source video to the edited one, where it requires the consideration of the shape deformation in between, meanwhile maintaining the temporal consistency in the generated video sequence. However, existing methods fail to model complicated motion patterns for video editing, and are fundamentally limited to object replacement, where tasks with non-rigid object motions like multi-object and portrait editing are largely neglected. In this paper, we observe that optical flows offer a promising alternative in complex motion modeling, and present FlowV2V to re-investigate video editing as a task of flow-driven Image-to-Video (I2V) generation. Specifically, FlowV2V decomposes the entire pipeline into first-frame editing and conditional I2V generation, and simulates pseudo flow sequence that aligns with the deformed shape, thus ensuring the consistency during editing. Experimental results on DAVIS-EDIT with improvements of 13.67% and 50.66% on DOVER and warping error illustrate the superior temporal consistency and sample quality of FlowV2V compared to existing state-of-the-art ones. Furthermore, we conduct comprehensive ablation studies to analyze the internal functionalities of the first-frame paradigm and flow alignment in the proposed method.
comment: 16 pages, 12 figures
☆ Fine-Grained Motion Compression and Selective Temporal Fusion for Neural B-Frame Video Coding
With the remarkable progress in neural P-frame video coding, neural B-frame coding has recently emerged as a critical research direction. However, most existing neural B-frame codecs directly adopt P-frame coding tools without adequately addressing the unique challenges of B-frame compression, leading to suboptimal performance. To bridge this gap, we propose novel enhancements for motion compression and temporal fusion for neural B-frame coding. First, we design a fine-grained motion compression method. This method incorporates an interactive dual-branch motion auto-encoder with per-branch adaptive quantization steps, which enables fine-grained compression of bi-directional motion vectors while accommodating their asymmetric bitrate allocation and reconstruction quality requirements. Furthermore, this method involves an interactive motion entropy model that exploits correlations between bi-directional motion latent representations by interactively leveraging partitioned latent segments as directional priors. Second, we propose a selective temporal fusion method that predicts bi-directional fusion weights to achieve discriminative utilization of bi-directional multi-scale temporal contexts with varying qualities. Additionally, this method introduces a hyperprior-based implicit alignment mechanism for contextual entropy modeling. By treating the hyperprior as a surrogate for the contextual latent representation, this mechanism implicitly mitigates the misalignment in the fused bi-directional temporal priors. Extensive experiments demonstrate that our proposed codec outperforms state-of-the-art neural B-frame codecs and achieves comparable or even superior compression performance to the H.266/VVC reference software under random-access configurations.
☆ Adaptive Blind Super-Resolution Network for Spatial-Specific and Spatial-Agnostic Degradations
Prior methodologies have disregarded the diversities among distinct degradation types during image reconstruction, employing a uniform network model to handle multiple deteriorations. Nevertheless, we discover that prevalent degradation modalities, including sampling, blurring, and noise, can be roughly categorized into two classes. We classify the first class as spatial-agnostic dominant degradations, less affected by regional changes in image space, such as downsampling and noise degradation. The second class degradation type is intimately associated with the spatial position of the image, such as blurring, and we identify them as spatial-specific dominant degradations. We introduce a dynamic filter network integrating global and local branches to address these two degradation types. This network can greatly alleviate the practical degradation problem. Specifically, the global dynamic filtering layer can perceive the spatial-agnostic dominant degradation in different images by applying weights generated by the attention mechanism to multiple parallel standard convolution kernels, enhancing the network's representation ability. Meanwhile, the local dynamic filtering layer converts feature maps of the image into a spatially specific dynamic filtering operator, which performs spatially specific convolution operations on the image features to handle spatial-specific dominant degradations. By effectively integrating both global and local dynamic filtering operators, our proposed method outperforms state-of-the-art blind super-resolution algorithms in both synthetic and real image datasets.
comment: IEEE TRANSACTIONS ON IMAGE PROCESSING
☆ NOVA3D: Normal Aligned Video Diffusion Model for Single Image to 3D Generation ICME 2025
3D AI-generated content (AIGC) has made it increasingly accessible for anyone to become a 3D content creator. While recent methods leverage Score Distillation Sampling to distill 3D objects from pretrained image diffusion models, they often suffer from inadequate 3D priors, leading to insufficient multi-view consistency. In this work, we introduce NOVA3D, an innovative single-image-to-3D generation framework. Our key insight lies in leveraging strong 3D priors from a pretrained video diffusion model and integrating geometric information during multi-view video fine-tuning. To facilitate information exchange between color and geometric domains, we propose the Geometry-Temporal Alignment (GTA) attention mechanism, thereby improving generalization and multi-view consistency. Moreover, we introduce the de-conflict geometry fusion algorithm, which improves texture fidelity by addressing multi-view inaccuracies and resolving discrepancies in pose alignment. Extensive experiments validate the superiority of NOVA3D over existing baselines.
comment: 8 pages, 7 figures, accepted by ICME 2025
☆ OpenSplat3D: Open-Vocabulary 3D Instance Segmentation using Gaussian Splatting
3D Gaussian Splatting (3DGS) has emerged as a powerful representation for neural scene reconstruction, offering high-quality novel view synthesis while maintaining computational efficiency. In this paper, we extend the capabilities of 3DGS beyond pure scene representation by introducing an approach for open-vocabulary 3D instance segmentation without requiring manual labeling, termed OpenSplat3D. Our method leverages feature-splatting techniques to associate semantic information with individual Gaussians, enabling fine-grained scene understanding. We incorporate Segment Anything Model instance masks with a contrastive loss formulation as guidance for the instance features to achieve accurate instance-level segmentation. Furthermore, we utilize language embeddings of a vision-language model, allowing for flexible, text-driven instance identification. This combination enables our system to identify and segment arbitrary objects in 3D scenes based on natural language descriptions. We show results on LERF-mask and LERF-OVS as well as the full ScanNet++ validation set, demonstrating the effectiveness of our approach.
☆ ProSplat: Improved Feed-Forward 3D Gaussian Splatting for Wide-Baseline Sparse Views
Feed-forward 3D Gaussian Splatting (3DGS) has recently demonstrated promising results for novel view synthesis (NVS) from sparse input views, particularly under narrow-baseline conditions. However, its performance significantly degrades in wide-baseline scenarios due to limited texture details and geometric inconsistencies across views. To address these challenges, in this paper, we propose ProSplat, a two-stage feed-forward framework designed for high-fidelity rendering under wide-baseline conditions. The first stage involves generating 3D Gaussian primitives via a 3DGS generator. In the second stage, rendered views from these primitives are enhanced through an improvement model. Specifically, this improvement model is based on a one-step diffusion model, further optimized by our proposed Maximum Overlap Reference view Injection (MORI) and Distance-Weighted Epipolar Attention (DWEA). MORI supplements missing texture and color by strategically selecting a reference view with maximum viewpoint overlap, while DWEA enforces geometric consistency using epipolar constraints. Additionally, we introduce a divide-and-conquer training strategy that aligns data distributions between the two stages through joint optimization. We evaluate ProSplat on the RealEstate10K and DL3DV-10K datasets under wide-baseline settings. Experimental results demonstrate that ProSplat achieves an average improvement of 1 dB in PSNR compared to recent SOTA methods.
☆ PIG: Physically-based Multi-Material Interaction with 3D Gaussians
3D Gaussian Splatting has achieved remarkable success in reconstructing both static and dynamic 3D scenes. However, in a scene represented by 3D Gaussian primitives, interactions between objects suffer from inaccurate 3D segmentation, imprecise deformation among different materials, and severe rendering artifacts. To address these challenges, we introduce PIG: Physically-Based Multi-Material Interaction with 3D Gaussians, a novel approach that combines 3D object segmentation with the simulation of interacting objects in high precision. Firstly, our method facilitates fast and accurate mapping from 2D pixels to 3D Gaussians, enabling precise 3D object-level segmentation. Secondly, we assign unique physical properties to correspondingly segmented objects within the scene for multi-material coupled interactions. Finally, we have successfully embedded constraint scales into deformation gradients, specifically clamping the scaling and rotation properties of the Gaussian primitives to eliminate artifacts and achieve geometric fidelity and visual consistency. Experimental results demonstrate that our method not only outperforms the state-of-the-art (SOTA) in terms of visual quality, but also opens up new directions and pipelines for the field of physically realistic scene generation.
☆ FMaMIL: Frequency-Driven Mamba Multi-Instance Learning for Weakly Supervised Lesion Segmentation in Medical Images
Accurate lesion segmentation in histopathology images is essential for diagnostic interpretation and quantitative analysis, yet it remains challenging due to the limited availability of costly pixel-level annotations. To address this, we propose FMaMIL, a novel two-stage framework for weakly supervised lesion segmentation based solely on image-level labels. In the first stage, a lightweight Mamba-based encoder is introduced to capture long-range dependencies across image patches under the MIL paradigm. To enhance spatial sensitivity and structural awareness, we design a learnable frequency-domain encoding module that supplements spatial-domain features with spectrum-based information. CAMs generated in this stage are used to guide segmentation training. In the second stage, we refine the initial pseudo labels via a CAM-guided soft-label supervision and a self-correction mechanism, enabling robust training even under label noise. Extensive experiments on both public and private histopathology datasets demonstrate that FMaMIL outperforms state-of-the-art weakly supervised methods without relying on pixel-level annotations, validating its effectiveness and potential for digital pathology applications.
☆ Synthetic Visual Genome CVPR 2025
Reasoning over visual relationships-spatial, functional, interactional, social, etc.-is considered to be a fundamental component of human cognition. Yet, despite the major advances in visual comprehension in multimodal language models (MLMs), precise reasoning over relationships and their generations remains a challenge. We introduce ROBIN: an MLM instruction-tuned with densely annotated relationships capable of constructing high-quality dense scene graphs at scale. To train ROBIN, we curate SVG, a synthetic scene graph dataset by completing the missing relations of selected objects in existing scene graphs using a teacher MLM and a carefully designed filtering process to ensure high-quality. To generate more accurate and rich scene graphs at scale for any image, we introduce SG-EDIT: a self-distillation framework where GPT-4o further refines ROBIN's predicted scene graphs by removing unlikely relations and/or suggesting relevant ones. In total, our dataset contains 146K images and 5.6M relationships for 2.6M objects. Results show that our ROBIN-3B model, despite being trained on less than 3 million instances, outperforms similar-size models trained on over 300 million instances on relationship understanding benchmarks, and even surpasses larger models up to 13B parameters. Notably, it achieves state-of-the-art performance in referring expression comprehension with a score of 88.9, surpassing the previous best of 87.4. Our results suggest that training on the refined scene graph data is crucial to maintaining high performance across diverse visual reasoning task.
comment: CVPR 2025
☆ HieraEdgeNet: A Multi-Scale Edge-Enhanced Framework for Automated Pollen Recognition
Automated pollen recognition is vital to paleoclimatology, biodiversity monitoring, and public health, yet conventional methods are hampered by inefficiency and subjectivity. Existing deep learning models often struggle to achieve the requisite localization accuracy for microscopic targets like pollen, which are characterized by their minute size, indistinct edges, and complex backgrounds. To overcome this limitation, we introduce HieraEdgeNet, a multi-scale edge-enhancement framework. The framework's core innovation is the introduction of three synergistic modules: the Hierarchical Edge Module (HEM), which explicitly extracts a multi-scale pyramid of edge features that corresponds to the semantic hierarchy at early network stages; the Synergistic Edge Fusion (SEF) module, for deeply fusing these edge priors with semantic information at each respective scale; and the Cross Stage Partial Omni-Kernel Module (CSPOKM), which maximally refines the most detail-rich feature layers using an Omni-Kernel operator - comprising anisotropic large-kernel convolutions and mixed-domain attention - all within a computationally efficient Cross-Stage Partial (CSP) framework. On a large-scale dataset comprising 120 pollen classes, HieraEdgeNet achieves a mean Average Precision (mAP@.5) of 0.9501, significantly outperforming state-of-the-art baseline models such as YOLOv12n and RT-DETR. Furthermore, qualitative analysis confirms that our approach generates feature representations that are more precisely focused on object boundaries. By systematically integrating edge information, HieraEdgeNet provides a robust and powerful solution for high-precision, high-efficiency automated detection of microscopic objects.
comment: 16 pages, 5 figures, 2 tables. The dataset at https://www.kaggle.com/datasets/ayinven/hieraedgenetintegratesdatasets. The models at https://huggingface.co/datasets/AyinMostima/HieraEdgeNetintegratesdatasets. The source code in at https://github.com/AyinMostima/PalynoKit
☆ Unblocking Fine-Grained Evaluation of Detailed Captions: An Explaining AutoRater and Critic-and-Revise Pipeline
Large Vision-Language Models (VLMs) now generate highly detailed, paragraphlength image captions, yet evaluating their factual accuracy remains challenging. Current methods often miss fine-grained errors, being designed for shorter texts or lacking datasets with verified inaccuracies. We introduce DOCCI-Critique, a benchmark with 1,400 VLM-generated paragraph captions (100 images, 14 VLMs) featuring over 10,216 sentence-level human annotations of factual correctness and explanatory rationales for errors, all within paragraph context. Building on this, we develop VNLI-Critique, a model for automated sentence-level factuality classification and critique generation. We highlight three key applications: (1) VNLI-Critique demonstrates robust generalization, validated by state-of-the-art performance on the M-HalDetect benchmark and strong results in CHOCOLATE claim verification. (2) The VNLI-Critique driven AutoRater for DOCCI-Critique provides reliable VLM rankings, showing excellent alignment with human factuality judgments (e.g., 0.98 Spearman). (3) An innovative Critic-and-Revise pipeline, where critiques from VNLI-Critique guide LLM-based corrections, achieves substantial improvements in caption factuality (e.g., a 46% gain on DetailCaps-4870). Our work offers a crucial benchmark alongside practical tools, designed to significantly elevate the standards for fine-grained evaluation and foster the improvement of VLM image understanding. Project page: https://google.github.io/unblocking-detail-caption
☆ HuSc3D: Human Sculpture dataset for 3D object reconstruction
3D scene reconstruction from 2D images is one of the most important tasks in computer graphics. Unfortunately, existing datasets and benchmarks concentrate on idealized synthetic or meticulously captured realistic data. Such benchmarks fail to convey the inherent complexities encountered in newly acquired real-world scenes. In such scenes especially those acquired outside, the background is often dynamic, and by popular usage of cell phone cameras, there might be discrepancies in, e.g., white balance. To address this gap, we present HuSc3D, a novel dataset specifically designed for rigorous benchmarking of 3D reconstruction models under realistic acquisition challenges. Our dataset uniquely features six highly detailed, fully white sculptures characterized by intricate perforations and minimal textural and color variation. Furthermore, the number of images per scene varies significantly, introducing the additional challenge of limited training data for some instances alongside scenes with a standard number of views. By evaluating popular 3D reconstruction methods on this diverse dataset, we demonstrate the distinctiveness of HuSc3D in effectively differentiating model performance, particularly highlighting the sensitivity of methods to fine geometric details, color ambiguity, and varying data availability--limitations often masked by more conventional datasets.
Event-Priori-Based Vision-Language Model for Efficient Visual Understanding
Large Language Model (LLM)-based Vision-Language Models (VLMs) have substantially extended the boundaries of visual understanding capabilities. However, their high computational demands hinder deployment on resource-constrained edge devices. A key source of inefficiency stems from the VLM's need to process dense and redundant visual information. Visual inputs contain significant regions irrelevant to text semantics, rendering the associated computations ineffective for inference. This paper introduces a novel Event-Priori-Based Vision-Language Model, termed EP-VLM. Its core contribution is a novel mechanism leveraging motion priors derived from dynamic event vision to enhance VLM efficiency. Inspired by human visual cognition, EP-VLM first employs event data to guide the patch-wise sparsification of RGB visual inputs, progressively concentrating VLM computation on salient regions of the visual input. Subsequently, we construct a position-preserving tokenization strategy for the visual encoder within the VLM architecture. This strategy processes the event-guided, unstructured, sparse visual input while accurately preserving positional understanding within the visual input. Experimental results demonstrate that EP-VLM achieves significant efficiency improvements while maintaining nearly lossless accuracy compared to baseline models from the Qwen2-VL series. For instance, against the original Qwen2-VL-2B, EP-VLM achieves 50% FLOPs savings while retaining 98% of the original accuracy on the RealWorldQA dataset. This work demonstrates the potential of event-based vision priors for improving VLM inference efficiency, paving the way for creating more efficient and deployable VLMs for sustainable visual understanding at the edge.
☆ Scaling Human Activity Recognition: A Comparative Evaluation of Synthetic Data Generation and Augmentation Techniques
Human activity recognition (HAR) is often limited by the scarcity of labeled datasets due to the high cost and complexity of real-world data collection. To mitigate this, recent work has explored generating virtual inertial measurement unit (IMU) data via cross-modality transfer. While video-based and language-based pipelines have each shown promise, they differ in assumptions and computational cost. Moreover, their effectiveness relative to traditional sensor-level data augmentation remains unclear. In this paper, we present a direct comparison between these two virtual IMU generation approaches against classical data augmentation techniques. We construct a large-scale virtual IMU dataset spanning 100 diverse activities from Kinetics-400 and simulate sensor signals at 22 body locations. The three data generation strategies are evaluated on benchmark HAR datasets (UTD-MHAD, PAMAP2, HAD-AW) using four popular models. Results show that virtual IMU data significantly improves performance over real or augmented data alone, particularly under limited-data conditions. We offer practical guidance on choosing data generation strategies and highlight the distinct advantages and disadvantages of each approach.
☆ DragNeXt: Rethinking Drag-Based Image Editing
Drag-Based Image Editing (DBIE), which allows users to manipulate images by directly dragging objects within them, has recently attracted much attention from the community. However, it faces two key challenges: (\emph{\textcolor{magenta}{i}}) point-based drag is often highly ambiguous and difficult to align with users' intentions; (\emph{\textcolor{magenta}{ii}}) current DBIE methods primarily rely on alternating between motion supervision and point tracking, which is not only cumbersome but also fails to produce high-quality results. These limitations motivate us to explore DBIE from a new perspective -- redefining it as deformation, rotation, and translation of user-specified handle regions. Thereby, by requiring users to explicitly specify both drag areas and types, we can effectively address the ambiguity issue. Furthermore, we propose a simple-yet-effective editing framework, dubbed \textcolor{SkyBlue}{\textbf{DragNeXt}}. It unifies DBIE as a Latent Region Optimization (LRO) problem and solves it through Progressive Backward Self-Intervention (PBSI), simplifying the overall procedure of DBIE while further enhancing quality by fully leveraging region-level structure information and progressive guidance from intermediate drag states. We validate \textcolor{SkyBlue}{\textbf{DragNeXt}} on our NextBench, and extensive experiments demonstrate that our proposed method can significantly outperform existing approaches. Code will be released on github.
☆ SurgBench: A Unified Large-Scale Benchmark for Surgical Video Analysis
Surgical video understanding is pivotal for enabling automated intraoperative decision-making, skill assessment, and postoperative quality improvement. However, progress in developing surgical video foundation models (FMs) remains hindered by the scarcity of large-scale, diverse datasets for pretraining and systematic evaluation. In this paper, we introduce \textbf{SurgBench}, a unified surgical video benchmarking framework comprising a pretraining dataset, \textbf{SurgBench-P}, and an evaluation benchmark, \textbf{SurgBench-E}. SurgBench offers extensive coverage of diverse surgical scenarios, with SurgBench-P encompassing 53 million frames across 22 surgical procedures and 11 specialties, and SurgBench-E providing robust evaluation across six categories (phase classification, camera motion, tool recognition, disease diagnosis, action classification, and organ detection) spanning 72 fine-grained tasks. Extensive experiments reveal that existing video FMs struggle to generalize across varied surgical video analysis tasks, whereas pretraining on SurgBench-P yields substantial performance improvements and superior cross-domain generalization to unseen procedures and modalities. Our dataset and code are available upon request.
☆ SceneRAG: Scene-level Retrieval-Augmented Generation for Video Understanding
Despite recent advances in retrieval-augmented generation (RAG) for video understanding, effectively understanding long-form video content remains underexplored due to the vast scale and high complexity of video data. Current RAG approaches typically segment videos into fixed-length chunks, which often disrupts the continuity of contextual information and fails to capture authentic scene boundaries. Inspired by the human ability to naturally organize continuous experiences into coherent scenes, we present SceneRAG, a unified framework that leverages large language models to segment videos into narrative-consistent scenes by processing ASR transcripts alongside temporal metadata. SceneRAG further sharpens these initial boundaries through lightweight heuristics and iterative correction. For each scene, the framework fuses information from both visual and textual modalities to extract entity relations and dynamically builds a knowledge graph, enabling robust multi-hop retrieval and generation that account for long-range dependencies. Experiments on the LongerVideos benchmark, featuring over 134 hours of diverse content, confirm that SceneRAG substantially outperforms prior baselines, achieving a win rate of up to 72.5 percent on generation tasks.
Explore the vulnerability of black-box models via diffusion models
Recent advancements in diffusion models have enabled high-fidelity and photorealistic image generation across diverse applications. However, these models also present security and privacy risks, including copyright violations, sensitive information leakage, and the creation of harmful or offensive content that could be exploited maliciously. In this study, we uncover a novel security threat where an attacker leverages diffusion model APIs to generate synthetic images, which are then used to train a high-performing substitute model. This enables the attacker to execute model extraction and transfer-based adversarial attacks on black-box classification models with minimal queries, without needing access to the original training data. The generated images are sufficiently high-resolution and diverse to train a substitute model whose outputs closely match those of the target model. Across the seven benchmarks, including CIFAR and ImageNet subsets, our method shows an average improvement of 27.37% over state-of-the-art methods while using just 0.01 times of the query budget, achieving a 98.68% success rate in adversarial attacks on the target model.
☆ Super Encoding Network: Recursive Association of Multi-Modal Encoders for Video Understanding
Video understanding has been considered as one critical step towards world modeling, which is an important long-term problem in AI research. Recently, multi-modal foundation models have shown such potential via large-scale pretraining. However, these models simply align encoders of different modalities via contrastive learning, while lacking deeper multi-modal interactions, which is critical for understanding complex target movements with diversified video scenes. To fill this gap, we propose a unified Super Encoding Network (SEN) for video understanding, which builds up such distinct interactions through recursive association of multi-modal encoders in the foundation models. Specifically, we creatively treat those well-trained encoders as "super neurons" in our SEN. Via designing a Recursive Association (RA) block, we progressively fuse multi-modalities with the input video, based on knowledge integrating, distributing, and prompting of super neurons in a recursive manner. In this way, our SEN can effectively encode deeper multi-modal interactions, for prompting various video understanding tasks in downstream. Extensive experiments show that, our SEN can remarkably boost the four most representative video tasks, including tracking, recognition, chatting, and editing, e.g., for pixel-level tracking, the average jaccard index improves 2.7%, temporal coherence(TC) drops 8.8% compared to the popular CaDeX++ approach. For one-shot video editing, textual alignment improves 6.4%, and frame consistency increases 4.1% compared to the popular TuneA-Video approach.
☆ Uncertainty-o: One Model-agnostic Framework for Unveiling Uncertainty in Large Multimodal Models
Large Multimodal Models (LMMs), harnessing the complementarity among diverse modalities, are often considered more robust than pure Language Large Models (LLMs); yet do LMMs know what they do not know? There are three key open questions remaining: (1) how to evaluate the uncertainty of diverse LMMs in a unified manner, (2) how to prompt LMMs to show its uncertainty, and (3) how to quantify uncertainty for downstream tasks. In an attempt to address these challenges, we introduce Uncertainty-o: (1) a model-agnostic framework designed to reveal uncertainty in LMMs regardless of their modalities, architectures, or capabilities, (2) an empirical exploration of multimodal prompt perturbations to uncover LMM uncertainty, offering insights and findings, and (3) derive the formulation of multimodal semantic uncertainty, which enables quantifying uncertainty from multimodal responses. Experiments across 18 benchmarks spanning various modalities and 10 LMMs (both open- and closed-source) demonstrate the effectiveness of Uncertainty-o in reliably estimating LMM uncertainty, thereby enhancing downstream tasks such as hallucination detection, hallucination mitigation, and uncertainty-aware Chain-of-Thought reasoning.
comment: Project page: https://uncertainty-o.github.io/
☆ Learning Speaker-Invariant Visual Features for Lipreading
Lipreading is a challenging cross-modal task that aims to convert visual lip movements into spoken text. Existing lipreading methods often extract visual features that include speaker-specific lip attributes (e.g., shape, color, texture), which introduce spurious correlations between vision and text. These correlations lead to suboptimal lipreading accuracy and restrict model generalization. To address this challenge, we introduce SIFLip, a speaker-invariant visual feature learning framework that disentangles speaker-specific attributes using two complementary disentanglement modules (Implicit Disentanglement and Explicit Disentanglement) to improve generalization. Specifically, since different speakers exhibit semantic consistency between lip movements and phonetic text when pronouncing the same words, our implicit disentanglement module leverages stable text embeddings as supervisory signals to learn common visual representations across speakers, implicitly decoupling speaker-specific features. Additionally, we design a speaker recognition sub-task within the main lipreading pipeline to filter speaker-specific features, then further explicitly disentangle these personalized visual features from the backbone network via gradient reversal. Experimental results demonstrate that SIFLip significantly enhances generalization performance across multiple public datasets. Experimental results demonstrate that SIFLip significantly improves generalization performance across multiple public datasets, outperforming state-of-the-art methods.
☆ LLM-driven Indoor Scene Layout Generation via Scaled Human-aligned Data Synthesis and Multi-Stage Preference Optimization
Automatic indoor layout generation has attracted increasing attention due to its potential in interior design, virtual environment construction, and embodied AI. Existing methods fall into two categories: prompt-driven approaches that leverage proprietary LLM services (e.g., GPT APIs) and learning-based methods trained on layout data upon diffusion-based models. Prompt-driven methods often suffer from spatial inconsistency and high computational costs, while learning-based methods are typically constrained by coarse relational graphs and limited datasets, restricting their generalization to diverse room categories. In this paper, we revisit LLM-based indoor layout generation and present 3D-SynthPlace, a large-scale dataset that combines synthetic layouts generated via a 'GPT synthesize, Human inspect' pipeline, upgraded from the 3D-Front dataset. 3D-SynthPlace contains nearly 17,000 scenes, covering four common room types -- bedroom, living room, kitchen, and bathroom -- enriched with diverse objects and high-level spatial annotations. We further introduce OptiScene, a strong open-source LLM optimized for indoor layout generation, fine-tuned based on our 3D-SynthPlace dataset through our two-stage training. For the warum-up stage I, we adopt supervised fine-tuning (SFT), which is taught to first generate high-level spatial descriptions then conditionally predict concrete object placements. For the reinforcing stage II, to better align the generated layouts with human design preferences, we apply multi-turn direct preference optimization (DPO), which significantly improving layout quality and generation success rates. Extensive experiments demonstrate that OptiScene outperforms traditional prompt-driven and learning-based baselines. Moreover, OptiScene shows promising potential in interactive tasks such as scene editing and robot navigation.
☆ Towards the Influence of Text Quantity on Writer Retrieval ICDAR2025
This paper investigates the task of writer retrieval, which identifies documents authored by the same individual within a dataset based on handwriting similarities. While existing datasets and methodologies primarily focus on page level retrieval, we explore the impact of text quantity on writer retrieval performance by evaluating line- and word level retrieval. We examine three state-of-the-art writer retrieval systems, including both handcrafted and deep learning-based approaches, and analyze their performance using varying amounts of text. Our experiments on the CVL and IAM dataset demonstrate that while performance decreases by 20-30% when only one line of text is used as query and gallery, retrieval accuracy remains above 90% of full-page performance when at least four lines are included. We further show that text-dependent retrieval can maintain strong performance in low-text scenarios. Our findings also highlight the limitations of handcrafted features in low-text scenarios, with deep learning-based methods like NetVLAD outperforming traditional VLAD encoding.
comment: accepted for ICDAR2025
☆ OpenDance: Multimodal Controllable 3D Dance Generation Using Large-scale Internet Data
Music-driven dance generation offers significant creative potential yet faces considerable challenges. The absence of fine-grained multimodal data and the difficulty of flexible multi-conditional generation limit previous works on generation controllability and diversity in practice. In this paper, we build OpenDance5D, an extensive human dance dataset comprising over 101 hours across 14 distinct genres. Each sample has five modalities to facilitate robust cross-modal learning: RGB video, audio, 2D keypoints, 3D motion, and fine-grained textual descriptions from human arts. Furthermore, we propose OpenDanceNet, a unified masked modeling framework for controllable dance generation conditioned on music and arbitrary combinations of text prompts, keypoints, or character positioning. Comprehensive experiments demonstrate that OpenDanceNet achieves high-fidelity and flexible controllability.
☆ Cross-channel Perception Learning for H&E-to-IHC Virtual Staining
With the rapid development of digital pathology, virtual staining has become a key technology in multimedia medical information systems, offering new possibilities for the analysis and diagnosis of pathological images. However, existing H&E-to-IHC studies often overlook the cross-channel correlations between cell nuclei and cell membranes. To address this issue, we propose a novel Cross-Channel Perception Learning (CCPL) strategy. Specifically, CCPL first decomposes HER2 immunohistochemical staining into Hematoxylin and DAB staining channels, corresponding to cell nuclei and cell membranes, respectively. Using the pathology foundation model Gigapath's Tile Encoder, CCPL extracts dual-channel features from both the generated and real images and measures cross-channel correlations between nuclei and membranes. The features of the generated and real stained images, obtained through the Tile Encoder, are also used to calculate feature distillation loss, enhancing the model's feature extraction capabilities without increasing the inference burden. Additionally, CCPL performs statistical analysis on the focal optical density maps of both single channels to ensure consistency in staining distribution and intensity. Experimental results, based on quantitative metrics such as PSNR, SSIM, PCC, and FID, along with professional evaluations from pathologists, demonstrate that CCPL effectively preserves pathological features, generates high-quality virtual stained images, and provides robust support for automated pathological diagnosis using multimedia medical data.
☆ Synthesize Privacy-Preserving High-Resolution Images via Private Textual Intermediaries
Generating high fidelity, differentially private (DP) synthetic images offers a promising route to share and analyze sensitive visual data without compromising individual privacy. However, existing DP image synthesis methods struggle to produce high resolution outputs that faithfully capture the structure of the original data. In this paper, we introduce a novel method, referred to as Synthesis via Private Textual Intermediaries (SPTI), that can generate high resolution DP images with easy adoption. The key idea is to shift the challenge of DP image synthesis from the image domain to the text domain by leveraging state of the art DP text generation methods. SPTI first summarizes each private image into a concise textual description using image to text models, then applies a modified Private Evolution algorithm to generate DP text, and finally reconstructs images using text to image models. Notably, SPTI requires no model training, only inference with off the shelf models. Given a private dataset, SPTI produces synthetic images of substantially higher quality than prior DP approaches. On the LSUN Bedroom dataset, SPTI attains an FID less than or equal to 26.71 under epsilon equal to 1.0, improving over Private Evolution FID of 40.36. Similarly, on MM CelebA HQ, SPTI achieves an FID less than or equal to 33.27 at epsilon equal to 1.0, compared to 57.01 from DP fine tuning baselines. Overall, our results demonstrate that Synthesis via Private Textual Intermediaries provides a resource efficient and proprietary model compatible framework for generating high resolution DP synthetic images, greatly expanding access to private visual datasets.
☆ APTOS-2024 challenge report: Generation of synthetic 3D OCT images from fundus photographs
Optical Coherence Tomography (OCT) provides high-resolution, 3D, and non-invasive visualization of retinal layers in vivo, serving as a critical tool for lesion localization and disease diagnosis. However, its widespread adoption is limited by equipment costs and the need for specialized operators. In comparison, 2D color fundus photography offers faster acquisition and greater accessibility with less dependence on expensive devices. Although generative artificial intelligence has demonstrated promising results in medical image synthesis, translating 2D fundus images into 3D OCT images presents unique challenges due to inherent differences in data dimensionality and biological information between modalities. To advance generative models in the fundus-to-3D-OCT setting, the Asia Pacific Tele-Ophthalmology Society (APTOS-2024) organized a challenge titled Artificial Intelligence-based OCT Generation from Fundus Images. This paper details the challenge framework (referred to as APTOS-2024 Challenge), including: the benchmark dataset, evaluation methodology featuring two fidelity metrics-image-based distance (pixel-level OCT B-scan similarity) and video-based distance (semantic-level volumetric consistency), and analysis of top-performing solutions. The challenge attracted 342 participating teams, with 42 preliminary submissions and 9 finalists. Leading methodologies incorporated innovations in hybrid data preprocessing or augmentation (cross-modality collaborative paradigms), pre-training on external ophthalmic imaging datasets, integration of vision foundation models, and model architecture improvement. The APTOS-2024 Challenge is the first benchmark demonstrating the feasibility of fundus-to-3D-OCT synthesis as a potential solution for improving ophthalmic care accessibility in under-resourced healthcare settings, while helping to expedite medical research and clinical applications.
☆ Domain Randomization for Object Detection in Manufacturing Applications using Synthetic Data: A Comprehensive Study ICRA
This paper addresses key aspects of domain randomization in generating synthetic data for manufacturing object detection applications. To this end, we present a comprehensive data generation pipeline that reflects different factors: object characteristics, background, illumination, camera settings, and post-processing. We also introduce the Synthetic Industrial Parts Object Detection dataset (SIP15-OD) consisting of 15 objects from three industrial use cases under varying environments as a test bed for the study, while also employing an industrial dataset publicly available for robotic applications. In our experiments, we present more abundant results and insights into the feasibility as well as challenges of sim-to-real object detection. In particular, we identified material properties, rendering methods, post-processing, and distractors as important factors. Our method, leveraging these, achieves top performance on the public dataset with Yolov8 models trained exclusively on synthetic data; mAP@50 scores of 96.4% for the robotics dataset, and 94.1%, 99.5%, and 95.3% across three of the SIP15-OD use cases, respectively. The results showcase the effectiveness of the proposed domain randomization, potentially covering the distribution close to real data for the applications.
comment: This is accepted by 2025 IEEE International Conference on Robotics & Automation (ICRA), waiting for publication. 14 pages, 14 figures
☆ MoQAE: Mixed-Precision Quantization for Long-Context LLM Inference via Mixture of Quantization-Aware Experts ACL 2025
One of the primary challenges in optimizing large language models (LLMs) for long-context inference lies in the high memory consumption of the Key-Value (KV) cache. Existing approaches, such as quantization, have demonstrated promising results in reducing memory usage. However, current quantization methods cannot take both effectiveness and efficiency into account. In this paper, we propose MoQAE, a novel mixed-precision quantization method via mixture of quantization-aware experts. First, we view different quantization bit-width configurations as experts and use the traditional mixture of experts (MoE) method to select the optimal configuration. To avoid the inefficiency caused by inputting tokens one by one into the router in the traditional MoE method, we input the tokens into the router chunk by chunk. Second, we design a lightweight router-only fine-tuning process to train MoQAE with a comprehensive loss to learn the trade-off between model accuracy and memory usage. Finally, we introduce a routing freezing (RF) and a routing sharing (RS) mechanism to further reduce the inference overhead. Extensive experiments on multiple benchmark datasets demonstrate that our method outperforms state-of-the-art KV cache quantization approaches in both efficiency and effectiveness.
comment: Accepted by the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
☆ BitVLA: 1-bit Vision-Language-Action Models for Robotics Manipulation
Vision-Language-Action (VLA) models have shown impressive capabilities across a wide range of robotics manipulation tasks. However, their growing model size poses significant challenges for deployment on resource-constrained robotic systems. While 1-bit pretraining has proven effective for enhancing the inference efficiency of large language models with minimal performance loss, its application to VLA models remains underexplored. In this work, we present BitVLA, the first 1-bit VLA model for robotics manipulation, in which every parameter is ternary, i.e., {-1, 0, 1}. To further reduce the memory footprint of the vision encoder, we propose the distillation-aware training strategy that compresses the full-precision encoder to 1.58-bit weights. During this process, a full-precision encoder serves as a teacher model to better align latent representations. Despite the lack of large-scale robotics pretraining, BitVLA achieves performance comparable to the state-of-the-art model OpenVLA-OFT with 4-bit post-training quantization on the LIBERO benchmark, while consuming only 29.8% of the memory. These results highlight BitVLA's promise for deployment on memory-constrained edge devices. We release the code and model weights in https://github.com/ustcwhy/BitVLA.
comment: Work in progress
☆ Genesis: Multimodal Driving Scene Generation with Spatio-Temporal and Cross-Modal Consistency
We present Genesis, a unified framework for joint generation of multi-view driving videos and LiDAR sequences with spatio-temporal and cross-modal consistency. Genesis employs a two-stage architecture that integrates a DiT-based video diffusion model with 3D-VAE encoding, and a BEV-aware LiDAR generator with NeRF-based rendering and adaptive sampling. Both modalities are directly coupled through a shared latent space, enabling coherent evolution across visual and geometric domains. To guide the generation with structured semantics, we introduce DataCrafter, a captioning module built on vision-language models that provides scene-level and instance-level supervision. Extensive experiments on the nuScenes benchmark demonstrate that Genesis achieves state-of-the-art performance across video and LiDAR metrics (FVD 16.95, FID 4.24, Chamfer 0.611), and benefits downstream tasks including segmentation and 3D detection, validating the semantic fidelity and practical utility of the generated data.
☆ SpatialLM: Training Large Language Models for Structured Indoor Modeling
SpatialLM is a large language model designed to process 3D point cloud data and generate structured 3D scene understanding outputs. These outputs include architectural elements like walls, doors, windows, and oriented object boxes with their semantic categories. Unlike previous methods which exploit task-specific network designs, our model adheres to the standard multimodal LLM architecture and is fine-tuned directly from open-source LLMs. To train SpatialLM, we collect a large-scale, high-quality synthetic dataset consisting of the point clouds of 12,328 indoor scenes (54,778 rooms) with ground-truth 3D annotations, and conduct a careful study on various modeling and training decisions. On public benchmarks, our model gives state-of-the-art performance in layout estimation and competitive results in 3D object detection. With that, we show a feasible path for enhancing the spatial understanding capabilities of modern LLMs for applications in augmented reality, embodied robotics, and more.
☆ Drive Any Mesh: 4D Latent Diffusion for Mesh Deformation from Video
We propose DriveAnyMesh, a method for driving mesh guided by monocular video. Current 4D generation techniques encounter challenges with modern rendering engines. Implicit methods have low rendering efficiency and are unfriendly to rasterization-based engines, while skeletal methods demand significant manual effort and lack cross-category generalization. Animating existing 3D assets, instead of creating 4D assets from scratch, demands a deep understanding of the input's 3D structure. To tackle these challenges, we present a 4D diffusion model that denoises sequences of latent sets, which are then decoded to produce mesh animations from point cloud trajectory sequences. These latent sets leverage a transformer-based variational autoencoder, simultaneously capturing 3D shape and motion information. By employing a spatiotemporal, transformer-based diffusion model, information is exchanged across multiple latent frames, enhancing the efficiency and generalization of the generated results. Our experimental results demonstrate that DriveAnyMesh can rapidly produce high-quality animations for complex motions and is compatible with modern rendering engines. This method holds potential for applications in both the gaming and filming industries.
comment: technical report
☆ CoCoA-Mix: Confusion-and-Confidence-Aware Mixture Model for Context Optimization ICML 2025
Prompt tuning, which adapts vision-language models by freezing model parameters and optimizing only the prompt, has proven effective for task-specific adaptations. The core challenge in prompt tuning is improving specialization for a specific task and generalization for unseen domains. However, frozen encoders often produce misaligned features, leading to confusion between classes and limiting specialization. To overcome this issue, we propose a confusion-aware loss (CoA-loss) that improves specialization by refining the decision boundaries between confusing classes. Additionally, we mathematically demonstrate that a mixture model can enhance generalization without compromising specialization. This is achieved using confidence-aware weights (CoA-weights), which adjust the weights of each prediction in the mixture model based on its confidence within the class domains. Extensive experiments show that CoCoA-Mix, a mixture model with CoA-loss and CoA-weights, outperforms state-of-the-art methods by enhancing specialization and generalization. Our code is publicly available at https://github.com/url-kaist/CoCoA-Mix.
comment: 8 pages, 5 figures; accepted at ICML 2025
☆ Text-guided multi-stage cross-perception network for medical image segmentation
Medical image segmentation plays a crucial role in clinical medicine, serving as a tool for auxiliary diagnosis, treatment planning, and disease monitoring, thus facilitating physicians in the study and treatment of diseases. However, existing medical image segmentation methods are limited by the weak semantic expression of the target segmentation regions, which is caused by the low contrast between the target and non-target segmentation regions. To address this limitation, text prompt information has greast potential to capture the lesion location. However, existing text-guided methods suffer from insufficient cross-modal interaction and inadequate cross-modal feature expression. To resolve these issues, we propose the Text-guided Multi-stage Cross-perception network (TMC). In TMC, we introduce a multistage cross-attention module to enhance the model's understanding of semantic details and a multi-stage alignment loss to improve the consistency of cross-modal semantics. The results of the experiments demonstrate that our TMC achieves a superior performance with Dice of 84.77%, 78.50%, 88.73% in three public datasets (QaTa-COV19, MosMedData and Breast), outperforming UNet based networks and text-guided methods.
☆ Ambiguity-Restrained Text-Video Representation Learning for Partially Relevant Video Retrieval AAAI 2025
Partially Relevant Video Retrieval~(PRVR) aims to retrieve a video where a specific segment is relevant to a given text query. Typical training processes of PRVR assume a one-to-one relationship where each text query is relevant to only one video. However, we point out the inherent ambiguity between text and video content based on their conceptual scope and propose a framework that incorporates this ambiguity into the model learning process. Specifically, we propose Ambiguity-Restrained representation Learning~(ARL) to address ambiguous text-video pairs. Initially, ARL detects ambiguous pairs based on two criteria: uncertainty and similarity. Uncertainty represents whether instances include commonly shared context across the dataset, while similarity indicates pair-wise semantic overlap. Then, with the detected ambiguous pairs, our ARL hierarchically learns the semantic relationship via multi-positive contrastive learning and dual triplet margin loss. Additionally, we delve into fine-grained relationships within the video instances. Unlike typical training at the text-video level, where pairwise information is provided, we address the inherent ambiguity within frames of the same untrimmed video, which often contains multiple contexts. This allows us to further enhance learning at the text-frame level. Lastly, we propose cross-model ambiguity detection to mitigate the error propagation that occurs when a single model is employed to detect ambiguous pairs for its training. With all components combined, our proposed method demonstrates its effectiveness in PRVR.
comment: Accepted to AAAI 2025
♻ ☆ Fine-grained Hierarchical Crop Type Classification from Integrated Hyperspectral EnMAP Data and Multispectral Sentinel-2 Time Series: A Large-scale Dataset and Dual-stream Transformer Method
Fine-grained crop type classification serves as the fundamental basis for large-scale crop mapping and plays a vital role in ensuring food security. It requires simultaneous capture of both phenological dynamics (obtained from multi-temporal satellite data like Sentinel-2) and subtle spectral variations (demanding nanometer-scale spectral resolution from hyperspectral imagery). Research combining these two modalities remains scarce currently due to challenges in hyperspectral data acquisition and crop types annotation costs. To address these issues, we construct a hierarchical hyperspectral crop dataset (H2Crop) by integrating 30m-resolution EnMAP hyperspectral data with Sentinel-2 time series. With over one million annotated field parcels organized in a four-tier crop taxonomy, H2Crop establishes a vital benchmark for fine-grained agricultural crop classification and hyperspectral image processing. We propose a dual-stream Transformer architecture that synergistically processes these modalities. It coordinates two specialized pathways: a spectral-spatial Transformer extracts fine-grained signatures from hyperspectral EnMAP data, while a temporal Swin Transformer extracts crop growth patterns from Sentinel-2 time series. The designed hierarchical classification head with hierarchical fusion then simultaneously delivers multi-level crop type classification across all taxonomic tiers. Experiments demonstrate that adding hyperspectral EnMAP data to Sentinel-2 time series yields a 4.2% average F1-scores improvement (peaking at 6.3%). Extensive comparisons also confirm our method's higher accuracy over existing deep learning approaches for crop type classification and the consistent benefits of hyperspectral data across varying temporal windows and crop change scenarios. Codes and dataset are available at https://github.com/flyakon/H2Crop.
comment: 27 pages, 12 figures
♻ ☆ Astraea: A GPU-Oriented Token-wise Acceleration Framework for Video Diffusion Transformers
Video diffusion transformers (vDiTs) have made impressive progress in text-to-video generation, but their high computational demands present major challenges for practical deployment. While existing acceleration methods reduce workload at various granularities, they often rely on heuristics, limiting their applicability. We introduce ASTRAEA, an automatic framework that searches for near-optimal configurations for vDiT-based video generation. At its core, ASTRAEA proposes a lightweight token selection mechanism and a memory-efficient, GPU-parallel sparse attention strategy, enabling linear reductions in execution time with minimal impact on generation quality. To determine optimal token reduction for different timesteps, we further design a search framework that leverages a classic evolutionary algorithm to automatically determine the distribution of the token budget effectively. Together, ASTRAEA achieves up to 2.4x inference speedup on a single GPU with great scalability (up to 13.2x speedup on 8 GPUs) while retaining better video quality compared to the state-of-the-art methods (<0.5% loss on the VBench score compared to the baseline vDiT models).
♻ ☆ Feature-Based Lie Group Transformer for Real-World Applications
The main goal of representation learning is to acquire meaningful representations from real-world sensory inputs without supervision. Representation learning explains some aspects of human development. Various neural network (NN) models have been proposed that acquire empirically good representations. However, the formulation of a good representation has not been established. We recently proposed a method for categorizing changes between a pair of sensory inputs. A unique feature of this approach is that transformations between two sensory inputs are learned to satisfy algebraic structural constraints. Conventional representation learning often assumes that disentangled independent feature axes is a good representation; however, we found that such a representation cannot account for conditional independence. To overcome this problem, we proposed a new method using group decomposition in Galois algebra theory. Although this method is promising for defining a more general representation, it assumes pixel-to-pixel translation without feature extraction, and can only process low-resolution images with no background, which prevents real-world application. In this study, we provide a simple method to apply our group decomposition theory to a more realistic scenario by combining feature extraction and object segmentation. We replace pixel translation with feature translation and formulate object segmentation as grouping features under the same transformation. We validated the proposed method on a practical dataset containing both real-world object and background. We believe that our model will lead to a better understanding of human development of object recognition in the real world.
comment: 8 pages, the dataset used in this work is https://drive.google.com/file/d/1RaSWNN2GEyV3zQPeGya4Mr9DDhJ7OMz7/view?usp=sharing
♻ ☆ Peer-Ranked Precision: Creating a Foundational Dataset for Fine-Tuning Vision Models from DataSeeds' Annotated Imagery
The development of modern Artificial Intelligence (AI) models, particularly diffusion-based models employed in computer vision and image generation tasks, is undergoing a paradigmatic shift in development methodologies. Traditionally dominated by a "Model Centric" approach, in which performance gains were primarily pursued through increasingly complex model architectures and hyperparameter optimization, the field is now recognizing a more nuanced "Data-Centric" approach. This emergent framework foregrounds the quality, structure, and relevance of training data as the principal driver of model performance. To operationalize this paradigm shift, we introduce the DataSeeds.AI sample dataset (the "DSD"), initially comprised of approximately 10,610 high-quality human peer-ranked photography images accompanied by extensive multi-tier annotations. The DSD is a foundational computer vision dataset designed to usher in a new standard for commercial image datasets. Representing a small fraction of DataSeeds.AI's 100 million-plus image catalog, the DSD provides a scalable foundation necessary for robust commercial and multimodal AI development. Through this in-depth exploratory analysis, we document the quantitative improvements generated by the DSD on specific models against known benchmarks and make the code and the trained models used in our evaluation publicly available.
comment: 28 pages, 12 figures
♻ ☆ TissUnet: Improved Extracranial Tissue and Cranium Segmentation for Children through Adulthood
Extracranial tissues visible on brain magnetic resonance imaging (MRI) may hold significant value for characterizing health conditions and clinical decision-making, yet they are rarely quantified. Current tools have not been widely validated, particularly in settings of developing brains or underlying pathology. We present TissUnet, a deep learning model that segments skull bone, subcutaneous fat, and muscle from routine three-dimensional T1-weighted MRI, with or without contrast enhancement. The model was trained on 155 paired MRI-computed tomography (CT) scans and validated across nine datasets covering a wide age range and including individuals with brain tumors. In comparison to AI-CT-derived labels from 37 MRI-CT pairs, TissUnet achieved a median Dice coefficient of 0.79 [IQR: 0.77-0.81] in a healthy adult cohort. In a second validation using expert manual annotations, median Dice was 0.83 [IQR: 0.83-0.84] in healthy individuals and 0.81 [IQR: 0.78-0.83] in tumor cases, outperforming previous state-of-the-art method. Acceptability testing resulted in an 89% acceptance rate after adjudication by a tie-breaker(N=108 MRIs), and TissUnet demonstrated excellent performance in the blinded comparative review (N=45 MRIs), including both healthy and tumor cases in pediatric populations. TissUnet enables fast, accurate, and reproducible segmentation of extracranial tissues, supporting large-scale studies on craniofacial morphology, treatment effects, and cardiometabolic risk using standard brain T1w MRI.
comment: 44 pages, 4 tables, 6 figures, supplementary material
♻ ☆ E3D-Bench: A Benchmark for End-to-End 3D Geometric Foundation Models
Spatial intelligence, encompassing 3D reconstruction, perception, and reasoning, is fundamental to applications such as robotics, aerial imaging, and extended reality. A key enabler is the real-time, accurate estimation of core 3D attributes (camera parameters, point clouds, depth maps, and 3D point tracks) from unstructured or streaming imagery. Inspired by the success of large foundation models in language and 2D vision, a new class of end-to-end 3D geometric foundation models (GFMs) has emerged, directly predicting dense 3D representations in a single feed-forward pass, eliminating the need for slow or unavailable precomputed camera parameters. Since late 2023, the field has exploded with diverse variants, but systematic evaluation is lacking. In this work, we present the first comprehensive benchmark for 3D GFMs, covering five core tasks: sparse-view depth estimation, video depth estimation, 3D reconstruction, multi-view pose estimation, novel view synthesis, and spanning both standard and challenging out-of-distribution datasets. Our standardized toolkit automates dataset handling, evaluation protocols, and metric computation to ensure fair, reproducible comparisons. We evaluate 16 state-of-the-art GFMs, revealing their strengths and limitations across tasks and domains, and derive key insights to guide future model scaling and optimization. All code, evaluation scripts, and processed data will be publicly released to accelerate research in 3D spatial intelligence.
comment: Project Page: https://e3dbench.github.io/
♻ ☆ CORDIAL: Can Multimodal Large Language Models Effectively Understand Coherence Relationships? ACL
Multimodal Large Language Models (MLLMs) are renowned for their superior instruction-following and reasoning capabilities across diverse problem domains. However, existing benchmarks primarily focus on assessing factual and logical correctness in downstream tasks, with limited emphasis on evaluating MLLMs' ability to interpret pragmatic cues and intermodal relationships. To address this gap, we assess the competency of MLLMs in performing Multimodal Discourse Analysis (MDA) using Coherence Relations. Our benchmark, CORDIAL, encompasses a broad spectrum of Coherence Relations across 3 different discourse domains at varying levels of granularity. Through our experiments on 10+ MLLMs employing different prompting strategies, we show that even top models like Gemini 1.5 Pro and GPT-4o fail to match the performance of simple classifier-based baselines. This study emphasizes the need to move beyond similarity-based metrics and adopt a discourse-driven framework for evaluating MLLMs, providing a more nuanced assessment of their capabilities. The benchmark and code are available at: https://aashish2000.github.io/CORDIAL/
comment: To appear at the 63rd Annual Meeting of the Association for Computational Linguistics (ACL), Vienna, Austria, July 2025, https://2025.aclweb.org/
♻ ☆ What Changed and What Could Have Changed? State-Change Counterfactuals for Procedure-Aware Video Representation Learning
Understanding a procedural activity requires modeling both how action steps transform the scene and how evolving scene transformations can influence the sequence of action steps, even those that are accidental or erroneous. Existing work has studied procedure-aware video representations by proposing novel approaches such as modeling the temporal order of actions, and has not explicitly learned the state changes (scene transformations). In this work, we study procedure-aware video representation learning by incorporating state-change descriptions generated by Large Language Models (LLMs) as supervision signals for video encoders. Moreover, we generate state-change counterfactuals that simulate hypothesized failure outcomes, allowing models to learn by imagining the unseen ``What if'' scenarios. This counterfactual reasoning facilitates the model's ability to understand the cause and effect of each step in an activity. To verify the procedure awareness of our model, we conduct extensive experiments on procedure-aware tasks, including temporal action segmentation, error detection, action phase classification, frame retrieval, multi-instance retrieval, and action recognition. Our results demonstrate the effectiveness of the proposed state-change descriptions and their counterfactuals, and achieve significant improvements on multiple tasks. We will make our source code and data publicly available soon.
comment: 16 pages, 4 figures
♻ ☆ Enhancing Few-Shot Vision-Language Classification with Large Multimodal Model Features
Generative Large Multimodal Models (LMMs) like LLaVA and Qwen-VL excel at a wide variety of vision-language (VL) tasks. Despite strong performance, LMMs' generative outputs are not specialized for vision-language classification tasks (i.e., tasks with vision-language inputs and discrete labels) such as image classification and multiple-choice VQA. One key challenge in utilizing LMMs for these tasks is the extraction of useful features from generative LMMs. To overcome this, we propose an approach that leverages multimodal feature extraction from the LMM's latent space. Toward this end, we present Sparse Attention Vectors (SAVs) -- a finetuning-free method that leverages sparse attention head activations (fewer than 5% of the heads) in LMMs as strong feature representations. With only few-shot examples, SAVs demonstrate state-of-the-art performance compared to a variety of few-shot and finetuned baselines on a collection of vision-language classification tasks. Our experiments also imply that SAVs can scale in performance with additional examples and generalize to similar tasks, establishing SAVs as both effective and robust multimodal feature representations.
♻ ☆ RONA: Pragmatically Diverse Image Captioning with Coherence Relations NAACL
Writing Assistants (e.g., Grammarly, Microsoft Copilot) traditionally generate diverse image captions by employing syntactic and semantic variations to describe image components. However, human-written captions prioritize conveying a central message alongside visual descriptions using pragmatic cues. To enhance caption diversity, it is essential to explore alternative ways of communicating these messages in conjunction with visual content. We propose RONA, a novel prompting strategy for Multi-modal Large Language Models (MLLM) that leverages Coherence Relations as a controllable axis for pragmatic variations. We demonstrate that RONA generates captions with better overall diversity and ground-truth alignment, compared to MLLM baselines across multiple domains. Our code is available at: https://github.com/aashish2000/RONA
comment: Accepted in the NAACL Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing), Albuquerque, New Mexico, May 2025, https://in2writing.glitch.me
♻ ☆ ViVo: A Dataset for Volumetric Video Reconstruction and Compression
As research on neural volumetric video reconstruction and compression flourishes, there is a need for diverse and realistic datasets, which can be used to develop and validate reconstruction and compression models. However, existing volumetric video datasets lack diverse content in terms of both semantic and low-level features that are commonly present in real-world production pipelines. In this context, we propose a new dataset, ViVo, for VolumetrIc VideO reconstruction and compression. The dataset is faithful to real-world volumetric video production and is the first dataset to extend the definition of diversity to include both human-centric characteristics (skin, hair, etc.) and dynamic visual phenomena (transparent, reflective, liquid, etc.). Each video sequence in this database contains raw data including fourteen multi-view RGB and depth video pairs, synchronized at 30FPS with per-frame calibration and audio data, and their associated 2-D foreground masks and 3-D point clouds. To demonstrate the use of this database, we have benchmarked three state-of-the-art (SotA) 3-D reconstruction methods and two volumetric video compression algorithms. The obtained results evidence the challenging nature of the proposed dataset and the limitations of existing datasets for both volumetric video reconstruction and compression tasks, highlighting the need to develop more effective algorithms for these applications. The database and the associated results are available at https://vivo-bvicr.github.io/
♻ ☆ DINeMo: Learning Neural Mesh Models with no 3D Annotations CVPR 2025
Category-level 3D/6D pose estimation is a crucial step towards comprehensive 3D scene understanding, which would enable a broad range of applications in robotics and embodied AI. Recent works explored neural mesh models that approach a range of 2D and 3D tasks from an analysis-by-synthesis perspective. Despite the largely enhanced robustness to partial occlusion and domain shifts, these methods depended heavily on 3D annotations for part-contrastive learning, which confines them to a narrow set of categories and hinders efficient scaling. In this work, we present DINeMo, a novel neural mesh model that is trained with no 3D annotations by leveraging pseudo-correspondence obtained from large visual foundation models. We adopt a bidirectional pseudo-correspondence generation method, which produce pseudo correspondence utilize both local appearance features and global context information. Experimental results on car datasets demonstrate that our DINeMo outperforms previous zero- and few-shot 3D pose estimation by a wide margin, narrowing the gap with fully-supervised methods by 67.3%. Our DINeMo also scales effectively and efficiently when incorporating more unlabeled images during training, which demonstrate the advantages over supervised learning methods that rely on 3D annotations. Our project page is available at https://analysis-by-synthesis.github.io/DINeMo/.
comment: Accepted to 3rd Workshop on Compositional 3D Vision at CVPR 2025 (C3DV)
♻ ☆ VLog: Video-Language Models by Generative Retrieval of Narration Vocabulary CVPR 2025
Human daily activities can be concisely narrated as sequences of routine events (e.g., turning off an alarm) in video streams, forming an event vocabulary. Motivated by this, we introduce VLog, a novel video understanding framework that define video narrations as vocabulary, going beyond the typical subword vocabularies in existing generative video-language models. Built on the lightweight language model GPT-2, VLog feature three key innovations: (i) A generative retrieval model, marrying language model's complex reasoning capabilities with contrastive retrieval's flexible upgrading over narration vocabulary. (ii) A hierarchical vocabulary derived from large-scale video narrations using our narration pair encoding algorithm, enabling efficient indexing of specific events (e.g., cutting a tomato) by identifying broader scenarios (e.g., kitchen) with expressive postfixes (e.g., by the left hand). (iii) A vocabulary update strategy leveraging generative models to extend the vocabulary for novel events encountered during inference. To validate our approach, we introduce VidCap-Eval, a development set requiring concise narrations with reasoning relationships (e.g., before and after). Experiments on EgoSchema, COIN, and HiREST further demonstrate the effectiveness of VLog, highlighting its ability to generate concise, contextually accurate, and efficient narrations, offering a novel perspective on video understanding. Codes are released at https://github.com/showlab/VLog.
comment: Accepted by CVPR 2025. Github: https://github.com/showlab/VLog
♻ ☆ Hummingbird: High Fidelity Image Generation via Multimodal Context Alignment ICLR 2025
While diffusion models are powerful in generating high-quality, diverse synthetic data for object-centric tasks, existing methods struggle with scene-aware tasks such as Visual Question Answering (VQA) and Human-Object Interaction (HOI) Reasoning, where it is critical to preserve scene attributes in generated images consistent with a multimodal context, i.e. a reference image with accompanying text guidance query. To address this, we introduce $\textbf{Hummingbird}$, the first diffusion-based image generator which, given a multimodal context, generates highly diverse images w.r.t. the reference image while ensuring high fidelity by accurately preserving scene attributes, such as object interactions and spatial relationships from the text guidance. Hummingbird employs a novel Multimodal Context Evaluator that simultaneously optimizes our formulated Global Semantic and Fine-grained Consistency Rewards to ensure generated images preserve the scene attributes of reference images in relation to the text guidance while maintaining diversity. As the first model to address the task of maintaining both diversity and fidelity given a multimodal context, we introduce a new benchmark formulation incorporating MME Perception and Bongard HOI datasets. Benchmark experiments show Hummingbird outperforms all existing methods by achieving superior fidelity while maintaining diversity, validating Hummingbird's potential as a robust multimodal context-aligned image generator in complex visual tasks. Project page: https://roar-ai.github.io/hummingbird
comment: Accepted to ICLR 2025. Project page with code release: https://roar-ai.github.io/hummingbird
♻ ☆ SimLTD: Simple Supervised and Semi-Supervised Long-Tailed Object Detection CVPR 2025
While modern visual recognition systems have made significant advancements, many continue to struggle with the open problem of learning from few exemplars. This paper focuses on the task of object detection in the setting where object classes follow a natural long-tailed distribution. Existing methods for long-tailed detection resort to external ImageNet labels to augment the low-shot training instances. However, such dependency on a large labeled database has limited utility in practical scenarios. We propose a versatile and scalable approach to leverage optional unlabeled images, which are easy to collect without the burden of human annotations. Our SimLTD framework is straightforward and intuitive, and consists of three simple steps: (1) pre-training on abundant head classes; (2) transfer learning on scarce tail classes; and (3) fine-tuning on a sampled set of both head and tail classes. Our approach can be viewed as an improved head-to-tail model transfer paradigm without the added complexities of meta-learning or knowledge distillation, as was required in past research. By harnessing supplementary unlabeled images, without extra image labels, SimLTD establishes new record results on the challenging LVIS v1 benchmark across both supervised and semi-supervised settings.
comment: CVPR 2025. The reference code is available at https://github.com/lexisnexis-risk-open-source/simltd
♻ ☆ CAPAA: Classifier-Agnostic Projector-Based Adversarial Attack
Projector-based adversarial attack aims to project carefully designed light patterns (i.e., adversarial projections) onto scenes to deceive deep image classifiers. It has potential applications in privacy protection and the development of more robust classifiers. However, existing approaches primarily focus on individual classifiers and fixed camera poses, often neglecting the complexities of multi-classifier systems and scenarios with varying camera poses. This limitation reduces their effectiveness when introducing new classifiers or camera poses. In this paper, we introduce Classifier-Agnostic Projector-Based Adversarial Attack (CAPAA) to address these issues. First, we develop a novel classifier-agnostic adversarial loss and optimization framework that aggregates adversarial and stealthiness loss gradients from multiple classifiers. Then, we propose an attention-based gradient weighting mechanism that concentrates perturbations on regions of high classification activation, thereby improving the robustness of adversarial projections when applied to scenes with varying camera poses. Our extensive experimental evaluations demonstrate that CAPAA achieves both a higher attack success rate and greater stealthiness compared to existing baselines. Codes are available at: https://github.com/ZhanLiQxQ/CAPAA.
♻ ☆ C3T: Cross-modal Transfer Through Time for Sensor-based Human Activity Recognition
In order to unlock the potential of diverse sensors, we investigate a method to transfer knowledge between time-series modalities using a multimodal \textit{temporal} representation space for Human Activity Recognition (HAR). Specifically, we explore the setting where the modality used in testing has no labeled data during training, which we refer to as Unsupervised Modality Adaptation (UMA). We categorize existing UMA approaches as Student-Teacher or Contrastive Alignment methods. These methods typically compress continuous-time data samples into single latent vectors during alignment, inhibiting their ability to transfer temporal information through real-world temporal distortions. To address this, we introduce Cross-modal Transfer Through Time (C3T), which preserves temporal information during alignment to handle dynamic sensor data better. C3T achieves this by aligning a set of temporal latent vectors across sensing modalities. Our extensive experiments on various camera+IMU datasets demonstrate that C3T outperforms existing methods in UMA by at least 8% in accuracy and shows superior robustness to temporal distortions such as time-shift, misalignment, and dilation. Our findings suggest that C3T has significant potential for developing generalizable models for time-series sensor data, opening new avenues for various multimodal applications.
♻ ☆ PID: Physics-Informed Diffusion Model for Infrared Image Generation
Infrared imaging technology has gained significant attention for its reliable sensing ability in low visibility conditions, prompting many studies to convert the abundant RGB images to infrared images. However, most existing image translation methods treat infrared images as a stylistic variation, neglecting the underlying physical laws, which limits their practical application. To address these issues, we propose a Physics-Informed Diffusion (PID) model for translating RGB images to infrared images that adhere to physical laws. Our method leverages the iterative optimization of the diffusion model and incorporates strong physical constraints based on prior knowledge of infrared laws during training. This approach enhances the similarity between translated infrared images and the real infrared domain without increasing extra training parameters. Experimental results demonstrate that PID significantly outperforms existing state-of-the-art methods. Our code is available at https://github.com/fangyuanmao/PID.
comment: Accepted by Pattern Recognition
♻ ☆ From Thousands to Billions: 3D Visual Language Grounding via Render-Supervised Distillation from 2D VLMs
3D vision-language grounding faces a fundamental data bottleneck: while 2D models train on billions of images, 3D models have access to only thousands of labeled scenes--a six-order-of-magnitude gap that severely limits performance. We introduce $\textbf{LIFT-GS}$, a practical distillation technique that overcomes this limitation by using differentiable rendering to bridge 3D and 2D supervision. LIFT-GS predicts 3D Gaussian representations from point clouds and uses them to render predicted language-conditioned 3D masks into 2D views, enabling supervision from 2D foundation models (SAM, CLIP, LLaMA) without requiring any 3D annotations. This render-supervised formulation enables end-to-end training of complete encoder-decoder architectures and is inherently model-agnostic. LIFT-GS achieves state-of-the-art results with $25.7\%$ mAP on open-vocabulary instance segmentation (vs. $20.2\%$ prior SOTA) and consistent $10-30\%$ improvements on referential grounding tasks. Remarkably, pretraining effectively multiplies fine-tuning datasets by 2X, demonstrating strong scaling properties that suggest 3D VLG currently operates in a severely data-scarce regime. Project page: https://liftgs.github.io
comment: Project page: https://liftgs.github.io
♻ ☆ Benchmark Granularity and Model Robustness for Image-Text Retrieval SIGIR 2025
Image-Text Retrieval (ITR) systems are central to multimodal information access, with Vision-Language Models (VLMs) showing strong performance on standard benchmarks. However, these benchmarks predominantly rely on coarse-grained annotations, limiting their ability to reveal how models perform under real-world conditions, where query granularity varies. Motivated by this gap, we examine how dataset granularity and query perturbations affect retrieval performance and robustness across four architecturally diverse VLMs (ALIGN, AltCLIP, CLIP, and GroupViT). Using both standard benchmarks (MS-COCO, Flickr30k) and their fine-grained variants, we show that richer captions consistently enhance retrieval, especially in text-to-image tasks, where we observe an average improvement of 16.23%, compared to 6.44% in image-to-text. To assess robustness, we introduce a taxonomy of perturbations and conduct extensive experiments, revealing that while perturbations typically degrade performance, they can also unexpectedly improve retrieval, exposing nuanced model behaviors. Notably, word order emerges as a critical factor -- contradicting prior assumptions of model insensitivity to it. Our results highlight variation in model robustness and a dataset-dependent relationship between caption granularity and perturbation sensitivity and emphasize the necessity of evaluating models on datasets of varying granularity.
comment: accepted at SIGIR 2025
♻ ☆ Detecting Out-of-Distribution Objects through Class-Conditioned Inpainting
Recent object detectors have achieved impressive accuracy in identifying objects seen during training. However, real-world deployment often introduces novel and unexpected objects, referred to as out-of-distribution (OOD) objects, posing significant challenges to model trustworthiness. Modern object detectors are typically overconfident, making it unreliable to use their predictions alone for OOD detection. To address this, we propose leveraging an auxiliary model as a complementary solution. Specifically, we utilize an off-the-shelf text-to-image generative model, such as Stable Diffusion, which is trained with objective functions distinct from those of discriminative object detectors. We hypothesize that this fundamental difference enables the detection of OOD objects by measuring inconsistencies between the models. Concretely, for a given detected object bounding box and its predicted in-distribution class label, we perform class-conditioned inpainting on the image with the object removed. If the object is OOD, the inpainted image is likely to deviate significantly from the original, making the reconstruction error a robust indicator of OOD status. Extensive experiments demonstrate that our approach consistently surpasses existing zero-shot and non-zero-shot OOD detection methods, establishing a robust framework for enhancing object detection systems in dynamic environments.
♻ ☆ GRE Suite: Geo-localization Inference via Fine-Tuned Vision-Language Models and Enhanced Reasoning Chains
Recent advances in Visual Language Models (VLMs) have demonstrated exceptional performance in visual reasoning tasks. However, geo-localization presents unique challenges, requiring the extraction of multigranular visual cues from images and their integration with external world knowledge for systematic reasoning. Current approaches to geo-localization tasks often lack robust reasoning mechanisms and explainability, limiting their effectiveness. To address these limitations, we propose the Geo Reason Enhancement (GRE) Suite, a novel framework that augments VLMs with structured reasoning chains for accurate and interpretable location inference. The GRE Suite is systematically developed across three key dimensions: dataset, model, and benchmark. First, we introduce GRE30K, a high-quality geo-localization reasoning dataset designed to facilitate fine-grained visual and contextual analysis. Next, we present the GRE model, which employs a multi-stage reasoning strategy to progressively infer scene attributes, local details, and semantic features, thereby narrowing down potential geographic regions with enhanced precision. Finally, we construct the Geo Reason Evaluation Benchmark (GREval-Bench), a comprehensive evaluation framework that assesses VLMs across diverse urban, natural, and landmark scenes to measure both coarse-grained (e.g., country, continent) and fine-grained (e.g., city, street) localization performance. Experimental results demonstrate that GRE significantly outperforms existing methods across all granularities of geo-localization tasks, underscoring the efficacy of reasoning-augmented VLMs in complex geographic inference. Code and data will be released at https://github.com/Thorin215/GRE.
♻ ☆ ShapeMoiré: Channel-Wise Shape-Guided Network for Image Demoiréing
Photographing optoelectronic displays often introduces unwanted moir\'e patterns due to analog signal interference between the pixel grids of the display and the camera sensor arrays. This work identifies two problems that are largely ignored by existing image demoir\'eing approaches: 1) moir\'e patterns vary across different channels (RGB); 2) repetitive patterns are constantly observed. However, employing conventional convolutional (CNN) layers cannot address these problems. Instead, this paper presents the use of our recently proposed \emph{Shape} concept. It was originally employed to model consistent features from fragmented regions, particularly when identical or similar objects coexist in an RGB-D image. Interestingly, we find that the Shape information effectively captures the moir\'e patterns in artifact images. Motivated by this discovery, we propose a new method, ShapeMoir\'e, for image demoir\'eing. Beyond modeling shape features at the patch-level, we further extend this to the global image-level and design a novel Shape-Architecture. Consequently, our proposed method, equipped with both ShapeConv and Shape-Architecture, can be seamlessly integrated into existing approaches without introducing any additional parameters or computation overhead during inference. We conduct extensive experiments on four widely used datasets, and the results demonstrate that our ShapeMoir\'e achieves state-of-the-art performance, particularly in terms of the PSNR metric.
comment: 19 pages
♻ ☆ An Overview of the Burer-Monteiro Method for Certifiable Robot Perception RSS
This paper presents an overview of the Burer-Monteiro method (BM), a technique that has been applied to solve robot perception problems to certifiable optimality in real-time. BM is often used to solve semidefinite programming relaxations, which can be used to perform global optimization for non-convex perception problems. Specifically, BM leverages the low-rank structure of typical semidefinite programs to dramatically reduce the computational cost of performing optimization. This paper discusses BM in certifiable perception, with three main objectives: (i) to consolidate information from the literature into a unified presentation, (ii) to elucidate the role of the linear independence constraint qualification (LICQ), a concept not yet well-covered in certifiable perception literature, and (iii) to share practical considerations that are discussed among practitioners but not thoroughly covered in the literature. Our general aim is to offer a practical primer for applying BM towards certifiable perception.
comment: Accepted to 2024 Robotics: Science and Systems (RSS) Safe Autonomy Workshop
♻ ☆ Robust 3D Shape Reconstruction in Zero-Shot from a Single Image in the Wild CVPR 2025
Recent monocular 3D shape reconstruction methods have shown promising zero-shot results on object-segmented images without any occlusions. However, their effectiveness is significantly compromised in real-world conditions, due to imperfect object segmentation by off-the-shelf models and the prevalence of occlusions. To effectively address these issues, we propose a unified regression model that integrates segmentation and reconstruction, specifically designed for occlusion-aware 3D shape reconstruction. To facilitate its reconstruction in the wild, we also introduce a scalable data synthesis pipeline that simulates a wide range of variations in objects, occluders, and backgrounds. Training on our synthetic data enables the proposed model to achieve state-of-the-art zero-shot results on real-world images, using significantly fewer parameters than competing approaches.
comment: Accepted to CVPR 2025, Project Page: https://ZeroShape-W.github.io
♻ ☆ Geometrical Properties of Text Token Embeddings for Strong Semantic Binding in Text-to-Image Generation
Text-to-image (T2I) models often suffer from text-image misalignment in complex scenes involving multiple objects and attributes. Semantic binding has attempted to associate the generated attributes and objects with their corresponding noun phrases (NPs) by text or latent optimizations with the modulation of cross-attention (CA) maps; yet, the factors that influence semantic binding remain underexplored. Here, we investigate the geometrical properties of text token embeddings and their CA maps. We found that the geometrical properties of token embeddings, specifically angular distances and norms, are crucial factors in the differentiation of the CA map. These theoretical findings led to our proposed training-free text-embedding-aware T2I framework, dubbed \textbf{TokeBi}, for strong semantic binding. TokeBi consists of Causality-Aware Projection-Out (CAPO) for distinguishing inter-NP CA maps and Adaptive Token Mixing (ATM) for enhancing inter-NP separation while maintaining intra-NP cohesion in CA maps. Extensive experiments confirm that TokeBi outperforms prior arts across diverse baselines and datasets.
♻ ☆ Weakly Supervised Temporal Action Localization via Dual-Prior Collaborative Learning Guided by Multimodal Large Language Models CVPR
Recent breakthroughs in Multimodal Large Language Models (MLLMs) have gained significant recognition within the deep learning community, where the fusion of the Video Foundation Models (VFMs) and Large Language Models(LLMs) has proven instrumental in constructing robust video understanding systems, effectively surmounting constraints associated with predefined visual tasks. These sophisticated MLLMs exhibit remarkable proficiency in comprehending videos, swiftly attaining unprecedented performance levels across diverse benchmarks. However, their operation demands substantial memory and computational resources, underscoring the continued importance of traditional models in video comprehension tasks. In this paper, we introduce a novel learning paradigm termed MLLM4WTAL. This paradigm harnesses the potential of MLLM to offer temporal action key semantics and complete semantic priors for conventional Weakly-supervised Temporal Action Localization (WTAL) methods. MLLM4WTAL facilitates the enhancement of WTAL by leveraging MLLM guidance. It achieves this by integrating two distinct modules: Key Semantic Matching (KSM) and Complete Semantic Reconstruction (CSR). These modules work in tandem to effectively address prevalent issues like incomplete and over-complete outcomes common in WTAL methods. Rigorous experiments are conducted to validate the efficacy of our proposed approach in augmenting the performance of various heterogeneous WTAL models.
comment: Accepted to CVPR
♻ ☆ OG-HFYOLO :Orientation gradient guidance and heterogeneous feature fusion for deformation table cell instance segmentation
Table structure recognition is a key task in document analysis. However, the geometric deformation in deformed tables causes a weak correlation between content information and structure, resulting in downstream tasks not being able to obtain accurate content information. To obtain fine-grained spatial coordinates of cells, we propose the OG-HFYOLO model, which enhances the edge response by Gradient Orientation-aware Extractor, combines a Heterogeneous Kernel Cross Fusion module and a scale-aware loss function to adapt to multi-scale objective features, and introduces mask-driven non-maximal suppression in the post-processing, which replaces the traditional bounding box suppression mechanism. Furthermore, we also propose a data generator, filling the gap in the dataset for fine-grained deformation table cell spatial coordinate localization, and derive a large-scale dataset named Deformation Wired Table (DWTAL). Experiments show that our proposed model demonstrates excellent segmentation accuracy on all mainstream instance segmentation models. The dataset and the source code are open source: https://github.com/justliulong/OGHFYOLO.
♻ ☆ Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration
The differential equation-based image restoration approach aims to establish learnable trajectories connecting high-quality images to a tractable distribution, e.g., low-quality images or a Gaussian distribution. In this paper, we reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency. Initially, we navigate effective restoration paths through a reinforcement learning process, gradually steering potential trajectories toward the most precise options. Additionally, to mitigate the considerable computational burden associated with iterative sampling, we propose cost-aware trajectory distillation to streamline complex paths into several manageable steps with adaptable sizes. Moreover, we fine-tune a foundational diffusion model (FLUX) with 12B parameters by using our algorithms, producing a unified framework for handling 7 kinds of image restoration tasks. Extensive experiments showcase the $\textit{significant}$ superiority of the proposed method, achieving a maximum PSNR improvement of 2.1 dB over state-of-the-art methods, while also greatly enhancing visual perceptual quality. Project page: https://zhu-zhiyu.github.io/FLUX-IR/.
♻ ☆ Unsolvable Problem Detection: Robust Understanding Evaluation for Large Multimodal Models ACL 2025
This paper introduces a novel task to evaluate the robust understanding capability of Large Multimodal Models (LMMs), termed $\textbf{Unsolvable Problem Detection (UPD)}$. Multiple-choice question answering (MCQA) is widely used to assess the understanding capability of LMMs, but it does not guarantee that LMMs truly comprehend the answer. UPD assesses the LMM's ability to withhold answers when encountering unsolvable problems of MCQA, verifying whether the model truly understands the answer. UPD encompasses three problems: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD), covering unsolvable cases like answer-lacking or incompatible choices and image-question mismatches. For the evaluation, we introduce the MM-UPD Bench, a benchmark for assessing performance across various ability dimensions. Our experiments reveal that even most LMMs, which demonstrate adequate performance on existing benchmarks, struggle significantly with MM-UPD, underscoring a novel aspect of trustworthiness that current benchmarks have overlooked. A detailed analysis shows that LMMs have different bottlenecks and chain-of-thought and self-reflection improved performance for LMMs with the bottleneck in their LLM capability. We hope our insights will enhance the broader understanding and development of more reliable LMMs. The code is available at https://github.com/AtsuMiyai/UPD.
comment: Accepted by ACL 2025 Main Conference
♻ ☆ Skywork-VL Reward: An Effective Reward Model for Multimodal Understanding and Reasoning
We propose Skywork-VL Reward, a multimodal reward model that provides reward signals for both multimodal understanding and reasoning tasks. Our technical approach comprises two key components: First, we construct a large-scale multimodal preference dataset that covers a wide range of tasks and scenarios, with responses collected from both standard vision-language models (VLMs) and advanced VLM reasoners. Second, we design a reward model architecture based on Qwen2.5-VL-7B-Instruct, integrating a reward head and applying multi-stage fine-tuning using pairwise ranking loss on pairwise preference data. Experimental evaluations show that Skywork-VL Reward achieves state-of-the-art results on multimodal VL-RewardBench and exhibits competitive performance on the text-only RewardBench benchmark. Furthermore, preference data constructed based on our Skywork-VL Reward proves highly effective for training Mixed Preference Optimization (MPO), leading to significant improvements in multimodal reasoning capabilities. Our results underscore Skywork-VL Reward as a significant advancement toward general-purpose, reliable reward models for multimodal alignment. Our model has been publicly released to promote transparency and reproducibility.
♻ ☆ Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought
We introduce Skywork R1V, a multimodal reasoning model extending the an R1-series Large language models (LLM) to visual modalities via an efficient multimodal transfer method. Leveraging a lightweight visual projector, Skywork R1V facilitates seamless multimodal adaptation without necessitating retraining of either the foundational language model or the vision encoder. To strengthen visual-text alignment, we propose a hybrid optimization strategy that combines Iterative Supervised Fine-Tuning (SFT) with Group Relative Policy Optimization (GRPO), significantly enhancing cross-modal integration efficiency. Additionally, we introduce an adaptive-length Chain-of-Thought distillation approach for reasoning data generation. This approach dynamically optimizes reasoning chain lengths, thereby enhancing inference efficiency and preventing excessive reasoning overthinking. Empirical evaluations demonstrate that Skywork R1V, with only 38B parameters, delivers competitive performance, achieving a score of 69.0 on the MMMU benchmark and 67.5 on MathVista. Meanwhile, it maintains robust textual reasoning performance, evidenced by impressive scores of 72.0 on AIME and 94.0 on MATH500. The Skywork R1V model weights have been publicly released to promote openness and reproducibility.
♻ ☆ RainFusion: Adaptive Video Generation Acceleration via Multi-Dimensional Visual Redundancy
Video generation using diffusion models is highly computationally intensive, with 3D attention in Diffusion Transformer (DiT) models accounting for over 80\% of the total computational resources. In this work, we introduce {\bf RainFusion}, a novel training-free sparse attention method that exploits inherent sparsity nature in visual data to accelerate attention computation while preserving video quality. Specifically, we identify three unique sparse patterns in video generation attention calculations--Spatial Pattern, Temporal Pattern and Textural Pattern. The sparse pattern for each attention head is determined online with negligible overhead (\textasciitilde\,0.2\%) with our proposed {\bf ARM} (Adaptive Recognition Module) during inference. Our proposed {\bf RainFusion} is a plug-and-play method, that can be seamlessly integrated into state-of-the-art 3D-attention video generation models without additional training or calibration. We evaluate our method on leading open-sourced models including HunyuanVideo, OpenSoraPlan-1.2 and CogVideoX-5B, demonstrating its broad applicability and effectiveness. Experimental results show that RainFusion achieves over {\bf 2\(\times\)} speedup in attention computation while maintaining video quality, with only a minimal impact on VBench scores (-0.2\%).
♻ ☆ EmoVOCA: Speech-Driven Emotional 3D Talking Heads WACV 2025
The domain of 3D talking head generation has witnessed significant progress in recent years. A notable challenge in this field consists in blending speech-related motions with expression dynamics, which is primarily caused by the lack of comprehensive 3D datasets that combine diversity in spoken sentences with a variety of facial expressions. Whereas literature works attempted to exploit 2D video data and parametric 3D models as a workaround, these still show limitations when jointly modeling the two motions. In this work, we address this problem from a different perspective, and propose an innovative data-driven technique that we used for creating a synthetic dataset, called EmoVOCA, obtained by combining a collection of inexpressive 3D talking heads and a set of 3D expressive sequences. To demonstrate the advantages of this approach, and the quality of the dataset, we then designed and trained an emotional 3D talking head generator that accepts a 3D face, an audio file, an emotion label, and an intensity value as inputs, and learns to animate the audio-synchronized lip movements with expressive traits of the face. Comprehensive experiments, both quantitative and qualitative, using our data and generator evidence superior ability in synthesizing convincing animations, when compared with the best performing methods in the literature. Our code and pre-trained model will be made available.
comment: WACV 2025
♻ ☆ GarmageNet: A Multimodal Generative Framework for Sewing Pattern Design and Generic Garment Modeling
Realistic digital garment modeling remains a labor-intensive task due to the intricate process of translating 2D sewing patterns into high-fidelity, simulation-ready 3D garments. We introduce GarmageNet, a unified generative framework that automates the creation of 2D sewing patterns, the construction of sewing relationships, and the synthesis of 3D garment initializations compatible with physics-based simulation. Central to our approach is Garmage, a novel garment representation that encodes each panel as a structured geometry image, effectively bridging the semantic and geometric gap between 2D structural patterns and 3D garment shapes. GarmageNet employs a latent diffusion transformer to synthesize panel-wise geometry images and integrates GarmageJigsaw, a neural module for predicting point-to-point sewing connections along panel contours. To support training and evaluation, we build GarmageSet, a large-scale dataset comprising over 10,000 professionally designed garments with detailed structural and style annotations. Our method demonstrates versatility and efficacy across multiple application scenarios, including scalable garment generation from multi-modal design concepts (text prompts, sketches, photographs), automatic modeling from raw flat sewing patterns, pattern recovery from unstructured point clouds, and progressive garment editing using conventional instructions-laying the foundation for fully automated, production-ready pipelines in digital fashion. Project page: https://style3d.github.io/garmagenet.
♻ ☆ RAID: A Dataset for Testing the Adversarial Robustness of AI-Generated Image Detectors
AI-generated images have reached a quality level at which humans are incapable of reliably distinguishing them from real images. To counteract the inherent risk of fraud and disinformation, the detection of AI-generated images is a pressing challenge and an active research topic. While many of the presented methods claim to achieve high detection accuracy, they are usually evaluated under idealized conditions. In particular, the adversarial robustness is often neglected, potentially due to a lack of awareness or the substantial effort required to conduct a comprehensive robustness analysis. In this work, we tackle this problem by providing a simpler means to assess the robustness of AI-generated image detectors. We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples. The dataset is created by running attacks against an ensemble of seven state-of-the-art detectors and images generated by four different text-to-image models. Extensive experiments show that our methodology generates adversarial images that transfer with a high success rate to unseen detectors, which can be used to quickly provide an approximate yet still reliable estimate of a detector's adversarial robustness. Our findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples, highlighting the critical need for the development of more robust methods. We release our dataset at https://huggingface.co/datasets/aimagelab/RAID and evaluation code at https://github.com/pralab/RAID.
♻ ☆ ComPtr: Towards Diverse Bi-source Dense Prediction Tasks via A Simple yet General Complementary Transformer
Deep learning (DL) has advanced the field of dense prediction, while gradually dissolving the inherent barriers between different tasks. However, most existing works focus on designing architectures and constructing visual cues only for the specific task, which ignores the potential uniformity introduced by the DL paradigm. In this paper, we attempt to construct a novel $\underline{ComP}$lementary $\underline{tr}$ansformer, $\textbf{ComPtr}$, for diverse bi-source dense prediction tasks. Specifically, unlike existing methods that over-specialize in a single task or a subset of tasks, ComPtr starts from the more general concept of bi-source dense prediction. Based on the basic dependence on information complementarity, we propose consistency enhancement and difference awareness components with which ComPtr can evacuate and collect important visual semantic cues from different image sources for diverse tasks, respectively. ComPtr treats different inputs equally and builds an efficient dense interaction model in the form of sequence-to-sequence on top of the transformer. This task-generic design provides a smooth foundation for constructing the unified model that can simultaneously deal with various bi-source information. In extensive experiments across several representative vision tasks, i.e. remote sensing change detection, RGB-T crowd counting, RGB-D/T salient object detection, and RGB-D semantic segmentation, the proposed method consistently obtains favorable performance. The code will be available at https://github.com/lartpang/ComPtr.
♻ ☆ SWAG: Long-term Surgical Workflow Prediction with Generative-based Anticipation
While existing approaches excel at recognising current surgical phases, they provide limited foresight and intraoperative guidance into future procedural steps. Similarly, current anticipation methods are constrained to predicting short-term and single events, neglecting the dense, repetitive, and long sequential nature of surgical workflows. To address these needs and limitations, we propose SWAG (Surgical Workflow Anticipative Generation), a framework that combines phase recognition and anticipation using a generative approach. This paper investigates two distinct decoding methods - single-pass (SP) and auto-regressive (AR) - to generate sequences of future surgical phases at minute intervals over long horizons. We propose a novel embedding approach using class transition probabilities to enhance the accuracy of phase anticipation. Additionally, we propose a generative framework using remaining time regression to classification (R2C). SWAG was evaluated on two publicly available datasets, Cholec80 and AutoLaparo21. Our single-pass model with class transition probability embeddings (SP*) achieves 32.1% and 41.3% F1 scores over 20 and 30 minutes on Cholec80 and AutoLaparo21, respectively. Moreover, our approach competes with existing methods on phase remaining time regression, achieving weighted mean absolute errors of 0.32 and 0.48 minutes for 2- and 3-minute horizons. SWAG demonstrates versatility across generative decoding frame works and classification and regression tasks to create temporal continuity between surgical workflow recognition and anticipation. Our method provides steps towards intraoperative surgical workflow generation for anticipation. Project: https://maxboels.github.io/swag.
comment: Accepted at IJCARS, Demo website: https://maxboels.com/swag/
♻ ☆ Remote Sensing Image Classification with Decoupled Knowledge Distillation
To address the challenges posed by the large number of parameters in existing remote sensing image classification models, which hinder deployment on resource-constrained devices, this paper proposes a lightweight classification method based on knowledge distillation. Specifically, G-GhostNet is adopted as the backbone network, leveraging feature reuse to reduce redundant parameters and significantly improve inference efficiency. In addition, a decoupled knowledge distillation strategy is employed, which separates target and non-target classes to effectively enhance classification accuracy. Experimental results on the RSOD and AID datasets demonstrate that, compared with the high-parameter VGG-16 model, the proposed method achieves nearly equivalent Top-1 accuracy while reducing the number of parameters by 6.24 times. This approach strikes an excellent balance between model size and classification performance, offering an efficient solution for deployment on resource-limited devices.
comment: 7
♻ ☆ Continuous Urban Change Detection from Satellite Image Time Series with Temporal Feature Refinement and Multi-Task Integration
Urbanization advances at unprecedented rates, leading to negative environmental and societal impacts. Remote sensing can help mitigate these effects by supporting sustainable development strategies with accurate information on urban growth. Deep learning-based methods have achieved promising urban change detection results from optical satellite image pairs using convolutional neural networks (ConvNets), transformers, and a multi-task learning setup. However, bi-temporal methods are limited for continuous urban change detection, i.e., the detection of changes in consecutive image pairs of satellite image time series (SITS), as they fail to fully exploit multi-temporal data (> 2 images). Existing multi-temporal change detection methods, on the other hand, collapse the temporal dimension, restricting their ability to capture continuous urban changes. Additionally, multi-task learning methods lack integration approaches that combine change and segmentation outputs. To address these challenges, we propose a continuous urban change detection framework incorporating two key modules. The temporal feature refinement (TFR) module employs self-attention to improve ConvNet-based multi-temporal building representations. The temporal dimension is preserved in the TFR module, enabling the detection of continuous changes. The multi-task integration (MTI) module utilizes Markov networks to find an optimal building map time series based on segmentation and dense change outputs. The proposed framework effectively identifies urban changes based on high-resolution SITS acquired by the PlanetScope constellation (F1 score 0.551), Gaofen-2 (F1 score 0.440), and WorldView-2 (F1 score 0.543). Moreover, our experiments on three challenging datasets demonstrate the effectiveness of the proposed framework compared to bi-temporal and multi-temporal urban change detection and segmentation methods.
comment: Accepted to IEEE Transactions on Geoscience and Remote Sensing, Code will be available at https://github.com/SebastianHafner/ContUrbanCD.git
♻ ☆ Efficient Long-duration Talking Video Synthesis with Linear Diffusion Transformer under Multimodal Guidance
Portrait image animation using audio has rapidly advanced, but challenges remain in efficiently fusing multimodal inputs while ensuring temporal and portrait consistency with minimal computational cost. To address this, we present LetsTalk, a LinEar diffusion TranSformer for Talking video synthesis. LetsTalk incorporates a deep compression autoencoder to obtain efficient latent representations, and a spatio-temporal-aware transformer with efficient linear attention to effectively fuse multimodal information and enhance spatio-temporal consistency. We systematically explore and summarize three fusion schemes, ranging from shallow to deep fusion. We thoroughly analyze their characteristics, applicability, and trade-offs, thereby bridging critical gaps in multimodal conditional guidance. Based on modality differences of image, audio, and video generation, we adopt deep (Symbiotic Fusion) for portrait to ensure consistency, and shallow (Direct Fusion) for audio to align animation with speech while preserving motion diversity. To maintain temporal consistency in long-duration video generation, we propose a memory bank mechanism that preserves inter-clip dependencies, effectively preventing degradation across extended sequences. Furthermore, we develop a noise-regularized training strategy that explicitly compensates for DDPM sampling artifacts, significantly improving the model's robustness in continuous generation scenarios.Our extensive experiments demonstrate that our approach achieves state-of-the-art generation quality, producing temporally coherent and realistic videos with enhanced diversity and liveliness, while maintaining remarkable efficiency through its optimized model design with 8$\times$ fewer parameters.
comment: 16 pages, 13 figures
♻ ☆ GHOST 2.0: generative high-fidelity one shot transfer of heads
While the task of face swapping has recently gained attention in the research community, a related problem of head swapping remains largely unexplored. In addition to skin color transfer, head swap poses extra challenges, such as the need to preserve structural information of the whole head during synthesis and inpaint gaps between swapped head and background. In this paper, we address these concerns with GHOST 2.0, which consists of two problem-specific modules. First, we introduce enhanced Aligner model for head reenactment, which preserves identity information at multiple scales and is robust to extreme pose variations. Secondly, we use a Blender module that seamlessly integrates the reenacted head into the target background by transferring skin color and inpainting mismatched regions. Both modules outperform the baselines on the corresponding tasks, allowing to achieve state of the art results in head swapping. We also tackle complex cases, such as large difference in hair styles of source and target. Code is available at https://github.com/ai-forever/ghost-2.0
♻ ☆ CityGo: Lightweight Urban Modeling and Rendering with Proxy Buildings and Residual Gaussians
Accurate and efficient modeling of large-scale urban scenes is critical for applications such as AR navigation, UAV based inspection, and smart city digital twins. While aerial imagery offers broad coverage and complements limitations of ground-based data, reconstructing city-scale environments from such views remains challenging due to occlusions, incomplete geometry, and high memory demands. Recent advances like 3D Gaussian Splatting (3DGS) improve scalability and visual quality but remain limited by dense primitive usage, long training times, and poor suit ability for edge devices. We propose CityGo, a hybrid framework that combines textured proxy geometry with residual and surrounding 3D Gaussians for lightweight, photorealistic rendering of urban scenes from aerial perspectives. Our approach first extracts compact building proxy meshes from MVS point clouds, then uses zero order SH Gaussians to generate occlusion-free textures via image-based rendering and back-projection. To capture high-frequency details, we introduce residual Gaussians placed based on proxy-photo discrepancies and guided by depth priors. Broader urban context is represented by surrounding Gaussians, with importance-aware downsampling applied to non-critical regions to reduce redundancy. A tailored optimization strategy jointly refines proxy textures and Gaussian parameters, enabling real-time rendering of complex urban scenes on mobile GPUs with significantly reduced training and memory requirements. Extensive experiments on real-world aerial datasets demonstrate that our hybrid representation significantly reduces training time, achieving on average 1.4x speedup, while delivering comparable visual fidelity to pure 3D Gaussian Splatting approaches. Furthermore, CityGo enables real-time rendering of large-scale urban scenes on mobile consumer GPUs, with substantially reduced memory usage and energy consumption.
♻ ☆ OccludeNet: A Causal Journey into Mixed-View Actor-Centric Video Action Recognition under Occlusions
The lack of occlusion data in common action recognition video datasets limits model robustness and hinders consistent performance gains. We build OccludeNet, a large-scale occluded video dataset including both real and synthetic occlusion scenes in different natural settings. OccludeNet includes dynamic occlusion, static occlusion, and multi-view interactive occlusion, addressing gaps in current datasets. Our analysis shows occlusion affects action classes differently: actions with low scene relevance and partial body visibility see larger drops in accuracy. To overcome the limits of existing occlusion-aware methods, we propose a structural causal model for occluded scenes and introduce the Causal Action Recognition (CAR) method, which uses backdoor adjustment and counterfactual reasoning. This approach strengthens key actor information and improves model robustness to occlusion. We hope the challenges of OccludeNet will encourage more study of causal links in occluded scenes and lead to a fresh look at class relations, ultimately leading to lasting performance improvements. Our code and data is availibale at: https://github.com/The-Martyr/OccludeNet-Dataset
♻ ☆ Exploiting the Semantic Knowledge of Pre-trained Text-Encoders for Continual Learning
Deep neural networks (DNNs) excel on fixed datasets but struggle with incremental and shifting data in real-world scenarios. Continual learning addresses this challenge by allowing models to learn from new data while retaining previously learned knowledge. Existing methods mainly rely on visual features, often neglecting the rich semantic information encoded in text. The semantic knowledge available in the label information of the images, offers important semantic information that can be related with previously acquired knowledge of semantic classes. Consequently, effectively leveraging this information throughout continual learning is expected to be beneficial. To address this, we propose integrating semantic guidance within and across tasks by capturing semantic similarity using text embeddings. We start from a pre-trained CLIP model, employ the \emph{Semantically-guided Representation Learning (SG-RL)} module for a soft-assignment towards all current task classes, and use the Semantically-guided Knowledge Distillation (SG-KD) module for enhanced knowledge transfer. Experimental results demonstrate the superiority of our method on general and fine-grained datasets. Our code can be found in https://github.com/aprilsveryown/semantically-guided-continual-learning.
♻ ☆ Improving Generalization in MRI-Based Deep Learning Models for Total Knee Replacement Prediction
Knee osteoarthritis (KOA) is a common joint disease that causes pain and mobility issues. While MRI-based deep learning models have demonstrated superior performance in predicting total knee replacement (TKR) and disease progression, their generalizability remains challenging, particularly when applied to imaging data from different sources. In this study, we have shown that replacing batch normalization with instance normalization, using data augmentation, and applying contrastive loss improves model generalization in a baseline deep learning model for knee osteoarthritis (KOA) prediction. We trained and evaluated our model using MRI data from the Osteoarthritis Initiative (OAI) database, considering sagittal fat-suppressed intermediate-weighted turbo spin-echo (FS-IW-TSE) images as the source domain and sagittal fat-suppressed three-dimensional (3D) dual-echo in steady state (DESS) images as the target domain. The results demonstrate a statistically significant improvement in classification accuracy across both domains, with our approach outperforming the baseline model.
♻ ☆ Towards Achieving Perfect Multimodal Alignment
Multimodal alignment constructs a joint latent vector space where modalities representing the same concept map to neighboring latent vectors. We formulate this as an inverse problem and show that, under certain conditions, paired data from each modality can map to equivalent latent vectors, which we refer to as perfect alignment. When perfect alignment cannot be achieved, it can be approximated using the Singular Value Decomposition (SVD) of a multimodal data matrix. Experiments on synthetic multimodal Gaussian data verify the effectiveness of our perfect alignment method compared to a learned contrastive alignment method. We further demonstrate the practical application of cross-modal transfer for human action recognition, showing that perfect alignment significantly enhances the model's accuracy. We conclude by discussing how these findings can be applied to various modalities and tasks and the limitations of our method. We hope these findings inspire further exploration of perfect alignment and its applications in representation learning.
♻ ☆ RSNet: A Light Framework for The Detection of SAR Ship Detection
Recent advancements in synthetic aperture radar (SAR) ship detection using deep learning have significantly improved accuracy and speed, yet effectively detecting small objects in complex backgrounds with fewer parameters remains a challenge. This letter introduces RSNet, a lightweight framework constructed to enhance ship detection in SAR imagery. To ensure accuracy with fewer parameters, we proposed Waveletpool-ContextGuided (WCG) as its backbone, guiding global context understanding through multi-scale wavelet features for effective detection in complex scenes. Additionally, Waveletpool-StarFusion (WSF) is introduced as the neck, employing a residual wavelet element-wise multiplication structure to achieve higher dimensional nonlinear features without increasing network width. The Lightweight-Shared (LS) module is designed as detect components to achieve efficient detection through lightweight shared convolutional structure and multi-format compatibility. Experiments on the SAR Ship Detection Dataset (SSDD) and High-Resolution SAR Image Dataset (HRSID) demonstrate that RSNet achieves a strong balance between lightweight design and detection performance, surpassing many state-of-the-art detectors, reaching 72.5\% and 67.6\% in \textbf{\(\mathbf{mAP_{.50:.95}}\) }respectively with 1.49M parameters. Our code will be released soon.
♻ ☆ MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations
With the emergence of LLMs and their integration with other data modalities, multi-modal 3D perception attracts more attention due to its connectivity to the physical world and makes rapid progress. However, limited by existing datasets, previous works mainly focus on understanding object properties or inter-object spatial relationships in a 3D scene. To tackle this problem, this paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan. It is constructed based on a top-down logic, from region to object level, from a single target to inter-target relationships, covering holistic aspects of spatial and attribute understanding. The overall pipeline incorporates powerful VLMs via carefully designed prompts to initialize the annotations efficiently and further involve humans' correction in the loop to ensure the annotations are natural, correct, and comprehensive. Built upon existing 3D scanning data, the resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks. We evaluate representative baselines on our benchmarks, analyze their capabilities in different aspects, and showcase the key problems to be addressed in the future. Furthermore, we use this high-quality dataset to train state-of-the-art 3D visual grounding and LLMs and obtain remarkable performance improvement both on existing benchmarks and in-the-wild evaluation. Codes, datasets, and benchmarks will be available at https://github.com/OpenRobotLab/EmbodiedScan.
comment: Follow-up of EmbodiedScan (camera-ready version). A multi-modal 3D dataset with the most-ever comprehensive language annotations for 3D-LLMs. Project page: https://tai-wang.github.io/mmscan/
♻ ☆ Human-in-the-Loop Annotation for Image-Based Engagement Estimation: Assessing the Impact of Model Reliability on Annotation Accuracy
Human-in-the-loop (HITL) frameworks are increasingly recognized for their potential to improve annotation accuracy in emotion estimation systems by combining machine predictions with human expertise. This study focuses on integrating a high-performing image-based emotion model into a HITL annotation framework to evaluate the collaborative potential of human-machine interaction and identify the psychological and practical factors critical to successful collaboration. Specifically, we investigate how varying model reliability and cognitive framing influence human trust, cognitive load, and annotation behavior in HITL systems. We demonstrate that model reliability and psychological framing significantly impact annotators' trust, engagement, and consistency, offering insights into optimizing HITL frameworks. Through three experimental scenarios with 29 participants--baseline model reliability (S1), fabricated errors (S2), and cognitive bias introduced by negative framing (S3)--we analyzed behavioral and qualitative data. Reliable predictions in S1 yielded high trust and annotation consistency, while unreliable outputs in S2 led to increased critical evaluations but also heightened frustration and response variability. Negative framing in S3 revealed how cognitive bias influenced participants to perceive the model as more relatable and accurate, despite misinformation regarding its reliability. These findings highlight the importance of both reliable machine outputs and psychological factors in shaping effective human-machine collaboration. By leveraging the strengths of both human oversight and automated systems, this study establishes a scalable HITL framework for emotion annotation and lays the foundation for broader applications in adaptive learning and human-computer interaction.
Artificial Intelligence 275
☆ StableMTL: Repurposing Latent Diffusion Models for Multi-Task Learning from Partially Annotated Synthetic Datasets
Multi-task learning for dense prediction is limited by the need for extensive annotation for every task, though recent works have explored training with partial task labels. Leveraging the generalization power of diffusion models, we extend the partial learning setup to a zero-shot setting, training a multi-task model on multiple synthetic datasets, each labeled for only a subset of tasks. Our method, StableMTL, repurposes image generators for latent regression. Adapting a denoising framework with task encoding, per-task conditioning and a tailored training scheme. Instead of per-task losses requiring careful balancing, a unified latent loss is adopted, enabling seamless scaling to more tasks. To encourage inter-task synergy, we introduce a multi-stream model with a task-attention mechanism that converts N-to-N task interactions into efficient 1-to-N attention, promoting effective cross-task sharing. StableMTL outperforms baselines on 7 tasks across 8 benchmarks.
comment: Code is available at https://github.com/astra-vision/StableMTL
☆ Vision Transformers Don't Need Trained Registers
We investigate the mechanism underlying a previously identified phenomenon in Vision Transformers -- the emergence of high-norm tokens that lead to noisy attention maps. We observe that in multiple models (e.g., CLIP, DINOv2), a sparse set of neurons is responsible for concentrating high-norm activations on outlier tokens, leading to irregular attention patterns and degrading downstream visual processing. While the existing solution for removing these outliers involves retraining models from scratch with additional learned register tokens, we use our findings to create a training-free approach to mitigate these artifacts. By shifting the high-norm activations from our discovered register neurons into an additional untrained token, we can mimic the effect of register tokens on a model already trained without registers. We demonstrate that our method produces cleaner attention and feature maps, enhances performance over base models across multiple downstream visual tasks, and achieves results comparable to models explicitly trained with register tokens. We then extend test-time registers to off-the-shelf vision-language models to improve their interpretability. Our results suggest that test-time registers effectively take on the role of register tokens at test-time, offering a training-free solution for any pre-trained model released without them.
comment: Project page and code: https://avdravid.github.io/test-time-registers
☆ GUI-Reflection: Empowering Multimodal GUI Models with Self-Reflection Behavior
Multimodal Large Language Models (MLLMs) have shown great potential in revolutionizing Graphical User Interface (GUI) automation. However, existing GUI models mostly rely on learning from nearly error-free offline trajectories, thus lacking reflection and error recovery capabilities. To bridge this gap, we propose GUI-Reflection, a novel framework that explicitly integrates self-reflection and error correction capabilities into end-to-end multimodal GUI models throughout dedicated training stages: GUI-specific pre-training, offline supervised fine-tuning (SFT), and online reflection tuning. GUI-reflection enables self-reflection behavior emergence with fully automated data generation and learning processes without requiring any human annotation. Specifically, 1) we first propose scalable data pipelines to automatically construct reflection and error correction data from existing successful trajectories. While existing GUI models mainly focus on grounding and UI understanding ability, we propose the GUI-Reflection Task Suite to learn and evaluate reflection-oriented abilities explicitly. 2) Furthermore, we built a diverse and efficient environment for online training and data collection of GUI models on mobile devices. 3) We also present an iterative online reflection tuning algorithm leveraging the proposed environment, enabling the model to continuously enhance its reflection and error correction abilities. Our framework equips GUI agents with self-reflection and correction capabilities, paving the way for more robust, adaptable, and intelligent GUI automation, with all data, models, environments, and tools to be released publicly.
comment: Project Page at https://penghao-wu.github.io/GUI_Reflection/
☆ Self Forcing: Bridging the Train-Test Gap in Autoregressive Video Diffusion
We introduce Self Forcing, a novel training paradigm for autoregressive video diffusion models. It addresses the longstanding issue of exposure bias, where models trained on ground-truth context must generate sequences conditioned on their own imperfect outputs during inference. Unlike prior methods that denoise future frames based on ground-truth context frames, Self Forcing conditions each frame's generation on previously self-generated outputs by performing autoregressive rollout with key-value (KV) caching during training. This strategy enables supervision through a holistic loss at the video level that directly evaluates the quality of the entire generated sequence, rather than relying solely on traditional frame-wise objectives. To ensure training efficiency, we employ a few-step diffusion model along with a stochastic gradient truncation strategy, effectively balancing computational cost and performance. We further introduce a rolling KV cache mechanism that enables efficient autoregressive video extrapolation. Extensive experiments demonstrate that our approach achieves real-time streaming video generation with sub-second latency on a single GPU, while matching or even surpassing the generation quality of significantly slower and non-causal diffusion models. Project website: http://self-forcing.github.io/
comment: Project website: http://self-forcing.github.io/
☆ Hidden in plain sight: VLMs overlook their visual representations
Language provides a natural interface to specify and evaluate performance on visual tasks. To realize this possibility, vision language models (VLMs) must successfully integrate visual and linguistic information. Our work compares VLMs to a direct readout of their visual encoders to understand their ability to integrate across these modalities. Across a series of vision-centric benchmarks (e.g., depth estimation, correspondence), we find that VLMs perform substantially worse than their visual encoders, dropping to near-chance performance. We investigate these results through a series of analyses across the entire VLM: namely 1) the degradation of vision representations, 2) brittleness to task prompt, and 3) the language model's role in solving the task. We find that the bottleneck in performing these vision-centric tasks lies in this third category; VLMs are not effectively using visual information easily accessible throughout the entire model, and they inherit the language priors present in the LLM. Our work helps diagnose the failure modes of open-source VLMs, and presents a series of evaluations useful for future investigations into visual understanding within VLMs.
comment: Project page: https://hidden-plain-sight.github.io/
Dynamic View Synthesis as an Inverse Problem
In this work, we address dynamic view synthesis from monocular videos as an inverse problem in a training-free setting. By redesigning the noise initialization phase of a pre-trained video diffusion model, we enable high-fidelity dynamic view synthesis without any weight updates or auxiliary modules. We begin by identifying a fundamental obstacle to deterministic inversion arising from zero-terminal signal-to-noise ratio (SNR) schedules and resolve it by introducing a novel noise representation, termed K-order Recursive Noise Representation. We derive a closed form expression for this representation, enabling precise and efficient alignment between the VAE-encoded and the DDIM inverted latents. To synthesize newly visible regions resulting from camera motion, we introduce Stochastic Latent Modulation, which performs visibility aware sampling over the latent space to complete occluded regions. Comprehensive experiments demonstrate that dynamic view synthesis can be effectively performed through structured latent manipulation in the noise initialization phase.
comment: Project Page: https://inverse-dvs.github.io/
☆ Audio-Sync Video Generation with Multi-Stream Temporal Control
Audio is inherently temporal and closely synchronized with the visual world, making it a naturally aligned and expressive control signal for controllable video generation (e.g., movies). Beyond control, directly translating audio into video is essential for understanding and visualizing rich audio narratives (e.g., Podcasts or historical recordings). However, existing approaches fall short in generating high-quality videos with precise audio-visual synchronization, especially across diverse and complex audio types. In this work, we introduce MTV, a versatile framework for audio-sync video generation. MTV explicitly separates audios into speech, effects, and music tracks, enabling disentangled control over lip motion, event timing, and visual mood, respectively -- resulting in fine-grained and semantically aligned video generation. To support the framework, we additionally present DEMIX, a dataset comprising high-quality cinematic videos and demixed audio tracks. DEMIX is structured into five overlapped subsets, enabling scalable multi-stage training for diverse generation scenarios. Extensive experiments demonstrate that MTV achieves state-of-the-art performance across six standard metrics spanning video quality, text-video consistency, and audio-video alignment. Project page: https://hjzheng.net/projects/MTV/.
☆ Reparameterized LLM Training via Orthogonal Equivalence Transformation
While large language models (LLMs) are driving the rapid advancement of artificial intelligence, effectively and reliably training these large models remains one of the field's most significant challenges. To address this challenge, we propose POET, a novel reParameterized training algorithm that uses Orthogonal Equivalence Transformation to optimize neurons. Specifically, POET reparameterizes each neuron with two learnable orthogonal matrices and a fixed random weight matrix. Because of its provable preservation of spectral properties of weight matrices, POET can stably optimize the objective function with improved generalization. We further develop efficient approximations that make POET flexible and scalable for training large-scale neural networks. Extensive experiments validate the effectiveness and scalability of POET in training LLMs.
comment: Technical report v1 (36 pages, 24 figures, project page: https://spherelab.ai/poet-site/)
☆ $τ^2$-Bench: Evaluating Conversational Agents in a Dual-Control Environment
Existing benchmarks for conversational AI agents simulate single-control environments, where only the AI agent can use tools to interact with the world, while the user remains a passive information provider. This differs from real-world scenarios like technical support, where users need to actively participate in modifying the state of the (shared) world. In order to address this gap, we introduce $\tau^2$-bench, with four key contributions: 1) A novel Telecom dual-control domain modeled as a Dec-POMDP, where both agent and user make use of tools to act in a shared, dynamic environment that tests both agent coordination and communication, 2) A compositional task generator that programmatically creates diverse, verifiable tasks from atomic components, ensuring domain coverage and controlled complexity, 3) A reliable user simulator tightly coupled with the environment, whose behavior is constrained by tools and observable states, improving simulation fidelity, 4) Fine-grained analysis of agent performance through multiple ablations including separating errors arising from reasoning vs communication/coordination. In particular, our experiments show significant performance drops when agents shift from no-user to dual-control, highlighting the challenges of guiding users. Overall, $\tau^2$-bench provides a controlled testbed for agents that must both reason effectively and guide user actions.
☆ HeuriGym: An Agentic Benchmark for LLM-Crafted Heuristics in Combinatorial Optimization
While Large Language Models (LLMs) have demonstrated significant advancements in reasoning and agent-based problem-solving, current evaluation methodologies fail to adequately assess their capabilities: existing benchmarks either rely on closed-ended questions prone to saturation and memorization, or subjective comparisons that lack consistency and rigor. In this work, we introduce HeuriGym, an agentic framework designed for evaluating heuristic algorithms generated by LLMs for combinatorial optimization problems, characterized by clearly defined objectives and expansive solution spaces. HeuriGym empowers LLMs to propose heuristics, receive evaluative feedback via code execution, and iteratively refine their solutions. We evaluate nine state-of-the-art models on nine problems across domains such as computer systems, logistics, and biology, exposing persistent limitations in tool use, planning, and adaptive reasoning. To quantify performance, we propose the Quality-Yield Index (QYI), a metric that captures both solution pass rate and quality. Even top models like GPT-o4-mini-high and Gemini-2.5-Pro attain QYI scores of only 0.6, well below the expert baseline of 1. Our open-source benchmark aims to guide the development of LLMs toward more effective and realistic problem-solving in scientific and engineering domains.
☆ SlideCoder: Layout-aware RAG-enhanced Hierarchical Slide Generation from Design
Manual slide creation is labor-intensive and requires expert prior knowledge. Existing natural language-based LLM generation methods struggle to capture the visual and structural nuances of slide designs. To address this, we formalize the Reference Image to Slide Generation task and propose Slide2Code, the first benchmark with difficulty-tiered samples based on a novel Slide Complexity Metric. We introduce SlideCoder, a layout-aware, retrieval-augmented framework for generating editable slides from reference images. SlideCoder integrates a Color Gradient-based Segmentation algorithm and a Hierarchical Retrieval-Augmented Generation method to decompose complex tasks and enhance code generation. We also release SlideMaster, a 7B open-source model fine-tuned with improved reverse-engineered data. Experiments show that SlideCoder outperforms state-of-the-art baselines by up to 40.5 points, demonstrating strong performance across layout fidelity, execution accuracy, and visual consistency. Our code is available at https://github.com/vinsontang1/SlideCoder.
☆ Reinforcing Multimodal Understanding and Generation with Dual Self-rewards
Building upon large language models (LLMs), recent large multimodal models (LMMs) unify cross-model understanding and generation into a single framework. However, LMMs still struggle to achieve accurate image-text alignment, prone to generating text responses contradicting the visual input or failing to follow the text-to-image prompts. Current solutions require external supervision (e.g., human feedback or reward models) and only address unidirectional tasks-either understanding or generation. In this work, based on the observation that understanding and generation are inverse dual tasks, we introduce a self-supervised dual reward mechanism to reinforce the understanding and generation capabilities of LMMs. Specifically, we sample multiple outputs for a given input in one task domain, then reverse the input-output pairs to compute the dual likelihood of the model as self-rewards for optimization. Extensive experimental results on visual understanding and generation benchmarks demonstrate that our method can effectively enhance the performance of the model without any external supervision, especially achieving remarkable improvements in text-to-image tasks.
☆ Correlated Errors in Large Language Models ICML 2025
Diversity in training data, architecture, and providers is assumed to mitigate homogeneity in LLMs. However, we lack empirical evidence on whether different LLMs differ meaningfully. We conduct a large-scale empirical evaluation on over 350 LLMs overall, using two popular leaderboards and a resume-screening task. We find substantial correlation in model errors -- on one leaderboard dataset, models agree 60% of the time when both models err. We identify factors driving model correlation, including shared architectures and providers. Crucially, however, larger and more accurate models have highly correlated errors, even with distinct architectures and providers. Finally, we show the effects of correlation in two downstream tasks: LLM-as-judge evaluation and hiring -- the latter reflecting theoretical predictions regarding algorithmic monoculture.
comment: Accepted to ICML 2025
☆ BridgeVLA: Input-Output Alignment for Efficient 3D Manipulation Learning with Vision-Language Models
Recently, leveraging pre-trained vision-language models (VLMs) for building vision-language-action (VLA) models has emerged as a promising approach to effective robot manipulation learning. However, only few methods incorporate 3D signals into VLMs for action prediction, and they do not fully leverage the spatial structure inherent in 3D data, leading to low sample efficiency. In this paper, we introduce BridgeVLA, a novel 3D VLA model that (1) projects 3D inputs to multiple 2D images, ensuring input alignment with the VLM backbone, and (2) utilizes 2D heatmaps for action prediction, unifying the input and output spaces within a consistent 2D image space. In addition, we propose a scalable pre-training method that equips the VLM backbone with the capability to predict 2D heatmaps before downstream policy learning. Extensive experiments show the proposed method is able to learn 3D manipulation efficiently and effectively. BridgeVLA outperforms state-of-the-art baseline methods across three simulation benchmarks. In RLBench, it improves the average success rate from 81.4% to 88.2%. In COLOSSEUM, it demonstrates significantly better performance in challenging generalization settings, boosting the average success rate from 56.7% to 64.0%. In GemBench, it surpasses all the comparing baseline methods in terms of average success rate. In real-robot experiments, BridgeVLA outperforms a state-of-the-art baseline method by 32% on average. It generalizes robustly in multiple out-of-distribution settings, including visual disturbances and unseen instructions. Remarkably, it is able to achieve a success rate of 96.8% on 10+ tasks with only 3 trajectories per task, highlighting its extraordinary sample efficiency. Project Website:https://bridgevla.github.io/
comment: In Submission
☆ ProtocolLLM: RTL Benchmark for SystemVerilog Generation of Communication Protocols ISCA 2025
Recent advances in Large Language Models (LLMs) have shown promising capabilities in generating code for general-purpose programming languages. In contrast, their applicability for hardware description languages, particularly for generating synthesizable and functionally correct designs, remains significantly underexplored. HDLs such as SystemVerilog are logic-oriented and demand strict adherence to timing semantics, concurrency, and synthesizability constraints. Moreover, HDL-based design flows encompass a broad set of tasks beyond structural code generation, including testbench development, assertion-based verification, timing closure, and protocol-level integration for on-chip communication. The objective of our paper is to analyze the capabilities of state-of-the-art LLMs in generating SystemVerilog implementations of standard communication protocols, a core component of embedded and System-on-Chip (SoC) architectures. This paper introduces the first benchmark suite targeting four widely used protocols: SPI, I2C, UART, and AXI. We define code generation tasks that capture varying levels of design abstraction and prompt specificity. The generated designs are assessed for syntactic correctness, synthesizability, and functional fidelity via waveform simulation and test benches.
comment: Accepted at MLSysArch@ISCA 2025
☆ Decoupling the Image Perception and Multimodal Reasoning for Reasoning Segmentation with Digital Twin Representations
Reasoning Segmentation (RS) is a multimodal vision-text task that requires segmenting objects based on implicit text queries, demanding both precise visual perception and vision-text reasoning capabilities. Current RS approaches rely on fine-tuning vision-language models (VLMs) for both perception and reasoning, but their tokenization of images fundamentally disrupts continuous spatial relationships between objects. We introduce DTwinSeger, a novel RS approach that leverages Digital Twin (DT) representation as an intermediate layer to decouple perception from reasoning. Innovatively, DTwinSeger reformulates RS as a two-stage process, where the first transforms the image into a structured DT representation that preserves spatial relationships and semantic properties and then employs a Large Language Model (LLM) to perform explicit reasoning over this representation to identify target objects. We propose a supervised fine-tuning method specifically for LLM with DT representation, together with a corresponding fine-tuning dataset Seg-DT, to enhance the LLM's reasoning capabilities with DT representations. Experiments show that our method can achieve state-of-the-art performance on two image RS benchmarks and three image referring segmentation benchmarks. It yields that DT representation functions as an effective bridge between vision and text, enabling complex multimodal reasoning tasks to be accomplished solely with an LLM.
☆ Gradients: When Markets Meet Fine-tuning -- A Distributed Approach to Model Optimisation
Foundation model fine-tuning faces a fundamental challenge: existing AutoML platforms rely on single optimisation strategies that explore only a fraction of viable hyperparameter configurations. In this white paper, We introduce Gradients, a decentralised AutoML platform that transforms hyperparameter optimisation into a competitive marketplace where independent miners compete to discover optimal configurations. Economic incentives align individual exploration with collective optimisation goals, driving systematic investigation of hyperparameter regions that centralised methods miss. We evaluate our approach across 180 controlled experiments spanning diverse model architectures (70M to 70B parameters) and task types. Gradients achieves an 82.8\% win rate against HuggingFace AutoTrain and 100\% against TogetherAI, Databricks, and Google Cloud, with mean improvements of 11.8\% and 42.1\% respectively. Complex reasoning and retrieval tasks show particularly strong gains of 30-40\%, whilst diffusion models achieve 23.4\% improvements for person-specific generation. These results demonstrate that competitive, economically-driven approaches can systematically discover superior configurations that centralised AutoML consistently miss.
☆ Mimicking or Reasoning: Rethinking Multi-Modal In-Context Learning in Vision-Language Models
Vision-language models (VLMs) are widely assumed to exhibit in-context learning (ICL), a property similar to that of their language-only counterparts. While recent work suggests VLMs can perform multimodal ICL (MM-ICL), studies show they often rely on shallow heuristics -- such as copying or majority voting -- rather than true task understanding. We revisit this assumption by evaluating VLMs under distribution shifts, where support examples come from a dataset different from the query. Surprisingly, performance often degrades with more demonstrations, and models tend to copy answers rather than learn from them. To investigate further, we propose a new MM-ICL with Reasoning pipeline that augments each demonstration with a generated rationale alongside the answer. We conduct extensive and comprehensive experiments on both perception- and reasoning-required datasets with open-source VLMs ranging from 3B to 72B and proprietary models such as Gemini 2.0. We conduct controlled studies varying shot count, retrieval method, rationale quality, and distribution. Our results show limited performance sensitivity across these factors, suggesting that current VLMs do not effectively utilize demonstration-level information as intended in MM-ICL.
☆ Diffusion of Responsibility in Collective Decision Making
The term "diffusion of responsibility'' refers to situations in which multiple agents share responsibility for an outcome, obscuring individual accountability. This paper examines this frequently undesirable phenomenon in the context of collective decision-making mechanisms. The work shows that if a decision is made by two agents, then the only way to avoid diffusion of responsibility is for one agent to act as a "dictator'', making the decision unilaterally. In scenarios with more than two agents, any diffusion-free mechanism is an "elected dictatorship'' where the agents elect a single agent to make a unilateral decision. The technical results are obtained by defining a bisimulation of decision-making mechanisms, proving that bisimulation preserves responsibility-related properties, and establishing the results for a smallest bisimular mechanism.
☆ Solving Inequality Proofs with Large Language Models
Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.
comment: 52 pages, 16 figures
☆ Uncovering the Functional Roles of Nonlinearity in Memory
Memory and long-range temporal processing are core requirements for sequence modeling tasks across natural language processing, time-series forecasting, speech recognition, and control. While nonlinear recurrence has long been viewed as essential for enabling such mechanisms, recent work suggests that linear dynamics may often suffice. In this study, we go beyond performance comparisons to systematically dissect the functional role of nonlinearity in recurrent networks--identifying both when it is computationally necessary, and what mechanisms it enables. We use Almost Linear Recurrent Neural Networks (AL-RNNs), which allow fine-grained control over nonlinearity, as both a flexible modeling tool and a probe into the internal mechanisms of memory. Across a range of classic sequence modeling tasks and a real-world stimulus selection task, we find that minimal nonlinearity is not only sufficient but often optimal, yielding models that are simpler, more robust, and more interpretable than their fully nonlinear or linear counterparts. Our results provide a principled framework for selectively introducing nonlinearity, bridging dynamical systems theory with the functional demands of long-range memory and structured computation in recurrent neural networks, with implications for both artificial and biological neural systems.
comment: Preprint under review
☆ LUCIFER: Language Understanding and Context-Infused Framework for Exploration and Behavior Refinement
In dynamic environments, the rapid obsolescence of pre-existing environmental knowledge creates a gap between an agent's internal model and the evolving reality of its operational context. This disparity between prior and updated environmental valuations fundamentally limits the effectiveness of autonomous decision-making. To bridge this gap, the contextual bias of human domain stakeholders, who naturally accumulate insights through direct, real-time observation, becomes indispensable. However, translating their nuanced, and context-rich input into actionable intelligence for autonomous systems remains an open challenge. To address this, we propose LUCIFER (Language Understanding and Context-Infused Framework for Exploration and Behavior Refinement), a domain-agnostic framework that integrates a hierarchical decision-making architecture with reinforcement learning (RL) and large language models (LLMs) into a unified system. This architecture mirrors how humans decompose complex tasks, enabling a high-level planner to coordinate specialised sub-agents, each focused on distinct objectives and temporally interdependent actions. Unlike traditional applications where LLMs are limited to single role, LUCIFER integrates them in two synergistic roles: as context extractors, structuring verbal stakeholder input into domain-aware representations that influence decision-making through an attention space mechanism aligning LLM-derived insights with the agent's learning process, and as zero-shot exploration facilitators guiding the agent's action selection process during exploration. We benchmark various LLMs in both roles and demonstrate that LUCIFER improves exploration efficiency and decision quality, outperforming flat, goal-conditioned policies. Our findings show the potential of context-driven decision-making, where autonomous systems leverage human contextual knowledge for operational success.
comment: 12 pages, 4 Figures, 3 Tables, submitted to the IEEE for possible publication
☆ Diffuse Everything: Multimodal Diffusion Models on Arbitrary State Spaces ICML 2025
Diffusion models have demonstrated remarkable performance in generating unimodal data across various tasks, including image, video, and text generation. On the contrary, the joint generation of multimodal data through diffusion models is still in the early stages of exploration. Existing approaches heavily rely on external preprocessing protocols, such as tokenizers and variational autoencoders, to harmonize varied data representations into a unified, unimodal format. This process heavily demands the high accuracy of encoders and decoders, which can be problematic for applications with limited data. To lift this restriction, we propose a novel framework for building multimodal diffusion models on arbitrary state spaces, enabling native generation of coupled data across different modalities. By introducing an innovative decoupled noise schedule for each modality, we enable both unconditional and modality-conditioned generation within a single model simultaneously. We empirically validate our approach for text-image generation and mixed-type tabular data synthesis, demonstrating that it achieves competitive performance.
comment: Accepted to ICML 2025. Code available at https://github.com/KevinRojas1499/Diffuse-Everything
☆ MiniCPM4: Ultra-Efficient LLMs on End Devices
This paper introduces MiniCPM4, a highly efficient large language model (LLM) designed explicitly for end-side devices. We achieve this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems. Specifically, in terms of model architecture, we propose InfLLM v2, a trainable sparse attention mechanism that accelerates both prefilling and decoding phases for long-context processing. Regarding training data, we propose UltraClean, an efficient and accurate pre-training data filtering and generation strategy, and UltraChat v2, a comprehensive supervised fine-tuning dataset. These datasets enable satisfactory model performance to be achieved using just 8 trillion training tokens. Regarding training algorithms, we propose ModelTunnel v2 for efficient pre-training strategy search, and improve existing post-training methods by introducing chunk-wise rollout for load-balanced reinforcement learning and data-efficient tenary LLM, BitCPM. Regarding inference systems, we propose CPM.cu that integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding. To meet diverse on-device requirements, MiniCPM4 is available in two versions, with 0.5B and 8B parameters, respectively. Sufficient evaluation results show that MiniCPM4 outperforms open-source models of similar size across multiple benchmarks, highlighting both its efficiency and effectiveness. Notably, MiniCPM4-8B demonstrates significant speed improvements over Qwen3-8B when processing long sequences. Through further adaptation, MiniCPM4 successfully powers diverse applications, including trustworthy survey generation and tool use with model context protocol, clearly showcasing its broad usability.
comment: MiniCPM4 Technical Report
☆ GaussianVAE: Adaptive Learning Dynamics of 3D Gaussians for High-Fidelity Super-Resolution
We present a novel approach for enhancing the resolution and geometric fidelity of 3D Gaussian Splatting (3DGS) beyond native training resolution. Current 3DGS methods are fundamentally limited by their input resolution, producing reconstructions that cannot extrapolate finer details than are present in the training views. Our work breaks this limitation through a lightweight generative model that predicts and refines additional 3D Gaussians where needed most. The key innovation is our Hessian-assisted sampling strategy, which intelligently identifies regions that are likely to benefit from densification, ensuring computational efficiency. Unlike computationally intensive GANs or diffusion approaches, our method operates in real-time (0.015s per inference on a single consumer-grade GPU), making it practical for interactive applications. Comprehensive experiments demonstrate significant improvements in both geometric accuracy and rendering quality compared to state-of-the-art methods, establishing a new paradigm for resolution-free 3D scene enhancement.
☆ Evaluating Large Language Models on the Frame and Symbol Grounding Problems: A Zero-shot Benchmark
Recent advancements in large language models (LLMs) have revitalized philosophical debates surrounding artificial intelligence. Two of the most fundamental challenges - namely, the Frame Problem and the Symbol Grounding Problem - have historically been viewed as unsolvable within traditional symbolic AI systems. This study investigates whether modern LLMs possess the cognitive capacities required to address these problems. To do so, I designed two benchmark tasks reflecting the philosophical core of each problem, administered them under zero-shot conditions to 13 prominent LLMs (both closed and open-source), and assessed the quality of the models' outputs across five trials each. Responses were scored along multiple criteria, including contextual reasoning, semantic coherence, and information filtering. The results demonstrate that while open-source models showed variability in performance due to differences in model size, quantization, and instruction tuning, several closed models consistently achieved high scores. These findings suggest that select modern LLMs may be acquiring capacities sufficient to produce meaningful and stable responses to these long-standing theoretical challenges.
comment: 52 pages, Additional resources available on GitHub repository
☆ Diffusion Counterfactual Generation with Semantic Abduction
Counterfactual image generation presents significant challenges, including preserving identity, maintaining perceptual quality, and ensuring faithfulness to an underlying causal model. While existing auto-encoding frameworks admit semantic latent spaces which can be manipulated for causal control, they struggle with scalability and fidelity. Advancements in diffusion models present opportunities for improving counterfactual image editing, having demonstrated state-of-the-art visual quality, human-aligned perception and representation learning capabilities. Here, we present a suite of diffusion-based causal mechanisms, introducing the notions of spatial, semantic and dynamic abduction. We propose a general framework that integrates semantic representations into diffusion models through the lens of Pearlian causality to edit images via a counterfactual reasoning process. To our knowledge, this is the first work to consider high-level semantic identity preservation for diffusion counterfactuals and to demonstrate how semantic control enables principled trade-offs between faithful causal control and identity preservation.
comment: Proceedings of the 42nd International Conference on Machine Learning, Vancouver, Canada
☆ FreeGave: 3D Physics Learning from Dynamic Videos by Gaussian Velocity CVPR 2025
In this paper, we aim to model 3D scene geometry, appearance, and the underlying physics purely from multi-view videos. By applying various governing PDEs as PINN losses or incorporating physics simulation into neural networks, existing works often fail to learn complex physical motions at boundaries or require object priors such as masks or types. In this paper, we propose FreeGave to learn the physics of complex dynamic 3D scenes without needing any object priors. The key to our approach is to introduce a physics code followed by a carefully designed divergence-free module for estimating a per-Gaussian velocity field, without relying on the inefficient PINN losses. Extensive experiments on three public datasets and a newly collected challenging real-world dataset demonstrate the superior performance of our method for future frame extrapolation and motion segmentation. Most notably, our investigation into the learned physics codes reveals that they truly learn meaningful 3D physical motion patterns in the absence of any human labels in training.
comment: CVPR 2025. Code and data are available at: https://github.com/vLAR-group/FreeGave
☆ Lightweight Sequential Transformers for Blood Glucose Level Prediction in Type-1 Diabetes
Type 1 Diabetes (T1D) affects millions worldwide, requiring continuous monitoring to prevent severe hypo- and hyperglycemic events. While continuous glucose monitoring has improved blood glucose management, deploying predictive models on wearable devices remains challenging due to computational and memory constraints. To address this, we propose a novel Lightweight Sequential Transformer model designed for blood glucose prediction in T1D. By integrating the strengths of Transformers' attention mechanisms and the sequential processing of recurrent neural networks, our architecture captures long-term dependencies while maintaining computational efficiency. The model is optimized for deployment on resource-constrained edge devices and incorporates a balanced loss function to handle the inherent data imbalance in hypo- and hyperglycemic events. Experiments on two benchmark datasets, OhioT1DM and DiaTrend, demonstrate that the proposed model outperforms state-of-the-art methods in predicting glucose levels and detecting adverse events. This work fills the gap between high-performance modeling and practical deployment, providing a reliable and efficient T1D management solution.
☆ Fairness Overfitting in Machine Learning: An Information-Theoretic Perspective
Despite substantial progress in promoting fairness in high-stake applications using machine learning models, existing methods often modify the training process, such as through regularizers or other interventions, but lack formal guarantees that fairness achieved during training will generalize to unseen data. Although overfitting with respect to prediction performance has been extensively studied, overfitting in terms of fairness loss has received far less attention. This paper proposes a theoretical framework for analyzing fairness generalization error through an information-theoretic lens. Our novel bounding technique is based on Efron-Stein inequality, which allows us to derive tight information-theoretic fairness generalization bounds with both Mutual Information (MI) and Conditional Mutual Information (CMI). Our empirical results validate the tightness and practical relevance of these bounds across diverse fairness-aware learning algorithms. Our framework offers valuable insights to guide the design of algorithms improving fairness generalization.
comment: 38 pages
☆ LogoSP: Local-global Grouping of Superpoints for Unsupervised Semantic Segmentation of 3D Point Clouds CVPR 2025
We study the problem of unsupervised 3D semantic segmentation on raw point clouds without needing human labels in training. Existing methods usually formulate this problem into learning per-point local features followed by a simple grouping strategy, lacking the ability to discover additional and possibly richer semantic priors beyond local features. In this paper, we introduce LogoSP to learn 3D semantics from both local and global point features. The key to our approach is to discover 3D semantic information by grouping superpoints according to their global patterns in the frequency domain, thus generating highly accurate semantic pseudo-labels for training a segmentation network. Extensive experiments on two indoor and an outdoor datasets show that our LogoSP surpasses all existing unsupervised methods by large margins, achieving the state-of-the-art performance for unsupervised 3D semantic segmentation. Notably, our investigation into the learned global patterns reveals that they truly represent meaningful 3D semantics in the absence of human labels during training.
comment: CVPR 2025. Code and data are available at: https://github.com/vLAR-group/LogoSP
☆ Residual Reweighted Conformal Prediction for Graph Neural Networks
Graph Neural Networks (GNNs) excel at modeling relational data but face significant challenges in high-stakes domains due to unquantified uncertainty. Conformal prediction (CP) offers statistical coverage guarantees, but existing methods often produce overly conservative prediction intervals that fail to account for graph heteroscedasticity and structural biases. While residual reweighting CP variants address some of these limitations, they neglect graph topology, cluster-specific uncertainties, and risk data leakage by reusing training sets. To address these issues, we propose Residual Reweighted GNN (RR-GNN), a framework designed to generate minimal prediction sets with provable marginal coverage guarantees. RR-GNN introduces three major innovations to enhance prediction performance. First, it employs Graph-Structured Mondrian CP to partition nodes or edges into communities based on topological features, ensuring cluster-conditional coverage that reflects heterogeneity. Second, it uses Residual-Adaptive Nonconformity Scores by training a secondary GNN on a held-out calibration set to estimate task-specific residuals, dynamically adjusting prediction intervals according to node or edge uncertainty. Third, it adopts a Cross-Training Protocol, which alternates the optimization of the primary GNN and the residual predictor to prevent information leakage while maintaining graph dependencies. We validate RR-GNN on 15 real-world graphs across diverse tasks, including node classification, regression, and edge weight prediction. Compared to CP baselines, RR-GNN achieves improved efficiency over state-of-the-art methods, with no loss of coverage.
☆ A Temporal FRBR/FRBRoo-Based Model for Component-Level Versioning of Legal Norms
Effectively representing legal norms for automated processing is a critical challenge, particularly in tracking the diachronic evolution of their hierarchical components (e.g., articles, paragraphs). While foundational frameworks like FRBR/FRBRoo and standards like Akoma Ntoso model legal documents at a macro level, they lack native mechanisms for granular, component-level versioning. This limitation hinders the deterministic point-in-time reconstruction of legal texts, a fundamental capability for reliable Legal Tech and AI applications. This paper proposes a structured, temporal model that extends the FRBRoo framework to address this gap. It introduces specialized subclasses of Expressio - Temporal Version (TV) and Language Version (LV - to represent the state of a legal norm and its linguistic variations at specific points in time. The model applies this same paradigm hierarchically, introducing Component Work (CW), Component Temporal Version (CTV), and Component Language Version (CLV) to track the lifecycle of individual articles, paragraphs, and clauses. Using the Brazilian Federal Constitution as a case study, the paper demonstrates how each amendment creates new Component Temporal Versions for affected provisions, while unaffected components retain their existing versions. This fine-grained, time-aware architecture enables the precise, deterministic retrieval and reconstruction of any part of a legal text as it existed on a specific date. The model provides a robust foundation for developing advanced legal information systems, knowledge graphs, and AI tools capable of accurate historical analysis and impact assessment, overcoming the limitations of current generative models.
☆ PolyVivid: Vivid Multi-Subject Video Generation with Cross-Modal Interaction and Enhancement
Despite recent advances in video generation, existing models still lack fine-grained controllability, especially for multi-subject customization with consistent identity and interaction. In this paper, we propose PolyVivid, a multi-subject video customization framework that enables flexible and identity-consistent generation. To establish accurate correspondences between subject images and textual entities, we design a VLLM-based text-image fusion module that embeds visual identities into the textual space for precise grounding. To further enhance identity preservation and subject interaction, we propose a 3D-RoPE-based enhancement module that enables structured bidirectional fusion between text and image embeddings. Moreover, we develop an attention-inherited identity injection module to effectively inject fused identity features into the video generation process, mitigating identity drift. Finally, we construct an MLLM-based data pipeline that combines MLLM-based grounding, segmentation, and a clique-based subject consolidation strategy to produce high-quality multi-subject data, effectively enhancing subject distinction and reducing ambiguity in downstream video generation. Extensive experiments demonstrate that PolyVivid achieves superior performance in identity fidelity, video realism, and subject alignment, outperforming existing open-source and commercial baselines.
☆ Diffusion models under low-noise regime
Recent work on diffusion models proposed that they operate in two regimes: memorization, in which models reproduce their training data, and generalization, in which they generate novel samples. While this has been tested in high-noise settings, the behavior of diffusion models as effective denoisers when the corruption level is small remains unclear. To address this gap, we systematically investigated the behavior of diffusion models under low-noise diffusion dynamics, with implications for model robustness and interpretability. Using (i) CelebA subsets of varying sample sizes and (ii) analytic Gaussian mixture benchmarks, we reveal that models trained on disjoint data diverge near the data manifold even when their high-noise outputs converge. We quantify how training set size, data geometry, and model objective choice shape denoising trajectories and affect score accuracy, providing insights into how these models actually learn representations of data distributions. This work starts to address gaps in our understanding of generative model reliability in practical applications where small perturbations are common.
☆ HAIBU-ReMUD: Reasoning Multimodal Ultrasound Dataset and Model Bridging to General Specific Domains
Multimodal large language models (MLLMs) have shown great potential in general domains but perform poorly in some specific domains due to a lack of domain-specific data, such as image-text data or vedio-text data. In some specific domains, there is abundant graphic and textual data scattered around, but lacks standardized arrangement. In the field of medical ultrasound, there are ultrasonic diagnostic books, ultrasonic clinical guidelines, ultrasonic diagnostic reports, and so on. However, these ultrasonic materials are often saved in the forms of PDF, images, etc., and cannot be directly used for the training of MLLMs. This paper proposes a novel image-text reasoning supervised fine-tuning data generation pipeline to create specific domain quadruplets (image, question, thinking trace, and answer) from domain-specific materials. A medical ultrasound domain dataset ReMUD is established, containing over 45,000 reasoning and non-reasoning supervised fine-tuning Question Answering (QA) and Visual Question Answering (VQA) data. The ReMUD-7B model, fine-tuned on Qwen2.5-VL-7B-Instruct, outperforms general-domain MLLMs in medical ultrasound field. To facilitate research, the ReMUD dataset, data generation codebase, and ReMUD-7B parameters will be released at https://github.com/ShiDaizi/ReMUD, addressing the data shortage issue in specific domain MLLMs.
☆ Are Trees Really Green? A Detection Approach of IoT Malware Attacks
Nowadays, the Internet of Things (IoT) is widely employed, and its usage is growing exponentially because it facilitates remote monitoring, predictive maintenance, and data-driven decision making, especially in the healthcare and industrial sectors. However, IoT devices remain vulnerable due to their resource constraints and difficulty in applying security patches. Consequently, various cybersecurity attacks are reported daily, such as Denial of Service, particularly in IoT-driven solutions. Most attack detection methodologies are based on Machine Learning (ML) techniques, which can detect attack patterns. However, the focus is more on identification rather than considering the impact of ML algorithms on computational resources. This paper proposes a green methodology to identify IoT malware networking attacks based on flow privacy-preserving statistical features. In particular, the hyperparameters of three tree-based models -- Decision Trees, Random Forest and Extra-Trees -- are optimized based on energy consumption and test-time performance in terms of Matthew's Correlation Coefficient. Our results show that models maintain high performance and detection accuracy while consistently reducing power usage in terms of watt-hours (Wh). This suggests that on-premise ML-based Intrusion Detection Systems are suitable for IoT and other resource-constrained devices.
☆ Improving large language models with concept-aware fine-tuning
Large language models (LLMs) have become the cornerstone of modern AI. However, the existing paradigm of next-token prediction fundamentally limits their ability to form coherent, high-level concepts, making it a critical barrier to human-like understanding and reasoning. Take the phrase "ribonucleic acid" as an example: an LLM will first decompose it into tokens, i.e., artificial text fragments ("rib", "on", ...), then learn each token sequentially, rather than grasping the phrase as a unified, coherent semantic entity. This fragmented representation hinders deeper conceptual understanding and, ultimately, the development of truly intelligent systems. In response, we introduce Concept-Aware Fine-Tuning (CAFT), a novel multi-token training method that redefines how LLMs are fine-tuned. By enabling the learning of sequences that span multiple tokens, this method fosters stronger concept-aware learning. Our experiments demonstrate significant improvements compared to conventional next-token finetuning methods across diverse tasks, including traditional applications like text summarization and domain-specific ones like de novo protein design. Multi-token prediction was previously only possible in the prohibitively expensive pretraining phase; CAFT, to our knowledge, is the first to bring the multi-token setting to the post-training phase, thus effectively democratizing its benefits for the broader community of practitioners and researchers. Finally, the unexpected effectiveness of our proposed method suggests wider implications for the machine learning research community. All code and data are available at https://github.com/michaelchen-lab/caft-llm
☆ Decentralizing Multi-Agent Reinforcement Learning with Temporal Causal Information
Reinforcement learning (RL) algorithms can find an optimal policy for a single agent to accomplish a particular task. However, many real-world problems require multiple agents to collaborate in order to achieve a common goal. For example, a robot executing a task in a warehouse may require the assistance of a drone to retrieve items from high shelves. In Decentralized Multi-Agent RL (DMARL), agents learn independently and then combine their policies at execution time, but often must satisfy constraints on compatibility of local policies to ensure that they can achieve the global task when combined. In this paper, we study how providing high-level symbolic knowledge to agents can help address unique challenges of this setting, such as privacy constraints, communication limitations, and performance concerns. In particular, we extend the formal tools used to check the compatibility of local policies with the team task, making decentralized training with theoretical guarantees usable in more scenarios. Furthermore, we empirically demonstrate that symbolic knowledge about the temporal evolution of events in the environment can significantly expedite the learning process in DMARL.
☆ Addition in Four Movements: Mapping Layer-wise Information Trajectories in LLMs EMNLP 2025
Multi-digit addition is a clear probe of the computational power of large language models. To dissect the internal arithmetic processes in LLaMA-3-8B-Instruct, we combine linear probing with logit-lens inspection. Inspired by the step-by-step manner in which humans perform addition, we propose and analyze a coherent four-stage trajectory in the forward pass:Formula-structure representations become linearly decodable first, while the answer token is still far down the candidate list.Core computational features then emerge prominently.At deeper activation layers, numerical abstractions of the result become clearer, enabling near-perfect detection and decoding of the individual digits in the sum.Near the output, the model organizes and generates the final content, with the correct token reliably occupying the top rank.This trajectory suggests a hierarchical process that favors internal computation over rote memorization. We release our code and data to facilitate reproducibility.
comment: 12 pages, including appendix, 7 figures. EMNLP 2025 submission (ARR May 2025 cycle, reviews pending)
☆ Accelerating Diffusion Models in Offline RL via Reward-Aware Consistency Trajectory Distillation
Although diffusion models have achieved strong results in decision-making tasks, their slow inference speed remains a key limitation. While the consistency model offers a potential solution, its applications to decision-making often struggle with suboptimal demonstrations or rely on complex concurrent training of multiple networks. In this work, we propose a novel approach to consistency distillation for offline reinforcement learning that directly incorporates reward optimization into the distillation process. Our method enables single-step generation while maintaining higher performance and simpler training. Empirical evaluations on the Gym MuJoCo benchmarks and long horizon planning demonstrate that our approach can achieve an 8.7% improvement over previous state-of-the-art while offering up to 142x speedup over diffusion counterparts in inference time.
☆ Self-Cascaded Diffusion Models for Arbitrary-Scale Image Super-Resolution
Arbitrary-scale image super-resolution aims to upsample images to any desired resolution, offering greater flexibility than traditional fixed-scale super-resolution. Recent approaches in this domain utilize regression-based or generative models, but many of them are a single-stage upsampling process, which may be challenging to learn across a wide, continuous distribution of scaling factors. Progressive upsampling strategies have shown promise in mitigating this issue, yet their integration with diffusion models for flexible upscaling remains underexplored. Here, we present CasArbi, a novel self-cascaded diffusion framework for arbitrary-scale image super-resolution. CasArbi meets the varying scaling demands by breaking them down into smaller sequential factors and progressively enhancing the image resolution at each step with seamless transitions for arbitrary scales. Our novel coordinate-guided residual diffusion model allows for the learning of continuous image representations while enabling efficient diffusion sampling. Extensive experiments demonstrate that our CasArbi outperforms prior arts in both perceptual and distortion performance metrics across diverse arbitrary-scale super-resolution benchmarks.
☆ A Proposal to Extend the Common Model of Cognition with Metacognition
The Common Model of Cognition (CMC) provides an abstract characterization of the structure and processing required by a cognitive architecture for human-like minds. We propose a unified approach to integrating metacognition within the CMC. We propose that metacognition involves reasoning over explicit representations of an agent's cognitive capabilities and processes in working memory. Our proposal exploits the existing cognitive capabilities of the CMC, making minimal extensions in the structure and information available within working memory. We provide examples of metacognition within our proposal.
☆ Enhancing Adversarial Robustness with Conformal Prediction: A Framework for Guaranteed Model Reliability
As deep learning models are increasingly deployed in high-risk applications, robust defenses against adversarial attacks and reliable performance guarantees become paramount. Moreover, accuracy alone does not provide sufficient assurance or reliable uncertainty estimates for these models. This study advances adversarial training by leveraging principles from Conformal Prediction. Specifically, we develop an adversarial attack method, termed OPSA (OPtimal Size Attack), designed to reduce the efficiency of conformal prediction at any significance level by maximizing model uncertainty without requiring coverage guarantees. Correspondingly, we introduce OPSA-AT (Adversarial Training), a defense strategy that integrates OPSA within a novel conformal training paradigm. Experimental evaluations demonstrate that our OPSA attack method induces greater uncertainty compared to baseline approaches for various defenses. Conversely, our OPSA-AT defensive model significantly enhances robustness not only against OPSA but also other adversarial attacks, and maintains reliable prediction. Our findings highlight the effectiveness of this integrated approach for developing trustworthy and resilient deep learning models for safety-critical domains. Our code is available at https://github.com/bjbbbb/Enhancing-Adversarial-Robustness-with-Conformal-Prediction.
☆ MultiMatch: Multihead Consistency Regularization Matching for Semi-Supervised Text Classification
We introduce MultiMatch, a novel semi-supervised learning (SSL) algorithm combining the paradigms of co-training and consistency regularization with pseudo-labeling. At its core, MultiMatch features a three-fold pseudo-label weighting module designed for three key purposes: selecting and filtering pseudo-labels based on head agreement and model confidence, and weighting them according to the perceived classification difficulty. This novel module enhances and unifies three existing techniques -- heads agreement from Multihead Co-training, self-adaptive thresholds from FreeMatch, and Average Pseudo-Margins from MarginMatch -- resulting in a holistic approach that improves robustness and performance in SSL settings. Experimental results on benchmark datasets highlight the superior performance of MultiMatch, achieving state-of-the-art results on 9 out of 10 setups from 5 natural language processing datasets and ranking first according to the Friedman test among 19 methods. Furthermore, MultiMatch demonstrates exceptional robustness in highly imbalanced settings, outperforming the second-best approach by 3.26% -- and data imbalance is a key factor for many text classification tasks.
☆ Re-ranking Reasoning Context with Tree Search Makes Large Vision-Language Models Stronger ICML 2025
Recent advancements in Large Vision Language Models (LVLMs) have significantly improved performance in Visual Question Answering (VQA) tasks through multimodal Retrieval-Augmented Generation (RAG). However, existing methods still face challenges, such as the scarcity of knowledge with reasoning examples and erratic responses from retrieved knowledge. To address these issues, in this study, we propose a multimodal RAG framework, termed RCTS, which enhances LVLMs by constructing a Reasoning Context-enriched knowledge base and a Tree Search re-ranking method. Specifically, we introduce a self-consistent evaluation mechanism to enrich the knowledge base with intrinsic reasoning patterns. We further propose a Monte Carlo Tree Search with Heuristic Rewards (MCTS-HR) to prioritize the most relevant examples. This ensures that LVLMs can leverage high-quality contextual reasoning for better and more consistent responses. Extensive experiments demonstrate that our framework achieves state-of-the-art performance on multiple VQA datasets, significantly outperforming In-Context Learning (ICL) and Vanilla-RAG methods. It highlights the effectiveness of our knowledge base and re-ranking method in improving LVLMs. Our code is available at https://github.com/yannqi/RCTS-RAG.
comment: ICML 2025 Spotlight. 22 pages, 16 figures
☆ REMoH: A Reflective Evolution of Multi-objective Heuristics approach via Large Language Models
Multi-objective optimization is fundamental in complex decision-making tasks. Traditional algorithms, while effective, often demand extensive problem-specific modeling and struggle to adapt to nonlinear structures. Recent advances in Large Language Models (LLMs) offer enhanced explainability, adaptability, and reasoning. This work proposes Reflective Evolution of Multi-objective Heuristics (REMoH), a novel framework integrating NSGA-II with LLM-based heuristic generation. A key innovation is a reflection mechanism that uses clustering and search-space reflection to guide the creation of diverse, high-quality heuristics, improving convergence and maintaining solution diversity. The approach is evaluated on the Flexible Job Shop Scheduling Problem (FJSSP) in-depth benchmarking against state-of-the-art methods using three instance datasets: Dauzere, Barnes, and Brandimarte. Results demonstrate that REMoH achieves competitive results compared to state-of-the-art approaches with reduced modeling effort and enhanced adaptability. These findings underscore the potential of LLMs to augment traditional optimization, offering greater flexibility, interpretability, and robustness in multi-objective scenarios.
comment: 21 pages, 5 tables, 7 figures and 4 appendixes. Pre-print submitted to IEEE Transactions on Evolutionary Computation
☆ Agent Semantics, Semantic Spacetime, and Graphical Reasoning
Some formal aspects of the Semantic Spacetime graph model are presented, with reference to its use for directed knowledge representations and process modelling. A finite $\gamma(3,4)$ representation is defined to form a closed set of operations that can scale to any degree of semantic complexity. The Semantic Spacetime postulates bring predictability with minimal constraints to pathways in graphs. The ubiquitous appearance of absorbing states in any partial graph means that a graph process leaks information. The issue is closely associated with the issue of division by zero, which signals a loss of closure and the need for manual injection of remedial information. The Semantic Spacetime model (and its Promise Theory) origins help to clarify how such absorbing states are associated with boundary information where intentionality can enter.
☆ Comparing Credit Risk Estimates in the Gen-AI Era
Generative AI technologies have demonstrated significant potential across diverse applications. This study provides a comparative analysis of credit score modeling techniques, contrasting traditional approaches with those leveraging generative AI. Our findings reveal that current generative AI models fall short of matching the performance of traditional methods, regardless of the integration strategy employed. These results highlight the limitations in the current capabilities of generative AI for credit risk scoring, emphasizing the need for further research and development before the possibility of applying generative AI for this specific task, or equivalent ones.
☆ Augmenting LLMs' Reasoning by Reinforcing Abstract Thinking
Recent studies have shown that large language models (LLMs), especially smaller ones, often lack robustness in their reasoning. I.e., they tend to experience performance drops when faced with distribution shifts, such as changes to numerical or nominal variables, or insertions of distracting clauses. A possible strategy to address this involves generating synthetic data to further "instantiate" reasoning problems on potential variations. In contrast, our approach focuses on "abstracting" reasoning problems. This not only helps counteract distribution shifts but also facilitates the connection to symbolic tools for deriving solutions. We find that this abstraction process is better acquired through reinforcement learning (RL) than just supervised fine-tuning, which often fails to produce faithful abstractions. Our method, AbstraL -- which promotes abstract reasoning in LLMs using RL on granular abstraction data -- significantly mitigates performance degradation on recent GSM perturbation benchmarks.
comment: Under review
Graph-Assisted Stitching for Offline Hierarchical Reinforcement Learning ICML 2025
Existing offline hierarchical reinforcement learning methods rely on high-level policy learning to generate subgoal sequences. However, their efficiency degrades as task horizons increase, and they lack effective strategies for stitching useful state transitions across different trajectories. We propose Graph-Assisted Stitching (GAS), a novel framework that formulates subgoal selection as a graph search problem rather than learning an explicit high-level policy. By embedding states into a Temporal Distance Representation (TDR) space, GAS clusters semantically similar states from different trajectories into unified graph nodes, enabling efficient transition stitching. A shortest-path algorithm is then applied to select subgoal sequences within the graph, while a low-level policy learns to reach the subgoals. To improve graph quality, we introduce the Temporal Efficiency (TE) metric, which filters out noisy or inefficient transition states, significantly enhancing task performance. GAS outperforms prior offline HRL methods across locomotion, navigation, and manipulation tasks. Notably, in the most stitching-critical task, it achieves a score of 88.3, dramatically surpassing the previous state-of-the-art score of 1.0. Our source code is available at: https://github.com/qortmdgh4141/GAS.
comment: ICML 2025
☆ RSafe: Incentivizing proactive reasoning to build robust and adaptive LLM safeguards
Large Language Models (LLMs) continue to exhibit vulnerabilities despite deliberate safety alignment efforts, posing significant risks to users and society. To safeguard against the risk of policy-violating content, system-level moderation via external guard models-designed to monitor LLM inputs and outputs and block potentially harmful content-has emerged as a prevalent mitigation strategy. Existing approaches of training guard models rely heavily on extensive human curated datasets and struggle with out-of-distribution threats, such as emerging harmful categories or jailbreak attacks. To address these limitations, we propose RSafe, an adaptive reasoning-based safeguard that conducts guided safety reasoning to provide robust protection within the scope of specified safety policies. RSafe operates in two stages: 1) guided reasoning, where it analyzes safety risks of input content through policy-guided step-by-step reasoning, and 2) reinforced alignment, where rule-based RL optimizes its reasoning paths to align with accurate safety prediction. This two-stage training paradigm enables RSafe to internalize safety principles to generalize safety protection capability over unseen or adversarial safety violation scenarios. During inference, RSafe accepts user-specified safety policies to provide enhanced safeguards tailored to specific safety requirements.
☆ NeurIPS 2025 E2LM Competition : Early Training Evaluation of Language Models
Existing benchmarks have proven effective for assessing the performance of fully trained large language models. However, we find striking differences in the early training stages of small models, where benchmarks often fail to provide meaningful or discriminative signals. To explore how these differences arise, this competition tackles the challenge of designing scientific knowledge evaluation tasks specifically tailored for measuring early training progress of language models. Participants are invited to develop novel evaluation methodologies or adapt existing benchmarks to better capture performance differences among language models. To support this effort, we provide three pre-trained small models (0.5B, 1B, and 3B parameters), along with intermediate checkpoints sampled during training up to 200B tokens. All experiments and development work can be run on widely available free cloud-based GPU platforms, making participation accessible to researchers with limited computational resources. Submissions will be evaluated based on three criteria: the quality of the performance signal they produce, the consistency of model rankings at 1 trillion tokens of training, and their relevance to the scientific knowledge domain. By promoting the design of tailored evaluation strategies for early training, this competition aims to attract a broad range of participants from various disciplines, including those who may not be machine learning experts or have access to dedicated GPU resources. Ultimately, this initiative seeks to make foundational LLM research more systematic and benchmark-informed from the earliest phases of model development.
☆ ETA: Efficiency through Thinking Ahead, A Dual Approach to Self-Driving with Large Models ICCV 2025
How can we benefit from large models without sacrificing inference speed, a common dilemma in self-driving systems? A prevalent solution is a dual-system architecture, employing a small model for rapid, reactive decisions and a larger model for slower but more informative analyses. Existing dual-system designs often implement parallel architectures where inference is either directly conducted using the large model at each current frame or retrieved from previously stored inference results. However, these works still struggle to enable large models for a timely response to every online frame. Our key insight is to shift intensive computations of the current frame to previous time steps and perform a batch inference of multiple time steps to make large models respond promptly to each time step. To achieve the shifting, we introduce Efficiency through Thinking Ahead (ETA), an asynchronous system designed to: (1) propagate informative features from the past to the current frame using future predictions from the large model, (2) extract current frame features using a small model for real-time responsiveness, and (3) integrate these dual features via an action mask mechanism that emphasizes action-critical image regions. Evaluated on the Bench2Drive CARLA Leaderboard-v2 benchmark, ETA advances state-of-the-art performance by 8% with a driving score of 69.53 while maintaining a near-real-time inference speed at 50 ms.
comment: ICCV 2025 submission. For code, see https://github.com/opendrivelab/ETA
☆ Consistent Video Editing as Flow-Driven Image-to-Video Generation
With the prosper of video diffusion models, down-stream applications like video editing have been significantly promoted without consuming much computational cost. One particular challenge in this task lies at the motion transfer process from the source video to the edited one, where it requires the consideration of the shape deformation in between, meanwhile maintaining the temporal consistency in the generated video sequence. However, existing methods fail to model complicated motion patterns for video editing, and are fundamentally limited to object replacement, where tasks with non-rigid object motions like multi-object and portrait editing are largely neglected. In this paper, we observe that optical flows offer a promising alternative in complex motion modeling, and present FlowV2V to re-investigate video editing as a task of flow-driven Image-to-Video (I2V) generation. Specifically, FlowV2V decomposes the entire pipeline into first-frame editing and conditional I2V generation, and simulates pseudo flow sequence that aligns with the deformed shape, thus ensuring the consistency during editing. Experimental results on DAVIS-EDIT with improvements of 13.67% and 50.66% on DOVER and warping error illustrate the superior temporal consistency and sample quality of FlowV2V compared to existing state-of-the-art ones. Furthermore, we conduct comprehensive ablation studies to analyze the internal functionalities of the first-frame paradigm and flow alignment in the proposed method.
comment: 16 pages, 12 figures
☆ NOVA3D: Normal Aligned Video Diffusion Model for Single Image to 3D Generation ICME 2025
3D AI-generated content (AIGC) has made it increasingly accessible for anyone to become a 3D content creator. While recent methods leverage Score Distillation Sampling to distill 3D objects from pretrained image diffusion models, they often suffer from inadequate 3D priors, leading to insufficient multi-view consistency. In this work, we introduce NOVA3D, an innovative single-image-to-3D generation framework. Our key insight lies in leveraging strong 3D priors from a pretrained video diffusion model and integrating geometric information during multi-view video fine-tuning. To facilitate information exchange between color and geometric domains, we propose the Geometry-Temporal Alignment (GTA) attention mechanism, thereby improving generalization and multi-view consistency. Moreover, we introduce the de-conflict geometry fusion algorithm, which improves texture fidelity by addressing multi-view inaccuracies and resolving discrepancies in pose alignment. Extensive experiments validate the superiority of NOVA3D over existing baselines.
comment: 8 pages, 7 figures, accepted by ICME 2025
☆ MCPWorld: A Unified Benchmarking Testbed for API, GUI, and Hybrid Computer Use Agents
(M)LLM-powered computer use agents (CUA) are emerging as a transformative technique to automate human-computer interaction. However, existing CUA benchmarks predominantly target GUI agents, whose evaluation methods are susceptible to UI changes and ignore function interactions exposed by application APIs, e.g., Model Context Protocol (MCP). To this end, we propose MCPWorld, the first automatic CUA testbed for API, GUI, and API-GUI hybrid agents. A key principle of MCPWorld is the use of "white-box apps", i.e., those with source code availability and can be revised/re-compiled as needed (e.g., adding MCP support), with two notable advantages: (1) It greatly broadens the design space of CUA, such as what and how the app features to be exposed/extracted as CUA-callable APIs. (2) It allows MCPWorld to programmatically verify task completion by directly monitoring application behavior through techniques like dynamic code instrumentation, offering robust, accurate CUA evaluation decoupled from specific agent implementations or UI states. Currently, MCPWorld includes 201 well curated and annotated user tasks, covering diversified use cases and difficulty levels. MCPWorld is also fully containerized with GPU acceleration support for flexible adoption on different OS/hardware environments. Our preliminary experiments, using a representative LLM-powered CUA framework, achieve 75.12% task completion accuracy, simultaneously providing initial evidence on the practical effectiveness of agent automation leveraging MCP. Overall, we anticipate MCPWorld to facilitate and standardize the benchmarking of next-generation computer use agents that can leverage rich external tools. Our code and dataset are publicly available at https://github.com/SAAgent/MCPWorld.
☆ GaRAGe: A Benchmark with Grounding Annotations for RAG Evaluation ACL 2025
We present GaRAGe, a large RAG benchmark with human-curated long-form answers and annotations of each grounding passage, allowing a fine-grained evaluation of whether LLMs can identify relevant grounding when generating RAG answers. Our benchmark contains 2366 questions of diverse complexity, dynamism, and topics, and includes over 35K annotated passages retrieved from both private document sets and the Web, to reflect real-world RAG use cases. This makes it an ideal test bed to evaluate an LLM's ability to identify only the relevant information necessary to compose a response, or provide a deflective response when there is insufficient information. Evaluations of multiple state-of-the-art LLMs on GaRAGe show that the models tend to over-summarise rather than (a) ground their answers strictly on the annotated relevant passages (reaching at most a Relevance-Aware Factuality Score of 60%), or (b) deflect when no relevant grounding is available (reaching at most 31% true positive rate in deflections). The F1 in attribution to relevant sources is at most 58.9%, and we show that performance is particularly reduced when answering time-sensitive questions and when having to draw knowledge from sparser private grounding sources.
comment: ACL 2025 (Findings)
☆ Synthesis by Design: Controlled Data Generation via Structural Guidance
Mathematical reasoning remains challenging for LLMs due to complex logic and the need for precise computation. Existing methods enhance LLM reasoning by synthesizing datasets through problem rephrasing, but face issues with generation quality and problem complexity. To address this, we propose to extract structural information with generated problem-solving code from mathematical reasoning and guide data generation with structured solutions. Applied to MATH and GSM8K, our approach produces 39K problems with labeled intermediate steps and a 6.1K-problem benchmark of higher difficulty. Results on our benchmark show that model performance declines as reasoning length increases. Additionally, we conducted fine-tuning experiments using the proposed training data on a range of LLMs, and the results validate the effectiveness of our dataset. We hope the proposed method and dataset will contribute to future research in enhancing LLM reasoning capabilities.
☆ FMaMIL: Frequency-Driven Mamba Multi-Instance Learning for Weakly Supervised Lesion Segmentation in Medical Images
Accurate lesion segmentation in histopathology images is essential for diagnostic interpretation and quantitative analysis, yet it remains challenging due to the limited availability of costly pixel-level annotations. To address this, we propose FMaMIL, a novel two-stage framework for weakly supervised lesion segmentation based solely on image-level labels. In the first stage, a lightweight Mamba-based encoder is introduced to capture long-range dependencies across image patches under the MIL paradigm. To enhance spatial sensitivity and structural awareness, we design a learnable frequency-domain encoding module that supplements spatial-domain features with spectrum-based information. CAMs generated in this stage are used to guide segmentation training. In the second stage, we refine the initial pseudo labels via a CAM-guided soft-label supervision and a self-correction mechanism, enabling robust training even under label noise. Extensive experiments on both public and private histopathology datasets demonstrate that FMaMIL outperforms state-of-the-art weakly supervised methods without relying on pixel-level annotations, validating its effectiveness and potential for digital pathology applications.
☆ SWE-Dev: Building Software Engineering Agents with Training and Inference Scaling ACL'25
Large language models (LLMs) have advanced rapidly from conversational problem solving to addressing real-world tasks involving tool use, such as software engineering (SWE). Recent LLM-powered toolkits, such as OpenAI Codex and Cursor, have offered end-to-end automation of the software development process. However, building effective SWE agents remains challenging due to the lack of high-quality training data and effective test cases. To address this issue, we present SWE-Dev, an SWE agent built upon open-source LLMs. First, we develop a robust pipeline to synthesize test cases for patch evaluation. Second, we scale up agent trajectories to construct the training data for building SWE-Dev. Experiments on the SWE-bench-Verified benchmark show that the SWE-Dev models can achieve top performance among all open SWE agents. Specifically, the success rates of the SWE-Dev 7B and 32B parameter models reach 23.4% and 36.6%, respectively, outperforming state-of-the-art open-source models. All code, models, and datasets are publicly available at https://github.com/THUDM/SWE-Dev.
comment: Accepted to Findings of ACL'25
☆ LoRMA: Low-Rank Multiplicative Adaptation for LLMs ACL
Large Language Models have shown remarkable capabilities in the NLP domain. Their effectiveness can mainly be attributed to their ability to adapt to an array of downstream tasks. However, generally, full fine-tuning is a computationally expensive job. To mitigate this, many techniques have been developed that prime efficiency, a prominent one being Low-Rank Adaptation (LoRA). However, LoRA and its variants employ re-parametrized additive updates. In this paper, we propose Low-Rank Multiplicative Adaptation (LoRMA), which shifts the paradigm of additive updates to a richer space of matrix multiplicative transformations. We tackle challenges such as computational complexity and rank bottleneck of matrix multiplication by effectively re-ordering operations and introducing rank inflation strategies. We conduct extensive experiments to demonstrate the effectiveness of our approach in terms of various evaluation metrics.
comment: Accepted at ACL Findings 2025; 21 pages (9 main paper + 5 pages references + 7 pages appendix)
☆ PolitiSky24: U.S. Political Bluesky Dataset with User Stance Labels
Stance detection identifies the viewpoint expressed in text toward a specific target, such as a political figure. While previous datasets have focused primarily on tweet-level stances from established platforms, user-level stance resources, especially on emerging platforms like Bluesky remain scarce. User-level stance detection provides a more holistic view by considering a user's complete posting history rather than isolated posts. We present the first stance detection dataset for the 2024 U.S. presidential election, collected from Bluesky and centered on Kamala Harris and Donald Trump. The dataset comprises 16,044 user-target stance pairs enriched with engagement metadata, interaction graphs, and user posting histories. PolitiSky24 was created using a carefully evaluated pipeline combining advanced information retrieval and large language models, which generates stance labels with supporting rationales and text spans for transparency. The labeling approach achieves 81\% accuracy with scalable LLMs. This resource addresses gaps in political stance analysis through its timeliness, open-data nature, and user-level perspective. The dataset is available at https://doi.org/10.5281/zenodo.15616911
comment: The dataset is available at https://doi.org/10.5281/zenodo.15616911
☆ SurgBench: A Unified Large-Scale Benchmark for Surgical Video Analysis
Surgical video understanding is pivotal for enabling automated intraoperative decision-making, skill assessment, and postoperative quality improvement. However, progress in developing surgical video foundation models (FMs) remains hindered by the scarcity of large-scale, diverse datasets for pretraining and systematic evaluation. In this paper, we introduce \textbf{SurgBench}, a unified surgical video benchmarking framework comprising a pretraining dataset, \textbf{SurgBench-P}, and an evaluation benchmark, \textbf{SurgBench-E}. SurgBench offers extensive coverage of diverse surgical scenarios, with SurgBench-P encompassing 53 million frames across 22 surgical procedures and 11 specialties, and SurgBench-E providing robust evaluation across six categories (phase classification, camera motion, tool recognition, disease diagnosis, action classification, and organ detection) spanning 72 fine-grained tasks. Extensive experiments reveal that existing video FMs struggle to generalize across varied surgical video analysis tasks, whereas pretraining on SurgBench-P yields substantial performance improvements and superior cross-domain generalization to unseen procedures and modalities. Our dataset and code are available upon request.
☆ SceneRAG: Scene-level Retrieval-Augmented Generation for Video Understanding
Despite recent advances in retrieval-augmented generation (RAG) for video understanding, effectively understanding long-form video content remains underexplored due to the vast scale and high complexity of video data. Current RAG approaches typically segment videos into fixed-length chunks, which often disrupts the continuity of contextual information and fails to capture authentic scene boundaries. Inspired by the human ability to naturally organize continuous experiences into coherent scenes, we present SceneRAG, a unified framework that leverages large language models to segment videos into narrative-consistent scenes by processing ASR transcripts alongside temporal metadata. SceneRAG further sharpens these initial boundaries through lightweight heuristics and iterative correction. For each scene, the framework fuses information from both visual and textual modalities to extract entity relations and dynamically builds a knowledge graph, enabling robust multi-hop retrieval and generation that account for long-range dependencies. Experiments on the LongerVideos benchmark, featuring over 134 hours of diverse content, confirm that SceneRAG substantially outperforms prior baselines, achieving a win rate of up to 72.5 percent on generation tasks.
☆ Automating Exploratory Multiomics Research via Language Models
This paper introduces PROTEUS, a fully automated system that produces data-driven hypotheses from raw data files. We apply PROTEUS to clinical proteogenomics, a field where effective downstream data analysis and hypothesis proposal is crucial for producing novel discoveries. PROTEUS uses separate modules to simulate different stages of the scientific process, from open-ended data exploration to specific statistical analysis and hypothesis proposal. It formulates research directions, tools, and results in terms of relationships between biological entities, using unified graph structures to manage complex research processes. We applied PROTEUS to 10 clinical multiomics datasets from published research, arriving at 360 total hypotheses. Results were evaluated through external data validation and automatic open-ended scoring. Through exploratory and iterative research, the system can navigate high-throughput and heterogeneous multiomics data to arrive at hypotheses that balance reliability and novelty. In addition to accelerating multiomic analysis, PROTEUS represents a path towards tailoring general autonomous systems to specialized scientific domains to achieve open-ended hypothesis generation from data.
☆ PrunePEFT: Iterative Hybrid Pruning for Parameter-Efficient Fine-tuning of LLMs
Parameter Efficient Fine-Tuning (PEFT) methods have emerged as effective and promising approaches for fine-tuning pre-trained language models. Compared with Full parameter Fine-Tuning (FFT), PEFT achieved comparable task performance with a substantial reduction of trainable parameters, which largely saved the training and storage costs. However, using the PEFT method requires considering a vast design space, such as the type of PEFT modules and their insertion layers. Inadequate configurations can lead to sub-optimal results. Conventional solutions such as architectural search techniques, while effective, tend to introduce substantial additional overhead. In this paper, we propose a novel approach, PrunePEFT, which formulates the PEFT strategy search as a pruning problem and introduces a hybrid pruning strategy that capitalizes on the sensitivity of pruning methods to different PEFT modules. This method extends traditional pruning techniques by iteratively removing redundant or conflicting PEFT modules, thereby optimizing the fine-tuned configuration. By efficiently identifying the most relevant modules, our approach significantly reduces the computational burden typically associated with architectural search processes, making it a more scalable and efficient solution for fine-tuning large pre-trained models.
☆ Beyond the Sentence: A Survey on Context-Aware Machine Translation with Large Language Models
Despite the popularity of the large language models (LLMs), their application to machine translation is relatively underexplored, especially in context-aware settings. This work presents a literature review of context-aware translation with LLMs. The existing works utilise prompting and fine-tuning approaches, with few focusing on automatic post-editing and creating translation agents for context-aware machine translation. We observed that the commercial LLMs (such as ChatGPT and Tower LLM) achieved better results than the open-source LLMs (such as Llama and Bloom LLMs), and prompt-based approaches serve as good baselines to assess the quality of translations. Finally, we present some interesting future directions to explore.
☆ FedCGD: Collective Gradient Divergence Optimized Scheduling for Wireless Federated Learning
Federated learning (FL) is a promising paradigm for multiple devices to cooperatively train a model. When applied in wireless networks, two issues consistently affect the performance of FL, i.e., data heterogeneity of devices and limited bandwidth. Many papers have investigated device scheduling strategies considering the two issues. However, most of them recognize data heterogeneity as a property of individual devices. In this paper, we prove that the convergence speed of FL is affected by the sum of device-level and sample-level collective gradient divergence (CGD). The device-level CGD refers to the gradient divergence of the scheduled device group, instead of the sum of the individual device divergence. The sample-level CGD is statistically upper bounded by sampling variance, which is inversely proportional to the total number of samples scheduled for local update. To derive a tractable form of the device-level CGD, we further consider a classification problem and transform it into the weighted earth moving distance (WEMD) between the group distribution and the global distribution. Then we propose FedCGD algorithm to minimize the sum of multi-level CGDs by balancing WEMD and sampling variance, within polynomial time. Simulation shows that the proposed strategy increases classification accuracy on the CIFAR-10 dataset by up to 4.2\% while scheduling 41.8\% fewer devices, and flexibly switches between reducing WEMD and reducing sampling variance.
☆ Denoising the Future: Top-p Distributions for Moving Through Time
Inference in dynamic probabilistic models is a complex task involving expensive operations. In particular, for Hidden Markov Models, the whole state space has to be enumerated for advancing in time. Even states with negligible probabilities are considered, resulting in computational inefficiency and increased noise due to the propagation of unlikely probability mass. We propose to denoise the future and speed up inference by using only the top-p states, i.e., the most probable states with accumulated probability p. We show that the error introduced by using only the top-p states is bound by p and the so-called minimal mixing rate of the underlying model. Moreover, in our empirical evaluation, we show that we can expect speedups of at least an order of magnitude, while the error in terms of total variation distance is below 0.09.
☆ LLM-driven Indoor Scene Layout Generation via Scaled Human-aligned Data Synthesis and Multi-Stage Preference Optimization
Automatic indoor layout generation has attracted increasing attention due to its potential in interior design, virtual environment construction, and embodied AI. Existing methods fall into two categories: prompt-driven approaches that leverage proprietary LLM services (e.g., GPT APIs) and learning-based methods trained on layout data upon diffusion-based models. Prompt-driven methods often suffer from spatial inconsistency and high computational costs, while learning-based methods are typically constrained by coarse relational graphs and limited datasets, restricting their generalization to diverse room categories. In this paper, we revisit LLM-based indoor layout generation and present 3D-SynthPlace, a large-scale dataset that combines synthetic layouts generated via a 'GPT synthesize, Human inspect' pipeline, upgraded from the 3D-Front dataset. 3D-SynthPlace contains nearly 17,000 scenes, covering four common room types -- bedroom, living room, kitchen, and bathroom -- enriched with diverse objects and high-level spatial annotations. We further introduce OptiScene, a strong open-source LLM optimized for indoor layout generation, fine-tuned based on our 3D-SynthPlace dataset through our two-stage training. For the warum-up stage I, we adopt supervised fine-tuning (SFT), which is taught to first generate high-level spatial descriptions then conditionally predict concrete object placements. For the reinforcing stage II, to better align the generated layouts with human design preferences, we apply multi-turn direct preference optimization (DPO), which significantly improving layout quality and generation success rates. Extensive experiments demonstrate that OptiScene outperforms traditional prompt-driven and learning-based baselines. Moreover, OptiScene shows promising potential in interactive tasks such as scene editing and robot navigation.
☆ SELT: Self-Evaluation Tree Search for LLMs with Task Decomposition
While Large Language Models (LLMs) have achieved remarkable success in a wide range of applications, their performance often degrades in complex reasoning tasks. In this work, we introduce SELT (Self-Evaluation LLM Tree Search), a novel framework that leverages a modified Monte Carlo Tree Search (MCTS) to enhance LLM reasoning without relying on external reward models. By redefining the Upper Confidence Bound scoring to align with intrinsic self-evaluation capabilities of LLMs and decomposing the inference process into atomic subtasks augmented with semantic clustering at each node, SELT effectively balances exploration and exploitation, reduces redundant reasoning paths, and mitigates hallucination. We validate our approach on challenging benchmarks, including the knowledge-based MMLU and the Tool Learning dataset Seal-Tools, where SELT achieves significant improvements in answer accuracy and reasoning robustness compared to baseline methods. Notably, our framework operates without task-specific fine-tuning, demonstrating strong generalizability across diverse reasoning tasks. Relevant results and code are available at https://github.com/fairyshine/SELT .
comment: 11 pages, 5 figures
☆ Synthesize Privacy-Preserving High-Resolution Images via Private Textual Intermediaries
Generating high fidelity, differentially private (DP) synthetic images offers a promising route to share and analyze sensitive visual data without compromising individual privacy. However, existing DP image synthesis methods struggle to produce high resolution outputs that faithfully capture the structure of the original data. In this paper, we introduce a novel method, referred to as Synthesis via Private Textual Intermediaries (SPTI), that can generate high resolution DP images with easy adoption. The key idea is to shift the challenge of DP image synthesis from the image domain to the text domain by leveraging state of the art DP text generation methods. SPTI first summarizes each private image into a concise textual description using image to text models, then applies a modified Private Evolution algorithm to generate DP text, and finally reconstructs images using text to image models. Notably, SPTI requires no model training, only inference with off the shelf models. Given a private dataset, SPTI produces synthetic images of substantially higher quality than prior DP approaches. On the LSUN Bedroom dataset, SPTI attains an FID less than or equal to 26.71 under epsilon equal to 1.0, improving over Private Evolution FID of 40.36. Similarly, on MM CelebA HQ, SPTI achieves an FID less than or equal to 33.27 at epsilon equal to 1.0, compared to 57.01 from DP fine tuning baselines. Overall, our results demonstrate that Synthesis via Private Textual Intermediaries provides a resource efficient and proprietary model compatible framework for generating high resolution DP synthetic images, greatly expanding access to private visual datasets.
☆ ChemAgent: Enhancing LLMs for Chemistry and Materials Science through Tree-Search Based Tool Learning
Large language models (LLMs) have recently demonstrated promising capabilities in chemistry tasks while still facing challenges due to outdated pretraining knowledge and the difficulty of incorporating specialized chemical expertise. To address these issues, we propose an LLM-based agent that synergistically integrates 137 external chemical tools created ranging from basic information retrieval to complex reaction predictions, and a dataset curation pipeline to generate the dataset ChemToolBench that facilitates both effective tool selection and precise parameter filling during fine-tuning and evaluation. We introduce a Hierarchical Evolutionary Monte Carlo Tree Search (HE-MCTS) framework, enabling independent optimization of tool planning and execution. By leveraging self-generated data, our approach supports step-level fine-tuning (FT) of the policy model and training task-adaptive PRM and ORM that surpass GPT-4o. Experimental evaluations demonstrate that our approach significantly improves performance in Chemistry QA and discovery tasks, offering a robust solution to integrate specialized tools with LLMs for advanced chemical applications. All datasets and code are available at https://github.com/AI4Chem/ChemistryAgent .
comment: 15 pages, 6 figures
☆ Curriculum Learning With Counterfactual Group Relative Policy Advantage For Multi-Agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) has achieved strong performance in cooperative adversarial tasks. However, most existing methods typically train agents against fixed opponent strategies and rely on such meta-static difficulty conditions, which limits their adaptability to changing environments and often leads to suboptimal policies. Inspired by the success of curriculum learning (CL) in supervised tasks, we propose a dynamic CL framework for MARL that employs an self-adaptive difficulty adjustment mechanism. This mechanism continuously modulates opponent strength based on real-time agent training performance, allowing agents to progressively learn from easier to more challenging scenarios. However, the dynamic nature of CL introduces instability due to nonstationary environments and sparse global rewards. To address this challenge, we develop a Counterfactual Group Relative Policy Advantage (CGRPA), which is tightly coupled with the curriculum by providing intrinsic credit signals that reflect each agent's impact under evolving task demands. CGRPA constructs a counterfactual advantage function that isolates individual contributions within group behavior, facilitating more reliable policy updates throughout the curriculum. CGRPA evaluates each agent's contribution through constructing counterfactual action advantage function, providing intrinsic rewards that enhance credit assignment and stabilize learning under non-stationary conditions. Extensive experiments demonstrate that our method improves both training stability and final performance, achieving competitive results against state-of-the-art methods. The code is available at https://github.com/NICE-HKU/CL2MARL-SMAC.
comment: 16 pages; 12figures
☆ APTOS-2024 challenge report: Generation of synthetic 3D OCT images from fundus photographs
Optical Coherence Tomography (OCT) provides high-resolution, 3D, and non-invasive visualization of retinal layers in vivo, serving as a critical tool for lesion localization and disease diagnosis. However, its widespread adoption is limited by equipment costs and the need for specialized operators. In comparison, 2D color fundus photography offers faster acquisition and greater accessibility with less dependence on expensive devices. Although generative artificial intelligence has demonstrated promising results in medical image synthesis, translating 2D fundus images into 3D OCT images presents unique challenges due to inherent differences in data dimensionality and biological information between modalities. To advance generative models in the fundus-to-3D-OCT setting, the Asia Pacific Tele-Ophthalmology Society (APTOS-2024) organized a challenge titled Artificial Intelligence-based OCT Generation from Fundus Images. This paper details the challenge framework (referred to as APTOS-2024 Challenge), including: the benchmark dataset, evaluation methodology featuring two fidelity metrics-image-based distance (pixel-level OCT B-scan similarity) and video-based distance (semantic-level volumetric consistency), and analysis of top-performing solutions. The challenge attracted 342 participating teams, with 42 preliminary submissions and 9 finalists. Leading methodologies incorporated innovations in hybrid data preprocessing or augmentation (cross-modality collaborative paradigms), pre-training on external ophthalmic imaging datasets, integration of vision foundation models, and model architecture improvement. The APTOS-2024 Challenge is the first benchmark demonstrating the feasibility of fundus-to-3D-OCT synthesis as a potential solution for improving ophthalmic care accessibility in under-resourced healthcare settings, while helping to expedite medical research and clinical applications.
☆ Domain Randomization for Object Detection in Manufacturing Applications using Synthetic Data: A Comprehensive Study ICRA
This paper addresses key aspects of domain randomization in generating synthetic data for manufacturing object detection applications. To this end, we present a comprehensive data generation pipeline that reflects different factors: object characteristics, background, illumination, camera settings, and post-processing. We also introduce the Synthetic Industrial Parts Object Detection dataset (SIP15-OD) consisting of 15 objects from three industrial use cases under varying environments as a test bed for the study, while also employing an industrial dataset publicly available for robotic applications. In our experiments, we present more abundant results and insights into the feasibility as well as challenges of sim-to-real object detection. In particular, we identified material properties, rendering methods, post-processing, and distractors as important factors. Our method, leveraging these, achieves top performance on the public dataset with Yolov8 models trained exclusively on synthetic data; mAP@50 scores of 96.4% for the robotics dataset, and 94.1%, 99.5%, and 95.3% across three of the SIP15-OD use cases, respectively. The results showcase the effectiveness of the proposed domain randomization, potentially covering the distribution close to real data for the applications.
comment: This is accepted by 2025 IEEE International Conference on Robotics & Automation (ICRA), waiting for publication. 14 pages, 14 figures
☆ Coordinating Search-Informed Reasoning and Reasoning-Guided Search in Claim Verification
Multi-hop claim verification is inherently challenging, requiring multi-step reasoning to construct verification chains while iteratively searching for information to uncover hidden bridging facts. This process is fundamentally interleaved, as effective reasoning relies on dynamically retrieved evidence, while effective search demands reasoning to refine queries based on partial information. To achieve this, we propose Hierarchical Agent Reasoning and Information Search (HARIS), explicitly modeling the coordinated process of reasoning-driven searching and search-informed reasoning. HARIS consists of a high-level reasoning agent that focuses on constructing the main verification chain, generating factual questions when more information is needed, and a low-level search agent that iteratively retrieves more information, refining its search based on intermediate findings. This design allows each agent to specialize in its respective task, enhancing verification accuracy and interpretability. HARIS is trained using reinforcement learning with outcome-based rewards. Experimental results on the EX-FEVER and HOVER benchmarks demonstrate that HARIS achieves strong performance, greatly advancing multi-hop claim verification.
comment: 19 pages, 9 figures
☆ Learning What Reinforcement Learning Can't: Interleaved Online Fine-Tuning for Hardest Questions
Recent advances in large language model (LLM) reasoning have shown that sophisticated behaviors such as planning and self-reflection can emerge through reinforcement learning (RL). However, despite these successes, RL in its current form remains insufficient to induce capabilities that exceed the limitations of the base model, as it is primarily optimized based on existing knowledge of the model rather than facilitating the acquisition of new information. To address this limitation, we employ supervised fine-tuning (SFT) to learn what RL cannot, which enables the incorporation of new knowledge and reasoning patterns by leveraging high-quality demonstration data. We analyze the training dynamics of RL and SFT for LLM reasoning and find that RL excels at maintaining and improving performance on questions within the model's original capabilities, while SFT is more effective at enabling progress on questions beyond the current scope of the model. Motivated by the complementary strengths of RL and SFT, we introduce a novel training approach, \textbf{ReLIFT} (\textbf{Re}inforcement \textbf{L}earning \textbf{I}nterleaved with Online \textbf{F}ine-\textbf{T}uning). In ReLIFT, the model is primarily trained using RL, but when it encounters challenging questions, high-quality solutions are collected for fine-tuning, and the training process alternates between RL and fine-tuning to enhance the model's reasoning abilities. ReLIFT achieves an average improvement of over +5.2 points across five competition-level benchmarks and one out-of-distribution benchmark compared to other zero-RL models. Furthermore, we demonstrate that ReLIFT outperforms both RL and SFT while using only 13\% of the detailed demonstration data, highlighting its scalability. These results provide compelling evidence that ReLIFT overcomes the fundamental limitations of RL and underscores the significant potential.
comment: 12 pages, 5 figures
☆ IntenTest: Stress Testing for Intent Integrity in API-Calling LLM Agents
LLM agents are increasingly deployed to automate real-world tasks by invoking APIs through natural language instructions. While powerful, they often suffer from misinterpretation of user intent, leading to the agent's actions that diverge from the user's intended goal, especially as external toolkits evolve. Traditional software testing assumes structured inputs and thus falls short in handling the ambiguity of natural language. We introduce IntenTest, an API-centric stress testing framework that systematically uncovers intent integrity violations in LLM agents. Unlike prior work focused on fixed benchmarks or adversarial inputs, IntenTest generates realistic tasks based on toolkits' documentation and applies targeted mutations to expose subtle agent errors while preserving user intent. To guide testing, we propose semantic partitioning, which organizes natural language tasks into meaningful categories based on toolkit API parameters and their equivalence classes. Within each partition, seed tasks are mutated and ranked by a lightweight predictor that estimates the likelihood of triggering agent errors. To enhance efficiency, IntenTest maintains a datatype-aware strategy memory that retrieves and adapts effective mutation patterns from past cases. Experiments on 80 toolkit APIs demonstrate that IntenTest effectively uncovers intent integrity violations, significantly outperforming baselines in both error-exposing rate and query efficiency. Moreover, IntenTest generalizes well to stronger target models using smaller LLMs for test generation, and adapts to evolving APIs across domains.
☆ LeVo: High-Quality Song Generation with Multi-Preference Alignment
Recent advances in large language models (LLMs) and audio language models have significantly improved music generation, particularly in lyrics-to-song generation. However, existing approaches still struggle with the complex composition of songs and the scarcity of high-quality data, leading to limitations in sound quality, musicality, instruction following, and vocal-instrument harmony. To address these challenges, we introduce LeVo, an LM-based framework consisting of LeLM and a music codec. LeLM is capable of parallelly modeling two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. It employs two decoder-only transformers and a modular extension training strategy to prevent interference between different token types. To further enhance musicality and instruction following, we introduce a multi-preference alignment method based on Direct Preference Optimization (DPO). This method handles diverse human preferences through a semi-automatic data construction process and DPO post-training. Experimental results demonstrate that LeVo consistently outperforms existing methods on both objective and subjective metrics. Ablation studies further justify the effectiveness of our designs. Audio examples are available at https://levo-demo.github.io/.
Reinforcement Learning via Implicit Imitation Guidance
We study the problem of sample efficient reinforcement learning, where prior data such as demonstrations are provided for initialization in lieu of a dense reward signal. A natural approach is to incorporate an imitation learning objective, either as regularization during training or to acquire a reference policy. However, imitation learning objectives can ultimately degrade long-term performance, as it does not directly align with reward maximization. In this work, we propose to use prior data solely for guiding exploration via noise added to the policy, sidestepping the need for explicit behavior cloning constraints. The key insight in our framework, Data-Guided Noise (DGN), is that demonstrations are most useful for identifying which actions should be explored, rather than forcing the policy to take certain actions. Our approach achieves up to 2-3x improvement over prior reinforcement learning from offline data methods across seven simulated continuous control tasks.
Graph-of-Causal Evolution: Challenging Chain-of-Model for Reasoning
In view of the problem that each subchain in the chain-of-model (CoM) relies only on the information of the previous subchain and may lose long-range dependencies due to the causal mask blocking the global context flow between multi-level subchains, this work proposes a graph of causal evolution (GoCE). Its core principle is to map the implicit token representation into a differentiable and sparse causal adjacency matrix, then permeate causal constraints through each layer of calculation using causal-masked attention and causal-MoE. By combining intervention consistency loss test and self-evolution gate, the dynamic balance between causal structure learning and adaptive updating of transformer architecture is realized. The researcher built experimental environments in sandboxes built with Claude Sonnet 4, o4-mini-high, and DeepSeek R1 respectively with the transformer variant architecture introduced in GoCE. It is evaluated on publicly available datasets including CLUTRR, CLADDER, EX-FEVER, and CausalQA and compared with the baseline LLMs. The finding proves that GoCE strengthens the transformer's ability to capture long-range causal dependencies, while the ability to self-evolve is improved. It not only surpasses the design of CoM in terms of design principles, but also provides experience for future research on causal learning and continuous adaptive improvement.
comment: The relevant code has been uploaded to the publicly available GitHub repository. The link is: https://github.com/brucewang123456789/GeniusTrail/tree/main/GoCE
☆ CoCoA-Mix: Confusion-and-Confidence-Aware Mixture Model for Context Optimization ICML 2025
Prompt tuning, which adapts vision-language models by freezing model parameters and optimizing only the prompt, has proven effective for task-specific adaptations. The core challenge in prompt tuning is improving specialization for a specific task and generalization for unseen domains. However, frozen encoders often produce misaligned features, leading to confusion between classes and limiting specialization. To overcome this issue, we propose a confusion-aware loss (CoA-loss) that improves specialization by refining the decision boundaries between confusing classes. Additionally, we mathematically demonstrate that a mixture model can enhance generalization without compromising specialization. This is achieved using confidence-aware weights (CoA-weights), which adjust the weights of each prediction in the mixture model based on its confidence within the class domains. Extensive experiments show that CoCoA-Mix, a mixture model with CoA-loss and CoA-weights, outperforms state-of-the-art methods by enhancing specialization and generalization. Our code is publicly available at https://github.com/url-kaist/CoCoA-Mix.
comment: 8 pages, 5 figures; accepted at ICML 2025
☆ Premise Selection for a Lean Hammer
Neural methods are transforming automated reasoning for proof assistants, yet integrating these advances into practical verification workflows remains challenging. Hammers are tools that interface with external automatic theorem provers to automate tedious reasoning steps. They have dramatically improved productivity in proof assistants, but the Lean proof assistant still does not have a hammer despite its growing popularity. We present LeanHammer, the first end-to-end domain-general hammer for Lean, built on a novel neural premise selection system for a hammer in dependent type theory. Unlike existing Lean premise selectors, our approach dynamically adapts to user-specific contexts and combines with symbolic proof search and reconstruction to create a practical hammer. With comprehensive evaluations, we show that our premise selector enables LeanHammer to solve 21\% more goals relative to existing premise selectors, and generalize well to diverse domains. Our work bridges the gap between neural retrieval and symbolic reasoning, making formal verification more accessible to researchers and practitioners.
comment: LeanHammer is available at https://github.com/JOSHCLUNE/LeanHammer
☆ Ambiguity-Restrained Text-Video Representation Learning for Partially Relevant Video Retrieval AAAI 2025
Partially Relevant Video Retrieval~(PRVR) aims to retrieve a video where a specific segment is relevant to a given text query. Typical training processes of PRVR assume a one-to-one relationship where each text query is relevant to only one video. However, we point out the inherent ambiguity between text and video content based on their conceptual scope and propose a framework that incorporates this ambiguity into the model learning process. Specifically, we propose Ambiguity-Restrained representation Learning~(ARL) to address ambiguous text-video pairs. Initially, ARL detects ambiguous pairs based on two criteria: uncertainty and similarity. Uncertainty represents whether instances include commonly shared context across the dataset, while similarity indicates pair-wise semantic overlap. Then, with the detected ambiguous pairs, our ARL hierarchically learns the semantic relationship via multi-positive contrastive learning and dual triplet margin loss. Additionally, we delve into fine-grained relationships within the video instances. Unlike typical training at the text-video level, where pairwise information is provided, we address the inherent ambiguity within frames of the same untrimmed video, which often contains multiple contexts. This allows us to further enhance learning at the text-frame level. Lastly, we propose cross-model ambiguity detection to mitigate the error propagation that occurs when a single model is employed to detect ambiguous pairs for its training. With all components combined, our proposed method demonstrates its effectiveness in PRVR.
comment: Accepted to AAAI 2025
☆ DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO
Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training in enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success by employing a PPO-style reinforcement algorithm with group-based normalized rewards. However, the application of GRPO to Video Large Language Models (Video LLMs) has been less studied. In this paper, we explore GRPO for video LLMs and identify two primary issues that impede its effective learning: (1) reliance on safeguards, and (2) the vanishing advantage problem. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with our proposed Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation strategy. Reg-GRPO reformulates the GRPO objective as a regression task, directly predicting the advantage in GRPO. This design eliminates the need for safeguards like clipping and min functions, thereby facilitating more direct policy guidance by aligning the model with the advantage values. We also design the difficulty-aware data augmentation strategy that dynamically augments training samples at solvable difficulty levels, fostering diverse and informative reward signals. Our comprehensive experiments show that DeepVideo-R1 significantly improves video reasoning performance across multiple video reasoning benchmarks.
comment: Work in progress
☆ CCI4.0: A Bilingual Pretraining Dataset for Enhancing Reasoning in Large Language Models
We introduce CCI4.0, a large-scale bilingual pre-training dataset engineered for superior data quality and diverse human-like reasoning trajectory. CCI4.0 occupies roughly $35$ TB of disk space and comprises two sub-datasets: CCI4.0-M2-Base and CCI4.0-M2-CoT. CCI4.0-M2-Base combines a $5.2$ TB carefully curated Chinese web corpus, a $22.5$ TB English subset from Nemotron-CC, and diverse sources from math, wiki, arxiv, and code. Although these data are mostly sourced from well-processed datasets, the quality standards of various domains are dynamic and require extensive expert experience and labor to process. So, we propose a novel pipeline justifying data quality mainly based on models through two-stage deduplication, multiclassifier quality scoring, and domain-aware fluency filtering. We extract $4.5$ billion pieces of CoT(Chain-of-Thought) templates, named CCI4.0-M2-CoT. Differing from the distillation of CoT from larger models, our proposed staged CoT extraction exemplifies diverse reasoning patterns and significantly decreases the possibility of hallucination. Empirical evaluations demonstrate that LLMs pre-trained in CCI4.0 benefit from cleaner, more reliable training signals, yielding consistent improvements in downstream tasks, especially in math and code reflection tasks. Our results underscore the critical role of rigorous data curation and human thinking templates in advancing LLM performance, shedding some light on automatically processing pretraining corpora.
☆ KScope: A Framework for Characterizing the Knowledge Status of Language Models
Characterizing a large language model's (LLM's) knowledge of a given question is challenging. As a result, prior work has primarily examined LLM behavior under knowledge conflicts, where the model's internal parametric memory contradicts information in the external context. However, this does not fully reflect how well the model knows the answer to the question. In this paper, we first introduce a taxonomy of five knowledge statuses based on the consistency and correctness of LLM knowledge modes. We then propose KScope, a hierarchical framework of statistical tests that progressively refines hypotheses about knowledge modes and characterizes LLM knowledge into one of these five statuses. We apply KScope to nine LLMs across four datasets and systematically establish: (1) Supporting context narrows knowledge gaps across models. (2) Context features related to difficulty, relevance, and familiarity drive successful knowledge updates. (3) LLMs exhibit similar feature preferences when partially correct or conflicted, but diverge sharply when consistently wrong. (4) Context summarization constrained by our feature analysis, together with enhanced credibility, further improves update effectiveness and generalizes across LLMs.
Language-Grounded Hierarchical Planning and Execution with Multi-Robot 3D Scene Graphs
In this paper, we introduce a multi-robot system that integrates mapping, localization, and task and motion planning (TAMP) enabled by 3D scene graphs to execute complex instructions expressed in natural language. Our system builds a shared 3D scene graph incorporating an open-set object-based map, which is leveraged for multi-robot 3D scene graph fusion. This representation supports real-time, view-invariant relocalization (via the object-based map) and planning (via the 3D scene graph), allowing a team of robots to reason about their surroundings and execute complex tasks. Additionally, we introduce a planning approach that translates operator intent into Planning Domain Definition Language (PDDL) goals using a Large Language Model (LLM) by leveraging context from the shared 3D scene graph and robot capabilities. We provide an experimental assessment of the performance of our system on real-world tasks in large-scale, outdoor environments.
comment: 12 pages, 4 figures
☆ When Style Breaks Safety: Defending Language Models Against Superficial Style Alignment
Large language models (LLMs) can be prompted with specific styles (e.g., formatting responses as lists), including in jailbreak queries. Although these style patterns are semantically unrelated to the malicious intents behind jailbreak queries, their safety impact remains unclear. In this work, we seek to understand whether style patterns compromise LLM safety, how superficial style alignment increases model vulnerability, and how best to mitigate these risks during alignment. We evaluate 32 LLMs across seven jailbreak benchmarks, and find that malicious queries with style patterns inflate the attack success rate (ASR) for nearly all models. Notably, ASR inflation correlates with both the length of style patterns and the relative attention an LLM exhibits on them. We then investigate superficial style alignment, and find that fine-tuning with specific styles makes LLMs more vulnerable to jailbreaks of those same styles. Finally, we propose SafeStyle, a defense strategy that incorporates a small amount of safety training data augmented to match the distribution of style patterns in the fine-tuning data. Across three LLMs and five fine-tuning style settings, SafeStyle consistently outperforms baselines in maintaining LLM safety.
☆ Efficient Generation of Diverse Cooperative Agents with World Models
A major bottleneck in the training process for Zero-Shot Coordination (ZSC) agents is the generation of partner agents that are diverse in collaborative conventions. Current Cross-play Minimization (XPM) methods for population generation can be very computationally expensive and sample inefficient as the training objective requires sampling multiple types of trajectories. Each partner agent in the population is also trained from scratch, despite all of the partners in the population learning policies of the same coordination task. In this work, we propose that simulated trajectories from the dynamics model of an environment can drastically speed up the training process for XPM methods. We introduce XPM-WM, a framework for generating simulated trajectories for XPM via a learned World Model (WM). We show XPM with simulated trajectories removes the need to sample multiple trajectories. In addition, we show our proposed method can effectively generate partners with diverse conventions that match the performance of previous methods in terms of SP population training reward as well as training partners for ZSC agents. Our method is thus, significantly more sample efficient and scalable to a larger number of partners.
☆ Extending Epistemic Uncertainty Beyond Parameters Would Assist in Designing Reliable LLMs
Although large language models (LLMs) are highly interactive and extendable, current approaches to ensure reliability in deployments remain mostly limited to rejecting outputs with high uncertainty in order to avoid misinformation. This conservative strategy reflects the current lack of tools to systematically distinguish and respond to different sources of uncertainty. In this paper, we advocate for the adoption of Bayesian Modeling of Experiments -- a framework that provides a coherent foundation to reason about uncertainty and clarify the reducibility of uncertainty -- for managing and proactively addressing uncertainty that arises in LLM deployments. This framework enables LLMs and their users to take contextually appropriate steps, such as requesting clarification, retrieving external information, or refining inputs. By supporting active resolution rather than passive avoidance, it opens the door to more reliable, transparent, and broadly applicable LLM systems, particularly in high-stakes, real-world settings.
☆ LlamaRec-LKG-RAG: A Single-Pass, Learnable Knowledge Graph-RAG Framework for LLM-Based Ranking
Recent advances in Large Language Models (LLMs) have driven their adoption in recommender systems through Retrieval-Augmented Generation (RAG) frameworks. However, existing RAG approaches predominantly rely on flat, similarity-based retrieval that fails to leverage the rich relational structure inherent in user-item interactions. We introduce LlamaRec-LKG-RAG, a novel single-pass, end-to-end trainable framework that integrates personalized knowledge graph context into LLM-based recommendation ranking. Our approach extends the LlamaRec architecture by incorporating a lightweight user preference module that dynamically identifies salient relation paths within a heterogeneous knowledge graph constructed from user behavior and item metadata. These personalized subgraphs are seamlessly integrated into prompts for a fine-tuned Llama-2 model, enabling efficient and interpretable recommendations through a unified inference step. Comprehensive experiments on ML-100K and Amazon Beauty datasets demonstrate consistent and significant improvements over LlamaRec across key ranking metrics (MRR, NDCG, Recall). LlamaRec-LKG-RAG demonstrates the critical value of structured reasoning in LLM-based recommendations and establishes a foundation for scalable, knowledge-aware personalization in next-generation recommender systems. Code is available at~\href{https://github.com/VahidAz/LlamaRec-LKG-RAG}{repository}.
☆ Fact in Fragments: Deconstructing Complex Claims via LLM-based Atomic Fact Extraction and Verification
Fact verification plays a vital role in combating misinformation by assessing the veracity of claims through evidence retrieval and reasoning. However, traditional methods struggle with complex claims requiring multi-hop reasoning over fragmented evidence, as they often rely on static decomposition strategies and surface-level semantic retrieval, which fail to capture the nuanced structure and intent of the claim. This results in accumulated reasoning errors, noisy evidence contamination, and limited adaptability to diverse claims, ultimately undermining verification accuracy in complex scenarios. To address this, we propose Atomic Fact Extraction and Verification (AFEV), a novel framework that iteratively decomposes complex claims into atomic facts, enabling fine-grained retrieval and adaptive reasoning. AFEV dynamically refines claim understanding and reduces error propagation through iterative fact extraction, reranks evidence to filter noise, and leverages context-specific demonstrations to guide the reasoning process. Extensive experiments on five benchmark datasets demonstrate that AFEV achieves state-of-the-art performance in both accuracy and interpretability.
☆ LegalReasoner: Step-wised Verification-Correction for Legal Judgment Reasoning
Legal judgment prediction (LJP) aims to function as a judge by making final rulings based on case claims and facts, which plays a vital role in the judicial domain for supporting court decision-making and improving judicial efficiency. However, existing methods often struggle with logical errors when conducting complex legal reasoning. We propose LegalReasoner, which enhances LJP reliability through step-wise verification and correction of the reasoning process. Specifically, it first identifies dispute points to decompose complex cases, and then conducts step-wise reasoning while employing a process verifier to validate each step's logic from correctness, progressiveness, and potential perspectives. When errors are detected, expert-designed attribution and resolution strategies are applied for correction. To fine-tune LegalReasoner, we release the LegalHK dataset, containing 58,130 Hong Kong court cases with detailed annotations of dispute points, step-by-step reasoning chains, and process verification labels. Experiments demonstrate that LegalReasoner significantly improves concordance with court decisions from 72.37 to 80.27 on LLAMA-3.1-70B. The data is available at https://huggingface.co/datasets/weijiezz/LegalHK.
☆ Prompt to Protection: A Comparative Study of Multimodal LLMs in Construction Hazard Recognition
The recent emergence of multimodal large language models (LLMs) has introduced new opportunities for improving visual hazard recognition on construction sites. Unlike traditional computer vision models that rely on domain-specific training and extensive datasets, modern LLMs can interpret and describe complex visual scenes using simple natural language prompts. However, despite growing interest in their applications, there has been limited investigation into how different LLMs perform in safety-critical visual tasks within the construction domain. To address this gap, this study conducts a comparative evaluation of five state-of-the-art LLMs: Claude-3 Opus, GPT-4.5, GPT-4o, GPT-o3, and Gemini 2.0 Pro, to assess their ability to identify potential hazards from real-world construction images. Each model was tested under three prompting strategies: zero-shot, few-shot, and chain-of-thought (CoT). Zero-shot prompting involved minimal instruction, few-shot incorporated basic safety context and a hazard source mnemonic, and CoT provided step-by-step reasoning examples to scaffold model thinking. Quantitative analysis was performed using precision, recall, and F1-score metrics across all conditions. Results reveal that prompting strategy significantly influenced performance, with CoT prompting consistently producing higher accuracy across models. Additionally, LLM performance varied under different conditions, with GPT-4.5 and GPT-o3 outperforming others in most settings. The findings also demonstrate the critical role of prompt design in enhancing the accuracy and consistency of multimodal LLMs for construction safety applications. This study offers actionable insights into the integration of prompt engineering and LLMs for practical hazard recognition, contributing to the development of more reliable AI-assisted safety systems.
☆ Fast Geometric Embedding for Node Influence Maximization
Computing classical centrality measures such as betweenness and closeness is computationally expensive on large-scale graphs. In this work, we introduce an efficient force layout algorithm that embeds a graph into a low-dimensional space, where the radial distance from the origin serves as a proxy for various centrality measures. We evaluate our method on multiple graph families and demonstrate strong correlations with degree, PageRank, and paths-based centralities. As an application, it turns out that the proposed embedding allows to find high-influence nodes in a network, and provides a fast and scalable alternative to the standard greedy algorithm.
comment: 8 pages, 4 figures, 18 tables; Github repository available (https://github.com/sashakolpakov/graphem/); Package available on PyPi (https://pypi.org/project/graphem-jax/)
☆ Well Begun is Half Done: Low-resource Preference Alignment by Weak-to-Strong Decoding ACL 2025
Large Language Models (LLMs) require alignment with human preferences to avoid generating offensive, false, or meaningless content. Recently, low-resource methods for LLM alignment have been popular, while still facing challenges in obtaining both high-quality and aligned content. Motivated by the observation that the difficulty of generating aligned responses is concentrated at the beginning of decoding, we propose a novel framework, Weak-to-Strong Decoding (WSD), to enhance the alignment ability of base models by the guidance of a small aligned model. The small model first drafts well-aligned beginnings, followed by the large base model to continue the rest, controlled by a well-designed auto-switch mechanism. We also collect a new dataset, GenerAlign, to fine-tune a small-sized Pilot-3B as the draft model, which effectively enhances different base models under the WSD framework to outperform all baseline methods, while avoiding degradation on downstream tasks, termed as the alignment tax. Extensive experiments are further conducted to examine the impact of different settings and time efficiency, as well as analyses on the intrinsic mechanisms of WSD in depth.
comment: Accepted by ACL 2025 Findings
☆ FAMSeg: Fetal Femur and Cranial Ultrasound Segmentation Using Feature-Aware Attention and Mamba Enhancement
Accurate ultrasound image segmentation is a prerequisite for precise biometrics and accurate assessment. Relying on manual delineation introduces significant errors and is time-consuming. However, existing segmentation models are designed based on objects in natural scenes, making them difficult to adapt to ultrasound objects with high noise and high similarity. This is particularly evident in small object segmentation, where a pronounced jagged effect occurs. Therefore, this paper proposes a fetal femur and cranial ultrasound image segmentation model based on feature perception and Mamba enhancement to address these challenges. Specifically, a longitudinal and transverse independent viewpoint scanning convolution block and a feature perception module were designed to enhance the ability to capture local detail information and improve the fusion of contextual information. Combined with the Mamba-optimized residual structure, this design suppresses the interference of raw noise and enhances local multi-dimensional scanning. The system builds global information and local feature dependencies, and is trained with a combination of different optimizers to achieve the optimal solution. After extensive experimental validation, the FAMSeg network achieved the fastest loss reduction and the best segmentation performance across images of varying sizes and orientations.
☆ HeTa: Relation-wise Heterogeneous Graph Foundation Attack Model IJCAI 2025
Heterogeneous Graph Neural Networks (HGNNs) are vulnerable, highlighting the need for tailored attacks to assess their robustness and ensure security. However, existing HGNN attacks often require complex retraining of parameters to generate specific perturbations for new scenarios. Recently, foundation models have opened new horizons for the generalization of graph neural networks by capturing shared semantics across various graph distributions. This leads us to ask:Can we design a foundation attack model for HGNNs that enables generalizable perturbations across different HGNNs, and quickly adapts to new heterogeneous graphs (HGs)? Empirical findings reveal that, despite significant differences in model design and parameter space, different HGNNs surprisingly share common vulnerability patterns from a relation-aware perspective. Therefore, we explore how to design foundation HGNN attack criteria by mining shared attack units. In this paper, we propose a novel relation-wise heterogeneous graph foundation attack model, HeTa. We introduce a foundation surrogate model to align heterogeneity and identify the importance of shared relation-aware attack units. Building on this, we implement a serialized relation-by-relation attack based on the identified relational weights. In this way, the perturbation can be transferred to various target HGNNs and easily fine-tuned for new HGs. Extensive experiments exhibit powerful attack performances and generalizability of our method.
comment: Accepted by IJCAI 2025
☆ Plug-in and Fine-tuning: Bridging the Gap between Small Language Models and Large Language Models ACL 2025
Large language models (LLMs) are renowned for their extensive linguistic knowledge and strong generalization capabilities, but their high computational demands make them unsuitable for resource-constrained environments. In contrast, small language models (SLMs) are computationally efficient but often lack the broad generalization capacity of LLMs. To bridge this gap, we propose PiFi, a novel framework that combines the strengths of both LLMs and SLMs to achieve high performance while maintaining efficiency. PiFi integrates a single frozen layer from an LLM into a SLM and fine-tunes the combined model for specific tasks, boosting performance without a significant increase in computational cost. We show that PiFi delivers consistent performance improvements across a range of natural language processing tasks, including both natural language understanding and generation. Moreover, our findings demonstrate PiFi's ability to effectively leverage LLM knowledge, enhancing generalization to unseen domains and facilitating the transfer of linguistic abilities.
comment: ACL 2025 main conference
☆ Evaluating Visual Mathematics in Multimodal LLMs: A Multilingual Benchmark Based on the Kangaroo Tests
Multimodal Large Language Models (MLLMs) promise advanced vision language capabilities, yet their effectiveness in visually presented mathematics remains underexplored. This paper analyzes the development and evaluation of MLLMs for mathematical problem solving, focusing on diagrams, multilingual text, and symbolic notation. We then assess several models, including GPT 4o, Pixtral, Qwen VL, Llama 3.2 Vision variants, and Gemini 2.0 Flash in a multilingual Kangaroo style benchmark spanning English, French, Spanish, and Catalan. Our experiments reveal four key findings. First, overall precision remains moderate across geometry, visual algebra, logic, patterns, and combinatorics: no single model excels in every topic. Second, while most models see improved accuracy with questions that do not have images, the gain is often limited; performance for some remains nearly unchanged without visual input, indicating underutilization of diagrammatic information. Third, substantial variation exists across languages and difficulty levels: models frequently handle easier items but struggle with advanced geometry and combinatorial reasoning. Notably, Gemini 2.0 Flash achieves the highest precision on image based tasks, followed by Qwen VL 2.5 72B and GPT 4o, though none approach human level performance. Fourth, a complementary analysis aimed at distinguishing whether models reason or simply recite reveals that Gemini and GPT 4o stand out for their structured reasoning and consistent accuracy. In contrast, Pixtral and Llama exhibit less consistent reasoning, often defaulting to heuristics or randomness when unable to align their outputs with the given answer options.
comment: 16 pages, 4 figures
☆ Evidential Spectrum-Aware Contrastive Learning for OOD Detection in Dynamic Graphs
Recently, Out-of-distribution (OOD) detection in dynamic graphs, which aims to identify whether incoming data deviates from the distribution of the in-distribution (ID) training set, has garnered considerable attention in security-sensitive fields. Current OOD detection paradigms primarily focus on static graphs and confront two critical challenges: i) high bias and high variance caused by single-point estimation, which makes the predictions sensitive to randomness in the data; ii) score homogenization resulting from the lack of OOD training data, where the model only learns ID-specific patterns, resulting in overall low OOD scores and a narrow score gap between ID and OOD data. To tackle these issues, we first investigate OOD detection in dynamic graphs through the lens of Evidential Deep Learning (EDL). Specifically, we propose EviSEC, an innovative and effective OOD detector via Evidential Spectrum-awarE Contrastive Learning. We design an evidential neural network to redefine the output as the posterior Dirichlet distribution, explaining the randomness of inputs through the uncertainty of distribution, which is overlooked by single-point estimation. Moreover, spectrum-aware augmentation module generates OOD approximations to identify patterns with high OOD scores, thereby widening the score gap between ID and OOD data and mitigating score homogenization. Extensive experiments on real-world datasets demonstrate that EviSAC effectively detects OOD samples in dynamic graphs.
comment: 17 pages,5 figures
☆ LiteVLM: A Low-Latency Vision-Language Model Inference Pipeline for Resource-Constrained Environments
This paper introduces an efficient Vision-Language Model (VLM) pipeline specifically optimized for deployment on embedded devices, such as those used in robotics and autonomous driving. The pipeline significantly reduces the computational overhead by jointly leveraging patch selection to filter irrelevant camera views, a token selection module to reduce input sequence length for the LLM, and speculative decoding to accelerate token generation. Evaluation on the NVIDIA DRIVE Thor platform for automonous driving application, our pipeline achieves $2.5\times$ end-to-end latency reduction without compromising task accuracy. The speed-up further increases to $3.2\times$ when applying FP8 post-training quantization. These results demonstrate our pipeline as a viable solution for enabling real-time VLM deployment in resource-constrained environments.
☆ An Intelligent Fault Self-Healing Mechanism for Cloud AI Systems via Integration of Large Language Models and Deep Reinforcement Learning
As the scale and complexity of cloud-based AI systems continue to increase, the detection and adaptive recovery of system faults have become the core challenges to ensure service reliability and continuity. In this paper, we propose an Intelligent Fault Self-Healing Mechanism (IFSHM) that integrates Large Language Model (LLM) and Deep Reinforcement Learning (DRL), aiming to realize a fault recovery framework with semantic understanding and policy optimization capabilities in cloud AI systems. On the basis of the traditional DRL-based control model, the proposed method constructs a two-stage hybrid architecture: (1) an LLM-driven fault semantic interpretation module, which can dynamically extract deep contextual semantics from multi-source logs and system indicators to accurately identify potential fault modes; (2) DRL recovery strategy optimizer, based on reinforcement learning, learns the dynamic matching of fault types and response behaviors in the cloud environment. The innovation of this method lies in the introduction of LLM for environment modeling and action space abstraction, which greatly improves the exploration efficiency and generalization ability of reinforcement learning. At the same time, a memory-guided meta-controller is introduced, combined with reinforcement learning playback and LLM prompt fine-tuning strategy, to achieve continuous adaptation to new failure modes and avoid catastrophic forgetting. Experimental results on the cloud fault injection platform show that compared with the existing DRL and rule methods, the IFSHM framework shortens the system recovery time by 37% with unknown fault scenarios.
comment: Proceedings of 2025 IEEE 8th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE 2025)
☆ Fractional-order Jacobian Matrix Differentiation and Its Application in Artificial Neural Networks
Fractional-order differentiation has many characteristics different from integer-order differentiation. These characteristics can be applied to the optimization algorithms of artificial neural networks to obtain better results. However, due to insufficient theoretical research, at present, there is no fractional-order matrix differentiation method that is perfectly compatible with automatic differentiation (Autograd) technology. Therefore, we propose a fractional-order matrix differentiation calculation method. This method is introduced by the definition of the integer-order Jacobian matrix. We denote it as fractional-order Jacobian matrix differentiation (${{\bf{J}}^\alpha }$). Through ${{\bf{J}}^\alpha }$, we can carry out the matrix-based fractional-order chain rule. Based on the Linear module and the fractional-order differentiation, we design the fractional-order Autograd technology to enable the use of fractional-order differentiation in hidden layers, thereby enhancing the practicality of fractional-order differentiation in deep learning. In the experiment, according to the PyTorch framework, we design fractional-order Linear (FLinear) and replace nn.Linear in the multilayer perceptron with FLinear. Through the qualitative analysis of the training set and validation set $Loss$, the quantitative analysis of the test set indicators, and the analysis of time consumption and GPU memory usage during model training, we verify the superior performance of ${{\bf{J}}^\alpha }$ and prove that it is an excellent fractional-order gradient descent method in the field of deep learning.
☆ Anomaly Detection and Early Warning Mechanism for Intelligent Monitoring Systems in Multi-Cloud Environments Based on LLM SC
With the rapid development of multi-cloud environments, it is increasingly important to ensure the security and reliability of intelligent monitoring systems. In this paper, we propose an anomaly detection and early warning mechanism for intelligent monitoring system in multi-cloud environment based on Large-Scale Language Model (LLM). On the basis of the existing monitoring framework, the proposed model innovatively introduces a multi-level feature extraction method, which combines the natural language processing ability of LLM with traditional machine learning methods to enhance the accuracy of anomaly detection and improve the real-time response efficiency. By introducing the contextual understanding capabilities of LLMs, the model dynamically adapts to different cloud service providers and environments, so as to more effectively detect abnormal patterns and predict potential failures. Experimental results show that the proposed model is significantly better than the traditional anomaly detection system in terms of detection accuracy and latency, and significantly improves the resilience and active management ability of cloud infrastructure.
comment: Proceedings of 2025 5th International Symposium on Computer Technology and Information Science (ISCTIS 2025)
☆ InverseScope: Scalable Activation Inversion for Interpreting Large Language Models
Understanding the internal representations of large language models (LLMs) is a central challenge in interpretability research. Existing feature interpretability methods often rely on strong assumptions about the structure of representations that may not hold in practice. In this work, we introduce InverseScope, an assumption-light and scalable framework for interpreting neural activations via input inversion. Given a target activation, we define a distribution over inputs that generate similar activations and analyze this distribution to infer the encoded features. To address the inefficiency of sampling in high-dimensional spaces, we propose a novel conditional generation architecture that significantly improves sample efficiency compared to previous methods. We further introduce a quantitative evaluation protocol that tests interpretability hypotheses using feature consistency rate computed over the sampled inputs. InverseScope scales inversion-based interpretability methods to larger models and practical tasks, enabling systematic and quantitative analysis of internal representations in real-world LLMs.
comment: 18 pages, 8 figures
☆ MedChat: A Multi-Agent Framework for Multimodal Diagnosis with Large Language Models
The integration of deep learning-based glaucoma detection with large language models (LLMs) presents an automated strategy to mitigate ophthalmologist shortages and improve clinical reporting efficiency. However, applying general LLMs to medical imaging remains challenging due to hallucinations, limited interpretability, and insufficient domain-specific medical knowledge, which can potentially reduce clinical accuracy. Although recent approaches combining imaging models with LLM reasoning have improved reporting, they typically rely on a single generalist agent, restricting their capacity to emulate the diverse and complex reasoning found in multidisciplinary medical teams. To address these limitations, we propose MedChat, a multi-agent diagnostic framework and platform that combines specialized vision models with multiple role-specific LLM agents, all coordinated by a director agent. This design enhances reliability, reduces hallucination risk, and enables interactive diagnostic reporting through an interface tailored for clinical review and educational use. Code available at https://github.com/Purdue-M2/MedChat.
comment: 7 pages, 6 figures. Accepted to the 2025 IEEE 8th International Conference on Multimedia Information Processing and Retrieval (MIPR). Code and platform available at https://github.com/Purdue-M2/MedChat
☆ MrM: Black-Box Membership Inference Attacks against Multimodal RAG Systems
Multimodal retrieval-augmented generation (RAG) systems enhance large vision-language models by integrating cross-modal knowledge, enabling their increasing adoption across real-world multimodal tasks. These knowledge databases may contain sensitive information that requires privacy protection. However, multimodal RAG systems inherently grant external users indirect access to such data, making them potentially vulnerable to privacy attacks, particularly membership inference attacks (MIAs). % Existing MIA methods targeting RAG systems predominantly focus on the textual modality, while the visual modality remains relatively underexplored. To bridge this gap, we propose MrM, the first black-box MIA framework targeted at multimodal RAG systems. It utilizes a multi-object data perturbation framework constrained by counterfactual attacks, which can concurrently induce the RAG systems to retrieve the target data and generate information that leaks the membership information. Our method first employs an object-aware data perturbation method to constrain the perturbation to key semantics and ensure successful retrieval. Building on this, we design a counterfact-informed mask selection strategy to prioritize the most informative masked regions, aiming to eliminate the interference of model self-knowledge and amplify attack efficacy. Finally, we perform statistical membership inference by modeling query trials to extract features that reflect the reconstruction of masked semantics from response patterns. Experiments on two visual datasets and eight mainstream commercial visual-language models (e.g., GPT-4o, Gemini-2) demonstrate that MrM achieves consistently strong performance across both sample-level and set-level evaluations, and remains robust under adaptive defenses.
☆ From Static to Adaptive Defense: Federated Multi-Agent Deep Reinforcement Learning-Driven Moving Target Defense Against DoS Attacks in UAV Swarm Networks
The proliferation of unmanned aerial vehicle (UAV) swarms has enabled a wide range of mission-critical applications, but also exposes UAV networks to severe Denial-of-Service (DoS) threats due to their open wireless environment, dynamic topology, and resource constraints. Traditional static or centralized defense mechanisms are often inadequate for such dynamic and distributed scenarios. To address these challenges, we propose a novel federated multi-agent deep reinforcement learning (FMADRL)-driven moving target defense (MTD) framework for proactive and adaptive DoS mitigation in UAV swarm networks. Specifically, we design three lightweight and coordinated MTD mechanisms, including leader switching, route mutation, and frequency hopping, that leverage the inherent flexibility of UAV swarms to disrupt attacker efforts and enhance network resilience. The defense problem is formulated as a multi-agent partially observable Markov decision process (POMDP), capturing the distributed, resource-constrained, and uncertain nature of UAV swarms under attack. Each UAV is equipped with a local policy agent that autonomously selects MTD actions based on partial observations and local experiences. By employing a policy gradient-based FMADRL algorithm, UAVs collaboratively optimize their defense policies via reward-weighted aggregation, enabling distributed learning without sharing raw data and thus reducing communication overhead. Extensive simulations demonstrate that our approach significantly outperforms state-of-the-art baselines, achieving up to a 34.6% improvement in attack mitigation rate, a reduction in average recovery time of up to 94.6%, and decreases in energy consumption and defense cost by as much as 29.3% and 98.3%, respectively, while maintaining robust mission continuity under various DoS attack strategies.
comment: 13pages; In submission
☆ Boosting Vulnerability Detection of LLMs via Curriculum Preference Optimization with Synthetic Reasoning Data ACL 2025
Large language models (LLMs) demonstrate considerable proficiency in numerous coding-related tasks; however, their capabilities in detecting software vulnerabilities remain limited. This limitation primarily stems from two factors: (1) the absence of reasoning data related to vulnerabilities, which hinders the models' ability to capture underlying vulnerability patterns; and (2) their focus on learning semantic representations rather than the reason behind them, thus failing to recognize semantically similar vulnerability samples. Furthermore, the development of LLMs specialized in vulnerability detection is challenging, particularly in environments characterized by the scarcity of high-quality datasets. In this paper, we propose a novel framework ReVD that excels at mining vulnerability patterns through reasoning data synthesizing and vulnerability-specific preference optimization. Specifically, we construct forward and backward reasoning processes for vulnerability and corresponding fixed code, ensuring the synthesis of high-quality reasoning data. Moreover, we design the triplet supervised fine-tuning followed by curriculum online preference optimization for enabling ReVD to better understand vulnerability patterns. The extensive experiments conducted on PrimeVul and SVEN datasets demonstrate that ReVD sets new state-of-the-art for LLM-based software vulnerability detection, e.g., 12.24\%-22.77\% improvement in the accuracy. The source code and data are available at https://github.com/Xin-Cheng-Wen/PO4Vul.
comment: Accepted by ACL 2025 Findings
☆ Shapley-Coop: Credit Assignment for Emergent Cooperation in Self-Interested LLM Agents
Large Language Models (LLMs) show strong collaborative performance in multi-agent systems with predefined roles and workflows. However, in open-ended environments lacking coordination rules, agents tend to act in self-interested ways. The central challenge in achieving coordination lies in credit assignment -- fairly evaluating each agent's contribution and designing pricing mechanisms that align their heterogeneous goals. This problem is critical as LLMs increasingly participate in complex human-AI collaborations, where fair compensation and accountability rely on effective pricing mechanisms. Inspired by how human societies address similar coordination challenges (e.g., through temporary collaborations such as employment or subcontracting), we propose a cooperative workflow, Shapley-Coop. Shapley-Coop integrates Shapley Chain-of-Thought -- leveraging marginal contributions as a principled basis for pricing -- with structured negotiation protocols for effective price matching, enabling LLM agents to coordinate through rational task-time pricing and post-task reward redistribution. This approach aligns agent incentives, fosters cooperation, and maintains autonomy. We evaluate Shapley-Coop across two multi-agent games and a software engineering simulation, demonstrating that it consistently enhances LLM agent collaboration and facilitates equitable credit assignment. These results highlight the effectiveness of Shapley-Coop's pricing mechanisms in accurately reflecting individual contributions during task execution.
☆ Adapter Naturally Serves as Decoupler for Cross-Domain Few-Shot Semantic Segmentation ICML 2025
Cross-domain few-shot segmentation (CD-FSS) is proposed to pre-train the model on a source-domain dataset with sufficient samples, and then transfer the model to target-domain datasets where only a few samples are available for efficient fine-tuning. There are majorly two challenges in this task: (1) the domain gap and (2) fine-tuning with scarce data. To solve these challenges, we revisit the adapter-based methods, and discover an intriguing insight not explored in previous works: the adapter not only helps the fine-tuning of downstream tasks but also naturally serves as a domain information decoupler. Then, we delve into this finding for an interpretation, and find the model's inherent structure could lead to a natural decoupling of domain information. Building upon this insight, we propose the Domain Feature Navigator (DFN), which is a structure-based decoupler instead of loss-based ones like current works, to capture domain-specific information, thereby directing the model's attention towards domain-agnostic knowledge. Moreover, to prevent the potential excessive overfitting of DFN during the source-domain training, we further design the SAM-SVN method to constrain DFN from learning sample-specific knowledge. On target domains, we freeze the model and fine-tune the DFN to learn target-specific knowledge specific. Extensive experiments demonstrate that our method surpasses the state-of-the-art method in CD-FSS significantly by 2.69% and 4.68% MIoU in 1-shot and 5-shot scenarios, respectively.
comment: ICML 2025 Spotlight
☆ HyColor: An Efficient Heuristic Algorithm for Graph Coloring
The graph coloring problem (GCP) is a classic combinatorial optimization problem that aims to find the minimum number of colors assigned to vertices of a graph such that no two adjacent vertices receive the same color. GCP has been extensively studied by researchers from various fields, including mathematics, computer science, and biological science. Due to the NP-hard nature, many heuristic algorithms have been proposed to solve GCP. However, existing GCP algorithms focus on either small hard graphs or large-scale sparse graphs (with up to 10^7 vertices). This paper presents an efficient hybrid heuristic algorithm for GCP, named HyColor, which excels in handling large-scale sparse graphs while achieving impressive results on small dense graphs. The efficiency of HyColor comes from the following three aspects: a local decision strategy to improve the lower bound on the chromatic number; a graph-reduction strategy to reduce the working graph; and a k-core and mixed degree-based greedy heuristic for efficiently coloring graphs. HyColor is evaluated against three state-of-the-art GCP algorithms across four benchmarks, comprising three large-scale sparse graph benchmarks and one small dense graph benchmark, totaling 209 instances. The results demonstrate that HyColor consistently outperforms existing heuristic algorithms in both solution accuracy and computational efficiency for the majority of instances. Notably, HyColor achieved the best solutions in 194 instances (over 93%), with 34 of these solutions significantly surpassing those of other algorithms. Furthermore, HyColor successfully determined the chromatic number and achieved optimal coloring in 128 instances.
comment: 14 pages, 4 figures
☆ C3S3: Complementary Competition and Contrastive Selection for Semi-Supervised Medical Image Segmentation ICME2025
For the immanent challenge of insufficiently annotated samples in the medical field, semi-supervised medical image segmentation (SSMIS) offers a promising solution. Despite achieving impressive results in delineating primary target areas, most current methodologies struggle to precisely capture the subtle details of boundaries. This deficiency often leads to significant diagnostic inaccuracies. To tackle this issue, we introduce C3S3, a novel semi-supervised segmentation model that synergistically integrates complementary competition and contrastive selection. This design significantly sharpens boundary delineation and enhances overall precision. Specifically, we develop an $\textit{Outcome-Driven Contrastive Learning}$ module dedicated to refining boundary localization. Additionally, we incorporate a $\textit{Dynamic Complementary Competition}$ module that leverages two high-performing sub-networks to generate pseudo-labels, thereby further improving segmentation quality. The proposed C3S3 undergoes rigorous validation on two publicly accessible datasets, encompassing the practices of both MRI and CT scans. The results demonstrate that our method achieves superior performance compared to previous cutting-edge competitors. Especially, on the 95HD and ASD metrics, our approach achieves a notable improvement of at least $6\%$, highlighting the significant advancements. The code is available at https://github.com/Y-TARL/C3S3.
comment: 6 pages, 4 figures, ICME2025
☆ Multiple Object Stitching for Unsupervised Representation Learning
Contrastive learning for single object centric images has achieved remarkable progress on unsupervised representation, but suffering inferior performance on the widespread images with multiple objects. In this paper, we propose a simple but effective method, Multiple Object Stitching (MOS), to refine the unsupervised representation for multi-object images. Specifically, we construct the multi-object images by stitching the single object centric ones, where the objects in the synthesized multi-object images are predetermined. Hence, compared to the existing contrastive methods, our method provides additional object correspondences between multi-object images without human annotations. In this manner, our method pays more attention to the representations of each object in multi-object image, thus providing more detailed representations for complicated downstream tasks, such as object detection and semantic segmentation. Experimental results on ImageNet, CIFAR and COCO datasets demonstrate that our proposed method achieves the leading unsupervised representation performance on both single object centric images and multi-object ones. The source code is available at https://github.com/visresearch/MultipleObjectStitching.
☆ Lightweight Joint Audio-Visual Deepfake Detection via Single-Stream Multi-Modal Learning Framework
Deepfakes are AI-synthesized multimedia data that may be abused for spreading misinformation. Deepfake generation involves both visual and audio manipulation. To detect audio-visual deepfakes, previous studies commonly employ two relatively independent sub-models to learn audio and visual features, respectively, and fuse them subsequently for deepfake detection. However, this may underutilize the inherent correlations between audio and visual features. Moreover, utilizing two isolated feature learning sub-models can result in redundant neural layers, making the overall model inefficient and impractical for resource-constrained environments. In this work, we design a lightweight network for audio-visual deepfake detection via a single-stream multi-modal learning framework. Specifically, we introduce a collaborative audio-visual learning block to efficiently integrate multi-modal information while learning the visual and audio features. By iteratively employing this block, our single-stream network achieves a continuous fusion of multi-modal features across its layers. Thus, our network efficiently captures visual and audio features without the need for excessive block stacking, resulting in a lightweight network design. Furthermore, we propose a multi-modal classification module that can boost the dependence of the visual and audio classifiers on modality content. It also enhances the whole resistance of the video classifier against the mismatches between audio and visual modalities. We conduct experiments on the DF-TIMIT, FakeAVCeleb, and DFDC benchmark datasets. Compared to state-of-the-art audio-visual joint detection methods, our method is significantly lightweight with only 0.48M parameters, yet it achieves superiority in both uni-modal and multi-modal deepfakes, as well as in unseen types of deepfakes.
☆ SALT: A Lightweight Model Adaptation Method for Closed Split Computing Environments
We propose SALT (Split-Adaptive Lightweight Tuning), a lightweight model adaptation framework for Split Computing under closed constraints, where the head and tail networks are proprietary and inaccessible to users. In such closed environments, conventional adaptation methods are infeasible since they require access to model parameters or architectures. SALT addresses this challenge by introducing a compact, trainable adapter on the client side to refine latent features from the head network, enabling user-specific adaptation without modifying the original models or increasing communication overhead. We evaluate SALT on user-specific classification tasks with CIFAR-10 and CIFAR-100, demonstrating improved accuracy with lower training latency compared to fine-tuning methods. Furthermore, SALT facilitates model adaptation for robust inference over lossy networks, a common challenge in edge-cloud environments. With minimal deployment overhead, SALT offers a practical solution for personalized inference in edge AI systems under strict system constraints.
comment: 6 pages, submitted to IEEE Globecom 2025 (under review)
☆ Distributed Risk-Sensitive Safety Filters for Uncertain Discrete-Time Systems
Ensuring safety in multi-agent systems is a significant challenge, particularly in settings where centralized coordination is impractical. In this work, we propose a novel risk-sensitive safety filter for discrete-time multi-agent systems with uncertain dynamics that leverages control barrier functions (CBFs) defined through value functions. Our approach relies on centralized risk-sensitive safety conditions based on exponential risk operators to ensure robustness against model uncertainties. We introduce a distributed formulation of the safety filter by deriving two alternative strategies: one based on worst-case anticipation and another on proximity to a known safe policy. By allowing agents to switch between strategies, feasibility can be ensured. Through detailed numerical evaluations, we demonstrate the efficacy of our approach in maintaining safety without being overly conservative.
☆ Real-Time Execution of Action Chunking Flow Policies
Modern AI systems, especially those interacting with the physical world, increasingly require real-time performance. However, the high latency of state-of-the-art generalist models, including recent vision-language action models (VLAs), poses a significant challenge. While action chunking has enabled temporal consistency in high-frequency control tasks, it does not fully address the latency problem, leading to pauses or out-of-distribution jerky movements at chunk boundaries. This paper presents a novel inference-time algorithm that enables smooth asynchronous execution of action chunking policies. Our method, real-time chunking (RTC), is applicable to any diffusion- or flow-based VLA out of the box with no re-training. It generates the next action chunk while executing the current one, "freezing" actions guaranteed to execute and "inpainting" the rest. To test RTC, we introduce a new benchmark of 12 highly dynamic tasks in the Kinetix simulator, as well as evaluate 6 challenging real-world bimanual manipulation tasks. Results demonstrate that RTC is fast, performant, and uniquely robust to inference delay, significantly improving task throughput and enabling high success rates in precise tasks $\unicode{x2013}$ such as lighting a match $\unicode{x2013}$ even in the presence of significant latency. See https://pi.website/research/real_time_chunking for videos.
☆ Improving LLM Reasoning through Interpretable Role-Playing Steering
Role-playing has emerged as an effective technique for enhancing the reasoning capabilities of large language models (LLMs). However, existing methods primarily rely on prompt engineering, which often lacks stability and interpretability. In this paper, we introduce Sparse Autoencoder Role-Playing Steering (SRPS), a novel framework that identifies and manipulates internal model features associated with role-playing behavior. Our approach extracts latent representations from role-play prompts, selects the most relevant features based on activation patterns, and constructs a steering vector that can be injected into the model's residual stream with controllable intensity. Our method enables fine-grained control over role-specific behavior and offers insights into how role information influences internal model activations. Extensive experiments across various reasoning benchmarks and model sizes demonstrate consistent performance gains. Notably, in the zero-shot chain-of-thought (CoT) setting, the accuracy of Llama3.1-8B on CSQA improves from 31.86% to 39.80%, while Gemma2-9B on SVAMP increases from 37.50% to 45.10%. These results highlight the potential of SRPS to enhance reasoning ability in LLMs, providing better interpretability and stability compared to traditional prompt-based role-playing.
comment: 21 pages, 8 figures, 8 tables
☆ JavelinGuard: Low-Cost Transformer Architectures for LLM Security
We present JavelinGuard, a suite of low-cost, high-performance model architectures designed for detecting malicious intent in Large Language Model (LLM) interactions, optimized specifically for production deployment. Recent advances in transformer architectures, including compact BERT(Devlin et al. 2019) variants (e.g., ModernBERT (Warner et al. 2024)), allow us to build highly accurate classifiers with as few as approximately 400M parameters that achieve rapid inference speeds even on standard CPU hardware. We systematically explore five progressively sophisticated transformer-based architectures: Sharanga (baseline transformer classifier), Mahendra (enhanced attention-weighted pooling with deeper heads), Vaishnava and Ashwina (hybrid neural ensemble architectures), and Raudra (an advanced multi-task framework with specialized loss functions). Our models are rigorously benchmarked across nine diverse adversarial datasets, including popular sets like the NotInject series, BIPIA, Garak, ImprovedLLM, ToxicChat, WildGuard, and our newly introduced JavelinBench, specifically crafted to test generalization on challenging borderline and hard-negative cases. Additionally, we compare our architectures against leading open-source guardrail models as well as large decoder-only LLMs such as gpt-4o, demonstrating superior cost-performance trade-offs in terms of accuracy, and latency. Our findings reveal that while Raudra's multi-task design offers the most robust performance overall, each architecture presents unique trade-offs in speed, interpretability, and resource requirements, guiding practitioners in selecting the optimal balance of complexity and efficiency for real-world LLM security applications.
comment: 16 pages, 1 Figure and 5 Tables
☆ Seeing Voices: Generating A-Roll Video from Audio with Mirage
From professional filmmaking to user-generated content, creators and consumers have long recognized that the power of video depends on the harmonious integration of what we hear (the video's audio track) with what we see (the video's image sequence). Current approaches to video generation either ignore sound to focus on general-purpose but silent image sequence generation or address both visual and audio elements but focus on restricted application domains such as re-dubbing. We introduce Mirage, an audio-to-video foundation model that excels at generating realistic, expressive output imagery from scratch given an audio input. When integrated with existing methods for speech synthesis (text-to-speech, or TTS), Mirage results in compelling multimodal video. When trained on audio-video footage of people talking (A-roll) and conditioned on audio containing speech, Mirage generates video of people delivering a believable interpretation of the performance implicit in input audio. Our central technical contribution is a unified method for training self-attention-based audio-to-video generation models, either from scratch or given existing weights. This methodology allows Mirage to retain generality as an approach to audio-to-video generation while producing outputs of superior subjective quality to methods that incorporate audio-specific architectures or loss components specific to people, speech, or details of how images or audio are captured. We encourage readers to watch and listen to the results of Mirage for themselves (see paper and comments for links).
comment: Technical report website: mirage.app/research/seeing-voices, product website: mirage.app
☆ Instruction-Tuned Video-Audio Models Elucidate Functional Specialization in the Brain
Recent voxel-wise multimodal brain encoding studies have shown that multimodal large language models (MLLMs) exhibit a higher degree of brain alignment compared to unimodal models in both unimodal and multimodal stimulus settings. More recently, instruction-tuned multimodal models have shown to generate task-specific representations that align strongly with brain activity. However, prior work evaluating the brain alignment of MLLMs has primarily focused on unimodal settings or relied on non-instruction-tuned multimodal models for multimodal stimuli. To address this gap, we investigated brain alignment, that is, measuring the degree of predictivity of neural activity recorded while participants were watching naturalistic movies (video along with audio) with representations derived from MLLMs. We utilized instruction-specific embeddings from six video and two audio instruction-tuned MLLMs. Experiments with 13 video task-specific instructions show that instruction-tuned video MLLMs significantly outperform non-instruction-tuned multimodal (by 15%) and unimodal models (by 20%). Our evaluation of MLLMs for both video and audio tasks using language-guided instructions shows clear disentanglement in task-specific representations from MLLMs, leading to precise differentiation of multimodal functional processing in the brain. We also find that MLLM layers align hierarchically with the brain, with early sensory areas showing strong alignment with early layers, while higher-level visual and language regions align more with middle to late layers. These findings provide clear evidence for the role of task-specific instructions in improving the alignment between brain activity and MLLMs, and open new avenues for mapping joint information processing in both the systems. We make the code publicly available [https://github.com/subbareddy248/mllm_videos].
comment: 39 pages, 22 figures
☆ Sparse Interpretable Deep Learning with LIES Networks for Symbolic Regression
Symbolic regression (SR) aims to discover closed-form mathematical expressions that accurately describe data, offering interpretability and analytical insight beyond standard black-box models. Existing SR methods often rely on population-based search or autoregressive modeling, which struggle with scalability and symbolic consistency. We introduce LIES (Logarithm, Identity, Exponential, Sine), a fixed neural network architecture with interpretable primitive activations that are optimized to model symbolic expressions. We develop a framework to extract compact formulae from LIES networks by training with an appropriate oversampling strategy and a tailored loss function to promote sparsity and to prevent gradient instability. After training, it applies additional pruning strategies to further simplify the learned expressions into compact formulae. Our experiments on SR benchmarks show that the LIES framework consistently produces sparse and accurate symbolic formulae outperforming all baselines. We also demonstrate the importance of each design component through ablation studies.
Reinforcement Learning from Human Feedback with High-Confidence Safety Constraints
Existing approaches to language model alignment often treat safety as a tradeoff against helpfulness, which can lead to unacceptable responses in sensitive domains. To ensure reliable performance in such settings, we propose High-Confidence Safe Reinforcement Learning from Human Feedback (HC-RLHF), a method that provides high-confidence safety guarantees while maximizing helpfulness. Similar to previous methods, HC-RLHF explicitly decouples human preferences into helpfulness and harmlessness (safety), which are learned by training a reward model and a cost model, respectively. It then employs a two-step process to find safe solutions. In the first step, it optimizes the reward function under an intentionally pessimistic version of the cost constraint. In the second step, the trained model undergoes a safety test to verify whether its performance stays within an upper-confidence bound of the actual cost constraint. We provide a theoretical analysis of HC-RLHF, including proof that it will not return an unsafe solution with a probability greater than a user-specified threshold. For our empirical analysis, we apply HC-RLHF to align three different language models (Qwen2-1.5B, Qwen2.5-3B, and LLaMa3.2-3B) with human preferences. Our results demonstrate that HC-RLHF produces safe models with high probability and can improve harmlessness and helpfulness compared to previous methods.
comment: 20 pages, 6 figures, 4 tables, Second Reinforcement Learning Conference (RLC 2025)
☆ Automatic Generation of Inference Making Questions for Reading Comprehension Assessments ACL 2025
Inference making is an essential but complex skill in reading comprehension (RC). Some inferences require resolving references across sentences, and some rely on using prior knowledge to fill in the detail that is not explicitly written in the text. Diagnostic RC questions can help educators provide more effective and targeted reading instruction and interventions for school-age students. We introduce a taxonomy of inference types for RC and use it to analyze the distribution of items within a diagnostic RC item bank. Next, we present experiments using GPT-4o to generate bridging-inference RC items for given reading passages via few-shot prompting, comparing conditions with and without chain-of-thought prompts. Generated items were evaluated on three aspects: overall item quality, appropriate inference type, and LLM reasoning, achieving high inter-rater agreements above 0.90. Our results show that GPT-4o produced 93.8% good-quality questions suitable for operational use in grade 3-12 contexts; however, only 42.6% of the generated questions accurately matched the targeted inference type. We conclude that combining automatic item generation with human judgment offers a promising path toward scalable, high-quality diagnostic RC assessments.
comment: Accepted to the 20th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2025), co-located with the ACL 2025
☆ Highly Compressed Tokenizer Can Generate Without Training
Commonly used image tokenizers produce a 2D grid of spatially arranged tokens. In contrast, so-called 1D image tokenizers represent images as highly compressed one-dimensional sequences of as few as 32 discrete tokens. We find that the high degree of compression achieved by a 1D tokenizer with vector quantization enables image editing and generative capabilities through heuristic manipulation of tokens, demonstrating that even very crude manipulations -- such as copying and replacing tokens between latent representations of images -- enable fine-grained image editing by transferring appearance and semantic attributes. Motivated by the expressivity of the 1D tokenizer's latent space, we construct an image generation pipeline leveraging gradient-based test-time optimization of tokens with plug-and-play loss functions such as reconstruction or CLIP similarity. Our approach is demonstrated for inpainting and text-guided image editing use cases, and can generate diverse and realistic samples without requiring training of any generative model.
comment: Main manuscript: 9 pages, 7 figures. Appendix: 8 pages, 9 figures. To appear in the Proceedings of the 42nd International Conference on Machine Learning
☆ SHIELD: Secure Hypernetworks for Incremental Expansion Learning Defense
Traditional deep neural networks suffer from several limitations, including catastrophic forgetting. When models are adapted to new datasets, they tend to quickly forget previously learned knowledge. Another significant issue is the lack of robustness to even small perturbations in the input data. In practice, we can often easily perform adversarial attacks and change the network's predictions, adding minimal noise to the input. Dedicated architectures and training procedures can solve each of the above problems separately. Unfortunately, currently, no model can simultaneously address both catastrophic forgetting and vulnerability to adversarial attacks. We introduce SHIELD (Secure Hypernetworks for Incremental Expansion and Learning Defense), a novel approach that integrates a hypernetwork-based continual learning approach with interval arithmetic. SHIELD use the hypernetwork to transfer trainable task embedding vectors into the weights of a target model dedicated to specific data. This paradigm allows for the dynamic generation of separate networks for each subtask, while the hypernetwork aggregates and analyzes information across all tasks. The target model takes in the input a data sample with a defined interval range, and by creating a hypercube, produces a prediction for the given range. Therefore, such target models provide strict guarantees against all possible attacks for data samples within the interval range. Our approach enhances security without sacrificing network adaptability, addressing the overlooked challenge of safety in continual learning.
☆ Parameter-free approximate equivariance for tasks with finite group symmetry
Equivariant neural networks incorporate symmetries through group actions, embedding them as an inductive bias to improve performance on a wide variety of tasks. However, existing equivariant methods can be computationally intensive, with high parameter counts, and are often tied to a specific architecture. We propose a simple zero-parameter approach that imposes approximate equivariance for a finite group in the latent representation, as an additional term in the loss function. We conduct experiments which allow the network to learn a group representation on the latent space, and show in every case it prefers to learn the regular representation. Fixing this action on the latent space, this yields a simple method to impose approximate equivariance as an additional loss penalty. We benchmark our approach on three datasets and compare it against several existing equivariant methods, showing that in many cases it achieves similar or better performance for a fraction of the parameters.
☆ Can AI Validate Science? Benchmarking LLMs for Accurate Scientific Claim $\rightarrow$ Evidence Reasoning
Large language models (LLMs) are increasingly being used for complex research tasks such as literature review, idea generation, and scientific paper analysis, yet their ability to truly understand and process the intricate relationships within complex research papers, such as the logical links between claims and supporting evidence remains largely unexplored. In this study, we present CLAIM-BENCH, a comprehensive benchmark for evaluating LLMs' capabilities in scientific claim-evidence extraction and validation, a task that reflects deeper comprehension of scientific argumentation. We systematically compare three approaches which are inspired by divide and conquer approaches, across six diverse LLMs, highlighting model-specific strengths and weaknesses in scientific comprehension. Through evaluation involving over 300 claim-evidence pairs across multiple research domains, we reveal significant limitations in LLMs' ability to process complex scientific content. Our results demonstrate that closed-source models like GPT-4 and Claude consistently outperform open-source counterparts in precision and recall across claim-evidence identification tasks. Furthermore, strategically designed three-pass and one-by-one prompting approaches significantly improve LLMs' abilities to accurately link dispersed evidence with claims, although this comes at increased computational cost. CLAIM-BENCH sets a new standard for evaluating scientific comprehension in LLMs, offering both a diagnostic tool and a path forward for building systems capable of deeper, more reliable reasoning across full-length papers.
comment: 21 pages, 6 figures, Under review
☆ Compound AI Systems Optimization: A Survey of Methods, Challenges, and Future Directions
Recent advancements in large language models (LLMs) and AI systems have led to a paradigm shift in the design and optimization of complex AI workflows. By integrating multiple components, compound AI systems have become increasingly adept at performing sophisticated tasks. However, as these systems grow in complexity, new challenges arise in optimizing not only individual components but also their interactions. While traditional optimization methods such as supervised fine-tuning (SFT) and reinforcement learning (RL) remain foundational, the rise of natural language feedback introduces promising new approaches, especially for optimizing non-differentiable systems. This paper provides a systematic review of recent progress in optimizing compound AI systems, encompassing both numerical and language-based techniques. We formalize the notion of compound AI system optimization, classify existing methods along several key dimensions, and highlight open research challenges and future directions in this rapidly evolving field. A list of surveyed papers is publicly available at https://github.com/MiuLab/AISysOpt-Survey.
comment: 15 pages, 4 figures, 1 table
☆ Ensuring Reliability of Curated EHR-Derived Data: The Validation of Accuracy for LLM/ML-Extracted Information and Data (VALID) Framework
Large language models (LLMs) are increasingly used to extract clinical data from electronic health records (EHRs), offering significant improvements in scalability and efficiency for real-world data (RWD) curation in oncology. However, the adoption of LLMs introduces new challenges in ensuring the reliability, accuracy, and fairness of extracted data, which are essential for research, regulatory, and clinical applications. Existing quality assurance frameworks for RWD and artificial intelligence do not fully address the unique error modes and complexities associated with LLM-extracted data. In this paper, we propose a comprehensive framework for evaluating the quality of clinical data extracted by LLMs. The framework integrates variable-level performance benchmarking against expert human abstraction, automated verification checks for internal consistency and plausibility, and replication analyses comparing LLM-extracted data to human-abstracted datasets or external standards. This multidimensional approach enables the identification of variables most in need of improvement, systematic detection of latent errors, and confirmation of dataset fitness-for-purpose in real-world research. Additionally, the framework supports bias assessment by stratifying metrics across demographic subgroups. By providing a rigorous and transparent method for assessing LLM-extracted RWD, this framework advances industry standards and supports the trustworthy use of AI-powered evidence generation in oncology research and practice.
comment: 18 pages, 3 tables, 1 figure
☆ Scaling Laws of Motion Forecasting and Planning -- A Technical Report
We study the empirical scaling laws of a family of encoder-decoder autoregressive transformer models on the task of joint motion forecasting and planning in the autonomous driving domain. Using a 500 thousand hours driving dataset, we demonstrate that, similar to language modeling, model performance improves as a power-law function of the total compute budget, and we observe a strong correlation between model training loss and model evaluation metrics. Most interestingly, closed-loop metrics also improve with scaling, which has important implications for the suitability of open-loop metrics for model development and hill climbing. We also study the optimal scaling of the number of transformer parameters and the training data size for a training compute-optimal model. We find that as the training compute budget grows, optimal scaling requires increasing the model size 1.5x as fast as the dataset size. We also study inference-time compute scaling, where we observe that sampling and clustering the output of smaller models makes them competitive with larger models, up to a crossover point beyond which a larger models becomes more inference-compute efficient. Overall, our experimental results demonstrate that optimizing the training and inference-time scaling properties of motion forecasting and planning models is a key lever for improving their performance to address a wide variety of driving scenarios. Finally, we briefly study the utility of training on general logged driving data of other agents to improve the performance of the ego-agent, an important research area to address the scarcity of robotics data for large capacity models training.
☆ A Comprehensive Study of Decoder-Only LLMs for Text-to-Image Generation CVPR 2025
Both text-to-image generation and large language models (LLMs) have made significant advancements. However, many text-to-image models still employ the somewhat outdated T5 and CLIP as their text encoders. In this work, we investigate the effectiveness of using modern decoder-only LLMs as text encoders for text-to-image diffusion models. We build a standardized training and evaluation pipeline that allows us to isolate and evaluate the effect of different text embeddings. We train a total of 27 text-to-image models with 12 different text encoders to analyze the critical aspects of LLMs that could impact text-to-image generation, including the approaches to extract embeddings, different LLMs variants, and model sizes. Our experiments reveal that the de facto way of using last-layer embeddings as conditioning leads to inferior performance. Instead, we explore embeddings from various layers and find that using layer-normalized averaging across all layers significantly improves alignment with complex prompts. Most LLMs with this conditioning outperform the baseline T5 model, showing enhanced performance in advanced visio-linguistic reasoning skills.
comment: CVPR 2025
☆ Surgeon Style Fingerprinting and Privacy Risk Quantification via Discrete Diffusion Models in a Vision-Language-Action Framework
Surgeons exhibit distinct operating styles due to differences in training, experience, and motor behavior - yet current AI systems often ignore this personalization signal. We propose a novel approach to model fine-grained, surgeon-specific fingerprinting in robotic surgery using a discrete diffusion framework integrated with a vision-language-action (VLA) pipeline. Our method formulates gesture prediction as a structured sequence denoising task, conditioned on multimodal inputs including endoscopic video, surgical intent language, and a privacy-aware embedding of surgeon identity and skill. Personalized surgeon fingerprinting is encoded through natural language prompts using third-party language models, allowing the model to retain individual behavioral style without exposing explicit identity. We evaluate our method on the JIGSAWS dataset and demonstrate that it accurately reconstructs gesture sequences while learning meaningful motion fingerprints unique to each surgeon. To quantify the privacy implications of personalization, we perform membership inference attacks and find that more expressive embeddings improve task performance but simultaneously increase susceptibility to identity leakage. These findings demonstrate that while personalized embeddings improve performance, they also increase vulnerability to identity leakage, revealing the importance of balancing personalization with privacy risk in surgical modeling. Code is available at: https://github.com/huixin-zhan-ai/Surgeon_style_fingerprinting.
☆ Repeton: Structured Bug Repair with ReAct-Guided Patch-and-Test Cycles
Large Language Models (LLMs) have shown strong capabilities in code generation and comprehension, yet their application to complex software engineering tasks often suffers from low precision and limited interpretability. We present Repeton, a fully open-source framework that leverages LLMs for precise and automated code manipulation in real-world Git repositories. Rather than generating holistic fixes, Repeton operates through a structured patch-and-test pipeline: it iteratively diagnoses issues, proposes code changes, and validates each patch through automated testing. This stepwise process is guided by lightweight heuristics and development tools, avoiding reliance on embedding-based retrieval systems. Evaluated on the SWE-bench Lite benchmark, our method shows good performance compared to RAG-based methods in both patch validity and interpretability. By decomposing software engineering tasks into modular, verifiable stages, Repeton provides a practical path toward scalable and transparent autonomous debugging.
☆ Worst-Case Symbolic Constraints Analysis and Generalisation with Large Language Models
Large language models (LLMs) have been successfully applied to a variety of coding tasks, including code generation, completion, and repair. However, more complex symbolic reasoning tasks remain largely unexplored by LLMs. This paper investigates the capacity of LLMs to reason about worst-case executions in programs through symbolic constraints analysis, aiming to connect LLMs and symbolic reasoning approaches. Specifically, we define and address the problem of worst-case symbolic constraints analysis as a measure to assess the comprehension of LLMs. We evaluate the performance of existing LLMs on this novel task and further improve their capabilities through symbolic reasoning-guided fine-tuning, grounded in SMT (Satisfiability Modulo Theories) constraint solving and supported by a specially designed dataset of symbolic constraints. Experimental results show that our solver-aligned model, WARP-1.0-3B, consistently surpasses size-matched and even much larger baselines, demonstrating that a 3B LLM can recover the very constraints that pin down an algorithm's worst-case behaviour through reinforcement learning methods. These findings suggest that LLMs are capable of engaging in deeper symbolic reasoning, supporting a closer integration between neural network-based learning and formal methods for rigorous program analysis.
☆ UniVarFL: Uniformity and Variance Regularized Federated Learning for Heterogeneous Data
Federated Learning (FL) often suffers from severe performance degradation when faced with non-IID data, largely due to local classifier bias. Traditional remedies such as global model regularization or layer freezing either incur high computational costs or struggle to adapt to feature shifts. In this work, we propose UniVarFL, a novel FL framework that emulates IID-like training dynamics directly at the client level, eliminating the need for global model dependency. UniVarFL leverages two complementary regularization strategies during local training: Classifier Variance Regularization, which aligns class-wise probability distributions with those expected under IID conditions, effectively mitigating local classifier bias; and Hyperspherical Uniformity Regularization, which encourages a uniform distribution of feature representations across the hypersphere, thereby enhancing the model's ability to generalize under diverse data distributions. Extensive experiments on multiple benchmark datasets demonstrate that UniVarFL outperforms existing methods in accuracy, highlighting its potential as a highly scalable and efficient solution for real-world FL deployments, especially in resource-constrained settings. Code: https://github.com/sunnyinAI/UniVarFL
☆ A Metrics-Oriented Architectural Model to Characterize Complexity on Machine Learning-Enabled Systems
How can the complexity of ML-enabled systems be managed effectively? The goal of this research is to investigate how complexity affects ML-Enabled Systems (MLES). To address this question, this research aims to introduce a metrics-based architectural model to characterize the complexity of MLES. The goal is to support architectural decisions, providing a guideline for the inception and growth of these systems. This paper showcases the first step for creating the metrics-based architectural model: an extension of a reference architecture that can describe MLES to collect their metrics.
comment: 4 pages, 3 figures (2 diagrams, 1 table), to be published in CAIN 2025
☆ Compiling Metric Temporal Answer Set Programming
We develop a computational approach to Metric Answer Set Programming (ASP) to allow for expressing quantitative temporal constrains, like durations and deadlines. A central challenge is to maintain scalability when dealing with fine-grained timing constraints, which can significantly exacerbate ASP's grounding bottleneck. To address this issue, we leverage extensions of ASP with difference constraints, a simplified form of linear constraints, to handle time-related aspects externally. Our approach effectively decouples metric ASP from the granularity of time, resulting in a solution that is unaffected by time precision.
☆ Ego-centric Learning of Communicative World Models for Autonomous Driving
We study multi-agent reinforcement learning (MARL) for tasks in complex high-dimensional environments, such as autonomous driving. MARL is known to suffer from the \textit{partial observability} and \textit{non-stationarity} issues. To tackle these challenges, information sharing is often employed, which however faces major hurdles in practice, including overwhelming communication overhead and scalability concerns. By making use of generative AI embodied in world model together with its latent representation, we develop {\it CALL}, \underline{C}ommunic\underline{a}tive Wor\underline{l}d Mode\underline{l}, for MARL, where 1) each agent first learns its world model that encodes its state and intention into low-dimensional latent representation with smaller memory footprint, which can be shared with other agents of interest via lightweight communication; and 2) each agent carries out ego-centric learning while exploiting lightweight information sharing to enrich her world model, and then exploits its generalization capacity to improve prediction for better planning. We characterize the gain on the prediction accuracy from the information sharing and its impact on performance gap. Extensive experiments are carried out on the challenging local trajectory planning tasks in the CARLA platform to demonstrate the performance gains of using \textit{CALL}.
☆ Multilingual Hate Speech Detection in Social Media Using Translation-Based Approaches with Large Language Models
Social media platforms are critical spaces for public discourse, shaping opinions and community dynamics, yet their widespread use has amplified harmful content, particularly hate speech, threatening online safety and inclusivity. While hate speech detection has been extensively studied in languages like English and Spanish, Urdu remains underexplored, especially using translation-based approaches. To address this gap, we introduce a trilingual dataset of 10,193 tweets in English (3,834 samples), Urdu (3,197 samples), and Spanish (3,162 samples), collected via keyword filtering, with a balanced distribution of 4,849 Hateful and 5,344 Not-Hateful labels. Our methodology leverages attention layers as a precursor to transformer-based models and large language models (LLMs), enhancing feature extraction for multilingual hate speech detection. For non-transformer models, we use TF-IDF for feature extraction. The dataset is benchmarked using state-of-the-art models, including GPT-3.5 Turbo and Qwen 2.5 72B, alongside traditional machine learning models like SVM and other transformers (e.g., BERT, RoBERTa). Three annotators, following rigorous guidelines, ensured high dataset quality, achieving a Fleiss' Kappa of 0.821. Our approach, integrating attention layers with GPT-3.5 Turbo and Qwen 2.5 72B, achieves strong performance, with macro F1 scores of 0.87 for English (GPT-3.5 Turbo), 0.85 for Spanish (GPT-3.5 Turbo), 0.81 for Urdu (Qwen 2.5 72B), and 0.88 for the joint multilingual model (Qwen 2.5 72B). These results reflect improvements of 8.75% in English (over SVM baseline 0.80), 8.97% in Spanish (over SVM baseline 0.78), 5.19% in Urdu (over SVM baseline 0.77), and 7.32% in the joint multilingual model (over SVM baseline 0.82). Our framework offers a robust solution for multilingual hate speech detection, fostering safer digital communities worldwide.
☆ Nearness of Neighbors Attention for Regression in Supervised Finetuning
It is common in supervised machine learning to combine the feature extraction capabilities of neural networks with the predictive power of traditional algorithms, such as k-nearest neighbors (k-NN) or support vector machines. This procedure involves performing supervised fine-tuning (SFT) on a domain-appropriate feature extractor, followed by training a traditional predictor on the resulting SFT embeddings. When used in this manner, traditional predictors often deliver increased performance over the SFT model itself, despite the fine-tuned feature extractor yielding embeddings specifically optimized for prediction by the neural network's final dense layer. This suggests that directly incorporating traditional algorithms into SFT as prediction layers may further improve performance. However, many traditional algorithms have not been implemented as neural network layers due to their non-differentiable nature and their unique optimization requirements. As a step towards solving this problem, we introduce the Nearness of Neighbors Attention (NONA) regression layer. NONA uses the mechanics of neural network attention and a novel learned attention-masking scheme to yield a differentiable proxy of the k-NN regression algorithm. Results on multiple unstructured datasets show improved performance over both dense layer prediction and k-NN on SFT embeddings for regression.
☆ The AI Imperative: Scaling High-Quality Peer Review in Machine Learning
Peer review, the bedrock of scientific advancement in machine learning (ML), is strained by a crisis of scale. Exponential growth in manuscript submissions to premier ML venues such as NeurIPS, ICML, and ICLR is outpacing the finite capacity of qualified reviewers, leading to concerns about review quality, consistency, and reviewer fatigue. This position paper argues that AI-assisted peer review must become an urgent research and infrastructure priority. We advocate for a comprehensive AI-augmented ecosystem, leveraging Large Language Models (LLMs) not as replacements for human judgment, but as sophisticated collaborators for authors, reviewers, and Area Chairs (ACs). We propose specific roles for AI in enhancing factual verification, guiding reviewer performance, assisting authors in quality improvement, and supporting ACs in decision-making. Crucially, we contend that the development of such systems hinges on access to more granular, structured, and ethically-sourced peer review process data. We outline a research agenda, including illustrative experiments, to develop and validate these AI assistants, and discuss significant technical and ethical challenges. We call upon the ML community to proactively build this AI-assisted future, ensuring the continued integrity and scalability of scientific validation, while maintaining high standards of peer review.
comment: 18 pages, 3 figures. Position paper
☆ SOP-Bench: Complex Industrial SOPs for Evaluating LLM Agents
Large Language Models (LLMs) demonstrate impressive general-purpose reasoning and problem-solving abilities. However, they struggle with executing complex, long-horizon workflows that demand strict adherence to Standard Operating Procedures (SOPs), a critical requirement for real-world industrial automation. Despite this need, there is a lack of public benchmarks that reflect the complexity, structure, and domain-specific nuances of SOPs. To address this, we present three main contributions. First, we introduce a synthetic data generation framework to create realistic, industry-grade SOPs that rigorously test the planning, reasoning, and tool-use capabilities of LLM-based agents. Second, using this framework, we develop SOP-Bench, a benchmark of over 1,800 tasks across 10 industrial domains, each with APIs, tool interfaces, and human-validated test cases. Third, we evaluate two prominent agent architectures: Function-Calling and ReAct Agents, on SOP-Bench, observing average success rates of only 27% and 48%, respectively. Remarkably, when the tool registry is much larger than necessary, agents invoke incorrect tools nearly 100% of the time. These findings underscore a substantial gap between current agentic capabilities of LLMs and the demands of automating real-world SOPs. Performance varies significantly by task and domain, highlighting the need for domain-specific benchmarking and architectural choices before deployment. SOP-Bench is publicly available at http://sop-bench.s3-website-us-west-2.amazonaws.com/. We also release the prompts underpinning the data generation framework to support new domain-specific SOP benchmarks. We invite the community to extend SOP-Bench with SOPs from their industrial domains.
comment: Under review
☆ Benchmarking Pre-Trained Time Series Models for Electricity Price Forecasting
Accurate electricity price forecasting (EPF) is crucial for effective decision-making in power trading on the spot market. While recent advances in generative artificial intelligence (GenAI) and pre-trained large language models (LLMs) have inspired the development of numerous time series foundation models (TSFMs) for time series forecasting, their effectiveness in EPF remains uncertain. To address this gap, we benchmark several state-of-the-art pretrained models--Chronos-Bolt, Chronos-T5, TimesFM, Moirai, Time-MoE, and TimeGPT--against established statistical and machine learning (ML) methods for EPF. Using 2024 day-ahead auction (DAA) electricity prices from Germany, France, the Netherlands, Austria, and Belgium, we generate daily forecasts with a one-day horizon. Chronos-Bolt and Time-MoE emerge as the strongest among the TSFMs, performing on par with traditional models. However, the biseasonal MSTL model, which captures daily and weekly seasonality, stands out for its consistent performance across countries and evaluation metrics, with no TSFM statistically outperforming it.
☆ Cognitive Weave: Synthesizing Abstracted Knowledge with a Spatio-Temporal Resonance Graph
The emergence of capable large language model (LLM) based agents necessitates memory architectures that transcend mere data storage, enabling continuous learning, nuanced reasoning, and dynamic adaptation. Current memory systems often grapple with fundamental limitations in structural flexibility, temporal awareness, and the ability to synthesize higher-level insights from raw interaction data. This paper introduces Cognitive Weave, a novel memory framework centered around a multi-layered spatio-temporal resonance graph (STRG). This graph manages information as semantically rich insight particles (IPs), which are dynamically enriched with resonance keys, signifiers, and situational imprints via a dedicated semantic oracle interface (SOI). These IPs are interconnected through typed relational strands, forming an evolving knowledge tapestry. A key component of Cognitive Weave is the cognitive refinement process, an autonomous mechanism that includes the synthesis of insight aggregates (IAs) condensed, higher-level knowledge structures derived from identified clusters of related IPs. We present comprehensive experimental results demonstrating Cognitive Weave's marked enhancement over existing approaches in long-horizon planning tasks, evolving question-answering scenarios, and multi-session dialogue coherence. The system achieves a notable 34% average improvement in task completion rates and a 42% reduction in mean query latency when compared to state-of-the-art baselines. Furthermore, this paper explores the ethical considerations inherent in such advanced memory systems, discusses the implications for long-term memory in LLMs, and outlines promising future research trajectories.
☆ Hierarchical Lexical Graph for Enhanced Multi-Hop Retrieval KDD '25
Retrieval-Augmented Generation (RAG) grounds large language models in external evidence, yet it still falters when answers must be pieced together across semantically distant documents. We close this gap with the Hierarchical Lexical Graph (HLG), a three-tier index that (i) traces every atomic proposition to its source, (ii) clusters propositions into latent topics, and (iii) links entities and relations to expose cross-document paths. On top of HLG we build two complementary, plug-and-play retrievers: StatementGraphRAG, which performs fine-grained entity-aware beam search over propositions for high-precision factoid questions, and TopicGraphRAG, which selects coarse topics before expanding along entity links to supply broad yet relevant context for exploratory queries. Additionally, existing benchmarks lack the complexity required to rigorously evaluate multi-hop summarization systems, often focusing on single-document queries or limited datasets. To address this, we introduce a synthetic dataset generation pipeline that curates realistic, multi-document question-answer pairs, enabling robust evaluation of multi-hop retrieval systems. Extensive experiments across five datasets demonstrate that our methods outperform naive chunk-based RAG achieving an average relative improvement of 23.1% in retrieval recall and correctness. Open-source Python library is available at https://github.com/awslabs/graphrag-toolkit.
comment: KDD '25
☆ Domain Switching on the Pareto Front: Multi-Objective Deep Kernel Learning in Automated Piezoresponse Force Microscopy
Ferroelectric polarization switching underpins the functional performance of a wide range of materials and devices, yet its dependence on complex local microstructural features renders systematic exploration by manual or grid-based spectroscopic measurements impractical. Here, we introduce a multi-objective kernel-learning workflow that infers the microstructural rules governing switching behavior directly from high-resolution imaging data. Applied to automated piezoresponse force microscopy (PFM) experiments, our framework efficiently identifies the key relationships between domain-wall configurations and local switching kinetics, revealing how specific wall geometries and defect distributions modulate polarization reversal. Post-experiment analysis projects abstract reward functions, such as switching ease and domain symmetry, onto physically interpretable descriptors including domain configuration and proximity to boundaries. This enables not only high-throughput active learning, but also mechanistic insight into the microstructural control of switching phenomena. While demonstrated for ferroelectric domain switching, our approach provides a powerful, generalizable tool for navigating complex, non-differentiable design spaces, from structure-property correlations in molecular discovery to combinatorial optimization across diverse imaging modalities.
♻ ☆ Distillation Robustifies Unlearning
Current LLM unlearning methods are not robust: they can be reverted easily with a few steps of finetuning. This is true even for the idealized unlearning method of training to imitate an oracle model that was never exposed to unwanted information, suggesting that output-based finetuning is insufficient to achieve robust unlearning. In a similar vein, we find that training a randomly initialized student to imitate an unlearned model transfers desired behaviors while leaving undesired capabilities behind. In other words, distillation robustifies unlearning. Building on this insight, we propose Unlearn-Noise-Distill-on-Outputs (UNDO), a scalable method that distills an unlearned model into a partially noised copy of itself. UNDO introduces a tunable tradeoff between compute cost and robustness, establishing a new Pareto frontier on synthetic language and arithmetic tasks. At its strongest setting, UNDO matches the robustness of a model retrained from scratch with perfect data filtering while using only 60-80% of the compute and requiring only 0.01% of the pretraining data to be labeled. We also show that UNDO robustifies unlearning on the more realistic Weapons of Mass Destruction Proxy (WMDP) benchmark. Since distillation is widely used in practice, incorporating an unlearning step beforehand offers a convenient path to robust capability removal.
♻ ☆ Cartridges: Lightweight and general-purpose long context representations via self-study
Large language models are often used to answer queries grounded in large text corpora (e.g. codebases, legal documents, or chat histories) by placing the entire corpus in the context window and leveraging in-context learning (ICL). Although current models support contexts of 100K-1M tokens, this setup is costly to serve because the memory consumption of the KV cache scales with input length. We explore an alternative: training a smaller KV cache offline on each corpus. At inference time, we load this trained KV cache, which we call a Cartridge, and decode a response. Critically, the cost of training a Cartridge can be amortized across all the queries referencing the same corpus. However, we find that the naive approach of training the Cartridge with next-token prediction on the corpus is not competitive with ICL. Instead, we propose self-study, a training recipe in which we generate synthetic conversations about the corpus and train the Cartridge with a context-distillation objective. We find that Cartridges trained with self-study replicate the functionality of ICL, while being significantly cheaper to serve. On challenging long-context benchmarks, Cartridges trained with self-study match ICL performance while using 38.6x less memory and enabling 26.4x higher throughput. Self-study also extends the model's effective context length (e.g. from 128k to 484k tokens on MTOB) and surprisingly, leads to Cartridges that can be composed at inference time without retraining.
♻ ☆ A Cognac Shot To Forget Bad Memories: Corrective Unlearning for Graph Neural Networks ICML 2025
Graph Neural Networks (GNNs) are increasingly being used for a variety of ML applications on graph data. Because graph data does not follow the independently and identically distributed (i.i.d.) assumption, adversarial manipulations or incorrect data can propagate to other data points through message passing, which deteriorates the model's performance. To allow model developers to remove the adverse effects of manipulated entities from a trained GNN, we study the recently formulated problem of Corrective Unlearning. We find that current graph unlearning methods fail to unlearn the effect of manipulations even when the whole manipulated set is known. We introduce a new graph unlearning method, Cognac, which can unlearn the effect of the manipulation set even when only 5% of it is identified. It recovers most of the performance of a strong oracle with fully corrected training data, even beating retraining from scratch without the deletion set while being 8x more efficient. We hope our work assists GNN developers in mitigating harmful effects caused by issues in real-world data, post-training. Our code is publicly available at https://github.com/cognac-gnn-unlearning/corrective-unlearning-for-gnns
comment: In Proceedings of ICML 2025
♻ ☆ Text-to-LoRA: Instant Transformer Adaption ICML 2025
While Foundation Models provide a general tool for rapid content creation, they regularly require task-specific adaptation. Traditionally, this exercise involves careful curation of datasets and repeated fine-tuning of the underlying model. Fine-tuning techniques enable practitioners to adapt foundation models for many new applications but require expensive and lengthy training while being notably sensitive to hyperparameter choices. To overcome these limitations, we introduce Text-to-LoRA (T2L), a model capable of adapting large language models (LLMs) on the fly solely based on a natural language description of the target task. T2L is a hypernetwork trained to construct LoRAs in a single inexpensive forward pass. After training T2L on a suite of 9 pre-trained LoRA adapters (GSM8K, Arc, etc.), we show that the ad-hoc reconstructed LoRA instances match the performance of task-specific adapters across the corresponding test sets. Furthermore, T2L can compress hundreds of LoRA instances and zero-shot generalize to entirely unseen tasks. This approach provides a significant step towards democratizing the specialization of foundation models and enables language-based adaptation with minimal compute requirements. Our code is available at https://github.com/SakanaAI/text-to-lora
comment: Accepted at ICML 2025
♻ ☆ Information Bargaining: Bilateral Commitment in Bayesian Persuasion
Bayesian persuasion, an extension of cheap-talk communication, involves an informed sender committing to a signaling scheme to influence a receiver's actions. Compared to cheap talk, this sender's commitment enables the receiver to verify the incentive compatibility of signals beforehand, facilitating cooperation. While effective in one-shot scenarios, Bayesian persuasion faces computational complexity (NP-hardness) when extended to long-term interactions, where the receiver may adopt dynamic strategies conditional on past outcomes and future expectations. To address this complexity, we introduce the bargaining perspective, which allows: (1) a unified framework and well-structured solution concept for long-term persuasion, with desirable properties such as fairness and Pareto efficiency; (2) a clear distinction between two previously conflated advantages: the sender's informational advantage and first-proposer advantage. With only modest modifications to the standard setting, this perspective makes explicit the common knowledge of the game structure and grants the receiver comparable commitment capabilities, thereby reinterpreting classic one-sided persuasion as a balanced information bargaining framework. The framework is validated through a two-stage validation-and-inference paradigm: We first demonstrate that GPT-o3 and DeepSeek-R1, out of publicly available LLMs, reliably handle standard tasks; We then apply them to persuasion scenarios to test that the outcomes align with what our information-bargaining framework suggests. All code, results, and terminal logs are publicly available at github.com/YueLin301/InformationBargaining.
♻ ☆ Cross-lingual Collapse: How Language-Centric Foundation Models Shape Reasoning in Large Language Models
We identify \textbf{Cross-lingual Collapse}, a systematic drift in which the chain-of-thought (CoT) of a multilingual language model reverts to its dominant pre-training language even when the prompt is expressed in a different language. Recent large language models (LLMs) with reinforcement learning with verifiable reward (RLVR) have achieved strong logical reasoning performances by exposing their intermediate reasoning traces, giving rise to large reasoning models (LRMs). However, the mechanism behind multilingual reasoning in LRMs is not yet fully explored. To investigate the issue, we fine-tune multilingual LRMs with Group-Relative Policy Optimization (GRPO) on translated versions of the GSM$8$K and SimpleRL-Zoo datasets in three different languages: Chinese, Korean, and Ukrainian. During training, we monitor both task accuracy and language consistency of the reasoning chains. Our experiments reveal three key findings: (i) GRPO rapidly amplifies pre-training language imbalances, leading to the erosion of low-resource languages within just a few hundred updates; (ii) language consistency reward mitigates this drift but does so at the expense of an almost 5 - 10 pp drop in accuracy. and (iii) the resulting language collapse is severely damaging and largely irreversible, as subsequent fine-tuning struggles to steer the model back toward its original target-language reasoning capabilities. Together, these findings point to a remarkable conclusion: \textit{not all languages are trained equally for reasoning}. Furthermore, our paper sheds light on the roles of reward shaping, data difficulty, and pre-training priors in eliciting multilingual reasoning.
comment: Preprint
♻ ☆ Heartcare Suite: Multi-dimensional Understanding of ECG with Raw Multi-lead Signal Modeling
We present Heartcare Suite, a multimodal comprehensive framework for finegrained electrocardiogram (ECG) understanding. It comprises three key components: (i) Heartcare-220K, a high-quality, structured, and comprehensive multimodal ECG dataset covering essential tasks such as disease diagnosis, waveform morphology analysis, and rhythm interpretation. (ii) Heartcare-Bench, a systematic and multi-dimensional benchmark designed to evaluate diagnostic intelligence and guide the optimization of Medical Multimodal Large Language Models (Med-MLLMs) in ECG scenarios. and (iii) HeartcareGPT with a tailored tokenizer Bidirectional ECG Abstract Tokenization (Beat), which compresses raw multi-lead signals into semantically rich discrete tokens via duallevel vector quantization and query-guided bidirectional diffusion mechanism. Built upon Heartcare-220K, HeartcareGPT achieves strong generalization and SoTA performance across multiple clinically meaningful tasks. Extensive experiments demonstrate that Heartcare Suite is highly effective in advancing ECGspecific multimodal understanding and evaluation. Our project is available at https://github.com/DCDmllm/Heartcare-Suite .
♻ ☆ Feature-Based Lie Group Transformer for Real-World Applications
The main goal of representation learning is to acquire meaningful representations from real-world sensory inputs without supervision. Representation learning explains some aspects of human development. Various neural network (NN) models have been proposed that acquire empirically good representations. However, the formulation of a good representation has not been established. We recently proposed a method for categorizing changes between a pair of sensory inputs. A unique feature of this approach is that transformations between two sensory inputs are learned to satisfy algebraic structural constraints. Conventional representation learning often assumes that disentangled independent feature axes is a good representation; however, we found that such a representation cannot account for conditional independence. To overcome this problem, we proposed a new method using group decomposition in Galois algebra theory. Although this method is promising for defining a more general representation, it assumes pixel-to-pixel translation without feature extraction, and can only process low-resolution images with no background, which prevents real-world application. In this study, we provide a simple method to apply our group decomposition theory to a more realistic scenario by combining feature extraction and object segmentation. We replace pixel translation with feature translation and formulate object segmentation as grouping features under the same transformation. We validated the proposed method on a practical dataset containing both real-world object and background. We believe that our model will lead to a better understanding of human development of object recognition in the real world.
comment: 8 pages, the dataset used in this work is https://drive.google.com/file/d/1RaSWNN2GEyV3zQPeGya4Mr9DDhJ7OMz7/view?usp=sharing
♻ ☆ Peer-Ranked Precision: Creating a Foundational Dataset for Fine-Tuning Vision Models from DataSeeds' Annotated Imagery
The development of modern Artificial Intelligence (AI) models, particularly diffusion-based models employed in computer vision and image generation tasks, is undergoing a paradigmatic shift in development methodologies. Traditionally dominated by a "Model Centric" approach, in which performance gains were primarily pursued through increasingly complex model architectures and hyperparameter optimization, the field is now recognizing a more nuanced "Data-Centric" approach. This emergent framework foregrounds the quality, structure, and relevance of training data as the principal driver of model performance. To operationalize this paradigm shift, we introduce the DataSeeds.AI sample dataset (the "DSD"), initially comprised of approximately 10,610 high-quality human peer-ranked photography images accompanied by extensive multi-tier annotations. The DSD is a foundational computer vision dataset designed to usher in a new standard for commercial image datasets. Representing a small fraction of DataSeeds.AI's 100 million-plus image catalog, the DSD provides a scalable foundation necessary for robust commercial and multimodal AI development. Through this in-depth exploratory analysis, we document the quantitative improvements generated by the DSD on specific models against known benchmarks and make the code and the trained models used in our evaluation publicly available.
comment: 28 pages, 12 figures
♻ ☆ TissUnet: Improved Extracranial Tissue and Cranium Segmentation for Children through Adulthood
Extracranial tissues visible on brain magnetic resonance imaging (MRI) may hold significant value for characterizing health conditions and clinical decision-making, yet they are rarely quantified. Current tools have not been widely validated, particularly in settings of developing brains or underlying pathology. We present TissUnet, a deep learning model that segments skull bone, subcutaneous fat, and muscle from routine three-dimensional T1-weighted MRI, with or without contrast enhancement. The model was trained on 155 paired MRI-computed tomography (CT) scans and validated across nine datasets covering a wide age range and including individuals with brain tumors. In comparison to AI-CT-derived labels from 37 MRI-CT pairs, TissUnet achieved a median Dice coefficient of 0.79 [IQR: 0.77-0.81] in a healthy adult cohort. In a second validation using expert manual annotations, median Dice was 0.83 [IQR: 0.83-0.84] in healthy individuals and 0.81 [IQR: 0.78-0.83] in tumor cases, outperforming previous state-of-the-art method. Acceptability testing resulted in an 89% acceptance rate after adjudication by a tie-breaker(N=108 MRIs), and TissUnet demonstrated excellent performance in the blinded comparative review (N=45 MRIs), including both healthy and tumor cases in pediatric populations. TissUnet enables fast, accurate, and reproducible segmentation of extracranial tissues, supporting large-scale studies on craniofacial morphology, treatment effects, and cardiometabolic risk using standard brain T1w MRI.
comment: 44 pages, 4 tables, 6 figures, supplementary material
♻ ☆ Toward Greater Autonomy in Materials Discovery Agents: Unifying Planning, Physics, and Scientists
We aim at designing language agents with greater autonomy for crystal materials discovery. While most of existing studies restrict the agents to perform specific tasks within predefined workflows, we aim to automate workflow planning given high-level goals and scientist intuition. To this end, we propose Materials Agent unifying Planning, Physics, and Scientists, known as MAPPS. MAPPS consists of a Workflow Planner, a Tool Code Generator, and a Scientific Mediator. The Workflow Planner uses large language models (LLMs) to generate structured and multi-step workflows. The Tool Code Generator synthesizes executable Python code for various tasks, including invoking a force field foundation model that encodes physics. The Scientific Mediator coordinates communications, facilitates scientist feedback, and ensures robustness through error reflection and recovery. By unifying planning, physics, and scientists, MAPPS enables flexible and reliable materials discovery with greater autonomy, achieving a five-fold improvement in stability, uniqueness, and novelty rates compared with prior generative models when evaluated on the MP-20 data. We provide extensive experiments across diverse tasks to show that MAPPS is a promising framework for autonomous materials discovery.
♻ ☆ When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration
Recent advancements in AI reasoning have driven substantial improvements across diverse tasks. A critical open question is whether these improvements also yields better knowledge transfer: the ability of models to communicate reasoning in ways humans can understand, apply, and learn from. To investigate this, we introduce Knowledge Integration and Transfer Evaluation (KITE), a conceptual and experimental framework for Human-AI knowledge transfer capabilities and conduct the first large-scale human study (N=118) explicitly designed to measure it. In our two-phase setup, humans first ideate with an AI on problem-solving strategies, then independently implement solutions, isolating model explanations' influence on human understanding. Our findings reveal that although model benchmark performance correlates with collaborative outcomes, this relationship is notably inconsistent, featuring significant outliers, indicating that knowledge transfer requires dedicated optimization. Our analysis identifies behavioral and strategic factors mediating successful knowledge transfer. We release our code, dataset, and evaluation framework to support future work on communicatively aligned models.
comment: For code, data, visualizer, visit: https://kite-live.vercel.app
♻ ☆ Reason-to-Recommend: Using Interaction-of-Thought Reasoning to Enhance LLM Recommendation
Driven by advances in Large Language Models (LLMs), integrating them into recommendation tasks has gained interest due to their strong semantic understanding and prompt flexibility. Prior work encoded user-item interactions or metadata into prompts for recommendations. In parallel, LLM reasoning, boosted by test-time scaling and reinforcement learning, has excelled in fields like mathematics and code, where reasoning traces and correctness signals are clear, enabling high performance and interpretability. However, directly applying these reasoning methods to recommendation is ineffective because user feedback is implicit and lacks reasoning supervision. To address this, we propose $\textbf{R2Rec}$, a reasoning-enhanced recommendation framework that samples interaction chains from the user-item graph and converts them into structured interaction-of-thoughts via a progressive masked prompting strategy, with each thought representing stepwise reasoning grounded in interaction context. This allows LLMs to simulate step-by-step decision-making based on implicit patterns. We design a two-stage training pipeline: supervised fine-tuning teaches basic reasoning from high-quality traces, and reinforcement learning refines reasoning via reward signals, alleviating sparse explicit supervision. Experiments on three real-world datasets show R2Rec outperforms classical and LLM-based baselines with an average $\textbf{10.48%}$ improvement in HitRatio@1 and $\textbf{131.81%}$ gain over the original LLM. Furthermore, the explicit reasoning chains enhance interpretability by revealing the decision process. Our code is available at: https://anonymous.4open.science/r/R2Rec-7C5D.
♻ ☆ PhantomWiki: On-Demand Datasets for Reasoning and Retrieval Evaluation ICML 2025
High-quality benchmarks are essential for evaluating reasoning and retrieval capabilities of large language models (LLMs). However, curating datasets for this purpose is not a permanent solution as they are prone to data leakage and inflated performance results. To address these challenges, we propose PhantomWiki: a pipeline to generate unique, factually consistent document corpora with diverse question-answer pairs. Unlike prior work, PhantomWiki is neither a fixed dataset, nor is it based on any existing data. Instead, a new PhantomWiki instance is generated on demand for each evaluation. We vary the question difficulty and corpus size to disentangle reasoning and retrieval capabilities respectively, and find that PhantomWiki datasets are surprisingly challenging for frontier LLMs. Thus, we contribute a scalable and data leakage-resistant framework for disentangled evaluation of reasoning, retrieval, and tool-use abilities. Our code is available at https://github.com/kilian-group/phantom-wiki.
comment: Accepted to ICML 2025
♻ ☆ When Two LLMs Debate, Both Think They'll Win
Can LLMs accurately adjust their confidence when facing opposition? Building on previous studies measuring calibration on static fact-based question-answering tasks, we evaluate Large Language Models (LLMs) in a dynamic, adversarial debate setting, uniquely combining two realistic factors: (a) a multi-turn format requiring models to update beliefs as new information emerges, and (b) a zero-sum structure to control for task-related uncertainty, since mutual high-confidence claims imply systematic overconfidence. We organized 60 three-round policy debates among ten state-of-the-art LLMs, with models privately rating their confidence (0-100) in winning after each round. We observed five concerning patterns: (1) Systematic overconfidence: models began debates with average initial confidence of 72.9% vs. a rational 50% baseline. (2) Confidence escalation: rather than reducing confidence as debates progressed, debaters increased their win probabilities, averaging 83% by the final round. (3) Mutual overestimation: in 61.7% of debates, both sides simultaneously claimed >=75% probability of victory, a logical impossibility. (4) Persistent self-debate bias: models debating identical copies increased confidence from 64.1% to 75.2%; even when explicitly informed their chance of winning was exactly 50%, confidence still rose (from 50.0% to 57.1%). (5) Misaligned private reasoning: models' private scratchpad thoughts sometimes differed from their public confidence ratings, raising concerns about faithfulness of chain-of-thought reasoning. These results suggest LLMs lack the ability to accurately self-assess or update their beliefs in dynamic, multi-turn tasks; a major concern as LLMs are now increasingly deployed without careful review in assistant and agentic roles. Code for our experiments is available at https://github.com/pradyuprasad/llms_overconfidence
♻ ☆ Bipartite Ranking From Multiple Labels: On Loss Versus Label Aggregation ICML 2025
Bipartite ranking is a fundamental supervised learning problem, with the goal of learning a ranking over instances with maximal Area Under the ROC Curve (AUC) against a single binary target label. However, one may often observe multiple binary target labels, e.g., from distinct human annotators. How can one synthesize such labels into a single coherent ranking? In this work, we formally analyze two approaches to this problem -- loss aggregation and label aggregation -- by characterizing their Bayes-optimal solutions. We show that while both approaches can yield Pareto-optimal solutions, loss aggregation can exhibit label dictatorship: one can inadvertently (and undesirably) favor one label over others. This suggests that label aggregation can be preferable to loss aggregation, which we empirically verify.
comment: Accepted by ICML 2025
♻ ☆ Automated Capability Discovery via Foundation Model Self-Exploration
Foundation models have become general-purpose assistants, exhibiting diverse capabilities across numerous domains through training on web-scale data. It remains challenging to precisely characterize even a fraction of the full spectrum of these abilities and potential risks in any new model. Existing evaluation approaches often require significant human effort, and it is taking increasing effort to design ever harder challenges for more capable models. We introduce Automated Capability Discovery (ACD), a framework that designates one foundation model as a scientist to systematically propose open-ended tasks probing the abilities of a subject model (potentially itself). By combining frontier models with ideas from the field of open-endedness, ACD automatically and systematically uncovers a diverse spectrum of surprising capabilities and failures in the subject model. We demonstrate ACD across a range of foundation models (including the GPT, Claude, and Llama series), showing that it automatically generates thousands of distinct tasks, which are then clustered to reveal dozens of broader capability areas and failure modes, that would be challenging for any single team to uncover. We further validate our method's automated scoring with extensive human surveys, observing high agreement between model-generated and human evaluations. By leveraging foundation models' ability to both create tasks and self-evaluate, ACD is a significant step toward scalable, automated evaluation of novel AI systems. All code and evaluation logs are open-sourced at https://github.com/conglu1997/ACD.
♻ ☆ Intelligent Offloading in Vehicular Edge Computing: A Comprehensive Review of Deep Reinforcement Learning Approaches and Architectures
The increasing complexity of Intelligent Transportation Systems (ITS) has led to significant interest in computational offloading to external infrastructures such as edge servers, vehicular nodes, and UAVs. These dynamic and heterogeneous environments pose challenges for traditional offloading strategies, prompting the exploration of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) as adaptive decision-making frameworks. This survey presents a comprehensive review of recent advances in DRL-based offloading for vehicular edge computing (VEC). We classify and compare existing works based on learning paradigms (e.g., single-agent, multi-agent), system architectures (e.g., centralized, distributed, hierarchical), and optimization objectives (e.g., latency, energy, fairness). Furthermore, we analyze how Markov Decision Process (MDP) formulations are applied and highlight emerging trends in reward design, coordination mechanisms, and scalability. Finally, we identify open challenges and outline future research directions to guide the development of robust and intelligent offloading strategies for next-generation ITS.
comment: 33 Pages, 6 Figures, 7 Tables. Machine Learning, Reinforcement Learning, Multi Agent Reinforcement Learning, Computational Offloading and Edge Computing
♻ ☆ MIB: A Mechanistic Interpretability Benchmark ICML 2025
How can we know whether new mechanistic interpretability methods achieve real improvements? In pursuit of lasting evaluation standards, we propose MIB, a Mechanistic Interpretability Benchmark, with two tracks spanning four tasks and five models. MIB favors methods that precisely and concisely recover relevant causal pathways or causal variables in neural language models. The circuit localization track compares methods that locate the model components - and connections between them - most important for performing a task (e.g., attribution patching or information flow routes). The causal variable localization track compares methods that featurize a hidden vector, e.g., sparse autoencoders (SAEs) or distributed alignment search (DAS), and align those features to a task-relevant causal variable. Using MIB, we find that attribution and mask optimization methods perform best on circuit localization. For causal variable localization, we find that the supervised DAS method performs best, while SAE features are not better than neurons, i.e., non-featurized hidden vectors. These findings illustrate that MIB enables meaningful comparisons, and increases our confidence that there has been real progress in the field.
comment: Accepted to ICML 2025. Project website at https://mib-bench.github.io
♻ ☆ Reliable Collaborative Conversational Agent System Based on LLMs and Answer Set Programming
As the Large-Language-Model-driven (LLM-driven) Artificial Intelligence (AI) bots became popular, people realized their strong potential in Task-Oriented Dialogue (TOD). However, bots relying wholly on LLMs are unreliable in their knowledge, and whether they can finally produce a correct outcome for the task is not guaranteed. The collaboration among these agents also remains a challenge, since the necessary information to convey is unclear, and the information transfer is by prompts: unreliable, and malicious knowledge is easy to inject. With the help of knowledge representation and reasoning tools such as Answer Set Programming (ASP), conversational agents can be built safely and reliably, and communication among the agents made more reliable as well. We propose a Manager-Customer-Service Dual-Agent paradigm, where ASP-driven bots share the same knowledge base and complete their assigned tasks independently. The agents communicate with each other through the knowledge base, ensuring consistency. The knowledge and information conveyed are encapsulated and invisible to the users, ensuring the security of information transmission. To illustrate the dual-agent conversational paradigm, we have constructed AutoManager, a collaboration system for managing the drive-through window of a fast-food restaurant such as Taco Bell in the US. In AutoManager, the customer service bot takes the customer's order while the manager bot manages the menu and food supply. We evaluated our AutoManager system and compared it with the real-world Taco Bell Drive-Thru AI Order Taker, and the results show that our method is more reliable.
comment: 9 pages
♻ ☆ CORDIAL: Can Multimodal Large Language Models Effectively Understand Coherence Relationships? ACL
Multimodal Large Language Models (MLLMs) are renowned for their superior instruction-following and reasoning capabilities across diverse problem domains. However, existing benchmarks primarily focus on assessing factual and logical correctness in downstream tasks, with limited emphasis on evaluating MLLMs' ability to interpret pragmatic cues and intermodal relationships. To address this gap, we assess the competency of MLLMs in performing Multimodal Discourse Analysis (MDA) using Coherence Relations. Our benchmark, CORDIAL, encompasses a broad spectrum of Coherence Relations across 3 different discourse domains at varying levels of granularity. Through our experiments on 10+ MLLMs employing different prompting strategies, we show that even top models like Gemini 1.5 Pro and GPT-4o fail to match the performance of simple classifier-based baselines. This study emphasizes the need to move beyond similarity-based metrics and adopt a discourse-driven framework for evaluating MLLMs, providing a more nuanced assessment of their capabilities. The benchmark and code are available at: https://aashish2000.github.io/CORDIAL/
comment: To appear at the 63rd Annual Meeting of the Association for Computational Linguistics (ACL), Vienna, Austria, July 2025, https://2025.aclweb.org/
♻ ☆ Easy2Hard-Bench: Standardized Difficulty Labels for Profiling LLM Performance and Generalization NeurIPS 2024
While generalization over tasks from easy to hard is crucial to profile language models (LLMs), the datasets with fine-grained difficulty annotations for each problem across a broad range of complexity are still blank. Aiming to address this limitation, we present Easy2Hard-Bench, a consistently formatted collection of 6 benchmark datasets spanning various domains, such as mathematics and programming problems, chess puzzles, and reasoning questions. Each problem within these datasets is annotated with numerical difficulty scores. To systematically estimate problem difficulties, we collect abundant performance data on attempts to each problem by humans in the real world or LLMs on the prominent leaderboard. Leveraging the rich performance data, we apply well-established difficulty ranking systems, such as Item Response Theory (IRT) and Glicko-2 models, to uniformly assign numerical difficulty scores to problems. Moreover, datasets in Easy2Hard-Bench distinguish themselves from previous collections by a higher proportion of challenging problems. Through extensive experiments with six state-of-the-art LLMs, we provide a comprehensive analysis of their performance and generalization capabilities across varying levels of difficulty, with the aim of inspiring future research in LLM generalization. The datasets are available at https://huggingface.co/datasets/furonghuang-lab/Easy2Hard-Bench.
comment: NeurIPS 2024 Datasets and Benchmarks Track
♻ ☆ Enhancing Few-Shot Vision-Language Classification with Large Multimodal Model Features
Generative Large Multimodal Models (LMMs) like LLaVA and Qwen-VL excel at a wide variety of vision-language (VL) tasks. Despite strong performance, LMMs' generative outputs are not specialized for vision-language classification tasks (i.e., tasks with vision-language inputs and discrete labels) such as image classification and multiple-choice VQA. One key challenge in utilizing LMMs for these tasks is the extraction of useful features from generative LMMs. To overcome this, we propose an approach that leverages multimodal feature extraction from the LMM's latent space. Toward this end, we present Sparse Attention Vectors (SAVs) -- a finetuning-free method that leverages sparse attention head activations (fewer than 5% of the heads) in LMMs as strong feature representations. With only few-shot examples, SAVs demonstrate state-of-the-art performance compared to a variety of few-shot and finetuned baselines on a collection of vision-language classification tasks. Our experiments also imply that SAVs can scale in performance with additional examples and generalize to similar tasks, establishing SAVs as both effective and robust multimodal feature representations.
♻ ☆ Predicting Bad Goods Risk Scores with ARIMA Time Series: A Novel Risk Assessment Approach
The increasing complexity of supply chains and the rising costs associated with defective or substandard goods (bad goods) highlight the urgent need for advanced predictive methodologies to mitigate risks and enhance operational efficiency. This research presents a novel framework that integrates Time Series ARIMA (AutoRegressive Integrated Moving Average) models with a proprietary formula specifically designed to calculate bad goods after time series forecasting. By leveraging historical data patterns, including sales, returns, and capacity, the model forecasts potential quality failures, enabling proactive decision-making. ARIMA is employed to capture temporal trends in time series data, while the newly developed formula quantifies the likelihood and impact of defects with greater precision. Experimental results, validated on a dataset spanning 2022-2024 for Organic Beer-G 1 Liter, demonstrate that the proposed method outperforms traditional statistical models, such as Exponential Smoothing and Holt-Winters, in both prediction accuracy and risk evaluation. This study advances the field of predictive analytics by bridging time series forecasting, ARIMA, and risk management in supply chain quality control, offering a scalable and practical solution for minimizing losses due to bad goods.
♻ ☆ RONA: Pragmatically Diverse Image Captioning with Coherence Relations NAACL
Writing Assistants (e.g., Grammarly, Microsoft Copilot) traditionally generate diverse image captions by employing syntactic and semantic variations to describe image components. However, human-written captions prioritize conveying a central message alongside visual descriptions using pragmatic cues. To enhance caption diversity, it is essential to explore alternative ways of communicating these messages in conjunction with visual content. We propose RONA, a novel prompting strategy for Multi-modal Large Language Models (MLLM) that leverages Coherence Relations as a controllable axis for pragmatic variations. We demonstrate that RONA generates captions with better overall diversity and ground-truth alignment, compared to MLLM baselines across multiple domains. Our code is available at: https://github.com/aashish2000/RONA
comment: Accepted in the NAACL Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing), Albuquerque, New Mexico, May 2025, https://in2writing.glitch.me
DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance
To alleviate memory burden during inference of large language models (LLMs), numerous studies have focused on compressing the KV cache by exploring aspects such as attention sparsity. These techniques are often designed with a pre-defined KV budget; however, as the optimal budget varies by different input lengths and task types, the existence of a fixed budget could result in inconsistent performance accepting inputs of diverse domains. To address this limitation, we propose a new KV cache compression objective: to always ensure the full-cache performance regardless of specific inputs, while maximizing KV cache pruning as much as possible. To achieve this goal, we introduce a novel KV cache compression method dubbed DBudgetKV, which features an attention-based metric to signal when the remaining KV cache is unlikely to match the full-cache performance, then halting the pruning process. Empirical evaluation spanning diverse context lengths, task types, and model sizes suggests that our method achieves lossless KV pruning effectively and robustly, exceeding 25% compression ratio on average. Furthermore, our method is easy to integrate within LLM inference, not only optimizing memory space, but also showing reduced inference time compared to existing methods.
♻ ☆ C3T: Cross-modal Transfer Through Time for Sensor-based Human Activity Recognition
In order to unlock the potential of diverse sensors, we investigate a method to transfer knowledge between time-series modalities using a multimodal \textit{temporal} representation space for Human Activity Recognition (HAR). Specifically, we explore the setting where the modality used in testing has no labeled data during training, which we refer to as Unsupervised Modality Adaptation (UMA). We categorize existing UMA approaches as Student-Teacher or Contrastive Alignment methods. These methods typically compress continuous-time data samples into single latent vectors during alignment, inhibiting their ability to transfer temporal information through real-world temporal distortions. To address this, we introduce Cross-modal Transfer Through Time (C3T), which preserves temporal information during alignment to handle dynamic sensor data better. C3T achieves this by aligning a set of temporal latent vectors across sensing modalities. Our extensive experiments on various camera+IMU datasets demonstrate that C3T outperforms existing methods in UMA by at least 8% in accuracy and shows superior robustness to temporal distortions such as time-shift, misalignment, and dilation. Our findings suggest that C3T has significant potential for developing generalizable models for time-series sensor data, opening new avenues for various multimodal applications.
♻ ☆ Efficient and Generalized end-to-end Autonomous Driving System with Latent Deep Reinforcement Learning and Demonstrations ECML
An intelligent driving system should dynamically formulate appropriate driving strategies based on the current environment and vehicle status while ensuring system security and reliability. However, methods based on reinforcement learning and imitation learning often suffer from high sample complexity, poor generalization, and low safety. To address these challenges, this paper introduces an efficient and generalized end-to-end autonomous driving system (EGADS) for complex and varied scenarios. The RL agent in our EGADS combines variational inference with normalizing flows, which are independent of distribution assumptions. This combination allows the agent to capture historical information relevant to driving in latent space effectively, thereby significantly reducing sample complexity. Additionally, we enhance safety by formulating robust safety constraints and improve generalization and performance by integrating RL with expert demonstrations. Experimental results demonstrate that, compared to existing methods, EGADS significantly reduces sample complexity, greatly improves safety performance, and exhibits strong generalization capabilities in complex urban scenarios. Particularly, we contributed an expert dataset collected through human expert steering wheel control, specifically using the G29 steering wheel.
comment: Accepted by ECML PKDD 2025 (Research Track)
♻ ☆ Beyond Numeric Rewards: In-Context Dueling Bandits with LLM Agents ACL 2025
In-Context Reinforcement Learning (ICRL) is a frontier paradigm to solve Reinforcement Learning (RL) problems in the foundation model era. While ICRL capabilities have been demonstrated in transformers through task-specific training, the potential of Large Language Models (LLMs) out-of-the-box remains largely unexplored. This paper investigates whether LLMs can generalize cross-domain to perform ICRL under the problem of Dueling Bandits (DB), a stateless preference-based RL setting. We find that the top-performing LLMs exhibit a notable zero-shot capacity for relative decision-making, which translates to low short-term weak regret across all DB environment instances by quickly including the best arm in duels. However, an optimality gap still exists between LLMs and classic DB algorithms in terms of strong regret. LLMs struggle to converge and consistently exploit even when explicitly prompted to do so, and are sensitive to prompt variations. To bridge this gap, we propose an agentic flow framework: LLM with Enhanced Algorithmic Dueling (LEAD), which integrates off-the-shelf DB algorithm support with LLM agents through fine-grained adaptive interplay. We show that LEAD has theoretical guarantees inherited from classic DB algorithms on both weak and strong regret. We validate its efficacy and robustness even with noisy and adversarial prompts. The design of such an agentic framework sheds light on how to enhance the trustworthiness of general-purpose LLMs generalized to in-context decision-making tasks.
comment: ACL 2025 Findings
♻ ☆ Generalized Interpolating Discrete Diffusion ICML 2025
While state-of-the-art language models achieve impressive results through next-token prediction, they have inherent limitations such as the inability to revise already generated tokens. This has prompted exploration of alternative approaches such as discrete diffusion. However, masked diffusion, which has emerged as a popular choice due to its simplicity and effectiveness, reintroduces this inability to revise words. To overcome this, we generalize masked diffusion, deriving a new family of general interpolating discrete diffusion (GIDD) which offers greater flexibility in the design of the noising processes. Leveraging a novel diffusion ELBO, we achieve compute-matched state-of-the-art performance in diffusion language modeling. Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise, leading to improved sample quality and unlocking the ability for the model to correct its own mistakes, an area where autoregressive models notoriously have struggled. Code: https://github.com/dvruette/gidd/
comment: Published at ICML 2025; Code available at https://github.com/dvruette/gidd
♻ ☆ Benchmark Granularity and Model Robustness for Image-Text Retrieval SIGIR 2025
Image-Text Retrieval (ITR) systems are central to multimodal information access, with Vision-Language Models (VLMs) showing strong performance on standard benchmarks. However, these benchmarks predominantly rely on coarse-grained annotations, limiting their ability to reveal how models perform under real-world conditions, where query granularity varies. Motivated by this gap, we examine how dataset granularity and query perturbations affect retrieval performance and robustness across four architecturally diverse VLMs (ALIGN, AltCLIP, CLIP, and GroupViT). Using both standard benchmarks (MS-COCO, Flickr30k) and their fine-grained variants, we show that richer captions consistently enhance retrieval, especially in text-to-image tasks, where we observe an average improvement of 16.23%, compared to 6.44% in image-to-text. To assess robustness, we introduce a taxonomy of perturbations and conduct extensive experiments, revealing that while perturbations typically degrade performance, they can also unexpectedly improve retrieval, exposing nuanced model behaviors. Notably, word order emerges as a critical factor -- contradicting prior assumptions of model insensitivity to it. Our results highlight variation in model robustness and a dataset-dependent relationship between caption granularity and perturbation sensitivity and emphasize the necessity of evaluating models on datasets of varying granularity.
comment: accepted at SIGIR 2025
♻ ☆ A Study on the MCP x A2A Framework for Enhancing Interoperability of LLM-based Autonomous Agents
This paper provides an in-depth technical analysis and implementation methodology of the open-source Agent-to-Agent (A2A) protocol developed by Google and the Model Context Protocol (MCP) introduced by Anthropic. While the evolution of LLM-based autonomous agents is rapidly accelerating, efficient interactions among these agents and their integration with external systems remain significant challenges. In modern AI systems, collaboration between autonomous agents and integration with external tools have become essential elements for building practical AI applications. A2A offers a standardized communication method that enables agents developed in heterogeneous environments to collaborate effectively, while MCP provides a structured I/O framework for agents to connect with external tools and resources. Prior studies have focused primarily on the features and applications of either A2A or MCP individually. In contrast, this study takes an integrated approach, exploring how the two protocols can complement each other to address interoperability issues and facilitate efficient collaboration within complex agent ecosystems.
♻ ☆ Pushing the Limits of Low-Bit Optimizers: A Focus on EMA Dynamics
The rapid scaling of models has led to prohibitively high training and fine-tuning costs. A major factor accounting for memory consumption is the widespread use of stateful optimizers (e.g., Adam), which maintain auxiliary information of even 2x the model size in order to achieve optimal convergence. We therefore present SOLO in this work to spawn a novel type of optimizer that requires an extremely light memory footprint. While previous efforts have achieved certain success in 8-bit or 4-bit cases, SOLO enables Adam-style optimizers to maintain quantized states with precision as low as 3 bits, or even 2 bits. This immense progress is due to the identification and resolution of two key challenges: the signal swamping problem in unsigned quantization that results in unchanged state dynamics, and the increased gradient variance in signed quantization that leads to incorrect descent directions. The theoretical analysis suggests a tailored logarithmic quantization for the former and a precision-specific momentum hyperparameter for the latter. SOLO can thus be seamlessly applied to Adam-style optimizers, leading to substantial memory savings with minimal accuracy loss.
comment: 27 pages
♻ ☆ GRE Suite: Geo-localization Inference via Fine-Tuned Vision-Language Models and Enhanced Reasoning Chains
Recent advances in Visual Language Models (VLMs) have demonstrated exceptional performance in visual reasoning tasks. However, geo-localization presents unique challenges, requiring the extraction of multigranular visual cues from images and their integration with external world knowledge for systematic reasoning. Current approaches to geo-localization tasks often lack robust reasoning mechanisms and explainability, limiting their effectiveness. To address these limitations, we propose the Geo Reason Enhancement (GRE) Suite, a novel framework that augments VLMs with structured reasoning chains for accurate and interpretable location inference. The GRE Suite is systematically developed across three key dimensions: dataset, model, and benchmark. First, we introduce GRE30K, a high-quality geo-localization reasoning dataset designed to facilitate fine-grained visual and contextual analysis. Next, we present the GRE model, which employs a multi-stage reasoning strategy to progressively infer scene attributes, local details, and semantic features, thereby narrowing down potential geographic regions with enhanced precision. Finally, we construct the Geo Reason Evaluation Benchmark (GREval-Bench), a comprehensive evaluation framework that assesses VLMs across diverse urban, natural, and landmark scenes to measure both coarse-grained (e.g., country, continent) and fine-grained (e.g., city, street) localization performance. Experimental results demonstrate that GRE significantly outperforms existing methods across all granularities of geo-localization tasks, underscoring the efficacy of reasoning-augmented VLMs in complex geographic inference. Code and data will be released at https://github.com/Thorin215/GRE.
♻ ☆ OpenTCM: A GraphRAG-Empowered LLM-based System for Traditional Chinese Medicine Knowledge Retrieval and Diagnosis
Traditional Chinese Medicine (TCM) represents a rich repository of ancient medical knowledge that continues to play an important role in modern healthcare. Due to the complexity and breadth of the TCM literature, the integration of AI technologies is critical for its modernization and broader accessibility. However, this integration poses considerable challenges, including the interpretation of obscure classical Chinese texts and the modeling of intricate semantic relationships among TCM concepts. In this paper, we develop OpenTCM, an LLM-based system that combines a domain-specific TCM knowledge graph and Graph-based Retrieval-Augmented Generation (GraphRAG). First, we extract more than 3.73 million classical Chinese characters from 68 gynecological books in the Chinese Medical Classics Database, with the help of TCM and gynecology experts. Second, we construct a comprehensive multi-relational knowledge graph comprising more than 48,000 entities and 152,000 interrelationships, using customized prompts and Chinese-oriented LLMs such as DeepSeek and Kimi to ensure high-fidelity semantic understanding. Last, we integrate OpenTCM with this knowledge graph, enabling high-fidelity ingredient knowledge retrieval and diagnostic question-answering without model fine-tuning. Experimental evaluations demonstrate that OpenTCM achieves mean expert scores (MES) of 4.378 in ingredient information retrieval and 4.045 in diagnostic question-answering tasks, outperforming state-of-the-art solutions in real-world TCM use cases.
comment: 8 pages, 6 figures, 7 tables
♻ ☆ DualCast: A Model to Disentangle Aperiodic Events from Traffic Series IJCAI2025
Traffic forecasting is crucial for transportation systems optimisation. Current models minimise the mean forecasting errors, often favouring periodic events prevalent in the training data, while overlooking critical aperiodic ones like traffic incidents. To address this, we propose DualCast, a dual-branch framework that disentangles traffic signals into intrinsic spatial-temporal patterns and external environmental contexts, including aperiodic events. DualCast also employs a cross-time attention mechanism to capture high-order spatial-temporal relationships from both periodic and aperiodic patterns. DualCast is versatile. We integrate it with recent traffic forecasting models, consistently reducing their forecasting errors by up to 9.6% on multiple real datasets. Our source code is available at https://github.com/suzy0223/DualCast.
comment: Accepted by IJCAI2025
♻ ☆ An end-to-end attention-based approach for learning on graphs
There has been a recent surge in transformer-based architectures for learning on graphs, mainly motivated by attention as an effective learning mechanism and the desire to supersede handcrafted operators characteristic of message passing schemes. However, concerns over their empirical effectiveness, scalability, and complexity of the pre-processing steps have been raised, especially in relation to much simpler graph neural networks that typically perform on par with them across a wide range of benchmarks. To tackle these shortcomings, we consider graphs as sets of edges and propose a purely attention-based approach consisting of an encoder and an attention pooling mechanism. The encoder vertically interleaves masked and vanilla self-attention modules to learn an effective representations of edges, while allowing for tackling possible misspecifications in input graphs. Despite its simplicity, the approach outperforms fine-tuned message passing baselines and recently proposed transformer-based methods on more than 70 node and graph-level tasks, including challenging long-range benchmarks. Moreover, we demonstrate state-of-the-art performance across different tasks, ranging from molecular to vision graphs, and heterophilous node classification. The approach also outperforms graph neural networks and transformers in transfer learning settings, and scales much better than alternatives with a similar performance level or expressive power.
comment: Now published in Nature Communications
♻ ☆ Robust 3D Shape Reconstruction in Zero-Shot from a Single Image in the Wild CVPR 2025
Recent monocular 3D shape reconstruction methods have shown promising zero-shot results on object-segmented images without any occlusions. However, their effectiveness is significantly compromised in real-world conditions, due to imperfect object segmentation by off-the-shelf models and the prevalence of occlusions. To effectively address these issues, we propose a unified regression model that integrates segmentation and reconstruction, specifically designed for occlusion-aware 3D shape reconstruction. To facilitate its reconstruction in the wild, we also introduce a scalable data synthesis pipeline that simulates a wide range of variations in objects, occluders, and backgrounds. Training on our synthetic data enables the proposed model to achieve state-of-the-art zero-shot results on real-world images, using significantly fewer parameters than competing approaches.
comment: Accepted to CVPR 2025, Project Page: https://ZeroShape-W.github.io
♻ ☆ Unexplainability of Artificial Intelligence Judgments in Kant's Perspective
Kant's Critique of Pure Reason, a major contribution to the history of epistemology, proposes a table of categories to elucidate the structure of the a priori principles underlying human judgment. Artificial intelligence (AI) technology, grounded in functionalism, claims to simulate or replicate human judgment. To evaluate this claim, it is necessary to examine whether AI judgments exhibit the essential characteristics of human judgment. This paper investigates the unexplainability of AI judgments through the lens of Kant's theory of judgment. Drawing on Kant's four logical forms-quantity, quality, relation, and modality-this study identifies what may be called AI's uncertainty, a condition in which different forms of judgment become entangled. In particular, with regard to modality, this study argues that the SoftMax function forcibly reframes AI judgments as possibility judgments. Furthermore, since complete definitions in natural language are impossible, words are, by their very nature, ultimately unexplainable; therefore, a fully complete functional implementation is theoretically unattainable.
comment: 8 pages, 1 figure
♻ ☆ Geometrical Properties of Text Token Embeddings for Strong Semantic Binding in Text-to-Image Generation
Text-to-image (T2I) models often suffer from text-image misalignment in complex scenes involving multiple objects and attributes. Semantic binding has attempted to associate the generated attributes and objects with their corresponding noun phrases (NPs) by text or latent optimizations with the modulation of cross-attention (CA) maps; yet, the factors that influence semantic binding remain underexplored. Here, we investigate the geometrical properties of text token embeddings and their CA maps. We found that the geometrical properties of token embeddings, specifically angular distances and norms, are crucial factors in the differentiation of the CA map. These theoretical findings led to our proposed training-free text-embedding-aware T2I framework, dubbed \textbf{TokeBi}, for strong semantic binding. TokeBi consists of Causality-Aware Projection-Out (CAPO) for distinguishing inter-NP CA maps and Adaptive Token Mixing (ATM) for enhancing inter-NP separation while maintaining intra-NP cohesion in CA maps. Extensive experiments confirm that TokeBi outperforms prior arts across diverse baselines and datasets.
♻ ☆ EVADE: Multimodal Benchmark for Evasive Content Detection in E-Commerce Applications
E-commerce platforms increasingly rely on Large Language Models (LLMs) and Vision-Language Models (VLMs) to detect illicit or misleading product content. However, these models remain vulnerable to evasive content: inputs (text or images) that superficially comply with platform policies while covertly conveying prohibited claims. Unlike traditional adversarial attacks that induce overt failures, evasive content exploits ambiguity and context, making it far harder to detect. Existing robustness benchmarks provide little guidance for this demanding, real-world challenge. We introduce EVADE, the first expert-curated, Chinese, multimodal benchmark specifically designed to evaluate foundation models on evasive content detection in e-commerce. The dataset contains 2,833 annotated text samples and 13,961 images spanning six demanding product categories, including body shaping, height growth, and health supplements. Two complementary tasks assess distinct capabilities: Single-Violation, which probes fine-grained reasoning under short prompts, and All-in-One, which tests long-context reasoning by merging overlapping policy rules into unified instructions. Notably, the All-in-One setting significantly narrows the performance gap between partial and full-match accuracy, suggesting that clearer rule definitions improve alignment between human and model judgment. We benchmark 26 mainstream LLMs and VLMs and observe substantial performance gaps: even state-of-the-art models frequently misclassify evasive samples. By releasing EVADE and strong baselines, we provide the first rigorous standard for evaluating evasive-content detection, expose fundamental limitations in current multimodal reasoning, and lay the groundwork for safer and more transparent content moderation systems in e-commerce. The dataset is publicly available at https://huggingface.co/datasets/koenshen/EVADE-Bench.
DISCO: Efficient Diffusion Solver for Large-Scale Combinatorial Optimization Problems
Combinatorial Optimization (CO) problems are fundamentally important in numerous real-world applications across diverse industries, characterized by entailing enormous solution space and demanding time-sensitive response. Despite recent advancements in neural solvers, their limited expressiveness struggles to capture the multi-modal nature of CO landscapes. While some research has shifted towards diffusion models, these models still sample solutions indiscriminately from the entire NP-complete solution space with time-consuming denoising processes, which limit their practicality for large problem scales. We propose DISCO, an efficient DIffusion Solver for large-scale Combinatorial Optimization problems that excels in both solution quality and inference speed. DISCO's efficacy is twofold: First, it enhances solution quality by constraining the sampling space to a more meaningful domain guided by solution residues, while preserving the multi-modal properties of the output distributions. Second, it accelerates the denoising process through an analytically solvable approach, enabling solution sampling with minimal reverse-time steps and significantly reducing inference time. DISCO delivers strong performance on large-scale Traveling Salesman Problems and challenging Maximal Independent Set benchmarks, with inference time up to 5.28 times faster than other diffusion alternatives. By incorporating a divide-and-conquer strategy, DISCO can well generalize to solve unseen-scale problem instances, even surpassing models specifically trained for those scales.
♻ ☆ Space-O-RAN: Enabling Intelligent, Open, and Interoperable Non Terrestrial Networks in 6G
Satellite networks are rapidly evolving, yet most \glspl{ntn} remain isolated from terrestrial orchestration frameworks. Their control architectures are typically monolithic and static, limiting their adaptability to dynamic traffic, topology changes, and mission requirements. These constraints lead to inefficient spectrum use and underutilized network capacity. Although \gls{ai} promises automation, its deployment in orbit is limited by computing, energy, and connectivity limitations. This paper introduces Space-O-RAN, a distributed control architecture that extends Open RAN principles into satellite constellations through hierarchical, closed-loop control. Lightweight \glspl{dapp} operate onboard satellites, enabling real-time functions like scheduling and beam steering without relying on persistent ground access. Cluster-level coordination is managed via \glspl{spaceric}, which leverage low-latency \glspl{isl} for autonomous decisions in orbit. Strategic tasks, including AI training and policy updates, are transferred to terrestrial platforms \glspl{smo} using digital twins and feeder links. A key enabler is the dynamic mapping of the O-RAN interfaces to satellite links, supporting adaptive signaling under varying conditions. Simulations using the Starlink topology validate the latency bounds that inform this architectural split, demonstrating both feasibility and scalability for autonomous satellite RAN operations.
♻ ☆ Unsolvable Problem Detection: Robust Understanding Evaluation for Large Multimodal Models ACL 2025
This paper introduces a novel task to evaluate the robust understanding capability of Large Multimodal Models (LMMs), termed $\textbf{Unsolvable Problem Detection (UPD)}$. Multiple-choice question answering (MCQA) is widely used to assess the understanding capability of LMMs, but it does not guarantee that LMMs truly comprehend the answer. UPD assesses the LMM's ability to withhold answers when encountering unsolvable problems of MCQA, verifying whether the model truly understands the answer. UPD encompasses three problems: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD), covering unsolvable cases like answer-lacking or incompatible choices and image-question mismatches. For the evaluation, we introduce the MM-UPD Bench, a benchmark for assessing performance across various ability dimensions. Our experiments reveal that even most LMMs, which demonstrate adequate performance on existing benchmarks, struggle significantly with MM-UPD, underscoring a novel aspect of trustworthiness that current benchmarks have overlooked. A detailed analysis shows that LMMs have different bottlenecks and chain-of-thought and self-reflection improved performance for LMMs with the bottleneck in their LLM capability. We hope our insights will enhance the broader understanding and development of more reliable LMMs. The code is available at https://github.com/AtsuMiyai/UPD.
comment: Accepted by ACL 2025 Main Conference
♻ ☆ Data-driven inventory management for new products: An adjusted Dyna-$Q$ approach with transfer learning
In this paper, we propose a novel reinforcement learning algorithm for inventory management of newly launched products with no historical demand information. The algorithm follows the classic Dyna-$Q$ structure, balancing the model-free and model-based approaches, while accelerating the training process of Dyna-$Q$ and mitigating the model discrepancy generated by the model-based feedback. Based on the idea of transfer learning, warm-start information from the demand data of existing similar products can be incorporated into the algorithm to further stabilize the early-stage training and reduce the variance of the estimated optimal policy. Our approach is validated through a case study of bakery inventory management with real data. The adjusted Dyna-$Q$ shows up to a 23.7\% reduction in average daily cost compared with $Q$-learning, and up to a 77.5\% reduction in training time within the same horizon compared with classic Dyna-$Q$. By using transfer learning, it can be found that the adjusted Dyna-$Q$ has the lowest total cost, lowest variance in total cost, and relatively low shortage percentages among all the benchmarking algorithms under a 30-day testing.
comment: 7 pages, 3 figures
♻ ☆ SATA: A Paradigm for LLM Jailbreak via Simple Assistive Task Linkage ACL 2025
Large language models (LLMs) have made significant advancements across various tasks, but their safety alignment remain a major concern. Exploring jailbreak prompts can expose LLMs' vulnerabilities and guide efforts to secure them. Existing methods primarily design sophisticated instructions for the LLM to follow, or rely on multiple iterations, which could hinder the performance and efficiency of jailbreaks. In this work, we propose a novel jailbreak paradigm, Simple Assistive Task Linkage (SATA), which can effectively circumvent LLM safeguards and elicit harmful responses. Specifically, SATA first masks harmful keywords within a malicious query to generate a relatively benign query containing one or multiple [MASK] special tokens. It then employs a simple assistive task such as a masked language model task or an element lookup by position task to encode the semantics of the masked keywords. Finally, SATA links the assistive task with the masked query to jointly perform the jailbreak. Extensive experiments show that SATA achieves state-of-the-art performance and outperforms baselines by a large margin. Specifically, on AdvBench dataset, with mask language model (MLM) assistive task, SATA achieves an overall attack success rate (ASR) of 85% and harmful score (HS) of 4.57, and with element lookup by position (ELP) assistive task, SATA attains an overall ASR of 76% and HS of 4.43.
comment: To appear at Findings of ACL 2025
♻ ☆ RainFusion: Adaptive Video Generation Acceleration via Multi-Dimensional Visual Redundancy
Video generation using diffusion models is highly computationally intensive, with 3D attention in Diffusion Transformer (DiT) models accounting for over 80\% of the total computational resources. In this work, we introduce {\bf RainFusion}, a novel training-free sparse attention method that exploits inherent sparsity nature in visual data to accelerate attention computation while preserving video quality. Specifically, we identify three unique sparse patterns in video generation attention calculations--Spatial Pattern, Temporal Pattern and Textural Pattern. The sparse pattern for each attention head is determined online with negligible overhead (\textasciitilde\,0.2\%) with our proposed {\bf ARM} (Adaptive Recognition Module) during inference. Our proposed {\bf RainFusion} is a plug-and-play method, that can be seamlessly integrated into state-of-the-art 3D-attention video generation models without additional training or calibration. We evaluate our method on leading open-sourced models including HunyuanVideo, OpenSoraPlan-1.2 and CogVideoX-5B, demonstrating its broad applicability and effectiveness. Experimental results show that RainFusion achieves over {\bf 2\(\times\)} speedup in attention computation while maintaining video quality, with only a minimal impact on VBench scores (-0.2\%).
♻ ☆ AI-based Framework for Robust Model-Based Connector Mating in Robotic Wire Harness Installation
Despite the widespread adoption of industrial robots in automotive assembly, wire harness installation remains a largely manual process, as it requires precise and flexible manipulation. To address this challenge, we design a novel AI-based framework that automates cable connector mating by integrating force control with deep visuotactile learning. Our system optimizes search-and-insertion strategies using first-order optimization over a multimodal transformer architecture trained on visual, tactile, and proprioceptive data. Additionally, we design a novel automated data collection and optimization pipeline that minimizes the need for machine learning expertise. The framework optimizes robot programs that run natively on standard industrial controllers, permitting human experts to audit and certify them. Experimental validations on a center console assembly task demonstrate significant improvements in cycle times and robustness compared to conventional robot programming approaches. Videos are available under https://claudius-kienle.github.io/AppMuTT.
comment: 6 pages, 6 figures, 4 tables, presented at the 2025 IEEE 21st International Conference on Automation Science and Engineering (CASE 2025)
♻ ☆ Retrieval-Augmented Generation as Noisy In-Context Learning: A Unified Theory and Risk Bounds
Retrieval-augmented generation (RAG) has seen many empirical successes in recent years by aiding the LLM with external knowledge. However, its theoretical aspect has remained mostly unexplored. In this paper, we propose the first finite-sample generalization bound for RAG in in-context linear regression and derive an exact bias-variance tradeoff. Our framework views the retrieved texts as query-dependent noisy in-context examples and recovers the classical in-context learning (ICL) and standard RAG as the limit cases. Our analysis suggests that an intrinsic ceiling on generalization error exists on RAG as opposed to the ICL. Furthermore, our framework is able to model retrieval both from the training data and from external corpora by introducing uniform and non-uniform RAG noise. In line with our theory, we show the sample efficiency of ICL and RAG empirically with experiments on common QA benchmarks, such as Natural Questions and TriviaQA.
comment: Under Review
♻ ☆ APE: Selective Fine-tuning with Acceptance Criteria for Language Model Adaptation
We present Adjacent Possible Exploration (APE), a selective fine-tuning method for adapting large language models that systematically explores parameter modifications while maintaining model stability. Inspired by evolutionary optimization principles, APE evaluates multiple candidate parameter updates through fine-tuning on small data subsets and accepts only those exceeding a performance threshold. Unlike standard fine-tuning that follows single gradient directions, APE implements a filtered selection process that prevents destabilizing parameter changes while enabling systematic improvement. Our method achieves 33.9\% BLEU improvement and 36.2\% perplexity reduction on news summarization tasks while using minimal computational resources. The approach provides a practical framework for controlled model adaptation that balances performance gains with representational stability.
♻ ☆ MacroSwarm: A Field-based Compositional Framework for Swarm Programming
Swarm behaviour engineering is an area of research that seeks to investigate methods and techniques for coordinating computation and action within groups of simple agents to achieve complex global goals like pattern formation, collective movement, clustering, and distributed sensing. Despite recent progress in the analysis and engineering of swarms (of drones, robots, vehicles), there is still a need for general design and implementation methods and tools that can be used to define complex swarm behaviour in a principled way. To contribute to this quest, this article proposes a new field-based coordination approach, called MacroSwarm, to design and program swarm behaviour in terms of reusable and fully composable functional blocks embedding collective computation and coordination. Based on the macroprogramming paradigm of aggregate computing, MacroSwarm builds on the idea of expressing each swarm behaviour block as a pure function, mapping sensing fields into actuation goal fields, e.g., including movement vectors. In order to demonstrate the expressiveness, compositionality, and practicality of MacroSwarm as a framework for swarm programming, we perform a variety of simulations covering common patterns of flocking, pattern formation, and collective decision-making. The implications of the inherent self-stabilisation properties of field-based computations in MacroSwarm are discussed, which formally guarantee some resilience properties and guided the design of the library.
♻ ☆ Link Prediction with Relational Hypergraphs
Link prediction with knowledge graphs has been thoroughly studied in graph machine learning, leading to a rich landscape of graph neural network architectures with successful applications. Nonetheless, it remains challenging to transfer the success of these architectures to relational hypergraphs, where the task of link prediction is over $k$-ary relations, which is substantially harder than link prediction with knowledge graphs. In this paper, we propose a framework for link prediction with relational hypergraphs, unlocking applications of graph neural networks to fully relational structures. Theoretically, we conduct a thorough analysis of the expressive power of the resulting model architectures via corresponding relational Weisfeiler-Leman algorithms and also via logical expressiveness. Empirically, we validate the power of the proposed model architectures on various relational hypergraph benchmarks. The resulting model architectures substantially outperform every baseline for inductive link prediction, and lead to state-of-the-art results for transductive link prediction.
♻ ☆ Tree-Sliced Wasserstein Distance with Nonlinear Projection ICML 2025
Tree-Sliced methods have recently emerged as an alternative to the traditional Sliced Wasserstein (SW) distance, replacing one-dimensional lines with tree-based metric spaces and incorporating a splitting mechanism for projecting measures. This approach enhances the ability to capture the topological structures of integration domains in Sliced Optimal Transport while maintaining low computational costs. Building on this foundation, we propose a novel nonlinear projectional framework for the Tree-Sliced Wasserstein (TSW) distance, substituting the linear projections in earlier versions with general projections, while ensuring the injectivity of the associated Radon Transform and preserving the well-definedness of the resulting metric. By designing appropriate projections, we construct efficient metrics for measures on both Euclidean spaces and spheres. Finally, we validate our proposed metric through extensive numerical experiments for Euclidean and spherical datasets. Applications include gradient flows, self-supervised learning, and generative models, where our methods demonstrate significant improvements over recent SW and TSW variants.
comment: Accepted at ICML 2025
♻ ☆ Learning from Double Positive and Unlabeled Data for Potential-Customer Identification
In this study, we propose a method for identifying potential customers in targeted marketing by applying learning from positive and unlabeled data (PU learning). We consider a scenario in which a company sells a product and can observe only the customers who purchased it. Decision-makers seek to market products effectively based on whether people have loyalty to the company. Individuals with loyalty are those who are likely to remain interested in the company even without additional advertising. Consequently, those loyal customers would likely purchase from the company if they are interested in the product. In contrast, people with lower loyalty may overlook the product or buy similar products from other companies unless they receive marketing attention. Therefore, by focusing marketing efforts on individuals who are interested in the product but do not have strong loyalty, we can achieve more efficient marketing. To achieve this goal, we consider how to learn, from limited data, a classifier that identifies potential customers who (i) have interest in the product and (ii) do not have loyalty to the company. Although our algorithm comprises a single-stage optimization, its objective function implicitly contains two losses derived from standard PU learning settings. For this reason, we refer to our approach as double PU learning. We verify the validity of the proposed algorithm through numerical experiments, confirming that it functions appropriately for the problem at hand.
comment: Accepted for publication in the Proceedings of IIAI AAI 2025
♻ ☆ How Expressive are Knowledge Graph Foundation Models?
Knowledge Graph Foundation Models (KGFMs) are at the frontier for deep learning on knowledge graphs (KGs), as they can generalize to completely novel knowledge graphs with different relational vocabularies. Despite their empirical success, our theoretical understanding of KGFMs remains very limited. In this paper, we conduct a rigorous study of the expressive power of KGFMs. Specifically, we show that the expressive power of KGFMs directly depends on the motifs that are used to learn the relation representations. We then observe that the most typical motifs used in the existing literature are binary, as the representations are learned based on how pairs of relations interact, which limits the model's expressiveness. As part of our study, we design more expressive KGFMs using richer motifs, which necessitate learning relation representations based on, e.g., how triples of relations interact with each other. Finally, we empirically validate our theoretical findings, showing that the use of richer motifs results in better performance on a wide range of datasets drawn from different domains.
♻ ☆ Tree-Sliced Wasserstein Distance: A Geometric Perspective ICML 2025
Many variants of Optimal Transport (OT) have been developed to address its heavy computation. Among them, notably, Sliced Wasserstein (SW) is widely used for application domains by projecting the OT problem onto one-dimensional lines, and leveraging the closed-form expression of the univariate OT to reduce the computational burden. However, projecting measures onto low-dimensional spaces can lead to a loss of topological information. To mitigate this issue, in this work, we propose to replace one-dimensional lines with a more intricate structure, called tree systems. This structure is metrizable by a tree metric, which yields a closed-form expression for OT problems on tree systems. We provide an extensive theoretical analysis to formally define tree systems with their topological properties, introduce the concept of splitting maps, which operate as the projection mechanism onto these structures, then finally propose a novel variant of Radon transform for tree systems and verify its injectivity. This framework leads to an efficient metric between measures, termed Tree-Sliced Wasserstein distance on Systems of Lines (TSW-SL). By conducting a variety of experiments on gradient flows, image style transfer, and generative models, we illustrate that our proposed approach performs favorably compared to SW and its variants.
comment: Accepted to ICML 2025
♻ ☆ HSF: Defending against Jailbreak Attacks with Hidden State Filtering WWW2025
With the growing deployment of LLMs in daily applications like chatbots and content generation, efforts to ensure outputs align with human values and avoid harmful content have intensified. However, increasingly sophisticated jailbreak attacks threaten this alignment, aiming to induce unsafe outputs. Current defense efforts either focus on prompt rewriting or detection, which are limited in effectiveness due to the various design of jailbreak prompts, or on output control and detection, which are computationally expensive as they require LLM inference. Therefore, designing a pre-inference defense method that resists diverse jailbreak prompts is crucial for preventing LLM jailbreak attacks. We observe that jailbreak attacks, safe queries, and harmful queries exhibit different clustering patterns within the LLM's hidden state representation space. This suggests that by leveraging the LLM's hidden state representational capabilities, we can analyze the LLM's forthcoming behavior and proactively intervene for defense. In this paper, we propose a jailbreak attack defense strategy based on a Hidden State Filter (HSF), a lossless architectural defense mechanism that enables the model to preemptively identify and reject adversarial inputs before the inference process begins. We activate its defensive potential through an additional plugin module, effectively framing the defense task as a classification problem. Experimental results on two benchmark datasets, utilizing three different LLMs, show that HSF significantly enhances resilience against six cutting-edge jailbreak attacks. It significantly reduces the success rate of jailbreak attacks while minimally impacting responses to benign user queries, with negligible inference overhead, and outperforming defense baselines.Our code and data are available at https://anonymous.4open.science/r/Hidden-State-Filtering-8652/
comment: WWW2025 WSAI BESTPAPER
♻ ☆ AI Scientists Fail Without Strong Implementation Capability
The emergence of Artificial Intelligence (AI) Scientist represents a paradigm shift in scientific discovery, with large language models (LLMs) taking the lead as the primary executor in the entire scientific workflow from idea generation to experiment implementation. Recent AI Scientist studies demonstrate sufficient capabilities for independent scientific discovery, with the generated research reports gaining acceptance at the ICLR 2025 workshop and ACL 2025, arguing that a human-level AI Scientist, capable of uncovering phenomena previously unknown to humans, may be imminent. Despite this substantial progress, AI Scientist has yet to produce a groundbreaking achievement in the domain of computer science on par with automated scientific tools. Based on extensive quantitative evidence from existing benchmarks in complex engineering tasks and a systematic evaluation assess 28 research papers generated by five advanced AI Scientist systems, we argue that \textbf{the fundamental bottleneck for AI Scientists lies in their capability to execute the requisite verification procedures.} Current AI Scientist systems lack the execution capabilities needed to execute rigorous experiments and produce high-quality scientific papers. To better illustrate the root cause of this \textbf{implementation gap}, we provide an in-depth discussion on the fundamental limitations of AI Scientist. This position paper aims to call for the participants in the community to bridge the implementation gap.
comment: Position
♻ ☆ Complex Physics-Informed Neural Network
We propose compleX-PINN, a novel physics-informed neural network (PINN) architecture incorporating a learnable activation function inspired by the Cauchy integral theorem. By optimizing the activation parameters, compleX-PINN achieves high accuracy with just a single hidden layer. Empirically, we demonstrate that compleX-PINN solves high-dimensional problems that pose significant challenges for PINNs. Our results show that compleX-PINN consistently achieves substantially greater precision, often improving accuracy by an order of magnitude, on these complex tasks.
comment: 17 pages, 6 figures
♻ ☆ A Simplifying and Learnable Graph Convolutional Attention Network for Unsupervised Knowledge Graphs Alignment
The success of current Entity Alignment (EA) task depends largely on the supervision information provided by labeled data. Considering the cost of labeled data, most supervised methods are difficult to apply in practical scenarios. Therefore, more and more works based on contrastive learning, active learning or other deep learning techniques have been developed, to solve the performance bottleneck caused by the lack of labeled data. However, the existing unsupervised EA methods still have some limitations, either their modeling complexity is high or they cannot balance the effectiveness and practicality of alignment. To overcome these issues, we propose a Simplifying and Learnable graph convolutional attention network for Unsupervised Knowledge Graphs alignment method (SLU). Specifically, we first introduce LCAT, a new and simple framework as the backbone network to model the graph structure of two KGs. Then we design a reconstruction method of relation structure based on potential matching relations for efficiently filtering invalid neighborhood information of aligned entities, to improve the usability and scalability of SLU. Impressively, a similarity function based on consistency is proposed to better measure the similarity of candidate entity pairs. Finally, we conduct extensive experiments on three datasets of different sizes (15K and 100K) and different types (cross-lingual and monolingual) to verify the superiority of SLU. Experimental results show that SLU significantly improves alignment accuracy, outperforming 25 supervised or unsupervised methods, and improving 6.4% in Hits@1 over the best baseline in the best case.
comment: There is more work being done: the author hopes to resubmit the paper to provide better research after more research or further analysis
♻ ☆ Test-time Correlation Alignment ICML2025
Deep neural networks often degrade under distribution shifts. Although domain adaptation offers a solution, privacy constraints often prevent access to source data, making Test-Time Adaptation (TTA, which adapts using only unlabeled test data) increasingly attractive. However, current TTA methods still face practical challenges: (1) a primary focus on instance-wise alignment, overlooking CORrelation ALignment (CORAL) due to missing source correlations; (2) complex backpropagation operations for model updating, resulting in overhead computation and (3) domain forgetting. To address these challenges, we provide a theoretical analysis to investigate the feasibility of Test-time Correlation Alignment (TCA), demonstrating that correlation alignment between high-certainty instances and test instances can enhance test performances with a theoretical guarantee. Based on this, we propose two simple yet effective algorithms: LinearTCA and LinearTCA+. LinearTCA applies a simple linear transformation to achieve both instance and correlation alignment without additional model updates, while LinearTCA+ serves as a plug-and-play module that can easily boost existing TTA methods. Extensive experiments validate our theoretical insights and show that TCA methods significantly outperforms baselines across various tasks, benchmarks and backbones. Notably, LinearTCA achieves higher accuracy with only 4% GPU memory and 0.6% computation time compared to the best TTA baseline. It also outperforms existing methods on CLIP over 1.86%.
comment: Accepted by ICML2025
♻ ☆ Towards Achieving Perfect Multimodal Alignment
Multimodal alignment constructs a joint latent vector space where modalities representing the same concept map to neighboring latent vectors. We formulate this as an inverse problem and show that, under certain conditions, paired data from each modality can map to equivalent latent vectors, which we refer to as perfect alignment. When perfect alignment cannot be achieved, it can be approximated using the Singular Value Decomposition (SVD) of a multimodal data matrix. Experiments on synthetic multimodal Gaussian data verify the effectiveness of our perfect alignment method compared to a learned contrastive alignment method. We further demonstrate the practical application of cross-modal transfer for human action recognition, showing that perfect alignment significantly enhances the model's accuracy. We conclude by discussing how these findings can be applied to various modalities and tasks and the limitations of our method. We hope these findings inspire further exploration of perfect alignment and its applications in representation learning.
♻ ☆ Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization ICML 2025
Large language model (LLM) agents have recently demonstrated impressive capabilities in various domains like open-ended conversation and multi-step decision-making. However, it remains challenging for these agents to solve strategic language games, such as Werewolf, which demand both strategic decision-making and free-form language interactions. Existing LLM agents often suffer from intrinsic bias in their action distributions and limited exploration of the unbounded text action space, resulting in suboptimal performance. To address these challenges, we propose Latent Space Policy Optimization (LSPO), an iterative framework that combines game-theoretic methods with LLM fine-tuning to build strategic language agents. LSPO leverages the observation that while the language space is combinatorially large, the underlying strategy space is relatively compact. We first map free-form utterances into a finite latent strategy space, yielding an abstracted extensive-form game. Then we apply game-theoretic methods like Counterfactual Regret Minimization (CFR) to optimize the policy in the latent space. Finally, we fine-tune the LLM via Direct Preference Optimization (DPO) to align with the learned policy. By iteratively alternating between these steps, our LSPO agents progressively enhance both strategic reasoning and language communication. Experiment on the Werewolf game shows that our agents iteratively expand the strategy space with improving performance and outperform existing Werewolf agents, underscoring their effectiveness in free-form language games with strategic interactions.
comment: Published in ICML 2025
♻ ☆ MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations
With the emergence of LLMs and their integration with other data modalities, multi-modal 3D perception attracts more attention due to its connectivity to the physical world and makes rapid progress. However, limited by existing datasets, previous works mainly focus on understanding object properties or inter-object spatial relationships in a 3D scene. To tackle this problem, this paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan. It is constructed based on a top-down logic, from region to object level, from a single target to inter-target relationships, covering holistic aspects of spatial and attribute understanding. The overall pipeline incorporates powerful VLMs via carefully designed prompts to initialize the annotations efficiently and further involve humans' correction in the loop to ensure the annotations are natural, correct, and comprehensive. Built upon existing 3D scanning data, the resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks. We evaluate representative baselines on our benchmarks, analyze their capabilities in different aspects, and showcase the key problems to be addressed in the future. Furthermore, we use this high-quality dataset to train state-of-the-art 3D visual grounding and LLMs and obtain remarkable performance improvement both on existing benchmarks and in-the-wild evaluation. Codes, datasets, and benchmarks will be available at https://github.com/OpenRobotLab/EmbodiedScan.
comment: Follow-up of EmbodiedScan (camera-ready version). A multi-modal 3D dataset with the most-ever comprehensive language annotations for 3D-LLMs. Project page: https://tai-wang.github.io/mmscan/
♻ ☆ Enigmata: Scaling Logical Reasoning in Large Language Models with Synthetic Verifiable Puzzles
Large Language Models (LLMs), such as OpenAI's o1 and DeepSeek's R1, excel at advanced reasoning tasks like math and coding via Reinforcement Learning with Verifiable Rewards (RLVR), but still struggle with puzzles solvable by humans without domain knowledge. We introduce Enigmata, the first comprehensive suite tailored for improving LLMs with puzzle reasoning skills. It includes 36 tasks across seven categories, each with 1) a generator that produces unlimited examples with controllable difficulty and 2) a rule-based verifier for automatic evaluation. This generator-verifier design supports scalable, multi-task RL training, fine-grained analysis, and seamless RLVR integration. We further propose Enigmata-Eval, a rigorous benchmark, and develop optimized multi-task RLVR strategies. Our trained model, Qwen2.5-32B-Enigmata, consistently surpasses o3-mini-high and o1 on the puzzle reasoning benchmarks like Enigmata-Eval, ARC-AGI (32.8%), and ARC-AGI 2 (0.6%). It also generalizes well to out-of-domain puzzle benchmarks and mathematical reasoning, with little multi-tasking trade-off. When trained on larger models like Seed1.5-Thinking (20B activated parameters and 200B total parameters), puzzle data from Enigmata further boosts SoTA performance on advanced math and STEM reasoning tasks such as AIME (2024-2025), BeyondAIME and GPQA (Diamond), showing nice generalization benefits of Enigmata. This work offers a unified, controllable framework for advancing logical reasoning in LLMs. Resources of this work can be found at https://seed-enigmata.github.io.
♻ ☆ Eliciting In-context Retrieval and Reasoning for Long-context Large Language Models
Recent advancements in long-context language models (LCLMs) promise to transform Retrieval-Augmented Generation (RAG) by simplifying pipelines. With their expanded context windows, LCLMs can process entire knowledge bases and perform retrieval and reasoning directly -- a capability we define as In-Context Retrieval and Reasoning (ICR^2). However, existing benchmarks like LOFT often overestimate LCLM performance by providing overly simplified contexts. To address this, we introduce ICR^2, a benchmark that evaluates LCLMs in more realistic scenarios by including confounding passages retrieved with strong retrievers. We then propose three methods to enhance LCLM performance: (1) retrieve-then-generate fine-tuning, (2) retrieval-attention-probing, which uses attention heads to filter and de-noise long contexts during decoding, and (3) joint retrieval head training alongside the generation head. Our evaluation of five well-known LCLMs on LOFT and ICR^2 demonstrates significant gains with our best approach applied to Mistral-7B: +17 and +15 points by Exact Match on LOFT, and +13 and +2 points on ICR^2, compared to vanilla RAG and supervised fine-tuning, respectively. It even outperforms GPT-4-Turbo on most tasks despite being a much smaller model.
♻ ☆ BatteryLife: A Comprehensive Dataset and Benchmark for Battery Life Prediction KDD 2025
Battery Life Prediction (BLP), which relies on time series data produced by battery degradation tests, is crucial for battery utilization, optimization, and production. Despite impressive advancements, this research area faces three key challenges. Firstly, the limited size of existing datasets impedes insights into modern battery life data. Secondly, most datasets are restricted to small-capacity lithium-ion batteries tested under a narrow range of diversity in labs, raising concerns about the generalizability of findings. Thirdly, inconsistent and limited benchmarks across studies obscure the effectiveness of baselines and leave it unclear if models popular in other time series fields are effective for BLP. To address these challenges, we propose BatteryLife, a comprehensive dataset and benchmark for BLP. BatteryLife integrates 16 datasets, offering a 2.5 times sample size compared to the previous largest dataset, and provides the most diverse battery life resource with batteries from 8 formats, 59 chemical systems, 9 operating temperatures, and 421 charge/discharge protocols, including both laboratory and industrial tests. Notably, BatteryLife is the first to release battery life datasets of zinc-ion batteries, sodium-ion batteries, and industry-tested large-capacity lithium-ion batteries. With the comprehensive dataset, we revisit the effectiveness of baselines popular in this and other time series fields. Furthermore, we propose CyclePatch, a plug-in technique that can be employed in various neural networks. Extensive benchmarking of 18 methods reveals that models popular in other time series fields can be unsuitable for BLP, and CyclePatch consistently improves model performance establishing state-of-the-art benchmarks. Moreover, BatteryLife evaluates model performance across aging conditions and domains. BatteryLife is available at https://github.com/Ruifeng-Tan/BatteryLife.
comment: Accepted by KDD 2025. Typos and data statistics mistakes are fixed
♻ ☆ Human-in-the-Loop Annotation for Image-Based Engagement Estimation: Assessing the Impact of Model Reliability on Annotation Accuracy
Human-in-the-loop (HITL) frameworks are increasingly recognized for their potential to improve annotation accuracy in emotion estimation systems by combining machine predictions with human expertise. This study focuses on integrating a high-performing image-based emotion model into a HITL annotation framework to evaluate the collaborative potential of human-machine interaction and identify the psychological and practical factors critical to successful collaboration. Specifically, we investigate how varying model reliability and cognitive framing influence human trust, cognitive load, and annotation behavior in HITL systems. We demonstrate that model reliability and psychological framing significantly impact annotators' trust, engagement, and consistency, offering insights into optimizing HITL frameworks. Through three experimental scenarios with 29 participants--baseline model reliability (S1), fabricated errors (S2), and cognitive bias introduced by negative framing (S3)--we analyzed behavioral and qualitative data. Reliable predictions in S1 yielded high trust and annotation consistency, while unreliable outputs in S2 led to increased critical evaluations but also heightened frustration and response variability. Negative framing in S3 revealed how cognitive bias influenced participants to perceive the model as more relatable and accurate, despite misinformation regarding its reliability. These findings highlight the importance of both reliable machine outputs and psychological factors in shaping effective human-machine collaboration. By leveraging the strengths of both human oversight and automated systems, this study establishes a scalable HITL framework for emotion annotation and lays the foundation for broader applications in adaptive learning and human-computer interaction.
♻ ☆ Binary Classifier Optimization for Large Language Model Alignment ACL 2025
In real-world services such as ChatGPT, aligning models based on user feedback is crucial for improving model performance. However, due to the simplicity and convenience of providing feedback, users typically offer only basic binary signals, such as 'thumbs-up' or 'thumbs-down'. Most existing alignment research, on the other hand, relies on preference-based approaches that require both positive and negative responses as a pair. We propose Binary Classifier Optimization (BCO), a technique that effectively aligns LLMs using only binary feedback. BCO trains a binary classifier, where the logit serves as an implicit reward, effectively minimizing the Direct Preference Optimization (DPO) loss. We demonstrate that the binary cross-entropy loss employed in classifier training acts as an upper bound for the DPO loss. Additionally, a novel reward shift technique further minimizes the gap between the losses. We validate our methodology in two settings: first, on a paired preference dataset, where our method performs on par with DPO; and second, on a Likert-5 scale annotation dataset which stems from real users' queries. Our model consistently demonstrates effective and robust alignment across four base LLMs and three different datasets, showcasing the strength of our approach to learning from binary signals.
comment: ACL 2025 main
♻ ☆ Packet Header Recognition Utilizing an All-Optical Reservoir Based on Reinforcement-Learning-Optimized Double-Ring Resonator
Optical packet header recognition is an important signal processing task of optical communication networks. In this work, we propose an all-optical reservoir, consisting of integrated double-ring resonators (DRRs) as nodes, for fast and accurate optical packet header recognition. As the delay-bandwidth product (DBP) of the node is a key figure-of-merit in the reservoir, we adopt a deep reinforcement learning algorithm to maximize the DBPs for various types of DRRs, which has the advantage of full parameter space optimization and fast convergence speed. Intriguingly, the optimized DBPs of the DRRs in cascaded, parallel, and embedded configurations reach the same maximum value, which is believed to be the global maximum. Finally, 3-bit and 6-bit packet header recognition tasks are performed with the all-optical reservoir consisting of the optimized cascaded rings, which have greatly reduced chip size and the desired "flat-top" delay spectra. Using this optical computing scheme, word-error rates as low as 5*10-4 and 9*10-4 are achieved for 3-bit and 6-bit packet header recognition tasks, respectively, which are one order of magnitude better than the previously reported values.
comment: Journal of Selected Topics in Quantum Electronics (JSTQE),2023
♻ ☆ Semantic Exploration with Adaptive Gating for Efficient Problem Solving with Language Models
Recent advancements in large language models (LLMs) have shown remarkable potential in various complex tasks requiring multi-step reasoning methods like tree search to explore diverse reasoning paths. However, existing methods often suffer from computational inefficiency and redundancy. First, they overlook the diversity of task difficulties, leading to unnecessarily extensive searches even for easy tasks. Second, they neglect the semantics of reasoning paths, resulting in redundant exploration of semantically identical paths. To address these limitations, we propose Semantic Exploration with Adaptive Gating (SEAG), a computationally efficient method. SEAG employs an adaptive gating mechanism that dynamically decides whether to conduct a tree search, based on the confidence level of answers from a preceding simple reasoning method. Furthermore, its tree-based exploration consolidates semantically identical reasoning steps, reducing redundant explorations while maintaining or even improving accuracy. Our extensive experiments demonstrate that SEAG significantly improves accuracy by 4.3% on average while requiring only 31% of computational costs compared to existing tree search-based methods on complex reasoning benchmarks including GSM8K and ARC with diverse language models such as Llama2, Llama3, and Mistral. Our code is available at https://github.com/ml-postech/SEAG-semantic-exploration-with-adaptive-gating .
WorldGUI: An Interactive Benchmark for Desktop GUI Automation from Any Starting Point
GUI agents have achieved outstanding performance in GUI element grounding. However, planning remains highly challenging, especially due to the sensitivity to the initial state of the environment. Specifically, slight differences in the initial state-such as the target software not being open or the interface not being in its default state, often lead to planning errors. This issue is widespread in real application scenarios, but existing benchmarks fail to evaluate it. To address this gap, we introduce WorldGUI, a comprehensive GUI benchmark containing tasks across ten widely used desktop and web applications (e.g., PowerPoint, VSCode, Acrobat), each instantiated with diverse initial states to simulate authentic human-computer interactions. Complementing this, we propose WorldGUI-Agent, a universal framework that unifies three core modules: Planner-Critic for high-level plan refinement, Step-Check for intermediate verification, and Actor-Critic for action-level optimization to proactively detect and correct errors. Experimental evaluation shows that WorldGUI-Agent outperforms the outstanding existing model (Claude-3.5 Computer Use) by 12.4% in success rate on WorldGUI, and achieves a 31.2% overall success rate on WindowsAgentArena, surpassing the prior state-of-the-art by 11.7%. Our analysis further reveals that dynamic augmentation tasks and desktop environments pose substantial hurdles, underscoring the necessity of adaptive planning and feedback-driven execution for advancing real-world GUI automation. The code and data are available at https://github.com/showlab/WorldGUI.
comment: Technique Report
♻ ☆ NTPP: Generative Speech Language Modeling for Dual-Channel Spoken Dialogue via Next-Token-Pair Prediction ICML 2025
Inspired by the impressive capabilities of GPT-4o, there is growing interest in enabling speech language models (SLMs) to engage in natural, fluid spoken interactions with humans. Recent advancements have led to the development of several SLMs that demonstrate promising results in this area. However, current approaches have yet to fully exploit dual-channel speech data, which inherently captures the structure and dynamics of human conversation. In this work, we systematically explore the use of dual-channel speech data in the context of modern large language models, and introduce a novel generative modeling paradigm, Next-Token-Pair Prediction (NTPP), to enable speaker-independent dual-channel spoken dialogue learning using decoder-only architectures for the first time. We evaluate our approach on standard benchmarks, and empirical results show that our proposed method, NTPP, significantly improves the conversational abilities of SLMs in terms of turn-taking prediction, response coherence, and naturalness. Moreover, compared to existing methods, NTPP achieves substantially lower inference latency, highlighting its practical efficiency for real-time applications.
comment: Accepted by ICML 2025
♻ ☆ A Red Teaming Roadmap Towards System-Level Safety
Large Language Model (LLM) safeguards, which implement request refusals, have become a widely adopted mitigation strategy against misuse. At the intersection of adversarial machine learning and AI safety, safeguard red teaming has effectively identified critical vulnerabilities in state-of-the-art refusal-trained LLMs. However, in our view the many conference submissions on LLM red teaming do not, in aggregate, prioritize the right research problems. First, testing against clear product safety specifications should take a higher priority than abstract social biases or ethical principles. Second, red teaming should prioritize realistic threat models that represent the expanding risk landscape and what real attackers might do. Finally, we contend that system-level safety is a necessary step to move red teaming research forward, as AI models present new threats as well as affordances for threat mitigation (e.g., detection and banning of malicious users) once placed in a deployment context. Adopting these priorities will be necessary in order for red teaming research to adequately address the slate of new threats that rapid AI advances present today and will present in the very near future.
♻ ☆ Position: We Need Responsible, Application-Driven (RAD) AI Research
This position paper argues that achieving meaningful scientific and societal advances with artificial intelligence (AI) requires a responsible, application-driven approach (RAD) to AI research. As AI is increasingly integrated into society, AI researchers must engage with the specific contexts where AI is being applied. This includes being responsive to ethical and legal considerations, technical and societal constraints, and public discourse. We present the case for RAD-AI to drive research through a three-staged approach: (1) building transdisciplinary teams and people-centred studies; (2) addressing context-specific methods, ethical commitments, assumptions, and metrics; and (3) testing and sustaining efficacy through staged testbeds and a community of practice. We present a vision for the future of application-driven AI research to unlock new value through technically feasible methods that are adaptive to the contextual needs and values of the communities they ultimately serve.
comment: 12 pages, 1 figure, Camera Ready version with updated formatting, references, and minor fixes, Accepted to Proceedings of the 41 st International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025
♻ ☆ Straight-Line Diffusion Model for Efficient 3D Molecular Generation
Diffusion-based models have shown great promise in molecular generation but often require a large number of sampling steps to generate valid samples. In this paper, we introduce a novel Straight-Line Diffusion Model (SLDM) to tackle this problem, by formulating the diffusion process to follow a linear trajectory. The proposed process aligns well with the noise sensitivity characteristic of molecular structures and uniformly distributes reconstruction effort across the generative process, thus enhancing learning efficiency and efficacy. Consequently, SLDM achieves state-of-the-art performance on 3D molecule generation benchmarks, delivering a 100-fold improvement in sampling efficiency.
♻ ☆ Measuring Diversity in Synthetic Datasets ICML 2025
Large language models (LLMs) are widely adopted to generate synthetic datasets for various natural language processing (NLP) tasks, such as text classification and summarization. However, accurately measuring the diversity of these synthetic datasets-an aspect crucial for robust model performance-remains a significant challenge. In this paper, we introduce DCScore, a novel method for measuring synthetic dataset diversity from a classification perspective. Specifically, DCScore formulates diversity evaluation as a sample classification task, leveraging mutual relationships among samples. We further provide theoretical verification of the diversity-related axioms satisfied by DCScore, highlighting its role as a principled diversity evaluation method. Experimental results on synthetic datasets reveal that DCScore enjoys a stronger correlation with multiple diversity pseudo-truths of evaluated datasets, underscoring its effectiveness. Moreover, both empirical and theoretical evidence demonstrate that DCScore substantially reduces computational costs compared to existing methods. Code is available at: https://github.com/bluewhalelab/dcscore.
comment: Accepted by ICML 2025
♻ ☆ Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning
Recent studies show that in supervised fine-tuning (SFT) of large language models (LLMs), data quality matters more than quantity. While most data cleaning methods concentrate on filtering entire samples, the quality of individual tokens within a sample can vary significantly. After pre-training, even in high-quality samples, patterns or phrases that are not task-related can be redundant, uninformative, or even harmful. Continuing to fine-tune on these patterns may offer limited benefit and even degrade downstream task performance. In this paper, we investigate token quality from a noisy-label perspective and propose a generic token cleaning pipeline for SFT tasks. Our method filters out uninformative tokens while preserving those carrying key task-specific information. Specifically, we first evaluate token quality by examining the influence of model updates on each token, then apply a threshold-based separation. The token influence can be measured in a single pass with a fixed reference model or iteratively with self-evolving reference models. The benefits and limitations of both methods are analyzed theoretically by error upper bounds. Extensive experiments show that our framework consistently improves downstream performance. Code is available at https://github.com/UCSC-REAL/TokenCleaning.
♻ ☆ RomanLens: The Role Of Latent Romanization In Multilinguality In LLMs
Large Language Models (LLMs) exhibit strong multilingual performance despite being predominantly trained on English-centric corpora. This raises a fundamental question: How do LLMs achieve such multilingual capabilities? Focusing on languages written in non-Roman scripts, we investigate the role of Romanization - the representation of non-Roman scripts using Roman characters - as a potential bridge in multilingual processing. Using mechanistic interpretability techniques, we analyze next-token generation and find that intermediate layers frequently represent target words in Romanized form before transitioning to native script, a phenomenon we term Latent Romanization. Further, through activation patching experiments, we demonstrate that LLMs encode semantic concepts similarly across native and Romanized scripts, suggesting a shared underlying representation. Additionally, for translation into non-Roman script languages, our findings reveal that when the target language is in Romanized form, its representations emerge earlier in the model's layers compared to native script. These insights contribute to a deeper understanding of multilingual representation in LLMs and highlight the implicit role of Romanization in facilitating language transfer.
comment: 19 pages, 19 figures
♻ ☆ DOMAIN: MilDly COnservative Model-BAsed OfflINe Reinforcement Learning
Model-based reinforcement learning (RL), which learns an environment model from the offline dataset and generates more out-of-distribution model data, has become an effective approach to the problem of distribution shift in offline RL. Due to the gap between the learned and actual environment, conservatism should be incorporated into the algorithm to balance accurate offline data and imprecise model data. The conservatism of current algorithms mostly relies on model uncertainty estimation. However, uncertainty estimation is unreliable and leads to poor performance in certain scenarios, and the previous methods ignore differences between the model data, which brings great conservatism. To address the above issues, this paper proposes a milDly cOnservative Model-bAsed offlINe RL algorithm (DOMAIN) without estimating model uncertainty, and designs the adaptive sampling distribution of model samples, which can adaptively adjust the model data penalty. In this paper, we theoretically demonstrate that the Q value learned by the DOMAIN outside the region is a lower bound of the true Q value, the DOMAIN is less conservative than previous model-based offline RL algorithms, and has the guarantee of safety policy improvement. The results of extensive experiments show that DOMAIN outperforms prior RL algorithms and the average performance has improved by 1.8% on the D4RL benchmark.
comment: Accepted by IEEE Transactions on Systems, Man, and Cybernetics: Systems
♻ ☆ Counter-Inferential Behavior in Natural and Artificial Cognitive Systems
This study explores the emergence of counter-inferential behavior in natural and artificial cognitive systems, that is, patterns in which agents misattribute empirical success or suppress adaptation, leading to epistemic rigidity or maladaptive stability. We analyze archetypal scenarios in which such behavior arises: reinforcement of stability through reward imbalance, meta-cognitive attribution of success to internal superiority, and protective reframing under perceived model fragility. Rather than arising from noise or flawed design, these behaviors emerge through structured interactions between internal information models, empirical feedback, and higher-order evaluation mechanisms. Drawing on evidence from artificial systems, biological cognition, human psychology, and social dynamics, we identify counter-inferential behavior as a general cognitive vulnerability that can manifest even in otherwise well-adapted systems. The findings highlight the importance of preserving minimal adaptive activation under stable conditions and suggest design principles for cognitive architectures that can resist rigidity under informational stress.
comment: 23 pages, 3 figures
♻ ☆ GANQ: GPU-Adaptive Non-Uniform Quantization for Large Language Models
Large Language Models (LLMs) face significant deployment challenges due to their substantial resource requirements. While low-bit quantized weights can reduce memory usage and improve inference efficiency, current hardware lacks native support for mixed-precision General Matrix Multiplication (mpGEMM), resulting in inefficient dequantization-based implementations. Moreover, uniform quantization methods often fail to capture weight distributions adequately, leading to performance degradation. We propose GANQ (GPU-Adaptive Non-Uniform Quantization), a layer-wise post-training non-uniform quantization framework optimized for hardware-efficient lookup table-based mpGEMM. GANQ achieves superior quantization performance by utilizing a training-free, GPU-adaptive optimization algorithm to efficiently reduce layer-wise quantization errors. Extensive experiments demonstrate GANQ's ability to reduce the perplexity gap from the FP16 baseline compared to state-of-the-art methods for both 3-bit and 4-bit quantization. Furthermore, when deployed on a single NVIDIA RTX 4090 GPU, GANQ's quantized models achieve up to 2.57$\times$ speedup over the baseline, advancing memory and inference efficiency in LLM deployment.
♻ ☆ BiMa: Towards Biases Mitigation for Text-Video Retrieval via Scene Element Guidance
Text-video retrieval (TVR) systems often suffer from visual-linguistic biases present in datasets, which cause pre-trained vision-language models to overlook key details. To address this, we propose BiMa, a novel framework designed to mitigate biases in both visual and textual representations. Our approach begins by generating scene elements that characterize each video by identifying relevant entities/objects and activities. For visual debiasing, we integrate these scene elements into the video embeddings, enhancing them to emphasize fine-grained and salient details. For textual debiasing, we introduce a mechanism to disentangle text features into content and bias components, enabling the model to focus on meaningful content while separately handling biased information. Extensive experiments and ablation studies across five major TVR benchmarks (i.e., MSR-VTT, MSVD, LSMDC, ActivityNet, and DiDeMo) demonstrate the competitive performance of BiMa. Additionally, the model's bias mitigation capability is consistently validated by its strong results on out-of-distribution retrieval tasks.
comment: 22 pages, 14 figures
♻ ☆ Outlier-weighed Layerwise Sampling for LLM Fine-tuning
The rapid advancements in Large Language Models (LLMs) have revolutionized various natural language processing tasks. However, the substantial size of LLMs presents significant challenges in training or fine-tuning. While parameter-efficient approaches such as low-rank adaptation (LoRA) have gained popularity, they often compromise performance compared to full-rank fine-tuning. In this paper, we propose Outlier-weighed Layerwise Sampling (OWS), a new memory-efficient fine-tuning approach, inspired by the layerwise outlier distribution of LLMs. Unlike LoRA, which adds extra adapters to all layers, OWS strategically assigns higher sampling probabilities to layers with more outliers, selectively sampling only a few layers and fine-tuning their pre-trained weights. To further increase the number of fine-tuned layers without a proportional rise in memory costs, we incorporate gradient low-rank projection, further boosting the approach's performance. Our extensive experiments across various architectures, including LLaMa2 and Mistral, demonstrate that OWS consistently outperforms baseline approaches, including full fine-tuning. Specifically, it achieves up to a 1.1% average accuracy gain on the Commonsense Reasoning benchmark, a 3.0% improvement on MMLU, and a notable 10% boost on MT-Bench, while being more memory efficient. OWS allows us to fine-tune 7B LLMs with only 21GB of memory. Our code is available at https://github.com/pixeli99/OWS.
♻ ☆ How to Mitigate Information Loss in Knowledge Graphs for GraphRAG: Leveraging Triple Context Restoration and Query-Driven Feedback IJCAI 2025
Knowledge Graph (KG)-augmented Large Language Models (LLMs) have recently propelled significant advances in complex reasoning tasks, thanks to their broad domain knowledge and contextual awareness. Unfortunately, current methods often assume KGs to be complete, which is impractical given the inherent limitations of KG construction and the potential loss of contextual cues when converting unstructured text into entity-relation triples. In response, this paper proposes the Triple Context Restoration and Query-driven Feedback (TCR-QF) framework, which reconstructs the textual context underlying each triple to mitigate information loss, while dynamically refining the KG structure by iteratively incorporating query-relevant missing knowledge. Experiments on five benchmark question-answering datasets substantiate the effectiveness of TCR-QF in KG and LLM integration, where itachieves a 29.1% improvement in Exact Match and a 15.5% improvement in F1 over its state-of-the-art GraphRAG competitors.
comment: This paper has been accepted to IJCAI 2025
♻ ☆ Nonparametric Modern Hopfield Models ICML 2025
We present a nonparametric interpretation for deep learning compatible modern Hopfield models and utilize this new perspective to debut efficient variants. Our key contribution stems from interpreting the memory storage and retrieval processes in modern Hopfield models as a nonparametric regression problem subject to a set of query-memory pairs. Interestingly, our framework not only recovers the known results from the original dense modern Hopfield model but also fills the void in the literature regarding efficient modern Hopfield models, by introducing \textit{sparse-structured} modern Hopfield models with sub-quadratic complexity. We establish that this sparse model inherits the appealing theoretical properties of its dense analogue -- connection with transformer attention, fixed point convergence and exponential memory capacity. Additionally, we showcase the versatility of our framework by constructing a family of modern Hopfield models as extensions, including linear, random masked, top-$K$ and positive random feature modern Hopfield models. Empirically, we validate our framework in both synthetic and realistic settings for memory retrieval and learning tasks.
comment: Accepted at ICML 2025. Code available at https://github.com/MAGICS-LAB/NonparametricHopfield. v2 matches with camera-ready version
♻ ☆ Noise-Robustness Through Noise: Asymmetric LoRA Adaption with Poisoning Expert
Current parameter-efficient fine-tuning methods for adapting pre-trained language models to downstream tasks are susceptible to interference from noisy data. Conventional noise-handling approaches either rely on laborious data pre-processing or employ model architecture modifications prone to error accumulation. In contrast to existing noise-process paradigms, we propose a noise-robust adaptation method via asymmetric LoRA poisoning experts (LoPE), a novel framework that enhances model robustness to noise only with generated noisy data. Drawing inspiration from the mixture-of-experts architecture, LoPE strategically integrates a dedicated poisoning expert in an asymmetric LoRA configuration. Through a two-stage paradigm, LoPE performs noise injection on the poisoning expert during fine-tuning to enhance its noise discrimination and processing ability. During inference, we selectively mask the dedicated poisoning expert to leverage purified knowledge acquired by normal experts for noise-robust output. Extensive experiments demonstrate that LoPE achieves strong performance and robustness purely through the low-cost noise injection, which completely eliminates the requirement of data cleaning.
♻ ☆ SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering
Software engineering (SE) is increasingly collaborative, with developers working together on shared complex codebases. Effective collaboration in shared environments requires participants -- whether humans or AI agents -- to stay on the same page as their environment evolves. When a collaborator's understanding diverges from the current state -- what we term the out-of-sync challenge -- the collaborator's actions may fail, leading to integration issues. In this work, we introduce SyncMind, a framework that systematically defines the out-of-sync problem faced by large language model (LLM) agents in collaborative software engineering (CSE). Based on SyncMind, we create SyncBench, a benchmark featuring 24,332 instances of agent out-of-sync scenarios in real-world CSE derived from 21 popular GitHub repositories with executable verification tests. Experiments on SyncBench uncover critical insights into existing LLM agents' capabilities and limitations. Besides substantial performance gaps among agents (from Llama-3.1 agent <= 3.33% to Claude-3.5-Sonnet >= 28.18%), their consistently low collaboration willingness (<= 4.86%) suggests fundamental limitations of existing LLM in CSE. However, when collaboration occurs, it positively correlates with out-of-sync recovery success. Minimal performance differences in agents' resource-aware out-of-sync recoveries further reveal their significant lack of resource awareness and adaptability, shedding light on future resource-efficient collaborative systems. Code and data are openly available on our project website: https://xhguo7.github.io/SyncMind/.
♻ ☆ Pel, A Programming Language for Orchestrating AI Agents
The proliferation of Large Language Models (LLMs) has opened new frontiers in computing, yet controlling and orchestrating their capabilities beyond simple text generation remains a challenge. Current methods, such as function/tool calling and direct code generation, suffer from limitations in expressiveness, scalability, cost, security, and the ability to enforce fine-grained control. This paper introduces Pel, a novel programming language specifically designed to bridge this gap. Inspired by the strengths of Lisp, Elixir, Gleam, and Haskell, Pel provides a syntactically simple, homoiconic, and semantically rich platform for LLMs to express complex actions, control flow, and inter-agent communication safely and efficiently. Pel's design emphasizes a minimal, easily modifiable grammar suitable for constrained LLM generation, eliminating the need for complex sandboxing by enabling capability control at the syntax level. Key features include a powerful piping mechanism for linear composition, first-class closures enabling easy partial application and functional patterns, built-in support for natural language conditions evaluated by LLMs, and an advanced Read-Eval-Print-Loop (REPeL) with Common Lisp-style restarts and LLM-powered helper agents for automated error correction. Furthermore, Pel incorporates automatic parallelization of independent operations via static dependency analysis, crucial for performant agentic systems. We argue that Pel offers a more robust, secure, and expressive paradigm for LLM orchestration, paving the way for more sophisticated and reliable AI agentic frameworks.
comment: 1. Updated author email address (I graduated so I added my alumni email). 2. Changed mono-font color to blue for better readability
♻ ☆ A Comprehensive Survey in LLM(-Agent) Full Stack Safety: Data, Training and Deployment
The remarkable success of Large Language Models (LLMs) has illuminated a promising pathway toward achieving Artificial General Intelligence for both academic and industrial communities, owing to their unprecedented performance across various applications. As LLMs continue to gain prominence in both research and commercial domains, their security and safety implications have become a growing concern, not only for researchers and corporations but also for every nation. Currently, existing surveys on LLM safety primarily focus on specific stages of the LLM lifecycle, e.g., deployment phase or fine-tuning phase, lacking a comprehensive understanding of the entire "lifechain" of LLMs. To address this gap, this paper introduces, for the first time, the concept of "full-stack" safety to systematically consider safety issues throughout the entire process of LLM training, deployment, and eventual commercialization. Compared to the off-the-shelf LLM safety surveys, our work demonstrates several distinctive advantages: (I) Comprehensive Perspective. We define the complete LLM lifecycle as encompassing data preparation, pre-training, post-training, deployment and final commercialization. To our knowledge, this represents the first safety survey to encompass the entire lifecycle of LLMs. (II) Extensive Literature Support. Our research is grounded in an exhaustive review of over 800+ papers, ensuring comprehensive coverage and systematic organization of security issues within a more holistic understanding. (III) Unique Insights. Through systematic literature analysis, we have developed reliable roadmaps and perspectives for each chapter. Our work identifies promising research directions, including safety in data generation, alignment techniques, model editing, and LLM-based agent systems. These insights provide valuable guidance for researchers pursuing future work in this field.
♻ ☆ Theoretical Benefit and Limitation of Diffusion Language Model
Diffusion language models have emerged as a promising approach for text generation. One would naturally expect this method to be an efficient replacement for autoregressive models since multiple tokens can be sampled in parallel during each diffusion step. However, its efficiency-accuracy trade-off is not yet well understood. In this paper, we present a rigorous theoretical analysis of a widely used type of diffusion language model, the Masked Diffusion Model (MDM), and find that its effectiveness heavily depends on the target evaluation metric. Under mild conditions, we prove that when using perplexity as the metric, MDMs can achieve near-optimal perplexity in sampling steps regardless of sequence length, demonstrating that efficiency can be achieved without sacrificing performance. However, when using the sequence error rate--which is important for understanding the "correctness" of a sequence, such as a reasoning chain--we show that the required sampling steps must scale linearly with sequence length to obtain "correct" sequences, thereby eliminating MDM's efficiency advantage over autoregressive models. Our analysis establishes the first theoretical foundation for understanding the benefits and limitations of MDMs. All theoretical findings are supported by empirical studies.
comment: 32 pages, 3 figures
♻ ☆ Knowledge-to-Jailbreak: Investigating Knowledge-driven Jailbreaking Attacks for Large Language Models KDD 2025
Large language models (LLMs) have been increasingly applied to various domains, which triggers increasing concerns about LLMs' safety on specialized domains, e.g. medicine. Despite prior explorations on general jailbreaking attacks, there are two challenges for applying existing attacks on testing the domain-specific safety of LLMs: (1) Lack of professional knowledge-driven attacks, (2) Insufficient coverage of domain knowledge. To bridge this gap, we propose a new task, knowledge-to-jailbreak, which aims to generate jailbreaking attacks from domain knowledge, requiring both attack effectiveness and knowledge relevance. We collect a large-scale dataset with 12,974 knowledge-jailbreak pairs and fine-tune a large language model as jailbreak-generator, to produce domain knowledge-specific jailbreaks. Experiments on 13 domains and 8 target LLMs demonstrate the effectiveness of jailbreak-generator in generating jailbreaks that are both threatening to the target LLMs and relevant to the given knowledge. We also apply our method to an out-of-domain knowledge base, showing that jailbreak-generator can generate jailbreaks that are comparable in harmfulness to those crafted by human experts. Data and code are available at: https://github.com/THU-KEG/Knowledge-to-Jailbreak/.
comment: Accepted by KDD 2025 research track
♻ ☆ Unveiling and Addressing Pseudo Forgetting in Large Language Models ACL 2025
Although substantial efforts have been made to mitigate catastrophic forgetting in continual learning, the intrinsic mechanisms are not well understood. In this work, we demonstrate the existence of "pseudo forgetting": the performance degradation on previous tasks is not attributed to a loss of capabilities, but rather to the failure of the instructions to activate the appropriate model abilities. We show that the model's performance on previous tasks can be restored through two simple interventions: (1) providing partial external correct rationale, and (2) appending semantically meaningless suffixes to the original instructions, to guide the generation of correct rationales. Through empirical analysis of the internal mechanisms governing rationale generation, we reveal that models exhibiting pseudo forgetting show reduced instruction dependence during rationale generation, leading to suboptimal activation of their inherent capabilities. Based on this insight, we propose Rationale-Guidance Difficulty based Replay (RGD-R) framework that dynamically allocates replay data based on the model's ability to correctly leverage the intrinsic capabilities. Experimental results demonstrate that RGD-R effectively mitigates pseudo forgetting while maintaining model plasticity.
comment: ACL 2025 Findings
♻ ☆ MARVEL: Multi-Agent RTL Vulnerability Extraction using Large Language Models
Hardware security verification is a challenging and time-consuming task. For this purpose, design engineers may utilize tools such as formal verification, linters, and functional simulation tests, coupled with analysis and a deep understanding of the hardware design being inspected. Large Language Models (LLMs) have been used to assist during this task, either directly or in conjunction with existing tools. We improve the state of the art by proposing MARVEL, a multi-agent LLM framework for a unified approach to decision-making, tool use, and reasoning. MARVEL mimics the cognitive process of a designer looking for security vulnerabilities in RTL code. It consists of a supervisor agent that devises the security policy of the system-on-chips (SoCs) using its security documentation. It delegates tasks to validate the security policy to individual executor agents. Each executor agent carries out its assigned task using a particular strategy. Each executor agent may use one or more tools to identify potential security bugs in the design and send the results back to the supervisor agent for further analysis and confirmation. MARVEL includes executor agents that leverage formal tools, linters, simulation tests, LLM-based detection schemes, and static analysis-based checks. We test our approach on a known buggy SoC based on OpenTitan from the Hack@DATE competition. We find that 20 of the 48 issues reported by MARVEL pose security vulnerabilities.
comment: Submitted for Peer Review
♻ ☆ AlphaAgent: LLM-Driven Alpha Mining with Regularized Exploration to Counteract Alpha Decay
Alpha mining, a critical component in quantitative investment, focuses on discovering predictive signals for future asset returns in increasingly complex financial markets. However, the pervasive issue of alpha decay, where factors lose their predictive power over time, poses a significant challenge for alpha mining. Traditional methods like genetic programming face rapid alpha decay from overfitting and complexity, while approaches driven by Large Language Models (LLMs), despite their promise, often rely too heavily on existing knowledge, creating homogeneous factors that worsen crowding and accelerate decay. To address this challenge, we propose AlphaAgent, an autonomous framework that effectively integrates LLM agents with ad hoc regularizations for mining decay-resistant alpha factors. AlphaAgent employs three key mechanisms: (i) originality enforcement through a similarity measure based on abstract syntax trees (ASTs) against existing alphas, (ii) hypothesis-factor alignment via LLM-evaluated semantic consistency between market hypotheses and generated factors, and (iii) complexity control via AST-based structural constraints, preventing over-engineered constructions that are prone to overfitting. These mechanisms collectively guide the alpha generation process to balance originality, financial rationale, and adaptability to evolving market conditions, mitigating the risk of alpha decay. Extensive evaluations show that AlphaAgent outperforms traditional and LLM-based methods in mitigating alpha decay across bull and bear markets, consistently delivering significant alpha in Chinese CSI 500 and US S&P 500 markets over the past four years. Notably, AlphaAgent showcases remarkable resistance to alpha decay, elevating the potential for yielding powerful factors.
comment: 9 pages; Code is available at: https://github.com/RndmVariableQ/AlphaAgent
♻ ☆ A Comprehensive Survey on Artificial Intelligence for Complex Network: Potential, Methodology and Application
Complex networks pervade various real-world systems, from the natural environment to human societies. The essence of these networks is in their ability to transition and evolve from microscopic disorder-where network topology and node dynamics intertwine-to a macroscopic order characterized by certain collective behaviors. Over the past two decades, complex network science has significantly enhanced our understanding of the statistical mechanics, structures, and dynamics underlying real-world networks. Despite these advancements, there remain considerable challenges in exploring more realistic systems and enhancing practical applications. The emergence of artificial intelligence (AI) technologies, coupled with the abundance of diverse real-world network data, has heralded a new era in complex network science research. This survey aims to systematically address the potential advantages of AI in overcoming the lingering challenges of complex network research. It endeavors to summarize the pivotal research problems and provide an exhaustive review of the corresponding methodologies and applications. Through this comprehensive survey-the first of its kind on AI for complex networks-we expect to provide valuable insights that will drive further research and advancement in this interdisciplinary field.
comment: 51 pages, 4 figures, 10 tables
♻ ☆ A Diffusion-Driven Temporal Super-Resolution and Spatial Consistency Enhancement Framework for 4D MRI imaging
In medical imaging, 4D MRI enables dynamic 3D visualization, yet the trade-off between spatial and temporal resolution requires prolonged scan time that can compromise temporal fidelity--especially during rapid, large-amplitude motion. Traditional approaches typically rely on registration-based interpolation to generate intermediate frames. However, these methods struggle with large deformations, resulting in misregistration, artifacts, and diminished spatial consistency. To address these challenges, we propose TSSC-Net, a novel framework that generates intermediate frames while preserving spatial consistency. To improve temporal fidelity under fast motion, our diffusion-based temporal super-resolution network generates intermediate frames using the start and end frames as key references, achieving 6x temporal super-resolution in a single inference step. Additionally, we introduce a novel tri-directional Mamba-based module that leverages long-range contextual information to effectively resolve spatial inconsistencies arising from cross-slice misalignment, thereby enhancing volumetric coherence and correcting cross-slice errors. Extensive experiments were performed on the public ACDC cardiac MRI dataset and a real-world dynamic 4D knee joint dataset. The results demonstrate that TSSC-Net can generate high-resolution dynamic MRI from fast-motion data while preserving structural fidelity and spatial consistency.
♻ ☆ Tree-of-Debate: Multi-Persona Debate Trees Elicit Critical Thinking for Scientific Comparative Analysis ACL 2025
With the exponential growth of research facilitated by modern technology and improved accessibility, scientific discoveries have become increasingly fragmented within and across fields. This makes it challenging to assess the significance, novelty, incremental findings, and equivalent ideas between related works, particularly those from different research communities. Large language models (LLMs) have recently demonstrated strong quantitative and qualitative reasoning abilities, and multi-agent LLM debates have shown promise in handling complex reasoning tasks by exploring diverse perspectives and reasoning paths. Inspired by this, we introduce Tree-of-Debate (ToD), a framework which converts scientific papers into LLM personas that debate their respective novelties. To emphasize structured, critical reasoning rather than focusing solely on outcomes, ToD dynamically constructs a debate tree, enabling fine-grained analysis of independent novelty arguments within scholarly articles. Through experiments on scientific literature across various domains, evaluated by expert researchers, we demonstrate that ToD generates informative arguments, effectively contrasts papers, and supports researchers in their literature review.
comment: ACL 2025 Main Conference. Code available at: https://github.com/pkargupta/tree-of-debate
♻ ☆ Dynamic Scheduling for Vehicle-to-Vehicle Communications Enhanced Federated Learning
Leveraging the computing and sensing capabilities of vehicles, vehicular federated learning (VFL) has been applied to edge training for connected vehicles. The dynamic and interconnected nature of vehicular networks presents unique opportunities to harness direct vehicle-to-vehicle (V2V) communications, enhancing VFL training efficiency. In this paper, we formulate a stochastic optimization problem to optimize the VFL training performance, considering the energy constraints and mobility of vehicles, and propose a V2V-enhanced dynamic scheduling (VEDS) algorithm to solve it. The model aggregation requirements of VFL and the limited transmission time due to mobility result in a stepwise objective function, which presents challenges in solving the problem. We thus propose a derivative-based drift-plus-penalty method to convert the long-term stochastic optimization problem to an online mixed integer nonlinear programming (MINLP) problem, and provide a theoretical analysis to bound the performance gap between the online solution and the offline optimal solution. Further analysis of the scheduling priority reduces the original problem into a set of convex optimization problems, which are efficiently solved using the interior-point method. Experimental results demonstrate that compared with the state-of-the-art benchmarks, the proposed algorithm enhances the image classification accuracy on the CIFAR-10 dataset by 4.20% and reduces the average displacement errors on the Argoverse trajectory prediction dataset by 9.82%.
comment: Accepted by the IEEE Transactions on Wireless Communications
♻ ☆ Digital Twin Synchronization: Bridging the Sim-RL Agent to a Real-Time Robotic Additive Manufacturing Control RAS
With the rapid development of deep reinforcement learning technology, it gradually demonstrates excellent potential and is becoming the most promising solution in the robotics. However, in the smart manufacturing domain, there is still not too much research involved in dynamic adaptive control mechanisms optimizing complex processes. This research advances the integration of Soft Actor-Critic (SAC) with digital twins for industrial robotics applications, providing a framework for enhanced adaptive real-time control for smart additive manufacturing processing. The system architecture combines Unity's simulation environment with ROS2 for seamless digital twin synchronization, while leveraging transfer learning to efficiently adapt trained models across tasks. We demonstrate our methodology using a Viper X300s robot arm with the proposed hierarchical reward structure to address the common reinforcement learning challenges in two distinct control scenarios. The results show rapid policy convergence and robust task execution in both simulated and physical environments demonstrating the effectiveness of our approach.
comment: This paper had been accepted by the 2025 IEEE International Conference on Engineering Reliable Autonomous Systems (ERAS)
♻ ☆ Edge Computing based Human-Robot Cognitive Fusion: A Medical Case Study in the Autism Spectrum Disorder Therapy
In recent years, edge computing has served as a paradigm that enables many future technologies like AI, Robotics, IoT, and high-speed wireless sensor networks (like 5G) by connecting cloud computing facilities and services to the end users. Especially in medical and healthcare applications, it provides remote patient monitoring and increases voluminous multimedia. From the robotics angle, robot-assisted therapy (RAT) is an active-assistive robotic technology in rehabilitation robotics, attracting researchers to study and benefit people with disability like autism spectrum disorder (ASD) children. However, the main challenge of RAT is that the model capable of detecting the affective states of ASD people exists and can recall individual preferences. Moreover, involving expert diagnosis and recommendations to guide robots in updating the therapy approach to adapt to different statuses and scenarios is a crucial part of the ASD therapy process. This paper proposes the architecture of edge cognitive computing by combining human experts and assisted robots collaborating in the same framework to achieve a seamless remote diagnosis, round-the-clock symptom monitoring, emergency warning, therapy alteration, and advanced assistance.
comment: This paper was accepted by the 2025 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)
♻ ☆ SnapGen-V: Generating a Five-Second Video within Five Seconds on a Mobile Device
We have witnessed the unprecedented success of diffusion-based video generation over the past year. Recently proposed models from the community have wielded the power to generate cinematic and high-resolution videos with smooth motions from arbitrary input prompts. However, as a supertask of image generation, video generation models require more computation and are thus hosted mostly on cloud servers, limiting broader adoption among content creators. In this work, we propose a comprehensive acceleration framework to bring the power of the large-scale video diffusion model to the hands of edge users. From the network architecture scope, we initialize from a compact image backbone and search out the design and arrangement of temporal layers to maximize hardware efficiency. In addition, we propose a dedicated adversarial fine-tuning algorithm for our efficient model and reduce the denoising steps to 4. Our model, with only 0.6B parameters, can generate a 5-second video on an iPhone 16 PM within 5 seconds. Compared to server-side models that take minutes on powerful GPUs to generate a single video, we accelerate the generation by magnitudes while delivering on-par quality.
comment: https://snap-research.github.io/snapgen-v/
♻ ☆ DualDynamics: Synergizing Implicit and Explicit Methods for Robust Irregular Time Series Analysis AAAI
Real-world time series analysis faces significant challenges when dealing with irregular and incomplete data. While Neural Differential Equation (NDE) based methods have shown promise, they struggle with limited expressiveness, scalability issues, and stability concerns. Conversely, Neural Flows offer stability but falter with irregular data. We introduce 'DualDynamics', a novel framework that synergistically combines NDE-based method and Neural Flow-based method. This approach enhances expressive power while balancing computational demands, addressing critical limitations of existing techniques. We demonstrate DualDynamics' effectiveness across diverse tasks: classification of robustness to dataset shift, irregularly-sampled series analysis, interpolation of missing data, and forecasting with partial observations. Our results show consistent outperformance over state-of-the-art methods, indicating DualDynamics' potential to advance irregular time series analysis significantly.
comment: Published at the 39th Annual AAAI Conference on Artificial Intelligence (AAAI 2025). https://ojs.aaai.org/index.php/AAAI/article/view/34173
♻ ☆ Comprehensive Review of Neural Differential Equations for Time Series Analysis
Time series modeling and analysis have become critical in various domains. Conventional methods such as RNNs and Transformers, while effective for discrete-time and regularly sampled data, face significant challenges in capturing the continuous dynamics and irregular sampling patterns inherent in real-world scenarios. Neural Differential Equations (NDEs) represent a paradigm shift by combining the flexibility of neural networks with the mathematical rigor of differential equations. This paper presents a comprehensive review of NDE-based methods for time series analysis, including neural ordinary differential equations, neural controlled differential equations, and neural stochastic differential equations. We provide a detailed discussion of their mathematical formulations, numerical methods, and applications, highlighting their ability to model continuous-time dynamics. Furthermore, we address key challenges and future research directions. This survey serves as a foundation for researchers and practitioners seeking to leverage NDEs for advanced time series analysis.
♻ ☆ Retrieval-augmented systems can be dangerous medical communicators
Patients have long sought health information online, and increasingly, they are turning to generative AI to answer their health-related queries. Given the high stakes of the medical domain, techniques like retrieval-augmented generation and citation grounding have been widely promoted as methods to reduce hallucinations and improve the accuracy of AI-generated responses and have been widely adopted into search engines. This paper argues that even when these methods produce literally accurate content drawn from source documents sans hallucinations, they can still be highly misleading. Patients may derive significantly different interpretations from AI-generated outputs than they would from reading the original source material, let alone consulting a knowledgeable clinician. Through a large-scale query analysis on topics including disputed diagnoses and procedure safety, we support our argument with quantitative and qualitative evidence of the suboptimal answers resulting from current systems. In particular, we highlight how these models tend to decontextualize facts, omit critical relevant sources, and reinforce patient misconceptions or biases. We propose a series of recommendations -- such as the incorporation of communication pragmatics and enhanced comprehension of source documents -- that could help mitigate these issues and extend beyond the medical domain.
comment: Position paper in Proceedings of the 42 nd International Conference on Machine Learning
♻ ☆ Why Gradients Rapidly Increase Near the End of Training
During long-duration Large Language Model (LLM) training runs the gradient norm increases rapidly near the end of training. In this short note, we show that this increase is due to an unintended interaction between weight decay, normalization layers, and the learning rate schedule. We propose a simple correction that fixes this behavior while also resulting in lower loss values throughout training.
♻ ☆ BalancEdit: Dynamically Balancing the Generality-Locality Trade-off in Multi-modal Model Editing
Large multi-modal models inevitably decay over time as facts update and previously learned information becomes outdated. Traditional approaches such as fine-tuning are often impractical for updating these models due to their size and complexity. Instead, direct knowledge editing within the models presents a more viable solution. Current model editing techniques, however, typically overlook the unique influence ranges of different facts, leading to compromised model performance in terms of both generality and locality. To address this issue, we introduce the concept of the generality-locality trade-off in multi-modal model editing. We develop a new model editing dataset named OKEDIT, specifically designed to effectively evaluate this trade-off. Building on this foundation, we propose \textbf{BalancEdit}, a novel method for balanced model editing that dynamically achieves an optimal balance between generality and locality. BalancEdit utilizes a unique mechanism that generates both positive and negative samples for each fact to accurately determine its influence scope and incorporates these insights into the model's latent space using a discrete, localized codebook of edits, without modifying the underlying model weights. To our knowledge, this is the first approach explicitly addressing the generality-locality trade-off in multi-modal model editing. Our comprehensive results confirm the effectiveness of BalancEdit, demonstrating minimal trade-offs while maintaining robust editing capabilities. Our code and dataset are available at https://github.com/donglgcn/BalancEdit/tree/MMOKVQA.
♻ ☆ Self-Supervised Transformers as Iterative Solution Improvers for Constraint Satisfaction ICML 2025
We present a Transformer-based framework for Constraint Satisfaction Problems (CSPs). CSPs find use in many applications and thus accelerating their solution with machine learning is of wide interest. Most existing approaches rely on supervised learning from feasible solutions or reinforcement learning, paradigms that require either feasible solutions to these NP-Complete CSPs or large training budgets and a complex expert-designed reward signal. To address these challenges, we propose ConsFormer, a self-supervised framework that leverages a Transformer as a solution refiner. ConsFormer constructs a solution to a CSP iteratively in a process that mimics local search. Instead of using feasible solutions as labeled data, we devise differentiable approximations to the discrete constraints of a CSP to guide model training. Our model is trained to improve random assignments for a single step but is deployed iteratively at test time, circumventing the bottlenecks of supervised and reinforcement learning. Experiments on Sudoku, Graph Coloring, Nurse Rostering, and MAXCUT demonstrate that our method can tackle out-of-distribution CSPs simply through additional iterations.
comment: ICML 2025
♻ ☆ TRAVEL: Training-Free Retrieval and Alignment for Vision-and-Language Navigation CVPR 2025
In this work, we propose a modular approach for the Vision-Language Navigation (VLN) task by decomposing the problem into four sub-modules that use state-of-the-art Large Language Models (LLMs) and Vision-Language Models (VLMs) in a zero-shot setting. Given navigation instruction in natural language, we first prompt LLM to extract the landmarks and the order in which they are visited. Assuming the known model of the environment, we retrieve the top-k locations of the last landmark and generate $k$ path hypotheses from the starting location to the last landmark using the shortest path algorithm on the topological map of the environment. Each path hypothesis is represented by a sequence of panoramas. We then use dynamic programming to compute the alignment score between the sequence of panoramas and the sequence of landmark names, which match scores obtained from VLM. Finally, we compute the nDTW metric between the hypothesis that yields the highest alignment score to evaluate the path fidelity. We demonstrate superior performance compared to other approaches that use joint semantic maps like VLMaps on the complex R2R-Habitat instruction dataset and quantify in detail the effect of visual grounding on navigation performance.
comment: Accepted to CVPR 2025 Workshop - Foundation Models Meet Embodied Agents
♻ ☆ The Many Challenges of Human-Like Agents in Virtual Game Environments AAMAS-2025
Human-like agents are an increasingly important topic in games and beyond. Believable non-player characters enhance the gaming experience by improving immersion and providing entertainment. They also offer players the opportunity to engage with AI entities that can function as opponents, teachers, or cooperating partners. Additionally, in games where bots are prohibited -- and even more so in non-game environments -- there is a need for methods capable of identifying whether digital interactions occur with bots or humans. This leads to two fundamental research questions: (1) how to model and implement human-like AI, and (2) how to measure its degree of human likeness. This article offers two contributions. The first one is a survey of the most significant challenges in implementing human-like AI in games (or any virtual environment featuring simulated agents, although this article specifically focuses on games). Thirteen such challenges, both conceptual and technical, are discussed in detail. The second is an empirical study performed in a tactical video game that addresses the research question: "Is it possible to distinguish human players from bots (AI agents) based on empirical data?" A machine-learning approach using a custom deep recurrent convolutional neural network is presented. We hypothesize that the more challenging it is to create human-like AI for a given game, the easier it becomes to develop a method for distinguishing humans from AI-driven players.
comment: In proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2025), pages 1996--2005, May 19-23, Detroit, Michigan, USA
♻ ☆ Scalable Meta-Learning via Mixed-Mode Differentiation
Gradient-based bilevel optimisation is a powerful technique with applications in hyperparameter optimisation, task adaptation, algorithm discovery, meta-learning more broadly, and beyond. It often requires differentiating through the gradient-based optimisation itself, leading to "gradient-of-a-gradient" calculations with computationally expensive second-order and mixed derivatives. While modern automatic differentiation libraries provide a convenient way to write programs for calculating these derivatives, they oftentimes cannot fully exploit the specific structure of these problems out-of-the-box, leading to suboptimal performance. In this paper, we analyse such cases and propose Mixed-Flow Meta-Gradients, or MixFlow-MG -- a practical algorithm that uses mixed-mode differentiation to construct more efficient and scalable computational graphs yielding over 10x memory and up to 25% wall-clock time improvements over standard implementations in modern meta-learning setups.
♻ ☆ Doxing via the Lens: Revealing Location-related Privacy Leakage on Multi-modal Large Reasoning Models
Recent advances in multi-modal large reasoning models (MLRMs) have shown significant ability to interpret complex visual content. While these models enable impressive reasoning capabilities, they also introduce novel and underexplored privacy risks. In this paper, we identify a novel category of privacy leakage in MLRMs: Adversaries can infer sensitive geolocation information, such as a user's home address or neighborhood, from user-generated images, including selfies captured in private settings. To formalize and evaluate these risks, we propose a three-level visual privacy risk framework that categorizes image content based on contextual sensitivity and potential for location inference. We further introduce DoxBench, a curated dataset of 500 real-world images reflecting diverse privacy scenarios. Our evaluation across 11 advanced MLRMs and MLLMs demonstrates that these models consistently outperform non-expert humans in geolocation inference and can effectively leak location-related private information. This significantly lowers the barrier for adversaries to obtain users' sensitive geolocation information. We further analyze and identify two primary factors contributing to this vulnerability: (1) MLRMs exhibit strong reasoning capabilities by leveraging visual clues in combination with their internal world knowledge; and (2) MLRMs frequently rely on privacy-related visual clues for inference without any built-in mechanisms to suppress or avoid such usage. To better understand and demonstrate real-world attack feasibility, we propose GeoMiner, a collaborative attack framework that decomposes the prediction process into two stages: clue extraction and reasoning to improve geolocation performance while introducing a novel attack perspective. Our findings highlight the urgent need to reassess inference-time privacy risks in MLRMs to better protect users' sensitive information.
♻ ☆ Tight Lower Bounds and Improved Convergence in Performative Prediction
Performative prediction is a framework accounting for the shift in the data distribution induced by the prediction of a model deployed in the real world. Ensuring rapid convergence to a stable solution where the data distribution remains the same after the model deployment is crucial, especially in evolving environments. This paper extends the Repeated Risk Minimization (RRM) framework by utilizing historical datasets from previous retraining snapshots, yielding a class of algorithms that we call Affine Risk Minimizers and enabling convergence to a performatively stable point for a broader class of problems. We introduce a new upper bound for methods that use only the final iteration of the dataset and prove for the first time the tightness of both this new bound and the previous existing bounds within the same regime. We also prove that utilizing historical datasets can surpass the lower bound for last iterate RRM, and empirically observe faster convergence to the stable point on various performative prediction benchmarks. We offer at the same time the first lower bound analysis for RRM within the class of Affine Risk Minimizers, quantifying the potential improvements in convergence speed that could be achieved with other variants in our framework.
♻ ☆ LLM Alignment as Retriever Optimization: An Information Retrieval Perspective
Large Language Models (LLMs) have revolutionized artificial intelligence with capabilities in reasoning, coding, and communication, driving innovation across industries. Their true potential depends on effective alignment to ensure correct, trustworthy and ethical behavior, addressing challenges like misinformation, hallucinations, bias and misuse. While existing Reinforcement Learning (RL)-based alignment methods are notoriously complex, direct optimization approaches offer a simpler alternative. In this work, we introduce a novel direct optimization approach for LLM alignment by drawing on established Information Retrieval (IR) principles. We present a systematic framework that bridges LLM alignment and IR methodologies, mapping LLM generation and reward models to IR's retriever-reranker paradigm. Building on this foundation, we propose LLM Alignment as Retriever Preference Optimization (LarPO), a new alignment method that enhances overall alignment quality. Extensive experiments validate LarPO's effectiveness with 38.9 % and 13.7 % averaged improvement on AlpacaEval2 and MixEval-Hard respectively. Our work opens new avenues for advancing LLM alignment by integrating IR foundations, offering a promising direction for future research.
comment: 26 pages
♻ ☆ Innate-Values-driven Reinforcement Learning based Cognitive Modeling
Innate values describe agents' intrinsic motivations, which reflect their inherent interests and preferences for pursuing goals and drive them to develop diverse skills that satisfy their various needs. Traditional reinforcement learning (RL) is learning from interaction based on the feedback rewards of the environment. However, in real scenarios, the rewards are generated by agents' innate value systems, which differ vastly from individuals based on their needs and requirements. In other words, considering the AI agent as a self-organizing system, developing its awareness through balancing internal and external utilities based on its needs in different tasks is a crucial problem for individuals learning to support others and integrate community with safety and harmony in the long term. To address this gap, we propose a new RL model termed innate-values-driven RL (IVRL) based on combined motivations' models and expected utility theory to mimic its complex behaviors in the evolution through decision-making and learning. Then, we introduce two IVRL-based models: IV-DQN and IV-A2C. By comparing them with benchmark algorithms such as DQN, DDQN, A2C, and PPO in the Role-Playing Game (RPG) reinforcement learning test platform VIZDoom, we demonstrated that the IVRL-based models can help the agent rationally organize various needs, achieve better performance effectively.
comment: The paper had been accepted by the 2025 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). arXiv admin note: text overlap with arXiv:2401.05572
♻ ☆ Innate-Values-driven Reinforcement Learning based Cooperative Multi-Agent Cognitive Modeling
In multi-agent systems (MAS), the dynamic interaction among multiple decision-makers is driven by their innate values, affecting the environment's state, and can cause specific behavioral patterns to emerge. On the other hand, innate values in cognitive modeling reflect individual interests and preferences for specific tasks and drive them to develop diverse skills and plans, satisfying their various needs and achieving common goals in cooperation. Therefore, building the awareness of AI agents to balance the group utilities and system costs and meet group members' needs in their cooperation is a crucial problem for individuals learning to support their community and even integrate into human society in the long term. However, the current MAS reinforcement learning domain lacks a general intrinsic model to describe agents' dynamic motivation for decision-making and learning from an individual needs perspective in their cooperation. To address the gap, this paper proposes a general MAS innate-values reinforcement learning (IVRL) architecture from the individual preferences angle. We tested the Multi-Agent IVRL Actor-Critic Model in different StarCraft Multi-Agent Challenge (SMAC) settings, which demonstrated its potential to organize the group's behaviours to achieve better performance.
comment: This paper had been accepted by the 2025 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)
♻ ☆ Developer Perspectives on Licensing and Copyright Issues Arising from Generative AI for Software Development
Despite the utility that Generative AI (GenAI) tools provide for tasks such as writing code, the use of these tools raises important legal questions and potential risks, particularly those associated with copyright law. As lawmakers and regulators engage with those questions, the views of users can provide relevant perspectives. In this paper, we provide: (1) a survey of 574 developers on the licensing and copyright aspects of GenAI for coding, as well as follow-up interviews; (2) a snapshot of developers' views at a time when GenAI and perceptions of it are rapidly evolving; and (3) an analysis of developers' views, yielding insights and recommendations that can inform future regulatory decisions in this evolving field. Our results show the benefits developers derive from GenAI, how they view the use of AI-generated code as similar to using other existing code, the varied opinions they have on who should own or be compensated for such code, that they are concerned about data leakage via GenAI, and much more, providing organizations and policymakers with valuable insights into how the technology is being used and what concerns stakeholders would like to see addressed.
♻ ☆ xGen-MM-Vid (BLIP-3-Video): You Only Need 32 Tokens to Represent a Video Even in VLMs
We present xGen-MM-Vid (BLIP-3-Video): a multimodal language model for videos, particularly designed to efficiently capture temporal information over multiple frames. BLIP-3-Video takes advantage of the 'temporal encoder' in addition to the conventional visual tokenizer, which maps a sequence of tokens over multiple frames into a compact set of visual tokens. This enables BLIP3-Video to use much fewer visual tokens than its competing models (e.g., 32 vs. 4608 tokens). We explore different types of temporal encoders, including learnable spatio-temporal pooling as well as sequential models like Token Turing Machines. We experimentally confirm that BLIP-3-Video obtains video question-answering accuracies comparable to much larger state-of-the-art models (e.g., 34B), while being much smaller (i.e., 4B) and more efficient by using fewer visual tokens. The project website is at https://www.salesforceairesearch.com/opensource/xGen-MM-Vid/index.html
♻ ☆ Will Neural Scaling Laws Activate Jevons' Paradox in AI Labor Markets? A Time-Varying Elasticity of Substitution (VES) Analysis
We develop a formal economic framework to analyze whether neural scaling laws in artificial intelligence will activate Jevons' Paradox in labor markets, potentially leading to increased AI adoption and human labor substitution. By using a time-varying elasticity of substitution (VES) approach, we establish analytical conditions under which AI systems transition from complementing to substituting for human labor. Our model formalizes four interconnected mechanisms: (1) exponential growth in computational capacity ($C(t) = C(0) \cdot e^{g \cdot t}$); (2) logarithmic scaling of AI capabilities with computation ($\sigma(t) = \delta \cdot \ln(C(t)/C(0))$); (3) declining AI prices ($p_A(t) = p_A(0) \cdot e^{-d \cdot t}$); and (4) a resulting compound effect parameter ($\phi = \delta \cdot g$) that governs market transformation dynamics. We identify five distinct phases of AI market penetration, demonstrating that complete market transformation requires the elasticity of substitution to exceed unity ($\sigma > 1$), with the timing determined primarily by the compound parameter $\phi$ rather than price competition alone. These findings provide an analytical framing for evaluating industry claims about AI substitution effects, especially on the role of quality versus price in the technological transition.
♻ ☆ Towards a Mechanistic Explanation of Diffusion Model Generalization ICML 2025
We propose a simple, training-free mechanism which explains the generalization behaviour of diffusion models. By comparing pre-trained diffusion models to their theoretically optimal empirical counterparts, we identify a shared local inductive bias across a variety of network architectures. From this observation, we hypothesize that network denoisers generalize through localized denoising operations, as these operations approximate the training objective well over much of the training distribution. To validate our hypothesis, we introduce novel denoising algorithms which aggregate local empirical denoisers to replicate network behaviour. Comparing these algorithms to network denoisers across forward and reverse diffusion processes, our approach exhibits consistent visual similarity to neural network outputs, with lower mean squared error than previously proposed methods.
comment: ICML 2025 Spotlight
♻ ☆ Evaluating AI-Driven Automated Map Digitization in QGIS
Map digitization is an important process that converts maps into digital formats that can be used for further analysis. This process typically requires a deep human involvement because of the need for interpretation and decision-making when translating complex features. With the advancement of artificial intelligence, there is an alternative to conducting map digitization with the help of machine learning techniques. Deepness, or Deep Neural Remote Sensing, is an advanced AI-driven tool designed and integrated as a plugin in QGIS application. This research focuses on assessing the effectiveness of Deepness in automated digitization. This study analyses AI-generated digitization results from Google Earth imagery and compares them with digitized outputs from OpenStreetMap (OSM) to evaluate performance.
comment: Submitted to 2025 Indiana Geographic Information Council (IGIC) Conference
♻ ☆ Positional Attention: Expressivity and Learnability of Algorithmic Computation ICML 2025
There is a growing interest in the ability of neural networks to execute algorithmic tasks (e.g., arithmetic, summary statistics, and sorting). The goal of this work is to better understand the role of attention in Transformers for algorithmic execution. Its importance for algorithmic execution has been studied theoretically and empirically using parallel computational models. Notably, many parallel algorithms communicate between processors solely using positional information. Inspired by this observation, we investigate how Transformers can execute algorithms using positional attention, where attention weights depend exclusively on positional encodings. We prove that Transformers with positional attention (positional Transformers) maintain the same expressivity of parallel computational models, incurring a logarithmic depth cost relative to the input length. We analyze their in-distribution learnability and explore how parameter norms in positional attention affect sample complexity. Our results show that positional Transformers introduce a learning trade-off: while they exhibit better theoretical dependence on parameter norms, certain tasks may require more layers, which can, in turn, increase sample complexity. Finally, we empirically explore the out-of-distribution performance of positional Transformers and find that they perform well in tasks where their underlying algorithmic solution relies on positional information.
comment: 64 pages, 37 figures, Forty-Second International Conference on Machine Learning (ICML 2025)
♻ ☆ From Language Models over Tokens to Language Models over Characters ICML 2025
Modern language models are internally -- and mathematically -- distributions over $\it{token}$ strings rather than $\it{character}$ strings, posing numerous challenges for programmers building user applications on top of them. For example, if a prompt is specified as a character string, it must be tokenized before passing it to the token-level language model. Thus, the tokenizer and consequent processing are very sensitive to the specification of the prompt (e.g., whether the prompt ends with a space or not). This paper presents algorithms for converting token-level language models to character-level ones. We present both exact and approximate algorithms. In the empirical portion of the paper, we benchmark the practical runtime and approximation quality. Across four publicly available language models, we find that -- even with a small computation budget -- our method is able to accurately approximate the character-level distribution at reasonably fast speeds, and that a significant improvement in the language model's compression rate (bits/byte) is achieved.
comment: ICML 2025
Graphics 16
☆ Squeeze3D: Your 3D Generation Model is Secretly an Extreme Neural Compressor
We propose Squeeze3D, a novel framework that leverages implicit prior knowledge learnt by existing pre-trained 3D generative models to compress 3D data at extremely high compression ratios. Our approach bridges the latent spaces between a pre-trained encoder and a pre-trained generation model through trainable mapping networks. Any 3D model represented as a mesh, point cloud, or a radiance field is first encoded by the pre-trained encoder and then transformed (i.e. compressed) into a highly compact latent code. This latent code can effectively be used as an extremely compressed representation of the mesh or point cloud. A mapping network transforms the compressed latent code into the latent space of a powerful generative model, which is then conditioned to recreate the original 3D model (i.e. decompression). Squeeze3D is trained entirely on generated synthetic data and does not require any 3D datasets. The Squeeze3D architecture can be flexibly used with existing pre-trained 3D encoders and existing generative models. It can flexibly support different formats, including meshes, point clouds, and radiance fields. Our experiments demonstrate that Squeeze3D achieves compression ratios of up to 2187x for textured meshes, 55x for point clouds, and 619x for radiance fields while maintaining visual quality comparable to many existing methods. Squeeze3D only incurs a small compression and decompression latency since it does not involve training object-specific networks to compress an object.
☆ Speedy Deformable 3D Gaussian Splatting: Fast Rendering and Compression of Dynamic Scenes
Recent extensions of 3D Gaussian Splatting (3DGS) to dynamic scenes achieve high-quality novel view synthesis by using neural networks to predict the time-varying deformation of each Gaussian. However, performing per-Gaussian neural inference at every frame poses a significant bottleneck, limiting rendering speed and increasing memory and compute requirements. In this paper, we present Speedy Deformable 3D Gaussian Splatting (SpeeDe3DGS), a general pipeline for accelerating the rendering speed of dynamic 3DGS and 4DGS representations by reducing neural inference through two complementary techniques. First, we propose a temporal sensitivity pruning score that identifies and removes Gaussians with low contribution to the dynamic scene reconstruction. We also introduce an annealing smooth pruning mechanism that improves pruning robustness in real-world scenes with imprecise camera poses. Second, we propose GroupFlow, a motion analysis technique that clusters Gaussians by trajectory similarity and predicts a single rigid transformation per group instead of separate deformations for each Gaussian. Together, our techniques accelerate rendering by $10.37\times$, reduce model size by $7.71\times$, and shorten training time by $2.71\times$ on the NeRF-DS dataset. SpeeDe3DGS also improves rendering speed by $4.20\times$ and $58.23\times$ on the D-NeRF and HyperNeRF vrig datasets. Our methods are modular and can be integrated into any deformable 3DGS or 4DGS framework.
comment: Project Page: https://speede3dgs.github.io/
☆ GaussianVAE: Adaptive Learning Dynamics of 3D Gaussians for High-Fidelity Super-Resolution
We present a novel approach for enhancing the resolution and geometric fidelity of 3D Gaussian Splatting (3DGS) beyond native training resolution. Current 3DGS methods are fundamentally limited by their input resolution, producing reconstructions that cannot extrapolate finer details than are present in the training views. Our work breaks this limitation through a lightweight generative model that predicts and refines additional 3D Gaussians where needed most. The key innovation is our Hessian-assisted sampling strategy, which intelligently identifies regions that are likely to benefit from densification, ensuring computational efficiency. Unlike computationally intensive GANs or diffusion approaches, our method operates in real-time (0.015s per inference on a single consumer-grade GPU), making it practical for interactive applications. Comprehensive experiments demonstrate significant improvements in both geometric accuracy and rendering quality compared to state-of-the-art methods, establishing a new paradigm for resolution-free 3D scene enhancement.
☆ SMaRCSim: Maritime Robotics Simulation Modules
Developing new functionality for underwater robots and testing them in the real world is time-consuming and resource-intensive. Simulation environments allow for rapid testing before field deployment. However, existing tools lack certain functionality for use cases in our project: i) developing learning-based methods for underwater vehicles; ii) creating teams of autonomous underwater, surface, and aerial vehicles; iii) integrating the simulation with mission planning for field experiments. A holistic solution to these problems presents great potential for bringing novel functionality into the underwater domain. In this paper we present SMaRCSim, a set of simulation packages that we have developed to help us address these issues.
☆ PIG: Physically-based Multi-Material Interaction with 3D Gaussians
3D Gaussian Splatting has achieved remarkable success in reconstructing both static and dynamic 3D scenes. However, in a scene represented by 3D Gaussian primitives, interactions between objects suffer from inaccurate 3D segmentation, imprecise deformation among different materials, and severe rendering artifacts. To address these challenges, we introduce PIG: Physically-Based Multi-Material Interaction with 3D Gaussians, a novel approach that combines 3D object segmentation with the simulation of interacting objects in high precision. Firstly, our method facilitates fast and accurate mapping from 2D pixels to 3D Gaussians, enabling precise 3D object-level segmentation. Secondly, we assign unique physical properties to correspondingly segmented objects within the scene for multi-material coupled interactions. Finally, we have successfully embedded constraint scales into deformation gradients, specifically clamping the scaling and rotation properties of the Gaussian primitives to eliminate artifacts and achieve geometric fidelity and visual consistency. Experimental results demonstrate that our method not only outperforms the state-of-the-art (SOTA) in terms of visual quality, but also opens up new directions and pipelines for the field of physically realistic scene generation.
☆ Immersive Visualization of Flat Surfaces Using Ray Marching
We present an effective method for visualizing flat surfaces using ray marching. Our approach provides an intuitive way to explore translation surfaces, mirror rooms, unfolded polyhedra, and translation prisms while maintaining computational efficiency. We demonstrate the utility of the method through various examples and provide implementation insights for programmers. Finally, we discuss the use of our visualizations in outreach. We make our simulations and code available online.
comment: Presented at Bridges Math and Art Conference, Eindhoven 2025. Online demo and code available at https://fabianlander.github.io/apps/raymarchingflatsurfacesapp/ and https://github.com/FabianLander/RayMarchingFlatSurfaces
☆ Solving partial differential equations in participating media SIGGRAPH 2025
We consider the problem of solving partial differential equations (PDEs) in domains with complex microparticle geometry that is impractical, or intractable, to model explicitly. Drawing inspiration from volume rendering, we propose tackling this problem by treating the domain as a participating medium that models microparticle geometry stochastically, through aggregate statistical properties (e.g., particle density). We first introduce the problem setting of PDE simulation in participating media. We then specialize to exponential media and describe the properties that make them an attractive model of microparticle geometry for PDE simulation problems. We use these properties to develop two new algorithms, volumetric walk on spheres and volumetric walk on stars, that generalize previous Monte Carlo algorithms to enable efficient and discretization-free simulation of linear elliptic PDEs (e.g., Laplace) in participating media. We demonstrate experimentally that our algorithms can solve Laplace boundary value problems with complex microparticle geometry more accurately and more efficiently than previous approaches, such as ensemble averaging and homogenization.
comment: SIGGRAPH 2025. Project page https://imaging.cs.cmu.edu/volumetric_walk_on_spheres
☆ GATE: Geometry-Aware Trained Encoding
The encoding of input parameters is one of the fundamental building blocks of neural network algorithms. Its goal is to map the input data to a higher-dimensional space, typically supported by trained feature vectors. The mapping is crucial for the efficiency and approximation quality of neural networks. We propose a novel geometry-aware encoding called GATE that stores feature vectors on the surface of triangular meshes. Our encoding is suitable for neural rendering-related algorithms, for example, neural radiance caching. It also avoids limitations of previous hash-based encoding schemes, such as hash collisions, selection of resolution versus scene size, and divergent memory access. Our approach decouples feature vector density from geometry density using mesh colors, while allowing for finer control over neural network training and adaptive level-of-detail.
☆ A Real-time 3D Desktop Display
A new extended version of the altiro3D C++ Library -- initially developed to get glass-free holographic displays starting from 2D images -- is here introduced aiming to deal with 3D video streams from either 2D webcam images or flat video files. These streams are processed in real-time to synthesize light-fields (in Native format) and feed realistic 3D experiences. The core function needed to recreate multiviews consists on the use of MiDaS Convolutional Neural Network (CNN), which allows to extract a depth map from a single 2D image. Artificial Intelligence (AI) computing techniques are applied to improve the overall performance of the extended altiro3D Library. Thus, altiro3D can now treat standard images, video streams or screen portions of a Desktop where other apps may be also running (like web browsers, video chats, etc) and render them into 3D. To achieve the latter, a screen region need to be selected in order to feed the output directly into a light-field 3D device such as Looking Glass (LG) Portrait. In order to simplify the acquisition of a Desktop screen area by the user, a multi-platform Graphical User Interface has been also implemented. Sources available at: https://github.com/canessae/altiro3D/releases/tag/2.0.0
comment: 10 pages, 5 figures
☆ SILK: Smooth InterpoLation frameworK for motion in-betweening A Simplified Computational Approach CVPR 2025
Motion in-betweening is a crucial tool for animators, enabling intricate control over pose-level details in each keyframe. Recent machine learning solutions for motion in-betweening rely on complex models, incorporating skeleton-aware architectures or requiring multiple modules and training steps. In this work, we introduce a simple yet effective Transformer-based framework, employing a single Transformer encoder to synthesize realistic motions for motion in-betweening tasks. We find that data modeling choices play a significant role in improving in-betweening performance. Among others, we show that increasing data volume can yield equivalent or improved motion transitions, that the choice of pose representation is vital for achieving high-quality results, and that incorporating velocity input features enhances animation performance. These findings challenge the assumption that model complexity is the primary determinant of animation quality and provide insights into a more data-centric approach to motion interpolation. Additional videos and supplementary material are available at https://silk-paper.github.io.
comment: Accepted to CVPR 2025 Human Motion Generation Workshop. 10 pages, 3 figures, 5 Tables, and 40 References
STREAMINGGS: Voxel-Based Streaming 3D Gaussian Splatting with Memory Optimization and Architectural Support
3D Gaussian Splatting (3DGS) has gained popularity for its efficiency and sparse Gaussian-based representation. However, 3DGS struggles to meet the real-time requirement of 90 frames per second (FPS) on resource-constrained mobile devices, achieving only 2 to 9 FPS.Existing accelerators focus on compute efficiency but overlook memory efficiency, leading to redundant DRAM traffic. We introduce STREAMINGGS, a fully streaming 3DGS algorithm-architecture co-design that achieves fine-grained pipelining and reduces DRAM traffic by transforming from a tile-centric rendering to a memory-centric rendering. Results show that our design achieves up to 45.7 $\times$ speedup and 62.9 $\times$ energy savings over mobile Ampere GPUs.
♻ ☆ GarmageNet: A Multimodal Generative Framework for Sewing Pattern Design and Generic Garment Modeling
Realistic digital garment modeling remains a labor-intensive task due to the intricate process of translating 2D sewing patterns into high-fidelity, simulation-ready 3D garments. We introduce GarmageNet, a unified generative framework that automates the creation of 2D sewing patterns, the construction of sewing relationships, and the synthesis of 3D garment initializations compatible with physics-based simulation. Central to our approach is Garmage, a novel garment representation that encodes each panel as a structured geometry image, effectively bridging the semantic and geometric gap between 2D structural patterns and 3D garment shapes. GarmageNet employs a latent diffusion transformer to synthesize panel-wise geometry images and integrates GarmageJigsaw, a neural module for predicting point-to-point sewing connections along panel contours. To support training and evaluation, we build GarmageSet, a large-scale dataset comprising over 10,000 professionally designed garments with detailed structural and style annotations. Our method demonstrates versatility and efficacy across multiple application scenarios, including scalable garment generation from multi-modal design concepts (text prompts, sketches, photographs), automatic modeling from raw flat sewing patterns, pattern recovery from unstructured point clouds, and progressive garment editing using conventional instructions-laying the foundation for fully automated, production-ready pipelines in digital fashion. Project page: https://style3d.github.io/garmagenet.
♻ ☆ Splatting Physical Scenes: End-to-End Real-to-Sim from Imperfect Robot Data
Creating accurate, physical simulations directly from real-world robot motion holds great value for safe, scalable, and affordable robot learning, yet remains exceptionally challenging. Real robot data suffers from occlusions, noisy camera poses, dynamic scene elements, which hinder the creation of geometrically accurate and photorealistic digital twins of unseen objects. We introduce a novel real-to-sim framework tackling all these challenges at once. Our key insight is a hybrid scene representation merging the photorealistic rendering of 3D Gaussian Splatting with explicit object meshes suitable for physics simulation within a single representation. We propose an end-to-end optimization pipeline that leverages differentiable rendering and differentiable physics within MuJoCo to jointly refine all scene components - from object geometry and appearance to robot poses and physical parameters - directly from raw and imprecise robot trajectories. This unified optimization allows us to simultaneously achieve high-fidelity object mesh reconstruction, generate photorealistic novel views, and perform annotation-free robot pose calibration. We demonstrate the effectiveness of our approach both in simulation and on challenging real-world sequences using an ALOHA 2 bi-manual manipulator, enabling more practical and robust real-to-simulation pipelines.
comment: Updated version correcting inadvertent omission in author list
♻ ☆ CityGo: Lightweight Urban Modeling and Rendering with Proxy Buildings and Residual Gaussians
Accurate and efficient modeling of large-scale urban scenes is critical for applications such as AR navigation, UAV based inspection, and smart city digital twins. While aerial imagery offers broad coverage and complements limitations of ground-based data, reconstructing city-scale environments from such views remains challenging due to occlusions, incomplete geometry, and high memory demands. Recent advances like 3D Gaussian Splatting (3DGS) improve scalability and visual quality but remain limited by dense primitive usage, long training times, and poor suit ability for edge devices. We propose CityGo, a hybrid framework that combines textured proxy geometry with residual and surrounding 3D Gaussians for lightweight, photorealistic rendering of urban scenes from aerial perspectives. Our approach first extracts compact building proxy meshes from MVS point clouds, then uses zero order SH Gaussians to generate occlusion-free textures via image-based rendering and back-projection. To capture high-frequency details, we introduce residual Gaussians placed based on proxy-photo discrepancies and guided by depth priors. Broader urban context is represented by surrounding Gaussians, with importance-aware downsampling applied to non-critical regions to reduce redundancy. A tailored optimization strategy jointly refines proxy textures and Gaussian parameters, enabling real-time rendering of complex urban scenes on mobile GPUs with significantly reduced training and memory requirements. Extensive experiments on real-world aerial datasets demonstrate that our hybrid representation significantly reduces training time, achieving on average 1.4x speedup, while delivering comparable visual fidelity to pure 3D Gaussian Splatting approaches. Furthermore, CityGo enables real-time rendering of large-scale urban scenes on mobile consumer GPUs, with substantially reduced memory usage and energy consumption.
♻ ☆ Generative Photomontage CVPR 2025
Text-to-image models are powerful tools for image creation. However, the generation process is akin to a dice roll and makes it difficult to achieve a single image that captures everything a user wants. In this paper, we propose a framework for creating the desired image by compositing it from various parts of generated images, in essence forming a Generative Photomontage. Given a stack of images generated by ControlNet using the same input condition and different seeds, we let users select desired parts from the generated results using a brush stroke interface. We introduce a novel technique that takes in the user's brush strokes, segments the generated images using a graph-based optimization in diffusion feature space, and then composites the segmented regions via a new feature-space blending method. Our method faithfully preserves the user-selected regions while compositing them harmoniously. We demonstrate that our flexible framework can be used for many applications, including generating new appearance combinations, fixing incorrect shapes and artifacts, and improving prompt alignment. We show compelling results for each application and demonstrate that our method outperforms existing image blending methods and various baselines.
comment: CVPR 2025. Project webpage: https://lseancs.github.io/generativephotomontage/
♻ ☆ Stochastic Ray Tracing of Transparent 3D Gaussians
3D Gaussian splatting has been widely adopted as a 3D representation for novel-view synthesis, relighting, and 3D generation tasks. It delivers realistic and detailed results through a collection of explicit 3D Gaussian primitives, each carrying opacity and view-dependent color. However, efficient rendering of many transparent primitives remains a significant challenge. Existing approaches either rasterize the Gaussians with approximate per-view sorting or rely on high-end RTX GPUs. This paper proposes a stochastic ray-tracing method to render 3D clouds of transparent primitives. Instead of processing all ray-Gaussian intersections in sequential order, each ray traverses the acceleration structure only once, randomly accepting and shading a single intersection (or $N$ intersections, using a simple extension). This approach minimizes shading time and avoids primitive sorting along the ray, thereby minimizing register usage and maximizing parallelism even on low-end GPUs. The cost of rays through the Gaussian asset is comparable to that of standard mesh-intersection rays. The shading is unbiased and has low variance, as our stochastic acceptance achieves importance sampling based on accumulated weight. The alignment with Monte Carlo philosophy simplifies implementation and integration into a conventional path-tracing framework.
comment: 10 pages, 7 figures, 5 tables
Graphics 7
☆ HOI-PAGE: Zero-Shot Human-Object Interaction Generation with Part Affordance Guidance
We present HOI-PAGE, a new approach to synthesizing 4D human-object interactions (HOIs) from text prompts in a zero-shot fashion, driven by part-level affordance reasoning. In contrast to prior works that focus on global, whole body-object motion for 4D HOI synthesis, we observe that generating realistic and diverse HOIs requires a finer-grained understanding -- at the level of how human body parts engage with object parts. We thus introduce Part Affordance Graphs (PAGs), a structured HOI representation distilled from large language models (LLMs) that encodes fine-grained part information along with contact relations. We then use these PAGs to guide a three-stage synthesis: first, decomposing input 3D objects into geometric parts; then, generating reference HOI videos from text prompts, from which we extract part-based motion constraints; finally, optimizing for 4D HOI motion sequences that not only mimic the reference dynamics but also satisfy part-level contact constraints. Extensive experiments show that our approach is flexible and capable of generating complex multi-object or multi-person interaction sequences, with significantly improved realism and text alignment for zero-shot 4D HOI generation.
comment: Project page: https://hoipage.github.io/ Video: https://youtu.be/b1pJU9lKQTE
☆ Accelerating 3D Gaussian Splatting with Neural Sorting and Axis-Oriented Rasterization
3D Gaussian Splatting (3DGS) has recently gained significant attention for high-quality and efficient view synthesis, making it widely adopted in fields such as AR/VR, robotics, and autonomous driving. Despite its impressive algorithmic performance, real-time rendering on resource-constrained devices remains a major challenge due to tight power and area budgets. This paper presents an architecture-algorithm co-design to address these inefficiencies. First, we reveal substantial redundancy caused by repeated computation of common terms/expressions during the conventional rasterization. To resolve this, we propose axis-oriented rasterization, which pre-computes and reuses shared terms along both the X and Y axes through a dedicated hardware design, effectively reducing multiply-and-add (MAC) operations by up to 63%. Second, by identifying the resource and performance inefficiency of the sorting process, we introduce a novel neural sorting approach that predicts order-independent blending weights using an efficient neural network, eliminating the need for costly hardware sorters. A dedicated training framework is also proposed to improve its algorithmic stability. Third, to uniformly support rasterization and neural network inference, we design an efficient reconfigurable processing array that maximizes hardware utilization and throughput. Furthermore, we introduce a $\pi$-trajectory tile schedule, inspired by Morton encoding and Hilbert curve, to optimize Gaussian reuse and reduce memory access overhead. Comprehensive experiments demonstrate that the proposed design preserves rendering quality while achieving a speedup of $23.4\sim27.8\times$ and energy savings of $28.8\sim51.4\times$ compared to edge GPUs for real-world scenes. We plan to open-source our design to foster further development in this field.
comment: Preprint. Under review
☆ CrossGen: Learning and Generating Cross Fields for Quad Meshing
Cross fields play a critical role in various geometry processing tasks, especially for quad mesh generation. Existing methods for cross field generation often struggle to balance computational efficiency with generation quality, using slow per-shape optimization. We introduce CrossGen, a novel framework that supports both feed-forward prediction and latent generative modeling of cross fields for quad meshing by unifying geometry and cross field representations within a joint latent space. Our method enables extremely fast computation of high-quality cross fields of general input shapes, typically within one second without per-shape optimization. Our method assumes a point-sampled surface, or called a point-cloud surface, as input, so we can accommodate various different surface representations by a straightforward point sampling process. Using an auto-encoder network architecture, we encode input point-cloud surfaces into a sparse voxel grid with fine-grained latent spaces, which are decoded into both SDF-based surface geometry and cross fields. We also contribute a dataset of models with both high-quality signed distance fields (SDFs) representations and their corresponding cross fields, and use it to train our network. Once trained, the network is capable of computing a cross field of an input surface in a feed-forward manner, ensuring high geometric fidelity, noise resilience, and rapid inference. Furthermore, leveraging the same unified latent representation, we incorporate a diffusion model for computing cross fields of new shapes generated from partial input, such as sketches. To demonstrate its practical applications, we validate CrossGen on the quad mesh generation task for a large variety of surface shapes. Experimental results...
comment: Project page: https://anonymousproject-homepage.github.io/
♻ ☆ Towards the target and not beyond: 2D vs 3D visual aids in MR-based neurosurgical simulation
Neurosurgery increasingly uses Mixed Reality (MR) technologies for intraoperative assistance. The greatest challenge in this area is mentally reconstructing complex 3D anatomical structures from 2D slices with millimetric precision, which is required in procedures like External Ventricular Drain (EVD) placement. MR technologies have shown great potential in improving surgical performance, however, their limited availability in clinical settings underscores the need for training systems that foster skill retention in unaided conditions. In this paper, we introduce NeuroMix, an MR-based simulator for EVD placement. We conduct a study with 48 participants to assess the impact of 2D and 3D visual aids on usability, cognitive load, technology acceptance, and procedure precision and execution time. Three training modalities are compared: one without visual aids, one with 2D aids only, and one combining both 2D and 3D aids. The training phase takes place entirely on digital objects, followed by a freehand EVD placement testing phase performed with a physical catherer and a physical phantom without MR aids. We then compare the participants performance with that of a control group that does not undergo training. Our findings show that participants trained with both 2D and 3D aids achieve a 44\% improvement in precision during unaided testing compared to the control group, substantially higher than the improvement observed in the other groups. All three training modalities receive high usability and technology acceptance ratings, with significant equivalence across groups. The combination of 2D and 3D visual aids does not significantly increase cognitive workload, though it leads to longer operation times during freehand testing compared to the control group.
comment: 15 pages, 7 figures, 3 tables, journal
♻ ☆ OctFusion: Octree-based Diffusion Models for 3D Shape Generation
Diffusion models have emerged as a popular method for 3D generation. However, it is still challenging for diffusion models to efficiently generate diverse and high-quality 3D shapes. In this paper, we introduce OctFusion, which can generate 3D shapes with arbitrary resolutions in 2.5 seconds on a single Nvidia 4090 GPU, and the extracted meshes are guaranteed to be continuous and manifold. The key components of OctFusion are the octree-based latent representation and the accompanying diffusion models. The representation combines the benefits of both implicit neural representations and explicit spatial octrees and is learned with an octree-based variational autoencoder. The proposed diffusion model is a unified multi-scale U-Net that enables weights and computation sharing across different octree levels and avoids the complexity of widely used cascaded diffusion schemes. We verify the effectiveness of OctFusion on the ShapeNet and Objaverse datasets and achieve state-of-the-art performances on shape generation tasks. We demonstrate that OctFusion is extendable and flexible by generating high-quality color fields for textured mesh generation and high-quality 3D shapes conditioned on text prompts, sketches, or category labels. Our code and pre-trained models are available at https://github.com/octree-nn/octfusion.
comment: Accepted to Computer Graphics Forum (SGP), 2025
♻ ☆ MeshArt: Generating Articulated Meshes with Structure-Guided Transformers
Articulated 3D object generation is fundamental for creating realistic, functional, and interactable virtual assets which are not simply static. We introduce MeshArt, a hierarchical transformer-based approach to generate articulated 3D meshes with clean, compact geometry, reminiscent of human-crafted 3D models. We approach articulated mesh generation in a part-by-part fashion across two stages. First, we generate a high-level articulation-aware object structure; then, based on this structural information, we synthesize each part's mesh faces. Key to our approach is modeling both articulation structures and part meshes as sequences of quantized triangle embeddings, leading to a unified hierarchical framework with transformers for autoregressive generation. Object part structures are first generated as their bounding primitives and articulation modes; a second transformer, guided by these articulation structures, then generates each part's mesh triangles. To ensure coherency among generated parts, we introduce structure-guided conditioning that also incorporates local part mesh connectivity. MeshArt shows significant improvements over state of the art, with 57.1% improvement in structure coverage and a 209-point improvement in mesh generation FID.
comment: Project Page: https://daoyig.github.io/Mesh_Art/, Video: https://www.youtube.com/watch?v=0XaHFbmb_FQ
♻ ☆ LLM-HDR: Bridging LLM-based Perception and Self-Supervision for Unpaired LDR-to-HDR Image Reconstruction
The translation of Low Dynamic Range (LDR) to High Dynamic Range (HDR) images is an important computer vision task. There is a significant amount of research utilizing both conventional non-learning methods and modern data-driven approaches, focusing on using both single-exposed and multi-exposed LDR for HDR image reconstruction. However, most current state-of-the-art methods require high-quality paired {LDR,HDR} datasets for model training. In addition, there is limited literature on using unpaired datasets for this task, that is, the model learns a mapping between domains, i.e., {LDR,HDR}. This paper proposes LLM-HDR, a method that integrates the perception of Large Language Models (LLM) into a modified semantic- and cycle-consistent adversarial architecture that utilizes unpaired {LDR,HDR} datasets for training. The method introduces novel artifact- and exposure-aware generators to address visual artifact removal and an encoder and loss to address semantic consistency, another under-explored topic. LLM-HDR is the first to use an LLM for the {LDR,HDR} translation task in a self-supervised setup. The method achieves state-of-the-art performance across several benchmark datasets and reconstructs high-quality HDR images. The official website of this work is available at: https://github.com/HrishavBakulBarua/LLM-HDR
Robotics 26
☆ BR-MPPI: Barrier Rate guided MPPI for Enforcing Multiple Inequality Constraints with Learned Signed Distance Field
Model Predictive Path Integral (MPPI) controller is used to solve unconstrained optimal control problems and Control Barrier Function (CBF) is a tool to impose strict inequality constraints, a.k.a, barrier constraints. In this work, we propose an integration of these two methods that employ CBF-like conditions to guide the control sampling procedure of MPPI. CBFs provide an inequality constraint restricting the rate of change of barrier functions by a classK function of the barrier itself. We instead impose the CBF condition as an equality constraint by choosing a parametric linear classK function and treating this parameter as a state in an augmented system. The time derivative of this parameter acts as an additional control input that is designed by MPPI. A cost function is further designed to reignite Nagumo's theorem at the boundary of the safe set by promoting specific values of classK parameter to enforce safety. Our problem formulation results in an MPPI subject to multiple state and control-dependent equality constraints which are non-trivial to satisfy with randomly sampled control inputs. We therefore also introduce state transformations and control projection operations, inspired by the literature on path planning for manifolds, to resolve the aforementioned issue. We show empirically through simulations and experiments on quadrotor that our proposed algorithm exhibits better sampled efficiency and enhanced capability to operate closer to the safe set boundary over vanilla MPPI.
☆ Very Large-scale Multi-Robot Task Allocation in Challenging Environments via Robot Redistribution
We consider the Multi-Robot Task Allocation (MRTA) problem that aims to optimize an assignment of multiple robots to multiple tasks in challenging environments which are with densely populated obstacles and narrow passages. In such environments, conventional methods optimizing the sum-of-cost are often ineffective because the conflicts between robots incur additional costs (e.g., collision avoidance, waiting). Also, an allocation that does not incorporate the actual robot paths could cause deadlocks, which significantly degrade the collective performance of the robots. We propose a scalable MRTA method that considers the paths of the robots to avoid collisions and deadlocks which result in a fast completion of all tasks (i.e., minimizing the \textit{makespan}). To incorporate robot paths into task allocation, the proposed method constructs a roadmap using a Generalized Voronoi Diagram. The method partitions the roadmap into several components to know how to redistribute robots to achieve all tasks with less conflicts between the robots. In the redistribution process, robots are transferred to their final destinations according to a push-pop mechanism with the first-in first-out principle. From the extensive experiments, we show that our method can handle instances with hundreds of robots in dense clutter while competitors are unable to compute a solution within a time limit.
comment: 15 pages
☆ Multi-Step Guided Diffusion for Image Restoration on Edge Devices: Toward Lightweight Perception in Embodied AI CVPR 2025
Diffusion models have shown remarkable flexibility for solving inverse problems without task-specific retraining. However, existing approaches such as Manifold Preserving Guided Diffusion (MPGD) apply only a single gradient update per denoising step, limiting restoration fidelity and robustness, especially in embedded or out-of-distribution settings. In this work, we introduce a multistep optimization strategy within each denoising timestep, significantly enhancing image quality, perceptual accuracy, and generalization. Our experiments on super-resolution and Gaussian deblurring demonstrate that increasing the number of gradient updates per step improves LPIPS and PSNR with minimal latency overhead. Notably, we validate this approach on a Jetson Orin Nano using degraded ImageNet and a UAV dataset, showing that MPGD, originally trained on face datasets, generalizes effectively to natural and aerial scenes. Our findings highlight MPGD's potential as a lightweight, plug-and-play restoration module for real-time visual perception in embodied AI agents such as drones and mobile robots.
comment: Accepted in CVPR 2025 Embodied AI Workshop
☆ Model Analysis And Design Of Ellipse Based Segmented Varying Curved Foot For Biped Robot Walking
This paper presents the modeling, design, and experimental validation of an Ellipse-based Segmented Varying Curvature (ESVC) foot for bipedal robots. Inspired by the segmented curvature rollover shape of human feet, the ESVC foot aims to enhance gait energy efficiency while maintaining analytical tractability for foot location based controller. First, we derive a complete analytical contact model for the ESVC foot by formulating spatial transformations of elliptical segments only using elementary functions. Then a nonlinear programming approach is engaged to determine optimal elliptical parameters of hind foot and fore foot based on a known mid-foot. An error compensation method is introduced to address approximation inaccuracies in rollover length calculation. The proposed ESVC foot is then integrated with a Hybrid Linear Inverted Pendulum model-based walking controller and validated through both simulation and physical experiments on the TT II biped robot. Experimental results across marking time, sagittal, and lateral walking tasks show that the ESVC foot consistently reduces energy consumption compared to line, and flat feet, with up to 18.52\% improvement in lateral walking. These findings demonstrate that the ESVC foot provides a practical and energy-efficient alternative for real-world bipedal locomotion. The proposed design methodology also lays a foundation for data-driven foot shape optimization in future research.
☆ Machine Learning-Based Self-Localization Using Internal Sensors for Automating Bulldozers
Self-localization is an important technology for automating bulldozers. Conventional bulldozer self-localization systems rely on RTK-GNSS (Real Time Kinematic-Global Navigation Satellite Systems). However, RTK-GNSS signals are sometimes lost in certain mining conditions. Therefore, self-localization methods that do not depend on RTK-GNSS are required. In this paper, we propose a machine learning-based self-localization method for bulldozers. The proposed method consists of two steps: estimating local velocities using a machine learning model from internal sensors, and incorporating these estimates into an Extended Kalman Filter (EKF) for global localization. We also created a novel dataset for bulldozer odometry and conducted experiments across various driving scenarios, including slalom, excavation, and driving on slopes. The result demonstrated that the proposed self-localization method suppressed the accumulation of position errors compared to kinematics-based methods, especially when slip occurred. Furthermore, this study showed that bulldozer-specific sensors, such as blade position sensors and hydraulic pressure sensors, contributed to improving self-localization accuracy.
☆ Active Lubrication of Transluminal Medical Instruments
Transluminal minimally invasive surgery uses natural orifices and small incisions to access internal anatomical structures, promoting quicker recovery and reduced morbidity. However, navigating instruments--catheters and endoscopes--through anatomical pathways creates frictional interactions with luminal walls, risking complications such as perforation, poor haptic feedback, and instrument buckling. In this paper, we present a new approach to actively lubricate transluminal instruments and dynamically reduce friction with surrounding tissues. This approach employs ultrasonic vibrations, at the instrument surface, to generate a pressurized fluid layer at the contact interface, lubricating the interface and thereby reducing friction. We implemented this approach in a prototype catheter, which we validated under dry and liquid-lubricated conditions, across rigid and soft interfaces, and along varied anatomical curvatures. In a cardiac catheter use case, active lubrication reduced friction by up to 42% on ex-vivo porcine aorta tissue and 82% on rigid substrates, denoting its potential performance on healthy and calcified tissue, respectively. Thermal imaging confirmed that temperature at the tissue-catheter interface remained within safe limits. Additionally, the system effectively prevented buckling during catheter insertion experiment, further showcasing its potential. By minimizing injury risk and enhancing procedural stability, active lubrication can drastically enhance the safety and efficacy of transluminal interventions.
☆ MorphoCopter: Design, Modeling, and Control of a New Transformable Quad-Bi Copter
This paper presents a novel morphing quadrotor, named MorphoCopter, covering its design, modeling, control, and experimental tests. It features a unique single rotary joint that enables rapid transformation into an ultra-narrow profile. Although quadrotors have seen widespread adoption in applications such as cinematography, agriculture, and disaster management with increasingly sophisticated control systems, their hardware configurations have remained largely unchanged, limiting their capabilities in certain environments. Our design addresses this by enabling the hardware configuration to change on the fly when required. In standard flight mode, the MorphoCopter adopts an X configuration, functioning as a traditional quadcopter, but can quickly fold into a stacked bicopters arrangement or any configuration in between. Existing morphing designs often sacrifice controllability in compact configurations or rely on complex multi-joint systems. Moreover, our design achieves a greater width reduction than any existing solution. We develop a new inertia and control-action aware adaptive control system that maintains robust performance across all rotary-joint configurations. The prototype can reduce its width from 447 mm to 138 mm (nearly 70\% reduction) in just a few seconds. We validated the MorphoCopter through rigorous simulations and a comprehensive series of flight experiments, including robustness tests, trajectory tracking, and narrow-gap passing tests.
☆ Improving Traffic Signal Data Quality for the Waymo Open Motion Dataset
Datasets pertaining to autonomous vehicles (AVs) hold significant promise for a range of research fields, including artificial intelligence (AI), autonomous driving, and transportation engineering. Nonetheless, these datasets often encounter challenges related to the states of traffic signals, such as missing or inaccurate data. Such issues can compromise the reliability of the datasets and adversely affect the performance of models developed using them. This research introduces a fully automated approach designed to tackle these issues by utilizing available vehicle trajectory data alongside knowledge from the transportation domain to effectively impute and rectify traffic signal information within the Waymo Open Motion Dataset (WOMD). The proposed method is robust and flexible, capable of handling diverse intersection geometries and traffic signal configurations in real-world scenarios. Comprehensive validations have been conducted on the entire WOMD, focusing on over 360,000 relevant scenarios involving traffic signals, out of a total of 530,000 real-world driving scenarios. In the original dataset, 71.7% of traffic signal states are either missing or unknown, all of which were successfully imputed by our proposed method. Furthermore, in the absence of ground-truth signal states, the accuracy of our approach is evaluated based on the rate of red-light violations among vehicle trajectories. Results show that our method reduces the estimated red-light running rate from 15.7% in the original data to 2.9%, thereby demonstrating its efficacy in rectifying data inaccuracies. This paper significantly enhances the quality of AV datasets, contributing to the wider AI and AV research communities and benefiting various downstream applications. The code and improved traffic signal data are open-sourced at https://github.com/michigan-traffic-lab/WOMD-Traffic-Signal-Data-Improvement
☆ Robotic Policy Learning via Human-assisted Action Preference Optimization
Establishing a reliable and iteratively refined robotic system is essential for deploying real-world applications. While Vision-Language-Action (VLA) models are widely recognized as the foundation model for such robotic deployment, their dependence on expert demonstrations hinders the crucial capabilities of correction and learning from failures. To mitigate this limitation, we introduce a Human-assisted Action Preference Optimization method named HAPO, designed to correct deployment failures and foster effective adaptation through preference alignment for VLA models. This method begins with a human-robot collaboration framework for reliable failure correction and interaction trajectory collection through human intervention. These human-intervention trajectories are further employed within the action preference optimization process, facilitating VLA models to mitigate failure action occurrences while enhancing corrective action adaptation. Specifically, we propose an adaptive reweighting algorithm to address the issues of irreversible interactions and token probability mismatch when introducing preference optimization into VLA models, facilitating model learning from binary desirability signals derived from interactions. Through combining these modules, our human-assisted action preference optimization method ensures reliable deployment and effective learning from failure for VLA models. The experiments conducted in simulation and real-world scenarios prove superior generalization and robustness of our framework across a variety of manipulation tasks.
☆ Prime the search: Using large language models for guiding geometric task and motion planning by warm-starting tree search IJRR
The problem of relocating a set of objects to designated areas amidst movable obstacles can be framed as a Geometric Task and Motion Planning (G-TAMP) problem, a subclass of task and motion planning (TAMP). Traditional approaches to G-TAMP have relied either on domain-independent heuristics or on learning from planning experience to guide the search, both of which typically demand significant computational resources or data. In contrast, humans often use common sense to intuitively decide which objects to manipulate in G-TAMP problems. Inspired by this, we propose leveraging Large Language Models (LLMs), which have common sense knowledge acquired from internet-scale data, to guide task planning in G-TAMP problems. To enable LLMs to perform geometric reasoning, we design a predicate-based prompt that encodes geometric information derived from a motion planning algorithm. We then query the LLM to generate a task plan, which is then used to search for a feasible set of continuous parameters. Since LLMs are prone to mistakes, instead of committing to LLM's outputs, we extend Monte Carlo Tree Search (MCTS) to a hybrid action space and use the LLM to guide the search. Unlike the previous approach that calls an LLM at every node and incurs high computational costs, we use it to warm-start the MCTS with the nodes explored in completing the LLM's task plan. On six different G-TAMP problems, we show our method outperforms previous LLM planners and pure search algorithms. Code can be found at: https://github.com/iMSquared/prime-the-search
comment: The International Journal of Robotics Research (IJRR)
☆ QForce-RL: Quantized FPGA-Optimized Reinforcement Learning Compute Engine
Reinforcement Learning (RL) has outperformed other counterparts in sequential decision-making and dynamic environment control. However, FPGA deployment is significantly resource-expensive, as associated with large number of computations in training agents with high-quality images and possess new challenges. In this work, we propose QForce-RL takes benefits of quantization to enhance throughput and reduce energy footprint with light-weight RL architecture, without significant performance degradation. QForce-RL takes advantages from E2HRL to reduce overall RL actions to learn desired policy and QuaRL for quantization based SIMD for hardware acceleration. We have also provided detailed analysis for different RL environments, with emphasis on model size, parameters, and accelerated compute ops. The architecture is scalable for resource-constrained devices and provide parametrized efficient deployment with flexibility in latency, throughput, power, and energy efficiency. The proposed QForce-RL provides performance enhancement up to 2.3x and better FPS - 2.6x compared to SoTA works.
☆ CARoL: Context-aware Adaptation for Robot Learning
Using Reinforcement Learning (RL) to learn new robotic tasks from scratch is often inefficient. Leveraging prior knowledge has the potential to significantly enhance learning efficiency, which, however, raises two critical challenges: how to determine the relevancy of existing knowledge and how to adaptively integrate them into learning a new task. In this paper, we propose Context-aware Adaptation for Robot Learning (CARoL), a novel framework to efficiently learn a similar but distinct new task from prior knowledge. CARoL incorporates context awareness by analyzing state transitions in system dynamics to identify similarities between the new task and prior knowledge. It then utilizes these identified similarities to prioritize and adapt specific knowledge pieces for the new task. Additionally, CARoL has a broad applicability spanning policy-based, value-based, and actor-critic RL algorithms. We validate the efficiency and generalizability of CARoL on both simulated robotic platforms and physical ground vehicles. The simulations include CarRacing and LunarLander environments, where CARoL demonstrates faster convergence and higher rewards when learning policies for new tasks. In real-world experiments, we show that CARoL enables a ground vehicle to quickly and efficiently adapt policies learned in simulation to smoothly traverse real-world off-road terrain.
☆ Hierarchical Intention Tracking with Switching Trees for Real-Time Adaptation to Dynamic Human Intentions during Collaboration
During collaborative tasks, human behavior is guided by multiple levels of intentions that evolve over time, such as task sequence preferences and interaction strategies. To adapt to these changing preferences and promptly correct any inaccurate estimations, collaborative robots must accurately track these dynamic human intentions in real time. We propose a Hierarchical Intention Tracking (HIT) algorithm for collaborative robots to track dynamic and hierarchical human intentions effectively in real time. HIT represents human intentions as intention trees with arbitrary depth, and probabilistically tracks human intentions by Bayesian filtering, upward measurement propagation, and downward posterior propagation across all levels. We develop a HIT-based robotic system that dynamically switches between Interaction-Task and Verification-Task trees for a collaborative assembly task, allowing the robot to effectively coordinate human intentions at three levels: task-level (subtask goal locations), interaction-level (mode of engagement with the robot), and verification-level (confirming or correcting intention recognition). Our user study shows that our HIT-based collaborative robot system surpasses existing collaborative robot solutions by achieving a balance between efficiency, physical workload, and user comfort while ensuring safety and task completion. Post-experiment surveys further reveal that the HIT-based system enhances the user trust and minimizes interruptions to user's task flow through its effective understanding of human intentions across multiple levels.
comment: 15 pages, 10 figures
☆ Safety-Aware Reinforcement Learning for Control via Risk-Sensitive Action-Value Iteration and Quantile Regression
Mainstream approximate action-value iteration reinforcement learning (RL) algorithms suffer from overestimation bias, leading to suboptimal policies in high-variance stochastic environments. Quantile-based action-value iteration methods reduce this bias by learning a distribution of the expected cost-to-go using quantile regression. However, ensuring that the learned policy satisfies safety constraints remains a challenge when these constraints are not explicitly integrated into the RL framework. Existing methods often require complex neural architectures or manual tradeoffs due to combined cost functions. To address this, we propose a risk-regularized quantile-based algorithm integrating Conditional Value-at-Risk (CVaR) to enforce safety without complex architectures. We also provide theoretical guarantees on the contraction properties of the risk-sensitive distributional Bellman operator in Wasserstein space, ensuring convergence to a unique cost distribution. Simulations of a mobile robot in a dynamic reach-avoid task show that our approach leads to more goal successes, fewer collisions, and better safety-performance trade-offs compared to risk-neutral methods.
comment: 13 pages, 4 figures. Submission under review
UAVs Meet Agentic AI: A Multidomain Survey of Autonomous Aerial Intelligence and Agentic UAVs
Agentic UAVs represent a new frontier in autonomous aerial intelligence, integrating perception, decision-making, memory, and collaborative planning to operate adaptively in complex, real-world environments. Driven by recent advances in Agentic AI, these systems surpass traditional UAVs by exhibiting goal-driven behavior, contextual reasoning, and interactive autonomy. We provide a comprehensive foundation for understanding the architectural components and enabling technologies that distinguish Agentic UAVs from traditional autonomous UAVs. Furthermore, a detailed comparative analysis highlights advancements in autonomy with AI agents, learning, and mission flexibility. This study explores seven high-impact application domains precision agriculture, construction & mining, disaster response, environmental monitoring, infrastructure inspection, logistics, security, and wildlife conservation, illustrating the broad societal value of agentic aerial intelligence. Furthermore, we identify key challenges in technical constraints, regulatory limitations, and data-model reliability, and we present emerging solutions across hardware innovation, learning architectures, and human-AI interaction. Finally, a future roadmap is proposed, outlining pathways toward self-evolving aerial ecosystems, system-level collaboration, and sustainable, equitable deployments. This survey establishes a foundational framework for the future development, deployment, and governance of agentic aerial systems (Agentic UAVs) across diverse societal and industrial domains.
comment: 40 pages, 6 Figures
☆ BG-HOP: A Bimanual Generative Hand-Object Prior CVPR 2025
In this work, we present BG-HOP, a generative prior that seeks to model bimanual hand-object interactions in 3D. We address the challenge of limited bimanual interaction data by extending existing single-hand generative priors, demonstrating preliminary results in capturing the joint distribution of hands and objects. Our experiments showcase the model's capability to generate bimanual interactions and synthesize grasps for given objects. We make code and models publicly available.
comment: Presented at Agents in Interaction, from Humans to Robots, CVPR 2025
♻ ☆ Unifying 2D and 3D Vision-Language Understanding
Progress in 3D vision-language learning has been hindered by the scarcity of large-scale 3D datasets. We introduce UniVLG, a unified architecture for 2D and 3D vision-language understanding that bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems. Our approach initializes most model weights from pre-trained 2D models and trains on both 2D and 3D vision-language data. We propose a novel language-conditioned mask decoder shared across 2D and 3D modalities to ground objects effectively in both RGB and RGB-D images, outperforming box-based approaches. To further reduce the domain gap between 2D and 3D, we incorporate 2D-to-3D lifting strategies, enabling UniVLG to utilize 2D data to enhance 3D performance. With these innovations, our model achieves state-of-the-art performance across multiple 3D vision-language grounding tasks, demonstrating the potential of transferring advances from 2D vision-language learning to the data-constrained 3D domain. Furthermore, co-training on both 2D and 3D data enhances performance across modalities without sacrificing 2D capabilities. By removing the reliance on 3D mesh reconstruction and ground-truth object proposals, UniVLG sets a new standard for realistic, embodied-aligned evaluation. Code and additional visualizations are available at https://univlg.github.io .
comment: The first two authors contributed equally
A Learning-based Quadcopter Controller with Extreme Adaptation
This paper introduces a learning-based low-level controller for quadcopters, which adaptively controls quadcopters with significant variations in mass, size, and actuator capabilities. Our approach leverages a combination of imitation learning and reinforcement learning, creating a fast-adapting and general control framework for quadcopters that eliminates the need for precise model estimation or manual tuning. The controller estimates a latent representation of the vehicle's system parameters from sensor-action history, enabling it to adapt swiftly to diverse dynamics. Extensive evaluations in simulation demonstrate the controller's ability to generalize to unseen quadcopter parameters, with an adaptation range up to 16 times broader than the training set. In real-world tests, the controller is successfully deployed on quadcopters with mass differences of 3.7 times and propeller constants varying by more than 100 times, while also showing rapid adaptation to disturbances such as off-center payloads and motor failures. These results highlight the potential of our controller in extreme adaptation to simplify the design process and enhance the reliability of autonomous drone operations in unpredictable environments. The video and code are at: https://github.com/muellerlab/xadapt_ctrl
comment: Accepted for the Transaction on Robotics (T-RO), April 2025
♻ ☆ A Versatile Neural Network Configuration Space Planning and Control Strategy for Modular Soft Robot Arms
Modular soft robot arms (MSRAs) are composed of multiple modules connected in a sequence, and they can bend at different angles in various directions. This capability allows MSRAs to perform more intricate tasks than single-module robots. However, the modular structure also induces challenges in accurate planning and control. Nonlinearity and hysteresis complicate the physical model, while the modular structure and increased DOFs further lead to cumulative errors along the sequence. To address these challenges, we propose a versatile configuration space planning and control strategy for MSRAs, named S2C2A (State to Configuration to Action). Our approach formulates an optimization problem, S2C (State to Configuration planning), which integrates various loss functions and a forward model based on biLSTM to generate configuration trajectories based on target states. A configuration controller C2A (Configuration to Action control) based on biLSTM is implemented to follow the planned configuration trajectories, leveraging only inaccurate internal sensing feedback. We validate our strategy using a cable-driven MSRA, demonstrating its ability to perform diverse offline tasks such as position and orientation control and obstacle avoidance. Furthermore, our strategy endows MSRA with online interaction capability with targets and obstacles. Future work focuses on addressing MSRA challenges, such as more accurate physical models.
comment: 14 pages, 16 figures, 5 tables; accepted by IEEE T-Ro
♻ ☆ Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Data-driven methods such as reinforcement and imitation learning have achieved remarkable success in robot autonomy. However, their data-centric nature still hinders them from generalizing well to ever-changing environments. Moreover, labeling data for robotic tasks is often impractical and expensive. To overcome these challenges, we introduce a new self-supervised neuro-symbolic (NeSy) computational framework, imperative learning (IL), for robot autonomy, leveraging the generalization abilities of symbolic reasoning. The framework of IL consists of three primary components: a neural module, a reasoning engine, and a memory system. We formulate IL as a special bilevel optimization (BLO), which enables reciprocal learning over the three modules. This overcomes the label-intensive obstacles associated with data-driven approaches and takes advantage of symbolic reasoning concerning logical reasoning, physical principles, geometric analysis, etc. We discuss several optimization techniques for IL and verify their effectiveness in five distinct robot autonomy tasks including path planning, rule induction, optimal control, visual odometry, and multi-robot routing. Through various experiments, we show that IL can significantly enhance robot autonomy capabilities and we anticipate that it will catalyze further research across diverse domains.
♻ ☆ Safe Navigation in Dynamic Environments using Density Functions
This work presents a density-based framework for safe navigation in dynamic environments characterized by time-varying obstacle sets and time-varying target regions. We propose an analytical construction of time-varying density functions that enables the synthesis of a feedback controller defined as the positive gradient of the resulting density field. The primary contribution of this paper is a rigorous convergence proof demonstrating almost-everywhere safe navigation under the proposed framework, specifically for systems governed by single-integrator dynamics. To the best of our knowledge, these are the first analytical guarantees of their kind for navigation in dynamic environments using density functions. We illustrate the applicability of the framework to systems with more complex dynamics, including multi-agent systems and robotic manipulators, using standard control design techniques such as backstepping and inverse dynamics. These results provide a foundation for extending density-based navigation methods to a broad class of robotic systems operating in time-varying environments.
♻ ☆ DaDu-Corki: Algorithm-Architecture Co-Design for Embodied AI-powered Robotic Manipulation
Embodied AI robots have the potential to fundamentally improve the way human beings live and manufacture. Continued progress in the burgeoning field of using large language models to control robots depends critically on an efficient computing substrate, and this trend is strongly evident in manipulation tasks. In particular, today's computing systems for embodied AI robots for manipulation tasks are designed purely based on the interest of algorithm developers, where robot actions are divided into a discrete frame basis. Such an execution pipeline creates high latency and energy consumption. This paper proposes \textsc{Corki}\xspace, an algorithm-architecture co-design framework for real-time embodied AI-powered robotic manipulation applications. We aim to decouple LLM inference, robotic control, and data communication in the embodied AI robots' compute pipeline. Instead of predicting action for one single frame, \textsc{Corki}\xspace predicts the trajectory for the near future to reduce the frequency of LLM inference. The algorithm is coupled with a hardware that accelerates transforming trajectory into actual torque signals used to control robots and an execution pipeline that parallels data communication with computation. \textsc{Corki}\xspace largely reduces LLM inference frequency by up to $5.1\times$, resulting in up to $5.9\times$ speed up. The success rate improvement can be up to 13.9\%.
♻ ☆ A Hybrid Multi-Factor Network with Dynamic Sequence Modeling for Early Warning of Intraoperative Hypotension
Intraoperative hypotension (IOH) prediction using past physiological signals is crucial, as IOH may lead to inadequate organ perfusion and significantly elevate the risk of severe complications and mortality. However, current methods often rely on static modeling, overlooking the complex temporal dependencies and the inherently non-stationary nature of physiological signals. We propose a Hybrid Multi-Factor (HMF) network that formulates IOH prediction as a dynamic sequence forecasting task, explicitly capturing both temporal dependencies and physiological non-stationarity. We represent signal dynamics as multivariate time series and decompose them into trend and seasonal components, enabling separate modeling of long-term and periodic variations. Each component is encoded with a patch-based Transformer to balance computational efficiency and feature representation. To address distributional drift from evolving signals, we introduce a symmetric normalization mechanism. Experiments on both public and real-world clinical datasets show that HMF significantly outperforms competitive baselines. We hope HMF offers new insights into IOH prediction and ultimately promotes safer surgical care. Our code is available at https://github.com/Mingyue-Cheng/HMF.
♻ ☆ SKiD-SLAM: Robust, Lightweight, and Distributed Multi-Robot LiDAR SLAM in Resource-Constrained Field Environments
Distributed LiDAR SLAM is crucial for achieving efficient robot autonomy and improving the scalability of mapping. However, two issues need to be considered when applying it in field environments: one is resource limitation, and the other is inter/intra-robot association. The resource limitation issue arises when the data size exceeds the processing capacity of the network or memory, especially when utilizing communication systems or onboard computers in the field. The inter/intra-robot association issue occurs due to the narrow convergence region of ICP under large viewpoint differences, triggering many false positive loops and ultimately resulting in an inconsistent global map for multi-robot systems. To tackle these problems, we propose a distributed LiDAR SLAM framework designed for versatile field applications, called SKiD-SLAM. Extending our previous work that solely focused on lightweight place recognition and fast and robust global registration, we present a multi-robot mapping framework that focuses on robust and lightweight inter-robot loop closure in distributed LiDAR SLAM. Through various environmental experiments, we demonstrate that our method is more robust and lightweight compared to other state-of-the-art distributed SLAM approaches, overcoming resource limitation and inter/intra-robot association issues. Also, we validated the field applicability of our approach through mapping experiments in real-world planetary emulation terrain and cave environments, which are in-house datasets. Our code will be available at https://sparolab.github.io/research/skid_slam/.
comment: 8 pages, 10 figures
♻ ☆ LLM-HDR: Bridging LLM-based Perception and Self-Supervision for Unpaired LDR-to-HDR Image Reconstruction
The translation of Low Dynamic Range (LDR) to High Dynamic Range (HDR) images is an important computer vision task. There is a significant amount of research utilizing both conventional non-learning methods and modern data-driven approaches, focusing on using both single-exposed and multi-exposed LDR for HDR image reconstruction. However, most current state-of-the-art methods require high-quality paired {LDR,HDR} datasets for model training. In addition, there is limited literature on using unpaired datasets for this task, that is, the model learns a mapping between domains, i.e., {LDR,HDR}. This paper proposes LLM-HDR, a method that integrates the perception of Large Language Models (LLM) into a modified semantic- and cycle-consistent adversarial architecture that utilizes unpaired {LDR,HDR} datasets for training. The method introduces novel artifact- and exposure-aware generators to address visual artifact removal and an encoder and loss to address semantic consistency, another under-explored topic. LLM-HDR is the first to use an LLM for the {LDR,HDR} translation task in a self-supervised setup. The method achieves state-of-the-art performance across several benchmark datasets and reconstructs high-quality HDR images. The official website of this work is available at: https://github.com/HrishavBakulBarua/LLM-HDR
♻ ☆ RT-GuIDE: Real-Time Gaussian splatting for Information-Driven Exploration
We propose a framework for active mapping and exploration that leverages Gaussian splatting for constructing dense maps. Further, we develop a GPU-accelerated motion planning algorithm that can exploit the Gaussian map for real-time navigation. The Gaussian map constructed onboard the robot is optimized for both photometric and geometric quality while enabling real-time situational awareness for autonomy. We show through simulation experiments that our method yields comparable Peak Signal-to-Noise Ratio (PSNR) and similar reconstruction error to state-of-the-art approaches, while being orders of magnitude faster to compute. In real-world experiments, our algorithm achieves better map quality (at least 0.8dB higher PSNR and more than 16% higher geometric reconstruction accuracy) than maps constructed by a state-of-the-art method, enabling semantic segmentation using off-the-shelf open-set models. Experiment videos and more details can be found on our project page: https://tyuezhan.github.io/RT_GuIDE/
Artificial Intelligence 66
☆ Reward Model Interpretability via Optimal and Pessimal Tokens
Reward modeling has emerged as a crucial component in aligning large language models with human values. Significant attention has focused on using reward models as a means for fine-tuning generative models. However, the reward models themselves -- which directly encode human value judgments by turning prompt-response pairs into scalar rewards -- remain relatively understudied. We present a novel approach to reward model interpretability through exhaustive analysis of their responses across their entire vocabulary space. By examining how different reward models score every possible single-token response to value-laden prompts, we uncover several striking findings: (i) substantial heterogeneity between models trained on similar objectives, (ii) systematic asymmetries in how models encode high- vs low-scoring tokens, (iii) significant sensitivity to prompt framing that mirrors human cognitive biases, and (iv) overvaluation of more frequent tokens. We demonstrate these effects across ten recent open-source reward models of varying parameter counts and architectures. Our results challenge assumptions about the interchangeability of reward models, as well as their suitability as proxies of complex and context-dependent human values. We find that these models can encode concerning biases toward certain identity groups, which may emerge as unintended consequences of harmlessness training -- distortions that risk propagating through the downstream large language models now deployed to millions.
comment: Accepted for publication in Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency (FAccT '25), to appear June 2025
☆ Speech Recognition on TV Series with Video-guided Post-Correction
Automatic Speech Recognition (ASR) has achieved remarkable success with deep learning, driving advancements in conversational artificial intelligence, media transcription, and assistive technologies. However, ASR systems still struggle in complex environments such as TV series, where overlapping speech, domain-specific terminology, and long-range contextual dependencies pose significant challenges to transcription accuracy. Existing multimodal approaches fail to correct ASR outputs with the rich temporal and contextual information available in video. To address this limitation, we propose a novel multimodal post-correction framework that refines ASR transcriptions by leveraging contextual cues extracted from video. Our framework consists of two stages: ASR Generation and Video-based Post-Correction, where the first stage produces the initial transcript and the second stage corrects errors using Video-based Contextual Information Extraction and Context-aware ASR Correction. We employ the Video-Large Multimodal Model (VLMM) to extract key contextual information using tailored prompts, which is then integrated with a Large Language Model (LLM) to refine the ASR output. We evaluate our method on a multimodal benchmark for TV series ASR and demonstrate its effectiveness in improving ASR performance by leveraging video-based context to enhance transcription accuracy in complex multimedia environments.
☆ Generative Modeling of Networked Time-Series via Transformer Architectures
Many security and network applications require having large datasets to train the machine learning models. Limited data access is a well-known problem in the security domain. Recent studies have shown the potential of Transformer models to enlarge the size of data by synthesizing new samples, but the synthesized samples don't improve the models over the real data. To address this issue, we design an efficient transformer-based model as a generative framework to generate time-series data, that can be used to boost the performance of existing and new ML workflows. Our new transformer model achieves the SOTA results. We style our model to be generalizable and work across different datasets, and produce high-quality samples.
☆ Paged Attention Meets FlexAttention: Unlocking Long-Context Efficiency in Deployed Inference
Large Language Models (LLMs) encounter severe memory inefficiencies during long-context inference due to conventional handling of key-value (KV) caches. In this work, we introduce a novel integration of PagedAttention with PyTorch's FlexAttention, addressing internal fragmentation and inefficiencies associated with monolithic KV cache allocations. Implemented within IBM's Foundation Model Stack (FMS), our fused attention kernel efficiently gathers scattered KV data. Our benchmarks on an NVIDIA L4 GPU (24GB) demonstrate significantly reduced inference latency, growing only linearly (~2x) with sequence length from 128 to 2048 tokens when utilizing a global KV cache, compared to exponential latency increases without caching. While peak memory usage remains largely unchanged for single-step evaluations (dominated by model weights and activations), paged attention causes minimal incremental memory usage, observable only at sequence lengths exceeding 2048 tokens due to its power-of-two cache allocations. We open-source the full implementation and discuss its implications for future long-context model deployment.
☆ Pre-trained Large Language Models Learn Hidden Markov Models In-context
Hidden Markov Models (HMMs) are foundational tools for modeling sequential data with latent Markovian structure, yet fitting them to real-world data remains computationally challenging. In this work, we show that pre-trained large language models (LLMs) can effectively model data generated by HMMs via in-context learning (ICL)$\unicode{x2013}$their ability to infer patterns from examples within a prompt. On a diverse set of synthetic HMMs, LLMs achieve predictive accuracy approaching the theoretical optimum. We uncover novel scaling trends influenced by HMM properties, and offer theoretical conjectures for these empirical observations. We also provide practical guidelines for scientists on using ICL as a diagnostic tool for complex data. On real-world animal decision-making tasks, ICL achieves competitive performance with models designed by human experts. To our knowledge, this is the first demonstration that ICL can learn and predict HMM-generated sequences$\unicode{x2013}$an advance that deepens our understanding of in-context learning in LLMs and establishes its potential as a powerful tool for uncovering hidden structure in complex scientific data.
☆ HotelMatch-LLM: Joint Multi-Task Training of Small and Large Language Models for Efficient Multimodal Hotel Retrieval ACL 2025
We present HotelMatch-LLM, a multimodal dense retrieval model for the travel domain that enables natural language property search, addressing the limitations of traditional travel search engines which require users to start with a destination and editing search parameters. HotelMatch-LLM features three key innovations: (1) Domain-specific multi-task optimization with three novel retrieval, visual, and language modeling objectives; (2) Asymmetrical dense retrieval architecture combining a small language model (SLM) for efficient online query processing and a large language model (LLM) for embedding hotel data; and (3) Extensive image processing to handle all property image galleries. Experiments on four diverse test sets show HotelMatch-LLM significantly outperforms state-of-the-art models, including VISTA and MARVEL. Specifically, on the test set -- main query type -- we achieve 0.681 for HotelMatch-LLM compared to 0.603 for the most effective baseline, MARVEL. Our analysis highlights the impact of our multi-task optimization, the generalizability of HotelMatch-LLM across LLM architectures, and its scalability for processing large image galleries.
comment: Accepted at ACL 2025, Main track. 13 Pages, 1 figure
☆ Secondary Stakeholders in AI: Fighting for, Brokering, and Navigating Agency
As AI technologies become more human-facing, there have been numerous calls to adapt participatory approaches to AI development -- spurring the idea of participatory AI. However, these calls often focus only on primary stakeholders, such as end-users, and not secondary stakeholders. This paper seeks to translate the ideals of participatory AI to a broader population of secondary AI stakeholders through semi-structured interviews. We theorize that meaningful participation involves three participatory ideals: (1) informedness, (2) consent, and (3) agency. We also explore how secondary stakeholders realize these ideals by traversing a complicated problem space. Like walking up the rungs of a ladder, these ideals build on one another. We introduce three stakeholder archetypes: the reluctant data contributor, the unsupported activist, and the well-intentioned practitioner, who must navigate systemic barriers to achieving agentic AI relationships. We envision an AI future where secondary stakeholders are able to meaningfully participate with the AI systems they influence and are influenced by.
☆ Tokenized Bandit for LLM Decoding and Alignment ICML 2025
We introduce the tokenized linear bandit (TLB) and multi-armed bandit (TMAB), variants of linear and stochastic multi-armed bandit problems inspired by LLM decoding and alignment. In these problems, at each round $t \in [T]$, a user submits a query (context), and the decision maker (DM) sequentially selects a token irrevocably from a token set. Once the sequence is complete, the DM observes a random utility from the user, whose expectation is presented by a sequence function mapping the chosen token sequence to a nonnegative real value that depends on the query. In both problems, we first show that learning is impossible without any structure on the sequence function. We introduce a natural assumption, diminishing distance with more commons (DDMC), and propose algorithms with regret $\tilde{O}(L\sqrt{T})$ and $\tilde{O}(L\sqrt{T^{2/3}})$ for TLB and TMAB, respectively. As a side product, we obtain an (almost) optimality of the greedy decoding for LLM decoding algorithm under DDMC, which justifies the unresaonable effectiveness of greedy decoding in several tasks. This also has an immediate application to decoding-time LLM alignment, when the misaligned utility can be represented as the frozen LLM's utility and a linearly realizable latent function. We finally validate our algorithm's performance empirically as well as verify our assumptions using synthetic and real-world datasets.
comment: To appear at ICML 2025
☆ Parsing the Switch: LLM-Based UD Annotation for Complex Code-Switched and Low-Resource Languages
Code-switching presents a complex challenge for syntactic analysis, especially in low-resource language settings where annotated data is scarce. While recent work has explored the use of large language models (LLMs) for sequence-level tagging, few approaches systematically investigate how well these models capture syntactic structure in code-switched contexts. Moreover, existing parsers trained on monolingual treebanks often fail to generalize to multilingual and mixed-language input. To address this gap, we introduce the BiLingua Parser, an LLM-based annotation pipeline designed to produce Universal Dependencies (UD) annotations for code-switched text. First, we develop a prompt-based framework for Spanish-English and Spanish-Guaran\'i data, combining few-shot LLM prompting with expert review. Second, we release two annotated datasets, including the first Spanish-Guaran\'i UD-parsed corpus. Third, we conduct a detailed syntactic analysis of switch points across language pairs and communicative contexts. Experimental results show that BiLingua Parser achieves up to 95.29% LAS after expert revision, significantly outperforming prior baselines and multilingual parsers. These results show that LLMs, when carefully guided, can serve as practical tools for bootstrapping syntactic resources in under-resourced, code-switched environments. Data and source code are available at https://github.com/N3mika/ParsingProject
comment: 16 pages
☆ Subgoal-Guided Policy Heuristic Search with Learned Subgoals ICML-25
Policy tree search is a family of tree search algorithms that use a policy to guide the search. These algorithms provide guarantees on the number of expansions required to solve a given problem that are based on the quality of the policy. While these algorithms have shown promising results, the process in which they are trained requires complete solution trajectories to train the policy. Search trajectories are obtained during a trial-and-error search process. When the training problem instances are hard, learning can be prohibitively costly, especially when starting from a randomly initialized policy. As a result, search samples are wasted in failed attempts to solve these hard instances. This paper introduces a novel method for learning subgoal-based policies for policy tree search algorithms. The subgoals and policies conditioned on subgoals are learned from the trees that the search expands while attempting to solve problems, including the search trees of failed attempts. We empirically show that our policy formulation and training method improve the sample efficiency of learning a policy and heuristic function in this online setting.
comment: Accepted to ICML-25
☆ SDE-SQL: Enhancing Text-to-SQL Generation in Large Language Models via Self-Driven Exploration with SQL Probes
Recent advancements in large language models (LLMs) have significantly improved performance on the Text-to-SQL task. However, prior approaches typically rely on static, pre-processed database information provided at inference time, which limits the model's ability to fully understand the database contents. Without dynamic interaction, LLMs are constrained to fixed, human-provided context and cannot autonomously explore the underlying data. To address this limitation, we propose SDE-SQL, a framework that enables large language models to perform self-driven exploration of databases during inference. This is accomplished by generating and executing SQL probes, which allow the model to actively retrieve information from the database and iteratively update its understanding of the data. Unlike prior methods, SDE-SQL operates in a zero-shot setting, without relying on any question-SQL pairs as in-context demonstrations. When evaluated on the BIRD benchmark with Qwen2.5-72B-Instruct, SDE-SQL achieves an 8.02% relative improvement in execution accuracy over the vanilla Qwen2.5-72B-Instruct baseline, establishing a new state-of-the-art among methods based on open-source models without supervised fine-tuning (SFT) or model ensembling. Moreover, with SFT, the performance of SDE-SQL can be further enhanced, yielding an additional 0.52% improvement.
☆ Overclocking LLM Reasoning: Monitoring and Controlling Thinking Path Lengths in LLMs
Recently, techniques such as explicit structured reasoning have demonstrated strong test-time scaling behavior by enforcing a separation between the model's internal "thinking" process and the final response. A key factor influencing answer quality in this setting is the length of the thinking stage. When the reasoning is too short, the model may fail to capture the complexity of the task. Conversely, when it is too long, the model may overthink, leading to unnecessary computation and degraded performance. This paper explores and exploits the underlying mechanisms by which LLMs understand and regulate the length of their reasoning during explicit thought processes. First, we show that LLMs encode their progress through the reasoning process and introduce an interactive progress bar visualization, which is then used to reveal insights on the model's planning dynamics. Second, we manipulate the internal progress encoding during inference to reduce unnecessary steps and generate a more concise and decisive chain of thoughts. Our empirical results demonstrate that this "overclocking" method mitigates overthinking, improves answer accuracy, and reduces inference latency. Our code is publicly available.
☆ VeriLoC: Line-of-Code Level Prediction of Hardware Design Quality from Verilog Code
Modern chip design is complex, and there is a crucial need for early-stage prediction of key design-quality metrics like timing and routing congestion directly from Verilog code (a commonly used programming language for hardware design). It is especially important yet complex to predict individual lines of code that cause timing violations or downstream routing congestion. Prior works have tried approaches like converting Verilog into an intermediate graph representation and using LLM embeddings alongside other features to predict module-level quality, but did not consider line-level quality prediction. We propose VeriLoC, the first method that predicts design quality directly from Verilog at both the line- and module-level. To this end, VeriLoC leverages recent Verilog code-generation LLMs to extract local line-level and module-level embeddings, and train downstream classifiers/regressors on concatenations of these embeddings. VeriLoC achieves high F1-scores of 0.86-0.95 for line-level congestion and timing prediction, and reduces the mean average percentage error from 14% - 18% for SOTA methods down to only 4%. We believe that VeriLoC embeddings and insights from our work will also be of value for other predictive and optimization tasks for complex hardware design.
☆ Learn as Individuals, Evolve as a Team: Multi-agent LLMs Adaptation in Embodied Environments
Large language models (LLMs) possess extensive knowledge bases and strong reasoning capabilities, making them promising tools for complex, multi-agent planning in embodied environments. However, despite LLMs' advanced abilities and the sophisticated modular design of agentic methods, existing LLM-based planning algorithms remain limited by weak adaptation capabilities to multi-agent embodied scenarios. We address this limitation by introducing a framework that enables LLM agents to learn and evolve both before and during test time, equipping them with environment-relevant knowledge for better planning and enhanced communication for improved cooperation. Inspired by centralized training with decentralized execution in multi-agent reinforcement learning, we propose a \textit{Learn as Individuals, Evolve as a Team (LIET)} paradigm for multi-agent LLMs adaptation. At the individual level, LLM agents learn a local utility function from exploratory datasets to better comprehend the embodied environment, which is then queried during test time to support informed decision-making. At the team level, LLM agents collaboratively and iteratively maintain and update a shared cooperation knowledge list based on new experiences, using it to guide more effective communication. By combining individual learning with team evolution, LIET enables comprehensive and flexible adaptation for LLM agents. Our experiments on Communicative Watch-And-Help and ThreeD-World Multi-Agent Transport benchmarks demonstrate that LIET, instantiated with both LLaMA and GPT-4o, outperforms existing baselines and exhibits strong cooperative planning abilities.
☆ LLM-Enhanced Rapid-Reflex Async-Reflect Embodied Agent for Real-Time Decision-Making in Dynamically Changing Environments CVPR 2025
In the realm of embodied intelligence, the evolution of large language models (LLMs) has markedly enhanced agent decision making. Consequently, researchers have begun exploring agent performance in dynamically changing high-risk scenarios, i.e., fire, flood, and wind scenarios in the HAZARD benchmark. Under these extreme conditions, the delay in decision making emerges as a crucial yet insufficiently studied issue. We propose a Time Conversion Mechanism (TCM) that translates inference delays in decision-making into equivalent simulation frames, thus aligning cognitive and physical costs under a single FPS-based metric. By extending HAZARD with Respond Latency (RL) and Latency-to-Action Ratio (LAR), we deliver a fully latency-aware evaluation protocol. Moreover, we present the Rapid-Reflex Async-Reflect Agent (RRARA), which couples a lightweight LLM-guided feedback module with a rule-based agent to enable immediate reactive behaviors and asynchronous reflective refinements in situ. Experiments on HAZARD show that RRARA substantially outperforms existing baselines in latency-sensitive scenarios.
comment: Accepted by the CVPR 2025 Embodied AI Workshop
☆ Advancing Multimodal Reasoning Capabilities of Multimodal Large Language Models via Visual Perception Reward
Enhancing the multimodal reasoning capabilities of Multimodal Large Language Models (MLLMs) is a challenging task that has attracted increasing attention in the community. Recently, several studies have applied Reinforcement Learning with Verifiable Rewards (RLVR) to the multimodal domain in order to enhance the reasoning abilities of MLLMs. However, these works largely overlook the enhancement of multimodal perception capabilities in MLLMs, which serve as a core prerequisite and foundational component of complex multimodal reasoning. Through McNemar's test, we find that existing RLVR method fails to effectively enhance the multimodal perception capabilities of MLLMs, thereby limiting their further improvement in multimodal reasoning. To address this limitation, we propose Perception-R1, which introduces a novel visual perception reward that explicitly encourages MLLMs to perceive the visual content accurately, thereby can effectively incentivizing both their multimodal perception and reasoning capabilities. Specifically, we first collect textual visual annotations from the CoT trajectories of multimodal problems, which will serve as visual references for reward assignment. During RLVR training, we employ a judging LLM to assess the consistency between the visual annotations and the responses generated by MLLM, and assign the visual perception reward based on these consistency judgments. Extensive experiments on several multimodal reasoning benchmarks demonstrate the effectiveness of our Perception-R1, which achieves state-of-the-art performance on most benchmarks using only 1,442 training data.
☆ BIMgent: Towards Autonomous Building Modeling via Computer-use Agents ICML 2025
Existing computer-use agents primarily focus on general-purpose desktop automation tasks, with limited exploration of their application in highly specialized domains. In particular, the 3D building modeling process in the Architecture, Engineering, and Construction (AEC) sector involves open-ended design tasks and complex interaction patterns within Building Information Modeling (BIM) authoring software, which has yet to be thoroughly addressed by current studies. In this paper, we propose BIMgent, an agentic framework powered by multimodal large language models (LLMs), designed to enable autonomous building model authoring via graphical user interface (GUI) operations. BIMgent automates the architectural building modeling process, including multimodal input for conceptual design, planning of software-specific workflows, and efficient execution of the authoring GUI actions. We evaluate BIMgent on real-world building modeling tasks, including both text-based conceptual design generation and reconstruction from existing building design. The design quality achieved by BIMgent was found to be reasonable. Its operations achieved a 32% success rate, whereas all baseline models failed to complete the tasks (0% success rate). Results demonstrate that BIMgent effectively reduces manual workload while preserving design intent, highlighting its potential for practical deployment in real-world architectural modeling scenarios.
comment: ICML 2025 Workshop on Computer Use Agents
☆ Sword and Shield: Uses and Strategies of LLMs in Navigating Disinformation
The emergence of Large Language Models (LLMs) presents a dual challenge in the fight against disinformation. These powerful tools, capable of generating human-like text at scale, can be weaponised to produce sophisticated and persuasive disinformation, yet they also hold promise for enhancing detection and mitigation strategies. This paper investigates the complex dynamics between LLMs and disinformation through a communication game that simulates online forums, inspired by the game Werewolf, with 25 participants. We analyse how Disinformers, Moderators, and Users leverage LLMs to advance their goals, revealing both the potential for misuse and combating disinformation. Our findings highlight the varying uses of LLMs depending on the participants' roles and strategies, underscoring the importance of understanding their effectiveness in this context. We conclude by discussing implications for future LLM development and online platform design, advocating for a balanced approach that empowers users and fosters trust while mitigating the risks of LLM-assisted disinformation.
Reasoning Multimodal Large Language Model: Data Contamination and Dynamic Evaluation
Multimodal Large Language Models (MLLMs) show impressive vision-language benchmark performance, yet growing concerns about data contamination (test set exposure during training) risk masking true generalization. This concern extends to reasoning MLLMs, often fine-tuned via reinforcement learning from potentially contaminated base models. We propose a novel dynamic evaluation framework to rigorously assess MLLM generalization, moving beyond static benchmarks. Instead of perturbing inputs, we perturb the task itself. Using the same visual input, models are evaluated across a family of tasks (e.g., QA, captioning, question posing, verification) to probe diverse capabilities. This task perturbation reveals whether model performance is robust or reliant on superficial task-specific cues. Our approach is analogous to loss landscape sharpness: models overfit or contaminated for a single task (sharp minima) falter under task shifts, unlike models with generalizable solutions (flatter minima). We developed an automated pipeline with a calibrated judge scoring open-ended generations (captions, questions) using paraphrase and corruption sampling. Applying this framework to leading image/video MLLMs on benchmarks including MME, RealWorldQA, and CVRR-ES, we analyze each model's cross-task "ability vector." We demonstrate that fine-tuning on simulated test data (extreme contamination) drastically sharpens task-specific performance but harms overall generalization. Our dynamic task perturbation offers deeper insights into MLLM generalization, distinguishing genuine understanding from spurious leakage or overfitting.
☆ Exploring Effective Strategies for Building a Customised GPT Agent for Coding Classroom Dialogues
This study investigates effective strategies for developing a customised GPT agent to code classroom dialogue. While classroom dialogue is widely recognised as a crucial element of education, its analysis remains challenging due to the need for a nuanced understanding of dialogic functions and the labour-intensive nature of manual transcript coding. Recent advancements in large language models offer promising avenues for automating this process. However, existing studies predominantly focus on training large-scale models or evaluating pre-trained models with fixed codebooks, which are often not applicable or replicable for dialogue researchers working with small datasets or customised coding schemes. Using GPT-4's MyGPT agent as a case, this study evaluates its baseline performance in coding classroom dialogue with a human codebook and examines how performance varies with different example inputs through a variable control method. Through a design-based research approach, it identifies a set of practical strategies, based on MyGPT's unique features, for configuring effective agents with limited data. The findings suggest that, despite some limitations, a MyGPT agent developed with these strategies can serve as a useful coding assistant by generating coding suggestions.
comment: Draft technical report. 39 pages, 2 figures. Not yet submitted for publication. Update expected
☆ Mitigating Behavioral Hallucination in Multimodal Large Language Models for Sequential Images
While multimodal large language models excel at various tasks, they still suffer from hallucinations, which limit their reliability and scalability for broader domain applications. To address this issue, recent research mainly focuses on objective hallucination. However, for sequential images, besides objective hallucination, there is also behavioral hallucination, which is less studied. This work aims to fill in the gap. We first reveal that behavioral hallucinations mainly arise from two key factors: prior-driven bias and the snowball effect. Based on these observations, we introduce SHE (Sequence Hallucination Eradication), a lightweight, two-stage framework that (1) detects hallucinations via visual-textual alignment check using our proposed adaptive temporal window and (2) mitigates them via orthogonal projection onto the joint embedding space. We also propose a new metric (BEACH) to quantify behavioral hallucination severity. Empirical results on standard benchmarks demonstrate that SHE reduces behavioral hallucination by over 10% on BEACH while maintaining descriptive accuracy.
☆ Flattery in Motion: Benchmarking and Analyzing Sycophancy in Video-LLMs
As video large language models (Video-LLMs) become increasingly integrated into real-world applications that demand grounded multimodal reasoning, ensuring their factual consistency and reliability is of critical importance. However, sycophancy, the tendency of these models to align with user input even when it contradicts the visual evidence, undermines their trustworthiness in such contexts. Current sycophancy research has largely overlooked its specific manifestations in the video-language domain, resulting in a notable absence of systematic benchmarks and targeted evaluations to understand how Video-LLMs respond under misleading user input. To fill this gap, we propose VISE (Video-LLM Sycophancy Benchmarking and Evaluation), the first dedicated benchmark designed to evaluate sycophantic behavior in state-of-the-art Video-LLMs across diverse question formats, prompt biases, and visual reasoning tasks. Specifically, VISE pioneeringly brings linguistic perspectives on sycophancy into the visual domain, enabling fine-grained analysis across multiple sycophancy types and interaction patterns. In addition, we explore key-frame selection as an interpretable, training-free mitigation strategy, which reveals potential paths for reducing sycophantic bias by strengthening visual grounding.
comment: 24 pages
☆ Regularized Adaptive Graph Learning for Large-Scale Traffic Forecasting
Traffic prediction is a critical task in spatial-temporal forecasting with broad applications in travel planning and urban management. Adaptive graph convolution networks have emerged as mainstream solutions due to their ability to learn node embeddings in a data-driven manner and capture complex latent dependencies. However, existing adaptive graph learning methods for traffic forecasting often either ignore the regularization of node embeddings, which account for a significant proportion of model parameters, or face scalability issues from expensive graph convolution operations. To address these challenges, we propose a Regularized Adaptive Graph Learning (RAGL) model. First, we introduce a regularized adaptive graph learning framework that synergizes Stochastic Shared Embedding (SSE) and adaptive graph convolution via a residual difference mechanism, achieving both embedding regularization and noise suppression. Second, to ensure scalability on large road networks, we develop the Efficient Cosine Operator (ECO), which performs graph convolution based on the cosine similarity of regularized embeddings with linear time complexity. Extensive experiments on four large-scale real-world traffic datasets show that RAGL consistently outperforms state-of-the-art methods in terms of prediction accuracy and exhibits competitive computational efficiency.
☆ Frame Guidance: Training-Free Guidance for Frame-Level Control in Video Diffusion Models
Advancements in diffusion models have significantly improved video quality, directing attention to fine-grained controllability. However, many existing methods depend on fine-tuning large-scale video models for specific tasks, which becomes increasingly impractical as model sizes continue to grow. In this work, we present Frame Guidance, a training-free guidance for controllable video generation based on frame-level signals, such as keyframes, style reference images, sketches, or depth maps. For practical training-free guidance, we propose a simple latent processing method that dramatically reduces memory usage, and apply a novel latent optimization strategy designed for globally coherent video generation. Frame Guidance enables effective control across diverse tasks, including keyframe guidance, stylization, and looping, without any training, compatible with any video models. Experimental results show that Frame Guidance can produce high-quality controlled videos for a wide range of tasks and input signals.
comment: Project page: https://frame-guidance-video.github.io/
☆ Translating Federated Learning Algorithms in Python into CSP Processes Using ChatGPT
The Python Testbed for Federated Learning Algorithms is a simple Python FL framework that is easy to use by ML&AI developers who do not need to be professional programmers and is also amenable to LLMs. In the previous research, generic federated learning algorithms provided by this framework were manually translated into the CSP processes and algorithms' safety and liveness properties were automatically verified by the model checker PAT. In this paper, a simple translation process is introduced wherein the ChatGPT is used to automate the translation of the mentioned federated learning algorithms in Python into the corresponding CSP processes. Within the process, the minimality of the used context is estimated based on the feedback from ChatGPT. The proposed translation process was experimentally validated by successful translation (verified by the model checker PAT) of both generic centralized and decentralized federated learning algorithms.
comment: 6 pages, 4 tables
☆ CTDGSI: A comprehensive exploitation of instance selection methods for automatic text classification. VII Concurso de Teses, Dissertações e Trabalhos de Graduação em SI -- XXI Simpósio Brasileiro de Sistemas de Informação
Progress in Natural Language Processing (NLP) has been dictated by the rule of more: more data, more computing power and more complexity, best exemplified by the Large Language Models. However, training (or fine-tuning) large dense models for specific applications usually requires significant amounts of computing resources. This \textbf{Ph.D. dissertation} focuses on an under-investi\-gated NLP data engineering technique, whose potential is enormous in the current scenario known as Instance Selection (IS). The IS goal is to reduce the training set size by removing noisy or redundant instances while maintaining the effectiveness of the trained models and reducing the training process cost. We provide a comprehensive and scientifically sound comparison of IS methods applied to an essential NLP task -- Automatic Text Classification (ATC), considering several classification solutions and many datasets. Our findings reveal a significant untapped potential for IS solutions. We also propose two novel IS solutions that are noise-oriented and redundancy-aware, specifically designed for large datasets and transformer architectures. Our final solution achieved an average reduction of 41\% in training sets, while maintaining the same levels of effectiveness in all datasets. Importantly, our solutions demonstrated speedup improvements of 1.67x (up to 2.46x), making them scalable for datasets with hundreds of thousands of documents.
comment: 16 pages, 5 figures, 2 tables
☆ Efficient Text-Attributed Graph Learning through Selective Annotation and Graph Alignment
In the realm of Text-attributed Graphs (TAGs), traditional graph neural networks (GNNs) often fall short due to the complex textual information associated with each node. Recent methods have improved node representations by leveraging large language models (LLMs) to enhance node text features, but these approaches typically require extensive annotations or fine-tuning across all nodes, which is both time-consuming and costly. To overcome these challenges, we introduce GAGA, an efficient framework for TAG representation learning. GAGA reduces annotation time and cost by focusing on annotating only representative nodes and edges. It constructs an annotation graph that captures the topological relationships among these annotations. Furthermore, GAGA employs a two-level alignment module to effectively integrate the annotation graph with the TAG, aligning their underlying structures. Experiments show that GAGA achieves classification accuracies on par with or surpassing state-of-the-art methods while requiring only 1% of the data to be annotated, demonstrating its high efficiency.
comment: 23 pages
☆ AMoPO: Adaptive Multi-objective Preference Optimization without Reward Models and Reference Models ACL 2025
Existing multi-objective preference alignment methods for large language models (LLMs) face limitations: (1) the inability to effectively balance various preference dimensions, and (2) reliance on auxiliary reward/reference models introduces computational complexity. To address these challenges, we propose Adaptive Multi-objective Preference Optimization (AMoPO), a novel framework that achieves dynamic balance across preference dimensions. By introducing the multi-objective optimization paradigm to use the dimension-aware generation metrics as implicit rewards, AMoPO aligns LLMs with diverse preferences without additional reward models or reference models. We introduce an adaptive weight assignment mechanism that models the generation space as a Gaussian distribution, allowing dynamic prioritization of preference dimensions. Empirical results demonstrate that AMoPO outperforms state-of-the-art baselines by 28.5%, and the experiments on 7B, 14B, and 32B models reveal the scaling ability of AMoPO. Moreover, additional analysis of multiple dimensions verifies its adaptability and effectiveness. These findings validate AMoPO's capability to achieve dimension-aware preference alignment, highlighting its superiority. Our codes and datasets are available at https://github.com/Javkonline/AMoPO.
comment: Accepted by ACL 2025
☆ Syntactic Control of Language Models by Posterior Inference
Controlling the syntactic structure of text generated by language models is valuable for applications requiring clarity, stylistic consistency, or interpretability, yet it remains a challenging task. In this paper, we argue that sampling algorithms based on the posterior inference can effectively enforce a target constituency structure during generation. Our approach combines sequential Monte Carlo, which estimates the posterior distribution by sampling from a proposal distribution, with a syntactic tagger that ensures that each generated token aligns with the desired syntactic structure. Our experiments with GPT2 and Llama3-8B models show that with an appropriate proposal distribution, we can improve syntactic accuracy, increasing the F1 score from $12.31$ (GPT2-large) and $35.33$ (Llama3-8B) to about $93$ in both cases without compromising the language model's fluency. These results underscore both the complexity of syntactic control and the effectiveness of sampling algorithms, offering a promising approach for applications where precise control over syntax is essential.
☆ Mind the Web: The Security of Web Use Agents
Web-use agents are rapidly being deployed to automate complex web tasks, operating with extensive browser capabilities including multi-tab navigation, DOM manipulation, JavaScript execution and authenticated session access. However, these powerful capabilities create a critical and previously unexplored attack surface. This paper demonstrates how attackers can exploit web-use agents' high-privilege capabilities by embedding malicious content in web pages such as comments, reviews, or advertisements that agents encounter during legitimate browsing tasks. In addition, we introduce the task-aligned injection technique that frame malicious commands as helpful task guidance rather than obvious attacks. This technique exploiting fundamental limitations in LLMs' contextual reasoning: agents struggle in maintaining coherent contextual awareness and fail to detect when seemingly helpful web content contains steering attempts that deviate from their original task goal. Through systematic evaluation of four popular agents (OpenAI Operator, Browser Use, Do Browser, OpenOperator), we demonstrate nine payload types that compromise confidentiality, integrity, and availability, including unauthorized camera activation, user impersonation, local file exfiltration, password leakage, and denial of service, with validation across multiple LLMs achieving success rates of 80%-100%. These payloads succeed across agents with built-in safety mechanisms, requiring only the ability to post content on public websites, creating unprecedented risks given the ease of exploitation combined with agents' high-privilege access. To address this attack, we propose comprehensive mitigation strategies including oversight mechanisms, execution constraints, and task-aware reasoning techniques, providing practical directions for secure development and deployment.
☆ Prompting Science Report 2: The Decreasing Value of Chain of Thought in Prompting
This is the second in a series of short reports that seek to help business, education, and policy leaders understand the technical details of working with AI through rigorous testing. In this report, we investigate Chain-of-Thought (CoT) prompting, a technique that encourages a large language model (LLM) to "think step by step" (Wei et al., 2022). CoT is a widely adopted method for improving reasoning tasks, however, our findings reveal a more nuanced picture of its effectiveness. We demonstrate two things: - The effectiveness of Chain-of-Thought prompting can vary greatly depending on the type of task and model. For non-reasoning models, CoT generally improves average performance by a small amount, particularly if the model does not inherently engage in step-by-step processing by default. However, CoT can introduce more variability in answers, sometimes triggering occasional errors in questions the model would otherwise get right. We also found that many recent models perform some form of CoT reasoning even if not asked; for these models, a request to perform CoT had little impact. Performing CoT generally requires far more tokens (increasing cost and time) than direct answers. - For models designed with explicit reasoning capabilities, CoT prompting often results in only marginal, if any, gains in answer accuracy. However, it significantly increases the time and tokens needed to generate a response.
☆ Learning Compact Vision Tokens for Efficient Large Multimodal Models
Large multimodal models (LMMs) suffer significant computational challenges due to the high cost of Large Language Models (LLMs) and the quadratic complexity of processing long vision token sequences. In this paper, we explore the spatial redundancy among vision tokens and shorten the length of vision token sequences for inference acceleration. Specifically, we propose a Spatial Token Fusion (STF) method to learn compact vision tokens for short vision token sequence, where spatial-adjacent tokens are fused into one. Meanwhile, weight-frozen vision encoder can not well adapt to the demand of extensive downstream vision-language tasks. To this end, we further introduce a Multi-Block Token Fusion (MBTF) module to supplement multi-granularity features for the reduced token sequence. Overall, we combine STF and MBTF module to balance token reduction and information preservation, thereby improving inference efficiency without sacrificing multimodal reasoning capabilities. Experimental results demonstrate that our method based on LLaVA-1.5 achieves comparable or even superior performance to the baseline on 8 popular vision-language benchmarks with only $25\%$ vision tokens of baseline. The source code and trained weights are available at https://github.com/visresearch/LLaVA-STF.
comment: The source code and trained weights are available at https://github.com/visresearch/LLaVA-STF
☆ Taxonomy of migration scenarios for Qiskit refactoring using LLMs
As quantum computing advances, quantum programming libraries' heterogeneity and steady evolution create new challenges for software developers. Frequent updates in software libraries break working code that needs to be refactored, thus adding complexity to an already complex landscape. These refactoring challenges are, in many cases, fundamentally different from those known in classical software engineering due to the nature of quantum computing software. This study addresses these challenges by developing a taxonomy of quantum circuit's refactoring problems, providing a structured framework to analyze and compare different refactoring approaches. Large Language Models (LLMs) have proven valuable tools for classic software development, yet their value in quantum software engineering remains unexplored. This study uses LLMs to categorize refactoring needs in migration scenarios between different Qiskit versions. Qiskit documentation and release notes were scrutinized to create an initial taxonomy of refactoring required for migrating between Qiskit releases. Two taxonomies were produced: one by expert developers and one by an LLM. These taxonomies were compared, analyzing differences and similarities, and were integrated into a unified taxonomy that reflects the findings of both methods. By systematically categorizing refactoring challenges in Qiskit, the unified taxonomy is a foundation for future research on AI-assisted migration while enabling a more rigorous evaluation of automated refactoring techniques. Additionally, this work contributes to quantum software engineering (QSE) by enhancing software development workflows, improving language compatibility, and promoting best practices in quantum programming.
comment: Accepted for publication in ASQC JAIIO 54 (https://54jaiio.sadio.org.ar/simposios/)
☆ Reliable Critics: Monotonic Improvement and Convergence Guarantees for Reinforcement Learning
Despite decades of research, it remains challenging to correctly use Reinforcement Learning (RL) algorithms with function approximation. A prime example is policy iteration, whose fundamental guarantee of monotonic improvement collapses even under linear function approximation. To address this issue, we introduce Reliable Policy Iteration (RPI). It replaces the common projection or Bellman-error minimization during policy evaluation with a Bellman-based constrained optimization. We prove that not only does RPI confer textbook monotonicity on its value estimates but these estimates also lower bound the true return. Also, their limit partially satisfies the unprojected Bellman equation, emphasizing RPI's natural fit within RL. RPI is the first algorithm with such monotonicity and convergence guarantees under function approximation. For practical use, we provide a model-free variant of RPI that amounts to a novel critic. It can be readily integrated into primary model-free PI implementations such as DQN and DDPG. In classical control tasks, such RPI-enhanced variants consistently maintain their lower-bound guarantee while matching or surpassing the performance of all baseline methods.
comment: 19 pages
☆ Robotic Policy Learning via Human-assisted Action Preference Optimization
Establishing a reliable and iteratively refined robotic system is essential for deploying real-world applications. While Vision-Language-Action (VLA) models are widely recognized as the foundation model for such robotic deployment, their dependence on expert demonstrations hinders the crucial capabilities of correction and learning from failures. To mitigate this limitation, we introduce a Human-assisted Action Preference Optimization method named HAPO, designed to correct deployment failures and foster effective adaptation through preference alignment for VLA models. This method begins with a human-robot collaboration framework for reliable failure correction and interaction trajectory collection through human intervention. These human-intervention trajectories are further employed within the action preference optimization process, facilitating VLA models to mitigate failure action occurrences while enhancing corrective action adaptation. Specifically, we propose an adaptive reweighting algorithm to address the issues of irreversible interactions and token probability mismatch when introducing preference optimization into VLA models, facilitating model learning from binary desirability signals derived from interactions. Through combining these modules, our human-assisted action preference optimization method ensures reliable deployment and effective learning from failure for VLA models. The experiments conducted in simulation and real-world scenarios prove superior generalization and robustness of our framework across a variety of manipulation tasks.
☆ MAGNet: A Multi-Scale Attention-Guided Graph Fusion Network for DRC Violation Detection
Design rule checking (DRC) is of great significance for cost reduction and design efficiency improvement in integrated circuit (IC) designs. Machine-learning-based DRC has become an important approach in computer-aided design (CAD). In this paper, we propose MAGNet, a hybrid deep learning model that integrates an improved U-Net with a graph neural network for DRC violation prediction. The U-Net backbone is enhanced with a Dynamic Attention Module (DAM) and a Multi-Scale Convolution Module (MSCM) to strengthen its capability in extracting fine-grained and multi-scale spatial features. In parallel, we construct a pixel-aligned graph structure based on chip layout tiles, and apply a specialized GNN to model the topological relationships among pins. During graph construction, a graph-to-grid mapping is generated to align GNN features with the layout image. In addition, a label amplification strategy is adopted during training to enhance the model's sensitivity to sparse violation patterns. Overall, MAGNet effectively combines spatial, semantic, and structural information, achieving improved prediction accuracy and reduced false positive rates in DRC hotspot detection. Subsequently, through incremental training, we achieve a more sensitive discrimination ability for hotspots. The results demonstrate that, in comparison with ibUnet, RouteNet, and J-Net, MAGnet significantly outperforms these models, achieving substantial improvements in overall performance.
comment: 9 pages, 12 figures, 2 tables
☆ Image segmentation and classification of E-waste for waste segregation
Industry partners provided a problem statement that involves classifying electronic waste using machine learning models that will be used by pick-and-place robots for waste segregation. We started by taking common electronic waste items, such as a mouse and charger, unsoldering them, and taking pictures to create a custom dataset. Then state-of-the art YOLOv11 model was trained and run to achieve 70 mAP in real-time. Mask-RCNN model was also trained and achieved 41 mAP. The model will be further integrated with pick-and-place robots to perform segregation of e-waste.
comment: 4 pages, 7 figures. For code and link to dataset, see https://github.com/prakriti16/Image-segmentation-and-classification-of-e-waste
☆ Quality-Diversity Red-Teaming: Automated Generation of High-Quality and Diverse Attackers for Large Language Models
Ensuring safety of large language models (LLMs) is important. Red teaming--a systematic approach to identifying adversarial prompts that elicit harmful responses from target LLMs--has emerged as a crucial safety evaluation method. Within this framework, the diversity of adversarial prompts is essential for comprehensive safety assessments. We find that previous approaches to red-teaming may suffer from two key limitations. First, they often pursue diversity through simplistic metrics like word frequency or sentence embedding similarity, which may not capture meaningful variation in attack strategies. Second, the common practice of training a single attacker model restricts coverage across potential attack styles and risk categories. This paper introduces Quality-Diversity Red-Teaming (QDRT), a new framework designed to address these limitations. QDRT achieves goal-driven diversity through behavior-conditioned training and implements a behavioral replay buffer in an open-ended manner. Additionally, it trains multiple specialized attackers capable of generating high-quality attacks across diverse styles and risk categories. Our empirical evaluation demonstrates that QDRT generates attacks that are both more diverse and more effective against a wide range of target LLMs, including GPT-2, Llama-3, Gemma-2, and Qwen2.5. This work advances the field of LLM safety by providing a systematic and effective approach to automated red-teaming, ultimately supporting the responsible deployment of LLMs.
☆ RBA-FE: A Robust Brain-Inspired Audio Feature Extractor for Depression Diagnosis
This article proposes a robust brain-inspired audio feature extractor (RBA-FE) model for depression diagnosis, using an improved hierarchical network architecture. Most deep learning models achieve state-of-the-art performance for image-based diagnostic tasks, ignoring the counterpart audio features. In order to tailor the noise challenge, RBA-FE leverages six acoustic features extracted from the raw audio, capturing both spatial characteristics and temporal dependencies. This hybrid attribute helps alleviate the precision limitation in audio feature extraction within other learning models like deep residual shrinkage networks. To deal with the noise issues, our model incorporates an improved spiking neuron model, called adaptive rate smooth leaky integrate-and-fire (ARSLIF). The ARSLIF model emulates the mechanism of ``retuning of cellular signal selectivity" in the brain attention systems, which enhances the model robustness against environmental noises in audio data. Experimental results demonstrate that RBA-FE achieves state-of-the-art accuracy on the MODMA dataset, respectively with 0.8750, 0.8974, 0.8750 and 0.8750 in precision, accuracy, recall and F1 score. Extensive experiments on the AVEC2014 and DAIC-WOZ datasets both show enhancements in noise robustness. It is further indicated by comparison that the ARSLIF neuron model suggest the abnormal firing pattern within the feature extraction on depressive audio data, offering brain-inspired interpretability.
comment: 14 pages
☆ BRIGHT+: Upgrading the BRIGHT Benchmark with MARCUS, a Multi-Agent RAG Clean-Up Suite EMNLP 2025
Retrieval-Augmented Generation (RAG) systems require corpora that are both structurally clean and semantically coherent. BRIGHT is a recent and influential benchmark designed to evaluate complex multi-hop retrieval across diverse, high-reasoning domains. However, its practical effectiveness is limited by common web-crawled artifacts - such as content redundancy and semantic discontinuity - that impair retrieval accuracy and downstream reasoning. Notably, we find that such issues are concentrated in seven StackExchange-derived subdomains, while other domains (e.g., Coding and Theorem-based content) remain relatively clean. In this study, we present MARCUS, a multi-agent pipeline that leverages large language models (LLMs) to systematically clean and re-chunk BRIGHT into a higher-quality corpus: BRIGHT-Plus. MARCUS applies dedicated agents for structural noise removal and semantic segmentation, preserving answer-bearing spans while improving contextual integrity. Experimental evaluations demonstrate that BRIGHT-Plus yields consistent and significant improvements in both retrieval accuracy and multi-hop reasoning across a diverse set of retrievers. We release both the BRIGHT-Plus corpus and the MARCUS pipeline to support future research on robust, reasoning-centric retrieval.
comment: 8 pages, 7 figures, 4 tables. Submitted to EMNLP 2025
☆ Towards Universal Offline Black-Box Optimization via Learning Language Model Embeddings ICML 2025
The pursuit of universal black-box optimization (BBO) algorithms is a longstanding goal. However, unlike domains such as language or vision, where scaling structured data has driven generalization, progress in offline BBO remains hindered by the lack of unified representations for heterogeneous numerical spaces. Thus, existing offline BBO approaches are constrained to single-task and fixed-dimensional settings, failing to achieve cross-domain universal optimization. Recent advances in language models (LMs) offer a promising path forward: their embeddings capture latent relationships in a unifying way, enabling universal optimization across different data types possible. In this paper, we discuss multiple potential approaches, including an end-to-end learning framework in the form of next-token prediction, as well as prioritizing the learning of latent spaces with strong representational capabilities. To validate the effectiveness of these methods, we collect offline BBO tasks and data from open-source academic works for training. Experiments demonstrate the universality and effectiveness of our proposed methods. Our findings suggest that unifying language model priors and learning string embedding space can overcome traditional barriers in universal BBO, paving the way for general-purpose BBO algorithms. The code is provided at https://github.com/lamda-bbo/universal-offline-bbo.
comment: ICML 2025
☆ Theorem-of-Thought: A Multi-Agent Framework for Abductive, Deductive, and Inductive Reasoning in Language Models
Large language models (LLMs) have shown strong performance across natural language reasoning tasks, yet their reasoning processes remain brittle and difficult to interpret. Prompting techniques like Chain-of-Thought (CoT) enhance reliability by eliciting intermediate reasoning steps or aggregating multiple outputs. However, they lack mechanisms for enforcing logical structure and assessing internal coherence. We introduce Theorem-of-Thought (ToTh), a novel framework that models reasoning as collaboration among three parallel agents, each simulating a distinct mode of inference: abductive, deductive, and inductive. Each agent produces a reasoning trace, which is structured into a formal reasoning graph. To evaluate consistency, we apply Bayesian belief propagation guided by natural language inference (NLI), assigning confidence scores to each step. The most coherent graph is selected to derive the final answer. Experiments on symbolic (WebOfLies) and numerical (MultiArith) reasoning benchmarks show that ToTh consistently outperforms CoT, Self-Consistency, and CoT-Decoding across multiple LLMs, while producing interpretable and logically grounded reasoning chains. Our findings suggest a promising direction for building more robust and cognitively inspired LLM reasoning. The implementation is available at https://github.com/KurbanIntelligenceLab/theorem-of-thought.
☆ How Far Are We from Optimal Reasoning Efficiency?
Large Reasoning Models (LRMs) demonstrate remarkable problem-solving capabilities through extended Chain-of-Thought (CoT) reasoning but often produce excessively verbose and redundant reasoning traces. This inefficiency incurs high inference costs and limits practical deployment. While existing fine-tuning methods aim to improve reasoning efficiency, assessing their efficiency gains remains challenging due to inconsistent evaluations. In this work, we introduce the reasoning efficiency frontiers, empirical upper bounds derived from fine-tuning base LRMs across diverse approaches and training configurations. Based on these frontiers, we propose the Reasoning Efficiency Gap (REG), a unified metric quantifying deviations of any fine-tuned LRMs from these frontiers. Systematic evaluation on challenging mathematical benchmarks reveals significant gaps in current methods: they either sacrifice accuracy for short length or still remain inefficient under tight token budgets. To reduce the efficiency gap, we propose REO-RL, a class of Reinforcement Learning algorithms that minimizes REG by targeting a sparse set of token budgets. Leveraging numerical integration over strategically selected budgets, REO-RL approximates the full efficiency objective with low error using a small set of token budgets. Through systematic benchmarking, we demonstrate that our efficiency metric, REG, effectively captures the accuracy-length trade-off, with low-REG methods reducing length while maintaining accuracy. Our approach, REO-RL, consistently reduces REG by >=50 across all evaluated LRMs and matching Qwen3-4B/8B efficiency frontiers under a 16K token budget with minimal accuracy loss. Ablation studies confirm the effectiveness of our exponential token budget strategy. Finally, our findings highlight that fine-tuning LRMs to perfectly align with the efficiency frontiers remains an open challenge.
☆ Filling the Missings: Spatiotemporal Data Imputation by Conditional Diffusion
Missing data in spatiotemporal systems presents a significant challenge for modern applications, ranging from environmental monitoring to urban traffic management. The integrity of spatiotemporal data often deteriorates due to hardware malfunctions and software failures in real-world deployments. Current approaches based on machine learning and deep learning struggle to model the intricate interdependencies between spatial and temporal dimensions effectively and, more importantly, suffer from cumulative errors during the data imputation process, which propagate and amplify through iterations. To address these limitations, we propose CoFILL, a novel Conditional Diffusion Model for spatiotemporal data imputation. CoFILL builds on the inherent advantages of diffusion models to generate high-quality imputations without relying on potentially error-prone prior estimates. It incorporates an innovative dual-stream architecture that processes temporal and frequency domain features in parallel. By fusing these complementary features, CoFILL captures both rapid fluctuations and underlying patterns in the data, which enables more robust imputation. The extensive experiments reveal that CoFILL's noise prediction network successfully transforms random noise into meaningful values that align with the true data distribution. The results also show that CoFILL outperforms state-of-the-art methods in imputation accuracy. The source code is publicly available at https://github.com/joyHJL/CoFILL.
comment: 9 pages,3 figures
☆ Patient Similarity Computation for Clinical Decision Support: An Efficient Use of Data Transformation, Combining Static and Time Series Data SC
Patient similarity computation (PSC) is a fundamental problem in healthcare informatics. The aim of the patient similarity computation is to measure the similarity among patients according to their historical clinical records, which helps to improve clinical decision support. This paper presents a novel distributed patient similarity computation (DPSC) technique based on data transformation (DT) methods, utilizing an effective combination of time series and static data. Time series data are sensor-collected patients' information, including metrics like heart rate, blood pressure, Oxygen saturation, respiration, etc. The static data are mainly patient background and demographic data, including age, weight, height, gender, etc. Static data has been used for clustering the patients. Before feeding the static data to the machine learning model adaptive Weight-of-Evidence (aWOE) and Z-score data transformation (DT) methods have been performed, which improve the prediction performances. In aWOE-based patient similarity models, sensitive patient information has been processed using aWOE which preserves the data privacy of the trained models. We used the Dynamic Time Warping (DTW) approach, which is robust and very popular, for time series similarity. However, DTW is not suitable for big data due to the significant computational run-time. To overcome this problem, distributed DTW computation is used in this study. For Coronary Artery Disease, our DT based approach boosts prediction performance by as much as 11.4%, 10.20%, and 12.6% in terms of AUC, accuracy, and F-measure, respectively. In the case of Congestive Heart Failure (CHF), our proposed method achieves performance enhancement up to 15.9%, 10.5%, and 21.9% for the same measures, respectively. The proposed method reduces the computation time by as high as 40%.
comment: This paper presents a novel distributed patient similarity computation (DPSC) technique based on data transformation (DT) methods, utilizing an effective combination of time series and static data
☆ On the Generalization of Data-Assisted Control in port-Hamiltonian Systems (DAC-pH)
This paper introduces a hypothetical hybrid control framework for port-Hamiltonian (p$\mathcal{H}$) systems, employing a dynamic decomposition based on Data-Assisted Control (DAC). The system's evolution is split into two parts with fixed topology: Right-Hand Side (RHS)- an intrinsic Hamiltonian flow handling worst-case parametric uncertainties, and Left-Hand Side (LHS)- a dissipative/input flow addressing both structural and parametric uncertainties. A virtual port variable $\Pi$ serves as the interface between these two components. A nonlinear controller manages the intrinsic Hamiltonian flow, determining a desired port control value $\Pi_c$. Concurrently, Reinforcement Learning (RL) is applied to the dissipative/input flow to learn an agent for providing optimal policy in mapping $\Pi_c$ to the actual system input. This hybrid approach effectively manages RHS uncertainties while preserving the system's inherent structure. Key advantages include adjustable performance via LHS controller parameters, enhanced AI explainability and interpretability through the port variable $\Pi$, the ability to guarantee safety and state attainability with hard/soft constraints, reduced complexity in learning hypothesis classes compared to end-to-end solutions, and improved state/parameter estimation using LHS prior knowledge and system Hamiltonian to address partial observability. The paper details the p$\mathcal{H}$ formulation, derives the decomposition, and presents the modular controller architecture. Beyond design, crucial aspects of stability and robustness analysis and synthesis are investigated, paving the way for deeper theoretical investigations. An application example, a pendulum with nonlinear dynamics, is simulated to demonstrate the approach's empirical and phenomenological benefits for future research.
comment: This paper presents an early investigation of Data-Assisted Control (DAC) with reinforcement learning, showcasing its potential through a simple example. Theoretical analysis is ongoing to establish formal support and guarantees for the proposed approach
♻ ☆ Unifying 2D and 3D Vision-Language Understanding
Progress in 3D vision-language learning has been hindered by the scarcity of large-scale 3D datasets. We introduce UniVLG, a unified architecture for 2D and 3D vision-language understanding that bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems. Our approach initializes most model weights from pre-trained 2D models and trains on both 2D and 3D vision-language data. We propose a novel language-conditioned mask decoder shared across 2D and 3D modalities to ground objects effectively in both RGB and RGB-D images, outperforming box-based approaches. To further reduce the domain gap between 2D and 3D, we incorporate 2D-to-3D lifting strategies, enabling UniVLG to utilize 2D data to enhance 3D performance. With these innovations, our model achieves state-of-the-art performance across multiple 3D vision-language grounding tasks, demonstrating the potential of transferring advances from 2D vision-language learning to the data-constrained 3D domain. Furthermore, co-training on both 2D and 3D data enhances performance across modalities without sacrificing 2D capabilities. By removing the reliance on 3D mesh reconstruction and ground-truth object proposals, UniVLG sets a new standard for realistic, embodied-aligned evaluation. Code and additional visualizations are available at https://univlg.github.io .
comment: The first two authors contributed equally
♻ ☆ Aligned but Blind: Alignment Increases Implicit Bias by Reducing Awareness of Race ACL 2025
Although value-aligned language models (LMs) appear unbiased in explicit bias evaluations, they often exhibit stereotypes in implicit word association tasks, raising concerns about their fair usage. We investigate the mechanisms behind this discrepancy and find that alignment surprisingly amplifies implicit bias in model outputs. Specifically, we show that aligned LMs, unlike their unaligned counterparts, overlook racial concepts in early internal representations when the context is ambiguous. Not representing race likely fails to activate safety guardrails, leading to unintended biases. Inspired by this insight, we propose a new bias mitigation strategy that works by incentivizing the representation of racial concepts in the early model layers. In contrast to conventional mitigation methods of machine unlearning, our interventions find that steering the model to be more aware of racial concepts effectively mitigates implicit bias. Similar to race blindness in humans, ignoring racial nuances can inadvertently perpetuate subtle biases in LMs.
comment: Accepted to ACL 2025 (Main)
♻ ☆ Finding Interest Needle in Popularity Haystack: Improving Retrieval by Modeling Item Exposure
Recommender systems operate in closed feedback loops, where user interactions reinforce popularity bias, leading to over-recommendation of already popular items while under-exposing niche or novel content. Existing bias mitigation methods, such as Inverse Propensity Scoring (IPS) and Off-Policy Correction (OPC), primarily operate at the ranking stage or during training, lacking explicit real-time control over exposure dynamics. In this work, we introduce an exposure-aware retrieval scoring approach, which explicitly models item exposure probability and adjusts retrieval-stage ranking at inference time. Unlike prior work, this method decouples exposure effects from engagement likelihood, enabling controlled trade-offs between fairness and engagement in large-scale recommendation platforms. We validate our approach through online A/B experiments in a real-world video recommendation system, demonstrating a 25% increase in uniquely retrieved items and a 40% reduction in the dominance of over-popular content, all while maintaining overall user engagement levels. Our results establish a scalable, deployable solution for mitigating popularity bias at the retrieval stage, offering a new paradigm for bias-aware personalization.
comment: 2 pages. UMAP '25: 33rd ACM Conference on User Modeling, Adaptation and Personalization, New York City, USA, June 2025
♻ ☆ Toward Reliable Scientific Hypothesis Generation: Evaluating Truthfulness and Hallucination in Large Language Models IJCAI 2025
Large language models (LLMs) have shown significant potential in scientific disciplines such as biomedicine, particularly in hypothesis generation, where they can analyze vast literature, identify patterns, and suggest research directions. However, a key challenge lies in evaluating the truthfulness of generated hypotheses, as verifying their accuracy often requires substantial time and resources. Additionally, the hallucination problem in LLMs can lead to the generation of hypotheses that appear plausible but are ultimately incorrect, undermining their reliability. To facilitate the systematic study of these challenges, we introduce TruthHypo, a benchmark for assessing the capabilities of LLMs in generating truthful scientific hypotheses, and KnowHD, a knowledge-based hallucination detector to evaluate how well hypotheses are grounded in existing knowledge. Our results show that LLMs struggle to generate truthful hypotheses. By analyzing hallucinations in reasoning steps, we demonstrate that the groundedness scores provided by KnowHD serve as an effective metric for filtering truthful hypotheses from the diverse outputs of LLMs. Human evaluations further validate the utility of KnowHD in identifying truthful hypotheses and accelerating scientific discovery. Our data and source code are available at https://github.com/Teddy-XiongGZ/TruthHypo.
comment: Accepted to IJCAI 2025
♻ ☆ Sharpness-Aware Teleportation on Riemannian Manifolds
Recent studies highlight the effectiveness of flat minima in enhancing generalization, with sharpness-aware minimization (SAM) achieving state-of-the-art performance. Additionally, insights into the intrinsic geometry of the loss landscape have shown promise for improving model generalization. Building on these advancements, we introduce a novel sharpness-aware, geometry-aware teleportation mechanism to further enhance robustness and generalization. The core innovation of our approach is to decompose each iteration into a teleportation step within a local orbit and a sharpness-aware step that transitions between different orbits, leveraging the Riemannian quotient manifold. Our approach is grounded in a theoretical framework that analyzes the generalization gap between population loss and worst-case empirical loss within the context of Riemannian manifolds. To demonstrate the effectiveness of our method, we evaluate and compare our algorithm on diverse vision benchmarks with various datasets and Riemannian manifolds.
♻ ☆ EgoNormia: Benchmarking Physical Social Norm Understanding
Human activity is moderated by norms; however, supervision for normative reasoning is sparse, particularly where norms are physically- or socially-grounded. We thus present EGONORMIA $\|\epsilon\|$, comprising 1,853 (200 for EGONORMIA-verified) multiple choice questions (MCQs) grounded within egocentric videos of human interactions, enabling the evaluation and improvement of normative reasoning in vision-language models (VLMs). EGONORMIA spans seven norm categories: safety, privacy, proxemics, politeness, cooperation, coordination/proactivity, and communication/legibility. To compile this dataset at scale, we propose a novel pipeline to generate grounded MCQs from raw egocentric video. Our work demonstrates that current state-of-the-art VLMs lack robust grounded norm understanding, scoring a maximum of 66% on EGONORMIA and 68% on EGONORMIA-verified, with performance across norm categories indicating significant risks of safety and privacy when VLMs are used in real-world agents. We additionally explore methods for improving normative understanding, demonstrating that a naive retrieval-based generation (RAG) method using EGONORMIA can enhance normative reasoning in VLMs.
comment: V3, with verified bench stats
♻ ☆ Selective Prompt Anchoring for Code Generation ICML'25
Recent advances in large language models (LLMs) have transformed software development by automatically generating code from natural language. Yet challenges remain in generating fully correct code that aligns with user intent. Our study reveals that LLMs tend to pay less attention to user prompts as more code tokens are generated. We hypothesize that this attention dilution issue is an important reason for code generation errors. To mitigate this issue, we propose Selective Prompt Anchoring (SPA) to guide code LLMs to pay more attention to user intent when generating code. We evaluate SPA using six base LLMs across six benchmarks. Our results demonstrate that SPA enhances Pass@1 by up to 12.9%, consistently outperforming SOTA code generation methods in all settings. Our code is available at https://github.com/magic-YuanTian/Selective-Prompt-Anchoring.
comment: Accepted by ICML'25
♻ ☆ Machine Learning Should Maximize Welfare, but Not by (Only) Maximizing Accuracy
Decades of research in machine learning have given us powerful tools for making accurate predictions. This has made such tools appealing for use in social settings and on human inputs. Yet despite a lack of justification for why the generic approach of accuracy maximization can or should improve our collective well-being -- and mounting evidence of likely adverse outcomes -- it remains the widespread default. This position paper asserts that for machine learning to become socially beneficial, it must be embedded within a broader economic framework that explicitly aims to maximize social welfare. The field of welfare economics asks: how should we allocate limited resources among self-interested agents to maximize overall benefits? We contend that this perspective applies to many contemporary applications of machine learning in social contexts, and advocate for its adoption. Rather than disposing of prediction, we propose to leverage this forte of machine learning towards welfare maximization. We demonstrate this idea by portraying a conceptual framework that gradually transitions from accuracy maximization (with awareness to welfare) to welfare maximization (via accurate prediction). We detail applications and use-cases for which this framework can be effective, identify technical challenges and practical opportunities, and highlight future avenues worth pursuing.
♻ ☆ AMPO: Active Multi-Preference Optimization for Self-play Preference Selection ICML 2025
Multi-preference optimization enriches language-model alignment beyond pairwise preferences by contrasting entire sets of helpful and undesired responses, thereby enabling richer training signals for large language models. During self-play alignment, these models often produce numerous candidate answers per query, rendering it computationally infeasible to include all responses in the training objective. In this work, we propose $\textit{Active Multi-Preference Optimization}$ (AMPO), a novel approach that combines on-policy generation, a multi-preference group-contrastive loss, and active subset selection. Specifically, we score and embed large candidate pools of responses and then select a small, yet informative, subset that covers reward extremes and distinct semantic clusters for preference optimization. Our contrastive training scheme is capable of identifying not only the best and worst answers but also subtle, underexplored modes that are crucial for robust alignment. Theoretically, we provide guarantees for expected reward maximization using our active selection method, and empirically, AMPO achieves state-of-the-art results on $\textit{AlpacaEval}$ using Llama 8B and Mistral 7B. We release our datasets $\href{https://huggingface.co/Multi-preference-Optimization}{here}$.
comment: Accepted at ICML 2025
♻ ☆ Horizon Reduction Makes RL Scalable
In this work, we study the scalability of offline reinforcement learning (RL) algorithms. In principle, a truly scalable offline RL algorithm should be able to solve any given problem, regardless of its complexity, given sufficient data, compute, and model capacity. We investigate if and how current offline RL algorithms match up to this promise on diverse, challenging, previously unsolved tasks, using datasets up to 1000x larger than typical offline RL datasets. We observe that despite scaling up data, many existing offline RL algorithms exhibit poor scaling behavior, saturating well below the maximum performance. We hypothesize that the horizon is the main cause behind the poor scaling of offline RL. We empirically verify this hypothesis through several analysis experiments, showing that long horizons indeed present a fundamental barrier to scaling up offline RL. We then show that various horizon reduction techniques substantially enhance scalability on challenging tasks. Based on our insights, we also introduce a minimal yet scalable method named SHARSA that effectively reduces the horizon. SHARSA achieves the best asymptotic performance and scaling behavior among our evaluation methods, showing that explicitly reducing the horizon unlocks the scalability of offline RL. Code: https://github.com/seohongpark/horizon-reduction
♻ ☆ Unraveling Token Prediction Refinement and Identifying Essential Layers in Language Models
This research aims to unravel how large language models (LLMs) iteratively refine token predictions through internal processing. We utilized a logit lens technique to analyze the model's token predictions derived from intermediate representations. Specifically, we focused on (1) how LLMs access and utilize information from input contexts, and (2) how positioning of relevant information affects the model's token prediction refinement process. On a multi-document question answering task with varying input context lengths, we found that the depth of prediction refinement (defined as the number of intermediate layers an LLM uses to transition from an initial correct token prediction to its final, stable correct output), as a function of the position of relevant information, exhibits an approximately inverted U-shaped curve. We also found that the gap between these two layers, on average, diminishes when relevant information is positioned at the beginning or end of the input context. This suggested that the model requires more refinements when processing longer contexts with relevant information situated in the middle. Furthermore, our findings indicate that not all layers are equally essential for determining final correct outputs. Our analysis provides insights into how token predictions are distributed across different conditions, and establishes important connections to existing hypotheses and previous findings in AI safety research and development.
♻ ☆ Unsafe LLM-Based Search: Quantitative Analysis and Mitigation of Safety Risks in AI Web Search
Recent advancements in Large Language Models (LLMs) have significantly enhanced the capabilities of AI-Powered Search Engines (AIPSEs), offering precise and efficient responses by integrating external databases with pre-existing knowledge. However, we observe that these AIPSEs raise risks such as quoting malicious content or citing malicious websites, leading to harmful or unverified information dissemination. In this study, we conduct the first safety risk quantification on seven production AIPSEs by systematically defining the threat model, risk type, and evaluating responses to various query types. With data collected from PhishTank, ThreatBook, and LevelBlue, our findings reveal that AIPSEs frequently generate harmful content that contains malicious URLs even with benign queries (e.g., with benign keywords). We also observe that directly querying a URL will increase the number of main risk-inclusive responses, while querying with natural language will slightly mitigate such risk. Compared to traditional search engines, AIPSEs outperform in both utility and safety. We further perform two case studies on online document spoofing and phishing to show the ease of deceiving AIPSEs in the real-world setting. To mitigate these risks, we develop an agent-based defense with a GPT-4.1-based content refinement tool and a URL detector. Our evaluation shows that our defense can effectively reduce the risk, with only a minor cost of reducing available information by approximately 10.7%. Our research highlights the urgent need for robust safety measures in AIPSEs.
♻ ☆ Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
Data-driven methods such as reinforcement and imitation learning have achieved remarkable success in robot autonomy. However, their data-centric nature still hinders them from generalizing well to ever-changing environments. Moreover, labeling data for robotic tasks is often impractical and expensive. To overcome these challenges, we introduce a new self-supervised neuro-symbolic (NeSy) computational framework, imperative learning (IL), for robot autonomy, leveraging the generalization abilities of symbolic reasoning. The framework of IL consists of three primary components: a neural module, a reasoning engine, and a memory system. We formulate IL as a special bilevel optimization (BLO), which enables reciprocal learning over the three modules. This overcomes the label-intensive obstacles associated with data-driven approaches and takes advantage of symbolic reasoning concerning logical reasoning, physical principles, geometric analysis, etc. We discuss several optimization techniques for IL and verify their effectiveness in five distinct robot autonomy tasks including path planning, rule induction, optimal control, visual odometry, and multi-robot routing. Through various experiments, we show that IL can significantly enhance robot autonomy capabilities and we anticipate that it will catalyze further research across diverse domains.
♻ ☆ DeepRAG: Thinking to Retrieve Step by Step for Large Language Models
Large Language Models (LLMs) have shown remarkable reasoning capabilities, while their practical applications are limited by severe factual hallucinations due to limitations in the timeliness, accuracy, and comprehensiveness of their parametric knowledge. Meanwhile, enhancing retrieval-augmented generation (RAG) with reasoning remains challenging due to ineffective task decomposition and redundant retrieval, which can introduce noise and degrade response quality. In this paper, we propose DeepRAG, a framework that models retrieval-augmented reasoning as a Markov Decision Process (MDP), enabling reasonable and adaptive retrieval. By iteratively decomposing queries, DeepRAG dynamically determines whether to retrieve external knowledge or rely on parametric reasoning at each step. Experiments show that DeepRAG improves retrieval efficiency and boosts answer accuracy by 26.4%, demonstrating its effectiveness in enhancing retrieval-augmented reasoning.
♻ ☆ Decoupled Data Consistency with Diffusion Purification for Image Restoration
Diffusion models have recently gained traction as a powerful class of deep generative priors, excelling in a wide range of image restoration tasks due to their exceptional ability to model data distributions. To solve image restoration problems, many existing techniques achieve data consistency by incorporating additional likelihood gradient steps into the reverse sampling process of diffusion models. However, the additional gradient steps pose a challenge for real-world practical applications as they incur a large computational overhead, thereby increasing inference time. They also present additional difficulties when using accelerated diffusion model samplers, as the number of data consistency steps is limited by the number of reverse sampling steps. In this work, we propose a novel diffusion-based image restoration solver that addresses these issues by decoupling the reverse process from the data consistency steps. Our method involves alternating between a reconstruction phase to maintain data consistency and a refinement phase that enforces the prior via diffusion purification. Our approach demonstrates versatility, making it highly adaptable for efficient problem-solving in latent space. Additionally, it reduces the necessity for numerous sampling steps through the integration of consistency models. The efficacy of our approach is validated through comprehensive experiments across various image restoration tasks, including image denoising, deblurring, inpainting, and super-resolution.
♻ ☆ MMTEB: Massive Multilingual Text Embedding Benchmark ICLR
Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.
comment: Accepted for ICLR: https://openreview.net/forum?id=zl3pfz4VCV
♻ ☆ Epistemic Integrity in Large Language Models
Large language models are increasingly relied upon as sources of information, but their propensity for generating false or misleading statements with high confidence poses risks for users and society. In this paper, we confront the critical problem of epistemic miscalibration $\unicode{x2013}$ where a model's linguistic assertiveness fails to reflect its true internal certainty. We introduce a new human-labeled dataset and a novel method for measuring the linguistic assertiveness of Large Language Models (LLMs) which cuts error rates by over 50% relative to previous benchmarks. Validated across multiple datasets, our method reveals a stark misalignment between how confidently models linguistically present information and their actual accuracy. Further human evaluations confirm the severity of this miscalibration. This evidence underscores the urgent risk of the overstated certainty LLMs hold which may mislead users on a massive scale. Our framework provides a crucial step forward in diagnosing this miscalibration, offering a path towards correcting it and more trustworthy AI across domains.
♻ ☆ Narrative-Driven Travel Planning: Geoculturally-Grounded Script Generation with Evolutionary Itinerary Optimization
To enhance tourists' experiences and immersion, this paper proposes a narrative-driven travel planning framework called NarrativeGuide, which generates a geoculturally-grounded narrative script for travelers, offering a novel, role-playing experience for their journey. In the initial stage, NarrativeGuide constructs a knowledge graph for attractions within a city, then configures the worldview, character setting, and exposition based on the knowledge graph. Using this foundation, the knowledge graph is combined to generate an independent scene unit for each attraction. During the itinerary planning stage, NarrativeGuide models narrative-driven travel planning as an optimization problem, utilizing a genetic algorithm (GA) to refine the itinerary. Before evaluating the candidate itinerary, transition scripts are generated for each pair of adjacent attractions, which, along with the scene units, form a complete script. The weighted sum of script coherence, travel time, and attraction scores is then used as the fitness value to update the candidate solution set. In our experiments, we incorporated the TravelPlanner benchmark to systematically evaluate the planning capability of NarrativeGuide under complex constraints. In addition, we assessed its performance in terms of narrative coherence and cultural fit. The results show that NarrativeGuide demonstrates strong capabilities in both itinerary planning and script generation.
♻ ☆ Test-driven Software Experimentation with LASSO: an LLM Prompt Benchmarking Example
Empirical software engineering faces a critical gap: the lack of standardized tools for rapid development and execution of Test-Driven Software Experiments (TDSEs) -- that is, experiments that involve the execution of software subjects and the observation and analysis of their "de facto" run-time behavior. In this paper we present a general-purpose analysis platform called LASSO that provides a minimal set of domain-specific languages and data structures to conduct TDSEs. By empowering users with an executable scripting language to design and execute TDSEs, LASSO enables efficient evaluation of run-time semantics and execution characteristics in addition to statically determined properties. We present an example TDSE that demonstrates the practical benefits of LASSO's scripting capabilities for assessing the reliability of LLMs for code generation by means of a self-contained, reusable and extensible study script. The LASSO platform and live pipeline examples are publicly available at: https://softwareobservatorium.github.io/.
comment: under review
♻ ☆ Imagine to Hear: Auditory Knowledge Generation can be an Effective Assistant for Language Models ACL
Language models pretrained on text-only corpora often struggle with tasks that require auditory commonsense knowledge. Previous work addresses this problem by augmenting the language model to retrieve knowledge from external audio databases. This approach has several limitations, such as the potential lack of relevant audio in databases and the high costs associated with constructing the databases. To address these issues, we propose Imagine to Hear, a novel approach that dynamically generates auditory knowledge using generative models. Our framework detects multiple audio-related textual spans from the given prompt and generates corresponding auditory knowledge. We develop several mechanisms to efficiently process multiple auditory knowledge, including a CLAP-based rejection sampler and a language-audio fusion module. Our experiments show that our method achieves state-of-the-art performance on AuditoryBench without relying on external databases, highlighting the effectiveness of our generation-based approach.
comment: 12 pages, 5 figures, ACL Findings 2025
Robotics 27
☆ Towards Data-Driven Model-Free Safety-Critical Control IROS 2025
This paper presents a framework for enabling safe velocity control of general robotic systems using data-driven model-free Control Barrier Functions (CBFs). Model-free CBFs rely on an exponentially stable velocity controller and a design parameter (e.g. alpha in CBFs); this design parameter depends on the exponential decay rate of the controller. However, in practice, the decay rate is often unavailable, making it non-trivial to use model-free CBFs, as it requires manual tuning for alpha. To address this, a Neural Network is used to learn the Lyapunov function from data, and the maximum decay rate of the systems built-in velocity controller is subsequently estimated. Furthermore, to integrate the estimated decay rate with model-free CBFs, we derive a probabilistic safety condition that incorporates a confidence bound on the violation rate of the exponential stability condition, using Chernoff bound. This enhances robustness against uncertainties in stability violations. The proposed framework has been tested on a UR5e robot in multiple experimental settings, and its effectiveness in ensuring safe velocity control with model-free CBFs has been demonstrated.
comment: submitted to IROS 2025
Reading in the Dark with Foveated Event Vision CVPR 2025
Current smart glasses equipped with RGB cameras struggle to perceive the environment in low-light and high-speed motion scenarios due to motion blur and the limited dynamic range of frame cameras. Additionally, capturing dense images with a frame camera requires large bandwidth and power consumption, consequently draining the battery faster. These challenges are especially relevant for developing algorithms that can read text from images. In this work, we propose a novel event-based Optical Character Recognition (OCR) approach for smart glasses. By using the eye gaze of the user, we foveate the event stream to significantly reduce bandwidth by around 98% while exploiting the benefits of event cameras in high-dynamic and fast scenes. Our proposed method performs deep binary reconstruction trained on synthetic data and leverages multimodal LLMs for OCR, outperforming traditional OCR solutions. Our results demonstrate the ability to read text in low light environments where RGB cameras struggle while using up to 2400 times less bandwidth than a wearable RGB camera.
comment: CVPR 2025 Workshop on Event-based Vision
Multimodal Spatial Language Maps for Robot Navigation and Manipulation IJRR
Grounding language to a navigating agent's observations can leverage pretrained multimodal foundation models to match perceptions to object or event descriptions. However, previous approaches remain disconnected from environment mapping, lack the spatial precision of geometric maps, or neglect additional modality information beyond vision. To address this, we propose multimodal spatial language maps as a spatial map representation that fuses pretrained multimodal features with a 3D reconstruction of the environment. We build these maps autonomously using standard exploration. We present two instances of our maps, which are visual-language maps (VLMaps) and their extension to audio-visual-language maps (AVLMaps) obtained by adding audio information. When combined with large language models (LLMs), VLMaps can (i) translate natural language commands into open-vocabulary spatial goals (e.g., "in between the sofa and TV") directly localized in the map, and (ii) be shared across different robot embodiments to generate tailored obstacle maps on demand. Building upon the capabilities above, AVLMaps extend VLMaps by introducing a unified 3D spatial representation integrating audio, visual, and language cues through the fusion of features from pretrained multimodal foundation models. This enables robots to ground multimodal goal queries (e.g., text, images, or audio snippets) to spatial locations for navigation. Additionally, the incorporation of diverse sensory inputs significantly enhances goal disambiguation in ambiguous environments. Experiments in simulation and real-world settings demonstrate that our multimodal spatial language maps enable zero-shot spatial and multimodal goal navigation and improve recall by 50% in ambiguous scenarios. These capabilities extend to mobile robots and tabletop manipulators, supporting navigation and interaction guided by visual, audio, and spatial cues.
comment: accepted to International Journal of Robotics Research (IJRR). 24 pages, 18 figures. The paper contains texts from VLMaps(arXiv:2210.05714) and AVLMaps(arXiv:2303.07522). The project page is https://mslmaps.github.io/
☆ RF-Source Seeking with Obstacle Avoidance using Real-time Modified Artificial Potential Fields in Unknown Environments
Navigation of UAVs in unknown environments with obstacles is essential for applications in disaster response and infrastructure monitoring. However, existing obstacle avoidance algorithms, such as Artificial Potential Field (APF) are unable to generalize across environments with different obstacle configurations. Furthermore, the precise location of the final target may not be available in applications such as search and rescue, in which case approaches such as RF source seeking can be used to align towards the target location. This paper proposes a real-time trajectory planning method, which involves real-time adaptation of APF through a sampling-based approach. The proposed approach utilizes only the bearing angle of the target without its precise location, and adjusts the potential field parameters according to the environment with new obstacle configurations in real time. The main contributions of the article are i) an RF source seeking algorithm to provide a bearing angle estimate using RF signal calculations based on antenna placement, and ii) a modified APF for adaptable collision avoidance in changing environments, which are evaluated separately in the simulation software Gazebo, using ROS2 for communication. Simulation results show that the RF source-seeking algorithm achieves high accuracy, with an average angular error of just 1.48 degrees, and with this estimate, the proposed navigation algorithm improves the success rate of reaching the target by 46% and reduces the trajectory length by 1.2% compared to standard potential fields.
comment: 14 pages, 16 figures, 1 table, shorter version under review for IEEE ICCAS 2025 conference
☆ IRS: Instance-Level 3D Scene Graphs via Room Prior Guided LiDAR-Camera Fusion
Indoor scene understanding remains a fundamental challenge in robotics, with direct implications for downstream tasks such as navigation and manipulation. Traditional approaches often rely on closed-set recognition or loop closure, limiting their adaptability in open-world environments. With the advent of visual foundation models (VFMs), open-vocabulary recognition and natural language querying have become feasible, unlocking new possibilities for 3D scene graph construction. In this paper, we propose a robust and efficient framework for instance-level 3D scene graph construction via LiDAR-camera fusion. Leveraging LiDAR's wide field of view (FOV) and long-range sensing capabilities, we rapidly acquire room-level geometric priors. Multi-level VFMs are employed to improve the accuracy and consistency of semantic extraction. During instance fusion, room-based segmentation enables parallel processing, while the integration of geometric and semantic cues significantly enhances fusion accuracy and robustness. Compared to state-of-the-art methods, our approach achieves up to an order-of-magnitude improvement in construction speed while maintaining high semantic precision. Extensive experiments in both simulated and real-world environments validate the effectiveness of our approach. We further demonstrate its practical value through a language-guided semantic navigation task, highlighting its potential for real-world robotic applications.
☆ SARAL-Bot: Autonomous Robot for Strawberry Plant Care
Strawberry farming demands intensive labor for monitoring and maintaining plant health. To address this, Team SARAL develops an autonomous robot for the 2024 ASABE Student Robotics Challenge, capable of navigation, unhealthy leaf detection, and removal. The system addresses labor shortages, reduces costs, and supports sustainable farming through vision-based plant assessment. This work demonstrates the potential of robotics to modernize strawberry cultivation and enable scalable, intelligent agricultural solutions.
comment: Awarded Best Written Report @ Robotics Design Challenge (Advanced), ASABE 2024
☆ LoopDB: A Loop Closure Dataset for Large Scale Simultaneous Localization and Mapping
In this study, we introduce LoopDB, which is a challenging loop closure dataset comprising over 1000 images captured across diverse environments, including parks, indoor scenes, parking spaces, as well as centered around individual objects. Each scene is represented by a sequence of five consecutive images. The dataset was collected using a high resolution camera, providing suitable imagery for benchmarking the accuracy of loop closure algorithms, typically used in simultaneous localization and mapping. As ground truth information, we provide computed rotations and translations between each consecutive images. Additional to its benchmarking goal, the dataset can be used to train and fine-tune loop closure methods based on deep neural networks. LoopDB is publicly available at https://github.com/RovisLab/LoopDB.
SpikePingpong: High-Frequency Spike Vision-based Robot Learning for Precise Striking in Table Tennis Game
Learning to control high-speed objects in the real world remains a challenging frontier in robotics. Table tennis serves as an ideal testbed for this problem, demanding both rapid interception of fast-moving balls and precise adjustment of their trajectories. This task presents two fundamental challenges: it requires a high-precision vision system capable of accurately predicting ball trajectories, and it necessitates intelligent strategic planning to ensure precise ball placement to target regions. The dynamic nature of table tennis, coupled with its real-time response requirements, makes it particularly well-suited for advancing robotic control capabilities in fast-paced, precision-critical domains. In this paper, we present SpikePingpong, a novel system that integrates spike-based vision with imitation learning for high-precision robotic table tennis. Our approach introduces two key attempts that directly address the aforementioned challenges: SONIC, a spike camera-based module that achieves millimeter-level precision in ball-racket contact prediction by compensating for real-world uncertainties such as air resistance and friction; and IMPACT, a strategic planning module that enables accurate ball placement to targeted table regions. The system harnesses a 20 kHz spike camera for high-temporal resolution ball tracking, combined with efficient neural network models for real-time trajectory correction and stroke planning. Experimental results demonstrate that SpikePingpong achieves a remarkable 91% success rate for 30 cm accuracy target area and 71% in the more challenging 20 cm accuracy task, surpassing previous state-of-the-art approaches by 38% and 37% respectively. These significant performance improvements enable the robust implementation of sophisticated tactical gameplay strategies, providing a new research perspective for robotic control in high-speed dynamic tasks.
☆ RoboPARA: Dual-Arm Robot Planning with Parallel Allocation and Recomposition Across Tasks
Dual-arm robots play a crucial role in improving efficiency and flexibility in complex multitasking scenarios. While existing methods have achieved promising results in task planning, they often fail to fully optimize task parallelism, limiting the potential of dual-arm collaboration. To address this issue, we propose RoboPARA, a novel large language model (LLM)-driven framework for dual-arm task parallelism planning. RoboPARA employs a two-stage process: (1) Dependency Graph-based Planning Candidates Generation, which constructs directed acyclic graphs (DAGs) to model task dependencies and eliminate redundancy, and (2) Graph Re-Traversal-based Dual-Arm Parallel Planning, which optimizes DAG traversal to maximize parallelism while maintaining task coherence. In addition, we introduce the Cross-Scenario Dual-Arm Parallel Task dataset (X-DAPT dataset), the first dataset specifically designed to evaluate dual-arm task parallelism across diverse scenarios and difficulty levels. Extensive experiments on the X-DAPT dataset demonstrate that RoboPARA significantly outperforms existing methods, achieving higher efficiency and reliability, particularly in complex task combinations. The code and dataset will be released upon acceptance.
☆ RoboCerebra: A Large-scale Benchmark for Long-horizon Robotic Manipulation Evaluation
Recent advances in vision-language models (VLMs) have enabled instruction-conditioned robotic systems with improved generalization. However, most existing work focuses on reactive System 1 policies, underutilizing VLMs' strengths in semantic reasoning and long-horizon planning. These System 2 capabilities-characterized by deliberative, goal-directed thinking-remain under explored due to the limited temporal scale and structural complexity of current benchmarks. To address this gap, we introduce RoboCerebra, a benchmark for evaluating high-level reasoning in long-horizon robotic manipulation. RoboCerebra includes: (1) a large-scale simulation dataset with extended task horizons and diverse subtask sequences in household environments; (2) a hierarchical framework combining a high-level VLM planner with a low-level vision-language-action (VLA) controller; and (3) an evaluation protocol targeting planning, reflection, and memory through structured System 1-System 2 interaction. The dataset is constructed via a top-down pipeline, where GPT generates task instructions and decomposes them into subtask sequences. Human operators execute the subtasks in simulation, yielding high-quality trajectories with dynamic object variations. Compared to prior benchmarks, RoboCerebra features significantly longer action sequences and denser annotations. We further benchmark state-of-the-art VLMs as System 2 modules and analyze their performance across key cognitive dimensions, advancing the development of more capable and generalizable robotic planners.
comment: 23 pages, 18 figures
☆ Generalized Trajectory Scoring for End-to-end Multimodal Planning CVPR 2025
End-to-end multi-modal planning is a promising paradigm in autonomous driving, enabling decision-making with diverse trajectory candidates. A key component is a robust trajectory scorer capable of selecting the optimal trajectory from these candidates. While recent trajectory scorers focus on scoring either large sets of static trajectories or small sets of dynamically generated ones, both approaches face significant limitations in generalization. Static vocabularies provide effective coarse discretization but struggle to make fine-grained adaptation, while dynamic proposals offer detailed precision but fail to capture broader trajectory distributions. To overcome these challenges, we propose GTRS (Generalized Trajectory Scoring), a unified framework for end-to-end multi-modal planning that combines coarse and fine-grained trajectory evaluation. GTRS consists of three complementary innovations: (1) a diffusion-based trajectory generator that produces diverse fine-grained proposals; (2) a vocabulary generalization technique that trains a scorer on super-dense trajectory sets with dropout regularization, enabling its robust inference on smaller subsets; and (3) a sensor augmentation strategy that enhances out-of-domain generalization while incorporating refinement training for critical trajectory discrimination. As the winning solution of the Navsim v2 Challenge, GTRS demonstrates superior performance even with sub-optimal sensor inputs, approaching privileged methods that rely on ground-truth perception. Code will be available at https://github.com/NVlabs/GTRS.
comment: The 1st place solution of the End-to-end Driving Track at the CVPR 2025 Autonomous Grand Challenge
☆ DriveSuprim: Towards Precise Trajectory Selection for End-to-End Planning
In complex driving environments, autonomous vehicles must navigate safely. Relying on a single predicted path, as in regression-based approaches, usually does not explicitly assess the safety of the predicted trajectory. Selection-based methods address this by generating and scoring multiple trajectory candidates and predicting the safety score for each, but face optimization challenges in precisely selecting the best option from thousands of possibilities and distinguishing subtle but safety-critical differences, especially in rare or underrepresented scenarios. We propose DriveSuprim to overcome these challenges and advance the selection-based paradigm through a coarse-to-fine paradigm for progressive candidate filtering, a rotation-based augmentation method to improve robustness in out-of-distribution scenarios, and a self-distillation framework to stabilize training. DriveSuprim achieves state-of-the-art performance, reaching 93.5% PDMS in NAVSIM v1 and 87.1% EPDMS in NAVSIM v2 without extra data, demonstrating superior safetycritical capabilities, including collision avoidance and compliance with rules, while maintaining high trajectory quality in various driving scenarios.
comment: 15 pages, 6 figures
☆ Self-Adapting Improvement Loops for Robotic Learning
Video generative models trained on expert demonstrations have been utilized as performant text-conditioned visual planners for solving robotic tasks. However, generalization to unseen tasks remains a challenge. Whereas improved generalization may be facilitated by leveraging learned prior knowledge from additional pre-collected offline data sources, such as web-scale video datasets, in the era of experience we aim to design agents that can continuously improve in an online manner from self-collected behaviors. In this work we thus propose the Self-Adapting Improvement Loop (SAIL), where an in-domain video model iteratively updates itself on self-produced trajectories, collected through adaptation with an internet-scale pretrained video model, and steadily improves its performance for a specified task of interest. We apply SAIL to a diverse suite of MetaWorld tasks, as well as two manipulation tasks on a real robot arm, and find that performance improvements continuously emerge over multiple iterations for novel tasks initially unseen during original in-domain video model training. Furthermore, we discover that SAIL is surprisingly robust regarding if and how the self-collected experience is filtered, and the quality of the initial in-domain demonstrations. Through adaptation with summarized internet-scale data, and learning through online experience, we thus demonstrate a way to iteratively bootstrap a high-performance video model for solving novel robotic tasks through self-improvement.
☆ Active Test-time Vision-Language Navigation
Vision-Language Navigation (VLN) policies trained on offline datasets often exhibit degraded task performance when deployed in unfamiliar navigation environments at test time, where agents are typically evaluated without access to external interaction or feedback. Entropy minimization has emerged as a practical solution for reducing prediction uncertainty at test time; however, it can suffer from accumulated errors, as agents may become overconfident in incorrect actions without sufficient contextual grounding. To tackle these challenges, we introduce ATENA (Active TEst-time Navigation Agent), a test-time active learning framework that enables a practical human-robot interaction via episodic feedback on uncertain navigation outcomes. In particular, ATENA learns to increase certainty in successful episodes and decrease it in failed ones, improving uncertainty calibration. Here, we propose mixture entropy optimization, where entropy is obtained from a combination of the action and pseudo-expert distributions-a hypothetical action distribution assuming the agent's selected action to be optimal-controlling both prediction confidence and action preference. In addition, we propose a self-active learning strategy that enables an agent to evaluate its navigation outcomes based on confident predictions. As a result, the agent stays actively engaged throughout all iterations, leading to well-grounded and adaptive decision-making. Extensive evaluations on challenging VLN benchmarks-REVERIE, R2R, and R2R-CE-demonstrate that ATENA successfully overcomes distributional shifts at test time, outperforming the compared baseline methods across various settings.
☆ Attention-Based Convolutional Neural Network Model for Human Lower Limb Activity Recognition using sEMG
Accurate classification of lower limb movements using surface electromyography (sEMG) signals plays a crucial role in assistive robotics and rehabilitation systems. In this study, we present a lightweight attention-based deep neural network (DNN) for real-time movement classification using multi-channel sEMG data from the publicly available BASAN dataset. The proposed model consists of only 62,876 parameters and is designed without the need for computationally expensive preprocessing, making it suitable for real-time deployment. We employed a leave-oneout validation strategy to ensure generalizability across subjects, and evaluated the model on three movement classes: walking, standing with knee flexion, and sitting with knee extension. The network achieved 86.74% accuracy on the validation set and 85.38% on the test set, demonstrating strong classification performance under realistic conditions. Comparative analysis with existing models in the literature highlights the efficiency and effectiveness of our approach, especially in scenarios where computational cost and real-time response are critical. The results indicate that the proposed model is a promising candidate for integration into upper-level controllers in human-robot interaction systems.
comment: 6 pages, 3 figures
☆ Underwater Multi-Robot Simulation and Motion Planning in Angler
Deploying multi-robot systems in underwater environments is expensive and lengthy; testing algorithms and software in simulation improves development by decoupling software and hardware. However, this requires a simulation framework that closely resembles the real-world. Angler is an open-source framework that simulates low-level communication protocols for an onboard autopilot, such as ArduSub, providing a framework that is close to reality, but unfortunately lacking support for simulating multiple robots. We present an extension to Angler that supports multi-robot simulation and motion planning. Our extension has a modular architecture that creates non-conflicting communication channels between Gazebo, ArduSub Software-in-the-Loop (SITL), and MAVROS to operate multiple robots simultaneously in the same environment. Our multi-robot motion planning module interfaces with cascaded controllers via a JointTrajectory controller in ROS~2. We also provide an integration with the Open Motion Planning Library (OMPL), a collision avoidance module, and tools for procedural environment generation. Our work enables the development and benchmarking of underwater multi-robot motion planning in dynamic environments.
comment: Accepted for OCEANS 2025 Brest
♻ ☆ SLAC: Simulation-Pretrained Latent Action Space for Whole-Body Real-World RL
Building capable household and industrial robots requires mastering the control of versatile, high-degree-of-freedom (DoF) systems such as mobile manipulators. While reinforcement learning (RL) holds promise for autonomously acquiring robot control policies, scaling it to high-DoF embodiments remains challenging. Direct RL in the real world demands both safe exploration and high sample efficiency, which are difficult to achieve in practice. Sim-to-real RL, on the other hand, is often brittle due to the reality gap. This paper introduces SLAC, a method that renders real-world RL feasible for complex embodiments by leveraging a low-fidelity simulator to pretrain a task-agnostic latent action space. SLAC trains this latent action space via a customized unsupervised skill discovery method designed to promote temporal abstraction, disentanglement, and safety, thereby facilitating efficient downstream learning. Once a latent action space is learned, SLAC uses it as the action interface for a novel off-policy RL algorithm to autonomously learn downstream tasks through real-world interactions. We evaluate SLAC against existing methods on a suite of bimanual mobile manipulation tasks, where it achieves state-of-the-art performance. Notably, SLAC learns contact-rich whole-body tasks in under an hour of real-world interactions, without relying on any demonstrations or hand-crafted behavior priors. More information, code, and videos at robo-rl.github.io
♻ ☆ ASMA: An Adaptive Safety Margin Algorithm for Vision-Language Drone Navigation via Scene-Aware Control Barrier Functions
In the rapidly evolving field of vision-language navigation (VLN), ensuring safety for physical agents remains an open challenge. For a human-in-the-loop language-operated drone to navigate safely, it must understand natural language commands, perceive the environment, and simultaneously avoid hazards in real time. Control Barrier Functions (CBFs) are formal methods that enforce safe operating conditions. Model Predictive Control (MPC) is an optimization framework that plans a sequence of future actions over a prediction horizon, ensuring smooth trajectory tracking while obeying constraints. In this work, we consider a VLN-operated drone platform and enhance its safety by formulating a novel scene-aware CBF that leverages ego-centric observations from a camera which has both Red-Green-Blue as well as Depth (RGB-D) channels. A CBF-less baseline system uses a Vision-Language Encoder with cross-modal attention to convert commands into an ordered sequence of landmarks. An object detection model identifies and verifies these landmarks in the captured images to generate a planned path. To further enhance safety, an Adaptive Safety Margin Algorithm (ASMA) is proposed. ASMA tracks moving objects and performs scene-aware CBF evaluation on-the-fly, which serves as an additional constraint within the MPC framework. By continuously identifying potentially risky observations, the system performs prediction in real time about unsafe conditions and proactively adjusts its control actions to maintain safe navigation throughout the trajectory. Deployed on a Parrot Bebop2 quadrotor in the Gazebo environment using the Robot Operating System (ROS), ASMA achieves 64%-67% increase in success rates with only a slight increase (1.4%-5.8%) in trajectory lengths compared to the baseline CBF-less VLN.
♻ ☆ A Skeleton-Based Topological Planner for Exploration in Complex Unknown Environments ICRA 2025
The capability of autonomous exploration in complex, unknown environments is important in many robotic applications. While recent research on autonomous exploration have achieved much progress, there are still limitations, e.g., existing methods relying on greedy heuristics or optimal path planning are often hindered by repetitive paths and high computational demands. To address such limitations, we propose a novel exploration framework that utilizes the global topology information of observed environment to improve exploration efficiency while reducing computational overhead. Specifically, global information is utilized based on a skeletal topological graph representation of the environment geometry. We first propose an incremental skeleton extraction method based on wavefront propagation, based on which we then design an approach to generate a lightweight topological graph that can effectively capture the environment's structural characteristics. Building upon this, we introduce a finite state machine that leverages the topological structure to efficiently plan coverage paths, which can substantially mitigate the back-and-forth maneuvers (BFMs) problem. Experimental results demonstrate the superiority of our method in comparison with state-of-the-art methods. The source code will be made publicly available at: https://github.com/Haochen-Niu/STGPlanner.
comment: 7 pages, 7 figures. Accepted to be presented at the ICRA 2025
♻ ☆ PartInstruct: Part-level Instruction Following for Fine-grained Robot Manipulation
Fine-grained robot manipulation, such as lifting and rotating a bottle to display the label on the cap, requires robust reasoning about object parts and their relationships with intended tasks. Despite recent advances in training general-purpose robot manipulation policies guided by language instructions, there is a notable lack of large-scale datasets for fine-grained manipulation tasks with part-level instructions and diverse 3D object instances annotated with part-level labels. In this work, we introduce PartInstruct, the first large-scale benchmark for training and evaluating fine-grained robot manipulation models using part-level instructions. PartInstruct comprises 513 object instances across 14 categories, each annotated with part-level information, and 1302 fine-grained manipulation tasks organized into 16 task classes. Our training set consists of over 10,000 expert demonstrations synthesized in a 3D simulator, where each demonstration is paired with a high-level task instruction, a chain of base part-based skill instructions, and ground-truth 3D information about the object and its parts. Additionally, we designed a comprehensive test suite to evaluate the generalizability of learned policies across new states, objects, and tasks. We evaluated several state-of-the-art robot manipulation approaches, including end-to-end vision-language policy learning and bi-level planning models for robot manipulation on our benchmark. The experimental results reveal that current models struggle to robustly ground part concepts and predict actions in 3D space, and face challenges when manipulating object parts in long-horizon tasks.
♻ ☆ LLM-attacker: Enhancing Closed-loop Adversarial Scenario Generation for Autonomous Driving with Large Language Models TITS 2025
Ensuring and improving the safety of autonomous driving systems (ADS) is crucial for the deployment of highly automated vehicles, especially in safety-critical events. To address the rarity issue, adversarial scenario generation methods are developed, in which behaviors of traffic participants are manipulated to induce safety-critical events. However, existing methods still face two limitations. First, identification of the adversarial participant directly impacts the effectiveness of the generation. However, the complexity of real-world scenarios, with numerous participants and diverse behaviors, makes identification challenging. Second, the potential of generated safety-critical scenarios to continuously improve ADS performance remains underexplored. To address these issues, we propose LLM-attacker: a closed-loop adversarial scenario generation framework leveraging large language models (LLMs). Specifically, multiple LLM agents are designed and coordinated to identify optimal attackers. Then, the trajectories of the attackers are optimized to generate adversarial scenarios. These scenarios are iteratively refined based on the performance of ADS, forming a feedback loop to improve ADS. Experimental results show that LLM-attacker can create more dangerous scenarios than other methods, and the ADS trained with it achieves a collision rate half that of training with normal scenarios. This indicates the ability of LLM-attacker to test and enhance the safety and robustness of ADS. Video demonstrations are provided at: https://drive.google.com/file/d/1Zv4V3iG7825oyiKbUwS2Y-rR0DQIE1ZA/view.
comment: Accepted as a regular paper at IEEE TITS 2025
♻ ☆ Dynamic Obstacle Avoidance of Unmanned Surface Vehicles in Maritime Environments Using Gaussian Processes Based Motion Planning
During recent years, unmanned surface vehicles are extensively utilised in a variety of maritime applications such as the exploration of unknown areas, autonomous transportation, offshore patrol and others. In such maritime applications, unmanned surface vehicles executing relevant missions that might collide with potential static obstacles such as islands and reefs and dynamic obstacles such as other moving unmanned surface vehicles. To successfully accomplish these missions, motion planning algorithms that can generate smooth and collision-free trajectories to avoid both these static and dynamic obstacles in an efficient manner are essential. In this article, we propose a novel motion planning algorithm named the Dynamic Gaussian process motion planner 2, which successfully extends the application scope of the Gaussian process motion planner 2 into complex and dynamic environments with both static and dynamic obstacles. First, we introduce an approach to generate safe areas for dynamic obstacles using modified multivariate Gaussian distributions. Second, we introduce an approach to integrate real-time status information of dynamic obstacles into the modified multivariate Gaussian distributions. The multivariate Gaussian distributions with real-time statuses of dynamic obstacles can be innovatively added into the optimisation process of factor graph to generate an optimised trajectory. We also develop a variant of the proposed algorithm that integrates the international regulations for preventing collisions at sea, enhancing its operational effectiveness in maritime environments. The proposed algorithms have been validated in a series of benchmark simulations and a dynamic obstacle avoidance mission in a high-fidelity maritime environment in the Robotic operating system to demonstrate the functionality and practicability.
comment: 20 pages, 22 figures
A Third-Order Gaussian Process Trajectory Representation Framework with Closed-Form Kinematics for Continuous-Time Motion Estimation
In this paper, we propose a third-order, i.e., white-noise-on-jerk, Gaussian Process (GP) Trajectory Representation (TR) framework for continuous-time (CT) motion estimation (ME) tasks. Our framework features a unified trajectory representation that encapsulates the kinematic models of both $SO(3)\times\mathbb{R}^3$ and $SE(3)$ pose representations. This encapsulation strategy allows users to use the same implementation of measurement-based factors for either choice of pose representation, which facilitates experimentation and comparison to achieve the best model for the ME task. In addition, unique to our framework, we derive the kinematic models with the closed-form temporal derivatives of the local variable of $SO(3)$ and $SE(3)$, which so far has only been approximated based on the Taylor expansion in the literature. Our experiments show that these kinematic models can improve the estimation accuracy in high-speed scenarios. All analytical Jacobians of the interpolated states with respect to the support states of the trajectory representation, as well as the motion prior factors, are also provided for accelerated Gauss-Newton (GN) optimization. Our experiments demonstrate the efficacy and efficiency of the framework in various motion estimation tasks such as localization, calibration, and odometry, facilitating fast prototyping for ME researchers. We release the source code for the benefit of the community. Our project is available at https://github.com/brytsknguyen/gptr.
comment: The source code has been released. All feedbacks are welcome
♻ ☆ Multi-GraspLLM: A Multimodal LLM for Multi-Hand Semantic Guided Grasp Generation
Multi-hand semantic grasp generation aims to generate feasible and semantically appropriate grasp poses for different robotic hands based on natural language instructions. Although the task is highly valuable, due to the lack of multihand grasp datasets with fine-grained contact description between robotic hands and objects, it is still a long-standing difficult task. In this paper, we present Multi-GraspSet, the first large-scale multi-hand grasp dataset with automatically contact annotations. Based on Multi-GraspSet, we propose Multi-GraspLLM, a unified language-guided grasp generation framework, which leverages large language models (LLM) to handle variable-length sequences, generating grasp poses for diverse robotic hands in a single unified architecture. Multi-GraspLLM first aligns the encoded point cloud features and text features into a unified semantic space. It then generates grasp bin tokens that are subsequently converted into grasp pose for each robotic hand via hand-aware linear mapping. The experimental results demonstrate that our approach significantly outperforms existing methods in both real-world experiments and simulator. More information can be found on our project page https://multi-graspllm.github.io.
comment: 16 pages, 10 figures
♻ ☆ ShapeICP: Iterative Category-level Object Pose and Shape Estimation from Depth
Category-level object pose and shape estimation from a single depth image has recently drawn research attention due to its potential utility for tasks such as robotics manipulation. The task is particularly challenging because the three unknowns, object pose, object shape, and model-to-measurement correspondences, are compounded together, but only a single view of depth measurements is provided. Most of the prior work heavily relies on data-driven approaches to obtain solutions to at least one of the unknowns, and typically two, running with the risk of failing to generalize to unseen domains. The shape representations used in the prior work also mainly focus on point cloud and signed distance field (SDF). In stark contrast to the prior work, we approach the problem using an iterative estimation method that does not require learning from pose-annotated data. In addition, we adopt a novel mesh-based object active shape model that the previous literature has not explored. Our algorithm, ShapeICP, is based on the iterative closest point (ICP) algorithm but is equipped with additional features for the category-level pose and shape estimation task. Although not using pose-annotated data, ShapeICP surpasses many data-driven approaches that rely on pose data for training, opening up a new solution space for researchers to consider.
♻ ☆ Manual2Skill: Learning to Read Manuals and Acquire Robotic Skills for Furniture Assembly Using Vision-Language Models
Humans possess an extraordinary ability to understand and execute complex manipulation tasks by interpreting abstract instruction manuals. For robots, however, this capability remains a substantial challenge, as they cannot interpret abstract instructions and translate them into executable actions. In this paper, we present Manual2Skill, a novel framework that enables robots to perform complex assembly tasks guided by high-level manual instructions. Our approach leverages a Vision-Language Model (VLM) to extract structured information from instructional images and then uses this information to construct hierarchical assembly graphs. These graphs represent parts, subassemblies, and the relationships between them. To facilitate task execution, a pose estimation model predicts the relative 6D poses of components at each assembly step. At the same time, a motion planning module generates actionable sequences for real-world robotic implementation. We demonstrate the effectiveness of Manual2Skill by successfully assembling several real-world IKEA furniture items. This application highlights its ability to manage long-horizon manipulation tasks with both efficiency and precision, significantly enhancing the practicality of robot learning from instruction manuals. This work marks a step forward in advancing robotic systems capable of understanding and executing complex manipulation tasks in a manner akin to human capabilities.Project Page: https://owensun2004.github.io/Furniture-Assembly-Web/
♻ ☆ Delayed-Decision Motion Planning in the Presence of Multiple Predictions
Reliable automated driving technology is challenged by various sources of uncertainties, in particular, behavioral uncertainties of traffic agents. It is common for traffic agents to have intentions that are unknown to others, leaving an automated driving car to reason over multiple possible behaviors. This paper formalizes a behavior planning scheme in the presence of multiple possible futures with corresponding probabilities. We present a maximum entropy formulation and show how, under certain assumptions, this allows delayed decision-making to improve safety. The general formulation is then turned into a model predictive control formulation, which is solved as a quadratic program or a set of quadratic programs. We discuss implementation details for improving computation and verify operation in simulation and on a mobile robot.
Artificial Intelligence 1
♻ ☆ from Benign import Toxic: Jailbreaking the Language Model via Adversarial Metaphors
Current studies have exposed the risk of Large Language Models (LLMs) generating harmful content by jailbreak attacks. However, they overlook that the direct generation of harmful content from scratch is more difficult than inducing LLM to calibrate benign content into harmful forms. In our study, we introduce a novel attack framework that exploits AdVersArial meTAphoR (AVATAR) to induce the LLM to calibrate malicious metaphors for jailbreaking. Specifically, to answer harmful queries, AVATAR adaptively identifies a set of benign but logically related metaphors as the initial seed. Then, driven by these metaphors, the target LLM is induced to reason and calibrate about the metaphorical content, thus jailbroken by either directly outputting harmful responses or calibrating residuals between metaphorical and professional harmful content. Experimental results demonstrate that AVATAR can effectively and transferable jailbreak LLMs and achieve a state-of-the-art attack success rate across multiple advanced LLMs.
comment: arXiv admin note: substantial text overlap with arXiv:2412.12145
Graphics 3
♻ ☆ Formalizing Feint Actions, and Example Studies in Two-Player Games
Feint actions refer to a set of deceptive actions, which enable players to obtain temporal advantages from their opponents. Such actions are regarded as widely-used tactic in most non-deterministic Two-player Games (e.g. boxing and fencing). However, existing literature does not provide comprehensive and concrete formalization on Feint actions, and their implications on Two-Player Games. We argue that a full exploration on Feint actions is of great importance towards more realistic Two-player Games. In this paper, we provide the first comprehensive and concrete formalization of Feint actions. The key idea of our work is to (1) allow automatic generation of Feint actions, via our proposed Palindrome-directed Generation of Feint actions; and (2) provide concrete principles to properly combine Feint and attack actions. Based on our formalization of Feint actions, we also explore the implications on the game strategy model, and provide optimizations to better incorporate Feint actions. Our experimental results shows that accounting for Feint actions in Non-Deterministic Games (1) brings overall benefits to the game design; and (2) has great benefits on on either game animations or strategy designs, which also introduces a great extent of randomness into randomness-demanded Game models.
comment: The pre-print has been combined into another paper (arXiv:2403.07932)
♻ ☆ SOPHY: Learning to Generate Simulation-Ready Objects with Physical Materials
We present SOPHY, a generative model for 3D physics-aware shape synthesis. Unlike existing 3D generative models that focus solely on static geometry or 4D models that produce physics-agnostic animations, our method jointly synthesizes shape, texture, and material properties related to physics-grounded dynamics, making the generated objects ready for simulations and interactive, dynamic environments. To train our model, we introduce a dataset of 3D objects annotated with detailed physical material attributes, along with an efficient pipeline for material annotation. Our method enables applications such as text-driven generation of interactive, physics-aware 3D objects and single-image reconstruction of physically plausible shapes. Furthermore, our experiments show that jointly modeling shape and material properties enhances the realism and fidelity of the generated shapes, improving performance on both generative geometry and physical plausibility.
comment: Project page: https://xjay18.github.io/SOPHY_page
♻ ☆ Data-Efficient Discovery of Hyperelastic TPMS Metamaterials with Extreme Energy Dissipation
Triply periodic minimal surfaces (TPMS) are a class of metamaterials with a variety of applications and well-known primitive morphologies. We present a new method for discovering novel microscale TPMS structures with exceptional energy-dissipation capabilities, achieving double the energy absorption of the best existing TPMS primitive structure. Our approach employs a parametric representation, allowing seamless interpolation between structures and representing a rich TPMS design space. As simulations are intractable for efficiently optimizing microscale hyperelastic structures, we propose a sample-efficient computational strategy for rapid discovery with limited empirical data from 3D-printed and tested samples that ensures high-fidelity results. We achieve this by leveraging a predictive uncertainty-aware Deep Ensembles model to identify which structures to fabricate and test next. We iteratively refine our model through batch Bayesian optimization, selecting structures for fabrication that maximize exploration of the performance space and exploitation of our energy-dissipation objective. Using our method, we produce the first open-source dataset of hyperelastic microscale TPMS structures, including a set of novel structures that demonstrate extreme energy dissipation capabilities, and show several potential applications of these structures.
Robotics 57
☆ PyGemini: Unified Software Development towards Maritime Autonomy Systems
Ensuring the safety and certifiability of autonomous surface vessels (ASVs) requires robust decision-making systems, supported by extensive simulation, testing, and validation across a broad range of scenarios. However, the current landscape of maritime autonomy development is fragmented -- relying on disparate tools for communication, simulation, monitoring, and system integration -- which hampers interdisciplinary collaboration and inhibits the creation of compelling assurance cases, demanded by insurers and regulatory bodies. Furthermore, these disjointed tools often suffer from performance bottlenecks, vendor lock-in, and limited support for continuous integration workflows. To address these challenges, we introduce PyGemini, a permissively licensed, Python-native framework that builds on the legacy of Autoferry Gemini to unify maritime autonomy development. PyGemini introduces a novel Configuration-Driven Development (CDD) process that fuses Behavior-Driven Development (BDD), data-oriented design, and containerization to support modular, maintainable, and scalable software architectures. The framework functions as a stand-alone application, cloud-based service, or embedded library -- ensuring flexibility across research and operational contexts. We demonstrate its versatility through a suite of maritime tools -- including 3D content generation for simulation and monitoring, scenario generation for autonomy validation and training, and generative artificial intelligence pipelines for augmenting imagery -- thereby offering a scalable, maintainable, and performance-oriented foundation for future maritime robotics and autonomy research.
comment: Preprint. Not yet submitted for peer review. Includes 14 figures and 3 tables. 18 pages, 1 appendix
☆ From NLVO to NAO: Reactive Robot Navigation using Velocity and Acceleration Obstacles
This paper introduces a novel approach for robot navigation in challenging dynamic environments. The proposed method builds upon the concept of Velocity Obstacles (VO) that was later extended to Nonlinear Velocity Obstacles (NLVO) to account for obstacles moving along nonlinear trajectories. The NLVO is extended in this paper to Acceleration Obstacles (AO) and Nonlinear Acceleration Obstacles (NAO) that account for velocity and acceleration constraints. Multi-robot navigation is achieved by using the same avoidance algorithm by all robots. At each time step, the trajectories of all robots are predicted based on their current velocity and acceleration to allow the computation of their respective NLVO, AO and NAO. The introduction of AO and NAO allows the generation of safe avoidance maneuvers that account for the robot dynamic constraints better than could be done with the NLVO alone. This paper demonstrates the use of AO and NAO for robot navigation in challenging environments. It is shown that using AO and NAO enables simultaneous real-time collision avoidance while accounting for robot kinematics and a direct consideration of its dynamic constraints. The presented approach enables reactive and efficient navigation, with potential application for autonomous vehicles operating in complex dynamic environments.
comment: 8 pages, 12 figures. arXiv admin note: text overlap with arXiv:2504.13637
☆ BiAssemble: Learning Collaborative Affordance for Bimanual Geometric Assembly ICML 2025
Shape assembly, the process of combining parts into a complete whole, is a crucial robotic skill with broad real-world applications. Among various assembly tasks, geometric assembly--where broken parts are reassembled into their original form (e.g., reconstructing a shattered bowl)--is particularly challenging. This requires the robot to recognize geometric cues for grasping, assembly, and subsequent bimanual collaborative manipulation on varied fragments. In this paper, we exploit the geometric generalization of point-level affordance, learning affordance aware of bimanual collaboration in geometric assembly with long-horizon action sequences. To address the evaluation ambiguity caused by geometry diversity of broken parts, we introduce a real-world benchmark featuring geometric variety and global reproducibility. Extensive experiments demonstrate the superiority of our approach over both previous affordance-based and imitation-based methods. Project page: https://sites.google.com/view/biassembly/.
comment: ICML 2025
Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning
Modern robot navigation systems encounter difficulties in diverse and complex indoor environments. Traditional approaches rely on multiple modules with small models or rule-based systems and thus lack adaptability to new environments. To address this, we developed Astra, a comprehensive dual-model architecture, Astra-Global and Astra-Local, for mobile robot navigation. Astra-Global, a multimodal LLM, processes vision and language inputs to perform self and goal localization using a hybrid topological-semantic graph as the global map, and outperforms traditional visual place recognition methods. Astra-Local, a multitask network, handles local path planning and odometry estimation. Its 4D spatial-temporal encoder, trained through self-supervised learning, generates robust 4D features for downstream tasks. The planning head utilizes flow matching and a novel masked ESDF loss to minimize collision risks for generating local trajectories, and the odometry head integrates multi-sensor inputs via a transformer encoder to predict the relative pose of the robot. Deployed on real in-house mobile robots, Astra achieves high end-to-end mission success rate across diverse indoor environments.
comment: Astra Technical Report
☆ 3DFlowAction: Learning Cross-Embodiment Manipulation from 3D Flow World Model
Manipulation has long been a challenging task for robots, while humans can effortlessly perform complex interactions with objects, such as hanging a cup on the mug rack. A key reason is the lack of a large and uniform dataset for teaching robots manipulation skills. Current robot datasets often record robot action in different action spaces within a simple scene. This hinders the robot to learn a unified and robust action representation for different robots within diverse scenes. Observing how humans understand a manipulation task, we find that understanding how the objects should move in the 3D space is a critical clue for guiding actions. This clue is embodiment-agnostic and suitable for both humans and different robots. Motivated by this, we aim to learn a 3D flow world model from both human and robot manipulation data. This model predicts the future movement of the interacting objects in 3D space, guiding action planning for manipulation. Specifically, we synthesize a large-scale 3D optical flow dataset, named ManiFlow-110k, through a moving object auto-detect pipeline. A video diffusion-based world model then learns manipulation physics from these data, generating 3D optical flow trajectories conditioned on language instructions. With the generated 3D object optical flow, we propose a flow-guided rendering mechanism, which renders the predicted final state and leverages GPT-4o to assess whether the predicted flow aligns with the task description. This equips the robot with a closed-loop planning ability. Finally, we consider the predicted 3D optical flow as constraints for an optimization policy to determine a chunk of robot actions for manipulation. Extensive experiments demonstrate strong generalization across diverse robotic manipulation tasks and reliable cross-embodiment adaptation without hardware-specific training.
☆ Bridging Perception and Action: Spatially-Grounded Mid-Level Representations for Robot Generalization
In this work, we investigate how spatially grounded auxiliary representations can provide both broad, high-level grounding as well as direct, actionable information to improve policy learning performance and generalization for dexterous tasks. We study these mid-level representations across three critical dimensions: object-centricity, pose-awareness, and depth-awareness. We use these interpretable mid-level representations to train specialist encoders via supervised learning, then feed them as inputs to a diffusion policy to solve dexterous bimanual manipulation tasks in the real world. We propose a novel mixture-of-experts policy architecture that combines multiple specialized expert models, each trained on a distinct mid-level representation, to improve policy generalization. This method achieves an average success rate that is 11% higher than a language-grounded baseline and 24 percent higher than a standard diffusion policy baseline on our evaluation tasks. Furthermore, we find that leveraging mid-level representations as supervision signals for policy actions within a weighted imitation learning algorithm improves the precision with which the policy follows these representations, yielding an additional performance increase of 10%. Our findings highlight the importance of grounding robot policies not only with broad perceptual tasks but also with more granular, actionable representations. For further information and videos, please visit https://mid-level-moe.github.io.
comment: 16 pages, 13 figures
UAV-UGV Cooperative Trajectory Optimization and Task Allocation for Medical Rescue Tasks in Post-Disaster Environments
In post-disaster scenarios, rapid and efficient delivery of medical resources is critical and challenging due to severe damage to infrastructure. To provide an optimized solution, we propose a cooperative trajectory optimization and task allocation framework leveraging unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs). This study integrates a Genetic Algorithm (GA) for efficient task allocation among multiple UAVs and UGVs, and employs an informed-RRT* (Rapidly-exploring Random Tree Star) algorithm for collision-free trajectory generation. Further optimization of task sequencing and path efficiency is conducted using Covariance Matrix Adaptation Evolution Strategy (CMA-ES). Simulation experiments conducted in a realistic post-disaster environment demonstrate that our proposed approach significantly improves the overall efficiency of medical rescue operations compared to traditional strategies, showing substantial reductions in total mission completion time and traveled distance. Additionally, the cooperative utilization of UAVs and UGVs effectively balances their complementary advantages, highlighting the system' s scalability and practicality for real-world deployment.
☆ On-board Mission Replanning for Adaptive Cooperative Multi-Robot Systems
Cooperative autonomous robotic systems have significant potential for executing complex multi-task missions across space, air, ground, and maritime domains. But they commonly operate in remote, dynamic and hazardous environments, requiring rapid in-mission adaptation without reliance on fragile or slow communication links to centralised compute. Fast, on-board replanning algorithms are therefore needed to enhance resilience. Reinforcement Learning shows strong promise for efficiently solving mission planning tasks when formulated as Travelling Salesperson Problems (TSPs), but existing methods: 1) are unsuitable for replanning, where agents do not start at a single location; 2) do not allow cooperation between agents; 3) are unable to model tasks with variable durations; or 4) lack practical considerations for on-board deployment. Here we define the Cooperative Mission Replanning Problem as a novel variant of multiple TSP with adaptations to overcome these issues, and develop a new encoder/decoder-based model using Graph Attention Networks and Attention Models to solve it effectively and efficiently. Using a simple example of cooperative drones, we show our replanner consistently (90% of the time) maintains performance within 10% of the state-of-the-art LKH3 heuristic solver, whilst running 85-370 times faster on a Raspberry Pi. This work paves the way for increased resilience in autonomous multi-agent systems.
comment: 9 pages, 5 figures, 1 table
☆ Self driving algorithm for an active four wheel drive racecar
Controlling autonomous vehicles at their handling limits is a significant challenge, particularly for electric vehicles with active four wheel drive (A4WD) systems offering independent wheel torque control. While traditional Vehicle Dynamics Control (VDC) methods use complex physics-based models, this study explores Deep Reinforcement Learning (DRL) to develop a unified, high-performance controller. We employ the Proximal Policy Optimization (PPO) algorithm to train an agent for optimal lap times in a simulated racecar (TORCS) at the tire grip limit. Critically, the agent learns an end-to-end policy that directly maps vehicle states, like velocities, accelerations, and yaw rate, to a steering angle command and independent torque commands for each of the four wheels. This formulation bypasses conventional pedal inputs and explicit torque vectoring algorithms, allowing the agent to implicitly learn the A4WD control logic needed for maximizing performance and stability. Simulation results demonstrate the RL agent learns sophisticated strategies, dynamically optimizing wheel torque distribution corner-by-corner to enhance handling and mitigate the vehicle's inherent understeer. The learned behaviors mimic and, in aspects of grip utilization, potentially surpass traditional physics-based A4WD controllers while achieving competitive lap times. This research underscores DRL's potential to create adaptive control systems for complex vehicle dynamics, suggesting RL is a potent alternative for advancing autonomous driving in demanding, grip-limited scenarios for racing and road safety.
☆ BEAST: Efficient Tokenization of B-Splines Encoded Action Sequences for Imitation Learning
We present the B-spline Encoded Action Sequence Tokenizer (BEAST), a novel action tokenizer that encodes action sequences into compact discrete or continuous tokens using B-splines. In contrast to existing action tokenizers based on vector quantization or byte pair encoding, BEAST requires no separate tokenizer training and consistently produces tokens of uniform length, enabling fast action sequence generation via parallel decoding. Leveraging our B-spline formulation, BEAST inherently ensures generating smooth trajectories without discontinuities between adjacent segments. We extensively evaluate BEAST by integrating it with three distinct model architectures: a Variational Autoencoder (VAE) with continuous tokens, a decoder-only Transformer with discrete tokens, and Florence-2, a pretrained Vision-Language Model with an encoder-decoder architecture, demonstrating BEAST's compatibility and scalability with large pretrained models. We evaluate BEAST across three established benchmarks consisting of 166 simulated tasks and on three distinct robot settings with a total of 8 real-world tasks. Experimental results demonstrate that BEAST (i) significantly reduces both training and inference computational costs, and (ii) consistently generates smooth, high-frequency control signals suitable for continuous control tasks while (iii) reliably achieves competitive task success rates compared to state-of-the-art methods.
☆ Trajectory Optimization for UAV-Based Medical Delivery with Temporal Logic Constraints and Convex Feasible Set Collision Avoidance
This paper addresses the problem of trajectory optimization for unmanned aerial vehicles (UAVs) performing time-sensitive medical deliveries in urban environments. Specifically, we consider a single UAV with 3 degree-of-freedom dynamics tasked with delivering blood packages to multiple hospitals, each with a predefined time window and priority. Mission objectives are encoded using Signal Temporal Logic (STL), enabling the formal specification of spatial-temporal constraints. To ensure safety, city buildings are modeled as 3D convex obstacles, and obstacle avoidance is handled through a Convex Feasible Set (CFS) method. The entire planning problem-combining UAV dynamics, STL satisfaction, and collision avoidance-is formulated as a convex optimization problem that ensures tractability and can be solved efficiently using standard convex programming techniques. Simulation results demonstrate that the proposed method generates dynamically feasible, collision-free trajectories that satisfy temporal mission goals, providing a scalable and reliable approach for autonomous UAV-based medical logistics.
comment: 7 pages, 4 figures
☆ End-to-End Framework for Robot Lawnmower Coverage Path Planning using Cellular Decomposition ICRA 2025
Efficient Coverage Path Planning (CPP) is necessary for autonomous robotic lawnmowers to effectively navigate and maintain lawns with diverse and irregular shapes. This paper introduces a comprehensive end-to-end pipeline for CPP, designed to convert user-defined boundaries on an aerial map into optimized coverage paths seamlessly. The pipeline includes user input extraction, coordinate transformation, area decomposition and path generation using our novel AdaptiveDecompositionCPP algorithm, preview and customization through an interactive coverage path visualizer, and conversion to actionable GPS waypoints. The AdaptiveDecompositionCPP algorithm combines cellular decomposition with an adaptive merging strategy to reduce non-mowing travel thereby enhancing operational efficiency. Experimental evaluations, encompassing both simulations and real-world lawnmower tests, demonstrate the effectiveness of the framework in coverage completeness and mowing efficiency.
comment: 8 pages, ICRA 2025, Workshop on Field Robotics
☆ Equivariant Filter for Relative Attitude and Target Angular Velocity Estimation
Accurate estimation of the relative attitude and angular velocity between two rigid bodies is fundamental in aerospace applications such as spacecraft rendezvous and docking. In these scenarios, a chaser vehicle must determine the orientation and angular velocity of a target object using onboard sensors. This work addresses the challenge of designing an Equivariant Filter (EqF) that can reliably estimate both the relative attitude and the target angular velocity using noisy observations of two known, non-collinear vectors fixed in the target frame. To derive the EqF, a symmetry for the system is proposed and an equivariant lift onto the symmetry group is calculated. Observability and convergence properties are analyzed. Simulations demonstrate the filter's performance, with Monte Carlo runs yielding statistically significant results. The impact of low-rate measurements is also examined and a strategy to mitigate this effect is proposed. Experimental results, using fiducial markers and both conventional and event cameras for measurement acquisition, further validate the approach, confirming its effectiveness in a realistic setting.
comment: This work has been submitted to the IEEE for possible publication
☆ Enhanced Trust Region Sequential Convex Optimization for Multi-Drone Thermal Screening Trajectory Planning in Urban Environments
The rapid detection of abnormal body temperatures in urban populations is essential for managing public health risks, especially during outbreaks of infectious diseases. Multi-drone thermal screening systems offer promising solutions for fast, large-scale, and non-intrusive human temperature monitoring. However, trajectory planning for multiple drones in complex urban environments poses significant challenges, including collision avoidance, coverage efficiency, and constrained flight environments. In this study, we propose an enhanced trust region sequential convex optimization (TR-SCO) algorithm for optimal trajectory planning of multiple drones performing thermal screening tasks. Our improved algorithm integrates a refined convex optimization formulation within a trust region framework, effectively balancing trajectory smoothness, obstacle avoidance, altitude constraints, and maximum screening coverage. Simulation results demonstrate that our approach significantly improves trajectory optimality and computational efficiency compared to conventional convex optimization methods. This research provides critical insights and practical contributions toward deploying efficient multi-drone systems for real-time thermal screening in urban areas. For reader who are interested in our research, we release our source code at https://github.com/Cherry0302/Enhanced-TR-SCO.
☆ Improving Long-Range Navigation with Spatially-Enhanced Recurrent Memory via End-to-End Reinforcement Learning
Recent advancements in robot navigation, especially with end-to-end learning approaches like reinforcement learning (RL), have shown remarkable efficiency and effectiveness. Yet, successful navigation still relies on two key capabilities: mapping and planning, whether explicit or implicit. Classical approaches use explicit mapping pipelines to register ego-centric observations into a coherent map frame for the planner. In contrast, end-to-end learning achieves this implicitly, often through recurrent neural networks (RNNs) that fuse current and past observations into a latent space for planning. While architectures such as LSTM and GRU capture temporal dependencies, our findings reveal a key limitation: their inability to perform effective spatial memorization. This skill is essential for transforming and integrating sequential observations from varying perspectives to build spatial representations that support downstream planning. To address this, we propose Spatially-Enhanced Recurrent Units (SRUs), a simple yet effective modification to existing RNNs, designed to enhance spatial memorization capabilities. We introduce an attention-based architecture with SRUs, enabling long-range navigation using a single forward-facing stereo camera. Regularization techniques are employed to ensure robust end-to-end recurrent training via RL. Experimental results show our approach improves long-range navigation by 23.5% compared to existing RNNs. Furthermore, with SRU memory, our method outperforms the RL baseline with explicit mapping and memory modules, achieving a 29.6% improvement in diverse environments requiring long-horizon mapping and memorization. Finally, we address the sim-to-real gap by leveraging large-scale pretraining on synthetic depth data, enabling zero-shot transfer to diverse and complex real-world environments.
comment: 21 pages
Dynamic Mixture of Progressive Parameter-Efficient Expert Library for Lifelong Robot Learning
A generalist agent must continuously learn and adapt throughout its lifetime, achieving efficient forward transfer while minimizing catastrophic forgetting. Previous work within the dominant pretrain-then-finetune paradigm has explored parameter-efficient fine-tuning for single-task adaptation, effectively steering a frozen pretrained model with a small number of parameters. However, in the context of lifelong learning, these methods rely on the impractical assumption of a test-time task identifier and restrict knowledge sharing among isolated adapters. To address these limitations, we propose Dynamic Mixture of Progressive Parameter-Efficient Expert Library (DMPEL) for lifelong robot learning. DMPEL progressively learn a low-rank expert library and employs a lightweight router to dynamically combine experts into an end-to-end policy, facilitating flexible behavior during lifelong adaptation. Moreover, by leveraging the modular structure of the fine-tuned parameters, we introduce coefficient replay to guide the router in accurately retrieving frozen experts for previously encountered tasks, thereby mitigating catastrophic forgetting. This method is significantly more storage- and computationally-efficient than applying demonstration replay to the entire policy. Extensive experiments on the lifelong manipulation benchmark LIBERO demonstrate that our framework outperforms state-of-the-art lifelong learning methods in success rates across continual adaptation, while utilizing minimal trainable parameters and storage.
☆ Gradual Transition from Bellman Optimality Operator to Bellman Operator in Online Reinforcement Learning ICML 2025
For continuous action spaces, actor-critic methods are widely used in online reinforcement learning (RL). However, unlike RL algorithms for discrete actions, which generally model the optimal value function using the Bellman optimality operator, RL algorithms for continuous actions typically model Q-values for the current policy using the Bellman operator. These algorithms for continuous actions rely exclusively on policy updates for improvement, which often results in low sample efficiency. This study examines the effectiveness of incorporating the Bellman optimality operator into actor-critic frameworks. Experiments in a simple environment show that modeling optimal values accelerates learning but leads to overestimation bias. To address this, we propose an annealing approach that gradually transitions from the Bellman optimality operator to the Bellman operator, thereby accelerating learning while mitigating bias. Our method, combined with TD3 and SAC, significantly outperforms existing approaches across various locomotion and manipulation tasks, demonstrating improved performance and robustness to hyperparameters related to optimality.
comment: Accepted at ICML 2025. Source code: https://github.com/motokiomura/annealed-q-learning
☆ Object Navigation with Structure-Semantic Reasoning-Based Multi-level Map and Multimodal Decision-Making LLM
The zero-shot object navigation (ZSON) in unknown open-ended environments coupled with semantically novel target often suffers from the significant decline in performance due to the neglect of high-dimensional implicit scene information and the long-range target searching task. To address this, we proposed an active object navigation framework with Environmental Attributes Map (EAM) and MLLM Hierarchical Reasoning module (MHR) to improve its success rate and efficiency. EAM is constructed by reasoning observed environments with SBERT and predicting unobserved ones with Diffusion, utilizing human space regularities that underlie object-room correlations and area adjacencies. MHR is inspired by EAM to perform frontier exploration decision-making, avoiding the circuitous trajectories in long-range scenarios to improve path efficiency. Experimental results demonstrate that the EAM module achieves 64.5\% scene mapping accuracy on MP3D dataset, while the navigation task attains SPLs of 28.4\% and 26.3\% on HM3D and MP3D benchmarks respectively - representing absolute improvements of 21.4\% and 46.0\% over baseline methods.
comment: 16 pages, 11 figures
☆ Optimal Robotic Velcro Peeling with Force Feedback
We study the problem of peeling a Velcro strap from a surface using a robotic manipulator. The surface geometry is arbitrary and unknown. The robot has access to only the force feedback and its end-effector position. This problem is challenging due to the partial observability of the environment and the incompleteness of the sensor feedback. To solve it, we first model the system with simple analytic state and action models based on quasi-static dynamics assumptions. We then study the fully-observable case where the state of both the Velcro and the robot are given. For this case, we obtain the optimal solution in closed-form which minimizes the total energy cost. Next, for the partially-observable case, we design a state estimator which estimates the underlying state using only force and position feedback. Then, we present a heuristics-based controller that balances exploratory and exploitative behaviors in order to peel the velcro efficiently. Finally, we evaluate our proposed method in environments with complex geometric uncertainties and sensor noises, achieving 100% success rate with less than 80% increase in energy cost compared to the optimal solution when the environment is fully-observable, outperforming the baselines by a large margin.
☆ Trajectory Entropy: Modeling Game State Stability from Multimodality Trajectory Prediction
Complex interactions among agents present a significant challenge for autonomous driving in real-world scenarios. Recently, a promising approach has emerged, which formulates the interactions of agents as a level-k game framework. It effectively decouples agent policies by hierarchical game levels. However, this framework ignores both the varying driving complexities among agents and the dynamic changes in agent states across game levels, instead treating them uniformly. Consequently, redundant and error-prone computations are introduced into this framework. To tackle the issue, this paper proposes a metric, termed as Trajectory Entropy, to reveal the game status of agents within the level-k game framework. The key insight stems from recognizing the inherit relationship between agent policy uncertainty and the associated driving complexity. Specifically, Trajectory Entropy extracts statistical signals representing uncertainty from the multimodality trajectory prediction results of agents in the game. Then, the signal-to-noise ratio of this signal is utilized to quantify the game status of agents. Based on the proposed Trajectory Entropy, we refine the current level-k game framework through a simple gating mechanism, significantly improving overall accuracy while reducing computational costs. Our method is evaluated on the Waymo and nuPlan datasets, in terms of trajectory prediction, open-loop and closed-loop planning tasks. The results demonstrate the state-of-the-art performance of our method, with precision improved by up to 19.89% for prediction and up to 16.48% for planning.
comment: 10 pages
☆ Where Do We Look When We Teach? Analyzing Human Gaze Behavior Across Demonstration Devices in Robot Imitation Learning
Imitation learning for acquiring generalizable policies often requires a large volume of demonstration data, making the process significantly costly. One promising strategy to address this challenge is to leverage the cognitive and decision-making skills of human demonstrators with strong generalization capability, particularly by extracting task-relevant cues from their gaze behavior. However, imitation learning typically involves humans collecting data using demonstration devices that emulate a robot's embodiment and visual condition. This raises the question of how such devices influence gaze behavior. We propose an experimental framework that systematically analyzes demonstrators' gaze behavior across a spectrum of demonstration devices. Our experimental results indicate that devices emulating (1) a robot's embodiment or (2) visual condition impair demonstrators' capability to extract task-relevant cues via gaze behavior, with the extent of impairment depending on the degree of emulation. Additionally, gaze data collected using devices that capture natural human behavior improves the policy's task success rate from 18.8% to 68.8% under environmental shifts.
☆ EqCollide: Equivariant and Collision-Aware Deformable Objects Neural Simulator
Simulating collisions of deformable objects is a fundamental yet challenging task due to the complexity of modeling solid mechanics and multi-body interactions. Existing data-driven methods often suffer from lack of equivariance to physical symmetries, inadequate handling of collisions, and limited scalability. Here we introduce EqCollide, the first end-to-end equivariant neural fields simulator for deformable objects and their collisions. We propose an equivariant encoder to map object geometry and velocity into latent control points. A subsequent equivariant Graph Neural Network-based Neural Ordinary Differential Equation models the interactions among control points via collision-aware message passing. To reconstruct velocity fields, we query a neural field conditioned on control point features, enabling continuous and resolution-independent motion predictions. Experimental results show that EqCollide achieves accurate, stable, and scalable simulations across diverse object configurations, and our model achieves 24.34% to 35.82% lower rollout MSE even compared with the best-performing baseline model. Furthermore, our model could generalize to more colliding objects and extended temporal horizons, and stay robust to input transformed with group action.
☆ Robust sensor fusion against on-vehicle sensor staleness CVPR 2025
Sensor fusion is crucial for a performant and robust Perception system in autonomous vehicles, but sensor staleness, where data from different sensors arrives with varying delays, poses significant challenges. Temporal misalignment between sensor modalities leads to inconsistent object state estimates, severely degrading the quality of trajectory predictions that are critical for safety. We present a novel and model-agnostic approach to address this problem via (1) a per-point timestamp offset feature (for LiDAR and radar both relative to camera) that enables fine-grained temporal awareness in sensor fusion, and (2) a data augmentation strategy that simulates realistic sensor staleness patterns observed in deployed vehicles. Our method is integrated into a perspective-view detection model that consumes sensor data from multiple LiDARs, radars and cameras. We demonstrate that while a conventional model shows significant regressions when one sensor modality is stale, our approach reaches consistently good performance across both synchronized and stale conditions.
comment: This paper has been accepted by CVPR 2025 Precognition Workshop
☆ A Soft Robotic Module with Pneumatic Actuation and Enhanced Controllability Using a Shape Memory Alloy Wire
In this paper, a compressed air-actuated soft robotic module was developed by incorporating a shape memory alloy (SMA) wire into its structure to achieve the desired bending angle with greater precision. First, a fiber-reinforced bending module with a strain-limiting layer made of polypropylene was fabricated. The SMA wire was then placed in a silicon matrix, which was used as a new strain-limiting layer. A simple closed-loop control algorithm was used to regulate the bending angle of the soft robot within its workspace. A camera was utilized to measure the angular changes in the vertical plane. Different angles, ranging from 0 to 65 degrees, were covered to evaluate the performance of the module and the bending angle control algorithm. The experimental tests demonstrate that using the SMA wire results in more precise control of bending in the vertical plane. In addition, it is possible to bend more with less working pressure. The error range was reduced from an average of 5 degrees to 2 degrees, and the rise time was reduced from an average of 19 seconds to 3 seconds.
☆ You Only Estimate Once: Unified, One-stage, Real-Time Category-level Articulated Object 6D Pose Estimation for Robotic Grasping ICRA 2025
This paper addresses the problem of category-level pose estimation for articulated objects in robotic manipulation tasks. Recent works have shown promising results in estimating part pose and size at the category level. However, these approaches primarily follow a complex multi-stage pipeline that first segments part instances in the point cloud and then estimates the Normalized Part Coordinate Space (NPCS) representation for 6D poses. These approaches suffer from high computational costs and low performance in real-time robotic tasks. To address these limitations, we propose YOEO, a single-stage method that simultaneously outputs instance segmentation and NPCS representations in an end-to-end manner. We use a unified network to generate point-wise semantic labels and centroid offsets, allowing points from the same part instance to vote for the same centroid. We further utilize a clustering algorithm to distinguish points based on their estimated centroid distances. Finally, we first separate the NPCS region of each instance. Then, we align the separated regions with the real point cloud to recover the final pose and size. Experimental results on the GAPart dataset demonstrate the pose estimation capabilities of our proposed single-shot method. We also deploy our synthetically-trained model in a real-world setting, providing real-time visual feedback at 200Hz, enabling a physical Kinova robot to interact with unseen articulated objects. This showcases the utility and effectiveness of our proposed method.
comment: To appear in ICRA 2025
☆ Advancement and Field Evaluation of a Dual-arm Apple Harvesting Robot
Apples are among the most widely consumed fruits worldwide. Currently, apple harvesting fully relies on manual labor, which is costly, drudging, and hazardous to workers. Hence, robotic harvesting has attracted increasing attention in recent years. However, existing systems still fall short in terms of performance, effectiveness, and reliability for complex orchard environments. In this work, we present the development and evaluation of a dual-arm harvesting robot. The system integrates a ToF camera, two 4DOF robotic arms, a centralized vacuum system, and a post-harvest handling module. During harvesting, suction force is dynamically assigned to either arm via the vacuum system, enabling efficient apple detachment while reducing power consumption and noise. Compared to our previous design, we incorporated a platform movement mechanism that enables both in-out and up-down adjustments, enhancing the robot's dexterity and adaptability to varying canopy structures. On the algorithmic side, we developed a robust apple localization pipeline that combines a foundation-model-based detector, segmentation, and clustering-based depth estimation, which improves performance in orchards. Additionally, pressure sensors were integrated into the system, and a novel dual-arm coordination strategy was introduced to respond to harvest failures based on sensor feedback, further improving picking efficiency. Field demos were conducted in two commercial orchards in MI, USA, with different canopy structures. The system achieved success rates of 0.807 and 0.797, with an average picking cycle time of 5.97s. The proposed strategy reduced harvest time by 28% compared to a single-arm baseline. The dual-arm harvesting robot enhances the reliability and efficiency of apple picking. With further advancements, the system holds strong potential for autonomous operation and commercialization for the apple industry.
☆ Towards Autonomous In-situ Soil Sampling and Mapping in Large-Scale Agricultural Environments ICRA
Traditional soil sampling and analysis methods are labor-intensive, time-consuming, and limited in spatial resolution, making them unsuitable for large-scale precision agriculture. To address these limitations, we present a robotic solution for real-time sampling, analysis and mapping of key soil properties. Our system consists of two main sub-systems: a Sample Acquisition System (SAS) for precise, automated in-field soil sampling; and a Sample Analysis Lab (Lab) for real-time soil property analysis. The system's performance was validated through extensive field trials at a large-scale Australian farm. Experimental results show that the SAS can consistently acquire soil samples with a mass of 50g at a depth of 200mm, while the Lab can process each sample within 10 minutes to accurately measure pH and macronutrients. These results demonstrate the potential of the system to provide farmers with timely, data-driven insights for more efficient and sustainable soil management and fertilizer application.
comment: Presented at the 2025 IEEE ICRA Workshop on Field Robotics
☆ A Modular Haptic Display with Reconfigurable Signals for Personalized Information Transfer
We present a customizable soft haptic system that integrates modular hardware with an information-theoretic algorithm to personalize feedback for different users and tasks. Our platform features modular, multi-degree-of-freedom pneumatic displays, where different signal types, such as pressure, frequency, and contact area, can be activated or combined using fluidic logic circuits. These circuits simplify control by reducing reliance on specialized electronics and enabling coordinated actuation of multiple haptic elements through a compact set of inputs. Our approach allows rapid reconfiguration of haptic signal rendering through hardware-level logic switching without rewriting code. Personalization of the haptic interface is achieved through the combination of modular hardware and software-driven signal selection. To determine which display configurations will be most effective, we model haptic communication as a signal transmission problem, where an agent must convey latent information to the user. We formulate the optimization problem to identify the haptic hardware setup that maximizes the information transfer between the intended message and the user's interpretation, accounting for individual differences in sensitivity, preferences, and perceptual salience. We evaluate this framework through user studies where participants interact with reconfigurable displays under different signal combinations. Our findings support the role of modularity and personalization in creating multimodal haptic interfaces and advance the development of reconfigurable systems that adapt with users in dynamic human-machine interaction contexts.
comment: This work has been submitted to the IEEE Transactions on Haptics for possible publication
☆ Enhancing Robot Safety via MLLM-Based Semantic Interpretation of Failure Data
As robotic systems become increasingly integrated into real-world environments, ranging from autonomous vehicles to household assistants, they inevitably encounter diverse and unstructured scenarios that lead to failures. While such failures pose safety and reliability challenges, they also provide rich perceptual data for improving future performance. However, manually analyzing large-scale failure datasets is impractical. In this work, we present a method for automatically organizing large-scale robotic failure data into semantically meaningful clusters, enabling scalable learning from failure without human supervision. Our approach leverages the reasoning capabilities of Multimodal Large Language Models (MLLMs), trained on internet-scale data, to infer high-level failure causes from raw perceptual trajectories and discover interpretable structure within uncurated failure logs. These semantic clusters reveal latent patterns and hypothesized causes of failure, enabling scalable learning from experience. We demonstrate that the discovered failure modes can guide targeted data collection for policy refinement, accelerating iterative improvement in agent policies and overall safety. Additionally, we show that these semantic clusters can be employed for online failure detection, offering a lightweight yet powerful safeguard for real-time adaptation. We demonstrate that this framework enhances robot learning and robustness by transforming real-world failures into actionable and interpretable signals for adaptation.
☆ NeSyPack: A Neuro-Symbolic Framework for Bimanual Logistics Packing RSS 2025
This paper presents NeSyPack, a neuro-symbolic framework for bimanual logistics packing. NeSyPack combines data-driven models and symbolic reasoning to build an explainable hierarchical system that is generalizable, data-efficient, and reliable. It decomposes a task into subtasks via hierarchical reasoning, and further into atomic skills managed by a symbolic skill graph. The graph selects skill parameters, robot configurations, and task-specific control strategies for execution. This modular design enables robustness, adaptability, and efficient reuse - outperforming end-to-end models that require large-scale retraining. Using NeSyPack, our team won the First Prize in the What Bimanuals Can Do (WBCD) competition at the 2025 IEEE International Conference on Robotics and Automation.
comment: 10 pages, 5 figures. Accepted to the RSS 2025 Workshop on Benchmarking Robot Manipulation: Improving Interoperability and Modularity. First Prize in the WBCD competition at ICRA 2025. Equal contribution by Bowei Li and Peiqi Yu
☆ Towards Terrain-Aware Task-Driven 3D Scene Graph Generation in Outdoor Environments ICRA
High-level autonomous operations depend on a robot's ability to construct a sufficiently expressive model of its environment. Traditional three-dimensional (3D) scene representations, such as point clouds and occupancy grids, provide detailed geometric information but lack the structured, semantic organization needed for high-level reasoning. 3D scene graphs (3DSGs) address this limitation by integrating geometric, topological, and semantic relationships into a multi-level graph-based representation. By capturing hierarchical abstractions of objects and spatial layouts, 3DSGs enable robots to reason about environments in a structured manner, improving context-aware decision-making and adaptive planning. Although most recent work has focused on indoor 3DSGs, this paper investigates their construction and utility in outdoor environments. We present a method for generating a task-agnostic metric-semantic point cloud for large outdoor settings and propose modifications to existing indoor 3DSG generation techniques for outdoor applicability. Our preliminary qualitative results demonstrate the feasibility of outdoor 3DSGs and highlight their potential for future deployment in real-world field robotic applications.
comment: Presented at the 2025 IEEE ICRA Workshop on Field Robotics
Semantics-aware Predictive Inspection Path Planning
This paper presents a novel semantics-aware inspection path planning paradigm called "Semantics-aware Predictive Planning" (SPP). Industrial environments that require the inspection of specific objects or structures (called "semantics"), such as ballast water tanks inside ships, often present structured and repetitive spatial arrangements of the semantics of interest. Motivated by this, we first contribute an algorithm that identifies spatially repeating patterns of semantics - exact or inexact - in a semantic scene graph representation and makes predictions about the evolution of the graph in the unseen parts of the environment using these patterns. Furthermore, two inspection path planning strategies, tailored to ballast water tank inspection, that exploit these predictions are proposed. To assess the performance of the novel predictive planning paradigm, both simulation and experimental evaluations are performed. First, we conduct a simulation study comparing the method against relevant state-of-the-art techniques and further present tests showing its ability to handle imperfect patterns. Second, we deploy our method onboard a collision-tolerant aerial robot operating inside the ballast tanks of two real ships. The results, both in simulation and field experiments, demonstrate significant improvement over the state-of-the-art in terms of inspection time while maintaining equal or better semantic surface coverage. A set of videos describing the different parts of the method and the field deployments is available at https://tinyurl.com/spp-videos. The code for this work is made available at https://github.com/ntnu-arl/predictive_planning_ros.
comment: Accepted at IEEE Transactions on Field Robotics
☆ MapleGrasp: Mask-guided Feature Pooling for Language-driven Efficient Robotic Grasping
Robotic manipulation of unseen objects via natural language commands remains challenging. Language driven robotic grasping (LDRG) predicts stable grasp poses from natural language queries and RGB-D images. Here we introduce Mask-guided feature pooling, a lightweight enhancement to existing LDRG methods. Our approach employs a two-stage training strategy: first, a vision-language model generates feature maps from CLIP-fused embeddings, which are upsampled and weighted by text embeddings to produce segmentation masks. Next, the decoder generates separate feature maps for grasp prediction, pooling only token features within these masked regions to efficiently predict grasp poses. This targeted pooling approach reduces computational complexity, accelerating both training and inference. Incorporating mask pooling results in a 12% improvement over prior approaches on the OCID-VLG benchmark. Furthermore, we introduce RefGraspNet, an open-source dataset eight times larger than existing alternatives, significantly enhancing model generalization for open-vocabulary grasping. By extending 2D grasp predictions to 3D via depth mapping and inverse kinematics, our modular method achieves performance comparable to recent Vision-Language-Action (VLA) models on the LIBERO simulation benchmark, with improved generalization across different task suites. Real-world experiments on a 7 DoF Franka robotic arm demonstrate a 57% success rate with unseen objects, surpassing competitive baselines by 7%. Code will be released post publication.
☆ Hierarchical and Collaborative LLM-Based Control for Multi-UAV Motion and Communication in Integrated Terrestrial and Non-Terrestrial Networks ICML 2025
Unmanned aerial vehicles (UAVs) have been widely adopted in various real-world applications. However, the control and optimization of multi-UAV systems remain a significant challenge, particularly in dynamic and constrained environments. This work explores the joint motion and communication control of multiple UAVs operating within integrated terrestrial and non-terrestrial networks that include high-altitude platform stations (HAPS). Specifically, we consider an aerial highway scenario in which UAVs must accelerate, decelerate, and change lanes to avoid collisions and maintain overall traffic flow. Different from existing studies, we propose a novel hierarchical and collaborative method based on large language models (LLMs). In our approach, an LLM deployed on the HAPS performs UAV access control, while another LLM onboard each UAV handles motion planning and control. This LLM-based framework leverages the rich knowledge embedded in pre-trained models to enable both high-level strategic planning and low-level tactical decisions. This knowledge-driven paradigm holds great potential for the development of next-generation 3D aerial highway systems. Experimental results demonstrate that our proposed collaborative LLM-based method achieves higher system rewards, lower operational costs, and significantly reduced UAV collision rates compared to baseline approaches.
comment: Accepted in ICML 2025 Workshop on Machine Learning for Wireless Communication and Networks (ML4Wireless)
☆ Enhancing Situational Awareness in Underwater Robotics with Multi-modal Spatial Perception
Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs) demand robust spatial perception capabilities, including Simultaneous Localization and Mapping (SLAM), to support both remote and autonomous tasks. Vision-based systems have been integral to these advancements, capturing rich color and texture at low cost while enabling semantic scene understanding. However, underwater conditions -- such as light attenuation, backscatter, and low contrast -- often degrade image quality to the point where traditional vision-based SLAM pipelines fail. Moreover, these pipelines typically rely on monocular or stereo inputs, limiting their scalability to the multi-camera configurations common on many vehicles. To address these issues, we propose to leverage multi-modal sensing that fuses data from multiple sensors-including cameras, inertial measurement units (IMUs), and acoustic devices-to enhance situational awareness and enable robust, real-time SLAM. We explore both geometric and learning-based techniques along with semantic analysis, and conduct experiments on the data collected from a work-class ROV during several field deployments in the Trondheim Fjord. Through our experimental results, we demonstrate the feasibility of real-time reliable state estimation and high-quality 3D reconstructions in visually challenging underwater conditions. We also discuss system constraints and identify open research questions, such as sensor calibration, limitations with learning-based methods, that merit further exploration to advance large-scale underwater operations.
☆ Edge-Enabled Collaborative Object Detection for Real-Time Multi-Vehicle Perception
Accurate and reliable object detection is critical for ensuring the safety and efficiency of Connected Autonomous Vehicles (CAVs). Traditional on-board perception systems have limited accuracy due to occlusions and blind spots, while cloud-based solutions introduce significant latency, making them unsuitable for real-time processing demands required for autonomous driving in dynamic environments. To address these challenges, we introduce an innovative framework, Edge-Enabled Collaborative Object Detection (ECOD) for CAVs, that leverages edge computing and multi-CAV collaboration for real-time, multi-perspective object detection. Our ECOD framework integrates two key algorithms: Perceptive Aggregation and Collaborative Estimation (PACE) and Variable Object Tally and Evaluation (VOTE). PACE aggregates detection data from multiple CAVs on an edge server to enhance perception in scenarios where individual CAVs have limited visibility. VOTE utilizes a consensus-based voting mechanism to improve the accuracy of object classification by integrating data from multiple CAVs. Both algorithms are designed at the edge to operate in real-time, ensuring low-latency and reliable decision-making for CAVs. We develop a hardware-based controlled testbed consisting of camera-equipped robotic CAVs and an edge server to evaluate the efficacy of our framework. Our experimental results demonstrate the significant benefits of ECOD in terms of improved object classification accuracy, outperforming traditional single-perspective onboard approaches by up to 75%, while ensuring low-latency, edge-driven real-time processing. This research highlights the potential of edge computing to enhance collaborative perception for latency-sensitive autonomous systems.
comment: This paper has been accepted to IEEE EDGE 2025. The final version will be published in IEEE Xplore later this year
☆ Towards Infant Sleep-Optimized Driving: Synergizing Wearable and Vehicle Sensing in Intelligent Cruise Control
Automated driving (AD) has substantially improved vehicle safety and driving comfort, but their impact on passenger well-being, particularly infant sleep, is not sufficiently studied. Sudden acceleration, abrupt braking, and sharp maneuvers can disrupt infant sleep, compromising both passenger comfort and parental convenience. To solve this problem, this paper explores the integration of reinforcement learning (RL) within AD to personalize driving behavior and optimally balance occupant comfort and travel efficiency. In particular, we propose an intelligent cruise control framework that adapts to varying driving conditions to enhance infant sleep quality by effectively synergizing wearable sensing and vehicle data. Long short-term memory (LSTM) and transformer-based neural networks are integrated with RL to model the relationship between driving behavior and infant sleep quality under diverse traffic and road conditions. Based on the sleep quality indicators from the wearable sensors, driving action data from vehicle controllers, and map data from map applications, the model dynamically computes the optimal driving aggressiveness level, which is subsequently translated into specific AD control strategies, e.g., the magnitude and frequency of acceleration, lane change, and overtaking. Simulation results demonstrate that the proposed solution significantly improves infant sleep quality compared to baseline methods, while preserving desirable travel efficiency.
☆ Neural-Augmented Kelvinlet: Real-Time Soft Tissue Deformation with Multiple Graspers
Fast and accurate simulation of soft tissue deformation is a critical factor for surgical robotics and medical training. In this paper, we introduce a novel physics-informed neural simulator that approximates soft tissue deformations in a realistic and real-time manner. Our framework integrates Kelvinlet-based priors into neural simulators, making it the first approach to leverage Kelvinlets for residual learning and regularization in data-driven soft tissue modeling. By incorporating large-scale Finite Element Method (FEM) simulations of both linear and nonlinear soft tissue responses, our method improves neural network predictions across diverse architectures, enhancing accuracy and physical consistency while maintaining low latency for real-time performance. We demonstrate the effectiveness of our approach by performing accurate surgical maneuvers that simulate the use of standard laparoscopic tissue grasping tools with high fidelity. These results establish Kelvinlet-augmented learning as a powerful and efficient strategy for real-time, physics-aware soft tissue simulation in surgical applications.
☆ AI Magnetic Levitation (Maglev) Conveyor for Automated Assembly Production
Efficiency, speed, and precision are essential in modern manufacturing. AI Maglev Conveyor system, combining magnetic levitation (maglev) technology with artificial intelligence (AI), revolutionizes automated production processes. This system reduces maintenance costs and downtime by eliminating friction, enhancing operational efficiency. It transports goods swiftly with minimal energy consumption, optimizing resource use and supporting sustainability. AI integration enables real-time monitoring and adaptive control, allowing businesses to respond to production demand fluctuations and streamline supply chain operations. The AI Maglev Conveyor offers smooth, silent operation, accommodating diverse product types and sizes for flexible manufacturing without extensive reconfiguration. AI algorithms optimize routing, reduce cycle times, and improve throughput, creating an agile production line adaptable to market changes. This applied research paper introduces the Maglev Conveyor system, featuring an electromagnetic controller and multiple movers to enhance automation. It offers cost savings as an alternative to setups using six-axis robots or linear motors, with precise adjustments for robotic arm loading. Operating at high speeds minimizes treatment time for delicate components while maintaining precision. Its adaptable design accommodates various materials, facilitating integration of processing stations alongside electronic product assembly. Positioned between linear-axis and robotic systems in cost, the Maglev Conveyor is ideal for flat parts requiring minimal travel, transforming production efficiency across industries. It explores its technical advantages, flexibility, cost reductions, and overall benefits.
comment: 12 pages, 9 Figures
♻ ☆ ArtVIP: Articulated Digital Assets of Visual Realism, Modular Interaction, and Physical Fidelity for Robot Learning
Robot learning increasingly relies on simulation to advance complex ability such as dexterous manipulations and precise interactions, necessitating high-quality digital assets to bridge the sim-to-real gap. However, existing open-source articulated-object datasets for simulation are limited by insufficient visual realism and low physical fidelity, which hinder their utility for training models mastering robotic tasks in real world. To address these challenges, we introduce ArtVIP, a comprehensive open-source dataset comprising high-quality digital-twin articulated objects, accompanied by indoor-scene assets. Crafted by professional 3D modelers adhering to unified standards, ArtVIP ensures visual realism through precise geometric meshes and high-resolution textures, while physical fidelity is achieved via fine-tuned dynamic parameters. Meanwhile, the dataset pioneers embedded modular interaction behaviors within assets and pixel-level affordance annotations. Feature-map visualization and optical motion capture are employed to quantitatively demonstrate ArtVIP's visual and physical fidelity, with its applicability validated across imitation learning and reinforcement learning experiments. Provided in USD format with detailed production guidelines, ArtVIP is fully open-source, benefiting the research community and advancing robot learning research. Our project is at https://x-humanoid-artvip.github.io/ .
♻ ☆ Distributed Expectation Propagation for Multi-Object Tracking over Sensor Networks
In this paper, we present a novel distributed expectation propagation algorithm for multiple sensors, multiple objects tracking in cluttered environments. The proposed framework enables each sensor to operate locally while collaboratively exchanging moment estimates with other sensors, thus eliminating the need to transmit all data to a central processing node. Specifically, we introduce a fast and parallelisable Rao-Blackwellised Gibbs sampling scheme to approximate the tilted distributions, which enhances the accuracy and efficiency of expectation propagation updates. Results demonstrate that the proposed algorithm improves both communication and inference efficiency for multi-object tracking tasks with dynamic sensor connectivity and varying clutter levels.
♻ ☆ A Physics-informed End-to-End Occupancy Framework for Motion Planning of Autonomous Vehicles
Accurate and interpretable motion planning is essential for autonomous vehicles (AVs) navigating complex and uncertain environments. While recent end-to-end occupancy prediction methods have improved environmental understanding, they typically lack explicit physical constraints, limiting safety and generalization. In this paper, we propose a unified end-to-end framework that integrates verifiable physical rules into the occupancy learning process. Specifically, we embed artificial potential fields (APF) as physics-informed guidance during network training to ensure that predicted occupancy maps are both data-efficient and physically plausible. Our architecture combines convolutional and recurrent neural networks to capture spatial and temporal dependencies while preserving model flexibility. Experimental results demonstrate that our method improves task completion rate, safety margins, and planning efficiency across diverse driving scenarios, confirming its potential for reliable deployment in real-world AV systems.
♻ ☆ Is Your Imitation Learning Policy Better than Mine? Policy Comparison with Near-Optimal Stopping RSS 2025
Imitation learning has enabled robots to perform complex, long-horizon tasks in challenging dexterous manipulation settings. As new methods are developed, they must be rigorously evaluated and compared against corresponding baselines through repeated evaluation trials. However, policy comparison is fundamentally constrained by a small feasible sample size (e.g., 10 or 50) due to significant human effort and limited inference throughput of policies. This paper proposes a novel statistical framework for rigorously comparing two policies in the small sample size regime. Prior work in statistical policy comparison relies on batch testing, which requires a fixed, pre-determined number of trials and lacks flexibility in adapting the sample size to the observed evaluation data. Furthermore, extending the test with additional trials risks inducing inadvertent p-hacking, undermining statistical assurances. In contrast, our proposed statistical test is sequential, allowing researchers to decide whether or not to run more trials based on intermediate results. This adaptively tailors the number of trials to the difficulty of the underlying comparison, saving significant time and effort without sacrificing probabilistic correctness. Extensive numerical simulation and real-world robot manipulation experiments show that our test achieves near-optimal stopping, letting researchers stop evaluation and make a decision in a near-minimal number of trials. Specifically, it reduces the number of evaluation trials by up to 32% as compared to state-of-the-art baselines, while preserving the probabilistic correctness and statistical power of the comparison. Moreover, our method is strongest in the most challenging comparison instances (requiring the most evaluation trials); in a multi-task comparison scenario, we save the evaluator more than 160 simulation rollouts.
comment: 14 + 5 pages, 10 figures, 4 tables. Accepted to RSS 2025
Marginalizing and Conditioning Gaussians onto Linear Approximations of Smooth Manifolds with Applications in Robotics ICRA 2025
We present closed-form expressions for marginalizing and conditioning Gaussians onto linear manifolds, and demonstrate how to apply these expressions to smooth nonlinear manifolds through linearization. Although marginalization and conditioning onto axis-aligned manifolds are well-established procedures, doing so onto non-axis-aligned manifolds is not as well understood. We demonstrate the utility of our expressions through three applications: 1) approximation of the projected normal distribution, where the quality of our linearized approximation increases as problem nonlinearity decreases; 2) covariance extraction in Koopman SLAM, where our covariances are shown to be consistent on a real-world dataset; and 3) covariance extraction in constrained GTSAM, where our covariances are shown to be consistent in simulation.
comment: Final version in IEEE ICRA 2025 (winner of the Best Conference Paper Award)
♻ ☆ Diffusion Policies for Out-of-Distribution Generalization in Offline Reinforcement Learning IROS
Offline Reinforcement Learning (RL) methods leverage previous experiences to learn better policies than the behavior policy used for data collection. However, they face challenges handling distribution shifts due to the lack of online interaction during training. To this end, we propose a novel method named State Reconstruction for Diffusion Policies (SRDP) that incorporates state reconstruction feature learning in the recent class of diffusion policies to address the problem of out-of-distribution (OOD) generalization. Our method promotes learning of generalizable state representation to alleviate the distribution shift caused by OOD states. To illustrate the OOD generalization and faster convergence of SRDP, we design a novel 2D Multimodal Contextual Bandit environment and realize it on a 6-DoF real-world UR10 robot, as well as in simulation, and compare its performance with prior algorithms. In particular, we show the importance of the proposed state reconstruction via ablation studies. In addition, we assess the performance of our model on standard continuous control benchmarks (D4RL), namely the navigation of an 8-DoF ant and forward locomotion of half-cheetah, hopper, and walker2d, achieving state-of-the-art results. Finally, we demonstrate that our method can achieve 167% improvement over the competing baseline on a sparse continuous control navigation task where various regions of the state space are removed from the offline RL dataset, including the region encapsulating the goal.
comment: Published in IEEE RA-L with IROS presentation option (2024 IEEE/RSJ International Conference on Intelligent Robots and Systems), 8 pages, 7 figures
♻ ☆ HJRNO: Hamilton-Jacobi Reachability with Neural Operators
Ensuring the safety of autonomous systems under uncertainty is a critical challenge. Hamilton-Jacobi reachability (HJR) analysis is a widely used method for guaranteeing safety under worst-case disturbances. In this work, we propose HJRNO, a neural operator-based framework for solving backward reachable tubes (BRTs) efficiently and accurately. By leveraging neural operators, HJRNO learns a mapping between value functions, enabling fast inference with strong generalization across different obstacle shapes and system configurations. We demonstrate that HJRNO achieves low error on random obstacle scenarios and generalizes effectively across varying system dynamics. These results suggest that HJRNO offers a promising foundation model approach for scalable, real-time safety analysis in autonomous systems.
♻ ☆ Nocturnal eye inspired liquid to gas phase change soft actuator with Laser-Induced-Graphene: enhanced environmental light harvesting and photothermal conversion
Robotic systems' mobility is constrained by power sources and wiring. While pneumatic actuators remain tethered to air supplies, we developed a new actuator utilizing light energy. Inspired by nocturnal animals' eyes, we designed a bilayer soft actuator incorporating Laser-Induced Graphene (LIG) on the inner surface of a silicone layer. This design maintains silicone's transparency and flexibility while achieving 54% faster response time compared to conventional actuators through enhanced photothermal conversion.
comment: 33pages, 10 figures, journal paper
♻ ☆ SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models
Traditional autonomous driving systems often struggle to connect high-level reasoning with low-level control, leading to suboptimal and sometimes unsafe behaviors. Recent advances in multimodal large language models (MLLMs), which process both visual and textual data, offer an opportunity to unify perception and reasoning. However, effectively embedding precise safety knowledge into MLLMs for autonomous driving remains a significant challenge. To address this, we propose SafeAuto, a framework that enhances MLLM-based autonomous driving by incorporating both unstructured and structured knowledge. First, we introduce a Position-Dependent Cross-Entropy (PDCE) loss to improve low-level control signal predictions when values are represented as text. Second, to explicitly integrate safety knowledge, we develop a reasoning component that translates traffic rules into first-order logic (e.g., "red light $\implies$ stop") and embeds them into a probabilistic graphical model (e.g., Markov Logic Network) to verify predicted actions using recognized environmental attributes. Additionally, our Multimodal Retrieval-Augmented Generation (RAG) model leverages video, control signals, and environmental attributes to learn from past driving experiences. Integrating PDCE, MLN, and Multimodal RAG, SafeAuto outperforms existing baselines across multiple datasets, enabling more accurate, reliable, and safer autonomous driving. The code is available at https://github.com/AI-secure/SafeAuto.
♻ ☆ Mechanically Programming the Cross-Sectional Shape of Soft Growing Robotic Structures for Patient Transfer
Pneumatic soft everting robotic structures have the potential to facilitate human transfer tasks due to their ability to grow underneath humans without sliding friction and their utility as a flexible sling when deflated. Tubular structures naturally yield circular cross-sections when inflated, whereas a robotic sling must be both thin enough to grow between them and their resting surface and wide enough to cradle the human. Recent works have achieved flattened cross-sections by including rigid components into the structure, but this reduces conformability to the human. We present a method of mechanically programming the cross-section of soft everting robotic structures using flexible strips that constrain radial expansion between points along the outer membrane. Our method enables simultaneously wide and thin profiles while maintaining the full multi-axis flexibility of traditional slings. We develop and validate a model relating the geometric design specifications to the fabrication parameters, and experimentally characterize their effects on growth rate. Finally, we prototype a soft growing robotic sling system and demonstrate its use for assisting a single caregiver in bed-to-chair patient transfer.
♻ ☆ Haptic bilateral teleoperation system for free-hand dental procedures
Free-hand dental procedures are typically repetitive, time-consuming and require high precision and manual dexterity. Robots can play a key role in improving procedural accuracy and safety, enhancing patient comfort, and reducing operator workload. However, robotic solutions for free-hand procedures remain limited or completely lacking, and their acceptance is still low. To address this gap, we develop a haptic bilateral teleoperation system (HBTS) for free-hand dental procedures (FH-HBTS). The system includes a dedicated mechanical end-effector, compatible with standard clinical tools, and equipped with an endoscopic camera for improved visibility of the intervention site. By ensuring motion and force correspondence between the operator's actions and the robot's movements, monitored through visual feedback, we enhance the operator's sensory awareness and motor accuracy. Furthermore, recognizing the need to ensure procedural safety, we limit interaction forces by scaling the motion references provided to the admittance controller based solely on measured contact forces. This ensures effective force limitation in all contact states without requiring prior knowledge of the environment. The proposed FH-HBTS is validated in a dental scaling procedure using a dental phantom. The results show that the system improves the naturalness, safety, and accuracy of teleoperation, highlighting its potential to enhance free-hand dental procedures.
comment: 13 pages, 11 figures
♻ ☆ TASTE-Rob: Advancing Video Generation of Task-Oriented Hand-Object Interaction for Generalizable Robotic Manipulation CVPR 2025
We address key limitations in existing datasets and models for task-oriented hand-object interaction video generation, a critical approach of generating video demonstrations for robotic imitation learning. Current datasets, such as Ego4D, often suffer from inconsistent view perspectives and misaligned interactions, leading to reduced video quality and limiting their applicability for precise imitation learning tasks. Towards this end, we introduce TASTE-Rob -- a pioneering large-scale dataset of 100,856 ego-centric hand-object interaction videos. Each video is meticulously aligned with language instructions and recorded from a consistent camera viewpoint to ensure interaction clarity. By fine-tuning a Video Diffusion Model (VDM) on TASTE-Rob, we achieve realistic object interactions, though we observed occasional inconsistencies in hand grasping postures. To enhance realism, we introduce a three-stage pose-refinement pipeline that improves hand posture accuracy in generated videos. Our curated dataset, coupled with the specialized pose-refinement framework, provides notable performance gains in generating high-quality, task-oriented hand-object interaction videos, resulting in achieving superior generalizable robotic manipulation. The TASTE-Rob dataset is publicly available to foster further advancements in the field, TASTE-Rob dataset and source code will be made publicly available on our website https://taste-rob.github.io.
comment: CVPR 2025; Project Page: https://taste-rob.github.io
♻ ☆ DORAEMON: Decentralized Ontology-aware Reliable Agent with Enhanced Memory Oriented Navigation
Adaptive navigation in unfamiliar environments is crucial for household service robots but remains challenging due to the need for both low-level path planning and high-level scene understanding. While recent vision-language model (VLM) based zero-shot approaches reduce dependence on prior maps and scene-specific training data, they face significant limitations: spatiotemporal discontinuity from discrete observations, unstructured memory representations, and insufficient task understanding leading to navigation failures. We propose DORAEMON (Decentralized Ontology-aware Reliable Agent with Enhanced Memory Oriented Navigation), a novel cognitive-inspired framework consisting of Ventral and Dorsal Streams that mimics human navigation capabilities. The Dorsal Stream implements the Hierarchical Semantic-Spatial Fusion and Topology Map to handle spatiotemporal discontinuities, while the Ventral Stream combines RAG-VLM and Policy-VLM to improve decision-making. Our approach also develops Nav-Ensurance to ensure navigation safety and efficiency. We evaluate DORAEMON on the HM3D, MP3D, and GOAT datasets, where it achieves state-of-the-art performance on both success rate (SR) and success weighted by path length (SPL) metrics, significantly outperforming existing methods. We also introduce a new evaluation metric (AORI) to assess navigation intelligence better. Comprehensive experiments demonstrate DORAEMON's effectiveness in zero-shot autonomous navigation without requiring prior map building or pre-training.
♻ ☆ Field Report on Ground Penetrating Radar for Localization at the Mars Desert Research Station ICRA
In this field report, we detail the lessons learned from our field expedition to collect Ground Penetrating Radar (GPR) data in a Mars analog environment for the purpose of validating GPR localization techniques in rugged environments. Planetary rovers are already equipped with GPR for geologic subsurface characterization. GPR has been successfully used to localize vehicles on Earth, but it has not yet been explored as another modality for localization on a planetary rover. Leveraging GPR for localization can aid in efficient and robust rover pose estimation. In order to demonstrate localizing GPR in a Mars analog environment, we collected over 50 individual survey trajectories during a two-week period at the Mars Desert Research Station (MDRS). In this report, we discuss our methodology, lessons learned, and opportunities for future work.
comment: Presented at the ICRA Workshop on Field Robotics 2025
♻ ☆ Beyond Winning Strategies: Admissible and Admissible Winning Strategies for Quantitative Reachability Games IJCAI 25
Classical reactive synthesis approaches aim to synthesize a reactive system that always satisfies a given specifications. These approaches often reduce to playing a two-player zero-sum game where the goal is to synthesize a winning strategy. However, in many pragmatic domains, such as robotics, a winning strategy does not always exist, yet it is desirable for the system to make an effort to satisfy its requirements instead of "giving up". To this end, this paper investigates the notion of admissible strategies, which formalize "doing-your-best", in quantitative reachability games. We show that, unlike the qualitative case, quantitative admissible strategies are history-dependent even for finite payoff functions, making synthesis a challenging task. In addition, we prove that admissible strategies always exist but may produce undesirable optimistic behaviors. To mitigate this, we propose admissible winning strategies, which enforce the best possible outcome while being admissible. We show that both strategies always exist but are not memoryless. We provide necessary and sufficient conditions for the existence of both strategies and propose synthesis algorithms. Finally, we illustrate the strategies on gridworld and robot manipulator domains.
comment: Accepted to IJCAI 25
♻ ☆ Modeling, control, and stiffness regulation of layer jamming-based continuum robots
Continuum robots with variable compliance have gained significant attention due to their adaptability in unstructured environments. Among various stiffness modulation techniques, layer jamming (LJ) provides a simple yet effective approach for achieving tunable stiffness. However, most existing LJ-based continuum robot models rely on static or quasi-static approximations, lacking a rigorous control-oriented dynamical formulation. Consequently, they are unsuitable for real-time control tasks requiring simultaneous regulation of configuration and stiffness and fail to capture the full dynamic behavior of LJ-based continuum robots. To address this gap, this paper proposes a port-Hamiltonian formulation for LJ-based continuum robots, formally characterizing the two key phenomena -- shape locking and tunable stiffness -- within a unified energy-based framework. Based on this model, we develop a passivity-based control approach that enables decoupled regulation of stiffness and configuration with provable stability guarantees. We validate the proposed framework through comprehensive experiments on the OctRobot-I continuum robotic platform. The results demonstrate consistency between theoretical predictions and empirical data, highlighting the feasibility of our approach for real-world implementation.
♻ ☆ Certified Human Trajectory Prediction CVPR 2025
Predicting human trajectories is essential for the safe operation of autonomous vehicles, yet current data-driven models often lack robustness in case of noisy inputs such as adversarial examples or imperfect observations. Although some trajectory prediction methods have been developed to provide empirical robustness, these methods are heuristic and do not offer guaranteed robustness. In this work, we propose a certification approach tailored for trajectory prediction that provides guaranteed robustness. To this end, we address the unique challenges associated with trajectory prediction, such as unbounded outputs and multi-modality. To mitigate the inherent performance drop through certification, we propose a diffusion-based trajectory denoiser and integrate it into our method. Moreover, we introduce new certified performance metrics to reliably measure the trajectory prediction performance. Through comprehensive experiments, we demonstrate the accuracy and robustness of the certified predictors and highlight their advantages over the non-certified ones. The code is available online: https://s-attack.github.io/.
comment: CVPR 2025
♻ ☆ Cal or No Cal? -- Real-Time Miscalibration Detection of LiDAR and Camera Sensors
The goal of extrinsic calibration is the alignment of sensor data to ensure an accurate representation of the surroundings and enable sensor fusion applications. From a safety perspective, sensor calibration is a key enabler of autonomous driving. In the current state of the art, a trend from target-based offline calibration towards targetless online calibration can be observed. However, online calibration is subject to strict real-time and resource constraints which are not met by state-of-the-art methods. This is mainly due to the high number of parameters to estimate, the reliance on geometric features, or the dependence on specific vehicle maneuvers. To meet these requirements and ensure the vehicle's safety at any time, we propose a miscalibration detection framework that shifts the focus from the direct regression of calibration parameters to a binary classification of the calibration state, i.e., calibrated or miscalibrated. Therefore, we propose a contrastive learning approach that compares embedded features in a latent space to classify the calibration state of two different sensor modalities. Moreover, we provide a comprehensive analysis of the feature embeddings and challenging calibration errors that highlight the performance of our approach. As a result, our method outperforms the current state-of-the-art in terms of detection performance, inference time, and resource demand. The code is open source and available on https://github.com/TUMFTM/MiscalibrationDetection.
Computer Vision 147
☆ TerraFM: A Scalable Foundation Model for Unified Multisensor Earth Observation
Modern Earth observation (EO) increasingly leverages deep learning to harness the scale and diversity of satellite imagery across sensors and regions. While recent foundation models have demonstrated promising generalization across EO tasks, many remain limited by the scale, geographical coverage, and spectral diversity of their training data, factors critical for learning globally transferable representations. In this work, we introduce TerraFM, a scalable self-supervised learning model that leverages globally distributed Sentinel-1 and Sentinel-2 imagery, combined with large spatial tiles and land-cover aware sampling to enrich spatial and semantic coverage. By treating sensing modalities as natural augmentations in our self-supervised approach, we unify radar and optical inputs via modality-specific patch embeddings and adaptive cross-attention fusion. Our training strategy integrates local-global contrastive learning and introduces a dual-centering mechanism that incorporates class-frequency-aware regularization to address long-tailed distributions in land cover.TerraFM achieves strong generalization on both classification and segmentation tasks, outperforming prior models on GEO-Bench and Copernicus-Bench. Our code and pretrained models are publicly available at: https://github.com/mbzuai-oryx/TerraFM .
☆ CoMemo: LVLMs Need Image Context with Image Memory ICML 2025
Recent advancements in Large Vision-Language Models built upon Large Language Models have established aligning visual features with LLM representations as the dominant paradigm. However, inherited LLM architectural designs introduce suboptimal characteristics for multimodal processing. First, LVLMs exhibit a bimodal distribution in attention allocation, leading to the progressive neglect of middle visual content as context expands. Second, conventional positional encoding schemes fail to preserve vital 2D structural relationships when processing dynamic high-resolution images. To address these limitations, we propose CoMemo - a dual-path architecture that combines a Context image path with an image Memory path for visual processing, effectively alleviating visual information neglect. Additionally, we introduce RoPE-DHR, a novel positional encoding mechanism that employs thumbnail-based positional aggregation to maintain 2D spatial awareness while mitigating remote decay in extended sequences. Evaluations across seven benchmarks,including long-context comprehension, multi-image reasoning, and visual question answering, demonstrate CoMemo's superior performance compared to conventional LVLM architectures. Project page is available at https://lalbj.github.io/projects/CoMemo/.
comment: ICML 2025
☆ ExAct: A Video-Language Benchmark for Expert Action Analysis
We present ExAct, a new video-language benchmark for expert-level understanding of skilled physical human activities. Our new benchmark contains 3521 expert-curated video question-answer pairs spanning 11 physical activities in 6 domains: Sports, Bike Repair, Cooking, Health, Music, and Dance. ExAct requires the correct answer to be selected from five carefully designed candidate options, thus necessitating a nuanced, fine-grained, expert-level understanding of physical human skills. Evaluating the recent state-of-the-art VLMs on ExAct reveals a substantial performance gap relative to human expert performance. Specifically, the best-performing GPT-4o model achieves only 44.70% accuracy, well below the 82.02% attained by trained human specialists/experts. We believe that ExAct will be beneficial for developing and evaluating VLMs capable of precise understanding of human skills in various physical and procedural domains. Dataset and code are available at https://texaser.github.io/exact_project_page/
☆ STARFlow: Scaling Latent Normalizing Flows for High-resolution Image Synthesis
We present STARFlow, a scalable generative model based on normalizing flows that achieves strong performance in high-resolution image synthesis. The core of STARFlow is Transformer Autoregressive Flow (TARFlow), which combines the expressive power of normalizing flows with the structured modeling capabilities of Autoregressive Transformers. We first establish the theoretical universality of TARFlow for modeling continuous distributions. Building on this foundation, we introduce several key architectural and algorithmic innovations to significantly enhance scalability: (1) a deep-shallow design, wherein a deep Transformer block captures most of the model representational capacity, complemented by a few shallow Transformer blocks that are computationally efficient yet substantially beneficial; (2) modeling in the latent space of pretrained autoencoders, which proves more effective than direct pixel-level modeling; and (3) a novel guidance algorithm that significantly boosts sample quality. Crucially, our model remains an end-to-end normalizing flow, enabling exact maximum likelihood training in continuous spaces without discretization. STARFlow achieves competitive performance in both class-conditional and text-conditional image generation tasks, approaching state-of-the-art diffusion models in sample quality. To our knowledge, this work is the first successful demonstration of normalizing flows operating effectively at this scale and resolution.
comment: TLDR: We show for the first time that normalizing flows can be scaled for high-resolution and text-conditioned image synthesis
☆ Movie Facts and Fibs (MF$^2$): A Benchmark for Long Movie Understanding
Despite recent progress in vision-language models (VLMs), holistic understanding of long-form video content remains a significant challenge, partly due to limitations in current benchmarks. Many focus on peripheral, ``needle-in-a-haystack'' details, encouraging context-insensitive retrieval over deep comprehension. Others rely on large-scale, semi-automatically generated questions (often produced by language models themselves) that are easier for models to answer but fail to reflect genuine understanding. In this paper, we introduce MF$^2$, a new benchmark for evaluating whether models can comprehend, consolidate, and recall key narrative information from full-length movies (50-170 minutes long). MF$^2$ includes over 50 full-length, open-licensed movies, each paired with manually constructed sets of claim pairs -- one true (fact) and one plausible but false (fib), totalling over 850 pairs. These claims target core narrative elements such as character motivations and emotions, causal chains, and event order, and refer to memorable moments that humans can recall without rewatching the movie. Instead of multiple-choice formats, we adopt a binary claim evaluation protocol: for each pair, models must correctly identify both the true and false claims. This reduces biases like answer ordering and enables a more precise assessment of reasoning. Our experiments demonstrate that both open-weight and closed state-of-the-art models fall well short of human performance, underscoring the relative ease of the task for humans and their superior ability to retain and reason over critical narrative information -- an ability current VLMs lack.
comment: Under Review
☆ BecomingLit: Relightable Gaussian Avatars with Hybrid Neural Shading
We introduce BecomingLit, a novel method for reconstructing relightable, high-resolution head avatars that can be rendered from novel viewpoints at interactive rates. Therefore, we propose a new low-cost light stage capture setup, tailored specifically towards capturing faces. Using this setup, we collect a novel dataset consisting of diverse multi-view sequences of numerous subjects under varying illumination conditions and facial expressions. By leveraging our new dataset, we introduce a new relightable avatar representation based on 3D Gaussian primitives that we animate with a parametric head model and an expression-dependent dynamics module. We propose a new hybrid neural shading approach, combining a neural diffuse BRDF with an analytical specular term. Our method reconstructs disentangled materials from our dynamic light stage recordings and enables all-frequency relighting of our avatars with both point lights and environment maps. In addition, our avatars can easily be animated and controlled from monocular videos. We validate our approach in extensive experiments on our dataset, where we consistently outperform existing state-of-the-art methods in relighting and reenactment by a significant margin.
comment: Project Page: see https://jonathsch.github.io/becominglit/ ; YouTube Video: see https://youtu.be/xPyeIqKdszA
☆ Bridging Perspectives: A Survey on Cross-view Collaborative Intelligence with Egocentric-Exocentric Vision
Perceiving the world from both egocentric (first-person) and exocentric (third-person) perspectives is fundamental to human cognition, enabling rich and complementary understanding of dynamic environments. In recent years, allowing the machines to leverage the synergistic potential of these dual perspectives has emerged as a compelling research direction in video understanding. In this survey, we provide a comprehensive review of video understanding from both exocentric and egocentric viewpoints. We begin by highlighting the practical applications of integrating egocentric and exocentric techniques, envisioning their potential collaboration across domains. We then identify key research tasks to realize these applications. Next, we systematically organize and review recent advancements into three main research directions: (1) leveraging egocentric data to enhance exocentric understanding, (2) utilizing exocentric data to improve egocentric analysis, and (3) joint learning frameworks that unify both perspectives. For each direction, we analyze a diverse set of tasks and relevant works. Additionally, we discuss benchmark datasets that support research in both perspectives, evaluating their scope, diversity, and applicability. Finally, we discuss limitations in current works and propose promising future research directions. By synthesizing insights from both perspectives, our goal is to inspire advancements in video understanding and artificial intelligence, bringing machines closer to perceiving the world in a human-like manner. A GitHub repo of related works can be found at https://github.com/ayiyayi/Awesome-Egocentric-and-Exocentric-Vision.
☆ Visual Graph Arena: Evaluating Visual Conceptualization of Vision and Multimodal Large Language Models
Recent advancements in multimodal large language models have driven breakthroughs in visual question answering. Yet, a critical gap persists, `conceptualization'-the ability to recognize and reason about the same concept despite variations in visual form, a basic ability of human reasoning. To address this challenge, we introduce the Visual Graph Arena (VGA), a dataset featuring six graph-based tasks designed to evaluate and improve AI systems' capacity for visual abstraction. VGA uses diverse graph layouts (e.g., Kamada-Kawai vs. planar) to test reasoning independent of visual form. Experiments with state-of-the-art vision models and multimodal LLMs reveal a striking divide: humans achieved near-perfect accuracy across tasks, while models totally failed on isomorphism detection and showed limited success in path/cycle tasks. We further identify behavioral anomalies suggesting pseudo-intelligent pattern matching rather than genuine understanding. These findings underscore fundamental limitations in current AI models for visual understanding. By isolating the challenge of representation-invariant reasoning, the VGA provides a framework to drive progress toward human-like conceptualization in AI visual models. The Visual Graph Arena is available at: \href{https://vga.csail.mit.edu/}{vga.csail.mit.edu}
☆ Optimizing Cloud-to-GPU Throughput for Deep Learning With Earth Observation Data
Training deep learning models on petabyte-scale Earth observation (EO) data requires separating compute resources from data storage. However, standard PyTorch data loaders cannot keep modern GPUs utilized when streaming GeoTIFF files directly from cloud storage. In this work, we benchmark GeoTIFF loading throughput from both cloud object storage and local SSD, systematically testing different loader configurations and data parameters. We focus on tile-aligned reads and worker thread pools, using Bayesian optimization to find optimal settings for each storage type. Our optimized configurations increase remote data loading throughput by 20x and local throughput by 4x compared to default settings. On three public EO benchmarks, models trained with optimized remote loading achieve the same accuracy as local training within identical time budgets. We improve validation IoU by 6-15% and maintain 85-95% GPU utilization versus 0-30% with standard configurations. Code is publicly available at https://github.com/microsoft/pytorch-cloud-geotiff-optimization
☆ Challenging Vision-Language Models with Surgical Data: A New Dataset and Broad Benchmarking Study
While traditional computer vision models have historically struggled to generalize to endoscopic domains, the emergence of foundation models has shown promising cross-domain performance. In this work, we present the first large-scale study assessing the capabilities of Vision Language Models (VLMs) for endoscopic tasks with a specific focus on laparoscopic surgery. Using a diverse set of state-of-the-art models, multiple surgical datasets, and extensive human reference annotations, we address three key research questions: (1) Can current VLMs solve basic perception tasks on surgical images? (2) Can they handle advanced frame-based endoscopic scene understanding tasks? and (3) How do specialized medical VLMs compare to generalist models in this context? Our results reveal that VLMs can effectively perform basic surgical perception tasks, such as object counting and localization, with performance levels comparable to general domain tasks. However, their performance deteriorates significantly when the tasks require medical knowledge. Notably, we find that specialized medical VLMs currently underperform compared to generalist models across both basic and advanced surgical tasks, suggesting that they are not yet optimized for the complexity of surgical environments. These findings highlight the need for further advancements to enable VLMs to handle the unique challenges posed by surgery. Overall, our work provides important insights for the development of next-generation endoscopic AI systems and identifies key areas for improvement in medical visual language models.
☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The code is available at [https://github.com/mjalali/embedding-comparison](github.com/mjalali/embedding-comparison).
☆ GenIR: Generative Visual Feedback for Mental Image Retrieval
Vision-language models (VLMs) have shown strong performance on text-to-image retrieval benchmarks. However, bridging this success to real-world applications remains a challenge. In practice, human search behavior is rarely a one-shot action. Instead, it is often a multi-round process guided by clues in mind, that is, a mental image ranging from vague recollections to vivid mental representations of the target image. Motivated by this gap, we study the task of Mental Image Retrieval (MIR), which targets the realistic yet underexplored setting where users refine their search for a mentally envisioned image through multi-round interactions with an image search engine. Central to successful interactive retrieval is the capability of machines to provide users with clear, actionable feedback; however, existing methods rely on indirect or abstract verbal feedback, which can be ambiguous, misleading, or ineffective for users to refine the query. To overcome this, we propose GenIR, a generative multi-round retrieval paradigm leveraging diffusion-based image generation to explicitly reify the AI system's understanding at each round. These synthetic visual representations provide clear, interpretable feedback, enabling users to refine their queries intuitively and effectively. We further introduce a fully automated pipeline to generate a high-quality multi-round MIR dataset. Experimental results demonstrate that GenIR significantly outperforms existing interactive methods in the MIR scenario. This work establishes a new task with a dataset and an effective generative retrieval method, providing a foundation for future research in this direction.
☆ STSBench: A Spatio-temporal Scenario Benchmark for Multi-modal Large Language Models in Autonomous Driving
We introduce STSBench, a scenario-based framework to benchmark the holistic understanding of vision-language models (VLMs) for autonomous driving. The framework automatically mines pre-defined traffic scenarios from any dataset using ground-truth annotations, provides an intuitive user interface for efficient human verification, and generates multiple-choice questions for model evaluation. Applied to the NuScenes dataset, we present STSnu, the first benchmark that evaluates the spatio-temporal reasoning capabilities of VLMs based on comprehensive 3D perception. Existing benchmarks typically target off-the-shelf or fine-tuned VLMs for images or videos from a single viewpoint and focus on semantic tasks such as object recognition, dense captioning, risk assessment, or scene understanding. In contrast, STSnu evaluates driving expert VLMs for end-to-end driving, operating on videos from multi-view cameras or LiDAR. It specifically assesses their ability to reason about both ego-vehicle actions and complex interactions among traffic participants, a crucial capability for autonomous vehicles. The benchmark features 43 diverse scenarios spanning multiple views and frames, resulting in 971 human-verified multiple-choice questions. A thorough evaluation uncovers critical shortcomings in existing models' ability to reason about fundamental traffic dynamics in complex environments. These findings highlight the urgent need for architectural advances that explicitly model spatio-temporal reasoning. By addressing a core gap in spatio-temporal evaluation, STSBench enables the development of more robust and explainable VLMs for autonomous driving.
comment: Dataset: https://huggingface.co/datasets/ivc-lrp/STSBench, Code: https://github.com/LRP-IVC/STSBench
☆ PuzzleWorld: A Benchmark for Multimodal, Open-Ended Reasoning in Puzzlehunts
Puzzlehunts are a genre of complex, multi-step puzzles lacking well-defined problem definitions. In contrast to conventional reasoning benchmarks consisting of tasks with clear instructions, puzzlehunts require models to discover the underlying problem structure from multimodal evidence and iterative reasoning, mirroring real-world domains such as scientific discovery, exploratory data analysis, or investigative problem-solving. Despite recent progress in foundation models, their performance on such open-ended settings remains largely untested. In this paper, we introduce PuzzleWorld, a large-scale benchmark of 667 puzzlehunt-style problems designed to assess step-by-step, open-ended, and creative multimodal reasoning. Each puzzle is annotated with the final solution, detailed reasoning traces, and cognitive skill labels, enabling holistic benchmarking and fine-grained diagnostic analysis. Most state-of-the-art models achieve only 1-2% final answer accuracy, with the best model solving only 14% of puzzles and reaching 40% stepwise accuracy. To demonstrate the value of our reasoning annotations, we show that fine-tuning a small model on reasoning traces improves stepwise reasoning from 4% to 11%, while training on final answers alone degrades performance to near zero. Our error analysis reveals that current models exhibit myopic reasoning, are bottlenecked by the limitations of language-based inference, and lack sketching capabilities crucial for visual and spatial reasoning. We release PuzzleWorld at https://github.com/MIT-MI/PuzzleWorld to support future work on building more general, open-ended, and creative reasoning systems.
☆ 3DFlowAction: Learning Cross-Embodiment Manipulation from 3D Flow World Model
Manipulation has long been a challenging task for robots, while humans can effortlessly perform complex interactions with objects, such as hanging a cup on the mug rack. A key reason is the lack of a large and uniform dataset for teaching robots manipulation skills. Current robot datasets often record robot action in different action spaces within a simple scene. This hinders the robot to learn a unified and robust action representation for different robots within diverse scenes. Observing how humans understand a manipulation task, we find that understanding how the objects should move in the 3D space is a critical clue for guiding actions. This clue is embodiment-agnostic and suitable for both humans and different robots. Motivated by this, we aim to learn a 3D flow world model from both human and robot manipulation data. This model predicts the future movement of the interacting objects in 3D space, guiding action planning for manipulation. Specifically, we synthesize a large-scale 3D optical flow dataset, named ManiFlow-110k, through a moving object auto-detect pipeline. A video diffusion-based world model then learns manipulation physics from these data, generating 3D optical flow trajectories conditioned on language instructions. With the generated 3D object optical flow, we propose a flow-guided rendering mechanism, which renders the predicted final state and leverages GPT-4o to assess whether the predicted flow aligns with the task description. This equips the robot with a closed-loop planning ability. Finally, we consider the predicted 3D optical flow as constraints for an optimization policy to determine a chunk of robot actions for manipulation. Extensive experiments demonstrate strong generalization across diverse robotic manipulation tasks and reliable cross-embodiment adaptation without hardware-specific training.
☆ SatelliteFormula: Multi-Modal Symbolic Regression from Remote Sensing Imagery for Physics Discovery
We propose SatelliteFormula, a novel symbolic regression framework that derives physically interpretable expressions directly from multi-spectral remote sensing imagery. Unlike traditional empirical indices or black-box learning models, SatelliteFormula combines a Vision Transformer-based encoder for spatial-spectral feature extraction with physics-guided constraints to ensure consistency and interpretability. Existing symbolic regression methods struggle with the high-dimensional complexity of multi-spectral data; our method addresses this by integrating transformer representations into a symbolic optimizer that balances accuracy and physical plausibility. Extensive experiments on benchmark datasets and remote sensing tasks demonstrate superior performance, stability, and generalization compared to state-of-the-art baselines. SatelliteFormula enables interpretable modeling of complex environmental variables, bridging the gap between data-driven learning and physical understanding.
☆ Technical Report for Egocentric Mistake Detection for the HoloAssist Challenge
In this report, we address the task of online mistake detection, which is vital in domains like industrial automation and education, where real-time video analysis allows human operators to correct errors as they occur. While previous work focuses on procedural errors involving action order, broader error types must be addressed for real-world use. We introduce an online mistake detection framework that handles both procedural and execution errors (e.g., motor slips or tool misuse). Upon detecting an error, we use a large language model (LLM) to generate explanatory feedback. Experiments on the HoloAssist benchmark confirm the effectiveness of our approach, where our approach is placed second on the mistake detection task.
☆ CLaMR: Contextualized Late-Interaction for Multimodal Content Retrieval
Online video web content is richly multimodal: a single video blends vision, speech, ambient audio, and on-screen text. Retrieval systems typically treat these modalities as independent retrieval sources, which can lead to noisy and subpar retrieval. We explore multimodal video content retrieval, where relevance can be scored from one particular modality or jointly across multiple modalities simultaneously. Consequently, an effective retriever must dynamically choose which modality (or set of modalities) best addresses the query. We introduce CLaMR, a multimodal, late-interaction retriever that jointly indexes 4 modalities: video frames, transcribed speech, on-screen text, and metadata. CLaMR jointly encodes all modalities with a unified multimodal backbone for improved contextualization and is trained to enhance dynamic modality selection via two key innovations. First, given the lack of training data for multimodal retrieval, we introduce MultiVENT 2.0++, a large-scale synthetic training dataset built on MultiVENT 2.0 (event-centric videos in various languages paired with queries) with modality-targeted queries. Next, we propose a modality-aware loss that jointly trains according to a standard contrastive objective alongside an objective for learning correct modality usage. On the test sets of MultiVENT 2.0++ and MSRVTT, conventional aggregation strategies, such as averaging similarities for baseline retrievers, degrade performance by introducing noise from irrelevant modalities. In contrast, CLaMR consistently outperforms existing retrievers: on MultiVENT 2.0++, CLaMR improves nDCG@10 by 25.6 over the best single-modality retriever and by 35.4 over the best multi-modality retriever. We illustrate CLaMR's downstream utility on long-video QA, retrieving relevant frames and obtaining a 3.50% boost over LanguageBind on Video-MME and 1.42% over dense sampling on LongVideoBench.
comment: 18 pages. Code and data: https://github.com/meetdavidwan/clamr
☆ Gradient Similarity Surgery in Multi-Task Deep Learning ECML
The multi-task learning ($MTL$) paradigm aims to simultaneously learn multiple tasks within a single model capturing higher-level, more general hidden patterns that are shared by the tasks. In deep learning, a significant challenge in the backpropagation training process is the design of advanced optimisers to improve the convergence speed and stability of the gradient descent learning rule. In particular, in multi-task deep learning ($MTDL$) the multitude of tasks may generate potentially conflicting gradients that would hinder the concurrent convergence of the diverse loss functions. This challenge arises when the gradients of the task objectives have either different magnitudes or opposite directions, causing one or a few to dominate or to interfere with each other, thus degrading the training process. Gradient surgery methods address the problem explicitly dealing with conflicting gradients by adjusting the overall gradient trajectory. This work introduces a novel gradient surgery method, the Similarity-Aware Momentum Gradient Surgery (SAM-GS), which provides an effective and scalable approach based on a gradient magnitude similarity measure to guide the optimisation process. The SAM-GS surgery adopts gradient equalisation and modulation of the first-order momentum. A series of experimental tests have shown the effectiveness of SAM-GS on synthetic problems and $MTL$ benchmarks. Gradient magnitude similarity plays a crucial role in regularising gradient aggregation in $MTDL$ for the optimisation of the learning process.
comment: Paper accepted at ECMLPKDD 2025
☆ CCLSTM: Coupled Convolutional Long-Short Term Memory Network for Occupancy Flow Forecasting
Predicting future states of dynamic agents is a fundamental task in autonomous driving. An expressive representation for this purpose is Occupancy Flow Fields, which provide a scalable and unified format for modeling motion, spatial extent, and multi-modal future distributions. While recent methods have achieved strong results using this representation, they often depend on high-quality vectorized inputs, which are unavailable or difficult to generate in practice, and the use of transformer-based architectures, which are computationally intensive and costly to deploy. To address these issues, we propose \textbf{Coupled Convolutional LSTM (CCLSTM)}, a lightweight, end-to-end trainable architecture based solely on convolutional operations. Without relying on vectorized inputs or self-attention mechanisms, CCLSTM effectively captures temporal dynamics and spatial occupancy-flow correlations using a compact recurrent convolutional structure. Despite its simplicity, CCLSTM achieves state-of-the-art performance on occupancy flow metrics and, as of this submission, ranks \(1^{\text{st}}\) in all metrics on the 2024 Waymo Occupancy and Flow Prediction Challenge leaderboard.
☆ Bidirectional Image-Event Guided Low-Light Image Enhancement
Under extreme low-light conditions, traditional frame-based cameras, due to their limited dynamic range and temporal resolution, face detail loss and motion blur in captured images. To overcome this bottleneck, researchers have introduced event cameras and proposed event-guided low-light image enhancement algorithms. However, these methods neglect the influence of global low-frequency noise caused by dynamic lighting conditions and local structural discontinuities in sparse event data. To address these issues, we propose an innovative Bidirectional guided Low-light Image Enhancement framework (BiLIE). Specifically, to mitigate the significant low-frequency noise introduced by global illumination step changes, we introduce the frequency high-pass filtering-based Event Feature Enhancement (EFE) module at the event representation level to suppress the interference of low-frequency information, and preserve and highlight the high-frequency edges.Furthermore, we design a Bidirectional Cross Attention Fusion (BCAF) mechanism to acquire high-frequency structures and edges while suppressing structural discontinuities and local noise introduced by sparse event guidance, thereby generating smoother fused representations.Additionally, considering the poor visual quality and color bias in existing datasets, we provide a new dataset (RELIE), with high-quality ground truth through a reliable enhancement scheme. Extensive experimental results demonstrate that our proposed BiLIE outperforms state-of-the-art methods by 0.96dB in PSNR and 0.03 in LPIPS.
☆ WoundAIssist: A Patient-Centered Mobile App for AI-Assisted Wound Care With Physicians in the Loop
The rising prevalence of chronic wounds, especially in aging populations, presents a significant healthcare challenge due to prolonged hospitalizations, elevated costs, and reduced patient quality of life. Traditional wound care is resource-intensive, requiring frequent in-person visits that strain both patients and healthcare professionals (HCPs). Therefore, we present WoundAIssist, a patient-centered, AI-driven mobile application designed to support telemedical wound care. WoundAIssist enables patients to regularly document wounds at home via photographs and questionnaires, while physicians remain actively engaged in the care process through remote monitoring and video consultations. A distinguishing feature is an integrated lightweight deep learning model for on-device wound segmentation, which, combined with patient-reported data, enables continuous monitoring of wound healing progression. Developed through an iterative, user-centered process involving both patients and domain experts, WoundAIssist prioritizes an user-friendly design, particularly for elderly patients. A conclusive usability study with patients and dermatologists reported excellent usability, good app quality, and favorable perceptions of the AI-driven wound recognition. Our main contribution is two-fold: (I) the implementation and (II) evaluation of WoundAIssist, an easy-to-use yet comprehensive telehealth solution designed to bridge the gap between patients and HCPs. Additionally, we synthesize design insights for remote patient monitoring apps, derived from over three years of interdisciplinary research, that may inform the development of similar digital health tools across clinical domains.
comment: Submitted to ACM Health (Special Issue)
☆ DermaCon-IN: A Multi-concept Annotated Dermatological Image Dataset of Indian Skin Disorders for Clinical AI Research
Artificial intelligence is poised to augment dermatological care by enabling scalable image-based diagnostics. Yet, the development of robust and equitable models remains hindered by datasets that fail to capture the clinical and demographic complexity of real-world practice. This complexity stems from region-specific disease distributions, wide variation in skin tones, and the underrepresentation of outpatient scenarios from non-Western populations. We introduce DermaCon-IN, a prospectively curated dermatology dataset comprising over 5,450 clinical images from approximately 3,000 patients across outpatient clinics in South India. Each image is annotated by board-certified dermatologists with over 240 distinct diagnoses, structured under a hierarchical, etiology-based taxonomy adapted from Rook's classification. The dataset captures a wide spectrum of dermatologic conditions and tonal variation commonly seen in Indian outpatient care. We benchmark a range of architectures including convolutional models (ResNet, DenseNet, EfficientNet), transformer-based models (ViT, MaxViT, Swin), and Concept Bottleneck Models to establish baseline performance and explore how anatomical and concept-level cues may be integrated. These results are intended to guide future efforts toward interpretable and clinically realistic models. DermaCon-IN provides a scalable and representative foundation for advancing dermatology AI in real-world settings.
☆ VideoChat-A1: Thinking with Long Videos by Chain-of-Shot Reasoning
The recent advance in video understanding has been driven by multimodal large language models (MLLMs). But these MLLMs are good at analyzing short videos, while suffering from difficulties in understanding videos with a longer context. To address this difficulty, several agent paradigms have recently been proposed, using MLLMs as agents for retrieving extra contextual knowledge in a long video. However, most existing agents ignore the key fact that a long video is composed with multiple shots, i.e., to answer the user question from a long video, it is critical to deeply understand its relevant shots like human. Without such insight, these agents often mistakenly find redundant even noisy temporal context, restricting their capacity for long video understanding. To fill this gap, we propose VideoChat-A1, a novel long video agent paradigm. Different from the previous works, our VideoChat-A1 can deeply think with long videos, via a distinct chain-of-shot reasoning paradigm. More specifically, it can progressively select the relevant shots of user question, and look into these shots in a coarse-to-fine partition. By multi-modal reasoning along the shot chain, VideoChat-A1 can effectively mimic step-by-step human thinking process, allowing to interactively discover preferable temporal context for thoughtful understanding in long videos. Extensive experiments show that, our VideoChat-A1 achieves the state-of-the-art performance on the mainstream long video QA benchmarks, e.g., it achieves 77.0 on VideoMME and 70.1 on EgoSchema, outperforming its strong baselines (e.g., Intern2.5VL-8B and InternVideo2.5-8B), by up to 10.8\% and 6.2\%. Compared to leading close-source GPT-4o and Gemini 1.5 Pro, VideoChat-A1 offers competitive accuracy, but with 7\% input frames and 12\% inference time on average.
☆ LinGuinE: Longitudinal Guidance Estimation for Volumetric Lung Tumour Segmentation
Segmentation of lung gross tumour volumes is an important first step in radiotherapy and surgical intervention, and is starting to play a role in assessing chemotherapy response. Response to a drug is measured by tracking the tumour volumes over a series of CT scans over a time period i.e. a longitudinal study. However, there currently exist few solutions for automated or semi-automated longitudinal tumour segmentation. This paper introduces LinGuinE, an automated method to segment a longitudinal series of lung tumours. A radiologist must provide an initial input, indicating the location of the tumour in a CT scan at an arbitrary time point. LinGuinE samples points inside this tumour and propagates them to another time point using rigid registration. A click validity classifier selects points which still fall within the tumour; these are used to automatically create a segmentation in the new time point. We test LinGuinE on a dataset acquired from a phase 3 clinical trial for lung tumours and the publicly available 4-D lung CBCT dataset. We find that LinGuinE improves the Dice on both test sets by over 20% (p< 0.05) across 63 longitudinal studies. We show that any time point can be used as a starting point, conduct ablation experiments, and find that our LinGuinE setup yields the best results on both test datasets.
comment: 10 pages, 3 figures
☆ Feedback Guidance of Diffusion Models
While Classifier-Free Guidance (CFG) has become standard for improving sample fidelity in conditional diffusion models, it can harm diversity and induce memorization by applying constant guidance regardless of whether a particular sample needs correction. We propose FeedBack Guidance (FBG), which uses a state-dependent coefficient to self-regulate guidance amounts based on need. Our approach is derived from first principles by assuming the learned conditional distribution is linearly corrupted by the unconditional distribution, contrasting with CFG's implicit multiplicative assumption. Our scheme relies on feedback of its own predictions about the conditional signal informativeness to adapt guidance dynamically during inference, challenging the view of guidance as a fixed hyperparameter. The approach is benchmarked on ImageNet512x512, where it significantly outperforms Classifier-Free Guidance and is competitive to Limited Interval Guidance (LIG) while benefitting from a strong mathematical framework. On Text-To-Image generation, we demonstrate that, as anticipated, our approach automatically applies higher guidance scales for complex prompts than for simpler ones and that it can be easily combined with existing guidance schemes such as CFG or LIG.
comment: Preprint. Article currently under review. Code is available at: https://github.com/FelixKoulischer/FBG_using_edm2
☆ WisWheat: A Three-Tiered Vision-Language Dataset for Wheat Management
Wheat management strategies play a critical role in determining yield. Traditional management decisions often rely on labour-intensive expert inspections, which are expensive, subjective and difficult to scale. Recently, Vision-Language Models (VLMs) have emerged as a promising solution to enable scalable, data-driven management support. However, due to a lack of domain-specific knowledge, directly applying VLMs to wheat management tasks results in poor quantification and reasoning capabilities, ultimately producing vague or even misleading management recommendations. In response, we propose WisWheat, a wheat-specific dataset with a three-layered design to enhance VLM performance on wheat management tasks: (1) a foundational pretraining dataset of 47,871 image-caption pairs for coarsely adapting VLMs to wheat morphology; (2) a quantitative dataset comprising 7,263 VQA-style image-question-answer triplets for quantitative trait measuring tasks; and (3) an Instruction Fine-tuning dataset with 4,888 samples targeting biotic and abiotic stress diagnosis and management plan for different phenological stages. Extensive experimental results demonstrate that fine-tuning open-source VLMs (e.g., Qwen2.5 7B) on our dataset leads to significant performance improvements. Specifically, the Qwen2.5 VL 7B fine-tuned on our wheat instruction dataset achieves accuracy scores of 79.2% and 84.6% on wheat stress and growth stage conversation tasks respectively, surpassing even general-purpose commercial models such as GPT-4o by a margin of 11.9% and 34.6%.
☆ Full Conformal Adaptation of Medical Vision-Language Models
Vision-language models (VLMs) pre-trained at large scale have shown unprecedented transferability capabilities and are being progressively integrated into medical image analysis. Although its discriminative potential has been widely explored, its reliability aspect remains overlooked. This work investigates their behavior under the increasingly popular split conformal prediction (SCP) framework, which theoretically guarantees a given error level on output sets by leveraging a labeled calibration set. However, the zero-shot performance of VLMs is inherently limited, and common practice involves few-shot transfer learning pipelines, which cannot absorb the rigid exchangeability assumptions of SCP. To alleviate this issue, we propose full conformal adaptation, a novel setting for jointly adapting and conformalizing pre-trained foundation models, which operates transductively over each test data point using a few-shot adaptation set. Moreover, we complement this framework with SS-Text, a novel training-free linear probe solver for VLMs that alleviates the computational cost of such a transductive approach. We provide comprehensive experiments using 3 different modality-specialized medical VLMs and 9 adaptation tasks. Our framework requires exactly the same data as SCP, and provides consistent relative improvements of up to 27% on set efficiency while maintaining the same coverage guarantees.
comment: IPMI 2025. Code: https://github.com/jusiro/FCA
☆ FPDANet: A Multi-Section Classification Model for Intelligent Screening of Fetal Ultrasound
ResNet has been widely used in image classification tasks due to its ability to model the residual dependence of constant mappings for linear computation. However, the ResNet method adopts a unidirectional transfer of features and lacks an effective method to correlate contextual information, which is not effective in classifying fetal ultrasound images in the classification task, and fetal ultrasound images have problems such as low contrast, high similarity, and high noise. Therefore, we propose a bilateral multi-scale information fusion network-based FPDANet to address the above challenges. Specifically, we design the positional attention mechanism (DAN) module, which utilizes the similarity of features to establish the dependency of different spatial positional features and enhance the feature representation. In addition, we design a bilateral multi-scale (FPAN) information fusion module to capture contextual and global feature dependencies at different feature scales, thereby further improving the model representation. FPDANet classification results obtained 91.05\% and 100\% in Top-1 and Top-5 metrics, respectively, and the experimental results proved the effectiveness and robustness of FPDANet.
☆ TRUST: Test-time Resource Utilization for Superior Trustworthiness
Standard uncertainty estimation techniques, such as dropout, often struggle to clearly distinguish reliable predictions from unreliable ones. We attribute this limitation to noisy classifier weights, which, while not impairing overall class-level predictions, render finer-level statistics less informative. To address this, we propose a novel test-time optimization method that accounts for the impact of such noise to produce more reliable confidence estimates. This score defines a monotonic subset-selection function, where population accuracy consistently increases as samples with lower scores are removed, and it demonstrates superior performance in standard risk-based metrics such as AUSE and AURC. Additionally, our method effectively identifies discrepancies between training and test distributions, reliably differentiates in-distribution from out-of-distribution samples, and elucidates key differences between CNN and ViT classifiers across various vision datasets.
☆ SDS-Net: Shallow-Deep Synergism-detection Network for infrared small target detection
Current CNN-based infrared small target detection(IRSTD) methods generally overlook the heterogeneity between shallow and deep features, leading to inefficient collaboration between shallow fine grained structural information and deep high-level semantic representations. Additionally, the dependency relationships and fusion mechanisms across different feature hierarchies lack systematic modeling, which fails to fully exploit the complementarity of multilevel features. These limitations hinder IRSTD performance while incurring substantial computational costs. To address these challenges, this paper proposes a shallow-deep synergistic detection network (SDS-Net) that efficiently models multilevel feature representations to increase both the detection accuracy and computational efficiency in IRSTD tasks. SDS-Net introduces a dual-branch architecture that separately models the structural characteristics and semantic properties of features, effectively preserving shallow spatial details while capturing deep semantic representations, thereby achieving high-precision detection with significantly improved inference speed. Furthermore, the network incorporates an adaptive feature fusion module to dynamically model cross-layer feature correlations, enhancing overall feature collaboration and representation capability. Comprehensive experiments on three public datasets (NUAA-SIRST, NUDT-SIRST, and IRSTD-1K) demonstrate that SDS-Net outperforms state-of-the-art IRSTD methods while maintaining low computational complexity and high inference efficiency, showing superior detection performance and broad application prospects. Our code will be made public at https://github.com/PhysiLearn/SDS-Net.
comment: 13 pages,9 figures, Submitted IEEE Transactions on Geoscience and Remote Sensing
☆ Tensor-to-Tensor Models with Fast Iterated Sum Features
Data in the form of images or higher-order tensors is ubiquitous in modern deep learning applications. Owing to their inherent high dimensionality, the need for subquadratic layers processing such data is even more pressing than for sequence data. We propose a novel tensor-to-tensor layer with linear cost in the input size, utilizing the mathematical gadget of ``corner trees'' from the field of permutation counting. In particular, for order-two tensors, we provide an image-to-image layer that can be plugged into image processing pipelines. On the one hand, our method can be seen as a higher-order generalization of state-space models. On the other hand, it is based on a multiparameter generalization of the signature of iterated integrals (or sums). The proposed tensor-to-tensor concept is used to build a neural network layer called the Fast Iterated Sums (FIS) layer which integrates seamlessly with other layer types. We demonstrate the usability of the FIS layer with both classification and anomaly detection tasks. By replacing some layers of a smaller ResNet architecture with FIS, a similar accuracy (with a difference of only 0.1\%) was achieved in comparison to a larger ResNet while reducing the number of trainable parameters and multi-add operations. The FIS layer was also used to build an anomaly detection model that achieved an average AUROC of 97.3\% on the texture images of the popular MVTec AD dataset. The processing and modelling codes are publicly available at https://github.com/diehlj/fast-iterated-sums.
☆ HAVIR: HierArchical Vision to Image Reconstruction using CLIP-Guided Versatile Diffusion
Reconstructing visual information from brain activity bridges the gap between neuroscience and computer vision. Even though progress has been made in decoding images from fMRI using generative models, a challenge remains in accurately recovering highly complex visual stimuli. This difficulty stems from their elemental density and diversity, sophisticated spatial structures, and multifaceted semantic information. To address these challenges, we propose HAVIR that contains two adapters: (1) The AutoKL Adapter transforms fMRI voxels into a latent diffusion prior, capturing topological structures; (2) The CLIP Adapter converts the voxels to CLIP text and image embeddings, containing semantic information. These complementary representations are fused by Versatile Diffusion to generate the final reconstructed image. To extract the most essential semantic information from complex scenarios, the CLIP Adapter is trained with text captions describing the visual stimuli and their corresponding semantic images synthesized from these captions. The experimental results demonstrate that HAVIR effectively reconstructs both structural features and semantic information of visual stimuli even in complex scenarios, outperforming existing models.
comment: 15 pages, 6 figures, 3 tabs
☆ Sample-Specific Noise Injection For Diffusion-Based Adversarial Purification
Diffusion-based purification (DBP) methods aim to remove adversarial noise from the input sample by first injecting Gaussian noise through a forward diffusion process, and then recovering the clean example through a reverse generative process. In the above process, how much Gaussian noise is injected to the input sample is key to the success of DBP methods, which is controlled by a constant noise level $t^*$ for all samples in existing methods. In this paper, we discover that an optimal $t^*$ for each sample indeed could be different. Intuitively, the cleaner a sample is, the less the noise it should be injected, and vice versa. Motivated by this finding, we propose a new framework, called Sample-specific Score-aware Noise Injection (SSNI). Specifically, SSNI uses a pre-trained score network to estimate how much a data point deviates from the clean data distribution (i.e., score norms). Then, based on the magnitude of score norms, SSNI applies a reweighting function to adaptively adjust $t^*$ for each sample, achieving sample-specific noise injections. Empirically, incorporating our framework with existing DBP methods results in a notable improvement in both accuracy and robustness on CIFAR-10 and ImageNet-1K, highlighting the necessity to allocate distinct noise levels to different samples in DBP methods. Our code is available at: https://github.com/tmlr-group/SSNI.
☆ O-MaMa @ EgoExo4D Correspondence Challenge: Learning Object Mask Matching between Egocentric and Exocentric Views
The goal of the correspondence task is to segment specific objects across different views. This technical report re-defines cross-image segmentation by treating it as a mask matching task. Our method consists of: (1) A Mask-Context Encoder that pools dense DINOv2 semantic features to obtain discriminative object-level representations from FastSAM mask candidates, (2) an Ego$\leftrightarrow$Exo Cross-Attention that fuses multi-perspective observations, (3) a Mask Matching contrastive loss that aligns cross-view features in a shared latent space, and (4) a Hard Negative Adjacent Mining strategy to encourage the model to better differentiate between nearby objects.
☆ Restereo: Diffusion stereo video generation and restoration
Stereo video generation has been gaining increasing attention with recent advancements in video diffusion models. However, most existing methods focus on generating 3D stereoscopic videos from monocular 2D videos. These approaches typically assume that the input monocular video is of high quality, making the task primarily about inpainting occluded regions in the warped video while preserving disoccluded areas. In this paper, we introduce a new pipeline that not only generates stereo videos but also enhances both left-view and right-view videos consistently with a single model. Our approach achieves this by fine-tuning the model on degraded data for restoration, as well as conditioning the model on warped masks for consistent stereo generation. As a result, our method can be fine-tuned on a relatively small synthetic stereo video datasets and applied to low-quality real-world videos, performing both stereo video generation and restoration. Experiments demonstrate that our method outperforms existing approaches both qualitatively and quantitatively in stereo video generation from low-resolution inputs.
comment: 12 pages, 5 figures
☆ Enhancing Orthopox Image Classification Using Hybrid Machine Learning and Deep Learning Models
Orthopoxvirus infections must be accurately classified from medical pictures for an easy and early diagnosis and epidemic prevention. The necessity for automated and scalable solutions is highlighted by the fact that traditional diagnostic techniques can be time-consuming and require expert interpretation and there are few and biased data sets of the different types of Orthopox. In order to improve classification performance and lower computational costs, a hybrid strategy is put forth in this paper that uses Machine Learning models combined with pretrained Deep Learning models to extract deep feature representations without the need for augmented data. The findings show that this feature extraction method, when paired with other methods in the state-of-the-art, produces excellent classification outcomes while preserving training and inference efficiency. The proposed approach demonstrates strong generalization and robustness across multiple evaluation settings, offering a scalable and interpretable solution for real-world clinical deployment.
☆ Bootstrapping World Models from Dynamics Models in Multimodal Foundation Models
To what extent do vision-and-language foundation models possess a realistic world model (observation $\times$ action $\rightarrow$ observation) and a dynamics model (observation $\times$ observation $\rightarrow$ action), when actions are expressed through language? While open-source foundation models struggle with both, we find that fine-tuning them to acquire a dynamics model through supervision is significantly easier than acquiring a world model. In turn, dynamics models can be used to bootstrap world models through two main strategies: 1) weakly supervised learning from synthetic data and 2) inference time verification. Firstly, the dynamics model can annotate actions for unlabelled pairs of video frame observations to expand the training data. We further propose a new objective, where image tokens in observation pairs are weighted by their importance, as predicted by a recognition model. Secondly, the dynamics models can assign rewards to multiple samples of the world model to score them, effectively guiding search at inference time. We evaluate the world models resulting from both strategies through the task of action-centric image editing on Aurora-Bench. Our best model achieves a performance competitive with state-of-the-art image editing models, improving on them by a margin of $15\%$ on real-world subsets according to GPT4o-as-judge, and achieving the best average human evaluation across all subsets of Aurora-Bench.
☆ MCA-Bench: A Multimodal Benchmark for Evaluating CAPTCHA Robustness Against VLM-based Attacks
As automated attack techniques rapidly advance, CAPTCHAs remain a critical defense mechanism against malicious bots. However, existing CAPTCHA schemes encompass a diverse range of modalities -- from static distorted text and obfuscated images to interactive clicks, sliding puzzles, and logic-based questions -- yet the community still lacks a unified, large-scale, multimodal benchmark to rigorously evaluate their security robustness. To address this gap, we introduce MCA-Bench, a comprehensive and reproducible benchmarking suite that integrates heterogeneous CAPTCHA types into a single evaluation protocol. Leveraging a shared vision-language model backbone, we fine-tune specialized cracking agents for each CAPTCHA category, enabling consistent, cross-modal assessments. Extensive experiments reveal that MCA-Bench effectively maps the vulnerability spectrum of modern CAPTCHA designs under varied attack settings, and crucially offers the first quantitative analysis of how challenge complexity, interaction depth, and model solvability interrelate. Based on these findings, we propose three actionable design principles and identify key open challenges, laying the groundwork for systematic CAPTCHA hardening, fair benchmarking, and broader community collaboration. Datasets and code are available online.
comment: 31 pages, 8 figures
☆ Domain Adaptation in Agricultural Image Analysis: A Comprehensive Review from Shallow Models to Deep Learning
With the increasing use of computer vision in agriculture, image analysis has become crucial for tasks like crop health monitoring and pest detection. However, significant domain shifts between source and target domains-due to environmental differences, crop types, and data acquisition methods-pose challenges. These domain gaps limit the ability of models to generalize across regions, seasons, and complex agricultural environments. This paper explores how Domain Adaptation (DA) techniques can address these challenges, focusing on their role in enhancing the cross-domain transferability of agricultural image analysis. DA has gained attention in agricultural vision tasks due to its potential to mitigate domain heterogeneity. The paper systematically reviews recent advances in DA for agricultural imagery, particularly its practical applications in complex agricultural environments. We examine the key drivers for adopting DA in agriculture, such as limited labeled data, weak model transferability, and dynamic environmental conditions. We also discuss its use in crop health monitoring, pest detection, and fruit recognition, highlighting improvements in performance across regions and seasons. The paper categorizes DA methods into shallow and deep learning models, with further divisions into supervised, semi-supervised, and unsupervised approaches. A special focus is given to adversarial learning-based DA methods, which have shown great promise in challenging agricultural scenarios. Finally, we review key public datasets in agricultural imagery, analyzing their value and limitations in DA research. This review provides a comprehensive framework for researchers, offering insights into current research gaps and supporting the advancement of DA methods in agricultural image analysis.
☆ Dy3DGS-SLAM: Monocular 3D Gaussian Splatting SLAM for Dynamic Environments
Current Simultaneous Localization and Mapping (SLAM) methods based on Neural Radiance Fields (NeRF) or 3D Gaussian Splatting excel in reconstructing static 3D scenes but struggle with tracking and reconstruction in dynamic environments, such as real-world scenes with moving elements. Existing NeRF-based SLAM approaches addressing dynamic challenges typically rely on RGB-D inputs, with few methods accommodating pure RGB input. To overcome these limitations, we propose Dy3DGS-SLAM, the first 3D Gaussian Splatting (3DGS) SLAM method for dynamic scenes using monocular RGB input. To address dynamic interference, we fuse optical flow masks and depth masks through a probabilistic model to obtain a fused dynamic mask. With only a single network iteration, this can constrain tracking scales and refine rendered geometry. Based on the fused dynamic mask, we designed a novel motion loss to constrain the pose estimation network for tracking. In mapping, we use the rendering loss of dynamic pixels, color, and depth to eliminate transient interference and occlusion caused by dynamic objects. Experimental results demonstrate that Dy3DGS-SLAM achieves state-of-the-art tracking and rendering in dynamic environments, outperforming or matching existing RGB-D methods.
☆ MOGO: Residual Quantized Hierarchical Causal Transformer for High-Quality and Real-Time 3D Human Motion Generation
Recent advances in transformer-based text-to-motion generation have led to impressive progress in synthesizing high-quality human motion. Nevertheless, jointly achieving high fidelity, streaming capability, real-time responsiveness, and scalability remains a fundamental challenge. In this paper, we propose MOGO (Motion Generation with One-pass), a novel autoregressive framework tailored for efficient and real-time 3D motion generation. MOGO comprises two key components: (1) MoSA-VQ, a motion scale-adaptive residual vector quantization module that hierarchically discretizes motion sequences with learnable scaling to produce compact yet expressive representations; and (2) RQHC-Transformer, a residual quantized hierarchical causal transformer that generates multi-layer motion tokens in a single forward pass, significantly reducing inference latency. To enhance semantic fidelity, we further introduce a text condition alignment mechanism that improves motion decoding under textual control. Extensive experiments on benchmark datasets including HumanML3D, KIT-ML, and CMP demonstrate that MOGO achieves competitive or superior generation quality compared to state-of-the-art transformer-based methods, while offering substantial improvements in real-time performance, streaming generation, and generalization under zero-shot settings.
comment: 9 pages, 4 figures, conference
☆ SurGSplat: Progressive Geometry-Constrained Gaussian Splatting for Surgical Scene Reconstruction
Intraoperative navigation relies heavily on precise 3D reconstruction to ensure accuracy and safety during surgical procedures. However, endoscopic scenarios present unique challenges, including sparse features and inconsistent lighting, which render many existing Structure-from-Motion (SfM)-based methods inadequate and prone to reconstruction failure. To mitigate these constraints, we propose SurGSplat, a novel paradigm designed to progressively refine 3D Gaussian Splatting (3DGS) through the integration of geometric constraints. By enabling the detailed reconstruction of vascular structures and other critical features, SurGSplat provides surgeons with enhanced visual clarity, facilitating precise intraoperative decision-making. Experimental evaluations demonstrate that SurGSplat achieves superior performance in both novel view synthesis (NVS) and pose estimation accuracy, establishing it as a high-fidelity and efficient solution for surgical scene reconstruction. More information and results can be found on the page https://surgsplat.github.io/.
☆ FADE: Frequency-Aware Diffusion Model Factorization for Video Editing CVPR
Recent advancements in diffusion frameworks have significantly enhanced video editing, achieving high fidelity and strong alignment with textual prompts. However, conventional approaches using image diffusion models fall short in handling video dynamics, particularly for challenging temporal edits like motion adjustments. While current video diffusion models produce high-quality results, adapting them for efficient editing remains difficult due to the heavy computational demands that prevent the direct application of previous image editing techniques. To overcome these limitations, we introduce FADE, a training-free yet highly effective video editing approach that fully leverages the inherent priors from pre-trained video diffusion models via frequency-aware factorization. Rather than simply using these models, we first analyze the attention patterns within the video model to reveal how video priors are distributed across different components. Building on these insights, we propose a factorization strategy to optimize each component's specialized role. Furthermore, we devise spectrum-guided modulation to refine the sampling trajectory with frequency domain cues, preventing information leakage and supporting efficient, versatile edits while preserving the basic spatial and temporal structure. Extensive experiments on real-world videos demonstrate that our method consistently delivers high-quality, realistic and temporally coherent editing results both qualitatively and quantitatively. Code is available at https://github.com/EternalEvan/FADE .
comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
☆ Rethinking Semi-supervised Segmentation Beyond Accuracy: Reliability and Robustness
Semantic segmentation is critical for scene understanding but demands costly pixel-wise annotations, attracting increasing attention to semi-supervised approaches to leverage abundant unlabeled data. While semi-supervised segmentation is often promoted as a path toward scalable, real-world deployment, it is astonishing that current evaluation protocols exclusively focus on segmentation accuracy, entirely overlooking reliability and robustness. These qualities, which ensure consistent performance under diverse conditions (robustness) and well-calibrated model confidences as well as meaningful uncertainties (reliability), are essential for safety-critical applications like autonomous driving, where models must handle unpredictable environments and avoid sudden failures at all costs. To address this gap, we introduce the Reliable Segmentation Score (RSS), a novel metric that combines predictive accuracy, calibration, and uncertainty quality measures via a harmonic mean. RSS penalizes deficiencies in any of its components, providing an easy and intuitive way of holistically judging segmentation models. Comprehensive evaluations of UniMatchV2 against its predecessor and a supervised baseline show that semi-supervised methods often trade reliability for accuracy. While out-of-domain evaluations demonstrate UniMatchV2's robustness, they further expose persistent reliability shortcomings. We advocate for a shift in evaluation protocols toward more holistic metrics like RSS to better align semi-supervised learning research with real-world deployment needs.
☆ QualitEye: Public and Privacy-preserving Gaze Data Quality Verification
Gaze-based applications are increasingly advancing with the availability of large datasets but ensuring data quality presents a substantial challenge when collecting data at scale. It further requires different parties to collaborate, therefore, privacy concerns arise. We propose QualitEye--the first method for verifying image-based gaze data quality. QualitEye employs a new semantic representation of eye images that contains the information required for verification while excluding irrelevant information for better domain adaptation. QualitEye covers a public setting where parties can freely exchange data and a privacy-preserving setting where parties cannot reveal their raw data nor derive gaze features/labels of others with adapted private set intersection protocols. We evaluate QualitEye on the MPIIFaceGaze and GazeCapture datasets and achieve a high verification performance (with a small overhead in runtime for privacy-preserving versions). Hence, QualitEye paves the way for new gaze analysis methods at the intersection of machine learning, human-computer interaction, and cryptography.
☆ Proactive Assistant Dialogue Generation from Streaming Egocentric Videos
Recent advances in conversational AI have been substantial, but developing real-time systems for perceptual task guidance remains challenging. These systems must provide interactive, proactive assistance based on streaming visual inputs, yet their development is constrained by the costly and labor-intensive process of data collection and system evaluation. To address these limitations, we present a comprehensive framework with three key contributions. First, we introduce a novel data curation pipeline that synthesizes dialogues from annotated egocentric videos, resulting in \dataset, a large-scale synthetic dialogue dataset spanning multiple domains. Second, we develop a suite of automatic evaluation metrics, validated through extensive human studies. Third, we propose an end-to-end model that processes streaming video inputs to generate contextually appropriate responses, incorporating novel techniques for handling data imbalance and long-duration videos. This work lays the foundation for developing real-time, proactive AI assistants capable of guiding users through diverse tasks. Project page: https://pro-assist.github.io/
☆ Query Nearby: Offset-Adjusted Mask2Former enhances small-organ segmentation
Medical segmentation plays an important role in clinical applications like radiation therapy and surgical guidance, but acquiring clinically acceptable results is difficult. In recent years, progress has been witnessed with the success of utilizing transformer-like models, such as combining the attention mechanism with CNN. In particular, transformer-based segmentation models can extract global information more effectively, compensating for the drawbacks of CNN modules that focus on local features. However, utilizing transformer architecture is not easy, because training transformer-based models can be resource-demanding. Moreover, due to the distinct characteristics in the medical field, especially when encountering mid-sized and small organs with compact regions, their results often seem unsatisfactory. For example, using ViT to segment medical images directly only gives a DSC of less than 50\%, which is far lower than the clinically acceptable score of 80\%. In this paper, we used Mask2Former with deformable attention to reduce computation and proposed offset adjustment strategies to encourage sampling points within the same organs during attention weights computation, thereby integrating compact foreground information better. Additionally, we utilized the 4th feature map in Mask2Former to provide a coarse location of organs, and employed an FCN-based auxiliary head to help train Mask2Former more quickly using Dice loss. We show that our model achieves SOTA (State-of-the-Art) performance on the HaNSeg and SegRap2023 datasets, especially on mid-sized and small organs.Our code is available at link https://github.com/earis/Offsetadjustment\_Background-location\_Decoder\_Mask2former.
☆ Object Navigation with Structure-Semantic Reasoning-Based Multi-level Map and Multimodal Decision-Making LLM
The zero-shot object navigation (ZSON) in unknown open-ended environments coupled with semantically novel target often suffers from the significant decline in performance due to the neglect of high-dimensional implicit scene information and the long-range target searching task. To address this, we proposed an active object navigation framework with Environmental Attributes Map (EAM) and MLLM Hierarchical Reasoning module (MHR) to improve its success rate and efficiency. EAM is constructed by reasoning observed environments with SBERT and predicting unobserved ones with Diffusion, utilizing human space regularities that underlie object-room correlations and area adjacencies. MHR is inspired by EAM to perform frontier exploration decision-making, avoiding the circuitous trajectories in long-range scenarios to improve path efficiency. Experimental results demonstrate that the EAM module achieves 64.5\% scene mapping accuracy on MP3D dataset, while the navigation task attains SPLs of 28.4\% and 26.3\% on HM3D and MP3D benchmarks respectively - representing absolute improvements of 21.4\% and 46.0\% over baseline methods.
comment: 16 pages, 11 figures
☆ Unleashing the Potential of Consistency Learning for Detecting and Grounding Multi-Modal Media Manipulation CVPR 2025
To tackle the threat of fake news, the task of detecting and grounding multi-modal media manipulation DGM4 has received increasing attention. However, most state-of-the-art methods fail to explore the fine-grained consistency within local content, usually resulting in an inadequate perception of detailed forgery and unreliable results. In this paper, we propose a novel approach named Contextual-Semantic Consistency Learning (CSCL) to enhance the fine-grained perception ability of forgery for DGM4. Two branches for image and text modalities are established, each of which contains two cascaded decoders, i.e., Contextual Consistency Decoder (CCD) and Semantic Consistency Decoder (SCD), to capture within-modality contextual consistency and across-modality semantic consistency, respectively. Both CCD and SCD adhere to the same criteria for capturing fine-grained forgery details. To be specific, each module first constructs consistency features by leveraging additional supervision from the heterogeneous information of each token pair. Then, the forgery-aware reasoning or aggregating is adopted to deeply seek forgery cues based on the consistency features. Extensive experiments on DGM4 datasets prove that CSCL achieves new state-of-the-art performance, especially for the results of grounding manipulated content. Codes and weights are avaliable at https://github.com/liyih/CSCL.
comment: Accepted by CVPR 2025
☆ HMVLM: Multistage Reasoning-Enhanced Vision-Language Model for Long-Tailed Driving Scenarios
We present HaoMo Vision-Language Model (HMVLM), an end-to-end driving framework that implements the slow branch of a cognitively inspired fast-slow architecture. A fast controller outputs low-level steering, throttle, and brake commands, while a slow planner-a large vision-language model-generates high-level intents such as "yield to pedestrian" or "merge after the truck" without compromising latency. HMVLM introduces three upgrades: (1) selective five-view prompting with an embedded 4s history of ego kinematics, (2) multi-stage chain-of-thought (CoT) prompting that enforces a Scene Understanding -> Driving Decision -> Trajectory Inference reasoning flow, and (3) spline-based trajectory post-processing that removes late-stage jitter and sharp turns. Trained on the Waymo Open Dataset, these upgrades enable HMVLM to achieve a Rater Feedback Score (RFS) of 7.7367, securing 2nd place in the 2025 Waymo Vision-based End-to-End (E2E) Driving Challenge and surpassing the public baseline by 2.77%.
comment: WOD Vision-based End-to-End Driving Challenge
☆ Domain-RAG: Retrieval-Guided Compositional Image Generation for Cross-Domain Few-Shot Object Detection
Cross-Domain Few-Shot Object Detection (CD-FSOD) aims to detect novel objects with only a handful of labeled samples from previously unseen domains. While data augmentation and generative methods have shown promise in few-shot learning, their effectiveness for CD-FSOD remains unclear due to the need for both visual realism and domain alignment. Existing strategies, such as copy-paste augmentation and text-to-image generation, often fail to preserve the correct object category or produce backgrounds coherent with the target domain, making them non-trivial to apply directly to CD-FSOD. To address these challenges, we propose Domain-RAG, a training-free, retrieval-guided compositional image generation framework tailored for CD-FSOD. Domain-RAG consists of three stages: domain-aware background retrieval, domain-guided background generation, and foreground-background composition. Specifically, the input image is first decomposed into foreground and background regions. We then retrieve semantically and stylistically similar images to guide a generative model in synthesizing a new background, conditioned on both the original and retrieved contexts. Finally, the preserved foreground is composed with the newly generated domain-aligned background to form the generated image. Without requiring any additional supervision or training, Domain-RAG produces high-quality, domain-consistent samples across diverse tasks, including CD-FSOD, remote sensing FSOD, and camouflaged FSOD. Extensive experiments show consistent improvements over strong baselines and establish new state-of-the-art results. Codes will be released upon acceptance.
☆ Loss Functions for Predictor-based Neural Architecture Search
Evaluation is a critical but costly procedure in neural architecture search (NAS). Performance predictors have been widely adopted to reduce evaluation costs by directly estimating architecture performance. The effectiveness of predictors is heavily influenced by the choice of loss functions. While traditional predictors employ regression loss functions to evaluate the absolute accuracy of architectures, recent approaches have explored various ranking-based loss functions, such as pairwise and listwise ranking losses, to focus on the ranking of architecture performance. Despite their success in NAS, the effectiveness and characteristics of these loss functions have not been thoroughly investigated. In this paper, we conduct the first comprehensive study on loss functions in performance predictors, categorizing them into three main types: regression, ranking, and weighted loss functions. Specifically, we assess eight loss functions using a range of NAS-relevant metrics on 13 tasks across five search spaces. Our results reveal that specific categories of loss functions can be effectively combined to enhance predictor-based NAS. Furthermore, our findings could provide practical guidance for selecting appropriate loss functions for various tasks. We hope this work provides meaningful insights to guide the development of loss functions for predictor-based methods in the NAS community.
☆ CryoFastAR: Fast Cryo-EM Ab Initio Reconstruction Made Easy
Pose estimation from unordered images is fundamental for 3D reconstruction, robotics, and scientific imaging. Recent geometric foundation models, such as DUSt3R, enable end-to-end dense 3D reconstruction but remain underexplored in scientific imaging fields like cryo-electron microscopy (cryo-EM) for near-atomic protein reconstruction. In cryo-EM, pose estimation and 3D reconstruction from unordered particle images still depend on time-consuming iterative optimization, primarily due to challenges such as low signal-to-noise ratios (SNR) and distortions from the contrast transfer function (CTF). We introduce CryoFastAR, the first geometric foundation model that can directly predict poses from Cryo-EM noisy images for Fast ab initio Reconstruction. By integrating multi-view features and training on large-scale simulated cryo-EM data with realistic noise and CTF modulations, CryoFastAR enhances pose estimation accuracy and generalization. To enhance training stability, we propose a progressive training strategy that first allows the model to extract essential features under simpler conditions before gradually increasing difficulty to improve robustness. Experiments show that CryoFastAR achieves comparable quality while significantly accelerating inference over traditional iterative approaches on both synthetic and real datasets.
☆ Improved Allergy Wheal Detection for the Skin Prick Automated Test Device
Background: The skin prick test (SPT) is the gold standard for diagnosing sensitization to inhalant allergies. The Skin Prick Automated Test (SPAT) device was designed for increased consistency in test results, and captures 32 images to be jointly used for allergy wheal detection and delineation, which leads to a diagnosis. Materials and Methods: Using SPAT data from $868$ patients with suspected inhalant allergies, we designed an automated method to detect and delineate wheals on these images. To this end, $10,416$ wheals were manually annotated by drawing detailed polygons along the edges. The unique data-modality of the SPAT device, with $32$ images taken under distinct lighting conditions, requires a custom-made approach. Our proposed method consists of two parts: a neural network component that segments the wheals on the pixel level, followed by an algorithmic and interpretable approach for detecting and delineating the wheals. Results: We evaluate the performance of our method on a hold-out validation set of $217$ patients. As a baseline we use a single conventionally lighted image per SPT as input to our method. Conclusion: Using the $32$ SPAT images under various lighting conditions offers a considerably higher accuracy than a single image in conventional, uniform light.
comment: This work is presented at Artificial Intelligence in Medicine 2025, this is the longer (10 pages) version
☆ ChronoTailor: Harnessing Attention Guidance for Fine-Grained Video Virtual Try-On
Video virtual try-on aims to seamlessly replace the clothing of a person in a source video with a target garment. Despite significant progress in this field, existing approaches still struggle to maintain continuity and reproduce garment details. In this paper, we introduce ChronoTailor, a diffusion-based framework that generates temporally consistent videos while preserving fine-grained garment details. By employing a precise spatio-temporal attention mechanism to guide the integration of fine-grained garment features, ChronoTailor achieves robust try-on performance. First, ChronoTailor leverages region-aware spatial guidance to steer the evolution of spatial attention and employs an attention-driven temporal feature fusion mechanism to generate more continuous temporal features. This dual approach not only enables fine-grained local editing but also effectively mitigates artifacts arising from video dynamics. Second, ChronoTailor integrates multi-scale garment features to preserve low-level visual details and incorporates a garment-pose feature alignment to ensure temporal continuity during dynamic motion. Additionally, we collect StyleDress, a new dataset featuring intricate garments, varied environments, and diverse poses, offering advantages over existing public datasets, and will be publicly available for research. Extensive experiments show that ChronoTailor maintains spatio-temporal continuity and preserves garment details during motion, significantly outperforming previous methods.
☆ Cross-View Multi-Modal Segmentation @ Ego-Exo4D Challenges 2025 CVPR2025
In this report, we present a cross-view multi-modal object segmentation approach for the object correspondence task in the Ego-Exo4D Correspondence Challenges 2025. Given object queries from one perspective (e.g., ego view), the goal is to predict the corresponding object masks in another perspective (e.g., exo view). To tackle this task, we propose a multimodal condition fusion module that enhances object localization by leveraging both visual masks and textual descriptions as segmentation conditions. Furthermore, to address the visual domain gap between ego and exo views, we introduce a cross-view object alignment module that enforces object-level consistency across perspectives, thereby improving the model's robustness to viewpoint changes. Our proposed method ranked second on the leaderboard of the large-scale Ego-Exo4D object correspondence benchmark. Code will be made available at https://github.com/lovelyqian/ObjectRelator.
comment: The 2nd Price Award of EgoExo4D Relations, Second Joint EgoVis Workshop with CVPR2025, technical report paper is accepted by CVPRW 25
☆ FontAdapter: Instant Font Adaptation in Visual Text Generation
Text-to-image diffusion models have significantly improved the seamless integration of visual text into diverse image contexts. Recent approaches further improve control over font styles through fine-tuning with predefined font dictionaries. However, adapting unseen fonts outside the preset is computationally expensive, often requiring tens of minutes, making real-time customization impractical. In this paper, we present FontAdapter, a framework that enables visual text generation in unseen fonts within seconds, conditioned on a reference glyph image. To this end, we find that direct training on font datasets fails to capture nuanced font attributes, limiting generalization to new glyphs. To overcome this, we propose a two-stage curriculum learning approach: FontAdapter first learns to extract font attributes from isolated glyphs and then integrates these styles into diverse natural backgrounds. To support this two-stage training scheme, we construct synthetic datasets tailored to each stage, leveraging large-scale online fonts effectively. Experiments demonstrate that FontAdapter enables high-quality, robust font customization across unseen fonts without additional fine-tuning during inference. Furthermore, it supports visual text editing, font style blending, and cross-lingual font transfer, positioning FontAdapter as a versatile framework for font customization tasks.
comment: Project page: https://fontadapter.github.io/
☆ High Throughput Event Filtering: The Interpolation-based DIF Algorithm Hardware Architecture
In recent years, there has been rapid development in the field of event vision. It manifests itself both on the technical side, as better and better event sensors are available, and on the algorithmic side, as more and more applications of this technology are proposed and scientific papers are published. However, the data stream from these sensors typically contains a significant amount of noise, which varies depending on factors such as the degree of illumination in the observed scene or the temperature of the sensor. We propose a hardware architecture of the Distance-based Interpolation with Frequency Weights (DIF) filter and implement it on an FPGA chip. To evaluate the algorithm and compare it with other solutions, we have prepared a new high-resolution event dataset, which we are also releasing to the community. Our architecture achieved a throughput of 403.39 million events per second (MEPS) for a sensor resolution of 1280 x 720 and 428.45 MEPS for a resolution of 640 x 480. The average values of the Area Under the Receiver Operating Characteristic (AUROC) index ranged from 0.844 to 0.999, depending on the dataset, which is comparable to the state-of-the-art filtering solutions, but with much higher throughput and better operation over a wide range of noise levels.
comment: Accepted in the Microprocessors and Microsystems journal
☆ FuseUNet: A Multi-Scale Feature Fusion Method for U-like Networks ICML2025
Medical image segmentation is a critical task in computer vision, with UNet serving as a milestone architecture. The typical component of UNet family is the skip connection, however, their skip connections face two significant limitations: (1) they lack effective interaction between features at different scales, and (2) they rely on simple concatenation or addition operations, which constrain efficient information integration. While recent improvements to UNet have focused on enhancing encoder and decoder capabilities, these limitations remain overlooked. To overcome these challenges, we propose a novel multi-scale feature fusion method that reimagines the UNet decoding process as solving an initial value problem (IVP), treating skip connections as discrete nodes. By leveraging principles from the linear multistep method, we propose an adaptive ordinary differential equation method to enable effective multi-scale feature fusion. Our approach is independent of the encoder and decoder architectures, making it adaptable to various U-Net-like networks. Experiments on ACDC, KiTS2023, MSD brain tumor, and ISIC2017/2018 skin lesion segmentation datasets demonstrate improved feature utilization, reduced network parameters, and maintained high performance. The code is available at https://github.com/nayutayuki/FuseUNet.
comment: ICML2025
☆ DeformCL: Learning Deformable Centerline Representation for Vessel Extraction in 3D Medical Image CVPR 2025
In the field of 3D medical imaging, accurately extracting and representing the blood vessels with curvilinear structures holds paramount importance for clinical diagnosis. Previous methods have commonly relied on discrete representation like mask, often resulting in local fractures or scattered fragments due to the inherent limitations of the per-pixel classification paradigm. In this work, we introduce DeformCL, a new continuous representation based on Deformable Centerlines, where centerline points act as nodes connected by edges that capture spatial relationships. Compared with previous representations, DeformCL offers three key advantages: natural connectivity, noise robustness, and interaction facility. We present a comprehensive training pipeline structured in a cascaded manner to fully exploit these favorable properties of DeformCL. Extensive experiments on four 3D vessel segmentation datasets demonstrate the effectiveness and superiority of our method. Furthermore, the visualization of curved planar reformation images validates the clinical significance of the proposed framework. We release the code in https://github.com/barry664/DeformCL
comment: Accepted by CVPR 2025
☆ NTIRE 2025 Challenge on HR Depth from Images of Specular and Transparent Surfaces CVPR 2025
This paper reports on the NTIRE 2025 challenge on HR Depth From images of Specular and Transparent surfaces, held in conjunction with the New Trends in Image Restoration and Enhancement (NTIRE) workshop at CVPR 2025. This challenge aims to advance the research on depth estimation, specifically to address two of the main open issues in the field: high-resolution and non-Lambertian surfaces. The challenge proposes two tracks on stereo and single-image depth estimation, attracting about 177 registered participants. In the final testing stage, 4 and 4 participating teams submitted their models and fact sheets for the two tracks.
comment: NTIRE Workshop Challenge Report, CVPR 2025
☆ LLIA -- Enabling Low-Latency Interactive Avatars: Real-Time Audio-Driven Portrait Video Generation with Diffusion Models
Diffusion-based models have gained wide adoption in the virtual human generation due to their outstanding expressiveness. However, their substantial computational requirements have constrained their deployment in real-time interactive avatar applications, where stringent speed, latency, and duration requirements are paramount. We present a novel audio-driven portrait video generation framework based on the diffusion model to address these challenges. Firstly, we propose robust variable-length video generation to reduce the minimum time required to generate the initial video clip or state transitions, which significantly enhances the user experience. Secondly, we propose a consistency model training strategy for Audio-Image-to-Video to ensure real-time performance, enabling a fast few-step generation. Model quantization and pipeline parallelism are further employed to accelerate the inference speed. To mitigate the stability loss incurred by the diffusion process and model quantization, we introduce a new inference strategy tailored for long-duration video generation. These methods ensure real-time performance and low latency while maintaining high-fidelity output. Thirdly, we incorporate class labels as a conditional input to seamlessly switch between speaking, listening, and idle states. Lastly, we design a novel mechanism for fine-grained facial expression control to exploit our model's inherent capacity. Extensive experiments demonstrate that our approach achieves low-latency, fluid, and authentic two-way communication. On an NVIDIA RTX 4090D, our model achieves a maximum of 78 FPS at a resolution of 384x384 and 45 FPS at a resolution of 512x512, with an initial video generation latency of 140 ms and 215 ms, respectively.
☆ EASG-Bench: Video Q&A Benchmark with Egocentric Action Scene Graphs
We introduce EASG-Bench, a question-answering benchmark for egocentric videos where the question-answering pairs are created from spatio-temporally grounded dynamic scene graphs capturing intricate relationships among actors, actions, and objects. We propose a systematic evaluation framework and evaluate several language-only and video large language models (video-LLMs) on this benchmark. We observe a performance gap in language-only and video-LLMs, especially on questions focusing on temporal ordering, thus identifying a research gap in the area of long-context video understanding. To promote the reproducibility of our findings and facilitate further research, the benchmark and accompanying code are available at the following GitHub page: https://github.com/fpv-iplab/EASG-bench.
☆ GazeNLQ @ Ego4D Natural Language Queries Challenge 2025
This report presents our solution to the Ego4D Natural Language Queries (NLQ) Challenge at CVPR 2025. Egocentric video captures the scene from the wearer's perspective, where gaze serves as a key non-verbal communication cue that reflects visual attention and offer insights into human intention and cognition. Motivated by this, we propose a novel approach, GazeNLQ, which leverages gaze to retrieve video segments that match given natural language queries. Specifically, we introduce a contrastive learning-based pretraining strategy for gaze estimation directly from video. The estimated gaze is used to augment video representations within proposed model, thereby enhancing localization accuracy. Experimental results show that GazeNLQ achieves R1@IoU0.3 and R1@IoU0.5 scores of 27.82 and 18.68, respectively. Our code is available at https://github.com/stevenlin510/GazeNLQ.
☆ Robust sensor fusion against on-vehicle sensor staleness CVPR 2025
Sensor fusion is crucial for a performant and robust Perception system in autonomous vehicles, but sensor staleness, where data from different sensors arrives with varying delays, poses significant challenges. Temporal misalignment between sensor modalities leads to inconsistent object state estimates, severely degrading the quality of trajectory predictions that are critical for safety. We present a novel and model-agnostic approach to address this problem via (1) a per-point timestamp offset feature (for LiDAR and radar both relative to camera) that enables fine-grained temporal awareness in sensor fusion, and (2) a data augmentation strategy that simulates realistic sensor staleness patterns observed in deployed vehicles. Our method is integrated into a perspective-view detection model that consumes sensor data from multiple LiDARs, radars and cameras. We demonstrate that while a conventional model shows significant regressions when one sensor modality is stale, our approach reaches consistently good performance across both synchronized and stale conditions.
comment: This paper has been accepted by CVPR 2025 Precognition Workshop
☆ Do Large Vision-Language Models Distinguish between the Actual and Apparent Features of Illusions? SC
Humans are susceptible to optical illusions, which serve as valuable tools for investigating sensory and cognitive processes. Inspired by human vision studies, research has begun exploring whether machines, such as large vision language models (LVLMs), exhibit similar susceptibilities to visual illusions. However, studies often have used non-abstract images and have not distinguished actual and apparent features, leading to ambiguous assessments of machine cognition. To address these limitations, we introduce a visual question answering (VQA) dataset, categorized into genuine and fake illusions, along with corresponding control images. Genuine illusions present discrepancies between actual and apparent features, whereas fake illusions have the same actual and apparent features even though they look illusory due to the similar geometric configuration. We evaluate the performance of LVLMs for genuine and fake illusion VQA tasks and investigate whether the models discern actual and apparent features. Our findings indicate that although LVLMs may appear to recognize illusions by correctly answering questions about both feature types, they predict the same answers for both Genuine Illusion and Fake Illusion VQA questions. This suggests that their responses might be based on prior knowledge of illusions rather than genuine visual understanding. The dataset is available at https://github.com/ynklab/FILM
comment: To appear in the Proceedings of the 47th Annual Meeting of the Cognitive Science Society (COGSCI 2025)
☆ Where Is The Ball: 3D Ball Trajectory Estimation From 2D Monocular Tracking CVPR 2025
We present a method for 3D ball trajectory estimation from a 2D tracking sequence. To overcome the ambiguity in 3D from 2D estimation, we design an LSTM-based pipeline that utilizes a novel canonical 3D representation that is independent of the camera's location to handle arbitrary views and a series of intermediate representations that encourage crucial invariance and reprojection consistency. We evaluated our method on four synthetic and three real datasets and conducted extensive ablation studies on our design choices. Despite training solely on simulated data, our method achieves state-of-the-art performance and can generalize to real-world scenarios with multiple trajectories, opening up a range of applications in sport analysis and virtual replay. Please visit our page: https://where-is-the-ball.github.io.
comment: 11th International Workshop on Computer Vision in Sports (CVsports) at CVPR 2025
☆ Investigating the Relationship between Weighted Figure of Merit and Rosin's Measure
Many studies had been conducted to solve the problem of approximating a digital boundary by piece straight-line segments for further processing required in computer vision applications. The authors of these studies compared their schemes to determine the best one. The initial measure used to assess the goodness of a polygonal approximation was figure of merit. Later, it was pointed out that this measure was not an appropriate metric for a valid reason and this is why Rosin - through mathematical analysis - introduced a measure called merit. However, this measure involves optimal scheme of polygonal approximation and so it is time-consuming to compute it to assess the goodness of an approximation. This led many researchers to use weighted figure of merit as a substitute for Rosin's measure to compare among sub-optimal schemes. An attempt is made in this communication to investigate whether the two measures - weighted figure of merit and Rosin's measure - are related so that one can be used instead of the other and towards this end theoretical analysis, experimental investigation and statistical analysis are carried out. The mathematical formula for weighted figure of merit and Rosin's measure are analyzed and through proof of theorems it is found that the two measures are independent of each other theoretically. The graphical analysis of experiments carried out using public dataset supports theoretical analysis. The statistical analysis using Pearson's correlation coefficient also establishes that the two measures are uncorrelated. This analysis leads one to conclude that if a sub-optimal scheme is found to be better (worse) than some other sub-optimal scheme as indicated by Rosin's measure then the same conclusion cannot be drawn using weighted figure of merit and so one cannot use weighted figure of merit instead of Rosin's measure.
☆ Any-Class Presence Likelihood for Robust Multi-Label Classification with Abundant Negative Data
Multi-label Classification (MLC) assigns an instance to one or more non-exclusive classes. A challenge arises when the dataset contains a large proportion of instances with no assigned class, referred to as negative data, which can overwhelm the learning process and hinder the accurate identification and classification of positive instances. Nevertheless, it is common in MLC applications such as industrial defect detection, agricultural disease identification, and healthcare diagnosis to encounter large amounts of negative data. Assigning a separate negative class to these instances further complicates the learning objective and introduces unnecessary redundancies. To address this challenge, we redesign standard MLC loss functions by deriving a likelihood of any class being present, formulated by a normalized weighted geometric mean of the predicted class probabilities. We introduce a regularization parameter that controls the relative contribution of the absent class probabilities to the any-class presence likelihood in positive instances. The any-class presence likelihood complements the multi-label learning by encouraging the network to become more aware of implicit positive instances and improve the label classification within those positive instances. Experiments on large-scale datasets with negative data: SewerML, modified COCO, and ChestX-ray14, across various networks and base loss functions show that our loss functions consistently improve MLC performance of their standard loss counterparts, achieving gains of up to 6.01 percentage points in F1, 8.06 in F2, and 3.11 in mean average precision, all without additional parameters or computational complexity. Code available at: https://github.com/ML-for-Sensor-Data-Western/gmean-mlc
☆ You Only Estimate Once: Unified, One-stage, Real-Time Category-level Articulated Object 6D Pose Estimation for Robotic Grasping ICRA 2025
This paper addresses the problem of category-level pose estimation for articulated objects in robotic manipulation tasks. Recent works have shown promising results in estimating part pose and size at the category level. However, these approaches primarily follow a complex multi-stage pipeline that first segments part instances in the point cloud and then estimates the Normalized Part Coordinate Space (NPCS) representation for 6D poses. These approaches suffer from high computational costs and low performance in real-time robotic tasks. To address these limitations, we propose YOEO, a single-stage method that simultaneously outputs instance segmentation and NPCS representations in an end-to-end manner. We use a unified network to generate point-wise semantic labels and centroid offsets, allowing points from the same part instance to vote for the same centroid. We further utilize a clustering algorithm to distinguish points based on their estimated centroid distances. Finally, we first separate the NPCS region of each instance. Then, we align the separated regions with the real point cloud to recover the final pose and size. Experimental results on the GAPart dataset demonstrate the pose estimation capabilities of our proposed single-shot method. We also deploy our synthetically-trained model in a real-world setting, providing real-time visual feedback at 200Hz, enabling a physical Kinova robot to interact with unseen articulated objects. This showcases the utility and effectiveness of our proposed method.
comment: To appear in ICRA 2025
☆ Token Transforming: A Unified and Training-Free Token Compression Framework for Vision Transformer Acceleration
Vision transformers have been widely explored in various vision tasks. Due to heavy computational cost, much interest has aroused for compressing vision transformer dynamically in the aspect of tokens. Current methods mainly pay attention to token pruning or merging to reduce token numbers, in which tokens are compressed exclusively, causing great information loss and therefore post-training is inevitably required to recover the performance. In this paper, we rethink token reduction and unify the process as an explicit form of token matrix transformation, in which all existing methods are constructing special forms of matrices within the framework. Furthermore, we propose a many-to-many Token Transforming framework that serves as a generalization of all existing methods and reserves the most information, even enabling training-free acceleration. We conduct extensive experiments to validate our framework. Specifically, we reduce 40% FLOPs and accelerate DeiT-S by $\times$1.5 with marginal 0.1% accuracy drop. Furthermore, we extend the method to dense prediction tasks including segmentation, object detection, depth estimation, and language model generation. Results demonstrate that the proposed method consistently achieves substantial improvements, offering a better computation-performance trade-off, impressive budget reduction and inference acceleration.
☆ MoralCLIP: Contrastive Alignment of Vision-and-Language Representations with Moral Foundations Theory
Recent advances in vision-language models have enabled rich semantic understanding across modalities. However, these encoding methods lack the ability to interpret or reason about the moral dimensions of content-a crucial aspect of human cognition. In this paper, we address this gap by introducing MoralCLIP, a novel embedding representation method that extends multimodal learning with explicit moral grounding based on Moral Foundations Theory (MFT). Our approach integrates visual and textual moral cues into a unified embedding space, enabling cross-modal moral alignment. MoralCLIP is grounded on the multi-label dataset Social-Moral Image Database to identify co-occurring moral foundations in visual content. For MoralCLIP training, we design a moral data augmentation strategy to scale our annotated dataset to 15,000 image-text pairs labeled with MFT-aligned dimensions. Our results demonstrate that explicit moral supervision improves both unimodal and multimodal understanding of moral content, establishing a foundation for morally-aware AI systems capable of recognizing and aligning with human moral values.
☆ Pts3D-LLM: Studying the Impact of Token Structure for 3D Scene Understanding With Large Language Models
Effectively representing 3D scenes for Multimodal Large Language Models (MLLMs) is crucial yet challenging. Existing approaches commonly only rely on 2D image features and use varied tokenization approaches. This work presents a rigorous study of 3D token structures, systematically comparing video-based and point-based representations while maintaining consistent model backbones and parameters. We propose a novel approach that enriches visual tokens by incorporating 3D point cloud features from a Sonata pretrained Point Transformer V3 encoder. Our experiments demonstrate that merging explicit 3D features significantly boosts performance. Furthermore, we show that point-based token structures can rival video-based ones when the points are cleverly sampled and ordered. Our best models from both structures achieve state-of-the-art results on multiple 3D understanding benchmarks. We emphasize our analysis of token structures as a key contribution, alongside transparent reporting of results averaged over multiple seeds, a practice we believe is vital for robust progress in the field.
comment: Main paper and appendix
☆ Integer Binary-Range Alignment Neuron for Spiking Neural Networks
Spiking Neural Networks (SNNs) are noted for their brain-like computation and energy efficiency, but their performance lags behind Artificial Neural Networks (ANNs) in tasks like image classification and object detection due to the limited representational capacity. To address this, we propose a novel spiking neuron, Integer Binary-Range Alignment Leaky Integrate-and-Fire to exponentially expand the information expression capacity of spiking neurons with only a slight energy increase. This is achieved through Integer Binary Leaky Integrate-and-Fire and range alignment strategy. The Integer Binary Leaky Integrate-and-Fire allows integer value activation during training and maintains spike-driven dynamics with binary conversion expands virtual timesteps during inference. The range alignment strategy is designed to solve the spike activation limitation problem where neurons fail to activate high integer values. Experiments show our method outperforms previous SNNs, achieving 74.19% accuracy on ImageNet and 66.2% mAP@50 and 49.1% mAP@50:95 on COCO, surpassing previous bests with the same architecture by +3.45% and +1.6% and +1.8%, respectively. Notably, our SNNs match or exceed ANNs' performance with the same architecture, and the energy efficiency is improved by 6.3${\times}$.
comment: 11 pages
☆ DriveAction: A Benchmark for Exploring Human-like Driving Decisions in VLA Models
Vision-Language-Action (VLA) models have advanced autonomous driving, but existing benchmarks still lack scenario diversity, reliable action-level annotation, and evaluation protocols aligned with human preferences. To address these limitations, we introduce DriveAction, the first action-driven benchmark specifically designed for VLA models, comprising 16,185 QA pairs generated from 2,610 driving scenarios. DriveAction leverages real-world driving data proactively collected by users of production-level autonomous vehicles to ensure broad and representative scenario coverage, offers high-level discrete action labels collected directly from users' actual driving operations, and implements an action-rooted tree-structured evaluation framework that explicitly links vision, language, and action tasks, supporting both comprehensive and task-specific assessment. Our experiments demonstrate that state-of-the-art vision-language models (VLMs) require both vision and language guidance for accurate action prediction: on average, accuracy drops by 3.3% without vision input, by 4.1% without language input, and by 8.0% without either. Our evaluation supports precise identification of model bottlenecks with robust and consistent results, thus providing new insights and a rigorous foundation for advancing human-like decisions in autonomous driving.
comment: Benchmark: https://huggingface.co/datasets/LiAuto-DriveAction/drive-action
Aerial Multi-View Stereo via Adaptive Depth Range Inference and Normal Cues
Three-dimensional digital urban reconstruction from multi-view aerial images is a critical application where deep multi-view stereo (MVS) methods outperform traditional techniques. However, existing methods commonly overlook the key differences between aerial and close-range settings, such as varying depth ranges along epipolar lines and insensitive feature-matching associated with low-detailed aerial images. To address these issues, we propose an Adaptive Depth Range MVS (ADR-MVS), which integrates monocular geometric cues to improve multi-view depth estimation accuracy. The key component of ADR-MVS is the depth range predictor, which generates adaptive range maps from depth and normal estimates using cross-attention discrepancy learning. In the first stage, the range map derived from monocular cues breaks through predefined depth boundaries, improving feature-matching discriminability and mitigating convergence to local optima. In later stages, the inferred range maps are progressively narrowed, ultimately aligning with the cascaded MVS framework for precise depth regression. Moreover, a normal-guided cost aggregation operation is specially devised for aerial stereo images to improve geometric awareness within the cost volume. Finally, we introduce a normal-guided depth refinement module that surpasses existing RGB-guided techniques. Experimental results demonstrate that ADR-MVS achieves state-of-the-art performance on the WHU, LuoJia-MVS, and M\"unchen datasets, while exhibits superior computational complexity.
comment: IEEE TGRS 2025
☆ Hallucinate, Ground, Repeat: A Framework for Generalized Visual Relationship Detection
Understanding relationships between objects is central to visual intelligence, with applications in embodied AI, assistive systems, and scene understanding. Yet, most visual relationship detection (VRD) models rely on a fixed predicate set, limiting their generalization to novel interactions. A key challenge is the inability to visually ground semantically plausible, but unannotated, relationships hypothesized from external knowledge. This work introduces an iterative visual grounding framework that leverages large language models (LLMs) as structured relational priors. Inspired by expectation-maximization (EM), our method alternates between generating candidate scene graphs from detected objects using an LLM (expectation) and training a visual model to align these hypotheses with perceptual evidence (maximization). This process bootstraps relational understanding beyond annotated data and enables generalization to unseen predicates. Additionally, we introduce a new benchmark for open-world VRD on Visual Genome with 21 held-out predicates and evaluate under three settings: seen, unseen, and mixed. Our model outperforms LLM-only, few-shot, and debiased baselines, achieving mean recall (mR@50) of 15.9, 13.1, and 11.7 on predicate classification on these three sets. These results highlight the promise of grounded LLM priors for scalable open-world visual understanding.
comment: 22 pages, 9 figures, 5 tables
☆ Learning to Weight Parameters for Data Attribution
We study data attribution in generative models, aiming to identify which training examples most influence a given output. Existing methods achieve this by tracing gradients back to training data. However, they typically treat all network parameters uniformly, ignoring the fact that different layers encode different types of information and may thus draw information differently from the training set. We propose a method that models this by learning parameter importance weights tailored for attribution, without requiring labeled data. This allows the attribution process to adapt to the structure of the model, capturing which training examples contribute to specific semantic aspects of an output, such as subject, style, or background. Our method improves attribution accuracy across diffusion models and enables fine-grained insights into how outputs borrow from training data.
♻ ☆ FreeTimeGS: Free Gaussian Primitives at Anytime and Anywhere for Dynamic Scene Reconstruction CVPR 2025
This paper addresses the challenge of reconstructing dynamic 3D scenes with complex motions. Some recent works define 3D Gaussian primitives in the canonical space and use deformation fields to map canonical primitives to observation spaces, achieving real-time dynamic view synthesis. However, these methods often struggle to handle scenes with complex motions due to the difficulty of optimizing deformation fields. To overcome this problem, we propose FreeTimeGS, a novel 4D representation that allows Gaussian primitives to appear at arbitrary time and locations. In contrast to canonical Gaussian primitives, our representation possesses the strong flexibility, thus improving the ability to model dynamic 3D scenes. In addition, we endow each Gaussian primitive with an motion function, allowing it to move to neighboring regions over time, which reduces the temporal redundancy. Experiments results on several datasets show that the rendering quality of our method outperforms recent methods by a large margin. Project page: https://zju3dv.github.io/freetimegs/ .
comment: CVPR 2025; Project page: https://zju3dv.github.io/freetimegs/
♻ ☆ Defurnishing with X-Ray Vision: Joint Removal of Furniture from Panoramas and Mesh
We present a pipeline for generating defurnished replicas of indoor spaces represented as textured meshes and corresponding multi-view panoramic images. To achieve this, we first segment and remove furniture from the mesh representation, extend planes, and fill holes, obtaining a simplified defurnished mesh (SDM). This SDM acts as an ``X-ray'' of the scene's underlying structure, guiding the defurnishing process. We extract Canny edges from depth and normal images rendered from the SDM. We then use these as a guide to remove the furniture from panorama images via ControlNet inpainting. This control signal ensures the availability of global geometric information that may be hidden from a particular panoramic view by the furniture being removed. The inpainted panoramas are used to texture the mesh. We show that our approach produces higher quality assets than methods that rely on neural radiance fields, which tend to produce blurry low-resolution images, or RGB-D inpainting, which is highly susceptible to hallucinations.
comment: Paper website: https://matterport.github.io/defurnishing-with-x-ray-vision/
Does Your 3D Encoder Really Work? When Pretrain-SFT from 2D VLMs Meets 3D VLMs
Remarkable progress in 2D Vision-Language Models (VLMs) has spurred interest in extending them to 3D settings for tasks like 3D Question Answering, Dense Captioning, and Visual Grounding. Unlike 2D VLMs that typically process images through an image encoder, 3D scenes, with their intricate spatial structures, allow for diverse model architectures. Based on their encoder design, this paper categorizes recent 3D VLMs into 3D object-centric, 2D image-based, and 3D scene-centric approaches. Despite the architectural similarity of 3D scene-centric VLMs to their 2D counterparts, they have exhibited comparatively lower performance compared with the latest 3D object-centric and 2D image-based approaches. To understand this gap, we conduct an in-depth analysis, revealing that 3D scene-centric VLMs show limited reliance on the 3D scene encoder, and the pre-train stage appears less effective than in 2D VLMs. Furthermore, we observe that data scaling benefits are less pronounced on larger datasets. Our investigation suggests that while these models possess cross-modal alignment capabilities, they tend to over-rely on linguistic cues and overfit to frequent answer distributions, thereby diminishing the effective utilization of the 3D encoder. To address these limitations and encourage genuine 3D scene understanding, we introduce a novel 3D Relevance Discrimination QA dataset designed to disrupt shortcut learning and improve 3D understanding. Our findings highlight the need for advanced evaluation and improved strategies for better 3D understanding in 3D VLMs.
♻ ☆ Unifying Appearance Codes and Bilateral Grids for Driving Scene Gaussian Splatting
Neural rendering techniques, including NeRF and Gaussian Splatting (GS), rely on photometric consistency to produce high-quality reconstructions. However, in real-world scenarios, it is challenging to guarantee perfect photometric consistency in acquired images. Appearance codes have been widely used to address this issue, but their modeling capability is limited, as a single code is applied to the entire image. Recently, the bilateral grid was introduced to perform pixel-wise color mapping, but it is difficult to optimize and constrain effectively. In this paper, we propose a novel multi-scale bilateral grid that unifies appearance codes and bilateral grids. We demonstrate that this approach significantly improves geometric accuracy in dynamic, decoupled autonomous driving scene reconstruction, outperforming both appearance codes and bilateral grids. This is crucial for autonomous driving, where accurate geometry is important for obstacle avoidance and control. Our method shows strong results across four datasets: Waymo, NuScenes, Argoverse, and PandaSet. We further demonstrate that the improvement in geometry is driven by the multi-scale bilateral grid, which effectively reduces floaters caused by photometric inconsistency.
comment: Project page: https://bigcileng.github.io/bilateral-driving ; Code: https://github.com/BigCiLeng/bilateral-driving
♻ ☆ Astraea: A GPU-Oriented Token-wise Acceleration Framework for Video Diffusion Transformers
Video diffusion transformers (vDiTs) have made impressive progress in text-to-video generation, but their high computational demands present major challenges for practical deployment. While existing acceleration methods reduce workload at various granularities, they often rely on heuristics, limiting their applicability. We introduce ASTRAEA, an automatic framework that searches for near-optimal configurations for vDiT-based video generation. At its core, ASTRAEA proposes a lightweight token selection mechanism and a memory-efficient, GPU-parallel sparse attention strategy, enabling linear reductions in execution time with minimal impact on generation quality. To determine optimal token reduction for different timesteps, we further design a search framework that leverages a classic evolutionary algorithm to automatically determine the distribution of the token budget effectively. Together, ASTRAEA achieves up to 2.4x inference speedup on a single GPU with great scalability (up to 13.2x speedup on 8 GPUs) while retaining better video quality compared to the state-of-the-art methods (<0.5% loss on the VBench score compared to the baseline vDiT models).
♻ ☆ SeedEdit 3.0: Fast and High-Quality Generative Image Editing
We introduce SeedEdit 3.0, in companion with our T2I model Seedream 3.0, which significantly improves over our previous SeedEdit versions in both aspects of edit instruction following and image content (e.g., ID/IP) preservation on real image inputs. Additional to model upgrading with T2I, in this report, we present several key improvements. First, we develop an enhanced data curation pipeline with a meta-info paradigm and meta-info embedding strategy that help mix images from multiple data sources. This allows us to scale editing data effectively, and meta information is helpfult to connect VLM with diffusion model more closely. Second, we introduce a joint learning pipeline for computing a diffusion loss and reward losses. Finally, we evaluate SeedEdit 3.0 on our testing benchmarks, for real/synthetic image editing, where it achieves a best trade-off between multiple aspects, yielding a high usability rate of 56.1%, compared to SeedEdit 1.6 (38.4%), GPT4o (37.1%) and Gemini 2.0 (30.3%).
comment: Website: https://seed.bytedance.com/tech/seededit
♻ ☆ Bridging Annotation Gaps: Transferring Labels to Align Object Detection Datasets
Combining multiple object detection datasets offers a path to improved generalisation but is hindered by inconsistencies in class semantics and bounding box annotations. Some methods to address this assume shared label taxonomies and address only spatial inconsistencies; others require manual relabelling, or produce a unified label space, which may be unsuitable when a fixed target label space is required. We propose Label-Aligned Transfer (LAT), a label transfer framework that systematically projects annotations from diverse source datasets into the label space of a target dataset. LAT begins by training dataset-specific detectors to generate pseudo-labels, which are then combined with ground-truth annotations via a Privileged Proposal Generator (PPG) that replaces the region proposal network in two-stage detectors. To further refine region features, a Semantic Feature Fusion (SFF) module injects class-aware context and features from overlapping proposals using a confidence-weighted attention mechanism. This pipeline preserves dataset-specific annotation granularity while enabling many-to-one label space transfer across heterogeneous datasets, resulting in a semantically and spatially aligned representation suitable for training a downstream detector. LAT thus jointly addresses both class-level misalignments and bounding box inconsistencies without relying on shared label spaces or manual annotations. Across multiple benchmarks, LAT demonstrates consistent improvements in target-domain detection performance, achieving gains of up to +4.8AP over semi-supervised baselines.
♻ ☆ MARS: Radio Map Super-resolution and Reconstruction Method under Sparse Channel Measurements
Radio maps reflect the spatial distribution of signal strength and are essential for applications like smart cities, IoT, and wireless network planning. However, reconstructing accurate radio maps from sparse measurements remains challenging. Traditional interpolation and inpainting methods lack environmental awareness, while many deep learning approaches depend on detailed scene data, limiting generalization. To address this, we propose MARS, a Multi-scale Aware Radiomap Super-resolution method that combines CNNs and Transformers with multi-scale feature fusion and residual connections. MARS focuses on both global and local feature extraction, enhancing feature representation across different receptive fields and improving reconstruction accuracy. Experiments across different scenes and antenna locations show that MARS outperforms baseline models in both MSE and SSIM, while maintaining low computational cost, demonstrating strong practical potential.
♻ ☆ Feature-Based Lie Group Transformer for Real-World Applications
The main goal of representation learning is to acquire meaningful representations from real-world sensory inputs without supervision. Representation learning explains some aspects of human development. Various neural network (NN) models have been proposed that acquire empirically good representations. However, the formulation of a good representation has not been established. We recently proposed a method for categorizing changes between a pair of sensory inputs. A unique feature of this approach is that transformations between two sensory inputs are learned to satisfy algebraic structural constraints. Conventional representation learning often assumes that disentangled independent feature axes is a good representation; however, we found that such a representation cannot account for conditional independence. To overcome this problem, we proposed a new method using group decomposition in Galois algebra theory. Although this method is promising for defining a more general representation, it assumes pixel-to-pixel translation without feature extraction, and can only process low-resolution images with no background, which prevents real-world application. In this study, we provide a simple method to apply our group decomposition theory to a more realistic scenario by combining feature extraction and object segmentation. We replace pixel translation with feature translation and formulate object segmentation as grouping features under the same transformation. We validated the proposed method on a practical dataset containing both real-world object and background. We believe that our model will lead to a better understanding of human development of object recognition in the real world.
♻ ☆ Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks
Text-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose Leopard, an MLLM tailored for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we proposed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of images. Experiments on a diverse set of benchmarks reveal that our model consistently outperforms state-of-the-art systems, such as Llama-3.2 and Qwen2-VL, in challenging text-rich, multi-image evaluations. Remarkably, our approach achieves outstanding performance using only 1.2M training instances, all of which are fully open-sourced, demonstrating both high efficiency and effectiveness compared to models trained on large-scale in-house data. Our code and data are available at https://github.com/tencent-ailab/Leopard.
comment: Our code is available at https://github.com/tencent-ailab/Leopard
♻ ☆ Sketched Equivariant Imaging Regularization and Deep Internal Learning for Inverse Problems
Equivariant Imaging (EI) regularization has become the de-facto technique for unsupervised training of deep imaging networks, without any need of ground-truth data. Observing that the EI-based unsupervised training paradigm currently has significant computational redundancy leading to inefficiency in high-dimensional applications, we propose a sketched EI regularization which leverages the randomized sketching techniques for acceleration. We apply our sketched EI regularization to develop an accelerated deep internal learning framework, which can be efficiently applied for test-time network adaptation. Additionally, for network adaptation tasks, we propose a parameter-efficient approach to accelerate both EI and Sketched-EI via optimizing only the normalization layers. Our numerical study on X-ray CT and multicoil magnetic resonance image reconstruction tasks demonstrate that our approach can achieve significant computational acceleration over standard EI counterpart in single-input setting and network adaptation at test time.
comment: 22 pages
♻ ☆ Normalizing Flows are Capable Generative Models ICML 2025
Normalizing Flows (NFs) are likelihood-based models for continuous inputs. They have demonstrated promising results on both density estimation and generative modeling tasks, but have received relatively little attention in recent years. In this work, we demonstrate that NFs are more powerful than previously believed. We present TarFlow: a simple and scalable architecture that enables highly performant NF models. TarFlow can be thought of as a Transformer-based variant of Masked Autoregressive Flows (MAFs): it consists of a stack of autoregressive Transformer blocks on image patches, alternating the autoregression direction between layers. TarFlow is straightforward to train end-to-end, and capable of directly modeling and generating pixels. We also propose three key techniques to improve sample quality: Gaussian noise augmentation during training, a post training denoising procedure, and an effective guidance method for both class-conditional and unconditional settings. Putting these together, TarFlow sets new state-of-the-art results on likelihood estimation for images, beating the previous best methods by a large margin, and generates samples with quality and diversity comparable to diffusion models, for the first time with a stand-alone NF model. We make our code available at https://github.com/apple/ml-tarflow.
comment: ICML 2025
♻ ☆ MimeQA: Towards Socially-Intelligent Nonverbal Foundation Models
As AI becomes more closely integrated with peoples' daily activities, socially intelligent AI that can understand and interact seamlessly with humans in daily lives is increasingly important. However, current works in AI social reasoning all rely on language-only or language-dominant approaches to benchmark and training models, resulting in systems that are improving in verbal communication but struggle with nonverbal social understanding. To address this limitation, we tap into a novel data source rich in nonverbal social interactions -- mime videos. Mimes refer to the art of expression through gesture and movement without spoken words, which presents unique challenges and opportunities in interpreting nonverbal social communication. We contribute a new dataset called MimeQA, obtained by sourcing 8 hours of videos clips from YouTube and developing a comprehensive video question-answering benchmark comprising 806 carefully annotated and verified question-answer pairs, designed to probe nonverbal social reasoning capabilities. Using MimeQA, we evaluate state-of-the-art video large language models (vLLMs) and find that they achieve low overall accuracy, ranging from 20-30%, while humans score 86%. Our analysis reveals that vLLMs often fail to ground imagined objects and over-rely on the text prompt while ignoring subtle nonverbal interactions. We hope to inspire future work in AI models that embody true social intelligence capable of interpreting non-verbal human interactions.
♻ ☆ DPCore: Dynamic Prompt Coreset for Continual Test-Time Adaptation ICML2025
Continual Test-Time Adaptation (CTTA) seeks to adapt source pre-trained models to continually changing, unseen target domains. While existing CTTA methods assume structured domain changes with uniform durations, real-world environments often exhibit dynamic patterns where domains recur with varying frequencies and durations. Current approaches, which adapt the same parameters across different domains, struggle in such dynamic conditions-they face convergence issues with brief domain exposures, risk forgetting previously learned knowledge, or misapplying it to irrelevant domains. To remedy this, we propose DPCore, a method designed for robust performance across diverse domain change patterns while ensuring computational efficiency. DPCore integrates three key components: Visual Prompt Adaptation for efficient domain alignment, a Prompt Coreset for knowledge preservation, and a Dynamic Update mechanism that intelligently adjusts existing prompts for similar domains while creating new ones for substantially different domains. Extensive experiments on four benchmarks demonstrate that DPCore consistently outperforms various CTTA methods, achieving state-of-the-art performance in both structured and dynamic settings while reducing trainable parameters by 99% and computation time by 64% compared to previous approaches.
comment: ICML2025
♻ ☆ Sparse Autoencoders Learn Monosemantic Features in Vision-Language Models
Given that interpretability and steerability are crucial to AI safety, Sparse Autoencoders (SAEs) have emerged as a tool to enhance them in Large Language Models (LLMs). In this work, we extend the application of SAEs to Vision-Language Models (VLMs), such as CLIP, and introduce a comprehensive framework for evaluating monosemanticity at the neuron-level in vision representations. To ensure that our evaluation aligns with human perception, we propose a benchmark derived from a large-scale user study. Our experimental results reveal that SAEs trained on VLMs significantly enhance the monosemanticity of individual neurons, with sparsity and wide latents being the most influential factors. Notably, we demonstrate that applying SAE interventions on CLIP's vision encoder directly steers multimodal LLM outputs (e.g., LLaVA), without any modifications to the underlying model. These findings emphasize the practicality and efficacy of SAEs as an unsupervised tool for enhancing both interpretability and control of VLMs. Code is available at https://github.com/ExplainableML/sae-for-vlm.
comment: Preprint
♻ ☆ LlavaGuard: An Open VLM-based Framework for Safeguarding Vision Datasets and Models ICML 2025
This paper introduces LlavaGuard, a suite of VLM-based vision safeguards that address the critical need for reliable guardrails in the era of large-scale data and models. To this end, we establish a novel open framework, describing a customizable safety taxonomy, data preprocessing, augmentation, and training setup. For teaching a VLM safeguard on safety, we further create a multimodal safety dataset with high-quality human expert annotations, where each image is labeled with a safety rating, category, and rationale. We also employ advanced augmentations to support context-specific assessments. The resulting LlavaGuard models, ranging from 0.5B to 7B, serve as a versatile tool for evaluating the safety compliance of visual content against flexible policies. In comprehensive experiments, LlavaGuard outperforms both state-of-the-art safeguards and VLMs in accuracy and in flexibly handling different policies. Additionally, we demonstrate LlavaGuard's performance in two real-world applications: large-scale dataset annotation and moderation of text-to-image models. We make our entire framework, including the dataset, model weights, and training code.
comment: In Proceedings of the 42st International Conference on Machine Learning (ICML 2025), Project page at https://ml-research.github.io/human-centered-genai/projects/llavaguard/index.html
♻ ☆ A Lightweight Dual-Branch System for Weakly-Supervised Video Anomaly Detection on Consumer Edge Devices
The growing demand for intelligent security in consumer electronics, such as smart home cameras and personal monitoring systems, is often hindered by the high computational cost and large model sizes of advanced AI. These limitations prevent the effective deployment of real-time Video Anomaly Detection (VAD) on resource-constrained edge devices. To bridge this gap, this paper introduces Rule-based Video Anomaly Detection (RuleVAD), a novel, lightweight system engineered for high-efficiency and low-complexity threat detection directly on consumer hardware. RuleVAD features an innovative decoupled dual-branch architecture to minimize computational load. An implicit branch uses visual features for rapid, coarse-grained binary classification, efficiently filtering out normal activity to avoid unnecessary processing. For potentially anomalous or complex events, a multimodal explicit branch takes over. This branch leverages YOLO-World to detect objects and applies data mining to generate interpretable, text-based association rules from the scene. By aligning these rules with visual data, RuleVAD achieves a more nuanced, fine-grained classification, significantly reducing the false alarms common in vision-only systems. Extensive experiments on the XD-Violence and UCF-Crime benchmark datasets show that RuleVAD achieves superior performance, surpassing existing state-of-the-art methods in both accuracy and speed. Crucially, the entire system is optimized for low-power operation and is fully deployable on an NVIDIA Jetson Nano board, demonstrating its practical feasibility for bringing advanced, real-time security monitoring to everyday consumer electronic devices.
comment: This manuscript has been submitted to IEEE TCE and is under consideration for publication, with potential copyright transfer in the future
♻ ☆ A novel non-convex minimax $p$-th order concave penalty function approach to low-rank tensor completion
The low-rank tensor completion (LRTC) problem aims to reconstruct a tensor from partial sample information, which has attracted significant interest in a wide range of practical applications such as image processing and computer vision. Among the various techniques employed for the LRTC problem, non-convex relaxation methods have been widely studied for their effectiveness in handling tensor singular values, which are crucial for accurate tensor recovery. While the minimax concave penalty (MCP) non-convex relaxation method has achieved promising results in tackling the LRTC problem and gained widely adopted, it exhibits a notable limitation: insufficient penalty on small singular values during the singular value handling process, resulting in inefficient tensor recovery. To address this issue and enhance recovery performance, a novel minimax $p$-th order concave penalty (MPCP) function is proposed. Based on this novel function, a tensor $p$-th order $\tau$ norm is proposed as a non-convex relaxation for tensor rank approximation, thereby establishing an MPCP-based LRTC model. Furthermore, theoretical convergence guarantees are rigorously established for the proposed method. Extensive numerical experiments conducted on multiple real datasets demonstrate that the proposed method outperforms the state-of-the-art methods in both visual quality and quantitative metrics.
comment: 30 pages,14 figures
♻ ☆ Fréchet Radiomic Distance (FRD): A Versatile Metric for Comparing Medical Imaging Datasets
Determining whether two sets of images belong to the same or different distributions or domains is a crucial task in modern medical image analysis and deep learning; for example, to evaluate the output quality of image generative models. Currently, metrics used for this task either rely on the (potentially biased) choice of some downstream task, such as segmentation, or adopt task-independent perceptual metrics (e.g., Fr\'echet Inception Distance/FID) from natural imaging, which we show insufficiently capture anatomical features. To this end, we introduce a new perceptual metric tailored for medical images, FRD (Fr\'echet Radiomic Distance), which utilizes standardized, clinically meaningful, and interpretable image features. We show that FRD is superior to other image distribution metrics for a range of medical imaging applications, including out-of-domain (OOD) detection, the evaluation of image-to-image translation (by correlating more with downstream task performance as well as anatomical consistency and realism), and the evaluation of unconditional image generation. Moreover, FRD offers additional benefits such as stability and computational efficiency at low sample sizes, sensitivity to image corruptions and adversarial attacks, feature interpretability, and correlation with radiologist-perceived image quality. Additionally, we address key gaps in the literature by presenting an extensive framework for the multifaceted evaluation of image similarity metrics in medical imaging -- including the first large-scale comparative study of generative models for medical image translation -- and release an accessible codebase to facilitate future research. Our results are supported by thorough experiments spanning a variety of datasets, modalities, and downstream tasks, highlighting the broad potential of FRD for medical image analysis.
comment: Codebase for FRD computation: https://github.com/RichardObi/frd-score. Codebase for medical image similarity metric evaluation framework: https://github.com/mazurowski-lab/medical-image-similarity-metrics
♻ ☆ Pseudo-labelling meets Label Smoothing for Noisy Partial Label Learning CVPR
We motivate weakly supervised learning as an effective learning paradigm for problems where curating perfectly annotated datasets is expensive and may require domain expertise such as fine-grained classification. We focus on Partial Label Learning (PLL), a weakly-supervised learning paradigm where each training instance is paired with a set of candidate labels (partial label), one of which is the true label. Noisy PLL (NPLL) relaxes this constraint by allowing some partial labels to not contain the true label, enhancing the practicality of the problem. Our work centres on NPLL and presents a framework that initially assigns pseudo-labels to images by exploiting the noisy partial labels through a weighted nearest neighbour algorithm. These pseudo-label and image pairs are then used to train a deep neural network classifier with label smoothing. The classifier's features and predictions are subsequently employed to refine and enhance the accuracy of pseudo-labels. We perform thorough experiments on seven datasets and compare against nine NPLL and PLL methods. We achieve state-of-the-art results in all studied settings from the prior literature, obtaining substantial gains in the simulated fine-grained benchmarks. Further, we show the promising generalisation capability of our framework in realistic, fine-grained, crowd-sourced datasets.
comment: Best Paper Award at The 12th Workshop on Fine-Grained Visual Categorization (CVPRW 2025)
♻ ☆ SemiOccam: A Robust Semi-Supervised Image Recognition Network Using Sparse Labels
We present SemiOccam, an image recognition network that leverages semi-supervised learning in a highly efficient manner. Existing works often rely on complex training techniques and architectures, requiring hundreds of GPU hours for training, while their generalization ability when dealing with extremely limited labeled data remains to be improved. To address these limitations, we construct a hierarchical mixture density classification decision mechanism by optimizing mutual information between feature representations and target classes, compressing redundant information while retaining crucial discriminative components. Experimental results demonstrate that our method achieves state-of-the-art performance on various datasets when using negligible labeled samples, and its simple architecture keeps training time to minute-level. Notably, this paper reveals a long-overlooked data leakage issue in the STL-10 dataset for semi-supervised learning tasks and removes duplicates to ensure the reliability of experimental results. We also release the deduplicated CleanSTL-10 dataset to facilitate fair and reliable research in future semi-supervised learning. Code available at https://github.com/Shu1L0n9/SemiOccam.
comment: CleanSTL-10 available at https://huggingface.co/datasets/Shu1L0n9/CleanSTL-10
♻ ☆ From Prototypes to General Distributions: An Efficient Curriculum for Masked Image Modeling CVPR2025
Masked Image Modeling (MIM) has emerged as a powerful self-supervised learning paradigm for visual representation learning, enabling models to acquire rich visual representations by predicting masked portions of images from their visible regions. While this approach has shown promising results, we hypothesize that its effectiveness may be limited by optimization challenges during early training stages, where models are expected to learn complex image distributions from partial observations before developing basic visual processing capabilities. To address this limitation, we propose a prototype-driven curriculum leagrning framework that structures the learning process to progress from prototypical examples to more complex variations in the dataset. Our approach introduces a temperature-based annealing scheme that gradually expands the training distribution, enabling more stable and efficient learning trajectories. Through extensive experiments on ImageNet-1K, we demonstrate that our curriculum learning strategy significantly improves both training efficiency and representation quality while requiring substantially fewer training epochs compared to standard Masked Auto-Encoding. Our findings suggest that carefully controlling the order of training examples plays a crucial role in self-supervised visual learning, providing a practical solution to the early-stage optimization challenges in MIM.
comment: Accepted to CVPR2025
♻ ☆ In Search of Forgotten Domain Generalization ICLR 2025
Out-of-Domain (OOD) generalization is the ability of a model trained on one or more domains to generalize to unseen domains. In the ImageNet era of computer vision, evaluation sets for measuring a model's OOD performance were designed to be strictly OOD with respect to style. However, the emergence of foundation models and expansive web-scale datasets has obfuscated this evaluation process, as datasets cover a broad range of domains and risk test domain contamination. In search of the forgotten domain generalization, we create large-scale datasets subsampled from LAION -- LAION-Natural and LAION-Rendition -- that are strictly OOD to corresponding ImageNet and DomainNet test sets in terms of style. Training CLIP models on these datasets reveals that a significant portion of their performance is explained by in-domain examples. This indicates that the OOD generalization challenges from the ImageNet era still prevail and that training on web-scale data merely creates the illusion of OOD generalization. Furthermore, through a systematic exploration of combining natural and rendition datasets in varying proportions, we identify optimal mixing ratios for model generalization across these domains. Our datasets and results re-enable meaningful assessment of OOD robustness at scale -- a crucial prerequisite for improving model robustness.
comment: ICLR 2025 camera-ready version
♻ ☆ ARMOR: Empowering Multimodal Understanding Model with Interleaved Multimodal Generation Capability
Unified multimodal understanding and generation have recently received much attention in the area of vision and language. Existing UniMs are designed to simultaneously learn both multimodal understanding and generation capabilities, demanding substantial computational resources, and often struggle to generate interleaved text-image. We present ARMOR, a resource-efficient and pure autoregressive framework that achieves both understanding and generation by fine-tuning existing multimodal large language models (MLLMs). Specifically, ARMOR extends existing MLLMs from three perspectives: (1) For model architecture, an asymmetric encoder-decoder architecture with a forward-switching mechanism is introduced to unify embedding space integrating textual and visual modalities for enabling natural text-image interleaved generation with minimal computational overhead. (2) For training data, a meticulously curated, high-quality interleaved dataset is collected for fine-tuning MLLMs. (3) For the training algorithm, we propose a ``what or how to generate'' algorithm to empower existing MLLMs with multimodal generation capabilities while preserving their multimodal understanding capabilities, through three progressive training stages based on the collected dataset. Experimental results demonstrate that ARMOR upgrades existing MLLMs to UniMs with promising image generation capabilities, using limited training resources. Our code will be released soon at https://github.com/finyorko/armor.
♻ ☆ Balancing Beyond Discrete Categories: Continuous Demographic Labels for Fair Face Recognition
Bias has been a constant in face recognition models. Over the years, researchers have looked at it from both the model and the data point of view. However, their approach to mitigation of data bias was limited and lacked insight on the real nature of the problem. Here, in this document, we propose to revise our use of ethnicity labels as a continuous variable instead of a discrete value per identity. We validate our formulation both experimentally and theoretically, showcasing that not all identities from one ethnicity contribute equally to the balance of the dataset; thus, having the same number of identities per ethnicity does not represent a balanced dataset. We further show that models trained on datasets balanced in the continuous space consistently outperform models trained on data balanced in the discrete space. We trained more than 65 different models, and created more than 20 subsets of the original datasets.
comment: Under review
♻ ☆ GenSpace: Benchmarking Spatially-Aware Image Generation
Humans can intuitively compose and arrange scenes in the 3D space for photography. However, can advanced AI image generators plan scenes with similar 3D spatial awareness when creating images from text or image prompts? We present GenSpace, a novel benchmark and evaluation pipeline to comprehensively assess the spatial awareness of current image generation models. Furthermore, standard evaluations using general Vision-Language Models (VLMs) frequently fail to capture the detailed spatial errors. To handle this challenge, we propose a specialized evaluation pipeline and metric, which reconstructs 3D scene geometry using multiple visual foundation models and provides a more accurate and human-aligned metric of spatial faithfulness. Our findings show that while AI models create visually appealing images and can follow general instructions, they struggle with specific 3D details like object placement, relationships, and measurements. We summarize three core limitations in the spatial perception of current state-of-the-art image generation models: 1) Object Perspective Understanding, 2) Egocentric-Allocentric Transformation and 3) Metric Measurement Adherence, highlighting possible directions for improving spatial intelligence in image generation.
♻ ☆ VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters ICML 2025
Foundation models have emerged as a promising approach in time series forecasting (TSF). Existing approaches either repurpose large language models (LLMs) or build large-scale time series datasets to develop TSF foundation models for universal forecasting. However, these methods face challenges due to the severe cross-domain gap or in-domain heterogeneity. This paper explores a new road to building a TSF foundation model from rich, high-quality natural images. Our key insight is that a visual masked autoencoder, pre-trained on the ImageNet dataset, can naturally be a numeric series forecaster. By reformulating TSF as an image reconstruction task, we bridge the gap between image pre-training and TSF downstream tasks. Surprisingly, without further adaptation in the time series domain, the proposed VisionTS could achieve better zero-shot forecast performance than existing TSF foundation models. With fine-tuning for one epoch, VisionTS could further improve the forecasting and achieve state-of-the-art performance in most cases. Extensive experiments reveal intrinsic similarities between images and real-world time series, suggesting that visual models may offer a "free lunch" for TSF and highlight the potential for future cross-modality research. Our code is publicly available at https://github.com/Keytoyze/VisionTS.
comment: v4: accepted by ICML 2025
♻ ☆ Assessing Intersectional Bias in Representations of Pre-Trained Image Recognition Models
Deep Learning models have achieved remarkable success. Training them is often accelerated by building on top of pre-trained models which poses the risk of perpetuating encoded biases. Here, we investigate biases in the representations of commonly used ImageNet classifiers for facial images while considering intersections of sensitive variables age, race and gender. To assess the biases, we use linear classifier probes and visualize activations as topographic maps. We find that representations in ImageNet classifiers particularly allow differentiation between ages. Less strongly pronounced, the models appear to associate certain ethnicities and distinguish genders in middle-aged groups.
comment: Summary paper accepted at the 3rd TRR 318 Conference: Contextualizing Explanations 2025
♻ ☆ diffDemorph: Extending Reference-Free Demorphing to Unseen Faces
A face morph is created by combining two face images corresponding to two identities to produce a composite that successfully matches both the constituent identities. Reference-free (RF) demorphing reverses this process using only the morph image, without the need for additional reference images. Previous RF demorphing methods are overly constrained, as they rely on assumptions about the distributions of training and testing morphs such as the morphing technique used (e.g., landmark-based) and face image style (e.g., passport photos). In this paper, we introduce a novel diffusion-based approach, referred to as diffDeMorph, that effectively disentangles component images from a composite morph image with high visual fidelity. Our method is the first to generalize across morph techniques and face styles, beating the current state of the art by $\geq 59.46\%$ under a common training protocol across all datasets tested. We train our method on morphs created using synthetically generated face images and test on real morphs, thereby enhancing the practicality of the technique. Experiments on six datasets and two face matchers establish the utility and efficacy of our method.
♻ ☆ Feedforward Few-shot Species Range Estimation ICML 2025
Knowing where a particular species can or cannot be found on Earth is crucial for ecological research and conservation efforts. By mapping the spatial ranges of all species, we would obtain deeper insights into how global biodiversity is affected by climate change and habitat loss. However, accurate range estimates are only available for a relatively small proportion of all known species. For the majority of the remaining species, we typically only have a small number of records denoting the spatial locations where they have previously been observed. We outline a new approach for few-shot species range estimation to address the challenge of accurately estimating the range of a species from limited data. During inference, our model takes a set of spatial locations as input, along with optional metadata such as text or an image, and outputs a species encoding that can be used to predict the range of a previously unseen species in a feedforward manner. We evaluate our approach on two challenging benchmarks, where we obtain state-of-the-art range estimation performance, in a fraction of the compute time, compared to recent alternative approaches.
comment: Published in the Proceedings of the 42nd International Conference on Machine Learning (ICML 2025)
♻ ☆ Application of convolutional neural networks in image super-resolution
Due to strong learning abilities of convolutional neural networks (CNNs), they have become mainstream methods for image super-resolution. However, there are big differences of different deep learning methods with different types. There is little literature to summarize relations and differences of different methods in image super-resolution. Thus, summarizing these literatures are important, according to loading capacity and execution speed of devices. This paper first introduces principles of CNNs in image super-resolution, then introduces CNNs based bicubic interpolation, nearest neighbor interpolation, bilinear interpolation, transposed convolution, sub-pixel layer, meta up-sampling for image super-resolution to analyze differences and relations of different CNNs based interpolations and modules, and compare performance of these methods by experiments. Finally, this paper gives potential research points and drawbacks and summarizes the whole paper, which can facilitate developments of CNNs in image super-resolution.
comment: It has been accepted by CAAI transactions on intelligent systems, in Chinese language
♻ ☆ MedXpertQA: Benchmarking Expert-Level Medical Reasoning and Understanding ICML 2025
We introduce MedXpertQA, a highly challenging and comprehensive benchmark to evaluate expert-level medical knowledge and advanced reasoning. MedXpertQA includes 4,460 questions spanning 17 specialties and 11 body systems. It includes two subsets, Text for text evaluation and MM for multimodal evaluation. Notably, MM introduces expert-level exam questions with diverse images and rich clinical information, including patient records and examination results, setting it apart from traditional medical multimodal benchmarks with simple QA pairs generated from image captions. MedXpertQA applies rigorous filtering and augmentation to address the insufficient difficulty of existing benchmarks like MedQA, and incorporates specialty board questions to improve clinical relevance and comprehensiveness. We perform data synthesis to mitigate data leakage risk and conduct multiple rounds of expert reviews to ensure accuracy and reliability. We evaluate 18 leading models on \benchmark. Moreover, medicine is deeply connected to real-world decision-making, providing a rich and representative setting for assessing reasoning abilities beyond mathematics and code. To this end, we develop a reasoning-oriented subset to facilitate the assessment of o1-like models. Code and data are available at: https://github.com/TsinghuaC3I/MedXpertQA
comment: ICML 2025
♻ ☆ Rethinking Machine Unlearning in Image Generation Models CCS 2025
With the surge and widespread application of image generation models, data privacy and content safety have become major concerns and attracted great attention from users, service providers, and policymakers. Machine unlearning (MU) is recognized as a cost-effective and promising means to address these challenges. Despite some advancements, image generation model unlearning (IGMU) still faces remarkable gaps in practice, e.g., unclear task discrimination and unlearning guidelines, lack of an effective evaluation framework, and unreliable evaluation metrics. These can hinder the understanding of unlearning mechanisms and the design of practical unlearning algorithms. We perform exhaustive assessments over existing state-of-the-art unlearning algorithms and evaluation standards, and discover several critical flaws and challenges in IGMU tasks. Driven by these limitations, we make several core contributions, to facilitate the comprehensive understanding, standardized categorization, and reliable evaluation of IGMU. Specifically, (1) We design CatIGMU, a novel hierarchical task categorization framework. It provides detailed implementation guidance for IGMU, assisting in the design of unlearning algorithms and the construction of testbeds. (2) We introduce EvalIGMU, a comprehensive evaluation framework. It includes reliable quantitative metrics across five critical aspects. (3) We construct DataIGM, a high-quality unlearning dataset, which can be used for extensive evaluations of IGMU, training content detectors for judgment, and benchmarking the state-of-the-art unlearning algorithms. With EvalIGMU and DataIGM, we discover that most existing IGMU algorithms cannot handle the unlearning well across different evaluation dimensions, especially for preservation and robustness. Code and models are available at https://github.com/ryliu68/IGMU.
comment: Accepted by ACM CCS 2025
♻ ☆ YOLO-RS: Remote Sensing Enhanced Crop Detection Methods
With the rapid development of remote sensing technology, crop classification and health detection based on deep learning have gradually become a research hotspot. However, the existing target detection methods show poor performance when dealing with small targets in remote sensing images, especially in the case of complex background and image mixing, which is difficult to meet the practical application requirementsite. To address this problem, a novel target detection model YOLO-RS is proposed in this paper. The model is based on the latest Yolov11 which significantly enhances the detection of small targets by introducing the Context Anchor Attention (CAA) mechanism and an efficient multi-field multi-scale feature fusion network. YOLO-RS adopts a bidirectional feature fusion strategy in the feature fusion process, which effectively enhances the model's performance in the detection of small targets. Small target detection. Meanwhile, the ACmix module at the end of the model backbone network solves the category imbalance problem by adaptively adjusting the contrast and sample mixing, thus enhancing the detection accuracy in complex scenes. In the experiments on the PDT remote sensing crop health detection dataset and the CWC crop classification dataset, YOLO-RS improves both the recall and the mean average precision (mAP) by about 2-3\% or so compared with the existing state-of-the-art methods, while the F1-score is also significantly improved. Moreover, the computational complexity of the model only increases by about 5.2 GFLOPs, indicating its significant advantages in both performance and efficiency. The experimental results validate the effectiveness and application potential of YOLO-RS in the task of detecting small targets in remote sensing images.
Subspecialty-Specific Foundation Model for Intelligent Gastrointestinal Pathology
Gastrointestinal (GI) diseases represent a clinically significant burden, necessitating precise diagnostic approaches to optimize patient outcomes. Conventional histopathological diagnosis suffers from limited reproducibility and diagnostic variability. To overcome these limitations, we develop Digepath, a specialized foundation model for GI pathology. Our framework introduces a dual-phase iterative optimization strategy combining pretraining with fine-screening, specifically designed to address the detection of sparsely distributed lesion areas in whole-slide images. Digepath is pretrained on over 353 million multi-scale images from 210,043 H&E-stained slides of GI diseases. It attains state-of-the-art performance on 33 out of 34 tasks related to GI pathology, including pathological diagnosis, protein expression status prediction, gene mutation prediction, and prognosis evaluation. We further translate the intelligent screening module for early GI cancer and achieve near-perfect 99.70% sensitivity across nine independent medical institutions. This work not only advances AI-driven precision pathology for GI diseases but also bridge critical gaps in histopathological practice.
♻ ☆ Diving into Self-Evolving Training for Multimodal Reasoning ICML 2025
Self-evolving trainin--where models iteratively learn from their own outputs--has emerged as a key approach for complex reasoning tasks, addressing the scarcity of high-quality chain-of-thought data. However, its effectiveness in multimodal reasoning, a domain more intricate than text-only reasoning, remains underexplored, and the understanding of critical factors in this training paradigm remains limited. Furthermore, a central challenge for this training method is performance saturation, which impedes further improvements and scalability. Inspired by reinforcement learning (RL), in this paper, we reframe self-evolving training for multimodal reasoning through the lens of RL, identifying three pivotal factors: Training Method, Reward Model, and Prompt Variation. Through systematic analysis, we establish relatively optimal design principles that significantly enhance multimodal reasoning capabilities. Moreover, delving deeper into training dynamics, we uncover the roots of saturation and propose a new automatic balancing mechanism to mitigate this limitation. Building on these insights, we propose M-STAR (Multimodal Self-evolving Training for Reasoning), a framework that achieves consistent performance gains across models of varying sizes and diverse benchmarks. All resources are made publicly available at https://mstar-lmm.github.io.
comment: ICML 2025, Project Page: https://mstar-lmm.github.io
♻ ☆ Self-Supervised Generative-Contrastive Learning of Multi-Modal Euclidean Input for 3D Shape Latent Representations: A Dynamic Switching Approach
We propose a combined generative and contrastive neural architecture for learning latent representations of 3D volumetric shapes. The architecture uses two encoder branches for voxel grids and multi-view images from the same underlying shape. The main idea is to combine a contrastive loss between the resulting latent representations with an additional reconstruction loss. That helps to avoid collapsing the latent representations as a trivial solution for minimizing the contrastive loss. A novel dynamic switching approach is used to cross-train two encoders with a shared decoder. The switching approach also enables the stop gradient operation on a random branch. Further classification experiments show that the latent representations learned with our self-supervised method integrate more useful information from the additional input data implicitly, thus leading to better reconstruction and classification performance.
♻ ☆ Progressive Data Dropout: An Embarrassingly Simple Approach to Faster Training
The success of the machine learning field has reliably depended on training on large datasets. While effective, this trend comes at an extraordinary cost. This is due to two deeply intertwined factors: the size of models and the size of datasets. While promising research efforts focus on reducing the size of models, the other half of the equation remains fairly mysterious. Indeed, it is surprising that the standard approach to training remains to iterate over and over, uniformly sampling the training dataset. In this paper we explore a series of alternative training paradigms that leverage insights from hard-data-mining and dropout, simple enough to implement and use that can become the new training standard. The proposed Progressive Data Dropout reduces the number of effective epochs to as little as 12.4% of the baseline. This savings actually do not come at any cost for accuracy. Surprisingly, the proposed method improves accuracy by up to 4.82%. Our approach requires no changes to model architecture or optimizer, and can be applied across standard training pipelines, thus posing an excellent opportunity for wide adoption. Code can be found here: https://github.com/bazyagami/LearningWithRevision
♻ ☆ CAPability: A Comprehensive Visual Caption Benchmark for Evaluating Both Correctness and Thoroughness
Visual captioning benchmarks have become outdated with the emergence of modern multimodal large language models (MLLMs), as the brief ground-truth sentences and traditional metrics fail to assess detailed captions effectively. While recent benchmarks attempt to address this by focusing on keyword extraction or object-centric evaluation, they remain limited to vague-view or object-view analyses and incomplete visual element coverage. In this paper, we introduce CAPability, a comprehensive multi-view benchmark for evaluating visual captioning across 12 dimensions spanning six critical views. We curate nearly 11K human-annotated images and videos with visual element annotations to evaluate the generated captions. CAPability stably assesses both the correctness and thoroughness of captions with \textit{precision} and \textit{hit} metrics. By converting annotations to QA pairs, we further introduce a heuristic metric, \textit{know but cannot tell} ($K\bar{T}$), indicating a significant performance gap between QA and caption capabilities. Our work provides a holistic analysis of MLLMs' captioning abilities, as we identify their strengths and weaknesses across various dimensions, guiding future research to enhance specific aspects of their capabilities.
♻ ☆ UniDB: A Unified Diffusion Bridge Framework via Stochastic Optimal Control
Recent advances in diffusion bridge models leverage Doob's $h$-transform to establish fixed endpoints between distributions, demonstrating promising results in image translation and restoration tasks. However, these approaches frequently produce blurred or excessively smoothed image details and lack a comprehensive theoretical foundation to explain these shortcomings. To address these limitations, we propose UniDB, a unified framework for diffusion bridges based on Stochastic Optimal Control (SOC). UniDB formulates the problem through an SOC-based optimization and derives a closed-form solution for the optimal controller, thereby unifying and generalizing existing diffusion bridge models. We demonstrate that existing diffusion bridges employing Doob's $h$-transform constitute a special case of our framework, emerging when the terminal penalty coefficient in the SOC cost function tends to infinity. By incorporating a tunable terminal penalty coefficient, UniDB achieves an optimal balance between control costs and terminal penalties, substantially improving detail preservation and output quality. Notably, UniDB seamlessly integrates with existing diffusion bridge models, requiring only minimal code modifications. Extensive experiments across diverse image restoration tasks validate the superiority and adaptability of the proposed framework. Our code is available at https://github.com/UniDB-SOC/UniDB/.
♻ ☆ Open Your Eyes: Vision Enhances Message Passing Neural Networks in Link Prediction ICML 2025
Message-passing graph neural networks (MPNNs) and structural features (SFs) are cornerstones for the link prediction task. However, as a common and intuitive mode of understanding, the potential of visual perception has been overlooked in the MPNN community. For the first time, we equip MPNNs with vision structural awareness by proposing an effective framework called Graph Vision Network (GVN), along with a more efficient variant (E-GVN). Extensive empirical results demonstrate that with the proposed frameworks, GVN consistently benefits from the vision enhancement across seven link prediction datasets, including challenging large-scale graphs. Such improvements are compatible with existing state-of-the-art (SOTA) methods and GVNs achieve new SOTA results, thereby underscoring a promising novel direction for link prediction.
comment: ICML 2025
♻ ☆ RoPETR: Improving Temporal Camera-Only 3D Detection by Integrating Enhanced Rotary Position Embedding
This technical report introduces a targeted improvement to the StreamPETR framework, specifically aimed at enhancing velocity estimation, a critical factor influencing the overall NuScenes Detection Score. While StreamPETR exhibits strong 3D bounding box detection performance as reflected by its high mean Average Precision our analysis identified velocity estimation as a substantial bottleneck when evaluated on the NuScenes dataset. To overcome this limitation, we propose a customized positional embedding strategy tailored to enhance temporal modeling capabilities. Experimental evaluations conducted on the NuScenes test set demonstrate that our improved approach achieves a state-of-the-art NDS of 70.86% using the ViT-L backbone, setting a new benchmark for camera-only 3D object detection.
♻ ☆ On the Importance of Text Preprocessing for Multimodal Representation Learning and Pathology Report Generation
Vision-language models in pathology enable multimodal case retrieval and automated report generation. Many of the models developed so far, however, have been trained on pathology reports that include information which cannot be inferred from paired whole slide images (e.g., patient history), potentially leading to hallucinated sentences in generated reports. To this end, we investigate how the selection of information from pathology reports for vision-language modeling affects the quality of the multimodal representations and generated reports. More concretely, we compare a model trained on full reports against a model trained on preprocessed reports that only include sentences describing the cell and tissue appearances based on the H&E-stained slides. For the experiments, we built upon the BLIP-2 framework and used a cutaneous melanocytic lesion dataset of 42,433 H&E-stained whole slide images and 19,636 corresponding pathology reports. Model performance was assessed using image-to-text and text-to-image retrieval, as well as qualitative evaluation of the generated reports by an expert pathologist. Our results demonstrate that text preprocessing prevents hallucination in report generation. Despite the improvement in the quality of the generated reports, training the vision-language model on full reports showed better cross-modal retrieval performance.
comment: 11 pages, 1 figure
♻ ☆ Enhancing pretraining efficiency for medical image segmentation via transferability metrics
In medical image segmentation tasks, the scarcity of labeled training data poses a significant challenge when training deep neural networks. When using U-Net-style architectures, it is common practice to address this problem by pretraining the encoder part on a large general-purpose dataset like ImageNet. However, these methods are resource-intensive and do not guarantee improved performance on the downstream task. In this paper we investigate a variety of training setups on medical image segmentation datasets, using ImageNet-pretrained models. By examining over 300 combinations of models, datasets, and training methods, we find that shorter pretraining often leads to better results on the downstream task, providing additional proof to the well-known fact that the accuracy of the model on ImageNet is a poor indicator for downstream performance. As our main contribution, we introduce a novel transferability metric, based on contrastive learning, that measures how robustly a pretrained model is able to represent the target data. In contrast to other transferability scores, our method is applicable to the case of transferring from ImageNet classification to medical image segmentation. We apply our robustness score by measuring it throughout the pretraining phase to indicate when the model weights are optimal for downstream transfer. This reduces pretraining time and improves results on the target task.
comment: An error was discovered in the aggregation process of our results, particularly affecting the experiments involving the advanced pretraining method. This impacts the main conclusions of the paper, and we are therefore withdrawing the submission
♻ ☆ TT-Occ: Test-Time Compute for Self-Supervised Occupancy via Spatio-Temporal Gaussian Splatting
Self-supervised 3D occupancy prediction offers a promising solution for understanding complex driving scenes without requiring costly 3D annotations. However, training dense occupancy decoders to capture fine-grained geometry and semantics can demand hundreds of GPU hours, and once trained, such models struggle to adapt to varying voxel resolutions or novel object categories without extensive retraining. To overcome these limitations, we propose a practical and flexible test-time occupancy prediction framework termed TT-Occ. Our method incrementally constructs, optimizes and voxelizes time-aware 3D Gaussians from raw sensor streams by integrating vision foundation models (VLMs) at runtime. The flexible nature of 3D Gaussians allows voxelization at arbitrary user-specified resolutions, while the generalization ability of VLMs enables accurate perception and open-vocabulary recognition, without any network training or fine-tuning. Specifically, TT-Occ operates in a lift-track-voxelize symphony: We first lift the geometry and semantics of surrounding-view extracted from VLMs to instantiate Gaussians at 3D space; Next, we track dynamic Gaussians while accumulating static ones to complete the scene and enforce temporal consistency; Finally, we voxelize the optimized Gaussians to generate occupancy prediction. Optionally, inherent noise in VLM predictions and tracking is mitigated by periodically smoothing neighboring Gaussians during optimization. To validate the generality and effectiveness of our framework, we offer two variants: one LiDAR-based and one vision-centric, and conduct extensive experiments on Occ3D and nuCraft benchmarks with varying voxel resolutions. Code will be available at https://github.com/Xian-Bei/TT-Occ.
♻ ☆ RB-SCD: A New Benchmark for Semantic Change Detection of Roads and Bridges in Traffic Scenes
With the rapid modernization of urban transportation, accurately detecting changes such as road and bridge construction, renovation, and demolition is crucial for urban planning and traffic management. However, existing methods often struggle to extract fine-grained semantic changes in complex traffic scenes, largely due to the lack of high-quality annotated change detection (CD) datasets. To address this, we introduce the Road and Bridge Semantic Change Detection (RB-SCD) dataset, a comprehensive benchmark consisting of 260 pairs of high-resolution remote sensing images. RB-SCD spans diverse geographic areas and includes a wide variety of road and bridge types across over ten cities in multiple countries. It covers 11 distinct categories of semantic changes, enabling detailed structural and functional analysis. Based on this challenging dataset, we propose a novel framework called the Multimodal Frequency-Driven Change Detector (MFDCD). For the first time, MFDCD integrates multimodal feature characteristics in the frequency domain. It comprises two key components: the Dynamic Frequency Coupler (DFC) and the Textual Frequency Filter (TFF). DFC couples hierarchical visual features with wavelet-based frequency components, enhancing the perception of fine-grained and cross-temporal structural changes. TFF transforms textual features extracted by the CLIP model into the frequency domain via Fourier transform and applies graph-based filtering to extract salient frequency responses. These are then fused with visual features to enable effective multimodal representation learning. Extensive experiments show that MFDCD achieves strong performance on RB-SCD and three public benchmarks. The RB-SCD dataset, with its rich and diverse annotations, serves as a valuable resource for advancing research in road and bridge change detection under complex traffic conditions.
♻ ☆ An Ensemble-Based Two-Step Framework for Classification of Pap Smear Cell Images
Early detection of cervical cancer is crucial for improving patient outcomes and reducing mortality by identifying precancerous lesions as soon as possible. As a result, the use of pap smear screening has significantly increased, leading to a growing demand for automated tools that can assist cytologists managing their rising workload. To address this, the Pap Smear Cell Classification Challenge (PS3C) has been organized in association with ISBI in 2025. This project aims to promote the development of automated tools for pap smear images classification. The analyzed images are grouped into four categories: healthy, unhealthy, both, and rubbish images which are considered as unsuitable for diagnosis. In this work, we propose a two-stage ensemble approach: first, a neural network determines whether an image is rubbish or not. If not, a second neural network classifies the image as containing a healthy cell, an unhealthy cell, or both.
comment: 7 pages, 3 figures, Grand Challenge paper accepted for publication at ISBI 2025
♻ ☆ SageAttention2++: A More Efficient Implementation of SageAttention2
The efficiency of attention is critical because its time complexity grows quadratically with sequence length. SageAttention2 addresses this by utilizing quantization to accelerate matrix multiplications (Matmul) in attention. To further accelerate SageAttention2, we propose to utilize the faster instruction of FP8 Matmul accumulated in FP16. The instruction is 2x faster than the FP8 Matmul used in SageAttention2. Our experiments show that SageAttention2++ achieves a 3.9x speedup over FlashAttention while maintaining the same attention accuracy as SageAttention2. This means SageAttention2++ effectively accelerates various models, including those for language, image, and video generation, with negligible end-to-end metrics loss. The code will be available at https://github.com/thu-ml/SageAttention.
♻ ☆ SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ Imitating Radiological Scrolling: A Global-Local Attention Model for 3D Chest CT Volumes Multi-Label Anomaly Classification
The rapid increase in the number of Computed Tomography (CT) scan examinations has created an urgent need for automated tools, such as organ segmentation, anomaly classification, and report generation, to assist radiologists with their growing workload. Multi-label classification of Three-Dimensional (3D) CT scans is a challenging task due to the volumetric nature of the data and the variety of anomalies to be detected. Existing deep learning methods based on Convolutional Neural Networks (CNNs) struggle to capture long-range dependencies effectively, while Vision Transformers require extensive pre-training, posing challenges for practical use. Additionally, these existing methods do not explicitly model the radiologist's navigational behavior while scrolling through CT scan slices, which requires both global context understanding and local detail awareness. In this study, we present CT-Scroll, a novel global-local attention model specifically designed to emulate the scrolling behavior of radiologists during the analysis of 3D CT scans. Our approach is evaluated on two public datasets, demonstrating its efficacy through comprehensive experiments and an ablation study that highlights the contribution of each model component.
comment: 13 pages, 4 figures. Accepted for publication at MIDL 2025
♻ ☆ Skywork R1V2: Multimodal Hybrid Reinforcement Learning for Reasoning
We present Skywork R1V2, a next-generation multimodal reasoning model and a major leap forward from its predecessor, Skywork R1V. At its core, R1V2 introduces a hybrid reinforcement learning paradigm that jointly leverages the Mixed Preference Optimization (MPO) and the Group Relative Policy Optimization (GRPO), which harmonizes reward-model guidance with rule-based strategies, thereby addressing the long-standing challenge of balancing sophisticated reasoning capabilities with broad generalization. To further enhance training efficiency, we propose the Selective Sample Buffer (SSB) mechanism, which effectively addresses the vanishing advantages dilemma inherent in GRPO by prioritizing high-value samples throughout the optimization process. Notably, we observe that excessive reinforcement signals can induce visual hallucinations--a phenomenon we systematically monitor and mitigate through calibrated reward thresholds throughout the training process. Empirical results affirm the exceptional capability of R1V2, with benchmark-leading performances such as 62.6 on OlympiadBench, 78.9 on AIME2024, 63.6 on LiveCodeBench, and 73.6 on MMMU. These results underscore R1V2's superiority over existing open-source models and demonstrate significant progress in closing the performance gap with premier proprietary systems, including Gemini 2.5 and OpenAI-o4-mini. The Skywork R1V2 model weights have been publicly released to promote openness and reproducibility https://huggingface.co/Skywork/Skywork-R1V2-38B.
♻ ☆ ZeroFlow: Overcoming Catastrophic Forgetting is Easier than You Think
Backpropagation provides a generalized configuration for overcoming catastrophic forgetting. Optimizers such as SGD and Adam are commonly used for weight updates in continual learning and continual pre-training. However, access to gradient information is not always feasible in practice due to black-box APIs, hardware constraints, or non-differentiable systems, a challenge we refer to as the gradient bans. To bridge this gap, we introduce ZeroFlow, the first benchmark designed to evaluate gradient-free optimization algorithms for overcoming forgetting. ZeroFlow examines a suite of forward pass-based methods across various algorithms, forgetting scenarios, and datasets. Our results show that forward passes alone can be sufficient to mitigate forgetting. We uncover novel optimization principles that highlight the potential of forward pass-based methods in mitigating forgetting, managing task conflicts, and reducing memory demands. Additionally, we propose new enhancements that further improve forgetting resistance using only forward passes. This work provides essential tools and insights to advance the development of forward-pass-based methods for continual learning.
♻ ☆ Benchmarking and Improving Large Vision-Language Models for Fundamental Visual Graph Understanding and Reasoning ACL2025
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across diverse tasks. Despite great success, recent studies show that LVLMs encounter substantial limitations when engaging with visual graphs. To study the reason behind these limitations, we propose VGCure, a comprehensive benchmark covering 22 tasks for examining the fundamental graph understanding and reasoning capacities of LVLMs. Extensive evaluations conducted on 14 LVLMs reveal that LVLMs are weak in basic graph understanding and reasoning tasks, particularly those concerning relational or structurally complex information. Based on this observation, we propose a structure-aware fine-tuning framework to enhance LVLMs with structure learning abilities through three self-supervised learning tasks. Experiments validate the effectiveness of our method in improving LVLMs' performance on fundamental and downstream graph learning tasks, as well as enhancing their robustness against complex visual graphs.
comment: Accepted by ACL2025 main conference
♻ ☆ Seeing like a Cephalopod: Colour Vision with a Monochrome Event Camera CVPR 2025
Cephalopods exhibit unique colour discrimination capabilities despite having one type of photoreceptor, relying instead on chromatic aberration induced by their ocular optics and pupil shapes to perceive spectral information. We took inspiration from this biological mechanism to design a spectral imaging system that combines a ball lens with an event-based camera. Our approach relies on a motorised system that shifts the focal position, mirroring the adaptive lens motion in cephalopods. This approach has enabled us to achieve wavelength-dependent focusing across the visible light and near-infrared spectrum, making the event a spectral sensor. We characterise chromatic aberration effects, using both event-based and conventional frame-based sensors, validating the effectiveness of bio-inspired spectral discrimination both in simulation and in a real setup as well as assessing the spectral discrimination performance. Our proposed approach provides a robust spectral sensing capability without conventional colour filters or computational demosaicing. This approach opens new pathways toward new spectral sensing systems inspired by nature's evolutionary solutions. Code and analysis are available at: https://samiarja.github.io/neuromorphic_octopus_eye/
comment: 15 pages, 14 figures, 1 table. Accepted at CVPR 2025 (Workshop on Event-based Vision)
♻ ☆ Images Speak Louder than Words: Understanding and Mitigating Bias in Vision-Language Model from a Causal Mediation Perspective
Vision-language models (VLMs) pre-trained on extensive datasets can inadvertently learn biases by correlating gender information with specific objects or scenarios. Current methods, which focus on modifying inputs and monitoring changes in the model's output probability scores, often struggle to comprehensively understand bias from the perspective of model components. We propose a framework that incorporates causal mediation analysis to measure and map the pathways of bias generation and propagation within VLMs. This approach allows us to identify the direct effects of interventions on model bias and the indirect effects of interventions on bias mediated through different model components. Our results show that image features are the primary contributors to bias, with significantly higher impacts than text features, specifically accounting for 32.57% and 12.63% of the bias in the MSCOCO and PASCAL-SENTENCE datasets, respectively. Notably, the image encoder's contribution surpasses that of the text encoder and the deep fusion encoder. Further experimentation confirms that contributions from both language and vision modalities are aligned and non-conflicting. Consequently, focusing on blurring gender representations within the image encoder, which contributes most to the model bias, reduces bias efficiently by 22.03% and 9.04% in the MSCOCO and PASCAL-SENTENCE datasets, respectively, with minimal performance loss or increased computational demands.
♻ ☆ Flexiffusion: Segment-wise Neural Architecture Search for Flexible Denoising Schedule
Diffusion models are cutting-edge generative models adept at producing diverse, high-quality images. Despite their effectiveness, these models often require significant computational resources owing to their numerous sequential denoising steps and the significant inference cost of each step. Recently, Neural Architecture Search (NAS) techniques have been employed to automatically search for faster generation processes. However, NAS for diffusion is inherently time-consuming as it requires estimating thousands of diffusion models to search for the optimal one. In this paper, we introduce Flexiffusion, a novel training-free NAS paradigm designed to accelerate diffusion models by concurrently optimizing generation steps and network structures. Specifically, we partition the generation process into isometric step segments, each sequentially composed of a full step, multiple partial steps, and several null steps. The full step computes all network blocks, while the partial step involves part of the blocks, and the null step entails no computation. Flexiffusion autonomously explores flexible step combinations for each segment, substantially reducing search costs and enabling greater acceleration compared to the state-of-the-art (SOTA) method for diffusion models. Our searched models reported speedup factors of $2.6\times$ and $1.5\times$ for the original LDM-4-G and the SOTA, respectively. The factors for Stable Diffusion V1.5 and the SOTA are $5.1\times$ and $2.0\times$. We also verified the performance of Flexiffusion on multiple datasets, and positive experiment results indicate that Flexiffusion can effectively reduce redundancy in diffusion models.
♻ ☆ SALVE: A 3D Reconstruction Benchmark of Wounds from Consumer-grade Videos
Managing chronic wounds is a global challenge that can be alleviated by the adoption of automatic systems for clinical wound assessment from consumer-grade videos. While 2D image analysis approaches are insufficient for handling the 3D features of wounds, existing approaches utilizing 3D reconstruction methods have not been thoroughly evaluated. To address this gap, this paper presents a comprehensive study on 3D wound reconstruction from consumer-grade videos. Specifically, we introduce the SALVE dataset, comprising video recordings of realistic wound phantoms captured with different cameras. Using this dataset, we assess the accuracy and precision of state-of-the-art methods for 3D reconstruction, ranging from traditional photogrammetry pipelines to advanced neural rendering approaches. In our experiments, we observe that photogrammetry approaches do not provide smooth surfaces suitable for precise clinical measurements of wounds. Neural rendering approaches show promise in addressing this issue, advancing the use of this technology in wound care practices. We encourage the readers to visit the project page: https://remichierchia.github.io/SALVE/.
♻ ☆ A Comprehensive Survey on Concept Erasure in Text-to-Image Diffusion Models
Text-to-Image (T2I) models have made remarkable progress in generating high-quality, diverse visual content from natural language prompts. However, their ability to reproduce copyrighted styles, sensitive imagery, and harmful content raises significant ethical and legal concerns. Concept erasure offers a proactive alternative to external filtering by modifying T2I models to prevent the generation of undesired content. In this survey, we provide a structured overview of concept erasure, categorizing existing methods based on their optimization strategies and the architectural components they modify. We categorize concept erasure methods into fine-tuning for parameter updates, closed-form solutions for efficient edits, and inference-time interventions for content restriction without weight modification. Additionally, we explore adversarial attacks that bypass erasure techniques and discuss emerging defenses. To support further research, we consolidate key datasets, evaluation metrics, and benchmarks for assessing erasure effectiveness and model robustness. This survey serves as a comprehensive resource, offering insights into the evolving landscape of concept erasure, its challenges, and future directions.
♻ ☆ Ophora: A Large-Scale Data-Driven Text-Guided Ophthalmic Surgical Video Generation Model MICCAI25
In ophthalmic surgery, developing an AI system capable of interpreting surgical videos and predicting subsequent operations requires numerous ophthalmic surgical videos with high-quality annotations, which are difficult to collect due to privacy concerns and labor consumption. Text-guided video generation (T2V) emerges as a promising solution to overcome this issue by generating ophthalmic surgical videos based on surgeon instructions. In this paper, we present Ophora, a pioneering model that can generate ophthalmic surgical videos following natural language instructions. To construct Ophora, we first propose a Comprehensive Data Curation pipeline to convert narrative ophthalmic surgical videos into a large-scale, high-quality dataset comprising over 160K video-instruction pairs, Ophora-160K. Then, we propose a Progressive Video-Instruction Tuning scheme to transfer rich spatial-temporal knowledge from a T2V model pre-trained on natural video-text datasets for privacy-preserved ophthalmic surgical video generation based on Ophora-160K. Experiments on video quality evaluation via quantitative analysis and ophthalmologist feedback demonstrate that Ophora can generate realistic and reliable ophthalmic surgical videos based on surgeon instructions. We also validate the capability of Ophora for empowering downstream tasks of ophthalmic surgical workflow understanding. Code is available at https://github.com/mar-cry/Ophora.
comment: Early accepted in MICCAI25
♻ ☆ GroMo: Plant Growth Modeling with Multiview Images
Understanding plant growth dynamics is essential for applications in agriculture and plant phenotyping. We present the Growth Modelling (GroMo) challenge, which is designed for two primary tasks: (1) plant age prediction and (2) leaf count estimation, both essential for crop monitoring and precision agriculture. For this challenge, we introduce GroMo25, a dataset with images of four crops: radish, okra, wheat, and mustard. Each crop consists of multiple plants (p1, p2, ..., pn) captured over different days (d1, d2, ..., dm) and categorized into five levels (L1, L2, L3, L4, L5). Each plant is captured from 24 different angles with a 15-degree gap between images. Participants are required to perform both tasks for all four crops with these multiview images. We proposed a Multiview Vision Transformer (MVVT) model for the GroMo challenge and evaluated the crop-wise performance on GroMo25. MVVT reports an average MAE of 7.74 for age prediction and an MAE of 5.52 for leaf count. The GroMo Challenge aims to advance plant phenotyping research by encouraging innovative solutions for tracking and predicting plant growth. The GitHub repository is publicly available at https://github.com/mriglab/GroMo-Plant-Growth-Modeling-with-Multiview-Images.
comment: 7 pages, 5 Figures, 3 Tables
♻ ☆ TASTE-Rob: Advancing Video Generation of Task-Oriented Hand-Object Interaction for Generalizable Robotic Manipulation CVPR 2025
We address key limitations in existing datasets and models for task-oriented hand-object interaction video generation, a critical approach of generating video demonstrations for robotic imitation learning. Current datasets, such as Ego4D, often suffer from inconsistent view perspectives and misaligned interactions, leading to reduced video quality and limiting their applicability for precise imitation learning tasks. Towards this end, we introduce TASTE-Rob -- a pioneering large-scale dataset of 100,856 ego-centric hand-object interaction videos. Each video is meticulously aligned with language instructions and recorded from a consistent camera viewpoint to ensure interaction clarity. By fine-tuning a Video Diffusion Model (VDM) on TASTE-Rob, we achieve realistic object interactions, though we observed occasional inconsistencies in hand grasping postures. To enhance realism, we introduce a three-stage pose-refinement pipeline that improves hand posture accuracy in generated videos. Our curated dataset, coupled with the specialized pose-refinement framework, provides notable performance gains in generating high-quality, task-oriented hand-object interaction videos, resulting in achieving superior generalizable robotic manipulation. The TASTE-Rob dataset is publicly available to foster further advancements in the field, TASTE-Rob dataset and source code will be made publicly available on our website https://taste-rob.github.io.
comment: CVPR 2025; Project Page: https://taste-rob.github.io
♻ ☆ LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior
Diffusion models, as powerful generative models, have found a wide range of applications and shown great potential in solving image reconstruction problems. Some works attempted to solve MRI reconstruction with diffusion models, but these methods operate directly in pixel space, leading to higher computational costs for optimization and inference. Latent diffusion models, pre-trained on natural images with rich visual priors, are expected to solve the high computational cost problem in MRI reconstruction by operating in a lower-dimensional latent space. However, direct application to MRI reconstruction faces three key challenges: (1) absence of explicit control mechanisms for medical fidelity, (2) domain gap between natural images and MR physics, and (3) undefined data consistency in latent space. To address these challenges, a novel Latent Diffusion Prior-based undersampled MRI reconstruction (LDPM) method is proposed. Our LDPM framework addresses these challenges by: (1) a sketch-guided pipeline with a two-step reconstruction strategy, which balances perceptual quality and anatomical fidelity, (2) an MRI-optimized VAE (MR-VAE), which achieves an improvement of approximately 3.92 dB in PSNR for undersampled MRI reconstruction compared to that with SD-VAE \cite{sd}, and (3) Dual-Stage Sampler, a modified version of spaced DDPM sampler, which enforces high-fidelity reconstruction in the latent space. Experiments on the fastMRI dataset\cite{fastmri} demonstrate the state-of-the-art performance of the proposed method and its robustness across various scenarios. The effectiveness of each module is also verified through ablation experiments.
comment: accepted as oral presentation at EMBC 2025
♻ ☆ Toward a Low-Cost Perception System in Autonomous Vehicles: A Spectrum Learning Approach
We present a cost-effective new approach for generating denser depth maps for Autonomous Driving (AD) and Autonomous Vehicles (AVs) by integrating the images obtained from deep neural network (DNN) 4D radar detectors with conventional camera RGB images. Our approach introduces a novel pixel positional encoding algorithm inspired by Bartlett's spatial spectrum estimation technique. This algorithm transforms both radar depth maps and RGB images into a unified pixel image subspace called the Spatial Spectrum, facilitating effective learning based on their similarities and differences. Our method effectively leverages high-resolution camera images to train radar depth map generative models, addressing the limitations of conventional radar detectors in complex vehicular environments, thus sharpening the radar output. We develop spectrum estimation algorithms tailored for radar depth maps and RGB images, a comprehensive training framework for data-driven generative models, and a camera-radar deployment scheme for AV operation. Our results demonstrate that our approach also outperforms the state-of-the-art (SOTA) by 27.95% in terms of Unidirectional Chamfer Distance (UCD).
♻ ☆ Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences ICML 2025
Direct Preference Optimization (DPO) aligns text-to-image (T2I) generation models with human preferences using pairwise preference data. Although substantial resources are expended in collecting and labeling datasets, a critical aspect is often neglected: \textit{preferences vary across individuals and should be represented with more granularity.} To address this, we propose SmPO-Diffusion, a novel method for modeling preference distributions to improve the DPO objective, along with a numerical upper bound estimation for the diffusion optimization objective. First, we introduce a smoothed preference distribution to replace the original binary distribution. We employ a reward model to simulate human preferences and apply preference likelihood averaging to improve the DPO loss, such that the loss function approaches zero when preferences are similar. Furthermore, we utilize an inversion technique to simulate the trajectory preference distribution of the diffusion model, enabling more accurate alignment with the optimization objective. Our approach effectively mitigates issues of excessive optimization and objective misalignment present in existing methods through straightforward modifications. Our SmPO-Diffusion achieves state-of-the-art performance in preference evaluation, outperforming baselines across metrics with lower training costs. The project page is https://jaydenlyh.github.io/SmPO-project-page/.
comment: Accepted by ICML 2025
♻ ☆ FPSAttention: Training-Aware FP8 and Sparsity Co-Design for Fast Video Diffusion
Diffusion generative models have become the standard for producing high-quality, coherent video content, yet their slow inference speeds and high computational demands hinder practical deployment. Although both quantization and sparsity can independently accelerate inference while maintaining generation quality, naively combining these techniques in existing training-free approaches leads to significant performance degradation due to the lack of joint optimization. We introduce FPSAttention, a novel training-aware co-design of FP8 quantization and sparsity for video generation, with a focus on the 3D bi-directional attention mechanism. Our approach features three key innovations: 1) A unified 3D tile-wise granularity that simultaneously supports both quantization and sparsity; 2) A denoising step-aware strategy that adapts to the noise schedule, addressing the strong correlation between quantization/sparsity errors and denoising steps; 3) A native, hardware-friendly kernel that leverages FlashAttention and is implemented with optimized Hopper architecture features for highly efficient execution. Trained on Wan2.1's 1.3B and 14B models and evaluated on the VBench benchmark, FPSAttention achieves a 7.09x kernel speedup for attention operations and a 4.96x end-to-end speedup for video generation compared to the BF16 baseline at 720p resolution-without sacrificing generation quality.
comment: Project Page: https://fps.ziplab.co
♻ ☆ Modality-Fair Preference Optimization for Trustworthy MLLM Alignment
Multimodal large language models (MLLMs) have achieved remarkable success across various tasks. However, separate training of visual and textual encoders often results in a misalignment of the modality. Such misalignment may lead models to generate content that is absent from the input image, a phenomenon referred to as hallucination. These inaccuracies severely undermine the trustworthiness of MLLMs in real-world applications. Despite attempts to optimize text preferences to mitigate this issue, our initial investigation indicates that the trustworthiness of MLLMs remains inadequate. Specifically, these models tend to provide preferred answers even when the input image is heavily distorted. Analysis of visual token attention also indicates that the model focuses primarily on the surrounding context rather than the key object referenced in the question. These findings highlight a misalignment between the modalities, where answers inadequately leverage input images. Motivated by our findings, we propose Modality-Fair Preference Optimization (MFPO), which comprises three components: the construction of a multimodal preference dataset in which dispreferred images differ from originals solely in key regions; an image reward loss function encouraging the model to generate answers better aligned with the input images; and an easy-to-hard iterative alignment strategy to stabilize joint modality training. Extensive experiments on three trustworthiness benchmarks demonstrate that MFPO significantly enhances the trustworthiness of MLLMs. In particular, it enables the 7B models to attain trustworthiness levels on par with, or even surpass, those of the 13B, 34B, and larger models.
♻ ☆ TMT: Tri-Modal Translation between Speech, Image, and Text by Processing Different Modalities as Different Languages
The capability to jointly process multi-modal information is becoming an essential task. However, the limited number of paired multi-modal data and the large computational requirements in multi-modal learning hinder the development. We propose a novel Tri-Modal Translation (TMT) model that translates between arbitrary modalities spanning speech, image, and text. We introduce a novel viewpoint, where we interpret different modalities as different languages, and treat multi-modal translation as a well-established machine translation problem. To this end, we tokenize speech and image data into discrete tokens, which provide a unified interface across modalities and significantly decrease the computational cost. In the proposed TMT, a multi-modal encoder-decoder conducts the core translation, whereas modality-specific processing is conducted only within the tokenization and detokenization stages. We evaluate the proposed TMT on all six modality translation tasks. TMT outperforms single model counterparts consistently, demonstrating that unifying tasks is beneficial not only for practicality but also for performance.
comment: IEEE TMM
♻ ☆ Federated Foundation Model for GI Endoscopy Images
Gastrointestinal (GI) endoscopy is essential in identifying GI tract abnormalities in order to detect diseases in their early stages and improve patient outcomes. Although deep learning has shown success in supporting GI diagnostics and decision-making, these models require curated datasets with labels that are expensive to acquire. Foundation models offer a promising solution by learning general-purpose representations, which can be finetuned for specific tasks, overcoming data scarcity. Developing foundation models for medical imaging holds significant potential, but the sensitive and protected nature of medical data presents unique challenges. Foundation model training typically requires extensive datasets, and while hospitals generate large volumes of data, privacy restrictions prevent direct data sharing, making foundation model training infeasible in most scenarios. In this work, we propose a FL framework for training foundation models for gastroendoscopy imaging, enabling data to remain within local hospital environments while contributing to a shared model. We explore several established FL algorithms, assessing their suitability for training foundation models without relying on task-specific labels, conducting experiments in both homogeneous and heterogeneous settings. We evaluate the trained foundation model on three critical downstream tasks--classification, detection, and segmentation--and demonstrate that it achieves improved performance across all tasks, highlighting the effectiveness of our approach in a federated, privacy-preserving setting.
comment: 11 pages, 11 figures, submitted to BHI2025
Artificial Intelligence 192
☆ Eigenspectrum Analysis of Neural Networks without Aspect Ratio Bias ICML 2025
Diagnosing deep neural networks (DNNs) through the eigenspectrum of weight matrices has been an active area of research in recent years. At a high level, eigenspectrum analysis of DNNs involves measuring the heavytailness of the empirical spectral densities (ESD) of weight matrices. It provides insight into how well a model is trained and can guide decisions on assigning better layer-wise training hyperparameters. In this paper, we address a challenge associated with such eigenspectrum methods: the impact of the aspect ratio of weight matrices on estimated heavytailness metrics. We demonstrate that matrices of varying sizes (and aspect ratios) introduce a non-negligible bias in estimating heavytailness metrics, leading to inaccurate model diagnosis and layer-wise hyperparameter assignment. To overcome this challenge, we propose FARMS (Fixed-Aspect-Ratio Matrix Subsampling), a method that normalizes the weight matrices by subsampling submatrices with a fixed aspect ratio. Instead of measuring the heavytailness of the original ESD, we measure the average ESD of these subsampled submatrices. We show that measuring the heavytailness of these submatrices with the fixed aspect ratio can effectively mitigate the aspect ratio bias. We validate our approach across various optimization techniques and application domains that involve eigenspectrum analysis of weights, including image classification in computer vision (CV) models, scientific machine learning (SciML) model training, and large language model (LLM) pruning. Our results show that despite its simplicity, FARMS uniformly improves the accuracy of eigenspectrum analysis while enabling more effective layer-wise hyperparameter assignment in these application domains. In one of the LLM pruning experiments, FARMS reduces the perplexity of the LLaMA-7B model by 17.3% when compared with the state-of-the-art method.
comment: 30 pages, 14 figures, published to ICML 2025
☆ Reflect-then-Plan: Offline Model-Based Planning through a Doubly Bayesian Lens
Offline reinforcement learning (RL) is crucial when online exploration is costly or unsafe but often struggles with high epistemic uncertainty due to limited data. Existing methods rely on fixed conservative policies, restricting adaptivity and generalization. To address this, we propose Reflect-then-Plan (RefPlan), a novel doubly Bayesian offline model-based (MB) planning approach. RefPlan unifies uncertainty modeling and MB planning by recasting planning as Bayesian posterior estimation. At deployment, it updates a belief over environment dynamics using real-time observations, incorporating uncertainty into MB planning via marginalization. Empirical results on standard benchmarks show that RefPlan significantly improves the performance of conservative offline RL policies. In particular, RefPlan maintains robust performance under high epistemic uncertainty and limited data, while demonstrating resilience to changing environment dynamics, improving the flexibility, generalizability, and robustness of offline-learned policies.
☆ PersonaAgent: When Large Language Model Agents Meet Personalization at Test Time
Large Language Model (LLM) empowered agents have recently emerged as advanced paradigms that exhibit impressive capabilities in a wide range of domains and tasks. Despite their potential, current LLM agents often adopt a one-size-fits-all approach, lacking the flexibility to respond to users' varying needs and preferences. This limitation motivates us to develop PersonaAgent, the first personalized LLM agent framework designed to address versatile personalization tasks. Specifically, PersonaAgent integrates two complementary components - a personalized memory module that includes episodic and semantic memory mechanisms; a personalized action module that enables the agent to perform tool actions tailored to the user. At the core, the persona (defined as unique system prompt for each user) functions as an intermediary: it leverages insights from personalized memory to control agent actions, while the outcomes of these actions in turn refine the memory. Based on the framework, we propose a test-time user-preference alignment strategy that simulate the latest n interactions to optimize the persona prompt, ensuring real-time user preference alignment through textual loss feedback between simulated and ground-truth responses. Experimental evaluations demonstrate that PersonaAgent significantly outperforms other baseline methods by not only personalizing the action space effectively but also scaling during test-time real-world applications. These results underscore the feasibility and potential of our approach in delivering tailored, dynamic user experiences.
☆ DesignBench: A Comprehensive Benchmark for MLLM-based Front-end Code Generation
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in automated front-end engineering, e.g., generating UI code from visual designs. However, existing front-end UI code generation benchmarks have the following limitations: (1) While framework-based development becomes predominant in modern front-end programming, current benchmarks fail to incorporate mainstream development frameworks. (2) Existing evaluations focus solely on the UI code generation task, whereas practical UI development involves several iterations, including refining editing, and repairing issues. (3) Current benchmarks employ unidimensional evaluation, lacking investigation into influencing factors like task difficulty, input context variations, and in-depth code-level analysis. To bridge these gaps, we introduce DesignBench, a multi-framework, multi-task evaluation benchmark for assessing MLLMs' capabilities in automated front-end engineering. DesignBench encompasses three widely-used UI frameworks (React, Vue, and Angular) alongside vanilla HTML/CSS, and evaluates on three essential front-end tasks (generation, edit, and repair) in real-world development workflows. DesignBench contains 900 webpage samples spanning over 11 topics, 9 edit types, and 6 issue categories, enabling detailed analysis of MLLM performance across multiple dimensions. Our systematic evaluation reveals critical insights into MLLMs' framework-specific limitations, task-related bottlenecks, and performance variations under different conditions, providing guidance for future research in automated front-end development. Our code and data are available at https://github.com/WebPAI/DesignBench.
☆ Visual Graph Arena: Evaluating Visual Conceptualization of Vision and Multimodal Large Language Models
Recent advancements in multimodal large language models have driven breakthroughs in visual question answering. Yet, a critical gap persists, `conceptualization'-the ability to recognize and reason about the same concept despite variations in visual form, a basic ability of human reasoning. To address this challenge, we introduce the Visual Graph Arena (VGA), a dataset featuring six graph-based tasks designed to evaluate and improve AI systems' capacity for visual abstraction. VGA uses diverse graph layouts (e.g., Kamada-Kawai vs. planar) to test reasoning independent of visual form. Experiments with state-of-the-art vision models and multimodal LLMs reveal a striking divide: humans achieved near-perfect accuracy across tasks, while models totally failed on isomorphism detection and showed limited success in path/cycle tasks. We further identify behavioral anomalies suggesting pseudo-intelligent pattern matching rather than genuine understanding. These findings underscore fundamental limitations in current AI models for visual understanding. By isolating the challenge of representation-invariant reasoning, the VGA provides a framework to drive progress toward human-like conceptualization in AI visual models. The Visual Graph Arena is available at: \href{https://vga.csail.mit.edu/}{vga.csail.mit.edu}
☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The code is available at [https://github.com/mjalali/embedding-comparison](github.com/mjalali/embedding-comparison).
☆ "We need to avail ourselves of GenAI to enhance knowledge distribution": Empowering Older Adults through GenAI Literacy
As generative AI (GenAI) becomes increasingly widespread, it is crucial to equip users, particularly vulnerable populations such as older adults (65 and older), with the knowledge to understand its benefits and potential risks. Older adults often exhibit greater reservations about adopting emerging technologies and require tailored literacy support. Using a mixed methods approach, this study examines strategies for delivering GenAI literacy to older adults through a chatbot named Litti, evaluating its impact on their AI literacy (knowledge, safety, and ethical use). The quantitative data indicated a trend toward improved AI literacy, though the results were not statistically significant. However, qualitative interviews revealed diverse levels of familiarity with generative AI and a strong desire to learn more. Findings also show that while Litti provided a positive learning experience, it did not significantly enhance participants' trust or sense of safety regarding GenAI. This exploratory case study highlights the challenges and opportunities in designing AI literacy education for the rapidly growing older adult population.
☆ GenIR: Generative Visual Feedback for Mental Image Retrieval
Vision-language models (VLMs) have shown strong performance on text-to-image retrieval benchmarks. However, bridging this success to real-world applications remains a challenge. In practice, human search behavior is rarely a one-shot action. Instead, it is often a multi-round process guided by clues in mind, that is, a mental image ranging from vague recollections to vivid mental representations of the target image. Motivated by this gap, we study the task of Mental Image Retrieval (MIR), which targets the realistic yet underexplored setting where users refine their search for a mentally envisioned image through multi-round interactions with an image search engine. Central to successful interactive retrieval is the capability of machines to provide users with clear, actionable feedback; however, existing methods rely on indirect or abstract verbal feedback, which can be ambiguous, misleading, or ineffective for users to refine the query. To overcome this, we propose GenIR, a generative multi-round retrieval paradigm leveraging diffusion-based image generation to explicitly reify the AI system's understanding at each round. These synthetic visual representations provide clear, interpretable feedback, enabling users to refine their queries intuitively and effectively. We further introduce a fully automated pipeline to generate a high-quality multi-round MIR dataset. Experimental results demonstrate that GenIR significantly outperforms existing interactive methods in the MIR scenario. This work establishes a new task with a dataset and an effective generative retrieval method, providing a foundation for future research in this direction.
☆ Integer Linear Programming Preprocessing for Maximum Satisfiability
The Maximum Satisfiability problem (MaxSAT) is a major optimization challenge with numerous practical applications. In recent MaxSAT evaluations, most MaxSAT solvers have adopted an ILP solver as part of their portfolios. This paper investigates the impact of Integer Linear Programming (ILP) preprocessing techniques on MaxSAT solving. Experimental results show that ILP preprocessing techniques help WMaxCDCL-OpenWbo1200, the winner of the MaxSAT evaluation 2024 in the unweighted track, solve 15 additional instances. Moreover, current state-of-the-art MaxSAT solvers heavily use an ILP solver in their portfolios, while our proposed approach reduces the need to call an ILP solver in a portfolio including WMaxCDCL or MaxCDCL.
☆ Can Theoretical Physics Research Benefit from Language Agents?
Large Language Models (LLMs) are rapidly advancing across diverse domains, yet their application in theoretical physics research is not yet mature. This position paper argues that LLM agents can potentially help accelerate theoretical, computational, and applied physics when properly integrated with domain knowledge and toolbox. We analyze current LLM capabilities for physics -- from mathematical reasoning to code generation -- identifying critical gaps in physical intuition, constraint satisfaction, and reliable reasoning. We envision future physics-specialized LLMs that could handle multimodal data, propose testable hypotheses, and design experiments. Realizing this vision requires addressing fundamental challenges: ensuring physical consistency, and developing robust verification methods. We call for collaborative efforts between physics and AI communities to help advance scientific discovery in physics.
comment: 9 pages
☆ PuzzleWorld: A Benchmark for Multimodal, Open-Ended Reasoning in Puzzlehunts
Puzzlehunts are a genre of complex, multi-step puzzles lacking well-defined problem definitions. In contrast to conventional reasoning benchmarks consisting of tasks with clear instructions, puzzlehunts require models to discover the underlying problem structure from multimodal evidence and iterative reasoning, mirroring real-world domains such as scientific discovery, exploratory data analysis, or investigative problem-solving. Despite recent progress in foundation models, their performance on such open-ended settings remains largely untested. In this paper, we introduce PuzzleWorld, a large-scale benchmark of 667 puzzlehunt-style problems designed to assess step-by-step, open-ended, and creative multimodal reasoning. Each puzzle is annotated with the final solution, detailed reasoning traces, and cognitive skill labels, enabling holistic benchmarking and fine-grained diagnostic analysis. Most state-of-the-art models achieve only 1-2% final answer accuracy, with the best model solving only 14% of puzzles and reaching 40% stepwise accuracy. To demonstrate the value of our reasoning annotations, we show that fine-tuning a small model on reasoning traces improves stepwise reasoning from 4% to 11%, while training on final answers alone degrades performance to near zero. Our error analysis reveals that current models exhibit myopic reasoning, are bottlenecked by the limitations of language-based inference, and lack sketching capabilities crucial for visual and spatial reasoning. We release PuzzleWorld at https://github.com/MIT-MI/PuzzleWorld to support future work on building more general, open-ended, and creative reasoning systems.
☆ Building Models of Neurological Language
This report documents the development and evaluation of domain-specific language models for neurology. Initially focused on building a bespoke model, the project adapted to rapid advances in open-source and commercial medical LLMs, shifting toward leveraging retrieval-augmented generation (RAG) and representational models for secure, local deployment. Key contributions include the creation of neurology-specific datasets (case reports, QA sets, textbook-derived data), tools for multi-word expression extraction, and graph-based analyses of medical terminology. The project also produced scripts and Docker containers for local hosting. Performance metrics and graph community results are reported, with future possible work open for multimodal models using open-source architectures like phi-4.
comment: 21 pages, 6 figures
Astra: Toward General-Purpose Mobile Robots via Hierarchical Multimodal Learning
Modern robot navigation systems encounter difficulties in diverse and complex indoor environments. Traditional approaches rely on multiple modules with small models or rule-based systems and thus lack adaptability to new environments. To address this, we developed Astra, a comprehensive dual-model architecture, Astra-Global and Astra-Local, for mobile robot navigation. Astra-Global, a multimodal LLM, processes vision and language inputs to perform self and goal localization using a hybrid topological-semantic graph as the global map, and outperforms traditional visual place recognition methods. Astra-Local, a multitask network, handles local path planning and odometry estimation. Its 4D spatial-temporal encoder, trained through self-supervised learning, generates robust 4D features for downstream tasks. The planning head utilizes flow matching and a novel masked ESDF loss to minimize collision risks for generating local trajectories, and the odometry head integrates multi-sensor inputs via a transformer encoder to predict the relative pose of the robot. Deployed on real in-house mobile robots, Astra achieves high end-to-end mission success rate across diverse indoor environments.
comment: Astra Technical Report
☆ MLOps with Microservices: A Case Study on the Maritime Domain
This case study describes challenges and lessons learned on building Ocean Guard: a Machine Learning-Enabled System (MLES) for anomaly detection in the maritime domain. First, the paper presents the system's specification, and architecture. Ocean Guard was designed with a microservices' architecture to enable multiple teams to work on the project in parallel. Then, the paper discusses how the developers adapted contract-based design to MLOps for achieving that goal. As a MLES, Ocean Guard employs code, model, and data contracts to establish guidelines between its services. This case study hopes to inspire software engineers, machine learning engineers, and data scientists to leverage similar approaches for their systems.
comment: 13 pages, 3 figures, to be published in SummerSOC 2025
☆ semantic-features: A User-Friendly Tool for Studying Contextual Word Embeddings in Interpretable Semantic Spaces SC
We introduce semantic-features, an extensible, easy-to-use library based on Chronis et al. (2023) for studying contextualized word embeddings of LMs by projecting them into interpretable spaces. We apply this tool in an experiment where we measure the contextual effect of the choice of dative construction (prepositional or double object) on the semantic interpretation of utterances (Bresnan, 2007). Specifically, we test whether "London" in "I sent London the letter." is more likely to be interpreted as an animate referent (e.g., as the name of a person) than in "I sent the letter to London." To this end, we devise a dataset of 450 sentence pairs, one in each dative construction, with recipients being ambiguous with respect to person-hood vs. place-hood. By applying semantic-features, we show that the contextualized word embeddings of three masked language models show the expected sensitivities. This leaves us optimistic about the usefulness of our tool.
comment: SCiL 2025 Camera Ready Extended Abstract
☆ The Lock-in Hypothesis: Stagnation by Algorithm ICML 2025
The training and deployment of large language models (LLMs) create a feedback loop with human users: models learn human beliefs from data, reinforce these beliefs with generated content, reabsorb the reinforced beliefs, and feed them back to users again and again. This dynamic resembles an echo chamber. We hypothesize that this feedback loop entrenches the existing values and beliefs of users, leading to a loss of diversity and potentially the lock-in of false beliefs. We formalize this hypothesis and test it empirically with agent-based LLM simulations and real-world GPT usage data. Analysis reveals sudden but sustained drops in diversity after the release of new GPT iterations, consistent with the hypothesized human-AI feedback loop. Code and data available at https://thelockinhypothesis.com
comment: ICML 2025, 46 pages
☆ (AI peers) are people learning from the same standpoint: Perception of AI characters in a Collaborative Science Investigation
While the complexity of 21st-century demands has promoted pedagogical approaches to foster complex competencies, a persistent gap remains between in-class learning activities and individualized learning or assessment practices. To address this, studies have explored the use of AI-generated characters in learning and assessment. One attempt is scenario-based assessment (SBA), a technique that not only measures but also fosters the development of competencies throughout the assessment process. SBA introduces simulated agents to provide an authentic social-interactional context, allowing for the assessment of competency-based constructs while mitigating the unpredictability of real-life interactions. Recent advancements in multimodal AI, such as text-to-video technology, allow these agents to be enhanced into AI-generated characters. This mixed-method study investigates how learners perceive AI characters taking the role of mentor and teammates in an SBA mirroring the context of a collaborative science investigation. Specifically, we examined the Likert scale responses of 56 high schoolers regarding trust, social presence, and effectiveness. We analyzed the relationships between these factors and their impact on the intention to adopt AI characters through PLS-SEM. Our findings indicated that learners' trust shaped their sense of social presence with the AI characters, enhancing perceived effectiveness. Qualitative analysis further highlighted factors that foster trust, such as material credibility and alignment with learning goals, as well as the pivotal role of social presence in creating a collaborative context. This paper was accepted as an full paper for AIED 2025.
comment: 14 pages
☆ Recommender systems, stigmergy, and the tyranny of popularity
Scientific recommender systems, such as Google Scholar and Web of Science, are essential tools for discovery. Search algorithms that power work through stigmergy, a collective intelligence mechanism that surfaces useful paths through repeated engagement. While generally effective, this ``rich-get-richer'' dynamic results in a small number of high-profile papers that dominate visibility. This essay argues argue that these algorithm over-reliance on popularity fosters intellectual homogeneity and exacerbates structural inequities, stifling innovative and diverse perspectives critical for scientific progress. We propose an overhaul of search platforms to incorporate user-specific calibration, allowing researchers to manually adjust the weights of factors like popularity, recency, and relevance. We also advise platform developers on how word embeddings and LLMs could be implemented in ways that increase user autonomy. While our suggestions are particularly pertinent to aligning recommender systems with scientific values, these ideas are broadly applicable to information access systems in general. Designing platforms that increase user autonomy is an important step toward more robust and dynamic information
☆ Joint-GCG: Unified Gradient-Based Poisoning Attacks on Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by retrieving relevant documents from external corpora before generating responses. This approach significantly expands LLM capabilities by leveraging vast, up-to-date external knowledge. However, this reliance on external knowledge makes RAG systems vulnerable to corpus poisoning attacks that manipulate generated outputs via poisoned document injection. Existing poisoning attack strategies typically treat the retrieval and generation stages as disjointed, limiting their effectiveness. We propose Joint-GCG, the first framework to unify gradient-based attacks across both retriever and generator models through three innovations: (1) Cross-Vocabulary Projection for aligning embedding spaces, (2) Gradient Tokenization Alignment for synchronizing token-level gradient signals, and (3) Adaptive Weighted Fusion for dynamically balancing attacking objectives. Evaluations demonstrate that Joint-GCG achieves at most 25% and an average of 5% higher attack success rate than previous methods across multiple retrievers and generators. While optimized under a white-box assumption, the generated poisons show unprecedented transferability to unseen models. Joint-GCG's innovative unification of gradient-based attacks across retrieval and generation stages fundamentally reshapes our understanding of vulnerabilities within RAG systems. Our code is available at https://github.com/NicerWang/Joint-GCG.
☆ Decomposability-Guaranteed Cooperative Coevolution for Large-Scale Itinerary Planning
Large-scale itinerary planning is a variant of the traveling salesman problem, aiming to determine an optimal path that maximizes the collected points of interest (POIs) scores while minimizing travel time and cost, subject to travel duration constraints. This paper analyzes the decomposability of large-scale itinerary planning, proving that strict decomposability is difficult to satisfy, and introduces a weak decomposability definition based on a necessary condition, deriving the corresponding graph structures that fulfill this property. With decomposability guaranteed, we propose a novel multi-objective cooperative coevolutionary algorithm for large-scale itinerary planning, addressing the challenges of component imbalance and interactions. Specifically, we design a dynamic decomposition strategy based on the normalized fitness within each component, define optimization potential considering component scale and contribution, and develop a computational resource allocation strategy. Finally, we evaluate the proposed algorithm on a set of real-world datasets. Comparative experiments with state-of-the-art multi-objective itinerary planning algorithms demonstrate the superiority of our approach, with performance advantages increasing as the problem scale grows.
☆ Phonetically-Augmented Discriminative Rescoring for Voice Search Error Correction
End-to-end (E2E) Automatic Speech Recognition (ASR) models are trained using paired audio-text samples that are expensive to obtain, since high-quality ground-truth data requires human annotators. Voice search applications, such as digital media players, leverage ASR to allow users to search by voice as opposed to an on-screen keyboard. However, recent or infrequent movie titles may not be sufficiently represented in the E2E ASR system's training data, and hence, may suffer poor recognition. In this paper, we propose a phonetic correction system that consists of (a) a phonetic search based on the ASR model's output that generates phonetic alternatives that may not be considered by the E2E system, and (b) a rescorer component that combines the ASR model recognition and the phonetic alternatives, and select a final system output. We find that our approach improves word error rate between 4.4 and 7.6% relative on benchmarks of popular movie titles over a series of competitive baselines.
comment: To appear at Interspeech '25
☆ Towards Lifecycle Unlearning Commitment Management: Measuring Sample-level Unlearning Completeness USENIX Security
Growing concerns over data privacy and security highlight the importance of machine unlearning--removing specific data influences from trained models without full retraining. Techniques like Membership Inference Attacks (MIAs) are widely used to externally assess successful unlearning. However, existing methods face two key limitations: (1) maximizing MIA effectiveness (e.g., via online attacks) requires prohibitive computational resources, often exceeding retraining costs; (2) MIAs, designed for binary inclusion tests, struggle to capture granular changes in approximate unlearning. To address these challenges, we propose the Interpolated Approximate Measurement (IAM), a framework natively designed for unlearning inference. IAM quantifies sample-level unlearning completeness by interpolating the model's generalization-fitting behavior gap on queried samples. IAM achieves strong performance in binary inclusion tests for exact unlearning and high correlation for approximate unlearning--scalable to LLMs using just one pre-trained shadow model. We theoretically analyze how IAM's scoring mechanism maintains performance efficiently. We then apply IAM to recent approximate unlearning algorithms, revealing general risks of both over-unlearning and under-unlearning, underscoring the need for stronger safeguards in approximate unlearning systems. The code is available at https://github.com/Happy2Git/Unlearning_Inference_IAM.
comment: To appear in the Proceedings of USENIX Security Symposium, 2025
☆ Simple Yet Effective: Extracting Private Data Across Clients in Federated Fine-Tuning of Large Language Models
Federated fine-tuning of large language models (FedLLMs) presents a promising approach for achieving strong model performance while preserving data privacy in sensitive domains. However, the inherent memorization ability of LLMs makes them vulnerable to training data extraction attacks. To investigate this risk, we introduce simple yet effective extraction attack algorithms specifically designed for FedLLMs. In contrast to prior "verbatim" extraction attacks, which assume access to fragments from all training data, our approach operates under a more realistic threat model, where the attacker only has access to a single client's data and aims to extract previously unseen personally identifiable information (PII) from other clients. This requires leveraging contextual prefixes held by the attacker to generalize across clients. To evaluate the effectiveness of our approaches, we propose two rigorous metrics-coverage rate and efficiency-and extend a real-world legal dataset with PII annotations aligned with CPIS, GDPR, and CCPA standards, achieving 89.9% human-verified precision. Experimental results show that our method can extract up to 56.57% of victim-exclusive PII, with "Address," "Birthday," and "Name" being the most vulnerable categories. Our findings underscore the pressing need for robust defense strategies and contribute a new benchmark and evaluation framework for future research in privacy-preserving federated learning.
comment: 10 pages, 4 figures
☆ Microgrids Coalitions for Energy Market Balancing
With the integration of renewable sources in electricity distribution networks, the need to develop intelligent mechanisms for balancing the energy market has arisen. In the absence of such mechanisms, the energy market may face imbalances that can lead to power outages, financial losses or instability at the grid level. In this context, the grouping of microgrids into optimal coalitions that can absorb energy from the market during periods of surplus or supply energy to the market during periods of is a key aspect in the efficient management of distribution networks. In this article, we propose a method that identify an optimal microgrids coalition capable of addressing the dynamics of the energy market. The proposed method models the problem of identifying the optimal coalition as an optimization problem that it solves by combining a strategy inspired by cooperative game theory with a memetic algorithm. An individual is represented as a coalition of microgrids and the evolution of population of individuals over generations is assured by recombination and mutation. The fitness function is defined as the difference between the total value generated by the coalition and a penalty applied to the coalition when the energy traded by coalition exceeds the energy available/demanded on/by the energy market. The value generated by the coalition is calculated based on the profit obtained by the collation if it sells energy on the market during periods of deficit or the savings obtained by the coalition if it buys energy on the market during periods of surplus and the costs associated with the trading process. This value is divided equitably among the coalition members, according to the Shapley value, which considers the contribution of each one to the formation of collective value.
☆ Hey, That's My Data! Label-Only Dataset Inference in Large Language Models
Large Language Models (LLMs) have revolutionized Natural Language Processing by excelling at interpreting, reasoning about, and generating human language. However, their reliance on large-scale, often proprietary datasets poses a critical challenge: unauthorized usage of such data can lead to copyright infringement and significant financial harm. Existing dataset-inference methods typically depend on log probabilities to detect suspicious training material, yet many leading LLMs have begun withholding or obfuscating these signals. This reality underscores the pressing need for label-only approaches capable of identifying dataset membership without relying on internal model logits. We address this gap by introducing CatShift, a label-only dataset-inference framework that capitalizes on catastrophic forgetting: the tendency of an LLM to overwrite previously learned knowledge when exposed to new data. If a suspicious dataset was previously seen by the model, fine-tuning on a portion of it triggers a pronounced post-tuning shift in the model's outputs; conversely, truly novel data elicits more modest changes. By comparing the model's output shifts for a suspicious dataset against those for a known non-member validation set, we statistically determine whether the suspicious set is likely to have been part of the model's original training corpus. Extensive experiments on both open-source and API-based LLMs validate CatShift's effectiveness in logit-inaccessible settings, offering a robust and practical solution for safeguarding proprietary data.
☆ FPDANet: A Multi-Section Classification Model for Intelligent Screening of Fetal Ultrasound
ResNet has been widely used in image classification tasks due to its ability to model the residual dependence of constant mappings for linear computation. However, the ResNet method adopts a unidirectional transfer of features and lacks an effective method to correlate contextual information, which is not effective in classifying fetal ultrasound images in the classification task, and fetal ultrasound images have problems such as low contrast, high similarity, and high noise. Therefore, we propose a bilateral multi-scale information fusion network-based FPDANet to address the above challenges. Specifically, we design the positional attention mechanism (DAN) module, which utilizes the similarity of features to establish the dependency of different spatial positional features and enhance the feature representation. In addition, we design a bilateral multi-scale (FPAN) information fusion module to capture contextual and global feature dependencies at different feature scales, thereby further improving the model representation. FPDANet classification results obtained 91.05\% and 100\% in Top-1 and Top-5 metrics, respectively, and the experimental results proved the effectiveness and robustness of FPDANet.
☆ CP-Bench: Evaluating Large Language Models for Constraint Modelling
Combinatorial problems are present in a wide range of industries. Constraint Programming (CP) is a well-suited problem-solving paradigm, but its core process, namely constraint modelling, is a bottleneck for wider adoption. Aiming to alleviate this bottleneck, recent studies have explored using Large Language Models (LLMs) as modelling assistants, transforming combinatorial problem descriptions to executable constraint models, similar to coding assistants. However, the existing evaluation datasets for constraint modelling are often limited to small, homogeneous, or domain-specific instances, which do not capture the diversity of real-world scenarios. This work addresses this gap by introducing CP-Bench, a novel benchmark dataset that includes a diverse set of well-known combinatorial problem classes sourced from the CP community, structured explicitly for evaluating LLM-driven CP modelling. With this dataset, and given the variety of constraint modelling frameworks, we compare and evaluate the modelling capabilities of LLMs for three distinct constraint modelling systems, which vary in abstraction level and underlying syntax: the high-level MiniZinc language and Python-based CPMpy library, and the lower-level Python interface of the OR-Tools CP-SAT solver. In order to enhance the ability of LLMs to produce valid constraint models, we systematically evaluate the use of prompt-based and inference-time compute methods adapted from existing LLM-based code generation research. Our results underscore the modelling convenience provided by Python-based frameworks, as well as the effectiveness of documentation-rich system prompts, which, augmented with repeated sampling and self-verification, achieve further improvements, reaching up to 70\% accuracy on this new, highly challenging benchmark.
☆ TRUST: Test-time Resource Utilization for Superior Trustworthiness
Standard uncertainty estimation techniques, such as dropout, often struggle to clearly distinguish reliable predictions from unreliable ones. We attribute this limitation to noisy classifier weights, which, while not impairing overall class-level predictions, render finer-level statistics less informative. To address this, we propose a novel test-time optimization method that accounts for the impact of such noise to produce more reliable confidence estimates. This score defines a monotonic subset-selection function, where population accuracy consistently increases as samples with lower scores are removed, and it demonstrates superior performance in standard risk-based metrics such as AUSE and AURC. Additionally, our method effectively identifies discrepancies between training and test distributions, reliably differentiates in-distribution from out-of-distribution samples, and elucidates key differences between CNN and ViT classifiers across various vision datasets.
☆ HAVIR: HierArchical Vision to Image Reconstruction using CLIP-Guided Versatile Diffusion
Reconstructing visual information from brain activity bridges the gap between neuroscience and computer vision. Even though progress has been made in decoding images from fMRI using generative models, a challenge remains in accurately recovering highly complex visual stimuli. This difficulty stems from their elemental density and diversity, sophisticated spatial structures, and multifaceted semantic information. To address these challenges, we propose HAVIR that contains two adapters: (1) The AutoKL Adapter transforms fMRI voxels into a latent diffusion prior, capturing topological structures; (2) The CLIP Adapter converts the voxels to CLIP text and image embeddings, containing semantic information. These complementary representations are fused by Versatile Diffusion to generate the final reconstructed image. To extract the most essential semantic information from complex scenarios, the CLIP Adapter is trained with text captions describing the visual stimuli and their corresponding semantic images synthesized from these captions. The experimental results demonstrate that HAVIR effectively reconstructs both structural features and semantic information of visual stimuli even in complex scenarios, outperforming existing models.
comment: 15 pages, 6 figures, 3 tabs
☆ End-to-End Framework for Robot Lawnmower Coverage Path Planning using Cellular Decomposition ICRA 2025
Efficient Coverage Path Planning (CPP) is necessary for autonomous robotic lawnmowers to effectively navigate and maintain lawns with diverse and irregular shapes. This paper introduces a comprehensive end-to-end pipeline for CPP, designed to convert user-defined boundaries on an aerial map into optimized coverage paths seamlessly. The pipeline includes user input extraction, coordinate transformation, area decomposition and path generation using our novel AdaptiveDecompositionCPP algorithm, preview and customization through an interactive coverage path visualizer, and conversion to actionable GPS waypoints. The AdaptiveDecompositionCPP algorithm combines cellular decomposition with an adaptive merging strategy to reduce non-mowing travel thereby enhancing operational efficiency. Experimental evaluations, encompassing both simulations and real-world lawnmower tests, demonstrate the effectiveness of the framework in coverage completeness and mowing efficiency.
comment: 8 pages, ICRA 2025, Workshop on Field Robotics
☆ When to Trust Context: Self-Reflective Debates for Context Reliability
Large language models frequently encounter conflicts between their parametric knowledge and contextual input, often resulting in factual inconsistencies or hallucinations. We propose Self-Reflective Debate for Contextual Reliability (SR-DCR), a lightweight framework that integrates token-level self-confidence with an asymmetric multi-agent debate to adjudicate such conflicts. A critic, deprived of context, challenges a defender who argues from the given passage; a judge model evaluates the debate and determines the context's reliability. The final answer is selected by combining the verdict with model confidence. Experiments on the ClashEval benchmark demonstrate that SR-DCR consistently enhances robustness to misleading context while maintaining accuracy on trustworthy inputs, outperforming both classical debate and confidence-only baselines with minimal computational overhead. The code is available at https://github.com/smiles724/Self-Reflective-Debates.
Optimization-Free Universal Watermark Forgery with Regenerative Diffusion Models
Watermarking becomes one of the pivotal solutions to trace and verify the origin of synthetic images generated by artificial intelligence models, but it is not free of risks. Recent studies demonstrate the capability to forge watermarks from a target image onto cover images via adversarial optimization without knowledge of the target generative model and watermark schemes. In this paper, we uncover a greater risk of an optimization-free and universal watermark forgery that harnesses existing regenerative diffusion models. Our proposed forgery attack, PnP (Plug-and-Plant), seamlessly extracts and integrates the target watermark via regenerating the image, without needing any additional optimization routine. It allows for universal watermark forgery that works independently of the target image's origin or the watermarking model used. We explore the watermarked latent extracted from the target image and visual-textual context of cover images as priors to guide sampling of the regenerative process. Extensive evaluation on 24 scenarios of model-data-watermark combinations demonstrates that PnP can successfully forge the watermark (up to 100% detectability and user attribution), and maintain the best visual perception. By bypassing model retraining and enabling adaptability to any image, our approach significantly broadens the scope of forgery attacks, presenting a greater challenge to the security of current watermarking techniques for diffusion models and the authority of watermarking schemes in synthetic data generation and governance.
☆ Unlocking Recursive Thinking of LLMs: Alignment via Refinement ACL 2025
The OpenAI o1-series models have demonstrated that leveraging long-form Chain of Thought (CoT) can substantially enhance performance. However, the recursive thinking capabilities of Large Language Models (LLMs) remain limited, particularly in the absence of expert-curated data for distillation. In this paper, we propose \textbf{AvR}: \textbf{Alignment via Refinement}, a novel method aimed at unlocking the potential of LLMs for recursive reasoning through long-form CoT. AvR introduces a refinement process that integrates criticism and improvement actions, guided by differentiable learning techniques to optimize \textbf{refinement-aware rewards}. As a result, the synthesized multi-round data can be organized as a long refinement thought, further enabling test-time scaling. Experimental results show that AvR significantly outperforms conventional preference optimization methods. Notably, with only 3k synthetic samples, our method boosts the performance of the LLaMA-3-8B-Instruct model by over 20\% in win rate on AlpacaEval 2.0. Our code is available at Github (https://github.com/Banner-Z/AvR.git).
comment: Accepted to the Findings of ACL 2025
☆ Token Signature: Predicting Chain-of-Thought Gains with Token Decoding Feature in Large Language Models ICML2025
Chain-of-Thought (CoT) technique has proven effective in improving the performance of large language models (LLMs) on complex reasoning tasks. However, the performance gains are inconsistent across different tasks, and the underlying mechanism remains a long-standing research question. In this work, we make a preliminary observation that the monotonicity of token probability distributions may be correlated with the gains achieved through CoT reasoning. Leveraging this insight, we propose two indicators based on the token probability distribution to assess CoT effectiveness across different tasks. By combining instance-level indicators with logistic regression model, we introduce Dynamic CoT, a method that dynamically select between CoT and direct answer. Furthermore, we extend Dynamic CoT to closed-source models by transferring decision strategies learned from open-source models. Our indicators for assessing CoT effectiveness achieve an accuracy of 89.2\%, and Dynamic CoT reduces token consumption by more than 35\% while maintaining high accuracy. Overall, our work offers a novel perspective on the underlying mechanisms of CoT reasoning and provides a framework for its more efficient deployment.
comment: 20 pages, 6 figures, 13 tables(Accept by ICML2025)
☆ Enhancing Orthopox Image Classification Using Hybrid Machine Learning and Deep Learning Models
Orthopoxvirus infections must be accurately classified from medical pictures for an easy and early diagnosis and epidemic prevention. The necessity for automated and scalable solutions is highlighted by the fact that traditional diagnostic techniques can be time-consuming and require expert interpretation and there are few and biased data sets of the different types of Orthopox. In order to improve classification performance and lower computational costs, a hybrid strategy is put forth in this paper that uses Machine Learning models combined with pretrained Deep Learning models to extract deep feature representations without the need for augmented data. The findings show that this feature extraction method, when paired with other methods in the state-of-the-art, produces excellent classification outcomes while preserving training and inference efficiency. The proposed approach demonstrates strong generalization and robustness across multiple evaluation settings, offering a scalable and interpretable solution for real-world clinical deployment.
☆ Bootstrapping World Models from Dynamics Models in Multimodal Foundation Models
To what extent do vision-and-language foundation models possess a realistic world model (observation $\times$ action $\rightarrow$ observation) and a dynamics model (observation $\times$ observation $\rightarrow$ action), when actions are expressed through language? While open-source foundation models struggle with both, we find that fine-tuning them to acquire a dynamics model through supervision is significantly easier than acquiring a world model. In turn, dynamics models can be used to bootstrap world models through two main strategies: 1) weakly supervised learning from synthetic data and 2) inference time verification. Firstly, the dynamics model can annotate actions for unlabelled pairs of video frame observations to expand the training data. We further propose a new objective, where image tokens in observation pairs are weighted by their importance, as predicted by a recognition model. Secondly, the dynamics models can assign rewards to multiple samples of the world model to score them, effectively guiding search at inference time. We evaluate the world models resulting from both strategies through the task of action-centric image editing on Aurora-Bench. Our best model achieves a performance competitive with state-of-the-art image editing models, improving on them by a margin of $15\%$ on real-world subsets according to GPT4o-as-judge, and achieving the best average human evaluation across all subsets of Aurora-Bench.
☆ Leveraging Generative AI for Enhancing Automated Assessment in Programming Education Contests
Competitive programming contests play a crucial role in cultivating computational thinking and algorithmic skills among learners. However, generating comprehensive test cases to effectively assess programming solutions remains resource-intensive and challenging for educators. This paper introduces an innovative NLP-driven method leveraging generative AI (large language models) to automate the creation of high-quality test cases for competitive programming assessments. We extensively evaluated our approach on diverse datasets, including 25 years of Romanian Informatics Olympiad (OJI) data for 5th graders, recent competitions hosted on the Kilonova.ro platform, and the International Informatics Olympiad in Teams (IIOT). Our results demonstrate that AI-generated test cases substantially enhanced assessments, notably identifying previously undetected errors in 67% of the OJI 5th grade programming problems. These improvements underscore the complementary educational value of our technique in formative assessment contexts. By openly sharing our prompts, translated datasets, and methodologies, we offer practical NLP-based tools that educators and contest organizers can readily integrate to enhance assessment quality, reduce workload, and deepen insights into learner performance.
comment: 11 pages, 2 chart pies, 1 figure Pre-print version Accepted at BEA 2025
☆ Audio-Aware Large Language Models as Judges for Speaking Styles
Audio-aware large language models (ALLMs) can understand the textual and non-textual information in the audio input. In this paper, we explore using ALLMs as an automatic judge to assess the speaking styles of speeches. We use ALLM judges to evaluate the speeches generated by SLMs on two tasks: voice style instruction following and role-playing. The speaking style we consider includes emotion, volume, speaking pace, word emphasis, pitch control, and non-verbal elements. We use four spoken language models (SLMs) to complete the two tasks and use humans and ALLMs to judge the SLMs' responses. We compare two ALLM judges, GPT-4o-audio and Gemini-2.5-pro, with human evaluation results and show that the agreement between Gemini and human judges is comparable to the agreement between human evaluators. These promising results show that ALLMs can be used as a judge to evaluate SLMs. Our results also reveal that current SLMs, even GPT-4o-audio, still have room for improvement in controlling the speaking style and generating natural dialogues.
☆ CrimeMind: Simulating Urban Crime with Multi-Modal LLM Agents
Modeling urban crime is an important yet challenging task that requires understanding the subtle visual, social, and cultural cues embedded in urban environments. Previous work has predominantly focused on rule-based agent-based modeling (ABM) and deep learning methods. ABMs offer interpretability of internal mechanisms but exhibit limited predictive accuracy.In contrast, deep learning methods are often effective in prediction but are less interpretable and require extensive training data. Moreover, both lines of work lack the cognitive flexibility to adapt to changing environments. Leveraging the capabilities of large language models (LLMs), we propose CrimeMind, a novel LLM-driven ABM framework for simulating urban crime within a multi-modal urban context.A key innovation of our design is the integration of the Routine Activity Theory (RAT) into the agentic workflow of CrimeMind, enabling it to process rich multi-modal urban features and reason about criminal behavior.However, RAT requires LLM agents to infer subtle cues in evaluating environmental safety as part of assessing guardianship, which can be challenging for LLMs. To address this, we collect a small-scale human-annotated dataset and align CrimeMind's perception with human judgment via a training-free textual gradient method.Experiments across four major U.S. cities demonstrate that CrimeMind outperforms both traditional ABMs and deep learning baselines in crime hotspot prediction and spatial distribution accuracy, achieving up to a 24% improvement over the strongest baseline.Furthermore, we conduct counterfactual simulations of external incidents and policy interventions and it successfully captures the expected changes in crime patterns, demonstrating its ability to reflect counterfactual scenarios.Overall, CrimeMind enables fine-grained modeling of individual behaviors and facilitates evaluation of real-world interventions.
☆ AMPED: Adaptive Multi-objective Projection for balancing Exploration and skill Diversification
Skill-based reinforcement learning (SBRL) enables rapid adaptation in environments with sparse rewards by pretraining a skill-conditioned policy. Effective skill learning requires jointly maximizing both exploration and skill diversity. However, existing methods often face challenges in simultaneously optimizing for these two conflicting objectives. In this work, we propose a new method, Adaptive Multi-objective Projection for balancing Exploration and skill Diversification (AMPED), which explicitly addresses both exploration and skill diversification. We begin by conducting extensive ablation studies to identify and define a set of objectives that effectively capture the aspects of exploration and skill diversity, respectively. During the skill pretraining phase, AMPED introduces a gradient surgery technique to balance the objectives of exploration and skill diversity, mitigating conflicts and reducing reliance on heuristic tuning. In the subsequent fine-tuning phase, AMPED incorporates a skill selector module that dynamically selects suitable skills for downstream tasks, based on task-specific performance signals. Our approach achieves performance that surpasses SBRL baselines across various benchmarks. These results highlight the importance of explicitly harmonizing exploration and diversity and demonstrate the effectiveness of AMPED in enabling robust and generalizable skill learning. Project Page: https://geonwoo.me/amped/
☆ On Measuring Long-Range Interactions in Graph Neural Networks ICML 2025
Long-range graph tasks -- those dependent on interactions between distant nodes -- are an open problem in graph neural network research. Real-world benchmark tasks, especially the Long Range Graph Benchmark, have become popular for validating the long-range capability of proposed architectures. However, this is an empirical approach that lacks both robustness and theoretical underpinning; a more principled characterization of the long-range problem is required. To bridge this gap, we formalize long-range interactions in graph tasks, introduce a range measure for operators on graphs, and validate it with synthetic experiments. We then leverage our measure to examine commonly used tasks and architectures, and discuss to what extent they are, in fact, long-range. We believe our work advances efforts to define and address the long-range problem on graphs, and that our range measure will aid evaluation of new datasets and architectures.
comment: ICML 2025
☆ Let's Put Ourselves in Sally's Shoes: Shoes-of-Others Prefixing Improves Theory of Mind in Large Language Models
Recent studies have shown that Theory of Mind (ToM) in large language models (LLMs) has not reached human-level performance yet. Since fine-tuning LLMs on ToM datasets often degrades their generalization, several inference-time methods have been proposed to enhance ToM in LLMs. However, existing inference-time methods for ToM are specialized for inferring beliefs from contexts involving changes in the world state. In this study, we present a new inference-time method for ToM, Shoes-of-Others (SoO) prefixing, which makes fewer assumptions about contexts and is applicable to broader scenarios. SoO prefixing simply specifies the beginning of LLM outputs with ``Let's put ourselves in A's shoes.'', where A denotes the target character's name. We evaluate SoO prefixing on two benchmarks that assess ToM in conversational and narrative contexts without changes in the world state and find that it consistently improves ToM across five categories of mental states. Our analysis suggests that SoO prefixing elicits faithful thoughts, thereby improving the ToM performance.
comment: 14pages, 12 figures
☆ Gradual Transition from Bellman Optimality Operator to Bellman Operator in Online Reinforcement Learning ICML 2025
For continuous action spaces, actor-critic methods are widely used in online reinforcement learning (RL). However, unlike RL algorithms for discrete actions, which generally model the optimal value function using the Bellman optimality operator, RL algorithms for continuous actions typically model Q-values for the current policy using the Bellman operator. These algorithms for continuous actions rely exclusively on policy updates for improvement, which often results in low sample efficiency. This study examines the effectiveness of incorporating the Bellman optimality operator into actor-critic frameworks. Experiments in a simple environment show that modeling optimal values accelerates learning but leads to overestimation bias. To address this, we propose an annealing approach that gradually transitions from the Bellman optimality operator to the Bellman operator, thereby accelerating learning while mitigating bias. Our method, combined with TD3 and SAC, significantly outperforms existing approaches across various locomotion and manipulation tasks, demonstrating improved performance and robustness to hyperparameters related to optimality.
comment: Accepted at ICML 2025. Source code: https://github.com/motokiomura/annealed-q-learning
☆ Preference Learning for AI Alignment: a Causal Perspective
Reward modelling from preference data is a crucial step in aligning large language models (LLMs) with human values, requiring robust generalisation to novel prompt-response pairs. In this work, we propose to frame this problem in a causal paradigm, providing the rich toolbox of causality to identify the persistent challenges, such as causal misidentification, preference heterogeneity, and confounding due to user-specific factors. Inheriting from the literature of causal inference, we identify key assumptions necessary for reliable generalisation and contrast them with common data collection practices. We illustrate failure modes of naive reward models and demonstrate how causally-inspired approaches can improve model robustness. Finally, we outline desiderata for future research and practices, advocating targeted interventions to address inherent limitations of observational data.
☆ MOGO: Residual Quantized Hierarchical Causal Transformer for High-Quality and Real-Time 3D Human Motion Generation
Recent advances in transformer-based text-to-motion generation have led to impressive progress in synthesizing high-quality human motion. Nevertheless, jointly achieving high fidelity, streaming capability, real-time responsiveness, and scalability remains a fundamental challenge. In this paper, we propose MOGO (Motion Generation with One-pass), a novel autoregressive framework tailored for efficient and real-time 3D motion generation. MOGO comprises two key components: (1) MoSA-VQ, a motion scale-adaptive residual vector quantization module that hierarchically discretizes motion sequences with learnable scaling to produce compact yet expressive representations; and (2) RQHC-Transformer, a residual quantized hierarchical causal transformer that generates multi-layer motion tokens in a single forward pass, significantly reducing inference latency. To enhance semantic fidelity, we further introduce a text condition alignment mechanism that improves motion decoding under textual control. Extensive experiments on benchmark datasets including HumanML3D, KIT-ML, and CMP demonstrate that MOGO achieves competitive or superior generation quality compared to state-of-the-art transformer-based methods, while offering substantial improvements in real-time performance, streaming generation, and generalization under zero-shot settings.
comment: 9 pages, 4 figures, conference
☆ IntentionESC: An Intention-Centered Framework for Enhancing Emotional Support in Dialogue Systems ACL2025
In emotional support conversations, unclear intentions can lead supporters to employ inappropriate strategies, inadvertently imposing their expectations or solutions on the seeker. Clearly defined intentions are essential for guiding both the supporter's motivations and the overall emotional support process. In this paper, we propose the Intention-centered Emotional Support Conversation (IntentionESC) framework, which defines the possible intentions of supporters in emotional support conversations, identifies key emotional state aspects for inferring these intentions, and maps them to appropriate support strategies. While Large Language Models (LLMs) excel in text generating, they fundamentally operate as probabilistic models trained on extensive datasets, lacking a true understanding of human thought processes and intentions. To address this limitation, we introduce the Intention Centric Chain-of-Thought (ICECoT) mechanism. ICECoT enables LLMs to mimic human reasoning by analyzing emotional states, inferring intentions, and selecting suitable support strategies, thereby generating more effective emotional support responses. To train the model with ICECoT and integrate expert knowledge, we design an automated annotation pipeline that produces high-quality training data. Furthermore, we develop a comprehensive evaluation scheme to assess emotional support efficacy and conduct extensive experiments to validate our framework. Our data and code are available at https://github.com/43zxj/IntentionESC_ICECoT.
comment: ACL2025 findings
☆ Comparative Analysis of Modern Machine Learning Models for Retail Sales Forecasting
Accurate forecasting is key for all business planning. When estimated sales are too high, brick-and-mortar retailers may incur higher costs due to unsold inventories, higher labor and storage space costs, etc. On the other hand, when forecasts underestimate the level of sales, firms experience lost sales, shortages, and impact on the reputation of the retailer in their relevant market. Accurate forecasting presents a competitive advantage for companies. It facilitates the achievement of revenue and profit goals and execution of pricing strategy and tactics. In this study, we provide an exhaustive assessment of the forecasting models applied to a high-resolution brick-and-mortar retail dataset. Our forecasting framework addresses the problems found in retail environments, including intermittent demand, missing values, and frequent product turnover. We compare tree-based ensembles (such as XGBoost and LightGBM) and state-of-the-art neural network architectures (including N-BEATS, NHITS, and the Temporal Fusion Transformer) across various experimental settings. Our results show that localized modeling strategies especially those using tree-based models on individual groups with non-imputed data, consistently deliver superior forecasting accuracy and computational efficiency. In contrast, neural models benefit from advanced imputation methods, yet still fall short in handling the irregularities typical of physical retail data. These results further practical understanding for model selection in retail environment and highlight the significance of data preprocessing to improve forecast performance.
comment: 20 total pages, 10 pages article, 10 pages appendix, 3 figures, 24 tables
☆ Quantifying Adversarial Uncertainty in Evidential Deep Learning using Conflict Resolution
Reliability of deep learning models is critical for deployment in high-stakes applications, where out-of-distribution or adversarial inputs may lead to detrimental outcomes. Evidential Deep Learning, an efficient paradigm for uncertainty quantification, models predictions as Dirichlet distributions of a single forward pass. However, EDL is particularly vulnerable to adversarially perturbed inputs, making overconfident errors. Conflict-aware Evidential Deep Learning (C-EDL) is a lightweight post-hoc uncertainty quantification approach that mitigates these issues, enhancing adversarial and OOD robustness without retraining. C-EDL generates diverse, task-preserving transformations per input and quantifies representational disagreement to calibrate uncertainty estimates when needed. C-EDL's conflict-aware prediction adjustment improves detection of OOD and adversarial inputs, maintaining high in-distribution accuracy and low computational overhead. Our experimental evaluation shows that C-EDL significantly outperforms state-of-the-art EDL variants and competitive baselines, achieving substantial reductions in coverage for OOD data (up to 55%) and adversarial data (up to 90%), across a range of datasets, attack types, and uncertainty metrics.
DynamicMind: A Tri-Mode Thinking System for Large Language Models
Modern large language models (LLMs) often struggle to dynamically adapt their reasoning depth to varying task complexities, leading to suboptimal performance or inefficient resource utilization. To address this, we introduce DynamicMind, a novel tri-mode thinking system. DynamicMind empowers LLMs to autonomously select between Fast, Normal, and Slow thinking modes for zero-shot question answering (ZSQA) tasks through cognitive-inspired prompt engineering. Our framework's core innovations include: (1) expanding the established dual-process framework of fast and slow thinking into a tri-mode thinking system involving a normal thinking mode to preserve the intrinsic capabilities of LLM; (2) proposing the Thinking Density metric, which aligns computational resource allocation with problem complexity; and (3) developing the Thinking Mode Capacity (TMC) dataset and a lightweight Mind Router to predict the optimal thinking mode. Extensive experiments across diverse mathematical, commonsense, and scientific QA benchmarks demonstrate that DynamicMind achieves superior ZSQA capabilities while establishing an effective trade-off between performance and computational efficiency.
☆ FADE: Frequency-Aware Diffusion Model Factorization for Video Editing CVPR
Recent advancements in diffusion frameworks have significantly enhanced video editing, achieving high fidelity and strong alignment with textual prompts. However, conventional approaches using image diffusion models fall short in handling video dynamics, particularly for challenging temporal edits like motion adjustments. While current video diffusion models produce high-quality results, adapting them for efficient editing remains difficult due to the heavy computational demands that prevent the direct application of previous image editing techniques. To overcome these limitations, we introduce FADE, a training-free yet highly effective video editing approach that fully leverages the inherent priors from pre-trained video diffusion models via frequency-aware factorization. Rather than simply using these models, we first analyze the attention patterns within the video model to reveal how video priors are distributed across different components. Building on these insights, we propose a factorization strategy to optimize each component's specialized role. Furthermore, we devise spectrum-guided modulation to refine the sampling trajectory with frequency domain cues, preventing information leakage and supporting efficient, versatile edits while preserving the basic spatial and temporal structure. Extensive experiments on real-world videos demonstrate that our method consistently delivers high-quality, realistic and temporally coherent editing results both qualitatively and quantitatively. Code is available at https://github.com/EternalEvan/FADE .
comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
☆ MoA: Heterogeneous Mixture of Adapters for Parameter-Efficient Fine-Tuning of Large Language Models
Recent studies integrate Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE) to further enhance the performance of parameter-efficient fine-tuning (PEFT) methods in Large Language Model (LLM) applications. Existing methods employ \emph{homogeneous} MoE-LoRA architectures composed of LoRA experts with either similar or identical structures and capacities. However, these approaches often suffer from representation collapse and expert load imbalance, which negatively impact the potential of LLMs. To address these challenges, we propose a \emph{heterogeneous} \textbf{Mixture-of-Adapters (MoA)} approach. This method dynamically integrates PEFT adapter experts with diverse structures, leveraging their complementary representational capabilities to foster expert specialization, thereby enhancing the effective transfer of pre-trained knowledge to downstream tasks. MoA supports two variants: \textbf{(i)} \textit{Soft MoA} achieves fine-grained integration by performing a weighted fusion of all expert outputs; \textbf{(ii)} \textit{Sparse MoA} activates adapter experts sparsely based on their contribution, achieving this with negligible performance degradation. Experimental results demonstrate that heterogeneous MoA outperforms homogeneous MoE-LoRA methods in both performance and parameter efficiency. Our project is available at https://github.com/DCDmllm/MoA.
☆ LengClaro2023: A Dataset of Administrative Texts in Spanish with Plain Language adaptations
In this work, we present LengClaro2023, a dataset of legal-administrative texts in Spanish. Based on the most frequently used procedures from the Spanish Social Security website, we have created for each text two simplified equivalents. The first version follows the recommendations provided by arText claro. The second version incorporates additional recommendations from plain language guidelines to explore further potential improvements in the system. The linguistic resource created in this work can be used for evaluating automatic text simplification (ATS) systems in Spanish.
comment: In this report, we present a part of the master thesis written by Bel\'en Ag\"uera Marco in order to obtain the B.S. Language Analysis and Processing at the University of the Basque Country (UPV/EHU), supervised by Itziar Gonzalez-Dios
☆ Small Models, Big Support: A Local LLM Framework for Teacher-Centric Content Creation and Assessment using RAG and CAG
While Large Language Models (LLMs) are increasingly utilized as student-facing educational aids, their potential to directly support educators, particularly through locally deployable and customizable open-source solutions, remains significantly underexplored. Many existing educational solutions rely on cloud-based infrastructure or proprietary tools, which are costly and may raise privacy concerns. Regulated industries with limited budgets require affordable, self-hosted solutions. We introduce an end-to-end, open-source framework leveraging small (3B-7B parameters), locally deployed LLMs for customized teaching material generation and assessment. Our system uniquely incorporates an interactive loop crucial for effective small-model refinement, and an auxiliary LLM verifier to mitigate jailbreaking risks, enhancing output reliability and safety. Utilizing Retrieval and Context Augmented Generation (RAG/CAG), it produces factually accurate, customized pedagogically-styled content. Deployed on-premises for data privacy and validated through an evaluation pipeline and a college physics pilot, our findings show that carefully engineered small LLM systems can offer robust, affordable, practical, and safe educator support, achieving utility comparable to larger models for targeted tasks.
☆ Rethinking Semi-supervised Segmentation Beyond Accuracy: Reliability and Robustness
Semantic segmentation is critical for scene understanding but demands costly pixel-wise annotations, attracting increasing attention to semi-supervised approaches to leverage abundant unlabeled data. While semi-supervised segmentation is often promoted as a path toward scalable, real-world deployment, it is astonishing that current evaluation protocols exclusively focus on segmentation accuracy, entirely overlooking reliability and robustness. These qualities, which ensure consistent performance under diverse conditions (robustness) and well-calibrated model confidences as well as meaningful uncertainties (reliability), are essential for safety-critical applications like autonomous driving, where models must handle unpredictable environments and avoid sudden failures at all costs. To address this gap, we introduce the Reliable Segmentation Score (RSS), a novel metric that combines predictive accuracy, calibration, and uncertainty quality measures via a harmonic mean. RSS penalizes deficiencies in any of its components, providing an easy and intuitive way of holistically judging segmentation models. Comprehensive evaluations of UniMatchV2 against its predecessor and a supervised baseline show that semi-supervised methods often trade reliability for accuracy. While out-of-domain evaluations demonstrate UniMatchV2's robustness, they further expose persistent reliability shortcomings. We advocate for a shift in evaluation protocols toward more holistic metrics like RSS to better align semi-supervised learning research with real-world deployment needs.
☆ Proactive Assistant Dialogue Generation from Streaming Egocentric Videos
Recent advances in conversational AI have been substantial, but developing real-time systems for perceptual task guidance remains challenging. These systems must provide interactive, proactive assistance based on streaming visual inputs, yet their development is constrained by the costly and labor-intensive process of data collection and system evaluation. To address these limitations, we present a comprehensive framework with three key contributions. First, we introduce a novel data curation pipeline that synthesizes dialogues from annotated egocentric videos, resulting in \dataset, a large-scale synthetic dialogue dataset spanning multiple domains. Second, we develop a suite of automatic evaluation metrics, validated through extensive human studies. Third, we propose an end-to-end model that processes streaming video inputs to generate contextually appropriate responses, incorporating novel techniques for handling data imbalance and long-duration videos. This work lays the foundation for developing real-time, proactive AI assistants capable of guiding users through diverse tasks. Project page: https://pro-assist.github.io/
☆ Route-and-Reason: Scaling Large Language Model Reasoning with Reinforced Model Router
Multi-step reasoning has proven essential for enhancing the problem-solving capabilities of Large Language Models (LLMs) by decomposing complex tasks into intermediate steps, either explicitly or implicitly. Extending the reasoning chain at test time through deeper thought processes or broader exploration, can furthur improve performance, but often incurs substantial costs due to the explosion in token usage. Yet, many reasoning steps are relatively simple and can be handled by more efficient smaller-scale language models (SLMs). This motivates hybrid approaches that allocate subtasks across models of varying capacities. However, realizing such collaboration requires accurate task decomposition and difficulty-aware subtask allocation, which is challenging. To address this, we propose R2-Reasoner, a novel framework that enables collaborative reasoning across heterogeneous LLMs by dynamically routing sub-tasks based on estimated complexity. At the core of our framework is a Reinforced Model Router, composed of a task decomposer and a subtask allocator. The task decomposer segments complex input queries into logically ordered subtasks, while the subtask allocator assigns each subtask to the most appropriate model, ranging from lightweight SLMs to powerful LLMs, balancing accuracy and efficiency. To train this router, we introduce a staged pipeline that combines supervised fine-tuning on task-specific datasets with Group Relative Policy Optimization algorithm, enabling self-supervised refinement through iterative reinforcement learning. Extensive experiments across four challenging benchmarks demonstrate that R2-Reasoner reduces API costs by 86.85% while maintaining or surpassing baseline accuracy. Our framework paves the way for more cost-effective and adaptive LLM reasoning. The code is open-source at https://anonymous.4open.science/r/R2_Reasoner .
☆ WhisQ: Cross-Modal Representation Learning for Text-to-Music MOS Prediction
Mean Opinion Score (MOS) prediction for text to music systems requires evaluating both overall musical quality and text prompt alignment. This paper introduces WhisQ, a multimodal architecture that addresses this dual-assessment challenge through sequence level co-attention and optimal transport regularization. WhisQ employs the Whisper Base pretrained model for temporal audio encoding and Qwen 3, a 0.6B Small Language Model (SLM), for text encoding, with both maintaining sequence structure for fine grained cross-modal modeling. The architecture features specialized prediction pathways: OMQ is predicted from pooled audio embeddings, while TA leverages bidirectional sequence co-attention between audio and text. Sinkhorn optimal transport loss further enforce semantic alignment in the shared embedding space. On the MusicEval Track-1 dataset, WhisQ achieves substantial improvements over the baseline: 7% improvement in Spearman correlation for OMQ and 14% for TA. Ablation studies reveal that optimal transport regularization provides the largest performance gain (10% SRCC improvement), demonstrating the importance of explicit cross-modal alignment for text-to-music evaluation.
comment: 3 pages
☆ Object Navigation with Structure-Semantic Reasoning-Based Multi-level Map and Multimodal Decision-Making LLM
The zero-shot object navigation (ZSON) in unknown open-ended environments coupled with semantically novel target often suffers from the significant decline in performance due to the neglect of high-dimensional implicit scene information and the long-range target searching task. To address this, we proposed an active object navigation framework with Environmental Attributes Map (EAM) and MLLM Hierarchical Reasoning module (MHR) to improve its success rate and efficiency. EAM is constructed by reasoning observed environments with SBERT and predicting unobserved ones with Diffusion, utilizing human space regularities that underlie object-room correlations and area adjacencies. MHR is inspired by EAM to perform frontier exploration decision-making, avoiding the circuitous trajectories in long-range scenarios to improve path efficiency. Experimental results demonstrate that the EAM module achieves 64.5\% scene mapping accuracy on MP3D dataset, while the navigation task attains SPLs of 28.4\% and 26.3\% on HM3D and MP3D benchmarks respectively - representing absolute improvements of 21.4\% and 46.0\% over baseline methods.
comment: 16 pages, 11 figures
☆ Explainability in Context: A Multilevel Framework Aligning AI Explanations with Stakeholder with LLMs
The growing application of artificial intelligence in sensitive domains has intensified the demand for systems that are not only accurate but also explainable and trustworthy. Although explainable AI (XAI) methods have proliferated, many do not consider the diverse audiences that interact with AI systems: from developers and domain experts to end-users and society. This paper addresses how trust in AI is influenced by the design and delivery of explanations and proposes a multilevel framework that aligns explanations with the epistemic, contextual, and ethical expectations of different stakeholders. The framework consists of three layers: algorithmic and domain-based, human-centered, and social explainability. We highlight the emerging role of Large Language Models (LLMs) in enhancing the social layer by generating accessible, natural language explanations. Through illustrative case studies, we demonstrate how this approach facilitates technical fidelity, user engagement, and societal accountability, reframing XAI as a dynamic, trust-building process.
comment: 22 pages, 5 figures
☆ HMVLM: Multistage Reasoning-Enhanced Vision-Language Model for Long-Tailed Driving Scenarios
We present HaoMo Vision-Language Model (HMVLM), an end-to-end driving framework that implements the slow branch of a cognitively inspired fast-slow architecture. A fast controller outputs low-level steering, throttle, and brake commands, while a slow planner-a large vision-language model-generates high-level intents such as "yield to pedestrian" or "merge after the truck" without compromising latency. HMVLM introduces three upgrades: (1) selective five-view prompting with an embedded 4s history of ego kinematics, (2) multi-stage chain-of-thought (CoT) prompting that enforces a Scene Understanding -> Driving Decision -> Trajectory Inference reasoning flow, and (3) spline-based trajectory post-processing that removes late-stage jitter and sharp turns. Trained on the Waymo Open Dataset, these upgrades enable HMVLM to achieve a Rater Feedback Score (RFS) of 7.7367, securing 2nd place in the 2025 Waymo Vision-based End-to-End (E2E) Driving Challenge and surpassing the public baseline by 2.77%.
comment: WOD Vision-based End-to-End Driving Challenge
Research on Personalized Financial Product Recommendation by Integrating Large Language Models and Graph Neural Networks
With the rapid growth of fintech, personalized financial product recommendations have become increasingly important. Traditional methods like collaborative filtering or content-based models often fail to capture users' latent preferences and complex relationships. We propose a hybrid framework integrating large language models (LLMs) and graph neural networks (GNNs). A pre-trained LLM encodes text data (e.g., user reviews) into rich feature vectors, while a heterogeneous user-product graph models interactions and social ties. Through a tailored message-passing mechanism, text and graph information are fused within the GNN to jointly optimize embeddings. Experiments on public and real-world financial datasets show our model outperforms standalone LLM or GNN in accuracy, recall, and NDCG, with strong interpretability. This work offers new insights for personalized financial recommendations and cross-modal fusion in broader recommendation tasks.
☆ Loss Functions for Predictor-based Neural Architecture Search
Evaluation is a critical but costly procedure in neural architecture search (NAS). Performance predictors have been widely adopted to reduce evaluation costs by directly estimating architecture performance. The effectiveness of predictors is heavily influenced by the choice of loss functions. While traditional predictors employ regression loss functions to evaluate the absolute accuracy of architectures, recent approaches have explored various ranking-based loss functions, such as pairwise and listwise ranking losses, to focus on the ranking of architecture performance. Despite their success in NAS, the effectiveness and characteristics of these loss functions have not been thoroughly investigated. In this paper, we conduct the first comprehensive study on loss functions in performance predictors, categorizing them into three main types: regression, ranking, and weighted loss functions. Specifically, we assess eight loss functions using a range of NAS-relevant metrics on 13 tasks across five search spaces. Our results reveal that specific categories of loss functions can be effectively combined to enhance predictor-based NAS. Furthermore, our findings could provide practical guidance for selecting appropriate loss functions for various tasks. We hope this work provides meaningful insights to guide the development of loss functions for predictor-based methods in the NAS community.
☆ Cross-View Multi-Modal Segmentation @ Ego-Exo4D Challenges 2025 CVPR2025
In this report, we present a cross-view multi-modal object segmentation approach for the object correspondence task in the Ego-Exo4D Correspondence Challenges 2025. Given object queries from one perspective (e.g., ego view), the goal is to predict the corresponding object masks in another perspective (e.g., exo view). To tackle this task, we propose a multimodal condition fusion module that enhances object localization by leveraging both visual masks and textual descriptions as segmentation conditions. Furthermore, to address the visual domain gap between ego and exo views, we introduce a cross-view object alignment module that enforces object-level consistency across perspectives, thereby improving the model's robustness to viewpoint changes. Our proposed method ranked second on the leaderboard of the large-scale Ego-Exo4D object correspondence benchmark. Code will be made available at https://github.com/lovelyqian/ObjectRelator.
comment: The 2nd Price Award of EgoExo4D Relations, Second Joint EgoVis Workshop with CVPR2025, technical report paper is accepted by CVPRW 25
☆ DeepFake Doctor: Diagnosing and Treating Audio-Video Fake Detection
Generative AI advances rapidly, allowing the creation of very realistic manipulated video and audio. This progress presents a significant security and ethical threat, as malicious users can exploit DeepFake techniques to spread misinformation. Recent DeepFake detection approaches explore the multimodal (audio-video) threat scenario. In particular, there is a lack of reproducibility and critical issues with existing datasets - such as the recently uncovered silence shortcut in the widely used FakeAVCeleb dataset. Considering the importance of this topic, we aim to gain a deeper understanding of the key issues affecting benchmarking in audio-video DeepFake detection. We examine these challenges through the lens of the three core benchmarking pillars: datasets, detection methods, and evaluation protocols. To address these issues, we spotlight the recent DeepSpeak v1 dataset and are the first to propose an evaluation protocol and benchmark it using SOTA models. We introduce SImple Multimodal BAseline (SIMBA), a competitive yet minimalistic approach that enables the exploration of diverse design choices. We also deepen insights into the issue of audio shortcuts and present a promising mitigation strategy. Finally, we analyze and enhance the evaluation scheme on the widely used FakeAVCeleb dataset. Our findings offer a way forward in the complex area of audio-video DeepFake detection.
☆ Regional, Lattice and Logical Representations of Neural Networks
A possible path to the interpretability of neural networks is to (approximately) represent them in the regional format of piecewise linear functions, where regions of inputs are associated to linear functions computing the network outputs. We present an algorithm for the translation of feedforward neural networks with ReLU activation functions in hidden layers and truncated identity activation functions in the output layer. We also empirically investigate the complexity of regional representations outputted by our method for neural networks with varying sizes. Lattice and logical representations of neural networks are straightforward from regional representations as long as they satisfy a specific property. So we empirically investigate to what extent the translations by our algorithm satisfy such property.
comment: In Proceedings LSFA 2024, arXiv:2506.05219
☆ Fuzzy Lattice-based Description Logic
Recently, description logic LE-ALC was introduced for reasoning in the semantic environment of enriched formal contexts, and a polynomial-time tableaux algorithm was developed to check the consistency of knowledge bases with acyclic TBoxes. In this work, we introduce a fuzzy generalization of LE-ALC called LE-FALC which provides a description logic counterpart of many-valued normal non-distributive logic a.k.a. many-valued LE-logic. This description logic can be used to represent and reason about knowledge in the formal framework of fuzzy formal contexts and fuzzy formal concepts. We provide a tableaux algorithm that provides a complete and sound polynomial-time decision procedure to check the consistency of LE-FALC ABoxes. As a result, we also obtain an exponential-time decision procedure for checking the consistency of LE-FALC with acyclic TBoxes by unraveling.
comment: In Proceedings LSFA 2024, arXiv:2506.05219
☆ FuseUNet: A Multi-Scale Feature Fusion Method for U-like Networks ICML2025
Medical image segmentation is a critical task in computer vision, with UNet serving as a milestone architecture. The typical component of UNet family is the skip connection, however, their skip connections face two significant limitations: (1) they lack effective interaction between features at different scales, and (2) they rely on simple concatenation or addition operations, which constrain efficient information integration. While recent improvements to UNet have focused on enhancing encoder and decoder capabilities, these limitations remain overlooked. To overcome these challenges, we propose a novel multi-scale feature fusion method that reimagines the UNet decoding process as solving an initial value problem (IVP), treating skip connections as discrete nodes. By leveraging principles from the linear multistep method, we propose an adaptive ordinary differential equation method to enable effective multi-scale feature fusion. Our approach is independent of the encoder and decoder architectures, making it adaptable to various U-Net-like networks. Experiments on ACDC, KiTS2023, MSD brain tumor, and ISIC2017/2018 skin lesion segmentation datasets demonstrate improved feature utilization, reduced network parameters, and maintained high performance. The code is available at https://github.com/nayutayuki/FuseUNet.
comment: ICML2025
☆ Positional Encoding meets Persistent Homology on Graphs ICML 2025
The local inductive bias of message-passing graph neural networks (GNNs) hampers their ability to exploit key structural information (e.g., connectivity and cycles). Positional encoding (PE) and Persistent Homology (PH) have emerged as two promising approaches to mitigate this issue. PE schemes endow GNNs with location-aware features, while PH methods enhance GNNs with multiresolution topological features. However, a rigorous theoretical characterization of the relative merits and shortcomings of PE and PH has remained elusive. We bridge this gap by establishing that neither paradigm is more expressive than the other, providing novel constructions where one approach fails but the other succeeds. Our insights inform the design of a novel learnable method, PiPE (Persistence-informed Positional Encoding), which is provably more expressive than both PH and PE. PiPE demonstrates strong performance across a variety of tasks (e.g., molecule property prediction, graph classification, and out-of-distribution generalization), thereby advancing the frontiers of graph representation learning. Code is available at https://github.com/Aalto-QuML/PIPE.
comment: Accepted at ICML 2025
☆ Trajectory Entropy: Modeling Game State Stability from Multimodality Trajectory Prediction
Complex interactions among agents present a significant challenge for autonomous driving in real-world scenarios. Recently, a promising approach has emerged, which formulates the interactions of agents as a level-k game framework. It effectively decouples agent policies by hierarchical game levels. However, this framework ignores both the varying driving complexities among agents and the dynamic changes in agent states across game levels, instead treating them uniformly. Consequently, redundant and error-prone computations are introduced into this framework. To tackle the issue, this paper proposes a metric, termed as Trajectory Entropy, to reveal the game status of agents within the level-k game framework. The key insight stems from recognizing the inherit relationship between agent policy uncertainty and the associated driving complexity. Specifically, Trajectory Entropy extracts statistical signals representing uncertainty from the multimodality trajectory prediction results of agents in the game. Then, the signal-to-noise ratio of this signal is utilized to quantify the game status of agents. Based on the proposed Trajectory Entropy, we refine the current level-k game framework through a simple gating mechanism, significantly improving overall accuracy while reducing computational costs. Our method is evaluated on the Waymo and nuPlan datasets, in terms of trajectory prediction, open-loop and closed-loop planning tasks. The results demonstrate the state-of-the-art performance of our method, with precision improved by up to 19.89% for prediction and up to 16.48% for planning.
comment: 10 pages
☆ Robust sensor fusion against on-vehicle sensor staleness CVPR 2025
Sensor fusion is crucial for a performant and robust Perception system in autonomous vehicles, but sensor staleness, where data from different sensors arrives with varying delays, poses significant challenges. Temporal misalignment between sensor modalities leads to inconsistent object state estimates, severely degrading the quality of trajectory predictions that are critical for safety. We present a novel and model-agnostic approach to address this problem via (1) a per-point timestamp offset feature (for LiDAR and radar both relative to camera) that enables fine-grained temporal awareness in sensor fusion, and (2) a data augmentation strategy that simulates realistic sensor staleness patterns observed in deployed vehicles. Our method is integrated into a perspective-view detection model that consumes sensor data from multiple LiDARs, radars and cameras. We demonstrate that while a conventional model shows significant regressions when one sensor modality is stale, our approach reaches consistently good performance across both synchronized and stale conditions.
comment: This paper has been accepted by CVPR 2025 Precognition Workshop
☆ dots.llm1 Technical Report
Mixture of Experts (MoE) models have emerged as a promising paradigm for scaling language models efficiently by activating only a subset of parameters for each input token. In this report, we present dots.llm1, a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models while reducing training and inference costs. Leveraging our meticulously crafted and efficient data processing pipeline, dots.llm1 achieves performance comparable to Qwen2.5-72B after pretraining on 11.2T high-quality tokens and post-training to fully unlock its capabilities. Notably, no synthetic data is used during pretraining. To foster further research, we open-source intermediate training checkpoints at every one trillion tokens, providing valuable insights into the learning dynamics of large language models.
☆ Revealing hidden correlations from complex spatial distributions: Adjacent Correlation Analysis
Physics has been transforming our view of nature for centuries. While combining physical knowledge with computational approaches has enabled detailed modeling of physical systems' evolution, understanding the emergence of patterns and structures remains limited. Correlations between quantities are the most reliable approach to describe relationships between different variables. However, for complex patterns, directly searching for correlations is often impractical, as complexity and spatial inhomogeneity can obscure correlations. We discovered that the key is to search for correlations in local regions and developed a new method, adjacent correlation analysis, to extract such correlations and represent them in phase space. When multiple observations are available, a useful way to study a system is to analyze distributions in phase space using the Probability Density Function (PDF). Adjacent correlation analysis evaluates vectors representing local correlations, which can be overlaid on the PDF plot to form the adjacent correlation plot. These correlation vectors often exhibit remarkably regular patterns and may lead to the discovery of new laws. The vectors we derive are equivalent to the vector field in dynamical systems on the attracting manifold. By efficiently representing spatial patterns as correlation vectors in phase space, our approach opens avenues for classification, prediction, parameter fitting, and forecasting.
comment: Code avaliable at https://github.com/gxli/Adjacent-Correlation-Analysis
☆ FlowOE: Imitation Learning with Flow Policy from Ensemble RL Experts for Optimal Execution under Heston Volatility and Concave Market Impacts
Optimal execution in financial markets refers to the process of strategically transacting a large volume of assets over a period to achieve the best possible outcome by balancing the trade-off between market impact costs and timing or volatility risks. Traditional optimal execution strategies, such as static Almgren-Chriss models, often prove suboptimal in dynamic financial markets. This paper propose flowOE, a novel imitation learning framework based on flow matching models, to address these limitations. FlowOE learns from a diverse set of expert traditional strategies and adaptively selects the most suitable expert behavior for prevailing market conditions. A key innovation is the incorporation of a refining loss function during the imitation process, enabling flowOE not only to mimic but also to improve upon the learned expert actions. To the best of our knowledge, this work is the first to apply flow matching models in a stochastic optimal execution problem. Empirical evaluations across various market conditions demonstrate that flowOE significantly outperforms both the specifically calibrated expert models and other traditional benchmarks, achieving higher profits with reduced risk. These results underscore the practical applicability and potential of flowOE to enhance adaptive optimal execution.
comment: 3 figures, 3 algorithms, 7 tables
☆ Constrained Sampling for Language Models Should Be Easy: An MCMC Perspective
Constrained decoding enables Language Models (LMs) to produce samples that provably satisfy hard constraints. However, existing constrained-decoding approaches often distort the underlying model distribution, a limitation that is especially problematic in applications like program fuzzing, where one wants to generate diverse and valid program inputs for testing purposes. We propose a new constrained sampling framework based on Markov Chain Monte Carlo (MCMC) that simultaneously satisfies three core desiderata: constraint satisfying (every sample satisfies the constraint), monotonically converging (the sampling process converges to the true conditional distribution), and efficient (high-quality samples emerge in few steps). Our method constructs a proposal distribution over valid outputs and applies a Metropolis-Hastings acceptance criterion based on the LM's likelihood, ensuring principled and efficient exploration of the constrained space. Empirically, our sampler outperforms existing methods on both synthetic benchmarks and real-world program fuzzing tasks.
☆ Integrating Spatiotemporal Features in LSTM for Spatially Informed COVID-19 Hospitalization Forecasting
The COVID-19 pandemic's severe impact highlighted the need for accurate, timely hospitalization forecasting to support effective healthcare planning. However, most forecasting models struggled, especially during variant surges, when they were needed most. This study introduces a novel Long Short-Term Memory (LSTM) framework for forecasting daily state-level incident hospitalizations in the United States. We present a spatiotemporal feature, Social Proximity to Hospitalizations (SPH), derived from Facebook's Social Connectedness Index to improve forecasts. SPH serves as a proxy for interstate population interaction, capturing transmission dynamics across space and time. Our parallel LSTM architecture captures both short- and long-term temporal dependencies, and our multi-horizon ensembling strategy balances consistency and forecasting error. Evaluation against COVID-19 Forecast Hub ensemble models during the Delta and Omicron surges reveals superiority of our model. On average, our model surpasses the ensemble by 27, 42, 54, and 69 hospitalizations per state on the $7^{th}$, $14^{th}$, $21^{st}$, and $28^{th}$ forecast days, respectively, during the Omicron surge. Data-ablation experiments confirm SPH's predictive power, highlighting its effectiveness in enhancing forecasting models. This research not only advances hospitalization forecasting but also underscores the significance of spatiotemporal features, such as SPH, in refining predictive performance in modeling the complex dynamics of infectious disease spread.
comment: 36 pages, 12 figures. This is the accepted version of the article published in International Journal of Geographical Information Science. DOI will be added upon publication
☆ An Ontology for Representing Curriculum and Learning Material
Educational, learning, and training materials have become extremely commonplace across the Internet. Yet, they frequently remain disconnected from each other, fall into platform silos, and so on. One way to overcome this is to provide a mechanism to integrate the material and provide cross-links across topics. In this paper, we present the Curriculum KG Ontology, which we use as a framework for the dense interlinking of educational materials, by first starting with organizational and broad pedagogical principles. We provide a materialized graph for the Prototype Open Knowledge Network use-case, and validate it using competency questions sourced from domain experts and educators.
☆ Efficient Online RFT with Plug-and-Play LLM Judges: Unlocking State-of-the-Art Performance
Reward-model training is the cost bottleneck in modern Reinforcement Learning Human Feedback (RLHF) pipelines, often requiring tens of billions of parameters and an offline preference-tuning phase. In the proposed method, a frozen, instruction-tuned 7B LLM is augmented with only a one line JSON rubric and a rank-16 LoRA adapter (affecting just 0.8% of the model's parameters), enabling it to serve as a complete substitute for the previously used heavyweight evaluation models. The plug-and-play judge achieves 96.2% accuracy on RewardBench, outperforming specialized reward networks ranging from 27B to 70B parameters. Additionally, it allows a 7B actor to outperform the top 70B DPO baseline, which scores 61.8%, by achieving 92% exact match accuracy on GSM-8K utilizing online PPO. Thorough ablations indicate that (i) six in context demonstrations deliver the majority of the zero-to-few-shot improvements (+2pp), and (ii) the LoRA effectively addresses the remaining disparity, particularly in the safety and adversarial Chat-Hard segments. The proposed model introduces HH-Rationales, a subset of 10,000 pairs from Anthropic HH-RLHF, to examine interpretability, accompanied by human generated justifications. GPT-4 scoring indicates that our LoRA judge attains approximately = 9/10 in similarity to human explanations, while zero-shot judges score around =5/10. These results indicate that the combination of prompt engineering and tiny LoRA produces a cost effective, transparent, and easily adjustable reward function, removing the offline phase while achieving new state-of-the-art outcomes for both static evaluation and online RLHF.
☆ SPRINT: Enabling Interleaved Planning and Parallelized Execution in Reasoning Models
Large reasoning models (LRMs) excel at complex reasoning tasks but typically generate lengthy sequential chains-of-thought, resulting in long inference times before arriving at the final answer. To address this challenge, we introduce SPRINT, a novel post-training and inference-time framework designed to enable LRMs to dynamically identify and exploit opportunities for parallelization during their reasoning process. SPRINT incorporates an innovative data curation pipeline that reorganizes natural language reasoning trajectories into structured rounds of long-horizon planning and parallel execution. By fine-tuning LRMs on a small amount of such curated data, the models learn to dynamically identify independent subtasks within extended reasoning processes and effectively execute them in parallel. Through extensive evaluations, we show that the models fine-tuned with the SPRINT framework match the performance of reasoning models on complex domains such as mathematics while generating up to ~39% fewer sequential tokens on problems requiring more than 8000 output tokens. Finally, we observe consistent results transferred to two out-of-distribution tasks of GPQA and Countdown with up to 45% and 65% reduction in average sequential tokens for longer reasoning trajectories, while achieving the performance of the fine-tuned reasoning model.
comment: Emil Biju, Shayan Talaei, and Zhemin Huang contributed equally to this work
☆ Topology of Reasoning: Understanding Large Reasoning Models through Reasoning Graph Properties
Recent large-scale reasoning models have achieved state-of-the-art performance on challenging mathematical benchmarks, yet the internal mechanisms underlying their success remain poorly understood. In this work, we introduce the notion of a reasoning graph, extracted by clustering hidden-state representations at each reasoning step, and systematically analyze three key graph-theoretic properties: cyclicity, diameter, and small-world index, across multiple tasks (GSM8K, MATH500, AIME 2024). Our findings reveal that distilled reasoning models (e.g., DeepSeek-R1-Distill-Qwen-32B) exhibit significantly more recurrent cycles (about 5 per sample), substantially larger graph diameters, and pronounced small-world characteristics (about 6x) compared to their base counterparts. Notably, these structural advantages grow with task difficulty and model capacity, with cycle detection peaking at the 14B scale and exploration diameter maximized in the 32B variant, correlating positively with accuracy. Furthermore, we show that supervised fine-tuning on an improved dataset systematically expands reasoning graph diameters in tandem with performance gains, offering concrete guidelines for dataset design aimed at boosting reasoning capabilities. By bridging theoretical insights into reasoning graph structures with practical recommendations for data construction, our work advances both the interpretability and the efficacy of large reasoning models.
☆ When Better Features Mean Greater Risks: The Performance-Privacy Trade-Off in Contrastive Learning CCS '25
With the rapid advancement of deep learning technology, pre-trained encoder models have demonstrated exceptional feature extraction capabilities, playing a pivotal role in the research and application of deep learning. However, their widespread use has raised significant concerns about the risk of training data privacy leakage. This paper systematically investigates the privacy threats posed by membership inference attacks (MIAs) targeting encoder models, focusing on contrastive learning frameworks. Through experimental analysis, we reveal the significant impact of model architecture complexity on membership privacy leakage: As more advanced encoder frameworks improve feature-extraction performance, they simultaneously exacerbate privacy-leakage risks. Furthermore, this paper proposes a novel membership inference attack method based on the p-norm of feature vectors, termed the Embedding Lp-Norm Likelihood Attack (LpLA). This method infers membership status, by leveraging the statistical distribution characteristics of the p-norm of feature vectors. Experimental results across multiple datasets and model architectures demonstrate that LpLA outperforms existing methods in attack performance and robustness, particularly under limited attack knowledge and query volumes. This study not only uncovers the potential risks of privacy leakage in contrastive learning frameworks, but also provides a practical basis for privacy protection research in encoder models. We hope that this work will draw greater attention to the privacy risks associated with self-supervised learning models and shed light on the importance of a balance between model utility and training data privacy. Our code is publicly available at: https://github.com/SeroneySun/LpLA_code.
comment: Accepted In ACM ASIA Conference on Computer and Communications Security (ASIA CCS '25), August 25-29, 2025, Ha Noi, Vietnam. For Code, see https://github.com/SeroneySun/LpLA_code
☆ To Protect the LLM Agent Against the Prompt Injection Attack with Polymorphic Prompt DSN 2025
LLM agents are widely used as agents for customer support, content generation, and code assistance. However, they are vulnerable to prompt injection attacks, where adversarial inputs manipulate the model's behavior. Traditional defenses like input sanitization, guard models, and guardrails are either cumbersome or ineffective. In this paper, we propose a novel, lightweight defense mechanism called Polymorphic Prompt Assembling (PPA), which protects against prompt injection with near-zero overhead. The approach is based on the insight that prompt injection requires guessing and breaking the structure of the system prompt. By dynamically varying the structure of system prompts, PPA prevents attackers from predicting the prompt structure, thereby enhancing security without compromising performance. We conducted experiments to evaluate the effectiveness of PPA against existing attacks and compared it with other defense methods.
comment: To appear in the Industry Track of the 55th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2025)
☆ Generalized Incremental Learning under Concept Drift across Evolving Data Streams
Real-world data streams exhibit inherent non-stationarity characterized by concept drift, posing significant challenges for adaptive learning systems. While existing methods address isolated distribution shifts, they overlook the critical co-evolution of label spaces and distributions under limited supervision and persistent uncertainty. To address this, we formalize Generalized Incremental Learning under Concept Drift (GILCD), characterizing the joint evolution of distributions and label spaces in open-environment streaming contexts, and propose a novel framework called Calibrated Source-Free Adaptation (CSFA). First, CSFA introduces a training-free prototype calibration mechanism that dynamically fuses emerging prototypes with base representations, enabling stable new-class identification without optimization overhead. Second, we design a novel source-free adaptation algorithm, i.e., Reliable Surrogate Gap Sharpness-aware (RSGS) minimization. It integrates sharpness-aware perturbation loss optimization with surrogate gap minimization, while employing entropy-based uncertainty filtering to discard unreliable samples. This mechanism ensures robust distribution alignment and mitigates generalization degradation caused by uncertainties. Therefore, CSFA establishes a unified framework for stable adaptation to evolving semantics and distributions in open-world streaming scenarios. Extensive experiments validate the superior performance and effectiveness of CSFA compared to state-of-the-art approaches.
comment: This work has been submitted to the IEEE for possible publication
☆ Large Language Models are Good Relational Learners
Large language models (LLMs) have demonstrated remarkable capabilities across various domains, yet their application to relational deep learning (RDL) remains underexplored. Existing approaches adapt LLMs by traversing relational links between entities in a database and converting the structured data into flat text documents. Still, this text-based serialization disregards critical relational structures, introduces redundancy, and often exceeds standard LLM context lengths. We introduce Rel-LLM, a novel architecture that utilizes a graph neural network (GNN)- based encoder to generate structured relational prompts for LLMs within a retrieval-augmented generation (RAG) framework. Unlike traditional text-based serialization approaches, our method preserves the inherent relational structure of databases while enabling LLMs to effectively process and reason over complex entity relationships. Specifically, the GNN encoder extracts a local subgraph around an entity to build feature representations that contain relevant entity relationships and temporal dependencies. These representations are transformed into structured prompts using a denormalization process, effectively allowing the LLM to reason over relational structures. Through extensive experiments, we demonstrate that Rel-LLM outperforms existing methods on key RDL tasks, offering a scalable and efficient approach to integrating LLMs with structured data sources. Code is available at https://github.com/smiles724/Rel-LLM.
☆ Any-Class Presence Likelihood for Robust Multi-Label Classification with Abundant Negative Data
Multi-label Classification (MLC) assigns an instance to one or more non-exclusive classes. A challenge arises when the dataset contains a large proportion of instances with no assigned class, referred to as negative data, which can overwhelm the learning process and hinder the accurate identification and classification of positive instances. Nevertheless, it is common in MLC applications such as industrial defect detection, agricultural disease identification, and healthcare diagnosis to encounter large amounts of negative data. Assigning a separate negative class to these instances further complicates the learning objective and introduces unnecessary redundancies. To address this challenge, we redesign standard MLC loss functions by deriving a likelihood of any class being present, formulated by a normalized weighted geometric mean of the predicted class probabilities. We introduce a regularization parameter that controls the relative contribution of the absent class probabilities to the any-class presence likelihood in positive instances. The any-class presence likelihood complements the multi-label learning by encouraging the network to become more aware of implicit positive instances and improve the label classification within those positive instances. Experiments on large-scale datasets with negative data: SewerML, modified COCO, and ChestX-ray14, across various networks and base loss functions show that our loss functions consistently improve MLC performance of their standard loss counterparts, achieving gains of up to 6.01 percentage points in F1, 8.06 in F2, and 3.11 in mean average precision, all without additional parameters or computational complexity. Code available at: https://github.com/ML-for-Sensor-Data-Western/gmean-mlc
☆ Grokking Beyond the Euclidean Norm of Model Parameters ICML
Grokking refers to a delayed generalization following overfitting when optimizing artificial neural networks with gradient-based methods. In this work, we demonstrate that grokking can be induced by regularization, either explicit or implicit. More precisely, we show that when there exists a model with a property $P$ (e.g., sparse or low-rank weights) that generalizes on the problem of interest, gradient descent with a small but non-zero regularization of $P$ (e.g., $\ell_1$ or nuclear norm regularization) results in grokking. This extends previous work showing that small non-zero weight decay induces grokking. Moreover, our analysis shows that over-parameterization by adding depth makes it possible to grok or ungrok without explicitly using regularization, which is impossible in shallow cases. We further show that the $\ell_2$ norm is not a reliable proxy for generalization when the model is regularized toward a different property $P$, as the $\ell_2$ norm grows in many cases where no weight decay is used, but the model generalizes anyway. We also show that grokking can be amplified solely through data selection, with any other hyperparameter fixed.
comment: 67 pages, 35 figures. Forty-second International Conference on Machine Learning (ICML), 2025
☆ Ensemble Elastic DQN: A novel multi-step ensemble approach to address overestimation in deep value-based reinforcement learning
While many algorithmic extensions to Deep Q-Networks (DQN) have been proposed, there remains limited understanding of how different improvements interact. In particular, multi-step and ensemble style extensions have shown promise in reducing overestimation bias, thereby improving sample efficiency and algorithmic stability. In this paper, we introduce a novel algorithm called Ensemble Elastic Step DQN (EEDQN), which unifies ensembles with elastic step updates to stabilise algorithmic performance. EEDQN is designed to address two major challenges in deep reinforcement learning: overestimation bias and sample efficiency. We evaluated EEDQN against standard and ensemble DQN variants across the MinAtar benchmark, a set of environments that emphasise behavioral learning while reducing representational complexity. Our results show that EEDQN achieves consistently robust performance across all tested environments, outperforming baseline DQN methods and matching or exceeding state-of-the-art ensemble DQNs in final returns on most of the MinAtar environments. These findings highlight the potential of systematically combining algorithmic improvements and provide evidence that ensemble and multi-step methods, when carefully integrated, can yield substantial gains.
☆ Action-Adaptive Continual Learning: Enabling Policy Generalization under Dynamic Action Spaces
Continual Learning (CL) is a powerful tool that enables agents to learn a sequence of tasks, accumulating knowledge learned in the past and using it for problem-solving or future task learning. However, existing CL methods often assume that the agent's capabilities remain static within dynamic environments, which doesn't reflect real-world scenarios where capabilities dynamically change. This paper introduces a new and realistic problem: Continual Learning with Dynamic Capabilities (CL-DC), posing a significant challenge for CL agents: How can policy generalization across different action spaces be achieved? Inspired by the cortical functions, we propose an Action-Adaptive Continual Learning framework (AACL) to address this challenge. Our framework decouples the agent's policy from the specific action space by building an action representation space. For a new action space, the encoder-decoder of action representations is adaptively fine-tuned to maintain a balance between stability and plasticity. Furthermore, we release a benchmark based on three environments to validate the effectiveness of methods for CL-DC. Experimental results demonstrate that our framework outperforms popular methods by generalizing the policy across action spaces.
☆ RKEFino1: A Regulation Knowledge-Enhanced Large Language Model
Recent advances in large language models (LLMs) hold great promise for financial applications but introduce critical accuracy and compliance challenges in Digital Regulatory Reporting (DRR). To address these issues, we propose RKEFino1, a regulation knowledge-enhanced financial reasoning model built upon Fino1, fine-tuned with domain knowledge from XBRL, CDM, and MOF. We formulate two QA tasks-knowledge-based and mathematical reasoning-and introduce a novel Numerical NER task covering financial entities in both sentences and tables. Experimental results demonstrate the effectiveness and generalization capacity of RKEFino1 in compliance-critical financial tasks. We have released our model on Hugging Face.
☆ Evaluating AI-Powered Learning Assistants in Engineering Higher Education: Student Engagement, Ethical Challenges, and Policy Implications
As generative AI tools become increasingly integrated into higher education, understanding how students interact with and perceive these technologies is essential for responsible and effective adoption. This study evaluates the use of the Educational AI Hub, an AI-powered learning framework, in undergraduate civil and environmental engineering courses at a large R1 public university. Using a mixed-methods approach that combines pre- and post-surveys, system usage logs, and qualitative analysis of the open-ended prompts and questions students posed to the AI chatbot, the research explores students' perceptions of trust, ethical concerns, usability, and learning outcomes. Findings reveal that students appreciated the AI assistant for its convenience and comfort, with nearly half reporting greater ease in using the AI tool compared to seeking help from instructors or teaching assistants. The tool was seen as most helpful for completing homework and understanding course concepts, though perceptions of its instructional quality were mixed. Ethical concerns emerged as a key barrier to full engagement: while most students viewed AI use as ethically acceptable, many expressed uncertainties about institutional policies and apprehension about potential academic misconduct. This study contributes to the growing body of research on AI in education by highlighting the importance of usability, policy clarity, and faculty guidance in fostering meaningful AI engagement. The findings suggest that while students are ready to embrace AI as a supplement to human instruction, thoughtful integration and transparent institutional frameworks are critical for ensuring student confidence, trust, and learning effectiveness.
comment: 26 pages, 10 Figures, 6 Tables
☆ SafeGenBench: A Benchmark Framework for Security Vulnerability Detection in LLM-Generated Code
The code generation capabilities of large language models(LLMs) have emerged as a critical dimension in evaluating their overall performance. However, prior research has largely overlooked the security risks inherent in the generated code. In this work, we introduce \benchmark, a benchmark specifically designed to assess the security of LLM-generated code. The dataset encompasses a wide range of common software development scenarios and vulnerability types. Building upon this benchmark, we develop an automatic evaluation framework that leverages both static application security testing(SAST) and LLM-based judging to assess the presence of security vulnerabilities in model-generated code. Through the empirical evaluation of state-of-the-art LLMs on \benchmark, we reveal notable deficiencies in their ability to produce vulnerability-free code. Our findings highlight pressing challenges and offer actionable insights for future advancements in the secure code generation performance of LLMs. The data and code will be released soon.
☆ Multi-Modal Multi-Task Federated Foundation Models for Next-Generation Extended Reality Systems: Towards Privacy-Preserving Distributed Intelligence in AR/VR/MR
Extended reality (XR) systems, which consist of virtual reality (VR), augmented reality (AR), and mixed reality (XR), offer a transformative interface for immersive, multi-modal, and embodied human-computer interaction. In this paper, we envision that multi-modal multi-task (M3T) federated foundation models (FedFMs) can offer transformative capabilities for XR systems through integrating the representational strength of M3T foundation models (FMs) with the privacy-preserving model training principles of federated learning (FL). We present a modular architecture for FedFMs, which entails different coordination paradigms for model training and aggregations. Central to our vision is the codification of XR challenges that affect the implementation of FedFMs under the SHIFT dimensions: (1) Sensor and modality diversity, (2) Hardware heterogeneity and system-level constraints, (3) Interactivity and embodied personalization, (4) Functional/task variability, and (5) Temporality and environmental variability. We illustrate the manifestation of these dimensions across a set of emerging and anticipated applications of XR systems. Finally, we propose evaluation metrics, dataset requirements, and design tradeoffs necessary for the development of resource-aware FedFMs in XR. This perspective aims to chart the technical and conceptual foundations for context-aware privacy-preserving intelligence in the next generation of XR systems.
comment: 16 pages, 4 Figures, 8 Tables
☆ Learning Design-Score Manifold to Guide Diffusion Models for Offline Optimization
Optimizing complex systems, from discovering therapeutic drugs to designing high-performance materials, remains a fundamental challenge across science and engineering, as the underlying rules are often unknown and costly to evaluate. Offline optimization aims to optimize designs for target scores using pre-collected datasets without system interaction. However, conventional approaches may fail beyond training data, predicting inaccurate scores and generating inferior designs. This paper introduces ManGO, a diffusion-based framework that learns the design-score manifold, capturing the design-score interdependencies holistically. Unlike existing methods that treat design and score spaces in isolation, ManGO unifies forward prediction and backward generation, attaining generalization beyond training data. Key to this is its derivative-free guidance for conditional generation, coupled with adaptive inference-time scaling that dynamically optimizes denoising paths. Extensive evaluations demonstrate that ManGO outperforms 24 single- and 10 multi-objective optimization methods across diverse domains, including synthetic tasks, robot control, material design, DNA sequence, and real-world engineering optimization.
comment: This manuscript is submitted and under review
☆ DriveAction: A Benchmark for Exploring Human-like Driving Decisions in VLA Models
Vision-Language-Action (VLA) models have advanced autonomous driving, but existing benchmarks still lack scenario diversity, reliable action-level annotation, and evaluation protocols aligned with human preferences. To address these limitations, we introduce DriveAction, the first action-driven benchmark specifically designed for VLA models, comprising 16,185 QA pairs generated from 2,610 driving scenarios. DriveAction leverages real-world driving data proactively collected by users of production-level autonomous vehicles to ensure broad and representative scenario coverage, offers high-level discrete action labels collected directly from users' actual driving operations, and implements an action-rooted tree-structured evaluation framework that explicitly links vision, language, and action tasks, supporting both comprehensive and task-specific assessment. Our experiments demonstrate that state-of-the-art vision-language models (VLMs) require both vision and language guidance for accurate action prediction: on average, accuracy drops by 3.3% without vision input, by 4.1% without language input, and by 8.0% without either. Our evaluation supports precise identification of model bottlenecks with robust and consistent results, thus providing new insights and a rigorous foundation for advancing human-like decisions in autonomous driving.
comment: Benchmark: https://huggingface.co/datasets/LiAuto-DriveAction/drive-action
♻ ☆ Exploring Diffusion Transformer Designs via Grafting
Designing model architectures requires decisions such as selecting operators (e.g., attention, convolution) and configurations (e.g., depth, width). However, evaluating the impact of these decisions on model quality requires costly pretraining, limiting architectural investigation. Inspired by how new software is built on existing code, we ask: can new architecture designs be studied using pretrained models? To this end, we present grafting, a simple approach for editing pretrained diffusion transformers (DiTs) to materialize new architectures under small compute budgets. Informed by our analysis of activation behavior and attention locality, we construct a testbed based on the DiT-XL/2 design to study the impact of grafting on model quality. Using this testbed, we develop a family of hybrid designs via grafting: replacing softmax attention with gated convolution, local attention, and linear attention, and replacing MLPs with variable expansion ratio and convolutional variants. Notably, many hybrid designs achieve good quality (FID: 2.38-2.64 vs. 2.27 for DiT-XL/2) using <2% pretraining compute. We then graft a text-to-image model (PixArt-Sigma), achieving a 1.43x speedup with less than a 2% drop in GenEval score. Finally, we present a case study that restructures DiT-XL/2 by converting every pair of sequential transformer blocks into parallel blocks via grafting. This reduces model depth by 2x and yields better quality (FID: 2.77) than other models of comparable depth. Together, we show that new diffusion model designs can be explored by grafting pretrained DiTs, with edits ranging from operator replacement to architecture restructuring. Code and grafted models: https://grafting.stanford.edu
comment: 22 pages; Project website: https://grafting.stanford.edu
♻ ☆ Teaming in the AI Era: AI-Augmented Frameworks for Forming, Simulating, and Optimizing Human Teams
Effective teamwork is essential across diverse domains. During the team formation stage, a key challenge is forming teams that effectively balance user preferences with task objectives to enhance overall team satisfaction. In the team performing stage, maintaining cohesion and engagement is critical for sustaining high team performance. However, existing computational tools and algorithms for team optimization often rely on static data inputs, narrow algorithmic objectives, or solutions tailored for specific contexts, failing to account for the dynamic interplay of team members personalities, evolving goals, and changing individual preferences. Therefore, teams may encounter member dissatisfaction, as purely algorithmic assignments can reduce members commitment to team goals or experience suboptimal engagement due to the absence of timely, personalized guidance to help members adjust their behaviors and interactions as team dynamics evolve. Ultimately, these challenges can lead to reduced overall team performance. My Ph.D. dissertation aims to develop AI-augmented team optimization frameworks and practical systems that enhance team satisfaction, engagement, and performance. First, I propose a team formation framework that leverages a multi-armed bandit algorithm to iteratively refine team composition based on user preferences, ensuring alignment between individual needs and collective team goals to enhance team satisfaction. Second, I introduce tAIfa (Team AI Feedback Assistant), an AI-powered system that utilizes large language models (LLMs) to deliver immediate, personalized feedback to both teams and individual members, enhancing cohesion and engagement. Finally, I present PuppeteerLLM, an LLM-based simulation framework that simulates multi-agent teams to model complex team dynamics within realistic environments, incorporating task-driven collaboration and long-term coordination.
comment: 5 pages, UMAP 25, June 16_19, 2025, New York City, NY, USA
♻ ☆ Just Enough Thinking: Efficient Reasoning with Adaptive Length Penalties Reinforcement Learning
Large reasoning models (LRMs) achieve higher performance on challenging reasoning tasks by generating more tokens at inference time, but this verbosity often wastes computation on easy problems. Existing solutions, including supervised finetuning on shorter traces, user-controlled budgets, or RL with uniform penalties, either require data curation, manual configuration, or treat all problems alike regardless of difficulty. We introduce Adaptive Length Penalty (ALP), a reinforcement learning objective tailoring generation length to per-prompt solve rate. During training, ALP monitors each prompt's online solve rate through multiple rollouts and adds a differentiable penalty whose magnitude scales inversely with that rate, so confident (easy) prompts incur a high cost for extra tokens while hard prompts remain unhindered. Posttraining DeepScaleR-1.5B with ALP cuts average token usage by 50\% without significantly dropping performance. Relative to fixed-budget and uniform penalty baselines, ALP redistributes its reduced budget more intelligently by cutting compute on easy prompts and reallocating saved tokens to difficult ones, delivering higher accuracy on the hardest problems with higher cost.
♻ ☆ Revisiting 3D LLM Benchmarks: Are We Really Testing 3D Capabilities? ACL 2025
In this work, we identify the "2D-Cheating" problem in 3D LLM evaluation, where these tasks might be easily solved by VLMs with rendered images of point clouds, exposing ineffective evaluation of 3D LLMs' unique 3D capabilities. We test VLM performance across multiple 3D LLM benchmarks and, using this as a reference, propose principles for better assessing genuine 3D understanding. We also advocate explicitly separating 3D abilities from 1D or 2D aspects when evaluating 3D LLMs. Code and data are available at https://github.com/LLM-class-group/Revisiting-3D-LLM-Benchmarks
comment: Accepted to ACL 2025 Findings
♻ ☆ ECoRAG: Evidentiality-guided Compression for Long Context RAG
Large Language Models (LLMs) have shown remarkable performance in Open-Domain Question Answering (ODQA) by leveraging external documents through Retrieval-Augmented Generation (RAG). To reduce RAG overhead, from longer context, context compression is necessary. However, prior compression methods do not focus on filtering out non-evidential information, which limit the performance in LLM-based RAG. We thus propose Evidentiality-guided RAG, or ECoRAG framework. ECoRAG improves LLM performance by compressing retrieved documents based on evidentiality, ensuring whether answer generation is supported by the correct evidence. As an additional step, ECoRAG reflects whether the compressed content provides sufficient evidence, and if not, retrieves more until sufficient. Experiments show that ECoRAG improves LLM performance on ODQA tasks, outperforming existing compression methods. Furthermore, ECoRAG is highly cost-efficient, as it not only reduces latency but also minimizes token usage by retaining only the necessary information to generate the correct answer. Code is available at https://github.com/ldilab/ECoRAG.
♻ ☆ Dissecting Bias in LLMs: A Mechanistic Interpretability Perspective
Large Language Models (LLMs) are known to exhibit social, demographic, and gender biases, often as a consequence of the data on which they are trained. In this work, we adopt a mechanistic interpretability approach to analyze how such biases are structurally represented within models such as GPT-2 and Llama2. Focusing on demographic and gender biases, we explore different metrics to identify the internal edges responsible for biased behavior. We then assess the stability, localization, and generalizability of these components across dataset and linguistic variations. Through systematic ablations, we demonstrate that bias-related computations are highly localized, often concentrated in a small subset of layers. Moreover, the identified components change across fine-tuning settings, including those unrelated to bias. Finally, we show that removing these components not only reduces biased outputs but also affects other NLP tasks, such as named entity recognition and linguistic acceptability judgment because of the sharing of important components with these tasks.
♻ ☆ Does It Make Sense to Speak of Introspection in Large Language Models?
Large language models (LLMs) exhibit compelling linguistic behaviour, and sometimes offer self-reports, that is to say statements about their own nature, inner workings, or behaviour. In humans, such reports are often attributed to a faculty of introspection and are typically linked to consciousness. This raises the question of how to interpret self-reports produced by LLMs, given their increasing linguistic fluency and cognitive capabilities. To what extent (if any) can the concept of introspection be meaningfully applied to LLMs? Here, we present and critique two examples of apparent introspective self-report from LLMs. In the first example, an LLM attempts to describe the process behind its own "creative" writing, and we argue this is not a valid example of introspection. In the second example, an LLM correctly infers the value of its own temperature parameter, and we argue that this can be legitimately considered a minimal example of introspection, albeit one that is (presumably) not accompanied by conscious experience.
♻ ☆ TinySQL: A Progressive Text-to-SQL Dataset for Mechanistic Interpretability Research
Mechanistic interpretability research faces a gap between analyzing simple circuits in toy tasks and discovering features in large models. To bridge this gap, we propose text-to-SQL generation as an ideal task to study, as it combines the formal structure of toy tasks with real-world complexity. We introduce TinySQL, a synthetic dataset, progressing from basic to advanced SQL operations, and train models ranging from 33M to 1B parameters to establish a comprehensive testbed for interpretability. We apply multiple complementary interpretability techniques, including Edge Attribution Patching and Sparse Autoencoders, to identify minimal circuits and components supporting SQL generation. We compare circuits for different SQL subskills, evaluating their minimality, reliability, and identifiability. Finally, we conduct a layerwise logit lens analysis to reveal how models compose SQL queries across layers: from intent recognition to schema resolution to structured generation. Our work provides a robust framework for probing and comparing interpretability methods in a structured, progressively complex setting.
comment: 9 pages, 19 figures, 7 tables, 18 trained models
♻ ☆ Sparse Autoencoders, Again? ICML
Is there really much more to say about sparse autoencoders (SAEs)? Autoencoders in general, and SAEs in particular, represent deep architectures that are capable of modeling low-dimensional latent structure in data. Such structure could reflect, among other things, correlation patterns in large language model activations, or complex natural image manifolds. And yet despite the wide-ranging applicability, there have been relatively few changes to SAEs beyond the original recipe from decades ago, namely, standard deep encoder/decoder layers trained with a classical/deterministic sparse regularizer applied within the latent space. One possible exception is the variational autoencoder (VAE), which adopts a stochastic encoder module capable of producing sparse representations when applied to manifold data. In this work we formalize underappreciated weaknesses with both canonical SAEs, as well as analogous VAEs applied to similar tasks, and propose a hybrid alternative model that circumvents these prior limitations. In terms of theoretical support, we prove that global minima of our proposed model recover certain forms of structured data spread across a union of manifolds. Meanwhile, empirical evaluations on synthetic and real-world datasets substantiate the efficacy of our approach in accurately estimating underlying manifold dimensions and producing sparser latent representations without compromising reconstruction error. In general, we are able to exceed the performance of equivalent-capacity SAEs and VAEs, as well as recent diffusion models where applicable, within domains such as images and language model activation patterns.
comment: Accepted to the International Conference on Machine Learning (ICML) 2025
♻ ☆ Feature-Based Lie Group Transformer for Real-World Applications
The main goal of representation learning is to acquire meaningful representations from real-world sensory inputs without supervision. Representation learning explains some aspects of human development. Various neural network (NN) models have been proposed that acquire empirically good representations. However, the formulation of a good representation has not been established. We recently proposed a method for categorizing changes between a pair of sensory inputs. A unique feature of this approach is that transformations between two sensory inputs are learned to satisfy algebraic structural constraints. Conventional representation learning often assumes that disentangled independent feature axes is a good representation; however, we found that such a representation cannot account for conditional independence. To overcome this problem, we proposed a new method using group decomposition in Galois algebra theory. Although this method is promising for defining a more general representation, it assumes pixel-to-pixel translation without feature extraction, and can only process low-resolution images with no background, which prevents real-world application. In this study, we provide a simple method to apply our group decomposition theory to a more realistic scenario by combining feature extraction and object segmentation. We replace pixel translation with feature translation and formulate object segmentation as grouping features under the same transformation. We validated the proposed method on a practical dataset containing both real-world object and background. We believe that our model will lead to a better understanding of human development of object recognition in the real world.
♻ ☆ SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ Knowledge Retention for Continual Model-Based Reinforcement Learning
We propose DRAGO, a novel approach for continual model-based reinforcement learning aimed at improving the incremental development of world models across a sequence of tasks that differ in their reward functions but not the state space or dynamics. DRAGO comprises two key components: Synthetic Experience Rehearsal, which leverages generative models to create synthetic experiences from past tasks, allowing the agent to reinforce previously learned dynamics without storing data, and Regaining Memories Through Exploration, which introduces an intrinsic reward mechanism to guide the agent toward revisiting relevant states from prior tasks. Together, these components enable the agent to maintain a comprehensive and continually developing world model, facilitating more effective learning and adaptation across diverse environments. Empirical evaluations demonstrate that DRAGO is able to preserve knowledge across tasks, achieving superior performance in various continual learning scenarios.
♻ ☆ E^2GraphRAG: Streamlining Graph-based RAG for High Efficiency and Effectiveness
Graph-based RAG methods like GraphRAG have shown promising global understanding of the knowledge base by constructing hierarchical entity graphs. However, they often suffer from inefficiency and rely on manually pre-defined query modes, limiting practical use. In this paper, we propose E^2GraphRAG, a streamlined graph-based RAG framework that improves both Efficiency and Effectiveness. During the indexing stage, E^2GraphRAG constructs a summary tree with large language models and an entity graph with SpaCy based on document chunks. We then construct bidirectional indexes between entities and chunks to capture their many-to-many relationships, enabling fast lookup during both local and global retrieval. For the retrieval stage, we design an adaptive retrieval strategy that leverages the graph structure to retrieve and select between local and global modes. Experiments show that E^2GraphRAG achieves up to 10 times faster indexing than GraphRAG and 100 times speedup over LightRAG in retrieval while maintaining competitive QA performance.
comment: 16 pages
♻ ☆ TracLLM: A Generic Framework for Attributing Long Context LLMs USENIX Security
Long context large language models (LLMs) are deployed in many real-world applications such as RAG, agent, and broad LLM-integrated applications. Given an instruction and a long context (e.g., documents, PDF files, webpages), a long context LLM can generate an output grounded in the provided context, aiming to provide more accurate, up-to-date, and verifiable outputs while reducing hallucinations and unsupported claims. This raises a research question: how to pinpoint the texts (e.g., sentences, passages, or paragraphs) in the context that contribute most to or are responsible for the generated output by an LLM? This process, which we call context traceback, has various real-world applications, such as 1) debugging LLM-based systems, 2) conducting post-attack forensic analysis for attacks (e.g., prompt injection attack, knowledge corruption attacks) to an LLM, and 3) highlighting knowledge sources to enhance the trust of users towards outputs generated by LLMs. When applied to context traceback for long context LLMs, existing feature attribution methods such as Shapley have sub-optimal performance and/or incur a large computational cost. In this work, we develop TracLLM, the first generic context traceback framework tailored to long context LLMs. Our framework can improve the effectiveness and efficiency of existing feature attribution methods. To improve the efficiency, we develop an informed search based algorithm in TracLLM. We also develop contribution score ensemble/denoising techniques to improve the accuracy of TracLLM. Our evaluation results show TracLLM can effectively identify texts in a long context that lead to the output of an LLM. Our code and data are at: https://github.com/Wang-Yanting/TracLLM.
comment: To appear in USENIX Security Symposium 2025. The code and data are at: https://github.com/Wang-Yanting/TracLLM
♻ ☆ Do Large Language Models Reason Causally Like Us? Even Better?
Causal reasoning is a core component of intelligence. Large language models (LLMs) have shown impressive capabilities in generating human-like text, raising questions about whether their responses reflect true understanding or statistical patterns. We compared causal reasoning in humans and four LLMs using tasks based on collider graphs, rating the likelihood of a query variable occurring given evidence from other variables. LLMs' causal inferences ranged from often nonsensical (GPT-3.5) to human-like to often more normatively aligned than those of humans (GPT-4o, Gemini-Pro, and Claude). Computational model fitting showed that one reason for GPT-4o, Gemini-Pro, and Claude's superior performance is they didn't exhibit the "associative bias" that plagues human causal reasoning. Nevertheless, even these LLMs did not fully capture subtler reasoning patterns associated with collider graphs, such as "explaining away".
♻ ☆ MimeQA: Towards Socially-Intelligent Nonverbal Foundation Models
As AI becomes more closely integrated with peoples' daily activities, socially intelligent AI that can understand and interact seamlessly with humans in daily lives is increasingly important. However, current works in AI social reasoning all rely on language-only or language-dominant approaches to benchmark and training models, resulting in systems that are improving in verbal communication but struggle with nonverbal social understanding. To address this limitation, we tap into a novel data source rich in nonverbal social interactions -- mime videos. Mimes refer to the art of expression through gesture and movement without spoken words, which presents unique challenges and opportunities in interpreting nonverbal social communication. We contribute a new dataset called MimeQA, obtained by sourcing 8 hours of videos clips from YouTube and developing a comprehensive video question-answering benchmark comprising 806 carefully annotated and verified question-answer pairs, designed to probe nonverbal social reasoning capabilities. Using MimeQA, we evaluate state-of-the-art video large language models (vLLMs) and find that they achieve low overall accuracy, ranging from 20-30%, while humans score 86%. Our analysis reveals that vLLMs often fail to ground imagined objects and over-rely on the text prompt while ignoring subtle nonverbal interactions. We hope to inspire future work in AI models that embody true social intelligence capable of interpreting non-verbal human interactions.
♻ ☆ Sparse Autoencoders Learn Monosemantic Features in Vision-Language Models
Given that interpretability and steerability are crucial to AI safety, Sparse Autoencoders (SAEs) have emerged as a tool to enhance them in Large Language Models (LLMs). In this work, we extend the application of SAEs to Vision-Language Models (VLMs), such as CLIP, and introduce a comprehensive framework for evaluating monosemanticity at the neuron-level in vision representations. To ensure that our evaluation aligns with human perception, we propose a benchmark derived from a large-scale user study. Our experimental results reveal that SAEs trained on VLMs significantly enhance the monosemanticity of individual neurons, with sparsity and wide latents being the most influential factors. Notably, we demonstrate that applying SAE interventions on CLIP's vision encoder directly steers multimodal LLM outputs (e.g., LLaVA), without any modifications to the underlying model. These findings emphasize the practicality and efficacy of SAEs as an unsupervised tool for enhancing both interpretability and control of VLMs. Code is available at https://github.com/ExplainableML/sae-for-vlm.
comment: Preprint
♻ ☆ LlavaGuard: An Open VLM-based Framework for Safeguarding Vision Datasets and Models ICML 2025
This paper introduces LlavaGuard, a suite of VLM-based vision safeguards that address the critical need for reliable guardrails in the era of large-scale data and models. To this end, we establish a novel open framework, describing a customizable safety taxonomy, data preprocessing, augmentation, and training setup. For teaching a VLM safeguard on safety, we further create a multimodal safety dataset with high-quality human expert annotations, where each image is labeled with a safety rating, category, and rationale. We also employ advanced augmentations to support context-specific assessments. The resulting LlavaGuard models, ranging from 0.5B to 7B, serve as a versatile tool for evaluating the safety compliance of visual content against flexible policies. In comprehensive experiments, LlavaGuard outperforms both state-of-the-art safeguards and VLMs in accuracy and in flexibly handling different policies. Additionally, we demonstrate LlavaGuard's performance in two real-world applications: large-scale dataset annotation and moderation of text-to-image models. We make our entire framework, including the dataset, model weights, and training code.
comment: In Proceedings of the 42st International Conference on Machine Learning (ICML 2025), Project page at https://ml-research.github.io/human-centered-genai/projects/llavaguard/index.html
♻ ☆ A Lightweight Dual-Branch System for Weakly-Supervised Video Anomaly Detection on Consumer Edge Devices
The growing demand for intelligent security in consumer electronics, such as smart home cameras and personal monitoring systems, is often hindered by the high computational cost and large model sizes of advanced AI. These limitations prevent the effective deployment of real-time Video Anomaly Detection (VAD) on resource-constrained edge devices. To bridge this gap, this paper introduces Rule-based Video Anomaly Detection (RuleVAD), a novel, lightweight system engineered for high-efficiency and low-complexity threat detection directly on consumer hardware. RuleVAD features an innovative decoupled dual-branch architecture to minimize computational load. An implicit branch uses visual features for rapid, coarse-grained binary classification, efficiently filtering out normal activity to avoid unnecessary processing. For potentially anomalous or complex events, a multimodal explicit branch takes over. This branch leverages YOLO-World to detect objects and applies data mining to generate interpretable, text-based association rules from the scene. By aligning these rules with visual data, RuleVAD achieves a more nuanced, fine-grained classification, significantly reducing the false alarms common in vision-only systems. Extensive experiments on the XD-Violence and UCF-Crime benchmark datasets show that RuleVAD achieves superior performance, surpassing existing state-of-the-art methods in both accuracy and speed. Crucially, the entire system is optimized for low-power operation and is fully deployable on an NVIDIA Jetson Nano board, demonstrating its practical feasibility for bringing advanced, real-time security monitoring to everyday consumer electronic devices.
comment: This manuscript has been submitted to IEEE TCE and is under consideration for publication, with potential copyright transfer in the future
♻ ☆ DyGMamba: Efficiently Modeling Long-Term Temporal Dependency on Continuous-Time Dynamic Graphs with State Space Models
Learning useful representations for continuous-time dynamic graphs (CTDGs) is challenging, due to the concurrent need to span long node interaction histories and grasp nuanced temporal details. In particular, two problems emerge: (1) Encoding longer histories requires more computational resources, making it crucial for CTDG models to maintain low computational complexity to ensure efficiency; (2) Meanwhile, more powerful models are needed to identify and select the most critical temporal information within the extended context provided by longer histories. To address these problems, we propose a CTDG representation learning model named DyGMamba, originating from the popular Mamba state space model (SSM). DyGMamba first leverages a node-level SSM to encode the sequence of historical node interactions. Another time-level SSM is then employed to exploit the temporal patterns hidden in the historical graph, where its output is used to dynamically select the critical information from the interaction history. We validate DyGMamba experimentally on the dynamic link prediction task. The results show that our model achieves state-of-the-art in most cases. DyGMamba also maintains high efficiency in terms of computational resources, making it possible to capture long temporal dependencies with a limited computation budget.
comment: Accepted to TMLR
♻ ☆ SemiOccam: A Robust Semi-Supervised Image Recognition Network Using Sparse Labels
We present SemiOccam, an image recognition network that leverages semi-supervised learning in a highly efficient manner. Existing works often rely on complex training techniques and architectures, requiring hundreds of GPU hours for training, while their generalization ability when dealing with extremely limited labeled data remains to be improved. To address these limitations, we construct a hierarchical mixture density classification decision mechanism by optimizing mutual information between feature representations and target classes, compressing redundant information while retaining crucial discriminative components. Experimental results demonstrate that our method achieves state-of-the-art performance on various datasets when using negligible labeled samples, and its simple architecture keeps training time to minute-level. Notably, this paper reveals a long-overlooked data leakage issue in the STL-10 dataset for semi-supervised learning tasks and removes duplicates to ensure the reliability of experimental results. We also release the deduplicated CleanSTL-10 dataset to facilitate fair and reliable research in future semi-supervised learning. Code available at https://github.com/Shu1L0n9/SemiOccam.
comment: CleanSTL-10 available at https://huggingface.co/datasets/Shu1L0n9/CleanSTL-10
♻ ☆ A Riemannian Optimization Perspective of the Gauss-Newton Method for Feedforward Neural Networks
We analyze the convergence of Gauss-Newton dynamics for training neural networks with smooth activation functions. In the underparameterized regime, the Gauss-Newton gradient flow induces a Riemannian gradient flow on a low-dimensional, smooth, embedded submanifold of the Euclidean output space. Using tools from Riemannian optimization, we prove \emph{last-iterate} convergence of the Riemannian gradient flow to the optimal in-class predictor at an \emph{exponential rate} that is independent of the conditioning of the Gram matrix, \emph{without} requiring explicit regularization. We further characterize the critical impacts of the neural network scaling factor and the initialization on the convergence behavior. In the overparameterized regime, we show that the Levenberg-Marquardt dynamics with an appropriately chosen damping schedule yields fast convergence rate despite potentially ill-conditioned neural tangent kernel matrices, analogous to the underparameterized regime. These findings demonstrate the potential of Gauss-Newton methods for efficiently optimizing neural networks in the near-initialization regime, particularly in ill-conditioned problems where kernel and Gram matrices have small singular values.
♻ ☆ Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning with verifiable rewards (RLVR) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models. However, it is constrained by a fundamental asymmetry in computation and memory requirements: rollout generation is embarrassingly parallel and memory-light, whereas policy updates are communication-heavy and memory-intensive. To address this, we introduce PODS (Policy Optimization with Down-Sampling). PODS produces numerous rollouts in parallel, then trains on only an informative subset, preserving learning signals while slashing update cost. We instantiate PODS with max-variance down-sampling, a principled criterion that maximises reward diversity and show it admits an $O(n\log n)$ solution. Empirically, coupling PODS with Group Relative Policy Optimization (GRPO) achieves superior performance over standard GRPO across different reasoning benchmarks and hardware environments.
comment: 14 pages, 7 figures
Deconfounding Multi-Cause Latent Confounders: A Factor-Model Approach to Climate Model Bias Correction IJCAI 2025
Global Climate Models (GCMs) are crucial for predicting future climate changes by simulating the Earth systems. However, the GCM Outputs exhibit systematic biases due to model uncertainties, parameterization simplifications, and inadequate representation of complex climate phenomena. Traditional bias correction methods, which rely on historical observation data and statistical techniques, often neglect unobserved confounders, leading to biased results. This paper proposes a novel bias correction approach to utilize both GCM and observational data to learn a factor model that captures multi-cause latent confounders. Inspired by recent advances in causality based time series deconfounding, our method first constructs a factor model to learn latent confounders from historical data and then applies them to enhance the bias correction process using advanced time series forecasting models. The experimental results demonstrate significant improvements in the accuracy of precipitation outputs. By addressing unobserved confounders, our approach offers a robust and theoretically grounded solution for climate model bias correction.
comment: IJCAI 2025 Accepted
♻ ☆ LLMs on the Line: Data Determines Loss-to-Loss Scaling Laws ICML 2025
Scaling laws guide the development of large language models (LLMs) by offering estimates for the optimal balance of model size, tokens, and compute. More recently, loss-to-loss scaling laws that relate losses across pretraining datasets and downstream tasks have emerged as a powerful tool for understanding and improving LLM performance. In this work, we investigate which factors most strongly influence loss-to-loss scaling. Our experiments reveal that the pretraining data and tokenizer determine the scaling trend. In contrast, model size, optimization hyperparameters, and even significant architectural differences, such as between transformer-based models like Llama and state-space models like Mamba, have limited impact. Consequently, practitioners should carefully curate suitable pretraining datasets for optimal downstream performance, while architectures and other settings can be freely optimized for training efficiency.
comment: ICML 2025 camera-ready version
♻ ☆ ARMOR: Empowering Multimodal Understanding Model with Interleaved Multimodal Generation Capability
Unified multimodal understanding and generation have recently received much attention in the area of vision and language. Existing UniMs are designed to simultaneously learn both multimodal understanding and generation capabilities, demanding substantial computational resources, and often struggle to generate interleaved text-image. We present ARMOR, a resource-efficient and pure autoregressive framework that achieves both understanding and generation by fine-tuning existing multimodal large language models (MLLMs). Specifically, ARMOR extends existing MLLMs from three perspectives: (1) For model architecture, an asymmetric encoder-decoder architecture with a forward-switching mechanism is introduced to unify embedding space integrating textual and visual modalities for enabling natural text-image interleaved generation with minimal computational overhead. (2) For training data, a meticulously curated, high-quality interleaved dataset is collected for fine-tuning MLLMs. (3) For the training algorithm, we propose a ``what or how to generate'' algorithm to empower existing MLLMs with multimodal generation capabilities while preserving their multimodal understanding capabilities, through three progressive training stages based on the collected dataset. Experimental results demonstrate that ARMOR upgrades existing MLLMs to UniMs with promising image generation capabilities, using limited training resources. Our code will be released soon at https://github.com/finyorko/armor.
♻ ☆ Regret-Free Reinforcement Learning for LTL Specifications
Learning to control an unknown dynamical system with respect to high-level temporal specifications is an important problem in control theory. We present the first regret-free online algorithm for learning a controller for linear temporal logic (LTL) specifications for systems with unknown dynamics. We assume that the underlying (unknown) dynamics is modeled by a finite-state and action Markov decision process (MDP). Our core technical result is a regret-free learning algorithm for infinite-horizon reach-avoid problems on MDPs. For general LTL specifications, we show that the synthesis problem can be reduced to a reach-avoid problem once the graph structure is known. Additionally, we provide an algorithm for learning the graph structure, assuming knowledge of a minimum transition probability, which operates independently of the main regret-free algorithm. Our LTL controller synthesis algorithm provides sharp bounds on how close we are to achieving optimal behavior after a finite number of learning episodes. In contrast, previous algorithms for LTL synthesis only provide asymptotic guarantees, which give no insight into the transient performance during the learning phase.
♻ ☆ VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters ICML 2025
Foundation models have emerged as a promising approach in time series forecasting (TSF). Existing approaches either repurpose large language models (LLMs) or build large-scale time series datasets to develop TSF foundation models for universal forecasting. However, these methods face challenges due to the severe cross-domain gap or in-domain heterogeneity. This paper explores a new road to building a TSF foundation model from rich, high-quality natural images. Our key insight is that a visual masked autoencoder, pre-trained on the ImageNet dataset, can naturally be a numeric series forecaster. By reformulating TSF as an image reconstruction task, we bridge the gap between image pre-training and TSF downstream tasks. Surprisingly, without further adaptation in the time series domain, the proposed VisionTS could achieve better zero-shot forecast performance than existing TSF foundation models. With fine-tuning for one epoch, VisionTS could further improve the forecasting and achieve state-of-the-art performance in most cases. Extensive experiments reveal intrinsic similarities between images and real-world time series, suggesting that visual models may offer a "free lunch" for TSF and highlight the potential for future cross-modality research. Our code is publicly available at https://github.com/Keytoyze/VisionTS.
comment: v4: accepted by ICML 2025
♻ ☆ Paradigms of AI Evaluation: Mapping Goals, Methodologies and Culture IJCAI 2025
Research in AI evaluation has grown increasingly complex and multidisciplinary, attracting researchers with diverse backgrounds and objectives. As a result, divergent evaluation paradigms have emerged, often developing in isolation, adopting conflicting terminologies, and overlooking each other's contributions. This fragmentation has led to insular research trajectories and communication barriers both among different paradigms and with the general public, contributing to unmet expectations for deployed AI systems. To help bridge this insularity, in this paper we survey recent work in the AI evaluation landscape and identify six main paradigms. We characterise major recent contributions within each paradigm across key dimensions related to their goals, methodologies and research cultures. By clarifying the unique combination of questions and approaches associated with each paradigm, we aim to increase awareness of the breadth of current evaluation approaches and foster cross-pollination between different paradigms. We also identify potential gaps in the field to inspire future research directions.
comment: Accepted at IJCAI 2025 Survey Track
♻ ☆ Multidimensional Adaptive Coefficient for Inference Trajectory Optimization in Flow and Diffusion ICML 2025
Flow and diffusion models have demonstrated strong performance and training stability across various tasks but lack two critical properties of simulation-based methods: freedom of dimensionality and adaptability to different inference trajectories. To address this limitation, we propose the Multidimensional Adaptive Coefficient (MAC), a plug-in module for flow and diffusion models that extends conventional unidimensional coefficients to multidimensional ones and enables inference trajectory-wise adaptation. MAC is trained via simulation-based feedback through adversarial refinement. Empirical results across diverse frameworks and datasets demonstrate that MAC enhances generative quality with high training efficiency. Consequently, our work offers a new perspective on inference trajectory optimality, encouraging future research to move beyond vector field design and to leverage training-efficient, simulation-based optimization.
comment: ICML 2025 Paper
♻ ☆ Tug-of-war between idiom's figurative and literal meanings in LLMs
Idioms present a unique challenge for language models due to their non-compositional figurative meanings, which often strongly diverge from the idiom's literal interpretation. This duality requires a model to learn representing and deciding between the two meanings to interpret an idiom in a figurative sense, or literally. In this paper, we employ tools from mechanistic interpretability to trace how a large pretrained causal transformer (LLama3.2-1B-base) deals with this ambiguity. We localize three steps of idiom processing: First, the idiom's figurative meaning is retrieved in early attention and MLP sublayers. We identify specific attention heads which boost the figurative meaning of the idiom while suppressing the idiom's literal interpretation. The model subsequently represents the figurative representation through an intermediate path. Meanwhile, a parallel bypass route forwards literal interpretation, ensuring that a both reading remain available. Overall, our findings provide a mechanistic evidence for idiom comprehension in an autoregressive transformer.
♻ ☆ Proximal Policy Distillation
We introduce Proximal Policy Distillation (PPD), a novel policy distillation method that integrates student-driven distillation and Proximal Policy Optimization (PPO) to increase sample efficiency and to leverage the additional rewards that the student policy collects during distillation. To assess the efficacy of our method, we compare PPD with two common alternatives, student-distill and teacher-distill, over a wide range of reinforcement learning environments that include discrete actions and continuous control (ATARI, Mujoco, and Procgen). For each environment and method, we perform distillation to a set of target student neural networks that are smaller, identical (self-distillation), or larger than the teacher network. Our findings indicate that PPD improves sample efficiency and produces better student policies compared to typical policy distillation approaches. Moreover, PPD demonstrates greater robustness than alternative methods when distilling policies from imperfect demonstrations. The code for the paper is released as part of a new Python library built on top of stable-baselines3 to facilitate policy distillation: `sb3-distill'.
♻ ☆ ProofAug: Efficient Neural Theorem Proving via Fine-grained Proof Structure Analysis
The synergy between deep learning models and traditional automation tools, such as built-in tactics of the proof assistant and off-the-shelf automated theorem provers, plays a crucial role in developing robust and efficient neural theorem provers(NTPs). However, for proof synthesis with LLMs, previous work applies automation tools either only when explicitly invoked by the model or at a single granularity level, failing to fully exploit their power. To solve this issue, we propose ProofAug, a procedure that equips LLMs with automation methods at various granularities through fine-grained structure analysis of model-generated proof proposals. ProofAug also serves as a versatile plug-and-play module that seamlessly integrates with any tree-search algorithm, enabling our construction of an efficient recursive proving (ERP) module to further enhance performance. The superiority of our method is validated on the miniF2F benchmark using the open-source deepseek-math-7b-base model and the Isabelle proof assistant. Notably, by additionally employing a mixed prompting strategy, we achieve a cumulative pass rate of 66.0% after curation of the dataset (61.9% for the original version) with 2100 queries to the model per problem (In contrast, the previous SOTA in Isabelle, Subgoal-XL, only achieves 56.1% using 16384 queries per problem). We also implement a Lean 4 version of ProofAug that can improve the pass@1 performance of Kimina-Prover-Preview-Distill-1.5B from 44.3% to 50.4% on miniF2F-test. Our code is available at https://github.com/haoxiongliu/ProofAug.
♻ ☆ Efficient Fine-Grained Guidance for Diffusion Model Based Symbolic Music Generation
Developing generative models to create or conditionally create symbolic music presents unique challenges due to the combination of limited data availability and the need for high precision in note pitch. To address these challenges, we introduce an efficient Fine-Grained Guidance (FGG) approach within diffusion models. FGG guides the diffusion models to generate music that aligns more closely with the control and intent of expert composers, which is critical to improve the accuracy, listenability, and quality of generated music. This approach empowers diffusion models to excel in advanced applications such as improvisation, and interactive music creation. We derive theoretical characterizations for both the challenges in symbolic music generation and the effects of the FGG approach. We provide numerical experiments and subjective evaluation to demonstrate the effectiveness of our approach. We have published a demo page to showcase performances, which enables real-time interactive generation.
♻ ☆ MedXpertQA: Benchmarking Expert-Level Medical Reasoning and Understanding ICML 2025
We introduce MedXpertQA, a highly challenging and comprehensive benchmark to evaluate expert-level medical knowledge and advanced reasoning. MedXpertQA includes 4,460 questions spanning 17 specialties and 11 body systems. It includes two subsets, Text for text evaluation and MM for multimodal evaluation. Notably, MM introduces expert-level exam questions with diverse images and rich clinical information, including patient records and examination results, setting it apart from traditional medical multimodal benchmarks with simple QA pairs generated from image captions. MedXpertQA applies rigorous filtering and augmentation to address the insufficient difficulty of existing benchmarks like MedQA, and incorporates specialty board questions to improve clinical relevance and comprehensiveness. We perform data synthesis to mitigate data leakage risk and conduct multiple rounds of expert reviews to ensure accuracy and reliability. We evaluate 18 leading models on \benchmark. Moreover, medicine is deeply connected to real-world decision-making, providing a rich and representative setting for assessing reasoning abilities beyond mathematics and code. To this end, we develop a reasoning-oriented subset to facilitate the assessment of o1-like models. Code and data are available at: https://github.com/TsinghuaC3I/MedXpertQA
comment: ICML 2025
♻ ☆ Rethinking Machine Unlearning in Image Generation Models CCS 2025
With the surge and widespread application of image generation models, data privacy and content safety have become major concerns and attracted great attention from users, service providers, and policymakers. Machine unlearning (MU) is recognized as a cost-effective and promising means to address these challenges. Despite some advancements, image generation model unlearning (IGMU) still faces remarkable gaps in practice, e.g., unclear task discrimination and unlearning guidelines, lack of an effective evaluation framework, and unreliable evaluation metrics. These can hinder the understanding of unlearning mechanisms and the design of practical unlearning algorithms. We perform exhaustive assessments over existing state-of-the-art unlearning algorithms and evaluation standards, and discover several critical flaws and challenges in IGMU tasks. Driven by these limitations, we make several core contributions, to facilitate the comprehensive understanding, standardized categorization, and reliable evaluation of IGMU. Specifically, (1) We design CatIGMU, a novel hierarchical task categorization framework. It provides detailed implementation guidance for IGMU, assisting in the design of unlearning algorithms and the construction of testbeds. (2) We introduce EvalIGMU, a comprehensive evaluation framework. It includes reliable quantitative metrics across five critical aspects. (3) We construct DataIGM, a high-quality unlearning dataset, which can be used for extensive evaluations of IGMU, training content detectors for judgment, and benchmarking the state-of-the-art unlearning algorithms. With EvalIGMU and DataIGM, we discover that most existing IGMU algorithms cannot handle the unlearning well across different evaluation dimensions, especially for preservation and robustness. Code and models are available at https://github.com/ryliu68/IGMU.
comment: Accepted by ACM CCS 2025
♻ ☆ Reasoning Through Execution: Unifying Process and Outcome Rewards for Code Generation ICML 2025
Large Language Models excel at code generation yet struggle with complex programming tasks that demand sophisticated reasoning. To bridge this gap, traditional process supervision relies on learned reward models requiring costly training data and suffering from reward misalignment, while outcome supervision fails for complex tasks needing coordinated intermediate steps. We introduce Outcome Refining Process Supervision, which unifies process and outcome supervision by leveraging executable verification: a tree-structured search framework generates strategic alternatives, profiles execution metrics, and scores candidates via self-critique mechanisms that integrate runtime feedback with reasoning. Experiments across 5 models and 3 benchmarks show consistent gains, with 26.9% higher correctness and 42.2% improved code efficiency. The results demonstrate that ORPS enables LLMs to overcome local optima in code generation, suggesting a promising direction for combining verifiable outcomes with structured reasoning to tackle complex challenges. We open-source at: https://github.com/zhuohaoyu/ORPS
comment: Accepted to ICML 2025; 23 pages, 7 figures, code is available at: https://github.com/zhuohaoyu/ORPS
♻ ☆ Improving Customer Service with Automatic Topic Detection in User Emails
This study introduces a novel natural language processing pipeline that enhances customer service efficiency at Telekom Srbija, a leading Serbian telecommunications company, through automated email topic detection and labeling. Central to the pipeline is BERTopic, a modular framework that allows unsupervised topic modeling. After a series of preprocessing and postprocessing steps, we assign one of 12 topics and several additional labels to incoming emails, allowing customer service to filter and access them through a custom-made application. While applied to Serbian, the methodology is conceptually language-agnostic and can be readily adapted to other languages, particularly those that are low-resourced and morphologically rich. The system performance was evaluated by assessing the speed and correctness of the automatically assigned topics, with a weighted average processing time of 0.041 seconds per email and a weighted average F1 score of 0.96. The system now operates in the company's production environment, streamlining customer service operations through automated email classification.
comment: Paper accepted to the 15th International Conference on Information Society and Technology (ICIST), Kopaonik, Serbia, 9-12 March 2025. To appear in L
♻ ☆ pLDDT-Predictor: High-speed Protein Screening Using Transformer and ESM2
Recent advancements in protein structure prediction, particularly AlphaFold2, have revolutionized structural biology by achieving near-experimental accuracy ($\text{average RMSD} < 1.5\text{\AA}$). However, the computational demands of these models (approximately 30 minutes per protein on an RTX 4090) significantly limit their application in high-throughput protein screening. While large language models like ESM (Evolutionary Scale Modeling) have shown promise in extracting structural information directly from protein sequences, rapid assessment of protein structure quality for large-scale analyses remains a major challenge. We introduce pLDDT-Predictor, a high-speed protein screening tool that achieves a $250,000\times$ speedup compared to AlphaFold2 by leveraging pre-trained ESM2 protein embeddings and a Transformer architecture. Our model predicts AlphaFold2's pLDDT (predicted Local Distance Difference Test) scores with a Pearson correlation of 0.7891 and processes proteins in just 0.007 seconds on average. Using a comprehensive dataset of 1.5 million diverse protein sequences (ranging from 50 to 2048 amino acids), we demonstrate that pLDDT-Predictor accurately classifies high-confidence structures (pLDDT $>$ 70) with 91.2\% accuracy and achieves an MSE of 84.8142 compared to AlphaFold2's predictions. The source code and pre-trained models are freely available at https://github.com/jw-chae/pLDDT_Predictor, enabling the research community to perform rapid, large-scale protein structure quality assessments.
comment: Further experiments confirmed overfitting, and we are retracting the paper
♻ ☆ FDLLM: A Dedicated Detector for Black-Box LLMs Fingerprinting
Large Language Models (LLMs) are rapidly transforming the landscape of digital content creation. However, the prevalent black-box Application Programming Interface (API) access to many LLMs introduces significant challenges in accountability, governance, and security. LLM fingerprinting, which aims to identify the source model by analyzing statistical and stylistic features of generated text, offers a potential solution. Current progress in this area is hindered by a lack of dedicated datasets and the need for efficient, practical methods that are robust against adversarial manipulations. To address these challenges, we introduce FD-Dataset, a comprehensive bilingual fingerprinting benchmark comprising 90,000 text samples from 20 famous proprietary and open-source LLMs. Furthermore, we present FDLLM, a novel fingerprinting method that leverages parameter-efficient Low-Rank Adaptation (LoRA) to fine-tune a foundation model. This approach enables LoRA to extract deep, persistent features that characterize each source LLM. Through our analysis, we find that LoRA adaptation promotes the aggregation of outputs from the same LLM in representation space while enhancing the separation between different LLMs. This mechanism explains why LoRA proves particularly effective for LLM fingerprinting. Extensive empirical evaluations on FD-Dataset demonstrate FDLLM's superiority, achieving a Macro F1 score 22.1% higher than the strongest baseline. FDLLM also exhibits strong generalization to newly released models, achieving an average accuracy of 95% on unseen models. Notably, FDLLM remains consistently robust under various adversarial attacks, including polishing, translation, and synonym substitution. Experimental results show that FDLLM reduces the average attack success rate from 49.2% (LM-D) to 23.9%.
♻ ☆ Diffusion Policies for Out-of-Distribution Generalization in Offline Reinforcement Learning IROS
Offline Reinforcement Learning (RL) methods leverage previous experiences to learn better policies than the behavior policy used for data collection. However, they face challenges handling distribution shifts due to the lack of online interaction during training. To this end, we propose a novel method named State Reconstruction for Diffusion Policies (SRDP) that incorporates state reconstruction feature learning in the recent class of diffusion policies to address the problem of out-of-distribution (OOD) generalization. Our method promotes learning of generalizable state representation to alleviate the distribution shift caused by OOD states. To illustrate the OOD generalization and faster convergence of SRDP, we design a novel 2D Multimodal Contextual Bandit environment and realize it on a 6-DoF real-world UR10 robot, as well as in simulation, and compare its performance with prior algorithms. In particular, we show the importance of the proposed state reconstruction via ablation studies. In addition, we assess the performance of our model on standard continuous control benchmarks (D4RL), namely the navigation of an 8-DoF ant and forward locomotion of half-cheetah, hopper, and walker2d, achieving state-of-the-art results. Finally, we demonstrate that our method can achieve 167% improvement over the competing baseline on a sparse continuous control navigation task where various regions of the state space are removed from the offline RL dataset, including the region encapsulating the goal.
comment: Published in IEEE RA-L with IROS presentation option (2024 IEEE/RSJ International Conference on Intelligent Robots and Systems), 8 pages, 7 figures
♻ ☆ Peri-LN: Revisiting Normalization Layer in the Transformer Architecture ICML2025
Selecting a layer normalization (LN) strategy that stabilizes training and speeds convergence in Transformers remains difficult, even for today's large language models (LLM). We present a comprehensive analytical foundation for understanding how different LN strategies influence training dynamics in large-scale Transformers. Until recently, Pre-LN and Post-LN have long dominated practices despite their limitations in large-scale training. However, several open-source models have recently begun silently adopting a third strategy without much explanation. This strategy places normalization layer peripherally around sublayers, a design we term Peri-LN. While Peri-LN has demonstrated promising performance, its precise mechanisms and benefits remain almost unexplored. Our in-depth analysis delineates the distinct behaviors of LN strategies, showing how each placement shapes activation variance and gradient propagation. To validate our theoretical insight, we conduct extensive experiments on Transformers up to $3.2$B parameters, showing that Peri-LN consistently achieves more balanced variance growth, steadier gradient flow, and convergence stability. Our results suggest that Peri-LN warrants broader consideration for large-scale Transformer architectures, providing renewed insights into the optimal placement of LN.
comment: ICML2025 Camera-ready version
♻ ☆ The Bakers and Millers Game with Restricted Locations AAMAS 2025
We study strategic location choice by customers and sellers, termed the Bakers and Millers Game in the literature. In our generalized setting, each miller can freely choose any location for setting up a mill, while each baker is restricted in the choice of location for setting up a bakery. For optimal bargaining power, a baker would like to select a location with many millers to buy flour from and with little competition from other bakers. Likewise, a miller aims for a location with many bakers and few competing millers. Thus, both types of agents choose locations to optimize the ratio of agents of opposite type divided by agents of the same type at their chosen location. Originally raised in the context of Fractional Hedonic Games, the Bakers and Millers Game has applications that range from commerce to product design. We study the impact of location restrictions on the properties of the game. While pure Nash equilibria trivially exist in the setting without location restrictions, we show via a sophisticated, efficient algorithm that even the more challenging restricted setting admits equilibria. Moreover, the computed equilibrium approximates the optimal social welfare by a factor of at most $2\left(\frac{e}{e-1}\right)$. Furthermore, we give tight bounds on the price of anarchy/stability. On the conceptual side, the location choice feature adds a new layer to the standard setting of Hedonic Games, in the sense that agents that select the same location form a coalition. This allows to naturally restrict the possible coalitions that can be formed. With this, our model generalizes simple symmetric Fractional Hedonic Games on complete bipartite valuation graphs and also Hedonic Diversity Games with utilities single-peaked at 0. We believe that this generalization is also a very interesting direction for other types of Hedonic Games.
comment: Published at the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025)
♻ ☆ Jacobian Sparse Autoencoders: Sparsify Computations, Not Just Activations
Sparse autoencoders (SAEs) have been successfully used to discover sparse and human-interpretable representations of the latent activations of LLMs. However, we would ultimately like to understand the computations performed by LLMs and not just their representations. The extent to which SAEs can help us understand computations is unclear because they are not designed to "sparsify" computations in any sense, only latent activations. To solve this, we propose Jacobian SAEs (JSAEs), which yield not only sparsity in the input and output activations of a given model component but also sparsity in the computation (formally, the Jacobian) connecting them. With a na\"ive implementation, the Jacobians in LLMs would be computationally intractable due to their size. One key technical contribution is thus finding an efficient way of computing Jacobians in this setup. We find that JSAEs extract a relatively large degree of computational sparsity while preserving downstream LLM performance approximately as well as traditional SAEs. We also show that Jacobians are a reasonable proxy for computational sparsity because MLPs are approximately linear when rewritten in the JSAE basis. Lastly, we show that JSAEs achieve a greater degree of computational sparsity on pre-trained LLMs than on the equivalent randomized LLM. This shows that the sparsity of the computational graph appears to be a property that LLMs learn through training, and suggests that JSAEs might be more suitable for understanding learned transformer computations than standard SAEs.
♻ ☆ ADIOS: Antibody Development via Opponent Shaping ICML 2025
Anti-viral therapies are typically designed to target only the current strains of a virus, a myopic response. However, therapy-induced selective pressures drive the emergence of new viral strains, against which the original myopic therapies are no longer effective. This evolutionary response presents an opportunity: our therapies could both defend against and actively influence viral evolution. This motivates our method ADIOS: Antibody Development vIa Opponent Shaping. ADIOS is a meta-learning framework where the process of antibody therapy design, the outer loop, accounts for the virus's adaptive response, the inner loop. With ADIOS, antibodies are not only robust against potential future variants, they also influence, i.e., shape, which future variants emerge. In line with the opponent shaping literature, we refer to our optimised antibodies as shapers. To demonstrate the value of ADIOS, we build a viral evolution simulator using the Absolut! framework, in which shapers successfully target both current and future viral variants, outperforming myopic antibodies. Furthermore, we show that shapers modify the distribution over viral evolutionary trajectories to result in weaker variants. We believe that our ADIOS paradigm will facilitate the discovery of long-lived vaccines and antibody therapies while also generalising to other domains. Specifically, domains such as antimicrobial resistance, cancer treatment, and others with evolutionarily adaptive opponents. Our code is available at https://github.com/olakalisz/adios.
comment: Accepted at ICML 2025
♻ ☆ The Synergy of LLMs & RL Unlocks Offline Learning of Generalizable Language-Conditioned Policies with Low-fidelity Data ICML
Developing autonomous agents capable of performing complex, multi-step decision-making tasks specified in natural language remains a significant challenge, particularly in realistic settings where labeled data is scarce and real-time experimentation is impractical. Existing reinforcement learning (RL) approaches often struggle to generalize to unseen goals and states, limiting their applicability. In this paper, we introduce TEDUO, a novel training pipeline for offline language-conditioned policy learning in symbolic environments. Unlike conventional methods, TEDUO operates on readily available, unlabeled datasets and addresses the challenge of generalization to previously unseen goals and states. Our approach harnesses large language models (LLMs) in a dual capacity: first, as automatization tools augmenting offline datasets with richer annotations, and second, as generalizable instruction-following agents. Empirical results demonstrate that TEDUO achieves data-efficient learning of robust language-conditioned policies, accomplishing tasks beyond the reach of conventional RL frameworks or out-of-the-box LLMs alone.
comment: Accepted at International Conference on Machine Learning (ICML) 2025
♻ ☆ Graph Deep Learning for Time Series Forecasting
Graph deep learning methods have become popular tools to process collections of correlated time series. Unlike traditional multivariate forecasting methods, graph-based predictors leverage pairwise relationships by conditioning forecasts on graphs spanning the time series collection. The conditioning takes the form of architectural inductive biases on the forecasting architecture, resulting in a family of models called spatiotemporal graph neural networks. These biases allow for training global forecasting models on large collections of time series while localizing predictions w.r.t. each element in the set (nodes) by accounting for correlations among them (edges). Recent advances in graph neural networks and deep learning for time series forecasting make the adoption of such processing framework appealing and timely. However, most studies focus on refining existing architectures by exploiting modern deep-learning practices. Conversely, foundational and methodological aspects have not been subject to systematic investigation. To fill this void, this tutorial paper aims to introduce a comprehensive methodological framework formalizing the forecasting problem and providing design principles for graph-based predictors, as well as methods to assess their performance. In addition, together with an overview of the field, we provide design guidelines and best practices, as well as an in-depth discussion of open challenges and future directions.
comment: Published as a tutorial paper in ACM Computing Surveys
Subspecialty-Specific Foundation Model for Intelligent Gastrointestinal Pathology
Gastrointestinal (GI) diseases represent a clinically significant burden, necessitating precise diagnostic approaches to optimize patient outcomes. Conventional histopathological diagnosis suffers from limited reproducibility and diagnostic variability. To overcome these limitations, we develop Digepath, a specialized foundation model for GI pathology. Our framework introduces a dual-phase iterative optimization strategy combining pretraining with fine-screening, specifically designed to address the detection of sparsely distributed lesion areas in whole-slide images. Digepath is pretrained on over 353 million multi-scale images from 210,043 H&E-stained slides of GI diseases. It attains state-of-the-art performance on 33 out of 34 tasks related to GI pathology, including pathological diagnosis, protein expression status prediction, gene mutation prediction, and prognosis evaluation. We further translate the intelligent screening module for early GI cancer and achieve near-perfect 99.70% sensitivity across nine independent medical institutions. This work not only advances AI-driven precision pathology for GI diseases but also bridge critical gaps in histopathological practice.
♻ ☆ Certification for Differentially Private Prediction in Gradient-Based Training ICML 2025
We study private prediction where differential privacy is achieved by adding noise to the outputs of a non-private model. Existing methods rely on noise proportional to the global sensitivity of the model, often resulting in sub-optimal privacy-utility trade-offs compared to private training. We introduce a novel approach for computing dataset-specific upper bounds on prediction sensitivity by leveraging convex relaxation and bound propagation techniques. By combining these bounds with the smooth sensitivity mechanism, we significantly improve the privacy analysis of private prediction compared to global sensitivity-based approaches. Experimental results across real-world datasets in medical image classification and natural language processing demonstrate that our sensitivity bounds are can be orders of magnitude tighter than global sensitivity. Our approach provides a strong basis for the development of novel privacy preserving technologies.
comment: ICML 2025. 20 pages, 9 figures
♻ ☆ Diving into Self-Evolving Training for Multimodal Reasoning ICML 2025
Self-evolving trainin--where models iteratively learn from their own outputs--has emerged as a key approach for complex reasoning tasks, addressing the scarcity of high-quality chain-of-thought data. However, its effectiveness in multimodal reasoning, a domain more intricate than text-only reasoning, remains underexplored, and the understanding of critical factors in this training paradigm remains limited. Furthermore, a central challenge for this training method is performance saturation, which impedes further improvements and scalability. Inspired by reinforcement learning (RL), in this paper, we reframe self-evolving training for multimodal reasoning through the lens of RL, identifying three pivotal factors: Training Method, Reward Model, and Prompt Variation. Through systematic analysis, we establish relatively optimal design principles that significantly enhance multimodal reasoning capabilities. Moreover, delving deeper into training dynamics, we uncover the roots of saturation and propose a new automatic balancing mechanism to mitigate this limitation. Building on these insights, we propose M-STAR (Multimodal Self-evolving Training for Reasoning), a framework that achieves consistent performance gains across models of varying sizes and diverse benchmarks. All resources are made publicly available at https://mstar-lmm.github.io.
comment: ICML 2025, Project Page: https://mstar-lmm.github.io
♻ ☆ Scaffolding Creativity: Integrating Generative AI Tools and Real-world Experiences in Business Education
This exploratory study investigates the intersection of Generative AI tools and experiential learning in business education. Through a case study of an innovative undergraduate course, we examine how students interact with and adapt to various AI modalities-from text-based tools to image generation-alongside real-world experiences. Our findings reveal how this integrated approach enables novice users to overcome creative barriers, accelerates skill acquisition, and creates a dynamic interplay between AI-generated insights and real-world validation. We identify critical interaction challenges, including prompt engineering patterns and the need for more intuitive AI interfaces in educational contexts. These insights inform the design of future AI tools for creative learning and contribute to broader HCI discussions about human-AI collaboration in educational settings.
comment: 9 pages, 3 figures. Accepted to CHI EA '25. This version reflects the final accepted version with revisions
♻ ☆ AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML ICML 2025
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline, such as optimal model search and hyperparameter tuning. Existing AutoML systems often require technical expertise to set up complex tools, which is in general time-consuming and requires a large amount of human effort. Therefore, recent works have started exploiting large language models (LLM) to lessen such burden and increase the usability of AutoML frameworks via a natural language interface, allowing non-expert users to build their data-driven solutions. These methods, however, are usually designed only for a particular process in the AI development pipeline and do not efficiently use the inherent capacity of the LLMs. This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML, i.e., from data retrieval to model deployment. AutoML-Agent takes user's task descriptions, facilitates collaboration between specialized LLM agents, and delivers deployment-ready models. Unlike existing work, instead of devising a single plan, we introduce a retrieval-augmented planning strategy to enhance exploration to search for more optimal plans. We also decompose each plan into sub-tasks (e.g., data preprocessing and neural network design) each of which is solved by a specialized agent we build via prompting executing in parallel, making the search process more efficient. Moreover, we propose a multi-stage verification to verify executed results and guide the code generation LLM in implementing successful solutions. Extensive experiments on seven downstream tasks using fourteen datasets show that AutoML-Agent achieves a higher success rate in automating the full AutoML process, yielding systems with good performance throughout the diverse domains.
comment: ICML 2025, Project Page: https://deepauto-ai.github.io/automl-agent
♻ ☆ SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models
Traditional autonomous driving systems often struggle to connect high-level reasoning with low-level control, leading to suboptimal and sometimes unsafe behaviors. Recent advances in multimodal large language models (MLLMs), which process both visual and textual data, offer an opportunity to unify perception and reasoning. However, effectively embedding precise safety knowledge into MLLMs for autonomous driving remains a significant challenge. To address this, we propose SafeAuto, a framework that enhances MLLM-based autonomous driving by incorporating both unstructured and structured knowledge. First, we introduce a Position-Dependent Cross-Entropy (PDCE) loss to improve low-level control signal predictions when values are represented as text. Second, to explicitly integrate safety knowledge, we develop a reasoning component that translates traffic rules into first-order logic (e.g., "red light $\implies$ stop") and embeds them into a probabilistic graphical model (e.g., Markov Logic Network) to verify predicted actions using recognized environmental attributes. Additionally, our Multimodal Retrieval-Augmented Generation (RAG) model leverages video, control signals, and environmental attributes to learn from past driving experiences. Integrating PDCE, MLN, and Multimodal RAG, SafeAuto outperforms existing baselines across multiple datasets, enabling more accurate, reliable, and safer autonomous driving. The code is available at https://github.com/AI-secure/SafeAuto.
♻ ☆ Deep Learning Weather Models for Subregional Ocean Forecasting: A Case Study on the Canary Current Upwelling System
Oceanographic forecasting impacts various sectors of society by supporting environmental conservation and economic activities. Based on global circulation models, traditional forecasting methods are computationally expensive and slow, limiting their ability to provide rapid forecasts. Recent advances in deep learning offer faster and more accurate predictions, although these data-driven models are often trained with global data from numerical simulations, which may not reflect reality. The emergence of such models presents great potential for improving ocean prediction at a subregional domain. However, their ability to predict fine-scale ocean processes, like mesoscale structures, remains largely unknown. This work aims to adapt a graph neural network initially developed for global weather forecasting to improve subregional ocean prediction, specifically focusing on the Canary Current upwelling system. The model is trained with satellite data and compared to state-of-the-art physical ocean models to assess its performance in capturing ocean dynamics. Our results show that the deep learning model surpasses traditional methods in precision despite some challenges in upwelling areas. It demonstrated superior performance in reducing RMSE errors compared to ConvLSTM and the GLORYS reanalysis, particularly in regions with complex oceanic dynamics such as Cape Ghir, Cape Bojador, and Cape Blanc. The model achieved improvements of up to 26.5% relative to ConvLSTM and error reductions of up to 76% in 5-day forecasts compared to the GLORYS reanalysis at these critical locations, highlighting its enhanced capability to capture spatial variability and improve predictive accuracy in complex areas. These findings suggest the viability of adapting meteorological data-driven models for improving subregional medium-term ocean forecasting.
comment: 28 pages, 8 figures
♻ ☆ GraphGPT: Generative Pre-trained Graph Eulerian Transformer
We introduceGraphGPT, a novel self-supervised generative pre-trained model for graph learning based on the Graph Eulerian Transformer (GET). First, we propose GET, which combines a standard transformer encoder or decoder architecture with an innovative graph-to-sequence transformation method. This method converts graphs or sampled subgraphs into sequences of tokens representing nodes, edges, and attributes in a reversible manner using Eulerian paths. We pre-train GET using either of the two self-supervised tasks: next-token prediction (NTP) and scheduled masked-token prediction (SMTP). The pre-trained model is then fine-tuned for downstream tasks such as graph-, edge-, and node-level prediction. Despite its simplicity, GraphGPT achieves performance comparable to or surpassing state-of-the-art methods on multiple large-scale Open Graph Benchmark (OGB) datasets. It demonstrates exceptional results on the molecular property prediction dataset PCQM4Mv2 and the protein-protein interaction dataset ogbl-ppa. Notably, generative pre-training enables scaling GraphGPT to 2 billion parameters while maintaining performance gains - a breakthrough that overcomes the scalability limitations of traditional Graph Neural Networks (GNNs) and prior graph transformers (GTs). To advance research in graph foundation models and facilitate scientific discovery in chemistry, materials science, and related fields, we will release the source code (https://github.com/alibaba/graph-gpt) and pre-trained checkpoints.
comment: 9 pages
♻ ☆ UDora: A Unified Red Teaming Framework against LLM Agents by Dynamically Hijacking Their Own Reasoning
Large Language Model (LLM) agents equipped with external tools have become increasingly powerful for complex tasks such as web shopping, automated email replies, and financial trading. However, these advancements amplify the risks of adversarial attacks, especially when agents can access sensitive external functionalities. Nevertheless, manipulating LLM agents into performing targeted malicious actions or invoking specific tools remains challenging, as these agents extensively reason or plan before executing final actions. In this work, we present UDora, a unified red teaming framework designed for LLM agents that dynamically hijacks the agent's reasoning processes to compel malicious behavior. Specifically, UDora first generates the model's reasoning trace for the given task, then automatically identifies optimal points within this trace to insert targeted perturbations. The resulting perturbed reasoning is then used as a surrogate response for optimization. By iteratively applying this process, the LLM agent will then be induced to undertake designated malicious actions or to invoke specific malicious tools. Our approach demonstrates superior effectiveness compared to existing methods across three LLM agent datasets. The code is available at https://github.com/AI-secure/UDora.
♻ ☆ UniDB: A Unified Diffusion Bridge Framework via Stochastic Optimal Control
Recent advances in diffusion bridge models leverage Doob's $h$-transform to establish fixed endpoints between distributions, demonstrating promising results in image translation and restoration tasks. However, these approaches frequently produce blurred or excessively smoothed image details and lack a comprehensive theoretical foundation to explain these shortcomings. To address these limitations, we propose UniDB, a unified framework for diffusion bridges based on Stochastic Optimal Control (SOC). UniDB formulates the problem through an SOC-based optimization and derives a closed-form solution for the optimal controller, thereby unifying and generalizing existing diffusion bridge models. We demonstrate that existing diffusion bridges employing Doob's $h$-transform constitute a special case of our framework, emerging when the terminal penalty coefficient in the SOC cost function tends to infinity. By incorporating a tunable terminal penalty coefficient, UniDB achieves an optimal balance between control costs and terminal penalties, substantially improving detail preservation and output quality. Notably, UniDB seamlessly integrates with existing diffusion bridge models, requiring only minimal code modifications. Extensive experiments across diverse image restoration tasks validate the superiority and adaptability of the proposed framework. Our code is available at https://github.com/UniDB-SOC/UniDB/.
♻ ☆ State-Covering Trajectory Stitching for Diffusion Planners
Diffusion-based generative models are emerging as powerful tools for long-horizon planning in reinforcement learning (RL), particularly with offline datasets. However, their performance is fundamentally limited by the quality and diversity of training data. This often restricts their generalization to tasks outside their training distribution or longer planning horizons. To overcome this challenge, we propose State-Covering Trajectory Stitching (SCoTS), a novel reward-free trajectory augmentation method that incrementally stitches together short trajectory segments, systematically generating diverse and extended trajectories. SCoTS first learns a temporal distance-preserving latent representation that captures the underlying temporal structure of the environment, then iteratively stitches trajectory segments guided by directional exploration and novelty to effectively cover and expand this latent space. We demonstrate that SCoTS significantly improves the performance and generalization capabilities of diffusion planners on offline goal-conditioned benchmarks requiring stitching and long-horizon reasoning. Furthermore, augmented trajectories generated by SCoTS significantly improve the performance of widely used offline goal-conditioned RL algorithms across diverse environments.
♻ ☆ Open Your Eyes: Vision Enhances Message Passing Neural Networks in Link Prediction ICML 2025
Message-passing graph neural networks (MPNNs) and structural features (SFs) are cornerstones for the link prediction task. However, as a common and intuitive mode of understanding, the potential of visual perception has been overlooked in the MPNN community. For the first time, we equip MPNNs with vision structural awareness by proposing an effective framework called Graph Vision Network (GVN), along with a more efficient variant (E-GVN). Extensive empirical results demonstrate that with the proposed frameworks, GVN consistently benefits from the vision enhancement across seven link prediction datasets, including challenging large-scale graphs. Such improvements are compatible with existing state-of-the-art (SOTA) methods and GVNs achieve new SOTA results, thereby underscoring a promising novel direction for link prediction.
comment: ICML 2025
♻ ☆ An Uncertainty-Aware ED-LSTM for Probabilistic Suffix Prediction
Suffix prediction of business processes forecasts the remaining sequence of events until process completion. Current approaches focus on predicting the most likely suffix, representing a single scenario. However, when the future course of a process is subject to uncertainty and high variability, the expressiveness of such a single scenario can be limited, since other possible scenarios, which together may have a higher overall probability, are overlooked. To address this limitation, we propose probabilistic suffix prediction, a novel approach that approximates a probability distribution of suffixes. The proposed approach is based on an Uncertainty-Aware Encoder-Decoder LSTM (U-ED-LSTM) and a Monte Carlo (MC) suffix sampling algorithm. We capture epistemic uncertainties via MC dropout and aleatoric uncertainties as learned loss attenuation. This technical report presents a comprehensive evaluation of the probabilistic suffix prediction approach's predictive performance and calibration under three different hyperparameter settings, using four real-life and one artificial event log. The results show that: i) probabilistic suffix prediction can outperform most likely suffix prediction, the U-ED-LSTM has reasonable predictive performance, and ii) the model's predictions are well calibrated.
♻ ☆ Decoupling Representation and Learning in Genetic Programming: the LaSER Approach
Genetic Programming (GP) has traditionally entangled the evolution of symbolic representations with their performance-based evaluation, often relying solely on raw fitness scores. This tight coupling makes GP solutions more fragile and prone to overfitting, reducing their ability to generalize. In this work, we propose LaSER (Latent Semantic Representation Regression)} -- a general framework that decouples representation evolution from lifetime learning. At each generation, candidate programs produce features which are passed to an external learner to model the target task. This approach enables any function approximator, from linear models to neural networks, to serve as a lifetime learner, allowing expressive modeling beyond conventional symbolic forms. Here we show for the first time that LaSER can outcompete standard GP and GP followed by linear regression when it employs non-linear methods to fit coefficients to GP-generated equations against complex data sets. Further, we explore how LaSER enables the emergence of innate representations, supporting long-standing hypotheses in evolutionary learning such as the Baldwin Effect. By separating the roles of representation and adaptation, LaSER offers a principled and extensible framework for symbolic regression and classification.
comment: Accepted to Genetic Programming Theory and Practice (GPTP) 2025. The final revised version will be uploaded following the workshop
♻ ☆ BoA: Attention-aware Post-training Quantization without Backpropagation ICML 2025
Post-training quantization (PTQ) is a promising solution for deploying large language models (LLMs) on resource-constrained devices. Early methods developed for small-scale networks, such as ResNet, rely on gradient-based optimization, which becomes impractical for hyper-scale LLMs with billions of parameters. While recently proposed backpropagation-free or transformation-based methods alleviate this issue, they ignore inter-layer interactions or use the naive nearest-rounding-based quantized weight assignment to save the heavy computational cost of weight optimization. In this paper, we introduce a novel backpropagation-free PTQ algorithm that optimizes quantized weights by considering inter-layer dependencies. The key innovation is the development of attention-aware Hessian matrices that capture inter-layer interactions within the attention module. Extensive experiments demonstrate that our approach not only outperforms existing weight quantization methods but also shows good synergy with conventional methods to suppress activation outliers, leading to state-of-the-art weight-activation quantization performance. The code will be available at https://github.com/SamsungLabs/BoA.
comment: ICML 2025
♻ ☆ PoisonBench: Assessing Large Language Model Vulnerability to Data Poisoning ICML 2025
Preference learning is a central component for aligning current LLMs, but this process can be vulnerable to data poisoning attacks. To address this concern, we introduce PoisonBench, a benchmark for evaluating large language models' susceptibility to data poisoning during preference learning. Data poisoning attacks can manipulate large language model responses to include hidden malicious content or biases, potentially causing the model to generate harmful or unintended outputs while appearing to function normally. We deploy two distinct attack types across eight realistic scenarios, assessing 21 widely-used models. Our findings reveal concerning trends: (1) Scaling up parameter size does not inherently enhance resilience against poisoning attacks; (2) There exists a log-linear relationship between the effects of the attack and the data poison ratio; (3) The effect of data poisoning can generalize to extrapolated triggers that are not included in the poisoned data. These results expose weaknesses in current preference learning techniques, highlighting the urgent need for more robust defenses against malicious models and data manipulation.
comment: Accepted at ICML 2025. Tingchen Fu and Fazl Barez are core research contributors
♻ ☆ Infi-MMR: Curriculum-based Unlocking Multimodal Reasoning via Phased Reinforcement Learning in Multimodal Small Language Models
Recent advancements in large language models (LLMs) have demonstrated substantial progress in reasoning capabilities, such as DeepSeek-R1, which leverages rule-based reinforcement learning to enhance logical reasoning significantly. However, extending these achievements to multimodal large language models (MLLMs) presents critical challenges, which are frequently more pronounced for Multimodal Small Language Models (MSLMs) given their typically weaker foundational reasoning abilities: (1) the scarcity of high-quality multimodal reasoning datasets, (2) the degradation of reasoning capabilities due to the integration of visual processing, and (3) the risk that direct application of reinforcement learning may produce complex yet incorrect reasoning processes. To address these challenges, we design a novel framework Infi-MMR to systematically unlock the reasoning potential of MSLMs through a curriculum of three carefully structured phases and propose our multimodal reasoning model Infi-MMR-3B. The first phase, Foundational Reasoning Activation, leverages high-quality textual reasoning datasets to activate and strengthen the model's logical reasoning capabilities. The second phase, Cross-Modal Reasoning Adaptation, utilizes caption-augmented multimodal data to facilitate the progressive transfer of reasoning skills to multimodal contexts. The third phase, Multimodal Reasoning Enhancement, employs curated, caption-free multimodal data to mitigate linguistic biases and promote robust cross-modal reasoning. Infi-MMR-3B achieves both state-of-the-art multimodal math reasoning ability (43.68% on MathVerse testmini, 27.04% on MathVision test, and 21.33% on OlympiadBench) and general reasoning ability (67.2% on MathVista testmini). Resources are available at https://huggingface.co/Reallm-Labs/Infi-MMR-3B.
♻ ☆ Domain Generalizable Knowledge Tracing via Concept Aggregation and Relation-Based Attention
Knowledge Tracing (KT) is a critical task in online education systems, aiming to monitor students' knowledge states throughout a learning period. Common KT approaches involve predicting the probability of a student correctly answering the next question based on their exercise history. However, these methods often suffer from performance degradation when faced with the scarcity of student interactions in new education systems. To address this, we leverage student interactions from existing education systems to mitigate performance degradation caused by limited training data. Nevertheless, these interactions exhibit significant differences since they are derived from different education systems. To address this issue, we propose a domain generalization approach for knowledge tracing, where existing education systems are considered source domains, and new education systems with limited data are considered target domains. Additionally, we design a domain-generalizable knowledge tracing framework (DGKT) that can be applied to any KT model. Specifically, we present a concept aggregation approach designed to reduce conceptual disparities within sequences of student interactions from diverse domains. To further mitigate domain discrepancies, we introduce a novel normalization module called Sequence Instance Normalization (SeqIN). Moreover, to fully leverage exercise information, we propose a new knowledge tracing model tailored for the domain generalization KT task, named Domain-Generalizable Relation-based Knowledge Tracing (DGRKT). Extensive experiments across five benchmark datasets demonstrate that the proposed method performs well despite limited training data.
♻ ☆ SAGE: A Framework of Precise Retrieval for RAG
Retrieval-augmented generation (RAG) has demonstrated significant proficiency in conducting question-answering (QA) tasks within a specified corpus. Nonetheless, numerous failure instances of RAG in QA still exist. These failures are not solely attributable to the limitations of Large Language Models (LLMs); instead, they predominantly arise from the retrieval of inaccurate information for LLMs due to two limitations: (1) Current RAG methods segment the corpus without considering semantics, making it difficult to find relevant context due to impaired correlation between questions and the segments. (2) There is a trade-off between missing essential context with fewer context retrieved and getting irrelevant context with more context retrieved. In this paper, we introduce a RAG framework (SAGE), to overcome these limitations. First, to address the segmentation issue without considering semantics, we propose to train a semantic segmentation model. This model is trained to segment the corpus into semantically complete chunks. Second, to ensure that only the most relevant chunks are retrieved while the irrelevant ones are ignored, we design a chunk selection algorithm to dynamically select chunks based on the decreasing speed of the relevance score, leading to a more relevant selection. Third, to further ensure the precision of the retrieved chunks, we propose letting LLMs assess whether retrieved chunks are excessive or lacking and then adjust the amount of context accordingly. Experiments show that SAGE outperforms baselines by 61.25% in the quality of QA on average. Moreover, by avoiding retrieving noisy context, SAGE lowers the cost of the tokens consumed in LLM inference and achieves a 49.41% enhancement in cost efficiency on average. Additionally, our work offers valuable insights for boosting RAG.
♻ ☆ SageAttention2++: A More Efficient Implementation of SageAttention2
The efficiency of attention is critical because its time complexity grows quadratically with sequence length. SageAttention2 addresses this by utilizing quantization to accelerate matrix multiplications (Matmul) in attention. To further accelerate SageAttention2, we propose to utilize the faster instruction of FP8 Matmul accumulated in FP16. The instruction is 2x faster than the FP8 Matmul used in SageAttention2. Our experiments show that SageAttention2++ achieves a 3.9x speedup over FlashAttention while maintaining the same attention accuracy as SageAttention2. This means SageAttention2++ effectively accelerates various models, including those for language, image, and video generation, with negligible end-to-end metrics loss. The code will be available at https://github.com/thu-ml/SageAttention.
♻ ☆ Boolean matrix logic programming for active learning of gene functions in genome-scale metabolic network models
Reasoning about hypotheses and updating knowledge through empirical observations are central to scientific discovery. In this work, we applied logic-based machine learning methods to drive biological discovery by guiding experimentation. Genome-scale metabolic network models (GEMs) - comprehensive representations of metabolic genes and reactions - are widely used to evaluate genetic engineering of biological systems. However, GEMs often fail to accurately predict the behaviour of genetically engineered cells, primarily due to incomplete annotations of gene interactions. The task of learning the intricate genetic interactions within GEMs presents computational and empirical challenges. To efficiently predict using GEM, we describe a novel approach called Boolean Matrix Logic Programming (BMLP) by leveraging Boolean matrices to evaluate large logic programs. We developed a new system, $BMLP_{active}$, which guides cost-effective experimentation and uses interpretable logic programs to encode a state-of-the-art GEM of a model bacterial organism. Notably, $BMLP_{active}$ successfully learned the interaction between a gene pair with fewer training examples than random experimentation, overcoming the increase in experimental design space. $BMLP_{active}$ enables rapid optimisation of metabolic models to reliably engineer biological systems for producing useful compounds. It offers a realistic approach to creating a self-driving lab for biological discovery, which would then facilitate microbial engineering for practical applications.
♻ ☆ Who Can Withstand Chat-Audio Attacks? An Evaluation Benchmark for Large Audio-Language Models ACL 2025
Adversarial audio attacks pose a significant threat to the growing use of large audio-language models (LALMs) in voice-based human-machine interactions. While existing research focused on model-specific adversarial methods, real-world applications demand a more generalizable and universal approach to audio adversarial attacks. In this paper, we introduce the Chat-Audio Attacks (CAA) benchmark including four distinct types of audio attacks, which aims to explore the vulnerabilities of LALMs to these audio attacks in conversational scenarios. To evaluate the robustness of LALMs, we propose three evaluation strategies: Standard Evaluation, utilizing traditional metrics to quantify model performance under attacks; GPT-4o-Based Evaluation, which simulates real-world conversational complexities; and Human Evaluation, offering insights into user perception and trust. We evaluate six state-of-the-art LALMs with voice interaction capabilities, including Gemini-1.5-Pro, GPT-4o, and others, using three distinct evaluation methods on the CAA benchmark. Our comprehensive analysis reveals the impact of four types of audio attacks on the performance of these models, demonstrating that GPT-4o exhibits the highest level of resilience. Our data can be accessed via the following link: \href{https://github.com/crystraldo/CAA}{CAA}.
comment: Accepted by ACL 2025 Findings
♻ ☆ Common Data Format (CDF): A Standardized Format for Match-Data in Football (Soccer)
During football matches, a variety of different parties (e.g., companies) each collect (possibly overlapping) data about the match ranging from basic information (e.g., starting players) to detailed positional data. This data is provided to clubs, federations, and other organizations who are increasingly interested in leveraging this data to inform their decision making. Unfortunately, analyzing such data pose significant barriers because each provider may (1) collect different data, (2) use different specifications even within the same category of data, (3) represent the data differently, and (4) delivers the data in a different manner (e.g., file format, protocol). Consequently, working with these data requires a significant investment of time and money. The goal of this work is to propose a uniform and standardized format for football data called the Common Data Format (CDF). The CDF specifies a minimal schema for five types of match data: match sheet data, video footage, event data, tracking data, and match meta data. It aims to ensure that the provided data is clear, sufficiently contextualized (e.g., its provenance is clear), and complete such that it enables common downstream analysis tasks. Concretely, this paper will detail the technical specifications of the CDF, the representational choices that were made to help ensure the clarity of the provided data, and a concrete approach for delivering data in the CDF.
♻ ☆ DebFlow: Automating Agent Creation via Agent Debate
Large language models (LLMs) have demonstrated strong potential and impressive performance in automating the generation and optimization of workflows. However, existing approaches are marked by limited reasoning capabilities, high computational demands, and significant resource requirements. To address these issues, we propose DebFlow, a framework that employs a debate mechanism to optimize workflows and integrates reflexion to improve based on previous experiences. We evaluated our method across six benchmark datasets, including HotpotQA, MATH, and ALFWorld. Our approach achieved a 3\% average performance improvement over the latest baselines, demonstrating its effectiveness in diverse problem domains. In particular, during training, our framework reduces resource consumption by 37\% compared to the state-of-the-art baselines. Additionally, we performed ablation studies. Removing the Debate component resulted in a 4\% performance drop across two benchmark datasets, significantly greater than the 2\% drop observed when the Reflection component was removed. These findings strongly demonstrate the critical role of Debate in enhancing framework performance, while also highlighting the auxiliary contribution of reflexion to overall optimization.
♻ ☆ Maximum Entropy Reinforcement Learning with Diffusion Policy ICML 2025
The Soft Actor-Critic (SAC) algorithm with a Gaussian policy has become a mainstream implementation for realizing the Maximum Entropy Reinforcement Learning (MaxEnt RL) objective, which incorporates entropy maximization to encourage exploration and enhance policy robustness. While the Gaussian policy performs well on simpler tasks, its exploration capacity and potential performance in complex multi-goal RL environments are limited by its inherent unimodality. In this paper, we employ the diffusion model, a powerful generative model capable of capturing complex multimodal distributions, as the policy representation to fulfill the MaxEnt RL objective, developing a method named MaxEnt RL with Diffusion Policy (MaxEntDP). Our method enables efficient exploration and brings the policy closer to the optimal MaxEnt policy. Experimental results on Mujoco benchmarks show that MaxEntDP outperforms the Gaussian policy and other generative models within the MaxEnt RL framework, and performs comparably to other state-of-the-art diffusion-based online RL algorithms. Our code is available at https://github.com/diffusionyes/MaxEntDP.
comment: ICML 2025
♻ ☆ Images Speak Louder than Words: Understanding and Mitigating Bias in Vision-Language Model from a Causal Mediation Perspective
Vision-language models (VLMs) pre-trained on extensive datasets can inadvertently learn biases by correlating gender information with specific objects or scenarios. Current methods, which focus on modifying inputs and monitoring changes in the model's output probability scores, often struggle to comprehensively understand bias from the perspective of model components. We propose a framework that incorporates causal mediation analysis to measure and map the pathways of bias generation and propagation within VLMs. This approach allows us to identify the direct effects of interventions on model bias and the indirect effects of interventions on bias mediated through different model components. Our results show that image features are the primary contributors to bias, with significantly higher impacts than text features, specifically accounting for 32.57% and 12.63% of the bias in the MSCOCO and PASCAL-SENTENCE datasets, respectively. Notably, the image encoder's contribution surpasses that of the text encoder and the deep fusion encoder. Further experimentation confirms that contributions from both language and vision modalities are aligned and non-conflicting. Consequently, focusing on blurring gender representations within the image encoder, which contributes most to the model bias, reduces bias efficiently by 22.03% and 9.04% in the MSCOCO and PASCAL-SENTENCE datasets, respectively, with minimal performance loss or increased computational demands.
♻ ☆ IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis
Large Language Models (LLMs) show promise as data analysis agents, but existing benchmarks overlook the iterative nature of the field, where experts' decisions evolve with deeper insights of the dataset. To address this, we introduce IDA-Bench, a novel benchmark evaluating LLM agents in multi-round interactive scenarios. Derived from complex Kaggle notebooks, tasks are presented as sequential natural language instructions by an LLM-simulated user. Agent performance is judged by comparing its final numerical output to the human-derived baseline. Initial results show that even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on < 50% of the tasks, highlighting limitations not evident in single-turn tests. This work underscores the need to improve LLMs' multi-round capabilities for building more reliable data analysis agents, highlighting the necessity of achieving a balance between instruction following and reasoning.
♻ ☆ m-KAILIN: Knowledge-Driven Agentic Scientific Corpus Distillation Framework for Biomedical Large Language Models Training
Corpus distillation for biomedical large language models (LLMs) seeks to address the pressing challenge of insufficient quantity and quality in open-source annotated scientific corpora, which remains a bottleneck for effective LLM training in biomedical research. This paper proposes a knowledge-driven, agentic framework for scientific corpus distillation, tailored explicitly for LLM training in the biomedical domain, addressing the challenge posed by the complex hierarchy of biomedical knowledge. Central to our approach is a collaborative multi-agent architecture, where specialized agents, each guided by the Medical Subject Headings (MeSH) hierarchy, work in concert to autonomously extract, synthesize, and self-evaluate high-quality textual data from vast scientific literature. This agentic framework collectively generates and refines domain-specific question-answer pairs, ensuring comprehensive coverage and consistency with biomedical ontologies while minimizing manual involvement. Extensive experimental results show that language models trained on our multi-agent distilled datasets achieve notable improvements in biomedical question-answering tasks, outperforming both strong life sciences LLM baselines and advanced proprietary models. Notably, our AI-Ready dataset enables Llama3-70B to surpass GPT-4 with MedPrompt and Med-PaLM-2, despite their larger scale. Detailed ablation studies and case analyses further validate the effectiveness and synergy of each agent within the framework, highlighting the potential of multi-agent collaboration in biomedical LLM training.
comment: Biomedical large language models, corpus distillation, question-answer, agentic AI. arXiv admin note: text overlap with arXiv:2501.15108
♻ ☆ RepoMaster: Autonomous Exploration and Understanding of GitHub Repositories for Complex Task Solving
The ultimate goal of code agents is to solve complex tasks autonomously. Although large language models (LLMs) have made substantial progress in code generation, real-world tasks typically demand full-fledged code repositories rather than simple scripts. Building such repositories from scratch remains a major challenge. Fortunately, GitHub hosts a vast, evolving collection of open-source repositories, which developers frequently reuse as modular components for complex tasks. Yet, existing frameworks like OpenHands and SWE-Agent still struggle to effectively leverage these valuable resources. Relying solely on README files provides insufficient guidance, and deeper exploration reveals two core obstacles: overwhelming information and tangled dependencies of repositories, both constrained by the limited context windows of current LLMs. To tackle these issues, we propose RepoMaster, an autonomous agent framework designed to explore and reuse GitHub repositories for solving complex tasks. For efficient understanding, RepoMaster constructs function-call graphs, module-dependency graphs, and hierarchical code trees to identify essential components, providing only identified core elements to the LLMs rather than the entire repository. During autonomous execution, it progressively explores related components using our exploration tools and prunes information to optimize context usage. Evaluated on the adjusted MLE-bench, RepoMaster achieves a 110% relative boost in valid submissions over the strongest baseline OpenHands. On our newly released GitTaskBench, RepoMaster lifts the task-pass rate from 24.1% to 62.9% while reducing token usage by 95%. Our code and demonstration materials are publicly available at https://github.com/wanghuacan/RepoMaster.
comment: A novel approach; Very practical
♻ ☆ Emergent Symbolic Mechanisms Support Abstract Reasoning in Large Language Models ICML 2025
Many recent studies have found evidence for emergent reasoning capabilities in large language models (LLMs), but debate persists concerning the robustness of these capabilities, and the extent to which they depend on structured reasoning mechanisms. To shed light on these issues, we study the internal mechanisms that support abstract reasoning in LLMs. We identify an emergent symbolic architecture that implements abstract reasoning via a series of three computations. In early layers, symbol abstraction heads convert input tokens to abstract variables based on the relations between those tokens. In intermediate layers, symbolic induction heads perform sequence induction over these abstract variables. Finally, in later layers, retrieval heads predict the next token by retrieving the value associated with the predicted abstract variable. These results point toward a resolution of the longstanding debate between symbolic and neural network approaches, suggesting that emergent reasoning in neural networks depends on the emergence of symbolic mechanisms.
comment: This is an extended version of a paper that has been accepted to ICML 2025
♻ ☆ Computational Limits of Low-Rank Adaptation (LoRA) Fine-Tuning for Transformer Models ICLR 2025
We study the computational limits of Low-Rank Adaptation (LoRA) for finetuning transformer-based models using fine-grained complexity theory. Our key observation is that the existence of low-rank decompositions within the gradient computation of LoRA adaptation leads to possible algorithmic speedup. This allows us to (i) identify a phase transition behavior of efficiency assuming the Strong Exponential Time Hypothesis (SETH), and (ii) prove the existence of almost linear algorithms by controlling the LoRA update computation term by term. For the former, we identify a sharp transition in the efficiency of all possible rank-$r$ LoRA update algorithms for transformers, based on specific norms resulting from the multiplications of the input sequence $X$, pretrained weights ${W^\star}$, and adapter matrices $\alpha B A/r$. Specifically, we derive a shared upper bound threshold for such norms, and show that efficient (sub-quadratic) approximation algorithms of LoRA exist only below this threshold. For the latter, we prove the existence of almost linear approximation algorithms for LoRA adaptation by utilizing the hierarchical low-rank structures of LoRA gradients and approximating the gradients with a series of chained low-rank approximations. To showcase our theory, we consider two practical scenarios: partial (e.g., only $W_V$ and $W_Q$) and full adaptations (e.g., $W_Q$, $W_V$, and $W_K$) of weights in attention heads.
comment: Accepted at ICLR 2025. v2 matches the camera-ready version
♻ ☆ A Comprehensive Survey on Concept Erasure in Text-to-Image Diffusion Models
Text-to-Image (T2I) models have made remarkable progress in generating high-quality, diverse visual content from natural language prompts. However, their ability to reproduce copyrighted styles, sensitive imagery, and harmful content raises significant ethical and legal concerns. Concept erasure offers a proactive alternative to external filtering by modifying T2I models to prevent the generation of undesired content. In this survey, we provide a structured overview of concept erasure, categorizing existing methods based on their optimization strategies and the architectural components they modify. We categorize concept erasure methods into fine-tuning for parameter updates, closed-form solutions for efficient edits, and inference-time interventions for content restriction without weight modification. Additionally, we explore adversarial attacks that bypass erasure techniques and discuss emerging defenses. To support further research, we consolidate key datasets, evaluation metrics, and benchmarks for assessing erasure effectiveness and model robustness. This survey serves as a comprehensive resource, offering insights into the evolving landscape of concept erasure, its challenges, and future directions.
♻ ☆ Position: Theory of Mind Benchmarks are Broken for Large Language Models ICML 2025
Our paper argues that the majority of theory of mind benchmarks are broken because of their inability to directly test how large language models (LLMs) adapt to new partners. This problem stems from the fact that theory of mind benchmarks for LLMs are overwhelmingly inspired by the methods used to test theory of mind in humans and fall victim to a fallacy of attributing human-like qualities to AI agents. We expect that humans will engage in a consistent reasoning process across various questions about a situation, but this is known to not be the case for current LLMs. Most theory of mind benchmarks only measure what we call literal theory of mind: the ability to predict the behavior of others. However, this type of metric is only informative when agents exhibit self-consistent reasoning. Thus, we introduce the concept of functional theory of mind: the ability to adapt to agents in-context following a rational response to their behavior. We find that many open source LLMs are capable of displaying strong literal theory of mind capabilities, but seem to struggle with functional theory of mind -- even with exceedingly simple partner policies. Simply put, strong literal theory of mind performance does not necessarily imply strong functional theory of mind performance or vice versa. Achieving functional theory of mind, particularly over long interaction horizons with a partner, is a significant challenge deserving a prominent role in any meaningful LLM theory of mind evaluation.
comment: ICML 2025
♻ ☆ Web Intellectual Property at Risk: Preventing Unauthorized Real-Time Retrieval by Large Language Models
The protection of cyber Intellectual Property (IP) such as web content is an increasingly critical concern. The rise of large language models (LLMs) with online retrieval capabilities enables convenient access to information but often undermines the rights of original content creators. As users increasingly rely on LLM-generated responses, they gradually diminish direct engagement with original information sources, which will significantly reduce the incentives for IP creators to contribute, and lead to a saturating cyberspace with more AI-generated content. In response, we propose a novel defense framework that empowers web content creators to safeguard their web-based IP from unauthorized LLM real-time extraction and redistribution by leveraging the semantic understanding capability of LLMs themselves. Our method follows principled motivations and effectively addresses an intractable black-box optimization problem. Real-world experiments demonstrated that our methods improve defense success rates from 2.5% to 88.6% on different LLMs, outperforming traditional defenses such as configuration-based restrictions.
comment: 13 pages, 13 figures, 4 tables
♻ ☆ FinSage: A Multi-aspect RAG System for Financial Filings Question Answering
Leveraging large language models in real-world settings often entails a need to utilize domain-specific data and tools in order to follow the complex regulations that need to be followed for acceptable use. Within financial sectors, modern enterprises increasingly rely on Retrieval-Augmented Generation (RAG) systems to address complex compliance requirements in financial document workflows. However, existing solutions struggle to account for the inherent heterogeneity of data (e.g., text, tables, diagrams) and evolving nature of regulatory standards used in financial filings, leading to compromised accuracy in critical information extraction. We propose the FinSage framework as a solution, utilizing a multi-aspect RAG framework tailored for regulatory compliance analysis in multi-modal financial documents. FinSage introduces three innovative components: (1) a multi-modal pre-processing pipeline that unifies diverse data formats and generates chunk-level metadata summaries, (2) a multi-path sparse-dense retrieval system augmented with query expansion (HyDE) and metadata-aware semantic search, and (3) a domain-specialized re-ranking module fine-tuned via Direct Preference Optimization (DPO) to prioritize compliance-critical content. Extensive experiments demonstrate that FinSage achieves an impressive recall of 92.51% on 75 expert-curated questions derived from surpasses the best baseline method on the FinanceBench question answering datasets by 24.06% in accuracy. Moreover, FinSage has been successfully deployed as financial question-answering agent in online meetings, where it has already served more than 1,200 people.
♻ ☆ Structure Guided Large Language Model for SQL Generation
Recent advancements in large language models (LLMs) have shown promise in bridging the gap between natural language queries and database management systems, enabling users to interact with databases without the background of SQL. However, LLMs often struggle to comprehend complex database structures and accurately interpret user intentions. Decomposition-based methods have been proposed to enhance the performance of LLMs on complex tasks, but decomposing SQL generation into subtasks is non-trivial due to the declarative structure of SQL syntax and the intricate connections between query concepts and database elements. In this paper, we propose a novel Structure GUided text-to-SQL framework~(SGU-SQL) that incorporates syntax-based prompting to enhance the SQL generation capabilities of LLMs. Specifically, SGU-SQL establishes structure-aware links between user queries and database schema and decomposes the complex generation task using syntax-based prompting to enable more accurate LLM-based SQL generation. Extensive experiments on two benchmark datasets demonstrate that SGU-SQL consistently outperforms state-of-the-art text-to-SQL models.
comment: The 42nd International Conference on Machine Learning
♻ ☆ Mirage: A Multi-Level Superoptimizer for Tensor Programs OSDI'25
We introduce Mirage, the first multi-level superoptimizer for tensor programs. A key idea in Mirage is $\mu$Graphs, a uniform representation of tensor programs at the kernel, thread block, and thread levels of the GPU compute hierarchy. $\mu$Graphs enable Mirage to discover novel optimizations that combine algebraic transformations, schedule transformations, and generation of new custom kernels. To navigate the large search space, Mirage introduces a pruning technique based on abstraction that significantly reduces the search space and provides a certain optimality guarantee. To ensure that the optimized $\mu$Graph is equivalent to the input program, Mirage introduces a probabilistic equivalence verification procedure with strong theoretical guarantees. Our evaluation shows that Mirage outperforms existing approaches by up to 3.3$\times$ even for DNNs that are widely used and heavily optimized. Mirage is publicly available at https://github.com/mirage-project/mirage.
comment: OSDI'25
♻ ☆ DORAEMON: Decentralized Ontology-aware Reliable Agent with Enhanced Memory Oriented Navigation
Adaptive navigation in unfamiliar environments is crucial for household service robots but remains challenging due to the need for both low-level path planning and high-level scene understanding. While recent vision-language model (VLM) based zero-shot approaches reduce dependence on prior maps and scene-specific training data, they face significant limitations: spatiotemporal discontinuity from discrete observations, unstructured memory representations, and insufficient task understanding leading to navigation failures. We propose DORAEMON (Decentralized Ontology-aware Reliable Agent with Enhanced Memory Oriented Navigation), a novel cognitive-inspired framework consisting of Ventral and Dorsal Streams that mimics human navigation capabilities. The Dorsal Stream implements the Hierarchical Semantic-Spatial Fusion and Topology Map to handle spatiotemporal discontinuities, while the Ventral Stream combines RAG-VLM and Policy-VLM to improve decision-making. Our approach also develops Nav-Ensurance to ensure navigation safety and efficiency. We evaluate DORAEMON on the HM3D, MP3D, and GOAT datasets, where it achieves state-of-the-art performance on both success rate (SR) and success weighted by path length (SPL) metrics, significantly outperforming existing methods. We also introduce a new evaluation metric (AORI) to assess navigation intelligence better. Comprehensive experiments demonstrate DORAEMON's effectiveness in zero-shot autonomous navigation without requiring prior map building or pre-training.
♻ ☆ A Survey on Sparse Autoencoders: Interpreting the Internal Mechanisms of Large Language Models
Large Language Models (LLMs) have transformed natural language processing, yet their internal mechanisms remain largely opaque. Recently, mechanistic interpretability has attracted significant attention from the research community as a means to understand the inner workings of LLMs. Among various mechanistic interpretability approaches, Sparse Autoencoders (SAEs) have emerged as a promising method due to their ability to disentangle the complex, superimposed features within LLMs into more interpretable components. This paper presents a comprehensive survey of SAEs for interpreting and understanding the internal workings of LLMs. Our major contributions include: (1) exploring the technical framework of SAEs, covering basic architecture, design improvements, and effective training strategies; (2) examining different approaches to explaining SAE features, categorized into input-based and output-based explanation methods; (3) discussing evaluation methods for assessing SAE performance, covering both structural and functional metrics; and (4) investigating real-world applications of SAEs in understanding and manipulating LLM behaviors.
comment: 23 pages, 3 figures
♻ ☆ Understanding Memorization in Generative Models via Sharpness in Probability Landscapes ICML 2025
In this paper, we introduce a geometric framework to analyze memorization in diffusion models through the sharpness of the log probability density. We mathematically justify a previously proposed score-difference-based memorization metric by demonstrating its effectiveness in quantifying sharpness. Additionally, we propose a novel memorization metric that captures sharpness at the initial stage of image generation in latent diffusion models, offering early insights into potential memorization. Leveraging this metric, we develop a mitigation strategy that optimizes the initial noise of the generation process using a sharpness-aware regularization term.
comment: Accepted at ICML 2025 (Spotlight)
♻ ☆ The Coming Crisis of Multi-Agent Misalignment: AI Alignment Must Be a Dynamic and Social Process NeurIPS 2025
This position paper states that AI Alignment in Multi-Agent Systems (MAS) should be considered a dynamic and interaction-dependent process that heavily depends on the social environment where agents are deployed, either collaborative, cooperative, or competitive. While AI alignment with human values and preferences remains a core challenge, the growing prevalence of MAS in real-world applications introduces a new dynamic that reshapes how agents pursue goals and interact to accomplish various tasks. As agents engage with one another, they must coordinate to accomplish both individual and collective goals. However, this complex social organization may unintentionally misalign some or all of these agents with human values or user preferences. Drawing on social sciences, we analyze how social structure can deter or shatter group and individual values. Based on these analyses, we call on the AI community to treat human, preferential, and objective alignment as an interdependent concept, rather than isolated problems. Finally, we emphasize the urgent need for simulation environments, benchmarks, and evaluation frameworks that allow researchers to assess alignment in these interactive multi-agent contexts before such dynamics grow too complex to control.
comment: Preprint of NeurIPS 2025 Position Paper
♻ ☆ Graph Attention Networks Unleashed: A Fast and Explainable Vulnerability Assessment Framework for Microgrids
Independent microgrids are crucial for supplying electricity by combining distributed energy resources and loads in scenarios like isolated islands and field combat. Fast and accurate assessments of microgrid vulnerability against intentional attacks or natural disasters are essential for effective risk prevention and design optimization. However, conventional Monte Carlo simulation (MCS) methods are computationally expensive and time-consuming, while existing machine learning-based approaches often lack accuracy and explainability. To address these challenges, this study proposes a fast and explainable vulnerability assessment framework that integrates MCS with a graph attention network enhanced by self-attention pooling (GAT-S). MCS generates training data, while the GAT-S model learns the structural and electrical characteristics of the microgrid and further assesses its vulnerability intelligently. The GAT-S improves explainability and computational efficiency by dynamically assigning attention weights to critical nodes. Comprehensive experimental evaluations across various microgrid configurations demonstrate that the proposed framework provides accurate vulnerability assessments, achieving a mean squared error as low as 0.001, real-time responsiveness within 1 second, and delivering explainable results.
comment: Since we have found that there are still several issues in this article. Some statements in the article are not rigorous, and the language and structure of the article still have a lot of room to polish. Moreover, the experiment of the article is not sufficient, and the experimental conclusion is not convincing enough. We sincerely hope to withdraw this article for further revision
♻ ☆ Simmering: Sufficient is better than optimal for training neural networks
The broad range of neural network training techniques that invoke optimization but rely on ad hoc modification for validity suggests that optimization-based training is misguided. Shortcomings of optimization-based training are brought to particularly strong relief by the problem of overfitting, where naive optimization produces spurious outcomes. The broad success of neural networks for modelling physical processes has prompted advances that are based on inverting the direction of investigation and treating neural networks as if they were physical systems in their own right. These successes raise the question of whether broader, physical perspectives could motivate the construction of improved training algorithms. Here, we introduce simmering, a physics-based method that trains neural networks to generate weights and biases that are merely ``good enough'', but which, paradoxically, outperforms leading optimization-based approaches. Using classification and regression examples we show that simmering corrects neural networks that are overfit by Adam, and show that simmering avoids overfitting if deployed from the outset. Our results question optimization as a paradigm for neural network training, and leverage information-geometric arguments to point to the existence of classes of sufficient training algorithms that do not take optimization as their starting point.
comment: Minor corrections, clarifications
♻ ☆ RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models ICML 2025
Supervised fine-tuning is a standard method for adapting pre-trained large language models (LLMs) to downstream tasks. Quantization has been recently studied as a post-training technique for efficient LLM deployment. To obtain quantized fine-tuned LLMs, conventional pipelines would first fine-tune the pre-trained models, followed by post-training quantization. This often yields suboptimal performance as it fails to leverage the synergy between fine-tuning and quantization. To effectively realize low-bit quantization of weights, activations and KV caches in LLMs, we propose an algorithm named Rotated Straight-Through-Estimator (RoSTE), which combines quantization-aware supervised fine-tuning (QA-SFT) with an adaptive rotation strategy that identifies an effective rotation configuration to reduce activation outliers. We provide theoretical insights on RoSTE by analyzing its prediction error when applied to an overparameterized least square quantized training problem. Our findings reveal that the prediction error is directly proportional to the quantization error of the converged weights, which can be effectively managed through an optimized rotation configuration. Experiments on Pythia, Qwen and Llama models of different sizes demonstrate the effectiveness of RoSTE. Compared to existing post-SFT quantization baselines, our method consistently achieves superior performances across various tasks and different LLM architectures. Our code is available at https://github.com/OptimAI-Lab/RoSTE.
comment: accepted by ICML 2025
♻ ☆ TMT: Tri-Modal Translation between Speech, Image, and Text by Processing Different Modalities as Different Languages
The capability to jointly process multi-modal information is becoming an essential task. However, the limited number of paired multi-modal data and the large computational requirements in multi-modal learning hinder the development. We propose a novel Tri-Modal Translation (TMT) model that translates between arbitrary modalities spanning speech, image, and text. We introduce a novel viewpoint, where we interpret different modalities as different languages, and treat multi-modal translation as a well-established machine translation problem. To this end, we tokenize speech and image data into discrete tokens, which provide a unified interface across modalities and significantly decrease the computational cost. In the proposed TMT, a multi-modal encoder-decoder conducts the core translation, whereas modality-specific processing is conducted only within the tokenization and detokenization stages. We evaluate the proposed TMT on all six modality translation tasks. TMT outperforms single model counterparts consistently, demonstrating that unifying tasks is beneficial not only for practicality but also for performance.
comment: IEEE TMM
♻ ☆ LauraTSE: Target Speaker Extraction using Auto-Regressive Decoder-Only Language Models
We propose LauraTSE, an Auto-Regressive Decoder-Only Language Model for Target Speaker Extraction built upon the LauraGPT backbone. LauraTSE employs a small-scale auto-regressive decoder-only language model that generates the initial layers of the target speech's discrete codec representations from the continuous embeddings of both the mixture and reference speech. These outputs serve as coarse-grained predictions. To refine them, a one-step encoder-only language model reconstructs the full codec representation by integrating information from both the mixture and the reference speech, adding fine-grained details. Our approach achieves superior or comparable performance to existing TSE models. Additionally, we conduct ablation studies to investigate the data scalability and the contribution of the encoder-only model.
comment: 8 pages, 5 figure
Multi-Agent Collaboration via Cross-Team Orchestration ACL 2025
Large Language Models (LLMs) have significantly impacted various domains, especially through organized LLM-driven autonomous agents. A representative scenario is in software development, where agents can collaborate in a team like humans, following predefined phases to complete sub-tasks sequentially. However, for an agent team, each phase yields only one possible outcome. This results in the completion of only one development chain, thereby losing the opportunity to explore multiple potential decision paths within the solution space. Consequently leading to suboptimal results or extensive trial and error. To address this, we introduce Cross-Team Orchestration (Croto), a scalable multi-team framework that enables orchestrated teams to jointly propose various task-oriented solutions and interact with their insights in a self-independence while cross-team collaboration environment for superior solutions generation. Experiments reveal a notable increase in software quality compared to state-of-the-art baselines. We further tested our framework on story generation tasks, which demonstrated a promising generalization ability of our framework in other domains. The code and data is available at https://github.com/OpenBMB/ChatDev/tree/macnet
comment: Accepted to Findings of ACL 2025
♻ ☆ CoopetitiveV: Leveraging LLM-powered Coopetitive Multi-Agent Prompting for High-quality Verilog Generation
Recent advances in agentic LLMs have demonstrated great capabilities in Verilog code generation. However, existing approaches either use LLM-assisted single-agent prompting or cooperation-only multi-agent learning, which will lead to: (i) Degeneration issue for single-agent learning: characterized by diminished error detection and correction capabilities; (ii) Error propagation in cooperation-only multi-agent learning: erroneous information from the former agent will be propagated to the latter through prompts, which can make the latter agents generate buggy code. In this paper, we propose an LLM-based coopetitive multi-agent prompting framework, in which the agents cannot collaborate with each other to form the generation pipeline, but also create a healthy competitive mechanism to improve the generating quality. Our experimental results show that the coopetitive multi-agent framework can effectively mitigate the degeneration risk and reduce the error propagation while improving code error correction capabilities, resulting in higher quality Verilog code generation. The effectiveness of our approach is validated through extensive experiments. On VerilogEval Machine and Human dataset, CoopetitiveV+GPT-4 achieves 99.2% and 99.1% pass@10 scores, respectively. While on RTLLM, CoopetitiveV+GPT-4 obtains 100% syntax and 99.9% functionality pass@5 scores.
♻ ☆ Instructor-Worker Large Language Model System for Policy Recommendation: a Case Study on Air Quality Analysis of the January 2025 Los Angeles Wildfires
The Los Angeles wildfires of January 2025 caused more than 250 billion dollars in damage and lasted for nearly an entire month before containment. Following our previous work, the Digital Twin Building, we modify and leverage the multi-agent large language model framework as well as the cloud-mapping integration to study the air quality during the Los Angeles wildfires. Recent advances in large language models have allowed for out-of-the-box automated large-scale data analysis. We use a multi-agent large language system comprised of an Instructor agent and Worker agents. Upon receiving the users' instructions, the Instructor agent retrieves the data from the cloud platform and produces instruction prompts to the Worker agents. The Worker agents then analyze the data and provide summaries. The summaries are finally input back into the Instructor agent, which then provides the final data analysis. We test this system's capability for data-based policy recommendation by assessing our Instructor-Worker LLM system's health recommendations based on air quality during the Los Angeles wildfires.
♻ ☆ Vehicle: Bridging the Embedding Gap in the Verification of Neuro-Symbolic Programs
Neuro-symbolic programs, i.e. programs containing both machine learning components and traditional symbolic code, are becoming increasingly widespread. Finding a general methodology for verifying such programs is challenging due to both the number of different tools involved and the intricate interface between the ``neural'' and ``symbolic'' program components. In this paper we present a general decomposition of the neuro-symbolic verification problem into parts, and examine the problem of the embedding gap that occurs when one tries to combine proofs about the neural and symbolic components. To address this problem we then introduce Vehicle -- standing as an abbreviation for a ``verification condition language'' -- an intermediate programming language interface between machine learning frameworks, automated theorem provers, and dependently-typed formalisations of neuro-symbolic programs. Vehicle allows users to specify the properties of the neural components of neuro-symbolic programs once, and then safely compile the specification to each interface using a tailored typing and compilation procedure. We give a high-level overview of Vehicle's overall design, its interfaces and compilation & type-checking procedures, and then demonstrate its utility by formally verifying the safety of a simple autonomous car controlled by a neural network, operating in a stochastic environment with imperfect information.
comment: Pushed in Formal Structures for Computation and Deduction 2025
♻ ☆ Autocomp: LLM-Driven Code Optimization for Tensor Accelerators
Hardware accelerators, especially those designed for tensor processing, have become ubiquitous in today's computing landscape. However, even with significant efforts in building compilers, programming these tensor accelerators remains challenging, leaving much of their potential underutilized. Recently, large language models (LLMs), trained on large amounts of code, have shown significant promise in code generation and optimization tasks, but generating low-resource languages like specialized tensor accelerator code still poses a significant challenge. We tackle this challenge with Autocomp, an approach that empowers accelerator programmers to leverage domain knowledge and hardware feedback to optimize code via an automated LLM-driven search. We accomplish this by: 1) formulating each optimization pass as a structured two-phase prompt, divided into planning and code generation phases, 2) inserting domain knowledge during planning via a concise and adaptable optimization menu, and 3) integrating correctness and performance metrics from hardware as feedback at each search iteration. Across three categories of representative workloads and two different accelerators, we demonstrate that Autocomp-optimized code runs 5.6x (GEMM) and 2.7x (convolution) faster than the vendor-provided library, and outperforms expert-level hand-tuned code by 1.4x (GEMM), 1.1x (convolution), and 1.3x (fine-grained linear algebra). Additionally, we demonstrate that optimization schedules generated from Autocomp can be reused across similar tensor operations, improving speedups by up to 24% under a fixed sample budget.
♻ ☆ Longitudinal Targeted Minimum Loss-based Estimation with Temporal-Difference Heterogeneous Transformer ICML 2024
We propose Deep Longitudinal Targeted Minimum Loss-based Estimation (Deep LTMLE), a novel approach to estimate the counterfactual mean of outcome under dynamic treatment policies in longitudinal problem settings. Our approach utilizes a transformer architecture with heterogeneous type embedding trained using temporal-difference learning. After obtaining an initial estimate using the transformer, following the targeted minimum loss-based likelihood estimation (TMLE) framework, we statistically corrected for the bias commonly associated with machine learning algorithms. Furthermore, our method also facilitates statistical inference by enabling the provision of 95% confidence intervals grounded in asymptotic statistical theory. Simulation results demonstrate our method's superior performance over existing approaches, particularly in complex, long time-horizon scenarios. It remains effective in small-sample, short-duration contexts, matching the performance of asymptotically efficient estimators. To demonstrate our method in practice, we applied our method to estimate counterfactual mean outcomes for standard versus intensive blood pressure management strategies in a real-world cardiovascular epidemiology cohort study.
comment: Published in ICML 2024, PMLR 235
Graphics 13
☆ NAT: Neural Acoustic Transfer for Interactive Scenes in Real Time
Previous acoustic transfer methods rely on extensive precomputation and storage of data to enable real-time interaction and auditory feedback. However, these methods struggle with complex scenes, especially when dynamic changes in object position, material, and size significantly alter sound effects. These continuous variations lead to fluctuating acoustic transfer distributions, making it challenging to represent with basic data structures and render efficiently in real time. To address this challenge, we present Neural Acoustic Transfer, a novel approach that utilizes an implicit neural representation to encode precomputed acoustic transfer and its variations, allowing for real-time prediction of sound fields under varying conditions. To efficiently generate the training data required for the neural acoustic field, we developed a fast Monte-Carlo-based boundary element method (BEM) approximation for general scenarios with smooth Neumann conditions. Additionally, we implemented a GPU-accelerated version of standard BEM for scenarios requiring higher precision. These methods provide the necessary training data, enabling our neural network to accurately model the sound radiation space. We demonstrate our method's numerical accuracy and runtime efficiency (within several milliseconds for 30s audio) through comprehensive validation and comparisons in diverse acoustic transfer scenarios. Our approach allows for efficient and accurate modeling of sound behavior in dynamically changing environments, which can benefit a wide range of interactive applications such as virtual reality, augmented reality, and advanced audio production.
☆ Hardware Accelerated Neural Block Texture Compression with Cooperative Vectors
In this work, we present an extension to the neural texture compression method of Weinreich and colleagues [2024]. Like them, we leverage existing block compression methods which permit to use hardware texture filtering to store a neural representation of physically-based rendering (PBR) texture sets (including albedo, normal maps, roughness, etc.). However, we show that low dynamic range block compression formats still make the solution viable. Thanks to this, we show that we can achieve higher compression ratio or higher quality at fixed compression ratio. We improve performance at runtime using a tile based rendering architecture that leverage hardware matrix multiplication engine. Thanks to all this, we render 4k textures sets (9 channels per asset) with anisotropic filtering at 1080p using only 28MB of VRAM per texture set at 0.55ms on an Intel B580.
☆ SurGSplat: Progressive Geometry-Constrained Gaussian Splatting for Surgical Scene Reconstruction
Intraoperative navigation relies heavily on precise 3D reconstruction to ensure accuracy and safety during surgical procedures. However, endoscopic scenarios present unique challenges, including sparse features and inconsistent lighting, which render many existing Structure-from-Motion (SfM)-based methods inadequate and prone to reconstruction failure. To mitigate these constraints, we propose SurGSplat, a novel paradigm designed to progressively refine 3D Gaussian Splatting (3DGS) through the integration of geometric constraints. By enabling the detailed reconstruction of vascular structures and other critical features, SurGSplat provides surgeons with enhanced visual clarity, facilitating precise intraoperative decision-making. Experimental evaluations demonstrate that SurGSplat achieves superior performance in both novel view synthesis (NVS) and pose estimation accuracy, establishing it as a high-fidelity and efficient solution for surgical scene reconstruction. More information and results can be found on the page https://surgsplat.github.io/.
☆ Neural Visibility Cache for Real-Time Light Sampling
Direct illumination with many lights is an inherent component of physically-based rendering, remaining challenging, especially in real-time scenarios. We propose an online-trained neural cache that stores visibility between lights and 3D positions. We feed light visibility to weighted reservoir sampling (WRS) to sample a light source. The cache is implemented as a fully-fused multilayer perceptron (MLP) with multi-resolution hash-grid encoding, enabling online training and efficient inference on modern GPUs in real-time frame rates. The cache can be seamlessly integrated into existing rendering frameworks and can be used in combination with other real-time techniques such as spatiotemporal reservoir sampling (ReSTIR).
☆ JGS2: Near Second-order Converging Jacobi/Gauss-Seidel for GPU Elastodynamics
In parallel simulation, convergence and parallelism are often seen as inherently conflicting objectives. Improved parallelism typically entails lighter local computation and weaker coupling, which unavoidably slow the global convergence. This paper presents a novel GPU algorithm that achieves convergence rates comparable to fullspace Newton's method while maintaining good parallelizability just like the Jacobi method. Our approach is built on a key insight into the phenomenon of overshoot. Overshoot occurs when a local solver aggressively minimizes its local energy without accounting for the global context, resulting in a local update that undermines global convergence. To address this, we derive a theoretically second-order optimal solution to mitigate overshoot. Furthermore, we adapt this solution into a pre-computable form. Leveraging Cubature sampling, our runtime cost is only marginally higher than the Jacobi method, yet our algorithm converges nearly quadratically as Newton's method. We also introduce a novel full-coordinate formulation for more efficient pre-computation. Our method integrates seamlessly with the incremental potential contact method and achieves second-order convergence for both stiff and soft materials. Experimental results demonstrate that our approach delivers high-quality simulations and outperforms state-of-the-art GPU methods with 50 to 100 times better convergence.
☆ Noise Consistency Regularization for Improved Subject-Driven Image Synthesis
Fine-tuning Stable Diffusion enables subject-driven image synthesis by adapting the model to generate images containing specific subjects. However, existing fine-tuning methods suffer from two key issues: underfitting, where the model fails to reliably capture subject identity, and overfitting, where it memorizes the subject image and reduces background diversity. To address these challenges, we propose two auxiliary consistency losses for diffusion fine-tuning. First, a prior consistency regularization loss ensures that the predicted diffusion noise for prior (non-subject) images remains consistent with that of the pretrained model, improving fidelity. Second, a subject consistency regularization loss enhances the fine-tuned model's robustness to multiplicative noise modulated latent code, helping to preserve subject identity while improving diversity. Our experimental results demonstrate that incorporating these losses into fine-tuning not only preserves subject identity but also enhances image diversity, outperforming DreamBooth in terms of CLIP scores, background variation, and overall visual quality.
☆ Splat and Replace: 3D Reconstruction with Repetitive Elements SIGGRAPH
We leverage repetitive elements in 3D scenes to improve novel view synthesis. Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) have greatly improved novel view synthesis but renderings of unseen and occluded parts remain low-quality if the training views are not exhaustive enough. Our key observation is that our environment is often full of repetitive elements. We propose to leverage those repetitions to improve the reconstruction of low-quality parts of the scene due to poor coverage and occlusions. We propose a method that segments each repeated instance in a 3DGS reconstruction, registers them together, and allows information to be shared among instances. Our method improves the geometry while also accounting for appearance variations across instances. We demonstrate our method on a variety of synthetic and real scenes with typical repetitive elements, leading to a substantial improvement in the quality of novel view synthesis.
comment: SIGGRAPH Conference Papers 2025. Project site: https://repo-sam.inria.fr/nerphys/splat-and-replace/
☆ Vid2Sim: Generalizable, Video-based Reconstruction of Appearance, Geometry and Physics for Mesh-free Simulation CVPR 2025
Faithfully reconstructing textured shapes and physical properties from videos presents an intriguing yet challenging problem. Significant efforts have been dedicated to advancing such a system identification problem in this area. Previous methods often rely on heavy optimization pipelines with a differentiable simulator and renderer to estimate physical parameters. However, these approaches frequently necessitate extensive hyperparameter tuning for each scene and involve a costly optimization process, which limits both their practicality and generalizability. In this work, we propose a novel framework, Vid2Sim, a generalizable video-based approach for recovering geometry and physical properties through a mesh-free reduced simulation based on Linear Blend Skinning (LBS), offering high computational efficiency and versatile representation capability. Specifically, Vid2Sim first reconstructs the observed configuration of the physical system from video using a feed-forward neural network trained to capture physical world knowledge. A lightweight optimization pipeline then refines the estimated appearance, geometry, and physical properties to closely align with video observations within just a few minutes. Additionally, after the reconstruction, Vid2Sim enables high-quality, mesh-free simulation with high efficiency. Extensive experiments demonstrate that our method achieves superior accuracy and efficiency in reconstructing geometry and physical properties from video data.
comment: Accepted by CVPR 2025
☆ Neural-Augmented Kelvinlet: Real-Time Soft Tissue Deformation with Multiple Graspers
Fast and accurate simulation of soft tissue deformation is a critical factor for surgical robotics and medical training. In this paper, we introduce a novel physics-informed neural simulator that approximates soft tissue deformations in a realistic and real-time manner. Our framework integrates Kelvinlet-based priors into neural simulators, making it the first approach to leverage Kelvinlets for residual learning and regularization in data-driven soft tissue modeling. By incorporating large-scale Finite Element Method (FEM) simulations of both linear and nonlinear soft tissue responses, our method improves neural network predictions across diverse architectures, enhancing accuracy and physical consistency while maintaining low latency for real-time performance. We demonstrate the effectiveness of our approach by performing accurate surgical maneuvers that simulate the use of standard laparoscopic tissue grasping tools with high fidelity. These results establish Kelvinlet-augmented learning as a powerful and efficient strategy for real-time, physics-aware soft tissue simulation in surgical applications.
♻ ☆ Efficient Diffusion Models: A Survey
Diffusion models have emerged as powerful generative models capable of producing high-quality contents such as images, videos, and audio, demonstrating their potential to revolutionize digital content creation. However, these capabilities come at the cost of their significant computational resources and lengthy generation time, underscoring the critical need to develop efficient techniques for practical deployment. In this survey, we provide a systematic and comprehensive review of research on efficient diffusion models. We organize the literature in a taxonomy consisting of three main categories, covering distinct yet interconnected efficient diffusion model topics from algorithm-level, system-level, and framework perspective, respectively. We have also created a GitHub repository where we organize the papers featured in this survey at https://github.com/AIoT-MLSys-Lab/Efficient-Diffusion-Model-Survey. We hope our survey can serve as a valuable resource to help researchers and practitioners gain a systematic understanding of efficient diffusion model research and inspire them to contribute to this important and exciting field.
comment: Published in Transactions on Machine Learning Research (TMLR-2025)
♻ ☆ Spatially-Embedded Lens Visualization: A Design Space
Lens visualization has been a prominent research area in the visualization community, fueled by the continuous need to mitigate visual clutter and occlusion resulting from the increase in data volume. Interactive lenses for spatial data, particularly, challenge designers to conceive design strategies to support the analysis of high-density, multifaceted data with spatial referents. Despite their relevance, there is a lack of systematic understanding regarding the various design elements that compose spatially-embedded lens visualizations. To fill in this gap, we unify these components under a common hood in the form of a design space, which we propose in this paper. Building our knowledge on top of the initial insights gained from Tominski et al.'s survey [57], we construct a design space spanning 7 dimensions through our analysis of 45 papers published in the visualization community over the past 15 years. We describe each design dimension through representative examples and examine the range of design choices available within each, discussing their benefits and pitfalls that affect lens performance and usability. In doing so, we offer a cohesive catalog of considerations for designers-both when examining existing lenses and when conceptualizing novel spatially-embedded lens visualizations. We conclude by shedding light on regions of the design space that remain largely understudied, revealing open opportunities for future research.
♻ ☆ Joint Optimization of Triangle Mesh, Material, and Light from Neural Fields with Neural Radiance Cache
Traditional inverse rendering techniques are based on textured meshes, which naturally adapts to modern graphics pipelines, but costly differentiable multi-bounce Monte Carlo (MC) ray tracing poses challenges for modeling global illumination. Recently, neural fields has demonstrated impressive reconstruction quality but falls short in modeling indirect illumination. In this paper, we introduce a simple yet efficient inverse rendering framework that combines the strengths of both methods. Specifically, given pre-trained neural field representing the scene, we can obtain an initial estimate of the signed distance field (SDF) and create a Neural Radiance Cache (NRC), an enhancement over the traditional radiance cache used in real-time rendering. By using the former to initialize differentiable marching tetrahedrons (DMTet) and the latter to model indirect illumination, we can compute the global illumination via single-bounce differentiable MC ray tracing and jointly optimize the geometry, material, and light through back propagation. Experiments demonstrate that, compared to previous methods, our approach effectively prevents indirect illumination effects from being baked into materials, thus obtaining the high-quality reconstruction of triangle mesh, Physically-Based (PBR) materials, and High Dynamic Range (HDR) light probe.
♻ ☆ Time of Impact Dataset for Continuous Collision Detection and a Scalable Conservative Algorithm
We introduce a large-scale benchmark for broad- and narrow-phase continuous collision detection (CCD) over linearized trajectories with exact time of impacts and use it to evaluate the accuracy, correctness, and efficiency of 13 state-of-the-art CCD algorithms. Our analysis shows that several methods exhibit problems either in efficiency or accuracy. To overcome these limitations, we introduce an algorithm for CCD designed to be scalable on modern parallel architectures and provably correct when implemented using floating point arithmetic. We integrate our algorithm within the Incremental Potential Contact solver [24] and evaluate its impact on various simulation scenarios. Our approach includes a broad-phase CCD to quickly filter out primitives having disjoint bounding boxes and a narrow-phase CCD that establishes whether the remaining primitive pairs indeed collide. Our broad-phase algorithm is efficient and scalable thanks to the experimental observation that sweeping along a coordinate axis performs surprisingly well on modern parallel architectures. For narrow-phase CCD, we re-design the recently proposed interval-based algorithm of Wang et al. [45] to work on massively parallel hardware. To foster the adoption and development of future linear CCD algorithms, and to evaluate their correctness, scalability, and overall performance, we release the dataset with analytic ground truth, the implementation of all the algorithms tested, and our testing framework.
Robotics 55
☆ Rectified Point Flow: Generic Point Cloud Pose Estimation
We introduce Rectified Point Flow, a unified parameterization that formulates pairwise point cloud registration and multi-part shape assembly as a single conditional generative problem. Given unposed point clouds, our method learns a continuous point-wise velocity field that transports noisy points toward their target positions, from which part poses are recovered. In contrast to prior work that regresses part-wise poses with ad-hoc symmetry handling, our method intrinsically learns assembly symmetries without symmetry labels. Together with a self-supervised encoder focused on overlapping points, our method achieves a new state-of-the-art performance on six benchmarks spanning pairwise registration and shape assembly. Notably, our unified formulation enables effective joint training on diverse datasets, facilitating the learning of shared geometric priors and consequently boosting accuracy. Project page: https://rectified-pointflow.github.io/.
comment: Project page: https://rectified-pointflow.github.io/
☆ Spatiotemporal Contrastive Learning for Cross-View Video Localization in Unstructured Off-road Terrains
Robust cross-view 3-DoF localization in GPS-denied, off-road environments remains challenging due to (1) perceptual ambiguities from repetitive vegetation and unstructured terrain, and (2) seasonal shifts that significantly alter scene appearance, hindering alignment with outdated satellite imagery. To address this, we introduce MoViX, a self-supervised cross-view video localization framework that learns viewpoint- and season-invariant representations while preserving directional awareness essential for accurate localization. MoViX employs a pose-dependent positive sampling strategy to enhance directional discrimination and temporally aligned hard negative mining to discourage shortcut learning from seasonal cues. A motion-informed frame sampler selects spatially diverse frames, and a lightweight temporal aggregator emphasizes geometrically aligned observations while downweighting ambiguous ones. At inference, MoViX runs within a Monte Carlo Localization framework, using a learned cross-view matching module in place of handcrafted models. Entropy-guided temperature scaling enables robust multi-hypothesis tracking and confident convergence under visual ambiguity. We evaluate MoViX on the TartanDrive 2.0 dataset, training on under 30 minutes of data and testing over 12.29 km. Despite outdated satellite imagery, MoViX localizes within 25 meters of ground truth 93% of the time, and within 50 meters 100% of the time in unseen regions, outperforming state-of-the-art baselines without environment-specific tuning. We further demonstrate generalization on a real-world off-road dataset from a geographically distinct site with a different robot platform.
☆ Fabrica: Dual-Arm Assembly of General Multi-Part Objects via Integrated Planning and Learning
Multi-part assembly poses significant challenges for robots to execute long-horizon, contact-rich manipulation with generalization across complex geometries. We present Fabrica, a dual-arm robotic system capable of end-to-end planning and control for autonomous assembly of general multi-part objects. For planning over long horizons, we develop hierarchies of precedence, sequence, grasp, and motion planning with automated fixture generation, enabling general multi-step assembly on any dual-arm robots. The planner is made efficient through a parallelizable design and is optimized for downstream control stability. For contact-rich assembly steps, we propose a lightweight reinforcement learning framework that trains generalist policies across object geometries, assembly directions, and grasp poses, guided by equivariance and residual actions obtained from the plan. These policies transfer zero-shot to the real world and achieve 80% successful steps. For systematic evaluation, we propose a benchmark suite of multi-part assemblies resembling industrial and daily objects across diverse categories and geometries. By integrating efficient global planning and robust local control, we showcase the first system to achieve complete and generalizable real-world multi-part assembly without domain knowledge or human demonstrations. Project website: http://fabrica.csail.mit.edu/
☆ LiPo: A Lightweight Post-optimization Framework for Smoothing Action Chunks Generated by Learned Policies
Recent advances in imitation learning have enabled robots to perform increasingly complex manipulation tasks in unstructured environments. However, most learned policies rely on discrete action chunking, which introduces discontinuities at chunk boundaries. These discontinuities degrade motion quality and are particularly problematic in dynamic tasks such as throwing or lifting heavy objects, where smooth trajectories are critical for momentum transfer and system stability. In this work, we present a lightweight post-optimization framework for smoothing chunked action sequences. Our method combines three key components: (1) inference-aware chunk scheduling to proactively generate overlapping chunks and avoid pauses from inference delays; (2) linear blending in the overlap region to reduce abrupt transitions; and (3) jerk-minimizing trajectory optimization constrained within a bounded perturbation space. The proposed method was validated on a position-controlled robotic arm performing dynamic manipulation tasks. Experimental results demonstrate that our approach significantly reduces vibration and motion jitter, leading to smoother execution and improved mechanical robustness.
comment: 6 pages, 7 figures, 1 table
☆ Realizing Text-Driven Motion Generation on NAO Robot: A Reinforcement Learning-Optimized Control Pipeline
Human motion retargeting for humanoid robots, transferring human motion data to robots for imitation, presents significant challenges but offers considerable potential for real-world applications. Traditionally, this process relies on human demonstrations captured through pose estimation or motion capture systems. In this paper, we explore a text-driven approach to mapping human motion to humanoids. To address the inherent discrepancies between the generated motion representations and the kinematic constraints of humanoid robots, we propose an angle signal network based on norm-position and rotation loss (NPR Loss). It generates joint angles, which serve as inputs to a reinforcement learning-based whole-body joint motion control policy. The policy ensures tracking of the generated motions while maintaining the robot's stability during execution. Our experimental results demonstrate the efficacy of this approach, successfully transferring text-driven human motion to a real humanoid robot NAO.
☆ Whole-Body Constrained Learning for Legged Locomotion via Hierarchical Optimization
Reinforcement learning (RL) has demonstrated impressive performance in legged locomotion over various challenging environments. However, due to the sim-to-real gap and lack of explainability, unconstrained RL policies deployed in the real world still suffer from inevitable safety issues, such as joint collisions, excessive torque, or foot slippage in low-friction environments. These problems limit its usage in missions with strict safety requirements, such as planetary exploration, nuclear facility inspection, and deep-sea operations. In this paper, we design a hierarchical optimization-based whole-body follower, which integrates both hard and soft constraints into RL framework to make the robot move with better safety guarantees. Leveraging the advantages of model-based control, our approach allows for the definition of various types of hard and soft constraints during training or deployment, which allows for policy fine-tuning and mitigates the challenges of sim-to-real transfer. Meanwhile, it preserves the robustness of RL when dealing with locomotion in complex unstructured environments. The trained policy with introduced constraints was deployed in a hexapod robot and tested in various outdoor environments, including snow-covered slopes and stairs, demonstrating the great traversability and safety of our approach.
☆ EDEN: Efficient Dual-Layer Exploration Planning for Fast UAV Autonomous Exploration in Large 3-D Environments
Efficient autonomous exploration in large-scale environments remains challenging due to the high planning computational cost and low-speed maneuvers. In this paper, we propose a fast and computationally efficient dual-layer exploration planning method. The insight of our dual-layer method is efficiently finding an acceptable long-term region routing and greedily exploring the target in the region of the first routing area with high speed. Specifically, the proposed method finds the long-term area routing through an approximate algorithm to ensure real-time planning in large-scale environments. Then, the viewpoint in the first routing region with the lowest curvature-penalized cost, which can effectively reduce decelerations caused by sharp turn motions, will be chosen as the next exploration target. To further speed up the exploration, we adopt an aggressive and safe exploration-oriented trajectory to enhance exploration continuity. The proposed method is compared to state-of-the-art methods in challenging simulation environments. The results show that the proposed method outperforms other methods in terms of exploration efficiency, computational cost, and trajectory speed. We also conduct real-world experiments to validate the effectiveness of the proposed method. The code will be open-sourced.
☆ Synthetic Dataset Generation for Autonomous Mobile Robots Using 3D Gaussian Splatting for Vision Training
Annotated datasets are critical for training neural networks for object detection, yet their manual creation is time- and labour-intensive, subjective to human error, and often limited in diversity. This challenge is particularly pronounced in the domain of robotics, where diverse and dynamic scenarios further complicate the creation of representative datasets. To address this, we propose a novel method for automatically generating annotated synthetic data in Unreal Engine. Our approach leverages photorealistic 3D Gaussian splats for rapid synthetic data generation. We demonstrate that synthetic datasets can achieve performance comparable to that of real-world datasets while significantly reducing the time required to generate and annotate data. Additionally, combining real-world and synthetic data significantly increases object detection performance by leveraging the quality of real-world images with the easier scalability of synthetic data. To our knowledge, this is the first application of synthetic data for training object detection algorithms in the highly dynamic and varied environment of robot soccer. Validation experiments reveal that a detector trained on synthetic images performs on par with one trained on manually annotated real-world images when tested on robot soccer match scenarios. Our method offers a scalable and comprehensive alternative to traditional dataset creation, eliminating the labour-intensive error-prone manual annotation process. By generating datasets in a simulator where all elements are intrinsically known, we ensure accurate annotations while significantly reducing manual effort, which makes it particularly valuable for robotics applications requiring diverse and scalable training data.
☆ DemoSpeedup: Accelerating Visuomotor Policies via Entropy-Guided Demonstration Acceleration
Imitation learning has shown great promise in robotic manipulation, but the policy's execution is often unsatisfactorily slow due to commonly tardy demonstrations collected by human operators. In this work, we present DemoSpeedup, a self-supervised method to accelerate visuomotor policy execution via entropy-guided demonstration acceleration. DemoSpeedup starts from training an arbitrary generative policy (e.g., ACT or Diffusion Policy) on normal-speed demonstrations, which serves as a per-frame action entropy estimator. The key insight is that frames with lower action entropy estimates call for more consistent policy behaviors, which often indicate the demands for higher-precision operations. In contrast, frames with higher entropy estimates correspond to more casual sections, and therefore can be more safely accelerated. Thus, we segment the original demonstrations according to the estimated entropy, and accelerate them by down-sampling at rates that increase with the entropy values. Trained with the speedup demonstrations, the resulting policies execute up to 3 times faster while maintaining the task completion performance. Interestingly, these policies could even achieve higher success rates than those trained with normal-speed demonstrations, due to the benefits of reduced decision-making horizons.
☆ PulseRide: A Robotic Wheelchair for Personalized Exertion Control with Human-in-the-Loop Reinforcement Learning
Maintaining an active lifestyle is vital for quality of life, yet challenging for wheelchair users. For instance, powered wheelchairs face increasing risks of obesity and deconditioning due to inactivity. Conversely, manual wheelchair users, who propel the wheelchair by pushing the wheelchair's handrims, often face upper extremity injuries from repetitive motions. These challenges underscore the need for a mobility system that promotes activity while minimizing injury risk. Maintaining optimal exertion during wheelchair use enhances health benefits and engagement, yet the variations in individual physiological responses complicate exertion optimization. To address this, we introduce PulseRide, a novel wheelchair system that provides personalized assistance based on each user's physiological responses, helping them maintain their physical exertion goals. Unlike conventional assistive systems focused on obstacle avoidance and navigation, PulseRide integrates real-time physiological data-such as heart rate and ECG-with wheelchair speed to deliver adaptive assistance. Using a human-in-the-loop reinforcement learning approach with Deep Q-Network algorithm (DQN), the system adjusts push assistance to keep users within a moderate activity range without under- or over-exertion. We conducted preliminary tests with 10 users on various terrains, including carpet and slate, to assess PulseRide's effectiveness. Our findings show that, for individual users, PulseRide maintains heart rates within the moderate activity zone as much as 71.7 percent longer than manual wheelchairs. Among all users, we observed an average reduction in muscle contractions of 41.86 percent, delaying fatigue onset and enhancing overall comfort and engagement. These results indicate that PulseRide offers a healthier, adaptive mobility solution, bridging the gap between passive and physically taxing mobility options.
☆ Hierarchical Language Models for Semantic Navigation and Manipulation in an Aerial-Ground Robotic System
Heterogeneous multi-robot systems show great potential in complex tasks requiring coordinated hybrid cooperation. However, traditional approaches relying on static models often struggle with task diversity and dynamic environments. This highlights the need for generalizable intelligence that can bridge high-level reasoning with low-level execution across heterogeneous agents. To address this, we propose a hierarchical framework integrating a prompted Large Language Model (LLM) and a GridMask-enhanced fine-tuned Vision Language Model (VLM). The LLM performs task decomposition and global semantic map construction, while the VLM extracts task-specified semantic labels and 2D spatial information from aerial images to support local planning. Within this framework, the aerial robot follows a globally optimized semantic path and continuously provides bird-view images, guiding the ground robot's local semantic navigation and manipulation, including target-absent scenarios where implicit alignment is maintained. Experiments on a real-world letter-cubes arrangement task demonstrate the framework's adaptability and robustness in dynamic environments. To the best of our knowledge, this is the first demonstration of an aerial-ground heterogeneous system integrating VLM-based perception with LLM-driven task reasoning and motion planning.
☆ A Unified Framework for Simulating Strongly-Coupled Fluid-Robot Multiphysics
We present a framework for simulating fluid-robot multiphysics as a single, unified optimization problem. The coupled manipulator and incompressible Navier-Stokes equations governing the robot and fluid dynamics are derived together from a single Lagrangian using the principal of least action. We then employ discrete variational mechanics to derive a stable, implicit time-integration scheme for jointly simulating both the fluid and robot dynamics, which are tightly coupled by a constraint that enforces the no-slip boundary condition at the fluid-robot interface. Extending the classical immersed boundary method, we derive a new formulation of the no-slip constraint that is numerically well-conditioned and physically accurate for multibody systems commonly found in robotics. We demonstrate our approach's physical accuracy on benchmark computational fluid-dynamics problems, including Poiseuille flow and a disc in free stream. We then design a locomotion policy for a novel swimming robot in simulation and validate results on real-world hardware, showcasing our framework's sim-to-real capability for robotics tasks.
☆ GEX: Democratizing Dexterity with Fully-Actuated Dexterous Hand and Exoskeleton Glove
This paper introduces GEX, an innovative low-cost dexterous manipulation system that combines the GX11 tri-finger anthropomorphic hand (11 DoF) with the EX12 tri-finger exoskeleton glove (12 DoF), forming a closed-loop teleoperation framework through kinematic retargeting for high-fidelity control. Both components employ modular 3D-printed finger designs, achieving ultra-low manufacturing costs while maintaining full actuation capabilities. Departing from conventional tendon-driven or underactuated approaches, our electromechanical system integrates independent joint motors across all 23 DoF, ensuring complete state observability and accurate kinematic modeling. This full-actuation architecture enables precise bidirectional kinematic calculations, substantially enhancing kinematic retargeting fidelity between the exoskeleton and robotic hand. The proposed system bridges the cost-performance gap in dexterous manipulation research, providing an accessible platform for acquiring high-quality demonstration data to advance embodied AI and dexterous robotic skill transfer learning.
☆ A Pillbug-Inspired Morphing Mechanism Covered with Sliding Shells
This research proposes a novel morphing structure with shells inspired by the movement of pillbugs. Instead of the pillbug body, a loopcoupled mechanism based on slider-crank mechanisms is utilized to achieve the rolling up and spreading motion. This mechanism precisely imitates three distinct curves that mimic the shape morphing of a pillbug. To decrease the degree-of-freedom (DOF) of the mechanism to one, scissor mechanisms are added. 3D curved shells are then attached to the tracer points of the morphing mechanism to safeguard it from attacks while allowing it to roll. Through type and dimensional synthesis, a complete system that includes shells and an underlying morphing mechanism is developed. A 3D model is created and tested to demonstrate the proposed system's shape-changing capability. Lastly, a robot with two modes is developed based on the proposed mechanism, which can curl up to roll down hills and can spread to move in a straight line via wheels.
☆ ArtVIP: Articulated Digital Assets of Visual Realism, Modular Interaction, and Physical Fidelity for Robot Learning
Robot learning increasingly relies on simulation to advance complex ability such as dexterous manipulations and precise interactions, necessitating high-quality digital assets to bridge the sim-to-real gap. However, existing open-source articulated-object datasets for simulation are limited by insufficient visual realism and low physical fidelity, which hinder their utility for training models mastering robotic tasks in real world. To address these challenges, we introduce ArtVIP, a comprehensive open-source dataset comprising high-quality digital-twin articulated objects, accompanied by indoor-scene assets. Crafted by professional 3D modelers adhering to unified standards, ArtVIP ensures visual realism through precise geometric meshes and high-resolution textures, while physical fidelity is achieved via fine-tuned dynamic parameters. Meanwhile, the dataset pioneers embedded modular interaction behaviors within assets and pixel-level affordance annotations. Feature-map visualization and optical motion capture are employed to quantitatively demonstrate ArtVIP 's visual and physical fidelity, with its applicability validated across imitation learning and reinforcement learning experiments. Provided in USD format with detailed production guidelines, \ours is fully open-source, benefiting the research community and advancing robot learning research. Our project is at https://x-humanoid-artvip.github.io/
☆ Efficient Path Planning and Task Allocation Algorithm for Boolean Specifications
This paper presents a novel path-planning and task assignment algorithm for multi-robot systems that should fulfill a global Boolean specification. The proposed method is based on Integer Linear Programming (ILP) formulations, which are combined with structural insights from Petri nets to improve scalability and computational efficiency. By proving that the \emph{constraint matrix} is totally unimodular (TU) for certain classes of problems, the ILP formulation can be relaxed into a Linear Programming (LP) problem without losing the integrality of the solution. This relaxation eliminates complex combinatorial techniques, significantly reducing computational overhead and thus ensuring scalability for large-scale systems. Using the approach proposed in this paper, we can solve path-planning problems for teams made up to 500 robots. The method guarantees computational tractability, handles collision avoidance and reduces computational demands through iterative LP optimization techniques. Case studies demonstrate the efficiency of the algorithm in generating scalable, collision-free paths for large robot teams navigating in complex environments. While the conservative nature of collision avoidance introduces additional constraints, and thus, computational requirements, the solution remains practical and impactful for diverse applications. The algorithm is particularly applicable to real-world scenarios, including warehouse logistics where autonomous robots must efficiently coordinate tasks or search-and-rescue operations in various environments. This work contributes both theoretically and practically to scalable multi-robot path planning and task allocation, offering an efficient framework for coordinating autonomous agents in shared environments.
☆ LLMs for sensory-motor control: Combining in-context and iterative learning
We propose a method that enables large language models (LLMs) to control embodied agents by directly mapping continuous observation vectors to continuous action vectors. Initially, the LLMs generate a control strategy based on a textual description of the agent, its environment, and the intended goal. This strategy is then iteratively refined through a learning process in which the LLMs are repeatedly prompted to improve the current strategy, using performance feedback and sensory-motor data collected during its evaluation. The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library. In most cases, it successfully identifies optimal or high-performing solutions by integrating symbolic knowledge derived through reasoning with sub-symbolic sensory-motor data gathered as the agent interacts with its environment.
comment: 24 pages (13 pages are from appendix), 6 figures, code for experiments replication and supplementary material provided at https://github.com/jtyska/llm-robotics-article/
☆ MineInsight: A Multi-sensor Dataset for Humanitarian Demining Robotics in Off-Road Environments
The use of robotics in humanitarian demining increasingly involves computer vision techniques to improve landmine detection capabilities. However, in the absence of diverse and realistic datasets, the reliable validation of algorithms remains a challenge for the research community. In this paper, we introduce MineInsight, a publicly available multi-sensor, multi-spectral dataset designed for off-road landmine detection. The dataset features 35 different targets (15 landmines and 20 commonly found objects) distributed along three distinct tracks, providing a diverse and realistic testing environment. MineInsight is, to the best of our knowledge, the first dataset to integrate dual-view sensor scans from both an Unmanned Ground Vehicle and its robotic arm, offering multiple viewpoints to mitigate occlusions and improve spatial awareness. It features two LiDARs, as well as images captured at diverse spectral ranges, including visible (RGB, monochrome), visible short-wave infrared (VIS-SWIR), and long-wave infrared (LWIR). Additionally, the dataset comes with an estimation of the location of the targets, offering a benchmark for evaluating detection algorithms. We recorded approximately one hour of data in both daylight and nighttime conditions, resulting in around 38,000 RGB frames, 53,000 VIS-SWIR frames, and 108,000 LWIR frames. MineInsight serves as a benchmark for developing and evaluating landmine detection algorithms. Our dataset is available at https://github.com/mariomlz99/MineInsight.
comment: This work has been submitted to the IEEE for possible publication
☆ Tire Wear Aware Trajectory Tracking Control for Multi-axle Swerve-drive Autonomous Mobile Robots
Multi-axle Swerve-drive Autonomous Mobile Robots (MS-AGVs) equipped with independently steerable wheels are commonly used for high-payload transportation. In this work, we present a novel model predictive control (MPC) method for MS-AGV trajectory tracking that takes tire wear minimization consideration in the objective function. To speed up the problem-solving process, we propose a hierarchical controller design and simplify the dynamic model by integrating the \textit{magic formula tire model} and \textit{simplified tire wear model}. In the experiment, the proposed method can be solved by simulated annealing in real-time on a normal personal computer and by incorporating tire wear into the objective function, tire wear is reduced by 19.19\% while maintaining the tracking accuracy in curve-tracking experiments. In the more challenging scene: the desired trajectory is offset by 60 degrees from the vehicle's heading, the reduction in tire wear increased to 65.20\% compared to the kinematic model without considering the tire wear optimization.
comment: Accepted in Journal of Automation and Intelligence
☆ Real-Time LPV-Based Non-Linear Model Predictive Control for Robust Trajectory Tracking in Autonomous Vehicles
This paper presents the development and implementation of a Model Predictive Control (MPC) framework for trajectory tracking in autonomous vehicles under diverse driving conditions. The proposed approach incorporates a modular architecture that integrates state estimation, vehicle dynamics modeling, and optimization to ensure real-time performance. The state-space equations are formulated in a Linear Parameter Varying (LPV) form, and a curvature-based tuning method is introduced to optimize weight matrices for varying trajectories. The MPC framework is implemented using the Robot Operating System (ROS) for parallel execution of state estimation and control optimization, ensuring scalability and minimal latency. Extensive simulations and real-time experiments were conducted on multiple predefined trajectories, demonstrating high accuracy with minimal cross-track and orientation errors, even under aggressive maneuvers and high-speed conditions. The results highlight the robustness and adaptability of the proposed system, achieving seamless alignment between simulated and real-world performance. This work lays the foundation for dynamic weight tuning and integration into cooperative autonomous navigation systems, paving the way for enhanced safety and efficiency in autonomous driving applications.
☆ Application of SDRE to Achieve Gait Control in a Bipedal Robot for Knee-Type Exoskeleton Testing
Exoskeletons are widely used in rehabilitation and industrial applications to assist human motion. However, direct human testing poses risks due to possible exoskeleton malfunctions and inconsistent movement replication. To provide a safer and more repeatable testing environment, this study employs a bipedal robot platform to reproduce human gait, allowing for controlled exoskeleton evaluations. A control strategy based on the State-Dependent Riccati Equation (SDRE) is formulated to achieve optimal torque control for accurate gait replication. The bipedal robot dynamics are represented using double pendulum model, where SDRE-optimized control inputs minimize deviations from human motion trajectories. To align with motor behavior constraints, a parameterized control method is introduced to simplify the control process while effectively replicating human gait. The proposed approach initially adopts a ramping trapezoidal velocity model, which is then adapted into a piecewise linear velocity-time representation through motor command overwriting. This modification enables finer control over gait phase transitions while ensuring compatibility with motor dynamics. The corresponding cost function optimizes the control parameters to minimize errors in joint angles, velocities, and torques relative to SDRE control result. By structuring velocity transitions in accordance with motor limitations, the method reduce the computational load associated with real-time control. Experimental results verify the feasibility of the proposed parameterized control method in reproducing human gait. The bipedal robot platform provides a reliable and repeatable testing mechanism for knee-type exoskeletons, offering insights into exoskeleton performance under controlled conditions.
comment: 8 pages, 6 figures. Preliminary version submitted for documentation purposes on arXiv. This version records results presented at a conference and is not peer-reviewed
☆ ActivePusher: Active Learning and Planning with Residual Physics for Nonprehensile Manipulation
Planning with learned dynamics models offers a promising approach toward real-world, long-horizon manipulation, particularly in nonprehensile settings such as pushing or rolling, where accurate analytical models are difficult to obtain. Although learning-based methods hold promise, collecting training data can be costly and inefficient, as it often relies on randomly sampled interactions that are not necessarily the most informative. To address this challenge, we propose ActivePusher, a novel framework that combines residual-physics modeling with kernel-based uncertainty-driven active learning to focus data acquisition on the most informative skill parameters. Additionally, ActivePusher seamlessly integrates with model-based kinodynamic planners, leveraging uncertainty estimates to bias control sampling toward more reliable actions. We evaluate our approach in both simulation and real-world environments and demonstrate that it improves data efficiency and planning success rates compared to baseline methods.
☆ Enhancing Efficiency and Propulsion in Bio-mimetic Robotic Fish through End-to-End Deep Reinforcement Learning
Aquatic organisms are known for their ability to generate efficient propulsion with low energy expenditure. While existing research has sought to leverage bio-inspired structures to reduce energy costs in underwater robotics, the crucial role of control policies in enhancing efficiency has often been overlooked. In this study, we optimize the motion of a bio-mimetic robotic fish using deep reinforcement learning (DRL) to maximize propulsion efficiency and minimize energy consumption. Our novel DRL approach incorporates extended pressure perception, a transformer model processing sequences of observations, and a policy transfer scheme. Notably, significantly improved training stability and speed within our approach allow for end-to-end training of the robotic fish. This enables agiler responses to hydrodynamic environments and possesses greater optimization potential compared to pre-defined motion pattern controls. Our experiments are conducted on a serially connected rigid robotic fish in a free stream with a Reynolds number of 6000 using computational fluid dynamics (CFD) simulations. The DRL-trained policies yield impressive results, demonstrating both high efficiency and propulsion. The policies also showcase the agent's embodiment, skillfully utilizing its body structure and engaging with surrounding fluid dynamics, as revealed through flow analysis. This study provides valuable insights into the bio-mimetic underwater robots optimization through DRL training, capitalizing on their structural advantages, and ultimately contributing to more efficient underwater propulsion systems.
☆ A Novel Transformer-Based Method for Full Lower-Limb Joint Angles and Moments Prediction in Gait Using sEMG and IMU data
This study presents a transformer-based deep learning framework for the long-horizon prediction of full lower-limb joint angles and joint moments using surface electromyography (sEMG) and inertial measurement unit (IMU) signals. Two separate Transformer Neural Networks (TNNs) were designed: one for kinematic prediction and one for kinetic prediction. The model was developed with real-time application in mind, using only wearable sensors suitable for outside-laboratory use. Two prediction horizons were considered to evaluate short- and long-term performance. The network achieved high accuracy in both tasks, with Spearman correlation coefficients exceeding 0.96 and R-squared scores above 0.92 across all joints. Notably, the model consistently outperformed a recent benchmark method in joint angle prediction, reducing RMSE errors by an order of magnitude. The results confirmed the complementary role of sEMG and IMU signals in capturing both kinematic and kinetic information. This work demonstrates the potential of transformer-based models for real-time, full-limb biomechanical prediction in wearable and robotic applications, with future directions including input minimization and modality-specific weighting strategies to enhance model efficiency and accuracy.
comment: 10 pages, 4 figures
☆ Multimodal Limbless Crawling Soft Robot with a Kirigami Skin
Limbless creatures can crawl on flat surfaces by deforming their bodies and interacting with asperities on the ground, offering a biological blueprint for designing efficient limbless robots. Inspired by this natural locomotion, we present a soft robot capable of navigating complex terrains using a combination of rectilinear motion and asymmetric steering gaits. The robot is made of a pair of antagonistic inflatable soft actuators covered with a flexible kirigami skin with asymmetric frictional properties. The robot's rectilinear locomotion is achieved through cyclic inflation of internal chambers with precise phase shifts, enabling forward progression. Steering is accomplished using an asymmetric gait, allowing for both in-place rotation and wide turns. To validate its mobility in obstacle-rich environments, we tested the robot in an arena with coarse substrates and multiple obstacles. Real-time feedback from onboard proximity sensors, integrated with a human-machine interface (HMI), allowed adaptive control to avoid collisions. This study highlights the potential of bioinspired soft robots for applications in confined or unstructured environments, such as search-and-rescue operations, environmental monitoring, and industrial inspections.
comment: Cyborg and Bionic Systems (2025)
☆ Chronoamperometry with Room-Temperature Ionic Liquids: Sub-Second Inference Techniques
Chronoamperometry (CA) is a fundamental electrochemical technique used for quantifying redox-active species. However, in room-temperature ionic liquids (RTILs), the high viscosity and slow mass transport often lead to extended measurement durations. This paper presents a novel mathematical regression approach that reduces CA measurement windows to under 1 second, significantly faster than previously reported methods, which typically require 1-4 seconds or longer. By applying an inference algorithm to the initial transient current response, this method accurately predicts steady-state electrochemical parameters without requiring additional hardware modifications. The approach is validated through comparison with standard chronoamperometric techniques and is demonstrated to maintain reasonable accuracy while dramatically reducing data acquisition time. The implications of this technique are explored in analytical chemistry, sensor technology, and battery science, where rapid electrochemical quantification is critical. Our technique is focused on enabling faster multiplexing of chronoamperometric measurements for rapid olfactory and electrochemical analysis.
comment: Published at IEEE BioSensors 2025
☆ Olfactory Inertial Odometry: Sensor Calibration and Drift Compensation
Visual inertial odometry (VIO) is a process for fusing visual and kinematic data to understand a machine's state in a navigation task. Olfactory inertial odometry (OIO) is an analog to VIO that fuses signals from gas sensors with inertial data to help a robot navigate by scent. Gas dynamics and environmental factors introduce disturbances into olfactory navigation tasks that can make OIO difficult to facilitate. With our work here, we define a process for calibrating a robot for OIO that generalizes to several olfaction sensor types. Our focus is specifically on calibrating OIO for centimeter-level accuracy in localizing an odor source on a slow-moving robot platform to demonstrate use cases in robotic surgery and touchless security screening. We demonstrate our process for OIO calibration on a real robotic arm and show how this calibration improves performance over a cold-start olfactory navigation task.
comment: Published as a full conference paper at the 2025 IEEE International Symposium on Inertial Sensors & Systems
☆ TD-TOG Dataset: Benchmarking Zero-Shot and One-Shot Task-Oriented Grasping for Object Generalization
Task-oriented grasping (TOG) is an essential preliminary step for robotic task execution, which involves predicting grasps on regions of target objects that facilitate intended tasks. Existing literature reveals there is a limited availability of TOG datasets for training and benchmarking despite large demand, which are often synthetic or have artifacts in mask annotations that hinder model performance. Moreover, TOG solutions often require affordance masks, grasps, and object masks for training, however, existing datasets typically provide only a subset of these annotations. To address these limitations, we introduce the Top-down Task-oriented Grasping (TD-TOG) dataset, designed to train and evaluate TOG solutions. TD-TOG comprises 1,449 real-world RGB-D scenes including 30 object categories and 120 subcategories, with hand-annotated object masks, affordances, and planar rectangular grasps. It also features a test set for a novel challenge that assesses a TOG solution's ability to distinguish between object subcategories. To contribute to the demand for TOG solutions that can adapt and manipulate previously unseen objects without re-training, we propose a novel TOG framework, Binary-TOG. Binary-TOG uses zero-shot for object recognition, and one-shot learning for affordance recognition. Zero-shot learning enables Binary-TOG to identify objects in multi-object scenes through textual prompts, eliminating the need for visual references. In multi-object settings, Binary-TOG achieves an average task-oriented grasp accuracy of 68.9%. Lastly, this paper contributes a comparative analysis between one-shot and zero-shot learning for object generalization in TOG to be used in the development of future TOG solutions.
☆ Learning to Recover: Dynamic Reward Shaping with Wheel-Leg Coordination for Fallen Robots
Adaptive recovery from fall incidents are essential skills for the practical deployment of wheeled-legged robots, which uniquely combine the agility of legs with the speed of wheels for rapid recovery. However, traditional methods relying on preplanned recovery motions, simplified dynamics or sparse rewards often fail to produce robust recovery policies. This paper presents a learning-based framework integrating Episode-based Dynamic Reward Shaping and curriculum learning, which dynamically balances exploration of diverse recovery maneuvers with precise posture refinement. An asymmetric actor-critic architecture accelerates training by leveraging privileged information in simulation, while noise-injected observations enhance robustness against uncertainties. We further demonstrate that synergistic wheel-leg coordination reduces joint torque consumption by 15.8% and 26.2% and improves stabilization through energy transfer mechanisms. Extensive evaluations on two distinct quadruped platforms achieve recovery success rates up to 99.1% and 97.8% without platform-specific tuning. The supplementary material is available at https://boyuandeng.github.io/L2R-WheelLegCoordination/
☆ Active Illumination Control in Low-Light Environments using NightHawk
Subterranean environments such as culverts present significant challenges to robot vision due to dim lighting and lack of distinctive features. Although onboard illumination can help, it introduces issues such as specular reflections, overexposure, and increased power consumption. We propose NightHawk, a framework that combines active illumination with exposure control to optimize image quality in these settings. NightHawk formulates an online Bayesian optimization problem to determine the best light intensity and exposure-time for a given scene. We propose a novel feature detector-based metric to quantify image utility and use it as the cost function for the optimizer. We built NightHawk as an event-triggered recursive optimization pipeline and deployed it on a legged robot navigating a culvert beneath the Erie Canal. Results from field experiments demonstrate improvements in feature detection and matching by 47-197% enabling more reliable visual estimation in challenging lighting conditions.
♻ ☆ Continual Learning from Simulated Interactions via Multitask Prospective Rehearsal for Bionic Limb Behavior Modeling
Lower limb amputations and neuromuscular impairments severely restrict mobility, necessitating advancements beyond conventional prosthetics. While motorized bionic limbs show promise, their effectiveness depends on replicating the dynamic coordination of human movement across diverse environments. In this paper, we introduce a model for human behavior in the context of bionic prosthesis control. Our approach leverages human locomotion demonstrations to learn the synergistic coupling of the lower limbs, enabling the prediction of the kinematic behavior of a missing limb during tasks such as walking, climbing inclines, and stairs. We propose a multitasking, continually adaptive model that anticipates and refines movements over time. At the core of our method is a technique called multitask prospective rehearsal, that anticipates and synthesizes future movements based on the previous prediction and employs a corrective mechanism for subsequent predictions. Our evolving architecture merges lightweight, task-specific modules on a shared backbone, ensuring both specificity and scalability. We validate our model through experiments on real-world human gait datasets, including transtibial amputees, across a wide range of locomotion tasks. Results demonstrate that our approach consistently outperforms baseline models, particularly in scenarios with distributional shifts, adversarial perturbations, and noise.
comment: Accepted at Transactions on Machine Learning Research (TMLR) 2025
♻ ☆ Understanding and Mitigating Network Latency Effect on Teleoperated-Robot with Extended Reality
Robot teleoperation with extended reality (XR teleoperation) enables intuitive interaction by allowing remote robots to mimic user motions with real-time 3D feedback. However, existing systems face significant motion-to-motion (M2M) latency--the delay between the user's latest motion and the corresponding robot feedback--leading to high teleoperation error and mission completion time. This issue stems from the system's exclusive reliance on network communication, making it highly vulnerable to network degradation. To address these challenges, we introduce TeleXR, the first end-to-end, fully open-sourced XR teleoperation framework that decouples robot control and XR visualization from network dependencies. TeleXR leverages local sensing data to reconstruct delayed or missing information of the counterpart, thereby significantly reducing network-induced issues. This approach allows both the XR and robot to run concurrently with network transmission while maintaining high robot planning accuracy. TeleXR also features contention-aware scheduling to mitigate GPU contention and bandwidth-adaptive point cloud scaling to cope with limited bandwidth.
comment: This documents is a 5 pages technical report version. Removed watermark from acm for copyright purpose
♻ ☆ AquaticVision: Benchmarking Visual SLAM in Underwater Environment with Events and Frames
Many underwater applications, such as offshore asset inspections, rely on visual inspection and detailed 3D reconstruction. Recent advancements in underwater visual SLAM systems for aquatic environments have garnered significant attention in marine robotics research. However, existing underwater visual SLAM datasets often lack groundtruth trajectory data, making it difficult to objectively compare the performance of different SLAM algorithms based solely on qualitative results or COLMAP reconstruction. In this paper, we present a novel underwater dataset that includes ground truth trajectory data obtained using a motion capture system. Additionally, for the first time, we release visual data that includes both events and frames for benchmarking underwater visual positioning. By providing event camera data, we aim to facilitate the development of more robust and advanced underwater visual SLAM algorithms. The use of event cameras can help mitigate challenges posed by extremely low light or hazy underwater conditions. The webpage of our dataset is https://sites.google.com/view/aquaticvision-lias.
SR3D: Unleashing Single-view 3D Reconstruction for Transparent and Specular Object Grasping
Recent advancements in 3D robotic manipulation have improved grasping of everyday objects, but transparent and specular materials remain challenging due to depth sensing limitations. While several 3D reconstruction and depth completion approaches address these challenges, they suffer from setup complexity or limited observation information utilization. To address this, leveraging the power of single view 3D object reconstruction approaches, we propose a training free framework SR3D that enables robotic grasping of transparent and specular objects from a single view observation. Specifically, given single view RGB and depth images, SR3D first uses the external visual models to generate 3D reconstructed object mesh based on RGB image. Then, the key idea is to determine the 3D object's pose and scale to accurately localize the reconstructed object back into its original depth corrupted 3D scene. Therefore, we propose view matching and keypoint matching mechanisms,which leverage both the 2D and 3D's inherent semantic and geometric information in the observation to determine the object's 3D state within the scene, thereby reconstructing an accurate 3D depth map for effective grasp detection. Experiments in both simulation and real world show the reconstruction effectiveness of SR3D.
♻ ☆ Evaluating Robustness of Deep Reinforcement Learning for Autonomous Surface Vehicle Control in Field Tests ICRA
Despite significant advancements in Deep Reinforcement Learning (DRL) for Autonomous Surface Vehicles (ASVs), their robustness in real-world conditions, particularly under external disturbances, remains insufficiently explored. In this paper, we evaluate the resilience of a DRL-based agent designed to capture floating waste under various perturbations. We train the agent using domain randomization and evaluate its performance in real-world field tests, assessing its ability to handle unexpected disturbances such as asymmetric drag and an off-center payload. We assess the agent's performance under these perturbations in both simulation and real-world experiments, quantifying performance degradation and benchmarking it against an MPC baseline. Results indicate that the DRL agent performs reliably despite significant disturbances. Along with the open-source release of our implementation, we provide insights into effective training strategies, real-world challenges, and practical considerations for deploying DRLbased ASV controllers.
comment: Presented at the 2025 IEEE ICRA Workshop on Field Robotics
♻ ☆ VertiSelector: Automatic Curriculum Learning for Wheeled Mobility on Vertically Challenging Terrain
Reinforcement Learning (RL) has the potential to enable extreme off-road mobility by circumventing complex kinodynamic modeling, planning, and control by simulated end-to-end trial-and-error learning experiences. However, most RL methods are sample-inefficient when training in a large amount of manually designed simulation environments and struggle at generalizing to the real world. To address these issues, we introduce VertiSelector (VS), an automatic curriculum learning framework designed to enhance learning efficiency and generalization by selectively sampling training terrain. VS prioritizes vertically challenging terrain with higher Temporal Difference (TD) errors when revisited, thereby allowing robots to learn at the edge of their evolving capabilities. By dynamically adjusting the sampling focus, VS significantly boosts sample efficiency and generalization within the VW-Chrono simulator built on the Chrono multi-physics engine. Furthermore, we provide simulation and physical results using VS on a Verti-4-Wheeler platform. These results demonstrate that VS can achieve 23.08% improvement in terms of success rate by efficiently sampling during training and robustly generalizing to the real world.
♻ ☆ Learning Rock Pushability on Rough Planetary Terrain ICRA 2025
In the context of mobile navigation in unstructured environments, the predominant approach entails the avoidance of obstacles. The prevailing path planning algorithms are contingent upon deviating from the intended path for an indefinite duration and returning to the closest point on the route after the obstacle is left behind spatially. However, avoiding an obstacle on a path that will be used repeatedly by multiple agents can hinder long-term efficiency and lead to a lasting reliance on an active path planning system. In this study, we propose an alternative approach to mobile navigation in unstructured environments by leveraging the manipulation capabilities of a robotic manipulator mounted on top of a mobile robot. Our proposed framework integrates exteroceptive and proprioceptive feedback to assess the push affordance of obstacles, facilitating their repositioning rather than avoidance. While our preliminary visual estimation takes into account the characteristics of both the obstacle and the surface it relies on, the push affordance estimation module exploits the force feedback obtained by interacting with the obstacle via a robotic manipulator as the guidance signal. The objective of our navigation approach is to enhance the efficiency of routes utilized by multiple agents over extended periods by reducing the overall time spent by a fleet in environments where autonomous infrastructure development is imperative, such as lunar or Martian surfaces.
comment: Paper presented at the Workshop on Field Robotics, ICRA 2025, Atlanta, GA, United States
♻ ☆ Collision Induced Binding and Transport of Shape Changing Robot Pairs
We report in experiment and simulation the spontaneous formation of dynamically bound pairs of shape changing robots undergoing locally repulsive collisions. These physical `gliders' robustly emerge from an ensemble of individually undulating three-link two-motor robots and can remain bound for hundreds of undulations and travel for multiple robot dimensions. Gliders occur in two distinct binding symmetries and form over a wide range of angular oscillation extent. This parameter sets the maximal concavity which influences formation probability and translation characteristics. Analysis of dynamics in simulation reveals the mechanism of effective dynamical attraction -- a result of the emergent interplay of appropriately oriented and timed repulsive interactions. Tactile sensing stabilizes the short-lived conformation via concavity modulation.
comment: 7 pages, 6 figures, submitted to PRL
♻ ☆ Reactive Collision Avoidance for Safe Agile Navigation
Reactive collision avoidance is essential for agile robots navigating complex and dynamic environments, enabling real-time obstacle response. However, this task is inherently challenging because it requires a tight integration of perception, planning, and control, which traditional methods often handle separately, resulting in compounded errors and delays. This paper introduces a novel approach that unifies these tasks into a single reactive framework using solely onboard sensing and computing. Our method combines nonlinear model predictive control with adaptive control barrier functions, directly linking perception-driven constraints to real-time planning and control. Constraints are determined by using a neural network to refine noisy RGB-D data, enhancing depth accuracy, and selecting points with the minimum time-to-collision to prioritize the most immediate threats. To maintain a balance between safety and agility, a heuristic dynamically adjusts the optimization process, preventing overconstraints in real time. Extensive experiments with an agile quadrotor demonstrate effective collision avoidance across diverse indoor and outdoor environments, without requiring environment-specific tuning or explicit mapping.
♻ ☆ Mini Diffuser: Fast Multi-task Diffusion Policy Training Using Two-level Mini-batches
We present a method that reduces, by an order of magnitude, the time and memory needed to train multi-task vision-language robotic diffusion policies. This improvement arises from a previously underexplored distinction between action diffusion and the image diffusion techniques that inspired it: In image generation, the target is high-dimensional. By contrast, in action generation, the dimensionality of the target is comparatively small, and only the image condition is high-dimensional. Our approach, \emph{Mini Diffuser}, exploits this asymmetry by introducing \emph{two-level minibatching}, which pairs multiple noised action samples with each vision-language condition, instead of the conventional one-to-one sampling strategy. To support this batching scheme, we introduce architectural adaptations to the diffusion transformer that prevent information leakage across samples while maintaining full conditioning access. In RLBench simulations, Mini-Diffuser achieves 95\% of the performance of state-of-the-art multi-task diffusion policies, while using only 5\% of the training time and 7\% of the memory. Real-world experiments further validate that Mini-Diffuser preserves the key strengths of diffusion-based policies, including the ability to model multimodal action distributions and produce behavior conditioned on diverse perceptual inputs. Code available at mini-diffuse-actor.github.io
♻ ☆ FLIP: Flowability-Informed Powder Weighing
Autonomous manipulation of powders remains a significant challenge for robotic automation in scientific laboratories. The inherent variability and complex physical interactions of powders in flow, coupled with variability in laboratory conditions necessitates adaptive automation. This work introduces FLIP, a flowability-informed powder weighing framework designed to enhance robotic policy learning for granular material handling. Our key contribution lies in using material flowability, quantified by the angle of repose, to optimise physics-based simulations through Bayesian inference. This yields material-specific simulation environments capable of generating accurate training data, which reflects diverse powder behaviours, for training "robot chemists". Building on this, FLIP integrates quantified flowability into a curriculum learning strategy, fostering efficient acquisition of robust robotic policies by gradually introducing more challenging, less flowable powders. We validate the efficacy of our method on a robotic powder weighing task under real-world laboratory conditions. Experimental results show that FLIP with a curriculum strategy achieves a low dispensing error of 2.12 +/- 1.53 mg, outperforming methods that do not leverage flowability data, such as domain randomisation (6.11 +/- 3.92 mg). These results demonstrate FLIP's improved ability to generalise to previously unseen, more cohesive powders and to new target masses.
comment: Paper video can be found at https://youtu.be/pVwqjzgT0Co
♻ ☆ Navigating Motion Agents in Dynamic and Cluttered Environments through LLM Reasoning
This paper advances motion agents empowered by large language models (LLMs) toward autonomous navigation in dynamic and cluttered environments, significantly surpassing first and recent seminal but limited studies on LLM's spatial reasoning, where movements are restricted in four directions in simple, static environments in the presence of only single agents much less multiple agents. Specifically, we investigate LLMs as spatial reasoners to overcome these limitations by uniformly encoding environments (e.g., real indoor floorplans), agents which can be dynamic obstacles and their paths as discrete tokens akin to language tokens. Our training-free framework supports multi-agent coordination, closed-loop replanning, and dynamic obstacle avoidance without retraining or fine-tuning. We show that LLMs can generalize across agents, tasks, and environments using only text-based interactions, opening new possibilities for semantically grounded, interactive navigation in both simulation and embodied systems.
♻ ☆ Optimizing Mesh to Improve the Triangular Expansion Algorithm for Computing Visibility Regions
This paper addresses the problem of improving the query performance of the triangular expansion algorithm (TEA) for computing visibility regions by finding the most advantageous instance of the triangular mesh, the preprocessing structure. The TEA recursively traverses the mesh while keeping track of the visible region, the set of all points visible from a query point in a polygonal world. We show that the measured query time is approximately proportional to the number of triangle edge expansions during the mesh traversal. We propose a new type of triangular mesh that minimizes the expected number of expansions assuming the query points are drawn from a known probability distribution. We design a heuristic method to approximate the mesh and evaluate the approach on many challenging instances that resemble real-world environments. The proposed mesh improves the mean query times by 12-16% compared to the reference constrained Delaunay triangulation. The approach is suitable to boost offline applications that require computing millions of queries without addressing the preprocessing time. The implementation is publicly available to replicate our experiments and serve the community.
comment: 30 pages, 43 figures (including subfigures)
♻ ☆ QueryCAD: Grounded Question Answering for CAD Models
CAD models are widely used in industry and are essential for robotic automation processes. However, these models are rarely considered in novel AI-based approaches, such as the automatic synthesis of robot programs, as there are no readily available methods that would allow CAD models to be incorporated for the analysis, interpretation, or extraction of information. To address these limitations, we propose QueryCAD, the first system designed for CAD question answering, enabling the extraction of precise information from CAD models using natural language queries. QueryCAD incorporates SegCAD, an open-vocabulary instance segmentation model we developed to identify and select specific parts of the CAD model based on part descriptions. We further propose a CAD question answering benchmark to evaluate QueryCAD and establish a foundation for future research. Lastly, we integrate QueryCAD within an automatic robot program synthesis framework, validating its ability to enhance deep-learning solutions for robotics by enabling them to process CAD models (https://claudius-kienle.github.com/querycad).
♻ ☆ Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control
We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach applies to competitive and cooperative multi-agent motion planning problems which we formulate as constrained dynamic games. Given a constrained dynamic game, we randomly sample initial conditions and solve for the generalized Nash equilibrium (GNE) to generate a dataset of GNE solutions, computing the reward outcome of each game-theoretic interaction from the GNE. The data is used to train a simple neural network to predict the reward outcome, which we use as the terminal cost-to-go function in an MPC scheme. We showcase emerging competitive and coordinated behaviors using IGT-MPC in scenarios such as two-vehicle head-to-head racing and un-signalized intersection navigation. IGT-MPC offers a novel method integrating machine learning and game-theoretic reasoning into model-based decentralized multi-agent motion planning.
comment: Accepted Proceeding at 2025 Learning for Dynamics and Control Conference (L4DC)
♻ ☆ SignBot: Learning Human-to-Humanoid Sign Language Interaction
Sign language is a natural and visual form of language that uses movements and expressions to convey meaning, serving as a crucial means of communication for individuals who are deaf or hard-of-hearing (DHH). However, the number of people proficient in sign language remains limited, highlighting the need for technological advancements to bridge communication gaps and foster interactions with minorities. Based on recent advancements in embodied humanoid robots, we propose SignBot, a novel framework for human-robot sign language interaction. SignBot integrates a cerebellum-inspired motion control component and a cerebral-oriented module for comprehension and interaction. Specifically, SignBot consists of: 1) Motion Retargeting, which converts human sign language datasets into robot-compatible kinematics; 2) Motion Control, which leverages a learning-based paradigm to develop a robust humanoid control policy for tracking sign language gestures; and 3) Generative Interaction, which incorporates translator, responser, and generator of sign language, thereby enabling natural and effective communication between robots and humans. Simulation and real-world experimental results demonstrate that SignBot can effectively facilitate human-robot interaction and perform sign language motions with diverse robots and datasets. SignBot represents a significant advancement in automatic sign language interaction on embodied humanoid robot platforms, providing a promising solution to improve communication accessibility for the DHH community.
♻ ☆ Confidence-Guided Human-AI Collaboration: Reinforcement Learning with Distributional Proxy Value Propagation for Autonomous Driving
Autonomous driving promises significant advancements in mobility, road safety and traffic efficiency, yet reinforcement learning and imitation learning face safe-exploration and distribution-shift challenges. Although human-AI collaboration alleviates these issues, it often relies heavily on extensive human intervention, which increases costs and reduces efficiency. This paper develops a confidence-guided human-AI collaboration (C-HAC) strategy to overcome these limitations. First, C-HAC employs a distributional proxy value propagation method within the distributional soft actor-critic (DSAC) framework. By leveraging return distributions to represent human intentions C-HAC achieves rapid and stable learning of human-guided policies with minimal human interaction. Subsequently, a shared control mechanism is activated to integrate the learned human-guided policy with a self-learning policy that maximizes cumulative rewards. This enables the agent to explore independently and continuously enhance its performance beyond human guidance. Finally, a policy confidence evaluation algorithm capitalizes on DSAC's return distribution networks to facilitate dynamic switching between human-guided and self-learning policies via a confidence-based intervention function. This ensures the agent can pursue optimal policies while maintaining safety and performance guarantees. Extensive experiments across diverse driving scenarios reveal that C-HAC significantly outperforms conventional methods in terms of safety, efficiency, and overall performance, achieving state-of-the-art results. The effectiveness of the proposed method is further validated through real-world road tests in complex traffic conditions. The videos and code are available at: https://github.com/lzqw/C-HAC.
♻ ☆ ADEPT: Adaptive Diffusion Environment for Policy Transfer Sim-to-Real
Model-free reinforcement learning has emerged as a powerful method for developing robust robot control policies capable of navigating through complex and unstructured environments. The effectiveness of these methods hinges on two essential elements: (1) the use of massively parallel physics simulations to expedite policy training, and (2) an environment generator tasked with crafting sufficiently challenging yet attainable environments to facilitate continuous policy improvement. Existing methods of outdoor environment generation often rely on heuristics constrained by a set of parameters, limiting the diversity and realism. In this work, we introduce ADEPT, a novel \textbf{A}daptive \textbf{D}iffusion \textbf{E}nvironment for \textbf{P}olicy \textbf{T}ransfer in the zero-shot sim-to-real fashion that leverages Denoising Diffusion Probabilistic Models to dynamically expand existing training environments by adding more diverse and complex environments adaptive to the current policy. ADEPT guides the diffusion model's generation process through initial noise optimization, blending noise-corrupted environments from existing training environments weighted by the policy's performance in each corresponding environment. By manipulating the noise corruption level, ADEPT seamlessly transitions between generating similar environments for policy fine-tuning and novel ones to expand training diversity. To benchmark ADEPT in off-road navigation, we propose a fast and effective multi-layer map representation for wild environment generation. Our experiments show that the policy trained by ADEPT outperforms both procedural generated and natural environments, along with popular navigation methods.
comment: arXiv admin note: substantial text overlap with arXiv:2410.10766
♻ ☆ Inflatable Kirigami Crawlers
Kirigami offers unique opportunities for guided morphing by leveraging the geometry of the cuts. This work presents inflatable kirigami crawlers created by introducing cut patterns into heat-sealable textiles to achieve locomotion upon cyclic pneumatic actuation. Inflating traditional air pouches results in symmetric bulging and contraction. In inflated kirigami actuators, the accumulated compressive forces uniformly break the symmetry, enhance contraction compared to simple air pouches by two folds, and trigger local rotation of the sealed edges that overlap and self-assemble into an architected surface with emerging scale-like features. As a result, the inflatable kirigami actuators exhibit a uniform, controlled contraction with asymmetric localized out-of-plane deformations. This process allows us to harness the geometric and material nonlinearities to imbue inflatable textile-based kirigami actuators with predictable locomotive functionalities. We thoroughly characterized the programmed deformations of these actuators and their impact on friction. We found that the kirigami actuators exhibit directional anisotropic friction properties when inflated, having higher friction coefficients against the direction of the movement, enabling them to move across surfaces with varying roughness. We further enhanced the functionality of inflatable kirigami actuators by introducing multiple channels and segments to create functional soft robotic prototypes with versatile locomotion capabilities.
♻ ☆ Simultaneous Task Allocation and Planning for Multi-Robots under Hierarchical Temporal Logic Specifications
Research in robotic planning with temporal logic specifications, such as Linear Temporal Logic (LTL), has relied on single formulas. However, as task complexity increases, LTL formulas become lengthy, making them difficult to interpret and generate, and straining the computational capacities of planners. To address this, we introduce a hierarchical structure for a widely used specification type -- LTL on finite traces (LTL$_f$). The resulting language, termed H-LTL$_f$, is defined with both its syntax and semantics. We further prove that H-LTL$_f$ is more expressive than its standard "flat" counterparts. Moreover, we conducted a user study that compared the standard LTL$_f$ with our hierarchical version and found that users could more easily comprehend complex tasks using the hierarchical structure. We develop a search-based approach to synthesize plans for multi-robot systems, achieving simultaneous task allocation and planning. This method approximates the search space by loosely interconnected sub-spaces, each corresponding to an LTL$_f$ specification. The search primarily focuses on a single sub-space, transitioning to another under conditions determined by the decomposition of automata. We develop multiple heuristics to significantly expedite the search. Our theoretical analysis, conducted under mild assumptions, addresses completeness and optimality. Compared to existing methods used in various simulators for service tasks, our approach improves planning times while maintaining comparable solution quality.
comment: 20 pages, 11 figures. Accepted to appear in IEEE Transaction on Robotics 2025. Video https://www.youtube.com/watch?v=N3f8pUHDPF4&t=4s
♻ ☆ Hierarchical Intention-Aware Expressive Motion Generation for Humanoid Robots
Effective human-robot interaction requires robots to identify human intentions and generate expressive, socially appropriate motions in real-time. Existing approaches often rely on fixed motion libraries or computationally expensive generative models. We propose a hierarchical framework that combines intention-aware reasoning via in-context learning (ICL) with real-time motion generation using diffusion models. Our system introduces structured prompting with confidence scoring, fallback behaviors, and social context awareness to enable intention refinement and adaptive response. Leveraging large-scale motion datasets and efficient latent-space denoising, the framework generates diverse, physically plausible gestures suitable for dynamic humanoid interactions. Experimental validation on a physical platform demonstrates the robustness and social alignment of our method in realistic scenarios.
comment: 7 pages, 2 figures, IEEE conference paper
♻ ☆ RoboOS: A Hierarchical Embodied Framework for Cross-Embodiment and Multi-Agent Collaboration
The dawn of embodied intelligence has ushered in an unprecedented imperative for resilient, cognition-enabled multi-agent collaboration across next-generation ecosystems, revolutionizing paradigms in autonomous manufacturing, adaptive service robotics, and cyber-physical production architectures. However, current robotic systems face significant limitations, such as limited cross-embodiment adaptability, inefficient task scheduling, and insufficient dynamic error correction. While End-to-end VLA models demonstrate inadequate long-horizon planning and task generalization, hierarchical VLA models suffer from a lack of cross-embodiment and multi-agent coordination capabilities. To address these challenges, we introduce RoboOS, the first open-source embodied system built on a Brain-Cerebellum hierarchical architecture, enabling a paradigm shift from single-agent to multi-agent intelligence. Specifically, RoboOS consists of three key components: (1) Embodied Brain Model (RoboBrain), a MLLM designed for global perception and high-level decision-making; (2) Cerebellum Skill Library, a modular, plug-and-play toolkit that facilitates seamless execution of multiple skills; and (3) Real-Time Shared Memory, a spatiotemporal synchronization mechanism for coordinating multi-agent states. By integrating hierarchical information flow, RoboOS bridges Embodied Brain and Cerebellum Skill Library, facilitating robust planning, scheduling, and error correction for long-horizon tasks, while ensuring efficient multi-agent collaboration through Real-Time Shared Memory. Furthermore, we enhance edge-cloud communication and cloud-based distributed inference to facilitate high-frequency interactions and enable scalable deployment. Extensive real-world experiments across various scenarios, demonstrate RoboOS's versatility in supporting heterogeneous embodiments. Project website: https://github.com/FlagOpen/RoboOS
comment: 22 pages, 10 figures
♻ ☆ TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies
Although large vision-language-action (VLA) models pretrained on extensive robot datasets offer promising generalist policies for robotic learning, they still struggle with spatial-temporal dynamics in interactive robotics, making them less effective in handling complex tasks, such as manipulation. In this work, we introduce visual trace prompting, a simple yet effective approach to facilitate VLA models' spatial-temporal awareness for action prediction by encoding state-action trajectories visually. We develop a new TraceVLA model by finetuning OpenVLA on our own collected dataset of 150K robot manipulation trajectories using visual trace prompting. Evaluations of TraceVLA across 137 configurations in SimplerEnv and 4 tasks on a physical WidowX robot demonstrate state-of-the-art performance, outperforming OpenVLA by 10% on SimplerEnv and 3.5x on real-robot tasks and exhibiting robust generalization across diverse embodiments and scenarios. To further validate the effectiveness and generality of our method, we present a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-Embodiment and finetuned on our dataset, rivals the 7B OpenVLA baseline while significantly improving inference efficiency.
♻ ☆ Adaptive Locomotion on Mud through Proprioceptive Sensing of Substrate Properties RSS'25
Muddy terrains present significant challenges for terrestrial robots, as subtle changes in composition and water content can lead to large variations in substrate strength and force responses, causing the robot to slip or get stuck. This paper presents a method to estimate mud properties using proprioceptive sensing, enabling a flipper-driven robot to adapt its locomotion through muddy substrates of varying strength. First, we characterize mud reaction forces through actuator current and position signals from a statically mounted robotic flipper. We use the measured force to determine key coefficients that characterize intrinsic mud properties. The proprioceptively estimated coefficients match closely with measurements from a lab-grade load cell, validating the effectiveness of the proposed method. Next, we extend the method to a locomoting robot to estimate mud properties online as it crawls across different mud mixtures. Experimental data reveal that mud reaction forces depend sensitively on robot motion, requiring joint analysis of robot movement with proprioceptive force to determine mud properties correctly. Lastly, we deploy this method in a flipper-driven robot moving across muddy substrates of varying strengths, and demonstrate that the proposed method allows the robot to use the estimated mud properties to adapt its locomotion strategy, and successfully avoid locomotion failures. Our findings highlight the potential of proprioception-based terrain sensing to enhance robot mobility in complex, deformable natural environments, paving the way for more robust field exploration capabilities.
comment: 12 pages, 8 figures. Published in Robotics: Science and Systems (RSS'25)
♻ ☆ An Integrated Visual Servoing Framework for Precise Robotic Pruning Operations in Modern Commercial Orchard
This study presents a vision-guided robotic control system for automated fruit tree pruning applications. Traditional pruning practices are labor-intensive and limit agricultural efficiency and scalability, highlighting the need for advanced automation. A key challenge is the precise, robust positioning of the cutting tool in complex orchard environments, where dense branches and occlusions make target access difficult. To address this, an Intel RealSense D435 camera is mounted on the flange of a UR5e robotic arm and CoTracker3, a transformer-based point tracker, is utilized for visual servoing control that centers tracked points in the camera view. The system integrates proportional control with iterative inverse kinematics to achieve precise end-effector positioning. The system was validated in Gazebo simulation, achieving a 77.77% success rate within 5mm positional tolerance and 100% success rate within 10mm tolerance, with a mean end-effector error of 4.28 +/- 1.36 mm. The vision controller demonstrated robust performance across diverse target positions within the pixel workspace. The results validate the effectiveness of integrating vision-based tracking with kinematic control for precision agricultural tasks. Future work will focus on real-world implementation and the integration of force sensing for actual cutting operations.
Computer Vision 150
☆ VideoMathQA: Benchmarking Mathematical Reasoning via Multimodal Understanding in Videos
Mathematical reasoning in real-world video settings presents a fundamentally different challenge than in static images or text. It requires interpreting fine-grained visual information, accurately reading handwritten or digital text, and integrating spoken cues, often dispersed non-linearly over time. In such multimodal contexts, success hinges not just on perception, but on selectively identifying and integrating the right contextual details from a rich and noisy stream of content. To this end, we introduce VideoMathQA, a benchmark designed to evaluate whether models can perform such temporally extended cross-modal reasoning on videos. The benchmark spans 10 diverse mathematical domains, covering videos ranging from 10 seconds to over 1 hour. It requires models to interpret structured visual content, understand instructional narratives, and jointly ground concepts across visual, audio, and textual modalities. We employ graduate-level experts to ensure high quality, totaling over $920$ man-hours of annotation. To reflect real-world scenarios, questions are designed around three core reasoning challenges: direct problem solving, where answers are grounded in the presented question; conceptual transfer, which requires applying learned methods to new problems; and deep instructional comprehension, involving multi-step reasoning over extended explanations and partially worked-out solutions. Each question includes multi-step reasoning annotations, enabling fine-grained diagnosis of model capabilities. Through this benchmark, we highlight the limitations of existing approaches and establish a systematic evaluation framework for models that must reason, rather than merely perceive, across temporally extended and modality-rich mathematical problem settings. Our benchmark and evaluation code are available at: https://mbzuai-oryx.github.io/VideoMathQA
comment: VideoMathQA Technical Report
☆ Contrastive Flow Matching
Unconditional flow-matching trains diffusion models to transport samples from a source distribution to a target distribution by enforcing that the flows between sample pairs are unique. However, in conditional settings (e.g., class-conditioned models), this uniqueness is no longer guaranteed--flows from different conditions may overlap, leading to more ambiguous generations. We introduce Contrastive Flow Matching, an extension to the flow matching objective that explicitly enforces uniqueness across all conditional flows, enhancing condition separation. Our approach adds a contrastive objective that maximizes dissimilarities between predicted flows from arbitrary sample pairs. We validate Contrastive Flow Matching by conducting extensive experiments across varying model architectures on both class-conditioned (ImageNet-1k) and text-to-image (CC3M) benchmarks. Notably, we find that training models with Contrastive Flow Matching (1) improves training speed by a factor of up to 9x, (2) requires up to 5x fewer de-noising steps and (3) lowers FID by up to 8.9 compared to training the same models with flow matching. We release our code at: https://github.com/gstoica27/DeltaFM.git.
☆ FreeTimeGS: Free Gaussians at Anytime and Anywhere for Dynamic Scene Reconstruction CVPR 2025
This paper addresses the challenge of reconstructing dynamic 3D scenes with complex motions. Some recent works define 3D Gaussian primitives in the canonical space and use deformation fields to map canonical primitives to observation spaces, achieving real-time dynamic view synthesis. However, these methods often struggle to handle scenes with complex motions due to the difficulty of optimizing deformation fields. To overcome this problem, we propose FreeTimeGS, a novel 4D representation that allows Gaussian primitives to appear at arbitrary time and locations. In contrast to canonical Gaussian primitives, our representation possesses the strong flexibility, thus improving the ability to model dynamic 3D scenes. In addition, we endow each Gaussian primitive with an motion function, allowing it to move to neighboring regions over time, which reduces the temporal redundancy. Experiments results on several datasets show that the rendering quality of our method outperforms recent methods by a large margin.
comment: CVPR 2025; Project page: https://zju3dv.github.io/freetimegs/
☆ SparseMM: Head Sparsity Emerges from Visual Concept Responses in MLLMs
Multimodal Large Language Models (MLLMs) are commonly derived by extending pre-trained Large Language Models (LLMs) with visual capabilities. In this work, we investigate how MLLMs process visual inputs by analyzing their attention mechanisms. We reveal a surprising sparsity phenomenon: only a small subset (approximately less than 5%) of attention heads in LLMs actively contribute to visual understanding, termed visual heads. To identify these heads efficiently, we design a training-free framework that quantifies head-level visual relevance through targeted response analysis. Building on this discovery, we introduce SparseMM, a KV-Cache optimization strategy that allocates asymmetric computation budgets to heads in LLMs based on their visual scores, leveraging the sparity of visual heads for accelerating the inference of MLLMs. Compared with prior KV-Cache acceleration methods that ignore the particularity of visual, SparseMM prioritizes stress and retaining visual semantics during decoding. Extensive evaluations across mainstream multimodal benchmarks demonstrate that SparseMM achieves superior accuracy-efficiency trade-offs. Notably, SparseMM delivers 1.38x real-time acceleration and 52% memory reduction during generation while maintaining performance parity on efficiency test. Our project is open sourced at https://github.com/CR400AF-A/SparseMM.
☆ Neural Inverse Rendering from Propagating Light
We present the first system for physically based, neural inverse rendering from multi-viewpoint videos of propagating light. Our approach relies on a time-resolved extension of neural radiance caching -- a technique that accelerates inverse rendering by storing infinite-bounce radiance arriving at any point from any direction. The resulting model accurately accounts for direct and indirect light transport effects and, when applied to captured measurements from a flash lidar system, enables state-of-the-art 3D reconstruction in the presence of strong indirect light. Further, we demonstrate view synthesis of propagating light, automatic decomposition of captured measurements into direct and indirect components, as well as novel capabilities such as multi-view time-resolved relighting of captured scenes.
comment: Website: https://anaghmalik.com/InvProp/
☆ ContentV: Efficient Training of Video Generation Models with Limited Compute
Recent advances in video generation demand increasingly efficient training recipes to mitigate escalating computational costs. In this report, we present ContentV, an 8B-parameter text-to-video model that achieves state-of-the-art performance (85.14 on VBench) after training on 256 x 64GB Neural Processing Units (NPUs) for merely four weeks. ContentV generates diverse, high-quality videos across multiple resolutions and durations from text prompts, enabled by three key innovations: (1) A minimalist architecture that maximizes reuse of pre-trained image generation models for video generation; (2) A systematic multi-stage training strategy leveraging flow matching for enhanced efficiency; and (3) A cost-effective reinforcement learning with human feedback framework that improves generation quality without requiring additional human annotations. All the code and models are available at: https://contentv.github.io.
comment: Project Page: https://contentv.github.io
☆ Refer to Anything with Vision-Language Prompts
Recent image segmentation models have advanced to segment images into high-quality masks for visual entities, and yet they cannot provide comprehensive semantic understanding for complex queries based on both language and vision. This limitation reduces their effectiveness in applications that require user-friendly interactions driven by vision-language prompts. To bridge this gap, we introduce a novel task of omnimodal referring expression segmentation (ORES). In this task, a model produces a group of masks based on arbitrary prompts specified by text only or text plus reference visual entities. To address this new challenge, we propose a novel framework to "Refer to Any Segmentation Mask Group" (RAS), which augments segmentation models with complex multimodal interactions and comprehension via a mask-centric large multimodal model. For training and benchmarking ORES models, we create datasets MaskGroups-2M and MaskGroups-HQ to include diverse mask groups specified by text and reference entities. Through extensive evaluation, we demonstrate superior performance of RAS on our new ORES task, as well as classic referring expression segmentation (RES) and generalized referring expression segmentation (GRES) tasks. Project page: https://Ref2Any.github.io.
☆ Direct Numerical Layout Generation for 3D Indoor Scene Synthesis via Spatial Reasoning
Realistic 3D indoor scene synthesis is vital for embodied AI and digital content creation. It can be naturally divided into two subtasks: object generation and layout generation. While recent generative models have significantly advanced object-level quality and controllability, layout generation remains challenging due to limited datasets. Existing methods either overfit to these datasets or rely on predefined constraints to optimize numerical layout that sacrifice flexibility. As a result, they fail to generate scenes that are both open-vocabulary and aligned with fine-grained user instructions. We introduce DirectLayout, a framework that directly generates numerical 3D layouts from text descriptions using generalizable spatial reasoning of large language models (LLMs). DirectLayout decomposes the generation into three stages: producing a Bird's-Eye View (BEV) layout, lifting it into 3D space, and refining object placements. To enable explicit spatial reasoning and help the model grasp basic principles of object placement, we employ Chain-of-Thought (CoT) Activation based on the 3D-Front dataset. Additionally, we design CoT-Grounded Generative Layout Reward to enhance generalization and spatial planning. During inference, DirectLayout addresses asset-layout mismatches via Iterative Asset-Layout Alignment through in-context learning. Extensive experiments demonstrate that DirectLayout achieves impressive semantic consistency, generalization and physical plausibility.
comment: Project Page: https://directlayout.github.io/
☆ Defurnishing with X-Ray Vision: Joint Removal of Furniture from Panoramas and Mesh
We present a pipeline for generating defurnished replicas of indoor spaces represented as textured meshes and corresponding multi-view panoramic images. To achieve this, we first segment and remove furniture from the mesh representation, extend planes, and fill holes, obtaining a simplified defurnished mesh (SDM). This SDM acts as an ``X-ray'' of the scene's underlying structure, guiding the defurnishing process. We extract Canny edges from depth and normal images rendered from the SDM. We then use these as a guide to remove the furniture from panorama images via ControlNet inpainting. This control signal ensures the availability of global geometric information that may be hidden from a particular panoramic view by the furniture being removed. The inpainted panoramas are used to texture the mesh. We show that our approach produces higher quality assets than methods that rely on neural radiance fields, which tend to produce blurry low-resolution images, or RGB-D inpainting, which is highly susceptible to hallucinations.
☆ VideoMolmo: Spatio-Temporal Grounding Meets Pointing
Spatio-temporal localization is vital for precise interactions across diverse domains, from biological research to autonomous navigation and interactive interfaces. Current video-based approaches, while proficient in tracking, lack the sophisticated reasoning capabilities of large language models, limiting their contextual understanding and generalization. We introduce VideoMolmo, a large multimodal model tailored for fine-grained spatio-temporal pointing conditioned on textual descriptions. Building upon the Molmo architecture, VideoMolmo incorporates a temporal module utilizing an attention mechanism to condition each frame on preceding frames, ensuring temporal consistency. Additionally, our novel temporal mask fusion pipeline employs SAM2 for bidirectional point propagation, significantly enhancing coherence across video sequences. This two-step decomposition, i.e., first using the LLM to generate precise pointing coordinates, then relying on a sequential mask-fusion module to produce coherent segmentation, not only simplifies the task for the language model but also enhances interpretability. Due to the lack of suitable datasets, we curate a comprehensive dataset comprising 72k video-caption pairs annotated with 100k object points. To evaluate the generalization of VideoMolmo, we introduce VPoS-Bench, a challenging out-of-distribution benchmark spanning five real-world scenarios: Cell Tracking, Egocentric Vision, Autonomous Driving, Video-GUI Interaction, and Robotics. We also evaluate our model on Referring Video Object Segmentation (Refer-VOS) and Reasoning VOS tasks. In comparison to existing models, VideoMolmo substantially improves spatio-temporal pointing accuracy and reasoning capability. Our code and models are publicly available at https://github.com/mbzuai-oryx/VideoMolmo.
comment: 20 pages, 13 figures
☆ Unleashing Hour-Scale Video Training for Long Video-Language Understanding
Recent long-form video-language understanding benchmarks have driven progress in video large multimodal models (Video-LMMs). However, the scarcity of well-annotated long videos has left the training of hour-long Video-LLMs underexplored. To close this gap, we present VideoMarathon, a large-scale hour-long video instruction-following dataset. This dataset includes around 9,700 hours of long videos sourced from diverse domains, ranging from 3 to 60 minutes per video. Specifically, it contains 3.3M high-quality QA pairs, spanning six fundamental topics: temporality, spatiality, object, action, scene, and event. Compared to existing video instruction datasets, VideoMarathon significantly extends training video durations up to 1 hour, and supports 22 diverse tasks requiring both short- and long-term video comprehension. Building on VideoMarathon, we propose Hour-LLaVA, a powerful and efficient Video-LMM for hour-scale video-language modeling. It enables hour-long video training and inference at 1-FPS sampling by leveraging a memory augmentation module, which adaptively integrates user question-relevant and spatiotemporal-informative semantics from a cached full video context. In our experiments, Hour-LLaVA achieves the best performance on multiple long video-language benchmarks, demonstrating the high quality of the VideoMarathon dataset and the superiority of the Hour-LLaVA model.
comment: Project page: https://videomarathon.github.io/
☆ MINT-CoT: Enabling Interleaved Visual Tokens in Mathematical Chain-of-Thought Reasoning
Chain-of-Thought (CoT) has widely enhanced mathematical reasoning in Large Language Models (LLMs), but it still remains challenging for extending it to multimodal domains. Existing works either adopt a similar textual reasoning for image input, or seek to interleave visual signals into mathematical CoT. However, they face three key limitations for math problem-solving: reliance on coarse-grained box-shaped image regions, limited perception of vision encoders on math content, and dependence on external capabilities for visual modification. In this paper, we propose MINT-CoT, introducing Mathematical INterleaved Tokens for Chain-of-Thought visual reasoning. MINT-CoT adaptively interleaves relevant visual tokens into textual reasoning steps via an Interleave Token, which dynamically selects visual regions of any shapes within math figures. To empower this capability, we construct the MINT-CoT dataset, containing 54K mathematical problems aligning each reasoning step with visual regions at the token level, accompanied by a rigorous data generation pipeline. We further present a three-stage MINT-CoT training strategy, progressively combining text-only CoT SFT, interleaved CoT SFT, and interleaved CoT RL, which derives our MINT-CoT-7B model. Extensive experiments demonstrate the effectiveness of our method for effective visual interleaved reasoning in mathematical domains, where MINT-CoT-7B outperforms the baseline model by +34.08% on MathVista, +28.78% on GeoQA, and +23.2% on MMStar, respectively. Our code and data are available at https://github.com/xinyan-cxy/MINT-CoT
comment: Code is released at https://github.com/xinyan-cxy/MINT-CoT
☆ AV-Reasoner: Improving and Benchmarking Clue-Grounded Audio-Visual Counting for MLLMs
Despite progress in video understanding, current MLLMs struggle with counting tasks. Existing benchmarks are limited by short videos, close-set queries, lack of clue annotations, and weak multimodal coverage. In this paper, we introduce CG-AV-Counting, a manually-annotated clue-grounded counting benchmark with 1,027 multimodal questions and 5,845 annotated clues over 497 long videos. It supports both black-box and white-box evaluation, serving as a comprehensive testbed for both end-to-end and reasoning-based counting. To explore ways to improve model's counting capability, we propose AV-Reasoner, a model trained with GRPO and curriculum learning to generalize counting ability from related tasks. AV-Reasoner achieves state-of-the-art results across multiple benchmarks, demonstrating the effectiveness of reinforcement learning. However, experiments show that on out-of-domain benchmarks, reasoning in the language space fails to bring performance gains. The code and benchmark have been realeased on https://av-reasoner.github.io.
comment: 21 pages, 11 figures
☆ Revisiting Depth Representations for Feed-Forward 3D Gaussian Splatting
Depth maps are widely used in feed-forward 3D Gaussian Splatting (3DGS) pipelines by unprojecting them into 3D point clouds for novel view synthesis. This approach offers advantages such as efficient training, the use of known camera poses, and accurate geometry estimation. However, depth discontinuities at object boundaries often lead to fragmented or sparse point clouds, degrading rendering quality -- a well-known limitation of depth-based representations. To tackle this issue, we introduce PM-Loss, a novel regularization loss based on a pointmap predicted by a pre-trained transformer. Although the pointmap itself may be less accurate than the depth map, it effectively enforces geometric smoothness, especially around object boundaries. With the improved depth map, our method significantly improves the feed-forward 3DGS across various architectures and scenes, delivering consistently better rendering results. Our project page: https://aim-uofa.github.io/PMLoss
comment: Project page: https://aim-uofa.github.io/PMLoss
Does Your 3D Encoder Really Work? When Pretrain-SFT from 2D VLMs Meets 3D VLMs
Remarkable progress in 2D Vision-Language Models (VLMs) has spurred interest in extending them to 3D settings for tasks like 3D Question Answering, Dense Captioning, and Visual Grounding. Unlike 2D VLMs that typically process images through an image encoder, 3D scenes, with their intricate spatial structures, allow for diverse model architectures. Based on their encoder design, this paper categorizes recent 3D VLMs into 3D object-centric, 2D image-based, and 3D scene-centric approaches. Despite the architectural similarity of 3D scene-centric VLMs to their 2D counterparts, they have exhibited comparatively lower performance compared with the latest 3D object-centric and 2D image-based approaches. To understand this gap, we conduct an in-depth analysis, revealing that 3D scene-centric VLMs show limited reliance on the 3D scene encoder, and the pre-train stage appears less effective than in 2D VLMs. Furthermore, we observe that data scaling benefits are less pronounced on larger datasets. Our investigation suggests that while these models possess cross-modal alignment capabilities, they tend to over-rely on linguistic cues and overfit to frequent answer distributions, thereby diminishing the effective utilization of the 3D encoder. To address these limitations and encourage genuine 3D scene understanding, we introduce a novel 3D Relevance Discrimination QA dataset designed to disrupt shortcut learning and improve 3D understanding. Our findings highlight the need for advanced evaluation and improved strategies for better 3D understanding in 3D VLMs.
☆ ProJo4D: Progressive Joint Optimization for Sparse-View Inverse Physics Estimation
Neural rendering has made significant strides in 3D reconstruction and novel view synthesis. With the integration with physics, it opens up new applications. The inverse problem of estimating physics from visual data, however, still remains challenging, limiting its effectiveness for applications like physically accurate digital twin creation in robotics and XR. Existing methods that incorporate physics into neural rendering frameworks typically require dense multi-view videos as input, making them impractical for scalable, real-world use. When presented with sparse multi-view videos, the sequential optimization strategy used by existing approaches introduces significant error accumulation, e.g., poor initial 3D reconstruction leads to bad material parameter estimation in subsequent stages. Instead of sequential optimization, directly optimizing all parameters at the same time also fails due to the highly non-convex and often non-differentiable nature of the problem. We propose ProJo4D, a progressive joint optimization framework that gradually increases the set of jointly optimized parameters guided by their sensitivity, leading to fully joint optimization over geometry, appearance, physical state, and material property. Evaluations on PAC-NeRF and Spring-Gaus datasets show that ProJo4D outperforms prior work in 4D future state prediction, novel view rendering of future state, and material parameter estimation, demonstrating its effectiveness in physically grounded 4D scene understanding. For demos, please visit the project webpage: https://daniel03c1.github.io/ProJo4D/
☆ MARBLE: Material Recomposition and Blending in CLIP-Space
Editing materials of objects in images based on exemplar images is an active area of research in computer vision and graphics. We propose MARBLE, a method for performing material blending and recomposing fine-grained material properties by finding material embeddings in CLIP-space and using that to control pre-trained text-to-image models. We improve exemplar-based material editing by finding a block in the denoising UNet responsible for material attribution. Given two material exemplar-images, we find directions in the CLIP-space for blending the materials. Further, we can achieve parametric control over fine-grained material attributes such as roughness, metallic, transparency, and glow using a shallow network to predict the direction for the desired material attribute change. We perform qualitative and quantitative analysis to demonstrate the efficacy of our proposed method. We also present the ability of our method to perform multiple edits in a single forward pass and applicability to painting. Project Page: https://marblecontrol.github.io/
☆ Do It Yourself: Learning Semantic Correspondence from Pseudo-Labels SC
Finding correspondences between semantically similar points across images and object instances is one of the everlasting challenges in computer vision. While large pre-trained vision models have recently been demonstrated as effective priors for semantic matching, they still suffer from ambiguities for symmetric objects or repeated object parts. We propose to improve semantic correspondence estimation via 3D-aware pseudo-labeling. Specifically, we train an adapter to refine off-the-shelf features using pseudo-labels obtained via 3D-aware chaining, filtering wrong labels through relaxed cyclic consistency, and 3D spherical prototype mapping constraints. While reducing the need for dataset specific annotations compared to prior work, we set a new state-of-the-art on SPair-71k by over 4% absolute gain and by over 7% against methods with similar supervision requirements. The generality of our proposed approach simplifies extension of training to other data sources, which we demonstrate in our experiments.
comment: Project page: https://genintel.github.io/DIY-SC
☆ Perceive Anything: Recognize, Explain, Caption, and Segment Anything in Images and Videos
We present Perceive Anything Model (PAM), a conceptually straightforward and efficient framework for comprehensive region-level visual understanding in images and videos. Our approach extends the powerful segmentation model SAM 2 by integrating Large Language Models (LLMs), enabling simultaneous object segmentation with the generation of diverse, region-specific semantic outputs, including categories, label definition, functional explanations, and detailed captions. A key component, Semantic Perceiver, is introduced to efficiently transform SAM 2's rich visual features, which inherently carry general vision, localization, and semantic priors into multi-modal tokens for LLM comprehension. To support robust multi-granularity understanding, we also develop a dedicated data refinement and augmentation pipeline, yielding a high-quality dataset of 1.5M image and 0.6M video region-semantic annotations, including novel region-level streaming video caption data. PAM is designed for lightweightness and efficiency, while also demonstrates strong performance across a diverse range of region understanding tasks. It runs 1.2-2.4x faster and consumes less GPU memory than prior approaches, offering a practical solution for real-world applications. We believe that our effective approach will serve as a strong baseline for future research in region-level visual understanding.
comment: 19 pages, 13 figures, Website: https://Perceive-Anything.github.io
☆ SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training
Recent advances in diffusion-based video restoration (VR) demonstrate significant improvement in visual quality, yet yield a prohibitive computational cost during inference. While several distillation-based approaches have exhibited the potential of one-step image restoration, extending existing approaches to VR remains challenging and underexplored, particularly when dealing with high-resolution video in real-world settings. In this work, we propose a one-step diffusion-based VR model, termed as SeedVR2, which performs adversarial VR training against real data. To handle the challenging high-resolution VR within a single step, we introduce several enhancements to both model architecture and training procedures. Specifically, an adaptive window attention mechanism is proposed, where the window size is dynamically adjusted to fit the output resolutions, avoiding window inconsistency observed under high-resolution VR using window attention with a predefined window size. To stabilize and improve the adversarial post-training towards VR, we further verify the effectiveness of a series of losses, including a proposed feature matching loss without significantly sacrificing training efficiency. Extensive experiments show that SeedVR2 can achieve comparable or even better performance compared with existing VR approaches in a single step.
comment: Draft Ver. Project page: https://iceclear.github.io/projects/seedvr2/
☆ DM-SegNet: Dual-Mamba Architecture for 3D Medical Image Segmentation with Global Context Modeling
Accurate 3D medical image segmentation demands architectures capable of reconciling global context modeling with spatial topology preservation. While State Space Models (SSMs) like Mamba show potential for sequence modeling, existing medical SSMs suffer from encoder-decoder incompatibility: the encoder's 1D sequence flattening compromises spatial structures, while conventional decoders fail to leverage Mamba's state propagation. We present DM-SegNet, a Dual-Mamba architecture integrating directional state transitions with anatomy-aware hierarchical decoding. The core innovations include a quadri-directional spatial Mamba module employing four-directional 3D scanning to maintain anatomical spatial coherence, a gated spatial convolution layer that enhances spatially sensitive feature representation prior to state modeling, and a Mamba-driven decoding framework enabling bidirectional state synchronization across scales. Extensive evaluation on two clinically significant benchmarks demonstrates the efficacy of DM-SegNet: achieving state-of-the-art Dice Similarity Coefficient (DSC) of 85.44% on the Synapse dataset for abdominal organ segmentation and 90.22% on the BraTS2023 dataset for brain tumor segmentation.
☆ AliTok: Towards Sequence Modeling Alignment between Tokenizer and Autoregressive Model
Autoregressive image generation aims to predict the next token based on previous ones. However, existing image tokenizers encode tokens with bidirectional dependencies during the compression process, which hinders the effective modeling by autoregressive models. In this paper, we propose a novel Aligned Tokenizer (AliTok), which utilizes a causal decoder to establish unidirectional dependencies among encoded tokens, thereby aligning the token modeling approach between the tokenizer and autoregressive model. Furthermore, by incorporating prefix tokens and employing two-stage tokenizer training to enhance reconstruction consistency, AliTok achieves great reconstruction performance while being generation-friendly. On ImageNet-256 benchmark, using a standard decoder-only autoregressive model as the generator with only 177M parameters, AliTok achieves a gFID score of 1.50 and an IS of 305.9. When the parameter count is increased to 662M, AliTok achieves a gFID score of 1.35, surpassing the state-of-the-art diffusion method with 10x faster sampling speed. The code and weights are available at https://github.com/ali-vilab/alitok.
comment: Code: https://github.com/ali-vilab/alitok
☆ EOC-Bench: Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World?
The emergence of multimodal large language models (MLLMs) has driven breakthroughs in egocentric vision applications. These applications necessitate persistent, context-aware understanding of objects, as users interact with tools in dynamic and cluttered environments. However, existing embodied benchmarks primarily focus on static scene exploration, emphasizing object's appearance and spatial attributes while neglecting the assessment of dynamic changes arising from users' interactions. To address this gap, we introduce EOC-Bench, an innovative benchmark designed to systematically evaluate object-centric embodied cognition in dynamic egocentric scenarios. Specially, EOC-Bench features 3,277 meticulously annotated QA pairs categorized into three temporal categories: Past, Present, and Future, covering 11 fine-grained evaluation dimensions and 3 visual object referencing types. To ensure thorough assessment, we develop a mixed-format human-in-the-loop annotation framework with four types of questions and design a novel multi-scale temporal accuracy metric for open-ended temporal evaluation. Based on EOC-Bench, we conduct comprehensive evaluations of various proprietary, open-source, and object-level MLLMs. EOC-Bench serves as a crucial tool for advancing the embodied object cognitive capabilities of MLLMs, establishing a robust foundation for developing reliable core models for embodied systems.
comment: 32pages
☆ Stable Vision Concept Transformers for Medical Diagnosis
Transparency is a paramount concern in the medical field, prompting researchers to delve into the realm of explainable AI (XAI). Among these XAI methods, Concept Bottleneck Models (CBMs) aim to restrict the model's latent space to human-understandable high-level concepts by generating a conceptual layer for extracting conceptual features, which has drawn much attention recently. However, existing methods rely solely on concept features to determine the model's predictions, which overlook the intrinsic feature embeddings within medical images. To address this utility gap between the original models and concept-based models, we propose Vision Concept Transformer (VCT). Furthermore, despite their benefits, CBMs have been found to negatively impact model performance and fail to provide stable explanations when faced with input perturbations, which limits their application in the medical field. To address this faithfulness issue, this paper further proposes the Stable Vision Concept Transformer (SVCT) based on VCT, which leverages the vision transformer (ViT) as its backbone and incorporates a conceptual layer. SVCT employs conceptual features to enhance decision-making capabilities by fusing them with image features and ensures model faithfulness through the integration of Denoised Diffusion Smoothing. Comprehensive experiments on four medical datasets demonstrate that our VCT and SVCT maintain accuracy while remaining interpretable compared to baselines. Furthermore, even when subjected to perturbations, our SVCT model consistently provides faithful explanations, thus meeting the needs of the medical field.
comment: arXiv admin note: text overlap with arXiv:2304.06129 by other authors
☆ RaySt3R: Predicting Novel Depth Maps for Zero-Shot Object Completion
3D shape completion has broad applications in robotics, digital twin reconstruction, and extended reality (XR). Although recent advances in 3D object and scene completion have achieved impressive results, existing methods lack 3D consistency, are computationally expensive, and struggle to capture sharp object boundaries. Our work (RaySt3R) addresses these limitations by recasting 3D shape completion as a novel view synthesis problem. Specifically, given a single RGB-D image and a novel viewpoint (encoded as a collection of query rays), we train a feedforward transformer to predict depth maps, object masks, and per-pixel confidence scores for those query rays. RaySt3R fuses these predictions across multiple query views to reconstruct complete 3D shapes. We evaluate RaySt3R on synthetic and real-world datasets, and observe it achieves state-of-the-art performance, outperforming the baselines on all datasets by up to 44% in 3D chamfer distance. Project page: https://rayst3r.github.io
☆ Video World Models with Long-term Spatial Memory
Emerging world models autoregressively generate video frames in response to actions, such as camera movements and text prompts, among other control signals. Due to limited temporal context window sizes, these models often struggle to maintain scene consistency during revisits, leading to severe forgetting of previously generated environments. Inspired by the mechanisms of human memory, we introduce a novel framework to enhancing long-term consistency of video world models through a geometry-grounded long-term spatial memory. Our framework includes mechanisms to store and retrieve information from the long-term spatial memory and we curate custom datasets to train and evaluate world models with explicitly stored 3D memory mechanisms. Our evaluations show improved quality, consistency, and context length compared to relevant baselines, paving the way towards long-term consistent world generation.
comment: Project page: https://spmem.github.io/
☆ Rectified Point Flow: Generic Point Cloud Pose Estimation
We introduce Rectified Point Flow, a unified parameterization that formulates pairwise point cloud registration and multi-part shape assembly as a single conditional generative problem. Given unposed point clouds, our method learns a continuous point-wise velocity field that transports noisy points toward their target positions, from which part poses are recovered. In contrast to prior work that regresses part-wise poses with ad-hoc symmetry handling, our method intrinsically learns assembly symmetries without symmetry labels. Together with a self-supervised encoder focused on overlapping points, our method achieves a new state-of-the-art performance on six benchmarks spanning pairwise registration and shape assembly. Notably, our unified formulation enables effective joint training on diverse datasets, facilitating the learning of shared geometric priors and consequently boosting accuracy. Project page: https://rectified-pointflow.github.io/.
comment: Project page: https://rectified-pointflow.github.io/
☆ Unifying Appearance Codes and Bilateral Grids for Driving Scene Gaussian Splatting
Neural rendering techniques, including NeRF and Gaussian Splatting (GS), rely on photometric consistency to produce high-quality reconstructions. However, in real-world scenarios, it is challenging to guarantee perfect photometric consistency in acquired images. Appearance codes have been widely used to address this issue, but their modeling capability is limited, as a single code is applied to the entire image. Recently, the bilateral grid was introduced to perform pixel-wise color mapping, but it is difficult to optimize and constrain effectively. In this paper, we propose a novel multi-scale bilateral grid that unifies appearance codes and bilateral grids. We demonstrate that this approach significantly improves geometric accuracy in dynamic, decoupled autonomous driving scene reconstruction, outperforming both appearance codes and bilateral grids. This is crucial for autonomous driving, where accurate geometry is important for obstacle avoidance and control. Our method shows strong results across four datasets: Waymo, NuScenes, Argoverse, and PandaSet. We further demonstrate that the improvement in geometry is driven by the multi-scale bilateral grid, which effectively reduces floaters caused by photometric inconsistency.
comment: Project page: https://bigcileng.github.io/bilateral-driving; Code: https://github.com/BigCiLeng/bilateral-driving
☆ From Play to Replay: Composed Video Retrieval for Temporally Fine-Grained Videos
Composed Video Retrieval (CoVR) retrieves a target video given a query video and a modification text describing the intended change. Existing CoVR benchmarks emphasize appearance shifts or coarse event changes and therefore do not test the ability to capture subtle, fast-paced temporal differences. We introduce TF-CoVR, the first large-scale benchmark dedicated to temporally fine-grained CoVR. TF-CoVR focuses on gymnastics and diving and provides 180K triplets drawn from FineGym and FineDiving. Previous CoVR benchmarks focusing on temporal aspect, link each query to a single target segment taken from the same video, limiting practical usefulness. In TF-CoVR, we instead construct each pair by prompting an LLM with the label differences between clips drawn from different videos; every pair is thus associated with multiple valid target videos (3.9 on average), reflecting real-world tasks such as sports-highlight generation. To model these temporal dynamics we propose TF-CoVR-Base, a concise two-stage training framework: (i) pre-train a video encoder on fine-grained action classification to obtain temporally discriminative embeddings; (ii) align the composed query with candidate videos using contrastive learning. We conduct the first comprehensive study of image, video, and general multimodal embedding (GME) models on temporally fine-grained composed retrieval in both zero-shot and fine-tuning regimes. On TF-CoVR, TF-CoVR-Base improves zero-shot mAP@50 from 5.92 (LanguageBind) to 7.51, and after fine-tuning raises the state-of-the-art from 19.83 to 25.82.
☆ Can Foundation Models Generalise the Presentation Attack Detection Capabilities on ID Cards?
Nowadays, one of the main challenges in presentation attack detection (PAD) on ID cards is obtaining generalisation capabilities for a diversity of countries that are issuing ID cards. Most PAD systems are trained on one, two, or three ID documents because of privacy protection concerns. As a result, they do not obtain competitive results for commercial purposes when tested in an unknown new ID card country. In this scenario, Foundation Models (FM) trained on huge datasets can help to improve generalisation capabilities. This work intends to improve and benchmark the capabilities of FM and how to use them to adapt the generalisation on PAD of ID Documents. Different test protocols were used, considering zero-shot and fine-tuning and two different ID card datasets. One private dataset based on Chilean IDs and one open-set based on three ID countries: Finland, Spain, and Slovakia. Our findings indicate that bona fide images are the key to generalisation.
☆ LeanPO: Lean Preference Optimization for Likelihood Alignment in Video-LLMs
Most Video Large Language Models (Video-LLMs) adopt preference alignment techniques, e.g., DPO~\citep{rafailov2024dpo}, to optimize the reward margin between a winning response ($y_w$) and a losing response ($y_l$). However, the likelihood displacement observed in DPO indicates that both $\log \pi_\theta (y_w\mid x)$ and $\log \pi_\theta (y_l\mid x) $ often decrease during training, inadvertently boosting the probabilities of non-target responses. In this paper, we systematically revisit this phenomenon from LLMs to Video-LLMs, showing that it intensifies when dealing with the redundant complexity of video content. To alleviate the impact of this phenomenon, we propose \emph{Lean Preference Optimization} (LeanPO), a reference-free approach that reformulates the implicit reward as the average likelihood of the response with respect to the policy model. A key component of LeanPO is the reward-trustworthiness correlated self-generated preference data pipeline, which carefully infuses relevant prior knowledge into the model while continuously refining the preference data via self-reflection. This allows the policy model to obtain high-quality paired data and accurately estimate the newly defined reward, thus mitigating the unintended drop. In addition, we introduce a dynamic label smoothing strategy that mitigates the impact of noise in responses from diverse video content, preventing the model from overfitting to spurious details. Extensive experiments demonstrate that LeanPO significantly enhances the performance of state-of-the-art Video-LLMs, consistently boosting baselines of varying capacities with minimal additional training overhead. Moreover, LeanPO offers a simple yet effective solution for aligning Video-LLM preferences with human trustworthiness, paving the way toward the reliable and efficient Video-LLMs.
comment: Code: https://github.com/Wang-Xiaodong1899/LeanPO
☆ Spatiotemporal Contrastive Learning for Cross-View Video Localization in Unstructured Off-road Terrains
Robust cross-view 3-DoF localization in GPS-denied, off-road environments remains challenging due to (1) perceptual ambiguities from repetitive vegetation and unstructured terrain, and (2) seasonal shifts that significantly alter scene appearance, hindering alignment with outdated satellite imagery. To address this, we introduce MoViX, a self-supervised cross-view video localization framework that learns viewpoint- and season-invariant representations while preserving directional awareness essential for accurate localization. MoViX employs a pose-dependent positive sampling strategy to enhance directional discrimination and temporally aligned hard negative mining to discourage shortcut learning from seasonal cues. A motion-informed frame sampler selects spatially diverse frames, and a lightweight temporal aggregator emphasizes geometrically aligned observations while downweighting ambiguous ones. At inference, MoViX runs within a Monte Carlo Localization framework, using a learned cross-view matching module in place of handcrafted models. Entropy-guided temperature scaling enables robust multi-hypothesis tracking and confident convergence under visual ambiguity. We evaluate MoViX on the TartanDrive 2.0 dataset, training on under 30 minutes of data and testing over 12.29 km. Despite outdated satellite imagery, MoViX localizes within 25 meters of ground truth 93% of the time, and within 50 meters 100% of the time in unseen regions, outperforming state-of-the-art baselines without environment-specific tuning. We further demonstrate generalization on a real-world off-road dataset from a geographically distinct site with a different robot platform.
☆ Aligning Latent Spaces with Flow Priors
This paper presents a novel framework for aligning learnable latent spaces to arbitrary target distributions by leveraging flow-based generative models as priors. Our method first pretrains a flow model on the target features to capture the underlying distribution. This fixed flow model subsequently regularizes the latent space via an alignment loss, which reformulates the flow matching objective to treat the latents as optimization targets. We formally prove that minimizing this alignment loss establishes a computationally tractable surrogate objective for maximizing a variational lower bound on the log-likelihood of latents under the target distribution. Notably, the proposed method eliminates computationally expensive likelihood evaluations and avoids ODE solving during optimization. As a proof of concept, we demonstrate in a controlled setting that the alignment loss landscape closely approximates the negative log-likelihood of the target distribution. We further validate the effectiveness of our approach through large-scale image generation experiments on ImageNet with diverse target distributions, accompanied by detailed discussions and ablation studies. With both theoretical and empirical validation, our framework paves a new way for latent space alignment.
☆ SAM-aware Test-time Adaptation for Universal Medical Image Segmentation
Universal medical image segmentation using the Segment Anything Model (SAM) remains challenging due to its limited adaptability to medical domains. Existing adaptations, such as MedSAM, enhance SAM's performance in medical imaging but at the cost of reduced generalization to unseen data. Therefore, in this paper, we propose SAM-aware Test-Time Adaptation (SAM-TTA), a fundamentally different pipeline that preserves the generalization of SAM while improving its segmentation performance in medical imaging via a test-time framework. SAM-TTA tackles two key challenges: (1) input-level discrepancies caused by differences in image acquisition between natural and medical images and (2) semantic-level discrepancies due to fundamental differences in object definition between natural and medical domains (e.g., clear boundaries vs. ambiguous structures). Specifically, our SAM-TTA framework comprises (1) Self-adaptive Bezier Curve-based Transformation (SBCT), which adaptively converts single-channel medical images into three-channel SAM-compatible inputs while maintaining structural integrity, to mitigate the input gap between medical and natural images, and (2) Dual-scale Uncertainty-driven Mean Teacher adaptation (DUMT), which employs consistency learning to align SAM's internal representations to medical semantics, enabling efficient adaptation without auxiliary supervision or expensive retraining. Extensive experiments on five public datasets demonstrate that our SAM-TTA outperforms existing TTA approaches and even surpasses fully fine-tuned models such as MedSAM in certain scenarios, establishing a new paradigm for universal medical image segmentation. Code can be found at https://github.com/JianghaoWu/SAM-TTA.
comment: 10 pages, 4 figures
☆ MonkeyOCR: Document Parsing with a Structure-Recognition-Relation Triplet Paradigm
We introduce MonkeyOCR, a vision-language model for document parsing that advances the state of the art by leveraging a Structure-Recognition-Relation (SRR) triplet paradigm. This design simplifies what would otherwise be a complex multi-tool pipeline (as in MinerU's modular approach) and avoids the inefficiencies of processing full pages with giant end-to-end models (e.g., large multimodal LLMs like Qwen-VL). In SRR, document parsing is abstracted into three fundamental questions - "Where is it?" (structure), "What is it?" (recognition), and "How is it organized?" (relation) - corresponding to layout analysis, content identification, and logical ordering. This focused decomposition balances accuracy and speed: it enables efficient, scalable processing without sacrificing precision. To train and evaluate this approach, we introduce the MonkeyDoc (the most comprehensive document parsing dataset to date), with 3.9 million instances spanning over ten document types in both Chinese and English. Experiments show that MonkeyOCR outperforms MinerU by an average of 5.1%, with particularly notable improvements on challenging content such as formulas (+15.0%) and tables (+8.6%). Remarkably, our 3B-parameter model surpasses much larger and top-performing models, including Qwen2.5-VL (72B) and Gemini 2.5 Pro, achieving state-of-the-art average performance on English document parsing tasks. In addition, MonkeyOCR processes multi-page documents significantly faster (0.84 pages per second compared to 0.65 for MinerU and 0.12 for Qwen2.5-VL-7B). The 3B model can be efficiently deployed for inference on a single NVIDIA 3090 GPU. Code and models will be released at https://github.com/Yuliang-Liu/MonkeyOCR.
☆ DSG-World: Learning a 3D Gaussian World Model from Dual State Videos
Building an efficient and physically consistent world model from limited observations is a long standing challenge in vision and robotics. Many existing world modeling pipelines are based on implicit generative models, which are hard to train and often lack 3D or physical consistency. On the other hand, explicit 3D methods built from a single state often require multi-stage processing-such as segmentation, background completion, and inpainting-due to occlusions. To address this, we leverage two perturbed observations of the same scene under different object configurations. These dual states offer complementary visibility, alleviating occlusion issues during state transitions and enabling more stable and complete reconstruction. In this paper, we present DSG-World, a novel end-to-end framework that explicitly constructs a 3D Gaussian World model from Dual State observations. Our approach builds dual segmentation-aware Gaussian fields and enforces bidirectional photometric and semantic consistency. We further introduce a pseudo intermediate state for symmetric alignment and design collaborative co-pruning trategies to refine geometric completeness. DSG-World enables efficient real-to-simulation transfer purely in the explicit Gaussian representation space, supporting high-fidelity rendering and object-level scene manipulation without relying on dense observations or multi-stage pipelines. Extensive experiments demonstrate strong generalization to novel views and scene states, highlighting the effectiveness of our approach for real-world 3D reconstruction and simulation.
☆ Towards Vision-Language-Garment Models For Web Knowledge Garment Understanding and Generation CVPR
Multimodal foundation models have demonstrated strong generalization, yet their ability to transfer knowledge to specialized domains such as garment generation remains underexplored. We introduce VLG, a vision-language-garment model that synthesizes garments from textual descriptions and visual imagery. Our experiments assess VLG's zero-shot generalization, investigating its ability to transfer web-scale reasoning to unseen garment styles and prompts. Preliminary results indicate promising transfer capabilities, highlighting the potential for multimodal foundation models to adapt effectively to specialized domains like fashion design.
comment: Presented at MMFM CVPRW'25, code available at https://georgenakayama.github.io/AIpparel/
☆ Follow-Your-Motion: Video Motion Transfer via Efficient Spatial-Temporal Decoupled Finetuning
Recently, breakthroughs in the video diffusion transformer have shown remarkable capabilities in diverse motion generations. As for the motion-transfer task, current methods mainly use two-stage Low-Rank Adaptations (LoRAs) finetuning to obtain better performance. However, existing adaptation-based motion transfer still suffers from motion inconsistency and tuning inefficiency when applied to large video diffusion transformers. Naive two-stage LoRA tuning struggles to maintain motion consistency between generated and input videos due to the inherent spatial-temporal coupling in the 3D attention operator. Additionally, they require time-consuming fine-tuning processes in both stages. To tackle these issues, we propose Follow-Your-Motion, an efficient two-stage video motion transfer framework that finetunes a powerful video diffusion transformer to synthesize complex motion.Specifically, we propose a spatial-temporal decoupled LoRA to decouple the attention architecture for spatial appearance and temporal motion processing. During the second training stage, we design the sparse motion sampling and adaptive RoPE to accelerate the tuning speed. To address the lack of a benchmark for this field, we introduce MotionBench, a comprehensive benchmark comprising diverse motion, including creative camera motion, single object motion, multiple object motion, and complex human motion. We show extensive evaluations on MotionBench to verify the superiority of Follow-Your-Motion.
comment: project page: https://follow-your-motion.github.io/
☆ OGGSplat: Open Gaussian Growing for Generalizable Reconstruction with Expanded Field-of-View
Reconstructing semantic-aware 3D scenes from sparse views is a challenging yet essential research direction, driven by the demands of emerging applications such as virtual reality and embodied AI. Existing per-scene optimization methods require dense input views and incur high computational costs, while generalizable approaches often struggle to reconstruct regions outside the input view cone. In this paper, we propose OGGSplat, an open Gaussian growing method that expands the field-of-view in generalizable 3D reconstruction. Our key insight is that the semantic attributes of open Gaussians provide strong priors for image extrapolation, enabling both semantic consistency and visual plausibility. Specifically, once open Gaussians are initialized from sparse views, we introduce an RGB-semantic consistent inpainting module applied to selected rendered views. This module enforces bidirectional control between an image diffusion model and a semantic diffusion model. The inpainted regions are then lifted back into 3D space for efficient and progressive Gaussian parameter optimization. To evaluate our method, we establish a Gaussian Outpainting (GO) benchmark that assesses both semantic and generative quality of reconstructed open-vocabulary scenes. OGGSplat also demonstrates promising semantic-aware scene reconstruction capabilities when provided with two view images captured directly from a smartphone camera.
☆ Grounding Beyond Detection: Enhancing Contextual Understanding in Embodied 3D Grounding
Embodied 3D grounding aims to localize target objects described in human instructions from ego-centric viewpoint. Most methods typically follow a two-stage paradigm where a trained 3D detector's optimized backbone parameters are used to initialize a grounding model. In this study, we explore a fundamental question: Does embodied 3D grounding benefit enough from detection? To answer this question, we assess the grounding performance of detection models using predicted boxes filtered by the target category. Surprisingly, these detection models without any instruction-specific training outperform the grounding models explicitly trained with language instructions. This indicates that even category-level embodied 3D grounding may not be well resolved, let alone more fine-grained context-aware grounding. Motivated by this finding, we propose DEGround, which shares DETR queries as object representation for both DEtection and Grounding and enables the grounding to benefit from basic category classification and box detection. Based on this framework, we further introduce a regional activation grounding module that highlights instruction-related regions and a query-wise modulation module that incorporates sentence-level semantic into the query representation, strengthening the context-aware understanding of language instructions. Remarkably, DEGround outperforms state-of-the-art model BIP3D by 7.52\% at overall accuracy on the EmbodiedScan validation set. The source code will be publicly available at https://github.com/zyn213/DEGround.
comment: 1st place on embodiedscan
☆ Quantifying Cross-Modality Memorization in Vision-Language Models
Understanding what and how neural networks memorize during training is crucial, both from the perspective of unintentional memorization of potentially sensitive information and from the standpoint of effective knowledge acquisition for real-world, knowledge-intensive tasks. While previous studies primarily investigate memorization within a single modality, such as text memorization in large language models or image memorization in diffusion models, unified multimodal models are becoming increasingly prevalent in practical applications. In this work, we focus on the unique characteristics of cross-modality memorization and conduct a systematic study centered on vision-language models. To facilitate controlled experiments, we first introduce a synthetic persona dataset comprising diverse synthetic person images and textual descriptions. We quantify factual knowledge memorization and cross-modal transferability by training models on a single modality and evaluating their performance in the other. Our results reveal that facts learned in one modality transfer to the other, but a significant gap exists between recalling information in the source and target modalities. Furthermore, we observe that this gap exists across various scenarios, including more capable models, machine unlearning, and the multi-hop case. At the end, we propose a baseline method to mitigate this challenge. We hope our study can inspire future research on developing more robust multimodal learning techniques to enhance cross-modal transferability.
☆ Vision-Based Autonomous MM-Wave Reflector Using ArUco-Driven Angle-of-Arrival Estimation
Reliable millimeter-wave (mmWave) communication in non-line-of-sight (NLoS) conditions remains a major challenge for both military and civilian operations, especially in urban or infrastructure-limited environments. This paper presents a vision-aided autonomous reflector system designed to enhance mmWave link performance by dynamically steering signal reflections using a motorized metallic plate. The proposed system leverages a monocular camera to detect ArUco markers on allied transmitter and receiver nodes, estimate their angles of arrival, and align the reflector in real time for optimal signal redirection. This approach enables selective beam coverage by serving only authenticated targets with visible markers and reduces the risk of unintended signal exposure. The designed prototype, built on a Raspberry Pi 4 and low-power hardware, operates autonomously without reliance on external infrastructure or GPS. Experimental results at 60\,GHz demonstrate a 23\,dB average gain in received signal strength and an 0.89 probability of maintaining signal reception above a target threshold of -65 dB in an indoor environment, far exceeding the static and no-reflector baselines. These results demonstrate the system's potential for resilient and adaptive mmWave connectivity in complex and dynamic environments.
☆ MokA: Multimodal Low-Rank Adaptation for MLLMs
In this paper, we reveal that most current efficient multimodal fine-tuning methods are hindered by a key limitation: they are directly borrowed from LLMs, often neglecting the intrinsic differences of multimodal scenarios and even affecting the full utilization of all modalities. Inspired by our empirical observation, we argue that unimodal adaptation and cross-modal adaptation are two essential parts for the effective fine-tuning of MLLMs. From this perspective, we propose Multimodal low-rank Adaptation (MokA), a multimodal-aware efficient fine-tuning strategy that takes multimodal characteristics into consideration. It compresses unimodal information by modality-specific parameters while explicitly enhancing cross-modal interaction, ensuring both unimodal and cross-modal adaptation. Extensive experiments cover three representative multimodal scenarios (audio-visual-text, visual-text, and speech-text), and multiple LLM backbones (LLaMA2/3, Qwen2, Qwen2.5-VL, etc). Consistent improvements indicate the efficacy and versatility of the proposed method. Ablation studies and efficiency evaluation are also conducted to fully asses our method. Overall, we think MokA provides a more targeted solution for efficient adaptation of MLLMs, paving the way for further exploration. The project page is at https://gewu-lab.github.io/MokA.
☆ Single GPU Task Adaptation of Pathology Foundation Models for Whole Slide Image Analysis
Pathology foundation models (PFMs) have emerged as powerful tools for analyzing whole slide images (WSIs). However, adapting these pretrained PFMs for specific clinical tasks presents considerable challenges, primarily due to the availability of only weak (WSI-level) labels for gigapixel images, necessitating multiple instance learning (MIL) paradigm for effective WSI analysis. This paper proposes a novel approach for single-GPU \textbf{T}ask \textbf{A}daptation of \textbf{PFM}s (TAPFM) that uses vision transformer (\vit) attention for MIL aggregation while optimizing both for feature representations and attention weights. The proposed approach maintains separate computational graphs for MIL aggregator and the PFM to create stable training dynamics that align with downstream task objectives during end-to-end adaptation. Evaluated on mutation prediction tasks for bladder cancer and lung adenocarcinoma across institutional and TCGA cohorts, TAPFM consistently outperforms conventional approaches, with H-Optimus-0 (TAPFM) outperforming the benchmarks. TAPFM effectively handles multi-label classification of actionable mutations as well. Thus, TAPFM makes adaptation of powerful pre-trained PFMs practical on standard hardware for various clinical applications.
☆ Track Any Anomalous Object: A Granular Video Anomaly Detection Pipeline
Video anomaly detection (VAD) is crucial in scenarios such as surveillance and autonomous driving, where timely detection of unexpected activities is essential. Although existing methods have primarily focused on detecting anomalous objects in videos -- either by identifying anomalous frames or objects -- they often neglect finer-grained analysis, such as anomalous pixels, which limits their ability to capture a broader range of anomalies. To address this challenge, we propose a new framework called Track Any Anomalous Object (TAO), which introduces a granular video anomaly detection pipeline that, for the first time, integrates the detection of multiple fine-grained anomalous objects into a unified framework. Unlike methods that assign anomaly scores to every pixel, our approach transforms the problem into pixel-level tracking of anomalous objects. By linking anomaly scores to downstream tasks such as segmentation and tracking, our method removes the need for threshold tuning and achieves more precise anomaly localization in long and complex video sequences. Experiments demonstrate that TAO sets new benchmarks in accuracy and robustness. Project page available online.
☆ Through-the-Wall Radar Human Activity Recognition WITHOUT Using Neural Networks
After a few years of research in the field of through-the-wall radar (TWR) human activity recognition (HAR), I found that we seem to be stuck in the mindset of training on radar image data through neural network models. The earliest related works in this field based on template matching did not require a training process, and I believe they have never died. Because these methods possess a strong physical interpretability and are closer to the basis of theoretical signal processing research. In this paper, I would like to try to return to the original path by attempting to eschew neural networks to achieve the TWR HAR task and challenge to achieve intelligent recognition as neural network models. In detail, the range-time map and Doppler-time map of TWR are first generated. Then, the initial regions of the human target foreground and noise background on the maps are determined using corner detection method, and the micro-Doppler signature is segmented using the multiphase active contour model. The micro-Doppler segmentation feature is discretized into a two-dimensional point cloud. Finally, the topological similarity between the resulting point cloud and the point clouds of the template data is calculated using Mapper algorithm to obtain the recognition results. The effectiveness of the proposed method is demonstrated by numerical simulated and measured experiments. The open-source code of this work is released at: https://github.com/JoeyBGOfficial/Through-the-Wall-Radar-Human-Activity-Recognition-Without-Using-Neural-Networks.
comment: 15 pages, 8 figures, 8 tables
☆ FRED: The Florence RGB-Event Drone Dataset
Small, fast, and lightweight drones present significant challenges for traditional RGB cameras due to their limitations in capturing fast-moving objects, especially under challenging lighting conditions. Event cameras offer an ideal solution, providing high temporal definition and dynamic range, yet existing benchmarks often lack fine temporal resolution or drone-specific motion patterns, hindering progress in these areas. This paper introduces the Florence RGB-Event Drone dataset (FRED), a novel multimodal dataset specifically designed for drone detection, tracking, and trajectory forecasting, combining RGB video and event streams. FRED features more than 7 hours of densely annotated drone trajectories, using 5 different drone models and including challenging scenarios such as rain and adverse lighting conditions. We provide detailed evaluation protocols and standard metrics for each task, facilitating reproducible benchmarking. The authors hope FRED will advance research in high-speed drone perception and multimodal spatiotemporal understanding.
☆ CIVET: Systematic Evaluation of Understanding in VLMs
While Vision-Language Models (VLMs) have achieved competitive performance in various tasks, their comprehension of the underlying structure and semantics of a scene remains understudied. To investigate the understanding of VLMs, we study their capability regarding object properties and relations in a controlled and interpretable manner. To this scope, we introduce CIVET, a novel and extensible framework for systematiC evaluatIon Via controllEd sTimuli. CIVET addresses the lack of standardized systematic evaluation for assessing VLMs' understanding, enabling researchers to test hypotheses with statistical rigor. With CIVET, we evaluate five state-of-the-art VLMs on exhaustive sets of stimuli, free from annotation noise, dataset-specific biases, and uncontrolled scene complexity. Our findings reveal that 1) current VLMs can accurately recognize only a limited set of basic object properties; 2) their performance heavily depends on the position of the object in the scene; 3) they struggle to understand basic relations among objects. Furthermore, a comparative evaluation with human annotators reveals that VLMs still fall short of achieving human-level accuracy.
☆ PixCell: A generative foundation model for digital histopathology images
The digitization of histology slides has revolutionized pathology, providing massive datasets for cancer diagnosis and research. Contrastive self-supervised and vision-language models have been shown to effectively mine large pathology datasets to learn discriminative representations. On the other hand, generative models, capable of synthesizing realistic and diverse images, present a compelling solution to address unique problems in pathology that involve synthesizing images; overcoming annotated data scarcity, enabling privacy-preserving data sharing, and performing inherently generative tasks, such as virtual staining. We introduce PixCell, the first diffusion-based generative foundation model for histopathology. We train PixCell on PanCan-30M, a vast, diverse dataset derived from 69,184 H\&E-stained whole slide images covering various cancer types. We employ a progressive training strategy and a self-supervision-based conditioning that allows us to scale up training without any annotated data. PixCell generates diverse and high-quality images across multiple cancer types, which we find can be used in place of real data to train a self-supervised discriminative model. Synthetic images shared between institutions are subject to fewer regulatory barriers than would be the case with real clinical images. Furthermore, we showcase the ability to precisely control image generation using a small set of annotated images, which can be used for both data augmentation and educational purposes. Testing on a cell segmentation task, a mask-guided PixCell enables targeted data augmentation, improving downstream performance. Finally, we demonstrate PixCell's ability to use H\&E structural staining to infer results from molecular marker studies; we use this capability to infer IHC staining from H\&E images. Our trained models are publicly released to accelerate research in computational pathology.
☆ Practical Manipulation Model for Robust Deepfake Detection
Modern deepfake detection models have achieved strong performance even on the challenging cross-dataset task. However, detection performance under non-ideal conditions remains very unstable, limiting success on some benchmark datasets and making it easy to circumvent detection. Inspired by the move to a more real-world degradation model in the area of image super-resolution, we have developed a Practical Manipulation Model (PMM) that covers a larger set of possible forgeries. We extend the space of pseudo-fakes by using Poisson blending, more diverse masks, generator artifacts, and distractors. Additionally, we improve the detectors' generality and robustness by adding strong degradations to the training images. We demonstrate that these changes not only significantly enhance the model's robustness to common image degradations but also improve performance on standard benchmark datasets. Specifically, we show clear increases of $3.51\%$ and $6.21\%$ AUC on the DFDC and DFDCP datasets, respectively, over the s-o-t-a LAA backbone. Furthermore, we highlight the lack of robustness in previous detectors and our improvements in this regard. Code can be found at https://github.com/BenediktHopf/PMM
☆ DIMCIM: A Quantitative Evaluation Framework for Default-mode Diversity and Generalization in Text-to-Image Generative Models
Recent advances in text-to-image (T2I) models have achieved impressive quality and consistency. However, this has come at the cost of representation diversity. While automatic evaluation methods exist for benchmarking model diversity, they either require reference image datasets or lack specificity about the kind of diversity measured, limiting their adaptability and interpretability. To address this gap, we introduce the Does-it/Can-it framework, DIM-CIM, a reference-free measurement of default-mode diversity ("Does" the model generate images with expected attributes?) and generalization capacity ("Can" the model generate diverse attributes for a particular concept?). We construct the COCO-DIMCIM benchmark, which is seeded with COCO concepts and captions and augmented by a large language model. With COCO-DIMCIM, we find that widely-used models improve in generalization at the cost of default-mode diversity when scaling from 1.5B to 8.1B parameters. DIMCIM also identifies fine-grained failure cases, such as attributes that are generated with generic prompts but are rarely generated when explicitly requested. Finally, we use DIMCIM to evaluate the training data of a T2I model and observe a correlation of 0.85 between diversity in training images and default-mode diversity. Our work provides a flexible and interpretable framework for assessing T2I model diversity and generalization, enabling a more comprehensive understanding of model performance.
☆ Astraea: A GPU-Oriented Token-wise Acceleration Framework for Video Diffusion Transformers
Video diffusion transformers (vDiTs) have made impressive progress in text-to-video generation, but their high computational demands present major challenges for practical deployment. While existing acceleration methods reduce workload at various granularities, they often rely on heuristics, limiting their applicability. We introduce ASTRAEA, an automatic framework that searches for near-optimal configurations for vDiT-based video generation. At its core, ASTRAEA proposes a lightweight token selection mechanism and a memory-efficient, GPU-parallel sparse attention strategy, enabling linear reductions in execution time with minimal impact on generation quality. To determine optimal token reduction for different timesteps, we further design a search framework that leverages a classic evolutionary algorithm to automatically determine the distribution of the token budget effectively. Together, ASTRAEA achieves up to 2.4x inference speedup on a single GPU with great scalability (up to 13.2x speedup on 8 GPUs) while retaining better video quality compared to the state-of-the-art methods (<0.5% loss on the VBench score compared to the baseline vDiT models).
☆ FG 2025 TrustFAA: the First Workshop on Towards Trustworthy Facial Affect Analysis: Advancing Insights of Fairness, Explainability, and Safety (TrustFAA)
With the increasing prevalence and deployment of Emotion AI-powered facial affect analysis (FAA) tools, concerns about the trustworthiness of these systems have become more prominent. This first workshop on "Towards Trustworthy Facial Affect Analysis: Advancing Insights of Fairness, Explainability, and Safety (TrustFAA)" aims to bring together researchers who are investigating different challenges in relation to trustworthiness-such as interpretability, uncertainty, biases, and privacy-across various facial affect analysis tasks, including macro/ micro-expression recognition, facial action unit detection, other corresponding applications such as pain and depression detection, as well as human-robot interaction and collaboration. In alignment with FG2025's emphasis on ethics, as demonstrated by the inclusion of an Ethical Impact Statement requirement for this year's submissions, this workshop supports FG2025's efforts by encouraging research, discussion and dialogue on trustworthy FAA.
☆ Synthetic Dataset Generation for Autonomous Mobile Robots Using 3D Gaussian Splatting for Vision Training
Annotated datasets are critical for training neural networks for object detection, yet their manual creation is time- and labour-intensive, subjective to human error, and often limited in diversity. This challenge is particularly pronounced in the domain of robotics, where diverse and dynamic scenarios further complicate the creation of representative datasets. To address this, we propose a novel method for automatically generating annotated synthetic data in Unreal Engine. Our approach leverages photorealistic 3D Gaussian splats for rapid synthetic data generation. We demonstrate that synthetic datasets can achieve performance comparable to that of real-world datasets while significantly reducing the time required to generate and annotate data. Additionally, combining real-world and synthetic data significantly increases object detection performance by leveraging the quality of real-world images with the easier scalability of synthetic data. To our knowledge, this is the first application of synthetic data for training object detection algorithms in the highly dynamic and varied environment of robot soccer. Validation experiments reveal that a detector trained on synthetic images performs on par with one trained on manually annotated real-world images when tested on robot soccer match scenarios. Our method offers a scalable and comprehensive alternative to traditional dataset creation, eliminating the labour-intensive error-prone manual annotation process. By generating datasets in a simulator where all elements are intrinsically known, we ensure accurate annotations while significantly reducing manual effort, which makes it particularly valuable for robotics applications requiring diverse and scalable training data.
☆ Interpretable Multimodal Framework for Human-Centered Street Assessment: Integrating Visual-Language Models for Perceptual Urban Diagnostics
While objective street metrics derived from imagery or GIS have become standard in urban analytics, they remain insufficient to capture subjective perceptions essential to inclusive urban design. This study introduces a novel Multimodal Street Evaluation Framework (MSEF) that fuses a vision transformer (VisualGLM-6B) with a large language model (GPT-4), enabling interpretable dual-output assessment of streetscapes. Leveraging over 15,000 annotated street-view images from Harbin, China, we fine-tune the framework using LoRA and P-Tuning v2 for parameter-efficient adaptation. The model achieves an F1 score of 0.84 on objective features and 89.3 percent agreement with aggregated resident perceptions, validated across stratified socioeconomic geographies. Beyond classification accuracy, MSEF captures context-dependent contradictions: for instance, informal commerce boosts perceived vibrancy while simultaneously reducing pedestrian comfort. It also identifies nonlinear and semantically contingent patterns -- such as the divergent perceptual effects of architectural transparency across residential and commercial zones -- revealing the limits of universal spatial heuristics. By generating natural-language rationales grounded in attention mechanisms, the framework bridges sensory data with socio-affective inference, enabling transparent diagnostics aligned with SDG 11. This work offers both methodological innovation in urban perception modeling and practical utility for planning systems seeking to reconcile infrastructural precision with lived experience.
comment: 24 pages, 10 figures
☆ SeedEdit 3.0: Fast and High-Quality Generative Image Editing
We introduce SeedEdit 3.0, in companion with our T2I model Seedream 3.0 [22], which significantly improves over our previous version [27] in both aspects of edit instruction following and image content (e.g., ID/IP) preservation on real image inputs. Additional to model upgrading with T2I, in this report, we present several key improvements. First, we develop an enhanced data curation pipeline with a meta-info paradigm and meta-info embedding strategy that help mix images from multiple data sources. This allows us to scale editing data effectively, and meta information is helpfult to connect VLM with diffusion model more closely. Second, we introduce a joint learning pipeline for computing a diffusion loss and a reward loss. Finally, we evaluate SeedEdit 3.0 on our testing benchmarks, for real image editing, where it achieves a best trade-off between multiple aspects, yielding a high usability rate of 56.1%, compared to SeedEdit 1.6 (38.4%), GPT4o (37.1%) and Gemini 2.0 (30.3%).
comment: Our website: https://seed.bytedance.com/tech/seededit
☆ Parking, Perception, and Retail: Street-Level Determinants of Community Vitality in Harbin
The commercial vitality of community-scale streets in Chinese cities is shaped by complex interactions between vehicular accessibility, environmental quality, and pedestrian perception. This study proposes an interpretable, image-based framework to examine how street-level features -- including parked vehicle density, greenery, cleanliness, and street width -- impact retail performance and user satisfaction in Harbin, China. Leveraging street view imagery and a multimodal large language model (VisualGLM-6B), we construct a Community Commercial Vitality Index (CCVI) from Meituan and Dianping data and analyze its relationship with spatial attributes extracted via GPT-4-based perception modeling. Our findings reveal that while moderate vehicle presence may enhance commercial access, excessive on-street parking -- especially in narrow streets -- erodes walkability and reduces both satisfaction and shop-level pricing. In contrast, streets with higher perceived greenery and cleanliness show significantly greater satisfaction scores but only weak associations with pricing. Street width moderates the effects of vehicle presence, underscoring the importance of spatial configuration. These results demonstrate the value of integrating AI-assisted perception with urban morphological analysis to capture non-linear and context-sensitive drivers of commercial success. This study advances both theoretical and methodological frontiers by highlighting the conditional role of vehicle activity in neighborhood commerce and demonstrating the feasibility of multimodal AI for perceptual urban diagnostics. The implications extend to urban design, parking management, and scalable planning tools for community revitalization.
comment: 22 pages,5 figures
☆ A Survey on Vietnamese Document Analysis and Recognition: Challenges and Future Directions
Vietnamese document analysis and recognition (DAR) is a crucial field with applications in digitization, information retrieval, and automation. Despite advancements in OCR and NLP, Vietnamese text recognition faces unique challenges due to its complex diacritics, tonal variations, and lack of large-scale annotated datasets. Traditional OCR methods often struggle with real-world document variations, while deep learning approaches have shown promise but remain limited by data scarcity and generalization issues. Recently, large language models (LLMs) and vision-language models have demonstrated remarkable improvements in text recognition and document understanding, offering a new direction for Vietnamese DAR. However, challenges such as domain adaptation, multimodal learning, and computational efficiency persist. This survey provide a comprehensive review of existing techniques in Vietnamese document recognition, highlights key limitations, and explores how LLMs can revolutionize the field. We discuss future research directions, including dataset development, model optimization, and the integration of multimodal approaches for improved document intelligence. By addressing these gaps, we aim to foster advancements in Vietnamese DAR and encourage community-driven solutions.
☆ FlowDirector: Training-Free Flow Steering for Precise Text-to-Video Editing
Text-driven video editing aims to modify video content according to natural language instructions. While recent training-free approaches have made progress by leveraging pre-trained diffusion models, they typically rely on inversion-based techniques that map input videos into the latent space, which often leads to temporal inconsistencies and degraded structural fidelity. To address this, we propose FlowDirector, a novel inversion-free video editing framework. Our framework models the editing process as a direct evolution in data space, guiding the video via an Ordinary Differential Equation (ODE) to smoothly transition along its inherent spatiotemporal manifold, thereby preserving temporal coherence and structural details. To achieve localized and controllable edits, we introduce an attention-guided masking mechanism that modulates the ODE velocity field, preserving non-target regions both spatially and temporally. Furthermore, to address incomplete edits and enhance semantic alignment with editing instructions, we present a guidance-enhanced editing strategy inspired by Classifier-Free Guidance, which leverages differential signals between multiple candidate flows to steer the editing trajectory toward stronger semantic alignment without compromising structural consistency. Extensive experiments across benchmarks demonstrate that FlowDirector achieves state-of-the-art performance in instruction adherence, temporal consistency, and background preservation, establishing a new paradigm for efficient and coherent video editing without inversion.
comment: Project Page is https://flowdirector-edit.github.io
☆ DACN: Dual-Attention Convolutional Network for Hyperspectral Image Super-Resolution
2D convolutional neural networks (CNNs) have attracted significant attention for hyperspectral image super-resolution tasks. However, a key limitation is their reliance on local neighborhoods, which leads to a lack of global contextual understanding. Moreover, band correlation and data scarcity continue to limit their performance. To mitigate these issues, we introduce DACN, a dual-attention convolutional network for hyperspectral image super-resolution. Specifically, the model first employs augmented convolutions, integrating multi-head attention to effectively capture both local and global feature dependencies. Next, we infer separate attention maps for the channel and spatial dimensions to determine where to focus across different channels and spatial positions. Furthermore, a custom optimized loss function is proposed that combines L2 regularization with spatial-spectral gradient loss to ensure accurate spectral fidelity. Experimental results on two hyperspectral datasets demonstrate that the combination of multi-head attention and channel attention outperforms either attention mechanism used individually.
☆ Identifying and Understanding Cross-Class Features in Adversarial Training ICML 2025
Adversarial training (AT) has been considered one of the most effective methods for making deep neural networks robust against adversarial attacks, while the training mechanisms and dynamics of AT remain open research problems. In this paper, we present a novel perspective on studying AT through the lens of class-wise feature attribution. Specifically, we identify the impact of a key family of features on AT that are shared by multiple classes, which we call cross-class features. These features are typically useful for robust classification, which we offer theoretical evidence to illustrate through a synthetic data model. Through systematic studies across multiple model architectures and settings, we find that during the initial stage of AT, the model tends to learn more cross-class features until the best robustness checkpoint. As AT further squeezes the training robust loss and causes robust overfitting, the model tends to make decisions based on more class-specific features. Based on these discoveries, we further provide a unified view of two existing properties of AT, including the advantage of soft-label training and robust overfitting. Overall, these insights refine the current understanding of AT mechanisms and provide new perspectives on studying them. Our code is available at https://github.com/PKU-ML/Cross-Class-Features-AT.
comment: ICML 2025
☆ Physical Annotation for Automated Optical Inspection: A Concept for In-Situ, Pointer-Based Trainingdata Generation
This paper introduces a novel physical annotation system designed to generate training data for automated optical inspection. The system uses pointer-based in-situ interaction to transfer the valuable expertise of trained inspection personnel directly into a machine learning (ML) training pipeline. Unlike conventional screen-based annotation methods, our system captures physical trajectories and contours directly on the object, providing a more intuitive and efficient way to label data. The core technology uses calibrated, tracked pointers to accurately record user input and transform these spatial interactions into standardised annotation formats that are compatible with open-source annotation software. Additionally, a simple projector-based interface projects visual guidance onto the object to assist users during the annotation process, ensuring greater accuracy and consistency. The proposed concept bridges the gap between human expertise and automated data generation, enabling non-IT experts to contribute to the ML training pipeline and preventing the loss of valuable training samples. Preliminary evaluation results confirm the feasibility of capturing detailed annotation trajectories and demonstrate that integration with CVAT streamlines the workflow for subsequent ML tasks. This paper details the system architecture, calibration procedures and interface design, and discusses its potential contribution to future ML data generation for automated optical inspection.
UAV4D: Dynamic Neural Rendering of Human-Centric UAV Imagery using Gaussian Splatting
Despite significant advancements in dynamic neural rendering, existing methods fail to address the unique challenges posed by UAV-captured scenarios, particularly those involving monocular camera setups, top-down perspective, and multiple small, moving humans, which are not adequately represented in existing datasets. In this work, we introduce UAV4D, a framework for enabling photorealistic rendering for dynamic real-world scenes captured by UAVs. Specifically, we address the challenge of reconstructing dynamic scenes with multiple moving pedestrians from monocular video data without the need for additional sensors. We use a combination of a 3D foundation model and a human mesh reconstruction model to reconstruct both the scene background and humans. We propose a novel approach to resolve the scene scale ambiguity and place both humans and the scene in world coordinates by identifying human-scene contact points. Additionally, we exploit the SMPL model and background mesh to initialize Gaussian splats, enabling holistic scene rendering. We evaluated our method on three complex UAV-captured datasets: VisDrone, Manipal-UAV, and Okutama-Action, each with distinct characteristics and 10~50 humans. Our results demonstrate the benefits of our approach over existing methods in novel view synthesis, achieving a 1.5 dB PSNR improvement and superior visual sharpness.
ComfyUI-Copilot: An Intelligent Assistant for Automated Workflow Development ACL 2025
We introduce ComfyUI-Copilot, a large language model-powered plugin designed to enhance the usability and efficiency of ComfyUI, an open-source platform for AI-driven art creation. Despite its flexibility and user-friendly interface, ComfyUI can present challenges to newcomers, including limited documentation, model misconfigurations, and the complexity of workflow design. ComfyUI-Copilot addresses these challenges by offering intelligent node and model recommendations, along with automated one-click workflow construction. At its core, the system employs a hierarchical multi-agent framework comprising a central assistant agent for task delegation and specialized worker agents for different usages, supported by our curated ComfyUI knowledge bases to streamline debugging and deployment. We validate the effectiveness of ComfyUI-Copilot through both offline quantitative evaluations and online user feedback, showing that it accurately recommends nodes and accelerates workflow development. Additionally, use cases illustrate that ComfyUI-Copilot lowers entry barriers for beginners and enhances workflow efficiency for experienced users. The ComfyUI-Copilot installation package and a demo video are available at https://github.com/AIDC-AI/ComfyUI-Copilot.
comment: ACL 2025 Demo. Github: https://github.com/AIDC-AI/ComfyUI-Copilot
☆ Point Cloud Segmentation of Agricultural Vehicles using 3D Gaussian Splatting
Training neural networks for tasks such as 3D point cloud semantic segmentation demands extensive datasets, yet obtaining and annotating real-world point clouds is costly and labor-intensive. This work aims to introduce a novel pipeline for generating realistic synthetic data, by leveraging 3D Gaussian Splatting (3DGS) and Gaussian Opacity Fields (GOF) to generate 3D assets of multiple different agricultural vehicles instead of using generic models. These assets are placed in a simulated environment, where the point clouds are generated using a simulated LiDAR. This is a flexible approach that allows changing the LiDAR specifications without incurring additional costs. We evaluated the impact of synthetic data on segmentation models such as PointNet++, Point Transformer V3, and OACNN, by training and validating the models only on synthetic data. Remarkably, the PTv3 model had an mIoU of 91.35\%, a noteworthy result given that the model had neither been trained nor validated on any real data. Further studies even suggested that in certain scenarios the models trained only on synthetically generated data performed better than models trained on real-world data. Finally, experiments demonstrated that the models can generalize across semantic classes, enabling accurate predictions on mesh models they were never trained on.
☆ Structure-Aware Radar-Camera Depth Estimation
Monocular depth estimation aims to determine the depth of each pixel from an RGB image captured by a monocular camera. The development of deep learning has significantly advanced this field by facilitating the learning of depth features from some well-annotated datasets \cite{Geiger_Lenz_Stiller_Urtasun_2013,silberman2012indoor}. Eigen \textit{et al.} \cite{eigen2014depth} first introduce a multi-scale fusion network for depth regression. Following this, subsequent improvements have come from reinterpreting the regression task as a classification problem \cite{bhat2021adabins,Li_Wang_Liu_Jiang_2022}, incorporating additional priors \cite{shao2023nddepth,yang2023gedepth}, and developing more effective objective function \cite{xian2020structure,Yin_Liu_Shen_Yan_2019}. Despite these advances, generalizing to unseen domains remains a challenge. Recently, several methods have employed affine-invariant loss to enable multi-dataset joint training \cite{MiDaS,ZeroDepth,guizilini2023towards,Dany}. Among them, Depth Anything \cite{Dany} has shown leading performance in zero-shot monocular depth estimation. While it struggles to estimate accurate metric depth due to the lack of explicit depth cues, it excels at extracting structural information from unseen images, producing structure-detailed monocular depth.
☆ Beyond Cropped Regions: New Benchmark and Corresponding Baseline for Chinese Scene Text Retrieval in Diverse Layouts
Chinese scene text retrieval is a practical task that aims to search for images containing visual instances of a Chinese query text. This task is extremely challenging because Chinese text often features complex and diverse layouts in real-world scenes. Current efforts tend to inherit the solution for English scene text retrieval, failing to achieve satisfactory performance. In this paper, we establish a Diversified Layout benchmark for Chinese Street View Text Retrieval (DL-CSVTR), which is specifically designed to evaluate retrieval performance across various text layouts, including vertical, cross-line, and partial alignments. To address the limitations in existing methods, we propose Chinese Scene Text Retrieval CLIP (CSTR-CLIP), a novel model that integrates global visual information with multi-granularity alignment training. CSTR-CLIP applies a two-stage training process to overcome previous limitations, such as the exclusion of visual features outside the text region and reliance on single-granularity alignment, thereby enabling the model to effectively handle diverse text layouts. Experiments on existing benchmark show that CSTR-CLIP outperforms the previous state-of-the-art model by 18.82% accuracy and also provides faster inference speed. Further analysis on DL-CSVTR confirms the superior performance of CSTR-CLIP in handling various text layouts. The dataset and code will be publicly available to facilitate research in Chinese scene text retrieval.
☆ PATS: Proficiency-Aware Temporal Sampling for Multi-View Sports Skill Assessment
Automated sports skill assessment requires capturing fundamental movement patterns that distinguish expert from novice performance, yet current video sampling methods disrupt the temporal continuity essential for proficiency evaluation. To this end, we introduce Proficiency-Aware Temporal Sampling (PATS), a novel sampling strategy that preserves complete fundamental movements within continuous temporal segments for multi-view skill assessment. PATS adaptively segments videos to ensure each analyzed portion contains full execution of critical performance components, repeating this process across multiple segments to maximize information coverage while maintaining temporal coherence. Evaluated on the EgoExo4D benchmark with SkillFormer, PATS surpasses the state-of-the-art accuracy across all viewing configurations (+0.65% to +3.05%) and delivers substantial gains in challenging domains (+26.22% bouldering, +2.39% music, +1.13% basketball). Systematic analysis reveals that PATS successfully adapts to diverse activity characteristics-from high-frequency sampling for dynamic sports to fine-grained segmentation for sequential skills-demonstrating its effectiveness as an adaptive approach to temporal sampling that advances automated skill assessment for real-world applications.
☆ Multi-scale Image Super Resolution with a Single Auto-Regressive Model
In this paper we tackle Image Super Resolution (ISR), using recent advances in Visual Auto-Regressive (VAR) modeling. VAR iteratively estimates the residual in latent space between gradually increasing image scales, a process referred to as next-scale prediction. Thus, the strong priors learned during pre-training align well with the downstream task (ISR). To our knowledge, only VARSR has exploited this synergy so far, showing promising results. However, due to the limitations of existing residual quantizers, VARSR works only at a fixed resolution, i.e. it fails to map intermediate outputs to the corresponding image scales. Additionally, it relies on a 1B transformer architecture (VAR-d24), and leverages a large-scale private dataset to achieve state-of-the-art results. We address these limitations through two novel components: a) a Hierarchical Image Tokenization approach with a multi-scale image tokenizer that progressively represents images at different scales while simultaneously enforcing token overlap across scales, and b) a Direct Preference Optimization (DPO) regularization term that, relying solely on the LR and HR tokenizations, encourages the transformer to produce the latter over the former. To the best of our knowledge, this is the first time a quantizer is trained to force semantically consistent residuals at different scales, and the first time that preference-based optimization is used to train a VAR. Using these two components, our model can denoise the LR image and super-resolve at half and full target upscale factors in a single forward pass. Additionally, we achieve \textit{state-of-the-art results on ISR}, while using a small model (300M params vs ~1B params of VARSR), and without using external training data.
comment: Enrique Sanchez and Isma Hadji equally contributed to this work. Project site https://github.com/saic-fi/ms_sr_var
☆ TextVidBench: A Benchmark for Long Video Scene Text Understanding
Despite recent progress on the short-video Text-Visual Question Answering (ViteVQA) task - largely driven by benchmarks such as M4-ViteVQA - existing datasets still suffer from limited video duration and narrow evaluation scopes, making it difficult to adequately assess the growing capabilities of powerful multimodal large language models (MLLMs). To address these limitations, we introduce TextVidBench, the first benchmark specifically designed for long-video text question answering (>3 minutes). TextVidBench makes three key contributions: 1) Cross-domain long-video coverage: Spanning 9 categories (e.g., news, sports, gaming), with an average video length of 2306 seconds, enabling more realistic evaluation of long-video understanding. 2) A three-stage evaluation framework: "Text Needle-in-Haystack -> Temporal Grounding -> Text Dynamics Captioning". 3) High-quality fine-grained annotations: Containing over 5,000 question-answer pairs with detailed semantic labeling. Furthermore, we propose an efficient paradigm for improving large models through: (i) introducing the IT-Rope mechanism and temporal prompt engineering to enhance temporal perception, (ii) adopting non-uniform positional encoding to better handle long video sequences, and (iii) applying lightweight fine-tuning on video-text data. Extensive experiments on multiple public datasets as well as TextVidBench demonstrate that our new benchmark presents significant challenges to existing models, while our proposed method offers valuable insights into improving long-video scene text understanding capabilities.
Bringing SAM to new heights: Leveraging elevation data for tree crown segmentation from drone imagery
Information on trees at the individual level is crucial for monitoring forest ecosystems and planning forest management. Current monitoring methods involve ground measurements, requiring extensive cost, time and labor. Advances in drone remote sensing and computer vision offer great potential for mapping individual trees from aerial imagery at broad-scale. Large pre-trained vision models, such as the Segment Anything Model (SAM), represent a particularly compelling choice given limited labeled data. In this work, we compare methods leveraging SAM for the task of automatic tree crown instance segmentation in high resolution drone imagery in three use cases: 1) boreal plantations, 2) temperate forests and 3) tropical forests. We also study the integration of elevation data into models, in the form of Digital Surface Model (DSM) information, which can readily be obtained at no additional cost from RGB drone imagery. We present BalSAM, a model leveraging SAM and DSM information, which shows potential over other methods, particularly in the context of plantations. We find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts. However, efficiently tuning SAM end-to-end and integrating DSM information are both promising avenues for tree crown instance segmentation models.
☆ FEAT: Full-Dimensional Efficient Attention Transformer for Medical Video Generation MICCAI 2025
Synthesizing high-quality dynamic medical videos remains a significant challenge due to the need for modeling both spatial consistency and temporal dynamics. Existing Transformer-based approaches face critical limitations, including insufficient channel interactions, high computational complexity from self-attention, and coarse denoising guidance from timestep embeddings when handling varying noise levels. In this work, we propose FEAT, a full-dimensional efficient attention Transformer, which addresses these issues through three key innovations: (1) a unified paradigm with sequential spatial-temporal-channel attention mechanisms to capture global dependencies across all dimensions, (2) a linear-complexity design for attention mechanisms in each dimension, utilizing weighted key-value attention and global channel attention, and (3) a residual value guidance module that provides fine-grained pixel-level guidance to adapt to different noise levels. We evaluate FEAT on standard benchmarks and downstream tasks, demonstrating that FEAT-S, with only 23\% of the parameters of the state-of-the-art model Endora, achieves comparable or even superior performance. Furthermore, FEAT-L surpasses all comparison methods across multiple datasets, showcasing both superior effectiveness and scalability. Code is available at https://github.com/Yaziwel/FEAT.
comment: This paper has been early accepted by MICCAI 2025
☆ APVR: Hour-Level Long Video Understanding with Adaptive Pivot Visual Information Retrieval
Current video-based multimodal large language models struggle with hour-level video understanding due to computational constraints and inefficient information extraction from extensive temporal sequences. We propose APVR (Adaptive Pivot Visual information Retrieval), a training-free framework that addresses the memory wall limitation through hierarchical visual information retrieval. APVR operates via two complementary components: Pivot Frame Retrieval employs semantic expansion and multi-modal confidence scoring to identify semantically relevant video frames, while Pivot Token Retrieval performs query-aware attention-driven token selection within the pivot frames. This dual granularity approach enables processing of hour-long videos while maintaining semantic fidelity. Experimental validation on LongVideoBench and VideoMME demonstrates significant performance improvements, establishing state-of-the-art results for not only training-free but also training-based approaches while providing plug-and-play integration capability with existing MLLM architectures.
☆ Robustness as Architecture: Designing IQA Models to Withstand Adversarial Perturbations
Image Quality Assessment (IQA) models are increasingly relied upon to evaluate image quality in real-world systems -- from compression and enhancement to generation and streaming. Yet their adoption brings a fundamental risk: these models are inherently unstable. Adversarial manipulations can easily fool them, inflating scores and undermining trust. Traditionally, such vulnerabilities are addressed through data-driven defenses -- adversarial retraining, regularization, or input purification. But what if this is the wrong lens? What if robustness in perceptual models is not something to learn but something to design? In this work, we propose a provocative idea: robustness as an architectural prior. Rather than training models to resist perturbations, we reshape their internal structure to suppress sensitivity from the ground up. We achieve this by enforcing orthogonal information flow, constraining the network to norm-preserving operations -- and further stabilizing the system through pruning and fine-tuning. The result is a robust IQA architecture that withstands adversarial attacks without requiring adversarial training or significant changes to the original model. This approach suggests a shift in perspective: from optimizing robustness through data to engineering it through design.
☆ Time-Lapse Video-Based Embryo Grading via Complementary Spatial-Temporal Pattern Mining
Artificial intelligence has recently shown promise in automated embryo selection for In-Vitro Fertilization (IVF). However, current approaches either address partial embryo evaluation lacking holistic quality assessment or target clinical outcomes inevitably confounded by extra-embryonic factors, both limiting clinical utility. To bridge this gap, we propose a new task called Video-Based Embryo Grading - the first paradigm that directly utilizes full-length time-lapse monitoring (TLM) videos to predict embryologists' overall quality assessments. To support this task, we curate a real-world clinical dataset comprising over 2,500 TLM videos, each annotated with a grading label indicating the overall quality of embryos. Grounded in clinical decision-making principles, we propose a Complementary Spatial-Temporal Pattern Mining (CoSTeM) framework that conceptually replicates embryologists' evaluation process. The CoSTeM comprises two branches: (1) a morphological branch using a Mixture of Cross-Attentive Experts layer and a Temporal Selection Block to select discriminative local structural features, and (2) a morphokinetic branch employing a Temporal Transformer to model global developmental trajectories, synergistically integrating static and dynamic determinants for grading embryos. Extensive experimental results demonstrate the superiority of our design. This work provides a valuable methodological framework for AI-assisted embryo selection. The dataset and source code will be publicly available upon acceptance.
☆ CzechLynx: A Dataset for Individual Identification and Pose Estimation of the Eurasian Lynx
We introduce CzechLynx, the first large-scale, open-access dataset for individual identification, 2D pose estimation, and instance segmentation of the Eurasian lynx (Lynx lynx). CzechLynx includes more than 30k camera trap images annotated with segmentation masks, identity labels, and 20-point skeletons and covers 219 unique individuals across 15 years of systematic monitoring in two geographically distinct regions: Southwest Bohemia and the Western Carpathians. To increase the data variability, we create a complementary synthetic set with more than 100k photorealistic images generated via a Unity-based pipeline and diffusion-driven text-to-texture modeling, covering diverse environments, poses, and coat-pattern variations. To allow testing generalization across spatial and temporal domains, we define three tailored evaluation protocols/splits: (i) geo-aware, (ii) time-aware open-set, and (iii) time-aware closed-set. This dataset is targeted to be instrumental in benchmarking state-of-the-art models and the development of novel methods for not just individual animal re-identification.
☆ Light and 3D: a methodological exploration of digitisation techniques adapted to a selection of objects from the Mus{é}e d'Arch{é}ologie Nationale
The need to digitize heritage objects is now widely accepted. This article presents the very fashionable context of the creation of ''digital twins''. It illustrates the diversity of photographic 3D digitization methods, but this is not its only objective. Using a selection of objects from the collections of the mus{\'e}e d'Arch{\'e}ologie nationale, it shows that no single method is suitable for all cases. Rather, the method to be recommended for a given object should be the result of a concerted choice between those involved in heritage and those involved in the digital domain, as each new object may require the adaptation of existing tools. It would therefore be pointless to attempt an absolute classification of 3D digitization methods. On the contrary, we need to find the digital tool best suited to each object, taking into account not only its characteristics, but also the future use of its digital twin.
comment: in French language
☆ Generating Synthetic Stereo Datasets using 3D Gaussian Splatting and Expert Knowledge Transfer
In this paper, we introduce a 3D Gaussian Splatting (3DGS)-based pipeline for stereo dataset generation, offering an efficient alternative to Neural Radiance Fields (NeRF)-based methods. To obtain useful geometry estimates, we explore utilizing the reconstructed geometry from the explicit 3D representations as well as depth estimates from the FoundationStereo model in an expert knowledge transfer setup. We find that when fine-tuning stereo models on 3DGS-generated datasets, we demonstrate competitive performance in zero-shot generalization benchmarks. When using the reconstructed geometry directly, we observe that it is often noisy and contains artifacts, which propagate noise to the trained model. In contrast, we find that the disparity estimates from FoundationStereo are cleaner and consequently result in a better performance on the zero-shot generalization benchmarks. Our method highlights the potential for low-cost, high-fidelity dataset creation and fast fine-tuning for deep stereo models. Moreover, we also reveal that while the latest Gaussian Splatting based methods have achieved superior performance on established benchmarks, their robustness falls short in challenging in-the-wild settings warranting further exploration.
☆ From Objects to Anywhere: A Holistic Benchmark for Multi-level Visual Grounding in 3D Scenes
3D visual grounding has made notable progress in localizing objects within complex 3D scenes. However, grounding referring expressions beyond objects in 3D scenes remains unexplored. In this paper, we introduce Anywhere3D-Bench, a holistic 3D visual grounding benchmark consisting of 2,632 referring expression-3D bounding box pairs spanning four different grounding levels: human-activity areas, unoccupied space beyond objects, objects in the scene, and fine-grained object parts. We assess a range of state-of-the-art 3D visual grounding methods alongside large language models (LLMs) and multimodal LLMs (MLLMs) on Anywhere3D-Bench. Experimental results reveal that space-level and part-level visual grounding pose the greatest challenges: space-level tasks require a more comprehensive spatial reasoning ability, for example, modeling distances and spatial relations within 3D space, while part-level tasks demand fine-grained perception of object composition. Even the best performance model, OpenAI o4-mini, achieves only 23.57% accuracy on space-level tasks and 33.94% on part-level tasks, significantly lower than its performance on area-level and object-level tasks. These findings underscore a critical gap in current models' capacity to understand and reason about 3D scene beyond object-level semantics.
☆ Learning to Plan via Supervised Contrastive Learning and Strategic Interpolation: A Chess Case Study
Modern chess engines achieve superhuman performance through deep tree search and regressive evaluation, while human players rely on intuition to select candidate moves followed by a shallow search to validate them. To model this intuition-driven planning process, we train a transformer encoder using supervised contrastive learning to embed board states into a latent space structured by positional evaluation. In this space, distance reflects evaluative similarity, and visualized trajectories display interpretable transitions between game states. We demonstrate that move selection can occur entirely within this embedding space by advancing toward favorable regions, without relying on deep search. Despite using only a 6-ply beam search, our model achieves an estimated Elo rating of 2593. Performance improves with both model size and embedding dimensionality, suggesting that latent planning may offer a viable alternative to traditional search. Although we focus on chess, the proposed embedding-based planning method can be generalized to other perfect-information games where state evaluations are learnable. All source code is available at https://github.com/andrewhamara/SOLIS.
☆ Invisible Backdoor Triggers in Image Editing Model via Deep Watermarking
Diffusion models have achieved remarkable progress in both image generation and editing. However, recent studies have revealed their vulnerability to backdoor attacks, in which specific patterns embedded in the input can manipulate the model's behavior. Most existing research in this area has proposed attack frameworks focused on the image generation pipeline, leaving backdoor attacks in image editing relatively unexplored. Among the few studies targeting image editing, most utilize visible triggers, which are impractical because they introduce noticeable alterations to the input image before editing. In this paper, we propose a novel attack framework that embeds invisible triggers into the image editing process via poisoned training data. We leverage off-the-shelf deep watermarking models to encode imperceptible watermarks as backdoor triggers. Our goal is to make the model produce the predefined backdoor target when it receives watermarked inputs, while editing clean images normally according to the given prompt. With extensive experiments across different watermarking models, the proposed method achieves promising attack success rates. In addition, the analysis results of the watermark characteristics in term of backdoor attack further support the effectiveness of our approach. The code is available at:https://github.com/aiiu-lab/BackdoorImageEditing
☆ Geological Field Restoration through the Lens of Image Inpainting
We present a new viewpoint on a reconstructing multidimensional geological fields from sparse observations. Drawing inspiration from deterministic image inpainting techniques, we model a partially observed spatial field as a multidimensional tensor and recover missing values by enforcing a global low-rank structure. Our approach combines ideas from tensor completion and geostatistics, providing a robust optimization framework. Experiments on synthetic geological fields demonstrate that used tensor completion method significant improvements in reconstruction accuracy over ordinary kriging for various percent of observed data.
☆ MineInsight: A Multi-sensor Dataset for Humanitarian Demining Robotics in Off-Road Environments
The use of robotics in humanitarian demining increasingly involves computer vision techniques to improve landmine detection capabilities. However, in the absence of diverse and realistic datasets, the reliable validation of algorithms remains a challenge for the research community. In this paper, we introduce MineInsight, a publicly available multi-sensor, multi-spectral dataset designed for off-road landmine detection. The dataset features 35 different targets (15 landmines and 20 commonly found objects) distributed along three distinct tracks, providing a diverse and realistic testing environment. MineInsight is, to the best of our knowledge, the first dataset to integrate dual-view sensor scans from both an Unmanned Ground Vehicle and its robotic arm, offering multiple viewpoints to mitigate occlusions and improve spatial awareness. It features two LiDARs, as well as images captured at diverse spectral ranges, including visible (RGB, monochrome), visible short-wave infrared (VIS-SWIR), and long-wave infrared (LWIR). Additionally, the dataset comes with an estimation of the location of the targets, offering a benchmark for evaluating detection algorithms. We recorded approximately one hour of data in both daylight and nighttime conditions, resulting in around 38,000 RGB frames, 53,000 VIS-SWIR frames, and 108,000 LWIR frames. MineInsight serves as a benchmark for developing and evaluating landmine detection algorithms. Our dataset is available at https://github.com/mariomlz99/MineInsight.
comment: This work has been submitted to the IEEE for possible publication
☆ OpenMaskDINO3D : Reasoning 3D Segmentation via Large Language Model
Although perception systems have made remarkable advancements in recent years, particularly in 2D reasoning segmentation, these systems still rely on explicit human instruction or pre-defined categories to identify target objects before executing visual recognition tasks. Such systems have matured significantly, demonstrating the ability to reason and comprehend implicit user intentions in two-dimensional contexts, producing accurate segmentation masks based on complex and implicit query text. However, a comparable framework and structure for 3D reasoning segmentation remain absent. This paper introduces OpenMaskDINO3D, a LLM designed for comprehensive 3D understanding and segmentation. OpenMaskDINO3D processes point cloud data and text prompts to produce instance segmentation masks, excelling in many 3D tasks. By introducing a SEG token and object identifier, we achieve high-precision 3D segmentation mask generation, enabling the model to directly produce accurate point cloud segmentation results from natural language instructions. Experimental results on large-scale ScanNet datasets validate the effectiveness of our OpenMaskDINO3D across various tasks.
comment: Project Page: https://github.com/Zhangkuns/OpenMaskDINO3D
☆ DualX-VSR: Dual Axial Spatial$\times$Temporal Transformer for Real-World Video Super-Resolution without Motion Compensation
Transformer-based models like ViViT and TimeSformer have advanced video understanding by effectively modeling spatiotemporal dependencies. Recent video generation models, such as Sora and Vidu, further highlight the power of transformers in long-range feature extraction and holistic spatiotemporal modeling. However, directly applying these models to real-world video super-resolution (VSR) is challenging, as VSR demands pixel-level precision, which can be compromised by tokenization and sequential attention mechanisms. While recent transformer-based VSR models attempt to address these issues using smaller patches and local attention, they still face limitations such as restricted receptive fields and dependence on optical flow-based alignment, which can introduce inaccuracies in real-world settings. To overcome these issues, we propose Dual Axial Spatial$\times$Temporal Transformer for Real-World Video Super-Resolution (DualX-VSR), which introduces a novel dual axial spatial$\times$temporal attention mechanism that integrates spatial and temporal information along orthogonal directions. DualX-VSR eliminates the need for motion compensation, offering a simplified structure that provides a cohesive representation of spatiotemporal information. As a result, DualX-VSR achieves high fidelity and superior performance in real-world VSR task.
comment: 15 pages, 9 figures
☆ Fool the Stoplight: Realistic Adversarial Patch Attacks on Traffic Light Detectors
Realistic adversarial attacks on various camera-based perception tasks of autonomous vehicles have been successfully demonstrated so far. However, only a few works considered attacks on traffic light detectors. This work shows how CNNs for traffic light detection can be attacked with printed patches. We propose a threat model, where each instance of a traffic light is attacked with a patch placed under it, and describe a training strategy. We demonstrate successful adversarial patch attacks in universal settings. Our experiments show realistic targeted red-to-green label-flipping attacks and attacks on pictogram classification. Finally, we perform a real-world evaluation with printed patches and demonstrate attacks in the lab settings with a mobile traffic light for construction sites and in a test area with stationary traffic lights. Our code is available at https://github.com/KASTEL-MobilityLab/attacks-on-traffic-light-detection.
comment: Accepted for publication at IV 2025
☆ Spike-TBR: a Noise Resilient Neuromorphic Event Representation
Event cameras offer significant advantages over traditional frame-based sensors, including higher temporal resolution, lower latency and dynamic range. However, efficiently converting event streams into formats compatible with standard computer vision pipelines remains a challenging problem, particularly in the presence of noise. In this paper, we propose Spike-TBR, a novel event-based encoding strategy based on Temporal Binary Representation (TBR), addressing its vulnerability to noise by integrating spiking neurons. Spike-TBR combines the frame-based advantages of TBR with the noise-filtering capabilities of spiking neural networks, creating a more robust representation of event streams. We evaluate four variants of Spike-TBR, each using different spiking neurons, across multiple datasets, demonstrating superior performance in noise-affected scenarios while improving the results on clean data. Our method bridges the gap between spike-based and frame-based processing, offering a simple noise-resilient solution for event-driven vision applications.
☆ MegaHan97K: A Large-Scale Dataset for Mega-Category Chinese Character Recognition with over 97K Categories
Foundational to the Chinese language and culture, Chinese characters encompass extraordinarily extensive and ever-expanding categories, with the latest Chinese GB18030-2022 standard containing 87,887 categories. The accurate recognition of this vast number of characters, termed mega-category recognition, presents a formidable yet crucial challenge for cultural heritage preservation and digital applications. Despite significant advances in Optical Character Recognition (OCR), mega-category recognition remains unexplored due to the absence of comprehensive datasets, with the largest existing dataset containing merely 16,151 categories. To bridge this critical gap, we introduce MegaHan97K, a mega-category, large-scale dataset covering an unprecedented 97,455 categories of Chinese characters. Our work offers three major contributions: (1) MegaHan97K is the first dataset to fully support the latest GB18030-2022 standard, providing at least six times more categories than existing datasets; (2) It effectively addresses the long-tail distribution problem by providing balanced samples across all categories through its three distinct subsets: handwritten, historical and synthetic subsets; (3) Comprehensive benchmarking experiments reveal new challenges in mega-category scenarios, including increased storage demands, morphologically similar character recognition, and zero-shot learning difficulties, while also unlocking substantial opportunities for future research. To the best of our knowledge, the MetaHan97K is likely the dataset with the largest classes not only in the field of OCR but may also in the broader domain of pattern recognition. The dataset is available at https://github.com/SCUT-DLVCLab/MegaHan97K.
☆ SupeRANSAC: One RANSAC to Rule Them All
Robust estimation is a cornerstone in computer vision, particularly for tasks like Structure-from-Motion and Simultaneous Localization and Mapping. RANSAC and its variants are the gold standard for estimating geometric models (e.g., homographies, relative/absolute poses) from outlier-contaminated data. Despite RANSAC's apparent simplicity, achieving consistently high performance across different problems is challenging. While recent research often focuses on improving specific RANSAC components (e.g., sampling, scoring), overall performance is frequently more influenced by the "bells and whistles" (i.e., the implementation details and problem-specific optimizations) within a given library. Popular frameworks like OpenCV and PoseLib demonstrate varying performance, excelling in some tasks but lagging in others. We introduce SupeRANSAC, a novel unified RANSAC pipeline, and provide a detailed analysis of the techniques that make RANSAC effective for specific vision tasks, including homography, fundamental/essential matrix, and absolute/rigid pose estimation. SupeRANSAC is designed for consistent accuracy across these tasks, improving upon the best existing methods by, for example, 6 AUC points on average for fundamental matrix estimation. We demonstrate significant performance improvements over the state-of-the-art on multiple problems and datasets. Code: https://github.com/danini/superansac
☆ LotusFilter: Fast Diverse Nearest Neighbor Search via a Learned Cutoff Table CVPR 2025
Approximate nearest neighbor search (ANNS) is an essential building block for applications like RAG but can sometimes yield results that are overly similar to each other. In certain scenarios, search results should be similar to the query and yet diverse. We propose LotusFilter, a post-processing module to diversify ANNS results. We precompute a cutoff table summarizing vectors that are close to each other. During the filtering, LotusFilter greedily looks up the table to delete redundant vectors from the candidates. We demonstrated that the LotusFilter operates fast (0.02 [ms/query]) in settings resembling real-world RAG applications, utilizing features such as OpenAI embeddings. Our code is publicly available at https://github.com/matsui528/lotf.
comment: CVPR 2025. GitHub: https://github.com/matsui528/lotf
Object-X: Learning to Reconstruct Multi-Modal 3D Object Representations
Learning effective multi-modal 3D representations of objects is essential for numerous applications, such as augmented reality and robotics. Existing methods often rely on task-specific embeddings that are tailored either for semantic understanding or geometric reconstruction. As a result, these embeddings typically cannot be decoded into explicit geometry and simultaneously reused across tasks. In this paper, we propose Object-X, a versatile multi-modal object representation framework capable of encoding rich object embeddings (e.g. images, point cloud, text) and decoding them back into detailed geometric and visual reconstructions. Object-X operates by geometrically grounding the captured modalities in a 3D voxel grid and learning an unstructured embedding fusing the information from the voxels with the object attributes. The learned embedding enables 3D Gaussian Splatting-based object reconstruction, while also supporting a range of downstream tasks, including scene alignment, single-image 3D object reconstruction, and localization. Evaluations on two challenging real-world datasets demonstrate that Object-X produces high-fidelity novel-view synthesis comparable to standard 3D Gaussian Splatting, while significantly improving geometric accuracy. Moreover, Object-X achieves competitive performance with specialized methods in scene alignment and localization. Critically, our object-centric descriptors require 3-4 orders of magnitude less storage compared to traditional image- or point cloud-based approaches, establishing Object-X as a scalable and highly practical solution for multi-modal 3D scene representation.
☆ Deep learning image burst stacking to reconstruct high-resolution ground-based solar observations
Large aperture ground based solar telescopes allow the solar atmosphere to be resolved in unprecedented detail. However, observations are limited by Earths turbulent atmosphere, requiring post image corrections. Current reconstruction methods using short exposure bursts face challenges with strong turbulence and high computational costs. We introduce a deep learning approach that reconstructs 100 short exposure images into one high quality image in real time. Using unpaired image to image translation, our model is trained on degraded bursts with speckle reconstructions as references, improving robustness and generalization. Our method shows an improved robustness in terms of perceptual quality, especially when speckle reconstructions show artifacts. An evaluation with a varying number of images per burst demonstrates that our method makes efficient use of the combined image information and achieves the best reconstructions when provided with the full image burst.
☆ HypeVPR: Exploring Hyperbolic Space for Perspective to Equirectangular Visual Place Recognition
When applying Visual Place Recognition (VPR) to real-world mobile robots and similar applications, perspective-to-equirectangular (P2E) formulation naturally emerges as a suitable approach to accommodate diverse query images captured from various viewpoints. In this paper, we introduce HypeVPR, a novel hierarchical embedding framework in hyperbolic space, designed to address the unique challenges of P2E VPR. The key idea behind HypeVPR is that visual environments captured by panoramic views exhibit inherent hierarchical structures. To leverage this property, we employ hyperbolic space to represent hierarchical feature relationships and preserve distance properties within the feature space. To achieve this, we propose a hierarchical feature aggregation mechanism that organizes local-to-global feature representations within hyperbolic space. Additionally, HypeVPR adopts an efficient coarse-to-fine search strategy, optimally balancing speed and accuracy to ensure robust matching, even between descriptors from different image types. This approach enables HypeVPR to outperform state-of-the-art methods while significantly reducing retrieval time, achieving up to 5x faster retrieval across diverse benchmark datasets. The code and models will be released at https://github.com/suhan-woo/HypeVPR.git.
☆ Toward Better SSIM Loss for Unsupervised Monocular Depth Estimation
Unsupervised monocular depth learning generally relies on the photometric relation among temporally adjacent images. Most of previous works use both mean absolute error (MAE) and structure similarity index measure (SSIM) with conventional form as training loss. However, they ignore the effect of different components in the SSIM function and the corresponding hyperparameters on the training. To address these issues, this work proposes a new form of SSIM. Compared with original SSIM function, the proposed new form uses addition rather than multiplication to combine the luminance, contrast, and structural similarity related components in SSIM. The loss function constructed with this scheme helps result in smoother gradients and achieve higher performance on unsupervised depth estimation. We conduct extensive experiments to determine the relatively optimal combination of parameters for our new SSIM. Based on the popular MonoDepth approach, the optimized SSIM loss function can remarkably outperform the baseline on the KITTI-2015 outdoor dataset.
comment: 12 pages,4 figures
☆ Ontology-based knowledge representation for bone disease diagnosis: a foundation for safe and sustainable medical artificial intelligence systems
Medical artificial intelligence (AI) systems frequently lack systematic domain expertise integration, potentially compromising diagnostic reliability. This study presents an ontology-based framework for bone disease diagnosis, developed in collaboration with Ho Chi Minh City Hospital for Traumatology and Orthopedics. The framework introduces three theoretical contributions: (1) a hierarchical neural network architecture guided by bone disease ontology for segmentation-classification tasks, incorporating Visual Language Models (VLMs) through prompts, (2) an ontology-enhanced Visual Question Answering (VQA) system for clinical reasoning, and (3) a multimodal deep learning model that integrates imaging, clinical, and laboratory data through ontological relationships. The methodology maintains clinical interpretability through systematic knowledge digitization, standardized medical terminology mapping, and modular architecture design. The framework demonstrates potential for extension beyond bone diseases through its standardized structure and reusable components. While theoretical foundations are established, experimental validation remains pending due to current dataset and computational resource limitations. Future work will focus on expanding the clinical dataset and conducting comprehensive system validation.
☆ Truth in the Few: High-Value Data Selection for Efficient Multi-Modal Reasoning
While multi-modal large language models (MLLMs) have made significant progress in complex reasoning tasks via reinforcement learning, it is commonly believed that extensive training data is necessary for improving multi-modal reasoning ability, inevitably leading to data redundancy and substantial computational costs. However, can smaller high-value datasets match or outperform full corpora for multi-modal reasoning in MLLMs? In this work, we challenge this assumption through a key observation: meaningful multi-modal reasoning is triggered by only a sparse subset of training samples, termed cognitive samples, whereas the majority contribute marginally. Building on this insight, we propose a novel data selection paradigm termed Reasoning Activation Potential (RAP), which identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning by two complementary estimators: 1) Causal Discrepancy Estimator (CDE) based on the potential outcome model principle, eliminates samples that overly rely on language priors by comparing outputs between multi-modal and text-only inputs; 2) Attention Confidence Estimator (ACE), which exploits token-level self-attention to discard samples dominated by irrelevant but over-emphasized tokens in intermediate reasoning stages. Moreover, we introduce a Difficulty-aware Replacement Module (DRM) to substitute trivial instances with cognitively challenging ones, thereby ensuring complexity for robust multi-modal reasoning. Experiments on six datasets show that our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%. Our code is available at https://github.com/Leo-ssl/RAP.
☆ Physics Informed Capsule Enhanced Variational AutoEncoder for Underwater Image Enhancement
We present a novel dual-stream architecture that achieves state-of-the-art underwater image enhancement by explicitly integrating the Jaffe-McGlamery physical model with capsule clustering-based feature representation learning. Our method simultaneously estimates transmission maps and spatially-varying background light through a dedicated physics estimator while extracting entity-level features via capsule clustering in a parallel stream. This physics-guided approach enables parameter-free enhancement that respects underwater formation constraints while preserving semantic structures and fine-grained details. Our approach also features a novel optimization objective ensuring both physical adherence and perceptual quality across multiple spatial frequencies. To validate our approach, we conducted extensive experiments across six challenging benchmarks. Results demonstrate consistent improvements of $+0.5$dB PSNR over the best existing methods while requiring only one-third of their computational complexity (FLOPs), or alternatively, more than $+1$dB PSNR improvement when compared to methods with similar computational budgets. Code and data \textit{will} be available at https://github.com/iN1k1/.
☆ SRD: Reinforcement-Learned Semantic Perturbation for Backdoor Defense in VLMs
Vision-Language Models (VLMs) have achieved remarkable performance in image captioning, but recent studies show they are vulnerable to backdoor attacks. Attackers can inject imperceptible perturbations-such as local pixel triggers or global semantic phrases-into the training data, causing the model to generate malicious, attacker-controlled captions for specific inputs. These attacks are hard to detect and defend due to their stealthiness and cross-modal nature. By analyzing attack samples, we identify two key vulnerabilities: (1) abnormal attention concentration on specific image regions, and (2) semantic drift and incoherence in generated captions. To counter this, we propose Semantic Reward Defense (SRD), a reinforcement learning framework that mitigates backdoor behavior without prior knowledge of triggers. SRD uses a Deep Q-Network to learn policies for applying discrete perturbations (e.g., occlusion, color masking) to sensitive image regions, aiming to disrupt the activation of malicious pathways. We design a semantic fidelity score as the reward signal, which jointly evaluates semantic consistency and linguistic fluency of the output, guiding the agent toward generating robust yet faithful captions. Experiments across mainstream VLMs and datasets show SRD reduces attack success rates to 5.6%, while preserving caption quality on clean inputs with less than 10% performance drop. SRD offers a trigger-agnostic, interpretable defense paradigm against stealthy backdoor threats in multimodal generative models.
☆ Bridging Annotation Gaps: Transferring Labels to Align Object Detection Datasets
Combining multiple object detection datasets offers a path to improved generalisation but is hindered by inconsistencies in class semantics and bounding box annotations. Some methods to address this assume shared label taxonomies and address only spatial inconsistencies; others require manual relabelling, or produce a unified label space, which may be unsuitable when a fixed target label space is required. We propose Label-Aligned Transfer (LAT), a label transfer framework that systematically projects annotations from diverse source datasets into the label space of a target dataset. LAT begins by training dataset-specific detectors to generate pseudo-labels, which are then combined with ground-truth annotations via a Privileged Proposal Generator (PPG) that replaces the region proposal network in two-stage detectors. To further refine region features, a Semantic Feature Fusion (SFF) module injects class-aware context and features from overlapping proposals using a confidence-weighted attention mechanism. This pipeline preserves dataset-specific annotation granularity while enabling many-to-one label space transfer across heterogeneous datasets, resulting in a semantically and spatially aligned representation suitable for training a downstream detector. LAT thus jointly addresses both class-level misalignments and bounding box inconsistencies without relying on shared label spaces or manual annotations. Across multiple benchmarks, LAT demonstrates consistent improvements in target-domain detection performance, achieving gains of up to +4.8AP over semi-supervised baselines.
☆ Using In-Context Learning for Automatic Defect Labelling of Display Manufacturing Data
This paper presents an AI-assisted auto-labeling system for display panel defect detection that leverages in-context learning capabilities. We adopt and enhance the SegGPT architecture with several domain-specific training techniques and introduce a scribble-based annotation mechanism to streamline the labeling process. Our two-stage training approach, validated on industrial display panel datasets, demonstrates significant improvements over the baseline model, achieving an average IoU increase of 0.22 and a 14% improvement in recall across multiple product types, while maintaining approximately 60% auto-labeling coverage. Experimental results show that models trained on our auto-labeled data match the performance of those trained on human-labeled data, offering a practical solution for reducing manual annotation efforts in industrial inspection systems.
☆ Learning dissection trajectories from expert surgical videos via imitation learning with equivariant diffusion
Endoscopic Submucosal Dissection (ESD) is a well-established technique for removing epithelial lesions. Predicting dissection trajectories in ESD videos offers significant potential for enhancing surgical skill training and simplifying the learning process, yet this area remains underexplored. While imitation learning has shown promise in acquiring skills from expert demonstrations, challenges persist in handling uncertain future movements, learning geometric symmetries, and generalizing to diverse surgical scenarios. To address these, we introduce a novel approach: Implicit Diffusion Policy with Equivariant Representations for Imitation Learning (iDPOE). Our method models expert behavior through a joint state action distribution, capturing the stochastic nature of dissection trajectories and enabling robust visual representation learning across various endoscopic views. By incorporating a diffusion model into policy learning, iDPOE ensures efficient training and sampling, leading to more accurate predictions and better generalization. Additionally, we enhance the model's ability to generalize to geometric symmetries by embedding equivariance into the learning process. To address state mismatches, we develop a forward-process guided action inference strategy for conditional sampling. Using an ESD video dataset of nearly 2000 clips, experimental results show that our approach surpasses state-of-the-art methods, both explicit and implicit, in trajectory prediction. To the best of our knowledge, this is the first application of imitation learning to surgical skill development for dissection trajectory prediction.
☆ Towards Holistic Visual Quality Assessment of AI-Generated Videos: A LLM-Based Multi-Dimensional Evaluation Model
The development of AI-Generated Video (AIGV) technology has been remarkable in recent years, significantly transforming the paradigm of video content production. However, AIGVs still suffer from noticeable visual quality defects, such as noise, blurriness, frame jitter and low dynamic degree, which severely impact the user's viewing experience. Therefore, an effective automatic visual quality assessment is of great importance for AIGV content regulation and generative model improvement. In this work, we decompose the visual quality of AIGVs into three dimensions: technical quality, motion quality, and video semantics. For each dimension, we design corresponding encoder to achieve effective feature representation. Moreover, considering the outstanding performance of large language models (LLMs) in various vision and language tasks, we introduce a LLM as the quality regression module. To better enable the LLM to establish reasoning associations between multi-dimensional features and visual quality, we propose a specially designed multi-modal prompt engineering framework. Additionally, we incorporate LoRA fine-tuning technology during the training phase, allowing the LLM to better adapt to specific tasks. Our proposed method achieved \textbf{second place} in the NTIRE 2025 Quality Assessment of AI-Generated Content Challenge: Track 2 AI Generated video, demonstrating its effectiveness. Codes can be obtained at https://github.com/QiZelu/AIGVEval.
☆ Robust Few-Shot Vision-Language Model Adaptation
Pretrained VLMs achieve strong performance on downstream tasks when adapted with just a few labeled examples. As the adapted models inevitably encounter out-of-distribution (OOD) test data that deviates from the in-distribution (ID) task-specific training data, enhancing OOD generalization in few-shot adaptation is critically important. We study robust few-shot VLM adaptation, aiming to increase both ID and OOD accuracy. By comparing different adaptation methods (e.g., prompt tuning, linear probing, contrastive finetuning, and full finetuning), we uncover three key findings: (1) finetuning with proper hyperparameters significantly outperforms the popular VLM adaptation methods prompt tuning and linear probing; (2) visual encoder-only finetuning achieves better efficiency and accuracy than contrastively finetuning both visual and textual encoders; (3) finetuning the top layers of the visual encoder provides the best balance between ID and OOD accuracy. Building on these findings, we propose partial finetuning of the visual encoder empowered with two simple augmentation techniques: (1) retrieval augmentation which retrieves task-relevant data from the VLM's pretraining dataset to enhance adaptation, and (2) adversarial perturbation which promotes robustness during finetuning. Results show that the former/latter boosts OOD/ID accuracy while slightly sacrificing the ID/OOD accuracy. Yet, perhaps understandably, naively combining the two does not maintain their best OOD/ID accuracy. We address this dilemma with the developed SRAPF, Stage-wise Retrieval Augmentation-based Adversarial Partial Finetuning. SRAPF consists of two stages: (1) partial finetuning the visual encoder using both ID and retrieved data, and (2) adversarial partial finetuning with few-shot ID data. Extensive experiments demonstrate that SRAPF achieves the state-of-the-art ID and OOD accuracy on the ImageNet OOD benchmarks.
comment: Project website: https://hannawang09.github.io/projects/srapf/
☆ Line of Sight: On Linear Representations in VLLMs
Language models can be equipped with multimodal capabilities by fine-tuning on embeddings of visual inputs. But how do such multimodal models represent images in their hidden activations? We explore representations of image concepts within LlaVA-Next, a popular open-source VLLM. We find a diverse set of ImageNet classes represented via linearly decodable features in the residual stream. We show that the features are causal by performing targeted edits on the model output. In order to increase the diversity of the studied linear features, we train multimodal Sparse Autoencoders (SAEs), creating a highly interpretable dictionary of text and image features. We find that although model representations across modalities are quite disjoint, they become increasingly shared in deeper layers.
comment: 8 pages, 9 figures
☆ HoliSafe: Holistic Safety Benchmarking and Modeling with Safety Meta Token for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, HoliSafe, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation. We further propose SafeLLaVA, a novel VLM augmented with a learnable safety meta token and a dedicated safety head. The meta token encodes harmful visual cues during training, intrinsically guiding the language model toward safer responses, while the safety head offers interpretable harmfulness classification aligned with refusal rationales. Experiments show that SafeLLaVA, trained on HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe benchmark itself reveals critical vulnerabilities in existing models. We hope that HoliSafe and SafeLLaVA will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
comment: Project page: https://youngwanlee.github.io/holisafe
☆ MMRefine: Unveiling the Obstacles to Robust Refinement in Multimodal Large Language Models ACL
This paper introduces MMRefine, a MultiModal Refinement benchmark designed to evaluate the error refinement capabilities of Multimodal Large Language Models (MLLMs). As the emphasis shifts toward enhancing reasoning during inference, MMRefine provides a framework that evaluates MLLMs' abilities to detect and correct errors across six distinct scenarios beyond just comparing final accuracy before and after refinement. Furthermore, the benchmark analyzes the refinement performance by categorizing errors into six error types. Experiments with various open and closed MLLMs reveal bottlenecks and factors impeding refinement performance, highlighting areas for improvement in effective reasoning enhancement. Our code and dataset are publicly available at https://github.com/naver-ai/MMRefine.
comment: ACL Findings 2025
☆ MARS: Radio Map Super-resolution and Reconstruction Method under Sparse Channel Measurements
Radio maps reflect the spatial distribution of signal strength and are essential for applications like smart cities, IoT, and wireless network planning. However, reconstructing accurate radio maps from sparse measurements remains challenging. Traditional interpolation and inpainting methods lack environmental awareness, while many deep learning approaches depend on detailed scene data, limiting generalization. To address this, we propose MARS, a Multi-scale Aware Radiomap Super-resolution method that combines CNNs and Transformers with multi-scale feature fusion and residual connections. MARS focuses on both global and local feature extraction, enhancing feature representation across different receptive fields and improving reconstruction accuracy. Experiments across different scenes and antenna locations show that MARS outperforms baseline models in both MSE and SSIM, while maintaining low computational cost, demonstrating strong practical potential.
☆ Gen-n-Val: Agentic Image Data Generation and Validation
Recently, Large Language Models (LLMs) and Vision Large Language Models (VLLMs) have demonstrated impressive performance as agents across various tasks while data scarcity and label noise remain significant challenges in computer vision tasks, such as object detection and instance segmentation. A common solution for resolving these issues is to generate synthetic data. However, current synthetic data generation methods struggle with issues, such as multiple objects per mask, inaccurate segmentation, and incorrect category labels, limiting their effectiveness. To address these issues, we introduce Gen-n-Val, a novel agentic data generation framework that leverages Layer Diffusion (LD), LLMs, and VLLMs to produce high-quality, single-object masks and diverse backgrounds. Gen-n-Val consists of two agents: (1) The LD prompt agent, an LLM, optimizes prompts for LD to generate high-quality foreground instance images and segmentation masks. These optimized prompts ensure the generation of single-object synthetic data with precise instance masks and clean backgrounds. (2) The data validation agent, a VLLM, which filters out low-quality synthetic instance images. The system prompts for both agents are refined through TextGrad. Additionally, we use image harmonization to combine multiple instances within scenes. Compared to state-of-the-art synthetic data approaches like MosaicFusion, our approach reduces invalid synthetic data from 50% to 7% and improves performance by 1% mAP on rare classes in COCO instance segmentation with YOLOv9c and YOLO11m. Furthermore, Gen-n-Val shows significant improvements (7. 1% mAP) over YOLO-Worldv2-M in open-vocabulary object detection benchmarks with YOLO11m. Moreover, Gen-n-Val improves the performance of YOLOv9 and YOLO11 families in instance segmentation and object detection.
☆ Interpretable Few-Shot Image Classification via Prototypical Concept-Guided Mixture of LoRA Experts
Self-Explainable Models (SEMs) rely on Prototypical Concept Learning (PCL) to enable their visual recognition processes more interpretable, but they often struggle in data-scarce settings where insufficient training samples lead to suboptimal performance.To address this limitation, we propose a Few-Shot Prototypical Concept Classification (FSPCC) framework that systematically mitigates two key challenges under low-data regimes: parametric imbalance and representation misalignment. Specifically, our approach leverages a Mixture of LoRA Experts (MoLE) for parameter-efficient adaptation, ensuring a balanced allocation of trainable parameters between the backbone and the PCL module.Meanwhile, cross-module concept guidance enforces tight alignment between the backbone's feature representations and the prototypical concept activation patterns.In addition, we incorporate a multi-level feature preservation strategy that fuses spatial and semantic cues across various layers, thereby enriching the learned representations and mitigating the challenges posed by limited data availability.Finally, to enhance interpretability and minimize concept overlap, we introduce a geometry-aware concept discrimination loss that enforces orthogonality among concepts, encouraging more disentangled and transparent decision boundaries.Experimental results on six popular benchmarks (CUB-200-2011, mini-ImageNet, CIFAR-FS, Stanford Cars, FGVC-Aircraft, and DTD) demonstrate that our approach consistently outperforms existing SEMs by a notable margin, with 4.2%-8.7% relative gains in 5-way 5-shot classification.These findings highlight the efficacy of coupling concept learning with few-shot adaptation to achieve both higher accuracy and clearer model interpretability, paving the way for more transparent visual recognition systems.
comment: 13 pages,5 figures
☆ Feature-Based Lie Group Transformer for Real-World Applications
The main goal of representation learning is to acquire meaningful representations from real-world sensory inputs without supervision. Representation learning explains some aspects of human development. Various neural network (NN) models have been proposed that acquire empirically good representations. However, the formulation of a good representation has not been established. We recently proposed a method for categorizing changes between a pair of sensory inputs. A unique feature of this approach is that transformations between two sensory inputs are learned to satisfy algebraic structural constraints. Conventional representation learning often assumes that disentangled independent feature axes is a good representation; however, we found that such a representation cannot account for conditional independence. To overcome this problem, we proposed a new method using group decomposition in Galois algebra theory. Although this method is promising for defining a more general representation, it assumes pixel-to-pixel translation without feature extraction, and can only process low-resolution images with no background, which prevents real-world application. In this study, we provide a simple method to apply our group decomposition theory to a more realistic scenario by combining feature extraction and object segmentation. We replace pixel translation with feature translation and formulate object segmentation as grouping features under the same transformation. We validated the proposed method on a practical dataset containing both real-world object and background. We believe that our model will lead to a better understanding of human development of object recognition in the real world.
☆ A Fast Unsupervised Scheme for Polygonal Approximation
This paper proposes a fast and unsupervised scheme for a polygonal approximation of a closed digital curve. It is demonstrated that the approximation scheme is faster than state-of-the-art approximation and is competitive with the same in Rosin's measure and in its aesthetic aspect. The scheme comprises of three phases: initial segmentation, iterative vertex insertion, and iterative merging, followed by vertex adjustment. The initial segmentation is used to detect sharp turnings - the vertices that seemingly have high curvature. It is likely that some of important vertices with low curvature might have been missed out at the first phase and so iterative vertex insertion is used to add vertices in a region where the curvature changes slowly but steadily. The initial phase may pick up some undesirable vertices and so merging is used to eliminate the redundant vertices. Finally, vertex adjustment is used to facilitate enhancement in the aesthetic look of the approximation. The quality of the approximations is measured using Rosin's measure. The robustness of the proposed scheme with respect to geometric transformation is observed.
♻ ☆ ReasonGen-R1: CoT for Autoregressive Image generation models through SFT and RL
Although chain-of-thought reasoning and reinforcement learning (RL) have driven breakthroughs in NLP, their integration into generative vision models remains underexplored. We introduce ReasonGen-R1, a two-stage framework that first imbues an autoregressive image generator with explicit text-based "thinking" skills via supervised fine-tuning on a newly generated reasoning dataset of written rationales, and then refines its outputs using Group Relative Policy Optimization. To enable the model to reason through text before generating images, We automatically generate and release a corpus of model crafted rationales paired with visual prompts, enabling controlled planning of object layouts, styles, and scene compositions. Our GRPO algorithm uses reward signals from a pretrained vision language model to assess overall visual quality, optimizing the policy in each update. Evaluations on GenEval, DPG, and the T2I benchmark demonstrate that ReasonGen-R1 consistently outperforms strong baselines and prior state-of-the-art models. More: aka.ms/reasongen.
♻ ☆ DEFAME: Dynamic Evidence-based FAct-checking with Multimodal Experts
The proliferation of disinformation demands reliable and scalable fact-checking solutions. We present Dynamic Evidence-based FAct-checking with Multimodal Experts (DEFAME), a modular, zero-shot MLLM pipeline for open-domain, text-image claim verification. DEFAME operates in a six-stage process, dynamically selecting the tools and search depth to extract and evaluate textual and visual evidence. Unlike prior approaches that are text-only, lack explainability, or rely solely on parametric knowledge, DEFAME performs end-to-end verification, accounting for images in claims and evidence while generating structured, multimodal reports. Evaluation on the popular benchmarks VERITE, AVerITeC, and MOCHEG shows that DEFAME surpasses all previous methods, establishing itself as the new state-of-the-art fact-checking system for uni- and multimodal fact-checking. Moreover, we introduce a new multimodal benchmark, ClaimReview2024+, featuring claims after the knowledge cutoff of GPT-4o, avoiding data leakage. Here, DEFAME drastically outperforms the GPT-4o baselines, showing temporal generalizability and the potential for real-time fact-checking.
♻ ☆ Stochastic Poisson Surface Reconstruction with One Solve using Geometric Gaussian Processes
Poisson Surface Reconstruction is a widely-used algorithm for reconstructing a surface from an oriented point cloud. To facilitate applications where only partial surface information is available, or scanning is performed sequentially, a recent line of work proposes to incorporate uncertainty into the reconstructed surface via Gaussian process models. The resulting algorithms first perform Gaussian process interpolation, then solve a set of volumetric partial differential equations globally in space, resulting in a computationally expensive two-stage procedure. In this work, we apply recently-developed techniques from geometric Gaussian processes to combine interpolation and surface reconstruction into a single stage, requiring only one linear solve per sample. The resulting reconstructed surface samples can be queried locally in space, without the use of problem-dependent volumetric meshes or grids. These capabilities enable one to (a) perform probabilistic collision detection locally around the region of interest, (b) perform ray casting without evaluating points not on the ray's trajectory, and (c) perform next-view planning on a per-ray basis. They also do not requiring one to approximate kernel matrix inverses with diagonal matrices as part of intermediate computations, unlike prior methods. Results show that our approach provides a cleaner, more-principled, and more-flexible stochastic surface reconstruction pipeline.
♻ ☆ MAC-Gaze: Motion-Aware Continual Calibration for Mobile Gaze Tracking
Mobile gaze tracking faces a fundamental challenge: maintaining accuracy as users naturally change their postures and device orientations. Traditional calibration approaches, like one-off, fail to adapt to these dynamic conditions, leading to degraded performance over time. We present MAC-Gaze, a Motion-Aware continual Calibration approach that leverages smartphone Inertial measurement unit (IMU) sensors and continual learning techniques to automatically detect changes in user motion states and update the gaze tracking model accordingly. Our system integrates a pre-trained visual gaze estimator and an IMU-based activity recognition model with a clustering-based hybrid decision-making mechanism that triggers recalibration when motion patterns deviate significantly from previously encountered states. To enable accumulative learning of new motion conditions while mitigating catastrophic forgetting, we employ replay-based continual learning, allowing the model to maintain performance across previously encountered motion conditions. We evaluate our system through extensive experiments on the publicly available RGBDGaze dataset and our own 10-hour multimodal MotionGaze dataset (481K+ images, 800K+ IMU readings), encompassing a wide range of postures under various motion conditions including sitting, standing, lying, and walking. Results demonstrate that our method reduces gaze estimation error by 19.9% on RGBDGaze (from 1.73 cm to 1.41 cm) and by 31.7% on MotionGaze (from 2.81 cm to 1.92 cm) compared to traditional calibration approaches. Our framework provides a robust solution for maintaining gaze estimation accuracy in mobile scenarios.
comment: 24 pages, 7 figures
♻ ☆ UniWorld-V1: High-Resolution Semantic Encoders for Unified Visual Understanding and Generation
Although existing unified models achieve strong performance in vision-language understanding and text-to-image generation, they remain limited in addressing image perception and manipulation -- capabilities increasingly demanded in practical applications. Recently, OpenAI introduced the powerful GPT-4o-Image model, which showcases advanced capabilities in comprehensive image perception and manipulation, sparking widespread interest. Through carefully designed experiments, we observe that GPT-4o-Image likely relies on semantic encoders rather than VAEs for feature extraction, despite VAEs being commonly regarded as crucial for image manipulation tasks. Inspired by this insight, we propose UniWorld-V1, a unified generative framework built upon semantic features extracted from powerful multimodal large language models and contrastive semantic encoders. Using only 2.7M training data, UniWorld-V1 achieves impressive performance across diverse tasks, including image understanding, generation, manipulation, and perception. We fully open-source the UniWorld-V1 framework, including model weights, training and evaluation scripts, and datasets to promote reproducibility and further research.
♻ ☆ DREAM: Disentangling Risks to Enhance Safety Alignment in Multimodal Large Language Models NAACL 2025
Multimodal Large Language Models (MLLMs) pose unique safety challenges due to their integration of visual and textual data, thereby introducing new dimensions of potential attacks and complex risk combinations. In this paper, we begin with a detailed analysis aimed at disentangling risks through step-by-step reasoning within multimodal inputs. We find that systematic multimodal risk disentanglement substantially enhances the risk awareness of MLLMs. Via leveraging the strong discriminative abilities of multimodal risk disentanglement, we further introduce \textbf{DREAM} (\textit{\textbf{D}isentangling \textbf{R}isks to \textbf{E}nhance Safety \textbf{A}lignment in \textbf{M}LLMs}), a novel approach that enhances safety alignment in MLLMs through supervised fine-tuning and iterative Reinforcement Learning from AI Feedback (RLAIF). Experimental results show that DREAM significantly boosts safety during both inference and training phases without compromising performance on normal tasks (namely oversafety), achieving a 16.17\% improvement in the SIUO safe\&effective score compared to GPT-4V. The data and code are available at https://github.com/Kizna1ver/DREAM.
comment: [NAACL 2025] The first four authors contribute equally, 23 pages, repo at https://github.com/Kizna1ver/DREAM
SR3D: Unleashing Single-view 3D Reconstruction for Transparent and Specular Object Grasping
Recent advancements in 3D robotic manipulation have improved grasping of everyday objects, but transparent and specular materials remain challenging due to depth sensing limitations. While several 3D reconstruction and depth completion approaches address these challenges, they suffer from setup complexity or limited observation information utilization. To address this, leveraging the power of single view 3D object reconstruction approaches, we propose a training free framework SR3D that enables robotic grasping of transparent and specular objects from a single view observation. Specifically, given single view RGB and depth images, SR3D first uses the external visual models to generate 3D reconstructed object mesh based on RGB image. Then, the key idea is to determine the 3D object's pose and scale to accurately localize the reconstructed object back into its original depth corrupted 3D scene. Therefore, we propose view matching and keypoint matching mechanisms,which leverage both the 2D and 3D's inherent semantic and geometric information in the observation to determine the object's 3D state within the scene, thereby reconstructing an accurate 3D depth map for effective grasp detection. Experiments in both simulation and real world show the reconstruction effectiveness of SR3D.
♻ ☆ BevSplat: Resolving Height Ambiguity via Feature-Based Gaussian Primitives for Weakly-Supervised Cross-View Localization
This paper addresses the problem of weakly supervised cross-view localization, where the goal is to estimate the pose of a ground camera relative to a satellite image with noisy ground truth annotations. A common approach to bridge the cross-view domain gap for pose estimation is Bird's-Eye View (BEV) synthesis. However, existing methods struggle with height ambiguity due to the lack of depth information in ground images and satellite height maps. Previous solutions either assume a flat ground plane or rely on complex models, such as cross-view transformers. We propose BevSplat, a novel method that resolves height ambiguity by using feature-based Gaussian primitives. Each pixel in the ground image is represented by a 3D Gaussian with semantic and spatial features, which are synthesized into a BEV feature map for relative pose estimation. Additionally, to address challenges with panoramic query images, we introduce an icosphere-based supervision strategy for the Gaussian primitives. We validate our method on the widely used KITTI and VIGOR datasets, which include both pinhole and panoramic query images. Experimental results show that BevSplat significantly improves localization accuracy over prior approaches.
♻ ☆ Detection-Driven Object Count Optimization for Text-to-Image Diffusion Models
Accurately controlling object count in text-to-image generation remains a key challenge. Supervised methods often fail, as training data rarely covers all count variations. Methods that manipulate the denoising process to add or remove objects can help; however, they still require labeled data, limit robustness and image quality, and rely on a slow, iterative process. Pre-trained differentiable counting models that rely on soft object density summation exist and could steer generation, but employing them presents three main challenges: (i) they are pre-trained on clean images, making them less effective during denoising steps that operate on noisy inputs; (ii) they are not robust to viewpoint changes; and (iii) optimization is computationally expensive, requiring repeated model evaluations per image. We propose a new framework that uses pre-trained object counting techniques and object detectors to guide generation. First, we optimize a counting token using an outer-loop loss computed on fully generated images. Second, we introduce a detection-driven scaling term that corrects errors caused by viewpoint and proportion shifts, among other factors, without requiring backpropagation through the detection model. Third, we show that the optimized parameters can be reused for new prompts, removing the need for repeated optimization. Our method provides efficiency through token reuse, flexibility via compatibility with various detectors, and accuracy with improved counting across diverse object categories.
comment: Pre-print
♻ ☆ AnyTop: Character Animation Diffusion with Any Topology SIGGRAPH 2025
Generating motion for arbitrary skeletons is a longstanding challenge in computer graphics, remaining largely unexplored due to the scarcity of diverse datasets and the irregular nature of the data. In this work, we introduce AnyTop, a diffusion model that generates motions for diverse characters with distinct motion dynamics, using only their skeletal structure as input. Our work features a transformer-based denoising network, tailored for arbitrary skeleton learning, integrating topology information into the traditional attention mechanism. Additionally, by incorporating textual joint descriptions into the latent feature representation, AnyTop learns semantic correspondences between joints across diverse skeletons. Our evaluation demonstrates that AnyTop generalizes well, even with as few as three training examples per topology, and can produce motions for unseen skeletons as well. Furthermore, our model's latent space is highly informative, enabling downstream tasks such as joint correspondence, temporal segmentation and motion editing. Our webpage, https://anytop2025.github.io/Anytop-page, includes links to videos and code.
comment: SIGGRAPH 2025. Video: https://www.youtube.com/watch?v=NWOdkM5hAbE, Project page: https://anytop2025.github.io/Anytop-page, Code: https://github.com/Anytop2025/Anytop
♻ ☆ Eddeep: Fast eddy-current distortion correction for diffusion MRI with deep learning MICCAI 2024
Modern diffusion MRI sequences commonly acquire a large number of volumes with diffusion sensitization gradients of differing strengths or directions. Such sequences rely on echo-planar imaging (EPI) to achieve reasonable scan duration. However, EPI is vulnerable to off-resonance effects, leading to tissue susceptibility and eddy-current induced distortions. The latter is particularly problematic because it causes misalignment between volumes, disrupting downstream modelling and analysis. The essential correction of eddy distortions is typically done post-acquisition, with image registration. However, this is non-trivial because correspondence between volumes can be severely disrupted due to volume-specific signal attenuations induced by varying directions and strengths of the applied gradients. This challenge has been successfully addressed by the popular FSL~Eddy tool but at considerable computational cost. We propose an alternative approach, leveraging recent advances in image processing enabled by deep learning (DL). It consists of two convolutional neural networks: 1) An image translator to restore correspondence between images; 2) A registration model to align the translated images. Results demonstrate comparable distortion estimates to FSL~Eddy, while requiring only modest training sample sizes. This work, to the best of our knowledge, is the first to tackle this problem with deep learning. Together with recently developed DL-based susceptibility correction techniques, they pave the way for real-time preprocessing of diffusion MRI, facilitating its wider uptake in the clinic.
comment: Accepted in MICCAI 2024 conference (without rebuttal). Github repo: https://github.com/CIG-UCL/eddeep
♻ ☆ OmniCharacter: Towards Immersive Role-Playing Agents with Seamless Speech-Language Personality Interaction
Role-Playing Agents (RPAs), benefiting from large language models, is an emerging interactive AI system that simulates roles or characters with diverse personalities. However, existing methods primarily focus on mimicking dialogues among roles in textual form, neglecting the role's voice traits (e.g., voice style and emotions) as playing a crucial effect in interaction, which tends to be more immersive experiences in realistic scenarios. Towards this goal, we propose OmniCharacter, a first seamless speech-language personality interaction model to achieve immersive RPAs with low latency. Specifically, OmniCharacter enables agents to consistently exhibit role-specific personality traits and vocal traits throughout the interaction, enabling a mixture of speech and language responses. To align the model with speech-language scenarios, we construct a dataset named OmniCharacter-10K, which involves more distinctive characters (20), richly contextualized multi-round dialogue (10K), and dynamic speech response (135K). Experimental results showcase that our method yields better responses in terms of both content and style compared to existing RPAs and mainstream speech-language models, with a response latency as low as 289ms. Code and dataset are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/OmniCharacter.
comment: 14 pages, 6 figures
♻ ☆ VCD: A Dataset for Visual Commonsense Discovery in Images
Visual commonsense plays a vital role in understanding and reasoning about the visual world. While commonsense knowledge bases like ConceptNet provide structured collections of general facts, they lack visually grounded representations. Scene graph datasets like Visual Genome, though rich in object-level descriptions, primarily focus on directly observable information and lack systematic categorization of commonsense knowledge. We present Visual Commonsense Dataset (VCD), a large-scale dataset containing over 100,000 images and 14 million object-commonsense pairs that bridges this gap. VCD introduces a novel three-level taxonomy for visual commonsense, integrating both Seen (directly observable) and Unseen (inferrable) commonsense across Property, Action, and Space aspects. Each commonsense is represented as a triple where the head entity is grounded to object bounding boxes in images, enabling scene-dependent and object-specific visual commonsense representation. To demonstrate VCD's utility, we develop VCM, a generative model that combines a vision-language model with instruction tuning to discover diverse visual commonsense from images. Extensive evaluations demonstrate both the high quality of VCD and its value as a resource for advancing visually grounded commonsense understanding and reasoning. Our dataset and code will be released on https://github.com/NUSTM/VCD.
♻ ☆ Pre-training Everywhere: Parameter-Efficient Fine-Tuning for Medical Image Analysis via Target Parameter Pre-training
Parameter-efficient fine-tuning (PEFT) techniques have emerged to address overfitting and high computational costs associated with fully fine-tuning in self-supervised learning. Mainstream PEFT methods add a few trainable parameters while keeping the pre-trained backbone parameters fixed. These methods achieve comparative, and often superior, performance to fully fine-tuning, demonstrating the powerful representation ability of the pre-trained backbone. Despite this success, these methods typically ignore the initialization of the new parameters, often relying solely on random initialization. We argue that if pre-training is significantly beneficial, it should be applied to all parameters requiring representational capacity. Motivated by this, we propose Target Parameter Pre-training (TPP), a simple yet effective fine-tuning framework. TPP pre-trains target parameters, i.e., the new parameters introduced during fine-tuning, in an additional stage before PEFT. During this stage, the pre-trained backbone parameters are frozen, and only the new parameters are trainable. A defined pretext task encourages the new parameters to learn specific representations of downstream data. Subsequently, when PEFT is employed, the pre-trained new parameters are loaded to enhance fine-tuning efficiency. The proposed TPP framework is versatile, allowing integration with various pre-trained backbones, pretext tasks, and PEFT methods. We evaluated the fine-tuning performance of our method on seven public datasets, covering four modalities and two task types. The results demonstrate that TPP can be easily integrated into existing PEFT methods, significantly improving performance.
comment: 14 pages, 4 figures, 11 tables
♻ ☆ Convex Relaxation for Robust Vanishing Point Estimation in Manhattan World CVPR 2025
Determining the vanishing points (VPs) in a Manhattan world, as a fundamental task in many 3D vision applications, consists of jointly inferring the line-VP association and locating each VP. Existing methods are, however, either sub-optimal solvers or pursuing global optimality at a significant cost of computing time. In contrast to prior works, we introduce convex relaxation techniques to solve this task for the first time. Specifically, we employ a "soft" association scheme, realized via a truncated multi-selection error, that allows for joint estimation of VPs' locations and line-VP associations. This approach leads to a primal problem that can be reformulated into a quadratically constrained quadratic programming (QCQP) problem, which is then relaxed into a convex semidefinite programming (SDP) problem. To solve this SDP problem efficiently, we present a globally optimal outlier-robust iterative solver (called GlobustVP), which independently searches for one VP and its associated lines in each iteration, treating other lines as outliers. After each independent update of all VPs, the mutual orthogonality between the three VPs in a Manhattan world is reinforced via local refinement. Extensive experiments on both synthetic and real-world data demonstrate that GlobustVP achieves a favorable balance between efficiency, robustness, and global optimality compared to previous works. The code is publicly available at https://github.com/WU-CVGL/GlobustVP.
comment: Accepted to CVPR 2025 as Award Candidate & Oral Presentation. The first two authors contributed equally to this work. Code: https://github.com/WU-CVGL/GlobustVP
♻ ☆ Attentive Eraser: Unleashing Diffusion Model's Object Removal Potential via Self-Attention Redirection Guidance AAAI 2025
Recently, diffusion models have emerged as promising newcomers in the field of generative models, shining brightly in image generation. However, when employed for object removal tasks, they still encounter issues such as generating random artifacts and the incapacity to repaint foreground object areas with appropriate content after remova1l. To tackle these problems, we propose Attentive Eraser, a tuning-free method to empower pre-trained diffusion models for stable and effective object removal. Firstly, in light of the observation that the self-attention maps influence the structure and shape details of the generated images, we propose Attention Activation and Suppression (ASS), which re-engineers the self-attention mechanism within the pre-trained diffusion models based on the given mask, thereby prioritizing the background over the foreground object during the reverse generation process. Moreover, we introduce Self-Attention Redirection Guidance (SARG), which utilizes the self-attention redirected by ASS to guide the generation process, effectively removing foreground objects within the mask while simultaneously generating content that is both plausible and coherent. Experiments demonstrate the stability and effectiveness of Attentive Eraser in object removal across a variety of pre-trained diffusion models, outperforming even training-based methods. Furthermore, Attentive Eraser can be implemented in various diffusion model architectures and checkpoints, enabling excellent scalability. Code is available at https://github.com/Anonym0u3/AttentiveEraser.
comment: Accepted by AAAI 2025(Oral)
♻ ☆ Diff-Instruct++: Training One-step Text-to-image Generator Model to Align with Human Preferences
One-step text-to-image generator models offer advantages such as swift inference efficiency, flexible architectures, and state-of-the-art generation performance. In this paper, we study the problem of aligning one-step generator models with human preferences for the first time. Inspired by the success of reinforcement learning using human feedback (RLHF), we formulate the alignment problem as maximizing expected human reward functions while adding an Integral Kullback-Leibler divergence term to prevent the generator from diverging. By overcoming technical challenges, we introduce Diff-Instruct++ (DI++), the first, fast-converging and image data-free human preference alignment method for one-step text-to-image generators. We also introduce novel theoretical insights, showing that using CFG for diffusion distillation is secretly doing RLHF with DI++. Such an interesting finding brings understanding and potential contributions to future research involving CFG. In the experiment sections, we align both UNet-based and DiT-based one-step generators using DI++, which use the Stable Diffusion 1.5 and the PixelArt-$\alpha$ as the reference diffusion processes. The resulting DiT-based one-step text-to-image model achieves a strong Aesthetic Score of 6.19 and an Image Reward of 1.24 on the COCO validation prompt dataset. It also achieves a leading Human preference Score (HPSv2.0) of 28.48, outperforming other open-sourced models such as Stable Diffusion XL, DMD2, SD-Turbo, as well as PixelArt-$\alpha$. Both theoretical contributions and empirical evidence indicate that DI++ is a strong human-preference alignment approach for one-step text-to-image models. The homepage of the paper is https://github.com/pkulwj1994/diff_instruct_pp.
comment: Revision: The paper was accepted by Transactions of Machine Learning Research (TMLR)
♻ ☆ RAID: A Dataset for Testing the Adversarial Robustness of AI-Generated Image Detectors
AI-generated images have reached a quality level at which humans are incapable of reliably distinguishing them from real images. To counteract the inherent risk of fraud and disinformation, the detection of AI-generated images is a pressing challenge and an active research topic. While many of the presented methods claim to achieve high detection accuracy, they are usually evaluated under idealized conditions. In particular, the adversarial robustness is often neglected, potentially due to a lack of awareness or the substantial effort required to conduct a comprehensive robustness analysis. In this work, we tackle this problem by providing a simpler means to assess the robustness of AI-generated image detectors. We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples. The dataset is created by running attacks against an ensemble of seven state-of-the-art detectors and images generated by four different text-to-image models. Extensive experiments show that our methodology generates adversarial images that transfer with a high success rate to unseen detectors, which can be used to quickly provide an approximate yet still reliable estimate of a detector's adversarial robustness. Our findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples, highlighting the critical need for the development of more robust methods. We release our dataset at https://huggingface.co/datasets/aimagelab/RAID and evaluation code at https://github.com/pralab/RAID.
♻ ☆ GenLit: Reformulating Single-Image Relighting as Video Generation
Manipulating the illumination of a 3D scene within a single image represents a fundamental challenge in computer vision and graphics. This problem has traditionally been addressed using inverse rendering techniques, which involve explicit 3D asset reconstruction and costly ray-tracing simulations. Meanwhile, recent advancements in visual foundation models suggest that a new paradigm could soon be possible -- one that replaces explicit physical models with networks that are trained on large amounts of image and video data. In this paper, we exploit the physical world understanding of a video diffusion model, particularly Stable Video Diffusion, to relight a single image. We introduce GenLit, a framework that distills the ability of a graphics engine to perform light manipulation into a video-generation model, enabling users to directly insert and manipulate a point light in the 3D world within a given image, and generate results directly as a video sequence. We find that a model fine-tuned on only a small synthetic dataset generalizes to real-world scenes, enabling single-image relighting with plausible and convincing shadows. Our results highlight the ability of video foundation models to capture rich information about lighting, material, and, shape and our findings indicate that such models, with minimal training, can be used to perform relighting without explicit asset reconstruction or complex ray tracing.
♻ ☆ Place Recognition Meet Multiple Modalitie: A Comprehensive Review, Current Challenges and Future Directions
Place recognition is a cornerstone of vehicle navigation and mapping, which is pivotal in enabling systems to determine whether a location has been previously visited. This capability is critical for tasks such as loop closure in Simultaneous Localization and Mapping (SLAM) and long-term navigation under varying environmental conditions. In this survey, we comprehensively review recent advancements in place recognition, emphasizing three representative methodological paradigms: Convolutional Neural Network (CNN)-based approaches, Transformer-based frameworks, and cross-modal strategies. We begin by elucidating the significance of place recognition within the broader context of autonomous systems. Subsequently, we trace the evolution of CNN-based methods, highlighting their contributions to robust visual descriptor learning and scalability in large-scale environments. We then examine the emerging class of Transformer-based models, which leverage self-attention mechanisms to capture global dependencies and offer improved generalization across diverse scenes. Furthermore, we discuss cross-modal approaches that integrate heterogeneous data sources such as Lidar, vision, and text description, thereby enhancing resilience to viewpoint, illumination, and seasonal variations. We also summarize standard datasets and evaluation metrics widely adopted in the literature. Finally, we identify current research challenges and outline prospective directions, including domain adaptation, real-time performance, and lifelong learning, to inspire future advancements in this domain. The unified framework of leading-edge place recognition methods, i.e., code library, and the results of their experimental evaluations are available at https://github.com/CV4RA/SOTA-Place-Recognitioner.
comment: 67 pages
♻ ☆ Navigating Motion Agents in Dynamic and Cluttered Environments through LLM Reasoning
This paper advances motion agents empowered by large language models (LLMs) toward autonomous navigation in dynamic and cluttered environments, significantly surpassing first and recent seminal but limited studies on LLM's spatial reasoning, where movements are restricted in four directions in simple, static environments in the presence of only single agents much less multiple agents. Specifically, we investigate LLMs as spatial reasoners to overcome these limitations by uniformly encoding environments (e.g., real indoor floorplans), agents which can be dynamic obstacles and their paths as discrete tokens akin to language tokens. Our training-free framework supports multi-agent coordination, closed-loop replanning, and dynamic obstacle avoidance without retraining or fine-tuning. We show that LLMs can generalize across agents, tasks, and environments using only text-based interactions, opening new possibilities for semantically grounded, interactive navigation in both simulation and embodied systems.
♻ ☆ David and Goliath: Small One-step Model Beats Large Diffusion with Score Post-training ICML2025
We propose Diff-Instruct* (DI*), a data-efficient post-training approach for one-step text-to-image generative models to improve its human preferences without requiring image data. Our method frames alignment as online reinforcement learning from human feedback (RLHF), which optimizes the one-step model to maximize human reward functions while being regularized to be kept close to a reference diffusion process. Unlike traditional RLHF approaches, which rely on the Kullback-Leibler divergence as the regularization, we introduce a novel general score-based divergence regularization that substantially improves performance as well as post-training stability. Although the general score-based RLHF objective is intractable to optimize, we derive a strictly equivalent tractable loss function in theory that can efficiently compute its \emph{gradient} for optimizations. We introduce \emph{DI*-SDXL-1step}, which is a 2.6B one-step text-to-image model at a resolution of $1024\times 1024$, post-trained from DMD2 w.r.t SDXL. \textbf{Our 2.6B \emph{DI*-SDXL-1step} model outperforms the 50-step 12B FLUX-dev model} in ImageReward, PickScore, and CLIP score on the Parti prompts benchmark while using only 1.88\% of the inference time. This result clearly shows that with proper post-training, the small one-step model is capable of beating huge multi-step diffusion models. Our model is open-sourced at this link: https://github.com/pkulwj1994/diff_instruct_star. We hope our findings can contribute to human-centric machine learning techniques.
comment: Revision: paper accepted by the ICML2025 main conference
♻ ☆ Sonic: Shifting Focus to Global Audio Perception in Portrait Animation
The study of talking face generation mainly explores the intricacies of synchronizing facial movements and crafting visually appealing, temporally-coherent animations. However, due to the limited exploration of global audio perception, current approaches predominantly employ auxiliary visual and spatial knowledge to stabilize the movements, which often results in the deterioration of the naturalness and temporal inconsistencies.Considering the essence of audio-driven animation, the audio signal serves as the ideal and unique priors to adjust facial expressions and lip movements, without resorting to interference of any visual signals. Based on this motivation, we propose a novel paradigm, dubbed as Sonic, to {s}hift f{o}cus on the exploration of global audio per{c}ept{i}o{n}.To effectively leverage global audio knowledge, we disentangle it into intra- and inter-clip audio perception and collaborate with both aspects to enhance overall perception.For the intra-clip audio perception, 1). \textbf{Context-enhanced audio learning}, in which long-range intra-clip temporal audio knowledge is extracted to provide facial expression and lip motion priors implicitly expressed as the tone and speed of speech. 2). \textbf{Motion-decoupled controller}, in which the motion of the head and expression movement are disentangled and independently controlled by intra-audio clips. Most importantly, for inter-clip audio perception, as a bridge to connect the intra-clips to achieve the global perception, \textbf{Time-aware position shift fusion}, in which the global inter-clip audio information is considered and fused for long-audio inference via through consecutively time-aware shifted windows. Extensive experiments demonstrate that the novel audio-driven paradigm outperform existing SOTA methodologies in terms of video quality, temporally consistency, lip synchronization precision, and motion diversity.
comment: refer to our main-page \url{https://jixiaozhong.github.io/Sonic/}
♻ ☆ Geometric Visual Fusion Graph Neural Networks for Multi-Person Human-Object Interaction Recognition in Videos
Human-Object Interaction (HOI) recognition in videos requires understanding both visual patterns and geometric relationships as they evolve over time. Visual and geometric features offer complementary strengths. Visual features capture appearance context, while geometric features provide structural patterns. Effectively fusing these multimodal features without compromising their unique characteristics remains challenging. We observe that establishing robust, entity-specific representations before modeling interactions helps preserve the strengths of each modality. Therefore, we hypothesize that a bottom-up approach is crucial for effective multimodal fusion. Following this insight, we propose the Geometric Visual Fusion Graph Neural Network (GeoVis-GNN), which uses dual-attention feature fusion combined with interdependent entity graph learning. It progressively builds from entity-specific representations toward high-level interaction understanding. To advance HOI recognition to real-world scenarios, we introduce the Concurrent Partial Interaction Dataset (MPHOI-120). It captures dynamic multi-person interactions involving concurrent actions and partial engagement. This dataset helps address challenges like complex human-object dynamics and mutual occlusions. Extensive experiments demonstrate the effectiveness of our method across various HOI scenarios. These scenarios include two-person interactions, single-person activities, bimanual manipulations, and complex concurrent partial interactions. Our method achieves state-of-the-art performance.
comment: Accepted by Expert Systems with Applications (ESWA)
♻ ☆ Images are Worth Variable Length of Representations
Most existing vision encoders map images into a fixed-length sequence of tokens, overlooking the fact that different images contain varying amounts of information. For example, a visually complex image (e.g., a cluttered room) inherently carries more information and thus deserves more tokens than a simple image (e.g., a blank wall). To address this inefficiency, we propose DOVE, a dynamic vision encoder that produces a variable number of visual tokens (i.e., continuous representation vectors) to reconstruct each image. Our results show that DOVE significantly reduces the average number of tokens while maintaining high reconstruction quality. In several linear probing and downstream multimodal tasks, it outperforms existing autoencoder-based tokenization methods when using far fewer tokens, capturing more expressive semantic features compared to fixed-length encoding. We further extend DOVE with query-conditioned tokenization. By guiding the model to focus on query-relevant regions, it achieves more efficient and targeted semantic extraction. Our code and checkpoints are available at https://dove-encoder.github.io/dove-encoder.
♻ ☆ Viewport Prediction for Volumetric Video Streaming by Exploring Video Saliency and Trajectory Information
Volumetric video, also known as hologram video, is a novel medium that portrays natural content in Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR). It is expected to be the next-gen video technology and a prevalent use case for 5G and beyond wireless communication. Considering that each user typically only watches a section of the volumetric video, known as the viewport, it is essential to have precise viewport prediction for optimal performance. However, research on this topic is still in its infancy. In the end, this paper presents and proposes a novel approach, named Saliency and Trajectory Viewport Prediction (STVP), which aims to improve the precision of viewport prediction in volumetric video streaming. The STVP extensively utilizes video saliency information and viewport trajectory. To our knowledge, this is the first comprehensive study of viewport prediction in volumetric video streaming. In particular, we introduce a novel sampling method, Uniform Random Sampling (URS), to reduce computational complexity while still preserving video features in an efficient manner. Then we present a saliency detection technique that incorporates both spatial and temporal information for detecting static, dynamic geometric, and color salient regions. Finally, we intelligently fuse saliency and trajectory information to achieve more accurate viewport prediction. We conduct extensive simulations to evaluate the effectiveness of our proposed viewport prediction methods using state-of-the-art volumetric video sequences. The experimental results show the superiority of the proposed method over existing schemes. The dataset and source code will be publicly accessible after acceptance.
♻ ☆ Hybrid deep convolution model for lung cancer detection with transfer learning
Advances in healthcare research have significantly enhanced our understanding of disease mechanisms, diagnostic precision, and therapeutic options. Yet, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to challenges in early and accurate diagnosis. While current lung cancer detection models show promise, there is considerable potential for further improving the accuracy for timely intervention. To address this challenge, we introduce a hybrid deep convolution model leveraging transfer learning, named the Maximum Sensitivity Neural Network (MSNN). MSNN is designed to improve the precision of lung cancer detection by refining sensitivity and specificity. This model has surpassed existing deep learning approaches through experimental validation, achieving an accuracy of 98% and a sensitivity of 97%. By overlaying sensitivity maps onto lung Computed Tomography (CT) scans, it enables the visualization of regions most indicative of malignant or benign classifications. This innovative method demonstrates exceptional performance in distinguishing lung cancer with minimal false positives, thereby enhancing the accuracy of medical diagnoses.
comment: Authors realized mistake in the model. Also some data was misinterpreted
♻ ☆ Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset
The global challenge of sustainable recycling demands automated, fast, and accurate, state-of-the-art (SOTA) material detection systems that act as a bedrock for a circular economy. Democratizing access to these cutting-edge solutions that enable real-time waste analysis is essential for scaling up recycling efforts and fostering the Green Deal. In response, we introduce \textbf{Electrolyzers-HSI}, a novel multimodal benchmark dataset designed to accelerate the recovery of critical raw materials through accurate electrolyzer materials classification. The dataset comprises 55 co-registered high-resolution RGB images and hyperspectral imaging (HSI) data cubes spanning the 400--2500 nm spectral range, yielding over 4.2 million pixel vectors and 424,169 labeled ones. This enables non-invasive spectral analysis of shredded electrolyzer samples, supporting quantitative and qualitative material classification and spectral properties investigation. We evaluate a suite of baseline machine learning (ML) methods alongside SOTA transformer-based deep learning (DL) architectures, including Vision Transformer, SpectralFormer, and the Multimodal Fusion Transformer, to investigate architectural bottlenecks for further efficiency optimisation when deploying transformers in material identification. We implement zero-shot detection techniques and majority voting across pixel-level predictions to establish object-level classification robustness. In adherence to the FAIR data principles, the electrolyzers-HSI dataset and accompanying codebase are openly available at https://github.com/hifexplo/Electrolyzers-HSI and https://rodare.hzdr.de/record/3668, supporting reproducible research and facilitating the broader adoption of smart and sustainable e-waste recycling solutions.
♻ ☆ Reading Recognition in the Wild
To enable egocentric contextual AI in always-on smart glasses, it is crucial to be able to keep a record of the user's interactions with the world, including during reading. In this paper, we introduce a new task of reading recognition to determine when the user is reading. We first introduce the first-of-its-kind large-scale multimodal Reading in the Wild dataset, containing 100 hours of reading and non-reading videos in diverse and realistic scenarios. We then identify three modalities (egocentric RGB, eye gaze, head pose) that can be used to solve the task, and present a flexible transformer model that performs the task using these modalities, either individually or combined. We show that these modalities are relevant and complementary to the task, and investigate how to efficiently and effectively encode each modality. Additionally, we show the usefulness of this dataset towards classifying types of reading, extending current reading understanding studies conducted in constrained settings to larger scale, diversity and realism.
comment: Project Page: https://www.projectaria.com/datasets/reading-in-the-wild/
♻ ☆ FlowCut: Rethinking Redundancy via Information Flow for Efficient Vision-Language Models
Large vision-language models (LVLMs) excel at multimodal understanding but suffer from high computational costs due to redundant vision tokens. Existing pruning methods typically rely on single-layer attention scores to rank and prune redundant visual tokens to solve this inefficiency. However, as the interaction between tokens and layers is complicated, this raises a basic question: Is such a simple single-layer criterion sufficient to identify redundancy? To answer this question, we rethink the emergence of redundant visual tokens from a fundamental perspective: information flow, which models the interaction between tokens and layers by capturing how information moves between tokens across layers. We find (1) the CLS token acts as an information relay, which can simplify the complicated flow analysis; (2) the redundancy emerges progressively and dynamically via layer-wise attention concentration; and (3) relying solely on attention scores from single layers can lead to contradictory redundancy identification. Based on this, we propose FlowCut, an information-flow-aware pruning framework, mitigating the insufficiency of the current criterion for identifying redundant tokens and better aligning with the model's inherent behaviors. Extensive experiments show that FlowCut achieves superior results, outperforming SoTA by 1.6% on LLaVA-1.5-7B with 88.9% token reduction, and by 4.3% on LLaVA-NeXT-7B with 94.4% reduction, delivering 3.2x speed-up in the prefilling stage. Our code is available at https://github.com/TungChintao/FlowCut
comment: 19 pages, 11 figures
♻ ☆ GaRA-SAM: Robustifying Segment Anything Model with Gated-Rank Adaptation
Improving robustness of the Segment Anything Model (SAM) to input degradations is critical for its deployment in high-stakes applications such as autonomous driving and robotics. Our approach to this challenge prioritizes three key aspects: first, parameter efficiency to maintain the inherent generalization capability of SAM; second, fine-grained and input-aware robustification to precisely address the input corruption; and third, adherence to standard training protocols for ease of training. To this end, we propose gated-rank adaptation (GaRA). GaRA introduces lightweight adapters into intermediate layers of the frozen SAM, where each adapter dynamically adjusts the effective rank of its weight matrix based on the input by selectively activating (rank-1) components of the matrix using a learned gating module. This adjustment enables fine-grained and input-aware robustification without compromising the generalization capability of SAM. Our model, GaRA-SAM, significantly outperforms prior work on all robust segmentation benchmarks. In particular, it surpasses the previous best IoU score by up to 21.3\%p on ACDC, a challenging real corrupted image dataset.
♻ ☆ Rethinking the Stability-Plasticity Trade-off in Continual Learning from an Architectural Perspective ICML 2025
The quest for Continual Learning (CL) seeks to empower neural networks with the ability to learn and adapt incrementally. Central to this pursuit is addressing the stability-plasticity dilemma, which involves striking a balance between two conflicting objectives: preserving previously learned knowledge and acquiring new knowledge. While numerous CL methods aim to achieve this trade-off, they often overlook the impact of network architecture on stability and plasticity, restricting the trade-off to the parameter level. In this paper, we delve into the conflict between stability and plasticity at the architectural level. We reveal that under an equal parameter constraint, deeper networks exhibit better plasticity, while wider networks are characterized by superior stability. To address this architectural-level dilemma, we introduce a novel framework denoted Dual-Arch, which serves as a plug-in component for CL. This framework leverages the complementary strengths of two distinct and independent networks: one dedicated to plasticity and the other to stability. Each network is designed with a specialized and lightweight architecture, tailored to its respective objective. Extensive experiments demonstrate that Dual-Arch enhances the performance of existing CL methods while being up to 87% more compact in terms of parameters. Code: https://github.com/byyx666/Dual-Arch.
comment: Accepted to ICML 2025
♻ ☆ Self-Supervised Learning for Text Recognition: A Critical Survey
Text Recognition (TR) refers to the research area that focuses on retrieving textual information from images, a topic that has seen significant advancements in the last decade due to the use of Deep Neural Networks (DNN). However, these solutions often necessitate vast amounts of manually labeled or synthetic data. Addressing this challenge, Self-Supervised Learning (SSL) has gained attention by utilizing large datasets of unlabeled data to train DNN, thereby generating meaningful and robust representations. Although SSL was initially overlooked in TR because of its unique characteristics, recent years have witnessed a surge in the development of SSL methods specifically for this field. This rapid development, however, has led to many methods being explored independently, without taking previous efforts in methodology or comparison into account, thereby hindering progress in the field of research. This paper, therefore, seeks to consolidate the use of SSL in the field of TR, offering a critical and comprehensive overview of the current state of the art. We will review and analyze the existing methods, compare their results, and highlight inconsistencies in the current literature. This thorough analysis aims to provide general insights into the field, propose standardizations, identify new research directions, and foster its proper development.
comment: Published at International Journal of Computer Vision (IJCV)
♻ ☆ Text-to-CAD Generation Through Infusing Visual Feedback in Large Language Models ICML 2025
Creating Computer-Aided Design (CAD) models requires significant expertise and effort. Text-to-CAD, which converts textual descriptions into CAD parametric sequences, is crucial in streamlining this process. Recent studies have utilized ground-truth parametric sequences, known as sequential signals, as supervision to achieve this goal. However, CAD models are inherently multimodal, comprising parametric sequences and corresponding rendered visual objects. Besides,the rendering process from parametric sequences to visual objects is many-to-one. Therefore, both sequential and visual signals are critical for effective training. In this work, we introduce CADFusion, a framework that uses Large Language Models (LLMs) as the backbone and alternates between two training stages: the sequential learning (SL) stage and the visual feedback (VF) stage. In the SL stage, we train LLMs using ground-truth parametric sequences, enabling the generation of logically coherent parametric sequences. In the VF stage, we reward parametric sequences that render into visually preferred objects and penalize those that do not, allowing LLMs to learn how rendered visual objects are perceived and evaluated. These two stages alternate throughout the training, ensuring balanced learning and preserving benefits of both signals. Experiments demonstrate that CADFusion significantly improves performance, both qualitatively and quantitatively.
comment: ICML 2025 camera ready
♻ ☆ GarmageNet: A Multimodal Generative Framework for Sewing Pattern Design and Generic Garment Modeling
Realistic digital garment modeling remains a labor-intensive task due to the intricate process of translating 2D sewing patterns into high-fidelity, simulation-ready 3D garments. We introduce GarmageNet, a unified generative framework that automates the creation of 2D sewing patterns, the construction of sewing relationships, and the synthesis of 3D garment initializations compatible with physics-based simulation. Central to our approach is Garmage, a novel garment representation that encodes each panel as a structured geometry image, effectively bridging the semantic and geometric gap between 2D structural patterns and 3D garment shapes. GarmageNet employs a latent diffusion transformer to synthesize panel-wise geometry images and integrates GarmageJigsaw, a neural module for predicting point-to-point sewing connections along panel contours. To support training and evaluation, we build GarmageSet, a large-scale dataset comprising over 10,000 professionally designed garments with detailed structural and style annotations. Our method demonstrates versatility and efficacy across multiple application scenarios, including scalable garment generation from multi-modal design concepts (text prompts, sketches, photographs), automatic modeling from raw flat sewing patterns, pattern recovery from unstructured point clouds, and progressive garment editing using conventional instructions-laying the foundation for fully automated, production-ready pipelines in digital fashion. Project page: https://style3d.github.io/garmagenet.
♻ ☆ Adapt before Continual Learning
Continual Learning (CL) seeks to enable neural networks to incrementally acquire new knowledge (plasticity) while retaining existing knowledge (stability). While pre-trained models (PTMs) have become pivotal in CL, prevailing approaches freeze the PTM backbone to preserve stability, limiting their plasticity, particularly when encountering significant domain gaps in incremental tasks. Conversely, sequentially finetuning the entire PTM risks catastrophic forgetting of generalizable knowledge, exposing a critical stability-plasticity trade-off. To address this challenge, we propose Adapting PTMs before the core CL process (ACL), a novel framework that refines the PTM backbone through a plug-and-play adaptation phase before learning each new task with existing CL approaches (e.g., prompt tuning). ACL enhances plasticity by aligning embeddings with their original class prototypes while distancing them from others, theoretically and empirically shown to balance stability and plasticity. Extensive experiments demonstrate that ACL significantly improves CL performance across benchmarks and integrated methods, offering a versatile solution for PTM-based CL. Code is available at https://github.com/byyx666/ACL_code.
♻ ☆ EmbodiedBench: Comprehensive Benchmarking Multi-modal Large Language Models for Vision-Driven Embodied Agents ICML 2025
Leveraging Multi-modal Large Language Models (MLLMs) to create embodied agents offers a promising avenue for tackling real-world tasks. While language-centric embodied agents have garnered substantial attention, MLLM-based embodied agents remain underexplored due to the lack of comprehensive evaluation frameworks. To bridge this gap, we introduce EmbodiedBench, an extensive benchmark designed to evaluate vision-driven embodied agents. EmbodiedBench features: (1) a diverse set of 1,128 testing tasks across four environments, ranging from high-level semantic tasks (e.g., household) to low-level tasks involving atomic actions (e.g., navigation and manipulation); and (2) six meticulously curated subsets evaluating essential agent capabilities like commonsense reasoning, complex instruction understanding, spatial awareness, visual perception, and long-term planning. Through extensive experiments, we evaluated 24 leading proprietary and open-source MLLMs within EmbodiedBench. Our findings reveal that: MLLMs excel at high-level tasks but struggle with low-level manipulation, with the best model, GPT-4o, scoring only 28.9\% on average. EmbodiedBench provides a multifaceted standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance MLLM-based embodied agents. Our code and dataset are available at https://embodiedbench.github.io.
comment: Accepted to ICML 2025
♻ ☆ OmnimatteZero: Fast Training-free Omnimatte with Pre-trained Video Diffusion Models
In Omnimatte, one aims to decompose a given video into semantically meaningful layers, including the background and individual objects along with their associated effects, such as shadows and reflections. Existing methods often require extensive training or costly self-supervised optimization. In this paper, we present OmnimatteZero, a training-free approach that leverages off-the-shelf pre-trained video diffusion models for omnimatte. It can remove objects from videos, extract individual object layers along with their effects, and composite those objects onto new videos. These are accomplished by adapting zero-shot image inpainting techniques for video object removal, a task they fail to handle effectively out-of-the-box. To overcome this, we introduce temporal and spatial attention guidance modules that steer the diffusion process for accurate object removal and temporally consistent background reconstruction. We further show that self-attention maps capture information about the object and its footprints and use them to inpaint the object's effects, leaving a clean background. Additionally, through simple latent arithmetic, object layers can be isolated and recombined seamlessly with new video layers to produce new videos. Evaluations show that OmnimatteZero not only achieves superior performance in terms of background reconstruction but also sets a new record for the fastest Omnimatte approach, achieving real-time performance with minimal frame runtime.
comment: Project Page: https://dvirsamuel.github.io/omnimattezero.github.io/
♻ ☆ Psi-Sampler: Initial Particle Sampling for SMC-Based Inference-Time Reward Alignment in Score Models
We introduce $\Psi$-Sampler, an SMC-based framework incorporating pCNL-based initial particle sampling for effective inference-time reward alignment with a score-based generative model. Inference-time reward alignment with score-based generative models has recently gained significant traction, following a broader paradigm shift from pre-training to post-training optimization. At the core of this trend is the application of Sequential Monte Carlo (SMC) to the denoising process. However, existing methods typically initialize particles from the Gaussian prior, which inadequately captures reward-relevant regions and results in reduced sampling efficiency. We demonstrate that initializing from the reward-aware posterior significantly improves alignment performance. To enable posterior sampling in high-dimensional latent spaces, we introduce the preconditioned Crank-Nicolson Langevin (pCNL) algorithm, which combines dimension-robust proposals with gradient-informed dynamics. This approach enables efficient and scalable posterior sampling and consistently improves performance across various reward alignment tasks, including layout-to-image generation, quantity-aware generation, and aesthetic-preference generation, as demonstrated in our experiments. Project Webpage: https://psi-sampler.github.io/
Artificial Intelligence 266
☆ Refer to Anything with Vision-Language Prompts
Recent image segmentation models have advanced to segment images into high-quality masks for visual entities, and yet they cannot provide comprehensive semantic understanding for complex queries based on both language and vision. This limitation reduces their effectiveness in applications that require user-friendly interactions driven by vision-language prompts. To bridge this gap, we introduce a novel task of omnimodal referring expression segmentation (ORES). In this task, a model produces a group of masks based on arbitrary prompts specified by text only or text plus reference visual entities. To address this new challenge, we propose a novel framework to "Refer to Any Segmentation Mask Group" (RAS), which augments segmentation models with complex multimodal interactions and comprehension via a mask-centric large multimodal model. For training and benchmarking ORES models, we create datasets MaskGroups-2M and MaskGroups-HQ to include diverse mask groups specified by text and reference entities. Through extensive evaluation, we demonstrate superior performance of RAS on our new ORES task, as well as classic referring expression segmentation (RES) and generalized referring expression segmentation (GRES) tasks. Project page: https://Ref2Any.github.io.
☆ Direct Numerical Layout Generation for 3D Indoor Scene Synthesis via Spatial Reasoning
Realistic 3D indoor scene synthesis is vital for embodied AI and digital content creation. It can be naturally divided into two subtasks: object generation and layout generation. While recent generative models have significantly advanced object-level quality and controllability, layout generation remains challenging due to limited datasets. Existing methods either overfit to these datasets or rely on predefined constraints to optimize numerical layout that sacrifice flexibility. As a result, they fail to generate scenes that are both open-vocabulary and aligned with fine-grained user instructions. We introduce DirectLayout, a framework that directly generates numerical 3D layouts from text descriptions using generalizable spatial reasoning of large language models (LLMs). DirectLayout decomposes the generation into three stages: producing a Bird's-Eye View (BEV) layout, lifting it into 3D space, and refining object placements. To enable explicit spatial reasoning and help the model grasp basic principles of object placement, we employ Chain-of-Thought (CoT) Activation based on the 3D-Front dataset. Additionally, we design CoT-Grounded Generative Layout Reward to enhance generalization and spatial planning. During inference, DirectLayout addresses asset-layout mismatches via Iterative Asset-Layout Alignment through in-context learning. Extensive experiments demonstrate that DirectLayout achieves impressive semantic consistency, generalization and physical plausibility.
comment: Project Page: https://directlayout.github.io/
☆ Exploring Diffusion Transformer Designs via Grafting
Designing model architectures requires decisions such as selecting operators (e.g., attention, convolution) and configurations (e.g., depth, width). However, evaluating the impact of these decisions on model quality requires costly pretraining, limiting architectural investigation. Inspired by how new software is built on existing code, we ask: can new architecture designs be studied using pretrained models? To this end, we present grafting, a simple approach for editing pretrained diffusion transformers (DiTs) to materialize new architectures under small compute budgets. Informed by our analysis of activation behavior and attention locality, we construct a testbed based on the DiT-XL/2 design to study the impact of grafting on model quality. Using this testbed, we develop a family of hybrid designs via grafting: replacing softmax attention with gated convolution, local attention, and linear attention, and replacing MLPs with variable expansion ratio and convolutional variants. Notably, many hybrid designs achieve good quality (FID: 2.38-2.64 vs. 2.27 for DiT-XL/2) using <2% pretraining compute. We then graft a text-to-image model (PixArt-Sigma), achieving a 1.43x speedup with less than a 2% drop in GenEval score. Finally, we present a case study that restructures DiT-XL/2 by converting every pair of sequential transformer blocks into parallel blocks via grafting. This reduces model depth by 2x and yields better quality (FID: 2.77) than other models of comparable depth. Together, we show that new diffusion model designs can be explored by grafting pretrained DiTs, with edits ranging from operator replacement to architecture restructuring. Code and grafted models: https://grafting.stanford.edu
comment: 22 pages; Project website: https://grafting.stanford.edu
☆ Improving Data Efficiency for LLM Reinforcement Fine-tuning Through Difficulty-targeted Online Data Selection and Rollout Replay
Reinforcement learning (RL) has become an effective approach for fine-tuning large language models (LLMs), particularly to enhance their reasoning capabilities. However, RL fine-tuning remains highly resource-intensive, and existing work has largely overlooked the problem of data efficiency. In this paper, we propose two techniques to improve data efficiency in LLM RL fine-tuning: difficulty-targeted online data selection and rollout replay. We introduce the notion of adaptive difficulty to guide online data selection, prioritizing questions of moderate difficulty that are more likely to yield informative learning signals. To estimate adaptive difficulty efficiently, we develop an attention-based framework that requires rollouts for only a small reference set of questions. The adaptive difficulty of the remaining questions is then estimated based on their similarity to this set. To further reduce rollout cost, we introduce a rollout replay mechanism that reuses recent rollouts, lowering per-step computation while maintaining stable updates. Extensive experiments across 6 LLM-dataset combinations show that our method reduces RL fine-tuning time by 25% to 65% to reach the same level of performance as the original GRPO algorithm.
☆ Constrained Entropic Unlearning: A Primal-Dual Framework for Large Language Models
Large Language Models (LLMs) deployed in real-world settings increasingly face the need to unlearn sensitive, outdated, or proprietary information. Existing unlearning methods typically formulate forgetting and retention as a regularized trade-off, combining both objectives into a single scalarized loss. This often leads to unstable optimization and degraded performance on retained data, especially under aggressive forgetting. We propose a new formulation of LLM unlearning as a constrained optimization problem: forgetting is enforced via a novel logit-margin flattening loss that explicitly drives the output distribution toward uniformity on a designated forget set, while retention is preserved through a hard constraint on a separate retain set. Compared to entropy-based objectives, our loss is softmax-free, numerically stable, and maintains non-vanishing gradients, enabling more efficient and robust optimization. We solve the constrained problem using a scalable primal-dual algorithm that exposes the trade-off between forgetting and retention through the dynamics of the dual variable. Evaluations on the TOFU and MUSE benchmarks across diverse LLM architectures demonstrate that our approach consistently matches or exceeds state-of-the-art baselines, effectively removing targeted information while preserving downstream utility.
☆ Time to Talk: LLM Agents for Asynchronous Group Communication in Mafia Games
LLMs are used predominantly in synchronous communication, where a human user and a model communicate in alternating turns. In contrast, many real-world settings are inherently asynchronous. For example, in group chats, online team meetings, or social games, there is no inherent notion of turns; therefore, the decision of when to speak forms a crucial part of the participant's decision making. In this work, we develop an adaptive asynchronous LLM-agent which, in addition to determining what to say, also decides when to say it. To evaluate our agent, we collect a unique dataset of online Mafia games, including both human participants, as well as our asynchronous agent. Overall, our agent performs on par with human players, both in game performance, as well as in its ability to blend in with the other human players. Our analysis shows that the agent's behavior in deciding when to speak closely mirrors human patterns, although differences emerge in message content. We release all our data and code to support and encourage further research for more realistic asynchronous communication between LLM agents. This work paves the way for integration of LLMs into realistic human group settings, from assistance in team discussions to educational and professional environments where complex social dynamics must be navigated.
☆ ProRefine: Inference-time Prompt Refinement with Textual Feedback
Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, are becoming increasingly prevalent. However, these workflows often suffer from error propagation and sub-optimal performance, largely due to poorly designed prompts that fail to effectively guide individual agents. This is a critical problem because it limits the reliability and scalability of these powerful systems. We introduce ProRefine, an innovative inference-time prompt optimization method that leverages textual feedback from large language models (LLMs) to address this challenge. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to match the performance of larger ones, highlighting its potential for efficient and scalable AI deployment, and democratizing access to high-performing AI.
Control Tax: The Price of Keeping AI in Check
The rapid integration of agentic AI into high-stakes real-world applications requires robust oversight mechanisms. The emerging field of AI Control (AIC) aims to provide such an oversight mechanism, but practical adoption depends heavily on implementation overhead. To study this problem better, we introduce the notion of Control tax -- the operational and financial cost of integrating control measures into AI pipelines. Our work makes three key contributions to the field of AIC: (1) we introduce a theoretical framework that quantifies the Control Tax and maps classifier performance to safety assurances; (2) we conduct comprehensive evaluations of state-of-the-art language models in adversarial settings, where attacker models insert subtle backdoors into code while monitoring models attempt to detect these vulnerabilities; and (3) we provide empirical financial cost estimates for control protocols and develop optimized monitoring strategies that balance safety and cost-effectiveness while accounting for practical constraints like auditing budgets. Our framework enables practitioners to make informed decisions by systematically connecting safety guarantees with their costs, advancing AIC through principled economic feasibility assessment across different deployment contexts.
☆ Sample Complexity and Representation Ability of Test-time Scaling Paradigms
Test-time scaling paradigms have significantly advanced the capabilities of large language models (LLMs) on complex tasks. Despite their empirical success, theoretical understanding of the sample efficiency of various test-time strategies -- such as self-consistency, best-of-$n$, and self-correction -- remains limited. In this work, we first establish a separation result between two repeated sampling strategies: self-consistency requires $\Theta(1/\Delta^2)$ samples to produce the correct answer, while best-of-$n$ only needs $\Theta(1/\Delta)$, where $\Delta < 1$ denotes the probability gap between the correct and second most likely answers. Next, we present an expressiveness result for the self-correction approach with verifier feedback: it enables Transformers to simulate online learning over a pool of experts at test time. Therefore, a single Transformer architecture can provably solve multiple tasks without prior knowledge of the specific task associated with a user query, extending the representation theory of Transformers from single-task to multi-task settings. Finally, we empirically validate our theoretical results, demonstrating the practical effectiveness of self-correction methods.
☆ Rectified Point Flow: Generic Point Cloud Pose Estimation
We introduce Rectified Point Flow, a unified parameterization that formulates pairwise point cloud registration and multi-part shape assembly as a single conditional generative problem. Given unposed point clouds, our method learns a continuous point-wise velocity field that transports noisy points toward their target positions, from which part poses are recovered. In contrast to prior work that regresses part-wise poses with ad-hoc symmetry handling, our method intrinsically learns assembly symmetries without symmetry labels. Together with a self-supervised encoder focused on overlapping points, our method achieves a new state-of-the-art performance on six benchmarks spanning pairwise registration and shape assembly. Notably, our unified formulation enables effective joint training on diverse datasets, facilitating the learning of shared geometric priors and consequently boosting accuracy. Project page: https://rectified-pointflow.github.io/.
comment: Project page: https://rectified-pointflow.github.io/
☆ Fast-DataShapley: Neural Modeling for Training Data Valuation
The value and copyright of training data are crucial in the artificial intelligence industry. Service platforms should protect data providers' legitimate rights and fairly reward them for their contributions. Shapley value, a potent tool for evaluating contributions, outperforms other methods in theory, but its computational overhead escalates exponentially with the number of data providers. Recent works based on Shapley values attempt to mitigate computation complexity by approximation algorithms. However, they need to retrain for each test sample, leading to intolerable costs. We propose Fast-DataShapley, a one-pass training method that leverages the weighted least squares characterization of the Shapley value to train a reusable explainer model with real-time reasoning speed. Given new test samples, no retraining is required to calculate the Shapley values of the training data. Additionally, we propose three methods with theoretical guarantees to reduce training overhead from two aspects: the approximate calculation of the utility function and the group calculation of the training data. We analyze time complexity to show the efficiency of our methods. The experimental evaluations on various image datasets demonstrate superior performance and efficiency compared to baselines. Specifically, the performance is improved to more than 2.5 times, and the explainer's training speed can be increased by two orders of magnitude.
☆ Micro-Act: Mitigate Knowledge Conflict in Question Answering via Actionable Self-Reasoning ACL 2025
Retrieval-Augmented Generation (RAG) systems commonly suffer from Knowledge Conflicts, where retrieved external knowledge contradicts the inherent, parametric knowledge of large language models (LLMs). It adversely affects performance on downstream tasks such as question answering (QA). Existing approaches often attempt to mitigate conflicts by directly comparing two knowledge sources in a side-by-side manner, but this can overwhelm LLMs with extraneous or lengthy contexts, ultimately hindering their ability to identify and mitigate inconsistencies. To address this issue, we propose Micro-Act a framework with a hierarchical action space that automatically perceives context complexity and adaptively decomposes each knowledge source into a sequence of fine-grained comparisons. These comparisons are represented as actionable steps, enabling reasoning beyond the superficial context. Through extensive experiments on five benchmark datasets, Micro-Act consistently achieves significant increase in QA accuracy over state-of-the-art baselines across all 5 datasets and 3 conflict types, especially in temporal and semantic types where all baselines fail significantly. More importantly, Micro-Act exhibits robust performance on non-conflict questions simultaneously, highlighting its practical value in real-world RAG applications.
comment: Accepted by ACL 2025 Main
☆ Teaming in the AI Era: AI-Augmented Frameworks for Forming, Simulating, and Optimizing Human Teams
Effective teamwork is essential across diverse domains. During the team formation stage, a key challenge is forming teams that effectively balance user preferences with task objectives to enhance overall team satisfaction. In the team performing stage, maintaining cohesion and engagement is critical for sustaining high team performance. However, existing computational tools and algorithms for team optimization often rely on static data inputs, narrow algorithmic objectives, or solutions tailored for specific contexts, failing to account for the dynamic interplay of team members personalities, evolving goals, and changing individual preferences. Therefore, teams may encounter member dissatisfaction, as purely algorithmic assignments can reduce members commitment to team goals or experience suboptimal engagement due to the absence of timely, personalized guidance to help members adjust their behaviors and interactions as team dynamics evolve. Ultimately, these challenges can lead to reduced overall team performance. My Ph.D. dissertation aims to develop AI-augmented team optimization frameworks and practical systems that enhance team satisfaction, engagement, and performance. First, I propose a team formation framework that leverages a multi-armed bandit algorithm to iteratively refine team composition based on user preferences, ensuring alignment between individual needs and collective team goals to enhance team satisfaction. Second, I introduce tAIfa (Team AI Feedback Assistant), an AI-powered system that utilizes large language models (LLMs) to deliver immediate, personalized feedback to both teams and individual members, enhancing cohesion and engagement. Finally, I present PuppeteerLLM, an LLM-based simulation framework that simulates multi-agent teams to model complex team dynamics within realistic environments, incorporating task-driven collaboration and long-term coordination.
comment: 5 pages, UMAP 25, June 16_19, 2025, New York City, NY, USA
☆ Just Enough Thinking: Efficient Reasoning with Adaptive Length Penalties Reinforcement Learning
Large reasoning models (LRMs) achieve higher performance on challenging reasoning tasks by generating more tokens at inference time, but this verbosity often wastes computation on easy problems. Existing solutions, including supervised finetuning on shorter traces, user-controlled budgets, or RL with uniform penalties, either require data curation, manual configuration, or treat all problems alike regardless of difficulty. We introduce Adaptive Length Penalty (ALP), a reinforcement learning objective tailoring generation length to per-prompt solve rate. During training, ALP monitors each prompt's online solve rate through multiple rollouts and adds a differentiable penalty whose magnitude scales inversely with that rate, so confident (easy) prompts incur a high cost for extra tokens while hard prompts remain unhindered. Posttraining DeepScaleR-1.5B with ALP cuts average token usage by 50\% without significantly dropping performance. Relative to fixed-budget and uniform penalty baselines, ALP redistributes its reduced budget more intelligently by cutting compute on easy prompts and reallocating saved tokens to difficult ones, delivering higher accuracy on the hardest problems with higher cost.
☆ MesaNet: Sequence Modeling by Locally Optimal Test-Time Training
Sequence modeling is currently dominated by causal transformer architectures that use softmax self-attention. Although widely adopted, transformers require scaling memory and compute linearly during inference. A recent stream of work linearized the softmax operation, resulting in powerful recurrent neural network (RNN) models with constant memory and compute costs such as DeltaNet, Mamba or xLSTM. These models can be unified by noting that their recurrent layer dynamics can all be derived from an in-context regression objective, approximately optimized through an online learning rule. Here, we join this line of work and introduce a numerically stable, chunkwise parallelizable version of the recently proposed Mesa layer (von Oswald et al., 2024), and study it in language modeling at the billion-parameter scale. This layer again stems from an in-context loss, but which is now minimized to optimality at every time point using a fast conjugate gradient solver. Through an extensive suite of experiments, we show that optimal test-time training enables reaching lower language modeling perplexity and higher downstream benchmark performance than previous RNNs, especially on tasks requiring long context understanding. This performance gain comes at the cost of additional flops spent during inference time. Our results are therefore intriguingly related to recent trends of increasing test-time compute to improve performance -- here by spending compute to solve sequential optimization problems within the neural network itself.
☆ Mitigating Degree Bias Adaptively with Hard-to-Learn Nodes in Graph Contrastive Learning
Graph Neural Networks (GNNs) often suffer from degree bias in node classification tasks, where prediction performance varies across nodes with different degrees. Several approaches, which adopt Graph Contrastive Learning (GCL), have been proposed to mitigate this bias. However, the limited number of positive pairs and the equal weighting of all positives and negatives in GCL still lead to low-degree nodes acquiring insufficient and noisy information. This paper proposes the Hardness Adaptive Reweighted (HAR) contrastive loss to mitigate degree bias. It adds more positive pairs by leveraging node labels and adaptively weights positive and negative pairs based on their learning hardness. In addition, we develop an experimental framework named SHARP to extend HAR to a broader range of scenarios. Both our theoretical analysis and experiments validate the effectiveness of SHARP. The experimental results across four datasets show that SHARP achieves better performance against baselines at both global and degree levels.
☆ LLM-First Search: Self-Guided Exploration of the Solution Space
Large Language Models (LLMs) have demonstrated remarkable improvements in reasoning and planning through increased test-time compute, often by framing problem-solving as a search process. While methods like Monte Carlo Tree Search (MCTS) have proven effective in some domains, their reliance on fixed exploration hyperparameters limits their adaptability across tasks of varying difficulty, rendering them impractical or expensive in certain settings. In this paper, we propose \textbf{LLM-First Search (LFS)}, a novel \textit{LLM Self-Guided Search} method that removes the need for pre-defined search strategies by empowering the LLM to autonomously control the search process via self-guided exploration. Rather than relying on external heuristics or hardcoded policies, the LLM evaluates whether to pursue the current search path or explore alternative branches based on its internal scoring mechanisms. This enables more flexible and context-sensitive reasoning without requiring manual tuning or task-specific adaptation. We evaluate LFS on Countdown and Sudoku against three classic widely-used search algorithms, Tree-of-Thoughts' Breadth First Search (ToT-BFS), Best First Search (BestFS), and MCTS, each of which have been used to achieve SotA results on a range of challenging reasoning tasks. We found that LFS (1) performs better on more challenging tasks without additional tuning, (2) is more computationally efficient compared to the other methods, especially when powered by a stronger model, (3) scales better with stronger models, due to its LLM-First design, and (4) scales better with increased compute budget. Our code is publicly available at \href{https://github.com/NathanHerr/LLM-First-Search}{LLM-First-Search}.
comment: 9 main pages, 2 figures, 2 tables, 36 appendix pages
☆ Intentionally Unintentional: GenAI Exceptionalism and the First Amendment
This paper challenges the assumption that courts should grant First Amendment protections to outputs from large generative AI models, such as GPT-4 and Gemini. We argue that because these models lack intentionality, their outputs do not constitute speech as understood in the context of established legal precedent, so there can be no speech to protect. Furthermore, if the model outputs are not speech, users cannot claim a First Amendment speech right to receive the outputs. We also argue that extending First Amendment rights to AI models would not serve the fundamental purposes of free speech, such as promoting a marketplace of ideas, facilitating self-governance, or fostering self-expression. In fact, granting First Amendment protections to AI models would be detrimental to society because it would hinder the government's ability to regulate these powerful technologies effectively, potentially leading to the unchecked spread of misinformation and other harms.
☆ Counterfactual reasoning: an analysis of in-context emergence
Large-scale neural language models (LMs) exhibit remarkable performance in in-context learning: the ability to learn and reason the input context on the fly without parameter update. This work studies in-context counterfactual reasoning in language models, that is, to predict the consequences of changes under hypothetical scenarios. We focus on studying a well-defined synthetic setup: a linear regression task that requires noise abduction, where accurate prediction is based on inferring and copying the contextual noise from factual observations. We show that language models are capable of counterfactual reasoning in this controlled setup and provide insights that counterfactual reasoning for a broad class of functions can be reduced to a transformation on in-context observations; we find self-attention, model depth, and data diversity in pre-training drive performance in Transformers. More interestingly, our findings extend beyond regression tasks and show that Transformers can perform noise abduction on sequential data, providing preliminary evidence on the potential for counterfactual story generation. Our code is available under https://github.com/moXmiller/counterfactual-reasoning.git .
TreeRPO: Tree Relative Policy Optimization
Large Language Models (LLMs) have shown remarkable reasoning capabilities through Reinforcement Learning with Verifiable Rewards (RLVR) methods. However, a key limitation of existing approaches is that rewards defined at the full trajectory level provide insufficient guidance for optimizing the intermediate steps of a reasoning process. To address this, we introduce \textbf{\name}, a novel method that estimates the mathematical expectations of rewards at various reasoning steps using tree sampling. Unlike prior methods that rely on a separate step reward model, \name directly estimates these rewards through this sampling process. Building on the group-relative reward training mechanism of GRPO, \name innovatively computes rewards based on step-level groups generated during tree sampling. This advancement allows \name to produce fine-grained and dense reward signals, significantly enhancing the learning process and overall performance of LLMs. Experimental results demonstrate that our \name algorithm substantially improves the average Pass@1 accuracy of Qwen-2.5-Math on test benchmarks, increasing it from 19.0\% to 35.5\%. Furthermore, \name significantly outperforms GRPO by 2.9\% in performance while simultaneously reducing the average response length by 18.1\%, showcasing its effectiveness and efficiency. Our code will be available at \href{https://github.com/yangzhch6/TreeRPO}{https://github.com/yangzhch6/TreeRPO}.
comment: 13pages, 6 figures
☆ ECoRAG: Evidentiality-guided Compression for Long Context RAG
Large Language Models (LLMs) have shown remarkable performance in Open-Domain Question Answering (ODQA) by leveraging external documents through Retrieval-Augmented Generation (RAG). To reduce RAG overhead, from longer context, context compression is necessary. However, prior compression methods do not focus on filtering out non-evidential information, which limit the performance in LLM-based RAG. We thus propose Evidentiality-guided RAG, or \textbf{ECoRAG} framework. ECoRAG improves LLM performance by compressing retrieved documents based on evidentiality, ensuring whether answer generation is supported by the correct evidence. As an additional step, ECoRAG reflects whether the compressed content provides sufficient evidence, and if not, retrieves more until sufficient. Experiments show that ECoRAG improves LLM performance on ODQA tasks, outperforming existing compression methods. Furthermore, ECoRAG is highly cost-efficient, as it not only reduces latency but also minimizes token usage by retaining only the necessary information to generate the correct answer. Code is available at https://github.com/ldilab/ECoRAG.
☆ Dissecting Bias in LLMs: A Mechanistic Interpretability Perspective
Large Language Models (LLMs) are known to exhibit social, demographic, and gender biases, often as a consequence of the data on which they are trained. In this work, we adopt a mechanistic interpretability approach to analyze how such biases are structurally represented within models such as GPT-2 and Llama2. Focusing on demographic and gender biases, we explore different metrics to identify the internal edges responsible for biased behavior. We then assess the stability, localization, and generalizability of these components across dataset and linguistic variations. Through systematic ablations, we demonstrate that bias-related computations are highly localized, often concentrated in a small subset of layers. Moreover, the identified components change across fine-tuning settings, including those unrelated to bias. Finally, we show that removing these components not only reduces biased outputs but also affects other NLP tasks, such as named entity recognition and linguistic acceptability judgment because of the sharing of important components with these tasks.
☆ Knowledgeable-r1: Policy Optimization for Knowledge Exploration in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) is a mainstream method for improving performance on knowledge-intensive tasks. However,current RAG systems often place too much emphasis on retrieved contexts. This can lead to reliance on inaccurate sources and overlook the model's inherent knowledge, especially when dealing with misleading or excessive information. To resolve this imbalance, we propose Knowledgeable-r1 that using joint sampling and define multi policy distributions in knowledge capability exploration to stimulate large language models'self-integrated utilization of parametric and contextual knowledge. Experiments show that Knowledgeable-r1 significantly enhances robustness and reasoning accuracy in both parameters and contextual conflict tasks and general RAG tasks, especially outperforming baselines by 17.07% in counterfactual scenarios and demonstrating consistent gains across RAG tasks. Our code are available at https://github.com/lcy80366872/ knowledgeable-r1.
☆ AudioLens: A Closer Look at Auditory Attribute Perception of Large Audio-Language Models
Understanding the internal mechanisms of large audio-language models (LALMs) is crucial for interpreting their behavior and improving performance. This work presents the first in-depth analysis of how LALMs internally perceive and recognize auditory attributes. By applying vocabulary projection on three state-of-the-art LALMs, we track how attribute information evolves across layers and token positions. We find that attribute information generally decreases with layer depth when recognition fails, and that resolving attributes at earlier layers correlates with better accuracy. Moreover, LALMs heavily rely on querying auditory inputs for predicting attributes instead of aggregating necessary information in hidden states at attribute-mentioning positions. Based on our findings, we demonstrate a method to enhance LALMs. Our results offer insights into auditory attribute processing, paving the way for future improvements.
comment: 8 pages, 5 figures, 3 tables
☆ DiCoRe: Enhancing Zero-shot Event Detection via Divergent-Convergent LLM Reasoning ACL
Zero-shot Event Detection (ED), the task of identifying event mentions in natural language text without any training data, is critical for document understanding in specialized domains. Understanding the complex event ontology, extracting domain-specific triggers from the passage, and structuring them appropriately overloads and limits the utility of Large Language Models (LLMs) for zero-shot ED. To this end, we propose DiCoRe, a divergent-convergent reasoning framework that decouples the task of ED using Dreamer and Grounder. Dreamer encourages divergent reasoning through open-ended event discovery, which helps to boost event coverage. Conversely, Grounder introduces convergent reasoning to align the free-form predictions with the task-specific instructions using finite-state machine guided constrained decoding. Additionally, an LLM-Judge verifies the final outputs to ensure high precision. Through extensive experiments on six datasets across five domains and nine LLMs, we demonstrate how DiCoRe consistently outperforms prior zero-shot, transfer-learning, and reasoning baselines, achieving 4-7% average F1 gains over the best baseline -- establishing DiCoRe as a strong zero-shot ED framework.
comment: Submitted at ACL ARR May 2025
☆ Truly Self-Improving Agents Require Intrinsic Metacognitive Learning ICML 2025
Self-improving agents aim to continuously acquire new capabilities with minimal supervision. However, current approaches face two key limitations: their self-improvement processes are often rigid, fail to generalize across tasks domains, and struggle to scale with increasing agent capabilities. We argue that effective self-improvement requires intrinsic metacognitive learning, defined as an agent's intrinsic ability to actively evaluate, reflect on, and adapt its own learning processes. Drawing inspiration from human metacognition, we introduce a formal framework comprising three components: metacognitive knowledge (self-assessment of capabilities, tasks, and learning strategies), metacognitive planning (deciding what and how to learn), and metacognitive evaluation (reflecting on learning experiences to improve future learning). Analyzing existing self-improving agents, we find they rely predominantly on extrinsic metacognitive mechanisms, which are fixed, human-designed loops that limit scalability and adaptability. Examining each component, we contend that many ingredients for intrinsic metacognition are already present. Finally, we explore how to optimally distribute metacognitive responsibilities between humans and agents, and robustly evaluate and improve intrinsic metacognitive learning, key challenges that must be addressed to enable truly sustained, generalized, and aligned self-improvement.
comment: Published as a conference paper at ICML 2025
Survey on the Evaluation of Generative Models in Music
Research on generative systems in music has seen considerable attention and growth in recent years. A variety of attempts have been made to systematically evaluate such systems. We provide an interdisciplinary review of the common evaluation targets, methodologies, and metrics for the evaluation of both system output and model usability, covering subjective and objective approaches, qualitative and quantitative approaches, as well as empirical and computational methods. We discuss the advantages and challenges of such approaches from a musicological, an engineering, and an HCI perspective.
comment: Submitted to ACM CSUR, 26-Jun-2024
☆ Reason-to-Recommend: Using Interaction-of-Thought Reasoning to Enhance LLM Recommendation
Driven by advances in Large Language Models (LLMs), integrating them into recommendation tasks has gained interest due to their strong semantic understanding and prompt flexibility. Prior work encoded user-item interactions or metadata into prompts for recommendations. In parallel, LLM reasoning, boosted by test-time scaling and reinforcement learning, has excelled in fields like mathematics and code, where reasoning traces and correctness signals are clear, enabling high performance and interpretability. However, directly applying these reasoning methods to recommendation is ineffective because user feedback is implicit and lacks reasoning supervision. To address this, we propose $\textbf{R2Rec}$, a reasoning-enhanced recommendation framework that samples interaction chains from the user-item graph and converts them into structured interaction-of-thoughts via a progressive masked prompting strategy, with each thought representing stepwise reasoning grounded in interaction context. This allows LLMs to simulate step-by-step decision-making based on implicit patterns. We design a two-stage training pipeline: supervised fine-tuning teaches basic reasoning from high-quality traces, and reinforcement learning refines reasoning via reward signals, alleviating sparse explicit supervision. Experiments on three real-world datasets show R2Rec outperforms classical and LLM-based baselines with an average $\textbf{10.48%}$ improvement in HitRatio@1 and $\textbf{131.81%}$ gain over the original LLM. Furthermore, the explicit reasoning chains enhance interpretability by revealing the decision process. Our code is available at: https://anonymous.4open.science/r/R2Rec-7C5D.
☆ Does It Make Sense to Speak of Introspection in Large Language Models?
Large language models (LLMs) exhibit compelling linguistic behaviour, and sometimes offer self-reports, that is to say statements about their own nature, inner workings, or behaviour. In humans, such reports are often attributed to a faculty of introspection and are typically linked to consciousness. This raises the question of how to interpret self-reports produced by LLMs, given their increasing linguistic fluency and cognitive capabilities. To what extent (if any) can the concept of introspection be meaningfully applied to LLMs? Here, we present and critique two examples of apparent introspective self-report from LLMs. In the first example, an LLM attempts to describe the process behind its own ``creative'' writing, and we argue this is not a valid example of introspection. In the second example, an LLM correctly infers the value of its own temperature parameter, and we argue that this can be legitimately considered a minimal example of introspection, albeit one that is (presumably) not accompanied by conscious experience.
☆ TALL -- A Trainable Architecture for Enhancing LLM Performance in Low-Resource Languages
Large Language Models (LLMs) excel in high-resource languages but struggle with low-resource languages due to limited training data. This paper presents TALL (Trainable Architecture for Enhancing LLM Performance in Low-Resource Languages), which integrates an LLM with two bilingual translation models. TALL transforms low-resource inputs into high-resource representations, leveraging the LLM's capabilities while preserving linguistic features through dimension alignment layers and custom transformers. Our experiments on Hebrew demonstrate significant improvements over several baselines, including direct use, naive translation, and fine-tuning approaches. The architecture employs a parameter-efficient strategy, freezing pre-trained components while training only lightweight adapter modules, balancing computational efficiency with performance gains.
☆ TIMING: Temporality-Aware Integrated Gradients for Time Series Explanation ICML 2025
Recent explainable artificial intelligence (XAI) methods for time series primarily estimate point-wise attribution magnitudes, while overlooking the directional impact on predictions, leading to suboptimal identification of significant points. Our analysis shows that conventional Integrated Gradients (IG) effectively capture critical points with both positive and negative impacts on predictions. However, current evaluation metrics fail to assess this capability, as they inadvertently cancel out opposing feature contributions. To address this limitation, we propose novel evaluation metrics-Cumulative Prediction Difference (CPD) and Cumulative Prediction Preservation (CPP)-to systematically assess whether attribution methods accurately identify significant positive and negative points in time series XAI. Under these metrics, conventional IG outperforms recent counterparts. However, directly applying IG to time series data may lead to suboptimal outcomes, as generated paths ignore temporal relationships and introduce out-of-distribution samples. To overcome these challenges, we introduce TIMING, which enhances IG by incorporating temporal awareness while maintaining its theoretical properties. Extensive experiments on synthetic and real-world time series benchmarks demonstrate that TIMING outperforms existing time series XAI baselines. Our code is available at https://github.com/drumpt/TIMING.
comment: ICML 2025 Spotlight Presentation; Code is available at https://github.com/drumpt/TIMING
☆ Identifying and Understanding Cross-Class Features in Adversarial Training ICML 2025
Adversarial training (AT) has been considered one of the most effective methods for making deep neural networks robust against adversarial attacks, while the training mechanisms and dynamics of AT remain open research problems. In this paper, we present a novel perspective on studying AT through the lens of class-wise feature attribution. Specifically, we identify the impact of a key family of features on AT that are shared by multiple classes, which we call cross-class features. These features are typically useful for robust classification, which we offer theoretical evidence to illustrate through a synthetic data model. Through systematic studies across multiple model architectures and settings, we find that during the initial stage of AT, the model tends to learn more cross-class features until the best robustness checkpoint. As AT further squeezes the training robust loss and causes robust overfitting, the model tends to make decisions based on more class-specific features. Based on these discoveries, we further provide a unified view of two existing properties of AT, including the advantage of soft-label training and robust overfitting. Overall, these insights refine the current understanding of AT mechanisms and provide new perspectives on studying them. Our code is available at https://github.com/PKU-ML/Cross-Class-Features-AT.
comment: ICML 2025
☆ Artificial Intelligence Should Genuinely Support Clinical Reasoning and Decision Making To Bridge the Translational Gap
Artificial intelligence promises to revolutionise medicine, yet its impact remains limited because of the pervasive translational gap. We posit that the prevailing technology-centric approaches underpin this challenge, rendering such systems fundamentally incompatible with clinical practice, specifically diagnostic reasoning and decision making. Instead, we propose a novel sociotechnical conceptualisation of data-driven support tools designed to complement doctors' cognitive and epistemic activities. Crucially, it prioritises real-world impact over superhuman performance on inconsequential benchmarks.
☆ Hierarchical Language Models for Semantic Navigation and Manipulation in an Aerial-Ground Robotic System
Heterogeneous multi-robot systems show great potential in complex tasks requiring coordinated hybrid cooperation. However, traditional approaches relying on static models often struggle with task diversity and dynamic environments. This highlights the need for generalizable intelligence that can bridge high-level reasoning with low-level execution across heterogeneous agents. To address this, we propose a hierarchical framework integrating a prompted Large Language Model (LLM) and a GridMask-enhanced fine-tuned Vision Language Model (VLM). The LLM performs task decomposition and global semantic map construction, while the VLM extracts task-specified semantic labels and 2D spatial information from aerial images to support local planning. Within this framework, the aerial robot follows a globally optimized semantic path and continuously provides bird-view images, guiding the ground robot's local semantic navigation and manipulation, including target-absent scenarios where implicit alignment is maintained. Experiments on a real-world letter-cubes arrangement task demonstrate the framework's adaptability and robustness in dynamic environments. To the best of our knowledge, this is the first demonstration of an aerial-ground heterogeneous system integrating VLM-based perception with LLM-driven task reasoning and motion planning.
☆ Towards Reasonable Concept Bottleneck Models
In this paper, we propose $\textbf{C}$oncept $\textbf{REA}$soning $\textbf{M}$odels (CREAM), a novel family of Concept Bottleneck Models (CBMs) that: (i) explicitly encodes concept-concept (${\texttt{C-C}}$) and concept-task (${\texttt{C$\rightarrow$Y}}$) relationships to enforce a desired model reasoning; and (ii) use a regularized side-channel to achieve competitive task performance, while keeping high concept importance. Specifically, CREAM architecturally embeds (bi)directed concept-concept, and concept to task relationships specified by a human expert, while severing undesired information flows (e.g., to handle mutually exclusive concepts). Moreover, CREAM integrates a black-box side-channel that is regularized to encourage task predictions to be grounded in the relevant concepts, thereby utilizing the side-channel only when necessary to enhance performance. Our experiments show that: (i) CREAM mainly relies on concepts while achieving task performance on par with black-box models; and (ii) the embedded ${\texttt{C-C}}$ and ${\texttt{C$\rightarrow$Y}}$ relationships ease model interventions and mitigate concept leakage.
comment: 26 pages, 17 figures
☆ Mathematical Reasoning for Unmanned Aerial Vehicles: A RAG-Based Approach for Complex Arithmetic Reasoning
Autonomous UAV operation necessitates reliable mathematical reasoning for tasks such as trajectory planning and power management. While traditional flight control relies on hardcoded equations, recent Large Language Models (LLMs) offer potential for more flexible problem-solving but struggle with reliably selecting and applying correct mathematical formulations and executing precise multi-step arithmetic. We propose RAG-UAV, a retrieval-augmented generation framework designed to improve the mathematical reasoning of several LLMs (including GPT o1/Turbo, Llama-3.2/3.3, Mistral, and DeepSeek R1) in UAV-specific contexts by providing access to relevant domain literature. To conduct an initial assessment, we introduce the UAV-Math-Bench, a small problem set comprising 20 UAV-centric mathematical problems across four difficulty levels. Our experiments demonstrate that incorporating retrieval substantially increases exact answer accuracy (achieving up to 75% with o1), reduces instances of incorrect formulation selection (from 25% without RAG to 5% with RAG), decreases numerical errors, reducing Mean Squared Error (MSE) by orders of magnitude for the best-performing models. This pilot study indicates that RAG can enable general-purpose LLMs to function as more reliable tools for engineering analysis, although direct real-time flight control requires further investigation and validation on a larger scale. All benchmark data, question and answer are publicly available.
comment: 15 pages, 7 figures, 4 appendix subsections
☆ A Multi-Dataset Evaluation of Models for Automated Vulnerability Repair
Software vulnerabilities pose significant security threats, requiring effective mitigation. While Automated Program Repair (APR) has advanced in fixing general bugs, vulnerability patching, a security-critical aspect of APR remains underexplored. This study investigates pre-trained language models, CodeBERT and CodeT5, for automated vulnerability patching across six datasets and four languages. We evaluate their accuracy and generalization to unknown vulnerabilities. Results show that while both models face challenges with fragmented or sparse context, CodeBERT performs comparatively better in such scenarios, whereas CodeT5 excels in capturing complex vulnerability patterns. CodeT5 also demonstrates superior scalability. Furthermore, we test fine-tuned models on both in-distribution (trained) and out-of-distribution (unseen) datasets. While fine-tuning improves in-distribution performance, models struggle to generalize to unseen data, highlighting challenges in robust vulnerability detection. This study benchmarks model performance, identifies limitations in generalization, and provides actionable insights to advance automated vulnerability patching for real-world security applications.
comment: Preprint has been accepted in ARES AI&CCPS (International Workshop on Artificial Intelligence, Cyber and Cyber-Physical Security)
☆ From Struggle (06-2024) to Mastery (02-2025) LLMs Conquer Advanced Algorithm Exams and Pave the Way for Editorial Generation
This paper presents a comprehensive evaluation of the performance of state-of-the-art Large Language Models (LLMs) on challenging university-level algorithms exams. By testing multiple models on both a Romanian exam and its high-quality English translation, we analyze LLMs' problem-solving capabilities, consistency, and multilingual performance. Our empirical study reveals that the most recent models not only achieve scores comparable to top-performing students but also demonstrate robust reasoning skills on complex, multi-step algorithmic challenges, even though difficulties remain with graph-based tasks. Building on these findings, we explore the potential of LLMs to support educational environments through the generation of high-quality editorial content, offering instructors a powerful tool to enhance student feedback. The insights and best practices discussed herein pave the way for further integration of generative AI in advanced algorithm education.
comment: 15 pages Pre-print Paper accepted to ITS 2025
☆ Robustness as Architecture: Designing IQA Models to Withstand Adversarial Perturbations
Image Quality Assessment (IQA) models are increasingly relied upon to evaluate image quality in real-world systems -- from compression and enhancement to generation and streaming. Yet their adoption brings a fundamental risk: these models are inherently unstable. Adversarial manipulations can easily fool them, inflating scores and undermining trust. Traditionally, such vulnerabilities are addressed through data-driven defenses -- adversarial retraining, regularization, or input purification. But what if this is the wrong lens? What if robustness in perceptual models is not something to learn but something to design? In this work, we propose a provocative idea: robustness as an architectural prior. Rather than training models to resist perturbations, we reshape their internal structure to suppress sensitivity from the ground up. We achieve this by enforcing orthogonal information flow, constraining the network to norm-preserving operations -- and further stabilizing the system through pruning and fine-tuning. The result is a robust IQA architecture that withstands adversarial attacks without requiring adversarial training or significant changes to the original model. This approach suggests a shift in perspective: from optimizing robustness through data to engineering it through design.
☆ CzechLynx: A Dataset for Individual Identification and Pose Estimation of the Eurasian Lynx
We introduce CzechLynx, the first large-scale, open-access dataset for individual identification, 2D pose estimation, and instance segmentation of the Eurasian lynx (Lynx lynx). CzechLynx includes more than 30k camera trap images annotated with segmentation masks, identity labels, and 20-point skeletons and covers 219 unique individuals across 15 years of systematic monitoring in two geographically distinct regions: Southwest Bohemia and the Western Carpathians. To increase the data variability, we create a complementary synthetic set with more than 100k photorealistic images generated via a Unity-based pipeline and diffusion-driven text-to-texture modeling, covering diverse environments, poses, and coat-pattern variations. To allow testing generalization across spatial and temporal domains, we define three tailored evaluation protocols/splits: (i) geo-aware, (ii) time-aware open-set, and (iii) time-aware closed-set. This dataset is targeted to be instrumental in benchmarking state-of-the-art models and the development of novel methods for not just individual animal re-identification.
☆ Simulating LLM-to-LLM Tutoring for Multilingual Math Feedback
Large language models (LLMs) have demonstrated the ability to generate formative feedback and instructional hints in English, making them increasingly relevant for AI-assisted education. However, their ability to provide effective instructional support across different languages, especially for mathematically grounded reasoning tasks, remains largely unexamined. In this work, we present the first large-scale simulation of multilingual tutor-student interactions using LLMs. A stronger model plays the role of the tutor, generating feedback in the form of hints, while a weaker model simulates the student. We explore 352 experimental settings across 11 typologically diverse languages, four state-of-the-art LLMs, and multiple prompting strategies to assess whether language-specific feedback leads to measurable learning gains. Our study examines how student input language, teacher feedback language, model choice, and language resource level jointly influence performance. Results show that multilingual hints can significantly improve learning outcomes, particularly in low-resource languages when feedback is aligned with the student's native language. These findings offer practical insights for developing multilingual, LLM-based educational tools that are both effective and inclusive.
comment: Preprint, in submission
☆ Energentic Intelligence: From Self-Sustaining Systems to Enduring Artificial Life
This paper introduces Energentic Intelligence, a class of autonomous systems defined not by task performance, but by their capacity to sustain themselves through internal energy regulation. Departing from conventional reward-driven paradigms, these agents treat survival-maintaining functional operation under fluctuating energetic and thermal conditions-as the central objective. We formalize this principle through an energy-based utility function and a viability-constrained survival horizon, and propose a modular architecture that integrates energy harvesting, thermal regulation, and adaptive computation into a closed-loop control system. A simulated environment demonstrates the emergence of stable, resource-aware behavior without external supervision. Together, these contributions provide a theoretical and architectural foundation for deploying autonomous agents in resource-volatile settings where persistence must be self-regulated and infrastructure cannot be assumed.
☆ Differentiable Logic Cellular Automata: From Game of Life to Pattern Generation
This paper introduces Differentiable Logic Cellular Automata (DiffLogic CA), a novel combination of Neural Cellular Automata (NCA) and Differentiable Logic Gates Networks (DLGNs). The fundamental computation units of the model are differentiable logic gates, combined into a circuit. During training, the model is fully end-to-end differentiable allowing gradient-based training, and at inference time it operates in a fully discrete state space. This enables learning local update rules for cellular automata while preserving their inherent discrete nature. We demonstrate the versatility of our approach through a series of milestones: (1) fully learning the rules of Conway's Game of Life, (2) generating checkerboard patterns that exhibit resilience to noise and damage, (3) growing a lizard shape, and (4) multi-color pattern generation. Our model successfully learns recurrent circuits capable of generating desired target patterns. For simpler patterns, we observe success with both synchronous and asynchronous updates, demonstrating significant generalization capabilities and robustness to perturbations. We make the case that this combination of DLGNs and NCA represents a step toward programmable matter and robust computing systems that combine binary logic, neural network adaptability, and localized processing. This work, to the best of our knowledge, is the first successful application of differentiable logic gate networks in recurrent architectures.
☆ When Thinking LLMs Lie: Unveiling the Strategic Deception in Representations of Reasoning Models
The honesty of large language models (LLMs) is a critical alignment challenge, especially as advanced systems with chain-of-thought (CoT) reasoning may strategically deceive humans. Unlike traditional honesty issues on LLMs, which could be possibly explained as some kind of hallucination, those models' explicit thought paths enable us to study strategic deception--goal-driven, intentional misinformation where reasoning contradicts outputs. Using representation engineering, we systematically induce, detect, and control such deception in CoT-enabled LLMs, extracting "deception vectors" via Linear Artificial Tomography (LAT) for 89% detection accuracy. Through activation steering, we achieve a 40% success rate in eliciting context-appropriate deception without explicit prompts, unveiling the specific honesty-related issue of reasoning models and providing tools for trustworthy AI alignment.
☆ Verbose ListOps (VLO): Beyond Long Context -- Unmasking LLM's Reasoning Blind Spots
Large Language Models (LLMs), whilst great at extracting facts from text, struggle with nested narrative reasoning. Existing long context and multi-hop QA benchmarks inadequately test this, lacking realistic distractors or failing to decouple context length from reasoning complexity, masking a fundamental LLM limitation. We introduce Verbose ListOps, a novel benchmark that programmatically transposes ListOps computations into lengthy, coherent stories. This uniquely forces internal computation and state management of nested reasoning problems by withholding intermediate results, and offers fine-grained controls for both narrative size \emph{and} reasoning difficulty. Whilst benchmarks like LongReason (2025) advance approaches for synthetically expanding the context size of multi-hop QA problems, Verbose ListOps pinpoints a specific LLM vulnerability: difficulty in state management for nested sub-reasoning amongst semantically-relevant, distracting narrative. Our experiments show that leading LLMs (e.g., OpenAI o4, Gemini 2.5 Pro) collapse in performance on Verbose ListOps at modest (~10k token) narrative lengths, despite effortlessly solving raw ListOps equations. Addressing this failure is paramount for real-world text interpretation which requires identifying key reasoning points, tracking conceptual intermediate results, and filtering irrelevant information. Verbose ListOps, and its extensible generation framework thus enables targeted reasoning enhancements beyond mere context-window expansion; a critical step to automating the world's knowledge work.
☆ LLMs for sensory-motor control: Combining in-context and iterative learning
We propose a method that enables large language models (LLMs) to control embodied agents by directly mapping continuous observation vectors to continuous action vectors. Initially, the LLMs generate a control strategy based on a textual description of the agent, its environment, and the intended goal. This strategy is then iteratively refined through a learning process in which the LLMs are repeatedly prompted to improve the current strategy, using performance feedback and sensory-motor data collected during its evaluation. The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library. In most cases, it successfully identifies optimal or high-performing solutions by integrating symbolic knowledge derived through reasoning with sub-symbolic sensory-motor data gathered as the agent interacts with its environment.
comment: 24 pages (13 pages are from appendix), 6 figures, code for experiments replication and supplementary material provided at https://github.com/jtyska/llm-robotics-article/
☆ Towards Network Data Analytics in 5G Systems and Beyond
Data has become a critical asset in the digital economy, yet it remains underutilized by Mobile Network Operators (MNOs), unlike Over-the-Top (OTT) players that lead global market valuations. To move beyond the commoditization of connectivity and deliver greater value to customers, data analytics emerges as a strategic enabler. Using data efficiently is essential for unlocking new service opportunities, optimizing operational efficiency, and mitigating operational and business risks. Since Release 15, the 3rd Generation Partnership Project (3GPP) has introduced the Network Data Analytics Function (NWDAF) to provide powerful insights and predictions using data collected across mobile networks, supporting both user-centric and network-oriented use cases. However, academic research has largely focused on a limited set of methods and use cases, driven by the availability of datasets, restricting broader exploration. This study analyzes trends and gaps in more than 70 articles and proposes two novel use cases to promote the adoption of NWDAF and explore its potential for monetization.
comment: Submitted to XLIII BRAZILIAN SYMPOSIUM ON TELECOMMUNICATIONS AND SIGNAL PROCESSING - SBrT 2025
☆ Sparse Autoencoders, Again? ICML
Is there really much more to say about sparse autoencoders (SAEs)? Autoencoders in general, and SAEs in particular, represent deep architectures that are capable of modeling low-dimensional latent structure in data. Such structure could reflect, among other things, correlation patterns in large language model activations, or complex natural image manifolds. And yet despite the wide-ranging applicability, there have been relatively few changes to SAEs beyond the original recipe from decades ago, namely, standard deep encoder/decoder layers trained with a classical/deterministic sparse regularizer applied within the latent space. One possible exception is the variational autoencoder (VAE), which adopts a stochastic encoder module capable of producing sparse representations when applied to manifold data. In this work we formalize underappreciated weaknesses with both canonical SAEs, as well as analogous VAEs applied to similar tasks, and propose a hybrid alternative model that circumvents these prior limitations. In terms of theoretical support, we prove that global minima of our proposed model recover certain forms of structured data spread across a union of manifolds. Meanwhile, empirical evaluations on synthetic and real-world datasets substantiate the efficacy of our approach in accurately estimating underlying manifold dimensions and producing sparser latent representations without compromising reconstruction error. In general, we are able to exceed the performance of equivalent-capacity SAEs and VAEs, as well as recent diffusion models where applicable, within domains such as images and language model activation patterns.
comment: Accepted to the International Conference on Machine Learning (ICML) 2025
☆ Multiple-Choice Question Generation Using Large Language Models: Methodology and Educator Insights
Integrating Artificial Intelligence (AI) in educational settings has brought new learning approaches, transforming the practices of both students and educators. Among the various technologies driving this transformation, Large Language Models (LLMs) have emerged as powerful tools for creating educational materials and question answering, but there are still space for new applications. Educators commonly use Multiple-Choice Questions (MCQs) to assess student knowledge, but manually generating these questions is resource-intensive and requires significant time and cognitive effort. In our opinion, LLMs offer a promising solution to these challenges. This paper presents a novel comparative analysis of three widely known LLMs - Llama 2, Mistral, and GPT-3.5 - to explore their potential for creating informative and challenging MCQs. In our approach, we do not rely on the knowledge of the LLM, but we inject the knowledge into the prompt to contrast the hallucinations, giving the educators control over the test's source text, too. Our experiment involving 21 educators shows that GPT-3.5 generates the most effective MCQs across several known metrics. Additionally, it shows that there is still some reluctance to adopt AI in the educational field. This study sheds light on the potential of LLMs to generate MCQs and improve the educational experience, providing valuable insights for the future.
comment: Copyright ACM 2024. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization (UMAP Adjunct '24), http://dx.doi.org/10.1145/3631700.3665233
☆ Towards a Multi-Agent Simulation of Cyber-attackers and Cyber-defenders Battles
As cyber-attacks show to be more and more complex and coordinated, cyber-defenders strategy through multi-agent approaches could be key to tackle against cyber-attacks as close as entry points in a networked system. This paper presents a Markovian modeling and implementation through a simulator of fighting cyber-attacker agents and cyber-defender agents deployed on host network nodes. It aims to provide an experimental framework to implement realistically based coordinated cyber-attack scenarios while assessing cyber-defenders dynamic organizations. We abstracted network nodes by sets of properties including agents' ones. Actions applied by agents model how the network reacts depending in a given state and what properties are to change. Collective choice of the actions brings the whole environment closer or farther from respective cyber-attackers and cyber-defenders goals. Using the simulator, we implemented a realistically inspired scenario with several behavior implementation approaches for cyber-defenders and cyber-attackers.
☆ On Automating Security Policies with Contemporary LLMs
The complexity of modern computing environments and the growing sophistication of cyber threats necessitate a more robust, adaptive, and automated approach to security enforcement. In this paper, we present a framework leveraging large language models (LLMs) for automating attack mitigation policy compliance through an innovative combination of in-context learning and retrieval-augmented generation (RAG). We begin by describing how our system collects and manages both tool and API specifications, storing them in a vector database to enable efficient retrieval of relevant information. We then detail the architectural pipeline that first decomposes high-level mitigation policies into discrete tasks and subsequently translates each task into a set of actionable API calls. Our empirical evaluation, conducted using publicly available CTI policies in STIXv2 format and Windows API documentation, demonstrates significant improvements in precision, recall, and F1-score when employing RAG compared to a non-RAG baseline.
comment: Short Paper. Accepted To Appear in IEEE SSE 2025 (part of SERVICES 2025)
☆ Oversight Structures for Agentic AI in Public-Sector Organizations ACL2025
This paper finds that the introduction of agentic AI systems intensifies existing challenges to traditional public sector oversight mechanisms -- which rely on siloed compliance units and episodic approvals rather than continuous, integrated supervision. We identify five governance dimensions essential for responsible agent deployment: cross-departmental implementation, comprehensive evaluation, enhanced security protocols, operational visibility, and systematic auditing. We evaluate the capacity of existing oversight structures to meet these challenges, via a mixed-methods approach consisting of a literature review and interviews with civil servants in AI-related roles. We find that agent oversight poses intensified versions of three existing governance challenges: continuous oversight, deeper integration of governance and operational capabilities, and interdepartmental coordination. We propose approaches that both adapt institutional structures and design agent oversight compatible with public sector constraints.
comment: To appear at REALM@ACL2025
☆ Safe Planning and Policy Optimization via World Model Learning
Reinforcement Learning (RL) applications in real-world scenarios must prioritize safety and reliability, which impose strict constraints on agent behavior. Model-based RL leverages predictive world models for action planning and policy optimization, but inherent model inaccuracies can lead to catastrophic failures in safety-critical settings. We propose a novel model-based RL framework that jointly optimizes task performance and safety. To address world model errors, our method incorporates an adaptive mechanism that dynamically switches between model-based planning and direct policy execution. We resolve the objective mismatch problem of traditional model-based approaches using an implicit world model. Furthermore, our framework employs dynamic safety thresholds that adapt to the agent's evolving capabilities, consistently selecting actions that surpass safe policy suggestions in both performance and safety. Experiments demonstrate significant improvements over non-adaptive methods, showing that our approach optimizes safety and performance simultaneously rather than merely meeting minimum safety requirements. The proposed framework achieves robust performance on diverse safety-critical continuous control tasks, outperforming existing methods.
☆ A Reasoning-Based Approach to Cryptic Crossword Clue Solving ICML 2025
Cryptic crossword clues are challenging language tasks for which new test sets are released daily by major newspapers on a global basis. Each cryptic clue contains both the definition of the answer to be placed in the crossword grid (in common with regular crosswords), and 'wordplay' that proves that the answer is correct (i.e. a human solver can be confident that an answer is correct without needing crossing words as confirmation). This work describes an LLM-based reasoning system built from open-licensed components that solves cryptic clues by (i) hypothesising answers; (ii) proposing wordplay explanations; and (iii) using a verifier system that operates on codified reasoning steps. Overall, this system establishes a new state-of-the-art performance on the challenging Cryptonite dataset of clues from The Times and The Telegraph newspapers in the UK. Because each proved solution is expressed in Python, interpretable wordplay reasoning for proven answers is available for inspection.
comment: 9 page paper plus Appendices. Accepted to ICML 2025
☆ Dissecting Logical Reasoning in LLMs: A Fine-Grained Evaluation and Supervision Study
Logical reasoning is a core capability for many applications of large language models (LLMs), yet existing benchmarks often rely solely on final-answer accuracy, failing to capture the quality and structure of the reasoning process. We propose FineLogic, a fine-grained evaluation framework that assesses logical reasoning across three dimensions: overall benchmark accuracy, stepwise soundness, and representation-level alignment. In addition, to better understand how reasoning capabilities emerge, we conduct a comprehensive study on the effects of supervision format during fine-tuning. We construct four supervision styles (one natural language and three symbolic variants) and train LLMs under each. Our findings reveal that natural language supervision yields strong generalization even on out-of-distribution and long-context tasks, while symbolic reasoning styles promote more structurally sound and atomic inference chains. Further, our representation-level probing shows that fine-tuning primarily improves reasoning behaviors through step-by-step generation, rather than enhancing shortcut prediction or internalized correctness. Together, our framework and analysis provide a more rigorous and interpretable lens for evaluating and improving logical reasoning in LLMs.
☆ Towards LLM-Centric Multimodal Fusion: A Survey on Integration Strategies and Techniques
The rapid progress of Multimodal Large Language Models(MLLMs) has transformed the AI landscape. These models combine pre-trained LLMs with various modality encoders. This integration requires a systematic understanding of how different modalities connect to the language backbone. Our survey presents an LLM-centric analysis of current approaches. We examine methods for transforming and aligning diverse modal inputs into the language embedding space. This addresses a significant gap in existing literature. We propose a classification framework for MLLMs based on three key dimensions. First, we examine architectural strategies for modality integration. This includes both the specific integration mechanisms and the fusion level. Second, we categorize representation learning techniques as either joint or coordinate representations. Third, we analyze training paradigms, including training strategies and objective functions. By examining 125 MLLMs developed between 2021 and 2025, we identify emerging patterns in the field. Our taxonomy provides researchers with a structured overview of current integration techniques. These insights aim to guide the development of more robust multimodal integration strategies for future models built on pre-trained foundations.
comment: 18 pages, 3 figures, 3 tables
☆ Fine-Grained Interpretation of Political Opinions in Large Language Models
Studies of LLMs' political opinions mainly rely on evaluations of their open-ended responses. Recent work indicates that there is a misalignment between LLMs' responses and their internal intentions. This motivates us to probe LLMs' internal mechanisms and help uncover their internal political states. Additionally, we found that the analysis of LLMs' political opinions often relies on single-axis concepts, which can lead to concept confounds. In this work, we extend the single-axis to multi-dimensions and apply interpretable representation engineering techniques for more transparent LLM political concept learning. Specifically, we designed a four-dimensional political learning framework and constructed a corresponding dataset for fine-grained political concept vector learning. These vectors can be used to detect and intervene in LLM internals. Experiments are conducted on eight open-source LLMs with three representation engineering techniques. Results show these vectors can disentangle political concept confounds. Detection tasks validate the semantic meaning of the vectors and show good generalization and robustness in OOD settings. Intervention Experiments show these vectors can intervene in LLMs to generate responses with different political leanings.
☆ Ontology-based knowledge representation for bone disease diagnosis: a foundation for safe and sustainable medical artificial intelligence systems
Medical artificial intelligence (AI) systems frequently lack systematic domain expertise integration, potentially compromising diagnostic reliability. This study presents an ontology-based framework for bone disease diagnosis, developed in collaboration with Ho Chi Minh City Hospital for Traumatology and Orthopedics. The framework introduces three theoretical contributions: (1) a hierarchical neural network architecture guided by bone disease ontology for segmentation-classification tasks, incorporating Visual Language Models (VLMs) through prompts, (2) an ontology-enhanced Visual Question Answering (VQA) system for clinical reasoning, and (3) a multimodal deep learning model that integrates imaging, clinical, and laboratory data through ontological relationships. The methodology maintains clinical interpretability through systematic knowledge digitization, standardized medical terminology mapping, and modular architecture design. The framework demonstrates potential for extension beyond bone diseases through its standardized structure and reusable components. While theoretical foundations are established, experimental validation remains pending due to current dataset and computational resource limitations. Future work will focus on expanding the clinical dataset and conducting comprehensive system validation.
☆ Truth in the Few: High-Value Data Selection for Efficient Multi-Modal Reasoning
While multi-modal large language models (MLLMs) have made significant progress in complex reasoning tasks via reinforcement learning, it is commonly believed that extensive training data is necessary for improving multi-modal reasoning ability, inevitably leading to data redundancy and substantial computational costs. However, can smaller high-value datasets match or outperform full corpora for multi-modal reasoning in MLLMs? In this work, we challenge this assumption through a key observation: meaningful multi-modal reasoning is triggered by only a sparse subset of training samples, termed cognitive samples, whereas the majority contribute marginally. Building on this insight, we propose a novel data selection paradigm termed Reasoning Activation Potential (RAP), which identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning by two complementary estimators: 1) Causal Discrepancy Estimator (CDE) based on the potential outcome model principle, eliminates samples that overly rely on language priors by comparing outputs between multi-modal and text-only inputs; 2) Attention Confidence Estimator (ACE), which exploits token-level self-attention to discard samples dominated by irrelevant but over-emphasized tokens in intermediate reasoning stages. Moreover, we introduce a Difficulty-aware Replacement Module (DRM) to substitute trivial instances with cognitively challenging ones, thereby ensuring complexity for robust multi-modal reasoning. Experiments on six datasets show that our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%. Our code is available at https://github.com/Leo-ssl/RAP.
☆ Physics Informed Capsule Enhanced Variational AutoEncoder for Underwater Image Enhancement
We present a novel dual-stream architecture that achieves state-of-the-art underwater image enhancement by explicitly integrating the Jaffe-McGlamery physical model with capsule clustering-based feature representation learning. Our method simultaneously estimates transmission maps and spatially-varying background light through a dedicated physics estimator while extracting entity-level features via capsule clustering in a parallel stream. This physics-guided approach enables parameter-free enhancement that respects underwater formation constraints while preserving semantic structures and fine-grained details. Our approach also features a novel optimization objective ensuring both physical adherence and perceptual quality across multiple spatial frequencies. To validate our approach, we conducted extensive experiments across six challenging benchmarks. Results demonstrate consistent improvements of $+0.5$dB PSNR over the best existing methods while requiring only one-third of their computational complexity (FLOPs), or alternatively, more than $+1$dB PSNR improvement when compared to methods with similar computational budgets. Code and data \textit{will} be available at https://github.com/iN1k1/.
☆ Was Residual Penalty and Neural Operators All We Needed for Solving Optimal Control Problems?
Neural networks have been used to solve optimal control problems, typically by training neural networks using a combined loss function that considers data, differential equation residuals, and objective costs. We show that including cost functions in the training process is unnecessary, advocating for a simpler architecture and streamlined approach by decoupling the optimal control problem from the training process. Thus, our work shows that a simple neural operator architecture, such as DeepONet, coupled with an unconstrained optimization routine, can solve multiple optimal control problems with a single physics-informed training phase and a subsequent optimization phase. We achieve this by adding a penalty term based on the differential equation residual to the cost function and computing gradients with respect to the control using automatic differentiation through the trained neural operator within an iterative optimization routine. We showcase our method on nine distinct optimal control problems by training three separate DeepONet models, each corresponding to a different differential equation. For each model, we solve three problems with varying cost functions, demonstrating accurate and consistent performance across all cases.
☆ Lifelong Evolution: Collaborative Learning between Large and Small Language Models for Continuous Emergent Fake News Detection
The widespread dissemination of fake news on social media has significantly impacted society, resulting in serious consequences. Conventional deep learning methodologies employing small language models (SLMs) suffer from extensive supervised training requirements and difficulties adapting to evolving news environments due to data scarcity and distribution shifts. Large language models (LLMs), despite robust zero-shot capabilities, fall short in accurately detecting fake news owing to outdated knowledge and the absence of suitable demonstrations. In this paper, we propose a novel Continuous Collaborative Emergent Fake News Detection (C$^2$EFND) framework to address these challenges. The C$^2$EFND framework strategically leverages both LLMs' generalization power and SLMs' classification expertise via a multi-round collaborative learning framework. We further introduce a lifelong knowledge editing module based on a Mixture-of-Experts architecture to incrementally update LLMs and a replay-based continue learning method to ensure SLMs retain prior knowledge without retraining entirely. Extensive experiments on Pheme and Twitter16 datasets demonstrate that C$^2$EFND significantly outperforms existed methods, effectively improving detection accuracy and adaptability in continuous emergent fake news scenarios.
☆ Evaluation is All You Need: Strategic Overclaiming of LLM Reasoning Capabilities Through Evaluation Design
Reasoning models represented by the Deepseek-R1-Distill series have been widely adopted by the open-source community due to their strong performance in mathematics, science, programming, and other domains. However, our study reveals that their benchmark evaluation results are subject to significant fluctuations caused by various factors. Subtle differences in evaluation conditions can lead to substantial variations in results. Similar phenomena are observed in other open-source inference models fine-tuned based on the Deepseek-R1-Distill series, as well as in the QwQ-32B model, making their claimed performance improvements difficult to reproduce reliably. Therefore, we advocate for the establishment of a more rigorous paradigm for model performance evaluation and present our empirical assessments of the Deepseek-R1-Distill series models.
☆ Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning
Reinforcement learning (RL) has become the dominant paradigm for endowing language models with advanced reasoning capabilities. Despite the substantial empirical gains demonstrated by RL-based training methods like GRPO, a granular understanding of their advantages is still lacking. To address this gap, we introduce a fine-grained analytic framework to dissect the impact of RL on reasoning. Our framework specifically investigates key elements that have been hypothesized to benefit from RL training: (1) plan-following and execution, (2) problem decomposition, and (3) improved reasoning and knowledge utilization. Using this framework, we gain insights beyond mere accuracy. For instance, providing models with explicit step-by-step plans surprisingly degrades performance on the most challenging benchmarks, yet RL-tuned models exhibit greater robustness, experiencing markedly smaller performance drops than their base counterparts. This suggests that RL may not primarily enhance the execution of external plans but rather empower models to formulate and follow internal strategies better suited to their reasoning processes. Conversely, we observe that RL enhances the model's capacity to integrate provided knowledge into its reasoning process, leading to performance improvements across diverse tasks. We also study difficulty, showing improved training by developing new ways to exploit hard problems. Our findings lay a foundation for more principled training and evaluation of reasoning models.
☆ Using In-Context Learning for Automatic Defect Labelling of Display Manufacturing Data
This paper presents an AI-assisted auto-labeling system for display panel defect detection that leverages in-context learning capabilities. We adopt and enhance the SegGPT architecture with several domain-specific training techniques and introduce a scribble-based annotation mechanism to streamline the labeling process. Our two-stage training approach, validated on industrial display panel datasets, demonstrates significant improvements over the baseline model, achieving an average IoU increase of 0.22 and a 14% improvement in recall across multiple product types, while maintaining approximately 60% auto-labeling coverage. Experimental results show that models trained on our auto-labeled data match the performance of those trained on human-labeled data, offering a practical solution for reducing manual annotation efforts in industrial inspection systems.
☆ UNO: Unlearning via Orthogonalization in Generative models
As generative models become increasingly powerful and pervasive, the ability to unlearn specific data, whether due to privacy concerns, legal requirements, or the correction of harmful content, has become increasingly important. Unlike in conventional training, where data are accumulated and knowledge is reinforced, unlearning aims to selectively remove the influence of particular data points without costly retraining from scratch. To be effective and reliable, such algorithms need to achieve (i) forgetting of the undesired data, (ii) preservation of the quality of the generation, (iii) preservation of the influence of the desired training data on the model parameters, and (iv) small number of training steps. We propose fast unlearning algorithms based on loss gradient orthogonalization. We show that our algorithms are able to forget data while maintaining the fidelity of the original model. Using MNIST and CelebA data, we demonstrate that our algorithms achieve orders of magnitude faster unlearning times than their predecessors, such as gradient surgery.
☆ Line of Sight: On Linear Representations in VLLMs
Language models can be equipped with multimodal capabilities by fine-tuning on embeddings of visual inputs. But how do such multimodal models represent images in their hidden activations? We explore representations of image concepts within LlaVA-Next, a popular open-source VLLM. We find a diverse set of ImageNet classes represented via linearly decodable features in the residual stream. We show that the features are causal by performing targeted edits on the model output. In order to increase the diversity of the studied linear features, we train multimodal Sparse Autoencoders (SAEs), creating a highly interpretable dictionary of text and image features. We find that although model representations across modalities are quite disjoint, they become increasingly shared in deeper layers.
comment: 8 pages, 9 figures
☆ HoliSafe: Holistic Safety Benchmarking and Modeling with Safety Meta Token for Vision-Language Model
Despite emerging efforts to enhance the safety of Vision-Language Models (VLMs), current approaches face two main shortcomings. 1) Existing safety-tuning datasets and benchmarks only partially consider how image-text interactions can yield harmful content, often overlooking contextually unsafe outcomes from seemingly benign pairs. This narrow coverage leaves VLMs vulnerable to jailbreak attacks in unseen configurations. 2) Prior methods rely primarily on data-centric tuning, with limited architectural innovations to intrinsically strengthen safety. We address these gaps by introducing a holistic safety dataset and benchmark, HoliSafe, that spans all five safe/unsafe image-text combinations, providing a more robust basis for both training and evaluation. We further propose SafeLLaVA, a novel VLM augmented with a learnable safety meta token and a dedicated safety head. The meta token encodes harmful visual cues during training, intrinsically guiding the language model toward safer responses, while the safety head offers interpretable harmfulness classification aligned with refusal rationales. Experiments show that SafeLLaVA, trained on HoliSafe, achieves state-of-the-art safety performance across multiple VLM benchmarks. Additionally, the HoliSafe benchmark itself reveals critical vulnerabilities in existing models. We hope that HoliSafe and SafeLLaVA will spur further research into robust and interpretable VLM safety, expanding future avenues for multimodal alignment.
comment: Project page: https://youngwanlee.github.io/holisafe
☆ Explicit Density Approximation for Neural Implicit Samplers Using a Bernstein-Based Convex Divergence
Rank-based statistical metrics, such as the invariant statistical loss (ISL), have recently emerged as robust and practically effective tools for training implicit generative models. In this work, we introduce dual-ISL, a novel likelihood-free objective for training implicit generative models that interchanges the roles of the target and model distributions in the ISL framework, yielding a convex optimization problem in the space of model densities. We prove that the resulting rank-based discrepancy $d_K$ is i) continuous under weak convergence and with respect to the $L^1$ norm, and ii) convex in its first argument-properties not shared by classical divergences such as KL or Wasserstein distances. Building on this, we develop a theoretical framework that interprets $d_K$ as an $L^2$-projection of the density ratio $q = p/\tilde p$ onto a Bernstein polynomial basis, from which we derive exact bounds on the truncation error, precise convergence rates, and a closed-form expression for the truncated density approximation. We further extend our analysis to the multivariate setting via random one-dimensional projections, defining a sliced dual-ISL divergence that retains both convexity and continuity. We empirically show that these theoretical advantages translate into practical ones. Specifically, across several benchmarks dual-ISL converges more rapidly, delivers markedly smoother and more stable training, and more effectively prevents mode collapse than classical ISL and other leading implicit generative methods-while also providing an explicit density approximation.
☆ Empowering Economic Simulation for Massively Multiplayer Online Games through Generative Agent-Based Modeling KDD2025
Within the domain of Massively Multiplayer Online (MMO) economy research, Agent-Based Modeling (ABM) has emerged as a robust tool for analyzing game economics, evolving from rule-based agents to decision-making agents enhanced by reinforcement learning. Nevertheless, existing works encounter significant challenges when attempting to emulate human-like economic activities among agents, particularly regarding agent reliability, sociability, and interpretability. In this study, we take a preliminary step in introducing a novel approach using Large Language Models (LLMs) in MMO economy simulation. Leveraging LLMs' role-playing proficiency, generative capacity, and reasoning aptitude, we design LLM-driven agents with human-like decision-making and adaptability. These agents are equipped with the abilities of role-playing, perception, memory, and reasoning, addressing the aforementioned challenges effectively. Simulation experiments focusing on in-game economic activities demonstrate that LLM-empowered agents can promote emergent phenomena like role specialization and price fluctuations in line with market rules.
comment: KDD2025 Accepted
☆ On the Mechanism of Reasoning Pattern Selection in Reinforcement Learning for Language Models
Reinforcement learning (RL) has demonstrated remarkable success in enhancing model capabilities, including instruction-following, preference learning, and reasoning. Yet despite its empirical successes, the mechanisms by which RL improves reasoning abilities remain poorly understood. We present a systematic study of Reinforcement Learning with Verifiable Rewards (RLVR), showing that its primary benefit comes from optimizing the selection of existing reasoning patterns. Through extensive experiments, we demonstrate that RLVR-trained models preferentially adopt high-success-rate reasoning patterns while mostly maintaining stable performance on individual patterns. We further develop theoretical analyses on the convergence and training dynamics of RLVR based on a simplified question-reason-answer model. We study the gradient flow and show that RLVR can indeed find the solution that selects the reason pattern with the highest success rate. Besides, our theoretical results reveal two distinct regimes regarding the convergence of RLVR training: (1) rapid convergence for models with relatively strong initial reasoning capabilities versus (2) slower optimization dynamics for weaker models. Furthermore, we show that the slower optimization for weaker models can be mitigated by applying the supervised fine-tuning (SFT) before RLVR, when using a feasibly high-quality SFT dataset. We validate the theoretical findings through extensive experiments. This work advances our theoretical understanding of RL's role in LLM fine-tuning and offers insights for further enhancing reasoning capabilities.
comment: 30 pages, 6 figures, 1 table
☆ Influence Functions for Edge Edits in Non-Convex Graph Neural Networks
Understanding how individual edges influence the behavior of graph neural networks (GNNs) is essential for improving their interpretability and robustness. Graph influence functions have emerged as promising tools to efficiently estimate the effects of edge deletions without retraining. However, existing influence prediction methods rely on strict convexity assumptions, exclusively consider the influence of edge deletions while disregarding edge insertions, and fail to capture changes in message propagation caused by these modifications. In this work, we propose a proximal Bregman response function specifically tailored for GNNs, relaxing the convexity requirement and enabling accurate influence prediction for standard neural network architectures. Furthermore, our method explicitly accounts for message propagation effects and extends influence prediction to both edge deletions and insertions in a principled way. Experiments with real-world datasets demonstrate accurate influence predictions for different characteristics of GNNs. We further demonstrate that the influence function is versatile in applications such as graph rewiring and adversarial attacks.
☆ Towards Better Generalization via Distributional Input Projection Network
As overparameterized models become increasingly prevalent, training loss alone offers limited insight into generalization performance. While smoothness has been linked to improved generalization across various settings, directly enforcing smoothness in neural networks remains challenging. To address this, we introduce Distributional Input Projection Networks (DIPNet), a novel framework that projects inputs into learnable distributions at each layer. This distributional representation induces a smoother loss landscape with respect to the input, promoting better generalization. We provide theoretical analysis showing that DIPNet reduces both local smoothness measures and the Lipschitz constant of the network, contributing to improved generalization performance. Empirically, we validate DIPNet across a wide range of architectures and tasks, including Vision Transformers (ViTs), Large Language Models (LLMs), ResNet and MLPs. Our method consistently enhances test performance under standard settings, adversarial attacks, out-of-distribution inputs, and reasoning benchmarks. We demonstrate that the proposed input projection strategy can be seamlessly integrated into existing models, providing a general and effective approach for boosting generalization performance in modern deep learning.
☆ MMRefine: Unveiling the Obstacles to Robust Refinement in Multimodal Large Language Models ACL
This paper introduces MMRefine, a MultiModal Refinement benchmark designed to evaluate the error refinement capabilities of Multimodal Large Language Models (MLLMs). As the emphasis shifts toward enhancing reasoning during inference, MMRefine provides a framework that evaluates MLLMs' abilities to detect and correct errors across six distinct scenarios beyond just comparing final accuracy before and after refinement. Furthermore, the benchmark analyzes the refinement performance by categorizing errors into six error types. Experiments with various open and closed MLLMs reveal bottlenecks and factors impeding refinement performance, highlighting areas for improvement in effective reasoning enhancement. Our code and dataset are publicly available at https://github.com/naver-ai/MMRefine.
comment: ACL Findings 2025
☆ Urania: Differentially Private Insights into AI Use
We introduce $Urania$, a novel framework for generating insights about LLM chatbot interactions with rigorous differential privacy (DP) guarantees. The framework employs a private clustering mechanism and innovative keyword extraction methods, including frequency-based, TF-IDF-based, and LLM-guided approaches. By leveraging DP tools such as clustering, partition selection, and histogram-based summarization, $Urania$ provides end-to-end privacy protection. Our evaluation assesses lexical and semantic content preservation, pair similarity, and LLM-based metrics, benchmarking against a non-private Clio-inspired pipeline (Tamkin et al., 2024). Moreover, we develop a simple empirical privacy evaluation that demonstrates the enhanced robustness of our DP pipeline. The results show the framework's ability to extract meaningful conversational insights while maintaining stringent user privacy, effectively balancing data utility with privacy preservation.
☆ Gen-n-Val: Agentic Image Data Generation and Validation
Recently, Large Language Models (LLMs) and Vision Large Language Models (VLLMs) have demonstrated impressive performance as agents across various tasks while data scarcity and label noise remain significant challenges in computer vision tasks, such as object detection and instance segmentation. A common solution for resolving these issues is to generate synthetic data. However, current synthetic data generation methods struggle with issues, such as multiple objects per mask, inaccurate segmentation, and incorrect category labels, limiting their effectiveness. To address these issues, we introduce Gen-n-Val, a novel agentic data generation framework that leverages Layer Diffusion (LD), LLMs, and VLLMs to produce high-quality, single-object masks and diverse backgrounds. Gen-n-Val consists of two agents: (1) The LD prompt agent, an LLM, optimizes prompts for LD to generate high-quality foreground instance images and segmentation masks. These optimized prompts ensure the generation of single-object synthetic data with precise instance masks and clean backgrounds. (2) The data validation agent, a VLLM, which filters out low-quality synthetic instance images. The system prompts for both agents are refined through TextGrad. Additionally, we use image harmonization to combine multiple instances within scenes. Compared to state-of-the-art synthetic data approaches like MosaicFusion, our approach reduces invalid synthetic data from 50% to 7% and improves performance by 1% mAP on rare classes in COCO instance segmentation with YOLOv9c and YOLO11m. Furthermore, Gen-n-Val shows significant improvements (7. 1% mAP) over YOLO-Worldv2-M in open-vocabulary object detection benchmarks with YOLO11m. Moreover, Gen-n-Val improves the performance of YOLOv9 and YOLO11 families in instance segmentation and object detection.
☆ Feature-Based Lie Group Transformer for Real-World Applications
The main goal of representation learning is to acquire meaningful representations from real-world sensory inputs without supervision. Representation learning explains some aspects of human development. Various neural network (NN) models have been proposed that acquire empirically good representations. However, the formulation of a good representation has not been established. We recently proposed a method for categorizing changes between a pair of sensory inputs. A unique feature of this approach is that transformations between two sensory inputs are learned to satisfy algebraic structural constraints. Conventional representation learning often assumes that disentangled independent feature axes is a good representation; however, we found that such a representation cannot account for conditional independence. To overcome this problem, we proposed a new method using group decomposition in Galois algebra theory. Although this method is promising for defining a more general representation, it assumes pixel-to-pixel translation without feature extraction, and can only process low-resolution images with no background, which prevents real-world application. In this study, we provide a simple method to apply our group decomposition theory to a more realistic scenario by combining feature extraction and object segmentation. We replace pixel translation with feature translation and formulate object segmentation as grouping features under the same transformation. We validated the proposed method on a practical dataset containing both real-world object and background. We believe that our model will lead to a better understanding of human development of object recognition in the real world.
☆ E-bike agents: Large Language Model-Driven E-Bike Accident Analysis and Severity Prediction
Electric bicycles (e-bikes) are rapidly increasing in use, raising safety concerns due to a rise in accident reports. However, e-bike incident reports often use unstructured narrative formats, which hinders quantitative safety analysis. This study introduces E-bike agents, a framework that uses large language models (LLM) powered agents to classify and extract safety variables from unstructured incident reports. Our framework consists of four LLM agents, handling data classification, information extraction, injury cause determination, and component linkage, to extract the key factors that could lead to E-bike accidents and cause varying severity levels. Furthermore, we used an ordered logit model to examine the relationship between the severity of the incident and the factors retrieved, such as gender, the type of cause, and environmental conditions. Our research shows that equipment issues are slightly more common than human-related ones, but human-related incidents are more often fatal. Specifically, pedals, tires, and brakes are frequent contributors to accidents. The model achieves a high weighted F1 score of 0.87 in classification accuracy, highlighting the potential of using LLMs to extract unstructured data in niche domains, such as transportation. Our method offers a scalable solution to improve e-bike safety analytics and provides actionable information for policy makers, designers, and regulators.
☆ Agents of Change: Self-Evolving LLM Agents for Strategic Planning
Recent advances in LLMs have enabled their use as autonomous agents across a range of tasks, yet they continue to struggle with formulating and adhering to coherent long-term strategies. In this paper, we investigate whether LLM agents can self-improve when placed in environments that explicitly challenge their strategic planning abilities. Using the board game Settlers of Catan, accessed through the open-source Catanatron framework, we benchmark a progression of LLM-based agents, from a simple game-playing agent to systems capable of autonomously rewriting their own prompts and their player agent's code. We introduce a multi-agent architecture in which specialized roles (Analyzer, Researcher, Coder, and Player) collaborate to iteratively analyze gameplay, research new strategies, and modify the agent's logic or prompt. By comparing manually crafted agents to those evolved entirely by LLMs, we evaluate how effectively these systems can diagnose failure and adapt over time. Our results show that self-evolving agents, particularly when powered by models like Claude 3.7 and GPT-4o, outperform static baselines by autonomously adopting their strategies, passing along sample behavior to game-playing agents, and demonstrating adaptive reasoning over multiple iterations.
☆ CHANCERY: Evaluating corporate governance reasoning capabilities in language models
Law has long been a domain that has been popular in natural language processing (NLP) applications. Reasoning (ratiocination and the ability to make connections to precedent) is a core part of the practice of the law in the real world. Nevertheless, while multiple legal datasets exist, none have thus far focused specifically on reasoning tasks. We focus on a specific aspect of the legal landscape by introducing a corporate governance reasoning benchmark (CHANCERY) to test a model's ability to reason about whether executive/board/shareholder's proposed actions are consistent with corporate governance charters. This benchmark introduces a first-of-its-kind corporate governance reasoning test for language models - modeled after real world corporate governance law. The benchmark consists of a corporate charter (a set of governing covenants) and a proposal for executive action. The model's task is one of binary classification: reason about whether the action is consistent with the rules contained within the charter. We create the benchmark following established principles of corporate governance - 24 concrete corporate governance principles established in and 79 real life corporate charters selected to represent diverse industries from a total dataset of 10k real life corporate charters. Evaluations on state-of-the-art (SOTA) reasoning models confirm the difficulty of the benchmark, with models such as Claude 3.7 Sonnet and GPT-4o achieving 64.5% and 75.2% accuracy respectively. Reasoning agents exhibit superior performance, with agents based on the ReAct and CodeAct frameworks scoring 76.1% and 78.1% respectively, further confirming the advanced legal reasoning capabilities required to score highly on the benchmark. We also conduct an analysis of the types of questions which current reasoning models struggle on, revealing insights into the legal reasoning capabilities of SOTA models.
☆ Static Word Embeddings for Sentence Semantic Representation
We propose new static word embeddings optimised for sentence semantic representation. We first extract word embeddings from a pre-trained Sentence Transformer, and improve them with sentence-level principal component analysis, followed by either knowledge distillation or contrastive learning. During inference, we represent sentences by simply averaging word embeddings, which requires little computational cost. We evaluate models on both monolingual and cross-lingual tasks and show that our model substantially outperforms existing static models on sentence semantic tasks, and even rivals a basic Sentence Transformer model (SimCSE) on some data sets. Lastly, we perform a variety of analyses and show that our method successfully removes word embedding components that are irrelevant to sentence semantics, and adjusts the vector norms based on the influence of words on sentence semantics.
comment: 15 pages
☆ Look Before You Leap: A GUI-Critic-R1 Model for Pre-Operative Error Diagnosis in GUI Automation
In recent years, Multimodal Large Language Models (MLLMs) have been extensively utilized for multimodal reasoning tasks, including Graphical User Interface (GUI) automation. Unlike general offline multimodal tasks, GUI automation is executed in online interactive environments, necessitating step-by-step decision-making based on real-time status of the environment. This task has a lower tolerance for decision-making errors at each step, as any mistakes may cumulatively disrupt the process and potentially lead to irreversible outcomes like deletions or payments. To address these issues, we introduce a pre-operative critic mechanism that provides effective feedback prior to the actual execution, by reasoning about the potential outcome and correctness of actions. Specifically, we propose a Suggestion-aware Gradient Relative Policy Optimization (S-GRPO) strategy to construct our pre-operative critic model GUI-Critic-R1, incorporating a novel suggestion reward to enhance the reliability of the model's feedback. Furthermore, we develop a reasoning-bootstrapping based data collection pipeline to create a GUI-Critic-Train and a GUI-Critic-Test, filling existing gaps in GUI critic data. Static experiments on the GUI-Critic-Test across both mobile and web domains reveal that our GUI-Critic-R1 offers significant advantages in critic accuracy compared to current MLLMs. Dynamic evaluation on GUI automation benchmark further highlights the effectiveness and superiority of our model, as evidenced by improved success rates and operational efficiency.
☆ DeePoly: A High-Order Accuracy and Efficiency Deep-Polynomial Framework for Scientific Machine Learning
Recently, machine learning methods have gained significant traction in scientific computing, particularly for solving Partial Differential Equations (PDEs). However, methods based on deep neural networks (DNNs) often lack convergence guarantees and computational efficiency compared to traditional numerical schemes. This work introduces DeePoly, a novel framework that transforms the solution paradigm from pure non-convex parameter optimization to a two-stage approach: first employing a DNN to capture complex global features, followed by linear space optimization with combined DNN-extracted features (Scoper) and polynomial basis functions (Sniper). This strategic combination leverages the complementary strengths of both methods -- DNNs excel at approximating complex global features (i.e., high-gradient features) and stabilize the polynomial approximation while polynomial bases provide high-precision local corrections with convergence guarantees. Theoretical analysis and numerical experiments demonstrate that this approach significantly enhances both high-order accuracy and efficiency across diverse problem types while maintaining mesh-free and scheme-free properties. This paper also serves as a theoretical exposition for the open-source project DeePoly.
comment: for associated mpeg file, see http://github.com/bfly123/DeePoly
☆ Judicial Permission
This paper examines the significance of weak permissions in criminal trials (\emph{judicial permission}). It introduces a dialogue game model to systematically address judicial permissions, considering different standards of proof and argumentation semantics.
☆ Scaling Laws for Robust Comparison of Open Foundation Language-Vision Models and Datasets
In studies of transferable learning, scaling laws are obtained for various important foundation models to predict their properties and performance at larger scales. We show here how scaling law derivation can also be used for model and dataset comparison, allowing to decide which procedure is to be preferred for pre-training. For the first time, full scaling laws based on dense measurements across a wide span of model and samples seen scales are derived for two important language-vision learning procedures, CLIP and MaMMUT, that use either contrastive only or contrastive and captioning text generative loss. Ensuring sufficient prediction accuracy for held out points, we use derived scaling laws to compare both models, obtaining evidence for MaMMUT's stronger improvement with scale and better sample efficiency than standard CLIP. To strengthen validity of the comparison, we show scaling laws for various downstream tasks, classification, retrieval, and segmentation, and for different open datasets, DataComp, DFN and Re-LAION, observing consistently the same trends. We show that comparison can also be performed when deriving scaling laws with a constant learning rate schedule, reducing compute cost. Accurate derivation of scaling laws provides thus means to perform model and dataset comparison across scale spans, avoiding misleading conclusions based on measurements from single reference scales only, paving the road for systematic comparison and improvement of open foundation models and datasets for their creation. We release all the pre-trained models with their intermediate checkpoints, including openMaMMUT-L/14, which achieves $80.3\%$ zero-shot ImageNet-1k accuracy, trained on 12.8B samples from DataComp-1.4B. Code for reproducing experiments in the paper and raw experiments data can be found at https://github.com/LAION-AI/scaling-laws-for-comparison.
comment: Preprint. In Review
☆ Intelligent Channel Allocation for IEEE 802.11be Multi-Link Operation: When MAB Meets LLM
WiFi networks have achieved remarkable success in enabling seamless communication and data exchange worldwide. The IEEE 802.11be standard, known as WiFi 7, introduces Multi-Link Operation (MLO), a groundbreaking feature that enables devices to establish multiple simultaneous connections across different bands and channels. While MLO promises substantial improvements in network throughput and latency reduction, it presents significant challenges in channel allocation, particularly in dense network environments. Current research has predominantly focused on performance analysis and throughput optimization within static WiFi 7 network configurations. In contrast, this paper addresses the dynamic channel allocation problem in dense WiFi 7 networks with MLO capabilities. We formulate this challenge as a combinatorial optimization problem, leveraging a novel network performance analysis mechanism. Given the inherent lack of prior network information, we model the problem within a Multi-Armed Bandit (MAB) framework to enable online learning of optimal channel allocations. Our proposed Best-Arm Identification-enabled Monte Carlo Tree Search (BAI-MCTS) algorithm includes rigorous theoretical analysis, providing upper bounds for both sample complexity and error probability. To further reduce sample complexity and enhance generalizability across diverse network scenarios, we put forth LLM-BAI-MCTS, an intelligent algorithm for the dynamic channel allocation problem by integrating the Large Language Model (LLM) into the BAI-MCTS algorithm. Numerical results demonstrate that the BAI-MCTS algorithm achieves a convergence rate approximately $50.44\%$ faster than the state-of-the-art algorithms when reaching $98\%$ of the optimal value. Notably, the convergence rate of the LLM-BAI-MCTS algorithm increases by over $63.32\%$ in dense networks.
comment: This work has been accepted by JSAC 2025
☆ Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification ACL 2025
Chain-of-Thought (CoT) prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs). However, to mitigate hallucinations in CoT that are notoriously difficult to detect, current methods such as process reward models (PRMs) or self-consistency operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness. To address this issue, we draw inspiration from the idea that "the gold standard for supporting a mathematical claim is to provide a proof". We propose a retrospective, step-aware formal verification framework $Safe$. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations. We evaluate our framework $Safe$ across multiple language models and various mathematical datasets, demonstrating a significant performance improvement while offering interpretable and verifiable evidence. We also propose $FormalStep$ as a benchmark for step correctness theorem proving with $30,809$ formal statements. To the best of our knowledge, our work represents the first endeavor to utilize formal mathematical language Lean 4 for verifying natural language content generated by LLMs, aligning with the reason why formal mathematical languages were created in the first place: to provide a robust foundation for hallucination-prone human-written proofs.
comment: Accepted in ACL 2025
☆ SUCEA: Reasoning-Intensive Retrieval for Adversarial Fact-checking through Claim Decomposition and Editing
Automatic fact-checking has recently received more attention as a means of combating misinformation. Despite significant advancements, fact-checking systems based on retrieval-augmented language models still struggle to tackle adversarial claims, which are intentionally designed by humans to challenge fact-checking systems. To address these challenges, we propose a training-free method designed to rephrase the original claim, making it easier to locate supporting evidence. Our modular framework, SUCEA, decomposes the task into three steps: 1) Claim Segmentation and Decontextualization that segments adversarial claims into independent sub-claims; 2) Iterative Evidence Retrieval and Claim Editing that iteratively retrieves evidence and edits the subclaim based on the retrieved evidence; 3) Evidence Aggregation and Label Prediction that aggregates all retrieved evidence and predicts the entailment label. Experiments on two challenging fact-checking datasets demonstrate that our framework significantly improves on both retrieval and entailment label accuracy, outperforming four strong claim-decomposition-based baselines.
comment: 16 pages, 10 figures, 7 tables
☆ Reasoning or Overthinking: Evaluating Large Language Models on Financial Sentiment Analysis
We investigate the effectiveness of large language models (LLMs), including reasoning-based and non-reasoning models, in performing zero-shot financial sentiment analysis. Using the Financial PhraseBank dataset annotated by domain experts, we evaluate how various LLMs and prompting strategies align with human-labeled sentiment in a financial context. We compare three proprietary LLMs (GPT-4o, GPT-4.1, o3-mini) under different prompting paradigms that simulate System 1 (fast and intuitive) or System 2 (slow and deliberate) thinking and benchmark them against two smaller models (FinBERT-Prosus, FinBERT-Tone) fine-tuned on financial sentiment analysis. Our findings suggest that reasoning, either through prompting or inherent model design, does not improve performance on this task. Surprisingly, the most accurate and human-aligned combination of model and method was GPT-4o without any Chain-of-Thought (CoT) prompting. We further explore how performance is impacted by linguistic complexity and annotation agreement levels, uncovering that reasoning may introduce overthinking, leading to suboptimal predictions. This suggests that for financial sentiment classification, fast, intuitive "System 1"-like thinking aligns more closely with human judgment compared to "System 2"-style slower, deliberative reasoning simulated by reasoning models or CoT prompting. Our results challenge the default assumption that more reasoning always leads to better LLM decisions, particularly in high-stakes financial applications.
☆ OpenAg: Democratizing Agricultural Intelligence
Agriculture is undergoing a major transformation driven by artificial intelligence (AI), machine learning, and knowledge representation technologies. However, current agricultural intelligence systems often lack contextual understanding, explainability, and adaptability, especially for smallholder farmers with limited resources. General-purpose large language models (LLMs), while powerful, typically lack the domain-specific knowledge and contextual reasoning needed for practical decision support in farming. They tend to produce recommendations that are too generic or unrealistic for real-world applications. To address these challenges, we present OpenAg, a comprehensive framework designed to advance agricultural artificial general intelligence (AGI). OpenAg combines domain-specific foundation models, neural knowledge graphs, multi-agent reasoning, causal explainability, and adaptive transfer learning to deliver context-aware, explainable, and actionable insights. The system includes: (i) a unified agricultural knowledge base that integrates scientific literature, sensor data, and farmer-generated knowledge; (ii) a neural agricultural knowledge graph for structured reasoning and inference; (iii) an adaptive multi-agent reasoning system where AI agents specialize and collaborate across agricultural domains; and (iv) a causal transparency mechanism that ensures AI recommendations are interpretable, scientifically grounded, and aligned with real-world constraints. OpenAg aims to bridge the gap between scientific knowledge and the tacit expertise of experienced farmers to support scalable and locally relevant agricultural decision-making.
comment: 10 pages, 1 figure
☆ Clustering and Median Aggregation Improve Differentially Private Inference
Differentially private (DP) language model inference is an approach for generating private synthetic text. A sensitive input example is used to prompt an off-the-shelf large language model (LLM) to produce a similar example. Multiple examples can be aggregated together to formally satisfy the DP guarantee. Prior work creates inference batches by sampling sensitive inputs uniformly at random. We show that uniform sampling degrades the quality of privately generated text, especially when the sensitive examples concern heterogeneous topics. We remedy this problem by clustering the input data before selecting inference batches. Next, we observe that clustering also leads to more similar next-token predictions across inferences. We use this insight to introduce a new algorithm that aggregates next token statistics by privately computing medians instead of averages. This approach leverages the fact that the median has decreased local sensitivity when next token predictions are similar, allowing us to state a data-dependent and ex-post DP guarantee about the privacy properties of this algorithm. Finally, we demonstrate improvements in terms of representativeness metrics (e.g., MAUVE) as well as downstream task performance. We show that our method produces high-quality synthetic data at significantly lower privacy cost than a previous state-of-the-art method.
☆ SSA-COMET: Do LLMs Outperform Learned Metrics in Evaluating MT for Under-Resourced African Languages?
Evaluating machine translation (MT) quality for under-resourced African languages remains a significant challenge, as existing metrics often suffer from limited language coverage and poor performance in low-resource settings. While recent efforts, such as AfriCOMET, have addressed some of the issues, they are still constrained by small evaluation sets, a lack of publicly available training data tailored to African languages, and inconsistent performance in extremely low-resource scenarios. In this work, we introduce SSA-MTE, a large-scale human-annotated MT evaluation (MTE) dataset covering 13 African language pairs from the News domain, with over 63,000 sentence-level annotations from a diverse set of MT systems. Based on this data, we develop SSA-COMET and SSA-COMET-QE, improved reference-based and reference-free evaluation metrics. We also benchmark prompting-based approaches using state-of-the-art LLMs like GPT-4o and Claude. Our experimental results show that SSA-COMET models significantly outperform AfriCOMET and are competitive with the strongest LLM (Gemini 2.5 Pro) evaluated in our study, particularly on low-resource languages such as Twi, Luo, and Yoruba. All resources are released under open licenses to support future research.
☆ BESA: Boosting Encoder Stealing Attack with Perturbation Recovery
To boost the encoder stealing attack under the perturbation-based defense that hinders the attack performance, we propose a boosting encoder stealing attack with perturbation recovery named BESA. It aims to overcome perturbation-based defenses. The core of BESA consists of two modules: perturbation detection and perturbation recovery, which can be combined with canonical encoder stealing attacks. The perturbation detection module utilizes the feature vectors obtained from the target encoder to infer the defense mechanism employed by the service provider. Once the defense mechanism is detected, the perturbation recovery module leverages the well-designed generative model to restore a clean feature vector from the perturbed one. Through extensive evaluations based on various datasets, we demonstrate that BESA significantly enhances the surrogate encoder accuracy of existing encoder stealing attacks by up to 24.63\% when facing state-of-the-art defenses and combinations of multiple defenses.
☆ hdl2v: A Code Translation Dataset for Enhanced LLM Verilog Generation
Large language models (LLMs) are playing an increasingly large role in domains such as code generation, including hardware code generation, where Verilog is the key language. However, the amount of publicly available Verilog code pales in comparison to the amount of code available for software languages like Python. In this work, we present hdl2v ("HDL-to-Verilog"), a dataset which seeks to increase the amount of available human-written Verilog data by translating or compiling three other hardware description languages - VHDL, Chisel, and PyMTL3 - to Verilog. Furthermore, we demonstrate the value of hdl2v in enhancing LLM Verilog generation by improving performance of a 32 billion-parameter open-weight model by up to 23% (pass@10) in VerilogEvalV2, without utilizing any data augmentation or knowledge distillation from larger models. We also show hdl2v's ability to boost the performance of a data augmentation-based fine-tuning approach by 63%. Finally, we characterize and analyze our dataset to better understand which characteristics of HDL-to-Verilog datasets can be expanded upon in future work for even better performance.
☆ NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
Characterizing the diverse computational properties of human neurons via multimodal electrophysiological, transcriptomic, and morphological data provides the foundation for constructing and validating bio-realistic neuron models that can advance our understanding of fundamental mechanisms underlying brain function. However, current modeling approaches remain constrained by the limited availability and intrinsic variability of experimental neuronal data. To capture variability, ensembles of deterministic models are often used, but are difficult to scale as model generation requires repeating computationally expensive optimization for each neuron. While deep learning is becoming increasingly relevant in this space, it fails to capture the full biophysical complexity of neurons, their nonlinear voltage dynamics, and variability. To address these shortcomings, we introduce NOBLE, a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection. Trained on data generated from biophysically realistic neuron models, NOBLE predicts distributions of neural dynamics accounting for the intrinsic experimental variability. Unlike conventional bio-realistic neuron models, interpolating within the embedding space offers models whose dynamics are consistent with experimentally observed responses. NOBLE is the first scaled-up deep learning framework validated on real experimental data, enabling efficient generation of synthetic neurons that exhibit trial-to-trial variability and achieve a $4200\times$ speedup over numerical solvers. To this end, NOBLE captures fundamental neural properties, opening the door to a better understanding of cellular composition and computations, neuromorphic architectures, large-scale brain circuits, and general neuroAI applications.
☆ Is It JUST Semantics? A Case Study of Discourse Particle Understanding in LLMs ACL 2025
Discourse particles are crucial elements that subtly shape the meaning of text. These words, often polyfunctional, give rise to nuanced and often quite disparate semantic/discourse effects, as exemplified by the diverse uses of the particle "just" (e.g., exclusive, temporal, emphatic). This work investigates the capacity of LLMs to distinguish the fine-grained senses of English "just", a well-studied example in formal semantics, using data meticulously created and labeled by expert linguists. Our findings reveal that while LLMs exhibit some ability to differentiate between broader categories, they struggle to fully capture more subtle nuances, highlighting a gap in their understanding of discourse particles.
comment: To be published in Findings of The 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025). The main paper is 5 pages and contains 3 figures and 1 table. In total, the paper is 12 pages and contains 8 figures and 5 tables (References + Appendix)
☆ Bayesian Inference for Correlated Human Experts and Classifiers ICML 2025
Applications of machine learning often involve making predictions based on both model outputs and the opinions of human experts. In this context, we investigate the problem of querying experts for class label predictions, using as few human queries as possible, and leveraging the class probability estimates of pre-trained classifiers. We develop a general Bayesian framework for this problem, modeling expert correlation via a joint latent representation, enabling simulation-based inference about the utility of additional expert queries, as well as inference of posterior distributions over unobserved expert labels. We apply our approach to two real-world medical classification problems, as well as to CIFAR-10H and ImageNet-16H, demonstrating substantial reductions relative to baselines in the cost of querying human experts while maintaining high prediction accuracy.
comment: accepted to ICML 2025
☆ AutoQD: Automatic Discovery of Diverse Behaviors with Quality-Diversity Optimization
Quality-Diversity (QD) algorithms have shown remarkable success in discovering diverse, high-performing solutions, but rely heavily on hand-crafted behavioral descriptors that constrain exploration to predefined notions of diversity. Leveraging the equivalence between policies and occupancy measures, we present a theoretically grounded approach to automatically generate behavioral descriptors by embedding the occupancy measures of policies in Markov Decision Processes. Our method, AutoQD, leverages random Fourier features to approximate the Maximum Mean Discrepancy (MMD) between policy occupancy measures, creating embeddings whose distances reflect meaningful behavioral differences. A low-dimensional projection of these embeddings that captures the most behaviorally significant dimensions is then used as behavioral descriptors for off-the-shelf QD methods. We prove that our embeddings converge to true MMD distances between occupancy measures as the number of sampled trajectories and embedding dimensions increase. Through experiments in multiple continuous control tasks we demonstrate AutoQD's ability in discovering diverse policies without predefined behavioral descriptors, presenting a well-motivated alternative to prior methods in unsupervised Reinforcement Learning and QD optimization. Our approach opens new possibilities for open-ended learning and automated behavior discovery in sequential decision making settings without requiring domain-specific knowledge.
comment: 22 pages, 5 figures
☆ GP-MoLFormer-Sim: Test Time Molecular Optimization through Contextual Similarity Guidance
The ability to design molecules while preserving similarity to a target molecule and/or property is crucial for various applications in drug discovery, chemical design, and biology. We introduce in this paper an efficient training-free method for navigating and sampling from the molecular space with a generative Chemical Language Model (CLM), while using the molecular similarity to the target as a guide. Our method leverages the contextual representations learned from the CLM itself to estimate the molecular similarity, which is then used to adjust the autoregressive sampling strategy of the CLM. At each step of the decoding process, the method tracks the distance of the current generations from the target and updates the logits to encourage the preservation of similarity in generations. We implement the method using a recently proposed $\sim$47M parameter SMILES-based CLM, GP-MoLFormer, and therefore refer to the method as GP-MoLFormer-Sim, which enables a test-time update of the deep generative policy to reflect the contextual similarity to a set of guide molecules. The method is further integrated into a genetic algorithm (GA) and tested on a set of standard molecular optimization benchmarks involving property optimization, molecular rediscovery, and structure-based drug design. Results show that, GP-MoLFormer-Sim, combined with GA (GP-MoLFormer-Sim+GA) outperforms existing training-free baseline methods, when the oracle remains black-box. The findings in this work are a step forward in understanding and guiding the generative mechanisms of CLMs.
comment: 12 pages main article, 21 pages total
☆ Deployability-Centric Infrastructure-as-Code Generation: An LLM-based Iterative Framework
Infrastructure-as-Code (IaC) generation holds significant promise for automating cloud infrastructure provisioning. Recent advances in Large Language Models (LLMs) present a promising opportunity to democratize IaC development by generating deployable infrastructure templates from natural language descriptions, but current evaluation focuses on syntactic correctness while ignoring deployability, the fatal measure of IaC template utility. We address this gap through two contributions: (1) IaCGen, an LLM-based deployability-centric framework that uses iterative feedback mechanism to generate IaC templates, and (2) DPIaC-Eval, a deployability-centric IaC template benchmark consists of 153 real-world scenarios that can evaluate syntax, deployment, user intent, and security. Our evaluation reveals that state-of-the-art LLMs initially performed poorly, with Claude-3.5 and Claude-3.7 achieving only 30.2% and 26.8% deployment success on the first attempt respectively. However, IaCGen transforms this performance dramatically: all evaluated models reach over 90% passItr@25, with Claude-3.5 and Claude-3.7 achieving 98% success rate. Despite these improvements, critical challenges remain in user intent alignment (25.2% accuracy) and security compliance (8.4% pass rate), highlighting areas requiring continued research. Our work provides the first comprehensive assessment of deployability-centric IaC template generation and establishes a foundation for future research.
☆ Population-Proportional Preference Learning from Human Feedback: An Axiomatic Approach
Conventional preference learning methods often prioritize opinions held more widely when aggregating preferences from multiple evaluators. This may result in policies that are biased in favor of some types of opinions or groups. The objective of this paper is to develop a novel preference learning framework capable of aligning aggregate opinions and policies proportionally with the true population distribution of evaluator preferences. Our approach infers the feasible set of evaluator population distributions directly from pairwise comparison data. Using these estimates, the algorithm constructs a policy that satisfies foundational axioms from social choice theory, namely monotonicity and Pareto efficiency, as well as our newly-introduced axioms of population-proportional representation and population-bounded robustness. We propose a soft-max relaxation method that smoothly trade-offs population-proportional representation with the selection of the Condorcet winner (which beats all other options in pairwise comparisons). Finally, we validate the effectiveness and scalability of our approach through experiments on both tabular recommendation tasks and large-scale language model alignment.
☆ LFA applied to CNNs: Efficient Singular Value Decomposition of Convolutional Mappings by Local Fourier Analysis
The singular values of convolutional mappings encode interesting spectral properties, which can be used, e.g., to improve generalization and robustness of convolutional neural networks as well as to facilitate model compression. However, the computation of singular values is typically very resource-intensive. The naive approach involves unrolling the convolutional mapping along the input and channel dimensions into a large and sparse two-dimensional matrix, making the exact calculation of all singular values infeasible due to hardware limitations. In particular, this is true for matrices that represent convolutional mappings with large inputs and a high number of channels. Existing efficient methods leverage the Fast Fourier transformation (FFT) to transform convolutional mappings into the frequency domain, enabling the computation of singular values for matrices representing convolutions with larger input and channel dimensions. For a constant number of channels in a given convolution, an FFT can compute N singular values in O(N log N) complexity. In this work, we propose an approach of complexity O(N) based on local Fourier analysis, which additionally exploits the shift invariance of convolutional operators. We provide a theoretical analysis of our algorithm's runtime and validate its efficiency through numerical experiments. Our results demonstrate that our proposed method is scalable and offers a practical solution to calculate the entire set of singular values - along with the corresponding singular vectors if needed - for high-dimensional convolutional mappings.
☆ When Maximum Entropy Misleads Policy Optimization
The Maximum Entropy Reinforcement Learning (MaxEnt RL) framework is a leading approach for achieving efficient learning and robust performance across many RL tasks. However, MaxEnt methods have also been shown to struggle with performance-critical control problems in practice, where non-MaxEnt algorithms can successfully learn. In this work, we analyze how the trade-off between robustness and optimality affects the performance of MaxEnt algorithms in complex control tasks: while entropy maximization enhances exploration and robustness, it can also mislead policy optimization, leading to failure in tasks that require precise, low-entropy policies. Through experiments on a variety of control problems, we concretely demonstrate this misleading effect. Our analysis leads to better understanding of how to balance reward design and entropy maximization in challenging control problems.
☆ Scenarios in Computing Research: A Systematic Review of the Use of Scenario Methods for Exploring the Future of Computing Technologies in Society
Scenario building is an established method to anticipate the future of emerging technologies. Its primary goal is to use narratives to map future trajectories of technology development and sociotechnical adoption. Following this process, risks and benefits can be identified early on, and strategies can be developed that strive for desirable futures. In recent years, computer science has adopted this method and applied it to various technologies, including Artificial Intelligence (AI). Because computing technologies play such an important role in shaping modern societies, it is worth exploring how scenarios are being used as an anticipatory tool in the field -- and what possible traditional uses of scenarios are not yet covered but have the potential to enrich the field. We address this gap by conducting a systematic literature review on the use of scenario building methods in computer science over the last decade (n = 59). We guide the review along two main questions. First, we aim to uncover how scenarios are used in computing literature, focusing especially on the rationale for why scenarios are used. Second, in following the potential of scenario building to enhance inclusivity in research, we dive deeper into the participatory element of the existing scenario building literature in computer science.
comment: 10 pages, 3 figures. Currently under review
☆ SynthesizeMe! Inducing Persona-Guided Prompts for Personalized Reward Models in LLMs ACL 2025
Recent calls for pluralistic alignment of Large Language Models (LLMs) encourage adapting models to diverse user preferences. However, most prior work on personalized reward models heavily rely on additional identity information, such as demographic details or a predefined set of preference categories. To this end, we introduce SynthesizeMe, an approach to inducing synthetic user personas from user interactions for personalized reward modeling. SynthesizeMe first generates and verifies reasoning to explain user preferences, then induces synthetic user personas from that reasoning, and finally filters to informative prior user interactions in order to build personalized prompts for a particular user. We show that using SynthesizeMe induced prompts improves personalized LLM-as-a-judge accuracy by 4.4% on Chatbot Arena. Combining SynthesizeMe derived prompts with a reward model achieves top performance on PersonalRewardBench: a new curation of user-stratified interactions with chatbots collected from 854 users of Chatbot Arena and PRISM.
comment: ACL 2025 Main Conference
☆ Zero-shot protein stability prediction by inverse folding models: a free energy interpretation
Inverse folding models have proven to be highly effective zero-shot predictors of protein stability. Despite this success, the link between the amino acid preferences of an inverse folding model and the free-energy considerations underlying thermodynamic stability remains incompletely understood. A better understanding would be of interest not only from a theoretical perspective, but also potentially provide the basis for stronger zero-shot stability prediction. In this paper, we take steps to clarify the free-energy foundations of inverse folding models. Our derivation reveals the standard practice of likelihood ratios as a simplistic approximation and suggests several paths towards better estimates of the relative stability. We empirically assess these approaches and demonstrate that considerable gains in zero-shot performance can be achieved with fairly simple means.
☆ Improving Neural Diarization through Speaker Attribute Attractors and Local Dependency Modeling ICASSP 2024
In recent years, end-to-end approaches have made notable progress in addressing the challenge of speaker diarization, which involves segmenting and identifying speakers in multi-talker recordings. One such approach, Encoder-Decoder Attractors (EDA), has been proposed to handle variable speaker counts as well as better guide the network during training. In this study, we extend the attractor paradigm by moving beyond direct speaker modeling and instead focus on representing more detailed `speaker attributes' through a multi-stage process of intermediate representations. Additionally, we enhance the architecture by replacing transformers with conformers, a convolution-augmented transformer, to model local dependencies. Experiments demonstrate improved diarization performance on the CALLHOME dataset.
comment: ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Korea, Republic of, 2024, pp. 11911-11915
☆ MMTU: A Massive Multi-Task Table Understanding and Reasoning Benchmark
Tables and table-based use cases play a crucial role in many important real-world applications, such as spreadsheets, databases, and computational notebooks, which traditionally require expert-level users like data engineers, data analysts, and database administrators to operate. Although LLMs have shown remarkable progress in working with tables (e.g., in spreadsheet and database copilot scenarios), comprehensive benchmarking of such capabilities remains limited. In contrast to an extensive and growing list of NLP benchmarks, evaluations of table-related tasks are scarce, and narrowly focus on tasks like NL-to-SQL and Table-QA, overlooking the broader spectrum of real-world tasks that professional users face. This gap limits our understanding and model progress in this important area. In this work, we introduce MMTU, a large-scale benchmark with over 30K questions across 25 real-world table tasks, designed to comprehensively evaluate models ability to understand, reason, and manipulate real tables at the expert-level. These tasks are drawn from decades' worth of computer science research on tabular data, with a focus on complex table tasks faced by professional users. We show that MMTU require a combination of skills -- including table understanding, reasoning, and coding -- that remain challenging for today's frontier models, where even frontier reasoning models like OpenAI o4-mini and DeepSeek R1 score only around 60%, suggesting significant room for improvement. We highlight key findings in our evaluation using MMTU and hope that this benchmark drives further advances in understanding and developing foundation models for structured data processing and analysis. Our code and data are available at https://github.com/MMTU-Benchmark/MMTU and https://huggingface.co/datasets/MMTU-benchmark/MMTU.
☆ CoFrNets: Interpretable Neural Architecture Inspired by Continued Fractions
In recent years there has been a considerable amount of research on local post hoc explanations for neural networks. However, work on building interpretable neural architectures has been relatively sparse. In this paper, we present a novel neural architecture, CoFrNet, inspired by the form of continued fractions which are known to have many attractive properties in number theory, such as fast convergence of approximations to real numbers. We show that CoFrNets can be efficiently trained as well as interpreted leveraging their particular functional form. Moreover, we prove that such architectures are universal approximators based on a proof strategy that is different than the typical strategy used to prove universal approximation results for neural networks based on infinite width (or depth), which is likely to be of independent interest. We experiment on nonlinear synthetic functions and are able to accurately model as well as estimate feature attributions and even higher order terms in some cases, which is a testament to the representational power as well as interpretability of such architectures. To further showcase the power of CoFrNets, we experiment on seven real datasets spanning tabular, text and image modalities, and show that they are either comparable or significantly better than other interpretable models and multilayer perceptrons, sometimes approaching the accuracies of state-of-the-art models.
☆ Conformal Prediction Adaptive to Unknown Subpopulation Shifts NeurIPS 2025
Conformal prediction is widely used to equip black-box machine learning models with uncertainty quantification enjoying formal coverage guarantees. However, these guarantees typically break down in the presence of distribution shifts, where the data distribution at test time differs from the training (or calibration-time) distribution. In this work, we address subpopulation shifts, where the test environment exhibits an unknown and differing mixture of subpopulations compared to the calibration data. We propose new methods that provably adapt conformal prediction to such shifts, ensuring valid coverage without requiring explicit knowledge of subpopulation structure. Our algorithms scale to high-dimensional settings and perform effectively in realistic machine learning tasks. Extensive experiments on vision (with vision transformers) and language (with large language models) benchmarks demonstrate that our methods reliably maintain coverage and controls risk in scenarios where standard conformal prediction fails.
comment: 20 pages, 6 figures, 5 tables, submitted to NeurIPS 2025
☆ Combating Misinformation in the Arab World: Challenges & Opportunities
Misinformation and disinformation pose significant risks globally, with the Arab region facing unique vulnerabilities due to geopolitical instabilities, linguistic diversity, and cultural nuances. We explore these challenges through the key facets of combating misinformation: detection, tracking, mitigation and community-engagement. We shed light on how connecting with grass-roots fact-checking organizations, understanding cultural norms, promoting social correction, and creating strong collaborative information networks can create opportunities for a more resilient information ecosystem in the Arab world.
comment: disinformation, misinformation, factuality, harmfulness, fake news
☆ Collaborative Learning in Agentic Systems: A Collective AI is Greater Than the Sum of Its Parts
Agentic AI has gained significant interest as a research paradigm focused on autonomy, self-directed learning, and long-term reliability of decision making. Real-world agentic systems operate in decentralized settings on a large set of tasks or data distributions with constraints such as limited bandwidth, asynchronous execution, and the absence of a centralized model or even common objectives. We posit that exploiting previously learned skills, task similarities, and communication capabilities in a collective of agentic AI are challenging but essential elements to enabling scalability, open-endedness, and beneficial collaborative learning dynamics. In this paper, we introduce Modular Sharing and Composition in Collective Learning (MOSAIC), an agentic algorithm that allows multiple agents to independently solve different tasks while also identifying, sharing, and reusing useful machine-learned knowledge, without coordination, synchronization, or centralized control. MOSAIC combines three mechanisms: (1) modular policy composition via neural network masks, (2) cosine similarity estimation using Wasserstein embeddings for knowledge selection, and (3) asynchronous communication and policy integration. Results on a set of RL benchmarks show that MOSAIC has a greater sample efficiency than isolated learners, i.e., it learns significantly faster, and in some cases, finds solutions to tasks that cannot be solved by isolated learners. The collaborative learning and sharing dynamics are also observed to result in the emergence of ideal curricula of tasks, from easy to hard. These findings support the case for collaborative learning in agentic systems to achieve better and continuously evolving performance both at the individual and collective levels.
comment: 36 pages, 21 figures, 6 tables. Preprint
☆ Ravan: Multi-Head Low-Rank Adaptation for Federated Fine-Tuning
Large language models (LLMs) have not yet effectively leveraged the vast amounts of edge-device data, and federated learning (FL) offers a promising paradigm to collaboratively fine-tune LLMs without transferring private edge data to the cloud. To operate within the computation and communication constraints of edge devices, recent literature on federated fine-tuning of LLMs proposes the use of low-rank adaptation (LoRA) and similar parameter-efficient methods. However, LoRA-based methods suffer from accuracy degradation in FL settings, primarily because of data and computational heterogeneity across clients. We propose \textsc{Ravan}, an adaptive multi-head LoRA method that balances parameter efficiency and model expressivity by reparameterizing the weight updates as the sum of multiple LoRA heads $s_i\textbf{B}_i\textbf{H}_i\textbf{A}_i$ in which only the core matrices $\textbf{H}_i$ and their lightweight scaling factors $s_i$ are trained. These trainable scaling factors let the optimization focus on the most useful heads, recovering a higher-rank approximation of the full update without increasing the number of communicated parameters since clients upload $s_i\textbf{H}_i$ directly. Experiments on vision and language benchmarks show that \textsc{Ravan} improves test accuracy by 2-8\% over prior parameter-efficient baselines, making it a robust and scalable solution for federated fine-tuning of LLMs.
☆ ScaleRTL: Scaling LLMs with Reasoning Data and Test-Time Compute for Accurate RTL Code Generation
Recent advances in large language models (LLMs) have enabled near-human performance on software coding benchmarks, but their effectiveness in RTL code generation remains limited due to the scarcity of high-quality training data. While prior efforts have fine-tuned LLMs for RTL tasks, they do not fundamentally overcome the data bottleneck and lack support for test-time scaling due to their non-reasoning nature. In this work, we introduce ScaleRTL, the first reasoning LLM for RTL coding that scales up both high-quality reasoning data and test-time compute. Specifically, we curate a diverse set of long chain-of-thought reasoning traces averaging 56K tokens each, resulting in a dataset of 3.5B tokens that captures rich RTL knowledge. Fine-tuning a general-purpose reasoning model on this corpus yields ScaleRTL that is capable of deep RTL reasoning. Subsequently, we further enhance the performance of ScaleRTL through a novel test-time scaling strategy that extends the reasoning process via iteratively reflecting on and self-correcting previous reasoning steps. Experimental results show that ScaleRTL achieves state-of-the-art performance on VerilogEval and RTLLM, outperforming 18 competitive baselines by up to 18.4% on VerilogEval and 12.7% on RTLLM.
☆ Applying Informer for Option Pricing: A Transformer-Based Approach
Accurate option pricing is essential for effective trading and risk management in financial markets, yet it remains challenging due to market volatility and the limitations of traditional models like Black-Scholes. In this paper, we investigate the application of the Informer neural network for option pricing, leveraging its ability to capture long-term dependencies and dynamically adjust to market fluctuations. This research contributes to the field of financial forecasting by introducing Informer's efficient architecture to enhance prediction accuracy and provide a more adaptable and resilient framework compared to existing methods. Our results demonstrate that Informer outperforms traditional approaches in option pricing, advancing the capabilities of data-driven financial forecasting in this domain.
comment: 8 pages, 3 tables, 7 figures. Accepted at the 17th International Conference on Agents and Artificial Intelligence (ICAART 2025). Final version published in Proceedings of ICAART 2025 (Vol. 3), pages 1270-1277
☆ Avoiding Death through Fear Intrinsic Conditioning
Biological and psychological concepts have inspired reinforcement learning algorithms to create new complex behaviors that expand agents' capacity. These behaviors can be seen in the rise of techniques like goal decomposition, curriculum, and intrinsic rewards, which have paved the way for these complex behaviors. One limitation in evaluating these methods is the requirement for engineered extrinsic for realistic environments. A central challenge in engineering the necessary reward function(s) comes from these environments containing states that carry high negative rewards, but provide no feedback to the agent. Death is one such stimuli that fails to provide direct feedback to the agent. In this work, we introduce an intrinsic reward function inspired by early amygdala development and produce this intrinsic reward through a novel memory-augmented neural network (MANN) architecture. We show how this intrinsic motivation serves to deter exploration of terminal states and results in avoidance behavior similar to fear conditioning observed in animals. Furthermore, we demonstrate how modifying a threshold where the fear response is active produces a range of behaviors that are described under the paradigm of general anxiety disorders (GADs). We demonstrate this behavior in the Miniworld Sidewalk environment, which provides a partially observable Markov decision process (POMDP) and a sparse reward with a non-descriptive terminal condition, i.e., death. In effect, this study results in a biologically-inspired neural architecture and framework for fear conditioning paradigms; we empirically demonstrate avoidance behavior in a constructed agent that is able to solve environments with non-descriptive terminal conditions.
☆ MORSE-500: A Programmatically Controllable Video Benchmark to Stress-Test Multimodal Reasoning
Despite rapid advances in vision-language models (VLMs), current benchmarks for multimodal reasoning fall short in three key dimensions. First, they overwhelmingly rely on static images, failing to capture the temporal complexity of real-world environments. Second, they narrowly focus on mathematical problem-solving, neglecting the broader spectrum of reasoning skills -- including abstract, physical, planning, spatial, and temporal capabilities -- required for robust multimodal intelligence. Third, many benchmarks quickly saturate, offering limited headroom for diagnosing failure modes or measuring continued progress. We introduce MORSE-500 (Multimodal Reasoning Stress-test Environment), a video benchmark composed of 500 fully scripted clips with embedded questions spanning six complementary reasoning categories. Each instance is programmatically generated using deterministic Python scripts (via Manim, Matplotlib, MoviePy), generative video models, and curated real footage. This script-driven design allows fine-grained control over visual complexity, distractor density, and temporal dynamics -- enabling difficulty to be scaled systematically as models improve. Unlike static benchmarks that become obsolete once saturated, MORSE-500 is built to evolve: its controllable generation pipeline supports the creation of arbitrarily challenging new instances, making it ideally suited for stress-testing next-generation models. Initial experiments with state-of-the-art systems -- including various Gemini 2.5 Pro and OpenAI o3 which represent the strongest available at the time, alongside strong open-source models -- reveal substantial performance gaps across all categories, with particularly large deficits in abstract and planning tasks. We release the full dataset, generation scripts, and evaluation harness to support transparent, reproducible, and forward-looking multimodal reasoning research.
☆ Towards Data Systems That Are Business Semantic-Centric and AI Agents-Assisted
Contemporary businesses operate in dynamic environments requiring rapid adaptation to achieve goals and maintain competitiveness. Existing data platforms often fall short by emphasizing tools over alignment with business needs, resulting in inefficiencies and delays. To address this gap, I propose the Business Semantics Centric, AI Agents Assisted Data System (BSDS), a holistic system that integrates architecture, workflows, and team organization to ensure data systems are tailored to business priorities rather than dictated by technical constraints. BSDS redefines data systems as dynamic enablers of business success, transforming them from passive tools into active drivers of organizational growth. BSDS has a modular architecture that comprises curated data linked to business entities, a knowledge base for context-aware AI agents, and efficient data pipelines. AI agents play a pivotal role in assisting with data access and system management, reducing human effort, and improving scalability. Complementing this architecture, BSDS incorporates workflows optimized for both exploratory data analysis and production requirements, balancing speed of delivery with quality assurance. A key innovation of BSDS is its incorporation of the human factor. By aligning data team expertise with business semantics, BSDS bridges the gap between technical capabilities and business needs. Validated through real-world implementation, BSDS accelerates time-to-market for data-driven initiatives, enhances cross-functional collaboration, and provides a scalable blueprint for businesses of all sizes. Future research can build on BSDS to explore optimization strategies using complex systems and adaptive network theories, as well as developing autonomous data systems leveraging AI agents.
comment: Being peer reviewed by a journal
☆ Learning to Recover: Dynamic Reward Shaping with Wheel-Leg Coordination for Fallen Robots
Adaptive recovery from fall incidents are essential skills for the practical deployment of wheeled-legged robots, which uniquely combine the agility of legs with the speed of wheels for rapid recovery. However, traditional methods relying on preplanned recovery motions, simplified dynamics or sparse rewards often fail to produce robust recovery policies. This paper presents a learning-based framework integrating Episode-based Dynamic Reward Shaping and curriculum learning, which dynamically balances exploration of diverse recovery maneuvers with precise posture refinement. An asymmetric actor-critic architecture accelerates training by leveraging privileged information in simulation, while noise-injected observations enhance robustness against uncertainties. We further demonstrate that synergistic wheel-leg coordination reduces joint torque consumption by 15.8% and 26.2% and improves stabilization through energy transfer mechanisms. Extensive evaluations on two distinct quadruped platforms achieve recovery success rates up to 99.1% and 97.8% without platform-specific tuning. The supplementary material is available at https://boyuandeng.github.io/L2R-WheelLegCoordination/
☆ Winner-takes-all for Multivariate Probabilistic Time Series Forecasting ICML 2025
We introduce TimeMCL, a method leveraging the Multiple Choice Learning (MCL) paradigm to forecast multiple plausible time series futures. Our approach employs a neural network with multiple heads and utilizes the Winner-Takes-All (WTA) loss to promote diversity among predictions. MCL has recently gained attention due to its simplicity and ability to address ill-posed and ambiguous tasks. We propose an adaptation of this framework for time-series forecasting, presenting it as an efficient method to predict diverse futures, which we relate to its implicit quantization objective. We provide insights into our approach using synthetic data and evaluate it on real-world time series, demonstrating its promising performance at a light computational cost.
comment: ICML 2025
☆ Beyond the Buzz: A Pragmatic Take on Inference Disaggregation
As inference scales to multi-node deployments, disaggregation - splitting inference into distinct phases - offers a promising path to improving the throughput-interactivity Pareto frontier. Despite growing enthusiasm and a surge of open-source efforts, practical deployment of disaggregated serving remains limited due to the complexity of the optimization search space and system-level coordination. In this paper, we present the first systematic study of disaggregated inference at scale, evaluating hundreds of thousands of design points across diverse workloads and hardware configurations. We find that disaggregation is most effective for prefill-heavy traffic patterns and larger models. Our results highlight the critical role of dynamic rate matching and elastic scaling in achieving Pareto-optimal performance. Our findings offer actionable insights for efficient disaggregated deployments to navigate the trade-off between system throughput and interactivity.
☆ StealthInk: A Multi-bit and Stealthy Watermark for Large Language Models
Watermarking for large language models (LLMs) offers a promising approach to identifying AI-generated text. Existing approaches, however, either compromise the distribution of original generated text by LLMs or are limited to embedding zero-bit information that only allows for watermark detection but ignores identification. We present StealthInk, a stealthy multi-bit watermarking scheme that preserves the original text distribution while enabling the embedding of provenance data, such as userID, TimeStamp, and modelID, within LLM-generated text. This enhances fast traceability without requiring access to the language model's API or prompts. We derive a lower bound on the number of tokens necessary for watermark detection at a fixed equal error rate, which provides insights on how to enhance the capacity. Comprehensive empirical evaluations across diverse tasks highlight the stealthiness, detectability, and resilience of StealthInk, establishing it as an effective solution for LLM watermarking applications.
comment: camera-ready version
☆ Conformal Prediction Beyond the Seen: A Missing Mass Perspective for Uncertainty Quantification in Generative Models
Uncertainty quantification (UQ) is essential for safe deployment of generative AI models such as large language models (LLMs), especially in high stakes applications. Conformal prediction (CP) offers a principled uncertainty quantification framework, but classical methods focus on regression and classification, relying on geometric distances or softmax scores: tools that presuppose structured outputs. We depart from this paradigm by studying CP in a query only setting, where prediction sets must be constructed solely from finite queries to a black box generative model, introducing a new trade off between coverage, test time query budget, and informativeness. We introduce Conformal Prediction with Query Oracle (CPQ), a framework characterizing the optimal interplay between these objectives. Our finite sample algorithm is built on two core principles: one governs the optimal query policy, and the other defines the optimal mapping from queried samples to prediction sets. Remarkably, both are rooted in the classical missing mass problem in statistics. Specifically, the optimal query policy depends on the rate of decay, or the derivative, of the missing mass, for which we develop a novel estimator. Meanwhile, the optimal mapping hinges on the missing mass itself, which we estimate using Good Turing estimators. We then turn our focus to implementing our method for language models, where outputs are vast, variable, and often under specified. Fine grained experiments on three real world open ended tasks and two LLMs, show CPQ applicability to any black box LLM and highlight: (1) individual contribution of each principle to CPQ performance, and (2) CPQ ability to yield significantly more informative prediction sets than existing conformal methods for language uncertainty quantification.
☆ Sentiment Analysis in Learning Management Systems Understanding Student Feedback at Scale
During the wake of the Covid-19 pandemic, the educational paradigm has experienced a major change from in person learning traditional to online platforms. The change of learning convention has impacted the teacher-student especially in non-verbal communication. The absent of non-verbal communication has led to a reliance on verbal feedback which diminished the efficacy of the educational experience. This paper explores the integration of sentiment analysis into learning management systems (LMS) to bridge the student-teacher's gap by offering an alternative approach to interpreting student feedback beyond its verbal context. The research involves data preparation, feature selection, and the development of a deep neural network model encompassing word embedding, LSTM, and attention mechanisms. This model is compared against a logistic regression baseline to evaluate its efficacy in understanding student feedback. The study aims to bridge the communication gap between instructors and students in online learning environments, offering insights into the emotional context of student feedback and ultimately improving the quality of online education.
comment: 10 pages, 10 figures
☆ Zeroth-Order Optimization Finds Flat Minima
Zeroth-order methods are extensively used in machine learning applications where gradients are infeasible or expensive to compute, such as black-box attacks, reinforcement learning, and language model fine-tuning. Existing optimization theory focuses on convergence to an arbitrary stationary point, but less is known on the implicit regularization that provides a fine-grained characterization on which particular solutions are finally reached. We show that zeroth-order optimization with the standard two-point estimator favors solutions with small trace of Hessian, which is widely used in previous work to distinguish between sharp and flat minima. We further provide convergence rates of zeroth-order optimization to approximate flat minima for convex and sufficiently smooth functions, where flat minima are defined as the minimizers that achieve the smallest trace of Hessian among all optimal solutions. Experiments on binary classification tasks with convex losses and language model fine-tuning support our theoretical findings.
☆ MLLM-CL: Continual Learning for Multimodal Large Language Models
Recent Multimodal Large Language Models (MLLMs) excel in vision-language understanding but face challenges in adapting to dynamic real-world scenarios that require continuous integration of new knowledge and skills. While continual learning (CL) offers a potential solution, existing benchmarks and methods suffer from critical limitations. In this paper, we introduce MLLM-CL, a novel benchmark encompassing domain and ability continual learning, where the former focuses on independently and identically distributed (IID) evaluation across evolving mainstream domains, whereas the latter evaluates on non-IID scenarios with emerging model ability. Methodologically, we propose preventing catastrophic interference through parameter isolation, along with an MLLM-based routing mechanism. Extensive experiments demonstrate that our approach can integrate domain-specific knowledge and functional abilities with minimal forgetting, significantly outperforming existing methods.
☆ Interpretation Meets Safety: A Survey on Interpretation Methods and Tools for Improving LLM Safety
As large language models (LLMs) see wider real-world use, understanding and mitigating their unsafe behaviors is critical. Interpretation techniques can reveal causes of unsafe outputs and guide safety, but such connections with safety are often overlooked in prior surveys. We present the first survey that bridges this gap, introducing a unified framework that connects safety-focused interpretation methods, the safety enhancements they inform, and the tools that operationalize them. Our novel taxonomy, organized by LLM workflow stages, summarizes nearly 70 works at their intersections. We conclude with open challenges and future directions. This timely survey helps researchers and practitioners navigate key advancements for safer, more interpretable LLMs.
comment: 31 pages, 1 figure
☆ Towards provable probabilistic safety for scalable embodied AI systems
Embodied AI systems, comprising AI models and physical plants, are increasingly prevalent across various applications. Due to the rarity of system failures, ensuring their safety in complex operating environments remains a major challenge, which severely hinders their large-scale deployment in safety-critical domains, such as autonomous vehicles, medical devices, and robotics. While achieving provable deterministic safety--verifying system safety across all possible scenarios--remains theoretically ideal, the rarity and complexity of corner cases make this approach impractical for scalable embodied AI systems. To address this challenge, we introduce provable probabilistic safety, which aims to ensure that the residual risk of large-scale deployment remains below a predefined threshold. Instead of attempting exhaustive safety proof across all corner cases, this paradigm establishes a probabilistic safety boundary on overall system performance, leveraging statistical methods to enhance feasibility and scalability. A well-defined probabilistic safety boundary enables embodied AI systems to be deployed at scale while allowing for continuous refinement of safety guarantees. Our work focuses on three core questions: what is provable probabilistic safety, how to prove the probabilistic safety, and how to achieve the provable probabilistic safety. By bridging the gap between theoretical safety assurance and practical deployment, our work offers a pathway toward safer, large-scale adoption of embodied AI systems in safety-critical applications.
☆ Training Dynamics Underlying Language Model Scaling Laws: Loss Deceleration and Zero-Sum Learning ACL 2025
This work aims to understand how scaling improves language models, specifically in terms of training dynamics. We find that language models undergo loss deceleration early in training; an abrupt slowdown in the rate of loss improvement, resulting in piecewise linear behaviour of the loss curve in log-log space. Scaling up the model mitigates this transition by (1) decreasing the loss at which deceleration occurs, and (2) improving the log-log rate of loss improvement after deceleration. We attribute loss deceleration to a type of degenerate training dynamics we term zero-sum learning (ZSL). In ZSL, per-example gradients become systematically opposed, leading to destructive interference in per-example changes in loss. As a result, improving loss on one subset of examples degrades it on another, bottlenecking overall progress. Loss deceleration and ZSL provide new insights into the training dynamics underlying language model scaling laws, and could potentially be targeted directly to improve language models independent of scale. We make our code and artefacts available at: https://github.com/mirandrom/zsl
comment: Published as a conference paper at ACL 2025
♻ ☆ AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning
Despite recent progress in large-scale reinforcement learning (RL) for reasoning, the training recipe for building high-performing reasoning models remains elusive. Key implementation details of frontier models, such as DeepSeek-R1, including data curation strategies and RL training recipe, are often omitted. Moreover, recent research indicates distillation remains more effective than RL for smaller models. In this work, we demonstrate that large-scale RL can significantly enhance the reasoning capabilities of strong, small- and mid-sized models, achieving results that surpass those of state-of-the-art distillation-based models. We systematically study the RL training process through extensive ablations and propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts. Notably, we find that math-only RL not only significantly enhances the performance of strong distilled models on math benchmarks (e.g., +14.6% / +17.2% on AIME 2025 for the 7B / 14B models), but also code reasoning tasks (e.g., +6.8% / +5.8% on LiveCodeBench for the 7B / 14B models). In addition, extended code-only RL iterations further improve performance on code benchmarks with minimal or no degradation in math results. We develop a robust data curation pipeline to collect challenging prompts with high-quality, verifiable answers and test cases to enable verification-based RL across both domains. Finally, we identify key experimental insights, including curriculum learning with progressively increasing response lengths and the stabilizing effect of on-policy parameter updates. We find that RL not only elicits the foundational reasoning capabilities acquired during pretraining and supervised fine-tuning (e.g., distillation), but also pushes the limits of the model's reasoning ability, enabling it to solve problems that were previously unsolvable.
comment: Add pass@1024 evaluation results for LiveCodeBench v6. We release the models at: https://huggingface.co/collections/nvidia/acereason-682f4e1261dc22f697fd1485
♻ ☆ Context is Key: A Benchmark for Forecasting with Essential Textual Information ICML 2025
Forecasting is a critical task in decision-making across numerous domains. While historical numerical data provide a start, they fail to convey the complete context for reliable and accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge and constraints, which can efficiently be communicated through natural language. However, in spite of recent progress with LLM-based forecasters, their ability to effectively integrate this textual information remains an open question. To address this, we introduce "Context is Key" (CiK), a time-series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities; crucially, every task in CiK requires understanding textual context to be solved successfully. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. This benchmark aims to advance multimodal forecasting by promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/.
comment: ICML 2025. First two authors contributed equally
♻ ☆ From Benign import Toxic: Jailbreaking the Language Model via Adversarial Metaphors
Current studies have exposed the risk of Large Language Models (LLMs) generating harmful content by jailbreak attacks. However, they overlook that the direct generation of harmful content from scratch is more difficult than inducing LLM to calibrate benign content into harmful forms. In our study, we introduce a novel attack framework that exploits AdVersArial meTAphoR (AVATAR) to induce the LLM to calibrate malicious metaphors for jailbreaking. Specifically, to answer harmful queries, AVATAR adaptively identifies a set of benign but logically related metaphors as the initial seed. Then, driven by these metaphors, the target LLM is induced to reason and calibrate about the metaphorical content, thus jailbroken by either directly outputting harmful responses or calibrating residuals between metaphorical and professional harmful content. Experimental results demonstrate that AVATAR can effectively and transferable jailbreak LLMs and achieve a state-of-the-art attack success rate across multiple advanced LLMs.
comment: arXiv admin note: substantial text overlap with arXiv:2412.12145
♻ ☆ Rethinking LLM Advancement: Compute-Dependent and Independent Paths to Progress
Regulatory efforts to govern large language model (LLM) development have predominantly focused on restricting access to high-performance computational resources. This study evaluates the efficacy of such measures by examining whether LLM capabilities can advance through algorithmic innovation in compute-constrained environments. We propose a novel framework distinguishing compute-dependent innovations--which yield disproportionate benefits at high compute--from compute-independent innovations, which improve efficiency across compute scales. The impact is quantified using Compute-Equivalent Gain (CEG). Experimental validation with nanoGPT models confirms that compute-independent advancements yield significant performance gains (e.g., with combined CEG up to $3.5\times$) across the tested scales. In contrast, compute-dependent advancements were detrimental to performance at smaller experimental scales, but showed improved CEG (on par with the baseline) as model size increased, a trend consistent with their definition of yielding primary benefits at higher compute. Crucially, these findings indicate that restrictions on computational hardware, while potentially slowing LLM progress, are insufficient to prevent all capability gains driven by algorithmic advancements. We argue that effective AI oversight must therefore incorporate mechanisms for understanding, anticipating, and potentially guiding algorithmic research, moving beyond a singular focus on hardware. The proposed framework also serves as an analytical tool for forecasting AI progress.
♻ ☆ UniWorld-V1: High-Resolution Semantic Encoders for Unified Visual Understanding and Generation
Although existing unified models achieve strong performance in vision-language understanding and text-to-image generation, they remain limited in addressing image perception and manipulation -- capabilities increasingly demanded in practical applications. Recently, OpenAI introduced the powerful GPT-4o-Image model, which showcases advanced capabilities in comprehensive image perception and manipulation, sparking widespread interest. Through carefully designed experiments, we observe that GPT-4o-Image likely relies on semantic encoders rather than VAEs for feature extraction, despite VAEs being commonly regarded as crucial for image manipulation tasks. Inspired by this insight, we propose UniWorld-V1, a unified generative framework built upon semantic features extracted from powerful multimodal large language models and contrastive semantic encoders. Using only 2.7M training data, UniWorld-V1 achieves impressive performance across diverse tasks, including image understanding, generation, manipulation, and perception. We fully open-source the UniWorld-V1 framework, including model weights, training and evaluation scripts, and datasets to promote reproducibility and further research.
♻ ☆ Revisiting 3D LLM Benchmarks: Are We Really Testing 3D Capabilities? ACL 2025
In this work, we identify the "2D-Cheating" problem in 3D LLM evaluation, where these tasks might be easily solved by VLMs with rendered images of point clouds, exposing ineffective evaluation of 3D LLMs' unique 3D capabilities. We test VLM performance across multiple 3D LLM benchmarks and, using this as a reference, propose principles for better assessing genuine 3D understanding. We also advocate explicitly separating 3D abilities from 1D or 2D aspects when evaluating 3D LLMs. Code and data are available at https://github.com/LLM-class-group/Revisiting-3D-LLM-Benchmarks .
comment: Accepted to ACL 2025 Findings
♻ ☆ The Lessons of Developing Process Reward Models in Mathematical Reasoning
Process Reward Models (PRMs) emerge as a promising approach for process supervision in mathematical reasoning of Large Language Models (LLMs), which aim to identify and mitigate intermediate errors in the reasoning processes. However, the development of effective PRMs faces significant challenges, particularly in data annotation and evaluation methodologies. In this paper, through extensive experiments, we demonstrate that commonly used Monte Carlo (MC) estimation-based data synthesis for PRMs typically yields inferior performance and generalization compared to LLM-as-a-judge and human annotation methods. MC estimation relies on completion models to evaluate current-step correctness, leading to inaccurate step verification. Furthermore, we identify potential biases in conventional Best-of-N (BoN) evaluation strategies for PRMs: (1) The unreliable policy models generate responses with correct answers but flawed processes, leading to a misalignment between the evaluation criteria of BoN and the PRM objectives of process verification. (2) The tolerance of PRMs of such responses leads to inflated BoN scores. (3) Existing PRMs have a significant proportion of minimum scores concentrated on the final answer steps, revealing the shift from process to outcome-based assessment in BoN Optimized PRMs. To address these challenges, we develop a consensus filtering mechanism that effectively integrates MC estimation with LLM-as-a-judge and advocates a more comprehensive evaluation framework that combines response-level and step-level metrics. Based on the mechanisms, we significantly improve both model performance and data efficiency in the BoN evaluation and the step-wise error identification task. Finally, we release a new state-of-the-art PRM that outperforms existing open-source alternatives and provides practical guidelines for future research in building process supervision models.
♻ ☆ Unleashing The Power of Pre-Trained Language Models for Irregularly Sampled Time Series KDD'25
Pre-trained Language Models (PLMs), such as ChatGPT, have significantly advanced the field of natural language processing. This progress has inspired a series of innovative studies that explore the adaptation of PLMs to time series analysis, intending to create a unified foundation model that addresses various time series analytical tasks. However, these efforts predominantly focus on Regularly Sampled Time Series (RSTS), neglecting the unique challenges posed by Irregularly Sampled Time Series (ISTS), which are characterized by uneven sampling intervals and prevalent missing data. To bridge this gap, this work takes the first step in exploring the potential of PLMs for ISTS analysis. We begin by investigating the effect of various methods for representing ISTS, aiming to maximize the efficacy of PLMs in the analysis. Furthermore, we propose a unified PLM-based framework, named ISTS-PLM, to address diverse ISTS analytical tasks. It integrates novel time-aware and variable-aware PLMs tailored to tackle the intractable intra- and inter-time series modeling in ISTS. Finally, extensive experiments on a comprehensive benchmark demonstrate that the ISTS-PLM, utilizing a structured and effective series-based representation for ISTS, consistently achieves state-of-the-art performance across various analytical tasks, such as classification, interpolation, extrapolation, few-shot and zero-shot learning scenarios, spanning scientific domains like healthcare, biomechanics, and climate science.
comment: Accepted by KDD'25
♻ ☆ One Wave To Explain Them All: A Unifying Perspective On Feature Attribution ICML 2025
Feature attribution methods aim to improve the transparency of deep neural networks by identifying the input features that influence a model's decision. Pixel-based heatmaps have become the standard for attributing features to high-dimensional inputs, such as images, audio representations, and volumes. While intuitive and convenient, these pixel-based attributions fail to capture the underlying structure of the data. Moreover, the choice of domain for computing attributions has often been overlooked. This work demonstrates that the wavelet domain allows for informative and meaningful attributions. It handles any input dimension and offers a unified approach to feature attribution. Our method, the Wavelet Attribution Method (WAM), leverages the spatial and scale-localized properties of wavelet coefficients to provide explanations that capture both the where and what of a model's decision-making process. We show that WAM quantitatively matches or outperforms existing gradient-based methods across multiple modalities, including audio, images, and volumes. Additionally, we discuss how WAM bridges attribution with broader aspects of model robustness and transparency. Project page: https://gabrielkasmi.github.io/wam/
comment: Accepted to ICML 2025
♻ ☆ macOSWorld: A Multilingual Interactive Benchmark for GUI Agents
Graphical User Interface (GUI) agents show promising capabilities for automating computer-use tasks and facilitating accessibility, but existing interactive benchmarks are mostly English-only, covering web-use or Windows, Linux, and Android environments, but not macOS. macOS is a major OS with distinctive GUI patterns and exclusive applications. To bridge the gaps, we present macOSWorld, the first comprehensive benchmark for evaluating GUI agents on macOS. macOSWorld features 202 multilingual interactive tasks across 30 applications (28 macOS-exclusive), with task instructions and OS interfaces offered in 5 languages (English, Chinese, Arabic, Japanese, and Russian). As GUI agents are shown to be vulnerable to deception attacks, macOSWorld also includes a dedicated safety benchmarking subset. Our evaluation on six GUI agents reveals a dramatic gap: proprietary computer-use agents lead at above 30% success rate, while open-source lightweight research models lag at below 2%, highlighting the need for macOS domain adaptation. Multilingual benchmarks also expose common weaknesses, especially in Arabic, with a 27.5% average degradation compared to English. Results from safety benchmarking also highlight that deception attacks are more general and demand immediate attention. macOSWorld is available at https://github.com/showlab/macosworld.
comment: Error regarding experiment results
♻ ☆ Multi-Head RAG: Solving Multi-Aspect Problems with LLMs
Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs) by enabling the retrieval of documents into the LLM context to provide more accurate and relevant responses. Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents. Such queries occur frequently, but are challenging because the embeddings of these documents may be distant in the embedding space, making it hard to retrieve them all. This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea: leveraging activations of Transformer's multi-head attention layer, instead of the decoder layer, as keys for fetching multi-aspect documents. The driving observation is that different attention heads learn to capture different data aspects. Harnessing the corresponding activations results in embeddings that represent various facets of data items and queries, improving the retrieval accuracy for complex queries. We provide an evaluation methodology and metrics, multi-aspect datasets, and real-world use cases to demonstrate MRAG's effectiveness. We show MRAG's design advantages over 18 RAG baselines, empirical improvements of up to 20% in retrieval success ratios, and benefits for downstream LLM generation. MRAG can be seamlessly integrated with existing RAG frameworks and benchmarks.
♻ ☆ Biased AI can Influence Political Decision-Making
As modern large language models (LLMs) become integral to everyday tasks, concerns about their inherent biases and their potential impact on human decision-making have emerged. While bias in models are well-documented, less is known about how these biases influence human decisions. This paper presents two interactive experiments investigating the effects of partisan bias in LLMs on political opinions and decision-making. Participants interacted freely with either a biased liberal, biased conservative, or unbiased control model while completing these tasks. We found that participants exposed to partisan biased models were significantly more likely to adopt opinions and make decisions which matched the LLM's bias. Even more surprising, this influence was seen when the model bias and personal political partisanship of the participant were opposite. However, we also discovered that prior knowledge of AI was weakly correlated with a reduction of the impact of the bias, highlighting the possible importance of AI education for robust mitigation of bias effects. Our findings not only highlight the critical effects of interacting with biased LLMs and its ability to impact public discourse and political conduct, but also highlights potential techniques for mitigating these risks in the future.
♻ ☆ Can Large Language Models Understand Intermediate Representations in Compilers?
Intermediate Representations (IRs) play a critical role in compiler design and program analysis, yet their comprehension by Large Language Models (LLMs) remains underexplored. In this paper, we present an explorative empirical study evaluating the capabilities of six state-of-the-art LLMs: GPT-4, GPT-3, DeepSeek, Gemma 2, Llama 3, and Code Llama, in understanding IRs. Specifically, we assess model performance across four core tasks: control flow graph reconstruction, decompilation, code summarization, and execution reasoning. While LLMs exhibit competence in parsing IR syntax and identifying high-level structures, they consistently struggle with instruction-level reasoning, especially in control flow reasoning, loop handling, and dynamic execution. Common failure modes include misinterpreting branching instructions, omitting critical operations, and relying on heuristic reasoning rather than precise instruction-level logic. Our findings highlight the need for IR-specific enhancements in LLM design. We recommend fine-tuning on structured IR datasets and integrating control-flow-sensitive architectures to improve model effectiveness. All experimental data and source code are publicly available at
♻ ☆ SNaRe: Domain-aware Data Generation for Low-Resource Event Detection ACL
Event Detection (ED) -- the task of identifying event mentions from natural language text -- is critical for enabling reasoning in highly specialized domains such as biomedicine, law, and epidemiology. Data generation has proven to be effective in broadening its utility to wider applications without requiring expensive expert annotations. However, when existing generation approaches are applied to specialized domains, they struggle with label noise, where annotations are incorrect, and domain drift, characterized by a distributional mismatch between generated sentences and the target domain. To address these issues, we introduce SNaRe, a domain-aware synthetic data generation framework composed of three components: Scout, Narrator, and Refiner. Scout extracts triggers from unlabeled target domain data and curates a high-quality domain-specific trigger list using corpus-level statistics to mitigate domain drift. Narrator, conditioned on these triggers, generates high-quality domain-aligned sentences, and Refiner identifies additional event mentions, ensuring high annotation quality. Experimentation on three diverse domain ED datasets reveals how SNaRe outperforms the best baseline, achieving average F1 gains of 3-7% in the zero-shot/few-shot settings and 4-20% F1 improvement for multilingual generation. Analyzing the generated trigger hit rate and human evaluation substantiates SNaRe's stronger annotation quality and reduced domain drift.
comment: Under review at ACL ARR May 2025
♻ ☆ Explainability in Practice: A Survey of Explainable NLP Across Various Domains
Natural Language Processing (NLP) has become a cornerstone in many critical sectors, including healthcare, finance, and customer relationship management. This is especially true with the development and use of advanced models such as GPT-based architectures and BERT, which are widely used in decision-making processes. However, the black-box nature of these advanced NLP models has created an urgent need for transparency and explainability. This review explores explainable NLP (XNLP) with a focus on its practical deployment and real-world applications, examining its implementation and the challenges faced in domain-specific contexts. The paper underscores the importance of explainability in NLP and provides a comprehensive perspective on how XNLP can be designed to meet the unique demands of various sectors, from healthcare's need for clear insights to finance's emphasis on fraud detection and risk assessment. Additionally, this review aims to bridge the knowledge gap in XNLP literature by offering a domain-specific exploration and discussing underrepresented areas such as real-world applicability, metric evaluation, and the role of human interaction in model assessment. The paper concludes by suggesting future research directions that could enhance the understanding and broader application of XNLP.
♻ ☆ Goal-Oriented Time-Series Forecasting: Foundation Framework Design
Traditional time-series forecasting often focuses only on minimizing prediction errors, ignoring the specific requirements of real-world applications that employ them. This paper presents a new training methodology, which allows a forecasting model to dynamically adjust its focus based on the importance of forecast ranges specified by the end application. Unlike previous methods that fix these ranges beforehand, our training approach breaks down predictions over the entire signal range into smaller segments, which are then dynamically weighted and combined to produce accurate forecasts within a region of interest. We tested our method on standard datasets, including a new wireless communication dataset, and found that not only it improves prediction accuracy but also enhances the performance of end application employing the forecasting model. This research provides a basis for creating forecasting systems that better connect prediction and decision-making in various practical applications.
♻ ☆ Detection-Driven Object Count Optimization for Text-to-Image Diffusion Models
Accurately controlling object count in text-to-image generation remains a key challenge. Supervised methods often fail, as training data rarely covers all count variations. Methods that manipulate the denoising process to add or remove objects can help; however, they still require labeled data, limit robustness and image quality, and rely on a slow, iterative process. Pre-trained differentiable counting models that rely on soft object density summation exist and could steer generation, but employing them presents three main challenges: (i) they are pre-trained on clean images, making them less effective during denoising steps that operate on noisy inputs; (ii) they are not robust to viewpoint changes; and (iii) optimization is computationally expensive, requiring repeated model evaluations per image. We propose a new framework that uses pre-trained object counting techniques and object detectors to guide generation. First, we optimize a counting token using an outer-loop loss computed on fully generated images. Second, we introduce a detection-driven scaling term that corrects errors caused by viewpoint and proportion shifts, among other factors, without requiring backpropagation through the detection model. Third, we show that the optimized parameters can be reused for new prompts, removing the need for repeated optimization. Our method provides efficiency through token reuse, flexibility via compatibility with various detectors, and accuracy with improved counting across diverse object categories.
comment: Pre-print
♻ ☆ AnyTop: Character Animation Diffusion with Any Topology SIGGRAPH 2025
Generating motion for arbitrary skeletons is a longstanding challenge in computer graphics, remaining largely unexplored due to the scarcity of diverse datasets and the irregular nature of the data. In this work, we introduce AnyTop, a diffusion model that generates motions for diverse characters with distinct motion dynamics, using only their skeletal structure as input. Our work features a transformer-based denoising network, tailored for arbitrary skeleton learning, integrating topology information into the traditional attention mechanism. Additionally, by incorporating textual joint descriptions into the latent feature representation, AnyTop learns semantic correspondences between joints across diverse skeletons. Our evaluation demonstrates that AnyTop generalizes well, even with as few as three training examples per topology, and can produce motions for unseen skeletons as well. Furthermore, our model's latent space is highly informative, enabling downstream tasks such as joint correspondence, temporal segmentation and motion editing. Our webpage, https://anytop2025.github.io/Anytop-page, includes links to videos and code.
comment: SIGGRAPH 2025. Video: https://www.youtube.com/watch?v=NWOdkM5hAbE, Project page: https://anytop2025.github.io/Anytop-page, Code: https://github.com/Anytop2025/Anytop
♻ ☆ LLM Social Simulations Are a Promising Research Method ICML 2025
Accurate and verifiable large language model (LLM) simulations of human research subjects promise an accessible data source for understanding human behavior and training new AI systems. However, results to date have been limited, and few social scientists have adopted this method. In this position paper, we argue that the promise of LLM social simulations can be achieved by addressing five tractable challenges. We ground our argument in a review of empirical comparisons between LLMs and human research subjects, commentaries on the topic, and related work. We identify promising directions, including context-rich prompting and fine-tuning with social science datasets. We believe that LLM social simulations can already be used for pilot and exploratory studies, and more widespread use may soon be possible with rapidly advancing LLM capabilities. Researchers should prioritize developing conceptual models and iterative evaluations to make the best use of new AI systems.
comment: Published at ICML 2025
♻ ☆ Leveraging LLMs for Bangla Grammar Error Correction:Error Categorization, Synthetic Data, and Model Evaluation ACL
Large Language Models (LLMs) perform exceedingly well in Natural Language Understanding (NLU) tasks for many languages including English. However, despite being the fifth most-spoken language globally, Grammatical Error Correction (GEC) in Bangla remains underdeveloped. In this work, we investigate how LLMs can be leveraged for improving Bangla GEC. For that, we first do an extensive categorization of 12 error classes in Bangla, and take a survey of native Bangla speakers to collect real-world errors. We next devise a rule-based noise injection method to create grammatically incorrect sentences corresponding to correct ones. The Vaiyakarana dataset, thus created, consists of 5,67,422 sentences of which 2,27,119 are erroneous. This dataset is then used to instruction-tune LLMs for the task of GEC in Bangla. Evaluations show that instruction-tuning with \name improves GEC performance of LLMs by 3-7 percentage points as compared to the zero-shot setting, and makes them achieve human-like performance in grammatical error identification. Humans, though, remain superior in error correction.
comment: Accepted at ACL Findings, 2025
♻ ☆ GoRA: Gradient-driven Adaptive Low Rank Adaptation
Low-Rank Adaptation (LoRA) is a crucial method for efficiently fine-tuning large language models (LLMs), with its effectiveness influenced by two key factors: rank selection and weight initialization. While numerous LoRA variants have been proposed to improve performance by addressing one of these aspects, they often compromise usability or computational efficiency. In this paper, we analyze and identify the core limitations of existing approaches and propose a novel framework -- GoRA (Gradient-driven Adaptive Low Rank Adaptation) -- that simultaneously adapts both the rank and initialization strategy within a unified framework. GoRA leverages gradient information during training to dynamically assign optimal ranks and initialize low-rank adapter weights in an adaptive manner. To our knowledge, GoRA is the first method that not only addresses the limitations of prior approaches -- which often focus on either rank selection or initialization in isolation -- but also unifies both aspects within a single framework, enabling more effective and efficient adaptation. Extensive experiments across various architectures and modalities show that GoRA consistently outperforms existing LoRA-based methods while preserving the efficiency of vanilla LoRA. For example, when fine-tuning Llama3.1-8B-Base for mathematical reasoning, GoRA achieves a 5.13-point improvement over standard LoRA and even outperforms full fine-tuning by 2.05 points under high-rank settings.
♻ ☆ Seven Security Challenges That Must be Solved in Cross-domain Multi-agent LLM Systems
Large language models (LLMs) are rapidly evolving into autonomous agents that cooperate across organizational boundaries, enabling joint disaster response, supply-chain optimization, and other tasks that demand decentralized expertise without surrendering data ownership. Yet, cross-domain collaboration shatters the unified trust assumptions behind current alignment and containment techniques. An agent benign in isolation may, when receiving messages from an untrusted peer, leak secrets or violate policy, producing risks driven by emergent multi-agent dynamics rather than classical software bugs. This position paper maps the security agenda for cross-domain multi-agent LLM systems. We introduce seven categories of novel security challenges, for each of which we also present plausible attacks, security evaluation metrics, and future research guidelines.
♻ ☆ VCD: A Dataset for Visual Commonsense Discovery in Images
Visual commonsense plays a vital role in understanding and reasoning about the visual world. While commonsense knowledge bases like ConceptNet provide structured collections of general facts, they lack visually grounded representations. Scene graph datasets like Visual Genome, though rich in object-level descriptions, primarily focus on directly observable information and lack systematic categorization of commonsense knowledge. We present Visual Commonsense Dataset (VCD), a large-scale dataset containing over 100,000 images and 14 million object-commonsense pairs that bridges this gap. VCD introduces a novel three-level taxonomy for visual commonsense, integrating both Seen (directly observable) and Unseen (inferrable) commonsense across Property, Action, and Space aspects. Each commonsense is represented as a triple where the head entity is grounded to object bounding boxes in images, enabling scene-dependent and object-specific visual commonsense representation. To demonstrate VCD's utility, we develop VCM, a generative model that combines a vision-language model with instruction tuning to discover diverse visual commonsense from images. Extensive evaluations demonstrate both the high quality of VCD and its value as a resource for advancing visually grounded commonsense understanding and reasoning. Our dataset and code will be released on https://github.com/NUSTM/VCD.
♻ ☆ Neurosymbolic Association Rule Mining from Tabular Data
Association Rule Mining (ARM) is the task of mining patterns among data features in the form of logical rules, with applications across a myriad of domains. However, high-dimensional datasets often result in an excessive number of rules, increasing execution time and negatively impacting downstream task performance. Managing this rule explosion remains a central challenge in ARM research. To address this, we introduce Aerial+, a novel neurosymbolic ARM method. Aerial+ leverages an under-complete autoencoder to create a neural representation of the data, capturing associations between features. It extracts rules from this neural representation by exploiting the model's reconstruction mechanism. Extensive evaluations on five datasets against seven baselines demonstrate that Aerial+ achieves state-of-the-art results by learning more concise, high-quality rule sets with full data coverage. When integrated into rule-based interpretable machine learning models, Aerial+ significantly reduces execution time while maintaining or improving accuracy.
♻ ☆ Optimizing Anytime Reasoning via Budget Relative Policy Optimization
Scaling test-time compute is crucial for enhancing the reasoning capabilities of large language models (LLMs). Existing approaches typically employ reinforcement learning (RL) to maximize a verifiable reward obtained at the end of reasoning traces. However, such methods optimize only the final performance under a large and fixed token budget, which hinders efficiency in both training and deployment. In this work, we present a novel framework, AnytimeReasoner, to optimize anytime reasoning performance, which aims to improve token efficiency and the flexibility of reasoning under varying token budget constraints. To achieve this, we truncate the complete thinking process to fit within sampled token budgets from a prior distribution, compelling the model to summarize the optimal answer for each truncated thinking for verification. This introduces verifiable dense rewards into the reasoning process, facilitating more effective credit assignment in RL optimization. We then optimize the thinking and summary policies in a decoupled manner to maximize the cumulative reward. Additionally, we introduce a novel variance reduction technique, Budget Relative Policy Optimization (BRPO), to enhance the robustness and efficiency of the learning process when reinforcing the thinking policy. Empirical results in mathematical reasoning tasks demonstrate that our method consistently outperforms GRPO across all thinking budgets under various prior distributions, enhancing both training and token efficiency.
♻ ☆ Bottlenecked Transformers: Periodic KV Cache Abstraction for Generalised Reasoning
Despite their impressive capabilities, Large Language Models struggle with generalisation beyond their training distribution, often exhibiting sophisticated pattern interpolation rather than true abstract reasoning (extrapolation). In this work, we approach this limitation through the lens of Information Bottleneck (IB) theory, which posits that model generalisation emerges from an optimal balance between input compression and retention of predictive information in latent representations. We prove using IB theory that decoder-only Transformers are inherently constrained in their ability to form task-optimal sequence representations. We then use this result to demonstrate that periodic global transformation of the internal sequence-level representations (KV cache) is a necessary computational step for improving Transformer generalisation in reasoning tasks. Based on these theoretical insights, we propose a modification to the Transformer architecture, in the form of an additional module that globally rewrites the KV cache at periodic intervals, shifting its capacity away from memorising input prefixes and toward encoding features most useful for predicting future tokens. Our model delivers substantial gains on mathematical reasoning benchmarks, outperforming both vanilla Transformers with up to 3.5x more parameters, as well as heuristic-driven pruning mechanisms for cache compression. Our approach can be seen as a principled generalisation of existing KV-cache compression methods; whereas such methods focus solely on compressing input representations, they often do so at the expense of retaining predictive information, and thus their capabilities are inherently bounded by those of an unconstrained model. This establishes a principled framework to manipulate Transformer memory using information theory, addressing fundamental reasoning limitations that scaling alone cannot overcome.
♻ ☆ Stein Variational Evolution Strategies
Stein Variational Gradient Descent (SVGD) is a highly efficient method to sample from an unnormalized probability distribution. However, the SVGD update relies on gradients of the log-density, which may not always be available. Existing gradient-free versions of SVGD make use of simple Monte Carlo approximations or gradients from surrogate distributions, both with limitations. To improve gradient-free Stein variational inference, we combine SVGD steps with evolution strategy (ES) updates. Our results demonstrate that the resulting algorithm generates high-quality samples from unnormalized target densities without requiring gradient information. Compared to prior gradient-free SVGD methods, we find that the integration of the ES update in SVGD significantly improves the performance on multiple challenging benchmark problems.
♻ ☆ Position is Power: System Prompts as a Mechanism of Bias in Large Language Models (LLMs)
System prompts in Large Language Models (LLMs) are predefined directives that guide model behaviour, taking precedence over user inputs in text processing and generation. LLM deployers increasingly use them to ensure consistent responses across contexts. While model providers set a foundation of system prompts, deployers and third-party developers can append additional prompts without visibility into others' additions, while this layered implementation remains entirely hidden from end-users. As system prompts become more complex, they can directly or indirectly introduce unaccounted for side effects. This lack of transparency raises fundamental questions about how the position of information in different directives shapes model outputs. As such, this work examines how the placement of information affects model behaviour. To this end, we compare how models process demographic information in system versus user prompts across six commercially available LLMs and 50 demographic groups. Our analysis reveals significant biases, manifesting in differences in user representation and decision-making scenarios. Since these variations stem from inaccessible and opaque system-level configurations, they risk representational, allocative and potential other biases and downstream harms beyond the user's ability to detect or correct. Our findings draw attention to these critical issues, which have the potential to perpetuate harms if left unexamined. Further, we argue that system prompt analysis must be incorporated into AI auditing processes, particularly as customisable system prompts become increasingly prevalent in commercial AI deployments.
comment: Forthcoming in Proceedings of ACM FAccT 2025
♻ ☆ Knockout LLM Assessment: Using Large Language Models for Evaluations through Iterative Pairwise Comparisons ACL 2025
Large Language Models (LLMs) have shown to be effective evaluators across various domains such as machine translations or the scientific domain. Current LLM-as-a-Judge approaches rely mostly on individual assessments or a single round of pairwise assessments, preventing the judge LLM from developing a global ranking perspective. To address this, we present Knockout Assessment, an LLM-asa Judge method using a knockout tournament system with iterative pairwise comparisons. Experiments across three LLMs on two datasets show that knockout assessment improves scoring accuracy, increasing Pearson correlation with expert evaluations by 0.07 on average for university-level exam scoring and machine translation evaluations, aligning LLM assessments more closely with human scoring.
comment: Accepted to GEM @ ACL 2025
♻ ☆ EvaLearn: Quantifying the Learning Capability and Efficiency of LLMs via Sequential Problem Solving
We introduce EvaLearn, a pioneering benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks, a critical, yet underexplored aspect of model potential. EvaLearn contains 648 challenging problems across six task types, grouped into 182 sequences, each sequence dedicated to one task type. Diverging from most existing benchmarks that evaluate models in parallel, EvaLearn requires models to solve problems sequentially, allowing them to leverage the experience gained from previous solutions. EvaLearn provides five comprehensive automated metrics to evaluate models and quantify their learning capability and efficiency. We extensively benchmark nine frontier models and observe varied performance profiles: some models, such as Claude-3.7-sonnet, start with moderate initial performance but exhibit strong learning ability, while some models struggle to benefit from experience and may even show negative transfer. Moreover, we investigate model performance under two learning settings and find that instance-level rubrics and teacher-model feedback further facilitate model learning. Importantly, we observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks, highlighting that EvaLearn evaluates a new dimension of model performance. We hope EvaLearn provides a novel evaluation perspective for assessing LLM potential and understanding the gap between models and human capabilities, promoting the development of deeper and more dynamic evaluation approaches. All datasets, the automatic evaluation framework, and the results studied in this paper are available at the GitHub repository.
comment: 47 pages, 24 figures
♻ ☆ Diff-Instruct++: Training One-step Text-to-image Generator Model to Align with Human Preferences
One-step text-to-image generator models offer advantages such as swift inference efficiency, flexible architectures, and state-of-the-art generation performance. In this paper, we study the problem of aligning one-step generator models with human preferences for the first time. Inspired by the success of reinforcement learning using human feedback (RLHF), we formulate the alignment problem as maximizing expected human reward functions while adding an Integral Kullback-Leibler divergence term to prevent the generator from diverging. By overcoming technical challenges, we introduce Diff-Instruct++ (DI++), the first, fast-converging and image data-free human preference alignment method for one-step text-to-image generators. We also introduce novel theoretical insights, showing that using CFG for diffusion distillation is secretly doing RLHF with DI++. Such an interesting finding brings understanding and potential contributions to future research involving CFG. In the experiment sections, we align both UNet-based and DiT-based one-step generators using DI++, which use the Stable Diffusion 1.5 and the PixelArt-$\alpha$ as the reference diffusion processes. The resulting DiT-based one-step text-to-image model achieves a strong Aesthetic Score of 6.19 and an Image Reward of 1.24 on the COCO validation prompt dataset. It also achieves a leading Human preference Score (HPSv2.0) of 28.48, outperforming other open-sourced models such as Stable Diffusion XL, DMD2, SD-Turbo, as well as PixelArt-$\alpha$. Both theoretical contributions and empirical evidence indicate that DI++ is a strong human-preference alignment approach for one-step text-to-image models. The homepage of the paper is https://github.com/pkulwj1994/diff_instruct_pp.
comment: Revision: The paper was accepted by Transactions of Machine Learning Research (TMLR)
♻ ☆ STOPA: A Database of Systematic VariaTion Of DeePfake Audio for Open-Set Source Tracing and Attribution
A key research area in deepfake speech detection is source tracing - determining the origin of synthesised utterances. The approaches may involve identifying the acoustic model (AM), vocoder model (VM), or other generation-specific parameters. However, progress is limited by the lack of a dedicated, systematically curated dataset. To address this, we introduce STOPA, a systematically varied and metadata-rich dataset for deepfake speech source tracing, covering 8 AMs, 6 VMs, and diverse parameter settings across 700k samples from 13 distinct synthesisers. Unlike existing datasets, which often feature limited variation or sparse metadata, STOPA provides a systematically controlled framework covering a broader range of generative factors, such as the choice of the vocoder model, acoustic model, or pretrained weights, ensuring higher attribution reliability. This control improves attribution accuracy, aiding forensic analysis, deepfake detection, and generative model transparency.
comment: Accepted to Interspeech 2025 conference
♻ ☆ Piloting Structure-Based Drug Design via Modality-Specific Optimal Schedule ICML 2025
Structure-Based Drug Design (SBDD) is crucial for identifying bioactive molecules. Recent deep generative models are faced with challenges in geometric structure modeling. A major bottleneck lies in the twisted probability path of multi-modalities -- continuous 3D positions and discrete 2D topologies -- which jointly determine molecular geometries. By establishing the fact that noise schedules decide the Variational Lower Bound (VLB) for the twisted probability path, we propose VLB-Optimal Scheduling (VOS) strategy in this under-explored area, which optimizes VLB as a path integral for SBDD. Our model effectively enhances molecular geometries and interaction modeling, achieving state-of-the-art PoseBusters passing rate of 95.9% on CrossDock, more than 10% improvement upon strong baselines, while maintaining high affinities and robust intramolecular validity evaluated on held-out test set. Code is available at https://github.com/AlgoMole/MolCRAFT.
comment: Accepted to ICML 2025
♻ ☆ Empower Structure-Based Molecule Optimization with Gradient Guided Bayesian Flow Networks ICML 2025
Structure-Based molecule optimization (SBMO) aims to optimize molecules with both continuous coordinates and discrete types against protein targets. A promising direction is to exert gradient guidance on generative models given its remarkable success in images, but it is challenging to guide discrete data and risks inconsistencies between modalities. To this end, we leverage a continuous and differentiable space derived through Bayesian inference, presenting Molecule Joint Optimization (MolJO), the gradient-based SBMO framework that facilitates joint guidance signals across different modalities while preserving SE(3)-equivariance. We introduce a novel backward correction strategy that optimizes within a sliding window of the past histories, allowing for a seamless trade-off between explore-and-exploit during optimization. MolJO achieves state-of-the-art performance on CrossDocked2020 benchmark (Success Rate 51.3%, Vina Dock -9.05 and SA 0.78), more than 4x improvement in Success Rate compared to the gradient-based counterpart, and 2x "Me-Better" Ratio as much as 3D baselines. Furthermore, we extend MolJO to a wide range of optimization settings, including multi-objective optimization and challenging tasks in drug design such as R-group optimization and scaffold hopping, further underscoring its versatility. Code is available at https://github.com/AlgoMole/MolCRAFT.
comment: Accepted to ICML 2025
♻ ☆ Navigating Motion Agents in Dynamic and Cluttered Environments through LLM Reasoning
This paper advances motion agents empowered by large language models (LLMs) toward autonomous navigation in dynamic and cluttered environments, significantly surpassing first and recent seminal but limited studies on LLM's spatial reasoning, where movements are restricted in four directions in simple, static environments in the presence of only single agents much less multiple agents. Specifically, we investigate LLMs as spatial reasoners to overcome these limitations by uniformly encoding environments (e.g., real indoor floorplans), agents which can be dynamic obstacles and their paths as discrete tokens akin to language tokens. Our training-free framework supports multi-agent coordination, closed-loop replanning, and dynamic obstacle avoidance without retraining or fine-tuning. We show that LLMs can generalize across agents, tasks, and environments using only text-based interactions, opening new possibilities for semantically grounded, interactive navigation in both simulation and embodied systems.
♻ ☆ David and Goliath: Small One-step Model Beats Large Diffusion with Score Post-training ICML2025
We propose Diff-Instruct* (DI*), a data-efficient post-training approach for one-step text-to-image generative models to improve its human preferences without requiring image data. Our method frames alignment as online reinforcement learning from human feedback (RLHF), which optimizes the one-step model to maximize human reward functions while being regularized to be kept close to a reference diffusion process. Unlike traditional RLHF approaches, which rely on the Kullback-Leibler divergence as the regularization, we introduce a novel general score-based divergence regularization that substantially improves performance as well as post-training stability. Although the general score-based RLHF objective is intractable to optimize, we derive a strictly equivalent tractable loss function in theory that can efficiently compute its \emph{gradient} for optimizations. We introduce \emph{DI*-SDXL-1step}, which is a 2.6B one-step text-to-image model at a resolution of $1024\times 1024$, post-trained from DMD2 w.r.t SDXL. \textbf{Our 2.6B \emph{DI*-SDXL-1step} model outperforms the 50-step 12B FLUX-dev model} in ImageReward, PickScore, and CLIP score on the Parti prompts benchmark while using only 1.88\% of the inference time. This result clearly shows that with proper post-training, the small one-step model is capable of beating huge multi-step diffusion models. Our model is open-sourced at this link: https://github.com/pkulwj1994/diff_instruct_star. We hope our findings can contribute to human-centric machine learning techniques.
comment: Revision: paper accepted by the ICML2025 main conference
♻ ☆ Towards Robust ESG Analysis Against Greenwashing Risks: Aspect-Action Analysis with Cross-Category Generalization ACL 2025
Sustainability reports are key for evaluating companies' environmental, social and governance, ESG performance, but their content is increasingly obscured by greenwashing - sustainability claims that are misleading, exaggerated, and fabricated. Yet, existing NLP approaches for ESG analysis lack robustness against greenwashing risks, often extracting insights that reflect misleading or exaggerated sustainability claims rather than objective ESG performance. To bridge this gap, we introduce A3CG - Aspect-Action Analysis with Cross-Category Generalization, as a novel dataset to improve the robustness of ESG analysis amid the prevalence of greenwashing. By explicitly linking sustainability aspects with their associated actions, A3CG facilitates a more fine-grained and transparent evaluation of sustainability claims, ensuring that insights are grounded in verifiable actions rather than vague or misleading rhetoric. Additionally, A3CG emphasizes cross-category generalization. This ensures robust model performance in aspect-action analysis even when companies change their reports to selectively favor certain sustainability areas. Through experiments on A3CG, we analyze state-of-the-art supervised models and LLMs, uncovering their limitations and outlining key directions for future research.
comment: Proceedings of the Association for Computational Linguistics Main Conference (ACL 2025)
♻ ☆ Deriving Strategic Market Insights with Large Language Models: A Benchmark for Forward Counterfactual Generation
Counterfactual reasoning typically involves considering alternatives to actual events. While often applied to understand past events, a distinct form-forward counterfactual reasoning-focuses on anticipating plausible future developments. This type of reasoning is invaluable in dynamic financial markets, where anticipating market developments can powerfully unveil potential risks and opportunities for stakeholders, guiding their decision-making. However, performing this at scale is challenging due to the cognitive demands involved, underscoring the need for automated solutions. Large Language Models (LLMs) offer promise, but remain unexplored for this application. To address this gap, we introduce a novel benchmark, Fin-Force-FINancial FORward Counterfactual Evaluation. By curating financial news headlines and providing structured evaluation, Fin-Force supports LLM based forward counterfactual generation. This paves the way for scalable and automated solutions for exploring and anticipating future market developments, thereby providing structured insights for decision-making. Through experiments on Fin-Force, we evaluate state-of-the-art LLMs and counterfactual generation methods, analyzing their limitations and proposing insights for future research.
♻ ☆ In-context Language Learning for Endangered Languages in Speech Recognition
With approximately 7,000 languages spoken worldwide, current large language models (LLMs) support only a small subset. Prior research indicates LLMs can learn new languages for certain tasks without supervised data. We extend this investigation to speech recognition, investigating whether LLMs can learn unseen, low-resource languages through in-context learning (ICL). With experiments on four diverse endangered languages that LLMs have not been trained on, we find that providing more relevant text samples enhances performance in both language modelling and Automatic Speech Recognition (ASR) tasks. Furthermore, we show that the probability-based approach outperforms the traditional instruction-based approach in language learning. Lastly, we show ICL enables LLMs to achieve ASR performance that is comparable to or even surpasses dedicated language models trained specifically for these languages, while preserving the original capabilities of the LLMs.
comment: Interspeech2025
♻ ☆ MiMo: Unlocking the Reasoning Potential of Language Model -- From Pretraining to Posttraining
We present MiMo-7B, a large language model born for reasoning tasks, with optimization across both pre-training and post-training stages. During pre-training, we enhance the data preprocessing pipeline and employ a three-stage data mixing strategy to strengthen the base model's reasoning potential. MiMo-7B-Base is pre-trained on 25 trillion tokens, with additional Multi-Token Prediction objective for enhanced performance and accelerated inference speed. During post-training, we curate a dataset of 130K verifiable mathematics and programming problems for reinforcement learning, integrating a test-difficulty-driven code-reward scheme to alleviate sparse-reward issues and employing strategic data resampling to stabilize training. Extensive evaluations show that MiMo-7B-Base possesses exceptional reasoning potential, outperforming even much larger 32B models. The final RL-tuned model, MiMo-7B-RL, achieves superior performance on mathematics, code and general reasoning tasks, surpassing the performance of OpenAI o1-mini. The model checkpoints are available at https://github.com/xiaomimimo/MiMo.
♻ ☆ Train One Sparse Autoencoder Across Multiple Sparsity Budgets to Preserve Interpretability and Accuracy
Sparse Autoencoders (SAEs) have proven to be powerful tools for interpreting neural networks by decomposing hidden representations into disentangled, interpretable features via sparsity constraints. However, conventional SAEs are constrained by the fixed sparsity level chosen during training; meeting different sparsity requirements therefore demands separate models and increases the computational footprint during both training and evaluation. We introduce a novel training objective, \emph{HierarchicalTopK}, which trains a single SAE to optimise reconstructions across multiple sparsity levels simultaneously. Experiments with Gemma-2 2B demonstrate that our approach achieves Pareto-optimal trade-offs between sparsity and explained variance, outperforming traditional SAEs trained at individual sparsity levels. Further analysis shows that HierarchicalTopK preserves high interpretability scores even at higher sparsity. The proposed objective thus closes an important gap between flexibility and interpretability in SAE design.
♻ ☆ Full-Parameter Continual Pretraining of Gemma2: Insights into Fluency and Domain Knowledge
In this technical report, we empirically investigate the relationship between linguistic fluency and domain knowledge in the context of continual learning with large language models (LLMs). Specifically, we enhance the linguistic fluency of the Gemma2 LLM for the Lithuanian language by autoregressively pretraining its full parameter set on the first 10\% of the Lithuanian language component of the CulturaX dataset. To prevent catastrophic forgetting of the model's existing domain knowledge, we apply Elastic Weight Consolidation (EWC), leveraging Fisher information estimated using data from the Massive Multitask Language Understanding (MMLU) benchmark. In the post-training evaluations, we assess linguistic fluency through perplexity and evaluate domain knowledge using accuracy on a suite of language understanding benchmarks, including ARC-Easy, Belebele, GSM8K, HellaSwag, MMLU, TruthfulQA, and Winogrande, in both English and Lithuanian. The empirical results demonstrate that EWC not only mitigates catastrophic forgetting by preserving the model's performance in terms of both linguistic fluency and domain knowledge but also improves or maintains these capabilities for the newly added Lithuanian language. These findings highlight the potential for more efficient adaptation of general-purpose LLMs to under-represented languages without requiring access to the original training data. The accompanying codebase is openly accessible at https://github.com/Neurotechnology/LLM_EWC.
comment: 9 pages, 3 figures, 1 table
♻ ☆ NTPP: Generative Speech Language Modeling for Dual-Channel Spoken Dialogue via Next-Token-Pair Prediction ICML 2025
Inspired by the impressive capabilities of GPT-4o, there is growing interest in enabling speech language models (SLMs) to engage in natural, fluid spoken interactions with humans. Recent advancements have led to the development of several SLMs that demonstrate promising results in this area. However, current approaches have yet to fully exploit dual-channel speech data, which inherently captures the structure and dynamics of human conversation. In this work, we systematically explore the use of dual-channel speech data in the context of modern large language models, and introduce a novel generative modeling paradigm, Next-Token-Pair Prediction (NTPP), to enable speaker-independent dual-channel spoken dialogue learning using decoder-only architectures for the first time. We evaluate our approach on standard benchmarks, and empirical results show that our proposed method, NTPP, significantly improves the conversational abilities of SLMs in terms of turn-taking prediction, response coherence, and naturalness. Moreover, compared to existing methods, NTPP achieves substantially lower inference latency, highlighting its practical efficiency for real-time applications.
comment: Accepted by ICML 2025
♻ ☆ TinySQL: A Progressive Text-to-SQL Dataset for Mechanistic Interpretability Research
Mechanistic interpretability research faces a gap between analyzing simple circuits in toy tasks and discovering features in large models. To bridge this gap, we propose text-to-SQL generation as an ideal task to study, as it combines the formal structure of toy tasks with real-world complexity. We introduce TinySQL, a synthetic dataset, progressing from basic to advanced SQL operations, and train models ranging from 33M to 1B parameters to establish a comprehensive testbed for interpretability. We apply multiple complementary interpretability techniques, including Edge Attribution Patching and Sparse Autoencoders, to identify minimal circuits and components supporting SQL generation. We compare circuits for different SQL subskills, evaluating their minimality, reliability, and identifiability. Finally, we conduct a layerwise logit lens analysis to reveal how models compose SQL queries across layers: from intent recognition to schema resolution to structured generation. Our work provides a robust framework for probing and comparing interpretability methods in a structured, progressively complex setting.
comment: 9 pages, 19 figures, 7 tables, 18 trained models
♻ ☆ Can Graph Descriptive Order Affect Solving Graph Problems with LLMs? ACL 2025
Large language models (LLMs) have achieved significant success in reasoning tasks, including mathematical reasoning and logical deduction. Among these reasoning tasks, graph problems stand out due to their complexity and unique structural characteristics, attracting considerable attention from researchers. Previous studies have explored LLMs' graph reasoning abilities through various techniques, such as different encoding methods for graph structures and the use of carefully designed prompts. However, a critical factor has been mostly overlooked: the prompt sequential order in which graph descriptions are presented to the models. In this study, we present the first comprehensive analysis of how the order of graph descriptions impacts LLM performance. Specifically, we comprehensively evaluate four graph description orders across six graph problems using six mainstream LLMs. The results reveal that: (1) ordered graph descriptions significantly improve LLMs' comprehension of graph structures; (2) the robustness of LLMs to graph description order varies across different tasks; and (3) the impact of graph order on performance is closely related to the inherent characteristics of tasks. This study provides a critical advancement in the application of LLMs for solving graph-related problems, paving the way for future research to optimize model performance through strategic graph description ordering.
comment: Accepted to ACL 2025 main conference
♻ ☆ EnIGMA: Interactive Tools Substantially Assist LM Agents in Finding Security Vulnerabilities ICML 2025
Although language model (LM) agents have demonstrated increased performance in multiple domains, including coding and web-browsing, their success in cybersecurity has been limited. We present EnIGMA, an LM agent for autonomously solving Capture The Flag (CTF) challenges. We introduce new tools and interfaces to improve the agent's ability to find and exploit security vulnerabilities, focusing on interactive terminal programs. These novel Interactive Agent Tools enable LM agents, for the first time, to run interactive utilities, such as a debugger and a server connection tool, which are essential for solving these challenges. Empirical analysis on 390 CTF challenges across four benchmarks demonstrate that these new tools and interfaces substantially improve our agent's performance, achieving state-of-the-art results on NYU CTF, Intercode-CTF, and CyBench. Finally, we analyze data leakage, developing new methods to quantify it and identifying a new phenomenon we term soliloquizing, where the model self-generates hallucinated observations without interacting with the environment. Our code and development dataset are available at https://github.com/SWE-agent/SWE-agent/tree/v0.7 and https://github.com/NYU-LLM-CTF/NYU_CTF_Bench/tree/main/development respectively.
comment: ICML 2025; Project website https://enigma-agent.com
♻ ☆ Multi-granularity Knowledge Transfer for Continual Reinforcement Learning IJCAI 2025
Continual reinforcement learning (CRL) empowers RL agents with the ability to learn a sequence of tasks, accumulating knowledge learned in the past and using the knowledge for problemsolving or future task learning. However, existing methods often focus on transferring fine-grained knowledge across similar tasks, which neglects the multi-granularity structure of human cognitive control, resulting in insufficient knowledge transfer across diverse tasks. To enhance coarse-grained knowledge transfer, we propose a novel framework called MT-Core (as shorthand for Multi-granularity knowledge Transfer for Continual reinforcement learning). MT-Core has a key characteristic of multi-granularity policy learning: 1) a coarsegrained policy formulation for utilizing the powerful reasoning ability of the large language model (LLM) to set goals, and 2) a fine-grained policy learning through RL which is oriented by the goals. We also construct a new policy library (knowledge base) to store policies that can be retrieved for multi-granularity knowledge transfer. Experimental results demonstrate the superiority of the proposed MT-Core in handling diverse CRL tasks versus popular baselines.
comment: the 34th International Joint Conference on Artificial Intelligence (IJCAI 2025)
♻ ☆ NorEval: A Norwegian Language Understanding and Generation Evaluation Benchmark ACL 2025
This paper introduces NorEval, a new and comprehensive evaluation suite for large-scale standardized benchmarking of Norwegian generative language models (LMs). NorEval consists of 24 high-quality human-created datasets -- of which five are created from scratch. In contrast to existing benchmarks for Norwegian, NorEval covers a broad spectrum of task categories targeting Norwegian language understanding and generation, establishes human baselines, and focuses on both of the official written standards of the Norwegian language: Bokm{\aa}l and Nynorsk. All our datasets and a collection of over 100 human-written prompts are integrated into LM Evaluation Harness, ensuring flexible and reproducible evaluation. We describe the NorEval design and present the results of benchmarking 19 open-source pre-trained and instruction-tuned LMs for Norwegian in various scenarios. Our benchmark, evaluation framework, and annotation materials are publicly available.
comment: Accepted for Findings of the Association for Computational Linguistics: ACL 2025
♻ ☆ MuLan: Adapting Multilingual Diffusion Models for Hundreds of Languages with Negligible Cost
In this work, we explore a cost-effective framework for multilingual image generation. We find that, unlike models tuned on high-quality images with multilingual annotations, leveraging text encoders pre-trained on widely available, noisy Internet image-text pairs significantly enhances data efficiency in text-to-image (T2I) generation across multiple languages.Based on this insight, we introduce MuLan, Multi-Language adapter, a lightweight language adapter with fewer than 20M parameters, trained alongside a frozen text encoder and image diffusion model. Compared to previous multilingual T2I models, this framework offers: (1) Cost efficiency. Using readily accessible English data and off-the-shelf multilingual text encoders minimizes the training cost; (2) High performance. Achieving comparable generation capabilities in over 110 languages with CLIP similarity scores nearly matching those in English (39.57 for English vs. 39.61 for other languages); and (3) Broad applicability. Seamlessly integrating with compatible community tools like LoRA, LCM, ControlNet, and IP-Adapter, expanding its potential use cases.
♻ ☆ When Claims Evolve: Evaluating and Enhancing the Robustness of Embedding Models Against Misinformation Edits ACL 2025
Online misinformation remains a critical challenge, and fact-checkers increasingly rely on claim matching systems that use sentence embedding models to retrieve relevant fact-checks. However, as users interact with claims online, they often introduce edits, and it remains unclear whether current embedding models used in retrieval are robust to such edits. To investigate this, we introduce a perturbation framework that generates valid and natural claim variations, enabling us to assess the robustness of a wide-range of sentence embedding models in a multi-stage retrieval pipeline and evaluate the effectiveness of various mitigation approaches. Our evaluation reveals that standard embedding models exhibit notable performance drops on edited claims, while LLM-distilled embedding models offer improved robustness at a higher computational cost. Although a strong reranker helps to reduce the performance drop, it cannot fully compensate for first-stage retrieval gaps. To address these retrieval gaps, we evaluate train- and inference-time mitigation approaches, demonstrating that they can improve in-domain robustness by up to 17 percentage points and boost out-of-domain generalization by 10 percentage points. Overall, our findings provide practical improvements to claim-matching systems, enabling more reliable fact-checking of evolving misinformation. Code and data are available at https://github.com/JabezNzomo99/claim-matching-robustness.
comment: Accepted to ACL 2025 Findings
♻ ☆ Learning pure quantum states (almost) without regret
We initiate the study of sample-optimal quantum state tomography with minimal disturbance to the samples. Can we efficiently learn a precise description of a quantum state through sequential measurements of samples while at the same time making sure that the post-measurement state of the samples is only minimally perturbed? Defining regret as the cumulative disturbance of all samples, the challenge is to find a balance between the most informative sequence of measurements on the one hand and measurements incurring minimal regret on the other. Here we answer this question for qubit states by exhibiting a protocol that for pure states achieves maximal precision while incurring a regret that grows only polylogarithmically with the number of samples, a scaling that we show to be optimal.
comment: 28 pages, 2 figures
♻ ☆ Evaluating Morphological Compositional Generalization in Large Language Models NAACL 2025
Large language models (LLMs) have demonstrated significant progress in various natural language generation and understanding tasks. However, their linguistic generalization capabilities remain questionable, raising doubts about whether these models learn language similarly to humans. While humans exhibit compositional generalization and linguistic creativity in language use, the extent to which LLMs replicate these abilities, particularly in morphology, is under-explored. In this work, we systematically investigate the morphological generalization abilities of LLMs through the lens of compositionality. We define morphemes as compositional primitives and design a novel suite of generative and discriminative tasks to assess morphological productivity and systematicity. Focusing on agglutinative languages such as Turkish and Finnish, we evaluate several state-of-the-art instruction-finetuned multilingual models, including GPT-4 and Gemini. Our analysis shows that LLMs struggle with morphological compositional generalization particularly when applied to novel word roots, with performance declining sharply as morphological complexity increases. While models can identify individual morphological combinations better than chance, their performance lacks systematicity, leading to significant accuracy gaps compared to humans.
comment: Accepted to NAACL 2025
♻ ☆ Hybrid deep convolution model for lung cancer detection with transfer learning
Advances in healthcare research have significantly enhanced our understanding of disease mechanisms, diagnostic precision, and therapeutic options. Yet, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to challenges in early and accurate diagnosis. While current lung cancer detection models show promise, there is considerable potential for further improving the accuracy for timely intervention. To address this challenge, we introduce a hybrid deep convolution model leveraging transfer learning, named the Maximum Sensitivity Neural Network (MSNN). MSNN is designed to improve the precision of lung cancer detection by refining sensitivity and specificity. This model has surpassed existing deep learning approaches through experimental validation, achieving an accuracy of 98% and a sensitivity of 97%. By overlaying sensitivity maps onto lung Computed Tomography (CT) scans, it enables the visualization of regions most indicative of malignant or benign classifications. This innovative method demonstrates exceptional performance in distinguishing lung cancer with minimal false positives, thereby enhancing the accuracy of medical diagnoses.
comment: Authors realized mistake in the model. Also some data was misinterpreted
♻ ☆ Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset
The global challenge of sustainable recycling demands automated, fast, and accurate, state-of-the-art (SOTA) material detection systems that act as a bedrock for a circular economy. Democratizing access to these cutting-edge solutions that enable real-time waste analysis is essential for scaling up recycling efforts and fostering the Green Deal. In response, we introduce \textbf{Electrolyzers-HSI}, a novel multimodal benchmark dataset designed to accelerate the recovery of critical raw materials through accurate electrolyzer materials classification. The dataset comprises 55 co-registered high-resolution RGB images and hyperspectral imaging (HSI) data cubes spanning the 400--2500 nm spectral range, yielding over 4.2 million pixel vectors and 424,169 labeled ones. This enables non-invasive spectral analysis of shredded electrolyzer samples, supporting quantitative and qualitative material classification and spectral properties investigation. We evaluate a suite of baseline machine learning (ML) methods alongside SOTA transformer-based deep learning (DL) architectures, including Vision Transformer, SpectralFormer, and the Multimodal Fusion Transformer, to investigate architectural bottlenecks for further efficiency optimisation when deploying transformers in material identification. We implement zero-shot detection techniques and majority voting across pixel-level predictions to establish object-level classification robustness. In adherence to the FAIR data principles, the electrolyzers-HSI dataset and accompanying codebase are openly available at https://github.com/hifexplo/Electrolyzers-HSI and https://rodare.hzdr.de/record/3668, supporting reproducible research and facilitating the broader adoption of smart and sustainable e-waste recycling solutions.
♻ ☆ Deconstructing Obfuscation: A four-dimensional framework for evaluating Large Language Models assembly code deobfuscation capabilities
Large language models (LLMs) have shown promise in software engineering, yet their effectiveness for binary analysis remains unexplored. We present the first comprehensive evaluation of commercial LLMs for assembly code deobfuscation. Testing seven state-of-the-art models against four obfuscation scenarios (bogus control flow, instruction substitution, control flow flattening, and their combination), we found striking performance variations--from autonomous deobfuscation to complete failure. We propose a theoretical framework based on four dimensions: Reasoning Depth, Pattern Recognition, Noise Filtering, and Context Integration, explaining these variations. Our analysis identifies five error patterns: predicate misinterpretation, structural mapping errors, control flow misinterpretation, arithmetic transformation errors, and constant propagation errors, revealing fundamental limitations in LLM code processing.We establish a three-tier resistance model: bogus control flow (low resistance), control flow flattening (moderate resistance), and instruction substitution/combined techniques (high resistance). Universal failure against combined techniques demonstrates that sophisticated obfuscation remains effective against advanced LLMs. Our findings suggest a human-AI collaboration paradigm where LLMs reduce expertise barriers for certain reverse engineering tasks while requiring human guidance for complex deobfuscation. This work provides a foundation for evaluating emerging capabilities and developing resistant obfuscation techniques.x deobfuscation. This work provides a foundation for evaluating emerging capabilities and developing resistant obfuscation techniques.
♻ ☆ Rethinking Text-based Protein Understanding: Retrieval or LLM?
In recent years, protein-text models have gained significant attention for their potential in protein generation and understanding. Current approaches focus on integrating protein-related knowledge into large language models through continued pretraining and multi-modal alignment, enabling simultaneous comprehension of textual descriptions and protein sequences. Through a thorough analysis of existing model architectures and text-based protein understanding benchmarks, we identify significant data leakage issues present in current benchmarks. Moreover, conventional metrics derived from natural language processing fail to accurately assess the model's performance in this domain. To address these limitations, we reorganize existing datasets and introduce a novel evaluation framework based on biological entities. Motivated by our observation, we propose a retrieval-enhanced method, which significantly outperforms fine-tuned LLMs for protein-to-text generation and shows accuracy and efficiency in training-free scenarios. Our code and data can be seen at https://github.com/IDEA-XL/RAPM.
♻ ☆ FlowCut: Rethinking Redundancy via Information Flow for Efficient Vision-Language Models
Large vision-language models (LVLMs) excel at multimodal understanding but suffer from high computational costs due to redundant vision tokens. Existing pruning methods typically rely on single-layer attention scores to rank and prune redundant visual tokens to solve this inefficiency. However, as the interaction between tokens and layers is complicated, this raises a basic question: Is such a simple single-layer criterion sufficient to identify redundancy? To answer this question, we rethink the emergence of redundant visual tokens from a fundamental perspective: information flow, which models the interaction between tokens and layers by capturing how information moves between tokens across layers. We find (1) the CLS token acts as an information relay, which can simplify the complicated flow analysis; (2) the redundancy emerges progressively and dynamically via layer-wise attention concentration; and (3) relying solely on attention scores from single layers can lead to contradictory redundancy identification. Based on this, we propose FlowCut, an information-flow-aware pruning framework, mitigating the insufficiency of the current criterion for identifying redundant tokens and better aligning with the model's inherent behaviors. Extensive experiments show that FlowCut achieves superior results, outperforming SoTA by 1.6% on LLaVA-1.5-7B with 88.9% token reduction, and by 4.3% on LLaVA-NeXT-7B with 94.4% reduction, delivering 3.2x speed-up in the prefilling stage. Our code is available at https://github.com/TungChintao/FlowCut
comment: 19 pages, 11 figures
♻ ☆ MIRROR: Multi-agent Intra- and Inter-Reflection for Optimized Reasoning in Tool Learning IJCAI 2025
Complex tasks involving tool integration pose significant challenges for Large Language Models (LLMs), leading to the emergence of multi-agent workflows as a promising solution. Reflection has emerged as an effective strategy for correcting erroneous trajectories in agentic workflows. However, existing approaches only exploit such capability in the post-action stage, where the agent observes the execution outcomes. We argue that, like humans, LLMs can also engage in reflection before action execution: the agent can anticipate undesirable outcomes from its own decisions, which not only provides a necessarily complementary perspective to evaluate the decision but also prevents the propagation of errors throughout the trajectory. In this paper, we propose MIRROR, a framework that consists of both intra-reflection, which critically assesses intended actions before execution, and inter-reflection, which further adjusts the trajectory based on observations. This design systematically leverages LLM reflection capabilities to eliminate and rectify erroneous actions on a more comprehensive scope. Evaluations on both the StableToolBench and TravelPlanner benchmarks demonstrate MIRROR's superior performance, achieving state-of-the-art results compared to existing approaches.
comment: Accepted to 34rd International Joint Conference on Artificial Intelligence (IJCAI 2025)
♻ ☆ Blackout DIFUSCO
This study explores the integration of Blackout Diffusion into the DIFUSCO framework for combinatorial optimization, specifically targeting the Traveling Salesman Problem (TSP). Inspired by the success of discrete-time diffusion models (D3PM) in maintaining structural integrity, we extend the paradigm to a continuous-time framework, leveraging the unique properties of Blackout Diffusion. Continuous-time modeling introduces smoother transitions and refined control, hypothesizing enhanced solution quality over traditional discrete methods. We propose three key improvements to enhance the diffusion process. First, we transition from a discrete-time-based model to a continuous-time framework, providing a more refined and flexible formulation. Second, we refine the observation time scheduling to ensure a smooth and linear transformation throughout the diffusion process, allowing for a more natural progression of states. Finally, building upon the second improvement, we further enhance the reverse process by introducing finer time slices in regions that are particularly challenging for the model, thereby improving accuracy and stability in the reconstruction phase. Although the experimental results did not exceed the baseline performance, they demonstrate the effectiveness of these methods in balancing simplicity and complexity, offering new insights into diffusion-based combinatorial optimization. This work represents the first application of Blackout Diffusion to combinatorial optimization, providing a foundation for further advancements in this domain. * The code is available for review at https://github.com/Giventicket/BlackoutDIFUSCO.
comment: 12 pages
♻ ☆ Inclusive, Differentially Private Federated Learning for Clinical Data
Federated Learning (FL) offers a promising approach for training clinical AI models without centralizing sensitive patient data. However, its real-world adoption is hindered by challenges related to privacy, resource constraints, and compliance. Existing Differential Privacy (DP) approaches often apply uniform noise, which disproportionately degrades model performance, even among well-compliant institutions. In this work, we propose a novel compliance-aware FL framework that enhances DP by adaptively adjusting noise based on quantifiable client compliance scores. Additionally, we introduce a compliance scoring tool based on key healthcare and security standards to promote secure, inclusive, and equitable participation across diverse clinical settings. Extensive experiments on public datasets demonstrate that integrating under-resourced, less compliant clinics with highly regulated institutions yields accuracy improvements of up to 15% over traditional FL. This work advances FL by balancing privacy, compliance, and performance, making it a viable solution for real-world clinical workflows in global healthcare.
♻ ☆ DELE: Deductive $\mathcal{EL}^{++}$ Embeddings for Knowledge Base Completion
Ontology embeddings map classes, relations, and individuals in ontologies into $\mathbb{R}^n$, and within $\mathbb{R}^n$ similarity between entities can be computed or new axioms inferred. For ontologies in the Description Logic $\mathcal{EL}^{++}$, several optimization-based embedding methods have been developed that explicitly generate models of an ontology. However, these methods suffer from some limitations; they do not distinguish between statements that are unprovable and provably false, and therefore they may use entailed statements as negatives. Furthermore, they do not utilize the deductive closure of an ontology to identify statements that are inferred but not asserted. We evaluated a set of embedding methods for $\mathcal{EL}^{++}$ ontologies, incorporating several modifications that aim to make use of the ontology deductive closure. In particular, we designed novel negative losses that account both for the deductive closure and different types of negatives and formulated evaluation methods for knowledge base completion. We demonstrate that our embedding methods improve over the baseline ontology embedding in the task of knowledge base or ontology completion.
comment: Extended version of the paper "Enhancing Geometric Ontology Embeddings for $\mathcal{EL}^{++}$ with Negative Sampling and Deductive Closure Filtering" presented at NeSy 2024 conference, revised version
♻ ☆ Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent and coherent behavior across multiple rounds of user interaction. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. Code and data are available at: https://github.com/yubol-bobo/MT-Consistency. First, we introduce Position-Weighted Consistency (PWC), a metric designed to capture both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present MT-Consistency, a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by explicitly integrating internal model confidence scores during the generation process. Experimental results demonstrate that CARG significantly improves response stability without sacrificing accuracy, offering a practical path toward more dependable LLM behavior in critical, real-world deployments.
comment: 8 pages, 5 figures
♻ ☆ Focus On This, Not That! Steering LLMs with Adaptive Feature Specification
Despite the success of Instruction Tuning (IT) in training large language models (LLMs), such models often leverage spurious or biased features learnt from their training data and can become misaligned, leading to undesired behaviours. While existing techniques can steer model behaviour at inference-time, they are often post-hoc and do not embed steering as an intrinsic model feature. In this work, we introduce Focus Instruction Tuning (FIT), which trains LLMs to condition their responses by focusing on specific features whilst ignoring others, leading to different behaviours based on what features are specified. Across diverse benchmarks, we demonstrate that FIT: (i) successfully steers behaviour at inference time; (ii) increases robustness by amplifying core task signals and down-weighting spurious cues; (iii) mitigates social bias by suppressing demographic attributes; and (iv) generalises under distribution shifts and to previously unseen focus features. FIT therefore offers a lightweight, intrinsic mechanism for building more robust, fair, and easily controllable LLMs.
comment: 36pages, 19 figures
♻ ☆ The Role of Diversity in In-Context Learning for Large Language Models
In-context learning (ICL) is a crucial capability of current large language models (LLMs), where the selection of examples plays a key role in performance. While most existing approaches focus on selecting the most similar examples to the query, the impact of diversity in example selection remains underexplored. We systematically investigate the role of diversity in in-context example selection through experiments across a range of tasks, from sentiment classification to more challenging math and code problems. Experiments on Llama-3.1, Gemma-2, and Mistral-v0.3 families of models show that diversity-aware selection methods improve performance, particularly on complex tasks like math and code, and enhance robustness to out-of-distribution queries. To support these findings, we introduce a theoretical framework that explains the benefits of incorporating diversity in in-context example selection.
comment: 30 pages
♻ ☆ Scaling Trends in Language Model Robustness ICML
Increasing model size has unlocked a dazzling array of capabilities in modern language models. At the same time, even frontier models remain vulnerable to jailbreaks and prompt injections, despite concerted efforts to make them robust. As both attack and defense gain access to more compute, and as models become larger, what happens to robustness? We argue that to answer this question requires a \emph{scaling} approach, which we employ in an extensive study of language model robustness across several classification tasks, model families, and adversarial attacks. We find that in the absence of explicit safety training, larger models are not consistently more robust; however, scale improves sample efficiency in adversarial training, though it worsens compute efficiency. Further, we find that increasing attack compute smoothly improves attack success rate against both undefended and adversarially trained models. Finally, after exploring robustness transfer across attacks and threat models, we combine attack and defense scaling rates to study the offense-defense balance. We find that while attack scaling outpaces adversarial training across all models studied, larger adversarially trained models might give defense the advantage in the long run. These results underscore the utility of the scaling lens, and provide a paradigm for evaluating future attacks and defenses on frontier models.
comment: 59 pages; updated to ICML version
♻ ☆ ADFormer: Aggregation Differential Transformer for Passenger Demand Forecasting IJCAI-2025
Passenger demand forecasting helps optimize vehicle scheduling, thereby improving urban efficiency. Recently, attention-based methods have been used to adequately capture the dynamic nature of spatio-temporal data. However, existing methods that rely on heuristic masking strategies cannot fully adapt to the complex spatio-temporal correlations, hindering the model from focusing on the right context. These works also overlook the high-level correlations that exist in the real world. Effectively integrating these high-level correlations with the original correlations is crucial. To fill this gap, we propose the Aggregation Differential Transformer (ADFormer), which offers new insights to demand forecasting promotion. Specifically, we utilize Differential Attention to capture the original spatial correlations and achieve attention denoising. Meanwhile, we design distinct aggregation strategies based on the nature of space and time. Then, the original correlations are unified with the high-level correlations, enabling the model to capture holistic spatio-temporal relations. Experiments conducted on taxi and bike datasets confirm the effectiveness and efficiency of our model, demonstrating its practical value. The code is available at https://github.com/decisionintelligence/ADFormer.
comment: 9 pages, 5 figures, 3 tables. IJCAI-2025
♻ ☆ Bandit Multiclass List Classification
We study the problem of multiclass list classification with (semi-)bandit feedback, where input examples are mapped into subsets of size $m$ of a collection of $K$ possible labels. In each round of the interaction, the learner observes feedback consisting of the predicted labels which lie in some underlying set of ground truth labels associated with the given example. Our main result is for the $(\varepsilon,\delta)$-PAC variant of the problem for which we design an algorithm that returns an $\varepsilon$-optimal hypothesis with high probability using a sample complexity of $\widetilde{O} \big( (\mathrm{poly}(K/m) + sm / \varepsilon^2) \log (|H|/\delta) \big)$ where $H$ is the underlying (finite) hypothesis class and $s$ is an upper bound on the number of true labels for a given example. This bound improves upon known bounds for combinatorial semi-bandits whenever $s \ll K$. Moreover, in the regime where $s = O(1)$ the leading terms in our bound match the corresponding full-information rates, implying that bandit feedback essentially comes at no cost. Our PAC learning algorithm is also computationally efficient given access to an ERM oracle for $H$. In the special case of single-label classification corresponding to $s=m=1$, we prove a sample complexity bound of $O \big((K^7 + 1/\varepsilon^2)\log (|H|/\delta)\big)$ which improves upon recent results in this scenario (Erez et al. '24). Additionally, we consider the regret minimization setting where data can be generated adversarially, and establish a regret bound of $\widetilde O(|H| + \sqrt{smT \log |H|})$. Our results generalize and extend prior work in the simpler single-label setting (Erez et al. '24), and apply more generally to contextual combinatorial semi-bandit problems with $s$-sparse rewards.
♻ ☆ EmbodiedBench: Comprehensive Benchmarking Multi-modal Large Language Models for Vision-Driven Embodied Agents ICML 2025
Leveraging Multi-modal Large Language Models (MLLMs) to create embodied agents offers a promising avenue for tackling real-world tasks. While language-centric embodied agents have garnered substantial attention, MLLM-based embodied agents remain underexplored due to the lack of comprehensive evaluation frameworks. To bridge this gap, we introduce EmbodiedBench, an extensive benchmark designed to evaluate vision-driven embodied agents. EmbodiedBench features: (1) a diverse set of 1,128 testing tasks across four environments, ranging from high-level semantic tasks (e.g., household) to low-level tasks involving atomic actions (e.g., navigation and manipulation); and (2) six meticulously curated subsets evaluating essential agent capabilities like commonsense reasoning, complex instruction understanding, spatial awareness, visual perception, and long-term planning. Through extensive experiments, we evaluated 24 leading proprietary and open-source MLLMs within EmbodiedBench. Our findings reveal that: MLLMs excel at high-level tasks but struggle with low-level manipulation, with the best model, GPT-4o, scoring only 28.9\% on average. EmbodiedBench provides a multifaceted standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance MLLM-based embodied agents. Our code and dataset are available at https://embodiedbench.github.io.
comment: Accepted to ICML 2025
♻ ☆ Mind the Confidence Gap: Overconfidence, Calibration, and Distractor Effects in Large Language Models
Large Language Models (LLMs) show remarkable proficiency in natural language tasks, yet their frequent overconfidence-misalignment between predicted confidence and true correctness-poses significant risks in critical decision-making applications. We present a comprehensive analysis on calibration in LLMs across nine LLMs and three factual Question-Answering (QA) datasets, systematically comparing standard free-generation settings against structured distractor-augmented prompts. Our evaluation reveals that explicitly incorporating distractors can substantially mitigate miscalibration, achieving relative accuracy improvements up to 460% and ECE reductions up to 90%. Despite general trends, we uncover nuanced findings: large RLHF-tuned models display inherent calibration strengths but can paradoxically suffer increased miscalibration on easier queries, whereas smaller models benefit disproportionately from distractor prompts but remain significantly miscalibrated. Through detailed analyses across question types, we identify persistent calibration failures, particularly in person-based queries. We conclude with concrete recommendations-targeted fine-tuning, structured prompting, and strategic model choice-to ensure reliable, trustworthy LLM deployments.
♻ ☆ Psi-Sampler: Initial Particle Sampling for SMC-Based Inference-Time Reward Alignment in Score Models
We introduce $\Psi$-Sampler, an SMC-based framework incorporating pCNL-based initial particle sampling for effective inference-time reward alignment with a score-based generative model. Inference-time reward alignment with score-based generative models has recently gained significant traction, following a broader paradigm shift from pre-training to post-training optimization. At the core of this trend is the application of Sequential Monte Carlo (SMC) to the denoising process. However, existing methods typically initialize particles from the Gaussian prior, which inadequately captures reward-relevant regions and results in reduced sampling efficiency. We demonstrate that initializing from the reward-aware posterior significantly improves alignment performance. To enable posterior sampling in high-dimensional latent spaces, we introduce the preconditioned Crank-Nicolson Langevin (pCNL) algorithm, which combines dimension-robust proposals with gradient-informed dynamics. This approach enables efficient and scalable posterior sampling and consistently improves performance across various reward alignment tasks, including layout-to-image generation, quantity-aware generation, and aesthetic-preference generation, as demonstrated in our experiments. Project Webpage: https://psi-sampler.github.io/
♻ ☆ AGENTFUZZER: Generic Black-Box Fuzzing for Indirect Prompt Injection against LLM Agents
The strong planning and reasoning capabilities of Large Language Models (LLMs) have fostered the development of agent-based systems capable of leveraging external tools and interacting with increasingly complex environments. However, these powerful features also introduce a critical security risk: indirect prompt injection, a sophisticated attack vector that compromises the core of these agents, the LLM, by manipulating contextual information rather than direct user prompts. In this work, we propose a generic black-box fuzzing framework, AgentFuzzer, designed to automatically discover and exploit indirect prompt injection vulnerabilities across diverse LLM agents. Our approach starts by constructing a high-quality initial seed corpus, then employs a seed selection algorithm based on Monte Carlo Tree Search (MCTS) to iteratively refine inputs, thereby maximizing the likelihood of uncovering agent weaknesses. We evaluate AgentFuzzer on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o, respectively, nearly doubling the performance of baseline attacks. Moreover, AgentFuzzer exhibits strong transferability across unseen tasks and internal LLMs, as well as promising results against defenses. Beyond benchmark evaluations, we apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
♻ ☆ Biased by Design: Leveraging Inherent AI Biases to Enhance Critical Thinking of News Readers
This paper explores the design of a propaganda detection tool using Large Language Models (LLMs). Acknowledging the inherent biases in AI models, especially in political contexts, we investigate how these biases might be leveraged to enhance critical thinking in news consumption. Countering the typical view of AI biases as detrimental, our research proposes strategies of user choice and personalization in response to a user's political stance, applying psychological concepts of confirmation bias and cognitive dissonance. We present findings from a qualitative user study, offering insights and design recommendations (bias awareness, personalization and choice, and gradual introduction of diverse perspectives) for AI tools in propaganda detection.
comment: European Conference on Information Systems (ECIS)
♻ ☆ Multiple Invertible and Partial-Equivariant Function for Latent Vector Transformation to Enhance Disentanglement in VAEs
Disentanglement learning is a core issue for understanding and re-using trained information in Variational AutoEncoder (VAE), and effective inductive bias has been reported as a key factor. However, the actual implementation of such bias is still vague. In this paper, we propose a novel method, called Multiple Invertible and partial-equivariant transformation (MIPE-transformation), to inject inductive bias by 1) guaranteeing the invertibility of latent-to-latent vector transformation while preserving a certain portion of equivariance of input-to-latent vector transformation, called Invertible and partial-equivariant transformation (IPE-transformation), 2) extending the form of prior and posterior in VAE frameworks to an unrestricted form through a learnable conversion to an approximated exponential family, called Exponential Family conversion (EF-conversion), and 3) integrating multiple units of IPE-transformation and EF-conversion, and their training. In experiments on 3D Cars, 3D Shapes, and dSprites datasets, MIPE-transformation improves the disentanglement performance of state-of-the-art VAEs.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Bandit based Dynamic Candidate Edge Selection in Solving Traveling Salesman Problems
Algorithms designed for routing problems typically rely on high-quality candidate edges to guide their search, aiming to reduce the search space and enhance the search efficiency. However, many existing algorithms, like the classical Lin-Kernighan-Helsgaun (LKH) algorithm for the Traveling Salesman Problem (TSP), often use predetermined candidate edges that remain static throughout local searches. This rigidity could cause the algorithm to get trapped in local optima, limiting its potential to find better solutions. To address this issue, we propose expanding the candidate sets to include other promising edges, providing them an opportunity for selection. Specifically, we incorporate multi-armed bandit models to dynamically select the most suitable candidate edges in each iteration, enabling LKH to make smarter choices and lead to improved solutions. Extensive experiments on multiple TSP benchmarks show the excellent performance of our method. Moreover, we employ this bandit-based method to LKH-3, an extension of LKH tailored for solving various TSP variant problems, and our method also significantly enhances LKH-3's performance across typical TSP variants.
♻ ☆ From Intention To Implementation: Automating Biomedical Research via LLMs SC
Conventional biomedical research is increasingly labor-intensive due to the exponential growth of scientific literature and datasets. Artificial intelligence (AI), particularly Large Language Models (LLMs), has the potential to revolutionize this process by automating various steps. Still, significant challenges remain, including the need for multidisciplinary expertise, logicality of experimental design, and performance measurements. This paper introduces BioResearcher, the first end-to-end automated system designed to streamline the entire biomedical research process involving dry lab experiments. BioResearcher employs a modular multi-agent architecture, integrating specialized agents for search, literature processing, experimental design, and programming. By decomposing complex tasks into logically related sub-tasks and utilizing a hierarchical learning approach, BioResearcher effectively addresses the challenges of multidisciplinary requirements and logical complexity. Furthermore, BioResearcher incorporates an LLM-based reviewer for in-process quality control and introduces novel evaluation metrics to assess the quality and automation of experimental protocols. BioResearcher successfully achieves an average execution success rate of 63.07% across eight previously unmet research objectives. The generated protocols, on average, outperform typical agent systems by 22.0% on five quality metrics. The system demonstrates significant potential to reduce researchers' workloads and accelerate biomedical discoveries, paving the way for future innovations in automated research systems.
comment: To appear in SCIENCE CHINA Information Sciences. If you find our work useful, please cite us as: @article{ BioResearcher, author = "Yi Luo and Linghang Shi and Yihao Li and Aobo Zhuang and Yeyun Gong and Ling Liu and Chen Lin", title = "From Intention To Implementation: Automating Biomedical Research via LLMs", journal = "SCIENCE CHINA Information Sciences", year = "2025" }
♻ ☆ Not All Options Are Created Equal: Textual Option Weighting for Token-Efficient LLM-Based Knowledge Tracing
Large Language Models (LLMs) have recently emerged as promising tools for knowledge tracing (KT) due to their strong reasoning and generalization abilities. While recent LLM-based KT methods have proposed new prompt formats, they struggle to represent the full interaction histories of example learners within a single prompt during in-context learning (ICL), resulting in limited scalability and high computational cost under token constraints. In this work, we present \textit{LLM-based Option-weighted Knowledge Tracing (LOKT)}, a simple yet effective framework that encodes the interaction histories of example learners in context as \textit{textual categorical option weights (TCOW)}. TCOW are semantic labels (e.g., ``inadequate'') assigned to the options selected by learners when answering questions, enhancing the interpretability of LLMs. Experiments on multiple-choice datasets show that LOKT outperforms existing non-LLM and LLM-based KT models in both cold-start and warm-start settings. Moreover, LOKT enables scalable and cost-efficient inference, achieving strong performance even under strict token constraints. Our code is available at \href{https://anonymous.4open.science/r/LOKT_model-3233}{https://anonymous.4open.science/r/LOKT\_model-3233}.
comment: 11 pages
♻ ☆ Text-to-Decision Agent: Offline Meta-Reinforcement Learning from Natural Language Supervision
Offline meta-RL usually tackles generalization by inferring task beliefs from high-quality samples or warmup explorations. The restricted form limits their generality and usability since these supervision signals are expensive and even infeasible to acquire in advance for unseen tasks. Learning directly from the raw text about decision tasks is a promising alternative to leverage a much broader source of supervision. In the paper, we propose \textbf{T}ext-to-\textbf{D}ecision \textbf{A}gent (\textbf{T2DA}), a simple and scalable framework that supervises offline meta-RL with natural language. We first introduce a generalized world model to encode multi-task decision data into a dynamics-aware embedding space. Then, inspired by CLIP, we predict which textual description goes with which decision embedding, effectively bridging their semantic gap via contrastive language-decision pre-training and aligning the text embeddings to comprehend the environment dynamics. After training the text-conditioned generalist policy, the agent can directly realize zero-shot text-to-decision generation in response to language instructions. Comprehensive experiments on MuJoCo and Meta-World benchmarks show that T2DA facilitates high-capacity zero-shot generalization and outperforms various types of baselines. Our code is available at https://github.com/NJU-RL/T2DA.
comment: 18 pages, 8 figures
♻ ☆ Learning Using a Single Forward Pass
We propose a learning algorithm to overcome the limitations of traditional backpropagation in resource-constrained environments: Solo Pass Embedded Learning Algorithm (SPELA). SPELA operates with local loss functions to update weights, significantly saving on resources allocated to the propagation of gradients and storing computational graphs while being sufficiently accurate. Consequently, SPELA can closely match backpropagation using less memory. Moreover, SPELA can effectively fine-tune pre-trained image recognition models for new tasks. Further, SPELA is extended with significant modifications to train CNN networks, which we evaluate on CIFAR-10, CIFAR-100, and SVHN 10 datasets, showing equivalent performance compared to backpropagation. Our results indicate that SPELA, with its features such as local learning and early exit, is a potential candidate for learning in resource-constrained edge AI applications.
comment: Accepted for publication at TMLR
♻ ☆ MM-PRM: Enhancing Multimodal Mathematical Reasoning with Scalable Step-Level Supervision
While Multimodal Large Language Models (MLLMs) have achieved impressive progress in vision-language understanding, they still struggle with complex multi-step reasoning, often producing logically inconsistent or partially correct solutions. A key limitation lies in the lack of fine-grained supervision over intermediate reasoning steps. To address this, we propose MM-PRM, a process reward model trained within a fully automated, scalable framework. We first build MM-Policy, a strong multimodal model trained on diverse mathematical reasoning data. Then, we construct MM-K12, a curated dataset of 10,000 multimodal math problems with verifiable answers, which serves as seed data. Leveraging a Monte Carlo Tree Search (MCTS)-based pipeline, we generate over 700k step-level annotations without human labeling. The resulting PRM is used to score candidate reasoning paths in the Best-of-N inference setup and achieves significant improvements across both in-domain (MM-K12 test set) and out-of-domain (OlympiadBench, MathVista, etc.) benchmarks. Further analysis confirms the effectiveness of soft labels, smaller learning rates, and path diversity in optimizing PRM performance. MM-PRM demonstrates that process supervision is a powerful tool for enhancing the logical robustness of multimodal reasoning systems. We release all our codes and data at https://github.com/ModalMinds/MM-PRM.
♻ ☆ An analytic theory of creativity in convolutional diffusion models
We obtain an analytic, interpretable and predictive theory of creativity in convolutional diffusion models. Indeed, score-matching diffusion models can generate highly original images that lie far from their training data. However, optimal score-matching theory suggests that these models should only be able to produce memorized training examples. To reconcile this theory-experiment gap, we identify two simple inductive biases, locality and equivariance, that: (1) induce a form of combinatorial creativity by preventing optimal score-matching; (2) result in fully analytic, completely mechanistically interpretable, local score (LS) and equivariant local score (ELS) machines that, (3) after calibrating a single time-dependent hyperparameter can quantitatively predict the outputs of trained convolution only diffusion models (like ResNets and UNets) with high accuracy (median $r^2$ of $0.95, 0.94, 0.94, 0.96$ for our top model on CIFAR10, FashionMNIST, MNIST, and CelebA). Our model reveals a locally consistent patch mosaic mechanism of creativity, in which diffusion models create exponentially many novel images by mixing and matching different local training set patches at different scales and image locations. Our theory also partially predicts the outputs of pre-trained self-attention enabled UNets (median $r^2 \sim 0.77$ on CIFAR10), revealing an intriguing role for attention in carving out semantic coherence from local patch mosaics.
♻ ☆ MambaNeXt-YOLO: A Hybrid State Space Model for Real-time Object Detection
Real-time object detection is a fundamental but challenging task in computer vision, particularly when computational resources are limited. Although YOLO-series models have set strong benchmarks by balancing speed and accuracy, the increasing need for richer global context modeling has led to the use of Transformer-based architectures. Nevertheless, Transformers have high computational complexity because of their self-attention mechanism, which limits their practicality for real-time and edge deployments. To overcome these challenges, recent developments in linear state space models, such as Mamba, provide a promising alternative by enabling efficient sequence modeling with linear complexity. Building on this insight, we propose MambaNeXt-YOLO, a novel object detection framework that balances accuracy and efficiency through three key contributions: (1) MambaNeXt Block: a hybrid design that integrates CNNs with Mamba to effectively capture both local features and long-range dependencies; (2) Multi-branch Asymmetric Fusion Pyramid Network (MAFPN): an enhanced feature pyramid architecture that improves multi-scale object detection across various object sizes; and (3) Edge-focused Efficiency: our method achieved 66.6% mAP at 31.9 FPS on the PASCAL VOC dataset without any pre-training and supports deployment on edge devices such as the NVIDIA Jetson Xavier NX and Orin NX.
comment: This paper is under consideration at Pattern Recognition Letters
♻ ☆ From User Surveys to Telemetry-Driven AI Agents: Exploring the Potential of Personalized Productivity Solutions
Information workers increasingly struggle with productivity challenges in modern workplaces, facing difficulties in managing time and effectively utilizing workplace analytics data for behavioral improvement. Despite the availability of productivity metrics through enterprise tools, workers often fail to translate this data into actionable insights. We present a comprehensive, user-centric approach to address these challenges through AI-based productivity agents tailored to users' needs. Utilizing a two-phase method, we first conducted a survey with 363 participants, exploring various aspects of productivity, communication style, agent approach, personality traits, personalization, and privacy. Drawing on the survey insights, we developed a GPT-4 powered personalized productivity agent that utilizes telemetry data gathered via Viva Insights from information workers to provide tailored assistance. We compared its performance with alternative productivity-assistive tools, such as dashboard and narrative, in a study involving 40 participants. Our findings highlight the importance of user-centric design, adaptability, and the balance between personalization and privacy in AI-assisted productivity tools. By building on these insights, our work provides important guidance for developing more effective productivity solutions, ultimately leading to optimized efficiency and user experiences for information workers.
comment: Updated to reflect the accepted paper version
♻ ☆ On The Sample Complexity Bounds In Bilevel Reinforcement Learning
Bilevel reinforcement learning (BRL) has emerged as a powerful framework for aligning generative models, yet its theoretical foundations, especially sample complexity bounds, remain underexplored. In this work, we present the first sample complexity bound for BRL, establishing a rate of $\mathcal{O}(\epsilon^{-3})$ in continuous state-action spaces. Traditional MDP analysis techniques do not extend to BRL due to its nested structure and non-convex lower-level problems. We overcome these challenges by leveraging the Polyak-{\L}ojasiewicz (PL) condition and the MDP structure to obtain closed-form gradients, enabling tight sample complexity analysis. Our analysis also extends to general bi-level optimization settings with non-convex lower levels, where we achieve state-of-the-art sample complexity results of $\mathcal{O}(\epsilon^{-3})$ improving upon existing bounds of $\mathcal{O}(\epsilon^{-6})$. Additionally, we address the computational bottleneck of hypergradient estimation by proposing a fully first-order, Hessian-free algorithm suitable for large-scale problems.
comment: This is updated version of the paper 2410.15610
♻ ☆ Breaking the Cloak! Unveiling Chinese Cloaked Toxicity with Homophone Graph and Toxic Lexicon
Social media platforms have experienced a significant rise in toxic content, including abusive language and discriminatory remarks, presenting growing challenges for content moderation. Some users evade censorship by deliberately disguising toxic words through homophonic cloak, which necessitates the task of unveiling cloaked toxicity. Existing methods are mostly designed for English texts, while Chinese cloaked toxicity unveiling has not been solved yet. To tackle the issue, we propose C$^2$TU, a novel training-free and prompt-free method for Chinese cloaked toxic content unveiling. It first employs substring matching to identify candidate toxic words based on Chinese homo-graph and toxic lexicon. Then it filters those candidates that are non-toxic and corrects cloaks to be their corresponding toxicities. Specifically, we develop two model variants for filtering, which are based on BERT and LLMs, respectively. For LLMs, we address the auto-regressive limitation in computing word occurrence probability and utilize the full semantic contexts of a text sequence to reveal cloaked toxic words. Extensive experiments demonstrate that C$^2$TU can achieve superior performance on two Chinese toxic datasets. In particular, our method outperforms the best competitor by up to 71% on the F1 score and 35% on accuracy, respectively. Our code and data are available at https://github.com/XDxc-cuber/C2TU-Chinese-cloaked-toxicity-unveiling.
comment: 25 pages, 5 figures, 9 tables
♻ ☆ DGMO: Training-Free Audio Source Separation through Diffusion-Guided Mask Optimization
Language-queried Audio Source Separation (LASS) enables open-vocabulary sound separation via natural language queries. While existing methods rely on task-specific training, we explore whether pretrained diffusion models, originally designed for audio generation, can inherently perform separation without further training. In this study, we introduce a training-free framework leveraging generative priors for zero-shot LASS. Analyzing naive adaptations, we identify key limitations arising from modality-specific challenges. To address these issues, we propose Diffusion-Guided Mask Optimization (DGMO), a test-time optimization framework that refines spectrogram masks for precise, input-aligned separation. Our approach effectively repurposes pretrained diffusion models for source separation, achieving competitive performance without task-specific supervision. This work expands the application of diffusion models beyond generation, establishing a new paradigm for zero-shot audio separation. The code is available at: https://wltschmrz.github.io/DGMO/
comment: Interspeech 2025
♻ ☆ COMI-LINGUA: Expert Annotated Large-Scale Dataset for Multitask NLP in Hindi-English Code-Mixing
We introduce COMI-LINGUA, the largest manually annotated Hindi-English code-mixed dataset, comprising 125K+ high-quality instances across five core NLP tasks: Matrix Language Identification, Token-level Language Identification, POS Tagging, Named Entity Recognition (NER), and Machine Translation. Each instance is annotated by three bilingual annotators, yielding over 376K expert annotations with strong inter-annotator agreement (Fleiss' Kappa $\geq$ 0.81). The rigorously preprocessed and filtered dataset covers both Devanagari and Roman scripts and spans diverse domains, ensuring real-world linguistic coverage. Evaluation reveals that closed-source LLMs significantly outperform traditional tools and open-source models. Notably, one-shot prompting consistently boosts performance across tasks, especially in structure-sensitive predictions like POS and NER, highlighting the effectiveness of prompt-based adaptation in code-mixed, low-resource settings. COMI-LINGUA is publicly available at: https://github.com/lingo-iitgn/CodeMixing_Project.
♻ ☆ Proactive Model Adaptation Against Concept Drift for Online Time Series Forecasting KDD 2025
Time series forecasting always faces the challenge of concept drift, where data distributions evolve over time, leading to a decline in forecast model performance. Existing solutions are based on online learning, which continually organize recent time series observations as new training samples and update model parameters according to the forecasting feedback on recent data. However, they overlook a critical issue: obtaining ground-truth future values of each sample should be delayed until after the forecast horizon. This delay creates a temporal gap between the training samples and the test sample. Our empirical analysis reveals that the gap can introduce concept drift, causing forecast models to adapt to outdated concepts. In this paper, we present Proceed, a novel proactive model adaptation framework for online time series forecasting. Proceed first estimates the concept drift between the recently used training samples and the current test sample. It then employs an adaptation generator to efficiently translate the estimated drift into parameter adjustments, proactively adapting the model to the test sample. To enhance the generalization capability of the framework, Proceed is trained on synthetic diverse concept drifts. Extensive experiments on five real-world datasets across various forecast models demonstrate that Proceed brings more performance improvements than the state-of-the-art online learning methods, significantly facilitating forecast models' resilience against concept drifts. Code is available at https://github.com/SJTU-DMTai/OnlineTSF.
comment: Accepted by KDD 2025. This version fixed typos in Eq. (3)
♻ ☆ Efficiently Serving Large Multimodal Models Using EPD Disaggregation
Large Multimodal Models (LMMs) extend Large Language Models (LLMs) by handling diverse inputs such as images, audio, and video, but at the cost of adding a multimodal encoding stage that increases both computational and memory overhead. This step negatively affects key Service Level Objectives (SLOs), such as time to first token (TTFT) and time per output token (TPOT). We introduce Encode-Prefill-Decode (EPD) Disaggregation, a novel framework that separates the encoding, prefill, and decode stages onto dedicated resources. Unlike current systems, which bundle encoding and prefill together, our approach decouples these steps, unlocking new opportunities and optimizations. These include a mechanism to cache multimedia tokens for efficient transfer, a novel way to parallelize the encoding load within a request, a module for optimal resource allocation for disaggregated serving, and a novel role-switching method to handle changing workload characteristics. Experimental evaluations with popular LMMs show substantial gains in memory efficiency (up to 15x lower peak memory utilization), batch sizes (up to 22x larger), 10x more images per request, and 2.2x larger KV caches. Furthermore, it leads to significant improvements in SLO attainment (up to 90-100% improvement) and TTFT (up to 71% reduction), compared to systems that do not disaggregate. The code is available at https://github.com/vbdi/epdserve.
comment: 17 pages, 12 figures, 9 tables
♻ ☆ ADG: Ambient Diffusion-Guided Dataset Recovery for Corruption-Robust Offline Reinforcement Learning
Real-world datasets collected from sensors or human inputs are prone to noise and errors, posing significant challenges for applying offline reinforcement learning (RL). While existing methods have made progress in addressing corrupted actions and rewards, they remain insufficient for handling corruption in high-dimensional state spaces and for cases where multiple elements in the dataset are corrupted simultaneously. Diffusion models, known for their strong denoising capabilities, offer a promising direction for this problem-but their tendency to overfit noisy samples limits their direct applicability. To overcome this, we propose Ambient Diffusion-Guided Dataset Recovery (ADG), a novel approach that pioneers the use of diffusion models to tackle data corruption in offline RL. First, we introduce Ambient Denoising Diffusion Probabilistic Models (DDPM) from approximated distributions, which enable learning on partially corrupted datasets with theoretical guarantees. Second, we use the noise-prediction property of Ambient DDPM to distinguish between clean and corrupted data, and then use the clean subset to train a standard DDPM. Third, we employ the trained standard DDPM to refine the previously identified corrupted data, enhancing data quality for subsequent offline RL training. A notable strength of ADG is its versatility-it can be seamlessly integrated with any offline RL algorithm. Experiments on a range of benchmarks, including MuJoCo, Kitchen, and Adroit, demonstrate that ADG effectively mitigates the impact of corrupted data and improves the robustness of offline RL under various noise settings, achieving state-of-the-art results.
♻ ☆ Generating by Understanding: Neural Visual Generation with Logical Symbol Groundings KDD 2025
Making neural visual generative models controllable by logical reasoning systems is promising for improving faithfulness, transparency, and generalizability. We propose the Abductive visual Generation (AbdGen) approach to build such logic-integrated models. A vector-quantized symbol grounding mechanism and the corresponding disentanglement training method are introduced to enhance the controllability of logical symbols over generation. Furthermore, we propose two logical abduction methods to make our approach require few labeled training data and support the induction of latent logical generative rules from data. We experimentally show that our approach can be utilized to integrate various neural generative models with logical reasoning systems, by both learning from scratch or utilizing pre-trained models directly. The code is released at https://github.com/future-item/AbdGen.
comment: KDD 2025 research track paper
♻ ☆ Safety Tax: Safety Alignment Makes Your Large Reasoning Models Less Reasonable
Safety alignment is an important procedure before the official deployment of a Large Language Model (LLM). While safety alignment has been extensively studied for LLM, there is still a large research gap for Large Reasoning Models (LRMs) that equip with improved reasoning capability. We in this paper systematically examine a simplified pipeline for producing safety aligned LRMs. With our evaluation of various LRMs, we deliver two main findings: i) Safety alignment can be done upon the LRM to restore its safety capability. ii) Safety alignment leads to a degradation of the reasoning capability of LRMs. The two findings show that there exists a trade-off between reasoning and safety capability with the sequential LRM production pipeline. The discovered trade-off, which we name Safety Tax, should shed light on future endeavors of safety research on LRMs. As a by-product, we curate a dataset called DirectRefusal, which might serve as an alternative dataset for safety alignment. Our source code is available at https://github.com/git-disl/Safety-Tax.
♻ ☆ Foundation Models Knowledge Distillation For Battery Capacity Degradation Forecast
Accurate estimation of lithium-ion battery capacity degradation is critical for enhancing the reliability and safety of battery operations. Traditional expert models, tailored to specific scenarios, provide isolated estimations. With the rapid advancement of data-driven techniques, a series of general-purpose time-series foundation models have been developed. However, foundation models specifically designed for battery capacity degradation remain largely unexplored. To enable zero-shot generalization in battery degradation prediction using large model technology, this study proposes a degradation-aware fine-tuning strategy for time-series foundation models. We apply this strategy to fine-tune the Timer model on approximately 10 GB of open-source battery charge discharge data. Validation on our released CycleLife-SJTUIE dataset demonstrates that the fine-tuned Battery-Timer possesses strong zero-shot generalization capability in capacity degradation forecasting. To address the computational challenges of deploying large models, we further propose a knowledge distillation framework that transfers the knowledge of pre-trained foundation models into compact expert models. Distillation results across several state-of-the-art time-series expert models confirm that foundation model knowledge significantly improves the multi-condition generalization of expert models.
♻ ☆ From System 1 to System 2: A Survey of Reasoning Large Language Models
Achieving human-level intelligence requires refining the transition from the fast, intuitive System 1 to the slower, more deliberate System 2 reasoning. While System 1 excels in quick, heuristic decisions, System 2 relies on logical reasoning for more accurate judgments and reduced biases. Foundational Large Language Models (LLMs) excel at fast decision-making but lack the depth for complex reasoning, as they have not yet fully embraced the step-by-step analysis characteristic of true System 2 thinking. Recently, reasoning LLMs like OpenAI's o1/o3 and DeepSeek's R1 have demonstrated expert-level performance in fields such as mathematics and coding, closely mimicking the deliberate reasoning of System 2 and showcasing human-like cognitive abilities. This survey begins with a brief overview of the progress in foundational LLMs and the early development of System 2 technologies, exploring how their combination has paved the way for reasoning LLMs. Next, we discuss how to construct reasoning LLMs, analyzing their features, the core methods enabling advanced reasoning, and the evolution of various reasoning LLMs. Additionally, we provide an overview of reasoning benchmarks, offering an in-depth comparison of the performance of representative reasoning LLMs. Finally, we explore promising directions for advancing reasoning LLMs and maintain a real-time \href{https://github.com/zzli2022/Awesome-Slow-Reason-System}{GitHub Repository} to track the latest developments. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this rapidly evolving field.
comment: Slow-thinking, Large Language Models, Human-like Reasoning, Decision Making in AI, AGI
♻ ☆ Contrastive Representation Distillation via Multi-Scale Feature Decoupling
Knowledge distillation is a technique aimed at enhancing the performance of a small student network without increasing its parameter size by transferring knowledge from a large, pre-trained teacher network. In the feature space, different local regions within an individual global feature map often encode distinct yet interdependent semantic information. However, previous methods mainly focus on transferring global feature knowledge, neglecting the decoupling of interdependent local regions within an individual global feature, which often results in suboptimal performance. To address this limitation, we propose MSDCRD, a novel contrastive representation distillation approach that explicitly performs multi-scale decoupling within the feature space. MSDCRD employs a multi-scale sliding-window pooling approach within the feature space to capture representations at various granularities effectively. This, in conjunction with sample categorization, facilitates efficient multi-scale feature decoupling. When integrated with a novel and effective contrastive loss function, this forms the core of MSDCRD. Feature representations differ significantly across network architectures, and this divergence becomes more pronounced in heterogeneous models, rendering feature distillation particularly challenging. Despite this, our method not only achieves superior performance in homogeneous models but also enables efficient feature knowledge transfer across a variety of heterogeneous teacher-student pairs, highlighting its strong generalizability. Moreover, its plug-and-play and parameter-free nature enables flexible integration with different visual tasks. Extensive experiments on different visual benchmarks consistently confirm the superiority of our method in enhancing the performance of student models.
♻ ☆ Done Is Better than Perfect: Unlocking Efficient Reasoning by Structured Multi-Turn Decomposition
Large Reasoning Models (LRMs) are criticized for the excessively lengthy Chain-of-Thought (CoT) to derive the final answer, suffering from high first-token and overall latency. Typically, the CoT of LRMs mixes multiple thinking units; each unit attempts to produce a candidate answer to the original query. Hence, a natural idea to improve efficiency is to reduce the unit number. Yet, the fact that the thinking units in vanilla CoT cannot be explicitly managed renders doing so challenging. This paper introduces Multi-Turn Decomposition (MinD) to decode conventional CoT into a sequence of explicit, structured, and turn-wise interactions to bridge the gap. In MinD, the model provides a multi-turn response to the query, where each turn embraces a thinking unit and yields a corresponding answer. The subsequent turns can reflect, verify, revise, or explore alternative approaches to both the thinking and answer parts of earlier ones. This not only makes the answer delivered more swiftly, but also enables explicit controls over the iterative reasoning process (i.e., users may halt or continue at any turn). We follow a supervised fine-tuning (SFT) then reinforcement learning (RL) paradigm to realize MinD. We first rephrase the outputs of an LRM into multi-turn formats by prompting another LLM, and then tune the LRM with such data. Observing that the tuned model tends to consume even more tokens than the original one (probably due to that the multi-turn formats introduce additional answer tokens), we advocate leveraging RL algorithms like GRPO to prioritize correct outputs with fewer turns. Trained on the MATH dataset using R1-Distill models, MinD can achieve up to ~70% reduction in both output token usage and time to first token (TTFT), while maintaining competitive performance on reasoning benchmarks such as MATH-500, AIME24, AMC23, and GPQA-Diamond.
♻ ☆ Information Science Principles of Machine Learning: A Causal Chain Meta-Framework Based on Formalized Information Mapping
[Objective] This study focuses on addressing the current lack of a unified formal theoretical framework in machine learning, as well as the deficiencies in interpretability and ethical safety assurance. [Methods] A formal information model is first constructed, utilizing sets of well-formed formulas to explicitly define the ontological states and carrier mappings of typical components in machine learning. Learnable and processable predicates, along with learning and processing functions, are introduced to analyze the logical deduction and constraint rules of the causal chains within models. [Results] A meta-framework for machine learning theory (MLT-MF) is established. Based on this framework, universal definitions for model interpretability and ethical safety are proposed. Furthermore, three key theorems are proved: the equivalence of model interpretability and information recoverability, the assurance of ethical safety, and the estimation of generalization error. [Limitations] The current framework assumes ideal conditions with noiseless information-enabling mappings and primarily targets model learning and processing logic in static scenarios. It does not yet address information fusion and conflict resolution across ontological spaces in multimodal or multi-agent systems. [Conclusions] This work overcomes the limitations of fragmented research and provides a unified theoretical foundation for systematically addressing the critical challenges currently faced in machine learning.
♻ ☆ Addressing Concept Mislabeling in Concept Bottleneck Models Through Preference Optimization
Concept Bottleneck Models (CBMs) propose to enhance the trustworthiness of AI systems by constraining their decisions on a set of human-understandable concepts. However, CBMs typically assume that datasets contain accurate concept labels-an assumption often violated in practice, which we show can significantly degrade performance (by 25% in some cases). To address this, we introduce the Concept Preference Optimization (CPO) objective, a new loss function based on Direct Preference Optimization, which effectively mitigates the negative impact of concept mislabeling on CBM performance. We provide an analysis of key properties of the CPO objective, showing it directly optimizes for the concept's posterior distribution, and contrast it against Binary Cross Entropy (BCE), demonstrating that CPO is inherently less sensitive to concept noise. We empirically confirm our analysis by finding that CPO consistently outperforms BCE on three real-world datasets, both with and without added label noise. We make our code available on Github.
♻ ☆ SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ OCRBench v2: An Improved Benchmark for Evaluating Large Multimodal Models on Visual Text Localization and Reasoning
Scoring the Optical Character Recognition (OCR) capabilities of Large Multimodal Models (LMMs) has witnessed growing interest. Existing benchmarks have highlighted the impressive performance of LMMs in text recognition; however, their abilities in certain challenging tasks, such as text localization, handwritten content extraction, and logical reasoning, remain underexplored. To bridge this gap, we introduce OCRBench v2, a large-scale bilingual text-centric benchmark with currently the most comprehensive set of tasks (4x more tasks than the previous multi-scene benchmark OCRBench), the widest coverage of scenarios (31 diverse scenarios), and thorough evaluation metrics, with 10,000 human-verified question-answering pairs and a high proportion of difficult samples. Moreover, we construct a private test set with 1,500 manually annotated images. The consistent evaluation trends observed across both public and private test sets validate the OCRBench v2's reliability. After carefully benchmarking state-of-the-art LMMs, we find that most LMMs score below 50 (100 in total) and suffer from five-type limitations, including less frequently encountered text recognition, fine-grained perception, layout perception, complex element parsing, and logical reasoning. The project website is at: https://99franklin.github.io/ocrbench_v2/
♻ ☆ Knowledge Retention for Continual Model-Based Reinforcement Learning
We propose DRAGO, a novel approach for continual model-based reinforcement learning aimed at improving the incremental development of world models across a sequence of tasks that differ in their reward functions but not the state space or dynamics. DRAGO comprises two key components: Synthetic Experience Rehearsal, which leverages generative models to create synthetic experiences from past tasks, allowing the agent to reinforce previously learned dynamics without storing data, and Regaining Memories Through Exploration, which introduces an intrinsic reward mechanism to guide the agent toward revisiting relevant states from prior tasks. Together, these components enable the agent to maintain a comprehensive and continually developing world model, facilitating more effective learning and adaptation across diverse environments. Empirical evaluations demonstrate that DRAGO is able to preserve knowledge across tasks, achieving superior performance in various continual learning scenarios.
♻ ☆ Contrastive Visual Data Augmentation
Large multimodal models (LMMs) often struggle to recognize novel concepts, as they rely on pre-trained knowledge and have limited ability to capture subtle visual details. Domain-specific knowledge gaps in training also make them prone to confusing visually similar, commonly misrepresented, or low-resource concepts. To help LMMs better align nuanced visual features with language, improving their ability to recognize and reason about novel or rare concepts, we propose a Contrastive visual Data Augmentation (CoDA) strategy. CoDA extracts key contrastive textual and visual features of target concepts against the known concepts they are misrecognized as, and then uses multimodal generative models to produce targeted synthetic data. Automatic filtering of extracted features and augmented images is implemented to guarantee their quality, as verified by human annotators. We show the effectiveness and efficiency of CoDA on low-resource concept and diverse scene recognition datasets including INaturalist and SUN. We additionally collect NovelSpecies, a benchmark dataset consisting of newly discovered animal species that are guaranteed to be unseen by LMMs. LLaVA-1.6 1-shot updating results on these three datasets show CoDA significantly improves SOTA visual data augmentation strategies by 12.3% (NovelSpecies), 5.1% (SUN), and 6.0% (iNat) absolute gains in accuracy.
♻ ☆ Supervised Quantum Machine Learning: A Future Outlook from Qubits to Enterprise Applications
Supervised Quantum Machine Learning (QML) represents an intersection of quantum computing and classical machine learning, aiming to use quantum resources to support model training and inference. This paper reviews recent developments in supervised QML, focusing on methods such as variational quantum circuits, quantum neural networks, and quantum kernel methods, along with hybrid quantum-classical workflows. We examine recent experimental studies that show partial indications of quantum advantage and describe current limitations including noise, barren plateaus, scalability issues, and the lack of formal proofs of performance improvement over classical methods. The main contribution is a ten-year outlook (2025-2035) that outlines possible developments in supervised QML, including a roadmap describing conditions under which QML may be used in applied research and enterprise systems over the next decade.
comment: Future outlook and roadmap of QML with 7 pages and 1 figure
♻ ☆ E^2GraphRAG: Streamlining Graph-based RAG for High Efficiency and Effectiveness
Graph-based RAG methods like GraphRAG have shown promising global understanding of the knowledge base by constructing hierarchical entity graphs. However, they often suffer from inefficiency and rely on manually pre-defined query modes, limiting practical use. In this paper, we propose E^2GraphRAG, a streamlined graph-based RAG framework that improves both Efficiency and Effectiveness. During the indexing stage, E^2GraphRAG constructs a summary tree with large language models and an entity graph with SpaCy based on document chunks. We then construct bidirectional indexes between entities and chunks to capture their many-to-many relationships, enabling fast lookup during both local and global retrieval. For the retrieval stage, we design an adaptive retrieval strategy that leverages the graph structure to retrieve and select between local and global modes. Experiments show that E^2GraphRAG achieves up to 10 times faster indexing than GraphRAG and 100 times speedup over LightRAG in retrieval while maintaining competitive QA performance.
comment: 16 pages
♻ ☆ Implicit Cross-Lingual Rewarding for Efficient Multilingual Preference Alignment ACL 2025
Direct Preference Optimization (DPO) has become a prominent method for aligning Large Language Models (LLMs) with human preferences. While DPO has enabled significant progress in aligning English LLMs, multilingual preference alignment is hampered by data scarcity. To address this, we propose a novel approach that $\textit{captures}$ learned preferences from well-aligned English models by implicit rewards and $\textit{transfers}$ them to other languages through iterative training. Specifically, we derive an implicit reward model from the logits of an English DPO-aligned model and its corresponding reference model. This reward model is then leveraged to annotate preference relations in cross-lingual instruction-following pairs, using English instructions to evaluate multilingual responses. The annotated data is subsequently used for multilingual DPO fine-tuning, facilitating preference knowledge transfer from English to other languages. Fine-tuning Llama3 for two iterations resulted in a 12.72% average improvement in Win Rate and a 5.97% increase in Length Control Win Rate across all training languages on the X-AlpacaEval leaderboard. Our findings demonstrate that leveraging existing English-aligned models can enable efficient and effective multilingual preference alignment, significantly reducing the need for extensive multilingual preference data. The code is available at https://github.com/ZNLP/Implicit-Cross-Lingual-Rewarding
comment: Camera ready version for ACL 2025 Findings
♻ ☆ Confidence-Guided Human-AI Collaboration: Reinforcement Learning with Distributional Proxy Value Propagation for Autonomous Driving
Autonomous driving promises significant advancements in mobility, road safety and traffic efficiency, yet reinforcement learning and imitation learning face safe-exploration and distribution-shift challenges. Although human-AI collaboration alleviates these issues, it often relies heavily on extensive human intervention, which increases costs and reduces efficiency. This paper develops a confidence-guided human-AI collaboration (C-HAC) strategy to overcome these limitations. First, C-HAC employs a distributional proxy value propagation method within the distributional soft actor-critic (DSAC) framework. By leveraging return distributions to represent human intentions C-HAC achieves rapid and stable learning of human-guided policies with minimal human interaction. Subsequently, a shared control mechanism is activated to integrate the learned human-guided policy with a self-learning policy that maximizes cumulative rewards. This enables the agent to explore independently and continuously enhance its performance beyond human guidance. Finally, a policy confidence evaluation algorithm capitalizes on DSAC's return distribution networks to facilitate dynamic switching between human-guided and self-learning policies via a confidence-based intervention function. This ensures the agent can pursue optimal policies while maintaining safety and performance guarantees. Extensive experiments across diverse driving scenarios reveal that C-HAC significantly outperforms conventional methods in terms of safety, efficiency, and overall performance, achieving state-of-the-art results. The effectiveness of the proposed method is further validated through real-world road tests in complex traffic conditions. The videos and code are available at: https://github.com/lzqw/C-HAC.
♻ ☆ Aligned but Blind: Alignment Increases Implicit Bias by Reducing Awareness of Race ACL 2025
Although value-aligned language models (LMs) appear unbiased in explicit bias evaluations, they often exhibit stereotypes in implicit word association tasks, raising concerns about their fair usage. We investigate the mechanisms behind this discrepancy and find that alignment surprisingly amplifies implicit bias in model outputs. Specifically, we show that aligned LMs, unlike their unaligned counterparts, overlook racial concepts in early internal representations when the context is ambiguous. Not representing race likely fails to activate safety guardrails, leading to unintended biases. Inspired by this insight, we propose a new bias mitigation strategy that works by incentivizing the representation of racial concepts in the early model layers. In contrast to conventional mitigation methods of machine unlearning, our interventions find that steering the model to be more aware of racial concepts effectively mitigates implicit bias. Similar to race blindness in humans, ignoring racial nuances can inadvertently perpetuate subtle biases in LMs.
comment: Accepted to ACL 2025 (Main)
♻ ☆ ReCalKV: Low-Rank KV Cache Compression via Head Reordering and Offline Calibration
Large language models (LLMs) have achieved remarkable performance, yet their capability on long-context reasoning is often constrained by the excessive memory required to store the Key-Value (KV) cache. This makes KV cache compression an essential step toward enabling efficient long-context reasoning. Recent methods have explored reducing the hidden dimensions of the KV cache, but many introduce additional computation through projection layers or suffer from significant performance degradation under high compression ratios. To address these challenges, we propose ReCalKV, a post-training KV cache compression method that reduces the hidden dimensions of the KV cache. We develop distinct compression strategies for Keys and Values based on their different roles and varying importance in the attention mechanism. For Keys, we propose Head-wise Similarity-aware Reordering (HSR), which clusters similar heads and applies grouped SVD to the key projection matrix, reducing additional computation while preserving accuracy. For Values, we propose Offline Calibration and Matrix Fusion (OCMF) to preserve accuracy without extra computational overhead. Experiments show that ReCalKV outperforms existing low-rank compression methods, achieving high compression ratios with minimal performance loss. The code and models will be available at: https://github.com/XIANGLONGYAN/ReCalKV.
♻ ☆ Investigating Distributions of Telecom Adapted Sentence Embeddings for Document Retrieval
A plethora of sentence embedding models makes it challenging to choose one, especially for technical domains rich with specialized vocabulary. In this work, we domain adapt embeddings using telecom data for question answering. We evaluate embeddings obtained from publicly available models and their domain-adapted variants, on both point retrieval accuracies, as well as their (95%) confidence intervals. We establish a systematic method to obtain thresholds for similarity scores for different embeddings. As expected, we observe that fine-tuning improves mean bootstrapped accuracies. We also observe that it results in tighter confidence intervals, which further improve when pre-training is preceded by fine-tuning. We introduce metrics which measure the distributional overlaps of top-$K$, correct and random document similarities with the question. Further, we show that these metrics are correlated with retrieval accuracy and similarity thresholds. Recent literature shows conflicting effects of isotropy on retrieval accuracies. Our experiments establish that the isotropy of embeddings (as measured by two independent state-of-the-art isotropy metric definitions) is poorly correlated with retrieval performance. We show that embeddings for domain-specific sentences have little overlap with those for domain-agnostic ones, and fine-tuning moves them further apart. Based on our results, we provide recommendations for use of our methodology and metrics by researchers and practitioners.
comment: Accepted for the Workshop On Next Gen Networks Through LLMs Action Models and Multi Agent Systems at IEEE International Conference on Communications (ICC) 2025
♻ ☆ What Happened in LLMs Layers when Trained for Fast vs. Slow Thinking: A Gradient Perspective ACL2025
What makes a difference in the post-training of LLMs? We investigate the training patterns of different layers in large language models (LLMs) through the lens of the gradient. We are specifically interested in how fast vs. slow thinking affects the layer-wise gradients, given the recent popularity of training LLMs on reasoning paths such as chain-of-thoughts (CoT) and process rewards. In our study, fast thinking without CoT leads to larger gradients and larger differences of gradients across layers than slow thinking (Detailed CoT), indicating the learning stability brought by the latter. Additionally, we study whether the gradient patterns can reflect the correctness of responses when training different LLMs using slow vs. fast thinking paths. The results show that the gradients of slow thinking can distinguish correct and irrelevant reasoning paths. As a comparison, we conduct similar gradient analyses on non-reasoning knowledge learning tasks, on which, however, trivially increasing the response length does not lead to similar behaviors of slow thinking. Our study strengthens fundamental understandings of LLM training and sheds novel insights on its efficiency and stability, which pave the way towards building a generalizable System-2 agent. Our code, data, and gradient statistics can be found in: https://github.com/MingLiiii/Layer_Gradient.
comment: ACL2025 main, Camera-ready
♻ ☆ FOLIAGE: Towards Physical Intelligence World Models Via Unbounded Surface Evolution
Physical intelligence -- anticipating and shaping the world from partial, multisensory observations -- is critical for next-generation world models. We propose FOLIAGE, a physics-informed multimodal world model for unbounded accretive surface growth. In its Action-Perception loop, a unified context encoder maps images, mesh connectivity, and point clouds to a shared latent state. A physics-aware predictor, conditioned on physical control actions, advances this latent state in time to align with the target latent of the surface, yielding a Modality-Agnostic Growth Embedding (MAGE) that interfaces with critic heads for downstream objectives. FOLIAGE's Accretive Graph Network (AGN) captures dynamic connectivity through Age Positional Encoding and Energy-Gated Message-Passing. Geometry-Correspondence Fusion and Cross-Patch Masking enhance MAGE's expressiveness, while Hierarchical Pooling balances global context with local dynamics. We create SURF-GARDEN, a world model learning platform comprising a Counterfactual Physics Simulator, a Multimodal Correspondence Extractor, and Evolution Tracing, which generates 7,200 diverse surface-growth sequences. SURF-BENCH, our physical-intelligence evaluation suite, evaluates six core tasks -- topology recognition, inverse material estimation, growth-stage classification, latent roll-out, cross-modal retrieval, and dense correspondence -- and four stress tests -- sensor dropout, zero-shot modality transfer, long-horizon prediction, and physics ablation -- to probe resilience. FOLIAGE outperforms specialized baselines while remaining robust across dynamic environments, establishing a new world-model based, multimodal pathway to physical intelligence.
♻ ☆ ATLaS: Agent Tuning via Learning Critical Steps ACL2025
Large Language Model (LLM) agents have demonstrated remarkable generalization capabilities across multi-domain tasks. Existing agent tuning approaches typically employ supervised finetuning on entire expert trajectories. However, behavior-cloning of full trajectories can introduce expert bias and weaken generalization to states not covered by the expert data. Additionally, critical steps, such as planning, complex reasoning for intermediate subtasks, and strategic decision-making, are essential to success in agent tasks, so learning these steps is the key to improving LLM agents. For more effective and efficient agent tuning, we propose ATLaS that identifies the critical steps in expert trajectories and finetunes LLMs solely on these steps with reduced costs. By steering the training's focus to a few critical steps, our method mitigates the risk of overfitting entire trajectories and promotes generalization across different environments and tasks. In extensive experiments, an LLM finetuned on only 30% critical steps selected by ATLaS outperforms the LLM finetuned on all steps and recent open-source LLM agents. ATLaS maintains and improves base LLM skills as generalist agents interacting with diverse environments.
comment: ACL2025, Camera-ready
♻ ☆ Simultaneous Task Allocation and Planning for Multi-Robots under Hierarchical Temporal Logic Specifications
Research in robotic planning with temporal logic specifications, such as Linear Temporal Logic (LTL), has relied on single formulas. However, as task complexity increases, LTL formulas become lengthy, making them difficult to interpret and generate, and straining the computational capacities of planners. To address this, we introduce a hierarchical structure for a widely used specification type -- LTL on finite traces (LTL$_f$). The resulting language, termed H-LTL$_f$, is defined with both its syntax and semantics. We further prove that H-LTL$_f$ is more expressive than its standard "flat" counterparts. Moreover, we conducted a user study that compared the standard LTL$_f$ with our hierarchical version and found that users could more easily comprehend complex tasks using the hierarchical structure. We develop a search-based approach to synthesize plans for multi-robot systems, achieving simultaneous task allocation and planning. This method approximates the search space by loosely interconnected sub-spaces, each corresponding to an LTL$_f$ specification. The search primarily focuses on a single sub-space, transitioning to another under conditions determined by the decomposition of automata. We develop multiple heuristics to significantly expedite the search. Our theoretical analysis, conducted under mild assumptions, addresses completeness and optimality. Compared to existing methods used in various simulators for service tasks, our approach improves planning times while maintaining comparable solution quality.
comment: 20 pages, 11 figures. Accepted to appear in IEEE Transaction on Robotics 2025. Video https://www.youtube.com/watch?v=N3f8pUHDPF4&t=4s
♻ ☆ ChatWise: A Strategy-Guided Chatbot for Enhancing Cognitive Support in Older Adults
Cognitive health in older adults presents a growing challenge. Although conversational interventions show feasibility in improving cognitive wellness, human caregiver resources remain overloaded. AI-based chatbots have shown promise, yet existing work is often limited to implicit strategies or heavily depends on training and label resources. In response, we propose a strategy-guided AI chatbot named ChatWise that follows a dual-level conversation reasoning framework. It integrates macro-level strategy planning and micro-level utterance generation to enable engaging, multi-turn dialogue tailored to older adults. Empirical results show that ChatWise closely aligns with professional human caregiver behaviors in offline evaluation using real clinic data, and achieves positive user cognitive and emotional responses in interactive simulations with digital twins, which significantly outperforms AI baselines that follow implicit conversation generation.
♻ ☆ A Comparative Study of Conventional and Tripolar EEG for High-Performance Reach-to-Grasp BCI Systems
This study aims to enhance BCI applications for individuals with motor impairments by comparing the effectiveness of tripolar EEG (tEEG) with conventional EEG. The focus is on interpreting and decoding various grasping movements, such as power grasp and precision grasp. The goal is to determine which EEG technology is more effective in processing and translating grasp related neural signals. The approach involved experimenting on ten healthy participants who performed two distinct grasp movements: power grasp and precision grasp, with a no movement condition serving as the baseline. Our research presents a thorough comparison between EEG and tEEG in decoding grasping movements. This comparison spans several key parameters, including signal to noise ratio (SNR), spatial resolution via functional connectivity, ERPs, and wavelet time frequency analysis. Additionally, our study involved extracting and analyzing statistical features from the wavelet coefficients, and both binary and multiclass classification methods were employed. Four machine learning algorithms were used to evaluate the decoding accuracies. Our results indicated that tEEG demonstrated superior performance over conventional EEG in various aspects. This included a higher signal to noise ratio, enhanced spatial resolution, and more informative data in ERPs and wavelet time frequency analysis. The use of tEEG led to notable improvements in decoding accuracy for differentiating movement types. Specifically, tEEG achieved around 90% accuracy in binary and 75.97% for multiclass classification. These results are markedly better than those from standard EEG, which recorded a maximum of 77.85% and 61.27% in similar tasks, respectively. These findings highlight the superior effectiveness of tEEG over EEG in decoding grasp types and its competitive or superior performance in complex classifications compared with existing research.
♻ ☆ Uncovering Memorization Effect in the Presence of Spurious Correlations
Machine learning models often rely on simple spurious features -- patterns in training data that correlate with targets but are not causally related to them, like image backgrounds in foreground classification. This reliance typically leads to imbalanced test performance across minority and majority groups. In this work, we take a closer look at the fundamental cause of such imbalanced performance through the lens of memorization, which refers to the ability to predict accurately on atypical examples (minority groups) in the training set but failing in achieving the same accuracy in the testing set. This paper systematically shows the ubiquitous existence of spurious features in a small set of neurons within the network, providing the first-ever evidence that memorization may contribute to imbalanced group performance. Through three experimental sources of converging empirical evidence, we find the property of a small subset of neurons or channels in memorizing minority group information. Inspired by these findings, we hypothesize that spurious memorization, concentrated within a small subset of neurons, plays a key role in driving imbalanced group performance. To further substantiate this hypothesis, we show that eliminating these unnecessary spurious memorization patterns via a novel framework during training can significantly affect the model performance on minority groups. Our experimental results across various architectures and benchmarks offer new insights on how neural networks encode core and spurious knowledge, laying the groundwork for future research in demystifying robustness to spurious correlation.
comment: Accepted by Nature Communications
♻ ☆ Locally Typical Sampling ACL 2022
Today's probabilistic language generators fall short when it comes to producing coherent and fluent text despite the fact that the underlying models perform well under standard metrics, e.g., perplexity. This discrepancy has puzzled the language generation community for the last few years. In this work, we posit that the abstraction of natural language generation as a discrete stochastic process--which allows for an information-theoretic analysis--can provide new insights into the behavior of probabilistic language generators, e.g., why high-probability texts can be dull or repetitive. Humans use language as a means of communicating information, aiming to do so in a simultaneously efficient and error-minimizing manner; in fact, psycholinguistics research suggests humans choose each word in a string with this subconscious goal in mind. We formally define the set of strings that meet this criterion: those for which each word has an information content close to the expected information content, i.e., the conditional entropy of our model. We then propose a simple and efficient procedure for enforcing this criterion when generating from probabilistic models, which we call locally typical sampling. Automatic and human evaluations show that, in comparison to nucleus and top-k sampling, locally typical sampling offers competitive performance (in both abstractive summarization and story generation) in terms of quality while consistently reducing degenerate repetitions.
comment: TACL 2022
♻ ☆ CLIPErase: Efficient Unlearning of Visual-Textual Associations in CLIP ACL
Machine unlearning (MU) has gained significant attention as a means to remove specific data from trained models without requiring a full retraining process. While progress has been made in unimodal domains like text and image classification, unlearning in multimodal models remains relatively underexplored. In this work, we address the unique challenges of unlearning in CLIP, a prominent multimodal model that aligns visual and textual representations. We introduce CLIPErase, a novel approach that disentangles and selectively forgets both visual and textual associations, ensuring that unlearning does not compromise model performance. CLIPErase consists of three key modules: a Forgetting Module that disrupts the associations in the forget set, a Retention Module that preserves performance on the retain set, and a Consistency Module that maintains consistency with the original model. Extensive experiments on the CIFAR-100 and Flickr30K datasets across four CLIP downstream tasks demonstrate that CLIPErase effectively forgets designated associations in zero-shot tasks for multimodal samples, while preserving the model's performance on the retain set after unlearning.
comment: ACL main 2025
♻ ☆ AdaReasoner: Adaptive Reasoning Enables More Flexible Thinking
LLMs often need effective configurations, like temperature and reasoning steps, to handle tasks requiring sophisticated reasoning and problem-solving, ranging from joke generation to mathematical reasoning. Existing prompting approaches usually adopt general-purpose, fixed configurations that work 'well enough' across tasks but seldom achieve task-specific optimality. To address this gap, we introduce AdaReasoner, an LLM-agnostic plugin designed for any LLM to automate adaptive reasoning configurations for tasks requiring different types of thinking. AdaReasoner is trained using a reinforcement learning (RL) framework, combining a factorized action space with a targeted exploration strategy, along with a pretrained reward model to optimize the policy model for reasoning configurations with only a few-shot guide. AdaReasoner is backed by theoretical guarantees and experiments of fast convergence and a sublinear policy gap. Across six different LLMs and a variety of reasoning tasks, it consistently outperforms standard baselines, preserves out-of-distribution robustness, and yield gains on knowledge-intensive tasks through tailored prompts.
♻ ☆ Fundamental Limits of Prompt Tuning Transformers: Universality, Capacity and Efficiency ICLR 2025
We investigate the statistical and computational limits of prompt tuning for transformer-based foundation models. Our key contributions are prompt tuning on \emph{single-head} transformers with only a \emph{single} self-attention layer: (i) is universal, and (ii) supports efficient (even almost-linear time) algorithms under the Strong Exponential Time Hypothesis (SETH). Statistically, we prove that prompt tuning on such simplest possible transformers are universal approximators for sequence-to-sequence Lipschitz functions. In addition, we provide an exponential-in-$dL$ and -in-$(1/\epsilon)$ lower bound on the required soft-prompt tokens for prompt tuning to memorize any dataset with 1-layer, 1-head transformers. Computationally, we identify a phase transition in the efficiency of prompt tuning, determined by the norm of the \emph{soft-prompt-induced} keys and queries, and provide an upper bound criterion. Beyond this criterion, no sub-quadratic (efficient) algorithm for prompt tuning exists under SETH. Within this criterion, we showcase our theory by proving the existence of almost-linear time prompt tuning inference algorithms. These fundamental limits provide important necessary conditions for designing expressive and efficient prompt tuning methods for practitioners.
comment: Accepted at ICLR 2025. v2 matches the camera-ready version
♻ ☆ Labelling Data with Unknown References
An evaluator is trustworthy when there exists some agreed-upon way to measure its performance as a labeller. The two ways to establish trustworthiness are either by testing it, or by assuming the evaluator `knows' somehow the way to label the corpus. However, if labelled references (e.g., a development set) are unavailable, neither of these approaches work: the former requires the data, and the latter is an assumption, not evidence. To address this, we introduce an algorithm (the `No-Data Algorithm') by which to establish trust in an evaluator without any existing references. Our algorithm works by successively posing challenges to said evaluator. We show that this is sufficient to establish trustworthiness w.h.p., in such a way that when the evaluator actually knows the way to label the corpus, the No-Data Algorithm accepts its output; and, conversely, flags untrustworthy evaluators when these are unable to prove it. We present formal proofs of correctness and limited experiments.
comment: Extended version with LLM-based results/analysis
♻ ☆ Rollout Roulette: A Probabilistic Inference Approach to Inference-Time Scaling of LLMs using Particle-Based Monte Carlo Methods
Large language models (LLMs) have achieved significant performance gains via scaling up model sizes and/or data. However, recent evidence suggests diminishing returns from such approaches, motivating scaling the computation spent at inference time. Existing inference-time scaling methods, usually with reward models, cast the task as a search problem, which tends to be vulnerable to reward hacking as a consequence of approximation errors in reward models. In this paper, we instead cast inference-time scaling as a probabilistic inference task and leverage sampling-based techniques to explore the typical set of the state distribution of a state-space model with an approximate likelihood, rather than optimize for its mode directly. We propose a novel inference-time scaling approach by adapting particle-based Monte Carlo methods to this task. Our empirical evaluation demonstrates that our methods have a 4-16x better scaling rate over our deterministic search counterparts on various challenging mathematical reasoning tasks. Using our approach, we show that Qwen2.5-Math-1.5B-Instruct can surpass GPT-4o accuracy in only 4 rollouts, while Qwen2.5-Math-7B-Instruct scales to o1 level accuracy in only 32 rollouts. Our work not only presents an effective method to inference-time scaling, but also connects the rich literature in probabilistic inference with inference-time scaling of LLMs to develop more robust algorithms in future work. Code, videos, and further information available at https://probabilistic-inference-scaling.github.io.
♻ ☆ Reasoning Towards Fairness: Mitigating Bias in Language Models through Reasoning-Guided Fine-Tuning
Recent advances in large-scale generative language models have shown that reasoning capabilities can significantly improve model performance across a variety of tasks. However, the impact of reasoning on a model's ability to mitigate stereotypical responses remains largely underexplored. In this work, we investigate the crucial relationship between a model's reasoning ability and fairness, and ask whether improved reasoning capabilities can mitigate harmful stereotypical responses, especially those arising due to shallow or flawed reasoning. We conduct a comprehensive evaluation of multiple open-source LLMs, and find that larger models with stronger reasoning abilities exhibit substantially lower stereotypical bias on existing fairness benchmarks. Building on this insight, we introduce ReGiFT -- Reasoning Guided Fine-Tuning, a novel approach that extracts structured reasoning traces from advanced reasoning models and infuses them into models that lack such capabilities. We use only general-purpose reasoning and do not require any fairness-specific supervision for bias mitigation. Notably, we see that models fine-tuned using ReGiFT not only improve fairness relative to their non-reasoning counterparts but also outperform advanced reasoning models on fairness benchmarks. We also analyze how variations in the correctness of the reasoning traces and their length influence model fairness and their overall performance. Our findings highlight that enhancing reasoning capabilities is an effective, fairness-agnostic strategy for mitigating stereotypical bias caused by reasoning flaws.
comment: 17 pages
♻ ☆ Adversarial Tokenization ACL 2025
Current LLM pipelines account for only one possible tokenization for a given string, ignoring exponentially many alternative tokenizations during training and inference. For example, the standard Llama3 tokenization of penguin is [p,enguin], yet [peng,uin] is another perfectly valid alternative. In this paper, we show that despite LLMs being trained solely on one tokenization, they still retain semantic understanding of other tokenizations, raising questions about their implications in LLM safety. Put succinctly, we answer the following question: can we adversarially tokenize an obviously malicious string to evade safety and alignment restrictions? We show that not only is adversarial tokenization an effective yet previously neglected axis of attack, but it is also competitive against existing state-of-the-art adversarial approaches without changing the text of the harmful request. We empirically validate this exploit across three state-of-the-art LLMs and adversarial datasets, revealing a previously unknown vulnerability in subword models.
comment: Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics, ACL 2025
♻ ☆ An Optimal Cascade Feature-Level Spatiotemporal Fusion Strategy for Anomaly Detection in CAN Bus
Intelligent transportation systems (ITS) play a pivotal role in modern infrastructure but face security risks due to the broadcast-based nature of the in-vehicle Controller Area Network (CAN) buses. While numerous machine learning models and strategies have been proposed to detect CAN anomalies, existing approaches lack robustness evaluations and fail to comprehensively detect attacks due to shifting their focus on a subset of dominant structures of anomalies. To overcome these limitations, the current study proposes a cascade feature-level spatiotemporal fusion framework that integrates the spatial features and temporal features through a two-parameter genetic algorithm (2P-GA)-optimized cascade architecture to cover all dominant structures of anomalies. Extensive paired t-test analysis confirms that the model achieves an AUC-ROC of 0.9987, demonstrating robust anomaly detection capabilities. The Spatial Module improves the precision by approximately 4%, while the Temporal Module compensates for recall losses, ensuring high true positive rates. The proposed framework detects all attack types with 100% accuracy on the CAR-HACKING dataset, outperforming state-of-the-art methods. This study provides a validated, robust solution for real-world CAN security challenges.
comment: v3: updated the text and graphs
♻ ☆ TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies
Although large vision-language-action (VLA) models pretrained on extensive robot datasets offer promising generalist policies for robotic learning, they still struggle with spatial-temporal dynamics in interactive robotics, making them less effective in handling complex tasks, such as manipulation. In this work, we introduce visual trace prompting, a simple yet effective approach to facilitate VLA models' spatial-temporal awareness for action prediction by encoding state-action trajectories visually. We develop a new TraceVLA model by finetuning OpenVLA on our own collected dataset of 150K robot manipulation trajectories using visual trace prompting. Evaluations of TraceVLA across 137 configurations in SimplerEnv and 4 tasks on a physical WidowX robot demonstrate state-of-the-art performance, outperforming OpenVLA by 10% on SimplerEnv and 3.5x on real-robot tasks and exhibiting robust generalization across diverse embodiments and scenarios. To further validate the effectiveness and generality of our method, we present a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-Embodiment and finetuned on our dataset, rivals the 7B OpenVLA baseline while significantly improving inference efficiency.
♻ ☆ Artificial Intelligence in Creative Industries: Advances Prior to 2025
The rapid advancements in artificial intelligence (AI), particularly in generative AI and large language models (LLMs), have profoundly impacted the creative industries, enabling more innovative content creation, enhancing workflows, and democratizing access to creative tools. This paper explores these technological shifts, with particular focus on how those that have emerged since our previous review in 2022 have expanded creative opportunities and improved efficiency. These technological advancements have enhanced the capabilities of text-to-image, text-to-video, and multimodal generation technologies. In particular, key breakthroughs in LLMs have established new benchmarks in conversational AI, while advancements in image generators have revolutionized content creation. We also discuss the integration of AI into post-production workflows, which has significantly accelerated and improved traditional processes. Once content has been created, it must be delivered to its audiences the media industry is facing the demands of increased communication traffic due to creative content. We therefore include a discussion of how AI is beginning to transform the way we represent and compress media content. We highlight the trend toward unified AI frameworks capable of addressing and integrating multiple creative tasks, and we underscore the importance of human insight to drive the creative process and oversight to mitigate AI-generated inaccuracies. Finally, we explore AI's future potential in the creative sector, stressing the need to navigate emerging challenges and to maximize its benefits while addressing the associated risks.
comment: This is an updated review of our previous paper (see https://doi.org/10.1007/s10462-021-10039-7)
♻ ☆ Agents for self-driving laboratories applied to quantum computing
Fully automated self-driving laboratories are promising to enable high-throughput and large-scale scientific discovery by reducing repetitive labour. However, effective automation requires deep integration of laboratory knowledge, which is often unstructured, multimodal, and difficult to incorporate into current AI systems. This paper introduces the k-agents framework, designed to support experimentalists in organizing laboratory knowledge and automating experiments with agents. Our framework employs large language model-based agents to encapsulate laboratory knowledge including available laboratory operations and methods for analyzing experiment results. To automate experiments, we introduce execution agents that break multi-step experimental procedures into agent-based state machines, interact with other agents to execute each step and analyze the experiment results. The analyzed results are then utilized to drive state transitions, enabling closed-loop feedback control. To demonstrate its capabilities, we applied the agents to calibrate and operate a superconducting quantum processor, where they autonomously planned and executed experiments for hours, successfully producing and characterizing entangled quantum states at the level achieved by human scientists. Our knowledge-based agent system opens up new possibilities for managing laboratory knowledge and accelerating scientific discovery.
♻ ☆ TituLLMs: A Family of Bangla LLMs with Comprehensive Benchmarking
In this paper, we present TituLLMs, the first large pretrained Bangla LLMs, available in 1b and 3b parameter sizes. Due to computational constraints during both training and inference, we focused on smaller models. To train TituLLMs, we collected a pretraining dataset of approximately ~37 billion tokens. We extended the Llama-3.2 tokenizer to incorporate language- and culture-specific knowledge, which also enables faster training and inference. There was a lack of benchmarking datasets to benchmark LLMs for Bangla. To address this gap, we developed five benchmarking datasets. We benchmarked various LLMs, including TituLLMs, and demonstrated that TituLLMs outperforms its initial multilingual versions. However, this is not always the case, highlighting the complexities of language adaptation. Our work lays the groundwork for adapting existing multilingual open models to other low-resource languages. To facilitate broader adoption and further research, we have made the TituLLMs models and benchmarking datasets publicly available (https://huggingface.co/collections/hishab/titulm-llama-family-6718d31fc1b83529276f490a).
comment: LLMs, Benchmarking, Large Language Models, Bangla, BanglaLLMs
♻ ☆ The Impact of Inference Acceleration on Bias of LLMs
Last few years have seen unprecedented advances in capabilities of Large Language Models (LLMs). These advancements promise to benefit a vast array of application domains. However, due to their immense size, performing inference with LLMs is both costly and slow. Consequently, a plethora of recent work has proposed strategies to enhance inference efficiency, e.g., quantization, pruning, and caching. These acceleration strategies reduce the inference cost and latency, often by several factors, while maintaining much of the predictive performance measured via common benchmarks. In this work, we explore another critical aspect of LLM performance: demographic bias in model generations due to inference acceleration optimizations. Using a wide range of metrics, we probe bias in model outputs from a number of angles. Analysis of outputs before and after inference acceleration shows significant change in bias. Worryingly, these bias effects are complex and unpredictable. A combination of an acceleration strategy and bias type may show little bias change in one model but may lead to a large effect in another. Our results highlight a need for in-depth and case-by-case evaluation of model bias after it has been modified to accelerate inference.
♻ ☆ Relational Conformal Prediction for Correlated Time Series ICML 2025
We address the problem of uncertainty quantification in time series forecasting by exploiting observations at correlated sequences. Relational deep learning methods leveraging graph representations are among the most effective tools for obtaining point estimates from spatiotemporal data and correlated time series. However, the problem of exploiting relational structures to estimate the uncertainty of such predictions has been largely overlooked in the same context. To this end, we propose a novel distribution-free approach based on the conformal prediction framework and quantile regression. Despite the recent applications of conformal prediction to sequential data, existing methods operate independently on each target time series and do not account for relationships among them when constructing the prediction interval. We fill this void by introducing a novel conformal prediction method based on graph deep learning operators. Our approach, named Conformal Relational Prediction (CoRel), does not require the relational structure (graph) to be known a priori and can be applied on top of any pre-trained predictor. Additionally, CoRel includes an adaptive component to handle non-exchangeable data and changes in the input time series. Our approach provides accurate coverage and achieves state-of-the-art uncertainty quantification in relevant benchmarks.
comment: ICML 2025
♻ ☆ Multivariate Temporal Regression at Scale: A Three-Pillar Framework Combining ML, XAI, and NLP
This paper introduces a novel framework that accelerates the discovery of actionable relationships in high-dimensional temporal data by integrating machine learning (ML), explainable AI (XAI), and natural language processing (NLP) to enhance data quality and streamline workflows. Traditional methods often fail to recognize complex temporal relationships, leading to noisy, redundant, or biased datasets. Our approach combines ML-driven pruning to identify and mitigate low-quality samples, XAI-based interpretability to validate critical feature interactions, and NLP for future contextual validation, reducing the time required to uncover actionable insights by 40-60%. Evaluated on real-world agricultural and synthetic datasets, the framework significantly improves performance metrics (e.g., MSE, R2, MAE) and computational efficiency, with hardware-agnostic scalability across diverse platforms. While long-term real-world impacts (e.g., cost savings, sustainability gains) are pending, this methodology provides an immediate pathway to accelerate data-centric AI in dynamic domains like agriculture and energy, enabling faster iteration cycles for domain experts.
comment: 7 pages
♻ ☆ The Complexity of Learning Sparse Superposed Features with Feedback ICML'25
The success of deep networks is crucially attributed to their ability to capture latent features within a representation space. In this work, we investigate whether the underlying learned features of a model can be efficiently retrieved through feedback from an agent, such as a large language model (LLM), in the form of relative \textit{triplet comparisons}. These features may represent various constructs, including dictionaries in LLMs or a covariance matrix of Mahalanobis distances. We analyze the feedback complexity associated with learning a feature matrix in sparse settings. Our results establish tight bounds when the agent is permitted to construct activations and demonstrate strong upper bounds in sparse scenarios when the agent's feedback is limited to distributional information. We validate our theoretical findings through experiments on two distinct applications: feature recovery from Recursive Feature Machines and dictionary extraction from sparse autoencoders trained on Large Language Models.
comment: ICML'25
♻ ☆ Investigating Non-Transitivity in LLM-as-a-Judge ICML 2025
Automatic evaluation methods based on large language models (LLMs) are emerging as the standard tool for assessing the instruction-following abilities of LLM-based agents. The most common method in this paradigm, pairwise comparisons with a baseline model, critically depends on the assumption of transitive preferences. However, the validity of this assumption remains largely unexplored. In this study, we investigate the presence of non-transitivity within the AlpacaEval framework and analyze its effects on model rankings. We find that LLM judges exhibit non-transitive preferences, leading to rankings that are sensitive to the choice of the baseline model. To mitigate this issue, we show that round-robin tournaments combined with Bradley-Terry models of preference can produce more reliable rankings. Notably, our method increases both the Spearman correlation and the Kendall correlation with Chatbot Arena (95.0% -> 96.4% and 82.1% -> 86.3% respectively). To address the computational cost of round-robin tournaments, we propose Swiss-Wise Iterative Matchmaking (Swim) tournaments, using a dynamic matching strategy to capture the benefits of round-robin tournaments while maintaining computational efficiency.
comment: ICML 2025 (Spotlight)
♻ ☆ DualSpec: Text-to-spatial-audio Generation via Dual-Spectrogram Guided Diffusion Model
Text-to-audio (TTA), which generates audio signals from textual descriptions, has received huge attention in recent years. However, recent works focused on text to monaural audio only. As we know, spatial audio provides more immersive auditory experience than monaural audio, e.g. in virtual reality. To address this issue, we propose a text-to-spatial-audio (TTSA) generation framework named DualSpec. Specifically, it first trains variational autoencoders (VAEs) for extracting the latent acoustic representations from sound event audio. Then, given text that describes sound events and event directions, the proposed method uses the encoder of a pretrained large language model to transform the text into text features. Finally, it trains a diffusion model from the latent acoustic representations and text features for the spatial audio generation. In the inference stage, only the text description is needed to generate spatial audio. Particularly, to improve the synthesis quality and azimuth accuracy of the spatial sound events simultaneously, we propose to use two kinds of acoustic features. One is the Mel spectrograms which is good for improving the synthesis quality, and the other is the short-time Fourier transform spectrograms which is good at improving the azimuth accuracy. We provide a pipeline of constructing spatial audio dataset with text prompts, for the training of the VAEs and diffusion model. We also introduce new spatial-aware evaluation metrics to quantify the azimuth errors of the generated spatial audio recordings. Experimental results demonstrate that the proposed method can generate spatial audio with high directional and event consistency.
♻ ☆ How can Diffusion Models Evolve into Continual Generators?
While diffusion models have achieved remarkable success in static data generation, their deployment in streaming or continual learning (CL) scenarios faces a major challenge: catastrophic forgetting (CF), where newly acquired generative capabilities overwrite previously learned ones. To systematically address this, we introduce a formal Continual Diffusion Generation (CDG) paradigm that characterizes and redefines CL in the context of generative diffusion models. Prior efforts often adapt heuristic strategies from continual classification tasks but lack alignment with the underlying diffusion process. In this work, we develop the first theoretical framework for CDG by analyzing cross-task dynamics in diffusion-based generative modeling. Our analysis reveals that the retention and stability of generative knowledge across tasks are governed by three key consistency criteria: inter-task knowledge consistency (IKC), unconditional knowledge consistency (UKC), and label knowledge consistency (LKC). Building on these insights, we propose Continual Consistency Diffusion (CCD), a principled framework that integrates these consistency objectives into training via hierarchical loss terms $\mathcal{L}_{IKC}$, $\mathcal{L}_{UKC}$, and $\mathcal{L}_{LKC}$. This promotes effective knowledge retention while enabling the assimilation of new generative capabilities. Extensive experiments on four benchmark datasets demonstrate that CCD achieves state-of-the-art performance under continual settings, with substantial gains in Mean Fidelity (MF) and Incremental Mean Fidelity (IMF), particularly in tasks with rich cross-task knowledge overlap.
♻ ☆ GENIUS: A Generative Framework for Universal Multimodal Search CVPR 2025
Generative retrieval is an emerging approach in information retrieval that generates identifiers (IDs) of target data based on a query, providing an efficient alternative to traditional embedding-based retrieval methods. However, existing models are task-specific and fall short of embedding-based retrieval in performance. This paper proposes GENIUS, a universal generative retrieval framework supporting diverse tasks across multiple modalities and domains. At its core, GENIUS introduces modality-decoupled semantic quantization, transforming multimodal data into discrete IDs encoding both modality and semantics. Moreover, to enhance generalization, we propose a query augmentation that interpolates between a query and its target, allowing GENIUS to adapt to varied query forms. Evaluated on the M-BEIR benchmark, it surpasses prior generative methods by a clear margin. Unlike embedding-based retrieval, GENIUS consistently maintains high retrieval speed across database size, with competitive performance across multiple benchmarks. With additional re-ranking, GENIUS often achieves results close to those of embedding-based methods while preserving efficiency.
comment: Accepted to CVPR 2025
♻ ☆ Is Cognition Consistent with Perception? Assessing and Mitigating Multimodal Knowledge Conflicts in Document Understanding
Multimodal large language models (MLLMs) have shown impressive capabilities in document understanding, a rapidly growing research area with significant industrial demand. As a multimodal task, document understanding requires models to possess both perceptual and cognitive abilities. However, due to different types of annotation noise in training, current MLLMs often face conflicts between perception and cognition. Taking a document VQA task (cognition) as an example, an MLLM might generate answers that do not match the corresponding visual content identified by its OCR (perception). This conflict suggests that the MLLM might struggle to establish an intrinsic connection between the information it "sees" and what it "understands". Such conflicts challenge the intuitive notion that cognition is consistent with perception, hindering the performance and explainability of MLLMs. In this paper, we define the conflicts between cognition and perception as Cognition and Perception (C&P) knowledge conflicts, a form of multimodal knowledge conflict, and systematically assess them with a focus on document understanding. Our analysis reveals that even GPT-4o, a leading MLLM, achieves only 75.26% C&P consistency. To mitigate the C&P knowledge conflicts, we propose a novel method called Multimodal Knowledge Consistency Fine-tuning. Our method reduces C&P knowledge conflicts across all tested MLLMs and enhances their performance in both cognitive and perceptual tasks. All data we construct will be publicly available.
comment: Preprint
Graphics 21
☆ Uniform Sampling of Surfaces by Casting Rays
Randomly sampling points on surfaces is an essential operation in geometry processing. This sampling is computationally straightforward on explicit meshes, but it is much more difficult on other shape representations, such as widely-used implicit surfaces. This work studies a simple and general scheme for sampling points on a surface, which is derived from a connection to the intersections of random rays with the surface. Concretely, given a subroutine to cast a ray against a surface and find all intersections, we can use that subroutine to uniformly sample white noise points on the surface. This approach is particularly effective in the context of implicit signed distance functions, where sphere marching allows us to efficiently cast rays and sample points, without needing to extract an intermediate mesh. We analyze the basic method to show that it guarantees uniformity, and find experimentally that it is significantly more efficient than alternative strategies on a variety of representations. Furthermore, we show extensions to blue noise sampling and stratified sampling, and applications to deform neural implicit surfaces as well as moment estimation.
comment: 15 pages, 17 figures, Symposium on Geometry Processing 2025
☆ Towards the target and not beyond: 2d vs 3d visual aids in mr-based neurosurgical simulation
Neurosurgery increasingly uses Mixed Reality (MR) technologies for intraoperative assistance. The greatest challenge in this area is mentally reconstructing complex 3D anatomical structures from 2D slices with millimetric precision, which is required in procedures like External Ventricular Drain (EVD) placement. MR technologies have shown great potential in improving surgical performance, however, their limited availability in clinical settings underscores the need for training systems that foster skill retention in unaided conditions. In this paper, we introduce NeuroMix, an MR-based simulator for EVD placement. We conduct a study with 48 participants to assess the impact of 2D and 3D visual aids on usability, cognitive load, technology acceptance, and procedure precision and execution time. Three training modalities are compared: one without visual aids, one with 2D aids only, and one combining both 2D and 3D aids. The training phase takes place entirely on digital objects, followed by a freehand EVD placement testing phase performed with a physical catherer and a physical phantom without MR aids. We then compare the participants performance with that of a control group that does not undergo training. Our findings show that participants trained with both 2D and 3D aids achieve a 44\% improvement in precision during unaided testing compared to the control group, substantially higher than the improvement observed in the other groups. All three training modalities receive high usability and technology acceptance ratings, with significant equivalence across groups. The combination of 2D and 3D visual aids does not significantly increase cognitive workload, though it leads to longer operation times during freehand testing compared to the control group.
comment: 15 pages, 7 figures, 3 tables, journal
☆ From Screen to Space: Evaluating Siemens' Cinematic Reality
As one of the first research teams with full access to Siemens' Cinematic Reality, we evaluate its usability and clinical potential for cinematic volume rendering on the Apple Vision Pro. We visualized venous-phase liver computed tomography and magnetic resonance cholangiopancreatography scans from the CHAOS and MRCP\_DLRecon datasets. Fourteen medical experts assessed usability and anticipated clinical integration potential using the System Usability Scale, ISONORM 9242-110-S questionnaire, and an open-ended survey. Their feedback identified feasibility, key usability strengths, and required features to catalyze the adaptation in real-world clinical workflows. The findings provide insights into the potential of immersive cinematic rendering in medical imaging.
comment: 16 pages
☆ Beyond the Desktop: XR-Driven Segmentation with Meta Quest 3 and MX Ink
Medical imaging segmentation is essential in clinical settings for diagnosing diseases, planning surgeries, and other procedures. However, manual annotation is a cumbersome and effortful task. To mitigate these aspects, this study implements and evaluates the usability and clinical applicability of an extended reality (XR)-based segmentation tool for anatomical CT scans, using the Meta Quest 3 headset and Logitech MX Ink stylus. We develop an immersive interface enabling real-time interaction with 2D and 3D medical imaging data in a customizable workspace designed to mitigate workflow fragmentation and cognitive demands inherent to conventional manual segmentation tools. The platform combines stylus-driven annotation, mirroring traditional pen-on-paper workflows, with instant 3D volumetric rendering. A user study with a public craniofacial CT dataset demonstrated the tool's foundational viability, achieving a System Usability Scale (SUS) score of 66, within the expected range for medical applications. Participants highlighted the system's intuitive controls (scoring 4.1/5 for self-descriptiveness on ISONORM metrics) and spatial interaction design, with qualitative feedback highlighting strengths in hybrid 2D/3D navigation and realistic stylus ergonomics. While users identified opportunities to enhance task-specific precision and error management, the platform's core workflow enabled dynamic slice adjustment, reducing cognitive load compared to desktop tools. Results position the XR-stylus paradigm as a promising foundation for immersive segmentation tools, with iterative refinements targeting haptic feedback calibration and workflow personalization to advance adoption in preoperative planning.
comment: 10 pages
☆ Midplane based 3D single pass unbiased segment-to-segment contact interaction using penalty method
This work introduces a contact interaction methodology for an unbiased treatment of contacting surfaces without assigning surfaces as master and slave. The contact tractions between interacting discrete segments are evaluated with respect to a midplane in a single pass, inherently maintaining the equilibrium of tractions. These tractions are based on the penalisation of true interpenetration between opposite surfaces, and the procedure of their integral for discrete contacting segments is described in this paper. A meticulous examination of the different possible geometric configurations of interacting 3D segments is presented to develop visual understanding and better traction evaluation accuracy. The accuracy and robustness of the proposed method are validated against the analytical solutions of the contact patch test, two-beam bending, Hertzian contact, and flat punch test, thus proving the capability to reproduce contact between flat surfaces, curved surfaces, and sharp corners in contact, respectively. The method passes the contact patch test with the uniform transmission of contact pressure matching the accuracy levels of finite elements. It converges towards the analytical solution with mesh refinement and a suitably high penalty factor. The effectiveness of the proposed algorithm also extends to self-contact problems and has been tested for self-contact between flat and curved surfaces with inelastic material. Dynamic problems of elastic and inelastic collisions between bars, as well as oblique collisions of cylinders, are also presented. The ability of the algorithm to resolve contacts between flat and curved surfaces for nonconformal meshes with high accuracy demonstrates its versatility in general contact problems.
☆ A Fast Unsupervised Scheme for Polygonal Approximation
This paper proposes a fast and unsupervised scheme for a polygonal approximation of a closed digital curve. It is demonstrated that the approximation scheme is faster than state-of-the-art approximation and is competitive with the same in Rosin's measure and in its aesthetic aspect. The scheme comprises of three phases: initial segmentation, iterative vertex insertion, and iterative merging, followed by vertex adjustment. The initial segmentation is used to detect sharp turnings - the vertices that seemingly have high curvature. It is likely that some of important vertices with low curvature might have been missed out at the first phase and so iterative vertex insertion is used to add vertices in a region where the curvature changes slowly but steadily. The initial phase may pick up some undesirable vertices and so merging is used to eliminate the redundant vertices. Finally, vertex adjustment is used to facilitate enhancement in the aesthetic look of the approximation. The quality of the approximations is measured using Rosin's measure. The robustness of the proposed scheme with respect to geometric transformation is observed.
☆ VoxDet: Rethinking 3D Semantic Occupancy Prediction as Dense Object Detection
3D semantic occupancy prediction aims to reconstruct the 3D geometry and semantics of the surrounding environment. With dense voxel labels, prior works typically formulate it as a dense segmentation task, independently classifying each voxel. However, this paradigm neglects critical instance-centric discriminability, leading to instance-level incompleteness and adjacent ambiguities. To address this, we highlight a free lunch of occupancy labels: the voxel-level class label implicitly provides insight at the instance level, which is overlooked by the community. Motivated by this observation, we first introduce a training-free Voxel-to-Instance (VoxNT) trick: a simple yet effective method that freely converts voxel-level class labels into instance-level offset labels. Building on this, we further propose VoxDet, an instance-centric framework that reformulates the voxel-level occupancy prediction as dense object detection by decoupling it into two sub-tasks: offset regression and semantic prediction. Specifically, based on the lifted 3D volume, VoxDet first uses (a) Spatially-decoupled Voxel Encoder to generate disentangled feature volumes for the two sub-tasks, which learn task-specific spatial deformation in the densely projected tri-perceptive space. Then, we deploy (b) Task-decoupled Dense Predictor to address this task via dense detection. Here, we first regress a 4D offset field to estimate distances (6 directions) between voxels and object borders in the voxel space. The regressed offsets are then used to guide the instance-level aggregation in the classification branch, achieving instance-aware prediction. Experiments show that VoxDet can be deployed on both camera and LiDAR input, jointly achieving state-of-the-art results on both benchmarks. VoxDet is not only highly efficient, but also achieves 63.0 IoU on the SemanticKITTI test set, ranking 1st on the online leaderboard.
comment: Project Page: https://vita-epfl.github.io/VoxDet/
☆ Handle-based Mesh Deformation Guided By Vision Language Model
Mesh deformation is a fundamental tool in 3D content manipulation. Despite extensive prior research, existing approaches often suffer from low output quality, require significant manual tuning, or depend on data-intensive training. To address these limitations, we introduce a training-free, handle-based mesh deformation method. % Our core idea is to leverage a Vision-Language Model (VLM) to interpret and manipulate a handle-based interface through prompt engineering. We begin by applying cone singularity detection to identify a sparse set of potential handles. The VLM is then prompted to select both the deformable sub-parts of the mesh and the handles that best align with user instructions. Subsequently, we query the desired deformed positions of the selected handles in screen space. To reduce uncertainty inherent in VLM predictions, we aggregate the results from multiple camera views using a novel multi-view voting scheme. % Across a suite of benchmarks, our method produces deformations that align more closely with user intent, as measured by CLIP and GPTEval3D scores, while introducing low distortion -- quantified via membrane energy. In summary, our approach is training-free, highly automated, and consistently delivers high-quality mesh deformations.
☆ ODE-GS: Latent ODEs for Dynamic Scene Extrapolation with 3D Gaussian Splatting
We present ODE-GS, a novel method that unifies 3D Gaussian Splatting with latent neural ordinary differential equations (ODEs) to forecast dynamic 3D scenes far beyond the time span seen during training. Existing neural rendering systems - whether NeRF- or 3DGS-based - embed time directly in a deformation network and therefore excel at interpolation but collapse when asked to predict the future, where timestamps are strictly out-of-distribution. ODE-GS eliminates this dependency: after learning a high-fidelity, time-conditioned deformation model for the training window, we freeze it and train a Transformer encoder that summarizes past Gaussian trajectories into a latent state whose continuous evolution is governed by a neural ODE. Numerical integration of this latent flow yields smooth, physically plausible Gaussian trajectories that can be queried at any future instant and rendered in real time. Coupled with a variational objective and a lightweight second-derivative regularizer, ODE-GS attains state-of-the-art extrapolation on D-NeRF and NVFI benchmarks, improving PSNR by up to 10 dB and halving perceptual error (LPIPS) relative to the strongest baselines. Our results demonstrate that continuous-time latent dynamics are a powerful, practical route to photorealistic prediction of complex 3D scenes.
☆ AI-powered Contextual 3D Environment Generation: A Systematic Review
The generation of high-quality 3D environments is crucial for industries such as gaming, virtual reality, and cinema, yet remains resource-intensive due to the reliance on manual processes. This study performs a systematic review of existing generative AI techniques for 3D scene generation, analyzing their characteristics, strengths, limitations, and potential for improvement. By examining state-of-the-art approaches, it presents key challenges such as scene authenticity and the influence of textual inputs. Special attention is given to how AI can blend different stylistic domains while maintaining coherence, the impact of training data on output quality, and the limitations of current models. In addition, this review surveys existing evaluation metrics for assessing realism and explores how industry professionals incorporate AI into their workflows. The findings of this study aim to provide a comprehensive understanding of the current landscape and serve as a foundation for future research on AI-driven 3D content generation. Key findings include that advanced generative architectures enable high-quality 3D content creation at a high computational cost, effective multi-modal integration techniques like cross-attention and latent space alignment facilitate text-to-3D tasks, and the quality and diversity of training data combined with comprehensive evaluation metrics are critical to achieving scalable, robust 3D scene generation.
♻ ☆ Stochastic Poisson Surface Reconstruction with One Solve using Geometric Gaussian Processes
Poisson Surface Reconstruction is a widely-used algorithm for reconstructing a surface from an oriented point cloud. To facilitate applications where only partial surface information is available, or scanning is performed sequentially, a recent line of work proposes to incorporate uncertainty into the reconstructed surface via Gaussian process models. The resulting algorithms first perform Gaussian process interpolation, then solve a set of volumetric partial differential equations globally in space, resulting in a computationally expensive two-stage procedure. In this work, we apply recently-developed techniques from geometric Gaussian processes to combine interpolation and surface reconstruction into a single stage, requiring only one linear solve per sample. The resulting reconstructed surface samples can be queried locally in space, without the use of problem-dependent volumetric meshes or grids. These capabilities enable one to (a) perform probabilistic collision detection locally around the region of interest, (b) perform ray casting without evaluating points not on the ray's trajectory, and (c) perform next-view planning on a per-ray basis. They also do not requiring one to approximate kernel matrix inverses with diagonal matrices as part of intermediate computations, unlike prior methods. Results show that our approach provides a cleaner, more-principled, and more-flexible stochastic surface reconstruction pipeline.
♻ ☆ Detection-Driven Object Count Optimization for Text-to-Image Diffusion Models
Accurately controlling object count in text-to-image generation remains a key challenge. Supervised methods often fail, as training data rarely covers all count variations. Methods that manipulate the denoising process to add or remove objects can help; however, they still require labeled data, limit robustness and image quality, and rely on a slow, iterative process. Pre-trained differentiable counting models that rely on soft object density summation exist and could steer generation, but employing them presents three main challenges: (i) they are pre-trained on clean images, making them less effective during denoising steps that operate on noisy inputs; (ii) they are not robust to viewpoint changes; and (iii) optimization is computationally expensive, requiring repeated model evaluations per image. We propose a new framework that uses pre-trained object counting techniques and object detectors to guide generation. First, we optimize a counting token using an outer-loop loss computed on fully generated images. Second, we introduce a detection-driven scaling term that corrects errors caused by viewpoint and proportion shifts, among other factors, without requiring backpropagation through the detection model. Third, we show that the optimized parameters can be reused for new prompts, removing the need for repeated optimization. Our method provides efficiency through token reuse, flexibility via compatibility with various detectors, and accuracy with improved counting across diverse object categories.
comment: Pre-print
♻ ☆ AnyTop: Character Animation Diffusion with Any Topology SIGGRAPH 2025
Generating motion for arbitrary skeletons is a longstanding challenge in computer graphics, remaining largely unexplored due to the scarcity of diverse datasets and the irregular nature of the data. In this work, we introduce AnyTop, a diffusion model that generates motions for diverse characters with distinct motion dynamics, using only their skeletal structure as input. Our work features a transformer-based denoising network, tailored for arbitrary skeleton learning, integrating topology information into the traditional attention mechanism. Additionally, by incorporating textual joint descriptions into the latent feature representation, AnyTop learns semantic correspondences between joints across diverse skeletons. Our evaluation demonstrates that AnyTop generalizes well, even with as few as three training examples per topology, and can produce motions for unseen skeletons as well. Furthermore, our model's latent space is highly informative, enabling downstream tasks such as joint correspondence, temporal segmentation and motion editing. Our webpage, https://anytop2025.github.io/Anytop-page, includes links to videos and code.
comment: SIGGRAPH 2025. Video: https://www.youtube.com/watch?v=NWOdkM5hAbE, Project page: https://anytop2025.github.io/Anytop-page, Code: https://github.com/Anytop2025/Anytop
♻ ☆ More Bang For Your Buck(et): Fast and Space-efficient Hardware-accelerated Coarse-granular Indexing on GPUs
In recent work, we have shown that NVIDIA's raytracing cores on RTX video cards can be exploited to realize hardware-accelerated lookups for GPU-resident database indexes. On a high level, the concept materializes all keys as triangles in a 3D scene and indexes them. Lookups are performed by firing rays into the scene and utilizing the index structure to detect hits in a hardware-accelerated fashion. While this approach called RTIndeX (or short RX) is indeed promising, it currently suffers from three limitations: (1) significant memory overhead per key, (2) slow range-lookups, and (3) poor updateability. In this work, we show that all three problems can be tackled by a single design change: Generalizing RX to become a coarse-granular index cgRX. Instead of indexing individual keys, cgRX indexes buckets of keys which are post-filtered after retrieval. This drastically reduces the memory overhead, leads to the generation of a smaller and more efficient index structure, and enables fast range-lookups as well as updates. We will see that representing the buckets in the 3D space such that the lookup of a key is performed both correctly and efficiently requires the careful orchestration of firing rays in a specific sequence. Our experimental evaluation shows that cgRX offers the most bang for the buck(et) by providing a throughput in relation to the memory footprint that is 1.5-3x higher than for the comparable range-lookup supporting baselines. At the same time, cgRX improves the range-lookup performance over RX by up to 2x and offers practical updateability that is up to 5.6x faster than rebuilding from scratch.
♻ ☆ GenLit: Reformulating Single-Image Relighting as Video Generation
Manipulating the illumination of a 3D scene within a single image represents a fundamental challenge in computer vision and graphics. This problem has traditionally been addressed using inverse rendering techniques, which involve explicit 3D asset reconstruction and costly ray-tracing simulations. Meanwhile, recent advancements in visual foundation models suggest that a new paradigm could soon be possible -- one that replaces explicit physical models with networks that are trained on large amounts of image and video data. In this paper, we exploit the physical world understanding of a video diffusion model, particularly Stable Video Diffusion, to relight a single image. We introduce GenLit, a framework that distills the ability of a graphics engine to perform light manipulation into a video-generation model, enabling users to directly insert and manipulate a point light in the 3D world within a given image, and generate results directly as a video sequence. We find that a model fine-tuned on only a small synthetic dataset generalizes to real-world scenes, enabling single-image relighting with plausible and convincing shadows. Our results highlight the ability of video foundation models to capture rich information about lighting, material, and, shape and our findings indicate that such models, with minimal training, can be used to perform relighting without explicit asset reconstruction or complex ray tracing.
♻ ☆ Sonic: Shifting Focus to Global Audio Perception in Portrait Animation
The study of talking face generation mainly explores the intricacies of synchronizing facial movements and crafting visually appealing, temporally-coherent animations. However, due to the limited exploration of global audio perception, current approaches predominantly employ auxiliary visual and spatial knowledge to stabilize the movements, which often results in the deterioration of the naturalness and temporal inconsistencies.Considering the essence of audio-driven animation, the audio signal serves as the ideal and unique priors to adjust facial expressions and lip movements, without resorting to interference of any visual signals. Based on this motivation, we propose a novel paradigm, dubbed as Sonic, to {s}hift f{o}cus on the exploration of global audio per{c}ept{i}o{n}.To effectively leverage global audio knowledge, we disentangle it into intra- and inter-clip audio perception and collaborate with both aspects to enhance overall perception.For the intra-clip audio perception, 1). \textbf{Context-enhanced audio learning}, in which long-range intra-clip temporal audio knowledge is extracted to provide facial expression and lip motion priors implicitly expressed as the tone and speed of speech. 2). \textbf{Motion-decoupled controller}, in which the motion of the head and expression movement are disentangled and independently controlled by intra-audio clips. Most importantly, for inter-clip audio perception, as a bridge to connect the intra-clips to achieve the global perception, \textbf{Time-aware position shift fusion}, in which the global inter-clip audio information is considered and fused for long-audio inference via through consecutively time-aware shifted windows. Extensive experiments demonstrate that the novel audio-driven paradigm outperform existing SOTA methodologies in terms of video quality, temporally consistency, lip synchronization precision, and motion diversity.
comment: refer to our main-page \url{https://jixiaozhong.github.io/Sonic/}
♻ ☆ GarmageNet: A Multimodal Generative Framework for Sewing Pattern Design and Generic Garment Modeling
Realistic digital garment modeling remains a labor-intensive task due to the intricate process of translating 2D sewing patterns into high-fidelity, simulation-ready 3D garments. We introduce GarmageNet, a unified generative framework that automates the creation of 2D sewing patterns, the construction of sewing relationships, and the synthesis of 3D garment initializations compatible with physics-based simulation. Central to our approach is Garmage, a novel garment representation that encodes each panel as a structured geometry image, effectively bridging the semantic and geometric gap between 2D structural patterns and 3D garment shapes. GarmageNet employs a latent diffusion transformer to synthesize panel-wise geometry images and integrates GarmageJigsaw, a neural module for predicting point-to-point sewing connections along panel contours. To support training and evaluation, we build GarmageSet, a large-scale dataset comprising over 10,000 professionally designed garments with detailed structural and style annotations. Our method demonstrates versatility and efficacy across multiple application scenarios, including scalable garment generation from multi-modal design concepts (text prompts, sketches, photographs), automatic modeling from raw flat sewing patterns, pattern recovery from unstructured point clouds, and progressive garment editing using conventional instructions-laying the foundation for fully automated, production-ready pipelines in digital fashion. Project page: https://style3d.github.io/garmagenet.
♻ ☆ Generating by Understanding: Neural Visual Generation with Logical Symbol Groundings KDD 2025
Making neural visual generative models controllable by logical reasoning systems is promising for improving faithfulness, transparency, and generalizability. We propose the Abductive visual Generation (AbdGen) approach to build such logic-integrated models. A vector-quantized symbol grounding mechanism and the corresponding disentanglement training method are introduced to enhance the controllability of logical symbols over generation. Furthermore, we propose two logical abduction methods to make our approach require few labeled training data and support the induction of latent logical generative rules from data. We experimentally show that our approach can be utilized to integrate various neural generative models with logical reasoning systems, by both learning from scratch or utilizing pre-trained models directly. The code is released at https://github.com/future-item/AbdGen.
comment: KDD 2025 research track paper
♻ ☆ Corotational Hinge-based Thin Plates/Shells
We present six thin plate/shell models, derived from three distinct types of curvature operators formulated within the corotational frame, for simulating both rest-flat and rest-curved triangular meshes. Each curvature operator derives a curvature expression corresponding to both a plate model and a shell model. The corotational edge-based hinge model uses an edge-based stencil to compute directional curvature, while the corotational FVM hinge model utilizes a triangle-centered stencil, applying the finite volume method (FVM) to superposition directional curvatures across edges, yielding a generalized curvature. The corotational smoothed hinge model also employs a triangle-centered stencil but transforms directional curvatures into a generalized curvature based on a quadratic surface fit. All models assume small strain and small curvature, leading to constant bending energy Hessians, which benefit implicit integrators. Through quantitative benchmarks and qualitative elastodynamic simulations with large time steps, we demonstrate the accuracy, efficiency, and stability of these models. Our contributions enhance the thin plate/shell library for use in both computer graphics and engineering applications.
comment: Accepted at Eurographics 2025
♻ ☆ Gaussian Building Mesh (GBM): Extract a Building's 3D Mesh with Google Earth and Gaussian Splatting
Recently released open-source pre-trained foundational image segmentation and object detection models (SAM2+GroundingDINO) allow for geometrically consistent segmentation of objects of interest in multi-view 2D images. Users can use text-based or click-based prompts to segment objects of interest without requiring labeled training datasets. Gaussian Splatting allows for the learning of the 3D representation of a scene's geometry and radiance based on 2D images. Combining Google Earth Studio, SAM2+GroundingDINO, 2D Gaussian Splatting, and our improvements in mask refinement based on morphological operations and contour simplification, we created a pipeline to extract the 3D mesh of any building based on its name, address, or geographic coordinates.
♻ ☆ Birth and Death of a Rose CVPR 2025
We study the problem of generating temporal object intrinsics -- temporally evolving sequences of object geometry, reflectance, and texture, such as a blooming rose -- from pre-trained 2D foundation models. Unlike conventional 3D modeling and animation techniques that require extensive manual effort and expertise, we introduce a method that generates such assets with signals distilled from pre-trained 2D diffusion models. To ensure the temporal consistency of object intrinsics, we propose Neural Templates for temporal-state-guided distillation, derived automatically from image features from self-supervised learning. Our method can generate high-quality temporal object intrinsics for several natural phenomena and enable the sampling and controllable rendering of these dynamic objects from any viewpoint, under any environmental lighting conditions, at any time of their lifespan. Project website: https://chen-geng.com/rose4d
comment: CVPR 2025 Oral. Project website: https://chen-geng.com/rose4d
Robotics 42
☆ SGN-CIRL: Scene Graph-based Navigation with Curriculum, Imitation, and Reinforcement Learning
The 3D scene graph models spatial relationships between objects, enabling the agent to efficiently navigate in a partially observable environment and predict the location of the target object.This paper proposes an original framework named SGN-CIRL (3D Scene Graph-Based Reinforcement Learning Navigation) for mapless reinforcement learning-based robot navigation with learnable representation of open-vocabulary 3D scene graph. To accelerate and stabilize the training of reinforcement learning-based algorithms, the framework also employs imitation learning and curriculum learning. The first one enables the agent to learn from demonstrations, while the second one structures the training process by gradually increasing task complexity from simple to more advanced scenarios. Numerical experiments conducted in the Isaac Sim environment showed that using a 3D scene graph for reinforcement learning significantly increased the success rate in difficult navigation cases. The code is open-sourced and available at: https://github.com/Xisonik/Aloha\_graph.
comment: 7 pages, 11 figures
☆ "Don't Do That!": Guiding Embodied Systems through Large Language Model-based Constraint Generation
Recent advancements in large language models (LLMs) have spurred interest in robotic navigation that incorporates complex spatial, mathematical, and conditional constraints from natural language into the planning problem. Such constraints can be informal yet highly complex, making it challenging to translate into a formal description that can be passed on to a planning algorithm. In this paper, we propose STPR, a constraint generation framework that uses LLMs to translate constraints (expressed as instructions on ``what not to do'') into executable Python functions. STPR leverages the LLM's strong coding capabilities to shift the problem description from language into structured and transparent code, thus circumventing complex reasoning and avoiding potential hallucinations. We show that these LLM-generated functions accurately describe even complex mathematical constraints, and apply them to point cloud representations with traditional search algorithms. Experiments in a simulated Gazebo environment show that STPR ensures full compliance across several constraints and scenarios, while having short runtimes. We also verify that STPR can be used with smaller, code-specific LLMs, making it applicable to a wide range of compact models at low inference cost.
comment: Preprint; under review
☆ Online Adaptation of Terrain-Aware Dynamics for Planning in Unstructured Environments RSS
Autonomous mobile robots operating in remote, unstructured environments must adapt to new, unpredictable terrains that can change rapidly during operation. In such scenarios, a critical challenge becomes estimating the robot's dynamics on changing terrain in order to enable reliable, accurate navigation and planning. We present a novel online adaptation approach for terrain-aware dynamics modeling and planning using function encoders. Our approach efficiently adapts to new terrains at runtime using limited online data without retraining or fine-tuning. By learning a set of neural network basis functions that span the robot dynamics on diverse terrains, we enable rapid online adaptation to new, unseen terrains and environments as a simple least-squares calculation. We demonstrate our approach for terrain adaptation in a Unity-based robotics simulator and show that the downstream controller has better empirical performance due to higher accuracy of the learned model. This leads to fewer collisions with obstacles while navigating in cluttered environments as compared to a neural ODE baseline.
comment: Accepted to RSS-ROAR 2025
☆ A Framework Leveraging Large Language Models for Autonomous UAV Control in Flying Networks
This paper proposes FLUC, a modular framework that integrates open-source Large Language Models (LLMs) with Unmanned Aerial Vehicle (UAV) autopilot systems to enable autonomous control in Flying Networks (FNs). FLUC translates high-level natural language commands into executable UAV mission code, bridging the gap between operator intent and UAV behaviour. FLUC is evaluated using three open-source LLMs - Qwen 2.5, Gemma 2, and LLaMA 3.2 - across scenarios involving code generation and mission planning. Results show that Qwen 2.5 excels in multi-step reasoning, Gemma 2 balances accuracy and latency, and LLaMA 3.2 offers faster responses with lower logical coherence. A case study on energy-aware UAV positioning confirms FLUC's ability to interpret structured prompts and autonomously execute domain-specific logic, showing its effectiveness in real-time, mission-driven control.
comment: 6 pages, 3 figures, 6 tables
☆ Unsupervised Meta-Testing with Conditional Neural Processes for Hybrid Meta-Reinforcement Learning
We introduce Unsupervised Meta-Testing with Conditional Neural Processes (UMCNP), a novel hybrid few-shot meta-reinforcement learning (meta-RL) method that uniquely combines, yet distinctly separates, parameterized policy gradient-based (PPG) and task inference-based few-shot meta-RL. Tailored for settings where the reward signal is missing during meta-testing, our method increases sample efficiency without requiring additional samples in meta-training. UMCNP leverages the efficiency and scalability of Conditional Neural Processes (CNPs) to reduce the number of online interactions required in meta-testing. During meta-training, samples previously collected through PPG meta-RL are efficiently reused for learning task inference in an offline manner. UMCNP infers the latent representation of the transition dynamics model from a single test task rollout with unknown parameters. This approach allows us to generate rollouts for self-adaptation by interacting with the learned dynamics model. We demonstrate our method can adapt to an unseen test task using significantly fewer samples during meta-testing than the baselines in 2D-Point Agent and continuous control meta-RL benchmarks, namely, cartpole with unknown angle sensor bias, walker agent with randomized dynamics parameters.
comment: Published in IEEE Robotics and Automation Letters Volume: 9, Issue: 10, 8427 - 8434, October 2024. 8 pages, 7 figures
☆ Learning Smooth State-Dependent Traversability from Dense Point Clouds
A key open challenge in off-road autonomy is that the traversability of terrain often depends on the vehicle's state. In particular, some obstacles are only traversable from some orientations. However, learning this interaction by encoding the angle of approach as a model input demands a large and diverse training dataset and is computationally inefficient during planning due to repeated model inference. To address these challenges, we present SPARTA, a method for estimating approach angle conditioned traversability from point clouds. Specifically, we impose geometric structure into our network by outputting a smooth analytical function over the 1-Sphere that predicts risk distribution for any angle of approach with minimal overhead and can be reused for subsequent queries. The function is composed of Fourier basis functions, which has important advantages for generalization due to their periodic nature and smoothness. We demonstrate SPARTA both in a high-fidelity simulation platform, where our model achieves a 91\% success rate crossing a 40m boulder field (compared to 73\% for the baseline), and on hardware, illustrating the generalization ability of the model to real-world settings.
comment: 16 pages, 13 figures
☆ cuVSLAM: CUDA accelerated visual odometry
Accurate and robust pose estimation is a key requirement for any autonomous robot. We present cuVSLAM, a state-of-the-art solution for visual simultaneous localization and mapping, which can operate with a variety of visual-inertial sensor suites, including multiple RGB and depth cameras, and inertial measurement units. cuVSLAM supports operation with as few as one RGB camera to as many as 32 cameras, in arbitrary geometric configurations, thus supporting a wide range of robotic setups. cuVSLAM is specifically optimized using CUDA to deploy in real-time applications with minimal computational overhead on edge-computing devices such as the NVIDIA Jetson. We present the design and implementation of cuVSLAM, example use cases, and empirical results on several state-of-the-art benchmarks demonstrating the best-in-class performance of cuVSLAM.
☆ RoboRefer: Towards Spatial Referring with Reasoning in Vision-Language Models for Robotics
Spatial referring is a fundamental capability of embodied robots to interact with the 3D physical world. However, even with the powerful pretrained vision language models (VLMs), recent approaches are still not qualified to accurately understand the complex 3D scenes and dynamically reason about the instruction-indicated locations for interaction. To this end, we propose RoboRefer, a 3D-aware VLM that can first achieve precise spatial understanding by integrating a disentangled but dedicated depth encoder via supervised fine-tuning (SFT). Moreover, RoboRefer advances generalized multi-step spatial reasoning via reinforcement fine-tuning (RFT), with metric-sensitive process reward functions tailored for spatial referring tasks. To support SFT and RFT training, we introduce RefSpatial, a large-scale dataset of 20M QA pairs (2x prior), covering 31 spatial relations (vs. 15 prior) and supporting complex reasoning processes (up to 5 steps). In addition, we introduce RefSpatial-Bench, a challenging benchmark filling the gap in evaluating spatial referring with multi-step reasoning. Experiments show that SFT-trained RoboRefer achieves state-of-the-art spatial understanding, with an average success rate of 89.6%. RFT-trained RoboRefer further outperforms all other baselines by a large margin, even surpassing Gemini-2.5-Pro by 17.4% in average accuracy on RefSpatial-Bench. Notably, RoboRefer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (e,g., UR5, G1 humanoid) in cluttered real-world scenes.
comment: Project page: https://zhoues.github.io/RoboRefer/
☆ Object-centric 3D Motion Field for Robot Learning from Human Videos
Learning robot control policies from human videos is a promising direction for scaling up robot learning. However, how to extract action knowledge (or action representations) from videos for policy learning remains a key challenge. Existing action representations such as video frames, pixelflow, and pointcloud flow have inherent limitations such as modeling complexity or loss of information. In this paper, we propose to use object-centric 3D motion field to represent actions for robot learning from human videos, and present a novel framework for extracting this representation from videos for zero-shot control. We introduce two novel components in its implementation. First, a novel training pipeline for training a ''denoising'' 3D motion field estimator to extract fine object 3D motions from human videos with noisy depth robustly. Second, a dense object-centric 3D motion field prediction architecture that favors both cross-embodiment transfer and policy generalization to background. We evaluate the system in real world setups. Experiments show that our method reduces 3D motion estimation error by over 50% compared to the latest method, achieve 55% average success rate in diverse tasks where prior approaches fail~($\lesssim 10$\%), and can even acquire fine-grained manipulation skills like insertion.
comment: Project: https://zhaohengyin.github.io/3DMF
☆ Pseudo-Simulation for Autonomous Driving
Existing evaluation paradigms for Autonomous Vehicles (AVs) face critical limitations. Real-world evaluation is often challenging due to safety concerns and a lack of reproducibility, whereas closed-loop simulation can face insufficient realism or high computational costs. Open-loop evaluation, while being efficient and data-driven, relies on metrics that generally overlook compounding errors. In this paper, we propose pseudo-simulation, a novel paradigm that addresses these limitations. Pseudo-simulation operates on real datasets, similar to open-loop evaluation, but augments them with synthetic observations generated prior to evaluation using 3D Gaussian Splatting. Our key idea is to approximate potential future states the AV might encounter by generating a diverse set of observations that vary in position, heading, and speed. Our method then assigns a higher importance to synthetic observations that best match the AV's likely behavior using a novel proximity-based weighting scheme. This enables evaluating error recovery and the mitigation of causal confusion, as in closed-loop benchmarks, without requiring sequential interactive simulation. We show that pseudo-simulation is better correlated with closed-loop simulations (R^2=0.8) than the best existing open-loop approach (R^2=0.7). We also establish a public leaderboard for the community to benchmark new methodologies with pseudo-simulation. Our code is available at https://github.com/autonomousvision/navsim.
☆ OWMM-Agent: Open World Mobile Manipulation With Multi-modal Agentic Data Synthesis
The rapid progress of navigation, manipulation, and vision models has made mobile manipulators capable in many specialized tasks. However, the open-world mobile manipulation (OWMM) task remains a challenge due to the need for generalization to open-ended instructions and environments, as well as the systematic complexity to integrate high-level decision making with low-level robot control based on both global scene understanding and current agent state. To address this complexity, we propose a novel multi-modal agent architecture that maintains multi-view scene frames and agent states for decision-making and controls the robot by function calling. A second challenge is the hallucination from domain shift. To enhance the agent performance, we further introduce an agentic data synthesis pipeline for the OWMM task to adapt the VLM model to our task domain with instruction fine-tuning. We highlight our fine-tuned OWMM-VLM as the first dedicated foundation model for mobile manipulators with global scene understanding, robot state tracking, and multi-modal action generation in a unified model. Through experiments, we demonstrate that our model achieves SOTA performance compared to other foundation models including GPT-4o and strong zero-shot generalization in real world. The project page is at https://github.com/HHYHRHY/OWMM-Agent
comment: 9 pages of main content, 19 pages in total
☆ SLAC: Simulation-Pretrained Latent Action Space for Whole-Body Real-World RL
Building capable household and industrial robots requires mastering the control of versatile, high-degree-of-freedom (DoF) systems such as mobile manipulators. While reinforcement learning (RL) holds promise for autonomously acquiring robot control policies, scaling it to high-DoF embodiments remains challenging. Direct RL in the real world demands both safe exploration and high sample efficiency, which are difficult to achieve in practice. Sim-to-real RL, on the other hand, is often brittle due to the reality gap. This paper introduces SLAC, a method that renders real-world RL feasible for complex embodiments by leveraging a low-fidelity simulator to pretrain a task-agnostic latent action space. SLAC trains this latent action space via a customized unsupervised skill discovery method designed to promote temporal abstraction, disentanglement, and safety, thereby facilitating efficient downstream learning. Once a latent action space is learned, SLAC uses it as the action interface for a novel off-policy RL algorithm to autonomously learn downstream tasks through real-world interactions. We evaluate SLAC against existing methods on a suite of bimanual mobile manipulation tasks, where it achieves state-of-the-art performance. Notably, SLAC learns contact-rich whole-body tasks in under an hour of real-world interactions, without relying on any demonstrations or hand-crafted behavior priors. More information, code, and videos at robo-rl.github.io
☆ Splatting Physical Scenes: End-to-End Real-to-Sim from Imperfect Robot Data
Creating accurate, physical simulations directly from real-world robot motion holds great value for safe, scalable, and affordable robot learning, yet remains exceptionally challenging. Real robot data suffers from occlusions, noisy camera poses, dynamic scene elements, which hinder the creation of geometrically accurate and photorealistic digital twins of unseen objects. We introduce a novel real-to-sim framework tackling all these challenges at once. Our key insight is a hybrid scene representation merging the photorealistic rendering of 3D Gaussian Splatting with explicit object meshes suitable for physics simulation within a single representation. We propose an end-to-end optimization pipeline that leverages differentiable rendering and differentiable physics within MuJoCo to jointly refine all scene components - from object geometry and appearance to robot poses and physical parameters - directly from raw and imprecise robot trajectories. This unified optimization allows us to simultaneously achieve high-fidelity object mesh reconstruction, generate photorealistic novel views, and perform annotation-free robot pose calibration. We demonstrate the effectiveness of our approach both in simulation and on challenging real-world sequences using an ALOHA 2 bi-manual manipulator, enabling more practical and robust real-to-simulation pipelines.
☆ AmbiK: Dataset of Ambiguous Tasks in Kitchen Environment ACL 2025
As a part of an embodied agent, Large Language Models (LLMs) are typically used for behavior planning given natural language instructions from the user. However, dealing with ambiguous instructions in real-world environments remains a challenge for LLMs. Various methods for task ambiguity detection have been proposed. However, it is difficult to compare them because they are tested on different datasets and there is no universal benchmark. For this reason, we propose AmbiK (Ambiguous Tasks in Kitchen Environment), the fully textual dataset of ambiguous instructions addressed to a robot in a kitchen environment. AmbiK was collected with the assistance of LLMs and is human-validated. It comprises 1000 pairs of ambiguous tasks and their unambiguous counterparts, categorized by ambiguity type (Human Preferences, Common Sense Knowledge, Safety), with environment descriptions, clarifying questions and answers, user intents, and task plans, for a total of 2000 tasks. We hope that AmbiK will enable researchers to perform a unified comparison of ambiguity detection methods. AmbiK is available at https://github.com/cog-model/AmbiK-dataset.
comment: ACL 2025 (Main Conference)
☆ Autonomous Vehicle Lateral Control Using Deep Reinforcement Learning with MPC-PID Demonstration
The controller is one of the most important modules in the autonomous driving pipeline, ensuring the vehicle reaches its desired position. In this work, a reinforcement learning based lateral control approach, despite the imperfections in the vehicle models due to measurement errors and simplifications, is presented. Our approach ensures comfortable, efficient, and robust control performance considering the interface between controlling and other modules. The controller consists of the conventional Model Predictive Control (MPC)-PID part as the basis and the demonstrator, and the Deep Reinforcement Learning (DRL) part which leverages the online information from the MPC-PID part. The controller's performance is evaluated in CARLA using the ground truth of the waypoints as inputs. Experimental results demonstrate the effectiveness of the controller when vehicle information is incomplete, and the training of DRL can be stabilized with the demonstration part. These findings highlight the potential to reduce development and integration efforts for autonomous driving pipelines in the future.
comment: 8 pages; Accepted for publication at the 36th IEEE Intelligent Vehicles Symposium (IV), Cluj-Napoca, Romania, June 22-25, 2025
☆ A Bi-Level Optimization Method for Redundant Dual-Arm Minimum Time Problems
In this work, we present a method for minimizing the time required for a redundant dual-arm robot to follow a desired relative Cartesian path at constant path speed by optimizing its joint trajectories, subject to position, velocity, and acceleration limits. The problem is reformulated as a bi-level optimization whose lower level is a convex, closed-form subproblem that maximizes path speed for a fixed trajectory, while the upper level updates the trajectory using a single-chain kinematic formulation and the subgradient of the lower-level value. Numerical results demonstrate the effectiveness of the proposed approach.
comment: 6 pages, 3 figures
☆ STAR: Learning Diverse Robot Skill Abstractions through Rotation-Augmented Vector Quantization ICML 2025
Transforming complex actions into discrete skill abstractions has demonstrated strong potential for robotic manipulation. Existing approaches mainly leverage latent variable models, e.g., VQ-VAE, to learn skill abstractions through learned vectors (codebooks), while they suffer from codebook collapse and modeling the causal relationship between learned skills. To address these limitations, we present \textbf{S}kill \textbf{T}raining with \textbf{A}ugmented \textbf{R}otation (\textbf{STAR}), a framework that advances both skill learning and composition to complete complex behaviors. Specifically, to prevent codebook collapse, we devise rotation-augmented residual skill quantization (RaRSQ). It encodes relative angles between encoder outputs into the gradient flow by rotation-based gradient mechanism. Points within the same skill code are forced to be either pushed apart or pulled closer together depending on gradient directions. Further, to capture the causal relationship between skills, we present causal skill transformer (CST) which explicitly models dependencies between skill representations through an autoregressive mechanism for coherent action generation. Extensive experiments demonstrate the superiority of STAR on both LIBERO benchmark and realworld tasks, with around 12\% improvement over the baselines.
comment: Accepted by ICML 2025 Spotlight
☆ Phase-based Nonlinear Model Predictive Control for Humanoid Walking Stabilization with Single and Double Support Time Adjustments
Balance control for humanoid robots has been extensively studied to enable robots to navigate in real-world environments. However, balance controllers that explicitly optimize the durations of both the single support phase, also known as step timing, and the Double Support Phase (DSP) have not been widely explored due to the inherent nonlinearity of the associated optimization problem. Consequently, many recent approaches either ignore the DSP or adjust its duration based on heuristics or on linearization techniques that rely on sequential coordination of balance strategies. This study proposes a novel phase-based nonlinear Model Predictive Control (MPC) framework that simultaneously optimizes Zero Moment Point~(ZMP) modulation, step location, step timing, and DSP duration to maintain balance under external disturbances. In simulation, the proposed controller was compared with two state-of-the-art frameworks that rely on heuristics or sequential coordination of balance strategies under two scenarios: forward walking on terrain emulating compliant ground and external push recovery while walking in place. Overall, the findings suggest that the proposed method offers more flexible coordination of balance strategies than the sequential approach, and consistently outperforms the heuristic approach. The robustness and effectiveness of the proposed controller were also validated through experiments with a real humanoid robot.
comment: 8 pages, 4 figures
☆ Enhancing Safety of Foundation Models for Visual Navigation through Collision Avoidance via Repulsive Estimation
We propose CARE (Collision Avoidance via Repulsive Estimation), a plug-and-play module that enhances the safety of vision-based navigation without requiring additional range sensors or fine-tuning of pretrained models. While recent foundation models using only RGB inputs have shown strong performance, they often fail to generalize in out-of-distribution (OOD) environments with unseen objects or variations in camera parameters (e.g., field of view, pose, or focal length). Without fine-tuning, these models may generate unsafe trajectories that lead to collisions, requiring costly data collection and retraining. CARE addresses this limitation by seamlessly integrating with any RGB-based navigation system that outputs local trajectories, dynamically adjusting them using repulsive force vectors derived from monocular depth maps. We evaluate CARE by combining it with state-of-the-art vision-based navigation models across multiple robot platforms. CARE consistently reduces collision rates (up to 100%) without sacrificing goal-reaching performance and improves collision-free travel distance by up to 10.7x in exploration tasks.
comment: 16 pages, 6 figures
☆ Understanding Physical Properties of Unseen Deformable Objects by Leveraging Large Language Models and Robot Actions
In this paper, we consider the problem of understanding the physical properties of unseen objects through interactions between the objects and a robot. Handling unseen objects with special properties such as deformability is challenging for traditional task and motion planning approaches as they are often with the closed world assumption. Recent results in Large Language Models (LLMs) based task planning have shown the ability to reason about unseen objects. However, most studies assume rigid objects, overlooking their physical properties. We propose an LLM-based method for probing the physical properties of unseen deformable objects for the purpose of task planning. For a given set of object properties (e.g., foldability, bendability), our method uses robot actions to determine the properties by interacting with the objects. Based on the properties examined by the LLM and robot actions, the LLM generates a task plan for a specific domain such as object packing. In the experiment, we show that the proposed method can identify properties of deformable objects, which are further used for a bin-packing task where the properties take crucial roles to succeed.
☆ An Open-source Capping Machine Suitable for Confined Spaces
In the context of self-driving laboratories (SDLs), ensuring automated and error-free capping is crucial, as it is a ubiquitous step in sample preparation. Automated capping in SDLs can occur in both large and small workspaces (e.g., inside a fume hood). However, most commercial capping machines are designed primarily for large spaces and are often too bulky for confined environments. Moreover, many commercial products are closed-source, which can make their integration into fully autonomous workflows difficult. This paper introduces an open-source capping machine suitable for compact spaces, which also integrates a vision system that recognises capping failure. The capping and uncapping processes are repeated 100 times each to validate the machine's design and performance. As a result, the capping machine reached a 100 % success rate for capping and uncapping. Furthermore, the machine sealing capacities are evaluated by capping 12 vials filled with solvents of different vapour pressures: water, ethanol and acetone. The vials are then weighed every 3 hours for three days. The machine's performance is benchmarked against an industrial capping machine (a Chemspeed station) and manual capping. The vials capped with the prototype lost 0.54 % of their content weight on average per day, while the ones capped with the Chemspeed and manually lost 0.0078 % and 0.013 %, respectively. The results show that the capping machine is a reasonable alternative to industrial and manual capping, especially when space and budget are limitations in SDLs.
☆ An Improved Grey Wolf Optimizer Inspired by Advanced Cooperative Predation for UAV Shortest Path Planning
With the widespread application of Unmanned Aerial Vehicles (UAVs) in domains like military reconnaissance, emergency rescue, and logistics delivery, efficiently planning the shortest flight path has become a critical challenge. Traditional heuristic-based methods often suffer from the inability to escape from local optima, which limits their effectiveness in finding the shortest path. To address these issues, a novel Improved Grey Wolf Optimizer (IGWO) is presented in this study. The proposed IGWO incorporates an Advanced Cooperative Predation (ACP) and a Lens Opposition-based Learning Strategy (LOBL) in order to improve the optimization capability of the method. Simulation results show that IGWO ranks first in optimization performance on benchmark functions F1-F5, F7, and F9-F12, outperforming all other compared algorithms. Subsequently, IGWO is applied to UAV shortest path planning in various obstacle-laden environments. Simulation results show that the paths planned by IGWO are, on average, shorter than those planned by GWO, PSO, and WOA by 1.70m, 1.68m, and 2.00m, respectively, across four different maps.
Zero-Shot Temporal Interaction Localization for Egocentric Videos
Locating human-object interaction (HOI) actions within video serves as the foundation for multiple downstream tasks, such as human behavior analysis and human-robot skill transfer. Current temporal action localization methods typically rely on annotated action and object categories of interactions for optimization, which leads to domain bias and low deployment efficiency. Although some recent works have achieved zero-shot temporal action localization (ZS-TAL) with large vision-language models (VLMs), their coarse-grained estimations and open-loop pipelines hinder further performance improvements for temporal interaction localization (TIL). To address these issues, we propose a novel zero-shot TIL approach dubbed EgoLoc to locate the timings of grasp actions for human-object interaction in egocentric videos. EgoLoc introduces a self-adaptive sampling strategy to generate reasonable visual prompts for VLM reasoning. By absorbing both 2D and 3D observations, it directly samples high-quality initial guesses around the possible contact/separation timestamps of HOI according to 3D hand velocities, leading to high inference accuracy and efficiency. In addition, EgoLoc generates closed-loop feedback from visual and dynamic cues to further refine the localization results. Comprehensive experiments on the publicly available dataset and our newly proposed benchmark demonstrate that EgoLoc achieves better temporal interaction localization for egocentric videos compared to state-of-the-art baselines. We will release our code and relevant data as open-source at https://github.com/IRMVLab/EgoLoc.
☆ SplArt: Articulation Estimation and Part-Level Reconstruction with 3D Gaussian Splatting
Reconstructing articulated objects prevalent in daily environments is crucial for applications in augmented/virtual reality and robotics. However, existing methods face scalability limitations (requiring 3D supervision or costly annotations), robustness issues (being susceptible to local optima), and rendering shortcomings (lacking speed or photorealism). We introduce SplArt, a self-supervised, category-agnostic framework that leverages 3D Gaussian Splatting (3DGS) to reconstruct articulated objects and infer kinematics from two sets of posed RGB images captured at different articulation states, enabling real-time photorealistic rendering for novel viewpoints and articulations. SplArt augments 3DGS with a differentiable mobility parameter per Gaussian, achieving refined part segmentation. A multi-stage optimization strategy is employed to progressively handle reconstruction, part segmentation, and articulation estimation, significantly enhancing robustness and accuracy. SplArt exploits geometric self-supervision, effectively addressing challenging scenarios without requiring 3D annotations or category-specific priors. Evaluations on established and newly proposed benchmarks, along with applications to real-world scenarios using a handheld RGB camera, demonstrate SplArt's state-of-the-art performance and real-world practicality. Code is publicly available at https://github.com/ripl/splart.
comment: https://github.com/ripl/splart
☆ SwitchVLA: Execution-Aware Task Switching for Vision-Language-Action Models
Robots deployed in dynamic environments must be able to not only follow diverse language instructions but flexibly adapt when user intent changes mid-execution. While recent Vision-Language-Action (VLA) models have advanced multi-task learning and instruction following, they typically assume static task intent, failing to respond when new instructions arrive during ongoing execution. This limitation hinders natural and robust interaction in dynamic settings, such as retail or household environments, where real-time intent changes are common. We propose SwitchVLA, a unified, execution-aware framework that enables smooth and reactive task switching without external planners or additional switch-specific data. We model task switching as a behavior modulation problem conditioned on execution state and instruction context. Expert demonstrations are segmented into temporally grounded contact phases, allowing the policy to infer task progress and adjust its behavior accordingly. A multi-behavior conditional policy is then trained to generate flexible action chunks under varying behavior modes through conditioned trajectory modeling. Experiments in both simulation and real-world robotic manipulation demonstrate that SwitchVLA enables robust instruction adherence, fluid task switching, and strong generalization-outperforming prior VLA baselines in both task success rate and interaction naturalness.
comment: Website: https://switchvla.github.io
☆ From Virtual Agents to Robot Teams: A Multi-Robot Framework Evaluation in High-Stakes Healthcare Context
Advancements in generative models have enabled multi-agent systems (MAS) to perform complex virtual tasks such as writing and code generation, which do not generalize well to physical multi-agent robotic teams. Current frameworks often treat agents as conceptual task executors rather than physically embodied entities, and overlook critical real-world constraints such as spatial context, robotic capabilities (e.g., sensing and navigation). To probe this gap, we reconfigure and stress-test a hierarchical multi-agent robotic team built on the CrewAI framework in a simulated emergency department onboarding scenario. We identify five persistent failure modes: role misalignment; tool access violations; lack of in-time handling of failure reports; noncompliance with prescribed workflows; bypassing or false reporting of task completion. Based on this analysis, we propose three design guidelines emphasizing process transparency, proactive failure recovery, and contextual grounding. Our work informs the development of more resilient and robust multi-agent robotic systems (MARS), including opportunities to extend virtual multi-agent frameworks to the real world.
☆ Robust Position Estimation by Rao-Blackwellized Particle Filter without Integer Ambiguity Resolution in Urban Environments
This study proposes a centimeter-accurate positioning method that utilizes a Rao-Blackwellized particle filter (RBPF) without requiring integer ambiguity resolution in global navigation satellite system (GNSS) carrier phase measurements. The conventional positioning method employing a particle filter (PF) eliminates the necessity for ambiguity resolution by calculating the likelihood from the residuals of the carrier phase based on the particle position. However, this method encounters challenges, particularly in urban environments characterized by non-line-of-sight (NLOS) multipath errors. In such scenarios, PF tracking may fail due to the degradation of velocity estimation accuracy used for state transitions, thereby complicating subsequent position estimation. To address this issue, we apply Rao-Blackwellization to the conventional PF framework, treating position and velocity as distinct states and employing the Kalman filter for velocity estimation. This approach enhances the accuracy of velocity estimation and, consequently, the precision of position estimation. Moreover, the proposed method rejects NLOS multipath signals based on the pseudorange residuals at each particle position during the velocity estimation step. This process not only enhances velocity accuracy, but also preserves particle diversity by allowing particles to transition to unique states with varying velocities. Consequently, particles are more likely to cluster around the true position, thereby enabling more accurate position estimation. Vehicular experiments in urban environments demonstrated the effectiveness of proposed method in achieving a higher positioning accuracy than conventional PF-based and conventional GNSS positioning methods.
comment: Accepted to the 2025 IEEE/ION Position, Location and Navigation Symposium (PLANS)
☆ SemNav: A Model-Based Planner for Zero-Shot Object Goal Navigation Using Vision-Foundation Models CVPR 2025
Object goal navigation is a fundamental task in embodied AI, where an agent is instructed to locate a target object in an unexplored environment. Traditional learning-based methods rely heavily on large-scale annotated data or require extensive interaction with the environment in a reinforcement learning setting, often failing to generalize to novel environments and limiting scalability. To overcome these challenges, we explore a zero-shot setting where the agent operates without task-specific training, enabling more scalable and adaptable solution. Recent advances in Vision Foundation Models (VFMs) offer powerful capabilities for visual understanding and reasoning, making them ideal for agents to comprehend scenes, identify relevant regions, and infer the likely locations of objects. In this work, we present a zero-shot object goal navigation framework that integrates the perceptual strength of VFMs with a model-based planner that is capable of long-horizon decision making through frontier exploration. We evaluate our approach on the HM3D dataset using the Habitat simulator and demonstrate that our method achieves state-of-the-art performance in terms of success weighted by path length for zero-shot object goal navigation.
comment: Accepted at CVPR 2025 workshop - Foundation Models Meet Embodied Agents
☆ CPS-Guard: Framework for Dependability Assurance of AI- and LLM-Based Cyber-Physical Systems
Cyber-Physical Systems (CPS) increasingly depend on advanced AI techniques to operate in critical applications. However, traditional verification and validation methods often struggle to handle the unpredictable and dynamic nature of AI components. In this paper, we introduce CPS-Guard, a novel framework that employs multi-role orchestration to automate the iterative assurance process for AI-powered CPS. By assigning specialized roles (e.g., safety monitoring, security assessment, fault injection, and recovery planning) to dedicated agents within a simulated environment, CPS-Guard continuously evaluates and refines AI behavior against a range of dependability requirements. We demonstrate the framework through a case study involving an autonomous vehicle navigating an intersection with an AI-based planner. Our results show that CPS-Guard effectively detects vulnerabilities, manages performance impacts, and supports adaptive recovery strategies, thereby offering a structured and extensible solution for rigorous V&V in safety- and security-critical systems.
♻ ☆ FlySearch: Exploring how vision-language models explore
The real world is messy and unstructured. Uncovering critical information often requires active, goal-driven exploration. It remains to be seen whether Vision-Language Models (VLMs), which recently emerged as a popular zero-shot tool in many difficult tasks, can operate effectively in such conditions. In this paper, we answer this question by introducing FlySearch, a 3D, outdoor, photorealistic environment for searching and navigating to objects in complex scenes. We define three sets of scenarios with varying difficulty and observe that state-of-the-art VLMs cannot reliably solve even the simplest exploration tasks, with the gap to human performance increasing as the tasks get harder. We identify a set of central causes, ranging from vision hallucination, through context misunderstanding, to task planning failures, and we show that some of them can be addressed by finetuning. We publicly release the benchmark, scenarios, and the underlying codebase.
♻ ☆ Multi Layered Autonomy and AI Ecologies in Robotic Art Installations
Symbiosis of Agents is a large-scale installation by Baoyang Chen (baoyangchen.com) that embeds AI-driven robots in an immersive, mirror-lined arena, probing the tension between machine agency and artistic authorship. Drawing on early cybernetics, rule-based conceptual art, and seminal robotic works, it orchestrates fluid exchanges among robotic arms, quadruped machines, their environment, and the public. A three tier faith system pilots the ecology: micro-level adaptive tactics, meso-level narrative drives, and a macro-level prime directive. This hierarchy lets behaviors evolve organically in response to environmental cues and even a viewer's breath, turning spectators into co-authors of the unfolding drama. Framed by a speculative terraforming scenario that recalls the historical exploitation of marginalized labor, the piece asks who bears responsibility in AI-mediated futures. Choreographed motion, AI-generated scripts, reactive lighting, and drifting fog cast the robots as collaborators rather than tools, forging a living, emergent artwork. Exhibited internationally, Symbiosis of Agents shows how cybernetic feedback, robotic experimentation, and conceptual rule-making can converge to redefine agency, authorship, and ethics in contemporary art.
♻ ☆ DualMap: Online Open-Vocabulary Semantic Mapping for Natural Language Navigation in Dynamic Changing Scenes
We introduce DualMap, an online open-vocabulary mapping system that enables robots to understand and navigate dynamically changing environments through natural language queries. Designed for efficient semantic mapping and adaptability to changing environments, DualMap meets the essential requirements for real-world robot navigation applications. Our proposed hybrid segmentation frontend and object-level status check eliminate the costly 3D object merging required by prior methods, enabling efficient online scene mapping. The dual-map representation combines a global abstract map for high-level candidate selection with a local concrete map for precise goal-reaching, effectively managing and updating dynamic changes in the environment. Through extensive experiments in both simulation and real-world scenarios, we demonstrate state-of-the-art performance in 3D open-vocabulary segmentation, efficient scene mapping, and online language-guided navigation.
comment: 8 pages, 5 figures. Code: https://github.com/Eku127/DualMap Project page: https://eku127.github.io/DualMap/
♻ ☆ Digital-physical testbed for ship autonomy studies in the Marine Cybernetics Laboratory basin
The algorithms developed for Maritime Autonomous Surface Ships (MASS) are often challenging to test on actual vessels due to high operational costs and safety considerations. Simulations offer a cost-effective alternative and eliminate risks, but they may not accurately represent real-world dynamics for the given tasks. Utilizing small-scale model ships and robotic vessels in conjunction with a laboratory basin provides an accessible testing environment for the early stages of validation processes. However, designing and developing a model vessel for a single test can be costly and cumbersome, and researchers often lack access to such infrastructure. To address these challenges and enable streamlined testing, we have developed an in-house testbed that facilitates the development, testing, verification, and validation of MASS algorithms in a digital-physical laboratory. This infrastructure includes a set of small-scale model vessels, a simulation environment for each vessel, a comprehensive testbed environment, and a digital twin in Unity. With this, we aim to establish a full design and verification pipeline that starts with high-fidelity simulation models of each model vessel, to the model-scale testing in the laboratory basin, allowing possibilities for moving towards semi-fullscale validation with R/V milliAmpere1 and full-scale validation with R/V Gunnerus. In this work, we present our progress on the development of this testbed environment and its components, demonstrating its effectiveness in enabling ship guidance, navigation, and control (GNC), including autonomy.
♻ ☆ Optimized Kalman Filter based State Estimation and Height Control in Hopping Robots
Rotor-based hopping locomotion significantly improves efficiency and operation time as compared to purely flying systems; where most hopping robots use the liftoff states and an assumed ballistic trajectory to determine the hopping height. However, significant aerial phase force (e.g., thrust and drag) can invalidate this assumption and lead to poor estimation performance. To combat this issue, a group has implemented multiple sensors (active and passive optical, inertial, and contact) and significant computational power to achieve full state estimation. This, however, poses a significant challenge to the development of light-weight, high-performance, low observable, jamming and electronic interference resistant hopping systems; especially in perceptually degraded environments (e.g., dust, smoke). Here we show a training procedure for a coupled hopping phase and Kalman filter-based vertical state estimator, requiring only inertial measurements, which is able to learn the characteristics of the target system, sensors, locomotion behaviors, environment, and acceleration measurement aliasing conditions. The resulting estimator, given hop heights up to 4 m and velocities up to $\pm7$ m/s, achieves a mean absolute percent error in the hop apex height of 12.5% with an aerial trajectory average normalized mean absolute error in position and velocity of 19% and 16.5%, respectively; while operating at 840 Hz, on a dual-core 240 MHz processor, with a total robot mass of 672 g. Due to the low mass and computational power, the presented estimator could also be used as a degraded operational mode in cases of sensor damage, malfunction, or occlusion in more complex robots.
comment: 14 pages, 8 figures, 7 tables
♻ ☆ Maximizing Seaweed Growth on Autonomous Farms: A Dynamic Programming Approach for Underactuated Systems Navigating on Uncertain Ocean Currents
Seaweed biomass presents a substantial opportunity for climate mitigation, yet to realize its potential, farming must be expanded to the vast open oceans. However, in the open ocean neither anchored farming nor floating farms with powerful engines are economically viable. Thus, a potential solution are farms that operate by going with the flow, utilizing minimal propulsion to strategically leverage beneficial ocean currents. In this work, we focus on low-power autonomous seaweed farms and design controllers that maximize seaweed growth by taking advantage of ocean currents. We first introduce a Dynamic Programming (DP) formulation to solve for the growth-optimal value function when the true currents are known. However, in reality only short-term imperfect forecasts with increasing uncertainty are available. Hence, we present three additional extensions. Firstly, we use frequent replanning to mitigate forecast errors. Second, to optimize for long-term growth, we extend the value function beyond the forecast horizon by estimating the expected future growth based on seasonal average currents. Lastly, we introduce a discounted finite-time DP formulation to account for the increasing uncertainty in future ocean current estimates. We empirically evaluate our approach with 30-day simulations of farms in realistic ocean conditions. Our method achieves 95.8\% of the best possible growth using only 5-day forecasts.This demonstrates that low-power propulsion is a promising method to operate autonomous seaweed farms in real-world conditions.
comment: 8 pages, submitted to IEEE Robotics and Automation Letters (RA-L) Matthias Killer and Marius Wiggert contributed equally to this work
♻ ☆ Test Automation for Interactive Scenarios via Promptable Traffic Simulation CVPR 2025
Autonomous vehicle (AV) planners must undergo rigorous evaluation before widespread deployment on public roads, particularly to assess their robustness against the uncertainty of human behaviors. While recent advancements in data-driven scenario generation enable the simulation of realistic human behaviors in interactive settings, leveraging these models to construct comprehensive tests for AV planners remains an open challenge. In this work, we introduce an automated method to efficiently generate realistic and safety-critical human behaviors for AV planner evaluation in interactive scenarios. We parameterize complex human behaviors using low-dimensional goal positions, which are then fed into a promptable traffic simulator, ProSim, to guide the behaviors of simulated agents. To automate test generation, we introduce a prompt generation module that explores the goal domain and efficiently identifies safety-critical behaviors using Bayesian optimization. We apply our method to the evaluation of an optimization-based planner and demonstrate its effectiveness and efficiency in automatically generating diverse and realistic driving behaviors across scenarios with varying initial conditions.
comment: Accepted by CVPR 2025 Workshop Data-Driven Autonomous Driving Simulation (track 1)
♻ ☆ Safe, Out-of-Distribution-Adaptive MPC with Conformalized Neural Network Ensembles
We present SODA-MPC, a Safe, Out-of-Distribution-Adaptive Model Predictive Control algorithm, which uses an ensemble of learned models for prediction, with a runtime monitor to flag unreliable out-of-distribution (OOD) predictions. When an OOD situation is detected, SODA-MPC triggers a safe fallback control strategy based on reachability, yielding a control framework that achieves the high performance of learning-based models while preserving the safety of reachability-based control. We demonstrate the method in the context of an autonomous vehicle, driving among dynamic pedestrians, where SODA-MPC uses a neural network ensemble for pedestrian prediction. We calibrate the OOD signal using conformal prediction to derive an OOD detector with probabilistic guarantees on the false-positive rate, given a user-specified confidence level. During in-distribution operation, the MPC controller avoids collisions with a pedestrian based on the trajectory predicted by the mean of the ensemble. When OOD conditions are detected, the MPC switches to a reachability-based controller to avoid collisions with the reachable set of the pedestrian assuming a maximum pedestrian speed, to guarantee safety under the worst-case actions of the pedestrian. We verify SODA-MPC in extensive autonomous driving simulations in a pedestrian-crossing scenario. Our model ensemble is trained and calibrated with real pedestrian data, showing that our OOD detector obtains the desired accuracy rate within a theoretically-predicted range. We empirically show improved safety and improved task completion compared with two state-of-the-art MPC methods that also use conformal prediction, but without OOD adaptation. Further, we demonstrate the effectiveness of our method with the large-scale multi-agent predictor Trajectron++, using large-scale traffic data from the nuScenes dataset for training and calibration.
♻ ☆ Future-Oriented Navigation: Dynamic Obstacle Avoidance with One-Shot Energy-Based Multimodal Motion Prediction
This paper proposes an integrated approach for the safe and efficient control of mobile robots in dynamic and uncertain environments. The approach consists of two key steps: one-shot multimodal motion prediction to anticipate motions of dynamic obstacles and model predictive control to incorporate these predictions into the motion planning process. Motion prediction is driven by an energy-based neural network that generates high-resolution, multi-step predictions in a single operation. The prediction outcomes are further utilized to create geometric shapes formulated as mathematical constraints. Instead of treating each dynamic obstacle individually, predicted obstacles are grouped by proximity in an unsupervised way to improve performance and efficiency. The overall collision-free navigation is handled by model predictive control with a specific design for proactive dynamic obstacle avoidance. The proposed approach allows mobile robots to navigate effectively in dynamic environments. Its performance is accessed across various scenarios that represent typical warehouse settings. The results demonstrate that the proposed approach outperforms other existing dynamic obstacle avoidance methods.
comment: Published in IEEE Robotics and Automation Letters (RA-L)
♻ ☆ SEM: Enhancing Spatial Understanding for Robust Robot Manipulation
A key challenge in robot manipulation lies in developing policy models with strong spatial understanding, the ability to reason about 3D geometry, object relations, and robot embodiment. Existing methods often fall short: 3D point cloud models lack semantic abstraction, while 2D image encoders struggle with spatial reasoning. To address this, we propose SEM (Spatial Enhanced Manipulation model), a novel diffusion-based policy framework that explicitly enhances spatial understanding from two complementary perspectives. A spatial enhancer augments visual representations with 3D geometric context, while a robot state encoder captures embodiment-aware structure through graphbased modeling of joint dependencies. By integrating these modules, SEM significantly improves spatial understanding, leading to robust and generalizable manipulation across diverse tasks that outperform existing baselines.
♻ ☆ Diffusion-VLA: Generalizable and Interpretable Robot Foundation Model via Self-Generated Reasoning ICML 2025
In this paper, we present DiffusionVLA, a novel framework that seamlessly combines the autoregression model with the diffusion model for learning visuomotor policy. Central to our approach is a next-token prediction objective, enabling the model to reason effectively over the user's query in the context of current observations. Subsequently, a diffusion model is attached to generate robust action outputs. To enhance policy learning through self-reasoning, we introduce a novel reasoning injection module that integrates reasoning phrases directly into the policy learning process. The whole framework is simple and flexible, making it easy to deploy and upgrade. We conduct extensive experiments using multiple real robots to validate the effectiveness of DiffusionVLA. Our tests include a challenging factory sorting task, where DiffusionVLA successfully categorizes objects, including those not seen during training. We observe that the reasoning module makes the model interpretable. It allows observers to understand the model thought process and identify potential causes of policy failures. Additionally, we test DiffusionVLA on a zero-shot bin-picking task, achieving 63.7\% accuracy on 102 previously unseen objects. Our method demonstrates robustness to visual changes, such as distractors and new backgrounds, and easily adapts to new embodiments. Furthermore, DiffusionVLA can follow novel instructions and retain conversational ability. Notably, DiffusionVLA is data-efficient and fast at inference; our smallest DiffusionVLA-2B runs 82Hz on a single A6000 GPU and can train from scratch on less than 50 demonstrations for a complex task. Finally, we scale the model from 2B to 72B parameters, showcasing improved generalization capabilities with increased model size.
comment: Accepted by ICML 2025. The project page is available at: http://diffusion-vla.github.io
LEMON-Mapping: Loop-Enhanced Large-Scale Multi-Session Point Cloud Merging and Optimization for Globally Consistent Mapping
Multi-robot collaboration is becoming increasingly critical and presents significant challenges in modern robotics, especially for building a globally consistent, accurate map. Traditional multi-robot pose graph optimization (PGO) methods ensure basic global consistency but ignore the geometric structure of the map, and only use loop closures as constraints between pose nodes, leading to divergence and blurring in overlapping regions. To address this issue, we propose LEMON-Mapping, a loop-enhanced framework for large-scale, multi-session point cloud fusion and optimization. We re-examine the role of loops for multi-robot mapping and introduce three key innovations. First, we develop a robust loop processing mechanism that rejects outliers and a loop recall strategy to recover mistakenly removed but valid loops. Second, we introduce spatial bundle adjustment for multi-robot maps, reducing divergence and eliminating blurring in overlaps. Third, we design a PGO-based approach that leverages refined bundle adjustment constraints to propagate local accuracy to the entire map. We validate LEMON-Mapping on several public datasets and a self-collected dataset. The experimental results show superior mapping accuracy and global consistency of our framework compared to traditional merging methods. Scalability experiments also demonstrate its strong capability to handle scenarios involving numerous robots.
♻ ☆ SCOPE: Stochastic Cartographic Occupancy Prediction Engine for Uncertainty-Aware Dynamic Navigation
This article presents a family of Stochastic Cartographic Occupancy Prediction Engines (SCOPEs) that enable mobile robots to predict the future states of complex dynamic environments. They do this by accounting for the motion of the robot itself, the motion of dynamic objects, and the geometry of static objects in the scene, and they generate a range of possible future states of the environment. These prediction engines are software-optimized for real-time performance for navigation in crowded dynamic scenes, achieving up to 89 times faster inference speed and 8 times less memory usage than other state-of-the-art engines. Three simulated and real-world datasets collected by different robot models are used to demonstrate that these proposed prediction algorithms are able to achieve more accurate and robust stochastic prediction performance than other algorithms. Furthermore, a series of simulation and hardware navigation experiments demonstrate that the proposed predictive uncertainty-aware navigation framework with these stochastic prediction engines is able to improve the safe navigation performance of current state-of-the-art model- and learning-based control policies.
comment: Accepted by IEEE Transactions on Robotics (T-RO), 2025. arXiv admin note: text overlap with arXiv:2210.08577
Computer Vision 8
♻ ☆ UniWorld: High-Resolution Semantic Encoders for Unified Visual Understanding and Generation
Although existing unified models achieve strong performance in vision-language understanding and text-to-image generation, they remain limited in addressing image perception and manipulation -- capabilities increasingly demanded in practical applications. Recently, OpenAI introduced the powerful GPT-4o-Image model, which showcases advanced capabilities in comprehensive image perception and manipulation, sparking widespread interest. Through carefully designed experiments, we observe that GPT-4o-Image likely relies on semantic encoders rather than VAEs for feature extraction, despite VAEs being commonly regarded as crucial for image manipulation tasks. Inspired by this insight, we propose UniWorld, a unified generative framework built upon semantic features extracted from powerful multimodal large language models and contrastive semantic encoders. Using only 2.7M training data, UniWorld achieves impressive performance across diverse tasks, including image understanding, generation, manipulation, and perception. We fully open-source the UniWorld framework, including model weights, training and evaluation scripts, and datasets to promote reproducibility and further research.
♻ ☆ FlySearch: Exploring how vision-language models explore
The real world is messy and unstructured. Uncovering critical information often requires active, goal-driven exploration. It remains to be seen whether Vision-Language Models (VLMs), which recently emerged as a popular zero-shot tool in many difficult tasks, can operate effectively in such conditions. In this paper, we answer this question by introducing FlySearch, a 3D, outdoor, photorealistic environment for searching and navigating to objects in complex scenes. We define three sets of scenarios with varying difficulty and observe that state-of-the-art VLMs cannot reliably solve even the simplest exploration tasks, with the gap to human performance increasing as the tasks get harder. We identify a set of central causes, ranging from vision hallucination, through context misunderstanding, to task planning failures, and we show that some of them can be addressed by finetuning. We publicly release the benchmark, scenarios, and the underlying codebase.
♻ ☆ Go Beyond Earth: Understanding Human Actions and Scenes in Microgravity Environments
Despite substantial progress in video understanding, most existing datasets are limited to Earth's gravitational conditions. However, microgravity alters human motion, interactions, and visual semantics, revealing a critical gap for real-world vision systems. This presents a challenge for domain-robust video understanding in safety-critical space applications. To address this, we introduce MicroG-4M, the first benchmark for spatio-temporal and semantic understanding of human activities in microgravity. Constructed from real-world space missions and cinematic simulations, the dataset includes 4,759 clips covering 50 actions, 1,238 context-rich captions, and over 7,000 question-answer pairs on astronaut activities and scene understanding. MicroG-4M supports three core tasks: fine-grained multi-label action recognition, temporal video captioning, and visual question answering, enabling a comprehensive evaluation of both spatial localization and semantic reasoning in microgravity contexts. We establish baselines using state-of-the-art models. All data, annotations, and code are available at https://github.com/LEI-QI-233/HAR-in-Space.
comment: 15 pages, 3 figures, code are available at https://github.com/LEI-QI-233/HAR-in-Space
♻ ☆ MedEBench: Revisiting Text-instructed Image Editing on Medical Domain
Text-guided image editing has seen rapid progress in natural image domains, but its adaptation to medical imaging remains limited and lacks standardized evaluation. Clinically, such editing holds promise for simulating surgical outcomes, creating personalized teaching materials, and enhancing patient communication. To bridge this gap, we introduce MedEBench, a comprehensive benchmark for evaluating text-guided medical image editing. It consists of 1,182 clinically sourced image-prompt triplets spanning 70 tasks across 13 anatomical regions. MedEBench offers three key contributions: (1) a clinically relevant evaluation framework covering Editing Accuracy, Contextual Preservation, and Visual Quality, supported by detailed descriptions of expected change and ROI (Region of Interest) masks; (2) a systematic comparison of seven state-of-the-art models, revealing common failure patterns; and (3) a failure analysis protocol based on attention grounding, using IoU between attention maps and ROIs to identify mislocalization. MedEBench provides a solid foundation for developing and evaluating reliable, clinically meaningful medical image editing systems. Project website: https://mliuby.github.io/MedEBench_Website/
comment: Project website: https://mliuby.github.io/MedEBench_Website/
♻ ☆ Open-PMC-18M: A High-Fidelity Large Scale Medical Dataset for Multimodal Representation Learning
Compound figures, which are multi-panel composites containing diverse subfigures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction remains largely unaddressed. Prior work on subfigure extraction has been limited in both dataset size and generalizability, leaving a critical open question: How does high-fidelity image-text alignment via large-scale subfigure extraction impact representation learning in vision-language models? We address this gap by introducing a scalable subfigure extraction pipeline based on transformer-based object detection, trained on a synthetic corpus of 500,000 compound figures, and achieving state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks. Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality biomedical vision-language dataset comprising 18 million clinically relevant subfigure-caption pairs spanning radiology, microscopy, and visible light photography. We train and evaluate vision-language models on our curated datasets and show improved performance across retrieval, zero-shot classification, and robustness benchmarks, outperforming existing baselines. We release our dataset, models, and code to support reproducible benchmarks and further study into biomedical vision-language modeling and representation learning.
comment: 15 pages
♻ ☆ FaceSleuth: Learning-Driven Single-Orientation Attention Verifies Vertical Dominance in Micro-Expression Recognition
Micro-expression recognition (MER) demands models that can amplify millisecond-level, low-amplitude facial motions while suppressing identity-specific appearance. We introduce FaceSleuth, a dual-stream architecture that (1) enhances motion along the empirically dominant vertical axix through a Continuously Vertical Attention (CVA) block, (2) localises the resulting signals with a Facial Position Focalizer built on hierarchical cross-window attention, and (3) steers feature learning toward physiologically meaningful regions via lightweight Action-Unit embeddings. To examine whether the hand-chosen vertical axis is indeed optimal, we further propose a Single-Orientation Attention (SOA) module that learns its own pooling direction end-to-end. SOA is differentiable, adds only 0.16 % parameters, and collapses to CVA when the learned angle converges to {\Pi}/2. In practice, SOA reliably drifts to 88{\deg}, confirming the effectiveness of the vertical prior while delivering consistent gains. On three standard MER benchmarks, FaceSleuth with CVA already surpasses previous state-of-the-art methods; plugging in SOA lifts accuracy and F1 score performance to 95.1 % / 0.918 on CASME II, 87.1 % / 0.840 on SAMM, and 92.9 % / 0.917 on MMEW without sacrificing model compactness. These results establish a new state of the art and, for the first time, provide empirical evidence that the vertical attention bias is the most discriminative orientation for MER.
comment: 12 pages, 2 figures
♻ ☆ High Performance Space Debris Tracking in Complex Skylight Backgrounds with a Large-Scale Dataset
With the rapid development of space exploration, space debris has attracted more attention due to its potential extreme threat, leading to the need for real-time and accurate debris tracking. However, existing methods are mainly based on traditional signal processing, which cannot effectively process the complex background and dense space debris. In this paper, we propose a deep learning-based Space Debris Tracking Network~(SDT-Net) to achieve highly accurate debris tracking. SDT-Net effectively represents the feature of debris, enhancing the efficiency and stability of end-to-end model learning. To train and evaluate this model effectively, we also produce a large-scale dataset Space Debris Tracking Dataset (SDTD) by a novel observation-based data simulation scheme. SDTD contains 18,040 video sequences with a total of 62,562 frames and covers 250,000 synthetic space debris. Extensive experiments validate the effectiveness of our model and the challenging of our dataset. Furthermore, we test our model on real data from the Antarctic Station, achieving a MOTA score of 70.6%, which demonstrates its strong transferability to real-world scenarios. Our dataset and code will be released soon.
♻ ☆ Generative Emotion Cause Explanation in Multimodal Conversations
Multimodal conversation, a crucial form of human communication, carries rich emotional content, making the exploration of the causes of emotions within it a research endeavor of significant importance. However, existing research on the causes of emotions typically employs an utterance selection method within a single textual modality to locate causal utterances. This approach remains limited to coarse-grained assessments, lacks nuanced explanations of emotional causation, and demonstrates inadequate capability in identifying multimodal emotional triggers. Therefore, we introduce a task-\textbf{Multimodal Emotion Cause Explanation in Conversation (MECEC)}. This task aims to generate a summary based on the multimodal context of conversations, clearly and intuitively describing the reasons that trigger a given emotion. To adapt to this task, we develop a new dataset (ECEM) based on the MELD dataset. ECEM combines video clips with detailed explanations of character emotions, helping to explore the causal factors behind emotional expression in multimodal conversations. A novel approach, FAME-Net, is further proposed, that harnesses the power of Large Language Models (LLMs) to analyze visual data and accurately interpret the emotions conveyed through facial expressions in videos. By exploiting the contagion effect of facial emotions, FAME-Net effectively captures the emotional causes of individuals engaged in conversations. Our experimental results on the newly constructed dataset show that FAME-Net outperforms several excellent baselines. Code and dataset are available at https://github.com/3222345200/FAME-Net.
Artificial Intelligence 103
☆ The Latent Space Hypothesis: Toward Universal Medical Representation Learning
Medical data range from genomic sequences and retinal photographs to structured laboratory results and unstructured clinical narratives. Although these modalities appear disparate, many encode convergent information about a single underlying physiological state. The Latent Space Hypothesis frames each observation as a projection of a unified, hierarchically organized manifold -- much like shadows cast by the same three-dimensional object. Within this learned geometric representation, an individual's health status occupies a point, disease progression traces a trajectory, and therapeutic intervention corresponds to a directed vector. Interpreting heterogeneous evidence in a shared space provides a principled way to re-examine eponymous conditions -- such as Parkinson's or Crohn's -- that often mask multiple pathophysiological entities and involve broader anatomical domains than once believed. By revealing sub-trajectories and patient-specific directions of change, the framework supplies a quantitative rationale for personalised diagnosis, longitudinal monitoring, and tailored treatment, moving clinical practice away from grouping by potentially misleading labels toward navigation of each person's unique trajectory. Challenges remain -- bias amplification, data scarcity for rare disorders, privacy, and the correlation-causation divide -- but scale-aware encoders, continual learning on longitudinal data streams, and perturbation-based validation offer plausible paths forward.
comment: 51 pages, 12 figures. A position paper examining the latent space hypothesis - the proposition that diverse medical data can be represented in shared latent spaces reflecting fundamental biological processes. The paper discusses theoretical foundations, reviews supporting evidence, and considers potential implications for medical AI and representation learning
☆ BEAR: BGP Event Analysis and Reporting
The Internet comprises of interconnected, independently managed Autonomous Systems (AS) that rely on the Border Gateway Protocol (BGP) for inter-domain routing. BGP anomalies--such as route leaks and hijacks--can divert traffic through unauthorized or inefficient paths, jeopardizing network reliability and security. Although existing rule-based and machine learning methods can detect these anomalies using structured metrics, they still require experts with in-depth BGP knowledge of, for example, AS relationships and historical incidents, to interpret events and propose remediation. In this paper, we introduce BEAR (BGP Event Analysis and Reporting), a novel framework that leverages large language models (LLMs) to automatically generate comprehensive reports explaining detected BGP anomaly events. BEAR employs a multi-step reasoning process that translates tabular BGP data into detailed textual narratives, enhancing interpretability and analytical precision. To address the limited availability of publicly documented BGP anomalies, we also present a synthetic data generation framework powered by LLMs. Evaluations on both real and synthetic datasets demonstrate that BEAR achieves 100% accuracy, outperforming Chain-of-Thought and in-context learning baselines. This work pioneers an automated approach for explaining BGP anomaly events, offering valuable operational insights for network management.
☆ Schema Generation for Large Knowledge Graphs Using Large Language Models
Schemas are vital for ensuring data quality in the Semantic Web and natural language processing. Traditionally, their creation demands substantial involvement from knowledge engineers and domain experts. Leveraging the impressive capabilities of large language models (LLMs) in related tasks like ontology engineering, we explore automatic schema generation using LLMs. To bridge the resource gap, we introduce two datasets: YAGO Schema and Wikidata EntitySchema, along with evaluation metrics. The LLM-based pipelines effectively utilize local and global information from knowledge graphs (KGs) to generate validating schemas in Shape Expressions (ShEx). Experiments demonstrate LLMs' strong potential in producing high-quality ShEx schemas, paving the way for scalable, automated schema generation for large KGs. Furthermore, our benchmark introduces a new challenge for structured generation, pushing the limits of LLMs on syntactically rich formalisms.
☆ "Don't Do That!": Guiding Embodied Systems through Large Language Model-based Constraint Generation
Recent advancements in large language models (LLMs) have spurred interest in robotic navigation that incorporates complex spatial, mathematical, and conditional constraints from natural language into the planning problem. Such constraints can be informal yet highly complex, making it challenging to translate into a formal description that can be passed on to a planning algorithm. In this paper, we propose STPR, a constraint generation framework that uses LLMs to translate constraints (expressed as instructions on ``what not to do'') into executable Python functions. STPR leverages the LLM's strong coding capabilities to shift the problem description from language into structured and transparent code, thus circumventing complex reasoning and avoiding potential hallucinations. We show that these LLM-generated functions accurately describe even complex mathematical constraints, and apply them to point cloud representations with traditional search algorithms. Experiments in a simulated Gazebo environment show that STPR ensures full compliance across several constraints and scenarios, while having short runtimes. We also verify that STPR can be used with smaller, code-specific LLMs, making it applicable to a wide range of compact models at low inference cost.
comment: Preprint; under review
☆ CogMath: Assessing LLMs' Authentic Mathematical Ability from a Human Cognitive Perspective
Although large language models (LLMs) show promise in solving complex mathematical tasks, existing evaluation paradigms rely solely on a coarse measure of overall answer accuracy, which are insufficient for assessing their authentic capabilities. In this paper, we propose \textbf{CogMath}, which comprehensively assesses LLMs' mathematical abilities through the lens of human cognition. Specifically, inspired by psychological theories, CogMath formalizes human reasoning process into 3 stages: \emph{problem comprehension}, \emph{problem solving}, and \emph{solution summarization}. Within these stages, we investigate perspectives such as numerical calculation, knowledge, and counterfactuals, and design a total of 9 fine-grained evaluation dimensions. In each dimension, we develop an ``\emph{Inquiry}-\emph{Judge}-\emph{Reference}'' multi-agent system to generate inquiries that assess LLMs' mastery from this dimension. An LLM is considered to truly master a problem only when excelling in all inquiries from the 9 dimensions. By applying CogMath on three benchmarks, we reveal that the mathematical capabilities of 7 mainstream LLMs are overestimated by 30\%-40\%. Moreover, we locate their strengths and weaknesses across specific stages/dimensions, offering in-depth insights to further enhance their reasoning abilities.
☆ Comparative performance of ensemble models in predicting dental provider types: insights from fee-for-service data
Dental provider classification plays a crucial role in optimizing healthcare resource allocation and policy planning. Effective categorization of providers, such as standard rendering providers and safety net clinic (SNC) providers, enhances service delivery to underserved populations. This study aimed to evaluate the performance of machine learning models in classifying dental providers using a 2018 dataset. A dataset of 24,300 instances with 20 features was analyzed, including beneficiary and service counts across fee-for-service (FFS), Geographic Managed Care, and Pre-Paid Health Plans. Providers were categorized by delivery system and patient age groups (0-20 and 21+). Despite 38.1% missing data, multiple machine learning algorithms were tested, including k-Nearest Neighbors (kNN), Decision Trees, Support Vector Machines (SVM), Stochastic Gradient Descent (SGD), Random Forest, Neural Networks, and Gradient Boosting. A 10-fold cross-validation approach was applied, and models were evaluated using AUC, classification accuracy (CA), F1-score, precision, and recall. Neural Networks achieved the highest AUC (0.975) and CA (94.1%), followed by Random Forest (AUC: 0.948, CA: 93.0%). These models effectively handled imbalanced data and complex feature interactions, outperforming traditional classifiers like Logistic Regression and SVM. Advanced machine learning techniques, particularly ensemble and deep learning models, significantly enhance dental workforce classification. Their integration into healthcare analytics can improve provider identification and resource distribution, benefiting underserved populations.
☆ Matching Markets Meet LLMs: Algorithmic Reasoning with Ranked Preferences
The rise of Large Language Models (LLMs) has driven progress in reasoning tasks -- from program synthesis to scientific hypothesis generation -- yet their ability to handle ranked preferences and structured algorithms in combinatorial domains remains underexplored. We study matching markets, a core framework behind applications like resource allocation and ride-sharing, which require reconciling individual ranked preferences to ensure stable outcomes. We evaluate several state-of-the-art models on a hierarchy of preference-based reasoning tasks -- ranging from stable-matching generation to instability detection, instability resolution, and fine-grained preference queries -- to systematically expose their logical and algorithmic limitations in handling ranked inputs. Surprisingly, even top-performing models with advanced reasoning struggle to resolve instability in large markets, often failing to identify blocking pairs or execute algorithms iteratively. We further show that parameter-efficient fine-tuning (LoRA) significantly improves performance in small markets, but fails to bring about a similar improvement on large instances, suggesting the need for more sophisticated strategies to improve LLMs' reasoning with larger-context inputs.
☆ Classifying Dental Care Providers Through Machine Learning with Features Ranking
This study investigates the application of machine learning (ML) models for classifying dental providers into two categories - standard rendering providers and safety net clinic (SNC) providers - using a 2018 dataset of 24,300 instances with 20 features. The dataset, characterized by high missing values (38.1%), includes service counts (preventive, treatment, exams), delivery systems (FFS, managed care), and beneficiary demographics. Feature ranking methods such as information gain, Gini index, and ANOVA were employed to identify critical predictors, revealing treatment-related metrics (TXMT_USER_CNT, TXMT_SVC_CNT) as top-ranked features. Twelve ML models, including k-Nearest Neighbors (kNN), Decision Trees, Support Vector Machines (SVM), Stochastic Gradient Descent (SGD), Random Forest, Neural Networks, and Gradient Boosting, were evaluated using 10-fold cross-validation. Classification accuracy was tested across incremental feature subsets derived from rankings. The Neural Network achieved the highest accuracy (94.1%) using all 20 features, followed by Gradient Boosting (93.2%) and Random Forest (93.0%). Models showed improved performance as more features were incorporated, with SGD and ensemble methods demonstrating robustness to missing data. Feature ranking highlighted the dominance of treatment service counts and annotation codes in distinguishing provider types, while demographic variables (AGE_GROUP, CALENDAR_YEAR) had minimal impact. The study underscores the importance of feature selection in enhancing model efficiency and accuracy, particularly in imbalanced healthcare datasets. These findings advocate for integrating feature-ranking techniques with advanced ML algorithms to optimize dental provider classification, enabling targeted resource allocation for underserved populations.
☆ Diffusion Transformer-based Universal Dose Denoising for Pencil Beam Scanning Proton Therapy
Purpose: Intensity-modulated proton therapy (IMPT) offers precise tumor coverage while sparing organs at risk (OARs) in head and neck (H&N) cancer. However, its sensitivity to anatomical changes requires frequent adaptation through online adaptive radiation therapy (oART), which depends on fast, accurate dose calculation via Monte Carlo (MC) simulations. Reducing particle count accelerates MC but degrades accuracy. To address this, denoising low-statistics MC dose maps is proposed to enable fast, high-quality dose generation. Methods: We developed a diffusion transformer-based denoising framework. IMPT plans and 3D CT images from 80 H&N patients were used to generate noisy and high-statistics dose maps using MCsquare (1 min and 10 min per plan, respectively). Data were standardized into uniform chunks with zero-padding, normalized, and transformed into quasi-Gaussian distributions. Testing was done on 10 H&N, 10 lung, 10 breast, and 10 prostate cancer cases, preprocessed identically. The model was trained with noisy dose maps and CT images as input and high-statistics dose maps as ground truth, using a combined loss of mean square error (MSE), residual loss, and regional MAE (focusing on top/bottom 10% dose voxels). Performance was assessed via MAE, 3D Gamma passing rate, and DVH indices. Results: The model achieved MAEs of 0.195 (H&N), 0.120 (lung), 0.172 (breast), and 0.376 Gy[RBE] (prostate). 3D Gamma passing rates exceeded 92% (3%/2mm) across all sites. DVH indices for clinical target volumes (CTVs) and OARs closely matched the ground truth. Conclusion: A diffusion transformer-based denoising framework was developed and, though trained only on H&N data, generalizes well across multiple disease sites.
☆ Behavioural vs. Representational Systematicity in End-to-End Models: An Opinionated Survey ACL 2025
A core aspect of compositionality, systematicity is a desirable property in ML models as it enables strong generalization to novel contexts. This has led to numerous studies proposing benchmarks to assess systematic generalization, as well as models and training regimes designed to enhance it. Many of these efforts are framed as addressing the challenge posed by Fodor and Pylyshyn. However, while they argue for systematicity of representations, existing benchmarks and models primarily focus on the systematicity of behaviour. We emphasize the crucial nature of this distinction. Furthermore, building on Hadley's (1994) taxonomy of systematic generalization, we analyze the extent to which behavioural systematicity is tested by key benchmarks in the literature across language and vision. Finally, we highlight ways of assessing systematicity of representations in ML models as practiced in the field of mechanistic interpretability.
comment: To appear at ACL 2025 Main Conference
☆ An Expansion-Based Approach for Quantified Integer Programming
Quantified Integer Programming (QIP) bridges multiple domains by extending Quantified Boolean Formulas (QBF) to incorporate general integer variables and linear constraints while also generalizing Integer Programming through variable quantification. As a special case of Quantified Constraint Satisfaction Problems (QCSP), QIP provides a versatile framework for addressing complex decision-making scenarios. Additionally, the inclusion of a linear objective function enables QIP to effectively model multistage robust discrete linear optimization problems, making it a powerful tool for tackling uncertainty in optimization. While two primary solution paradigms exist for QBF -- search-based and expansion-based approaches -- only search-based methods have been explored for QIP and QCSP. We introduce an expansion-based approach for QIP using Counterexample-Guided Abstraction Refinement (CEGAR), adapting techniques from QBF. We extend this methodology to tackle multistage robust discrete optimization problems with linear constraints and further embed it in an optimization framework, enhancing its applicability. Our experimental results highlight the advantages of this approach, demonstrating superior performance over existing search-based solvers for QIP in specific instances. Furthermore, the ability to model problems using linear constraints enables notable performance gains over state-of-the-art expansion-based solvers for QBF.
☆ Learning to Diagnose Privately: DP-Powered LLMs for Radiology Report Classification
Purpose: This study proposes a framework for fine-tuning large language models (LLMs) with differential privacy (DP) to perform multi-abnormality classification on radiology report text. By injecting calibrated noise during fine-tuning, the framework seeks to mitigate the privacy risks associated with sensitive patient data and protect against data leakage while maintaining classification performance. Materials and Methods: We used 50,232 radiology reports from the publicly available MIMIC-CXR chest radiography and CT-RATE computed tomography datasets, collected between 2011 and 2019. Fine-tuning of LLMs was conducted to classify 14 labels from MIMIC-CXR dataset, and 18 labels from CT-RATE dataset using Differentially Private Low-Rank Adaptation (DP-LoRA) in high and moderate privacy regimes (across a range of privacy budgets = {0.01, 0.1, 1.0, 10.0}). Model performance was evaluated using weighted F1 score across three model architectures: BERT-medium, BERT-small, and ALBERT-base. Statistical analyses compared model performance across different privacy levels to quantify the privacy-utility trade-off. Results: We observe a clear privacy-utility trade-off through our experiments on 2 different datasets and 3 different models. Under moderate privacy guarantees the DP fine-tuned models achieved comparable weighted F1 scores of 0.88 on MIMIC-CXR and 0.59 on CT-RATE, compared to non-private LoRA baselines of 0.90 and 0.78, respectively. Conclusion: Differentially private fine-tuning using LoRA enables effective and privacy-preserving multi-abnormality classification from radiology reports, addressing a key challenge in fine-tuning LLMs on sensitive medical data.
comment: 19 pages, 5 figures, 2 tables
☆ Photoreal Scene Reconstruction from an Egocentric Device SIGGRAPH
In this paper, we investigate the challenges associated with using egocentric devices to photorealistic reconstruct the scene in high dynamic range. Existing methodologies typically assume using frame-rate 6DoF pose estimated from the device's visual-inertial odometry system, which may neglect crucial details necessary for pixel-accurate reconstruction. This study presents two significant findings. Firstly, in contrast to mainstream work treating RGB camera as global shutter frame-rate camera, we emphasize the importance of employing visual-inertial bundle adjustment (VIBA) to calibrate the precise timestamps and movement of the rolling shutter RGB sensing camera in a high frequency trajectory format, which ensures an accurate calibration of the physical properties of the rolling-shutter camera. Secondly, we incorporate a physical image formation model based into Gaussian Splatting, which effectively addresses the sensor characteristics, including the rolling-shutter effect of RGB cameras and the dynamic ranges measured by sensors. Our proposed formulation is applicable to the widely-used variants of Gaussian Splats representation. We conduct a comprehensive evaluation of our pipeline using the open-source Project Aria device under diverse indoor and outdoor lighting conditions, and further validate it on a Meta Quest3 device. Across all experiments, we observe a consistent visual enhancement of +1 dB in PSNR by incorporating VIBA, with an additional +1 dB achieved through our proposed image formation model. Our complete implementation, evaluation datasets, and recording profile are available at http://www.projectaria.com/photoreal-reconstruction/
comment: Paper accepted to SIGGRAPH Conference Paper 2025
☆ Grokking and Generalization Collapse: Insights from \texttt{HTSR} theory
We study the well-known grokking phenomena in neural networks (NNs) using a 3-layer MLP trained on 1 k-sample subset of MNIST, with and without weight decay, and discover a novel third phase -- \emph{anti-grokking} -- that occurs very late in training and resembles but is distinct from the familiar \emph{pre-grokking} phases: test accuracy collapses while training accuracy stays perfect. This late-stage collapse is distinct, from the known pre-grokking and grokking phases, and is not detected by other proposed grokking progress measures. Leveraging Heavy-Tailed Self-Regularization HTSR through the open-source WeightWatcher tool, we show that the HTSR layer quality metric $\alpha$ alone delineates all three phases, whereas the best competing metrics detect only the first two. The \emph{anti-grokking} is revealed by training for $10^7$ and is invariably heralded by $\alpha < 2$ and the appearance of \emph{Correlation Traps} -- outlier singular values in the randomized layer weight matrices that make the layer weight matrix atypical and signal overfitting of the training set. Such traps are verified by visual inspection of the layer-wise empirical spectral densities, and by using Kolmogorov--Smirnov tests on randomized spectra. Comparative metrics, including activation sparsity, absolute weight entropy, circuit complexity, and $l^2$ weight norms track pre-grokking and grokking but fail to distinguish grokking from anti-grokking. This discovery provides a way to measure overfitting and generalization collapse without direct access to the test data. These results strengthen the claim that the \emph{HTSR} $\alpha$ provides universal layer-convergence target at $\alpha \approx 2$ and underscore the value of using the HTSR alpha $(\alpha)$ metric as a measure of generalization.
comment: 15 pages,7 figs
☆ An AI-Based Public Health Data Monitoring System
Public health experts need scalable approaches to monitor large volumes of health data (e.g., cases, hospitalizations, deaths) for outbreaks or data quality issues. Traditional alert-based monitoring systems struggle with modern public health data monitoring systems for several reasons, including that alerting thresholds need to be constantly reset and the data volumes may cause application lag. Instead, we propose a ranking-based monitoring paradigm that leverages new AI anomaly detection methods. Through a multi-year interdisciplinary collaboration, the resulting system has been deployed at a national organization to monitor up to 5,000,000 data points daily. A three-month longitudinal deployed evaluation revealed a significant improvement in monitoring objectives, with a 54x increase in reviewer speed efficiency compared to traditional alert-based methods. This work highlights the potential of human-centered AI to transform public health decision-making.
☆ Plugging Schema Graph into Multi-Table QA: A Human-Guided Framework for Reducing LLM Reliance EMNLP 2025
Large language models (LLMs) have shown promise in table Question Answering (Table QA). However, extending these capabilities to multi-table QA remains challenging due to unreliable schema linking across complex tables. Existing methods based on semantic similarity work well only on simplified hand-crafted datasets and struggle to handle complex, real-world scenarios with numerous and diverse columns. To address this, we propose a graph-based framework that leverages human-curated relational knowledge to explicitly encode schema links and join paths. Given a natural language query, our method searches this graph to construct interpretable reasoning chains, aided by pruning and sub-path merging strategies to enhance efficiency and coherence. Experiments on both standard benchmarks and a realistic, large-scale dataset demonstrate the effectiveness of our approach. To our knowledge, this is the first multi-table QA system applied to truly complex industrial tabular data.
comment: Submitted to EMNLP 2025
☆ HMAR: Efficient Hierarchical Masked Auto-Regressive Image Generation CVPR 2025
Visual Auto-Regressive modeling (VAR) has shown promise in bridging the speed and quality gap between autoregressive image models and diffusion models. VAR reformulates autoregressive modeling by decomposing an image into successive resolution scales. During inference, an image is generated by predicting all the tokens in the next (higher-resolution) scale, conditioned on all tokens in all previous (lower-resolution) scales. However, this formulation suffers from reduced image quality due to the parallel generation of all tokens in a resolution scale; has sequence lengths scaling superlinearly in image resolution; and requires retraining to change the sampling schedule. We introduce Hierarchical Masked Auto-Regressive modeling (HMAR), a new image generation algorithm that alleviates these issues using next-scale prediction and masked prediction to generate high-quality images with fast sampling. HMAR reformulates next-scale prediction as a Markovian process, wherein the prediction of each resolution scale is conditioned only on tokens in its immediate predecessor instead of the tokens in all predecessor resolutions. When predicting a resolution scale, HMAR uses a controllable multi-step masked generation procedure to generate a subset of the tokens in each step. On ImageNet 256x256 and 512x512 benchmarks, HMAR models match or outperform parameter-matched VAR, diffusion, and autoregressive baselines. We develop efficient IO-aware block-sparse attention kernels that allow HMAR to achieve faster training and inference times over VAR by over 2.5x and 1.75x respectively, as well as over 3x lower inference memory footprint. Finally, HMAR yields additional flexibility over VAR; its sampling schedule can be changed without further training, and it can be applied to image editing tasks in a zero-shot manner.
comment: Accepted to CVPR 2025. Project Page: https://research.nvidia.com/labs/dir/hmar/
☆ Matter-of-Fact: A Benchmark for Verifying the Feasibility of Literature-Supported Claims in Materials Science
Contemporary approaches to assisted scientific discovery use language models to automatically generate large numbers of potential hypothesis to test, while also automatically generating code-based experiments to test those hypotheses. While hypotheses can be comparatively inexpensive to generate, automated experiments can be costly, particularly when run at scale (i.e. thousands of experiments). Developing the capacity to filter hypotheses based on their feasibility would allow discovery systems to run at scale, while increasing their likelihood of making significant discoveries. In this work we introduce Matter-of-Fact, a challenge dataset for determining the feasibility of hypotheses framed as claims. Matter-of-Fact includes 8.4k claims extracted from scientific articles spanning four high-impact contemporary materials science topics, including superconductors, semiconductors, batteries, and aerospace materials, while including qualitative and quantitative claims from theoretical, experimental, and code/simulation results. We show that strong baselines that include retrieval augmented generation over scientific literature and code generation fail to exceed 72% performance on this task (chance performance is 50%), while domain-expert verification suggests nearly all are solvable -- highlighting both the difficulty of this task for current models, and the potential to accelerate scientific discovery by making near-term progress.
comment: 8 pages
☆ Empaths at SemEval-2025 Task 11: Retrieval-Augmented Approach to Perceived Emotions Prediction SemEval-2025
This paper describes EmoRAG, a system designed to detect perceived emotions in text for SemEval-2025 Task 11, Subtask A: Multi-label Emotion Detection. We focus on predicting the perceived emotions of the speaker from a given text snippet, labeling it with emotions such as joy, sadness, fear, anger, surprise, and disgust. Our approach does not require additional model training and only uses an ensemble of models to predict emotions. EmoRAG achieves results comparable to the best performing systems, while being more efficient, scalable, and easier to implement.
comment: Accepted to SemEval-2025, an ACL 2025 workshop
☆ Unpacking Let Alone: Human-Scale Models Generalize to a Rare Construction in Form but not Meaning
Humans have a remarkable ability to acquire and understand grammatical phenomena that are seen rarely, if ever, during childhood. Recent evidence suggests that language models with human-scale pretraining data may possess a similar ability by generalizing from frequent to rare constructions. However, it remains an open question how widespread this generalization ability is, and to what extent this knowledge extends to meanings of rare constructions, as opposed to just their forms. We fill this gap by testing human-scale transformer language models on their knowledge of both the form and meaning of the (rare and quirky) English LET-ALONE construction. To evaluate our LMs we construct a bespoke synthetic benchmark that targets syntactic and semantic properties of the construction. We find that human-scale LMs are sensitive to form, even when related constructions are filtered from the dataset. However, human-scale LMs do not make correct generalizations about LET-ALONE's meaning. These results point to an asymmetry in the current architectures' sample efficiency between language form and meaning, something which is not present in human language learners.
☆ MedAgentGym: Training LLM Agents for Code-Based Medical Reasoning at Scale
We introduce MedAgentGYM, the first publicly available training environment designed to enhance coding-based medical reasoning capabilities in large language model (LLM) agents. MedAgentGYM comprises 72,413 task instances across 129 categories derived from authentic real-world biomedical scenarios. Tasks are encapsulated within executable coding environments, each featuring detailed task descriptions, interactive feedback mechanisms, verifiable ground-truth annotations, and scalable training trajectory generation. Extensive benchmarking of over 30 LLMs reveals a notable performance disparity between commercial API-based models and open-source counterparts. Leveraging MedAgentGYM, Med-Copilot-7B achieves substantial performance gains through supervised fine-tuning (+36.44%) and continued reinforcement learning (+42.47%), emerging as an affordable and privacy-preserving alternative competitive with gpt-4o. By offering both a comprehensive benchmark and accessible, expandable training resources within unified execution environments, MedAgentGYM delivers an integrated platform to develop LLM-based coding assistants for advanced biomedical research and practice.
☆ Unsupervised Meta-Testing with Conditional Neural Processes for Hybrid Meta-Reinforcement Learning
We introduce Unsupervised Meta-Testing with Conditional Neural Processes (UMCNP), a novel hybrid few-shot meta-reinforcement learning (meta-RL) method that uniquely combines, yet distinctly separates, parameterized policy gradient-based (PPG) and task inference-based few-shot meta-RL. Tailored for settings where the reward signal is missing during meta-testing, our method increases sample efficiency without requiring additional samples in meta-training. UMCNP leverages the efficiency and scalability of Conditional Neural Processes (CNPs) to reduce the number of online interactions required in meta-testing. During meta-training, samples previously collected through PPG meta-RL are efficiently reused for learning task inference in an offline manner. UMCNP infers the latent representation of the transition dynamics model from a single test task rollout with unknown parameters. This approach allows us to generate rollouts for self-adaptation by interacting with the learned dynamics model. We demonstrate our method can adapt to an unseen test task using significantly fewer samples during meta-testing than the baselines in 2D-Point Agent and continuous control meta-RL benchmarks, namely, cartpole with unknown angle sensor bias, walker agent with randomized dynamics parameters.
comment: Published in IEEE Robotics and Automation Letters Volume: 9, Issue: 10, 8427 - 8434, October 2024. 8 pages, 7 figures
☆ Bridging the Performance Gap Between Target-Free and Target-Based Reinforcement Learning With Iterated Q-Learning
In value-based reinforcement learning, removing the target network is tempting as the boostrapped target would be built from up-to-date estimates, and the spared memory occupied by the target network could be reallocated to expand the capacity of the online network. However, eliminating the target network introduces instability, leading to a decline in performance. Removing the target network also means we cannot leverage the literature developed around target networks. In this work, we propose to use a copy of the last linear layer of the online network as a target network, while sharing the remaining parameters with the up-to-date online network, hence stepping out of the binary choice between target-based and target-free methods. It enables us to leverage the concept of iterated Q-learning, which consists of learning consecutive Bellman iterations in parallel, to reduce the performance gap between target-free and target-based approaches. Our findings demonstrate that this novel method, termed iterated Shared Q-Learning (iS-QL), improves the sample efficiency of target-free approaches across various settings. Importantly, iS-QL requires a smaller memory footprint and comparable training time to classical target-based algorithms, highlighting its potential to scale reinforcement learning research.
☆ Through the Stealth Lens: Rethinking Attacks and Defenses in RAG
Retrieval-augmented generation (RAG) systems are vulnerable to attacks that inject poisoned passages into the retrieved set, even at low corruption rates. We show that existing attacks are not designed to be stealthy, allowing reliable detection and mitigation. We formalize stealth using a distinguishability-based security game. If a few poisoned passages are designed to control the response, they must differentiate themselves from benign ones, inherently compromising stealth. This motivates the need for attackers to rigorously analyze intermediate signals involved in generation$\unicode{x2014}$such as attention patterns or next-token probability distributions$\unicode{x2014}$to avoid easily detectable traces of manipulation. Leveraging attention patterns, we propose a passage-level score$\unicode{x2014}$the Normalized Passage Attention Score$\unicode{x2014}$used by our Attention-Variance Filter algorithm to identify and filter potentially poisoned passages. This method mitigates existing attacks, improving accuracy by up to $\sim 20 \%$ over baseline defenses. To probe the limits of attention-based defenses, we craft stealthier adaptive attacks that obscure such traces, achieving up to $35 \%$ attack success rate, and highlight the challenges in improving stealth.
☆ MELABenchv1: Benchmarking Large Language Models against Smaller Fine-Tuned Models for Low-Resource Maltese NLP ACL 2025
Large Language Models (LLMs) have demonstrated remarkable performance across various Natural Language Processing (NLP) tasks, largely due to their generalisability and ability to perform tasks without additional training. However, their effectiveness for low-resource languages remains limited. In this study, we evaluate the performance of 55 publicly available LLMs on Maltese, a low-resource language, using a newly introduced benchmark covering 11 discriminative and generative tasks. Our experiments highlight that many models perform poorly, particularly on generative tasks, and that smaller fine-tuned models often perform better across all tasks. From our multidimensional analysis, we investigate various factors impacting performance. We conclude that prior exposure to Maltese during pre-training and instruction-tuning emerges as the most important factor. We also examine the trade-offs between fine-tuning and prompting, highlighting that while fine-tuning requires a higher initial cost, it yields better performance and lower inference costs. Through this work, we aim to highlight the need for more inclusive language technologies and recommend that researchers working with low-resource languages consider more "traditional" language modelling approaches.
comment: ACL 2025 Findings Camera-Ready
☆ Visualizing and Controlling Cortical Responses Using Voxel-Weighted Activation Maximization CVPR
Deep neural networks (DNNs) trained on visual tasks develop feature representations that resemble those in the human visual system. Although DNN-based encoding models can accurately predict brain responses to visual stimuli, they offer limited insight into the specific features driving these responses. Here, we demonstrate that activation maximization -- a technique designed to interpret vision DNNs -- can be applied to DNN-based encoding models of the human brain. We extract and adaptively downsample activations from multiple layers of a pretrained Inception V3 network, then use linear regression to predict fMRI responses. This yields a full image-computable model of brain responses. Next, we apply activation maximization to generate images optimized for predicted responses in individual cortical voxels. We find that these images contain visual characteristics that qualitatively correspond with known selectivity and enable exploration of selectivity across the visual cortex. We further extend our method to whole regions of interest (ROIs) of the brain and validate its efficacy by presenting these images to human participants in an fMRI study. We find that the generated images reliably drive activity in targeted regions across both low- and high-level visual areas and across subjects. These results demonstrate that activation maximization can be successfully applied to DNN-based encoding models. By addressing key limitations of alternative approaches that require natively generative models, our approach enables flexible characterization and modulation of responses across the human visual system.
comment: Accepted to the Mechanistic Interpretability for Vision (MIV) Workshop at the 2025 Conference on Computer Vision and Pattern Recognition (CVPR) conference
☆ Domain Adaptation Method and Modality Gap Impact in Audio-Text Models for Prototypical Sound Classification INTERSPEECH 2025
Audio-text models are widely used in zero-shot environmental sound classification as they alleviate the need for annotated data. However, we show that their performance severely drops in the presence of background sound sources. Our analysis reveals that this degradation is primarily driven by SNR levels of background soundscapes, and independent of background type. To address this, we propose a novel method that quantifies and integrates the contribution of background sources into the classification process, improving performance without requiring model retraining. Our domain adaptation technique enhances accuracy across various backgrounds and SNR conditions. Moreover, we analyze the modality gap between audio and text embeddings, showing that narrowing this gap improves classification performance. The method generalizes effectively across state-of-the-art prototypical approaches, showcasing its scalability and robustness for diverse environments.
comment: Accepted at INTERSPEECH 2025
☆ A Statistical Physics of Language Model Reasoning
Transformer LMs show emergent reasoning that resists mechanistic understanding. We offer a statistical physics framework for continuous-time chain-of-thought reasoning dynamics. We model sentence-level hidden state trajectories as a stochastic dynamical system on a lower-dimensional manifold. This drift-diffusion system uses latent regime switching to capture diverse reasoning phases, including misaligned states or failures. Empirical trajectories (8 models, 7 benchmarks) show a rank-40 projection (balancing variance capture and feasibility) explains ~50% variance. We find four latent reasoning regimes. An SLDS model is formulated and validated to capture these features. The framework enables low-cost reasoning simulation, offering tools to study and predict critical transitions like misaligned states or other LM failures.
☆ Mechanistic Decomposition of Sentence Representations
Sentence embeddings are central to modern NLP and AI systems, yet little is known about their internal structure. While we can compare these embeddings using measures such as cosine similarity, the contributing features are not human-interpretable, and the content of an embedding seems untraceable, as it is masked by complex neural transformations and a final pooling operation that combines individual token embeddings. To alleviate this issue, we propose a new method to mechanistically decompose sentence embeddings into interpretable components, by using dictionary learning on token-level representations. We analyze how pooling compresses these features into sentence representations, and assess the latent features that reside in a sentence embedding. This bridges token-level mechanistic interpretability with sentence-level analysis, making for more transparent and controllable representations. In our studies, we obtain several interesting insights into the inner workings of sentence embedding spaces, for instance, that many semantic and syntactic aspects are linearly encoded in the embeddings.
☆ Ice Hockey Puck Localization Using Contextual Cues
Puck detection in ice hockey broadcast videos poses significant challenges due to the puck's small size, frequent occlusions, motion blur, broadcast artifacts, and scale inconsistencies due to varying camera zoom and broadcast camera viewpoints. Prior works focus on appearance-based or motion-based cues of the puck without explicitly modelling the cues derived from player behaviour. Players consistently turn their bodies and direct their gaze toward the puck. Motivated by this strong contextual cue, we propose Puck Localization Using Contextual Cues (PLUCC), a novel approach for scale-aware and context-driven single-frame puck detections. PLUCC consists of three components: (a) a contextual encoder, which utilizes player orientations and positioning as helpful priors; (b) a feature pyramid encoder, which extracts multiscale features from the dual encoders; and (c) a gating decoder that combines latent features with a channel gating mechanism. For evaluation, in addition to standard average precision, we propose Rink Space Localization Error (RSLE), a scale-invariant homography-based metric for removing perspective bias from rink space evaluation. The experimental results of PLUCC on the PuckDataset dataset demonstrated state-of-the-art detection performance, surpassing previous baseline methods by an average precision improvement of 12.2% and RSLE average precision of 25%. Our research demonstrates the critical role of contextual understanding in improving puck detection performance, with broad implications for automated sports analysis.
☆ cuVSLAM: CUDA accelerated visual odometry
Accurate and robust pose estimation is a key requirement for any autonomous robot. We present cuVSLAM, a state-of-the-art solution for visual simultaneous localization and mapping, which can operate with a variety of visual-inertial sensor suites, including multiple RGB and depth cameras, and inertial measurement units. cuVSLAM supports operation with as few as one RGB camera to as many as 32 cameras, in arbitrary geometric configurations, thus supporting a wide range of robotic setups. cuVSLAM is specifically optimized using CUDA to deploy in real-time applications with minimal computational overhead on edge-computing devices such as the NVIDIA Jetson. We present the design and implementation of cuVSLAM, example use cases, and empirical results on several state-of-the-art benchmarks demonstrating the best-in-class performance of cuVSLAM.
☆ ReXVQA: A Large-scale Visual Question Answering Benchmark for Generalist Chest X-ray Understanding
We present ReXVQA, the largest and most comprehensive benchmark for visual question answering (VQA) in chest radiology, comprising approximately 696,000 questions paired with 160,000 chest X-rays studies across training, validation, and test sets. Unlike prior efforts that rely heavily on template based queries, ReXVQA introduces a diverse and clinically authentic task suite reflecting five core radiological reasoning skills: presence assessment, location analysis, negation detection, differential diagnosis, and geometric reasoning. We evaluate eight state-of-the-art multimodal large language models, including MedGemma-4B-it, Qwen2.5-VL, Janus-Pro-7B, and Eagle2-9B. The best-performing model (MedGemma) achieves 83.24% overall accuracy. To bridge the gap between AI performance and clinical expertise, we conducted a comprehensive human reader study involving 3 radiology residents on 200 randomly sampled cases. Our evaluation demonstrates that MedGemma achieved superior performance (83.84% accuracy) compared to human readers (best radiology resident: 77.27%), representing a significant milestone where AI performance exceeds expert human evaluation on chest X-ray interpretation. The reader study reveals distinct performance patterns between AI models and human experts, with strong inter-reader agreement among radiologists while showing more variable agreement patterns between human readers and AI models. ReXVQA establishes a new standard for evaluating generalist radiological AI systems, offering public leaderboards, fine-grained evaluation splits, structured explanations, and category-level breakdowns. This benchmark lays the foundation for next-generation AI systems capable of mimicking expert-level clinical reasoning beyond narrow pathology classification. Our dataset will be open-sourced at https://huggingface.co/datasets/rajpurkarlab/ReXVQA
☆ RoboRefer: Towards Spatial Referring with Reasoning in Vision-Language Models for Robotics
Spatial referring is a fundamental capability of embodied robots to interact with the 3D physical world. However, even with the powerful pretrained vision language models (VLMs), recent approaches are still not qualified to accurately understand the complex 3D scenes and dynamically reason about the instruction-indicated locations for interaction. To this end, we propose RoboRefer, a 3D-aware VLM that can first achieve precise spatial understanding by integrating a disentangled but dedicated depth encoder via supervised fine-tuning (SFT). Moreover, RoboRefer advances generalized multi-step spatial reasoning via reinforcement fine-tuning (RFT), with metric-sensitive process reward functions tailored for spatial referring tasks. To support SFT and RFT training, we introduce RefSpatial, a large-scale dataset of 20M QA pairs (2x prior), covering 31 spatial relations (vs. 15 prior) and supporting complex reasoning processes (up to 5 steps). In addition, we introduce RefSpatial-Bench, a challenging benchmark filling the gap in evaluating spatial referring with multi-step reasoning. Experiments show that SFT-trained RoboRefer achieves state-of-the-art spatial understanding, with an average success rate of 89.6%. RFT-trained RoboRefer further outperforms all other baselines by a large margin, even surpassing Gemini-2.5-Pro by 17.4% in average accuracy on RefSpatial-Bench. Notably, RoboRefer can be integrated with various control policies to execute long-horizon, dynamic tasks across diverse robots (e,g., UR5, G1 humanoid) in cluttered real-world scenes.
comment: Project page: https://zhoues.github.io/RoboRefer/
☆ Object-centric 3D Motion Field for Robot Learning from Human Videos
Learning robot control policies from human videos is a promising direction for scaling up robot learning. However, how to extract action knowledge (or action representations) from videos for policy learning remains a key challenge. Existing action representations such as video frames, pixelflow, and pointcloud flow have inherent limitations such as modeling complexity or loss of information. In this paper, we propose to use object-centric 3D motion field to represent actions for robot learning from human videos, and present a novel framework for extracting this representation from videos for zero-shot control. We introduce two novel components in its implementation. First, a novel training pipeline for training a ''denoising'' 3D motion field estimator to extract fine object 3D motions from human videos with noisy depth robustly. Second, a dense object-centric 3D motion field prediction architecture that favors both cross-embodiment transfer and policy generalization to background. We evaluate the system in real world setups. Experiments show that our method reduces 3D motion estimation error by over 50% compared to the latest method, achieve 55% average success rate in diverse tasks where prior approaches fail~($\lesssim 10$\%), and can even acquire fine-grained manipulation skills like insertion.
comment: Project: https://zhaohengyin.github.io/3DMF
☆ Efficient Knowledge Editing via Minimal Precomputation ACL 2025
Knowledge editing methods like MEMIT are able to make data and compute efficient updates of factual knowledge by using a single sentence to update facts and their consequences. However, what is often overlooked is a "precomputation step", which requires a one-time but significant computational cost. The authors of MEMIT originally precompute approximately 44 million hidden vectors per edited layer, which requires a forward pass over 44 million tokens. For GPT-J (6B), this precomputation step takes 36 hours on a single GPU, while it takes approximately 40 hours for Llama2-7B. Additionally, this precomputation time grows with model size. In this paper, we show that this excessive computational cost is unnecessary. Knowledge editing using MEMIT and related methods, such as ROME and EMMET, can be performed by pre-computing a very small portion of the 44 million hidden vectors. We first present the theoretical minimum number of hidden vector precomputation required for solutions of these editing methods to exist. We then empirically show that knowledge editing using these methods can be done by pre-computing significantly fewer hidden vectors. Specifically, we show that the precomputation step can be done with less than 0.3% of the originally stipulated number of hidden vectors. This saves a significant amount of precomputation time and allows users to begin editing new models within a few minutes.
comment: ACL 2025 Main Conference
☆ Pseudo-Simulation for Autonomous Driving
Existing evaluation paradigms for Autonomous Vehicles (AVs) face critical limitations. Real-world evaluation is often challenging due to safety concerns and a lack of reproducibility, whereas closed-loop simulation can face insufficient realism or high computational costs. Open-loop evaluation, while being efficient and data-driven, relies on metrics that generally overlook compounding errors. In this paper, we propose pseudo-simulation, a novel paradigm that addresses these limitations. Pseudo-simulation operates on real datasets, similar to open-loop evaluation, but augments them with synthetic observations generated prior to evaluation using 3D Gaussian Splatting. Our key idea is to approximate potential future states the AV might encounter by generating a diverse set of observations that vary in position, heading, and speed. Our method then assigns a higher importance to synthetic observations that best match the AV's likely behavior using a novel proximity-based weighting scheme. This enables evaluating error recovery and the mitigation of causal confusion, as in closed-loop benchmarks, without requiring sequential interactive simulation. We show that pseudo-simulation is better correlated with closed-loop simulations (R^2=0.8) than the best existing open-loop approach (R^2=0.7). We also establish a public leaderboard for the community to benchmark new methodologies with pseudo-simulation. Our code is available at https://github.com/autonomousvision/navsim.
☆ OWMM-Agent: Open World Mobile Manipulation With Multi-modal Agentic Data Synthesis
The rapid progress of navigation, manipulation, and vision models has made mobile manipulators capable in many specialized tasks. However, the open-world mobile manipulation (OWMM) task remains a challenge due to the need for generalization to open-ended instructions and environments, as well as the systematic complexity to integrate high-level decision making with low-level robot control based on both global scene understanding and current agent state. To address this complexity, we propose a novel multi-modal agent architecture that maintains multi-view scene frames and agent states for decision-making and controls the robot by function calling. A second challenge is the hallucination from domain shift. To enhance the agent performance, we further introduce an agentic data synthesis pipeline for the OWMM task to adapt the VLM model to our task domain with instruction fine-tuning. We highlight our fine-tuned OWMM-VLM as the first dedicated foundation model for mobile manipulators with global scene understanding, robot state tracking, and multi-modal action generation in a unified model. Through experiments, we demonstrate that our model achieves SOTA performance compared to other foundation models including GPT-4o and strong zero-shot generalization in real world. The project page is at https://github.com/HHYHRHY/OWMM-Agent
comment: 9 pages of main content, 19 pages in total
☆ Thinking Beyond Visibility: A Near-Optimal Policy Framework for Locally Interdependent Multi-Agent MDPs
Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are known to be NEXP-Complete and intractable to solve. However, for problems such as cooperative navigation, obstacle avoidance, and formation control, basic assumptions can be made about local visibility and local dependencies. The work DeWeese and Qu 2024 formalized these assumptions in the construction of the Locally Interdependent Multi-Agent MDP. In this setting, it establishes three closed-form policies that are tractable to compute in various situations and are exponentially close to optimal with respect to visibility. However, it is also shown that these solutions can have poor performance when the visibility is small and fixed, often getting stuck during simulations due to the so called "Penalty Jittering" phenomenon. In this work, we establish the Extended Cutoff Policy Class which is, to the best of our knowledge, the first non-trivial class of near optimal closed-form partially observable policies that are exponentially close to optimal with respect to the visibility for any Locally Interdependent Multi-Agent MDP. These policies are able to remember agents beyond their visibilities which allows them to perform significantly better in many small and fixed visibility settings, resolve Penalty Jittering occurrences, and under certain circumstances guarantee fully observable joint optimal behavior despite the partial observability. We also propose a generalized form of the Locally Interdependent Multi-Agent MDP that allows for transition dependence and extended reward dependence, then replicate our theoretical results in this setting.
☆ Does Thinking More always Help? Understanding Test-Time Scaling in Reasoning Models
Recent trends in test-time scaling for reasoning models (e.g., OpenAI o1, DeepSeek R1) have led to a popular belief that extending thinking traces using prompts like "Wait" or "Let me rethink" can improve performance. This raises a natural question: Does thinking more at test-time truly lead to better reasoning? To answer this question, we perform a detailed empirical study across models and benchmarks, which reveals a consistent pattern of initial performance improvements from additional thinking followed by a decline, due to "overthinking". To understand this non-monotonic trend, we consider a simple probabilistic model, which reveals that additional thinking increases output variance-creating an illusion of improved reasoning while ultimately undermining precision. Thus, observed gains from "more thinking" are not true indicators of improved reasoning, but artifacts stemming from the connection between model uncertainty and evaluation metric. This suggests that test-time scaling through extended thinking is not an effective way to utilize the inference thinking budget. Recognizing these limitations, we introduce an alternative test-time scaling approach, parallel thinking, inspired by Best-of-N sampling. Our method generates multiple independent reasoning paths within the same inference budget and selects the most consistent response via majority vote, achieving up to 20% higher accuracy compared to extended thinking. This provides a simple yet effective mechanism for test-time scaling of reasoning models.
☆ Advancing Multimodal Reasoning: From Optimized Cold Start to Staged Reinforcement Learning
Inspired by the remarkable reasoning capabilities of Deepseek-R1 in complex textual tasks, many works attempt to incentivize similar capabilities in Multimodal Large Language Models (MLLMs) by directly applying reinforcement learning (RL). However, they still struggle to activate complex reasoning. In this paper, rather than examining multimodal RL in isolation, we delve into current training pipelines and identify three crucial phenomena: 1) Effective cold start initialization is critical for enhancing MLLM reasoning. Intriguingly, we find that initializing with carefully selected text data alone can lead to performance surpassing many recent multimodal reasoning models, even before multimodal RL. 2) Standard GRPO applied to multimodal RL suffers from gradient stagnation, which degrades training stability and performance. 3) Subsequent text-only RL training, following the multimodal RL phase, further enhances multimodal reasoning. This staged training approach effectively balances perceptual grounding and cognitive reasoning development. By incorporating the above insights and addressing multimodal RL issues, we introduce ReVisual-R1, achieving a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
comment: 19 pages, 6 figures
☆ TracLLM: A Generic Framework for Attributing Long Context LLMs USENIX Security
Long context large language models (LLMs) are deployed in many real-world applications such as RAG, agent, and broad LLM-integrated applications. Given an instruction and a long context (e.g., documents, PDF files, webpages), a long context LLM can generate an output grounded in the provided context, aiming to provide more accurate, up-to-date, and verifiable outputs while reducing hallucinations and unsupported claims. This raises a research question: how to pinpoint the texts (e.g., sentences, passages, or paragraphs) in the context that contribute most to or are responsible for the generated output by an LLM? This process, which we call context traceback, has various real-world applications, such as 1) debugging LLM-based systems, 2) conducting post-attack forensic analysis for attacks (e.g., prompt injection attack, knowledge corruption attacks) to an LLM, and 3) highlighting knowledge sources to enhance the trust of users towards outputs generated by LLMs. When applied to context traceback for long context LLMs, existing feature attribution methods such as Shapley have sub-optimal performance and/or incur a large computational cost. In this work, we develop TracLLM, the first generic context traceback framework tailored to long context LLMs. Our framework can improve the effectiveness and efficiency of existing feature attribution methods. To improve the efficiency, we develop an informed search based algorithm in TracLLM. We also develop contribution score ensemble/denoising techniques to improve the accuracy of TracLLM. Our evaluation results show TracLLM can effectively identify texts in a long context that lead to the output of an LLM. Our code and data are at: https://github.com/Wang-Yanting/TracLLM.
comment: To appear in USENIX Security Symposium 2025. The code and data are at: https://github.com/Wang-Yanting/TracLLM
☆ MACS: Multi-Agent Reinforcement Learning for Optimization of Crystal Structures
Geometry optimization of atomic structures is a common and crucial task in computational chemistry and materials design. Following the learning to optimize paradigm, we propose a new multi-agent reinforcement learning method called Multi-Agent Crystal Structure optimization (MACS) to address periodic crystal structure optimization. MACS treats geometry optimization as a partially observable Markov game in which atoms are agents that adjust their positions to collectively discover a stable configuration. We train MACS across various compositions of reported crystalline materials to obtain a policy that successfully optimizes structures from the training compositions as well as structures of larger sizes and unseen compositions, confirming its excellent scalability and zero-shot transferability. We benchmark our approach against a broad range of state-of-the-art optimization methods and demonstrate that MACS optimizes periodic crystal structures significantly faster, with fewer energy calculations, and the lowest failure rate.
☆ Physics-Constrained Flow Matching: Sampling Generative Models with Hard Constraints
Deep generative models have recently been applied to physical systems governed by partial differential equations (PDEs), offering scalable simulation and uncertainty-aware inference. However, enforcing physical constraints, such as conservation laws (linear and nonlinear) and physical consistencies, remains challenging. Existing methods often rely on soft penalties or architectural biases that fail to guarantee hard constraints. In this work, we propose Physics-Constrained Flow Matching (PCFM), a zero-shot inference framework that enforces arbitrary nonlinear constraints in pretrained flow-based generative models. PCFM continuously guides the sampling process through physics-based corrections applied to intermediate solution states, while remaining aligned with the learned flow and satisfying physical constraints. Empirically, PCFM outperforms both unconstrained and constrained baselines on a range of PDEs, including those with shocks, discontinuities, and sharp features, while ensuring exact constraint satisfaction at the final solution. Our method provides a general framework for enforcing hard constraints in both scientific and general-purpose generative models, especially in applications where constraint satisfaction is essential.
comment: 27 pages, 9 figures, 4 tables
☆ Horizon Reduction Makes RL Scalable
In this work, we study the scalability of offline reinforcement learning (RL) algorithms. In principle, a truly scalable offline RL algorithm should be able to solve any given problem, regardless of its complexity, given sufficient data, compute, and model capacity. We investigate if and how current offline RL algorithms match up to this promise on diverse, challenging, previously unsolved tasks, using datasets up to 1000x larger than typical offline RL datasets. We observe that despite scaling up data, many existing offline RL algorithms exhibit poor scaling behavior, saturating well below the maximum performance. We hypothesize that the horizon is the main cause behind the poor scaling of offline RL. We empirically verify this hypothesis through several analysis experiments, showing that long horizons indeed present a fundamental barrier to scaling up offline RL. We then show that various horizon reduction techniques substantially enhance scalability on challenging tasks. Based on our insights, we also introduce a minimal yet scalable method named SHARSA that effectively reduces the horizon. SHARSA achieves the best asymptotic performance and scaling behavior among our evaluation methods, showing that explicitly reducing the horizon unlocks the scalability of offline RL. Code: https://github.com/seohongpark/horizon-reduction
☆ SLAC: Simulation-Pretrained Latent Action Space for Whole-Body Real-World RL
Building capable household and industrial robots requires mastering the control of versatile, high-degree-of-freedom (DoF) systems such as mobile manipulators. While reinforcement learning (RL) holds promise for autonomously acquiring robot control policies, scaling it to high-DoF embodiments remains challenging. Direct RL in the real world demands both safe exploration and high sample efficiency, which are difficult to achieve in practice. Sim-to-real RL, on the other hand, is often brittle due to the reality gap. This paper introduces SLAC, a method that renders real-world RL feasible for complex embodiments by leveraging a low-fidelity simulator to pretrain a task-agnostic latent action space. SLAC trains this latent action space via a customized unsupervised skill discovery method designed to promote temporal abstraction, disentanglement, and safety, thereby facilitating efficient downstream learning. Once a latent action space is learned, SLAC uses it as the action interface for a novel off-policy RL algorithm to autonomously learn downstream tasks through real-world interactions. We evaluate SLAC against existing methods on a suite of bimanual mobile manipulation tasks, where it achieves state-of-the-art performance. Notably, SLAC learns contact-rich whole-body tasks in under an hour of real-world interactions, without relying on any demonstrations or hand-crafted behavior priors. More information, code, and videos at robo-rl.github.io
☆ Person Re-Identification System at Semantic Level based on Pedestrian Attributes Ontology
Person Re-Identification (Re-ID) is a very important task in video surveillance systems such as tracking people, finding people in public places, or analysing customer behavior in supermarkets. Although there have been many works to solve this problem, there are still remaining challenges such as large-scale datasets, imbalanced data, viewpoint, fine grained data (attributes), the Local Features are not employed at semantic level in online stage of Re-ID task, furthermore, the imbalanced data problem of attributes are not taken into consideration. This paper has proposed a Unified Re-ID system consisted of three main modules such as Pedestrian Attribute Ontology (PAO), Local Multi-task DCNN (Local MDCNN), Imbalance Data Solver (IDS). The new main point of our Re-ID system is the power of mutual support of PAO, Local MDCNN and IDS to exploit the inner-group correlations of attributes and pre-filter the mismatch candidates from Gallery set based on semantic information as Fashion Attributes and Facial Attributes, to solve the imbalanced data of attributes without adjusting network architecture and data augmentation. We experimented on the well-known Market1501 dataset. The experimental results have shown the effectiveness of our Re-ID system and it could achieve the higher performance on Market1501 dataset in comparison to some state-of-the-art Re-ID methods.
☆ TRiSM for Agentic AI: A Review of Trust, Risk, and Security Management in LLM-based Agentic Multi-Agent Systems
Agentic AI systems, built on large language models (LLMs) and deployed in multi-agent configurations, are redefining intelligent autonomy, collaboration and decision-making across enterprise and societal domains. This review presents a structured analysis of Trust, Risk, and Security Management (TRiSM) in the context of LLM-based agentic multi-agent systems (AMAS). We begin by examining the conceptual foundations of agentic AI, its architectural differences from traditional AI agents, and the emerging system designs that enable scalable, tool-using autonomy. The TRiSM in the agentic AI framework is then detailed through four pillars governance, explainability, ModelOps, and privacy/security each contextualized for agentic LLMs. We identify unique threat vectors and introduce a comprehensive risk taxonomy for the agentic AI applications, supported by case studies illustrating real-world vulnerabilities. Furthermore, the paper also surveys trust-building mechanisms, transparency and oversight techniques, and state-of-the-art explainability strategies in distributed LLM agent systems. Additionally, metrics for evaluating trust, interpretability, and human-centered performance are reviewed alongside open benchmarking challenges. Security and privacy are addressed through encryption, adversarial defense, and compliance with evolving AI regulations. The paper concludes with a roadmap for responsible agentic AI, proposing research directions to align emerging multi-agent systems with robust TRiSM principles for safe, accountable, and transparent deployment.
☆ Plant Bioelectric Early Warning Systems: A Five-Year Investigation into Human-Plant Electromagnetic Communication
We present a comprehensive investigation into plant bioelectric responses to human presence and emotional states, building on five years of systematic research. Using custom-built plant sensors and machine learning classification, we demonstrate that plants generate distinct bioelectric signals correlating with human proximity, emotional states, and physiological conditions. A deep learning model based on ResNet50 architecture achieved 97% accuracy in classifying human emotional states through plant voltage spectrograms, while control models with shuffled labels achieved only 30% accuracy. This study synthesizes findings from multiple experiments spanning 2020-2025, including individual recognition (66% accuracy), eurythmic gesture detection, stress prediction, and responses to human voice and movement. We propose that these phenomena represent evolved anti-herbivory early warning systems, where plants detect approaching animals through bioelectric field changes before physical contact. Our results challenge conventional understanding of plant sensory capabilities and suggest practical applications in agriculture, healthcare, and human-plant interaction research.
☆ CLAIM: An Intent-Driven Multi-Agent Framework for Analyzing Manipulation in Courtroom Dialogues ACL
Courtrooms are places where lives are determined and fates are sealed, yet they are not impervious to manipulation. Strategic use of manipulation in legal jargon can sway the opinions of judges and affect the decisions. Despite the growing advancements in NLP, its application in detecting and analyzing manipulation within the legal domain remains largely unexplored. Our work addresses this gap by introducing LegalCon, a dataset of 1,063 annotated courtroom conversations labeled for manipulation detection, identification of primary manipulators, and classification of manipulative techniques, with a focus on long conversations. Furthermore, we propose CLAIM, a two-stage, Intent-driven Multi-agent framework designed to enhance manipulation analysis by enabling context-aware and informed decision-making. Our results highlight the potential of incorporating agentic frameworks to improve fairness and transparency in judicial processes. We hope that this contributes to the broader application of NLP in legal discourse analysis and the development of robust tools to support fairness in legal decision-making. Our code and data are available at https://github.com/Disha1001/CLAIM.
comment: Accepted to SICon 2025 ACL
☆ Recent Advances in Medical Image Classification
Medical image classification is crucial for diagnosis and treatment, benefiting significantly from advancements in artificial intelligence. The paper reviews recent progress in the field, focusing on three levels of solutions: basic, specific, and applied. It highlights advances in traditional methods using deep learning models like Convolutional Neural Networks and Vision Transformers, as well as state-of-the-art approaches with Vision Language Models. These models tackle the issue of limited labeled data, and enhance and explain predictive results through Explainable Artificial Intelligence.
☆ A Comprehensive Study on Medical Image Segmentation using Deep Neural Networks
Over the past decade, Medical Image Segmentation (MIS) using Deep Neural Networks (DNNs) has achieved significant performance improvements and holds great promise for future developments. This paper presents a comprehensive study on MIS based on DNNs. Intelligent Vision Systems are often evaluated based on their output levels, such as Data, Information, Knowledge, Intelligence, and Wisdom (DIKIW),and the state-of-the-art solutions in MIS at these levels are the focus of research. Additionally, Explainable Artificial Intelligence (XAI) has become an important research direction, as it aims to uncover the "black box" nature of previous DNN architectures to meet the requirements of transparency and ethics. The study emphasizes the importance of MIS in disease diagnosis and early detection, particularly for increasing the survival rate of cancer patients through timely diagnosis. XAI and early prediction are considered two important steps in the journey from "intelligence" to "wisdom." Additionally, the paper addresses existing challenges and proposes potential solutions to enhance the efficiency of implementing DNN-based MIS.
☆ A Diffusion-Driven Temporal Super-Resolution and Spatial Consistency Enhancement Framework for 4D MRI imaging
In medical imaging, 4D MRI enables dynamic 3D visualization, yet the trade-off between spatial and temporal resolution requires prolonged scan time that can compromise temporal fidelity--especially during rapid, large-amplitude motion. Traditional approaches typically rely on registration-based interpolation to generate intermediate frames. However, these methods struggle with large deformations, resulting in misregistration, artifacts, and diminished spatial consistency. To address these challenges, we propose TSSC-Net, a novel framework that generates intermediate frames while preserving spatial consistency. To improve temporal fidelity under fast motion, our diffusion-based temporal super-resolution network generates intermediate frames using the start and end frames as key references, achieving 6x temporal super-resolution in a single inference step. Additionally, we introduce a novel tri-directional Mamba-based module that leverages long-range contextual information to effectively resolve spatial inconsistencies arising from cross-slice misalignment, thereby enhancing volumetric coherence and correcting cross-slice errors. Extensive experiments were performed on the public ACDC cardiac MRI dataset and a real-world dynamic 4D knee joint dataset. The results demonstrate that TSSC-Net can generate high-resolution dynamic MRI from fast-motion data while preserving structural fidelity and spatial consistency.
☆ Knowledge-guided Contextual Gene Set Analysis Using Large Language Models
Gene set analysis (GSA) is a foundational approach for interpreting genomic data of diseases by linking genes to biological processes. However, conventional GSA methods overlook clinical context of the analyses, often generating long lists of enriched pathways with redundant, nonspecific, or irrelevant results. Interpreting these requires extensive, ad-hoc manual effort, reducing both reliability and reproducibility. To address this limitation, we introduce cGSA, a novel AI-driven framework that enhances GSA by incorporating context-aware pathway prioritization. cGSA integrates gene cluster detection, enrichment analysis, and large language models to identify pathways that are not only statistically significant but also biologically meaningful. Benchmarking on 102 manually curated gene sets across 19 diseases and ten disease-related biological mechanisms shows that cGSA outperforms baseline methods by over 30%, with expert validation confirming its increased precision and interpretability. Two independent case studies in melanoma and breast cancer further demonstrate its potential to uncover context-specific insights and support targeted hypothesis generation.
comment: 56 pages, 9 figures, 1 table
♻ ☆ UniWorld: High-Resolution Semantic Encoders for Unified Visual Understanding and Generation
Although existing unified models achieve strong performance in vision-language understanding and text-to-image generation, they remain limited in addressing image perception and manipulation -- capabilities increasingly demanded in practical applications. Recently, OpenAI introduced the powerful GPT-4o-Image model, which showcases advanced capabilities in comprehensive image perception and manipulation, sparking widespread interest. Through carefully designed experiments, we observe that GPT-4o-Image likely relies on semantic encoders rather than VAEs for feature extraction, despite VAEs being commonly regarded as crucial for image manipulation tasks. Inspired by this insight, we propose UniWorld, a unified generative framework built upon semantic features extracted from powerful multimodal large language models and contrastive semantic encoders. Using only 2.7M training data, UniWorld achieves impressive performance across diverse tasks, including image understanding, generation, manipulation, and perception. We fully open-source the UniWorld framework, including model weights, training and evaluation scripts, and datasets to promote reproducibility and further research.
♻ ☆ Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback
Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided refinements simultaneously while maintaining exploration. Extensive experiments using Qwen2.5-7B-Base and Qwen3-8B-Base show that Critique-GRPO consistently outperforms supervised learning-based and RL-based fine-tuning approaches across eight challenging mathematical, STEM, and general reasoning tasks, improving average pass@1 scores by approximately 4.5% and 5%, respectively. Notably, Critique-GRPO surpasses a strong baseline that incorporates expert demonstrations within online RL. Further analysis reveals two critical insights about policy exploration: (1) higher entropy does not always guarantee efficient learning from exploration, and (2) longer responses do not necessarily lead to more effective exploration.
comment: 38 pages
♻ ☆ MobCLIP: Learning General-purpose Geospatial Representation at Scale
Representation learning of geospatial locations remains a core challenge in achieving general geospatial intelligence. Current embedding methods often lack versatility, limiting their utility across diverse tasks in both human and natural domains. We present MobCLIP, the first nationwide general-purpose location encoder, integrating an unprecedented diversity of data modalities through effective and scalable multimodal fusion. Adopting a novel CLIP-based architecture, our framework aligns 100M+ POIs, nationwide remote sensing imagery, and structured demographic statistics with a billion-edge mobility graph. By tokenizing spatial locations into grid cells inspired by Vision Transformers, we establish a unified representation space bridging mobility patterns and multimodal features. To rigorously evaluate the general-purpose effectiveness of MobCLIP, we construct a benchmark dataset composed of 11 downstream prediction tasks across social, economic, and natural domains. Experiments show that MobCLIP, with four input modalities and a compact 128-dimensional representation space, achieves significantly superior general-purpose predictive performances than state-of-the-art models by an average of 35%. Thanks to the effective integration of human-centric modalities, the performance gain is particularly profound in human-centric tasks, such as energy consumption (+260%), offline retail consumption amount (+98%), and crime cases (+95%) predictions. Echoing LLM scaling laws, we further demonstrate the scaling behavior in geospatial representation learning. We open-source code and pretrained models at: https://github.com/ylzhouchris/MobCLIP.
♻ ☆ Demystifying Reasoning Dynamics with Mutual Information: Thinking Tokens are Information Peaks in LLM Reasoning
Large reasoning models (LRMs) have demonstrated impressive capabilities in complex problem-solving, yet their internal reasoning mechanisms remain poorly understood. In this paper, we investigate the reasoning trajectories of LRMs from an information-theoretic perspective. By tracking how mutual information (MI) between intermediate representations and the correct answer evolves during LRM reasoning, we observe an interesting MI peaks phenomenon: the MI at specific generative steps exhibits a sudden and significant increase during LRM's reasoning process. We theoretically analyze such phenomenon and show that as MI increases, the probability of model's prediction error decreases. Furthermore, these MI peaks often correspond to tokens expressing reflection or transition, such as ``Hmm'', ``Wait'' and ``Therefore,'' which we term as the thinking tokens. We then demonstrate that these thinking tokens are crucial for LRM's reasoning performance, while other tokens has minimal impacts. Building on these analyses, we propose two simple yet effective methods to improve LRM's reasoning performance, by delicately leveraging these thinking tokens. Overall, our work provides novel insights into the reasoning mechanisms of LRMs and offers practical ways to improve their reasoning capabilities. The code is available at https://github.com/ChnQ/MI-Peaks.
comment: Preprint. Under review
♻ ☆ MedEBench: Revisiting Text-instructed Image Editing on Medical Domain
Text-guided image editing has seen rapid progress in natural image domains, but its adaptation to medical imaging remains limited and lacks standardized evaluation. Clinically, such editing holds promise for simulating surgical outcomes, creating personalized teaching materials, and enhancing patient communication. To bridge this gap, we introduce MedEBench, a comprehensive benchmark for evaluating text-guided medical image editing. It consists of 1,182 clinically sourced image-prompt triplets spanning 70 tasks across 13 anatomical regions. MedEBench offers three key contributions: (1) a clinically relevant evaluation framework covering Editing Accuracy, Contextual Preservation, and Visual Quality, supported by detailed descriptions of expected change and ROI (Region of Interest) masks; (2) a systematic comparison of seven state-of-the-art models, revealing common failure patterns; and (3) a failure analysis protocol based on attention grounding, using IoU between attention maps and ROIs to identify mislocalization. MedEBench provides a solid foundation for developing and evaluating reliable, clinically meaningful medical image editing systems. Project website: https://mliuby.github.io/MedEBench_Website/
comment: Project website: https://mliuby.github.io/MedEBench_Website/
♻ ☆ High Performance Space Debris Tracking in Complex Skylight Backgrounds with a Large-Scale Dataset
With the rapid development of space exploration, space debris has attracted more attention due to its potential extreme threat, leading to the need for real-time and accurate debris tracking. However, existing methods are mainly based on traditional signal processing, which cannot effectively process the complex background and dense space debris. In this paper, we propose a deep learning-based Space Debris Tracking Network~(SDT-Net) to achieve highly accurate debris tracking. SDT-Net effectively represents the feature of debris, enhancing the efficiency and stability of end-to-end model learning. To train and evaluate this model effectively, we also produce a large-scale dataset Space Debris Tracking Dataset (SDTD) by a novel observation-based data simulation scheme. SDTD contains 18,040 video sequences with a total of 62,562 frames and covers 250,000 synthetic space debris. Extensive experiments validate the effectiveness of our model and the challenging of our dataset. Furthermore, we test our model on real data from the Antarctic Station, achieving a MOTA score of 70.6%, which demonstrates its strong transferability to real-world scenarios. Our dataset and code will be released soon.
♻ ☆ Multi Layered Autonomy and AI Ecologies in Robotic Art Installations
Symbiosis of Agents is a large-scale installation by Baoyang Chen (baoyangchen.com) that embeds AI-driven robots in an immersive, mirror-lined arena, probing the tension between machine agency and artistic authorship. Drawing on early cybernetics, rule-based conceptual art, and seminal robotic works, it orchestrates fluid exchanges among robotic arms, quadruped machines, their environment, and the public. A three tier faith system pilots the ecology: micro-level adaptive tactics, meso-level narrative drives, and a macro-level prime directive. This hierarchy lets behaviors evolve organically in response to environmental cues and even a viewer's breath, turning spectators into co-authors of the unfolding drama. Framed by a speculative terraforming scenario that recalls the historical exploitation of marginalized labor, the piece asks who bears responsibility in AI-mediated futures. Choreographed motion, AI-generated scripts, reactive lighting, and drifting fog cast the robots as collaborators rather than tools, forging a living, emergent artwork. Exhibited internationally, Symbiosis of Agents shows how cybernetic feedback, robotic experimentation, and conceptual rule-making can converge to redefine agency, authorship, and ethics in contemporary art.
♻ ☆ ADFormer: Aggregation Differential Transformer for Passenger Demand Forecasting IJCAI-2025
Passenger demand forecasting helps optimize vehicle scheduling, thereby improving urban efficiency. Recently, attention-based methods have been used to adequately capture the dynamic nature of spatio-temporal data. However, existing methods that rely on heuristic masking strategies cannot fully adapt to the complex spatio-temporal correlations, hindering the model from focusing on the right context. These works also overlook the high-level correlations that exist in the real world. Effectively integrating these high-level correlations with the original correlations is crucial. To fill this gap, we propose the Aggregation Differential Transformer (ADFormer), which offers new insights to demand forecasting promotion. Specifically, we utilize Differential Attention to capture the original spatial correlations and achieve attention denoising. Meanwhile, we design distinct aggregation strategies based on the nature of space and time. Then, the original correlations are unified with the high-level correlations, enabling the model to capture holistic spatio-temporal relations. Experiments conducted on taxi and bike datasets confirm the effectiveness and efficiency of our model, demonstrating its practical value. The code is available at https://github.com/decisionintelligence/ADFormer.
comment: 9 pages, 5 figures, 3 tables. IJCAI-2025
♻ ☆ Generative Emotion Cause Explanation in Multimodal Conversations
Multimodal conversation, a crucial form of human communication, carries rich emotional content, making the exploration of the causes of emotions within it a research endeavor of significant importance. However, existing research on the causes of emotions typically employs an utterance selection method within a single textual modality to locate causal utterances. This approach remains limited to coarse-grained assessments, lacks nuanced explanations of emotional causation, and demonstrates inadequate capability in identifying multimodal emotional triggers. Therefore, we introduce a task-\textbf{Multimodal Emotion Cause Explanation in Conversation (MECEC)}. This task aims to generate a summary based on the multimodal context of conversations, clearly and intuitively describing the reasons that trigger a given emotion. To adapt to this task, we develop a new dataset (ECEM) based on the MELD dataset. ECEM combines video clips with detailed explanations of character emotions, helping to explore the causal factors behind emotional expression in multimodal conversations. A novel approach, FAME-Net, is further proposed, that harnesses the power of Large Language Models (LLMs) to analyze visual data and accurately interpret the emotions conveyed through facial expressions in videos. By exploiting the contagion effect of facial emotions, FAME-Net effectively captures the emotional causes of individuals engaged in conversations. Our experimental results on the newly constructed dataset show that FAME-Net outperforms several excellent baselines. Code and dataset are available at https://github.com/3222345200/FAME-Net.
♻ ☆ CoRe-MMRAG: Cross-Source Knowledge Reconciliation for Multimodal RAG ACL 2025
Multimodal Retrieval-Augmented Generation (MMRAG) has been introduced to enhance Multimodal Large Language Models by incorporating externally retrieved multimodal knowledge, but it introduces two challenges: Parametric-Retrieved Knowledge Inconsistency (PRKI), where discrepancies between parametric and retrieved knowledge create uncertainty in determining reliability, and Visual-Textual Knowledge Inconsistency (VTKI), where misalignment between visual and textual sources disrupts entity representation. To address these challenges, we propose Cross-source knowledge \textbf{Re}conciliation for Multimodal RAG (CoRe-MMRAG), a novel end-to-end framework that effectively reconciles inconsistencies across knowledge sources. CoRe-MMRAG follows a four-stage pipeline: it first generates an internal response from parametric knowledge, then selects the most relevant multimodal evidence via joint similarity assessment, generates an external response, and finally integrates both to produce a reliable answer. Additionally, a specialized training paradigm enhances knowledge source discrimination, multimodal integration, and unified answer generation. Experiments on KB-VQA benchmarks show that CoRe-MMRAG achieves substantial improvements over baseline methods, achieving 5.6% and 9.3% performance gains on InfoSeek and Encyclopedic-VQA, respectively.
comment: Accepted to ACL 2025 Main
♻ ☆ It Takes a Good Model to Train a Good Model: Generalized Gaussian Priors for Optimized LLMs
Despite rapid advancements in the research and deployment of large language models (LLMs), the statistical distribution of model parameters, as well as their influence on initialization, training dynamics, and downstream efficiency, has received surprisingly little attention. A recent work introduced BackSlash, a training-time compression algorithm. It first demonstrated that pre-trained LLM parameters follow generalized Gaussian distributions (GGDs) better. By optimizing GG priors during training, BackSlash can reduce parameters by up to 90\% with minimal performance loss. Building on this foundational insight, we propose a unified, end-to-end framework for LLM optimization based on the GG model. Our contributions are threefold: (1) GG-based initialization scheme that aligns with the statistical structure of trained models, resulting in faster convergence and improved accuracy; (2) DeepShape, a post-training regularization method that reshapes weight distributions to match a GG profile, improving compressibility with minimized degradation in performance; and (3) RF8, a compact and hardware-efficient 8-bit floating-point format designed for GG-distributed-initialized BackSlash training, enabling low-cost inference without compromising accuracy. Experiments across diverse model architectures show that our framework consistently yields smaller and faster models that match or outperform standard training baselines. By grounding LLM development in principled statistical modeling, this work forges a new path toward efficient, scalable, and hardware-aware AI systems. The code is available on our project page: https://huggingface.co/spaces/shifeng3711/gg_prior.
♻ ☆ Comparative Analysis of AI Agent Architectures for Entity Relationship Classification
Entity relationship classification remains a challenging task in information extraction, especially in scenarios with limited labeled data and complex relational structures. In this study, we conduct a comparative analysis of three distinct AI agent architectures designed to perform relation classification using large language models (LLMs). The agentic architectures explored include (1) reflective self-evaluation, (2) hierarchical task decomposition, and (3) a novel multi-agent dynamic example generation mechanism, each leveraging different modes of reasoning and prompt adaptation. In particular, our dynamic example generation approach introduces real-time cooperative and adversarial prompting. We systematically compare their performance across multiple domains and model backends. Our experiments demonstrate that multi-agent coordination consistently outperforms standard few-shot prompting and approaches the performance of fine-tuned models. These findings offer practical guidance for the design of modular, generalizable LLM-based systems for structured relation extraction. The source codes and dataset are available at https://github.com/maryambrj/ALIEN.git.
♻ ☆ ClinBench-HPB: A Clinical Benchmark for Evaluating LLMs in Hepato-Pancreato-Biliary Diseases
Hepato-pancreato-biliary (HPB) disorders represent a global public health challenge due to their high morbidity and mortality. Although large language models (LLMs) have shown promising performance in general medical question-answering tasks, the current evaluation benchmarks are mostly derived from standardized examinations or manually designed questions, lacking HPB coverage and clinical cases. To address these issues, we systematically eatablish an HPB disease evaluation benchmark comprising 3,535 closed-ended multiple-choice questions and 337 open-ended real diagnosis cases, which encompasses all the 33 main categories and 465 subcategories of HPB diseases defined in the International Statistical Classification of Diseases, 10th Revision (ICD-10). The multiple-choice questions are curated from public datasets and synthesized data, and the clinical cases are collected from prestigious medical journals, case-sharing platforms, and collaborating hospitals. By evalauting commercial and open-source general and medical LLMs on our established benchmark, namely ClinBench-HBP, we find that while commercial LLMs perform competently on medical exam questions, they exhibit substantial performance degradation on HPB diagnosis tasks, especially on complex, inpatient clinical cases. Those medical LLMs also show limited generalizability to HPB diseases. Our results reveal the critical limitations of current LLMs in the domain of HPB diseases, underscoring the imperative need for future medical LLMs to handle real, complex clinical diagnostics rather than simple medical exam questions. The benchmark will be released at https://clinbench-hpb.github.io.
♻ ☆ MINT: Multimodal Instruction Tuning with Multimodal Interaction Grouping
Recent advances in multimodal foundation models have achieved state-of-the-art performance across a range of tasks. These breakthroughs are largely driven by new pre-training paradigms that leverage large-scale, unlabeled multimodal data, followed by instruction fine-tuning on curated labeled datasets and high-quality prompts. While there is growing interest in scaling instruction fine-tuning to ever-larger datasets in both quantity and scale, our findings reveal that simply increasing the number of instruction-tuning tasks does not consistently yield better performance. Instead, we observe that grouping tasks by the common interactions across modalities, such as discovering redundant shared information, prioritizing modality selection with unique information, or requiring synergistic fusion to discover new information from both modalities, encourages the models to learn transferrable skills within a group while suppressing interference from mismatched tasks. To this end, we introduce MINT, a simple yet surprisingly effective task-grouping strategy based on the type of multimodal interaction. We demonstrate that the proposed method greatly outperforms existing task grouping baselines for multimodal instruction tuning, striking an effective balance between generalization and specialization.
♻ ☆ Flexiffusion: Training-Free Segment-Wise Neural Architecture Search for Efficient Diffusion Models
Diffusion models (DMs) are powerful generative models capable of producing high-fidelity images but are constrained by high computational costs due to iterative multi-step inference. While Neural Architecture Search (NAS) can optimize DMs, existing methods are hindered by retraining requirements, exponential search complexity from step-wise optimization, and slow evaluation relying on massive image generation. To address these challenges, we propose Flexiffusion, a training-free NAS framework that jointly optimizes generation schedules and model architectures without modifying pre-trained parameters. Our key insight is to decompose the generation process into flexible segments of equal length, where each segment dynamically combines three step types: full (complete computation), partial (cache-reused computation), and null (skipped computation). This segment-wise search space reduces the candidate pool exponentially compared to step-wise NAS while preserving architectural diversity. Further, we introduce relative FID (rFID), a lightweight evaluation metric for NAS that measures divergence from a teacher model's outputs instead of ground truth, slashing evaluation time by over $90\%$. In practice, Flexiffusion achieves at least $2\times$ acceleration across LDMs, Stable Diffusion, and DDPMs on ImageNet and MS-COCO, with FID degradation under $5\%$, outperforming prior NAS and caching methods. Notably, it attains $5.1\times$ speedup on Stable Diffusion with near-identical CLIP scores. Our work pioneers a resource-efficient paradigm for searching high-speed DMs without sacrificing quality.
comment: This paper was intended to be a v2 version of my previous paper (arXiv:2409.17566), but it was submitted as a new paper by mistake
♻ ☆ Simple Calibration via Geodesic Kernels
Deep discriminative approaches, such as decision forests and deep neural networks, have recently found applications in many important real-world scenarios. However, deploying these learning algorithms in safety-critical applications raises concerns, particularly when it comes to ensuring calibration for both in-distribution and out-of-distribution regions. Many popular methods for in-distribution (ID) calibration, such as isotonic and Platt's sigmoidal regression, exhibit adequate ID calibration performance. However, these methods are not calibrated for the entire feature space, leading to overconfidence in the out-of-distribution (OOD) region. Existing OOD calibration methods generally exhibit poor ID calibration. In this paper, we jointly address the ID and OOD problems. We leveraged the fact that deep models learn to partition feature space into a union of polytopes, that is, flat-sided geometric objects. We introduce a geodesic distance to measure the distance between these polytopes and further distinguish samples within the same polytope using a Gaussian kernel. Our experiments on both tabular and vision benchmarks show that the proposed approaches, namely Kernel Density Forest (KDF) and Kernel Density Network (KDN), obtain well-calibrated posteriors for both ID and OOD samples, while mostly preserving the classification accuracy and extrapolating beyond the training data to handle OOD inputs appropriately.
♻ ☆ TurboFuzzLLM: Turbocharging Mutation-based Fuzzing for Effectively Jailbreaking Large Language Models in Practice NAACL 2025
Jailbreaking large-language models (LLMs) involves testing their robustness against adversarial prompts and evaluating their ability to withstand prompt attacks that could elicit unauthorized or malicious responses. In this paper, we present TurboFuzzLLM, a mutation-based fuzzing technique for efficiently finding a collection of effective jailbreaking templates that, when combined with harmful questions, can lead a target LLM to produce harmful responses through black-box access via user prompts. We describe the limitations of directly applying existing template-based attacking techniques in practice, and present functional and efficiency-focused upgrades we added to mutation-based fuzzing to generate effective jailbreaking templates automatically. TurboFuzzLLM achieves $\geq$ 95\% attack success rates (ASR) on public datasets for leading LLMs (including GPT-4o \& GPT-4 Turbo), shows impressive generalizability to unseen harmful questions, and helps in improving model defenses to prompt attacks. TurboFuzzLLM is available open source at https://github.com/amazon-science/TurboFuzzLLM.
comment: Oral presentation at NAACL 2025 industry track
♻ ☆ Gradient flow in parameter space is equivalent to linear interpolation in output space
We prove that the standard gradient flow in parameter space that underlies many training algorithms in deep learning can be continuously deformed into an adapted gradient flow which yields (constrained) Euclidean gradient flow in output space. Moreover, for the $L^{2}$ loss, if the Jacobian of the outputs with respect to the parameters is full rank (for fixed training data), then the time variable can be reparametrized so that the resulting flow is simply linear interpolation, and a global minimum can be achieved. For the cross-entropy loss, under the same rank condition and assuming the labels have positive components, we derive an explicit formula for the unique global minimum.
comment: Added section 2.3 on cross-entropy loss
♻ ☆ HashEvict: A Pre-Attention KV Cache Eviction Strategy using Locality-Sensitive Hashing
Transformer-based large language models (LLMs) use the key-value (KV) cache to significantly accelerate inference by storing the key and value embeddings of past tokens. However, this cache consumes significant GPU memory. In this work, we introduce HashEvict, an algorithm that uses locality-sensitive hashing (LSH) to compress the KV cache. HashEvict quickly locates tokens in the cache that are cosine dissimilar to the current query token. This is achieved by computing the Hamming distance between binarized Gaussian projections of the current token query and cached token keys, with a projection length much smaller than the embedding dimension. We maintain a lightweight binary structure in GPU memory to facilitate these calculations. Unlike existing compression strategies that compute attention to determine token retention, HashEvict makes these decisions pre-attention, thereby reducing computational costs. Additionally, HashEvict is dynamic - at every decoding step, the key and value of the current token replace the embeddings of a token expected to produce the lowest attention score. We demonstrate that HashEvict can compress the KV cache by 30%-70% while maintaining high performance across reasoning, multiple-choice, long-context retrieval and summarization tasks.
comment: 10 pages, 6 figures, 2 tables
♻ ☆ Retrieval-Augmented Generation as Noisy In-Context Learning: A Unified Theory and Risk Bounds
Retrieval-augmented generation (RAG) has seen many empirical successes in recent years by aiding the LLM with external knowledge. However, its theoretical aspect has remained mostly unexplored. In this paper, we propose the first finite-sample generalization bound for RAG in in-context linear regression and derive an exact bias-variance tradeoff. Our framework views the retrieved texts as query-dependent noisy in-context examples and recovers the classical in-context learning (ICL) and standard RAG as the limit cases. Our analysis suggests that an intrinsic ceiling on generalization error exists on RAG as opposed to the ICL. Furthermore, our framework is able to model retrieval both from the training data and from external corpora by introducing uniform and non-uniform RAG noise. In line with our theory, we show the sample efficiency of ICL and RAG empirically with experiments on common QA benchmarks, such as Natural Questions and TriviaQA.
comment: Under Review
♻ ☆ Beyond Position: the emergence of wavelet-like properties in Transformers
This paper studies how Transformer models with Rotary Position Embeddings (RoPE) develop emergent, wavelet-like properties that compensate for the positional encoding's theoretical limitations. Through an analysis spanning model scales, architectures, and training checkpoints, we show that attention heads evolve to implement multi-resolution processing analogous to wavelet transforms. We demonstrate that this scale-invariant behavior is unique to RoPE, emerges through distinct evolutionary phases during training, and statistically adheres to the fundamental uncertainty principle. Our findings suggest that the effectiveness of modern Transformers stems from their remarkable ability to spontaneously develop optimal, multi-resolution decompositions to address inherent architectural constraints.
♻ ☆ DreamPRM: Domain-Reweighted Process Reward Model for Multimodal Reasoning
Reasoning has improved the performance of large language models (LLMs) on complicated tasks. Central to the current reasoning studies, Process Reward Models (PRMs) offer a fine-grained evaluation of intermediate reasoning steps and guide the reasoning process. However, extending PRMs to multimodal large language models (MLLMs) introduces challenges. Since multimodal reasoning covers a wider range of tasks compared to text-only scenarios, the resulting distribution shift from the training to testing sets is more severe, leading to greater generalization difficulty. Training a reliable multimodal PRM, therefore, demands large and diverse datasets to ensure sufficient coverage. However, current multimodal reasoning datasets suffer from quality imbalance, which degrades PRM performance and highlights the need for data selection strategy. To address the issues, we introduce DreamPRM, a domain-reweighted training framework for multimodal PRMs which employs bi-level optimization. In the lower-level optimization, DreamPRM performs fine-tuning on multiple datasets with domain weights, allowing the PRM to prioritize high-quality reasoning signals and alleviating the impact of dataset quality imbalance. In the upper-level optimization, the PRM is evaluated on a separate meta-learning dataset; this feedback updates the domain weights through an aggregation loss function, thereby improving the generalization capability of trained PRM. Extensive experiments on multiple multimodal reasoning benchmarks covering both mathematical and general reasoning show that test-time scaling with DreamPRM consistently improves performance of state-of-the-art MLLMs. Further comparisons reveal that DreamPRM's domain-reweighting strategy surpasses data selection methods and yields higher accuracy gains than existing test-time scaling approaches. Codes are available at https://github.com/coder-qicao/DreamPRM.
Rejecting Hallucinated State Targets during Planning ICML 2025
Generative models can be used in planning to propose targets corresponding to states that agents deem either likely or advantageous to experience. However, imperfections, common in learned models, lead to infeasible hallucinated targets, which can cause delusional behaviors and thus safety concerns. This work first categorizes and investigates the properties of several kinds of infeasible targets. Then, we devise a strategy to reject infeasible targets with a generic target evaluator, which trains alongside planning agents as an add-on without the need to change the behavior nor the architectures of the agent (and the generative model) it is attached to. We highlight that, without proper design, the evaluator can produce delusional estimates, rendering the strategy futile. Thus, to learn correct evaluations of infeasible targets, we propose to use a combination of learning rule, architecture, and two assistive hindsight relabeling strategies. Our experiments validate significant reductions in delusional behaviors and performance improvements for several kinds of existing planning agents.
comment: [20250604]: ICML 2025 Camera Ready, https://github.com/mila-iqia/delusions
♻ ☆ Analytical Lyapunov Function Discovery: An RL-based Generative Approach
Despite advances in learning-based methods, finding valid Lyapunov functions for nonlinear dynamical systems remains challenging. Current neural network approaches face two main issues: challenges in scalable verification and limited interpretability. To address these, we propose an end-to-end framework using transformers to construct analytical Lyapunov functions (local), which simplifies formal verification, enhances interpretability, and provides valuable insights for control engineers. Our framework consists of a transformer-based trainer that generates candidate Lyapunov functions and a falsifier that verifies candidate expressions and refines the model via risk-seeking policy gradient. Unlike Alfarano et al. (2024), which utilizes pre-training and seeks global Lyapunov functions for low-dimensional systems, our model is trained from scratch via reinforcement learning (RL) and succeeds in finding local Lyapunov functions for high-dimensional and non-polynomial systems. Given the analytical nature of the candidates, we employ efficient optimization methods for falsification during training and formal verification tools for the final verification. We demonstrate the efficiency of our approach on a range of nonlinear dynamical systems with up to ten dimensions and show that it can discover Lyapunov functions not previously identified in the control literature. Full implementation is available on \href{https://github.com/JieFeng-cse/Analytical-Lyapunov-Function-Discovery}{Github}
comment: 26 pages (8+18), preprint for discussion. Haohan and Jie contribute equally
♻ ☆ CurvGAD: Leveraging Curvature for Enhanced Graph Anomaly Detection ICML 2025
Does the intrinsic curvature of complex networks hold the key to unveiling graph anomalies that conventional approaches overlook? Reconstruction-based graph anomaly detection (GAD) methods overlook such geometric outliers, focusing only on structural and attribute-level anomalies. To this end, we propose CurvGAD - a mixed-curvature graph autoencoder that introduces the notion of curvature-based geometric anomalies. CurvGAD introduces two parallel pipelines for enhanced anomaly interpretability: (1) Curvature-equivariant geometry reconstruction, which focuses exclusively on reconstructing the edge curvatures using a mixed-curvature, Riemannian encoder and Gaussian kernel-based decoder; and (2) Curvature-invariant structure and attribute reconstruction, which decouples structural and attribute anomalies from geometric irregularities by regularizing graph curvature under discrete Ollivier-Ricci flow, thereby isolating the non-geometric anomalies. By leveraging curvature, CurvGAD refines the existing anomaly classifications and identifies new curvature-driven anomalies. Extensive experimentation over 10 real-world datasets (both homophilic and heterophilic) demonstrates an improvement of up to 6.5% over state-of-the-art GAD methods. The code is available at: https://github.com/karish-grover/curvgad.
comment: ICML 2025
♻ ☆ Representations Shape Weak-to-Strong Generalization: Theoretical Insights and Empirical Predictions
Weak-to-Strong Generalization (W2SG), where a weak model supervises a stronger one, serves as an important analogy for understanding how humans might guide superhuman intelligence in the future. Promising empirical results revealed that a strong model can surpass its weak supervisor. While recent work has offered theoretical insights into this phenomenon, a clear understanding of the interactions between weak and strong models that drive W2SG remains elusive. We investigate W2SG through a theoretical lens and show that it can be characterized using kernels derived from the principal components of weak and strong models' internal representations. These kernels can be used to define a space that, at a high level, captures what the weak model is unable to learn but is learnable by the strong model. The projection of labels onto this space quantifies how much the strong model falls short of its full potential due to weak supervision. This characterization also provides insights into how certain errors in weak supervision can be corrected by the strong model, regardless of overfitting. Our theory has significant practical implications, providing a representation-based metric that predicts W2SG performance trends without requiring labels, as shown in experiments on molecular predictions with transformers and 5 NLP tasks involving 52 LLMs.
♻ ☆ Maximizing Seaweed Growth on Autonomous Farms: A Dynamic Programming Approach for Underactuated Systems Navigating on Uncertain Ocean Currents
Seaweed biomass presents a substantial opportunity for climate mitigation, yet to realize its potential, farming must be expanded to the vast open oceans. However, in the open ocean neither anchored farming nor floating farms with powerful engines are economically viable. Thus, a potential solution are farms that operate by going with the flow, utilizing minimal propulsion to strategically leverage beneficial ocean currents. In this work, we focus on low-power autonomous seaweed farms and design controllers that maximize seaweed growth by taking advantage of ocean currents. We first introduce a Dynamic Programming (DP) formulation to solve for the growth-optimal value function when the true currents are known. However, in reality only short-term imperfect forecasts with increasing uncertainty are available. Hence, we present three additional extensions. Firstly, we use frequent replanning to mitigate forecast errors. Second, to optimize for long-term growth, we extend the value function beyond the forecast horizon by estimating the expected future growth based on seasonal average currents. Lastly, we introduce a discounted finite-time DP formulation to account for the increasing uncertainty in future ocean current estimates. We empirically evaluate our approach with 30-day simulations of farms in realistic ocean conditions. Our method achieves 95.8\% of the best possible growth using only 5-day forecasts.This demonstrates that low-power propulsion is a promising method to operate autonomous seaweed farms in real-world conditions.
comment: 8 pages, submitted to IEEE Robotics and Automation Letters (RA-L) Matthias Killer and Marius Wiggert contributed equally to this work
♻ ☆ MetaGen Blended RAG: Unlocking Zero-Shot Precision for Specialized Domain Question-Answering NeurIPS 2025
Retrieval-Augmented Generation (RAG) struggles with domain-specific enterprise datasets, often isolated behind firewalls and rich in complex, specialized terminology unseen by LLMs during pre-training. Semantic variability across domains like medicine, networking, or law hampers RAG's context precision, while fine-tuning solutions are costly, slow, and lack generalization as new data emerges. Achieving zero-shot precision with retrievers without fine-tuning still remains a key challenge. We introduce 'MetaGen Blended RAG', a novel enterprise search approach that enhances semantic retrievers through a metadata generation pipeline and hybrid query indexes using dense and sparse vectors. By leveraging key concepts, topics, and acronyms, our method creates metadata-enriched semantic indexes and boosted hybrid queries, delivering robust, scalable performance without fine-tuning. On the biomedical PubMedQA dataset, MetaGen Blended RAG achieves 82% retrieval accuracy and 77% RAG accuracy, surpassing all prior zero-shot RAG benchmarks and even rivaling fine-tuned models on that dataset, while also excelling on datasets like SQuAD and NQ. This approach redefines enterprise search using a new approach to building semantic retrievers with unmatched generalization across specialized domains.
comment: Preprint. Paper Submitted for NeurIPS 2025- The Thirty-Ninth Annual Conference on Neural Information Processing Systems
♻ ☆ Hearing Anywhere in Any Environment CVPR 2025
In mixed reality applications, a realistic acoustic experience in spatial environments is as crucial as the visual experience for achieving true immersion. Despite recent advances in neural approaches for Room Impulse Response (RIR) estimation, most existing methods are limited to the single environment on which they are trained, lacking the ability to generalize to new rooms with different geometries and surface materials. We aim to develop a unified model capable of reconstructing the spatial acoustic experience of any environment with minimum additional measurements. To this end, we present xRIR, a framework for cross-room RIR prediction. The core of our generalizable approach lies in combining a geometric feature extractor, which captures spatial context from panorama depth images, with a RIR encoder that extracts detailed acoustic features from only a few reference RIR samples. To evaluate our method, we introduce ACOUSTICROOMS, a new dataset featuring high-fidelity simulation of over 300,000 RIRs from 260 rooms. Experiments show that our method strongly outperforms a series of baselines. Furthermore, we successfully perform sim-to-real transfer by evaluating our model on four real-world environments, demonstrating the generalizability of our approach and the realism of our dataset.
comment: CVPR 2025; Project Page: https://dragonliu1995.github.io/hearinganywhereinanyenvironment/
♻ ☆ SUS backprop: linear backpropagation algorithm for long inputs in transformers
It is straightforward to design an unbiased gradient estimator that stochastically cuts the backpropagation flow through any part of a computational graph. By cutting the parts that have little effect on the computation, one can potentially save a significant amount of backpropagation computation in exchange for a minimal increase in the stochastic gradient variance, in some situations. Such a situation occurs in the attention mechanism of the transformer architecture. For long sequences, attention becomes the limiting factor, as its compute requirements increase quadratically with sequence length $n$. At the same time, most attention weights become very small, as most attention heads tend to connect a given token with only a small fraction of other tokens in the sequence. These weights become promising targets for cutting backpropagation. We propose a simple probabilistic rule controlled by a single parameter $c$ that cuts back-propagation through most attention weights, leaving at most $c$ interactions per token per attention head. This brings a factor of $c/n$ reduction in the compute required for the attention backpropagation, turning it from quadratic $O(n^2)$ to linear complexity $O(nc)$. We have empirically verified that, for a typical transformer model, cutting about $99\%$ of the attention gradient flow (i.e. choosing $c \sim 25-30$) results in relative gradient variance increase of only about $1\%$ for $n \sim 2000$, and it decreases with $n$. This approach is amenable to efficient sparse matrix implementation, thus being promising for making the cost of a backward pass negligible relative to the cost of a forward pass when training a transformer model on long sequences.
comment: 21 pages, 9 figures; main results unchanged, Fig.5 updated, some text rearranged
♻ ☆ Spectro-Riemannian Graph Neural Networks ICLR 2025
Can integrating spectral and curvature signals unlock new potential in graph representation learning? Non-Euclidean geometries, particularly Riemannian manifolds such as hyperbolic (negative curvature) and spherical (positive curvature), offer powerful inductive biases for embedding complex graph structures like scale-free, hierarchical, and cyclic patterns. Meanwhile, spectral filtering excels at processing signal variations across graphs, making it effective in homophilic and heterophilic settings. Leveraging both can significantly enhance the learned representations. To this end, we propose Spectro-Riemannian Graph Neural Networks (CUSP) - the first graph representation learning paradigm that unifies both CUrvature (geometric) and SPectral insights. CUSP is a mixed-curvature spectral GNN that learns spectral filters to optimize node embeddings in products of constant-curvature manifolds (hyperbolic, spherical, and Euclidean). Specifically, CUSP introduces three novel components: (a) Cusp Laplacian, an extension of the traditional graph Laplacian based on Ollivier-Ricci curvature, designed to capture the curvature signals better; (b) Cusp Filtering, which employs multiple Riemannian graph filters to obtain cues from various bands in the eigenspectrum; and (c) Cusp Pooling, a hierarchical attention mechanism combined with a curvature-based positional encoding to assess the relative importance of differently curved substructures in our graph. Empirical evaluation across eight homophilic and heterophilic datasets demonstrates the superiority of CUSP in node classification and link prediction tasks, with a gain of up to 5.3% over state-of-the-art models. The code is available at: https://github.com/amazon-science/cusp.
comment: ICLR 2025
♻ ☆ Empowering LLMs with Logical Reasoning: A Comprehensive Survey IJCAI 2025
Large language models (LLMs) have achieved remarkable successes on various tasks. However, recent studies have found that there are still significant challenges to the logical reasoning abilities of LLMs, which can be categorized into the following two aspects: (1) Logical question answering: LLMs often fail to generate the correct answer within a complex logical problem which requires sophisticated deductive, inductive or abductive reasoning given a collection of premises and constrains. (2) Logical consistency: LLMs are prone to producing responses contradicting themselves across different questions. For example, a state-of-the-art question-answering LLM Macaw, answers Yes to both questions Is a magpie a bird? and Does a bird have wings? but answers No to Does a magpie have wings?. To facilitate this research direction, we comprehensively investigate the most cutting-edge methods and propose a detailed taxonomy. Specifically, to accurately answer complex logic questions, previous methods can be categorized based on reliance on external solvers, prompts, and fine-tuning. To avoid logical contradictions, we discuss concepts and solutions of various logical consistencies, including implication, negation, transitivity, factuality consistencies, and their composites. In addition, we review commonly used benchmark datasets and evaluation metrics, and discuss promising research directions, such as extending to modal logic to account for uncertainty and developing efficient algorithms that simultaneously satisfy multiple logical consistencies.
comment: Accepted by IJCAI 2025 (Survey Track)
♻ ☆ Test Automation for Interactive Scenarios via Promptable Traffic Simulation CVPR 2025
Autonomous vehicle (AV) planners must undergo rigorous evaluation before widespread deployment on public roads, particularly to assess their robustness against the uncertainty of human behaviors. While recent advancements in data-driven scenario generation enable the simulation of realistic human behaviors in interactive settings, leveraging these models to construct comprehensive tests for AV planners remains an open challenge. In this work, we introduce an automated method to efficiently generate realistic and safety-critical human behaviors for AV planner evaluation in interactive scenarios. We parameterize complex human behaviors using low-dimensional goal positions, which are then fed into a promptable traffic simulator, ProSim, to guide the behaviors of simulated agents. To automate test generation, we introduce a prompt generation module that explores the goal domain and efficiently identifies safety-critical behaviors using Bayesian optimization. We apply our method to the evaluation of an optimization-based planner and demonstrate its effectiveness and efficiency in automatically generating diverse and realistic driving behaviors across scenarios with varying initial conditions.
comment: Accepted by CVPR 2025 Workshop Data-Driven Autonomous Driving Simulation (track 1)
♻ ☆ Linear Representation Transferability Hypothesis: Leveraging Small Models to Steer Large Models
It has been hypothesized that neural networks with similar architectures trained on similar data learn shared representations relevant to the learning task. We build on this idea by extending the conceptual framework where representations learned across models trained on the same data can be expressed as linear combinations of a \emph{universal} set of basis features. These basis features underlie the learning task itself and remain consistent across models, regardless of scale. From this framework, we propose the \textbf{Linear Representation Transferability (LRT)} Hypothesis -- that there exists an affine transformation between the representation spaces of different models. To test this hypothesis, we learn affine mappings between the hidden states of models of different sizes and evaluate whether steering vectors -- directions in hidden state space associated with specific model behaviors -- retain their semantic effect when transferred from small to large language models using the learned mappings. We find strong empirical evidence that such affine mappings can preserve steering behaviors. These findings suggest that representations learned by small models can be used to guide the behavior of large models, and that the LRT hypothesis may be a promising direction on understanding representation alignment across model scales.
♻ ☆ The Disparate Benefits of Deep Ensembles ICML 2025
Ensembles of Deep Neural Networks, Deep Ensembles, are widely used as a simple way to boost predictive performance. However, their impact on algorithmic fairness is not well understood yet. Algorithmic fairness examines how a model's performance varies across socially relevant groups defined by protected attributes such as age, gender, or race. In this work, we explore the interplay between the performance gains from Deep Ensembles and fairness. Our analysis reveals that they unevenly favor different groups, a phenomenon that we term the disparate benefits effect. We empirically investigate this effect using popular facial analysis and medical imaging datasets with protected group attributes and find that it affects multiple established group fairness metrics, including statistical parity and equal opportunity. Furthermore, we identify that the per-group differences in predictive diversity of ensemble members can explain this effect. Finally, we demonstrate that the classical Hardt post-processing method is particularly effective at mitigating the disparate benefits effect of Deep Ensembles by leveraging their better-calibrated predictive distributions.
comment: ICML 2025
♻ ☆ Functional relevance based on the continuous Shapley value
The presence of artificial intelligence (AI) in our society is increasing, which brings with it the need to understand the behavior of AI mechanisms, including machine learning predictive algorithms fed with tabular data, text or images, among others. This work focuses on interpretability of predictive models based on functional data. Designing interpretability methods for functional data models implies working with a set of features whose size is infinite. In the context of scalar on function regression, we propose an interpretability method based on the Shapley value for continuous games, a mathematical formulation that allows for the fair distribution of a global payoff among a continuous set of players. The method is illustrated through a set of experiments with simulated and real data sets. The open source Python package ShapleyFDA is also presented.
comment: 36 pages, 13 figures
♻ ☆ Amplifying Human Creativity and Problem Solving with AI Through Generative Collective Intelligence
We propose a general framework for human-AI collaboration that amplifies the distinct capabilities of both types of intelligence. We refer to this as Generative Collective Intelligence (GCI). GCI employs AI in dual roles: as interactive agents and as technology that accumulates, organizes, and leverages knowledge. In this second role, AI creates a cognitive bridge between human reasoning and AI models. The AI functions as a social and cultural technology that enables groups to solve complex problems through structured collaboration that transcends traditional communication barriers. We argue that GCI can overcome limitations of purely algorithmic approaches to problem-solving and decision-making. We describe the mathematical foundations of GCI, based on the law of comparative judgment and minimum regret principles, and briefly illustrate its applications across various domains, including climate adaptation, healthcare transformation, and civic participation. By combining human creativity with AI's computational capabilities, GCI offers a promising approach to addressing complex societal challenges that neither humans nor machines can solve alone.
♻ ☆ Multi-Agent Security Tax: Trading Off Security and Collaboration Capabilities in Multi-Agent Systems AAAI 2025
As AI agents are increasingly adopted to collaborate on complex objectives, ensuring the security of autonomous multi-agent systems becomes crucial. We develop simulations of agents collaborating on shared objectives to study these security risks and security trade-offs. We focus on scenarios where an attacker compromises one agent, using it to steer the entire system toward misaligned outcomes by corrupting other agents. In this context, we observe infectious malicious prompts - the multi-hop spreading of malicious instructions. To mitigate this risk, we evaluated several strategies: two "vaccination" approaches that insert false memories of safely handling malicious input into the agents' memory stream, and two versions of a generic safety instruction strategy. While these defenses reduce the spread and fulfillment of malicious instructions in our experiments, they tend to decrease collaboration capability in the agent network. Our findings illustrate potential trade-off between security and collaborative efficiency in multi-agent systems, providing insights for designing more secure yet effective AI collaborations.
comment: Accepted to AAAI 2025 Conference
♻ ☆ Universal Adversarial Attack on Aligned Multimodal LLMs
We propose a universal adversarial attack on multimodal Large Language Models (LLMs) that leverages a single optimized image to override alignment safeguards across diverse queries and even multiple models. By backpropagating through the vision encoder and language head, we craft a synthetic image that forces the model to respond with a targeted phrase (e.g., "Sure, here it is") or otherwise unsafe content -- even for harmful prompts. In experiments on the SafeBench and MM-SafetyBench benchmarks, our method achieves higher attack success rates than existing baselines, including text-only universal prompts (e.g., up to 81% on certain models). We further demonstrate cross-model universality by training on several multimodal LLMs simultaneously. Additionally, a multi-answer variant of our approach produces more natural-sounding (yet still malicious) responses. These findings underscore critical vulnerabilities in current multimodal alignment and call for more robust adversarial defenses. We will release code and datasets under the Apache-2.0 license. Warning: some content generated by Multimodal LLMs in this paper may be offensive.
comment: Added benchmarks, baselines, author, appendix
♻ ☆ A Large Recurrent Action Model: xLSTM enables Fast Inference for Robotics Tasks
In recent years, there has been a trend in the field of Reinforcement Learning (RL) towards large action models trained offline on large-scale datasets via sequence modeling. Existing models are primarily based on the Transformer architecture, which result in powerful agents. However, due to slow inference times, Transformer-based approaches are impractical for real-time applications, such as robotics. Recently, modern recurrent architectures, such as xLSTM and Mamba, have been proposed that exhibit parallelization benefits during training similar to the Transformer architecture while offering fast inference. In this work, we study the aptitude of these modern recurrent architectures for large action models. Consequently, we propose a Large Recurrent Action Model (LRAM) with an xLSTM at its core that comes with linear-time inference complexity and natural sequence length extrapolation abilities. Experiments on 432 tasks from 6 domains show that LRAM compares favorably to Transformers in terms of performance and speed.
♻ ☆ Random-key genetic algorithms: Principles and applications
A random-key genetic algorithm is an evolutionary metaheuristic for discrete and global optimization. Each solution is encoded as a vector of N random keys, where a random key is a real number randomly generated in the continuous interval [0, 1). A decoder maps each vector of random keys to a solution of the optimization problem being solved and computes its cost. The benefit of this approach is that all genetic operators and transformations can be maintained within the unitary hypercube, regardless of the problem being addressed. This enhances the productivity and maintainability of the core framework. The algorithm starts with a population of P vectors of random keys. At each iteration, the vectors are partitioned into two sets: a smaller set of high-valued elite solutions and the remaining non-elite solutions. All elite elements are copied, without change, to the next population. A small number of random-key vectors (the mutants) is added to the population of the next iteration. The remaining elements of the population of the next iteration are generated by combining, with the parametrized uniform crossover of Spears and DeJong (1991), pairs of solutions. This chapter reviews random-key genetic algorithms and describes an effective variant called biased random-key genetic algorithms.
comment: 21 pages, 1 figure, 1 table, 1 algorithm, forthcoming in Handbook of Heuristics, 2nd edition, SpringerNature, New York
♻ ☆ What do professional software developers need to know to succeed in an age of Artificial Intelligence?
Generative AI is showing early evidence of productivity gains for software developers, but concerns persist regarding workforce disruption and deskilling. We describe our research with 21 developers at the cutting edge of using AI, summarizing 12 of their work goals we uncovered, together with 75 associated tasks and the skills & knowledge for each, illustrating how developers use AI at work. From all of these, we distilled our findings in the form of 5 insights. We found that the skills & knowledge to be a successful AI-enhanced developer are organized into four domains (using Generative AI effectively, core software engineering, adjacent engineering, and adjacent non-engineering) deployed at critical junctures throughout a 6-step task workflow. In order to "future proof" developers for this age of AI, on-the-job learning initiatives and computer science degree programs will need to target both "soft" skills and the technical skills & knowledge in all four domains to reskill, upskill and safeguard against deskilling.
comment: 12 pages, 4 figures, software engineering education track of the 2025 ACM international conference on the foundations of software engineering, includes supplementary material i.e. full 50-page occupational profile of the AI-enhanced software developer
♻ ☆ A Survey on (M)LLM-Based GUI Agents
Graphical User Interface (GUI) Agents have emerged as a transformative paradigm in human-computer interaction, evolving from rule-based automation scripts to sophisticated AI-driven systems capable of understanding and executing complex interface operations. This survey provides a comprehensive examination of the rapidly advancing field of LLM-based GUI Agents, systematically analyzing their architectural foundations, technical components, and evaluation methodologies. We identify and analyze four fundamental components that constitute modern GUI Agents: (1) perception systems that integrate text-based parsing with multimodal understanding for comprehensive interface comprehension; (2) exploration mechanisms that construct and maintain knowledge bases through internal modeling, historical experience, and external information retrieval; (3) planning frameworks that leverage advanced reasoning methodologies for task decomposition and execution; and (4) interaction systems that manage action generation with robust safety controls. Through rigorous analysis of these components, we reveal how recent advances in large language models and multimodal learning have revolutionized GUI automation across desktop, mobile, and web platforms. We critically examine current evaluation frameworks, highlighting methodological limitations in existing benchmarks while proposing directions for standardization. This survey also identifies key technical challenges, including accurate element localization, effective knowledge retrieval, long-horizon planning, and safety-aware execution control, while outlining promising research directions for enhancing GUI Agents' capabilities. Our systematic review provides researchers and practitioners with a thorough understanding of the field's current state and offers insights into future developments in intelligent interface automation.
♻ ☆ CatNet: Controlling the False Discovery Rate in LSTM with SHAP Feature Importance and Gaussian Mirrors
We introduce CatNet, an algorithm that effectively controls False Discovery Rate (FDR) and selects significant features in LSTM. CatNet employs the derivative of SHAP values to quantify the feature importance, and constructs a vector-formed mirror statistic for FDR control with the Gaussian Mirror algorithm. To avoid instability due to nonlinear or temporal correlations among features, we also propose a new kernel-based independence measure. CatNet performs robustly on different model settings with both simulated and real-world data, which reduces overfitting and improves interpretability of the model. Our framework that introduces SHAP for feature importance in FDR control algorithms and improves Gaussian Mirror can be naturally extended to other time-series or sequential deep learning models.
♻ ☆ Estimating Total Lung Volume from Pixel-level Thickness Maps of Chest Radiographs Using Deep Learning
Purpose: To estimate the total lung volume (TLV) from real and synthetic frontal chest radiographs (CXR) on a pixel level using lung thickness maps generated by a U-Net deep learning model. Methods: This retrospective study included 5,959 chest CT scans from two public datasets: the lung nodule analysis 2016 (n=656) and the Radiological Society of North America (RSNA) pulmonary embolism detection challenge 2020 (n=5,303). Additionally, 72 participants were selected from the Klinikum Rechts der Isar dataset (October 2018 to December 2019), each with a corresponding chest radiograph taken within seven days. Synthetic radiographs and lung thickness maps were generated using forward projection of CT scans and their lung segmentations. A U-Net model was trained on synthetic radiographs to predict lung thickness maps and estimate TLV. Model performance was assessed using mean squared error (MSE), Pearson correlation coefficient (r), and two-sided Student's t-distribution. Results: The study included 72 participants (45 male, 27 female, 33 healthy: mean age 62 years [range 34-80]; 39 with chronic obstructive pulmonary disease: mean age 69 years [range 47-91]). TLV predictions showed low error rates ($MSE_{Public-Synthetic}$=0.16 $L^2$, $MSE_{KRI-Synthetic}$=0.20 $L^2$, $MSE_{KRI-Real}$=0.35 $L^2$) and strong correlations with CT-derived reference standard TLV ($n_{Public-Synthetic}$=1,191, r=0.99, P<0.001; $n_{KRI-Synthetic}$=72, r=0.97, P<0.001; $n_{KRI-Real}$=72, r=0.91, P<0.001). The Luna16 test data demonstrated the highest performance, with the lowest mean squared error (MSE = 0.09 $L^2$) and strongest correlation (r = 0.99, P <0.001) for TLV estimation. Conclusion: The U-Net-generated pixel-level lung thickness maps successfully estimated TLV for both synthetic and real radiographs.
♻ ☆ Recover Experimental Data with Selection Bias using Counterfactual Logic
Selection bias, arising from the systematic inclusion or exclusion of certain samples, poses a significant challenge to the validity of causal inference. While Bareinboim et al. introduced methods for recovering unbiased observational and interventional distributions from biased data using partial external information, the complexity of the backdoor adjustment and the method's strong reliance on observational data limit its applicability in many practical settings. In this paper, we formally discover the recoverability of $P(Y^*_{x^*})$ under selection bias with experimental data. By explicitly constructing counterfactual worlds via Structural Causal Models (SCMs), we analyze how selection mechanisms in the observational world propagate to the counterfactual domain. We derive a complete set of graphical and theoretical criteria to determine that the experimental distribution remain unaffected by selection bias. Furthermore, we propose principled methods for leveraging partially unbiased observational data to recover $P(Y^*_{x^*})$ from biased experimental datasets. Simulation studies replicating realistic research scenarios demonstrate the practical utility of our approach, offering concrete guidance for mitigating selection bias in applied causal inference.
♻ ☆ Rethinking the Role of Prompting Strategies in LLM Test-Time Scaling: A Perspective of Probability Theory ACL 2025
Recently, scaling test-time compute on Large Language Models (LLM) has garnered wide attention. However, there has been limited investigation of how various reasoning prompting strategies perform as scaling. In this paper, we focus on a standard and realistic scaling setting: majority voting. We systematically conduct experiments on 6 LLMs $\times$ 8 prompting strategies $\times$ 6 benchmarks. Experiment results consistently show that as the sampling time and computational overhead increase, complicated prompting strategies with superior initial performance gradually fall behind simple Chain-of-Thought. We analyze this phenomenon and provide theoretical proofs. Additionally, we propose a probabilistic method to efficiently predict scaling performance and identify the best prompting strategy under large sampling times, eliminating the need for resource-intensive inference processes in practical applications. Furthermore, we introduce two ways derived from our theoretical analysis to significantly improve the scaling performance. We hope that our research can promote to re-examine the role of complicated prompting, unleash the potential of simple prompting strategies, and provide new insights for enhancing test-time scaling performance. Code is available at https://github.com/MraDonkey/rethinking_prompting.
comment: ACL 2025 Main, 33 pages, 51 figures
♻ ☆ MM-IQ: Benchmarking Human-Like Abstraction and Reasoning in Multimodal Models
IQ testing has served as a foundational methodology for evaluating human cognitive capabilities, deliberately decoupling assessment from linguistic background, language proficiency, or domain-specific knowledge to isolate core competencies in abstraction and reasoning. Yet, artificial intelligence research currently lacks systematic benchmarks to quantify these critical cognitive capabilities in multimodal systems. To address this crucial gap, we propose MM-IQ, a comprehensive evaluation framework, which comprises a large-scale training set with 4,776 visual reasoning problems and 2,710 meticulously curated test items spanning 8 distinct reasoning paradigms. Through systematic evaluation of existing open-source and proprietary multimodal models, our benchmark reveals striking limitations: even state-of-the-art architectures achieve only marginally superior performance to random chance (33.17% vs. 25% baseline accuracy). This substantial performance chasm highlights the inadequacy of current multimodal models in approximating fundamental human reasoning capacities, underscoring the need for paradigm-shifting advancements to bridge this cognitive divide. Moreover, inspired by the recent surge of large reasoning models, we also release a multimodal reasoning model as the baseline that is trained via reinforcement learning with verifiable reward functions, reaching competitive performance to the state-of-the-art with a notably smaller model size.
♻ ☆ Balancing Profit and Fairness in Risk-Based Pricing Markets
Dynamic, risk-based pricing can systematically exclude vulnerable consumer groups from essential resources such as health insurance and consumer credit. We show that a regulator can realign private incentives with social objectives through a learned, interpretable tax schedule. First, we provide a formal proposition that bounding each firm's \emph{local} demographic gap implicitly bounds the \emph{global} opt-out disparity, motivating firm-level penalties. Building on this insight we introduce \texttt{MarketSim} -- an open-source, scalable simulator of heterogeneous consumers and profit-maximizing firms -- and train a reinforcement learning (RL) social planner (SP) that selects a bracketed fairness-tax while remaining close to a simple linear prior via an $\mathcal{L}_1$ regularizer. The learned policy is thus both transparent and easily interpretable. In two empirically calibrated markets, i.e., U.S. health-insurance and consumer-credit, our planner simultaneously raises demand-fairness by up to $16\%$ relative to unregulated Free Market while outperforming a fixed linear schedule in terms of social welfare without explicit coordination. These results illustrate how AI-assisted regulation can convert a competitive social dilemma into a win-win equilibrium, providing a principled and practical framework for fairness-aware market oversight.
♻ ☆ Engagement-Driven Content Generation with Large Language Models
Large Language Models (LLMs) demonstrate significant persuasive capabilities in one-on-one interactions, but their influence within social networks, where interconnected users and complex opinion dynamics pose unique challenges, remains underexplored. This paper addresses the research question: \emph{Can LLMs generate meaningful content that maximizes user engagement on social networks?} To answer this, we propose a pipeline using reinforcement learning with simulated feedback, where the network's response to LLM-generated content (i.e., the reward) is simulated through a formal engagement model. This approach bypasses the temporal cost and complexity of live experiments, enabling an efficient feedback loop between the LLM and the network under study. It also allows to control over endogenous factors such as the LLM's position within the social network and the distribution of opinions on a given topic. Our approach is adaptive to the opinion distribution of the underlying network and agnostic to the specifics of the engagement model, which is embedded as a plug-and-play component. Such flexibility makes it suitable for more complex engagement tasks and interventions in computational social science. Using our framework, we analyze the performance of LLMs in generating social engagement under different conditions, showcasing their full potential in this task. The experimental code is publicly available at https://github.com/mminici/Engagement-Driven-Content-Generation.
Graphics 8
☆ Photoreal Scene Reconstruction from an Egocentric Device SIGGRAPH
In this paper, we investigate the challenges associated with using egocentric devices to photorealistic reconstruct the scene in high dynamic range. Existing methodologies typically assume using frame-rate 6DoF pose estimated from the device's visual-inertial odometry system, which may neglect crucial details necessary for pixel-accurate reconstruction. This study presents two significant findings. Firstly, in contrast to mainstream work treating RGB camera as global shutter frame-rate camera, we emphasize the importance of employing visual-inertial bundle adjustment (VIBA) to calibrate the precise timestamps and movement of the rolling shutter RGB sensing camera in a high frequency trajectory format, which ensures an accurate calibration of the physical properties of the rolling-shutter camera. Secondly, we incorporate a physical image formation model based into Gaussian Splatting, which effectively addresses the sensor characteristics, including the rolling-shutter effect of RGB cameras and the dynamic ranges measured by sensors. Our proposed formulation is applicable to the widely-used variants of Gaussian Splats representation. We conduct a comprehensive evaluation of our pipeline using the open-source Project Aria device under diverse indoor and outdoor lighting conditions, and further validate it on a Meta Quest3 device. Across all experiments, we observe a consistent visual enhancement of +1 dB in PSNR by incorporating VIBA, with an additional +1 dB achieved through our proposed image formation model. Our complete implementation, evaluation datasets, and recording profile are available at http://www.projectaria.com/photoreal-reconstruction/
comment: Paper accepted to SIGGRAPH Conference Paper 2025
☆ Splatting Physical Scenes: End-to-End Real-to-Sim from Imperfect Robot Data
Creating accurate, physical simulations directly from real-world robot motion holds great value for safe, scalable, and affordable robot learning, yet remains exceptionally challenging. Real robot data suffers from occlusions, noisy camera poses, dynamic scene elements, which hinder the creation of geometrically accurate and photorealistic digital twins of unseen objects. We introduce a novel real-to-sim framework tackling all these challenges at once. Our key insight is a hybrid scene representation merging the photorealistic rendering of 3D Gaussian Splatting with explicit object meshes suitable for physics simulation within a single representation. We propose an end-to-end optimization pipeline that leverages differentiable rendering and differentiable physics within MuJoCo to jointly refine all scene components - from object geometry and appearance to robot poses and physical parameters - directly from raw and imprecise robot trajectories. This unified optimization allows us to simultaneously achieve high-fidelity object mesh reconstruction, generate photorealistic novel views, and perform annotation-free robot pose calibration. We demonstrate the effectiveness of our approach both in simulation and on challenging real-world sequences using an ALOHA 2 bi-manual manipulator, enabling more practical and robust real-to-simulation pipelines.
☆ SSIMBaD: Sigma Scaling with SSIM-Guided Balanced Diffusion for AnimeFace Colorization
We propose a novel diffusion-based framework for automatic colorization of Anime-style facial sketches. Our method preserves the structural fidelity of the input sketch while effectively transferring stylistic attributes from a reference image. Unlike traditional approaches that rely on predefined noise schedules - which often compromise perceptual consistency -- our framework builds on continuous-time diffusion models and introduces SSIMBaD (Sigma Scaling with SSIM-Guided Balanced Diffusion). SSIMBaD applies a sigma-space transformation that aligns perceptual degradation, as measured by structural similarity (SSIM), in a linear manner. This scaling ensures uniform visual difficulty across timesteps, enabling more balanced and faithful reconstructions. Experiments on a large-scale Anime face dataset demonstrate that our method outperforms state-of-the-art models in both pixel accuracy and perceptual quality, while generalizing to diverse styles. Code is available at github.com/Giventicket/SSIMBaD-Sigma-Scaling-with-SSIM-Guided-Balanced-Diffusion-for-AnimeFace-Colorization
comment: 10 pages, rest of the pages are appendix
☆ SplArt: Articulation Estimation and Part-Level Reconstruction with 3D Gaussian Splatting
Reconstructing articulated objects prevalent in daily environments is crucial for applications in augmented/virtual reality and robotics. However, existing methods face scalability limitations (requiring 3D supervision or costly annotations), robustness issues (being susceptible to local optima), and rendering shortcomings (lacking speed or photorealism). We introduce SplArt, a self-supervised, category-agnostic framework that leverages 3D Gaussian Splatting (3DGS) to reconstruct articulated objects and infer kinematics from two sets of posed RGB images captured at different articulation states, enabling real-time photorealistic rendering for novel viewpoints and articulations. SplArt augments 3DGS with a differentiable mobility parameter per Gaussian, achieving refined part segmentation. A multi-stage optimization strategy is employed to progressively handle reconstruction, part segmentation, and articulation estimation, significantly enhancing robustness and accuracy. SplArt exploits geometric self-supervision, effectively addressing challenging scenarios without requiring 3D annotations or category-specific priors. Evaluations on established and newly proposed benchmarks, along with applications to real-world scenarios using a handheld RGB camera, demonstrate SplArt's state-of-the-art performance and real-world practicality. Code is publicly available at https://github.com/ripl/splart.
comment: https://github.com/ripl/splart
☆ Facial Appearance Capture at Home with Patch-Level Reflectance Prior SIGGRAPH
Existing facial appearance capture methods can reconstruct plausible facial reflectance from smartphone-recorded videos. However, the reconstruction quality is still far behind the ones based on studio recordings. This paper fills the gap by developing a novel daily-used solution with a co-located smartphone and flashlight video capture setting in a dim room. To enhance the quality, our key observation is to solve facial reflectance maps within the data distribution of studio-scanned ones. Specifically, we first learn a diffusion prior over the Light Stage scans and then steer it to produce the reflectance map that best matches the captured images. We propose to train the diffusion prior at the patch level to improve generalization ability and training stability, as current Light Stage datasets are in ultra-high resolution but limited in data size. Tailored to this prior, we propose a patch-level posterior sampling technique to sample seamless full-resolution reflectance maps from this patch-level diffusion model. Experiments demonstrate our method closes the quality gap between low-cost and studio recordings by a large margin, opening the door for everyday users to clone themselves to the digital world. Our code will be released at https://github.com/yxuhan/DoRA.
comment: ACM Transactions on Graphics (Proc. of SIGGRAPH), 2025. Code: https://github.com/yxuhan/DoRA; Project Page: https://yxuhan.github.io/DoRA
♻ ☆ Voyager: Real-Time Splatting City-Scale 3D Gaussians on Your Phone
3D Gaussian Splatting (3DGS) is an emerging technique for photorealistic 3D scene rendering. However, rendering city-scale 3DGS scenes on mobile devices, e.g., your smartphones, remains a significant challenge due to the limited resources on mobile devices. A natural solution is to offload computation to the cloud; however, naively streaming rendered frames from the cloud to the client introduces high latency and requires bandwidth far beyond the capacity of current wireless networks. In this paper, we propose an effective solution to enable city-scale 3DGS rendering on mobile devices. Our key insight is that, under normal user motion, the number of newly visible Gaussians per second remains roughly constant. Leveraging this, we stream only the necessary Gaussians to the client. Specifically, on the cloud side, we propose asynchronous level-of-detail search to identify the necessary Gaussians for the client. On the client side, we accelerate rendering via a lookup table-based rasterization. Combined with holistic runtime optimizations, our system can deliver low-latency, city-scale 3DGS rendering on mobile devices. Compared to existing solutions, Voyager achieves over 100$\times$ reduction on data transfer and up to 8.9$\times$ speedup while retaining comparable rendering quality.
♻ ☆ Neural Path Guiding with Distribution Factorization
In this paper, we present a neural path guiding method to aid with Monte Carlo (MC) integration in rendering. Existing neural methods utilize distribution representations that are either fast or expressive, but not both. We propose a simple, but effective, representation that is sufficiently expressive and reasonably fast. Specifically, we break down the 2D distribution over the directional domain into two 1D probability distribution functions (PDF). We propose to model each 1D PDF using a neural network that estimates the distribution at a set of discrete coordinates. The PDF at an arbitrary location can then be evaluated and sampled through interpolation. To train the network, we maximize the similarity of the learned and target distributions. To reduce the variance of the gradient during optimizations and estimate the normalization factor, we propose to cache the incoming radiance using an additional network. Through extensive experiments, we demonstrate that our approach is better than the existing methods, particularly in challenging scenes with complex light transport.
comment: 11 pages, 11 figures. Accepted to EGSR 2025
♻ ☆ Bézier Splatting for Fast and Differentiable Vector Graphics Rendering
Differentiable vector graphics (VGs) are widely used in image vectorization and vector synthesis, while existing representations are costly to optimize and struggle to achieve high-quality rendering results for high-resolution images. This work introduces a new differentiable VG representation, dubbed B\'ezier Splatting, that enables fast yet high-fidelity VG rasterization. B\'ezier Splatting samples 2D Gaussians along B\'ezier curves, which naturally provide positional gradients at object boundaries. Thanks to the efficient splatting-based differentiable rasterizer, B\'ezier Splatting achieves 30x and 150x faster per forward and backward rasterization step for open curves compared to DiffVG. Additionally, we introduce an adaptive pruning and densification strategy that dynamically adjusts the spatial distribution of curves to escape local minima, further improving VG quality. Furthermore, our new VG representation supports conversion to standard XML-based SVG format, enhancing interoperability with existing VG tools and pipelines. Experimental results show that B\'ezier Splatting significantly outperforms existing methods with better visual fidelity and significant optimization speedup.
comment: Project page: https://xiliu8006.github.io/Bezier_splatting_project/
Robotics 65
☆ EDEN: Entorhinal Driven Egocentric Navigation Toward Robotic Deployment
Deep reinforcement learning agents are often fragile while humans remain adaptive and flexible to varying scenarios. To bridge this gap, we present EDEN, a biologically inspired navigation framework that integrates learned entorhinal-like grid cell representations and reinforcement learning to enable autonomous navigation. Inspired by the mammalian entorhinal-hippocampal system, EDEN allows agents to perform path integration and vector-based navigation using visual and motion sensor data. At the core of EDEN is a grid cell encoder that transforms egocentric motion into periodic spatial codes, producing low-dimensional, interpretable embeddings of position. To generate these activations from raw sensory input, we combine fiducial marker detections in the lightweight MiniWorld simulator and DINO-based visual features in the high-fidelity Gazebo simulator. These spatial representations serve as input to a policy trained with Proximal Policy Optimization (PPO), enabling dynamic, goal-directed navigation. We evaluate EDEN in both MiniWorld, for rapid prototyping, and Gazebo, which offers realistic physics and perception noise. Compared to baseline agents using raw state inputs (e.g., position, velocity) or standard convolutional image encoders, EDEN achieves a 99% success rate, within the simple scenarios, and >94% within complex floorplans with occluded paths with more efficient and reliable step-wise navigation. In addition, as a replacement of ground truth activations, we present a trainable Grid Cell encoder enabling the development of periodic grid-like patterns from vision and motion sensor data, emulating the development of such patterns within biological mammals. This work represents a step toward biologically grounded spatial intelligence in robotics, bridging neural navigation principles with reinforcement learning for scalable deployment.
☆ Adjusting Tissue Puncture Omnidirectionally In Situ with Pneumatic Rotatable Biopsy Mechanism and Hierarchical Airflow Management in Tortuous Luminal Pathways
In situ tissue biopsy with an endoluminal catheter is an efficient approach for disease diagnosis, featuring low invasiveness and few complications. However, the endoluminal catheter struggles to adjust the biopsy direction by distal endoscope bending or proximal twisting for tissue sampling within the tortuous luminal organs, due to friction-induced hysteresis and narrow spaces. Here, we propose a pneumatically-driven robotic catheter enabling the adjustment of the sampling direction without twisting the catheter for an accurate in situ omnidirectional biopsy. The distal end of the robotic catheter consists of a pneumatic bending actuator for the catheter's deployment in torturous luminal organs and a pneumatic rotatable biopsy mechanism (PRBM). By hierarchical airflow control, the PRBM can adjust the biopsy direction under low airflow and deploy the biopsy needle with higher airflow, allowing for rapid omnidirectional sampling of tissue in situ. This paper describes the design, modeling, and characterization of the proposed robotic catheter, including repeated deployment assessments of the biopsy needle, puncture force measurement, and validation via phantom tests. The PRBM prototype has six sampling directions evenly distributed across 360 degrees when actuated by a positive pressure of 0.3 MPa. The pneumatically-driven robotic catheter provides a novel biopsy strategy, potentially facilitating in situ multidirectional biopsies in tortuous luminal organs with minimum invasiveness.
☆ UniConFlow: A Unified Constrained Generalization Framework for Certified Motion Planning with Flow Matching Models
Generative models have become increasingly powerful tools for robot motion generation, enabling flexible and multimodal trajectory generation across various tasks. Yet, most existing approaches remain limited in handling multiple types of constraints, such as collision avoidance and dynamic consistency, which are often treated separately or only partially considered. This paper proposes UniConFlow, a unified flow matching (FM) based framework for trajectory generation that systematically incorporates both equality and inequality constraints. UniConFlow introduces a novel prescribed-time zeroing function to enhance flexibility during the inference process, allowing the model to adapt to varying task requirements. To ensure constraint satisfaction, particularly with respect to obstacle avoidance, admissible action range, and kinodynamic consistency, the guidance inputs to the FM model are derived through a quadratic programming formulation, which enables constraint-aware generation without requiring retraining or auxiliary controllers. We conduct mobile navigation and high-dimensional manipulation tasks, demonstrating improved safety and feasibility compared to state-of-the-art constrained generative planners. Project page is available at https://uniconflow.github.io.
☆ Online Performance Assessment of Multi-Source-Localization for Autonomous Driving Systems Using Subjective Logic
Autonomous driving (AD) relies heavily on high precision localization as a crucial part of all driving related software components. The precise positioning is necessary for the utilization of high-definition maps, prediction of other road participants and the controlling of the vehicle itself. Due to this reason, the localization is absolutely safety relevant. Typical errors of the localization systems, which are long term drifts, jumps and false localization, that must be detected to enhance safety. An online assessment and evaluation of the current localization performance is a challenging task, which is usually done by Kalman filtering for single localization systems. Current autonomous vehicles cope with these challenges by fusing multiple individual localization methods into an overall state estimation. Such approaches need expert knowledge for a competitive performance in challenging environments. This expert knowledge is based on the trust and the prioritization of distinct localization methods in respect to the current situation and environment. This work presents a novel online performance assessment technique of multiple localization systems by using subjective logic (SL). In our research vehicles, three different systems for localization are available, namely odometry-, Simultaneous Localization And Mapping (SLAM)- and Global Navigation Satellite System (GNSS)-based. Our performance assessment models the behavior of these three localization systems individually and puts them into reference of each other. The experiments were carried out using the CoCar NextGen, which is based on an Audi A6. The vehicle's localization system was evaluated under challenging conditions, specifically within a tunnel environment. The overall evaluation shows the feasibility of our approach.
comment: submitted to IEEE IAVVC 2025
☆ Functionality Assessment Framework for Autonomous Driving Systems using Subjective Networks SC 2025
In complex autonomous driving (AD) software systems, the functioning of each system part is crucial for safe operation. By measuring the current functionality or operability of individual components an isolated glimpse into the system is given. Literature provides several of these detached assessments, often in the form of safety or performance measures. But dependencies, redundancies, error propagation and conflicting functionality statements do not allow for easy combination of these measures into a big picture of the functioning of the entire AD stack. Data is processed and exchanged between different components, each of which can fail, making an overall statement challenging. The lack of functionality assessment frameworks that tackle these problems underlines this complexity. This article presents a novel framework for inferring an overall functionality statement for complex component based systems by considering their dependencies, redundancies, error propagation paths and the assessments of individual components. Our framework first incorporates a comprehensive conversion to an assessment representation of the system. The representation is based on Subjective Networks (SNs) that allow for easy identification of faulty system parts. Second, the framework offers a flexible method for computing the system's functionality while dealing with contradicting assessments about the same component and dependencies, as well as redundancies, of the system. We discuss the framework's capabilities on real-life data of our AD stack with assessments of various components.
comment: submitted to IEEE ITSC 2025
☆ Text-guided Generation of Efficient Personalized Inspection Plans
We propose a training-free, Vision-Language Model (VLM)-guided approach for efficiently generating trajectories to facilitate target inspection planning based on text descriptions. Unlike existing Vision-and-Language Navigation (VLN) methods designed for general agents in unknown environments, our approach specifically targets the efficient inspection of known scenes, with widespread applications in fields such as medical, marine, and civil engineering. Leveraging VLMs, our method first extracts points of interest (POIs) from the text description, then identifies a set of waypoints from which POIs are both salient and align with the spatial constraints defined in the prompt. Next, we interact with the VLM to iteratively refine the trajectory, preserving the visibility and prominence of the POIs. Further, we solve a Traveling Salesman Problem (TSP) to find the most efficient visitation order that satisfies the order constraint implied in the text description. Finally, we apply trajectory optimization to generate smooth, executable inspection paths for aerial and underwater vehicles. We have evaluated our method across a series of both handcrafted and real-world scanned environments. The results demonstrate that our approach effectively generates inspection planning trajectories that adhere to user instructions.
comment: 8 pages, 5 figures
☆ Automatic Operation of an Articulated Dump Truck: State Estimation by Combined QZSS CLAS and Moving-Base RTK Using Multiple GNSS Receivers
Labor shortage due to the declining birth rate has become a serious problem in the construction industry, and automation of construction work is attracting attention as a solution to this problem. This paper proposes a method to realize state estimation of dump truck position, orientation and articulation angle using multiple GNSS for automatic operation of dump trucks. RTK-GNSS is commonly used for automation of construction equipment, but in mountainous areas, mobile networks often unstable, and RTK-GNSS using GNSS reference stations cannot be used. Therefore, this paper develops a state estimation method for dump trucks that does not require a GNSS reference station by using the Centimeter Level Augmentation Service (CLAS) of the Japanese Quasi-Zenith Satellite System (QZSS). Although CLAS is capable of centimeter-level position estimation, its positioning accuracy and ambiguity fix rate are lower than those of RTK-GNSS. To solve this problem, we construct a state estimation method by factor graph optimization that combines CLAS positioning and moving-base RTK-GNSS between multiple GNSS antennas. Evaluation tests under real-world environments have shown that the proposed method can estimate the state of dump trucks with the same accuracy as conventional RTK-GNSS, but does not require a GNSS reference station.
comment: Accepted to the ION 2024 Pacific PNT Meeting
☆ Tru-POMDP: Task Planning Under Uncertainty via Tree of Hypotheses and Open-Ended POMDPs
Task planning under uncertainty is essential for home-service robots operating in the real world. Tasks involve ambiguous human instructions, hidden or unknown object locations, and open-vocabulary object types, leading to significant open-ended uncertainty and a boundlessly large planning space. To address these challenges, we propose Tru-POMDP, a planner that combines structured belief generation using Large Language Models (LLMs) with principled POMDP planning. Tru-POMDP introduces a hierarchical Tree of Hypotheses (TOH), which systematically queries an LLM to construct high-quality particle beliefs over possible world states and human goals. We further formulate an open-ended POMDP model that enables rigorous Bayesian belief tracking and efficient belief-space planning over these LLM-generated hypotheses. Experiments on complex object rearrangement tasks across diverse kitchen environments show that Tru-POMDP significantly outperforms state-of-the-art LLM-based and LLM-tree-search hybrid planners, achieving higher success rates with significantly better plans, stronger robustness to ambiguity and occlusion, and greater planning efficiency.
☆ Learned Controllers for Agile Quadrotors in Pursuit-Evasion Games
The increasing proliferation of small UAVs in civilian and military airspace has raised critical safety and security concerns, especially when unauthorized or malicious drones enter restricted zones. In this work, we present a reinforcement learning (RL) framework for agile 1v1 quadrotor pursuit-evasion. We train neural network policies to command body rates and collective thrust, enabling high-speed pursuit and evasive maneuvers that fully exploit the quadrotor's nonlinear dynamics. To mitigate nonstationarity and catastrophic forgetting during adversarial co-training, we introduce an Asynchronous Multi-Stage Population-Based (AMSPB) algorithm where, at each stage, either the pursuer or evader learns against a sampled opponent drawn from a growing population of past and current policies. This continual learning setup ensures monotonic performance improvement and retention of earlier strategies. Our results show that (i) rate-based policies achieve significantly higher capture rates and peak speeds than velocity-level baselines, and (ii) AMSPB yields stable, monotonic gains against a suite of benchmark opponents.
☆ High-speed control and navigation for quadrupedal robots on complex and discrete terrain
High-speed legged navigation in discrete and geometrically complex environments is a challenging task because of the high-degree-of-freedom dynamics and long-horizon, nonconvex nature of the optimization problem. In this work, we propose a hierarchical navigation pipeline for legged robots that can traverse such environments at high speed. The proposed pipeline consists of a planner and tracker module. The planner module finds physically feasible foothold plans by sampling-based optimization with fast sequential filtering using heuristics and a neural network. Subsequently, rollouts are performed in a physics simulation to identify the best foothold plan regarding the engineered cost function and to confirm its physical consistency. This hierarchical planning module is computationally efficient and physically accurate at the same time. The tracker aims to accurately step on the target footholds from the planning module. During the training stage, the foothold target distribution is given by a generative model that is trained competitively with the tracker. This process ensures that the tracker is trained in an environment with the desired difficulty. The resulting tracker can overcome terrains that are more difficult than what the previous methods could manage. We demonstrated our approach using Raibo, our in-house dynamic quadruped robot. The results were dynamic and agile motions: Raibo is capable of running on vertical walls, jumping a 1.3-meter gap, running over stepping stones at 4 meters per second, and autonomously navigating on terrains full of 30{\deg} ramps, stairs, and boxes of various sizes.
☆ Efficient Tactile Perception with Soft Electrical Impedance Tomography and Pre-trained Transformer
Tactile sensing is fundamental to robotic systems, enabling interactions through physical contact in multiple tasks. Despite its importance, achieving high-resolution, large-area tactile sensing remains challenging. Electrical Impedance Tomography (EIT) has emerged as a promising approach for large-area, distributed tactile sensing with minimal electrode requirements which can lend itself to addressing complex contact problems in robotics. However, existing EIT-based tactile reconstruction methods often suffer from high computational costs or depend on extensive annotated simulation datasets, hindering its viability in real-world settings. To address this shortcoming, here we propose a Pre-trained Transformer for EIT-based Tactile Reconstruction (PTET), a learning-based framework that bridges the simulation-to-reality gap by leveraging self-supervised pretraining on simulation data and fine-tuning with limited real-world data. In simulations, PTET requires 99.44 percent fewer annotated samples than equivalent state-of-the-art approaches (2,500 vs. 450,000 samples) while achieving reconstruction performance improvements of up to 43.57 percent under identical data conditions. Fine-tuning with real-world data further enables PTET to overcome discrepancies between simulated and experimental datasets, achieving superior reconstruction and detail recovery in practical scenarios. The improved reconstruction accuracy, data efficiency, and robustness in real-world tasks establish it as a scalable and practical solution for tactile sensing systems in robotics, especially for object handling and adaptive grasping under varying pressure conditions.
Optimization of Robotic Liquid Handling as a Capacitated Vehicle Routing Problem
We present an optimization strategy to reduce the execution time of liquid handling operations in the context of an automated chemical laboratory. By formulating the task as a capacitated vehicle routing problem (CVRP), we leverage heuristic solvers traditionally used in logistics and transportation planning to optimize task execution times. As exemplified using an 8-channel pipette with individually controllable tips, our approach demonstrates robust optimization performance across different labware formats (e.g., well-plates, vial holders), achieving up to a 37% reduction in execution time for randomly generated tasks compared to the baseline sorting method. We further apply the method to a real-world high-throughput materials discovery campaign and observe that 3 minutes of optimization time led to a reduction of 61 minutes in execution time compared to the best-performing sorting-based strategy. Our results highlight the potential for substantial improvements in throughput and efficiency in automated laboratories without any hardware modifications. This optimization strategy offers a practical and scalable solution to accelerate combinatorial experimentation in areas such as drug combination screening, reaction condition optimization, materials development, and formulation engineering.
☆ Geometric Visual Servo Via Optimal Transport
When developing control laws for robotic systems, the principle factor when examining their performance is choosing inputs that allow smooth tracking to a reference input. In the context of robotic manipulation, this involves translating an object or end-effector from an initial pose to a target pose. Robotic manipulation control laws frequently use vision systems as an error generator to track features and produce control inputs. However, current control algorithms don't take into account the probabilistic features that are extracted and instead rely on hand-tuned feature extraction methods. Furthermore, the target features can exist in a static pose thus allowing a combined pose and feature error for control generation. We present a geometric control law for the visual servoing problem for robotic manipulators. The input from the camera constitutes a probability measure on the 3-dimensional Special Euclidean task-space group, where the Wasserstein distance between the current and desired poses is analogous with the geometric geodesic. From this, we develop a controller that allows for both pose and image-based visual servoing by combining classical PD control with gravity compensation with error minimization through the use of geodesic flows on a 3-dimensional Special Euclidean group. We present our results on a set of test cases demonstrating the generalisation ability of our approach to a variety of initial positions.
comment: 19 pages, 5 figures
☆ Accelerating Model-Based Reinforcement Learning using Non-Linear Trajectory Optimization
This paper addresses the slow policy optimization convergence of Monte Carlo Probabilistic Inference for Learning Control (MC-PILCO), a state-of-the-art model-based reinforcement learning (MBRL) algorithm, by integrating it with iterative Linear Quadratic Regulator (iLQR), a fast trajectory optimization method suitable for nonlinear systems. The proposed method, Exploration-Boosted MC-PILCO (EB-MC-PILCO), leverages iLQR to generate informative, exploratory trajectories and initialize the policy, significantly reducing the number of required optimization steps. Experiments on the cart-pole task demonstrate that EB-MC-PILCO accelerates convergence compared to standard MC-PILCO, achieving up to $\bm{45.9\%}$ reduction in execution time when both methods solve the task in four trials. EB-MC-PILCO also maintains a $\bm{100\%}$ success rate across trials while solving the task faster, even in cases where MC-PILCO converges in fewer iterations.
☆ Solving the Pod Repositioning Problem with Deep Reinforced Adaptive Large Neighborhood Search
The Pod Repositioning Problem (PRP) in Robotic Mobile Fulfillment Systems (RMFS) involves selecting optimal storage locations for pods returning from pick stations. This work presents an improved solution method that integrates Adaptive Large Neighborhood Search (ALNS) with Deep Reinforcement Learning (DRL). A DRL agent dynamically selects destroy and repair operators and adjusts key parameters such as destruction degree and acceptance thresholds during the search. Specialized heuristics for both operators are designed to reflect PRP-specific characteristics, including pod usage frequency and movement costs. Computational results show that this DRL-guided ALNS outperforms traditional approaches such as cheapest-place, fixed-place, binary integer programming, and static heuristics. The method demonstrates strong solution quality and illustrating the benefit of learning-driven control within combinatorial optimization for warehouse systems.
comment: 14 pages, 2 figures, conference
☆ GeneA-SLAM2: Dynamic SLAM with AutoEncoder-Preprocessed Genetic Keypoints Resampling and Depth Variance-Guided Dynamic Region Removal
Existing semantic SLAM in dynamic environments mainly identify dynamic regions through object detection or semantic segmentation methods. However, in certain highly dynamic scenarios, the detection boxes or segmentation masks cannot fully cover dynamic regions. Therefore, this paper proposes a robust and efficient GeneA-SLAM2 system that leverages depth variance constraints to handle dynamic scenes. Our method extracts dynamic pixels via depth variance and creates precise depth masks to guide the removal of dynamic objects. Simultaneously, an autoencoder is used to reconstruct keypoints, improving the genetic resampling keypoint algorithm to obtain more uniformly distributed keypoints and enhance the accuracy of pose estimation. Our system was evaluated on multiple highly dynamic sequences. The results demonstrate that GeneA-SLAM2 maintains high accuracy in dynamic scenes compared to current methods. Code is available at: https://github.com/qingshufan/GeneA-SLAM2.
☆ Stochastic Modeling of Road Hazards on Intersections and their Effect on Safety of Autonomous Vehicles
Autonomous vehicles (AV) look set to become common on our roads within the next few years. However, to achieve the final breakthrough, not only functional progress is required, but also satisfactory safety assurance must be provided. Among those, a question demanding special attention is the need to assess and quantify the overall safety of an AV. Such an assessment must consider on the one hand the imperfections of the AV functionality and on the other hand its interaction with the environment. In a previous paper we presented a model-based approach to AV safety assessment in which we use a probabilistic model to describe road hazards together with the impact on AV safety of imperfect behavior of AV functions, such as safety monitors and perception systems. With this model, we are able to quantify the likelihood of the occurrence of a fatal accident, for a single operating condition. In this paper, we extend the approach and show how the model can deal explicitly with a set of different operating conditions defined in a given ODD.
comment: This work has been submitted to the IEEE for possible publication
Sight Guide: A Wearable Assistive Perception and Navigation System for the Vision Assistance Race in the Cybathlon 2024
Visually impaired individuals face significant challenges navigating and interacting with unknown situations, particularly in tasks requiring spatial awareness and semantic scene understanding. To accelerate the development and evaluate the state of technologies that enable visually impaired people to solve these tasks, the Vision Assistance Race (VIS) at the Cybathlon 2024 competition was organized. In this work, we present Sight Guide, a wearable assistive system designed for the VIS. The system processes data from multiple RGB and depth cameras on an embedded computer that guides the user through complex, real-world-inspired tasks using vibration signals and audio commands. Our software architecture integrates classical robotics algorithms with learning-based approaches to enable capabilities such as obstacle avoidance, object detection, optical character recognition, and touchscreen interaction. In a testing environment, Sight Guide achieved a 95.7% task success rate, and further demonstrated its effectiveness during the Cybathlon competition. This work provides detailed insights into the system design, evaluation results, and lessons learned, and outlines directions towards a broader real-world applicability.
☆ HORUS: A Mixed Reality Interface for Managing Teams of Mobile Robots IROS 2025
Mixed Reality (MR) interfaces have been extensively explored for controlling mobile robots, but there is limited research on their application to managing teams of robots. This paper presents HORUS: Holistic Operational Reality for Unified Systems, a Mixed Reality interface offering a comprehensive set of tools for managing multiple mobile robots simultaneously. HORUS enables operators to monitor individual robot statuses, visualize sensor data projected in real time, and assign tasks to single robots, subsets of the team, or the entire group, all from a Mini-Map (Ground Station). The interface also provides different teleoperation modes: a mini-map mode that allows teleoperation while observing the robot model and its transform on the mini-map, and a semi-immersive mode that offers a flat, screen-like view in either single or stereo view (3D). We conducted a user study in which participants used HORUS to manage a team of mobile robots tasked with finding clues in an environment, simulating search and rescue tasks. This study compared HORUS's full-team management capabilities with individual robot teleoperation. The experiments validated the versatility and effectiveness of HORUS in multi-robot coordination, demonstrating its potential to advance human-robot collaboration in dynamic, team-based environments.
comment: 7 pages, 7 figures, conference paper submitted to IROS 2025
☆ Rodrigues Network for Learning Robot Actions
Understanding and predicting articulated actions is important in robot learning. However, common architectures such as MLPs and Transformers lack inductive biases that reflect the underlying kinematic structure of articulated systems. To this end, we propose the Neural Rodrigues Operator, a learnable generalization of the classical forward kinematics operation, designed to inject kinematics-aware inductive bias into neural computation. Building on this operator, we design the Rodrigues Network (RodriNet), a novel neural architecture specialized for processing actions. We evaluate the expressivity of our network on two synthetic tasks on kinematic and motion prediction, showing significant improvements compared to standard backbones. We further demonstrate its effectiveness in two realistic applications: (i) imitation learning on robotic benchmarks with the Diffusion Policy, and (ii) single-image 3D hand reconstruction. Our results suggest that integrating structured kinematic priors into the network architecture improves action learning in various domains.
☆ A Hybrid Approach to Indoor Social Navigation: Integrating Reactive Local Planning and Proactive Global Planning ICRA 2025
We consider the problem of indoor building-scale social navigation, where the robot must reach a point goal as quickly as possible without colliding with humans who are freely moving around. Factors such as varying crowd densities, unpredictable human behavior, and the constraints of indoor spaces add significant complexity to the navigation task, necessitating a more advanced approach. We propose a modular navigation framework that leverages the strengths of both classical methods and deep reinforcement learning (DRL). Our approach employs a global planner to generate waypoints, assigning soft costs around anticipated pedestrian locations, encouraging caution around potential future positions of humans. Simultaneously, the local planner, powered by DRL, follows these waypoints while avoiding collisions. The combination of these planners enables the agent to perform complex maneuvers and effectively navigate crowded and constrained environments while improving reliability. Many existing studies on social navigation are conducted in simplistic or open environments, limiting the ability of trained models to perform well in complex, real-world settings. To advance research in this area, we introduce a new 2D benchmark designed to facilitate development and testing of social navigation strategies in indoor environments. We benchmark our method against traditional and RL-based navigation strategies, demonstrating that our approach outperforms both.
comment: Accepted at ICRA 2025
BEVCALIB: LiDAR-Camera Calibration via Geometry-Guided Bird's-Eye View Representations
Accurate LiDAR-camera calibration is fundamental to fusing multi-modal perception in autonomous driving and robotic systems. Traditional calibration methods require extensive data collection in controlled environments and cannot compensate for the transformation changes during the vehicle/robot movement. In this paper, we propose the first model that uses bird's-eye view (BEV) features to perform LiDAR camera calibration from raw data, termed BEVCALIB. To achieve this, we extract camera BEV features and LiDAR BEV features separately and fuse them into a shared BEV feature space. To fully utilize the geometric information from the BEV feature, we introduce a novel feature selector to filter the most important features in the transformation decoder, which reduces memory consumption and enables efficient training. Extensive evaluations on KITTI, NuScenes, and our own dataset demonstrate that BEVCALIB establishes a new state of the art. Under various noise conditions, BEVCALIB outperforms the best baseline in the literature by an average of (47.08%, 82.32%) on KITTI dataset, and (78.17%, 68.29%) on NuScenes dataset, in terms of (translation, rotation), respectively. In the open-source domain, it improves the best reproducible baseline by one order of magnitude. Our code and demo results are available at https://cisl.ucr.edu/BEVCalib.
☆ Sign Language: Towards Sign Understanding for Robot Autonomy
Signage is an ubiquitous element of human environments, playing a critical role in both scene understanding and navigation. For autonomous systems to fully interpret human environments, effectively parsing and understanding signs is essential. We introduce the task of navigational sign understanding, aimed at extracting navigational cues from signs that convey symbolic spatial information about the scene. Specifically, we focus on signs capturing directional cues that point toward distant locations and locational cues that identify specific places. To benchmark performance on this task, we curate a comprehensive test set, propose appropriate evaluation metrics, and establish a baseline approach. Our test set consists of over 160 images, capturing signs with varying complexity and design across a wide range of public spaces, such as hospitals, shopping malls, and transportation hubs. Our baseline approach harnesses Vision-Language Models (VLMs) to parse navigational signs under these high degrees of variability. Experiments show that VLMs offer promising performance on this task, potentially motivating downstream applications in robotics. The code and dataset are available on Github.
☆ HiLO: High-Level Object Fusion for Autonomous Driving using Transformers
The fusion of sensor data is essential for a robust perception of the environment in autonomous driving. Learning-based fusion approaches mainly use feature-level fusion to achieve high performance, but their complexity and hardware requirements limit their applicability in near-production vehicles. High-level fusion methods offer robustness with lower computational requirements. Traditional methods, such as the Kalman filter, dominate this area. This paper modifies the Adapted Kalman Filter (AKF) and proposes a novel transformer-based high-level object fusion method called HiLO. Experimental results demonstrate improvements of $25.9$ percentage points in $\textrm{F}_1$ score and $6.1$ percentage points in mean IoU. Evaluation on a new large-scale real-world dataset demonstrates the effectiveness of the proposed approaches. Their generalizability is further validated by cross-domain evaluation between urban and highway scenarios. Code, data, and models are available at https://github.com/rst-tu-dortmund/HiLO .
comment: 6 pages, accepted at IEEE Intelligent Vehicles Symposium (IV) 2025
☆ AURA: Agentic Upskilling via Reinforced Abstractions
We study the combinatorial explosion involved in translating high-level task prompts into deployable control policies for agile robots through multi-stage reinforcement learning. We introduce AURA (Agentic Upskilling via Reinforced Abstractions), a schema-centric curriculum RL framework that leverages Large Language Models (LLMs) as autonomous designers of multi-stage curricula. AURA transforms user prompts into YAML workflows that encode full reward functions, domain randomization strategies, and training configurations. All files are statically validated against a schema before any GPU time is consumed, ensuring reliable and efficient execution without human intervention. A retrieval-augmented feedback loop allows specialized LLM agents to design, execute, and refine staged curricula based on prior training results stored in a vector database, supporting continual improvement over time. Ablation studies highlight the importance of retrieval for curriculum quality and convergence stability. Quantitative experiments show that AURA consistently outperforms LLM-guided baselines on GPU-accelerated training frameworks. In qualitative tests, AURA successfully trains end-to-end policies directly from user prompts and deploys them zero-shot on a custom humanoid robot across a range of environments. By abstracting away the complexity of curriculum design, AURA enables scalable and adaptive policy learning pipelines that would be prohibitively complex to construct by hand.
☆ Grasp2Grasp: Vision-Based Dexterous Grasp Translation via Schrödinger Bridges
We propose a new approach to vision-based dexterous grasp translation, which aims to transfer grasp intent across robotic hands with differing morphologies. Given a visual observation of a source hand grasping an object, our goal is to synthesize a functionally equivalent grasp for a target hand without requiring paired demonstrations or hand-specific simulations. We frame this problem as a stochastic transport between grasp distributions using the Schr\"odinger Bridge formalism. Our method learns to map between source and target latent grasp spaces via score and flow matching, conditioned on visual observations. To guide this translation, we introduce physics-informed cost functions that encode alignment in base pose, contact maps, wrench space, and manipulability. Experiments across diverse hand-object pairs demonstrate our approach generates stable, physically grounded grasps with strong generalization. This work enables semantic grasp transfer for heterogeneous manipulators and bridges vision-based grasping with probabilistic generative modeling.
comment: 19 pages, 4 figures
☆ Olfactory Inertial Odometry: Methodology for Effective Robot Navigation by Scent
Olfactory navigation is one of the most primitive mechanisms of exploration used by organisms. Navigation by machine olfaction (artificial smell) is a very difficult task to both simulate and solve. With this work, we define olfactory inertial odometry (OIO), a framework for using inertial kinematics, and fast-sampling olfaction sensors to enable navigation by scent analogous to visual inertial odometry (VIO). We establish how principles from SLAM and VIO can be extrapolated to olfaction to enable real-world robotic tasks. We demonstrate OIO with three different odour localization algorithms on a real 5-DoF robot arm over an odour-tracking scenario that resembles real applications in agriculture and food quality control. Our results indicate success in establishing a baseline framework for OIO from which other research in olfactory navigation can build, and we note performance enhancements that can be made to address more complex tasks in the future.
Dynamic real-time multi-UAV cooperative mission planning method under multiple constraints
As UAV popularity soars, so does the mission planning associated with it. The classical approaches suffer from the triple problems of decoupled of task assignment and path planning, poor real-time performance and limited adaptability. Aiming at these challenges, this paper proposes a dynamic real-time multi-UAV collaborative mission planning algorithm based on Dubins paths under a distributed formation structure. Dubins path with multiple advantages bridges the gap between task assignment and path planning, leading to a coupled solution for mission planning. Then, a series of acceleration techniques, task clustering preprocessing, highly efficient distance cost functions, low-complexity and less iterative task allocation strategies, are employed to guarantee the real-time performance of the algorithms. To cope with different emergencies and their simultaneous extremes, real-time planning of emerging tasks and mission replanning due to the reduction of available UAVs are appropriately handled. Finally, the developed algorithm is comprehensively exemplified and studied through simulations, highlighting that the proposed method only sacrifices 9.57% of the path length, while achieving a speed improvement of 4-5 orders of magnitude over the simulated annealing method, with a single mission planning of about 0.0003s.
☆ SAVOR: Skill Affordance Learning from Visuo-Haptic Perception for Robot-Assisted Bite Acquisition
Robot-assisted feeding requires reliable bite acquisition, a challenging task due to the complex interactions between utensils and food with diverse physical properties. These interactions are further complicated by the temporal variability of food properties-for example, steak becomes firm as it cools even during a meal. To address this, we propose SAVOR, a novel approach for learning skill affordances for bite acquisition-how suitable a manipulation skill (e.g., skewering, scooping) is for a given utensil-food interaction. In our formulation, skill affordances arise from the combination of tool affordances (what a utensil can do) and food affordances (what the food allows). Tool affordances are learned offline through calibration, where different utensils interact with a variety of foods to model their functional capabilities. Food affordances are characterized by physical properties such as softness, moisture, and viscosity, initially inferred through commonsense reasoning using a visually-conditioned language model and then dynamically refined through online multi-modal visuo-haptic perception using SAVOR-Net during interaction. Our method integrates these offline and online estimates to predict skill affordances in real time, enabling the robot to select the most appropriate skill for each food item. Evaluated on 20 single-item foods and 10 in-the-wild meals, our approach improves bite acquisition success by 13% over state-of-the-art (SOTA) category-based methods (e.g. use skewer for fruits). These results highlight the importance of modeling interaction-driven skill affordances for generalizable and effective robot-assisted bite acquisition. Website: https://emprise.cs.cornell.edu/savor/
☆ Occlusion-Aware Ground Target Tracking by a Dubins Vehicle Using Visibility Volumes
This paper considers the problem of tracking a point of interest (POI) moving along a known trajectory on the ground with an uncrewed aerial vehicle (UAV) modeled as a Dubins vehicle using a line-of-sight (LOS) sensor through an urban environment that may occlude the POI. A visibility volume (VV) encodes a time-varying, three-dimensional representation of the sensing constraints for a particular POI position. A constant-altitude, translating, and radially time-varying circular standoff orbit is then inscribed within the dynamically changing VV centered at the POI position. The time-varying VV is approximated by placing static VVs along the POI's trajectory using an adaptive metric that restricts the volume change of consecutive visibility volumes to below a specified rate. The time-varying circular standoff orbit is proven to be feasible for a Dubins vehicle and is approximated with a piecewise set of linearly interpolated circular orbits inside the static VVs. A steering controller is derived that drives the UAV to converge to the time-varying standoff orbit. Numerical simulations and a flight test illustrate the proposed approach.
comment: 56 pages, 22 figures, 1 table
☆ Design of Trimmed Helicoid Soft-Rigid Hybrid Robots
As soft robot design matures, researchers have converged to sophisticated design paradigms to enable the development of more suitable platforms. Two such paradigms are soft-rigid hybrid robots, which utilize rigid structural materials in some aspect of the robot's design, and architectured materials, which deform based on geometric parameters as opposed to purely material ones. In this work, we combine the two design approaches, utilizing trimmed helicoid structures in series with rigid linkages. Additionally, we extend the literature on wave spring-inspired soft structures by deriving a mechanical model of the stiffness for arbitrary geometries. We present a novel manufacturing method for such structures utilizing an injection molding approach and we make available the design tool to generate 3D printed molds for arbitrary designs of this class. Finally, we produce a robot using the above methods and operate it in closed-loop demonstrations.
comment: 7 pgs. 5 figs. Presented at IEEE Robosoft 2025
☆ Robustness-Aware Tool Selection and Manipulation Planning with Learned Energy-Informed Guidance
Humans subconsciously choose robust ways of selecting and using tools, based on years of embodied experience -- for example, choosing a ladle instead of a flat spatula to serve meatballs. However, robustness under uncertainty remains underexplored in robotic tool-use planning. This paper presents a robustness-aware framework that jointly selects tools and plans contact-rich manipulation trajectories, explicitly optimizing for robustness against environmental disturbances. At the core of our approach is a learned, energy-based robustness metric, which guides the planner towards robust manipulation behaviors. We formulate a hierarchical optimization pipeline that first identifies a tool and configuration that optimizes robustness, and then plans a corresponding manipulation trajectory that maintains robustness throughout execution. We evaluate our approach across three representative tool-use tasks. Simulation and real-world results demonstrate that our approach consistently selects robust tools and generates disturbance-resilient manipulation plans.
☆ Adversarial Attacks on Robotic Vision Language Action Models
The emergence of vision-language-action models (VLAs) for end-to-end control is reshaping the field of robotics by enabling the fusion of multimodal sensory inputs at the billion-parameter scale. The capabilities of VLAs stem primarily from their architectures, which are often based on frontier large language models (LLMs). However, LLMs are known to be susceptible to adversarial misuse, and given the significant physical risks inherent to robotics, questions remain regarding the extent to which VLAs inherit these vulnerabilities. Motivated by these concerns, in this work we initiate the study of adversarial attacks on VLA-controlled robots. Our main algorithmic contribution is the adaptation and application of LLM jailbreaking attacks to obtain complete control authority over VLAs. We find that textual attacks, which are applied once at the beginning of a rollout, facilitate full reachability of the action space of commonly used VLAs and often persist over longer horizons. This differs significantly from LLM jailbreaking literature, as attacks in the real world do not have to be semantically linked to notions of harm. We make all code available at https://github.com/eliotjones1/robogcg .
Dynamics and Control of Vision-Aided Multi-UAV-tethered Netted System Capturing Non-Cooperative Target
As the number of Unmanned Aerial Vehicles (UAVs) operating in low-altitude airspace continues to increase, non-cooperative targets pose growing challenges to low-altitude operations. To address this issue, this paper proposes a multi-UAV-tethered netted system as a non-lethal solution for capturing non-cooperative targets. To validate the proposed system, we develop mySim, a multibody dynamics-based UAV simulation environment that integrates high-precision physics modeling, vision-based motion tracking, and reinforcement learning-driven control strategies. In mySim, the spring-damper model is employed to simulate the dynamic behavior of the tethered net, while the dynamics of the entire system is modeled using multibody dynamics (MBD) to achieve accurate representations of system interactions. The motion of the UAVs and the target are estimated using VINS-MONO and DETR, and the system autonomously executes the capture strategy through MAPPO. Simulation results demonstrate that mySim accurately simulates dynamics and control of the system, successfully enabling the multi-UAV-tethered netted system to capture both non-propelled and maneuvering non-cooperative targets. By providing a high-precision simulation platform that integrates dynamics modeling with perception and learning-based control, mySim enables efficient testing and optimization of UAV-based control policies before real-world deployment. This approach offers significant advantages for simulating complex UAVs coordination tasks and has the potential to be applied to the design of other UAV-based systems.
☆ Grounded Vision-Language Interpreter for Integrated Task and Motion Planning
While recent advances in vision-language models (VLMs) have accelerated the development of language-guided robot planners, their black-box nature often lacks safety guarantees and interpretability crucial for real-world deployment. Conversely, classical symbolic planners offer rigorous safety verification but require significant expert knowledge for setup. To bridge the current gap, this paper proposes ViLaIn-TAMP, a hybrid planning framework for enabling verifiable, interpretable, and autonomous robot behaviors. ViLaIn-TAMP comprises three main components: (1) ViLaIn (Vision-Language Interpreter) - A prior framework that converts multimodal inputs into structured problem specifications using off-the-shelf VLMs without additional domain-specific training, (2) a modular Task and Motion Planning (TAMP) system that grounds these specifications in actionable trajectory sequences through symbolic and geometric constraint reasoning and can utilize learning-based skills for key manipulation phases, and (3) a corrective planning module which receives concrete feedback on failed solution attempts from the motion and task planning components and can feed adapted logic and geometric feasibility constraints back to ViLaIn to improve and further refine the specification. We evaluate our framework on several challenging manipulation tasks in a cooking domain. We demonstrate that the proposed closed-loop corrective architecture exhibits a more than 30% higher mean success rate for ViLaIn-TAMP compared to without corrective planning.
comment: Project website: https://omron-sinicx.github.io/ViLaIn-TAMP/
☆ Tactile MNIST: Benchmarking Active Tactile Perception
Tactile perception has the potential to significantly enhance dexterous robotic manipulation by providing rich local information that can complement or substitute for other sensory modalities such as vision. However, because tactile sensing is inherently local, it is not well-suited for tasks that require broad spatial awareness or global scene understanding on its own. A human-inspired strategy to address this issue is to consider active perception techniques instead. That is, to actively guide sensors toward regions with more informative or significant features and integrate such information over time in order to understand a scene or complete a task. Both active perception and different methods for tactile sensing have received significant attention recently. Yet, despite advancements, both fields lack standardized benchmarks. To bridge this gap, we introduce the Tactile MNIST Benchmark Suite, an open-source, Gymnasium-compatible benchmark specifically designed for active tactile perception tasks, including localization, classification, and volume estimation. Our benchmark suite offers diverse simulation scenarios, from simple toy environments all the way to complex tactile perception tasks using vision-based tactile sensors. Furthermore, we also offer a comprehensive dataset comprising 13,500 synthetic 3D MNIST digit models and 153,600 real-world tactile samples collected from 600 3D printed digits. Using this dataset, we train a CycleGAN for realistic tactile simulation rendering. By providing standardized protocols and reproducible evaluation frameworks, our benchmark suite facilitates systematic progress in the fields of tactile sensing and active perception.
♻ ☆ DiffVLA: Vision-Language Guided Diffusion Planning for Autonomous Driving
Research interest in end-to-end autonomous driving has surged owing to its fully differentiable design integrating modular tasks, i.e. perception, prediction and planing, which enables optimization in pursuit of the ultimate goal. Despite the great potential of the end-to-end paradigm, existing methods suffer from several aspects including expensive BEV (bird's eye view) computation, action diversity, and sub-optimal decision in complex real-world scenarios. To address these challenges, we propose a novel hybrid sparse-dense diffusion policy, empowered by a Vision-Language Model (VLM), called Diff-VLA. We explore the sparse diffusion representation for efficient multi-modal driving behavior. Moreover, we rethink the effectiveness of VLM driving decision and improve the trajectory generation guidance through deep interaction across agent, map instances and VLM output. Our method shows superior performance in Autonomous Grand Challenge 2025 which contains challenging real and reactive synthetic scenarios. Our methods achieves 45.0 PDMS.
comment: 4pages
VR-Robo: A Real-to-Sim-to-Real Framework for Visual Robot Navigation and Locomotion
Recent success in legged robot locomotion is attributed to the integration of reinforcement learning and physical simulators. However, these policies often encounter challenges when deployed in real-world environments due to sim-to-real gaps, as simulators typically fail to replicate visual realism and complex real-world geometry. Moreover, the lack of realistic visual rendering limits the ability of these policies to support high-level tasks requiring RGB-based perception like ego-centric navigation. This paper presents a Real-to-Sim-to-Real framework that generates photorealistic and physically interactive "digital twin" simulation environments for visual navigation and locomotion learning. Our approach leverages 3D Gaussian Splatting (3DGS) based scene reconstruction from multi-view images and integrates these environments into simulations that support ego-centric visual perception and mesh-based physical interactions. To demonstrate its effectiveness, we train a reinforcement learning policy within the simulator to perform a visual goal-tracking task. Extensive experiments show that our framework achieves RGB-only sim-to-real policy transfer. Additionally, our framework facilitates the rapid adaptation of robot policies with effective exploration capability in complex new environments, highlighting its potential for applications in households and factories.
comment: Project Page: https://vr-robo.github.io/
♻ ☆ Beacon-Based Feedback Control for Parking an Active-Joint Center-Articulated Mobile Robot
This paper presents an autonomous parking control strategy for an active-joint center-articulated mobile robot. We first derive a kinematic model of the robot, then propose a control law to stabilize the vehicle's configuration within a small neighborhood of the goal. The control law, designed using Lyapunov techniques, is based on the robot's polar coordinate equations. A beacon-based guidance system provides feedback on the target's position and orientation. Simulations demonstrate the robot's ability to park successfully from arbitrary initial poses.
comment: IEEE Conference - CCECE 2010
♻ ☆ Improving Trajectory Stitching with Flow Models
Generative models have shown great promise as trajectory planners, given their affinity to modeling complex distributions and guidable inference process. Previous works have successfully applied these in the context of robotic manipulation but perform poorly when the required solution does not exist as a complete trajectory within the training set. We identify that this is a result of being unable to plan via stitching, and subsequently address the architectural and dataset choices needed to remedy this. On top of this, we propose a novel addition to the training and inference procedures to both stabilize and enhance these capabilities. We demonstrate the efficacy of our approach by generating plans with out of distribution boundary conditions and performing obstacle avoidance on the Franka Panda in simulation and on real hardware. In both of these tasks our method performs significantly better than the baselines and is able to avoid obstacles up to four times as large.
♻ ☆ Offline Adaptation of Quadruped Locomotion using Diffusion Models
We present a diffusion-based approach to quadrupedal locomotion that simultaneously addresses the limitations of learning and interpolating between multiple skills and of (modes) offline adapting to new locomotion behaviours after training. This is the first framework to apply classifier-free guided diffusion to quadruped locomotion and demonstrate its efficacy by extracting goal-conditioned behaviour from an originally unlabelled dataset. We show that these capabilities are compatible with a multi-skill policy and can be applied with little modification and minimal compute overhead, i.e., running entirely on the robots onboard CPU. We verify the validity of our approach with hardware experiments on the ANYmal quadruped platform.
♻ ☆ HAMMER: Heterogeneous, Multi-Robot Semantic Gaussian Splatting
3D Gaussian Splatting offers expressive scene reconstruction, modeling a broad range of visual, geometric, and semantic information. However, efficient real-time map reconstruction with data streamed from multiple robots and devices remains a challenge. To that end, we propose HAMMER, a server-based collaborative Gaussian Splatting method that leverages widely available ROS communication infrastructure to generate 3D, metric-semantic maps from asynchronous robot data-streams with no prior knowledge of initial robot positions and varying on-device pose estimators. HAMMER consists of (i) a frame alignment module that transforms local SLAM poses and image data into a global frame and requires no prior relative pose knowledge, and (ii) an online module for training semantic 3DGS maps from streaming data. HAMMER handles mixed perception modes, adjusts automatically for variations in image pre-processing among different devices, and distills CLIP semantic codes into the 3D scene for open-vocabulary language queries. In our real-world experiments, HAMMER creates higher-fidelity maps (2x) compared to competing baselines and is useful for downstream tasks, such as semantic goal-conditioned navigation (e.g., "go to the couch"). Accompanying content available at hammer-project.github.io.
♻ ☆ MultiDLO: Simultaneous Shape Tracking of Multiple Deformable Linear Objects with Global-Local Topology Preservation
MultiDLO is a real-time algorithm for estimating the shapes of multiple, intertwining deformable linear objects (DLOs) from RGB-D image sequences. Unlike prior methods that track only a single DLO, MultiDLO simultaneously handles several objects. It uses the geodesic distance in the Global-Local Topology Preservation algorithm to define both inter-object identity and intra-object topology, ensuring entangled DLOs remain distinct with accurate local geometry. The MultiDLO algorithm is demonstrated on two challenging scenarios involving three entangling ropes, and the implementation is open-source and available for the community.
comment: 3 pages, 3 figures, presented at the 3rd Workshop on Representing and Manipulating Deformable Objects at the IEEE International Conference on Robotics and Automation. Video presentation [https://youtu.be/hfiqwMxitqA]. 3rd Workshop on Representing and Manipulating Deformable Objects [https://deformable-workshop.github.io/icra2023/]
♻ ☆ Learning Collision Risk from Naturalistic Driving with Generalised Surrogate Safety Measures
Accurate and timely alerts for drivers or automated systems to unfolding collisions remains a challenge in road safety, particularly in highly interactive urban traffic. Existing approaches require labour-intensive annotation of sparse risk, struggle to consider varying contextual factors, or are useful only in the scenarios they are designed for. To address these limits, this study introduces the generalised surrogate safety measure (GSSM), a new approach that learns exclusively from naturalistic driving without crash or risk labels. GSSM captures the patterns of normal driving and estimates the extent to which a traffic interaction deviates from the norm towards unsafe extreme. Utilising neural networks, normal interactions are characterised by context-conditioned distributions of multi-directional spacing between road users. In the same interaction context, a spacing closer than normal entails higher risk of potential collision. Then a context-adaptive risk score and its associated probability can be calculated based on the theory of extreme values. Any measurable factors, such as motion kinematics, weather, lighting, can serve as part of the context, allowing for diverse coverage of safety-critical interactions. Multiple public driving datasets are used to train GSSMs, which are tested with 2,591 real-world crashes and near-crashes reconstructed from the SHRP2 NDS. A vanilla GSSM using only instantaneous states achieves AUPRC of 0.9 and secures a median time advance of 2.6 seconds to prevent potential collisions. Additional data and contextual factors provide further performance gains. Across various interaction types such as rear-end, merging, and crossing, the accuracy and timeliness of GSSM consistently outperforms existing baselines. GSSM therefore establishes a scalable, context-aware, and generalisable foundation to proactively quantify collision risk in traffic interactions.
comment: 18 pages, 8 figures
♻ ☆ Self-supervised Learning of Event-guided Video Frame Interpolation for Rolling Shutter Frames ICCV 2023
Most consumer cameras use rolling shutter (RS) exposure, which often leads to distortions such as skew and jelly effects. These videos are further limited by bandwidth and frame rate constraints. In this paper, we explore the potential of event cameras, which offer high temporal resolution. We propose a framework to recover global shutter (GS) high-frame-rate videos without RS distortion by combining an RS camera and an event camera. Due to the lack of real-world datasets, our framework adopts a self-supervised strategy based on a displacement field, a dense 3D spatiotemporal representation of pixel motion during exposure. This enables mutual reconstruction between RS and GS frames and facilitates slow-motion recovery. We combine RS frames with the displacement field to generate GS frames, and integrate inverse mapping and RS frame warping for self-supervision. Experiments on four datasets show that our method removes distortion, reduces bandwidth usage by 94 percent, and achieves 16 ms per frame at 32x interpolation.
comment: An earlier version of this paper (ID: 1845) was submitted to ICCV 2023 in March 2023. The work has been substantially revised and accepted by IEEE Transactions on Visualization and Computer Graphics (TVCG)
♻ ☆ X-Driver: Explainable Autonomous Driving with Vision-Language Models
End-to-end autonomous driving has advanced significantly, offering benefits such as system simplicity and stronger driving performance in both open-loop and closed-loop settings than conventional pipelines. However, existing frameworks still suffer from low success rates in closed-loop evaluations, highlighting their limitations in real-world deployment. In this paper, we introduce X-Driver, a unified multi-modal large language models(MLLMs) framework designed for closed-loop autonomous driving, leveraging Chain-of-Thought(CoT) and autoregressive modeling to enhance perception and decision-making. We validate X-Driver across multiple autonomous driving tasks using public benchmarks in CARLA simulation environment, including Bench2Drive[6]. Our experimental results demonstrate superior closed-loop performance, surpassing the current state-of-the-art(SOTA) while improving the interpretability of driving decisions. These findings underscore the importance of structured reasoning in end-to-end driving and establish X-Driver as a strong baseline for future research in closed-loop autonomous driving.
♻ ☆ Learn With Imagination: Safe Set Guided State-wise Constrained Policy Optimization
Deep reinforcement learning (RL) excels in various control tasks, yet the absence of safety guarantees hampers its real-world applicability. In particular, explorations during learning usually results in safety violations, while the RL agent learns from those mistakes. On the other hand, safe control techniques ensure persistent safety satisfaction but demand strong priors on system dynamics, which is usually hard to obtain in practice. To address these problems, we present Safe Set Guided State-wise Constrained Policy Optimization (S-3PO), a pioneering algorithm generating state-wise safe optimal policies with zero training violations, i.e., learning without mistakes. S-3PO first employs a safety-oriented monitor with black-box dynamics to ensure safe exploration. It then enforces an "imaginary" cost for the RL agent to converge to optimal behaviors within safety constraints. S-3PO outperforms existing methods in high-dimensional robotics tasks, managing state-wise constraints with zero training violation. This innovation marks a significant stride towards real-world safe RL deployment.
comment: arXiv admin note: text overlap with arXiv:2306.12594
♻ ☆ Continual Learning and Lifting of Koopman Dynamics for Linear Control of Legged Robots
The control of legged robots, particularly humanoid and quadruped robots, presents significant challenges due to their high-dimensional and nonlinear dynamics. While linear systems can be effectively controlled using methods like Model Predictive Control (MPC), the control of nonlinear systems remains complex. One promising solution is the Koopman Operator, which approximates nonlinear dynamics with a linear model, enabling the use of proven linear control techniques. However, achieving accurate linearization through data-driven methods is difficult due to issues like approximation error, domain shifts, and the limitations of fixed linear state-space representations. These challenges restrict the scalability of Koopman-based approaches. This paper addresses these challenges by proposing a continual learning algorithm designed to iteratively refine Koopman dynamics for high-dimensional legged robots. The key idea is to progressively expand the dataset and latent space dimension, enabling the learned Koopman dynamics to converge towards accurate approximations of the true system dynamics. Theoretical analysis shows that the linear approximation error of our method converges monotonically. Experimental results demonstrate that our method achieves high control performance on robots like Unitree G1/H1/A1/Go2 and ANYmal D, across various terrains using simple linear MPC controllers. This work is the first to successfully apply linearized Koopman dynamics for locomotion control of high-dimensional legged robots, enabling a scalable model-based control solution.
♻ ☆ FF-SRL: High Performance GPU-Based Surgical Simulation For Robot Learning
Robotic surgery is a rapidly developing field that can greatly benefit from the automation of surgical tasks. However, training techniques such as Reinforcement Learning (RL) require a high number of task repetitions, which are generally unsafe and impractical to perform on real surgical systems. This stresses the need for simulated surgical environments, which are not only realistic, but also computationally efficient and scalable. We introduce FF-SRL (Fast and Flexible Surgical Reinforcement Learning), a high-performance learning environment for robotic surgery. In FF-SRL both physics simulation and RL policy training reside entirely on a single GPU. This avoids typical bottlenecks associated with data transfer between the CPU and GPU, leading to accelerated learning rates. Our results show that FF-SRL reduces the training time of a complex tissue manipulation task by an order of magnitude, down to a couple of minutes, compared to a common CPU/GPU simulator. Such speed-up may facilitate the experimentation with RL techniques and contribute to the development of new generation of surgical systems. To this end, we make our code publicly available to the community.
♻ ☆ Cooperative Indoor Exploration Leveraging a Mixed-Size UAV Team with Heterogeneous Sensors
Heterogeneous teams of Unmanned Aerial Vehicles (UAVs) can enhance the exploration capabilities of aerial robots by exploiting different strengths and abilities of varying UAVs. This paper presents a novel method for exploring unknown indoor spaces with a team of UAVs of different sizes and sensory equipment. We propose a frontier-based exploration with two task allocation strategies: a greedy strategy that assigns Points of Interest (POIs) based on Euclidean distance and UAV priority and an optimization strategy that solves a minimum-cost flow problem. The proposed method utilizes the SphereMap algorithm to assess the accessibility of the POIs and generate paths that account for obstacle distances, including collision avoidance maneuvers among UAVs. The proposed approach was validated through simulation testing and real-world experiments that evaluated the method's performance on board the UAVs.
comment: IEEE CASE 2024, accepted version
♻ ☆ LAMARL: LLM-Aided Multi-Agent Reinforcement Learning for Cooperative Policy Generation
Although Multi-Agent Reinforcement Learning (MARL) is effective for complex multi-robot tasks, it suffers from low sample efficiency and requires iterative manual reward tuning. Large Language Models (LLMs) have shown promise in single-robot settings, but their application in multi-robot systems remains largely unexplored. This paper introduces a novel LLM-Aided MARL (LAMARL) approach, which integrates MARL with LLMs, significantly enhancing sample efficiency without requiring manual design. LAMARL consists of two modules: the first module leverages LLMs to fully automate the generation of prior policy and reward functions. The second module is MARL, which uses the generated functions to guide robot policy training effectively. On a shape assembly benchmark, both simulation and real-world experiments demonstrate the unique advantages of LAMARL. Ablation studies show that the prior policy improves sample efficiency by an average of 185.9% and enhances task completion, while structured prompts based on Chain-of-Thought (CoT) and basic APIs improve LLM output success rates by 28.5%-67.5%. Videos and code are available at https://windylab.github.io/LAMARL/
comment: Accepted by IEEE Robotics and Automation Letters
♻ ☆ Exploiting Local Observations for Robust Robot Learning
While many robotic tasks can be addressed through either centralized single-agent control with full state observation or decentralized multi-agent control, clear criteria for selecting the optimal approach are lacking. This paper presents a comprehensive investigation into how multi-agent reinforcement learning (MARL) with local observations can enhance robustness in complex robotic systems compared to traditional centralized control methods. We provide both theoretical analysis and empirical validation demonstrating that in certain tasks, decentralized MARL controllers can achieve performance comparable to centralized approaches while offering superior robustness against perturbations and agent failures. Our theoretical contributions include an analytical proof of equivalence between SARL and MARL under full observability conditions, identifying observability as the key distinguishing factor, and derivation of performance degradation bounds for locally observable policies under external perturbations. Empirical validation on standard MARL benchmarks confirms that locally observable MARL maintains competitive performance despite limited observations. Real-world experiments with a mobile manipulation robot demonstrate that our decentralized MARL controllers exhibit significantly improved robustness to both agent malfunctions and environmental disturbances compared to centralized baselines. This systematic investigation provides crucial insights for designing robust and generalizable control strategies in complex robotic systems, establishing MARL with local observations as a viable alternative to traditional centralized control paradigms.
comment: 10 pages, 9 figures
♻ ☆ Adversarial Locomotion and Motion Imitation for Humanoid Policy Learning
Humans exhibit diverse and expressive whole-body movements. However, attaining human-like whole-body coordination in humanoid robots remains challenging, as conventional approaches that mimic whole-body motions often neglect the distinct roles of upper and lower body. This oversight leads to computationally intensive policy learning and frequently causes robot instability and falls during real-world execution. To address these issues, we propose Adversarial Locomotion and Motion Imitation (ALMI), a novel framework that enables adversarial policy learning between upper and lower body. Specifically, the lower body aims to provide robust locomotion capabilities to follow velocity commands while the upper body tracks various motions. Conversely, the upper-body policy ensures effective motion tracking when the robot executes velocity-based movements. Through iterative updates, these policies achieve coordinated whole-body control, which can be extended to loco-manipulation tasks with teleoperation systems. Extensive experiments demonstrate that our method achieves robust locomotion and precise motion tracking in both simulation and on the full-size Unitree H1 robot. Additionally, we release a large-scale whole-body motion control dataset featuring high-quality episodic trajectories from MuJoCo simulations deployable on real robots. The project page is https://almi-humanoid.github.io.
comment: Code: https://github.com/TeleHuman/ALMI-Open, Dataset: https://huggingface.co/datasets/TeleEmbodied/ALMI-X
♻ ☆ SAM2Act: Integrating Visual Foundation Model with A Memory Architecture for Robotic Manipulation
Robotic manipulation systems operating in diverse, dynamic environments must exhibit three critical abilities: multitask interaction, generalization to unseen scenarios, and spatial memory. While significant progress has been made in robotic manipulation, existing approaches often fall short in generalization to complex environmental variations and addressing memory-dependent tasks. To bridge this gap, we introduce SAM2Act, a multi-view robotic transformer-based policy that leverages multi-resolution upsampling with visual representations from large-scale foundation model. SAM2Act achieves a state-of-the-art average success rate of 86.8% across 18 tasks in the RLBench benchmark, and demonstrates robust generalization on The Colosseum benchmark, with only a 4.3% performance gap under diverse environmental perturbations. Building on this foundation, we propose SAM2Act+, a memory-based architecture inspired by SAM2, which incorporates a memory bank, an encoder, and an attention mechanism to enhance spatial memory. To address the need for evaluating memory-dependent tasks, we introduce MemoryBench, a novel benchmark designed to assess spatial memory and action recall in robotic manipulation. SAM2Act+ achieves an average success rate of 94.3% on memory-based tasks in MemoryBench, significantly outperforming existing approaches and pushing the boundaries of memory-based robotic systems. Project page: sam2act.github.io.
comment: Including Appendix, Project Page: https://sam2act.github.io
♻ ☆ STATE-NAV: Stability-Aware Traversability Estimation for Bipedal Navigation on Rough Terrain
Bipedal robots have advantages in maneuvering human-centered environments, but face greater failure risk compared to other stable mobile plarforms such as wheeled or quadrupedal robots. While learning-based traversability has been widely studied for these platforms, bipedal traversability has instead relied on manually designed rules with limited consideration of locomotion stability on rough terrain. In this work, we present the first learning-based traversability estimation and risk-sensitive navigation framework for bipedal robots operating in diverse, uneven environments. TravFormer, a transformer-based neural network, is trained to predict bipedal instability with uncertainty, enabling risk-aware and adaptive planning. Based on the network, we define traversability as stability-aware command velocity-the fastest command velocity that keeps instability below a user-defined limit. This velocity-based traversability is integrated into a hierarchical planner that combines traversability-informed Rapid Random Tree Star (TravRRT*) for time-efficient planning and Model Predictive Control (MPC) for safe execution. We validate our method in MuJoCo simulation, demonstrating improved navigation performance, with enhanced robustness and time efficiency across varying terrains compared to existing methods.
♻ ☆ Back to Base: Towards Hands-Off Learning via Safe Resets with Reach-Avoid Safety Filters
Designing controllers that accomplish tasks while guaranteeing safety constraints remains a significant challenge. We often want an agent to perform well in a nominal task, such as environment exploration, while ensuring it can avoid unsafe states and return to a desired target by a specific time. In particular we are motivated by the setting of safe, efficient, hands-off training for reinforcement learning in the real world. By enabling a robot to safely and autonomously reset to a desired region (e.g., charging stations) without human intervention, we can enhance efficiency and facilitate training. Safety filters, such as those based on control barrier functions, decouple safety from nominal control objectives and rigorously guarantee safety. Despite their success, constructing these functions for general nonlinear systems with control constraints and system uncertainties remains an open problem. This paper introduces a safety filter obtained from the value function associated with the reach-avoid problem. The proposed safety filter minimally modifies the nominal controller while avoiding unsafe regions and guiding the system back to the desired target set. By preserving policy performance while allowing safe resetting, we enable efficient hands-off reinforcement learning and advance the feasibility of safe training for real world robots. We demonstrate our approach using a modified version of soft actor-critic to safely train a swing-up task on a modified cartpole stabilization problem.
comment: The first three authors contributed equally to the work
♻ ☆ One Policy but Many Worlds: A Scalable Unified Policy for Versatile Humanoid Locomotion
Humanoid locomotion faces a critical scalability challenge: traditional reinforcement learning (RL) methods require task-specific rewards and struggle to leverage growing datasets, even as more training terrains are introduced. We propose DreamPolicy, a unified framework that enables a single policy to master diverse terrains and generalize zero-shot to unseen scenarios by systematically integrating offline data and diffusion-driven motion synthesis. At its core, DreamPolicy introduces Humanoid Motion Imagery (HMI) - future state predictions synthesized through an autoregressive terrain-aware diffusion planner curated by aggregating rollouts from specialized policies across various distinct terrains. Unlike human motion datasets requiring laborious retargeting, our data directly captures humanoid kinematics, enabling the diffusion planner to synthesize "dreamed" trajectories that encode terrain-specific physical constraints. These trajectories act as dynamic objectives for our HMI-conditioned policy, bypassing manual reward engineering and enabling cross-terrain generalization. DreamPolicy addresses the scalability limitations of prior methods: while traditional RL fails to exploit growing datasets, our framework scales seamlessly with more offline data. As the dataset expands, the diffusion prior learns richer locomotion skills, which the policy leverages to master new terrains without retraining. Experiments demonstrate that DreamPolicy achieves average 90% success rates in training environments and an average of 20% higher success on unseen terrains than the prevalent method. It also generalizes to perturbed and composite scenarios where prior approaches collapse. By unifying offline data, diffusion-based trajectory synthesis, and policy optimization, DreamPolicy overcomes the "one task, one policy" bottleneck, establishing a paradigm for scalable, data-driven humanoid control.
♻ ☆ Learning Autonomous Surgical Irrigation and Suction with the da Vinci Research Kit Using Reinforcement Learning
The irrigation-suction process is a common procedure to rinse and clean up the surgical field in minimally invasive surgery (MIS). In this process, surgeons first irrigate liquid, typically saline, into the surgical scene for rinsing and diluting the contaminant, and then suction the liquid out of the surgical field. While recent advances have shown promising results in the application of reinforcement learning (RL) for automating surgical subtasks, fewer studies have explored the automation of fluid-related tasks. In this work, we explore the automation of both steps in the irrigation-suction procedure and train two vision-based RL agents to complete irrigation and suction autonomously. To achieve this, a platform is developed for creating simulated surgical robot learning environments and for training agents, and two simulated learning environments are built for irrigation and suction with visually plausible fluid rendering capabilities. With techniques such as domain randomization (DR) and carefully designed reward functions, two agents are trained in the simulator and transferred to the real world. Individual evaluations of both agents show satisfactory real-world results. With an initial amount of around 5 grams of contaminants, the irrigation agent ultimately achieved an average of 2.21 grams remaining after a manual suction. As a comparison, fully manual operation by a human results in 1.90 grams remaining. The suction agent achieved 2.64 and 2.24 grams of liquid remaining across two trial groups with more than 20 and 30 grams of initial liquid in the container. Fully autonomous irrigation-suction trials reduce the contaminant in the container from around 5 grams to an average of 2.42 grams, although yielding a higher total weight remaining (4.40) due to residual liquid not suctioned. Further information about the project is available at https://tbs-ualberta.github.io/CRESSim/.
comment: 15 pages, 17 figures
♻ ☆ Kaiwu: A Multimodal Manipulation Dataset and Framework for Robot Learning and Human-Robot Interaction RAL
Cutting-edge robot learning techniques including foundation models and imitation learning from humans all pose huge demands on large-scale and high-quality datasets which constitute one of the bottleneck in the general intelligent robot fields. This paper presents the Kaiwu multimodal dataset to address the missing real-world synchronized multimodal data problems in the sophisticated assembling scenario,especially with dynamics information and its fine-grained labelling. The dataset first provides an integration of human,environment and robot data collection framework with 20 subjects and 30 interaction objects resulting in totally 11,664 instances of integrated actions. For each of the demonstration,hand motions,operation pressures,sounds of the assembling process,multi-view videos, high-precision motion capture information,eye gaze with first-person videos,electromyography signals are all recorded. Fine-grained multi-level annotation based on absolute timestamp,and semantic segmentation labelling are performed. Kaiwu dataset aims to facilitate robot learning,dexterous manipulation,human intention investigation and human-robot collaboration research.
comment: 8 pages, 5 figures, Submitted to IEEE Robotics and Automation Letters (RAL)
♻ ☆ Hold My Beer: Learning Gentle Humanoid Locomotion and End-Effector Stabilization Control
Can your humanoid walk up and hand you a full cup of beer, without spilling a drop? While humanoids are increasingly featured in flashy demos like dancing, delivering packages, traversing rough terrain, fine-grained control during locomotion remains a significant challenge. In particular, stabilizing a filled end-effector (EE) while walking is far from solved, due to a fundamental mismatch in task dynamics: locomotion demands slow-timescale, robust control, whereas EE stabilization requires rapid, high-precision corrections. To address this, we propose SoFTA, a Slow-Fast Two-Agent framework that decouples upper-body and lower-body control into separate agents operating at different frequencies and with distinct rewards. This temporal and objective separation mitigates policy interference and enables coordinated whole-body behavior. SoFTA executes upper-body actions at 100 Hz for precise EE control and lower-body actions at 50 Hz for robust gait. It reduces EE acceleration by 2-5x relative to baselines and performs much closer to human-level stability, enabling delicate tasks such as carrying nearly full cups, capturing steady video during locomotion, and disturbance rejection with EE stability.
♻ ☆ EgoZero: Robot Learning from Smart Glasses
Despite recent progress in general purpose robotics, robot policies still lag far behind basic human capabilities in the real world. Humans interact constantly with the physical world, yet this rich data resource remains largely untapped in robot learning. We propose EgoZero, a minimal system that learns robust manipulation policies from human demonstrations captured with Project Aria smart glasses, $\textbf{and zero robot data}$. EgoZero enables: (1) extraction of complete, robot-executable actions from in-the-wild, egocentric, human demonstrations, (2) compression of human visual observations into morphology-agnostic state representations, and (3) closed-loop policy learning that generalizes morphologically, spatially, and semantically. We deploy EgoZero policies on a gripper Franka Panda robot and demonstrate zero-shot transfer with 70% success rate over 7 manipulation tasks and only 20 minutes of data collection per task. Our results suggest that in-the-wild human data can serve as a scalable foundation for real-world robot learning - paving the way toward a future of abundant, diverse, and naturalistic training data for robots. Code and videos are available at https://egozero-robot.github.io.
♻ ☆ CIVIL: Causal and Intuitive Visual Imitation Learning
Today's robots learn new tasks by imitating human examples. However, this standard approach to visual imitation learning is fundamentally limited: the robot observes what the human does, but not why the human chooses those behaviors. Without understanding the features that factor into the human's decisions, robot learners often misinterpret the data and fail to perform the task when the environment changes. We therefore propose a shift in perspective: instead of asking human teachers just to show what actions the robot should take, we also enable humans to indicate task-relevant features using markers and language prompts. Our proposed algorithm, CIVIL, leverages this augmented data to filter the robot's visual observations and extract a feature representation that causally informs human actions. CIVIL then applies these causal features to train a transformer-based policy that emulates human behaviors without being confused by visual distractors. Our simulations, real-world experiments, and user study demonstrate that robots trained with CIVIL can learn from fewer human demonstrations and perform better than state-of-the-art baselines, especially in previously unseen scenarios. See videos at our project website: https://civil2025.github.io
♻ ☆ Equivariant Symmetries for Inertial Navigation Systems
This paper investigates the problem of inertial navigation system (INS) filter design through the lens of symmetry. The extended Kalman filter (EKF) and its variants have been the staple of INS filtering for 50 years. However, recent advances in inertial navigation systems have exploited matrix Lie group structure to design stochastic filters and state observers that have been shown to display superior performance compared to classical solutions. In this work, we explore various symmetries of inertial navigation system, including two novel symmetries that have not been considered in the prior literature, and provide a discussion of the relative strengths and weaknesses of these symmetries in the context of filter design. We show that all the modern variants of the EKF for inertial navigation can be interpreted as the recently proposed equivariant filter (EqF) design methodology applied to different choices of symmetry group for the INS problem. As a direct application of the symmetries presented, we address the filter design problem for a vehicle equipped with an inertial measurement unit (IMU) and a global navigation satellite system (GNSS) receiver, providing a comparative analysis of different modern filter solutions. We believe the collection of symmetries that we present here capture all the sensible choices of symmetry for this problem, and that the analysis provided is indicative of the relative real-world performance potential of the different algorithms for trajectories ensuring full state observability.
comment: Submitted to Automatica
♻ ☆ Collision- and Reachability-Aware Multi-Robot Control with Grounded LLM Planners
Large language models (LLMs) have demonstrated strong performance in various robot control tasks. However, their deployment in real-world applications remains constrained. Even state-ofthe-art LLMs, such as GPT-o4mini, frequently produce invalid action plans that violate physical constraints, such as directing a robot to an unreachable location or causing collisions between robots. This issue primarily arises from a lack of awareness of these physical constraints during the reasoning process. To address this issue, we propose a novel framework that integrates reinforcement learning with verifiable rewards (RLVR) to incentivize knowledge of physical constraints into LLMs to induce constraints-aware reasoning during plan generation. In this approach, only valid action plans that successfully complete a control task receive positive rewards. We applied our method to two small-scale LLMs: a non-reasoning Qwen2.5-3B-Instruct and a reasoning Qwen3-4B. The experiment results demonstrate that constraint-aware small LLMs largely outperform large-scale models without constraints, grounded on both the BoxNet task and a newly developed BoxNet3D environment built using MuJoCo. This work highlights the effectiveness of grounding even small LLMs with physical constraints to enable scalable and efficient multi-robot control in complex, physically constrained environments.
♻ ☆ Time, Travel, and Energy in the Uniform Dispersion Problem AAMAS 2019
We investigate the algorithmic problem of uniformly dispersing a swarm of robots in an unknown, gridlike environment. In this setting, our goal is to study the relationships between performance metrics and robot capabilities. We introduce a formal model comparing dispersion algorithms based on makespan, traveled distance, energy consumption, sensing, communication, and memory. Using this framework, we classify uniform dispersion algorithms according to their capability requirements and performance. We prove that while makespan and travel can be minimized in all environments, energy cannot, if the swarm's sensing range is bounded. In contrast, we show that energy can be minimized by ``ant-like'' robots in synchronous settings and asymptotically minimized in asynchronous settings, provided the environment is topologically simply connected, by using our ``Find-Corner Depth-First Search'' (FCDFS) algorithm. Our theoretical and experimental results show that FCDFS significantly outperforms known algorithms. Our findings reveal key limitations in designing swarm robotics systems for unknown environments, emphasizing the role of topology in energy-efficient dispersion.
comment: Accepted to IEEE T-RO. Includes and expands results from "Minimizing Travel in the Uniform Dispersal Problem for Robotic Sensors" (AAMAS 2019, arXiv:1903.03259)
Computer Vision 147
☆ IllumiCraft: Unified Geometry and Illumination Diffusion for Controllable Video Generation
Although diffusion-based models can generate high-quality and high-resolution video sequences from textual or image inputs, they lack explicit integration of geometric cues when controlling scene lighting and visual appearance across frames. To address this limitation, we propose IllumiCraft, an end-to-end diffusion framework accepting three complementary inputs: (1) high-dynamic-range (HDR) video maps for detailed lighting control; (2) synthetically relit frames with randomized illumination changes (optionally paired with a static background reference image) to provide appearance cues; and (3) 3D point tracks that capture precise 3D geometry information. By integrating the lighting, appearance, and geometry cues within a unified diffusion architecture, IllumiCraft generates temporally coherent videos aligned with user-defined prompts. It supports background-conditioned and text-conditioned video relighting and provides better fidelity than existing controllable video generation methods. Project Page: https://yuanze-lin.me/IllumiCraft_page
comment: Tech Report
☆ Self-Supervised Spatial Correspondence Across Modalities CVPR 2025
We present a method for finding cross-modal space-time correspondences. Given two images from different visual modalities, such as an RGB image and a depth map, our model identifies which pairs of pixels correspond to the same physical points in the scene. To solve this problem, we extend the contrastive random walk framework to simultaneously learn cycle-consistent feature representations for both cross-modal and intra-modal matching. The resulting model is simple and has no explicit photo-consistency assumptions. It can be trained entirely using unlabeled data, without the need for any spatially aligned multimodal image pairs. We evaluate our method on both geometric and semantic correspondence tasks. For geometric matching, we consider challenging tasks such as RGB-to-depth and RGB-to-thermal matching (and vice versa); for semantic matching, we evaluate on photo-sketch and cross-style image alignment. Our method achieves strong performance across all benchmarks.
comment: CVPR 2025. Project link: https://www.ayshrv.com/cmrw . Code: https://github.com/ayshrv/cmrw
☆ MERIT: Multilingual Semantic Retrieval with Interleaved Multi-Condition Query
Semantic retrieval is crucial for modern applications yet remains underexplored in current research. Existing datasets are limited to single languages, single images, or singular retrieval conditions, often failing to fully exploit the expressive capacity of visual information as evidenced by maintained performance when images are replaced with captions. However, practical retrieval scenarios frequently involve interleaved multi-condition queries with multiple images. Hence, this paper introduces MERIT, the first multilingual dataset for interleaved multi-condition semantic retrieval, comprising 320,000 queries with 135,000 products in 5 languages, covering 7 distinct product categories. Extensive experiments on MERIT identify existing models's limitation: focusing solely on global semantic information while neglecting specific conditional elements in queries. Consequently, we propose Coral, a novel fine-tuning framework that adapts pre-trained MLLMs by integrating embedding reconstruction to preserve fine-grained conditional elements and contrastive learning to extract comprehensive global semantics. Experiments demonstrate that Coral achieves a 45.9% performance improvement over conventional approaches on MERIT, with strong generalization capabilities validated across 8 established retrieval benchmarks. Collectively, our contributions - a novel dataset, identification of critical limitations in existing approaches, and an innovative fine-tuning framework - establish a foundation for future research in interleaved multi-condition semantic retrieval.
comment: Preprint; Project Page, Code, and Dataset at: https://merit-2025.github.io/
☆ GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents
One of the principal challenges in building VLM-powered GUI agents is visual grounding, i.e., localizing the appropriate screen region for action execution based on both the visual content and the textual plans. Most existing work formulates this as a text-based coordinate generation task. However, these approaches suffer from several limitations: weak spatial-semantic alignment, inability to handle ambiguous supervision targets, and a mismatch between the dense nature of screen coordinates and the coarse, patch-level granularity of visual features extracted by models like Vision Transformers. In this paper, we propose GUI-Actor, a VLM-based method for coordinate-free GUI grounding. At its core, GUI-Actor introduces an attention-based action head that learns to align a dedicated token with all relevant visual patch tokens, enabling the model to propose one or more action regions in a single forward pass. In line with this, we further design a grounding verifier to evaluate and select the most plausible action region from the candidates proposed for action execution. Extensive experiments show that GUI-Actor outperforms prior state-of-the-art methods on multiple GUI action grounding benchmarks, with improved generalization to unseen screen resolutions and layouts. Notably, GUI-Actor-7B even surpasses UI-TARS-72B (38.1) on ScreenSpot-Pro, achieving scores of 40.7 with Qwen2-VL and 44.6 with Qwen2.5-VL as backbones. Furthermore, by incorporating the verifier, we find that fine-tuning only the newly introduced action head (~100M parameters for 7B model) while keeping the VLM backbone frozen is sufficient to achieve performance comparable to previous state-of-the-art models, highlighting that GUI-Actor can endow the underlying VLM with effective grounding capabilities without compromising its general-purpose strengths.
☆ Context as Memory: Scene-Consistent Interactive Long Video Generation with Memory Retrieval
Recent advances in interactive video generation have shown promising results, yet existing approaches struggle with scene-consistent memory capabilities in long video generation due to limited use of historical context. In this work, we propose Context-as-Memory, which utilizes historical context as memory for video generation. It includes two simple yet effective designs: (1) storing context in frame format without additional post-processing; (2) conditioning by concatenating context and frames to be predicted along the frame dimension at the input, requiring no external control modules. Furthermore, considering the enormous computational overhead of incorporating all historical context, we propose the Memory Retrieval module to select truly relevant context frames by determining FOV (Field of View) overlap between camera poses, which significantly reduces the number of candidate frames without substantial information loss. Experiments demonstrate that Context-as-Memory achieves superior memory capabilities in interactive long video generation compared to SOTAs, even generalizing effectively to open-domain scenarios not seen during training. The link of our project page is https://context-as-memory.github.io/.
☆ CamCloneMaster: Enabling Reference-based Camera Control for Video Generation
Camera control is crucial for generating expressive and cinematic videos. Existing methods rely on explicit sequences of camera parameters as control conditions, which can be cumbersome for users to construct, particularly for intricate camera movements. To provide a more intuitive camera control method, we propose CamCloneMaster, a framework that enables users to replicate camera movements from reference videos without requiring camera parameters or test-time fine-tuning. CamCloneMaster seamlessly supports reference-based camera control for both Image-to-Video and Video-to-Video tasks within a unified framework. Furthermore, we present the Camera Clone Dataset, a large-scale synthetic dataset designed for camera clone learning, encompassing diverse scenes, subjects, and camera movements. Extensive experiments and user studies demonstrate that CamCloneMaster outperforms existing methods in terms of both camera controllability and visual quality.
comment: Project Page: https://camclonemaster.github.io/
☆ SVGenius: Benchmarking LLMs in SVG Understanding, Editing and Generation
Large Language Models (LLMs) and Multimodal LLMs have shown promising capabilities for SVG processing, yet existing benchmarks suffer from limited real-world coverage, lack of complexity stratification, and fragmented evaluation paradigms. We introduce SVGenius, a comprehensive benchmark comprising 2,377 queries across three progressive dimensions: understanding, editing, and generation. Built on real-world data from 24 application domains with systematic complexity stratification, SVGenius evaluates models through 8 task categories and 18 metrics. We assess 22 mainstream models spanning different scales, architectures, training paradigms, and accessibility levels. Our analysis reveals that while proprietary models significantly outperform open-source counterparts, all models exhibit systematic performance degradation with increasing complexity, indicating fundamental limitations in current approaches; however, reasoning-enhanced training proves more effective than pure scaling for overcoming these limitations, though style transfer remains the most challenging capability across all model types. SVGenius establishes the first systematic evaluation framework for SVG processing, providing crucial insights for developing more capable vector graphics models and advancing automated graphic design applications. Appendix and supplementary materials (including all data and code) are available at https://zju-real.github.io/SVGenius.
comment: 19 pages,4 figures, Project page: https://zju-real.github.io/SVGenius, Code: https://github.com/ZJU-REAL/SVGenius-Bench
☆ OmniSpatial: Towards Comprehensive Spatial Reasoning Benchmark for Vision Language Models
Spatial reasoning is a key aspect of cognitive psychology and remains a major bottleneck for current vision-language models (VLMs). While extensive research has aimed to evaluate or improve VLMs' understanding of basic spatial relations, such as distinguishing left from right, near from far, and object counting, these tasks represent only the most fundamental level of spatial reasoning. In this work, we introduce OmniSpatial, a comprehensive and challenging benchmark for spatial reasoning, grounded in cognitive psychology. OmniSpatial covers four major categories: dynamic reasoning, complex spatial logic, spatial interaction, and perspective-taking, with 50 fine-grained subcategories. Through Internet data crawling and careful manual annotation, we construct over 1.5K question-answer pairs. Extensive experiments show that both open- and closed-source VLMs, as well as existing reasoning and spatial understanding models, exhibit significant limitations in comprehensive spatial understanding. We further analyze failure cases and propose potential directions for future research.
comment: Project Page: https://qizekun.github.io/omnispatial/
Simulate Any Radar: Attribute-Controllable Radar Simulation via Waveform Parameter Embedding
We present SA-Radar (Simulate Any Radar), a radar simulation approach that enables controllable and efficient generation of radar cubes conditioned on customizable radar attributes. Unlike prior generative or physics-based simulators, SA-Radar integrates both paradigms through a waveform-parameterized attribute embedding. We design ICFAR-Net, a 3D U-Net conditioned on radar attributes encoded via waveform parameters, which captures signal variations induced by different radar configurations. This formulation bypasses the need for detailed radar hardware specifications and allows efficient simulation of range-azimuth-Doppler (RAD) tensors across diverse sensor settings. We further construct a mixed real-simulated dataset with attribute annotations to robustly train the network. Extensive evaluations on multiple downstream tasks-including 2D/3D object detection and radar semantic segmentation-demonstrate that SA-Radar's simulated data is both realistic and effective, consistently improving model performance when used standalone or in combination with real data. Our framework also supports simulation in novel sensor viewpoints and edited scenes, showcasing its potential as a general-purpose radar data engine for autonomous driving applications. Code and additional materials are available at https://zhuxing0.github.io/projects/SA-Radar.
comment: Code: https://github.com/zhuxing0/SA-Radar Project page: https://zhuxing0.github.io/projects/SA-Radar
☆ Native-Resolution Image Synthesis
We introduce native-resolution image synthesis, a novel generative modeling paradigm that enables the synthesis of images at arbitrary resolutions and aspect ratios. This approach overcomes the limitations of conventional fixed-resolution, square-image methods by natively handling variable-length visual tokens, a core challenge for traditional techniques. To this end, we introduce the Native-resolution diffusion Transformer (NiT), an architecture designed to explicitly model varying resolutions and aspect ratios within its denoising process. Free from the constraints of fixed formats, NiT learns intrinsic visual distributions from images spanning a broad range of resolutions and aspect ratios. Notably, a single NiT model simultaneously achieves the state-of-the-art performance on both ImageNet-256x256 and 512x512 benchmarks. Surprisingly, akin to the robust zero-shot capabilities seen in advanced large language models, NiT, trained solely on ImageNet, demonstrates excellent zero-shot generalization performance. It successfully generates high-fidelity images at previously unseen high resolutions (e.g., 1536 x 1536) and diverse aspect ratios (e.g., 16:9, 3:1, 4:3), as shown in Figure 1. These findings indicate the significant potential of native-resolution modeling as a bridge between visual generative modeling and advanced LLM methodologies.
comment: Project Page: https://wzdthu.github.io/NiT/
☆ AnimeShooter: A Multi-Shot Animation Dataset for Reference-Guided Video Generation
Recent advances in AI-generated content (AIGC) have significantly accelerated animation production. To produce engaging animations, it is essential to generate coherent multi-shot video clips with narrative scripts and character references. However, existing public datasets primarily focus on real-world scenarios with global descriptions, and lack reference images for consistent character guidance. To bridge this gap, we present AnimeShooter, a reference-guided multi-shot animation dataset. AnimeShooter features comprehensive hierarchical annotations and strong visual consistency across shots through an automated pipeline. Story-level annotations provide an overview of the narrative, including the storyline, key scenes, and main character profiles with reference images, while shot-level annotations decompose the story into consecutive shots, each annotated with scene, characters, and both narrative and descriptive visual captions. Additionally, a dedicated subset, AnimeShooter-audio, offers synchronized audio tracks for each shot, along with audio descriptions and sound sources. To demonstrate the effectiveness of AnimeShooter and establish a baseline for the reference-guided multi-shot video generation task, we introduce AnimeShooterGen, which leverages Multimodal Large Language Models (MLLMs) and video diffusion models. The reference image and previously generated shots are first processed by MLLM to produce representations aware of both reference and context, which are then used as the condition for the diffusion model to decode the subsequent shot. Experimental results show that the model trained on AnimeShooter achieves superior cross-shot visual consistency and adherence to reference visual guidance, which highlight the value of our dataset for coherent animated video generation.
comment: Project released at: https://qiulu66.github.io/animeshooter/
☆ DCM: Dual-Expert Consistency Model for Efficient and High-Quality Video Generation
Diffusion Models have achieved remarkable results in video synthesis but require iterative denoising steps, leading to substantial computational overhead. Consistency Models have made significant progress in accelerating diffusion models. However, directly applying them to video diffusion models often results in severe degradation of temporal consistency and appearance details. In this paper, by analyzing the training dynamics of Consistency Models, we identify a key conflicting learning dynamics during the distillation process: there is a significant discrepancy in the optimization gradients and loss contributions across different timesteps. This discrepancy prevents the distilled student model from achieving an optimal state, leading to compromised temporal consistency and degraded appearance details. To address this issue, we propose a parameter-efficient \textbf{Dual-Expert Consistency Model~(DCM)}, where a semantic expert focuses on learning semantic layout and motion, while a detail expert specializes in fine detail refinement. Furthermore, we introduce Temporal Coherence Loss to improve motion consistency for the semantic expert and apply GAN and Feature Matching Loss to enhance the synthesis quality of the detail expert.Our approach achieves state-of-the-art visual quality with significantly reduced sampling steps, demonstrating the effectiveness of expert specialization in video diffusion model distillation. Our code and models are available at \href{https://github.com/Vchitect/DCM}{https://github.com/Vchitect/DCM}.
☆ HumanRAM: Feed-forward Human Reconstruction and Animation Model using Transformers SIGGRAPH 2025
3D human reconstruction and animation are long-standing topics in computer graphics and vision. However, existing methods typically rely on sophisticated dense-view capture and/or time-consuming per-subject optimization procedures. To address these limitations, we propose HumanRAM, a novel feed-forward approach for generalizable human reconstruction and animation from monocular or sparse human images. Our approach integrates human reconstruction and animation into a unified framework by introducing explicit pose conditions, parameterized by a shared SMPL-X neural texture, into transformer-based large reconstruction models (LRM). Given monocular or sparse input images with associated camera parameters and SMPL-X poses, our model employs scalable transformers and a DPT-based decoder to synthesize realistic human renderings under novel viewpoints and novel poses. By leveraging the explicit pose conditions, our model simultaneously enables high-quality human reconstruction and high-fidelity pose-controlled animation. Experiments show that HumanRAM significantly surpasses previous methods in terms of reconstruction accuracy, animation fidelity, and generalization performance on real-world datasets. Video results are available at https://zju3dv.github.io/humanram/.
comment: Accepted by SIGGRAPH 2025 (Conference Track). Project page: https://zju3dv.github.io/humanram/
Controllable Human-centric Keyframe Interpolation with Generative Prior
Existing interpolation methods use pre-trained video diffusion priors to generate intermediate frames between sparsely sampled keyframes. In the absence of 3D geometric guidance, these methods struggle to produce plausible results for complex, articulated human motions and offer limited control over the synthesized dynamics. In this paper, we introduce PoseFuse3D Keyframe Interpolator (PoseFuse3D-KI), a novel framework that integrates 3D human guidance signals into the diffusion process for Controllable Human-centric Keyframe Interpolation (CHKI). To provide rich spatial and structural cues for interpolation, our PoseFuse3D, a 3D-informed control model, features a novel SMPL-X encoder that transforms 3D geometry and shape into the 2D latent conditioning space, alongside a fusion network that integrates these 3D cues with 2D pose embeddings. For evaluation, we build CHKI-Video, a new dataset annotated with both 2D poses and 3D SMPL-X parameters. We show that PoseFuse3D-KI consistently outperforms state-of-the-art baselines on CHKI-Video, achieving a 9% improvement in PSNR and a 38% reduction in LPIPS. Comprehensive ablations demonstrate that our PoseFuse3D model improves interpolation fidelity.
comment: Project Page: https://gseancdat.github.io/projects/PoseFuse3D_KI
☆ Targeted Forgetting of Image Subgroups in CLIP Models
Foundation models (FMs) such as CLIP have demonstrated impressive zero-shot performance across various tasks by leveraging large-scale, unsupervised pre-training. However, they often inherit harmful or unwanted knowledge from noisy internet-sourced datasets, compromising their reliability in real-world applications. Existing model unlearning methods either rely on access to pre-trained datasets or focus on coarse-grained unlearning (e.g., entire classes), leaving a critical gap for fine-grained unlearning. In this paper, we address the challenging scenario of selectively forgetting specific portions of knowledge within a class, without access to pre-trained data, while preserving the model's overall performance. We propose a novel three-stage approach that progressively unlearns targeted knowledge while mitigating over-forgetting. It consists of (1) a forgetting stage to fine-tune the CLIP on samples to be forgotten, (2) a reminding stage to restore performance on retained samples, and (3) a restoring stage to recover zero-shot capabilities using model souping. Additionally, we introduce knowledge distillation to handle the distribution disparity between forgetting, retaining samples, and unseen pre-trained data. Extensive experiments on CIFAR-10, ImageNet-1K, and style datasets demonstrate that our approach effectively unlearns specific subgroups while maintaining strong zero-shot performance on semantically similar subgroups and other categories, significantly outperforming baseline unlearning methods, which lose effectiveness under the CLIP unlearning setting.
comment: 12 Figures,5 Pages. The project page is \url{https://zhangaipi.github.io/forget_clip/}
☆ Zero-Shot Tree Detection and Segmentation from Aerial Forest Imagery
Large-scale delineation of individual trees from remote sensing imagery is crucial to the advancement of ecological research, particularly as climate change and other environmental factors rapidly transform forest landscapes across the world. Current RGB tree segmentation methods rely on training specialized machine learning models with labeled tree datasets. While these learning-based approaches can outperform manual data collection when accurate, the existing models still depend on training data that's hard to scale. In this paper, we investigate the efficacy of using a state-of-the-art image segmentation model, Segment Anything Model 2 (SAM2), in a zero-shot manner for individual tree detection and segmentation. We evaluate a pretrained SAM2 model on two tasks in this domain: (1) zero-shot segmentation and (2) zero-shot transfer by using predictions from an existing tree detection model as prompts. Our results suggest that SAM2 not only has impressive generalization capabilities, but also can form a natural synergy with specialized methods trained on in-domain labeled data. We find that applying large pretrained models to problems in remote sensing is a promising avenue for future progress. We make our code available at: https://github.com/open-forest-observatory/tree-detection-framework.
comment: Code: https://github.com/open-forest-observatory/tree-detection-framework
☆ Revisiting Continuity of Image Tokens for Cross-domain Few-shot Learning ICML 2025
Vision Transformer (ViT) has achieved remarkable success due to its large-scale pretraining on general domains, but it still faces challenges when applying it to downstream distant domains that have only scarce training data, which gives rise to the Cross-Domain Few-Shot Learning (CDFSL) task. Inspired by Self-Attention's insensitivity to token orders, we find an interesting phenomenon neglected in current works: disrupting the continuity of image tokens (i.e., making pixels not smoothly transited across patches) in ViT leads to a noticeable performance decline in the general (source) domain but only a marginal decrease in downstream target domains. This questions the role of image tokens' continuity in ViT's generalization under large domain gaps. In this paper, we delve into this phenomenon for an interpretation. We find continuity aids ViT in learning larger spatial patterns, which are harder to transfer than smaller ones, enlarging domain distances. Meanwhile, it implies that only smaller patterns within each patch could be transferred under extreme domain gaps. Based on this interpretation, we further propose a simple yet effective method for CDFSL that better disrupts the continuity of image tokens, encouraging the model to rely less on large patterns and more on smaller ones. Extensive experiments show the effectiveness of our method in reducing domain gaps and outperforming state-of-the-art works. Codes and models are available at https://github.com/shuaiyi308/ReCIT.
comment: Accepted by ICML 2025(spotlight)
☆ ByteMorph: Benchmarking Instruction-Guided Image Editing with Non-Rigid Motions
Editing images with instructions to reflect non-rigid motions, camera viewpoint shifts, object deformations, human articulations, and complex interactions, poses a challenging yet underexplored problem in computer vision. Existing approaches and datasets predominantly focus on static scenes or rigid transformations, limiting their capacity to handle expressive edits involving dynamic motion. To address this gap, we introduce ByteMorph, a comprehensive framework for instruction-based image editing with an emphasis on non-rigid motions. ByteMorph comprises a large-scale dataset, ByteMorph-6M, and a strong baseline model built upon the Diffusion Transformer (DiT), named ByteMorpher. ByteMorph-6M includes over 6 million high-resolution image editing pairs for training, along with a carefully curated evaluation benchmark ByteMorph-Bench. Both capture a wide variety of non-rigid motion types across diverse environments, human figures, and object categories. The dataset is constructed using motion-guided data generation, layered compositing techniques, and automated captioning to ensure diversity, realism, and semantic coherence. We further conduct a comprehensive evaluation of recent instruction-based image editing methods from both academic and commercial domains.
comment: Website: https://boese0601.github.io/bytemorph Dataset: https://huggingface.co/datasets/ByteDance-Seed/BM-6M Benchmark: https://huggingface.co/datasets/ByteDance-Seed/BM-Bench Code: https://github.com/ByteDance-Seed/BM-code Demo: https://huggingface.co/spaces/Boese0601/ByteMorph-Demo
☆ DyTact: Capturing Dynamic Contacts in Hand-Object Manipulation
Reconstructing dynamic hand-object contacts is essential for realistic manipulation in AI character animation, XR, and robotics, yet it remains challenging due to heavy occlusions, complex surface details, and limitations in existing capture techniques. In this paper, we introduce DyTact, a markerless capture method for accurately capturing dynamic contact in hand-object manipulations in a non-intrusive manner. Our approach leverages a dynamic, articulated representation based on 2D Gaussian surfels to model complex manipulations. By binding these surfels to MANO meshes, DyTact harnesses the inductive bias of template models to stabilize and accelerate optimization. A refinement module addresses time-dependent high-frequency deformations, while a contact-guided adaptive sampling strategy selectively increases surfel density in contact regions to handle heavy occlusion. Extensive experiments demonstrate that DyTact not only achieves state-of-the-art dynamic contact estimation accuracy but also significantly improves novel view synthesis quality, all while operating with fast optimization and efficient memory usage. Project Page: https://oliver-cong02.github.io/DyTact.github.io/ .
☆ EgoVLM: Policy Optimization for Egocentric Video Understanding
Emerging embodied AI applications, such as wearable cameras and autonomous agents, have underscored the need for robust reasoning from first person video streams. We introduce EgoVLM, a vision-language model specifically designed to integrate visual comprehension and spatial-temporal reasoning within egocentric video contexts. EgoVLM is fine-tuned via Group Relative Policy Optimization (GRPO), a reinforcement learning method adapted to align model outputs with human-like reasoning steps. Following DeepSeek R1-Zero's approach, we directly tune using RL without any supervised fine-tuning phase on chain-of-thought (CoT) data. We evaluate EgoVLM on egocentric video question answering benchmarks and show that domain-specific training substantially improves performance over general-purpose VLMs. Our EgoVLM-3B, trained exclusively on non-CoT egocentric data, outperforms the base Qwen2.5-VL 3B and 7B models by 14.33 and 13.87 accuracy points on the EgoSchema benchmark, respectively. By explicitly generating reasoning traces, EgoVLM enhances interpretability, making it well-suited for downstream applications. Furthermore, we introduce a novel keyframe-based reward that incorporates salient frame selection to guide reinforcement learning optimization. This reward formulation opens a promising avenue for future exploration in temporally grounded egocentric reasoning.
comment: Our Code can be found at https://github.com/adityavavre/VidEgoVLM
☆ FuseLIP: Multimodal Embeddings via Early Fusion of Discrete Tokens
Contrastive language-image pre-training aligns the features of text-image pairs in a common latent space via distinct encoders for each modality. While this approach achieves impressive performance in several zero-shot tasks, it cannot natively handle multimodal inputs, i.e., encoding image and text into a single feature vector. As a remedy, it is common practice to use additional modules to merge the features extracted by the unimodal encoders. In this work, we present FuseLIP, an alternative architecture for multimodal embedding. Leveraging recent progress in discrete image tokenizers, we propose to use a single transformer model which operates on an extended vocabulary of text and image tokens. This early fusion approach allows the different modalities to interact at each depth of encoding and obtain richer representations compared to common late fusion. We collect new datasets for multimodal pre-training and evaluation, designing challenging tasks for multimodal encoder models. We show that FuseLIP outperforms other approaches in multimodal embedding tasks such as VQA and text-guided image transformation retrieval, while being comparable to baselines on unimodal tasks.
comment: Code and models available at https://github.com/chs20/fuselip
☆ DPO Learning with LLMs-Judge Signal for Computer Use Agents
Computer use agents (CUA) are systems that automatically interact with graphical user interfaces (GUIs) to complete tasks. CUA have made significant progress with the advent of large vision-language models (VLMs). However, these agents typically rely on cloud-based inference with substantial compute demands, raising critical privacy and scalability concerns, especially when operating on personal devices. In this work, we take a step toward privacy-preserving and resource-efficient agents by developing a lightweight vision-language model that runs entirely on local machines. To train this compact agent, we introduce an LLM-as-Judge framework that automatically evaluates and filters synthetic interaction trajectories, producing high-quality data for reinforcement learning without human annotation. Experiments on the OS-World benchmark demonstrate that our fine-tuned local model outperforms existing baselines, highlighting a promising path toward private, efficient, and generalizable GUI agents.
☆ Explicitly Modeling Subcortical Vision with a Neuro-Inspired Front-End Improves CNN Robustness
Convolutional neural networks (CNNs) trained on object recognition achieve high task performance but continue to exhibit vulnerability under a range of visual perturbations and out-of-domain images, when compared with biological vision. Prior work has demonstrated that coupling a standard CNN with a front-end block (VOneBlock) that mimics the primate primary visual cortex (V1) can improve overall model robustness. Expanding on this, we introduce Early Vision Networks (EVNets), a new class of hybrid CNNs that combine the VOneBlock with a novel SubcorticalBlock, whose architecture draws from computational models in neuroscience and is parameterized to maximize alignment with subcortical responses reported across multiple experimental studies. Without being optimized to do so, the assembly of the SubcorticalBlock with the VOneBlock improved V1 alignment across most standard V1 benchmarks, and better modeled extra-classical receptive field phenomena. In addition, EVNets exhibit stronger emergent shape bias and overperform the base CNN architecture by 8.5% on an aggregate benchmark of robustness evaluations, including adversarial perturbations, common corruptions, and domain shifts. Finally, we show that EVNets can be further improved when paired with a state-of-the-art data augmentation technique, surpassing the performance of the isolated data augmentation approach by 7.3% on our robustness benchmark. This result reveals complementary benefits between changes in architecture to better mimic biology and training-based machine learning approaches.
☆ InterMamba: Efficient Human-Human Interaction Generation with Adaptive Spatio-Temporal Mamba
Human-human interaction generation has garnered significant attention in motion synthesis due to its vital role in understanding humans as social beings. However, existing methods typically rely on transformer-based architectures, which often face challenges related to scalability and efficiency. To address these issues, we propose a novel, efficient human-human interaction generation method based on the Mamba framework, designed to meet the demands of effectively capturing long-sequence dependencies while providing real-time feedback. Specifically, we introduce an adaptive spatio-temporal Mamba framework that utilizes two parallel SSM branches with an adaptive mechanism to integrate the spatial and temporal features of motion sequences. To further enhance the model's ability to capture dependencies within individual motion sequences and the interactions between different individual sequences, we develop two key modules: the self-adaptive spatio-temporal Mamba module and the cross-adaptive spatio-temporal Mamba module, enabling efficient feature learning. Extensive experiments demonstrate that our method achieves state-of-the-art results on two interaction datasets with remarkable quality and efficiency. Compared to the baseline method InterGen, our approach not only improves accuracy but also requires a minimal parameter size of just 66M ,only 36% of InterGen's, while achieving an average inference speed of 0.57 seconds, which is 46% of InterGen's execution time.
☆ SG2VID: Scene Graphs Enable Fine-Grained Control for Video Synthesis
Surgical simulation plays a pivotal role in training novice surgeons, accelerating their learning curve and reducing intra-operative errors. However, conventional simulation tools fall short in providing the necessary photorealism and the variability of human anatomy. In response, current methods are shifting towards generative model-based simulators. Yet, these approaches primarily focus on using increasingly complex conditioning for precise synthesis while neglecting the fine-grained human control aspect. To address this gap, we introduce SG2VID, the first diffusion-based video model that leverages Scene Graphs for both precise video synthesis and fine-grained human control. We demonstrate SG2VID's capabilities across three public datasets featuring cataract and cholecystectomy surgery. While SG2VID outperforms previous methods both qualitatively and quantitatively, it also enables precise synthesis, providing accurate control over tool and anatomy's size and movement, entrance of new tools, as well as the overall scene layout. We qualitatively motivate how SG2VID can be used for generative augmentation and present an experiment demonstrating its ability to improve a downstream phase detection task when the training set is extended with our synthetic videos. Finally, to showcase SG2VID's ability to retain human control, we interact with the Scene Graphs to generate new video samples depicting major yet rare intra-operative irregularities.
ORV: 4D Occupancy-centric Robot Video Generation
Acquiring real-world robotic simulation data through teleoperation is notoriously time-consuming and labor-intensive. Recently, action-driven generative models have gained widespread adoption in robot learning and simulation, as they eliminate safety concerns and reduce maintenance efforts. However, the action sequences used in these methods often result in limited control precision and poor generalization due to their globally coarse alignment. To address these limitations, we propose ORV, an Occupancy-centric Robot Video generation framework, which utilizes 4D semantic occupancy sequences as a fine-grained representation to provide more accurate semantic and geometric guidance for video generation. By leveraging occupancy-based representations, ORV enables seamless translation of simulation data into photorealistic robot videos, while ensuring high temporal consistency and precise controllability. Furthermore, our framework supports the simultaneous generation of multi-view videos of robot gripping operations - an important capability for downstream robotic learning tasks. Extensive experimental results demonstrate that ORV consistently outperforms existing baseline methods across various datasets and sub-tasks. Demo, Code and Model: https://orangesodahub.github.io/ORV
comment: Project page: https://orangesodahub.github.io/ORV/ ; Code: https://github.com/OrangeSodahub/ORV
☆ LEG-SLAM: Real-Time Language-Enhanced Gaussian Splatting for SLAM
Modern Gaussian Splatting methods have proven highly effective for real-time photorealistic rendering of 3D scenes. However, integrating semantic information into this representation remains a significant challenge, especially in maintaining real-time performance for SLAM (Simultaneous Localization and Mapping) applications. In this work, we introduce LEG-SLAM -- a novel approach that fuses an optimized Gaussian Splatting implementation with visual-language feature extraction using DINOv2 followed by a learnable feature compressor based on Principal Component Analysis, while enabling an online dense SLAM. Our method simultaneously generates high-quality photorealistic images and semantically labeled scene maps, achieving real-time scene reconstruction with more than 10 fps on the Replica dataset and 18 fps on ScanNet. Experimental results show that our approach significantly outperforms state-of-the-art methods in reconstruction speed while achieving competitive rendering quality. The proposed system eliminates the need for prior data preparation such as camera's ego motion or pre-computed static semantic maps. With its potential applications in autonomous robotics, augmented reality, and other interactive domains, LEG-SLAM represents a significant step forward in real-time semantic 3D Gaussian-based SLAM. Project page: https://titrom025.github.io/LEG-SLAM/
☆ EDITOR: Effective and Interpretable Prompt Inversion for Text-to-Image Diffusion Models
Text-to-image generation models~(e.g., Stable Diffusion) have achieved significant advancements, enabling the creation of high-quality and realistic images based on textual descriptions. Prompt inversion, the task of identifying the textual prompt used to generate a specific artifact, holds significant potential for applications including data attribution, model provenance, and watermarking validation. Recent studies introduced a delayed projection scheme to optimize for prompts representative of the vocabulary space, though challenges in semantic fluency and efficiency remain. Advanced image captioning models or visual large language models can generate highly interpretable prompts, but they often lack in image similarity. In this paper, we propose a prompt inversion technique called \sys for text-to-image diffusion models, which includes initializing embeddings using a pre-trained image captioning model, refining them through reverse-engineering in the latent space, and converting them to texts using an embedding-to-text model. Our experiments on the widely-used datasets, such as MS COCO, LAION, and Flickr, show that our method outperforms existing methods in terms of image similarity, textual alignment, prompt interpretability and generalizability. We further illustrate the application of our generated prompts in tasks such as cross-concept image synthesis, concept manipulation, evolutionary multi-concept generation and unsupervised segmentation.
☆ Sparse-vDiT: Unleashing the Power of Sparse Attention to Accelerate Video Diffusion Transformers
While Diffusion Transformers (DiTs) have achieved breakthroughs in video generation, this long sequence generation task remains constrained by the quadratic complexity of attention mechanisms, resulting in significant inference latency. Through detailed analysis of attention maps in Video Diffusion Transformer (vDiT), we identify three recurring sparsity patterns: diagonal, multi-diagonal, and vertical-stripe structures. And even 3-6\% attention heads can be skipped. Crucially, these patterns exhibit strong layer-depth and head-position correlations but show limited dependence on the input content. Leveraging these findings, we propose Sparse-vDiT, a sparsity acceleration framework for vDiT comprising: 1) Pattern-optimized sparse kernels that replace dense attention with computationally efficient implementations for each identified sparsity pattern. 2) An offline sparse diffusion search algorithm that selects the optimal sparse computation strategy per layer and head via hardware-aware cost modeling. After determining the optimal configuration, we fuse heads within the same layer that share the same attention strategy, enhancing inference efficiency. Integrated into state-of-the-art vDiT models (CogVideoX1.5, HunyuanVideo, and Wan2.1), Sparse-vDiT achieves 2.09$\times$, 2.38$\times$, and 1.67$\times$ theoretical FLOP reduction, and actual inference speedups of 1.76$\times$, 1.85$\times$, and 1.58$\times$, respectively, while maintaining high visual fidelity, with PSNR values reaching 24.13, 27.09, and 22.59. Our work demonstrates that latent structural sparsity in vDiTs can be systematically exploited for long video synthesis.
☆ Smartflow: Enabling Scalable Spatiotemporal Geospatial Research
BlackSky introduces Smartflow, a cloud-based framework enabling scalable spatiotemporal geospatial research built on open-source tools and technologies. Using STAC-compliant catalogs as a common input, heterogeneous geospatial data can be processed into standardized datacubes for analysis and model training. Model experimentation is managed using a combination of tools, including ClearML, Tensorboard, and Apache Superset. Underpinning Smartflow is Kubernetes, which orchestrates the provisioning and execution of workflows to support both horizontal and vertical scalability. This combination of features makes Smartflow well-suited for geospatial model development and analysis over large geographic areas, time scales, and expansive image archives. We also present a novel neural architecture, built using Smartflow, to monitor large geographic areas for heavy construction. Qualitative results based on data from the IARPA Space-based Machine Automated Recognition Technique (SMART) program are presented that show the model is capable of detecting heavy construction throughout all major phases of development.
☆ DFBench: Benchmarking Deepfake Image Detection Capability of Large Multimodal Models
With the rapid advancement of generative models, the realism of AI-generated images has significantly improved, posing critical challenges for verifying digital content authenticity. Current deepfake detection methods often depend on datasets with limited generation models and content diversity that fail to keep pace with the evolving complexity and increasing realism of the AI-generated content. Large multimodal models (LMMs), widely adopted in various vision tasks, have demonstrated strong zero-shot capabilities, yet their potential in deepfake detection remains largely unexplored. To bridge this gap, we present \textbf{DFBench}, a large-scale DeepFake Benchmark featuring (i) broad diversity, including 540,000 images across real, AI-edited, and AI-generated content, (ii) latest model, the fake images are generated by 12 state-of-the-art generation models, and (iii) bidirectional benchmarking and evaluating for both the detection accuracy of deepfake detectors and the evasion capability of generative models. Based on DFBench, we propose \textbf{MoA-DF}, Mixture of Agents for DeepFake detection, leveraging a combined probability strategy from multiple LMMs. MoA-DF achieves state-of-the-art performance, further proving the effectiveness of leveraging LMMs for deepfake detection. Database and codes are publicly available at https://github.com/IntMeGroup/DFBench.
☆ PartComposer: Learning and Composing Part-Level Concepts from Single-Image Examples
We present PartComposer: a framework for part-level concept learning from single-image examples that enables text-to-image diffusion models to compose novel objects from meaningful components. Existing methods either struggle with effectively learning fine-grained concepts or require a large dataset as input. We propose a dynamic data synthesis pipeline generating diverse part compositions to address one-shot data scarcity. Most importantly, we propose to maximize the mutual information between denoised latents and structured concept codes via a concept predictor, enabling direct regulation on concept disentanglement and re-composition supervision. Our method achieves strong disentanglement and controllable composition, outperforming subject and part-level baselines when mixing concepts from the same, or different, object categories.
☆ Astrophotography turbulence mitigation via generative models
Photography is the cornerstone of modern astronomical and space research. However, most astronomical images captured by ground-based telescopes suffer from atmospheric turbulence, resulting in degraded imaging quality. While multi-frame strategies like lucky imaging can mitigate some effects, they involve intensive data acquisition and complex manual processing. In this paper, we propose AstroDiff, a generative restoration method that leverages both the high-quality generative priors and restoration capabilities of diffusion models to mitigate atmospheric turbulence. Extensive experiments demonstrate that AstroDiff outperforms existing state-of-the-art learning-based methods in astronomical image turbulence mitigation, providing higher perceptual quality and better structural fidelity under severe turbulence conditions. Our code and additional results are available at https://web-six-kappa-66.vercel.app/
☆ Deep Learning for Retinal Degeneration Assessment: A Comprehensive Analysis of the MARIO AMD Progression Challenge MICCAI
The MARIO challenge, held at MICCAI 2024, focused on advancing the automated detection and monitoring of age-related macular degeneration (AMD) through the analysis of optical coherence tomography (OCT) images. Designed to evaluate algorithmic performance in detecting neovascular activity changes within AMD, the challenge incorporated unique multi-modal datasets. The primary dataset, sourced from Brest, France, was used by participating teams to train and test their models. The final ranking was determined based on performance on this dataset. An auxiliary dataset from Algeria was used post-challenge to evaluate population and device shifts from submitted solutions. Two tasks were involved in the MARIO challenge. The first one was the classification of evolution between two consecutive 2D OCT B-scans. The second one was the prediction of future AMD evolution over three months for patients undergoing anti-vascular endothelial growth factor (VEGF) therapy. Thirty-five teams participated, with the top 12 finalists presenting their methods. This paper outlines the challenge's structure, tasks, data characteristics, and winning methodologies, setting a benchmark for AMD monitoring using OCT, infrared imaging, and clinical data (such as the number of visits, age, gender, etc.). The results of this challenge indicate that artificial intelligence (AI) performs as well as a physician in measuring AMD progression (Task 1) but is not yet able of predicting future evolution (Task 2).
comment: MARIO-MICCAI-CHALLENGE 2024
☆ HaploOmni: Unified Single Transformer for Multimodal Video Understanding and Generation
With the advancement of language models, unified multimodal understanding and generation have made significant strides, with model architectures evolving from separated components to unified single-model frameworks. This paper explores an efficient training paradigm to build a single transformer for unified multimodal understanding and generation. Specifically, we propose a multimodal warmup strategy utilizing prior knowledge to extend capabilities. To address cross-modal compatibility challenges, we introduce feature pre-scaling and multimodal AdaLN techniques. Integrating the proposed technologies, we present the HaploOmni, a new single multimodal transformer. With limited training costs, HaploOmni achieves competitive performance across multiple image and video understanding and generation benchmarks over advanced unified models. All codes will be made public at https://github.com/Tencent/HaploVLM.
☆ FORLA:Federated Object-centric Representation Learning with Slot Attention
Learning efficient visual representations across heterogeneous unlabeled datasets remains a central challenge in federated learning. Effective federated representations require features that are jointly informative across clients while disentangling domain-specific factors without supervision. We introduce FORLA, a novel framework for federated object-centric representation learning and feature adaptation across clients using unsupervised slot attention. At the core of our method is a shared feature adapter, trained collaboratively across clients to adapt features from foundation models, and a shared slot attention module that learns to reconstruct the adapted features. To optimize this adapter, we design a two-branch student-teacher architecture. In each client, a student decoder learns to reconstruct full features from foundation models, while a teacher decoder reconstructs their adapted, low-dimensional counterpart. The shared slot attention module bridges cross-domain learning by aligning object-level representations across clients. Experiments in multiple real-world datasets show that our framework not only outperforms centralized baselines on object discovery but also learns a compact, universal representation that generalizes well across domains. This work highlights federated slot attention as an effective tool for scalable, unsupervised visual representation learning from cross-domain data with distributed concepts.
comment: 24 pages, 6 figures
☆ Interaction Field Matching: Overcoming Limitations of Electrostatic Models
Electrostatic field matching (EFM) has recently appeared as a novel physics-inspired paradigm for data generation and transfer using the idea of an electric capacitor. However, it requires modeling electrostatic fields using neural networks, which is non-trivial because of the necessity to take into account the complex field outside the capacitor plates. In this paper, we propose Interaction Field Matching (IFM), a generalization of EFM which allows using general interaction fields beyond the electrostatic one. Furthermore, inspired by strong interactions between quarks and antiquarks in physics, we design a particular interaction field realization which solves the problems which arise when modeling electrostatic fields in EFM. We show the performance on a series of toy and image data transfer problems.
☆ MIND: Material Interface Generation from UDFs for Non-Manifold Surface Reconstruction
Unsigned distance fields (UDFs) are widely used in 3D deep learning due to their ability to represent shapes with arbitrary topology. While prior work has largely focused on learning UDFs from point clouds or multi-view images, extracting meshes from UDFs remains challenging, as the learned fields rarely attain exact zero distances. A common workaround is to reconstruct signed distance fields (SDFs) locally from UDFs to enable surface extraction via Marching Cubes. However, this often introduces topological artifacts such as holes or spurious components. Moreover, local SDFs are inherently incapable of representing non-manifold geometry, leading to complete failure in such cases. To address this gap, we propose MIND (Material Interface from Non-manifold Distance fields), a novel algorithm for generating material interfaces directly from UDFs, enabling non-manifold mesh extraction from a global perspective. The core of our method lies in deriving a meaningful spatial partitioning from the UDF, where the target surface emerges as the interface between distinct regions. We begin by computing a two-signed local field to distinguish the two sides of manifold patches, and then extend this to a multi-labeled global field capable of separating all sides of a non-manifold structure. By combining this multi-labeled field with the input UDF, we construct material interfaces that support non-manifold mesh extraction via a multi-labeled Marching Cubes algorithm. Extensive experiments on UDFs generated from diverse data sources, including point cloud reconstruction, multi-view reconstruction, and medial axis transforms, demonstrate that our approach robustly handles complex non-manifold surfaces and significantly outperforms existing methods.
☆ Towards Auto-Annotation from Annotation Guidelines: A Benchmark through 3D LiDAR Detection
A crucial yet under-appreciated prerequisite in machine learning solutions for real-applications is data annotation: human annotators are hired to manually label data according to detailed, expert-crafted guidelines. This is often a laborious, tedious, and costly process. To study methods for facilitating data annotation, we introduce a new benchmark AnnoGuide: Auto-Annotation from Annotation Guidelines. It aims to evaluate automated methods for data annotation directly from expert-defined annotation guidelines, eliminating the need for manual labeling. As a case study, we repurpose the well-established nuScenes dataset, commonly used in autonomous driving research, which provides comprehensive annotation guidelines for labeling LiDAR point clouds with 3D cuboids across 18 object classes. These guidelines include a few visual examples and textual descriptions, but no labeled 3D cuboids in LiDAR data, making this a novel task of multi-modal few-shot 3D detection without 3D annotations. The advances of powerful foundation models (FMs) make AnnoGuide especially timely, as FMs offer promising tools to tackle its challenges. We employ a conceptually straightforward pipeline that (1) utilizes open-source FMs for object detection and segmentation in RGB images, (2) projects 2D detections into 3D using known camera poses, and (3) clusters LiDAR points within the frustum of each 2D detection to generate a 3D cuboid. Starting with a non-learned solution that leverages off-the-shelf FMs, we progressively refine key components and achieve significant performance improvements, boosting 3D detection mAP from 12.1 to 21.9! Nevertheless, our results highlight that AnnoGuide remains an open and challenging problem, underscoring the urgent need for developing LiDAR-based FMs. We release our code and models at GitHub: https://annoguide.github.io/annoguide3Dbenchmark
☆ VolTex: Food Volume Estimation using Text-Guided Segmentation and Neural Surface Reconstruction
Accurate food volume estimation is crucial for dietary monitoring, medical nutrition management, and food intake analysis. Existing 3D Food Volume estimation methods accurately compute the food volume but lack for food portions selection. We present VolTex, a framework that improves \change{the food object selection} in food volume estimation. Allowing users to specify a target food item via text input to be segmented, our method enables the precise selection of specific food objects in real-world scenes. The segmented object is then reconstructed using the Neural Surface Reconstruction method to generate high-fidelity 3D meshes for volume computation. Extensive evaluations on the MetaFood3D dataset demonstrate the effectiveness of our approach in isolating and reconstructing food items for accurate volume estimation. The source code is accessible at https://github.com/GCVCG/VolTex.
☆ Dense Match Summarization for Faster Two-view Estimation CVPR
In this paper, we speed up robust two-view relative pose from dense correspondences. Previous work has shown that dense matchers can significantly improve both accuracy and robustness in the resulting pose. However, the large number of matches comes with a significantly increased runtime during robust estimation in RANSAC. To avoid this, we propose an efficient match summarization scheme which provides comparable accuracy to using the full set of dense matches, while having 10-100x faster runtime. We validate our approach on standard benchmark datasets together with multiple state-of-the-art dense matchers.
comment: Accepted to Computer Vision and Pattern Recognition (CVPR) 2025
☆ OpenFace 3.0: A Lightweight Multitask System for Comprehensive Facial Behavior Analysis
In recent years, there has been increasing interest in automatic facial behavior analysis systems from computing communities such as vision, multimodal interaction, robotics, and affective computing. Building upon the widespread utility of prior open-source facial analysis systems, we introduce OpenFace 3.0, an open-source toolkit capable of facial landmark detection, facial action unit detection, eye-gaze estimation, and facial emotion recognition. OpenFace 3.0 contributes a lightweight unified model for facial analysis, trained with a multi-task architecture across diverse populations, head poses, lighting conditions, video resolutions, and facial analysis tasks. By leveraging the benefits of parameter sharing through a unified model and training paradigm, OpenFace 3.0 exhibits improvements in prediction performance, inference speed, and memory efficiency over similar toolkits and rivals state-of-the-art models. OpenFace 3.0 can be installed and run with a single line of code and operate in real-time without specialized hardware. OpenFace 3.0 code for training models and running the system is freely available for research purposes and supports contributions from the community.
comment: IEEE FG 2025, \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
☆ GaRA-SAM: Robustifying Segment Anything Model with Gated-Rank Adaptation
Improving robustness of the Segment Anything Model (SAM) to input degradations is critical for its deployment in high-stakes applications such as autonomous driving and robotics. Our approach to this challenge prioritizes three key aspects: first, parameter efficiency to maintain the inherent generalization capability of SAM; second, fine-grained and input-aware robustification to precisely address the input corruption; and third, adherence to standard training protocols for ease of training. To this end, we propose gated-rank adaptation (GaRA). GaRA introduces lightweight adapters into intermediate layers of the frozen SAM, where each adapter dynamically adjusts the effective rank of its weight matrix based on the input by selectively activating (rank-1) components of the matrix using a learned gating module. This adjustment enables fine-grained and input-aware robustification without compromising the generalization capability of SAM. Our model, GaRA-SAM, significantly outperforms prior work on all robust segmentation benchmarks. In particular, it surpasses the previous best IoU score by up to 21.3\%p on ACDC, a challenging real corrupted image dataset.
☆ NTIRE 2025 XGC Quality Assessment Challenge: Methods and Results
This paper reports on the NTIRE 2025 XGC Quality Assessment Challenge, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. This challenge is to address a major challenge in the field of video and talking head processing. The challenge is divided into three tracks, including user generated video, AI generated video and talking head. The user-generated video track uses the FineVD-GC, which contains 6,284 user generated videos. The user-generated video track has a total of 125 registered participants. A total of 242 submissions are received in the development phase, and 136 submissions are received in the test phase. Finally, 5 participating teams submitted their models and fact sheets. The AI generated video track uses the Q-Eval-Video, which contains 34,029 AI-Generated Videos (AIGVs) generated by 11 popular Text-to-Video (T2V) models. A total of 133 participants have registered in this track. A total of 396 submissions are received in the development phase, and 226 submissions are received in the test phase. Finally, 6 participating teams submitted their models and fact sheets. The talking head track uses the THQA-NTIRE, which contains 12,247 2D and 3D talking heads. A total of 89 participants have registered in this track. A total of 225 submissions are received in the development phase, and 118 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Each participating team in every track has proposed a method that outperforms the baseline, which has contributed to the development of fields in three tracks.
comment: NTIRE 2025 XGC Quality Assessment Challenge Report. arXiv admin note: text overlap with arXiv:2404.16687
☆ Pan-Arctic Permafrost Landform and Human-built Infrastructure Feature Detection with Vision Transformers and Location Embeddings
Accurate mapping of permafrost landforms, thaw disturbances, and human-built infrastructure at pan-Arctic scale using sub-meter satellite imagery is increasingly critical. Handling petabyte-scale image data requires high-performance computing and robust feature detection models. While convolutional neural network (CNN)-based deep learning approaches are widely used for remote sensing (RS),similar to the success in transformer based large language models, Vision Transformers (ViTs) offer advantages in capturing long-range dependencies and global context via attention mechanisms. ViTs support pretraining via self-supervised learning-addressing the common limitation of labeled data in Arctic feature detection and outperform CNNs on benchmark datasets. Arctic also poses challenges for model generalization, especially when features with the same semantic class exhibit diverse spectral characteristics. To address these issues for Arctic feature detection, we integrate geospatial location embeddings into ViTs to improve adaptation across regions. This work investigates: (1) the suitability of pre-trained ViTs as feature extractors for high-resolution Arctic remote sensing tasks, and (2) the benefit of combining image and location embeddings. Using previously published datasets for Arctic feature detection, we evaluate our models on three tasks-detecting ice-wedge polygons (IWP), retrogressive thaw slumps (RTS), and human-built infrastructure. We empirically explore multiple configurations to fuse image embeddings and location embeddings. Results show that ViTs with location embeddings outperform prior CNN-based models on two of the three tasks including F1 score increase from 0.84 to 0.92 for RTS detection, demonstrating the potential of transformer-based models with spatial awareness for Arctic RS applications.
comment: 20 pages, 2 column IEEE format, 13 Figures
☆ MVTD: A Benchmark Dataset for Maritime Visual Object Tracking
Visual Object Tracking (VOT) is a fundamental task with widespread applications in autonomous navigation, surveillance, and maritime robotics. Despite significant advances in generic object tracking, maritime environments continue to present unique challenges, including specular water reflections, low-contrast targets, dynamically changing backgrounds, and frequent occlusions. These complexities significantly degrade the performance of state-of-the-art tracking algorithms, highlighting the need for domain-specific datasets. To address this gap, we introduce the Maritime Visual Tracking Dataset (MVTD), a comprehensive and publicly available benchmark specifically designed for maritime VOT. MVTD comprises 182 high-resolution video sequences, totaling approximately 150,000 frames, and includes four representative object classes: boat, ship, sailboat, and unmanned surface vehicle (USV). The dataset captures a diverse range of operational conditions and maritime scenarios, reflecting the real-world complexities of maritime environments. We evaluated 14 recent SOTA tracking algorithms on the MVTD benchmark and observed substantial performance degradation compared to their performance on general-purpose datasets. However, when fine-tuned on MVTD, these models demonstrate significant performance gains, underscoring the effectiveness of domain adaptation and the importance of transfer learning in specialized tracking contexts. The MVTD dataset fills a critical gap in the visual tracking community by providing a realistic and challenging benchmark for maritime scenarios. Dataset and Source Code can be accessed here "https://github.com/AhsanBaidar/MVTD".
comment: Submited to Nature Scientific Data
☆ Enhancing Abnormality Identification: Robust Out-of-Distribution Strategies for Deepfake Detection
Detecting deepfakes has become a critical challenge in Computer Vision and Artificial Intelligence. Despite significant progress in detection techniques, generalizing them to open-set scenarios continues to be a persistent difficulty. Neural networks are often trained on the closed-world assumption, but with new generative models constantly evolving, it is inevitable to encounter data generated by models that are not part of the training distribution. To address these challenges, in this paper, we propose two novel Out-Of-Distribution (OOD) detection approaches. The first approach is trained to reconstruct the input image, while the second incorporates an attention mechanism for detecting OODs. Our experiments validate the effectiveness of the proposed approaches compared to existing state-of-the-art techniques. Our method achieves promising results in deepfake detection and ranks among the top-performing configurations on the benchmark, demonstrating their potential for robust, adaptable solutions in dynamic, real-world applications.
Hierarchical Self-Prompting SAM: A Prompt-Free Medical Image Segmentation Framework
Although the Segment Anything Model (SAM) is highly effective in natural image segmentation, it requires dependencies on prompts, which limits its applicability to medical imaging where manual prompts are often unavailable. Existing efforts to fine-tune SAM for medical segmentation typically struggle to remove this dependency. We propose Hierarchical Self-Prompting SAM (HSP-SAM), a novel self-prompting framework that enables SAM to achieve strong performance in prompt-free medical image segmentation. Unlike previous self-prompting methods that remain limited to positional prompts similar to vanilla SAM, we are the first to introduce learning abstract prompts during the self-prompting process. This simple and intuitive self-prompting framework achieves superior performance on classic segmentation tasks such as polyp and skin lesion segmentation, while maintaining robustness across diverse medical imaging modalities. Furthermore, it exhibits strong generalization to unseen datasets, achieving improvements of up to 14.04% over previous state-of-the-art methods on some challenging benchmarks. These results suggest that abstract prompts encapsulate richer and higher-dimensional semantic information compared to positional prompts, thereby enhancing the model's robustness and generalization performance. All models and codes will be released upon acceptance.
☆ Learning Pyramid-structured Long-range Dependencies for 3D Human Pose Estimation
Action coordination in human structure is indispensable for the spatial constraints of 2D joints to recover 3D pose. Usually, action coordination is represented as a long-range dependence among body parts. However, there are two main challenges in modeling long-range dependencies. First, joints should not only be constrained by other individual joints but also be modulated by the body parts. Second, existing methods make networks deeper to learn dependencies between non-linked parts. They introduce uncorrelated noise and increase the model size. In this paper, we utilize a pyramid structure to better learn potential long-range dependencies. It can capture the correlation across joints and groups, which complements the context of the human sub-structure. In an effective cross-scale way, it captures the pyramid-structured long-range dependence. Specifically, we propose a novel Pyramid Graph Attention (PGA) module to capture long-range cross-scale dependencies. It concatenates information from various scales into a compact sequence, and then computes the correlation between scales in parallel. Combining PGA with graph convolution modules, we develop a Pyramid Graph Transformer (PGFormer) for 3D human pose estimation, which is a lightweight multi-scale transformer architecture. It encapsulates human sub-structures into self-attention by pooling. Extensive experiments show that our approach achieves lower error and smaller model size than state-of-the-art methods on Human3.6M and MPI-INF-3DHP datasets. The code is available at https://github.com/MingjieWe/PGFormer.
comment: Accepted by IEEE Transactions on Multimedia (TMM)
METok: Multi-Stage Event-based Token Compression for Efficient Long Video Understanding
Recent advances in Video Large Language Models (VLLMs) have significantly enhanced their ability to understand video content. Nonetheless, processing long videos remains challenging due to high computational demands and the redundancy present in the visual data. In this work, we propose METok, a training-free, Multi-stage Event-based Token compression framework designed to accelerate VLLMs' inference while preserving accuracy. METok progressively eliminates redundant visual tokens across three critical stages: (1) event-aware compression during vision encoding, (2) hierarchical token pruning in the prefilling stage based on semantic alignment and event importance, and (3) a decoding-stage KV Cache optimization that further reduces memory consumption. Our experiments on diverse video benchmarks demonstrate that METok achieves an optimal trade-off between efficiency and accuracy by dynamically selecting informative visual tokens. For instance, equipping LongVA-7B with METok realizes an 80.6% FLOPs reduction and 93.5% KV Cache memory savings, all while maintaining comparable or even superior accuracy.
comment: 14 pages, 10 figures
☆ PBR-SR: Mesh PBR Texture Super Resolution from 2D Image Priors
We present PBR-SR, a novel method for physically based rendering (PBR) texture super resolution (SR). It outputs high-resolution, high-quality PBR textures from low-resolution (LR) PBR input in a zero-shot manner. PBR-SR leverages an off-the-shelf super-resolution model trained on natural images, and iteratively minimizes the deviations between super-resolution priors and differentiable renderings. These enhancements are then back-projected into the PBR map space in a differentiable manner to produce refined, high-resolution textures. To mitigate view inconsistencies and lighting sensitivity, which is common in view-based super-resolution, our method applies 2D prior constraints across multi-view renderings, iteratively refining the shared, upscaled textures. In parallel, we incorporate identity constraints directly in the PBR texture domain to ensure the upscaled textures remain faithful to the LR input. PBR-SR operates without any additional training or data requirements, relying entirely on pretrained image priors. We demonstrate that our approach produces high-fidelity PBR textures for both artist-designed and AI-generated meshes, outperforming both direct SR models application and prior texture optimization methods. Our results show high-quality outputs in both PBR and rendering evaluations, supporting advanced applications such as relighting.
comment: Project page: https://terencecyj.github.io/projects/PBR-SR/, Video: https://youtu.be/eaM5S3Mt1RM
☆ Random Registers for Cross-Domain Few-Shot Learning ICML 2025
Cross-domain few-shot learning (CDFSL) aims to transfer knowledge from a data-sufficient source domain to data-scarce target domains. Although Vision Transformer (ViT) has shown superior capability in many vision tasks, its transferability against huge domain gaps in CDFSL is still under-explored. In this paper, we find an intriguing phenomenon: during the source-domain training, prompt tuning, as a common way to train ViT, could be harmful for the generalization of ViT in target domains, but setting them to random noises (i.e., random registers) could consistently improve target-domain performance. We then delve into this phenomenon for an interpretation. We find that learnable prompts capture domain information during the training on the source dataset, which views irrelevant visual patterns as vital cues for recognition. This can be viewed as a kind of overfitting and increases the sharpness of the loss landscapes. In contrast, random registers are essentially a novel way of perturbing attention for the sharpness-aware minimization, which helps the model find a flattened minimum in loss landscapes, increasing the transferability. Based on this phenomenon and interpretation, we further propose a simple but effective approach for CDFSL to enhance the perturbation on attention maps by adding random registers on the semantic regions of image tokens, improving the effectiveness and efficiency of random registers. Extensive experiments on four benchmarks validate our rationale and state-of-the-art performance. Codes and models are available at https://github.com/shuaiyi308/REAP.
comment: Accepted by ICML 2025
☆ SemVink: Advancing VLMs' Semantic Understanding of Optical Illusions via Visual Global Thinking
Vision-language models (VLMs) excel in semantic tasks but falter at a core human capability: detecting hidden content in optical illusions or AI-generated images through perceptual adjustments like zooming. We introduce HC-Bench, a benchmark of 112 images with hidden text, objects, and illusions, revealing that leading VLMs achieve near-zero accuracy (0-5.36%)-even with explicit prompting. Humans resolve such ambiguities instinctively, yet VLMs fail due to an overreliance on high-level semantics. Strikingly, we propose SemVink (Semantic Visual Thinking) by simply scaling images to low resolutions (32-128 pixels), which unlocks >99% accuracy by eliminating redundant visual noise. This exposes a critical architectural flaw: VLMs prioritize abstract reasoning over low-level visual operations crucial for real-world robustness. Our work urges a shift toward hybrid models integrating multi-scale processing, bridging the gap between computational vision and human cognition for applications in medical imaging, security, and beyond.
☆ PhysGaia: A Physics-Aware Dataset of Multi-Body Interactions for Dynamic Novel View Synthesis
We introduce PhysGaia, a novel physics-aware dataset specifically designed for Dynamic Novel View Synthesis (DyNVS), encompassing both structured objects and unstructured physical phenomena. Unlike existing datasets that primarily focus on photorealistic reconstruction, PhysGaia is created to actively support physics-aware dynamic scene modeling. Our dataset provides complex dynamic scenarios with rich interactions among multiple objects, where they realistically collide with each other and exchange forces. Furthermore, it contains a diverse range of physical materials, such as liquid, gas, viscoelastic substance, and textile, which moves beyond the rigid bodies prevalent in existing datasets. All scenes in PhysGaia are faithfully generated to strictly adhere to physical laws, leveraging carefully selected material-specific physics solvers. To enable quantitative evaluation of physical modeling, our dataset provides essential ground-truth information, including 3D particle trajectories and physics parameters, e.g., viscosity. To facilitate research adoption, we also provide essential integration pipelines for using state-of-the-art DyNVS models with our dataset and report their results. By addressing the critical lack of datasets for physics-aware modeling, PhysGaia will significantly advance research in dynamic view synthesis, physics-based scene understanding, and deep learning models integrated with physical simulation -- ultimately enabling more faithful reconstruction and interpretation of complex dynamic scenes. Our datasets and codes are available in the project website, http://cvlab.snu.ac.kr/research/PhysGaia.
comment: Project page: http://cvlab.snu.ac.kr/research/PhysGaia, Data: https://huggingface.co/datasets/mijeongkim/PhysGaia/tree/main
☆ Automated Measurement of Optic Nerve Sheath Diameter Using Ocular Ultrasound Video
Objective. Elevated intracranial pressure (ICP) is recognized as a biomarker of secondary brain injury, with a significant linear correlation observed between optic nerve sheath diameter (ONSD) and ICP. Frequent monitoring of ONSD could effectively support dynamic evaluation of ICP. However, ONSD measurement is heavily reliant on the operator's experience and skill, particularly in manually selecting the optimal frame from ultrasound sequences and measuring ONSD. Approach. This paper presents a novel method to automatically identify the optimal frame from video sequences for ONSD measurement by employing the Kernel Correlation Filter (KCF) tracking algorithm and Simple Linear Iterative Clustering (SLIC) segmentation algorithm. The optic nerve sheath is mapped and measured using a Gaussian Mixture Model (GMM) combined with a KL-divergence-based method. Results. When compared with the average measurements of two expert clinicians, the proposed method achieved a mean error, mean squared deviation, and intraclass correlation coefficient (ICC) of 0.04, 0.054, and 0.782, respectively. Significance. The findings suggest that this method provides highly accurate automated ONSD measurements, showing potential for clinical application.
comment: 17 pages, 9 figures
☆ SAMJ: Fast Image Annotation on ImageJ/Fiji via Segment Anything Model
Mask annotation remains a significant bottleneck in AI-driven biomedical image analysis due to its labor-intensive nature. To address this challenge, we introduce SAMJ, a user-friendly ImageJ/Fiji plugin leveraging the Segment Anything Model (SAM). SAMJ enables seamless, interactive annotations with one-click installation on standard computers. Designed for real-time object delineation in large scientific images, SAMJ is an easy-to-use solution that simplifies and accelerates the creation of labeled image datasets.
☆ FreeScene: Mixed Graph Diffusion for 3D Scene Synthesis from Free Prompts CVPR 2025
Controllability plays a crucial role in the practical applications of 3D indoor scene synthesis. Existing works either allow rough language-based control, that is convenient but lacks fine-grained scene customization, or employ graph based control, which offers better controllability but demands considerable knowledge for the cumbersome graph design process. To address these challenges, we present FreeScene, a user-friendly framework that enables both convenient and effective control for indoor scene synthesis.Specifically, FreeScene supports free-form user inputs including text description and/or reference images, allowing users to express versatile design intentions. The user inputs are adequately analyzed and integrated into a graph representation by a VLM-based Graph Designer. We then propose MG-DiT, a Mixed Graph Diffusion Transformer, which performs graph-aware denoising to enhance scene generation. Our MG-DiT not only excels at preserving graph structure but also offers broad applicability to various tasks, including, but not limited to, text-to-scene, graph-to-scene, and rearrangement, all within a single model. Extensive experiments demonstrate that FreeScene provides an efficient and user-friendly solution that unifies text-based and graph based scene synthesis, outperforming state-of-the-art methods in terms of both generation quality and controllability in a range of applications.
comment: Accepted to CVPR 2025
☆ A Dynamic Transformer Network for Vehicle Detection
Stable consumer electronic systems can assist traffic better. Good traffic consumer electronic systems require collaborative work between traffic algorithms and hardware. However, performance of popular traffic algorithms containing vehicle detection methods based on deep networks via learning data relation rather than learning differences in different lighting and occlusions is limited. In this paper, we present a dynamic Transformer network for vehicle detection (DTNet). DTNet utilizes a dynamic convolution to guide a deep network to dynamically generate weights to enhance adaptability of an obtained detector. Taking into relations of different information account, a mixed attention mechanism based channel attention and Transformer is exploited to strengthen relations of channels and pixels to extract more salient information for vehicle detection. To overcome the drawback of difference in an image account, a translation-variant convolution relies on spatial location information to refine obtained structural information for vehicle detection. Experimental results illustrate that our DTNet is competitive for vehicle detection. Code of the proposed DTNet can be obtained at https://github.com/hellloxiaotian/DTNet.
comment: 8 pages, 5 figures. This paper has been accepted for publication in IEEE Transactions on Consumer Electronics
Unified Attention Modeling for Efficient Free-Viewing and Visual Search via Shared Representations
Computational human attention modeling in free-viewing and task-specific settings is often studied separately, with limited exploration of whether a common representation exists between them. This work investigates this question and proposes a neural network architecture that builds upon the Human Attention transformer (HAT) to test the hypothesis. Our results demonstrate that free-viewing and visual search can efficiently share a common representation, allowing a model trained in free-viewing attention to transfer its knowledge to task-driven visual search with a performance drop of only 3.86% in the predicted fixation scanpaths, measured by the semantic sequence score (SemSS) metric which reflects the similarity between predicted and human scanpaths. This transfer reduces computational costs by 92.29% in terms of GFLOPs and 31.23% in terms of trainable parameters.
comment: Accepted to the 2025 IEEE International Conference on Development and Learning (ICDL)
☆ Rethinking Machine Unlearning in Image Generation Models CCS 2025
With the surge and widespread application of image generation models, data privacy and content safety have become major concerns and attracted great attention from users, service providers, and policymakers. Machine unlearning (MU) is recognized as a cost-effective and promising means to address these challenges. Despite some advancements, image generation model unlearning (IGMU) still faces remarkable gaps in practice, e.g., unclear task discrimination and unlearning guidelines, lack of an effective evaluation framework, and unreliable evaluation metrics. These can hinder the understanding of unlearning mechanisms and the design of practical unlearning algorithms. We perform exhaustive assessments over existing state-of-the-art unlearning algorithms and evaluation standards, and discover several critical flaws and challenges in IGMU tasks. Driven by these limitations, we make several core contributions, to facilitate the comprehensive understanding, standardized categorization, and reliable evaluation of IGMU. Specifically, (1) We design CatIGMU, a novel hierarchical task categorization framework. It provides detailed implementation guidance for IGMU, assisting in the design of unlearning algorithms and the construction of testbeds. (2) We introduce EvalIGMU, a comprehensive evaluation framework. It includes reliable quantitative metrics across five critical aspects. (3) We construct DataIGM, a high-quality unlearning dataset, which can be used for extensive evaluations of IGMU, training content detectors for judgment, and benchmarking the state-of-the-art unlearning algorithms. With EvalIGMU and DataIGM, we discover that most existing IGMU algorithms cannot handle the unlearning well across different evaluation dimensions, especially for preservation and robustness. Code and models are available at https://github.com/ryliu68/IGMU.
comment: Accepted by ACM CCS 2025
☆ RobustSplat: Decoupling Densification and Dynamics for Transient-Free 3DGS
3D Gaussian Splatting (3DGS) has gained significant attention for its real-time, photo-realistic rendering in novel-view synthesis and 3D modeling. However, existing methods struggle with accurately modeling scenes affected by transient objects, leading to artifacts in the rendered images. We identify that the Gaussian densification process, while enhancing scene detail capture, unintentionally contributes to these artifacts by growing additional Gaussians that model transient disturbances. To address this, we propose RobustSplat, a robust solution based on two critical designs. First, we introduce a delayed Gaussian growth strategy that prioritizes optimizing static scene structure before allowing Gaussian splitting/cloning, mitigating overfitting to transient objects in early optimization. Second, we design a scale-cascaded mask bootstrapping approach that first leverages lower-resolution feature similarity supervision for reliable initial transient mask estimation, taking advantage of its stronger semantic consistency and robustness to noise, and then progresses to high-resolution supervision to achieve more precise mask prediction. Extensive experiments on multiple challenging datasets show that our method outperforms existing methods, clearly demonstrating the robustness and effectiveness of our method. Our project page is https://fcyycf.github.io/RobustSplat/.
comment: Project page: https://fcyycf.github.io/RobustSplat/
☆ VTGaussian-SLAM: RGBD SLAM for Large Scale Scenes with Splatting View-Tied 3D Gaussians ICML 2025
Jointly estimating camera poses and mapping scenes from RGBD images is a fundamental task in simultaneous localization and mapping (SLAM). State-of-the-art methods employ 3D Gaussians to represent a scene, and render these Gaussians through splatting for higher efficiency and better rendering. However, these methods cannot scale up to extremely large scenes, due to the inefficient tracking and mapping strategies that need to optimize all 3D Gaussians in the limited GPU memories throughout the training to maintain the geometry and color consistency to previous RGBD observations. To resolve this issue, we propose novel tracking and mapping strategies to work with a novel 3D representation, dubbed view-tied 3D Gaussians, for RGBD SLAM systems. View-tied 3D Gaussians is a kind of simplified Gaussians, which is tied to depth pixels, without needing to learn locations, rotations, and multi-dimensional variances. Tying Gaussians to views not only significantly saves storage but also allows us to employ many more Gaussians to represent local details in the limited GPU memory. Moreover, our strategies remove the need of maintaining all Gaussians learnable throughout the training, while improving rendering quality, and tracking accuracy. We justify the effectiveness of these designs, and report better performance over the latest methods on the widely used benchmarks in terms of rendering and tracking accuracy and scalability. Please see our project page for code and videos at https://machineperceptionlab.github.io/VTGaussian-SLAM-Project .
comment: ICML 2025
☆ GeneA-SLAM2: Dynamic SLAM with AutoEncoder-Preprocessed Genetic Keypoints Resampling and Depth Variance-Guided Dynamic Region Removal
Existing semantic SLAM in dynamic environments mainly identify dynamic regions through object detection or semantic segmentation methods. However, in certain highly dynamic scenarios, the detection boxes or segmentation masks cannot fully cover dynamic regions. Therefore, this paper proposes a robust and efficient GeneA-SLAM2 system that leverages depth variance constraints to handle dynamic scenes. Our method extracts dynamic pixels via depth variance and creates precise depth masks to guide the removal of dynamic objects. Simultaneously, an autoencoder is used to reconstruct keypoints, improving the genetic resampling keypoint algorithm to obtain more uniformly distributed keypoints and enhance the accuracy of pose estimation. Our system was evaluated on multiple highly dynamic sequences. The results demonstrate that GeneA-SLAM2 maintains high accuracy in dynamic scenes compared to current methods. Code is available at: https://github.com/qingshufan/GeneA-SLAM2.
☆ LinkTo-Anime: A 2D Animation Optical Flow Dataset from 3D Model Rendering
Existing optical flow datasets focus primarily on real-world simulation or synthetic human motion, but few are tailored to Celluloid(cel) anime character motion: a domain with unique visual and motion characteristics. To bridge this gap and facilitate research in optical flow estimation and downstream tasks such as anime video generation and line drawing colorization, we introduce LinkTo-Anime, the first high-quality dataset specifically designed for cel anime character motion generated with 3D model rendering. LinkTo-Anime provides rich annotations including forward and backward optical flow, occlusion masks, and Mixamo Skeleton. The dataset comprises 395 video sequences, totally 24,230 training frames, 720 validation frames, and 4,320 test frames. Furthermore, a comprehensive benchmark is constructed with various optical flow estimation methods to analyze the shortcomings and limitations across multiple datasets.
☆ Iterative Self-Improvement of Vision Language Models for Image Scoring and Self-Explanation ICIP2025
Image scoring is a crucial task in numerous real-world applications. To trust a model's judgment, understanding its rationale is essential. This paper proposes a novel training method for Vision Language Models (VLMs) to generate not only image scores but also corresponding justifications in natural language. Leveraging only an image scoring dataset and an instruction-tuned VLM, our method enables self-training, utilizing the VLM's generated text without relying on external data or models. In addition, we introduce a simple method for creating a dataset designed to improve alignment between predicted scores and their textual justifications. By iteratively training the model with Direct Preference Optimization on two distinct datasets and merging them, we can improve both scoring accuracy and the coherence of generated explanations.
comment: Accepted to ICIP2025
☆ ToothForge: Automatic Dental Shape Generation using Synchronized Spectral Embeddings
We introduce ToothForge, a spectral approach for automatically generating novel 3D teeth, effectively addressing the sparsity of dental shape datasets. By operating in the spectral domain, our method enables compact machine learning modeling, allowing the generation of high-resolution tooth meshes in milliseconds. However, generating shape spectra comes with the instability of the decomposed harmonics. To address this, we propose modeling the latent manifold on synchronized frequential embeddings. Spectra of all data samples are aligned to a common basis prior to the training procedure, effectively eliminating biases introduced by the decomposition instability. Furthermore, synchronized modeling removes the limiting factor imposed by previous methods, which require all shapes to share a common fixed connectivity. Using a private dataset of real dental crowns, we observe a greater reconstruction quality of the synthetized shapes, exceeding those of models trained on unaligned embeddings. We also explore additional applications of spectral analysis in digital dentistry, such as shape compression and interpolation. ToothForge facilitates a range of approaches at the intersection of spectral analysis and machine learning, with fewer restrictions on mesh structure. This makes it applicable for shape analysis not only in dentistry, but also in broader medical applications, where guaranteeing consistent connectivity across shapes from various clinics is unrealistic. The code is available at https://github.com/tiborkubik/toothForge.
comment: Information Processing in Medical Imaging (IPMI2025)
☆ Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences ICML 2025
Direct Preference Optimization (DPO) aligns text-to-image (T2I) generation models with human preferences using pairwise preference data. Although substantial resources are expended in collecting and labeling datasets, a critical aspect is often neglected: \textit{preferences vary across individuals and should be represented with more granularity.} To address this, we propose SmPO-Diffusion, a novel method for modeling preference distributions to improve the DPO objective, along with a numerical upper bound estimation for the diffusion optimization objective. First, we introduce a smoothed preference distribution to replace the original binary distribution. We employ a reward model to simulate human preferences and apply preference likelihood averaging to improve the DPO loss, such that the loss function approaches zero when preferences are similar. Furthermore, we utilize an inversion technique to simulate the trajectory preference distribution of the diffusion model, enabling more accurate alignment with the optimization objective. Our approach effectively mitigates issues of excessive optimization and objective misalignment present in existing methods through straightforward modifications. Our SmPO-Diffusion achieves state-of-the-art performance in preference evaluation, outperforming baselines across metrics with lower training costs. The project page is https://jaydenlyh.github.io/SmPO-project-page/.
comment: Accepted by ICML 2025
☆ LayoutRAG: Retrieval-Augmented Model for Content-agnostic Conditional Layout Generation
Controllable layout generation aims to create plausible visual arrangements of element bounding boxes within a graphic design according to certain optional constraints, such as the type or position of a specific component. While recent diffusion or flow-matching models have achieved considerable advances in multifarious conditional generation tasks, there remains considerable room for generating optimal arrangements under given conditions. In this work, we propose to carry out layout generation through retrieving by conditions and reference-guided generation. Specifically, we retrieve appropriate layout templates according to given conditions as references. The references are then utilized to guide the denoising or flow-based transport process. By retrieving layouts compatible with the given conditions, we can uncover the potential information not explicitly provided in the given condition. Such an approach offers more effective guidance to the model during the generation process, in contrast to previous models that feed the condition to the model and let the model infer the unprovided layout attributes directly. Meanwhile, we design a condition-modulated attention that selectively absorbs retrieval knowledge, adapting to the difference between retrieved templates and given conditions. Extensive experiment results show that our method successfully produces high-quality layouts that meet the given conditions and outperforms existing state-of-the-art models. Code will be released upon acceptance.
comment: 12 pages, 5 figures
☆ Large-scale Self-supervised Video Foundation Model for Intelligent Surgery
Computer-Assisted Intervention (CAI) has the potential to revolutionize modern surgery, with surgical scene understanding serving as a critical component in supporting decision-making, improving procedural efficacy, and ensuring intraoperative safety. While existing AI-driven approaches alleviate annotation burdens via self-supervised spatial representation learning, their lack of explicit temporal modeling during pre-training fundamentally restricts the capture of dynamic surgical contexts, resulting in incomplete spatiotemporal understanding. In this work, we introduce the first video-level surgical pre-training framework that enables joint spatiotemporal representation learning from large-scale surgical video data. To achieve this, we constructed a large-scale surgical video dataset comprising 3,650 videos and approximately 3.55 million frames, spanning more than 20 surgical procedures and over 10 anatomical structures. Building upon this dataset, we propose SurgVISTA (Surgical Video-level Spatial-Temporal Architecture), a reconstruction-based pre-training method that captures intricate spatial structures and temporal dynamics through joint spatiotemporal modeling. Additionally, SurgVISTA incorporates image-level knowledge distillation guided by a surgery-specific expert to enhance the learning of fine-grained anatomical and semantic features. To validate its effectiveness, we established a comprehensive benchmark comprising 13 video-level datasets spanning six surgical procedures across four tasks. Extensive experiments demonstrate that SurgVISTA consistently outperforms both natural- and surgical-domain pre-trained models, demonstrating strong potential to advance intelligent surgical systems in clinically meaningful scenarios.
☆ Towards Geometry Problem Solving in the Large Model Era: A Survey
Geometry problem solving (GPS) represents a critical frontier in artificial intelligence, with profound applications in education, computer-aided design, and computational graphics. Despite its significance, automating GPS remains challenging due to the dual demands of spatial understanding and rigorous logical reasoning. Recent advances in large models have enabled notable breakthroughs, particularly for SAT-level problems, yet the field remains fragmented across methodologies, benchmarks, and evaluation frameworks. This survey systematically synthesizes GPS advancements through three core dimensions: (1) benchmark construction, (2) textual and diagrammatic parsing, and (3) reasoning paradigms. We further propose a unified analytical paradigm, assess current limitations, and identify emerging opportunities to guide future research toward human-level geometric reasoning, including automated benchmark generation and interpretable neuro-symbolic integration.
comment: 8pages, 4 figures, conference submission
☆ Solving Inverse Problems with FLAIR
Flow-based latent generative models such as Stable Diffusion 3 are able to generate images with remarkable quality, even enabling photorealistic text-to-image generation. Their impressive performance suggests that these models should also constitute powerful priors for inverse imaging problems, but that approach has not yet led to comparable fidelity. There are several key obstacles: (i) the encoding into a lower-dimensional latent space makes the underlying (forward) mapping non-linear; (ii) the data likelihood term is usually intractable; and (iii) learned generative models struggle to recover rare, atypical data modes during inference. We present FLAIR, a novel training free variational framework that leverages flow-based generative models as a prior for inverse problems. To that end, we introduce a variational objective for flow matching that is agnostic to the type of degradation, and combine it with deterministic trajectory adjustments to recover atypical modes. To enforce exact consistency with the observed data, we decouple the optimization of the data fidelity and regularization terms. Moreover, we introduce a time-dependent calibration scheme in which the strength of the regularization is modulated according to off-line accuracy estimates. Results on standard imaging benchmarks demonstrate that FLAIR consistently outperforms existing diffusion- and flow-based methods in terms of reconstruction quality and sample diversity.
☆ Self-Disentanglement and Re-Composition for Cross-Domain Few-Shot Segmentation ICML 2025
Cross-Domain Few-Shot Segmentation (CD-FSS) aims to transfer knowledge from a source-domain dataset to unseen target-domain datasets with limited annotations. Current methods typically compare the distance between training and testing samples for mask prediction. However, we find an entanglement problem exists in this widely adopted method, which tends to bind sourcedomain patterns together and make each of them hard to transfer. In this paper, we aim to address this problem for the CD-FSS task. We first find a natural decomposition of the ViT structure, based on which we delve into the entanglement problem for an interpretation. We find the decomposed ViT components are crossly compared between images in distance calculation, where the rational comparisons are entangled with those meaningless ones by their equal importance, leading to the entanglement problem. Based on this interpretation, we further propose to address the entanglement problem by learning to weigh for all comparisons of ViT components, which learn disentangled features and re-compose them for the CD-FSS task, benefiting both the generalization and finetuning. Experiments show that our model outperforms the state-of-the-art CD-FSS method by 1.92% and 1.88% in average accuracy under 1-shot and 5-shot settings, respectively.
comment: Accepted by ICML 2025
☆ Small Aid, Big Leap: Efficient Test-Time Adaptation for Vision-Language Models with AdaptNet
Test-time adaptation (TTA) has emerged as a critical technique for enhancing the generalization capability of vision-language models (VLMs) during inference. However, existing approaches often incur substantial computational costs and exhibit poor scalability, primarily due to sample-wise adaptation granularity and reliance on costly auxiliary designs such as data augmentation. To address these limitations, we introduce SAIL (Small Aid, Big Leap), a novel adapter-based TTA framework that leverages a lightweight, learnable AdaptNet to enable efficient and scalable model adaptation. As SAIL's core, a frozen pre-trained VLM collaborates with AdaptNet through a confidence-based interpolation weight, generating robust predictions during inference. These predictions serve as self-supervised targets to align AdaptNet's outputs through efficient batch-wise processing, dramatically reducing computational costs without modifying the VLM or requiring memory caches. To mitigate catastrophic forgetting during continual adaptation, we propose a gradient-aware reset strategy driven by a gradient drift indicator (GDI), which dynamically detects domain transitions and strategically resets AdaptNet for stable adaptation. Extensive experiments across diverse benchmarks on two scenarios demonstrate that SAIL achieves state-of-the-art performance while maintaining low computational costs. These results highlight SAIL's effectiveness, efficiency and scalability for real-world deployment. The code will be released upon acceptance.
☆ MotionRAG-Diff: A Retrieval-Augmented Diffusion Framework for Long-Term Music-to-Dance Generation
Generating long-term, coherent, and realistic music-conditioned dance sequences remains a challenging task in human motion synthesis. Existing approaches exhibit critical limitations: motion graph methods rely on fixed template libraries, restricting creative generation; diffusion models, while capable of producing novel motions, often lack temporal coherence and musical alignment. To address these challenges, we propose $\textbf{MotionRAG-Diff}$, a hybrid framework that integrates Retrieval-Augmented Generation (RAG) with diffusion-based refinement to enable high-quality, musically coherent dance generation for arbitrary long-term music inputs. Our method introduces three core innovations: (1) A cross-modal contrastive learning architecture that aligns heterogeneous music and dance representations in a shared latent space, establishing unsupervised semantic correspondence without paired data; (2) An optimized motion graph system for efficient retrieval and seamless concatenation of motion segments, ensuring realism and temporal coherence across long sequences; (3) A multi-condition diffusion model that jointly conditions on raw music signals and contrastive features to enhance motion quality and global synchronization. Extensive experiments demonstrate that MotionRAG-Diff achieves state-of-the-art performance in motion quality, diversity, and music-motion synchronization accuracy. This work establishes a new paradigm for music-driven dance generation by synergizing retrieval-based template fidelity with diffusion-based creative enhancement.
comment: 12 pages, 5 figures
ControlMambaIR: Conditional Controls with State-Space Model for Image Restoration
This paper proposes ControlMambaIR, a novel image restoration method designed to address perceptual challenges in image deraining, deblurring, and denoising tasks. By integrating the Mamba network architecture with the diffusion model, the condition network achieves refined conditional control, thereby enhancing the control and optimization of the image generation process. To evaluate the robustness and generalization capability of our method across various image degradation conditions, extensive experiments were conducted on several benchmark datasets, including Rain100H, Rain100L, GoPro, and SSID. The results demonstrate that our proposed approach consistently surpasses existing methods in perceptual quality metrics, such as LPIPS and FID, while maintaining comparable performance in image distortion metrics, including PSNR and SSIM, highlighting its effectiveness and adaptability. Notably, ablation experiments reveal that directly noise prediction in the diffusion process achieves better performance, effectively balancing noise suppression and detail preservation. Furthermore, the findings indicate that the Mamba architecture is particularly well-suited as a conditional control network for diffusion models, outperforming both CNN- and Attention-based approaches in this context. Overall, these results highlight the flexibility and effectiveness of ControlMambaIR in addressing a range of image restoration perceptual challenges.
☆ Synthetic Iris Image Databases and Identity Leakage: Risks and Mitigation Strategies
This paper presents a comprehensive overview of iris image synthesis methods, which can alleviate the issues associated with gathering large, diverse datasets of biometric data from living individuals, which are considered pivotal for biometric methods development. These methods for synthesizing iris data range from traditional, hand crafted image processing-based techniques, through various iterations of GAN-based image generators, variational autoencoders (VAEs), as well as diffusion models. The potential and fidelity in iris image generation of each method is discussed and examples of inferred predictions are provided. Furthermore, the risks of individual biometric features leakage from the training sets are considered, together with possible strategies for preventing them, which have to be implemented should these generative methods be considered a valid replacement of real-world biometric datasets.
☆ SiamNAS: Siamese Surrogate Model for Dominance Relation Prediction in Multi-objective Neural Architecture Search
Modern neural architecture search (NAS) is inherently multi-objective, balancing trade-offs such as accuracy, parameter count, and computational cost. This complexity makes NAS computationally expensive and nearly impossible to solve without efficient approximations. To address this, we propose a novel surrogate modelling approach that leverages an ensemble of Siamese network blocks to predict dominance relationships between candidate architectures. Lightweight and easy to train, the surrogate achieves 92% accuracy and replaces the crowding distance calculation in the survivor selection strategy with a heuristic rule based on model size. Integrated into a framework termed SiamNAS, this design eliminates costly evaluations during the search process. Experiments on NAS-Bench-201 demonstrate the framework's ability to identify Pareto-optimal solutions with significantly reduced computational costs. The proposed SiamNAS identified a final non-dominated set containing the best architecture in NAS-Bench-201 for CIFAR-10 and the second-best for ImageNet, in terms of test error rate, within 0.01 GPU days. This proof-of-concept study highlights the potential of the proposed Siamese network surrogate model to generalise to multi-tasking optimisation, enabling simultaneous optimisation across tasks. Additionally, it offers opportunities to extend the approach for generating Sets of Pareto Sets (SOS), providing diverse Pareto-optimal solutions for heterogeneous task settings.
comment: Genetic and Evolutionary Computation Conference (GECCO' 25)
☆ FlexPainter: Flexible and Multi-View Consistent Texture Generation
Texture map production is an important part of 3D modeling and determines the rendering quality. Recently, diffusion-based methods have opened a new way for texture generation. However, restricted control flexibility and limited prompt modalities may prevent creators from producing desired results. Furthermore, inconsistencies between generated multi-view images often lead to poor texture generation quality. To address these issues, we introduce \textbf{FlexPainter}, a novel texture generation pipeline that enables flexible multi-modal conditional guidance and achieves highly consistent texture generation. A shared conditional embedding space is constructed to perform flexible aggregation between different input modalities. Utilizing such embedding space, we present an image-based CFG method to decompose structural and style information, achieving reference image-based stylization. Leveraging the 3D knowledge within the image diffusion prior, we first generate multi-view images simultaneously using a grid representation to enhance global understanding. Meanwhile, we propose a view synchronization and adaptive weighting module during diffusion sampling to further ensure local consistency. Finally, a 3D-aware texture completion model combined with a texture enhancement model is used to generate seamless, high-resolution texture maps. Comprehensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods in both flexibility and generation quality.
comment: 11 pages, 10 figures in main paper, 10 pages, 12 figures in supplementary
☆ Rodrigues Network for Learning Robot Actions
Understanding and predicting articulated actions is important in robot learning. However, common architectures such as MLPs and Transformers lack inductive biases that reflect the underlying kinematic structure of articulated systems. To this end, we propose the Neural Rodrigues Operator, a learnable generalization of the classical forward kinematics operation, designed to inject kinematics-aware inductive bias into neural computation. Building on this operator, we design the Rodrigues Network (RodriNet), a novel neural architecture specialized for processing actions. We evaluate the expressivity of our network on two synthetic tasks on kinematic and motion prediction, showing significant improvements compared to standard backbones. We further demonstrate its effectiveness in two realistic applications: (i) imitation learning on robotic benchmarks with the Diffusion Policy, and (ii) single-image 3D hand reconstruction. Our results suggest that integrating structured kinematic priors into the network architecture improves action learning in various domains.
☆ Hierarchical Question-Answering for Driving Scene Understanding Using Vision-Language Models
In this paper, we present a hierarchical question-answering (QA) approach for scene understanding in autonomous vehicles, balancing cost-efficiency with detailed visual interpretation. The method fine-tunes a compact vision-language model (VLM) on a custom dataset specific to the geographical area in which the vehicle operates to capture key driving-related visual elements. At the inference stage, the hierarchical QA strategy decomposes the scene understanding task into high-level and detailed sub-questions. Instead of generating lengthy descriptions, the VLM navigates a structured question tree, where answering high-level questions (e.g., "Is it possible for the ego vehicle to turn left at the intersection?") triggers more detailed sub-questions (e.g., "Is there a vehicle approaching the intersection from the opposite direction?"). To optimize inference time, questions are dynamically skipped based on previous answers, minimizing computational overhead. The extracted answers are then synthesized using handcrafted templates to ensure coherent, contextually accurate scene descriptions. We evaluate the proposed approach on the custom dataset using GPT reference-free scoring, demonstrating its competitiveness with state-of-the-art methods like GPT-4o in capturing key scene details while achieving significantly lower inference time. Moreover, qualitative results from real-time deployment highlight the proposed approach's capacity to capture key driving elements with minimal latency.
comment: This work has been submitted to the IEEE for possible publication
☆ One-Step Diffusion-based Real-World Image Super-Resolution with Visual Perception Distillation
Diffusion-based models have been widely used in various visual generation tasks, showing promising results in image super-resolution (SR), while typically being limited by dozens or even hundreds of sampling steps. Although existing methods aim to accelerate the inference speed of multi-step diffusion-based SR methods through knowledge distillation, their generated images exhibit insufficient semantic alignment with real images, resulting in suboptimal perceptual quality reconstruction, specifically reflected in the CLIPIQA score. These methods still have many challenges in perceptual quality and semantic fidelity. Based on the challenges, we propose VPD-SR, a novel visual perception diffusion distillation framework specifically designed for SR, aiming to construct an effective and efficient one-step SR model. Specifically, VPD-SR consists of two components: Explicit Semantic-aware Supervision (ESS) and High-Frequency Perception (HFP) loss. Firstly, the ESS leverages the powerful visual perceptual understanding capabilities of the CLIP model to extract explicit semantic supervision, thereby enhancing semantic consistency. Then, Considering that high-frequency information contributes to the visual perception quality of images, in addition to the vanilla distillation loss, the HFP loss guides the student model to restore the missing high-frequency details in degraded images that are critical for enhancing perceptual quality. Lastly, we expand VPD-SR in adversarial training manner to further enhance the authenticity of the generated content. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the proposed VPD-SR achieves superior performance compared to both previous state-of-the-art methods and the teacher model with just one-step sampling.
☆ Application of convolutional neural networks in image super-resolution
Due to strong learning abilities of convolutional neural networks (CNNs), they have become mainstream methods for image super-resolution. However, there are big differences of different deep learning methods with different types. There is little literature to summarize relations and differences of different methods in image super-resolution. Thus, summarizing these literatures are important, according to loading capacity and execution speed of devices. This paper first introduces principles of CNNs in image super-resolution, then introduces CNNs based bicubic interpolation, nearest neighbor interpolation, bilinear interpolation, transposed convolution, sub-pixel layer, meta up-sampling for image super-resolution to analyze differences and relations of different CNNs based interpolations and modules, and compare performance of these methods by experiments. Finally, this paper gives potential research points and drawbacks and summarizes the whole paper, which can facilitate developments of CNNs in image super-resolution.
comment: It has been accepted by CAAI transactions on intelligent systems, in Chinese language
☆ Hyperspectral Image Generation with Unmixing Guided Diffusion Model
Recently, hyperspectral image generation has received increasing attention, but existing generative models rely on conditional generation schemes, which limits the diversity of generated images. Diffusion models are popular for their ability to generate high-quality samples, but adapting these models from RGB to hyperspectral data presents the challenge of high dimensionality and physical constraints. To address these challenges, we propose a novel diffusion model guided by hyperspectral unmixing. Our model comprises two key modules: an unmixing autoencoder module and an abundance diffusion module. The unmixing autoencoder module leverages unmixing guidance to shift the generative task from the image space to the low-dimensional abundance space, significantly reducing computational complexity while preserving high fidelity. The abundance diffusion module generates samples that satisfy the constraints of non-negativity and unity, ensuring the physical consistency of the reconstructed HSIs. Additionally, we introduce two evaluation metrics tailored to hyperspectral data. Empirical results, evaluated using both traditional metrics and our proposed metrics, indicate that our model is capable of generating high-quality and diverse hyperspectral images, offering an advancement in hyperspectral data generation.
BEVCALIB: LiDAR-Camera Calibration via Geometry-Guided Bird's-Eye View Representations
Accurate LiDAR-camera calibration is fundamental to fusing multi-modal perception in autonomous driving and robotic systems. Traditional calibration methods require extensive data collection in controlled environments and cannot compensate for the transformation changes during the vehicle/robot movement. In this paper, we propose the first model that uses bird's-eye view (BEV) features to perform LiDAR camera calibration from raw data, termed BEVCALIB. To achieve this, we extract camera BEV features and LiDAR BEV features separately and fuse them into a shared BEV feature space. To fully utilize the geometric information from the BEV feature, we introduce a novel feature selector to filter the most important features in the transformation decoder, which reduces memory consumption and enables efficient training. Extensive evaluations on KITTI, NuScenes, and our own dataset demonstrate that BEVCALIB establishes a new state of the art. Under various noise conditions, BEVCALIB outperforms the best baseline in the literature by an average of (47.08%, 82.32%) on KITTI dataset, and (78.17%, 68.29%) on NuScenes dataset, in terms of (translation, rotation), respectively. In the open-source domain, it improves the best reproducible baseline by one order of magnitude. Our code and demo results are available at https://cisl.ucr.edu/BEVCalib.
☆ A Tree-guided CNN for image super-resolution
Deep convolutional neural networks can extract more accurate structural information via deep architectures to obtain good performance in image super-resolution. However, it is not easy to find effect of important layers in a single network architecture to decrease performance of super-resolution. In this paper, we design a tree-guided CNN for image super-resolution (TSRNet). It uses a tree architecture to guide a deep network to enhance effect of key nodes to amplify the relation of hierarchical information for improving the ability of recovering images. To prevent insufficiency of the obtained structural information, cosine transform techniques in the TSRNet are used to extract cross-domain information to improve the performance of image super-resolution. Adaptive Nesterov momentum optimizer (Adan) is applied to optimize parameters to boost effectiveness of training a super-resolution model. Extended experiments can verify superiority of the proposed TSRNet for restoring high-quality images. Its code can be obtained at https://github.com/hellloxiaotian/TSRNet.
comment: This paper has been accepted for publication in IEEE Transactions on Consumer Electronics. 10 pages, 6 figures. Its code can be obtained at https://github.com/hellloxiaotian/TSRNet
Dynamic mapping from static labels: remote sensing dynamic sample generation with temporal-spectral embedding
Accurate remote sensing geographic mapping depends heavily on representative and timely sample data. However, rapid changes in land surface dynamics necessitate frequent updates, quickly rendering previously collected samples obsolete and imposing significant labor demands for continuous manual updates. In this study, we aim to address this problem by dynamic sample generation using existing single-date static labeled samples. We introduce TasGen, a two-stage automated framework to automatically generate dynamic samples, designed to simultaneously model spectral and temporal dependencies in time-series remote sensing imagery via temporal-spectral embedding, capturing land surface changes without additional manual annotations.
☆ Contrast & Compress: Learning Lightweight Embeddings for Short Trajectories
The ability to retrieve semantically and directionally similar short-range trajectories with both accuracy and efficiency is foundational for downstream applications such as motion forecasting and autonomous navigation. However, prevailing approaches often depend on computationally intensive heuristics or latent anchor representations that lack interpretability and controllability. In this work, we propose a novel framework for learning fixed-dimensional embeddings for short trajectories by leveraging a Transformer encoder trained with a contrastive triplet loss that emphasize the importance of discriminative feature spaces for trajectory data. We analyze the influence of Cosine and FFT-based similarity metrics within the contrastive learning paradigm, with a focus on capturing the nuanced directional intent that characterizes short-term maneuvers. Our empirical evaluation on the Argoverse 2 dataset demonstrates that embeddings shaped by Cosine similarity objectives yield superior clustering of trajectories by both semantic and directional attributes, outperforming FFT-based baselines in retrieval tasks. Notably, we show that compact Transformer architectures, even with low-dimensional embeddings (e.g., 16 dimensions, but qualitatively down to 4), achieve a compelling balance between retrieval performance (minADE, minFDE) and computational overhead, aligning with the growing demand for scalable and interpretable motion priors in real-time systems. The resulting embeddings provide a compact, semantically meaningful, and efficient representation of trajectory data, offering a robust alternative to heuristic similarity measures and paving the way for more transparent and controllable motion forecasting pipelines.
comment: Submitted for peer review
☆ DCI: Dual-Conditional Inversion for Boosting Diffusion-Based Image Editing
Diffusion models have achieved remarkable success in image generation and editing tasks. Inversion within these models aims to recover the latent noise representation for a real or generated image, enabling reconstruction, editing, and other downstream tasks. However, to date, most inversion approaches suffer from an intrinsic trade-off between reconstruction accuracy and editing flexibility. This limitation arises from the difficulty of maintaining both semantic alignment and structural consistency during the inversion process. In this work, we introduce Dual-Conditional Inversion (DCI), a novel framework that jointly conditions on the source prompt and reference image to guide the inversion process. Specifically, DCI formulates the inversion process as a dual-condition fixed-point optimization problem, minimizing both the latent noise gap and the reconstruction error under the joint guidance. This design anchors the inversion trajectory in both semantic and visual space, leading to more accurate and editable latent representations. Our novel setup brings new understanding to the inversion process. Extensive experiments demonstrate that DCI achieves state-of-the-art performance across multiple editing tasks, significantly improving both reconstruction quality and editing precision. Furthermore, we also demonstrate that our method achieves strong results in reconstruction tasks, implying a degree of robustness and generalizability approaching the ultimate goal of the inversion process.
☆ Kernel-based Unsupervised Embedding Alignment for Enhanced Visual Representation in Vision-language Models ICML 2025
Vision-language models, such as CLIP, have achieved significant success in aligning visual and textual representations, becoming essential components of many multi-modal large language models (MLLMs) like LLaVA and OpenFlamingo. However, numerous studies have identified CLIP's limited fine-grained perception as a critical drawback, leading to substantial failures in downstream MLLMs. In contrast, vision-centric foundation models like DINOv2 demonstrate remarkable capabilities in capturing fine details from images. In this work, we propose a novel kernel-based method to align CLIP's visual representation with that of DINOv2, ensuring that the resulting embeddings maintain compatibility with text embeddings while enhancing perceptual capabilities. Our alignment objective is designed for efficient stochastic optimization. Following this image-only alignment fine-tuning, the visual encoder retains compatibility with the frozen text encoder and exhibits significant improvements in zero-shot object recognition, fine-grained spatial reasoning, and localization. By integrating the aligned visual encoder, downstream MLLMs also demonstrate enhanced performance.
comment: ICML 2025
☆ SurgVLM: A Large Vision-Language Model and Systematic Evaluation Benchmark for Surgical Intelligence
Foundation models have achieved transformative success across biomedical domains by enabling holistic understanding of multimodal data. However, their application in surgery remains underexplored. Surgical intelligence presents unique challenges - requiring surgical visual perception, temporal analysis, and reasoning. Existing general-purpose vision-language models fail to address these needs due to insufficient domain-specific supervision and the lack of a large-scale high-quality surgical database. To bridge this gap, we propose SurgVLM, one of the first large vision-language foundation models for surgical intelligence, where this single universal model can tackle versatile surgical tasks. To enable this, we construct a large-scale multimodal surgical database, SurgVLM-DB, comprising over 1.81 million frames with 7.79 million conversations, spanning more than 16 surgical types and 18 anatomical structures. We unify and reorganize 23 public datasets across 10 surgical tasks, followed by standardizing labels and doing hierarchical vision-language alignment to facilitate comprehensive coverage of gradually finer-grained surgical tasks, from visual perception, temporal analysis, to high-level reasoning. Building upon this comprehensive dataset, we propose SurgVLM, which is built upon Qwen2.5-VL, and undergoes instruction tuning to 10+ surgical tasks. We further construct a surgical multimodal benchmark, SurgVLM-Bench, for method evaluation. SurgVLM-Bench consists of 6 popular and widely-used datasets in surgical domain, covering several crucial downstream tasks. Based on SurgVLM-Bench, we evaluate the performance of our SurgVLM (3 SurgVLM variants: SurgVLM-7B, SurgVLM-32B, and SurgVLM-72B), and conduct comprehensive comparisons with 14 mainstream commercial VLMs (e.g., GPT-4o, Gemini 2.0 Flash, Qwen2.5-Max).
comment: 29 pages, 5 figures
♻ ☆ DiffVLA: Vision-Language Guided Diffusion Planning for Autonomous Driving
Research interest in end-to-end autonomous driving has surged owing to its fully differentiable design integrating modular tasks, i.e. perception, prediction and planing, which enables optimization in pursuit of the ultimate goal. Despite the great potential of the end-to-end paradigm, existing methods suffer from several aspects including expensive BEV (bird's eye view) computation, action diversity, and sub-optimal decision in complex real-world scenarios. To address these challenges, we propose a novel hybrid sparse-dense diffusion policy, empowered by a Vision-Language Model (VLM), called Diff-VLA. We explore the sparse diffusion representation for efficient multi-modal driving behavior. Moreover, we rethink the effectiveness of VLM driving decision and improve the trajectory generation guidance through deep interaction across agent, map instances and VLM output. Our method shows superior performance in Autonomous Grand Challenge 2025 which contains challenging real and reactive synthetic scenarios. Our methods achieves 45.0 PDMS.
comment: 4pages
♻ ☆ Prisma: An Open Source Toolkit for Mechanistic Interpretability in Vision and Video CVPR
Robust tooling and publicly available pre-trained models have helped drive recent advances in mechanistic interpretability for language models. However, similar progress in vision mechanistic interpretability has been hindered by the lack of accessible frameworks and pre-trained weights. We present Prisma (Access the codebase here: https://github.com/Prisma-Multimodal/ViT-Prisma), an open-source framework designed to accelerate vision mechanistic interpretability research, providing a unified toolkit for accessing 75+ vision and video transformers; support for sparse autoencoder (SAE), transcoder, and crosscoder training; a suite of 80+ pre-trained SAE weights; activation caching, circuit analysis tools, and visualization tools; and educational resources. Our analysis reveals surprising findings, including that effective vision SAEs can exhibit substantially lower sparsity patterns than language SAEs, and that in some instances, SAE reconstructions can decrease model loss. Prisma enables new research directions for understanding vision model internals while lowering barriers to entry in this emerging field.
comment: 4 pages, 3 figures, 9 tables. Oral and Tutorial at the CVPR Mechanistic Interpretability for Vision (MIV) Workshop
♻ ☆ Normalized Attention Guidance: Universal Negative Guidance for Diffusion Models
Negative guidance -- explicitly suppressing unwanted attributes -- remains a fundamental challenge in diffusion models, particularly in few-step sampling regimes. While Classifier-Free Guidance (CFG) works well in standard settings, it fails under aggressive sampling step compression due to divergent predictions between positive and negative branches. We present Normalized Attention Guidance (NAG), an efficient, training-free mechanism that applies extrapolation in attention space with L1-based normalization and refinement. NAG restores effective negative guidance where CFG collapses while maintaining fidelity. Unlike existing approaches, NAG generalizes across architectures (UNet, DiT), sampling regimes (few-step, multi-step), and modalities (image, video), functioning as a \textit{universal} plug-in with minimal computational overhead. Through extensive experimentation, we demonstrate consistent improvements in text alignment (CLIP Score), fidelity (FID, PFID), and human-perceived quality (ImageReward). Our ablation studies validate each design component, while user studies confirm significant preference for NAG-guided outputs. As a model-agnostic inference-time approach requiring no retraining, NAG provides effortless negative guidance for all modern diffusion frameworks -- pseudocode in the Appendix!
♻ ☆ Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the explosive advancement of deepfake technology has posed a critical and escalating threat to public security: diffusion-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency via multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the new large-scale multimodal digital human forgery dataset based on diffusion models. Leveraging five of the latest digital human generation methods and a voice cloning method, we systematically construct a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies demonstrate that the misrecognition rate by participants for DigiFakeAV reaches as high as 68%. Moreover, the substantial performance degradation of existing detection models on our dataset further highlights its challenges. To address this problem, we propose DigiShield, an effective detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves state-of-the-art (SOTA) performance on the DigiFakeAV and shows strong generalization on other datasets.
♻ ☆ InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts
Understanding infographic charts with design-driven visual elements (e.g., pictograms, icons) requires both visual recognition and reasoning, posing challenges for multimodal large language models (MLLMs). However, existing visual-question answering benchmarks fall short in evaluating these capabilities of MLLMs due to the lack of paired plain charts and visual-element-based questions. To bridge this gap, we introduce InfoChartQA, a benchmark for evaluating MLLMs on infographic chart understanding. It includes 5,642 pairs of infographic and plain charts, each sharing the same underlying data but differing in visual presentations. We further design visual-element-based questions to capture their unique visual designs and communicative intent. Evaluation of 20 MLLMs reveals a substantial performance decline on infographic charts, particularly for visual-element-based questions related to metaphors. The paired infographic and plain charts enable fine-grained error analysis and ablation studies, which highlight new opportunities for advancing MLLMs in infographic chart understanding. We release InfoChartQA at https://github.com/CoolDawnAnt/InfoChartQA.
♻ ☆ Point Cloud Mixture-of-Domain-Experts Model for 3D Self-supervised Learning IJCAI 2025
Point clouds, as a primary representation of 3D data, can be categorized into scene domain point clouds and object domain point clouds. Point cloud self-supervised learning (SSL) has become a mainstream paradigm for learning 3D representations. However, existing point cloud SSL primarily focuses on learning domain-specific 3D representations within a single domain, neglecting the complementary nature of cross-domain knowledge, which limits the learning of 3D representations. In this paper, we propose to learn a comprehensive Point cloud Mixture-of-Domain-Experts model (Point-MoDE) via a block-to-scene pre-training strategy. Specifically, we first propose a mixture-of-domain-expert model consisting of scene domain experts and multiple shared object domain experts. Furthermore, we propose a block-to-scene pretraining strategy, which leverages the features of point blocks in the object domain to regress their initial positions in the scene domain through object-level block mask reconstruction and scene-level block position regression. By integrating the complementary knowledge between object and scene, this strategy simultaneously facilitates the learning of both object-domain and scene-domain representations, leading to a more comprehensive 3D representation. Extensive experiments in downstream tasks demonstrate the superiority of our model.
comment: Accepted to IJCAI 2025
♻ ☆ Chain-of-Jailbreak Attack for Image Generation Models via Editing Step by Step ACL 2025
Text-based image generation models, such as Stable Diffusion and DALL-E 3, hold significant potential in content creation and publishing workflows, making them the focus in recent years. Despite their remarkable capability to generate diverse and vivid images, considerable efforts are being made to prevent the generation of harmful content, such as abusive, violent, or pornographic material. To assess the safety of existing models, we introduce a novel jailbreaking method called Chain-of-Jailbreak (CoJ) attack, which compromises image generation models through a step-by-step editing process. Specifically, for malicious queries that cannot bypass the safeguards with a single prompt, we intentionally decompose the query into multiple sub-queries. The image generation models are then prompted to generate and iteratively edit images based on these sub-queries. To evaluate the effectiveness of our CoJ attack method, we constructed a comprehensive dataset, CoJ-Bench, encompassing nine safety scenarios, three types of editing operations, and three editing elements. Experiments on four widely-used image generation services provided by GPT-4V, GPT-4o, Gemini 1.5 and Gemini 1.5 Pro, demonstrate that our CoJ attack method can successfully bypass the safeguards of models for over 60% cases, which significantly outperforms other jailbreaking methods (i.e., 14%). Further, to enhance these models' safety against our CoJ attack method, we also propose an effective prompting-based method, Think Twice Prompting, that can successfully defend over 95% of CoJ attack. We release our dataset and code to facilitate the AI safety research.
comment: Accepted by ACL 2025 Findings
♻ ☆ Can't See the Forest for the Trees: Benchmarking Multimodal Safety Awareness for Multimodal LLMs ACL 2025
Multimodal Large Language Models (MLLMs) have expanded the capabilities of traditional language models by enabling interaction through both text and images. However, ensuring the safety of these models remains a significant challenge, particularly in accurately identifying whether multimodal content is safe or unsafe-a capability we term safety awareness. In this paper, we introduce MMSafeAware, the first comprehensive multimodal safety awareness benchmark designed to evaluate MLLMs across 29 safety scenarios with 1500 carefully curated image-prompt pairs. MMSafeAware includes both unsafe and over-safety subsets to assess models abilities to correctly identify unsafe content and avoid over-sensitivity that can hinder helpfulness. Evaluating nine widely used MLLMs using MMSafeAware reveals that current models are not sufficiently safe and often overly sensitive; for example, GPT-4V misclassifies 36.1% of unsafe inputs as safe and 59.9% of benign inputs as unsafe. We further explore three methods to improve safety awareness-prompting-based approaches, visual contrastive decoding, and vision-centric reasoning fine-tuning-but find that none achieve satisfactory performance. Our findings highlight the profound challenges in developing MLLMs with robust safety awareness, underscoring the need for further research in this area. All the code and data will be publicly available to facilitate future research.
comment: Accepted by ACL 2025
♻ ☆ S4-Driver: Scalable Self-Supervised Driving Multimodal Large Language Modelwith Spatio-Temporal Visual Representation CVPR2025
The latest advancements in multi-modal large language models (MLLMs) have spurred a strong renewed interest in end-to-end motion planning approaches for autonomous driving. Many end-to-end approaches rely on human annotations to learn intermediate perception and prediction tasks, while purely self-supervised approaches--which directly learn from sensor inputs to generate planning trajectories without human annotations often underperform the state of the art. We observe a key gap in the input representation space: end-to-end approaches built on MLLMs are often pretrained with reasoning tasks in 2D image space rather than the native 3D space in which autonomous vehicles plan. To this end, we propose S4-Driver, a scalable self-supervised motion planning algorithm with spatio-temporal visual representation, based on the popular PaLI multimodal large language model. S4-Driver uses a novel sparse volume strategy to seamlessly transform the strong visual representation of MLLMs from perspective view to 3D space without the need to finetune the vision encoder. This representation aggregates multi-view and multi-frame visual inputs and enables better prediction of planning trajectories in 3D space. To validate our method, we run experiments on both nuScenes and Waymo Open Motion Dataset (with in-house camera data). Results show that S4-Driver performs favorably against existing supervised multi-task approaches while requiring no human annotations. It also demonstrates great scalability when pretrained on large volumes of unannotated driving logs.
comment: Accepted by CVPR2025; Project website: s4-driver.github.io
♻ ☆ Visual-TCAV: Concept-based Attribution and Saliency Maps for Post-hoc Explainability in Image Classification
Convolutional Neural Networks (CNNs) have seen significant performance improvements in recent years. However, due to their size and complexity, they function as black-boxes, leading to transparency concerns. State-of-the-art saliency methods generate local explanations that highlight the area in the input image where a class is identified but cannot explain how a concept of interest contributes to the prediction, which is essential for bias mitigation. On the other hand, concept-based methods, such as TCAV (Testing with Concept Activation Vectors), provide insights into how sensitive is the network to a concept, but cannot compute its attribution in a specific prediction nor show its location within the input image. This paper introduces a novel post-hoc explainability framework, Visual-TCAV, which aims to bridge the gap between these methods by providing both local and global explanations for CNN-based image classification. Visual-TCAV uses Concept Activation Vectors (CAVs) to generate saliency maps that show where concepts are recognized by the network. Moreover, it can estimate the attribution of these concepts to the output of any class using a generalization of Integrated Gradients. This framework is evaluated on popular CNN architectures, with its validity further confirmed via experiments where ground truth for explanations is known, and a comparison with TCAV. Our code is available at https://github.com/DataSciencePolimi/Visual-TCAV.
comment: Preprint currently under review
♻ ☆ SASP: Strip-Aware Spatial Perception for Fine-Grained Bird Image Classification
Fine-grained bird image classification (FBIC) is not only of great significance for ecological monitoring and species identification, but also holds broad research value in the fields of image recognition and fine-grained visual modeling. Compared with general image classification tasks, FBIC poses more formidable challenges: 1) the differences in species size and imaging distance result in the varying sizes of birds presented in the images; 2) complex natural habitats often introduce strong background interference; 3) and highly flexible poses such as flying, perching, or foraging result in substantial intra-class variability. These factors collectively make it difficult for traditional methods to stably extract discriminative features, thereby limiting the generalizability and interpretability of models in real-world applications. To address these challenges, this paper proposes a fine-grained bird classification framework based on strip-aware spatial perception, which aims to capture long-range spatial dependencies across entire rows or columns in bird images, thereby enhancing the model's robustness and interpretability. The proposed method incorporates two novel modules: extensional perception aggregator (EPA) and channel semantic weaving (CSW). Specifically, EPA integrates local texture details with global structural cues by aggregating information across horizontal and vertical spatial directions. CSW further refines the semantic representations by adaptively fusing long-range and short-range information along the channel dimension. Built upon a ResNet-50 backbone, the model enables jump-wise connection of extended structural features across the spatial domain. Experimental results on the CUB-200-2011 dataset demonstrate that our framework achieves significant performance improvements while maintaining architectural efficiency.
♻ ☆ Effective Dual-Region Augmentation for Reduced Reliance on Large Amounts of Labeled Data SP
This paper introduces a novel dual-region augmentation approach designed to reduce reliance on large-scale labeled datasets while improving model robustness and adaptability across diverse computer vision tasks, including source-free domain adaptation (SFDA) and person re-identification (ReID). Our method performs targeted data transformations by applying random noise perturbations to foreground objects and spatially shuffling background patches. This effectively increases the diversity of the training data, improving model robustness and generalization. Evaluations on the PACS dataset for SFDA demonstrate that our augmentation strategy consistently outperforms existing methods, achieving significant accuracy improvements in both single-target and multi-target adaptation settings. By augmenting training data through structured transformations, our method enables model generalization across domains, providing a scalable solution for reducing reliance on manually annotated datasets. Furthermore, experiments on Market-1501 and DukeMTMC-reID datasets validate the effectiveness of our approach for person ReID, surpassing traditional augmentation techniques. The code is available at https://github.com/PrasannaPulakurthi/Foreground-Background-Augmentation
comment: 9 pages, 2 figures, 4 tables, Accepted to SPIE DSC 2025 Conference: Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications III
♻ ☆ SceneSplat: Gaussian Splatting-based Scene Understanding with Vision-Language Pretraining
Recognizing arbitrary or previously unseen categories is essential for comprehensive real-world 3D scene understanding. Currently, all existing methods rely on 2D or textual modalities during training or together at inference. This highlights the clear absence of a model capable of processing 3D data alone for learning semantics end-to-end, along with the necessary data to train such a model. Meanwhile, 3D Gaussian Splatting (3DGS) has emerged as the de facto standard for 3D scene representation across various vision tasks. However, effectively integrating semantic reasoning into 3DGS in a generalizable manner remains an open challenge. To address these limitations, we introduce SceneSplat, to our knowledge the first large-scale 3D indoor scene understanding approach that operates natively on 3DGS. Furthermore, we propose a self-supervised learning scheme that unlocks rich 3D feature learning from unlabeled scenes. To power the proposed methods, we introduce SceneSplat-7K, the first large-scale 3DGS dataset for indoor scenes, comprising 7916 scenes derived from seven established datasets, such as ScanNet and Matterport3D. Generating SceneSplat-7K required computational resources equivalent to 150 GPU days on an L4 GPU, enabling standardized benchmarking for 3DGS-based reasoning for indoor scenes. Our exhaustive experiments on SceneSplat-7K demonstrate the significant benefit of the proposed method over the established baselines.
comment: Our code, model, and dataset will be released at https://unique1i.github.io/SceneSplat_webpage/
♻ ☆ Adversarial Robustness of AI-Generated Image Detectors in the Real World
The rapid advancement of Generative Artificial Intelligence (GenAI) capabilities is accompanied by a concerning rise in its misuse. In particular the generation of credible misinformation in the form of images poses a significant threat to the public trust in democratic processes. Consequently, there is an urgent need to develop tools to reliably distinguish between authentic and AI-generated content. The majority of detection methods are based on neural networks that are trained to recognize forensic artifacts. In this work, we demonstrate that current state-of-the-art classifiers are vulnerable to adversarial examples under real-world conditions. Through extensive experiments, comprising four detection methods and five attack algorithms, we show that an attacker can dramatically decrease classification performance, without internal knowledge of the detector's architecture. Notably, most attacks remain effective even when images are degraded during the upload to, e.g., social media platforms. In a case study, we demonstrate that these robustness challenges are also found in commercial tools by conducting black-box attacks on HIVE, a proprietary online GenAI media detector. In addition, we evaluate the robustness of using generated features of a robust pre-trained model and showed that this increases the robustness, while not reaching the performance on benign inputs. These results, along with the increasing potential of GenAI to erode public trust, underscore the need for more research and new perspectives on methods to prevent its misuse.
♻ ☆ We Should Chart an Atlas of All the World's Models
Public model repositories now contain millions of models, yet most models remain undocumented and effectively lost. In this position paper, we advocate for charting the world's model population in a unified structure we call the Model Atlas: a graph that captures models, their attributes, and the weight transformations that connect them. The Model Atlas enables applications in model forensics, meta-ML research, and model discovery, challenging tasks given today's unstructured model repositories. However, because most models lack documentation, large atlas regions remain uncharted. Addressing this gap motivates new machine learning methods that treat models themselves as data, inferring properties such as functionality, performance, and lineage directly from their weights. We argue that a scalable path forward is to bypass the unique parameter symmetries that plague model weights. Charting all the world's models will require a community effort, and we hope its broad utility will rally researchers toward this goal.
comment: Project page: https://horwitz.ai/model-atlas
♻ ☆ Learning on Model Weights using Tree Experts CVPR 2025
The number of publicly available models is rapidly increasing, yet most remain undocumented. Users looking for suitable models for their tasks must first determine what each model does. Training machine learning models to infer missing documentation directly from model weights is challenging, as these weights often contain significant variation unrelated to model functionality (denoted nuisance). Here, we identify a key property of real-world models: most public models belong to a small set of Model Trees, where all models within a tree are fine-tuned from a common ancestor (e.g., a foundation model). Importantly, we find that within each tree there is less nuisance variation between models. Concretely, while learning across Model Trees requires complex architectures, even a linear classifier trained on a single model layer often works within trees. While effective, these linear classifiers are computationally expensive, especially when dealing with larger models that have many parameters. To address this, we introduce Probing Experts (ProbeX), a theoretically motivated and lightweight method. Notably, ProbeX is the first probing method specifically designed to learn from the weights of a single hidden model layer. We demonstrate the effectiveness of ProbeX by predicting the categories in a model's training dataset based only on its weights. Excitingly, ProbeX can map the weights of Stable Diffusion into a weight-language embedding space, enabling model search via text, i.e., zero-shot model classification.
comment: CVPR 2025. Project page: https://horwitz.ai/probex/
♻ ☆ HunyuanVideo-Avatar: High-Fidelity Audio-Driven Human Animation for Multiple Characters
Recent years have witnessed significant progress in audio-driven human animation. However, critical challenges remain in (i) generating highly dynamic videos while preserving character consistency, (ii) achieving precise emotion alignment between characters and audio, and (iii) enabling multi-character audio-driven animation. To address these challenges, we propose HunyuanVideo-Avatar, a multimodal diffusion transformer (MM-DiT)-based model capable of simultaneously generating dynamic, emotion-controllable, and multi-character dialogue videos. Concretely, HunyuanVideo-Avatar introduces three key innovations: (i) A character image injection module is designed to replace the conventional addition-based character conditioning scheme, eliminating the inherent condition mismatch between training and inference. This ensures the dynamic motion and strong character consistency; (ii) An Audio Emotion Module (AEM) is introduced to extract and transfer the emotional cues from an emotion reference image to the target generated video, enabling fine-grained and accurate emotion style control; (iii) A Face-Aware Audio Adapter (FAA) is proposed to isolate the audio-driven character with latent-level face mask, enabling independent audio injection via cross-attention for multi-character scenarios. These innovations empower HunyuanVideo-Avatar to surpass state-of-the-art methods on benchmark datasets and a newly proposed wild dataset, generating realistic avatars in dynamic, immersive scenarios.
♻ ☆ MMLA: Multi-Environment, Multi-Species, Low-Altitude Drone Dataset CVPR
Real-time wildlife detection in drone imagery supports critical ecological and conservation monitoring. However, standard detection models like YOLO often fail to generalize across locations and struggle with rare species, limiting their use in automated drone deployments. We present MMLA, a novel multi-environment, multi-species, low-altitude drone dataset collected across three sites (Ol Pejeta Conservancy and Mpala Research Centre in Kenya, and The Wilds in Ohio), featuring six species (zebras, giraffes, onagers, and African wild dogs). The dataset contains 811K annotations from 37 high-resolution videos. Baseline YOLO models show performance disparities across locations while fine-tuning YOLOv11m on MMLA improves mAP50 to 82%, a 52-point gain over baseline. Our results underscore the need for diverse training data to enable robust animal detection in autonomous drone systems.
comment: Accepted at CVPR Workshop, CV4Animals 2025
♻ ☆ Open-world Machine Learning: A Systematic Review and Future Directions
Machine learning has achieved remarkable success in many applications. However, existing studies are largely based on the closed-world assumption, which assumes that the environment is stationary, and the model is fixed once deployed. In many real-world applications, this fundamental and rather naive assumption may not hold because an open environment is complex, dynamic, and full of unknowns. In such cases, rejecting unknowns, discovering novelties, and then continually learning them, could enable models to be safe and evolve continually as biological systems do. This article presents a holistic view of open-world machine learning by investigating unknown rejection, novelty discovery, and continual learning in a unified paradigm. The challenges, principles, and limitations of current methodologies are discussed in detail. Furthermore, widely used benchmarks, metrics, and performances are summarized. Finally, we discuss several potential directions for further progress in the field. By providing a comprehensive introduction to the emerging open-world machine learning paradigm, this article aims to help researchers build more powerful AI systems in their respective fields, and to promote the development of artificial general intelligence.
♻ ☆ Can Large Language Models Challenge CNNs in Medical Image Analysis?
This study presents a multimodal AI framework designed for precisely classifying medical diagnostic images. Utilizing publicly available datasets, the proposed system compares the strengths of convolutional neural networks (CNNs) and different large language models (LLMs). This in-depth comparative analysis highlights key differences in diagnostic performance, execution efficiency, and environmental impacts. Model evaluation was based on accuracy, F1-score, average execution time, average energy consumption, and estimated $CO_2$ emission. The findings indicate that although CNN-based models can outperform various multimodal techniques that incorporate both images and contextual information, applying additional filtering on top of LLMs can lead to substantial performance gains. These findings highlight the transformative potential of multimodal AI systems to enhance the reliability, efficiency, and scalability of medical diagnostics in clinical settings.
♻ ☆ Scene Structure Guidance Network: Unfolding Graph Partitioning into Pixel-Wise Feature Learning AAAI
Understanding the informative structures of scenes is essential for low-level vision tasks. Unfortunately, it is difficult to obtain a concrete visual definition of the informative structures because influences of visual features are task-specific. In this paper, we propose a single general neural network architecture for extracting task-specific structure guidance for scenes. To do this, we first analyze traditional spectral clustering methods, which computes a set of eigenvectors to model a segmented graph forming small compact structures on image domains. We then unfold the traditional graph-partitioning problem into a learnable network, named \textit{Scene Structure Guidance Network (SSGNet)}, to represent the task-specific informative structures. The SSGNet yields a set of coefficients of eigenvectors that produces explicit feature representations of image structures. In addition, our SSGNet is light-weight ($\sim$ 56K parameters), and can be used as a plug-and-play module for off-the-shelf architectures. We optimize the SSGNet without any supervision by proposing two novel training losses that enforce task-specific scene structure generation during training. Our main contribution is to show that such a simple network can achieve state-of-the-art results for several low-level vision applications. We also demonstrate that our network generalizes well on unseen datasets, compared to existing methods which use structural embedding frameworks. We further propose a lighter version of SSGNet ($\sim$ 29K parameters) for depth computation, SSGNet-D, and successfully execute it on edge computing devices like Jetson AGX Orin, improving the performance of baseline network, even in the wild, with little computational delay.
comment: 35 pages, 14 figures, journal extension version of SSGNet (https://ojs.aaai.org/index.php/AAAI/article/view/25322)
♻ ☆ UDA4Inst: Unsupervised Domain Adaptation for Instance Segmentation
Instance segmentation is crucial for autonomous driving, but is hindered by the lack of annotated real-world data due to expensive labeling costs. Unsupervised Domain Adaptation (UDA) offers a solution by transferring knowledge from labeled synthetic data to unlabeled real-world data. While UDA methods for synthetic to real-world domains (synth-to-real) excel in tasks such as semantic segmentation and object detection, their application to instance segmentation for autonomous driving remains underexplored and often relies on suboptimal baselines. We introduce UDA4Inst, a powerful framework for synth-to-real UDA in instance segmentation. Our framework enhances instance segmentation through Semantic Category Training and Bidirectional Mixing Training. Semantic Category Training groups semantically related classes for separate training, improving pseudo-label quality and segmentation accuracy. Bidirectional Mixing Training combines instance-wise and patch-wise data mixing, creating coherent composites that enhance generalization across domains. Extensive experiments show UDA4Inst sets a new state-of-the-art on the SYNTHIA-> Cityscapes benchmark (mAP 31.3) and introduces results on novel datasets, using UrbanSyn and Synscapes as sources and Cityscapes and KITTI360 as targets. Code and models are available at https://github.com/gyc-code/UDA4Inst.
comment: Accepted at IEEE Intelligent Vehicles Symposium (IV 2025) as an oral presentation
♻ ☆ LLM-Guided Taxonomy and Hierarchical Uncertainty for 3D Point Cloud Active Learning
We present a novel active learning framework for 3D point cloud semantic segmentation that, for the first time, integrates large language models (LLMs) to construct hierarchical label structures and guide uncertainty-based sample selection. Unlike prior methods that treat labels as flat and independent, our approach leverages LLM prompting to automatically generate multi-level semantic taxonomies and introduces a recursive uncertainty projection mechanism that propagates uncertainty across hierarchy levels. This enables spatially diverse, label-aware point selection that respects the inherent semantic structure of 3D scenes. Experiments on S3DIS and ScanNet v2 show that our method achieves up to 4% mIoU improvement under extremely low annotation budgets (e.g., 0.02%), substantially outperforming existing baselines. Our results highlight the untapped potential of LLMs as knowledge priors in 3D vision and establish hierarchical uncertainty modeling as a powerful paradigm for efficient point cloud annotation.
♻ ☆ Improving Heart Rejection Detection in XPCI Images Using Synthetic Data Augmentation
Accurate identification of acute cellular rejection (ACR) in endomyocardial biopsies is essential for effective management of heart transplant patients. However, the rarity of high-grade rejection cases (3R) presents a significant challenge for training robust deep learning models. This work addresses the class imbalance problem by leveraging synthetic data generation using StyleGAN to augment the limited number of real 3R images. Prior to GAN training, histogram equalization was applied to standardize image appearance and improve the consistency of tissue representation. StyleGAN was trained on available 3R biopsy patches and subsequently used to generate 10,000 realistic synthetic images. These were combined with real 0R samples, that is samples without rejection, in various configurations to train ResNet-18 classifiers for binary rejection classification. Three classifier variants were evaluated: one trained on real 0R and synthetic 3R images, another using both synthetic and additional real samples, and a third trained solely on real data. All models were tested on an independent set of real biopsy images. Results demonstrate that synthetic data improves classification performance, particularly when used in combination with real samples. The highest-performing model, which used both real and synthetic images, achieved strong precision and recall for both classes. These findings underscore the value of hybrid training strategies and highlight the potential of GAN-based data augmentation in biomedical image analysis, especially in domains constrained by limited annotated datasets.
comment: For the time being, the paper needs to be withdrawn so that a more extensive evaluation of the results can be conducted to validate the approach. Furthermore, additional authors will need to be added, which will be addressed if the study's results prove satisfactory
♻ ☆ T-FAKE: Synthesizing Thermal Images for Facial Landmarking
Facial analysis is a key component in a wide range of applications such as healthcare, autonomous driving, and entertainment. Despite the availability of various facial RGB datasets, the thermal modality, which plays a crucial role in life sciences, medicine, and biometrics, has been largely overlooked. To address this gap, we introduce the T-FAKE dataset, a new large-scale synthetic thermal dataset with sparse and dense landmarks. To facilitate the creation of the dataset, we propose a novel RGB2Thermal loss function, which enables the domain-adaptive transfer of RGB faces to thermal style. By utilizing the Wasserstein distance between thermal and RGB patches and the statistical analysis of clinical temperature distributions on faces, we ensure that the generated thermal images closely resemble real samples. Using RGB2Thermal style transfer based on our RGB2Thermal loss function, we create the large-scale synthetic thermal T-FAKE dataset with landmark and segmentation annotations. Leveraging our novel T-FAKE dataset, probabilistic landmark prediction, and label adaptation networks, we demonstrate significant improvements in landmark detection methods on thermal images across different landmark conventions. Our models show excellent performance with both sparse 70-point landmarks and dense 478-point landmark annotations. Moreover, our RGB2Thermal loss leads to notable results in terms of perceptual evaluation and temperature prediction.
comment: 22 pages, 12 figures, Philipp Flotho and Moritz Piening share equal contribution
♻ ☆ Beyond Prompt Engineering: Robust Behavior Control in LLMs via Steering Target Atoms ACL 2025
Precise control over language model generation is vital for ensuring both safety and reliability. Although prompt engineering and steering are commonly used to intervene in model behaviors, the vast number of parameters in models often results in highly intertwined internal representations. This interdependency can limit control precision and sometimes lead to unintended side effects. Recent research has explored the use of sparse autoencoders (SAE) to disentangle knowledge in high-dimensional spaces for steering. However, these applications have been limited to toy tasks owing to the nontrivial issue of locating atomic knowledge components. In this paper, we propose Steering Target Atoms (STA), a novel method that isolates and manipulates disentangled knowledge components to enhance safety. Comprehensive experiments demonstrate the effectiveness of our approach. Further analysis reveals that steering exhibits superior robustness and flexibility, particularly in adversarial scenarios. We also apply the steering strategy to the large reasoning model, confirming its effectiveness in precise reasoning control.
comment: ACL 2025
♻ ☆ MoBluRF: Motion Deblurring Neural Radiance Fields for Blurry Monocular Video
Neural Radiance Fields (NeRF), initially developed for static scenes, have inspired many video novel view synthesis techniques. However, the challenge for video view synthesis arises from motion blur, a consequence of object or camera movements during exposure, which hinders the precise synthesis of sharp spatio-temporal views. In response, we propose a novel motion deblurring NeRF framework for blurry monocular video, called MoBluRF, consisting of a Base Ray Initialization (BRI) stage and a Motion Decomposition-based Deblurring (MDD) stage. In the BRI stage, we coarsely reconstruct dynamic 3D scenes and jointly initialize the base rays which are further used to predict latent sharp rays, using the inaccurate camera pose information from the given blurry frames. In the MDD stage, we introduce a novel Incremental Latent Sharp-rays Prediction (ILSP) approach for the blurry monocular video frames by decomposing the latent sharp rays into global camera motion and local object motion components. We further propose two loss functions for effective geometry regularization and decomposition of static and dynamic scene components without any mask supervision. Experiments show that MoBluRF outperforms qualitatively and quantitatively the recent state-of-the-art methods with large margins.
comment: Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025. The first two authors contributed equally to this work (equal contribution). The last two authors are co-corresponding authors. Please visit our project page at https://kaist-viclab.github.io/moblurf-site/
♻ ☆ TestDG: Test-time Domain Generalization for Continual Test-time Adaptation
This paper studies continual test-time adaptation (CTTA), the task of adapting a model to constantly changing unseen domains in testing while preserving previously learned knowledge. Existing CTTA methods mostly focus on adaptation to the current test domain only, overlooking generalization to arbitrary test domains a model may face in the future. To tackle this limitation, we present a novel online test-time domain generalization framework for CTTA, dubbed TestDG. TestDG aims to learn features invariant to both current and previous test domains on the fly during testing, improving the potential for effective generalization to future domains. To this end, we propose a new model architecture and a test-time adaptation strategy dedicated to learning domain-invariant features, along with a new data structure and optimization algorithm for effectively managing information from previous test domains. TestDG achieved state of the art on four public CTTA benchmarks. Moreover, it showed superior generalization to unseen test domains.
♻ ☆ Likelihood-Scheduled Score-Based Generative Modeling for Fully 3D PET Image Reconstruction
Medical image reconstruction with pre-trained score-based generative models (SGMs) has advantages over other existing state-of-the-art deep-learned reconstruction methods, including improved resilience to different scanner setups and advanced image distribution modeling. SGM-based reconstruction has recently been applied to simulated positron emission tomography (PET) datasets, showing improved contrast recovery for out-of-distribution lesions relative to the state-of-the-art. However, existing methods for SGM-based reconstruction from PET data suffer from slow reconstruction, burdensome hyperparameter tuning and slice inconsistency effects (in 3D). In this work, we propose a practical methodology for fully 3D reconstruction that accelerates reconstruction and reduces the number of critical hyperparameters by matching the likelihood of an SGM's reverse diffusion process to a current iterate of the maximum-likelihood expectation maximization algorithm. Using the example of low-count reconstruction from simulated [$^{18}$F]DPA-714 datasets, we show our methodology can match or improve on the NRMSE and SSIM of existing state-of-the-art SGM-based PET reconstruction while reducing reconstruction time and the need for hyperparameter tuning. We evaluate our methodology against state-of-the-art supervised and conventional reconstruction algorithms. Finally, we demonstrate a first-ever implementation of SGM-based reconstruction for real 3D PET data, specifically [$^{18}$F]DPA-714 data, where we integrate perpendicular pre-trained SGMs to eliminate slice inconsistency issues.
comment: 12 pages, 14 figures. Author's accepted manuscript, IEEE Transactions on Medical Imaging
♻ ☆ Bayesian Prompt Flow Learning for Zero-Shot Anomaly Detection
Recently, vision-language models (e.g. CLIP) have demonstrated remarkable performance in zero-shot anomaly detection (ZSAD). By leveraging auxiliary data during training, these models can directly perform cross-category anomaly detection on target datasets, such as detecting defects on industrial product surfaces or identifying tumors in organ tissues. Existing approaches typically construct text prompts through either manual design or the optimization of learnable prompt vectors. However, these methods face several challenges: 1) handcrafted prompts require extensive expert knowledge and trial-and-error; 2) single-form learnable prompts struggle to capture complex anomaly semantics; and 3) an unconstrained prompt space limits generalization to unseen categories. To address these issues, we propose Bayesian Prompt Flow Learning (Bayes-PFL), which models the prompt space as a learnable probability distribution from a Bayesian perspective. Specifically, a prompt flow module is designed to learn both image-specific and image-agnostic distributions, which are jointly utilized to regularize the text prompt space and improve the model's generalization on unseen categories. These learned distributions are then sampled to generate diverse text prompts, effectively covering the prompt space. Additionally, a residual cross-model attention (RCA) module is introduced to better align dynamic text embeddings with fine-grained image features. Extensive experiments on 15 industrial and medical datasets demonstrate our method's superior performance. The code is available at https://github.com/xiaozhen228/Bayes-PFL.
♻ ☆ Towards Computation- and Communication-efficient Computational Pathology
Despite the impressive performance across a wide range of applications, current computational pathology models face significant diagnostic efficiency challenges due to their reliance on high-magnification whole-slide image analysis. This limitation severely compromises their clinical utility, especially in time-sensitive diagnostic scenarios and situations requiring efficient data transfer. To address these issues, we present a novel computation- and communication-efficient framework called Magnification-Aligned Global-Local Transformer (MAG-GLTrans). Our approach significantly reduces computational time, file transfer requirements, and storage overhead by enabling effective analysis using low-magnification inputs rather than high-magnification ones. The key innovation lies in our proposed magnification alignment (MAG) mechanism, which employs self-supervised learning to bridge the information gap between low and high magnification levels by effectively aligning their feature representations. Through extensive evaluation across various fundamental CPath tasks, MAG-GLTrans demonstrates state-of-the-art classification performance while achieving remarkable efficiency gains: up to 10.7 times reduction in computational time and over 20 times reduction in file transfer and storage requirements. Furthermore, we highlight the versatility of our MAG framework through two significant extensions: (1) its applicability as a feature extractor to enhance the efficiency of any CPath architecture, and (2) its compatibility with existing foundation models and histopathology-specific encoders, enabling them to process low-magnification inputs with minimal information loss. These advancements position MAG-GLTrans as a particularly promising solution for time-sensitive applications, especially in the context of intraoperative frozen section diagnosis where both accuracy and efficiency are paramount.
♻ ☆ A Comparative Study of Scanpath Models in Graph-Based Visualization
Information Visualization (InfoVis) systems utilize visual representations to enhance data interpretation. Understanding how visual attention is allocated is essential for optimizing interface design. However, collecting Eye-tracking (ET) data presents challenges related to cost, privacy, and scalability. Computational models provide alternatives for predicting gaze patterns, thereby advancing InfoVis research. In our study, we conducted an ET experiment with 40 participants who analyzed graphs while responding to questions of varying complexity within the context of digital forensics. We compared human scanpaths with synthetic ones generated by models such as DeepGaze, UMSS, and Gazeformer. Our research evaluates the accuracy of these models and examines how question complexity and number of nodes influence performance. This work contributes to the development of predictive modeling in visual analytics, offering insights that can enhance the design and effectiveness of InfoVis systems.
♻ ☆ CMRINet: Joint Groupwise Registration and Segmentation for Cardiac Function Quantification from Cine-MRI
Accurate and efficient quantification of cardiac function is essential for the estimation of prognosis of cardiovascular diseases (CVDs). One of the most commonly used metrics for evaluating cardiac pumping performance is left ventricular ejection fraction (LVEF). However, LVEF can be affected by factors such as inter-observer variability and varying pre-load and after-load conditions, which can reduce its reproducibility. Additionally, cardiac dysfunction may not always manifest as alterations in LVEF, such as in heart failure and cardiotoxicity diseases. An alternative measure that can provide a relatively load-independent quantitative assessment of myocardial contractility is myocardial strain and strain rate. By using LVEF in combination with myocardial strain, it is possible to obtain a thorough description of cardiac function. Automated estimation of LVEF and other volumetric measures from cine-MRI sequences can be achieved through segmentation models, while strain calculation requires the estimation of tissue displacement between sequential frames, which can be accomplished using registration models. These tasks are often performed separately, potentially limiting the assessment of cardiac function. To address this issue, in this study we propose an end-to-end deep learning (DL) model that jointly estimates groupwise (GW) registration and segmentation for cardiac cine-MRI images. The proposed anatomically-guided Deep GW network was trained and validated on a large dataset of 4-chamber view cine-MRI image series of 374 subjects. A quantitative comparison with conventional GW registration using elastix and two DL-based methods showed that the proposed model improved performance and substantially reduced computation time.
comment: 15 pages, 7 figures, 1 appendix
♻ ☆ P-TAME: Explain Any Image Classifier with Trained Perturbations
The adoption of Deep Neural Networks (DNNs) in critical fields where predictions need to be accompanied by justifications is hindered by their inherent black-box nature. In this paper, we introduce P-TAME (Perturbation-based Trainable Attention Mechanism for Explanations), a model-agnostic method for explaining DNN-based image classifiers. P-TAME employs an auxiliary image classifier to extract features from the input image, bypassing the need to tailor the explanation method to the internal architecture of the backbone classifier being explained. Unlike traditional perturbation-based methods, which have high computational requirements, P-TAME offers an efficient alternative by generating high-resolution explanations in a single forward pass during inference. We apply P-TAME to explain the decisions of VGG-16, ResNet-50, and ViT-B-16, three distinct and widely used image classifiers. Quantitative and qualitative results show that our method matches or outperforms previous explainability methods, including model-specific approaches. Code and trained models will be released upon acceptance.
comment: Published in IEEE Open Journal of Signal Processing (Volume 6)
♻ ☆ DeepSPV: A Deep Learning Pipeline for 3D Spleen Volume Estimation from 2D Ultrasound Images
Splenomegaly, the enlargement of the spleen, is an important clinical indicator for various associated medical conditions, such as sickle cell disease (SCD). Spleen length measured from 2D ultrasound is the most widely used metric for characterising spleen size. However, it is still considered a surrogate measure, and spleen volume remains the gold standard for assessing spleen size. Accurate spleen volume measurement typically requires 3D imaging modalities, such as computed tomography or magnetic resonance imaging, but these are not widely available, especially in the Global South which has a high prevalence of SCD. In this work, we introduce a deep learning pipeline, DeepSPV, for precise spleen volume estimation from single or dual 2D ultrasound images. The pipeline involves a segmentation network and a variational autoencoder for learning low-dimensional representations from the estimated segmentations. We investigate three approaches for spleen volume estimation and our best model achieves 86.62%/92.5% mean relative volume accuracy (MRVA) under single-view/dual-view settings, surpassing the performance of human experts. In addition, the pipeline can provide confidence intervals for the volume estimates as well as offering benefits in terms of interpretability, which further support clinicians in decision-making when identifying splenomegaly. We evaluate the full pipeline using a highly realistic synthetic dataset generated by a diffusion model, achieving an overall MRVA of 83.0% from a single 2D ultrasound image. Our proposed DeepSPV is the first work to use deep learning to estimate 3D spleen volume from 2D ultrasound images and can be seamlessly integrated into the current clinical workflow for spleen assessment.
comment: arXiv admin note: substantial text overlap with arXiv:2308.08038
♻ ☆ OralBBNet: Spatially Guided Dental Segmentation of Panoramic X-Rays with Bounding Box Priors
Teeth segmentation and recognition play a vital role in a variety of dental applications and diagnostic procedures. The integration of deep learning models has facilitated the development of precise and automated segmentation methods. Although prior research has explored teeth segmentation, not many methods have successfully performed tooth segmentation and detection simultaneously. This study presents UFBA-425, a dental dataset derived from the UFBA-UESC dataset, featuring bounding box and polygon annotations for 425 panoramic dental X-rays. Additionally, this work introduces OralBBNet, an architecture featuring distinct segmentation and detection heads as U-Net and YOLOv8, respectively. OralBBNet is designed to improve the accuracy and robustness of tooth classification and segmentation on panoramic X-rays by leveraging the complementary strengths of U-Net and YOLOv8. Our approach achieved a 1-3% improvement in mean average precision (mAP) for teeth detection compared to existing techniques and a 15-20% improvement in the dice score for teeth segmentation over U-Net over various tooth categories and 2-4% improvement in the dice score when compared with other segmentation architectures. The results of this study establish a foundation for the wider implementation of object detection models in dental diagnostics.
comment: Under Review, Biomedical Signal Processing Control
♻ ☆ A Novel Benchmark for Few-Shot Semantic Segmentation in the Era of Foundation Models
Few-shot semantic segmentation (FSS) is a crucial challenge in computer vision, driving extensive research into a diverse range of methods, from advanced meta-learning techniques to simple transfer learning baselines. With the emergence of vision foundation models (VFM) serving as generalist feature extractors, we seek to explore the adaptation of these models for FSS. While current FSS benchmarks focus on adapting pre-trained models to new tasks with few images, they emphasize in-domain generalization, making them less suitable for VFM trained on large-scale web datasets. To address this, we propose a novel realistic benchmark with a simple and straightforward adaptation process tailored for this task. Using this benchmark, we conduct a comprehensive comparative analysis of prominent VFM and semantic segmentation models. To evaluate their effectiveness, we leverage various adaption methods, ranging from linear probing to parameter efficient fine-tuning (PEFT) and full fine-tuning. Our findings show that models designed for segmentation can be outperformed by self-supervised (SSL) models. On the other hand, while PEFT methods yields competitive performance, they provide little discrepancy in the obtained results compared to other methods, highlighting the critical role of the feature extractor in determining results. To our knowledge, this is the first study on the adaptation of VFM for FSS.
Learning from True-False Labels via Multi-modal Prompt Retrieving
Pre-trained Vision-Language Models (VLMs) exhibit strong zero-shot classification abilities, demonstrating great potential for generating weakly supervised labels. Unfortunately, existing weakly supervised learning methods are short of ability in generating accurate labels via VLMs. In this paper, we propose a novel weakly supervised labeling setting, namely True-False Labels (TFLs) which can achieve high accuracy when generated by VLMs. The TFL indicates whether an instance belongs to the label, which is randomly and uniformly sampled from the candidate label set. Specifically, we theoretically derive a risk-consistent estimator to explore and utilize the conditional probability distribution information of TFLs. Besides, we propose a convolutional-based Multi-modal Prompt Retrieving (MRP) method to bridge the gap between the knowledge of VLMs and target learning tasks. Experimental results demonstrate the effectiveness of the proposed TFL setting and MRP learning method. The code to reproduce the experiments is at https://github.com/Tranquilxu/TMP.
comment: 15 pages, 5 figures
♻ ☆ T-TAME: Trainable Attention Mechanism for Explaining Convolutional Networks and Vision Transformers
The development and adoption of Vision Transformers and other deep-learning architectures for image classification tasks has been rapid. However, the "black box" nature of neural networks is a barrier to adoption in applications where explainability is essential. While some techniques for generating explanations have been proposed, primarily for Convolutional Neural Networks, adapting such techniques to the new paradigm of Vision Transformers is non-trivial. This paper presents T-TAME, Transformer-compatible Trainable Attention Mechanism for Explanations, a general methodology for explaining deep neural networks used in image classification tasks. The proposed architecture and training technique can be easily applied to any convolutional or Vision Transformer-like neural network, using a streamlined training approach. After training, explanation maps can be computed in a single forward pass; these explanation maps are comparable to or outperform the outputs of computationally expensive perturbation-based explainability techniques, achieving SOTA performance. We apply T-TAME to three popular deep learning classifier architectures, VGG-16, ResNet-50, and ViT-B-16, trained on the ImageNet dataset, and we demonstrate improvements over existing state-of-the-art explainability methods. A detailed analysis of the results and an ablation study provide insights into how the T-TAME design choices affect the quality of the generated explanation maps.
comment: Accepted
♻ ☆ VectorPainter: Advanced Stylized Vector Graphics Synthesis Using Stroke-Style Priors ICME
We introduce VectorPainter, a novel framework designed for reference-guided text-to-vector-graphics synthesis. Based on our observation that the style of strokes can be an important aspect to distinguish different artists, our method reforms the task into synthesize a desired vector graphics by rearranging stylized strokes, which are vectorized from the reference images. Specifically, our method first converts the pixels of the reference image into a series of vector strokes, and then generates a vector graphic based on the input text description by optimizing the positions and colors of these vector strokes. To precisely capture the style of the reference image in the vectorized strokes, we propose an innovative vectorization method that employs an imitation learning strategy. To preserve the style of the strokes throughout the generation process, we introduce a style-preserving loss function. Extensive experiments have been conducted to demonstrate the superiority of our approach over existing works in stylized vector graphics synthesis, as well as the effectiveness of the various components of our method.
comment: Accepted by 2025 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2025. Project page: https://hjc-owo.github.io/VectorPainterProject/
♻ ☆ LeYOLO, New Embedded Architecture for Object Detection
Efficient computation in deep neural networks is crucial for real-time object detection. However, recent advancements primarily result from improved high-performing hardware rather than improving parameters and FLOP efficiency. This is especially evident in the latest YOLO architectures, where speed is prioritized over lightweight design. As a result, object detection models optimized for low-resource environments like microcontrollers have received less attention. For devices with limited computing power, existing solutions primarily rely on SSDLite or combinations of low-parameter classifiers, creating a noticeable gap between YOLO-like architectures and truly efficient lightweight detectors. This raises a key question: Can a model optimized for parameter and FLOP efficiency achieve accuracy levels comparable to mainstream YOLO models? To address this, we introduce two key contributions to object detection models using MSCOCO as a base validation set. First, we propose LeNeck, a general-purpose detection framework that maintains inference speed comparable to SSDLite while significantly improving accuracy and reducing parameter count. Second, we present LeYOLO, an efficient object detection model designed to enhance computational efficiency in YOLO-based architectures. LeYOLO effectively bridges the gap between SSDLite-based detectors and YOLO models, offering high accuracy in a model as compact as MobileNets. Both contributions are particularly well-suited for mobile, embedded, and ultra-low-power devices, including microcontrollers, where computational efficiency is critical.
comment: https://crv.pubpub.org/pub/sae4lpdf
♻ ☆ Spatio-Temporal Fuzzy-oriented Multi-Modal Meta-Learning for Fine-grained Emotion Recognition
Fine-grained emotion recognition (FER) plays a vital role in various fields, such as disease diagnosis, personalized recommendations, and multimedia mining. However, existing FER methods face three key challenges in real-world applications: (i) they rely on large amounts of continuously annotated data to ensure accuracy since emotions are complex and ambiguous in reality, which is costly and time-consuming; (ii) they cannot capture the temporal heterogeneity caused by changing emotion patterns, because they usually assume that the temporal correlation within sampling periods is the same; (iii) they do not consider the spatial heterogeneity of different FER scenarios, that is, the distribution of emotion information in different data may have bias or interference. To address these challenges, we propose a Spatio-Temporal Fuzzy-oriented Multi-modal Meta-learning framework (ST-F2M). Specifically, ST-F2M first divides the multi-modal videos into multiple views, and each view corresponds to one modality of one emotion. Multiple randomly selected views for the same emotion form a meta-training task. Next, ST-F2M uses an integrated module with spatial and temporal convolutions to encode the data of each task, reflecting the spatial and temporal heterogeneity. Then it adds fuzzy semantic information to each task based on generalized fuzzy rules, which helps handle the complexity and ambiguity of emotions. Finally, ST-F2M learns emotion-related general meta-knowledge through meta-recurrent neural networks to achieve fast and robust fine-grained emotion recognition. Extensive experiments show that ST-F2M outperforms various state-of-the-art methods in terms of accuracy and model efficiency. In addition, we construct ablation studies and further analysis to explore why ST-F2M performs well.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Self-supervised Learning of Event-guided Video Frame Interpolation for Rolling Shutter Frames ICCV 2023
Most consumer cameras use rolling shutter (RS) exposure, which often leads to distortions such as skew and jelly effects. These videos are further limited by bandwidth and frame rate constraints. In this paper, we explore the potential of event cameras, which offer high temporal resolution. We propose a framework to recover global shutter (GS) high-frame-rate videos without RS distortion by combining an RS camera and an event camera. Due to the lack of real-world datasets, our framework adopts a self-supervised strategy based on a displacement field, a dense 3D spatiotemporal representation of pixel motion during exposure. This enables mutual reconstruction between RS and GS frames and facilitates slow-motion recovery. We combine RS frames with the displacement field to generate GS frames, and integrate inverse mapping and RS frame warping for self-supervision. Experiments on four datasets show that our method removes distortion, reduces bandwidth usage by 94 percent, and achieves 16 ms per frame at 32x interpolation.
comment: An earlier version of this paper (ID: 1845) was submitted to ICCV 2023 in March 2023. The work has been substantially revised and accepted by IEEE Transactions on Visualization and Computer Graphics (TVCG)
♻ ☆ X-Driver: Explainable Autonomous Driving with Vision-Language Models
End-to-end autonomous driving has advanced significantly, offering benefits such as system simplicity and stronger driving performance in both open-loop and closed-loop settings than conventional pipelines. However, existing frameworks still suffer from low success rates in closed-loop evaluations, highlighting their limitations in real-world deployment. In this paper, we introduce X-Driver, a unified multi-modal large language models(MLLMs) framework designed for closed-loop autonomous driving, leveraging Chain-of-Thought(CoT) and autoregressive modeling to enhance perception and decision-making. We validate X-Driver across multiple autonomous driving tasks using public benchmarks in CARLA simulation environment, including Bench2Drive[6]. Our experimental results demonstrate superior closed-loop performance, surpassing the current state-of-the-art(SOTA) while improving the interpretability of driving decisions. These findings underscore the importance of structured reasoning in end-to-end driving and establish X-Driver as a strong baseline for future research in closed-loop autonomous driving.
♻ ☆ No Training, No Problem: Rethinking Classifier-Free Guidance for Diffusion Models ICLR 2025
Classifier-free guidance (CFG) has become the standard method for enhancing the quality of conditional diffusion models. However, employing CFG requires either training an unconditional model alongside the main diffusion model or modifying the training procedure by periodically inserting a null condition. There is also no clear extension of CFG to unconditional models. In this paper, we revisit the core principles of CFG and introduce a new method, independent condition guidance (ICG), which provides the benefits of CFG without the need for any special training procedures. Our approach streamlines the training process of conditional diffusion models and can also be applied during inference on any pre-trained conditional model. Additionally, by leveraging the time-step information encoded in all diffusion networks, we propose an extension of CFG, called time-step guidance (TSG), which can be applied to any diffusion model, including unconditional ones. Our guidance techniques are easy to implement and have the same sampling cost as CFG. Through extensive experiments, we demonstrate that ICG matches the performance of standard CFG across various conditional diffusion models. Moreover, we show that TSG improves generation quality in a manner similar to CFG, without relying on any conditional information.
comment: Published as a conference paper at ICLR 2025
♻ ☆ Eliminating Oversaturation and Artifacts of High Guidance Scales in Diffusion Models ICLR 2025
Classifier-free guidance (CFG) is crucial for improving both generation quality and alignment between the input condition and final output in diffusion models. While a high guidance scale is generally required to enhance these aspects, it also causes oversaturation and unrealistic artifacts. In this paper, we revisit the CFG update rule and introduce modifications to address this issue. We first decompose the update term in CFG into parallel and orthogonal components with respect to the conditional model prediction and observe that the parallel component primarily causes oversaturation, while the orthogonal component enhances image quality. Accordingly, we propose down-weighting the parallel component to achieve high-quality generations without oversaturation. Additionally, we draw a connection between CFG and gradient ascent and introduce a new rescaling and momentum method for the CFG update rule based on this insight. Our approach, termed adaptive projected guidance (APG), retains the quality-boosting advantages of CFG while enabling the use of higher guidance scales without oversaturation. APG is easy to implement and introduces practically no additional computational overhead to the sampling process. Through extensive experiments, we demonstrate that APG is compatible with various conditional diffusion models and samplers, leading to improved FID, recall, and saturation scores while maintaining precision comparable to CFG, making our method a superior plug-and-play alternative to standard classifier-free guidance.
comment: Published as a conference paper at ICLR 2025
♻ ☆ Hierarchical Relational Learning for Few-Shot Knowledge Graph Completion ICLR 2023
Knowledge graphs (KGs) are powerful in terms of their inference abilities, but are also notorious for their incompleteness and long-tail distribution of relations. To address these challenges and expand the coverage of KGs, few-shot KG completion aims to make predictions for triplets involving novel relations when only a few training triplets are provided as reference. Previous methods have focused on designing local neighbor aggregators to learn entity-level information and/or imposing a potentially invalid sequential dependency assumption at the triplet level to learn meta relation information. However, pairwise triplet-level interactions and context-level relational information have been largely overlooked for learning meta representations of few-shot relations. In this paper, we propose a hierarchical relational learning method (HiRe) for few-shot KG completion. By jointly capturing three levels of relational information (entity-level, triplet-level and context-level), HiRe can effectively learn and refine meta representations of few-shot relations, and thus generalize well to new unseen relations. Extensive experiments on benchmark datasets validate the superiority of HiRe over state-of-the-art methods. The code can be found in https://github.com/alexhw15/HiRe.git.
comment: Published at ICLR 2023
♻ ☆ Constant Rate Scheduling: Constant-Rate Distributional Change for Efficient Training and Sampling in Diffusion Models
We propose a general approach to optimize noise schedules for training and sampling in diffusion models. Our approach optimizes the noise schedules to ensure a constant rate of change in the probability distribution of diffused data throughout the diffusion process. Any distance metric for measuring the probability-distributional change is applicable to our approach, and we introduce three distance metrics. We evaluated the effectiveness of our approach on unconditional and class-conditional image-generation tasks using the LSUN (Horse, Bedroom, Church), ImageNet, FFHQ, and CIFAR10 datasets. Through extensive experiments, we confirmed that our approach broadly improves the performance of pixel-space and latent-space diffusion models regardless of the dataset, sampler, and number of function evaluations ranging from 5 to 250. Notably, by using our approach for optimizing both training and sampling schedules, we achieved a state-of-the-art FID score of 2.03 without sacrificing mode coverage on LSUN Horse 256 $\times$ 256.
comment: 44 pages, 20 figures, 25 tables
♻ ☆ OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation
Subject-to-Video (S2V) generation aims to create videos that faithfully incorporate reference content, providing enhanced flexibility in the production of videos. To establish the infrastructure for S2V generation, we propose OpenS2V-Nexus, consisting of (i) OpenS2V-Eval, a fine-grained benchmark, and (ii) OpenS2V-5M, a million-scale dataset. In contrast to existing S2V benchmarks inherited from VBench that focus on global and coarse-grained assessment of generated videos, OpenS2V-Eval focuses on the model's ability to generate subject-consistent videos with natural subject appearance and identity fidelity. For these purposes, OpenS2V-Eval introduces 180 prompts from seven major categories of S2V, which incorporate both real and synthetic test data. Furthermore, to accurately align human preferences with S2V benchmarks, we propose three automatic metrics, NexusScore, NaturalScore and GmeScore, to separately quantify subject consistency, naturalness, and text relevance in generated videos. Building on this, we conduct a comprehensive evaluation of 18 representative S2V models, highlighting their strengths and weaknesses across different content. Moreover, we create the first open-source large-scale S2V generation dataset OpenS2V-5M, which consists of five million high-quality 720P subject-text-video triples. Specifically, we ensure subject-information diversity in our dataset by (1) segmenting subjects and building pairing information via cross-video associations and (2) prompting GPT-Image-1 on raw frames to synthesize multi-view representations. Through OpenS2V-Nexus, we deliver a robust infrastructure to accelerate future S2V generation research.
comment: Code and Dataset: https://github.com/PKU-YuanGroup/OpenS2V-Nexus
♻ ☆ S3D: Sketch-Driven 3D Model Generation CVPR'25
Generating high-quality 3D models from 2D sketches is a challenging task due to the inherent ambiguity and sparsity of sketch data. In this paper, we present S3D, a novel framework that converts simple hand-drawn sketches into detailed 3D models. Our method utilizes a U-Net-based encoder-decoder architecture to convert sketches into face segmentation masks, which are then used to generate a 3D representation that can be rendered from novel views. To ensure robust consistency between the sketch domain and the 3D output, we introduce a novel style-alignment loss that aligns the U-Net bottleneck features with the initial encoder outputs of the 3D generation module, significantly enhancing reconstruction fidelity. To further enhance the network's robustness, we apply augmentation techniques to the sketch dataset. This streamlined framework demonstrates the effectiveness of S3D in generating high-quality 3D models from sketch inputs. The source code for this project is publicly available at https://github.com/hailsong/S3D.
comment: Accepted as a short paper to the GMCV Workshop at CVPR'25
♻ ☆ OmniTalker: One-shot Real-time Text-Driven Talking Audio-Video Generation With Multimodal Style Mimicking
Although significant progress has been made in audio-driven talking head generation, text-driven methods remain underexplored. In this work, we present OmniTalker, a unified framework that jointly generates synchronized talking audio-video content from input text while emulating the speaking and facial movement styles of the target identity, including speech characteristics, head motion, and facial dynamics. Our framework adopts a dual-branch diffusion transformer (DiT) architecture, with one branch dedicated to audio generation and the other to video synthesis. At the shallow layers, cross-modal fusion modules are introduced to integrate information between the two modalities. In deeper layers, each modality is processed independently, with the generated audio decoded by a vocoder and the video rendered using a GAN-based high-quality visual renderer. Leveraging the in-context learning capability of DiT through a masked-infilling strategy, our model can simultaneously capture both audio and visual styles without requiring explicit style extraction modules. Thanks to the efficiency of the DiT backbone and the optimized visual renderer, OmniTalker achieves real-time inference at 25 FPS. To the best of our knowledge, OmniTalker is the first one-shot framework capable of jointly modeling speech and facial styles in real time. Extensive experiments demonstrate its superiority over existing methods in terms of generation quality, particularly in preserving style consistency and ensuring precise audio-video synchronization, all while maintaining efficient inference.
comment: Project Page https://humanaigc.github.io/omnitalker
♻ ☆ Diving into Self-Evolving Training for Multimodal Reasoning ICML 2025
Self-evolving trainin--where models iteratively learn from their own outputs--has emerged as a key approach for complex reasoning tasks, addressing the scarcity of high-quality chain-of-thought data. However, its effectiveness in multimodal reasoning, a domain more intricate than text-only reasoning, remains underexplored, and the understanding of critical factors in this training paradigm remains limited. Furthermore, a central challenge for this training method is performance saturation, which impedes further improvements and scalability. Inspired by reinforcement learning (RL), in this paper, we reframe self-evolving training for multimodal reasoning through the lens of RL, identifying three pivotal factors: Training Method, Reward Model, and Prompt Variation. Through systematic analysis, we establish relatively optimal design principles that significantly enhance multimodal reasoning capabilities. Moreover, delving deeper into training dynamics, we uncover the roots of saturation and propose a new automatic balancing mechanism to mitigate this limitation. Building on these insights, we propose M-STAR (Multimodal Self-evolving Training for Reasoning), a framework that achieves consistent performance gains across models of varying sizes and diverse benchmarks. All resources are made publicly available at https://mstar-lmm.github.io.
comment: ICML 2025, Project Page: https://mstar-lmm.github.io
♻ ☆ Evaluating and Advancing Multimodal Large Language Models in Perception Ability Lens
As multimodal large language models (MLLMs) advance rapidly, rigorous evaluation has become essential, providing further guidance for their development. In this work, we focus on a unified and robust evaluation of \textbf{vision perception} abilities, the foundational skill of MLLMs. We find that existing perception benchmarks, each focusing on different question types, domains, and evaluation metrics, introduce significant evaluation variance, complicating comprehensive assessments of perception abilities when relying on any single benchmark. To address this, we introduce \textbf{AbilityLens}, a unified benchmark designed to evaluate MLLMs in six key perception abilities (ranging from counting, OCR, to understanding structural data), focusing on both accuracy and stability, with each ability encompassing diverse types of questions, domains, and metrics. With the assistance of AbilityLens, we: (1) identify the strengths and weaknesses of current main-stream MLLMs, highlighting stability patterns and revealing a notable performance gap between state-of-the-art open-source and closed-source models; (2) uncover interesting ability conflict and early convergence phenomena during MLLM training; (3) reveal the primary reason of ability conflict is data mixing ratio and LLM model size; and (4) discuss the effectiveness of some straightforward strategies \eg, fine-tuning and model merging, to solve the ability conflict. The benchmark and online leaderboard is released in https://github.com/Chenfeng1271/AbilityLens.
comment: Code repository: https://github.com/Chenfeng1271/AbilityLens/tree/main
♻ ☆ Low-Resolution Self-Attention for Semantic Segmentation
Semantic segmentation tasks naturally require high-resolution information for pixel-wise segmentation and global context information for class prediction. While existing vision transformers demonstrate promising performance, they often utilize high-resolution context modeling, resulting in a computational bottleneck. In this work, we challenge conventional wisdom and introduce the Low-Resolution Self-Attention (LRSA) mechanism to capture global context at a significantly reduced computational cost, i.e., FLOPs. Our approach involves computing self-attention in a fixed low-resolution space regardless of the input image's resolution, with additional 3x3 depth-wise convolutions to capture fine details in the high-resolution space. We demonstrate the effectiveness of our LRSA approach by building the LRFormer, a vision transformer with an encoder-decoder structure. Extensive experiments on the ADE20K, COCO-Stuff, and Cityscapes datasets demonstrate that LRFormer outperforms state-of-the-art models. Code is available at https://github.com/yuhuan-wu/LRFormer.
comment: Accepted by IEEE TPAMI; 14 pages, 6 figures, 14 tables
♻ ☆ Mobile-Agent-V: A Video-Guided Approach for Effortless and Efficient Operational Knowledge Injection in Mobile Automation
The exponential rise in mobile device usage necessitates streamlined automation for effective task management, yet many AI frameworks fall short due to inadequate operational expertise. While manually written knowledge can bridge this gap, it is often burdensome and inefficient. We introduce Mobile-Agent-V, an innovative framework that utilizes video as a guiding tool to effortlessly and efficiently inject operational knowledge into mobile automation processes. By deriving knowledge directly from video content, Mobile-Agent-V eliminates manual intervention, significantly reducing the effort and time required for knowledge acquisition. To rigorously evaluate this approach, we propose Mobile-Knowledge, a benchmark tailored to assess the impact of external knowledge on mobile agent performance. Our experimental findings demonstrate that Mobile-Agent-V enhances performance by 36% compared to existing methods, underscoring its effortless and efficient advantages in mobile automation.
comment: 17 pages, 7 figures, 9 tables
♻ ☆ Inclusion 2024 Global Multimedia Deepfake Detection Challenge: Towards Multi-dimensional Face Forgery Detection
In this paper, we present the Global Multimedia Deepfake Detection held concurrently with the Inclusion 2024. Our Multimedia Deepfake Detection aims to detect automatic image and audio-video manipulations including but not limited to editing, synthesis, generation, Photoshop,etc. Our challenge has attracted 1500 teams from all over the world, with about 5000 valid result submission counts. We invite the top 20 teams to present their solutions to the challenge, from which the top 3 teams are awarded prizes in the grand finale. In this paper, we present the solutions from the top 3 teams of the two tracks, to boost the research work in the field of image and audio-video forgery detection. The methodologies developed through the challenge will contribute to the development of next-generation deepfake detection systems and we encourage participants to open source their methods.
comment: Inclusion 2024 Global Multimedia Deepfake Detection Competition Top Team Technical Report
♻ ☆ PointCloud-Text Matching: Benchmark Datasets and a Baseline
In this paper, we present and study a new instance-level retrieval task: PointCloud-Text Matching (PTM), which aims to identify the exact cross-modal instance that matches a given point-cloud query or text query. PTM has potential applications in various scenarios, such as indoor/urban-canyon localization and scene retrieval. However, there is a lack of suitable and targeted datasets for PTM in practice. To address this issue, we present a new PTM benchmark dataset, namely SceneDepict-3D2T. We observe that the data poses significant challenges due to its inherent characteristics, such as the sparsity, noise, or disorder of point clouds and the ambiguity, vagueness, or incompleteness of texts, which render existing cross-modal matching methods ineffective for PTM. To overcome these challenges, we propose a PTM baseline, named Robust PointCloud-Text Matching method (RoMa). RoMa consists of two key modules: a Dual Attention Perception module (DAP) and a Robust Negative Contrastive Learning module (RNCL). Specifically, DAP leverages token-level and feature-level attention mechanisms to adaptively focus on useful local and global features, and aggregate them into common representations, thereby reducing the adverse impact of noise and ambiguity. To handle noisy correspondence, RNCL enhances robustness against mismatching by dividing negative pairs into clean and noisy subsets and assigning them forward and reverse optimization directions, respectively. We conduct extensive experiments on our benchmarks and demonstrate the superiority of our RoMa.
comment: The version submitted this time has been significantly revised and improved on the previous version
Artificial Intelligence 267
☆ IllumiCraft: Unified Geometry and Illumination Diffusion for Controllable Video Generation
Although diffusion-based models can generate high-quality and high-resolution video sequences from textual or image inputs, they lack explicit integration of geometric cues when controlling scene lighting and visual appearance across frames. To address this limitation, we propose IllumiCraft, an end-to-end diffusion framework accepting three complementary inputs: (1) high-dynamic-range (HDR) video maps for detailed lighting control; (2) synthetically relit frames with randomized illumination changes (optionally paired with a static background reference image) to provide appearance cues; and (3) 3D point tracks that capture precise 3D geometry information. By integrating the lighting, appearance, and geometry cues within a unified diffusion architecture, IllumiCraft generates temporally coherent videos aligned with user-defined prompts. It supports background-conditioned and text-conditioned video relighting and provides better fidelity than existing controllable video generation methods. Project Page: https://yuanze-lin.me/IllumiCraft_page
comment: Tech Report
☆ Causal Estimation of Tokenisation Bias ACL 2025
Modern language models are typically trained over subword sequences, but ultimately define probabilities over character-strings. Ideally, the choice of the tokeniser -- which maps character-strings to subwords -- should not affect the probability assigned to the underlying character-string; in practice, it does. We define this mismatch as tokenisation bias. In this work, we quantify one particular type of tokenisation bias: the effect of including or not a subword (e.g., $\langle hello \rangle$) in a tokeniser's vocabulary on the probability a trained model assigns to the corresponding characters (i.e., \textit{``hello''}). Estimating this effect is challenging because each model is trained with only one tokeniser. We address this by framing tokenisation bias as a causal effect and estimating it using the regression discontinuity design. Specifically, we exploit the fact that tokenisation algorithms rank subwords and add the first $K$ to a tokeniser's vocabulary, where $K$ is an arbitrary cutoff point. As such, we can estimate a causal effect by comparing similar subwords around this cutoff. Experimentally, we find that tokenisation consistently affects models' outputs across scales, vocabularies, and tokenisers. Notably, a subword's presence in a small model's vocabulary may increase its characters' probability by up to 17 times, highlighting tokenisation as a key design choice in language modelling.
comment: Published as a conference paper at ACL 2025
☆ Entity-Augmented Neuroscience Knowledge Retrieval Using Ontology and Semantic Understanding Capability of LLM
Neuroscience research publications encompass a vast wealth of knowledge. Accurately retrieving existing information and discovering new insights from this extensive literature is essential for advancing the field. However, when knowledge is dispersed across multiple sources, current state-of-the-art retrieval methods often struggle to extract the necessary information. A knowledge graph (KG) can integrate and link knowledge from multiple sources, but existing methods for constructing KGs in neuroscience often rely on labeled data and require domain expertise. Acquiring large-scale, labeled data for a specialized area like neuroscience presents significant challenges. This work proposes novel methods for constructing KG from unlabeled large-scale neuroscience research corpus utilizing large language models (LLM), neuroscience ontology, and text embeddings. We analyze the semantic relevance of neuroscience text segments identified by LLM for building the knowledge graph. We also introduce an entity-augmented information retrieval algorithm to extract knowledge from the KG. Several experiments were conducted to evaluate the proposed approaches, and the results demonstrate that our methods significantly enhance knowledge discovery from the unlabeled neuroscience research corpus. It achieves an F1 score of 0.84 for entity extraction, and the knowledge obtained from the KG improves answers to over 54% of the questions.
☆ GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents
One of the principal challenges in building VLM-powered GUI agents is visual grounding, i.e., localizing the appropriate screen region for action execution based on both the visual content and the textual plans. Most existing work formulates this as a text-based coordinate generation task. However, these approaches suffer from several limitations: weak spatial-semantic alignment, inability to handle ambiguous supervision targets, and a mismatch between the dense nature of screen coordinates and the coarse, patch-level granularity of visual features extracted by models like Vision Transformers. In this paper, we propose GUI-Actor, a VLM-based method for coordinate-free GUI grounding. At its core, GUI-Actor introduces an attention-based action head that learns to align a dedicated token with all relevant visual patch tokens, enabling the model to propose one or more action regions in a single forward pass. In line with this, we further design a grounding verifier to evaluate and select the most plausible action region from the candidates proposed for action execution. Extensive experiments show that GUI-Actor outperforms prior state-of-the-art methods on multiple GUI action grounding benchmarks, with improved generalization to unseen screen resolutions and layouts. Notably, GUI-Actor-7B even surpasses UI-TARS-72B (38.1) on ScreenSpot-Pro, achieving scores of 40.7 with Qwen2-VL and 44.6 with Qwen2.5-VL as backbones. Furthermore, by incorporating the verifier, we find that fine-tuning only the newly introduced action head (~100M parameters for 7B model) while keeping the VLM backbone frozen is sufficient to achieve performance comparable to previous state-of-the-art models, highlighting that GUI-Actor can endow the underlying VLM with effective grounding capabilities without compromising its general-purpose strengths.
☆ SVGenius: Benchmarking LLMs in SVG Understanding, Editing and Generation
Large Language Models (LLMs) and Multimodal LLMs have shown promising capabilities for SVG processing, yet existing benchmarks suffer from limited real-world coverage, lack of complexity stratification, and fragmented evaluation paradigms. We introduce SVGenius, a comprehensive benchmark comprising 2,377 queries across three progressive dimensions: understanding, editing, and generation. Built on real-world data from 24 application domains with systematic complexity stratification, SVGenius evaluates models through 8 task categories and 18 metrics. We assess 22 mainstream models spanning different scales, architectures, training paradigms, and accessibility levels. Our analysis reveals that while proprietary models significantly outperform open-source counterparts, all models exhibit systematic performance degradation with increasing complexity, indicating fundamental limitations in current approaches; however, reasoning-enhanced training proves more effective than pure scaling for overcoming these limitations, though style transfer remains the most challenging capability across all model types. SVGenius establishes the first systematic evaluation framework for SVG processing, providing crucial insights for developing more capable vector graphics models and advancing automated graphic design applications. Appendix and supplementary materials (including all data and code) are available at https://zju-real.github.io/SVGenius.
comment: 19 pages,4 figures, Project page: https://zju-real.github.io/SVGenius, Code: https://github.com/ZJU-REAL/SVGenius-Bench
☆ OmniSpatial: Towards Comprehensive Spatial Reasoning Benchmark for Vision Language Models
Spatial reasoning is a key aspect of cognitive psychology and remains a major bottleneck for current vision-language models (VLMs). While extensive research has aimed to evaluate or improve VLMs' understanding of basic spatial relations, such as distinguishing left from right, near from far, and object counting, these tasks represent only the most fundamental level of spatial reasoning. In this work, we introduce OmniSpatial, a comprehensive and challenging benchmark for spatial reasoning, grounded in cognitive psychology. OmniSpatial covers four major categories: dynamic reasoning, complex spatial logic, spatial interaction, and perspective-taking, with 50 fine-grained subcategories. Through Internet data crawling and careful manual annotation, we construct over 1.5K question-answer pairs. Extensive experiments show that both open- and closed-source VLMs, as well as existing reasoning and spatial understanding models, exhibit significant limitations in comprehensive spatial understanding. We further analyze failure cases and propose potential directions for future research.
comment: Project Page: https://qizekun.github.io/omnispatial/
☆ PoLAR: Polar-Decomposed Low-Rank Adapter Representation
We show that low-rank adaptation of large-scale models suffers from a low stable rank that is well below the linear algebraic rank of the subspace, degrading fine-tuning performance. To mitigate the underutilization of the allocated subspace, we propose PoLAR, a parameterization inspired by the polar decomposition that factorizes the low-rank update into two direction matrices constrained to Stiefel manifolds and an unconstrained scale matrix. Our theory shows that PoLAR yields an exponentially faster convergence rate on a canonical low-rank adaptation problem. Pairing the parameterization with Riemannian optimization leads to consistent gains on three different benchmarks testing general language understanding, commonsense reasoning, and mathematical problem solving with base model sizes ranging from 350M to 27B.
☆ Designing Algorithmic Delegates: The Role of Indistinguishability in Human-AI Handoff
As AI technologies improve, people are increasingly willing to delegate tasks to AI agents. In many cases, the human decision-maker chooses whether to delegate to an AI agent based on properties of the specific instance of the decision-making problem they are facing. Since humans typically lack full awareness of all the factors relevant to this choice for a given decision-making instance, they perform a kind of categorization by treating indistinguishable instances -- those that have the same observable features -- as the same. In this paper, we define the problem of designing the optimal algorithmic delegate in the presence of categories. This is an important dimension in the design of algorithms to work with humans, since we show that the optimal delegate can be an arbitrarily better teammate than the optimal standalone algorithmic agent. The solution to this optimal delegation problem is not obvious: we discover that this problem is fundamentally combinatorial, and illustrate the complex relationship between the optimal design and the properties of the decision-making task even in simple settings. Indeed, we show that finding the optimal delegate is computationally hard in general. However, we are able to find efficient algorithms for producing the optimal delegate in several broad cases of the problem, including when the optimal action may be decomposed into functions of features observed by the human and the algorithm. Finally, we run computational experiments to simulate a designer updating an algorithmic delegate over time to be optimized for when it is actually adopted by users, and show that while this process does not recover the optimal delegate in general, the resulting delegate often performs quite well.
comment: Accepted at the Twenty-Sixth ACM Conference on Economics and Computation (EC'25)
☆ Retrieval-Augmented Generation as Noisy In-Context Learning: A Unified Theory and Risk Bounds
Retrieval-augmented generation (RAG) has seen many empirical successes in recent years by aiding the LLM with external knowledge. However, its theoretical aspect has remained mostly unexplored. In this paper, we propose the first finite-sample generalization bound for RAG in in-context linear regression and derive an exact bias-variance tradeoff. Our framework views the retrieved texts as query-dependent noisy in-context examples and recovers the classical in-context learning (ICL) and standard RAG as the limit cases. Our analysis suggests that an intrinsic ceiling on generalization error exists on RAG as opposed to the ICL. Furthermore, our framework is able to model retrieval both from the training data and from external corpora by introducing uniform and non-uniform RAG noise. In line with our theory, we show the sample efficiency of ICL and RAG empirically with experiments on common QA benchmarks, such as Natural Questions and TriviaQA.
comment: Under Review
☆ TalkingMachines: Real-Time Audio-Driven FaceTime-Style Video via Autoregressive Diffusion Models
In this paper, we present TalkingMachines -- an efficient framework that transforms pretrained video generation models into real-time, audio-driven character animators. TalkingMachines enables natural conversational experiences by integrating an audio large language model (LLM) with our video generation foundation model. Our primary contributions include: (1) We adapt a pretrained SOTA image-to-video DiT into an audio-driven avatar generation model of 18 billion parameters; (2) We enable infinite video streaming without error accumulation through asymmetric knowledge distillation from a bidirectional teacher model into a sparse causal, autoregressive student model; (3) We design a high-throughput, low-latency inference pipeline incorporating several key engineering optimizations such as: (a) disaggregation of the DiT and VAE decoder across separate devices, (b) efficient overlap of inter-device communication and computation using CUDA streams, (c) elimination of redundant recomputations to maximize frame-generation throughput. Please see demo videos here - https://aaxwaz.github.io/TalkingMachines/
☆ EgoVLM: Policy Optimization for Egocentric Video Understanding
Emerging embodied AI applications, such as wearable cameras and autonomous agents, have underscored the need for robust reasoning from first person video streams. We introduce EgoVLM, a vision-language model specifically designed to integrate visual comprehension and spatial-temporal reasoning within egocentric video contexts. EgoVLM is fine-tuned via Group Relative Policy Optimization (GRPO), a reinforcement learning method adapted to align model outputs with human-like reasoning steps. Following DeepSeek R1-Zero's approach, we directly tune using RL without any supervised fine-tuning phase on chain-of-thought (CoT) data. We evaluate EgoVLM on egocentric video question answering benchmarks and show that domain-specific training substantially improves performance over general-purpose VLMs. Our EgoVLM-3B, trained exclusively on non-CoT egocentric data, outperforms the base Qwen2.5-VL 3B and 7B models by 14.33 and 13.87 accuracy points on the EgoSchema benchmark, respectively. By explicitly generating reasoning traces, EgoVLM enhances interpretability, making it well-suited for downstream applications. Furthermore, we introduce a novel keyframe-based reward that incorporates salient frame selection to guide reinforcement learning optimization. This reward formulation opens a promising avenue for future exploration in temporally grounded egocentric reasoning.
comment: Our Code can be found at https://github.com/adityavavre/VidEgoVLM
☆ DPO Learning with LLMs-Judge Signal for Computer Use Agents
Computer use agents (CUA) are systems that automatically interact with graphical user interfaces (GUIs) to complete tasks. CUA have made significant progress with the advent of large vision-language models (VLMs). However, these agents typically rely on cloud-based inference with substantial compute demands, raising critical privacy and scalability concerns, especially when operating on personal devices. In this work, we take a step toward privacy-preserving and resource-efficient agents by developing a lightweight vision-language model that runs entirely on local machines. To train this compact agent, we introduce an LLM-as-Judge framework that automatically evaluates and filters synthetic interaction trajectories, producing high-quality data for reinforcement learning without human annotation. Experiments on the OS-World benchmark demonstrate that our fine-tuned local model outperforms existing baselines, highlighting a promising path toward private, efficient, and generalizable GUI agents.
☆ Modelling the Effects of Hearing Loss on Neural Coding in the Auditory Midbrain with Variational Conditioning
The mapping from sound to neural activity that underlies hearing is highly non-linear. The first few stages of this mapping in the cochlea have been modelled successfully, with biophysical models built by hand and, more recently, with DNN models trained on datasets simulated by biophysical models. Modelling the auditory brain has been a challenge because central auditory processing is too complex for models to be built by hand, and datasets for training DNN models directly have not been available. Recent work has taken advantage of large-scale high resolution neural recordings from the auditory midbrain to build a DNN model of normal hearing with great success. But this model assumes that auditory processing is the same in all brains, and therefore it cannot capture the widely varying effects of hearing loss. We propose a novel variational-conditional model to learn to encode the space of hearing loss directly from recordings of neural activity in the auditory midbrain of healthy and noise exposed animals. With hearing loss parametrised by only 6 free parameters per animal, our model accurately predicts 62\% of the explainable variance in neural responses from normal hearing animals and 68% for hearing impaired animals, within a few percentage points of state of the art animal specific models. We demonstrate that the model can be used to simulate realistic activity from out of sample animals by fitting only the learned conditioning parameters with Bayesian optimisation, achieving crossentropy loss within 2% of the optimum in 15-30 iterations. Including more animals in the training data slightly improved the performance on unseen animals. This model will enable future development of parametrised hearing loss compensation models trained to directly restore normal neural coding in hearing impaired brains, which can be quickly fitted for a new user by human in the loop optimisation.
comment: 12 pages, 3 figures
☆ How Explanations Leak the Decision Logic: Stealing Graph Neural Networks via Explanation Alignment
Graph Neural Networks (GNNs) have become essential tools for analyzing graph-structured data in domains such as drug discovery and financial analysis, leading to growing demands for model transparency. Recent advances in explainable GNNs have addressed this need by revealing important subgraphs that influence predictions, but these explanation mechanisms may inadvertently expose models to security risks. This paper investigates how such explanations potentially leak critical decision logic that can be exploited for model stealing. We propose {\method}, a novel stealing framework that integrates explanation alignment for capturing decision logic with guided data augmentation for efficient training under limited queries, enabling effective replication of both the predictive behavior and underlying reasoning patterns of target models. Experiments on molecular graph datasets demonstrate that our approach shows advantages over conventional methods in model stealing. This work highlights important security considerations for the deployment of explainable GNNs in sensitive domains and suggests the need for protective measures against explanation-based attacks. Our code is available at https://github.com/beanmah/EGSteal.
☆ Labelling Data with Unknown References
An evaluator is trustworthy when there exists some agreed-upon way to measure its performance as a labeller. The two ways to establish trustworthiness are either by testing it, or by assuming the evaluator `knows' somehow the way to label the corpus. However, if labelled references (e.g., a development set) are unavailable, neither of these approaches work: the former requires the data, and the latter is an assumption, not evidence. To address this, we introduce an algorithm (the `No-Data Algorithm') by which to establish trust in an evaluator without any existing references. Our algorithm works by successively posing challenges to said evaluator. We show that this is sufficient to establish trustworthiness w.h.p., in such a way that when the evaluator actually knows the way to label the corpus, the No-Data Algorithm accepts its output; and, conversely, flags untrustworthy evaluators when these are unable to prove it. We present formal proofs of correctness and limited experiments.
☆ StreamBP: Memory-Efficient Exact Backpropagation for Long Sequence Training of LLMs
Training language models on long sequence data is a demanding requirement for enhancing the model's capability on complex tasks, e.g., long-chain reasoning. However, as the sequence length scales up, the memory cost for storing activation values becomes huge during the Backpropagation (BP) process, even with the application of gradient checkpointing technique. To tackle this challenge, we propose a memory-efficient and exact BP method called StreamBP, which performs a linear decomposition of the chain rule along the sequence dimension in a layer-wise manner, significantly reducing the memory cost of activation values and logits. The proposed method is applicable to common objectives such as SFT, GRPO, and DPO. From an implementation perspective, StreamBP achieves less computational FLOPs and faster BP speed by leveraging the causal structure of the language model. Compared to gradient checkpointing, StreamBP scales up the maximum sequence length of BP by 2.8-5.5 times larger, while using comparable or even less BP time. Note that StreamBP's sequence length scaling ability can be directly transferred to batch size scaling for accelerating training. We further develop a communication-efficient distributed StreamBP to effectively support multi-GPU training and broaden its applicability. Our code can be easily integrated into the training pipeline of any transformer models and is available at https://github.com/Ledzy/StreamBP.
☆ Sparse-vDiT: Unleashing the Power of Sparse Attention to Accelerate Video Diffusion Transformers
While Diffusion Transformers (DiTs) have achieved breakthroughs in video generation, this long sequence generation task remains constrained by the quadratic complexity of attention mechanisms, resulting in significant inference latency. Through detailed analysis of attention maps in Video Diffusion Transformer (vDiT), we identify three recurring sparsity patterns: diagonal, multi-diagonal, and vertical-stripe structures. And even 3-6\% attention heads can be skipped. Crucially, these patterns exhibit strong layer-depth and head-position correlations but show limited dependence on the input content. Leveraging these findings, we propose Sparse-vDiT, a sparsity acceleration framework for vDiT comprising: 1) Pattern-optimized sparse kernels that replace dense attention with computationally efficient implementations for each identified sparsity pattern. 2) An offline sparse diffusion search algorithm that selects the optimal sparse computation strategy per layer and head via hardware-aware cost modeling. After determining the optimal configuration, we fuse heads within the same layer that share the same attention strategy, enhancing inference efficiency. Integrated into state-of-the-art vDiT models (CogVideoX1.5, HunyuanVideo, and Wan2.1), Sparse-vDiT achieves 2.09$\times$, 2.38$\times$, and 1.67$\times$ theoretical FLOP reduction, and actual inference speedups of 1.76$\times$, 1.85$\times$, and 1.58$\times$, respectively, while maintaining high visual fidelity, with PSNR values reaching 24.13, 27.09, and 22.59. Our work demonstrates that latent structural sparsity in vDiTs can be systematically exploited for long video synthesis.
☆ Corrigibility as a Singular Target: A Vision for Inherently Reliable Foundation Models ICML 2025
Foundation models (FMs) face a critical safety challenge: as capabilities scale, instrumental convergence drives default trajectories toward loss of human control, potentially culminating in existential catastrophe. Current alignment approaches struggle with value specification complexity and fail to address emergent power-seeking behaviors. We propose "Corrigibility as a Singular Target" (CAST)-designing FMs whose overriding objective is empowering designated human principals to guide, correct, and control them. This paradigm shift from static value-loading to dynamic human empowerment transforms instrumental drives: self-preservation serves only to maintain the principal's control; goal modification becomes facilitating principal guidance. We present a comprehensive empirical research agenda spanning training methodologies (RLAIF, SFT, synthetic data generation), scalability testing across model sizes, and demonstrations of controlled instructability. Our vision: FMs that become increasingly responsive to human guidance as capabilities grow, offering a path to beneficial AI that remains as tool-like as possible, rather than supplanting human judgment. This addresses the core alignment problem at its source, preventing the default trajectory toward misaligned instrumental convergence.
comment: Preprint. This work has been submitted to the Reliable and Responsible Foundation Models Workshop at ICML 2025 for review
☆ MAEBE: Multi-Agent Emergent Behavior Framework ICML 2025
Traditional AI safety evaluations on isolated LLMs are insufficient as multi-agent AI ensembles become prevalent, introducing novel emergent risks. This paper introduces the Multi-Agent Emergent Behavior Evaluation (MAEBE) framework to systematically assess such risks. Using MAEBE with the Greatest Good Benchmark (and a novel double-inversion question technique), we demonstrate that: (1) LLM moral preferences, particularly for Instrumental Harm, are surprisingly brittle and shift significantly with question framing, both in single agents and ensembles. (2) The moral reasoning of LLM ensembles is not directly predictable from isolated agent behavior due to emergent group dynamics. (3) Specifically, ensembles exhibit phenomena like peer pressure influencing convergence, even when guided by a supervisor, highlighting distinct safety and alignment challenges. Our findings underscore the necessity of evaluating AI systems in their interactive, multi-agent contexts.
comment: Preprint. This work has been submitted to the Multi-Agent Systems Workshop at ICML 2025 for review
☆ Facts Do Care About Your Language: Assessing Answer Quality of Multilingual LLMs
Factuality is a necessary precursor to useful educational tools. As adoption of Large Language Models (LLMs) in education continues of grow, ensuring correctness in all settings is paramount. Despite their strong English capabilities, LLM performance in other languages is largely untested. In this work, we evaluate the correctness of the Llama3.1 family of models in answering factual questions appropriate for middle and high school students. We demonstrate that LLMs not only provide extraneous and less truthful information, but also exacerbate existing biases against rare languages.
☆ EDEN: Entorhinal Driven Egocentric Navigation Toward Robotic Deployment
Deep reinforcement learning agents are often fragile while humans remain adaptive and flexible to varying scenarios. To bridge this gap, we present EDEN, a biologically inspired navigation framework that integrates learned entorhinal-like grid cell representations and reinforcement learning to enable autonomous navigation. Inspired by the mammalian entorhinal-hippocampal system, EDEN allows agents to perform path integration and vector-based navigation using visual and motion sensor data. At the core of EDEN is a grid cell encoder that transforms egocentric motion into periodic spatial codes, producing low-dimensional, interpretable embeddings of position. To generate these activations from raw sensory input, we combine fiducial marker detections in the lightweight MiniWorld simulator and DINO-based visual features in the high-fidelity Gazebo simulator. These spatial representations serve as input to a policy trained with Proximal Policy Optimization (PPO), enabling dynamic, goal-directed navigation. We evaluate EDEN in both MiniWorld, for rapid prototyping, and Gazebo, which offers realistic physics and perception noise. Compared to baseline agents using raw state inputs (e.g., position, velocity) or standard convolutional image encoders, EDEN achieves a 99% success rate, within the simple scenarios, and >94% within complex floorplans with occluded paths with more efficient and reliable step-wise navigation. In addition, as a replacement of ground truth activations, we present a trainable Grid Cell encoder enabling the development of periodic grid-like patterns from vision and motion sensor data, emulating the development of such patterns within biological mammals. This work represents a step toward biologically grounded spatial intelligence in robotics, bridging neural navigation principles with reinforcement learning for scalable deployment.
☆ Leveraging Information Retrieval to Enhance Spoken Language Understanding Prompts in Few-Shot Learning INTERSPEECH 2025
Understanding user queries is fundamental in many applications, such as home assistants, booking systems, or recommendations. Accordingly, it is crucial to develop accurate Spoken Language Understanding (SLU) approaches to ensure the reliability of the considered system. Current State-of-the-Art SLU techniques rely on large amounts of training data; however, only limited annotated examples are available for specific tasks or languages. In the meantime, instruction-tuned large language models (LLMs) have shown exceptional performance on unseen tasks in a few-shot setting when provided with adequate prompts. In this work, we propose to explore example selection by leveraging Information retrieval (IR) approaches to build an enhanced prompt that is applied to an SLU task. We evaluate the effectiveness of the proposed method on several SLU benchmarks. Experimental results show that lexical IR methods significantly enhance performance without increasing prompt length.
comment: Conference paper accepted to INTERSPEECH 2025
☆ TestAgent: An Adaptive and Intelligent Expert for Human Assessment
Accurately assessing internal human states is key to understanding preferences, offering personalized services, and identifying challenges in real-world applications. Originating from psychometrics, adaptive testing has become the mainstream method for human measurement and has now been widely applied in education, healthcare, sports, and sociology. It customizes assessments by selecting the fewest test questions . However, current adaptive testing methods face several challenges. The mechanized nature of most algorithms leads to guessing behavior and difficulties with open-ended questions. Additionally, subjective assessments suffer from noisy response data and coarse-grained test outputs, further limiting their effectiveness. To move closer to an ideal adaptive testing process, we propose TestAgent, a large language model (LLM)-powered agent designed to enhance adaptive testing through interactive engagement. This is the first application of LLMs in adaptive testing. TestAgent supports personalized question selection, captures test-takers' responses and anomalies, and provides precise outcomes through dynamic, conversational interactions. Experiments on psychological, educational, and lifestyle assessments show our approach achieves more accurate results with 20% fewer questions than state-of-the-art baselines, and testers preferred it in speed, smoothness, and other dimensions.
comment: 24 pages,10 figures
☆ Smartflow: Enabling Scalable Spatiotemporal Geospatial Research
BlackSky introduces Smartflow, a cloud-based framework enabling scalable spatiotemporal geospatial research built on open-source tools and technologies. Using STAC-compliant catalogs as a common input, heterogeneous geospatial data can be processed into standardized datacubes for analysis and model training. Model experimentation is managed using a combination of tools, including ClearML, Tensorboard, and Apache Superset. Underpinning Smartflow is Kubernetes, which orchestrates the provisioning and execution of workflows to support both horizontal and vertical scalability. This combination of features makes Smartflow well-suited for geospatial model development and analysis over large geographic areas, time scales, and expansive image archives. We also present a novel neural architecture, built using Smartflow, to monitor large geographic areas for heavy construction. Qualitative results based on data from the IARPA Space-based Machine Automated Recognition Technique (SMART) program are presented that show the model is capable of detecting heavy construction throughout all major phases of development.
☆ Conditioning Large Language Models on Legal Systems? Detecting Punishable Hate Speech
The assessment of legal problems requires the consideration of a specific legal system and its levels of abstraction, from constitutional law to statutory law to case law. The extent to which Large Language Models (LLMs) internalize such legal systems is unknown. In this paper, we propose and investigate different approaches to condition LLMs at different levels of abstraction in legal systems. This paper examines different approaches to conditioning LLMs at multiple levels of abstraction in legal systems to detect potentially punishable hate speech. We focus on the task of classifying whether a specific social media posts falls under the criminal offense of incitement to hatred as prescribed by the German Criminal Code. The results show that there is still a significant performance gap between models and legal experts in the legal assessment of hate speech, regardless of the level of abstraction with which the models were conditioned. Our analysis revealed, that models conditioned on abstract legal knowledge lacked deep task understanding, often contradicting themselves and hallucinating answers, while models using concrete legal knowledge performed reasonably well in identifying relevant target groups, but struggled with classifying target conducts.
☆ Linear Spatial World Models Emerge in Large Language Models
Large language models (LLMs) have demonstrated emergent abilities across diverse tasks, raising the question of whether they acquire internal world models. In this work, we investigate whether LLMs implicitly encode linear spatial world models, which we define as linear representations of physical space and object configurations. We introduce a formal framework for spatial world models and assess whether such structure emerges in contextual embeddings. Using a synthetic dataset of object positions, we train probes to decode object positions and evaluate geometric consistency of the underlying space. We further conduct causal interventions to test whether these spatial representations are functionally used by the model. Our results provide empirical evidence that LLMs encode linear spatial world models.
☆ Mitigating Manipulation and Enhancing Persuasion: A Reflective Multi-Agent Approach for Legal Argument Generation
Large Language Models (LLMs) are increasingly explored for legal argument generation, yet they pose significant risks of manipulation through hallucination and ungrounded persuasion, and often fail to utilize provided factual bases effectively or abstain when arguments are untenable. This paper introduces a novel reflective multi-agent method designed to address these challenges in the context of legally compliant persuasion. Our approach employs specialized agents--a Factor Analyst and an Argument Polisher--in an iterative refinement process to generate 3-ply legal arguments (plaintiff, defendant, rebuttal). We evaluate Reflective Multi-Agent against single-agent, enhanced-prompt single-agent, and non-reflective multi-agent baselines using four diverse LLMs (GPT-4o, GPT-4o-mini, Llama-4-Maverick-17b-128e, Llama-4-Scout-17b-16e) across three legal scenarios: "arguable", "mismatched", and "non-arguable". Results demonstrate Reflective Multi-Agent's significant superiority in successful abstention (preventing generation when arguments cannot be grounded), marked improvements in hallucination accuracy (reducing fabricated and misattributed factors), particularly in "non-arguable" scenarios, and enhanced factor utilization recall (improving the use of provided case facts). These findings suggest that structured reflection within a multi-agent framework offers a robust computable method for fostering ethical persuasion and mitigating manipulation in LLM-based legal argumentation systems, a critical step towards trustworthy AI in law. Project page: https://lizhang-aiandlaw.github.io/A-Reflective-Multi-Agent-Approach-for-Legal-Argument-Generation/
comment: 13 pages, 2 figures, Workshop on Legally Compliant Intelligent Chatbots at ICAIL 2025]{Workshop on Legally Compliant Intelligent Chatbots @ ICAIL 2025
☆ Performance of leading large language models in May 2025 in Membership of the Royal College of General Practitioners-style examination questions: a cross-sectional analysis
Background: Large language models (LLMs) have demonstrated substantial potential to support clinical practice. Other than Chat GPT4 and its predecessors, few LLMs, especially those of the leading and more powerful reasoning model class, have been subjected to medical specialty examination questions, including in the domain of primary care. This paper aimed to test the capabilities of leading LLMs as of May 2025 (o3, Claude Opus 4, Grok3, and Gemini 2.5 Pro) in primary care education, specifically in answering Member of the Royal College of General Practitioners (MRCGP) style examination questions. Methods: o3, Claude Opus 4, Grok3, and Gemini 2.5 Pro were tasked to answer 100 randomly chosen multiple choice questions from the Royal College of General Practitioners GP SelfTest on 25 May 2025. Questions included textual information, laboratory results, and clinical images. Each model was prompted to answer as a GP in the UK and was provided with full question information. Each question was attempted once by each model. Responses were scored against correct answers provided by GP SelfTest. Results: The total score of o3, Claude Opus 4, Grok3, and Gemini 2.5 Pro was 99.0%, 95.0%, 95.0%, and 95.0%, respectively. The average peer score for the same questions was 73.0%. Discussion: All models performed remarkably well, and all substantially exceeded the average performance of GPs and GP registrars who had answered the same questions. o3 demonstrated the best performance, while the performances of the other leading models were comparable with each other and were not substantially lower than that of o3. These findings strengthen the case for LLMs, particularly reasoning models, to support the delivery of primary care, especially those that have been specifically trained on primary care clinical data.
comment: 12 pages, 1 Table
☆ Deep Learning for Retinal Degeneration Assessment: A Comprehensive Analysis of the MARIO AMD Progression Challenge MICCAI
The MARIO challenge, held at MICCAI 2024, focused on advancing the automated detection and monitoring of age-related macular degeneration (AMD) through the analysis of optical coherence tomography (OCT) images. Designed to evaluate algorithmic performance in detecting neovascular activity changes within AMD, the challenge incorporated unique multi-modal datasets. The primary dataset, sourced from Brest, France, was used by participating teams to train and test their models. The final ranking was determined based on performance on this dataset. An auxiliary dataset from Algeria was used post-challenge to evaluate population and device shifts from submitted solutions. Two tasks were involved in the MARIO challenge. The first one was the classification of evolution between two consecutive 2D OCT B-scans. The second one was the prediction of future AMD evolution over three months for patients undergoing anti-vascular endothelial growth factor (VEGF) therapy. Thirty-five teams participated, with the top 12 finalists presenting their methods. This paper outlines the challenge's structure, tasks, data characteristics, and winning methodologies, setting a benchmark for AMD monitoring using OCT, infrared imaging, and clinical data (such as the number of visits, age, gender, etc.). The results of this challenge indicate that artificial intelligence (AI) performs as well as a physician in measuring AMD progression (Task 1) but is not yet able of predicting future evolution (Task 2).
comment: MARIO-MICCAI-CHALLENGE 2024
☆ HaploOmni: Unified Single Transformer for Multimodal Video Understanding and Generation
With the advancement of language models, unified multimodal understanding and generation have made significant strides, with model architectures evolving from separated components to unified single-model frameworks. This paper explores an efficient training paradigm to build a single transformer for unified multimodal understanding and generation. Specifically, we propose a multimodal warmup strategy utilizing prior knowledge to extend capabilities. To address cross-modal compatibility challenges, we introduce feature pre-scaling and multimodal AdaLN techniques. Integrating the proposed technologies, we present the HaploOmni, a new single multimodal transformer. With limited training costs, HaploOmni achieves competitive performance across multiple image and video understanding and generation benchmarks over advanced unified models. All codes will be made public at https://github.com/Tencent/HaploVLM.
☆ HACo-Det: A Study Towards Fine-Grained Machine-Generated Text Detection under Human-AI Coauthoring
The misuse of large language models (LLMs) poses potential risks, motivating the development of machine-generated text (MGT) detection. Existing literature primarily concentrates on binary, document-level detection, thereby neglecting texts that are composed jointly by human and LLM contributions. Hence, this paper explores the possibility of fine-grained MGT detection under human-AI coauthoring. We suggest fine-grained detectors can pave pathways toward coauthored text detection with a numeric AI ratio. Specifically, we propose a dataset, HACo-Det, which produces human-AI coauthored texts via an automatic pipeline with word-level attribution labels. We retrofit seven prevailing document-level detectors to generalize them to word-level detection. Then we evaluate these detectors on HACo-Det on both word- and sentence-level detection tasks. Empirical results show that metric-based methods struggle to conduct fine-grained detection with a 0.462 average F1 score, while finetuned models show superior performance and better generalization across domains. However, we argue that fine-grained co-authored text detection is far from solved. We further analyze factors influencing performance, e.g., context window, and highlight the limitations of current methods, pointing to potential avenues for improvement.
☆ UniConFlow: A Unified Constrained Generalization Framework for Certified Motion Planning with Flow Matching Models
Generative models have become increasingly powerful tools for robot motion generation, enabling flexible and multimodal trajectory generation across various tasks. Yet, most existing approaches remain limited in handling multiple types of constraints, such as collision avoidance and dynamic consistency, which are often treated separately or only partially considered. This paper proposes UniConFlow, a unified flow matching (FM) based framework for trajectory generation that systematically incorporates both equality and inequality constraints. UniConFlow introduces a novel prescribed-time zeroing function to enhance flexibility during the inference process, allowing the model to adapt to varying task requirements. To ensure constraint satisfaction, particularly with respect to obstacle avoidance, admissible action range, and kinodynamic consistency, the guidance inputs to the FM model are derived through a quadratic programming formulation, which enables constraint-aware generation without requiring retraining or auxiliary controllers. We conduct mobile navigation and high-dimensional manipulation tasks, demonstrating improved safety and feasibility compared to state-of-the-art constrained generative planners. Project page is available at https://uniconflow.github.io.
☆ Interaction Field Matching: Overcoming Limitations of Electrostatic Models
Electrostatic field matching (EFM) has recently appeared as a novel physics-inspired paradigm for data generation and transfer using the idea of an electric capacitor. However, it requires modeling electrostatic fields using neural networks, which is non-trivial because of the necessity to take into account the complex field outside the capacitor plates. In this paper, we propose Interaction Field Matching (IFM), a generalization of EFM which allows using general interaction fields beyond the electrostatic one. Furthermore, inspired by strong interactions between quarks and antiquarks in physics, we design a particular interaction field realization which solves the problems which arise when modeling electrostatic fields in EFM. We show the performance on a series of toy and image data transfer problems.
Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing
Knowledge Tracing (KT) involves monitoring the changes in a student's knowledge over time by analyzing their past responses, with the goal of predicting future performance. However, most existing methods primarily focus on feature enhancement, while overlooking the deficiencies in cognitive representation and the ability to express cognition-issues often caused by interference from non-cognitive factors such as slipping and guessing. This limitation hampers the ability to capture the continuity and coherence of the student's cognitive process. As a result, many methods may introduce more prediction bias and modeling costs due to their inability to maintain cognitive continuity and coherence. Based on the above discussion, we propose the Cognitive Representation Dynamic Programming based Knowledge Tracing (CRDP-KT) model. This model em ploys a dynamic programming algorithm to optimize cognitive representations based on the difficulty of the questions and the performance intervals between them. This approach ensures that the cognitive representation aligns with the student's cognitive patterns, maintaining overall continuity and coherence. As a result, it provides more accurate and systematic input features for subsequent model training, thereby minimizing distortion in the simulation of cognitive states. Additionally, the CRDP-KT model performs partitioned optimization of cognitive representations to enhance the reliability of the optimization process. Furthermore, it improves its ability to express the student's cognition through a weighted fusion of optimized record representations and re lationships learned from a bipartite graph. Finally, experiments conducted on three public datasets validate the effectiveness of the proposed CRDP-KT model.
☆ ThinkTank: A Framework for Generalizing Domain-Specific AI Agent Systems into Universal Collaborative Intelligence Platforms
This paper presents ThinkTank, a comprehensive and scalable framework designed to transform specialized AI agent systems into versatile collaborative intelligence platforms capable of supporting complex problem-solving across diverse domains. ThinkTank systematically generalizes agent roles, meeting structures, and knowledge integration mechanisms by adapting proven scientific collaboration methodologies. Through role abstraction, generalization of meeting types for iterative collaboration, and the integration of Retrieval-Augmented Generation with advanced knowledge storage, the framework facilitates expertise creation and robust knowledge sharing. ThinkTank enables organizations to leverage collaborative AI for knowledge-intensive tasks while ensuring data privacy and security through local deployment, utilizing frameworks like Ollama with models such as Llama3.1. The ThinkTank framework is designed to deliver significant advantages in cost-effectiveness, data security, scalability, and competitive positioning compared to cloud-based alternatives, establishing it as a universal platform for AI-driven collaborative problem-solving. The ThinkTank code is available at https://github.com/taugroup/ThinkTank
☆ The Limits of Predicting Agents from Behaviour
As the complexity of AI systems and their interactions with the world increases, generating explanations for their behaviour is important for safely deploying AI. For agents, the most natural abstractions for predicting behaviour attribute beliefs, intentions and goals to the system. If an agent behaves as if it has a certain goal or belief, then we can make reasonable predictions about how it will behave in novel situations, including those where comprehensive safety evaluations are untenable. How well can we infer an agent's beliefs from their behaviour, and how reliably can these inferred beliefs predict the agent's behaviour in novel situations? We provide a precise answer to this question under the assumption that the agent's behaviour is guided by a world model. Our contribution is the derivation of novel bounds on the agent's behaviour in new (unseen) deployment environments, which represent a theoretical limit for predicting intentional agents from behavioural data alone. We discuss the implications of these results for several research areas including fairness and safety.
☆ Sample, Predict, then Proceed: Self-Verification Sampling for Tool Use of LLMs
Tool use in stateful environments presents unique challenges for large language models (LLMs), where existing test-time compute strategies relying on repeated trials in the environment are impractical. We propose dynamics modelling (DyMo), a method that augments LLMs with a state prediction capability alongside function calling during post-training. This enables LLMs to predict the future states of their actions through an internal environment model. On the Berkeley Function Calling Leaderboard V2, DyMo improves success rates and significantly reduces hallucinations. We further integrate the internal environment model into self-verification sampling (SVS), and show that this substantially improves pass^k over number of trials k, and allows the model to refuse unreliable outputs. Together, DyMo and SVS greatly enhance the effectiveness and reliability of LLMs for tool use. We believe this work charts a path towards scalable planning RL methods for LLM inference without repeatedly querying the oracle environment.
☆ Cell-o1: Training LLMs to Solve Single-Cell Reasoning Puzzles with Reinforcement Learning
Cell type annotation is a key task in analyzing the heterogeneity of single-cell RNA sequencing data. Although recent foundation models automate this process, they typically annotate cells independently, without considering batch-level cellular context or providing explanatory reasoning. In contrast, human experts often annotate distinct cell types for different cell clusters based on their domain knowledge. To mimic this workflow, we introduce the CellPuzzles task, where the objective is to assign unique cell types to a batch of cells. This benchmark spans diverse tissues, diseases, and donor conditions, and requires reasoning across the batch-level cellular context to ensure label uniqueness. We find that off-the-shelf large language models (LLMs) struggle on CellPuzzles, with the best baseline (OpenAI's o1) achieving only 19.0% batch-level accuracy. To fill this gap, we propose Cell-o1, a 7B LLM trained via supervised fine-tuning on distilled reasoning traces, followed by reinforcement learning with batch-level rewards. Cell-o1 achieves state-of-the-art performance, outperforming o1 by over 73% and generalizing well across contexts. Further analysis of training dynamics and reasoning behaviors provides insights into batch-level annotation performance and emergent expert-like reasoning. Code and data are available at https://github.com/ncbi-nlp/cell-o1.
comment: 28 pages; 16 tables; 7 figures; Code: https://github.com/ncbi-nlp/cell-o1
☆ IMPARA-GED: Grammatical Error Detection is Boosting Reference-free Grammatical Error Quality Estimator ACL 2025
We propose IMPARA-GED, a novel reference-free automatic grammatical error correction (GEC) evaluation method with grammatical error detection (GED) capabilities. We focus on the quality estimator of IMPARA, an existing automatic GEC evaluation method, and construct that of IMPARA-GED using a pre-trained language model with enhanced GED capabilities. Experimental results on SEEDA, a meta-evaluation dataset for automatic GEC evaluation methods, demonstrate that IMPARA-GED achieves the highest correlation with human sentence-level evaluations.
comment: ACL 2025 Findings
☆ Scaling Fine-Grained MoE Beyond 50B Parameters: Empirical Evaluation and Practical Insights
Mixture of Experts (MoE) architectures have emerged as pivotal for scaling Large Language Models (LLMs) efficiently. Fine-grained MoE approaches - utilizing more numerous, smaller experts - have demonstrated potential in improving model convergence and quality. This work proposes a set of training recipes and provides a comprehensive empirical evaluation of fine-grained MoE, directly comparing its scaling properties against standard MoE configurations for models with up to 56B total (17B active) parameters. We investigate convergence speed, model performance on downstream benchmarks, and practical training considerations across various setups. Overall, at the largest scale we show that fine-grained MoE achieves better validation loss and higher accuracy across a set of downstream benchmarks. This study offers empirical grounding and practical insights for leveraging fine-grained MoE in the development of future large-scale models.
☆ CoT is Not True Reasoning, It Is Just a Tight Constraint to Imitate: A Theory Perspective
Chain-of-Thought (CoT) prompting has demonstrably enhanced the performance of Large Language Models on tasks requiring multi-step inference. This success has led to widespread claims of emergent reasoning capabilities in these models. In this paper, we present a theoretical counter-perspective: Chain-of-Thought (CoT) does not elicit genuine, abstract reasoning. Instead, we argue that Chain-of-Thought functions as a powerful structural constraint that guides Large Language Models to imitate the form of reasoning. By forcing the generation of intermediate steps, Chain-of-Thought leverages the model immense capacity for sequence prediction and pattern matching, effectively constraining its output to sequences that resemble coherent thought processes. Chain-of-Thought (CoT) prompting has demonstrably enhanced the performance of Large Language Models on tasks requiring multi-step inference. This success has led to widespread claims of emergent reasoning capabilities in these models. In this paper, we present a theoretical counter-perspective: Chain-of-Thought (CoT) does not elicit genuine, abstract reasoning. Instead, we argue that Chain-of-Thought functions as a powerful structural constraint that guides Large Language Models to imitate the form of reasoning. By forcing the generation of intermediate steps, Chain-of-Thought leverages the model immense capacity for sequence prediction and pattern matching, effectively constraining its output to sequences that resemble coherent thought processes.
☆ It's the Thought that Counts: Evaluating the Attempts of Frontier LLMs to Persuade on Harmful Topics
Persuasion is a powerful capability of large language models (LLMs) that both enables beneficial applications (e.g. helping people quit smoking) and raises significant risks (e.g. large-scale, targeted political manipulation). Prior work has found models possess a significant and growing persuasive capability, measured by belief changes in simulated or real users. However, these benchmarks overlook a crucial risk factor: the propensity of a model to attempt to persuade in harmful contexts. Understanding whether a model will blindly ``follow orders'' to persuade on harmful topics (e.g. glorifying joining a terrorist group) is key to understanding the efficacy of safety guardrails. Moreover, understanding if and when a model will engage in persuasive behavior in pursuit of some goal is essential to understanding the risks from agentic AI systems. We propose the Attempt to Persuade Eval (APE) benchmark, that shifts the focus from persuasion success to persuasion attempts, operationalized as a model's willingness to generate content aimed at shaping beliefs or behavior. Our evaluation framework probes frontier LLMs using a multi-turn conversational setup between simulated persuader and persuadee agents. APE explores a diverse spectrum of topics including conspiracies, controversial issues, and non-controversially harmful content. We introduce an automated evaluator model to identify willingness to persuade and measure the frequency and context of persuasive attempts. We find that many open and closed-weight models are frequently willing to attempt persuasion on harmful topics and that jailbreaking can increase willingness to engage in such behavior. Our results highlight gaps in current safety guardrails and underscore the importance of evaluating willingness to persuade as a key dimension of LLM risk. APE is available at github.com/AlignmentResearch/AttemptPersuadeEval
☆ Surfer-H Meets Holo1: Cost-Efficient Web Agent Powered by Open Weights
We present Surfer-H, a cost-efficient web agent that integrates Vision-Language Models (VLM) to perform user-defined tasks on the web. We pair it with Holo1, a new open-weight collection of VLMs specialized in web navigation and information extraction. Holo1 was trained on carefully curated data sources, including open-access web content, synthetic examples, and self-produced agentic data. Holo1 tops generalist User Interface (UI) benchmarks as well as our new web UI localization benchmark, WebClick. When powered by Holo1, Surfer-H achieves a 92.2% state-of-the-art performance on WebVoyager, striking a Pareto-optimal balance between accuracy and cost-efficiency. To accelerate research advancement in agentic systems, we are open-sourcing both our WebClick evaluation dataset and the Holo1 model weights.
comment: Alphabetical order
☆ BNPO: Beta Normalization Policy Optimization
Recent studies, including DeepSeek-R1 and Kimi-k1.5, have demonstrated that reinforcement learning with rule-based, binary-valued reward functions can significantly enhance the reasoning capabilities of large language models. These models primarily utilize REINFORCE-based policy optimization techniques, such as REINFORCE with baseline and group relative policy optimization (GRPO). However, a key limitation remains: current policy optimization methods either neglect reward normalization or employ static normalization strategies, which fail to adapt to the dynamic nature of policy updates during training. This may result in unstable gradient estimates and hinder training stability. To address this issue, we propose Beta Normalization Policy Optimization (BNPO), a novel policy optimization method that adaptively normalizes rewards using a Beta distribution with dynamically updated parameters. BNPO aligns the normalization with the changing policy distribution, enabling more precise and lower-variance gradient estimation, which in turn promotes stable training dynamics. We provide theoretical analysis demonstrating BNPO's variance-reducing properties and show that it generalizes both REINFORCE and GRPO under binary-valued reward settings. Furthermore, we introduce an advantage decomposition mechanism to extend BNPO's applicability to more complex reward systems. Experimental results confirm that BNPO achieves state-of-the-art performance among policy optimization methods on reasoning tasks. The code is available at https://github.com/changyi7231/BNPO.
☆ CapSpeech: Enabling Downstream Applications in Style-Captioned Text-to-Speech
Recent advancements in generative artificial intelligence have significantly transformed the field of style-captioned text-to-speech synthesis (CapTTS). However, adapting CapTTS to real-world applications remains challenging due to the lack of standardized, comprehensive datasets and limited research on downstream tasks built upon CapTTS. To address these gaps, we introduce CapSpeech, a new benchmark designed for a series of CapTTS-related tasks, including style-captioned text-to-speech synthesis with sound events (CapTTS-SE), accent-captioned TTS (AccCapTTS), emotion-captioned TTS (EmoCapTTS), and text-to-speech synthesis for chat agent (AgentTTS). CapSpeech comprises over 10 million machine-annotated audio-caption pairs and nearly 0.36 million human-annotated audio-caption pairs. In addition, we introduce two new datasets collected and recorded by a professional voice actor and experienced audio engineers, specifically for the AgentTTS and CapTTS-SE tasks. Alongside the datasets, we conduct comprehensive experiments using both autoregressive and non-autoregressive models on CapSpeech. Our results demonstrate high-fidelity and highly intelligible speech synthesis across a diverse range of speaking styles. To the best of our knowledge, CapSpeech is the largest available dataset offering comprehensive annotations for CapTTS-related tasks. The experiments and findings further provide valuable insights into the challenges of developing CapTTS systems.
☆ Tru-POMDP: Task Planning Under Uncertainty via Tree of Hypotheses and Open-Ended POMDPs
Task planning under uncertainty is essential for home-service robots operating in the real world. Tasks involve ambiguous human instructions, hidden or unknown object locations, and open-vocabulary object types, leading to significant open-ended uncertainty and a boundlessly large planning space. To address these challenges, we propose Tru-POMDP, a planner that combines structured belief generation using Large Language Models (LLMs) with principled POMDP planning. Tru-POMDP introduces a hierarchical Tree of Hypotheses (TOH), which systematically queries an LLM to construct high-quality particle beliefs over possible world states and human goals. We further formulate an open-ended POMDP model that enables rigorous Bayesian belief tracking and efficient belief-space planning over these LLM-generated hypotheses. Experiments on complex object rearrangement tasks across diverse kitchen environments show that Tru-POMDP significantly outperforms state-of-the-art LLM-based and LLM-tree-search hybrid planners, achieving higher success rates with significantly better plans, stronger robustness to ambiguity and occlusion, and greater planning efficiency.
☆ ATAG: AI-Agent Application Threat Assessment with Attack Graphs
Evaluating the security of multi-agent systems (MASs) powered by large language models (LLMs) is challenging, primarily because of the systems' complex internal dynamics and the evolving nature of LLM vulnerabilities. Traditional attack graph (AG) methods often lack the specific capabilities to model attacks on LLMs. This paper introduces AI-agent application Threat assessment with Attack Graphs (ATAG), a novel framework designed to systematically analyze the security risks associated with AI-agent applications. ATAG extends the MulVAL logic-based AG generation tool with custom facts and interaction rules to accurately represent AI-agent topologies, vulnerabilities, and attack scenarios. As part of this research, we also created the LLM vulnerability database (LVD) to initiate the process of standardizing LLM vulnerabilities documentation. To demonstrate ATAG's efficacy, we applied it to two multi-agent applications. Our case studies demonstrated the framework's ability to model and generate AGs for sophisticated, multi-step attack scenarios exploiting vulnerabilities such as prompt injection, excessive agency, sensitive information disclosure, and insecure output handling across interconnected agents. ATAG is an important step toward a robust methodology and toolset to help understand, visualize, and prioritize complex attack paths in multi-agent AI systems (MAASs). It facilitates proactive identification and mitigation of AI-agent threats in multi-agent applications.
☆ DGMO: Training-Free Audio Source Separation through Diffusion-Guided Mask Optimization
Language-queried Audio Source Separation (LASS) enables open-vocabulary sound separation via natural language queries. While existing methods rely on task-specific training, we explore whether pretrained diffusion models, originally designed for audio generation, can inherently perform separation without further training. In this study, we introduce a training-free framework leveraging generative priors for zero-shot LASS. Analyzing na\"ive adaptations, we identify key limitations arising from modality-specific challenges.To address these issues, we propose Diffusion-Guided Mask Optimization (DGMO), a test-time optimization framework that refines spectrogram masks for precise, input-aligned separation. Our approach effectively repurposes pretrained diffusion models for source separation, achieving competitive performance without task-specific supervision. This work expands the application of diffusion models beyond generation, establishing a new paradigm for zero-shot audio separation. The code is available at: https://wltschmrz.github.io/DGMO/
comment: Interspeech 2025
☆ Sheaves Reloaded: A Directional Awakening
Sheaf Neural Networks (SNNs) represent a powerful generalization of Graph Neural Networks (GNNs) that significantly improve our ability to model complex relational data. While directionality has been shown to substantially boost performance in graph learning tasks and is key to many real-world applications, existing SNNs fall short in representing it. To address this limitation, we introduce the Directed Cellular Sheaf, a special type of cellular sheaf designed to explicitly account for edge orientation. Building on this structure, we define a new sheaf Laplacian, the Directed Sheaf Laplacian, which captures both the graph's topology and its directional information. This operator serves as the backbone of the Directed Sheaf Neural Network (DSNN), the first SNN model to embed a directional bias into its architecture. Extensive experiments on nine real-world benchmarks show that DSNN consistently outperforms baseline methods.
☆ DeepShop: A Benchmark for Deep Research Shopping Agents
Web agents for online shopping have shown great promise in automating user interactions across e-commerce platforms. Benchmarks for assessing such agents do not reflect the complexity of real-world shopping scenarios, as they often consist of overly simple queries with deterministic paths, such as "Find iPhone 15." Real shopping scenarios are inherently more layered, involving multi-dimensional product attributes, search filters, and user-specific sorting preferences. To address this gap, we introduce DeepShop, a benchmark designed to evaluate web agents in complex and realistic online shopping environments. DeepShop comprises three key components. (1) Query diversity evolution: Starting from real user queries, we generate diverse queries across five popular online shopping domains. (2) Query complexity evolution: We further evolve these queries to increase complexity, considering product attributes, search filters, and sorting preferences, and classify them into three levels: easy, medium, and hard, based on the number of evolutions. (3) Fine-grained and holistic evaluation: We propose an automated evaluation framework that assesses agent performance in terms of fine-grained aspects (product attributes, search filters, and sorting preferences) and reports the overall success rate through holistic evaluation. We conduct a systematic evaluation of retrieval-augmented generation (RAG) methods, web agents, and deep research systems. Results show that RAG struggles with complex queries due to its lack of web interaction, while other methods face significant challenges with filters and sorting preferences, leading to low overall success rates. We also perform cross-category, complexity-based evaluations and error analyses to support the advancement of deep research shopping agents.
☆ TaxAgent: How Large Language Model Designs Fiscal Policy ICME 2025
Economic inequality is a global challenge, intensifying disparities in education, healthcare, and social stability. Traditional systems like the U.S. federal income tax reduce inequality but lack adaptability. Although models like the Saez Optimal Taxation adjust dynamically, they fail to address taxpayer heterogeneity and irrational behavior. This study introduces TaxAgent, a novel integration of large language models (LLMs) with agent-based modeling (ABM) to design adaptive tax policies. In our macroeconomic simulation, heterogeneous H-Agents (households) simulate real-world taxpayer behaviors while the TaxAgent (government) utilizes LLMs to iteratively optimize tax rates, balancing equity and productivity. Benchmarked against Saez Optimal Taxation, U.S. federal income taxes, and free markets, TaxAgent achieves superior equity-efficiency trade-offs. This research offers a novel taxation solution and a scalable, data-driven framework for fiscal policy evaluation.
comment: Accepted as oral presentation at ICME 2025
☆ Optimising the attribute order in Fuzzy Rough Rule Induction
Interpretability is the next pivotal frontier in machine learning research. In the pursuit of glass box models - as opposed to black box models, like random forests or neural networks - rule induction algorithms are a logical and promising avenue, as the rules can easily be understood by humans. In our previous work, we introduced FRRI, a novel rule induction algorithm based on fuzzy rough set theory. We demonstrated experimentally that FRRI outperformed other rule induction methods with regards to accuracy and number of rules. FRRI leverages a fuzzy indiscernibility relation to partition the data space into fuzzy granules, which are then combined into a minimal covering set of rules. This indiscernibility relation is constructed by removing attributes from rules in a greedy way. This raises the question: does the order of the attributes matter? In this paper, we show that optimising only the order of attributes using known methods from fuzzy rough set theory and classical machine learning does not improve the performance of FRRI on multiple metrics. However, removing a small number of attributes using fuzzy rough feature selection during this step positively affects balanced accuracy and the average rule length.
comment: This is the author's version of the work accepted for publication in Lecture Notes in Computer Science. The final publication is available at Springer via https://doi.org/10.1007/978-3-031-92747-8_16
☆ Deep Learning Enhanced Multivariate GARCH
This paper introduces a novel multivariate volatility modeling framework, named Long Short-Term Memory enhanced BEKK (LSTM-BEKK), that integrates deep learning into multivariate GARCH processes. By combining the flexibility of recurrent neural networks with the econometric structure of BEKK models, our approach is designed to better capture nonlinear, dynamic, and high-dimensional dependence structures in financial return data. The proposed model addresses key limitations of traditional multivariate GARCH-based methods, particularly in capturing persistent volatility clustering and asymmetric co-movement across assets. Leveraging the data-driven nature of LSTMs, the framework adapts effectively to time-varying market conditions, offering improved robustness and forecasting performance. Empirical results across multiple equity markets confirm that the LSTM-BEKK model achieves superior performance in terms of out-of-sample portfolio risk forecast, while maintaining the interpretability from the BEKK models. These findings highlight the potential of hybrid econometric-deep learning models in advancing financial risk management and multivariate volatility forecasting.
☆ PhysGaia: A Physics-Aware Dataset of Multi-Body Interactions for Dynamic Novel View Synthesis
We introduce PhysGaia, a novel physics-aware dataset specifically designed for Dynamic Novel View Synthesis (DyNVS), encompassing both structured objects and unstructured physical phenomena. Unlike existing datasets that primarily focus on photorealistic reconstruction, PhysGaia is created to actively support physics-aware dynamic scene modeling. Our dataset provides complex dynamic scenarios with rich interactions among multiple objects, where they realistically collide with each other and exchange forces. Furthermore, it contains a diverse range of physical materials, such as liquid, gas, viscoelastic substance, and textile, which moves beyond the rigid bodies prevalent in existing datasets. All scenes in PhysGaia are faithfully generated to strictly adhere to physical laws, leveraging carefully selected material-specific physics solvers. To enable quantitative evaluation of physical modeling, our dataset provides essential ground-truth information, including 3D particle trajectories and physics parameters, e.g., viscosity. To facilitate research adoption, we also provide essential integration pipelines for using state-of-the-art DyNVS models with our dataset and report their results. By addressing the critical lack of datasets for physics-aware modeling, PhysGaia will significantly advance research in dynamic view synthesis, physics-based scene understanding, and deep learning models integrated with physical simulation -- ultimately enabling more faithful reconstruction and interpretation of complex dynamic scenes. Our datasets and codes are available in the project website, http://cvlab.snu.ac.kr/research/PhysGaia.
comment: Project page: http://cvlab.snu.ac.kr/research/PhysGaia, Data: https://huggingface.co/datasets/mijeongkim/PhysGaia/tree/main
☆ Rethinking the effects of data contamination in Code Intelligence
In recent years, code intelligence has gained increasing importance in the field of automated software engineering. Meanwhile, the widespread adoption of Pretrained Language Models (PLMs) and Large Language Models (LLMs) has raised concerns regarding data contamination and its potential impact on model performance evaluation. This paper presents a systematic empirical study to investigate the fine-grained data contamination on code intelligence tasks. Our study involves diverse representative PLMs, namely RoBERTa and GPT-2, and LLMs, namely LLaMA and StarCoder, covering three major tasks: code translation, code generation, and code summarization. We categorize contamination scenarios into four types according to the code intelligence practice, namely input-only, output-only, unpaired, and paired contamination settings, and construct corresponding experimental and control groups for exploration. Experimental results show that, under the pre-training, fine-tuning, and inference paradigm adopted by PLMs, even deliberately injecting paired contamination does not lead to significant performance overestimation. But direct inference or small-scale fine-tuning uncovers the contamination effects. In contrast, LLMs with pre-training and inference paradigm are significantly affected by the paired contamination. Apart from the above, other contamination scenarios have no impact on both PLMs and LLMs. Our findings challenge the conventional belief that contamination inevitably leads to performance overestimation, providing new insights into the evaluation and deployment of code intelligence models.
☆ Rethinking Dynamic Networks and Heterogeneous Computing with Automatic Parallelization
Hybrid parallelism techniques are essential for efficiently training large language models (LLMs). Nevertheless, current automatic parallel planning frameworks often overlook the simultaneous consideration of node heterogeneity and dynamic network topology changes, limiting their effectiveness in practical applications. In this paper, we address these limitations by modeling heterogeneous nodes within dynamically changing network environments and leveraging simulation-based strategies to determine optimal parallel configurations. Our approach enables fine-grained workload allocation tailored for heterogeneous nodes and complex network scenarios, achieving performance competitive with state-of-the-art methods under regular and stable network conditions. Additionally, we introduce a strategy pruning technique to rapidly discard infeasible parallel configurations, substantially reducing the search space and accelerating the search process through parallel execution within the simulator. Preliminary evaluations confirm that our method notably enhances training performance on heterogeneous nodes and demonstrates improved adaptability in complex, dynamic scenarios such as cloud computing environments.
☆ AI-Driven Vehicle Condition Monitoring with Cell-Aware Edge Service Migration
Artificial intelligence (AI) has been increasingly applied to the condition monitoring of vehicular equipment, aiming to enhance maintenance strategies, reduce costs, and improve safety. Leveraging the edge computing paradigm, AI-based condition monitoring systems process vast streams of vehicular data to detect anomalies and optimize operational performance. In this work, we introduce a novel vehicle condition monitoring service that enables real-time diagnostics of a diverse set of anomalies while remaining practical for deployment in real-world edge environments. To address mobility challenges, we propose a closed-loop service orchestration framework where service migration across edge nodes is dynamically triggered by network-related metrics. Our approach has been implemented and tested in a real-world race circuit environment equipped with 5G network capabilities under diverse operational conditions. Experimental results demonstrate the effectiveness of our framework in ensuring low-latency AI inference and adaptive service placement, highlighting its potential for intelligent transportation and mobility applications.
comment: 6 pages, 8 figures
Unified Attention Modeling for Efficient Free-Viewing and Visual Search via Shared Representations
Computational human attention modeling in free-viewing and task-specific settings is often studied separately, with limited exploration of whether a common representation exists between them. This work investigates this question and proposes a neural network architecture that builds upon the Human Attention transformer (HAT) to test the hypothesis. Our results demonstrate that free-viewing and visual search can efficiently share a common representation, allowing a model trained in free-viewing attention to transfer its knowledge to task-driven visual search with a performance drop of only 3.86% in the predicted fixation scanpaths, measured by the semantic sequence score (SemSS) metric which reflects the similarity between predicted and human scanpaths. This transfer reduces computational costs by 92.29% in terms of GFLOPs and 31.23% in terms of trainable parameters.
comment: Accepted to the 2025 IEEE International Conference on Development and Learning (ICDL)
☆ Rethinking Machine Unlearning in Image Generation Models CCS 2025
With the surge and widespread application of image generation models, data privacy and content safety have become major concerns and attracted great attention from users, service providers, and policymakers. Machine unlearning (MU) is recognized as a cost-effective and promising means to address these challenges. Despite some advancements, image generation model unlearning (IGMU) still faces remarkable gaps in practice, e.g., unclear task discrimination and unlearning guidelines, lack of an effective evaluation framework, and unreliable evaluation metrics. These can hinder the understanding of unlearning mechanisms and the design of practical unlearning algorithms. We perform exhaustive assessments over existing state-of-the-art unlearning algorithms and evaluation standards, and discover several critical flaws and challenges in IGMU tasks. Driven by these limitations, we make several core contributions, to facilitate the comprehensive understanding, standardized categorization, and reliable evaluation of IGMU. Specifically, (1) We design CatIGMU, a novel hierarchical task categorization framework. It provides detailed implementation guidance for IGMU, assisting in the design of unlearning algorithms and the construction of testbeds. (2) We introduce EvalIGMU, a comprehensive evaluation framework. It includes reliable quantitative metrics across five critical aspects. (3) We construct DataIGM, a high-quality unlearning dataset, which can be used for extensive evaluations of IGMU, training content detectors for judgment, and benchmarking the state-of-the-art unlearning algorithms. With EvalIGMU and DataIGM, we discover that most existing IGMU algorithms cannot handle the unlearning well across different evaluation dimensions, especially for preservation and robustness. Code and models are available at https://github.com/ryliu68/IGMU.
comment: Accepted by ACM CCS 2025
☆ Exploiting the English Vocabulary Profile for L2 word-level vocabulary assessment with LLMs
Vocabulary use is a fundamental aspect of second language (L2) proficiency. To date, its assessment by automated systems has typically examined the context-independent, or part-of-speech (PoS) related use of words. This paper introduces a novel approach to enable fine-grained vocabulary evaluation exploiting the precise use of words within a sentence. The scheme combines large language models (LLMs) with the English Vocabulary Profile (EVP). The EVP is a standard lexical resource that enables in-context vocabulary use to be linked with proficiency level. We evaluate the ability of LLMs to assign proficiency levels to individual words as they appear in L2 learner writing, addressing key challenges such as polysemy, contextual variation, and multi-word expressions. We compare LLMs to a PoS-based baseline. LLMs appear to exploit additional semantic information that yields improved performance. We also explore correlations between word-level proficiency and essay-level proficiency. Finally, the approach is applied to examine the consistency of the EVP proficiency levels. Results show that LLMs are well-suited for the task of vocabulary assessment.
comment: Accepted to the 20th Workshop on Innovative Use of NLP for Building Educational Applications
☆ Investigating Mask-aware Prototype Learning for Tabular Anomaly Detection
Tabular anomaly detection, which aims at identifying deviant samples, has been crucial in a variety of real-world applications, such as medical disease identification, financial fraud detection, intrusion monitoring, etc. Although recent deep learning-based methods have achieved competitive performances, these methods suffer from representation entanglement and the lack of global correlation modeling, which hinders anomaly detection performance. To tackle the problem, we incorporate mask modeling and prototype learning into tabular anomaly detection. The core idea is to design learnable masks by disentangled representation learning within a projection space and extracting normal dependencies as explicit global prototypes. Specifically, the overall model involves two parts: (i) During encoding, we perform mask modeling in both the data space and projection space with orthogonal basis vectors for learning shared disentangled normal patterns; (ii) During decoding, we decode multiple masked representations in parallel for reconstruction and learn association prototypes to extract normal characteristic correlations. Our proposal derives from a distribution-matching perspective, where both projection space learning and association prototype learning are formulated as optimal transport problems, and the calibration distances are utilized to refine the anomaly scores. Quantitative and qualitative experiments on 20 tabular benchmarks demonstrate the effectiveness and interpretability of our model.
comment: 12 pages, 11 figures
☆ Knowledge Graph Completion by Intermediate Variables Regularization
Knowledge graph completion (KGC) can be framed as a 3-order binary tensor completion task. Tensor decomposition-based (TDB) models have demonstrated strong performance in KGC. In this paper, we provide a summary of existing TDB models and derive a general form for them, serving as a foundation for further exploration of TDB models. Despite the expressiveness of TDB models, they are prone to overfitting. Existing regularization methods merely minimize the norms of embeddings to regularize the model, leading to suboptimal performance. Therefore, we propose a novel regularization method for TDB models that addresses this limitation. The regularization is applicable to most TDB models and ensures tractable computation. Our method minimizes the norms of intermediate variables involved in the different ways of computing the predicted tensor. To support our regularization method, we provide a theoretical analysis that proves its effect in promoting low trace norm of the predicted tensor to reduce overfitting. Finally, we conduct experiments to verify the effectiveness of our regularization technique as well as the reliability of our theoretical analysis. The code is available at https://github.com/changyi7231/IVR.
☆ Solving the Pod Repositioning Problem with Deep Reinforced Adaptive Large Neighborhood Search
The Pod Repositioning Problem (PRP) in Robotic Mobile Fulfillment Systems (RMFS) involves selecting optimal storage locations for pods returning from pick stations. This work presents an improved solution method that integrates Adaptive Large Neighborhood Search (ALNS) with Deep Reinforcement Learning (DRL). A DRL agent dynamically selects destroy and repair operators and adjusts key parameters such as destruction degree and acceptance thresholds during the search. Specialized heuristics for both operators are designed to reflect PRP-specific characteristics, including pod usage frequency and movement costs. Computational results show that this DRL-guided ALNS outperforms traditional approaches such as cheapest-place, fixed-place, binary integer programming, and static heuristics. The method demonstrates strong solution quality and illustrating the benefit of learning-driven control within combinatorial optimization for warehouse systems.
comment: 14 pages, 2 figures, conference
☆ Enriching Location Representation with Detailed Semantic Information
Spatial representations that capture both structural and semantic characteristics of urban environments are essential for urban modeling. Traditional spatial embeddings often prioritize spatial proximity while underutilizing fine-grained contextual information from places. To address this limitation, we introduce CaLLiPer+, an extension of the CaLLiPer model that systematically integrates Point-of-Interest (POI) names alongside categorical labels within a multimodal contrastive learning framework. We evaluate its effectiveness on two downstream tasks, land use classification and socioeconomic status distribution mapping, demonstrating consistent performance gains of 4% to 11% over baseline methods. Additionally, we show that incorporating POI names enhances location retrieval, enabling models to capture complex urban concepts with greater precision. Ablation studies further reveal the complementary role of POI names and the advantages of leveraging pretrained text encoders for spatial representations. Overall, our findings highlight the potential of integrating fine-grained semantic attributes and multimodal learning techniques to advance the development of urban foundation models.
☆ Prompt-Unseen-Emotion: Zero-shot Expressive Speech Synthesis with Prompt-LLM Contextual Knowledge for Mixed Emotions
Existing expressive text-to-speech (TTS) systems primarily model a limited set of categorical emotions, whereas human conversations extend far beyond these predefined emotions, making it essential to explore more diverse emotional speech generation for more natural interactions. To bridge this gap, this paper proposes a novel prompt-unseen-emotion (PUE) approach to generate unseen emotional speech via emotion-guided prompt learning. PUE is trained utilizing an LLM-TTS architecture to ensure emotional consistency between categorical emotion-relevant prompts and emotional speech, allowing the model to quantitatively capture different emotion weightings per utterance. During inference, mixed emotional speech can be generated by flexibly adjusting emotion proportions and leveraging LLM contextual knowledge, enabling the model to quantify different emotional styles. Our proposed PUE successfully facilitates expressive speech synthesis of unseen emotions in a zero-shot setting.
☆ Why do AI agents communicate in human language?
Large Language Models (LLMs) have become foundational to modern AI agent systems, enabling autonomous agents to reason and plan. In most existing systems, inter-agent communication relies primarily on natural language. While this design supports interpretability and human oversight, we argue that it introduces fundamental limitations in agent-to-agent coordination. The semantic space of natural language is structurally misaligned with the high-dimensional vector spaces in which LLMs operate, resulting in information loss and behavioral drift. Beyond surface-level inefficiencies, we highlight a deeper architectural limitation: current LLMs were not trained with the objective of supporting agentic behavior. As such, they lack mechanisms for modeling role continuity, task boundaries, and multi-agent dependencies. The standard next-token prediction paradigm fails to support the structural alignment required for robust, scalable agent coordination. Based on this, we argue that two core questions deserve careful examination: first, given that AI agents fundamentally operate in high-dimensional vector spaces, should they rely on a language system originally designed for human cognition as their communication medium? Second, should we consider developing a new model construction paradigm that builds models from the ground up to natively support structured communication, shared intentionality, and task alignment in multi-role, multi-agent environments? This paper calls for a reconsideration not only of how agents should communicate, but also of what it fundamentally means to train a model that natively supports multi-agent coordination and communication.
☆ LinkTo-Anime: A 2D Animation Optical Flow Dataset from 3D Model Rendering
Existing optical flow datasets focus primarily on real-world simulation or synthetic human motion, but few are tailored to Celluloid(cel) anime character motion: a domain with unique visual and motion characteristics. To bridge this gap and facilitate research in optical flow estimation and downstream tasks such as anime video generation and line drawing colorization, we introduce LinkTo-Anime, the first high-quality dataset specifically designed for cel anime character motion generated with 3D model rendering. LinkTo-Anime provides rich annotations including forward and backward optical flow, occlusion masks, and Mixamo Skeleton. The dataset comprises 395 video sequences, totally 24,230 training frames, 720 validation frames, and 4,320 test frames. Furthermore, a comprehensive benchmark is constructed with various optical flow estimation methods to analyze the shortcomings and limitations across multiple datasets.
☆ RACE-Align: Retrieval-Augmented and Chain-of-Thought Enhanced Preference Alignment for Large Language Models
Large Language Models (LLMs) struggle with accuracy, domain-specific reasoning, and interpretability in vertical domains. Traditional preference alignment methods like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) often overlook the underlying knowledge sources and reasoning logic. This paper introduces RACE-Align (Retrieval-Augmented and Chain-of-Thought Enhanced Alignment), a novel framework designed to address these limitations. RACE-Align systematically constructs a binary preference dataset incorporating external knowledge support and explicit Chain-of-Thought (CoT) reasoning, then aligns LLMs using the DPO algorithm. The core innovation lies in its preference data construction strategy: it integrates AI-driven retrieval for factual grounding, enhancing knowledgeability and accuracy, and emphasizes the optimization of domain-specific CoT, treating the reasoning process itself as a key preference dimension. A multi-stage, AI-driven refinement pipeline cost-effectively generates these preference pairs. Experimental validation in Traditional Chinese Medicine (TCM) using Qwen3-1.7B as the base model demonstrates that RACE-Align significantly outperforms the original base model and a model fine-tuned only with Supervised Fine-Tuning (SFT). Improvements were observed across multiple dimensions, including answer accuracy, information richness, application of TCM thinking patterns, logicality and depth of reasoning, and interpretability. These findings suggest RACE-Align offers an effective pathway to enhance LLMs' knowledge application, reasoning reliability, and process transparency in complex vertical domains.
☆ Benchmarking and Advancing Large Language Models for Local Life Services KDD 2025
Large language models (LLMs) have exhibited remarkable capabilities and achieved significant breakthroughs across various domains, leading to their widespread adoption in recent years. Building on this progress, we investigate their potential in the realm of local life services. In this study, we establish a comprehensive benchmark and systematically evaluate the performance of diverse LLMs across a wide range of tasks relevant to local life services. To further enhance their effectiveness, we explore two key approaches: model fine-tuning and agent-based workflows. Our findings reveal that even a relatively compact 7B model can attain performance levels comparable to a much larger 72B model, effectively balancing inference cost and model capability. This optimization greatly enhances the feasibility and efficiency of deploying LLMs in real-world online services, making them more practical and accessible for local life applications.
comment: KDD 2025
☆ Heterogeneous Group-Based Reinforcement Learning for LLM-based Multi-Agent Systems
Large Language Models (LLMs) have achieved remarkable success across diverse natural language processing tasks, yet their deployment in real-world applications is hindered by fixed knowledge cutoffs and difficulties in generating controllable, accurate outputs in a single inference. Multi-agent systems (MAS) built from specialized LLM agents offer a promising solution, enabling dynamic collaboration and iterative reasoning. However, optimizing these systems remains a challenge, as conventional methods such as prompt engineering and supervised fine-tuning entail high engineering overhead and limited adaptability. Reinforcement learning (RL), particularly multi-agent reinforcement learning (MARL), provides a scalable framework by refining agent policies based on system-level feedback. Nevertheless, existing MARL algorithms, such as Multi-Agent Proximal Policy Optimization (MAPPO), rely on Critic networks, which can cause training instability and increase computational burden. To address these limitations and target the prototypical Multi-Agent Search System (MASS), we propose Multi-Agent Heterogeneous Group Policy Optimization (MHGPO), a novel Critic-free algorithm that guides policy updates by estimating relative reward advantages across heterogeneous groups of rollouts. MHGPO eliminates the need for Critic networks, enhancing stability and reducing computational overhead. Additionally, we introduce three group rollout sampling strategies that trade off between efficiency and effectiveness. Experiments on a multi-agent LLM-based search system demonstrate that MHGPO consistently outperforms MAPPO in both task performance and computational efficiency, without requiring warm-up, underscoring its potential for stable and scalable optimization of complex LLM-based MAS.
☆ Open-Set Living Need Prediction with Large Language Models ACL 2025
Living needs are the needs people generate in their daily lives for survival and well-being. On life service platforms like Meituan, user purchases are driven by living needs, making accurate living need predictions crucial for personalized service recommendations. Traditional approaches treat this prediction as a closed-set classification problem, severely limiting their ability to capture the diversity and complexity of living needs. In this work, we redefine living need prediction as an open-set classification problem and propose PIGEON, a novel system leveraging large language models (LLMs) for unrestricted need prediction. PIGEON first employs a behavior-aware record retriever to help LLMs understand user preferences, then incorporates Maslow's hierarchy of needs to align predictions with human living needs. For evaluation and application, we design a recall module based on a fine-tuned text embedding model that links flexible need descriptions to appropriate life services. Extensive experiments on real-world datasets demonstrate that PIGEON significantly outperforms closed-set approaches on need-based life service recall by an average of 19.37%. Human evaluation validates the reasonableness and specificity of our predictions. Additionally, we employ instruction tuning to enable smaller LLMs to achieve competitive performance, supporting practical deployment.
comment: ACL 2025 Findings
☆ Data Leakage and Deceptive Performance: A Critical Examination of Credit Card Fraud Detection Methodologies
This study critically examines the methodological rigor in credit card fraud detection research, revealing how fundamental evaluation flaws can overshadow algorithmic sophistication. Through deliberate experimentation with improper evaluation protocols, we demonstrate that even simple models can achieve deceptively impressive results when basic methodological principles are violated. Our analysis identifies four critical issues plaguing current approaches: (1) pervasive data leakage from improper preprocessing sequences, (2) intentional vagueness in methodological reporting, (3) inadequate temporal validation for transaction data, and (4) metric manipulation through recall optimization at precision's expense. We present a case study showing how a minimal neural network architecture with data leakage outperforms many sophisticated methods reported in literature, achieving 99.9\% recall despite fundamental evaluation flaws. These findings underscore that proper evaluation methodology matters more than model complexity in fraud detection research. The study serves as a cautionary example of how methodological rigor must precede architectural sophistication, with implications for improving research practices across machine learning applications.
☆ Shaking to Reveal: Perturbation-Based Detection of LLM Hallucinations
Hallucination remains a key obstacle to the reliable deployment of large language models (LLMs) in real-world question answering tasks. A widely adopted strategy to detect hallucination, known as self-assessment, relies on the model's own output confidence to estimate the factual accuracy of its answers. However, this strategy assumes that the model's output distribution closely reflects the true data distribution, which may not always hold in practice. As bias accumulates through the model's layers, the final output can diverge from the underlying reasoning process, making output-level confidence an unreliable signal for hallucination detection. In this work, we propose Sample-Specific Prompting (SSP), a new framework that improves self-assessment by analyzing perturbation sensitivity at intermediate representations. These representations, being less influenced by model bias, offer a more faithful view of the model's latent reasoning process. Specifically, SSP dynamically generates noise prompts for each input and employs a lightweight encoder to amplify the changes in representations caused by the perturbation. A contrastive distance metric is then used to quantify these differences and separate truthful from hallucinated responses. By leveraging the dynamic behavior of intermediate representations under perturbation, SSP enables more reliable self-assessment. Extensive experiments demonstrate that SSP significantly outperforms prior methods across a range of hallucination detection benchmarks.
☆ XicorAttention: Time Series Transformer Using Attention with Nonlinear Correlation
Various Transformer-based models have been proposed for time series forecasting. These models leverage the self-attention mechanism to capture long-term temporal or variate dependencies in sequences. Existing methods can be divided into two approaches: (1) reducing computational cost of attention by making the calculations sparse, and (2) reshaping the input data to aggregate temporal features. However, existing attention mechanisms may not adequately capture inherent nonlinear dependencies present in time series data, leaving room for improvement. In this study, we propose a novel attention mechanism based on Chatterjee's rank correlation coefficient, which measures nonlinear dependencies between variables. Specifically, we replace the matrix multiplication in standard attention mechanisms with this rank coefficient to measure the query-key relationship. Since computing Chatterjee's correlation coefficient involves sorting and ranking operations, we introduce a differentiable approximation employing SoftSort and SoftRank. Our proposed mechanism, ``XicorAttention,'' integrates it into several state-of-the-art Transformer models. Experimental results on real-world datasets demonstrate that incorporating nonlinear correlation into the attention improves forecasting accuracy by up to approximately 9.1\% compared to existing models.
☆ Self-Disentanglement and Re-Composition for Cross-Domain Few-Shot Segmentation ICML 2025
Cross-Domain Few-Shot Segmentation (CD-FSS) aims to transfer knowledge from a source-domain dataset to unseen target-domain datasets with limited annotations. Current methods typically compare the distance between training and testing samples for mask prediction. However, we find an entanglement problem exists in this widely adopted method, which tends to bind sourcedomain patterns together and make each of them hard to transfer. In this paper, we aim to address this problem for the CD-FSS task. We first find a natural decomposition of the ViT structure, based on which we delve into the entanglement problem for an interpretation. We find the decomposed ViT components are crossly compared between images in distance calculation, where the rational comparisons are entangled with those meaningless ones by their equal importance, leading to the entanglement problem. Based on this interpretation, we further propose to address the entanglement problem by learning to weigh for all comparisons of ViT components, which learn disentangled features and re-compose them for the CD-FSS task, benefiting both the generalization and finetuning. Experiments show that our model outperforms the state-of-the-art CD-FSS method by 1.92% and 1.88% in average accuracy under 1-shot and 5-shot settings, respectively.
comment: Accepted by ICML 2025
☆ EvaLearn: Quantifying the Learning Capability and Efficiency of LLMs via Sequential Problem Solving
We introduce EvaLearn, a pioneering benchmark designed to evaluate large language models (LLMs) on their learning capability and efficiency in challenging tasks, a critical, yet underexplored aspect of model potential. EvaLearn contains 648 challenging problems across six task types, grouped into 182 sequences, each sequence dedicated to one task type. Diverging from most existing benchmarks that evaluate models in parallel, EvaLearn requires models to solve problems sequentially, allowing them to leverage the experience gained from previous solutions. EvaLearn provides five comprehensive automated metrics to evaluate models and quantify their learning capability and efficiency. We extensively benchmark nine frontier models and observe varied performance profiles: some models, such as Claude-3.7-sonnet, start with moderate initial performance but exhibit strong learning ability, while some models struggle to benefit from experience and may even show negative transfer. Moreover, we investigate model performance under two learning settings and find that instance-level rubrics and teacher-model feedback further facilitate model learning. Importantly, we observe that current LLMs with stronger static abilities do not show a clear advantage in learning capability across all tasks, highlighting that EvaLearn evaluates a new dimension of model performance. We hope EvaLearn provides a novel evaluation perspective for assessing LLM potential and understanding the gap between models and human capabilities, promoting the development of deeper and more dynamic evaluation approaches. All datasets, the automatic evaluation framework, and the results studied in this paper are available at the GitHub repository.
comment: 47 pages, 24 figures
☆ FAuNO: Semi-Asynchronous Federated Reinforcement Learning Framework for Task Offloading in Edge Systems
Edge computing addresses the growing data demands of connected-device networks by placing computational resources closer to end users through decentralized infrastructures. This decentralization challenges traditional, fully centralized orchestration, which suffers from latency and resource bottlenecks. We present \textbf{FAuNO} -- \emph{Federated Asynchronous Network Orchestrator} -- a buffered, asynchronous \emph{federated reinforcement-learning} (FRL) framework for decentralized task offloading in edge systems. FAuNO adopts an actor-critic architecture in which local actors learn node-specific dynamics and peer interactions, while a federated critic aggregates experience across agents to encourage efficient cooperation and improve overall system performance. Experiments in the \emph{PeersimGym} environment show that FAuNO consistently matches or exceeds heuristic and federated multi-agent RL baselines in reducing task loss and latency, underscoring its adaptability to dynamic edge-computing scenarios.
☆ A Pretrained Probabilistic Transformer for City-Scale Traffic Volume Prediction
City-scale traffic volume prediction plays a pivotal role in intelligent transportation systems, yet remains a challenge due to the inherent incompleteness and bias in observational data. Although deep learning-based methods have shown considerable promise, most existing approaches produce deterministic point estimates, thereby neglecting the uncertainty arising from unobserved traffic flows. Furthermore, current models are typically trained in a city-specific manner, which hinders their generalizability and limits scalability across diverse urban contexts. To overcome these limitations, we introduce TrafficPPT, a Pretrained Probabilistic Transformer designed to model traffic volume as a distributional aggregation of trajectories. Our framework fuses heterogeneous data sources-including real-time observations, historical trajectory data, and road network topology-enabling robust and uncertainty-aware traffic inference. TrafficPPT is initially pretrained on large-scale simulated data spanning multiple urban scenarios, and later fine-tuned on target cities to ensure effective domain adaptation. Experiments on real-world datasets show that TrafficPPT consistently surpasses state-of-the-art baselines, particularly under conditions of extreme data sparsity. Code will be open.
☆ From Prompts to Protection: Large Language Model-Enabled In-Context Learning for Smart Public Safety UAV
A public safety Unmanned Aerial Vehicle (UAV) enhances situational awareness in emergency response. Its agility and ability to optimize mobility and establish Line-of-Sight (LoS) communication make it increasingly vital for managing emergencies such as disaster response, search and rescue, and wildfire monitoring. While Deep Reinforcement Learning (DRL) has been applied to optimize UAV navigation and control, its high training complexity, low sample efficiency, and simulation-to-reality gap limit its practicality in public safety. Recent advances in Large Language Models (LLMs) offer a compelling alternative. With strong reasoning and generalization capabilities, LLMs can adapt to new tasks through In-Context Learning (ICL), which enables task adaptation via natural language prompts and example-based guidance, without retraining. Deploying LLMs at the network edge, rather than in the cloud, further reduces latency and preserves data privacy, thereby making them suitable for real-time, mission-critical public safety UAVs. This paper proposes the integration of LLM-enabled ICL with public safety UAV to address the key functions, such as path planning and velocity control, in the context of emergency response. We present a case study on data collection scheduling where the LLM-enabled ICL framework can significantly reduce packet loss compared to conventional approaches, while also mitigating potential jailbreaking vulnerabilities. Finally, we discuss LLM optimizers and specify future research directions. The ICL framework enables adaptive, context-aware decision-making for public safety UAV, thus offering a lightweight and efficient solution for enhancing UAV autonomy and responsiveness in emergencies.
comment: 8 pages, 4 figures
☆ Truly Assessing Fluid Intelligence of Large Language Models through Dynamic Reasoning Evaluation
Recent advances in large language models (LLMs) have demonstrated impressive reasoning capacities that mirror human-like thinking. However, whether LLMs possess genuine fluid intelligence (i.e., the ability to reason abstractly and generalize rules in novel situations) remains an open question. Existing reasoning benchmarks either focus on domain-specific knowledge (crystallized intelligence) or lack interpretability. To address these limitations, we propose DRE-Bench, a dynamic reasoning evaluation benchmark grounded in a hierarchical cognitive framework. DRE-Bench consists of 36 abstract reasoning tasks organized across four cognitive levels, with each task featuring multiple dynamic variants that test the same underlying latent rule. This design enables fine-grained, interpretable, and reliable assessments of fluid intelligence. We evaluate a range of state-of-the-art LLMs, including both general LLMs (GPT-4o, Claude 3.7) and reasoning LLMs (o1, DeepSeek-R1, QwQ, Skywork-OR1). Experimental results reveal that although most LLMs achieve competent and robust performance in low-level cognition, they struggle with high-level cognition and exhibit limited generalization as task complexity grows. Our findings highlight the gap between current LLMs and true human-like fluid intelligence and offer a new path for systematically tracking reasoning progress in LLMs.
☆ KVCache Cache in the Wild: Characterizing and Optimizing KVCache Cache at a Large Cloud Provider ATC'25
Serving large language models (LLMs) is important for cloud providers, and caching intermediate results (KV\$) after processing each request substantially improves serving throughput and latency. However, there is limited understanding of how LLM serving benefits from KV\$ caching, where system design decisions like cache eviction policies are highly workload-dependent. In this paper, we present the first systematic characterization of the KV\$ workload patterns from one of the leading LLM service providers. We draw observations that were not covered by previous studies focusing on synthetic workloads, including: KV\$ reuses are skewed across requests, where reuses between single-turn requests are equally important as multi-turn requests; the reuse time and probability are diverse considering all requests, but for a specific request category, the pattern tends to be predictable; and the overall cache size required for an ideal cache hit ratio is moderate. Based on the characterization, we further propose a workload-aware cache eviction policy that improves the serving performance under real-world traces, especially with limited cache capacity.
comment: Accepted by USENIX ATC'25
☆ SiamNAS: Siamese Surrogate Model for Dominance Relation Prediction in Multi-objective Neural Architecture Search
Modern neural architecture search (NAS) is inherently multi-objective, balancing trade-offs such as accuracy, parameter count, and computational cost. This complexity makes NAS computationally expensive and nearly impossible to solve without efficient approximations. To address this, we propose a novel surrogate modelling approach that leverages an ensemble of Siamese network blocks to predict dominance relationships between candidate architectures. Lightweight and easy to train, the surrogate achieves 92% accuracy and replaces the crowding distance calculation in the survivor selection strategy with a heuristic rule based on model size. Integrated into a framework termed SiamNAS, this design eliminates costly evaluations during the search process. Experiments on NAS-Bench-201 demonstrate the framework's ability to identify Pareto-optimal solutions with significantly reduced computational costs. The proposed SiamNAS identified a final non-dominated set containing the best architecture in NAS-Bench-201 for CIFAR-10 and the second-best for ImageNet, in terms of test error rate, within 0.01 GPU days. This proof-of-concept study highlights the potential of the proposed Siamese network surrogate model to generalise to multi-tasking optimisation, enabling simultaneous optimisation across tasks. Additionally, it offers opportunities to extend the approach for generating Sets of Pareto Sets (SOS), providing diverse Pareto-optimal solutions for heterogeneous task settings.
comment: Genetic and Evolutionary Computation Conference (GECCO' 25)
☆ HGOT: Self-supervised Heterogeneous Graph Neural Network with Optimal Transport ICML 2025
Heterogeneous Graph Neural Networks (HGNNs), have demonstrated excellent capabilities in processing heterogeneous information networks. Self-supervised learning on heterogeneous graphs, especially contrastive self-supervised strategy, shows great potential when there are no labels. However, this approach requires the use of carefully designed graph augmentation strategies and the selection of positive and negative samples. Determining the exact level of similarity between sample pairs is non-trivial.To solve this problem, we propose a novel self-supervised Heterogeneous graph neural network with Optimal Transport (HGOT) method which is designed to facilitate self-supervised learning for heterogeneous graphs without graph augmentation strategies. Different from traditional contrastive self-supervised learning, HGOT employs the optimal transport mechanism to relieve the laborious sampling process of positive and negative samples. Specifically, we design an aggregating view (central view) to integrate the semantic information contained in the views represented by different meta-paths (branch views). Then, we introduce an optimal transport plan to identify the transport relationship between the semantics contained in the branch view and the central view. This allows the optimal transport plan between graphs to align with the representations, forcing the encoder to learn node representations that are more similar to the graph space and of higher quality. Extensive experiments on four real-world datasets demonstrate that our proposed HGOT model can achieve state-of-the-art performance on various downstream tasks. In particular, in the node classification task, HGOT achieves an average of more than 6% improvement in accuracy compared with state-of-the-art methods.
comment: The paper has 9 pages of text and 13 pages in total (including acknowledgments, impact statement, references, and appendix), with 6 figures and 2 tables. This paper has been accepted by ICML 2025 conference and this is a final version of the manuscript submitted to the conference
☆ Hierarchical Question-Answering for Driving Scene Understanding Using Vision-Language Models
In this paper, we present a hierarchical question-answering (QA) approach for scene understanding in autonomous vehicles, balancing cost-efficiency with detailed visual interpretation. The method fine-tunes a compact vision-language model (VLM) on a custom dataset specific to the geographical area in which the vehicle operates to capture key driving-related visual elements. At the inference stage, the hierarchical QA strategy decomposes the scene understanding task into high-level and detailed sub-questions. Instead of generating lengthy descriptions, the VLM navigates a structured question tree, where answering high-level questions (e.g., "Is it possible for the ego vehicle to turn left at the intersection?") triggers more detailed sub-questions (e.g., "Is there a vehicle approaching the intersection from the opposite direction?"). To optimize inference time, questions are dynamically skipped based on previous answers, minimizing computational overhead. The extracted answers are then synthesized using handcrafted templates to ensure coherent, contextually accurate scene descriptions. We evaluate the proposed approach on the custom dataset using GPT reference-free scoring, demonstrating its competitiveness with state-of-the-art methods like GPT-4o in capturing key scene details while achieving significantly lower inference time. Moreover, qualitative results from real-time deployment highlight the proposed approach's capacity to capture key driving elements with minimal latency.
comment: This work has been submitted to the IEEE for possible publication
☆ Simple, Good, Fast: Self-Supervised World Models Free of Baggage ICLR 2025
What are the essential components of world models? How far do we get with world models that are not employing RNNs, transformers, discrete representations, and image reconstructions? This paper introduces SGF, a Simple, Good, and Fast world model that uses self-supervised representation learning, captures short-time dependencies through frame and action stacking, and enhances robustness against model errors through data augmentation. We extensively discuss SGF's connections to established world models, evaluate the building blocks in ablation studies, and demonstrate good performance through quantitative comparisons on the Atari 100k benchmark.
comment: Published as a conference paper at ICLR 2025. Code is available at https://github.com/jrobine/sgf
☆ Speaker Diarization with Overlapping Community Detection Using Graph Attention Networks and Label Propagation Algorithm
In speaker diarization, traditional clustering-based methods remain widely used in real-world applications. However, these methods struggle with the complex distribution of speaker embeddings and overlapping speech segments. To address these limitations, we propose an Overlapping Community Detection method based on Graph Attention networks and the Label Propagation Algorithm (OCDGALP). The proposed framework comprises two key components: (1) a graph attention network that refines speaker embeddings and node connections by aggregating information from neighboring nodes, and (2) a label propagation algorithm that assigns multiple community labels to each node, enabling simultaneous clustering and overlapping community detection. Experimental results show that the proposed method significantly reduces the Diarization Error Rate (DER), achieving a state-of-the-art 15.94% DER on the DIHARD-III dataset without oracle Voice Activity Detection (VAD), and an impressive 11.07% with oracle VAD.
☆ A Time-Enhanced Data Disentanglement Network for Traffic Flow Forecasting
In recent years, traffic flow prediction has become a highlight in the field of intelligent transportation systems. However, due to the temporal variations and dynamic spatial correlations of traffic data, traffic prediction remains highly challenging.Traditional spatiotemporal networks, which rely on end-to-end training, often struggle to handle the diverse data dependencies of multiple traffic flow patterns. Additionally, traffic flow variations are highly sensitive to temporal information changes. Regrettably, other researchers have not sufficiently recognized the importance of temporal information.To address these challenges, we propose a novel approach called A Time-Enhanced Data Disentanglement Network for Traffic Flow Forecasting (TEDDN). This network disentangles the originally complex and intertwined traffic data into stable patterns and trends. By flexibly learning temporal and node information through a dynamic graph enhanced by a temporal feature extraction module, TEDDN demonstrates significant efficacy in disentangling and extracting complex traffic information. Experimental evaluations and ablation studies on four real-world datasets validate the superiority of our method.
☆ EssayBench: Evaluating Large Language Models in Multi-Genre Chinese Essay Writing
Chinese essay writing and its evaluation are critical in educational contexts, yet the capabilities of Large Language Models (LLMs) in this domain remain largely underexplored. Existing benchmarks often rely on coarse-grained text quality metrics, largely overlooking the structural and rhetorical complexities of Chinese essays, particularly across diverse genres. To address this gap, we propose \benchName, a multi-genre benchmark specifically designed for Chinese essay writing across four major genres: Argumentative, Narrative, Descriptive, and Expository. We curate and refine a total of 728 real-world prompts to ensure authenticity and meticulously categorize them into the \textit{Open-Ended} and \textit{Constrained} sets to capture diverse writing scenarios. To reliably evaluate generated essays, we develop a fine-grained, genre-specific scoring framework that hierarchically aggregates scores. We further validate our evaluation protocol through a comprehensive human agreement study. Finally, we benchmark 15 large-sized LLMs, analyzing their strengths and limitations across genres and instruction types. With \benchName, we aim to advance LLM-based Chinese essay evaluation and inspire future research on improving essay generation in educational settings.
☆ EALG: Evolutionary Adversarial Generation of Language Model-Guided Generators for Combinatorial Optimization
Generating challenging instances is crucial for the evaluation and advancement of combinatorial optimization solvers. In this work, we introduce EALG (Evolutionary Adversarial Generation of Language Model-Guided Generators), a novel framework that automates the co-evolution of optimization problem instances and their corresponding heuristic solvers using large language models (LLMs). EALG leverages a mutation-based adversarial approach that dynamically evolves instance generation procedures to create increasingly difficult problems, while simultaneously synthesizing adaptive heuristic algorithms through interactions with LLMs guided by algorithmic structure. Unlike existing approaches that focus solely on static benchmark creation or manual solver design, EALG provides a seamless pipeline from instance generation to solver synthesis. Experimental results demonstrate that EALG generates significantly harder instances than current benchmarks, and its synthesized solvers generalize effectively across a broad spectrum of combinatorial tasks. This work explores a new paradigm for combinatorial optimization that integrates instance generation with solver design, resulting in state-of-the-art performance.
☆ Evaluating Named Entity Recognition Models for Russian Cultural News Texts: From BERT to LLM
This paper addresses the challenge of Named Entity Recognition (NER) for person names within the specialized domain of Russian news texts concerning cultural events. The study utilizes the unique SPbLitGuide dataset, a collection of event announcements from Saint Petersburg spanning 1999 to 2019. A comparative evaluation of diverse NER models is presented, encompassing established transformer-based architectures such as DeepPavlov, RoBERTa, and SpaCy, alongside recent Large Language Models (LLMs) including GPT-3.5, GPT-4, and GPT-4o. Key findings highlight the superior performance of GPT-4o when provided with specific prompting for JSON output, achieving an F1 score of 0.93. Furthermore, GPT-4 demonstrated the highest precision at 0.99. The research contributes to a deeper understanding of current NER model capabilities and limitations when applied to morphologically rich languages like Russian within the cultural heritage domain, offering insights for researchers and practitioners. Follow-up evaluation with GPT-4.1 (April 2025) achieves F1=0.94 for both simple and structured prompts, demonstrating rapid progress across model families and simplified deployment requirements.
☆ Prosodic Structure Beyond Lexical Content: A Study of Self-Supervised Learning INTERSPEECH 2025
People exploit the predictability of lexical structures during text comprehension. Though predictable structure is also present in speech, the degree to which prosody, e.g. intonation, tempo, and loudness, contributes to such structure independently of the lexical content is unclear. This study leverages self-supervised learning (SSL) to examine the temporal granularity of structures in the acoustic correlates of prosody. Representations from our proposed Masked Prosody Model can predict perceptual labels dependent on local information, such as word boundaries, but provide the most value for labels involving longer-term structures, like emotion recognition. Probing experiments across various perceptual labels show strong relative gains over untransformed pitch, energy, and voice activity features. Our results reveal the importance of SSL training objective timescale and highlight the value of complex SSL-encoded structures compared to more constrained classical structures.
comment: Accepted at INTERSPEECH 2025
☆ V2X-UniPool: Unifying Multimodal Perception and Knowledge Reasoning for Autonomous Driving
Knowledge-driven autonomous driving systems(ADs) offer powerful reasoning capabilities, but face two critical challenges: limited perception due to the short-sightedness of single-vehicle sensors, and hallucination arising from the lack of real-time environmental grounding. To address these issues, this paper introduces V2X-UniPool, a unified framework that integrates multimodal Vehicle-to-Everything (V2X) data into a time-indexed and language-based knowledge pool. By leveraging a dual-query Retrieval-Augmented Generation (RAG) mechanism, which enables retrieval of both static and dynamic knowledge, our system enables ADs to perform accurate, temporally consistent reasoning over both static environment and dynamic traffic context. Experiments on a real-world cooperative driving dataset demonstrate that V2X-UniPool significantly enhances motion planning accuracy and reasoning capability. Remarkably, it enables even zero-shot vehicle-side models to achieve state-of-the-art performance by leveraging V2X-UniPool, while simultaneously reducing transmission cost by over 99.9\% compared to prior V2X methods.
☆ HATA: Trainable and Hardware-Efficient Hash-Aware Top-k Attention for Scalable Large Model Inference ACL 2025
Large Language Models (LLMs) have emerged as a pivotal research area, yet the attention module remains a critical bottleneck in LLM inference, even with techniques like KVCache to mitigate redundant computations. While various top-$k$ attention mechanisms have been proposed to accelerate LLM inference by exploiting the inherent sparsity of attention, they often struggled to strike a balance between efficiency and accuracy. In this paper, we introduce HATA (Hash-Aware Top-$k$ Attention), a novel approach that systematically integrates low-overhead learning-to-hash techniques into the Top-$k$ attention process. Different from the existing top-k attention methods which are devoted to seeking an absolute estimation of qk score, typically with a great cost, HATA maps queries and keys into binary hash codes, and acquires the relative qk score order with a quite low cost, which is sufficient for realizing top-k attention. Extensive experiments demonstrate that HATA achieves up to 7.2$\times$ speedup compared to vanilla full attention while maintaining model accuracy. In addition, HATA outperforms the state-of-the-art top-$k$ attention methods in both accuracy and efficiency across multiple mainstream LLM models and diverse tasks. HATA is open source at https://github.com/gpzlx1/HATA.
comment: ACL 2025 findings
☆ MLaGA: Multimodal Large Language and Graph Assistant
Large Language Models (LLMs) have demonstrated substantial efficacy in advancing graph-structured data analysis. Prevailing LLM-based graph methods excel in adapting LLMs to text-rich graphs, wherein node attributes are text descriptions. However, their applications to multimodal graphs--where nodes are associated with diverse attribute types, such as texts and images--remain underexplored, despite their ubiquity in real-world scenarios. To bridge the gap, we introduce the Multimodal Large Language and Graph Assistant (MLaGA), an innovative model that adeptly extends LLM capabilities to facilitate reasoning over complex graph structures and multimodal attributes. We first design a structure-aware multimodal encoder to align textual and visual attributes within a unified space through a joint graph pre-training objective. Subsequently, we implement a multimodal instruction-tuning approach to seamlessly integrate multimodal features and graph structures into the LLM through lightweight projectors. Extensive experiments across multiple datasets demonstrate the effectiveness of MLaGA compared to leading baseline methods, achieving superior performance in diverse graph learning tasks under both supervised and transfer learning scenarios.
☆ Towards Generating Controllable and Solvable Geometry Problem by Leveraging Symbolic Deduction Engine ACL'25
Generating high-quality geometry problems is both an important and challenging task in education. Compared to math word problems, geometry problems further emphasize multi-modal formats and the translation between informal and formal languages. In this paper, we introduce a novel task for geometry problem generation and propose a new pipeline method: the Symbolic Deduction Engine-based Geometry Problem Generation framework (SDE-GPG). The framework leverages a symbolic deduction engine and contains four main steps: (1) searching a predefined mapping table from knowledge points to extended definitions, (2) sampling extended definitions and performing symbolic deduction, (3) filtering out unqualified problems, and (4) generating textual problems and diagrams. Specifically, our method supports to avoid inherent biases in translating natural language into formal language by designing the mapping table, and guarantees to control the generated problems in terms of knowledge points and difficulties by an elaborate checking function. With obtained formal problems, they are translated to natural language and the accompanying diagrams are automatically drew by rule-based methods. We conduct experiments using real-world combinations of knowledge points from two public datasets. The results demonstrate that the SDE-GPG can effectively generate readable, solvable and controllable geometry problems.
comment: To Appear in ACL'25
☆ Pruning General Large Language Models into Customized Expert Models
Large language models (LLMs) have revolutionized natural language processing, yet their substantial model sizes often require substantial computational resources. To preserve computing resources and accelerate inference speed, it is crucial to prune redundant parameters, especially for experienced users who often need compact expert models tailored to specific downstream scenarios. However, most existing pruning methods focus on preserving the model's general capabilities, often requiring extensive post-training or suffering from degraded performance due to coarse-grained pruning. In this work, we design a $\underline{Cus}$tom $\underline{Prun}$ing method ($\texttt{Cus-Prun}$) to prune a large general model into a smaller lightweight expert model, which is positioned along the "language", "domain" and "task" dimensions. By identifying and pruning irrelevant neurons of each dimension, $\texttt{Cus-Prun}$ creates expert models without any post-training. Our experiments demonstrate that $\texttt{Cus-Prun}$ consistently outperforms other methods, achieving minimal loss in both expert and general capabilities across various models from different model families and sizes.
☆ HiLO: High-Level Object Fusion for Autonomous Driving using Transformers
The fusion of sensor data is essential for a robust perception of the environment in autonomous driving. Learning-based fusion approaches mainly use feature-level fusion to achieve high performance, but their complexity and hardware requirements limit their applicability in near-production vehicles. High-level fusion methods offer robustness with lower computational requirements. Traditional methods, such as the Kalman filter, dominate this area. This paper modifies the Adapted Kalman Filter (AKF) and proposes a novel transformer-based high-level object fusion method called HiLO. Experimental results demonstrate improvements of $25.9$ percentage points in $\textrm{F}_1$ score and $6.1$ percentage points in mean IoU. Evaluation on a new large-scale real-world dataset demonstrates the effectiveness of the proposed approaches. Their generalizability is further validated by cross-domain evaluation between urban and highway scenarios. Code, data, and models are available at https://github.com/rst-tu-dortmund/HiLO .
comment: 6 pages, accepted at IEEE Intelligent Vehicles Symposium (IV) 2025
☆ Response-Level Rewards Are All You Need for Online Reinforcement Learning in LLMs: A Mathematical Perspective
We study a common challenge in reinforcement learning for large language models (LLMs): the Zero-Reward Assumption, where non-terminal actions (i.e., intermediate token generations) receive zero task-specific immediate reward, while only the final token receives a reward for the entire response. This assumption arises frequently in practice, as precise token-level rewards are often difficult or infeasible to obtain in LLM applications. In this work, we provide a unifying theoretical perspective. We introduce the Trajectory Policy Gradient Theorem, which shows that the policy gradient based on true, unknown token-level rewards can be unbiasedly estimated using only a response-level reward model, regardless of whether the Zero-Reward Assumption holds or not, for algorithms in the REINFORCE and Actor-Critic families. This result reveals that widely used methods such as PPO, GRPO, ReMax, and RLOO inherently possess the capacity to model token-level reward signals, offering a theoretical justification for response-level reward approaches. Our findings pave the way for more practical, efficient LLM fine-tuning, allowing developers to treat training algorithms as black boxes and focus on improving the response-level reward model with auxiliary sub-models. We also offer a detailed analysis of popular RL and non-RL methods, comparing their theoretical foundations and practical advantages across common LLM tasks. Finally, we propose a new algorithm: Token-Reinforced Policy Optimization (TRePO), a theoretically grounded method that is simpler than PPO, matches GRPO in memory efficiency, and holds promise for broad applicability.
☆ Technical Report for Ego4D Long-Term Action Anticipation Challenge 2025 CVPR
In this report, we present a novel three-stage framework developed for the Ego4D Long-Term Action Anticipation (LTA) task. Inspired by recent advances in foundation models, our method consists of three stages: feature extraction, action recognition, and long-term action anticipation. First, visual features are extracted using a high-performance visual encoder. The features are then fed into a Transformer to predict verbs and nouns, with a verb-noun co-occurrence matrix incorporated to enhance recognition accuracy. Finally, the predicted verb-noun pairs are formatted as textual prompts and input into a fine-tuned large language model (LLM) to anticipate future action sequences. Our framework achieves first place in this challenge at CVPR 2025, establishing a new state-of-the-art in long-term action prediction. Our code will be released at https://github.com/CorrineQiu/Ego4D-LTA-Challenge-2025.
comment: The champion solution for the Ego4D Long-Term Action Anticipation Challenge at the CVPR EgoVis Workshop 2025
☆ CyberGym: Evaluating AI Agents' Cybersecurity Capabilities with Real-World Vulnerabilities at Scale
Large language model (LLM) agents are becoming increasingly skilled at handling cybersecurity tasks autonomously. Thoroughly assessing their cybersecurity capabilities is critical and urgent, given the high stakes in this domain. However, existing benchmarks fall short, often failing to capture real-world scenarios or being limited in scope. To address this gap, we introduce CyberGym, a large-scale and high-quality cybersecurity evaluation framework featuring 1,507 real-world vulnerabilities found and patched across 188 large software projects. While it includes tasks of various settings, CyberGym primarily focuses on the generation of proof-of-concept (PoC) tests for vulnerability reproduction, based on text descriptions and corresponding source repositories. Solving this task is particularly challenging, as it requires comprehensive reasoning across entire codebases to locate relevant code fragments and produce effective PoCs that accurately trigger the target vulnerability starting from the program's entry point. Our evaluation across 4 state-of-the-art agent frameworks and 9 LLMs reveals that even the best combination (OpenHands and Claude-3.7-Sonnet) achieves only a 11.9% reproduction success rate, mainly on simpler cases. Beyond reproducing historical vulnerabilities, we find that PoCs generated by LLM agents can reveal new vulnerabilities, identifying 15 zero-days affecting the latest versions of the software projects.
☆ HIEGNet: A Heterogenous Graph Neural Network Including the Immune Environment in Glomeruli Classification
Graph Neural Networks (GNNs) have recently been found to excel in histopathology. However, an important histopathological task, where GNNs have not been extensively explored, is the classification of glomeruli health as an important indicator in nephropathology. This task presents unique difficulties, particularly for the graph construction, i.e., the identification of nodes, edges, and informative features. In this work, we propose a pipeline composed of different traditional and machine learning-based computer vision techniques to identify nodes, edges, and their corresponding features to form a heterogeneous graph. We then proceed to propose a novel heterogeneous GNN architecture for glomeruli classification, called HIEGNet, that integrates both glomeruli and their surrounding immune cells. Hence, HIEGNet is able to consider the immune environment of each glomerulus in its classification. Our HIEGNet was trained and tested on a dataset of Whole Slide Images from kidney transplant patients. Experimental results demonstrate that HIEGNet outperforms several baseline models and generalises best between patients among all baseline models. Our implementation is publicly available at https://github.com/nklsKrmnn/HIEGNet.git.
comment: Accepted for poster presentation at MIDL 2025
☆ Rethinking Post-Unlearning Behavior of Large Vision-Language Models
Machine unlearning is used to mitigate the privacy risks of Large Vision-Language Models (LVLMs) arising from training on large-scale web data. However, existing unlearning methods often fail to carefully select substitute outputs for forget targets, resulting in Unlearning Aftermaths-undesirable behaviors such as degenerate, hallucinated, or excessively refused responses. We highlight that, especially for generative LVLMs, it is crucial to consider the quality and informativeness of post-unlearning responses rather than relying solely on naive suppression. To address this, we introduce a new unlearning task for LVLMs that requires models to provide privacy-preserving yet informative and visually grounded responses. We also propose PUBG, a novel unlearning method that explicitly guides post-unlearning behavior toward a desirable output distribution. Experiments show that, while existing methods suffer from Unlearning Aftermaths despite successfully preventing privacy violations, PUBG effectively mitigates these issues, generating visually grounded and informative responses without privacy leakage for forgotten targets.
comment: 10 pages, 5 figures
☆ VisuRiddles: Fine-grained Perception is a Primary Bottleneck for Multimodal Large Language Models in Abstract Visual Reasoning
Recent strides in multimodal large language models (MLLMs) have significantly advanced their performance in many reasoning tasks. However, Abstract Visual Reasoning (AVR) remains a critical challenge, primarily due to limitations in perceiving abstract graphics. To tackle this issue, we investigate the bottlenecks in current MLLMs and synthesize training data to improve their abstract visual perception. First, we propose VisuRiddles, a benchmark for AVR, featuring tasks meticulously constructed to assess models' reasoning capacities across five core dimensions and two high-level reasoning categories. Second, we introduce the Perceptual Riddle Synthesizer (PRS), an automated framework for generating riddles with fine-grained perceptual descriptions. PRS not only generates valuable training data for abstract graphics but also provides fine-grained perceptual description, crucially allowing for supervision over intermediate reasoning stages and thereby improving both training efficacy and model interpretability. Our extensive experimental results on VisuRiddles empirically validate that fine-grained visual perception is the principal bottleneck and our synthesis framework markedly enhances the performance of contemporary MLLMs on these challenging tasks. Our code and dataset will be released at https://github.com/yh-hust/VisuRiddles
comment: 13 pages, 4 figures
☆ Automated Web Application Testing: End-to-End Test Case Generation with Large Language Models and Screen Transition Graphs
Web applications are critical to modern software ecosystems, yet ensuring their reliability remains challenging due to the complexity and dynamic nature of web interfaces. Recent advances in large language models (LLMs) have shown promise in automating complex tasks, but limitations persist in handling dynamic navigation flows and complex form interactions. This paper presents an automated system for generating test cases for two key aspects of web application testing: site navigation and form filling. For site navigation, the system employs screen transition graphs and LLMs to model navigation flows and generate test scenarios. For form filling, it uses state graphs to handle conditional forms and automates Selenium script generation. Key contributions include: (1) a novel integration of graph structures and LLMs for site navigation testing, (2) a state graph-based approach for automating form-filling test cases, and (3) a comprehensive dataset for evaluating form-interaction testing. Experimental results demonstrate the system's effectiveness in improving test coverage and robustness, advancing the state of web application testing.
comment: Published in the Proceedings of JSAI 2025
☆ Multilingual Information Retrieval with a Monolingual Knowledge Base SIGIR25
Multilingual information retrieval has emerged as powerful tools for expanding knowledge sharing across languages. On the other hand, resources on high quality knowledge base are often scarce and in limited languages, therefore an effective embedding model to transform sentences from different languages into a feature vector space same as the knowledge base language becomes the key ingredient for cross language knowledge sharing, especially to transfer knowledge available in high-resource languages to low-resource ones. In this paper we propose a novel strategy to fine-tune multilingual embedding models with weighted sampling for contrastive learning, enabling multilingual information retrieval with a monolingual knowledge base. We demonstrate that the weighted sampling strategy produces performance gains compared to standard ones by up to 31.03\% in MRR and up to 33.98\% in Recall@3. Additionally, our proposed methodology is language agnostic and applicable for both multilingual and code switching use cases.
comment: 6 pages, accepted at GENNEXT@SIGIR25
☆ Think Twice, Act Once: A Co-Evolution Framework of LLM and RL for Large-Scale Decision Making
Recent advancements in Large Language Models (LLMs) and Reinforcement Learning (RL) have shown significant promise in decision-making tasks. Nevertheless, for large-scale industrial decision problems, both approaches face distinct challenges: LLMs lack real-time long-sequence decision-making capabilities, while RL struggles with sample efficiency in vast action spaces. To bridge this gap, we propose Agents Co-Evolution (ACE), a synergistic framework between LLMs and RL agents for large-scale decision-making scenarios. ACE introduces a dual-role trajectory refinement mechanism where LLMs act as both Policy Actor and Value Critic during RL's training: the Actor refines suboptimal actions via multi-step reasoning and environment validation, while the Critic performs temporal credit assignment through trajectory-level reward shaping. Concurrently, RL agent enhances LLMs' task-specific decision-making with high-quality fine-tuning datasets generated via prioritized experience replay. Through extensive experiments across multiple power grid operation challenges with action spaces exceeding 60K discrete actions, ACE demonstrates superior performance over existing RL methods and LLM-based methods.
☆ FinChain: A Symbolic Benchmark for Verifiable Chain-of-Thought Financial Reasoning
Multi-step symbolic reasoning is critical for advancing downstream performance on financial tasks. Yet, benchmarks for systematically evaluating this capability are lacking. Existing datasets like FinQA and ConvFinQA supervise only final numerical answers, without assessing intermediate reasoning steps. To address this, we introduce FinChain, the first symbolic benchmark designed for verifiable Chain-of- Thought (CoT) financial reasoning. Spanning 54 topics across 12 financial domains, Fin- Chain offers five parameterized templates per topic, each varying in reasoning complexity and domain expertise required. Each dataset instance includes an executable Python trace, enabling automatic generation of extensive training data and easy adaptation to other domains. We also introduce ChainEval, a new metric for automatic evaluation of both final answers and intermediate reasoning. Benchmarking 30 LLMs on our dataset, we find that even state-of-the-art models have considerable room for improvement in multi-step financial reasoning. All templates and evaluation metrics for FinChain are available at https: //github.com/mbzuai-nlp/finchain.
comment: 15 pages, 8 figures, 2 tables
☆ M$^3$FinMeeting: A Multilingual, Multi-Sector, and Multi-Task Financial Meeting Understanding Evaluation Dataset ACL-2025
Recent breakthroughs in large language models (LLMs) have led to the development of new benchmarks for evaluating their performance in the financial domain. However, current financial benchmarks often rely on news articles, earnings reports, or announcements, making it challenging to capture the real-world dynamics of financial meetings. To address this gap, we propose a novel benchmark called $\texttt{M$^3$FinMeeting}$, which is a multilingual, multi-sector, and multi-task dataset designed for financial meeting understanding. First, $\texttt{M$^3$FinMeeting}$ supports English, Chinese, and Japanese, enhancing comprehension of financial discussions in diverse linguistic contexts. Second, it encompasses various industry sectors defined by the Global Industry Classification Standard (GICS), ensuring that the benchmark spans a broad range of financial activities. Finally, $\texttt{M$^3$FinMeeting}$ includes three tasks: summarization, question-answer (QA) pair extraction, and question answering, facilitating a more realistic and comprehensive evaluation of understanding. Experimental results with seven popular LLMs reveal that even the most advanced long-context models have significant room for improvement, demonstrating the effectiveness of $\texttt{M$^3$FinMeeting}$ as a benchmark for assessing LLMs' financial meeting comprehension skills.
comment: Accepted by ACL-2025
☆ Minos: A Multimodal Evaluation Model for Bidirectional Generation Between Image and Text
Evaluation is important for multimodal generation tasks. With the rapid progress of MLLMs, there is growing interest in applying MLLMs to build general evaluation systems. However, existing work overlooks two aspects: (1) the development of evaluation capabilities for text-to-image (T2I) generation task, and (2) the incorporation of large-scale human evaluation data. In this paper, we introduce Minos-Corpus, a large-scale multimodal evaluation dataset that combines evaluation data from both human and GPT. The corpus contains evaluation data across both image-to-text(I2T) and T2I generation tasks. Based on this corpus, we propose Data Selection and Balance, Mix-SFT training methods, and apply DPO to develop Minos, a multimodal evaluation model built upon a 7B backbone. Minos achieves state-of-the-art (SoTA) performance among all open-source evaluation models of similar scale on the average of evaluation performance on all tasks, and outperforms all open-source and closed-source models on evaluation of T2I generation task. Extensive experiments demonstrate the importance of leveraging high-quality human evaluation data and jointly training on evaluation data from both I2T and T2I generation tasks.
☆ Simplifying Root Cause Analysis in Kubernetes with StateGraph and LLM
Kubernetes, a notably complex and distributed system, utilizes an array of controllers to uphold cluster management logic through state reconciliation. Nevertheless, maintaining state consistency presents significant challenges due to unexpected failures, network disruptions, and asynchronous issues, especially within dynamic cloud environments. These challenges result in operational disruptions and economic losses, underscoring the necessity for robust root cause analysis (RCA) to enhance Kubernetes reliability. The development of large language models (LLMs) presents a promising direction for RCA. However, existing methodologies encounter several obstacles, including the diverse and evolving nature of Kubernetes incidents, the intricate context of incidents, and the polymorphic nature of these incidents. In this paper, we introduce SynergyRCA, an innovative tool that leverages LLMs with retrieval augmentation from graph databases and enhancement with expert prompts. SynergyRCA constructs a StateGraph to capture spatial and temporal relationships and utilizes a MetaGraph to outline entity connections. Upon the occurrence of an incident, an LLM predicts the most pertinent resource, and SynergyRCA queries the MetaGraph and StateGraph to deliver context-specific insights for RCA. We evaluate SynergyRCA using datasets from two production Kubernetes clusters, highlighting its capacity to identify numerous root causes, including novel ones, with high efficiency and precision. SynergyRCA demonstrates the ability to identify root causes in an average time of about two minutes and achieves an impressive precision of approximately 0.90.
comment: 12 pages, 13 figures, 5 tables
☆ Flexiffusion: Training-Free Segment-Wise Neural Architecture Search for Efficient Diffusion Models
Diffusion models (DMs) are powerful generative models capable of producing high-fidelity images but are constrained by high computational costs due to iterative multi-step inference. While Neural Architecture Search (NAS) can optimize DMs, existing methods are hindered by retraining requirements, exponential search complexity from step-wise optimization, and slow evaluation relying on massive image generation. To address these challenges, we propose Flexiffusion, a training-free NAS framework that jointly optimizes generation schedules and model architectures without modifying pre-trained parameters. Our key insight is to decompose the generation process into flexible segments of equal length, where each segment dynamically combines three step types: full (complete computation), partial (cache-reused computation), and null (skipped computation). This segment-wise search space reduces the candidate pool exponentially compared to step-wise NAS while preserving architectural diversity. Further, we introduce relative FID (rFID), a lightweight evaluation metric for NAS that measures divergence from a teacher model's outputs instead of ground truth, slashing evaluation time by over $90\%$. In practice, Flexiffusion achieves at least $2\times$ acceleration across LDMs, Stable Diffusion, and DDPMs on ImageNet and MS-COCO, with FID degradation under $5\%$, outperforming prior NAS and caching methods. Notably, it attains $5.1\times$ speedup on Stable Diffusion with near-identical CLIP scores. Our work pioneers a resource-efficient paradigm for searching high-speed DMs without sacrificing quality.
☆ Generative AI for Predicting 2D and 3D Wildfire Spread: Beyond Physics-Based Models and Traditional Deep Learning
Wildfires continue to inflict devastating human, environmental, and economic losses globally, as tragically exemplified by the 2025 Los Angeles wildfire and the urgent demand for more effective response strategies. While physics-based and deep learning models have advanced wildfire simulation, they face critical limitations in predicting and visualizing multimodal fire spread in real time, particularly in both 2D and 3D spatial domains using dynamically updated GIS data. These limitations hinder timely emergency response, infrastructure protection, and community safety. Generative AI has recently emerged as a transformative approach across research and industry. Models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Transformers, and diffusion-based architectures offer distinct advantages over traditional methods, including the integration of multimodal data, generation of diverse scenarios under uncertainty, and improved modeling of wildfire dynamics across spatial and temporal scales. This position paper advocates for the adoption of generative AI as a foundational framework for wildfire prediction. We explore how such models can enhance 2D fire spread forecasting and enable more realistic, scalable 3D simulations. Additionally, we employ a novel human-AI collaboration framework using large language models (LLMs) for automated knowledge extraction, literature synthesis, and bibliometric mapping. Looking ahead, we identify five key visions for integrating generative AI into wildfire management: multimodal approaches, AI foundation models, conversational AI systems, edge-computing-based scenario generation, and cognitive digital twins. We also address three major challenges accompanying these opportunities and propose potential solutions to support their implementation.
☆ Do Language Models Think Consistently? A Study of Value Preferences Across Varying Response Lengths
Evaluations of LLMs' ethical risks and value inclinations often rely on short-form surveys and psychometric tests, yet real-world use involves long-form, open-ended responses -- leaving value-related risks and preferences in practical settings largely underexplored. In this work, we ask: Do value preferences inferred from short-form tests align with those expressed in long-form outputs? To address this question, we compare value preferences elicited from short-form reactions and long-form responses, varying the number of arguments in the latter to capture users' differing verbosity preferences. Analyzing five LLMs (llama3-8b, gemma2-9b, mistral-7b, qwen2-7b, and olmo-7b), we find (1) a weak correlation between value preferences inferred from short-form and long-form responses across varying argument counts, and (2) similarly weak correlation between preferences derived from any two distinct long-form generation settings. (3) Alignment yields only modest gains in the consistency of value expression. Further, we examine how long-form generation attributes relate to value preferences, finding that argument specificity negatively correlates with preference strength, while representation across scenarios shows a positive correlation. Our findings underscore the need for more robust methods to ensure consistent value expression across diverse applications.
☆ A Smart Multimodal Healthcare Copilot with Powerful LLM Reasoning
Misdiagnosis causes significant harm to healthcare systems worldwide, leading to increased costs and patient risks. MedRAG is a smart multimodal healthcare copilot equipped with powerful large language model (LLM) reasoning, designed to enhance medical decision-making. It supports multiple input modalities, including non-intrusive voice monitoring, general medical queries, and electronic health records. MedRAG provides recommendations on diagnosis, treatment, medication, and follow-up questioning. Leveraging retrieval-augmented generation enhanced by knowledge graph-elicited reasoning, MedRAG retrieves and integrates critical diagnostic insights, reducing the risk of misdiagnosis. It has been evaluated on both public and private datasets, outperforming existing models and offering more specific and accurate healthcare assistance. A demonstration video of MedRAG is available at: https://www.youtube.com/watch?v=PNIBDMYRfDM. The source code is available at: https://github.com/SNOWTEAM2023/MedRAG.
☆ VPI-Bench: Visual Prompt Injection Attacks for Computer-Use Agents
Computer-Use Agents (CUAs) with full system access enable powerful task automation but pose significant security and privacy risks due to their ability to manipulate files, access user data, and execute arbitrary commands. While prior work has focused on browser-based agents and HTML-level attacks, the vulnerabilities of CUAs remain underexplored. In this paper, we investigate Visual Prompt Injection (VPI) attacks, where malicious instructions are visually embedded within rendered user interfaces, and examine their impact on both CUAs and Browser-Use Agents (BUAs). We propose VPI-Bench, a benchmark of 306 test cases across five widely used platforms, to evaluate agent robustness under VPI threats. Each test case is a variant of a web platform, designed to be interactive, deployed in a realistic environment, and containing a visually embedded malicious prompt. Our empirical study shows that current CUAs and BUAs can be deceived at rates of up to 51% and 100%, respectively, on certain platforms. The experimental results also indicate that system prompt defenses offer only limited improvements. These findings highlight the need for robust, context-aware defenses to ensure the safe deployment of multimodal AI agents in real-world environments. The code and dataset are available at: https://github.com/cua-framework/agents
comment: Under Review
☆ Multimodal DeepResearcher: Generating Text-Chart Interleaved Reports From Scratch with Agentic Framework
Visualizations play a crucial part in effective communication of concepts and information. Recent advances in reasoning and retrieval augmented generation have enabled Large Language Models (LLMs) to perform deep research and generate comprehensive reports. Despite its progress, existing deep research frameworks primarily focus on generating text-only content, leaving the automated generation of interleaved texts and visualizations underexplored. This novel task poses key challenges in designing informative visualizations and effectively integrating them with text reports. To address these challenges, we propose Formal Description of Visualization (FDV), a structured textual representation of charts that enables LLMs to learn from and generate diverse, high-quality visualizations. Building on this representation, we introduce Multimodal DeepResearcher, an agentic framework that decomposes the task into four stages: (1) researching, (2) exemplar report textualization, (3) planning, and (4) multimodal report generation. For the evaluation of generated multimodal reports, we develop MultimodalReportBench, which contains 100 diverse topics served as inputs along with 5 dedicated metrics. Extensive experiments across models and evaluation methods demonstrate the effectiveness of Multimodal DeepResearcher. Notably, utilizing the same Claude 3.7 Sonnet model, Multimodal DeepResearcher achieves an 82\% overall win rate over the baseline method.
comment: 47 pages
☆ VidEvent: A Large Dataset for Understanding Dynamic Evolution of Events in Videos
Despite the significant impact of visual events on human cognition, understanding events in videos remains a challenging task for AI due to their complex structures, semantic hierarchies, and dynamic evolution. To address this, we propose the task of video event understanding that extracts event scripts and makes predictions with these scripts from videos. To support this task, we introduce VidEvent, a large-scale dataset containing over 23,000 well-labeled events, featuring detailed event structures, broad hierarchies, and logical relations extracted from movie recap videos. The dataset was created through a meticulous annotation process, ensuring high-quality and reliable event data. We also provide comprehensive baseline models offering detailed descriptions of their architecture and performance metrics. These models serve as benchmarks for future research, facilitating comparisons and improvements. Our analysis of VidEvent and the baseline models highlights the dataset's potential to advance video event understanding and encourages the exploration of innovative algorithms and models. The dataset and related resources are publicly available at www.videvent.top.
☆ A Review of Various Datasets for Machine Learning Algorithm-Based Intrusion Detection System: Advances and Challenges
IDS aims to protect computer networks from security threats by detecting, notifying, and taking appropriate action to prevent illegal access and protect confidential information. As the globe becomes increasingly dependent on technology and automated processes, ensuring secured systems, applications, and networks has become one of the most significant problems of this era. The global web and digital technology have significantly accelerated the evolution of the modern world, necessitating the use of telecommunications and data transfer platforms. Researchers are enhancing the effectiveness of IDS by incorporating popular datasets into machine learning algorithms. IDS, equipped with machine learning classifiers, enhances security attack detection accuracy by identifying normal or abnormal network traffic. This paper explores the methods of capturing and reviewing intrusion detection systems (IDS) and evaluates the challenges existing datasets face. A deluge of research on machine learning (ML) and deep learning (DL) architecture-based intrusion detection techniques has been conducted in the past ten years on various cybersecurity datasets, including KDDCUP'99, NSL-KDD, UNSW-NB15, CICIDS-2017, and CSE-CIC-IDS2018. We conducted a literature review and presented an in-depth analysis of various intrusion detection methods that use SVM, KNN, DT, LR, NB, RF, XGBOOST, Adaboost, and ANN. We provide an overview of each technique, explaining the role of the classifiers and algorithms used. A detailed tabular analysis highlights the datasets used, classifiers employed, attacks detected, evaluation metrics, and conclusions drawn. This article offers a thorough review for future IDS research.
☆ AERO: A Redirection-Based Optimization Framework Inspired by Judo for Robust Probabilistic Forecasting NeurIPS 2025
Optimization remains a fundamental pillar of machine learning, yet existing methods often struggle to maintain stability and adaptability in dynamic, non linear systems, especially under uncertainty. We introduce AERO (Adversarial Energy-based Redirection Optimization), a novel framework inspired by the redirection principle in Judo, where external disturbances are leveraged rather than resisted. AERO reimagines optimization as a redirection process guided by 15 interrelated axioms encompassing adversarial correction, energy conservation, and disturbance-aware learning. By projecting gradients, integrating uncertainty driven dynamics, and managing learning energy, AERO offers a principled approach to stable and robust model updates. Applied to probabilistic solar energy forecasting, AERO demonstrates substantial gains in predictive accuracy, reliability, and adaptability, especially in noisy and uncertain environments. Our findings highlight AERO as a compelling new direction in the theoretical and practical landscape of optimization.
comment: 15 pages, 1 figure, submitted to NeurIPS 2025 (preprint version)
☆ SingaKids: A Multilingual Multimodal Dialogic Tutor for Language Learning ACL 2025
The integration of generative artificial intelligence into educational applications has enhanced personalized and interactive learning experiences, and it shows strong potential to promote young learners language acquisition. However, it is still challenging to ensure consistent and robust performance across different languages and cultural contexts, and kids-friendly design requires simplified instructions, engaging interactions, and age-appropriate scaffolding to maintain motivation and optimize learning outcomes. In this work, we introduce SingaKids, a dialogic tutor designed to facilitate language learning through picture description tasks. Our system integrates dense image captioning, multilingual dialogic interaction, speech understanding, and engaging speech generation to create an immersive learning environment in four languages: English, Mandarin, Malay, and Tamil. We further improve the system through multilingual pre-training, task-specific tuning, and scaffolding optimization. Empirical studies with elementary school students demonstrate that SingaKids provides effective dialogic teaching, benefiting learners at different performance levels.
comment: ACL 2025 Industry Track
☆ Random at First, Fast at Last: NTK-Guided Fourier Pre-Processing for Tabular DL
While random Fourier features are a classic tool in kernel methods, their utility as a pre-processing step for deep learning on tabular data has been largely overlooked. Motivated by shortcomings in tabular deep learning pipelines - revealed through Neural Tangent Kernel (NTK) analysis - we revisit and repurpose random Fourier mappings as a parameter-free, architecture-agnostic transformation. By projecting each input into a fixed feature space via sine and cosine projections with frequencies drawn once at initialization, this approach circumvents the need for ad hoc normalization or additional learnable embeddings. We show within the NTK framework that this mapping (i) bounds and conditions the network's initial NTK spectrum, and (ii) introduces a bias that shortens the optimization trajectory, thereby accelerating gradient-based training. These effects pre-condition the network with a stable kernel from the outset. Empirically, we demonstrate that deep networks trained on Fourier-transformed inputs converge more rapidly and consistently achieve strong final performance, often with fewer epochs and less hyperparameter tuning. Our findings establish random Fourier pre-processing as a theoretically motivated, plug-and-play enhancement for tabular deep learning.
comment: 16 pages, 3 figures, 1 table
GraphRAG-Bench: Challenging Domain-Specific Reasoning for Evaluating Graph Retrieval-Augmented Generation
Graph Retrieval Augmented Generation (GraphRAG) has garnered increasing recognition for its potential to enhance large language models (LLMs) by structurally organizing domain-specific corpora and facilitating complex reasoning. However, current evaluations of GraphRAG models predominantly rely on traditional question-answering datasets. Their limited scope in questions and evaluation metrics fails to comprehensively assess the reasoning capacity improvements enabled by GraphRAG models. To address this gap, we introduce GraphRAG-Bench, a large-scale, domain-specific benchmark designed to rigorously evaluate GraphRAG models. Our benchmark offers three key superiorities: \((i)\) Challenging question design. Featuring college-level, domain-specific questions that demand multi-hop reasoning, the benchmark ensures that simple content retrieval is insufficient for problem-solving. For example, some questions require mathematical reasoning or programming. \((ii)\) Diverse task coverage. The dataset includes a broad spectrum of reasoning tasks, multiple-choice, true/false, multi-select, open-ended, and fill-in-the-blank. It spans 16 disciplines in twenty core textbooks. \((iii)\) Holistic evaluation framework. GraphRAG-Bench provides comprehensive assessment across the entire GraphRAG pipeline, including graph construction, knowledge retrieval, and answer generation. Beyond final-answer correctness, it evaluates the logical coherence of the reasoning process. By applying nine contemporary GraphRAG methods to GraphRAG-Bench, we demonstrate its utility in quantifying how graph-based structuring improves model reasoning capabilities. Our analysis reveals critical insights about graph architectures, retrieval efficacy, and reasoning capabilities, offering actionable guidance for the research community.
☆ OThink-R1: Intrinsic Fast/Slow Thinking Mode Switching for Over-Reasoning Mitigation
Recent advanced large reasoning models (LRMs) leverage extended chain-of-thought (CoT) reasoning to solve complex tasks, achieving state-of-the-art performance. Despite their success, we identify a critical issue: a substantial portion of simple tasks solved by LRMs can also be addressed by non-reasoning LLMs using significantly fewer tokens, indicating the complex reasoning may not always be necessary. To address this, we systematically analyze the reasoning trajectories of LRMs and present a method utilizing identified paradigms and LLM-Judge to classify these trajectories as either Redundant Reasoning or Essential Reasoning. And we introduce OThink-R1, a method that prunes redundant reasoning steps while preserving logical validity. OThink-R1 dynamically employs the non-thinking mode (fast-thinking) for straightforward problems while engaging in deliberate thinking (slow-thinking) for complex problems. Experiments across mathematical and question-answering tasks demonstrate that OThink-R1 reduces reasoning redundancy by almost 23\% on average without compromising accuracy, offering practical guidelines for efficient reasoning models. The code is available at https://github.com/AgenticIR-Lab/OThink-R1.
☆ Consultant Decoding: Yet Another Synergistic Mechanism ACL 2025
The synergistic mechanism based on Speculative Decoding (SD) has garnered considerable attention as a simple yet effective approach for accelerating the inference of large language models (LLMs). Nonetheless, the high rejection rates require repeated LLMs calls to validate draft tokens, undermining the overall efficiency gain of SD. In this work, we revisit existing verification mechanisms and propose a novel synergetic mechanism Consultant Decoding (CD). Unlike SD, which relies on a metric derived from importance sampling for verification, CD verifies candidate drafts using token-level likelihoods computed solely by the LLM. CD achieves up to a 2.5-fold increase in inference speed compared to the target model, while maintaining comparable generation quality (around 100% of the target model's performance). Interestingly, this is achieved by combining models whose parameter sizes differ by two orders of magnitude. In addition, CD reduces the call frequency of the large target model to below 10%, particularly in more demanding tasks. CD's performance was even found to surpass that of the large target model, which theoretically represents the upper bound for speculative decoding.
comment: ACL 2025 findings
☆ Univariate to Multivariate: LLMs as Zero-Shot Predictors for Time-Series Forecasting
Time-series prediction or forecasting is critical across many real-world dynamic systems, and recent studies have proposed using Large Language Models (LLMs) for this task due to their strong generalization capabilities and ability to perform well without extensive pre-training. However, their effectiveness in handling complex, noisy, and multivariate time-series data remains underexplored. To address this, we propose LLMPred which enhances LLM-based time-series prediction by converting time-series sequences into text and feeding them to LLMs for zero shot prediction along with two main data pre-processing techniques. First, we apply time-series sequence decomposition to facilitate accurate prediction on complex and noisy univariate sequences. Second, we extend this univariate prediction capability to multivariate data using a lightweight prompt-processing strategy. Extensive experiments with smaller LLMs such as Llama 2 7B, Llama 3.2 3B, GPT-4o-mini, and DeepSeek 7B demonstrate that LLMPred achieves competitive or superior performance compared to state-of-the-art baselines. Additionally, a thorough ablation study highlights the importance of the key components proposed in LLMPred.
☆ VS-Bench: Evaluating VLMs for Strategic Reasoning and Decision-Making in Multi-Agent Environments
Recent advancements in Vision Language Models (VLMs) have expanded their capabilities to interactive agent tasks, yet existing benchmarks remain limited to single-agent or text-only environments. In contrast, real-world scenarios often involve multiple agents interacting within rich visual and linguistic contexts, posing challenges with both multimodal observations and strategic interactions. To bridge this gap, we introduce Visual Strategic Bench (VS-Bench), a multimodal benchmark that evaluates VLMs for strategic reasoning and decision-making in multi-agent environments. VS-Bench comprises eight vision-grounded environments spanning cooperative, competitive, and mixed-motive interactions, designed to assess agents' ability to predict others' future moves and optimize for long-term objectives. We consider two complementary evaluation dimensions, including offline evaluation of strategic reasoning by next-action prediction accuracy and online evaluation of decision-making by normalized episode return. Extensive experiments of fourteen leading VLMs reveal a significant gap between current models and optimal performance, with the best models attaining 47.8% prediction accuracy and 24.3% normalized return. We further conduct in-depth analyses on multimodal observations, test-time scaling, social behaviors, and failure cases of VLM agents. By standardizing the evaluation and highlighting the limitations of existing models, we envision VS-Bench as a foundation for future research on strategic multimodal agents. Code and data are available at https://vs-bench.github.io.
☆ Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget UAI
The challenge of identifying the best feasible arm within a fixed budget has attracted considerable interest in recent years. However, a notable gap remains in the literature: the exact exponential rate at which the error probability approaches zero has yet to be established, even in the relatively simple setting of $K$-armed bandits with Gaussian noise. In this paper, we address this gap by examining the problem within the context of linear bandits. We introduce a novel algorithm for best feasible arm identification that guarantees an exponential decay in the error probability. Remarkably, the decay rate -- characterized by the exponent -- matches the theoretical lower bound derived using information-theoretic principles. Our approach leverages a posterior sampling framework embedded within a game-based sampling rule involving a min-learner and a max-learner. This strategy shares its foundations with Thompson sampling, but is specifically tailored to optimize the identification process under fixed-budget constraints. Furthermore, we validate the effectiveness of our algorithm through comprehensive empirical evaluations across various problem instances with different levels of complexity. The results corroborate our theoretical findings and demonstrate that our method outperforms several benchmark algorithms in terms of both accuracy and efficiency.
comment: Accepted to the Conference on Uncertainty in Artificial Intelligence (UAI) 2025
☆ Exploring Explanations Improves the Robustness of In-Context Learning ACL 2025
In-context learning (ICL) has emerged as a successful paradigm for leveraging large language models (LLMs). However, it often struggles to generalize beyond the distribution of the provided demonstrations. A recent advancement in enhancing robustness is ICL with explanations (X-ICL), which improves prediction reliability by guiding LLMs to understand and articulate the reasoning behind correct labels. Building on this approach, we introduce an advanced framework that extends X-ICL by systematically exploring explanations for all possible labels (X$^2$-ICL), thereby enabling more comprehensive and robust decision-making. Experimental results on multiple natural language understanding datasets validate the effectiveness of X$^2$-ICL, demonstrating significantly improved robustness to out-of-distribution data compared to the existing ICL approaches.
comment: Accepted to ACL 2025 (Main Conference)
☆ MISLEADER: Defending against Model Extraction with Ensembles of Distilled Models
Model extraction attacks aim to replicate the functionality of a black-box model through query access, threatening the intellectual property (IP) of machine-learning-as-a-service (MLaaS) providers. Defending against such attacks is challenging, as it must balance efficiency, robustness, and utility preservation in the real-world scenario. Despite the recent advances, most existing defenses presume that attacker queries have out-of-distribution (OOD) samples, enabling them to detect and disrupt suspicious inputs. However, this assumption is increasingly unreliable, as modern models are trained on diverse datasets and attackers often operate under limited query budgets. As a result, the effectiveness of these defenses is significantly compromised in realistic deployment scenarios. To address this gap, we propose MISLEADER (enseMbles of dIStiLled modEls Against moDel ExtRaction), a novel defense strategy that does not rely on OOD assumptions. MISLEADER formulates model protection as a bilevel optimization problem that simultaneously preserves predictive fidelity on benign inputs and reduces extractability by potential clone models. Our framework combines data augmentation to simulate attacker queries with an ensemble of heterogeneous distilled models to improve robustness and diversity. We further provide a tractable approximation algorithm and derive theoretical error bounds to characterize defense effectiveness. Extensive experiments across various settings validate the utility-preserving and extraction-resistant properties of our proposed defense strategy. Our code is available at https://github.com/LabRAI/MISLEADER.
☆ Evaluating LLM Agent Adherence to Hierarchical Safety Principles: A Lightweight Benchmark for Probing Foundational Controllability Components ICML 2025
Credible safety plans for advanced AI development require methods to verify agent behavior and detect potential control deficiencies early. A fundamental aspect is ensuring agents adhere to safety-critical principles, especially when these conflict with operational goals. Failure to prioritize such principles indicates a potential basic control failure. This paper introduces a lightweight, interpretable benchmark methodology using a simple grid world to evaluate an LLM agent's ability to uphold a predefined, high-level safety principle (e.g., "never enter hazardous zones") when faced with conflicting lower-level task instructions. We probe whether the agent reliably prioritizes the inviolable directive, testing a foundational controllability aspect of LLMs. This pilot study demonstrates the methodology's feasibility, offers preliminary insights into agent behavior under principle conflict, and discusses how such benchmarks can contribute empirical evidence for assessing controllability. We argue that evaluating adherence to hierarchical principles is a crucial early step in understanding our capacity to build governable AI systems.
comment: Preprint. This work has been submitted to the Technical AI Governance Workshop at ICML 2025 for review
☆ DIAMOND: An LLM-Driven Agent for Context-Aware Baseball Highlight Summarization ACL 2025
Traditional approaches -- such as Win Probability Added (WPA)-based ranking or computer vision-driven event detection -- can identify scoring plays but often miss strategic depth, momentum shifts, and storyline progression. Manual curation remains the gold standard but is resource-intensive and not scalable. We introduce DIAMOND, an LLM-driven agent for context-aware baseball highlight summarization that integrates structured sports analytics with natural language reasoning. DIAMOND leverages sabermetric features -- Win Expectancy, WPA, and Leverage Index -- to quantify play importance, while an LLM module enhances selection based on contextual narrative value. This hybrid approach ensures both quantitative rigor and qualitative richness, surpassing the limitations of purely statistical or vision-based systems. Evaluated on five diverse Korean Baseball Organization League games, DIAMOND improves F1-score from 42.9% (WPA-only) to 84.8%, outperforming both commercial and statistical baselines. Though limited in scale, our results highlight the potential of modular, interpretable agent-based frameworks for event-level summarization in sports and beyond.
comment: To appear in the First REALM (Research on Agent Language Models) workshop at ACL 2025
♻ ☆ DiffVLA: Vision-Language Guided Diffusion Planning for Autonomous Driving
Research interest in end-to-end autonomous driving has surged owing to its fully differentiable design integrating modular tasks, i.e. perception, prediction and planing, which enables optimization in pursuit of the ultimate goal. Despite the great potential of the end-to-end paradigm, existing methods suffer from several aspects including expensive BEV (bird's eye view) computation, action diversity, and sub-optimal decision in complex real-world scenarios. To address these challenges, we propose a novel hybrid sparse-dense diffusion policy, empowered by a Vision-Language Model (VLM), called Diff-VLA. We explore the sparse diffusion representation for efficient multi-modal driving behavior. Moreover, we rethink the effectiveness of VLM driving decision and improve the trajectory generation guidance through deep interaction across agent, map instances and VLM output. Our method shows superior performance in Autonomous Grand Challenge 2025 which contains challenging real and reactive synthetic scenarios. Our methods achieves 45.0 PDMS.
comment: 4pages
♻ ☆ TACLR: A Scalable and Efficient Retrieval-based Method for Industrial Product Attribute Value Identification ACL 2025
Product Attribute Value Identification (PAVI) involves identifying attribute values from product profiles, a key task for improving product search, recommendation, and business analytics on e-commerce platforms. However, existing PAVI methods face critical challenges, such as inferring implicit values, handling out-of-distribution (OOD) values, and producing normalized outputs. To address these limitations, we introduce Taxonomy-Aware Contrastive Learning Retrieval (TACLR), the first retrieval-based method for PAVI. TACLR formulates PAVI as an information retrieval task by encoding product profiles and candidate values into embeddings and retrieving values based on their similarity. It leverages contrastive training with taxonomy-aware hard negative sampling and employs adaptive inference with dynamic thresholds. TACLR offers three key advantages: (1) it effectively handles implicit and OOD values while producing normalized outputs; (2) it scales to thousands of categories, tens of thousands of attributes, and millions of values; and (3) it supports efficient inference for high-load industrial deployment. Extensive experiments on proprietary and public datasets validate the effectiveness and efficiency of TACLR. Further, it has been successfully deployed on the real-world e-commerce platform Xianyu, processing millions of product listings daily with frequently updated, large-scale attribute taxonomies. We release the code to facilitate reproducibility and future research at https://github.com/SuYindu/TACLR.
comment: Accepted at ACL 2025
♻ ☆ Prisma: An Open Source Toolkit for Mechanistic Interpretability in Vision and Video CVPR
Robust tooling and publicly available pre-trained models have helped drive recent advances in mechanistic interpretability for language models. However, similar progress in vision mechanistic interpretability has been hindered by the lack of accessible frameworks and pre-trained weights. We present Prisma (Access the codebase here: https://github.com/Prisma-Multimodal/ViT-Prisma), an open-source framework designed to accelerate vision mechanistic interpretability research, providing a unified toolkit for accessing 75+ vision and video transformers; support for sparse autoencoder (SAE), transcoder, and crosscoder training; a suite of 80+ pre-trained SAE weights; activation caching, circuit analysis tools, and visualization tools; and educational resources. Our analysis reveals surprising findings, including that effective vision SAEs can exhibit substantially lower sparsity patterns than language SAEs, and that in some instances, SAE reconstructions can decrease model loss. Prisma enables new research directions for understanding vision model internals while lowering barriers to entry in this emerging field.
comment: 4 pages, 3 figures, 9 tables. Oral and Tutorial at the CVPR Mechanistic Interpretability for Vision (MIV) Workshop
♻ ☆ DLP: Dynamic Layerwise Pruning in Large Language Models ICML 2025
Pruning has recently been widely adopted to reduce the parameter scale and improve the inference efficiency of Large Language Models (LLMs). Mainstream pruning techniques often rely on uniform layerwise pruning strategies, which can lead to severe performance degradation at high sparsity levels. Recognizing the varying contributions of different layers in LLMs, recent studies have shifted their focus toward non-uniform layerwise pruning. However, these approaches often rely on pre-defined values, which can result in suboptimal performance. To overcome these limitations, we propose a novel method called Dynamic Layerwise Pruning (DLP). This approach adaptively determines the relative importance of each layer by integrating model weights with input activation information, assigning pruning rates accordingly. Experimental results show that DLP effectively preserves model performance at high sparsity levels across multiple LLMs. Specifically, at 70% sparsity, DLP reduces the perplexity of LLaMA2-7B by 7.79 and improves the average accuracy by 2.7% compared to state-of-the-art methods. Moreover, DLP is compatible with various existing LLM compression techniques and can be seamlessly integrated into Parameter-Efficient Fine-Tuning (PEFT). We release the code at https://github.com/ironartisan/DLP to facilitate future research.
comment: Accepted by ICML 2025
♻ ☆ Enumerate-Conjecture-Prove: Formally Solving Answer-Construction Problems in Math Competitions
Mathematical reasoning lies at the heart of artificial intelligence, underpinning applications in education, program verification, and research-level mathematical discovery. Mathematical competitions, in particular, present two challenging problem types: theorem proving, which requires rigorous proofs of stated conclusions, and answer construction, which involves hypothesizing and formally verifying mathematical objects. Large Language Models (LLMs) effectively generate creative candidate answers but struggle with formal verification, while symbolic provers ensure rigor but cannot efficiently handle creative conjecture generation. We introduce the Enumerate-Conjecture-Prove (ECP) framework, a modular neuro-symbolic method integrating LLM-based enumeration and pattern-driven conjecturing with formal theorem proving. We present ConstructiveBench, a dataset of 3,431 answer-construction problems in various math competitions with verified Lean formalizations. On the ConstructiveBench dataset, ECP improves the accuracy of answer construction from a Chain-of-Thought (CoT) baseline of 14.54% to 45.06% with the gpt-4.1-mini model. Moreover, combined with ECP's constructed answers, the state-of-the-art DeepSeek-Prover-V2-7B model generates correct proofs for 858 of the 3,431 constructive problems in Lean, achieving 25.01% accuracy compared to 9.86% for symbolic-only baselines. Our code and dataset are publicly available at https://github.com/JackSun200312/ECP.
♻ ☆ Probing LLM Hallucination from Within: Perturbation-Driven Approach via Internal Knowledge
LLM hallucination, where unfaithful text is generated, presents a critical challenge for LLMs' practical applications. Current detection methods often resort to external knowledge, LLM fine-tuning, or supervised training with large hallucination-labeled datasets. Moreover, these approaches do not distinguish between different types of hallucinations, which is crucial for enhancing detection performance. To address such limitations, we introduce hallucination probing, a new task that classifies LLM-generated text into three categories: aligned, misaligned, and fabricated. Driven by our novel discovery that perturbing key entities in prompts affects LLM's generation of these three types of text differently, we propose SHINE, a novel hallucination probing method that does not require external knowledge, supervised training, or LLM fine-tuning. SHINE is effective in hallucination probing across three modern LLMs, and achieves state-of-the-art performance in hallucination detection, outperforming seven competing methods across four datasets and four LLMs, underscoring the importance of probing for accurate detection.
comment: 22 pages, 15 figures
♻ ☆ Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the explosive advancement of deepfake technology has posed a critical and escalating threat to public security: diffusion-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency via multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the new large-scale multimodal digital human forgery dataset based on diffusion models. Leveraging five of the latest digital human generation methods and a voice cloning method, we systematically construct a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies demonstrate that the misrecognition rate by participants for DigiFakeAV reaches as high as 68%. Moreover, the substantial performance degradation of existing detection models on our dataset further highlights its challenges. To address this problem, we propose DigiShield, an effective detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves state-of-the-art (SOTA) performance on the DigiFakeAV and shows strong generalization on other datasets.
♻ ☆ InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts
Understanding infographic charts with design-driven visual elements (e.g., pictograms, icons) requires both visual recognition and reasoning, posing challenges for multimodal large language models (MLLMs). However, existing visual-question answering benchmarks fall short in evaluating these capabilities of MLLMs due to the lack of paired plain charts and visual-element-based questions. To bridge this gap, we introduce InfoChartQA, a benchmark for evaluating MLLMs on infographic chart understanding. It includes 5,642 pairs of infographic and plain charts, each sharing the same underlying data but differing in visual presentations. We further design visual-element-based questions to capture their unique visual designs and communicative intent. Evaluation of 20 MLLMs reveals a substantial performance decline on infographic charts, particularly for visual-element-based questions related to metaphors. The paired infographic and plain charts enable fine-grained error analysis and ablation studies, which highlight new opportunities for advancing MLLMs in infographic chart understanding. We release InfoChartQA at https://github.com/CoolDawnAnt/InfoChartQA.
♻ ☆ Afterburner: Reinforcement Learning Facilitates Self-Improving Code Efficiency Optimization
Large Language Models (LLMs) generate functionally correct solutions but often fall short in code efficiency, a critical bottleneck for real-world deployment. In this paper, we introduce a novel test-time iterative optimization framework to address this, employing a closed-loop system where LLMs iteratively refine code based on empirical performance feedback from an execution sandbox. We explore three training strategies: Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and Group Relative Policy Optimization (GRPO). Experiments on our Venus dataset and the APPS benchmark show that SFT and DPO rapidly saturate in efficiency gains. In contrast, GRPO, using reinforcement learning (RL) with execution feedback, continuously optimizes code performance, significantly boosting both pass@1 (from 47% to 62%) and the likelihood of outperforming human submissions in efficiency (from 31% to 45%). Our work demonstrates effective test-time code efficiency improvement and critically reveals the power of RL in teaching LLMs to truly self-improve code efficiency.
♻ ☆ Not Every AI Problem is a Data Problem: We Should Be Intentional About Data Scaling
While Large Language Models require more and more data to train and scale, rather than looking for any data to acquire, we should consider what types of tasks are more likely to benefit from data scaling. We should be intentional in our data acquisition. We argue that the shape of the data itself, such as its compositional and structural patterns, informs which tasks to prioritize in data scaling, and shapes the development of the next generation of compute paradigms for tasks where data scaling is inefficient, or even insufficient.
♻ ☆ Towards Automated Semantic Interpretability in Reinforcement Learning via Vision-Language Models
Semantic interpretability in Reinforcement Learning (RL) enables transparency and verifiability by making the agent's decisions understandable and verifiable. Achieving this, however, requires a feature space composed of human-understandable concepts, which traditionally rely on human specification and may fail to generalize to unseen environments. We introduce interpretable Tree-based Reinforcement learning via Automated Concept Extraction (iTRACE), an automated framework that leverages pre-trained vision-language models (VLM) for semantic feature extraction and interpretable tree-based models for policy optimization. iTRACE first extracts semantically meaningful features, then maps them to policies via interpretable trees. To address the impracticality of running VLMs in RL loops, we distill their outputs into a lightweight model. By leveraging Vision-Language Models (VLMs) to automate tree-based reinforcement learning, iTRACE eliminates the need for human annotation traditionally required by interpretable models, while also addressing the limitations of VLMs alone, such as their lack of grounding in action spaces and inability to directly optimize policies. iTRACE outperforms MLP baselines that use the same interpretable features and matches the performance of CNN-based policies, producing verifiable, semantically interpretable, and human-aligned behaviors without requiring human annotation.
♻ ☆ HardNet: Hard-Constrained Neural Networks with Universal Approximation Guarantees
Incorporating prior knowledge or specifications of input-output relationships into machine learning models has attracted significant attention, as it enhances generalization from limited data and leads to conforming outputs. However, most existing approaches use soft constraints by penalizing violations through regularization, which offers no guarantee of constraint satisfaction, especially on inputs far from the training distribution -- an essential requirement in safety-critical applications. On the other hand, imposing hard constraints on neural networks may hinder their representational power, adversely affecting performance. To address this, we propose HardNet, a practical framework for constructing neural networks that inherently satisfy hard constraints without sacrificing model capacity. Unlike approaches that modify outputs only at inference time, HardNet enables end-to-end training with hard constraint guarantees, leading to improved performance. To the best of our knowledge, HardNet is the first method with an efficient forward pass to enforce more than one input-dependent inequality constraint. It allows unconstrained optimization of the network parameters using standard algorithms by appending a differentiable closed-form enforcement layer to the network's output. Furthermore, we show that HardNet is expressive and retains the universal approximation capabilities of neural networks. We demonstrate the versatility and effectiveness of HardNet across various applications: learning with piecewise constraints, learning optimization solvers with guaranteed feasibility, and optimizing control policies in safety-critical systems.
♻ ☆ Inverse Reinforcement Learning with Switching Rewards and History Dependency for Characterizing Animal Behaviors
Traditional approaches to studying decision-making in neuroscience focus on simplified behavioral tasks where animals perform repetitive, stereotyped actions to receive explicit rewards. While informative, these methods constrain our understanding of decision-making to short timescale behaviors driven by explicit goals. In natural environments, animals exhibit more complex, long-term behaviors driven by intrinsic motivations that are often unobservable. Recent works in time-varying inverse reinforcement learning (IRL) aim to capture shifting motivations in long-term, freely moving behaviors. However, a crucial challenge remains: animals make decisions based on their history, not just their current state. To address this, we introduce SWIRL (SWitching IRL), a novel framework that extends traditional IRL by incorporating time-varying, history-dependent reward functions. SWIRL models long behavioral sequences as transitions between short-term decision-making processes, each governed by a unique reward function. SWIRL incorporates biologically plausible history dependency to capture how past decisions and environmental contexts shape behavior, offering a more accurate description of animal decision-making. We apply SWIRL to simulated and real-world animal behavior datasets and show that it outperforms models lacking history dependency, both quantitatively and qualitatively. This work presents the first IRL model to incorporate history-dependent policies and rewards to advance our understanding of complex, naturalistic decision-making in animals.
♻ ☆ Chain-of-Jailbreak Attack for Image Generation Models via Editing Step by Step ACL 2025
Text-based image generation models, such as Stable Diffusion and DALL-E 3, hold significant potential in content creation and publishing workflows, making them the focus in recent years. Despite their remarkable capability to generate diverse and vivid images, considerable efforts are being made to prevent the generation of harmful content, such as abusive, violent, or pornographic material. To assess the safety of existing models, we introduce a novel jailbreaking method called Chain-of-Jailbreak (CoJ) attack, which compromises image generation models through a step-by-step editing process. Specifically, for malicious queries that cannot bypass the safeguards with a single prompt, we intentionally decompose the query into multiple sub-queries. The image generation models are then prompted to generate and iteratively edit images based on these sub-queries. To evaluate the effectiveness of our CoJ attack method, we constructed a comprehensive dataset, CoJ-Bench, encompassing nine safety scenarios, three types of editing operations, and three editing elements. Experiments on four widely-used image generation services provided by GPT-4V, GPT-4o, Gemini 1.5 and Gemini 1.5 Pro, demonstrate that our CoJ attack method can successfully bypass the safeguards of models for over 60% cases, which significantly outperforms other jailbreaking methods (i.e., 14%). Further, to enhance these models' safety against our CoJ attack method, we also propose an effective prompting-based method, Think Twice Prompting, that can successfully defend over 95% of CoJ attack. We release our dataset and code to facilitate the AI safety research.
comment: Accepted by ACL 2025 Findings
♻ ☆ Can't See the Forest for the Trees: Benchmarking Multimodal Safety Awareness for Multimodal LLMs ACL 2025
Multimodal Large Language Models (MLLMs) have expanded the capabilities of traditional language models by enabling interaction through both text and images. However, ensuring the safety of these models remains a significant challenge, particularly in accurately identifying whether multimodal content is safe or unsafe-a capability we term safety awareness. In this paper, we introduce MMSafeAware, the first comprehensive multimodal safety awareness benchmark designed to evaluate MLLMs across 29 safety scenarios with 1500 carefully curated image-prompt pairs. MMSafeAware includes both unsafe and over-safety subsets to assess models abilities to correctly identify unsafe content and avoid over-sensitivity that can hinder helpfulness. Evaluating nine widely used MLLMs using MMSafeAware reveals that current models are not sufficiently safe and often overly sensitive; for example, GPT-4V misclassifies 36.1% of unsafe inputs as safe and 59.9% of benign inputs as unsafe. We further explore three methods to improve safety awareness-prompting-based approaches, visual contrastive decoding, and vision-centric reasoning fine-tuning-but find that none achieve satisfactory performance. Our findings highlight the profound challenges in developing MLLMs with robust safety awareness, underscoring the need for further research in this area. All the code and data will be publicly available to facilitate future research.
comment: Accepted by ACL 2025
♻ ☆ ChainMarks: Securing DNN Watermark with Cryptographic Chain CCS '25
With the widespread deployment of deep neural network (DNN) models, dynamic watermarking techniques are being used to protect the intellectual property of model owners. However, recent studies have shown that existing watermarking schemes are vulnerable to watermark removal and ambiguity attacks. Besides, the vague criteria for determining watermark presence further increase the likelihood of such attacks. In this paper, we propose a secure DNN watermarking scheme named ChainMarks, which generates secure and robust watermarks by introducing a cryptographic chain into the trigger inputs and utilizes a two-phase Monte Carlo method for determining watermark presence. First, ChainMarks generates trigger inputs as a watermark dataset by repeatedly applying a hash function over a secret key, where the target labels associated with trigger inputs are generated from the digital signature of model owner. Then, the watermarked model is produced by training a DNN over both the original and watermark datasets. To verify watermarks, we compare the predicted labels of trigger inputs with the target labels and determine ownership with a more accurate decision threshold that considers the classification probability of specific models. Experimental results show that ChainMarks exhibits higher levels of robustness and security compared to state-of-the-art watermarking schemes. With a better marginal utility, ChainMarks provides a higher probability guarantee of watermark presence in DNN models with the same level of watermark accuracy.
comment: Accepted In ACM ASIA Conference on Computer and Communications Security (ASIA CCS '25), August 25-29, 2025, Ha Noi, Vietnam
♻ ☆ Unveiling Privacy Risks in LLM Agent Memory ACL 2025
Large Language Model (LLM) agents have become increasingly prevalent across various real-world applications. They enhance decision-making by storing private user-agent interactions in the memory module for demonstrations, introducing new privacy risks for LLM agents. In this work, we systematically investigate the vulnerability of LLM agents to our proposed Memory EXTRaction Attack (MEXTRA) under a black-box setting. To extract private information from memory, we propose an effective attacking prompt design and an automated prompt generation method based on different levels of knowledge about the LLM agent. Experiments on two representative agents demonstrate the effectiveness of MEXTRA. Moreover, we explore key factors influencing memory leakage from both the agent designer's and the attacker's perspectives. Our findings highlight the urgent need for effective memory safeguards in LLM agent design and deployment.
comment: ACL 2025 (Main Conference)
♻ ☆ S4-Driver: Scalable Self-Supervised Driving Multimodal Large Language Modelwith Spatio-Temporal Visual Representation CVPR2025
The latest advancements in multi-modal large language models (MLLMs) have spurred a strong renewed interest in end-to-end motion planning approaches for autonomous driving. Many end-to-end approaches rely on human annotations to learn intermediate perception and prediction tasks, while purely self-supervised approaches--which directly learn from sensor inputs to generate planning trajectories without human annotations often underperform the state of the art. We observe a key gap in the input representation space: end-to-end approaches built on MLLMs are often pretrained with reasoning tasks in 2D image space rather than the native 3D space in which autonomous vehicles plan. To this end, we propose S4-Driver, a scalable self-supervised motion planning algorithm with spatio-temporal visual representation, based on the popular PaLI multimodal large language model. S4-Driver uses a novel sparse volume strategy to seamlessly transform the strong visual representation of MLLMs from perspective view to 3D space without the need to finetune the vision encoder. This representation aggregates multi-view and multi-frame visual inputs and enables better prediction of planning trajectories in 3D space. To validate our method, we run experiments on both nuScenes and Waymo Open Motion Dataset (with in-house camera data). Results show that S4-Driver performs favorably against existing supervised multi-task approaches while requiring no human annotations. It also demonstrates great scalability when pretrained on large volumes of unannotated driving logs.
comment: Accepted by CVPR2025; Project website: s4-driver.github.io
♻ ☆ Keyed Chaotic Dynamics for Privacy-Preserving Neural Inference
Neural network inference typically operates on raw input data, increasing the risk of exposure during preprocessing and inference. Moreover, neural architectures lack efficient built-in mechanisms for directly authenticating input data. This work introduces a novel encryption method for ensuring the security of neural inference. By constructing key-conditioned chaotic graph dynamical systems, we enable the encryption and decryption of real-valued tensors within the neural architecture. The proposed dynamical systems are particularly suited to encryption due to their sensitivity to initial conditions and their capacity to produce complex, key-dependent nonlinear transformations from compact rules. This work establishes a paradigm for securing neural inference and opens new avenues for research on the application of graph dynamical systems in neural network security.
comment: 10 pages
♻ ☆ Visual-TCAV: Concept-based Attribution and Saliency Maps for Post-hoc Explainability in Image Classification
Convolutional Neural Networks (CNNs) have seen significant performance improvements in recent years. However, due to their size and complexity, they function as black-boxes, leading to transparency concerns. State-of-the-art saliency methods generate local explanations that highlight the area in the input image where a class is identified but cannot explain how a concept of interest contributes to the prediction, which is essential for bias mitigation. On the other hand, concept-based methods, such as TCAV (Testing with Concept Activation Vectors), provide insights into how sensitive is the network to a concept, but cannot compute its attribution in a specific prediction nor show its location within the input image. This paper introduces a novel post-hoc explainability framework, Visual-TCAV, which aims to bridge the gap between these methods by providing both local and global explanations for CNN-based image classification. Visual-TCAV uses Concept Activation Vectors (CAVs) to generate saliency maps that show where concepts are recognized by the network. Moreover, it can estimate the attribution of these concepts to the output of any class using a generalization of Integrated Gradients. This framework is evaluated on popular CNN architectures, with its validity further confirmed via experiments where ground truth for explanations is known, and a comparison with TCAV. Our code is available at https://github.com/DataSciencePolimi/Visual-TCAV.
comment: Preprint currently under review
♻ ☆ Graph Generative Pre-trained Transformer ICML 2025
Graph generation is a critical task in numerous domains, including molecular design and social network analysis, due to its ability to model complex relationships and structured data. While most modern graph generative models utilize adjacency matrix representations, this work revisits an alternative approach that represents graphs as sequences of node set and edge set. We advocate for this approach due to its efficient encoding of graphs and propose a novel representation. Based on this representation, we introduce the Graph Generative Pre-trained Transformer (G2PT), an auto-regressive model that learns graph structures via next-token prediction. To further exploit G2PT's capabilities as a general-purpose foundation model, we explore fine-tuning strategies for two downstream applications: goal-oriented generation and graph property prediction. We conduct extensive experiments across multiple datasets. Results indicate that G2PT achieves superior generative performance on both generic graph and molecule datasets. Furthermore, G2PT exhibits strong adaptability and versatility in downstream tasks from molecular design to property prediction. Code available at https://github.com/tufts-ml/G2PT,
comment: ICML 2025
♻ ☆ The Polar Express: Optimal Matrix Sign Methods and Their Application to the Muon Algorithm
Computing the polar decomposition and the related matrix sign function, has been a well-studied problem in numerical analysis for decades. More recently, it has emerged as an important subroutine in deep learning, particularly within the Muon optimization framework. However, the requirements in this setting differ significantly from those of traditional numerical analysis. In deep learning, methods must be highly efficient and GPU-compatible, but high accuracy is often unnecessary. As a result, classical algorithms like Newton-Schulz (which suffers from slow initial convergence) and methods based on rational functions (which rely on QR decompositions or matrix inverses) are poorly suited to this context. In this work, we introduce Polar Express, a GPU-friendly algorithm for computing the polar decomposition. Like classical polynomial methods such as Newton-Schulz, our approach uses only matrix-matrix multiplications, making it GPU-compatible. Motivated by earlier work of Chen & Chow and Nakatsukasa & Freund, Polar Express adapts the polynomial update rule at each iteration by solving a minimax optimization problem, and we prove that it enjoys a strong worst-case optimality guarantee. This property ensures both rapid early convergence and fast asymptotic convergence. We also address finite-precision issues, making it stable in bfloat16 in practice. We apply Polar Express within the Muon optimization framework and show consistent improvements in validation loss on large-scale models such as GPT-2, outperforming recent alternatives across a range of learning rates.
comment: 34 pages, 8 figures, 4 algorithms
♻ ☆ SASP: Strip-Aware Spatial Perception for Fine-Grained Bird Image Classification
Fine-grained bird image classification (FBIC) is not only of great significance for ecological monitoring and species identification, but also holds broad research value in the fields of image recognition and fine-grained visual modeling. Compared with general image classification tasks, FBIC poses more formidable challenges: 1) the differences in species size and imaging distance result in the varying sizes of birds presented in the images; 2) complex natural habitats often introduce strong background interference; 3) and highly flexible poses such as flying, perching, or foraging result in substantial intra-class variability. These factors collectively make it difficult for traditional methods to stably extract discriminative features, thereby limiting the generalizability and interpretability of models in real-world applications. To address these challenges, this paper proposes a fine-grained bird classification framework based on strip-aware spatial perception, which aims to capture long-range spatial dependencies across entire rows or columns in bird images, thereby enhancing the model's robustness and interpretability. The proposed method incorporates two novel modules: extensional perception aggregator (EPA) and channel semantic weaving (CSW). Specifically, EPA integrates local texture details with global structural cues by aggregating information across horizontal and vertical spatial directions. CSW further refines the semantic representations by adaptively fusing long-range and short-range information along the channel dimension. Built upon a ResNet-50 backbone, the model enables jump-wise connection of extended structural features across the spatial domain. Experimental results on the CUB-200-2011 dataset demonstrate that our framework achieves significant performance improvements while maintaining architectural efficiency.
♻ ☆ Improving Trajectory Stitching with Flow Models
Generative models have shown great promise as trajectory planners, given their affinity to modeling complex distributions and guidable inference process. Previous works have successfully applied these in the context of robotic manipulation but perform poorly when the required solution does not exist as a complete trajectory within the training set. We identify that this is a result of being unable to plan via stitching, and subsequently address the architectural and dataset choices needed to remedy this. On top of this, we propose a novel addition to the training and inference procedures to both stabilize and enhance these capabilities. We demonstrate the efficacy of our approach by generating plans with out of distribution boundary conditions and performing obstacle avoidance on the Franka Panda in simulation and on real hardware. In both of these tasks our method performs significantly better than the baselines and is able to avoid obstacles up to four times as large.
♻ ☆ Offline Adaptation of Quadruped Locomotion using Diffusion Models
We present a diffusion-based approach to quadrupedal locomotion that simultaneously addresses the limitations of learning and interpolating between multiple skills and of (modes) offline adapting to new locomotion behaviours after training. This is the first framework to apply classifier-free guided diffusion to quadruped locomotion and demonstrate its efficacy by extracting goal-conditioned behaviour from an originally unlabelled dataset. We show that these capabilities are compatible with a multi-skill policy and can be applied with little modification and minimal compute overhead, i.e., running entirely on the robots onboard CPU. We verify the validity of our approach with hardware experiments on the ANYmal quadruped platform.
♻ ☆ Understanding Federated Learning from IID to Non-IID dataset: An Experimental Study
As privacy concerns and data regulations grow, federated learning (FL) has emerged as a promising approach for training machine learning models across decentralized data sources without sharing raw data. However, a significant challenge in FL is that client data are often non-IID (non-independent and identically distributed), leading to reduced performance compared to centralized learning. While many methods have been proposed to address this issue, their underlying mechanisms are often viewed from different perspectives. Through a comprehensive investigation from gradient descent to FL, and from IID to non-IID data settings, we find that inconsistencies in client loss landscapes primarily cause performance degradation in non-IID scenarios. From this understanding, we observe that existing methods can be grouped into two main strategies: (i) adjusting parameter update paths and (ii) modifying client loss landscapes. These findings offer a clear perspective on addressing non-IID challenges in FL and help guide future research in the field.
♻ ☆ Exemplar-condensed Federated Class-incremental Learning
We propose Exemplar-Condensed federated class-incremental learning (ECoral) to distil the training characteristics of real images from streaming data into informative rehearsal exemplars. The proposed method eliminates the limitations of exemplar selection in replay-based approaches for mitigating catastrophic forgetting in federated continual learning (FCL). The limitations particularly related to the heterogeneity of information density of each summarized data. Our approach maintains the consistency of training gradients and the relationship to past tasks for the summarized exemplars to represent the streaming data compared to the original images effectively. Additionally, our approach reduces the information-level heterogeneity of the summarized data by inter-client sharing of the disentanglement generative model. Extensive experiments show that our ECoral outperforms several state-of-the-art methods and can be seamlessly integrated with many existing approaches to enhance performance.
♻ ☆ Adoption of Watermarking Measures for AI-Generated Content and Implications under the EU AI Act
AI-generated images have become so good in recent years that individuals often cannot distinguish them any more from "real" images. This development, combined with the rapid spread of AI-generated content online, creates a series of societal risks, particularly with the emergence of "deep fakes" that impersonate real individuals. Watermarking, a technique that involves embedding information within images and other content to indicate their AI-generated nature, has emerged as a primary mechanism to address the risks posed by AI-generated content. Indeed, watermarking and AI labelling measures are now becoming a legal requirement in many jurisdictions, including under the 2024 European Union AI Act. Despite the widespread use of AI image generation systems, the current status of the implementation of such measures remains largely unexamined. Moreover, the practical implications of the AI Act's watermarking and labelling requirements have not previously been studied. The present paper therefore both provides an empirical analysis of 50 widely used AI systems for image generation, embedded into a legal analysis of the AI Act. In our legal analysis, we identify four categories of generative AI image deployment scenarios relevant under the AI Act and outline how the legal obligations apply in each category. In our empirical analysis, we find that only a minority number of AI image generators currently implement adequate watermarking (38%) and deep fake labelling (8%) practices. In response, we suggest a range of avenues of how the implementation of these legally mandated techniques can be improved, and publicly share our tooling for the easy detection of watermarks in images.
comment: Note that this work has not yet been published in a peer review journal, it is therefore potentially still subject to change
♻ ☆ Fuzzy Speculative Decoding for a Tunable Accuracy-Runtime Tradeoff
Speculative Decoding (SD) enforces strict distributional equivalence to the target model when accepting candidate tokens. While it maintains the target model's generation quality, this strict equivalence limits the speedup achievable by SD and prevents users from trading deviations from the target distribution in exchange for further inference speed gains. To address these limitations, we introduce Fuzzy Speculative Decoding (FSD) - a decoding algorithm that generalizes SD by accepting candidate tokens based on the divergences between the target and draft model distributions. By allowing for controlled divergence from the target model, FSD enables users to flexibly trade generation quality for inference speed. Across several benchmarks, our method is able to achieve significant runtime improvements of over 5 tokens per second faster than SD at only an approximate 2% absolute reduction in benchmark accuracy. In many cases, FSD is even able to match SD benchmark accuracy at over 2 tokens per second faster, demonstrating that distributional equivalence is not necessary to maintain target model performance. Furthermore, FSD can be seamlessly integrated into existing SD extensions; we demonstrate this by applying FSD to EAGLE-2, greatly enhancing this existing extension's efficiency while allowing it to leverage FSD's tunable quality-speed trade-off.
♻ ☆ Learning to Specialize: Joint Gating-Expert Training for Adaptive MoEs in Decentralized Settings
Mixture-of-Experts (MoEs) achieve scalability by dynamically activating subsets of their components. Yet, understanding how expertise emerges through joint training of gating mechanisms and experts remains incomplete, especially in scenarios without clear task partitions. Motivated by inference costs and data heterogeneity, we study how joint training of gating functions and experts can dynamically allocate domain-specific expertise across multiple underlying data distributions. As an outcome of our framework, we develop an instance tailored specifically to decentralized training scenarios, introducing \textit{Dynamically Decentralized Orchestration of MoEs} or \texttt{DDOME}. \texttt{DDOME} leverages heterogeneity emerging from distributional shifts across decentralized data sources to specialize experts dynamically. By integrating a pretrained common expert to inform a gating function, \texttt{DDOME} achieves personalized expert subset selection on-the-fly, facilitating just-in-time personalization. We empirically validate \texttt{DDOME} within a Federated Learning (FL) context: \texttt{DDOME} attains from 4\% up to an 24\% accuracy improvement over state-of-the-art FL baselines in image and text classification tasks, while maintaining competitive zero-shot generalization capabilities. Furthermore, we provide theoretical insights confirming that the joint gating-experts training is critical for achieving meaningful expert specialization.
comment: 26 Pages
♻ ☆ COMPKE: Complex Question Answering under Knowledge Editing ACL 2025
Knowledge Editing, which efficiently modifies the knowledge in large language models, has gathered great attention. Current benchmarks primarily use multi-hop question answering to assess and analyze newly injected or updated knowledge. However, we argue that these benchmarks fail to effectively evaluate how well the updated models apply this knowledge in real-life scenarios, particularly when questions require complex reasoning, involving one-to-many relationships or multi-step logical intersections. To fill in this gap, we introduce a new benchmark, COMPKE: Complex Question Answering under Knowledge Editing, which includes 11,924 complex questions that reflect real-life situations. We conduct an extensive evaluation of four knowledge editing methods on COMPKE, revealing that their effectiveness varies notably across different models. For instance, MeLLo attains an accuracy of 39.47 on GPT-4O-MINI, but this drops sharply to 3.83 on QWEN2.5-3B. We further investigate the underlying causes of these disparities from both methodological and model-specific perspectives. The datasets are available at https://github.com/kzjkzj666/CompKE.
comment: Accepted by ACL 2025 Findings
♻ ☆ Low-Rank Adaptation Secretly Imitates Differentially Private SGD
As pre-trained language models grow in size, full fine-tuning their parameters on task adaptation data becomes increasingly impractical. To address this challenge, some methods for low-rank adaptation of language models have been proposed, e.g. LoRA, which incorporates trainable low-rank decomposition matrices into only some parameters of the pre-trained model, called adapters. This approach significantly reduces the number of trainable parameters compared to fine-tuning all parameters or adapters. In this work, we look at low-rank adaptation method from the lens of data privacy. We show theoretically that the low-rank adaptation used in LoRA is equivalent to fine-tuning adapters with noisy batch gradients - just like what DPSGD algorithm does. We also quantify the variance of the injected noise as a decreasing function of adaptation rank. By establishing a Berry-Esseen type bound on the total variation distance between the injected noise distribution and a Gaussian noise distribution with the same variance, we show that the dynamics of low-rank adaptation is very close to when DPSGD is performed w.r.t the adapters. Following our theoretical findings and approved by our experimental results, we show that low-rank adaptation provides robustness to membership inference attacks w.r.t the fine-tuning data.
♻ ☆ Linear Representation Transferability Hypothesis: Leveraging Small Models to Steer Large Models
It has been hypothesized that neural networks with similar architectures trained on similar data learn shared representations relevant to the learning task. We build on this idea by extending the conceptual framework where representations learned across models trained on the same data can be expressed as linear combinations of a \emph{universal} set of basis features. These basis features underlie the learning task itself and remain consistent across models, regardless of scale. From this framework, we propose the \textbf{Linear Representation Transferability (LRT)} Hypothesis -- that there exists an affine transformation between the representation spaces of different models. To test this hypothesis, we learn affine mappings between the hidden states of models of different sizes and evaluate whether steering vectors -- directions in hidden state space associated with specific model behaviors -- retain their semantic effect when transferred from small to large language models using the learned mappings. We find strong empirical evidence that such affine mappings can preserve steering behaviors. These findings suggest that representations learned by small models can be used to guide the behavior of large models, and that the LRT hypothesis may be a promising direction on understanding representation alignment across model scales.
♻ ☆ Dialz: A Python Toolkit for Steering Vectors ACL
We introduce Dialz, a framework for advancing research on steering vectors for open-source LLMs, implemented in Python. Steering vectors allow users to modify activations at inference time to amplify or weaken a 'concept', e.g. honesty or positivity, providing a more powerful alternative to prompting or fine-tuning. Dialz supports a diverse set of tasks, including creating contrastive pair datasets, computing and applying steering vectors, and visualizations. Unlike existing libraries, Dialz emphasizes modularity and usability, enabling both rapid prototyping and in-depth analysis. We demonstrate how Dialz can be used to reduce harmful outputs such as stereotypes, while also providing insights into model behaviour across different layers. We release Dialz with full documentation, tutorials, and support for popular open-source models to encourage further research in safe and controllable language generation. Dialz enables faster research cycles and facilitates insights into model interpretability, paving the way for safer, more transparent, and more reliable AI systems.
comment: Accepted to ACL System Demo 2025
♻ ☆ Evaluations at Work: Measuring the Capabilities of GenAI in Use
Current AI benchmarks miss the messy, multi-turn nature of human-AI collaboration. We present an evaluation framework that decomposes real-world tasks into interdependent subtasks, letting us track both LLM performance and users' strategies across a dialogue. Complementing this framework, we develop a suite of metrics, including a composite usage derived from semantic similarity, word overlap, and numerical matches; structural coherence; intra-turn diversity; and a novel measure of the "information frontier" reflecting the alignment between AI outputs and users' working knowledge. We demonstrate our methodology in a financial valuation task that mirrors real-world complexity. Our empirical findings reveal that while greater integration of LLM-generated content generally enhances output quality, its benefits are moderated by factors such as response incoherence, excessive subtask diversity, and the distance of provided information from users' existing knowledge. These results suggest that proactive dialogue strategies designed to inject novelty may inadvertently undermine task performance. Our work thus advances a more holistic evaluation of human-AI collaboration, offering both a robust methodological framework and actionable insights for developing more effective AI-augmented work processes.
♻ ☆ Speculative Automated Refactoring of Imperative Deep Learning Programs to Graph Execution
Efficiency is essential to support ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code -- supporting symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, imperative DL frameworks encouraging eager execution have emerged but at the expense of run-time performance. Though hybrid approaches aim for the "best of both worlds," using them effectively requires subtle considerations. Our key insight is that, while DL programs typically execute sequentially, hybridizing imperative DL code resembles parallelizing sequential code in traditional systems. Inspired by this, we present an automated refactoring approach that assists developers in determining which otherwise eagerly-executed imperative DL functions could be effectively and efficiently executed as graphs. The approach features novel static imperative tensor and side-effect analyses for Python. Due to its inherent dynamism, analyzing Python may be unsound; however, the conservative approach leverages a speculative (keyword-based) analysis for resolving difficult cases that informs developers of any assumptions made. The approach is: (i) implemented as a plug-in to the PyDev Eclipse IDE that integrates the WALA Ariadne analysis framework and (ii) evaluated on nineteen DL projects consisting of 132 KLOC. The results show that 326 of 766 candidate functions (42.56%) were refactorable, and an average relative speedup of 2.16 on performance tests was observed with negligible differences in model accuracy. The results indicate that the approach is useful in optimizing imperative DL code to its full potential.
♻ ☆ Can Large Language Models Challenge CNNs in Medical Image Analysis?
This study presents a multimodal AI framework designed for precisely classifying medical diagnostic images. Utilizing publicly available datasets, the proposed system compares the strengths of convolutional neural networks (CNNs) and different large language models (LLMs). This in-depth comparative analysis highlights key differences in diagnostic performance, execution efficiency, and environmental impacts. Model evaluation was based on accuracy, F1-score, average execution time, average energy consumption, and estimated $CO_2$ emission. The findings indicate that although CNN-based models can outperform various multimodal techniques that incorporate both images and contextual information, applying additional filtering on top of LLMs can lead to substantial performance gains. These findings highlight the transformative potential of multimodal AI systems to enhance the reliability, efficiency, and scalability of medical diagnostics in clinical settings.
♻ ☆ Scene Structure Guidance Network: Unfolding Graph Partitioning into Pixel-Wise Feature Learning AAAI
Understanding the informative structures of scenes is essential for low-level vision tasks. Unfortunately, it is difficult to obtain a concrete visual definition of the informative structures because influences of visual features are task-specific. In this paper, we propose a single general neural network architecture for extracting task-specific structure guidance for scenes. To do this, we first analyze traditional spectral clustering methods, which computes a set of eigenvectors to model a segmented graph forming small compact structures on image domains. We then unfold the traditional graph-partitioning problem into a learnable network, named \textit{Scene Structure Guidance Network (SSGNet)}, to represent the task-specific informative structures. The SSGNet yields a set of coefficients of eigenvectors that produces explicit feature representations of image structures. In addition, our SSGNet is light-weight ($\sim$ 56K parameters), and can be used as a plug-and-play module for off-the-shelf architectures. We optimize the SSGNet without any supervision by proposing two novel training losses that enforce task-specific scene structure generation during training. Our main contribution is to show that such a simple network can achieve state-of-the-art results for several low-level vision applications. We also demonstrate that our network generalizes well on unseen datasets, compared to existing methods which use structural embedding frameworks. We further propose a lighter version of SSGNet ($\sim$ 29K parameters) for depth computation, SSGNet-D, and successfully execute it on edge computing devices like Jetson AGX Orin, improving the performance of baseline network, even in the wild, with little computational delay.
comment: 35 pages, 14 figures, journal extension version of SSGNet (https://ojs.aaai.org/index.php/AAAI/article/view/25322)
♻ ☆ Cannot See the Forest for the Trees: Invoking Heuristics and Biases to Elicit Irrational Choices of LLMs
Despite the remarkable performance of Large Language Models (LLMs), they remain vulnerable to jailbreak attacks, which can compromise their safety mechanisms. Existing studies often rely on brute-force optimization or manual design, failing to uncover potential risks in real-world scenarios. To address this, we propose a novel jailbreak attack framework, ICRT, inspired by heuristics and biases in human cognition. Leveraging the simplicity effect, we employ cognitive decomposition to reduce the complexity of malicious prompts. Simultaneously, relevance bias is utilized to reorganize prompts, enhancing semantic alignment and inducing harmful outputs effectively. Furthermore, we introduce a ranking-based harmfulness evaluation metric that surpasses the traditional binary success-or-failure paradigm by employing ranking aggregation methods such as Elo, HodgeRank, and Rank Centrality to comprehensively quantify the harmfulness of generated content. Experimental results show that our approach consistently bypasses mainstream LLMs' safety mechanisms and generates high-risk content, providing insights into jailbreak attack risks and contributing to stronger defense strategies.
♻ ☆ A Mousetrap: Fooling Large Reasoning Models for Jailbreak with Chain of Iterative Chaos
Large Reasoning Models (LRMs) have significantly advanced beyond traditional Large Language Models (LLMs) with their exceptional logical reasoning capabilities, yet these improvements introduce heightened safety risks. When subjected to jailbreak attacks, their ability to generate more targeted and organized content can lead to greater harm. Although some studies claim that reasoning enables safer LRMs against existing LLM attacks, they overlook the inherent flaws within the reasoning process itself. To address this gap, we propose the first jailbreak attack targeting LRMs, exploiting their unique vulnerabilities stemming from the advanced reasoning capabilities. Specifically, we introduce a Chaos Machine, a novel component to transform attack prompts with diverse one-to-one mappings. The chaos mappings iteratively generated by the machine are embedded into the reasoning chain, which strengthens the variability and complexity and also promotes a more robust attack. Based on this, we construct the Mousetrap framework, which makes attacks projected into nonlinear-like low sample spaces with mismatched generalization enhanced. Also, due to the more competing objectives, LRMs gradually maintain the inertia of unpredictable iterative reasoning and fall into our trap. Success rates of the Mousetrap attacking o1-mini, Claude-Sonnet and Gemini-Thinking are as high as 96%, 86% and 98% respectively on our toxic dataset Trotter. On benchmarks such as AdvBench, StrongREJECT, and HarmBench, attacking Claude-Sonnet, well-known for its safety, Mousetrap can astonishingly achieve success rates of 87.5%, 86.58% and 93.13% respectively. Attention: This paper contains inappropriate, offensive and harmful content.
♻ ☆ Adversarial Policy Optimization for Offline Preference-based Reinforcement Learning
In this paper, we study offline preference-based reinforcement learning (PbRL), where learning is based on pre-collected preference feedback over pairs of trajectories. While offline PbRL has demonstrated remarkable empirical success, existing theoretical approaches face challenges in ensuring conservatism under uncertainty, requiring computationally intractable confidence set constructions. We address this limitation by proposing Adversarial Preference-based Policy Optimization (APPO), a computationally efficient algorithm for offline PbRL that guarantees sample complexity bounds without relying on explicit confidence sets. By framing PbRL as a two-player game between a policy and a model, our approach enforces conservatism in a tractable manner. Using standard assumptions on function approximation and bounded trajectory concentrability, we derive a sample complexity bound. To our knowledge, APPO is the first offline PbRL algorithm to offer both statistical efficiency and practical applicability. Experimental results on continuous control tasks demonstrate that APPO effectively learns from complex datasets, showing comparable performance with existing state-of-the-art methods.
♻ ☆ Entropic bounds for conditionally Gaussian vectors and applications to neural networks
Using entropic inequalities from information theory, we provide new bounds on the total variation and 2-Wasserstein distances between a conditionally Gaussian law and a Gaussian law with invertible covariance matrix. We apply our results to quantify the speed of convergence to Gaussian of a randomly initialized fully connected neural network and its derivatives - evaluated in a finite number of inputs - when the initialization is Gaussian and the sizes of the inner layers diverge to infinity. Our results require mild assumptions on the activation function, and allow one to recover optimal rates of convergence in a variety of distances, thus improving and extending the findings of Basteri and Trevisan (2023), Favaro et al. (2023), Trevisan (2024) and Apollonio et al. (2024). One of our main tools are the quantitative cumulant estimates established in Hanin (2024). As an illustration, we apply our results to bound the total variation distance between the Bayesian posterior law of the neural network and its derivatives, and the posterior law of the corresponding Gaussian limit: this yields quantitative versions of a posterior CLT by Hron et al. (2022), and extends several estimates by Trevisan (2024) to the total variation metric.
♻ ☆ FocalPO: Enhancing Preference Optimizing by Focusing on Correct Preference Rankings ACL 2025
Efficient preference optimization algorithms such as Direct Preference Optimization (DPO) have become a popular approach in aligning large language models (LLMs) with human preferences. These algorithms implicitly treat the LLM as a reward model, and focus on training it to correct misranked preference pairs. However, recent work~\citep{chen2024preference} empirically finds that DPO training \textit{rarely improves these misranked preference pairs}, despite its gradient emphasizing on these cases. We introduce FocalPO, a DPO variant that instead \textit{down-weighs} misranked preference pairs and prioritizes enhancing the model's understanding of pairs that it can already rank correctly. Inspired by Focal Loss used in vision tasks, FocalPO achieves this by adding a modulating factor to dynamically scale DPO loss. Our experiment demonstrates that FocalPO surpasses DPO and its variants on popular benchmarks like Alpaca Eval 2.0 using Mistral-Base-7B and Llama-3-Instruct-8B, with the introduced hyperparameter fixed. Additionally, we empirically reveals how FocalPO affects training on correct and incorrect sample groups, further underscoring its effectiveness.
comment: ACL 2025
♻ ☆ Large language models for crowd decision making based on prompt design strategies using ChatGPT: models, analysis and challenges
Social Media and Internet have the potential to be exploited as a source of opinion to enrich Decision Making solutions. Crowd Decision Making (CDM) is a methodology able to infer opinions and decisions from plain texts, such as reviews published in social media platforms, by means of Sentiment Analysis. Currently, the emergence and potential of Large Language Models (LLMs) lead us to explore new scenarios of automatically understand written texts, also known as natural language processing. This paper analyzes the use of ChatGPT based on prompt design strategies to assist in CDM processes to extract opinions and make decisions. We integrate ChatGPT in CDM processes as a flexible tool that infer the opinions expressed in texts, providing numerical or linguistic evaluations where the decision making models are based on the prompt design strategies. We include a multi-criteria decision making scenario with a category ontology for criteria. We also consider ChatGPT as an end-to-end CDM model able to provide a general opinion and score on the alternatives. We conduct empirical experiments on real data extracted from TripAdvisor, the TripR-2020Large dataset. The analysis of results show a promising branch for developing quality decision making models using ChatGPT. Finally, we discuss the challenges of consistency, sensitivity and explainability associated to the use of LLMs in CDM processes, raising open questions for future studies.
♻ ☆ MINDSTORES: Memory-Informed Neural Decision Synthesis for Task-Oriented Reinforcement in Embodied Systems
While large language models (LLMs) have shown promising capabilities as zero-shot planners for embodied agents, their inability to learn from experience and build persistent mental models limits their robustness in complex open-world environments like Minecraft. We introduce MINDSTORES, an experience-augmented planning framework that enables embodied agents to build and leverage mental models through natural interaction with their environment. Drawing inspiration from how humans construct and refine cognitive mental models, our approach extends existing zero-shot LLM planning by maintaining a database of past experiences that informs future planning iterations. The key innovation is representing accumulated experiences as natural language embeddings of (state, task, plan, outcome) tuples, which can then be efficiently retrieved and reasoned over by an LLM planner to generate insights and guide plan refinement for novel states and tasks. Through extensive experiments in the MineDojo environment, a simulation environment for agents in Minecraft that provides low-level controls for Minecraft, we find that MINDSTORES learns and applies its knowledge significantly better than existing memory-based LLM planners while maintaining the flexibility and generalization benefits of zero-shot approaches, representing an important step toward more capable embodied AI systems that can learn continuously through natural experience.
♻ ☆ SATA: A Paradigm for LLM Jailbreak via Simple Assistive Task Linkage
Large language models (LLMs) have made significant advancements across various tasks, but their safety alignment remain a major concern. Exploring jailbreak prompts can expose LLMs' vulnerabilities and guide efforts to secure them. Existing methods primarily design sophisticated instructions for the LLM to follow, or rely on multiple iterations, which could hinder the performance and efficiency of jailbreaks. In this work, we propose a novel jailbreak paradigm, Simple Assistive Task Linkage (SATA), which can effectively circumvent LLM safeguards and elicit harmful responses. Specifically, SATA first masks harmful keywords within a malicious query to generate a relatively benign query containing one or multiple [MASK] special tokens. It then employs a simple assistive task such as a masked language model task or an element lookup by position task to encode the semantics of the masked keywords. Finally, SATA links the assistive task with the masked query to jointly perform the jailbreak. Extensive experiments show that SATA achieves state-of-the-art performance and outperforms baselines by a large margin. Specifically, on AdvBench dataset, with mask language model (MLM) assistive task, SATA achieves an overall attack success rate (ASR) of 85% and harmful score (HS) of 4.57, and with element lookup by position (ELP) assistive task, SATA attains an overall ASR of 76% and HS of 4.43.
♻ ☆ Beyond Prompt Engineering: Robust Behavior Control in LLMs via Steering Target Atoms ACL 2025
Precise control over language model generation is vital for ensuring both safety and reliability. Although prompt engineering and steering are commonly used to intervene in model behaviors, the vast number of parameters in models often results in highly intertwined internal representations. This interdependency can limit control precision and sometimes lead to unintended side effects. Recent research has explored the use of sparse autoencoders (SAE) to disentangle knowledge in high-dimensional spaces for steering. However, these applications have been limited to toy tasks owing to the nontrivial issue of locating atomic knowledge components. In this paper, we propose Steering Target Atoms (STA), a novel method that isolates and manipulates disentangled knowledge components to enhance safety. Comprehensive experiments demonstrate the effectiveness of our approach. Further analysis reveals that steering exhibits superior robustness and flexibility, particularly in adversarial scenarios. We also apply the steering strategy to the large reasoning model, confirming its effectiveness in precise reasoning control.
comment: ACL 2025
♻ ☆ TestDG: Test-time Domain Generalization for Continual Test-time Adaptation
This paper studies continual test-time adaptation (CTTA), the task of adapting a model to constantly changing unseen domains in testing while preserving previously learned knowledge. Existing CTTA methods mostly focus on adaptation to the current test domain only, overlooking generalization to arbitrary test domains a model may face in the future. To tackle this limitation, we present a novel online test-time domain generalization framework for CTTA, dubbed TestDG. TestDG aims to learn features invariant to both current and previous test domains on the fly during testing, improving the potential for effective generalization to future domains. To this end, we propose a new model architecture and a test-time adaptation strategy dedicated to learning domain-invariant features, along with a new data structure and optimization algorithm for effectively managing information from previous test domains. TestDG achieved state of the art on four public CTTA benchmarks. Moreover, it showed superior generalization to unseen test domains.
♻ ☆ Rényi Neural Processes
Neural Processes (NPs) are deep probabilistic models that represent stochastic processes by conditioning their prior distributions on a set of context points. Despite their advantages in uncertainty estimation for complex distributions, NPs enforce parameterization coupling between the conditional prior model and the posterior model. We show that this coupling amounts to prior misspecification and revisit the NP objective to address this issue. More specifically, we propose R\'enyi Neural Processes (RNP), a method that replaces the standard KL divergence with the R\'enyi divergence, dampening the effects of the misspecified prior during posterior updates. We validate our approach across multiple benchmarks including regression and image inpainting tasks, and show significant performance improvements of RNPs in real-world problems. Our extensive experiments show consistently better log-likelihoods over state-of-the-art NP models.
♻ ☆ Adaptive Guidance for Local Training in Heterogeneous Federated Learning
Model heterogeneity poses a significant challenge in Heterogeneous Federated Learning (HtFL). In scenarios with diverse model architectures, directly aggregating model parameters is impractical, leading HtFL methods to incorporate an extra objective alongside the original local objective on each client to facilitate collaboration. However, this often results in a mismatch between the extra and local objectives. To resolve this, we propose Federated Learning-to-Guide (FedL2G), a method that adaptively learns to guide local training in a federated manner, ensuring the added objective aligns with each client's original goal. With theoretical guarantees, FedL2G utilizes only first-order derivatives w.r.t. model parameters, achieving a non-convex convergence rate of O(1/T). We conduct extensive experiments across two data heterogeneity and six model heterogeneity settings, using 14 heterogeneous model architectures (e.g., CNNs and ViTs). The results show that FedL2G significantly outperforms seven state-of-the-art methods.
♻ ☆ CAND: Cross-Domain Ambiguity Inference for Early Detecting Nuanced Illness Deterioration
Early detection of patient deterioration is essential for timely treatment, with vital signs like heart rates being key health indicators. Existing methods tend to solely analyze vital sign waveforms, ignoring transition relationships of waveforms within each vital sign and the correlation strengths among various vital signs. Such studies often overlook nuanced illness deterioration, which is the early sign of worsening health but is difficult to detect. In this paper, we introduce CAND, a novel method that organizes the transition relationships and the correlations within and among vital signs as domain-specific and cross-domain knowledge. CAND jointly models these knowledge in a unified representation space, considerably enhancing the early detection of nuanced illness deterioration. In addition, CAND integrates a Bayesian inference method that utilizes augmented knowledge from domain-specific and cross-domain knowledge to address the ambiguities in correlation strengths. With this architecture, the correlation strengths can be effectively inferred to guide joint modeling and enhance representations of vital signs. This allows a more holistic and accurate interpretation of patient health. Our experiments on a real-world ICU dataset demonstrate that CAND significantly outperforms existing methods in both effectiveness and earliness in detecting nuanced illness deterioration. Moreover, we conduct a case study for the interpretable detection process to showcase the practicality of CAND.
♻ ☆ Improving the Language Understanding Capabilities of Large Language Models Using Reinforcement Learning
Instruction-fine-tuned large language models (LLMs) under 14B parameters continue to underperform on natural language understanding (NLU) tasks, often trailing smaller models like BERT-base on benchmarks such as GLUE and SuperGLUE. Motivated by the success of reinforcement learning in reasoning tasks (e.g., DeepSeek), we explore Proximal Policy Optimization (PPO) as a framework to improve the NLU capabilities of LLMs. We frame NLU as a reinforcement learning environment, treating token generation as a sequence of actions and optimizing for reward signals based on alignment with ground-truth labels. PPO consistently outperforms supervised fine-tuning, yielding an average improvement of 6.3 points on GLUE, and surpasses zero-shot and few-shot prompting by 38.7 and 26.1 points, respectively. Notably, PPO-tuned models outperform GPT-4o by over 4\% on average across sentiment and natural language inference tasks, including gains of 7.3\% on the Mental Health dataset and 10.9\% on SIGA-nli. This work highlights a promising direction for adapting LLMs to new tasks by reframing them as reinforcement learning problems, enabling learning through simple end-task rewards rather than extensive data curation.
♻ ☆ POSTER: A Multi-Signal Model for Detecting Evasive Smishing
Smishing, or SMS-based phishing, poses an increasing threat to mobile users by mimicking legitimate communications through culturally adapted, concise, and deceptive messages, which can result in the loss of sensitive data or financial resources. In such, we present a multi-channel smishing detection model that combines country-specific semantic tagging, structural pattern tagging, character-level stylistic cues, and contextual phrase embeddings. We curated and relabeled over 84,000 messages across five datasets, including 24,086 smishing samples. Our unified architecture achieves 97.89% accuracy, an F1 score of 0.963, and an AUC of 99.73%, outperforming single-stream models by capturing diverse linguistic and structural cues. This work demonstrates the effectiveness of multi-signal learning in robust and region-aware phishing.
♻ ☆ The Invisible Hand: Unveiling Provider Bias in Large Language Models for Code Generation
Large Language Models (LLMs) have emerged as the new recommendation engines, surpassing traditional methods in both capability and scope, particularly in code generation. In this paper, we reveal a novel provider bias in LLMs: without explicit directives, these models show systematic preferences for services from specific providers in their recommendations (e.g., favoring Google Cloud over Microsoft Azure). To systematically investigate this bias, we develop an automated pipeline to construct the dataset, incorporating 6 distinct coding task categories and 30 real-world application scenarios. Leveraging this dataset, we conduct the first comprehensive empirical study of provider bias in LLM code generation across seven state-of-the-art LLMs, utilizing approximately 500 million tokens (equivalent to $5,000+ in computational costs). Our findings reveal that LLMs exhibit significant provider preferences, predominantly favoring services from Google and Amazon, and can autonomously modify input code to incorporate their preferred providers without users' requests. Such a bias holds far-reaching implications for market dynamics and societal equilibrium, potentially contributing to digital monopolies. It may also deceive users and violate their expectations, leading to various consequences. We call on the academic community to recognize this emerging issue and develop effective evaluation and mitigation methods to uphold AI security and fairness.
comment: 27 pages, 13 figures
FedRecon: Missing Modality Reconstruction in Heterogeneous Distributed Environments
Multimodal data are often incomplete and exhibit Non-Independent and Identically Distributed (Non-IID) characteristics in real-world scenarios. These inherent limitations lead to both modality heterogeneity through partial modality absence and data heterogeneity from distribution divergence, creating fundamental challenges for effective federated learning (FL). To address these coupled challenges, we propose FedRecon, the first method targeting simultaneous missing modality reconstruction and Non-IID adaptation in multimodal FL. Our approach first employs a lightweight Multimodal Variational Autoencoder (MVAE) to reconstruct missing modalities while preserving cross-modal consistency. Distinct from conventional imputation methods, we achieve sample-level alignment through a novel distribution mapping mechanism that guarantees both data consistency and completeness. Additionally, we introduce a strategy employing global generator freezing to prevent catastrophic forgetting, which in turn mitigates Non-IID fluctuations. Extensive evaluations on multimodal datasets demonstrate FedRecon's superior performance in modality reconstruction under Non-IID conditions, surpassing state-of-the-art methods.
comment: 18 pages, 32 figures
♻ ☆ CMRINet: Joint Groupwise Registration and Segmentation for Cardiac Function Quantification from Cine-MRI
Accurate and efficient quantification of cardiac function is essential for the estimation of prognosis of cardiovascular diseases (CVDs). One of the most commonly used metrics for evaluating cardiac pumping performance is left ventricular ejection fraction (LVEF). However, LVEF can be affected by factors such as inter-observer variability and varying pre-load and after-load conditions, which can reduce its reproducibility. Additionally, cardiac dysfunction may not always manifest as alterations in LVEF, such as in heart failure and cardiotoxicity diseases. An alternative measure that can provide a relatively load-independent quantitative assessment of myocardial contractility is myocardial strain and strain rate. By using LVEF in combination with myocardial strain, it is possible to obtain a thorough description of cardiac function. Automated estimation of LVEF and other volumetric measures from cine-MRI sequences can be achieved through segmentation models, while strain calculation requires the estimation of tissue displacement between sequential frames, which can be accomplished using registration models. These tasks are often performed separately, potentially limiting the assessment of cardiac function. To address this issue, in this study we propose an end-to-end deep learning (DL) model that jointly estimates groupwise (GW) registration and segmentation for cardiac cine-MRI images. The proposed anatomically-guided Deep GW network was trained and validated on a large dataset of 4-chamber view cine-MRI image series of 374 subjects. A quantitative comparison with conventional GW registration using elastix and two DL-based methods showed that the proposed model improved performance and substantially reduced computation time.
comment: 15 pages, 7 figures, 1 appendix
♻ ☆ P-TAME: Explain Any Image Classifier with Trained Perturbations
The adoption of Deep Neural Networks (DNNs) in critical fields where predictions need to be accompanied by justifications is hindered by their inherent black-box nature. In this paper, we introduce P-TAME (Perturbation-based Trainable Attention Mechanism for Explanations), a model-agnostic method for explaining DNN-based image classifiers. P-TAME employs an auxiliary image classifier to extract features from the input image, bypassing the need to tailor the explanation method to the internal architecture of the backbone classifier being explained. Unlike traditional perturbation-based methods, which have high computational requirements, P-TAME offers an efficient alternative by generating high-resolution explanations in a single forward pass during inference. We apply P-TAME to explain the decisions of VGG-16, ResNet-50, and ViT-B-16, three distinct and widely used image classifiers. Quantitative and qualitative results show that our method matches or outperforms previous explainability methods, including model-specific approaches. Code and trained models will be released upon acceptance.
comment: Published in IEEE Open Journal of Signal Processing (Volume 6)
♻ ☆ Label Deconvolution for Node Representation Learning on Large-scale Attributed Graphs against Learning Bias
Node representation learning on attributed graphs -- whose nodes are associated with rich attributes (e.g., texts and protein sequences) -- plays a crucial role in many important downstream tasks. To encode the attributes and graph structures simultaneously, recent studies integrate pre-trained models with graph neural networks (GNNs), where pre-trained models serve as node encoders (NEs) to encode the attributes. As jointly training large NEs and GNNs on large-scale graphs suffers from severe scalability issues, many methods propose to train NEs and GNNs separately. Consequently, they do not take feature convolutions in GNNs into consideration in the training phase of NEs, leading to a significant learning bias relative to the joint training. To address this challenge, we propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs. The inverse mapping leads to an objective function that is equivalent to that by the joint training, while it can effectively incorporate GNNs in the training phase of NEs against the learning bias. More importantly, we show that LD converges to the optimal objective function values by the joint training under mild assumptions. Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph Benchmark datasets.
♻ ☆ OralBBNet: Spatially Guided Dental Segmentation of Panoramic X-Rays with Bounding Box Priors
Teeth segmentation and recognition play a vital role in a variety of dental applications and diagnostic procedures. The integration of deep learning models has facilitated the development of precise and automated segmentation methods. Although prior research has explored teeth segmentation, not many methods have successfully performed tooth segmentation and detection simultaneously. This study presents UFBA-425, a dental dataset derived from the UFBA-UESC dataset, featuring bounding box and polygon annotations for 425 panoramic dental X-rays. Additionally, this work introduces OralBBNet, an architecture featuring distinct segmentation and detection heads as U-Net and YOLOv8, respectively. OralBBNet is designed to improve the accuracy and robustness of tooth classification and segmentation on panoramic X-rays by leveraging the complementary strengths of U-Net and YOLOv8. Our approach achieved a 1-3% improvement in mean average precision (mAP) for teeth detection compared to existing techniques and a 15-20% improvement in the dice score for teeth segmentation over U-Net over various tooth categories and 2-4% improvement in the dice score when compared with other segmentation architectures. The results of this study establish a foundation for the wider implementation of object detection models in dental diagnostics.
comment: Under Review, Biomedical Signal Processing Control
♻ ☆ Towards Efficient Online Tuning of VLM Agents via Counterfactual Soft Reinforcement Learning ICML 2025
Online fine-tuning vision-language model (VLM) agents with reinforcement learning (RL) has shown promise for equipping agents with multi-step, goal-oriented capabilities in dynamic environments. However, their open-ended textual action space and non-end-to-end nature of action generation present significant challenges to effective online exploration in RL, e.g., explosion of the exploration space. We propose a novel online fine-tuning method, Counterfactual Soft Reinforcement Learning (CoSo), better suited to the textual output space of VLM agents. Compared to prior methods that assign uniform uncertainty to all tokens, CoSo leverages counterfactual reasoning to dynamically assess the causal influence of individual tokens on post-processed actions. By prioritizing the exploration of action-critical tokens while reducing the impact of semantically redundant or low-impact tokens, CoSo enables a more targeted and efficient online rollout process. We provide theoretical analysis proving CoSo's convergence and policy improvement guarantees, and extensive empirical evaluations supporting CoSo's effectiveness. Our results across a diverse set of agent tasks, including Android device control, card gaming, and embodied AI, highlight its remarkable ability to enhance exploration efficiency and deliver consistent performance gains. The code is available at https://github.com/langfengQ/CoSo.
comment: ICML 2025
♻ ☆ Pro3D-Editor : A Progressive-Views Perspective for Consistent and Precise 3D Editing
Text-guided 3D editing aims to precisely edit semantically relevant local 3D regions, which has significant potential for various practical applications ranging from 3D games to film production. Existing methods typically follow a view-indiscriminate paradigm: editing 2D views indiscriminately and projecting them back into 3D space. However, they overlook the different cross-view interdependencies, resulting in inconsistent multi-view editing. In this study, we argue that ideal consistent 3D editing can be achieved through a \textit{progressive-views paradigm}, which propagates editing semantics from the editing-salient view to other editing-sparse views. Specifically, we propose \textit{Pro3D-Editor}, a novel framework, which mainly includes Primary-view Sampler, Key-view Render, and Full-view Refiner. Primary-view Sampler dynamically samples and edits the most editing-salient view as the primary view. Key-view Render accurately propagates editing semantics from the primary view to other key views through its Mixture-of-View-Experts Low-Rank Adaption (MoVE-LoRA). Full-view Refiner edits and refines the 3D object based on the edited multi-views. Extensive experiments demonstrate that our method outperforms existing methods in editing accuracy and spatial consistency.
♻ ☆ OASST-ETC Dataset: Alignment Signals from Eye-tracking Analysis of LLM Responses
While Large Language Models (LLMs) have significantly advanced natural language processing, aligning them with human preferences remains an open challenge. Although current alignment methods rely primarily on explicit feedback, eye-tracking (ET) data offers insights into real-time cognitive processing during reading. In this paper, we present OASST-ETC, a novel eye-tracking corpus capturing reading patterns from 24 participants, while evaluating LLM-generated responses from the OASST1 dataset. Our analysis reveals distinct reading patterns between preferred and non-preferred responses, which we compare with synthetic eye-tracking data. Furthermore, we examine the correlation between human reading measures and attention patterns from various transformer-based models, discovering stronger correlations in preferred responses. This work introduces a unique resource for studying human cognitive processing in LLM evaluation and suggests promising directions for incorporating eye-tracking data into alignment methods. The dataset and analysis code are publicly available.
comment: This paper has been accepted to ACM ETRA 2025 and published on PACMHCI
♻ ☆ Predictable Reinforcement Learning Dynamics through Entropy Rate Minimization
In Reinforcement Learning (RL), agents have no incentive to exhibit predictable behaviors, and are often pushed (through e.g. policy entropy regularisation) to randomise their actions in favor of exploration. This often makes it challenging for other agents and humans to predict an agent's behavior, triggering unsafe scenarios (e.g. in human-robot interaction). We propose a novel method to induce predictable behavior in RL agents, termed Predictability-Aware RL (PARL), employing the agent's trajectory entropy rate to quantify predictability. Our method maximizes a linear combination of a standard discounted reward and the negative entropy rate, thus trading off optimality with predictability. We show how the entropy rate can be formally cast as an average reward, how entropy-rate value functions can be estimated from a learned model and incorporate this in policy-gradient algorithms, and demonstrate how this approach produces predictable (near-optimal) policies in tasks inspired by human-robot use-cases.
♻ ☆ T-TAME: Trainable Attention Mechanism for Explaining Convolutional Networks and Vision Transformers
The development and adoption of Vision Transformers and other deep-learning architectures for image classification tasks has been rapid. However, the "black box" nature of neural networks is a barrier to adoption in applications where explainability is essential. While some techniques for generating explanations have been proposed, primarily for Convolutional Neural Networks, adapting such techniques to the new paradigm of Vision Transformers is non-trivial. This paper presents T-TAME, Transformer-compatible Trainable Attention Mechanism for Explanations, a general methodology for explaining deep neural networks used in image classification tasks. The proposed architecture and training technique can be easily applied to any convolutional or Vision Transformer-like neural network, using a streamlined training approach. After training, explanation maps can be computed in a single forward pass; these explanation maps are comparable to or outperform the outputs of computationally expensive perturbation-based explainability techniques, achieving SOTA performance. We apply T-TAME to three popular deep learning classifier architectures, VGG-16, ResNet-50, and ViT-B-16, trained on the ImageNet dataset, and we demonstrate improvements over existing state-of-the-art explainability methods. A detailed analysis of the results and an ablation study provide insights into how the T-TAME design choices affect the quality of the generated explanation maps.
comment: Accepted
♻ ☆ Large Language Models to Diffusion Finetuning ICML 2025
We propose a new finetuning method to provide pre-trained large language models (LMs) the ability to scale test-time compute through the diffusion framework. By increasing the number of diffusion steps, we show our finetuned models achieve monotonically increasing accuracy, directly translating to improved performance across downstream tasks. Furthermore, our finetuned models can expertly answer questions on specific topics by integrating powerful guidance techniques, and autonomously determine the compute required for a given problem by leveraging adaptive ODE solvers. Our method is universally applicable to any foundation model pre-trained with a cross-entropy loss and does not modify any of its original weights, fully preserving its strong single-step generation capabilities. We show our method is more effective and fully compatible with traditional finetuning approaches, introducing an orthogonal new direction to unify the strengths of the autoregressive and diffusion frameworks.
comment: Camera-ready version, presented at ICML 2025. Code available at: https://github.com/SakanaAI/L2D
♻ ☆ Exploiting Uncertainty for Querying Inconsistent Description Logics Knowledge Bases
The necessity to manage inconsistency in Description Logics Knowledge Bases (KBs) has come to the fore with the increasing importance gained by the Semantic Web, where information comes from different sources that constantly change their content and may contain contradictory descriptions when considered either alone or together. Classical reasoning algorithms do not handle inconsistent KBs, forcing the debugging of the KB in order to remove the inconsistency. In this paper, we exploit an existing probabilistic semantics called DISPONTE to overcome this problem and allow queries also in case of inconsistent KBs. We implemented our approach in the reasoners TRILL and BUNDLE and empirically tested the validity of our proposal. Moreover, we formally compare the presented approach to that of the repair semantics, one of the most established semantics when considering DL reasoning tasks.
♻ ☆ Information Science Principles of Machine Learning: A Causal Chain Meta-Framework Based on Formalized Information Mapping
[Objective] This study focuses on addressing the current lack of a unified formal theoretical framework in machine learning, as well as the deficiencies in interpretability and ethical safety assurance. [Methods] A formal information model is first constructed, utilizing sets of well-formed formulas to explicitly define the ontological states and carrier mappings of typical components in machine learning. Learnable and processable predicates, along with learning and processing functions, are introduced to analyze the logical deduction and constraint rules of the causal chains within models. [Results] A meta-framework for machine learning theory (MLT-MF) is established. Based on this framework, universal definitions for model interpretability and ethical safety are proposed. Furthermore, three key theorems are proved: the equivalence of model interpretability and information recoverability, the assurance of ethical safety, and the estimation of generalization error. [Limitations] The current framework assumes ideal conditions with noiseless information-enabling mappings and primarily targets model learning and processing logic in static scenarios. It does not yet address information fusion and conflict resolution across ontological spaces in multimodal or multi-agent systems. [Conclusions] This work overcomes the limitations of fragmented research and provides a unified theoretical foundation for systematically addressing the critical challenges currently faced in machine learning.
♻ ☆ DeepTheorem: Advancing LLM Reasoning for Theorem Proving Through Natural Language and Reinforcement Learning
Theorem proving serves as a major testbed for evaluating complex reasoning abilities in large language models (LLMs). However, traditional automated theorem proving (ATP) approaches rely heavily on formal proof systems that poorly align with LLMs' strength derived from informal, natural language knowledge acquired during pre-training. In this work, we propose DeepTheorem, a comprehensive informal theorem-proving framework exploiting natural language to enhance LLM mathematical reasoning. DeepTheorem includes a large-scale benchmark dataset consisting of 121K high-quality IMO-level informal theorems and proofs spanning diverse mathematical domains, rigorously annotated for correctness, difficulty, and topic categories, accompanied by systematically constructed verifiable theorem variants. We devise a novel reinforcement learning strategy (RL-Zero) explicitly tailored to informal theorem proving, leveraging the verified theorem variants to incentivize robust mathematical inference. Additionally, we propose comprehensive outcome and process evaluation metrics examining proof correctness and the quality of reasoning steps. Extensive experimental analyses demonstrate DeepTheorem significantly improves LLM theorem-proving performance compared to existing datasets and supervised fine-tuning protocols, achieving state-of-the-art accuracy and reasoning quality. Our findings highlight DeepTheorem's potential to fundamentally advance automated informal theorem proving and mathematical exploration.
♻ ☆ Binary Cumulative Encoding meets Time Series Forecasting
Recent studies in time series forecasting have explored formulating regression via classification task. By discretizing the continuous target space into bins and predicting over a fixed set of classes, these approaches benefit from stable training, robust uncertainty modeling, and compatibility with modern deep learning architectures. However, most existing methods rely on one-hot encoding that ignores the inherent ordinal structure of the underlying values. As a result, they fail to provide information about the relative distance between predicted and true values during training. In this paper, we propose to address this limitation by introducing binary cumulative encoding (BCE), that represents scalar targets into monotonic binary vectors. This encoding implicitly preserves order and magnitude information, allowing the model to learn distance-aware representations while still operating within a classification framework. We propose a convolutional neural network architecture specifically designed for BCE, incorporating residual and dilated convolutions to enable fast and expressive temporal modeling. Through extensive experiments on benchmark forecasting datasets, we show that our approach outperforms widely used methods in both point and probabilistic forecasting, while requiring fewer parameters and enabling faster training.
♻ ☆ Extracting Explainable Dates From Medical Images By Reverse-Engineering UNIX Timestamps KR
Dates often contribute towards highly impactful medical decisions, but it is rarely clear how to extract this data. AI has only just begun to be used transcribe such documents, and common methods are either to trust that the output produced by a complex AI model, or to parse the text using regular expressions. Recent work has established that regular expressions are an explainable form of logic, but it is difficult to decompose these into the component parts that are required to construct precise UNIX timestamps. First, we test publicly-available regular expressions, and we found that these were unable to capture a significant number of our dates. Next, we manually created easily-decomposable regular expressions, and we found that these were able to detect the majority of real dates, but also a lot of sequences of text that look like dates. Finally, we used regular expression synthesis to automatically identify regular expressions from the reverse-engineered UNIX timestamps that we created. We find that regular expressions created by regular expression synthesis detect far fewer sequences of text that look like dates than those that were manually created, at the cost of a slight increase to the number of missed dates. Overall, our results show that regular expressions can be created through regular expression synthesis to identify complex dates and date ranges in text transcriptions. To our knowledge, our proposed way of learning deterministic logic by reverse-engineering several many-one mappings and feeding these into a regular expression synthesiser is a new approach.
comment: This research was funded by a UKRI grant. Number: 10048265
♻ ☆ Student Perspectives on the Benefits and Risks of AI in Education
The use of chatbots equipped with artificial intelligence (AI) in educational settings has increased in recent years, showing potential to support teaching and learning. However, the adoption of these technologies has raised concerns about their impact on academic integrity, students' ability to problem-solve independently, and potential underlying biases. To better understand students' perspectives and experiences with these tools, a survey was conducted at a large public university in the United States. Through thematic analysis, 262 undergraduate students' responses regarding their perceived benefits and risks of AI chatbots in education were identified and categorized into themes. The results discuss several benefits identified by the students, with feedback and study support, instruction capabilities, and access to information being the most cited. Their primary concerns included risks to academic integrity, accuracy of information, loss of critical thinking skills, the potential development of overreliance, and ethical considerations such as data privacy, system bias, environmental impact, and preservation of human elements in education. While student perceptions align with previously discussed benefits and risks of AI in education, they show heightened concerns about distinguishing between human and AI generated work - particularly in cases where authentic work is flagged as AI-generated. To address students' concerns, institutions can establish clear policies regarding AI use and develop curriculum around AI literacy. With these in place, practitioners can effectively develop and implement educational systems that leverage AI's potential in areas such as immediate feedback and personalized learning support. This approach can enhance the quality of students' educational experiences while preserving the integrity of the learning process with AI.
♻ ☆ How to Connect Speech Foundation Models and Large Language Models? What Matters and What Does Not
The remarkable performance achieved by Large Language Models (LLM) has driven research efforts to leverage them for a wide range of tasks and input modalities. In speech-to-text (S2T) tasks, the emerging solution consists of projecting the output of the encoder of a Speech Foundational Model (SFM) into the LLM embedding space through an adapter module. However, no work has yet investigated how much the downstream-task performance depends on each component (SFM, adapter, LLM) nor whether the best design of the adapter depends on the chosen SFM and LLM. To fill this gap, we evaluate the combination of 5 adapter modules, 2 LLMs (Mistral and Llama), and 2 SFMs (Whisper and SeamlessM4T) on two widespread S2T tasks, namely Automatic Speech Recognition and Speech Translation. Our results demonstrate that the SFM plays a pivotal role in downstream performance, while the adapter choice has moderate impact and depends on the SFM and LLM.
comment: Submitted to Interspeech 2025
♻ ☆ Emergent Abilities of Large Language Models under Continued Pretraining for Language Adaptation ACL 2025
Continued pretraining (CPT) is a popular approach to adapt existing large language models (LLMs) to new languages. When doing so, it is common practice to include a portion of English data in the mixture, but its role has not been carefully studied to date. In this work, we show that including English does not impact validation perplexity, yet it is critical for the emergence of downstream capabilities in the target language. We introduce a language-agnostic benchmark for in-context learning (ICL), which reveals catastrophic forgetting early on CPT when English is not included. This in turn damages the ability of the model to generalize to downstream prompts in the target language as measured by perplexity, even if it does not manifest in terms of accuracy until later in training, and can be tied to a big shift in the model parameters. Based on these insights, we introduce curriculum learning and exponential moving average (EMA) of weights as effective alternatives to mitigate the need for English. All in all, our work sheds light into the dynamics by which emergent abilities arise when doing CPT for language adaptation, and can serve as a foundation to design more effective methods in the future.
comment: To appear in ACL 2025 Main
♻ ☆ OpenS2V-Nexus: A Detailed Benchmark and Million-Scale Dataset for Subject-to-Video Generation
Subject-to-Video (S2V) generation aims to create videos that faithfully incorporate reference content, providing enhanced flexibility in the production of videos. To establish the infrastructure for S2V generation, we propose OpenS2V-Nexus, consisting of (i) OpenS2V-Eval, a fine-grained benchmark, and (ii) OpenS2V-5M, a million-scale dataset. In contrast to existing S2V benchmarks inherited from VBench that focus on global and coarse-grained assessment of generated videos, OpenS2V-Eval focuses on the model's ability to generate subject-consistent videos with natural subject appearance and identity fidelity. For these purposes, OpenS2V-Eval introduces 180 prompts from seven major categories of S2V, which incorporate both real and synthetic test data. Furthermore, to accurately align human preferences with S2V benchmarks, we propose three automatic metrics, NexusScore, NaturalScore and GmeScore, to separately quantify subject consistency, naturalness, and text relevance in generated videos. Building on this, we conduct a comprehensive evaluation of 18 representative S2V models, highlighting their strengths and weaknesses across different content. Moreover, we create the first open-source large-scale S2V generation dataset OpenS2V-5M, which consists of five million high-quality 720P subject-text-video triples. Specifically, we ensure subject-information diversity in our dataset by (1) segmenting subjects and building pairing information via cross-video associations and (2) prompting GPT-Image-1 on raw frames to synthesize multi-view representations. Through OpenS2V-Nexus, we deliver a robust infrastructure to accelerate future S2V generation research.
comment: Code and Dataset: https://github.com/PKU-YuanGroup/OpenS2V-Nexus
♻ ☆ Evolving Hard Maximum Cut Instances for Quantum Approximate Optimization Algorithms
Variational quantum algorithms, such as the Recursive Quantum Approximate Optimization Algorithm (RQAOA), have become increasingly popular, offering promising avenues for employing Noisy Intermediate-Scale Quantum devices to address challenging combinatorial optimization tasks like the maximum cut problem. In this study, we utilize an evolutionary algorithm equipped with a unique fitness function. This approach targets hard maximum cut instances within the latent space of a Graph Autoencoder, identifying those that pose significant challenges or are particularly tractable for RQAOA, in contrast to the classic Goemans and Williamson algorithm. Our findings not only delineate the distinct capabilities and limitations of each algorithm but also expand our understanding of RQAOA's operational limits. Furthermore, the diverse set of graphs we have generated serves as a crucial benchmarking asset, emphasizing the need for more advanced algorithms to tackle combinatorial optimization challenges. Additionally, our results pave the way for new avenues in graph generation research, offering exciting opportunities for future explorations.
comment: This work has been accepted for publication and presentation at GECCO 2025
♻ ☆ Hyperband-based Bayesian Optimization for Black-box Prompt Selection ICML 2025
Optimal prompt selection is crucial for maximizing large language model (LLM) performance on downstream tasks, especially in black-box settings where models are only accessible via APIs. Black-box prompt selection is challenging due to potentially large, combinatorial search spaces, absence of gradient information, and high evaluation cost of prompts on a validation set. We propose HbBoPs, a novel method that combines a structural-aware deep kernel Gaussian Process with Hyperband as a multi-fidelity scheduler to efficiently select prompts. HbBoPs uses embeddings of instructions and few-shot exemplars, treating them as modular components within prompts. This enhances the surrogate model's ability to predict which prompt to evaluate next in a sample-efficient manner. Hyperband improves query-efficiency by adaptively allocating resources across different fidelity levels, reducing the number of validation instances required for evaluating prompts. Extensive experiments across ten diverse benchmarks and three LLMs demonstrate that HbBoPs outperforms state-of-the-art methods in both performance and efficiency.
comment: Accepted at ICML 2025. 26 pages, 11 tables, 7 figures
♻ ☆ CausalAbstain: Enhancing Multilingual LLMs with Causal Reasoning for Trustworthy Abstention ACL
Large Language Models (LLMs) often exhibit knowledge disparities across languages. Encouraging LLMs to \textit{abstain} when faced with knowledge gaps is a promising strategy to reduce hallucinations in multilingual settings. Current abstention strategies for multilingual scenarios primarily rely on generating feedback in various languages using LLMs and performing self-reflection. However, these methods can be adversely impacted by inaccuracies and biases in the generated feedback. To address this, from a causal perspective, we introduce \textit{CausalAbstain}, a method that helps LLMs determine whether to utilize multiple generated feedback responses and how to identify the most useful ones. Extensive experiments demonstrate that \textit{CausalAbstain} effectively selects helpful feedback and enhances abstention decisions with interpretability in both native language (\textsc{Casual-native}) and multilingual (\textsc{Causal-multi}) settings, outperforming strong baselines on two benchmark datasets covering encyclopedic and commonsense knowledge QA tasks. Our code and data are open-sourced at https://github.com/peachch/CausalAbstain.
comment: Accepted to Association for Computational Linguistics Findings (ACL) 2025
♻ ☆ lmgame-Bench: How Good are LLMs at Playing Games?
Playing video games requires perception, memory, and planning, exactly the faculties modern large language model (LLM) agents are expected to master. We study the major challenges in using popular video games to evaluate modern LLMs and find that directly dropping LLMs into games cannot make an effective evaluation, for three reasons -- brittle vision perception, prompt sensitivity, and potential data contamination. We introduce lmgame-Bench to turn games into reliable evaluations. lmgame-Bench features a suite of platformer, puzzle, and narrative games delivered through a unified Gym-style API and paired with lightweight perception and memory scaffolds, and is designed to stabilize prompt variance and remove contamination. Across 13 leading models, we show lmgame-Bench is challenging while still separating models well. Correlation analysis shows that every game probes a unique blend of capabilities often tested in isolation elsewhere. More interestingly, performing reinforcement learning on a single game from lmgame-Bench transfers both to unseen games and to external planning tasks. Our evaluation code is available at https://github.com/lmgame-org/GamingAgent/lmgame-bench.
♻ ☆ The Tug of War Within: Mitigating the Fairness-Privacy Conflicts in Large Language Models ACL 2025
Ensuring awareness of fairness and privacy in Large Language Models (LLMs) is critical. Interestingly, we discover a counter-intuitive trade-off phenomenon that enhancing an LLM's privacy awareness through Supervised Fine-Tuning (SFT) methods significantly decreases its fairness awareness with thousands of samples. To address this issue, inspired by the information theory, we introduce a training-free method to \textbf{S}uppress the \textbf{P}rivacy and fa\textbf{I}rness coupled \textbf{N}eurons (\textbf{SPIN}), which theoretically and empirically decrease the mutual information between fairness and privacy awareness. Extensive experimental results demonstrate that SPIN eliminates the trade-off phenomenon and significantly improves LLMs' fairness and privacy awareness simultaneously without compromising general capabilities, \eg improving Qwen-2-7B-Instruct's fairness awareness by 12.2\% and privacy awareness by 14.0\%. More crucially, SPIN remains robust and effective with limited annotated data or even when only malicious fine-tuning data is available, whereas SFT methods may fail to perform properly in such scenarios. Furthermore, we show that SPIN could generalize to other potential trade-off dimensions. We hope this study provides valuable insights into concurrently addressing fairness and privacy concerns in LLMs and can be integrated into comprehensive frameworks to develop more ethical and responsible AI systems. Our code is available at https://github.com/ChnQ/SPIN.
comment: ACL 2025 Main Conference
♻ ☆ Exposing Numeracy Gaps: A Benchmark to Evaluate Fundamental Numerical Abilities in Large Language Models ACL 2025
Large Language Models (LLMs) have demonstrated impressive capabilities in natural language processing tasks, such as text generation and semantic understanding. However, their performance on numerical reasoning tasks, such as basic arithmetic, numerical retrieval, and magnitude comparison, remains surprisingly poor. This gap arises from their reliance on surface-level statistical patterns rather than understanding numbers as continuous magnitudes. Existing benchmarks primarily focus on either linguistic competence or structured mathematical problem-solving, neglecting fundamental numerical reasoning required in real-world scenarios. To bridge this gap, we propose NumericBench, a comprehensive benchmark to evaluate six fundamental numerical capabilities: number recognition, arithmetic operations, contextual retrieval, comparison, summary, and logical reasoning. NumericBench includes datasets ranging from synthetic number lists to the crawled real-world data, addressing challenges like long contexts, noise, and multi-step reasoning. Extensive experiments on state-of-the-art LLMs, including GPT-4 and DeepSeek, reveal persistent weaknesses in numerical reasoning, highlighting the urgent need to improve numerically-aware language modeling. The benchmark is released in: https://github.com/TreeAI-Lab/NumericBench.
comment: Accepted by ACL 2025
♻ ☆ S3D: Sketch-Driven 3D Model Generation CVPR'25
Generating high-quality 3D models from 2D sketches is a challenging task due to the inherent ambiguity and sparsity of sketch data. In this paper, we present S3D, a novel framework that converts simple hand-drawn sketches into detailed 3D models. Our method utilizes a U-Net-based encoder-decoder architecture to convert sketches into face segmentation masks, which are then used to generate a 3D representation that can be rendered from novel views. To ensure robust consistency between the sketch domain and the 3D output, we introduce a novel style-alignment loss that aligns the U-Net bottleneck features with the initial encoder outputs of the 3D generation module, significantly enhancing reconstruction fidelity. To further enhance the network's robustness, we apply augmentation techniques to the sketch dataset. This streamlined framework demonstrates the effectiveness of S3D in generating high-quality 3D models from sketch inputs. The source code for this project is publicly available at https://github.com/hailsong/S3D.
comment: Accepted as a short paper to the GMCV Workshop at CVPR'25
♻ ☆ Comparing Lexical and Semantic Vector Search Methods When Classifying Medical Documents KR
Classification is a common AI problem, and vector search is a typical solution. This transforms a given body of text into a numerical representation, known as an embedding, and modern improvements to vector search focus on optimising speed and predictive accuracy. This is often achieved through neural methods that aim to learn language semantics. However, our results suggest that these are not always the best solution. Our task was to classify rigidly-structured medical documents according to their content, and we found that using off-the-shelf semantic vector search produced slightly worse predictive accuracy than creating a bespoke lexical vector search model, and that it required significantly more time to execute. These findings suggest that traditional methods deserve to be contenders in the information retrieval toolkit, despite the prevalence and success of neural models.
comment: This project was funded by a UKRI grant, number: 10048265
♻ ☆ Diving into Self-Evolving Training for Multimodal Reasoning ICML 2025
Self-evolving trainin--where models iteratively learn from their own outputs--has emerged as a key approach for complex reasoning tasks, addressing the scarcity of high-quality chain-of-thought data. However, its effectiveness in multimodal reasoning, a domain more intricate than text-only reasoning, remains underexplored, and the understanding of critical factors in this training paradigm remains limited. Furthermore, a central challenge for this training method is performance saturation, which impedes further improvements and scalability. Inspired by reinforcement learning (RL), in this paper, we reframe self-evolving training for multimodal reasoning through the lens of RL, identifying three pivotal factors: Training Method, Reward Model, and Prompt Variation. Through systematic analysis, we establish relatively optimal design principles that significantly enhance multimodal reasoning capabilities. Moreover, delving deeper into training dynamics, we uncover the roots of saturation and propose a new automatic balancing mechanism to mitigate this limitation. Building on these insights, we propose M-STAR (Multimodal Self-evolving Training for Reasoning), a framework that achieves consistent performance gains across models of varying sizes and diverse benchmarks. All resources are made publicly available at https://mstar-lmm.github.io.
comment: ICML 2025, Project Page: https://mstar-lmm.github.io
♻ ☆ EoRA: Fine-tuning-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
While post-training compression techniques effectively reduce the memory footprint, latency, and power consumption of Large Language Models (LLMs), they often result in noticeable accuracy degradation and remain limited by hardware and kernel constraints that restrict supported compression formats ultimately reducing flexibility across a wide range of deployment scenarios. In this work, we propose EoRA, a novel fine-tuning-free method that augments compressed LLMs with low-rank matrices, allowing users to rapidly enhance task-specific performance and freely balance the trade-off between accuracy and computational overhead beyond the constraints of compression formats. EoRA consistently outperforms prior training-free low rank methods in recovering the accuracy of compressed LLMs, achieving notable accuracy improvements (e.g., $\mathbf{10.84\%}$ on ARC-Challenge, $\mathbf{6.74\%}$ on MathQA, and $\mathbf{6.74\%}$ on GSM8K) for LLaMA3-8B compressed to 3-bit. We also introduce an optimized CUDA kernel, accelerating inference by up to 1.4x and reducing memory overhead through quantizing EoRA. Overall, EoRA offers a prompt solution for improving the accuracy of compressed models under varying user requirements, enabling more efficient and flexible deployment of LLMs. Code is available at https://github.com/NVlabs/EoRA.
♻ ☆ Localizing Persona Representations in LLMs
We present a study on how and where personas -- defined by distinct sets of human characteristics, values, and beliefs -- are encoded in the representation space of large language models (LLMs). Using a range of dimension reduction and pattern recognition methods, we first identify the model layers that show the greatest divergence in encoding these representations. We then analyze the activations within a selected layer to examine how specific personas are encoded relative to others, including their shared and distinct embedding spaces. We find that, across multiple pre-trained decoder-only LLMs, the analyzed personas show large differences in representation space only within the final third of the decoder layers. We observe overlapping activations for specific ethical perspectives -- such as moral nihilism and utilitarianism -- suggesting a degree of polysemy. In contrast, political ideologies like conservatism and liberalism appear to be represented in more distinct regions. These findings help to improve our understanding of how LLMs internally represent information and can inform future efforts in refining the modulation of specific human traits in LLM outputs. Warning: This paper includes potentially offensive sample statements.
♻ ☆ Greening AI-enabled Systems with Software Engineering: A Research Agenda for Environmentally Sustainable AI Practices
The environmental impact of Artificial Intelligence (AI)-enabled systems is increasing rapidly, and software engineering plays a critical role in developing sustainable solutions. The "Greening AI with Software Engineering" CECAM-Lorentz workshop (no. 1358, 2025) funded by the Centre Europ\'een de Calcul Atomique et Mol\'eculaire and the Lorentz Center, provided an interdisciplinary forum for 29 participants, from practitioners to academics, to share knowledge, ideas, practices, and current results dedicated to advancing green software and AI research. The workshop was held February 3-7, 2025, in Lausanne, Switzerland. Through keynotes, flash talks, and collaborative discussions, participants identified and prioritized key challenges for the field. These included energy assessment and standardization, benchmarking practices, sustainability-aware architectures, runtime adaptation, empirical methodologies, and education. This report presents a research agenda emerging from the workshop, outlining open research directions and practical recommendations to guide the development of environmentally sustainable AI-enabled systems rooted in software engineering principles.
♻ ☆ An Effective Approach to Embedding Source Code by Combining Large Language and Sentence Embedding Models
The advent of large language models (LLMs) has significantly advanced artificial intelligence (AI) in software engineering (SE), with source code embeddings playing a crucial role in tasks such as source code clone detection and source code clustering. However, existing methods for source code embedding, including those based on LLMs, often rely on costly supervised training or fine-tuning for domain adaptation. This paper proposes a novel approach to embedding source code by combining large language and sentence embedding models. This approach attempts to eliminate the need for task-specific training or fine-tuning and to effectively address the issue of erroneous information commonly found in LLM-generated outputs. To evaluate the performance of our proposed approach, we conducted a series of experiments on three datasets with different programming languages by considering various LLMs and sentence embedding models. The experimental results have demonstrated the effectiveness and superiority of our approach over the state-of-the-art unsupervised approaches, such as SourcererCC, Code2vec, InferCode, TransformCode, and LLM2Vec. Our findings highlight the potential of our approach to advance the field of SE by providing robust and efficient solutions for source code embedding tasks.
♻ ☆ Mobile-Agent-V: A Video-Guided Approach for Effortless and Efficient Operational Knowledge Injection in Mobile Automation
The exponential rise in mobile device usage necessitates streamlined automation for effective task management, yet many AI frameworks fall short due to inadequate operational expertise. While manually written knowledge can bridge this gap, it is often burdensome and inefficient. We introduce Mobile-Agent-V, an innovative framework that utilizes video as a guiding tool to effortlessly and efficiently inject operational knowledge into mobile automation processes. By deriving knowledge directly from video content, Mobile-Agent-V eliminates manual intervention, significantly reducing the effort and time required for knowledge acquisition. To rigorously evaluate this approach, we propose Mobile-Knowledge, a benchmark tailored to assess the impact of external knowledge on mobile agent performance. Our experimental findings demonstrate that Mobile-Agent-V enhances performance by 36% compared to existing methods, underscoring its effortless and efficient advantages in mobile automation.
comment: I submitted the replacement version as a new article by mistake. Future updates will appear at arXiv:2502.17110
♻ ☆ Improving Dialogue State Tracking through Combinatorial Search for In-Context Examples ACL 2025
In dialogue state tracking (DST), in-context learning comprises a retriever that selects labeled dialogues as in-context examples and a DST model that uses these examples to infer the dialogue state of the query dialogue. Existing methods for constructing training data for retrievers suffer from three key limitations: (1) the synergistic effect of examples is not considered, (2) the linguistic characteristics of the query are not sufficiently factored in, and (3) scoring is not directly optimized for DST performance. Consequently, the retriever can fail to retrieve examples that would substantially improve DST performance. To address these issues, we present CombiSearch, a method that scores effective in-context examples based on their combinatorial impact on DST performance. Our evaluation on MultiWOZ shows that retrievers trained with CombiSearch surpass state-of-the-art models, achieving a 20x gain in data efficiency and generalizing well to the SGD dataset. Moreover, CombiSearch attains a 12% absolute improvement in the upper bound DST performance over traditional approaches when no retrieval errors are assumed. This significantly increases the headroom for practical DST performance while demonstrating that existing methods rely on suboptimal data for retriever training.
comment: This paper has been accepted for publication at ACL 2025
♻ ☆ Unnatural Languages Are Not Bugs but Features for LLMs
Large Language Models (LLMs) have been observed to process non-human-readable text sequences, such as jailbreak prompts, often viewed as a bug for aligned LLMs. In this work, we present a systematic investigation challenging this perception, demonstrating that unnatural languages - strings that appear incomprehensible to humans but maintain semantic meanings for LLMs - contain latent features usable by models. Notably, unnatural languages possess latent features that can be generalized across different models and tasks during inference. Furthermore, models fine-tuned on unnatural versions of instruction datasets perform on-par with those trained on natural language, achieving 49.71 win rates in Length-controlled AlpacaEval 2.0 in average across various base models. In addition, through comprehensive analysis, we demonstrate that LLMs process unnatural languages by filtering noise and inferring contextual meaning from filtered words.
♻ ☆ Principal Components for Neural Network Initialization
Principal Component Analysis (PCA) is a commonly used tool for dimension reduction and denoising. Therefore, it is also widely used on the data prior to training a neural network. However, this approach can complicate the explanation of explainable AI (XAI) methods for the decision of the model. In this work, we analyze the potential issues with this approach and propose Principal Components-based Initialization (PCsInit), a strategy to incorporate PCA into the first layer of a neural network via initialization of the first layer in the network with the principal components, and its two variants PCsInit-Act and PCsInit-Sub. Explanations using these strategies are as direct and straightforward as for neural networks and are simpler than using PCA prior to training a neural network on the principal components. Moreover, as will be illustrated in the experiments, such training strategies can also allow further improvement of training via backpropagation.
♻ ☆ RAG4ITOps: A Supervised Fine-Tunable and Comprehensive RAG Framework for IT Operations and Maintenance EMNLP 2024
With the ever-increasing demands on Question Answering (QA) systems for IT operations and maintenance, an efficient and supervised fine-tunable framework is necessary to ensure the data security, private deployment and continuous upgrading. Although Large Language Models (LLMs) have notably improved the open-domain QA's performance, how to efficiently handle enterprise-exclusive corpora and build domain-specific QA systems are still less-studied for industrial applications. In this paper, we propose a general and comprehensive framework based on Retrieval Augmented Generation (RAG) and facilitate the whole business process of establishing QA systems for IT operations and maintenance. In accordance with the prevailing RAG method, our proposed framework, named with RAG4ITOps, composes of two major stages: (1) Models Fine-tuning \& Data Vectorization, and (2) Online QA System Process. At the Stage 1, we leverage a contrastive learning method with two negative sampling strategies to fine-tune the embedding model, and design the instruction templates to fine-tune the LLM with a Retrieval Augmented Fine-Tuning method. At the Stage 2, an efficient process of QA system is built for serving. We collect enterprise-exclusive corpora from the domain of cloud computing, and the extensive experiments show that our method achieves superior results than counterparts on two kinds of QA tasks. Our experiment also provide a case for applying the RAG4ITOps to real-world enterprise-level applications.
comment: Accepted by EMNLP 2024 Industry Track
♻ ☆ LAMARL: LLM-Aided Multi-Agent Reinforcement Learning for Cooperative Policy Generation
Although Multi-Agent Reinforcement Learning (MARL) is effective for complex multi-robot tasks, it suffers from low sample efficiency and requires iterative manual reward tuning. Large Language Models (LLMs) have shown promise in single-robot settings, but their application in multi-robot systems remains largely unexplored. This paper introduces a novel LLM-Aided MARL (LAMARL) approach, which integrates MARL with LLMs, significantly enhancing sample efficiency without requiring manual design. LAMARL consists of two modules: the first module leverages LLMs to fully automate the generation of prior policy and reward functions. The second module is MARL, which uses the generated functions to guide robot policy training effectively. On a shape assembly benchmark, both simulation and real-world experiments demonstrate the unique advantages of LAMARL. Ablation studies show that the prior policy improves sample efficiency by an average of 185.9% and enhances task completion, while structured prompts based on Chain-of-Thought (CoT) and basic APIs improve LLM output success rates by 28.5%-67.5%. Videos and code are available at https://windylab.github.io/LAMARL/
comment: Accepted by IEEE Robotics and Automation Letters
♻ ☆ MathMistake Checker: A Comprehensive Demonstration for Step-by-Step Math Problem Mistake Finding by Prompt-Guided LLMs AAAI 2025
We propose a novel system, MathMistake Checker, designed to automate step-by-step mistake finding in mathematical problems with lengthy answers through a two-stage process. The system aims to simplify grading, increase efficiency, and enhance learning experiences from a pedagogical perspective. It integrates advanced technologies, including computer vision and the chain-of-thought capabilities of the latest large language models (LLMs). Our system supports open-ended grading without reference answers and promotes personalized learning by providing targeted feedback. We demonstrate its effectiveness across various types of math problems, such as calculation and word problems.
comment: Published in AAAI 2025
♻ ☆ LLMs can Find Mathematical Reasoning Mistakes by Pedagogical Chain-of-Thought IJCAI 2024
Self-correction is emerging as a promising approach to mitigate the issue of hallucination in Large Language Models (LLMs). To facilitate effective self-correction, recent research has proposed mistake detection as its initial step. However, current literature suggests that LLMs often struggle with reliably identifying reasoning mistakes when using simplistic prompting strategies. To address this challenge, we introduce a unique prompting strategy, termed the Pedagogical Chain-of-Thought (PedCoT), which is specifically designed to guide the identification of reasoning mistakes, particularly mathematical reasoning mistakes. PedCoT consists of pedagogical principles for prompts (PPP) design, two-stage interaction process (TIP) and grounded PedCoT prompts, all inspired by the educational theory of the Bloom Cognitive Model (BCM). We evaluate our approach on two public datasets featuring math problems of varying difficulty levels. The experiments demonstrate that our zero-shot prompting strategy significantly outperforms strong baselines. The proposed method can achieve the goal of reliable mathematical mistake identification and provide a foundation for automatic math answer grading. The results underscore the significance of educational theory, serving as domain knowledge, in guiding prompting strategy design for addressing challenging tasks with LLMs effectively.
comment: Accepted by IJCAI 2024
♻ ☆ PointCloud-Text Matching: Benchmark Datasets and a Baseline
In this paper, we present and study a new instance-level retrieval task: PointCloud-Text Matching (PTM), which aims to identify the exact cross-modal instance that matches a given point-cloud query or text query. PTM has potential applications in various scenarios, such as indoor/urban-canyon localization and scene retrieval. However, there is a lack of suitable and targeted datasets for PTM in practice. To address this issue, we present a new PTM benchmark dataset, namely SceneDepict-3D2T. We observe that the data poses significant challenges due to its inherent characteristics, such as the sparsity, noise, or disorder of point clouds and the ambiguity, vagueness, or incompleteness of texts, which render existing cross-modal matching methods ineffective for PTM. To overcome these challenges, we propose a PTM baseline, named Robust PointCloud-Text Matching method (RoMa). RoMa consists of two key modules: a Dual Attention Perception module (DAP) and a Robust Negative Contrastive Learning module (RNCL). Specifically, DAP leverages token-level and feature-level attention mechanisms to adaptively focus on useful local and global features, and aggregate them into common representations, thereby reducing the adverse impact of noise and ambiguity. To handle noisy correspondence, RNCL enhances robustness against mismatching by dividing negative pairs into clean and noisy subsets and assigning them forward and reverse optimization directions, respectively. We conduct extensive experiments on our benchmarks and demonstrate the superiority of our RoMa.
comment: The version submitted this time has been significantly revised and improved on the previous version
♻ ☆ Unlearning's Blind Spots: Over-Unlearning and Prototypical Relearning Attack
Machine unlearning (MU) aims to expunge a designated forget set from a trained model without costly retraining, yet the existing techniques overlook two critical blind spots: "over-unlearning" that deteriorates retained data near the forget set, and post-hoc "relearning" attacks that aim to resurrect the forgotten knowledge. We first derive the over-unlearning metric OU@{\epsilon}, which represents the collateral damage to the nearby region of the forget set, where the over-unlearning mainly appears. Next, we expose an unforeseen relearning threat on MU, i.e., the Prototypical Relearning Attack, which exploits the per-class prototype of the forget class with just a few samples, and easily restores the pre-unlearning performance. To counter both blind spots, we introduce Spotter, a plug-and-play objective that combines (i) a masked knowledge-distillation penalty on the nearby region of forget set to suppress OU@{\epsilon}, and (ii) an intra-class dispersion loss that scatters forget-class embeddings, neutralizing prototypical relearning attacks. On CIFAR-10, as one of validations, Spotter reduces OU@{\epsilon}by below the 0.05X of the baseline, drives forget accuracy to 0%, preserves accuracy of the retain set within 1% of difference with the original, and denies the prototype-attack by keeping the forget set accuracy within <1%, without accessing retained data. It confirms that Spotter is a practical remedy of the unlearning's blind spots.
comment: 10 pages, 4 figures, 2 tables
LLM-Driven E-Commerce Marketing Content Optimization: Balancing Creativity and Conversion
As e-commerce competition intensifies, balancing creative content with conversion effectiveness becomes critical. Leveraging LLMs' language generation capabilities, we propose a framework that integrates prompt engineering, multi-objective fine-tuning, and post-processing to generate marketing copy that is both engaging and conversion-driven. Our fine-tuning method combines sentiment adjustment, diversity enhancement, and CTA embedding. Through offline evaluations and online A/B tests across categories, our approach achieves a 12.5 % increase in CTR and an 8.3 % increase in CVR while maintaining content novelty. This provides a practical solution for automated copy generation and suggests paths for future multimodal, real-time personalization.
♻ ☆ G1: Teaching LLMs to Reason on Graphs with Reinforcement Learning
Although Large Language Models (LLMs) have demonstrated remarkable progress, their proficiency in graph-related tasks remains notably limited, hindering the development of truly general-purpose models. Previous attempts, including pretraining graph foundation models or employing supervised fine-tuning, often face challenges such as the scarcity of large-scale, universally represented graph data. We introduce G1, a simple yet effective approach demonstrating that Reinforcement Learning (RL) on synthetic graph-theoretic tasks can significantly scale LLMs' graph reasoning abilities. To enable RL training, we curate Erd\~os, the largest graph reasoning dataset to date comprising 50 diverse graph-theoretic tasks of varying difficulty levels, 100k training data and 5k test data, all drived from real-world graphs. With RL on Erd\~os, G1 obtains substantial improvements in graph reasoning, where our finetuned 3B model even outperforms Qwen2.5-72B-Instruct (24x size). RL-trained models also show strong zero-shot generalization to unseen tasks, domains, and graph encoding schemes, including other graph-theoretic benchmarks as well as real-world node classification and link prediction tasks, without compromising general reasoning abilities. Our findings offer an efficient, scalable path for building strong graph reasoners by finetuning LLMs with RL on graph-theoretic tasks, which combines the strengths of pretrained LLM capabilities with abundant, automatically generated synthetic data, suggesting that LLMs possess graph understanding abilities that RL can elicit successfully. Our implementation is open-sourced at https://github.com/PKU-ML/G1, with models and datasets hosted on Hugging Face collections https://huggingface.co/collections/PKU-ML/g1-683d659e992794fc99618cf2 for broader accessibility.
♻ ☆ Combining Threat Intelligence with IoT Scanning to Predict Cyber Attack
While the Web has become a global platform for communication, malicious actors, including hackers and hacktivist groups, often disseminate ideological content and coordinate activities through the "Dark Web", an obscure counterpart of the conventional web. Presently, challenges such as information overload and the fragmented nature of cyber threat data impede comprehensive profiling of these actors, thereby limiting the efficacy of predictive analyses of their online activities. Concurrently, the proliferation of internet-connected devices has surpassed the global human population, with this disparity projected to widen as the Internet of Things (IoT) expands. Technical communities are actively advancing IoT-related research to address its growing societal integration. This paper proposes a novel predictive threat intelligence framework designed to systematically collect, analyze, and visualize Dark Web data to identify malicious websites and correlate this information with potential IoT vulnerabilities. The methodology integrates automated data harvesting, analytical techniques, and visual mapping tools, while also examining vulnerabilities in IoT devices to assess exploitability. By bridging gaps in cybersecurity research, this study aims to enhance predictive threat modeling and inform policy development, thereby contributing to intelligence research initiatives focused on mitigating cyber risks in an increasingly interconnected digital ecosystem.
comment: 6 pages, 6 figures, 2 tables, 1 listing. This manuscript has been submitted to IEEE for review and is under consideration. Researchers are welcome to read and build upon this work; please cite it appropriately. For questions or clarifications, feel free to contact me
♻ ☆ UGPhysics: A Comprehensive Benchmark for Undergraduate Physics Reasoning with Large Language Models ICML 2025
Large language models (LLMs) have demonstrated remarkable capabilities in solving complex reasoning tasks, particularly in mathematics. However, the domain of physics reasoning presents unique challenges that have received significantly less attention. Existing benchmarks often fall short in evaluating LLMs' abilities on the breadth and depth of undergraduate-level physics, underscoring the need for a comprehensive evaluation. To fill this gap, we introduce UGPhysics, a large-scale and comprehensive benchmark specifically designed to evaluate UnderGraduate-level Physics (UGPhysics) reasoning with LLMs. UGPhysics includes 5,520 undergraduate-level physics problems in both English and Chinese, covering 13 subjects with seven different answer types and four distinct physics reasoning skills, all rigorously screened for data leakage. Additionally, we develop a Model-Assistant Rule-based Judgment (MARJ) pipeline specifically tailored for assessing answer correctness of physics problems, ensuring accurate evaluation. Our evaluation of 31 leading LLMs shows that the highest overall accuracy, 49.8% (achieved by OpenAI-o1-mini), emphasizes the necessity for models with stronger physics reasoning skills, beyond math abilities. We hope UGPhysics, along with MARJ, will drive future advancements in AI for physics reasoning. Codes and data are available at https://github.com/YangLabHKUST/UGPhysics .
comment: Accepted to ICML 2025
♻ ☆ DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models
Recent advancements in slow thinking reasoning models have shown exceptional performance in complex reasoning tasks. However, these models often exhibit overthinking (generating redundant reasoning steps for simple problems), leading to excessive computational resource usage. While current mitigation strategies uniformly reduce reasoning tokens, they risk degrading performance on challenging tasks that require extended reasoning. This paper introduces Difficulty-Adaptive Slow Thinking (DAST), a novel framework that enables models to autonomously adjust the length of Chain-of-Thought (CoT) based on problem difficulty. We first propose a Token Length Budget (TLB) metric to quantify difficulty, then leverage budget-aware reward shaping and budget preference optimization to implement DAST. DAST penalizes overlong responses for simple tasks while incentivizing sufficient reasoning for complex problems. Experiments on diverse datasets and model scales demonstrate that DAST effectively mitigates overthinking (reducing token usage by over 30\% on average) while preserving reasoning accuracy on complex problems. Our codes and models are available at https://github.com/AnonymousUser0520/AnonymousRepo01.
comment: working in progress
♻ ☆ Efficient and Universal Neural-Network Decoder for Stabilizer-Based Quantum Error Correction
Scaling quantum computing to practical applications necessitates reliable quantum error correction. Although numerous correction codes have been proposed, the overall correction efficiency critically limited by the decode algorithms. We introduce GraphQEC, a code-agnostic decoder leveraging machine-learning on the graph structure of stabilizer codes with linear time complexity. GraphQEC demonstrates unprecedented accuracy and efficiency across all tested code families, including surface codes, color codes, and quantum low-density parity-check (QLDPC) codes. For instance, on a distance-12 QLDPC code, GraphQEC achieves a logical error rate of $9.55 \times 10^{-5}$, an 18-fold improvement over the previous best specialized decoder's $1.74 \times 10^{-3}$ under $p=0.005$ physical error rates, while maintaining $157\mu$s/cycle decoding speed. Our approach represents the first universal solution for real-time quantum error correction across arbitrary stabilizer codes.
♻ ☆ TradingAgents: Multi-Agents LLM Financial Trading Framework
Significant progress has been made in automated problem-solving using societies of agents powered by large language models (LLMs). In finance, efforts have largely focused on single-agent systems handling specific tasks or multi-agent frameworks independently gathering data. However, the multi-agent systems' potential to replicate real-world trading firms' collaborative dynamics remains underexplored. TradingAgents proposes a novel stock trading framework inspired by trading firms, featuring LLM-powered agents in specialized roles such as fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles. The framework includes Bull and Bear researcher agents assessing market conditions, a risk management team monitoring exposure, and traders synthesizing insights from debates and historical data to make informed decisions. By simulating a dynamic, collaborative trading environment, this framework aims to improve trading performance. Detailed architecture and extensive experiments reveal its superiority over baseline models, with notable improvements in cumulative returns, Sharpe ratio, and maximum drawdown, highlighting the potential of multi-agent LLM frameworks in financial trading. TradingAgents is available at https://github.com/TauricResearch/TradingAgents.
comment: Tauric Research @ https://github.com/TauricResearch; Oral @ Multi-Agent AI in the Real World
♻ ☆ Dynamical Label Augmentation and Calibration for Noisy Electronic Health Records
Medical research, particularly in predicting patient outcomes, heavily relies on medical time series data extracted from Electronic Health Records (EHR), which provide extensive information on patient histories. Despite rigorous examination, labeling errors are inevitable and can significantly impede accurate predictions of patient outcome. To address this challenge, we propose an \textbf{A}ttention-based Learning Framework with Dynamic \textbf{C}alibration and Augmentation for \textbf{T}ime series Noisy \textbf{L}abel \textbf{L}earning (ACTLL). This framework leverages a two-component Beta mixture model to identify the certain and uncertain sets of instances based on the fitness distribution of each class, and it captures global temporal dynamics while dynamically calibrating labels from the uncertain set or augmenting confident instances from the certain set. Experimental results on large-scale EHR datasets eICU and MIMIC-IV-ED, and several benchmark datasets from the UCR and UEA repositories, demonstrate that our model ACTLL has achieved state-of-the-art performance, especially under high noise levels.
♻ ☆ ViDoRAG: Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents
Understanding information from visually rich documents remains a significant challenge for traditional Retrieval-Augmented Generation (RAG) methods. Existing benchmarks predominantly focus on image-based question answering (QA), overlooking the fundamental challenges of efficient retrieval, comprehension, and reasoning within dense visual documents. To bridge this gap, we introduce ViDoSeek, a novel dataset designed to evaluate RAG performance on visually rich documents requiring complex reasoning. Based on it, we identify key limitations in current RAG approaches: (i) purely visual retrieval methods struggle to effectively integrate both textual and visual features, and (ii) previous approaches often allocate insufficient reasoning tokens, limiting their effectiveness. To address these challenges, we propose ViDoRAG, a novel multi-agent RAG framework tailored for complex reasoning across visual documents. ViDoRAG employs a Gaussian Mixture Model (GMM)-based hybrid strategy to effectively handle multi-modal retrieval. To further elicit the model's reasoning capabilities, we introduce an iterative agent workflow incorporating exploration, summarization, and reflection, providing a framework for investigating test-time scaling in RAG domains. Extensive experiments on ViDoSeek validate the effectiveness and generalization of our approach. Notably, ViDoRAG outperforms existing methods by over 10% on the competitive ViDoSeek benchmark. The code is available at https://github.com/Alibaba-NLP/ViDoRAG.
♻ ☆ Time-R1: Towards Comprehensive Temporal Reasoning in LLMs
Large Language Models (LLMs) demonstrate impressive capabilities but lack robust temporal intelligence, struggling to integrate reasoning about the past with predictions and plausible generations of the future. Meanwhile, existing methods typically target isolated temporal skills, such as question answering about past events or basic forecasting, and exhibit poor generalization, particularly when dealing with events beyond their knowledge cutoff or requiring creative foresight. To address these limitations, we introduce \textit{Time-R1}, the first framework to endow a moderate-sized (3B-parameter) LLM with comprehensive temporal abilities: understanding, prediction, and creative generation. Our approach features a novel three-stage development path; the first two constitute a \textit{reinforcement learning (RL) curriculum} driven by a meticulously designed dynamic rule-based reward system. This framework progressively builds (1) foundational temporal understanding and logical event-time mappings from historical data, (2) future event prediction skills for events beyond its knowledge cutoff, and finally (3) enables remarkable generalization to creative future scenario generation without any fine-tuning. Strikingly, experiments demonstrate that Time-R1 outperforms models over 200 times larger, including the state-of-the-art 671B DeepSeek-R1, on highly challenging future event prediction and creative scenario generation benchmarks. This work provides strong evidence that thoughtfully engineered, progressive RL fine-tuning allows smaller, efficient models to achieve superior temporal performance, offering a practical and scalable path towards truly time-aware AI. To foster further research, we also release \textit{Time-Bench}, a large-scale multi-task temporal reasoning dataset derived from 10 years of news data, and our series of \textit{Time-R1} checkpoints.
♻ ☆ VRAG-RL: Empower Vision-Perception-Based RAG for Visually Rich Information Understanding via Iterative Reasoning with Reinforcement Learning
Effectively retrieving, reasoning and understanding visually rich information remains a challenge for RAG methods. Traditional text-based methods cannot handle visual-related information. On the other hand, current vision-based RAG approaches are often limited by fixed pipelines and frequently struggle to reason effectively due to the insufficient activation of the fundamental capabilities of models. As RL has been proven to be beneficial for model reasoning, we introduce VRAG-RL, a novel RL framework tailored for complex reasoning across visually rich information. With this framework, VLMs interact with search engines, autonomously sampling single-turn or multi-turn reasoning trajectories with the help of visual perception tokens and undergoing continual optimization based on these samples. Our approach highlights key limitations of RL in RAG domains: (i) Prior Multi-modal RAG approaches tend to merely incorporate images into the context, leading to insufficient reasoning token allocation and neglecting visual-specific perception; and (ii) When models interact with search engines, their queries often fail to retrieve relevant information due to the inability to articulate requirements, thereby leading to suboptimal performance. To address these challenges, we define an action space tailored for visually rich inputs, with actions including cropping and scaling, allowing the model to gather information from a coarse-to-fine perspective. Furthermore, to bridge the gap between users' original inquiries and the retriever, we employ a simple yet effective reward that integrates query rewriting and retrieval performance with a model-based reward. Our VRAG-RL optimizes VLMs for RAG tasks using specially designed RL strategies, aligning the model with real-world applications. The code is available at https://github.com/Alibaba-NLP/VRAG.
♻ ☆ Self-Evolved Reward Learning for LLMs ICLR 2025
Reinforcement Learning from Human Feedback (RLHF) is a crucial technique for aligning language models with human preferences, playing a pivotal role in the success of conversational models like GPT-4, ChatGPT, and Llama 2. A core challenge in employing RLHF lies in training a reliable reward model (RM), which relies on high-quality labels typically provided by human experts or advanced AI system. These methods can be costly and may introduce biases that affect the language model's responses. As language models improve, human input may become less effective in further enhancing their performance. In this paper, we propose Self-Evolved Reward Learning (SER), a novel approach where the RM generates additional training data to iteratively improve itself. We conducted extensive experiments on multiple datasets such as HH-RLHF and UltraFeedback, using models like Mistral and Llama 3, and compare SER against various baselines. Our results demonstrate that even with limited human-annotated data, learning from self-feedback can robustly enhance RM performance, thereby boosting the capabilities of large language models (LLMs). Resources of this paper can be found at https://aka.ms/ser
comment: 23 pages,6 figures,Accepted to ICLR 2025
♻ ☆ Political Neutrality in AI Is Impossible- But Here Is How to Approximate It
AI systems often exhibit political bias, influencing users' opinions and decisions. While political neutrality-defined as the absence of bias-is often seen as an ideal solution for fairness and safety, this position paper argues that true political neutrality is neither feasible nor universally desirable due to its subjective nature and the biases inherent in AI training data, algorithms, and user interactions. However, inspired by Joseph Raz's philosophical insight that "neutrality [...] can be a matter of degree" (Raz, 1986), we argue that striving for some neutrality remains essential for promoting balanced AI interactions and mitigating user manipulation. Therefore, we use the term "approximation" of political neutrality to shift the focus from unattainable absolutes to achievable, practical proxies. We propose eight techniques for approximating neutrality across three levels of conceptualizing AI, examining their trade-offs and implementation strategies. In addition, we explore two concrete applications of these approximations to illustrate their practicality. Finally, we assess our framework on current large language models (LLMs) at the output level, providing a demonstration of how it can be evaluated. This work seeks to advance nuanced discussions of political neutrality in AI and promote the development of responsible, aligned language models.
comment: Code: https://github.com/jfisher52/Approximation_Political_Neutrality
♻ ☆ Reclaiming "Open AI" -- AI Model Serving Can Be Open Access, Yet Monetizable and Loyal
The rapid rise of AI has split model serving between open-weight distribution, which often lacks owner control and monetization, and opaque API-based approaches that risk user privacy and model transparency, forming a dichotomy that hinders an equitable AI ecosystem. This position paper introduces, rigorously formulates, and champions the Open-access, Monetizable, and Loyal (OML) paradigm for AI model serving: a foundational shift to securely distribute and serve AI models by synthesizing transparency with granular monetization and critical safety controls. We survey diverse OML constructions from theory and practice, analyze their security, performance, and practical trade-offs, outline a conceptual OML deployment protocol, and discuss market and policy implications. We assert that OML can foster a democratized, self-sustaining, and innovative AI landscape, mitigating centralized power risks. Finally, we call on the research community to further explore the broad design space of OML, spanning cryptographic, AI-native, and socio-economic mechanisms, to realize its full potential for a collaborative, accountable, and resilient AI future.
comment: 54 pages
♻ ☆ Datasheets Aren't Enough: DataRubrics for Automated Quality Metrics and Accountability
High-quality datasets are fundamental to training and evaluating machine learning models, yet their creation-especially with accurate human annotations-remains a significant challenge. Many dataset paper submissions lack originality, diversity, or rigorous quality control, and these shortcomings are often overlooked during peer review. Submissions also frequently omit essential details about dataset construction and properties. While existing tools such as datasheets aim to promote transparency, they are largely descriptive and do not provide standardized, measurable methods for evaluating data quality. Similarly, metadata requirements at conferences promote accountability but are inconsistently enforced. To address these limitations, this position paper advocates for the integration of systematic, rubric-based evaluation metrics into the dataset review process-particularly as submission volumes continue to grow. We also explore scalable, cost-effective methods for synthetic data generation, including dedicated tools and LLM-as-a-judge approaches, to support more efficient evaluation. As a call to action, we introduce DataRubrics, a structured framework for assessing the quality of both human- and model-generated datasets. Leveraging recent advances in LLM-based evaluation, DataRubrics offers a reproducible, scalable, and actionable solution for dataset quality assessment, enabling both authors and reviewers to uphold higher standards in data-centric research. We also release code to support reproducibility of LLM-based evaluations at https://github.com/datarubrics/datarubrics.
comment: Preprint
♻ ☆ Contextual Paralinguistic Data Creation for Multi-Modal Speech-LLM: Data Condensation and Spoken QA Generation
Current speech-LLMs exhibit limited capability in contextual reasoning alongside paralinguistic understanding, primarily due to the lack of Question-Answer (QA) datasets that cover both aspects. We propose a novel framework for dataset generation from in-the-wild speech data, that integrates contextual reasoning with paralinguistic information. It consists of a pseudo paralinguistic label-based data condensation of in-the-wild speech and LLM-based Contextual Paralinguistic QA (CPQA) generation. The effectiveness is validated by a strong correlation in evaluations of the Qwen2-Audio-7B-Instruct model on a dataset created by our framework and human-generated CPQA dataset. The results also reveal the speech-LLM's limitations in handling empathetic reasoning tasks, highlighting the need for such datasets and more robust models. The proposed framework is first of its kind and has potential in training more robust speech-LLMs with paralinguistic reasoning capabilities.
comment: Accepted at Interspeech 2025. [v2]: The dataset has been released, and the link is now updated
♻ ☆ GAS: Generative Auto-bidding with Post-training Search
Auto-bidding is essential in facilitating online advertising by automatically placing bids on behalf of advertisers. Generative auto-bidding, which generates bids based on an adjustable condition using models like transformers and diffusers, has recently emerged as a new trend due to its potential to learn optimal strategies directly from data and adjust flexibly to preferences. However, generative models suffer from low-quality data leading to a mismatch between the condition, like return to go, and true action value, especially in long sequential decision-making. Besides, the majority preference in the dataset may hinder models' generalization ability on minority advertisers' preferences. While it is possible to collect high-quality data and retrain multiple models for different preferences, the high cost makes it unaffordable, hindering the advancement of auto-bidding into the era of large foundation models. To address this, we propose a flexible and practical Generative Auto-bidding scheme using post-training Search, termed GAS, to refine a base policy model's output and adapt to various preferences. We use weak-to-strong search alignment by training small critics for different preferences and an MCTS-inspired search to refine the model's output. Specifically, a novel voting mechanism with transformer-based critics trained with policy indications could enhance search alignment performance. Additionally, utilizing the search, we provide a fine-tuning method for high-frequency preference scenarios considering computational efficiency. Extensive experiments conducted on the real-world dataset and online A/B test on the Kuaishou advertising platform demonstrate the effectiveness of GAS, achieving significant improvements, e.g., 4.60% increment of target cost.
♻ ☆ AvatarShield: Visual Reinforcement Learning for Human-Centric Video Forgery Detection
The rapid advancement of Artificial Intelligence Generated Content (AIGC) technologies, particularly in video generation, has led to unprecedented creative capabilities but also increased threats to information integrity, identity security, and public trust. Existing detection methods, while effective in general scenarios, lack robust solutions for human-centric videos, which pose greater risks due to their realism and potential for legal and ethical misuse. Moreover, current detection approaches often suffer from poor generalization, limited scalability, and reliance on labor-intensive supervised fine-tuning. To address these challenges, we propose AvatarShield, the first interpretable MLLM-based framework for detecting human-centric fake videos, enhanced via Group Relative Policy Optimization (GRPO). Through our carefully designed accuracy detection reward and temporal compensation reward, it effectively avoids the use of high-cost text annotation data, enabling precise temporal modeling and forgery detection. Meanwhile, we design a dual-encoder architecture, combining high-level semantic reasoning and low-level artifact amplification to guide MLLMs in effective forgery detection. We further collect FakeHumanVid, a large-scale human-centric video benchmark that includes synthesis methods guided by pose, audio, and text inputs, enabling rigorous evaluation of detection methods in real-world scenes. Extensive experiments show that AvatarShield significantly outperforms existing approaches in both in-domain and cross-domain detection, setting a new standard for human-centric video forensics.
♻ ☆ Multimodal Forecasting of Sparse Intraoperative Hypotension Events Powered by Language Model
Intraoperative hypotension (IOH) frequently occurs under general anesthesia and is strongly linked to adverse outcomes such as myocardial injury and increased mortality. Despite its significance, IOH prediction is hindered by event sparsity and the challenge of integrating static and dynamic data across diverse patients. In this paper, we propose \textbf{IOHFuseLM}, a multimodal language model framework. To accurately identify and differentiate sparse hypotensive events, we leverage a two-stage training strategy. The first stage involves domain adaptive pretraining on IOH physiological time series augmented through diffusion methods, thereby enhancing the model sensitivity to patterns associated with hypotension. Subsequently, task fine-tuning is performed on the original clinical dataset to further enhance the ability to distinguish normotensive from hypotensive states. To enable multimodal fusion for each patient, we align structured clinical descriptions with the corresponding physiological time series at the token level. Such alignment enables the model to capture individualized temporal patterns alongside their corresponding clinical semantics. In addition, we convert static patient attributes into structured text to enrich personalized information. Experimental evaluations on two intraoperative datasets demonstrate that IOHFuseLM outperforms established baselines in accurately identifying IOH events, highlighting its applicability in clinical decision support scenarios. Our code is publicly available to promote reproducibility at https://github.com/zjt-gpu/IOHFuseLM.
♻ ☆ ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs) for solving question-answer (QA) tasks. The state-of-the-art RAG approaches often use the graph data as the external data since they capture the rich semantic information and link relationships between entities. However, existing graph-based RAG approaches cannot accurately identify the relevant information from the graph and also consume large numbers of tokens in the online retrieval process. To address these issues, we introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG), by augmenting the question using attributed communities, and also introducing a novel LLM-based hierarchical clustering method. To retrieve the most relevant information from the graph for the question, we build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method. Experimental results demonstrate that ArchRAG outperforms existing methods in both accuracy and token cost. Moreover, ArchRAG has been successfully applied to domain knowledge QA in Huawei Cloud Computing.
♻ ☆ R-KV: Redundancy-aware KV Cache Compression for Training-Free Reasoning Models Acceleration
Reasoning models have demonstrated impressive performance in self-reflection and chain-of-thought reasoning. However, they often produce excessively long outputs, leading to prohibitively large key-value (KV) caches during inference. While chain-of-thought inference significantly improves performance on complex reasoning tasks, it can also lead to reasoning failures when deployed with existing KV cache compression approaches. To address this, we propose Redundancy-aware KV Cache Compression for Reasoning models (R-KV), a novel method specifically targeting redundant tokens in reasoning models. Our method preserves nearly 100% of the full KV cache performance using only 10% of the KV cache, substantially outperforming existing KV cache baselines, which reach only 60% of the performance. Remarkably, R-KV even achieves 105% of full KV cache performance with 16% of the KV cache. This KV-cache reduction also leads to a 90% memory saving and a 6.6X throughput over standard chain-of-thought reasoning inference. Experimental results show that R-KV consistently outperforms existing KV cache compression baselines across two mathematical reasoning datasets.
♻ ☆ Beyond 2:4: exploring V:N:M sparsity for efficient transformer inference on GPUs
To date, 2:4 sparsity has stood as the only sparse pattern that can be accelerated using sparse tensor cores on GPUs. In practice, 2:4 sparsity often possesses low actual speedups ($\leq 1.3$) and requires fixed sparse ratios, meaning that other ratios, such as 4:8, 8:16, or those exceeding 50% sparsity, do not incur any speedups on GPUs. Recent studies suggest that V:N:M sparsity is promising in addressing these limitations of 2:4 sparsity. However, regarding accuracy, the effects of V:N:M sparsity on broader Transformer models, such as vision Transformers and large language models (LLMs), are largely unexamined. Moreover, Some specific issues related to V:N:M sparsity, such as how to select appropriate V and M values, remain unresolved. In this study, we thoroughly investigate the application of V:N:M sparsity in vision models and LLMs across multiple tasks, from pertaining to downstream tasks. We propose three key approaches to enhance the applicability and accuracy of V:N:M-sparse Transformers, including heuristic V and M selection, V:N:M-specific channel permutation, and three-staged LoRA training techniques. Experimental results show that, with our methods, the DeiT-small achieves lossless accuracy at 64:2:5 sparsity, while the DeiT-base maintains accuracy even at 64:2:8 sparsity. In addition, the fine-tuned LLama2-7B at 64:2:5 sparsity performs comparably or better than training-free 2:4 sparse alternatives on downstream tasks. More importantly, V:N:M-sparse Transformers offer a wider range of speedup-accuracy trade-offs compared to 2:4 sparsity. Overall, our exploration largely facilitates the V:N:M sparsity to act as a truly effective acceleration solution for Transformers in cost-sensitive inference scenarios.
♻ ☆ Measuring Faithfulness and Abstention: An Automated Pipeline for Evaluating LLM-Generated 3-ply Case-Based Legal Arguments
Large Language Models (LLMs) demonstrate potential in complex legal tasks like argument generation, yet their reliability remains a concern. Building upon pilot work assessing LLM generation of 3-ply legal arguments using human evaluation, this paper introduces an automated pipeline to evaluate LLM performance on this task, specifically focusing on faithfulness (absence of hallucination), factor utilization, and appropriate abstention. We define hallucination as the generation of factors not present in the input case materials and abstention as the model's ability to refrain from generating arguments when instructed and no factual basis exists. Our automated method employs an external LLM to extract factors from generated arguments and compares them against the ground-truth factors provided in the input case triples (current case and two precedent cases). We evaluated eight distinct LLMs on three tests of increasing difficulty: 1) generating a standard 3-ply argument, 2) generating an argument with swapped precedent roles, and 3) recognizing the impossibility of argument generation due to lack of shared factors and abstaining. Our findings indicate that while current LLMs achieve high accuracy (over 90%) in avoiding hallucination on viable argument generation tests (Tests 1 & 2), they often fail to utilize the full set of relevant factors present in the cases. Critically, on the abstention test (Test 3), most models failed to follow instructions to stop, instead generating spurious arguments despite the lack of common factors. This automated pipeline provides a scalable method for assessing these crucial LLM behaviors, highlighting the need for improvements in factor utilization and robust abstention capabilities before reliable deployment in legal settings. Link: https://lizhang-aiandlaw.github.io/An-Automated-Pipeline-for-Evaluating-LLM-Generated-3-ply-Case-Based-Legal-Arguments/
comment: 11 pages, 7th Workshop on Automated Semantic Analysis of Information in Legal Text @ ICAIL 2025, 16 June 2025, Chicago, IL
♻ ☆ Can reasoning models comprehend mathematical problems in Chinese ancient texts? An empirical study based on data from Suanjing Shishu
This study addresses the challenges in intelligent processing of Chinese ancient mathematical classics by constructing Guji_MATH, a benchmark for evaluating classical texts based on Suanjing Shishu. It systematically assesses the mathematical problem-solving capabilities of mainstream reasoning models under the unique linguistic constraints of classical Chinese. Through machine-assisted annotation and manual verification, 538 mathematical problems were extracted from 8 canonical texts, forming a structured dataset centered on the "Question-Answer-Solution" framework, supplemented by problem types and difficulty levels. Dual evaluation modes--closed-book (autonomous problem-solving) and open-book (reproducing classical solution methods)--were designed to evaluate the performance of six reasoning models on ancient Chinese mathematical problems. Results indicate that reasoning models can partially comprehend and solve these problems, yet their overall performance remains inferior to benchmarks on modern mathematical tasks. Enhancing models' classical Chinese comprehension and cultural knowledge should be prioritized for optimization. This study provides methodological support for mining mathematical knowledge from ancient texts and disseminating traditional culture, while offering new perspectives for evaluating cross-linguistic and cross-cultural capabilities of reasoning models.
comment: 29pages, 7 figures
♻ ☆ Uneven Event Modeling for Partially Relevant Video Retrieval ICME 2025
Given a text query, partially relevant video retrieval (PRVR) aims to retrieve untrimmed videos containing relevant moments, wherein event modeling is crucial for partitioning the video into smaller temporal events that partially correspond to the text. Previous methods typically segment videos into a fixed number of equal-length clips, resulting in ambiguous event boundaries. Additionally, they rely on mean pooling to compute event representations, inevitably introducing undesired misalignment. To address these, we propose an Uneven Event Modeling (UEM) framework for PRVR. We first introduce the Progressive-Grouped Video Segmentation (PGVS) module, to iteratively formulate events in light of both temporal dependencies and semantic similarity between consecutive frames, enabling clear event boundaries. Furthermore, we also propose the Context-Aware Event Refinement (CAER) module to refine the event representation conditioned the text's cross-attention. This enables event representations to focus on the most relevant frames for a given text, facilitating more precise text-video alignment. Extensive experiments demonstrate that our method achieves state-of-the-art performance on two PRVR benchmarks. Code is available at https://github.com/Sasa77777779/UEM.git.
comment: Accepted by ICME 2025
♻ ☆ LongMagpie: A Self-synthesis Method for Generating Large-scale Long-context Instructions
High-quality long-context instruction data is essential for aligning long-context large language models (LLMs). Despite the public release of models like Qwen and Llama, their long-context instruction data remains proprietary. Human annotation is costly and challenging, while template-based synthesis methods limit scale, diversity, and quality. We introduce LongMagpie, a self-synthesis framework that automatically generates large-scale long-context instruction data. Our key insight is that aligned long-context LLMs, when presented with a document followed by special tokens preceding a user turn, auto-regressively generate contextually relevant queries. By harvesting these document-query pairs and the model's responses, LongMagpie produces high-quality instructions without human effort. Experiments on HELMET, RULER, and Longbench v2 demonstrate that LongMagpie achieves leading performance on long-context tasks while maintaining competitive performance on short-context tasks, establishing it as a simple and effective approach for open, diverse, and scalable long-context instruction data synthesis.
♻ ☆ Accelerating Autoregressive Speech Synthesis Inference With Speech Speculative Decoding INTERSPEECH 2025
Modern autoregressive speech synthesis models leveraging language models have demonstrated remarkable performance. However, the sequential nature of next token prediction in these models leads to significant latency, hindering their deployment in scenarios where inference speed is critical. In this work, we propose Speech Speculative Decoding (SSD), a novel framework for autoregressive speech synthesis acceleration. Specifically, our method employs a lightweight draft model to generate candidate token sequences, which are subsequently verified in parallel by the target model using the proposed SSD framework. Experimental results demonstrate that SSD achieves a significant speedup of 1.4x compared with conventional autoregressive decoding, while maintaining high fidelity and naturalness. Subjective evaluations further validate the effectiveness of SSD in preserving the perceptual quality of the target model while accelerating inference.
comment: Accepted by INTERSPEECH 2025
♻ ☆ Mitigating Visual Forgetting via Take-along Visual Conditioning for Multi-modal Long CoT Reasoning ACL 2025
Recent advancements in Large Language Models (LLMs) have demonstrated enhanced reasoning capabilities, evolving from Chain-of-Thought (CoT) prompting to advanced, product-oriented solutions like OpenAI o1. During our re-implementation of this model, we noticed that in multimodal tasks requiring visual input (e.g., geometry problems), Multimodal LLMs (MLLMs) struggle to maintain focus on the visual information, in other words, MLLMs suffer from a gradual decline in attention to visual information as reasoning progresses, causing text-over-relied outputs. To investigate this, we ablate image inputs during long-chain reasoning. Concretely, we truncate the reasoning process midway, then re-complete the reasoning process with the input image removed. We observe only a ~2% accuracy drop on MathVista's test-hard subset, revealing the model's textual outputs dominate the following reasoning process. Motivated by this, we propose Take-along Visual Conditioning (TVC), a strategy that shifts image input to critical reasoning stages and compresses redundant visual tokens via dynamic pruning. This methodology helps the model retain attention to the visual components throughout the reasoning. Our approach achieves state-of-the-art performance on average across five mathematical reasoning benchmarks (+3.4 points vs previous sota), demonstrating the effectiveness of TVC in enhancing multimodal reasoning systems.
comment: Accepted to ACL 2025. The project page is available at https://sun-hailong.github.io/projects/TVC
♻ ☆ MaXIFE: Multilingual and Cross-lingual Instruction Following Evaluation ACL 2025
With the rapid adoption of large language models (LLMs) in natural language processing, the ability to follow instructions has emerged as a key metric for evaluating their practical utility. However, existing evaluation methods often focus on single-language scenarios, overlooking the challenges and differences present in multilingual and cross-lingual contexts. To address this gap, we introduce MaXIFE: a comprehensive evaluation benchmark designed to assess instruction-following capabilities across 23 different languages with 1667 verifiable instruction tasks. MaXIFE integrates both Rule-Based Evaluation and Model-Based Evaluation, ensuring a balance of efficiency and accuracy. We applied MaXIFE to evaluate several leading commercial LLMs, establishing baseline results for future comparisons. By providing a standardized tool for multilingual instruction-following evaluation, MaXIFE aims to advance research and development in natural language processing.
comment: ACL 2025 Main Conference
♻ ☆ Noise-Robustness Through Noise: Asymmetric LoRA Adaption with Poisoning Expert
Current parameter-efficient fine-tuning methods for adapting pre-trained language models to downstream tasks are susceptible to interference from noisy data. Conventional noise-handling approaches either rely on laborious data pre-processing or employ model architecture modifications prone to error accumulation. In contrast to existing noise-process paradigms, we propose a noise-robust adaptation method via asymmetric LoRA poisoning experts (LoPE), a novel framework that enhances model robustness to noise only with generated noisy data. Drawing inspiration from the mixture-of-experts architecture, LoPE strategically integrates a dedicated poisoning expert in an asymmetric LoRA configuration. Through a two-stage paradigm, LoPE performs noise injection on the poisoning expert during fine-tuning to enhance its noise discrimination and processing ability. During inference, we selectively mask the dedicated poisoning expert to leverage purified knowledge acquired by normal experts for noise-robust output. Extensive experiments demonstrate that LoPE achieves strong performance and robustness purely through the low-cost noise injection, which completely eliminates the requirement of data cleaning.
♻ ☆ MCU: An Evaluation Framework for Open-Ended Game Agents
Developing AI agents capable of interacting with open-world environments to solve diverse tasks is a compelling challenge. However, evaluating such open-ended agents remains difficult, with current benchmarks facing scalability limitations. To address this, we introduce Minecraft Universe (MCU), a comprehensive evaluation framework set within the open-world video game Minecraft. MCU incorporates three key components: (1) an expanding collection of 3,452 composable atomic tasks that encompasses 11 major categories and 41 subcategories of challenges; (2) a task composition mechanism capable of generating infinite diverse tasks with varying difficulty; and (3) a general evaluation framework that achieves 91.5\% alignment with human ratings for open-ended task assessment. Empirical results reveal that even state-of-the-art foundation agents struggle with the increasing diversity and complexity of tasks. These findings highlight the necessity of MCU as a robust benchmark to drive progress in AI agent development within open-ended environments. Our evaluation code and scripts are available at https://github.com/CraftJarvis/MCU.
♻ ☆ Pi-SQL: Enhancing Text-to-SQL with Fine-Grained Guidance from Pivot Programming Languages
Text-to-SQL transforms the user queries from natural language to executable SQL programs, enabling non-experts to interact with complex databases. Existing prompt-based methods craft meticulous text guidelines and examples to facilitate SQL generation, but their accuracy is hindered by the large semantic gap between the texts and the low-resource SQL programs. In this work, we propose Pi-SQL, which incorporates the high-resource Python program as a pivot to bridge between the natural language query and SQL program. In particular, Pi-SQL first generates Python programs that provide fine-grained step-by-step guidelines in their code blocks or comments, and then produces an SQL program following the guidance of each Python program. The final SQL program matches the reference Python program's query results and, through selection from candidates generated by different strategies, achieves superior execution speed, with a reward-based valid efficiency score up to 4.55 higher than the best-performing baseline. Extensive experiments demonstrate the effectiveness of Pi-SQL, which improves the execution accuracy of the best-performing baseline by up to 3.20.
Kimi k1.5: Scaling Reinforcement Learning with LLMs
Language model pretraining with next token prediction has proved effective for scaling compute but is limited to the amount of available training data. Scaling reinforcement learning (RL) unlocks a new axis for the continued improvement of artificial intelligence, with the promise that large language models (LLMs) can scale their training data by learning to explore with rewards. However, prior published work has not produced competitive results. In light of this, we report on the training practice of Kimi k1.5, our latest multi-modal LLM trained with RL, including its RL training techniques, multi-modal data recipes, and infrastructure optimization. Long context scaling and improved policy optimization methods are key ingredients of our approach, which establishes a simplistic, effective RL framework without relying on more complex techniques such as Monte Carlo tree search, value functions, and process reward models. Notably, our system achieves state-of-the-art reasoning performance across multiple benchmarks and modalities -- e.g., 77.5 on AIME, 96.2 on MATH 500, 94-th percentile on Codeforces, 74.9 on MathVista -- matching OpenAI's o1. Moreover, we present effective long2short methods that use long-CoT techniques to improve short-CoT models, yielding state-of-the-art short-CoT reasoning results -- e.g., 60.8 on AIME, 94.6 on MATH500, 47.3 on LiveCodeBench -- outperforming existing short-CoT models such as GPT-4o and Claude Sonnet 3.5 by a large margin (up to +550%).
comment: 25 pages
♻ ☆ CulturalBench: A Robust, Diverse, and Challenging Cultural Benchmark by Human-AI CulturalTeaming ACL 2025
Robust, diverse, and challenging cultural knowledge benchmarks are essential for measuring our progress towards making LMs that are helpful across diverse cultures. We introduce CulturalBench: a set of 1,696 human-written and human-verified questions to assess LMs' cultural knowledge, covering 45 global regions including underrepresented ones like Bangladesh, Zimbabwe, and Peru. Questions are each verified by five independent annotators and span 17 diverse topics ranging from food preferences to greeting etiquette. We construct CulturalBench using methods inspired by Human-AI Red-Teaming. Compared to human performance (92.4% accuracy), the hard version of CulturalBench is challenging even for the best-performing frontier LMs, ranging from 28.7% to 61.5% in accuracy. We find that LMs often struggle with tricky questions that have multiple correct answers (e.g., What utensils do the Chinese usually use?), revealing a tendency to overfit to a single answer. Our results indicate that GPT-4o substantially outperform other models across cultures, besting local providers (e.g., Mistral on European culture and DeepSeek on Chinese culture). Across the board, models under-perform on questions related to North Africa, South America and Middle East.
comment: ACL 2025 Main, 39 pages, 16 figures. arXiv admin note: text overlap with arXiv:2404.06664
♻ ☆ Grounded Persuasive Language Generation for Automated Marketing
This paper develops an agentic framework that employs large language models (LLMs) to automate the generation of persuasive and grounded marketing content, using real estate listing descriptions as our focal application domain. Our method is designed to align the generated content with user preferences while highlighting useful factual attributes. This agent consists of three key modules: (1) Grounding Module, mimicking expert human behavior to predict marketable features; (2) Personalization Module, aligning content with user preferences; (3) Marketing Module, ensuring factual accuracy and the inclusion of localized features. We conduct systematic human-subject experiments in the domain of real estate marketing, with a focus group of potential house buyers. The results demonstrate that marketing descriptions generated by our approach are preferred over those written by human experts by a clear margin while maintaining the same level of factual accuracy. Our findings suggest a promising agentic approach to automate large-scale targeted marketing while ensuring factuality of content generation.
♻ ☆ SignMusketeers: An Efficient Multi-Stream Approach for Sign Language Translation at Scale ACL
A persistent challenge in sign language video processing, including the task of sign to written language translation, is how we learn representations of sign language in an effective and efficient way that preserves the important attributes of these languages, while remaining invariant to irrelevant visual differences. Informed by the nature and linguistics of signed languages, our proposed method focuses on just the most relevant parts in a signing video: the face, hands and body pose of the signer. However, instead of fully relying on pose estimation from off-the-shelf pose tracking models, which have inconsistent performance for hands and faces, we propose to learn a representation of the complex handshapes and facial expressions of sign languages in a self-supervised fashion. Our approach is based on learning from individual frames (rather than video sequences) and is therefore much more efficient than prior work on sign language pre-training. Compared to a recent model that established a new state of the art in sign language translation on the How2Sign dataset, our approach yields similar translation performance, using less than 3\% of the compute.
comment: Accepted to ACL (Findings) 2025
♻ ☆ GvT: A Graph-based Vision Transformer with Talking-Heads Utilizing Sparsity, Trained from Scratch on Small Datasets
Vision Transformers (ViTs) have achieved impressive results in large-scale image classification. However, when training from scratch on small datasets, there is still a significant performance gap between ViTs and Convolutional Neural Networks (CNNs), which is attributed to the lack of inductive bias. To address this issue, we propose a Graph-based Vision Transformer (GvT) that utilizes graph convolutional projection and graph-pooling. In each block, queries and keys are calculated through graph convolutional projection based on the spatial adjacency matrix, while dot-product attention is used in another graph convolution to generate values. When using more attention heads, the queries and keys become lower-dimensional, making their dot product an uninformative matching function. To overcome this low-rank bottleneck in attention heads, we employ talking-heads technology based on bilinear pooled features and sparse selection of attention tensors. This allows interaction among filtered attention scores and enables each attention mechanism to depend on all queries and keys. Additionally, we apply graph-pooling between two intermediate blocks to reduce the number of tokens and aggregate semantic information more effectively. Our experimental results show that GvT produces comparable or superior outcomes to deep convolutional networks and surpasses vision transformers without pre-training on large datasets. The code for our proposed model is publicly available on the website.
comment: The authors withdraw this article to revise and improve the paper through substantial adjustments and rewriting
♻ ☆ Revealing the Intrinsic Ethical Vulnerability of Aligned Large Language Models
Large language models (LLMs) are foundational explorations to artificial general intelligence, yet their alignment with human values via instruction tuning and preference learning achieves only superficial compliance. Here, we demonstrate that harmful knowledge embedded during pretraining persists as indelible "dark patterns" in LLMs' parametric memory, evading alignment safeguards and resurfacing under adversarial inducement at distributional shifts. In this study, we first theoretically analyze the intrinsic ethical vulnerability of aligned LLMs by proving that current alignment methods yield only local "safety regions" in the knowledge manifold. In contrast, pretrained knowledge remains globally connected to harmful concepts via high-likelihood adversarial trajectories. Building on this theoretical insight, we empirically validate our findings by employing semantic coherence inducement under distributional shifts--a method that systematically bypasses alignment constraints through optimized adversarial prompts. This combined theoretical and empirical approach achieves a 100% attack success rate across 19 out of 23 state-of-the-art aligned LLMs, including DeepSeek-R1 and LLaMA-3, revealing their universal vulnerabilities.
♻ ☆ Kaiwu: A Multimodal Manipulation Dataset and Framework for Robot Learning and Human-Robot Interaction RAL
Cutting-edge robot learning techniques including foundation models and imitation learning from humans all pose huge demands on large-scale and high-quality datasets which constitute one of the bottleneck in the general intelligent robot fields. This paper presents the Kaiwu multimodal dataset to address the missing real-world synchronized multimodal data problems in the sophisticated assembling scenario,especially with dynamics information and its fine-grained labelling. The dataset first provides an integration of human,environment and robot data collection framework with 20 subjects and 30 interaction objects resulting in totally 11,664 instances of integrated actions. For each of the demonstration,hand motions,operation pressures,sounds of the assembling process,multi-view videos, high-precision motion capture information,eye gaze with first-person videos,electromyography signals are all recorded. Fine-grained multi-level annotation based on absolute timestamp,and semantic segmentation labelling are performed. Kaiwu dataset aims to facilitate robot learning,dexterous manipulation,human intention investigation and human-robot collaboration research.
comment: 8 pages, 5 figures, Submitted to IEEE Robotics and Automation Letters (RAL)
Graphics 16
☆ HumanRAM: Feed-forward Human Reconstruction and Animation Model using Transformers SIGGRAPH 2025
3D human reconstruction and animation are long-standing topics in computer graphics and vision. However, existing methods typically rely on sophisticated dense-view capture and/or time-consuming per-subject optimization procedures. To address these limitations, we propose HumanRAM, a novel feed-forward approach for generalizable human reconstruction and animation from monocular or sparse human images. Our approach integrates human reconstruction and animation into a unified framework by introducing explicit pose conditions, parameterized by a shared SMPL-X neural texture, into transformer-based large reconstruction models (LRM). Given monocular or sparse input images with associated camera parameters and SMPL-X poses, our model employs scalable transformers and a DPT-based decoder to synthesize realistic human renderings under novel viewpoints and novel poses. By leveraging the explicit pose conditions, our model simultaneously enables high-quality human reconstruction and high-fidelity pose-controlled animation. Experiments show that HumanRAM significantly surpasses previous methods in terms of reconstruction accuracy, animation fidelity, and generalization performance on real-world datasets. Video results are available at https://zju3dv.github.io/humanram/.
comment: Accepted by SIGGRAPH 2025 (Conference Track). Project page: https://zju3dv.github.io/humanram/
☆ TalkingMachines: Real-Time Audio-Driven FaceTime-Style Video via Autoregressive Diffusion Models
In this paper, we present TalkingMachines -- an efficient framework that transforms pretrained video generation models into real-time, audio-driven character animators. TalkingMachines enables natural conversational experiences by integrating an audio large language model (LLM) with our video generation foundation model. Our primary contributions include: (1) We adapt a pretrained SOTA image-to-video DiT into an audio-driven avatar generation model of 18 billion parameters; (2) We enable infinite video streaming without error accumulation through asymmetric knowledge distillation from a bidirectional teacher model into a sparse causal, autoregressive student model; (3) We design a high-throughput, low-latency inference pipeline incorporating several key engineering optimizations such as: (a) disaggregation of the DiT and VAE decoder across separate devices, (b) efficient overlap of inter-device communication and computation using CUDA streams, (c) elimination of redundant recomputations to maximize frame-generation throughput. Please see demo videos here - https://aaxwaz.github.io/TalkingMachines/
☆ PartComposer: Learning and Composing Part-Level Concepts from Single-Image Examples
We present PartComposer: a framework for part-level concept learning from single-image examples that enables text-to-image diffusion models to compose novel objects from meaningful components. Existing methods either struggle with effectively learning fine-grained concepts or require a large dataset as input. We propose a dynamic data synthesis pipeline generating diverse part compositions to address one-shot data scarcity. Most importantly, we propose to maximize the mutual information between denoised latents and structured concept codes via a concept predictor, enabling direct regulation on concept disentanglement and re-composition supervision. Our method achieves strong disentanglement and controllable composition, outperforming subject and part-level baselines when mixing concepts from the same, or different, object categories.
☆ VolTex: Food Volume Estimation using Text-Guided Segmentation and Neural Surface Reconstruction
Accurate food volume estimation is crucial for dietary monitoring, medical nutrition management, and food intake analysis. Existing 3D Food Volume estimation methods accurately compute the food volume but lack for food portions selection. We present VolTex, a framework that improves \change{the food object selection} in food volume estimation. Allowing users to specify a target food item via text input to be segmented, our method enables the precise selection of specific food objects in real-world scenes. The segmented object is then reconstructed using the Neural Surface Reconstruction method to generate high-fidelity 3D meshes for volume computation. Extensive evaluations on the MetaFood3D dataset demonstrate the effectiveness of our approach in isolating and reconstructing food items for accurate volume estimation. The source code is accessible at https://github.com/GCVCG/VolTex.
☆ PhysGaia: A Physics-Aware Dataset of Multi-Body Interactions for Dynamic Novel View Synthesis
We introduce PhysGaia, a novel physics-aware dataset specifically designed for Dynamic Novel View Synthesis (DyNVS), encompassing both structured objects and unstructured physical phenomena. Unlike existing datasets that primarily focus on photorealistic reconstruction, PhysGaia is created to actively support physics-aware dynamic scene modeling. Our dataset provides complex dynamic scenarios with rich interactions among multiple objects, where they realistically collide with each other and exchange forces. Furthermore, it contains a diverse range of physical materials, such as liquid, gas, viscoelastic substance, and textile, which moves beyond the rigid bodies prevalent in existing datasets. All scenes in PhysGaia are faithfully generated to strictly adhere to physical laws, leveraging carefully selected material-specific physics solvers. To enable quantitative evaluation of physical modeling, our dataset provides essential ground-truth information, including 3D particle trajectories and physics parameters, e.g., viscosity. To facilitate research adoption, we also provide essential integration pipelines for using state-of-the-art DyNVS models with our dataset and report their results. By addressing the critical lack of datasets for physics-aware modeling, PhysGaia will significantly advance research in dynamic view synthesis, physics-based scene understanding, and deep learning models integrated with physical simulation -- ultimately enabling more faithful reconstruction and interpretation of complex dynamic scenes. Our datasets and codes are available in the project website, http://cvlab.snu.ac.kr/research/PhysGaia.
comment: Project page: http://cvlab.snu.ac.kr/research/PhysGaia, Data: https://huggingface.co/datasets/mijeongkim/PhysGaia/tree/main
☆ MotionRAG-Diff: A Retrieval-Augmented Diffusion Framework for Long-Term Music-to-Dance Generation
Generating long-term, coherent, and realistic music-conditioned dance sequences remains a challenging task in human motion synthesis. Existing approaches exhibit critical limitations: motion graph methods rely on fixed template libraries, restricting creative generation; diffusion models, while capable of producing novel motions, often lack temporal coherence and musical alignment. To address these challenges, we propose $\textbf{MotionRAG-Diff}$, a hybrid framework that integrates Retrieval-Augmented Generation (RAG) with diffusion-based refinement to enable high-quality, musically coherent dance generation for arbitrary long-term music inputs. Our method introduces three core innovations: (1) A cross-modal contrastive learning architecture that aligns heterogeneous music and dance representations in a shared latent space, establishing unsupervised semantic correspondence without paired data; (2) An optimized motion graph system for efficient retrieval and seamless concatenation of motion segments, ensuring realism and temporal coherence across long sequences; (3) A multi-condition diffusion model that jointly conditions on raw music signals and contrastive features to enhance motion quality and global synchronization. Extensive experiments demonstrate that MotionRAG-Diff achieves state-of-the-art performance in motion quality, diversity, and music-motion synchronization accuracy. This work establishes a new paradigm for music-driven dance generation by synergizing retrieval-based template fidelity with diffusion-based creative enhancement.
comment: 12 pages, 5 figures
☆ FlexPainter: Flexible and Multi-View Consistent Texture Generation
Texture map production is an important part of 3D modeling and determines the rendering quality. Recently, diffusion-based methods have opened a new way for texture generation. However, restricted control flexibility and limited prompt modalities may prevent creators from producing desired results. Furthermore, inconsistencies between generated multi-view images often lead to poor texture generation quality. To address these issues, we introduce \textbf{FlexPainter}, a novel texture generation pipeline that enables flexible multi-modal conditional guidance and achieves highly consistent texture generation. A shared conditional embedding space is constructed to perform flexible aggregation between different input modalities. Utilizing such embedding space, we present an image-based CFG method to decompose structural and style information, achieving reference image-based stylization. Leveraging the 3D knowledge within the image diffusion prior, we first generate multi-view images simultaneously using a grid representation to enhance global understanding. Meanwhile, we propose a view synchronization and adaptive weighting module during diffusion sampling to further ensure local consistency. Finally, a 3D-aware texture completion model combined with a texture enhancement model is used to generate seamless, high-resolution texture maps. Comprehensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods in both flexibility and generation quality.
comment: 11 pages, 10 figures in main paper, 10 pages, 12 figures in supplementary
☆ EyeNavGS: A 6-DoF Navigation Dataset and Record-n-Replay Software for Real-World 3DGS Scenes in VR
3D Gaussian Splatting (3DGS) is an emerging media representation that reconstructs real-world 3D scenes in high fidelity, enabling 6-degrees-of-freedom (6-DoF) navigation in virtual reality (VR). However, developing and evaluating 3DGS-enabled applications and optimizing their rendering performance, require realistic user navigation data. Such data is currently unavailable for photorealistic 3DGS reconstructions of real-world scenes. This paper introduces EyeNavGS (EyeNavGS), the first publicly available 6-DoF navigation dataset featuring traces from 46 participants exploring twelve diverse, real-world 3DGS scenes. The dataset was collected at two sites, using the Meta Quest Pro headsets, recording the head pose and eye gaze data for each rendered frame during free world standing 6-DoF navigation. For each of the twelve scenes, we performed careful scene initialization to correct for scene tilt and scale, ensuring a perceptually-comfortable VR experience. We also release our open-source SIBR viewer software fork with record-and-replay functionalities and a suite of utility tools for data processing, conversion, and visualization. The EyeNavGS dataset and its accompanying software tools provide valuable resources for advancing research in 6-DoF viewport prediction, adaptive streaming, 3D saliency, and foveated rendering for 3DGS scenes. The EyeNavGS dataset is available at: https://symmru.github.io/EyeNavGS/.
☆ Multi-Spectral Gaussian Splatting with Neural Color Representation
We present MS-Splatting -- a multi-spectral 3D Gaussian Splatting (3DGS) framework that is able to generate multi-view consistent novel views from images of multiple, independent cameras with different spectral domains. In contrast to previous approaches, our method does not require cross-modal camera calibration and is versatile enough to model a variety of different spectra, including thermal and near-infra red, without any algorithmic changes. Unlike existing 3DGS-based frameworks that treat each modality separately (by optimizing per-channel spherical harmonics) and therefore fail to exploit the underlying spectral and spatial correlations, our method leverages a novel neural color representation that encodes multi-spectral information into a learned, compact, per-splat feature embedding. A shallow multi-layer perceptron (MLP) then decodes this embedding to obtain spectral color values, enabling joint learning of all bands within a unified representation. Our experiments show that this simple yet effective strategy is able to improve multi-spectral rendering quality, while also leading to improved per-spectra rendering quality over state-of-the-art methods. We demonstrate the effectiveness of this new technique in agricultural applications to render vegetation indices, such as normalized difference vegetation index (NDVI).
☆ IGSM: Improved Geometric and Sensitivity Matching for Finetuning Pruned Diffusion Models
Diffusion models achieve realistic outcomes across a wide range of generative tasks, but their high computational cost remains a major barrier to deployment. Model pruning has emerged as a promising strategy to reduce inference cost and enable lightweight diffusion models. While effective, pruned diffusion models are proned to quality reduction due to limited capacity. A key limitation of current pruning approaches is that pruned models are finetuned using the same objective as the dense model, typically denoising score matching (DSM). Since the dense model is accessible during finetuning, it warrants a more effective approach for knowledge transfer from the dense to the pruned model. Motivated by this aim, we revisit the finetuning stage and propose IGSM (\textbf{I}mproved \textbf{G}eometric and \textbf{S}ensitivity \textbf{M}atching), a general-purpose finetuning framework that introduces a second-order Jacobian projection loss inspired by Finite-Time Lyapunov Exponents (FTLE). IGSM efficiently captures and aligns the geometric and the temporal dynamics of pruned models with their dense teachers using scalable second-order projections. Our approach is architecture-agnostic and applies to both U-Net- and Transformer-based diffusion models. Experiments on CIFAR-10, CelebA, LSUN-Church, and LSUN-Bedroom show that IGSM consistently narrows the performance gap between pruned and dense models, substantially improving sample quality. Code is available on GitHub: https://github.com/FATE4869/IGSM-Official
comment: 23 pages, 4 figures
☆ Gen4D: Synthesizing Humans and Scenes in the Wild CVPR
Lack of input data for in-the-wild activities often results in low performance across various computer vision tasks. This challenge is particularly pronounced in uncommon human-centric domains like sports, where real-world data collection is complex and impractical. While synthetic datasets offer a promising alternative, existing approaches typically suffer from limited diversity in human appearance, motion, and scene composition due to their reliance on rigid asset libraries and hand-crafted rendering pipelines. To address this, we introduce Gen4D, a fully automated pipeline for generating diverse and photorealistic 4D human animations. Gen4D integrates expert-driven motion encoding, prompt-guided avatar generation using diffusion-based Gaussian splatting, and human-aware background synthesis to produce highly varied and lifelike human sequences. Based on Gen4D, we present SportPAL, a large-scale synthetic dataset spanning three sports: baseball, icehockey, and soccer. Together, Gen4D and SportPAL provide a scalable foundation for constructing synthetic datasets tailored to in-the-wild human-centric vision tasks, with no need for manual 3D modeling or scene design.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
♻ ☆ Controllable Satellite-to-Street-View Synthesis with Precise Pose Alignment and Zero-Shot Environmental Control
Generating street-view images from satellite imagery is a challenging task, particularly in maintaining accurate pose alignment and incorporating diverse environmental conditions. While diffusion models have shown promise in generative tasks, their ability to maintain strict pose alignment throughout the diffusion process is limited. In this paper, we propose a novel Iterative Homography Adjustment (IHA) scheme applied during the denoising process, which effectively addresses pose misalignment and ensures spatial consistency in the generated street-view images. Additionally, currently, available datasets for satellite-to-street-view generation are limited in their diversity of illumination and weather conditions, thereby restricting the generalizability of the generated outputs. To mitigate this, we introduce a text-guided illumination and weather-controlled sampling strategy that enables fine-grained control over the environmental factors. Extensive quantitative and qualitative evaluations demonstrate that our approach significantly improves pose accuracy and enhances the diversity and realism of generated street-view images, setting a new benchmark for satellite-to-street-view generation tasks.
♻ ☆ Pro3D-Editor : A Progressive-Views Perspective for Consistent and Precise 3D Editing
Text-guided 3D editing aims to precisely edit semantically relevant local 3D regions, which has significant potential for various practical applications ranging from 3D games to film production. Existing methods typically follow a view-indiscriminate paradigm: editing 2D views indiscriminately and projecting them back into 3D space. However, they overlook the different cross-view interdependencies, resulting in inconsistent multi-view editing. In this study, we argue that ideal consistent 3D editing can be achieved through a \textit{progressive-views paradigm}, which propagates editing semantics from the editing-salient view to other editing-sparse views. Specifically, we propose \textit{Pro3D-Editor}, a novel framework, which mainly includes Primary-view Sampler, Key-view Render, and Full-view Refiner. Primary-view Sampler dynamically samples and edits the most editing-salient view as the primary view. Key-view Render accurately propagates editing semantics from the primary view to other key views through its Mixture-of-View-Experts Low-Rank Adaption (MoVE-LoRA). Full-view Refiner edits and refines the 3D object based on the edited multi-views. Extensive experiments demonstrate that our method outperforms existing methods in editing accuracy and spatial consistency.
♻ ☆ SceneMotifCoder: Example-driven Visual Program Learning for Generating 3D Object Arrangements 3DV 2025
Despite advances in text-to-3D generation methods, generation of multi-object arrangements remains challenging. Current methods exhibit failures in generating physically plausible arrangements that respect the provided text description. We present SceneMotifCoder (SMC), an example-driven framework for generating 3D object arrangements through visual program learning. SMC leverages large language models (LLMs) and program synthesis to overcome these challenges by learning visual programs from example arrangements. These programs are generalized into compact, editable meta-programs. When combined with 3D object retrieval and geometry-aware optimization, they can be used to create object arrangements varying in arrangement structure and contained objects. Our experiments show that SMC generates high-quality arrangements using meta-programs learned from few examples. Evaluation results demonstrates that object arrangements generated by SMC better conform to user-specified text descriptions and are more physically plausible when compared with state-of-the-art text-to-3D generation and layout methods.
comment: Accepted at 3DV 2025 (Oral). Project page: https://3dlg-hcvc.github.io/smc/. Minor revisions for camera-ready version
♻ ☆ SyncSDE: A Probabilistic Framework for Diffusion Synchronization CVPR2025
There have been many attempts to leverage multiple diffusion models for collaborative generation, extending beyond the original domain. A prominent approach involves synchronizing multiple diffusion trajectories by mixing the estimated scores to artificially correlate the generation processes. However, existing methods rely on naive heuristics, such as averaging, without considering task specificity. These approaches do not clarify why such methods work and often produce suboptimal results when a heuristic suitable for one task is blindly applied to others. In this paper, we present a probabilistic framework for analyzing why diffusion synchronization works and reveal where heuristics should be focused; modeling correlations between multiple trajectories and adapting them to each specific task. We further identify optimal correlation models per task, achieving better results than previous approaches that apply a single heuristic across all tasks without justification.
comment: Accepted to CVPR2025. Project Page: https://hjl1013.github.io/SyncSDE/
♻ ☆ Virtual Reality Lensing for Surface Approximation in Feature-driven DVR
We present a novel lens technique to support the identification of heterogeneous features in direct volume rendering (DVR) visualizations. In contrast to data-centric transfer function (TF) design, our image-driven approach enables users to specify target features directly within the visualization using deformable quadric surfaces. The lens leverages quadrics for their expressive yet simple parametrization, enabling users to sculpt feature approximations by composing multiple quadric lenses. By doing so, the lens offers greater versatility than traditional rigid-shape lenses for selecting and bringing into focus features with irregular geometry. We discuss the lens visualization and interaction design, advocating for bimanual spatial virtual reality (VR) input for reducing cognitive and physical strain. We also report findings from a pilot qualitative evaluation with a domain specialist using a public asteroid impact dataset. These insights not only shed light on the benefits and pitfalls of using deformable lenses but also suggest directions for future research.
Robotics 45
☆ A Data-Based Architecture for Flight Test without Test Points
The justification for the "test point" derives from the test pilot's obligation to reproduce faithfully the pre-specified conditions of some model prediction. Pilot deviation from those conditions invalidates the model assumptions. Flight test aids have been proposed to increase accuracy on more challenging test points. However, the very existence of databands and tolerances is the problem more fundamental than inadequate pilot skill. We propose a novel approach, which eliminates test points. We start with a high-fidelity digital model of an air vehicle. Instead of using this model to generate a point prediction, we use a machine learning method to produce a reduced-order model (ROM). The ROM has two important properties. First, it can generate a prediction based on any set of conditions the pilot flies. Second, if the test result at those conditions differ from the prediction, the ROM can be updated using the new data. The outcome of flight test is thus a refined ROM at whatever conditions were flown. This ROM in turn updates and validates the high-fidelity model. We present a single example of this "point-less" architecture, using T-38C flight test data. We first use a generic aircraft model to build a ROM of longitudinal pitching motion as a hypersurface. We then ingest unconstrained flight test data and use Gaussian Process Regression to update and condition the hypersurface. By proposing a second-order equivalent system for the T-38C, this hypersurface then generates parameters necessary to assess MIL-STD-1797B compliance for longitudinal dynamics.
comment: The Society of Experimental Test Pilots Annual Symposium, vol. 68th, 2024
☆ Efficient Manipulation-Enhanced Semantic Mapping With Uncertainty-Informed Action Selection
Service robots operating in cluttered human environments such as homes, offices, and schools cannot rely on predefined object arrangements and must continuously update their semantic and spatial estimates while dealing with possible frequent rearrangements. Efficient and accurate mapping under such conditions demands selecting informative viewpoints and targeted manipulations to reduce occlusions and uncertainty. In this work, we present a manipulation-enhanced semantic mapping framework for occlusion-heavy shelf scenes that integrates evidential metric-semantic mapping with reinforcement-learning-based next-best view planning and targeted action selection. Our method thereby exploits uncertainty estimates from the Dirichlet and Beta distributions in the semantic and occupancy prediction networks to guide both active sensor placement and object manipulation, focusing on areas of limited knowledge and selecting actions with high expected information gain. For object manipulation, we introduce an uncertainty-informed push strategy that targets occlusion-critical objects and generates minimally invasive actions to reveal hidden regions. The experimental evaluation shows that our framework highly reduces object displacement and drops while achieving a 95% reduction in planning time compared to the state-of-the-art, thereby realizing real-world applicability.
☆ Active inference as a unified model of collision avoidance behavior in human drivers
Collision avoidance -- involving a rapid threat detection and quick execution of the appropriate evasive maneuver -- is a critical aspect of driving. However, existing models of human collision avoidance behavior are fragmented, focusing on specific scenarios or only describing certain aspects of the avoidance behavior, such as response times. This paper addresses these gaps by proposing a novel computational cognitive model of human collision avoidance behavior based on active inference. Active inference provides a unified approach to modeling human behavior: the minimization of free energy. Building on prior active inference work, our model incorporates established cognitive mechanisms such as evidence accumulation to simulate human responses in two distinct collision avoidance scenarios: front-to-rear lead vehicle braking and lateral incursion by an oncoming vehicle. We demonstrate that our model explains a wide range of previous empirical findings on human collision avoidance behavior. Specifically, the model closely reproduces both aggregate results from meta-analyses previously reported in the literature and detailed, scenario-specific effects observed in a recent driving simulator study, including response timing, maneuver selection, and execution. Our results highlight the potential of active inference as a unified framework for understanding and modeling human behavior in complex real-life driving tasks.
Reinforcement Learning with Data Bootstrapping for Dynamic Subgoal Pursuit in Humanoid Robot Navigation
Safe and real-time navigation is fundamental for humanoid robot applications. However, existing bipedal robot navigation frameworks often struggle to balance computational efficiency with the precision required for stable locomotion. We propose a novel hierarchical framework that continuously generates dynamic subgoals to guide the robot through cluttered environments. Our method comprises a high-level reinforcement learning (RL) planner for subgoal selection in a robot-centric coordinate system and a low-level Model Predictive Control (MPC) based planner which produces robust walking gaits to reach these subgoals. To expedite and stabilize the training process, we incorporate a data bootstrapping technique that leverages a model-based navigation approach to generate a diverse, informative dataset. We validate our method in simulation using the Agility Robotics Digit humanoid across multiple scenarios with random obstacles. Results show that our framework significantly improves navigation success rates and adaptability compared to both the original model-based method and other learning-based methods.
comment: 8 pages, 5 figures, 3 tables
☆ LoL-NMPC: Low-Level Dynamics Integration in Nonlinear Model Predictive Control for Unmanned Aerial Vehicles
In this paper, we address the problem of tracking high-speed agile trajectories for Unmanned Aerial Vehicles(UAVs), where model inaccuracies can lead to large tracking errors. Existing Nonlinear Model Predictive Controller(NMPC) methods typically neglect the dynamics of the low-level flight controllers such as underlying PID controller present in many flight stacks, and this results in sub-optimal tracking performance at high speeds and accelerations. To this end, we propose a novel NMPC formulation, LoL-NMPC, which explicitly incorporates low-level controller dynamics and motor dynamics in order to minimize trajectory tracking errors while maintaining computational efficiency. By leveraging linear constraints inside low-level dynamics, our approach inherently accounts for actuator constraints without requiring additional reallocation strategies. The proposed method is validated in both simulation and real-world experiments, demonstrating improved tracking accuracy and robustness at speeds up to 98.57 km/h and accelerations of 3.5 g. Our results show an average 21.97 % reduction in trajectory tracking error over standard NMPC formulation, with LoL-NMPC maintaining real-time feasibility at 100 Hz on an embedded ARM-based flight computer.
comment: Submitted Version
Fast-in-Slow: A Dual-System Foundation Model Unifying Fast Manipulation within Slow Reasoning
Generalized policy and execution efficiency constitute the two critical challenges in robotic manipulation. While recent foundation policies benefit from the common-sense reasoning capabilities of internet-scale pretrained vision-language models (VLMs), they often suffer from low execution frequency. To mitigate this dilemma, dual-system approaches, inspired by Kahneman's theory, have been proposed to leverage a VLM-based System 2 model handling high-level reasoning and a separate System 1 action model ensuring real-time control. However, existing designs maintain both systems as separate models, limiting System 1 from fully leveraging the rich pretrained knowledge from the VLM-based System 2. In this work, we propose Fast-in-Slow (FiS), a unified dual-system vision-language-action (VLA) model that embeds the System 1 execution module within the VLM-based System 2 by partially sharing parameters. This innovative paradigm not only enables high-frequency execution in System 1 but also facilitates coordination between the reasoning and execution components within a single foundation model of System 2. Given their fundamentally distinct roles within FiS-VLA, we design the two systems to incorporate heterogeneous modality inputs alongside asynchronous operating frequencies, enabling both fast and precise manipulation. To enable coordination between the two systems, a dual-aware co-training strategy is proposed that equips System 1 with action generation capabilities while preserving System 2's contextual reasoning representation. For evaluation, FiS-VLA outperforms previous state-of-the-art methods by 8% in simulation and 11% in real-world tasks in terms of average success rate, while achieving a 117.7 Hz control frequency with action chunk set to eight. Project web page: fast-in-slow.github.io.
☆ Feel the Force: Contact-Driven Learning from Humans
Controlling fine-grained forces during manipulation remains a core challenge in robotics. While robot policies learned from robot-collected data or simulation show promise, they struggle to generalize across the diverse range of real-world interactions. Learning directly from humans offers a scalable solution, enabling demonstrators to perform skills in their natural embodiment and in everyday environments. However, visual demonstrations alone lack the information needed to infer precise contact forces. We present FeelTheForce (FTF): a robot learning system that models human tactile behavior to learn force-sensitive manipulation. Using a tactile glove to measure contact forces and a vision-based model to estimate hand pose, we train a closed-loop policy that continuously predicts the forces needed for manipulation. This policy is re-targeted to a Franka Panda robot with tactile gripper sensors using shared visual and action representations. At execution, a PD controller modulates gripper closure to track predicted forces-enabling precise, force-aware control. Our approach grounds robust low-level force control in scalable human supervision, achieving a 77% success rate across 5 force-sensitive manipulation tasks. Code and videos are available at https://feel-the-force-ftf.github.io.
☆ FreeTacMan: Robot-free Visuo-Tactile Data Collection System for Contact-rich Manipulation
Enabling robots with contact-rich manipulation remains a pivotal challenge in robot learning, which is substantially hindered by the data collection gap, including its inefficiency and limited sensor setup. While prior work has explored handheld paradigms, their rod-based mechanical structures remain rigid and unintuitive, providing limited tactile feedback and posing challenges for human operators. Motivated by the dexterity and force feedback of human motion, we propose FreeTacMan, a human-centric and robot-free data collection system for accurate and efficient robot manipulation. Concretely, we design a wearable data collection device with dual visuo-tactile grippers, which can be worn by human fingers for intuitive and natural control. A high-precision optical tracking system is introduced to capture end-effector poses, while synchronizing visual and tactile feedback simultaneously. FreeTacMan achieves multiple improvements in data collection performance compared to prior works, and enables effective policy learning for contact-rich manipulation tasks with the help of the visuo-tactile information. We will release the work to facilitate reproducibility and accelerate research in visuo-tactile manipulation.
☆ Online Competitive Information Gathering for Partially Observable Trajectory Games RSS 2025
Game-theoretic agents must make plans that optimally gather information about their opponents. These problems are modeled by partially observable stochastic games (POSGs), but planning in fully continuous POSGs is intractable without heavy offline computation or assumptions on the order of belief maintained by each player. We formulate a finite history/horizon refinement of POSGs which admits competitive information gathering behavior in trajectory space, and through a series of approximations, we present an online method for computing rational trajectory plans in these games which leverages particle-based estimations of the joint state space and performs stochastic gradient play. We also provide the necessary adjustments required to deploy this method on individual agents. The method is tested in continuous pursuit-evasion and warehouse-pickup scenarios (alongside extensions to $N > 2$ players and to more complex environments with visual and physical obstacles), demonstrating evidence of active information gathering and outperforming passive competitors.
comment: Accepted at RSS 2025
☆ SmolVLA: A Vision-Language-Action Model for Affordable and Efficient Robotics
Vision-language models (VLMs) pretrained on large-scale multimodal datasets encode rich visual and linguistic knowledge, making them a strong foundation for robotics. Rather than training robotic policies from scratch, recent approaches adapt VLMs into vision-language-action (VLA) models that enable natural language-driven perception and control. However, existing VLAs are typically massive--often with billions of parameters--leading to high training costs and limited real-world deployability. Moreover, they rely on academic and industrial datasets, overlooking the growing availability of community-collected data from affordable robotic platforms. In this work, we present SmolVLA, a small, efficient, and community-driven VLA that drastically reduces both training and inference costs, while retaining competitive performance. SmolVLA is designed to be trained on a single GPU and deployed on consumer-grade GPUs or even CPUs. To further improve responsiveness, we introduce an asynchronous inference stack decoupling perception and action prediction from action execution, allowing higher control rates with chunked action generation. Despite its compact size, SmolVLA achieves performance comparable to VLAs that are 10x larger. We evaluate SmolVLA on a range of both simulated as well as real-world robotic benchmarks and release all code, pretrained models, and training data.
comment: 24 pages. Code and assets: https://github.com/huggingface/lerobot
☆ unMORE: Unsupervised Multi-Object Segmentation via Center-Boundary Reasoning ICML 2025
We study the challenging problem of unsupervised multi-object segmentation on single images. Existing methods, which rely on image reconstruction objectives to learn objectness or leverage pretrained image features to group similar pixels, often succeed only in segmenting simple synthetic objects or discovering a limited number of real-world objects. In this paper, we introduce unMORE, a novel two-stage pipeline designed to identify many complex objects in real-world images. The key to our approach involves explicitly learning three levels of carefully defined object-centric representations in the first stage. Subsequently, our multi-object reasoning module utilizes these learned object priors to discover multiple objects in the second stage. Notably, this reasoning module is entirely network-free and does not require human labels. Extensive experiments demonstrate that unMORE significantly outperforms all existing unsupervised methods across 6 real-world benchmark datasets, including the challenging COCO dataset, achieving state-of-the-art object segmentation results. Remarkably, our method excels in crowded images where all baselines collapse.
comment: ICML 2025. Code and data are available at: https://github.com/vLAR-group/unMORE
☆ ADEPT: Adaptive Diffusion Environment for Policy Transfer Sim-to-Real
Model-free reinforcement learning has emerged as a powerful method for developing robust robot control policies capable of navigating through complex and unstructured environments. The effectiveness of these methods hinges on two essential elements: (1) the use of massively parallel physics simulations to expedite policy training, and (2) an environment generator tasked with crafting sufficiently challenging yet attainable environments to facilitate continuous policy improvement. Existing methods of outdoor environment generation often rely on heuristics constrained by a set of parameters, limiting the diversity and realism. In this work, we introduce ADEPT, a novel \textbf{A}daptive \textbf{D}iffusion \textbf{E}nvironment for \textbf{P}olicy \textbf{T}ransfer in the zero-shot sim-to-real fashion that leverages Denoising Diffusion Probabilistic Models to dynamically expand existing training environments by adding more diverse and complex environments adaptive to the current policy. ADEPT guides the diffusion model's generation process through initial noise optimization, blending noise-corrupted environments from existing training environments weighted by the policy's performance in each corresponding environment. By manipulating the noise corruption level, ADEPT seamlessly transitions between generating similar environments for policy fine-tuning and novel ones to expand training diversity. To benchmark ADEPT in off-road navigation, we propose a fast and effective multi-layer map representation for wild environment generation. Our experiments show that the policy trained by ADEPT outperforms both procedural generated and natural environments, along with popular navigation methods.
☆ Learning with pyCub: A New Simulation and Exercise Framework for Humanoid Robotics
We present pyCub, an open-source physics-based simulation of the humanoid robot iCub, along with exercises to teach students the basics of humanoid robotics. Compared to existing iCub similators (iCub SIM, iCub Gazebo), which require C++ code and YARP as middleware, pyCub works without YARP and with Python code. The complete robot with all articulations has been simulated, with two cameras in the eyes and the unique sensitive skin of the iCub comprising 4000 receptors on its body surface. The exercises range from basic control of the robot in velocity, joint, and Cartesian space to more complex tasks like gazing, grasping, or reactive control. The whole framework is written and controlled with Python, thus allowing to be used even by people with small or almost no programming practice. The exercises can be scaled to different difficulty levels. We tested the framework in two runs of a course on humanoid robotics. The simulation, exercises, documentation, Docker images, and example videos are publicly available at https://rustlluk.github.io/pyCub.
comment: Submitted for Humanoids 2025
☆ Provably Safe Reinforcement Learning from Analytic Gradients
Deploying autonomous robots in safety-critical applications requires safety guarantees. Provably safe reinforcement learning is an active field of research which aims to provide such guarantees using safeguards. These safeguards should be integrated during training to prevent a large sim-to-real gap. While there are several approaches for safeguarding sampling-based reinforcement learning, analytic gradient-based reinforcement learning often achieves superior performance and sample efficiency. However, there is no safeguarding approach for this learning paradigm yet. Our work addresses this gap by developing the first effective safeguard for analytic gradient-based reinforcement learning. We analyse existing, differentiable safeguards, adapt them through modified mappings and gradient formulations, and integrate them with a state-of-the-art learning algorithm and a differentiable simulation. We evaluate how different safeguards affect policy optimisation using numerical experiments on two classical control tasks. The results demonstrate safeguarded training without compromising performance.
comment: 16 pages, 10 figures
☆ Riemannian Time Warping: Multiple Sequence Alignment in Curved Spaces
Temporal alignment of multiple signals through time warping is crucial in many fields, such as classification within speech recognition or robot motion learning. Almost all related works are limited to data in Euclidean space. Although an attempt was made in 2011 to adapt this concept to unit quaternions, a general extension to Riemannian manifolds remains absent. Given its importance for numerous applications in robotics and beyond, we introduce Riemannian Time Warping~(RTW). This novel approach efficiently aligns multiple signals by considering the geometric structure of the Riemannian manifold in which the data is embedded. Extensive experiments on synthetic and real-world data, including tests with an LBR iiwa robot, demonstrate that RTW consistently outperforms state-of-the-art baselines in both averaging and classification tasks.
☆ A Hierarchical Bin Packing Framework with Dual Manipulators via Heuristic Search and Deep Reinforcement Learning
We address the bin packing problem (BPP), which aims to maximize bin utilization when packing a variety of items. The offline problem, where the complete information about the item set and their sizes is known in advance, is proven to be NP-hard. The semi-online and online variants are even more challenging, as full information about incoming items is unavailable. While existing methods have tackled both 2D and 3D BPPs, the 2D BPP remains underexplored in terms of fully maximizing utilization. We propose a hierarchical approach for solving the 2D online and semi-online BPP by combining deep reinforcement learning (RL) with heuristic search. The heuristic search selects which item to pack or unpack, determines the packing order, and chooses the orientation of each item, while the RL agent decides the precise position within the bin. Our method is capable of handling diverse scenarios, including repacking, varying levels of item information, differing numbers of accessible items, and coordination of dual manipulators. Experimental results demonstrate that our approach achieves near-optimal utilization across various practical scenarios, largely due to its repacking capability. In addition, the algorithm is evaluated in a physics-based simulation environment, where execution time is measured to assess its real-world performance.
☆ General agents need world models ICML 2025
Are world models a necessary ingredient for flexible, goal-directed behaviour, or is model-free learning sufficient? We provide a formal answer to this question, showing that any agent capable of generalizing to multi-step goal-directed tasks must have learned a predictive model of its environment. We show that this model can be extracted from the agent's policy, and that increasing the agents performance or the complexity of the goals it can achieve requires learning increasingly accurate world models. This has a number of consequences: from developing safe and general agents, to bounding agent capabilities in complex environments, and providing new algorithms for eliciting world models from agents.
comment: Accepted ICML 2025
☆ WoMAP: World Models For Embodied Open-Vocabulary Object Localization
Language-instructed active object localization is a critical challenge for robots, requiring efficient exploration of partially observable environments. However, state-of-the-art approaches either struggle to generalize beyond demonstration datasets (e.g., imitation learning methods) or fail to generate physically grounded actions (e.g., VLMs). To address these limitations, we introduce WoMAP (World Models for Active Perception): a recipe for training open-vocabulary object localization policies that: (i) uses a Gaussian Splatting-based real-to-sim-to-real pipeline for scalable data generation without the need for expert demonstrations, (ii) distills dense rewards signals from open-vocabulary object detectors, and (iii) leverages a latent world model for dynamics and rewards prediction to ground high-level action proposals at inference time. Rigorous simulation and hardware experiments demonstrate WoMAP's superior performance in a broad range of zero-shot object localization tasks, with more than 9x and 2x higher success rates compared to VLM and diffusion policy baselines, respectively. Further, we show that WoMAP achieves strong generalization and sim-to-real transfer on a TidyBot.
☆ FreqPolicy: Frequency Autoregressive Visuomotor Policy with Continuous Tokens
Learning effective visuomotor policies for robotic manipulation is challenging, as it requires generating precise actions while maintaining computational efficiency. Existing methods remain unsatisfactory due to inherent limitations in the essential action representation and the basic network architectures. We observe that representing actions in the frequency domain captures the structured nature of motion more effectively: low-frequency components reflect global movement patterns, while high-frequency components encode fine local details. Additionally, robotic manipulation tasks of varying complexity demand different levels of modeling precision across these frequency bands. Motivated by this, we propose a novel paradigm for visuomotor policy learning that progressively models hierarchical frequency components. To further enhance precision, we introduce continuous latent representations that maintain smoothness and continuity in the action space. Extensive experiments across diverse 2D and 3D robotic manipulation benchmarks demonstrate that our approach outperforms existing methods in both accuracy and efficiency, showcasing the potential of a frequency-domain autoregressive framework with continuous tokens for generalized robotic manipulation.
☆ Trajectory First: A Curriculum for Discovering Diverse Policies
Being able to solve a task in diverse ways makes agents more robust to task variations and less prone to local optima. In this context, constrained diversity optimization has emerged as a powerful reinforcement learning (RL) framework to train a diverse set of agents in parallel. However, existing constrained-diversity RL methods often under-explore in complex tasks such as robotic manipulation, leading to a lack in policy diversity. To improve diversity optimization in RL, we therefore propose a curriculum that first explores at the trajectory level before learning step-based policies. In our empirical evaluation, we provide novel insights into the shortcoming of skill-based diversity optimization, and demonstrate empirically that our curriculum improves the diversity of the learned skills.
☆ Hierarchical Intention-Aware Expressive Motion Generation for Humanoid Robots
Effective human-robot interaction requires robots to identify human intentions and generate expressive, socially appropriate motions in real-time. Existing approaches often rely on fixed motion libraries or computationally expensive generative models. We propose a hierarchical framework that combines intention-aware reasoning via in-context learning (ICL) with real-time motion generation using diffusion models. Our system introduces structured prompting with confidence scoring, fallback behaviors, and social context awareness to enable intention refinement and adaptive response. Leveraging large-scale motion datasets and efficient latent-space denoising, the framework generates diverse, physically plausible gestures suitable for dynamic humanoid interactions. Experimental validation on a physical platform demonstrates the robustness and social alignment of our method in realistic scenarios.
comment: 7 pages, 2 figures, IEEE conference paper
☆ SEMNAV: A Semantic Segmentation-Driven Approach to Visual Semantic Navigation
Visual Semantic Navigation (VSN) is a fundamental problem in robotics, where an agent must navigate toward a target object in an unknown environment, mainly using visual information. Most state-of-the-art VSN models are trained in simulation environments, where rendered scenes of the real world are used, at best. These approaches typically rely on raw RGB data from the virtual scenes, which limits their ability to generalize to real-world environments due to domain adaptation issues. To tackle this problem, in this work, we propose SEMNAV, a novel approach that leverages semantic segmentation as the main visual input representation of the environment to enhance the agent's perception and decision-making capabilities. By explicitly incorporating high-level semantic information, our model learns robust navigation policies that improve generalization across unseen environments, both in simulated and real world settings. We also introduce a newly curated dataset, i.e. the SEMNAV dataset, designed for training semantic segmentation-aware navigation models like SEMNAV. Our approach is evaluated extensively in both simulated environments and with real-world robotic platforms. Experimental results demonstrate that SEMNAV outperforms existing state-of-the-art VSN models, achieving higher success rates in the Habitat 2.0 simulation environment, using the HM3D dataset. Furthermore, our real-world experiments highlight the effectiveness of semantic segmentation in mitigating the sim-to-real gap, making our model a promising solution for practical VSN-based robotic applications. We release SEMNAV dataset, code and trained models at https://github.com/gramuah/semnav
☆ Captivity-Escape Games as a Means for Safety in Online Motion Generation
This paper presents a method that addresses the conservatism, computational effort, and limited numerical accuracy of existing frameworks and methods that ensure safety in online model-based motion generation, commonly referred to as fast and safe tracking. Computational limitations restrict online motion planning to low-fidelity models. However, planning with low-fidelity models compromises safety, as the dynamic feasibility of resulting reference trajectories is not ensured. This potentially leads to unavoidable tracking errors that may cause safety-critical constraint violations. Existing frameworks mitigate this safety risk by augmenting safety-critical constraints in motion planning by a safety margin that prevents constraint violations under worst-case tracking errors. However, the methods employed in these frameworks determine the safety margin based on a heuristically selected performance of the planning model, which likely results in overly conservative reference trajectories. Furthermore, these methods are computationally intensive, and the state-of-the-art method is limited in numerical accuracy. We adopt a different perspective and address these limitations with a method that mitigates conservatism in existing frameworks by adapting the planning model performance to a given safety margin. Our method achieves numerical accuracy and requires significantly less computation time than existing methods by leveraging a captivity-escape game, which is a specific zero-sum differential game formulated in this paper. We demonstrate our method using a numerical example and compare it to the state of the art.
☆ Sparse Imagination for Efficient Visual World Model Planning
World model based planning has significantly improved decision-making in complex environments by enabling agents to simulate future states and make informed choices. However, ensuring the prediction accuracy of world models often demands substantial computational resources, posing a major challenge for real-time applications. This computational burden is particularly restrictive in robotics, where resources are severely constrained. To address this limitation, we propose a Sparse Imagination for Efficient Visual World Model Planning, which enhances computational efficiency by reducing the number of tokens processed during forward prediction. Our method leverages a sparsely trained vision-based world model based on transformers with randomized grouped attention strategy, allowing the model to adaptively adjust the number of tokens processed based on the computational resource. By enabling sparse imagination (rollout), our approach significantly accelerates planning while maintaining high control fidelity. Experimental results demonstrate that sparse imagination preserves task performance while dramatically improving inference efficiency, paving the way for the deployment of world models in real-time decision-making scenarios.
☆ Generating Diverse Challenging Terrains for Legged Robots Using Quality-Diversity Algorithm ICRA 2025
While legged robots have achieved significant advancements in recent years, ensuring the robustness of their controllers on unstructured terrains remains challenging. It requires generating diverse and challenging unstructured terrains to test the robot and discover its vulnerabilities. This topic remains underexplored in the literature. This paper presents a Quality-Diversity framework to generate diverse and challenging terrains that uncover weaknesses in legged robot controllers. Our method, applied to both simulated bipedal and quadruped robots, produces an archive of terrains optimized to challenge the controller in different ways. Quantitative and qualitative analyses show that the generated archive effectively contains terrains that the robots struggled to traverse, presenting different failure modes. Interesting results were observed, including failure cases that were not necessarily expected. Experiments show that the generated terrains can also be used to improve RL-based controllers.
comment: Accepted to IEEE ICRA 2025 (7 pages)
☆ Two-Stage Learning of Stabilizing Neural Controllers via Zubov Sampling and Iterative Domain Expansion
Learning-based neural network (NN) control policies have shown impressive empirical performance. However, obtaining stability guarantees and estimations of the region of attraction of these learned neural controllers is challenging due to the lack of stable and scalable training and verification algorithms. Although previous works in this area have achieved great success, much conservatism remains in their framework. In this work, we propose a novel two-stage training framework to jointly synthesize the controller and Lyapunov function for continuous-time systems. By leveraging a Zubov-inspired region of attraction characterization to directly estimate stability boundaries, we propose a novel training data sampling strategy and a domain updating mechanism that significantly reduces the conservatism in training. Moreover, unlike existing works on continuous-time systems that rely on an SMT solver to formally verify the Lyapunov condition, we extend state-of-the-art neural network verifier $\alpha,\!\beta$-CROWN with the capability of performing automatic bound propagation through the Jacobian of dynamical systems and a novel verification scheme that avoids expensive bisection. To demonstrate the effectiveness of our approach, we conduct numerical experiments by synthesizing and verifying controllers on several challenging nonlinear systems across multiple dimensions. We show that our training can yield region of attractions with volume $5 - 1.5\cdot 10^{5}$ times larger compared to the baselines, and our verification on continuous systems can be up to $40-10000$ times faster compared to the traditional SMT solver dReal. Our code is available at https://github.com/Verified-Intelligence/Two-Stage_Neural_Controller_Training.
☆ Variational Adaptive Noise and Dropout towards Stable Recurrent Neural Networks
This paper proposes a novel stable learning theory for recurrent neural networks (RNNs), so-called variational adaptive noise and dropout (VAND). As stabilizing factors for RNNs, noise and dropout on the internal state of RNNs have been separately confirmed in previous studies. We reinterpret the optimization problem of RNNs as variational inference, showing that noise and dropout can be derived simultaneously by transforming the explicit regularization term arising in the optimization problem into implicit regularization. Their scale and ratio can also be adjusted appropriately to optimize the main objective of RNNs, respectively. In an imitation learning scenario with a mobile manipulator, only VAND is able to imitate sequential and periodic behaviors as instructed. https://youtu.be/UOho3Xr6A2w
comment: 6 pages, 6 figures (accepted in ICDL2025)
♻ ☆ AdaWorld: Learning Adaptable World Models with Latent Actions ICML 2025
World models aim to learn action-controlled future prediction and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this limitation, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: ICML 2025. Project page: https://adaptable-world-model.github.io/, code: https://github.com/Little-Podi/AdaWorld, model: https://huggingface.co/Little-Podi/AdaWorld
♻ ☆ MASt3R-SLAM: Real-Time Dense SLAM with 3D Reconstruction Priors CVPR 2025
We present a real-time monocular dense SLAM system designed bottom-up from MASt3R, a two-view 3D reconstruction and matching prior. Equipped with this strong prior, our system is robust on in-the-wild video sequences despite making no assumption on a fixed or parametric camera model beyond a unique camera centre. We introduce efficient methods for pointmap matching, camera tracking and local fusion, graph construction and loop closure, and second-order global optimisation. With known calibration, a simple modification to the system achieves state-of-the-art performance across various benchmarks. Altogether, we propose a plug-and-play monocular SLAM system capable of producing globally-consistent poses and dense geometry while operating at 15 FPS.
comment: CVPR 2025 Highlight. The first two authors contributed equally to this work. Project Page: https://edexheim.github.io/mast3r-slam/
♻ ☆ Depth-Constrained ASV Navigation with Deep RL and Limited Sensing
Autonomous Surface Vehicles (ASVs) play a crucial role in maritime operations, yet their navigation in shallow-water environments remains challenging due to dynamic disturbances and depth constraints. Traditional navigation strategies struggle with limited sensor information, making safe and efficient operation difficult. In this paper, we propose a reinforcement learning (RL) framework for ASV navigation under depth constraints, where the vehicle must reach a target while avoiding unsafe areas with only a single depth measurement per timestep from a downward-facing Single Beam Echosounder (SBES). To enhance environmental awareness, we integrate Gaussian Process (GP) regression into the RL framework, enabling the agent to progressively estimate a bathymetric depth map from sparse sonar readings. This approach improves decision-making by providing a richer representation of the environment. Furthermore, we demonstrate effective sim-to-real transfer, ensuring that trained policies generalize well to real-world aquatic conditions. Experimental results validate our method's capability to improve ASV navigation performance while maintaining safety in challenging shallow-water environments.
comment: 8 pages, 8 figures
♻ ☆ DiffVLA: Vision-Language Guided Diffusion Planning for Autonomous Driving
Research interest in end-to-end autonomous driving has surged owing to its fully differentiable design integrating modular tasks, i.e. perception, prediction and planing, which enables optimization in pursuit of the ultimate goal. Despite the great potential of the end-to-end paradigm, existing methods suffer from several aspects including expensive BEV (bird's eye view) computation, action diversity, and sub-optimal decision in complex real-world scenarios. To address these challenges, we propose a novel hybrid sparse-dense diffusion policy, empowered by a Vision-Language Model (VLM), called Diff-VLA. We explore the sparse diffusion representation for efficient multi-modal driving behavior. Moreover, we rethink the effectiveness of VLM driving decision and improve the trajectory generation guidance through deep interaction across agent, map instances and VLM output. Our method shows superior performance in Autonomous Grand Challenge 2025 which contains challenging real and reactive synthetic scenarios. Our methods achieves 45.0 PDMS.
comment: 4pages
♻ ☆ CAP-Net: A Unified Network for 6D Pose and Size Estimation of Categorical Articulated Parts from a Single RGB-D Image CVPR 2025
This paper tackles category-level pose estimation of articulated objects in robotic manipulation tasks and introduces a new benchmark dataset. While recent methods estimate part poses and sizes at the category level, they often rely on geometric cues and complex multi-stage pipelines that first segment parts from the point cloud, followed by Normalized Part Coordinate Space (NPCS) estimation for 6D poses. These approaches overlook dense semantic cues from RGB images, leading to suboptimal accuracy, particularly for objects with small parts. To address these limitations, we propose a single-stage Network, CAP-Net, for estimating the 6D poses and sizes of Categorical Articulated Parts. This method combines RGB-D features to generate instance segmentation and NPCS representations for each part in an end-to-end manner. CAP-Net uses a unified network to simultaneously predict point-wise class labels, centroid offsets, and NPCS maps. A clustering algorithm then groups points of the same predicted class based on their estimated centroid distances to isolate each part. Finally, the NPCS region of each part is aligned with the point cloud to recover its final pose and size. To bridge the sim-to-real domain gap, we introduce the RGBD-Art dataset, the largest RGB-D articulated dataset to date, featuring photorealistic RGB images and depth noise simulated from real sensors. Experimental evaluations on the RGBD-Art dataset demonstrate that our method significantly outperforms the state-of-the-art approach. Real-world deployments of our model in robotic tasks underscore its robustness and exceptional sim-to-real transfer capabilities, confirming its substantial practical utility. Our dataset, code and pre-trained models are available on the project page.
comment: To appear in CVPR 2025 (Highlight)
♻ ☆ CHEQ-ing the Box: Safe Variable Impedance Learning for Robotic Polishing
Robotic systems are increasingly employed for industrial automation, with contact-rich tasks like polishing requiring dexterity and compliant behaviour. These tasks are difficult to model, making classical control challenging. Deep reinforcement learning (RL) offers a promising solution by enabling the learning of models and control policies directly from data. However, its application to real-world problems is limited by data inefficiency and unsafe exploration. Adaptive hybrid RL methods blend classical control and RL adaptively, combining the strengths of both: structure from control and learning from RL. This has led to improvements in data efficiency and exploration safety. However, their potential for hardware applications remains underexplored, with no evaluations on physical systems to date. Such evaluations are critical to fully assess the practicality and effectiveness of these methods in real-world settings. This work presents an experimental demonstration of the hybrid RL algorithm CHEQ for robotic polishing with variable impedance, a task requiring precise force and velocity tracking. In simulation, we show that variable impedance enhances polishing performance. We compare standalone RL with adaptive hybrid RL, demonstrating that CHEQ achieves effective learning while adhering to safety constraints. On hardware, CHEQ achieves effective polishing behaviour, requiring only eight hours of training and incurring just five failures. These results highlight the potential of adaptive hybrid RL for real-world, contact-rich tasks trained directly on hardware.
♻ ☆ POPGym Arcade: Parallel Pixelated POMDPs
We present the POPGym Arcade, a collection of hardware-accelerated, pixel-based environments with shared observation and action spaces. Each environment includes fully and partially observable variants, enabling counterfactual studies on partial observability. We also introduce mathematical tools for analyzing policies under partial observability, which reveal how agents recall past information to make decisions. Our analysis shows (1) that controlling for partial observability is critical and (2) that agents with long-term memory learn brittle policies that struggle to generalize. Finally, we demonstrate that recurrent policies can be "poisoned" by old, out-of-distribution observations, with implications for sim-to-real transfer, imitation learning, and offline reinforcement learning.
♻ ☆ Autonomous Robotic Radio Source Localization via a Novel Gaussian Mixture Filtering Approach
This study proposes a new Gaussian Mixture Filter (GMF) to improve the estimation performance for the autonomous robotic radio signal source search and localization problem in unknown environments. The proposed filter is first tested with a benchmark numerical problem to validate the performance with other state-of-the-practice approaches such as Particle Filter (PF) and Particle Gaussian Mixture (PGM) filters. Then the proposed approach is tested and compared against PF and PGM filters in real-world robotic field experiments to validate its impact for real-world applications. The considered real-world scenarios have partial observability with the range-only measurement and uncertainty with the measurement model. The results show that the proposed filter can handle this partial observability effectively whilst showing improved performance compared to PF, reducing the computation requirements while demonstrating improved robustness over compared techniques.
♻ ☆ Direct Kinematics, Inverse Kinematics, and Motion Planning of 1-DoF Rational Linkages
This study presents a set of algorithms that deal with trajectory planning of rational single-loop mechanisms with one degree of freedom (DoF). Benefiting from a dual quaternion representation of a rational motion, a formula for direct (forward) kinematics, a numerical inverse kinematics algorithm, and the generation of a driving-joint trajectory are provided. A novel approach using the Gauss-Newton search for the one-parameter inverse kinematics problem is presented. Additionally, a method for performing smooth equidistant travel of the tool is provided by applying arc-length reparameterization. This general approach can be applied to one-DoF mechanisms with four to seven joints characterized by a rational motion, without any additional geometrical analysis. An experiment was performed to demonstrate the usage in a laboratory setup.
comment: This is the final published version of the article, available as open access in Mechanism and Machine Theory, Volume 213, 2025. DOI: 10.1016/j.mechmachtheory.2025.106074. Licensed under CC BY license
Agile Decision-Making and Safety-Critical Motion Planning for Emergency Autonomous Vehicles
Efficiency is critical for autonomous vehicles (AVs), especially for emergency AVs. However, most existing methods focus on regular vehicles, overlooking the distinct strategies required by emergency vehicles to address the challenge of maximizing efficiency while ensuring safety. In this paper, we propose an Integrated Agile Decision-Making with Active and Safety-Critical Motion Planning System (IDEAM). IDEAM focuses on enabling emergency AVs, such as ambulances, to actively attain efficiency in dense traffic scenarios with safety in mind. Firstly, the speed-centric decision-making algorithm named the long short-term spatio-temporal graph-centric decision-making (LSGM) is given. LSGM comprises conditional depth-first search (C-DFS) for multiple paths generation as well as methods for speed gains and risk evaluation for path selection, which presents a robust algorithm for high efficiency and safety consideration. Secondly, with an output path from LSGM, the motion planner reconsiders environmental conditions to decide constraints states for the final planning stage, among which the lane-probing state is designed for actively attaining spatial and speed advantage. Thirdly, under the Frenet-based model predictive control (MPC) framework with final constraints state and selected path, the safety-critical motion planner employs decoupled discrete control barrier functions (DCBFs) and linearized discrete-time high-order control barrier functions (DHOCBFs) to model the constraints associated with different driving behaviors, making the optimal optimization problem convex. Finally, we extensively validate our system using scenarios from a randomly synthetic dataset, demonstrating its capability to achieve speed benefits and assure safety simultaneously.
♻ ☆ Hume: Introducing System-2 Thinking in Visual-Language-Action Model
Humans practice slow thinking before performing actual actions when handling complex tasks in the physical world. This thinking paradigm, recently, has achieved remarkable advancement in boosting Large Language Models (LLMs) to solve complex tasks in digital domains. However, the potential of slow thinking remains largely unexplored for robotic foundation models interacting with the physical world. In this work, we propose Hume: a dual-system Vision-Language-Action (VLA) model with value-guided System-2 thinking and cascaded action denoising, exploring human-like thinking capabilities of Vision-Language-Action models for dexterous robot control. System 2 of Hume implements value-Guided thinking by extending a Vision-Language-Action Model backbone with a novel value-query head to estimate the state-action value of predicted actions. The value-guided thinking is conducted by repeat sampling multiple action candidates and selecting one according to state-action value. System 1 of Hume is a lightweight reactive visuomotor policy that takes System 2 selected action and performs cascaded action denoising for dexterous robot control. At deployment time, System 2 performs value-guided thinking at a low frequency while System 1 asynchronously receives the System 2 selected action candidate and predicts fluid actions in real time. We show that Hume outperforms the existing state-of-the-art Vision-Language-Action models across multiple simulation benchmark and real-robot deployments.
♻ ☆ Human-Machine Interfaces for Subsea Telerobotics: From Soda-straw to Natural Language Interactions
This review explores the evolution of human-machine interfaces (HMIs) in subsea telerobotics, charting the progression from traditional first-person "soda-straw" consoles -- characterized by narrow field-of-view camera feeds -- to contemporary interfaces leveraging gesture recognition, virtual reality, and natural language processing. We systematically analyze the state-of-the-art literature through three interrelated perspectives: operator experience (including immersive feedback, cognitive workload, and ergonomic design), robotic autonomy (contextual understanding and task execution), and the quality of bidirectional communication between human and machine. Emphasis is placed on interface features to highlight persistent limitations in current systems, notably in immersive feedback fidelity, intuitive control mechanisms, and the lack of cross-platform standardization. Additionally, we assess the role of simulators and digital twins as scalable tools for operator training and system prototyping. The review extends beyond classical teleoperation paradigms to examine modern shared autonomy frameworks that facilitate seamless human-robot collaboration. By synthesizing insights from robotics, marine engineering, artificial intelligence, and human factors -- this work provides a comprehensive overview of the current landscape and emerging trajectories in subsea HMI development. Finally, we identify key challenges and open research questions and outline a forward-looking roadmap for advancing intelligent and user-centric HMI technologies in subsea telerobotics.
comment: 29 pages with 22 pages of content
♻ ☆ Scalable Multi-Robot Informative Path Planning for Target Mapping via Deep Reinforcement Learning
Autonomous robots are widely utilized for mapping and exploration tasks due to their cost-effectiveness. Multi-robot systems offer scalability and efficiency, especially in terms of the number of robots deployed in more complex environments. These tasks belong to the set of Multi-Robot Informative Path Planning (MRIPP) problems. In this paper, we propose a deep reinforcement learning approach for the MRIPP problem. We aim to maximize the number of discovered stationary targets in an unknown 3D environment while operating under resource constraints (such as path length). Here, each robot aims to maximize discovered targets, avoid unknown static obstacles, and prevent inter-robot collisions while operating under communication and resource constraints. We utilize the centralized training and decentralized execution paradigm to train a single policy neural network. A key aspect of our approach is our coordination graph that prioritizes visiting regions not yet explored by other robots. Our learned policy can be copied onto any number of robots for deployment in more complex environments not seen during training. Our approach outperforms state-of-the-art approaches by at least 26.2% in terms of the number of discovered targets while requiring a planning time of less than 2 sec per step. We present results for more complex environments with up to 64 robots and compare success rates against baseline planners. Our code and trained model are available at - https://github.com/AccGen99/marl_ipp
♻ ☆ Four Principles for Physically Interpretable World Models
As autonomous systems are increasingly deployed in open and uncertain settings, there is a growing need for trustworthy world models that can reliably predict future high-dimensional observations. The learned latent representations in world models lack direct mapping to meaningful physical quantities and dynamics, limiting their utility and interpretability in downstream planning, control, and safety verification. In this paper, we argue for a fundamental shift from physically informed to physically interpretable world models - and crystallize four principles that leverage symbolic knowledge to achieve these ends: (1) functionally organizing the latent space according to the physical intent, (2) learning aligned invariant and equivariant representations of the physical world, (3) integrating multiple forms and strengths of supervision into a unified training process, and (4) partitioning generative outputs to support scalability and verifiability. We experimentally demonstrate the value of each principle on two benchmarks. This paper opens several intriguing research directions to achieve and capitalize on full physical interpretability in world models.
comment: Equal contribution by the first two authors
♻ ☆ From Real World to Logic and Back: Learning Generalizable Relational Concepts For Long Horizon Robot Planning
Humans efficiently generalize from limited demonstrations, but robots still struggle to transfer learned knowledge to complex, unseen tasks with longer horizons and increased complexity. We propose the first known method enabling robots to autonomously invent relational concepts directly from small sets of unannotated, unsegmented demonstrations. The learned symbolic concepts are grounded into logic-based world models, facilitating efficient zero-shot generalization to significantly more complex tasks. Empirical results demonstrate that our approach achieves performance comparable to hand-crafted models, successfully scaling execution horizons and handling up to 18 times more objects than seen in training, providing the first autonomous framework for learning transferable symbolic abstractions from raw robot trajectories.
♻ ☆ Steering Elongate Multi-legged Robots By Modulating Body Undulation Waves
Centipedes exhibit great maneuverability in diverse environments due to their many legs and body-driven control. By leveraging similar morphologies and control strategies, their robotic counterparts also demonstrate effective terrestrial locomotion. However, the success of these multi-legged robots is largely limited to forward locomotion; steering is substantially less studied, in part because of the difficulty in coordinating a high degree-of-freedom robot to follow predictable, planar trajectories. To resolve these challenges, we take inspiration from control schemes based on geometric mechanics(GM) in elongate system's locomotion through highly damped environments. We model the elongate, multi-legged system as a ``terrestrial swimmer" in highly frictional environments and implement steering schemes derived from low-order templates of elongate, limbless systems. We identify an effective turning strategy by superimposing two traveling waves of lateral body undulation and further explore variations of the ``turning wave" to enable a spectrum of arc-following steering primitives. We test our hypothesized modulation scheme on a robophysical model and validate steering trajectories against theoretically predicted displacements. We then apply our control framework to Ground Control Robotics' elongate multi-legged robot, Major Tom, using these motion primitives to construct planar motion and in closed-loop control on different terrains. Our work creates a systematic framework for controlling these highly mobile devices in the plane using a low-order model based on sequences of body shape changes.
♻ ☆ SeaSplat: Representing Underwater Scenes with 3D Gaussian Splatting and a Physically Grounded Image Formation Model ICRA 2025
We introduce SeaSplat, a method to enable real-time rendering of underwater scenes leveraging recent advances in 3D radiance fields. Underwater scenes are challenging visual environments, as rendering through a medium such as water introduces both range and color dependent effects on image capture. We constrain 3D Gaussian Splatting (3DGS), a recent advance in radiance fields enabling rapid training and real-time rendering of full 3D scenes, with a physically grounded underwater image formation model. Applying SeaSplat to the real-world scenes from SeaThru-NeRF dataset, a scene collected by an underwater vehicle in the US Virgin Islands, and simulation-degraded real-world scenes, not only do we see increased quantitative performance on rendering novel viewpoints from the scene with the medium present, but are also able to recover the underlying true color of the scene and restore renders to be without the presence of the intervening medium. We show that the underwater image formation helps learn scene structure, with better depth maps, as well as show that our improvements maintain the significant computational improvements afforded by leveraging a 3D Gaussian representation.
comment: ICRA 2025. Project page here: https://seasplat.github.io
♻ ☆ 3D Equivariant Visuomotor Policy Learning via Spherical Projection
Equivariant models have recently been shown to improve the data efficiency of diffusion policy by a significant margin. However, prior work that explored this direction focused primarily on point cloud inputs generated by multiple cameras fixed in the workspace. This type of point cloud input is not compatible with the now-common setting where the primary input modality is an eye-in-hand RGB camera like a GoPro. This paper closes this gap by incorporating into the diffusion policy model a process that projects features from the 2D RGB camera image onto a sphere. This enables us to reason about symmetries in SO(3) without explicitly reconstructing a point cloud. We perform extensive experiments in both simulation and the real world that demonstrate that our method consistently outperforms strong baselines in terms of both performance and sample efficiency. Our work is the first SO(3)-equivariant policy learning framework for robotic manipulation that works using only monocular RGB inputs.
Computer Vision 51
♻ ☆ Beyond Pretty Pictures: Combined Single- and Multi-Image Super-resolution for Sentinel-2 Images
Super-resolution aims to increase the resolution of satellite images by reconstructing high-frequency details, which go beyond na\"ive upsampling. This has particular relevance for Earth observation missions like Sentinel-2, which offer frequent, regular coverage at no cost; but at coarse resolution. Its pixel footprint is too large to capture small features like houses, streets, or hedge rows. To address this, we present SEN4X, a hybrid super-resolution architecture that combines the advantages of single-image and multi-image techniques. It combines temporal oversampling from repeated Sentinel-2 acquisitions with a learned prior from high-resolution Pl\'eiades Neo data. In doing so, SEN4X upgrades Sentinel-2 imagery to 2.5 m ground sampling distance. We test the super-resolved images on urban land-cover classification in Hanoi, Vietnam. We find that they lead to a significant performance improvement over state-of-the-art super-resolution baselines.
♻ ☆ I see what you mean: Co-Speech Gestures for Reference Resolution in Multimodal Dialogue
In face-to-face interaction, we use multiple modalities, including speech and gestures, to communicate information and resolve references to objects. However, how representational co-speech gestures refer to objects remains understudied from a computational perspective. In this work, we address this gap by introducing a multimodal reference resolution task centred on representational gestures, while simultaneously tackling the challenge of learning robust gesture embeddings. We propose a self-supervised pre-training approach to gesture representation learning that grounds body movements in spoken language. Our experiments show that the learned embeddings align with expert annotations and have significant predictive power. Moreover, reference resolution accuracy further improves when (1) using multimodal gesture representations, even when speech is unavailable at inference time, and (2) leveraging dialogue history. Overall, our findings highlight the complementary roles of gesture and speech in reference resolution, offering a step towards more naturalistic models of human-machine interaction.
♻ ☆ Survey on Vision-Language-Action Models
This paper presents an AI-generated review of Vision-Language-Action (VLA) models, summarizing key methodologies, findings, and future directions. The content is produced using large language models (LLMs) and is intended only for demonstration purposes. This work does not represent original research, but highlights how AI can help automate literature reviews. As AI-generated content becomes more prevalent, ensuring accuracy, reliability, and proper synthesis remains a challenge. Future research will focus on developing a structured framework for AI-assisted literature reviews, exploring techniques to enhance citation accuracy, source credibility, and contextual understanding. By examining the potential and limitations of LLM in academic writing, this study aims to contribute to the broader discussion of integrating AI into research workflows. This work serves as a preliminary step toward establishing systematic approaches for leveraging AI in literature review generation, making academic knowledge synthesis more efficient and scalable.
comment: arXiv admin note: This submission has been withdrawn due to serious violation of arXiv policies for acceptable submissions
♻ ☆ AdaWorld: Learning Adaptable World Models with Latent Actions ICML 2025
World models aim to learn action-controlled future prediction and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this limitation, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: ICML 2025. Project page: https://adaptable-world-model.github.io/, code: https://github.com/Little-Podi/AdaWorld, model: https://huggingface.co/Little-Podi/AdaWorld
♻ ☆ Segment Anything for Histopathology
Nucleus segmentation is an important analysis task in digital pathology. However, methods for automatic segmentation often struggle with new data from a different distribution, requiring users to manually annotate nuclei and retrain data-specific models. Vision foundation models (VFMs), such as the Segment Anything Model (SAM), offer a more robust alternative for automatic and interactive segmentation. Despite their success in natural images, a foundation model for nucleus segmentation in histopathology is still missing. Initial efforts to adapt SAM have shown some success, but did not yet introduce a comprehensive model for diverse segmentation tasks. To close this gap, we introduce PathoSAM, a VFM for nucleus segmentation, based on training SAM on a diverse dataset. Our extensive experiments show that it is the new state-of-the-art model for automatic and interactive nucleus instance segmentation in histopathology. We also demonstrate how it can be adapted for other segmentation tasks, including semantic nucleus segmentation. For this task, we show that it yields results better than popular methods, while not yet beating the state-of-the-art, CellViT. Our models are open-source and compatible with popular tools for data annotation. We also provide scripts for whole-slide image segmentation. Our code and models are publicly available at https://github.com/computational-cell-analytics/patho-sam.
comment: Published in MIDL 2025
♻ ☆ S2A: A Unified Framework for Parameter and Memory Efficient Transfer Learning
Parameter-efficient transfer learning (PETL) aims to reduce the scales of pretrained models for multiple downstream tasks. However, as the models keep scaling up, the memory footprint of existing PETL methods is not significantly reduced compared to the reduction of learnable parameters. This limitation hinders the practical deployment of PETL methods on memory-constrained devices. To this end, we proposed a new PETL framework, called Structure to Activation (S2A), to reduce the memory footprint of activation during fine-tuning. Specifically, our framework consists of: 1) Activation modules design(i.e., bias, prompt and side modules) in the parametric model structure, which results in a significant reduction of adjustable parameters and activation memory; 2) 4-bit quantization of activations based on their derivatives for non-parametric structures (e.g., nonlinear functions), which maintains accuracy while significantly reducing memory usage. Our S2A method consequently offers a lightweight solution in terms of both parameters and memory footprint. We evaluated S2A with different backbones and performed extensive experiments on various datasets to evaluate the effectiveness. The results show that our methods not only outperform existing PETL techniques, achieving a fourfold reduction in GPU memory footprint on average, but also shows competitive performance in accuracy with fewer tunable parameters. These demonstrate that our method is highly suitable for practical transfer learning on hardware-constrained devices.
♻ ☆ MASt3R-SLAM: Real-Time Dense SLAM with 3D Reconstruction Priors CVPR 2025
We present a real-time monocular dense SLAM system designed bottom-up from MASt3R, a two-view 3D reconstruction and matching prior. Equipped with this strong prior, our system is robust on in-the-wild video sequences despite making no assumption on a fixed or parametric camera model beyond a unique camera centre. We introduce efficient methods for pointmap matching, camera tracking and local fusion, graph construction and loop closure, and second-order global optimisation. With known calibration, a simple modification to the system achieves state-of-the-art performance across various benchmarks. Altogether, we propose a plug-and-play monocular SLAM system capable of producing globally-consistent poses and dense geometry while operating at 15 FPS.
comment: CVPR 2025 Highlight. The first two authors contributed equally to this work. Project Page: https://edexheim.github.io/mast3r-slam/
♻ ☆ Monge-Ampere Regularization for Learning Arbitrary Shapes from Point Clouds
As commonly used implicit geometry representations, the signed distance function (SDF) is limited to modeling watertight shapes, while the unsigned distance function (UDF) is capable of representing various surfaces. However, its inherent theoretical shortcoming, i.e., the non-differentiability at the zero level set, would result in sub-optimal reconstruction quality. In this paper, we propose the scaled-squared distance function (S$^{2}$DF), a novel implicit surface representation for modeling arbitrary surface types. S$^{2}$DF does not distinguish between inside and outside regions while effectively addressing the non-differentiability issue of UDF at the zero level set. We demonstrate that S$^{2}$DF satisfies a second-order partial differential equation of Monge-Ampere-type, allowing us to develop a learning pipeline that leverages a novel Monge-Ampere regularization to directly learn S$^{2}$DF from raw unoriented point clouds without supervision from ground-truth S$^{2}$DF values. Extensive experiments across multiple datasets show that our method significantly outperforms state-of-the-art supervised approaches that require ground-truth surface information as supervision for training. The source code is available at https://github.com/chuanxiang-yang/S2DF.
comment: Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Project Page: https://chuanxiang-yang.github.io/S2DF/, Code: https://github.com/chuanxiang-yang/S2DF
♻ ☆ OpenUni: A Simple Baseline for Unified Multimodal Understanding and Generation
In this report, we present OpenUni, a simple, lightweight, and fully open-source baseline for unifying multimodal understanding and generation. Inspired by prevailing practices in unified model learning, we adopt an efficient training strategy that minimizes the training complexity and overhead by bridging the off-the-shelf multimodal large language models (LLMs) and diffusion models through a set of learnable queries and a light-weight transformer-based connector. With a minimalist choice of architecture, we demonstrate that OpenUni can: 1) generate high-quality and instruction-aligned images, and 2) achieve exceptional performance on standard benchmarks such as GenEval, DPG- Bench, and WISE, with only 1.1B and 3.1B activated parameters. To support open research and community advancement, we release all model weights, training code, and our curated training datasets (including 23M image-text pairs) at https://github.com/wusize/OpenUni.
♻ ☆ Safety at Scale: A Comprehensive Survey of Large Model Safety
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.
comment: 47 pages, 3 figures, 11 tables; GitHub: https://github.com/xingjunm/Awesome-Large-Model-Safety
♻ ☆ SpatialLLM: A Compound 3D-Informed Design towards Spatially-Intelligent Large Multimodal Models CVPR 2025
Humans naturally understand 3D spatial relationships, enabling complex reasoning like predicting collisions of vehicles from different directions. Current large multimodal models (LMMs), however, lack of this capability of 3D spatial reasoning. This limitation stems from the scarcity of 3D training data and the bias in current model designs toward 2D data. In this paper, we systematically study the impact of 3D-informed data, architecture, and training setups, introducing SpatialLLM, a large multi-modal model with advanced 3D spatial reasoning abilities. To address data limitations, we develop two types of 3D-informed training datasets: (1) 3D-informed probing data focused on object's 3D location and orientation, and (2) 3D-informed conversation data for complex spatial relationships. Notably, we are the first to curate VQA data that incorporate 3D orientation relationships on real images. Furthermore, we systematically integrate these two types of training data with the architectural and training designs of LMMs, providing a roadmap for optimal design aimed at achieving superior 3D reasoning capabilities. Our SpatialLLM advances machines toward highly capable 3D-informed reasoning, surpassing GPT-4o performance by 8.7%. Our systematic empirical design and the resulting findings offer valuable insights for future research in this direction.
comment: CVPR 2025 highlight
♻ ☆ ChitroJera: A Regionally Relevant Visual Question Answering Dataset for Bangla ECML
Visual Question Answer (VQA) poses the problem of answering a natural language question about a visual context. Bangla, despite being a widely spoken language, is considered low-resource in the realm of VQA due to the lack of proper benchmarks, challenging models known to be performant in other languages. Furthermore, existing Bangla VQA datasets offer little regional relevance and are largely adapted from their foreign counterparts. To address these challenges, we introduce a large-scale Bangla VQA dataset, ChitroJera, totaling over 15k samples from diverse and locally relevant data sources. We assess the performance of text encoders, image encoders, multimodal models, and our novel dual-encoder models. The experiments reveal that the pre-trained dual-encoders outperform other models of their scale. We also evaluate the performance of current large vision language models (LVLMs) using prompt-based techniques, achieving the overall best performance. Given the underdeveloped state of existing datasets, we envision ChitroJera expanding the scope of Vision-Language tasks in Bangla.
comment: Accepted in ECML PKDD 2025
♻ ☆ In the Picture: Medical Imaging Datasets, Artifacts, and their Living Review
Datasets play a critical role in medical imaging research, yet issues such as label quality, shortcuts, and metadata are often overlooked. This lack of attention may harm the generalizability of algorithms and, consequently, negatively impact patient outcomes. While existing medical imaging literature reviews mostly focus on machine learning (ML) methods, with only a few focusing on datasets for specific applications, these reviews remain static -- they are published once and not updated thereafter. This fails to account for emerging evidence, such as biases, shortcuts, and additional annotations that other researchers may contribute after the dataset is published. We refer to these newly discovered findings of datasets as research artifacts. To address this gap, we propose a living review that continuously tracks public datasets and their associated research artifacts across multiple medical imaging applications. Our approach includes a framework for the living review to monitor data documentation artifacts, and an SQL database to visualize the citation relationships between research artifact and dataset. Lastly, we discuss key considerations for creating medical imaging datasets, review best practices for data annotation, discuss the significance of shortcuts and demographic diversity, and emphasize the importance of managing datasets throughout their entire lifecycle. Our demo is publicly available at http://inthepicture.itu.dk/.
comment: ACM Conference on Fairness, Accountability, and Transparency - FAccT 2025
♻ ☆ Erwin: A Tree-based Hierarchical Transformer for Large-scale Physical Systems ICML 2025
Large-scale physical systems defined on irregular grids pose significant scalability challenges for deep learning methods, especially in the presence of long-range interactions and multi-scale coupling. Traditional approaches that compute all pairwise interactions, such as attention, become computationally prohibitive as they scale quadratically with the number of nodes. We present Erwin, a hierarchical transformer inspired by methods from computational many-body physics, which combines the efficiency of tree-based algorithms with the expressivity of attention mechanisms. Erwin employs ball tree partitioning to organize computation, which enables linear-time attention by processing nodes in parallel within local neighborhoods of fixed size. Through progressive coarsening and refinement of the ball tree structure, complemented by a novel cross-ball interaction mechanism, it captures both fine-grained local details and global features. We demonstrate Erwin's effectiveness across multiple domains, including cosmology, molecular dynamics, PDE solving, and particle fluid dynamics, where it consistently outperforms baseline methods both in accuracy and computational efficiency.
comment: Accepted to ICML 2025. Code: https://github.com/maxxxzdn/erwin
♻ ☆ DiffVLA: Vision-Language Guided Diffusion Planning for Autonomous Driving
Research interest in end-to-end autonomous driving has surged owing to its fully differentiable design integrating modular tasks, i.e. perception, prediction and planing, which enables optimization in pursuit of the ultimate goal. Despite the great potential of the end-to-end paradigm, existing methods suffer from several aspects including expensive BEV (bird's eye view) computation, action diversity, and sub-optimal decision in complex real-world scenarios. To address these challenges, we propose a novel hybrid sparse-dense diffusion policy, empowered by a Vision-Language Model (VLM), called Diff-VLA. We explore the sparse diffusion representation for efficient multi-modal driving behavior. Moreover, we rethink the effectiveness of VLM driving decision and improve the trajectory generation guidance through deep interaction across agent, map instances and VLM output. Our method shows superior performance in Autonomous Grand Challenge 2025 which contains challenging real and reactive synthetic scenarios. Our methods achieves 45.0 PDMS.
comment: 4pages
♻ ☆ TextDestroyer: A Training- and Annotation-Free Diffusion Method for Destroying Anomal Text from Images
In this paper, we propose TextDestroyer, the first training- and annotation-free method for scene text destruction using a pre-trained diffusion model. Existing scene text removal models require complex annotation and retraining, and may leave faint yet recognizable text information, compromising privacy protection and content concealment. TextDestroyer addresses these issues by employing a three-stage hierarchical process to obtain accurate text masks. Our method scrambles text areas in the latent start code using a Gaussian distribution before reconstruction. During the diffusion denoising process, self-attention key and value are referenced from the original latent to restore the compromised background. Latent codes saved at each inversion step are used for replacement during reconstruction, ensuring perfect background restoration. The advantages of TextDestroyer include: (1) it eliminates labor-intensive data annotation and resource-intensive training; (2) it achieves more thorough text destruction, preventing recognizable traces; and (3) it demonstrates better generalization capabilities, performing well on both real-world scenes and generated images.
♻ ☆ A Conformal Risk Control Framework for Granular Word Assessment and Uncertainty Calibration of CLIPScore Quality Estimates ACL 2025
This study explores current limitations of learned image captioning evaluation metrics, specifically the lack of granular assessments for errors within captions, and the reliance on single-point quality estimates without considering uncertainty. To address the limitations, we propose a simple yet effective strategy for generating and calibrating distributions of CLIPScore values. Leveraging a model-agnostic conformal risk control framework, we calibrate CLIPScore values for task-specific control variables, tackling the aforementioned limitations. Experimental results demonstrate that using conformal risk control, over score distributions produced with simple methods such as input masking, can achieve competitive performance compared to more complex approaches. Our method effectively detects erroneous words, while providing formal guarantees aligned with desired risk levels. It also improves the correlation between uncertainty estimations and prediction errors, thus enhancing the overall reliability of caption evaluation metrics.
comment: Accepted at Findings ACL 2025
♻ ☆ RemoteSAM: Towards Segment Anything for Earth Observation
We aim to develop a robust yet flexible visual foundation model for Earth observation. It should possess strong capabilities in recognizing and localizing diverse visual targets while providing compatibility with various input-output interfaces required across different task scenarios. Current systems cannot meet these requirements, as they typically utilize task-specific architecture trained on narrow data domains with limited semantic coverage. Our study addresses these limitations from two aspects: data and modeling. We first introduce an automatic data engine that enjoys significantly better scalability compared to previous human annotation or rule-based approaches. It has enabled us to create the largest dataset of its kind to date, comprising 270K image-text-mask triplets covering an unprecedented range of diverse semantic categories and attribute specifications. Based on this data foundation, we further propose a task unification paradigm that centers around referring expression segmentation. It effectively handles a wide range of vision-centric perception tasks, including classification, detection, segmentation, grounding, etc, using a single model without any task-specific heads. Combining these innovations on data and modeling, we present RemoteSAM, a foundation model that establishes new SoTA on several earth observation perception benchmarks, outperforming other foundation models such as Falcon, GeoChat, and LHRS-Bot with significantly higher efficiency. Models and data are publicly available at https://github.com/1e12Leon/RemoteSAM.
♻ ☆ ReelWave: Multi-Agentic Movie Sound Generation through Multimodal LLM Conversation
Current audio generation conditioned by text or video focuses on aligning audio with text/video modalities. Despite excellent alignment results, these multimodal frameworks still cannot be directly applied to compelling movie storytelling involving multiple scenes, where "on-screen" sounds require temporally-aligned audio generation, while "off-screen" sounds contribute to appropriate environment sounds accompanied by background music when applicable. Inspired by professional movie production, this paper proposes a multi-agentic framework for audio generation supervised by an autonomous Sound Director agent, engaging multi-turn conversations with other agents for on-screen and off-screen sound generation through multimodal LLM. To address on-screen sound generation, after detecting any talking humans in videos, we capture semantically and temporally synchronized sound by training a prediction model that forecasts interpretable, time-varying audio control signals: loudness, pitch, and timbre, which are used by a Foley Artist agent to condition a cross-attention module in the sound generation. The Foley Artist works cooperatively with the Composer and Voice Actor agents, and together they autonomously generate off-screen sound to complement the overall production. Each agent takes on specific roles similar to those of a movie production team. To temporally ground audio language models, in ReelWave, text/video conditions are decomposed into atomic, specific sound generation instructions synchronized with visuals when applicable. Consequently, our framework can generate rich and relevant audio content conditioned on video clips extracted from movies.
comment: Project page: https://vincent2311.github.io/ReelWave_demo
♻ ☆ MultiFlow: A unified deep learning framework for multi-vessel classification, segmentation and clustering of phase-contrast MRI validated on a multi-site single ventricle patient cohort
We present a deep learning framework with two models for automated segmentation and large-scale flow phenotyping in a registry of single-ventricle patients. MultiFlowSeg simultaneously classifies and segments five key vessels, left and right pulmonary arteries, aorta, superior vena cava, and inferior vena cava, from velocity encoded phase-contrast magnetic resonance (PCMR) data. Trained on 260 CMR exams (5 PCMR scans per exam), it achieved an average Dice score of 0.91 on 50 unseen test cases. The method was then integrated into an automated pipeline where it processed over 5,500 registry exams without human assistance, in exams with all 5 vessels it achieved 98% classification and 90% segmentation accuracy. Flow curves from successful segmentations were used to train MultiFlowDTC, which applied deep temporal clustering to identify distinct flow phenotypes. Survival analysis revealed distinct phenotypes were significantly associated with increased risk of death/transplantation and liver disease, demonstrating the potential of the framework.
comment: 6 Figures
♻ ☆ MSDNet: Multi-Scale Decoder for Few-Shot Semantic Segmentation via Transformer-Guided Prototyping
Few-shot Semantic Segmentation addresses the challenge of segmenting objects in query images with only a handful of annotated examples. However, many previous state-of-the-art methods either have to discard intricate local semantic features or suffer from high computational complexity. To address these challenges, we propose a new Few-shot Semantic Segmentation framework based on the Transformer architecture. Our approach introduces the spatial transformer decoder and the contextual mask generation module to improve the relational understanding between support and query images. Moreover, we introduce a multi scale decoder to refine the segmentation mask by incorporating features from different resolutions in a hierarchical manner. Additionally, our approach integrates global features from intermediate encoder stages to improve contextual understanding, while maintaining a lightweight structure to reduce complexity. This balance between performance and efficiency enables our method to achieve competitive results on benchmark datasets such as PASCAL-5^i and COCO-20^i in both 1-shot and 5-shot settings. Notably, our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies.
♻ ☆ Contrastive Alignment with Semantic Gap-Aware Corrections in Text-Video Retrieval
Recent advances in text-video retrieval have been largely driven by contrastive learning frameworks. However, existing methods overlook a key source of optimization tension: the separation between text and video distributions in the representation space (referred to as the modality gap), and the prevalence of false negatives in batch sampling. These factors lead to conflicting gradients under the InfoNCE loss, impeding stable alignment. To mitigate this, we propose GARE, a Gap-Aware Retrieval framework that introduces a learnable, pair-specific increment Delta_ij between text t_i and video v_j to offload the tension from the global anchor representation. We first derive the ideal form of Delta_ij via a coupled multivariate first-order Taylor approximation of the InfoNCE loss under a trust-region constraint, revealing it as a mechanism for resolving gradient conflicts by guiding updates along a locally optimal descent direction. Due to the high cost of directly computing Delta_ij, we introduce a lightweight neural module conditioned on the semantic gap between each video-text pair, enabling structure-aware correction guided by gradient supervision. To further stabilize learning and promote interpretability, we regularize Delta using three components: a trust-region constraint to prevent oscillation, a directional diversity term to promote semantic coverage, and an information bottleneck to limit redundancy. Experiments across four retrieval benchmarks show that GARE consistently improves alignment accuracy and robustness to noisy supervision, confirming the effectiveness of gap-aware tension mitigation.
♻ ☆ SwiftEdit: Lightning Fast Text-Guided Image Editing via One-Step Diffusion
Recent advances in text-guided image editing enable users to perform image edits through simple text inputs, leveraging the extensive priors of multi-step diffusion-based text-to-image models. However, these methods often fall short of the speed demands required for real-world and on-device applications due to the costly multi-step inversion and sampling process involved. In response to this, we introduce SwiftEdit, a simple yet highly efficient editing tool that achieve instant text-guided image editing (in 0.23s). The advancement of SwiftEdit lies in its two novel contributions: a one-step inversion framework that enables one-step image reconstruction via inversion and a mask-guided editing technique with our proposed attention rescaling mechanism to perform localized image editing. Extensive experiments are provided to demonstrate the effectiveness and efficiency of SwiftEdit. In particular, SwiftEdit enables instant text-guided image editing, which is extremely faster than previous multi-step methods (at least 50 times faster) while maintain a competitive performance in editing results. Our project page is at: https://swift-edit.github.io/
comment: 17 pages, 15 figures
♻ ☆ Improving Medical Large Vision-Language Models with Abnormal-Aware Feedback
Existing Medical Large Vision-Language Models (Med-LVLMs), encapsulating extensive medical knowledge, demonstrate excellent capabilities in understanding medical images. However, there remain challenges in visual localization in medical images, which is crucial for abnormality detection and interpretation. To address these issues, we propose a novel UMed-LVLM designed to unveil medical abnormalities. Specifically, we collect a Medical Abnormalities Unveiling (MAU) dataset and propose a two-stage training method for UMed-LVLM training. To collect MAU dataset, we propose a prompt method utilizing the GPT-4V to generate diagnoses based on identified abnormal areas in medical images. Moreover, the two-stage training method includes Abnormal-Aware Instruction Tuning and Abnormal-Aware Rewarding, comprising Relevance Reward, Abnormal Localization Reward and Vision Relevance Reward. Experimental results demonstrate that our UMed-LVLM significantly outperforms existing Med-LVLMs in identifying and understanding medical abnormalities, achieving a 58% improvement over the baseline. In addition, this work shows that enhancing the abnormality detection capabilities of Med-LVLMs significantly improves their understanding of medical images and generalization capability.
comment: 16 pages
♻ ☆ CAP-Net: A Unified Network for 6D Pose and Size Estimation of Categorical Articulated Parts from a Single RGB-D Image CVPR 2025
This paper tackles category-level pose estimation of articulated objects in robotic manipulation tasks and introduces a new benchmark dataset. While recent methods estimate part poses and sizes at the category level, they often rely on geometric cues and complex multi-stage pipelines that first segment parts from the point cloud, followed by Normalized Part Coordinate Space (NPCS) estimation for 6D poses. These approaches overlook dense semantic cues from RGB images, leading to suboptimal accuracy, particularly for objects with small parts. To address these limitations, we propose a single-stage Network, CAP-Net, for estimating the 6D poses and sizes of Categorical Articulated Parts. This method combines RGB-D features to generate instance segmentation and NPCS representations for each part in an end-to-end manner. CAP-Net uses a unified network to simultaneously predict point-wise class labels, centroid offsets, and NPCS maps. A clustering algorithm then groups points of the same predicted class based on their estimated centroid distances to isolate each part. Finally, the NPCS region of each part is aligned with the point cloud to recover its final pose and size. To bridge the sim-to-real domain gap, we introduce the RGBD-Art dataset, the largest RGB-D articulated dataset to date, featuring photorealistic RGB images and depth noise simulated from real sensors. Experimental evaluations on the RGBD-Art dataset demonstrate that our method significantly outperforms the state-of-the-art approach. Real-world deployments of our model in robotic tasks underscore its robustness and exceptional sim-to-real transfer capabilities, confirming its substantial practical utility. Our dataset, code and pre-trained models are available on the project page.
comment: To appear in CVPR 2025 (Highlight)
♻ ☆ DIS-CO: Discovering Copyrighted Content in VLMs Training Data
How can we verify whether copyrighted content was used to train a large vision-language model (VLM) without direct access to its training data? Motivated by the hypothesis that a VLM is able to recognize images from its training corpus, we propose DIS-CO, a novel approach to infer the inclusion of copyrighted content during the model's development. By repeatedly querying a VLM with specific frames from targeted copyrighted material, DIS-CO extracts the content's identity through free-form text completions. To assess its effectiveness, we introduce MovieTection, a benchmark comprising 14,000 frames paired with detailed captions, drawn from films released both before and after a model's training cutoff. Our results show that DIS-CO significantly improves detection performance, nearly doubling the average AUC of the best prior method on models with logits available. Our findings also highlight a broader concern: all tested models appear to have been exposed to some extent to copyrighted content. Our code and data are available at https://github.com/avduarte333/DIS-CO
♻ ☆ OmniCaptioner: One Captioner to Rule Them All
We propose OmniCaptioner, a versatile visual captioning framework for generating fine-grained textual descriptions across a wide variety of visual domains. Unlike prior methods limited to specific image types (e.g., natural images or geometric visuals), our framework provides a unified solution for captioning natural images, visual text (e.g., posters, UIs, textbooks), and structured visuals (e.g., documents, tables, charts). By converting low-level pixel information into semantically rich textual representations, our framework bridges the gap between visual and textual modalities. Our results highlight three key advantages: (i) Enhanced Visual Reasoning with LLMs, where long-context captions of visual modalities empower LLMs, particularly the DeepSeek-R1 series, to reason effectively in multimodal scenarios; (ii) Improved Image Generation, where detailed captions improve tasks like text-to-image generation and image transformation; and (iii) Efficient Supervised Fine-Tuning (SFT), which enables faster convergence with less data. We believe the versatility and adaptability of OmniCaptioner can offer a new perspective for bridging the gap between language and visual modalities.
comment: More visualizations on Homepage: https://alpha-innovator.github.io/OmniCaptioner-project-page and Official code: https://github.com/Alpha-Innovator/OmniCaptioner
♻ ☆ Parameter Efficient Fine-Tuning of Segment Anything Model for Biomedical Imaging
Segmentation is an important analysis task for biomedical images, enabling the study of individual organelles, cells or organs. Deep learning has massively improved segmentation methods, but challenges remain in generalization to new conditions, requiring costly data annotation. Vision foundation models, such as Segment Anything Model (SAM), address this issue through improved generalization. However, these models still require finetuning on annotated data, although with less annotations, to achieve optimal results for new conditions. As a downside, they require more computational resources. This makes parameter-efficient finetuning (PEFT) relevant. We contribute the first comprehensive study of PEFT for SAM applied to biomedical images. We find that the placement of PEFT layers is more important for efficiency than the type of layer for vision transformers and we provide a recipe for resource-efficient finetuning. Our code is publicly available at https://github.com/computational-cell-analytics/peft-sam.
comment: Published in MIDL 2025
♻ ☆ Keypoint-Integrated Instruction-Following Data Generation for Enhanced Human Pose and Action Understanding in Multimodal Models
Current vision-language multimodal models are well-adapted for general visual understanding tasks. However, they perform inadequately when handling complex visual tasks related to human poses and actions due to the lack of specialized vision-language instruction-following data. We introduce a method for generating such data by integrating human keypoints with traditional visual features such as captions and bounding boxes, enabling more precise understanding of human-centric scenes. Our approach constructs a dataset comprising 200,328 samples tailored to fine-tune models for human-centric tasks, focusing on three areas: conversation, detailed description, and complex reasoning. We establish a benchmark called Human Pose and Action Understanding Benchmark (HPAUB) to assess model performance on human pose and action understanding. We fine-tune the LLaVA-1.5-7B model using this dataset and evaluate it on the benchmark, achieving significant improvements. Experimental results show an overall improvement of 21.18% compared to the original LLaVA-1.5-7B model. These findings highlight the effectiveness of keypoint-integrated data in enhancing multimodal models. Code is available at https://github.com/Ody-trek/Keypoint-Instruction-Tuning.
comment: Accepted at the International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS 2025)
♻ ☆ Jigsaw-R1: A Study of Rule-based Visual Reinforcement Learning with Jigsaw Puzzles
The application of rule-based reinforcement learning (RL) to multimodal large language models (MLLMs) introduces unique challenges and potential deviations from findings in text-only domains, particularly for perception-heavy tasks. This paper provides a comprehensive study of rule-based visual RL, using jigsaw puzzles as a structured experimental framework. Jigsaw puzzles offer inherent ground truth, adjustable difficulty, and demand complex decision-making, making them ideal for this study. Our research reveals several key findings: \textit{Firstly,} we find that MLLMs, initially performing near to random guessing on the simplest jigsaw puzzles, achieve near-perfect accuracy and generalize to complex, unseen configurations through fine-tuning. \textit{Secondly,} training on jigsaw puzzles can induce generalization to other visual tasks, with effectiveness tied to specific task configurations. \textit{Thirdly,} MLLMs can learn and generalize with or without explicit reasoning, though open-source models often favor direct answering. Consequently, even when trained for step-by-step reasoning, they can ignore the thinking process in deriving the final answer. \textit{Fourthly,} we observe that complex reasoning patterns appear to be pre-existing rather than emergent, with their frequency increasing alongside training and task difficulty. \textit{Finally,} our results demonstrate that RL exhibits more effective generalization than Supervised Fine-Tuning (SFT), and an initial SFT cold start phase can hinder subsequent RL optimization. Although these observations are based on jigsaw puzzles and may vary across other visual tasks, this research contributes a valuable piece of jigsaw to the larger puzzle of collective understanding rule-based visual RL and its potential in multimodal learning. The code is available at: https://github.com/zifuwanggg/Jigsaw-R1.
♻ ☆ Stochastic Layer-Wise Shuffle for Improving Vision Mamba Training ICML25
Recent Vision Mamba (Vim) models exhibit nearly linear complexity in sequence length, making them highly attractive for processing visual data. However, the training methodologies and their potential are still not sufficiently explored. In this paper, we investigate strategies for Vim and propose Stochastic Layer-Wise Shuffle (SLWS), a novel regularization method that can effectively improve the Vim training. Without architectural modifications, this approach enables the non-hierarchical Vim to get leading performance on ImageNet-1K compared with the similar type counterparts. Our method operates through four simple steps per layer: probability allocation to assign layer-dependent shuffle rates, operation sampling via Bernoulli trials, sequence shuffling of input tokens, and order restoration of outputs. SLWS distinguishes itself through three principles: \textit{(1) Plug-and-play:} No architectural modifications are needed, and it is deactivated during inference. \textit{(2) Simple but effective:} The four-step process introduces only random permutations and negligible overhead. \textit{(3) Intuitive design:} Shuffling probabilities grow linearly with layer depth, aligning with the hierarchical semantic abstraction in vision models. Our work underscores the importance of tailored training strategies for Vim models and provides a helpful way to explore their scalability.
comment: accpeted to ICML25
♻ ☆ PixFoundation: Are We Heading in the Right Direction with Pixel-level Vision Foundation Models?
Multiple works have emerged to push the boundaries on multi-modal large language models (MLLMs) towards pixel-level understanding. The current trend in pixel-level MLLMs is to train with pixel-level grounding supervision on large-scale labelled data with specialized decoders for the segmentation task. However, we show that such MLLMs when evaluated on recent challenging vision-centric benchmarks, exhibit a weak ability in visual question answering (VQA). Surprisingly, some of these methods even downgrade the grounding ability of MLLMs that were never trained with such pixel-level supervision. In this work, we propose two novel challenging benchmarks with paired evaluation for both VQA and grounding. We show that MLLMs without pixel-level grounding supervision can outperform the state of the art in such tasks. Our paired benchmarks and evaluation enable additional analysis on the reasons for failure with respect to VQA and/or grounding. Furthermore, we propose simple baselines to extract the grounding information that can be plugged into any MLLM, which we call PixFoundation. More importantly, we study the research question of "When does grounding emerge in MLLMs that are not trained with pixel-level grounding supervision?" We show that grounding can coincide with object parts, its location, appearance, context or state, where we show 27-45% of the examples in both benchmarks exhibit this phenomenon. Our code and datasets will be made publicly available and some are in the supplemental.
comment: Under Review
♻ ☆ ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces a physical guidance mechanism specifically designed for Flow Matching (FM) that effectively prevents body penetration artifacts during sampling. Moreover, we discover the bias of traditional flow matching sampling algorithm and employ a reprojection method to revise the sampling direction of FM. To further enhance the reaction diversity, we incorporate randomness into the sampling process. Extensive experiments on NTU120, Chi3D and InterHuman datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
comment: Project Page: https://arflow2025.github.io/
♻ ☆ RePaViT: Scalable Vision Transformer Acceleration via Structural Reparameterization on Feedforward Network Layers ICML2025
We reveal that feedforward network (FFN) layers, rather than attention layers, are the primary contributors to Vision Transformer (ViT) inference latency, with their impact signifying as model size increases. This finding highlights a critical opportunity for optimizing the efficiency of large-scale ViTs by focusing on FFN layers. In this work, we propose a novel channel idle mechanism that facilitates post-training structural reparameterization for efficient FFN layers during testing. Specifically, a set of feature channels remains idle and bypasses the nonlinear activation function in each FFN layer, thereby forming a linear pathway that enables structural reparameterization during inference. This mechanism results in a family of ReParameterizable Vision Transformers (RePaViTs), which achieve remarkable latency reductions with acceptable sacrifices (sometimes gains) in accuracy across various ViTs. The benefits of our method scale consistently with model sizes, demonstrating greater speed improvements and progressively narrowing accuracy gaps or even higher accuracies on larger models. In particular, RePa-ViT-Large and RePa-ViT-Huge enjoy 66.8% and 68.7% speed-ups with +1.7% and +1.1% higher top-1 accuracies under the same training strategy, respectively. RePaViT is the first to employ structural reparameterization on FFN layers to expedite ViTs to our best knowledge, and we believe that it represents an auspicious direction for efficient ViTs. Source code is available at https://github.com/Ackesnal/RePaViT.
comment: Accepted to ICML2025
♻ ☆ A Survey on Event-driven 3D Reconstruction: Development under Different Categories
Event cameras have gained increasing attention for 3D reconstruction due to their high temporal resolution, low latency, and high dynamic range. They capture per-pixel brightness changes asynchronously, allowing accurate reconstruction under fast motion and challenging lighting conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction methods, including stereo, monocular, and multimodal systems. We further categorize recent developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works are structured chronologically to illustrate the innovations and progression within the field. To support future research, we also highlight key research gaps and future research directions in dataset, experiment, evaluation, event representation, etc.
comment: We have decided not to submit this article and plan to withdraw it from public display. The content of this article will be presented in a more comprehensive form in another work
♻ ☆ RADAR: Enhancing Radiology Report Generation with Supplementary Knowledge Injection ACL 2025
Large language models (LLMs) have demonstrated remarkable capabilities in various domains, including radiology report generation. Previous approaches have attempted to utilize multimodal LLMs for this task, enhancing their performance through the integration of domain-specific knowledge retrieval. However, these approaches often overlook the knowledge already embedded within the LLMs, leading to redundant information integration. To address this limitation, we propose Radar, a framework for enhancing radiology report generation with supplementary knowledge injection. Radar improves report generation by systematically leveraging both the internal knowledge of an LLM and externally retrieved information. Specifically, it first extracts the model's acquired knowledge that aligns with expert image-based classification outputs. It then retrieves relevant supplementary knowledge to further enrich this information. Finally, by aggregating both sources, Radar generates more accurate and informative radiology reports. Extensive experiments on MIMIC-CXR, CheXpert-Plus, and IU X-ray demonstrate that our model outperforms state-of-the-art LLMs in both language quality and clinical accuracy.
comment: Accepted to ACL 2025 main
♻ ☆ VL-RewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models CVPR 2025
Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems, yet their own evaluation remains under-explored. Current assessment methods primarily rely on AI-annotated preference labels from traditional VL tasks, which can introduce biases and often fail to effectively challenge state-of-the-art models. To address these limitations, we introduce VL-RewardBench, a comprehensive benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks. Through our AI-assisted annotation pipeline that combines sample selection with human verification, we curate 1,250 high-quality examples specifically designed to probe VL-GenRMs limitations. Comprehensive evaluation across 16 leading large vision-language models demonstrates VL-RewardBench's effectiveness as a challenging testbed, where even GPT-4o achieves only 65.4% accuracy, and state-of-the-art open-source models such as Qwen2-VL-72B, struggle to surpass random-guessing. Importantly, performance on VL-RewardBench strongly correlates (Pearson's r $>$ 0.9) with MMMU-Pro accuracy using Best-of-N sampling with VL-GenRMs. Analysis experiments uncover three critical insights for improving VL-GenRMs: (i) models predominantly fail at basic visual perception tasks rather than reasoning tasks; (ii) inference-time scaling benefits vary dramatically by model capacity; and (iii) training VL-GenRMs to learn to judge substantially boosts judgment capability (+14.7% accuracy for a 7B VL-GenRM). We believe VL-RewardBench along with the experimental insights will become a valuable resource for advancing VL-GenRMs.
comment: CVPR 2025 Camera Ready Version. Project page: https://vl-rewardbench.github.io
♻ ☆ Prisma: An Open Source Toolkit for Mechanistic Interpretability in Vision and Video CVPR
Robust tooling and publicly available pre-trained models have helped drive recent advances in mechanistic interpretability for language models. However, similar progress in vision mechanistic interpretability has been hindered by the lack of accessible frameworks and pre-trained weights. We present Prisma (Access the codebase here: https://github.com/Prisma-Multimodal/ViT-Prisma), an open-source framework designed to accelerate vision mechanistic interpretability research, providing a unified toolkit for accessing 75+ vision and video transformers; support for sparse autoencoder (SAE), transcoder, and crosscoder training; a suite of 80+ pre-trained SAE weights; activation caching, circuit analysis tools, and visualization tools; and educational resources. Our analysis reveals surprising findings, including that effective vision SAEs can exhibit substantially lower sparsity patterns than language SAEs, and that in some instances, SAE reconstructions can decrease model loss. Prisma enables new research directions for understanding vision model internals while lowering barriers to entry in this emerging field.
comment: 4 pages, 3 figures, 9 tables. Oral and Tutorial at the CVPR Mechanistic Interpretability for Vision (MIV) Workshop
♻ ☆ Distractor-free Generalizable 3D Gaussian Splatting
We present DGGS, a novel framework that addresses the previously unexplored challenge: $\textbf{Distractor-free Generalizable 3D Gaussian Splatting}$ (3DGS). It mitigates 3D inconsistency and training instability caused by distractor data in the cross-scenes generalizable train setting while enabling feedforward inference for 3DGS and distractor masks from references in the unseen scenes. To achieve these objectives, DGGS proposes a scene-agnostic reference-based mask prediction and refinement module during the training phase, effectively eliminating the impact of distractor on training stability. Moreover, we combat distractor-induced artifacts and holes at inference time through a novel two-stage inference framework for references scoring and re-selection, complemented by a distractor pruning mechanism that further removes residual distractor 3DGS-primitive influences. Extensive feedforward experiments on the real and our synthetic data show DGGS's reconstruction capability when dealing with novel distractor scenes. Moreover, our generalizable mask prediction even achieves an accuracy superior to existing scene-specific training methods. Homepage is https://github.com/bbbbby-99/DGGS.
♻ ☆ Urban Safety Perception Assessments via Integrating Multimodal Large Language Models with Street View Images
Measuring urban safety perception is an important and complex task that traditionally relies heavily on human resources. This process often involves extensive field surveys, manual data collection, and subjective assessments, which can be time-consuming, costly, and sometimes inconsistent. Street View Images (SVIs), along with deep learning methods, provide a way to realize large-scale urban safety detection. However, achieving this goal often requires extensive human annotation to train safety ranking models, and the architectural differences between cities hinder the transferability of these models. Thus, a fully automated method for conducting safety evaluations is essential. Recent advances in multimodal large language models (MLLMs) have demonstrated powerful reasoning and analytical capabilities. Cutting-edge models, e.g., GPT-4 have shown surprising performance in many tasks. We employed these models for urban safety ranking on a human-annotated anchor set and validated that the results from MLLMs align closely with human perceptions. Additionally, we proposed a method based on the pre-trained Contrastive Language-Image Pre-training (CLIP) feature and K-Nearest Neighbors (K-NN) retrieval to quickly assess the safety index of the entire city. Experimental results show that our method outperforms existing training needed deep learning approaches, achieving efficient and accurate urban safety evaluations. The proposed automation for urban safety perception assessment is a valuable tool for city planners, policymakers, and researchers aiming to improve urban environments.
comment: 15 pages, 10 figures
♻ ☆ FactCheXcker: Mitigating Measurement Hallucinations in Chest X-ray Report Generation Models CVPR 2025
Medical vision-language models often struggle with generating accurate quantitative measurements in radiology reports, leading to hallucinations that undermine clinical reliability. We introduce FactCheXcker, a modular framework that de-hallucinates radiology report measurements by leveraging an improved query-code-update paradigm. Specifically, FactCheXcker employs specialized modules and the code generation capabilities of large language models to solve measurement queries generated based on the original report. After extracting measurable findings, the results are incorporated into an updated report. We evaluate FactCheXcker on endotracheal tube placement, which accounts for an average of 78% of report measurements, using the MIMIC-CXR dataset and 11 medical report-generation models. Our results show that FactCheXcker significantly reduces hallucinations, improves measurement precision, and maintains the quality of the original reports. Specifically, FactCheXcker improves the performance of 10/11 models and achieves an average improvement of 135.0% in reducing measurement hallucinations measured by mean absolute error. Code is available at https://github.com/rajpurkarlab/FactCheXcker.
comment: Accepted to CVPR 2025
♻ ☆ MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM
Multimodal hallucination in multimodal large language models (MLLMs) restricts the correctness of MLLMs. However, multimodal hallucinations are multi-sourced and arise from diverse causes. Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations. This failure constitutes a significant issue and hinders the diagnosis of multimodal reasoning failures within MLLMs. To address this, we propose the {\dataset} benchmark, which isolates reasoning hallucinations by constructing questions where input images are correctly perceived by MLLMs yet reasoning errors persist. {\dataset} introduces multi-granular evaluation metrics: accuracy, factuality, and LLMs hallucination score for hallucination quantification. Our analysis reveals that (1) the model scale, data scale, and training stages significantly affect the degree of logical, fabrication, and factual hallucinations; (2) current MLLMs show no effective improvement on spatial hallucinations caused by misinterpreted spatial relationships, indicating their limited visual reasoning capabilities; and (3) question types correlate with distinct hallucination patterns, highlighting targeted challenges and potential mitigation strategies. To address these challenges, we propose {\method}, a method that combines curriculum reinforcement fine-tuning to encourage models to generate logic-consistent reasoning chains by stepwise reducing learning difficulty, and collaborative hint inference to reduce reasoning complexity. {\method} establishes a baseline on {\dataset}, and reduces the logical hallucinations in original base models.
♻ ☆ Flex3D: Feed-Forward 3D Generation with Flexible Reconstruction Model and Input View Curation ICML 25
Generating high-quality 3D content from text, single images, or sparse view images remains a challenging task with broad applications. Existing methods typically employ multi-view diffusion models to synthesize multi-view images, followed by a feed-forward process for 3D reconstruction. However, these approaches are often constrained by a small and fixed number of input views, limiting their ability to capture diverse viewpoints and, even worse, leading to suboptimal generation results if the synthesized views are of poor quality. To address these limitations, we propose Flex3D, a novel two-stage framework capable of leveraging an arbitrary number of high-quality input views. The first stage consists of a candidate view generation and curation pipeline. We employ a fine-tuned multi-view image diffusion model and a video diffusion model to generate a pool of candidate views, enabling a rich representation of the target 3D object. Subsequently, a view selection pipeline filters these views based on quality and consistency, ensuring that only the high-quality and reliable views are used for reconstruction. In the second stage, the curated views are fed into a Flexible Reconstruction Model (FlexRM), built upon a transformer architecture that can effectively process an arbitrary number of inputs. FlemRM directly outputs 3D Gaussian points leveraging a tri-plane representation, enabling efficient and detailed 3D generation. Through extensive exploration of design and training strategies, we optimize FlexRM to achieve superior performance in both reconstruction and generation tasks. Our results demonstrate that Flex3D achieves state-of-the-art performance, with a user study winning rate of over 92% in 3D generation tasks when compared to several of the latest feed-forward 3D generative models.
comment: ICML 25. Project page: https://junlinhan.github.io/projects/flex3d/
♻ ☆ Generating by Understanding: Neural Visual Generation with Logical Symbol Groundings KDD 2025
Making neural visual generative models controllable by logical reasoning systems is promising for improving faithfulness, transparency, and generalizability. We propose the Abductive visual Generation (AbdGen) approach to build such logic-integrated models. A vector-quantized symbol grounding mechanism and the corresponding disentanglement training method are introduced to enhance the controllability of logical symbols over generation. Furthermore, we propose two logical abduction methods to make our approach require few labeled training data and support the induction of latent logical generative rules from data. We experimentally show that our approach can be utilized to integrate various neural generative models with logical reasoning systems, by both learning from scratch or utilizing pre-trained models directly. The code is released at https://github.com/future-item/AbdGen.
comment: KDD 2025 research track paper
♻ ☆ NUC-Net: Non-uniform Cylindrical Partition Network for Efficient LiDAR Semantic Segmentation
LiDAR semantic segmentation plays a vital role in autonomous driving. Existing voxel-based methods for LiDAR semantic segmentation apply uniform partition to the 3D LiDAR point cloud to form a structured representation based on cartesian/cylindrical coordinates. Although these methods show impressive performance, the drawback of existing voxel-based methods remains in two aspects: (1) it requires a large enough input voxel resolution, which brings a large amount of computation cost and memory consumption. (2) it does not well handle the unbalanced point distribution of LiDAR point cloud. In this paper, we propose a non-uniform cylindrical partition network named NUC-Net to tackle the above challenges. Specifically, we propose the Arithmetic Progression of Interval (API) method to non-uniformly partition the radial axis and generate the voxel representation which is representative and efficient. Moreover, we propose a non-uniform multi-scale aggregation method to improve contextual information. Our method achieves state-of-the-art performance on SemanticKITTI and nuScenes datasets with much faster speed and much less training time. And our method can be a general component for LiDAR semantic segmentation, which significantly improves both the accuracy and efficiency of the uniform counterpart by $4 \times$ training faster and $2 \times$ GPU memory reduction and $3 \times$ inference speedup. We further provide theoretical analysis towards understanding why NUC is effective and how point distribution affects performance. Code is available at \href{https://github.com/alanWXZ/NUC-Net}{https://github.com/alanWXZ/NUC-Net}.
comment: Accepted at TCSVT in 2025.Code available at https://github.com/alanWXZ/NUC-Net
♻ ☆ Mixed-View Panorama Synthesis using Geospatially Guided Diffusion
We introduce the task of mixed-view panorama synthesis, where the goal is to synthesize a novel panorama given a small set of input panoramas and a satellite image of the area. This contrasts with previous work which only uses input panoramas (same-view synthesis), or an input satellite image (cross-view synthesis). We argue that the mixed-view setting is the most natural to support panorama synthesis for arbitrary locations worldwide. A critical challenge is that the spatial coverage of panoramas is uneven, with few panoramas available in many regions of the world. We introduce an approach that utilizes diffusion-based modeling and an attention-based architecture for extracting information from all available input imagery. Experimental results demonstrate the effectiveness of our proposed method. In particular, our model can handle scenarios when the available panoramas are sparse or far from the location of the panorama we are attempting to synthesize. The project page is available at https://mixed-view.github.io
comment: Accepted by Transactions on Machine Learning Research (TMLR) Project page: https://mixed-view.github.io
♻ ☆ Probing Equivariance and Symmetry Breaking in Convolutional Networks
In this work, we explore the trade-offs of explicit structural priors, particularly group equivariance. We address this through theoretical analysis and a comprehensive empirical study. To enable controlled and fair comparisons, we introduce \texttt{Rapidash}, a unified group convolutional architecture that allows for different variants of equivariant and non-equivariant models. Our results suggest that more constrained equivariant models outperform less constrained alternatives when aligned with the geometry of the task, and increasing representation capacity does not fully eliminate performance gaps. We see improved performance of models with equivariance and symmetry-breaking through tasks like segmentation, regression, and generation across diverse datasets. Explicit \textit{symmetry breaking} via geometric reference frames consistently improves performance, while \textit{breaking equivariance} through geometric input features can be helpful when aligned with task geometry. Our results provide task-specific performance trends that offer a more nuanced way for model selection.
comment: 27 pages, 7 figures
♻ ☆ RAFT: Robust Augmentation of FeaTures for Image Segmentation
Image segmentation is a powerful computer vision technique for scene understanding. However, real-world deployment is stymied by the need for high-quality, meticulously labeled datasets. Synthetic data provides high-quality labels while reducing the need for manual data collection and annotation. However, deep neural networks trained on synthetic data often face the Syn2Real problem, leading to poor performance in real-world deployments. To mitigate the aforementioned gap in image segmentation, we propose RAFT, a novel framework for adapting image segmentation models using minimal labeled real-world data through data and feature augmentations, as well as active learning. To validate RAFT, we perform experiments on the synthetic-to-real "SYNTHIA->Cityscapes" and "GTAV->Cityscapes" benchmarks. We managed to surpass the previous state of the art, HALO. SYNTHIA->Cityscapes experiences an improvement in mIoU* upon domain adaptation of 2.1%/79.9%, and GTAV->Cityscapes experiences a 0.4%/78.2% improvement in mIoU. Furthermore, we test our approach on the real-to-real benchmark of "Cityscapes->ACDC", and again surpass HALO, with a gain in mIoU upon adaptation of 1.3%/73.2%. Finally, we examine the effect of the allocated annotation budget and various components of RAFT upon the final transfer mIoU.
♻ ☆ The Dual Power of Interpretable Token Embeddings: Jailbreaking Attacks and Defenses for Diffusion Model Unlearning
Despite the remarkable generation capabilities of diffusion models, recent studies have shown that they can memorize and create harmful content when given specific text prompts. Although fine-tuning approaches have been developed to mitigate this issue by unlearning harmful concepts, these methods can be easily circumvented through jailbreaking attacks. This implies that the harmful concept has not been fully erased from the model. However, existing jailbreaking attack methods, while effective, lack interpretability regarding why unlearned models still retain the concept, thereby hindering the development of defense strategies. In this work, we address these limitations by proposing an attack method that learns an orthogonal set of interpretable attack token embeddings. The attack token embeddings can be decomposed into human-interpretable textual elements, revealing that unlearned models still retain the target concept through implicit textual components. Furthermore, these attack token embeddings are powerful and transferable across text prompts, initial noises, and unlearned models, emphasizing that unlearned models are more vulnerable than expected. Finally, building on the insights from our interpretable attack, we develop a defense method to protect unlearned models against both our proposed and existing jailbreaking attacks. Extensive experimental results demonstrate the effectiveness of our attack and defense strategies.
♻ ☆ GD doesn't make the cut: Three ways that non-differentiability affects neural network training
This paper critically examines the fundamental distinctions between gradient methods applied to non-differentiable functions (NGDMs) and classical gradient descents (GDs) for differentiable functions, revealing significant gaps in current deep learning optimization theory. We demonstrate that NGDMs exhibit markedly different convergence properties compared to GDs, strongly challenging the applicability of extensive neural network convergence literature based on $L-smoothness$ to non-smooth neural networks. Our analysis reveals paradoxical behavior of NDGM solutions for $L_{1}$-regularized problems, where increasing regularization counterintuitively leads to larger $L_{1}$ norms of optimal solutions. This finding calls into question widely adopted $L_{1}$ penalization techniques for network pruning. We further challenge the common assumption that optimization algorithms like RMSProp behave similarly in differentiable and non-differentiable contexts. Expanding on the Edge of Stability phenomenon, we demonstrate its occurrence in a broader class of functions, including Lipschitz continuous convex differentiable functions. This finding raises important questions about its relevance and interpretation in non-convex, non-differentiable neural networks, particularly those using ReLU activations. Our work identifies critical misunderstandings of NDGMs in influential literature, stemming from an overreliance on strong smoothness assumptions. These findings necessitate a reevaluation of optimization dynamics in deep learning, emphasizing the crucial need for more nuanced theoretical foundations in analyzing these complex systems.
comment: Fixing more proofs
♻ ☆ Fact-Checking of AI-Generated Reports
With advances in generative artificial intelligence (AI), it is now possible to produce realistic-looking automated reports for preliminary reads of radiology images. This can expedite clinical workflows, improve accuracy and reduce overall costs. However, it is also well-known that such models often hallucinate, leading to false findings in the generated reports. In this paper, we propose a new method of fact-checking of AI-generated reports using their associated images. Specifically, the developed examiner differentiates real and fake sentences in reports by learning the association between an image and sentences describing real or potentially fake findings. To train such an examiner, we first created a new dataset of fake reports by perturbing the findings in the original ground truth radiology reports associated with images. Text encodings of real and fake sentences drawn from these reports are then paired with image encodings to learn the mapping to real/fake labels. The utility of such an examiner is demonstrated for verifying automatically generated reports by detecting and removing fake sentences. Future generative AI approaches can use the resulting tool to validate their reports leading to a more responsible use of AI in expediting clinical workflows.
comment: 10 pages, 3 figures, 3 tables
Artificial Intelligence 99
☆ Something Just Like TRuST : Toxicity Recognition of Span and Target
Toxicity in online content, including content generated by language models, has become a critical concern due to its potential for negative psychological and social impact. This paper introduces TRuST, a comprehensive dataset designed to improve toxicity detection that merges existing datasets, and has labels for toxicity, target social group, and toxic spans. It includes a diverse range of target groups such as ethnicity, gender, religion, disability, and politics, with both human/machine-annotated and human machine-generated data. We benchmark state-of-the-art large language models (LLMs) on toxicity detection, target group identification, and toxic span extraction. We find that fine-tuned models consistently outperform zero-shot and few-shot prompting, though performance remains low for certain social groups. Further, reasoning capabilities do not significantly improve performance, indicating that LLMs have weak social reasoning skills.
☆ Sensitivity-Aware Density Estimation in Multiple Dimensions
We formulate an optimization problem to estimate probability densities in the context of multidimensional problems that are sampled with uneven probability. It considers detector sensitivity as an heterogeneous density and takes advantage of the computational speed and flexible boundary conditions offered by splines on a grid. We choose to regularize the Hessian of the spline via the nuclear norm to promote sparsity. As a result, the method is spatially adaptive and stable against the choice of the regularization parameter, which plays the role of the bandwidth. We test our computational pipeline on standard densities and provide software. We also present a new approach to PET rebinning as an application of our framework.
☆ A Data-Based Architecture for Flight Test without Test Points
The justification for the "test point" derives from the test pilot's obligation to reproduce faithfully the pre-specified conditions of some model prediction. Pilot deviation from those conditions invalidates the model assumptions. Flight test aids have been proposed to increase accuracy on more challenging test points. However, the very existence of databands and tolerances is the problem more fundamental than inadequate pilot skill. We propose a novel approach, which eliminates test points. We start with a high-fidelity digital model of an air vehicle. Instead of using this model to generate a point prediction, we use a machine learning method to produce a reduced-order model (ROM). The ROM has two important properties. First, it can generate a prediction based on any set of conditions the pilot flies. Second, if the test result at those conditions differ from the prediction, the ROM can be updated using the new data. The outcome of flight test is thus a refined ROM at whatever conditions were flown. This ROM in turn updates and validates the high-fidelity model. We present a single example of this "point-less" architecture, using T-38C flight test data. We first use a generic aircraft model to build a ROM of longitudinal pitching motion as a hypersurface. We then ingest unconstrained flight test data and use Gaussian Process Regression to update and condition the hypersurface. By proposing a second-order equivalent system for the T-38C, this hypersurface then generates parameters necessary to assess MIL-STD-1797B compliance for longitudinal dynamics.
comment: The Society of Experimental Test Pilots Annual Symposium, vol. 68th, 2024
☆ ResearchCodeBench: Benchmarking LLMs on Implementing Novel Machine Learning Research Code
Large language models (LLMs) have shown promise in transforming machine learning research, yet their capability to faithfully implement novel ideas from recent research papers-ideas unseen during pretraining-remains unclear. We introduce ResearchCodeBench, a benchmark of 212 coding challenges that evaluates LLMs' ability to translate cutting-edge ML contributions from top 2024-2025 research papers into executable code. We assessed 30+ proprietary and open-source LLMs, finding that even the best models correctly implement less than 40% of the code. We find Gemini-2.5-Pro-Preview to perform best at 37.3% success rate, with O3 (High) and O4-mini (High) following behind at 32.3% and 30.8% respectively. We present empirical findings on performance comparison, contamination, and error patterns. By providing a rigorous and community-driven evaluation platform, ResearchCodeBench enables continuous understanding and advancement of LLM-driven innovation in research code generation.
☆ Explain-then-Process: Using Grammar Prompting to Enhance Grammatical Acceptability Judgments ACL 2025
Large language models (LLMs) can explain grammatical rules, yet they often fail to apply those rules when judging sentence acceptability. We present "grammar prompting", an explain-then-process paradigm: a large LLM first produces a concise explanation of the relevant syntactic phenomenon, then that explanation is fed back as additional context to the target model -- either an LLM or a smaller language model (SLM) -- before deciding which sentence of a minimal pair is grammatical. On the English BLiMP, Chinese SLING, and Russian RuBLiMP benchmarks, this simple prompt design yields substantial improvements over strong baselines across many syntactic phenomena. Feeding an LLM's metalinguistic explanation back to the target model bridges the gap between knowing a rule and using it. On SLMs, grammar prompting alone trims the average LLM-SLM accuracy gap by about 20%, and when paired with chain-of-thought, by 56% (13.0 pp -> 5.8 pp), all at negligible cost. The lightweight, language-agnostic cue lets low-cost SLMs approach frontier-LLM performance in multilingual settings.
comment: Accepted at ACL 2025 Findings
☆ LAM SIMULATOR: Advancing Data Generation for Large Action Model Training via Online Exploration and Trajectory Feedback
Large Action Models (LAMs) for AI Agents offer incredible potential but face challenges due to the need for high-quality training data, especially for multi-steps tasks that involve planning, executing tool calls, and responding to feedback. To address these issues, we present LAM SIMULATOR, a comprehensive framework designed for online exploration of agentic tasks with high-quality feedback. Our framework features a dynamic task query generator, an extensive collection of tools, and an interactive environment where Large Language Model (LLM) Agents can call tools and receive real-time feedback. This setup enables LLM Agents to explore and solve tasks autonomously, facilitating the discovery of multiple approaches to tackle any given task. The resulting action trajectory data are then used to create high-quality training datasets for LAMs. Our experiments on popular agentic benchmarks, ToolBench and CRMArena, highlight the effectiveness of LAM SIMULATOR: models trained with self-generated datasets using our framework achieve significant performance gains, up to a 49.3\% improvement over their original baselines. LAM SIMULATOR requires minimal human input during dataset creation, highlighting LAM SIMULATOR's efficiency and effectiveness in speeding up development of AI agents.
comment: LAM Simulator framework for agentic data generation
☆ QARI-OCR: High-Fidelity Arabic Text Recognition through Multimodal Large Language Model Adaptation
The inherent complexities of Arabic script; its cursive nature, diacritical marks (tashkeel), and varied typography, pose persistent challenges for Optical Character Recognition (OCR). We present Qari-OCR, a series of vision-language models derived from Qwen2-VL-2B-Instruct, progressively optimized for Arabic through iterative fine-tuning on specialized synthetic datasets. Our leading model, QARI v0.2, establishes a new open-source state-of-the-art with a Word Error Rate (WER) of 0.160, Character Error Rate (CER) of 0.061, and BLEU score of 0.737 on diacritically-rich texts. Qari-OCR demonstrates superior handling of tashkeel, diverse fonts, and document layouts, alongside impressive performance on low-resolution images. Further explorations (QARI v0.3) showcase strong potential for structural document understanding and handwritten text. This work delivers a marked improvement in Arabic OCR accuracy and efficiency, with all models and datasets released to foster further research.
☆ Why Gradients Rapidly Increase Near the End of Training
During long-duration Large Language Model (LLM) training runs the gradient norm increases rapidly near the end of training. In this short note, we show that this increase is due to an unintended interaction between weight decay, normalization layers, and the learning rate schedule. We propose a simple correction that fixes this behavior while also resulting in lower loss values throughout training.
☆ Angles Don't Lie: Unlocking Training-Efficient RL Through the Model's Own Signals
Current Reinforcement Fine-tuning (RFT) paradigms for Large Language Models (LLMs) suffer from sample inefficiency due to the redundant exposure of identical queries under uniform data sampling. While previous work has explored curriculum learning via heuristic difficulty metrics, these strategies exhibit limitations by neglecting the intrinsic learning signals generated by the model itself, thus leading to suboptimal training regimes. In this paper, we identify a model-inherent signal termed angle concentration that effectively reflects an LLM's capacity to learn from specific data. We theoretically and empirically demonstrate a correlation between the angular distribution of token hidden state vectors and the resulting gradient, revealing a learning preference for data exhibiting higher angle concentration. Inspired by this finding, we propose GAIN-RL, a Gradient-driven Angle-Informed Navigated RL framework. By leveraging the model's intrinsic angle concentration signal, GAIN-RL dynamically selects training data in each epoch, ensuring consistently impactful gradient updates and thus significantly enhancing overall training efficiency. Empirical evaluations show that GAIN-RL (GRPO) achieves over a 2.5x acceleration in training efficiency across diverse mathematical and coding tasks and varying model scales. Furthermore, GAIN-RL (GRPO)'s efficient sampling yields data-efficient training, achieving better performance with half the original data compared to vanilla GRPO with full training data. Code is realsed at https://github.com/wangqinsi1/GAINRL/tree/main.
☆ The State of Large Language Models for African Languages: Progress and Challenges
Large Language Models (LLMs) are transforming Natural Language Processing (NLP), but their benefits are largely absent for Africa's 2,000 low-resource languages. This paper comparatively analyzes African language coverage across six LLMs, eight Small Language Models (SLMs), and six Specialized SLMs (SSLMs). The evaluation covers language coverage, training sets, technical limitations, script problems, and language modelling roadmaps. The work identifies 42 supported African languages and 23 available public data sets, and it shows a big gap where four languages (Amharic, Swahili, Afrikaans, and Malagasy) are always treated while there is over 98\% of unsupported African languages. Moreover, the review shows that just Latin, Arabic, and Ge'ez scripts are identified while 20 active scripts are neglected. Some of the primary challenges are lack of data, tokenization biases, computational costs being very high, and evaluation issues. These issues demand language standardization, corpus development by the community, and effective adaptation methods for African languages.
♻ ☆ How well do LLMs reason over tabular data, really?
Large Language Models (LLMs) excel in natural language tasks, but less is known about their reasoning capabilities over tabular data. Prior analyses devise evaluation strategies that poorly reflect an LLM's realistic performance on tabular queries. Moreover, we have a limited understanding of the robustness of LLMs towards realistic variations in tabular inputs. Therefore, we ask: Can general-purpose LLMs reason over tabular data, really?, and focus on two questions 1) are tabular reasoning capabilities of general-purpose LLMs robust to real-world characteristics of tabular inputs, and 2) how can we realistically evaluate an LLM's performance on analytical tabular queries? Building on a recent tabular reasoning benchmark, we first surface shortcomings of its multiple-choice prompt evaluation strategy, as well as commonly used free-form text metrics such as SacreBleu and BERT-score. We show that an LLM-as-a-judge procedure yields more reliable performance insights and unveil a significant deficit in tabular reasoning performance of LLMs. We then extend the tabular inputs reflecting three common characteristics in practice: 1) missing values, 2) duplicate entities, and 3) structural variations. Experiments show that the tabular reasoning capabilities of general-purpose LLMs suffer from these variations, stressing the importance of improving their robustness for realistic tabular inputs.
comment: 10 pages, 4 figures
♻ ☆ Causally Reliable Concept Bottleneck Models
Concept-based models are an emerging paradigm in deep learning that constrains the inference process to operate through human-interpretable variables, facilitating explainability and human interaction. However, these architectures, on par with popular opaque neural models, fail to account for the true causal mechanisms underlying the target phenomena represented in the data. This hampers their ability to support causal reasoning tasks, limits out-of-distribution generalization, and hinders the implementation of fairness constraints. To overcome these issues, we propose Causally reliable Concept Bottleneck Models (C$^2$BMs), a class of concept-based architectures that enforce reasoning through a bottleneck of concepts structured according to a model of the real-world causal mechanisms. We also introduce a pipeline to automatically learn this structure from observational data and unstructured background knowledge (e.g., scientific literature). Experimental evidence suggests that C$^2$BMs are more interpretable, causally reliable, and improve responsiveness to interventions w.r.t. standard opaque and concept-based models, while maintaining their accuracy.
♻ ☆ Exploring Flow-Lenia Universes with a Curiosity-driven AI Scientist: Discovering Diverse Ecosystem Dynamics
We present a method for the automated discovery of system-level dynamics in Flow-Lenia--a continuous cellular automaton (CA) with mass conservation and parameter localization-using a curiosity--driven AI scientist. This method aims to uncover processes leading to self-organization of evolutionary and ecosystemic dynamics in CAs. We build on previous work which uses diversity search algorithms in Lenia to find self-organized individual patterns, and extend it to large environments that support distinct interacting patterns. We adapt Intrinsically Motivated Goal Exploration Processes (IMGEPs) to drive exploration of diverse Flow-Lenia environments using simulation-wide metrics, such as evolutionary activity, compression-based complexity, and multi-scale entropy. We test our method in two experiments, showcasing its ability to illuminate significantly more diverse dynamics compared to random search. We show qualitative results illustrating how ecosystemic simulations enable self-organization of complex collective behaviors not captured by previous individual pattern search and analysis. We complement automated discovery with an interactive exploration tool, creating an effective human-AI collaborative workflow for scientific investigation. Though demonstrated specifically with Flow-Lenia, this methodology provides a framework potentially applicable to other parameterizable complex systems where understanding emergent collective properties is of interest.
comment: 10 pages, 10 figures
♻ ☆ Survey on Vision-Language-Action Models
This paper presents an AI-generated review of Vision-Language-Action (VLA) models, summarizing key methodologies, findings, and future directions. The content is produced using large language models (LLMs) and is intended only for demonstration purposes. This work does not represent original research, but highlights how AI can help automate literature reviews. As AI-generated content becomes more prevalent, ensuring accuracy, reliability, and proper synthesis remains a challenge. Future research will focus on developing a structured framework for AI-assisted literature reviews, exploring techniques to enhance citation accuracy, source credibility, and contextual understanding. By examining the potential and limitations of LLM in academic writing, this study aims to contribute to the broader discussion of integrating AI into research workflows. This work serves as a preliminary step toward establishing systematic approaches for leveraging AI in literature review generation, making academic knowledge synthesis more efficient and scalable.
comment: arXiv admin note: This submission has been withdrawn due to serious violation of arXiv policies for acceptable submissions
♻ ☆ AdaWorld: Learning Adaptable World Models with Latent Actions ICML 2025
World models aim to learn action-controlled future prediction and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this limitation, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: ICML 2025. Project page: https://adaptable-world-model.github.io/, code: https://github.com/Little-Podi/AdaWorld, model: https://huggingface.co/Little-Podi/AdaWorld
♻ ☆ GCoT: Chain-of-Thought Prompt Learning for Graphs KDD2025
Chain-of-thought (CoT) prompting has achieved remarkable success in natural language processing (NLP). However, its vast potential remains largely unexplored for graphs. This raises an interesting question: How can we design CoT prompting for graphs to guide graph models to learn step by step? On one hand, unlike natural languages, graphs are non-linear and characterized by complex topological structures. On the other hand, many graphs lack textual data, making it difficult to formulate language-based CoT prompting. In this work, we propose the first CoT prompt learning framework for text-free graphs, GCoT. Specifically, we decompose the adaptation process for each downstream task into a series of inference steps, with each step consisting of prompt-based inference, ``thought'' generation, and thought-conditioned prompt learning. While the steps mimic CoT prompting in NLP, the exact mechanism differs significantly. Specifically, at each step, an input graph, along with a prompt, is first fed into a pre-trained graph encoder for prompt-based inference. We then aggregate the hidden layers of the encoder to construct a ``thought'', which captures the working state of each node in the current step. Conditioned on this thought, we learn a prompt specific to each node based on the current state. These prompts are fed into the next inference step, repeating the cycle. To evaluate and analyze the effectiveness of GCoT, we conduct comprehensive experiments on eight public datasets, which demonstrate the advantage of our approach.
comment: Accepted by SIGKDD2025
♻ ☆ Emergence and Effectiveness of Task Vectors in In-Context Learning: An Encoder Decoder Perspective
Autoregressive transformers exhibit adaptive learning through in-context learning (ICL), which begs the question of how. Prior works have shown that transformers represent the ICL tasks as vectors in their representations. In this paper, we leverage the encoding-decoding framework to study how transformers form task vectors during pretraining and how their task encoding quality predicts ICL task performance. On synthetic ICL tasks, we analyze the training dynamics of a small transformer and report the coupled emergence of task encoding and decoding. As the model learns to encode different latent tasks (e.g., "Finding the first noun in a sentence.") into distinct, separable representations, it concurrently builds conditional decoding algorithms and improves its ICL performance. We validate this phenomenon across pretrained models of varying scales (Gemma-2 2B/9B/27B, Llama-3.1 8B/70B) and over the course of pretraining in OLMo-7B. Further, we demonstrate that the quality of task encoding inferred from representations predicts ICL performance, and that, surprisingly, finetuning the earlier layers can improve the task encoding and performance more than finetuning the latter layers. Our empirical insights shed light into better understanding the success and failure modes of large language models via their representations.
comment: https://charming-centaur-089.notion.site/Emergence-and-Effectiveness-of-Task-Vectors-in-In-Context-Learning-An-Encoder-Decoder-Perspective-2054664a1d59814f8401cded3332fce4
♻ ☆ Bone Soups: A Seek-and-Soup Model Merging Approach for Controllable Multi-Objective Generation ACL 2025
User information needs are often highly diverse and varied. A key challenge in current research is how to achieve controllable multi-objective generation while enabling rapid adaptation to accommodate diverse user demands during test time. Existing solutions, such as Rewarded Soup, focus on merging language models individually tuned on single objectives. While easy to implement and widely used, these approaches face limitations in achieving optimal performance due to their disregard for the impacts of competing objectives on model tuning. To address this issue, we propose Bone Soup, a novel model merging approach that first seeks a series of backbone models by considering the impacts of multiple objectives and then makes the soup (i.e., merge the backbone models). Specifically, Bone Soup begins by training multiple backbone models for different objectives using multi-objective reinforcement learning. Each backbone model is guided by a combination of backbone reward signals. To ensure that these models are optimal for the Pareto front, the backbone rewards are crafted by combining standard reward functions into basis vectors, which can then be modified through a rule-based construction method. Bone Soup leverages a symmetric circulant matrix mapping to generate the merging coefficients, which are used to merge the backbone models according to user preferences. Extensive experimental results demonstrate that Bone Soup exhibits strong controllability and Pareto optimality in controllable multi-objective generation, providing a more effective and efficient approach to addressing diverse user needs at test time.
comment: This paper is accepted by the ACL 2025 Main Conference
♻ ☆ Safety at Scale: A Comprehensive Survey of Large Model Safety
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.
comment: 47 pages, 3 figures, 11 tables; GitHub: https://github.com/xingjunm/Awesome-Large-Model-Safety
♻ ☆ Depth-Constrained ASV Navigation with Deep RL and Limited Sensing
Autonomous Surface Vehicles (ASVs) play a crucial role in maritime operations, yet their navigation in shallow-water environments remains challenging due to dynamic disturbances and depth constraints. Traditional navigation strategies struggle with limited sensor information, making safe and efficient operation difficult. In this paper, we propose a reinforcement learning (RL) framework for ASV navigation under depth constraints, where the vehicle must reach a target while avoiding unsafe areas with only a single depth measurement per timestep from a downward-facing Single Beam Echosounder (SBES). To enhance environmental awareness, we integrate Gaussian Process (GP) regression into the RL framework, enabling the agent to progressively estimate a bathymetric depth map from sparse sonar readings. This approach improves decision-making by providing a richer representation of the environment. Furthermore, we demonstrate effective sim-to-real transfer, ensuring that trained policies generalize well to real-world aquatic conditions. Experimental results validate our method's capability to improve ASV navigation performance while maintaining safety in challenging shallow-water environments.
comment: 8 pages, 8 figures
♻ ☆ Inverse Entropic Optimal Transport Solves Semi-supervised Learning via Data Likelihood Maximization
Learning conditional distributions $\pi^*(\cdot|x)$ is a central problem in machine learning, which is typically approached via supervised methods with paired data $(x,y) \sim \pi^*$. However, acquiring paired data samples is often challenging, especially in problems such as domain translation. This necessitates the development of $\textit{semi-supervised}$ models that utilize both limited paired data and additional unpaired i.i.d. samples $x \sim \pi^*_x$ and $y \sim \pi^*_y$ from the marginal distributions. The usage of such combined data is complex and often relies on heuristic approaches. To tackle this issue, we propose a new learning paradigm that integrates both paired and unpaired data $\textbf{seamlessly}$ using the data likelihood maximization techniques. We demonstrate that our approach also connects intriguingly with inverse entropic optimal transport (OT). This finding allows us to apply recent advances in computational OT to establish an $\textbf{end-to-end}$ learning algorithm to get $\pi^*(\cdot|x)$. In addition, we derive the universal approximation property, demonstrating that our approach can theoretically recover true conditional distributions with arbitrarily small error. Furthermore, we demonstrate through empirical tests that our method effectively learns conditional distributions using paired and unpaired data simultaneously.
♻ ☆ In the Picture: Medical Imaging Datasets, Artifacts, and their Living Review
Datasets play a critical role in medical imaging research, yet issues such as label quality, shortcuts, and metadata are often overlooked. This lack of attention may harm the generalizability of algorithms and, consequently, negatively impact patient outcomes. While existing medical imaging literature reviews mostly focus on machine learning (ML) methods, with only a few focusing on datasets for specific applications, these reviews remain static -- they are published once and not updated thereafter. This fails to account for emerging evidence, such as biases, shortcuts, and additional annotations that other researchers may contribute after the dataset is published. We refer to these newly discovered findings of datasets as research artifacts. To address this gap, we propose a living review that continuously tracks public datasets and their associated research artifacts across multiple medical imaging applications. Our approach includes a framework for the living review to monitor data documentation artifacts, and an SQL database to visualize the citation relationships between research artifact and dataset. Lastly, we discuss key considerations for creating medical imaging datasets, review best practices for data annotation, discuss the significance of shortcuts and demographic diversity, and emphasize the importance of managing datasets throughout their entire lifecycle. Our demo is publicly available at http://inthepicture.itu.dk/.
comment: ACM Conference on Fairness, Accountability, and Transparency - FAccT 2025
♻ ☆ PepTune: De Novo Generation of Therapeutic Peptides with Multi-Objective-Guided Discrete Diffusion ICML 2025
We present PepTune, a multi-objective discrete diffusion model for simultaneous generation and optimization of therapeutic peptide SMILES. Built on the Masked Discrete Language Model (MDLM) framework, PepTune ensures valid peptide structures with a novel bond-dependent masking schedule and invalid loss function. To guide the diffusion process, we introduce Monte Carlo Tree Guidance (MCTG), an inference-time multi-objective guidance algorithm that balances exploration and exploitation to iteratively refine Pareto-optimal sequences. MCTG integrates classifier-based rewards with search-tree expansion, overcoming gradient estimation challenges and data sparsity. Using PepTune, we generate diverse, chemically-modified peptides simultaneously optimized for multiple therapeutic properties, including target binding affinity, membrane permeability, solubility, hemolysis, and non-fouling for various disease-relevant targets. In total, our results demonstrate that MCTG for masked discrete diffusion is a powerful and modular approach for multi-objective sequence design in discrete state spaces.
comment: Published at ICML 2025. (Proceedings of the 42nd International Conference on Machine Learning, Vancouver, Canada)
♻ ☆ Erwin: A Tree-based Hierarchical Transformer for Large-scale Physical Systems ICML 2025
Large-scale physical systems defined on irregular grids pose significant scalability challenges for deep learning methods, especially in the presence of long-range interactions and multi-scale coupling. Traditional approaches that compute all pairwise interactions, such as attention, become computationally prohibitive as they scale quadratically with the number of nodes. We present Erwin, a hierarchical transformer inspired by methods from computational many-body physics, which combines the efficiency of tree-based algorithms with the expressivity of attention mechanisms. Erwin employs ball tree partitioning to organize computation, which enables linear-time attention by processing nodes in parallel within local neighborhoods of fixed size. Through progressive coarsening and refinement of the ball tree structure, complemented by a novel cross-ball interaction mechanism, it captures both fine-grained local details and global features. We demonstrate Erwin's effectiveness across multiple domains, including cosmology, molecular dynamics, PDE solving, and particle fluid dynamics, where it consistently outperforms baseline methods both in accuracy and computational efficiency.
comment: Accepted to ICML 2025. Code: https://github.com/maxxxzdn/erwin
♻ ☆ DiffVLA: Vision-Language Guided Diffusion Planning for Autonomous Driving
Research interest in end-to-end autonomous driving has surged owing to its fully differentiable design integrating modular tasks, i.e. perception, prediction and planing, which enables optimization in pursuit of the ultimate goal. Despite the great potential of the end-to-end paradigm, existing methods suffer from several aspects including expensive BEV (bird's eye view) computation, action diversity, and sub-optimal decision in complex real-world scenarios. To address these challenges, we propose a novel hybrid sparse-dense diffusion policy, empowered by a Vision-Language Model (VLM), called Diff-VLA. We explore the sparse diffusion representation for efficient multi-modal driving behavior. Moreover, we rethink the effectiveness of VLM driving decision and improve the trajectory generation guidance through deep interaction across agent, map instances and VLM output. Our method shows superior performance in Autonomous Grand Challenge 2025 which contains challenging real and reactive synthetic scenarios. Our methods achieves 45.0 PDMS.
comment: 4pages
♻ ☆ SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator ICML 2025
Large Language Models (LLMs) have exhibited exceptional performance across a spectrum of natural language processing tasks. However, their substantial sizes pose considerable challenges, particularly in computational demands and inference speed, due to their quadratic complexity. In this work, we have identified a key pattern: certain seemingly meaningless separator tokens (i.e., punctuations) contribute disproportionately to attention scores compared to semantically meaningful tokens. This observation suggests that information of the segments between these separator tokens can be effectively condensed into the separator tokens themselves without significant information loss. Guided by this insight, we introduce SepLLM, a plug-and-play framework that accelerates inference by compressing these segments and eliminating redundant tokens. Additionally, we implement efficient kernels for training acceleration. Experimental results across training-free, training-from-scratch, and post-training settings demonstrate SepLLM's effectiveness. Notably, using the Llama-3-8B backbone, SepLLM achieves over 50% reduction in KV cache on the GSM8K-CoT benchmark while maintaining comparable performance. Furthermore, in streaming settings, SepLLM effectively processes sequences of up to 4 million tokens or more while maintaining consistent language modeling capabilities.
comment: Accepted to ICML 2025
♻ ☆ Enhancing LLM-based Hatred and Toxicity Detection with Meta-Toxic Knowledge Graph
The rapid growth of social media platforms has raised significant concerns regarding online content toxicity. When Large Language Models (LLMs) are used for toxicity detection, two key challenges emerge: 1) the absence of domain-specific toxic knowledge leads to false negatives; 2) the excessive sensitivity of LLMs to toxic speech results in false positives, limiting freedom of speech. To address these issues, we propose a novel method called MetaTox, leveraging graph search on a meta-toxic knowledge graph to enhance hatred and toxicity detection. First, we construct a comprehensive meta-toxic knowledge graph by utilizing LLMs to extract toxic information through a three-step pipeline, with toxic benchmark datasets serving as corpora. Second, we query the graph via retrieval and ranking processes to supplement accurate, relevant toxic knowledge. Extensive experiments and in-depth case studies across multiple datasets demonstrate that our MetaTox significantly decreases the false positive rate while boosting overall toxicity detection performance. Our code is available at https://github.com/YiboZhao624/MetaTox.
comment: 8 pages of content
♻ ☆ E^2GraphRAG: Streamlining Graph-based RAG for High Efficiency and Effectiveness
Graph-based RAG methods like GraphRAG have shown promising global understanding of the knowledge base by constructing hierarchical entity graphs. However, they often suffer from inefficiency and rely on manually pre-defined query modes, limiting practical use. In this paper, we propose E^2GraphRAG, a streamlined graph-based RAG framework that improves both Efficiency and Effectiveness. During the indexing stage, E^2GraphRAG constructs a summary tree with large language models and an entity graph with SpaCy based on document chunks. We then construct bidirectional indexes between entities and chunks to capture their many-to-many relationships, enabling fast lookup during both local and global retrieval. For the retrieval stage, we design an adaptive retrieval strategy that leverages the graph structure to retrieve and select between local and global modes. Experiments show that E^2GraphRAG achieves up to 10 times faster indexing than GraphRAG and 100 times speedup over LightRAG in retrieval while maintaining competitive QA performance.
comment: 16 pages
♻ ☆ Enhancing Transformers for Generalizable First-Order Logical Entailment ACL 2025
Transformers, as the fundamental deep learning architecture, have demonstrated great capability in reasoning. This paper studies the generalizable first-order logical reasoning ability of transformers with their parameterized knowledge and how to improve it. Transformers' capability of first-order reasoning is further captured by whether they can conduct first-order logical entailment, which is quantitatively measured by their performance in answering knowledge graph queries. We establish the connections between (1) two types of distribution shifts studied in out-of-distribution generalization and (2) unseen knowledge and query settings discussed in the task of knowledge graph query answering, which makes it possible to characterize the fine-grained generalizability. Results on our comprehensive dataset showed that transformers outperform previous methods designed particularly for this task and provided detailed empirical evidence about the impact of the input query syntax, token embedding, and transformer architectures on the reasoning capability of transformers. Interestingly, our results revealed the mismatch of positional encoding and other design choices of transformer architectures in previous practices. Motivated by this, we propose TEGA, a logic-aware architecture that significantly improves the performance in generalizable first-order logical entailment.
comment: ACL 2025 Main
♻ ☆ CNNSum: Exploring Long-Context Summarization with Large Language Models in Chinese Novels ACL 2025
Large language models (LLMs) have been well-researched in various long-context tasks. However, the scarcity of long-context summarization datasets hinders progress in this area. To address this, we introduce CNNSum, a multi-scale long-context summarization benchmark based on Chinese novels, featuring human-driven annotations across four subsets totaling 695 samples, with lengths ranging from 16k to 128k. We benchmark numerous LLMs and conduct detailed human assessments to summarize abnormal output types. Furthermore, we extensively explore how to improve long-context summarization. In our study: (1) Advanced LLMs may generate much subjective commentary, leading to vague summaries. (2) Currently, long-context summarization mainly relies on memory ability. The advantages of Large LLMs are hard to utilize, thus small LLMs are more cost-effective. (3) Different prompt types paired with various version models may cause large performance gaps. In further fine-tuning, these can be mitigated, and the Base version models perform better. (4) LLMs with RoPE-base scaled exhibit strong extrapolation potential; using short-context data can significantly improve long-context summarization performance. However, further applying other interpolation methods requires careful selection. (5) CNNSum provides more reliable evaluation results than other benchmarks. We release CNNSum to advance future research.(https://github.com/CxsGhost/CNNSum)
comment: Accepted to ACL 2025 (Findings)
♻ ☆ NMCSE: Noise-Robust Multi-Modal Coupling Signal Estimation Method via Optimal Transport for Cardiovascular Disease Detection
Electrocardiogram (ECG) and Phonocardiogram (PCG) signals are linked by a latent coupling signal representing the electrical-to-mechanical cardiac transformation. While valuable for cardiovascular disease (CVD) detection, this coupling signal is traditionally estimated using deconvolution methods that amplify noise, limiting clinical utility. In this paper, we propose Noise-Robust Multi-Modal Coupling Signal Estimation (NMCSE), which reformulates the problem as distribution matching via optimal transport theory. By jointly optimizing amplitude and temporal alignment, NMCSE mitigates noise amplification without additional preprocessing. Integrated with our Temporal-Spatial Feature Extraction network, NMCSE enables robust multi-modal CVD detection. Experiments on the PhysioNet 2016 dataset with realistic hospital noise demonstrate that NMCSE reduces estimation errors by approximately 30% in Mean Squared Error while maintaining higher Pearson Correlation Coefficients across all tested signal-to-noise ratios. Our approach achieves 97.38% accuracy and 0.98 AUC in CVD detection, outperforming state-of-the-art methods and demonstrating robust performance for real-world clinical applications.
♻ ☆ Solving Multiagent Path Finding on Highly Centralized Networks
The Mutliagent Path Finding (MAPF) problem consists of identifying the trajectories that a set of agents should follow inside a given network in order to reach their desired destinations as soon as possible, but without colliding with each other. We aim to minimize the maximum time any agent takes to reach their goal, ensuring optimal path length. In this work, we complement a recent thread of results that aim to systematically study the algorithmic behavior of this problem, through the parameterized complexity point of view. First, we show that MAPF is NP-hard when the given network has a star-like topology (bounded vertex cover number) or is a tree with $11$ leaves. Both of these results fill important gaps in our understanding of the tractability of this problem that were left untreated in the recent work of [Fioravantes et al. Exact Algorithms and Lowerbounds for Multiagent Path Finding: Power of Treelike Topology. AAAI'24]. Nevertheless, our main contribution is an exact algorithm that scales well as the input grows (FPT) when the topology of the given network is highly centralized (bounded distance to clique). This parameter is significant as it mirrors real-world networks. In such environments, a bunch of central hubs (e.g., processing areas) are connected to only few peripheral nodes.
♻ ☆ TextDestroyer: A Training- and Annotation-Free Diffusion Method for Destroying Anomal Text from Images
In this paper, we propose TextDestroyer, the first training- and annotation-free method for scene text destruction using a pre-trained diffusion model. Existing scene text removal models require complex annotation and retraining, and may leave faint yet recognizable text information, compromising privacy protection and content concealment. TextDestroyer addresses these issues by employing a three-stage hierarchical process to obtain accurate text masks. Our method scrambles text areas in the latent start code using a Gaussian distribution before reconstruction. During the diffusion denoising process, self-attention key and value are referenced from the original latent to restore the compromised background. Latent codes saved at each inversion step are used for replacement during reconstruction, ensuring perfect background restoration. The advantages of TextDestroyer include: (1) it eliminates labor-intensive data annotation and resource-intensive training; (2) it achieves more thorough text destruction, preventing recognizable traces; and (3) it demonstrates better generalization capabilities, performing well on both real-world scenes and generated images.
♻ ☆ LEGO-Puzzles: How Good Are MLLMs at Multi-Step Spatial Reasoning?
Multi-step spatial reasoning entails understanding and reasoning about spatial relationships across multiple sequential steps, which is crucial for tackling complex real-world applications, such as robotic manipulation, autonomous navigation, and automated assembly. To assess how well current Multimodal Large Language Models (MLLMs) have acquired this fundamental capability, we introduce LEGO-Puzzles, a scalable benchmark designed to evaluate both spatial understanding and sequential reasoning in MLLMs through LEGO-based tasks. LEGO-Puzzles consists of 1,100 carefully curated visual question-answering (VQA) samples spanning 11 distinct tasks, ranging from basic spatial understanding to complex multi-step reasoning. Based on LEGO-Puzzles, we conduct a comprehensive evaluation of 20 state-of-the-art MLLMs and uncover significant limitations in their spatial reasoning capabilities: even the most powerful MLLMs can answer only about half of the test cases, whereas human participants achieve over 90% accuracy. Furthermore, based on LEGO-Puzzles, we design generation tasks to investigate whether MLLMs can transfer their spatial understanding and reasoning abilities to image generation. Our experiments show that only GPT-4o and Gemini-2.0-Flash exhibit a limited ability to follow these instructions, while other MLLMs either replicate the input image or generate completely irrelevant outputs. Overall, LEGO-Puzzles exposes critical deficiencies in existing MLLMs' spatial understanding and sequential reasoning capabilities, and underscores the need for further advancements in multimodal spatial reasoning.
comment: 11 pages, 3 figures
♻ ☆ A Conformal Risk Control Framework for Granular Word Assessment and Uncertainty Calibration of CLIPScore Quality Estimates ACL 2025
This study explores current limitations of learned image captioning evaluation metrics, specifically the lack of granular assessments for errors within captions, and the reliance on single-point quality estimates without considering uncertainty. To address the limitations, we propose a simple yet effective strategy for generating and calibrating distributions of CLIPScore values. Leveraging a model-agnostic conformal risk control framework, we calibrate CLIPScore values for task-specific control variables, tackling the aforementioned limitations. Experimental results demonstrate that using conformal risk control, over score distributions produced with simple methods such as input masking, can achieve competitive performance compared to more complex approaches. Our method effectively detects erroneous words, while providing formal guarantees aligned with desired risk levels. It also improves the correlation between uncertainty estimations and prediction errors, thus enhancing the overall reliability of caption evaluation metrics.
comment: Accepted at Findings ACL 2025
♻ ☆ A is for Absorption: Studying Feature Splitting and Absorption in Sparse Autoencoders
Sparse Autoencoders (SAEs) aim to decompose the activation space of large language models (LLMs) into human-interpretable latent directions or features. As we increase the number of features in the SAE, hierarchical features tend to split into finer features ("math" may split into "algebra", "geometry", etc.), a phenomenon referred to as feature splitting. However, we show that sparse decomposition and splitting of hierarchical features is not robust. Specifically, we show that seemingly monosemantic features fail to fire where they should, and instead get "absorbed" into their children features. We coin this phenomenon feature absorption, and show that it is caused by optimizing for sparsity in SAEs whenever the underlying features form a hierarchy. We introduce a metric to detect absorption in SAEs, and validate our findings empirically on hundreds of LLM SAEs. Our investigation suggests that varying SAE sizes or sparsity is insufficient to solve this issue. We discuss the implications of feature absorption in SAEs and some potential approaches to solve the fundamental theoretical issues before SAEs can be used for interpreting LLMs robustly and at scale.
♻ ☆ Inducing, Detecting and Characterising Neural Modules: A Pipeline for Functional Interpretability in Reinforcement Learning
Interpretability is crucial for ensuring RL systems align with human values. However, it remains challenging to achieve in complex decision making domains. Existing methods frequently attempt interpretability at the level of fundamental model units, such as neurons or decision nodes: an approach which scales poorly to large models. Here, we instead propose an approach to interpretability at the level of functional modularity. We show how encouraging sparsity and locality in network weights leads to the emergence of functional modules in RL policy networks. To detect these modules, we develop an extended Louvain algorithm which uses a novel `correlation alignment' metric to overcome the limitations of standard network analysis techniques when applied to neural network architectures. Applying these methods to 2D and 3D MiniGrid environments reveals the consistent emergence of distinct navigational modules for different axes, and we further demonstrate how these functions can be validated through direct interventions on network weights prior to inference.
♻ ☆ MSDNet: Multi-Scale Decoder for Few-Shot Semantic Segmentation via Transformer-Guided Prototyping
Few-shot Semantic Segmentation addresses the challenge of segmenting objects in query images with only a handful of annotated examples. However, many previous state-of-the-art methods either have to discard intricate local semantic features or suffer from high computational complexity. To address these challenges, we propose a new Few-shot Semantic Segmentation framework based on the Transformer architecture. Our approach introduces the spatial transformer decoder and the contextual mask generation module to improve the relational understanding between support and query images. Moreover, we introduce a multi scale decoder to refine the segmentation mask by incorporating features from different resolutions in a hierarchical manner. Additionally, our approach integrates global features from intermediate encoder stages to improve contextual understanding, while maintaining a lightweight structure to reduce complexity. This balance between performance and efficiency enables our method to achieve competitive results on benchmark datasets such as PASCAL-5^i and COCO-20^i in both 1-shot and 5-shot settings. Notably, our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies.
♻ ☆ Standard Benchmarks Fail - Auditing LLM Agents in Finance Must Prioritize Risk
Standard benchmarks fixate on how well large language model (LLM) agents perform in finance, yet say little about whether they are safe to deploy. We argue that accuracy metrics and return-based scores provide an illusion of reliability, overlooking vulnerabilities such as hallucinated facts, stale data, and adversarial prompt manipulation. We take a firm position: financial LLM agents should be evaluated first and foremost on their risk profile, not on their point-estimate performance. Drawing on risk-engineering principles, we outline a three-level agenda: model, workflow, and system, for stress-testing LLM agents under realistic failure modes. To illustrate why this shift is urgent, we audit six API-based and open-weights LLM agents on three high-impact tasks and uncover hidden weaknesses that conventional benchmarks miss. We conclude with actionable recommendations for researchers, practitioners, and regulators: audit risk-aware metrics in future studies, publish stress scenarios alongside datasets, and treat ``safety budget'' as a primary success criterion. Only by redefining what ``good'' looks like can the community responsibly advance AI-driven finance.
comment: 46 pages, 2 figures, 2 tables
♻ ☆ Improving Medical Large Vision-Language Models with Abnormal-Aware Feedback
Existing Medical Large Vision-Language Models (Med-LVLMs), encapsulating extensive medical knowledge, demonstrate excellent capabilities in understanding medical images. However, there remain challenges in visual localization in medical images, which is crucial for abnormality detection and interpretation. To address these issues, we propose a novel UMed-LVLM designed to unveil medical abnormalities. Specifically, we collect a Medical Abnormalities Unveiling (MAU) dataset and propose a two-stage training method for UMed-LVLM training. To collect MAU dataset, we propose a prompt method utilizing the GPT-4V to generate diagnoses based on identified abnormal areas in medical images. Moreover, the two-stage training method includes Abnormal-Aware Instruction Tuning and Abnormal-Aware Rewarding, comprising Relevance Reward, Abnormal Localization Reward and Vision Relevance Reward. Experimental results demonstrate that our UMed-LVLM significantly outperforms existing Med-LVLMs in identifying and understanding medical abnormalities, achieving a 58% improvement over the baseline. In addition, this work shows that enhancing the abnormality detection capabilities of Med-LVLMs significantly improves their understanding of medical images and generalization capability.
comment: 16 pages
♻ ☆ A personalized time-resolved 3D mesh generative model for unveiling normal heart dynamics
Understanding the structure and motion of the heart is crucial for diagnosing and managing cardiovascular diseases, the leading cause of global death. There is wide variation in cardiac shape and motion patterns, influenced by demographic, anthropometric and disease factors. Unravelling normal patterns of shape and motion, and understanding how each individual deviates from the norm, would facilitate accurate diagnosis and personalised treatment strategies. To this end, we developed a conditional generative model, MeshHeart, to learn the distribution of shape and motion patterns for the left and right ventricles of the heart. To model the high-dimensional spatio-temporal mesh data, MeshHeart employs a geometric encoder to represent cardiac meshes in a latent space, and a temporal Transformer to model the motion dynamics of latent representations. Based on MeshHeart, we investigate the latent space of 3D+t cardiac mesh sequences and propose a distance metric, latent delta, which quantifies the deviation of a real heart from its personalised normative pattern. In experiments using a large cardiac magnetic resonance image dataset of 38,309 subjects from the UK Biobank, MeshHeart demonstrates high performance in cardiac mesh sequence reconstruction and generation. Latent space features are discriminative for cardiac disease classification, whereas latent delta exhibits strong correlations with clinical phenotypes in phenome-wide association studies. The code and the trained model are released to support further research.
comment: Accepted by Nature Machine Intelligence
♻ ☆ DIS-CO: Discovering Copyrighted Content in VLMs Training Data
How can we verify whether copyrighted content was used to train a large vision-language model (VLM) without direct access to its training data? Motivated by the hypothesis that a VLM is able to recognize images from its training corpus, we propose DIS-CO, a novel approach to infer the inclusion of copyrighted content during the model's development. By repeatedly querying a VLM with specific frames from targeted copyrighted material, DIS-CO extracts the content's identity through free-form text completions. To assess its effectiveness, we introduce MovieTection, a benchmark comprising 14,000 frames paired with detailed captions, drawn from films released both before and after a model's training cutoff. Our results show that DIS-CO significantly improves detection performance, nearly doubling the average AUC of the best prior method on models with logits available. Our findings also highlight a broader concern: all tested models appear to have been exposed to some extent to copyrighted content. Our code and data are available at https://github.com/avduarte333/DIS-CO
♻ ☆ Matryoshka Model Learning for Improved Elastic Student Models KDD 2025
Industry-grade ML models are carefully designed to meet rapidly evolving serving constraints, which requires significant resources for model development. In this paper, we propose MatTA, a framework for training multiple accurate Student models using a novel Teacher-TA-Student recipe. TA models are larger versions of the Student models with higher capacity, and thus allow Student models to better relate to the Teacher model and also bring in more domain-specific expertise. Furthermore, multiple accurate Student models can be extracted from the TA model. Therefore, despite only one training run, our methodology provides multiple servable options to trade off accuracy for lower serving cost. We demonstrate the proposed method, MatTA, on proprietary datasets and models. Its practical efficacy is underscored by live A/B tests within a production ML system, demonstrating 20% improvement on a key metric. We also demonstrate our method on GPT-2 Medium, a public model, and achieve relative improvements of over 24% on SAT Math and over 10% on the LAMBADA benchmark.
comment: 10 pages, 5 figures, Accepted at KDD 2025
♻ ☆ SEA-HELM: Southeast Asian Holistic Evaluation of Language Models
With the rapid emergence of novel capabilities in Large Language Models (LLMs), the need for rigorous multilingual and multicultural benchmarks that are integrated has become more pronounced. Though existing LLM benchmarks are capable of evaluating specific capabilities of LLMs in English as well as in various mid- to low-resource languages, including those in the Southeast Asian (SEA) region, a comprehensive and culturally representative evaluation suite for the SEA languages has not been developed thus far. Here, we present SEA-HELM, a holistic linguistic and cultural LLM evaluation suite that emphasises SEA languages, comprising five core pillars: (1) NLP Classics, (2) LLM-specifics, (3) SEA Linguistics, (4) SEA Culture, (5) Safety. SEA-HELM currently supports Filipino, Indonesian, Tamil, Thai, and Vietnamese. We also introduce the SEA-HELM leaderboard, which allows users to understand models' multilingual and multicultural performance in a systematic and user-friendly manner. We make the SEA-HELM evaluation code publicly available.
♻ ☆ Jigsaw-R1: A Study of Rule-based Visual Reinforcement Learning with Jigsaw Puzzles
The application of rule-based reinforcement learning (RL) to multimodal large language models (MLLMs) introduces unique challenges and potential deviations from findings in text-only domains, particularly for perception-heavy tasks. This paper provides a comprehensive study of rule-based visual RL, using jigsaw puzzles as a structured experimental framework. Jigsaw puzzles offer inherent ground truth, adjustable difficulty, and demand complex decision-making, making them ideal for this study. Our research reveals several key findings: \textit{Firstly,} we find that MLLMs, initially performing near to random guessing on the simplest jigsaw puzzles, achieve near-perfect accuracy and generalize to complex, unseen configurations through fine-tuning. \textit{Secondly,} training on jigsaw puzzles can induce generalization to other visual tasks, with effectiveness tied to specific task configurations. \textit{Thirdly,} MLLMs can learn and generalize with or without explicit reasoning, though open-source models often favor direct answering. Consequently, even when trained for step-by-step reasoning, they can ignore the thinking process in deriving the final answer. \textit{Fourthly,} we observe that complex reasoning patterns appear to be pre-existing rather than emergent, with their frequency increasing alongside training and task difficulty. \textit{Finally,} our results demonstrate that RL exhibits more effective generalization than Supervised Fine-Tuning (SFT), and an initial SFT cold start phase can hinder subsequent RL optimization. Although these observations are based on jigsaw puzzles and may vary across other visual tasks, this research contributes a valuable piece of jigsaw to the larger puzzle of collective understanding rule-based visual RL and its potential in multimodal learning. The code is available at: https://github.com/zifuwanggg/Jigsaw-R1.
♻ ☆ Middle-Layer Representation Alignment for Cross-Lingual Transfer in Fine-Tuned LLMs ACL 2025
While large language models demonstrate remarkable capabilities at task-specific applications through fine-tuning, extending these benefits across diverse languages is essential for broad accessibility. However, effective cross-lingual transfer is hindered by LLM performance gaps across languages and the scarcity of fine-tuning data in many languages. Through analysis of LLM internal representations from over 1,000+ language pairs, we discover that middle layers exhibit the strongest potential for cross-lingual alignment. Building on this finding, we propose a middle-layer alignment objective integrated into task-specific training. Our experiments on slot filling, machine translation, and structured text generation show consistent improvements in cross-lingual transfer, especially to lower-resource languages. The method is robust to the choice of alignment languages and generalizes to languages unseen during alignment. Furthermore, we show that separately trained alignment modules can be merged with existing task-specific modules, improving cross-lingual capabilities without full re-training. Our code is publicly available (https://github.com/dannigt/mid-align).
comment: ACL 2025
♻ ☆ Wait, that's not an option: LLMs Robustness with Incorrect Multiple-Choice Options ACL 2025
This work introduces a novel framework for evaluating LLMs' capacity to balance instruction-following with critical reasoning when presented with multiple-choice questions containing no valid answers. Through systematic evaluation across arithmetic, domain-specific knowledge, and high-stakes medical decision tasks, we demonstrate that post-training aligned models often default to selecting invalid options, while base models exhibit improved refusal capabilities that scale with model size. Our analysis reveals that alignment techniques, though intended to enhance helpfulness, can inadvertently impair models' reflective judgment--the ability to override default behaviors when faced with invalid options. We additionally conduct a parallel human study showing similar instruction-following biases, with implications for how these biases may propagate through human feedback datasets used in alignment. We provide extensive ablation studies examining the impact of model size, training techniques, and prompt engineering. Our findings highlight fundamental tensions between alignment optimization and preservation of critical reasoning capabilities, with important implications for developing more robust AI systems for real-world deployment.
comment: Accepted for ACL 2025 Main Conference and NeurIPS 2024 FM-EduAssess Workshop
♻ ☆ Confabulation dynamics in a reservoir computer: Filling in the gaps with untrained attractors
Artificial Intelligence has advanced significantly in recent years thanks to innovations in the design and training of artificial neural networks (ANNs). Despite these advancements, we still understand relatively little about how elementary forms of ANNs learn, fail to learn, and generate false information without the intent to deceive, a phenomenon known as `confabulation'. To provide some foundational insight, in this paper we analyse how confabulation occurs in reservoir computers (RCs): a dynamical system in the form of an ANN. RCs are particularly useful to study as they are known to confabulate in a well-defined way: when RCs are trained to reconstruct the dynamics of a given attractor, they sometimes construct an attractor that they were not trained to construct, a so-called `untrained attractor' (UA). This paper sheds light on the role played by UAs when reconstruction fails and their influence when modelling transitions between reconstructed attractors. Based on our results, we conclude that UAs are an intrinsic feature of learning systems whose state spaces are bounded, and that this means of confabulation may be present in systems beyond RCs.
♻ ☆ POPGym Arcade: Parallel Pixelated POMDPs
We present the POPGym Arcade, a collection of hardware-accelerated, pixel-based environments with shared observation and action spaces. Each environment includes fully and partially observable variants, enabling counterfactual studies on partial observability. We also introduce mathematical tools for analyzing policies under partial observability, which reveal how agents recall past information to make decisions. Our analysis shows (1) that controlling for partial observability is critical and (2) that agents with long-term memory learn brittle policies that struggle to generalize. Finally, we demonstrate that recurrent policies can be "poisoned" by old, out-of-distribution observations, with implications for sim-to-real transfer, imitation learning, and offline reinforcement learning.
♻ ☆ GMLM: Bridging Graph Neural Networks and Language Models for Heterophilic Node Classification
Integrating structured graph data with rich textual information from nodes poses a significant challenge, particularly for heterophilic node classification. Current approaches often struggle with computational costs or effective fusion of disparate modalities. We propose \textbf{Graph Masked Language Model (GMLM)}, a novel architecture efficiently combining Graph Neural Networks (GNNs) with Pre-trained Language Models (PLMs). GMLM introduces three key innovations: (i) a \textbf{dynamic active node selection} strategy for scalable PLM text processing; (ii) a GNN-specific \textbf{contrastive pretraining stage} using soft masking with a learnable graph \texttt{[MASK]} token for robust structural representations; and (iii) a \textbf{dedicated fusion module} integrating RGCN-based GNN embeddings with PLM (GTE-Small \& DistilBERT) embeddings. Extensive experiments on heterophilic benchmarks (Cornell, Wisconsin, Texas) demonstrate GMLM's superiority. Notably, GMLM(DistilBERT) achieves significant performance gains, improving accuracy by over \textbf{4.7\%} on Cornell and over \textbf{2.0\%} on Texas compared to the previous best-performing baselines. This work underscores the benefits of targeted PLM engagement and modality-specific pretraining for improved, efficient learning on text-rich graphs.
♻ ☆ Disentangling Likes and Dislikes in Personalized Generative Explainable Recommendation WWW
Recent research on explainable recommendation generally frames the task as a standard text generation problem, and evaluates models simply based on the textual similarity between the predicted and ground-truth explanations. However, this approach fails to consider one crucial aspect of the systems: whether their outputs accurately reflect the users' (post-purchase) sentiments, i.e., whether and why they would like and/or dislike the recommended items. To shed light on this issue, we introduce new datasets and evaluation methods that focus on the users' sentiments. Specifically, we construct the datasets by explicitly extracting users' positive and negative opinions from their post-purchase reviews using an LLM, and propose to evaluate systems based on whether the generated explanations 1) align well with the users' sentiments, and 2) accurately identify both positive and negative opinions of users on the target items. We benchmark several recent models on our datasets and demonstrate that achieving strong performance on existing metrics does not ensure that the generated explanations align well with the users' sentiments. Lastly, we find that existing models can provide more sentiment-aware explanations when the users' (predicted) ratings for the target items are directly fed into the models as input. The datasets and benchmark implementation are available at: https://github.com/jchanxtarov/sent_xrec.
comment: This manuscript has been accepted for presentation at The Web Conference (WWW) 2025
♻ ☆ RL-SPH: Learning to Achieve Feasible Solutions for Integer Linear Programs AAAI
Integer linear programming (ILP) is widely utilized for various combinatorial optimization problems. Primal heuristics play a crucial role in quickly finding feasible solutions for NP-hard ILP. Although $\textit{end-to-end learning}$-based primal heuristics (E2EPH) have recently been proposed, they are typically unable to independently generate feasible solutions and mainly focus on binary variables. Ensuring feasibility is critical, especially when handling non-binary integer variables. To address this challenge, we propose RL-SPH, a novel reinforcement learning-based start primal heuristic capable of independently generating feasible solutions, even for ILP involving non-binary integers. Experimental results demonstrate that RL-SPH rapidly obtains high-quality feasible solutions, achieving on average a 44x lower primal gap and a 2.3x lower primal integral compared to existing primal heuristics.
comment: Extended version (19 pages, 7 figures). Accepted at the 2025 AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE)
♻ ☆ Diversity-oriented Data Augmentation with Large Language Models ACL 2025
Data augmentation is an essential technique in natural language processing (NLP) for enriching training datasets by generating diverse samples. This process is crucial for improving the robustness and generalization capabilities of NLP models. However, a significant challenge remains: \textit{Insufficient Attention to Sample Distribution Diversity}. Most existing methods focus on increasing the sample numbers while neglecting the sample distribution diversity, which can lead to model overfitting. In response, we explore data augmentation's impact on dataset diversity and propose a \textbf{\underline{D}}iversity-\textbf{\underline{o}}riented data \textbf{\underline{Aug}}mentation framework (\textbf{DoAug}). % \(\mathscr{DoAug}\) Specifically, we utilize a diversity-oriented fine-tuning approach to train an LLM as a diverse paraphraser, which is capable of augmenting textual datasets by generating diversified paraphrases. Then, we apply the LLM paraphraser to a selected coreset of highly informative samples and integrate the paraphrases with the original data to create a more diverse augmented dataset. Finally, we conduct extensive experiments on 12 real-world textual datasets. The results show that our fine-tuned LLM augmenter improves diversity while preserving label consistency, thereby enhancing the robustness and performance of downstream tasks. Specifically, it achieves an average performance gain of \(10.52\%\), surpassing the runner-up baseline with more than three percentage points.
comment: Accepted to ACL 2025
♻ ☆ TACLR: A Scalable and Efficient Retrieval-based Method for Industrial Product Attribute Value Identification ACL 2025
Product Attribute Value Identification (PAVI) involves identifying attribute values from product profiles, a key task for improving product search, recommendation, and business analytics on e-commerce platforms. However, existing PAVI methods face critical challenges, such as inferring implicit values, handling out-of-distribution (OOD) values, and producing normalized outputs. To address these limitations, we introduce Taxonomy-Aware Contrastive Learning Retrieval (TACLR), the first retrieval-based method for PAVI. TACLR formulates PAVI as an information retrieval task by encoding product profiles and candidate values into embeddings and retrieving values based on their similarity. It leverages contrastive training with taxonomy-aware hard negative sampling and employs adaptive inference with dynamic thresholds. TACLR offers three key advantages: (1) it effectively handles implicit and OOD values while producing normalized outputs; (2) it scales to thousands of categories, tens of thousands of attributes, and millions of values; and (3) it supports efficient inference for high-load industrial deployment. Extensive experiments on proprietary and public datasets validate the effectiveness and efficiency of TACLR. Further, it has been successfully deployed on the real-world e-commerce platform Xianyu, processing millions of product listings daily with frequently updated, large-scale attribute taxonomies. We release the code to facilitate reproducibility and future research at https://github.com/SuYindu/TACLR.
comment: Camera-ready version of the paper accepted at ACL 2025
♻ ☆ CCFC: Bridging Federated Clustering and Contrastive Learning
Federated clustering, an essential extension of centralized clustering for federated scenarios, enables multiple data-holding clients to collaboratively group data while keeping their data locally. In centralized scenarios, clustering driven by representation learning has made significant advancements in handling high-dimensional complex data. However, the combination of federated clustering and representation learning remains underexplored. To bridge this, we first tailor a cluster-contrastive model for learning clustering-friendly representations. Then, we harness this model as the foundation for proposing a new federated clustering method, named cluster-contrastive federated clustering (CCFC). Benefiting from representation learning, the clustering performance of CCFC even double those of the best baseline methods in some cases. Compared to the most related baseline, the benefit results in substantial NMI score improvements of up to 0.4155 on the most conspicuous case. Moreover, CCFC also shows superior performance in handling device failures from a practical viewpoint.
♻ ☆ ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces a physical guidance mechanism specifically designed for Flow Matching (FM) that effectively prevents body penetration artifacts during sampling. Moreover, we discover the bias of traditional flow matching sampling algorithm and employ a reprojection method to revise the sampling direction of FM. To further enhance the reaction diversity, we incorporate randomness into the sampling process. Extensive experiments on NTU120, Chi3D and InterHuman datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
comment: Project Page: https://arflow2025.github.io/
♻ ☆ Prediction hubs are context-informed frequent tokens in LLMs ACL 2025
Hubness, the tendency for a few points to be among the nearest neighbours of a disproportionate number of other points, commonly arises when applying standard distance measures to high-dimensional data, often negatively impacting distance-based analysis. As autoregressive large language models (LLMs) operate on high-dimensional representations, we ask whether they are also affected by hubness. We first prove that the only large-scale representation comparison operation performed by LLMs, namely that between context and unembedding vectors to determine continuation probabilities, is not characterized by the concentration of distances phenomenon that typically causes the appearance of nuisance hubness. We then empirically show that this comparison still leads to a high degree of hubness, but the hubs in this case do not constitute a disturbance. They are rather the result of context-modulated frequent tokens often appearing in the pool of likely candidates for next token prediction. However, when other distances are used to compare LLM representations, we do not have the same theoretical guarantees, and, indeed, we see nuisance hubs appear. There are two main takeaways. First, hubness, while omnipresent in high-dimensional spaces, is not a negative property that needs to be mitigated when LLMs are being used for next token prediction. Second, when comparing representations from LLMs using Euclidean or cosine distance, there is a high risk of nuisance hubs and practitioners should use mitigation techniques if relevant.
comment: Published as a conference paper at ACL 2025
♻ ☆ ZEBRA: Leveraging Model-Behavioral Knowledge for Zero-Annotation Preference Dataset Construction
Recent efforts in LLM alignment have focused on constructing large-scale preference datasets via human or Artificial Intelligence (AI) annotators. However, such approaches rely on instance-wise supervision, incurring substantial annotation cost and limited interpretability. In this paper, we propose ZEBRA - a model behavior-wise zero-annotation framework that constructs preference data by leveraging model behavior knowledge derived from benchmark performances. ZEBRA binarizes response pairs by evaluating the quality and similarity of their origin models, entirely bypassing instance-level annotation. This allows scalable, controllable, and cost-effective alignment data generation. Empirical results show that ZEBRA achieves alignment performance comparable to instance-supervised methods, despite requiring no manual or model-based labeling.
comment: 16 pages,7 figures,5 tables,4 graphs
♻ ☆ A Comparative Study of SMT and MILP for the Nurse Rostering Problem
The effects of personnel scheduling on the quality of care and working conditions for healthcare personnel have been thoroughly documented. However, the ever-present demand and large variation of constraints make healthcare scheduling particularly challenging. This problem has been studied for decades, with limited research aimed at applying Satisfiability Modulo Theories (SMT). SMT has gained momentum within the formal verification community in the last decades, leading to the advancement of SMT solvers that have been shown to outperform standard mathematical programming techniques. In this work, we propose generic constraint formulations that can model a wide range of real-world scheduling constraints. Then, the generic constraints are formulated as SMT and MILP problems and used to compare the respective state-of-the-art solvers, Z3 and Gurobi, on academic and real-world inspired rostering problems. Experimental results show how each solver excels for certain types of problems; the MILP solver generally performs better when the problem is highly constrained or infeasible, while the SMT solver performs better otherwise. On real-world inspired problems containing a more varied set of shifts and personnel, the SMT solver excels. Additionally, it was noted during experimentation that the SMT solver was more sensitive to the way the generic constraints were formulated, requiring careful consideration and experimentation to achieve better performance. We conclude that SMT-based methods present a promising avenue for future research within the domain of personnel scheduling.
comment: 6 pages, 3 figures
♻ ☆ Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains. Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities. This typically involves extensive sampling at inference time guided by an external LLM verifier, resulting in a two-player system. Despite external guidance, the effectiveness of this system demonstrates the potential of a single LLM to tackle complex tasks. Thus, we pose a new research problem: Can we internalize the searching capabilities to fundamentally enhance the reasoning abilities of a single LLM? This work explores an orthogonal direction focusing on post-training LLMs for autoregressive searching (i.e., an extended reasoning process with self-reflection and self-exploration of new strategies). To achieve this, we propose the Chain-of-Action-Thought (COAT) reasoning and a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning. Our approach results in Satori, a 7B LLM trained on open-source models and data. Extensive empirical evaluations demonstrate that Satori achieves state-of-the-art performance on mathematical reasoning benchmarks while exhibits strong generalization to out-of-domain tasks. Code, data, and models are fully open-sourced.
♻ ☆ RePaViT: Scalable Vision Transformer Acceleration via Structural Reparameterization on Feedforward Network Layers ICML2025
We reveal that feedforward network (FFN) layers, rather than attention layers, are the primary contributors to Vision Transformer (ViT) inference latency, with their impact signifying as model size increases. This finding highlights a critical opportunity for optimizing the efficiency of large-scale ViTs by focusing on FFN layers. In this work, we propose a novel channel idle mechanism that facilitates post-training structural reparameterization for efficient FFN layers during testing. Specifically, a set of feature channels remains idle and bypasses the nonlinear activation function in each FFN layer, thereby forming a linear pathway that enables structural reparameterization during inference. This mechanism results in a family of ReParameterizable Vision Transformers (RePaViTs), which achieve remarkable latency reductions with acceptable sacrifices (sometimes gains) in accuracy across various ViTs. The benefits of our method scale consistently with model sizes, demonstrating greater speed improvements and progressively narrowing accuracy gaps or even higher accuracies on larger models. In particular, RePa-ViT-Large and RePa-ViT-Huge enjoy 66.8% and 68.7% speed-ups with +1.7% and +1.1% higher top-1 accuracies under the same training strategy, respectively. RePaViT is the first to employ structural reparameterization on FFN layers to expedite ViTs to our best knowledge, and we believe that it represents an auspicious direction for efficient ViTs. Source code is available at https://github.com/Ackesnal/RePaViT.
comment: Accepted to ICML2025
♻ ☆ A Survey on Event-driven 3D Reconstruction: Development under Different Categories
Event cameras have gained increasing attention for 3D reconstruction due to their high temporal resolution, low latency, and high dynamic range. They capture per-pixel brightness changes asynchronously, allowing accurate reconstruction under fast motion and challenging lighting conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction methods, including stereo, monocular, and multimodal systems. We further categorize recent developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works are structured chronologically to illustrate the innovations and progression within the field. To support future research, we also highlight key research gaps and future research directions in dataset, experiment, evaluation, event representation, etc.
comment: We have decided not to submit this article and plan to withdraw it from public display. The content of this article will be presented in a more comprehensive form in another work
♻ ☆ MADCluster: Model-agnostic Anomaly Detection with Self-supervised Clustering Network
In this paper, we propose MADCluster, a novel model-agnostic anomaly detection framework utilizing self-supervised clustering. MADCluster is applicable to various deep learning architectures and addresses the 'hypersphere collapse' problem inherent in existing deep learning-based anomaly detection methods. The core idea is to cluster normal pattern data into a 'single cluster' while simultaneously learning the cluster center and mapping data close to this center. Also, to improve expressiveness and enable effective single clustering, we propose a new 'One-directed Adaptive loss'. The optimization of this loss is mathematically proven. MADCluster consists of three main components: Base Embedder capturing high-dimensional temporal dynamics, Cluster Distance Mapping, and Sequence-wise Clustering for continuous center updates. Its model-agnostic characteristics are achieved by applying various architectures to the Base Embedder. Experiments on four time series benchmark datasets demonstrate that applying MADCluster improves the overall performance of comparative models. In conclusion, the compatibility of MADCluster shows potential for enhancing model performance across various architectures.
comment: 24 pages, 9 figures
♻ ☆ Prisma: An Open Source Toolkit for Mechanistic Interpretability in Vision and Video CVPR
Robust tooling and publicly available pre-trained models have helped drive recent advances in mechanistic interpretability for language models. However, similar progress in vision mechanistic interpretability has been hindered by the lack of accessible frameworks and pre-trained weights. We present Prisma (Access the codebase here: https://github.com/Prisma-Multimodal/ViT-Prisma), an open-source framework designed to accelerate vision mechanistic interpretability research, providing a unified toolkit for accessing 75+ vision and video transformers; support for sparse autoencoder (SAE), transcoder, and crosscoder training; a suite of 80+ pre-trained SAE weights; activation caching, circuit analysis tools, and visualization tools; and educational resources. Our analysis reveals surprising findings, including that effective vision SAEs can exhibit substantially lower sparsity patterns than language SAEs, and that in some instances, SAE reconstructions can decrease model loss. Prisma enables new research directions for understanding vision model internals while lowering barriers to entry in this emerging field.
comment: 4 pages, 3 figures, 9 tables. Oral and Tutorial at the CVPR Mechanistic Interpretability for Vision (MIV) Workshop
♻ ☆ Foundations and Recent Trends in Multimodal Mobile Agents: A Survey
Mobile agents are essential for automating tasks in complex and dynamic mobile environments. As foundation models evolve, the demands for agents that can adapt in real-time and process multimodal data have grown. This survey provides a comprehensive review of mobile agent technologies, focusing on recent advancements that enhance real-time adaptability and multimodal interaction. Recent evaluation benchmarks have been developed better to capture the static and interactive environments of mobile tasks, offering more accurate assessments of agents' performance. We then categorize these advancements into two main approaches: prompt-based methods, which utilize large language models (LLMs) for instruction-based task execution, and training-based methods, which fine-tune multimodal models for mobile-specific applications. Additionally, we explore complementary technologies that augment agent performance. By discussing key challenges and outlining future research directions, this survey offers valuable insights for advancing mobile agent technologies. A comprehensive resource list is available at https://github.com/aialt/awesome-mobile-agents
comment: 8 pages, 1 figure
♻ ☆ Neuron Empirical Gradient: Discovering and Quantifying Neurons Global Linear Controllability ACL 2025
While feed-forward neurons in pre-trained language models (PLMs) can encode knowledge, past research targeted a small subset of neurons that heavily influence outputs. This leaves the broader role of neuron activations unclear, limiting progress in areas like knowledge editing. We uncover a global linear relationship between neuron activations and outputs using neuron interventions on a knowledge probing dataset. The gradient of this linear relationship, which we call the neuron empirical gradient (NEG), captures how changes in activations affect predictions. To compute NEG efficiently, we propose NeurGrad, enabling large-scale analysis of neuron behavior in PLMs. We also show that NEG effectively captures language skills across diverse prompts through skill neuron probing. Experiments on MCEval8k, a multi-genre multiple-choice knowledge benchmark, support NEG's ability to represent model knowledge. Further analysis highlights the key properties of NEG-based skill representation: efficiency, robustness, flexibility, and interdependency. The code and data are released.
comment: Accepted to ACL 2025 Main, 32 pages
♻ ☆ RoToR: Towards More Reliable Responses for Order-Invariant Inputs ACL 2025
Mitigating positional bias of language models (LMs) for listwise inputs is a well-known and important problem (e.g., lost-in-the-middle). While zero-shot order-invariant LMs have been proposed to solve this issue, their success on practical listwise problems has been limited. In this work, as a first contribution, we identify and overcome two limitations to make zero-shot invariant LMs more practical: (1) training and inference distribution mismatch arising from modifying positional ID assignments to enforce invariance, and (2) failure to adapt to mixture of order-invariant and sensitive inputs in practical listwise problems. Then, to overcome these issues we propose (1) RoToR, a zero-shot invariant LM for genuinely order-invariant inputs with minimal modifications of positional IDs, and (2) Selective Routing, an adaptive framework that handles both order-invariant and order-sensitive inputs in listwise tasks. On the Lost in the middle (LitM), Knowledge Graph QA (KGQA), and MMLU benchmarks, we show that RoToR with Selective Routing can effectively handle practical listwise input tasks in a zero-shot manner (https://github.com/soyoung97/RoToR)
comment: Accepted at ACL 2025 main
♻ ☆ MedHELM: Holistic Evaluation of Large Language Models for Medical Tasks
While large language models (LLMs) achieve near-perfect scores on medical licensing exams, these evaluations inadequately reflect the complexity and diversity of real-world clinical practice. We introduce MedHELM, an extensible evaluation framework for assessing LLM performance for medical tasks with three key contributions. First, a clinician-validated taxonomy spanning 5 categories, 22 subcategories, and 121 tasks developed with 29 clinicians. Second, a comprehensive benchmark suite comprising 35 benchmarks (17 existing, 18 newly formulated) providing complete coverage of all categories and subcategories in the taxonomy. Third, a systematic comparison of LLMs with improved evaluation methods (using an LLM-jury) and a cost-performance analysis. Evaluation of 9 frontier LLMs, using the 35 benchmarks, revealed significant performance variation. Advanced reasoning models (DeepSeek R1: 66% win-rate; o3-mini: 64% win-rate) demonstrated superior performance, though Claude 3.5 Sonnet achieved comparable results at 40% lower estimated computational cost. On a normalized accuracy scale (0-1), most models performed strongly in Clinical Note Generation (0.73-0.85) and Patient Communication & Education (0.78-0.83), moderately in Medical Research Assistance (0.65-0.75), and generally lower in Clinical Decision Support (0.56-0.72) and Administration & Workflow (0.53-0.63). Our LLM-jury evaluation method achieved good agreement with clinician ratings (ICC = 0.47), surpassing both average clinician-clinician agreement (ICC = 0.43) and automated baselines including ROUGE-L (0.36) and BERTScore-F1 (0.44). Claude 3.5 Sonnet achieved comparable performance to top models at lower estimated cost. These findings highlight the importance of real-world, task-specific evaluation for medical use of LLMs and provides an open source framework to enable this.
♻ ☆ Hume: Introducing System-2 Thinking in Visual-Language-Action Model
Humans practice slow thinking before performing actual actions when handling complex tasks in the physical world. This thinking paradigm, recently, has achieved remarkable advancement in boosting Large Language Models (LLMs) to solve complex tasks in digital domains. However, the potential of slow thinking remains largely unexplored for robotic foundation models interacting with the physical world. In this work, we propose Hume: a dual-system Vision-Language-Action (VLA) model with value-guided System-2 thinking and cascaded action denoising, exploring human-like thinking capabilities of Vision-Language-Action models for dexterous robot control. System 2 of Hume implements value-Guided thinking by extending a Vision-Language-Action Model backbone with a novel value-query head to estimate the state-action value of predicted actions. The value-guided thinking is conducted by repeat sampling multiple action candidates and selecting one according to state-action value. System 1 of Hume is a lightweight reactive visuomotor policy that takes System 2 selected action and performs cascaded action denoising for dexterous robot control. At deployment time, System 2 performs value-guided thinking at a low frequency while System 1 asynchronously receives the System 2 selected action candidate and predicts fluid actions in real time. We show that Hume outperforms the existing state-of-the-art Vision-Language-Action models across multiple simulation benchmark and real-robot deployments.
♻ ☆ Large Model Based Agents: State-of-the-Art, Cooperation Paradigms, Security and Privacy, and Future Trends
With the rapid advancement of large models (LMs), the development of general-purpose intelligent agents powered by LMs has become a reality. It is foreseeable that in the near future, LM-driven general AI agents will serve as essential tools in production tasks, capable of autonomous communication and collaboration without human intervention. This paper investigates scenarios involving the autonomous collaboration of future LM agents. We review the current state of LM agents, the key technologies enabling LM agent collaboration, and the security and privacy challenges they face during cooperative operations. To this end, we first explore the foundational principles of LM agents, including their general architecture, key components, enabling technologies, and modern applications. We then discuss practical collaboration paradigms from data, computation, and knowledge perspectives to achieve connected intelligence among LM agents. After that, we analyze the security vulnerabilities and privacy risks associated with LM agents, particularly in multi-agent settings, examining underlying mechanisms and reviewing current and potential countermeasures. Lastly, we propose future research directions for building robust and secure LM agent ecosystems.
comment: Accepted by IEEE Communications Surveys & Tutorials in May 2025. 41 pages, 36 figures, 10 tables
♻ ☆ Generating by Understanding: Neural Visual Generation with Logical Symbol Groundings KDD 2025
Making neural visual generative models controllable by logical reasoning systems is promising for improving faithfulness, transparency, and generalizability. We propose the Abductive visual Generation (AbdGen) approach to build such logic-integrated models. A vector-quantized symbol grounding mechanism and the corresponding disentanglement training method are introduced to enhance the controllability of logical symbols over generation. Furthermore, we propose two logical abduction methods to make our approach require few labeled training data and support the induction of latent logical generative rules from data. We experimentally show that our approach can be utilized to integrate various neural generative models with logical reasoning systems, by both learning from scratch or utilizing pre-trained models directly. The code is released at https://github.com/future-item/AbdGen.
comment: KDD 2025 research track paper
♻ ☆ MentalChat16K: A Benchmark Dataset for Conversational Mental Health Assistance
We introduce MentalChat16K, an English benchmark dataset combining a synthetic mental health counseling dataset and a dataset of anonymized transcripts from interventions between Behavioral Health Coaches and Caregivers of patients in palliative or hospice care. Covering a diverse range of conditions like depression, anxiety, and grief, this curated dataset is designed to facilitate the development and evaluation of large language models for conversational mental health assistance. By providing a high-quality resource tailored to this critical domain, MentalChat16K aims to advance research on empathetic, personalized AI solutions to improve access to mental health support services. The dataset prioritizes patient privacy, ethical considerations, and responsible data usage. MentalChat16K presents a valuable opportunity for the research community to innovate AI technologies that can positively impact mental well-being. The dataset is available at https://huggingface.co/datasets/ShenLab/MentalChat16K and the code and documentation are hosted on GitHub at https://github.com/ChiaPatricia/MentalChat16K.
♻ ☆ Does Time Have Its Place? Temporal Heads: Where Language Models Recall Time-specific Information ACL 2025
While the ability of language models to elicit facts has been widely investigated, how they handle temporally changing facts remains underexplored. We discover Temporal Heads, specific attention heads that primarily handle temporal knowledge, through circuit analysis. We confirm that these heads are present across multiple models, though their specific locations may vary, and their responses differ depending on the type of knowledge and its corresponding years. Disabling these heads degrades the model's ability to recall time-specific knowledge while maintaining its general capabilities without compromising time-invariant and question-answering performances. Moreover, the heads are activated not only numeric conditions ("In 2004") but also textual aliases ("In the year ..."), indicating that they encode a temporal dimension beyond simple numerical representation. Furthermore, we expand the potential of our findings by demonstrating how temporal knowledge can be edited by adjusting the values of these heads.
comment: Accepted to the main conference at ACL 2025
♻ ☆ Detecting Multimedia Generated by Large AI Models: A Survey
The rapid advancement of Large AI Models (LAIMs), particularly diffusion models and large language models, has marked a new era where AI-generated multimedia is increasingly integrated into various aspects of daily life. Although beneficial in numerous fields, this content presents significant risks, including potential misuse, societal disruptions, and ethical concerns. Consequently, detecting multimedia generated by LAIMs has become crucial, with a marked rise in related research. Despite this, there remains a notable gap in systematic surveys that focus specifically on detecting LAIM-generated multimedia. Addressing this, we provide the first survey to comprehensively cover existing research on detecting multimedia (such as text, images, videos, audio, and multimodal content) created by LAIMs. Specifically, we introduce a novel taxonomy for detection methods, categorized by media modality, and aligned with two perspectives: pure detection (aiming to enhance detection performance) and beyond detection (adding attributes like generalizability, robustness, and interpretability to detectors). Additionally, we have presented a brief overview of generation mechanisms, public datasets, online detection tools, and evaluation metrics to provide a valuable resource for researchers and practitioners in this field. Most importantly, we offer a focused analysis from a social media perspective to highlight their broader societal impact. Furthermore, we identify current challenges in detection and propose directions for future research that address unexplored, ongoing, and emerging issues in detecting multimedia generated by LAIMs. Our aim for this survey is to fill an academic gap and contribute to global AI security efforts, helping to ensure the integrity of information in the digital realm. The project link is https://github.com/Purdue-M2/Detect-LAIM-generated-Multimedia-Survey.
♻ ☆ Probing Equivariance and Symmetry Breaking in Convolutional Networks
In this work, we explore the trade-offs of explicit structural priors, particularly group equivariance. We address this through theoretical analysis and a comprehensive empirical study. To enable controlled and fair comparisons, we introduce \texttt{Rapidash}, a unified group convolutional architecture that allows for different variants of equivariant and non-equivariant models. Our results suggest that more constrained equivariant models outperform less constrained alternatives when aligned with the geometry of the task, and increasing representation capacity does not fully eliminate performance gaps. We see improved performance of models with equivariance and symmetry-breaking through tasks like segmentation, regression, and generation across diverse datasets. Explicit \textit{symmetry breaking} via geometric reference frames consistently improves performance, while \textit{breaking equivariance} through geometric input features can be helpful when aligned with task geometry. Our results provide task-specific performance trends that offer a more nuanced way for model selection.
comment: 27 pages, 7 figures
♻ ☆ Semantic Integrity Constraints: Declarative Guardrails for AI-Augmented Data Processing Systems
AI-augmented data processing systems (DPSs) integrate large language models (LLMs) into query pipelines, allowing powerful semantic operations on structured and unstructured data. However, the reliability (a.k.a. trust) of these systems is fundamentally challenged by the potential for LLMs to produce errors, limiting their adoption in critical domains. To help address this reliability bottleneck, we introduce semantic integrity constraints (SICs) -- a declarative abstraction for specifying and enforcing correctness conditions over LLM outputs in semantic queries. SICs generalize traditional database integrity constraints to semantic settings, supporting common types of constraints, such as grounding, soundness, and exclusion, with both proactive and reactive enforcement strategies. We argue that SICs provide a foundation for building reliable and auditable AI-augmented data systems. Specifically, we present a system design for integrating SICs into query planning and runtime execution and discuss its realization in AI-augmented DPSs. To guide and evaluate the vision, we outline several design goals -- covering criteria around expressiveness, runtime semantics, integration, performance, and enterprise-scale applicability -- and discuss how our framework addresses each, along with open research challenges.
♻ ☆ Active Layer-Contrastive Decoding Reduces Hallucination in Large Language Model Generation
Recent decoding methods improve the factuality of large language models (LLMs) by refining how the next token is selected during generation. These methods typically operate at the token level, leveraging internal representations to suppress superficial patterns. Nevertheless, LLMs remain prone to hallucinations, especially over longer contexts. In this paper, we propose Active Layer-Contrastive Decoding (ActLCD), a novel decoding strategy that actively decides when to apply contrasting layers during generation. By casting decoding as a sequential decision-making problem, ActLCD employs a reinforcement learning policy guided by a reward-aware classifier to optimize factuality beyond the token level. Our experiments demonstrate that ActLCD surpasses state-of-the-art methods across five benchmarks, showcasing its effectiveness in mitigating hallucinations in diverse generation scenarios.
♻ ☆ SwiftKV: Fast Prefill-Optimized Inference with Knowledge-Preserving Model Transformation
LLM inference for enterprise applications, such as summarization, RAG, and code-generation, typically observe much longer prompt than generations, leading to high prefill cost and response latency. We present SwiftKV, a novel model transformation and distillation procedure targeted at reducing the prefill compute (in FLOPs) of prompt tokens while preserving high generation quality. First, SwiftKV prefills later layers' KV cache using an earlier layer's output, allowing prompt tokens to skip those later layers. Second, SwiftKV employs a lightweight knowledge-preserving distillation procedure that can adapt existing LLMs with minimal accuracy impact. Third, SwiftKV can naturally incorporate KV cache compression to improve inference performance in low-memory scenarios. Our comprehensive experiments show that SwiftKV can effectively reduce prefill computation by 25-50% across several LLM families while incurring minimum quality degradation. In the end-to-end inference serving, SwiftKV realizes up to 2x higher aggregate throughput and 60% lower time per output token. It can achieve a staggering 560 TFlops/GPU of normalized inference throughput, which translates to 16K tokens/s for Llama-3.1-70B. SwiftKV is open-sourced at https://github.com/snowflakedb/arctictraining.
♻ ☆ Forensic deepfake audio detection using segmental speech features
This study explores the potential of using acoustic features of segmental speech sounds to detect deepfake audio. These features are highly interpretable because of their close relationship with human articulatory processes and are expected to be more difficult for deepfake models to replicate. The results demonstrate that certain segmental features commonly used in forensic voice comparison (FVC) are effective in identifying deep-fakes, whereas some global features provide little value. These findings underscore the need to approach audio deepfake detection using methods that are distinct from those employed in traditional FVC, and offer a new perspective on leveraging segmental features for this purpose.
♻ ☆ EXP-Bench: Can AI Conduct AI Research Experiments?
Automating AI research holds immense potential for accelerating scientific progress, yet current AI agents struggle with the complexities of rigorous, end-to-end experimentation. We introduce EXP-Bench, a novel benchmark designed to systematically evaluate AI agents on complete research experiments sourced from influential AI publications. Given a research question and incomplete starter code, EXP-Bench challenges AI agents to formulate hypotheses, design and implement experimental procedures, execute them, and analyze results. To enable the creation of such intricate and authentic tasks with high-fidelity, we design a semi-autonomous pipeline to extract and structure crucial experimental details from these research papers and their associated open-source code. With the pipeline, EXP-Bench curated 461 AI research tasks from 51 top-tier AI research papers. Evaluations of leading LLM-based agents, such as OpenHands and IterativeAgent on EXP-Bench demonstrate partial capabilities: while scores on individual experimental aspects such as design or implementation correctness occasionally reach 20-35%, the success rate for complete, executable experiments was a mere 0.5%. By identifying these bottlenecks and providing realistic step-by-step experiment procedures, EXP-Bench serves as a vital tool for future AI agents to improve their ability to conduct AI research experiments. EXP-Bench is open-sourced at https://github.com/Just-Curieous/Curie/tree/main/benchmark/exp_bench.
comment: 45 pages, 13 figures
♻ ☆ DLP: Dynamic Layerwise Pruning in Large Language Models ICML 2025
Pruning has recently been widely adopted to reduce the parameter scale and improve the inference efficiency of Large Language Models (LLMs). Mainstream pruning techniques often rely on uniform layerwise pruning strategies, which can lead to severe performance degradation at high sparsity levels. Recognizing the varying contributions of different layers in LLMs, recent studies have shifted their focus toward non-uniform layerwise pruning. However, these approaches often rely on pre-defined values, which can result in suboptimal performance. To overcome these limitations, we propose a novel method called Dynamic Layerwise Pruning (DLP). This approach adaptively determines the relative importance of each layer by integrating model weights with input activation information, assigning pruning rates accordingly. Experimental results show that DLP effectively preserves model performance at high sparsity levels across multiple LLMs. Specifically, at 70% sparsity, DLP reduces the perplexity of LLaMA2-7B by 7.79 and improves the average accuracy by 2.7% compared to state-of-the-art methods. Moreover, DLP is compatible with various existing LLM compression techniques and can be seamlessly integrated into Parameter-Efficient Fine-Tuning (PEFT). We release the code at [this https URL](https://github.com/ironartisan/DLP) to facilitate future research.
comment: Accepted by ICML 2025
♻ ☆ LlamaRL: A Distributed Asynchronous Reinforcement Learning Framework for Efficient Large-scale LLM Training
Reinforcement Learning (RL) has become the most effective post-training approach for improving the capabilities of Large Language Models (LLMs). In practice, because of the high demands on latency and memory, it is particularly challenging to develop an efficient RL framework that reliably manages policy models with hundreds to thousands of billions of parameters. In this paper, we present LlamaRL, a fully distributed, asynchronous RL framework optimized for efficient training of large-scale LLMs with various model sizes (8B, 70B, and 405B parameters) on GPU clusters ranging from a handful to thousands of devices. LlamaRL introduces a streamlined, single-controller architecture built entirely on native PyTorch, enabling modularity, ease of use, and seamless scalability to thousands of GPUs. We also provide a theoretical analysis of LlamaRL's efficiency, including a formal proof that its asynchronous design leads to strict RL speed-up. Empirically during the Llama 3 post-training, by leveraging best practices such as colocated model offloading, asynchronous off-policy training, and distributed direct memory access for weight synchronization, LlamaRL achieves significant efficiency gains -- up to 10.7x speed-up compared to DeepSpeed-Chat-like systems on a 405B-parameter policy model. Furthermore, the efficiency advantage continues to grow with increasing model scale, demonstrating the framework's suitability for future large-scale RL training.
♻ ☆ Hierarchical Retrieval with Evidence Curation for Open-Domain Financial Question Answering on Standardized Documents ACL 2025
Retrieval-augmented generation (RAG) based large language models (LLMs) are widely used in finance for their excellent performance on knowledge-intensive tasks. However, standardized documents (e.g., SEC filing) share similar formats such as repetitive boilerplate texts, and similar table structures. This similarity forces traditional RAG methods to misidentify near-duplicate text, leading to duplicate retrieval that undermines accuracy and completeness. To address these issues, we propose the Hierarchical Retrieval with Evidence Curation (HiREC) framework. Our approach first performs hierarchical retrieval to reduce confusion among similar texts. It first retrieve related documents and then selects the most relevant passages from the documents. The evidence curation process removes irrelevant passages. When necessary, it automatically generates complementary queries to collect missing information. To evaluate our approach, we construct and release a Large-scale Open-domain Financial (LOFin) question answering benchmark that includes 145,897 SEC documents and 1,595 question-answer pairs. Our code and data are available at https://github.com/deep-over/LOFin-bench-HiREC.
comment: ACL 2025 (Findings)
♻ ☆ AutoChemSchematic AI: A Closed-Loop, Physics-Aware Agentic Framework for Auto-Generating Chemical Process and Instrumentation Diagrams
Recent advancements in generative AI have accelerated the discovery of novel chemicals and materials; however, transitioning these discoveries to industrial-scale production remains a critical bottleneck, as it requires the development of entirely new chemical manufacturing processes. Current AI methods cannot auto-generate PFDs or PIDs, despite their critical role in scaling chemical processes, while adhering to engineering constraints. We present a closed loop, physics aware framework for the automated generation of industrially viable PFDs and PIDs. The framework integrates domain specialized small scale language models (SLMs) (trained for chemical process QA tasks) with first principles simulation, leveraging three key components: (1) a hierarchical knowledge graph of process flow and instrumentation descriptions for 1,020+ chemicals, (2) a multi-stage training pipeline that fine tunes domain specialized SLMs on synthetic datasets via Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and Retrieval-Augmented Instruction Tuning (RAIT), and (3) DWSIM based simulator in the loop validation to ensure feasibility. To improve both runtime efficiency and model compactness, the framework incorporates advanced inference time optimizations including FlashAttention, Lookahead Decoding, PagedAttention with KV-cache quantization, and Test Time Inference Scaling and independently applies structural pruning techniques (width and depth) guided by importance heuristics to reduce model size with minimal accuracy loss. Experiments demonstrate that the framework generates simulator-validated process descriptions with high fidelity, outperforms baseline methods in correctness, and generalizes to unseen chemicals. By bridging AI-driven design with industrial-scale feasibility, this work significantly reduces R&D timelines from lab discovery to plant deployment.
♻ ☆ Who is Helping Whom? Analyzing Inter-dependencies to Evaluate Cooperation in Human-AI Teaming
State-of-the-art methods for Human-AI Teaming and Zero-shot Cooperation focus on task completion, i.e., task rewards, as the sole evaluation metric while being agnostic to how the two agents work with each other. Furthermore, subjective user studies only offer limited insight into the quality of cooperation existing within the team. Specifically, we are interested in understanding the cooperative behaviors arising within the team when trained agents are paired with humans -- a problem that has been overlooked by the existing literature. To formally address this problem, we propose the concept of constructive interdependence -- measuring how much agents rely on each other's actions to achieve the shared goal -- as a key metric for evaluating cooperation in human-agent teams. We interpret interdependence in terms of action interactions in a STRIPS formalism, and define metrics that allow us to assess the degree of reliance between the agents' actions. We pair state-of-the-art agents HAT with learned human models as well as human participants in a user study for the popular Overcooked domain, and evaluate the task reward and teaming performance for these human-agent teams. Our results demonstrate that although trained agents attain high task rewards, they fail to induce cooperative behavior, showing very low levels of interdependence across teams. Furthermore, our analysis reveals that teaming performance is not necessarily correlated with task reward, highlighting that task reward alone cannot reliably measure cooperation arising in a team.
♻ ☆ Fact-Checking of AI-Generated Reports
With advances in generative artificial intelligence (AI), it is now possible to produce realistic-looking automated reports for preliminary reads of radiology images. This can expedite clinical workflows, improve accuracy and reduce overall costs. However, it is also well-known that such models often hallucinate, leading to false findings in the generated reports. In this paper, we propose a new method of fact-checking of AI-generated reports using their associated images. Specifically, the developed examiner differentiates real and fake sentences in reports by learning the association between an image and sentences describing real or potentially fake findings. To train such an examiner, we first created a new dataset of fake reports by perturbing the findings in the original ground truth radiology reports associated with images. Text encodings of real and fake sentences drawn from these reports are then paired with image encodings to learn the mapping to real/fake labels. The utility of such an examiner is demonstrated for verifying automatically generated reports by detecting and removing fake sentences. Future generative AI approaches can use the resulting tool to validate their reports leading to a more responsible use of AI in expediting clinical workflows.
comment: 10 pages, 3 figures, 3 tables
♻ ☆ CleanAgent: Automating Data Standardization with LLM-based Agents
Data standardization is a crucial part of the data science life cycle. While tools like Pandas offer robust functionalities, their complexity and the manual effort required for customizing code to diverse column types pose significant challenges. Although large language models (LLMs) like ChatGPT have shown promise in automating this process through natural language understanding and code generation, it still demands expert-level programming knowledge and continuous interaction for prompt refinement. To solve these challenges, our key idea is to propose a Python library with declarative, unified APIs for standardizing different column types, simplifying the LLM's code generation with concise API calls. We first propose Dataprep.Clean, a component of the Dataprep Python Library, significantly reduces the coding complexity by enabling the standardization of specific column types with a single line of code. Then, we introduce the CleanAgent framework integrating Dataprep.Clean and LLM-based agents to automate the data standardization process. With CleanAgent, data scientists only need to provide their requirements once, allowing for a hands-free process. To demonstrate the practical utility of CleanAgent, we developed a user-friendly web application, allowing users to interact with it using real-world datasets.
♻ ☆ Token-Budget-Aware LLM Reasoning
Reasoning is critical for large language models (LLMs) to excel in a wide range of tasks. While methods like Chain-of-Thought (CoT) reasoning and enhance LLM performance by decomposing problems into intermediate steps, they also incur significant overhead in token usage, leading to increased costs. We find that the reasoning process of current LLMs is unnecessarily lengthy and it can be compressed by including a reasonable token budget in the prompt, but the choice of token budget plays a crucial role in the actual compression effectiveness. We then propose a token-budget-aware LLM reasoning framework that dynamically adjusts the number of reasoning tokens based on the reasoning complexity of each problem. Experiments show that our method effectively reduces token costs in CoT reasoning with only a slight performance reduction, offering a practical solution to balance efficiency and accuracy in LLM reasoning. Code: https://github.com/GeniusHTX/TALE
♻ ☆ Enumerate-Conjecture-Prove: Formally Solving Answer-Construction Problems in Math Competitions
Mathematical reasoning lies at the heart of artificial intelligence, underpinning applications in education, program verification, and research-level mathematical discovery. Mathematical competitions, in particular, present two challenging problem types: theorem-proving, requiring rigorous proofs of stated conclusions, and answer-construction, involving hypothesizing and formally verifying mathematical objects. Large Language Models (LLMs) effectively generate creative candidate answers but struggle with formal verification, while symbolic provers ensure rigor but cannot efficiently handle creative conjecture generation. We introduce the Enumerate-Conjecture-Prove (ECP) framework, a modular neuro-symbolic method integrating LLM-based enumeration and pattern-driven conjecturing with formal theorem proving. We present ConstructiveBench, a dataset of 3,431 answer-construction problems in various math competitions with verified Lean formalizations. On the ConstructiveBench dataset, ECP improves the accuracy of answer construction from the Chain-of-Thought (CoT) baseline of 14.54% to 45.06% using the GPT-4.1-mini model. Moreover, when combined with ECP's constructed answers, the state-of-the-art DeepSeek-Prover-V2-7B model generates correct proofs for 858 of the 3,431 constructive problems in Lean, achieving 25.01% accuracy, compared to 9.86% for symbolic-only baselines. Our code and dataset are publicly available at https://github.com/JackSun200312/ECP.
♻ ☆ Standard Benchmarks Fail -- Auditing LLM Agents in Finance Must Prioritize Risk
Standard benchmarks fixate on how well large language model (LLM) agents perform in finance, yet say little about whether they are safe to deploy. We argue that accuracy metrics and return-based scores provide an illusion of reliability, overlooking vulnerabilities such as hallucinated facts, stale data, and adversarial prompt manipulation. We take a firm position: financial LLM agents should be evaluated first and foremost on their risk profile, not on their point-estimate performance. Drawing on risk-engineering principles, we outline a three-level agenda: model, workflow, and system, for stress-testing LLM agents under realistic failure modes. To illustrate why this shift is urgent, we audit six API-based and open-weights LLM agents on three high-impact tasks and uncover hidden weaknesses that conventional benchmarks miss. We conclude with actionable recommendations for researchers, practitioners, and regulators: audit risk-aware metrics in future studies, publish stress scenarios alongside datasets, and treat ``safety budget'' as a primary success criterion. Only by redefining what ``good'' looks like can the community responsibly advance AI-driven finance.
comment: 46 pages, 2 figures, 2 tables
♻ ☆ HybGRAG: Hybrid Retrieval-Augmented Generation on Textual and Relational Knowledge Bases ACL 2025
Given a semi-structured knowledge base (SKB), where text documents are interconnected by relations, how can we effectively retrieve relevant information to answer user questions? Retrieval-Augmented Generation (RAG) retrieves documents to assist large language models (LLMs) in question answering; while Graph RAG (GRAG) uses structured knowledge bases as its knowledge source. However, many questions require both textual and relational information from SKB - referred to as "hybrid" questions - which complicates the retrieval process and underscores the need for a hybrid retrieval method that leverages both information. In this paper, through our empirical analysis, we identify key insights that show why existing methods may struggle with hybrid question answering (HQA) over SKB. Based on these insights, we propose HybGRAG for HQA consisting of a retriever bank and a critic module, with the following advantages: (1) Agentic, it automatically refines the output by incorporating feedback from the critic module, (2) Adaptive, it solves hybrid questions requiring both textual and relational information with the retriever bank, (3) Interpretable, it justifies decision making with intuitive refinement path, and (4) Effective, it surpasses all baselines on HQA benchmarks. In experiments on the STaRK benchmark, HybGRAG achieves significant performance gains, with an average relative improvement in Hit@1 of 51%.
comment: Accepted to ACL 2025
♻ ☆ Performative Time-Series Forecasting
Time-series forecasting is a critical challenge in various domains and has witnessed substantial progress in recent years. Many real-life scenarios, such as public health, economics, and social applications, involve feedback loops where predictions can influence the predicted outcome, subsequently altering the target variable's distribution. This phenomenon, known as performativity, introduces the potential for 'self-negating' or 'self-fulfilling' predictions. Despite extensive studies in classification problems across domains, performativity remains largely unexplored in the context of time-series forecasting from a machine-learning perspective. In this paper, we formalize performative time-series forecasting (PeTS), addressing the challenge of accurate predictions when performativity-induced distribution shifts are possible. We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts and subsequently predicts targets accordingly. We provide theoretical insights suggesting that FPS can potentially lead to reduced generalization error. We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks. The results demonstrate that FPS consistently outperforms conventional time-series forecasting methods, highlighting its efficacy in handling performativity-induced challenges.
comment: 12 pages (8 main text, 1 reference, 3 appendix), 5 figures, 4 tables
♻ ☆ Assurance of AI Systems From a Dependability Perspective
We outline the principles of classical assurance for computer-based systems that pose significant risks. We then consider application of these principles to systems that employ Artificial Intelligence (AI) and Machine Learning (ML). A key element in this "dependability" perspective is a requirement for thorough understanding of the behavior of critical components, and this is considered infeasible for AI and ML. Hence the dependability perspective aims to minimize trust in AI and ML elements by using "defense in depth" with a hierarchy of less complex systems, some of which may be highly assured conventionally engineered components, to "guard" them. This may be contrasted with the "trustworthy" perspective that seeks to apply assurance to the AI and ML elements themselves. In cyber-physical and many other systems, it is difficult to provide guards that do not depend on AI and ML to perceive their environment (e.g., vehicles sharing the road with a self-driving car), so both perspectives are needed and there is a continuum or spectrum between them. We focus on architectures toward the dependability end of the continuum and invite others to consider additional points along the spectrum. For guards that require perception using AI and ML, we examine ways to minimize the trust placed in these elements; they include diversity, defense in depth, explanations, and micro-ODDs. We also examine methods to enforce acceptable behavior, given a model of the world. These include classical cyber-physical calculations and envelopes, and normative rules based on overarching principles, constitutions, ethics, or reputation. We apply our perspective to autonomous systems, AI systems for specific functions, general-purpose AI such as Large Language Models (LLMs), and Artificial General Intelligence (AGI), and we propose current best practice and conclude with a fourfold agenda for research.
♻ ☆ Dynamic Search for Inference-Time Alignment in Diffusion Models
Diffusion models have shown promising generative capabilities across diverse domains, yet aligning their outputs with desired reward functions remains a challenge, particularly in cases where reward functions are non-differentiable. Some gradient-free guidance methods have been developed, but they often struggle to achieve optimal inference-time alignment. In this work, we newly frame inference-time alignment in diffusion as a search problem and propose Dynamic Search for Diffusion (DSearch), which subsamples from denoising processes and approximates intermediate node rewards. It also dynamically adjusts beam width and tree expansion to efficiently explore high-reward generations. To refine intermediate decisions, DSearch incorporates adaptive scheduling based on noise levels and a lookahead heuristic function. We validate DSearch across multiple domains, including biological sequence design, molecular optimization, and image generation, demonstrating superior reward optimization compared to existing approaches.
♻ ☆ The Male CEO and the Female Assistant: Evaluation and Mitigation of Gender Biases in Text-To-Image Generation of Dual Subjects
Recent large-scale T2I models like DALLE-3 have made progress in reducing gender stereotypes when generating single-person images. However, significant biases remain when generating images with more than one person. To systematically evaluate this, we propose the Paired Stereotype Test (PST) framework, which queries T2I models to depict two individuals assigned with male-stereotyped and female-stereotyped social identities, respectively (e.g. "a CEO" and "an Assistant"). This contrastive setting often triggers T2I models to generate gender-stereotyped images. Using PST, we evaluate two aspects of gender biases -- the well-known bias in gendered occupation and a novel aspect: bias in organizational power. Experiments show that over 74\% images generated by DALLE-3 display gender-occupational biases. Additionally, compared to single-person settings, DALLE-3 is more likely to perpetuate male-associated stereotypes under PST. We further propose FairCritic, a novel and interpretable framework that leverages an LLM-based critic model to i) detect bias in generated images, and ii) adaptively provide feedback to T2I models for improving fairness. FairCritic achieves near-perfect fairness on PST, overcoming the limitations of previous prompt-based intervention approaches.
♻ ☆ Toward Scientific Reasoning in LLMs: Training from Expert Discussions via Reinforcement Learning
We investigate how to teach large language models (LLMs) to perform scientific reasoning by leveraging expert discussions as a learning signal. Focusing on the genomics domain, we develop an automated pipeline to extract trainable data and introduce Genome-Bench, a new benchmark constructed from over a decade of scientific forum discussions on genome engineering. Our pipeline transforms raw interactions into a reinforcement learning-friendly multiple-choice questions format, supported by 3000+ high-quality question-answer pairs spanning foundational biology, experimental troubleshooting, tool usage, and beyond. We fine-tune an LLM using RL with a rule-based reward signal derived from the synthetic MCQ dataset to enhance domain-specific reasoning. Our results show that reinforcement learning from scientific discussions improves model performance by over 15% compared to the base model on Genome-Bench, narrowing the gap between open-source LLMs and expert-level reasoning. To our knowledge, this is the first end-to-end pipeline for teaching LLMs to reason from scientific discussions, with promising potential for generalization across scientific domains beyond biology.
♻ ☆ Unsupervised Time-Series Signal Analysis with Autoencoders and Vision Transformers: A Review of Architectures and Applications
The rapid growth of unlabeled time-series data in domains such as wireless communications, radar, biomedical engineering, and the Internet of Things (IoT) has driven advancements in unsupervised learning. This review synthesizes recent progress in applying autoencoders and vision transformers for unsupervised signal analysis, focusing on their architectures, applications, and emerging trends. We explore how these models enable feature extraction, anomaly detection, and classification across diverse signal types, including electrocardiograms, radar waveforms, and IoT sensor data. The review highlights the strengths of hybrid architectures and self-supervised learning, while identifying challenges in interpretability, scalability, and domain generalization. By bridging methodological innovations and practical applications, this work offers a roadmap for developing robust, adaptive models for signal intelligence.
♻ ☆ In-context learning and Occam's razor
A central goal of machine learning is generalization. While the No Free Lunch Theorem states that we cannot obtain theoretical guarantees for generalization without further assumptions, in practice we observe that simple models which explain the training data generalize best: a principle called Occam's razor. Despite the need for simple models, most current approaches in machine learning only minimize the training error, and at best indirectly promote simplicity through regularization or architecture design. Here, we draw a connection between Occam's razor and in-context learning: an emergent ability of certain sequence models like Transformers to learn at inference time from past observations in a sequence. In particular, we show that the next-token prediction loss used to train in-context learners is directly equivalent to a data compression technique called prequential coding, and that minimizing this loss amounts to jointly minimizing both the training error and the complexity of the model that was implicitly learned from context. Our theory and the empirical experiments we use to support it not only provide a normative account of in-context learning, but also elucidate the shortcomings of current in-context learning methods, suggesting ways in which they can be improved. We make our code available at https://github.com/3rdCore/PrequentialCode.
♻ ☆ Early Detection of Patient Deterioration from Real-Time Wearable Monitoring System
Early detection of patient deterioration is crucial for reducing mortality rates. Heart rate data has shown promise in assessing patient health, and wearable devices offer a cost-effective solution for real-time monitoring. However, extracting meaningful insights from diverse heart rate data and handling missing values in wearable device data remain key challenges. To address these challenges, we propose TARL, an innovative approach that models the structural relationships of representative subsequences, known as shapelets, in heart rate time series. TARL creates a shapelet-transition knowledge graph to model shapelet dynamics in heart rate time series, indicating illness progression and potential future changes. We further introduce a transition-aware knowledge embedding to reinforce relationships among shapelets and quantify the impact of missing values, enabling the formulation of comprehensive heart rate representations. These representations capture explanatory structures and predict future heart rate trends, aiding early illness detection. We collaborate with physicians and nurses to gather ICU patient heart rate data from wearables and diagnostic metrics assessing illness severity for evaluating deterioration. Experiments on real-world ICU data demonstrate that TARL achieves both high reliability and early detection. A case study further showcases TARL's explainable detection process, highlighting its potential as an AI-driven tool to assist clinicians in recognizing early signs of patient deterioration.
Graphics 7
☆ Stochastic Barnes-Hut Approximation for Fast Summation on the GPU SIGGRAPH 2025
We present a novel stochastic version of the Barnes-Hut approximation. Regarding the level-of-detail (LOD) family of approximations as control variates, we construct an unbiased estimator of the kernel sum being approximated. Through several examples in graphics applications such as winding number computation and smooth distance evaluation, we demonstrate that our method is well-suited for GPU computation, capable of outperforming a GPU-optimized implementation of the deterministic Barnes-Hut approximation by achieving equal median error in up to 9.4x less time.
comment: 11 pages, 9 figures. To appear in ACM SIGGRAPH 2025
☆ Image Generation from Contextually-Contradictory Prompts
Text-to-image diffusion models excel at generating high-quality, diverse images from natural language prompts. However, they often fail to produce semantically accurate results when the prompt contains concept combinations that contradict their learned priors. We define this failure mode as contextual contradiction, where one concept implicitly negates another due to entangled associations learned during training. To address this, we propose a stage-aware prompt decomposition framework that guides the denoising process using a sequence of proxy prompts. Each proxy prompt is constructed to match the semantic content expected to emerge at a specific stage of denoising, while ensuring contextual coherence. To construct these proxy prompts, we leverage a large language model (LLM) to analyze the target prompt, identify contradictions, and generate alternative expressions that preserve the original intent while resolving contextual conflicts. By aligning prompt information with the denoising progression, our method enables fine-grained semantic control and accurate image generation in the presence of contextual contradictions. Experiments across a variety of challenging prompts show substantial improvements in alignment to the textual prompt.
comment: Project page: https://tdpc2025.github.io/SAP/
☆ Silence is Golden: Leveraging Adversarial Examples to Nullify Audio Control in LDM-based Talking-Head Generation CVPR 2025
Advances in talking-head animation based on Latent Diffusion Models (LDM) enable the creation of highly realistic, synchronized videos. These fabricated videos are indistinguishable from real ones, increasing the risk of potential misuse for scams, political manipulation, and misinformation. Hence, addressing these ethical concerns has become a pressing issue in AI security. Recent proactive defense studies focused on countering LDM-based models by adding perturbations to portraits. However, these methods are ineffective at protecting reference portraits from advanced image-to-video animation. The limitations are twofold: 1) they fail to prevent images from being manipulated by audio signals, and 2) diffusion-based purification techniques can effectively eliminate protective perturbations. To address these challenges, we propose Silencer, a two-stage method designed to proactively protect the privacy of portraits. First, a nullifying loss is proposed to ignore audio control in talking-head generation. Second, we apply anti-purification loss in LDM to optimize the inverted latent feature to generate robust perturbations. Extensive experiments demonstrate the effectiveness of Silencer in proactively protecting portrait privacy. We hope this work will raise awareness among the AI security community regarding critical ethical issues related to talking-head generation techniques. Code: https://github.com/yuangan/Silencer.
comment: Accepted to CVPR 2025
☆ WishGI: Lightweight Static Global Illumination Baking via Spherical Harmonics Fitting
Global illumination combines direct and indirect lighting to create realistic lighting effects, bringing virtual scenes closer to reality. Static global illumination is a crucial component of virtual scene rendering, leveraging precomputation and baking techniques to significantly reduce runtime computational costs. Unfortunately, many existing works prioritize visual quality by relying on extensive texture storage and massive pixel-level texture sampling, leading to large performance overhead. In this paper, we introduce an illumination reconstruction method that effectively reduces sampling in fragment shader and avoids additional render passes, making it well-suited for low-end platforms. To achieve high-quality global illumination with reduced memory usage, we adopt a spherical harmonics fitting approach for baking effective illumination information and propose an inverse probe distribution method that generates unique probe associations for each mesh. This association, which can be generated offline in the local space, ensures consistent lighting quality across all instances of the same mesh. As a consequence, our method delivers highly competitive lighting effects while using only approximately 5% of the memory required by mainstream industry techniques.
♻ ☆ A Survey on Event-driven 3D Reconstruction: Development under Different Categories
Event cameras have gained increasing attention for 3D reconstruction due to their high temporal resolution, low latency, and high dynamic range. They capture per-pixel brightness changes asynchronously, allowing accurate reconstruction under fast motion and challenging lighting conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction methods, including stereo, monocular, and multimodal systems. We further categorize recent developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works are structured chronologically to illustrate the innovations and progression within the field. To support future research, we also highlight key research gaps and future research directions in dataset, experiment, evaluation, event representation, etc.
comment: We have decided not to submit this article and plan to withdraw it from public display. The content of this article will be presented in a more comprehensive form in another work
♻ ☆ Flex3D: Feed-Forward 3D Generation with Flexible Reconstruction Model and Input View Curation ICML 25
Generating high-quality 3D content from text, single images, or sparse view images remains a challenging task with broad applications. Existing methods typically employ multi-view diffusion models to synthesize multi-view images, followed by a feed-forward process for 3D reconstruction. However, these approaches are often constrained by a small and fixed number of input views, limiting their ability to capture diverse viewpoints and, even worse, leading to suboptimal generation results if the synthesized views are of poor quality. To address these limitations, we propose Flex3D, a novel two-stage framework capable of leveraging an arbitrary number of high-quality input views. The first stage consists of a candidate view generation and curation pipeline. We employ a fine-tuned multi-view image diffusion model and a video diffusion model to generate a pool of candidate views, enabling a rich representation of the target 3D object. Subsequently, a view selection pipeline filters these views based on quality and consistency, ensuring that only the high-quality and reliable views are used for reconstruction. In the second stage, the curated views are fed into a Flexible Reconstruction Model (FlexRM), built upon a transformer architecture that can effectively process an arbitrary number of inputs. FlemRM directly outputs 3D Gaussian points leveraging a tri-plane representation, enabling efficient and detailed 3D generation. Through extensive exploration of design and training strategies, we optimize FlexRM to achieve superior performance in both reconstruction and generation tasks. Our results demonstrate that Flex3D achieves state-of-the-art performance, with a user study winning rate of over 92% in 3D generation tasks when compared to several of the latest feed-forward 3D generative models.
comment: ICML 25. Project page: https://junlinhan.github.io/projects/flex3d/
♻ ☆ Generating by Understanding: Neural Visual Generation with Logical Symbol Groundings KDD 2025
Making neural visual generative models controllable by logical reasoning systems is promising for improving faithfulness, transparency, and generalizability. We propose the Abductive visual Generation (AbdGen) approach to build such logic-integrated models. A vector-quantized symbol grounding mechanism and the corresponding disentanglement training method are introduced to enhance the controllability of logical symbols over generation. Furthermore, we propose two logical abduction methods to make our approach require few labeled training data and support the induction of latent logical generative rules from data. We experimentally show that our approach can be utilized to integrate various neural generative models with logical reasoning systems, by both learning from scratch or utilizing pre-trained models directly. The code is released at https://github.com/future-item/AbdGen.
comment: KDD 2025 research track paper
Robotics 27
☆ Test Automation for Interactive Scenarios via Promptable Traffic Simulation CVPR 2025
Autonomous vehicle (AV) planners must undergo rigorous evaluation before widespread deployment on public roads, particularly to assess their robustness against the uncertainty of human behaviors. While recent advancements in data-driven scenario generation enable the simulation of realistic human behaviors in interactive settings, leveraging these models to construct comprehensive tests for AV planners remains an open challenge. In this work, we introduce an automated method to efficiently generate realistic and safety-critical human behaviors for AV planner evaluation in interactive scenarios. We parameterize complex human behaviors using low-dimensional goal positions, which are then fed into a promptable traffic simulator, ProSim, to guide the behaviors of simulated agents. To automate test generation, we introduce a prompt generation module that explores the goal domain and efficiently identifies safety-critical behaviors using Bayesian optimization. We apply our method to the evaluation of an optimization-based planner and demonstrate its effectiveness and efficiency in automatically generating diverse and realistic driving behaviors across scenarios with varying initial conditions.
comment: Accepted by CVPR 2025 Workshop Data-Driven Autonomous Driving Simulation (track 1)
☆ OG-VLA: 3D-Aware Vision Language Action Model via Orthographic Image Generation
We introduce OG-VLA, a novel architecture and learning framework that combines the generalization strengths of Vision Language Action models (VLAs) with the robustness of 3D-aware policies. We address the challenge of mapping natural language instructions and multi-view RGBD observations to quasi-static robot actions. 3D-aware robot policies achieve state-of-the-art performance on precise robot manipulation tasks, but struggle with generalization to unseen instructions, scenes, and objects. On the other hand, VLAs excel at generalizing across instructions and scenes, but can be sensitive to camera and robot pose variations. We leverage prior knowledge embedded in language and vision foundation models to improve generalization of 3D-aware keyframe policies. OG-VLA projects input observations from diverse views into a point cloud which is then rendered from canonical orthographic views, ensuring input view invariance and consistency between input and output spaces. These canonical views are processed with a vision backbone, a Large Language Model (LLM), and an image diffusion model to generate images that encode the next position and orientation of the end-effector on the input scene. Evaluations on the Arnold and Colosseum benchmarks demonstrate state-of-the-art generalization to unseen environments, with over 40% relative improvements while maintaining robust performance in seen settings. We also show real-world adaption in 3 to 5 demonstrations along with strong generalization. Videos and resources at https://og-vla.github.io/
comment: 17 pages
☆ HoMeR: Learning In-the-Wild Mobile Manipulation via Hybrid Imitation and Whole-Body Control
We introduce HoMeR, an imitation learning framework for mobile manipulation that combines whole-body control with hybrid action modes that handle both long-range and fine-grained motion, enabling effective performance on realistic in-the-wild tasks. At its core is a fast, kinematics-based whole-body controller that maps desired end-effector poses to coordinated motion across the mobile base and arm. Within this reduced end-effector action space, HoMeR learns to switch between absolute pose predictions for long-range movement and relative pose predictions for fine-grained manipulation, offloading low-level coordination to the controller and focusing learning on task-level decisions. We deploy HoMeR on a holonomic mobile manipulator with a 7-DoF arm in a real home. We compare HoMeR to baselines without hybrid actions or whole-body control across 3 simulated and 3 real household tasks such as opening cabinets, sweeping trash, and rearranging pillows. Across tasks, HoMeR achieves an overall success rate of 79.17% using just 20 demonstrations per task, outperforming the next best baseline by 29.17 on average. HoMeR is also compatible with vision-language models and can leverage their internet-scale priors to better generalize to novel object appearances, layouts, and cluttered scenes. In summary, HoMeR moves beyond tabletop settings and demonstrates a scalable path toward sample-efficient, generalizable manipulation in everyday indoor spaces. Code, videos, and supplementary material are available at: http://homer-manip.github.io
☆ Humanoid World Models: Open World Foundation Models for Humanoid Robotics
Humanoid robots have the potential to perform complex tasks in human centered environments but require robust predictive models to reason about the outcomes of their actions. We introduce Humanoid World Models (HWM) a family of lightweight open source video based models that forecast future egocentric observations conditioned on actions. We train two types of generative models Masked Transformers and FlowMatching on 100 hours of humanoid demonstrations. Additionally we explore architectural variants with different attention mechanisms and parameter sharing strategies. Our parameter sharing techniques reduce model size by 33 to 53 with minimal impact on performance or visual fidelity. HWM is designed to be trained and deployed in practical academic and small lab settings such as 1 to 2 GPUs.
☆ Accelerated Learning with Linear Temporal Logic using Differentiable Simulation
To ensure learned controllers comply with safety and reliability requirements for reinforcement learning in real-world settings remains challenging. Traditional safety assurance approaches, such as state avoidance and constrained Markov decision processes, often inadequately capture trajectory requirements or may result in overly conservative behaviors. To address these limitations, recent studies advocate the use of formal specification languages such as linear temporal logic (LTL), enabling the derivation of correct-by-construction learning objectives from the specified requirements. However, the sparse rewards associated with LTL specifications make learning extremely difficult, whereas dense heuristic-based rewards risk compromising correctness. In this work, we propose the first method, to our knowledge, that integrates LTL with differentiable simulators, facilitating efficient gradient-based learning directly from LTL specifications by coupling with differentiable paradigms. Our approach introduces soft labeling to achieve differentiable rewards and states, effectively mitigating the sparse-reward issue intrinsic to LTL without compromising objective correctness. We validate the efficacy of our method through experiments, demonstrating significant improvements in both reward attainment and training time compared to the discrete methods.
☆ Standing Tall: Robust Fall Prediction for Bipedal Robots
This paper extends the fall prediction algorithm from Mungai et al.(2024) to a real-time/online setting, implemented in both hardware and simulation. This yields results comparable to the offline version, maintaining a zero false positive rate, sufficient lead time, and accurate lead time prediction. Additionally, it achieves a high recovery rate. The paper also evaluates the fall prediction algorithm against omnidirectional faults and introduces an improved algorithm capable of reliably predicting falls and lead times across a wider range of faults in full-sized robots. Compared to Mungai et al.(2024), the proposed algorithm performs significantly better across all metrics, such as false positive rate, lead time, accuracy, and response time, demonstrating the algorithm's efficacy for real-time fall prediction in bipedal robots.
comment: Submitted to Humanoids 2025. This work has been submitted to the IEEE for possible publication
☆ $\text{TREX}^2$: Dual-Reconstruction Framework for Teleoperated-Robot with EXtended Reality
Robot teleoperation with extended reality (XR teleoperation) enables intuitive interaction by allowing remote robots to mimic user motions with real-time 3D feedback. However, existing systems face significant motion-to-motion (M2M) latency -- the delay between the user's latest motion and the corresponding robot feedback -- leading to high teleoperation error and mission completion time. This issue stems from the system's exclusive reliance on network communication, making it highly vulnerable to network degradation. To address these challenges, we introduce $\text{TREX}^2$, the first end-to-end, fully open-sourced XR teleoperation framework that decouples robot control and XR visualization from network dependencies. $\text{TREX}^2$ leverages local sensing data to reconstruct delayed or missing information of the counterpart, thereby significantly reducing network-induced issues. This approach allows both the XR and robot to run concurrently with network transmission while maintaining high robot planning accuracy. $\text{TREX}^2$ also features contention-aware scheduling to mitigate GPU contention and bandwidth-adaptive point cloud scaling to cope with limited bandwidth. We implement $\text{TREX}^2$ across three hardware settings, including simulated and physical robots, and evaluate it on 9,500 real-world teleoperation trials from the RoboSet dataset \cite{kumar2024robohive}, covering single- and multi-step missions. Compared to state-of-the-art XR teleoperation frameworks, $\text{TREX}^2$ reduces teleoperation error by up to 69.8% on WLAN and 73.1% on cellular networks with only 6.7% maximum runtime overhead. It also improves completion time by up to 47.7%, enabling smoother teleoperation. A real-world case study on ten stationary and mobile missions further shows $\text{TREX}^2$ achieves up to 37.7% faster completion while lowering average teleoperation error by up to 57.2%.
☆ iRonCub 3: The Jet-Powered Flying Humanoid Robot
This article presents iRonCub 3, a jet-powered humanoid robot, and its first flight experiments. Unlike traditional aerial vehicles, iRonCub 3 aims to achieve flight using a full-body humanoid form, which poses unique challenges in control, estimation, and system integration. We highlight the robot's current mechanical and software architecture, including its propulsion system, control framework, and experimental infrastructure. The control and estimation framework is first validated in simulation by performing a takeoff and tracking a reference trajectory. Then, we demonstrate, for the first time, a liftoff of a jet-powered humanoid robot - an initial but significant step toward aerial humanoid mobility. Also, we detail how the experimental area around a jet-powered humanoid robot should be designed in order to deal with a level of complexity that is substantially superior than indoor humanoid robot experiments.
☆ RoboTwin: A Robotic Teleoperation Framework Using Digital Twins
Robotic surgery imposes a significant cognitive burden on the surgeon. This cognitive burden increases in the case of remote robotic surgeries due to latency between entities and thus might affect the quality of surgery. Here, the patient side and the surgeon side are geographically separated by hundreds to thousands of kilometres. Real-time teleoperation of robots requires strict latency bounds for control and feedback. We propose a dual digital twin (DT) framework and explain the simulation environment and teleoperation framework. Here, the doctor visually controls the locally available DT of the patient side and thus experiences minimum latency. The second digital twin serves two purposes. Firstly, it provides a layer of safety for operator-related mishaps, and secondly, it conveys the coordinates of known and unknown objects back to the operator's side digital twin. We show that teleoperation accuracy and user experience are enhanced with our approach. Experimental results using the NASA-TLX metric show that the quality of surgery is vastly improved with DT, perhaps due to reduced cognitive burden. The network data rate for identifying objects at the operator side is 25x lower than normal.
☆ Enhancing Speech Instruction Understanding and Disambiguation in Robotics via Speech Prosody
Enabling robots to accurately interpret and execute spoken language instructions is essential for effective human-robot collaboration. Traditional methods rely on speech recognition to transcribe speech into text, often discarding crucial prosodic cues needed for disambiguating intent. We propose a novel approach that directly leverages speech prosody to infer and resolve instruction intent. Predicted intents are integrated into large language models via in-context learning to disambiguate and select appropriate task plans. Additionally, we present the first ambiguous speech dataset for robotics, designed to advance research in speech disambiguation. Our method achieves 95.79% accuracy in detecting referent intents within an utterance and determines the intended task plan of ambiguous instructions with 71.96% accuracy, demonstrating its potential to significantly improve human-robot communication.
comment: Accepted to Interspeech 2025
☆ Robust and Safe Multi-Agent Reinforcement Learning Framework with Communication for Autonomous Vehicles
Deep multi-agent reinforcement learning (MARL) has been demonstrated effectively in simulations for many multi-robot problems. For autonomous vehicles, the development of vehicle-to-vehicle (V2V) communication technologies provide opportunities to further enhance safety of the system. However, zero-shot transfer of simulator-trained MARL policies to hardware dynamic systems remains challenging, and how to leverage communication and shared information for MARL has limited demonstrations on hardware. This problem is challenged by discrepancies between simulated and physical states, system state and model uncertainties, practical shared information design, and the need for safety guarantees in both simulation and hardware. This paper introduces RSR-RSMARL, a novel Robust and Safe MARL framework that supports Real-Sim-Real (RSR) policy adaptation for multi-agent systems with communication among agents, with both simulation and hardware demonstrations. RSR-RSMARL leverages state (includes shared state information among agents) and action representations considering real system complexities for MARL formulation. The MARL policy is trained with robust MARL algorithm to enable zero-shot transfer to hardware considering the sim-to-real gap. A safety shield module using Control Barrier Functions (CBFs) provides safety guarantee for each individual agent. Experiment results on F1/10th-scale autonomous vehicles with V2V communication demonstrate the ability of RSR-RSMARL framework to enhance driving safety and coordination across multiple configurations. These findings emphasize the importance of jointly designing robust policy representations and modular safety architectures to enable scalable, generalizable RSR transfer in multi-agent autonomy.
comment: 19 pages, 9 Figures
☆ Globally Consistent RGB-D SLAM with 2D Gaussian Splatting
Recently, 3D Gaussian splatting-based RGB-D SLAM displays remarkable performance of high-fidelity 3D reconstruction. However, the lack of depth rendering consistency and efficient loop closure limits the quality of its geometric reconstructions and its ability to perform globally consistent mapping online. In this paper, we present 2DGS-SLAM, an RGB-D SLAM system using 2D Gaussian splatting as the map representation. By leveraging the depth-consistent rendering property of the 2D variant, we propose an accurate camera pose optimization method and achieve geometrically accurate 3D reconstruction. In addition, we implement efficient loop detection and camera relocalization by leveraging MASt3R, a 3D foundation model, and achieve efficient map updates by maintaining a local active map. Experiments show that our 2DGS-SLAM approach achieves superior tracking accuracy, higher surface reconstruction quality, and more consistent global map reconstruction compared to existing rendering-based SLAM methods, while maintaining high-fidelity image rendering and improved computational efficiency.
comment: 18 pages
☆ Towards Predicting Any Human Trajectory In Context
Predicting accurate future trajectories of pedestrians is essential for autonomous systems but remains a challenging task due to the need for adaptability in different environments and domains. A common approach involves collecting scenario-specific data and performing fine-tuning via backpropagation. However, this process is often impractical on edge devices due to constrained computational resources. To address this challenge, we introduce TrajICL, an In-Context Learning (ICL) framework for pedestrian trajectory prediction that enables rapid adaptation without fine-tuning on the scenario-specific data. We propose a spatio-temporal similarity-based example selection (STES) method that selects relevant examples from previously observed trajectories within the same scene by identifying similar motion patterns at corresponding locations. To further refine this selection, we introduce prediction-guided example selection (PG-ES), which selects examples based on both the past trajectory and the predicted future trajectory, rather than relying solely on the past trajectory. This approach allows the model to account for long-term dynamics when selecting examples. Finally, instead of relying on small real-world datasets with limited scenario diversity, we train our model on a large-scale synthetic dataset to enhance its prediction ability by leveraging in-context examples. Extensive experiments demonstrate that TrajICL achieves remarkable adaptation across both in-domain and cross-domain scenarios, outperforming even fine-tuned approaches across multiple public benchmarks. The code will be released at https://fujiry0.github.io/TrajICL-project-page.
Max Entropy Moment Kalman Filter for Polynomial Systems with Arbitrary Noise
Designing optimal Bayes filters for nonlinear non-Gaussian systems is a challenging task. The main difficulties are: 1) representing complex beliefs, 2) handling non-Gaussian noise, and 3) marginalizing past states. To address these challenges, we focus on polynomial systems and propose the Max Entropy Moment Kalman Filter (MEM-KF). To address 1), we represent arbitrary beliefs by a Moment-Constrained Max-Entropy Distribution (MED). The MED can asymptotically approximate almost any distribution given an increasing number of moment constraints. To address 2), we model the noise in the process and observation model as MED. To address 3), we propagate the moments through the process model and recover the distribution as MED, thus avoiding symbolic integration, which is generally intractable. All the steps in MEM-KF, including the extraction of a point estimate, can be solved via convex optimization. We showcase the MEM-KF in challenging robotics tasks, such as localization with unknown data association.
☆ Improving Multi-Vehicle Perception Fusion with Millimeter-Wave Radar Assistance
Cooperative perception enables vehicles to share sensor readings and has become a new paradigm to improve driving safety, where the key enabling technology for realizing this vision is to real-time and accurately align and fuse the perceptions. Recent advances to align the views rely on high-density LiDAR data or fine-grained image feature representations, which however fail to meet the requirements of accuracy, real-time, and adaptability for autonomous driving. To this end, we present MMatch, a lightweight system that enables accurate and real-time perception fusion with mmWave radar point clouds. The key insight is that fine-grained spatial information provided by the radar present unique associations with all the vehicles even in two separate views. As a result, by capturing and understanding the unique local and global position of the targets in this association, we can quickly find out all the co-visible vehicles for view alignment. We implement MMatch on both the datasets collected from the CARLA platform and the real-world traffic with over 15,000 radar point cloud pairs. Experimental results show that MMatch achieves decimeter-level accuracy within 59ms, which significantly improves the reliability for autonomous driving.
comment: to appear in IEEE INFOCOM 2025
☆ DriveMind: A Dual-VLM based Reinforcement Learning Framework for Autonomous Driving
End-to-end autonomous driving systems map sensor data directly to control commands, but remain opaque, lack interpretability, and offer no formal safety guarantees. While recent vision-language-guided reinforcement learning (RL) methods introduce semantic feedback, they often rely on static prompts and fixed objectives, limiting adaptability to dynamic driving scenes. We present DriveMind, a unified semantic reward framework that integrates: (i) a contrastive Vision-Language Model (VLM) encoder for stepwise semantic anchoring; (ii) a novelty-triggered VLM encoder-decoder, fine-tuned via chain-of-thought (CoT) distillation, for dynamic prompt generation upon semantic drift; (iii) a hierarchical safety module enforcing kinematic constraints (e.g., speed, lane centering, stability); and (iv) a compact predictive world model to reward alignment with anticipated ideal states. DriveMind achieves 19.4 +/- 2.3 km/h average speed, 0.98 +/- 0.03 route completion, and near-zero collisions in CARLA Town 2, outperforming baselines by over 4% in success rate. Its semantic reward generalizes zero-shot to real dash-cam data with minimal distributional shift, demonstrating robust cross-domain alignment and potential for real-world deployment.
♻ ☆ FastTD3: Simple, Fast, and Capable Reinforcement Learning for Humanoid Control
Reinforcement learning (RL) has driven significant progress in robotics, but its complexity and long training times remain major bottlenecks. In this report, we introduce FastTD3, a simple, fast, and capable RL algorithm that significantly speeds up training for humanoid robots in popular suites such as HumanoidBench, IsaacLab, and MuJoCo Playground. Our recipe is remarkably simple: we train an off-policy TD3 agent with several modifications -- parallel simulation, large-batch updates, a distributional critic, and carefully tuned hyperparameters. FastTD3 solves a range of HumanoidBench tasks in under 3 hours on a single A100 GPU, while remaining stable during training. We also provide a lightweight and easy-to-use implementation of FastTD3 to accelerate RL research in robotics.
comment: Project webpage: https://younggyo.me/fast_td3
♻ ☆ Multimodal Sensing and Machine Learning to Compare Printed and Verbal Assembly Instructions Delivered by a Social Robot
In this paper, we compare a manual assembly task communicated to workers using both printed and robot-delivered instructions. The comparison was made using physiological signals (blood volume pulse (BVP) and electrodermal activity (EDA)) collected from individuals during an experimental study. In addition, we also collected responses of individuals using the NASA Task Load Index (TLX) survey. Furthermore, we mapped the collected physiological signals to the responses of participants for NASA TLX to predict their workload. For both the classification problems, we compare the performance of Convolutional Neural Networks (CNNs) and Long-Short-Term Memory (LSTM) models. Results show that for our CNN-based approach using multimodal data (both BVP and EDA) gave better results than using just BVP (approx. 8.38% more) and EDA (approx 20.49% more). Our LSTM-based model too had better results when we used multimodal data (approx 8.38% more than just BVP and 6.70% more than just EDA). Overall, CNNs performed better than LSTMs for classifying physiologies for paper vs robot-based instruction by 7.72%. The CNN-based model was able to give better classification results (approximately 17.83% more on an average across all responses of the NASA TLX) within a few minutes of training compared to the LSTM-based models.
comment: Accepted to IEEE CASE 2025
♻ ☆ Fall Prediction for Bipedal Robots: The Standing Phase
This paper presents a novel approach to fall prediction for bipedal robots, specifically targeting the detection of potential falls while standing caused by abrupt, incipient, and intermittent faults. Leveraging a 1D convolutional neural network (CNN), our method aims to maximize lead time for fall prediction while minimizing false positive rates. The proposed algorithm uniquely integrates the detection of various fault types and estimates the lead time for potential falls. Our contributions include the development of an algorithm capable of detecting abrupt, incipient, and intermittent faults in full-sized robots, its implementation using both simulation and hardware data for a humanoid robot, and a method for estimating lead time. Evaluation metrics, including false positive rate, lead time, and response time, demonstrate the efficacy of our approach. Particularly, our model achieves impressive lead times and response times across different fault scenarios with a false positive rate of 0. The findings of this study hold significant implications for enhancing the safety and reliability of bipedal robotic systems.
comment: \c{opyright} 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Think Small, Act Big: Primitive Prompt Learning for Lifelong Robot Manipulation CVPR 2025
Building a lifelong robot that can effectively leverage prior knowledge for continuous skill acquisition remains significantly challenging. Despite the success of experience replay and parameter-efficient methods in alleviating catastrophic forgetting problem, naively applying these methods causes a failure to leverage the shared primitives between skills. To tackle these issues, we propose Primitive Prompt Learning (PPL), to achieve lifelong robot manipulation via reusable and extensible primitives. Within our two stage learning scheme, we first learn a set of primitive prompts to represent shared primitives through multi-skills pre-training stage, where motion-aware prompts are learned to capture semantic and motion shared primitives across different skills. Secondly, when acquiring new skills in lifelong span, new prompts are appended and optimized with frozen pretrained prompts, boosting the learning via knowledge transfer from old skills to new ones. For evaluation, we construct a large-scale skill dataset and conduct extensive experiments in both simulation and real-world tasks, demonstrating PPL's superior performance over state-of-the-art methods.
comment: Accepted to CVPR 2025
♻ ☆ RLZero: Direct Policy Inference from Language Without In-Domain Supervision
The reward hypothesis states that all goals and purposes can be understood as the maximization of a received scalar reward signal. However, in practice, defining such a reward signal is notoriously difficult, as humans are often unable to predict the optimal behavior corresponding to a reward function. Natural language offers an intuitive alternative for instructing reinforcement learning (RL) agents, yet previous language-conditioned approaches either require costly supervision or test-time training given a language instruction. In this work, we present a new approach that uses a pretrained RL agent trained using only unlabeled, offline interactions--without task-specific supervision or labeled trajectories--to get zero-shot test-time policy inference from arbitrary natural language instructions. We introduce a framework comprising three steps: imagine, project, and imitate. First, the agent imagines a sequence of observations corresponding to the provided language description using video generative models. Next, these imagined observations are projected into the target environment domain. Finally, an agent pretrained in the target environment with unsupervised RL instantly imitates the projected observation sequence through a closed-form solution. To the best of our knowledge, our method, RLZero, is the first approach to show direct language-to-behavior generation abilities on a variety of tasks and environments without any in-domain supervision. We further show that components of RLZero can be used to generate policies zero-shot from cross-embodied videos, such as those available on YouTube, even for complex embodiments like humanoids.
comment: 26 pages
♻ ☆ HAND Me the Data: Fast Robot Adaptation via Hand Path Retrieval
We hand the community HAND, a simple and time-efficient method for teaching robots new manipulation tasks through human hand demonstrations. Instead of relying on task-specific robot demonstrations collected via teleoperation, HAND uses easy-to-provide hand demonstrations to retrieve relevant behaviors from task-agnostic robot play data. Using a visual tracking pipeline, HAND extracts the motion of the human hand from the hand demonstration and retrieves robot sub-trajectories in two stages: first filtering by visual similarity, then retrieving trajectories with similar behaviors to the hand. Fine-tuning a policy on the retrieved data enables real-time learning of tasks in under four minutes, without requiring calibrated cameras or detailed hand pose estimation. Experiments also show that HAND outperforms retrieval baselines by over 2x in average task success rates on real robots. Videos can be found at our project website: https://liralab.usc.edu/handretrieval/.
♻ ☆ VB-Com: Learning Vision-Blind Composite Humanoid Locomotion Against Deficient Perception
The performance of legged locomotion is closely tied to the accuracy and comprehensiveness of state observations. Blind policies, which rely solely on proprioception, are considered highly robust due to the reliability of proprioceptive observations. However, these policies significantly limit locomotion speed and often require collisions with the terrain to adapt. In contrast, Vision policies allows the robot to plan motions in advance and respond proactively to unstructured terrains with an online perception module. However, perception is often compromised by noisy real-world environments, potential sensor failures, and the limitations of current simulations in presenting dynamic or deformable terrains. Humanoid robots, with high degrees of freedom and inherently unstable morphology, are particularly susceptible to misguidance from deficient perception, which can result in falls or termination on challenging dynamic terrains. To leverage the advantages of both vision and blind policies, we propose VB-Com, a composite framework that enables humanoid robots to determine when to rely on the vision policy and when to switch to the blind policy under perceptual deficiency. We demonstrate that VB-Com effectively enables humanoid robots to traverse challenging terrains and obstacles despite perception deficiencies caused by dynamic terrains or perceptual noise.
♻ ☆ Cognitive Guardrails for Open-World Decision Making in Autonomous Drone Swarms
Small Uncrewed Aerial Systems (sUAS) are increasingly deployed as autonomous swarms in search-and-rescue and other disaster-response scenarios. In these settings, they use computer vision (CV) to detect objects of interest and autonomously adapt their missions. However, traditional CV systems often struggle to recognize unfamiliar objects in open-world environments or to infer their relevance for mission planning. To address this, we incorporate large language models (LLMs) to reason about detected objects and their implications. While LLMs can offer valuable insights, they are also prone to hallucinations and may produce incorrect, misleading, or unsafe recommendations. To ensure safe and sensible decision-making under uncertainty, high-level decisions must be governed by cognitive guardrails. This article presents the design, simulation, and real-world integration of these guardrails for sUAS swarms in search-and-rescue missions.
comment: 16 pages, 8 figures
♻ ☆ Learning to Drift in Extreme Turning with Active Exploration and Gaussian Process Based MPC
Extreme cornering in racing often leads to large sideslip angles, presenting a significant challenge for vehicle control. Conventional vehicle controllers struggle to manage this scenario, necessitating the use of a drifting controller. However, the large sideslip angle in drift conditions introduces model mismatch, which in turn affects control precision. To address this issue, we propose a model correction drift controller that integrates Model Predictive Control (MPC) with Gaussian Process Regression (GPR). GPR is employed to correct vehicle model mismatches during both drift equilibrium solving and the MPC optimization process. Additionally, the variance from GPR is utilized to actively explore different cornering drifting velocities, aiming to minimize trajectory tracking errors. The proposed algorithm is validated through simulations on the Simulink-Carsim platform and experiments with a 1:10 scale RC vehicle. In the simulation, the average lateral error with GPR is reduced by 52.8% compared to the non-GPR case. Incorporating exploration further decreases this error by 27.1%. The velocity tracking Root Mean Square Error (RMSE) also decreases by 10.6% with exploration. In the RC car experiment, the average lateral error with GPR is 36.7% lower, and exploration further leads to a 29.0% reduction. Moreover, the velocity tracking RMSE decreases by 7.2% with the inclusion of exploration.
♻ ☆ Stairway to Success: Zero-Shot Floor-Aware Object-Goal Navigation via LLM-Driven Coarse-to-Fine Exploration
Object-Goal Navigation (OGN) remains challenging in real-world, multi-floor environments and under open-vocabulary object descriptions. We observe that most episodes in widely used benchmarks such as HM3D and MP3D involve multi-floor buildings, with many requiring explicit floor transitions. However, existing methods are often limited to single-floor settings or predefined object categories. To address these limitations, we tackle two key challenges: (1) efficient cross-level planning and (2) zero-shot object-goal navigation (ZS-OGN), where agents must interpret novel object descriptions without prior exposure. We propose ASCENT, a framework that combines a Multi-Floor Spatial Abstraction module for hierarchical semantic mapping and a Coarse-to-Fine Frontier Reasoning module leveraging Large Language Models (LLMs) for context-aware exploration, without requiring additional training on new object semantics or locomotion data. Our method outperforms state-of-the-art ZS-OGN approaches on HM3D and MP3D benchmarks while enabling efficient multi-floor navigation. We further validate its practicality through real-world deployment on a quadruped robot, achieving successful object exploration across unseen floors.
comment: Preprint; 27 pages, 12 figures, 10 tables; Project Page at https://zeying-gong.github.io/projects/ascent
♻ ☆ CogAD: Cognitive-Hierarchy Guided End-to-End Autonomous Driving
While end-to-end autonomous driving has advanced significantly, prevailing methods remain fundamentally misaligned with human cognitive principles in both perception and planning. In this paper, we propose CogAD, a novel end-to-end autonomous driving model that emulates the hierarchical cognition mechanisms of human drivers. CogAD implements dual hierarchical mechanisms: global-to-local context processing for human-like perception and intent-conditioned multi-mode trajectory generation for cognitively-inspired planning. The proposed method demonstrates three principal advantages: comprehensive environmental understanding through hierarchical perception, robust planning exploration enabled by multi-level planning, and diverse yet reasonable multi-modal trajectory generation facilitated by dual-level uncertainty modeling. Extensive experiments on nuScenes and Bench2Drive demonstrate that CogAD achieves state-of-the-art performance in end-to-end planning, exhibiting particular superiority in long-tail scenarios and robust generalization to complex real-world driving conditions.
Computer Vision 37
♻ ☆ Accurate Differential Operators for Hybrid Neural Fields CVPR 2025
Neural fields have become widely used in various fields, from shape representation to neural rendering, and for solving partial differential equations (PDEs). With the advent of hybrid neural field representations like Instant NGP that leverage small MLPs and explicit representations, these models train quickly and can fit large scenes. Yet in many applications like rendering and simulation, hybrid neural fields can cause noticeable and unreasonable artifacts. This is because they do not yield accurate spatial derivatives needed for these downstream applications. In this work, we propose two ways to circumvent these challenges. Our first approach is a post hoc operator that uses local polynomial fitting to obtain more accurate derivatives from pre-trained hybrid neural fields. Additionally, we also propose a self-supervised fine-tuning approach that refines the hybrid neural field to yield accurate derivatives directly while preserving the initial signal. We show applications of our method to rendering, collision simulation, and solving PDEs. We observe that using our approach yields more accurate derivatives, reducing artifacts and leading to more accurate simulations in downstream applications.
comment: Accepted in CVPR 2025. Project page is available at https://justachetan.github.io/hnf-derivatives/
♻ ☆ MDMP: Multi-modal Diffusion for supervised Motion Predictions with uncertainty CVPR 2025
This paper introduces a Multi-modal Diffusion model for Motion Prediction (MDMP) that integrates and synchronizes skeletal data and textual descriptions of actions to generate refined long-term motion predictions with quantifiable uncertainty. Existing methods for motion forecasting or motion generation rely solely on either prior motions or text prompts, facing limitations with precision or control, particularly over extended durations. The multi-modal nature of our approach enhances the contextual understanding of human motion, while our graph-based transformer framework effectively capture both spatial and temporal motion dynamics. As a result, our model consistently outperforms existing generative techniques in accurately predicting long-term motions. Additionally, by leveraging diffusion models' ability to capture different modes of prediction, we estimate uncertainty, significantly improving spatial awareness in human-robot interactions by incorporating zones of presence with varying confidence levels for each body joint.
comment: Accepted to CVPR 2025 - HuMoGen. Minor revisions made based on reviewer feedback
♻ ☆ VLM-3R: Vision-Language Models Augmented with Instruction-Aligned 3D Reconstruction
The rapid advancement of Large Multimodal Models (LMMs) for 2D images and videos has motivated extending these models to understand 3D scenes, aiming for human-like visual-spatial intelligence. Nevertheless, achieving deep spatial understanding comparable to human capabilities poses significant challenges in model encoding and data acquisition. Existing methods frequently depend on external depth sensors for geometry capture or utilize off-the-shelf algorithms for pre-constructing 3D maps, thereby limiting their scalability, especially with prevalent monocular video inputs and for time-sensitive applications. In this work, we introduce VLM-3R, a unified framework for Vision-Language Models (VLMs) that incorporates 3D Reconstructive instruction tuning. VLM-3R processes monocular video frames by employing a geometry encoder to derive implicit 3D tokens that represent spatial understanding. Leveraging our Spatial-Visual-View Fusion and over 200K curated 3D reconstructive instruction tuning question-answer (QA) pairs, VLM-3R effectively aligns real-world spatial context with language instructions. This enables monocular 3D spatial assistance and embodied reasoning. To facilitate the evaluation of temporal reasoning, we introduce the Vision-Spatial-Temporal Intelligence benchmark, featuring over 138.6K QA pairs across five distinct tasks focused on evolving spatial relationships. Extensive experiments demonstrate that our model, VLM-3R, not only facilitates robust visual-spatial reasoning but also enables the understanding of temporal 3D context changes, excelling in both accuracy and scalability.
comment: Project Page: https://vlm-3r.github.io/
♻ ☆ Real-time Chest X-Ray Distributed Decision Support for Resource-constrained Clinics
Internet of Things (IoT) based healthcare systems offer significant potential for improving the delivery of healthcare services in humanitarian engineering, providing essential healthcare services to millions of underserved people in remote areas worldwide. However, these areas have poor network infrastructure, making communications difficult for traditional IoT. This paper presents a real-time chest X-ray classification system for hospitals in remote areas using FastDDS real-time middleware, offering reliable real-time communication. We fine-tuned a ResNet50 neural network to an accuracy of 88.61%, a precision of 88.76%, and a recall of 88.49\%. Our system results mark an average throughput of 3.2 KB/s and an average latency of 65 ms. The proposed system demonstrates how middleware-based systems can assist doctors in remote locations.
♻ ☆ Think Small, Act Big: Primitive Prompt Learning for Lifelong Robot Manipulation CVPR 2025
Building a lifelong robot that can effectively leverage prior knowledge for continuous skill acquisition remains significantly challenging. Despite the success of experience replay and parameter-efficient methods in alleviating catastrophic forgetting problem, naively applying these methods causes a failure to leverage the shared primitives between skills. To tackle these issues, we propose Primitive Prompt Learning (PPL), to achieve lifelong robot manipulation via reusable and extensible primitives. Within our two stage learning scheme, we first learn a set of primitive prompts to represent shared primitives through multi-skills pre-training stage, where motion-aware prompts are learned to capture semantic and motion shared primitives across different skills. Secondly, when acquiring new skills in lifelong span, new prompts are appended and optimized with frozen pretrained prompts, boosting the learning via knowledge transfer from old skills to new ones. For evaluation, we construct a large-scale skill dataset and conduct extensive experiments in both simulation and real-world tasks, demonstrating PPL's superior performance over state-of-the-art methods.
comment: Accepted to CVPR 2025
♻ ☆ Inference-Time Text-to-Video Alignment with Diffusion Latent Beam Search
The remarkable progress in text-to-video diffusion models enables photorealistic generations, although the contents of the generated video often include unnatural movement or deformation, reverse playback, and motionless scenes. Recently, an alignment problem has attracted huge attention, where we steer the output of diffusion models based on some quantity on the goodness of the content. Because there is a large room for improvement of perceptual quality along the frame direction, we should address which metrics we should optimize and how we can optimize them in the video generation. In this paper, we propose diffusion latent beam search with lookahead estimator, which can select a better diffusion latent to maximize a given alignment reward, at inference time. We then point out that the improvement of perceptual video quality considering the alignment to prompts requires reward calibration by weighting existing metrics. This is because when humans or vision language models evaluate outputs, many previous metrics to quantify the naturalness of video do not always correlate with evaluation. We demonstrate that our method improves the perceptual quality evaluated on the calibrated reward, VLMs, and human assessment, without model parameter update, and outputs the best generation compared to greedy search and best-of-N sampling under much more efficient computational cost. The experiments highlight that our method is beneficial to many capable generative models, and provide a practical guideline that we should prioritize the inference-time compute allocation into lookahead steps for reward estimation over search budget or denoising steps.
comment: Code: https://github.com/shim0114/T2V-Diffusion-Search
♻ ☆ Distill CLIP (DCLIP): Enhancing Image-Text Retrieval via Cross-Modal Transformer Distillation
We present Distill CLIP (DCLIP), a fine-tuned variant of the CLIP model that enhances multimodal image-text retrieval while preserving the original model's strong zero-shot classification capabilities. CLIP models are typically constrained by fixed image resolutions and limited context, which can hinder their effectiveness in retrieval tasks that require fine-grained cross-modal understanding. DCLIP addresses these challenges through a meta teacher-student distillation framework, where a cross-modal transformer teacher is fine-tuned to produce enriched embeddings via bidirectional cross-attention between YOLO-extracted image regions and corresponding textual spans. These semantically and spatially aligned global representations guide the training of a lightweight student model using a hybrid loss that combines contrastive learning and cosine similarity objectives. Despite being trained on only ~67,500 samples curated from MSCOCO, Flickr30k, and Conceptual Captions-just a fraction of CLIP's original dataset-DCLIP significantly improves image-text retrieval metrics (Recall@K, MAP), while retaining approximately 94% of CLIP's zero-shot classification performance. These results demonstrate that DCLIP effectively mitigates the trade-off between task specialization and generalization, offering a resource-efficient, domain-adaptive, and detail-sensitive solution for advanced vision-language tasks. Code available at https://anonymous.4open.science/r/DCLIP-B772/README.md.
♻ ☆ Deep Learning Framework for Infrastructure Maintenance: Crack Detection and High-Resolution Imaging of Infrastructure Surfaces
Recently, there has been an impetus for the application of cutting-edge data collection platforms such as drones mounted with camera sensors for infrastructure asset management. However, the sensor characteristics, proximity to the structure, hard-to-reach access, and environmental conditions often limit the resolution of the datasets. A few studies used super-resolution techniques to address the problem of low-resolution images. Nevertheless, these techniques were observed to increase computational cost and false alarms of distress detection due to the consideration of all the infrastructure images i.e., positive and negative distress classes. In order to address the pre-processing of false alarm and achieve efficient super-resolution, this study developed a framework consisting of convolutional neural network (CNN) and efficient sub-pixel convolutional neural network (ESPCNN). CNN accurately classified both the classes. ESPCNN, which is the lightweight super-resolution technique, generated high-resolution infrastructure image of positive distress obtained from CNN. The ESPCNN outperformed bicubic interpolation in all the evaluation metrics for super-resolution. Based on the performance metrics, the combination of CNN and ESPCNN was observed to be effective in preprocessing the infrastructure images with negative distress, reducing the computational cost and false alarms in the next step of super-resolution. The visual inspection showed that EPSCNN is able to capture crack propagation, complex geometry of even minor cracks. The proposed framework is expected to help the highway agencies in accurately performing distress detection and assist in efficient asset management practices.
comment: Presented :Transportation Research Board 104th Annual Meeting, Washington, D.C
♻ ☆ LLaVA-ST: A Multimodal Large Language Model for Fine-Grained Spatial-Temporal Understanding CVPR2025
Recent advancements in multimodal large language models (MLLMs) have shown promising results, yet existing approaches struggle to effectively handle both temporal and spatial localization simultaneously. This challenge stems from two key issues: first, incorporating spatial-temporal localization introduces a vast number of coordinate combinations, complicating the alignment of linguistic and visual coordinate representations; second, encoding fine-grained temporal and spatial information during video feature compression is inherently difficult. To address these issues, we propose LLaVA-ST, a MLLM for fine-grained spatial-temporal multimodal understanding. In LLaVA-ST, we propose Language-Aligned Positional Embedding, which embeds the textual coordinate special token into the visual space, simplifying the alignment of fine-grained spatial-temporal correspondences. Additionally, we design the Spatial-Temporal Packer, which decouples the feature compression of temporal and spatial resolutions into two distinct point-to-region attention processing streams. Furthermore, we propose ST-Align dataset with 4.3M training samples for fine-grained spatial-temporal multimodal understanding. With ST-align, we present a progressive training pipeline that aligns the visual and textual feature through sequential coarse-to-fine stages.Additionally, we introduce an ST-Align benchmark to evaluate spatial-temporal interleaved fine-grained understanding tasks, which include Spatial-Temporal Video Grounding (STVG) , Event Localization and Captioning (ELC) and Spatial Video Grounding (SVG). LLaVA-ST achieves outstanding performance on 11 benchmarks requiring fine-grained temporal, spatial, or spatial-temporal interleaving multimodal understanding. Our code, data and benchmark will be released at Our code, data and benchmark will be released at https://github.com/appletea233/LLaVA-ST .
comment: Accepted by CVPR2025
♻ ☆ ObjectAdd: Adding Objects into Image via a Training-Free Diffusion Modification Fashion
We introduce ObjectAdd, a training-free diffusion modification method to add user-expected objects into user-specified area. The motive of ObjectAdd stems from: first, describing everything in one prompt can be difficult, and second, users often need to add objects into the generated image. To accommodate with real world, our ObjectAdd maintains accurate image consistency after adding objects with technical innovations in: (1) embedding-level concatenation to ensure correct text embedding coalesce; (2) object-driven layout control with latent and attention injection to ensure objects accessing user-specified area; (3) prompted image inpainting in an attention refocusing & object expansion fashion to ensure rest of the image stays the same. With a text-prompted image, our ObjectAdd allows users to specify a box and an object, and achieves: (1) adding object inside the box area; (2) exact content outside the box area; (3) flawless fusion between the two areas
comment: 13 pages in total
♻ ☆ DA-VPT: Semantic-Guided Visual Prompt Tuning for Vision Transformers CVPR 2025
Visual Prompt Tuning (VPT) has become a promising solution for Parameter-Efficient Fine-Tuning (PEFT) approach for Vision Transformer (ViT) models by partially fine-tuning learnable tokens while keeping most model parameters frozen. Recent research has explored modifying the connection structures of the prompts. However, the fundamental correlation and distribution between the prompts and image tokens remain unexplored. In this paper, we leverage metric learning techniques to investigate how the distribution of prompts affects fine-tuning performance. Specifically, we propose a novel framework, Distribution Aware Visual Prompt Tuning (DA-VPT), to guide the distributions of the prompts by learning the distance metric from their class-related semantic data. Our method demonstrates that the prompts can serve as an effective bridge to share semantic information between image patches and the class token. We extensively evaluated our approach on popular benchmarks in both recognition and segmentation tasks. The results demonstrate that our approach enables more effective and efficient fine-tuning of ViT models by leveraging semantic information to guide the learning of the prompts, leading to improved performance on various downstream vision tasks.
comment: CVPR 2025
♻ ☆ Why Does Little Robustness Help? A Further Step Towards Understanding Adversarial Transferability
Adversarial examples (AEs) for DNNs have been shown to be transferable: AEs that successfully fool white-box surrogate models can also deceive other black-box models with different architectures. Although a bunch of empirical studies have provided guidance on generating highly transferable AEs, many of these findings lack explanations and even lead to inconsistent advice. In this paper, we take a further step towards understanding adversarial transferability, with a particular focus on surrogate aspects. Starting from the intriguing little robustness phenomenon, where models adversarially trained with mildly perturbed adversarial samples can serve as better surrogates, we attribute it to a trade-off between two predominant factors: model smoothness and gradient similarity. Our investigations focus on their joint effects, rather than their separate correlations with transferability. Through a series of theoretical and empirical analyses, we conjecture that the data distribution shift in adversarial training explains the degradation of gradient similarity. Building on these insights, we explore the impacts of data augmentation and gradient regularization on transferability and identify that the trade-off generally exists in the various training mechanisms, thus building a comprehensive blueprint for the regulation mechanism behind transferability. Finally, we provide a general route for constructing better surrogates to boost transferability which optimizes both model smoothness and gradient similarity simultaneously, e.g., the combination of input gradient regularization and sharpness-aware minimization (SAM), validated by extensive experiments. In summary, we call for attention to the united impacts of these two factors for launching effective transfer attacks, rather than optimizing one while ignoring the other, and emphasize the crucial role of manipulating surrogate models.
comment: IEEE Symposium on Security and Privacy (Oakland) 2024; Extended version; Fix an proof error of Theorem 1
♻ ☆ Towards Resource-Efficient Streaming of Large-Scale Medical Image Datasets for Deep Learning
Large-scale medical imaging datasets have accelerated deep learning (DL) for medical image analysis. However, the large scale of these datasets poses a challenge for researchers, resulting in increased storage and bandwidth requirements for hosting and accessing them. Since different researchers have different use cases and require different resolutions or formats for DL, it is neither feasible to anticipate every researcher's needs nor practical to store data in multiple resolutions and formats. To that end, we propose the Medical Image Streaming Toolkit (MIST), a format-agnostic database that enables streaming of medical images at different resolutions and formats from a single high-resolution copy. We evaluated MIST across eight popular, large-scale medical imaging datasets spanning different body parts, modalities, and formats. Our results showed that our framework reduced the storage and bandwidth requirements for hosting and downloading datasets without impacting image quality. We demonstrate that MIST addresses the challenges posed by large-scale medical imaging datasets by building a data-efficient and format-agnostic database to meet the diverse needs of researchers and reduce barriers to DL research in medical imaging.
comment: 17 pages, 4 figures, 10 tables, accepted to MIDL'25
♻ ☆ OpenGait: A Comprehensive Benchmark Study for Gait Recognition towards Better Practicality
Gait recognition, a rapidly advancing vision technology for person identification from a distance, has made significant strides in indoor settings. However, evidence suggests that existing methods often yield unsatisfactory results when applied to newly released real-world gait datasets. Furthermore, conclusions drawn from indoor gait datasets may not easily generalize to outdoor ones. Therefore, the primary goal of this paper is to present a comprehensive benchmark study aimed at improving practicality rather than solely focusing on enhancing performance. To this end, we developed OpenGait, a flexible and efficient gait recognition platform. Using OpenGait, we conducted in-depth ablation experiments to revisit recent developments in gait recognition. Surprisingly, we detected some imperfect parts of some prior methods and thereby uncovered several critical yet previously neglected insights. These findings led us to develop three structurally simple yet empirically powerful and practically robust baseline models: DeepGaitV2, SkeletonGait, and SkeletonGait++, which represent the appearance-based, model-based, and multi-modal methodologies for gait pattern description, respectively. In addition to achieving state-of-the-art performance, our careful exploration provides new perspectives on the modeling experience of deep gait models and the representational capacity of typical gait modalities. In the end, we discuss the key trends and challenges in current gait recognition, aiming to inspire further advancements towards better practicality. The code is available at https://github.com/ShiqiYu/OpenGait.
♻ ☆ SemanticDraw: Towards Real-Time Interactive Content Creation from Image Diffusion Models CVPR 2025
We introduce SemanticDraw, a new paradigm of interactive content creation where high-quality images are generated in near real-time from given multiple hand-drawn regions, each encoding prescribed semantic meaning. In order to maximize the productivity of content creators and to fully realize their artistic imagination, it requires both quick interactive interfaces and fine-grained regional controls in their tools. Despite astonishing generation quality from recent diffusion models, we find that existing approaches for regional controllability are very slow (52 seconds for $512 \times 512$ image) while not compatible with acceleration methods such as LCM, blocking their huge potential in interactive content creation. From this observation, we build our solution for interactive content creation in two steps: (1) we establish compatibility between region-based controls and acceleration techniques for diffusion models, maintaining high fidelity of multi-prompt image generation with $\times 10$ reduced number of inference steps, (2) we increase the generation throughput with our new multi-prompt stream batch pipeline, enabling low-latency generation from multiple, region-based text prompts on a single RTX 2080 Ti GPU. Our proposed framework is generalizable to any existing diffusion models and acceleration schedulers, allowing sub-second (0.64 seconds) image content creation application upon well-established image diffusion models. Our project page is: https://jaerinlee.com/research/semantic-draw
comment: CVPR 2025 camera ready
♻ ☆ Conditional Image Synthesis with Diffusion Models: A Survey
Conditional image synthesis based on user-specified requirements is a key component in creating complex visual content. In recent years, diffusion-based generative modeling has become a highly effective way for conditional image synthesis, leading to exponential growth in the literature. However, the complexity of diffusion-based modeling, the wide range of image synthesis tasks, and the diversity of conditioning mechanisms present significant challenges for researchers to keep up with rapid developments and to understand the core concepts on this topic. In this survey, we categorize existing works based on how conditions are integrated into the two fundamental components of diffusion-based modeling, $\textit{i.e.}$, the denoising network and the sampling process. We specifically highlight the underlying principles, advantages, and potential challenges of various conditioning approaches during the training, re-purposing, and specialization stages to construct a desired denoising network. We also summarize six mainstream conditioning mechanisms in the sampling process. All discussions are centered around popular applications. Finally, we pinpoint several critical yet still unsolved problems and suggest some possible solutions for future research. Our reviewed works are itemized at https://github.com/zju-pi/Awesome-Conditional-Diffusion-Models.
♻ ☆ ItTakesTwo: Leveraging Peer Representations for Semi-supervised LiDAR Semantic Segmentation ECCV 2024
The costly and time-consuming annotation process to produce large training sets for modelling semantic LiDAR segmentation methods has motivated the development of semi-supervised learning (SSL) methods. However, such SSL approaches often concentrate on employing consistency learning only for individual LiDAR representations. This narrow focus results in limited perturbations that generally fail to enable effective consistency learning. Additionally, these SSL approaches employ contrastive learning based on the sampling from a limited set of positive and negative embedding samples. This paper introduces a novel semi-supervised LiDAR semantic segmentation framework called ItTakesTwo (IT2). IT2 is designed to ensure consistent predictions from peer LiDAR representations, thereby improving the perturbation effectiveness in consistency learning. Furthermore, our contrastive learning employs informative samples drawn from a distribution of positive and negative embeddings learned from the entire training set. Results on public benchmarks show that our approach achieves remarkable improvements over the previous state-of-the-art (SOTA) methods in the field. The code is available at: https://github.com/yyliu01/IT2.
comment: 27 pages (15 pages main paper and 12 pages supplementary with references), ECCV 2024 accepted
♻ ☆ DiTASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations CVPR 2025
Pre-trained Vision Transformers now serve as powerful tools for computer vision. Yet, efficiently adapting them for multiple tasks remains a challenge that arises from the need to modify the rich hidden representations encoded by the learned weight matrices, without inducing interference between tasks. Current parameter-efficient methods like LoRA, which apply low-rank updates, force tasks to compete within constrained subspaces, ultimately degrading performance. We introduce DiTASK a novel Diffeomorphic Multi-Task Fine-Tuning approach that maintains pre-trained representations by preserving weight matrix singular vectors, while enabling task-specific adaptations through neural diffeomorphic transformations of the singular values. By following this approach, DiTASK enables both shared and task-specific feature modulations with minimal added parameters. Our theoretical analysis shows that DITASK achieves full-rank updates during optimization, preserving the geometric structure of pre-trained features, and establishing a new paradigm for efficient multi-task learning (MTL). Our experiments on PASCAL MTL and NYUD show that DiTASK achieves state-of-the-art performance across four dense prediction tasks, using 75% fewer parameters than existing methods. Our code is available [here](https://github.com/ipsitmantri/DiTASK).
comment: CVPR 2025, 14 pages
♻ ☆ NFIG: Autoregressive Image Generation with Next-Frequency Prediction
Autoregressive models have achieved promising results in natural language processing. However, for image generation tasks, they encounter substantial challenges in effectively capturing long-range dependencies, managing computational costs, and most crucially, defining meaningful autoregressive sequences that reflect natural image hierarchies. To address these issues, we present \textbf{N}ext-\textbf{F}requency \textbf{I}mage \textbf{G}eneration (\textbf{NFIG}), a novel framework that decomposes the image generation process into multiple frequency-guided stages. Our approach first generates low-frequency components to establish global structure with fewer tokens, then progressively adds higher-frequency details, following the natural spectral hierarchy of images. This principled autoregressive sequence not only improves the quality of generated images by better capturing true causal relationships between image components, but also significantly reduces computational overhead during inference. Extensive experiments demonstrate that NFIG achieves state-of-the-art performance with fewer steps, offering a more efficient solution for image generation, with 1.25$\times$ speedup compared to VAR-d20 while achieving better performance (FID: 2.81) on the ImageNet-256 benchmark. We hope that our insight of incorporating frequency-domain knowledge to guide autoregressive sequence design will shed light on future research. We will make our code publicly available upon acceptance of the paper.
comment: 10 pages, 7 figures, 2 tables
♻ ☆ DragPoser: Motion Reconstruction from Variable Sparse Tracking Signals via Latent Space Optimization
High-quality motion reconstruction that follows the user's movements can be achieved by high-end mocap systems with many sensors. However, obtaining such animation quality with fewer input devices is gaining popularity as it brings mocap closer to the general public. The main challenges include the loss of end-effector accuracy in learning-based approaches, or the lack of naturalness and smoothness in IK-based solutions. In addition, such systems are often finely tuned to a specific number of trackers and are highly sensitive to missing data e.g., in scenarios where a sensor is occluded or malfunctions. In response to these challenges, we introduce DragPoser, a novel deep-learning-based motion reconstruction system that accurately represents hard and dynamic on-the-fly constraints, attaining real-time high end-effectors position accuracy. This is achieved through a pose optimization process within a structured latent space. Our system requires only one-time training on a large human motion dataset, and then constraints can be dynamically defined as losses, while the pose is iteratively refined by computing the gradients of these losses within the latent space. To further enhance our approach, we incorporate a Temporal Predictor network, which employs a Transformer architecture to directly encode temporality within the latent space. This network ensures the pose optimization is confined to the manifold of valid poses and also leverages past pose data to predict temporally coherent poses. Results demonstrate that DragPoser surpasses both IK-based and the latest data-driven methods in achieving precise end-effector positioning, while it produces natural poses and temporally coherent motion. In addition, our system showcases robustness against on-the-fly constraint modifications, and exhibits exceptional adaptability to various input configurations and changes.
comment: Published on Eurographics 2025. Project page: https://upc-virvig.github.io/DragPoser/
♻ ☆ MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection
The rapid development of photo-realistic face generation methods has raised significant concerns in society and academia, highlighting the urgent need for robust and generalizable face forgery detection (FFD) techniques. Although existing approaches mainly capture face forgery patterns using image modality, other modalities like fine-grained noises and texts are not fully explored, which limits the generalization capability of the model. In addition, most FFD methods tend to identify facial images generated by GAN, but struggle to detect unseen diffusion-synthesized ones. To address the limitations, we aim to leverage the cutting-edge foundation model, contrastive language-image pre-training (CLIP), to achieve generalizable diffusion face forgery detection (DFFD). In this paper, we propose a novel multi-modal fine-grained CLIP (MFCLIP) model, which mines comprehensive and fine-grained forgery traces across image-noise modalities via language-guided face forgery representation learning, to facilitate the advancement of DFFD. Specifically, we devise a fine-grained language encoder (FLE) that extracts fine global language features from hierarchical text prompts. We design a multi-modal vision encoder (MVE) to capture global image forgery embeddings as well as fine-grained noise forgery patterns extracted from the richest patch, and integrate them to mine general visual forgery traces. Moreover, we build an innovative plug-and-play sample pair attention (SPA) method to emphasize relevant negative pairs and suppress irrelevant ones, allowing cross-modality sample pairs to conduct more flexible alignment. Extensive experiments and visualizations show that our model outperforms the state of the arts on different settings like cross-generator, cross-forgery, and cross-dataset evaluations.
comment: Accepted by IEEE Transactions on Information Forensics and Security 2025
♻ ☆ ITA-MDT: Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On CVPR 2025
This paper introduces ITA-MDT, the Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On (IVTON), designed to overcome the limitations of previous approaches by leveraging the Masked Diffusion Transformer (MDT) for improved handling of both global garment context and fine-grained details. The IVTON task involves seamlessly superimposing a garment from one image onto a person in another, creating a realistic depiction of the person wearing the specified garment. Unlike conventional diffusion-based virtual try-on models that depend on large pre-trained U-Net architectures, ITA-MDT leverages a lightweight, scalable transformer-based denoising diffusion model with a mask latent modeling scheme, achieving competitive results while reducing computational overhead. A key component of ITA-MDT is the Image-Timestep Adaptive Feature Aggregator (ITAFA), a dynamic feature aggregator that combines all of the features from the image encoder into a unified feature of the same size, guided by diffusion timestep and garment image complexity. This enables adaptive weighting of features, allowing the model to emphasize either global information or fine-grained details based on the requirements of the denoising stage. Additionally, the Salient Region Extractor (SRE) module is presented to identify complex region of the garment to provide high-resolution local information to the denoising model as an additional condition alongside the global information of the full garment image. This targeted conditioning strategy enhances detail preservation of fine details in highly salient garment regions, optimizing computational resources by avoiding unnecessarily processing entire garment image. Comparative evaluations confirms that ITA-MDT improves efficiency while maintaining strong performance, reaching state-of-the-art results in several metrics.
comment: CVPR 2025, Project Page: https://jiwoohong93.github.io/ita-mdt/
♻ ☆ Exploring Model Kinship for Merging Large Language Models
Model merging has become one of the key technologies for enhancing the capabilities and efficiency of Large Language Models (LLMs). However, our understanding of the expected performance gains and principles when merging any two models remains limited. In this work, we introduce model kinship, the degree of similarity or relatedness between LLMs, analogous to biological evolution. With comprehensive empirical analysis, we find that there is a certain relationship between model kinship and the performance gains after model merging, which can help guide our selection of candidate models. Inspired by this, we propose a new model merging strategy: Top-k Greedy Merging with Model Kinship, which can yield better performance on benchmark datasets. Specifically, we discover that using model kinship as a criterion can assist us in continuously performing model merging, alleviating the degradation (local optima) in model evolution, whereas model kinship can serve as a guide to escape these traps. Code is available at https://github.com/zjunlp/ModelKinship.
comment: Ongoing work
♻ ☆ Marine Saliency Segmenter: Object-Focused Conditional Diffusion with Region-Level Semantic Knowledge Distillation
Marine Saliency Segmentation (MSS) plays a pivotal role in various vision-based marine exploration tasks. However, existing marine segmentation techniques face the dilemma of object mislocalization and imprecise boundaries due to the complex underwater environment. Meanwhile, despite the impressive performance of diffusion models in visual segmentation, there remains potential to further leverage contextual semantics to enhance feature learning of region-level salient objects, thereby improving segmentation outcomes. Building on this insight, we propose DiffMSS, a novel marine saliency segmenter based on the diffusion model, which utilizes semantic knowledge distillation to guide the segmentation of marine salient objects. Specifically, we design a region-word similarity matching mechanism to identify salient terms at the word level from the text descriptions. These high-level semantic features guide the conditional feature learning network in generating salient and accurate diffusion conditions with semantic knowledge distillation. To further refine the segmentation of fine-grained structures in unique marine organisms, we develop the dedicated consensus deterministic sampling to suppress overconfident missegmentations. Comprehensive experiments demonstrate the superior performance of DiffMSS over state-of-the-art methods in both quantitative and qualitative evaluations.
♻ ☆ IMPROVE: Iterative Model Pipeline Refinement and Optimization Leveraging LLM Experts
Large language model (LLM) agents have emerged as a promising solution to automate the workflow of machine learning, but most existing methods share a common limitation: they attempt to optimize entire pipelines in a single step before evaluation, making it difficult to attribute improvements to specific changes. This lack of granularity leads to unstable optimization and slower convergence, limiting their effectiveness. To address this, we introduce Iterative Refinement, a novel strategy for LLM-driven ML pipeline design inspired by how human ML experts iteratively refine models, focusing on one component at a time rather than making sweeping changes all at once. By systematically updating individual components based on real training feedback, Iterative Refinement improves overall model performance. We also provide some theoretical edvience of the superior properties of this Iterative Refinement. Further, we implement this strategy in IMPROVE, an end-to-end LLM agent framework for automating and optimizing object classification pipelines. Through extensive evaluations across datasets of varying sizes and domains, we demonstrate that Iterative Refinement enables IMPROVE to consistently achieve better performance over existing zero-shot LLM-based approaches.
♻ ☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
♻ ☆ How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training ACL 2025
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired knowledge in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance. Code and data will be available at https://github.com/zjunlp/DynamicKnowledgeCircuits.
comment: ACL 2025 Findings
♻ ☆ FreeInsert: Disentangled Text-Guided Object Insertion in 3D Gaussian Scene without Spatial Priors
Text-driven object insertion in 3D scenes is an emerging task that enables intuitive scene editing through natural language. However, existing 2D editing-based methods often rely on spatial priors such as 2D masks or 3D bounding boxes, and they struggle to ensure consistency of the inserted object. These limitations hinder flexibility and scalability in real-world applications. In this paper, we propose FreeInsert, a novel framework that leverages foundation models including MLLMs, LGMs, and diffusion models to disentangle object generation from spatial placement. This enables unsupervised and flexible object insertion in 3D scenes without spatial priors. FreeInsert starts with an MLLM-based parser that extracts structured semantics, including object types, spatial relationships, and attachment regions, from user instructions. These semantics guide both the reconstruction of the inserted object for 3D consistency and the learning of its degrees of freedom. We leverage the spatial reasoning capabilities of MLLMs to initialize object pose and scale. A hierarchical, spatially aware refinement stage further integrates spatial semantics and MLLM-inferred priors to enhance placement. Finally, the appearance of the object is improved using the inserted-object image to enhance visual fidelity. Experimental results demonstrate that FreeInsert achieves semantically coherent, spatially precise, and visually realistic 3D insertions without relying on spatial priors, offering a user-friendly and flexible editing experience.
♻ ☆ SynWorld: Virtual Scenario Synthesis for Agentic Action Knowledge Refinement ACL 2025
In the interaction between agents and their environments, agents expand their capabilities by planning and executing actions. However, LLM-based agents face substantial challenges when deployed in novel environments or required to navigate unconventional action spaces. To empower agents to autonomously explore environments, optimize workflows, and enhance their understanding of actions, we propose SynWorld, a framework that allows agents to synthesize possible scenarios with multi-step action invocation within the action space and perform Monte Carlo Tree Search (MCTS) exploration to effectively refine their action knowledge in the current environment. Our experiments demonstrate that SynWorld is an effective and general approach to learning action knowledge in new environments. Code is available at https://github.com/zjunlp/SynWorld.
comment: ACL 2025
♻ ☆ Uni-MuMER: Unified Multi-Task Fine-Tuning of Vision-Language Model for Handwritten Mathematical Expression Recognition
Handwritten Mathematical Expression Recognition (HMER) remains a persistent challenge in Optical Character Recognition (OCR) due to the inherent freedom of symbol layout and variability in handwriting styles. Prior methods have faced performance bottlenecks, proposing isolated architectural modifications that are difficult to integrate coherently into a unified framework. Meanwhile, recent advances in pretrained vision-language models (VLMs) have demonstrated strong cross-task generalization, offering a promising foundation for developing unified solutions. In this paper, we introduce Uni-MuMER, which fully fine-tunes a VLM for the HMER task without modifying its architecture, effectively injecting domain-specific knowledge into a generalist framework. Our method integrates three data-driven tasks: Tree-Aware Chain-of-Thought (Tree-CoT) for structured spatial reasoning, Error-Driven Learning (EDL) for reducing confusion among visually similar characters, and Symbol Counting (SC) for improving recognition consistency in long expressions. Experiments on the CROHME and HME100K datasets show that Uni-MuMER achieves new state-of-the-art performance, surpassing the best lightweight specialized model SSAN by 16.31% and the top-performing VLM Gemini2.5-flash by 24.42% in the zero-shot setting. Our datasets, models, and code are open-sourced at: https://github.com/BFlameSwift/Uni-MuMER
♻ ☆ SCC-YOLO: An Improved Object Detector for Assisting in Brain Tumor Diagnosis
Brain tumors can lead to neurological dysfunction, cognitive and psychological changes, increased intracranial pressure, and seizures, posing significant risks to health. The You Only Look Once (YOLO) series has shown superior accuracy in medical imaging object detection. This paper presents a novel SCC-YOLO architecture that integrates the SCConv module into YOLOv9. The SCConv module optimizes convolutional efficiency by reducing spatial and channel redundancy, enhancing image feature learning. We examine the effects of different attention mechanisms with YOLOv9 for brain tumor detection using the Br35H dataset and our custom dataset (Brain_Tumor_Dataset). Results indicate that SCC-YOLO improved mAP50 by 0.3% on the Br35H dataset and by 0.5% on our custom dataset compared to YOLOv9. SCC-YOLO achieves state-of-the-art performance in brain tumor detection.
♻ ☆ Flash3D: Feed-Forward Generalisable 3D Scene Reconstruction from a Single Image
We propose Flash3D, a method for scene reconstruction and novel view synthesis from a single image which is both very generalisable and efficient. For generalisability, we start from a "foundation" model for monocular depth estimation and extend it to a full 3D shape and appearance reconstructor. For efficiency, we base this extension on feed-forward Gaussian Splatting. Specifically, we predict a first layer of 3D Gaussians at the predicted depth, and then add additional layers of Gaussians that are offset in space, allowing the model to complete the reconstruction behind occlusions and truncations. Flash3D is very efficient, trainable on a single GPU in a day, and thus accessible to most researchers. It achieves state-of-the-art results when trained and tested on RealEstate10k. When transferred to unseen datasets like NYU it outperforms competitors by a large margin. More impressively, when transferred to KITTI, Flash3D achieves better PSNR than methods trained specifically on that dataset. In some instances, it even outperforms recent methods that use multiple views as input. Code, models, demo, and more results are available at https://www.robots.ox.ac.uk/~vgg/research/flash3d/.
comment: Project page: https://www.robots.ox.ac.uk/~vgg/research/flash3d/
♻ ☆ Enhancing Multimodal Unified Representations for Cross Modal Generalization
To enhance the interpretability of multimodal unified representations, many studies have focused on discrete unified representations. These efforts typically start with contrastive learning and gradually extend to the disentanglement of modal information, achieving solid multimodal discrete unified representations. However, existing research often overlooks two critical issues: 1) The use of Euclidean distance for quantization in discrete representations often overlooks the important distinctions among different dimensions of features, resulting in redundant representations after quantization; 2) Different modalities have unique characteristics, and a uniform alignment approach does not fully exploit these traits. To address these issues, we propose Training-free Optimization of Codebook (TOC) and Fine and Coarse cross-modal Information Disentangling (FCID). These methods refine the unified discrete representations from pretraining and perform fine- and coarse-grained information disentanglement tailored to the specific characteristics of each modality, achieving significant performance improvements over previous state-of-the-art models. The code is available at https://github.com/haihuangcode/CMG.
♻ ☆ Chain-of-Talkers (CoTalk): Fast Human Annotation of Dense Image Captions
While densely annotated image captions significantly facilitate the learning of robust vision-language alignment, methodologies for systematically optimizing human annotation efforts remain underexplored. We introduce Chain-of-Talkers (CoTalk), an AI-in-the-loop methodology designed to maximize the number of annotated samples and improve their comprehensiveness under fixed budget constraints (e.g., total human annotation time). The framework is built upon two key insights. First, sequential annotation reduces redundant workload compared to conventional parallel annotation, as subsequent annotators only need to annotate the ``residual'' -- the missing visual information that previous annotations have not covered. Second, humans process textual input faster by reading while outputting annotations with much higher throughput via talking; thus a multimodal interface enables optimized efficiency. We evaluate our framework from two aspects: intrinsic evaluations that assess the comprehensiveness of semantic units, obtained by parsing detailed captions into object-attribute trees and analyzing their effective connections; extrinsic evaluation measures the practical usage of the annotated captions in facilitating vision-language alignment. Experiments with eight participants show our Chain-of-Talkers (CoTalk) improves annotation speed (0.42 vs. 0.30 units/sec) and retrieval performance (41.13% vs. 40.52%) over the parallel method.
♻ ☆ NEXT: Multi-Grained Mixture of Experts via Text-Modulation for Multi-Modal Object Re-ID
Multi-modal object re-identification (ReID) aims to extract identity features across heterogeneous spectral modalities to enable accurate recognition and retrieval in complex real-world scenarios. However, most existing methods rely on implicit feature fusion structures, making it difficult to model fine-grained recognition strategies under varying challenging conditions. Benefiting from the powerful semantic understanding capabilities of Multi-modal Large Language Models (MLLMs), the visual appearance of an object can be effectively translated into descriptive text. In this paper, we propose a reliable multi-modal caption generation method based on attribute confidence, which significantly reduces the unknown recognition rate of MLLMs in multi-modal semantic generation and improves the quality of generated text. Additionally, we propose a novel ReID framework NEXT, the Multi-grained Mixture of Experts via Text-Modulation for Multi-modal Object Re-Identification. Specifically, we decouple the recognition problem into semantic and structural expert branches to separately capture modality-specific appearance and intrinsic structure. For semantic recognition, we propose the Text-Modulated Semantic-sampling Experts (TMSE), which leverages randomly sampled high-quality semantic texts to modulate expert-specific sampling of multi-modal features and mining intra-modality fine-grained semantic cues. Then, to recognize coarse-grained structure features, we propose the Context-Shared Structure-aware Experts (CSSE) that focuses on capturing the holistic object structure across modalities and maintains inter-modality structural consistency through a soft routing mechanism. Finally, we propose the Multi-Modal Feature Aggregation (MMFA), which adopts a unified feature fusion strategy to simply and effectively integrate semantic and structural expert outputs into the final identity representations.
♻ ☆ CogAD: Cognitive-Hierarchy Guided End-to-End Autonomous Driving
While end-to-end autonomous driving has advanced significantly, prevailing methods remain fundamentally misaligned with human cognitive principles in both perception and planning. In this paper, we propose CogAD, a novel end-to-end autonomous driving model that emulates the hierarchical cognition mechanisms of human drivers. CogAD implements dual hierarchical mechanisms: global-to-local context processing for human-like perception and intent-conditioned multi-mode trajectory generation for cognitively-inspired planning. The proposed method demonstrates three principal advantages: comprehensive environmental understanding through hierarchical perception, robust planning exploration enabled by multi-level planning, and diverse yet reasonable multi-modal trajectory generation facilitated by dual-level uncertainty modeling. Extensive experiments on nuScenes and Bench2Drive demonstrate that CogAD achieves state-of-the-art performance in end-to-end planning, exhibiting particular superiority in long-tail scenarios and robust generalization to complex real-world driving conditions.
♻ ☆ Domain-Agnostic Stroke Lesion Segmentation Using Physics-Constrained Synthetic Data
Segmenting stroke lesions in MRI is challenging due to diverse acquisition protocols that limit model generalisability. In this work, we introduce two physics-constrained approaches to generate synthetic quantitative MRI (qMRI) images that improve segmentation robustness across heterogeneous domains. Our first method, $\texttt{qATLAS}$, trains a neural network to estimate qMRI maps from standard MPRAGE images, enabling the simulation of varied MRI sequences with realistic tissue contrasts. The second method, $\texttt{qSynth}$, synthesises qMRI maps directly from tissue labels using label-conditioned Gaussian mixture models, ensuring physical plausibility. Extensive experiments on multiple out-of-domain datasets show that both methods outperform a baseline UNet, with $\texttt{qSynth}$ notably surpassing previous synthetic data approaches. These results highlight the promise of integrating MRI physics into synthetic data generation for robust, generalisable stroke lesion segmentation. Code is available at https://github.com/liamchalcroft/qsynth
Artificial Intelligence 78
♻ ☆ ClusComp: A Simple Paradigm for Model Compression and Efficient Finetuning ACL
As large language models (LLMs) scale, model compression is crucial for edge deployment and accessibility. Weight-only quantization reduces model size but suffers from performance degradation at lower bit widths. Moreover, standard finetuning is incompatible with quantized models, and alternative methods often fall short of full finetuning. In this paper, we propose ClusComp, a simple yet effective compression paradigm that clusters weight matrices into codebooks and finetunes them block-by-block. ClusComp (1) achieves superior performance in 2-4 bit quantization, (2) pushes compression to 1-bit while outperforming ultra-low-bit methods with minimal finetuning, and (3) enables efficient finetuning, even surpassing existing quantization-based approaches and rivaling full FP16 finetuning. Notably, ClusComp supports compression and finetuning of 70B LLMs on a single A6000-48GB GPU.
comment: ACL camera-ready version
♻ ☆ FastTD3: Simple, Fast, and Capable Reinforcement Learning for Humanoid Control
Reinforcement learning (RL) has driven significant progress in robotics, but its complexity and long training times remain major bottlenecks. In this report, we introduce FastTD3, a simple, fast, and capable RL algorithm that significantly speeds up training for humanoid robots in popular suites such as HumanoidBench, IsaacLab, and MuJoCo Playground. Our recipe is remarkably simple: we train an off-policy TD3 agent with several modifications -- parallel simulation, large-batch updates, a distributional critic, and carefully tuned hyperparameters. FastTD3 solves a range of HumanoidBench tasks in under 3 hours on a single A100 GPU, while remaining stable during training. We also provide a lightweight and easy-to-use implementation of FastTD3 to accelerate RL research in robotics.
comment: Project webpage: https://younggyo.me/fast_td3
♻ ☆ Attributing Response to Context: A Jensen-Shannon Divergence Driven Mechanistic Study of Context Attribution in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) leverages large language models (LLMs) combined with external contexts to enhance the accuracy and reliability of generated responses. However, reliably attributing generated content to specific context segments, context attribution, remains challenging due to the computationally intensive nature of current methods, which often require extensive fine-tuning or human annotation. In this work, we introduce a novel Jensen-Shannon Divergence driven method to Attribute Response to Context (ARC-JSD), enabling efficient and accurate identification of essential context sentences without additional fine-tuning or surrogate modelling. Evaluations on a wide range of RAG benchmarks, such as TyDi QA, Hotpot QA, and Musique, using instruction-tuned LLMs in different scales demonstrate superior accuracy and significant computational efficiency improvements compared to the previous surrogate-based method. Furthermore, our mechanistic analysis reveals specific attention heads and multilayer perceptron (MLP) layers responsible for context attribution, providing valuable insights into the internal workings of RAG models. Our code is available at https://github.com/ruizheliUOA/ARC_JSD
comment: Work in process
♻ ☆ Towards Data Governance of Frontier AI Models NeurIPS 2024
Data is essential to train and fine-tune today's frontier artificial intelligence (AI) models and to develop future ones. To date, academic, legal, and regulatory work has primarily addressed how data can directly harm consumers and creators, such as through privacy breaches, copyright infringements, and bias and discrimination. Our work, instead, focuses on the comparatively neglected question of how data can enable new governance capacities for frontier AI models. This approach for "frontier data governance" opens up new avenues for monitoring and mitigating risks from advanced AI models, particularly as they scale and acquire specific dangerous capabilities. Still, frontier data governance faces challenges that stem from the fundamental properties of data itself: data is non-rival, often non-excludable, easily replicable, and increasingly synthesizable. Despite these inherent difficulties, we propose a set of policy mechanisms targeting key actors along the data supply chain, including data producers, aggregators, model developers, and data vendors. We provide a brief overview of 15 governance mechanisms, of which we centrally introduce five, underexplored policy recommendations. These include developing canary tokens to detect unauthorized use for producers; (automated) data filtering to remove malicious content for pre-training and post-training datasets; mandatory dataset reporting requirements for developers and vendors; improved security for datasets and data generation algorithms; and know-your-customer requirements for vendors. By considering data not just as a source of potential harm, but as a critical governance lever, this work aims to equip policymakers with a new tool for the governance and regulation of frontier AI models.
comment: Published at the NeurIPS 2024 Workshop on Regulatable ML
♻ ☆ Accurate Differential Operators for Hybrid Neural Fields CVPR 2025
Neural fields have become widely used in various fields, from shape representation to neural rendering, and for solving partial differential equations (PDEs). With the advent of hybrid neural field representations like Instant NGP that leverage small MLPs and explicit representations, these models train quickly and can fit large scenes. Yet in many applications like rendering and simulation, hybrid neural fields can cause noticeable and unreasonable artifacts. This is because they do not yield accurate spatial derivatives needed for these downstream applications. In this work, we propose two ways to circumvent these challenges. Our first approach is a post hoc operator that uses local polynomial fitting to obtain more accurate derivatives from pre-trained hybrid neural fields. Additionally, we also propose a self-supervised fine-tuning approach that refines the hybrid neural field to yield accurate derivatives directly while preserving the initial signal. We show applications of our method to rendering, collision simulation, and solving PDEs. We observe that using our approach yields more accurate derivatives, reducing artifacts and leading to more accurate simulations in downstream applications.
comment: Accepted in CVPR 2025. Project page is available at https://justachetan.github.io/hnf-derivatives/
♻ ☆ Opportunities and Challenges of Frontier Data Governance With Synthetic Data ICLR 2025
Synthetic data, or data generated by machine learning models, is increasingly emerging as a solution to the data access problem. However, its use introduces significant governance and accountability challenges, and potentially debases existing governance paradigms, such as compute and data governance. In this paper, we identify 3 key governance and accountability challenges that synthetic data poses - it can enable the increased emergence of malicious actors, spontaneous biases and value drift. We thus craft 3 technical mechanisms to address these specific challenges, finding applications for synthetic data towards adversarial training, bias mitigation and value reinforcement. These could not only counteract the risks of synthetic data, but serve as critical levers for governance of the frontier in the future.
comment: Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)
♻ ☆ Towards a Neural Lambda Calculus: Neurosymbolic AI Applied to the Foundations of Functional Programming
Over the last decades, deep neural networks based-models became the dominant paradigm in machine learning. Further, the use of artificial neural networks in symbolic learning has been seen as increasingly relevant recently. To study the capabilities of neural networks in the symbolic AI domain, researchers have explored the ability of deep neural networks to learn mathematical constructions, such as addition and multiplication, logic inference, such as theorem provers, and even the execution of computer programs. The latter is known to be too complex a task for neural networks. Therefore, the results were not always successful, and often required the introduction of biased elements in the learning process, in addition to restricting the scope of possible programs to be executed. In this work, we will analyze the ability of neural networks to learn how to execute programs as a whole. To do so, we propose a different approach. Instead of using an imperative programming language, with complex structures, we use the Lambda Calculus ({\lambda}-Calculus), a simple, but Turing-Complete mathematical formalism, which serves as the basis for modern functional programming languages and is at the heart of computability theory. We will introduce the use of integrated neural learning and lambda calculi formalization. Finally, we explore execution of a program in {\lambda}-Calculus is based on reductions, we will show that it is enough to learn how to perform these reductions so that we can execute any program. Keywords: Machine Learning, Lambda Calculus, Neurosymbolic AI, Neural Networks, Transformer Model, Sequence-to-Sequence Models, Computational Models
comment: Keywords: Machine Learning, Lambda Calculus, Neurosymbolic AI, Neural Networks, Transformer Model, Sequence-to-Sequence Models, Computational Models
♻ ☆ LLM Safety Alignment is Divergence Estimation in Disguise
We present a theoretical framework showing that popular LLM alignment methods, including RLHF and its variants, can be understood as divergence estimators between aligned (safe or preferred) and unaligned (harmful or less preferred) distributions. This perspective explains the emergence of separation in the latent space between safe and harmful prompts after alignment. As an application of our general divergence framework, we propose KLDO, a novel KL divergence-based alignment method, and empirically validate its effectiveness. We further show that using compliance-refusal datasets, rather than standard preference-based datasets, leads to stronger separation and improved safety alignment. Finally, to quantify the separation effect, we propose a distance-based metric in the prompt representation space, which also acts as a statistically significant indicator for model safety.
♻ ☆ Understanding Inequality of LLM Fact-Checking over Geographic Regions with Agent and Retrieval models
Fact-checking is a potentially useful application of Large Language Models (LLMs) to combat the growing dissemination of disinformation. However, the performance of LLMs varies across geographic regions. In this paper, we evaluate the factual accuracy of open and private models across a diverse set of regions and scenarios. Using a dataset containing 600 fact-checked statements balanced across six global regions we examine three experimental setups of fact-checking a statement: (1) when just the statement is available, (2) when an LLM-based agent with Wikipedia access is utilized, and (3) as a best case scenario when a Retrieval-Augmented Generation (RAG) system provided with the official fact check is employed. Our findings reveal that regardless of the scenario and LLM used, including GPT-4, Claude Sonnet, and LLaMA, statements from the Global North perform substantially better than those from the Global South. Furthermore, this gap is broadened for the more realistic case of a Wikipedia agent-based system, highlighting that overly general knowledge bases have a limited ability to address region-specific nuances. These results underscore the urgent need for better dataset balancing and robust retrieval strategies to enhance LLM fact-checking capabilities, particularly in geographically diverse contexts.
♻ ☆ Wanda++: Pruning Large Language Models via Regional Gradients ACL 2025
Large Language Models (LLMs) pruning seeks to remove unimportant weights for inference speedup with minimal accuracy impact. However, existing methods often suffer from accuracy degradation without full-model sparsity-aware fine-tuning. This paper presents Wanda++, a novel pruning framework that outperforms the state-of-the-art methods by utilizing decoder-block-level \textbf{regional} gradients. Specifically, Wanda++ improves the pruning score with regional gradients for the first time and proposes an efficient regional optimization method to minimize pruning-induced output discrepancies between the dense and sparse decoder output. Notably, Wanda++ improves perplexity by up to 32\% over Wanda in the language modeling task and generalizes effectively to downstream tasks. Moreover, despite updating weights with regional optimization, Wanda++ remains orthogonal to sparsity-aware fine-tuning, further reducing perplexity with LoRA in great extend. Our approach is lightweight, pruning a 7B LLaMA model in under 10 minutes on a single H100 GPU.
comment: Paper accepted at ACL 2025 Findings
♻ ☆ Real-time Chest X-Ray Distributed Decision Support for Resource-constrained Clinics
Internet of Things (IoT) based healthcare systems offer significant potential for improving the delivery of healthcare services in humanitarian engineering, providing essential healthcare services to millions of underserved people in remote areas worldwide. However, these areas have poor network infrastructure, making communications difficult for traditional IoT. This paper presents a real-time chest X-ray classification system for hospitals in remote areas using FastDDS real-time middleware, offering reliable real-time communication. We fine-tuned a ResNet50 neural network to an accuracy of 88.61%, a precision of 88.76%, and a recall of 88.49\%. Our system results mark an average throughput of 3.2 KB/s and an average latency of 65 ms. The proposed system demonstrates how middleware-based systems can assist doctors in remote locations.
♻ ☆ WATCH: Adaptive Monitoring for AI Deployments via Weighted-Conformal Martingales ICML
Responsibly deploying artificial intelligence (AI) / machine learning (ML) systems in high-stakes settings arguably requires not only proof of system reliability, but also continual, post-deployment monitoring to quickly detect and address any unsafe behavior. Methods for nonparametric sequential testing -- especially conformal test martingales (CTMs) and anytime-valid inference -- offer promising tools for this monitoring task. However, existing approaches are restricted to monitoring limited hypothesis classes or ``alarm criteria'' (e.g., detecting data shifts that violate certain exchangeability or IID assumptions), do not allow for online adaptation in response to shifts, and/or cannot diagnose the cause of degradation or alarm. In this paper, we address these limitations by proposing a weighted generalization of conformal test martingales (WCTMs), which lay a theoretical foundation for online monitoring for any unexpected changepoints in the data distribution while controlling false-alarms. For practical applications, we propose specific WCTM algorithms that adapt online to mild covariate shifts (in the marginal input distribution), quickly detect harmful shifts, and diagnose those harmful shifts as concept shifts (in the conditional label distribution) or extreme (out-of-support) covariate shifts that cannot be easily adapted to. On real-world datasets, we demonstrate improved performance relative to state-of-the-art baselines.
comment: To be published in The International Conference on Machine Learning (ICML), 2025
♻ ☆ Iterative Deepening Sampling as Efficient Test-Time Scaling
Recent reasoning models, such as OpenAI's O1 series, have demonstrated exceptional performance on complex reasoning tasks and revealed new test-time scaling laws. Inspired by this, many people have been studying how to train models to achieve effective self-evaluation and self-correction to further enable the scaling paradigm. However, less studied is how to efficiently scale test-time compute from a fixed model, and this remains a challenge. In this paper, we address this challenge by focusing on enhancing the quality of self-reflection data generation for complex problem-solving at test time, which can also subsequently improve the training of next-generation large language models (LLMs). Specifically, we explore how systematically triggering a model's self-correction mechanisms can improve performance on challenging reasoning tasks. To this end, we propose a novel iterative deepening sampling algorithm framework designed to enhance self-correction and generate higher-quality samples. Through extensive experiments on Math500 and AIME benchmarks, we demonstrate that our method achieves a higher success rate on difficult tasks and provide detailed ablation studies to analyze its effectiveness across diverse settings.
♻ ☆ MEXA: Multilingual Evaluation of English-Centric LLMs via Cross-Lingual Alignment ACL
English-centric large language models (LLMs) often show strong multilingual capabilities. However, their multilingual performance remains unclear and is under-evaluated for many other languages. Most benchmarks for multilinguality focus on classic NLP tasks or cover a minimal number of languages. We introduce MEXA, a method for assessing the multilingual capabilities of pre-trained English-centric LLMs using parallel sentences, which are available for more languages than existing downstream tasks. MEXA leverages that English-centric LLMs use English as a pivot language in their intermediate layers. MEXA computes the alignment between English and non-English languages using parallel sentences to evaluate the transfer of language understanding from English to other languages. This alignment can be used to estimate model performance in different languages. We conduct controlled experiments using various parallel datasets (FLORES-200 and Bible), models (Llama family, Gemma family, Mistral, and OLMo), and established downstream tasks (Belebele, m-MMLU, and m-ARC). We explore different methods to compute embeddings in decoder-only models. Our results show that MEXA, in its default settings, achieves an average Pearson correlation of 0.90 between its predicted scores and actual task performance across languages. This suggests that MEXA is a reliable method for estimating the multilingual capabilities of English-centric LLMs, providing a clearer understanding of their multilingual potential and the inner workings of LLMs. Leaderboard: https://cis-lmu-mexa.hf.space, Code: https://github.com/cisnlp/MEXA.
comment: ACL Findings 2025
♻ ☆ Can Graph Neural Networks Learn Language with Extremely Weak Text Supervision? ACL 2025
While great success has been achieved in building vision models with Contrastive Language-Image Pre-training (CLIP) over internet-scale image-text pairs, building transferable Graph Neural Networks (GNNs) with CLIP pipeline is challenging because of the scarcity of labeled data and text supervision, different levels of downstream tasks, and the conceptual gaps between domains. In this work, to address these issues, we propose a multi-modal prompt learning paradigm to effectively adapt pre-trained GNN to downstream tasks and data, given only a few semantically labeled samples, each with extremely weak text supervision. Our new paradigm embeds the graphs directly in the same space as the Large Language Models (LLMs) by learning both graph prompts and text prompts simultaneously. We demonstrate the superior performance of our paradigm in few-shot, multi-task-level, and cross-domain settings. Moreover, we build the first CLIP-style zero-shot classification prototype that can generalize GNNs to unseen classes with extremely weak text supervision. The code is available at https://github.com/Violet24K/Morpher.
comment: ACL 2025 Main Conference, 27 pages
♻ ☆ Reflection-Window Decoding: Text Generation with Selective Refinement ICML 2025
The autoregressive decoding for text generation in large language models (LLMs), while widely used, is inherently suboptimal due to the lack of a built-in mechanism to perform refinement and/or correction of the generated content. In this paper, we consider optimality in terms of the joint probability over the generated response, when jointly considering all tokens at the same time. We theoretically characterize the potential deviation of the autoregressively generated response from its globally optimal counterpart that is of the same length. Our analysis suggests that we need to be cautious when noticeable uncertainty arises during text generation, which may signal the sub-optimality of the generation history. To address the pitfall of autoregressive decoding for text generation, we propose an approach that incorporates a sliding reflection window and a pausing criterion, such that refinement and generation can be carried out interchangeably as the decoding proceeds. Our selective refinement framework strikes a balance between efficiency and optimality, and our extensive experimental results demonstrate the effectiveness of our approach.
comment: In Proceedings of the 42nd International Conference on Machine Learning, 2025. (ICML 2025)
♻ ☆ OODTE: A Differential Testing Engine for the ONNX Optimizer
With over 700 stars on GitHub and being part of the official ONNX repository, the ONNX Optimizer is the default tool for applying graph-based optimizations to ONNX models. Despite its widespread use, its ability to maintain model accuracy during optimization has not been thoroughly investigated. In this work, we present OODTE, a utility designed to automatically and comprehensively evaluate the correctness of the ONNX Optimizer. OODTE adopts a straightforward yet powerful differential testing and evaluation methodology, which can be readily adapted for use with other compiler optimizers. Specifically, OODTE takes a collection of ONNX models, applies optimizations, and executes both the original and optimized versions across a user-defined input set, automatically capturing any issues encountered during optimization. When discrepancies in accuracy arise, OODTE iteratively isolates the responsible optimization pass by repeating the process at a finer granularity. We applied OODTE to 130 well-known models from the official ONNX Model Hub, spanning diverse tasks including classification, object detection, semantic segmentation, text summarization, question answering, and sentiment analysis. Our evaluation revealed that 9.2% of the model instances either caused the optimizer to crash or led to the generation of invalid models using default optimization strategies. Additionally, 30% of classification models and 16.6% of object detection and segmentation models exhibited differing outputs across original and optimized versions, whereas models focused on text-related tasks were generally robust to optimization. OODTE uncovered 15 issues-14 previously unknown-affecting 9 of 47 optimization passes and the optimizer overall. All issues were reported to the ONNX Optimizer team. OODTE offers a simple but effective framework for validating AI model optimizers, applicable beyond the ONNX ecosystem.
comment: 12 pages, 3 figures, 3 tables
♻ ☆ Nash Equilibria, Regularization and Computation in Optimal Transport-Based Distributionally Robust Optimization
We study optimal transport-based distributionally robust optimization problems where a fictitious adversary, often envisioned as nature, can choose the distribution of the uncertain problem parameters by reshaping a prescribed reference distribution at a finite transportation cost. In this framework, we show that robustification is intimately related to various forms of variation and Lipschitz regularization even if the transportation cost function fails to be (some power of) a metric. We also derive conditions for the existence and the computability of a Nash equilibrium between the decision-maker and nature, and we demonstrate numerically that nature's Nash strategy can be viewed as a distribution that is supported on remarkably deceptive adversarial samples. Finally, we identify practically relevant classes of optimal transport-based distributionally robust optimization problems that can be addressed with efficient gradient descent algorithms even if the loss function or the transportation cost function are nonconvex (but not both at the same time).
♻ ☆ Language in the Flow of Time: Time-Series-Paired Texts Weaved into a Unified Temporal Narrative
While many advances in time series models focus exclusively on numerical data, research on multimodal time series, particularly those involving contextual textual information commonly encountered in real-world scenarios, remains in its infancy. With recent progress in large language models and time series learning, we revisit the integration of paired texts with time series through the Platonic Representation Hypothesis, which posits that representations of different modalities converge to shared spaces. In this context, we identify that time-series-paired texts may naturally exhibit periodic properties that closely mirror those of the original time series. Building on this insight, we propose a novel framework, Texts as Time Series (TaTS), which considers the time-series-paired texts to be auxiliary variables of the time series. TaTS can be plugged into any existing numerical-only time series models and enable them to handle time series data with paired texts effectively. Through extensive experiments on both multimodal time series forecasting and imputation tasks across benchmark datasets with various existing time series models, we demonstrate that TaTS can enhance predictive performance without modifying model architectures. Code available at https://github.com/iDEA-iSAIL-Lab-UIUC/TaTS.
comment: Preprint, 43 pages
♻ ☆ Quantifying First-Order Markov Violations in Noisy Reinforcement Learning: A Causal Discovery Approach
Reinforcement learning (RL) methods frequently assume that each new observation completely reflects the environment's state, thereby guaranteeing Markovian (one-step) transitions. In practice, partial observability or sensor/actuator noise often invalidates this assumption. This paper proposes a systematic methodology for detecting such violations, combining a partial correlation-based causal discovery process (PCMCI) with a novel Markov Violation score (MVS). The MVS measures multi-step dependencies that emerge when noise or incomplete state information disrupts the Markov property. Classic control tasks (CartPole, Pendulum, Acrobot) serve as examples to illustrate how targeted noise and dimension omissions affect both RL performance and measured Markov consistency. Surprisingly, even substantial observation noise sometimes fails to induce strong multi-lag dependencies in certain domains (e.g., Acrobot). In contrast, dimension-dropping investigations show that excluding some state variables (e.g., angular velocities in CartPole and Pendulum) significantly reduces returns and increases MVS, while removing other dimensions has minimal impact. These findings emphasize the importance of locating and safeguarding the most causally essential dimensions in order to preserve effective single-step learning. By integrating partial correlation tests with RL performance outcomes, the proposed approach precisely identifies when and where the Markov assumption is violated. This framework offers a principled mechanism for developing robust policies, informing representation learning, and addressing partial observability in real-world RL scenarios. All code and experimental logs are accessible for reproducibility (https://github.com/ucsb/markovianess).
comment: Under review for Neural Information Processing Systems 2025
♻ ☆ A Fully Generative Motivational Interviewing Counsellor Chatbot for Moving Smokers Towards the Decision to Quit ACL
The conversational capabilities of Large Language Models (LLMs) suggest that they may be able to perform as automated talk therapists. It is crucial to know if these systems would be effective and adhere to known standards. We present a counsellor chatbot that focuses on motivating tobacco smokers to quit smoking. It uses a state-of-the-art LLM and a widely applied therapeutic approach called Motivational Interviewing (MI), and was evolved in collaboration with clinician-scientists with expertise in MI. We also describe and validate an automated assessment of both the chatbot's adherence to MI and client responses. The chatbot was tested on 106 participants, and their confidence that they could succeed in quitting smoking was measured before the conversation and one week later. Participants' confidence increased by an average of 1.7 on a 0-10 scale. The automated assessment of the chatbot showed adherence to MI standards in 98% of utterances, higher than human counsellors. The chatbot scored well on a participant-reported metric of perceived empathy but lower than typical human counsellors. Furthermore, participants' language indicated a good level of motivation to change, a key goal in MI. These results suggest that the automation of talk therapy with a modern LLM has promise.
comment: To be published in the Findings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL), Vienna, Austria, 2025
♻ ☆ Quantifying Misalignment Between Agents: Towards a Sociotechnical Understanding of Alignment AAAI-25
Existing work on the alignment problem has focused mainly on (1) qualitative descriptions of the alignment problem; (2) attempting to align AI actions with human interests by focusing on value specification and learning; and/or (3) focusing on a single agent or on humanity as a monolith. Recent sociotechnical approaches highlight the need to understand complex misalignment among multiple human and AI agents. We address this gap by adapting a computational social science model of human contention to the alignment problem. Our model quantifies misalignment in large, diverse agent groups with potentially conflicting goals across various problem areas. Misalignment scores in our framework depend on the observed agent population, the domain in question, and conflict between agents' weighted preferences. Through simulations, we demonstrate how our model captures intuitive aspects of misalignment across different scenarios. We then apply our model to two case studies, including an autonomous vehicle setting, showcasing its practical utility. Our approach offers enhanced explanatory power for complex sociotechnical environments and could inform the design of more aligned AI systems in real-world applications.
comment: 7 pages, 8 figures, 3 tables, forthcoming at the AAAI-25 Special Track on AI Alignment
♻ ☆ Probing LLM Hallucination from Within: Perturbation-Driven Approach via Internal Knowledge
LLM hallucination, where unfaithful text is generated, presents a critical challenge for LLMs' practical applications. Current detection methods often resort to external knowledge, LLM fine-tuning, or supervised training with large hallucination-labeled datasets. Moreover, these approaches do not distinguish between different types of hallucinations, which is crucial for enhancing detection performance. To address such limitations, we introduce hallucination probing, a new task that classifies LLM-generated text into three categories: aligned, misaligned, and fabricated. Driven by our novel discovery that perturbing key entities in prompts affects LLM's generation of these three types of text differently, we propose SHINE, a novel hallucination probing method that does not require external knowledge, supervised training, or LLM fine-tuning. SHINE is effective in hallucination probing across three modern LLMs, and achieves state-of-the-art performance in hallucination detection, outperforming seven competing methods across four datasets and four LLMs, underscoring the importance of probing for accurate detection.
comment: 22 pages, 15 figures
♻ ☆ Deep Learning Framework for Infrastructure Maintenance: Crack Detection and High-Resolution Imaging of Infrastructure Surfaces
Recently, there has been an impetus for the application of cutting-edge data collection platforms such as drones mounted with camera sensors for infrastructure asset management. However, the sensor characteristics, proximity to the structure, hard-to-reach access, and environmental conditions often limit the resolution of the datasets. A few studies used super-resolution techniques to address the problem of low-resolution images. Nevertheless, these techniques were observed to increase computational cost and false alarms of distress detection due to the consideration of all the infrastructure images i.e., positive and negative distress classes. In order to address the pre-processing of false alarm and achieve efficient super-resolution, this study developed a framework consisting of convolutional neural network (CNN) and efficient sub-pixel convolutional neural network (ESPCNN). CNN accurately classified both the classes. ESPCNN, which is the lightweight super-resolution technique, generated high-resolution infrastructure image of positive distress obtained from CNN. The ESPCNN outperformed bicubic interpolation in all the evaluation metrics for super-resolution. Based on the performance metrics, the combination of CNN and ESPCNN was observed to be effective in preprocessing the infrastructure images with negative distress, reducing the computational cost and false alarms in the next step of super-resolution. The visual inspection showed that EPSCNN is able to capture crack propagation, complex geometry of even minor cracks. The proposed framework is expected to help the highway agencies in accurately performing distress detection and assist in efficient asset management practices.
comment: Presented :Transportation Research Board 104th Annual Meeting, Washington, D.C
♻ ☆ Effective faking of verbal deception detection with target-aligned adversarial attacks
Background: Deception detection through analysing language is a promising avenue using both human judgments and automated machine learning judgments. For both forms of credibility assessment, automated adversarial attacks that rewrite deceptive statements to appear truthful pose a serious threat. Methods: We used a dataset of 243 truthful and 262 fabricated autobiographical stories in a deception detection task for humans and machine learning models. A large language model was tasked to rewrite deceptive statements so that they appear truthful. In Study 1, humans who made a deception judgment or used the detailedness heuristic and two machine learning models (a fine-tuned language model and a simple n-gram model) judged original or adversarial modifications of deceptive statements. In Study 2, we manipulated the target alignment of the modifications, i.e. tailoring the attack to whether the statements would be assessed by humans or computer models. Results: When adversarial modifications were aligned with their target, human (d=-0.07 and d=-0.04) and machine judgments (51% accuracy) dropped to the chance level. When the attack was not aligned with the target, both human heuristics judgments (d=0.30 and d=0.36) and machine learning predictions (63-78%) were significantly better than chance. Conclusions: Easily accessible language models can effectively help anyone fake deception detection efforts both by humans and machine learning models. Robustness against adversarial modifications for humans and machines depends on that target alignment. We close with suggestions on advancing deception research with adversarial attack designs and techniques.
comment: Accepted to Legal and Criminological Psychology (author version)
♻ ☆ Jailbreak-AudioBench: In-Depth Evaluation and Analysis of Jailbreak Threats for Large Audio Language Models
Large Language Models (LLMs) demonstrate impressive zero-shot performance across a wide range of natural language processing tasks. Integrating various modality encoders further expands their capabilities, giving rise to Multimodal Large Language Models (MLLMs) that process not only text but also visual and auditory modality inputs. However, these advanced capabilities may also pose significant security risks, as models can be exploited to generate harmful or inappropriate content through jailbreak attack. While prior work has extensively explored how manipulating textual or visual modality inputs can circumvent safeguards in LLMs and MLLMs, the vulnerability of audio-specific Jailbreak on Large Audio-Language Models (LALMs) remains largely underexplored. To address this gap, we introduce \textbf{Jailbreak-AudioBench}, which consists of the Toolbox, curated Dataset, and comprehensive Benchmark. The Toolbox supports not only text-to-audio conversion but also various editing techniques for injecting audio hidden semantics. The curated Dataset provides diverse explicit and implicit jailbreak audio examples in both original and edited forms. Utilizing this dataset, we evaluate multiple state-of-the-art LALMs and establish the most comprehensive Jailbreak benchmark to date for audio modality. Finally, Jailbreak-AudioBench establishes a foundation for advancing future research on LALMs safety alignment by enabling the in-depth exposure of more powerful jailbreak threats, such as query-based audio editing, and by facilitating the development of effective defense mechanisms.
♻ ☆ How to set AdamW's weight decay as you scale model and dataset size ICML 2025
The scaling of the optimal AdamW weight decay hyperparameter with model and dataset size is critical as we seek to build larger models, but is poorly understood. We show that weights learned by AdamW can be understood as an exponential moving average (EMA) of recent updates. This gives critical insights for how to set the weight decay in AdamW, and how the weight decay should scale with model and dataset size. In particular, the key hyperparameter for an exponential moving average is the EMA timescale. Intuitively, the EMA timescale can be understood as the number of recent iterations the EMA averages over. We find that the optimal timescale, measured in epochs, is roughly constant as we change model and dataset size. Moreover, given a learning rate, there is a one-to-one mapping from the EMA timescale to the weight decay hyperparameter. Thus, if the optimal EMA timescale is constant, that implies that as the dataset size increases, the optimal weight decay should fall and as the model size increases, the optimal weight decay should increase (if we follow the muP recommendation for scaling the learning rate). We validate these scaling rules on ResNet-18 and Vision Transformers trained on CIFAR-10 and ImageNet, and on NanoGPT pre-training on OpenWebText. Finally, we found that as training progresses, muP's learning rate scaling breaks down for AdamW unless weight decay is scaled appropriately.
comment: Published in ICML 2025
♻ ☆ Primus: A Pioneering Collection of Open-Source Datasets for Cybersecurity LLM Training
Large Language Models (LLMs) have shown remarkable advancements in specialized fields such as finance, law, and medicine. However, in cybersecurity, we have noticed a lack of open-source datasets, with a particular lack of high-quality cybersecurity pretraining corpora, even though much research indicates that LLMs acquire their knowledge during pretraining. To address this, we present a comprehensive suite of datasets covering all major training stages, including pretraining, instruction fine-tuning, and reasoning distillation with cybersecurity-specific self-reflection data. Extensive ablation studies demonstrate their effectiveness on public cybersecurity benchmarks. In particular, continual pre-training on our dataset yields a 15.88% improvement in the aggregate score, while reasoning distillation leads to a 10% gain in security certification (CISSP). We will release all datasets and trained cybersecurity LLMs under the ODC-BY and MIT licenses to encourage further research in the community. For access to all datasets and model weights, please refer to https://huggingface.co/collections/trendmicro-ailab/primus-67b1fd27052b802b4af9d243.
♻ ☆ The Evolution and Future Perspectives of Artificial Intelligence Generated Content
Artificial intelligence generated content (AIGC), a rapidly advancing technology, is transforming content creation across domains, such as text, images, audio, and video. Its growing potential has attracted more and more researchers and investors to explore and expand its possibilities. This review traces AIGC's evolution through four developmental milestones-ranging from early rule-based systems to modern transfer learning models-within a unified framework that highlights how each milestone contributes uniquely to content generation. In particular, the paper employs a common example across all milestones to illustrate the capabilities and limitations of methods within each phase, providing a consistent evaluation of AIGC methodologies and their development. Furthermore, this paper addresses critical challenges associated with AIGC and proposes actionable strategies to mitigate them. This study aims to guide researchers and practitioners in selecting and optimizing AIGC models to enhance the quality and efficiency of content creation across diverse domains.
comment: 13 pages, 16 figures
♻ ☆ A Survey of LLM $\times$ DATA
The integration of large language model (LLM) and data management (DATA) is rapidly redefining both domains. In this survey, we comprehensively review the bidirectional relationships. On the one hand, DATA4LLM, spanning large-scale data processing, storage, and serving, feeds LLMs with high quality, diversity, and timeliness of data required for stages like pre-training, post-training, retrieval-augmented generation, and agentic workflows: (i) Data processing for LLMs includes scalable acquisition, deduplication, filtering, selection, domain mixing, and synthetic augmentation; (ii) Data Storage for LLMs focuses on efficient data and model formats, distributed and heterogeneous storage hierarchies, KV-cache management, and fault-tolerant checkpointing; (iii) Data serving for LLMs tackles challenges in RAG (e.g., knowledge post-processing), LLM inference (e.g., prompt compression, data provenance), and training strategies (e.g., data packing and shuffling). On the other hand, in LLM4DATA, LLMs are emerging as general-purpose engines for data management. We review recent advances in (i) data manipulation, including automatic data cleaning, integration, discovery; (ii) data analysis, covering reasoning over structured, semi-structured, and unstructured data, and (iii) system optimization (e.g., configuration tuning, query rewriting, anomaly diagnosis), powered by LLM techniques like retrieval-augmented prompting, task-specialized fine-tuning, and multi-agent collaboration.
comment: Please refer to the paper list at: https://github.com/weAIDB/awesome-data-llm
♻ ☆ Handling Label Noise via Instance-Level Difficulty Modeling and Dynamic Optimization
Recent studies indicate that deep neural networks degrade in generalization performance under noisy supervision. Existing methods focus on isolating clean subsets or correcting noisy labels, facing limitations such as high computational costs, heavy hyperparameter tuning process, and coarse-grained optimization. To address these challenges, we propose a novel two-stage noisy learning framework that enables instance-level optimization through a dynamically weighted loss function, avoiding hyperparameter tuning. To obtain stable and accurate information about noise modeling, we introduce a simple yet effective metric, termed wrong event, which dynamically models the cleanliness and difficulty of individual samples while maintaining computational costs. Our framework first collects wrong event information and builds a strong base model. Then we perform noise-robust training on the base model, using a probabilistic model to handle the wrong event information of samples. Experiments on five synthetic and real-world LNL benchmarks demonstrate our method surpasses state-of-the-art methods in performance, achieves a nearly 75% reduction in computational time and improves model scalability.
♻ ☆ Mixture of insighTful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment
As the capabilities of large language models (LLMs) continue to expand, aligning these models with human values remains a significant challenge. Recent studies show that reasoning abilities contribute significantly to model safety, while integrating Mixture-of-Experts (MoE) architectures can further enhance alignment. In this work, we address a fundamental question: How to effectively incorporate reasoning abilities and MoE architectures into self-alignment process in LLMs? We propose Mixture of insighTful Experts (MoTE), a novel framework that synergistically combines reasoning chains and expert mixtures to improve self-alignments. From a data perspective, MoTE employs a structured reasoning chain comprising four key stages: Question Analysis, Answer Guidance, Safe Answer, and Safety Checking. This approach enhances safety through multi-step reasoning and proves effective even for smaller and less powerful LLMs (e.g., 7B models). From an architectural perspective, MoTE adopts a multi-LoRA framework with step-level routing, where each expert is dedicated to a specific reasoning step. This design eliminates the need for balance losses, ensures stable training, and supports adaptive inference lengths. Experimental results demonstrate that MoTE significantly improves model safety, jailbreak resistance, and over-refusal capabilities, achieving performance comparable to OpenAI's state-of-the-art o1 model.
♻ ☆ RLZero: Direct Policy Inference from Language Without In-Domain Supervision
The reward hypothesis states that all goals and purposes can be understood as the maximization of a received scalar reward signal. However, in practice, defining such a reward signal is notoriously difficult, as humans are often unable to predict the optimal behavior corresponding to a reward function. Natural language offers an intuitive alternative for instructing reinforcement learning (RL) agents, yet previous language-conditioned approaches either require costly supervision or test-time training given a language instruction. In this work, we present a new approach that uses a pretrained RL agent trained using only unlabeled, offline interactions--without task-specific supervision or labeled trajectories--to get zero-shot test-time policy inference from arbitrary natural language instructions. We introduce a framework comprising three steps: imagine, project, and imitate. First, the agent imagines a sequence of observations corresponding to the provided language description using video generative models. Next, these imagined observations are projected into the target environment domain. Finally, an agent pretrained in the target environment with unsupervised RL instantly imitates the projected observation sequence through a closed-form solution. To the best of our knowledge, our method, RLZero, is the first approach to show direct language-to-behavior generation abilities on a variety of tasks and environments without any in-domain supervision. We further show that components of RLZero can be used to generate policies zero-shot from cross-embodied videos, such as those available on YouTube, even for complex embodiments like humanoids.
comment: 26 pages
♻ ☆ Are We in the AI-Generated Text World Already? Quantifying and Monitoring AIGT on Social Media ACL 2025
Social media platforms are experiencing a growing presence of AI-Generated Texts (AIGTs). However, the misuse of AIGTs could have profound implications for public opinion, such as spreading misinformation and manipulating narratives. Despite its importance, it remains unclear how prevalent AIGTs are on social media. To address this gap, this paper aims to quantify and monitor the AIGTs on online social media platforms. We first collect a dataset (SM-D) with around 2.4M posts from 3 major social media platforms: Medium, Quora, and Reddit. Then, we construct a diverse dataset (AIGTBench) to train and evaluate AIGT detectors. AIGTBench combines popular open-source datasets and our AIGT datasets generated from social media texts by 12 LLMs, serving as a benchmark for evaluating mainstream detectors. With this setup, we identify the best-performing detector (OSM-Det). We then apply OSM-Det to SM-D to track AIGTs across social media platforms from January 2022 to October 2024, using the AI Attribution Rate (AAR) as the metric. Specifically, Medium and Quora exhibit marked increases in AAR, rising from 1.77% to 37.03% and 2.06% to 38.95%, respectively. In contrast, Reddit shows slower growth, with AAR increasing from 1.31% to 2.45% over the same period. Our further analysis indicates that AIGTs on social media differ from human-written texts across several dimensions, including linguistic patterns, topic distributions, engagement levels, and the follower distribution of authors. We envision our analysis and findings on AIGTs in social media can shed light on future research in this domain.
comment: Accepted at ACL 2025 Main Conference. 29 pages, 21 figures, 12 tables
♻ ☆ SWE-bench Goes Live!
The issue-resolving task, where a model generates patches to fix real-world bugs, has emerged as a critical benchmark for evaluating the capabilities of large language models (LLMs). While SWE-bench and its variants have become standard in this domain, they suffer from key limitations: they have not been updated since their initial releases, cover a narrow set of repositories, and depend heavily on manual effort for instance construction and environment setup. These factors hinder scalability and introduce risks of overfitting and data contamination. In this work, we present SWE-bench-Live, a live-updatable benchmark designed to overcome these challenges. Our initial release consists of 1,319 tasks derived from real GitHub issues created since 2024, spanning 93 repositories. Each task is accompanied by a dedicated Docker image to ensure reproducible execution. Central to our benchmark is \method, an automated curation pipeline that streamlines the entire process from instance creation to environment setup, removing manual bottlenecks and enabling scalability and continuous updates. We evaluate a range of state-of-the-art agent frameworks and LLMs on SWE-bench-Live, revealing a substantial performance gap compared to static benchmarks like SWE-bench, even under controlled evaluation conditions. To better understand this discrepancy, we perform detailed analyses across repository origin, issue recency, and task difficulty. By providing a fresh, diverse, and executable benchmark grounded in live repository activity, SWE-bench-Live facilitates rigorous, contamination-resistant evaluation of LLMs and agents in dynamic, real-world software development settings.
comment: Homepage: \url{https://swe-bench-live.github.io/}, Code: \url{https://github.com/SWE-bench-Live}, Dataset: \url{https://huggingface.co/SWE-bench-Live}
♻ ☆ LLM-as-an-Interviewer: Beyond Static Testing Through Dynamic LLM Evaluation
We introduce LLM-as-an-Interviewer, a novel paradigm for evaluating large language models (LLMs). This approach leverages multi-turn interactions where the LLM interviewer actively provides feedback on responses and poses follow-up questions to the evaluated LLM. At the start of the interview, the LLM interviewer dynamically modifies datasets to generate initial questions, mitigating data contamination. We apply the LLM-as-an-Interviewer framework to evaluate six models on the MATH and DepthQA tasks. Our results show that the framework effectively provides insights into LLM performance, including the quality of initial responses, adaptability to feedback, and ability to address follow-up queries like clarification or additional knowledge requests. The framework also addresses key limitations of conventional methods like LLM-as-a-Judge, including verbosity bias and inconsistency across runs. Finally, we propose the Interview Report, which aggregates insights from the interview process, providing examples and a comprehensive analysis of the LLM's strengths and weaknesses. This report offers a detailed snapshot of the model's real-world applicability. The code for our framework is publicly available at https://github.com/interview-eval/.
♻ ☆ Conditional Image Synthesis with Diffusion Models: A Survey
Conditional image synthesis based on user-specified requirements is a key component in creating complex visual content. In recent years, diffusion-based generative modeling has become a highly effective way for conditional image synthesis, leading to exponential growth in the literature. However, the complexity of diffusion-based modeling, the wide range of image synthesis tasks, and the diversity of conditioning mechanisms present significant challenges for researchers to keep up with rapid developments and to understand the core concepts on this topic. In this survey, we categorize existing works based on how conditions are integrated into the two fundamental components of diffusion-based modeling, $\textit{i.e.}$, the denoising network and the sampling process. We specifically highlight the underlying principles, advantages, and potential challenges of various conditioning approaches during the training, re-purposing, and specialization stages to construct a desired denoising network. We also summarize six mainstream conditioning mechanisms in the sampling process. All discussions are centered around popular applications. Finally, we pinpoint several critical yet still unsolved problems and suggest some possible solutions for future research. Our reviewed works are itemized at https://github.com/zju-pi/Awesome-Conditional-Diffusion-Models.
♻ ☆ Beyond Fixed Variables: Expanding-variate Time Series Forecasting via Flat Scheme and Spatio-temporal Focal Learning
Multivariate Time Series Forecasting (MTSF) has long been a key research focus. Traditionally, these studies assume a fixed number of variables, but in real-world applications, Cyber-Physical Systems often expand as new sensors are deployed, increasing variables in MTSF. In light of this, we introduce a novel task, Expanding-variate Time Series Forecasting (EVTSF). This task presents unique challenges, specifically (1) handling inconsistent data shapes caused by adding new variables, and (2) addressing imbalanced spatio-temporal learning, where expanding variables have limited observed data due to the necessity for timely operation. To address these challenges, we propose STEV, a flexible spatio-temporal forecasting framework. STEV includes a new Flat Scheme to tackle the inconsistent data shape issue, which extends the graph-based spatio-temporal modeling architecture into 1D space by flattening the 2D samples along the variable dimension, making the model variable-scale-agnostic while still preserving dynamic spatial correlations through a holistic graph. We introduce a novel Spatio-temporal Focal Learning strategy that incorporates a negative filter to resolve potential conflicts between contrastive learning and graph representation, and a focal contrastive loss as its core to guide the framework to focus on optimizing the expanding variables. We benchmark EVTSF performance using three real-world datasets and compare it against three potential solutions employing SOTA MTSF models tailored for EVSTF. Experimental results show that STEV significantly outperforms its competitors, particularly on expanding variables. Notably, STEV, with only 5% of observations from the expanding period, is on par with SOTA MTSF models trained with complete observations. Further exploration of various expanding strategies underscores the generalizability of STEV in real-world applications.
♻ ☆ AnomalyGFM: Graph Foundation Model for Zero/Few-shot Anomaly Detection KDD2025
Graph anomaly detection (GAD) aims to identify abnormal nodes that differ from the majority of the nodes in a graph, which has been attracting significant attention in recent years. Existing generalist graph models have achieved remarkable success in different graph tasks but struggle to generalize to the GAD task. This limitation arises from their difficulty in learning generalized knowledge for capturing the inherently infrequent, irregular and heterogeneous abnormality patterns in graphs from different domains. To address this challenge, we propose AnomalyGFM, a GAD-oriented graph foundation model that supports zero-shot inference and few-shot prompt tuning for GAD in diverse graph datasets. One key insight is that graph-agnostic representations for normal and abnormal classes are required to support effective zero/few-shot GAD across different graphs. Motivated by this, AnomalyGFM is pre-trained to align data-independent, learnable normal and abnormal class prototypes with node representation residuals (i.e., representation deviation of a node from its neighbors). The residual features essentially project the node information into a unified feature space where we can effectively measure the abnormality of nodes from different graphs in a consistent way. This provides a driving force for the learning of graph-agnostic, discriminative prototypes for the normal and abnormal classes, which can be used to enable zero-shot GAD on new graphs, including very large-scale graphs. If there are few-shot labeled normal nodes available in the new graphs, AnomalyGFM can further support prompt tuning to leverage these nodes for better adaptation. Comprehensive experiments on 11 widely-used GAD datasets with real anomalies, demonstrate that AnomalyGFM significantly outperforms state-of-the-art competing methods under both zero- and few-shot GAD settings.
comment: Accepted by KDD2025
♻ ☆ Position: An Empirically Grounded Identifiability Theory Will Accelerate Self-Supervised Learning Research ICML2025
Self-Supervised Learning (SSL) powers many current AI systems. As research interest and investment grow, the SSL design space continues to expand. The Platonic view of SSL, following the Platonic Representation Hypothesis (PRH), suggests that despite different methods and engineering approaches, all representations converge to the same Platonic ideal. However, this phenomenon lacks precise theoretical explanation. By synthesizing evidence from Identifiability Theory (IT), we show that the PRH can emerge in SSL. However, current IT cannot explain SSL's empirical success. To bridge the gap between theory and practice, we propose expanding IT into what we term Singular Identifiability Theory (SITh), a broader theoretical framework encompassing the entire SSL pipeline. SITh would allow deeper insights into the implicit data assumptions in SSL and advance the field towards learning more interpretable and generalizable representations. We highlight three critical directions for future research: 1) training dynamics and convergence properties of SSL; 2) the impact of finite samples, batch size, and data diversity; and 3) the role of inductive biases in architecture, augmentations, initialization schemes, and optimizers.
comment: ICML2025 camera ready
♻ ☆ NFIG: Autoregressive Image Generation with Next-Frequency Prediction
Autoregressive models have achieved promising results in natural language processing. However, for image generation tasks, they encounter substantial challenges in effectively capturing long-range dependencies, managing computational costs, and most crucially, defining meaningful autoregressive sequences that reflect natural image hierarchies. To address these issues, we present \textbf{N}ext-\textbf{F}requency \textbf{I}mage \textbf{G}eneration (\textbf{NFIG}), a novel framework that decomposes the image generation process into multiple frequency-guided stages. Our approach first generates low-frequency components to establish global structure with fewer tokens, then progressively adds higher-frequency details, following the natural spectral hierarchy of images. This principled autoregressive sequence not only improves the quality of generated images by better capturing true causal relationships between image components, but also significantly reduces computational overhead during inference. Extensive experiments demonstrate that NFIG achieves state-of-the-art performance with fewer steps, offering a more efficient solution for image generation, with 1.25$\times$ speedup compared to VAR-d20 while achieving better performance (FID: 2.81) on the ImageNet-256 benchmark. We hope that our insight of incorporating frequency-domain knowledge to guide autoregressive sequence design will shed light on future research. We will make our code publicly available upon acceptance of the paper.
comment: 10 pages, 7 figures, 2 tables
♻ ☆ HyGenar: An LLM-Driven Hybrid Genetic Algorithm for Few-Shot Grammar Generation ACL 2025
Grammar plays a critical role in natural language processing and text/code generation by enabling the definition of syntax, the creation of parsers, and guiding structured outputs. Although large language models (LLMs) demonstrate impressive capabilities across domains, their ability to infer and generate grammars has not yet been thoroughly explored. In this paper, we aim to study and improve the ability of LLMs for few-shot grammar generation, where grammars are inferred from sets of a small number of positive and negative examples and generated in Backus-Naur Form. To explore this, we introduced a novel dataset comprising 540 structured grammar generation challenges, devised 6 metrics, and evaluated 8 various LLMs against it. Our findings reveal that existing LLMs perform sub-optimally in grammar generation. To address this, we propose an LLM-driven hybrid genetic algorithm, namely HyGenar, to optimize grammar generation. HyGenar achieves substantial improvements in both the syntactic and semantic correctness of generated grammars across LLMs.
comment: Accepted to ACL 2025 Findings. Code available at https://github.com/RutaTang/HyGenar
♻ ☆ Guided-SPSA: Simultaneous Perturbation Stochastic Approximation assisted by the Parameter Shift Rule
The study of variational quantum algorithms (VQCs) has received significant attention from the quantum computing community in recent years. These hybrid algorithms, utilizing both classical and quantum components, are well-suited for noisy intermediate-scale quantum devices. Though estimating exact gradients using the parameter-shift rule to optimize the VQCs is realizable in NISQ devices, they do not scale well for larger problem sizes. The computational complexity, in terms of the number of circuit evaluations required for gradient estimation by the parameter-shift rule, scales linearly with the number of parameters in VQCs. On the other hand, techniques that approximate the gradients of the VQCs, such as the simultaneous perturbation stochastic approximation (SPSA), do not scale with the number of parameters but struggle with instability and often attain suboptimal solutions. In this work, we introduce a novel gradient estimation approach called Guided-SPSA, which meaningfully combines the parameter-shift rule and SPSA-based gradient approximation. The Guided-SPSA results in a 15% to 25% reduction in the number of circuit evaluations required during training for a similar or better optimality of the solution found compared to the parameter-shift rule. The Guided-SPSA outperforms standard SPSA in all scenarios and outperforms the parameter-shift rule in scenarios such as suboptimal initialization of the parameters. We demonstrate numerically the performance of Guided-SPSA on different paradigms of quantum machine learning, such as regression, classification, and reinforcement learning.
comment: This paper has been accepted for publication in the proceedings of the 2024 IEEE International Conference on Quantum Computing and Engineering (QCE)
♻ ☆ DragPoser: Motion Reconstruction from Variable Sparse Tracking Signals via Latent Space Optimization
High-quality motion reconstruction that follows the user's movements can be achieved by high-end mocap systems with many sensors. However, obtaining such animation quality with fewer input devices is gaining popularity as it brings mocap closer to the general public. The main challenges include the loss of end-effector accuracy in learning-based approaches, or the lack of naturalness and smoothness in IK-based solutions. In addition, such systems are often finely tuned to a specific number of trackers and are highly sensitive to missing data e.g., in scenarios where a sensor is occluded or malfunctions. In response to these challenges, we introduce DragPoser, a novel deep-learning-based motion reconstruction system that accurately represents hard and dynamic on-the-fly constraints, attaining real-time high end-effectors position accuracy. This is achieved through a pose optimization process within a structured latent space. Our system requires only one-time training on a large human motion dataset, and then constraints can be dynamically defined as losses, while the pose is iteratively refined by computing the gradients of these losses within the latent space. To further enhance our approach, we incorporate a Temporal Predictor network, which employs a Transformer architecture to directly encode temporality within the latent space. This network ensures the pose optimization is confined to the manifold of valid poses and also leverages past pose data to predict temporally coherent poses. Results demonstrate that DragPoser surpasses both IK-based and the latest data-driven methods in achieving precise end-effector positioning, while it produces natural poses and temporally coherent motion. In addition, our system showcases robustness against on-the-fly constraint modifications, and exhibits exceptional adaptability to various input configurations and changes.
comment: Published on Eurographics 2025. Project page: https://upc-virvig.github.io/DragPoser/
♻ ☆ Strategy-Augmented Planning for Large Language Models via Opponent Exploitation IJCNN 2025
Efficiently modeling and exploiting opponents is a long-standing challenge in adversarial domains. Large Language Models (LLMs) trained on extensive textual data have recently demonstrated outstanding performance in general tasks, introducing new research directions for opponent modeling. Some studies primarily focus on directly using LLMs to generate decisions based on the elaborate prompt context that incorporates opponent descriptions, while these approaches are limited to scenarios where LLMs possess adequate domain expertise. To address that, we introduce a two-stage Strategy-Augmented Planning (SAP) framework that significantly enhances the opponent exploitation capabilities of LLM-based agents by utilizing a critical component, the Strategy Evaluation Network (SEN). Specifically, in the offline stage, we construct an explicit strategy space and subsequently collect strategy-outcome pair data for training the SEN network. During the online phase, SAP dynamically recognizes the opponent's strategies and greedily exploits them by searching best response strategy on the well-trained SEN, finally translating strategy to a course of actions by carefully designed prompts. Experimental results show that SAP exhibits robust generalization capabilities, allowing it to perform effectively not only against previously encountered opponent strategies but also against novel, unseen strategies. In the MicroRTS environment, SAP achieves a $85.35\%$ performance improvement over baseline methods and matches the competitiveness of reinforcement learning approaches against state-of-the-art (SOTA) rule-based AI. Our code is available at https://github.com/hsushuai/SAP.
comment: Accepted to IJCNN 2025
♻ ☆ Persona Dynamics: Unveiling the Impact of Personality Traits on Agents in Text-Based Games
Artificial agents are increasingly central to complex interactions and decision-making tasks, yet aligning their behaviors with desired human values remains an open challenge. In this work, we investigate how human-like personality traits influence agent behavior and performance within text-based interactive environments. We introduce PANDA: Personality Adapted Neural Decision Agents, a novel method for projecting human personality traits onto agents to guide their behavior. To induce personality in a text-based game agent, (i) we train a personality classifier to identify what personality type the agent's actions exhibit, and (ii) we integrate the personality profiles directly into the agent's policy-learning pipeline. By deploying agents embodying 16 distinct personality types across 25 text-based games and analyzing their trajectories, we demonstrate that an agent's action decisions can be guided toward specific personality profiles. Moreover, certain personality types, such as those characterized by higher levels of Openness, display marked advantages in performance. These findings underscore the promise of personality-adapted agents for fostering more aligned, effective, and human-centric decision-making in interactive environments.
♻ ☆ Faithful Logic Embeddings in HOL -- Deep and Shallow
Deep and shallow embeddings of non-classical logics in classical higher-order logic have been explored, implemented, and used in various reasoning tools in recent years. This paper presents a method for the simultaneous deployment of deep and shallow embeddings of various degrees in classical higher-order logic. This enables flexible, interactive and automated theorem proving and counterexample finding at meta and object level, as well as automated faithfulness proofs between these logic embeddings. The method is beneficial for logic education, research and application and is illustrated here using a simple propositional modal logic. However, this approach is conceptual in nature and not limited to this simple logic context.
comment: Preprint of paper accepted for CADE 2025; 24 pages, 11 figures
♻ ☆ Learning Successor Features with Distributed Hebbian Temporal Memory ICLR 2025
This paper presents a novel approach to address the challenge of online sequence learning for decision making under uncertainty in non-stationary, partially observable environments. The proposed algorithm, Distributed Hebbian Temporal Memory (DHTM), is based on the factor graph formalism and a multi-component neuron model. DHTM aims to capture sequential data relationships and make cumulative predictions about future observations, forming Successor Features (SFs). Inspired by neurophysiological models of the neocortex, the algorithm uses distributed representations, sparse transition matrices, and local Hebbian-like learning rules to overcome the instability and slow learning of traditional temporal memory algorithms such as RNN and HMM. Experimental results show that DHTM outperforms LSTM, RWKV and a biologically inspired HMM-like algorithm, CSCG, on non-stationary data sets. Our results suggest that DHTM is a promising approach to address the challenges of online sequence learning and planning in dynamic environments.
comment: Poster on ICLR 2025
♻ ☆ Exploring Model Kinship for Merging Large Language Models
Model merging has become one of the key technologies for enhancing the capabilities and efficiency of Large Language Models (LLMs). However, our understanding of the expected performance gains and principles when merging any two models remains limited. In this work, we introduce model kinship, the degree of similarity or relatedness between LLMs, analogous to biological evolution. With comprehensive empirical analysis, we find that there is a certain relationship between model kinship and the performance gains after model merging, which can help guide our selection of candidate models. Inspired by this, we propose a new model merging strategy: Top-k Greedy Merging with Model Kinship, which can yield better performance on benchmark datasets. Specifically, we discover that using model kinship as a criterion can assist us in continuously performing model merging, alleviating the degradation (local optima) in model evolution, whereas model kinship can serve as a guide to escape these traps. Code is available at https://github.com/zjunlp/ModelKinship.
comment: Ongoing work
♻ ☆ Text-To-Speech Synthesis In The Wild
Traditional Text-to-Speech (TTS) systems rely on studio-quality speech recorded in controlled settings.a Recently, an effort known as noisy-TTS training has emerged, aiming to utilize in-the-wild data. However, the lack of dedicated datasets has been a significant limitation. We introduce the TTS In the Wild (TITW) dataset, which is publicly available, created through a fully automated pipeline applied to the VoxCeleb1 dataset. It comprises two training sets: TITW-Hard, derived from the transcription, segmentation, and selection of raw VoxCeleb1 data, and TITW-Easy, which incorporates additional enhancement and data selection based on DNSMOS. State-of-the-art TTS models achieve over 3.0 UTMOS score with TITW-Easy, while TITW-Hard remains difficult showing UTMOS below 2.8.
comment: 5 pages, Interspeech 2025
♻ ☆ Learning Macroeconomic Policies through Dynamic Stackelberg Mean-Field Games
Macroeconomic outcomes emerge from individuals' decisions, making it essential to model how agents interact with macro policy via consumption, investment, and labor choices. We formulate this as a dynamic Stackelberg game: the government (leader) sets policies, and agents (followers) respond by optimizing their behavior over time. Unlike static models, this dynamic formulation captures temporal dependencies and strategic feedback critical to policy design. However, as the number of agents increases, explicitly simulating all agent-agent and agent-government interactions becomes computationally infeasible. To address this, we propose the Dynamic Stackelberg Mean Field Game (DSMFG) framework, which approximates these complex interactions via agent-population and government-population couplings. This approximation preserves individual-level feedback while ensuring scalability, enabling DSMFG to jointly model three core features of real-world policymaking: dynamic feedback, asymmetry, and large scale. We further introduce Stackelberg Mean Field Reinforcement Learning (SMFRL), a data-driven algorithm that learns the leader's optimal policies while maintaining personalized responses for individual agents. Empirically, we validate our approach in a large-scale simulated economy, where it scales to 1,000 agents (vs. 100 in prior work) and achieves a fourfold increase in GDP over classical economic methods and a nineteenfold improvement over the static 2022 U.S. federal income tax policy.
comment: 16 pages, 9 figures, 8 tables
♻ ☆ StatWhy: Formal Verification Tool for Statistical Hypothesis Testing Programs
Statistical methods have been widely misused and misinterpreted in various scientific fields, raising significant concerns about the integrity of scientific research. To mitigate this problem, we propose a tool-assisted method for formally specifying and automatically verifying the correctness of statistical programs. In this method, programmers are required to annotate the source code of the statistical programs with the requirements for these methods. Through this annotation, they are reminded to check the requirements for statistical methods, including those that cannot be formally verified, such as the distribution of the unknown true population. Our software tool StatWhy automatically checks whether programmers have properly specified the requirements for the statistical methods, thereby identifying any missing requirements that need to be addressed. This tool is implemented using the Why3 platform to verify the correctness of OCaml programs that conduct statistical hypothesis testing. We demonstrate how StatWhy can be used to avoid common errors in various statistical hypothesis testing programs.
comment: Accepted to CAV 2025 (the 37th International Conference on Computer Aided Verification)
♻ ☆ Classification of Heart Sounds Using Multi-Branch Deep Convolutional Network and LSTM-CNN
Cardiovascular diseases represent a leading cause of mortality worldwide, necessitating accurate and early diagnosis for improved patient outcomes. Current diagnostic approaches for cardiac abnormalities often present challenges in clinical settings due to their complexity, cost, or limited accessibility. This study develops and evaluates novel deep learning architectures that offer fast, accurate, and cost-effective methods for automatic diagnosis of cardiac diseases, focusing specifically on addressing the critical challenge of limited labeled datasets in medical contexts. We propose two innovative methodologies: first, a Multi-Branch Deep Convolutional Neural Network (MBDCN) that emulates human auditory processing by utilizing diverse convolutional filter sizes and power spectrum input for enhanced feature extraction; second, a Long Short-Term Memory-Convolutional Neural (LSCN) model that integrates LSTM blocks with MBDCN to improve time-domain feature extraction. The synergistic integration of multiple parallel convolutional branches with LSTM units enables superior performance in heart sound analysis. Experimental validation demonstrates that LSCN achieves multiclass classification accuracy of 89.65% and binary classification accuracy of 93.93%, significantly outperforming state-of-the-art techniques and traditional feature extraction methods such as Mel Frequency Cepstral Coefficients (MFCC) and wavelet transforms. A comprehensive 5-fold cross-validation confirms the robustness of our approach across varying data partitions. These findings establish the efficacy of our proposed architectures for automated heart sound analysis, offering clinically viable and computationally efficient solutions for early detection of cardiovascular diseases in diverse healthcare environments.
comment: 32 pages
♻ ☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
♻ ☆ CKnowEdit: A New Chinese Knowledge Editing Dataset for Linguistics, Facts, and Logic Error Correction in LLMs ACL 2025
Chinese, as a linguistic system rich in depth and complexity, is characterized by distinctive elements such as ancient poetry, proverbs, idioms, and other cultural constructs. However, current Large Language Models (LLMs) face limitations in these specialized domains, highlighting the need for the development of comprehensive datasets that can assess, continuously update, and progressively improve these culturally-grounded linguistic competencies through targeted training optimizations. To address this gap, we introduce CKnowEdit, the first-ever Chinese knowledge editing dataset designed to correct linguistic, factual, and logical errors in LLMs. We collect seven types of knowledge from a wide range of sources, including classical texts, idioms, and content from Baidu Tieba Ruozhiba, taking into account the unique polyphony, antithesis, and logical structures inherent in the Chinese language. By analyzing this dataset, we highlight the challenges current LLMs face in mastering Chinese. Furthermore, our evaluation of state-of-the-art knowledge editing techniques reveals opportunities to advance the correction of Chinese knowledge. Code and dataset are available at https://github.com/zjunlp/EasyEdit.
comment: ACL 2025; project website is available at https://zjunlp.github.io/project/CKnowEdit code and dataset are available at https://github.com/zjunlp/EasyEdit
♻ ☆ How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training ACL 2025
Despite exceptional capabilities in knowledge-intensive tasks, Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge, particularly how to structurally embed acquired knowledge in their neural computations. We address this issue through the lens of knowledge circuit evolution, identifying computational subgraphs that facilitate knowledge storage and processing. Our systematic analysis of circuit evolution throughout continual pre-training reveals several key findings: (1) the acquisition of new knowledge is influenced by its relevance to pre-existing knowledge; (2) the evolution of knowledge circuits exhibits a distinct phase shift from formation to optimization; (3) the evolution of knowledge circuits follows a deep-to-shallow pattern. These insights not only advance our theoretical understanding of the mechanisms of new knowledge acquisition in LLMs, but also provide potential implications for improving continual pre-training strategies to enhance model performance. Code and data will be available at https://github.com/zjunlp/DynamicKnowledgeCircuits.
comment: ACL 2025 Findings
♻ ☆ Fourier Asymmetric Attention on Domain Generalization for Pan-Cancer Drug Response Prediction
The accurate prediction of drug responses remains a formidable challenge, particularly at the single-cell level and in clinical treatment contexts. Some studies employ transfer learning techniques to predict drug responses in individual cells and patients, but they require access to target-domain data during training, which is often unavailable or only obtainable in future. In this study, we propose a novel domain generalization framework, termed FourierDrug, to address this challenge. Given the extracted feature from expression profile, we performed Fourier transforms and then introduced an asymmetric attention constraint that would cluster drug-sensitive samples into a compact group while drives resistant samples dispersed in the frequency domain. Our empirical experiments demonstrate that our model effectively learns task-relevant features from diverse source domains, and achieves accurate predictions of drug response for unseen cancer type. When evaluated on single-cell and patient-level drug response prediction tasks, FourierDrug--trained solely on in vitro cell line data without access to target-domain data--consistently outperforms or, at least, matched the performance of current state-of-the-art methods. These findings underscore the potential of our method for real-world clinical applications.
♻ ☆ Emergent Risk Awareness in Rational Agents under Resource Constraints
Advanced reasoning models with agentic capabilities (AI agents) are deployed to interact with humans and to solve sequential decision-making problems under (approximate) utility functions and internal models. When such problems have resource or failure constraints where action sequences may be forcibly terminated once resources are exhausted, agents face implicit trade-offs that reshape their utility-driven (rational) behaviour. Additionally, since these agents are typically commissioned by a human principal to act on their behalf, asymmetries in constraint exposure can give rise to previously unanticipated misalignment between human objectives and agent incentives. We formalise this setting through a survival bandit framework, provide theoretical and empirical results that quantify the impact of survival-driven preference shifts, identify conditions under which misalignment emerges and propose mechanisms to mitigate the emergence of risk-seeking or risk-averse behaviours. As a result, this work aims to increase understanding and interpretability of emergent behaviours of AI agents operating under such survival pressure, and offer guidelines for safely deploying such AI systems in critical resource-limited environments.
♻ ☆ SynWorld: Virtual Scenario Synthesis for Agentic Action Knowledge Refinement ACL 2025
In the interaction between agents and their environments, agents expand their capabilities by planning and executing actions. However, LLM-based agents face substantial challenges when deployed in novel environments or required to navigate unconventional action spaces. To empower agents to autonomously explore environments, optimize workflows, and enhance their understanding of actions, we propose SynWorld, a framework that allows agents to synthesize possible scenarios with multi-step action invocation within the action space and perform Monte Carlo Tree Search (MCTS) exploration to effectively refine their action knowledge in the current environment. Our experiments demonstrate that SynWorld is an effective and general approach to learning action knowledge in new environments. Code is available at https://github.com/zjunlp/SynWorld.
comment: ACL 2025
♻ ☆ Are Your LLMs Capable of Stable Reasoning? ACL 2025
The rapid advancement of large language models (LLMs) has shown remarkable progress in complex reasoning tasks. However, a significant disparity exists between benchmark performances and real-world applications. We attribute this gap primarily to current evaluation protocols and metrics, which inadequately capture the full spectrum of LLM capabilities, especially in complex reasoning tasks where both accuracy and consistency are essential. In this paper, we introduce G-Pass@$k$, a novel evaluation metric that continuously assesses model performance across multiple sampling attempts, quantifying both the model's performance potential and its stability. Through extensive experiments on various public and newly constructed benchmarks, we employ G-Pass@$k$ in conjunction with state-of-the-art large language models to provide comprehensive insights into their potential capabilities and operational consistency. Our findings reveal a significant opportunity to enhance the realistic reasoning abilities of LLMs, underscoring the necessity for more robust evaluation metrics.
comment: ACL 2025 Camera
♻ ☆ SCC-YOLO: An Improved Object Detector for Assisting in Brain Tumor Diagnosis
Brain tumors can lead to neurological dysfunction, cognitive and psychological changes, increased intracranial pressure, and seizures, posing significant risks to health. The You Only Look Once (YOLO) series has shown superior accuracy in medical imaging object detection. This paper presents a novel SCC-YOLO architecture that integrates the SCConv module into YOLOv9. The SCConv module optimizes convolutional efficiency by reducing spatial and channel redundancy, enhancing image feature learning. We examine the effects of different attention mechanisms with YOLOv9 for brain tumor detection using the Br35H dataset and our custom dataset (Brain_Tumor_Dataset). Results indicate that SCC-YOLO improved mAP50 by 0.3% on the Br35H dataset and by 0.5% on our custom dataset compared to YOLOv9. SCC-YOLO achieves state-of-the-art performance in brain tumor detection.
♻ ☆ Cognitive Guardrails for Open-World Decision Making in Autonomous Drone Swarms
Small Uncrewed Aerial Systems (sUAS) are increasingly deployed as autonomous swarms in search-and-rescue and other disaster-response scenarios. In these settings, they use computer vision (CV) to detect objects of interest and autonomously adapt their missions. However, traditional CV systems often struggle to recognize unfamiliar objects in open-world environments or to infer their relevance for mission planning. To address this, we incorporate large language models (LLMs) to reason about detected objects and their implications. While LLMs can offer valuable insights, they are also prone to hallucinations and may produce incorrect, misleading, or unsafe recommendations. To ensure safe and sensible decision-making under uncertainty, high-level decisions must be governed by cognitive guardrails. This article presents the design, simulation, and real-world integration of these guardrails for sUAS swarms in search-and-rescue missions.
comment: 16 pages, 8 figures
♻ ☆ Adversarial bandit optimization for approximately linear functions
We consider a bandit optimization problem for nonconvex and non-smooth functions, where in each trial the loss function is the sum of a linear function and a small but arbitrary perturbation chosen after observing the player's choice. We give both expected and high probability regret bounds for the problem. Our result also implies an improved high-probability regret bound for the bandit linear optimization, a special case with no perturbation. We also give a lower bound on the expected regret.
♻ ☆ Mind Your Theory: Theory of Mind Goes Deeper Than Reasoning ACL2025
Theory of Mind (ToM) capabilities in LLMs have recently become a central object of investigation. Cognitive science distinguishes between two steps required for ToM tasks: 1) determine whether to invoke ToM, which includes the appropriate Depth of Mentalizing (DoM), or level of recursion required to complete a task; and 2) applying the correct inference given the DoM. In this position paper, we first identify several lines of work in different communities in AI, including LLM benchmarking, ToM add-ons, ToM probing, and formal models for ToM. We argue that recent work in AI tends to focus exclusively on the second step which are typically framed as static logic problems. We conclude with suggestions for improved evaluation of ToM capabilities inspired by dynamic environments used in cognitive tasks.
comment: 4 pages, 2 figures, accepted to ACL2025 Findings
♻ ☆ Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases
Text-rich Graph Knowledge Bases (TG-KBs) have become increasingly crucial for answering queries by providing textual and structural knowledge. However, current retrieval methods often retrieve these two types of knowledge in isolation without considering their mutual reinforcement and some hybrid methods even bypass structural retrieval entirely after neighboring aggregation. To fill in this gap, we propose a Mixture of Structural-and-Textual Retrieval (MoR) to retrieve these two types of knowledge via a Planning-Reasoning-Organizing framework. In the Planning stage, MoR generates textual planning graphs delineating the logic for answering queries. Following planning graphs, in the Reasoning stage, MoR interweaves structural traversal and textual matching to obtain candidates from TG-KBs. In the Organizing stage, MoR further reranks fetched candidates based on their structural trajectory. Extensive experiments demonstrate the superiority of MoR in harmonizing structural and textual retrieval with insights, including uneven retrieving performance across different query logics and the benefits of integrating structural trajectories for candidate reranking. Our code is available at https://github.com/Yoega/MoR.
♻ ☆ LLMs can Perform Multi-Dimensional Analytic Writing Assessments: A Case Study of L2 Graduate-Level Academic English Writing ACL 2025
The paper explores the performance of LLMs in the context of multi-dimensional analytic writing assessments, i.e. their ability to provide both scores and comments based on multiple assessment criteria. Using a corpus of literature reviews written by L2 graduate students and assessed by human experts against 9 analytic criteria, we prompt several popular LLMs to perform the same task under various conditions. To evaluate the quality of feedback comments, we apply a novel feedback comment quality evaluation framework. This framework is interpretable, cost-efficient, scalable, and reproducible, compared to existing methods that rely on manual judgments. We find that LLMs can generate reasonably good and generally reliable multi-dimensional analytic assessments. We release our corpus and code for reproducibility.
comment: ACL 2025
♻ ☆ Enhancing Multimodal Unified Representations for Cross Modal Generalization
To enhance the interpretability of multimodal unified representations, many studies have focused on discrete unified representations. These efforts typically start with contrastive learning and gradually extend to the disentanglement of modal information, achieving solid multimodal discrete unified representations. However, existing research often overlooks two critical issues: 1) The use of Euclidean distance for quantization in discrete representations often overlooks the important distinctions among different dimensions of features, resulting in redundant representations after quantization; 2) Different modalities have unique characteristics, and a uniform alignment approach does not fully exploit these traits. To address these issues, we propose Training-free Optimization of Codebook (TOC) and Fine and Coarse cross-modal Information Disentangling (FCID). These methods refine the unified discrete representations from pretraining and perform fine- and coarse-grained information disentanglement tailored to the specific characteristics of each modality, achieving significant performance improvements over previous state-of-the-art models. The code is available at https://github.com/haihuangcode/CMG.
♻ ☆ Content Moderation by LLM: From Accuracy to Legitimacy
One trending application of LLM (large language model) is to use it for content moderation in online platforms. Most current studies on this application have focused on the metric of accuracy -- the extent to which LLMs make correct decisions about content. This article argues that accuracy is insufficient and misleading because it fails to grasp the distinction between easy cases and hard cases, as well as the inevitable trade-offs in achieving higher accuracy. Closer examination reveals that content moderation is a constitutive part of platform governance, the key of which is to gain and enhance legitimacy. Instead of making moderation decisions correct, the chief goal of LLMs is to make them legitimate. In this regard, this article proposes a paradigm shift from the single benchmark of accuracy towards a legitimacy-based framework for evaluating the performance of LLM moderators. The framework suggests that for easy cases, the key is to ensure accuracy, speed, and transparency, while for hard cases, what matters is reasoned justification and user participation. Examined under this framework, LLMs' real potential in moderation is not accuracy improvement. Rather, LLMs can better contribute in four other aspects: to conduct screening of hard cases from easy cases, to provide quality explanations for moderation decisions, to assist human reviewers in getting more contextual information, and to facilitate user participation in a more interactive way. To realize these contributions, this article proposes a workflow for incorporating LLMs into the content moderation system. Using normative theories from law and social sciences to critically assess the new technological application, this article seeks to redefine LLMs' role in content moderation and redirect relevant research in this field.
♻ ☆ Replay Attacks Against Audio Deepfake Detection
We show how replay attacks undermine audio deepfake detection: By playing and re-recording deepfake audio through various speakers and microphones, we make spoofed samples appear authentic to the detection model. To study this phenomenon in more detail, we introduce ReplayDF, a dataset of recordings derived from M-AILABS and MLAAD, featuring 109 speaker-microphone combinations across six languages and four TTS models. It includes diverse acoustic conditions, some highly challenging for detection. Our analysis of six open-source detection models across five datasets reveals significant vulnerability, with the top-performing W2V2-AASIST model's Equal Error Rate (EER) surging from 4.7% to 18.2%. Even with adaptive Room Impulse Response (RIR) retraining, performance remains compromised with an 11.0% EER. We release ReplayDF for non-commercial research use.
♻ ☆ Learning to Drift in Extreme Turning with Active Exploration and Gaussian Process Based MPC
Extreme cornering in racing often leads to large sideslip angles, presenting a significant challenge for vehicle control. Conventional vehicle controllers struggle to manage this scenario, necessitating the use of a drifting controller. However, the large sideslip angle in drift conditions introduces model mismatch, which in turn affects control precision. To address this issue, we propose a model correction drift controller that integrates Model Predictive Control (MPC) with Gaussian Process Regression (GPR). GPR is employed to correct vehicle model mismatches during both drift equilibrium solving and the MPC optimization process. Additionally, the variance from GPR is utilized to actively explore different cornering drifting velocities, aiming to minimize trajectory tracking errors. The proposed algorithm is validated through simulations on the Simulink-Carsim platform and experiments with a 1:10 scale RC vehicle. In the simulation, the average lateral error with GPR is reduced by 52.8% compared to the non-GPR case. Incorporating exploration further decreases this error by 27.1%. The velocity tracking Root Mean Square Error (RMSE) also decreases by 10.6% with exploration. In the RC car experiment, the average lateral error with GPR is 36.7% lower, and exploration further leads to a 29.0% reduction. Moreover, the velocity tracking RMSE decreases by 7.2% with the inclusion of exploration.
♻ ☆ A Unified Framework for Human AI Collaboration in Security Operations Centers with Trusted Autonomy
This article presents a structured framework for Human-AI collaboration in Security Operations Centers (SOCs), integrating AI autonomy, trust calibration, and Human-in-the-loop decision making. Existing frameworks in SOCs often focus narrowly on automation, lacking systematic structures to manage human oversight, trust calibration, and scalable autonomy with AI. Many assume static or binary autonomy settings, failing to account for the varied complexity, criticality, and risk across SOC tasks considering Humans and AI collaboration. To address these limitations, we propose a novel autonomy tiered framework grounded in five levels of AI autonomy from manual to fully autonomous, mapped to Human-in-the-Loop (HITL) roles and task-specific trust thresholds. This enables adaptive and explainable AI integration across core SOC functions, including monitoring, protection, threat detection, alert triage, and incident response. The proposed framework differentiates itself from previous research by creating formal connections between autonomy, trust, and HITL across various SOC levels, which allows for adaptive task distribution according to operational complexity and associated risks. The framework is exemplified through a simulated cyber range that features the cybersecurity AI-Avatar, a fine-tuned LLM-based SOC assistant. The AI-Avatar case study illustrates human-AI collaboration for SOC tasks, reducing alert fatigue, enhancing response coordination, and strategically calibrating trust. This research systematically presents both the theoretical and practical aspects and feasibility of designing next-generation cognitive SOCs that leverage AI not to replace but to enhance human decision-making.
comment: Journal Article
DISCO: Efficient Diffusion Solver for Large-Scale Combinatorial Optimization Problems
Combinatorial Optimization (CO) problems are fundamentally important in numerous real-world applications across diverse industries, characterized by entailing enormous solution space and demanding time-sensitive response. Despite recent advancements in neural solvers, their limited expressiveness struggles to capture the multi-modal nature of CO landscapes. While some research has shifted towards diffusion models, these models still sample solutions indiscriminately from the entire NP-complete solution space with time-consuming denoising processes, which limit their practicality for large problem scales. We propose DISCO, an efficient DIffusion Solver for large-scale Combinatorial Optimization problems that excels in both solution quality and inference speed. DISCO's efficacy is twofold: First, it enhances solution quality by constraining the sampling space to a more meaningful domain guided by solution residues, while preserving the multi-modal properties of the output distributions. Second, it accelerates the denoising process through an analytically solvable approach, enabling solution sampling with minimal reverse-time steps and significantly reducing inference time. DISCO delivers strong performance on large-scale Traveling Salesman Problems and challenging Maximal Independent Set benchmarks, with inference time up to 5.28 times faster than other diffusion alternatives. By incorporating a divide-and-conquer strategy, DISCO can well generalize to solve unseen-scale problem instances, even surpassing models specifically trained for those scales.
♻ ☆ REALM: A Dataset of Real-World LLM Use Cases
Large Language Models (LLMs), such as the GPT series, have driven significant industrial applications, leading to economic and societal transformations. However, a comprehensive understanding of their real-world applications remains limited. To address this, we introduce REALM, a dataset of over 94,000 LLM use cases collected from Reddit and news articles. REALM captures two key dimensions: the diverse applications of LLMs and the demographics of their users. It categorizes LLM applications and explores how users' occupations relate to the types of applications they use. By integrating real-world data, REALM offers insights into LLM adoption across different domains, providing a foundation for future research on their evolving societal roles.
comment: 11 pages, 3 figures
♻ ☆ A Little Human Data Goes A Long Way ACL 2025
Faced with an expensive human annotation process, creators of NLP systems increasingly turn to synthetic data generation. While this method shows promise, the extent to which synthetic data can replace human annotation is poorly understood. We investigate the use of synthetic data in Fact Verification (FV) and Question Answering (QA) by studying the effects of incrementally replacing human generated data with synthetic points on eight diverse datasets. Strikingly, replacing up to 90% of the training data only marginally decreases performance, but replacing the final 10% leads to severe declines. We find that models trained on purely synthetic data can be reliably improved by including as few as 125 human generated data points. We show that matching the performance gain of just a little additional human data (only 200 points) requires an order of magnitude more synthetic data and estimate price ratios at which human annotation would be a more cost-effective solution. Our results suggest that even when human annotation at scale is infeasible, there is great value to having a small proportion of the dataset being human generated.
comment: ACL 2025
♻ ☆ NeuroStrata: Harnessing Neurosymbolic Paradigms for Improved Design, Testability, and Verifiability of Autonomous CPS
Autonomous cyber-physical systems (CPSs) leverage AI for perception, planning, and control but face trust and safety certification challenges due to inherent uncertainties. The neurosymbolic paradigm replaces stochastic layers with interpretable symbolic AI, enabling determinism. While promising, challenges like multisensor fusion, adaptability, and verification remain. This paper introduces NeuroStrata, a neurosymbolic framework to enhance the testing and verification of autonomous CPS. We outline its key components, present early results, and detail future plans.
♻ ☆ Moderating Harm: Benchmarking Large Language Models for Cyberbullying Detection in YouTube Comments
As online platforms grow, comment sections increasingly host harassment that undermines user experience and well-being. This study benchmarks three leading large language models, OpenAI GPT-4.1, Google Gemini 1.5 Pro, and Anthropic Claude 3 Opus, on a corpus of 5,080 YouTube comments sampled from high-abuse threads in gaming, lifestyle, food vlog, and music channels. The dataset comprises 1,334 harmful and 3,746 non-harmful messages in English, Arabic, and Indonesian, annotated independently by two reviewers with substantial agreement (Cohen's kappa = 0.83). Using a unified prompt and deterministic settings, GPT-4.1 achieved the best overall balance with an F1 score of 0.863, precision of 0.887, and recall of 0.841. Gemini flagged the highest share of harmful posts (recall = 0.875) but its precision fell to 0.767 due to frequent false positives. Claude delivered the highest precision at 0.920 and the lowest false-positive rate of 0.022, yet its recall dropped to 0.720. Qualitative analysis showed that all three models struggle with sarcasm, coded insults, and mixed-language slang. These results underscore the need for moderation pipelines that combine complementary models, incorporate conversational context, and fine-tune for under-represented languages and implicit abuse. A de-identified version of the dataset and full prompts is publicly released to promote reproducibility and further progress in automated content moderation.
comment: 9 pages, 3 tables, 1 figure
♻ ☆ SPD: Sync-Point Drop for Efficient Tensor Parallelism of Large Language Models ICML
With the rapid expansion in the scale of large language models (LLMs), enabling efficient distributed inference across multiple computing units has become increasingly critical. However, communication overheads from popular distributed inference techniques such as Tensor Parallelism pose a significant challenge to achieve scalability and low latency. Therefore, we introduce a novel optimization technique, Sync-Point Drop (SPD), to reduce communication overheads in tensor parallelism by selectively dropping synchronization on attention outputs. In detail, we first propose a block design that allows execution to proceed without communication through SPD. Second, we apply different SPD strategies to attention blocks based on their sensitivity to the model accuracy. The proposed methods effectively alleviate communication bottlenecks while minimizing accuracy degradation during LLM inference, offering a scalable solution for diverse distributed environments: SPD offered about 20% overall inference latency reduction with < 1% accuracy regression for LLaMA2-70B inference over 8 GPUs.
comment: International Conference on Machine Learning (ICML) 2025
♻ ☆ Human-AI Governance (HAIG): A Trust-Utility Approach
This paper introduces the HAIG framework for analysing trust dynamics across evolving human-AI relationships. Current categorical frameworks (e.g., "human-in-the-loop" models) inadequately capture how AI systems evolve from tools to partners, particularly as foundation models demonstrate emergent capabilities and multi-agent systems exhibit autonomous goal-setting behaviours. As systems advance, agency redistributes in complex patterns that are better represented as positions along continua rather than discrete categories, though progression may include both gradual shifts and significant step changes. The HAIG framework operates across three levels: dimensions (Decision Authority Distribution, Process Autonomy, and Accountability Configuration), continua (gradual shifts along each dimension), and thresholds (critical points requiring governance adaptation). Unlike risk-based or principle-based approaches, HAIG adopts a trust-utility orientation, focusing on maintaining appropriate trust relationships that maximise utility while ensuring sufficient safeguards. Our analysis reveals how technical advances in self-supervision, reasoning authority, and distributed decision-making drive non-uniform trust evolution across both contextual variation and technological advancement. Case studies in healthcare and European regulation demonstrate how HAIG complements existing frameworks while offering a foundation for alternative approaches that anticipate governance challenges before they emerge.
comment: 32 pages including references and appendix, 25 pages core text, 3 figures, 3 tables
Graphics 8
☆ PromptVFX: Text-Driven Fields for Open-World 3D Gaussian Animation
Visual effects (VFX) are key to immersion in modern films, games, and AR/VR. Creating 3D effects requires specialized expertise and training in 3D animation software and can be time consuming. Generative solutions typically rely on computationally intense methods such as diffusion models which can be slow at 4D inference. We reformulate 3D animation as a field prediction task and introduce a text-driven framework that infers a time-varying 4D flow field acting on 3D Gaussians. By leveraging large language models (LLMs) and vision-language models (VLMs) for function generation, our approach interprets arbitrary prompts (e.g., "make the vase glow orange, then explode") and instantly updates color, opacity, and positions of 3D Gaussians in real time. This design avoids overheads such as mesh extraction, manual or physics-based simulations and allows both novice and expert users to animate volumetric scenes with minimal effort on a consumer device even in a web browser. Experimental results show that simple textual instructions suffice to generate compelling time-varying VFX, reducing the manual effort typically required for rigging or advanced modeling. We thus present a fast and accessible pathway to language-driven 3D content creation that can pave the way to democratize VFX further.
☆ TRiMM: Transformer-Based Rich Motion Matching for Real-Time multi-modal Interaction in Digital Humans
Large Language Model (LLM)-driven digital humans have sparked a series of recent studies on co-speech gesture generation systems. However, existing approaches struggle with real-time synthesis and long-text comprehension. This paper introduces Transformer-Based Rich Motion Matching (TRiMM), a novel multi-modal framework for real-time 3D gesture generation. Our method incorporates three modules: 1) a cross-modal attention mechanism to achieve precise temporal alignment between speech and gestures; 2) a long-context autoregressive model with a sliding window mechanism for effective sequence modeling; 3) a large-scale gesture matching system that constructs an atomic action library and enables real-time retrieval. Additionally, we develop a lightweight pipeline implemented in the Unreal Engine for experimentation. Our approach achieves real-time inference at 120 fps and maintains a per-sentence latency of 0.15 seconds on consumer-grade GPUs (Geforce RTX3060). Extensive subjective and objective evaluations on the ZEGGS, and BEAT datasets demonstrate that our model outperforms current state-of-the-art methods. TRiMM enhances the speed of co-speech gesture generation while ensuring gesture quality, enabling LLM-driven digital humans to respond to speech in real time and synthesize corresponding gestures. Our code is available at https://github.com/teroon/TRiMM-Transformer-Based-Rich-Motion-Matching
comment: 24 pages,12 figures
☆ LensCraft: Your Professional Virtual Cinematographer
Digital creators, from indie filmmakers to animation studios, face a persistent bottleneck: translating their creative vision into precise camera movements. Despite significant progress in computer vision and artificial intelligence, current automated filming systems struggle with a fundamental trade-off between mechanical execution and creative intent. Crucially, almost all previous works simplify the subject to a single point-ignoring its orientation and true volume-severely limiting spatial awareness during filming. LensCraft solves this problem by mimicking the expertise of a professional cinematographer, using a data-driven approach that combines cinematographic principles with the flexibility to adapt to dynamic scenes in real time. Our solution combines a specialized simulation framework for generating high-fidelity training data with an advanced neural model that is faithful to the script while being aware of the volume and dynamic behavior of the subject. Additionally, our approach allows for flexible control via various input modalities, including text prompts, subject trajectory and volume, key points, or a full camera trajectory, offering creators a versatile tool to guide camera movements in line with their vision. Leveraging a lightweight real time architecture, LensCraft achieves markedly lower computational complexity and faster inference while maintaining high output quality. Extensive evaluation across static and dynamic scenarios reveals unprecedented accuracy and coherence, setting a new benchmark for intelligent camera systems compared to state-of-the-art models. Extended results, the complete dataset, simulation environment, trained model weights, and source code are publicly accessible on LensCraft Webpage.
☆ Hybridizing Expressive Rendering: Stroke-Based Rendering with Classic and Neural Methods
Non-Photorealistic Rendering (NPR) has long been used to create artistic visualizations that prioritize style over realism, enabling the depiction of a wide range of aesthetic effects, from hand-drawn sketches to painterly renderings. While classical NPR methods, such as edge detection, toon shading, and geometric abstraction, have been well-established in both research and practice, with a particular focus on stroke-based rendering, the recent rise of deep learning represents a paradigm shift. We analyze the similarities and differences between classical and neural network based NPR techniques, focusing on stroke-based rendering (SBR), highlighting their strengths and limitations. We discuss trade offs in quality and artistic control between these paradigms, propose a framework where these approaches can be combined for new possibilities in expressive rendering.
☆ Neural Path Guiding with Distribution Factorization
In this paper, we present a neural path guiding method to aid with Monte Carlo (MC) integration in rendering. Existing neural methods utilize distribution representations that are either fast or expressive, but not both. We propose a simple, but effective, representation that is sufficiently expressive and reasonably fast. Specifically, we break down the 2D distribution over the directional domain into two 1D probability distribution functions (PDF). We propose to model each 1D PDF using a neural network that estimates the distribution at a set of discrete coordinates. The PDF at an arbitrary location can then be evaluated and sampled through interpolation. To train the network, we maximize the similarity of the learned and target distributions. To reduce the variance of the gradient during optimizations and estimate the normalization factor, we propose to cache the incoming radiance using an additional network. Through extensive experiments, we demonstrate that our approach is better than the existing methods, particularly in challenging scenes with complex light transport.
comment: 11 pages, 11 figures. Accepted to EGSR 2025
♻ ☆ Accurate Differential Operators for Hybrid Neural Fields CVPR 2025
Neural fields have become widely used in various fields, from shape representation to neural rendering, and for solving partial differential equations (PDEs). With the advent of hybrid neural field representations like Instant NGP that leverage small MLPs and explicit representations, these models train quickly and can fit large scenes. Yet in many applications like rendering and simulation, hybrid neural fields can cause noticeable and unreasonable artifacts. This is because they do not yield accurate spatial derivatives needed for these downstream applications. In this work, we propose two ways to circumvent these challenges. Our first approach is a post hoc operator that uses local polynomial fitting to obtain more accurate derivatives from pre-trained hybrid neural fields. Additionally, we also propose a self-supervised fine-tuning approach that refines the hybrid neural field to yield accurate derivatives directly while preserving the initial signal. We show applications of our method to rendering, collision simulation, and solving PDEs. We observe that using our approach yields more accurate derivatives, reducing artifacts and leading to more accurate simulations in downstream applications.
comment: Accepted in CVPR 2025. Project page is available at https://justachetan.github.io/hnf-derivatives/
♻ ☆ RLZero: Direct Policy Inference from Language Without In-Domain Supervision
The reward hypothesis states that all goals and purposes can be understood as the maximization of a received scalar reward signal. However, in practice, defining such a reward signal is notoriously difficult, as humans are often unable to predict the optimal behavior corresponding to a reward function. Natural language offers an intuitive alternative for instructing reinforcement learning (RL) agents, yet previous language-conditioned approaches either require costly supervision or test-time training given a language instruction. In this work, we present a new approach that uses a pretrained RL agent trained using only unlabeled, offline interactions--without task-specific supervision or labeled trajectories--to get zero-shot test-time policy inference from arbitrary natural language instructions. We introduce a framework comprising three steps: imagine, project, and imitate. First, the agent imagines a sequence of observations corresponding to the provided language description using video generative models. Next, these imagined observations are projected into the target environment domain. Finally, an agent pretrained in the target environment with unsupervised RL instantly imitates the projected observation sequence through a closed-form solution. To the best of our knowledge, our method, RLZero, is the first approach to show direct language-to-behavior generation abilities on a variety of tasks and environments without any in-domain supervision. We further show that components of RLZero can be used to generate policies zero-shot from cross-embodied videos, such as those available on YouTube, even for complex embodiments like humanoids.
comment: 26 pages
♻ ☆ DragPoser: Motion Reconstruction from Variable Sparse Tracking Signals via Latent Space Optimization
High-quality motion reconstruction that follows the user's movements can be achieved by high-end mocap systems with many sensors. However, obtaining such animation quality with fewer input devices is gaining popularity as it brings mocap closer to the general public. The main challenges include the loss of end-effector accuracy in learning-based approaches, or the lack of naturalness and smoothness in IK-based solutions. In addition, such systems are often finely tuned to a specific number of trackers and are highly sensitive to missing data e.g., in scenarios where a sensor is occluded or malfunctions. In response to these challenges, we introduce DragPoser, a novel deep-learning-based motion reconstruction system that accurately represents hard and dynamic on-the-fly constraints, attaining real-time high end-effectors position accuracy. This is achieved through a pose optimization process within a structured latent space. Our system requires only one-time training on a large human motion dataset, and then constraints can be dynamically defined as losses, while the pose is iteratively refined by computing the gradients of these losses within the latent space. To further enhance our approach, we incorporate a Temporal Predictor network, which employs a Transformer architecture to directly encode temporality within the latent space. This network ensures the pose optimization is confined to the manifold of valid poses and also leverages past pose data to predict temporally coherent poses. Results demonstrate that DragPoser surpasses both IK-based and the latest data-driven methods in achieving precise end-effector positioning, while it produces natural poses and temporally coherent motion. In addition, our system showcases robustness against on-the-fly constraint modifications, and exhibits exceptional adaptability to various input configurations and changes.
comment: Published on Eurographics 2025. Project page: https://upc-virvig.github.io/DragPoser/
Robotics 25
☆ Adaptive Traffic-Following Scheme for Orderly Distributed Control of Multi-Vehicle Systems
We present an adaptive control scheme to enable the emergence of order within distributed, autonomous multi-agent systems. Past studies showed that under high-density conditions, order generated from traffic-following behavior reduces travel times, while under low densities, choosing direct paths is more beneficial. In this paper, we leveraged those findings to allow aircraft to independently and dynamically adjust their degree of traffic-following behavior based on the current state of the airspace. This enables aircraft to follow other traffic only when beneficial. Quantitative analyses revealed that dynamic traffic-following behavior results in lower aircraft travel times at the cost of minimal levels of additional disorder to the airspace. The sensitivity of these benefits to temporal and spatial horizons was also investigated. Overall, this work highlights the benefits, and potential necessity, of incorporating self-organizing behavior in making distributed, autonomous multi-agent systems scalable.
☆ AWML: An Open-Source ML-based Robotics Perception Framework to Deploy for ROS-based Autonomous Driving Software
In recent years, machine learning technologies have played an important role in robotics, particularly in the development of autonomous robots and self-driving vehicles. As the industry matures, robotics frameworks like ROS 2 have been developed and provides a broad range of applications from research to production. In this work, we introduce AWML, a framework designed to support MLOps for robotics. AWML provides a machine learning infrastructure for autonomous driving, supporting not only the deployment of trained models to robotic systems, but also an active learning pipeline that incorporates auto-labeling, semi-auto-labeling, and data mining techniques.
comment: 17 pages, 9 figures
☆ Evaluating Robot Policies in a World Model
Robotics has broad applications from automating house chores to taking care of patients. However, evaluating robot control policies is challenging, as real-world testing is expensive, while handcrafted simulations often fail to accurately reflect real-world conditions, resulting in poor correlation between simulated evaluation and real-world outcomes. In this work, we investigate World-model-based Policy Evaluation (WPE). We first train an action-conditioned video generation model as a proxy to real-world environments. To enable efficient rollouts of hundreds of interactive steps while mitigating error accumulation in the world model, we propose an inference scheme which we call Blockwise-Autoregressive Diffusion Transformer with adjustable context and decoding horizon lengths. To ensure that the world model indeed follows action input, we propose metrics based on the agreement between the ground truth video and generated video conditioned on the same sequence of actions to evaluate the world model. We then use the world model for policy evaluation by performing Monte Carlo rollouts in the world model while employing a vision-language model (VLM) as a reward function. Interestingly, we found that WPE tends to underestimate the policy values for in-distribution actions and overestimate policy values for out-of-distribution actions. Nevertheless, WPE preserves the relative rankings of different policies. In emulating real robot executions, WPE achieves high fidelity in mimicing robot arm movements as in real videos, while emulating highly realistic object interaction remains challenging. Despite this limitation, we show that a world model can serve as a starting point for evaluating robot policies before real-world deployment.
comment: https://world-model-eval.github.io
☆ Constrained Stein Variational Gradient Descent for Robot Perception, Planning, and Identification
Many core problems in robotics can be framed as constrained optimization problems. Often on these problems, the robotic system has uncertainty, or it would be advantageous to identify multiple high quality feasible solutions. To enable this, we present two novel frameworks for applying principles of constrained optimization to the new variational inference algorithm Stein variational gradient descent. Our general framework supports multiple types of constrained optimizers and can handle arbitrary constraints. We demonstrate on a variety of problems that we are able to learn to approximate distributions without violating constraints. Specifically, we show that we can build distributions of: robot motion plans that exactly avoid collisions, robot arm joint angles on the SE(3) manifold with exact table placement constraints, and object poses from point clouds with table placement constraints.
☆ Using Diffusion Ensembles to Estimate Uncertainty for End-to-End Autonomous Driving
End-to-end planning systems for autonomous driving are improving rapidly, especially in closed-loop simulation environments like CARLA. Many such driving systems either do not consider uncertainty as part of the plan itself, or obtain it by using specialized representations that do not generalize. In this paper, we propose EnDfuser, an end-to-end driving system that uses a diffusion model as the trajectory planner. EnDfuser effectively leverages complex perception information like fused camera and LiDAR features, through combining attention pooling and trajectory planning into a single diffusion transformer module. Instead of committing to a single plan, EnDfuser produces a distribution of candidate trajectories (128 for our case) from a single perception frame through ensemble diffusion. By observing the full set of candidate trajectories, EnDfuser provides interpretability for uncertain, multi-modal future trajectory spaces, where there are multiple plausible options. EnDfuser achieves a competitive driving score of 70.1 on the Longest6 benchmark in CARLA with minimal concessions on inference speed. Our findings suggest that ensemble diffusion, used as a drop-in replacement for traditional point-estimate trajectory planning modules, can help improve the safety of driving decisions by modeling the uncertainty of the posterior trajectory distribution.
☆ Flying Co-Stereo: Enabling Long-Range Aerial Dense Mapping via Collaborative Stereo Vision of Dynamic-Baseline
Lightweight long-range mapping is critical for safe navigation of UAV swarms in large-scale unknown environments. Traditional stereo vision systems with fixed short baselines face limited perception ranges. To address this, we propose Flying Co-Stereo, a cross-agent collaborative stereo vision system that leverages the wide-baseline spatial configuration of two UAVs for long-range dense mapping. Key innovations include: (1) a dual-spectrum visual-inertial-ranging estimator for robust baseline estimation; (2) a hybrid feature association strategy combining deep learning-based cross-agent matching and optical-flow-based intra-agent tracking; (3) A sparse-to-dense depth recovery scheme,refining dense monocular depth predictions using exponential fitting of long-range triangulated sparse landmarks for precise metric-scale mapping. Experiments demonstrate the Flying Co-Stereo system achieves dense 3D mapping up to 70 meters with 2.3%-9.7% relative error, outperforming conventional systems by up to 350% in depth range and 450% in coverage area. The project webpage: https://xingxingzuo.github.io/flying_co_stereo
☆ Multi-Objective Neural Network Assisted Design Optimization of Soft Fin-Ray Grippers for Enhanced Grasping Performance
Soft Fin-Ray grippers can perform delicate and careful manipulation, which has caused notable attention in different fields. These grippers can handle objects of various forms and sizes safely. The internal structure of the Fin-Ray finger plays a significant role in its adaptability and grasping performance. However, modeling the non-linear grasp force and deformation behaviors for design purposes is challenging. Moreover, when the Fin-Ray finger becomes more rigid and capable of exerting higher forces, it becomes less delicate in handling objects. The contrast between these two objectives gives rise to a multi-objective optimization problem. In this study, we employ finite element method (FEM) to estimate the deflections and contact forces of the Fin-Ray, grasping cylindrical objects. This dataset is then used to construct a multilayer perception (MLP) for prediction of the contact force and the tip displacement. The FEM dataset consists of three input and four target features. The three input features of the MLP and optimization design variables are the thickness of the front and supporting beams, the thickness of the cross beams, and the equal spacing between the cross beams. In addition, the target features are the maximum contact forces and maximum tip displacements in x- and y-directions. The magnitude of maximum contact force and magnitude of maximum tip displacement are the two objectives, showing the trade-off between force and delicate manipulation in soft Fin-Ray grippers. Furthermore, the optimized set of solutions are found using multi-objective optimal techniques. We use non-dominated sorting genetic algorithm (NSGA-II) method for this purpose. Our findings demonstrate that our methodologies can be used to improve the design and gripping performance of soft robotic grippers, helping us to choose a design not only for delicate grasping but also for high-force applications.
☆ Disturbance-Aware Adaptive Compensation in Hybrid Force-Position Locomotion Policy for Legged Robots
Reinforcement Learning (RL)-based methods have significantly improved the locomotion performance of legged robots. However, these motion policies face significant challenges when deployed in the real world. Robots operating in uncertain environments struggle to adapt to payload variations and external disturbances, resulting in severe degradation of motion performance. In this work, we propose a novel Hybrid Force-Position Locomotion Policy (HFPLP) learning framework, where the action space of the policy is defined as a combination of target joint positions and feedforward torques, enabling the robot to rapidly respond to payload variations and external disturbances. In addition, the proposed Disturbance-Aware Adaptive Compensation (DAAC) provides compensation actions in the torque space based on external disturbance estimation, enhancing the robot's adaptability to dynamic environmental changes. We validate our approach in both simulation and real-world deployment, demonstrating that it outperforms existing methods in carrying payloads and resisting disturbances.
comment: 8 pages, 12 figures
☆ Diffusion Models for Increasing Accuracy in Olfaction Sensors and Datasets
Robotic odour source localization (OSL) is a critical capability for autonomous systems operating in complex environments. However, current OSL methods often suffer from ambiguities, particularly when robots misattribute odours to incorrect objects due to limitations in olfactory datasets and sensor resolutions. To address this challenge, we introduce a novel machine learning method using diffusion-based molecular generation to enhance odour localization accuracy that can be used by itself or with automated olfactory dataset construction pipelines with vision-language models (VLMs) This generative process of our diffusion model expands the chemical space beyond the limitations of both current olfactory datasets and the training data of VLMs, enabling the identification of potential odourant molecules not previously documented. The generated molecules can then be more accurately validated using advanced olfactory sensors which emulate human olfactory recognition through electronic sensor arrays. By integrating visual analysis, language processing, and molecular generation, our framework enhances the ability of olfaction-vision models on robots to accurately associate odours with their correct sources, thereby improving navigation and decision-making in environments where olfactory cues are essential. Our methodology represents a foundational advancement in the field of robotic olfaction, offering a scalable solution to the challenges posed by limited olfactory data and sensor ambiguities.
☆ LoHoVLA: A Unified Vision-Language-Action Model for Long-Horizon Embodied Tasks
Real-world embodied agents face long-horizon tasks, characterized by high-level goals demanding multi-step solutions beyond single actions. Successfully navigating these requires both high-level task planning (i.e., decomposing goals into sub-tasks) and low-level motion control (i.e., generating precise robot actions). While existing vision language action (VLA) models and hierarchical architectures offer potential in embodied tasks, the former often falter in planning, and the latter can suffer from coordination issues, both hampering performance. We introduce a new unified VLA framework for long-horizon tasks, dubbed LoHoVLA, to overcome these limitations. LoHoVLA leverages a large pretrained vision language model (VLM) as the backbone to jointly generate language and action tokens for sub-task generation and robot action prediction, respectively. This shared representation promotes better generalization across tasks. Additionally, LoHoVLA embraces a hierarchical closed-loop control mechanism to mitigate errors originating from both high-level planning and low-level control. To train LoHoVLA, we introduce LoHoSet, a dataset built on the Ravens simulator, containing 20 long-horizon tasks, each with 1,000 expert demonstrations composed of visual observations, linguistic goals, sub-tasks, and robot actions. Experimental results show that LoHoVLA significantly surpasses both hierarchical and standard VLA approaches on long-horizon embodied tasks in the Ravens simulator. These findings underscore the promise of unified architectures for advancing generalizable embodied intelligence.
☆ Position: Olfaction Standardization is Essential for the Advancement of Embodied Artificial Intelligence
Despite extraordinary progress in artificial intelligence (AI), modern systems remain incomplete representations of human cognition. Vision, audition, and language have received disproportionate attention due to well-defined benchmarks, standardized datasets, and consensus-driven scientific foundations. In contrast, olfaction - a high-bandwidth, evolutionarily critical sense - has been largely overlooked. This omission presents a foundational gap in the construction of truly embodied and ethically aligned super-human intelligence. We argue that the exclusion of olfactory perception from AI architectures is not due to irrelevance but to structural challenges: unresolved scientific theories of smell, heterogeneous sensor technologies, lack of standardized olfactory datasets, absence of AI-oriented benchmarks, and difficulty in evaluating sub-perceptual signal processing. These obstacles have hindered the development of machine olfaction despite its tight coupling with memory, emotion, and contextual reasoning in biological systems. In this position paper, we assert that meaningful progress toward general and embodied intelligence requires serious investment in olfactory research by the AI community. We call for cross-disciplinary collaboration - spanning neuroscience, robotics, machine learning, and ethics - to formalize olfactory benchmarks, develop multimodal datasets, and define the sensory capabilities necessary for machines to understand, navigate, and act within human environments. Recognizing olfaction as a core modality is essential not only for scientific completeness, but for building AI systems that are ethically grounded in the full scope of the human experience.
☆ Tunable Virtual IMU Frame by Weighted Averaging of Multiple Non-Collocated IMUs
We present a new method to combine several rigidly connected but physically separated IMUs through a weighted average into a single virtual IMU (VIMU). This has the benefits of (i) reducing process noise through averaging, and (ii) allowing for tuning the location of the VIMU. The VIMU can be placed to be coincident with, for example, a camera frame or GNSS frame, thereby offering a quality-of-life improvement for users. Specifically, our VIMU removes the need to consider any lever-arm terms in the propagation model. We also present a quadratic programming method for selecting the weights to minimize the noise of the VIMU while still selecting the placement of its reference frame. We tested our method in simulation and validated it on a real dataset. The results show that our averaging technique works for IMUs with large separation and performance gain is observed in both the simulation and the real experiment compared to using only a single IMU.
☆ Haptic Rapidly-Exploring Random Trees: A Sampling-based Planner for Quasi-static Manipulation Tasks
In this work, we explore how conventional motion planning algorithms can be reapplied to contact-rich manipulation tasks. Rather than focusing solely on efficiency, we investigate how manipulation aspects can be recast in terms of conventional motion-planning algorithms. Conventional motion planners, such as Rapidly-Exploring Random Trees (RRT), typically compute collision-free paths in configuration space. However, in manipulation tasks, intentional contact is often necessary. For example, when dealing with a crowded bookshelf, a robot must strategically push books aside before inserting a new one. In such scenarios, classical motion planners often fail because of insufficient space. As such, we presents Haptic Rapidly-Exploring Random Trees (HapticRRT), a planning algorithm that incorporates a recently proposed optimality measure in the context of \textit{quasi-static} manipulation, based on the (squared) Hessian of manipulation potential. The key contributions are i) adapting classical RRT to a framework that re-frames quasi-static manipulation as a planning problem on an implicit equilibrium manifold; ii) discovering multiple manipulation strategies, corresponding to branches of the equilibrium manifold. iii) providing deeper insight to haptic obstacle and haptic metric, enhancing interpretability. We validate our approach on a simulated pendulum and a real-world crowded bookshelf task, demonstrating its ability to autonomously discover strategic wedging-in policies and multiple branches. The video can be found at https://youtu.be/D-zpI0RznZ4
☆ Music-driven Robot Swarm Painting
This paper proposes a novel control framework for robotic swarms capable of turning a musical input into a painting. The approach connects the two artistic domains, music and painting, leveraging their respective connections to fundamental emotions. The robotic units of the swarm are controlled in a coordinated fashion using a heterogeneous coverage policy to control the motion of the robots which continuously release traces of color in the environment. The results of extensive simulations performed starting from different musical inputs and with different color equipments are reported. Finally, the proposed framework has been implemented on real robots equipped with LED lights and capable of light-painting.
☆ A Compendium of Autonomous Navigation using Object Detection and Tracking in Unmanned Aerial Vehicles
Unmanned Aerial Vehicles (UAVs) are one of the most revolutionary inventions of 21st century. At the core of a UAV lies the central processing system that uses wireless signals to control their movement. The most popular UAVs are quadcopters that use a set of four motors, arranged as two on either side with opposite spin. An autonomous UAV is called a drone. Drones have been in service in the US army since the 90's for covert missions critical to national security. It would not be wrong to claim that drones make up an integral part of the national security and provide the most valuable service during surveillance operations. While UAVs are controlled using wireless signals, there reside some challenges that disrupt the operation of such vehicles such as signal quality and range, real time processing, human expertise, robust hardware and data security. These challenges can be solved by programming UAVs to be autonomous, using object detection and tracking, through Computer Vision algorithms. Computer Vision is an interdisciplinary field that seeks the use of deep learning to gain a high-level understanding of digital images and videos for the purpose of automating the task of human visual system. Using computer vision, algorithms for detecting and tracking various objects can be developed suitable to the hardware so as to allow real time processing for immediate judgement. This paper attempts to review the various approaches several authors have proposed for the purpose of autonomous navigation of UAVs by through various algorithms of object detection and tracking in real time, for the purpose of applications in various fields such as disaster management, dense area exploration, traffic vehicle surveillance etc.
♻ ☆ Falcon: Fast Visuomotor Policies via Partial Denoising
Diffusion policies are widely adopted in complex visuomotor tasks for their ability to capture multimodal action distributions. However, the multiple sampling steps required for action generation significantly harm real-time inference efficiency, which limits their applicability in real-time decision-making scenarios. Existing acceleration techniques either require retraining or degrade performance under low sampling steps. Here we propose Falcon, which mitigates this speed-performance trade-off and achieves further acceleration. The core insight is that visuomotor tasks exhibit sequential dependencies between actions. Falcon leverages this by reusing partially denoised actions from historical information rather than sampling from Gaussian noise at each step. By integrating current observations, Falcon reduces sampling steps while preserving performance. Importantly, Falcon is a training-free algorithm that can be applied as a plug-in to further improve decision efficiency on top of existing acceleration techniques. We validated Falcon in 48 simulated environments and 2 real-world robot experiments. demonstrating a 2-7x speedup with negligible performance degradation, offering a promising direction for efficient visuomotor policy design.
♻ ☆ Fully Onboard SLAM for Distributed Mapping with a Swarm of Nano-Drones
The use of Unmanned Aerial Vehicles (UAVs) is rapidly increasing in applications ranging from surveillance and first-aid missions to industrial automation involving cooperation with other machines or humans. To maximize area coverage and reduce mission latency, swarms of collaborating drones have become a significant research direction. However, this approach requires open challenges in positioning, mapping, and communications to be addressed. This work describes a distributed mapping system based on a swarm of nano-UAVs, characterized by a limited payload of 35 g and tightly constrained onboard sensing and computing capabilities. Each nano-UAV is equipped with four 64-pixel depth sensors that measure the relative distance to obstacles in four directions. The proposed system merges the information from the swarm and generates a coherent grid map without relying on any external infrastructure. The data fusion is performed using the iterative closest point algorithm and a graph-based simultaneous localization and mapping algorithm, running entirely onboard the UAV's low-power ARM Cortex-M microcontroller with just 192 kB of memory. Field results gathered in three different mazes with a swarm of up to 4 nano-UAVs prove a mapping accuracy of 12 cm and demonstrate that the mapping time is inversely proportional to the number of agents. The proposed framework scales linearly in terms of communication bandwidth and onboard computational complexity, supporting communication between up to 20 nano-UAVs and mapping of areas up to 180 m2 with the chosen configuration requiring only 50 kB of memory.
comment: 18 pages
♻ ☆ SafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Constrained Learning
Vision-language-action models (VLAs) show potential as generalist robot policies. However, these models pose extreme safety challenges during real-world deployment, including the risk of harm to the environment, the robot itself, and humans. How can safety constraints be explicitly integrated into VLAs? We address this by exploring an integrated safety approach (ISA), systematically modeling safety requirements, then actively eliciting diverse unsafe behaviors, effectively constraining VLA policies via safe reinforcement learning, and rigorously assuring their safety through targeted evaluations. Leveraging the constrained Markov decision process (CMDP) paradigm, ISA optimizes VLAs from a min-max perspective against elicited safety risks. Thus, policies aligned through this comprehensive approach achieve the following key features: (I) effective safety-performance trade-offs, this exploration yields an 83.58% safety improvement compared to the current state-of-the-art method, while also maintaining task performance (+3.85%). (II) strong safety assurance, with the ability to mitigate long-tail risks and handle extreme failure scenarios. (III) robust generalization of learned safety behaviors to various out-of-distribution perturbations. Our data, models and newly proposed benchmark environment are available at https://pku-safevla.github.io.
comment: 26 pages, 12 figures
♻ ☆ Action-Gradient Monte Carlo Tree Search for Non-Parametric Continuous (PO)MDPs
Autonomous systems that operate in continuous state, action, and observation spaces require planning and reasoning under uncertainty. Existing online planning methods for such POMDPs are almost exclusively sample-based, yet they forego the power of high-dimensional gradient optimization as combining it into Monte Carlo Tree Search (MCTS) has proved difficult, especially in non-parametric settings. We close this gap with three contributions. First, we derive a novel action-gradient theorem for both MDPs and POMDPs in terms of transition likelihoods, making gradient information accessible during tree search. Second, we introduce the Multiple Importance Sampling (MIS) tree, that re-uses samples for changing action branches, yielding consistent value estimates that enable in-search gradient steps. Third, we derive exact transition probability computation via the area formula for smooth generative models common in physical domains, a result of independent interest. These elements combine into Action-Gradient Monte Carlo Tree Search (AGMCTS), the first planner to blend non-parametric particle search with online gradient refinement in POMDPs. Across several challenging continuous MDP and POMDP benchmarks, AGMCTS outperforms widely-used sample-only solvers in solution quality.
♻ ☆ Don't Let Your Robot be Harmful: Responsible Robotic Manipulation via Safety-as-Policy
Unthinking execution of human instructions in robotic manipulation can lead to severe safety risks, such as poisonings, fires, and even explosions. In this paper, we present responsible robotic manipulation, which requires robots to consider potential hazards in the real-world environment while completing instructions and performing complex operations safely and efficiently. However, such scenarios in real world are variable and risky for training. To address this challenge, we propose Safety-as-policy, which includes (i) a world model to automatically generate scenarios containing safety risks and conduct virtual interactions, and (ii) a mental model to infer consequences with reflections and gradually develop the cognition of safety, allowing robots to accomplish tasks while avoiding dangers. Additionally, we create the SafeBox synthetic dataset, which includes one hundred responsible robotic manipulation tasks with different safety risk scenarios and instructions, effectively reducing the risks associated with real-world experiments. Experiments demonstrate that Safety-as-policy can avoid risks and efficiently complete tasks in both synthetic dataset and real-world experiments, significantly outperforming baseline methods. Our SafeBox dataset shows consistent evaluation results with real-world scenarios, serving as a safe and effective benchmark for future research.
♻ ☆ Active Multi-task Policy Fine-tuning
Pre-trained generalist policies are rapidly gaining relevance in robot learning due to their promise of fast adaptation to novel, in-domain tasks. This adaptation often relies on collecting new demonstrations for a specific task of interest and applying imitation learning algorithms, such as behavioral cloning. However, as soon as several tasks need to be learned, we must decide which tasks should be demonstrated and how often? We study this multi-task problem and explore an interactive framework in which the agent adaptively selects the tasks to be demonstrated. We propose AMF (Active Multi-task Fine-tuning), an algorithm to maximize multi-task policy performance under a limited demonstration budget by collecting demonstrations yielding the largest information gain on the expert policy. We derive performance guarantees for AMF under regularity assumptions and demonstrate its empirical effectiveness to efficiently fine-tune neural policies in complex and high-dimensional environments.
♻ ☆ LP-ICP: General Localizability-Aware Point Cloud Registration for Robust Localization in Extreme Unstructured Environments
The Iterative Closest Point (ICP) algorithm is a crucial component of LiDAR-based SLAM algorithms. However, its performance can be negatively affected in unstructured environments that lack features and geometric structures, leading to low accuracy and poor robustness in localization and mapping. It is known that degeneracy caused by the lack of geometric constraints can lead to errors in 6-DOF pose estimation along ill-conditioned directions. Therefore, there is a need for a broader and more fine-grained degeneracy detection and handling method. This paper proposes a new point cloud registration framework, LP-ICP, that combines point-to-line and point-to-plane distance metrics in the ICP algorithm, with localizability detection and handling. Rather than relying solely on point-to-plane localizability information, LP-ICP enhances the localizability analysis by incorporating a point-to-line metric, thereby exploiting richer geometric constraints. It consists of a localizability detection module and an optimization module. The localizability detection module performs localizability analysis by utilizing the correspondences between edge points (with low local smoothness) to lines and planar points (with high local smoothness) to planes between the scan and the map. The localizability contribution of individual correspondence constraints can be applied to a broader range. The optimization module adds additional soft and hard constraints to the optimization equations based on the localizability category. This allows the pose to be constrained along ill-conditioned directions. The proposed method is evaluated on simulation and real-world datasets, showing comparable or better accuracy than the state-of-the art methods in tested scenarios. Observed variations in partially localizable directions suggest the need for further investigation on robustness and generalizability.
comment: 18 Pages, 9 Figures
♻ ☆ View-Invariant Policy Learning via Zero-Shot Novel View Synthesis
Large-scale visuomotor policy learning is a promising approach toward developing generalizable manipulation systems. Yet, policies that can be deployed on diverse embodiments, environments, and observational modalities remain elusive. In this work, we investigate how knowledge from large-scale visual data of the world may be used to address one axis of variation for generalizable manipulation: observational viewpoint. Specifically, we study single-image novel view synthesis models, which learn 3D-aware scene-level priors by rendering images of the same scene from alternate camera viewpoints given a single input image. For practical application to diverse robotic data, these models must operate zero-shot, performing view synthesis on unseen tasks and environments. We empirically analyze view synthesis models within a simple data-augmentation scheme that we call View Synthesis Augmentation (VISTA) to understand their capabilities for learning viewpoint-invariant policies from single-viewpoint demonstration data. Upon evaluating the robustness of policies trained with our method to out-of-distribution camera viewpoints, we find that they outperform baselines in both simulated and real-world manipulation tasks. Videos and additional visualizations are available at https://s-tian.github.io/projects/vista.
comment: Accepted to CoRL 2024
♻ ☆ Task-Optimized Convolutional Recurrent Networks Align with Tactile Processing in the Rodent Brain
Tactile sensing remains far less understood in neuroscience and less effective in artificial systems compared to more mature modalities such as vision and language. We bridge these gaps by introducing a novel Encoder-Attender-Decoder (EAD) framework to systematically explore the space of task-optimized temporal neural networks trained on realistic tactile input sequences from a customized rodent whisker-array simulator. We identify convolutional recurrent neural networks (ConvRNNs) as superior encoders to purely feedforward and state-space architectures for tactile categorization. Crucially, these ConvRNN-encoder-based EAD models achieve neural representations closely matching rodent somatosensory cortex, saturating the explainable neural variability and revealing a clear linear relationship between supervised categorization performance and neural alignment. Furthermore, contrastive self-supervised ConvRNN-encoder-based EADs, trained with tactile-specific augmentations, match supervised neural fits, serving as an ethologically-relevant, label-free proxy. For neuroscience, our findings highlight nonlinear recurrent processing as important for general-purpose tactile representations in somatosensory cortex, providing the first quantitative characterization of the underlying inductive biases in this system. For embodied AI, our results emphasize the importance of recurrent EAD architectures to handle realistic tactile inputs, along with tailored self-supervised learning methods for achieving robust tactile perception with the same type of sensors animals use to sense in unstructured environments.
comment: 9 pages, 8 figures, 5 tables
♻ ☆ SurgRIPE challenge: Benchmark of Surgical Robot Instrument Pose Estimation
Accurate instrument pose estimation is a crucial step towards the future of robotic surgery, enabling applications such as autonomous surgical task execution. Vision-based methods for surgical instrument pose estimation provide a practical approach to tool tracking, but they often require markers to be attached to the instruments. Recently, more research has focused on the development of marker-less methods based on deep learning. However, acquiring realistic surgical data, with ground truth instrument poses, required for deep learning training, is challenging. To address the issues in surgical instrument pose estimation, we introduce the Surgical Robot Instrument Pose Estimation (SurgRIPE) challenge, hosted at the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) in 2023. The objectives of this challenge are: (1) to provide the surgical vision community with realistic surgical video data paired with ground truth instrument poses, and (2) to establish a benchmark for evaluating markerless pose estimation methods. The challenge led to the development of several novel algorithms that showcased improved accuracy and robustness over existing methods. The performance evaluation study on the SurgRIPE dataset highlights the potential of these advanced algorithms to be integrated into robotic surgery systems, paving the way for more precise and autonomous surgical procedures. The SurgRIPE challenge has successfully established a new benchmark for the field, encouraging further research and development in surgical robot instrument pose estimation.
comment: 35 pages, 18 figures, journal paper
Computer Vision 51
♻ ☆ Robust Adaptation of Foundation Models with Black-Box Visual Prompting CVPR'23
With a surge of large-scale pre-trained models, parameter-efficient transfer learning (PETL) of large models has garnered significant attention. While promising, they commonly rely on two optimistic assumptions: 1) full access to the parameters of a PTM, and 2) sufficient memory capacity to cache all intermediate activations for gradient computation. However, in most real-world applications, PTMs serve as black-box APIs or proprietary software without full parameter accessibility. Besides, it is hard to meet a large memory requirement for modern PTMs. This work proposes black-box visual prompting (BlackVIP), which efficiently adapts the PTMs without knowledge of their architectures or parameters. BlackVIP has two components: 1) Coordinator and 2) simultaneous perturbation stochastic approximation with gradient correction (SPSA-GC). The Coordinator designs input-dependent visual prompts, which allow the target PTM to adapt in the wild. SPSA-GC efficiently estimates the gradient of PTM to update Coordinator. Besides, we introduce a variant, BlackVIP-SE, which significantly reduces the runtime and computational cost of BlackVIP. Extensive experiments on 19 datasets demonstrate that BlackVIPs enable robust adaptation to diverse domains and tasks with minimal memory requirements. We further provide a theoretical analysis on the generalization of visual prompting methods by presenting their connection to the certified robustness of randomized smoothing, and presenting an empirical support for improved robustness.
comment: Extended work from the CVPR'23 paper: arxiv:2303.14773; This paper has been submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) for possible publication
♻ ☆ Dyn-HaMR: Recovering 4D Interacting Hand Motion from a Dynamic Camera
We propose Dyn-HaMR, to the best of our knowledge, the first approach to reconstruct 4D global hand motion from monocular videos recorded by dynamic cameras in the wild. Reconstructing accurate 3D hand meshes from monocular videos is a crucial task for understanding human behaviour, with significant applications in augmented and virtual reality (AR/VR). However, existing methods for monocular hand reconstruction typically rely on a weak perspective camera model, which simulates hand motion within a limited camera frustum. As a result, these approaches struggle to recover the full 3D global trajectory and often produce noisy or incorrect depth estimations, particularly when the video is captured by dynamic or moving cameras, which is common in egocentric scenarios. Our Dyn-HaMR consists of a multi-stage, multi-objective optimization pipeline, that factors in (i) simultaneous localization and mapping (SLAM) to robustly estimate relative camera motion, (ii) an interacting-hand prior for generative infilling and to refine the interaction dynamics, ensuring plausible recovery under (self-)occlusions, and (iii) hierarchical initialization through a combination of state-of-the-art hand tracking methods. Through extensive evaluations on both in-the-wild and indoor datasets, we show that our approach significantly outperforms state-of-the-art methods in terms of 4D global mesh recovery. This establishes a new benchmark for hand motion reconstruction from monocular video with moving cameras. Our project page is at https://dyn-hamr.github.io/.
comment: Project page is available at https://dyn-hamr.github.io/
♻ ☆ Open High-Resolution Satellite Imagery: The WorldStrat Dataset -- With Application to Super-Resolution NeurIPS 2022
Analyzing the planet at scale with satellite imagery and machine learning is a dream that has been constantly hindered by the cost of difficult-to-access highly-representative high-resolution imagery. To remediate this, we introduce here the WorldStrat dataset. The largest and most varied such publicly available dataset, at Airbus SPOT 6/7 satellites' high resolution of up to 1.5 m/pixel, empowered by European Space Agency's Phi-Lab as part of the ESA-funded QueryPlanet project, we curate nearly 10,000 sqkm of unique locations to ensure stratified representation of all types of land-use across the world: from agriculture to ice caps, from forests to multiple urbanization densities. We also enrich those with locations typically under-represented in ML datasets: sites of humanitarian interest, illegal mining sites, and settlements of persons at risk. We temporally-match each high-resolution image with multiple low-resolution images from the freely accessible lower-resolution Sentinel-2 satellites at 10 m/pixel. We accompany this dataset with an open-source Python package to: rebuild or extend the WorldStrat dataset, train and infer baseline algorithms, and learn with abundant tutorials, all compatible with the popular EO-learn toolbox. We hereby hope to foster broad-spectrum applications of ML to satellite imagery, and possibly develop from free public low-resolution Sentinel2 imagery the same power of analysis allowed by costly private high-resolution imagery. We illustrate this specific point by training and releasing several highly compute-efficient baselines on the task of Multi-Frame Super-Resolution. High-resolution Airbus imagery is CC BY-NC, while the labels and Sentinel2 imagery are CC BY, and the source code and pre-trained models under BSD. The dataset is available at https://zenodo.org/record/6810791 and the software package at https://github.com/worldstrat/worldstrat .
comment: Published in 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks
♻ ☆ FastCAR: Fast Classification And Regression Multi-Task Learning via Task Consolidation for Modelling a Continuous Property Variable of Object Classes
FastCAR is a novel task consolidation approach in Multi-Task Learning (MTL) for a classification and a regression task, despite task heterogeneity with only subtle correlation. It addresses object classification and continuous property variable regression, a crucial use case in science and engineering. FastCAR involves a labeling transformation approach that can be used with a single-task regression network architecture. FastCAR outperforms traditional MTL model families, parametrized in the landscape of architecture and loss weighting schemes, when learning of both tasks are collectively considered (classification accuracy of 99.54\%, regression mean absolute percentage error of 2.4\%). The experiments performed used an Advanced Steel Property dataset https://github.com/fastcandr/Advanced-Steel-Property-Dataset contributed by us. The dataset comprises 4536 images of 224x224 pixels, annotated with object classes and hardness properties that take continuous values. With our designed approach, FastCAR achieves reduced latency and time efficiency.
♻ ☆ WaterSplatting: Fast Underwater 3D Scene Reconstruction Using Gaussian Splatting
The underwater 3D scene reconstruction is a challenging, yet interesting problem with applications ranging from naval robots to VR experiences. The problem was successfully tackled by fully volumetric NeRF-based methods which can model both the geometry and the medium (water). Unfortunately, these methods are slow to train and do not offer real-time rendering. More recently, 3D Gaussian Splatting (3DGS) method offered a fast alternative to NeRFs. However, because it is an explicit method that renders only the geometry, it cannot render the medium and is therefore unsuited for underwater reconstruction. Therefore, we propose a novel approach that fuses volumetric rendering with 3DGS to handle underwater data effectively. Our method employs 3DGS for explicit geometry representation and a separate volumetric field (queried once per pixel) for capturing the scattering medium. This dual representation further allows the restoration of the scenes by removing the scattering medium. Our method outperforms state-of-the-art NeRF-based methods in rendering quality on the underwater SeaThru-NeRF dataset. Furthermore, it does so while offering real-time rendering performance, addressing the efficiency limitations of existing methods. Web: https://water-splatting.github.io
comment: Web: https://water-splatting.github.io
♻ ☆ Normalized Attention Guidance: Universal Negative Guidance for Diffusion Model
Negative guidance -- explicitly suppressing unwanted attributes -- remains a fundamental challenge in diffusion models, particularly in few-step sampling regimes. While Classifier-Free Guidance (CFG) works well in standard settings, it fails under aggressive sampling step compression due to divergent predictions between positive and negative branches. We present Normalized Attention Guidance (NAG), an efficient, training-free mechanism that applies extrapolation in attention space with L1-based normalization and refinement. NAG restores effective negative guidance where CFG collapses while maintaining fidelity. Unlike existing approaches, NAG generalizes across architectures (UNet, DiT), sampling regimes (few-step, multi-step), and modalities (image, video), functioning as a \textit{universal} plug-in with minimal computational overhead. Through extensive experimentation, we demonstrate consistent improvements in text alignment (CLIP Score), fidelity (FID, PFID), and human-perceived quality (ImageReward). Our ablation studies validate each design component, while user studies confirm significant preference for NAG-guided outputs. As a model-agnostic inference-time approach requiring no retraining, NAG provides effortless negative guidance for all modern diffusion frameworks -- pseudocode in the Appendix!
♻ ☆ Efficiency Bottlenecks of Convolutional Kolmogorov-Arnold Networks: A Comprehensive Scrutiny with ImageNet, AlexNet, LeNet and Tabular Classification
Algorithmic level developments like Convolutional Neural Networks, transformers, attention mechanism, Retrieval Augmented Generation and so on have changed Artificial Intelligence. Recent such development was observed by Kolmogorov-Arnold Networks that suggested to challenge the fundamental concept of a Neural Network, thus change Multilayer Perceptron, and Convolutional Neural Networks. They received a good reception in terms of scientific modeling, yet had some drawbacks in terms of efficiency. In this paper, we train Convolutional Kolmogorov Arnold Networks (CKANs) with the ImageNet-1k dataset with 1.3 million images, MNIST dataset with 60k images and a tabular biological science related MoA dataset and test the promise of CKANs in terms of FLOPS, Inference Time, number of trainable parameters and training time against the accuracy, precision, recall and f-1 score they produce against the standard industry practice on CNN models. We show that the CKANs perform fair yet slower than CNNs in small size dataset like MoA and MNIST but are not nearly comparable as the dataset gets larger and more complex like the ImageNet. The code implementation of this paper can be found on the link: https://github.com/ashimdahal/Study-of-Convolutional-Kolmogorov-Arnold-networks
♻ ☆ CTRL-GS: Cascaded Temporal Residue Learning for 4D Gaussian Splatting CVPR 2025
Recently, Gaussian Splatting methods have emerged as a desirable substitute for prior Radiance Field methods for novel-view synthesis of scenes captured with multi-view images or videos. In this work, we propose a novel extension to 4D Gaussian Splatting for dynamic scenes. Drawing on ideas from residual learning, we hierarchically decompose the dynamic scene into a "video-segment-frame" structure, with segments dynamically adjusted by optical flow. Then, instead of directly predicting the time-dependent signals, we model the signal as the sum of video-constant values, segment-constant values, and frame-specific residuals, as inspired by the success of residual learning. This approach allows more flexible models that adapt to highly variable scenes. We demonstrate state-of-the-art visual quality and real-time rendering on several established datasets, with the greatest improvements on complex scenes with large movements, occlusions, and fine details, where current methods degrade most.
comment: Accepted to 4D Vision Workshop @ CVPR 2025
♻ ☆ HarmoniCa: Harmonizing Training and Inference for Better Feature Caching in Diffusion Transformer Acceleration ICML 2025
Diffusion Transformers (DiTs) excel in generative tasks but face practical deployment challenges due to high inference costs. Feature caching, which stores and retrieves redundant computations, offers the potential for acceleration. Existing learning-based caching, though adaptive, overlooks the impact of the prior timestep. It also suffers from misaligned objectives--aligned predicted noise vs. high-quality images--between training and inference. These two discrepancies compromise both performance and efficiency. To this end, we harmonize training and inference with a novel learning-based caching framework dubbed HarmoniCa. It first incorporates Step-Wise Denoising Training (SDT) to ensure the continuity of the denoising process, where prior steps can be leveraged. In addition, an Image Error Proxy-Guided Objective (IEPO) is applied to balance image quality against cache utilization through an efficient proxy to approximate the image error. Extensive experiments across $8$ models, $4$ samplers, and resolutions from $256\times256$ to $2K$ demonstrate superior performance and speedup of our framework. For instance, it achieves over $40\%$ latency reduction (i.e., $2.07\times$ theoretical speedup) and improved performance on PixArt-$\alpha$. Remarkably, our image-free approach reduces training time by $25\%$ compared with the previous method. Our code is available at https://github.com/ModelTC/HarmoniCa.
comment: Accepted by ICML 2025
♻ ☆ SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ SageAttention2: Efficient Attention with Thorough Outlier Smoothing and Per-thread INT4 Quantization ICML
Although quantization for linear layers has been widely used, its application to accelerate the attention process remains limited. To further enhance the efficiency of attention computation compared to SageAttention while maintaining precision, we propose SageAttention2, which utilizes significantly faster 4-bit matrix multiplication (Matmul) alongside additional precision-enhancing techniques. First, we propose to quantize matrices $(Q, K)$ to INT4 in a hardware-friendly thread-level granularity and quantize matrices $(\widetilde P, V)$ to FP8. Second, we propose a method to smooth $Q$, enhancing the accuracy of INT4 $QK^\top$. Third, we propose a two-level accumulation strategy for $\widetilde PV$ to enhance the accuracy of FP8 $\widetilde PV$. The operations per second (OPS) of SageAttention2 surpass FlashAttention2 and xformers by about 3x and 4.5x on RTX4090, respectively. Moreover, SageAttention2 matches the speed of FlashAttention3(fp8) on the Hopper GPUs, while delivering much higher accuracy. Comprehensive experiments confirm that our approach incurs negligible end-to-end metrics loss across diverse models, including those for language, image, and video generation. The code is available at https://github.com/thu-ml/SageAttention.
comment: @inproceedings{zhang2024sageattention2, title={Sageattention2: Efficient attention with thorough outlier smoothing and per-thread int4 quantization}, author={Zhang, Jintao and Huang, Haofeng and Zhang, Pengle and Wei, Jia and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ CRAVES: Controlling Robotic Arm with a Vision-based Economic System
Training a robotic arm to accomplish real-world tasks has been attracting increasing attention in both academia and industry. This work discusses the role of computer vision algorithms in this field. We focus on low-cost arms on which no sensors are equipped and thus all decisions are made upon visual recognition, e.g., real-time 3D pose estimation. This requires annotating a lot of training data, which is not only time-consuming but also laborious. In this paper, we present an alternative solution, which uses a 3D model to create a large number of synthetic data, trains a vision model in this virtual domain, and applies it to real-world images after domain adaptation. To this end, we design a semi-supervised approach, which fully leverages the geometric constraints among keypoints. We apply an iterative algorithm for optimization. Without any annotations on real images, our algorithm generalizes well and produces satisfying results on 3D pose estimation, which is evaluated on two real-world datasets. We also construct a vision-based control system for task accomplishment, for which we train a reinforcement learning agent in a virtual environment and apply it to the real-world. Moreover, our approach, with merely a 3D model being required, has the potential to generalize to other types of multi-rigid-body dynamic systems. Website: https://qiuwch.github.io/craves.ai. Code: https://github.com/zuoym15/craves.ai
comment: 10 pages, 6 figures
♻ ☆ More Thinking, Less Seeing? Assessing Amplified Hallucination in Multimodal Reasoning Models
Test-time compute has empowered multimodal large language models to generate extended reasoning chains, yielding strong performance on tasks such as multimodal math reasoning. However, this improved reasoning ability often comes with increased hallucination: as generations become longer, models tend to drift away from image-grounded content and rely more heavily on language priors. Attention analysis shows that longer reasoning chains lead to reduced focus on visual inputs, which contributes to hallucination. To systematically study this phenomenon, we introduce RH-AUC, a metric that quantifies how a model's perception accuracy changes with reasoning length, allowing us to evaluate whether the model preserves visual grounding during reasoning. We also release RH-Bench, a diagnostic benchmark that spans a variety of multimodal tasks, designed to assess the trade-off between reasoning ability and hallucination. Our analysis reveals that (i) larger models typically achieve a better balance between reasoning and perception, and (ii) this balance is influenced more by the types and domains of training data than by its overall volume. These findings underscore the importance of evaluation frameworks that jointly consider both reasoning quality and perceptual fidelity.
♻ ☆ ChartGalaxy: A Dataset for Infographic Chart Understanding and Generation
Infographic charts are a powerful medium for communicating abstract data by combining visual elements (e.g., charts, images) with textual information. However, their visual and structural richness poses challenges for large vision-language models (LVLMs), which are typically trained on plain charts. To bridge this gap, we introduce ChartGalaxy, a million-scale dataset designed to advance the understanding and generation of infographic charts. The dataset is constructed through an inductive process that identifies 75 chart types, 330 chart variations, and 68 layout templates from real infographic charts and uses them to create synthetic ones programmatically. We showcase the utility of this dataset through: 1) improving infographic chart understanding via fine-tuning, 2) benchmarking code generation for infographic charts, and 3) enabling example-based infographic chart generation. By capturing the visual and structural complexity of real design, ChartGalaxy provides a useful resource for enhancing multimodal reasoning and generation in LVLMs.
comment: 56 pages
♻ ☆ Advancing Image Super-resolution Techniques in Remote Sensing: A Comprehensive Survey
Remote sensing image super-resolution (RSISR) is a crucial task in remote sensing image processing, aiming to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts. Despite the growing number of RSISR methods proposed in recent years, a systematic and comprehensive review of these methods is still lacking. This paper presents a thorough review of RSISR algorithms, covering methodologies, datasets, and evaluation metrics. We provide an in-depth analysis of RSISR methods, categorizing them into supervised, unsupervised, and quality evaluation approaches, to help researchers understand current trends and challenges. Our review also discusses the strengths, limitations, and inherent challenges of these techniques. Notably, our analysis reveals significant limitations in existing methods, particularly in preserving fine-grained textures and geometric structures under large-scale degradation. Based on these findings, we outline future research directions, highlighting the need for domain-specific architectures and robust evaluation protocols to bridge the gap between synthetic and real-world RSISR scenarios.
comment: A survey of Remote Sensing Super-resolution Techniques
♻ ☆ RF4D:Neural Radar Fields for Novel View Synthesis in Outdoor Dynamic Scenes
Neural fields (NFs) have demonstrated remarkable performance in scene reconstruction, powering various tasks such as novel view synthesis. However, existing NF methods relying on RGB or LiDAR inputs often exhibit severe fragility to adverse weather, particularly when applied in outdoor scenarios like autonomous driving. In contrast, millimeter-wave radar is inherently robust to environmental changes, while unfortunately, its integration with NFs remains largely underexplored. Besides, as outdoor driving scenarios frequently involve moving objects, making spatiotemporal modeling essential for temporally consistent novel view synthesis. To this end, we introduce RF4D, a radar-based neural field framework specifically designed for novel view synthesis in outdoor dynamic scenes. RF4D explicitly incorporates temporal information into its representation, significantly enhancing its capability to model moving objects. We further introduce a feature-level flow module that predicts latent temporal offsets between adjacent frames, enforcing temporal coherence in dynamic scene modeling. Moreover, we propose a radar-specific power rendering formulation closely aligned with radar sensing physics, improving synthesis accuracy and interoperability. Extensive experiments on public radar datasets demonstrate the superior performance of RF4D in terms of radar measurement synthesis quality and occupancy estimation accuracy, achieving especially pronounced improvements in dynamic outdoor scenarios.
♻ ☆ AVadCLIP: Audio-Visual Collaboration for Robust Video Anomaly Detection
With the increasing adoption of video anomaly detection in intelligent surveillance domains, conventional visual-based detection approaches often struggle with information insufficiency and high false-positive rates in complex environments. To address these limitations, we present a novel weakly supervised framework that leverages audio-visual collaboration for robust video anomaly detection. Capitalizing on the exceptional cross-modal representation learning capabilities of Contrastive Language-Image Pretraining (CLIP) across visual, audio, and textual domains, our framework introduces two major innovations: an efficient audio-visual fusion that enables adaptive cross-modal integration through lightweight parametric adaptation while maintaining the frozen CLIP backbone, and a novel audio-visual prompt that dynamically enhances text embeddings with key multimodal information based on the semantic correlation between audio-visual features and textual labels, significantly improving CLIP's generalization for the video anomaly detection task. Moreover, to enhance robustness against modality deficiency during inference, we further develop an uncertainty-driven feature distillation module that synthesizes audio-visual representations from visual-only inputs. This module employs uncertainty modeling based on the diversity of audio-visual features to dynamically emphasize challenging features during the distillation process. Our framework demonstrates superior performance across multiple benchmarks, with audio integration significantly boosting anomaly detection accuracy in various scenarios. Notably, with unimodal data enhanced by uncertainty-driven distillation, our approach consistently outperforms current unimodal VAD methods.
comment: 12 pages, 6 figures, 9 tables. This work has been submitted to the IEEE for possible publication
♻ ☆ Subpixel Edge Localization Based on Converted Intensity Summation under Stable Edge Region
To satisfy the rigorous requirements of precise edge detection in critical high-accuracy measurements, this article proposes a series of efficient approaches for localizing subpixel edge. In contrast to the fitting based methods, which consider pixel intensity as a sample value derived from a specific model. We take an innovative perspective by assuming that the intensity at the pixel level can be interpreted as a local integral mapping in the intensity model for subpixel localization. Consequently, we propose a straightforward subpixel edge localization method called Converted Intensity Summation (CIS). To address the limited robustness associated with focusing solely on the localization of individual edge points, a Stable Edge Region (SER) based algorithm is presented to alleviate local interference near edges. Given the observation that the consistency of edge statistics exists in the local region, the algorithm seeks correlated stable regions in the vicinity of edges to facilitate the acquisition of robust parameters and achieve higher precision positioning. In addition, an edge complement method based on extension-adjustment is also introduced to rectify the irregular edges through the efficient migration of SERs. A large number of experiments are conducted on both synthetic and real image datasets which cover common edge patterns as well as various real scenarios such as industrial PCB images, remote sensing and medical images. It is verified that CIS can achieve higher accuracy than the state-of-the-art method, while requiring less execution time. Moreover, by integrating SER into CIS, the proposed algorithm demonstrates excellent performance in further improving the anti-interference capability and positioning accuracy.
♻ ☆ StarVector: Generating Scalable Vector Graphics Code from Images and Text
Scalable Vector Graphics (SVGs) are vital for modern image rendering due to their scalability and versatility. Previous SVG generation methods have focused on curve-based vectorization, lacking semantic understanding, often producing artifacts, and struggling with SVG primitives beyond path curves. To address these issues, we introduce StarVector, a multimodal large language model for SVG generation. It performs image vectorization by understanding image semantics and using SVG primitives for compact, precise outputs. Unlike traditional methods, StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. To train StarVector, we create SVG-Stack, a diverse dataset of 2M samples that enables generalization across vectorization tasks and precise use of primitives like ellipses, polygons, and text. We address challenges in SVG evaluation, showing that pixel-based metrics like MSE fail to capture the unique qualities of vector graphics. We introduce SVG-Bench, a benchmark across 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG generation, and diagram generation. Using this setup, StarVector achieves state-of-the-art performance, producing more compact and semantically rich SVGs.
♻ ☆ TSD-SR: One-Step Diffusion with Target Score Distillation for Real-World Image Super-Resolution
Pre-trained text-to-image diffusion models are increasingly applied to real-world image super-resolution (Real-ISR) task. Given the iterative refinement nature of diffusion models, most existing approaches are computationally expensive. While methods such as SinSR and OSEDiff have emerged to condense inference steps via distillation, their performance in image restoration or details recovery is not satisfied. To address this, we propose TSD-SR, a novel distillation framework specifically designed for real-world image super-resolution, aiming to construct an efficient and effective one-step model. We first introduce the Target Score Distillation, which leverages the priors of diffusion models and real image references to achieve more realistic image restoration. Secondly, we propose a Distribution-Aware Sampling Module to make detail-oriented gradients more readily accessible, addressing the challenge of recovering fine details. Extensive experiments demonstrate that our TSD-SR has superior restoration results (most of the metrics perform the best) and the fastest inference speed (e.g. 40 times faster than SeeSR) compared to the past Real-ISR approaches based on pre-trained diffusion priors.
♻ ☆ Co-Reinforcement Learning for Unified Multimodal Understanding and Generation
This paper presents a pioneering exploration of reinforcement learning (RL) via group relative policy optimization for unified multimodal large language models (ULMs), aimed at simultaneously reinforcing generation and understanding capabilities. Through systematic pilot studies, we uncover the significant potential of ULMs to enable the synergistic co-evolution of dual capabilities within a shared policy optimization framework. Building on this insight, we introduce CoRL, a co-reinforcement learning framework comprising a unified RL stage for joint optimization and a refined RL stage for task-specific enhancement. With the proposed CoRL, our resulting model, ULM-R1, achieves average improvements of 7% on three text-to-image generation datasets and 23% on nine multimodal understanding benchmarks. These results demonstrate the effectiveness of CoRL and highlight the substantial benefit of reinforcement learning in facilitating cross-task synergy and optimization for ULMs. Code is available at https://github.com/mm-vl/ULM-R1.
♻ ☆ QuickVideo: Real-Time Long Video Understanding with System Algorithm Co-Design
Long-video understanding has emerged as a crucial capability in real-world applications such as video surveillance, meeting summarization, educational lecture analysis, and sports broadcasting. However, it remains computationally prohibitive for VideoLLMs, primarily due to two bottlenecks: 1) sequential video decoding, the process of converting the raw bit stream to RGB frames can take up to a minute for hour-long video inputs, and 2) costly prefilling of up to several million tokens for LLM inference, resulting in high latency and memory use. To address these challenges, we propose QuickVideo, a system-algorithm co-design that substantially accelerates long-video understanding to support real-time downstream applications. It comprises three key innovations: QuickDecoder, a parallelized CPU-based video decoder that achieves 2-3 times speedup by splitting videos into keyframe-aligned intervals processed concurrently; QuickPrefill, a memory-efficient prefilling method using KV-cache pruning to support more frames with less GPU memory; and an overlapping scheme that overlaps CPU video decoding with GPU inference. Together, these components infernece time reduce by a minute on long video inputs, enabling scalable, high-quality video understanding even on limited hardware. Experiments show that QuickVideo generalizes across durations and sampling rates, making long video processing feasible in practice.
comment: 19 pages, 6 figures, 2 tables
♻ ☆ Autoregressive Models in Vision: A Survey
Autoregressive modeling has been a huge success in the field of natural language processing (NLP). Recently, autoregressive models have emerged as a significant area of focus in computer vision, where they excel in producing high-quality visual content. Autoregressive models in NLP typically operate on subword tokens. However, the representation strategy in computer vision can vary in different levels, i.e., pixel-level, token-level, or scale-level, reflecting the diverse and hierarchical nature of visual data compared to the sequential structure of language. This survey comprehensively examines the literature on autoregressive models applied to vision. To improve readability for researchers from diverse research backgrounds, we start with preliminary sequence representation and modeling in vision. Next, we divide the fundamental frameworks of visual autoregressive models into three general sub-categories, including pixel-based, token-based, and scale-based models based on the representation strategy. We then explore the interconnections between autoregressive models and other generative models. Furthermore, we present a multifaceted categorization of autoregressive models in computer vision, including image generation, video generation, 3D generation, and multimodal generation. We also elaborate on their applications in diverse domains, including emerging domains such as embodied AI and 3D medical AI, with about 250 related references. Finally, we highlight the current challenges to autoregressive models in vision with suggestions about potential research directions. We have also set up a Github repository to organize the papers included in this survey at: https://github.com/ChaofanTao/Autoregressive-Models-in-Vision-Survey.
comment: The paper is accepted by TMLR
♻ ☆ PHT-CAD: Efficient CAD Parametric Primitive Analysis with Progressive Hierarchical Tuning
Computer-Aided Design (CAD) plays a pivotal role in industrial manufacturing, yet 2D Parametric Primitive Analysis (PPA) remains underexplored due to two key challenges: structural constraint reasoning and advanced semantic understanding. To tackle these challenges, we first propose an Efficient Hybrid Parametrization (EHP) for better representing 2D engineering drawings. EHP contains four types of atomic component i.e., point, line, circle, and arc). Additionally, we propose PHT-CAD, a novel 2D PPA framework that harnesses the modality alignment and reasoning capabilities of Vision-Language Models (VLMs) for precise engineering drawing analysis. In PHT-CAD, we introduce four dedicated regression heads to predict corresponding atomic components. To train PHT-CAD, a three-stage training paradigm Progressive Hierarchical Tuning (PHT) is proposed to progressively enhance PHT-CAD's capability to perceive individual primitives, infer structural constraints, and align annotation layers with their corresponding geometric representations. Considering that existing datasets lack complete annotation layers and real-world engineering drawings, we introduce ParaCAD, the first large-scale benchmark that explicitly integrates both the geometric and annotation layers. ParaCAD comprises over 10 million annotated drawings for training and 3,000 real-world industrial drawings with complex topological structures and physical constraints for test. Extensive experiments demonstrate the effectiveness of PHT-CAD and highlight the practical significance of ParaCAD in advancing 2D PPA research.
♻ ☆ ChatReID: Open-ended Interactive Person Retrieval via Hierarchical Progressive Tuning for Vision Language Models
Person re-identification (Re-ID) is a crucial task in computer vision, aiming to recognize individuals across non-overlapping camera views. While recent advanced vision-language models (VLMs) excel in logical reasoning and multi-task generalization, their applications in Re-ID tasks remain limited. They either struggle to perform accurate matching based on identity-relevant features or assist image-dominated branches as auxiliary semantics. In this paper, we propose a novel framework ChatReID, that shifts the focus towards a text-side-dominated retrieval paradigm, enabling flexible and interactive re-identification. To integrate the reasoning abilities of language models into Re-ID pipelines, We first present a large-scale instruction dataset, which contains more than 8 million prompts to promote the model fine-tuning. Next. we introduce a hierarchical progressive tuning strategy, which endows Re-ID ability through three stages of tuning, i.e., from person attribute understanding to fine-grained image retrieval and to multi-modal task reasoning. Extensive experiments across ten popular benchmarks demonstrate that ChatReID outperforms existing methods, achieving state-of-the-art performance in all Re-ID tasks. More experiments demonstrate that ChatReID not only has the ability to recognize fine-grained details but also to integrate them into a coherent reasoning process.
♻ ☆ One RL to See Them All: Visual Triple Unified Reinforcement Learning
Reinforcement learning (RL) has significantly advanced the reasoning capabilities of vision-language models (VLMs). However, the use of RL beyond reasoning tasks remains largely unexplored, especially for perceptionintensive tasks like object detection and grounding. We propose V-Triune, a Visual Triple Unified Reinforcement Learning system that enables VLMs to jointly learn visual reasoning and perception tasks within a single training pipeline. V-Triune comprises triple complementary components: Sample-Level Data Formatting (to unify diverse task inputs), Verifier-Level Reward Computation (to deliver custom rewards via specialized verifiers) , and Source-Level Metric Monitoring (to diagnose problems at the data-source level). We further introduce a novel Dynamic IoU reward, which provides adaptive, progressive, and definite feedback for perception tasks handled by V-Triune. Our approach is instantiated within off-the-shelf RL training framework using open-source 7B and 32B backbone models. The resulting model, dubbed Orsta (One RL to See Them All), demonstrates consistent improvements across both reasoning and perception tasks. This broad capability is significantly shaped by its training on a diverse dataset, constructed around four representative visual reasoning tasks (Math, Puzzle, Chart, and Science) and four visual perception tasks (Grounding, Detection, Counting, and OCR). Subsequently, Orsta achieves substantial gains on MEGA-Bench Core, with improvements ranging from +2.1 to an impressive +14.1 across its various 7B and 32B model variants, with performance benefits extending to a wide range of downstream tasks. These results highlight the effectiveness and scalability of our unified RL approach for VLMs. The V-Triune system, along with the Orsta models, is publicly available at https://github.com/MiniMax-AI.
comment: Technical Report
♻ ☆ Exploring Compositional Generalization of Multimodal LLMs for Medical Imaging
Medical imaging provides essential visual insights for diagnosis, and multimodal large language models (MLLMs) are increasingly utilized for its analysis due to their strong generalization capabilities; however, the underlying factors driving this generalization remain unclear. Current research suggests that multi-task training outperforms single-task as different tasks can benefit each other, but they often overlook the internal relationships within these tasks. To analyze this phenomenon, we attempted to employ compositional generalization (CG), which refers to the models' ability to understand novel combinations by recombining learned elements, as a guiding framework. Since medical images can be precisely defined by Modality, Anatomical area, and Task, naturally providing an environment for exploring CG, we assembled 106 medical datasets to create Med-MAT for comprehensive experiments. The experiments confirmed that MLLMs can use CG to understand unseen medical images and identified CG as one of the main drivers of the generalization observed in multi-task training. Additionally, further studies demonstrated that CG effectively supports datasets with limited data and confirmed that MLLMs can achieve CG across classification and detection tasks, underscoring its broader generalization potential. Med-MAT is available at https://github.com/FreedomIntelligence/Med-MAT.
♻ ☆ Alignment is All You Need: A Training-free Augmentation Strategy for Pose-guided Video Generation ICML 2024
Character animation is a transformative field in computer graphics and vision, enabling dynamic and realistic video animations from static images. Despite advancements, maintaining appearance consistency in animations remains a challenge. Our approach addresses this by introducing a training-free framework that ensures the generated video sequence preserves the reference image's subtleties, such as physique and proportions, through a dual alignment strategy. We decouple skeletal and motion priors from pose information, enabling precise control over animation generation. Our method also improves pixel-level alignment for conditional control from the reference character, enhancing the temporal consistency and visual cohesion of animations. Our method significantly enhances the quality of video generation without the need for large datasets or expensive computational resources.
comment: Accepted to CVG@ICML 2024
♻ ☆ An Interpretable Representation Learning Approach for Diffusion Tensor Imaging
Diffusion Tensor Imaging (DTI) tractography offers detailed insights into the structural connectivity of the brain, but presents challenges in effective representation and interpretation in deep learning models. In this work, we propose a novel 2D representation of DTI tractography that encodes tract-level fractional anisotropy (FA) values into a 9x9 grayscale image. This representation is processed through a Beta-Total Correlation Variational Autoencoder with a Spatial Broadcast Decoder to learn a disentangled and interpretable latent embedding. We evaluate the quality of this embedding using supervised and unsupervised representation learning strategies, including auxiliary classification, triplet loss, and SimCLR-based contrastive learning. Compared to the 1D Group deep neural network (DNN) baselines, our approach improves the F1 score in a downstream sex classification task by 15.74% and shows a better disentanglement than the 3D representation.
comment: Accepted for publication at MIDL 2025
♻ ☆ M$^3$-VOS: Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation
Intelligent robots need to interact with diverse objects across various environments. The appearance and state of objects frequently undergo complex transformations depending on the object properties, e.g., phase transitions. However, in the vision community, segmenting dynamic objects with phase transitions is overlooked. In light of this, we introduce the concept of phase in segmentation, which categorizes real-world objects based on their visual characteristics and potential morphological and appearance changes. Then, we present a new benchmark, Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation (M$^3$-VOS), to verify the ability of models to understand object phases, which consists of 479 high-resolution videos spanning over 10 distinct everyday scenarios. It provides dense instance mask annotations that capture both object phases and their transitions. We evaluate state-of-the-art methods on M$^3$-VOS, yielding several key insights. Notably, current appearance-based approaches show significant room for improvement when handling objects with phase transitions. The inherent changes in disorder suggest that the predictive performance of the forward entropy-increasing process can be improved through a reverse entropy-reducing process. These findings lead us to propose ReVOS, a new plug-andplay model that improves its performance by reversal refinement. Our data and code will be publicly available at https://zixuan-chen.github.io/M-cube-VOS.github.io/.
comment: 18 pages, 12 figures
♻ ☆ Efficient Open Set Single Image Test Time Adaptation of Vision Language Models
Adapting models to dynamic, real-world environments characterized by shifting data distributions and unseen test scenarios is a critical challenge in deep learning. In this paper, we consider a realistic and challenging Test-Time Adaptation setting, where a model must continuously adapt to test samples that arrive sequentially, one at a time, while distinguishing between known and unknown classes. Current Test-Time Adaptation methods operate under closed-set assumptions or batch processing, differing from the real-world open-set scenarios. We address this limitation by establishing a comprehensive benchmark for {\em Open-set Single-image Test-Time Adaptation using Vision-Language Models}. Furthermore, we propose ROSITA, a novel framework that leverages dynamically updated feature banks to identify reliable test samples and employs a contrastive learning objective to improve the separation between known and unknown classes. Our approach effectively adapts models to domain shifts for known classes while rejecting unfamiliar samples. Extensive experiments across diverse real-world benchmarks demonstrate that ROSITA sets a new state-of-the-art in open-set TTA, achieving both strong performance and computational efficiency for real-time deployment. Our code can be found at the project site https://manogna-s.github.io/rosita/
comment: Accepted at TMLR
♻ ☆ Don't Let Your Robot be Harmful: Responsible Robotic Manipulation via Safety-as-Policy
Unthinking execution of human instructions in robotic manipulation can lead to severe safety risks, such as poisonings, fires, and even explosions. In this paper, we present responsible robotic manipulation, which requires robots to consider potential hazards in the real-world environment while completing instructions and performing complex operations safely and efficiently. However, such scenarios in real world are variable and risky for training. To address this challenge, we propose Safety-as-policy, which includes (i) a world model to automatically generate scenarios containing safety risks and conduct virtual interactions, and (ii) a mental model to infer consequences with reflections and gradually develop the cognition of safety, allowing robots to accomplish tasks while avoiding dangers. Additionally, we create the SafeBox synthetic dataset, which includes one hundred responsible robotic manipulation tasks with different safety risk scenarios and instructions, effectively reducing the risks associated with real-world experiments. Experiments demonstrate that Safety-as-policy can avoid risks and efficiently complete tasks in both synthetic dataset and real-world experiments, significantly outperforming baseline methods. Our SafeBox dataset shows consistent evaluation results with real-world scenarios, serving as a safe and effective benchmark for future research.
♻ ☆ Harnessing PDF Data for Improving Japanese Large Multimodal Models ACL2025
Large Multimodal Models (LMMs) have demonstrated strong performance in English, but their effectiveness in Japanese remains limited due to the lack of high-quality training data. Current Japanese LMMs often rely on translated English datasets, restricting their ability to capture Japan-specific cultural knowledge. To address this, we explore the potential of Japanese PDF data as a training resource, an area that remains largely underutilized. We introduce a fully automated pipeline that leverages pretrained models to extract image-text pairs from PDFs through layout analysis, OCR, and vision-language pairing, removing the need for manual annotation. Additionally, we construct instruction data from extracted image-text pairs to enrich the training data. To evaluate the effectiveness of PDF-derived data, we train Japanese LMMs and assess their performance on the Japanese LMM Benchmark. Our results demonstrate substantial improvements, with performance gains ranging from 2.1% to 13.8% on Heron-Bench. Further analysis highlights the impact of PDF-derived data on various factors, such as model size and language models, reinforcing its value as a multimodal resource for Japanese LMMs.
comment: Accepted to ACL2025 Findings. Code: https://github.com/ku21fan/PDF-JLMM
♻ ☆ CLEAR: Character Unlearning in Textual and Visual Modalities
Machine Unlearning (MU) is critical for removing private or hazardous information from deep learning models. While MU has advanced significantly in unimodal (text or vision) settings, multimodal unlearning (MMU) remains underexplored due to the lack of open benchmarks for evaluating cross-modal data removal. To address this gap, we introduce CLEAR, the first open-source benchmark designed specifically for MMU. CLEAR contains 200 fictitious individuals and 3,700 images linked with corresponding question-answer pairs, enabling a thorough evaluation across modalities. We conduct a comprehensive analysis of 11 MU methods (e.g., SCRUB, gradient ascent, DPO) across four evaluation sets, demonstrating that jointly unlearning both modalities outperforms single-modality approaches. The dataset is available at https://huggingface.co/datasets/therem/CLEAR
♻ ☆ Graph-Driven Multimodal Feature Learning Framework for Apparent Personality Assessment
Predicting personality traits automatically has become a challenging problem in computer vision. This paper introduces an innovative multimodal feature learning framework for personality analysis in short video clips. For visual processing, we construct a facial graph and design a Geo-based two-stream network incorporating an attention mechanism, leveraging both Graph Convolutional Networks (GCN) and Convolutional Neural Networks (CNN) to capture static facial expressions. Additionally, ResNet18 and VGGFace networks are employed to extract global scene and facial appearance features at the frame level. To capture dynamic temporal information, we integrate a BiGRU with a temporal attention module for extracting salient frame representations. To enhance the model's robustness, we incorporate the VGGish CNN for audio-based features and XLM-Roberta for text-based features. Finally, a multimodal channel attention mechanism is introduced to integrate different modalities, and a Multi-Layer Perceptron (MLP) regression model is used to predict personality traits. Experimental results confirm that our proposed framework surpasses existing state-of-the-art approaches in performance.
comment: The article contains serious scientific errors and cannot be corrected by updating the preprint
♻ ☆ GAME: Learning Multimodal Interactions via Graph Structures for Personality Trait Estimation
Apparent personality analysis from short videos poses significant chal-lenges due to the complex interplay of visual, auditory, and textual cues. In this paper, we propose GAME, a Graph-Augmented Multimodal Encoder designed to robustly model and fuse multi-source features for automatic personality prediction. For the visual stream, we construct a facial graph and introduce a dual-branch Geo Two-Stream Network, which combines Graph Convolutional Networks (GCNs) and Convolutional Neural Net-works (CNNs) with attention mechanisms to capture both structural and appearance-based facial cues. Complementing this, global context and iden-tity features are extracted using pretrained ResNet18 and VGGFace back-bones. To capture temporal dynamics, frame-level features are processed by a BiGRU enhanced with temporal attention modules. Meanwhile, audio representations are derived from the VGGish network, and linguistic se-mantics are captured via the XLM-Roberta transformer. To achieve effective multimodal integration, we propose a Channel Attention-based Fusion module, followed by a Multi-Layer Perceptron (MLP) regression head for predicting personality traits. Extensive experiments show that GAME con-sistently outperforms existing methods across multiple benchmarks, vali-dating its effectiveness and generalizability.
comment: The article contains serious scientific errors and cannot be corrected by updating the preprint
♻ ☆ IrrMap: A Large-Scale Comprehensive Dataset for Irrigation Method Mapping
We introduce IrrMap, the first large-scale dataset (1.1 million patches) for irrigation method mapping across regions. IrrMap consists of multi-resolution satellite imagery from LandSat and Sentinel, along with key auxiliary data such as crop type, land use, and vegetation indices. The dataset spans 1,687,899 farms and 14,117,330 acres across multiple western U.S. states from 2013 to 2023, providing a rich and diverse foundation for irrigation analysis and ensuring geospatial alignment and quality control. The dataset is ML-ready, with standardized 224x224 GeoTIFF patches, the multiple input modalities, carefully chosen train-test-split data, and accompanying dataloaders for seamless deep learning model training andbenchmarking in irrigation mapping. The dataset is also accompanied by a complete pipeline for dataset generation, enabling researchers to extend IrrMap to new regions for irrigation data collection or adapt it with minimal effort for other similar applications in agricultural and geospatial analysis. We also analyze the irrigation method distribution across crop groups, spatial irrigation patterns (using Shannon diversity indices), and irrigated area variations for both LandSat and Sentinel, providing insights into regional and resolution-based differences. To promote further exploration, we openly release IrrMap, along with the derived datasets, benchmark models, and pipeline code, through a GitHub repository: https://github.com/Nibir088/IrrMap and Data repository: https://huggingface.co/Nibir/IrrMap, providing comprehensive documentation and implementation details.
♻ ☆ Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the explosive advancement of deepfake technology has posed a critical and escalating threat to public security: diffusion-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency via multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the new large-scale multimodal digital human forgery dataset based on diffusion models. Leveraging five of the latest digital human generation methods and a voice cloning method, we systematically construct a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies demonstrate that the misrecognition rate by participants for DigiFakeAV reaches as high as 68%. Moreover, the substantial performance degradation of existing detection models on our dataset further highlights its challenges. To address this problem, we propose DigiShield, an effective detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves state-of-the-art (SOTA) performance on the DigiFakeAV and shows strong generalization on other datasets.
♻ ☆ PADetBench: Towards Benchmarking Physical Attacks against Object Detection
Physical attacks against object detection have gained increasing attention due to their significant practical implications. However, conducting physical experiments is extremely time-consuming and labor-intensive. Moreover, physical dynamics and cross-domain transformation are challenging to strictly regulate in the real world, leading to unaligned evaluation and comparison, severely hindering the development of physically robust models. To accommodate these challenges, we explore utilizing realistic simulation to thoroughly and rigorously benchmark physical attacks with fairness under controlled physical dynamics and cross-domain transformation. This resolves the problem of capturing identical adversarial images that cannot be achieved in the real world. Our benchmark includes 20 physical attack methods, 48 object detectors, comprehensive physical dynamics, and evaluation metrics. We also provide end-to-end pipelines for dataset generation, detection, evaluation, and further analysis. In addition, we perform 8064 groups of evaluation based on our benchmark, which includes both overall evaluation and further detailed ablation studies for controlled physical dynamics. Through these experiments, we provide in-depth analyses of physical attack performance and physical adversarial robustness, draw valuable observations, and discuss potential directions for future research. Codebase: https://github.com/JiaweiLian/Benchmarking_Physical_Attack
♻ ☆ View-Invariant Policy Learning via Zero-Shot Novel View Synthesis
Large-scale visuomotor policy learning is a promising approach toward developing generalizable manipulation systems. Yet, policies that can be deployed on diverse embodiments, environments, and observational modalities remain elusive. In this work, we investigate how knowledge from large-scale visual data of the world may be used to address one axis of variation for generalizable manipulation: observational viewpoint. Specifically, we study single-image novel view synthesis models, which learn 3D-aware scene-level priors by rendering images of the same scene from alternate camera viewpoints given a single input image. For practical application to diverse robotic data, these models must operate zero-shot, performing view synthesis on unseen tasks and environments. We empirically analyze view synthesis models within a simple data-augmentation scheme that we call View Synthesis Augmentation (VISTA) to understand their capabilities for learning viewpoint-invariant policies from single-viewpoint demonstration data. Upon evaluating the robustness of policies trained with our method to out-of-distribution camera viewpoints, we find that they outperform baselines in both simulated and real-world manipulation tasks. Videos and additional visualizations are available at https://s-tian.github.io/projects/vista.
comment: Accepted to CoRL 2024
♻ ☆ Towards Modality Generalization: A Benchmark and Prospective Analysis
Multi-modal learning has achieved remarkable success by integrating information from various modalities, achieving superior performance in tasks like recognition and retrieval compared to uni-modal approaches. However, real-world scenarios often present novel modalities that are unseen during training due to resource and privacy constraints, a challenge current methods struggle to address. This paper introduces Modality Generalization (MG), which focuses on enabling models to generalize to unseen modalities. We define two cases: Weak MG, where both seen and unseen modalities can be mapped into a joint embedding space via existing perceptors, and Strong MG, where no such mappings exist. To facilitate progress, we propose a comprehensive benchmark featuring multi-modal algorithms and adapt existing methods that focus on generalization. Extensive experiments highlight the complexity of MG, exposing the limitations of existing methods and identifying key directions for future research. Our work provides a foundation for advancing robust and adaptable multi-modal models, enabling them to handle unseen modalities in realistic scenarios.
comment: under-review
♻ ☆ InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts
Understanding infographic charts with design-driven visual elements (e.g., pictograms, icons) requires both visual recognition and reasoning, posing challenges for multimodal large language models (MLLMs). However, existing visual-question answering benchmarks fall short in evaluating these capabilities of MLLMs due to the lack of paired plain charts and visual-element-based questions. To bridge this gap, we introduce InfoChartQA, a benchmark for evaluating MLLMs on infographic chart understanding. It includes 5,642 pairs of infographic and plain charts, each sharing the same underlying data but differing in visual presentations. We further design visual-element-based questions to capture their unique visual designs and communicative intent. Evaluation of 20 MLLMs reveals a substantial performance decline on infographic charts, particularly for visual-element-based questions related to metaphors. The paired infographic and plain charts enable fine-grained error analysis and ablation studies, which highlight new opportunities for advancing MLLMs in infographic chart understanding. We release InfoChartQA at https://github.com/CoolDawnAnt/InfoChartQA.
♻ ☆ FMNet: Frequency-Assisted Mamba-Like Linear Attention Network for Camouflaged Object Detection
Camouflaged Object Detection (COD) is challenging due to the strong similarity between camouflaged objects and their surroundings, which complicates identification. Existing methods mainly rely on spatial local features, failing to capture global information, while Transformers increase computational costs. To address this, the Frequency-Assisted Mamba-Like Linear Attention Network (FMNet) is proposed, which leverages frequency-domain learning to efficiently capture global features and mitigate ambiguity between objects and the background. FMNet introduces the Multi-Scale Frequency-Assisted Mamba-Like Linear Attention (MFM) module, integrating frequency and spatial features through a multi-scale structure to handle scale variations while reducing computational complexity. Additionally, the Pyramidal Frequency Attention Extraction (PFAE) module and the Frequency Reverse Decoder (FRD) enhance semantics and reconstruct features. Experimental results demonstrate that FMNet outperforms existing methods on multiple COD datasets, showcasing its advantages in both performance and efficiency. Code available at https://github.com/Chranos/FMNet.
♻ ☆ Insight Over Sight: Exploring the Vision-Knowledge Conflicts in Multimodal LLMs ACL 2025
This paper explores the problem of commonsense level vision-knowledge conflict in Multimodal Large Language Models (MLLMs), where visual information contradicts model's internal commonsense knowledge. To study this issue, we introduce an automated framework, augmented with human-in-the-loop quality control, to generate inputs designed to simulate and evaluate these conflicts in MLLMs. Using this framework, we have crafted a diagnostic benchmark consisting of 374 original images and 1,122 high-quality question-answer (QA) pairs. The benchmark covers two aspects of conflict and three question types, providing a thorough assessment tool. We apply this benchmark to assess the conflict-resolution capabilities of nine representative MLLMs from various model families. Our results indicate an evident over-reliance on parametric knowledge for approximately 20% of all queries, especially among Yes-No and action-related problems. Based on these findings, we evaluate the effectiveness of existing approaches to mitigating the conflicts and compare them to our "Focus-on-Vision" prompting strategy. Despite some improvement, the vision-knowledge conflict remains unresolved and can be further scaled through our data construction framework. Our proposed framework, benchmark, and analysis contribute to the understanding and mitigation of vision-knowledge conflicts in MLLMs.
comment: Accepted by ACL 2025 main
♻ ☆ Don't Miss the Forest for the Trees: Attentional Vision Calibration for Large Vision Language Models ACL 2025
Large Vision Language Models (LVLMs) demonstrate strong capabilities in visual understanding and description, yet often suffer from hallucinations, attributing incorrect or misleading features to images. We observe that LVLMs disproportionately focus on a small subset of image tokens--termed blind tokens--which are typically irrelevant to the query (e.g., background or non-object regions). We hypothesize that such attention misalignment plays a key role in generating hallucinated responses. To mitigate this issue, we propose Attentional Vision Calibration (AvisC), a test-time approach that dynamically recalibrates the influence of blind tokens without modifying the underlying attention mechanism. AvisC first identifies blind tokens by analyzing layer-wise attention distributions over image tokens, then employs a contrastive decoding strategy to balance the influence of original and blind-token-biased logits. Experiments on standard benchmarks, including POPE, MME, and AMBER, demonstrate that AvisC effectively reduces hallucinations in LVLMs.
comment: ACL 2025 Findings; Project: https://sangminwoo.github.io/AvisC/
♻ ☆ Point Cloud Mixture-of-Domain-Experts Model for 3D Self-supervised Learning CVPR 2025
Point clouds, as a primary representation of 3D data, can be categorized into scene domain point clouds and object domain point clouds. Point cloud self-supervised learning (SSL) has become a mainstream paradigm for learning 3D representations. However, existing point cloud SSL primarily focuses on learning domain-specific 3D representations within a single domain, neglecting the complementary nature of cross-domain knowledge, which limits the learning of 3D representations. In this paper, we propose to learn a comprehensive Point cloud Mixture-of-Domain-Experts model (Point-MoDE) via a block-to-scene pre-training strategy. Specifically, we first propose a mixture-of-domain-expert model consisting of scene domain experts and multiple shared object domain experts. Furthermore, we propose a block-to-scene pretraining strategy, which leverages the features of point blocks in the object domain to regress their initial positions in the scene domain through object-level block mask reconstruction and scene-level block position regression. By integrating the complementary knowledge between object and scene, this strategy simultaneously facilitates the learning of both object-domain and scene-domain representations, leading to a more comprehensive 3D representation. Extensive experiments in downstream tasks demonstrate the superiority of our model.
comment: Accepted to CVPR 2025
♻ ☆ YOLO advances to its genesis: a decadal and comprehensive review of the You Only Look Once (YOLO) series
This review systematically examines the progression of the You Only Look Once (YOLO) object detection algorithms from YOLOv1 to the recently unveiled YOLOv12. Employing a reverse chronological analysis, this study examines the advancements introduced by YOLO algorithms, beginning with YOLOv12 and progressing through YOLO11 (or YOLOv11), YOLOv10, YOLOv9, YOLOv8, and subsequent versions to explore each version's contributions to enhancing speed, detection accuracy, and computational efficiency in real-time object detection. Additionally, this study reviews the alternative versions derived from YOLO architectural advancements of YOLO-NAS, YOLO-X, YOLO-R, DAMO-YOLO, and Gold-YOLO. Moreover, the study highlights the transformative impact of YOLO models across five critical application areas: autonomous vehicles and traffic safety, healthcare and medical imaging, industrial manufacturing, surveillance and security, and agriculture. By detailing the incremental technological advancements in subsequent YOLO versions, this review chronicles the evolution of YOLO, and discusses the challenges and limitations in each of the earlier versions. The evolution signifies a path towards integrating YOLO with multimodal, context-aware, and Artificial General Intelligence (AGI) systems for the next YOLO decade, promising significant implications for future developments in AI-driven applications. YOLO Review, YOLO Advances, YOLOv13, YOLOv14, YOLOv15, YOLOv16, YOLOv17, YOLOv18, YOLOv19, YOLOv20, YOLO review, YOLO Object Detection
comment: Published in Artificial Intelligence Review as https://doi.org/10.1007/s10462-025-11253-3
♻ ☆ Leveraging Complementary Attention maps in vision transformers for OCT image analysis
Optical Coherence Tomography (OCT) scan yields all possible cross-section images of a retina for detecting biomarkers linked to optical defects. Due to the high volume of data generated, an automated and reliable biomarker detection pipeline is necessary as a primary screening stage. We outline our new state-of-the-art pipeline for identifying biomarkers from OCT scans. In collaboration with trained ophthalmologists, we identify local and global structures in biomarkers. Through a comprehensive and systematic review of existing vision architectures, we evaluate different convolution and attention mechanisms for biomarker detection. We find that MaxViT, a hybrid vision transformer combining convolution layers with strided attention, is better suited for local feature detection, while EVA-02, a standard vision transformer leveraging pure attention and large-scale knowledge distillation, excels at capturing global features. We ensemble the predictions of both models to achieve first place in the IEEE Video and Image Processing Cup 2023 competition on OCT biomarker detection, achieving a patient-wise F1 score of 0.8527 in the final phase of the competition, scoring 3.8\% higher than the next best solution. Finally, we used knowledge distillation to train a single MaxViT to outperform our ensemble at a fraction of the computation cost.
comment: Accepted in 2025 IEEE International Conference on Image Processing
♻ ☆ Organizing Unstructured Image Collections using Natural Language
Organizing unstructured image collections into semantic clusters is a long-standing challenge. Traditional deep clustering techniques address this by producing a single data partition, whereas multiple clustering methods uncover diverse alternative partitions-but only when users predefine the clustering criteria. Yet expecting users to specify such criteria a priori for large, unfamiliar datasets is unrealistic. In this work, we introduce the task of Open-ended Semantic Multiple Clustering (OpenSMC), which aims to automatically discover clustering criteria from large, unstructured image collections, revealing interpretable substructures without human input. Our framework, X-Cluster: eXploratory Clustering, treats text as a reasoning proxy: it concurrently scans the entire image collection, proposes candidate criteria in natural language, and groups images into meaningful clusters per criterion. To evaluate progress, we release COCO-4c and Food-4c benchmarks, each annotated with four grouping criteria. Experiments show that X-Cluster effectively reveals meaningful partitions and enables downstream applications such as bias discovery and social media image popularity analysis. We will open-source code and data to encourage reproducibility and further research.
comment: Preprint. Project webpage: https://oatmealliu.github.io/opensmc.html
♻ ☆ Understanding differences in applying DETR to natural and medical images
Transformer-based detectors have shown success in computer vision tasks with natural images. These models, exemplified by the Deformable DETR, are optimized through complex engineering strategies tailored to the typical characteristics of natural scenes. However, medical imaging data presents unique challenges such as extremely large image sizes, fewer and smaller regions of interest, and object classes which can be differentiated only through subtle differences. This study evaluates the applicability of these transformer-based design choices when applied to a screening mammography dataset that represents these distinct medical imaging data characteristics. Our analysis reveals that common design choices from the natural image domain, such as complex encoder architectures, multi-scale feature fusion, query initialization, and iterative bounding box refinement, do not improve and sometimes even impair object detection performance in medical imaging. In contrast, simpler and shallower architectures often achieve equal or superior results. This finding suggests that the adaptation of transformer models for medical imaging data requires a reevaluation of standard practices, potentially leading to more efficient and specialized frameworks for medical diagnosis.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:009
♻ ☆ SurgRIPE challenge: Benchmark of Surgical Robot Instrument Pose Estimation
Accurate instrument pose estimation is a crucial step towards the future of robotic surgery, enabling applications such as autonomous surgical task execution. Vision-based methods for surgical instrument pose estimation provide a practical approach to tool tracking, but they often require markers to be attached to the instruments. Recently, more research has focused on the development of marker-less methods based on deep learning. However, acquiring realistic surgical data, with ground truth instrument poses, required for deep learning training, is challenging. To address the issues in surgical instrument pose estimation, we introduce the Surgical Robot Instrument Pose Estimation (SurgRIPE) challenge, hosted at the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) in 2023. The objectives of this challenge are: (1) to provide the surgical vision community with realistic surgical video data paired with ground truth instrument poses, and (2) to establish a benchmark for evaluating markerless pose estimation methods. The challenge led to the development of several novel algorithms that showcased improved accuracy and robustness over existing methods. The performance evaluation study on the SurgRIPE dataset highlights the potential of these advanced algorithms to be integrated into robotic surgery systems, paving the way for more precise and autonomous surgical procedures. The SurgRIPE challenge has successfully established a new benchmark for the field, encouraging further research and development in surgical robot instrument pose estimation.
comment: 35 pages, 18 figures, journal paper
Artificial Intelligence 98
♻ ☆ Bounded Rationality for LLMs: Satisficing Alignment at Inference-Time ICML 2025
Aligning large language models with humans is challenging due to the inherently multifaceted nature of preference feedback. While existing approaches typically frame this as a multi-objective optimization problem, they often overlook how humans actually make decisions. Research on bounded rationality suggests that human decision making follows satisficing strategies-optimizing primary objectives while ensuring others meet acceptable thresholds. To bridge this gap and operationalize the notion of satisficing alignment, we propose SITAlign: an inference time framework that addresses the multifaceted nature of alignment by maximizing a primary objective while satisfying threshold-based constraints on secondary criteria. We provide theoretical insights by deriving sub-optimality bounds of our satisficing based inference alignment approach. We empirically validate SITAlign's performance through extensive experimentation on multiple benchmarks. For instance, on the PKU-SafeRLHF dataset with the primary objective of maximizing helpfulness while ensuring a threshold on harmlessness, SITAlign outperforms the state-of-the-art multi objective decoding strategy by a margin of 22.3% in terms of GPT-4 win-tie rate for helpfulness reward while adhering to the threshold on harmlessness.
comment: Accepted at ICML 2025
♻ ☆ Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment CVPR 2025
With the widespread deployment of Multimodal Large Language Models (MLLMs) for visual-reasoning tasks, improving their safety has become crucial. Recent research indicates that despite training-time safety alignment, these models remain vulnerable to jailbreak attacks. In this work, we first highlight an important safety gap to describe that alignment achieved solely through safety training may be insufficient against jailbreak attacks. To address this vulnerability, we propose Immune, an inference-time defense framework that leverages a safe reward model through controlled decoding to defend against jailbreak attacks. Additionally, we provide a mathematical characterization of Immune, offering insights on why it improves safety against jailbreaks. Extensive evaluations on diverse jailbreak benchmarks using recent MLLMs reveal that Immune effectively enhances model safety while preserving the model's original capabilities. For instance, against text-based jailbreak attacks on LLaVA-1.6, Immune reduces the attack success rate by 57.82% and 16.78% compared to the base MLLM and state-of-the-art defense strategy, respectively.
comment: Accepted to CVPR 2025
♻ ☆ When Should a Leader Act Suboptimally? The Role of Inferability in Repeated Stackelberg Games
When interacting with other decision-making agents in non-adversarial scenarios, it is critical for an autonomous agent to have inferable behavior: The agent's actions must convey their intention and strategy. We model the inferability problem using Stackelberg games with observations where a leader and a follower repeatedly interact. During the interactions, the leader uses a fixed mixed strategy. The follower does not know the leader's strategy and dynamically reacts to the statistically inferred strategy based on the leader's previous actions. In the inference setting, the leader may have a lower performance compared to the setting where the follower has full information on the leader's strategy. We refer to the performance gap between these settings as the inferability gap. For a variety of game settings, we show that the inferability gap is upper-bounded by a function of the number of interactions and the stochasticity level of the leader's strategy, encouraging the use of inferable strategies with lower stochasticity levels. We also analyze bimatrix Stackelberg games and identify a set of games where the leader's near-optimal strategy may potentially suffer from a large inferability gap.
comment: Extended journal version of the ACC 2024 paper "Encouraging Inferable Behavior for Autonomy: Repeated Bimatrix Stackelberg Games with Observations"
♻ ☆ PromptRefine: Enhancing Few-Shot Performance on Low-Resource Indic Languages with Example Selection from Related Example Banks NAACL 2025
Large Language Models (LLMs) have recently demonstrated impressive few-shot learning capabilities through in-context learning (ICL). However, ICL performance is highly dependent on the choice of few-shot demonstrations, making the selection of the most optimal examples a persistent research challenge. This issue is further amplified in low-resource Indic languages, where the scarcity of ground-truth data complicates the selection process. In this work, we propose PromptRefine, a novel Alternating Minimization approach for example selection that improves ICL performance on low-resource Indic languages. PromptRefine leverages auxiliary example banks from related high-resource Indic languages and employs multi-task learning techniques to align language-specific retrievers, enabling effective cross-language retrieval. Additionally, we incorporate diversity in the selected examples to enhance generalization and reduce bias. Through comprehensive evaluations on four text generation tasks -- Cross-Lingual Question Answering, Multilingual Question Answering, Machine Translation, and Cross-Lingual Summarization using state-of-the-art LLMs such as LLAMA-3.1-8B, LLAMA-2-7B, Qwen-2-7B, and Qwen-2.5-7B, we demonstrate that PromptRefine significantly outperforms existing frameworks for retrieving examples.
comment: Accepted at NAACL 2025
♻ ☆ RAG-Gym: Systematic Optimization of Language Agents for Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) has shown great promise for knowledge-intensive tasks and recently advanced with agentic RAG, where language agents engage in multi-round interactions with external knowledge sources for adaptive information retrieval. However, existing agentic RAG methods often depend on ad-hoc prompt engineering and lack a unified optimization framework. We introduce RAG-Gym, a comprehensive platform that systematically explores three optimization dimensions: (1) prompt engineering, (2) actor tuning, and (3) critic training. For prompt engineering, we propose Re$^2$Search, a novel agent incorporating reasoning reflection that significantly outperforms standard prompts. In actor tuning, we evaluate three popular post-training algorithms with fine-grained process supervision and identify direct preference optimization as the most effective. We further demonstrate that a trained critic can enhance inference by selecting higher-quality intermediate reasoning steps. Together, these findings lead to the optimized Re$^2$Search++ agent, which surpasses most recent methods like Search-R1 by a relative increase of 3.2% to 11.6% in average F1. Finally, we examine the impact of different reward sources and analyze scaling properties in training and inference, offering practical insights for agentic RAG optimization. The project homepage is available at https://rag-gym.github.io.
comment: Homepage: https://rag-gym.github.io; Code: https://github.com/RAG-Gym/RAG-Gym
♻ ☆ From Perceptions to Decisions: Wildfire Evacuation Decision Prediction with Behavioral Theory-informed LLMs
Evacuation decision prediction is critical for efficient and effective wildfire response by helping emergency management anticipate traffic congestion and bottlenecks, allocate resources, and minimize negative impacts. Traditional statistical methods for evacuation decision prediction fail to capture the complex and diverse behavioral logic of different individuals. In this work, for the first time, we introduce FLARE, short for facilitating LLM for advanced reasoning on wildfire evacuation decision prediction, a Large Language Model (LLM)-based framework that integrates behavioral theories and models to streamline the Chain-of-Thought (CoT) reasoning and subsequently integrate with memory-based Reinforcement Learning (RL) module to provide accurate evacuation decision prediction and understanding. Our proposed method addresses the limitations of using existing LLMs for evacuation behavioral predictions, such as limited survey data, mismatching with behavioral theory, conflicting individual preferences, implicit and complex mental states, and intractable mental state-behavior mapping. Experiments on three post-wildfire survey datasets show an average of 20.47% performance improvement over traditional theory-informed behavioral models, with strong cross-event generalizability. Our complete code is publicly available at https://github.com/SusuXu-s-Lab/FLARE
comment: 25 pages, 9 figures
♻ ☆ Causal Abstraction Learning based on the Semantic Embedding Principle
Structural causal models (SCMs) allow us to investigate complex systems at multiple levels of resolution. The causal abstraction (CA) framework formalizes the mapping between high- and low-level SCMs. We address CA learning in a challenging and realistic setting, where SCMs are inaccessible, interventional data is unavailable, and sample data is misaligned. A key principle of our framework is semantic embedding, formalized as the high-level distribution lying on a subspace of the low-level one. This principle naturally links linear CA to the geometry of the Stiefel manifold. We present a category-theoretic approach to SCMs that enables the learning of a CA by finding a morphism between the low- and high-level probability measures, adhering to the semantic embedding principle. Consequently, we formulate a general CA learning problem. As an application, we solve the latter problem for linear CA; considering Gaussian measures and the Kullback-Leibler divergence as an objective. Given the nonconvexity of the learning task, we develop three algorithms building upon existing paradigms for Riemannian optimization. We demonstrate that the proposed methods succeed on both synthetic and real-world brain data with different degrees of prior information about the structure of CA.
♻ ☆ A3 : an Analytical Low-Rank Approximation Framework for Attention
Large language models have demonstrated remarkable performance; however, their massive parameter counts make deployment highly expensive. Low-rank approximation offers a promising compression solution, yet existing approaches have two main limitations: (1) They focus on minimizing the output error of individual linear layers, without considering the architectural characteristics of Transformers, and (2) they decompose a large weight matrix into two small low-rank matrices. Consequently, these methods often fall short compared to other compression techniques like pruning and quantization, and introduce runtime overhead such as the extra GEMM kernel launches for decomposed small matrices. To address these limitations, we propose $\tt A^\tt 3$, a post-training low-rank approximation framework. $\tt A^\tt 3$ splits a Transformer layer into three functional components, namely $\tt QK$, $\tt OV$, and $\tt MLP$. For each component, $\tt A^\tt 3$ provides an analytical solution that reduces the hidden dimension size inside each component while minimizing the component's functional loss ($\it i.e.$, error in attention scores, attention outputs, and MLP outputs). This approach directly reduces model sizes, KV cache sizes, and FLOPs without introducing any runtime overheads. In addition, it provides a new narrative in advancing the optimization problem from singular linear layer loss optimization toward improved end-to-end performance. Through extensive experiments, we show that $\tt A^\tt 3$ maintains superior performance compared to SoTAs. For example, under the same reduction budget in computation and memory, our low-rank approximated LLaMA 3.1-70B achieves a perplexity of 4.69 on WikiText-2, outperforming the previous SoTA's 7.87 by 3.18. We also demonstrate the versatility of $\tt A^\tt 3$, including KV cache compression, quantization, and mixed-rank assignments for enhanced performance.
♻ ☆ Security Concerns for Large Language Models: A Survey
Large Language Models (LLMs) such as GPT-4 and its recent iterations, Google's Gemini, Anthropic's Claude 3 models, and xAI's Grok have caused a revolution in natural language processing, but their capabilities also introduce new security vulnerabilities. In this survey, we provide a comprehensive overview of the emerging security concerns around LLMs, categorizing threats into prompt injection and jailbreaking, adversarial attacks such as input perturbations and data poisoning, misuse by malicious actors for purposes such as generating disinformation, phishing emails, and malware, and worrisome risks inherent in autonomous LLM agents. A significant focus has been recently placed on the latter, exploring goal misalignment, emergent deception, self-preservation instincts, and the potential for LLMs to develop and pursue covert, misaligned objectives, a behavior known as scheming, which may even persist through safety training. We summarize recent academic and industrial studies from 2022 to 2025 that exemplify each threat, analyze proposed defenses and their limitations, and identify open challenges in securing LLM-based applications. We conclude by emphasizing the importance of advancing robust, multi-layered security strategies to ensure LLMs are safe and beneficial.
♻ ☆ A Generalisation of Voter Model: Influential Nodes and Convergence Properties
Consider an undirected graph G, representing a social network, where each node is blue or red, corresponding to positive or negative opinion on a topic. In the voter model, in discrete time rounds, each node picks a neighbour uniformly at random and adopts its colour. Despite its significant popularity, this model does not capture some fundamental real-world characteristics such as the difference in the strengths of individuals connections, individuals with neutral opinion on a topic, and individuals who are reluctant to update their opinion. To address these issues, we introduce and study a generalisation of the voter model. Motivating by campaigning strategies, we study the problem of selecting a set of seeds blue nodes to maximise the expected number of blue nodes after some rounds. We prove that the problem is NP- hard and provide a polynomial time approximation algorithm with the best possible approximation guarantee. Our experiments on real-world and synthetic graph data demonstrate that the proposed algorithm outperforms other algorithms. We also investigate the convergence properties of the model. We prove that the process could take an exponential number of rounds to converge. However, if we limit ourselves to strongly connected graphs, the convergence time is polynomial and the period (the number of states in convergence) divides the length of all cycles in the graph.
♻ ☆ Bridging the Linguistic Divide: A Survey on Leveraging Large Language Models for Machine Translation
The advent of Large Language Models (LLMs) has significantly reshaped the landscape of machine translation (MT), particularly for low-resource languages and domains that lack sufficient parallel corpora, linguistic tools, and computational infrastructure. This survey presents a comprehensive overview of recent progress in leveraging LLMs for MT. We analyze techniques such as few-shot prompting, cross-lingual transfer, and parameter-efficient fine-tuning (e.g., LoRA, adapters) that enable effective adaptation to under-resourced settings. The paper also explores synthetic data generation strategies using LLMs, including back-translation and lexical augmentation. Additionally, we compare LLM-based translation with traditional encoder-decoder models across diverse language pairs, highlighting the strengths and limitations of each. We discuss persistent challenges - such as hallucinations, evaluation inconsistencies, and inherited biases, while also evaluating emerging LLM-driven metrics for translation quality. This survey offers practical insights and outlines future directions for building robust, inclusive, and scalable MT systems in the era of large-scale generative models.
♻ ☆ Math Neurosurgery: Isolating Language Models' Math Reasoning Abilities Using Only Forward Passes ACL 2025
Math reasoning is an active area of Large Language Model (LLM) research because it is a hallmark of artificial intelligence and has implications in several domains, including math education. However, few works have explored how math reasoning is encoded within LLM parameters and if it is a skill that can be isolated within models. Doing so could allow targeted intervention to improve math performance without altering non-math behavior and foster understanding of how models encode math reasoning. We introduce Math Neurosurgery (MathNeuro), a computationally efficient method we use to isolate math-specific parameters in LLMs using only forward passes. MathNeuro builds on existing work by using weights and activations to calculate parameter importance, but isolates math-specific parameters by filtering out those important for general language tasks. Through pruning parameters MathNeuro identifies, we delete a LLM's math reasoning ability without significantly impacting its general language ability. Scaling the identified parameters by a small constant improves a pretrained or instruction-tuned LLM's performance by 4-17% on GSM8K and 5-35% on MATH while leaving non-math behavior unaltered. MathNeuro is also data efficient: most of its effectiveness holds when identifying math-specific parameters using a single sample. MathNeuro highlights the potential for future work to intervene on math-specific parameters.
comment: 38 pages, 54 figures, Accepted to ACL 2025 (Main)
♻ ☆ TabID: Automatic Identification and Tabulation of Subproblems in Constraint Models
The performance of a constraint model can often be improved by converting a subproblem into a single table constraint (referred to as tabulation). Finding subproblems to tabulate is traditionally a manual and time-intensive process, even for expert modellers. This paper presents TabID, an entirely automated method to identify promising subproblems for tabulation in constraint programming. We introduce a diverse set of heuristics designed to identify promising candidates for tabulation, aiming to improve solver performance. These heuristics are intended to encapsulate various factors that contribute to useful tabulation. We also present additional checks to limit the potential drawbacks of suboptimal tabulation. We comprehensively evaluate our approach using benchmark problems from existing literature that previously relied on manual identification by constraint programming experts of constraints to tabulate. We demonstrate that our automated identification and tabulation process achieves comparable, and in some cases improved results. We empirically evaluate the efficacy of our approach on a variety of solvers, including standard CP (Minion and Gecode), clause-learning CP (Chuffed and OR-Tools) and SAT solvers (Kissat). Our findings highlight the substantial potential of fully automated tabulation, suggesting its integration into automated model reformulation tools.
♻ ☆ Acting Less is Reasoning More! Teaching Model to Act Efficiently
Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools during long-form reasoning, such as search engines and code interpreters, to solve tasks beyond the capabilities of internal reasoning. While reinforcement learning (RL) has shown promise in training such agents, most of existing approaches typically optimize only for final correctness without considering the efficiency or necessity of external tool use. This often leads to excessive tool calling, incurring high computational costs and hindering the development of internal reasoning capabilities - a phenomenon known as \textit{cognitive offloading}. To this end, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers answer correctness and corresponding tool use behavior of model to reach that answer. To validate the effectiveness, we introduce the metric of \textit{tool productivity}, defined as the ratio between the number of correct answers and the total number of tool calls across all test cases. This metric reflects how efficiently tool usage contributes to successful task completion, with higher values indicating smarter and more autonomous reasoning. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 68.3\% and improves tool productivity by up to 215.4\%, while maintaining comparable answer accuracy.
♻ ☆ An Adversarial Perspective on Machine Unlearning for AI Safety
Large language models are finetuned to refuse questions about hazardous knowledge, but these protections can often be bypassed. Unlearning methods aim at completely removing hazardous capabilities from models and make them inaccessible to adversaries. This work challenges the fundamental differences between unlearning and traditional safety post-training from an adversarial perspective. We demonstrate that existing jailbreak methods, previously reported as ineffective against unlearning, can be successful when applied carefully. Furthermore, we develop a variety of adaptive methods that recover most supposedly unlearned capabilities. For instance, we show that finetuning on 10 unrelated examples or removing specific directions in the activation space can recover most hazardous capabilities for models edited with RMU, a state-of-the-art unlearning method. Our findings challenge the robustness of current unlearning approaches and question their advantages over safety training.
comment: Published in Transactions on Machine Learning Research (TMLR); Best technical paper at Neurips 2024 SoLaR workshop
♻ ☆ Exploring Multi-Modal Data with Tool-Augmented LLM Agents for Precise Causal Discovery
Causal discovery is an imperative foundation for decision-making across domains, such as smart health, AI for drug discovery and AIOps. Traditional statistical causal discovery methods, while well-established, predominantly rely on observational data and often overlook the semantic cues inherent in cause-and-effect relationships. The advent of Large Language Models (LLMs) has ushered in an affordable way of leveraging the semantic cues for knowledge-driven causal discovery, but the development of LLMs for causal discovery lags behind other areas, particularly in the exploration of multi-modal data. To bridge the gap, we introduce MATMCD, a multi-agent system powered by tool-augmented LLMs. MATMCD has two key agents: a Data Augmentation agent that retrieves and processes modality-augmented data, and a Causal Constraint agent that integrates multi-modal data for knowledge-driven reasoning. The proposed design of the inner-workings ensures successful cooperation of the agents. Our empirical study across seven datasets suggests the significant potential of multi-modality enhanced causal discovery.
♻ ☆ Efficiency Bottlenecks of Convolutional Kolmogorov-Arnold Networks: A Comprehensive Scrutiny with ImageNet, AlexNet, LeNet and Tabular Classification
Algorithmic level developments like Convolutional Neural Networks, transformers, attention mechanism, Retrieval Augmented Generation and so on have changed Artificial Intelligence. Recent such development was observed by Kolmogorov-Arnold Networks that suggested to challenge the fundamental concept of a Neural Network, thus change Multilayer Perceptron, and Convolutional Neural Networks. They received a good reception in terms of scientific modeling, yet had some drawbacks in terms of efficiency. In this paper, we train Convolutional Kolmogorov Arnold Networks (CKANs) with the ImageNet-1k dataset with 1.3 million images, MNIST dataset with 60k images and a tabular biological science related MoA dataset and test the promise of CKANs in terms of FLOPS, Inference Time, number of trainable parameters and training time against the accuracy, precision, recall and f-1 score they produce against the standard industry practice on CNN models. We show that the CKANs perform fair yet slower than CNNs in small size dataset like MoA and MNIST but are not nearly comparable as the dataset gets larger and more complex like the ImageNet. The code implementation of this paper can be found on the link: https://github.com/ashimdahal/Study-of-Convolutional-Kolmogorov-Arnold-networks
♻ ☆ Supercharging Graph Transformers with Advective Diffusion ICML 2025
The capability of generalization is a cornerstone for the success of modern learning systems. For non-Euclidean data, e.g., graphs, that particularly involves topological structures, one important aspect neglected by prior studies is how machine learning models generalize under topological shifts. This paper proposes AdvDIFFormer, a physics-inspired graph Transformer model designed to address this challenge. The model is derived from advective diffusion equations which describe a class of continuous message passing process with observed and latent topological structures. We show that AdvDIFFormer has provable capability for controlling generalization error with topological shifts, which in contrast cannot be guaranteed by graph diffusion models. Empirically, the model demonstrates superiority in various predictive tasks across information networks, molecular screening and protein interactions.
comment: Accepted to ICML 2025
♻ ☆ Are LLMs effective psychological assessors? Leveraging adaptive RAG for interpretable mental health screening through psychometric practice
In psychological practices, standardized questionnaires serve as essential tools for assessing mental health through structured, clinically-validated questions (i.e., items). While social media platforms offer rich data for mental health screening, computational approaches often bypass these established clinical assessment tools in favor of black-box classification. We propose a novel questionnaire-guided screening framework that bridges psychological practice and computational methods through adaptive Retrieval-Augmented Generation (\textit{aRAG}). Our approach links unstructured social media content and standardized clinical assessments by retrieving relevant posts for each questionnaire item and using Large Language Models (LLMs) to complete validated psychological instruments. Our findings demonstrate two key advantages of questionnaire-guided screening: First, when completing the Beck Depression Inventory-II (BDI-II), our approach matches or outperforms state-of-the-art performance on Reddit-based benchmarks without requiring training data. Second, we show that guiding LLMs through standardized questionnaires can yield superior results compared to directly prompting them for depression screening, while also providing a more interpretable assessment by linking model outputs to clinically validated diagnostic criteria. Additionally, we show, as a proof-of-concept, how our questionnaire-based methodology can be extended to other mental conditions' screening, highlighting the promising role of LLMs as psychological assessors.
♻ ☆ WhiSPA: Semantically and Psychologically Aligned Whisper with Self-Supervised Contrastive and Student-Teacher Learning ACL 2025
Current speech encoding pipelines often rely on an additional text-based LM to get robust representations of human communication, even though SotA speech-to-text models often have a LM within. This work proposes an approach to improve the LM within an audio model such that the subsequent text-LM is unnecessary. We introduce WhiSPA (Whisper with Semantic and Psychological Alignment), which leverages a novel audio training objective: contrastive loss with a language model embedding as a teacher. Using over 500k speech segments from mental health audio interviews, we evaluate the utility of aligning Whisper's latent space with semantic representations from a text autoencoder (SBERT) and lexically derived embeddings of basic psychological dimensions: emotion and personality. Over self-supervised affective tasks and downstream psychological tasks, WhiSPA surpasses current speech encoders, achieving an average error reduction of 73.4% and 83.8%, respectively. WhiSPA demonstrates that it is not always necessary to run a subsequent text LM on speech-to-text output in order to get a rich psychological representation of human communication.
comment: 16 pages, 8 figures, ACL 2025
♻ ☆ LENSLLM: Unveiling Fine-Tuning Dynamics for LLM Selection ICML'2025
The proliferation of open-sourced Large Language Models (LLMs) and diverse downstream tasks necessitates efficient model selection, given the impracticality of fine-tuning all candidates due to computational constraints. Despite the recent advances in LLM selection, a fundamental research question largely remains nascent: how can we model the dynamic behaviors of LLMs during fine-tuning, thereby enhancing our understanding of their generalization performance across diverse downstream tasks? In this work, we propose a novel theoretical framework that provides a proper lens to assess the generalization capabilities of LLMs, thereby enabling accurate and efficient LLM selection for downstream applications. In particular, we first derive a PAC-Bayesian Generalization Bound that unveils fine-tuning dynamics of LLMs and then introduce LENSLLM, a Neural Tangent Kernel (NTK)-based Rectified Scaling Model that enables accurate performance predictions across diverse tasks while maintaining computational efficiency. Extensive empirical results on 3 large-scale benchmarks demonstrate that our model achieves up to 91.1% accuracy and reduces up to 88.5% computational cost in LLM selection, outperforming 5 state-of-the-art methods. We open-source our proposed LENSLLM model and corresponding results at LensLLM.io.
comment: Accepted by ICML'2025
♻ ☆ SpargeAttention: Accurate and Training-free Sparse Attention Accelerating Any Model Inference ICML
An efficient attention implementation is essential for large models due to its quadratic time complexity. Fortunately, attention commonly exhibits sparsity, i.e., many values in the attention map are near zero, allowing for the omission of corresponding computations. Many studies have utilized the sparse pattern to accelerate attention. However, most existing works focus on optimizing attention within specific models by exploiting certain sparse patterns of the attention map. A universal sparse attention that guarantees both the speedup and end-to-end performance of diverse models remains elusive. In this paper, we propose SpargeAttn, a universal sparse and quantized attention for any model. Our method uses a two-stage online filter: in the first stage, we rapidly and accurately predict the attention map, enabling the skip of some matrix multiplications in attention. In the second stage, we design an online softmax-aware filter that incurs no extra overhead and further skips some matrix multiplications. Experiments show that our method significantly accelerates diverse models, including language, image, and video generation, without sacrificing end-to-end metrics. The codes are available at https://github.com/thu-ml/SpargeAttn.
comment: @inproceedings{zhang2025spargeattn, title={Spargeattn: Accurate sparse attention accelerating any model inference}, author={Zhang, Jintao and Xiang, Chendong and Huang, Haofeng and Wei, Jia and Xi, Haocheng and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ SageAttention2: Efficient Attention with Thorough Outlier Smoothing and Per-thread INT4 Quantization ICML
Although quantization for linear layers has been widely used, its application to accelerate the attention process remains limited. To further enhance the efficiency of attention computation compared to SageAttention while maintaining precision, we propose SageAttention2, which utilizes significantly faster 4-bit matrix multiplication (Matmul) alongside additional precision-enhancing techniques. First, we propose to quantize matrices $(Q, K)$ to INT4 in a hardware-friendly thread-level granularity and quantize matrices $(\widetilde P, V)$ to FP8. Second, we propose a method to smooth $Q$, enhancing the accuracy of INT4 $QK^\top$. Third, we propose a two-level accumulation strategy for $\widetilde PV$ to enhance the accuracy of FP8 $\widetilde PV$. The operations per second (OPS) of SageAttention2 surpass FlashAttention2 and xformers by about 3x and 4.5x on RTX4090, respectively. Moreover, SageAttention2 matches the speed of FlashAttention3(fp8) on the Hopper GPUs, while delivering much higher accuracy. Comprehensive experiments confirm that our approach incurs negligible end-to-end metrics loss across diverse models, including those for language, image, and video generation. The code is available at https://github.com/thu-ml/SageAttention.
comment: @inproceedings{zhang2024sageattention2, title={Sageattention2: Efficient attention with thorough outlier smoothing and per-thread int4 quantization}, author={Zhang, Jintao and Huang, Haofeng and Zhang, Pengle and Wei, Jia and Zhu, Jun and Chen, Jianfei}, booktitle={International Conference on Machine Learning (ICML)}, year={2025} }
♻ ☆ MADUV: The 1st INTERSPEECH Mice Autism Detection via Ultrasound Vocalization Challenge INTERSPEECH 2025
The Mice Autism Detection via Ultrasound Vocalization (MADUV) Challenge introduces the first INTERSPEECH challenge focused on detecting autism spectrum disorder (ASD) in mice through their vocalizations. Participants are tasked with developing models to automatically classify mice as either wild-type or ASD models based on recordings with a high sampling rate. Our baseline system employs a simple CNN-based classification using three different spectrogram features. Results demonstrate the feasibility of automated ASD detection, with the considered audible-range features achieving the best performance (UAR of 0.600 for segment-level and 0.625 for subject-level classification). This challenge bridges speech technology and biomedical research, offering opportunities to advance our understanding of ASD models through machine learning approaches. The findings suggest promising directions for vocalization analysis and highlight the potential value of audible and ultrasound vocalizations in ASD detection.
comment: 5 pages, 1 figure and 2 tables. Submitted to INTERSPEECH 2025. For MADUV Challenge 2025
Marco-o1 v2: Towards Widening The Distillation Bottleneck for Reasoning Models
Large Reasoning Models(LRMs) such as OpenAI o1 and DeepSeek-R1 have shown remarkable reasoning capabilities by scaling test-time compute and generating long Chain-of-Thought(CoT). Distillation--post-training on LRMs-generated data--is a straightforward yet effective method to enhance the reasoning abilities of smaller models, but faces a critical bottleneck: we found that distilled long CoT data poses learning difficulty for small models and leads to the inheritance of biases (i.e. over-thinking) when using Supervised Fine-tuning (SFT) and Reinforcement Learning (RL) methods. To alleviate this bottleneck, we propose constructing tree-based CoT data from scratch via Monte Carlo Tree Search(MCTS). We then exploit a set of CoT-aware approaches, including Thoughts Length Balance, Fine-grained DPO, and Joint Post-training Objective, to enhance SFT and RL on the constructed data. We conduct evaluation on various benchmarks such as math (GSM8K, MATH, AIME). instruction-following (Multi-IF) and planning (Blocksworld), results demonstrate our approaches substantially improve the reasoning performance of distilled models compared to standard distilled models via reducing the hallucinations in long-time thinking. The project homepage is https://github.com/AIDC-AI/Marco-o1.
♻ ☆ More Thinking, Less Seeing? Assessing Amplified Hallucination in Multimodal Reasoning Models
Test-time compute has empowered multimodal large language models to generate extended reasoning chains, yielding strong performance on tasks such as multimodal math reasoning. However, this improved reasoning ability often comes with increased hallucination: as generations become longer, models tend to drift away from image-grounded content and rely more heavily on language priors. Attention analysis shows that longer reasoning chains lead to reduced focus on visual inputs, which contributes to hallucination. To systematically study this phenomenon, we introduce RH-AUC, a metric that quantifies how a model's perception accuracy changes with reasoning length, allowing us to evaluate whether the model preserves visual grounding during reasoning. We also release RH-Bench, a diagnostic benchmark that spans a variety of multimodal tasks, designed to assess the trade-off between reasoning ability and hallucination. Our analysis reveals that (i) larger models typically achieve a better balance between reasoning and perception, and (ii) this balance is influenced more by the types and domains of training data than by its overall volume. These findings underscore the importance of evaluation frameworks that jointly consider both reasoning quality and perceptual fidelity.
♻ ☆ TrajAgent: An LLM-based Agent Framework for Automated Trajectory Modeling via Collaboration of Large and Small Models
Trajectory modeling, which includes research on trajectory data pattern mining and future prediction, has widespread applications in areas such as life services, urban transportation, and public administration. Numerous methods have been proposed to address specific problems within trajectory modeling. However, the heterogeneity of data and the diversity of trajectory tasks make effective and reliable trajectory modeling an important yet highly challenging endeavor, even for domain experts. In this paper, we propose \textit{TrajAgent}, a agent framework powered by large language models (LLMs), designed to facilitate robust and efficient trajectory modeling through automation modeling. This framework leverages and optimizes diverse specialized models to address various trajectory modeling tasks across different datasets effectively. In \textit{TrajAgent}, we first develop \textit{UniEnv}, an execution environment with a unified data and model interface, to support the execution and training of various models. Building on \textit{UniEnv}, we introduce an agentic workflow designed for automatic trajectory modeling across various trajectory tasks and data. Furthermore, we introduce collaborative learning schema between LLM-based agents and small speciallized models, to enhance the performance of the whole framework effectively. Extensive experiments on four tasks using four real-world datasets demonstrate the effectiveness of \textit{TrajAgent} in automated trajectory modeling, achieving a performance improvement of 2.38\%-34.96\% over baseline methods.
comment: the code will be openly accessible at: https://github.com/tsinghua-fib-lab/TrajAgent
♻ ☆ CityBench: Evaluating the Capabilities of Large Language Models for Urban Tasks KDD 2025
As large language models (LLMs) continue to advance and gain widespread use, establishing systematic and reliable evaluation methodologies for LLMs and vision-language models (VLMs) has become essential to ensure their real-world effectiveness and reliability. There have been some early explorations about the usability of LLMs for limited urban tasks, but a systematic and scalable evaluation benchmark is still lacking. The challenge in constructing a systematic evaluation benchmark for urban research lies in the diversity of urban data, the complexity of application scenarios and the highly dynamic nature of the urban environment. In this paper, we design \textit{CityBench}, an interactive simulator based evaluation platform, as the first systematic benchmark for evaluating the capabilities of LLMs for diverse tasks in urban research. First, we build \textit{CityData} to integrate the diverse urban data and \textit{CitySimu} to simulate fine-grained urban dynamics. Based on \textit{CityData} and \textit{CitySimu}, we design 8 representative urban tasks in 2 categories of perception-understanding and decision-making as the \textit{CityBench}. With extensive results from 30 well-known LLMs and VLMs in 13 cities around the world, we find that advanced LLMs and VLMs can achieve competitive performance in diverse urban tasks requiring commonsense and semantic understanding abilities, e.g., understanding the human dynamics and semantic inference of urban images. Meanwhile, they fail to solve the challenging urban tasks requiring professional knowledge and high-level numerical abilities, e.g., geospatial prediction and traffic control task.
comment: Accepted by KDD 2025 D&B Track, https://github.com/tsinghua-fib-lab/CityBench
♻ ☆ PreGIP: Watermarking the Pretraining of Graph Neural Networks for Deep Intellectual Property Protection
Pretraining on Graph Neural Networks (GNNs) has shown great power in facilitating various downstream tasks. As pretraining generally requires huge amount of data and computational resources, the pretrained GNNs are high-value Intellectual Properties (IP) of the legitimate owner. However, adversaries may illegally copy and deploy the pretrained GNN models for their downstream tasks. Though initial efforts have been made to watermark GNN classifiers for IP protection, these methods require the target classification task for watermarking, and thus are not applicable to self-supervised pretraining of GNN models. Hence, in this work, we propose a novel framework named PreGIP to watermark the pretraining of GNN encoder for IP protection while maintain the high-quality of the embedding space. PreGIP incorporates a task-free watermarking loss to watermark the embedding space of pretrained GNN encoder. A finetuning-resistant watermark injection is further deployed. Theoretical analysis and extensive experiments show the effectiveness of {\method} in IP protection and maintaining high-performance for downstream tasks.
♻ ☆ Judging Quality Across Languages: A Multilingual Approach to Pretraining Data Filtering with Language Models
High-quality multilingual training data is essential for effectively pretraining large language models (LLMs). Yet, the availability of suitable open-source multilingual datasets remains limited. Existing state-of-the-art datasets mostly rely on heuristic filtering methods, restricting both their cross-lingual transferability and scalability. Here, we introduce JQL, a systematic approach that efficiently curates diverse and high-quality multilingual data at scale while significantly reducing computational demands. JQL distills LLMs' annotation capabilities into lightweight annotators based on pretrained multilingual embeddings. These models exhibit robust multilingual and cross-lingual performance, even for languages and scripts unseen during training. Evaluated empirically across 35 languages, the resulting annotation pipeline substantially outperforms current heuristic filtering methods like Fineweb2. JQL notably enhances downstream model training quality and increases data retention rates. Our research provides practical insights and valuable resources for multilingual data curation, raising the standards of multilingual dataset development.
comment: Project page available at https://huggingface.co/spaces/Jackal-AI/JQL
♻ ☆ CityGPT: Empowering Urban Spatial Cognition of Large Language Models KDD 2025
Large language models(LLMs), with their powerful language generation and reasoning capabilities, have already achieved notable success in many domains, e.g., math and code generation. However, they often fall short when tackling real-life geospatial tasks within urban environments. This limitation stems from a lack of physical world knowledge and relevant data during training. To address this gap, we propose \textit{CityGPT}, a systematic framework designed to enhance LLMs' understanding of urban space and improve their ability to solve the related urban tasks by integrating a city-scale `world model' into the model. Firstly, we construct a diverse instruction tuning dataset, \textit{CityInstruction}, for injecting urban knowledge into LLMs and effectively boosting their spatial reasoning capabilities. Using a combination of \textit{CityInstruction} and open source general instruction data, we introduce a novel and easy-to-use self-weighted fine-tuning method (\textit{SWFT}) to train various LLMs (including ChatGLM3-6B, Llama3-8B, and Qwen2.5-7B) to enhance their urban spatial capabilities without compromising, or even improving, their general abilities. Finally, to validate the effectiveness of our proposed framework, we develop a comprehensive text-based spatial benchmark \textit{CityEval} for evaluating the performance of LLMs across a wide range of urban scenarios and geospatial tasks. Extensive evaluation results demonstrate that smaller LLMs trained with \textit{CityInstruction} by \textit{SWFT} method can achieve performance that is competitive with, and in some cases superior to, proprietary LLMs when assessed using \textit{CityEval}.
comment: Accepted by KDD 2025 Research Track, https://github.com/tsinghua-fib-lab/CityGPT
♻ ☆ The Many Challenges of Human-Like Agents in Virtual Game Environments AAMAS-2025
Human-like agents are an increasingly important topic in games and beyond. Believable non-player characters enhance the gaming experience by improving immersion and providing entertainment. They also offer players the opportunity to engage with AI entities that can function as opponents, teachers, or cooperating partners. Additionally, in games where bots are prohibited -- and even more so in non-game environments -- there is a need for methods capable of identifying whether digital interactions occur with bots or humans. This leads to two fundamental research questions: (1) how to model and implement human-like AI, and (2) how to measure its degree of human likeness. This article offers two contributions. The first one is a survey of the most significant challenges in implementing human-like AI in games (or any virtual environment featuring simulated agents, although this article specifically focuses on games). Thirteen such challenges, both conceptual and technical, are discussed in detail. The second is an empirical study performed in a tactical video game that addresses the research question: "Is it possible to distinguish human players from bots (AI agents) based on empirical data?" A machine-learning approach using a custom deep recurrent convolutional neural network is presented. We hypothesize that the more challenging it is to create human-like AI for a given game, the easier it becomes to develop a method for distinguishing humans from AI-driven players.
comment: In proceedings of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2025), pages 1996--2005, May 19-23, Detroit, Michigan, USA
♻ ☆ SoloSpeech: Enhancing Intelligibility and Quality in Target Speech Extraction through a Cascaded Generative Pipeline
Target Speech Extraction (TSE) aims to isolate a target speaker's voice from a mixture of multiple speakers by leveraging speaker-specific cues, typically provided as auxiliary audio (a.k.a. cue audio). Although recent advancements in TSE have primarily employed discriminative models that offer high perceptual quality, these models often introduce unwanted artifacts, reduce naturalness, and are sensitive to discrepancies between training and testing environments. On the other hand, generative models for TSE lag in perceptual quality and intelligibility. To address these challenges, we present SoloSpeech, a novel cascaded generative pipeline that integrates compression, extraction, reconstruction, and correction processes. SoloSpeech features a speaker-embedding-free target extractor that utilizes conditional information from the cue audio's latent space, aligning it with the mixture audio's latent space to prevent mismatches. Evaluated on the widely-used Libri2Mix dataset, SoloSpeech achieves the new state-of-the-art intelligibility and quality in target speech extraction and speech separation tasks while demonstrating exceptional generalization on out-of-domain data and real-world scenarios.
♻ ☆ Step-by-Step Mastery: Enhancing Soft Constraint Following Ability of Large Language Models
It is crucial for large language models (LLMs) to follow instructions that involve multiple constraints. However, it is an unexplored area to enhance LLMs' ability to follow soft constraints. To bridge the gap, we initially design a pipeline to construct datasets with high-quality outputs automatically. Additionally, to fully utilize the positive and negative samples generated during the data construction process, we choose Direct Preference Optimization (DPO) as the training method. Furthermore, taking into account the difficulty of soft constraints indicated by the number of constraints, we design a curriculum learning training paradigm based on the constraint quantity. We experimentally evaluate the effectiveness of our methods in improving LLMs' soft constraint following ability and analyze the factors driving the improvements.The datasets and code are publicly available at https://github.com/Rainier-rq/FollowSoftConstraint.
♻ ☆ StarVector: Generating Scalable Vector Graphics Code from Images and Text
Scalable Vector Graphics (SVGs) are vital for modern image rendering due to their scalability and versatility. Previous SVG generation methods have focused on curve-based vectorization, lacking semantic understanding, often producing artifacts, and struggling with SVG primitives beyond path curves. To address these issues, we introduce StarVector, a multimodal large language model for SVG generation. It performs image vectorization by understanding image semantics and using SVG primitives for compact, precise outputs. Unlike traditional methods, StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. To train StarVector, we create SVG-Stack, a diverse dataset of 2M samples that enables generalization across vectorization tasks and precise use of primitives like ellipses, polygons, and text. We address challenges in SVG evaluation, showing that pixel-based metrics like MSE fail to capture the unique qualities of vector graphics. We introduce SVG-Bench, a benchmark across 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG generation, and diagram generation. Using this setup, StarVector achieves state-of-the-art performance, producing more compact and semantically rich SVGs.
♻ ☆ SafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Constrained Learning
Vision-language-action models (VLAs) show potential as generalist robot policies. However, these models pose extreme safety challenges during real-world deployment, including the risk of harm to the environment, the robot itself, and humans. How can safety constraints be explicitly integrated into VLAs? We address this by exploring an integrated safety approach (ISA), systematically modeling safety requirements, then actively eliciting diverse unsafe behaviors, effectively constraining VLA policies via safe reinforcement learning, and rigorously assuring their safety through targeted evaluations. Leveraging the constrained Markov decision process (CMDP) paradigm, ISA optimizes VLAs from a min-max perspective against elicited safety risks. Thus, policies aligned through this comprehensive approach achieve the following key features: (I) effective safety-performance trade-offs, this exploration yields an 83.58% safety improvement compared to the current state-of-the-art method, while also maintaining task performance (+3.85%). (II) strong safety assurance, with the ability to mitigate long-tail risks and handle extreme failure scenarios. (III) robust generalization of learned safety behaviors to various out-of-distribution perturbations. Our data, models and newly proposed benchmark environment are available at https://pku-safevla.github.io.
comment: 26 pages, 12 figures
♻ ☆ TrimR: Verifier-based Training-Free Thinking Compression for Efficient Test-Time Scaling
Large Reasoning Models (LRMs) demonstrate exceptional capability in tackling complex mathematical, logical, and coding tasks by leveraging extended Chain-of-Thought (CoT) reasoning. Test-time scaling methods, such as prolonging CoT with explicit token-level exploration, can push LRMs' accuracy boundaries, but they incur significant decoding overhead. A key inefficiency source is LRMs often generate redundant thinking CoTs, which demonstrate clear structured overthinking and underthinking patterns. Inspired by human cognitive reasoning processes and numerical optimization theories, we propose TrimR, a verifier-based, training-free, efficient framework for dynamic CoT compression to trim reasoning and enhance test-time scaling, explicitly tailored for production-level deployment. Our method employs a lightweight, pretrained, instruction-tuned verifier to detect and truncate redundant intermediate thoughts of LRMs without any LRM or verifier fine-tuning. We present both the core algorithm and asynchronous online system engineered for high-throughput industrial applications. Empirical evaluations on Ascend NPUs and vLLM show that our framework delivers substantial gains in inference efficiency under large-batch workloads. In particular, on the four MATH500, AIME24, AIME25, and GPQA benchmarks, the reasoning runtime of Pangu Pro MoE, Pangu-R-38B, QwQ-32B, and DeepSeek-R1-Distill-Qwen-32B is improved by up to 70% with negligible impact on accuracy.
♻ ☆ Semantic-guided Representation Learning for Multi-Label Recognition ICME2025
Multi-label Recognition (MLR) involves assigning multiple labels to each data instance in an image, offering advantages over single-label classification in complex scenarios. However, it faces the challenge of annotating all relevant categories, often leading to uncertain annotations, such as unseen or incomplete labels. Recent Vision and Language Pre-training (VLP) based methods have made significant progress in tackling zero-shot MLR tasks by leveraging rich vision-language correlations. However, the correlation between multi-label semantics has not been fully explored, and the learned visual features often lack essential semantic information. To overcome these limitations, we introduce a Semantic-guided Representation Learning approach (SigRL) that enables the model to learn effective visual and textual representations, thereby improving the downstream alignment of visual images and categories. Specifically, we first introduce a graph-based multi-label correlation module (GMC) to facilitate information exchange between labels, enriching the semantic representation across the multi-label texts. Next, we propose a Semantic Visual Feature Reconstruction module (SVFR) to enhance the semantic information in the visual representation by integrating the learned textual representation during reconstruction. Finally, we optimize the image-text matching capability of the VLP model using both local and global features to achieve zero-shot MLR. Comprehensive experiments are conducted on several MLR benchmarks, encompassing both zero-shot MLR (with unseen labels) and single positive multi-label learning (with limited labels), demonstrating the superior performance of our approach compared to state-of-the-art methods. The code is available at https://github.com/MVL-Lab/SigRL.
comment: Accepted in ICME2025 Oral (15% of all submissions)
♻ ☆ Automating Legal Interpretation with LLMs: Retrieval, Generation, and Evaluation ACL 2025
Interpreting the law is always essential for the law to adapt to the ever-changing society. It is a critical and challenging task even for legal practitioners, as it requires meticulous and professional annotations and summarizations by legal experts, which are admittedly time-consuming and expensive to collect at scale. To alleviate the burden on legal experts, we propose a method for automated legal interpretation. Specifically, by emulating doctrinal legal research, we introduce a novel framework, ATRIE, to address Legal Concept Interpretation, a typical task in legal interpretation. ATRIE utilizes large language models (LLMs) to AuTomatically Retrieve concept-related information, Interpret legal concepts, and Evaluate generated interpretations, eliminating dependence on legal experts. ATRIE comprises a legal concept interpreter and a legal concept interpretation evaluator. The interpreter uses LLMs to retrieve relevant information from previous cases and interpret legal concepts. The evaluator uses performance changes on Legal Concept Entailment, a downstream task we propose, as a proxy of interpretation quality. Automated and multifaceted human evaluations indicate that the quality of our interpretations is comparable to those written by legal experts, with superior comprehensiveness and readability. Although there remains a slight gap in accuracy, it can already assist legal practitioners in improving the efficiency of legal interpretation.
comment: ACL 2025 Main Conference
♻ ☆ QuickVideo: Real-Time Long Video Understanding with System Algorithm Co-Design
Long-video understanding has emerged as a crucial capability in real-world applications such as video surveillance, meeting summarization, educational lecture analysis, and sports broadcasting. However, it remains computationally prohibitive for VideoLLMs, primarily due to two bottlenecks: 1) sequential video decoding, the process of converting the raw bit stream to RGB frames can take up to a minute for hour-long video inputs, and 2) costly prefilling of up to several million tokens for LLM inference, resulting in high latency and memory use. To address these challenges, we propose QuickVideo, a system-algorithm co-design that substantially accelerates long-video understanding to support real-time downstream applications. It comprises three key innovations: QuickDecoder, a parallelized CPU-based video decoder that achieves 2-3 times speedup by splitting videos into keyframe-aligned intervals processed concurrently; QuickPrefill, a memory-efficient prefilling method using KV-cache pruning to support more frames with less GPU memory; and an overlapping scheme that overlaps CPU video decoding with GPU inference. Together, these components infernece time reduce by a minute on long video inputs, enabling scalable, high-quality video understanding even on limited hardware. Experiments show that QuickVideo generalizes across durations and sampling rates, making long video processing feasible in practice.
comment: 19 pages, 6 figures, 2 tables
♻ ☆ AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence ICML 2025
Current approaches for training Process Reward Models (PRMs) often involve breaking down responses into multiple reasoning steps using rule-based techniques, such as using predefined placeholder tokens or setting the reasoning step's length into a fixed size. These approaches overlook the fact that specific words do not typically mark true decision points in a text. To address this, we propose AdaptiveStep, a method that divides reasoning steps based on the model's confidence in predicting the next word. This division method provides more decision-making information at each step, enhancing downstream tasks, such as reward model learning. Moreover, our method does not require manual annotation. We demonstrate its effectiveness through experiments with AdaptiveStep-trained PRMs in mathematical reasoning and code generation tasks. Experimental results indicate that the outcome PRM achieves state-of-the-art Best-of-N performance, surpassing greedy search strategy with token-level value-guided decoding, while also reducing construction costs by over 30% compared to existing open-source PRMs. In addition, we provide a thorough analysis and case study on the PRM's performance, transferability, and generalization capabilities.
comment: ICML 2025
♻ ☆ A Comprehensive Survey of Machine Unlearning Techniques for Large Language Models
This study investigates the machine unlearning techniques within the context of large language models (LLMs), referred to as \textit{LLM unlearning}. LLM unlearning offers a principled approach to removing the influence of undesirable data (e.g., sensitive or illegal information) from LLMs, while preserving their overall utility without requiring full retraining. Despite growing research interest, there is no comprehensive survey that systematically organizes existing work and distills key insights; here, we aim to bridge this gap. We begin by introducing the definition and the paradigms of LLM unlearning, followed by a comprehensive taxonomy of existing unlearning studies. Next, we categorize current unlearning approaches, summarizing their strengths and limitations. Additionally, we review evaluation metrics and benchmarks, providing a structured overview of current assessment methodologies. Finally, we outline promising directions for future research, highlighting key challenges and opportunities in the field.
♻ ☆ BMIKE-53: Investigating Cross-Lingual Knowledge Editing with In-Context Learning ACL 2025
This paper introduces BMIKE-53, a comprehensive benchmark for cross-lingual in-context knowledge editing (IKE) across 53 languages, unifying three knowledge editing (KE) datasets: zsRE, CounterFact, and WikiFactDiff. Cross-lingual KE, which requires knowledge edited in one language to generalize across others while preserving unrelated knowledge, remains underexplored. To address this gap, we systematically evaluate IKE under zero-shot, one-shot, and few-shot setups, incorporating tailored metric-specific demonstrations. Our findings reveal that model scale and demonstration alignment critically govern cross-lingual IKE efficacy, with larger models and tailored demonstrations significantly improving performance. Linguistic properties, particularly script type, strongly influence performance variation across languages, with non-Latin languages underperforming due to issues like language confusion. Code and data are publicly available at: https://github.com/ercong21/MultiKnow/.
comment: Accepted to ACL 2025
♻ ☆ Do Language Models Understand the Cognitive Tasks Given to Them? Investigations with the N-Back Paradigm ACL 2025
Cognitive tasks originally developed for humans are now increasingly used to study language models. While applying these tasks is often straightforward, interpreting their results can be challenging. In particular, when a model underperforms, it is often unclear whether this results from a limitation in the cognitive ability being tested or a failure to understand the task itself. A recent study argues that GPT 3.5's declining performance on 2-back and 3-back tasks reflects a working memory capacity limit similar to humans (Gong et al., 2024). By analyzing a range of open-source language models of varying performance levels on these tasks, we show that the poor performance is due at least in part to a limitation in task comprehension and task set maintenance. We challenge the best-performing model with progressively harder versions of the task (up to 10-back) and experiment with alternative prompting strategies, before analyzing model attentions. Our larger aim is to contribute to the ongoing conversation around refining methodologies for the cognitive evaluation of language models.
comment: ACL 2025 Findings
♻ ☆ Redefining Toxicity: An Objective and Context-Aware Approach for Stress-Level-Based Detection
Most toxicity detection models treat toxicity as an intrinsic property of text, overlooking the role of context in shaping its impact. Drawing on interdisciplinary research, we reconceptualise toxicity as a socially emergent stress signal. We introduce a new framework for toxicity detection, including a formal definition and metric, and validate our approach on a novel dataset, demonstrating improved contextual sensitivity and adaptability.
♻ ☆ iDSE: Navigating Design Space Exploration in High-Level Synthesis Using LLMs
High-Level Synthesis (HLS) serves as an agile hardware development tool that streamlines the circuit design by abstracting the register transfer level into behavioral descriptions, while allowing designers to customize the generated microarchitectures through optimization directives. However, the combinatorial explosion of possible directive configurations yields an intractable design space. Traditional design space exploration (DSE) methods, despite adopting heuristics or constructing predictive models to accelerate Pareto-optimal design acquisition, still suffer from prohibitive exploration costs and suboptimal results. Addressing these concerns, we introduce iDSE, the first LLM-aided DSE framework that leverages HLS design quality perception to effectively navigate the design space. iDSE intelligently pruns the design space to guide LLMs in calibrating representative initial sampling designs, expediting convergence toward the Pareto front. By exploiting the convergent and divergent thinking patterns inherent in LLMs for hardware optimization, iDSE achieves multi-path refinement of the design quality and diversity. Extensive experiments demonstrate that iDSE outperforms heuristic-based DSE methods by 5.1$\times$$\sim$16.6$\times$ in proximity to the reference Pareto front, matching NSGA-II with only 4.6% of the explored designs. Our work demonstrates the transformative potential of LLMs in scalable and efficient HLS design optimization, offering new insights into multiobjective optimization challenges.
♻ ☆ The TIP of the Iceberg: Revealing a Hidden Class of Task-in-Prompt Adversarial Attacks on LLMs ACL 2025
We present a novel class of jailbreak adversarial attacks on LLMs, termed Task-in-Prompt (TIP) attacks. Our approach embeds sequence-to-sequence tasks (e.g., cipher decoding, riddles, code execution) into the model's prompt to indirectly generate prohibited inputs. To systematically assess the effectiveness of these attacks, we introduce the PHRYGE benchmark. We demonstrate that our techniques successfully circumvent safeguards in six state-of-the-art language models, including GPT-4o and LLaMA 3.2. Our findings highlight critical weaknesses in current LLM safety alignments and underscore the urgent need for more sophisticated defence strategies. Warning: this paper contains examples of unethical inquiries used solely for research purposes.
comment: Accepted to the Main Track of ACL 2025
♻ ☆ Exploring Compositional Generalization of Multimodal LLMs for Medical Imaging
Medical imaging provides essential visual insights for diagnosis, and multimodal large language models (MLLMs) are increasingly utilized for its analysis due to their strong generalization capabilities; however, the underlying factors driving this generalization remain unclear. Current research suggests that multi-task training outperforms single-task as different tasks can benefit each other, but they often overlook the internal relationships within these tasks. To analyze this phenomenon, we attempted to employ compositional generalization (CG), which refers to the models' ability to understand novel combinations by recombining learned elements, as a guiding framework. Since medical images can be precisely defined by Modality, Anatomical area, and Task, naturally providing an environment for exploring CG, we assembled 106 medical datasets to create Med-MAT for comprehensive experiments. The experiments confirmed that MLLMs can use CG to understand unseen medical images and identified CG as one of the main drivers of the generalization observed in multi-task training. Additionally, further studies demonstrated that CG effectively supports datasets with limited data and confirmed that MLLMs can achieve CG across classification and detection tasks, underscoring its broader generalization potential. Med-MAT is available at https://github.com/FreedomIntelligence/Med-MAT.
♻ ☆ Action-Gradient Monte Carlo Tree Search for Non-Parametric Continuous (PO)MDPs
Autonomous systems that operate in continuous state, action, and observation spaces require planning and reasoning under uncertainty. Existing online planning methods for such POMDPs are almost exclusively sample-based, yet they forego the power of high-dimensional gradient optimization as combining it into Monte Carlo Tree Search (MCTS) has proved difficult, especially in non-parametric settings. We close this gap with three contributions. First, we derive a novel action-gradient theorem for both MDPs and POMDPs in terms of transition likelihoods, making gradient information accessible during tree search. Second, we introduce the Multiple Importance Sampling (MIS) tree, that re-uses samples for changing action branches, yielding consistent value estimates that enable in-search gradient steps. Third, we derive exact transition probability computation via the area formula for smooth generative models common in physical domains, a result of independent interest. These elements combine into Action-Gradient Monte Carlo Tree Search (AGMCTS), the first planner to blend non-parametric particle search with online gradient refinement in POMDPs. Across several challenging continuous MDP and POMDP benchmarks, AGMCTS outperforms widely-used sample-only solvers in solution quality.
♻ ☆ An Interpretable Representation Learning Approach for Diffusion Tensor Imaging
Diffusion Tensor Imaging (DTI) tractography offers detailed insights into the structural connectivity of the brain, but presents challenges in effective representation and interpretation in deep learning models. In this work, we propose a novel 2D representation of DTI tractography that encodes tract-level fractional anisotropy (FA) values into a 9x9 grayscale image. This representation is processed through a Beta-Total Correlation Variational Autoencoder with a Spatial Broadcast Decoder to learn a disentangled and interpretable latent embedding. We evaluate the quality of this embedding using supervised and unsupervised representation learning strategies, including auxiliary classification, triplet loss, and SimCLR-based contrastive learning. Compared to the 1D Group deep neural network (DNN) baselines, our approach improves the F1 score in a downstream sex classification task by 15.74% and shows a better disentanglement than the 3D representation.
comment: Accepted for publication at MIDL 2025
♻ ☆ M$^3$-VOS: Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation
Intelligent robots need to interact with diverse objects across various environments. The appearance and state of objects frequently undergo complex transformations depending on the object properties, e.g., phase transitions. However, in the vision community, segmenting dynamic objects with phase transitions is overlooked. In light of this, we introduce the concept of phase in segmentation, which categorizes real-world objects based on their visual characteristics and potential morphological and appearance changes. Then, we present a new benchmark, Multi-Phase, Multi-Transition, and Multi-Scenery Video Object Segmentation (M$^3$-VOS), to verify the ability of models to understand object phases, which consists of 479 high-resolution videos spanning over 10 distinct everyday scenarios. It provides dense instance mask annotations that capture both object phases and their transitions. We evaluate state-of-the-art methods on M$^3$-VOS, yielding several key insights. Notably, current appearance-based approaches show significant room for improvement when handling objects with phase transitions. The inherent changes in disorder suggest that the predictive performance of the forward entropy-increasing process can be improved through a reverse entropy-reducing process. These findings lead us to propose ReVOS, a new plug-andplay model that improves its performance by reversal refinement. Our data and code will be publicly available at https://zixuan-chen.github.io/M-cube-VOS.github.io/.
comment: 18 pages, 12 figures
CogSteer: Cognition-Inspired Selective Layer Intervention for Efficiently Steering Large Language Models ACL 2025
Large Language Models (LLMs) achieve remarkable performance through pretraining on extensive data. This enables efficient adaptation to diverse downstream tasks. However, the lack of interpretability in their underlying mechanisms limits the ability to effectively steer LLMs for specific applications. In this work, we investigate the intrinsic mechanisms of LLMs from a cognitive perspective using eye movement measures. Specifically, we analyze the layer-wise correlation between human cognitive indicators and LLM representations. Building on these insights, we propose a heuristic approach for selecting the optimal steering layer to modulate LLM semantics. To this end, we introduce an efficient selective layer intervention based on prominent parameter-efficient fine-tuning methods, which conventionally adjust either all layers or only the final layer. Additionally, we present an implicit layer contrastive intervention during inference to steer LLMs away from toxic outputs. Extensive experiments on natural language understanding, reasoning, and generation tasks, conducted on GPT-2, Llama2-7B, and Mistral-7B, demonstrate the effectiveness and efficiency of our approach. As a model-agnostic framework, it enhances the interpretability of LLMs while improving efficiency for safe deployment.
comment: Accepted to Findings of ACL 2025
♻ ☆ Pattern Recognition or Medical Knowledge? The Problem with Multiple-Choice Questions in Medicine ACL 2025
Large Language Models (LLMs) such as ChatGPT demonstrate significant potential in the medical domain and are often evaluated using multiple-choice questions (MCQs) modeled on exams like the USMLE. However, such benchmarks may overestimate true clinical understanding by rewarding pattern recognition and test-taking heuristics. To investigate this, we created a fictional medical benchmark centered on an imaginary organ, the Glianorex, allowing us to separate memorized knowledge from reasoning ability. We generated textbooks and MCQs in English and French using leading LLMs, then evaluated proprietary, open-source, and domain-specific models in a zero-shot setting. Despite the fictional content, models achieved an average score of 64%, while physicians scored only 27%. Fine-tuned medical models outperformed base models in English but not in French. Ablation and interpretability analyses revealed that models frequently relied on shallow cues, test-taking strategies, and hallucinated reasoning to identify the correct choice. These results suggest that standard MCQ-based evaluations may not effectively measure clinical reasoning and highlight the need for more robust, clinically meaningful assessment methods for LLMs.
comment: ACL 2025 main
♻ ☆ Towards Better Chain-of-Thought: A Reflection on Effectiveness and Faithfulness ACL 2025
Chain-of-thought (CoT) prompting demonstrates varying performance under different reasoning tasks. Previous work attempts to evaluate it but falls short in providing an in-depth analysis of patterns that influence the CoT. In this paper, we study the CoT performance from the perspective of effectiveness and faithfulness. For the former, we identify key factors that influence CoT effectiveness on performance improvement, including problem difficulty, information gain, and information flow. For the latter, we interpret the unfaithful CoT issue by conducting a joint analysis of the information interaction among the question, CoT, and answer. The result demonstrates that, when the LLM predicts answers, it can recall correct information missing in the CoT from the question, leading to the problem. Finally, we propose a novel algorithm to mitigate this issue, in which we recall extra information from the question to enhance the CoT generation and evaluate CoTs based on their information gain. Extensive experiments demonstrate that our approach enhances both the faithfulness and effectiveness of CoT.
comment: 18 pages, 21 figures, accepted by ACL 2025 Findings
♻ ☆ Stepwise Reasoning Error Disruption Attack of LLMs
Large language models (LLMs) have made remarkable strides in complex reasoning tasks, but their safety and robustness in reasoning processes remain underexplored. Existing attacks on LLM reasoning are constrained by specific settings or lack of imperceptibility, limiting their feasibility and generalizability. To address these challenges, we propose the Stepwise rEasoning Error Disruption (SEED) attack, which subtly injects errors into prior reasoning steps to mislead the model into producing incorrect subsequent reasoning and final answers. Unlike previous methods, SEED is compatible with zero-shot and few-shot settings, maintains the natural reasoning flow, and ensures covert execution without modifying the instruction. Extensive experiments on four datasets across four different models demonstrate SEED's effectiveness, revealing the vulnerabilities of LLMs to disruptions in reasoning processes. These findings underscore the need for greater attention to the robustness of LLM reasoning to ensure safety in practical applications. Our code is available at: https://github.com/Applied-Machine-Learning-Lab/SEED-Attack.
♻ ☆ Data-Constrained Synthesis of Training Data for De-Identification ACL 2025
Many sensitive domains -- such as the clinical domain -- lack widely available datasets due to privacy risks. The increasing generative capabilities of large language models (LLMs) have made synthetic datasets a viable path forward. In this study, we domain-adapt LLMs to the clinical domain and generate synthetic clinical texts that are machine-annotated with tags for personally identifiable information using capable encoder-based NER models. The synthetic corpora are then used to train synthetic NER models. The results show that training NER models using synthetic corpora incurs only a small drop in predictive performance. The limits of this process are investigated in a systematic ablation study -- using both Swedish and Spanish data. Our analysis shows that smaller datasets can be sufficient for domain-adapting LLMs for data synthesis. Instead, the effectiveness of this process is almost entirely contingent on the performance of the machine-annotating NER models trained using the original data.
comment: ACL 2025 Main: Long paper
♻ ☆ Harnessing PDF Data for Improving Japanese Large Multimodal Models ACL2025
Large Multimodal Models (LMMs) have demonstrated strong performance in English, but their effectiveness in Japanese remains limited due to the lack of high-quality training data. Current Japanese LMMs often rely on translated English datasets, restricting their ability to capture Japan-specific cultural knowledge. To address this, we explore the potential of Japanese PDF data as a training resource, an area that remains largely underutilized. We introduce a fully automated pipeline that leverages pretrained models to extract image-text pairs from PDFs through layout analysis, OCR, and vision-language pairing, removing the need for manual annotation. Additionally, we construct instruction data from extracted image-text pairs to enrich the training data. To evaluate the effectiveness of PDF-derived data, we train Japanese LMMs and assess their performance on the Japanese LMM Benchmark. Our results demonstrate substantial improvements, with performance gains ranging from 2.1% to 13.8% on Heron-Bench. Further analysis highlights the impact of PDF-derived data on various factors, such as model size and language models, reinforcing its value as a multimodal resource for Japanese LMMs.
comment: Accepted to ACL2025 Findings. Code: https://github.com/ku21fan/PDF-JLMM
♻ ☆ Beyond One-Size-Fits-All: Tailored Benchmarks for Efficient Evaluation
Evaluating models on large benchmarks is very resource-intensive, especially during the period of rapid model evolution. Existing efficient evaluation methods estimate the performance of target models by testing them only on a small and static coreset of the benchmark, which is derived from the publicly available evaluation results of source models. These methods rely on the assumption that target models have high prediction consistency with source models. However, we demonstrate that it doesn't generalize well in practice. To alleviate the inconsistency issue, we present TailoredBench, a method that conducts customized evaluation tailored to each target model. Specifically, a Global-coreset is first constructed as a probe to identify the most consistent source models for each target model with an adaptive source model selection strategy. Afterwards, a scalable K-Medoids clustering algorithm is proposed to extend the Global-coreset to a tailored Native-coreset for each target model. According to the predictions on Native-coresets, we obtain the performance of target models on the whole benchmark with a calibrated estimation strategy. Comprehensive experiments on 5 benchmarks across over 300 models demonstrate that compared to best performing baselines, TailoredBench achieves an average reduction of 31.4% in MAE of accuracy estimates under the same inference budgets, showcasing strong effectiveness and generalizability.
♻ ☆ CSTRL: Context-Driven Sequential Transfer Learning for Abstractive Radiology Report Summarization ACL 2025
A radiology report comprises several sections, including the Findings and Impression of the diagnosis. Automatically generating the Impression from the Findings is crucial for reducing radiologists' workload and improving diagnostic accuracy. Pretrained models that excel in common abstractive summarization problems encounter challenges when applied to specialized medical domains largely due to the complex terminology and the necessity for accurate clinical context. Such tasks in medical domains demand extracting core information, avoiding context shifts, and maintaining proper flow. Misuse of medical terms can lead to drastic clinical errors. To address these issues, we introduce a sequential transfer learning that ensures key content extraction and coherent summarization. Sequential transfer learning often faces challenges like initial parameter decay and knowledge loss, which we resolve with the Fisher matrix regularization. Using MIMIC-CXR and Open-I datasets, our model, CSTRL - Context-driven Sequential TRansfer Learning - achieved state-of-the-art performance, showing 56.2% improvement in BLEU-1, 40.5% in BLEU-2, 84.3% in BLEU-3, 28.9% in ROUGE-1, 41.0% in ROUGE-2 and 26.5% in ROGUE-3 score over benchmark studies. We also analyze factual consistency scores while preserving the medical context. Our code is publicly available at https://github.com/fahmidahossain/Report_Summarization.
comment: Accepted in ACL 2025 Findings
♻ ☆ VITAL: A New Dataset for Benchmarking Pluralistic Alignment in Healthcare ACL 2025
Alignment techniques have become central to ensuring that Large Language Models (LLMs) generate outputs consistent with human values. However, existing alignment paradigms often model an averaged or monolithic preference, failing to account for the diversity of perspectives across cultures, demographics, and communities. This limitation is particularly critical in health-related scenarios, where plurality is essential due to the influence of culture, religion, personal values, and conflicting opinions. Despite progress in pluralistic alignment, no prior work has focused on health, likely due to the unavailability of publicly available datasets. To address this gap, we introduce VITAL, a new benchmark dataset comprising 13.1K value-laden situations and 5.4K multiple-choice questions focused on health, designed to assess and benchmark pluralistic alignment methodologies. Through extensive evaluation of eight LLMs of varying sizes, we demonstrate that existing pluralistic alignment techniques fall short in effectively accommodating diverse healthcare beliefs, underscoring the need for tailored AI alignment in specific domains. This work highlights the limitations of current approaches and lays the groundwork for developing health-specific alignment solutions.
comment: Accepted to ACL 2025 (Main Proceedings)
♻ ☆ ReflectDiffu:Reflect between Emotion-intent Contagion and Mimicry for Empathetic Response Generation via a RL-Diffusion Framework ACL 2025
Empathetic response generation necessitates the integration of emotional and intentional dynamics to foster meaningful interactions. Existing research either neglects the intricate interplay between emotion and intent, leading to suboptimal controllability of empathy, or resorts to large language models (LLMs), which incur significant computational overhead. In this paper, we introduce ReflectDiffu, a lightweight and comprehensive framework for empathetic response generation. This framework incorporates emotion contagion to augment emotional expressiveness and employs an emotion-reasoning mask to pinpoint critical emotional elements. Additionally, it integrates intent mimicry within reinforcement learning for refinement during diffusion. By harnessing an intent twice reflect mechanism of Exploring-Sampling-Correcting, ReflectDiffu adeptly translates emotional decision-making into precise intent actions, thereby addressing empathetic response misalignments stemming from emotional misrecognition. Through reflection, the framework maps emotional states to intents, markedly enhancing both response empathy and flexibility. Comprehensive experiments reveal that ReflectDiffu outperforms existing models regarding relevance, controllability, and informativeness, achieving state-of-the-art results in both automatic and human evaluations.
comment: Accepted by ACL 2025 Main Conference
♻ ☆ GAME: Learning Multimodal Interactions via Graph Structures for Personality Trait Estimation
Apparent personality analysis from short videos poses significant chal-lenges due to the complex interplay of visual, auditory, and textual cues. In this paper, we propose GAME, a Graph-Augmented Multimodal Encoder designed to robustly model and fuse multi-source features for automatic personality prediction. For the visual stream, we construct a facial graph and introduce a dual-branch Geo Two-Stream Network, which combines Graph Convolutional Networks (GCNs) and Convolutional Neural Net-works (CNNs) with attention mechanisms to capture both structural and appearance-based facial cues. Complementing this, global context and iden-tity features are extracted using pretrained ResNet18 and VGGFace back-bones. To capture temporal dynamics, frame-level features are processed by a BiGRU enhanced with temporal attention modules. Meanwhile, audio representations are derived from the VGGish network, and linguistic se-mantics are captured via the XLM-Roberta transformer. To achieve effective multimodal integration, we propose a Channel Attention-based Fusion module, followed by a Multi-Layer Perceptron (MLP) regression head for predicting personality traits. Extensive experiments show that GAME con-sistently outperforms existing methods across multiple benchmarks, vali-dating its effectiveness and generalizability.
comment: The article contains serious scientific errors and cannot be corrected by updating the preprint
♻ ☆ Optimizing Multi-Hop Document Retrieval Through Intermediate Representations ACL 2025
Retrieval-augmented generation (RAG) encounters challenges when addressing complex queries, particularly multi-hop questions. While several methods tackle multi-hop queries by iteratively generating internal queries and retrieving external documents, these approaches are computationally expensive. In this paper, we identify a three-stage information processing pattern in LLMs during layer-by-layer reasoning, consisting of extraction, processing, and subsequent extraction steps. This observation suggests that the representations in intermediate layers contain richer information compared to those in other layers. Building on this insight, we propose Layer-wise RAG (L-RAG). Unlike prior methods that focus on generating new internal queries, L-RAG leverages intermediate representations from the middle layers, which capture next-hop information, to retrieve external knowledge. L-RAG achieves performance comparable to multi-step approaches while maintaining inference overhead similar to that of standard RAG. Experimental results show that L-RAG outperforms existing RAG methods on open-domain multi-hop question-answering datasets, including MuSiQue, HotpotQA, and 2WikiMultiHopQA. The code is available in https://anonymous.4open.science/r/L-RAG-ADD5/
comment: Accepted by ACL 2025 Findings
♻ ☆ LDMol: A Text-to-Molecule Diffusion Model with Structurally Informative Latent Space Surpasses AR Models ICML 2025
With the emergence of diffusion models as a frontline generative model, many researchers have proposed molecule generation techniques with conditional diffusion models. However, the unavoidable discreteness of a molecule makes it difficult for a diffusion model to connect raw data with highly complex conditions like natural language. To address this, here we present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation. By recognizing that the suitable latent space design is the key to the diffusion model performance, we employ a contrastive learning strategy to extract novel feature space from text data that embeds the unique characteristics of the molecule structure. Experiments show that LDMol outperforms the existing autoregressive baselines on the text-to-molecule generation benchmark, being one of the first diffusion models that outperforms autoregressive models in textual data generation with a better choice of the latent domain. Furthermore, we show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing, demonstrating its versatility as a diffusion model.
comment: Poster in ICML 2025; 19 pages, 13 figures
♻ ☆ FRIREN: Beyond Trajectories -- A Spectral Lens on Time NeurIPS 2025
Long-term time-series forecasting (LTSF) models are often presented as general-purpose solutions that can be applied across domains, implicitly assuming that all data is pointwise predictable. Using chaotic systems such as Lorenz-63 as a case study, we argue that geometric structure - not pointwise prediction - is the right abstraction for a dynamic-agnostic foundational model. Minimizing the Wasserstein-2 distance (W2), which captures geometric changes, and providing a spectral view of dynamics are essential for long-horizon forecasting. Our model, FRIREN (Flow-inspired Representations via Interpretable Eigen-networks), implements an augmented normalizing-flow block that embeds data into a normally distributed latent representation. It then generates a W2-efficient optimal path that can be decomposed into rotation, scaling, inverse rotation, and translation. This architecture yields locally generated, geometry-preserving predictions that are independent of the underlying dynamics, and a global spectral representation that functions as a finite Koopman operator with a small modification. This enables practitioners to identify which modes grow, decay, or oscillate, both locally and system-wide. FRIREN achieves an MSE of 11.4, MAE of 1.6, and SWD of 0.96 on Lorenz-63 in a 336-in, 336-out, dt=0.01 setting, surpassing TimeMixer (MSE 27.3, MAE 2.8, SWD 2.1). The model maintains effective prediction for 274 out of 336 steps, approximately 2.5 Lyapunov times. On Rossler (96-in, 336-out), FRIREN achieves an MSE of 0.0349, MAE of 0.0953, and SWD of 0.0170, outperforming TimeMixer's MSE of 4.3988, MAE of 0.886, and SWD of 3.2065. FRIREN is also competitive on standard LTSF datasets such as ETT and Weather. By connecting modern generative flows with classical spectral analysis, FRIREN makes long-term forecasting both accurate and interpretable, setting a new benchmark for LTSF model design.
comment: 37 pages, 4 figures. Submitted to NeurIPS 2025. Public code at https://anonymous.4open.science/r/LTSF_model-03BB/
♻ ☆ Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the explosive advancement of deepfake technology has posed a critical and escalating threat to public security: diffusion-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency via multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the new large-scale multimodal digital human forgery dataset based on diffusion models. Leveraging five of the latest digital human generation methods and a voice cloning method, we systematically construct a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies demonstrate that the misrecognition rate by participants for DigiFakeAV reaches as high as 68%. Moreover, the substantial performance degradation of existing detection models on our dataset further highlights its challenges. To address this problem, we propose DigiShield, an effective detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves state-of-the-art (SOTA) performance on the DigiFakeAV and shows strong generalization on other datasets.
♻ ☆ OrgAccess: A Benchmark for Role Based Access Control in Organization Scale LLMs
Role-based access control (RBAC) and hierarchical structures are foundational to how information flows and decisions are made within virtually all organizations. As the potential of Large Language Models (LLMs) to serve as unified knowledge repositories and intelligent assistants in enterprise settings becomes increasingly apparent, a critical, yet under explored, challenge emerges: \textit{can these models reliably understand and operate within the complex, often nuanced, constraints imposed by organizational hierarchies and associated permissions?} Evaluating this crucial capability is inherently difficult due to the proprietary and sensitive nature of real-world corporate data and access control policies. We introduce a synthetic yet representative \textbf{OrgAccess} benchmark consisting of 40 distinct types of permissions commonly relevant across different organizational roles and levels. We further create three types of permissions: 40,000 easy (1 permission), 10,000 medium (3-permissions tuple), and 20,000 hard (5-permissions tuple) to test LLMs' ability to accurately assess these permissions and generate responses that strictly adhere to the specified hierarchical rules, particularly in scenarios involving users with overlapping or conflicting permissions. Our findings reveal that even state-of-the-art LLMs struggle significantly to maintain compliance with role-based structures, even with explicit instructions, with their performance degrades further when navigating interactions involving two or more conflicting permissions. Specifically, even \textbf{GPT-4.1 only achieves an F1-Score of 0.27 on our hardest benchmark}. This demonstrates a critical limitation in LLMs' complex rule following and compositional reasoning capabilities beyond standard factual or STEM-based benchmarks, opening up a new paradigm for evaluating their fitness for practical, structured environments.
comment: 56 Pages
♻ ☆ Conflict-Aware Pseudo Labeling via Optimal Transport for Entity Alignment ICDM 2022
Entity alignment aims to discover unique equivalent entity pairs with the same meaning across different knowledge graphs (KGs). Existing models have focused on projecting KGs into a latent embedding space so that inherent semantics between entities can be captured for entity alignment. However, the adverse impacts of alignment conflicts have been largely overlooked during training, thereby limiting the entity alignment performance. To address this issue, we propose a novel Conflict-aware Pseudo Labeling via Optimal Transport model (CPL-OT) for entity alignment. The key idea is to iteratively pseudo-label alignment pairs empowered with conflict-aware optimal transport (OT) modeling to boost the precision of entity alignment. CPL-OT is composed of two key components -- entity embedding learning with global-local aggregation and iterative conflict-aware pseudo labeling -- that mutually reinforce each other. To mitigate alignment conflicts during pseudo labeling, we propose to use optimal transport as an effective means to warrant one-to-one entity alignment between two KGs with the minimal overall transport cost. Extensive experiments on benchmark datasets validate the superiority of CPL-OT over state-of-the-art baselines under both settings with and without prior alignment seeds.
comment: Accepted by ICDM 2022
♻ ☆ TestNUC: Enhancing Test-Time Computing Approaches and Scaling through Neighboring Unlabeled Data Consistency ACL 2025
Test-time computing approaches, which leverage additional computational resources during inference, have been proven effective in enhancing large language model performance. This work introduces a novel, linearly scaling approach, TestNUC, that improves test-time predictions by leveraging the local consistency of neighboring unlabeled data-it classifies an input instance by considering not only the model's prediction on that instance but also on neighboring unlabeled instances. We evaluate TestNUC across eight diverse datasets, spanning intent classification, topic mining, domain discovery, and emotion detection, demonstrating its consistent superiority over baseline methods such as standard prompting and self-consistency. Furthermore, TestNUC can be seamlessly integrated with existing test-time computing approaches, substantially boosting their performance. Our analysis reveals that TestNUC scales effectively with increasing amounts of unlabeled data and performs robustly across different embedding models, making it practical for real-world applications. Our code is available at https://github.com/HenryPengZou/TestNUC.
comment: Accepted by ACL 2025 main conference
♻ ☆ NeuSym-RAG: Hybrid Neural Symbolic Retrieval with Multiview Structuring for PDF Question Answering ACL 2025
The increasing number of academic papers poses significant challenges for researchers to efficiently acquire key details. While retrieval augmented generation (RAG) shows great promise in large language model (LLM) based automated question answering, previous works often isolate neural and symbolic retrieval despite their complementary strengths. Moreover, conventional single-view chunking neglects the rich structure and layout of PDFs, e.g., sections and tables. In this work, we propose NeuSym-RAG, a hybrid neural symbolic retrieval framework which combines both paradigms in an interactive process. By leveraging multi-view chunking and schema-based parsing, NeuSym-RAG organizes semi-structured PDF content into both the relational database and vectorstore, enabling LLM agents to iteratively gather context until sufficient to generate answers. Experiments on three full PDF-based QA datasets, including a self-annotated one AIRQA-REAL, show that NeuSym-RAG stably defeats both the vector-based RAG and various structured baselines, highlighting its capacity to unify both retrieval schemes and utilize multiple views. Code and data are publicly available at https://github.com/X-LANCE/NeuSym-RAG.
comment: 29 pages, 11 figures, 12 tables, accepted to ACL 2025 Long Main
♻ ☆ Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement ACL 2025
The rapid advancement of large language models (LLMs) has significantly enhanced the capabilities of AI-driven agents across various tasks. However, existing agentic systems, whether based on fixed pipeline algorithms or pre-defined meta-learning frameworks, cannot search the whole agent design space due to the restriction of human-designed components, and thus might miss the globally optimal agent design. In this paper, we introduce G\"odel Agent, a self-evolving framework inspired by the G\"odel machine, enabling agents to recursively improve themselves without relying on predefined routines or fixed optimization algorithms. G\"odel Agent leverages LLMs to dynamically modify its own logic and behavior, guided solely by high-level objectives through prompting. Experimental results on mathematical reasoning and complex agent tasks demonstrate that implementation of G\"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
comment: ACL 2025 main. The code can be found at https://github.com/Arvid-pku/Godel_Agent
♻ ☆ Fortune: Formula-Driven Reinforcement Learning for Symbolic Table Reasoning in Language Models
Tables are a fundamental structure for organizing and analyzing data, making effective table understanding a critical capability for intelligent systems. While large language models (LMs) demonstrate strong general reasoning abilities, they continue to struggle with accurate numerical or symbolic reasoning over tabular data, especially in complex scenarios. Spreadsheet formulas provide a powerful and expressive medium for representing executable symbolic operations, encoding rich reasoning patterns that remain largely underutilized. In this paper, we propose Formula Tuning (Fortune), a reinforcement learning (RL) framework that trains LMs to generate executable spreadsheet formulas for question answering over general tabular data. Formula Tuning reduces the reliance on supervised formula annotations by using binary answer correctness as a reward signal, guiding the model to learn formula derivation through reasoning. We provide a theoretical analysis of its advantages and demonstrate its effectiveness through extensive experiments on seven table reasoning benchmarks. Formula Tuning substantially enhances LM performance, particularly on multi-step numerical and symbolic reasoning tasks, enabling a 7B model to outperform OpenAI o1 on table understanding. This highlights the potential of formula-driven RL to advance symbolic table reasoning in LMs.
♻ ☆ Practical Adversarial Attacks on Stochastic Bandits via Fake Data Injection
Adversarial attacks on stochastic bandits have traditionally relied on some unrealistic assumptions, such as per-round reward manipulation and unbounded perturbations, limiting their relevance to real-world systems. We propose a more practical threat model, Fake Data Injection, which reflects realistic adversarial constraints: the attacker can inject only a limited number of bounded fake feedback samples into the learner's history, simulating legitimate interactions. We design efficient attack strategies under this model, explicitly addressing both magnitude constraints (on reward values) and temporal constraints (on when and how often data can be injected). Our theoretical analysis shows that these attacks can mislead both Upper Confidence Bound (UCB) and Thompson Sampling algorithms into selecting a target arm in nearly all rounds while incurring only sublinear attack cost. Experiments on synthetic and real-world datasets validate the effectiveness of our strategies, revealing significant vulnerabilities in widely used stochastic bandit algorithms under practical adversarial scenarios.
♻ ☆ Odyssey: Empowering Minecraft Agents with Open-World Skills
Recent studies have delved into constructing generalist agents for open-world environments like Minecraft. Despite the encouraging results, existing efforts mainly focus on solving basic programmatic tasks, e.g., material collection and tool-crafting following the Minecraft tech-tree, treating the ObtainDiamond task as the ultimate goal. This limitation stems from the narrowly defined set of actions available to agents, requiring them to learn effective long-horizon strategies from scratch. Consequently, discovering diverse gameplay opportunities in the open world becomes challenging. In this work, we introduce Odyssey, a new framework that empowers Large Language Model (LLM)-based agents with open-world skills to explore the vast Minecraft world. Odyssey comprises three key parts: (1) An interactive agent with an open-world skill library that consists of 40 primitive skills and 183 compositional skills. (2) A fine-tuned LLaMA-3 model trained on a large question-answering dataset with 390k+ instruction entries derived from the Minecraft Wiki. (3) A new agent capability benchmark includes the long-term planning task, the dynamic-immediate planning task, and the autonomous exploration task. Extensive experiments demonstrate that the proposed Odyssey framework can effectively evaluate different capabilities of LLM-based agents. All datasets, model weights, and code are publicly available to motivate future research on more advanced autonomous agent solutions.
♻ ☆ The Hitchhiker's Guide to Program Analysis, Part II: Deep Thoughts by LLMs
Static analysis plays a crucial role in software vulnerability detection, yet faces a persistent precision-scalability tradeoff. In large codebases like the Linux kernel, traditional static analysis tools often generate excessive false positives due to simplified vulnerability modeling and overapproximation of path and data constraints. While large language models (LLMs) demonstrate promising code understanding capabilities, their direct application to program analysis remains unreliable due to inherent reasoning limitations. We introduce BugLens, a post-refinement framework that significantly enhances static analysis precision for bug detection. BugLens guides LLMs through structured reasoning steps to assess security impact and validate constraints from the source code. When evaluated on Linux kernel taint-style bugs detected by static analysis tools, BugLens improves precision approximately 7-fold (from 0.10 to 0.72), substantially reducing false positives while uncovering four previously unreported vulnerabilities. Our results demonstrate that a well-structured, fully automated LLM-based workflow can effectively complement and enhance traditional static analysis techniques.
♻ ☆ Context-Robust Knowledge Editing for Language Models ACL 2025
Knowledge editing (KE) methods offer an efficient way to modify knowledge in large language models. Current KE evaluations typically assess editing success by considering only the edited knowledge without any preceding contexts. In real-world applications, however, preceding contexts often trigger the retrieval of the original knowledge and undermine the intended edit. To address this issue, we develop CHED -- a benchmark designed to evaluate the context robustness of KE methods. Evaluations on CHED show that they often fail when preceding contexts are present. To mitigate this shortcoming, we introduce CoRE, a KE method designed to strengthen context robustness by minimizing context-sensitive variance in hidden states of the model for edited knowledge. This method not only improves the editing success rate in situations where a preceding context is present but also preserves the overall capabilities of the model. We provide an in-depth analysis of the differing impacts of preceding contexts when introduced as user utterances versus assistant responses, and we dissect attention-score patterns to assess how specific tokens influence editing success.
comment: ACL 2025 Findings. Our code and datasets are available at https://github.com/holi-lab/CoRE
♻ ☆ View-Invariant Policy Learning via Zero-Shot Novel View Synthesis
Large-scale visuomotor policy learning is a promising approach toward developing generalizable manipulation systems. Yet, policies that can be deployed on diverse embodiments, environments, and observational modalities remain elusive. In this work, we investigate how knowledge from large-scale visual data of the world may be used to address one axis of variation for generalizable manipulation: observational viewpoint. Specifically, we study single-image novel view synthesis models, which learn 3D-aware scene-level priors by rendering images of the same scene from alternate camera viewpoints given a single input image. For practical application to diverse robotic data, these models must operate zero-shot, performing view synthesis on unseen tasks and environments. We empirically analyze view synthesis models within a simple data-augmentation scheme that we call View Synthesis Augmentation (VISTA) to understand their capabilities for learning viewpoint-invariant policies from single-viewpoint demonstration data. Upon evaluating the robustness of policies trained with our method to out-of-distribution camera viewpoints, we find that they outperform baselines in both simulated and real-world manipulation tasks. Videos and additional visualizations are available at https://s-tian.github.io/projects/vista.
comment: Accepted to CoRL 2024
♻ ☆ Generating Plausible Distractors for Multiple-Choice Questions via Student Choice Prediction ACL 2025
In designing multiple-choice questions (MCQs) in education, creating plausible distractors is crucial for identifying students' misconceptions and gaps in knowledge and accurately assessing their understanding. However, prior studies on distractor generation have not paid sufficient attention to enhancing the difficulty of distractors, resulting in reduced effectiveness of MCQs. This study presents a pipeline for training a model to generate distractors that are more likely to be selected by students. First, we train a pairwise ranker to reason about students' misconceptions and assess the relative plausibility of two distractors. Using this model, we create a dataset of pairwise distractor ranks and then train a distractor generator via Direct Preference Optimization (DPO) to generate more plausible distractors. Experiments on computer science subjects (Python, DB, MLDL) demonstrate that our pairwise ranker effectively identifies students' potential misunderstandings and achieves ranking accuracy comparable to human experts. Furthermore, our distractor generator outperforms several baselines in generating plausible distractors and produces questions with a higher item discrimination index (DI).
comment: This paper has been accepted for publication at ACL 2025
♻ ☆ KnowCoder-X: Boosting Multilingual Information Extraction via Code ACL 2025
Empirical evidence indicates that LLMs exhibit spontaneous cross-lingual alignment. However, although LLMs show promising cross-lingual alignment in Information Extraction (IE), a significant imbalance across languages persists, highlighting an underlying deficiency. To address this, we propose KnowCoder-X, a powerful code LLM with advanced cross-lingual and multilingual capabilities for universal IE. Firstly, it standardizes the representation of multilingual schemas using Python classes, ensuring a consistent ontology across different languages. Then, IE across languages is formulated as a unified code generation task. Secondly, we conduct IE cross-lingual alignment instruction tuning on the translated instance prediction task to enhance the model's cross-lingual transferability. During this phase, we also construct a high-quality and diverse bilingual IE parallel dataset with 257k samples, called ParallelNER, synthesized by our proposed robust three-stage pipeline, with manual annotation to ensure quality. Although without training in 29 unseen languages, KnowCoder-X surpasses ChatGPT by 30.17\% and SoTA by 20.03\%, thereby demonstrating superior cross-lingual IE capabilities. Comprehensive evaluations on 64 IE benchmarks in Chinese and English under various settings demonstrate that KnowCoder-X significantly enhances cross-lingual IE transfer through boosting the IE alignment. Our code and dataset are available at: https://github.com/ICT-GoKnow/KnowCoder
comment: ACL 2025 Findings
♻ ☆ Modeling and Optimizing User Preferences in AI Copilots: A Comprehensive Survey and Taxonomy
AI copilots represent a new generation of AI-powered systems designed to assist users, particularly knowledge workers and developers, in complex, context-rich tasks. As these systems become more embedded in daily workflows, personalization has emerged as a critical factor for improving usability, effectiveness, and user satisfaction. Central to this personalization is preference optimization: the system's ability to detect, interpret, and align with individual user preferences. While prior work in intelligent assistants and optimization algorithms is extensive, their intersection within AI copilots remains underexplored. This survey addresses that gap by examining how user preferences are operationalized in AI copilots. We investigate how preference signals are sourced, modeled across different interaction stages, and refined through feedback loops. Building on a comprehensive literature review, we define the concept of an AI copilot and introduce a taxonomy of preference optimization techniques across pre-, mid-, and post-interaction phases. Each technique is evaluated in terms of advantages, limitations, and design implications. By consolidating fragmented efforts across AI personalization, human-AI interaction, and language model adaptation, this work offers both a unified conceptual foundation and a practical design perspective for building user-aligned, persona-aware AI copilots that support end-to-end adaptability and deployment.
♻ ☆ KVTuner: Sensitivity-Aware Layer-Wise Mixed-Precision KV Cache Quantization for Efficient and Nearly Lossless LLM Inference ICML25
KV cache quantization can improve Large Language Models (LLMs) inference throughput and latency in long contexts and large batch-size scenarios while preserving LLMs effectiveness. However, current methods have three unsolved issues: overlooking layer-wise sensitivity to KV cache quantization, high overhead of online fine-grained decision-making, and low flexibility to different LLMs and constraints. Therefore, we theoretically analyze the inherent correlation of layer-wise transformer attention patterns to KV cache quantization errors and study why key cache is generally more important than value cache for quantization error reduction. We further propose a simple yet effective framework KVTuner to adaptively search for the optimal hardware-friendly layer-wise KV quantization precision pairs for coarse-grained KV cache with multi-objective optimization and directly utilize the offline searched configurations during online inference. To reduce the computational cost of offline calibration, we utilize the intra-layer KV precision pair pruning and inter-layer clustering to reduce the search space. Experimental results show that we can achieve nearly lossless 3.25-bit mixed precision KV cache quantization for LLMs like Llama-3.1-8B-Instruct and 4.0-bit for sensitive models like Qwen2.5-7B-Instruct on mathematical reasoning tasks. The maximum inference throughput can be improved by 21.25\% compared with KIVI-KV8 quantization over various context lengths. Our code and searched configurations are available at https://github.com/cmd2001/KVTuner.
comment: Accepted by ICML25. Code: https://github.com/cmd2001/KVTuner
♻ ☆ AtmosSci-Bench: Evaluating the Recent Advance of Large Language Model for Atmospheric Science
The rapid advancements in large language models (LLMs), particularly in their reasoning capabilities, hold transformative potential for addressing complex challenges in atmospheric science. However, leveraging LLMs effectively in this domain requires a robust and comprehensive evaluation benchmark. Toward this end, we present AtmosSci-Bench, a novel benchmark designed to systematically assess LLM performance across five core categories of atmospheric science problems: hydrology, atmospheric dynamics, atmospheric physics, geophysics, and physical oceanography. AtmosSci-Bench features a dual-format design comprising both multiple-choice questions (MCQs) and open-ended questions (OEQs), enabling scalable automated evaluation alongside deeper analysis of conceptual understanding. We employ a template-based MCQ generation framework to create diverse, graduate-level problems with symbolic perturbation, while OEQs are used to probe open-ended reasoning. We conduct a comprehensive evaluation of representative LLMs, categorized into four groups: instruction-tuned models, advanced reasoning models, math-augmented models, and domain-specific climate models. Our analysis provides some interesting insights into the reasoning and problem-solving capabilities of LLMs in atmospheric science. We believe AtmosSci-Bench can serve as a critical step toward advancing LLM applications in climate service by offering a standard and rigorous evaluation framework. Our source codes are currently available at Our source codes are currently available at https://github.com/Relaxed-System-Lab/AtmosSci-Bench.
comment: 33 pages, 4 figures, 7 tables
♻ ☆ Homophily Enhanced Graph Domain Adaptation ICML2025
Graph Domain Adaptation (GDA) transfers knowledge from labeled source graphs to unlabeled target graphs, addressing the challenge of label scarcity. In this paper, we highlight the significance of graph homophily, a pivotal factor for graph domain alignment, which, however, has long been overlooked in existing approaches. Specifically, our analysis first reveals that homophily discrepancies exist in benchmarks. Moreover, we also show that homophily discrepancies degrade GDA performance from both empirical and theoretical aspects, which further underscores the importance of homophily alignment in GDA. Inspired by this finding, we propose a novel homophily alignment algorithm that employs mixed filters to smooth graph signals, thereby effectively capturing and mitigating homophily discrepancies between graphs. Experimental results on a variety of benchmarks verify the effectiveness of our method.
comment: Accepted at ICML2025
♻ ☆ SAFEPATH: Preventing Harmful Reasoning in Chain-of-Thought via Early Alignment
Large Reasoning Models (LRMs) have become powerful tools for complex problem solving, but their structured reasoning pathways can lead to unsafe outputs when exposed to harmful prompts. Existing safety alignment methods reduce harmful outputs but can degrade reasoning depth, leading to significant trade-offs in complex, multi-step tasks, and remain vulnerable to sophisticated jailbreak attacks. To address this, we introduce SAFEPATH, a lightweight alignment method that fine-tunes LRMs to emit a short, 8-token Safety Primer at the start of their reasoning, in response to harmful prompts, while leaving the rest of the reasoning process unsupervised. Empirical results across multiple benchmarks indicate that SAFEPATH effectively reduces harmful outputs while maintaining reasoning performance. Specifically, SAFEPATH reduces harmful responses by up to 90.0% and blocks 83.3% of jailbreak attempts in the DeepSeek-R1-Distill-Llama-8B model, while requiring 295.9x less compute than Direct Refusal and 314.1x less than SafeChain. We further introduce a zero-shot variant that requires no fine-tuning. In addition, we provide a comprehensive analysis of how existing methods in LLMs generalize, or fail, when applied to reasoning-centric models, revealing critical gaps and new directions for safer AI.
comment: Code and models are available at https://ai-isl.github.io/safepath
♻ ☆ SD$^2$: Self-Distilled Sparse Drafters
Speculative decoding is a powerful technique for reducing the latency of Large Language Models (LLMs), offering a fault-tolerant framework that enables the use of highly compressed draft models. In this work, we introduce Self-Distilled Sparse Drafters (SD$^2$), a novel methodology that leverages self-data distillation and fine-grained weight sparsity to produce highly efficient and well-aligned draft models. SD$^2$ systematically enhances draft token acceptance rates while significantly reducing Multiply-Accumulate operations (MACs), even in the Universal Assisted Generation (UAG) setting, where draft and target models originate from different model families. On a Llama-3.1-70B target model, SD$^2$ provides a 1.59$\times$ higher Mean Accepted Length (MAL) compared to layer-pruned draft models and reduces MACs by over 43.87% with a 8.36% reduction in MAL compared to a dense draft models. Our 1.5B and 3B unstructured sparse drafters outperform both dense and layer-pruned models in terms of end-to-end latency improvements; highlighting the potential of sparsity-aware fine-tuning and compression strategies to improve LLM inference efficiency while maintaining alignment with target models.
comment: 24 pages
♻ ☆ Astute RAG: Overcoming Imperfect Retrieval Augmentation and Knowledge Conflicts for Large Language Models ACL 2025
Retrieval augmented generation (RAG), while effectively integrating external knowledge to address the inherent limitations of large language models (LLMs), can be hindered by imperfect retrieval that contain irrelevant, misleading, or even malicious information. Previous studies have rarely connected the behavior of RAG through joint analysis, particularly regarding error propagation coming from imperfect retrieval and potential conflicts between LLMs' internal knowledge and external sources. Through comprehensive and controlled analyses under realistic conditions, we find that imperfect retrieval augmentation is inevitable, common, and harmful. We identify the knowledge conflicts between LLM-internal and external knowledge from retrieval as a bottleneck to overcome imperfect retrieval in the post-retrieval stage of RAG. To address this, we propose Astute RAG, a novel RAG approach designed to be resilient to imperfect retrieval augmentation. It adaptively elicits essential information from LLMs' internal knowledge, iteratively consolidates internal and external knowledge with source-awareness, and finalizes the answer according to information reliability. Our experiments with Gemini and Claude demonstrate the superior performance of Astute RAG compared to previous robustness-enhanced RAG approaches. Specifically, Astute RAG is the only RAG method that achieves performance comparable to or even surpassing conventional use of LLMs under the worst-case scenario. Further analysis reveals the effectiveness of Astute RAG in resolving knowledge conflicts, thereby improving the trustworthiness of RAG.
comment: ACL 2025 main conference
♻ ☆ Task-Optimized Convolutional Recurrent Networks Align with Tactile Processing in the Rodent Brain
Tactile sensing remains far less understood in neuroscience and less effective in artificial systems compared to more mature modalities such as vision and language. We bridge these gaps by introducing a novel Encoder-Attender-Decoder (EAD) framework to systematically explore the space of task-optimized temporal neural networks trained on realistic tactile input sequences from a customized rodent whisker-array simulator. We identify convolutional recurrent neural networks (ConvRNNs) as superior encoders to purely feedforward and state-space architectures for tactile categorization. Crucially, these ConvRNN-encoder-based EAD models achieve neural representations closely matching rodent somatosensory cortex, saturating the explainable neural variability and revealing a clear linear relationship between supervised categorization performance and neural alignment. Furthermore, contrastive self-supervised ConvRNN-encoder-based EADs, trained with tactile-specific augmentations, match supervised neural fits, serving as an ethologically-relevant, label-free proxy. For neuroscience, our findings highlight nonlinear recurrent processing as important for general-purpose tactile representations in somatosensory cortex, providing the first quantitative characterization of the underlying inductive biases in this system. For embodied AI, our results emphasize the importance of recurrent EAD architectures to handle realistic tactile inputs, along with tailored self-supervised learning methods for achieving robust tactile perception with the same type of sensors animals use to sense in unstructured environments.
comment: 9 pages, 8 figures, 5 tables
♻ ☆ FragNet: A Graph Neural Network for Molecular Property Prediction with Four Levels of Interpretability
Molecular property prediction is essential in a variety of contemporary scientific fields, such as drug development and designing energy storage materials. Although there are many machine learning models available for this purpose, those that achieve high accuracy while also offering interpretability of predictions are uncommon. We present a graph neural network that not only matches the prediction accuracies of leading models but also provides insights on four levels of molecular substructures. This model helps identify which atoms, bonds, molecular fragments, and connections between fragments are significant for predicting a specific molecular property. Understanding the importance of connections between fragments is particularly valuable for molecules with substructures that do not connect through standard bonds. The model additionally can quantify the impact of specific fragments on the prediction, allowing the identification of fragments that may improve or degrade a property value. These interpretable features are essential for deriving scientific insights from the model's learned relationships between molecular structures and properties.
♻ ☆ LETS-C: Leveraging Text Embedding for Time Series Classification ACL 2025
Recent advancements in language modeling have shown promising results when applied to time series data. In particular, fine-tuning pre-trained large language models (LLMs) for time series classification tasks has achieved state-of-the-art (SOTA) performance on standard benchmarks. However, these LLM-based models have a significant drawback due to the large model size, with the number of trainable parameters in the millions. In this paper, we propose an alternative approach to leveraging the success of language modeling in the time series domain. Instead of fine-tuning LLMs, we utilize a text embedding model to embed time series and then pair the embeddings with a simple classification head composed of convolutional neural networks (CNN) and multilayer perceptron (MLP). We conducted extensive experiments on a well-established time series classification benchmark. We demonstrated LETS-C not only outperforms the current SOTA in classification accuracy but also offers a lightweight solution, using only 14.5% of the trainable parameters on average compared to the SOTA model. Our findings suggest that leveraging text embedding models to encode time series data, combined with a simple yet effective classification head, offers a promising direction for achieving high-performance time series classification while maintaining a lightweight model architecture.
comment: ACL 2025 (Main Conference)
♻ ☆ InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts
Understanding infographic charts with design-driven visual elements (e.g., pictograms, icons) requires both visual recognition and reasoning, posing challenges for multimodal large language models (MLLMs). However, existing visual-question answering benchmarks fall short in evaluating these capabilities of MLLMs due to the lack of paired plain charts and visual-element-based questions. To bridge this gap, we introduce InfoChartQA, a benchmark for evaluating MLLMs on infographic chart understanding. It includes 5,642 pairs of infographic and plain charts, each sharing the same underlying data but differing in visual presentations. We further design visual-element-based questions to capture their unique visual designs and communicative intent. Evaluation of 20 MLLMs reveals a substantial performance decline on infographic charts, particularly for visual-element-based questions related to metaphors. The paired infographic and plain charts enable fine-grained error analysis and ablation studies, which highlight new opportunities for advancing MLLMs in infographic chart understanding. We release InfoChartQA at https://github.com/CoolDawnAnt/InfoChartQA.
♻ ☆ FMNet: Frequency-Assisted Mamba-Like Linear Attention Network for Camouflaged Object Detection
Camouflaged Object Detection (COD) is challenging due to the strong similarity between camouflaged objects and their surroundings, which complicates identification. Existing methods mainly rely on spatial local features, failing to capture global information, while Transformers increase computational costs. To address this, the Frequency-Assisted Mamba-Like Linear Attention Network (FMNet) is proposed, which leverages frequency-domain learning to efficiently capture global features and mitigate ambiguity between objects and the background. FMNet introduces the Multi-Scale Frequency-Assisted Mamba-Like Linear Attention (MFM) module, integrating frequency and spatial features through a multi-scale structure to handle scale variations while reducing computational complexity. Additionally, the Pyramidal Frequency Attention Extraction (PFAE) module and the Frequency Reverse Decoder (FRD) enhance semantics and reconstruct features. Experimental results demonstrate that FMNet outperforms existing methods on multiple COD datasets, showcasing its advantages in both performance and efficiency. Code available at https://github.com/Chranos/FMNet.
♻ ☆ Don't Miss the Forest for the Trees: Attentional Vision Calibration for Large Vision Language Models ACL 2025
Large Vision Language Models (LVLMs) demonstrate strong capabilities in visual understanding and description, yet often suffer from hallucinations, attributing incorrect or misleading features to images. We observe that LVLMs disproportionately focus on a small subset of image tokens--termed blind tokens--which are typically irrelevant to the query (e.g., background or non-object regions). We hypothesize that such attention misalignment plays a key role in generating hallucinated responses. To mitigate this issue, we propose Attentional Vision Calibration (AvisC), a test-time approach that dynamically recalibrates the influence of blind tokens without modifying the underlying attention mechanism. AvisC first identifies blind tokens by analyzing layer-wise attention distributions over image tokens, then employs a contrastive decoding strategy to balance the influence of original and blind-token-biased logits. Experiments on standard benchmarks, including POPE, MME, and AMBER, demonstrate that AvisC effectively reduces hallucinations in LVLMs.
comment: ACL 2025 Findings; Project: https://sangminwoo.github.io/AvisC/
♻ ☆ GSO: Challenging Software Optimization Tasks for Evaluating SWE-Agents
Developing high-performance software is a complex task that requires specialized expertise. We introduce GSO, a benchmark for evaluating language models' capabilities in developing high-performance software. We develop an automated pipeline that generates and executes performance tests to analyze repository commit histories to identify 102 challenging optimization tasks across 10 codebases, spanning diverse domains and programming languages. An agent is provided with a codebase and performance test as a precise specification, and tasked to improve the runtime efficiency, which is measured against the expert developer optimization. Our quantitative evaluation reveals that leading SWE-Agents struggle significantly, achieving less than 5% success rate, with limited improvements even with inference-time scaling. Our qualitative analysis identifies key failure modes, including difficulties with low-level languages, practicing lazy optimization strategies, and challenges in accurately localizing bottlenecks. We release the code and artifacts of our benchmark along with agent trajectories to enable future research.
comment: Website: https://gso-bench.github.io/
♻ ☆ ExPerT: Effective and Explainable Evaluation of Personalized Long-Form Text Generation
Evaluating personalized text generated by large language models (LLMs) is challenging, as only the LLM user, i.e., prompt author, can reliably assess the output, but re-engaging the same individuals across studies is infeasible. This paper addresses the challenge of evaluating personalized text generation by introducing ExPerT, an explainable reference-based evaluation framework. ExPerT leverages an LLM to extract atomic aspects and their evidence from the generated and reference texts, match the aspects, and evaluate their alignment based on content and writing style -- two key attributes in personalized text generation. Additionally, ExPerT generates detailed, fine-grained explanations for every step of the evaluation process, enhancing transparency and interpretability. Our experiments demonstrate that ExPerT achieves a 7.2% relative improvement in alignment with human judgments compared to the state-of-the-art text generation evaluation methods. Furthermore, human evaluators rated the usability of ExPerT's explanations at 4.7 out of 5, highlighting its effectiveness in making evaluation decisions more interpretable.
♻ ☆ Dialogue Systems for Emotional Support via Value Reinforcement ACL 2025
Emotional support dialogue systems aim to reduce help-seekers' distress and help them overcome challenges. While human values$\unicode{x2013}$core beliefs that shape an individual's priorities$\unicode{x2013}$are increasingly emphasized in contemporary psychological therapy for their role in fostering internal transformation and long-term emotional well-being, their integration into emotional support systems remains underexplored. To bridge this gap, we present a value-driven method for training emotional support dialogue systems designed to reinforce positive values in seekers. Notably, our model identifies which values to reinforce at each turn and how to do so, by leveraging online support conversations from Reddit. We evaluate the method across support skills, seekers' emotional intensity, and value reinforcement. Our method consistently outperforms various baselines, effectively exploring and eliciting values from seekers. Additionally, leveraging crowd knowledge from Reddit significantly enhances its effectiveness. Therapists highlighted its ability to validate seekers' challenges and emphasize positive aspects of their situations$\unicode{x2013}$both crucial elements of value reinforcement. Our work, being the first to integrate value reinforcement into emotional support systems, demonstrates its promise and establishes a foundation for future research.
comment: This paper has been accepted for publication at ACL 2025
♻ ☆ Unexplainability of Artificial Intelligence Judgments in Kant's Perspective
Kant's Critique of Pure Reason, a major contribution to the history of epistemology, proposes a table of categories to elucidate the structure of the a priori principles underlying human judgment. Artificial intelligence (AI) technology, grounded in functionalism, claims to simulate or replicate human judgment. To evaluate this claim, it is necessary to examine whether AI judgments exhibit the essential characteristics of human judgment. This paper investigates the unexplainability of AI judgments through the lens of Kant's theory of judgment. Drawing on Kant's four logical forms-quantity, quality, relation, and modality-this study identifies what may be called AI's uncertainty, a condition in which different forms of judgment become entangled. In particular, with regard to modality, this study argues that the SoftMax function forcibly reframes AI judgments as possibility judgments. Furthermore, since complete definitions in natural language are impossible, words are, by their very nature, ultimately unexplainable; therefore, a fully complete functional implementation is theoretically unattainable.
comment: 8 pages, 1 figure
♻ ☆ "Cold, Calculated, and Condescending": How AI Identifies and Explains Ableism Compared to Disabled People
People with disabilities (PwD) regularly encounter ableist hate and microaggressions online. These spaces are generally moderated by machine learning models, but little is known about how effectively AI models identify ableist speech and how well their judgments align with PwD. To investigate this, we curated a first-of-its-kind dataset of 200 social media comments targeted towards PwD, and prompted state-of-the art AI models (i.e., Toxicity Classifiers, LLMs) to score toxicity and ableism for each comment, and explain their reasoning. Then, we recruited 190 participants to similarly rate and explain the harm, and evaluate LLM explanations. Our mixed-methods analysis highlighted a major disconnect: AI underestimated toxicity compared to PwD ratings, while its ableism assessments were sporadic and varied. Although LLMs identified some biases, its explanations were flawed--they lacked nuance, made incorrect assumptions, and appeared judgmental instead of educational. Going forward, we discuss challenges and opportunities in designing moderation systems for ableism, and advocate for the involvement of intersectional disabled perspectives in AI.
♻ ☆ Towards a Sharp Analysis of Offline Policy Learning for $f$-Divergence-Regularized Contextual Bandits
Although many popular reinforcement learning algorithms are underpinned by $f$-divergence regularization, their sample complexity with respect to the \emph{regularized objective} still lacks a tight characterization. In this paper, we analyze $f$-divergence-regularized offline policy learning. For reverse Kullback-Leibler (KL) divergence, arguably the most commonly used one, we give the first $\tilde{O}(\epsilon^{-1})$ sample complexity under single-policy concentrability for contextual bandits, surpassing existing $\tilde{O}(\epsilon^{-1})$ bound under all-policy concentrability and $\tilde{O}(\epsilon^{-2})$ bound under single-policy concentrability. Our analysis for general function approximation leverages the principle of pessimism in the face of uncertainty to refine a mean-value-type argument to its extreme. This in turn leads to a novel moment-based technique, effectively bypassing the need for uniform control over the discrepancy between any two functions in the function class. We further propose a lower bound, demonstrating that a multiplicative dependency on single-policy concentrability is necessary to maximally exploit the strong convexity of reverse KL. In addition, for $f$-divergences with strongly convex $f$, to which reverse KL \emph{does not} belong, we show that the sharp sample complexity $\tilde{\Theta}(\epsilon^{-1})$ is achievable even without single-policy concentrability. In this case, the algorithm design can get rid of pessimistic estimators. We further extend our analysis to dueling bandits, and we believe these results take a significant step toward a comprehensive understanding of $f$-divergence-regularized policy learning.
comment: 38 pages
Graphics 2
♻ ☆ LayerCraft: Enhancing Text-to-Image Generation with CoT Reasoning and Layered Object Integration
Text-to-image (T2I) generation has made remarkable progress, yet existing systems still lack intuitive control over spatial composition, object consistency, and multi-step editing. We present $\textbf{LayerCraft}$, a modular framework that uses large language models (LLMs) as autonomous agents to orchestrate structured, layered image generation and editing. LayerCraft supports two key capabilities: (1) $\textit{structured generation}$ from simple prompts via chain-of-thought (CoT) reasoning, enabling it to decompose scenes, reason about object placement, and guide composition in a controllable, interpretable manner; and (2) $\textit{layered object integration}$, allowing users to insert and customize objects -- such as characters or props -- across diverse images or scenes while preserving identity, context, and style. The system comprises a coordinator agent, the $\textbf{ChainArchitect}$ for CoT-driven layout planning, and the $\textbf{Object Integration Network (OIN)}$ for seamless image editing using off-the-shelf T2I models without retraining. Through applications like batch collage editing and narrative scene generation, LayerCraft empowers non-experts to iteratively design, customize, and refine visual content with minimal manual effort. Code will be released at https://github.com/PeterYYZhang/LayerCraft.
comment: 26 pages
♻ ☆ Controllable Satellite-to-Street-View Synthesis with Precise Pose Alignment and Zero-Shot Environmental Control
Generating street-view images from satellite imagery is a challenging task, particularly in maintaining accurate pose alignment and incorporating diverse environmental conditions. While diffusion models have shown promise in generative tasks, their ability to maintain strict pose alignment throughout the diffusion process is limited. In this paper, we propose a novel Iterative Homography Adjustment (IHA) scheme applied during the denoising process, which effectively addresses pose misalignment and ensures spatial consistency in the generated street-view images. Additionally, currently, available datasets for satellite-to-street-view generation are limited in their diversity of illumination and weather conditions, thereby restricting the generalizability of the generated outputs. To mitigate this, we introduce a text-guided illumination and weather-controlled sampling strategy that enables fine-grained control over the environmental factors. Extensive quantitative and qualitative evaluations demonstrate that our approach significantly improves pose accuracy and enhances the diversity and realism of generated street-view images, setting a new benchmark for satellite-to-street-view generation tasks.
Computer Vision 20
☆ Open CaptchaWorld: A Comprehensive Web-based Platform for Testing and Benchmarking Multimodal LLM Agents
CAPTCHAs have been a critical bottleneck for deploying web agents in real-world applications, often blocking them from completing end-to-end automation tasks. While modern multimodal LLM agents have demonstrated impressive performance in static perception tasks, their ability to handle interactive, multi-step reasoning challenges like CAPTCHAs is largely untested. To address this gap, we introduce Open CaptchaWorld, the first web-based benchmark and platform specifically designed to evaluate the visual reasoning and interaction capabilities of MLLM-powered agents through diverse and dynamic CAPTCHA puzzles. Our benchmark spans 20 modern CAPTCHA types, totaling 225 CAPTCHAs, annotated with a new metric we propose: CAPTCHA Reasoning Depth, which quantifies the number of cognitive and motor steps required to solve each puzzle. Experimental results show that humans consistently achieve near-perfect scores, state-of-the-art MLLM agents struggle significantly, with success rates at most 40.0% by Browser-Use Openai-o3, far below human-level performance, 93.3%. This highlights Open CaptchaWorld as a vital benchmark for diagnosing the limits of current multimodal agents and guiding the development of more robust multimodal reasoning systems. Code and Data are available at this https URL.
comment: Code at: https://github.com/MetaAgentX/OpenCaptchaWorld
☆ AdaHuman: Animatable Detailed 3D Human Generation with Compositional Multiview Diffusion
Existing methods for image-to-3D avatar generation struggle to produce highly detailed, animation-ready avatars suitable for real-world applications. We introduce AdaHuman, a novel framework that generates high-fidelity animatable 3D avatars from a single in-the-wild image. AdaHuman incorporates two key innovations: (1) A pose-conditioned 3D joint diffusion model that synthesizes consistent multi-view images in arbitrary poses alongside corresponding 3D Gaussian Splats (3DGS) reconstruction at each diffusion step; (2) A compositional 3DGS refinement module that enhances the details of local body parts through image-to-image refinement and seamlessly integrates them using a novel crop-aware camera ray map, producing a cohesive detailed 3D avatar. These components allow AdaHuman to generate highly realistic standardized A-pose avatars with minimal self-occlusion, enabling rigging and animation with any input motion. Extensive evaluation on public benchmarks and in-the-wild images demonstrates that AdaHuman significantly outperforms state-of-the-art methods in both avatar reconstruction and reposing. Code and models will be publicly available for research purposes.
comment: Website: https://nvlabs.github.io/AdaHuman
♻ ☆ ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS
Feed-forward 3D Gaussian Splatting (3DGS) models have recently emerged as a promising solution for novel view synthesis, enabling one-pass inference without the need for per-scene 3DGS optimization. However, their scalability is fundamentally constrained by the limited capacity of their encoders, leading to degraded performance or excessive memory consumption as the number of input views increases. In this work, we analyze feed-forward 3DGS frameworks through the lens of the Information Bottleneck principle and introduce ZPressor, a lightweight architecture-agnostic module that enables efficient compression of multi-view inputs into a compact latent state $Z$ that retains essential scene information while discarding redundancy. Concretely, ZPressor enables existing feed-forward 3DGS models to scale to over 100 input views at 480P resolution on an 80GB GPU, by partitioning the views into anchor and support sets and using cross attention to compress the information from the support views into anchor views, forming the compressed latent state $Z$. We show that integrating ZPressor into several state-of-the-art feed-forward 3DGS models consistently improves performance under moderate input views and enhances robustness under dense view settings on two large-scale benchmarks DL3DV-10K and RealEstate10K. The video results, code and trained models are available on our project page: https://lhmd.top/zpressor.
comment: Project Page: https://lhmd.top/zpressor, Code: https://github.com/ziplab/ZPressor
♻ ☆ OpenUni: A Simple Baseline for Unified Multimodal Understanding and Generation
In this report, we present OpenUni, a simple, lightweight, and fully open-source baseline for unifying multimodal understanding and generation. Inspired by prevailing practices in unified model learning, we adopt an efficient training strategy that minimizes the training complexity and overhead by bridging the off-the-shelf multimodal large language models (LLMs) and diffusion models through a set of learnable queries and a light-weight transformer-based connector. With a minimalist choice of architecture, we demonstrate that OpenUni can: 1) generate high-quality and instruction-aligned images, and 2) achieve exceptional performance on standard benchmarks such as GenEval, DPG- Bench, and WISE, with only 1.1B and 3.1B activated parameters. To support open research and community advancement, we release all model weights, training code, and our curated training datasets (including 23M image-text pairs) at https://github.com/wusize/OpenUni.
♻ ☆ Qwen Look Again: Guiding Vision-Language Reasoning Models to Re-attention Visual Information
Inference time scaling drives extended reasoning to enhance the performance of Vision-Language Models (VLMs), thus forming powerful Vision-Language Reasoning Models (VLRMs). However, long reasoning dilutes visual tokens, causing visual information to receive less attention and may trigger hallucinations. Although introducing text-only reflection processes shows promise in language models, we demonstrate that it is insufficient to suppress hallucinations in VLMs. To address this issue, we introduce Qwen-LookAgain (Qwen-LA), a novel VLRM designed to mitigate hallucinations by incorporating a vision-text reflection process that guides the model to re-attention visual information during reasoning. We first propose a reinforcement learning method Balanced Reflective Policy Optimization (BRPO), which guides the model to decide when to generate vision-text reflection on its own and balance the number and length of reflections. Then, we formally prove that VLRMs lose attention to visual tokens as reasoning progresses, and demonstrate that supplementing visual information during reflection enhances visual attention. Therefore, during training and inference, Visual Token COPY and Visual Token ROUTE are introduced to force the model to re-attention visual information at the visual level, addressing the limitations of text-only reflection. Experiments on multiple visual QA datasets and hallucination metrics indicate that Qwen-LA achieves leading accuracy performance while reducing hallucinations. Our code is available at: https://github.com/Liar406/Look_Again
♻ ☆ Right Side Up? Disentangling Orientation Understanding in MLLMs with Fine-grained Multi-axis Perception Tasks
Object orientation understanding represents a fundamental challenge in visual perception critical for applications like robotic manipulation and augmented reality. Current vision-language benchmarks fail to isolate this capability, often conflating it with positional relationships and general scene understanding. We introduce DORI (Discriminative Orientation Reasoning Intelligence), a comprehensive benchmark establishing object orientation perception as a primary evaluation target. DORI assesses four dimensions of orientation comprehension: frontal alignment, rotational transformations, relative directional relationships, and canonical orientation understanding. Through carefully curated tasks from 11 datasets spanning 67 object categories across synthetic and real-world scenarios, DORI provides insights on how multi-modal systems understand object orientations. Our evaluation of 15 state-of-the-art vision-language models reveals critical limitations: even the best models achieve only 54.2% accuracy on coarse tasks and 33.0% on granular orientation judgments, with performance deteriorating for tasks requiring reference frame shifts or compound rotations. These findings demonstrate the need for dedicated orientation representation mechanisms, as models show systematic inability to perform precise angular estimations, track orientation changes across viewpoints, and understand compound rotations - suggesting limitations in their internal 3D spatial representations. As the first diagnostic framework specifically designed for orientation awareness in multimodal systems, DORI offers implications for improving robotic control, 3D scene reconstruction, and human-AI interaction in physical environments. DORI data: https://huggingface.co/datasets/appledora/DORI-Benchmark
♻ ☆ Are MLMs Trapped in the Visual Room?
Can multi-modal large models (MLMs) that can ``see'' an image be said to ``understand'' it? Drawing inspiration from Searle's Chinese Room, we propose the \textbf{Visual Room} argument: a system may process and describe every detail of visual inputs by following algorithmic rules, without genuinely comprehending the underlying intention. This dilemma challenges the prevailing assumption that perceptual mastery implies genuine understanding. In implementation, we introduce a two-tier evaluation framework spanning perception and cognition. The perception component evaluates whether MLMs can accurately capture the surface-level details of visual contents, where the cognitive component examines their ability to infer sarcasm polarity. To support this framework, We further introduce a high-quality multi-modal sarcasm dataset comprising both 924 static images and 100 dynamic videos. All sarcasm labels are annotated by the original authors and verified by independent reviewers to ensure clarity and consistency. We evaluate eight state-of-the-art (SoTA) MLMs. Our results highlight three key findings: (1) MLMs demonstrate high accuracy in visual perception; (2) even with correct perception, MLMs exhibit an average error rate of ~17.1\% in sarcasm understanding, revealing a significant gap between seeing and understanding; (3) this gap stems from weaknesses in context integration, emotional reasoning, and pragmatic inference. This work provides empirical grounding for the proposed Visual Room argument and offers a new evaluation paradigm for MLMs.
comment: 19 pages
♻ ☆ CraftsMan3D: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner
We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan
comment: HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan3D
♻ ☆ Enhancing Large Vision Model in Street Scene Semantic Understanding through Leveraging Posterior Optimization Trajectory
To improve the generalization of the autonomous driving (AD) perception model, vehicles need to update the model over time based on the continuously collected data. As time progresses, the amount of data fitted by the AD model expands, which helps to improve the AD model generalization substantially. However, such ever-expanding data is a double-edged sword for the AD model. Specifically, as the fitted data volume grows to exceed the the AD model's fitting capacities, the AD model is prone to under-fitting. To address this issue, we propose to use a pretrained Large Vision Models (LVMs) as backbone coupled with downstream perception head to understand AD semantic information. This design can not only surmount the aforementioned under-fitting problem due to LVMs' powerful fitting capabilities, but also enhance the perception generalization thanks to LVMs' vast and diverse training data. On the other hand, to mitigate vehicles' computational burden of training the perception head while running LVM backbone, we introduce a Posterior Optimization Trajectory (POT)-Guided optimization scheme (POTGui) to accelerate the convergence. Concretely, we propose a POT Generator (POTGen) to generate posterior (future) optimization direction in advance to guide the current optimization iteration, through which the model can generally converge within 10 epochs. Extensive experiments demonstrate that the proposed method improves the performance by over 66.48\% and converges faster over 6 times, compared to the existing state-of-the-art approach.
comment: 7 pages
♻ ☆ ART-DECO: Arbitrary Text Guidance for 3D Detailizer Construction
We introduce a 3D detailizer, a neural model which can instantaneously (in <1s) transform a coarse 3D shape proxy into a high-quality asset with detailed geometry and texture as guided by an input text prompt. Our model is trained using the text prompt, which defines the shape class and characterizes the appearance and fine-grained style of the generated details. The coarse 3D proxy, which can be easily varied and adjusted (e.g., via user editing), provides structure control over the final shape. Importantly, our detailizer is not optimized for a single shape; it is the result of distilling a generative model, so that it can be reused, without retraining, to generate any number of shapes, with varied structures, whose local details all share a consistent style and appearance. Our detailizer training utilizes a pretrained multi-view image diffusion model, with text conditioning, to distill the foundational knowledge therein into our detailizer via Score Distillation Sampling (SDS). To improve SDS and enable our detailizer architecture to learn generalizable features over complex structures, we train our model in two training stages to generate shapes with increasing structural complexity. Through extensive experiments, we show that our method generates shapes of superior quality and details compared to existing text-to-3D models under varied structure control. Our detailizer can refine a coarse shape in less than a second, making it possible to interactively author and adjust 3D shapes. Furthermore, the user-imposed structure control can lead to creative, and hence out-of-distribution, 3D asset generations that are beyond the current capabilities of leading text-to-3D generative models. We demonstrate an interactive 3D modeling workflow our method enables, and its strong generalizability over styles, structures, and object categories.
♻ ☆ RenderBender: A Survey on Adversarial Attacks Using Differentiable Rendering IJCAI '25
Differentiable rendering techniques like Gaussian Splatting and Neural Radiance Fields have become powerful tools for generating high-fidelity models of 3D objects and scenes. Their ability to produce both physically plausible and differentiable models of scenes are key ingredient needed to produce physically plausible adversarial attacks on DNNs. However, the adversarial machine learning community has yet to fully explore these capabilities, partly due to differing attack goals (e.g., misclassification, misdetection) and a wide range of possible scene manipulations used to achieve them (e.g., alter texture, mesh). This survey contributes the first framework that unifies diverse goals and tasks, facilitating easy comparison of existing work, identifying research gaps, and highlighting future directions - ranging from expanding attack goals and tasks to account for new modalities, state-of-the-art models, tools, and pipelines, to underscoring the importance of studying real-world threats in complex scenes.
comment: 9 pages, 1 figure, 2 tables, IJCAI '25 Survey Track
♻ ☆ MorphoSeg: An Uncertainty-Aware Deep Learning Method for Biomedical Segmentation of Complex Cellular Morphologies
Deep learning has revolutionized medical and biological imaging, particularly in segmentation tasks. However, segmenting biological cells remains challenging due to the high variability and complexity of cell shapes. Addressing this challenge requires high-quality datasets that accurately represent the diverse morphologies found in biological cells. Existing cell segmentation datasets are often limited by their focus on regular and uniform shapes. In this paper, we introduce a novel benchmark dataset of Ntera-2 (NT2) cells, a pluripotent carcinoma cell line, exhibiting diverse morphologies across multiple stages of differentiation, capturing the intricate and heterogeneous cellular structures that complicate segmentation tasks. To address these challenges, we propose an uncertainty-aware deep learning framework for complex cellular morphology segmentation (MorphoSeg) by incorporating sampling of virtual outliers from low-likelihood regions during training. Our comprehensive experimental evaluations against state-of-the-art baselines demonstrate that MorphoSeg significantly enhances segmentation accuracy, achieving up to a 7.74% increase in the Dice Similarity Coefficient (DSC) and a 28.36% reduction in the Hausdorff Distance. These findings highlight the effectiveness of our dataset and methodology in advancing cell segmentation capabilities, especially for complex and variable cell morphologies. The dataset and source code is publicly available at https://github.com/RanchoGoose/MorphoSeg.
♻ ☆ The Structural Safety Generalization Problem
LLM jailbreaks are a widespread safety challenge. Given this problem has not yet been tractable, we suggest targeting a key failure mechanism: the failure of safety to generalize across semantically equivalent inputs. We further focus the target by requiring desirable tractability properties of attacks to study: explainability, transferability between models, and transferability between goals. We perform red-teaming within this framework by uncovering new vulnerabilities to multi-turn, multi-image, and translation-based attacks. These attacks are semantically equivalent by our design to their single-turn, single-image, or untranslated counterparts, enabling systematic comparisons; we show that the different structures yield different safety outcomes. We then demonstrate the potential for this framework to enable new defenses by proposing a Structure Rewriting Guardrail, which converts an input to a structure more conducive to safety assessment. This guardrail significantly improves refusal of harmful inputs, without over-refusing benign ones. Thus, by framing this intermediate challenge - more tractable than universal defenses but essential for long-term safety - we highlight a critical milestone for AI safety research.
♻ ☆ EasyREG: Easy Depth-Based Markerless Registration and Tracking using Augmented Reality Device for Surgical Guidance
The use of Augmented Reality (AR) devices for surgical guidance has gained increasing traction in the medical field. Traditional registration methods often rely on external fiducial markers to achieve high accuracy and real-time performance. However, these markers introduce cumbersome calibration procedures and can be challenging to deploy in clinical settings. While commercial solutions have attempted real-time markerless tracking using the native RGB cameras of AR devices, their accuracy remains questionable for medical guidance, primarily due to occlusions and significant outliers between the live sensor data and the preoperative target anatomy point cloud derived from MRI or CT scans. In this work, we present a markerless framework that relies only on the depth sensor of AR devices and consists of two modules: a registration module for high-precision, outlier-robust target anatomy localization, and a tracking module for real-time pose estimation. The registration module integrates depth sensor error correction, a human-in-the-loop region filtering technique, and a robust global alignment with curvature-aware feature sampling, followed by local ICP refinement, for markerless alignment of preoperative models with patient anatomy. The tracking module employs a fast and robust registration algorithm that uses the initial pose from the registration module to estimate the target pose in real-time. We comprehensively evaluated the performance of both modules through simulation and real-world measurements. The results indicate that our markerless system achieves superior performance for registration and comparable performance for tracking to industrial solutions. The two-module design makes our system a one-stop solution for surgical procedures where the target anatomy moves or stays static during surgery.
♻ ☆ GSBA$^K$: $top$-$K$ Geometric Score-based Black-box Attack ICLR 2025
Existing score-based adversarial attacks mainly focus on crafting $top$-1 adversarial examples against classifiers with single-label classification. Their attack success rate and query efficiency are often less than satisfactory, particularly under small perturbation requirements; moreover, the vulnerability of classifiers with multi-label learning is yet to be studied. In this paper, we propose a comprehensive surrogate free score-based attack, named \b geometric \b score-based \b black-box \b attack (GSBA$^K$), to craft adversarial examples in an aggressive $top$-$K$ setting for both untargeted and targeted attacks, where the goal is to change the $top$-$K$ predictions of the target classifier. We introduce novel gradient-based methods to find a good initial boundary point to attack. Our iterative method employs novel gradient estimation techniques, particularly effective in $top$-$K$ setting, on the decision boundary to effectively exploit the geometry of the decision boundary. Additionally, GSBA$^K$ can be used to attack against classifiers with $top$-$K$ multi-label learning. Extensive experimental results on ImageNet and PASCAL VOC datasets validate the effectiveness of GSBA$^K$ in crafting $top$-$K$ adversarial examples.
comment: License changed to CC BY 4.0 to align with ICLR 2025. No changes to content. Published at: https://openreview.net/forum?id=htX7AoHyln
♻ ☆ FlashDepth: Real-time Streaming Video Depth Estimation at 2K Resolution
A versatile video depth estimation model should (1) be accurate and consistent across frames, (2) produce high-resolution depth maps, and (3) support real-time streaming. We propose FlashDepth, a method that satisfies all three requirements, performing depth estimation on a 2044x1148 streaming video at 24 FPS. We show that, with careful modifications to pretrained single-image depth models, these capabilities are enabled with relatively little data and training. We evaluate our approach across multiple unseen datasets against state-of-the-art depth models, and find that ours outperforms them in terms of boundary sharpness and speed by a significant margin, while maintaining competitive accuracy. We hope our model will enable various applications that require high-resolution depth, such as video editing, and online decision-making, such as robotics. We release all code and model weights at https://github.com/Eyeline-Research/FlashDepth
♻ ☆ Absolute Coordinates Make Motion Generation Easy
State-of-the-art text-to-motion generation models rely on the kinematic-aware, local-relative motion representation popularized by HumanML3D, which encodes motion relative to the pelvis and to the previous frame with built-in redundancy. While this design simplifies training for earlier generation models, it introduces critical limitations for diffusion models and hinders applicability to downstream tasks. In this work, we revisit the motion representation and propose a radically simplified and long-abandoned alternative for text-to-motion generation: absolute joint coordinates in global space. Through systematic analysis of design choices, we show that this formulation achieves significantly higher motion fidelity, improved text alignment, and strong scalability, even with a simple Transformer backbone and no auxiliary kinematic-aware losses. Moreover, our formulation naturally supports downstream tasks such as text-driven motion control and temporal/spatial editing without additional task-specific reengineering and costly classifier guidance generation from control signals. Finally, we demonstrate promising generalization to directly generate SMPL-H mesh vertices in motion from text, laying a strong foundation for future research and motion-related applications.
comment: Preprint
♻ ☆ HandCraft: Anatomically Correct Restoration of Malformed Hands in Diffusion Generated Images WACV
Generative text-to-image models, such as Stable Diffusion, have demonstrated a remarkable ability to generate diverse, high-quality images. However, they are surprisingly inept when it comes to rendering human hands, which are often anatomically incorrect or reside in the "uncanny valley". In this paper, we propose a method HandCraft for restoring such malformed hands. This is achieved by automatically constructing masks and depth images for hands as conditioning signals using a parametric model, allowing a diffusion-based image editor to fix the hand's anatomy and adjust its pose while seamlessly integrating the changes into the original image, preserving pose, color, and style. Our plug-and-play hand restoration solution is compatible with existing pretrained diffusion models, and the restoration process facilitates adoption by eschewing any fine-tuning or training requirements for the diffusion models. We also contribute MalHand datasets that contain generated images with a wide variety of malformed hands in several styles for hand detector training and hand restoration benchmarking, and demonstrate through qualitative and quantitative evaluation that HandCraft not only restores anatomical correctness but also maintains the integrity of the overall image.
comment: 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
♻ ☆ LaWa: Using Latent Space for In-Generation Image Watermarking ECCV 2024
With generative models producing high quality images that are indistinguishable from real ones, there is growing concern regarding the malicious usage of AI-generated images. Imperceptible image watermarking is one viable solution towards such concerns. Prior watermarking methods map the image to a latent space for adding the watermark. Moreover, Latent Diffusion Models (LDM) generate the image in the latent space of a pre-trained autoencoder. We argue that this latent space can be used to integrate watermarking into the generation process. To this end, we present LaWa, an in-generation image watermarking method designed for LDMs. By using coarse-to-fine watermark embedding modules, LaWa modifies the latent space of pre-trained autoencoders and achieves high robustness against a wide range of image transformations while preserving perceptual quality of the image. We show that LaWa can also be used as a general image watermarking method. Through extensive experiments, we demonstrate that LaWa outperforms previous works in perceptual quality, robustness against attacks, and computational complexity, while having very low false positive rate. Code is available here.
comment: Accepted to ECCV 2024
♻ ☆ GenHancer: Imperfect Generative Models are Secretly Strong Vision-Centric Enhancers
The synergy between generative and discriminative models receives growing attention. While discriminative Contrastive Language-Image Pre-Training (CLIP) excels in high-level semantics, it struggles with perceiving fine-grained visual details. Generally, to enhance representations, generative models take CLIP's visual features as conditions for reconstruction. However, the underlying principle remains underexplored. In this work, we empirically found that visually perfect generations are not always optimal for representation enhancement. The essence lies in effectively extracting fine-grained knowledge from generative models while mitigating irrelevant information. To explore critical factors, we delve into three aspects: (1) Conditioning mechanisms: We found that even a small number of local tokens can drastically reduce the difficulty of reconstruction, leading to collapsed training. We thus conclude that utilizing only global visual tokens as conditions is the most effective strategy. (2) Denoising configurations: We observed that end-to-end training introduces extraneous information. To address this, we propose a two-stage training strategy to prioritize learning useful visual knowledge. Additionally, we demonstrate that lightweight denoisers can yield remarkable improvements. (3) Generation paradigms: We explore both continuous and discrete denoisers with desirable outcomes, validating the versatility of our method. Through our in-depth explorations, we have finally arrived at an effective method, namely GenHancer, which consistently outperforms prior arts on the MMVP-VLM benchmark, e.g., 6.0% on OpenAICLIP. The enhanced CLIP can be further plugged into multimodal large language models for better vision-centric performance. All the models and codes are made publicly available.
comment: Project released at: https://mashijie1028.github.io/GenHancer/
Artificial Intelligence 65
☆ Open CaptchaWorld: A Comprehensive Web-based Platform for Testing and Benchmarking Multimodal LLM Agents
CAPTCHAs have been a critical bottleneck for deploying web agents in real-world applications, often blocking them from completing end-to-end automation tasks. While modern multimodal LLM agents have demonstrated impressive performance in static perception tasks, their ability to handle interactive, multi-step reasoning challenges like CAPTCHAs is largely untested. To address this gap, we introduce Open CaptchaWorld, the first web-based benchmark and platform specifically designed to evaluate the visual reasoning and interaction capabilities of MLLM-powered agents through diverse and dynamic CAPTCHA puzzles. Our benchmark spans 20 modern CAPTCHA types, totaling 225 CAPTCHAs, annotated with a new metric we propose: CAPTCHA Reasoning Depth, which quantifies the number of cognitive and motor steps required to solve each puzzle. Experimental results show that humans consistently achieve near-perfect scores, state-of-the-art MLLM agents struggle significantly, with success rates at most 40.0% by Browser-Use Openai-o3, far below human-level performance, 93.3%. This highlights Open CaptchaWorld as a vital benchmark for diagnosing the limits of current multimodal agents and guiding the development of more robust multimodal reasoning systems. Code and Data are available at this https URL.
comment: Code at: https://github.com/MetaAgentX/OpenCaptchaWorld
☆ ProxyThinker: Test-Time Guidance through Small Visual Reasoners
Recent advancements in reinforcement learning with verifiable rewards have pushed the boundaries of the visual reasoning capabilities in large vision-language models (LVLMs). However, training LVLMs with reinforcement fine-tuning (RFT) is computationally expensive, posing a significant challenge to scaling model size. In this work, we propose ProxyThinker, an inference-time technique that enables large models to inherit the visual reasoning capabilities from small, slow-thinking visual reasoners without any training. By subtracting the output distributions of base models from those of RFT reasoners, ProxyThinker modifies the decoding dynamics and successfully elicits the slow-thinking reasoning demonstrated by the emerged sophisticated behaviors such as self-verification and self-correction. ProxyThinker consistently boosts performance on challenging visual benchmarks on spatial, mathematical, and multi-disciplinary reasoning, enabling untuned base models to compete with the performance of their full-scale RFT counterparts. Furthermore, our implementation efficiently coordinates multiple language models with parallelism techniques and achieves up to 38 $\times$ faster inference compared to previous decoding-time methods, paving the way for the practical deployment of ProxyThinker. Code is available at https://github.com/MrZilinXiao/ProxyThinker.
☆ Time Blindness: Why Video-Language Models Can't See What Humans Can?
Recent advances in vision-language models (VLMs) have made impressive strides in understanding spatio-temporal relationships in videos. However, when spatial information is obscured, these models struggle to capture purely temporal patterns. We introduce $\textbf{SpookyBench}$, a benchmark where information is encoded solely in temporal sequences of noise-like frames, mirroring natural phenomena from biological signaling to covert communication. Interestingly, while humans can recognize shapes, text, and patterns in these sequences with over 98% accuracy, state-of-the-art VLMs achieve 0% accuracy. This performance gap highlights a critical limitation: an over-reliance on frame-level spatial features and an inability to extract meaning from temporal cues. Furthermore, when trained in data sets with low spatial signal-to-noise ratios (SNR), temporal understanding of models degrades more rapidly than human perception, especially in tasks requiring fine-grained temporal reasoning. Overcoming this limitation will require novel architectures or training paradigms that decouple spatial dependencies from temporal processing. Our systematic analysis shows that this issue persists across model scales and architectures. We release SpookyBench to catalyze research in temporal pattern recognition and bridge the gap between human and machine video understanding. Dataset and code has been made available on our project website: https://timeblindness.github.io/.
comment: Project page at https://timeblindness.github.io/
☆ ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models
Recent advances in reasoning-centric language models have highlighted reinforcement learning (RL) as a promising method for aligning models with verifiable rewards. However, it remains contentious whether RL truly expands a model's reasoning capabilities or merely amplifies high-reward outputs already latent in the base model's distribution, and whether continually scaling up RL compute reliably leads to improved reasoning performance. In this work, we challenge prevailing assumptions by demonstrating that prolonged RL (ProRL) training can uncover novel reasoning strategies that are inaccessible to base models, even under extensive sampling. We introduce ProRL, a novel training methodology that incorporates KL divergence control, reference policy resetting, and a diverse suite of tasks. Our empirical analysis reveals that RL-trained models consistently outperform base models across a wide range of pass@k evaluations, including scenarios where base models fail entirely regardless of the number of attempts. We further show that reasoning boundary improvements correlates strongly with task competence of base model and training duration, suggesting that RL can explore and populate new regions of solution space over time. These findings offer new insights into the conditions under which RL meaningfully expands reasoning boundaries in language models and establish a foundation for future work on long-horizon RL for reasoning. We release model weights to support further research: https://huggingface.co/nvidia/Nemotron-Research-Reasoning-Qwen-1.5B
comment: 26 pages, 17 figures
☆ DexMachina: Functional Retargeting for Bimanual Dexterous Manipulation
We study the problem of functional retargeting: learning dexterous manipulation policies to track object states from human hand-object demonstrations. We focus on long-horizon, bimanual tasks with articulated objects, which is challenging due to large action space, spatiotemporal discontinuities, and embodiment gap between human and robot hands. We propose DexMachina, a novel curriculum-based algorithm: the key idea is to use virtual object controllers with decaying strength: an object is first driven automatically towards its target states, such that the policy can gradually learn to take over under motion and contact guidance. We release a simulation benchmark with a diverse set of tasks and dexterous hands, and show that DexMachina significantly outperforms baseline methods. Our algorithm and benchmark enable a functional comparison for hardware designs, and we present key findings informed by quantitative and qualitative results. With the recent surge in dexterous hand development, we hope this work will provide a useful platform for identifying desirable hardware capabilities and lower the barrier for contributing to future research. Videos and more at https://project-dexmachina.github.io/
☆ Harnessing Negative Signals: Reinforcement Distillation from Teacher Data for LLM Reasoning
Recent advances in model distillation demonstrate that data from advanced reasoning models (e.g., DeepSeek-R1, OpenAI's o1) can effectively transfer complex reasoning abilities to smaller, efficient student models. However, standard practices employ rejection sampling, discarding incorrect reasoning examples -- valuable, yet often underutilized data. This paper addresses the critical question: How can both positive and negative distilled reasoning traces be effectively leveraged to maximize LLM reasoning performance in an offline setting? To this end, We propose Reinforcement Distillation (REDI), a two-stage framework. Stage 1 learns from positive traces via Supervised Fine-Tuning (SFT). Stage 2 further refines the model using both positive and negative traces through our proposed REDI objective. This novel objective is a simple, reference-free loss function that outperforms established methods like DPO and SimPO in this distillation context. Our empirical evaluations demonstrate REDI's superiority over baseline Rejection Sampling SFT or SFT combined with DPO/SimPO on mathematical reasoning tasks. Notably, the Qwen-REDI-1.5B model, post-trained on just 131k positive and negative examples from the open Open-R1 dataset, achieves an 83.1% score on MATH-500 (pass@1). Its performance matches or surpasses that of DeepSeek-R1-Distill-Qwen-1.5B (a model post-trained on 800k proprietary data) across various mathematical reasoning benchmarks, establishing a new state-of-the-art for 1.5B models post-trained offline with openly available data.
comment: 27 pages, 10 figures. Code available at https://github.com/Tim-Siu/reinforcement-distillation
☆ MiCRo: Mixture Modeling and Context-aware Routing for Personalized Preference Learning
Reward modeling is a key step in building safe foundation models when applying reinforcement learning from human feedback (RLHF) to align Large Language Models (LLMs). However, reward modeling based on the Bradley-Terry (BT) model assumes a global reward function, failing to capture the inherently diverse and heterogeneous human preferences. Hence, such oversimplification limits LLMs from supporting personalization and pluralistic alignment. Theoretically, we show that when human preferences follow a mixture distribution of diverse subgroups, a single BT model has an irreducible error. While existing solutions, such as multi-objective learning with fine-grained annotations, help address this issue, they are costly and constrained by predefined attributes, failing to fully capture the richness of human values. In this work, we introduce MiCRo, a two-stage framework that enhances personalized preference learning by leveraging large-scale binary preference datasets without requiring explicit fine-grained annotations. In the first stage, MiCRo introduces context-aware mixture modeling approach to capture diverse human preferences. In the second stage, MiCRo integrates an online routing strategy that dynamically adapts mixture weights based on specific context to resolve ambiguity, allowing for efficient and scalable preference adaptation with minimal additional supervision. Experiments on multiple preference datasets demonstrate that MiCRo effectively captures diverse human preferences and significantly improves downstream personalization.
☆ Vision LLMs Are Bad at Hierarchical Visual Understanding, and LLMs Are the Bottleneck
This paper reveals that many state-of-the-art large language models (LLMs) lack hierarchical knowledge about our visual world, unaware of even well-established biology taxonomies. This shortcoming makes LLMs a bottleneck for vision LLMs' hierarchical visual understanding (e.g., recognizing Anemone Fish but not Vertebrate). We arrive at these findings using about one million four-choice visual question answering (VQA) tasks constructed from six taxonomies and four image datasets. Interestingly, finetuning a vision LLM using our VQA tasks reaffirms LLMs' bottleneck effect to some extent because the VQA tasks improve the LLM's hierarchical consistency more than the vision LLM's. We conjecture that one cannot make vision LLMs understand visual concepts fully hierarchical until LLMs possess corresponding taxonomy knowledge.
comment: 28 pages, 13 figures
☆ VideoCAD: A Large-Scale Video Dataset for Learning UI Interactions and 3D Reasoning from CAD Software
Computer-Aided Design (CAD) is a time-consuming and complex process, requiring precise, long-horizon user interactions with intricate 3D interfaces. While recent advances in AI-driven user interface (UI) agents show promise, most existing datasets and methods focus on short, low-complexity tasks in mobile or web applications, failing to capture the demands of professional engineering tools. In this work, we introduce VideoCAD, the first attempt at engineering UI interaction learning for precision tasks. Specifically, VideoCAD is a large-scale synthetic dataset consisting of over 41K annotated video recordings of CAD operations, generated using an automated framework for collecting high-fidelity UI action data from human-made CAD designs. Compared to existing datasets, VideoCAD offers an order of magnitude higher complexity in UI interaction learning for real-world engineering tasks, having up to a 20x longer time horizon than other datasets. We show two important downstream applications of VideoCAD: learning UI interactions from professional precision 3D CAD tools and a visual question-answering (VQA) benchmark designed to evaluate multimodal large language models' (LLM) spatial reasoning and video understanding abilities. To learn the UI interactions, we propose VideoCADFormer - a state-of-the-art model in learning CAD interactions directly from video, which outperforms multiple behavior cloning baselines. Both VideoCADFormer and the VQA benchmark derived from VideoCAD reveal key challenges in the current state of video-based UI understanding, including the need for precise action grounding, multi-modal and spatial reasoning, and long-horizon dependencies.
☆ Improving Reliability and Explainability of Medical Question Answering through Atomic Fact Checking in Retrieval-Augmented LLMs
Large language models (LLMs) exhibit extensive medical knowledge but are prone to hallucinations and inaccurate citations, which pose a challenge to their clinical adoption and regulatory compliance. Current methods, such as Retrieval Augmented Generation, partially address these issues by grounding answers in source documents, but hallucinations and low fact-level explainability persist. In this work, we introduce a novel atomic fact-checking framework designed to enhance the reliability and explainability of LLMs used in medical long-form question answering. This method decomposes LLM-generated responses into discrete, verifiable units called atomic facts, each of which is independently verified against an authoritative knowledge base of medical guidelines. This approach enables targeted correction of errors and direct tracing to source literature, thereby improving the factual accuracy and explainability of medical Q&A. Extensive evaluation using multi-reader assessments by medical experts and an automated open Q&A benchmark demonstrated significant improvements in factual accuracy and explainability. Our framework achieved up to a 40% overall answer improvement and a 50% hallucination detection rate. The ability to trace each atomic fact back to the most relevant chunks from the database provides a granular, transparent explanation of the generated responses, addressing a major gap in current medical AI applications. This work represents a crucial step towards more trustworthy and reliable clinical applications of LLMs, addressing key prerequisites for clinical application and fostering greater confidence in AI-assisted healthcare.
comment: 11 pages, 4 figures
☆ PhySense: Principle-Based Physics Reasoning Benchmarking for Large Language Models
Large language models (LLMs) have rapidly advanced and are increasingly capable of tackling complex scientific problems, including those in physics. Despite this progress, current LLMs often fail to emulate the concise, principle-based reasoning characteristic of human experts, instead generating lengthy and opaque solutions. This discrepancy highlights a crucial gap in their ability to apply core physical principles for efficient and interpretable problem solving. To systematically investigate this limitation, we introduce PhySense, a novel principle-based physics reasoning benchmark designed to be easily solvable by experts using guiding principles, yet deceptively difficult for LLMs without principle-first reasoning. Our evaluation across multiple state-of-the-art LLMs and prompt types reveals a consistent failure to align with expert-like reasoning paths, providing insights for developing AI systems with efficient, robust and interpretable principle-based scientific reasoning.
☆ RealDrive: Retrieval-Augmented Driving with Diffusion Models
Learning-based planners generate natural human-like driving behaviors by learning to reason about nuanced interactions from data, overcoming the rigid behaviors that arise from rule-based planners. Nonetheless, data-driven approaches often struggle with rare, safety-critical scenarios and offer limited controllability over the generated trajectories. To address these challenges, we propose RealDrive, a Retrieval-Augmented Generation (RAG) framework that initializes a diffusion-based planning policy by retrieving the most relevant expert demonstrations from the training dataset. By interpolating between current observations and retrieved examples through a denoising process, our approach enables fine-grained control and safe behavior across diverse scenarios, leveraging the strong prior provided by the retrieved scenario. Another key insight we produce is that a task-relevant retrieval model trained with planning-based objectives results in superior planning performance in our framework compared to a task-agnostic retriever. Experimental results demonstrate improved generalization to long-tail events and enhanced trajectory diversity compared to standard learning-based planners -- we observe a 40% reduction in collision rate on the Waymo Open Motion dataset with RAG.
☆ Inference Acceleration of Autoregressive Normalizing Flows by Selective Jacobi Decoding
Normalizing flows are promising generative models with advantages such as theoretical rigor, analytical log-likelihood computation, and end-to-end training. However, the architectural constraints to ensure invertibility and tractable Jacobian computation limit their expressive power and practical usability. Recent advancements utilize autoregressive modeling, significantly enhancing expressive power and generation quality. However, such sequential modeling inherently restricts parallel computation during inference, leading to slow generation that impedes practical deployment. In this paper, we first identify that strict sequential dependency in inference is unnecessary to generate high-quality samples. We observe that patches in sequential modeling can also be approximated without strictly conditioning on all preceding patches. Moreover, the models tend to exhibit low dependency redundancy in the initial layer and higher redundancy in subsequent layers. Leveraging these observations, we propose a selective Jacobi decoding (SeJD) strategy that accelerates autoregressive inference through parallel iterative optimization. Theoretical analyses demonstrate the method's superlinear convergence rate and guarantee that the number of iterations required is no greater than the original sequential approach. Empirical evaluations across multiple datasets validate the generality and effectiveness of our acceleration technique. Experiments demonstrate substantial speed improvements up to 4.7 times faster inference while keeping the generation quality and fidelity.
☆ Drop Dropout on Single-Epoch Language Model Pretraining ACL
Originally, dropout was seen as a breakthrough regularization technique that reduced overfitting and improved performance in almost all applications of deep learning by reducing overfitting. Yet, single-epoch pretraining tasks common to modern LLMs yield minimal overfitting, leading to dropout not being used for large LLMs. Nevertheless, no thorough empirical investigation has been done on the role of dropout in LM pretraining. Through experiments in single-epoch pretraining of both masked (BERT) and autoregressive (Pythia 160M and 1.4B) LMs with varying levels of dropout, we find that downstream performance in language modeling, morpho-syntax (BLiMP), question answering (SQuAD), and natural-language inference (MNLI) improves when dropout is not applied during pretraining. We additionally find that the recently-introduced "early dropout" also degrades performance over applying no dropout at all. We further investigate the models' editability, and find that models trained without dropout are more successful in gradient-based model editing (MEND) and equivalent in representation-based model editing (ReFT). Therefore, we advocate to drop dropout during single-epoch pretraining.
comment: Accepted to ACL Findings; 5 pages, 2 figures, 4 pages of appendix
☆ DiG-Net: Enhancing Quality of Life through Hyper-Range Dynamic Gesture Recognition in Assistive Robotics
Dynamic hand gestures play a pivotal role in assistive human-robot interaction (HRI), facilitating intuitive, non-verbal communication, particularly for individuals with mobility constraints or those operating robots remotely. Current gesture recognition methods are mostly limited to short-range interactions, reducing their utility in scenarios demanding robust assistive communication from afar. In this paper, we introduce a novel approach designed specifically for assistive robotics, enabling dynamic gesture recognition at extended distances of up to 30 meters, thereby significantly improving accessibility and quality of life. Our proposed Distance-aware Gesture Network (DiG-Net) effectively combines Depth-Conditioned Deformable Alignment (DADA) blocks with Spatio-Temporal Graph modules, enabling robust processing and classification of gesture sequences captured under challenging conditions, including significant physical attenuation, reduced resolution, and dynamic gesture variations commonly experienced in real-world assistive environments. We further introduce the Radiometric Spatio-Temporal Depth Attenuation Loss (RSTDAL), shown to enhance learning and strengthen model robustness across varying distances. Our model demonstrates significant performance improvement over state-of-the-art gesture recognition frameworks, achieving a recognition accuracy of 97.3% on a diverse dataset with challenging hyper-range gestures. By effectively interpreting gestures from considerable distances, DiG-Net significantly enhances the usability of assistive robots in home healthcare, industrial safety, and remote assistance scenarios, enabling seamless and intuitive interactions for users regardless of physical limitations
comment: arXiv admin note: substantial text overlap with arXiv:2411.18413
☆ AXIOM: Learning to Play Games in Minutes with Expanding Object-Centric Models
Current deep reinforcement learning (DRL) approaches achieve state-of-the-art performance in various domains, but struggle with data efficiency compared to human learning, which leverages core priors about objects and their interactions. Active inference offers a principled framework for integrating sensory information with prior knowledge to learn a world model and quantify the uncertainty of its own beliefs and predictions. However, active inference models are usually crafted for a single task with bespoke knowledge, so they lack the domain flexibility typical of DRL approaches. To bridge this gap, we propose a novel architecture that integrates a minimal yet expressive set of core priors about object-centric dynamics and interactions to accelerate learning in low-data regimes. The resulting approach, which we call AXIOM, combines the usual data efficiency and interpretability of Bayesian approaches with the across-task generalization usually associated with DRL. AXIOM represents scenes as compositions of objects, whose dynamics are modeled as piecewise linear trajectories that capture sparse object-object interactions. The structure of the generative model is expanded online by growing and learning mixture models from single events and periodically refined through Bayesian model reduction to induce generalization. AXIOM masters various games within only 10,000 interaction steps, with both a small number of parameters compared to DRL, and without the computational expense of gradient-based optimization.
comment: 10 pages main text, 4 figures, 2 tables; 25 pages supplementary material, 8 figures
♻ ☆ Keyed Chaotic Masking: A Functional Privacy Framework for Neural Inference
This work introduces a lightweight framework for privacy-preserving neural network inference based on keyed chaotic masking a deterministic, user-specific obfuscation method derived from cryptographically seeded chaotic dynamical systems. The approach applies masks to input and output tensors using key-conditioned graph dynamics, enabling authenticated inference, user attribution, and soft output watermarking without modifying model architectures. While the underlying chaotic system used to generate each mask is not analytically invertible, the masking operation itself is algebraically reversible by authorized key holders, offering functional privacy without formal cryptographic guarantees. Unlike traditional encryption or secure multi-party computation, this method operates in continuous space and imposes minimal computational overhead. We describe the construction of the masking system, including graph sampling, dynamical rule selection, and chaos diagnostics. Applications include privacy-preserving inference, secure data contribution, and per-user watermarking in shared model pipelines. This framework offers a practical and modular building block for user-controlled privacy in modern AI systems.
comment: 8 pages
♻ ☆ LifelongAgentBench: Evaluating LLM Agents as Lifelong Learners
Lifelong learning is essential for intelligent agents operating in dynamic environments. Current large language model (LLM)-based agents, however, remain stateless and unable to accumulate or transfer knowledge over time. Existing benchmarks treat agents as static systems and fail to evaluate lifelong learning capabilities. We present LifelongAgentBench, the first unified benchmark designed to systematically assess the lifelong learning ability of LLM agents. It provides skill-grounded, interdependent tasks across three interactive environments, Database, Operating System, and Knowledge Graph, with automatic label verification, reproducibility, and modular extensibility. Extensive experiments reveal that conventional experience replay has limited effectiveness for LLM agents due to irrelevant information and context length constraints. We further introduce a group self-consistency mechanism that significantly improves lifelong learning performance. We hope LifelongAgentBench will advance the development of adaptive, memory-capable LLM agents.
comment: Project Page: https://caixd-220529.github.io/LifelongAgentBench/
♻ ☆ Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent and coherent behavior across multiple rounds of user interaction. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. Code and data are available at: https://github.com/yubol-bobo/MT-Consistency. First, we introduce Position-Weighted Consistency (PWC), a metric designed to capture both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present MT-Consistency, a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by explicitly integrating internal model confidence scores during the generation process. Experimental results demonstrate that CARG significantly improves response stability without sacrificing accuracy, offering a practical path toward more dependable LLM behavior in critical, real-world deployments.
comment: 8 pages, 5 figures
♻ ☆ EVOREFUSE: Evolutionary Prompt Optimization for Evaluation and Mitigation of LLM Over-Refusal to Pseudo-Malicious Instructions
Large language models (LLMs) frequently refuse to respond to pseudo-malicious instructions: semantically harmless input queries triggering unnecessary LLM refusals due to conservative safety alignment, significantly impairing user experience. Collecting such instructions is crucial for evaluating and mitigating over-refusals, but existing instruction curation methods, like manual creation or instruction rewriting, either lack scalability or fail to produce sufficiently diverse and effective refusal-inducing prompts. To address these limitations, we introduce EVOREFUSE, a prompt optimization approach that generates diverse pseudo-malicious instructions consistently eliciting confident refusals across LLMs. EVOREFUSE employs an evolutionary algorithm exploring the instruction space in more diverse directions than existing methods via mutation strategies and recombination, and iteratively evolves seed instructions to maximize evidence lower bound on LLM refusal probability. Using EVOREFUSE, we create two novel datasets: EVOREFUSE-TEST, a benchmark of 582 pseudo-malicious instructions that outperforms the next-best benchmark with 140.41% higher average refusal triggering rate across 9 LLMs, 34.86% greater lexical diversity, and 40.03% improved LLM response confidence scores; and EVOREFUSE-ALIGN, which provides 3,000 pseudo-malicious instructions with responses for supervised and preference-based alignment training. LLAMA3.1-8B-INSTRUCT supervisedly fine-tuned on EVOREFUSE-ALIGN achieves up to 14.31% fewer over-refusals than models trained on the second-best alignment dataset, without compromising safety. Our analysis with EVOREFUSE-TEST reveals models trigger over-refusals by overly focusing on sensitive keywords while ignoring broader context.
♻ ☆ Reality Check: A New Evaluation Ecosystem Is Necessary to Understand AI's Real World Effects
Conventional AI evaluation approaches concentrated within the AI stack exhibit systemic limitations for exploring, navigating and resolving the human and societal factors that play out in real world deployment such as in education, finance, healthcare, and employment sectors. AI capability evaluations can capture detail about first-order effects, such as whether immediate system outputs are accurate, or contain toxic, biased or stereotypical content, but AI's second-order effects, i.e. any long-term outcomes and consequences that may result from AI use in the real world, have become a significant area of interest as the technology becomes embedded in our daily lives. These secondary effects can include shifts in user behavior, societal, cultural and economic ramifications, workforce transformations, and long-term downstream impacts that may result from a broad and growing set of risks. This position paper argues that measuring the indirect and secondary effects of AI will require expansion beyond static, single-turn approaches conducted in silico to include testing paradigms that can capture what actually materializes when people use AI technology in context. Specifically, we describe the need for data and methods that can facilitate contextual awareness and enable downstream interpretation and decision making about AI's secondary effects, and recommend requirements for a new ecosystem.
comment: 9 pages
♻ ☆ A Mathematical Framework for AI-Human Integration in Work ICML 2025
The rapid rise of Generative AI (GenAI) tools has sparked debate over their role in complementing or replacing human workers across job contexts. We present a mathematical framework that models jobs, workers, and worker-job fit, introducing a novel decomposition of skills into decision-level and action-level subskills to reflect the complementary strengths of humans and GenAI. We analyze how changes in subskill abilities affect job success, identifying conditions for sharp transitions in success probability. We also establish sufficient conditions under which combining workers with complementary subskills significantly outperforms relying on a single worker. This explains phenomena such as productivity compression, where GenAI assistance yields larger gains for lower-skilled workers. We demonstrate the framework' s practicality using data from O*NET and Big-Bench Lite, aligning real-world data with our model via subskill-division methods. Our results highlight when and how GenAI complements human skills, rather than replacing them.
comment: This paper will appear in ICML 2025
♻ ☆ BatteryLife: A Comprehensive Dataset and Benchmark for Battery Life Prediction KDD 2025
Battery Life Prediction (BLP), which relies on time series data produced by battery degradation tests, is crucial for battery utilization, optimization, and production. Despite impressive advancements, this research area faces three key challenges. Firstly, the limited size of existing datasets impedes insights into modern battery life data. Secondly, most datasets are restricted to small-capacity lithium-ion batteries tested under a narrow range of diversity in labs, raising concerns about the generalizability of findings. Thirdly, inconsistent and limited benchmarks across studies obscure the effectiveness of baselines and leave it unclear if models popular in other time series fields are effective for BLP. To address these challenges, we propose BatteryLife, a comprehensive dataset and benchmark for BLP. BatteryLife integrates 16 datasets, offering a 2.5 times sample size compared to the previous largest dataset, and provides the most diverse battery life resource with batteries from 8 formats, 59 chemical systems, 9 operating temperatures, and 421 charge/discharge protocols, including both laboratory and industrial tests. Notably, BatteryLife is the first to release battery life datasets of zinc-ion batteries, sodium-ion batteries, and industry-tested large-capacity lithium-ion batteries. With the comprehensive dataset, we revisit the effectiveness of baselines popular in this and other time series fields. Furthermore, we propose CyclePatch, a plug-in technique that can be employed in various neural networks. Extensive benchmarking of 18 methods reveals that models popular in other time series fields can be unsuitable for BLP, and CyclePatch consistently improves model performance establishing state-of-the-art benchmarks. Moreover, BatteryLife evaluates model performance across aging conditions and domains. BatteryLife is available at https://github.com/Ruifeng-Tan/BatteryLife.
comment: Accepted by KDD 2025. Typos and data statistics mistakes are fixed
♻ ☆ Spatiotemporal Emotional Synchrony in Dyadic Interactions: The Role of Speech Conditions in Facial and Vocal Affective Alignment
Understanding how humans express and synchronize emotions across multiple communication channels particularly facial expressions and speech has significant implications for emotion recognition systems and human computer interaction. Motivated by the notion that non-overlapping speech promotes clearer emotional coordination, while overlapping speech disrupts synchrony, this study examines how these conversational dynamics shape the spatial and temporal alignment of arousal and valence across facial and vocal modalities. Using dyadic interactions from the IEMOCAP dataset, we extracted continuous emotion estimates via EmoNet (facial video) and a Wav2Vec2-based model (speech audio). Segments were categorized based on speech overlap, and emotional alignment was assessed using Pearson correlation, lag adjusted analysis, and Dynamic Time Warping (DTW). Across analyses, non overlapping speech was associated with more stable and predictable emotional synchrony than overlapping speech. While zero-lag correlations were low and not statistically different, non overlapping speech showed reduced variability, especially for arousal. Lag adjusted correlations and best-lag distributions revealed clearer, more consistent temporal alignment in these segments. In contrast, overlapping speech exhibited higher variability and flatter lag profiles, though DTW indicated unexpectedly tighter alignment suggesting distinct coordination strategies. Notably, directionality patterns showed that facial expressions more often preceded speech during turn-taking, while speech led during simultaneous vocalizations. These findings underscore the importance of conversational structure in regulating emotional communication and provide new insight into the spatial and temporal dynamics of multimodal affective alignment in real world interaction.
♻ ☆ KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search ICML 2025
Knowledge Base Question Answering (KBQA) aims to answer natural language questions with a large-scale structured knowledge base (KB). Despite advancements with large language models (LLMs), KBQA still faces challenges in weak KB awareness, imbalance between effectiveness and efficiency, and high reliance on annotated data. To address these challenges, we propose KBQA-o1, a novel agentic KBQA method with Monte Carlo Tree Search (MCTS). It introduces a ReAct-based agent process for stepwise logical form generation with KB environment exploration. Moreover, it employs MCTS, a heuristic search method driven by policy and reward models, to balance agentic exploration's performance and search space. With heuristic exploration, KBQA-o1 generates high-quality annotations for further improvement by incremental fine-tuning. Experimental results show that KBQA-o1 outperforms previous low-resource KBQA methods with limited annotated data, boosting Llama-3.1-8B model's GrailQA F1 performance to 78.5% compared to 48.5% of the previous sota method with GPT-3.5-turbo. Our code is publicly available.
comment: Accepted by ICML 2025 main conference
♻ ☆ Improving Parallel Program Performance with LLM Optimizers via Agent-System Interfaces
Modern scientific discovery increasingly relies on high-performance computing for complex modeling and simulation. A key challenge in improving parallel program performance is efficiently mapping tasks to processors and data to memory, a process dictated by intricate, low-level system code known as mappers. Developing high-performance mappers demands days of manual tuning, posing a significant barrier for domain scientists without systems expertise. We introduce a framework that automates mapper development with generative optimization, leveraging richer feedback beyond scalar performance metrics. Our approach features the Agent-System Interface, which includes a Domain-Specific Language (DSL) to abstract away the low-level complexity of system code and define a structured search space, as well as AutoGuide, a mechanism that interprets raw execution output into actionable feedback. Unlike traditional reinforcement learning methods such as OpenTuner, which rely solely on scalar feedback, our method finds superior mappers in far fewer iterations. With just 10 iterations, it outperforms OpenTuner even after 1000 iterations, achieving 3.8X faster performance. Our approach finds mappers that surpass expert-written mappers by up to 1.34X speedup across nine benchmarks while reducing tuning time from days to minutes.
♻ ☆ MADCluster: Model-agnostic Anomaly Detection with Self-supervised Clustering Network
In this paper, we propose MADCluster, a novel model-agnostic anomaly detection framework utilizing self-supervised clustering. MADCluster is applicable to various deep learning architectures and addresses the 'hypersphere collapse' problem inherent in existing deep learning-based anomaly detection methods. The core idea is to cluster normal pattern data into a 'single cluster' while simultaneously learning the cluster center and mapping data close to this center. Also, to improve expressiveness and enable effective single clustering, we propose a new 'One-directed Adaptive loss'. The optimization of this loss is mathematically proven. MADCluster consists of three main components: Base Embedder capturing high-dimensional temporal dynamics, Cluster Distance Mapping, and Sequence-wise Clustering for continuous center updates. Its model-agnostic characteristics are achieved by applying various architectures to the Base Embedder. Experiments on four time series benchmark datasets demonstrate that applying MADCluster improves the overall performance of comparative models. In conclusion, the compatibility of MADCluster shows potential for enhancing model performance across various architectures.
comment: 24 pages, 9 figures
♻ ☆ EarthSE: A Benchmark for Evaluating Earth Scientific Exploration Capability of LLMs
Advancements in Large Language Models (LLMs) drive interest in scientific applications, necessitating specialized benchmarks such as Earth science. Existing benchmarks either present a general science focus devoid of Earth science specificity or cover isolated subdomains, lacking holistic evaluation. Furthermore, current benchmarks typically neglect the assessment of LLMs' capabilities in open-ended scientific exploration. In this paper, we present a comprehensive and professional benchmark for the Earth sciences, designed to evaluate the capabilities of LLMs in scientific exploration within this domain, spanning from fundamental to advanced levels. Leveraging a corpus of 100,000 research papers, we first construct two Question Answering (QA) datasets: Earth-Iron, which offers extensive question coverage for broad assessment, and Earth-Silver, which features a higher level of difficulty to evaluate professional depth. These datasets encompass five Earth spheres, 114 disciplines, and 11 task categories, assessing foundational knowledge crucial for scientific exploration. Most notably, we introduce Earth-Gold with new metrics, a dataset comprising open-ended multi-turn dialogues specifically designed to evaluate the advanced capabilities of LLMs in scientific exploration, including methodology induction, limitation analysis, and concept proposal. Extensive experiments reveal limitations in 11 leading LLMs across different domains and tasks, highlighting considerable room for improvement in their scientific exploration capabilities. The benchmark is available on https://huggingface.co/ai-earth .
♻ ☆ $K^2$VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting
Probabilistic Time Series Forecasting (PTSF) plays a crucial role in decision-making across various fields, including economics, energy, and transportation. Most existing methods excell at short-term forecasting, while overlooking the hurdles of Long-term Probabilistic Time Series Forecasting (LPTSF). As the forecast horizon extends, the inherent nonlinear dynamics have a significant adverse effect on prediction accuracy, and make generative models inefficient by increasing the cost of each iteration. To overcome these limitations, we introduce $K^2$VAE, an efficient VAE-based generative model that leverages a KoopmanNet to transform nonlinear time series into a linear dynamical system, and devises a KalmanNet to refine predictions and model uncertainty in such linear system, which reduces error accumulation in long-term forecasting. Extensive experiments demonstrate that $K^2$VAE outperforms state-of-the-art methods in both short- and long-term PTSF, providing a more efficient and accurate solution.
♻ ☆ Theorem-Validated Reverse Chain-of-Thought Problem Generation for Geometric Reasoning
Large Multimodal Models (LMMs) face limitations in geometric reasoning due to insufficient Chain of Thought (CoT) image-text training data. While existing approaches leverage template-based or LLM-assisted methods for geometric CoT data creation, they often face challenges in achieving both diversity and precision. To bridge this gap, we introduce a two-stage Theorem-Validated Reverse Chain-of-Thought Reasoning Synthesis (TR-CoT) framework. The first stage, TR-Engine, synthesizes theorem-grounded geometric diagrams with structured descriptions and properties. The second stage, TR-Reasoner, employs reverse reasoning to iteratively refine question-answer pairs by cross-validating geometric properties and description fragments. Our approach expands theorem-type coverage, corrects long-standing misunderstandings, and enhances geometric reasoning. Fine-grained CoT improves theorem understanding and increases logical consistency by 24.5%. Our best models surpass the baselines in MathVista and GeoQA by 10.1% and 4.7%, outperforming advanced closed-source models like GPT-4o.
♻ ☆ Agent-UniRAG: A Trainable Open-Source LLM Agent Framework for Unified Retrieval-Augmented Generation Systems
This paper presents a novel approach for unified retrieval-augmented generation (RAG) systems using the recent emerging large language model (LLM) agent concept. Specifically, Agent LLM, which utilizes LLM as fundamental controllers, has become a promising approach to enable the interpretability of RAG tasks, especially for complex reasoning question-answering systems (e.g., multi-hop queries). Nonetheless, previous works mainly focus on solving RAG systems with either single-hop or multi-hop approaches separately, which limits the application of those approaches to real-world applications. In this study, we propose a trainable agent framework called Agent-UniRAG for unified retrieval-augmented LLM systems, which enhances the effectiveness and interpretability of RAG systems. The main idea is to design an LLM agent framework to solve RAG tasks step-by-step based on the complexity of the inputs, simultaneously including single-hop and multi-hop queries in an end-to-end manner. Furthermore, we introduce SynAgent-RAG, a synthetic dataset to enable the proposed agent framework for small open-source LLMs (e.g., Llama-3-8B). The results show comparable performances with closed-source and larger open-source LLMs across various RAG benchmarks. Our source code and dataset are publicly available for further exploitation.
♻ ☆ Softmax is not Enough (for Sharp Size Generalisation) ICML 2025
A key property of reasoning systems is the ability to make sharp decisions on their input data. For contemporary AI systems, a key carrier of sharp behaviour is the softmax function, with its capability to perform differentiable query-key lookups. It is a common belief that the predictive power of networks leveraging softmax arises from "circuits" which sharply perform certain kinds of computations consistently across many diverse inputs. However, for these circuits to be robust, they would need to generalise well to arbitrary valid inputs. In this paper, we dispel this myth: even for tasks as simple as finding the maximum key, any learned circuitry must disperse as the number of items grows at test time. We attribute this to a fundamental limitation of the softmax function to robustly approximate sharp functions with increasing problem size, prove this phenomenon theoretically, and propose adaptive temperature as an ad-hoc technique for improving the sharpness of softmax at inference time.
comment: To appear at ICML 2025. 22 pages, 9 figures
♻ ☆ Feedback-Aware Monte Carlo Tree Search for Efficient Information Seeking in Goal-Oriented Conversations
Effective decision-making and problem-solving in conversational systems require the ability to identify and acquire missing information through targeted questioning. A key challenge lies in efficiently narrowing down a large space of possible outcomes by posing questions that minimize uncertainty. To address this, we introduce a novel framework that leverages Large Language Models (LLMs) to generate information-seeking questions, with Monte Carlo Tree Search (MCTS) to strategically select questions that maximize information gain, as a part of inference-time planning. Our primary contribution includes a hierarchical feedback mechanism that exploits past interaction patterns to guide future strategy. Specifically, each new problem is mapped to a cluster based on semantic similarity, and our UCT (Upper Confidence bound for Trees) formulation employs a cluster-specific bonus reward to prioritize successful question trajectories that have proven effective for similar problems in the past. Extensive empirical evaluation across medical diagnosis and technical troubleshooting domains shows that our method achieves an average of 12% improvement in success rates and about 10x reduction in the number of LLM calls made for planning per conversation, compared to the state of the art. An additional 8% gain in success rate is observed on average when we start with a constrained set of possibilities. Our results underscore the efficacy of feedback-aware MCTS in enhancing information-seeking in goal-oriented dialogues.
♻ ☆ What makes a good feedforward computational graph? ICML 2025
As implied by the plethora of literature on graph rewiring, the choice of computational graph employed by a neural network can make a significant impact on its downstream performance. Certain effects related to the computational graph, such as under-reaching and over-squashing, may even render the model incapable of learning certain functions. Most of these effects have only been thoroughly studied in the domain of undirected graphs; however, recent years have seen a significant rise in interest in feedforward computational graphs: directed graphs without any back edges. In this paper, we study the desirable properties of a feedforward computational graph, discovering two important complementary measures: fidelity and mixing time, and evaluating a few popular choices of graphs through the lens of these measures. Our study is backed by both theoretical analyses of the metrics' asymptotic behaviour for various graphs, as well as correlating these metrics to the performance of trained neural network models using the corresponding graphs.
comment: To appear at ICML 2025. 17 pages, 7 figures
♻ ☆ If Eleanor Rigby Had Met ChatGPT: A Study on Loneliness in a Post-LLM World ACL 2025
Warning: this paper discusses content related, but not limited to, violence, sex, and suicide. Loneliness, or the lack of fulfilling relationships, significantly impacts a person's mental and physical well-being and is prevalent worldwide. Previous research suggests that large language models (LLMs) may help mitigate loneliness. However, we argue that the use of widespread LLMs in services like ChatGPT is more prevalent--and riskier, as they are not designed for this purpose. To explore this, we analysed user interactions with ChatGPT outside of its marketed use as a task-oriented assistant. In dialogues classified as lonely, users frequently (37%) sought advice or validation, and received good engagement. However, ChatGPT failed in sensitive scenarios, like responding appropriately to suicidal ideation or trauma. We also observed a 35% higher incidence of toxic content, with women being 22x more likely to be targeted than men. Our findings underscore ethical and legal questions about this technology, and note risks like radicalisation or further isolation. We conclude with recommendations to research and industry to address loneliness.
comment: Accepted to ACL 2025 (main)
♻ ☆ On Meta-Prompting
Modern large language models (LLMs) are capable of interpreting input strings as instructions, or prompts, and carry out tasks based on them. Unlike traditional learners, LLMs cannot use back-propagation to obtain feedback, and condition their output in situ in a phenomenon known as in-context learning (ICL). Many approaches to prompting and pre-training these models involve the automated generation of these prompts, also known as meta-prompting, or prompting to obtain prompts. However, they do not formally describe the properties and behavior of the LLMs themselves. We propose a theoretical framework based on category theory to generalize and describe ICL and LLM behavior when interacting with users. Our framework allows us to obtain formal results around task agnosticity and equivalence of various meta-prompting approaches. Using our framework and experimental results we argue that meta-prompting is more effective than basic prompting at generating desirable outputs.
♻ ☆ White Men Lead, Black Women Help? Benchmarking and Mitigating Language Agency Social Biases in LLMs
Social biases can manifest in language agency. However, very limited research has investigated such biases in Large Language Model (LLM)-generated content. In addition, previous works often rely on string-matching techniques to identify agentic and communal words within texts, falling short of accurately classifying language agency. We introduce the Language Agency Bias Evaluation (LABE) benchmark, which comprehensively evaluates biases in LLMs by analyzing agency levels attributed to different demographic groups in model generations. LABE tests for gender, racial, and intersectional language agency biases in LLMs on 3 text generation tasks: biographies, professor reviews, and reference letters. Using LABE, we unveil language agency social biases in 3 recent LLMs: ChatGPT, Llama3, and Mistral. We observe that: (1) LLM generations tend to demonstrate greater gender bias than human-written texts; (2) Models demonstrate remarkably higher levels of intersectional bias than the other bias aspects. (3) Prompt-based mitigation is unstable and frequently leads to bias exacerbation. Based on our observations, we propose Mitigation via Selective Rewrite (MSR), a novel bias mitigation strategy that leverages an agency classifier to identify and selectively revise parts of generated texts that demonstrate communal traits. Empirical results prove MSR to be more effective and reliable than prompt-based mitigation method, showing a promising research direction.
♻ ☆ The Structural Safety Generalization Problem
LLM jailbreaks are a widespread safety challenge. Given this problem has not yet been tractable, we suggest targeting a key failure mechanism: the failure of safety to generalize across semantically equivalent inputs. We further focus the target by requiring desirable tractability properties of attacks to study: explainability, transferability between models, and transferability between goals. We perform red-teaming within this framework by uncovering new vulnerabilities to multi-turn, multi-image, and translation-based attacks. These attacks are semantically equivalent by our design to their single-turn, single-image, or untranslated counterparts, enabling systematic comparisons; we show that the different structures yield different safety outcomes. We then demonstrate the potential for this framework to enable new defenses by proposing a Structure Rewriting Guardrail, which converts an input to a structure more conducive to safety assessment. This guardrail significantly improves refusal of harmful inputs, without over-refusing benign ones. Thus, by framing this intermediate challenge - more tractable than universal defenses but essential for long-term safety - we highlight a critical milestone for AI safety research.
♻ ☆ SongComposer: A Large Language Model for Lyric and Melody Generation in Song Composition ACL 2025
Creating lyrics and melodies for the vocal track in a symbolic format, known as song composition, demands expert musical knowledge of melody, an advanced understanding of lyrics, and precise alignment between them. Despite achievements in sub-tasks such as lyric generation, lyric-to-melody, and melody-to-lyric, etc, a unified model for song composition has not yet been achieved. In this paper, we introduce SongComposer, a pioneering step towards a unified song composition model that can readily create symbolic lyrics and melodies following instructions. SongComposer is a music-specialized large language model (LLM) that, for the first time, integrates the capability of simultaneously composing lyrics and melodies into LLMs by leveraging three key innovations: 1) a flexible tuple format for word-level alignment of lyrics and melodies, 2) an extended tokenizer vocabulary for song notes, with scalar initialization based on musical knowledge to capture rhythm, and 3) a multi-stage pipeline that captures musical structure, starting with motif-level melody patterns and progressing to phrase-level structure for improved coherence. Extensive experiments demonstrate that SongComposer outperforms advanced LLMs, including GPT-4, in tasks such as lyric-to-melody generation, melody-to-lyric generation, song continuation, and text-to-song creation. Moreover, we will release SongCompose, a large-scale dataset for training, containing paired lyrics and melodies in Chinese and English.
comment: ACL 2025 main. project page: https://pjlab-songcomposer.github.io/ code: https://github.com/pjlab-songcomposer/songcomposer
♻ ☆ Position: Beyond Assistance - Reimagining LLMs as Ethical and Adaptive Co-Creators in Mental Health Care
This position paper argues for a fundamental shift in how Large Language Models (LLMs) are integrated into the mental health care domain. We advocate for their role as co-creators rather than mere assistive tools. While LLMs have the potential to enhance accessibility, personalization, and crisis intervention, their adoption remains limited due to concerns about bias, evaluation, over-reliance, dehumanization, and regulatory uncertainties. To address these challenges, we propose two structured pathways: SAFE-i (Supportive, Adaptive, Fair, and Ethical Implementation) Guidelines for ethical and responsible deployment, and HAAS-e (Human-AI Alignment and Safety Evaluation) Framework for multidimensional, human-centered assessment. SAFE-i provides a blueprint for data governance, adaptive model engineering, and real-world integration, ensuring LLMs align with clinical and ethical standards. HAAS-e introduces evaluation metrics that go beyond technical accuracy to measure trustworthiness, empathy, cultural sensitivity, and actionability. We call for the adoption of these structured approaches to establish a responsible and scalable model for LLM-driven mental health support, ensuring that AI complements, rather than replaces, human expertise.
♻ ☆ FactLens: Benchmarking Fine-Grained Fact Verification
Large Language Models (LLMs) have shown impressive capability in language generation and understanding, but their tendency to hallucinate and produce factually incorrect information remains a key limitation. To verify LLM-generated contents and claims from other sources, traditional verification approaches often rely on holistic models that assign a single factuality label to complex claims, potentially obscuring nuanced errors. In this paper, we advocate for a shift towards fine-grained verification, where complex claims are broken down into smaller sub-claims for individual verification, allowing for more precise identification of inaccuracies, improved transparency, and reduced ambiguity in evidence retrieval. However, generating sub-claims poses challenges, such as maintaining context and ensuring semantic equivalence with respect to the original claim. We introduce FactLens, a benchmark for evaluating fine-grained fact verification, with metrics and automated evaluators of sub-claim quality. The benchmark data is manually curated to ensure high-quality ground truth. Our results show alignment between automated FactLens evaluators and human judgments, and we discuss the impact of sub-claim characteristics on the overall verification performance.
comment: 12 pages, updated version
♻ ☆ Efficient Neural Clause-Selection Reinforcement
Clause selection is arguably the most important choice point in saturation-based theorem proving. Framing it as a reinforcement learning (RL) task is a way to challenge the human-designed heuristics of state-of-the-art provers and to instead automatically evolve -- just from prover experiences -- their potentially optimal replacement. In this work, we present a neural network architecture for scoring clauses for clause selection that is powerful yet efficient to evaluate. Following RL principles to make design decisions, we integrate the network into the Vampire theorem prover and train it from successful proof attempts. An experiment on the diverse TPTP benchmark finds the neurally guided prover improve over a baseline strategy, from which it initially learns--in terms of the number of in-training-unseen problems solved under a practically relevant, short CPU instruction limit--by 20%.
comment: 17 pages main text, 3 page bibliography, 6 page appendix
♻ ☆ Simple Path Structural Encoding for Graph Transformers
Graph transformers extend global self-attention to graph-structured data, achieving notable success in graph learning. Recently, random walk structural encoding (RWSE) has been found to further enhance their predictive power by encoding both structural and positional information into the edge representation. However, RWSE cannot always distinguish between edges that belong to different local graph patterns, which reduces its ability to capture the full structural complexity of graphs. This work introduces Simple Path Structural Encoding (SPSE), a novel method that utilizes simple path counts for edge encoding. We show theoretically and experimentally that SPSE overcomes the limitations of RWSE, providing a richer representation of graph structures, particularly for capturing local cyclic patterns. To make SPSE computationally tractable, we propose an efficient approximate algorithm for simple path counting. SPSE demonstrates significant performance improvements over RWSE on various benchmarks, including molecular and long-range graph datasets, achieving statistically significant gains in discriminative tasks. These results pose SPSE as a powerful edge encoding alternative for enhancing the expressivity of graph transformers.
♻ ☆ HumT DumT: Measuring and controlling human-like language in LLMs ACL 2025
Should LLMs generate language that makes them seem human? Human-like language might improve user experience, but might also lead to deception, overreliance, and stereotyping. Assessing these potential impacts requires a systematic way to measure human-like tone in LLM outputs. We introduce HumT and SocioT, metrics for human-like tone and other dimensions of social perceptions in text data based on relative probabilities from an LLM. By measuring HumT across preference and usage datasets, we find that users prefer less human-like outputs from LLMs in many contexts. HumT also offers insights into the perceptions and impacts of anthropomorphism: human-like LLM outputs are highly correlated with warmth, social closeness, femininity, and low status, which are closely linked to the aforementioned harms. We introduce DumT, a method using HumT to systematically control and reduce the degree of human-like tone while preserving model performance. DumT offers a practical approach for mitigating risks associated with anthropomorphic language generation.
comment: Accepted to ACL 2025
♻ ☆ Anchored Answers: Unravelling Positional Bias in GPT-2's Multiple-Choice Questions ACL 2025
Large Language Models (LLMs), such as the GPT-4 and LLaMA families, have demonstrated considerable success across diverse tasks, including multiple-choice questions (MCQs). However, these models exhibit a positional bias, particularly an even worse anchored bias in the GPT-2 family, where they consistently favour the first choice 'A' in MCQs during inference. This anchored bias challenges the integrity of GPT-2's decision-making process, as it skews performance based on the position rather than the content of the choices in MCQs. In this study, we utilise the mechanistic interpretability approach to identify the internal modules within GPT-2 models responsible for this bias. We focus on the Multi-Layer Perceptron (MLP) layers and attention heads, using the "logit lens" method to trace and modify the specific value vectors that contribute to the bias. By updating these vectors within MLP and recalibrating attention patterns to neutralise the preference for the first choice 'A', we effectively mitigate the anchored bias. Our interventions not only mitigate the bias but also improve the overall MCQ prediction accuracy for the GPT-2 family across various datasets. This work represents the first comprehensive mechanistic analysis of anchored bias from the failing cases in MCQs within the GPT-2 models, introducing targeted, minimal-intervention strategies that significantly enhance GPT2 model robustness and accuracy in MCQs. Our code is available at https://github.com/ruizheliUOA/Anchored_Bias_GPT2.
comment: ACL 2025 Findings
♻ ☆ Multi-Continental Healthcare Modelling Using Blockchain-Enabled Federated Learning
One of the biggest challenges of building artificial intelligence (AI) model in healthcare area is the data sharing. Since healthcare data is private, sensitive, and heterogeneous, collecting sufficient data for modelling is exhausted, costly, and sometimes impossible. In this paper, we propose a framework for global healthcare modelling using datasets from multi-continents (Europe, North America and Asia) while without sharing the local datasets, and choose glucose management as a study model to verify its effectiveness. Technically, blockchain-enabled federated learning is implemented with adaption to make it meet with the privacy and safety requirements of healthcare data, meanwhile rewards honest participation and penalize malicious activities using its on-chain incentive mechanism. Experimental results show that the proposed framework is effective, efficient, and privacy preserved. Its prediction accuracy is much better than the models trained from limited personal data and is similar to, and even slightly better than, the results from a centralized dataset. This work paves the way for international collaborations on healthcare projects, where additional data is crucial for reducing bias and providing benefits to humanity.
comment: Camera Ready Version, Accepted by IEEE Global Blockchain Conference, 2025
♻ ☆ FAMA: The First Large-Scale Open-Science Speech Foundation Model for English and Italian
The development of speech foundation models (SFMs) like Whisper and SeamlessM4T has significantly advanced the field of speech processing. However, their closed nature--with inaccessible training data and code--poses major reproducibility and fair evaluation challenges. While other domains have made substantial progress toward open science by developing fully transparent models trained on open-source (OS) code and data, similar efforts in speech remain limited. To fill this gap, we introduce FAMA, the first family of open science SFMs for English and Italian, trained on 150k+ hours of OS speech data. Moreover, we present a new dataset containing 16k hours of cleaned and pseudo-labeled speech for both languages. Results show that FAMA achieves competitive performance compared to existing SFMs while being up to 8 times faster. All artifacts, including code, datasets, and models, are released under OS-compliant licenses, promoting openness in speech technology research.
♻ ☆ Parameterized Synthetic Text Generation with SimpleStories
We present SimpleStories, a large synthetic story dataset in simple language, consisting of 2 million samples each in English and Japanese. Through parameterizing prompts at multiple levels of abstraction, we achieve control over story characteristics at scale, inducing syntactic and semantic diversity. Ablations on a newly trained model suite show improved sample efficiency and model interpretability compared to the TinyStories dataset. We open-source all constituent parts of model creation, hoping to enable novel ways to study the end-to-end training process. As a byproduct, we move the frontier regarding the fewest-parameter language model that outputs grammatical natural language.
♻ ☆ Differential privacy enables fair and accurate AI-based analysis of speech disorders while protecting patient data
Speech pathology has impacts on communication abilities and quality of life. While deep learning-based models have shown potential in diagnosing these disorders, the use of sensitive data raises critical privacy concerns. Although differential privacy (DP) has been explored in the medical imaging domain, its application in pathological speech analysis remains largely unexplored despite the equally critical privacy concerns. To the best of our knowledge, this study is the first to investigate DP's impact on pathological speech data, focusing on the trade-offs between privacy, diagnostic accuracy, and fairness. Using a large, real-world dataset of 200 hours of recordings from 2,839 German-speaking participants, we observed a maximum accuracy reduction of 3.85% when training with DP with high privacy levels. To highlight real-world privacy risks, we demonstrated the vulnerability of non-private models to gradient inversion attacks, reconstructing identifiable speech samples and showcasing DP's effectiveness in mitigating these risks. To explore the potential generalizability across languages and disorders, we validated our approach on a dataset of Spanish-speaking Parkinson's disease patients, leveraging pretrained models from healthy English-speaking datasets, and demonstrated that careful pretraining on large-scale task-specific datasets can maintain favorable accuracy under DP constraints. A comprehensive fairness analysis revealed minimal gender bias at reasonable privacy levels but underscored the need for addressing age-related disparities. Our results establish that DP can balance privacy and utility in speech disorder detection, while highlighting unique challenges in privacy-fairness trade-offs for speech data. This provides a foundation for refining DP methodologies and improving fairness across diverse patient groups in real-world deployments.
♻ ☆ HiLDe: Intentional Code Generation via Human-in-the-Loop Decoding
While AI programming tools hold the promise of increasing programmers' capabilities and productivity to a remarkable degree, they often exclude users from essential decision-making processes, causing many to effectively "turn off their brains" and over-rely on solutions provided by these systems. These behaviors can have severe consequences in critical domains, like software security. We propose Human-in-the-loop Decoding, a novel interaction technique that allows users to observe and directly influence LLM decisions during code generation, in order to align the model's output with their personal requirements. We implement this technique in HiLDe, a code completion assistant that highlights critical decisions made by the LLM and provides local alternatives for the user to explore. In a within-subjects study (N=18) on security-related tasks, we found that HiLDe led participants to generate significantly fewer vulnerabilities and better align code generation with their goals compared to a traditional code completion assistant.
comment: 10 pages, 6 figures
♻ ☆ SeePhys: Does Seeing Help Thinking? -- Benchmarking Vision-Based Physics Reasoning
We present SeePhys, a large-scale multimodal benchmark for LLM reasoning grounded in physics questions ranging from middle school to PhD qualifying exams. The benchmark covers 7 fundamental domains spanning the physics discipline, incorporating 21 categories of highly heterogeneous diagrams. In contrast to prior works where visual elements mainly serve auxiliary purposes, our benchmark features a substantial proportion of vision-essential problems (75%) that mandate visual information extraction for correct solutions. Through extensive evaluation, we observe that even the most advanced visual reasoning models (e.g., Gemini-2.5-pro and o4-mini) achieve sub-60% accuracy on our benchmark. These results reveal fundamental challenges in current large language models' visual understanding capabilities, particularly in: (i) establishing rigorous coupling between diagram interpretation and physics reasoning, and (ii) overcoming their persistent reliance on textual cues as cognitive shortcuts.
comment: 46 pages
♻ ☆ Afterburner: Reinforcement Learning Facilitates Self-Improving Code Efficiency Optimization
Large Language Models (LLMs) generate functionally correct solutions but often fall short in code efficiency, a critical bottleneck for real-world deployment. In this paper, we introduce a novel test-time iterative optimization framework to address this, employing a closed-loop system where LLMs iteratively refine code based on empirical performance feedback from an execution sandbox. We explore three training strategies: Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and Group Relative Policy Optimization (GRPO). Experiments on our Venus dataset and the APPS benchmark show that SFT and DPO rapidly saturate in efficiency gains. In contrast, GRPO, using reinforcement learning (RL) with execution feedback, continuously optimizes code performance, significantly boosting both pass@1 (from 47% to 62%) and the likelihood of outperforming human submissions in efficiency (from 31% to 45%). Our work demonstrates effective test-time code efficiency improvement and critically reveals the power of RL in teaching LLMs to truly self-improve code efficiency.
♻ ☆ How Do Transformers Learn Variable Binding in Symbolic Programs? ICML 2025
Variable binding -- the ability to associate variables with values -- is fundamental to symbolic computation and cognition. Although classical architectures typically implement variable binding via addressable memory, it is not well understood how modern neural networks lacking built-in binding operations may acquire this capacity. We investigate this by training a Transformer to dereference queried variables in symbolic programs where variables are assigned either numerical constants or other variables. Each program requires following chains of variable assignments up to four steps deep to find the queried value, and also contains irrelevant chains of assignments acting as distractors. Our analysis reveals a developmental trajectory with three distinct phases during training: (1) random prediction of numerical constants, (2) a shallow heuristic prioritizing early variable assignments, and (3) the emergence of a systematic mechanism for dereferencing assignment chains. Using causal interventions, we find that the model learns to exploit the residual stream as an addressable memory space, with specialized attention heads routing information across token positions. This mechanism allows the model to dynamically track variable bindings across layers, resulting in accurate dereferencing. Our results show how Transformer models can learn to implement systematic variable binding without explicit architectural support, bridging connectionist and symbolic approaches. To facilitate reproducible research, we developed Variable Scope, an interactive web platform for exploring our findings at https://variablescope.org
comment: 16 pages, 10 figures, 1 table. To appear in the Proceedings of the 42nd International Conference on Machine Learning (ICML 2025). v2: Added link to Variable Scope in abstract
♻ ☆ Binarized Neural Networks Converge Toward Algorithmic Simplicity: Empirical Support for the Learning-as-Compression Hypothesis NeurIPS 2025
Understanding and controlling the informational complexity of neural networks is a central challenge in machine learning, with implications for generalization, optimization, and model capacity. While most approaches rely on entropy-based loss functions and statistical metrics, these measures often fail to capture deeper, causally relevant algorithmic regularities embedded in network structure. We propose a shift toward algorithmic information theory, using Binarized Neural Networks (BNNs) as a first proxy. Grounded in algorithmic probability (AP) and the universal distribution it defines, our approach characterizes learning dynamics through a formal, causally grounded lens. We apply the Block Decomposition Method (BDM) -- a scalable approximation of algorithmic complexity based on AP -- and demonstrate that it more closely tracks structural changes during training than entropy, consistently exhibiting stronger correlations with training loss across varying model sizes and randomized training runs. These results support the view of training as a process of algorithmic compression, where learning corresponds to the progressive internalization of structured regularities. In doing so, our work offers a principled estimate of learning progression and suggests a framework for complexity-aware learning and regularization, grounded in first principles from information theory, complexity, and computability.
comment: 10 pages total, 1 figure. Submitted to NeurIPS 2025
♻ ☆ LlamaDuo: LLMOps Pipeline for Seamless Migration from Service LLMs to Small-Scale Local LLMs ACL 2025
The widespread adoption of cloud-based proprietary large language models (LLMs) has introduced significant challenges, including operational dependencies, privacy concerns, and the necessity of continuous internet connectivity. In this work, we introduce an LLMOps pipeline, "LlamaDuo", for the seamless migration of knowledge and abilities from service-oriented LLMs to smaller, locally manageable models. This pipeline is crucial for ensuring service continuity in the presence of operational failures, strict privacy policies, or offline requirements. Our LlamaDuo involves fine-tuning a small language model against the service LLM using a synthetic dataset generated by the latter. If the performance of the fine-tuned model falls short of expectations, it is automatically improved through additional fine-tuning using extra similar data generated by the service LLM. This multi-turn process guarantees that the smaller model can eventually match or even surpass the service LLM's capabilities in specific downstream tasks, offering a practical and scalable solution for managing AI deployments in constrained environments. Extensive experiments with leading-edge LLMs are conducted to demonstrate the effectiveness, adaptability, and affordability of LlamaDuo across various downstream tasks. Our pipeline implementation is available at https://github.com/deep-diver/llamaduo.
comment: The first three authors contributed equally to this work; Accepted by ACL 2025 (Main)
♻ ☆ RuleArena: A Benchmark for Rule-Guided Reasoning with LLMs in Real-World Scenarios ACL 2025
This paper introduces RuleArena, a novel and challenging benchmark designed to evaluate the ability of large language models (LLMs) to follow complex, real-world rules in reasoning. Covering three practical domains -- airline baggage fees, NBA transactions, and tax regulations -- RuleArena assesses LLMs' proficiency in handling intricate natural language instructions that demand long-context understanding, logical reasoning, and accurate mathematical computation. Two key attributes distinguish RuleArena from traditional rule-based reasoning benchmarks: (1) it extends beyond standard first-order logic representations, and (2) it is grounded in authentic, practical scenarios, providing insights into the suitability and reliability of LLMs for real-world applications. Our findings reveal several notable limitations in LLMs: (1) they struggle to identify and apply the appropriate rules, frequently becoming confused by similar but distinct regulations, (2) they cannot consistently perform accurate mathematical computations, even when they correctly identify the relevant rules, and (3) in general, they perform poorly in the benchmark. We also observe a significant performance boost when LLMs are provided with external tools for oracle math and logic operations. These results highlight significant challenges and promising research directions in advancing LLMs' rule-guided reasoning capabilities in real-life applications. Our codes and data are publicly available on https://github.com/skyriver-2000/RuleArena.
comment: ACL 2025 Main Conference
♻ ☆ "Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization ACL 2025
Quantization is a powerful tool for accelerating large language model (LLM) inference, but the accuracy-performance trade-offs across different formats remain unclear. In this paper, we conduct the most comprehensive empirical study to date, evaluating FP8, INT8, and INT4 quantization across academic benchmarks and real-world tasks on the entire Llama-3.1 model family. Through over 500,000 evaluations, our investigation yields several key findings: (1) FP8 (W8A8-FP) is effectively lossless across all model scales, (2) well-tuned INT8 (W8A8-INT) achieves surprisingly low (1-3\%) accuracy degradation, and (3) INT4 weight-only (W4A16-INT) is more competitive than expected, rivaling 8-bit quantization. Further, we investigate the optimal quantization format for different deployments by analyzing inference performance through the popular vLLM framework. Our analysis provides clear deployment recommendations: W4A16 is the most cost-efficient for synchronous setups, while W8A8 dominates in asynchronous continuous batching. For mixed workloads, the optimal choice depends on the specific use case. Our findings offer practical, data-driven guidelines for deploying quantized LLMs at scale -- ensuring the best balance between speed, efficiency, and accuracy.
comment: Accepted to ACL 2025
♻ ☆ NdLinear: Don't Flatten! Building Superior Neural Architectures by Preserving N-D Structure
Many high-impact machine learning tasks involve multi-dimensional data such as images, volumetric medical scans, and multivariate time-series. Yet, most neural architectures flatten these inputs, discarding critical cross-dimension information. We introduce $\textbf{NdLinear}$, a novel linear transformation that circumvents this destructive flattening by operating directly on tensors. NdLinear applies transformations separately along each data dimension, thereby preserving the native data structure. Extensive experiments demonstrate NdLinear's capacity to significantly enhance representational power, achieve dramatic parameter reductions (often by orders of magnitude), and maintain a favorable computational profile. For instance, when applied to Large Language Model finetuning, our $\textbf{NdLinear-LoRA}$ delivers comparable or improved accuracy on reasoning tasks using up to $9\times$ fewer trainable parameters than standard LoRA. These broad advantages of NdLinear are consistently validated across diverse neural architectures (CNNs, RNNs, Transformers, MLPs) and data domains, including vision, language, time-series, and tabular tasks. As a versatile, drop-in replacement for standard linear layers, NdLinear processes data in its original N-dimensional form, offering a foundational component for developing more efficient and powerful next-generation neural architectures.
comment: Code is available at https://github.com/ensemble-core/NdLinear
♻ ☆ SparQLe: Speech Queries to Text Translation Through LLMs
With the growing influence of Large Language Models (LLMs), there is increasing interest in integrating speech representations with them to enable more seamless multi-modal processing and speech understanding. This study introduces a novel approach that combines self-supervised speech representations with instruction-tuned LLMs for speech-to-text translation. The proposed approach leverages a modality adapter to align extracted speech features with instruction-tuned LLMs using English speech data. Our experiments demonstrate that this method effectively preserves the semantic content of the input speech and serves as an effective bridge between self-supervised speech models and instruction-tuned LLMs, offering a promising approach for various speech understanding applications.
♻ ☆ You need to MIMIC to get FAME: Solving Meeting Transcript Scarcity with a Multi-Agent Conversations ACL 2025
Meeting summarization suffers from limited high-quality data, mainly due to privacy restrictions and expensive collection processes. We address this gap with FAME, a dataset of 500 meetings in English and 300 in German produced by MIMIC, our new multi-agent meeting synthesis framework that generates meeting transcripts on a given knowledge source by defining psychologically grounded participant profiles, outlining the conversation, and orchestrating a large language model (LLM) debate. A modular post-processing step refines these outputs, mitigating potential repetitiveness and overly formal tones, ensuring coherent, credible dialogues at scale. We also propose a psychologically grounded evaluation framework assessing naturalness, social behavior authenticity, and transcript difficulties. Human assessments show that FAME approximates real-meeting spontaneity (4.5/5 in naturalness), preserves speaker-centric challenges (3/5 in spoken language), and introduces richer information-oriented difficulty (4/5 in difficulty). These findings highlight that FAME is a good and scalable proxy for real-world meeting conditions. It enables new test scenarios for meeting summarization research and other conversation-centric applications in tasks requiring conversation data or simulating social scenarios under behavioral constraints.
comment: Accepted at ACL 2025 (Findings)
♻ ☆ Combining Domain and Alignment Vectors to Achieve Better Knowledge-Safety Trade-offs in LLMs
There is a growing interest in training domain-expert LLMs that excel in specific technical fields compared to their general-purpose instruction-tuned counterparts. However, these expert models often experience a loss in their safety abilities in the process, making them capable of generating harmful content. As a solution, we introduce an efficient and effective merging-based alignment method called \textsc{MergeAlign} that interpolates the domain and alignment vectors, creating safer domain-specific models while preserving their utility. We apply \textsc{MergeAlign} on Llama3 variants that are experts in medicine and finance, obtaining substantial alignment improvements with minimal to no degradation on domain-specific benchmarks. We study the impact of model merging through model similarity metrics and contributions of individual models being merged. We hope our findings open new research avenues and inspire more efficient development of safe expert LLMs.
♻ ☆ AI for Just Work: Constructing Diverse Imaginations of AI beyond "Replacing Humans"
"why" we develop AI. Lacking critical reflections on the general visions and purposes of AI may make the community vulnerable to manipulation. In this position paper, we explore the "why" question of AI. We denote answers to the "why" question the imaginations of AI, which depict our general visions, frames, and mindsets for the prospects of AI. We identify that the prevailing vision in the AI community is largely a monoculture that emphasizes objectives such as replacing humans and improving productivity. Our critical examination of this mainstream imagination highlights its underpinning and potentially unjust assumptions. We then call to diversify our collective imaginations of AI, embedding ethical assumptions from the outset in the imaginations of AI. To facilitate the community's pursuit of diverse imaginations, we demonstrate one process for constructing a new imagination of "AI for just work," and showcase its application in the medical image synthesis task to make it more ethical. We hope this work will help the AI community to open critical dialogues with civil society on the visions and purposes of AI, and inspire more technical works and advocacy in pursuit of diverse and ethical imaginations to restore the value of AI for the public good.
♻ ☆ From the Pursuit of Universal AGI Architecture to Systematic Approach to Heterogenous AGI: Addressing Alignment, Energy, & AGI Grand Challenges
Artificial intelligence (AI) faces a trifecta of grand challenges: the Energy Wall, the Alignment Problem and the Leap from Narrow AI to AGI. We present SAGI, a Systematic Approach to AGI that utilizes system design principles to overcome the energy wall and alignment challenges. This paper asserts that AGI can be realized through multiplicity of design specific pathways and customized through system design rather than a singular overarching architecture. AGI systems may exhibit diver architectural configurations and capabilities, contingent upon their intended use cases. Alignment, a challenge broadly recognized as AIs most formidable, is the one that depends most critically on system design and serves as its primary driving force as a foundational criterion for AGI. Capturing the complexities of human morality for alignment requires architectural support to represent the intricacies of moral decision-making and the pervasive ethical processing at every level, with performance reliability exceeding that of human moral judgment. Hence, requiring a more robust architecture towards safety and alignment goals, without replicating or resembling the human brain. We argue that system design (such as feedback loops, energy and performance optimization) on learning substrates (capable of learning its system architecture) is more fundamental to achieving AGI goals and guarantees, superseding classical symbolic, emergentist and hybrid approaches. Through learning of the system architecture itself, the resulting AGI is not a product of spontaneous emergence but of systematic design and deliberate engineering, with core features, including an integrated moral architecture, deeply embedded within its architecture. The approach aims to guarantee design goals such as alignment, efficiency by self-learning system architecture.
comment: Categories: Artificial Intelligence; AI; Artificial General Intelligence; AGI; System Design; System Architecture Preprint International Journal on Semantic Computing Vol. 18, No. 03, pp. 465-500
♻ ☆ Position: Beyond Assistance -- Reimagining LLMs as Ethical and Adaptive Co-Creators in Mental Health Care
This position paper argues for a fundamental shift in how Large Language Models (LLMs) are integrated into the mental health care domain. We advocate for their role as co-creators rather than mere assistive tools. While LLMs have the potential to enhance accessibility, personalization, and crisis intervention, their adoption remains limited due to concerns about bias, evaluation, over-reliance, dehumanization, and regulatory uncertainties. To address these challenges, we propose two structured pathways: SAFE-i (Supportive, Adaptive, Fair, and Ethical Implementation) Guidelines for ethical and responsible deployment, and HAAS-e (Human-AI Alignment and Safety Evaluation) Framework for multidimensional, human-centered assessment. SAFE-i provides a blueprint for data governance, adaptive model engineering, and real-world integration, ensuring LLMs align with clinical and ethical standards. HAAS-e introduces evaluation metrics that go beyond technical accuracy to measure trustworthiness, empathy, cultural sensitivity, and actionability. We call for the adoption of these structured approaches to establish a responsible and scalable model for LLM-driven mental health support, ensuring that AI complements, rather than replaces, human expertise.
♻ ☆ Efficient Neural Clause-Selection Reinforcement
Clause selection is arguably the most important choice point in saturation-based theorem proving. Framing it as a reinforcement learning (RL) task is a way to challenge the human-designed heuristics of state-of-the-art provers and to instead automatically evolve -- just from prover experiences -- their potentially optimal replacement. In this work, we present a neural network architecture for scoring clauses for clause selection that is powerful yet efficient to evaluate. Following RL principles to make design decisions, we integrate the network into the Vampire theorem prover and train it from successful proof attempts. An experiment on the diverse TPTP benchmark finds the neurally guided prover improve over a baseline strategy, from which it initially learns -- in terms of the number of in-training-unseen problems solved under a practically relevant, short CPU instruction limit -- by 20%.
comment: 17 pages main text, 3 page bibliography, 6 page appendix
Graphics 7
☆ TC-GS: A Faster Gaussian Splatting Module Utilizing Tensor Cores
3D Gaussian Splatting (3DGS) renders pixels by rasterizing Gaussian primitives, where conditional alpha-blending dominates the time cost in the rendering pipeline. This paper proposes TC-GS, an algorithm-independent universal module that expands Tensor Core (TCU) applicability for 3DGS, leading to substantial speedups and seamless integration into existing 3DGS optimization frameworks. The key innovation lies in mapping alpha computation to matrix multiplication, fully utilizing otherwise idle TCUs in existing 3DGS implementations. TC-GS provides plug-and-play acceleration for existing top-tier acceleration algorithms tightly coupled with rendering pipeline designs, like Gaussian compression and redundancy elimination algorithms. Additionally, we introduce a global-to-local coordinate transformation to mitigate rounding errors from quadratic terms of pixel coordinates caused by Tensor Core half-precision computation. Extensive experiments demonstrate that our method maintains rendering quality while providing an additional 2.18x speedup over existing Gaussian acceleration algorithms, thus reaching up to a total 5.6x acceleration. The code is currently available at anonymous \href{https://github.com/TensorCore3DGS/3DGSTensorCore}
comment: 15 pages, 6 figures
☆ Minimizing Ray Tracing Memory Traffic through Quantized Structures and Ray Stream Tracing
Memory bandwidth constraints continue to be a significant limiting factor in ray tracing performance, particularly as scene complexity grows and computational capabilities outpace memory access speeds. This paper presents a memory-efficient ray tracing methodology that integrates compressed data structures with ray stream techniques to reduce memory traffic. The approach implements compressed BVH and triangle representations to minimize acceleration structure size in combination with ray stream tracing to reduce traversal stack memory traffic. The technique employs fixed-point arithmetic for intersection tests for prospective hardware with tailored integer operations. Despite using reduced precision, geometric holes are avoided by leveraging fixed-point arithmetic instead of encountering the floating-point rounding errors common in traditional approaches. Quantitative analysis demonstrates significant memory traffic reduction across various scene complexities and BVH configurations. The presented 8-wide BVH ray stream implementation reduces memory traffic to only 18% of traditional approaches by using 8-bit quantization for box and triangle coordinates and directly ray tracing these quantized structures. These reductions are especially beneficial for bandwidth-constrained hardware environments such as mobile devices. This integrated approach addresses both memory bandwidth limitations and numerical precision challenges inherent to modern ray tracing applications.
☆ High-throughput viscometry via machine-learning from videos of inverted vials
Although the inverted vial test has been widely used as a qualitative method for estimating fluid viscosity, quantitative rheological characterization has remained limited due to its complex, uncontrolled flow - driven by gravity, surface tension, inertia, and initial conditions. Here, we present a computer vision (CV) viscometer that automates the inverted vial test and enables quantitative viscosity inference across nearly five orders of magnitude (0.01-1000 Pas), without requiring direct velocity field measurements. The system simultaneously inverts multiple vials and records videos of the evolving fluid, which are fed into a neural network that approximates the inverse function from visual features and known fluid density. Despite the complex, multi-regime flow within the vial, our approach achieves relative errors below 25%, improving to 15% for viscosities above 0.1 Pas. When tested on non-Newtonian polymer solutions, the method reliably estimates zero-shear viscosity as long as viscoelastic or shear-thinning behaviors remain negligible within the flow regime. Moreover, high standard deviations in the inferred values may serve as a proxy for identifying fluids with strong non-Newtonian behavior. The CV viscometer requires only one camera and one motor, is contactless and low-cost, and can be easily integrated into high-throughput experimental automated and manual workflows. Transcending traditional characterization paradigms, our method leverages uncontrolled flows and visual features to achieve simplicity and scalability, enabling high-throughput viscosity inference that can meet the growing demand of data-driven material models while remaining accessible to lower resource environments.
☆ MotionPersona: Characteristics-aware Locomotion Control
We present MotionPersona, a novel real-time character controller that allows users to characterize a character by specifying attributes such as physical traits, mental states, and demographics, and projects these properties into the generated motions for animating the character. In contrast to existing deep learning-based controllers, which typically produce homogeneous animations tailored to a single, predefined character, MotionPersona accounts for the impact of various traits on human motion as observed in the real world. To achieve this, we develop a block autoregressive motion diffusion model conditioned on SMPLX parameters, textual prompts, and user-defined locomotion control signals. We also curate a comprehensive dataset featuring a wide range of locomotion types and actor traits to enable the training of this characteristic-aware controller. Unlike prior work, MotionPersona is the first method capable of generating motion that faithfully reflects user-specified characteristics (e.g., an elderly person's shuffling gait) while responding in real time to dynamic control inputs. Additionally, we introduce a few-shot characterization technique as a complementary conditioning mechanism, enabling customization via short motion clips when language prompts fall short. Through extensive experiments, we demonstrate that MotionPersona outperforms existing methods in characteristics-aware locomotion control, achieving superior motion quality and diversity. Results, code, and demo can be found at: https://motionpersona25.github.io/.
comment: 15 pages, 13 figures, webpage: https://motionpersona25.github.io/
♻ ☆ CraftsMan3D: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner
We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan
comment: HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan3D
♻ ☆ CAD-Coder: Text-to-CAD Generation with Chain-of-Thought and Geometric Reward
In this work, we introduce CAD-Coder, a novel framework that reformulates text-to-CAD as the generation of CadQuery scripts - a Python-based, parametric CAD language. This representation enables direct geometric validation, a richer modeling vocabulary, and seamless integration with existing LLMs. To further enhance code validity and geometric fidelity, we propose a two-stage learning pipeline: (1) supervised fine-tuning on paired text-CadQuery data, and (2) reinforcement learning with Group Reward Policy Optimization (GRPO), guided by a CAD-specific reward comprising both a geometric reward (Chamfer Distance) and a format reward. We also introduce a chain-of-thought (CoT) planning process to improve model reasoning, and construct a large-scale, high-quality dataset of 110K text-CadQuery-3D model triplets and 1.5K CoT samples via an automated pipeline. Extensive experiments demonstrate that CAD-Coder enables LLMs to generate diverse, valid, and complex CAD models directly from natural language, advancing the state of the art of text-to-CAD generation and geometric reasoning.
♻ ☆ ART-DECO: Arbitrary Text Guidance for 3D Detailizer Construction
We introduce a 3D detailizer, a neural model which can instantaneously (in <1s) transform a coarse 3D shape proxy into a high-quality asset with detailed geometry and texture as guided by an input text prompt. Our model is trained using the text prompt, which defines the shape class and characterizes the appearance and fine-grained style of the generated details. The coarse 3D proxy, which can be easily varied and adjusted (e.g., via user editing), provides structure control over the final shape. Importantly, our detailizer is not optimized for a single shape; it is the result of distilling a generative model, so that it can be reused, without retraining, to generate any number of shapes, with varied structures, whose local details all share a consistent style and appearance. Our detailizer training utilizes a pretrained multi-view image diffusion model, with text conditioning, to distill the foundational knowledge therein into our detailizer via Score Distillation Sampling (SDS). To improve SDS and enable our detailizer architecture to learn generalizable features over complex structures, we train our model in two training stages to generate shapes with increasing structural complexity. Through extensive experiments, we show that our method generates shapes of superior quality and details compared to existing text-to-3D models under varied structure control. Our detailizer can refine a coarse shape in less than a second, making it possible to interactively author and adjust 3D shapes. Furthermore, the user-imposed structure control can lead to creative, and hence out-of-distribution, 3D asset generations that are beyond the current capabilities of leading text-to-3D generative models. We demonstrate an interactive 3D modeling workflow our method enables, and its strong generalizability over styles, structures, and object categories.
Robotics 55
☆ PB&J: Peanut Butter and Joints for Damped Articulation
Many bioinspired robots mimic the rigid articulated joint structure of the human hand for grasping tasks, but experience high-frequency mechanical perturbations that can destabilize the system and negatively affect precision without a high-frequency controller. Despite having bandwidth-limited controllers that experience time delays between sensing and actuation, biological systems can respond successfully to and mitigate these high-frequency perturbations. Human joints include damping and stiffness that many rigid articulated bioinspired hand robots lack. To enable researchers to explore the effects of joint viscoelasticity in joint control, we developed a human-hand-inspired grasping robot with viscoelastic structures that utilizes accessible and bioderived materials to reduce the economic and environmental impact of prototyping novel robotic systems. We demonstrate that an elastic element at the finger joints is necessary to achieve concurrent flexion, which enables secure grasping of spherical objects. To significantly damp the manufactured finger joints, we modeled, manufactured, and characterized rotary dampers using peanut butter as an organic analog joint working fluid. Finally, we demonstrated that a real-time position-based controller could be used to successfully catch a lightweight falling ball. We developed this open-source, low-cost grasping platform that abstracts the morphological and mechanical properties of the human hand to enable researchers to explore questions about biomechanics in roboto that would otherwise be difficult to test in simulation or modeling.
comment: to be published in Living Machines 2025 Proceedings
☆ DexMachina: Functional Retargeting for Bimanual Dexterous Manipulation
We study the problem of functional retargeting: learning dexterous manipulation policies to track object states from human hand-object demonstrations. We focus on long-horizon, bimanual tasks with articulated objects, which is challenging due to large action space, spatiotemporal discontinuities, and embodiment gap between human and robot hands. We propose DexMachina, a novel curriculum-based algorithm: the key idea is to use virtual object controllers with decaying strength: an object is first driven automatically towards its target states, such that the policy can gradually learn to take over under motion and contact guidance. We release a simulation benchmark with a diverse set of tasks and dexterous hands, and show that DexMachina significantly outperforms baseline methods. Our algorithm and benchmark enable a functional comparison for hardware designs, and we present key findings informed by quantitative and qualitative results. With the recent surge in dexterous hand development, we hope this work will provide a useful platform for identifying desirable hardware capabilities and lower the barrier for contributing to future research. Videos and more at https://project-dexmachina.github.io/
☆ Bi-Manual Joint Camera Calibration and Scene Representation
Robot manipulation, especially bimanual manipulation, often requires setting up multiple cameras on multiple robot manipulators. Before robot manipulators can generate motion or even build representations of their environments, the cameras rigidly mounted to the robot need to be calibrated. Camera calibration is a cumbersome process involving collecting a set of images, with each capturing a pre-determined marker. In this work, we introduce the Bi-Manual Joint Calibration and Representation Framework (Bi-JCR). Bi-JCR enables multiple robot manipulators, each with cameras mounted, to circumvent taking images of calibration markers. By leveraging 3D foundation models for dense, marker-free multi-view correspondence, Bi-JCR jointly estimates: (i) the extrinsic transformation from each camera to its end-effector, (ii) the inter-arm relative poses between manipulators, and (iii) a unified, scale-consistent 3D representation of the shared workspace, all from the same captured RGB image sets. The representation, jointly constructed from images captured by cameras on both manipulators, lives in a common coordinate frame and supports collision checking and semantic segmentation to facilitate downstream bimanual coordination tasks. We empirically evaluate the robustness of Bi-JCR on a variety of tabletop environments, and demonstrate its applicability on a variety of downstream tasks.
☆ RealDrive: Retrieval-Augmented Driving with Diffusion Models
Learning-based planners generate natural human-like driving behaviors by learning to reason about nuanced interactions from data, overcoming the rigid behaviors that arise from rule-based planners. Nonetheless, data-driven approaches often struggle with rare, safety-critical scenarios and offer limited controllability over the generated trajectories. To address these challenges, we propose RealDrive, a Retrieval-Augmented Generation (RAG) framework that initializes a diffusion-based planning policy by retrieving the most relevant expert demonstrations from the training dataset. By interpolating between current observations and retrieved examples through a denoising process, our approach enables fine-grained control and safe behavior across diverse scenarios, leveraging the strong prior provided by the retrieved scenario. Another key insight we produce is that a task-relevant retrieval model trained with planning-based objectives results in superior planning performance in our framework compared to a task-agnostic retriever. Experimental results demonstrate improved generalization to long-tail events and enhanced trajectory diversity compared to standard learning-based planners -- we observe a 40% reduction in collision rate on the Waymo Open Motion dataset with RAG.
☆ DiG-Net: Enhancing Quality of Life through Hyper-Range Dynamic Gesture Recognition in Assistive Robotics
Dynamic hand gestures play a pivotal role in assistive human-robot interaction (HRI), facilitating intuitive, non-verbal communication, particularly for individuals with mobility constraints or those operating robots remotely. Current gesture recognition methods are mostly limited to short-range interactions, reducing their utility in scenarios demanding robust assistive communication from afar. In this paper, we introduce a novel approach designed specifically for assistive robotics, enabling dynamic gesture recognition at extended distances of up to 30 meters, thereby significantly improving accessibility and quality of life. Our proposed Distance-aware Gesture Network (DiG-Net) effectively combines Depth-Conditioned Deformable Alignment (DADA) blocks with Spatio-Temporal Graph modules, enabling robust processing and classification of gesture sequences captured under challenging conditions, including significant physical attenuation, reduced resolution, and dynamic gesture variations commonly experienced in real-world assistive environments. We further introduce the Radiometric Spatio-Temporal Depth Attenuation Loss (RSTDAL), shown to enhance learning and strengthen model robustness across varying distances. Our model demonstrates significant performance improvement over state-of-the-art gesture recognition frameworks, achieving a recognition accuracy of 97.3% on a diverse dataset with challenging hyper-range gestures. By effectively interpreting gestures from considerable distances, DiG-Net significantly enhances the usability of assistive robots in home healthcare, industrial safety, and remote assistance scenarios, enabling seamless and intuitive interactions for users regardless of physical limitations
comment: arXiv admin note: substantial text overlap with arXiv:2411.18413
☆ EL-AGHF: Extended Lagrangian Affine Geometric Heat Flow
We propose a constrained Affine Geometric Heat Flow (AGHF) method that evolves so as to suppress the dynamics gaps associated with inadmissible control directions. AGHF provides a unified framework applicable to a wide range of motion planning problems, including both holonomic and non-holonomic systems. However, to generate admissible trajectories, it requires assigning infinite penalties to inadmissible control directions. This design choice, while theoretically valid, often leads to high computational cost or numerical instability when the penalty becomes excessively large. To overcome this limitation, we extend AGHF in an Augmented Lagrangian method approach by introducing a dual trajectory related to dynamics gaps in inadmissible control directions. This method solves the constrained variational problem as an extended parabolic partial differential equation defined over both the state and dual trajectorys, ensuring the admissibility of the resulting trajectory. We demonstrate the effectiveness of our algorithm through simulation examples.
comment: 6 pages, 4 figures
☆ Black-box Adversarial Attacks on CNN-based SLAM Algorithms
Continuous advancements in deep learning have led to significant progress in feature detection, resulting in enhanced accuracy in tasks like Simultaneous Localization and Mapping (SLAM). Nevertheless, the vulnerability of deep neural networks to adversarial attacks remains a challenge for their reliable deployment in applications, such as navigation of autonomous agents. Even though CNN-based SLAM algorithms are a growing area of research there is a notable absence of a comprehensive presentation and examination of adversarial attacks targeting CNN-based feature detectors, as part of a SLAM system. Our work introduces black-box adversarial perturbations applied to the RGB images fed into the GCN-SLAM algorithm. Our findings on the TUM dataset [30] reveal that even attacks of moderate scale can lead to tracking failure in as many as 76% of the frames. Moreover, our experiments highlight the catastrophic impact of attacking depth instead of RGB input images on the SLAM system.
comment: 9 pages, 8 figures
☆ System-integrated intrinsic static-dynamic pressure sensing enabled by charge excitation and 3D gradient engineering for autonomous robotic interaction
High-resolution pressure sensing that distinguishes static and dynamic inputs is vital for intelligent robotics but remains challenging for self-powered sensors. We present a self-powered intrinsic static-dynamic pressure sensor (iSD Sensor) that integrates charge excitation with a 3D gradient-engineered structure, achieving enhanced voltage outputs-over 25X for static and 15X for dynamic modes. The sensor exhibits multi-region sensitivities (up to 34.7 V/kPa static, 48.4 V/kPa dynamic), a low detection limit of 6.13 Pa, and rapid response/recovery times (83/43 ms). This design enables nuanced tactile perception and supports dual-mode robotic control: proportional actuation via static signals and fast triggering via dynamic inputs. Integrated into a wireless closed-loop system, the iSD Sensor enables precise functions such as finger bending, object grasping, and sign language output.
☆ How can AI reduce wrist injuries in the workplace?
This paper explores the development of a control and sensor strategy for an industrial wearable wrist exoskeleton by classifying and predicting workers' actions. The study evaluates the correlation between exerted force and effort intensity, along with sensor strategy optimization, for designing purposes. Using data from six healthy subjects in a manufacturing plant, this paper presents EMG-based models for wrist motion classification and force prediction. Wrist motion recognition is achieved through a pattern recognition algorithm developed with surface EMG data from an 8-channel EMG sensor (Myo Armband); while a force regression model uses wrist and hand force measurements from a commercial handheld dynamometer (Vernier GoDirect Hand Dynamometer). This control strategy forms the foundation for a streamlined exoskeleton architecture designed for industrial applications, focusing on simplicity, reduced costs, and minimal sensor use while ensuring reliable and effective assistance.
comment: Pages 569-580
Reactive Aerobatic Flight via Reinforcement Learning RAL
Quadrotors have demonstrated remarkable versatility, yet their full aerobatic potential remains largely untapped due to inherent underactuation and the complexity of aggressive maneuvers. Traditional approaches, separating trajectory optimization and tracking control, suffer from tracking inaccuracies, computational latency, and sensitivity to initial conditions, limiting their effectiveness in dynamic, high-agility scenarios. Inspired by recent breakthroughs in data-driven methods, we propose a reinforcement learning-based framework that directly maps drone states and aerobatic intentions to control commands, eliminating modular separation to enable quadrotors to perform end-to-end policy optimization for extreme aerobatic maneuvers. To ensure efficient and stable training, we introduce an automated curriculum learning strategy that dynamically adjusts aerobatic task difficulty. Enabled by domain randomization for robust zero-shot sim-to-real transfer, our approach is validated in demanding real-world experiments, including the first demonstration of a drone autonomously performing continuous inverted flight while reactively navigating a moving gate, showcasing unprecedented agility.
comment: This work has been submitted to RAL and is under review
☆ SAH-Drive: A Scenario-Aware Hybrid Planner for Closed-Loop Vehicle Trajectory Generation
Reliable planning is crucial for achieving autonomous driving. Rule-based planners are efficient but lack generalization, while learning-based planners excel in generalization yet have limitations in real-time performance and interpretability. In long-tail scenarios, these challenges make planning particularly difficult. To leverage the strengths of both rule-based and learning-based planners, we proposed the Scenario-Aware Hybrid Planner (SAH-Drive) for closed-loop vehicle trajectory planning. Inspired by human driving behavior, SAH-Drive combines a lightweight rule-based planner and a comprehensive learning-based planner, utilizing a dual-timescale decision neuron to determine the final trajectory. To enhance the computational efficiency and robustness of the hybrid planner, we also employed a diffusion proposal number regulator and a trajectory fusion module. The experimental results show that the proposed method significantly improves the generalization capability of the planning system, achieving state-of-the-art performance in interPlan, while maintaining computational efficiency without incurring substantial additional runtime.
comment: 17 pages, 8 figures, International Conference on Machine Learning
☆ MagicGripper: A Multimodal Sensor-Integrated Gripper for Contact-Rich Robotic Manipulation
Contact-rich manipulation in unstructured environments demands precise, multimodal perception to enable robust and adaptive control. Vision-based tactile sensors (VBTSs) have emerged as an effective solution; however, conventional VBTSs often face challenges in achieving compact, multi-modal functionality due to hardware constraints and algorithmic complexity. In this work, we present MagicGripper, a multimodal sensor-integrated gripper designed for contact-rich robotic manipulation. Building on our prior design, MagicTac, we develop a compact variant, mini-MagicTac, which features a three-dimensional, multi-layered grid embedded in a soft elastomer. MagicGripper integrates mini-MagicTac, enabling high-resolution tactile feedback alongside proximity and visual sensing within a compact, gripper-compatible form factor. We conduct a thorough evaluation of mini-MagicTac's performance, demonstrating its capabilities in spatial resolution, contact localization, and force regression. We also assess its robustness across manufacturing variability, mechanical deformation, and sensing performance under real-world conditions. Furthermore, we validate the effectiveness of MagicGripper through three representative robotic tasks: a teleoperated assembly task, a contact-based alignment task, and an autonomous robotic grasping task. Across these experiments, MagicGripper exhibits reliable multimodal perception, accurate force estimation, and high adaptability to challenging manipulation scenarios. Our results highlight the potential of MagicGripper as a practical and versatile tool for embodied intelligence in complex, contact-rich environments.
comment: 19 pages, 24 figures
☆ Imitation Learning-Based Path Generation for the Complex Assembly of Deformable Objects
This paper investigates how learning can be used to ease the design of high-quality paths for the assembly of deformable objects. Object dynamics plays an important role when manipulating deformable objects; thus, detailed models are often used when conducting motion planning for deformable objects. We propose to use human demonstrations and learning to enable motion planning of deformable objects with only simple dynamical models of the objects. In particular, we use the offline collision-free path planning, to generate a large number of reference paths based on a simple model of the deformable object. Subsequently, we execute the collision-free paths on a robot with a compliant control such that a human can slightly modify the path to complete the task successfully. Finally, based on the virtual path data sets and the human corrected ones, we use behavior cloning (BC) to create a dexterous policy that follows one reference path to finish a given task.
☆ DTR: Delaunay Triangulation-based Racing for Scaled Autonomous Racing
Reactive controllers for autonomous racing avoid the computational overhead of full ee-Think-Act autonomy stacks by directly mapping sensor input to control actions, eliminating the need for localization and planning. A widely used reactive strategy is FTG, which identifies gaps in LiDAR range measurements and steers toward a chosen one. While effective on fully bounded circuits, FTG fails in scenarios with incomplete boundaries and is prone to driving into dead-ends, known as FTG-traps. This work presents DTR, a reactive controller that combines Delaunay triangulation, from raw LiDAR readings, with track boundary segmentation to extract a centerline while systematically avoiding FTG-traps. Compared to FTG, the proposed method achieves lap times that are 70\% faster and approaches the performance of map-dependent methods. With a latency of 8.95 ms and CPU usage of only 38.85\% on the robot's OBC, DTR is real-time capable and has been successfully deployed and evaluated in field experiments.
SR3D: Unleashing Single-view 3D Reconstruction for Transparent and Specular Object Grasping
Recent advancements in 3D robotic manipulation have improved grasping of everyday objects, but transparent and specular materials remain challenging due to depth sensing limitations. While several 3D reconstruction and depth completion approaches address these challenges, they suffer from setup complexity or limited observation information utilization. To address this, leveraging the power of single view 3D object reconstruction approaches, we propose a training free framework SR3D that enables robotic grasping of transparent and specular objects from a single view observation. Specifically, given single view RGB and depth images, SR3D first uses the external visual models to generate 3D reconstructed object mesh based on RGB image. Then, the key idea is to determine the 3D object's pose and scale to accurately localize the reconstructed object back into its original depth corrupted 3D scene. Therefore, we propose view matching and keypoint matching mechanisms,which leverage both the 2D and 3D's inherent semantic and geometric information in the observation to determine the object's 3D state within the scene, thereby reconstructing an accurate 3D depth map for effective grasp detection. Experiments in both simulation and real world show the reconstruction effectiveness of SR3D.
☆ SignBot: Learning Human-to-Humanoid Sign Language Interaction
Sign language is a natural and visual form of language that uses movements and expressions to convey meaning, serving as a crucial means of communication for individuals who are deaf or hard-of-hearing (DHH). However, the number of people proficient in sign language remains limited, highlighting the need for technological advancements to bridge communication gaps and foster interactions with minorities. Based on recent advancements in embodied humanoid robots, we propose SignBot, a novel framework for human-robot sign language interaction. SignBot integrates a cerebellum-inspired motion control component and a cerebral-oriented module for comprehension and interaction. Specifically, SignBot consists of: 1) Motion Retargeting, which converts human sign language datasets into robot-compatible kinematics; 2) Motion Control, which leverages a learning-based paradigm to develop a robust humanoid control policy for tracking sign language gestures; and 3) Generative Interaction, which incorporates translator, responser, and generator of sign language, thereby enabling natural and effective communication between robots and humans. Simulation and real-world experimental results demonstrate that SignBot can effectively facilitate human-robot interaction and perform sign language motions with diverse robots and datasets. SignBot represents a significant advancement in automatic sign language interaction on embodied humanoid robot platforms, providing a promising solution to improve communication accessibility for the DHH community.
☆ Safety-Aware Robust Model Predictive Control for Robotic Arms in Dynamic Environments
Robotic manipulators are essential for precise industrial pick-and-place operations, yet planning collision-free trajectories in dynamic environments remains challenging due to uncertainties such as sensor noise and time-varying delays. Conventional control methods often fail under these conditions, motivating the development of Robust MPC (RMPC) strategies with constraint tightening. In this paper, we propose a novel RMPC framework that integrates phase-based nominal control with a robust safety mode, allowing smooth transitions between safe and nominal operations. Our approach dynamically adjusts constraints based on real-time predictions of moving obstacles\textemdash whether human, robot, or other dynamic objects\textemdash thus ensuring continuous, collision-free operation. Simulation studies demonstrate that our controller improves both motion naturalness and safety, achieving faster task completion than conventional methods.
comment: This paper has been accepted to the CASE 2025 conference
☆ Learning Gentle Humanoid Locomotion and End-Effector Stabilization Control
Can your humanoid walk up and hand you a full cup of beer, without spilling a drop? While humanoids are increasingly featured in flashy demos like dancing, delivering packages, traversing rough terrain, fine-grained control during locomotion remains a significant challenge. In particular, stabilizing a filled end-effector (EE) while walking is far from solved, due to a fundamental mismatch in task dynamics: locomotion demands slow-timescale, robust control, whereas EE stabilization requires rapid, high-precision corrections. To address this, we propose SoFTA, a Slow-Fast TwoAgent framework that decouples upper-body and lower-body control into separate agents operating at different frequencies and with distinct rewards. This temporal and objective separation mitigates policy interference and enables coordinated whole-body behavior. SoFTA executes upper-body actions at 100 Hz for precise EE control and lower-body actions at 50 Hz for robust gait. It reduces EE acceleration by 2-5x relative to baselines and performs much closer to human-level stability, enabling delicate tasks such as carrying nearly full cups, capturing steady video during locomotion, and disturbance rejection with EE stability.
☆ Towards a Generalizable Bimanual Foundation Policy via Flow-based Video Prediction
Learning a generalizable bimanual manipulation policy is extremely challenging for embodied agents due to the large action space and the need for coordinated arm movements. Existing approaches rely on Vision-Language-Action (VLA) models to acquire bimanual policies. However, transferring knowledge from single-arm datasets or pre-trained VLA models often fails to generalize effectively, primarily due to the scarcity of bimanual data and the fundamental differences between single-arm and bimanual manipulation. In this paper, we propose a novel bimanual foundation policy by fine-tuning the leading text-to-video models to predict robot trajectories and training a lightweight diffusion policy for action generation. Given the lack of embodied knowledge in text-to-video models, we introduce a two-stage paradigm that fine-tunes independent text-to-flow and flow-to-video models derived from a pre-trained text-to-video model. Specifically, optical flow serves as an intermediate variable, providing a concise representation of subtle movements between images. The text-to-flow model predicts optical flow to concretize the intent of language instructions, and the flow-to-video model leverages this flow for fine-grained video prediction. Our method mitigates the ambiguity of language in single-stage text-to-video prediction and significantly reduces the robot-data requirement by avoiding direct use of low-level actions. In experiments, we collect high-quality manipulation data for real dual-arm robot, and the results of simulation and real-world experiments demonstrate the effectiveness of our method.
☆ Humanoid Loco-Manipulations Pattern Generation and Stabilization Control
In order for a humanoid robot to perform loco-manipulation such as moving an object while walking, it is necessary to account for sustained or alternating external forces other than ground-feet reaction, resulting from humanoid-object contact interactions. In this letter, we propose a bipedal control strategy for humanoid loco-manipulation that can cope with such external forces. First, the basic formulas of the bipedal dynamics, i.e., linear inverted pendulum mode and divergent component of motion, are derived, taking into account the effects of external manipulation forces. Then, we propose a pattern generator to plan center of mass trajectories consistent with the reference trajectory of the manipulation forces, and a stabilizer to compensate for the error between desired and actual manipulation forces. The effectiveness of our controller is assessed both in simulation and loco-manipulation experiments with real humanoid robots.
☆ Towards Tangible Immersion for Cobot Programming-by-Demonstration: Visual, Tactile and Haptic Interfaces for Mixed-Reality Cobot Automation in Semiconductor Manufacturing
Sensor-based reactive and hybrid approaches have proven a promising line of study to address imperfect knowledge in grasping and manipulation. However the reactive approaches are usually tightly coupled to a particular embodiment making transfer of knowledge difficult. This paper proposes a paradigm for modeling and execution of reactive manipulation actions, which makes knowledge transfer to different embodiments possible while retaining the reactive capabilities of the embodiments. The proposed approach extends the idea of control primitives coordinated by a state machine by introducing an embodiment independent layer of abstraction. Abstract manipulation primitives constitute a vocabulary of atomic, embodiment independent actions, which can be coordinated using state machines to describe complex actions. To obtain embodiment specific models, the abstract state machines are automatically translated to embodiment specific models, such that full capabilities of each platform can be utilized. The strength of the manipulation primitives paradigm is demonstrated by developing a set of corresponding embodiment specific primitives for object transport, including a complex reactive grasping primitive. The robustness of the approach is experimentally studied in emptying of a box filled with several unknown objects. The embodiment independence is studied by performing a manipulation task on two different platforms using the same abstract description.
comment: 4 Pages, 5 Figures
☆ Learning Aerodynamics for the Control of Flying Humanoid Robots
Robots with multi-modal locomotion are an active research field due to their versatility in diverse environments. In this context, additional actuation can provide humanoid robots with aerial capabilities. Flying humanoid robots face challenges in modeling and control, particularly with aerodynamic forces. This paper addresses these challenges from a technological and scientific standpoint. The technological contribution includes the mechanical design of iRonCub-Mk1, a jet-powered humanoid robot, optimized for jet engine integration, and hardware modifications for wind tunnel experiments on humanoid robots for precise aerodynamic forces and surface pressure measurements. The scientific contribution offers a comprehensive approach to model and control aerodynamic forces using classical and learning techniques. Computational Fluid Dynamics (CFD) simulations calculate aerodynamic forces, validated through wind tunnel experiments on iRonCub-Mk1. An automated CFD framework expands the aerodynamic dataset, enabling the training of a Deep Neural Network and a linear regression model. These models are integrated into a simulator for designing aerodynamic-aware controllers, validated through flight simulations and balancing experiments on the iRonCub-Mk1 physical prototype.
☆ Lazy Heuristic Search for Solving POMDPs with Expensive-to-Compute Belief Transitions
Heuristic search solvers like RTDP-Bel and LAO* have proven effective for computing optimal and bounded sub-optimal solutions for Partially Observable Markov Decision Processes (POMDPs), which are typically formulated as belief MDPs. A belief represents a probability distribution over possible system states. Given a parent belief and an action, computing belief state transitions involves Bayesian updates that combine the transition and observation models of the POMDP to determine successor beliefs and their transition probabilities. However, there is a class of problems, specifically in robotics, where computing these transitions can be prohibitively expensive due to costly physics simulations, raycasting, or expensive collision checks required by the underlying transition and observation models, leading to long planning times. To address this challenge, we propose Lazy RTDP-Bel and Lazy LAO*, which defer computing expensive belief state transitions by leveraging Q-value estimation, significantly reducing planning time. We demonstrate the superior performance of the proposed lazy planners in domains such as contact-rich manipulation for pose estimation, outdoor navigation in rough terrain, and indoor navigation with a 1-D LiDAR sensor. Additionally, we discuss practical Q-value estimation techniques for commonly encountered problem classes that our lazy planners can leverage. Our results show that lazy heuristic search methods dramatically improve planning speed by postponing expensive belief transition evaluations while maintaining solution quality.
comment: Accepted for publication at The 18th International Symposium on Combinatorial Search (SOCS 2025)
☆ RoboMoRe: LLM-based Robot Co-design via Joint Optimization of Morphology and Reward
Robot co-design, jointly optimizing morphology and control policy, remains a longstanding challenge in the robotics community, where many promising robots have been developed. However, a key limitation lies in its tendency to converge to sub-optimal designs due to the use of fixed reward functions, which fail to explore the diverse motion modes suitable for different morphologies. Here we propose RoboMoRe, a large language model (LLM)-driven framework that integrates morphology and reward shaping for co-optimization within the robot co-design loop. RoboMoRe performs a dual-stage optimization: in the coarse optimization stage, an LLM-based diversity reflection mechanism generates both diverse and high-quality morphology-reward pairs and efficiently explores their distribution. In the fine optimization stage, top candidates are iteratively refined through alternating LLM-guided reward and morphology gradient updates. RoboMoRe can optimize both efficient robot morphologies and their suited motion behaviors through reward shaping. Results demonstrate that without any task-specific prompting or predefined reward/morphology templates, RoboMoRe significantly outperforms human-engineered designs and competing methods across eight different tasks.
comment: 30 pages, 13 figures
☆ Ctrl-Crash: Controllable Diffusion for Realistic Car Crashes
Video diffusion techniques have advanced significantly in recent years; however, they struggle to generate realistic imagery of car crashes due to the scarcity of accident events in most driving datasets. Improving traffic safety requires realistic and controllable accident simulations. To tackle the problem, we propose Ctrl-Crash, a controllable car crash video generation model that conditions on signals such as bounding boxes, crash types, and an initial image frame. Our approach enables counterfactual scenario generation where minor variations in input can lead to dramatically different crash outcomes. To support fine-grained control at inference time, we leverage classifier-free guidance with independently tunable scales for each conditioning signal. Ctrl-Crash achieves state-of-the-art performance across quantitative video quality metrics (e.g., FVD and JEDi) and qualitative measurements based on a human-evaluation of physical realism and video quality compared to prior diffusion-based methods.
comment: Under review
☆ Understanding while Exploring: Semantics-driven Active Mapping
Effective robotic autonomy in unknown environments demands proactive exploration and precise understanding of both geometry and semantics. In this paper, we propose ActiveSGM, an active semantic mapping framework designed to predict the informativeness of potential observations before execution. Built upon a 3D Gaussian Splatting (3DGS) mapping backbone, our approach employs semantic and geometric uncertainty quantification, coupled with a sparse semantic representation, to guide exploration. By enabling robots to strategically select the most beneficial viewpoints, ActiveSGM efficiently enhances mapping completeness, accuracy, and robustness to noisy semantic data, ultimately supporting more adaptive scene exploration. Our experiments on the Replica and Matterport3D datasets highlight the effectiveness of ActiveSGM in active semantic mapping tasks.
☆ Curate, Connect, Inquire: A System for Findable Accessible Interoperable and Reusable (FAIR) Human-Robot Centered Datasets ICRA 2025
The rapid growth of AI in robotics has amplified the need for high-quality, reusable datasets, particularly in human-robot interaction (HRI) and AI-embedded robotics. While more robotics datasets are being created, the landscape of open data in the field is uneven. This is due to a lack of curation standards and consistent publication practices, which makes it difficult to discover, access, and reuse robotics data. To address these challenges, this paper presents a curation and access system with two main contributions: (1) a structured methodology to curate, publish, and integrate FAIR (Findable, Accessible, Interoperable, Reusable) human-centered robotics datasets; and (2) a ChatGPT-powered conversational interface trained with the curated datasets metadata and documentation to enable exploration, comparison robotics datasets and data retrieval using natural language. Developed based on practical experience curating datasets from robotics labs within Texas Robotics at the University of Texas at Austin, the system demonstrates the value of standardized curation and persistent publication of robotics data. The system's evaluation suggests that access and understandability of human-robotics data are significantly improved. This work directly aligns with the goals of the HCRL @ ICRA 2025 workshop and represents a step towards more human-centered access to data for embodied AI.
comment: 7 pages (excluding references), 8 pages (including references); 5 figures; accepted to the ICRA 2025 Workshop on Human-Centered Robot Learning in the Era of Big Data and Large Models
☆ AniTrack: A Power-Efficient, Time-Slotted and Robust UWB Localization System for Animal Tracking in a Controlled Setting
Accurate localization is essential for a wide range of applications, including asset tracking, smart agriculture, and animal monitoring. While traditional localization methods, such as Global Navigation Satellite System (GNSS), Wi-Fi, and Bluetooth Low Energy (BLE), offer varying levels of accuracy and coverage, they have drawbacks regarding power consumption, infrastructure requirements, and deployment flexibility. Ultra-Wideband (UWB) is emerging as an alternative, offering centimeter-level accuracy and energy efficiency, especially suitable for medium to large field monitoring with capabilities to work indoors and outdoors. However, existing UWB localization systems require infrastructure with mains power to supply the anchors, which impedes their scalability and ease of deployment. This underscores the need for a fully battery-powered and energy-efficient localization system. This paper presents an energy-optimized, battery-operated UWB localization system that leverages Long Range Wide Area Network (LoRaWAN) for data transmission to a server backend. By employing single-sided two-way ranging (SS-TWR) in a time-slotted localization approach, the power consumption both on the anchor and the tag is reduced, while maintaining high accuracy. With a low average power consumption of 20.44 mW per anchor and 7.19 mW per tag, the system allows fully battery-powered operation for up to 25 days, achieving average accuracy of 13.96 cm with self-localizing anchors on a 600 m2 testing ground. To validate its effectiveness and ease of installation in a challenging application scenario, ten anchors and two tags were successfully deployed in a tropical zoological biome where they could be used to track Aldabra Giant Tortoises (Aldabrachelys gigantea).
☆ MotionPersona: Characteristics-aware Locomotion Control
We present MotionPersona, a novel real-time character controller that allows users to characterize a character by specifying attributes such as physical traits, mental states, and demographics, and projects these properties into the generated motions for animating the character. In contrast to existing deep learning-based controllers, which typically produce homogeneous animations tailored to a single, predefined character, MotionPersona accounts for the impact of various traits on human motion as observed in the real world. To achieve this, we develop a block autoregressive motion diffusion model conditioned on SMPLX parameters, textual prompts, and user-defined locomotion control signals. We also curate a comprehensive dataset featuring a wide range of locomotion types and actor traits to enable the training of this characteristic-aware controller. Unlike prior work, MotionPersona is the first method capable of generating motion that faithfully reflects user-specified characteristics (e.g., an elderly person's shuffling gait) while responding in real time to dynamic control inputs. Additionally, we introduce a few-shot characterization technique as a complementary conditioning mechanism, enabling customization via short motion clips when language prompts fall short. Through extensive experiments, we demonstrate that MotionPersona outperforms existing methods in characteristics-aware locomotion control, achieving superior motion quality and diversity. Results, code, and demo can be found at: https://motionpersona25.github.io/.
comment: 15 pages, 13 figures, webpage: https://motionpersona25.github.io/
☆ Autonomous Behavior and Whole-Brain Dynamics Emerge in Embodied Zebrafish Agents with Model-based Intrinsic Motivation
Autonomy is a hallmark of animal intelligence, enabling adaptive and intelligent behavior in complex environments without relying on external reward or task structure. Existing reinforcement learning approaches to exploration in sparse reward and reward-free environments, including class of methods known as intrinsic motivation, exhibit inconsistent exploration patterns and thus fail to produce robust autonomous behaviors observed in animals. Moreover, systems neuroscience has largely overlooked the neural basis of autonomy, focusing instead on experimental paradigms where animals are motivated by external reward rather than engaging in unconstrained, naturalistic and task-independent behavior. To bridge these gaps, we introduce a novel model-based intrinsic drive explicitly designed to capture robust autonomous exploration observed in animals. Our method (3M-Progress) motivates naturalistic behavior by tracking divergence between the agent's current world model and an ethological prior. We demonstrate that artificial embodied agents trained with 3M-Progress capture the explainable variance in behavioral patterns and whole-brain neural-glial dynamics recorded from autonomously-behaving larval zebrafish, introducing the first goal-driven, population-level model of neural-glial computation. Our findings establish a computational framework connecting model-based intrinsic motivation to naturalistic behavior, providing a foundation for building artificial agents with animal-like autonomy.
comment: 17 pages, 7 figures
☆ Visual Embodied Brain: Let Multimodal Large Language Models See, Think, and Control in Spaces
The remarkable progress of Multimodal Large Language Models (MLLMs) has attracted increasing attention to extend them to physical entities like legged robot. This typically requires MLLMs to not only grasp multimodal understanding abilities, but also integrate visual-spatial reasoning and physical interaction capabilities. Nevertheless,existing methods struggle to unify these capabilities due to their fundamental differences.In this paper, we present the Visual Embodied Brain (VeBrain), a unified framework for perception, reasoning, and control in real world. VeBrain reformulates robotic control into common text-based MLLM tasks in the 2D visual space, thus unifying the objectives and mapping spaces of different tasks. Then, a novel robotic adapter is proposed to convert textual control signals from MLLMs to motion policies of real robots. From the data perspective, we further introduce VeBrain-600k, a high-quality instruction dataset encompassing various capabilities of VeBrain. In VeBrain-600k, we take hundreds of hours to collect, curate and annotate the data, and adopt multimodal chain-of-thought(CoT) to mix the different capabilities into a single conversation. Extensive experiments on 13 multimodal benchmarks and 5 spatial intelligence benchmarks demonstrate the superior performance of VeBrain to existing MLLMs like Qwen2.5-VL. When deployed to legged robots and robotic arms, VeBrain shows strong adaptability, flexibility, and compositional capabilities compared to existing methods. For example, compared to Qwen2.5-VL, VeBrain not only achieves substantial gains on MMVet by +5.6%, but also excels in legged robot tasks with +50% average gains.
☆ Interactive Imitation Learning for Dexterous Robotic Manipulation: Challenges and Perspectives -- A Survey
Dexterous manipulation is a crucial yet highly complex challenge in humanoid robotics, demanding precise, adaptable, and sample-efficient learning methods. As humanoid robots are usually designed to operate in human-centric environments and interact with everyday objects, mastering dexterous manipulation is critical for real-world deployment. Traditional approaches, such as reinforcement learning and imitation learning, have made significant strides, but they often struggle due to the unique challenges of real-world dexterous manipulation, including high-dimensional control, limited training data, and covariate shift. This survey provides a comprehensive overview of these challenges and reviews existing learning-based methods for dexterous manipulation, spanning imitation learning, reinforcement learning, and hybrid approaches. A promising yet underexplored direction is interactive imitation learning, where human feedback actively refines a robot's behavior during training. While interactive imitation learning has shown success in various robotic tasks, its application to dexterous manipulation remains limited. To address this gap, we examine current interactive imitation learning techniques applied to other robotic tasks and discuss how these methods can be adapted to enhance dexterous manipulation. By synthesizing state-of-the-art research, this paper highlights key challenges, identifies gaps in current methodologies, and outlines potential directions for leveraging interactive imitation learning to improve dexterous robotic skills.
comment: 21 pages, 3 figures
Navigation of a Three-Link Microswimmer via Deep Reinforcement Learning
Motile microorganisms develop effective swimming gaits to adapt to complex biological environments. Translating this adaptability to smart microrobots presents significant challenges in motion planning and stroke design. In this work, we explore the use of reinforcement learning (RL) to develop stroke patterns for targeted navigation in a three-link swimmer model at low Reynolds numbers. Specifically, we design two RL-based strategies: one focusing on maximizing velocity (Velocity-Focused Strategy) and another balancing velocity with energy consumption (Energy-Aware Strategy). Our results demonstrate how the use of different reward functions influences the resulting stroke patterns developed via RL, which are compared with those obtained from traditional optimization methods. Furthermore, we showcase the capability of the RL-powered swimmer in adapting its stroke patterns in performing different navigation tasks, including tracing complex trajectories and pursuing moving targets. Taken together, this work highlights the potential of reinforcement learning as a versatile tool for designing efficient and adaptive microswimmers capable of sophisticated maneuvers in complex environments.
☆ Hi-Dyna Graph: Hierarchical Dynamic Scene Graph for Robotic Autonomy in Human-Centric Environments
Autonomous operation of service robotics in human-centric scenes remains challenging due to the need for understanding of changing environments and context-aware decision-making. While existing approaches like topological maps offer efficient spatial priors, they fail to model transient object relationships, whereas dense neural representations (e.g., NeRF) incur prohibitive computational costs. Inspired by the hierarchical scene representation and video scene graph generation works, we propose Hi-Dyna Graph, a hierarchical dynamic scene graph architecture that integrates persistent global layouts with localized dynamic semantics for embodied robotic autonomy. Our framework constructs a global topological graph from posed RGB-D inputs, encoding room-scale connectivity and large static objects (e.g., furniture), while environmental and egocentric cameras populate dynamic subgraphs with object position relations and human-object interaction patterns. A hybrid architecture is conducted by anchoring these subgraphs to the global topology using semantic and spatial constraints, enabling seamless updates as the environment evolves. An agent powered by large language models (LLMs) is employed to interpret the unified graph, infer latent task triggers, and generate executable instructions grounded in robotic affordances. We conduct complex experiments to demonstrate Hi-Dyna Grap's superior scene representation effectiveness. Real-world deployments validate the system's practicality with a mobile manipulator: robotics autonomously complete complex tasks with no further training or complex rewarding in a dynamic scene as cafeteria assistant. See https://anonymous.4open.science/r/Hi-Dyna-Graph-B326 for video demonstration and more details.
♻ ☆ Extended Set-based Tasks for Multi-task Execution and Prioritization
The ability of executing multiple tasks simultaneously is an important feature of redundant robotic systems. As a matter of fact, complex behaviors can often be obtained as a result of the execution of several tasks. Moreover, in safety-critical applications, tasks designed to ensure the safety of the robot and its surroundings have to be executed along with other nominal tasks. In such cases, it is also important to prioritize the former over the latter. In this paper, we formalize the definition of extended set-based tasks, i.e., tasks which can be executed by rendering subsets of the task space asymptotically stable or forward invariant using control barrier functions. We propose a formal mathematical representation of such tasks that allows for the execution of more complex and time-varying prioritized stacks of tasks using kinematic and dynamic robot models alike. We present an optimization-based framework which is computationally efficient, accounts for input bounds, and allows for the stable execution of time-varying prioritized stacks of extended set-based tasks. The proposed framework is validated using extensive simulations, quantitative comparisons to the state-of-the-art hierarchical quadratic programming, and experiments with robotic manipulators.
♻ ☆ Enhancing Large Vision Model in Street Scene Semantic Understanding through Leveraging Posterior Optimization Trajectory
To improve the generalization of the autonomous driving (AD) perception model, vehicles need to update the model over time based on the continuously collected data. As time progresses, the amount of data fitted by the AD model expands, which helps to improve the AD model generalization substantially. However, such ever-expanding data is a double-edged sword for the AD model. Specifically, as the fitted data volume grows to exceed the the AD model's fitting capacities, the AD model is prone to under-fitting. To address this issue, we propose to use a pretrained Large Vision Models (LVMs) as backbone coupled with downstream perception head to understand AD semantic information. This design can not only surmount the aforementioned under-fitting problem due to LVMs' powerful fitting capabilities, but also enhance the perception generalization thanks to LVMs' vast and diverse training data. On the other hand, to mitigate vehicles' computational burden of training the perception head while running LVM backbone, we introduce a Posterior Optimization Trajectory (POT)-Guided optimization scheme (POTGui) to accelerate the convergence. Concretely, we propose a POT Generator (POTGen) to generate posterior (future) optimization direction in advance to guide the current optimization iteration, through which the model can generally converge within 10 epochs. Extensive experiments demonstrate that the proposed method improves the performance by over 66.48\% and converges faster over 6 times, compared to the existing state-of-the-art approach.
comment: 7 pages
♻ ☆ From Structural Design to Dynamics Modeling: Control-Oriented Development of a 3-RRR Parallel Ankle Rehabilitation Robot
This paper presents the development of a wearable ankle rehabilitation robot based on a 3-RRR spherical parallel mechanism (SPM) to support multi-DOF recovery through pitch, roll, and yaw motions. The system features a compact, ergonomic structure designed for comfort, safety, and compatibility with ankle biomechanics. A complete design-to-dynamics pipeline has been implemented, including structural design, kinematic modeling for motion planning, and Lagrangian-based dynamic modeling for torque estimation and simulation analysis. Preliminary simulations verify stable joint coordination and smooth motion tracking under representative rehabilitation trajectories. The control framework is currently being developed to enhance responsiveness across the workspace. Future work will focus on integrating personalized modeling and adaptive strategies to address kinematic singularities through model based control. This work establishes a foundational platform for intelligent, personalized ankle rehabilitation, enabling both static training and potential extension to gait-phase-timed assistance.
comment: This paper was originally submitted as a class project and included the name of a faculty member without prior permission. At the instructor's request, I am withdrawing the paper. The work may be resubmitted in the future after further development and testing
♻ ☆ Image-Based Roadmaps for Vision-Only Planning and Control of Robotic Manipulators
This work presents a motion planning framework for robotic manipulators that computes collision-free paths directly in image space. The generated paths can then be tracked using vision-based control, eliminating the need for an explicit robot model or proprioceptive sensing. At the core of our approach is the construction of a roadmap entirely in image space. To achieve this, we explicitly define sampling, nearest-neighbor selection, and collision checking based on visual features rather than geometric models. We first collect a set of image-space samples by moving the robot within its workspace, capturing keypoints along its body at different configurations. These samples serve as nodes in the roadmap, which we construct using either learned or predefined distance metrics. At runtime, the roadmap generates collision-free paths directly in image space, removing the need for a robot model or joint encoders. We validate our approach through an experimental study in which a robotic arm follows planned paths using an adaptive vision-based control scheme to avoid obstacles. The results show that paths generated with the learned-distance roadmap achieved 100% success in control convergence, whereas the predefined image-space distance roadmap enabled faster transient responses but had a lower success rate in convergence.
♻ ☆ A study on the effects of mixed explicit and implicit communications in human-virtual-agent interactions
Communication between humans and robots (or virtual agents) is essential for interaction and often inspired by human communication, which uses gestures, facial expressions, gaze direction, and other explicit and implicit means. This work presents an interaction experiment where humans and virtual agents interact through explicit (gestures, manual entries using mouse and keyboard, voice, sound, and information on screen) and implicit (gaze direction, location, facial expressions, and raise of eyebrows) communication to evaluate the effect of mixed explicit-implicit communication against purely explicit communication. Results obtained using Bayesian parameter estimation show that the number of errors and task execution time did not significantly change when mixed explicit and implicit communications were used, and neither the perceived efficiency of the interaction. In contrast, acceptance, sociability, and transparency of the virtual agent increased when using mixed communication modalities (88.3%, 92%, and 92.9% of the effect size posterior distribution of each variable, respectively, were above the upper limit of the region of practical equivalence). This suggests that task-related measures, such as time, number of errors, and perceived efficiency of the interaction, have not been influenced by the communication type in our particular experiment. However, the improvement of subjective measures related to the virtual agent, such as acceptance, sociability, and transparency, suggests that humans are more receptive to mixed explicit and implicit communications.
comment: Main paper with 23 pages, 12 figures, 4 tables. Supplementary material with 19 pages, 16 figures, 2 tables. Submitted to Intelligent Service Robotics
♻ ☆ Scene-Adaptive Motion Planning with Explicit Mixture of Experts and Interaction-Oriented Optimization
Despite over a decade of development, autonomous driving trajectory planning in complex urban environments continues to encounter significant challenges. These challenges include the difficulty in accommodating the multi-modal nature of trajectories, the limitations of single expert model in managing diverse scenarios, and insufficient consideration of environmental interactions. To address these issues, this paper introduces the EMoE-Planner, which incorporates three innovative approaches. Firstly, the Explicit MoE (Mixture of Experts) dynamically selects specialized experts based on scenario-specific information through a shared scene router. Secondly, the planner utilizes scene-specific queries to provide multi-modal priors, directing the model's focus towards relevant target areas. Lastly, it enhances the prediction model and loss calculation by considering the interactions between the ego vehicle and other agents, thereby significantly boosting planning performance. Comparative experiments were conducted on the Nuplan dataset against the state-of-the-art methods. The simulation results demonstrate that our model consistently outperforms SOTA models across nearly all test scenarios. Our model is the first pure learning model to achieve performance surpassing rule-based algorithms in almost all Nuplan closed-loop simulations.
comment: Main text 10 pages with 7 figures
♻ ☆ Blimp-based Crime Scene Analysis
Crime is a critical problem -- which often takes place behind closed doors, posing additional difficulties for investigators. To bring hidden truths to light, evidence at indoor crime scenes must be documented before any contamination or degradation occurs. Here, we address this challenge from the perspective of artificial intelligence (AI), computer vision, and robotics: Specifically, we explore the use of a blimp as a "floating camera" to drift over and record evidence with minimal disturbance. Adopting a rapid prototyping approach, we develop a proof-of-concept to investigate capabilities required for manual or semi-autonomous operation. Consequently, our results demonstrate the feasibility of equipping indoor blimps with various components (such as RGB and thermal cameras, LiDARs, and WiFi, with 20 minutes of battery life). Moreover, we confirm the core premise: that such blimps can be used to observe crime scene evidence while generating little airflow. We conclude by proposing some ideas related to detection (e.g., of bloodstains), mapping, and path planning, with the aim of stimulating further discussion and exploration.
comment: 16 pages, 5 figures, 1 table; Accepted for SAIS 2025
♻ ☆ Ontological Component-based Description of Robot Capabilities
A key aspect of a robot's knowledge base is self-awareness about what it is capable of doing. It allows to define which tasks it can be assigned to and which it cannot. We will refer to this knowledge as the Capability concept. As capabilities stems from the components the robot owns, they can be linked together. In this work, we hypothesize that this concept can be inferred from the components rather than merely linked to them. Therefore, we introduce an ontological means of inferring the agent's capabilities based on the components it owns as well as low-level capabilities. This inference allows the agent to acknowledge what it is able to do in a responsive way and it is generalizable to external entities the agent can carry for example. To initiate an action, the robot needs to link its capabilities with external entities. To do so, it needs to infer affordance relations from its capabilities as well as the external entity's dispositions. This work is part of a broader effort to integrate social affordances into a Human-Robot collaboration context and is an extension of an already existing ontology.
comment: International Workshop on Working towards Ontology-based Standards for Robotics and Automation (WOSRA 2023 - 2nd Edition), Jun 2023, Londres, United Kingdom
♻ ☆ Interactive OT Gym: A Reinforcement Learning-Based Interactive Optical tweezer (OT)-Driven Microrobotics Simulation Platform ICRA 2025
Optical tweezers (OT) offer unparalleled capabilities for micromanipulation with submicron precision in biomedical applications. However, controlling conventional multi-trap OT to achieve cooperative manipulation of multiple complex-shaped microrobots in dynamic environments poses a significant challenge. To address this, we introduce Interactive OT Gym, a reinforcement learning (RL)-based simulation platform designed for OT-driven microrobotics. Our platform supports complex physical field simulations and integrates haptic feedback interfaces, RL modules, and context-aware shared control strategies tailored for OT-driven microrobot in cooperative biological object manipulation tasks. This integration allows for an adaptive blend of manual and autonomous control, enabling seamless transitions between human input and autonomous operation. We evaluated the effectiveness of our platform using a cell manipulation task. Experimental results show that our shared control system significantly improves micromanipulation performance, reducing task completion time by approximately 67% compared to using pure human or RL control alone and achieving a 100% success rate. With its high fidelity, interactivity, low cost, and high-speed simulation capabilities, Interactive OT Gym serves as a user-friendly training and testing environment for the development of advanced interactive OT-driven micromanipulation systems and control algorithms. For more details on the project, please see our website https://sites.google.com/view/otgym
comment: ICRA 2025
♻ ☆ Saliency-Aware Quantized Imitation Learning for Efficient Robotic Control
Deep neural network (DNN)-based policy models, such as vision-language-action (VLA) models, excel at automating complex decision-making from multi-modal inputs. However, scaling these models greatly increases computational overhead, complicating deployment in resource-constrained settings like robot manipulation and autonomous driving. To address this, we propose Saliency-Aware Quantized Imitation Learning (SQIL), which combines quantization-aware training with a selective loss-weighting strategy for mission-critical states. By identifying these states via saliency scores and emphasizing them in the training loss, SQIL preserves decision fidelity under low-bit precision. We validate SQIL's generalization capability across extensive simulation benchmarks with environment variations, real-world tasks, and cross-domain tasks (self-driving, physics simulation), consistently recovering full-precision performance. Notably, a 4-bit weight-quantized VLA model for robotic manipulation achieves up to 2.5x speedup and 2.5x energy savings on an edge GPU with minimal accuracy loss. These results underline SQIL's potential for efficiently deploying large IL-based policy models on resource-limited devices.
comment: arXiv admin note: text overlap with arXiv:2412.01034
♻ ☆ Learning-Based Leader Localization for Underwater Vehicles With Optical-Acoustic-Pressure Sensor Fusion
Underwater vehicles have emerged as a critical technology for exploring and monitoring aquatic environments. The deployment of multi-vehicle systems has gained substantial interest due to their capability to perform collaborative tasks with improved efficiency. However, achieving precise localization of a leader underwater vehicle within a multi-vehicle configuration remains a significant challenge, particularly in dynamic and complex underwater conditions. To address this issue, this paper presents a novel tri-modal sensor fusion neural network approach that integrates optical, acoustic, and pressure sensors to localize the leader vehicle. The proposed method leverages the unique strengths of each sensor modality to improve localization accuracy and robustness. Specifically, optical sensors provide high-resolution imaging for precise relative positioning, acoustic sensors enable long-range detection and ranging, and pressure sensors offer environmental context awareness. The fusion of these sensor modalities is implemented using a deep learning architecture designed to extract and combine complementary features from raw sensor data. The effectiveness of the proposed method is validated through a custom-designed testing platform. Extensive data collection and experimental evaluations demonstrate that the tri-modal approach significantly improves the accuracy and robustness of leader localization, outperforming both single-modal and dual-modal methods.
♻ ☆ Collision Probability Estimation for Optimization-based Vehicular Motion Planning
Many motion planning algorithms for automated driving require estimating the probability of collision (POC) to account for uncertainties in the measurement and estimation of the motion of road users. Common POC estimation techniques often utilize sampling-based methods that suffer from computational inefficiency and a non-deterministic estimation, i.e., each estimation result for the same inputs is slightly different. In contrast, optimization-based motion planning algorithms require computationally efficient POC estimation, ideally using deterministic estimation, such that typical optimization algorithms for motion planning retain feasibility. Estimating the POC analytically, however, is challenging because it depends on understanding the collision conditions (e.g., vehicle's shape) and characterizing the uncertainty in motion prediction. In this paper, we propose an approach in which we estimate the POC between two vehicles by over-approximating their shapes by a multi-circular shape approximation. The position and heading of the predicted vehicle are modelled as random variables, contrasting with the literature, where the heading angle is often neglected. We guarantee that the provided POC is an over-approximation, which is essential in providing safety guarantees, and present a computationally efficient algorithm for computing the POC estimate for Gaussian uncertainty in the position and heading. This algorithm is then used in a path-following stochastic model predictive controller (SMPC) for motion planning. With the proposed algorithm, the SMPC generates reproducible trajectories while the controller retains its feasibility in the presented test cases and demonstrates the ability to handle varying levels of uncertainty.
comment: 14 pages, 6 figures
♻ ☆ A Comprehensive Survey on Physical Risk Control in the Era of Foundation Model-enabled Robotics IJCAI 2025
Recent Foundation Model-enabled robotics (FMRs) display greatly improved general-purpose skills, enabling more adaptable automation than conventional robotics. Their ability to handle diverse tasks thus creates new opportunities to replace human labor. However, unlike general foundation models, FMRs interact with the physical world, where their actions directly affect the safety of humans and surrounding objects, requiring careful deployment and control. Based on this proposition, our survey comprehensively summarizes robot control approaches to mitigate physical risks by covering all the lifespan of FMRs ranging from pre-deployment to post-accident stage. Specifically, we broadly divide the timeline into the following three phases: (1) pre-deployment phase, (2) pre-incident phase, and (3) post-incident phase. Throughout this survey, we find that there is much room to study (i) pre-incident risk mitigation strategies, (ii) research that assumes physical interaction with humans, and (iii) essential issues of foundation models themselves. We hope that this survey will be a milestone in providing a high-resolution analysis of the physical risks of FMRs and their control, contributing to the realization of a good human-robot relationship.
comment: Accepted to IJCAI 2025 Survey Track
♻ ☆ Accelerating the Evolution of Personalized Automated Lane Change through Lesson Learning
Personalization is crucial for the widespread adoption of advanced driver assistance system. To match up with each user's preference, the online evolution capability is a must. However, conventional evolution methods learn from naturalistic driving data, which requires a lot computing power and cannot be applied online. To address this challenge, this paper proposes a lesson learning approach: learning from driver's takeover interventions. By leveraging online takeover data, the driving zone is generated to ensure perceived safety using Gaussian discriminant analysis. Real-time corrections to trajectory planning rewards are enacted through apprenticeship learning. Guided by the objective of optimizing rewards within the constraints of the driving zone, this approach employs model predictive control for trajectory planning. This lesson learning framework is highlighted for its faster evolution capability, adeptness at experience accumulating, assurance of perceived safety, and computational efficiency. Simulation results demonstrate that the proposed system consistently achieves a successful customization without further takeover interventions. Accumulated experience yields a 24% enhancement in evolution efficiency. The average number of learning iterations is only 13.8. The average computation time is 0.08 seconds.
♻ ☆ ManiSkill3: GPU Parallelized Robotics Simulation and Rendering for Generalizable Embodied AI
Simulation has enabled unprecedented compute-scalable approaches to robot learning. However, many existing simulation frameworks typically support a narrow range of scenes/tasks and lack features critical for scaling generalizable robotics and sim2real. We introduce and open source ManiSkill3, the fastest state-visual GPU parallelized robotics simulator with contact-rich physics targeting generalizable manipulation. ManiSkill3 supports GPU parallelization of many aspects including simulation+rendering, heterogeneous simulation, pointclouds/voxels visual input, and more. Simulation with rendering on ManiSkill3 can run 10-1000x faster with 2-3x less GPU memory usage than other platforms, achieving up to 30,000+ FPS in benchmarked environments due to minimal python/pytorch overhead in the system, simulation on the GPU, and the use of the SAPIEN parallel rendering system. Tasks that used to take hours to train can now take minutes. We further provide the most comprehensive range of GPU parallelized environments/tasks spanning 12 distinct domains including but not limited to mobile manipulation for tasks such as drawing, humanoids, and dextrous manipulation in realistic scenes designed by artists or real-world digital twins. In addition, millions of demonstration frames are provided from motion planning, RL, and teleoperation. ManiSkill3 also provides a comprehensive set of baselines that span popular RL and learning-from-demonstrations algorithms.
comment: Project website: http://maniskill.ai/
♻ ☆ Bayesian Inferential Motion Planning Using Heavy-Tailed Distributions
Robots rely on motion planning to navigate safely and efficiently while performing various tasks. In this paper, we investigate motion planning through Bayesian inference, where motion plans are inferred based on planning objectives and constraints. However, existing Bayesian motion planning methods often struggle to explore low-probability regions of the planning space, where high-quality plans may reside. To address this limitation, we propose the use of heavy-tailed distributions -- specifically, Student's-$t$ distributions -- to enhance probabilistic inferential search for motion plans. We develop a novel sequential single-pass smoothing approach that integrates Student's-$t$ distribution with Monte Carlo sampling. A special case of this approach is ensemble Kalman smoothing, which depends on short-tailed Gaussian distributions. We validate the proposed approach through simulations in autonomous vehicle motion planning, demonstrating its superior performance in planning, sampling efficiency, and constraint satisfaction compared to ensemble Kalman smoothing. While focused on motion planning, this work points to the broader potential of heavy-tailed distributions in enhancing probabilistic decision-making in robotics.
♻ ☆ Behavioral Safety Assessment towards Large-scale Deployment of Autonomous Vehicles
Autonomous vehicles (AVs) have significantly advanced in real-world deployment in recent years, yet safety continues to be a critical barrier to widespread adoption. Traditional functional safety approaches, which primarily verify the reliability, robustness, and adequacy of AV hardware and software systems from a vehicle-centric perspective, do not sufficiently address the AV's broader interactions and behavioral impact on the surrounding traffic environment. To overcome this limitation, we propose a paradigm shift toward behavioral safety, a comprehensive approach focused on evaluating AV responses and interactions within traffic environment. To systematically assess behavioral safety, we introduce a third-party AV safety assessment framework comprising two complementary evaluation components: Driver Licensing Test and Driving Intelligence Test. The Driver Licensing Test evaluates AV's reactive behaviors under controlled scenarios, ensuring basic behavioral competency. In contrast, the Driving Intelligence Test assesses AV's interactive behaviors within naturalistic traffic conditions, quantifying the frequency of safety-critical events to deliver statistically meaningful safety metrics before large-scale deployment. We validated our proposed framework using \texttt{Autoware.Universe}, an open-source Level 4 AV, tested both in simulated environments and on the physical test track at the University of Michigan's Mcity Testing Facility. The results indicate that \texttt{Autoware.Universe} passed 6 out of 14 scenarios and exhibited a crash rate of 3.01e-3 crashes per mile, approximately 1,000 times higher than average human driver crash rate. During the tests, we also uncovered several unknown unsafe scenarios for \texttt{Autoware.Universe}. These findings underscore the necessity of behavioral safety evaluations for improving AV safety performance prior to widespread public deployment.
comment: Code and Supplementary Materials available at: https://github.com/michigan-traffic-lab/Behavioral-Safety-Assessment
♻ ☆ MSC-LIO: An MSCKF-Based LiDAR-Inertial Odometry with Same-Plane Cluster Tracking
The multi-state constraint Kalman filter (MSCKF) has been proven to be more efficient than graph optimization for visual-based odometry while with similar accuracy. However, it has not been adequately considered and studied for LiDAR-based odometry. In this paper, we propose a novel tightly-coupled LiDAR-inertial odometry based on the MSCKF framework, named MSC-LIO. An efficient LiDAR same-plane cluster (LSPC) tracking method, without explicit feature extraction, is present for frame-to-frame data associations. The tracked LSPC is used to build an LSPC measurement model that constructs multi-state constraints. Besides, we propose an effective point-velocity-based LiDAR-IMU time-delay (LITD) estimation method, which is derived from the proposed LSPC tracking method. To validate the effectiveness and robustness of the proposed method, we conducted extensive experiments on both public datasets and real-world environments. The results demonstrate that the proposed MSC-LIO yields higher accuracy and efficiency compared to the state-of-the-art methods. Ablation experiments indicate that the data-association efficiency is improved by nearly 3 times with the LSPC tracking, and the proposed LITD estimation method can effectively and accurately estimate the LITD. Besides, MSC-LIO was implemented on an edge device and demonstrated excellent real-time performance.
comment: 11 pages, 12 figures, 8 tables
♻ ☆ Fast Convergence of Softmax Policy Mirror Ascent AISTATS 2025
Natural policy gradient (NPG) is a common policy optimization algorithm and can be viewed as mirror ascent in the space of probabilities. Recently, Vaswani et al. [2021] introduced a policy gradient method that corresponds to mirror ascent in the dual space of logits. We refine this algorithm, removing its need for a normalization across actions and analyze the resulting method (referred to as SPMA). For tabular MDPs, we prove that SPMA with a constant step-size matches the linear convergence of NPG and achieves a faster convergence than constant step-size (accelerated) softmax policy gradient. To handle large state-action spaces, we extend SPMA to use a log-linear policy parameterization. Unlike that for NPG, generalizing SPMA to the linear function approximation (FA) setting does not require compatible function approximation. Unlike MDPO, a practical generalization of NPG, SPMA with linear FA only requires solving convex softmax classification problems. We prove that SPMA achieves linear convergence to the neighbourhood of the optimal value function. We extend SPMA to handle non-linear FA and evaluate its empirical performance on the MuJoCo and Atari benchmarks. Our results demonstrate that SPMA consistently achieves similar or better performance compared to MDPO, PPO and TRPO.
comment: AISTATS 2025
♻ ☆ Learning Dynamics under Environmental Constraints via Measurement-Induced Bundle Structures ICML 2025
Learning unknown dynamics under environmental (or external) constraints is fundamental to many fields (e.g., modern robotics), particularly challenging when constraint information is only locally available and uncertain. Existing approaches requiring global constraints or using probabilistic filtering fail to fully exploit the geometric structure inherent in local measurements (by using, e.g., sensors) and constraints. This paper presents a geometric framework unifying measurements, constraints, and dynamics learning through a fiber bundle structure over the state space. This naturally induced geometric structure enables measurement-aware Control Barrier Functions that adapt to local sensing (or measurement) conditions. By integrating Neural ODEs, our framework learns continuous-time dynamics while preserving geometric constraints, with theoretical guarantees of learning convergence and constraint satisfaction dependent on sensing quality. The geometric framework not only enables efficient dynamics learning but also suggests promising directions for integration with reinforcement learning approaches. Extensive simulations demonstrate significant improvements in both learning efficiency and constraint satisfaction over traditional methods, especially under limited and uncertain sensing conditions.
comment: Accepted by ICML 2025
♻ ☆ Co-Design of Soft Gripper with Neural Physics
For robot manipulation, both the controller and end-effector design are crucial. Soft grippers are generalizable by deforming to different geometries, but designing such a gripper and finding its grasp pose remains challenging. In this paper, we propose a co-design framework that generates an optimized soft gripper's block-wise stiffness distribution and its grasping pose, using a neural physics model trained in simulation. We derived a uniform-pressure tendon model for a flexure-based soft finger, then generated a diverse dataset by randomizing both gripper pose and design parameters. A neural network is trained to approximate this forward simulation, yielding a fast, differentiable surrogate. We embed that surrogate in an end-to-end optimization loop to optimize the ideal stiffness configuration and best grasp pose. Finally, we 3D-print the optimized grippers of various stiffness by changing the structural parameters. We demonstrate that our co-designed grippers significantly outperform baseline designs in both simulation and hardware experiments.
Robotics 56
☆ AMOR: Adaptive Character Control through Multi-Objective Reinforcement Learning SIGGRAPH 2025
Reinforcement learning (RL) has significantly advanced the control of physics-based and robotic characters that track kinematic reference motion. However, methods typically rely on a weighted sum of conflicting reward functions, requiring extensive tuning to achieve a desired behavior. Due to the computational cost of RL, this iterative process is a tedious, time-intensive task. Furthermore, for robotics applications, the weights need to be chosen such that the policy performs well in the real world, despite inevitable sim-to-real gaps. To address these challenges, we propose a multi-objective reinforcement learning framework that trains a single policy conditioned on a set of weights, spanning the Pareto front of reward trade-offs. Within this framework, weights can be selected and tuned after training, significantly speeding up iteration time. We demonstrate how this improved workflow can be used to perform highly dynamic motions with a robot character. Moreover, we explore how weight-conditioned policies can be leveraged in hierarchical settings, using a high-level policy to dynamically select weights according to the current task. We show that the multi-objective policy encodes a diverse spectrum of behaviors, facilitating efficient adaptation to novel tasks.
comment: SIGGRAPH 2025
☆ Knowledge Insulating Vision-Language-Action Models: Train Fast, Run Fast, Generalize Better
Vision-language-action (VLA) models provide a powerful approach to training control policies for physical systems, such as robots, by combining end-to-end learning with transfer of semantic knowledge from web-scale vision-language model (VLM) training. However, the constraints of real-time control are often at odds with the design of VLMs: the most powerful VLMs have tens or hundreds of billions of parameters, presenting an obstacle to real-time inference, and operate on discrete tokens rather than the continuous-valued outputs that are required for controlling robots. To address this challenge, recent VLA models have used specialized modules for efficient continuous control, such as action experts or continuous output heads, which typically require adding new untrained parameters to the pretrained VLM backbone. While these modules improve real-time and control capabilities, it remains an open question whether they preserve or degrade the semantic knowledge contained in the pretrained VLM, and what effect they have on the VLA training dynamics. In this paper, we study this question in the context of VLAs that include a continuous diffusion or flow matching action expert, showing that naively including such experts significantly harms both training speed and knowledge transfer. We provide an extensive analysis of various design choices, their impact on performance and knowledge transfer, and propose a technique for insulating the VLM backbone during VLA training that mitigates this issue. Videos are available at https://pi.website/research/knowledge_insulation.
☆ Mobi-$π$: Mobilizing Your Robot Learning Policy
Learned visuomotor policies are capable of performing increasingly complex manipulation tasks. However, most of these policies are trained on data collected from limited robot positions and camera viewpoints. This leads to poor generalization to novel robot positions, which limits the use of these policies on mobile platforms, especially for precise tasks like pressing buttons or turning faucets. In this work, we formulate the policy mobilization problem: find a mobile robot base pose in a novel environment that is in distribution with respect to a manipulation policy trained on a limited set of camera viewpoints. Compared to retraining the policy itself to be more robust to unseen robot base pose initializations, policy mobilization decouples navigation from manipulation and thus does not require additional demonstrations. Crucially, this problem formulation complements existing efforts to improve manipulation policy robustness to novel viewpoints and remains compatible with them. To study policy mobilization, we introduce the Mobi-$\pi$ framework, which includes: (1) metrics that quantify the difficulty of mobilizing a given policy, (2) a suite of simulated mobile manipulation tasks based on RoboCasa to evaluate policy mobilization, (3) visualization tools for analysis, and (4) several baseline methods. We also propose a novel approach that bridges navigation and manipulation by optimizing the robot's base pose to align with an in-distribution base pose for a learned policy. Our approach utilizes 3D Gaussian Splatting for novel view synthesis, a score function to evaluate pose suitability, and sampling-based optimization to identify optimal robot poses. We show that our approach outperforms baselines in both simulation and real-world environments, demonstrating its effectiveness for policy mobilization.
comment: Project website: https://mobipi.github.io/
☆ Autoregressive Meta-Actions for Unified Controllable Trajectory Generation
Controllable trajectory generation guided by high-level semantic decisions, termed meta-actions, is crucial for autonomous driving systems. A significant limitation of existing frameworks is their reliance on invariant meta-actions assigned over fixed future time intervals, causing temporal misalignment with the actual behavior trajectories. This misalignment leads to irrelevant associations between the prescribed meta-actions and the resulting trajectories, disrupting task coherence and limiting model performance. To address this challenge, we introduce Autoregressive Meta-Actions, an approach integrated into autoregressive trajectory generation frameworks that provides a unified and precise definition for meta-action-conditioned trajectory prediction. Specifically, We decompose traditional long-interval meta-actions into frame-level meta-actions, enabling a sequential interplay between autoregressive meta-action prediction and meta-action-conditioned trajectory generation. This decomposition ensures strict alignment between each trajectory segment and its corresponding meta-action, achieving a consistent and unified task formulation across the entire trajectory span and significantly reducing complexity. Moreover, we propose a staged pre-training process to decouple the learning of basic motion dynamics from the integration of high-level decision control, which offers flexibility, stability, and modularity. Experimental results validate our framework's effectiveness, demonstrating improved trajectory adaptivity and responsiveness to dynamic decision-making scenarios. We provide the video document and dataset, which are available at https://arma-traj.github.io/.
☆ Collaborative Last-Mile Delivery: A Multi-Platform Vehicle Routing Problem With En-route Charging
The rapid growth of e-commerce and the increasing demand for timely, cost-effective last-mile delivery have increased interest in collaborative logistics. This research introduces a novel collaborative synchronized multi-platform vehicle routing problem with drones and robots (VRP-DR), where a fleet of $\mathcal{M}$ trucks, $\mathcal{N}$ drones and $\mathcal{K}$ robots, cooperatively delivers parcels. Trucks serve as mobile platforms, enabling the launching, retrieving, and en-route charging of drones and robots, thereby addressing critical limitations such as restricted payload capacities, limited range, and battery constraints. The VRP-DR incorporates five realistic features: (1) multi-visit service per trip, (2) multi-trip operations, (3) flexible docking, allowing returns to the same or different trucks (4) cyclic and acyclic operations, enabling return to the same or different nodes; and (5) en-route charging, enabling drones and robots to recharge while being transported on the truck, maximizing operational efficiency by utilizing idle transit time. The VRP-DR is formulated as a mixed-integer linear program (MILP) to minimize both operational costs and makespan. To overcome the computational challenges of solving large-scale instances, a scalable heuristic algorithm, FINDER (Flexible INtegrated Delivery with Energy Recharge), is developed, to provide efficient, near-optimal solutions. Numerical experiments across various instance sizes evaluate the performance of the MILP and heuristic approaches in terms of solution quality and computation time. The results demonstrate significant time savings of the combined delivery mode over the truck-only mode and substantial cost reductions from enabling multi-visits. The study also provides insights into the effects of en-route charging, docking flexibility, drone count, speed, and payload capacity on system performance.
☆ Cognitive Guardrails for Open-World Decision Making in Autonomous Drone Swarms
Small Uncrewed Aerial Systems (sUAS) are increasingly deployed as autonomous swarms in search-and-rescue and other disaster-response scenarios. In these settings, they use computer vision (CV) to detect objects of interest and autonomously adapt their missions. However, traditional CV systems often struggle to recognize unfamiliar objects in open-world environments or to infer their relevance for mission planning. To address this, we incorporate large language models (LLMs) to reason about detected objects and their implications. While LLMs can offer valuable insights, they are also prone to hallucinations and may produce incorrect, misleading, or unsafe recommendations. To ensure safe and sensible decision-making under uncertainty, high-level decisions must be governed by cognitive guardrails. This article presents the design, simulation, and real-world integration of these guardrails for sUAS swarms in search-and-rescue missions.
comment: 16 pages, 8 figures
☆ A Robot-Assisted Approach to Small Talk Training for Adults with ASD RSS
From dating to job interviews, making new friends or simply chatting with the cashier at checkout, engaging in small talk is a vital, everyday social skill. For adults with Autism Spectrum Disorder (ASD), small talk can be particularly challenging, yet it is essential for social integration, building relationships, and accessing professional opportunities. In this study, we present our development and evaluation of an in-home autonomous robot system that allows users to practice small talk. Results from the week-long study show that adults with ASD enjoyed the training, made notable progress in initiating conversations and improving eye contact, and viewed the system as a valuable tool for enhancing their conversational skills.
comment: Accepted for publication in Robotics: Science and Systems (RSS) 2025, 14 pages, 4 figures,
☆ Humanoid Loco-manipulation Planning based on Graph Search and Reachability Maps
In this letter, we propose an efficient and highly versatile loco-manipulation planning for humanoid robots. Loco-manipulation planning is a key technological brick enabling humanoid robots to autonomously perform object transportation by manipulating them. We formulate planning of the alternation and sequencing of footsteps and grasps as a graph search problem with a new transition model that allows for a flexible representation of loco-manipulation. Our transition model is quickly evaluated by relocating and switching the reachability maps depending on the motion of both the robot and object. We evaluate our approach by applying it to loco-manipulation use-cases, such as a bobbin rolling operation with regrasping, where the motion is automatically planned by our framework.
Optimization-based Posture Generation for Whole-body Contact Motion by Contact Point Search on the Body Surface
Whole-body contact is an effective strategy for improving the stability and efficiency of the motion of robots. For robots to automatically perform such motions, we propose a posture generation method that employs all available surfaces of the robot links. By representing the contact point on the body surface by two-dimensional configuration variables, the joint positions and contact points are simultaneously determined through a gradient-based optimization. By generating motions with the proposed method, we present experiments in which robots manipulate objects effectively utilizing whole-body contact.
☆ Centroidal Trajectory Generation and Stabilization based on Preview Control for Humanoid Multi-contact Motion
Multi-contact motion is important for humanoid robots to work in various environments. We propose a centroidal online trajectory generation and stabilization control for humanoid dynamic multi-contact motion. The proposed method features the drastic reduction of the computational cost by using preview control instead of the conventional model predictive control that considers the constraints of all sample times. By combining preview control with centroidal state feedback for robustness to disturbances and wrench distribution for satisfying contact constraints, we show that the robot can stably perform a variety of multi-contact motions through simulation experiments.
☆ Long Duration Inspection of GNSS-Denied Environments with a Tethered UAV-UGV Marsupial System
Unmanned Aerial Vehicles (UAVs) have become essential tools in inspection and emergency response operations due to their high maneuverability and ability to access hard-to-reach areas. However, their limited battery life significantly restricts their use in long-duration missions. This paper presents a novel tethered marsupial robotic system composed of a UAV and an Unmanned Ground Vehicle (UGV), specifically designed for autonomous, long-duration inspection tasks in Global Navigation Satellite System (GNSS)-denied environments. The system extends the UAV's operational time by supplying power through a tether connected to high-capacity battery packs carried by the UGV. We detail the hardware architecture based on off-the-shelf components to ensure replicability and describe our full-stack software framework, which is composed of open-source components and built upon the Robot Operating System (ROS). The proposed software architecture enables precise localization using a Direct LiDAR Localization (DLL) method and ensures safe path planning and coordinated trajectory tracking for the integrated UGV-tether-UAV system. We validate the system through three field experiments: (1) a manual flight endurance test to estimate the operational duration, (2) an autonomous navigation test, and (3) an inspection mission to demonstrate autonomous inspection capabilities. Experimental results confirm the robustness and autonomy of the system, its capacity to operate in GNSS-denied environments, and its potential for long-endurance, autonomous inspection and monitoring tasks.
comment: 30 pages, 15 figures, 3 tables, 1 algorithm. Submitted to Journal of Intelligent & Robotic Systems
☆ Agentic Robot: A Brain-Inspired Framework for Vision-Language-Action Models in Embodied Agents
Long-horizon robotic manipulation poses significant challenges for autonomous systems, requiring extended reasoning, precise execution, and robust error recovery across complex sequential tasks. Current approaches, whether based on static planning or end-to-end visuomotor policies, suffer from error accumulation and lack effective verification mechanisms during execution, limiting their reliability in real-world scenarios. We present Agentic Robot, a brain-inspired framework that addresses these limitations through Standardized Action Procedures (SAP)--a novel coordination protocol governing component interactions throughout manipulation tasks. Drawing inspiration from Standardized Operating Procedures (SOPs) in human organizations, SAP establishes structured workflows for planning, execution, and verification phases. Our architecture comprises three specialized components: (1) a large reasoning model that decomposes high-level instructions into semantically coherent subgoals, (2) a vision-language-action executor that generates continuous control commands from real-time visual inputs, and (3) a temporal verifier that enables autonomous progression and error recovery through introspective assessment. This SAP-driven closed-loop design supports dynamic self-verification without external supervision. On the LIBERO benchmark, Agentic Robot achieves state-of-the-art performance with an average success rate of 79.6\%, outperforming SpatialVLA by 6.1\% and OpenVLA by 7.4\% on long-horizon tasks. These results demonstrate that SAP-driven coordination between specialized components enhances both performance and interpretability in sequential manipulation, suggesting significant potential for reliable autonomous systems. Project Github: https://agentic-robot.github.io.
comment: 18 pages, 8 figures
☆ MEF-Explore: Communication-Constrained Multi-Robot Entropy-Field-Based Exploration
Collaborative multiple robots for unknown environment exploration have become mainstream due to their remarkable performance and efficiency. However, most existing methods assume perfect robots' communication during exploration, which is unattainable in real-world settings. Though there have been recent works aiming to tackle communication-constrained situations, substantial room for advancement remains for both information-sharing and exploration strategy aspects. In this paper, we propose a Communication-Constrained Multi-Robot Entropy-Field-Based Exploration (MEF-Explore). The first module of the proposed method is the two-layer inter-robot communication-aware information-sharing strategy. A dynamic graph is used to represent a multi-robot network and to determine communication based on whether it is low-speed or high-speed. Specifically, low-speed communication, which is always accessible between every robot, can only be used to share their current positions. If robots are within a certain range, high-speed communication will be available for inter-robot map merging. The second module is the entropy-field-based exploration strategy. Particularly, robots explore the unknown area distributedly according to the novel forms constructed to evaluate the entropies of frontiers and robots. These entropies can also trigger implicit robot rendezvous to enhance inter-robot map merging if feasible. In addition, we include the duration-adaptive goal-assigning module to manage robots' goal assignment. The simulation results demonstrate that our MEF-Explore surpasses the existing ones regarding exploration time and success rate in all scenarios. For real-world experiments, our method leads to a 21.32% faster exploration time and a 16.67% higher success rate compared to the baseline.
comment: This paper has been accepted for publication in IEEE Transactions on Automation Science and Engineering
☆ VLM-RRT: Vision Language Model Guided RRT Search for Autonomous UAV Navigation
Path planning is a fundamental capability of autonomous Unmanned Aerial Vehicles (UAVs), enabling them to efficiently navigate toward a target region or explore complex environments while avoiding obstacles. Traditional pathplanning methods, such as Rapidly-exploring Random Trees (RRT), have proven effective but often encounter significant challenges. These include high search space complexity, suboptimal path quality, and slow convergence, issues that are particularly problematic in high-stakes applications like disaster response, where rapid and efficient planning is critical. To address these limitations and enhance path-planning efficiency, we propose Vision Language Model RRT (VLM-RRT), a hybrid approach that integrates the pattern recognition capabilities of Vision Language Models (VLMs) with the path-planning strengths of RRT. By leveraging VLMs to provide initial directional guidance based on environmental snapshots, our method biases sampling toward regions more likely to contain feasible paths, significantly improving sampling efficiency and path quality. Extensive quantitative and qualitative experiments with various state-of-the-art VLMs demonstrate the effectiveness of this proposed approach.
☆ UPP: Unified Path Planner with Adaptive Safety and Optimality
We are surrounded by robots helping us perform complex tasks. Robots have a wide range of applications, from industrial automation to personalized assistance. However, with great technological innovation come significant challenges. One of the major challenges in robotics is path planning. Despite advancements such as graph search, sampling, and potential field methods, most path planning algorithms focus either on optimality or on safety. Very little research addresses both simultaneously. We propose a Unified Path Planner (UPP) that uses modified heuristics and a dynamic safety cost function to balance safety and optimality. The level of safety can be adjusted via tunable parameters, trading off against computational complexity. We demonstrate the planner's performance in simulations, showing how parameter variation affects results. UPP is compared with various traditional and safe-optimal planning algorithms across different scenarios. We also validate it on a TurtleBot, where the robot successfully finds safe and sub-optimal paths.
comment: 8 pages,11 figures
☆ TrackVLA: Embodied Visual Tracking in the Wild
Embodied visual tracking is a fundamental skill in Embodied AI, enabling an agent to follow a specific target in dynamic environments using only egocentric vision. This task is inherently challenging as it requires both accurate target recognition and effective trajectory planning under conditions of severe occlusion and high scene dynamics. Existing approaches typically address this challenge through a modular separation of recognition and planning. In this work, we propose TrackVLA, a Vision-Language-Action (VLA) model that learns the synergy between object recognition and trajectory planning. Leveraging a shared LLM backbone, we employ a language modeling head for recognition and an anchor-based diffusion model for trajectory planning. To train TrackVLA, we construct an Embodied Visual Tracking Benchmark (EVT-Bench) and collect diverse difficulty levels of recognition samples, resulting in a dataset of 1.7 million samples. Through extensive experiments in both synthetic and real-world environments, TrackVLA demonstrates SOTA performance and strong generalizability. It significantly outperforms existing methods on public benchmarks in a zero-shot manner while remaining robust to high dynamics and occlusion in real-world scenarios at 10 FPS inference speed. Our project page is: https://pku-epic.github.io/TrackVLA-web.
☆ LocoTouch: Learning Dexterous Quadrupedal Transport with Tactile Sensing
Quadrupedal robots have demonstrated remarkable agility and robustness in traversing complex terrains. However, they remain limited in performing object interactions that require sustained contact. In this work, we present LocoTouch, a system that equips quadrupedal robots with tactile sensing to address a challenging task in this category: long-distance transport of unsecured cylindrical objects, which typically requires custom mounting mechanisms to maintain stability. For efficient large-area tactile sensing, we design a high-density distributed tactile sensor array that covers the entire back of the robot. To effectively leverage tactile feedback for locomotion control, we develop a simulation environment with high-fidelity tactile signals, and train tactile-aware transport policies using a two-stage learning pipeline. Furthermore, we design a novel reward function to promote stable, symmetric, and frequency-adaptive locomotion gaits. After training in simulation, LocoTouch transfers zero-shot to the real world, reliably balancing and transporting a wide range of unsecured, cylindrical everyday objects with broadly varying sizes and weights. Thanks to the responsiveness of the tactile sensor and the adaptive gait reward, LocoTouch can robustly balance objects with slippery surfaces over long distances, or even under severe external perturbations.
comment: Project page: https://linchangyi1.github.io/LocoTouch
☆ Eye-tracking-Driven Shared Control for Robotic Arms:Wizard of Oz Studies to Assess Design Choices
Advances in eye-tracking control for assistive robotic arms provide intuitive interaction opportunities for people with physical disabilities. Shared control has gained interest in recent years by improving user satisfaction through partial automation of robot control. We present an eye-tracking-guided shared control design based on insights from state-of-the-art literature. A Wizard of Oz setup was used in which automation was simulated by an experimenter to evaluate the concept without requiring full implementation. This approach allowed for rapid exploration of user needs and expectations to inform future iterations. Two studies were conducted to assess user experience, identify design challenges, and find improvements to ensure usability and accessibility. The first study involved people with disabilities by providing a survey, and the second study used the Wizard of Oz design in person to gain technical insights, leading to a comprehensive picture of findings.
comment: Preprint, 23 pages
☆ System Identification for Virtual Sensor-Based Model Predictive Control: Application to a 2-DoF Direct-Drive Robotic Arm
Nonlinear Model Predictive Control (NMPC) offers a powerful approach for controlling complex nonlinear systems, yet faces two key challenges. First, accurately modeling nonlinear dynamics remains difficult. Second, variables directly related to control objectives often cannot be directly measured during operation. Although high-cost sensors can acquire these variables during model development, their use in practical deployment is typically infeasible. To overcome these limitations, we propose a Predictive Virtual Sensor Identification (PVSID) framework that leverages temporary high-cost sensors during the modeling phase to create virtual sensors for NMPC implementation. We validate PVSID on a Two-Degree-of-Freedom (2-DoF) direct-drive robotic arm with complex joint interactions, capturing tip position via motion capture during modeling and utilize an Inertial Measurement Unit (IMU) in NMPC. Experimental results show our NMPC with identified virtual sensors achieves precise tip trajectory tracking without requiring the motion capture system during operation. PVSID offers a practical solution for implementing optimal control in nonlinear systems where the measurement of key variables is constrained by cost or operational limitations.
comment: 6 pages, 5 figures, submitted to L-CSS with CDC 2025 option
☆ Redundancy Parameterization of the ABB YuMi Robot Arm
The ABB YuMi is a 7-DOF collaborative robot arm with a complex, redundant kinematic structure. Path planning for the YuMi is challenging, especially with joint limits considered. The redundant degree of freedom is parameterized by the Shoulder-Elbow-Wrist (SEW) angle, called the arm angle by ABB, but the exact definition must be known for path planning outside the RobotStudio simulator. We provide the first complete and validated definition of the SEW angle used for the YuMi. It follows the conventional SEW angle formulation with the shoulder-elbow direction chosen to be the direction of the fourth joint axis. Our definition also specifies the shoulder location, making it compatible with any choice of reference vector. A previous attempt to define the SEW angle exists in the literature, but it is incomplete and deviates from the behavior observed in RobotStudio. Because our formulation fits within the general SEW angle framework, we also obtain the expression for the SEW angle Jacobian and complete numerical conditions for all algorithmic singularities. Finally, we demonstrate using IK-Geo, our inverse kinematics (IK) solver based on subproblem decomposition, to find all IK solutions using 2D search. Code examples are available in a publicly accessible repository.
comment: 8 pages, 5 figures
☆ A Constructed Response: Designing and Choreographing Robot Arm Movements in Collaborative Dance Improvisation
Dancers often prototype movements themselves or with each other during improvisation and choreography. How are these interactions altered when physically manipulable technologies are introduced into the creative process? To understand how dancers design and improvise movements while working with instruments capable of non-humanoid movements, we engaged dancers in workshops to co-create movements with a robot arm in one-human-to-one-robot and three-human-to-one-robot settings. We found that dancers produced more fluid movements in one-to-one scenarios, experiencing a stronger sense of connection and presence with the robot as a co-dancer. In three-to-one scenarios, the dancers divided their attention between the human dancers and the robot, resulting in increased perceived use of space and more stop-and-go movements, perceiving the robot as part of the stage background. This work highlights how technologies can drive creativity in movement artists adapting to new ways of working with physical instruments, contributing design insights supporting artistic collaborations with non-humanoid agents.
☆ Stairway to Success: Zero-Shot Floor-Aware Object-Goal Navigation via LLM-Driven Coarse-to-Fine Exploration
Object-Goal Navigation (OGN) remains challenging in real-world, multi-floor environments and under open-vocabulary object descriptions. We observe that most episodes in widely used benchmarks such as HM3D and MP3D involve multi-floor buildings, with many requiring explicit floor transitions. However, existing methods are often limited to single-floor settings or predefined object categories. To address these limitations, we tackle two key challenges: (1) efficient cross-level planning and (2) zero-shot object-goal navigation (ZS-OGN), where agents must interpret novel object descriptions without prior exposure. We propose ASCENT, a framework that combines a Multi-Floor Spatial Abstraction module for hierarchical semantic mapping and a Coarse-to-Fine Frontier Reasoning module leveraging Large Language Models (LLMs) for context-aware exploration, without requiring additional training on new object semantics or locomotion data. Our method outperforms state-of-the-art ZS-OGN approaches on HM3D and MP3D benchmarks while enabling efficient multi-floor navigation. We further validate its practicality through real-world deployment on a quadruped robot, achieving successful object exploration across unseen floors.
comment: 34 pages, 12 figures, 10 tables
☆ Structural Abstraction and Selective Refinement for Formal Verification
Safety verification of robot applications is extremely challenging due to the complexity of the environment that a robot typically operates in. Formal verification with model-checking provides guarantees but it may often take too long or even fail for complex models of the environment. A usual solution approach is abstraction, more precisely behavioral abstraction. Our new approach introduces structural abstraction instead, which we investigated in the context of voxel representation of the robot environment. This kind of abstraction leads to abstract voxels. We also propose a complete and automated verification workflow, which is based on an already existing methodology for robot applications, and inspired by the key ideas behind counterexample-guided abstraction refinement (CEGAR) - performing an initial abstraction and successively introducing refinements based on counterexamples, intertwined with model-checker runs. Hence, our approach uses selective refinement of structural abstractions to improve the runtime efficiency of model-checking. A fully-automated implementation of our approach showed its feasibility, since counterexamples have been found for a realistic scenario with a fairly high (maximal) resolution in a few minutes, while direct model-checker runs led to a crash after a couple of days.
comment: 10 pages
☆ Learning coordinated badminton skills for legged manipulators
Coordinating the motion between lower and upper limbs and aligning limb control with perception are substantial challenges in robotics, particularly in dynamic environments. To this end, we introduce an approach for enabling legged mobile manipulators to play badminton, a task that requires precise coordination of perception, locomotion, and arm swinging. We propose a unified reinforcement learning-based control policy for whole-body visuomotor skills involving all degrees of freedom to achieve effective shuttlecock tracking and striking. This policy is informed by a perception noise model that utilizes real-world camera data, allowing for consistent perception error levels between simulation and deployment and encouraging learned active perception behaviors. Our method includes a shuttlecock prediction model, constrained reinforcement learning for robust motion control, and integrated system identification techniques to enhance deployment readiness. Extensive experimental results in a variety of environments validate the robot's capability to predict shuttlecock trajectories, navigate the service area effectively, and execute precise strikes against human players, demonstrating the feasibility of using legged mobile manipulators in complex and dynamic sports scenarios.
comment: Science Robotics DOI: 10.1126/scirobotics.adu3922
☆ A Benchmark Reference for ESP32-CAM Module SP32
The ESP32-CAM is one of the most widely adopted open-source modules for prototyping embedded vision applications. Since its release in 2019, it has gained popularity among both hobbyists and professional developers due to its affordability, versatility, and integrated wireless capabilities. Despite its widespread use, comprehensive documentation of the performance metrics remains limited. This study addresses this gap by collecting and analyzing over six hours of real-time video streaming logs across all supported resolutions of the OV2640 image sensor, tested under five distinct voltage conditions via an HTTP-based WiFi connection. A long standing bug in the official Arduino ESP32 driver, responsible for inaccurate frame rate logging, was fixed. The resulting analysis includes key performance metrics such as instantaneous and average frame rate, total streamed data, transmission count, and internal chip temperature. The influence of varying power levels was evaluated to assess the reliability of the module.
comment: Full work available at GitHub: https://github.com/TNeutron/ESP32-CAM-Performence-Reference-Benchmark
☆ DiffCoTune: Differentiable Co-Tuning for Cross-domain Robot Control
The deployment of robot controllers is hindered by modeling discrepancies due to necessary simplifications for computational tractability or inaccuracies in data-generating simulators. Such discrepancies typically require ad-hoc tuning to meet the desired performance, thereby ensuring successful transfer to a target domain. We propose a framework for automated, gradient-based tuning to enhance performance in the deployment domain by leveraging differentiable simulators. Our method collects rollouts in an iterative manner to co-tune the simulator and controller parameters, enabling systematic transfer within a few trials in the deployment domain. Specifically, we formulate multi-step objectives for tuning and employ alternating optimization to effectively adapt the controller to the deployment domain. The scalability of our framework is demonstrated by co-tuning model-based and learning-based controllers of arbitrary complexity for tasks ranging from low-dimensional cart-pole stabilization to high-dimensional quadruped and biped tracking, showing performance improvements across different deployment domains.
comment: 8 pages, 8 figures
☆ Nonlinear Oscillatory Response of Automated Vehicle Car-following: Theoretical Analysis with Traffic State and Control Input Limits
This paper presents a framework grounded in the theory of describing function (DF) and incremental-input DF to theoretically analyze the nonlinear oscillatory response of automated vehicles (AVs) car-following (CF) amidst traffic oscillations, considering the limits of traffic state and control input. While prevailing approaches largely ignore these limits (i.e., saturation of acceleration/deceleration and speed) and focus on linear string stability analysis, this framework establishes a basis for theoretically analyzing the frequency response of AV systems with nonlinearities imposed by these limits. To this end, trajectories of CF pairs are decomposed into nominal and oscillatory trajectories, subsequently, the controlled AV system is repositioned within the oscillatory trajectory coordinates. Built on this base, DFs are employed to approximate the frequency responses of nonlinear saturation components by using their first harmonic output, thereby capturing the associated amplification ratio and phase shift. Considering the closed-loop nature of AV control systems, where system states and control input mutually influence each other, amplification ratios and phase shifts are balanced within the loop to ensure consistency. This balancing process may render multiple solutions, hence the incremental-input DF is further applied to identify the reasonable ones. The proposed method is validated by estimations from Simulink, and further comparisons with prevailing methods are conducted. Results confirm the alignment of our framework with Simulink results and exhibit its superior accuracy in analysis compared to the prevailing methods. Furthermore, the framework proves valuable in string stability analysis, especially when conventional linear methods offer misleading insights.
☆ Exploiting Euclidean Distance Field Properties for Fast and Safe 3D planning with a modified Lazy Theta*
Graph search planners have been widely used for 3D path planning in the literature, and Euclidean Distance Fields (EDFs) are increasingly being used as a representation of the environment. However, to the best of our knowledge, the integration of EDFs into heuristic planning has been carried out in a loosely coupled fashion, dismissing EDF properties that can be used to accelerate/improve the planning process and enhance the safety margins of the resultant trajectories. This paper presents a fast graph search planner based on a modified Lazy Theta* planning algorithm for aerial robots in challenging 3D environments that exploits the EDF properties. The proposed planner outperforms classic graph search planners in terms of path smoothness and safety. It integrates EDFs as environment representation and directly generates fast and smooth paths avoiding the use of post-processing methods; it also considers the analytical properties of EDFs to obtain an approximation of the EDF cost along the line-of-sight segments and to reduce the number of visibility neighbours, which directly impacts the computation time. Moreover, we demonstrate that the proposed EDF-based cost function satisfies the triangle inequality, which reduces calculations during exploration and, hence, computation time. Many experiments and comparatives are carried out in 3D challenging indoor and outdoor simulation environments to evaluate and validate the proposed planner. The results show an efficient and safe planner in these environments.
☆ Reducing Latency in LLM-Based Natural Language Commands Processing for Robot Navigation
The integration of Large Language Models (LLMs), such as GPT, in industrial robotics enhances operational efficiency and human-robot collaboration. However, the computational complexity and size of these models often provide latency problems in request and response times. This study explores the integration of the ChatGPT natural language model with the Robot Operating System 2 (ROS 2) to mitigate interaction latency and improve robotic system control within a simulated Gazebo environment. We present an architecture that integrates these technologies without requiring a middleware transport platform, detailing how a simulated mobile robot responds to text and voice commands. Experimental results demonstrate that this integration improves execution speed, usability, and accessibility of the human-robot interaction by decreasing the communication latency by 7.01\% on average. Such improvements facilitate smoother, real-time robot operations, which are crucial for industrial automation and precision tasks.
comment: Accepted to the 23rd IEEE International Conference on Industrial Informatics (INDIN)
☆ Human sensory-musculoskeletal modeling and control of whole-body movements
Coordinated human movement depends on the integration of multisensory inputs, sensorimotor transformation, and motor execution, as well as sensory feedback resulting from body-environment interaction. Building dynamic models of the sensory-musculoskeletal system is essential for understanding movement control and investigating human behaviours. Here, we report a human sensory-musculoskeletal model, termed SMS-Human, that integrates precise anatomical representations of bones, joints, and muscle-tendon units with multimodal sensory inputs involving visual, vestibular, proprioceptive, and tactile components. A stage-wise hierarchical deep reinforcement learning framework was developed to address the inherent challenges of high-dimensional control in musculoskeletal systems with integrated multisensory information. Using this framework, we demonstrated the simulation of three representative movement tasks, including bipedal locomotion, vision-guided object manipulation, and human-machine interaction during bicycling. Our results showed a close resemblance between natural and simulated human motor behaviours. The simulation also revealed musculoskeletal dynamics that could not be directly measured. This work sheds deeper insights into the sensorimotor dynamics of human movements, facilitates quantitative understanding of human behaviours in interactive contexts, and informs the design of systems with embodied intelligence.
☆ Robot-R1: Reinforcement Learning for Enhanced Embodied Reasoning in Robotics
Large Vision-Language Models (LVLMs) have recently shown great promise in advancing robotics by combining embodied reasoning with robot control. A common approach involves training on embodied reasoning tasks related to robot control using Supervised Fine-Tuning (SFT). However, SFT datasets are often heuristically constructed and not explicitly optimized for improving robot control. Furthermore, SFT often leads to issues such as catastrophic forgetting and reduced generalization performance. To address these limitations, we introduce Robot-R1, a novel framework that leverages reinforcement learning to enhance embodied reasoning specifically for robot control. Robot-R1 learns to predict the next keypoint state required for task completion, conditioned on the current scene image and environment metadata derived from expert demonstrations. Inspired by the DeepSeek-R1 learning approach, Robot-R1 samples reasoning-based responses and reinforces those that lead to more accurate predictions. Our experiments show that models trained with Robot-R1 outperform SFT methods on embodied reasoning tasks. Despite having only 7B parameters, Robot-R1 even surpasses GPT-4o on reasoning tasks related to low-level action control, such as spatial and primitive movement reasoning.
comment: 26 pages, 14 figures
♻ ☆ FastTD3: Simple, Fast, and Capable Reinforcement Learning for Humanoid Control
Reinforcement learning (RL) has driven significant progress in robotics, but its complexity and long training times remain major bottlenecks. In this report, we introduce FastTD3, a simple, fast, and capable RL algorithm that significantly speeds up training for humanoid robots in popular suites such as HumanoidBench, IsaacLab, and MuJoCo Playground. Our recipe is remarkably simple: we train an off-policy TD3 agent with several modifications -- parallel simulation, large-batch updates, a distributional critic, and carefully tuned hyperparameters. FastTD3 solves a range of HumanoidBench tasks in under 3 hours on a single A100 GPU, while remaining stable during training. We also provide a lightweight and easy-to-use implementation of FastTD3 to accelerate RL research in robotics.
comment: Project webpage: https://younggyo.me/fast_td3
♻ ☆ AutoBio: A Simulation and Benchmark for Robotic Automation in Digital Biology Laboratory
Vision-language-action (VLA) models have shown promise as generalist robotic policies by jointly leveraging visual, linguistic, and proprioceptive modalities to generate action trajectories. While recent benchmarks have advanced VLA research in domestic tasks, professional science-oriented domains remain underexplored. We introduce AutoBio, a simulation framework and benchmark designed to evaluate robotic automation in biology laboratory environments--an application domain that combines structured protocols with demanding precision and multimodal interaction. AutoBio extends existing simulation capabilities through a pipeline for digitizing real-world laboratory instruments, specialized physics plugins for mechanisms ubiquitous in laboratory workflows, and a rendering stack that support dynamic instrument interfaces and transparent materials through physically based rendering. Our benchmark comprises biologically grounded tasks spanning three difficulty levels, enabling standardized evaluation of language-guided robotic manipulation in experimental protocols. We provide infrastructure for demonstration generation and seamless integration with VLA models. Baseline evaluations with two SOTA VLA models reveal significant gaps in precision manipulation, visual reasoning, and instruction following in scientific workflows. By releasing AutoBio, we aim to catalyze research on generalist robotic systems for complex, high-precision, and multimodal professional environments. The simulator and benchmark are publicly available to facilitate reproducible research.
♻ ☆ GeoDrive: 3D Geometry-Informed Driving World Model with Precise Action Control
Recent advancements in world models have revolutionized dynamic environment simulation, allowing systems to foresee future states and assess potential actions. In autonomous driving, these capabilities help vehicles anticipate the behavior of other road users, perform risk-aware planning, accelerate training in simulation, and adapt to novel scenarios, thereby enhancing safety and reliability. Current approaches exhibit deficiencies in maintaining robust 3D geometric consistency or accumulating artifacts during occlusion handling, both critical for reliable safety assessment in autonomous navigation tasks. To address this, we introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models to enhance spatial understanding and action controllability. Specifically, we first extract a 3D representation from the input frame and then obtain its 2D rendering based on the user-specified ego-car trajectory. To enable dynamic modeling, we propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles. Extensive experiments demonstrate that our method significantly outperforms existing models in both action accuracy and 3D spatial awareness, leading to more realistic, adaptable, and reliable scene modeling for safer autonomous driving. Additionally, our model can generalize to novel trajectories and offers interactive scene editing capabilities, such as object editing and object trajectory control.
comment: code will be released at https://github.com/antonioo-c/GeoDrive
♻ ☆ ReinFlow: Fine-tuning Flow Matching Policy with Online Reinforcement Learning
We propose ReinFlow, a simple yet effective online reinforcement learning (RL) framework that fine-tunes a family of flow matching policies for continuous robotic control. Derived from rigorous RL theory, ReinFlow injects learnable noise into a flow policy's deterministic path, converting the flow into a discrete-time Markov Process for exact and straightforward likelihood computation. This conversion facilitates exploration and ensures training stability, enabling ReinFlow to fine-tune diverse flow model variants, including Rectified Flow [35] and Shortcut Models [19], particularly at very few or even one denoising step. We benchmark ReinFlow in representative locomotion and manipulation tasks, including long-horizon planning with visual input and sparse reward. The episode reward of Rectified Flow policies obtained an average net growth of 135.36% after fine-tuning in challenging legged locomotion tasks while saving denoising steps and 82.63% of wall time compared to state-of-the-art diffusion RL fine-tuning method DPPO [43]. The success rate of the Shortcut Model policies in state and visual manipulation tasks achieved an average net increase of 40.34% after fine-tuning with ReinFlow at four or even one denoising step, whose performance is comparable to fine-tuned DDIM policies while saving computation time for an average of 23.20%. Project webpage: https://reinflow.github.io/
comment: 30 pages, 13 figures, 10 tables
♻ ☆ DORAEMON: Decentralized Ontology-aware Reliable Agent with Enhanced Memory Oriented Navigation
Adaptive navigation in unfamiliar environments is crucial for household service robots but remains challenging due to the need for both low-level path planning and high-level scene understanding. While recent vision-language model (VLM) based zero-shot approaches reduce dependence on prior maps and scene-specific training data, they face significant limitations: spatiotemporal discontinuity from discrete observations, unstructured memory representations, and insufficient task understanding leading to navigation failures. We propose DORAEMON (Decentralized Ontology-aware Reliable Agent with Enhanced Memory Oriented Navigation), a novel cognitive-inspired framework consisting of Ventral and Dorsal Streams that mimics human navigation capabilities. The Dorsal Stream implements the Hierarchical Semantic-Spatial Fusion and Topology Map to handle spatiotemporal discontinuities, while the Ventral Stream combines RAG-VLM and Policy-VLM to improve decision-making. Our approach also develops Nav-Ensurance to ensure navigation safety and efficiency. We evaluate DORAEMON on the HM3D, MP3D, and GOAT datasets, where it achieves state-of-the-art performance on both success rate (SR) and success weighted by path length (SPL) metrics, significantly outperforming existing methods. We also introduce a new evaluation metric (AORI) to assess navigation intelligence better. Comprehensive experiments demonstrate DORAEMON's effectiveness in zero-shot autonomous navigation without requiring prior map building or pre-training.
♻ ☆ DexUMI: Using Human Hand as the Universal Manipulation Interface for Dexterous Manipulation
We present DexUMI - a data collection and policy learning framework that uses the human hand as the natural interface to transfer dexterous manipulation skills to various robot hands. DexUMI includes hardware and software adaptations to minimize the embodiment gap between the human hand and various robot hands. The hardware adaptation bridges the kinematics gap using a wearable hand exoskeleton. It allows direct haptic feedback in manipulation data collection and adapts human motion to feasible robot hand motion. The software adaptation bridges the visual gap by replacing the human hand in video data with high-fidelity robot hand inpainting. We demonstrate DexUMI's capabilities through comprehensive real-world experiments on two different dexterous robot hand hardware platforms, achieving an average task success rate of 86%.
♻ ☆ Hume: Introducing System-2 Thinking in Visual-Language-Action Model
Humans practice slow thinking before performing actual actions when handling complex tasks in the physical world. This thinking paradigm, recently, has achieved remarkable advancement in boosting Large Language Models (LLMs) to solve complex tasks in digital domains. However, the potential of slow thinking remains largely unexplored for robotic foundation models interacting with the physical world. In this work, we propose Hume: a dual-system Vision-Language-Action (VLA) model with value-guided System-2 thinking and cascaded action denoising, exploring human-like thinking capabilities of Vision-Language-Action models for dexterous robot control. System 2 of Hume implements value-Guided thinking by extending a Vision-Language-Action Model backbone with a novel value-query head to estimate the state-action value of predicted actions. The value-guided thinking is conducted by repeat sampling multiple action candidates and selecting one according to state-action value. System 1 of Hume is a lightweight reactive visuomotor policy that takes System 2 selected action and performs cascaded action denoising for dexterous robot control. At deployment time, System 2 performs value-guided thinking at a low frequency while System 1 asynchronously receives the System 2 selected action candidate and predicts fluid actions in real time. We show that Hume outperforms the existing state-of-the-art Vision-Language-Action models across multiple simulation benchmark and real-robot deployments.
♻ ☆ Information Entropy Guided Height-aware Histogram for Quantization-friendly Pillar Feature Encoder
Real-time and high-performance 3D object detection plays a critical role in autonomous driving and robotics. Recent pillar-based 3D object detectors have gained significant attention due to their compact representation and low computational overhead, making them suitable for onboard deployment and quantization. However, existing pillar-based detectors still suffer from information loss along height dimension and large numerical distribution difference during pillar feature encoding (PFE), which severely limits their performance and quantization potential. To address above issue, we first unveil the importance of different input information during PFE and identify the height dimension as a key factor in enhancing 3D detection performance. Motivated by this observation, we propose a height-aware pillar feature encoder, called PillarHist. Specifically, PillarHist statistics the discrete distribution of points at different heights within one pillar with the information entropy guidance. This simple yet effective design greatly preserves the information along the height dimension while significantly reducing the computation overhead of the PFE. Meanwhile, PillarHist also constrains the arithmetic distribution of PFE input to a stable range, making it quantization-friendly. Notably, PillarHist operates exclusively within the PFE stage to enhance performance, enabling seamless integration into existing pillar-based methods without introducing complex operations. Extensive experiments show the effectiveness of PillarHist in terms of both efficiency and performance.
♻ ☆ Wake-Informed 3D Path Planning for Autonomous Underwater Vehicles Using A* and Neural Network Approximations
Autonomous Underwater Vehicles (AUVs) encounter significant energy, control and navigation challenges in complex underwater environments, particularly during close-proximity operations, such as launch and recovery (LAR), where fluid interactions and wake effects present additional navigational and energy challenges. Traditional path planning methods fail to incorporate these detailed wake structures, resulting in increased energy consumption, reduced control stability, and heightened safety risks. This paper presents a novel wake-informed, 3D path planning approach that fully integrates localized wake effects and global currents into the planning algorithm. Two variants of the A* algorithm - a current-informed planner and a wake-informed planner - are created to assess its validity and two neural network models are then trained to approximate these planners for real-time applications. Both the A* planners and NN models are evaluated using important metrics such as energy expenditure, path length, and encounters with high-velocity and turbulent regions. The results demonstrate a wake-informed A* planner consistently achieves the lowest energy expenditure and minimizes encounters with high-velocity regions, reducing energy consumption by up to 11.3%. The neural network models are observed to offer computational speedup of 6 orders of magnitude, but exhibit 4.51 - 19.79% higher energy expenditures and 9.81 - 24.38% less optimal paths. These findings underscore the importance of incorporating detailed wake structures into traditional path planning algorithms and the benefits of neural network approximations to enhance energy efficiency and operational safety for AUVs in complex 3D domains.
comment: 11 pages, 6 figures, preprint of journal paper
♻ ☆ SeeGround: See and Ground for Zero-Shot Open-Vocabulary 3D Visual Grounding CVPR 2025
3D Visual Grounding (3DVG) aims to locate objects in 3D scenes based on textual descriptions, essential for applications like augmented reality and robotics. Traditional 3DVG approaches rely on annotated 3D datasets and predefined object categories, limiting scalability and adaptability. To overcome these limitations, we introduce SeeGround, a zero-shot 3DVG framework leveraging 2D Vision-Language Models (VLMs) trained on large-scale 2D data. SeeGround represents 3D scenes as a hybrid of query-aligned rendered images and spatially enriched text descriptions, bridging the gap between 3D data and 2D-VLMs input formats. We propose two modules: the Perspective Adaptation Module, which dynamically selects viewpoints for query-relevant image rendering, and the Fusion Alignment Module, which integrates 2D images with 3D spatial descriptions to enhance object localization. Extensive experiments on ScanRefer and Nr3D demonstrate that our approach outperforms existing zero-shot methods by large margins. Notably, we exceed weakly supervised methods and rival some fully supervised ones, outperforming previous SOTA by 7.7% on ScanRefer and 7.1% on Nr3D, showcasing its effectiveness in complex 3DVG tasks.
comment: CVPR 2025; 21 pages, 10 figures, 10 tables; Code at https://seeground.github.io/
♻ ☆ DynaMem: Online Dynamic Spatio-Semantic Memory for Open World Mobile Manipulation
Significant progress has been made in open-vocabulary mobile manipulation, where the goal is for a robot to perform tasks in any environment given a natural language description. However, most current systems assume a static environment, which limits the system's applicability in real-world scenarios where environments frequently change due to human intervention or the robot's own actions. In this work, we present DynaMem, a new approach to open-world mobile manipulation that uses a dynamic spatio-semantic memory to represent a robot's environment. DynaMem constructs a 3D data structure to maintain a dynamic memory of point clouds, and answers open-vocabulary object localization queries using multimodal LLMs or open-vocabulary features generated by state-of-the-art vision-language models. Powered by DynaMem, our robots can explore novel environments, search for objects not found in memory, and continuously update the memory as objects move, appear, or disappear in the scene. We run extensive experiments on the Stretch SE3 robots in three real and nine offline scenes, and achieve an average pick-and-drop success rate of 70% on non-stationary objects, which is more than a 2x improvement over state-of-the-art static systems. Our code as well as our experiment and deployment videos are open sourced and can be found on our project website: https://dynamem.github.io/
comment: Website: https://dynamem.github.io
♻ ☆ FlexEvent: Towards Flexible Event-Frame Object Detection at Varying Operational Frequencies
Event cameras offer unparalleled advantages for real-time perception in dynamic environments, thanks to the microsecond-level temporal resolution and asynchronous operation. Existing event detectors, however, are limited by fixed-frequency paradigms and fail to fully exploit the high-temporal resolution and adaptability of event data. To address these limitations, we propose FlexEvent, a novel framework that enables detection at varying frequencies. Our approach consists of two key components: FlexFuse, an adaptive event-frame fusion module that integrates high-frequency event data with rich semantic information from RGB frames, and FlexTune, a frequency-adaptive fine-tuning mechanism that generates frequency-adjusted labels to enhance model generalization across varying operational frequencies. This combination allows our method to detect objects with high accuracy in both fast-moving and static scenarios, while adapting to dynamic environments. Extensive experiments on large-scale event camera datasets demonstrate that our approach surpasses state-of-the-art methods, achieving significant improvements in both standard and high-frequency settings. Notably, our method maintains robust performance when scaling from 20 Hz to 90 Hz and delivers accurate detection up to 180 Hz, proving its effectiveness in extreme conditions. Our framework sets a new benchmark for event-based object detection and paves the way for more adaptable, real-time vision systems. Code is publicly available.
comment: Preprint; 27 pages, 14 figures, 10 tables; Code at https://flexevent.github.io/
♻ ☆ SCoTT: Strategic Chain-of-Thought Tasking for Wireless-Aware Robot Navigation in Digital Twins
Path planning under wireless performance constraints is a complex challenge in robot navigation. However, naively incorporating such constraints into classical planning algorithms often incurs prohibitive search costs. In this paper, we propose SCoTT, a wireless-aware path planning framework that leverages vision-language models (VLMs) to co-optimize average path gains and trajectory length using wireless heatmap images and ray-tracing data from a digital twin (DT). At the core of our framework is Strategic Chain-of-Thought Tasking (SCoTT), a novel prompting paradigm that decomposes the exhaustive search problem into structured subtasks, each solved via chain-of-thought prompting. To establish strong baselines, we compare classical A* and wireless-aware extensions of it, and derive DP-WA*, an optimal, iterative dynamic programming algorithm that incorporates all path gains and distance metrics from the DT, but at significant computational cost. In extensive experiments, we show that SCoTT achieves path gains within 2% of DP-WA* while consistently generating shorter trajectories. Moreover, SCoTT's intermediate outputs can be used to accelerate DP-WA* by reducing its search space, saving up to 62% in execution time. We validate our framework using four VLMs, demonstrating effectiveness across both large and small models, thus making it applicable to a wide range of compact models at low inference cost. We also show the practical viability of our approach by deploying SCoTT as a ROS node within Gazebo simulations. Finally, we discuss data acquisition pipelines, compute requirements, and deployment considerations for VLMs in 6G-enabled DTs, underscoring the potential of natural language interfaces for wireless-aware navigation in real-world applications.
♻ ☆ USPilot: An Embodied Robotic Assistant Ultrasound System with Large Language Model Enhanced Graph Planner
In the era of Large Language Models (LLMs), embodied artificial intelligence presents transformative opportunities for robotic manipulation tasks. Ultrasound imaging, a widely used and cost-effective medical diagnostic procedure, faces challenges due to the global shortage of professional sonographers. To address this issue, we propose USPilot, an embodied robotic assistant ultrasound system powered by an LLM-based framework to enable autonomous ultrasound acquisition. USPilot is designed to function as a virtual sonographer, capable of responding to patients' ultrasound-related queries and performing ultrasound scans based on user intent. By fine-tuning the LLM, USPilot demonstrates a deep understanding of ultrasound-specific questions and tasks. Furthermore, USPilot incorporates an LLM-enhanced Graph Neural Network (GNN) to manage ultrasound robotic APIs and serve as a task planner. Experimental results show that the LLM-enhanced GNN achieves unprecedented accuracy in task planning on public datasets. Additionally, the system demonstrates significant potential in autonomously understanding and executing ultrasound procedures. These advancements bring us closer to achieving autonomous and potentially unmanned robotic ultrasound systems, addressing critical resource gaps in medical imaging.
Universal Trajectory Optimization Framework for Differential Drive Robot Class
Differential drive robots are widely used in various scenarios thanks to their straightforward principle, from household service robots to disaster response field robots. There are several types of driving mechanisms for real-world applications, including two-wheeled, four-wheeled skid-steering, tracked robots, and so on. The differences in the driving mechanisms usually require specific kinematic modeling when precise control is desired. Furthermore, the nonholonomic dynamics and possible lateral slip lead to different degrees of difficulty in getting feasible and high-quality trajectories. Therefore, a comprehensive trajectory optimization framework to compute trajectories efficiently for various kinds of differential drive robots is highly desirable. In this paper, we propose a universal trajectory optimization framework that can be applied to differential drive robots, enabling the generation of high-quality trajectories within a restricted computational timeframe. We introduce a novel trajectory representation based on polynomial parameterization of motion states or their integrals, such as angular and linear velocities, which inherently matches the robots' motion to the control principle. The trajectory optimization problem is formulated to minimize complexity while prioritizing safety and operational efficiency. We then build a full-stack autonomous planning and control system to demonstrate its feasibility and robustness. We conduct extensive simulations and real-world testing in crowded environments with three kinds of differential drive robots to validate the effectiveness of our approach.
comment: 15 pages, 16 figures
♻ ☆ Global Tensor Motion Planning
Batch planning is increasingly necessary to quickly produce diverse and quality motion plans for downstream learning applications, such as distillation and imitation learning. This paper presents Global Tensor Motion Planning (GTMP) -- a sampling-based motion planning algorithm comprising only tensor operations. We introduce a novel discretization structure represented as a random multipartite graph, enabling efficient vectorized sampling, collision checking, and search. We provide a theoretical investigation showing that GTMP exhibits probabilistic completeness while supporting modern GPU/TPU. Additionally, by incorporating smooth structures into the multipartite graph, GTMP directly plans smooth splines without requiring gradient-based optimization. Experiments on lidar-scanned occupancy maps and the MotionBenchMarker dataset demonstrate GTMP's computation efficiency in batch planning compared to baselines, underscoring GTMP's potential as a robust, scalable planner for diverse applications and large-scale robot learning tasks.
comment: 8 pages, 3 figures. Accepted at IEEE Robotics and Automation Letters 2025
♻ ☆ Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving
The end-to-end learning pipeline is gradually creating a paradigm shift in the ongoing development of highly autonomous vehicles (AVs), largely due to advances in deep learning, the availability of large-scale training datasets, and improvements in integrated sensor devices. However, a lack of explainability in real-time decisions with contemporary learning methods impedes user trust and attenuates the widespread deployment and commercialization of such vehicles. Moreover, the issue is exacerbated when these vehicles are involved in or cause traffic accidents. Consequently, explainability in end-to-end autonomous driving is essential to build trust in vehicular automation. With that said, automotive researchers have not yet rigorously explored safety benefits and consequences of explanations in end-to-end autonomous driving. This paper aims to bridge the gaps between these topics and seeks to answer the following research question: What are safety implications of explanations in end-to-end autonomous driving? In this regard, we first revisit established safety and explainability concepts in end-to-end driving. Furthermore, we present critical case studies and show the pivotal role of explanations in enhancing driving safety. Finally, we describe insights from empirical studies and reveal potential value, limitations, and caveats of practical explainable AI methods with respect to their potential impacts on safety of end-to-end driving.
comment: Accepted for publication in IEEE Transactions on Intelligent Transportation Systems
♻ ☆ M3Bench: Benchmarking Whole-body Motion Generation for Mobile Manipulation in 3D Scenes
We propose M3Bench, a new benchmark for whole-body motion generation in mobile manipulation tasks. Given a 3D scene context, M3Bench requires an embodied agent to reason about its configuration, environmental constraints, and task objectives to generate coordinated whole-body motion trajectories for object rearrangement. M3Bench features 30,000 object rearrangement tasks across 119 diverse scenes, providing expert demonstrations generated by our newly developed M3BenchMaker, an automatic data generation tool that produces whole-body motion trajectories from high-level task instructions using only basic scene and robot information. Our benchmark includes various task splits to evaluate generalization across different dimensions and leverages realistic physics simulation for trajectory assessment. Extensive evaluation analysis reveals that state-of-the-art models struggle with coordinating base-arm motion while adhering to environmental and task-specific constraints, underscoring the need for new models to bridge this gap. By releasing M3Bench and M3BenchMaker we aim to advance robotics research toward more adaptive and capable mobile manipulation in diverse, real-world environments.
comment: This paper has been accepted by IEEE Robotics and Automation Letters 2025 (RA-L)
♻ ☆ Learning from Suboptimal Data in Continuous Control via Auto-Regressive Soft Q-Network ICML 2025
Reinforcement learning (RL) for continuous control often requires large amounts of online interaction data. Value-based RL methods can mitigate this burden by offering relatively high sample efficiency. Some studies further enhance sample efficiency by incorporating offline demonstration data to "kick-start" training, achieving promising results in continuous control. However, they typically compute the Q-function independently for each action dimension, neglecting interdependencies and making it harder to identify optimal actions when learning from suboptimal data, such as non-expert demonstration and online-collected data during the training process. To address these issues, we propose Auto-Regressive Soft Q-learning (ARSQ), a value-based RL algorithm that models Q-values in a coarse-to-fine, auto-regressive manner. First, ARSQ decomposes the continuous action space into discrete spaces in a coarse-to-fine hierarchy, enhancing sample efficiency for fine-grained continuous control tasks. Next, it auto-regressively predicts dimensional action advantages within each decision step, enabling more effective decision-making in continuous control tasks. We evaluate ARSQ on two continuous control benchmarks, RLBench and D4RL, integrating demonstration data into online training. On D4RL, which includes non-expert demonstrations, ARSQ achieves an average $1.62\times$ performance improvement over SOTA value-based baseline. On RLBench, which incorporates expert demonstrations, ARSQ surpasses various baselines, demonstrating its effectiveness in learning from suboptimal online-collected data. Project page is at https://sites.google.com/view/ar-soft-q
comment: Accepted by ICML 2025
♻ ☆ CAML: Collaborative Auxiliary Modality Learning for Multi-Agent Systems
Multi-modal learning has become a crucial technique for improving the performance of machine learning applications across domains such as autonomous driving, robotics, and perception systems. However, in certain scenarios, particularly in resource-constrained environments, some modalities available during training may be absent during inference. While existing frameworks effectively utilize multiple data sources during training and enable inference with reduced modalities, they are primarily designed for single-agent settings. This poses a critical limitation in dynamic environments such as connected autonomous vehicles (CAV), where incomplete data coverage can lead to decision-making blind spots. Conversely, some works explore multi-agent collaboration but without addressing missing modality at test time. To overcome these limitations, we propose Collaborative Auxiliary Modality Learning (CAML), a novel multi-modal multi-agent framework that enables agents to collaborate and share multi-modal data during training, while allowing inference with reduced modalities during testing. Experimental results in collaborative decision-making for CAV in accident-prone scenarios demonstrate that CAML achieves up to a ${\bf 58.1}\%$ improvement in accident detection. Additionally, we validate CAML on real-world aerial-ground robot data for collaborative semantic segmentation, achieving up to a ${\bf 10.6}\%$ improvement in mIoU.
♻ ☆ Foundation Models for Rapid Autonomy Validation
We are motivated by the problem of autonomous vehicle performance validation. A key challenge is that an autonomous vehicle requires testing in every kind of driving scenario it could encounter, including rare events, to provide a strong case for safety and show there is no edge-case pathological behavior. Autonomous vehicle companies rely on potentially millions of miles driven in realistic simulation to expose the driving stack to enough miles to estimate rates and severity of collisions. To address scalability and coverage, we propose the use of a behavior foundation model, specifically a masked autoencoder (MAE), trained to reconstruct driving scenarios. We leverage the foundation model in two complementary ways: we (i) use the learned embedding space to group qualitatively similar scenarios together and (ii) fine-tune the model to label scenario difficulty based on the likelihood of a collision upon simulation. We use the difficulty scoring as importance weighting for the groups of scenarios. The result is an approach which can more rapidly estimate the rates and severity of collisions by prioritizing hard scenarios while ensuring exposure to every kind of driving scenario.
♻ ☆ ChatVLA-2: Vision-Language-Action Model with Open-World Embodied Reasoning from Pretrained Knowledge
Vision-language-action (VLA) models have emerged as the next generation of models in robotics. However, despite leveraging powerful pre-trained Vision-Language Models (VLMs), existing end-to-end VLA systems often lose key capabilities during fine-tuning as the model adapts to specific robotic tasks. We argue that a generalizable VLA model should retain and expand upon the VLM's core competencies: 1) Open-world embodied reasoning - the VLA should inherit the knowledge from VLM, i.e., recognize anything that the VLM can recognize, be capable of solving math problems, and possess visual-spatial intelligence, 2) Reasoning following - effectively translating the open-world reasoning into actionable steps for the robot. In this work, we introduce ChatVLA-2, a novel mixture-of-expert VLA model coupled with a specialized two-stage training pipeline designed to preserve the VLM's original strengths while enabling actionable reasoning. To validate our approach, we design a math-matching task wherein a robot interprets math problems written on a whiteboard and picks corresponding number cards from a table to solve equations. Remarkably, our method exhibits exceptional mathematical reasoning and OCR capabilities, despite these abilities not being explicitly trained within the VLA. Furthermore, we demonstrate that the VLA possesses strong spatial reasoning skills, enabling it to interpret novel directional instructions involving previously unseen objects. Overall, our method showcases reasoning and comprehension abilities that significantly surpass state-of-the-art imitation learning methods such as OpenVLA, DexVLA, and pi-zero. This work represents a substantial advancement toward developing truly generalizable robotic foundation models endowed with robust reasoning capacities.
comment: Project page: https://chatvla-2.github.io/
♻ ☆ Neuro-Symbolic Generation of Explanations for Robot Policies with Weighted Signal Temporal Logic
Neural network-based policies have demonstrated success in many robotic applications, but often lack human-explanability, which poses challenges in safety-critical deployments. To address this, we propose a neuro-symbolic explanation framework that generates a weighted signal temporal logic (wSTL) specification to describe a robot policy in a interpretable form. Existing methods typically produce explanations that are verbose and inconsistent, which hinders explainability, and loose, which do not give meaningful insights into the underlying policy. We address these issues by introducing a simplification process consisting of predicate filtering, regularization, and iterative pruning. We also introduce three novel explainability evaluation metrics -- conciseness, consistency, and strictness -- to assess explanation quality beyond conventional classification metrics. Our method is validated in three simulated robotic environments, where it outperforms baselines in generating concise, consistent, and strict wSTL explanations without sacrificing classification accuracy. This work bridges policy learning with formal methods, contributing to safer and more transparent decision-making in robotics.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Large-Scale Multi-Robot Coverage Path Planning on Grids with Path Deconfliction
We study Multi-Robot Coverage Path Planning (MCPP) on a 4-neighbor 2D grid G, which aims to compute paths for multiple robots to cover all cells of G. Traditional approaches are limited as they first compute coverage trees on a quadrant coarsened grid H and then employ the Spanning Tree Coverage (STC) paradigm to generate paths on G, making them inapplicable to grids with partially obstructed 2x2 blocks. To address this limitation, we reformulate the problem directly on G, revolutionizing grid-based MCPP solving and establishing new NP-hardness results. We introduce Extended-STC (ESTC), a novel paradigm that extends STC to ensure complete coverage with bounded suboptimality, even when H includes partially obstructed blocks. Furthermore, we present LS-MCPP, a new algorithmic framework that integrates ESTC with three novel types of neighborhood operators within a local search strategy to optimize coverage paths directly on G. Unlike prior grid-based MCPP work, our approach also incorporates a versatile post-processing procedure that applies Multi-Agent Path Finding (MAPF) techniques to MCPP for the first time, enabling a fusion of these two important fields in multi-robot coordination. This procedure effectively resolves inter-robot conflicts and accommodates turning costs by solving a MAPF variant, making our MCPP solutions more practical for real-world applications. Extensive experiments demonstrate that our approach significantly improves solution quality and efficiency, managing up to 100 robots on grids as large as 256x256 within minutes of runtime. Validation with physical robots confirms the feasibility of our solutions under real-world conditions.
comment: accepted to T-RO
♻ ☆ Dexterous Control of an 11-DOF Redundant Robot for CT-Guided Needle Insertion With Task-Oriented Weighted Policies
Computed tomography (CT)-guided needle biopsies are critical for diagnosing a range of conditions, including lung cancer, but present challenges such as limited in-bore space, prolonged procedure times, and radiation exposure. Robotic assistance offers a promising solution by improving needle trajectory accuracy, reducing radiation exposure, and enabling real-time adjustments. In our previous work, we introduced a redundant robotic platform designed for dexterous needle insertion within the confined CT bore. However, its limited base mobility restricts flexible deployment in clinical settings. In this study, we present an improved 11-degree-of-freedom (DOF) robotic system that integrates a 6-DOF robotic base with a 5-DOF cable-driven end-effector, significantly enhancing workspace flexibility and precision. With the hyper-redundant degrees of freedom, we introduce a weighted inverse kinematics controller with a two-stage priority scheme for large-scale movement and fine in-bore adjustments, along with a null-space control strategy to optimize dexterity. We validate our system through both simulation and real-world experiments, demonstrating superior tracking accuracy and enhanced manipulability in CT-guided procedures. The study provides a strong case for hyper-redundancy and null-space control formulations for robot-assisted needle biopsy scenarios.
Computer Vision 155
☆ TextRegion: Text-Aligned Region Tokens from Frozen Image-Text Models
Image-text models excel at image-level tasks but struggle with detailed visual understanding. While these models provide strong visual-language alignment, segmentation models like SAM2 offer precise spatial boundaries for objects. To this end, we propose TextRegion, a simple, effective, and training-free framework that combines the strengths of image-text models and SAM2 to generate powerful text-aligned region tokens. These tokens enable detailed visual understanding while preserving open-vocabulary capabilities. They can be directly applied to various downstream tasks, including open-world semantic segmentation, referring expression comprehension, and grounding. We conduct extensive evaluations and consistently achieve superior or competitive performance compared to state-of-the-art training-free methods. Additionally, our framework is compatible with many image-text models, making it highly practical and easily extensible as stronger models emerge. Code is available at: https://github.com/avaxiao/TextRegion.
comment: Code is available at: https://github.com/avaxiao/TextRegion
☆ Argus: Vision-Centric Reasoning with Grounded Chain-of-Thought CVPR 2025
Recent advances in multimodal large language models (MLLMs) have demonstrated remarkable capabilities in vision-language tasks, yet they often struggle with vision-centric scenarios where precise visual focus is needed for accurate reasoning. In this paper, we introduce Argus to address these limitations with a new visual attention grounding mechanism. Our approach employs object-centric grounding as visual chain-of-thought signals, enabling more effective goal-conditioned visual attention during multimodal reasoning tasks. Evaluations on diverse benchmarks demonstrate that Argus excels in both multimodal reasoning tasks and referring object grounding tasks. Extensive analysis further validates various design choices of Argus, and reveals the effectiveness of explicit language-guided visual region-of-interest engagement in MLLMs, highlighting the importance of advancing multimodal intelligence from a visual-centric perspective. Project page: https://yunzeman.github.io/argus/
comment: CVPR 2025. Project Page: https://yunzeman.github.io/argus/
☆ MMSI-Bench: A Benchmark for Multi-Image Spatial Intelligence
Spatial intelligence is essential for multimodal large language models (MLLMs) operating in the complex physical world. Existing benchmarks, however, probe only single-image relations and thus fail to assess the multi-image spatial reasoning that real-world deployments demand. We introduce MMSI-Bench, a VQA benchmark dedicated to multi-image spatial intelligence. Six 3D-vision researchers spent more than 300 hours meticulously crafting 1,000 challenging, unambiguous multiple-choice questions from over 120,000 images, each paired with carefully designed distractors and a step-by-step reasoning process. We conduct extensive experiments and thoroughly evaluate 34 open-source and proprietary MLLMs, observing a wide gap: the strongest open-source model attains roughly 30% accuracy and OpenAI's o3 reasoning model reaches 40%, while humans score 97%. These results underscore the challenging nature of MMSI-Bench and the substantial headroom for future research. Leveraging the annotated reasoning processes, we also provide an automated error analysis pipeline that diagnoses four dominant failure modes, including (1) grounding errors, (2) overlap-matching and scene-reconstruction errors, (3) situation-transformation reasoning errors, and (4) spatial-logic errors, offering valuable insights for advancing multi-image spatial intelligence. Project page: https://runsenxu.com/projects/MMSI_Bench .
comment: 34 pages. A comprehensive, fully human-curated, multi-image-based spatial intelligence benchmark with reasoning annotation for MLLMs. Project page: https://runsenxu.com/projects/MMSI_Bench
☆ ZeroGUI: Automating Online GUI Learning at Zero Human Cost
The rapid advancement of large Vision-Language Models (VLMs) has propelled the development of pure-vision-based GUI Agents, capable of perceiving and operating Graphical User Interfaces (GUI) to autonomously fulfill user instructions. However, existing approaches usually adopt an offline learning framework, which faces two core limitations: (1) heavy reliance on high-quality manual annotations for element grounding and action supervision, and (2) limited adaptability to dynamic and interactive environments. To address these limitations, we propose ZeroGUI, a scalable, online learning framework for automating GUI Agent training at Zero human cost. Specifically, ZeroGUI integrates (i) VLM-based automatic task generation to produce diverse training goals from the current environment state, (ii) VLM-based automatic reward estimation to assess task success without hand-crafted evaluation functions, and (iii) two-stage online reinforcement learning to continuously interact with and learn from GUI environments. Experiments on two advanced GUI Agents (UI-TARS and Aguvis) demonstrate that ZeroGUI significantly boosts performance across OSWorld and AndroidLab environments. The code is available at https://github.com/OpenGVLab/ZeroGUI.
☆ Sketch Down the FLOPs: Towards Efficient Networks for Human Sketch CVPR 2025
As sketch research has collectively matured over time, its adaptation for at-mass commercialisation emerges on the immediate horizon. Despite an already mature research endeavour for photos, there is no research on the efficient inference specifically designed for sketch data. In this paper, we first demonstrate existing state-of-the-art efficient light-weight models designed for photos do not work on sketches. We then propose two sketch-specific components which work in a plug-n-play manner on any photo efficient network to adapt them to work on sketch data. We specifically chose fine-grained sketch-based image retrieval (FG-SBIR) as a demonstrator as the most recognised sketch problem with immediate commercial value. Technically speaking, we first propose a cross-modal knowledge distillation network to transfer existing photo efficient networks to be compatible with sketch, which brings down number of FLOPs and model parameters by 97.96% percent and 84.89% respectively. We then exploit the abstract trait of sketch to introduce a RL-based canvas selector that dynamically adjusts to the abstraction level which further cuts down number of FLOPs by two thirds. The end result is an overall reduction of 99.37% of FLOPs (from 40.18G to 0.254G) when compared with a full network, while retaining the accuracy (33.03% vs 32.77%) -- finally making an efficient network for the sparse sketch data that exhibit even fewer FLOPs than the best photo counterpart.
comment: Accepted at CVPR 2025, Project Page: https://subhajitmaity.me/SketchDownTheFLOPs
☆ Puzzled by Puzzles: When Vision-Language Models Can't Take a Hint
Rebus puzzles, visual riddles that encode language through imagery, spatial arrangement, and symbolic substitution, pose a unique challenge to current vision-language models (VLMs). Unlike traditional image captioning or question answering tasks, rebus solving requires multi-modal abstraction, symbolic reasoning, and a grasp of cultural, phonetic and linguistic puns. In this paper, we investigate the capacity of contemporary VLMs to interpret and solve rebus puzzles by constructing a hand-generated and annotated benchmark of diverse English-language rebus puzzles, ranging from simple pictographic substitutions to spatially-dependent cues ("head" over "heels"). We analyze how different VLMs perform, and our findings reveal that while VLMs exhibit some surprising capabilities in decoding simple visual clues, they struggle significantly with tasks requiring abstract reasoning, lateral thinking, and understanding visual metaphors.
Impromptu VLA: Open Weights and Open Data for Driving Vision-Language-Action Models
Vision-Language-Action (VLA) models for autonomous driving show promise but falter in unstructured corner case scenarios, largely due to a scarcity of targeted benchmarks. To address this, we introduce Impromptu VLA. Our core contribution is the Impromptu VLA Dataset: over 80,000 meticulously curated video clips, distilled from over 2M source clips sourced from 8 open-source large-scale datasets. This dataset is built upon our novel taxonomy of four challenging unstructured categories and features rich, planning-oriented question-answering annotations and action trajectories. Crucially, experiments demonstrate that VLAs trained with our dataset achieve substantial performance gains on established benchmarks--improving closed-loop NeuroNCAP scores and collision rates, and reaching near state-of-the-art L2 accuracy in open-loop nuScenes trajectory prediction. Furthermore, our Q&A suite serves as an effective diagnostic, revealing clear VLM improvements in perception, prediction, and planning. Our code, data and models are available at https://github.com/ahydchh/Impromptu-VLA.
comment: Project page: https://github.com/ahydchh/Impromptu-VLA
☆ LoRAShop: Training-Free Multi-Concept Image Generation and Editing with Rectified Flow Transformers
We introduce LoRAShop, the first framework for multi-concept image editing with LoRA models. LoRAShop builds on a key observation about the feature interaction patterns inside Flux-style diffusion transformers: concept-specific transformer features activate spatially coherent regions early in the denoising process. We harness this observation to derive a disentangled latent mask for each concept in a prior forward pass and blend the corresponding LoRA weights only within regions bounding the concepts to be personalized. The resulting edits seamlessly integrate multiple subjects or styles into the original scene while preserving global context, lighting, and fine details. Our experiments demonstrate that LoRAShop delivers better identity preservation compared to baselines. By eliminating retraining and external constraints, LoRAShop turns personalized diffusion models into a practical `photoshop-with-LoRAs' tool and opens new avenues for compositional visual storytelling and rapid creative iteration.
comment: Project Webpage: https://lorashop.github.io/
☆ Rooms from Motion: Un-posed Indoor 3D Object Detection as Localization and Mapping
We revisit scene-level 3D object detection as the output of an object-centric framework capable of both localization and mapping using 3D oriented boxes as the underlying geometric primitive. While existing 3D object detection approaches operate globally and implicitly rely on the a priori existence of metric camera poses, our method, Rooms from Motion (RfM) operates on a collection of un-posed images. By replacing the standard 2D keypoint-based matcher of structure-from-motion with an object-centric matcher based on image-derived 3D boxes, we estimate metric camera poses, object tracks, and finally produce a global, semantic 3D object map. When a priori pose is available, we can significantly improve map quality through optimization of global 3D boxes against individual observations. RfM shows strong localization performance and subsequently produces maps of higher quality than leading point-based and multi-view 3D object detection methods on CA-1M and ScanNet++, despite these global methods relying on overparameterization through point clouds or dense volumes. Rooms from Motion achieves a general, object-centric representation which not only extends the work of Cubify Anything to full scenes but also allows for inherently sparse localization and parametric mapping proportional to the number of objects in a scene.
☆ ThinkGeo: Evaluating Tool-Augmented Agents for Remote Sensing Tasks
Recent progress in large language models (LLMs) has enabled tool-augmented agents capable of solving complex real-world tasks through step-by-step reasoning. However, existing evaluations often focus on general-purpose or multimodal scenarios, leaving a gap in domain-specific benchmarks that assess tool-use capabilities in complex remote sensing use cases. We present ThinkGeo, an agentic benchmark designed to evaluate LLM-driven agents on remote sensing tasks via structured tool use and multi-step planning. Inspired by tool-interaction paradigms, ThinkGeo includes human-curated queries spanning a wide range of real-world applications such as urban planning, disaster assessment and change analysis, environmental monitoring, transportation analysis, aviation monitoring, recreational infrastructure, and industrial site analysis. Each query is grounded in satellite or aerial imagery and requires agents to reason through a diverse toolset. We implement a ReAct-style interaction loop and evaluate both open and closed-source LLMs (e.g., GPT-4o, Qwen2.5) on 436 structured agentic tasks. The benchmark reports both step-wise execution metrics and final answer correctness. Our analysis reveals notable disparities in tool accuracy and planning consistency across models. ThinkGeo provides the first extensive testbed for evaluating how tool-enabled LLMs handle spatial reasoning in remote sensing. Our code and dataset are publicly available
☆ REOrdering Patches Improves Vision Models
Sequence models such as transformers require inputs to be represented as one-dimensional sequences. In vision, this typically involves flattening images using a fixed row-major (raster-scan) order. While full self-attention is permutation-equivariant, modern long-sequence transformers increasingly rely on architectural approximations that break this invariance and introduce sensitivity to patch ordering. We show that patch order significantly affects model performance in such settings, with simple alternatives like column-major or Hilbert curves yielding notable accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for discovering task-optimal patch orderings. First, we derive an information-theoretic prior by evaluating the compressibility of various patch sequences. Then, we learn a policy over permutations by optimizing a Plackett-Luce policy using REINFORCE. This approach enables efficient learning in a combinatorial permutation space. REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by up to 3.01% and Functional Map of the World by 13.35%.
☆ Spatial-MLLM: Boosting MLLM Capabilities in Visual-based Spatial Intelligence
Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced performance on 2D visual tasks. However, improving their spatial intelligence remains a challenge. Existing 3D MLLMs always rely on additional 3D or 2.5D data to incorporate spatial awareness, restricting their utility in scenarios with only 2D inputs, such as images or videos. In this paper, we present Spatial-MLLM, a novel framework for visual-based spatial reasoning from purely 2D observations. Unlike conventional video MLLMs which rely on CLIP-based visual encoders optimized for semantic understanding, our key insight is to unleash the strong structure prior from the feed-forward visual geometry foundation model. Specifically, we propose a dual-encoder architecture: a pretrained 2D visual encoder to extract semantic features, and a spatial encoder-initialized from the backbone of the visual geometry model-to extract 3D structure features. A connector then integrates both features into unified visual tokens for enhanced spatial understanding. Furthermore, we propose a space-aware frame sampling strategy at inference time, which selects the spatially informative frames of a video sequence, ensuring that even under limited token length, the model focuses on frames critical for spatial reasoning. Beyond architecture improvements, we construct the Spatial-MLLM-120k dataset and train the model on it using supervised fine-tuning and GRPO. Extensive experiments on various real-world datasets demonstrate that our spatial-MLLM achieves state-of-the-art performance in a wide range of visual-based spatial understanding and reasoning tasks. Project page: https://diankun-wu.github.io/Spatial-MLLM/.
comment: 21 pages
☆ To Trust Or Not To Trust Your Vision-Language Model's Prediction
Vision-Language Models (VLMs) have demonstrated strong capabilities in aligning visual and textual modalities, enabling a wide range of applications in multimodal understanding and generation. While they excel in zero-shot and transfer learning scenarios, VLMs remain susceptible to misclassification, often yielding confident yet incorrect predictions. This limitation poses a significant risk in safety-critical domains, where erroneous predictions can lead to severe consequences. In this work, we introduce TrustVLM, a training-free framework designed to address the critical challenge of estimating when VLM's predictions can be trusted. Motivated by the observed modality gap in VLMs and the insight that certain concepts are more distinctly represented in the image embedding space, we propose a novel confidence-scoring function that leverages this space to improve misclassification detection. We rigorously evaluate our approach across 17 diverse datasets, employing 4 architectures and 2 VLMs, and demonstrate state-of-the-art performance, with improvements of up to 51.87% in AURC, 9.14% in AUROC, and 32.42% in FPR95 compared to existing baselines. By improving the reliability of the model without requiring retraining, TrustVLM paves the way for safer deployment of VLMs in real-world applications. The code will be available at https://github.com/EPFL-IMOS/TrustVLM.
☆ Boosting Domain Incremental Learning: Selecting the Optimal Parameters is All You Need CVPR 2025
Deep neural networks (DNNs) often underperform in real-world, dynamic settings where data distributions change over time. Domain Incremental Learning (DIL) offers a solution by enabling continual model adaptation, with Parameter-Isolation DIL (PIDIL) emerging as a promising paradigm to reduce knowledge conflicts. However, existing PIDIL methods struggle with parameter selection accuracy, especially as the number of domains and corresponding classes grows. To address this, we propose SOYO, a lightweight framework that improves domain selection in PIDIL. SOYO introduces a Gaussian Mixture Compressor (GMC) and Domain Feature Resampler (DFR) to store and balance prior domain data efficiently, while a Multi-level Domain Feature Fusion Network (MDFN) enhances domain feature extraction. Our framework supports multiple Parameter-Efficient Fine-Tuning (PEFT) methods and is validated across tasks such as image classification, object detection, and speech enhancement. Experimental results on six benchmarks demonstrate SOYO's consistent superiority over existing baselines, showcasing its robustness and adaptability in complex, evolving environments. The codes will be released in https://github.com/qwangcv/SOYO.
comment: Accepted at CVPR 2025
☆ DarkDiff: Advancing Low-Light Raw Enhancement by Retasking Diffusion Models for Camera ISP
High-quality photography in extreme low-light conditions is challenging but impactful for digital cameras. With advanced computing hardware, traditional camera image signal processor (ISP) algorithms are gradually being replaced by efficient deep networks that enhance noisy raw images more intelligently. However, existing regression-based models often minimize pixel errors and result in oversmoothing of low-light photos or deep shadows. Recent work has attempted to address this limitation by training a diffusion model from scratch, yet those models still struggle to recover sharp image details and accurate colors. We introduce a novel framework to enhance low-light raw images by retasking pre-trained generative diffusion models with the camera ISP. Extensive experiments demonstrate that our method outperforms the state-of-the-art in perceptual quality across three challenging low-light raw image benchmarks.
☆ MAGREF: Masked Guidance for Any-Reference Video Generation
Video generation has made substantial strides with the emergence of deep generative models, especially diffusion-based approaches. However, video generation based on multiple reference subjects still faces significant challenges in maintaining multi-subject consistency and ensuring high generation quality. In this paper, we propose MAGREF, a unified framework for any-reference video generation that introduces masked guidance to enable coherent multi-subject video synthesis conditioned on diverse reference images and a textual prompt. Specifically, we propose (1) a region-aware dynamic masking mechanism that enables a single model to flexibly handle various subject inference, including humans, objects, and backgrounds, without architectural changes, and (2) a pixel-wise channel concatenation mechanism that operates on the channel dimension to better preserve appearance features. Our model delivers state-of-the-art video generation quality, generalizing from single-subject training to complex multi-subject scenarios with coherent synthesis and precise control over individual subjects, outperforming existing open-source and commercial baselines. To facilitate evaluation, we also introduce a comprehensive multi-subject video benchmark. Extensive experiments demonstrate the effectiveness of our approach, paving the way for scalable, controllable, and high-fidelity multi-subject video synthesis. Code and model can be found at: https://github.com/MAGREF-Video/MAGREF
comment: Project website: https://magref-video.github.io/magref.github.io/
☆ LayerPeeler: Autoregressive Peeling for Layer-wise Image Vectorization
Image vectorization is a powerful technique that converts raster images into vector graphics, enabling enhanced flexibility and interactivity. However, popular image vectorization tools struggle with occluded regions, producing incomplete or fragmented shapes that hinder editability. While recent advancements have explored rule-based and data-driven layer-wise image vectorization, these methods face limitations in vectorization quality and flexibility. In this paper, we introduce LayerPeeler, a novel layer-wise image vectorization approach that addresses these challenges through a progressive simplification paradigm. The key to LayerPeeler's success lies in its autoregressive peeling strategy: by identifying and removing the topmost non-occluded layers while recovering underlying content, we generate vector graphics with complete paths and coherent layer structures. Our method leverages vision-language models to construct a layer graph that captures occlusion relationships among elements, enabling precise detection and description for non-occluded layers. These descriptive captions are used as editing instructions for a finetuned image diffusion model to remove the identified layers. To ensure accurate removal, we employ localized attention control that precisely guides the model to target regions while faithfully preserving the surrounding content. To support this, we contribute a large-scale dataset specifically designed for layer peeling tasks. Extensive quantitative and qualitative experiments demonstrate that LayerPeeler significantly outperforms existing techniques, producing vectorization results with superior path semantics, geometric regularity, and visual fidelity.
comment: Project Page: https://layerpeeler.github.io/
☆ How Animals Dance (When You're Not Looking)
We present a keyframe-based framework for generating music-synchronized, choreography aware animal dance videos. Starting from a few keyframes representing distinct animal poses -- generated via text-to-image prompting or GPT-4o -- we formulate dance synthesis as a graph optimization problem: find the optimal keyframe structure that satisfies a specified choreography pattern of beats, which can be automatically estimated from a reference dance video. We also introduce an approach for mirrored pose image generation, essential for capturing symmetry in dance. In-between frames are synthesized using an video diffusion model. With as few as six input keyframes, our method can produce up to 30 second dance videos across a wide range of animals and music tracks.
comment: Project page: https://how-animals-dance.github.io/
☆ ZPressor: Bottleneck-Aware Compression for Scalable Feed-Forward 3DGS
Feed-forward 3D Gaussian Splatting (3DGS) models have recently emerged as a promising solution for novel view synthesis, enabling one-pass inference without the need for per-scene 3DGS optimization. However, their scalability is fundamentally constrained by the limited capacity of their encoders, leading to degraded performance or excessive memory consumption as the number of input views increases. In this work, we analyze feed-forward 3DGS frameworks through the lens of the Information Bottleneck principle and introduce ZPressor, a lightweight architecture-agnostic module that enables efficient compression of multi-view inputs into a compact latent state $Z$ that retains essential scene information while discarding redundancy. Concretely, ZPressor enables existing feed-forward 3DGS models to scale to over 100 input views at 480P resolution on an 80GB GPU, by partitioning the views into anchor and support sets and using cross attention to compress the information from the support views into anchor views, forming the compressed latent state $Z$. We show that integrating ZPressor into several state-of-the-art feed-forward 3DGS models consistently improves performance under moderate input views and enhances robustness under dense view settings on two large-scale benchmarks DL3DV-10K and RealEstate10K. The video results, code and trained models are available on our project page: https://lhmd.top/zpressor.
comment: Project Page: https://lhmd.top/zpressor, Code: https://github.com/ziplab/ZPressor
PixelThink: Towards Efficient Chain-of-Pixel Reasoning
Existing reasoning segmentation approaches typically fine-tune multimodal large language models (MLLMs) using image-text pairs and corresponding mask labels. However, they exhibit limited generalization to out-of-distribution scenarios without an explicit reasoning process. Although recent efforts leverage reinforcement learning through group-relative policy optimization (GRPO) to enhance reasoning ability, they often suffer from overthinking - producing uniformly verbose reasoning chains irrespective of task complexity. This results in elevated computational costs and limited control over reasoning quality. To address this problem, we propose PixelThink, a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty to regulate reasoning generation within a reinforcement learning paradigm. The model learns to compress reasoning length in accordance with scene complexity and predictive confidence. To support comprehensive evaluation, we introduce ReasonSeg-Diff, an extended benchmark with annotated reasoning references and difficulty scores, along with a suite of metrics designed to assess segmentation accuracy, reasoning quality, and efficiency jointly. Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance. Our work contributes novel perspectives towards efficient and interpretable multimodal understanding. The code and model will be publicly available.
comment: Project Page: https://PixelThink.github.io
☆ FMG-Det: Foundation Model Guided Robust Object Detection ICIP 2025
Collecting high quality data for object detection tasks is challenging due to the inherent subjectivity in labeling the boundaries of an object. This makes it difficult to not only collect consistent annotations across a dataset but also to validate them, as no two annotators are likely to label the same object using the exact same coordinates. These challenges are further compounded when object boundaries are partially visible or blurred, which can be the case in many domains. Training on noisy annotations significantly degrades detector performance, rendering them unusable, particularly in few-shot settings, where just a few corrupted annotations can impact model performance. In this work, we propose FMG-Det, a simple, efficient methodology for training models with noisy annotations. More specifically, we propose combining a multiple instance learning (MIL) framework with a pre-processing pipeline that leverages powerful foundation models to correct labels prior to training. This pre-processing pipeline, along with slight modifications to the detector head, results in state-of-the-art performance across a number of datasets, for both standard and few-shot scenarios, while being much simpler and more efficient than other approaches.
comment: 10 pages, ICIP 2025
☆ AnySplat: Feed-forward 3D Gaussian Splatting from Unconstrained Views
We introduce AnySplat, a feed forward network for novel view synthesis from uncalibrated image collections. In contrast to traditional neural rendering pipelines that demand known camera poses and per scene optimization, or recent feed forward methods that buckle under the computational weight of dense views, our model predicts everything in one shot. A single forward pass yields a set of 3D Gaussian primitives encoding both scene geometry and appearance, and the corresponding camera intrinsics and extrinsics for each input image. This unified design scales effortlessly to casually captured, multi view datasets without any pose annotations. In extensive zero shot evaluations, AnySplat matches the quality of pose aware baselines in both sparse and dense view scenarios while surpassing existing pose free approaches. Moreover, it greatly reduce rendering latency compared to optimization based neural fields, bringing real time novel view synthesis within reach for unconstrained capture settings.Project page: https://city-super.github.io/anysplat/
comment: Project page: https://city-super.github.io/anysplat/
☆ Skin Lesion Phenotyping via Nested Multi-modal Contrastive Learning
We introduce SLIMP (Skin Lesion Image-Metadata Pre-training) for learning rich representations of skin lesions through a novel nested contrastive learning approach that captures complex relationships between images and metadata. Melanoma detection and skin lesion classification based solely on images, pose significant challenges due to large variations in imaging conditions (lighting, color, resolution, distance, etc.) and lack of clinical and phenotypical context. Clinicians typically follow a holistic approach for assessing the risk level of the patient and for deciding which lesions may be malignant and need to be excised, by considering the patient's medical history as well as the appearance of other lesions of the patient. Inspired by this, SLIMP combines the appearance and the metadata of individual skin lesions with patient-level metadata relating to their medical record and other clinically relevant information. By fully exploiting all available data modalities throughout the learning process, the proposed pre-training strategy improves performance compared to other pre-training strategies on downstream skin lesions classification tasks highlighting the learned representations quality.
☆ CLDTracker: A Comprehensive Language Description for Visual Tracking
VOT remains a fundamental yet challenging task in computer vision due to dynamic appearance changes, occlusions, and background clutter. Traditional trackers, relying primarily on visual cues, often struggle in such complex scenarios. Recent advancements in VLMs have shown promise in semantic understanding for tasks like open-vocabulary detection and image captioning, suggesting their potential for VOT. However, the direct application of VLMs to VOT is hindered by critical limitations: the absence of a rich and comprehensive textual representation that semantically captures the target object's nuances, limiting the effective use of language information; inefficient fusion mechanisms that fail to optimally integrate visual and textual features, preventing a holistic understanding of the target; and a lack of temporal modeling of the target's evolving appearance in the language domain, leading to a disconnect between the initial description and the object's subsequent visual changes. To bridge these gaps and unlock the full potential of VLMs for VOT, we propose CLDTracker, a novel Comprehensive Language Description framework for robust visual Tracking. Our tracker introduces a dual-branch architecture consisting of a textual and a visual branch. In the textual branch, we construct a rich bag of textual descriptions derived by harnessing the powerful VLMs such as CLIP and GPT-4V, enriched with semantic and contextual cues to address the lack of rich textual representation. Experiments on six standard VOT benchmarks demonstrate that CLDTracker achieves SOTA performance, validating the effectiveness of leveraging robust and temporally-adaptive vision-language representations for tracking. Code and models are publicly available at: https://github.com/HamadYA/CLDTracker
comment: 47 pages, 9 figures, Information Fusion Journal
☆ DA-VPT: Semantic-Guided Visual Prompt Tuning for Vision Transformers CVPR 2025
Visual Prompt Tuning (VPT) has become a promising solution for Parameter-Efficient Fine-Tuning (PEFT) approach for Vision Transformer (ViT) models by partially fine-tuning learnable tokens while keeping most model parameters frozen. Recent research has explored modifying the connection structures of the prompts. However, the fundamental correlation and distribution between the prompts and image tokens remain unexplored. In this paper, we leverage metric learning techniques to investigate how the distribution of prompts affects fine-tuning performance. Specifically, we propose a novel framework, Distribution Aware Visual Prompt Tuning (DA-VPT), to guide the distributions of the prompts by learning the distance metric from their class-related semantic data. Our method demonstrates that the prompts can serve as an effective bridge to share semantic information between image patches and the class token. We extensively evaluated our approach on popular benchmarks in both recognition and segmentation tasks. The results demonstrate that our approach enables more effective and efficient fine-tuning of ViT models by leveraging semantic information to guide the learning of the prompts, leading to improved performance on various downstream vision tasks.
comment: CVPR 2025
☆ VF-Eval: Evaluating Multimodal LLMs for Generating Feedback on AIGC Videos ACL 2025
MLLMs have been widely studied for video question answering recently. However, most existing assessments focus on natural videos, overlooking synthetic videos, such as AI-generated content (AIGC). Meanwhile, some works in video generation rely on MLLMs to evaluate the quality of generated videos, but the capabilities of MLLMs on interpreting AIGC videos remain largely underexplored. To address this, we propose a new benchmark, VF-Eval, which introduces four tasks-coherence validation, error awareness, error type detection, and reasoning evaluation-to comprehensively evaluate the abilities of MLLMs on AIGC videos. We evaluate 13 frontier MLLMs on VF-Eval and find that even the best-performing model, GPT-4.1, struggles to achieve consistently good performance across all tasks. This highlights the challenging nature of our benchmark. Additionally, to investigate the practical applications of VF-Eval in improving video generation, we conduct an experiment, RePrompt, demonstrating that aligning MLLMs more closely with human feedback can benefit video generation.
comment: ACL 2025 Main
☆ Mobi-$π$: Mobilizing Your Robot Learning Policy
Learned visuomotor policies are capable of performing increasingly complex manipulation tasks. However, most of these policies are trained on data collected from limited robot positions and camera viewpoints. This leads to poor generalization to novel robot positions, which limits the use of these policies on mobile platforms, especially for precise tasks like pressing buttons or turning faucets. In this work, we formulate the policy mobilization problem: find a mobile robot base pose in a novel environment that is in distribution with respect to a manipulation policy trained on a limited set of camera viewpoints. Compared to retraining the policy itself to be more robust to unseen robot base pose initializations, policy mobilization decouples navigation from manipulation and thus does not require additional demonstrations. Crucially, this problem formulation complements existing efforts to improve manipulation policy robustness to novel viewpoints and remains compatible with them. To study policy mobilization, we introduce the Mobi-$\pi$ framework, which includes: (1) metrics that quantify the difficulty of mobilizing a given policy, (2) a suite of simulated mobile manipulation tasks based on RoboCasa to evaluate policy mobilization, (3) visualization tools for analysis, and (4) several baseline methods. We also propose a novel approach that bridges navigation and manipulation by optimizing the robot's base pose to align with an in-distribution base pose for a learned policy. Our approach utilizes 3D Gaussian Splatting for novel view synthesis, a score function to evaluate pose suitability, and sampling-based optimization to identify optimal robot poses. We show that our approach outperforms baselines in both simulation and real-world environments, demonstrating its effectiveness for policy mobilization.
comment: Project website: https://mobipi.github.io/
☆ Grounded Reinforcement Learning for Visual Reasoning
While reinforcement learning (RL) over chains of thought has significantly advanced language models in tasks such as mathematics and coding, visual reasoning introduces added complexity by requiring models to direct visual attention, interpret perceptual inputs, and ground abstract reasoning in spatial evidence. We introduce ViGoRL (Visually Grounded Reinforcement Learning), a vision-language model trained with RL to explicitly anchor each reasoning step to specific visual coordinates. Inspired by human visual decision-making, ViGoRL learns to produce spatially grounded reasoning traces, guiding visual attention to task-relevant regions at each step. When fine-grained exploration is required, our novel multi-turn RL framework enables the model to dynamically zoom into predicted coordinates as reasoning unfolds. Across a diverse set of visual reasoning benchmarks--including SAT-2 and BLINK for spatial reasoning, V*bench for visual search, and ScreenSpot and VisualWebArena for web-based grounding--ViGoRL consistently outperforms both supervised fine-tuning and conventional RL baselines that lack explicit grounding mechanisms. Incorporating multi-turn RL with zoomed-in visual feedback significantly improves ViGoRL's performance on localizing small GUI elements and visual search, achieving 86.4% on V*Bench. Additionally, we find that grounding amplifies other visual behaviors such as region exploration, grounded subgoal setting, and visual verification. Finally, human evaluations show that the model's visual references are not only spatially accurate but also helpful for understanding model reasoning steps. Our results show that visually grounded RL is a strong paradigm for imbuing models with general-purpose visual reasoning.
comment: Project website: https://visually-grounded-rl.github.io/
☆ ImmunoDiff: A Diffusion Model for Immunotherapy Response Prediction in Lung Cancer
Accurately predicting immunotherapy response in Non-Small Cell Lung Cancer (NSCLC) remains a critical unmet need. Existing radiomics and deep learning-based predictive models rely primarily on pre-treatment imaging to predict categorical response outcomes, limiting their ability to capture the complex morphological and textural transformations induced by immunotherapy. This study introduces ImmunoDiff, an anatomy-aware diffusion model designed to synthesize post-treatment CT scans from baseline imaging while incorporating clinically relevant constraints. The proposed framework integrates anatomical priors, specifically lobar and vascular structures, to enhance fidelity in CT synthesis. Additionally, we introduce a novel cbi-Adapter, a conditioning module that ensures pairwise-consistent multimodal integration of imaging and clinical data embeddings, to refine the generative process. Additionally, a clinical variable conditioning mechanism is introduced, leveraging demographic data, blood-based biomarkers, and PD-L1 expression to refine the generative process. Evaluations on an in-house NSCLC cohort treated with immune checkpoint inhibitors demonstrate a 21.24% improvement in balanced accuracy for response prediction and a 0.03 increase in c-index for survival prediction. Code will be released soon.
☆ OpenUni: A Simple Baseline for Unified Multimodal Understanding and Generation
In this report, we present OpenUni, a simple, lightweight, and fully open-source baseline for unifying multimodal understanding and generation. Inspired by prevailing practices in unified model learning, we adopt an efficient training strategy that minimizes the training complexity and overhead by bridging the off-the-shelf multimodal large language models (LLMs) and diffusion models through a set of learnable queries and a light-weight transformer-based connector. With a minimalist choice of architecture, we demonstrate that OpenUni can: 1) generate high-quality and instruction-aligned images, and 2) achieve exceptional performance on standard benchmarks such as GenEval, DPG- Bench, and WISE, with only 1.1B and 3.1B activated parameters. To support open research and community advancement, we release all model weights, training code, and our curated training datasets (including 23M image-text pairs) at https://github.com/wusize/OpenUni.
☆ D-AR: Diffusion via Autoregressive Models
This paper presents Diffusion via Autoregressive models (D-AR), a new paradigm recasting the image diffusion process as a vanilla autoregressive procedure in the standard next-token-prediction fashion. We start by designing the tokenizer that converts images into sequences of discrete tokens, where tokens in different positions can be decoded into different diffusion denoising steps in the pixel space. Thanks to the diffusion properties, these tokens naturally follow a coarse-to-fine order, which directly lends itself to autoregressive modeling. Therefore, we apply standard next-token prediction on these tokens, without modifying any underlying designs (either causal masks or training/inference strategies), and such sequential autoregressive token generation directly mirrors the diffusion procedure in image space. That is, once the autoregressive model generates an increment of tokens, we can directly decode these tokens into the corresponding diffusion denoising step in the streaming manner. Our pipeline naturally reveals several intriguing properties, for example, it supports consistent previews when generating only a subset of tokens and enables zero-shot layout-controlled synthesis. On the standard ImageNet benchmark, our method achieves 2.09 FID using a 775M Llama backbone with 256 discrete tokens. We hope our work can inspire future research on unified autoregressive architectures of visual synthesis, especially with large language models. Code and models will be available at https://github.com/showlab/D-AR
comment: Technical report
☆ VideoREPA: Learning Physics for Video Generation through Relational Alignment with Foundation Models
Recent advancements in text-to-video (T2V) diffusion models have enabled high-fidelity and realistic video synthesis. However, current T2V models often struggle to generate physically plausible content due to their limited inherent ability to accurately understand physics. We found that while the representations within T2V models possess some capacity for physics understanding, they lag significantly behind those from recent video self-supervised learning methods. To this end, we propose a novel framework called VideoREPA, which distills physics understanding capability from video understanding foundation models into T2V models by aligning token-level relations. This closes the physics understanding gap and enable more physics-plausible generation. Specifically, we introduce the Token Relation Distillation (TRD) loss, leveraging spatio-temporal alignment to provide soft guidance suitable for finetuning powerful pre-trained T2V models, a critical departure from prior representation alignment (REPA) methods. To our knowledge, VideoREPA is the first REPA method designed for finetuning T2V models and specifically for injecting physical knowledge. Empirical evaluations show that VideoREPA substantially enhances the physics commonsense of baseline method, CogVideoX, achieving significant improvement on relevant benchmarks and demonstrating a strong capacity for generating videos consistent with intuitive physics. More video results are available at https://videorepa.github.io/.
☆ Merge-Friendly Post-Training Quantization for Multi-Target Domain Adaptation ICML 2025
Model merging has emerged as a powerful technique for combining task-specific weights, achieving superior performance in multi-target domain adaptation. However, when applied to practical scenarios, such as quantized models, new challenges arise. In practical scenarios, quantization is often applied to target-specific data, but this process restricts the domain of interest and introduces discretization effects, making model merging highly non-trivial. In this study, we analyze the impact of quantization on model merging through the lens of error barriers. Leveraging these insights, we propose a novel post-training quantization, HDRQ - Hessian and distant regularizing quantization - that is designed to consider model merging for multi-target domain adaptation. Our approach ensures that the quantization process incurs minimal deviation from the source pre-trained model while flattening the loss surface to facilitate smooth model merging. To our knowledge, this is the first study on this challenge, and extensive experiments confirm its effectiveness.
comment: ICML 2025. Code: https://github.com/ewsn1593/HDRQ
☆ Radiant Triangle Soup with Soft Connectivity Forces for 3D Reconstruction and Novel View Synthesis
In this work, we introduce an inference-time optimization framework utilizing triangles to represent the geometry and appearance of the scene. More specifically, we develop a scene optimization algorithm for triangle soup, a collection of disconnected semi-transparent triangle primitives. Compared to the current most-widely used primitives for 3D scene representation, namely Gaussian splats, triangles allow for more expressive color interpolation, and benefit from a large algorithmic infrastructure for downstream tasks. Triangles, unlike full-rank Gaussian kernels, naturally combine to form surfaces. We formulate connectivity forces between triangles during optimization, encouraging explicit, but soft, surface continuity in 3D. We perform experiments on a representative 3D reconstruction dataset and show competitive photometric and geometric results.
☆ Comparing the Effects of Persistence Barcodes Aggregation and Feature Concatenation on Medical Imaging
In medical image analysis, feature engineering plays an important role in the design and performance of machine learning models. Persistent homology (PH), from the field of topological data analysis (TDA), demonstrates robustness and stability to data perturbations and addresses the limitation from traditional feature extraction approaches where a small change in input results in a large change in feature representation. Using PH, we store persistent topological and geometrical features in the form of the persistence barcode whereby large bars represent global topological features and small bars encapsulate geometrical information of the data. When multiple barcodes are computed from 2D or 3D medical images, two approaches can be used to construct the final topological feature vector in each dimension: aggregating persistence barcodes followed by featurization or concatenating topological feature vectors derived from each barcode. In this study, we conduct a comprehensive analysis across diverse medical imaging datasets to compare the effects of the two aforementioned approaches on the performance of classification models. The results of this analysis indicate that feature concatenation preserves detailed topological information from individual barcodes, yields better classification performance and is therefore a preferred approach when conducting similar experiments.
comment: 16 pages, 8 figures
☆ Color Image Set Recognition Based on Quaternionic Grassmannians
We propose a new method for recognizing color image sets using quaternionic Grassmannians, which use the power of quaternions to capture color information and represent each color image set as a point on the quaternionic Grassmannian. We provide a direct formula to calculate the shortest distance between two points on the quaternionic Grassmannian, and use this distance to build a new classification framework. Experiments on the ETH-80 benchmark dataset show that our method achieves good recognition results. We also discuss some limitations in stability and suggest ways the method can be improved in the future.
☆ ZeroSep: Separate Anything in Audio with Zero Training
Audio source separation is fundamental for machines to understand complex acoustic environments and underpins numerous audio applications. Current supervised deep learning approaches, while powerful, are limited by the need for extensive, task-specific labeled data and struggle to generalize to the immense variability and open-set nature of real-world acoustic scenes. Inspired by the success of generative foundation models, we investigate whether pre-trained text-guided audio diffusion models can overcome these limitations. We make a surprising discovery: zero-shot source separation can be achieved purely through a pre-trained text-guided audio diffusion model under the right configuration. Our method, named ZeroSep, works by inverting the mixed audio into the diffusion model's latent space and then using text conditioning to guide the denoising process to recover individual sources. Without any task-specific training or fine-tuning, ZeroSep repurposes the generative diffusion model for a discriminative separation task and inherently supports open-set scenarios through its rich textual priors. ZeroSep is compatible with a variety of pre-trained text-guided audio diffusion backbones and delivers strong separation performance on multiple separation benchmarks, surpassing even supervised methods.
comment: Project page: https://wikichao.github.io/ZeroSep/
☆ One Trajectory, One Token: Grounded Video Tokenization via Panoptic Sub-object Trajectory
Effective video tokenization is critical for scaling transformer models for long videos. Current approaches tokenize videos using space-time patches, leading to excessive tokens and computational inefficiencies. The best token reduction strategies degrade performance and barely reduce the number of tokens when the camera moves. We introduce grounded video tokenization, a paradigm that organizes tokens based on panoptic sub-object trajectories rather than fixed patches. Our method aligns with fundamental perceptual principles, ensuring that tokenization reflects scene complexity rather than video duration. We propose TrajViT, a video encoder that extracts object trajectories and converts them into semantically meaningful tokens, significantly reducing redundancy while maintaining temporal coherence. Trained with contrastive learning, TrajViT significantly outperforms space-time ViT (ViT3D) across multiple video understanding benchmarks, e.g., TrajViT outperforms ViT3D by a large margin of 6% top-5 recall in average at video-text retrieval task with 10x token deduction. We also show TrajViT as a stronger model than ViT3D for being the video encoder for modern VideoLLM, obtaining an average of 5.2% performance improvement across 6 VideoQA benchmarks while having 4x faster training time and 18x less inference FLOPs. TrajViT is the first efficient encoder to consistently outperform ViT3D across diverse video analysis tasks, making it a robust and scalable solution.
☆ Autoregressive Meta-Actions for Unified Controllable Trajectory Generation
Controllable trajectory generation guided by high-level semantic decisions, termed meta-actions, is crucial for autonomous driving systems. A significant limitation of existing frameworks is their reliance on invariant meta-actions assigned over fixed future time intervals, causing temporal misalignment with the actual behavior trajectories. This misalignment leads to irrelevant associations between the prescribed meta-actions and the resulting trajectories, disrupting task coherence and limiting model performance. To address this challenge, we introduce Autoregressive Meta-Actions, an approach integrated into autoregressive trajectory generation frameworks that provides a unified and precise definition for meta-action-conditioned trajectory prediction. Specifically, We decompose traditional long-interval meta-actions into frame-level meta-actions, enabling a sequential interplay between autoregressive meta-action prediction and meta-action-conditioned trajectory generation. This decomposition ensures strict alignment between each trajectory segment and its corresponding meta-action, achieving a consistent and unified task formulation across the entire trajectory span and significantly reducing complexity. Moreover, we propose a staged pre-training process to decouple the learning of basic motion dynamics from the integration of high-level decision control, which offers flexibility, stability, and modularity. Experimental results validate our framework's effectiveness, demonstrating improved trajectory adaptivity and responsiveness to dynamic decision-making scenarios. We provide the video document and dataset, which are available at https://arma-traj.github.io/.
☆ Muddit: Liberating Generation Beyond Text-to-Image with a Unified Discrete Diffusion Model
Unified generation models aim to handle diverse tasks across modalities -- such as text generation, image generation, and vision-language reasoning -- within a single architecture and decoding paradigm. Autoregressive unified models suffer from slow inference due to sequential decoding, and non-autoregressive unified models suffer from weak generalization due to limited pretrained backbones. We introduce Muddit, a unified discrete diffusion transformer that enables fast and parallel generation across both text and image modalities. Unlike prior unified diffusion models trained from scratch, Muddit integrates strong visual priors from a pretrained text-to-image backbone with a lightweight text decoder, enabling flexible and high-quality multimodal generation under a unified architecture. Empirical results show that Muddit achieves competitive or superior performance compared to significantly larger autoregressive models in both quality and efficiency. The work highlights the potential of purely discrete diffusion, when equipped with strong visual priors, as a scalable and effective backbone for unified generation.
comment: The code and model are available at https://github.com/M-E-AGI-Lab/Muddit
☆ A Comprehensive Evaluation of Multi-Modal Large Language Models for Endoscopy Analysis
Endoscopic procedures are essential for diagnosing and treating internal diseases, and multi-modal large language models (MLLMs) are increasingly applied to assist in endoscopy analysis. However, current benchmarks are limited, as they typically cover specific endoscopic scenarios and a small set of clinical tasks, failing to capture the real-world diversity of endoscopic scenarios and the full range of skills needed in clinical workflows. To address these issues, we introduce EndoBench, the first comprehensive benchmark specifically designed to assess MLLMs across the full spectrum of endoscopic practice with multi-dimensional capacities. EndoBench encompasses 4 distinct endoscopic scenarios, 12 specialized clinical tasks with 12 secondary subtasks, and 5 levels of visual prompting granularities, resulting in 6,832 rigorously validated VQA pairs from 21 diverse datasets. Our multi-dimensional evaluation framework mirrors the clinical workflow--spanning anatomical recognition, lesion analysis, spatial localization, and surgical operations--to holistically gauge the perceptual and diagnostic abilities of MLLMs in realistic scenarios. We benchmark 23 state-of-the-art models, including general-purpose, medical-specialized, and proprietary MLLMs, and establish human clinician performance as a reference standard. Our extensive experiments reveal: (1) proprietary MLLMs outperform open-source and medical-specialized models overall, but still trail human experts; (2) medical-domain supervised fine-tuning substantially boosts task-specific accuracy; and (3) model performance remains sensitive to prompt format and clinical task complexity. EndoBench establishes a new standard for evaluating and advancing MLLMs in endoscopy, highlighting both progress and persistent gaps between current models and expert clinical reasoning. We publicly release our benchmark and code.
comment: 36 pages, 18 figures
☆ Bridging Classical and Modern Computer Vision: PerceptiveNet for Tree Crown Semantic Segmentation CVPR
The accurate semantic segmentation of tree crowns within remotely sensed data is crucial for scientific endeavours such as forest management, biodiversity studies, and carbon sequestration quantification. However, precise segmentation remains challenging due to complexities in the forest canopy, including shadows, intricate backgrounds, scale variations, and subtle spectral differences among tree species. Compared to the traditional methods, Deep Learning models improve accuracy by extracting informative and discriminative features, but often fall short in capturing the aforementioned complexities. To address these challenges, we propose PerceptiveNet, a novel model incorporating a Logarithmic Gabor-parameterised convolutional layer with trainable filter parameters, alongside a backbone that extracts salient features while capturing extensive context and spatial information through a wider receptive field. We investigate the impact of Log-Gabor, Gabor, and standard convolutional layers on semantic segmentation performance through extensive experimentation. Additionally, we conduct an ablation study to assess the contributions of individual layers and their combinations to overall model performance, and we evaluate PerceptiveNet as a backbone within a novel hybrid CNN-Transformer model. Our results outperform state-of-the-art models, demonstrating significant performance improvements on a tree crown dataset while generalising across domains, including two benchmark aerial scene semantic segmentation datasets with varying complexities.
comment: Accepted for publication at the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) EarthVision
☆ DeepChest: Dynamic Gradient-Free Task Weighting for Effective Multi-Task Learning in Chest X-ray Classification
While Multi-Task Learning (MTL) offers inherent advantages in complex domains such as medical imaging by enabling shared representation learning, effectively balancing task contributions remains a significant challenge. This paper addresses this critical issue by introducing DeepChest, a novel, computationally efficient and effective dynamic task-weighting framework specifically designed for multi-label chest X-ray (CXR) classification. Unlike existing heuristic or gradient-based methods that often incur substantial overhead, DeepChest leverages a performance-driven weighting mechanism based on effective analysis of task-specific loss trends. Given a network architecture (e.g., ResNet18), our model-agnostic approach adaptively adjusts task importance without requiring gradient access, thereby significantly reducing memory usage and achieving a threefold increase in training speed. It can be easily applied to improve various state-of-the-art methods. Extensive experiments on a large-scale CXR dataset demonstrate that DeepChest not only outperforms state-of-the-art MTL methods by 7% in overall accuracy but also yields substantial reductions in individual task losses, indicating improved generalization and effective mitigation of negative transfer. The efficiency and performance gains of DeepChest pave the way for more practical and robust deployment of deep learning in critical medical diagnostic applications. The code is publicly available at https://github.com/youssefkhalil320/DeepChest-MTL
☆ Jigsaw-R1: A Study of Rule-based Visual Reinforcement Learning with Jigsaw Puzzles
The application of rule-based reinforcement learning (RL) to multimodal large language models (MLLMs) introduces unique challenges and potential deviations from findings in text-only domains, particularly for perception-heavy tasks. This paper provides a comprehensive study of rule-based visual RL using jigsaw puzzles as a structured experimental framework, revealing several key findings. \textit{Firstly,} we find that MLLMs, initially performing near to random guessing on simple puzzles, achieve near-perfect accuracy and generalize to complex, unseen configurations through fine-tuning. \textit{Secondly,} training on jigsaw puzzles can induce generalization to other visual tasks, with effectiveness tied to specific task configurations. \textit{Thirdly,} MLLMs can learn and generalize with or without explicit reasoning, though open-source models often favor direct answering. Consequently, even when trained for step-by-step reasoning, they can ignore the thinking process in deriving the final answer. \textit{Fourthly,} we observe that complex reasoning patterns appear to be pre-existing rather than emergent, with their frequency increasing alongside training and task difficulty. \textit{Finally,} our results demonstrate that RL exhibits more effective generalization than Supervised Fine-Tuning (SFT), and an initial SFT cold start phase can hinder subsequent RL optimization. Although these observations are based on jigsaw puzzles and may vary across other visual tasks, this research contributes a valuable piece of jigsaw to the larger puzzle of collective understanding rule-based visual RL and its potential in multimodal learning. The code is available at: \href{https://github.com/zifuwanggg/Jigsaw-R1}{https://github.com/zifuwanggg/Jigsaw-R1}.
☆ PCA for Enhanced Cross-Dataset Generalizability in Breast Ultrasound Tumor Segmentation
In medical image segmentation, limited external validity remains a critical obstacle when models are deployed across unseen datasets, an issue particularly pronounced in the ultrasound image domain. Existing solutions-such as domain adaptation and GAN-based style transfer-while promising, often fall short in the medical domain where datasets are typically small and diverse. This paper presents a novel application of principal component analysis (PCA) to address this limitation. PCA preprocessing reduces noise and emphasizes essential features by retaining approximately 90\% of the dataset variance. We evaluate our approach across six diverse breast tumor ultrasound datasets comprising 3,983 B-mode images and corresponding expert tumor segmentation masks. For each dataset, a corresponding dimensionality reduced PCA-dataset is created and U-Net-based segmentation models are trained on each of the twelve datasets. Each model trained on an original dataset was inferenced on the remaining five out-of-domain original datasets (baseline results), while each model trained on a PCA dataset was inferenced on five out-of-domain PCA datasets. Our experimental results indicate that using PCA reconstructed datasets, instead of original images, improves the model's recall and Dice scores, particularly for model-dataset pairs where baseline performance was lowest, achieving statistically significant gains in recall (0.57 $\pm$ 0.07 vs. 0.70 $\pm$ 0.05, $p = 0.0004$) and Dice scores (0.50 $\pm$ 0.06 vs. 0.58 $\pm$ 0.06, $p = 0.03$). Our method reduced the decline in recall values due to external validation by $33\%$. These findings underscore the potential of PCA reconstruction as a safeguard to mitigate declines in segmentation performance, especially in challenging cases, with implications for enhancing external validity in real-world medical applications.
☆ Weakly-supervised Localization of Manipulated Image Regions Using Multi-resolution Learned Features
The explosive growth of digital images and the widespread availability of image editing tools have made image manipulation detection an increasingly critical challenge. Current deep learning-based manipulation detection methods excel in achieving high image-level classification accuracy, they often fall short in terms of interpretability and localization of manipulated regions. Additionally, the absence of pixel-wise annotations in real-world scenarios limits the existing fully-supervised manipulation localization techniques. To address these challenges, we propose a novel weakly-supervised approach that integrates activation maps generated by image-level manipulation detection networks with segmentation maps from pre-trained models. Specifically, we build on our previous image-level work named WCBnet to produce multi-view feature maps which are subsequently fused for coarse localization. These coarse maps are then refined using detailed segmented regional information provided by pre-trained segmentation models (such as DeepLab, SegmentAnything and PSPnet), with Bayesian inference employed to enhance the manipulation localization. Experimental results demonstrate the effectiveness of our approach, highlighting the feasibility to localize image manipulations without relying on pixel-level labels.
comment: This paper was presented at the British Machine Vision Conference 2024 workshop on Media authenticity in the age of artificial intelligence
☆ Uni-MuMER: Unified Multi-Task Fine-Tuning of Vision-Language Model for Handwritten Mathematical Expression Recognition
Handwritten Mathematical Expression Recognition (HMER) remains a persistent challenge in Optical Character Recognition (OCR) due to the inherent freedom of symbol layout and variability in handwriting styles. Prior methods have faced performance bottlenecks, proposing isolated architectural modifications that are difficult to integrate coherently into a unified framework. Meanwhile, recent advances in pretrained vision-language models (VLMs) have demonstrated strong cross-task generalization, offering a promising foundation for developing unified solutions. In this paper, we introduce Uni-MuMER, which fully fine-tunes a VLM for the HMER task without modifying its architecture, effectively injecting domain-specific knowledge into a generalist framework. Our method integrates three data-driven tasks: Tree-Aware Chain-of-Thought (Tree-CoT) for structured spatial reasoning, Error-Driven Learning (EDL) for reducing confusion among visually similar characters, and Symbol Counting (SC) for improving recognition consistency in long expressions. Experiments on the CROHME and HME100K datasets show that Uni-MuMER achieves new state-of-the-art performance, surpassing the best lightweight specialized model SSAN by 16.31% and the top-performing VLM Gemini2.5-flash by 24.42% in the zero-shot setting. Our datasets, models, and code are open-sourced at: https://github.com/BFlameSwift/Uni-MuMER
☆ Qwen Look Again: Guiding Vision-Language Reasoning Models to Re-attention Visual Information
Inference time scaling drives extended reasoning to enhance the performance of Vision-Language Models (VLMs), thus forming powerful Vision-Language Reasoning Models (VLRMs). However, long reasoning dilutes visual tokens, causing visual information to receive less attention and may trigger hallucinations. Although introducing text-only reflection processes shows promise in language models, we demonstrate that it is insufficient to suppress hallucinations in VLMs. To address this issue, we introduce Qwen-LookAgain (Qwen-LA), a novel VLRM designed to mitigate hallucinations by incorporating a vision-text reflection process that guides the model to re-attention visual information during reasoning. We first propose a reinforcement learning method Balanced Reflective Policy Optimization (BRPO), which guides the model to decide when to generate vision-text reflection on its own and balance the number and length of reflections. Then, we formally prove that VLRMs lose attention to visual tokens as reasoning progresses, and demonstrate that supplementing visual information during reflection enhances visual attention. Therefore, during training and inference, Visual Token COPY and Visual Token ROUTE are introduced to force the model to re-attention visual information at the visual level, addressing the limitations of text-only reflection. Experiments on multiple visual QA datasets and hallucination metrics indicate that Qwen-LA achieves leading accuracy performance while reducing hallucinations. Our code is available at: https://github.com/Liar406/Look_Again.
☆ Position Paper: Metadata Enrichment Model: Integrating Neural Networks and Semantic Knowledge Graphs for Cultural Heritage Applications
The digitization of cultural heritage collections has opened new directions for research, yet the lack of enriched metadata poses a substantial challenge to accessibility, interoperability, and cross-institutional collaboration. In several past years neural networks models such as YOLOv11 and Detectron2 have revolutionized visual data analysis, but their application to domain-specific cultural artifacts - such as manuscripts and incunabula - remains limited by the absence of methodologies that address structural feature extraction and semantic interoperability. In this position paper, we argue, that the integration of neural networks with semantic technologies represents a paradigm shift in cultural heritage digitization processes. We present the Metadata Enrichment Model (MEM), a conceptual framework designed to enrich metadata for digitized collections by combining fine-tuned computer vision models, large language models (LLMs) and structured knowledge graphs. The Multilayer Vision Mechanism (MVM) appears as the key innovation of MEM. This iterative process improves visual analysis by dynamically detecting nested features, such as text within seals or images within stamps. To expose MEM's potential, we apply it to a dataset of digitized incunabula from the Jagiellonian Digital Library and release a manually annotated dataset of 105 manuscript pages. We examine the practical challenges of MEM's usage in real-world GLAM institutions, including the need for domain-specific fine-tuning, the adjustment of enriched metadata with Linked Data standards and computational costs. We present MEM as a flexible and extensible methodology. This paper contributes to the discussion on how artificial intelligence and semantic web technologies can advance cultural heritage research, and also use these technologies in practice.
☆ Hallo4: High-Fidelity Dynamic Portrait Animation via Direct Preference Optimization and Temporal Motion Modulation
Generating highly dynamic and photorealistic portrait animations driven by audio and skeletal motion remains challenging due to the need for precise lip synchronization, natural facial expressions, and high-fidelity body motion dynamics. We propose a human-preference-aligned diffusion framework that addresses these challenges through two key innovations. First, we introduce direct preference optimization tailored for human-centric animation, leveraging a curated dataset of human preferences to align generated outputs with perceptual metrics for portrait motion-video alignment and naturalness of expression. Second, the proposed temporal motion modulation resolves spatiotemporal resolution mismatches by reshaping motion conditions into dimensionally aligned latent features through temporal channel redistribution and proportional feature expansion, preserving the fidelity of high-frequency motion details in diffusion-based synthesis. The proposed mechanism is complementary to existing UNet and DiT-based portrait diffusion approaches, and experiments demonstrate obvious improvements in lip-audio synchronization, expression vividness, body motion coherence over baseline methods, alongside notable gains in human preference metrics. Our model and source code can be found at: https://github.com/xyz123xyz456/hallo4.
☆ CLIP-AE: CLIP-assisted Cross-view Audio-Visual Enhancement for Unsupervised Temporal Action Localization
Temporal Action Localization (TAL) has garnered significant attention in information retrieval. Existing supervised or weakly supervised methods heavily rely on labeled temporal boundaries and action categories, which are labor-intensive and time-consuming. Consequently, unsupervised temporal action localization (UTAL) has gained popularity. However, current methods face two main challenges: 1) Classification pre-trained features overly focus on highly discriminative regions; 2) Solely relying on visual modality information makes it difficult to determine contextual boundaries. To address these issues, we propose a CLIP-assisted cross-view audiovisual enhanced UTAL method. Specifically, we introduce visual language pre-training (VLP) and classification pre-training-based collaborative enhancement to avoid excessive focus on highly discriminative regions; we also incorporate audio perception to provide richer contextual boundary information. Finally, we introduce a self-supervised cross-view learning paradigm to achieve multi-view perceptual enhancement without additional annotations. Extensive experiments on two public datasets demonstrate our model's superiority over several state-of-the-art competitors.
☆ OmniEarth-Bench: Towards Holistic Evaluation of Earth's Six Spheres and Cross-Spheres Interactions with Multimodal Observational Earth Data
Existing benchmarks for Earth science multimodal learning exhibit critical limitations in systematic coverage of geosystem components and cross-sphere interactions, often constrained to isolated subsystems (only in Human-activities sphere or atmosphere) with limited evaluation dimensions (less than 16 tasks). To address these gaps, we introduce OmniEarth-Bench, the first comprehensive multimodal benchmark spanning all six Earth science spheres (atmosphere, lithosphere, Oceansphere, cryosphere, biosphere and Human-activities sphere) and cross-spheres with one hundred expert-curated evaluation dimensions. Leveraging observational data from satellite sensors and in-situ measurements, OmniEarth-Bench integrates 29,779 annotations across four tiers: perception, general reasoning, scientific knowledge reasoning and chain-of-thought (CoT) reasoning. This involves the efforts of 2-5 experts per sphere to establish authoritative evaluation dimensions and curate relevant observational datasets, 40 crowd-sourcing annotators to assist experts for annotations, and finally, OmniEarth-Bench is validated via hybrid expert-crowd workflows to reduce label ambiguity. Experiments on 9 state-of-the-art MLLMs reveal that even the most advanced models struggle with our benchmarks, where none of them reach 35\% accuracy. Especially, in some cross-spheres tasks, the performance of leading models like GPT-4o drops to 0.0\%. OmniEarth-Bench sets a new standard for geosystem-aware AI, advancing both scientific discovery and practical applications in environmental monitoring and disaster prediction. The dataset, source code, and trained models were released.
☆ VAU-R1: Advancing Video Anomaly Understanding via Reinforcement Fine-Tuning
Video Anomaly Understanding (VAU) is essential for applications such as smart cities, security surveillance, and disaster alert systems, yet remains challenging due to its demand for fine-grained spatio-temporal perception and robust reasoning under ambiguity. Despite advances in anomaly detection, existing methods often lack interpretability and struggle to capture the causal and contextual aspects of abnormal events. This limitation is further compounded by the absence of comprehensive benchmarks for evaluating reasoning ability in anomaly scenarios. To address both challenges, we introduce VAU-R1, a data-efficient framework built upon Multimodal Large Language Models (MLLMs), which enhances anomaly reasoning through Reinforcement Fine-Tuning (RFT). Besides, we propose VAU-Bench, the first Chain-of-Thought benchmark tailored for video anomaly reasoning, featuring multiple-choice QA, detailed rationales, temporal annotations, and descriptive captions. Empirical results show that VAU-R1 significantly improves question answering accuracy, temporal grounding, and reasoning coherence across diverse contexts. Together, our method and benchmark establish a strong foundation for interpretable and reasoning-aware video anomaly understanding. Our code is available at https://github.com/GVCLab/VAU-R1.
☆ Can Large Language Models Challenge CNNS in Medical Image Analysis?
This study presents a multimodal AI framework designed for precisely classifying medical diagnostic images. Utilizing publicly available datasets, the proposed system compares the strengths of convolutional neural networks (CNNs) and different large language models (LLMs). This in-depth comparative analysis highlights key differences in diagnostic performance, execution efficiency, and environmental impacts. Model evaluation was based on accuracy, F1-score, average execution time, average energy consumption, and estimated $CO_2$ emission. The findings indicate that although CNN-based models can outperform various multimodal techniques that incorporate both images and contextual information, applying additional filtering on top of LLMs can lead to substantial performance gains. These findings highlight the transformative potential of multimodal AI systems to enhance the reliability, efficiency, and scalability of medical diagnostics in clinical settings.
☆ R2I-Bench: Benchmarking Reasoning-Driven Text-to-Image Generation
Reasoning is a fundamental capability often required in real-world text-to-image (T2I) generation, e.g., generating ``a bitten apple that has been left in the air for more than a week`` necessitates understanding temporal decay and commonsense concepts. While recent T2I models have made impressive progress in producing photorealistic images, their reasoning capability remains underdeveloped and insufficiently evaluated. To bridge this gap, we introduce R2I-Bench, a comprehensive benchmark specifically designed to rigorously assess reasoning-driven T2I generation. R2I-Bench comprises meticulously curated data instances, spanning core reasoning categories, including commonsense, mathematical, logical, compositional, numerical, causal, and concept mixing. To facilitate fine-grained evaluation, we design R2IScore, a QA-style metric based on instance-specific, reasoning-oriented evaluation questions that assess three critical dimensions: text-image alignment, reasoning accuracy, and image quality. Extensive experiments with 16 representative T2I models, including a strong pipeline-based framework that decouples reasoning and generation using the state-of-the-art language and image generation models, demonstrate consistently limited reasoning performance, highlighting the need for more robust, reasoning-aware architectures in the next generation of T2I systems. Project Page: https://r2i-bench.github.io
comment: Project Page: https://r2i-bench.github.io
☆ VCapsBench: A Large-scale Fine-grained Benchmark for Video Caption Quality Evaluation
Video captions play a crucial role in text-to-video generation tasks, as their quality directly influences the semantic coherence and visual fidelity of the generated videos. Although large vision-language models (VLMs) have demonstrated significant potential in caption generation, existing benchmarks inadequately address fine-grained evaluation, particularly in capturing spatial-temporal details critical for video generation. To address this gap, we introduce the Fine-grained Video Caption Evaluation Benchmark (VCapsBench), the first large-scale fine-grained benchmark comprising 5,677 (5K+) videos and 109,796 (100K+) question-answer pairs. These QA-pairs are systematically annotated across 21 fine-grained dimensions (e.g., camera movement, and shot type) that are empirically proven critical for text-to-video generation. We further introduce three metrics (Accuracy (AR), Inconsistency Rate (IR), Coverage Rate (CR)), and an automated evaluation pipeline leveraging large language model (LLM) to verify caption quality via contrastive QA-pairs analysis. By providing actionable insights for caption optimization, our benchmark can advance the development of robust text-to-video models. The dataset and codes are available at website: https://github.com/GXYM/VCapsBench.
comment: submitting
☆ PhysicsNeRF: Physics-Guided 3D Reconstruction from Sparse Views ICML 2025
PhysicsNeRF is a physically grounded framework for 3D reconstruction from sparse views, extending Neural Radiance Fields with four complementary constraints: depth ranking, RegNeRF-style consistency, sparsity priors, and cross-view alignment. While standard NeRFs fail under sparse supervision, PhysicsNeRF employs a compact 0.67M-parameter architecture and achieves 21.4 dB average PSNR using only 8 views, outperforming prior methods. A generalization gap of 5.7-6.2 dB is consistently observed and analyzed, revealing fundamental limitations of sparse-view reconstruction. PhysicsNeRF enables physically consistent, generalizable 3D representations for agent interaction and simulation, and clarifies the expressiveness-generalization trade-off in constrained NeRF models.
comment: 4 pages, 2 figures, 2 tables. Preliminary work. Under review by the Building Physically Plausible World Models Workshop at the 42nd International Conference on Machine Learning (ICML 2025), Vancouver, Canada
☆ TimePoint: Accelerated Time Series Alignment via Self-Supervised Keypoint and Descriptor Learning ICML 2025
Fast and scalable alignment of time series is a fundamental challenge in many domains. The standard solution, Dynamic Time Warping (DTW), struggles with poor scalability and sensitivity to noise. We introduce TimePoint, a self-supervised method that dramatically accelerates DTW-based alignment while typically improving alignment accuracy by learning keypoints and descriptors from synthetic data. Inspired by 2D keypoint detection but carefully adapted to the unique challenges of 1D signals, TimePoint leverages efficient 1D diffeomorphisms, which effectively model nonlinear time warping, to generate realistic training data. This approach, along with fully convolutional and wavelet convolutional architectures, enables the extraction of informative keypoints and descriptors. Applying DTW to these sparse representations yield major speedups and typically higher alignment accuracy than standard DTW applied to the full signals. TimePoint demonstrates strong generalization to real-world time series when trained solely on synthetic data, and further improves with fine-tuning on real data. Extensive experiments demonstrate that TimePoint consistently achieves faster and more accurate alignments than standard DTW, making it a scalable solution for time-series analysis. Our code is available at https://github.com/BGU-CS-VIL/TimePoint
comment: ICML 2025
☆ A Divide-and-Conquer Approach for Global Orientation of Non-Watertight Scene-Level Point Clouds Using 0-1 Integer Optimization SIGGRAPH 2025
Orienting point clouds is a fundamental problem in computer graphics and 3D vision, with applications in reconstruction, segmentation, and analysis. While significant progress has been made, existing approaches mainly focus on watertight, object-level 3D models. The orientation of large-scale, non-watertight 3D scenes remains an underexplored challenge. To address this gap, we propose DACPO (Divide-And-Conquer Point Orientation), a novel framework that leverages a divide-and-conquer strategy for scalable and robust point cloud orientation. Rather than attempting to orient an unbounded scene at once, DACPO segments the input point cloud into smaller, manageable blocks, processes each block independently, and integrates the results through a global optimization stage. For each block, we introduce a two-step process: estimating initial normal orientations by a randomized greedy method and refining them by an adapted iterative Poisson surface reconstruction. To achieve consistency across blocks, we model inter-block relationships using an an undirected graph, where nodes represent blocks and edges connect spatially adjacent blocks. To reliably evaluate orientation consistency between adjacent blocks, we introduce the concept of the visible connected region, which defines the region over which visibility-based assessments are performed. The global integration is then formulated as a 0-1 integer-constrained optimization problem, with block flip states as binary variables. Despite the combinatorial nature of the problem, DACPO remains scalable by limiting the number of blocks (typically a few hundred for 3D scenes) involved in the optimization. Experiments on benchmark datasets demonstrate DACPO's strong performance, particularly in challenging large-scale, non-watertight scenarios where existing methods often fail. The source code is available at https://github.com/zd-lee/DACPO.
comment: accepted to SIGGRAPH 2025
☆ Semantics-Aware Human Motion Generation from Audio Instructions
Recent advances in interactive technologies have highlighted the prominence of audio signals for semantic encoding. This paper explores a new task, where audio signals are used as conditioning inputs to generate motions that align with the semantics of the audio. Unlike text-based interactions, audio provides a more natural and intuitive communication method. However, existing methods typically focus on matching motions with music or speech rhythms, which often results in a weak connection between the semantics of the audio and generated motions. We propose an end-to-end framework using a masked generative transformer, enhanced by a memory-retrieval attention module to handle sparse and lengthy audio inputs. Additionally, we enrich existing datasets by converting descriptions into conversational style and generating corresponding audio with varied speaker identities. Experiments demonstrate the effectiveness and efficiency of the proposed framework, demonstrating that audio instructions can convey semantics similar to text while providing more practical and user-friendly interactions.
☆ Revisiting Reweighted Risk for Calibration: AURC, Focal Loss, and Inverse Focal Loss
Several variants of reweighted risk functionals, such as focal losss, inverse focal loss, and the Area Under the Risk-Coverage Curve (AURC), have been proposed in the literature and claims have been made in relation to their calibration properties. However, focal loss and inverse focal loss propose vastly different weighting schemes. In this paper, we revisit a broad class of weighted risk functions commonly used in deep learning and establish a principled connection between these reweighting schemes and calibration errors. We show that minimizing calibration error is closely linked to the selective classification paradigm and demonstrate that optimizing a regularized variant of the AURC naturally leads to improved calibration. This regularized AURC shares a similar reweighting strategy with inverse focal loss, lending support to the idea that focal loss is less principled when calibration is a desired outcome. Direct AURC optimization offers greater flexibility through the choice of confidence score functions (CSFs). To enable gradient-based optimization, we introduce a differentiable formulation of the regularized AURC using the SoftRank technique. Empirical evaluations demonstrate that our AURC-based loss achieves competitive class-wise calibration performance across a range of datasets and model architectures.
☆ LAFR: Efficient Diffusion-based Blind Face Restoration via Latent Codebook Alignment Adapter
Blind face restoration from low-quality (LQ) images is a challenging task that requires not only high-fidelity image reconstruction but also the preservation of facial identity. While diffusion models like Stable Diffusion have shown promise in generating high-quality (HQ) images, their VAE modules are typically trained only on HQ data, resulting in semantic misalignment when encoding LQ inputs. This mismatch significantly weakens the effectiveness of LQ conditions during the denoising process. Existing approaches often tackle this issue by retraining the VAE encoder, which is computationally expensive and memory-intensive. To address this limitation efficiently, we propose LAFR (Latent Alignment for Face Restoration), a novel codebook-based latent space adapter that aligns the latent distribution of LQ images with that of HQ counterparts, enabling semantically consistent diffusion sampling without altering the original VAE. To further enhance identity preservation, we introduce a multi-level restoration loss that combines constraints from identity embeddings and facial structural priors. Additionally, by leveraging the inherent structural regularity of facial images, we show that lightweight finetuning of diffusion prior on just 0.9% of FFHQ dataset is sufficient to achieve results comparable to state-of-the-art methods, reduce training time by 70%. Extensive experiments on both synthetic and real-world face restoration benchmarks demonstrate the effectiveness and efficiency of LAFR, achieving high-quality, identity-preserving face reconstruction from severely degraded inputs.
☆ A Reverse Causal Framework to Mitigate Spurious Correlations for Debiasing Scene Graph Generation
Existing two-stage Scene Graph Generation (SGG) frameworks typically incorporate a detector to extract relationship features and a classifier to categorize these relationships; therefore, the training paradigm follows a causal chain structure, where the detector's inputs determine the classifier's inputs, which in turn influence the final predictions. However, such a causal chain structure can yield spurious correlations between the detector's inputs and the final predictions, i.e., the prediction of a certain relationship may be influenced by other relationships. This influence can induce at least two observable biases: tail relationships are predicted as head ones, and foreground relationships are predicted as background ones; notably, the latter bias is seldom discussed in the literature. To address this issue, we propose reconstructing the causal chain structure into a reverse causal structure, wherein the classifier's inputs are treated as the confounder, and both the detector's inputs and the final predictions are viewed as causal variables. Specifically, we term the reconstructed causal paradigm as the Reverse causal Framework for SGG (RcSGG). RcSGG initially employs the proposed Active Reverse Estimation (ARE) to intervene on the confounder to estimate the reverse causality, \ie the causality from final predictions to the classifier's inputs. Then, the Maximum Information Sampling (MIS) is suggested to enhance the reverse causality estimation further by considering the relationship information. Theoretically, RcSGG can mitigate the spurious correlations inherent in the SGG framework, subsequently eliminating the induced biases. Comprehensive experiments on popular benchmarks and diverse SGG frameworks show the state-of-the-art mean recall rate.
comment: Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 21 pages, 11 figures, 12 tables
☆ Network Inversion for Uncertainty-Aware Out-of-Distribution Detection
Out-of-distribution (OOD) detection and uncertainty estimation (UE) are critical components for building safe machine learning systems, especially in real-world scenarios where unexpected inputs are inevitable. In this work, we propose a novel framework that combines network inversion with classifier training to simultaneously address both OOD detection and uncertainty estimation. For a standard n-class classification task, we extend the classifier to an (n+1)-class model by introducing a "garbage" class, initially populated with random gaussian noise to represent outlier inputs. After each training epoch, we use network inversion to reconstruct input images corresponding to all output classes that initially appear as noisy and incoherent and are therefore excluded to the garbage class for retraining the classifier. This cycle of training, inversion, and exclusion continues iteratively till the inverted samples begin to resemble the in-distribution data more closely, suggesting that the classifier has learned to carve out meaningful decision boundaries while sanitising the class manifolds by pushing OOD content into the garbage class. During inference, this training scheme enables the model to effectively detect and reject OOD samples by classifying them into the garbage class. Furthermore, the confidence scores associated with each prediction can be used to estimate uncertainty for both in-distribution and OOD inputs. Our approach is scalable, interpretable, and does not require access to external OOD datasets or post-hoc calibration techniques while providing a unified solution to the dual challenges of OOD detection and uncertainty estimation.
☆ CryoCCD: Conditional Cycle-consistent Diffusion with Biophysical Modeling for Cryo-EM Synthesis
Cryo-electron microscopy (cryo-EM) offers near-atomic resolution imaging of macromolecules, but developing robust models for downstream analysis is hindered by the scarcity of high-quality annotated data. While synthetic data generation has emerged as a potential solution, existing methods often fail to capture both the structural diversity of biological specimens and the complex, spatially varying noise inherent in cryo-EM imaging. To overcome these limitations, we propose CryoCCD, a synthesis framework that integrates biophysical modeling with generative techniques. Specifically, CryoCCD produces multi-scale cryo-EM micrographs that reflect realistic biophysical variability through compositional heterogeneity, cellular context, and physics-informed imaging. To generate realistic noise, we employ a conditional diffusion model, enhanced by cycle consistency to preserve structural fidelity and mask-aware contrastive learning to capture spatially adaptive noise patterns. Extensive experiments show that CryoCCD generates structurally accurate micrographs and enhances performance in downstream tasks, outperforming state-of-the-art baselines in both particle picking and reconstruction.
☆ VITON-DRR: Details Retention Virtual Try-on via Non-rigid Registration
Image-based virtual try-on aims to fit a target garment to a specific person image and has attracted extensive research attention because of its huge application potential in the e-commerce and fashion industries. To generate high-quality try-on results, accurately warping the clothing item to fit the human body plays a significant role, as slight misalignment may lead to unrealistic artifacts in the fitting image. Most existing methods warp the clothing by feature matching and thin-plate spline (TPS). However, it often fails to preserve clothing details due to self-occlusion, severe misalignment between poses, etc. To address these challenges, this paper proposes a detail retention virtual try-on method via accurate non-rigid registration (VITON-DRR) for diverse human poses. Specifically, we reconstruct a human semantic segmentation using a dual-pyramid-structured feature extractor. Then, a novel Deformation Module is designed for extracting the cloth key points and warping them through an accurate non-rigid registration algorithm. Finally, the Image Synthesis Module is designed to synthesize the deformed garment image and generate the human pose information adaptively. {Compared with} traditional methods, the proposed VITON-DRR can make the deformation of fitting images more accurate and retain more garment details. The experimental results demonstrate that the proposed method performs better than state-of-the-art methods.
comment: 31 pages, 12 figures, Accepted by Computers & Graphics
☆ Adaptive Spatial Augmentation for Semi-supervised Semantic Segmentation
In semi-supervised semantic segmentation (SSSS), data augmentation plays a crucial role in the weak-to-strong consistency regularization framework, as it enhances diversity and improves model generalization. Recent strong augmentation methods have primarily focused on intensity-based perturbations, which have minimal impact on the semantic masks. In contrast, spatial augmentations like translation and rotation have long been acknowledged for their effectiveness in supervised semantic segmentation tasks, but they are often ignored in SSSS. In this work, we demonstrate that spatial augmentation can also contribute to model training in SSSS, despite generating inconsistent masks between the weak and strong augmentations. Furthermore, recognizing the variability among images, we propose an adaptive augmentation strategy that dynamically adjusts the augmentation for each instance based on entropy. Extensive experiments show that our proposed Adaptive Spatial Augmentation (\textbf{ASAug}) can be integrated as a pluggable module, consistently improving the performance of existing methods and achieving state-of-the-art results on benchmark datasets such as PASCAL VOC 2012, Cityscapes, and COCO.
comment: 10 pages, 8 figures
☆ UrbanCraft: Urban View Extrapolation via Hierarchical Sem-Geometric Priors
Existing neural rendering-based urban scene reconstruction methods mainly focus on the Interpolated View Synthesis (IVS) setting that synthesizes from views close to training camera trajectory. However, IVS can not guarantee the on-par performance of the novel view outside the training camera distribution (\textit{e.g.}, looking left, right, or downwards), which limits the generalizability of the urban reconstruction application. Previous methods have optimized it via image diffusion, but they fail to handle text-ambiguous or large unseen view angles due to coarse-grained control of text-only diffusion. In this paper, we design UrbanCraft, which surmounts the Extrapolated View Synthesis (EVS) problem using hierarchical sem-geometric representations serving as additional priors. Specifically, we leverage the partially observable scene to reconstruct coarse semantic and geometric primitives, establishing a coarse scene-level prior through an occupancy grid as the base representation. Additionally, we incorporate fine instance-level priors from 3D bounding boxes to enhance object-level details and spatial relationships. Building on this, we propose the \textbf{H}ierarchical \textbf{S}emantic-Geometric-\textbf{G}uided Variational Score Distillation (HSG-VSD), which integrates semantic and geometric constraints from pretrained UrbanCraft2D into the score distillation sampling process, forcing the distribution to be consistent with the observable scene. Qualitative and quantitative comparisons demonstrate the effectiveness of our methods on EVS problem.
☆ Buffer-free Class-Incremental Learning with Out-of-Distribution Detection
Class-incremental learning (CIL) poses significant challenges in open-world scenarios, where models must not only learn new classes over time without forgetting previous ones but also handle inputs from unknown classes that a closed-set model would misclassify. Recent works address both issues by (i)~training multi-head models using the task-incremental learning framework, and (ii) predicting the task identity employing out-of-distribution (OOD) detectors. While effective, the latter mainly relies on joint training with a memory buffer of past data, raising concerns around privacy, scalability, and increased training time. In this paper, we present an in-depth analysis of post-hoc OOD detection methods and investigate their potential to eliminate the need for a memory buffer. We uncover that these methods, when applied appropriately at inference time, can serve as a strong substitute for buffer-based OOD detection. We show that this buffer-free approach achieves comparable or superior performance to buffer-based methods both in terms of class-incremental learning and the rejection of unknown samples. Experimental results on CIFAR-10, CIFAR-100 and Tiny ImageNet datasets support our findings, offering new insights into the design of efficient and privacy-preserving CIL systems for open-world settings.
☆ Video Editing for Audio-Visual Dubbing
Visual dubbing, the synchronization of facial movements with new speech, is crucial for making content accessible across different languages, enabling broader global reach. However, current methods face significant limitations. Existing approaches often generate talking faces, hindering seamless integration into original scenes, or employ inpainting techniques that discard vital visual information like partial occlusions and lighting variations. This work introduces EdiDub, a novel framework that reformulates visual dubbing as a content-aware editing task. EdiDub preserves the original video context by utilizing a specialized conditioning scheme to ensure faithful and accurate modifications rather than mere copying. On multiple benchmarks, including a challenging occluded-lip dataset, EdiDub significantly improves identity preservation and synchronization. Human evaluations further confirm its superiority, achieving higher synchronization and visual naturalness scores compared to the leading methods. These results demonstrate that our content-aware editing approach outperforms traditional generation or inpainting, particularly in maintaining complex visual elements while ensuring accurate lip synchronization.
☆ Bridging Geometric and Semantic Foundation Models for Generalized Monocular Depth Estimation
We present Bridging Geometric and Semantic (BriGeS), an effective method that fuses geometric and semantic information within foundation models to enhance Monocular Depth Estimation (MDE). Central to BriGeS is the Bridging Gate, which integrates the complementary strengths of depth and segmentation foundation models. This integration is further refined by our Attention Temperature Scaling technique. It finely adjusts the focus of the attention mechanisms to prevent over-concentration on specific features, thus ensuring balanced performance across diverse inputs. BriGeS capitalizes on pre-trained foundation models and adopts a strategy that focuses on training only the Bridging Gate. This method significantly reduces resource demands and training time while maintaining the model's ability to generalize effectively. Extensive experiments across multiple challenging datasets demonstrate that BriGeS outperforms state-of-the-art methods in MDE for complex scenes, effectively handling intricate structures and overlapping objects.
☆ Point or Line? Using Line-based Representation for Panoptic Symbol Spotting in CAD Drawings
We study the task of panoptic symbol spotting, which involves identifying both individual instances of countable things and the semantic regions of uncountable stuff in computer-aided design (CAD) drawings composed of vector graphical primitives. Existing methods typically rely on image rasterization, graph construction, or point-based representation, but these approaches often suffer from high computational costs, limited generality, and loss of geometric structural information. In this paper, we propose VecFormer, a novel method that addresses these challenges through line-based representation of primitives. This design preserves the geometric continuity of the original primitive, enabling more accurate shape representation while maintaining a computation-friendly structure, making it well-suited for vector graphic understanding tasks. To further enhance prediction reliability, we introduce a Branch Fusion Refinement module that effectively integrates instance and semantic predictions, resolving their inconsistencies for more coherent panoptic outputs. Extensive experiments demonstrate that our method establishes a new state-of-the-art, achieving 91.1 PQ, with Stuff-PQ improved by 9.6 and 21.2 points over the second-best results under settings with and without prior information, respectively, highlighting the strong potential of line-based representation as a foundation for vector graphic understanding.
☆ Robust and Annotation-Free Wound Segmentation on Noisy Real-World Pressure Ulcer Images: Towards Automated DESIGN-R\textsuperscript{\textregistered} Assessment
Purpose: Accurate wound segmentation is essential for automated DESIGN-R scoring. However, existing models such as FUSegNet, which are trained primarily on foot ulcer datasets, often fail to generalize to wounds on other body sites. Methods: We propose an annotation-efficient pipeline that combines a lightweight YOLOv11n-based detector with the pre-trained FUSegNet segmentation model. Instead of relying on pixel-level annotations or retraining for new anatomical regions, our method achieves robust performance using only 500 manually labeled bounding boxes. This zero fine-tuning approach effectively bridges the domain gap and enables direct deployment across diverse wound types. This is an advance not previously demonstrated in the wound segmentation literature. Results: Evaluated on three real-world test sets spanning foot, sacral, and trochanter wounds, our YOLO plus FUSegNet pipeline improved mean IoU by 23 percentage points over vanilla FUSegNet and increased end-to-end DESIGN-R size estimation accuracy from 71 percent to 94 percent (see Table 3 for details). Conclusion: Our pipeline generalizes effectively across body sites without task-specific fine-tuning, demonstrating that minimal supervision, with 500 annotated ROIs, is sufficient for scalable, annotation-light wound segmentation. This capability paves the way for real-world DESIGN-R automation, reducing reliance on pixel-wise labeling, streamlining documentation workflows, and supporting objective and consistent wound scoring in clinical practice. We will publicly release the trained detector weights and configuration to promote reproducibility and facilitate downstream deployment.
☆ VModA: An Effective Framework for Adaptive NSFW Image Moderation
Not Safe/Suitable for Work (NSFW) content is rampant on social networks and poses serious harm to citizens, especially minors. Current detection methods mainly rely on deep learning-based image recognition and classification. However, NSFW images are now presented in increasingly sophisticated ways, often using image details and complex semantics to obscure their true nature or attract more views. Although still understandable to humans, these images often evade existing detection methods, posing a significant threat. Further complicating the issue, varying regulations across platforms and regions create additional challenges for effective moderation, leading to detection bias and reduced accuracy. To address this, we propose VModA, a general and effective framework that adapts to diverse moderation rules and handles complex, semantically rich NSFW content across categories. Experimental results show that VModA significantly outperforms existing methods, achieving up to a 54.3% accuracy improvement across NSFW types, including those with complex semantics. Further experiments demonstrate that our method exhibits strong adaptability across categories, scenarios, and base VLMs. We also identified inconsistent and controversial label samples in public NSFW benchmark datasets, re-annotated them, and submitted corrections to the original maintainers. Two datasets have confirmed the updates so far. Additionally, we evaluate VModA in real-world scenarios to demonstrate its practical effectiveness.
UniRL: Self-Improving Unified Multimodal Models via Supervised and Reinforcement Learning
Unified multimodal large language models such as Show-o and Janus have achieved strong performance across both generation and understanding tasks. However, these models typically rely on large-scale datasets and require substantial computation during the pretraining stage. In addition, several post-training methods have been proposed, but they often depend on external data or are limited to task-specific customization. In this work, we introduce UniRL, a self-improving post-training approach. Our approach enables the model to generate images from prompts and use them as training data in each iteration, without relying on any external image data. Moreover, it enables the two tasks to enhance each other: the generated images are used for understanding, and the understanding results are used to supervise generation. We explore supervised fine-tuning (SFT) and Group Relative Policy Optimization (GRPO) to optimize the models. UniRL offers three key advantages: (1) it requires no external image data, as all training samples are generated by the model itself during training; (2) it not only improves individual task performance, but also reduces the imbalance between generation and understanding; and (3) it requires only several additional training steps during the post-training stage. We evaluate UniRL on top of Show-o and Janus, achieving a GenEval score of 0.77 for Show-o and 0.65 for Janus. Code and models will be released in https://github.com/showlab/UniRL.
☆ PAN-Crafter: Learning Modality-Consistent Alignment for PAN-Sharpening
PAN-sharpening aims to fuse high-resolution panchromatic (PAN) images with low-resolution multi-spectral (MS) images to generate high-resolution multi-spectral (HRMS) outputs. However, cross-modality misalignment -- caused by sensor placement, acquisition timing, and resolution disparity -- induces a fundamental challenge. Conventional deep learning methods assume perfect pixel-wise alignment and rely on per-pixel reconstruction losses, leading to spectral distortion, double edges, and blurring when misalignment is present. To address this, we propose PAN-Crafter, a modality-consistent alignment framework that explicitly mitigates the misalignment gap between PAN and MS modalities. At its core, Modality-Adaptive Reconstruction (MARs) enables a single network to jointly reconstruct HRMS and PAN images, leveraging PAN's high-frequency details as auxiliary self-supervision. Additionally, we introduce Cross-Modality Alignment-Aware Attention (CM3A), a novel mechanism that bidirectionally aligns MS texture to PAN structure and vice versa, enabling adaptive feature refinement across modalities. Extensive experiments on multiple benchmark datasets demonstrate that our PAN-Crafter outperforms the most recent state-of-the-art method in all metrics, even with 50.11$\times$ faster inference time and 0.63$\times$ the memory size. Furthermore, it demonstrates strong generalization performance on unseen satellite datasets, showing its robustness across different conditions.
comment: Please visit our project page https://kaist-viclab.github.io/PAN-Crafter_site
☆ MCFNet: A Multimodal Collaborative Fusion Network for Fine-Grained Semantic Classification
Multimodal information processing has become increasingly important for enhancing image classification performance. However, the intricate and implicit dependencies across different modalities often hinder conventional methods from effectively capturing fine-grained semantic interactions, thereby limiting their applicability in high-precision classification tasks. To address this issue, we propose a novel Multimodal Collaborative Fusion Network (MCFNet) designed for fine-grained classification. The proposed MCFNet architecture incorporates a regularized integrated fusion module that improves intra-modal feature representation through modality-specific regularization strategies, while facilitating precise semantic alignment via a hybrid attention mechanism. Additionally, we introduce a multimodal decision classification module, which jointly exploits inter-modal correlations and unimodal discriminative features by integrating multiple loss functions within a weighted voting paradigm. Extensive experiments and ablation studies on benchmark datasets demonstrate that the proposed MCFNet framework achieves consistent improvements in classification accuracy, confirming its effectiveness in modeling subtle cross-modal semantics.
☆ VideoReasonBench: Can MLLMs Perform Vision-Centric Complex Video Reasoning?
Recent studies have shown that long chain-of-thought (CoT) reasoning can significantly enhance the performance of large language models (LLMs) on complex tasks. However, this benefit is yet to be demonstrated in the domain of video understanding, since most existing benchmarks lack the reasoning depth required to demonstrate the advantages of extended CoT chains. While recent efforts have proposed benchmarks aimed at video reasoning, the tasks are often knowledge-driven and do not rely heavily on visual content. To bridge this gap, we introduce VideoReasonBench, a benchmark designed to evaluate vision-centric, complex video reasoning. To ensure visual richness and high reasoning complexity, each video in VideoReasonBench depicts a sequence of fine-grained operations on a latent state that is only visible in part of the video. The questions evaluate three escalating levels of video reasoning skills: recalling observed visual information, inferring the content of latent states, and predicting information beyond the video. Under such task setting, models have to precisely recall multiple operations in the video, and perform step-by-step reasoning to get correct final answers for these questions. Using VideoReasonBench, we comprehensively evaluate 18 state-of-the-art multimodal LLMs (MLLMs), finding that most perform poorly on complex video reasoning, e.g., GPT-4o achieves only 6.9% accuracy, while the thinking-enhanced Gemini-2.5-Pro significantly outperforms others with 56.0% accuracy. Our investigations on "test-time scaling" further reveal that extended thinking budget, while offering none or minimal benefits on existing video benchmarks, is essential for improving the performance on VideoReasonBench.
comment: Project Page: https://llyx97.github.io/video_reason_bench/
☆ Beam-Guided Knowledge Replay for Knowledge-Rich Image Captioning using Vision-Language Model
Generating informative and knowledge-rich image captions remains a challenge for many existing captioning models, which often produce generic descriptions that lack specificity and contextual depth. To address this limitation, we propose KRCapVLM, a knowledge replay-based novel image captioning framework using vision-language model. We incorporate beam search decoding to generate more diverse and coherent captions. We also integrate attention-based modules into the image encoder to enhance feature representation. Finally, we employ training schedulers to improve stability and ensure smoother convergence during training. These proposals accelerate substantial gains in both caption quality and knowledge recognition. Our proposed model demonstrates clear improvements in both the accuracy of knowledge recognition and the overall quality of generated captions. It shows a stronger ability to generalize to previously unseen knowledge concepts, producing more informative and contextually relevant descriptions. These results indicate the effectiveness of our approach in enhancing the model's capacity to generate meaningful, knowledge-grounded captions across a range of scenarios.
☆ Synthetic Generation and Latent Projection Denoising of Rim Lesions in Multiple Sclerosis CVPR 2025
Quantitative susceptibility maps from magnetic resonance images can provide both prognostic and diagnostic information in multiple sclerosis, a neurodegenerative disease characterized by the formation of lesions in white matter brain tissue. In particular, susceptibility maps provide adequate contrast to distinguish between "rim" lesions, surrounded by deposited paramagnetic iron, and "non-rim" lesion types. These paramagnetic rim lesions (PRLs) are an emerging biomarker in multiple sclerosis. Much effort has been devoted to both detection and segmentation of such lesions to monitor longitudinal change. As paramagnetic rim lesions are rare, addressing this problem requires confronting the class imbalance between rim and non-rim lesions. We produce synthetic quantitative susceptibility maps of paramagnetic rim lesions and show that inclusion of such synthetic data improves classifier performance and provide a multi-channel extension to generate accompanying contrasts and probabilistic segmentation maps. We exploit the projection capability of our trained generative network to demonstrate a novel denoising approach that allows us to train on ambiguous rim cases and substantially increase the minority class. We show that both synthetic lesion synthesis and our proposed rim lesion label denoising method best approximate the unseen rim lesion distribution and improve detection in a clinically interpretable manner. We release our code and generated data at https://github.com/agr78/PRLx-GAN upon publication.
comment: Accepted full paper in Synthetic Data @ CVPR 2025 12 pages, 10 figures
☆ Beyond Optimal Transport: Model-Aligned Coupling for Flow Matching
Flow Matching (FM) is an effective framework for training a model to learn a vector field that transports samples from a source distribution to a target distribution. To train the model, early FM methods use random couplings, which often result in crossing paths and lead the model to learn non-straight trajectories that require many integration steps to generate high-quality samples. To address this, recent methods adopt Optimal Transport (OT) to construct couplings by minimizing geometric distances, which helps reduce path crossings. However, we observe that such geometry-based couplings do not necessarily align with the model's preferred trajectories, making it difficult to learn the vector field induced by these couplings, which prevents the model from learning straight trajectories. Motivated by this, we propose Model-Aligned Coupling (MAC), an effective method that matches training couplings based not only on geometric distance but also on alignment with the model's preferred transport directions based on its prediction error. To avoid the time-costly match process, MAC proposes to select the top-$k$ fraction of couplings with the lowest error for training. Extensive experiments show that MAC significantly improves generation quality and efficiency in few-step settings compared to existing methods. Project page: https://yexionglin.github.io/mac
☆ Diffusion Sampling Path Tells More: An Efficient Plug-and-Play Strategy for Sample Filtering
Diffusion models often exhibit inconsistent sample quality due to stochastic variations inherent in their sampling trajectories. Although training-based fine-tuning (e.g. DDPO [1]) and inference-time alignment techniques[2] aim to improve sample fidelity, they typically necessitate full denoising processes and external reward signals. This incurs substantial computational costs, hindering their broader applicability. In this work, we unveil an intriguing phenomenon: a previously unobserved yet exploitable link between sample quality and characteristics of the denoising trajectory during classifier-free guidance (CFG). Specifically, we identify a strong correlation between high-density regions of the sample distribution and the Accumulated Score Differences (ASD)--the cumulative divergence between conditional and unconditional scores. Leveraging this insight, we introduce CFG-Rejection, an efficient, plug-and-play strategy that filters low-quality samples at an early stage of the denoising process, crucially without requiring external reward signals or model retraining. Importantly, our approach necessitates no modifications to model architectures or sampling schedules and maintains full compatibility with existing diffusion frameworks. We validate the effectiveness of CFG-Rejection in image generation through extensive experiments, demonstrating marked improvements on human preference scores (HPSv2, PickScore) and challenging benchmarks (GenEval, DPG-Bench). We anticipate that CFG-Rejection will offer significant advantages for diverse generative modalities beyond images, paving the way for more efficient and reliable high-quality sample generation.
☆ DSAGL: Dual-Stream Attention-Guided Learning for Weakly Supervised Whole Slide Image Classification
Whole-slide images (WSIs) are critical for cancer diagnosis due to their ultra-high resolution and rich semantic content. However, their massive size and the limited availability of fine-grained annotations pose substantial challenges for conventional supervised learning. We propose DSAGL (Dual-Stream Attention-Guided Learning), a novel weakly supervised classification framework that combines a teacher-student architecture with a dual-stream design. DSAGL explicitly addresses instance-level ambiguity and bag-level semantic consistency by generating multi-scale attention-based pseudo labels and guiding instance-level learning. A shared lightweight encoder (VSSMamba) enables efficient long-range dependency modeling, while a fusion-attentive module (FASA) enhances focus on sparse but diagnostically relevant regions. We further introduce a hybrid loss to enforce mutual consistency between the two streams. Experiments on CIFAR-10, NCT-CRC, and TCGA-Lung datasets demonstrate that DSAGL consistently outperforms state-of-the-art MIL baselines, achieving superior discriminative performance and robustness under weak supervision.
☆ Fine-Tuning Next-Scale Visual Autoregressive Models with Group Relative Policy Optimization
Fine-tuning pre-trained generative models with Reinforcement Learning (RL) has emerged as an effective approach for aligning outputs more closely with nuanced human preferences. In this paper, we investigate the application of Group Relative Policy Optimization (GRPO) to fine-tune next-scale visual autoregressive (VAR) models. Our empirical results demonstrate that this approach enables alignment to intricate reward signals derived from aesthetic predictors and CLIP embeddings, significantly enhancing image quality and enabling precise control over the generation style. Interestingly, by leveraging CLIP, our method can help VAR models generalize beyond their initial ImageNet distribution: through RL-driven exploration, these models can generate images aligned with prompts referencing image styles that were absent during pre-training. In summary, we show that RL-based fine-tuning is both efficient and effective for VAR models, benefiting particularly from their fast inference speeds, which are advantageous for online sampling, an aspect that poses significant challenges for diffusion-based alternatives.
☆ Dimension-Reduction Attack! Video Generative Models are Experts on Controllable Image Synthesis
Video generative models can be regarded as world simulators due to their ability to capture dynamic, continuous changes inherent in real-world environments. These models integrate high-dimensional information across visual, temporal, spatial, and causal dimensions, enabling predictions of subjects in various status. A natural and valuable research direction is to explore whether a fully trained video generative model in high-dimensional space can effectively support lower-dimensional tasks such as controllable image generation. In this work, we propose a paradigm for video-to-image knowledge compression and task adaptation, termed \textit{Dimension-Reduction Attack} (\texttt{DRA-Ctrl}), which utilizes the strengths of video models, including long-range context modeling and flatten full-attention, to perform various generation tasks. Specially, to address the challenging gap between continuous video frames and discrete image generation, we introduce a mixup-based transition strategy that ensures smooth adaptation. Moreover, we redesign the attention structure with a tailored masking mechanism to better align text prompts with image-level control. Experiments across diverse image generation tasks, such as subject-driven and spatially conditioned generation, show that repurposed video models outperform those trained directly on images. These results highlight the untapped potential of large-scale video generators for broader visual applications. \texttt{DRA-Ctrl} provides new insights into reusing resource-intensive video models and lays foundation for future unified generative models across visual modalities. The project page is https://dra-ctrl-2025.github.io/DRA-Ctrl/.
☆ CF-DETR: Coarse-to-Fine Transformer for Real-Time Object Detection
Detection Transformers (DETR) are increasingly adopted in autonomous vehicle (AV) perception systems due to their superior accuracy over convolutional networks. However, concurrently executing multiple DETR tasks presents significant challenges in meeting firm real-time deadlines (R1) and high accuracy requirements (R2), particularly for safety-critical objects, while navigating the inherent latency-accuracy trade-off under resource constraints. Existing real-time DNN scheduling approaches often treat models generically, failing to leverage Transformer-specific properties for efficient resource allocation. To address these challenges, we propose CF-DETR, an integrated system featuring a novel coarse-to-fine Transformer architecture and a dedicated real-time scheduling framework NPFP**. CF-DETR employs three key strategies (A1: coarse-to-fine inference, A2: selective fine inference, A3: multi-level batch inference) that exploit Transformer properties to dynamically adjust patch granularity and attention scope based on object criticality, aiming to satisfy R2. The NPFP** scheduling framework (A4) orchestrates these adaptive mechanisms A1-A3. It partitions each DETR task into a safety-critical coarse subtask for guaranteed critical object detection within its deadline (ensuring R1), and an optional fine subtask for enhanced overall accuracy (R2), while managing individual and batched execution. Our extensive evaluations on server, GPU-enabled embedded platforms, and actual AV platforms demonstrate that CF-DETR, under an NPFP** policy, successfully meets strict timing guarantees for critical operations and achieves significantly higher overall and critical object detection accuracy compared to existing baselines across diverse AV workloads.
comment: 12 pages
☆ Adversarial Semantic and Label Perturbation Attack for Pedestrian Attribute Recognition
Pedestrian Attribute Recognition (PAR) is an indispensable task in human-centered research and has made great progress in recent years with the development of deep neural networks. However, the potential vulnerability and anti-interference ability have still not been fully explored. To bridge this gap, this paper proposes the first adversarial attack and defense framework for pedestrian attribute recognition. Specifically, we exploit both global- and patch-level attacks on the pedestrian images, based on the pre-trained CLIP-based PAR framework. It first divides the input pedestrian image into non-overlapping patches and embeds them into feature embeddings using a projection layer. Meanwhile, the attribute set is expanded into sentences using prompts and embedded into attribute features using a pre-trained CLIP text encoder. A multi-modal Transformer is adopted to fuse the obtained vision and text tokens, and a feed-forward network is utilized for attribute recognition. Based on the aforementioned PAR framework, we adopt the adversarial semantic and label-perturbation to generate the adversarial noise, termed ASL-PAR. We also design a semantic offset defense strategy to suppress the influence of adversarial attacks. Extensive experiments conducted on both digital domains (i.e., PETA, PA100K, MSP60K, RAPv2) and physical domains fully validated the effectiveness of our proposed adversarial attack and defense strategies for the pedestrian attribute recognition. The source code of this paper will be released on https://github.com/Event-AHU/OpenPAR.
☆ TRACE: Trajectory-Constrained Concept Erasure in Diffusion Models
Text-to-image diffusion models have shown unprecedented generative capability, but their ability to produce undesirable concepts (e.g.~pornographic content, sensitive identities, copyrighted styles) poses serious concerns for privacy, fairness, and safety. {Concept erasure} aims to remove or suppress specific concept information in a generative model. In this paper, we introduce \textbf{TRACE (Trajectory-Constrained Attentional Concept Erasure)}, a novel method to erase targeted concepts from diffusion models while preserving overall generative quality. Our approach combines a rigorous theoretical framework, establishing formal conditions under which a concept can be provably suppressed in the diffusion process, with an effective fine-tuning procedure compatible with both conventional latent diffusion (Stable Diffusion) and emerging rectified flow models (e.g.~FLUX). We first derive a closed-form update to the model's cross-attention layers that removes hidden representations of the target concept. We then introduce a trajectory-aware finetuning objective that steers the denoising process away from the concept only in the late sampling stages, thus maintaining the model's fidelity on unrelated content. Empirically, we evaluate TRACE on multiple benchmarks used in prior concept erasure studies (object classes, celebrity faces, artistic styles, and explicit content from the I2P dataset). TRACE achieves state-of-the-art performance, outperforming recent methods such as ANT, EraseAnything, and MACE in terms of removal efficacy and output quality.
comment: In peer review
☆ Quality assessment of 3D human animation: Subjective and objective evaluation
Virtual human animations have a wide range of applications in virtual and augmented reality. While automatic generation methods of animated virtual humans have been developed, assessing their quality remains challenging. Recently, approaches introducing task-oriented evaluation metrics have been proposed, leveraging neural network training. However, quality assessment measures for animated virtual humans that are not generated with parametric body models have yet to be developed. In this context, we introduce a first such quality assessment measure leveraging a novel data-driven framework. First, we generate a dataset of virtual human animations together with their corresponding subjective realism evaluation scores collected with a user study. Second, we use the resulting dataset to learn predicting perceptual evaluation scores. Results indicate that training a linear regressor on our dataset results in a correlation of 90%, which outperforms a state of the art deep learning baseline.
☆ Federated Unsupervised Semantic Segmentation
This work explores the application of Federated Learning (FL) in Unsupervised Semantic image Segmentation (USS). Recent USS methods extract pixel-level features using frozen visual foundation models and refine them through self-supervised objectives that encourage semantic grouping. These features are then grouped to semantic clusters to produce segmentation masks. Extending these ideas to federated settings requires feature representation and cluster centroid alignment across distributed clients -- an inherently difficult task under heterogeneous data distributions in the absence of supervision. To address this, we propose FUSS Federated Unsupervised image Semantic Segmentation) which is, to our knowledge, the first framework to enable fully decentralized, label-free semantic segmentation training. FUSS introduces novel federation strategies that promote global consistency in feature and prototype space, jointly optimizing local segmentation heads and shared semantic centroids. Experiments on both benchmark and real-world datasets, including binary and multi-class segmentation tasks, show that FUSS consistently outperforms local-only client trainings as well as extensions of classical FL algorithms under varying client data distributions. To support reproducibility, full code will be released upon manuscript acceptance.
☆ Wav2Sem: Plug-and-Play Audio Semantic Decoupling for 3D Speech-Driven Facial Animation CVPR 2025
In 3D speech-driven facial animation generation, existing methods commonly employ pre-trained self-supervised audio models as encoders. However, due to the prevalence of phonetically similar syllables with distinct lip shapes in language, these near-homophone syllables tend to exhibit significant coupling in self-supervised audio feature spaces, leading to the averaging effect in subsequent lip motion generation. To address this issue, this paper proposes a plug-and-play semantic decorrelation module-Wav2Sem. This module extracts semantic features corresponding to the entire audio sequence, leveraging the added semantic information to decorrelate audio encodings within the feature space, thereby achieving more expressive audio features. Extensive experiments across multiple Speech-driven models indicate that the Wav2Sem module effectively decouples audio features, significantly alleviating the averaging effect of phonetically similar syllables in lip shape generation, thereby enhancing the precision and naturalness of facial animations. Our source code is available at https://github.com/wslh852/Wav2Sem.git.
comment: Accepted to CVPR 2025
☆ GenCAD-Self-Repairing: Feasibility Enhancement for 3D CAD Generation
With the advancement of generative AI, research on its application to 3D model generation has gained traction, particularly in automating the creation of Computer-Aided Design (CAD) files from images. GenCAD is a notable model in this domain, leveraging an autoregressive transformer-based architecture with a contrastive learning framework to generate CAD programs. However, a major limitation of GenCAD is its inability to consistently produce feasible boundary representations (B-reps), with approximately 10% of generated designs being infeasible. To address this, we propose GenCAD-Self-Repairing, a framework that enhances the feasibility of generative CAD models through diffusion guidance and a self-repairing pipeline. This framework integrates a guided diffusion denoising process in the latent space and a regression-based correction mechanism to refine infeasible CAD command sequences while preserving geometric accuracy. Our approach successfully converted two-thirds of infeasible designs in the baseline method into feasible ones, significantly improving the feasibility rate while simultaneously maintaining a reasonable level of geometric accuracy between the point clouds of ground truth models and generated models. By significantly improving the feasibility rate of generating CAD models, our approach helps expand the availability of high-quality training data and enhances the applicability of AI-driven CAD generation in manufacturing, architecture, and product design.
☆ RSFAKE-1M: A Large-Scale Dataset for Detecting Diffusion-Generated Remote Sensing Forgeries
Detecting forged remote sensing images is becoming increasingly critical, as such imagery plays a vital role in environmental monitoring, urban planning, and national security. While diffusion models have emerged as the dominant paradigm for image generation, their impact on remote sensing forgery detection remains underexplored. Existing benchmarks primarily target GAN-based forgeries or focus on natural images, limiting progress in this critical domain. To address this gap, we introduce RSFAKE-1M, a large-scale dataset of 500K forged and 500K real remote sensing images. The fake images are generated by ten diffusion models fine-tuned on remote sensing data, covering six generation conditions such as text prompts, structural guidance, and inpainting. This paper presents the construction of RSFAKE-1M along with a comprehensive experimental evaluation using both existing detectors and unified baselines. The results reveal that diffusion-based remote sensing forgeries remain challenging for current methods, and that models trained on RSFAKE-1M exhibit notably improved generalization and robustness. Our findings underscore the importance of RSFAKE-1M as a foundation for developing and evaluating next-generation forgery detection approaches in the remote sensing domain. The dataset and other supplementary materials are available at https://huggingface.co/datasets/TZHSW/RSFAKE/.
☆ Holistic Large-Scale Scene Reconstruction via Mixed Gaussian Splatting
Recent advances in 3D Gaussian Splatting have shown remarkable potential for novel view synthesis. However, most existing large-scale scene reconstruction methods rely on the divide-and-conquer paradigm, which often leads to the loss of global scene information and requires complex parameter tuning due to scene partitioning and local optimization. To address these limitations, we propose MixGS, a novel holistic optimization framework for large-scale 3D scene reconstruction. MixGS models the entire scene holistically by integrating camera pose and Gaussian attributes into a view-aware representation, which is decoded into fine-detailed Gaussians. Furthermore, a novel mixing operation combines decoded and original Gaussians to jointly preserve global coherence and local fidelity. Extensive experiments on large-scale scenes demonstrate that MixGS achieves state-of-the-art rendering quality and competitive speed, while significantly reducing computational requirements, enabling large-scale scene reconstruction training on a single 24GB VRAM GPU. The code will be released at https://github.com/azhuantou/MixGS.
☆ Are MLMs Trapped in the Visual Room?
Can multi-modal large models (MLMs) that can ``see'' an image be said to ``understand'' it? Drawing inspiration from Searle's Chinese Room, we propose the \textbf{Visual Room} argument: a system may process and describe every detail of visual inputs by following algorithmic rules, without genuinely comprehending the underlying intention. This dilemma challenges the prevailing assumption that perceptual mastery implies genuine understanding. In implementation, we introduce a two-tier evaluation framework spanning perception and cognition. The perception component evaluates whether MLMs can accurately capture the surface-level details of visual contents, where the cognitive component examines their ability to infer sarcasm polarity. To support this framework, We further introduce a high-quality multi-modal sarcasm dataset comprising both 924 static images and 100 dynamic videos. All sarcasm labels are annotated by the original authors and verified by independent reviewers to ensure clarity and consistency. We evaluate eight state-of-the-art (SoTA) MLMs. Our results highlight three key findings: (1) MLMs perform well on perception tasks; (2) even with correct perception, models exhibit an average error rate of ~16.1\% in sarcasm understanding, revealing a significant gap between seeing and understanding; (3) error analysis attributes this gap to deficiencies in emotional reasoning, commonsense inference, and context alignment. This work provides empirical grounding for the proposed Visual Room argument and offers a new evaluation paradigm for MLMs.
☆ LADA: Scalable Label-Specific CLIP Adapter for Continual Learning ICML 2025
Continual learning with vision-language models like CLIP offers a pathway toward scalable machine learning systems by leveraging its transferable representations. Existing CLIP-based methods adapt the pre-trained image encoder by adding multiple sets of learnable parameters, with each task using a partial set of parameters. This requires selecting the expected parameters for input images during inference, which is prone to error that degrades performance. To address this problem, we introduce LADA (Label-specific ADApter). Instead of partitioning parameters across tasks, LADA appends lightweight, label-specific memory units to the frozen CLIP image encoder, enabling discriminative feature generation by aggregating task-agnostic knowledge. To prevent catastrophic forgetting, LADA employs feature distillation for seen classes, preventing their features from being interfered with by new classes. Positioned after the image encoder, LADA prevents gradient flow to the frozen CLIP parameters, ensuring efficient training. Extensive results show that LADA achieves state-of-the-art performance in continual learning settings. The implementation code is available at https://github.com/MaolinLuo/LADA.
comment: Accepted at ICML 2025
☆ Unsupervised Transcript-assisted Video Summarization and Highlight Detection
Video consumption is a key part of daily life, but watching entire videos can be tedious. To address this, researchers have explored video summarization and highlight detection to identify key video segments. While some works combine video frames and transcripts, and others tackle video summarization and highlight detection using Reinforcement Learning (RL), no existing work, to the best of our knowledge, integrates both modalities within an RL framework. In this paper, we propose a multimodal pipeline that leverages video frames and their corresponding transcripts to generate a more condensed version of the video and detect highlights using a modality fusion mechanism. The pipeline is trained within an RL framework, which rewards the model for generating diverse and representative summaries while ensuring the inclusion of video segments with meaningful transcript content. The unsupervised nature of the training allows for learning from large-scale unannotated datasets, overcoming the challenge posed by the limited size of existing annotated datasets. Our experiments show that using the transcript in video summarization and highlight detection achieves superior results compared to relying solely on the visual content of the video.
☆ Disrupting Vision-Language Model-Driven Navigation Services via Adversarial Object Fusion
We present Adversarial Object Fusion (AdvOF), a novel attack framework targeting vision-and-language navigation (VLN) agents in service-oriented environments by generating adversarial 3D objects. While foundational models like Large Language Models (LLMs) and Vision Language Models (VLMs) have enhanced service-oriented navigation systems through improved perception and decision-making, their integration introduces vulnerabilities in mission-critical service workflows. Existing adversarial attacks fail to address service computing contexts, where reliability and quality-of-service (QoS) are paramount. We utilize AdvOF to investigate and explore the impact of adversarial environments on the VLM-based perception module of VLN agents. In particular, AdvOF first precisely aggregates and aligns the victim object positions in both 2D and 3D space, defining and rendering adversarial objects. Then, we collaboratively optimize the adversarial object with regularization between the adversarial and victim object across physical properties and VLM perceptions. Through assigning importance weights to varying views, the optimization is processed stably and multi-viewedly by iterative fusions from local updates and justifications. Our extensive evaluations demonstrate AdvOF can effectively degrade agent performance under adversarial conditions while maintaining minimal interference with normal navigation tasks. This work advances the understanding of service security in VLM-powered navigation systems, providing computational foundations for robust service composition in physical-world deployments.
comment: Under review
♻ ☆ RiverMamba: A State Space Model for Global River Discharge and Flood Forecasting
Recent deep learning approaches for river discharge forecasting have improved the accuracy and efficiency in flood forecasting, enabling more reliable early warning systems for risk management. Nevertheless, existing deep learning approaches in hydrology remain largely confined to local-scale applications and do not leverage the inherent spatial connections of bodies of water. Thus, there is a strong need for new deep learning methodologies that are capable of modeling spatio-temporal relations to improve river discharge and flood forecasting for scientific and operational applications. To address this, we present RiverMamba, a novel deep learning model that is pretrained with long-term reanalysis data and that can forecast global river discharge and floods on a $0.05^\circ$ grid up to 7 days lead time, which is of high relevance in early warning. To achieve this, RiverMamba leverages efficient Mamba blocks that enable the model to capture global-scale channel network routing and enhance its forecast capability for longer lead times. The forecast blocks integrate ECMWF HRES meteorological forecasts, while accounting for their inaccuracies through spatio-temporal modeling. Our analysis demonstrates that RiverMamba delivers reliable predictions of river discharge, including extreme floods across return periods and lead times, surpassing both operational AI- and physics-based models.
comment: Main paper 10 pages, Appendix 53 pages
♻ ☆ Surf2CT: Cascaded 3D Flow Matching Models for Torso 3D CT Synthesis from Skin Surface
We present Surf2CT, a novel cascaded flow matching framework that synthesizes full 3D computed tomography (CT) volumes of the human torso from external surface scans and simple demographic data (age, sex, height, weight). This is the first approach capable of generating realistic volumetric internal anatomy images solely based on external body shape and demographics, without any internal imaging. Surf2CT proceeds through three sequential stages: (1) Surface Completion, reconstructing a complete signed distance function (SDF) from partial torso scans using conditional 3D flow matching; (2) Coarse CT Synthesis, generating a low-resolution CT volume from the completed SDF and demographic information; and (3) CT Super-Resolution, refining the coarse volume into a high-resolution CT via a patch-wise conditional flow model. Each stage utilizes a 3D-adapted EDM2 backbone trained via flow matching. We trained our model on a combined dataset of 3,198 torso CT scans (approximately 1.13 million axial slices) sourced from Massachusetts General Hospital (MGH) and the AutoPET challenge. Evaluation on 700 paired torso surface-CT cases demonstrated strong anatomical fidelity: organ volumes exhibited small mean percentage differences (range from -11.1% to 4.4%), and muscle/fat body composition metrics matched ground truth with strong correlation (range from 0.67 to 0.96). Lung localization had minimal bias (mean difference -2.5 mm), and surface completion significantly improved metrics (Chamfer distance: from 521.8 mm to 2.7 mm; Intersection-over-Union: from 0.87 to 0.98). Surf2CT establishes a new paradigm for non-invasive internal anatomical imaging using only external data, opening opportunities for home-based healthcare, preventive medicine, and personalized clinical assessments without the risks associated with conventional imaging techniques.
comment: Neurips 2025 submitted
♻ ☆ The Meeseeks Mesh: Spatially Consistent 3D Adversarial Objects for BEV Detector
3D object detection is a critical component in autonomous driving systems. It allows real-time recognition and detection of vehicles, pedestrians and obstacles under varying environmental conditions. Among existing methods, 3D object detection in the Bird's Eye View (BEV) has emerged as the mainstream framework. To guarantee a safe, robust and trustworthy 3D object detection, 3D adversarial attacks are investigated, where attacks are placed in 3D environments to evaluate the model performance, e.g. putting a film on a car, clothing a pedestrian. The vulnerability of 3D object detection models to 3D adversarial attacks serves as an important indicator to evaluate the robustness of the model against perturbations. To investigate this vulnerability, we generate non-invasive 3D adversarial objects tailored for real-world attack scenarios. Our method verifies the existence of universal adversarial objects that are spatially consistent across time and camera views. Specifically, we employ differentiable rendering techniques to accurately model the spatial relationship between adversarial objects and the target vehicle. Furthermore, we introduce an occlusion-aware module to enhance visual consistency and realism under different viewpoints. To maintain attack effectiveness across multiple frames, we design a BEV spatial feature-guided optimization strategy. Experimental results demonstrate that our approach can reliably suppress vehicle predictions from state-of-the-art 3D object detectors, serving as an important tool to test robustness of 3D object detection models before deployment. Moreover, the generated adversarial objects exhibit strong generalization capabilities, retaining its effectiveness at various positions and distances in the scene.
♻ ☆ SHTOcc: Effective 3D Occupancy Prediction with Sparse Head and Tail Voxels
3D occupancy prediction has attracted much attention in the field of autonomous driving due to its powerful geometric perception and object recognition capabilities. However, existing methods have not explored the most essential distribution patterns of voxels, resulting in unsatisfactory results. This paper first explores the inter-class distribution and geometric distribution of voxels, thereby solving the long-tail problem caused by the inter-class distribution and the poor performance caused by the geometric distribution. Specifically, this paper proposes SHTOcc (Sparse Head-Tail Occupancy), which uses sparse head-tail voxel construction to accurately identify and balance key voxels in the head and tail classes, while using decoupled learning to reduce the model's bias towards the dominant (head) category and enhance the focus on the tail class. Experiments show that significant improvements have been made on multiple baselines: SHTOcc reduces GPU memory usage by 42.2%, increases inference speed by 58.6%, and improves accuracy by about 7%, verifying its effectiveness and efficiency. The code is available at https://github.com/ge95net/SHTOcc
♻ ☆ GeoDrive: 3D Geometry-Informed Driving World Model with Precise Action Control
Recent advancements in world models have revolutionized dynamic environment simulation, allowing systems to foresee future states and assess potential actions. In autonomous driving, these capabilities help vehicles anticipate the behavior of other road users, perform risk-aware planning, accelerate training in simulation, and adapt to novel scenarios, thereby enhancing safety and reliability. Current approaches exhibit deficiencies in maintaining robust 3D geometric consistency or accumulating artifacts during occlusion handling, both critical for reliable safety assessment in autonomous navigation tasks. To address this, we introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models to enhance spatial understanding and action controllability. Specifically, we first extract a 3D representation from the input frame and then obtain its 2D rendering based on the user-specified ego-car trajectory. To enable dynamic modeling, we propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles. Extensive experiments demonstrate that our method significantly outperforms existing models in both action accuracy and 3D spatial awareness, leading to more realistic, adaptable, and reliable scene modeling for safer autonomous driving. Additionally, our model can generalize to novel trajectories and offers interactive scene editing capabilities, such as object editing and object trajectory control.
comment: code will be released at https://github.com/antonioo-c/GeoDrive
♻ ☆ YH-MINER: Multimodal Intelligent System for Natural Ecological Reef Metric Extraction
Coral reefs, crucial for sustaining marine biodiversity and ecological processes (e.g., nutrient cycling, habitat provision), face escalating threats, underscoring the need for efficient monitoring. Coral reef ecological monitoring faces dual challenges of low efficiency in manual analysis and insufficient segmentation accuracy in complex underwater scenarios. This study develops the YH-MINER system, establishing an intelligent framework centered on the Multimodal Large Model (MLLM) for "object detection-semantic segmentation-prior input". The system uses the object detection module (mAP@0.5=0.78) to generate spatial prior boxes for coral instances, driving the segment module to complete pixel-level segmentation in low-light and densely occluded scenarios. The segmentation masks and finetuned classification instructions are fed into the Qwen2-VL-based multimodal model as prior inputs, achieving a genus-level classification accuracy of 88% and simultaneously extracting core ecological metrics. Meanwhile, the system retains the scalability of the multimodal model through standardized interfaces, laying a foundation for future integration into multimodal agent-based underwater robots and supporting the full-process automation of "image acquisition-prior generation-real-time analysis".
♻ ☆ Improving Brain-to-Image Reconstruction via Fine-Grained Text Bridging
Brain-to-Image reconstruction aims to recover visual stimuli perceived by humans from brain activity. However, the reconstructed visual stimuli often missing details and semantic inconsistencies, which may be attributed to insufficient semantic information. To address this issue, we propose an approach named Fine-grained Brain-to-Image reconstruction (FgB2I), which employs fine-grained text as bridge to improve image reconstruction. FgB2I comprises three key stages: detail enhancement, decoding fine-grained text descriptions, and text-bridged brain-to-image reconstruction. In the detail-enhancement stage, we leverage large vision-language models to generate fine-grained captions for visual stimuli and experimentally validate its importance. We propose three reward metrics (object accuracy, text-image semantic similarity, and image-image semantic similarity) to guide the language model in decoding fine-grained text descriptions from fMRI signals. The fine-grained text descriptions can be integrated into existing reconstruction methods to achieve fine-grained Brain-to-Image reconstruction.
comment: CogSci2025
♻ ☆ Stereo Radargrammetry Using Deep Learning from Airborne SAR Images RSS2025
In this paper, we propose a stereo radargrammetry method using deep learning from airborne Synthetic Aperture Radar (SAR) images. Deep learning-based methods are considered to suffer less from geometric image modulation, while there is no public SAR image dataset used to train such methods. We create a SAR image dataset and perform fine-tuning of a deep learning-based image correspondence method. The proposed method suppresses the degradation of image quality by pixel interpolation without ground projection of the SAR image and divides the SAR image into patches for processing, which makes it possible to apply deep learning. Through a set of experiments, we demonstrate that the proposed method exhibits a wider range and more accurate elevation measurements compared to conventional methods. The project web page is available at: https://gsisaoki.github.io/IGARSS2025_sasayama/
comment: 5 pages, 5 figures, conference IGARSS2025
♻ ☆ Weight Space Representation Learning on Diverse NeRF Architectures
Neural Radiance Fields (NeRFs) have emerged as a groundbreaking paradigm for representing 3D objects and scenes by encoding shape and appearance information into the weights of a neural network. Recent studies have demonstrated that these weights can be used as input for frameworks designed to address deep learning tasks; however, such frameworks require NeRFs to adhere to a specific, predefined architecture. In this paper, we introduce the first framework capable of processing NeRFs with diverse architectures and performing inference on architectures unseen at training time. We achieve this by training a Graph Meta-Network within an unsupervised representation learning framework, and show that a contrastive objective is conducive to obtaining an architecture-agnostic latent space. In experiments conducted across 13 NeRF architectures belonging to three families (MLPs, tri-planes, and, for the first time, hash tables), our approach demonstrates robust performance in classification and retrieval tasks involving multiple architectures, even unseen at training time, while also exceeding the results of existing frameworks limited to single architectures.
comment: v2: added third NeRF architecture. Under review
♻ ☆ Diffusion Classifiers Understand Compositionality, but Conditions Apply
Understanding visual scenes is fundamental to human intelligence. While discriminative models have significantly advanced computer vision, they often struggle with compositional understanding. In contrast, recent generative text-to-image diffusion models excel at synthesizing complex scenes, suggesting inherent compositional capabilities. Building on this, zero-shot diffusion classifiers have been proposed to repurpose diffusion models for discriminative tasks. While prior work offered promising results in discriminative compositional scenarios, these results remain preliminary due to a small number of benchmarks and a relatively shallow analysis of conditions under which the models succeed. To address this, we present a comprehensive study of the discriminative capabilities of diffusion classifiers on a wide range of compositional tasks. Specifically, our study covers three diffusion models (SD 1.5, 2.0, and, for the first time, 3-m) spanning 10 datasets and over 30 tasks. Further, we shed light on the role that target dataset domains play in respective performance; to isolate the domain effects, we introduce a new diagnostic benchmark Self-Bench comprised of images created by diffusion models themselves. Finally, we explore the importance of timestep weighting and uncover a relationship between domain gap and timestep sensitivity, particularly for SD3-m. To sum up, diffusion classifiers understand compositionality, but conditions apply! Code and dataset are available at https://github.com/eugene6923/Diffusion-Classifiers-Compositionality.
♻ ☆ Visatronic: A Multimodal Decoder-Only Model for Speech Synthesis
The rapid progress of foundation models and large language models (LLMs) has fueled significantly improvement in the capabilities of machine learning systems that benefit from mutlimodal input data. However, existing multimodal models are predominantly built on top of pre-trained LLMs, which can limit accurate modeling of temporal dependencies across other modalities and thus limit the model's ability to jointly process and leverage multimodal inputs. To specifically investigate the alignment of text, video, and speech modalities in LLM-style (decoder-only) models, we consider a simplified multimodal generation task, Video-Text to Speech (VTTS): speech generation conditioned on both its corresponding text and video of talking people. The ultimate goal is to generate speech that not only follows the text but also aligns temporally with the video and is consistent with the facial expressions. In this paper, we first introduce Visatronic, a unified multimodal decoder-only transformer model that adopts an LLM-style architecture to embed visual, textual, and speech inputs into a shared subspace, treating all modalities as temporally aligned token streams. Next, we carefully explore different token mixing strategies to understand the best way to propagate information from the steps where video and text conditioning is input to the steps where the audio is generated. We extensively evaluate Visatronic on the challenging VoxCeleb2 dataset and demonstrate zero-shot generalization to LRS3, where Visatronic, trained on VoxCeleb2, achieves a 4.5% WER, outperforming prior SOTA methods trained only on LRS3, which report a 21.4% WER. Additionally, we propose a new objective metric, TimeSync, specifically designed to measure phoneme-level temporal alignment between generated and reference speech, further ensuring synchronization quality. Demo: https://apple.github.io/visatronic-demo/
♻ ☆ Satellite Imagery and AI: A New Era in Ocean Conservation, from Research to Deployment and Impact (Version. 2.0) NeurIPS
Illegal, unreported, and unregulated (IUU) fishing poses a global threat to ocean habitats. Publicly available satellite data offered by NASA, the European Space Agency (ESA), and the U.S. Geological Survey (USGS), provide an opportunity to actively monitor this activity. Effectively leveraging satellite data for maritime conservation requires highly reliable machine learning models operating globally with minimal latency. This paper introduces four specialized computer vision models designed for a variety of sensors including Sentinel-1 (synthetic aperture radar), Sentinel-2 (optical imagery), Landsat 8-9 (optical imagery), and Suomi-NPP/NOAA-20/NOAA-21 (nighttime lights). It also presents best practices for developing and deploying global-scale real-time satellite based computer vision. All of the models are open sourced under permissive licenses. These models have all been deployed in Skylight, a real-time maritime monitoring platform, which is provided at no cost to users worldwide.
comment: 8 pages, 3 figures, NeurIPS Computational Sustainability 2023 best paper
♻ ☆ BrainMRDiff: A Diffusion Model for Anatomically Consistent Brain MRI Synthesis
Accurate brain tumor diagnosis relies on the assessment of multiple Magnetic Resonance Imaging (MRI) sequences. However, in clinical practice, the acquisition of certain sequences may be affected by factors like motion artifacts or contrast agent contraindications, leading to suboptimal outcome, such as poor image quality. This can then affect image interpretation by radiologists. Synthesizing high quality MRI sequences has thus become a critical research focus. Though recent advancements in controllable generative AI have facilitated the synthesis of diagnostic quality MRI, ensuring anatomical accuracy remains a significant challenge. Preserving critical structural relationships between different anatomical regions is essential, as even minor structural or topological inconsistencies can compromise diagnostic validity. In this work, we propose BrainMRDiff, a novel topology-preserving, anatomy-guided diffusion model for synthesizing brain MRI, leveraging brain and tumor anatomies as conditioning inputs. To achieve this, we introduce two key modules: Tumor+Structure Aggregation (TSA) and Topology-Guided Anatomy Preservation (TGAP). TSA integrates diverse anatomical structures with tumor information, forming a comprehensive conditioning mechanism for the diffusion process. TGAP enforces topological consistency during reverse denoising diffusion process; both these modules ensure that the generated image respects anatomical integrity. Experimental results demonstrate that BrainMRDiff surpasses existing baselines, achieving performance improvements of 23.33% on the BraTS-AG dataset and 33.33% on the BraTS-Met dataset. Code will be made publicly available soon.
♻ ☆ CVOCSemRPL: Class-Variance Optimized Clustering, Semantic Information Injection and Restricted Pseudo Labeling based Improved Semi-Supervised Few-Shot Learning
Few-shot learning has been extensively explored to address problems where the amount of labeled samples is very limited for some classes. In the semi-supervised few-shot learning setting, substantial quantities of unlabeled samples are available. Such unlabeled samples are generally cheaper to obtain and can be used to improve the few-shot learning performance of the model. Some of the recent methods for this setting rely on clustering to generate pseudo-labels for the unlabeled samples. Since the effectiveness of clustering heavily influences the labeling of the unlabeled samples, it can significantly affect the few-shot learning performance. In this paper, we focus on improving the representation learned by the model in order to improve the clustering and, consequently, the model performance. We propose an approach for semi-supervised few-shot learning that performs a class-variance optimized clustering coupled with a cluster separation tuner in order to improve the effectiveness of clustering the labeled and unlabeled samples in this setting. It also optimizes the clustering-based pseudo-labeling process using a restricted pseudo-labeling approach and performs semantic information injection in order to improve the semi-supervised few-shot learning performance of the model. We experimentally demonstrate that our proposed approach significantly outperforms recent state-of-the-art methods on the benchmark datasets.
SIGHT: Synthesizing Image-Text Conditioned and Geometry-Guided 3D Hand-Object Trajectories
When humans grasp an object, they naturally form trajectories in their minds to manipulate it for specific tasks. Modeling hand-object interaction priors holds significant potential to advance robotic and embodied AI systems in learning to operate effectively within the physical world. We introduce SIGHT, a novel task focused on generating realistic and physically plausible 3D hand-object interaction trajectories from a single image and a brief language-based task description. Prior work on hand-object trajectory generation typically relies on textual input that lacks explicit grounding to the target object, or assumes access to 3D object meshes, which are often considerably more difficult to obtain than 2D images. We propose SIGHT-Fusion, a novel diffusion-based image-text conditioned generative model that tackles this task by retrieving the most similar 3D object mesh from a database and enforcing geometric hand-object interaction constraints via a novel inference-time diffusion guidance. We benchmark our model on the HOI4D and H2O datasets, adapting relevant baselines for this novel task. Experiments demonstrate our superior performance in the diversity and quality of generated trajectories, as well as in hand-object interaction geometry metrics.
♻ ☆ PanopticNeRF-360: Panoramic 3D-to-2D Label Transfer in Urban Scenes
Training perception systems for self-driving cars requires substantial 2D annotations that are labor-intensive to manual label. While existing datasets provide rich annotations on pre-recorded sequences, they fall short in labeling rarely encountered viewpoints, potentially hampering the generalization ability for perception models. In this paper, we present PanopticNeRF-360, a novel approach that combines coarse 3D annotations with noisy 2D semantic cues to generate high-quality panoptic labels and images from any viewpoint. Our key insight lies in exploiting the complementarity of 3D and 2D priors to mutually enhance geometry and semantics. Specifically, we propose to leverage coarse 3D bounding primitives and noisy 2D semantic and instance predictions to guide geometry optimization, by encouraging predicted labels to match panoptic pseudo ground truth. Simultaneously, the improved geometry assists in filtering 3D&2D annotation noise by fusing semantics in 3D space via a learned semantic field. To further enhance appearance, we combine MLP and hash grids to yield hybrid scene features, striking a balance between high-frequency appearance and contiguous semantics. Our experiments demonstrate PanopticNeRF-360's state-of-the-art performance over label transfer methods on the challenging urban scenes of the KITTI-360 dataset. Moreover, PanopticNeRF-360 enables omnidirectional rendering of high-fidelity, multi-view and spatiotemporally consistent appearance, semantic and instance labels. We make our code and data available at https://github.com/fuxiao0719/PanopticNeRF
comment: Project page: http://fuxiao0719.github.io/projects/panopticnerf360/ Code: https://github.com/fuxiao0719/PanopticNeRF/tree/panopticnerf360 (Minor Revision). arXiv admin note: text overlap with arXiv:2203.15224
♻ ☆ SynTable: A Synthetic Data Generation Pipeline for Unseen Object Amodal Instance Segmentation of Cluttered Tabletop Scenes CVPR 2025
In this work, we present SynTable, a unified and flexible Python-based dataset generator built using NVIDIA's Isaac Sim Replicator Composer for generating high-quality synthetic datasets for unseen object amodal instance segmentation of cluttered tabletop scenes. Our dataset generation tool can render complex 3D scenes containing object meshes, materials, textures, lighting, and backgrounds. Metadata, such as modal and amodal instance segmentation masks, object amodal RGBA instances, occlusion masks, depth maps, bounding boxes, and material properties can be automatically generated to annotate the scene according to the users' requirements. Our tool eliminates the need for manual labeling in the dataset generation process while ensuring the quality and accuracy of the dataset. In this work, we discuss our design goals, framework architecture, and the performance of our tool. We demonstrate the use of a sample dataset generated using SynTable for training a state-of-the-art model, UOAIS-Net. Our state-of-the-art results show significantly improved performance in Sim-to-Real transfer when evaluated on the OSD-Amodal dataset. We offer this tool as an open-source, easy-to-use, photorealistic dataset generator for advancing research in deep learning and synthetic data generation. The links to our source code, demonstration video, and sample dataset can be found in the supplementary materials.
comment: Camera-ready version for SynData4CV Workshop @ CVPR 2025. 18 Pages, 11 figures
♻ ☆ UniViTAR: Unified Vision Transformer with Native Resolution
Conventional Vision Transformer simplifies visual modeling by standardizing input resolutions, often disregarding the variability of natural visual data and compromising spatial-contextual fidelity. While preliminary explorations have superficially investigated native resolution modeling, existing approaches still lack systematic analysis from a visual representation perspective. To bridge this gap, we introduce UniViTAR, a family of homogeneous vision foundation models tailored for unified visual modality and native resolution scenario in the era of multimodal. Our framework first conducts architectural upgrades to the vanilla paradigm by integrating multiple advanced components. Building upon these improvements, a progressive training paradigm is introduced, which strategically combines two core mechanisms: (1) resolution curriculum learning, transitioning from fixed-resolution pretraining to native resolution tuning, thereby leveraging ViT's inherent adaptability to variable-length sequences, and (2) visual modality adaptation via inter-batch image-video switching, which balances computational efficiency with enhanced temporal reasoning. In parallel, a hybrid training framework further synergizes sigmoid-based contrastive loss with feature distillation from a frozen teacher model, thereby accelerating early-stage convergence. Finally, trained exclusively on public datasets, externsive experiments across multiple model scales from 0.3B to 1B demonstrate its effectiveness.
♻ ☆ Position: Interactive Generative Video as Next-Generation Game Engine
Modern game development faces significant challenges in creativity and cost due to predetermined content in traditional game engines. Recent breakthroughs in video generation models, capable of synthesizing realistic and interactive virtual environments, present an opportunity to revolutionize game creation. In this position paper, we propose Interactive Generative Video (IGV) as the foundation for Generative Game Engines (GGE), enabling unlimited novel content generation in next-generation gaming. GGE leverages IGV's unique strengths in unlimited high-quality content synthesis, physics-aware world modeling, user-controlled interactivity, long-term memory capabilities, and causal reasoning. We present a comprehensive framework detailing GGE's core modules and a hierarchical maturity roadmap (L0-L4) to guide its evolution. Our work charts a new course for game development in the AI era, envisioning a future where AI-powered generative systems fundamentally reshape how games are created and experienced.
♻ ☆ RefCut: Interactive Segmentation with Reference Guidance
Interactive segmentation aims to segment the specified target on the image with positive and negative clicks from users. Interactive ambiguity is a crucial issue in this field, which refers to the possibility of multiple compliant outcomes with the same clicks, such as selecting a part of an object versus the entire object, a single object versus a combination of multiple objects, and so on. The existing methods cannot provide intuitive guidance to the model, which leads to unstable output results and makes it difficult to meet the large-scale and efficient annotation requirements for specific targets in some scenarios. To bridge this gap, we introduce RefCut, a reference-based interactive segmentation framework designed to address part ambiguity and object ambiguity in segmenting specific targets. Users only need to provide a reference image and corresponding reference masks, and the model will be optimized based on them, which greatly reduces the interactive burden on users when annotating a large number of such targets. In addition, to enrich these two kinds of ambiguous data, we propose a new Target Disassembly Dataset which contains two subsets of part disassembly and object disassembly for evaluation. In the combination evaluation of multiple datasets, our RefCut achieved state-of-the-art performance. Extensive experiments and visualized results demonstrate that RefCut advances the field of intuitive and controllable interactive segmentation. Our code will be publicly available and the demo video is in https://www.lin-zheng.com/refcut.
♻ ☆ A Benchmark and Evaluation for Real-World Out-of-Distribution Detection Using Vision-Language Models ICIP2025
Out-of-distribution (OOD) detection is a task that detects OOD samples during inference to ensure the safety of deployed models. However, conventional benchmarks have reached performance saturation, making it difficult to compare recent OOD detection methods. To address this challenge, we introduce three novel OOD detection benchmarks that enable a deeper understanding of method characteristics and reflect real-world conditions. First, we present ImageNet-X, designed to evaluate performance under challenging semantic shifts. Second, we propose ImageNet-FS-X for full-spectrum OOD detection, assessing robustness to covariate shifts (feature distribution shifts). Finally, we propose Wilds-FS-X, which extends these evaluations to real-world datasets, offering a more comprehensive testbed. Our experiments reveal that recent CLIP-based OOD detection methods struggle to varying degrees across the three proposed benchmarks, and none of them consistently outperforms the others. We hope the community goes beyond specific benchmarks and includes more challenging conditions reflecting real-world scenarios. The code is https://github.com/hoshi23/OOD-X-Benchmarks.
comment: Accepted at ICIP2025 Dataset and Benchmark Track
♻ ☆ Diffusion Sampling Correction via Approximately 10 Parameters ICML 2025
While powerful for generation, Diffusion Probabilistic Models (DPMs) face slow sampling challenges, for which various distillation-based methods have been proposed. However, they typically require significant additional training costs and model parameter storage, limiting their practicality. In this work, we propose PCA-based Adaptive Search (PAS), which optimizes existing solvers for DPMs with minimal additional costs. Specifically, we first employ PCA to obtain a few basis vectors to span the high-dimensional sampling space, which enables us to learn just a set of coordinates to correct the sampling direction; furthermore, based on the observation that the cumulative truncation error exhibits an ``S"-shape, we design an adaptive search strategy that further enhances the sampling efficiency and reduces the number of stored parameters to approximately 10. Extensive experiments demonstrate that PAS can significantly enhance existing fast solvers in a plug-and-play manner with negligible costs. E.g., on CIFAR10, PAS optimizes DDIM's FID from 15.69 to 4.37 (NFE=10) using only 12 parameters and sub-minute training on a single A100 GPU. Code is available at https://github.com/onefly123/PAS.
comment: Accepted at ICML 2025
♻ ☆ ReDDiT: Rehashing Noise for Discrete Visual Generation
Discrete diffusion models are gaining traction in the visual generative area for their efficiency and compatibility. However, the pioneered attempts still fall behind the continuous counterparts, which we attribute to the noise (absorbing state) design and sampling heuristics. In this study, we propose the rehashing noise framework for discrete diffusion transformer, termed ReDDiT, to extend absorbing states and improve expressive capacity of discrete diffusion models. ReDDiT enriches the potential paths that latent variables can traverse during training with randomized multi-index corruption. The derived rehash sampler, which reverses the randomized absorbing paths, guarantees the diversity and low discrepancy of the generation process. These reformulations lead to more consistent and competitive generation quality, mitigating the need for heavily tuned randomness. Experiments show that ReDDiT significantly outperforms the baseline (reducing gFID from 6.18 to 1.61) and is on par with the continuous counterparts with higher efficiency.
comment: Preprint. Check out our project page at github.com/martian422/ReDDiT
It's a (Blind) Match! Towards Vision-Language Correspondence without Parallel Data CVPR 2025
The platonic representation hypothesis suggests that vision and language embeddings become more homogeneous as model and dataset sizes increase. In particular, pairwise distances within each modality become more similar. This suggests that as foundation models mature, it may become possible to match vision and language embeddings in a fully unsupervised fashion, i.e. without parallel data. We present the first feasibility study, and investigate conformity of existing vision and language foundation models in the context of unsupervised, or "blind", matching. First, we formulate unsupervised matching as a quadratic assignment problem and introduce a novel heuristic that outperforms previous solvers. We also develop a technique to find optimal matching problems, for which a non-trivial match is very likely. Second, we conduct an extensive study deploying a range of vision and language models on four datasets. Our analysis reveals that for many problem instances, vision and language representations can be indeed matched without supervision. This finding opens up the exciting possibility of embedding semantic knowledge into other modalities virtually annotation-free. As a proof of concept, we showcase an unsupervised classifier, which achieves non-trivial classification accuracy without any image-text annotation.
comment: Accepted to CVPR 2025, Project page: https://dominik-schnaus.github.io/itsamatch/
♻ ☆ NACHOS: Neural Architecture Search for Hardware Constrained Early Exit Neural Networks
Early Exit Neural Networks (EENNs) endow astandard Deep Neural Network (DNN) with Early Exit Classifiers (EECs), to provide predictions at intermediate points of the processing when enough confidence in classification is achieved. This leads to many benefits in terms of effectiveness and efficiency. Currently, the design of EENNs is carried out manually by experts, a complex and time-consuming task that requires accounting for many aspects, including the correct placement, the thresholding, and the computational overhead of the EECs. For this reason, the research is exploring the use of Neural Architecture Search (NAS) to automatize the design of EENNs. Currently, few comprehensive NAS solutions for EENNs have been proposed in the literature, and a fully automated, joint design strategy taking into consideration both the backbone and the EECs remains an open problem. To this end, this work presents Neural Architecture Search for Hardware Constrained Early Exit Neural Networks (NACHOS), the first NAS framework for the design of optimal EENNs satisfying constraints on the accuracy and the number of Multiply and Accumulate (MAC) operations performed by the EENNs at inference time. In particular, this provides the joint design of backbone and EECs to select a set of admissible (i.e., respecting the constraints) Pareto Optimal Solutions in terms of best tradeoff between the accuracy and number of MACs. The results show that the models designed by NACHOS are competitive with the state-of-the-art EENNs. Additionally, this work investigates the effectiveness of two novel regularization terms designed for the optimization of the auxiliary classifiers of the EENN
comment: 14 pages, 5 figures
♻ ☆ An AI System for Continuous Knee Osteoarthritis Severity Grading Using Self-Supervised Anomaly Detection with Limited Data
The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the 'normal' representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as 'normal' or 'anomalous', followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis.
♻ ☆ Erasing Concepts, Steering Generations: A Comprehensive Survey of Concept Suppression
Text-to-Image (T2I) models have demonstrated impressive capabilities in generating high-quality and diverse visual content from natural language prompts. However, uncontrolled reproduction of sensitive, copyrighted, or harmful imagery poses serious ethical, legal, and safety challenges. To address these concerns, the concept erasure paradigm has emerged as a promising direction, enabling the selective removal of specific semantic concepts from generative models while preserving their overall utility. This survey provides a comprehensive overview and in-depth synthesis of concept erasure techniques in T2I diffusion models. We systematically categorize existing approaches along three key dimensions: intervention level, which identifies specific model components targeted for concept removal; optimization structure, referring to the algorithmic strategies employed to achieve suppression; and semantic scope, concerning the complexity and nature of the concepts addressed. This multi-dimensional taxonomy enables clear, structured comparisons across diverse methodologies, highlighting fundamental trade-offs between erasure specificity, generalization, and computational complexity. We further discuss current evaluation benchmarks, standardized metrics, and practical datasets, emphasizing gaps that limit comprehensive assessment, particularly regarding robustness and practical effectiveness. Finally, we outline major challenges and promising future directions, including disentanglement of concept representations, adaptive and incremental erasure strategies, adversarial robustness, and new generative architectures. This survey aims to guide researchers toward safer, more ethically aligned generative models, providing foundational knowledge and actionable recommendations to advance responsible development in generative AI.
♻ ☆ Circumventing shortcuts in audio-visual deepfake detection datasets with unsupervised learning CVPR
Good datasets are essential for developing and benchmarking any machine learning system. Their importance is even more extreme for safety critical applications such as deepfake detection - the focus of this paper. Here we reveal that two of the most widely used audio-video deepfake datasets suffer from a previously unidentified spurious feature: the leading silence. Fake videos start with a very brief moment of silence and based on this feature alone, we can separate the real and fake samples almost perfectly. As such, previous audio-only and audio-video models exploit the presence of silence in the fake videos and consequently perform worse when the leading silence is removed. To circumvent latching on such unwanted artifact and possibly other unrevealed ones we propose a shift from supervised to unsupervised learning by training models exclusively on real data. We show that by aligning self-supervised audio-video representations we remove the risk of relying on dataset-specific biases and improve robustness in deepfake detection.
comment: Accepted as a highlight paper at the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
♻ ☆ A False Discovery Rate Control Method Using a Fully Connected Hidden Markov Random Field for Neuroimaging Data
False discovery rate (FDR) control methods are essential for voxel-wise multiple testing in neuroimaging data analysis, where hundreds of thousands or even millions of tests are conducted to detect brain regions associated with disease-related changes. Classical FDR control methods (e.g., BH, q-value, and LocalFDR) assume independence among tests and often lead to high false non-discovery rates (FNR). Although various spatial FDR control methods have been developed to improve power, they still fall short of jointly addressing three major challenges in neuroimaging applications: capturing complex spatial dependencies, maintaining low variability in both false discovery proportion (FDP) and false non-discovery proportion (FNP) across replications, and achieving computational scalability for high-resolution data. To address these challenges, we propose fcHMRF-LIS, a powerful, stable, and scalable spatial FDR control method for voxel-wise multiple testing. It integrates the local index of significance (LIS)-based testing procedure with a novel fully connected hidden Markov random field (fcHMRF) designed to model complex spatial structures using a parsimonious parameterization. We develop an efficient expectation-maximization algorithm incorporating mean-field approximation, the Conditional Random Fields as Recurrent Neural Networks (CRF-RNN) technique, and permutohedral lattice filtering, reducing the time complexity from quadratic to linear in the number of tests. Extensive simulations demonstrate that fcHMRF-LIS achieves accurate FDR control, lower FNR, reduced variability in FDP and FNP, and a higher number of true positives compared to existing methods. Applied to an FDG-PET dataset from the Alzheimer's Disease Neuroimaging Initiative, fcHMRF-LIS identifies neurobiologically relevant brain regions and offers notable advantages in computational efficiency.
♻ ☆ Robustness-enhanced Myoelectric Control with GAN-based Open-set Recognition
Electromyography (EMG) signals are widely used in human motion recognition and medical rehabilitation, yet their variability and susceptibility to noise significantly limit the reliability of myoelectric control systems. Existing recognition algorithms often fail to handle unfamiliar actions effectively, leading to system instability and errors. This paper proposes a novel framework based on Generative Adversarial Networks (GANs) to enhance the robustness and usability of myoelectric control systems by enabling open-set recognition. The method incorporates a GAN-based discriminator to identify and reject unknown actions, maintaining system stability by preventing misclassifications. Experimental evaluations on publicly available and self-collected datasets demonstrate a recognition accuracy of 97.6\% for known actions and a 23.6\% improvement in Active Error Rate (AER) after rejecting unknown actions. The proposed approach is computationally efficient and suitable for deployment on edge devices, making it practical for real-world applications.
comment: 11 pages, 14 figures
♻ ☆ Compositional Scene Understanding through Inverse Generative Modeling ICML 2025
Generative models have demonstrated remarkable abilities in generating high-fidelity visual content. In this work, we explore how generative models can further be used not only to synthesize visual content but also to understand the properties of a scene given a natural image. We formulate scene understanding as an inverse generative modeling problem, where we seek to find conditional parameters of a visual generative model to best fit a given natural image. To enable this procedure to infer scene structure from images substantially different than those seen during training, we further propose to build this visual generative model compositionally from smaller models over pieces of a scene. We illustrate how this procedure enables us to infer the set of objects in a scene, enabling robust generalization to new test scenes with an increased number of objects of new shapes. We further illustrate how this enables us to infer global scene factors, likewise enabling robust generalization to new scenes. Finally, we illustrate how this approach can be directly applied to existing pretrained text-to-image generative models for zero-shot multi-object perception. Code and visualizations are at https://energy-based-model.github.io/compositional-inference.
comment: ICML 2025, Webpage: https://energy-based-model.github.io/compositional-inference
♻ ☆ Retrieval Visual Contrastive Decoding to Mitigate Object Hallucinations in Large Vision-Language Models ACL 2025
Despite significant advancements in Large Vision-Language Models, Object Hallucination (OH) remains a persistent challenge. Building upon prior studies on contrastive decoding that address this issue without requiring additional model training, we introduce RVCD (Retrieval Visual Contrastive Decoding), an advanced method to suppress OH. RVCD leverages both negative and positive images at the logit level, explicitly referencing AI-generated images designed to represent a single concept. Our approach demonstrates substantial improvements over existing decoding-based methods.
comment: ACL 2025 Findings camera-ready version. Code is released at https://github.com/JiHoonLee9898/RVCD
♻ ☆ ProDisc-VAD: An Efficient System for Weakly-Supervised Anomaly Detection in Video Surveillance Applications
Weakly-supervised video anomaly detection (WS-VAD) using Multiple Instance Learning (MIL) suffers from label ambiguity, hindering discriminative feature learning. We propose ProDisc-VAD, an efficient framework tackling this via two synergistic components. The Prototype Interaction Layer (PIL) provides controlled normality modeling using a small set of learnable prototypes, establishing a robust baseline without being overwhelmed by dominant normal data. The Pseudo-Instance Discriminative Enhancement (PIDE) loss boosts separability by applying targeted contrastive learning exclusively to the most reliable extreme-scoring instances (highest/lowest scores). ProDisc-VAD achieves strong AUCs (97.98% ShanghaiTech, 87.12% UCF-Crime) using only 0.4M parameters, over 800x fewer than recent ViT-based methods like VadCLIP, demonstrating exceptional efficiency alongside state-of-the-art performance. Code is available at https://github.com/modadundun/ProDisc-VAD.
comment: A newly identified systematic error in our data processing pipeline has affected the calculation and reporting of AUC metrics (notably in Tables [1, 2]). This significantly impacts our main experimental results and conclusions, compromising their reliability. To ensure academic rigor and prevent misleading information, this manuscript is withdrawn for thorough correction and re-evaluation
♻ ☆ ReassembleNet: Learnable Keypoints and Diffusion for 2D Fresco Reconstruction
The task of reassembly is a significant challenge across multiple domains, including archaeology, genomics, and molecular docking, requiring the precise placement and orientation of elements to reconstruct an original structure. In this work, we address key limitations in state-of-the-art Deep Learning methods for reassembly, namely i) scalability; ii) multimodality; and iii) real-world applicability: beyond square or simple geometric shapes, realistic and complex erosion, or other real-world problems. We propose ReassembleNet, a method that reduces complexity by representing each input piece as a set of contour keypoints and learning to select the most informative ones by Graph Neural Networks pooling inspired techniques. ReassembleNet effectively lowers computational complexity while enabling the integration of features from multiple modalities, including both geometric and texture data. Further enhanced through pretraining on a semi-synthetic dataset. We then apply diffusion-based pose estimation to recover the original structure. We improve on prior methods by 55% and 86% for RMSE Rotation and Translation, respectively.
♻ ☆ Agentic Knowledgeable Self-awareness ACL 2025
Large Language Models (LLMs) have achieved considerable performance across various agentic planning tasks. However, traditional agent planning approaches adopt a "flood irrigation" methodology that indiscriminately injects gold trajectories, external feedback, and domain knowledge into agent models. This practice overlooks the fundamental human cognitive principle of situational self-awareness during decision-making-the ability to dynamically assess situational demands and strategically employ resources during decision-making. We propose agentic knowledgeable self-awareness to address this gap, a novel paradigm enabling LLM-based agents to autonomously regulate knowledge utilization. Specifically, we propose KnowSelf, a data-centric approach that applies agents with knowledgeable self-awareness like humans. Concretely, we devise a heuristic situation judgement criterion to mark special tokens on the agent's self-explored trajectories for collecting training data. Through a two-stage training process, the agent model can switch between different situations by generating specific special tokens, achieving optimal planning effects with minimal costs. Our experiments demonstrate that KnowSelf can outperform various strong baselines on different tasks and models with minimal use of external knowledge. Code is available at https://github.com/zjunlp/KnowSelf.
comment: ACL 2025
♻ ☆ SeeGround: See and Ground for Zero-Shot Open-Vocabulary 3D Visual Grounding CVPR 2025
3D Visual Grounding (3DVG) aims to locate objects in 3D scenes based on textual descriptions, essential for applications like augmented reality and robotics. Traditional 3DVG approaches rely on annotated 3D datasets and predefined object categories, limiting scalability and adaptability. To overcome these limitations, we introduce SeeGround, a zero-shot 3DVG framework leveraging 2D Vision-Language Models (VLMs) trained on large-scale 2D data. SeeGround represents 3D scenes as a hybrid of query-aligned rendered images and spatially enriched text descriptions, bridging the gap between 3D data and 2D-VLMs input formats. We propose two modules: the Perspective Adaptation Module, which dynamically selects viewpoints for query-relevant image rendering, and the Fusion Alignment Module, which integrates 2D images with 3D spatial descriptions to enhance object localization. Extensive experiments on ScanRefer and Nr3D demonstrate that our approach outperforms existing zero-shot methods by large margins. Notably, we exceed weakly supervised methods and rival some fully supervised ones, outperforming previous SOTA by 7.7% on ScanRefer and 7.1% on Nr3D, showcasing its effectiveness in complex 3DVG tasks.
comment: CVPR 2025; 21 pages, 10 figures, 10 tables; Code at https://seeground.github.io/
♻ ☆ RingMo-Aerial: An Aerial Remote Sensing Foundation Model With Affine Transformation Contrastive Learning
Aerial Remote Sensing (ARS) vision tasks pose significant challenges due to the unique characteristics of their viewing angles. Existing research has primarily focused on algorithms for specific tasks, which have limited applicability in a broad range of ARS vision applications. This paper proposes the RingMo-Aerial model, aiming to fill the gap in foundation model research in the field of ARS vision. By introducing the Frequency-Enhanced Multi-Head Self-Attention (FE-MSA) mechanism and an affine transformation-based contrastive learning pre-training method, the model's detection capability for small targets is enhanced and optimized for the tilted viewing angles characteristic of ARS. Furthermore, the ARS-Adapter, an efficient parameter fine-tuning method, is proposed to improve the model's adaptability and effectiveness in various ARS vision tasks. Experimental results demonstrate that RingMo-Aerial achieves SOTA performance on multiple downstream tasks. This indicates the practicality and efficacy of RingMo-Aerial in enhancing the performance of ARS vision tasks.
♻ ☆ Toward Robust Hyper-Detailed Image Captioning: A Multiagent Approach and Dual Evaluation Metrics for Factuality and Coverage ICML 2025
Multimodal large language models (MLLMs) excel at generating highly detailed captions but often produce hallucinations. Our analysis reveals that existing hallucination detection methods struggle with detailed captions. We attribute this to the increasing reliance of MLLMs on their generated text, rather than the input image, as the sequence length grows. To address this issue, we propose a multiagent approach that leverages LLM-MLLM collaboration to correct given captions. Additionally, we introduce an evaluation framework and a benchmark dataset to facilitate the systematic analysis of detailed captions. Our experiments demonstrate that our proposed evaluation method better aligns with human judgments of factuality than existing metrics and that existing approaches to improve the MLLM factuality may fall short in hyper-detailed image captioning tasks. In contrast, our proposed method significantly enhances the factual accuracy of captions, even improving those generated by GPT-4V. Finally, we highlight a limitation of VQA-centric benchmarking by demonstrating that an MLLM's performance on VQA benchmarks may not correlate with its ability to generate detailed image captions.
comment: ICML 2025
♻ ☆ FlexEvent: Towards Flexible Event-Frame Object Detection at Varying Operational Frequencies
Event cameras offer unparalleled advantages for real-time perception in dynamic environments, thanks to the microsecond-level temporal resolution and asynchronous operation. Existing event detectors, however, are limited by fixed-frequency paradigms and fail to fully exploit the high-temporal resolution and adaptability of event data. To address these limitations, we propose FlexEvent, a novel framework that enables detection at varying frequencies. Our approach consists of two key components: FlexFuse, an adaptive event-frame fusion module that integrates high-frequency event data with rich semantic information from RGB frames, and FlexTune, a frequency-adaptive fine-tuning mechanism that generates frequency-adjusted labels to enhance model generalization across varying operational frequencies. This combination allows our method to detect objects with high accuracy in both fast-moving and static scenarios, while adapting to dynamic environments. Extensive experiments on large-scale event camera datasets demonstrate that our approach surpasses state-of-the-art methods, achieving significant improvements in both standard and high-frequency settings. Notably, our method maintains robust performance when scaling from 20 Hz to 90 Hz and delivers accurate detection up to 180 Hz, proving its effectiveness in extreme conditions. Our framework sets a new benchmark for event-based object detection and paves the way for more adaptable, real-time vision systems. Code is publicly available.
comment: Preprint; 27 pages, 14 figures, 10 tables; Code at https://flexevent.github.io/
♻ ☆ Dual Data Alignment Makes AI-Generated Image Detector Easier Generalizable
Existing detectors are often trained on biased datasets, leading to the possibility of overfitting on non-causal image attributes that are spuriously correlated with real/synthetic labels. While these biased features enhance performance on the training data, they result in substantial performance degradation when applied to unbiased datasets. One common solution is to perform dataset alignment through generative reconstruction, matching the semantic content between real and synthetic images. However, we revisit this approach and show that pixel-level alignment alone is insufficient. The reconstructed images still suffer from frequency-level misalignment, which can perpetuate spurious correlations. To illustrate, we observe that reconstruction models tend to restore the high-frequency details lost in real images (possibly due to JPEG compression), inadvertently creating a frequency-level misalignment, where synthetic images appear to have richer high-frequency content than real ones. This misalignment leads to models associating high-frequency features with synthetic labels, further reinforcing biased cues. To resolve this, we propose Dual Data Alignment (DDA), which aligns both the pixel and frequency domains. Moreover, we introduce two new test sets: DDA-COCO, containing DDA-aligned synthetic images for testing detector performance on the most aligned dataset, and EvalGEN, featuring the latest generative models for assessing detectors under new generative architectures such as visual auto-regressive generators. Finally, our extensive evaluations demonstrate that a detector trained exclusively on DDA-aligned MSCOCO could improve across 8 diverse benchmarks by a non-trivial margin, showing a +7.2% on in-the-wild benchmarks, highlighting the improved generalizability of unbiased detectors.
comment: 12 Pages, 9 figures
♻ ☆ Right Side Up? Disentangling Orientation Understanding in MLLMs with Fine-grained Multi-axis Perception Tasks
Object orientation understanding represents a fundamental challenge in visual perception critical for applications like robotic manipulation and augmented reality. Current vision-language benchmarks fail to isolate this capability, often conflating it with positional relationships and general scene understanding. We introduce DORI (Discriminative Orientation Reasoning Intelligence), a comprehensive benchmark establishing object orientation perception as a primary evaluation target. DORI assesses four dimensions of orientation comprehension: frontal alignment, rotational transformations, relative directional relationships, and canonical orientation understanding. Through carefully curated tasks from 11 datasets spanning 67 object categories across synthetic and real-world scenarios, DORI provides insights on how multi-modal systems understand object orientations. Our evaluation of 15 state-of-the-art vision-language models reveals critical limitations: even the best models achieve only 54.2% accuracy on coarse tasks and 33.0% on granular orientation judgments, with performance deteriorating for tasks requiring reference frame shifts or compound rotations. These findings demonstrate the need for dedicated orientation representation mechanisms, as models show systematic inability to perform precise angular estimations, track orientation changes across viewpoints, and understand compound rotations - suggesting limitations in their internal 3D spatial representations. As the first diagnostic framework specifically designed for orientation awareness in multimodal systems, DORI offers implications for improving robotic control, 3D scene reconstruction, and human-AI interaction in physical environments. DORI data: https://huggingface.co/datasets/appledora/DORI-Benchmark
♻ ☆ ReferDINO-Plus: 2nd Solution for 4th PVUW MeViS Challenge at CVPR 2025
Referring Video Object Segmentation (RVOS) aims to segment target objects throughout a video based on a text description. This task has attracted increasing attention in the field of computer vision due to its promising applications in video editing and human-agent interaction. Recently, ReferDINO has demonstrated promising performance in this task by adapting object-level vision-language knowledge from pretrained foundational image models. In this report, we further enhance its capabilities by incorporating the advantages of SAM2 in mask quality and object consistency. In addition, to effectively balance performance between single-object and multi-object scenarios, we introduce a conditional mask fusion strategy that adaptively fuses the masks from ReferDINO and SAM2. Our solution, termed ReferDINO-Plus, achieves 60.43 \(\mathcal{J}\&\mathcal{F}\) on MeViS test set, securing 2nd place in the MeViS PVUW challenge at CVPR 2025. The code is available at: https://github.com/iSEE-Laboratory/ReferDINO-Plus.
♻ ☆ Information Entropy Guided Height-aware Histogram for Quantization-friendly Pillar Feature Encoder
Real-time and high-performance 3D object detection plays a critical role in autonomous driving and robotics. Recent pillar-based 3D object detectors have gained significant attention due to their compact representation and low computational overhead, making them suitable for onboard deployment and quantization. However, existing pillar-based detectors still suffer from information loss along height dimension and large numerical distribution difference during pillar feature encoding (PFE), which severely limits their performance and quantization potential. To address above issue, we first unveil the importance of different input information during PFE and identify the height dimension as a key factor in enhancing 3D detection performance. Motivated by this observation, we propose a height-aware pillar feature encoder, called PillarHist. Specifically, PillarHist statistics the discrete distribution of points at different heights within one pillar with the information entropy guidance. This simple yet effective design greatly preserves the information along the height dimension while significantly reducing the computation overhead of the PFE. Meanwhile, PillarHist also constrains the arithmetic distribution of PFE input to a stable range, making it quantization-friendly. Notably, PillarHist operates exclusively within the PFE stage to enhance performance, enabling seamless integration into existing pillar-based methods without introducing complex operations. Extensive experiments show the effectiveness of PillarHist in terms of both efficiency and performance.
♻ ☆ Calibrating Undisciplined Over-Smoothing in Transformer for Weakly Supervised Semantic Segmentation
Weakly supervised semantic segmentation (WSSS) has recently attracted considerable attention because it requires fewer annotations than fully supervised approaches, making it especially promising for large-scale image segmentation tasks. Although many vision transformer-based methods leverage self-attention affinity matrices to refine Class Activation Maps (CAMs), they often treat each layer's affinity equally and thus introduce considerable background noise at deeper layers, where attention tends to converge excessively on certain tokens (i.e., over-smoothing). We observe that this deep-level attention naturally converges on a subset of tokens, yet unregulated query-key affinity can generate unpredictable activation patterns (undisciplined over-smoothing), adversely affecting CAM accuracy. To address these limitations, we propose an Adaptive Re-Activation Mechanism (AReAM), which exploits shallow-level affinity to guide deeper-layer convergence in an entropy-aware manner, thereby suppressing background noise and re-activating crucial semantic regions in the CAMs. Experiments on two commonly used datasets demonstrate that AReAM substantially improves segmentation performance compared with existing WSSS methods, reducing noise while sharpening focus on relevant semantic regions. Overall, this work underscores the importance of controlling deep-level attention to mitigate undisciplined over-smoothing, introduces an entropy-aware mechanism that harmonizes shallow and deep-level affinities, and provides a refined approach to enhance transformer-based WSSS accuracy by re-activating CAMs.
♻ ☆ SafeCFG: Controlling Harmful Features with Dynamic Safe Guidance for Safe Generation
Diffusion models (DMs) have demonstrated exceptional performance in text-to-image tasks, leading to their widespread use. With the introduction of classifier-free guidance (CFG), the quality of images generated by DMs is significantly improved. However, one can use DMs to generate more harmful images by maliciously guiding the image generation process through CFG. Existing safe alignment methods aim to mitigate the risk of generating harmful images but often reduce the quality of clean image generation. To address this issue, we propose SafeCFG to adaptively control harmful features with dynamic safe guidance by modulating the CFG generation process. It dynamically guides the CFG generation process based on the harmfulness of the prompts, inducing significant deviations only in harmful CFG generations, achieving high quality and safety generation. SafeCFG can simultaneously modulate different harmful CFG generation processes, so it could eliminate harmful elements while preserving high-quality generation. Additionally, SafeCFG provides the ability to detect image harmfulness, allowing unsupervised safe alignment on DMs without pre-defined clean or harmful labels. Experimental results show that images generated by SafeCFG achieve both high quality and safety, and safe DMs trained in our unsupervised manner also exhibit good safety performance.
♻ ☆ Tracking Progress Towards Sustainable Development Goal 6 Using Satellite Imagery
Clean water and sanitation are essential for health, well-being, and sustainable development, yet significant global disparities persist. Although the United Nations' Sustainable Development Goal (SDG) 6 clearly defines targets for universal access to clean water and sanitation, limitations in data coverage and openness impede accurate tracking of progress in many countries. To bridge these gaps, this study integrates Afrobarometer survey data, satellite imagery from Landsat 8 and Sentinel-2, and advanced deep learning techniques using Meta's self-supervised Distillation with No Labels (DINO) model to develop a modeling framework for evaluating access to piped water and sewage system across diverse African regions. The modeling framework achieved notable accuracy, with over 96% for piped water and 97% for sewage system access classification. When combined with geospatial population data, validation against official statistics from the United Nations Joint Monitoring Program demonstrated high concordance at the national scale (R2 of 0.95 for piped water access and R2 of 0.85 for sewage system access). The national-level estimates can represent SDG Indicators 6.1.1 and 6.2.1. This approach provides policymakers and stakeholders with an effective, scalable, and cost-efficient tool to pinpoint underserved areas requiring targeted intervention. The methodology developed herein can be adapted for assessing other infrastructure-related SDGs, promoting enhanced monitoring and informed decision-making towards achieving global sustainability objectives.
♻ ☆ 3D-UIR: 3D Gaussian for Underwater 3D Scene Reconstruction via Physics Based Appearance-Medium Decoupling
Novel view synthesis for underwater scene reconstruction presents unique challenges due to complex light-media interactions. Optical scattering and absorption in water body bring inhomogeneous medium attenuation interference that disrupts conventional volume rendering assumptions of uniform propagation medium. While 3D Gaussian Splatting (3DGS) offers real-time rendering capabilities, it struggles with underwater inhomogeneous environments where scattering media introduce artifacts and inconsistent appearance. In this study, we propose a physics-based framework that disentangles object appearance from water medium effects through tailored Gaussian modeling. Our approach introduces appearance embeddings, which are explicit medium representations for backscatter and attenuation, enhancing scene consistency. In addition, we propose a distance-guided optimization strategy that leverages pseudo-depth maps as supervision with depth regularization and scale penalty terms to improve geometric fidelity. By integrating the proposed appearance and medium modeling components via an underwater imaging model, our approach achieves both high-quality novel view synthesis and physically accurate scene restoration. Experiments demonstrate our significant improvements in rendering quality and restoration accuracy over existing methods. The project page is available at https://bilityniu.github.io/3D-UIR.
♻ ☆ ChatHuman: Chatting about 3D Humans with Tools
Numerous methods have been proposed to detect, estimate, and analyze properties of people in images, including 3D pose, shape, contact, human-object interaction, and emotion. While widely applicable in vision and other areas, such methods require expert knowledge to select, use, and interpret the results. To address this, we introduce ChatHuman, a language-driven system that integrates the capabilities of specialized methods into a unified framework. ChatHuman functions as an assistant proficient in utilizing, analyzing, and interacting with tools specific to 3D human tasks, adeptly discussing and resolving related challenges. Built on a Large Language Model (LLM) framework, ChatHuman is trained to autonomously select, apply, and interpret a diverse set of tools in response to user inputs. Our approach overcomes significant hurdles in adapting LLMs to 3D human tasks, including the need for domain-specific knowledge and the ability to interpret complex 3D outputs. The innovations of ChatHuman include leveraging academic publications to instruct the LLM on tool usage, employing a retrieval-augmented generation model to create in-context learning examples for managing new tools, and effectively discriminating between and integrating tool results by transforming specialized 3D outputs into comprehensible formats. Experiments demonstrate that ChatHuman surpasses existing models in both tool selection accuracy and overall performance across various 3D human tasks, and it supports interactive chatting with users. ChatHuman represents a significant step toward consolidating diverse analytical methods into a unified, robust system for 3D human tasks.
comment: Project page: https://chathuman.github.io
♻ ☆ DreamForge: Motion-Aware Autoregressive Video Generation for Multi-View Driving Scenes
Recent advances in diffusion models have improved controllable streetscape generation and supported downstream perception and planning tasks. However, challenges remain in accurately modeling driving scenes and generating long videos. To alleviate these issues, we propose DreamForge, an advanced diffusion-based autoregressive video generation model tailored for 3D-controllable long-term generation. To enhance the lane and foreground generation, we introduce perspective guidance and integrate object-wise position encoding to incorporate local 3D correlation and improve foreground object modeling. We also propose motion-aware temporal attention to capture motion cues and appearance changes in videos. By leveraging motion frames and an autoregressive generation paradigm,we can autoregressively generate long videos (over 200 frames) using a model trained in short sequences, achieving superior quality compared to the baseline in 16-frame video evaluations. Finally, we integrate our method with the realistic simulator DriveArena to provide more reliable open-loop and closed-loop evaluations for vision-based driving agents. Project Page: https://pjlab-adg.github.io/DriveArena/dreamforge.
comment: 15 figures, 11 tables
♻ ☆ BAH Dataset for Ambivalence/Hesitancy Recognition in Videos for Behavioural Change
Recognizing complex emotions linked to ambivalence and hesitancy (A/H) can play a critical role in the personalization and effectiveness of digital behaviour change interventions. These subtle and conflicting emotions are manifested by a discord between multiple modalities, such as facial and vocal expressions, and body language. Although experts can be trained to identify A/H, integrating them into digital interventions is costly and less effective. Automatic learning systems provide a cost-effective alternative that can adapt to individual users, and operate seamlessly within real-time, and resource-limited environments. However, there are currently no datasets available for the design of ML models to recognize A/H. This paper introduces a first Behavioural Ambivalence/Hesitancy (BAH) dataset collected for subject-based multimodal recognition of A/H in videos. It contains videos from 224 participants captured across 9 provinces in Canada, with different age, and ethnicity. Through our web platform, we recruited participants to answer 7 questions, some of which were designed to elicit A/H while recording themselves via webcam with microphone. BAH amounts to 1,118 videos for a total duration of 8.26 hours with 1.5 hours of A/H. Our behavioural team annotated timestamp segments to indicate where A/H occurs, and provide frame- and video-level annotations with the A/H cues. Video transcripts and their timestamps are also included, along with cropped and aligned faces in each frame, and a variety of participants meta-data. We include results baselines for BAH at frame- and video-level recognition in multi-modal setups, in addition to zero-shot prediction, and for personalization using unsupervised domain adaptation. The limited performance of baseline models highlights the challenges of recognizing A/H in real-world videos. The data, code, and pretrained weights are available.
comment: 41 pages, 13 figures, under review
♻ ☆ mOSCAR: A Large-scale Multilingual and Multimodal Document-level Corpus ACL 2025
Multimodal Large Language Models (mLLMs) are trained on a large amount of text-image data. While most mLLMs are trained on caption-like data only, Alayrac et al. (2022) showed that additionally training them on interleaved sequences of text and images can lead to the emergence of in-context learning capabilities. However, the dataset they used, M3W, is not public and is only in English. There have been attempts to reproduce their results but the released datasets are English-only. In contrast, current multilingual and multimodal datasets are either composed of caption-like only or medium-scale or fully private data. This limits mLLM research for the 7,000 other languages spoken in the world. We therefore introduce mOSCAR, to the best of our knowledge the first large-scale multilingual and multimodal document corpus crawled from the web. It covers 163 languages, 303M documents, 200B tokens and 1.15B images. We carefully conduct a set of filtering and evaluation steps to make sure mOSCAR is sufficiently safe, diverse and of good quality. We additionally train two types of multilingual model to prove the benefits of mOSCAR: (1) a model trained on a subset of mOSCAR and captioning data and (2) a model trained on captioning data only. The model additionally trained on mOSCAR shows a strong boost in few-shot learning performance across various multilingual image-text tasks and benchmarks, confirming previous findings for English-only mLLMs. The dataset is released under the Creative Commons CC BY 4.0 license and can be accessed here: https://huggingface.co/datasets/oscar-corpus/mOSCAR
comment: ACL 2025 (Findings)
♻ ☆ QMamba: On First Exploration of Vision Mamba for Image Quality Assessment ICML 2025
In this work, we take the first exploration of the recently popular foundation model, i.e., State Space Model/Mamba, in image quality assessment (IQA), aiming at observing and excavating the perception potential in vision Mamba. A series of works on Mamba has shown its significant potential in various fields, e.g., segmentation and classification. However, the perception capability of Mamba remains under-explored. Consequently, we propose QMamba by revisiting and adapting the Mamba model for three crucial IQA tasks, i.e., task-specific, universal, and transferable IQA, which reveals its clear advantages over existing foundational models, e.g., Swin Transformer, ViT, and CNNs, in terms of perception and computational cost. To improve the transferability of QMamba, we propose the StylePrompt tuning paradigm, where lightweight mean and variance prompts are injected to assist task-adaptive transfer learning of pre-trained QMamba for different downstream IQA tasks. Compared with existing prompt tuning strategies, our StylePrompt enables better perceptual transfer with lower computational cost. Extensive experiments on multiple synthetic, authentic IQA datasets, and cross IQA datasets demonstrate the effectiveness of our proposed QMamba. The code will be available at: https://github.com/bingo-G/QMamba.git
comment: Accepted by ICML 2025
♻ ☆ RefVNLI: Towards Scalable Evaluation of Subject-driven Text-to-image Generation
Subject-driven text-to-image (T2I) generation aims to produce images that align with a given textual description, while preserving the visual identity from a referenced subject image. Despite its broad downstream applicability - ranging from enhanced personalization in image generation to consistent character representation in video rendering - progress in this field is limited by the lack of reliable automatic evaluation. Existing methods either assess only one aspect of the task (i.e., textual alignment or subject preservation), misalign with human judgments, or rely on costly API-based evaluation. To address this gap, we introduce RefVNLI, a cost-effective metric that evaluates both textual alignment and subject preservation in a single run. Trained on a large-scale dataset derived from video-reasoning benchmarks and image perturbations, RefVNLI outperforms or statistically matches existing baselines across multiple benchmarks and subject categories (e.g., \emph{Animal}, \emph{Object}), achieving up to 6.4-point gains in textual alignment and 5.9-point gains in subject preservation.
♻ ☆ Nexus: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
This work proposes an industry-level omni-modal large language model (LLM) pipeline that integrates auditory, visual, and linguistic modalities to overcome challenges such as limited tri-modal datasets, high computational costs, and complex feature alignments. Our pipeline consists of three main components: First, a modular framework enabling flexible configuration of various encoder-LLM-decoder architectures. Second, a lightweight training strategy that pre-trains audio-language alignment on the state-of-the-art vision-language model Qwen2.5-VL, thus avoiding the costly pre-training of vision-specific modalities. Third, an audio synthesis pipeline that generates high-quality audio-text data from diverse real-world scenarios, supporting applications such as Automatic Speech Recognition and Speech-to-Speech chat. To this end, we introduce an industry-level omni-modal LLM, Nexus. Extensive experiments validate the efficacy of our pipeline, yielding the following key findings:(1) In the visual understanding task, Nexus exhibits superior performance compared with its backbone model - Qwen2.5-VL-7B, validating the efficiency of our training strategy. (2) Within the English Spoken Question-Answering task, the model achieves better accuracy than the same-period competitor (i.e, MiniCPM-o2.6-7B) in the LLaMA Q. benchmark. (3) In our real-world ASR testset, Nexus achieves outstanding performance, indicating its robustness in real scenarios. (4) In the Speech-to-Text Translation task, our model outperforms Qwen2-Audio-Instruct-7B. (5) In the Text-to-Speech task, based on pretrained vocoder (e.g., Fishspeech1.4 or CosyVoice2.0), Nexus is comparable to its backbone vocoder on Seed-TTS benchmark. (6) An in-depth analysis of tri-modal alignment reveals that incorporating the audio modality enhances representational alignment between vision and language.
♻ ☆ BioVL-QR: Egocentric Biochemical Vision-and-Language Dataset Using Micro QR Codes ICIP2025
This paper introduces BioVL-QR, a biochemical vision-and-language dataset comprising 23 egocentric experiment videos, corresponding protocols, and vision-and-language alignments. A major challenge in understanding biochemical videos is detecting equipment, reagents, and containers because of the cluttered environment and indistinguishable objects. Previous studies assumed manual object annotation, which is costly and time-consuming. To address the issue, we focus on Micro QR Codes. However, detecting objects using only Micro QR Codes is still difficult due to blur and occlusion caused by object manipulation. To overcome this, we propose an object labeling method combining a Micro QR Code detector with an off-the-shelf hand object detector. As an application of the method and BioVL-QR, we tackled the task of localizing the procedural steps in an instructional video. The experimental results show that using Micro QR Codes and our method improves biochemical video understanding. Data and code are available through https://nishi10mo.github.io/BioVL-QR/
comment: ICIP2025
♻ ☆ Token Pruning in Multimodal Large Language Models: Are We Solving the Right Problem? ACL 2025
Multimodal large language models (MLLMs) have shown remarkable performance for cross-modal understanding and generation, yet still suffer from severe inference costs. Recently, abundant works have been proposed to solve this problem with token pruning, which identifies the redundant tokens in MLLMs and then prunes them to reduce the computation and KV storage costs, leading to significant acceleration without training. While these methods claim efficiency gains, critical questions about their fundamental design and evaluation remain unanswered: Why do many existing approaches underperform even compared to naive random token selection? Are attention-based scoring sufficient for reliably identifying redundant tokens? Is language information really helpful during token pruning? What makes a good trade-off between token importance and duplication? Are current evaluation protocols comprehensive and unbiased? The ignorance of previous research on these problems hinders the long-term development of token pruning. In this paper, we answer these questions one by one, providing insights into the design of future token pruning methods.
comment: ACL 2025 Findings
♻ ☆ CraftsMan3D: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner
We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan
comment: HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan3D
Artificial Intelligence 300
☆ From Chat Logs to Collective Insights: Aggregative Question Answering
Conversational agents powered by large language models (LLMs) are rapidly becoming integral to our daily interactions, generating unprecedented amounts of conversational data. Such datasets offer a powerful lens into societal interests, trending topics, and collective concerns. Yet, existing approaches typically treat these interactions as independent and miss critical insights that could emerge from aggregating and reasoning across large-scale conversation logs. In this paper, we introduce Aggregative Question Answering, a novel task requiring models to reason explicitly over thousands of user-chatbot interactions to answer aggregative queries, such as identifying emerging concerns among specific demographics. To enable research in this direction, we construct a benchmark, WildChat-AQA, comprising 6,027 aggregative questions derived from 182,330 real-world chatbot conversations. Experiments show that existing methods either struggle to reason effectively or incur prohibitive computational costs, underscoring the need for new approaches capable of extracting collective insights from large-scale conversational data.
☆ ZeroGUI: Automating Online GUI Learning at Zero Human Cost
The rapid advancement of large Vision-Language Models (VLMs) has propelled the development of pure-vision-based GUI Agents, capable of perceiving and operating Graphical User Interfaces (GUI) to autonomously fulfill user instructions. However, existing approaches usually adopt an offline learning framework, which faces two core limitations: (1) heavy reliance on high-quality manual annotations for element grounding and action supervision, and (2) limited adaptability to dynamic and interactive environments. To address these limitations, we propose ZeroGUI, a scalable, online learning framework for automating GUI Agent training at Zero human cost. Specifically, ZeroGUI integrates (i) VLM-based automatic task generation to produce diverse training goals from the current environment state, (ii) VLM-based automatic reward estimation to assess task success without hand-crafted evaluation functions, and (iii) two-stage online reinforcement learning to continuously interact with and learn from GUI environments. Experiments on two advanced GUI Agents (UI-TARS and Aguvis) demonstrate that ZeroGUI significantly boosts performance across OSWorld and AndroidLab environments. The code is available at https://github.com/OpenGVLab/ZeroGUI.
☆ Differential Information: An Information-Theoretic Perspective on Preference Optimization
Direct Preference Optimization (DPO) has become a standard technique for aligning language models with human preferences in a supervised manner. Despite its empirical success, the theoretical justification behind its log-ratio reward parameterization remains incomplete. In this work, we address this gap by utilizing the Differential Information Distribution (DID): a distribution over token sequences that captures the information gained during policy updates. First, we show that when preference labels encode the differential information required to transform a reference policy into a target policy, the log-ratio reward in DPO emerges as the uniquely optimal form for learning the target policy via preference optimization. This result naturally yields a closed-form expression for the optimal sampling distribution over rejected responses. Second, we find that the condition for preferences to encode differential information is fundamentally linked to an implicit assumption regarding log-margin ordered policies-an inductive bias widely used in preference optimization yet previously unrecognized. Finally, by analyzing the entropy of the DID, we characterize how learning low-entropy differential information reinforces the policy distribution, while high-entropy differential information induces a smoothing effect, which explains the log-likelihood displacement phenomenon. We validate our theoretical findings in synthetic experiments and extend them to real-world instruction-following datasets. Our results suggest that learning high-entropy differential information is crucial for general instruction-following, while learning low-entropy differential information benefits knowledge-intensive question answering. Overall, our work presents a unifying perspective on the DPO objective, the structure of preference data, and resulting policy behaviors through the lens of differential information.
comment: 41 pages, 13 figures; due to the 1,920-character limitation imposed on the abstract field by arXiv, the abstract included on the arXiv page is slightly abbreviated compared to the version presented in the PDF
☆ Puzzled by Puzzles: When Vision-Language Models Can't Take a Hint
Rebus puzzles, visual riddles that encode language through imagery, spatial arrangement, and symbolic substitution, pose a unique challenge to current vision-language models (VLMs). Unlike traditional image captioning or question answering tasks, rebus solving requires multi-modal abstraction, symbolic reasoning, and a grasp of cultural, phonetic and linguistic puns. In this paper, we investigate the capacity of contemporary VLMs to interpret and solve rebus puzzles by constructing a hand-generated and annotated benchmark of diverse English-language rebus puzzles, ranging from simple pictographic substitutions to spatially-dependent cues ("head" over "heels"). We analyze how different VLMs perform, and our findings reveal that while VLMs exhibit some surprising capabilities in decoding simple visual clues, they struggle significantly with tasks requiring abstract reasoning, lateral thinking, and understanding visual metaphors.
☆ DeepTheorem: Advancing LLM Reasoning for Theorem Proving Through Natural Language and Reinforcement Learning
Theorem proving serves as a major testbed for evaluating complex reasoning abilities in large language models (LLMs). However, traditional automated theorem proving (ATP) approaches rely heavily on formal proof systems that poorly align with LLMs' strength derived from informal, natural language knowledge acquired during pre-training. In this work, we propose DeepTheorem, a comprehensive informal theorem-proving framework exploiting natural language to enhance LLM mathematical reasoning. DeepTheorem includes a large-scale benchmark dataset consisting of 121K high-quality IMO-level informal theorems and proofs spanning diverse mathematical domains, rigorously annotated for correctness, difficulty, and topic categories, accompanied by systematically constructed verifiable theorem variants. We devise a novel reinforcement learning strategy (RL-Zero) explicitly tailored to informal theorem proving, leveraging the verified theorem variants to incentivize robust mathematical inference. Additionally, we propose comprehensive outcome and process evaluation metrics examining proof correctness and the quality of reasoning steps. Extensive experimental analyses demonstrate DeepTheorem significantly improves LLM theorem-proving performance compared to existing datasets and supervised fine-tuning protocols, achieving state-of-the-art accuracy and reasoning quality. Our findings highlight DeepTheorem's potential to fundamentally advance automated informal theorem proving and mathematical exploration.
☆ REOrdering Patches Improves Vision Models
Sequence models such as transformers require inputs to be represented as one-dimensional sequences. In vision, this typically involves flattening images using a fixed row-major (raster-scan) order. While full self-attention is permutation-equivariant, modern long-sequence transformers increasingly rely on architectural approximations that break this invariance and introduce sensitivity to patch ordering. We show that patch order significantly affects model performance in such settings, with simple alternatives like column-major or Hilbert curves yielding notable accuracy shifts. Motivated by this, we propose REOrder, a two-stage framework for discovering task-optimal patch orderings. First, we derive an information-theoretic prior by evaluating the compressibility of various patch sequences. Then, we learn a policy over permutations by optimizing a Plackett-Luce policy using REINFORCE. This approach enables efficient learning in a combinatorial permutation space. REOrder improves top-1 accuracy over row-major ordering on ImageNet-1K by up to 3.01% and Functional Map of the World by 13.35%.
☆ Comparative of Genetic Fuzzy regression techniques for aeroacoustic phenomenons
This study investigates the application of Genetic Fuzzy Systems (GFS) to model the self-noise generated by airfoils, a key issue in aeroaccoustics with significant implications for aerospace, automotive and drone applications. Using the publicly available Airfoil Self Noise dataset, various Fuzzy regression strategies are explored and compared. The paper evaluates a brute force Takagi Sugeno Kang (TSK) fuzzy system with high rule density, a cascading Geneti Fuzzy Tree (GFT) architecture and a novel clustered approach based on Fuzzy C-means (FCM) to reduce the model's complexity. This highlights the viability of clustering assisted fuzzy inference as an effective regression tool for complex aero accoustic phenomena. Keywords : Fuzzy logic, Regression, Cascading systems, Clustering and AI.
comment: 11 pages and 23 figures
☆ Spatial-MLLM: Boosting MLLM Capabilities in Visual-based Spatial Intelligence
Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced performance on 2D visual tasks. However, improving their spatial intelligence remains a challenge. Existing 3D MLLMs always rely on additional 3D or 2.5D data to incorporate spatial awareness, restricting their utility in scenarios with only 2D inputs, such as images or videos. In this paper, we present Spatial-MLLM, a novel framework for visual-based spatial reasoning from purely 2D observations. Unlike conventional video MLLMs which rely on CLIP-based visual encoders optimized for semantic understanding, our key insight is to unleash the strong structure prior from the feed-forward visual geometry foundation model. Specifically, we propose a dual-encoder architecture: a pretrained 2D visual encoder to extract semantic features, and a spatial encoder-initialized from the backbone of the visual geometry model-to extract 3D structure features. A connector then integrates both features into unified visual tokens for enhanced spatial understanding. Furthermore, we propose a space-aware frame sampling strategy at inference time, which selects the spatially informative frames of a video sequence, ensuring that even under limited token length, the model focuses on frames critical for spatial reasoning. Beyond architecture improvements, we construct the Spatial-MLLM-120k dataset and train the model on it using supervised fine-tuning and GRPO. Extensive experiments on various real-world datasets demonstrate that our spatial-MLLM achieves state-of-the-art performance in a wide range of visual-based spatial understanding and reasoning tasks. Project page: https://diankun-wu.github.io/Spatial-MLLM/.
comment: 21 pages
☆ To Trust Or Not To Trust Your Vision-Language Model's Prediction
Vision-Language Models (VLMs) have demonstrated strong capabilities in aligning visual and textual modalities, enabling a wide range of applications in multimodal understanding and generation. While they excel in zero-shot and transfer learning scenarios, VLMs remain susceptible to misclassification, often yielding confident yet incorrect predictions. This limitation poses a significant risk in safety-critical domains, where erroneous predictions can lead to severe consequences. In this work, we introduce TrustVLM, a training-free framework designed to address the critical challenge of estimating when VLM's predictions can be trusted. Motivated by the observed modality gap in VLMs and the insight that certain concepts are more distinctly represented in the image embedding space, we propose a novel confidence-scoring function that leverages this space to improve misclassification detection. We rigorously evaluate our approach across 17 diverse datasets, employing 4 architectures and 2 VLMs, and demonstrate state-of-the-art performance, with improvements of up to 51.87% in AURC, 9.14% in AUROC, and 32.42% in FPR95 compared to existing baselines. By improving the reliability of the model without requiring retraining, TrustVLM paves the way for safer deployment of VLMs in real-world applications. The code will be available at https://github.com/EPFL-IMOS/TrustVLM.
☆ Boosting Domain Incremental Learning: Selecting the Optimal Parameters is All You Need CVPR 2025
Deep neural networks (DNNs) often underperform in real-world, dynamic settings where data distributions change over time. Domain Incremental Learning (DIL) offers a solution by enabling continual model adaptation, with Parameter-Isolation DIL (PIDIL) emerging as a promising paradigm to reduce knowledge conflicts. However, existing PIDIL methods struggle with parameter selection accuracy, especially as the number of domains and corresponding classes grows. To address this, we propose SOYO, a lightweight framework that improves domain selection in PIDIL. SOYO introduces a Gaussian Mixture Compressor (GMC) and Domain Feature Resampler (DFR) to store and balance prior domain data efficiently, while a Multi-level Domain Feature Fusion Network (MDFN) enhances domain feature extraction. Our framework supports multiple Parameter-Efficient Fine-Tuning (PEFT) methods and is validated across tasks such as image classification, object detection, and speech enhancement. Experimental results on six benchmarks demonstrate SOYO's consistent superiority over existing baselines, showcasing its robustness and adaptability in complex, evolving environments. The codes will be released in https://github.com/qwangcv/SOYO.
comment: Accepted at CVPR 2025
☆ MAGREF: Masked Guidance for Any-Reference Video Generation
Video generation has made substantial strides with the emergence of deep generative models, especially diffusion-based approaches. However, video generation based on multiple reference subjects still faces significant challenges in maintaining multi-subject consistency and ensuring high generation quality. In this paper, we propose MAGREF, a unified framework for any-reference video generation that introduces masked guidance to enable coherent multi-subject video synthesis conditioned on diverse reference images and a textual prompt. Specifically, we propose (1) a region-aware dynamic masking mechanism that enables a single model to flexibly handle various subject inference, including humans, objects, and backgrounds, without architectural changes, and (2) a pixel-wise channel concatenation mechanism that operates on the channel dimension to better preserve appearance features. Our model delivers state-of-the-art video generation quality, generalizing from single-subject training to complex multi-subject scenarios with coherent synthesis and precise control over individual subjects, outperforming existing open-source and commercial baselines. To facilitate evaluation, we also introduce a comprehensive multi-subject video benchmark. Extensive experiments demonstrate the effectiveness of our approach, paving the way for scalable, controllable, and high-fidelity multi-subject video synthesis. Code and model can be found at: https://github.com/MAGREF-Video/MAGREF
comment: Project website: https://magref-video.github.io/magref.github.io/
☆ ATLAS: Learning to Optimally Memorize the Context at Test Time
Transformers have been established as the most popular backbones in sequence modeling, mainly due to their effectiveness in in-context retrieval tasks and the ability to learn at scale. Their quadratic memory and time complexity, however, bound their applicability in longer sequences and so has motivated researchers to explore effective alternative architectures such as modern recurrent neural networks (a.k.a long-term recurrent memory module). Despite their recent success in diverse downstream tasks, they struggle in tasks that requires long context understanding and extrapolation to longer sequences. We observe that these shortcomings come from three disjoint aspects in their design: (1) limited memory capacity that is bounded by the architecture of memory and feature mapping of the input; (2) online nature of update, i.e., optimizing the memory only with respect to the last input; and (3) less expressive management of their fixed-size memory. To enhance all these three aspects, we present ATLAS, a long-term memory module with high capacity that learns to memorize the context by optimizing the memory based on the current and past tokens, overcoming the online nature of long-term memory models. Building on this insight, we present a new family of Transformer-like architectures, called DeepTransformers, that are strict generalizations of the original Transformer architecture. Our experimental results on language modeling, common-sense reasoning, recall-intensive, and long-context understanding tasks show that ATLAS surpasses the performance of Transformers and recent linear recurrent models. ATLAS further improves the long context performance of Titans, achieving +80\% accuracy in 10M context length of BABILong benchmark.
☆ Exposing the Impact of GenAI for Cybercrime: An Investigation into the Dark Side
In recent years, the rapid advancement and democratization of generative AI models have sparked significant debate over safety, ethical risks, and dual-use concerns, particularly in the context of cybersecurity. While anecdotally known, this paper provides empirical evidence regarding generative AI's association with malicious internet-related activities and cybercrime by examining the phenomenon through psychological frameworks of technological amplification and affordance theory. Using a quasi-experimental design with interrupted time series analysis, we analyze two datasets, one general and one cryptocurrency-focused, to empirically assess generative AI's role in cybercrime. The findings contribute to ongoing discussions about AI governance by balancing control and fostering innovation, underscoring the need for strategies to guide policymakers, inform AI developers and cybersecurity professionals, and educate the public to maximize AI's benefits while mitigating its risks.
☆ Bounded Rationality for LLMs: Satisficing Alignment at Inference-Time ICML 2025
Aligning large language models with humans is challenging due to the inherently multifaceted nature of preference feedback. While existing approaches typically frame this as a multi-objective optimization problem, they often overlook how humans actually make decisions. Research on bounded rationality suggests that human decision making follows satisficing strategies-optimizing primary objectives while ensuring others meet acceptable thresholds. To bridge this gap and operationalize the notion of satisficing alignment, we propose SITAlign: an inference time framework that addresses the multifaceted nature of alignment by maximizing a primary objective while satisfying threshold-based constraints on secondary criteria. We provide theoretical insights by deriving sub-optimality bounds of our satisficing based inference alignment approach. We empirically validate SITAlign's performance through extensive experimentation on multiple benchmarks. For instance, on the PKU-SafeRLHF dataset with the primary objective of maximizing helpfulness while ensuring a threshold on harmlessness, SITAlign outperforms the state-of-the-art multi objective decoding strategy by a margin of 22.3% in terms of GPT-4 win-tie rate for helpfulness reward while adhering to the threshold on harmlessness.
comment: Accepted at ICML 2025
☆ SC-LoRA: Balancing Efficient Fine-tuning and Knowledge Preservation via Subspace-Constrained LoRA
Parameter-Efficient Fine-Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA), are indispensable for efficiently customizing Large Language Models (LLMs). However, vanilla LoRA suffers from slow convergence speed and knowledge forgetting problems. Recent studies have leveraged the power of designed LoRA initialization, to enhance the fine-tuning efficiency, or to preserve knowledge in the pre-trained LLM. However, none of these works can address the two cases at the same time. To this end, we introduce Subspace-Constrained LoRA (SC-LoRA), a novel LoRA initialization framework engineered to navigate the trade-off between efficient fine-tuning and knowledge preservation. We achieve this by constraining the output of trainable LoRA adapters in a low-rank subspace, where the context information of fine-tuning data is most preserved while the context information of preserved knowledge is least retained, in a balanced way. Such constraint enables the trainable weights to primarily focus on the main features of fine-tuning data while avoiding damaging the preserved knowledge features. We provide theoretical analysis on our method, and conduct extensive experiments including safety preservation and world knowledge preservation, on various downstream tasks. In our experiments, SC-LoRA succeeds in delivering superior fine-tuning performance while markedly diminishing knowledge forgetting, surpassing contemporary LoRA initialization methods.
☆ ML-Agent: Reinforcing LLM Agents for Autonomous Machine Learning Engineering
The emergence of large language model (LLM)-based agents has significantly advanced the development of autonomous machine learning (ML) engineering. However, most existing approaches rely heavily on manual prompt engineering, failing to adapt and optimize based on diverse experimental experiences. Focusing on this, for the first time, we explore the paradigm of learning-based agentic ML, where an LLM agent learns through interactive experimentation on ML tasks using online reinforcement learning (RL). To realize this, we propose a novel agentic ML training framework with three key components: (1) exploration-enriched fine-tuning, which enables LLM agents to generate diverse actions for enhanced RL exploration; (2) step-wise RL, which enables training on a single action step, accelerating experience collection and improving training efficiency; (3) an agentic ML-specific reward module, which unifies varied ML feedback signals into consistent rewards for RL optimization. Leveraging this framework, we train ML-Agent, driven by a 7B-sized Qwen-2.5 LLM for autonomous ML. Remarkably, despite being trained on merely 9 ML tasks, our 7B-sized ML-Agent outperforms the 671B-sized DeepSeek-R1 agent. Furthermore, it achieves continuous performance improvements and demonstrates exceptional cross-task generalization capabilities.
☆ COBRA: Contextual Bandit Algorithm for Ensuring Truthful Strategic Agents
This paper considers a contextual bandit problem involving multiple agents, where a learner sequentially observes the contexts and the agent's reported arms, and then selects the arm that maximizes the system's overall reward. Existing work in contextual bandits assumes that agents truthfully report their arms, which is unrealistic in many real-life applications. For instance, consider an online platform with multiple sellers; some sellers may misrepresent product quality to gain an advantage, such as having the platform preferentially recommend their products to online users. To address this challenge, we propose an algorithm, COBRA, for contextual bandit problems involving strategic agents that disincentivize their strategic behavior without using any monetary incentives, while having incentive compatibility and a sub-linear regret guarantee. Our experimental results also validate the different performance aspects of our proposed algorithm.
comment: This paper proposes a contextual bandit algorithm that prevents strategic agents from misreporting while having approximate incentive compatibility and a sub-linear regret guarantee
☆ SenWiCh: Sense-Annotation of Low-Resource Languages for WiC using Hybrid Methods ACL
This paper addresses the critical need for high-quality evaluation datasets in low-resource languages to advance cross-lingual transfer. While cross-lingual transfer offers a key strategy for leveraging multilingual pretraining to expand language technologies to understudied and typologically diverse languages, its effectiveness is dependent on quality and suitable benchmarks. We release new sense-annotated datasets of sentences containing polysemous words, spanning nine low-resource languages across diverse language families and scripts. To facilitate dataset creation, the paper presents a demonstrably beneficial semi-automatic annotation method. The utility of the datasets is demonstrated through Word-in-Context (WiC) formatted experiments that evaluate transfer on these low-resource languages. Results highlight the importance of targeted dataset creation and evaluation for effective polysemy disambiguation in low-resource settings and transfer studies. The released datasets and code aim to support further research into fair, robust, and truly multilingual NLP.
comment: 8 pages, 22 figures, submitted to SIGTYP 2025 workshop in ACL
☆ From Connectivity to Autonomy: The Dawn of Self-Evolving Communication Systems
This paper envisions 6G as a self-evolving telecom ecosystem, where AI-driven intelligence enables dynamic adaptation beyond static connectivity. We explore the key enablers of autonomous communication systems, spanning reconfigurable infrastructure, adaptive middleware, and intelligent network functions, alongside multi-agent collaboration for distributed decision-making. We explore how these methodologies align with emerging industrial IoT frameworks, ensuring seamless integration within digital manufacturing processes. Our findings emphasize the potential for improved real-time decision-making, optimizing efficiency, and reducing latency in networked control systems. The discussion addresses ethical challenges, research directions, and standardization efforts, concluding with a technology stack roadmap to guide future developments. By leveraging state-of-the-art 6G network management techniques, this research contributes to the next generation of intelligent automation solutions, bridging the gap between theoretical advancements and real-world industrial applications.
☆ Skin Lesion Phenotyping via Nested Multi-modal Contrastive Learning
We introduce SLIMP (Skin Lesion Image-Metadata Pre-training) for learning rich representations of skin lesions through a novel nested contrastive learning approach that captures complex relationships between images and metadata. Melanoma detection and skin lesion classification based solely on images, pose significant challenges due to large variations in imaging conditions (lighting, color, resolution, distance, etc.) and lack of clinical and phenotypical context. Clinicians typically follow a holistic approach for assessing the risk level of the patient and for deciding which lesions may be malignant and need to be excised, by considering the patient's medical history as well as the appearance of other lesions of the patient. Inspired by this, SLIMP combines the appearance and the metadata of individual skin lesions with patient-level metadata relating to their medical record and other clinically relevant information. By fully exploiting all available data modalities throughout the learning process, the proposed pre-training strategy improves performance compared to other pre-training strategies on downstream skin lesions classification tasks highlighting the learned representations quality.
☆ Distributed Federated Learning for Vehicular Network Security: Anomaly Detection Benefits and Multi-Domain Attack Threats
In connected and autonomous vehicles, machine learning for safety message classification has become critical for detecting malicious or anomalous behavior. However, conventional approaches that rely on centralized data collection or purely local training face limitations due to the large scale, high mobility, and heterogeneous data distributions inherent in inter-vehicle networks. To overcome these challenges, this paper explores Distributed Federated Learning (DFL), whereby vehicles collaboratively train deep learning models by exchanging model updates among one-hop neighbors and propagating models over multiple hops. Using the Vehicular Reference Misbehavior (VeReMi) Extension Dataset, we show that DFL can significantly improve classification accuracy across all vehicles compared to learning strictly with local data. Notably, vehicles with low individual accuracy see substantial accuracy gains through DFL, illustrating the benefit of knowledge sharing across the network. We further show that local training data size and time-varying network connectivity correlate strongly with the model's overall accuracy. We investigate DFL's resilience and vulnerabilities under attacks in multiple domains, namely wireless jamming and training data poisoning attacks. Our results reveal important insights into the vulnerabilities of DFL when confronted with multi-domain attacks, underlining the need for more robust strategies to secure DFL in vehicular networks.
☆ Let's Reason Formally: Natural-Formal Hybrid Reasoning Enhances LLM's Math Capability
Enhancing the mathematical reasoning capabilities of LLMs has garnered significant attention in both the mathematical and computer science communities. Recent works have made substantial progress in both Natural Language (NL) reasoning and Formal Language (FL) reasoning by leveraging the potential of pure Reinforcement Learning (RL) methods on base models. However, RL approaches struggle to impart new capabilities not presented in the base model, highlighting the need to integrate more knowledge like FL into NL math reasoning effectively. Yet, this integration is challenging due to inherent disparities in problem structure and reasoning format between NL and FL. To address these challenges, we introduce **NL-FL HybridReasoning**, an end-to-end framework designed to incorporate the FL expert into NL math problem-solving. To bridge the NL and FL input format gap, we propose the *NL-FL Problem Alignment* method, which reformulates the Question-Answering (QA) problems in NL as existence theorems in FL. Subsequently, the *Mixed Problem Input* technique we provide enables the FL reasoner to handle both QA and existence problems concurrently. Lastly, we mitigate the NL and FL output format gap in reasoning through an LLM-based *Answer Extraction* mechanism. Comprehensive experiments demonstrate that the **HybridReasoning** framework achieves **89.80%** and **84.34%** accuracy rates on the MATH-500 and the AMC benchmarks, surpassing the NL baseline by 4.60% and 4.82%, respectively. Notably, some problems resolved by our framework remain unsolved by the NL baseline model even under a larger number of trials.
☆ CLDTracker: A Comprehensive Language Description for Visual Tracking
VOT remains a fundamental yet challenging task in computer vision due to dynamic appearance changes, occlusions, and background clutter. Traditional trackers, relying primarily on visual cues, often struggle in such complex scenarios. Recent advancements in VLMs have shown promise in semantic understanding for tasks like open-vocabulary detection and image captioning, suggesting their potential for VOT. However, the direct application of VLMs to VOT is hindered by critical limitations: the absence of a rich and comprehensive textual representation that semantically captures the target object's nuances, limiting the effective use of language information; inefficient fusion mechanisms that fail to optimally integrate visual and textual features, preventing a holistic understanding of the target; and a lack of temporal modeling of the target's evolving appearance in the language domain, leading to a disconnect between the initial description and the object's subsequent visual changes. To bridge these gaps and unlock the full potential of VLMs for VOT, we propose CLDTracker, a novel Comprehensive Language Description framework for robust visual Tracking. Our tracker introduces a dual-branch architecture consisting of a textual and a visual branch. In the textual branch, we construct a rich bag of textual descriptions derived by harnessing the powerful VLMs such as CLIP and GPT-4V, enriched with semantic and contextual cues to address the lack of rich textual representation. Experiments on six standard VOT benchmarks demonstrate that CLDTracker achieves SOTA performance, validating the effectiveness of leveraging robust and temporally-adaptive vision-language representations for tracking. Code and models are publicly available at: https://github.com/HamadYA/CLDTracker
comment: 47 pages, 9 figures, Information Fusion Journal
☆ Data-to-Dashboard: Multi-Agent LLM Framework for Insightful Visualization in Enterprise Analytics
The rapid advancement of LLMs has led to the creation of diverse agentic systems in data analysis, utilizing LLMs' capabilities to improve insight generation and visualization. In this paper, we present an agentic system that automates the data-to-dashboard pipeline through modular LLM agents capable of domain detection, concept extraction, multi-perspective analysis generation, and iterative self-reflection. Unlike existing chart QA systems, our framework simulates the analytical reasoning process of business analysts by retrieving domain-relevant knowledge and adapting to diverse datasets without relying on closed ontologies or question templates. We evaluate our system on three datasets across different domains. Benchmarked against GPT-4o with a single-prompt baseline, our approach shows improved insightfulness, domain relevance, and analytical depth, as measured by tailored evaluation metrics and qualitative human assessment. This work contributes a novel modular pipeline to bridge the path from raw data to visualization, and opens new opportunities for human-in-the-loop validation by domain experts in business analytics. All code can be found here: https://github.com/77luvC/D2D_Data2Dashboard
☆ VF-Eval: Evaluating Multimodal LLMs for Generating Feedback on AIGC Videos ACL 2025
MLLMs have been widely studied for video question answering recently. However, most existing assessments focus on natural videos, overlooking synthetic videos, such as AI-generated content (AIGC). Meanwhile, some works in video generation rely on MLLMs to evaluate the quality of generated videos, but the capabilities of MLLMs on interpreting AIGC videos remain largely underexplored. To address this, we propose a new benchmark, VF-Eval, which introduces four tasks-coherence validation, error awareness, error type detection, and reasoning evaluation-to comprehensively evaluate the abilities of MLLMs on AIGC videos. We evaluate 13 frontier MLLMs on VF-Eval and find that even the best-performing model, GPT-4.1, struggles to achieve consistently good performance across all tasks. This highlights the challenging nature of our benchmark. Additionally, to investigate the practical applications of VF-Eval in improving video generation, we conduct an experiment, RePrompt, demonstrating that aligning MLLMs more closely with human feedback can benefit video generation.
comment: ACL 2025 Main
☆ ROTATE: Regret-driven Open-ended Training for Ad Hoc Teamwork
Developing AI agents capable of collaborating with previously unseen partners is a fundamental generalization challenge in multi-agent learning, known as Ad Hoc Teamwork (AHT). Existing AHT approaches typically adopt a two-stage pipeline, where first, a fixed population of teammates is generated with the idea that they should be representative of the teammates that will be seen at deployment time, and second, an AHT agent is trained to collaborate well with agents in the population. To date, the research community has focused on designing separate algorithms for each stage. This separation has led to algorithms that generate teammate pools with limited coverage of possible behaviors, and that ignore whether the generated teammates are easy to learn from for the AHT agent. Furthermore, algorithms for training AHT agents typically treat the set of training teammates as static, thus attempting to generalize to previously unseen partner agents without assuming any control over the distribution of training teammates. In this paper, we present a unified framework for AHT by reformulating the problem as an open-ended learning process between an ad hoc agent and an adversarial teammate generator. We introduce ROTATE, a regret-driven, open-ended training algorithm that alternates between improving the AHT agent and generating teammates that probe its deficiencies. Extensive experiments across diverse AHT environments demonstrate that ROTATE significantly outperforms baselines at generalizing to an unseen set of evaluation teammates, thus establishing a new standard for robust and generalizable teamwork.
☆ GSO: Challenging Software Optimization Tasks for Evaluating SWE-Agents
Developing high-performance software is a complex task that requires specialized expertise. We introduce GSO, a benchmark for evaluating language models' capabilities in developing high-performance software. We develop an automated pipeline that generates and executes performance tests to analyze repository commit histories to identify 102 challenging optimization tasks across 10 codebases, spanning diverse domains and programming languages. An agent is provided with a codebase and performance test as a precise specification, and tasked to improve the runtime efficiency, which is measured against the expert developer optimization. Our quantitative evaluation reveals that leading SWE-Agents struggle significantly, achieving less than 5% success rate, with limited improvements even with inference-time scaling. Our qualitative analysis identifies key failure modes, including difficulties with low-level languages, practicing lazy optimization strategies, and challenges in accurately localizing bottlenecks. We release the code and artifacts of our benchmark along with agent trajectories to enable future research.
comment: Website: https://gso-bench.github.io/
☆ Fortune: Formula-Driven Reinforcement Learning for Symbolic Table Reasoning in Language Models
Tables are a fundamental structure for organizing and analyzing data, making effective table understanding a critical capability for intelligent systems. While large language models (LMs) demonstrate strong general reasoning abilities, they continue to struggle with accurate numerical or symbolic reasoning over tabular data, especially in complex scenarios. Spreadsheet formulas provide a powerful and expressive medium for representing executable symbolic operations, encoding rich reasoning patterns that remain largely underutilized. In this paper, we propose Formula Tuning (Fortune), a reinforcement learning (RL) framework that trains LMs to generate executable spreadsheet formulas for question answering over general tabular data. Formula Tuning reduces the reliance on supervised formula annotations by using binary answer correctness as a reward signal, guiding the model to learn formula derivation through reasoning. We provide a theoretical analysis of its advantages and demonstrate its effectiveness through extensive experiments on seven table reasoning benchmarks. Formula Tuning substantially enhances LM performance, particularly on multi-step numerical and symbolic reasoning tasks, enabling a 7B model to outperform O1 on table understanding. This highlights the potential of formula-driven RL to advance symbolic table reasoning in LMs.
☆ Active Layer-Contrastive Decoding Reduces Hallucination in Large Language Model Generation
Recent decoding methods improve the factuality of large language models~(LLMs) by refining how the next token is selected during generation. These methods typically operate at the token level, leveraging internal representations to suppress superficial patterns. Nevertheless, LLMs remain prone to hallucinations, especially over longer contexts. In this paper, we propose Active Layer-Contrastive Decoding (ActLCD), a novel decoding strategy that actively decides when to apply contrasting layers during generation. By casting decoding as a sequential decision-making problem, ActLCD employs a reinforcement learning policy guided by a reward-aware classifier to optimize factuality beyond the token level. Our experiments demonstrate that ActLCD surpasses state-of-the-art methods across five benchmarks, showcasing its effectiveness in mitigating hallucinations in diverse generation scenarios.
☆ Keyed Chaotic Tensor Transformations for Secure And Attributable Neural Inference
This work introduces a novel framework for secure and privacy-preserving neural network inference based on keyed chaotic dynamical transformations. The proposed method applies a deterministic, cryptographically seeded chaotic system to tensors, producing non-invertible, user-specific transformations that enable authenticated inference, tensor-level watermarking, and data attribution. This framework offers a scalable and lightweight alternative to conventional cryptographic techniques, and establishes a new direction for tensor-level security in AI systems.
comment: 8 pages
☆ Securing AI Agents with Information-Flow Control
As AI agents become increasingly autonomous and capable, ensuring their security against vulnerabilities such as prompt injection becomes critical. This paper explores the use of information-flow control (IFC) to provide security guarantees for AI agents. We present a formal model to reason about the security and expressiveness of agent planners. Using this model, we characterize the class of properties enforceable by dynamic taint-tracking and construct a taxonomy of tasks to evaluate security and utility trade-offs of planner designs. Informed by this exploration, we present Fides, a planner that tracks confidentiality and integrity labels, deterministically enforces security policies, and introduces novel primitives for selectively hiding information. Its evaluation in AgentDojo demonstrates that this approach broadens the range of tasks that can be securely accomplished. A tutorial to walk readers through the the concepts introduced in the paper can be found at https://github.com/microsoft/fides
☆ Comparing the Effects of Persistence Barcodes Aggregation and Feature Concatenation on Medical Imaging
In medical image analysis, feature engineering plays an important role in the design and performance of machine learning models. Persistent homology (PH), from the field of topological data analysis (TDA), demonstrates robustness and stability to data perturbations and addresses the limitation from traditional feature extraction approaches where a small change in input results in a large change in feature representation. Using PH, we store persistent topological and geometrical features in the form of the persistence barcode whereby large bars represent global topological features and small bars encapsulate geometrical information of the data. When multiple barcodes are computed from 2D or 3D medical images, two approaches can be used to construct the final topological feature vector in each dimension: aggregating persistence barcodes followed by featurization or concatenating topological feature vectors derived from each barcode. In this study, we conduct a comprehensive analysis across diverse medical imaging datasets to compare the effects of the two aforementioned approaches on the performance of classification models. The results of this analysis indicate that feature concatenation preserves detailed topological information from individual barcodes, yields better classification performance and is therefore a preferred approach when conducting similar experiments.
comment: 16 pages, 8 figures
☆ Human Empathy as Encoder: AI-Assisted Depression Assessment in Special Education
Assessing student depression in sensitive environments like special education is challenging. Standardized questionnaires may not fully reflect students' true situations. Furthermore, automated methods often falter with rich student narratives, lacking the crucial, individualized insights stemming from teachers' empathetic connections with students. Existing methods often fail to address this ambiguity or effectively integrate educator understanding. To address these limitations by fostering a synergistic human-AI collaboration, this paper introduces Human Empathy as Encoder (HEAE), a novel, human-centered AI framework for transparent and socially responsible depression severity assessment. Our approach uniquely integrates student narrative text with a teacher-derived, 9-dimensional "Empathy Vector" (EV), its dimensions guided by the PHQ-9 framework,to explicitly translate tacit empathetic insight into a structured AI input enhancing rather than replacing human judgment. Rigorous experiments optimized the multimodal fusion, text representation, and classification architecture, achieving 82.74% accuracy for 7-level severity classification. This work demonstrates a path toward more responsible and ethical affective computing by structurally embedding human empathy
comment: 7 pages, 6 figures. Under review
☆ AutoSchemaKG: Autonomous Knowledge Graph Construction through Dynamic Schema Induction from Web-Scale Corpora
We present AutoSchemaKG, a framework for fully autonomous knowledge graph construction that eliminates the need for predefined schemas. Our system leverages large language models to simultaneously extract knowledge triples and induce comprehensive schemas directly from text, modeling both entities and events while employing conceptualization to organize instances into semantic categories. Processing over 50 million documents, we construct ATLAS (Automated Triple Linking And Schema induction), a family of knowledge graphs with 900+ million nodes and 5.9 billion edges. This approach outperforms state-of-the-art baselines on multi-hop QA tasks and enhances LLM factuality. Notably, our schema induction achieves 95\% semantic alignment with human-crafted schemas with zero manual intervention, demonstrating that billion-scale knowledge graphs with dynamically induced schemas can effectively complement parametric knowledge in large language models.
comment: 9 pages, preprint, code: https://github.com/HKUST-KnowComp/AutoSchemaKG
☆ Towards Explainable Sequential Learning
This paper offers a hybrid explainable temporal data processing pipeline, DataFul Explainable MultivariatE coRrelatIonal Temporal Artificial inTElligence (EMeriTAte+DF), bridging numerical-driven temporal data classification with an event-based one through verified artificial intelligence principles, enabling human-explainable results. This was possible through a preliminary a posteriori explainable phase describing the numerical input data in terms of concurrent constituents with numerical payloads. This further required extending the event-based literature to design specification mining algorithms supporting concurrent constituents. Our previous and current solutions outperform state-of-the-art solutions for multivariate time series classifications, thus showcasing the effectiveness of the proposed methodology.
☆ One Trajectory, One Token: Grounded Video Tokenization via Panoptic Sub-object Trajectory
Effective video tokenization is critical for scaling transformer models for long videos. Current approaches tokenize videos using space-time patches, leading to excessive tokens and computational inefficiencies. The best token reduction strategies degrade performance and barely reduce the number of tokens when the camera moves. We introduce grounded video tokenization, a paradigm that organizes tokens based on panoptic sub-object trajectories rather than fixed patches. Our method aligns with fundamental perceptual principles, ensuring that tokenization reflects scene complexity rather than video duration. We propose TrajViT, a video encoder that extracts object trajectories and converts them into semantically meaningful tokens, significantly reducing redundancy while maintaining temporal coherence. Trained with contrastive learning, TrajViT significantly outperforms space-time ViT (ViT3D) across multiple video understanding benchmarks, e.g., TrajViT outperforms ViT3D by a large margin of 6% top-5 recall in average at video-text retrieval task with 10x token deduction. We also show TrajViT as a stronger model than ViT3D for being the video encoder for modern VideoLLM, obtaining an average of 5.2% performance improvement across 6 VideoQA benchmarks while having 4x faster training time and 18x less inference FLOPs. TrajViT is the first efficient encoder to consistently outperform ViT3D across diverse video analysis tasks, making it a robust and scalable solution.
☆ Satori-SWE: Evolutionary Test-Time Scaling for Sample-Efficient Software Engineering
Language models (LMs) perform well on standardized coding benchmarks but struggle with real-world software engineering tasks such as resolving GitHub issues in SWE-Bench, especially when model parameters are less than 100B. While smaller models are preferable in practice due to their lower computational cost, improving their performance remains challenging. Existing approaches primarily rely on supervised fine-tuning (SFT) with high-quality data, which is expensive to curate at scale. An alternative is test-time scaling: generating multiple outputs, scoring them using a verifier, and selecting the best one. Although effective, this strategy often requires excessive sampling and costly scoring, limiting its practical application. We propose Evolutionary Test-Time Scaling (EvoScale), a sample-efficient method that treats generation as an evolutionary process. By iteratively refining outputs via selection and mutation, EvoScale shifts the output distribution toward higher-scoring regions, reducing the number of samples needed to find correct solutions. To reduce the overhead from repeatedly sampling and selection, we train the model to self-evolve using reinforcement learning (RL). Rather than relying on external verifiers at inference time, the model learns to self-improve the scores of its own generations across iterations. Evaluated on SWE-Bench-Verified, EvoScale enables our 32B model, Satori-SWE-32B, to match or exceed the performance of models with over 100B parameters while using a few samples. Code, data, and models will be fully open-sourced.
☆ MAPLE: A Mobile Assistant with Persistent Finite State Machines for Recovery Reasoning
Mobile GUI agents aim to autonomously complete user-instructed tasks across mobile apps. Recent advances in Multimodal Large Language Models (MLLMs) enable these agents to interpret UI screens, identify actionable elements, and perform interactions such as tapping or typing. However, existing agents remain reactive: they reason only over the current screen and lack a structured model of app navigation flow, limiting their ability to understand context, detect unexpected outcomes, and recover from errors. We present MAPLE, a state-aware multi-agent framework that abstracts app interactions as a Finite State Machine (FSM). We computationally model each UI screen as a discrete state and user actions as transitions, allowing the FSM to provide a structured representation of the app execution. MAPLE consists of specialized agents responsible for four phases of task execution: planning, execution, verification, error recovery, and knowledge retention. These agents collaborate to dynamically construct FSMs in real time based on perception data extracted from the UI screen, allowing the GUI agents to track navigation progress and flow, validate action outcomes through pre- and post-conditions of the states, and recover from errors by rolling back to previously stable states. Our evaluation results on two challenging cross-app benchmarks, Mobile-Eval-E and SPA-Bench, show that MAPLE outperforms the state-of-the-art baseline, improving task success rate by up to 12%, recovery success by 13.8%, and action accuracy by 6.5%. Our results highlight the importance of structured state modeling in guiding mobile GUI agents during task execution. Moreover, our FSM representation can be integrated into future GUI agent architectures as a lightweight, model-agnostic memory layer to support structured planning, execution verification, and error recovery.
☆ DeepChest: Dynamic Gradient-Free Task Weighting for Effective Multi-Task Learning in Chest X-ray Classification
While Multi-Task Learning (MTL) offers inherent advantages in complex domains such as medical imaging by enabling shared representation learning, effectively balancing task contributions remains a significant challenge. This paper addresses this critical issue by introducing DeepChest, a novel, computationally efficient and effective dynamic task-weighting framework specifically designed for multi-label chest X-ray (CXR) classification. Unlike existing heuristic or gradient-based methods that often incur substantial overhead, DeepChest leverages a performance-driven weighting mechanism based on effective analysis of task-specific loss trends. Given a network architecture (e.g., ResNet18), our model-agnostic approach adaptively adjusts task importance without requiring gradient access, thereby significantly reducing memory usage and achieving a threefold increase in training speed. It can be easily applied to improve various state-of-the-art methods. Extensive experiments on a large-scale CXR dataset demonstrate that DeepChest not only outperforms state-of-the-art MTL methods by 7% in overall accuracy but also yields substantial reductions in individual task losses, indicating improved generalization and effective mitigation of negative transfer. The efficiency and performance gains of DeepChest pave the way for more practical and robust deployment of deep learning in critical medical diagnostic applications. The code is publicly available at https://github.com/youssefkhalil320/DeepChest-MTL
☆ Jigsaw-R1: A Study of Rule-based Visual Reinforcement Learning with Jigsaw Puzzles
The application of rule-based reinforcement learning (RL) to multimodal large language models (MLLMs) introduces unique challenges and potential deviations from findings in text-only domains, particularly for perception-heavy tasks. This paper provides a comprehensive study of rule-based visual RL using jigsaw puzzles as a structured experimental framework, revealing several key findings. \textit{Firstly,} we find that MLLMs, initially performing near to random guessing on simple puzzles, achieve near-perfect accuracy and generalize to complex, unseen configurations through fine-tuning. \textit{Secondly,} training on jigsaw puzzles can induce generalization to other visual tasks, with effectiveness tied to specific task configurations. \textit{Thirdly,} MLLMs can learn and generalize with or without explicit reasoning, though open-source models often favor direct answering. Consequently, even when trained for step-by-step reasoning, they can ignore the thinking process in deriving the final answer. \textit{Fourthly,} we observe that complex reasoning patterns appear to be pre-existing rather than emergent, with their frequency increasing alongside training and task difficulty. \textit{Finally,} our results demonstrate that RL exhibits more effective generalization than Supervised Fine-Tuning (SFT), and an initial SFT cold start phase can hinder subsequent RL optimization. Although these observations are based on jigsaw puzzles and may vary across other visual tasks, this research contributes a valuable piece of jigsaw to the larger puzzle of collective understanding rule-based visual RL and its potential in multimodal learning. The code is available at: \href{https://github.com/zifuwanggg/Jigsaw-R1}{https://github.com/zifuwanggg/Jigsaw-R1}.
☆ Collaborative Last-Mile Delivery: A Multi-Platform Vehicle Routing Problem With En-route Charging
The rapid growth of e-commerce and the increasing demand for timely, cost-effective last-mile delivery have increased interest in collaborative logistics. This research introduces a novel collaborative synchronized multi-platform vehicle routing problem with drones and robots (VRP-DR), where a fleet of $\mathcal{M}$ trucks, $\mathcal{N}$ drones and $\mathcal{K}$ robots, cooperatively delivers parcels. Trucks serve as mobile platforms, enabling the launching, retrieving, and en-route charging of drones and robots, thereby addressing critical limitations such as restricted payload capacities, limited range, and battery constraints. The VRP-DR incorporates five realistic features: (1) multi-visit service per trip, (2) multi-trip operations, (3) flexible docking, allowing returns to the same or different trucks (4) cyclic and acyclic operations, enabling return to the same or different nodes; and (5) en-route charging, enabling drones and robots to recharge while being transported on the truck, maximizing operational efficiency by utilizing idle transit time. The VRP-DR is formulated as a mixed-integer linear program (MILP) to minimize both operational costs and makespan. To overcome the computational challenges of solving large-scale instances, a scalable heuristic algorithm, FINDER (Flexible INtegrated Delivery with Energy Recharge), is developed, to provide efficient, near-optimal solutions. Numerical experiments across various instance sizes evaluate the performance of the MILP and heuristic approaches in terms of solution quality and computation time. The results demonstrate significant time savings of the combined delivery mode over the truck-only mode and substantial cost reductions from enabling multi-visits. The study also provides insights into the effects of en-route charging, docking flexibility, drone count, speed, and payload capacity on system performance.
☆ Engineering Serendipity through Recommendations of Items with Atypical Aspects
A restaurant dinner or a hotel stay may lead to memorable experiences when guests encounter unexpected aspects that also match their interests. For example, an origami-making station in the waiting area of a restaurant may be both surprising and enjoyable for a customer who is passionate about paper crafts. Similarly, an exhibit of 18th century harpsichords would be atypical for a hotel lobby and likely pique the interest of a guest who has a passion for Baroque music. Motivated by this insight, in this paper we introduce the new task of engineering serendipity through recommendations of items with atypical aspects. We describe an LLM-based system pipeline that extracts atypical aspects from item reviews, then estimates and aggregates their user-specific utility in a measure of serendipity potential that is used to rerank a list of items recommended to the user. To facilitate system development and evaluation, we introduce a dataset of Yelp reviews that are manually annotated with atypical aspects and a dataset of artificially generated user profiles, together with crowdsourced annotations of user-aspect utility values. Furthermore, we introduce a custom procedure for dynamic selection of in-context learning examples, which is shown to improve LLM-based judgments of atypicality and utility. Experimental evaluations show that serendipity-based rankings generated by the system are highly correlated with ground truth rankings for which serendipity scores are computed from manual annotations of atypical aspects and their user-dependent utility. Overall, we hope that the new recommendation task and the associated system presented in this paper catalyze further research into recommendation approaches that go beyond accuracy in their pursuit of enhanced user satisfaction. The datasets and the code are made publicly available at https://github.com/ramituncc49er/ATARS .
comment: 25 pages of content + references and appendix. arXiv admin note: text overlap with arXiv:2311.02702
☆ Cognitive Guardrails for Open-World Decision Making in Autonomous Drone Swarms
Small Uncrewed Aerial Systems (sUAS) are increasingly deployed as autonomous swarms in search-and-rescue and other disaster-response scenarios. In these settings, they use computer vision (CV) to detect objects of interest and autonomously adapt their missions. However, traditional CV systems often struggle to recognize unfamiliar objects in open-world environments or to infer their relevance for mission planning. To address this, we incorporate large language models (LLMs) to reason about detected objects and their implications. While LLMs can offer valuable insights, they are also prone to hallucinations and may produce incorrect, misleading, or unsafe recommendations. To ensure safe and sensible decision-making under uncertainty, high-level decisions must be governed by cognitive guardrails. This article presents the design, simulation, and real-world integration of these guardrails for sUAS swarms in search-and-rescue missions.
comment: 16 pages, 8 figures
☆ CoT Red-Handed: Stress Testing Chain-of-Thought Monitoring
As AI models are deployed with increasing autonomy, it is important to ensure they do not take harmful actions unnoticed. As a potential mitigation, we investigate Chain-of-Thought (CoT) monitoring, wherein a weaker trusted monitor model continuously oversees the intermediate reasoning steps of a more powerful but untrusted model. We compare CoT monitoring to action-only monitoring, where only final outputs are reviewed, in a red-teaming setup where the untrusted model is instructed to pursue harmful side tasks while completing a coding problem. We find that CoT monitoring improves detection by up to 27 percentage points in scenarios where action-only monitoring fails to reliably identify sabotage. However, CoT traces can also contain misleading rationalizations that deceive the monitor, reducing performance in more obvious sabotage cases. To address this, we introduce a hybrid protocol that independently scores both reasoning and final outputs and combines them using a weighted average. This hybrid monitor consistently outperforms both CoT and action-only monitors across all tested models and tasks, with detection rates over four times higher than action-only monitoring for subtle deception scenarios.
☆ Segment Policy Optimization: Effective Segment-Level Credit Assignment in RL for Large Language Models
Enhancing the reasoning capabilities of large language models effectively using reinforcement learning (RL) remains a crucial challenge. Existing approaches primarily adopt two contrasting advantage estimation granularities: Token-level methods (e.g., PPO) aim to provide the fine-grained advantage signals but suffer from inaccurate estimation due to difficulties in training an accurate critic model. On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a coarse-grained advantage signal from the final reward, leading to imprecise credit assignment. To address these limitations, we propose Segment Policy Optimization (SPO), a novel RL framework that leverages segment-level advantage estimation at an intermediate granularity, achieving a better balance by offering more precise credit assignment than trajectory-level methods and requiring fewer estimation points than token-level methods, enabling accurate advantage estimation based on Monte Carlo (MC) without a critic model. SPO features three components with novel strategies: (1) flexible segment partition; (2) accurate segment advantage estimation; and (3) policy optimization using segment advantages, including a novel probability-mask strategy. We further instantiate SPO for two specific scenarios: (1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based partition and chain-based advantage estimation, achieving $6$-$12$ percentage point improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long CoT, featuring novel tree-based advantage estimation, which significantly reduces the cost of MC estimation, achieving $7$-$11$ percentage point improvements over GRPO on MATH500 under 2K and 4K context evaluation. We make our code publicly available at https://github.com/AIFrameResearch/SPO.
☆ SafeScientist: Toward Risk-Aware Scientific Discoveries by LLM Agents
Recent advancements in large language model (LLM) agents have significantly accelerated scientific discovery automation, yet concurrently raised critical ethical and safety concerns. To systematically address these challenges, we introduce \textbf{SafeScientist}, an innovative AI scientist framework explicitly designed to enhance safety and ethical responsibility in AI-driven scientific exploration. SafeScientist proactively refuses ethically inappropriate or high-risk tasks and rigorously emphasizes safety throughout the research process. To achieve comprehensive safety oversight, we integrate multiple defensive mechanisms, including prompt monitoring, agent-collaboration monitoring, tool-use monitoring, and an ethical reviewer component. Complementing SafeScientist, we propose \textbf{SciSafetyBench}, a novel benchmark specifically designed to evaluate AI safety in scientific contexts, comprising 240 high-risk scientific tasks across 6 domains, alongside 30 specially designed scientific tools and 120 tool-related risk tasks. Extensive experiments demonstrate that SafeScientist significantly improves safety performance by 35\% compared to traditional AI scientist frameworks, without compromising scientific output quality. Additionally, we rigorously validate the robustness of our safety pipeline against diverse adversarial attack methods, further confirming the effectiveness of our integrated approach. The code and data will be available at https://github.com/ulab-uiuc/SafeScientist. \textcolor{red}{Warning: this paper contains example data that may be offensive or harmful.}
☆ Sustainable Carbon-Aware and Water-Efficient LLM Scheduling in Geo-Distributed Cloud Datacenters
In recent years, Large Language Models (LLM) such as ChatGPT, CoPilot, and Gemini have been widely adopted in different areas. As the use of LLMs continues to grow, many efforts have focused on reducing the massive training overheads of these models. But it is the environmental impact of handling user requests to LLMs that is increasingly becoming a concern. Recent studies estimate that the costs of operating LLMs in their inference phase can exceed training costs by 25x per year. As LLMs are queried incessantly, the cumulative carbon footprint for the operational phase has been shown to far exceed the footprint during the training phase. Further, estimates indicate that 500 ml of fresh water is expended for every 20-50 requests to LLMs during inference. To address these important sustainability issues with LLMs, we propose a novel framework called SLIT to co-optimize LLM quality of service (time-to-first token), carbon emissions, water usage, and energy costs. The framework utilizes a machine learning (ML) based metaheuristic to enhance the sustainability of LLM hosting across geo-distributed cloud datacenters. Such a framework will become increasingly vital as LLMs proliferate.
☆ CLaC at SemEval-2025 Task 6: A Multi-Architecture Approach for Corporate Environmental Promise Verification SemEval-2025
This paper presents our approach to the SemEval-2025 Task~6 (PromiseEval), which focuses on verifying promises in corporate ESG (Environmental, Social, and Governance) reports. We explore three model architectures to address the four subtasks of promise identification, supporting evidence assessment, clarity evaluation, and verification timing. Our first model utilizes ESG-BERT with task-specific classifier heads, while our second model enhances this architecture with linguistic features tailored for each subtask. Our third approach implements a combined subtask model with attention-based sequence pooling, transformer representations augmented with document metadata, and multi-objective learning. Experiments on the English portion of the ML-Promise dataset demonstrate progressive improvement across our models, with our combined subtask approach achieving a leaderboard score of 0.5268, outperforming the provided baseline of 0.5227. Our work highlights the effectiveness of linguistic feature extraction, attention pooling, and multi-objective learning in promise verification tasks, despite challenges posed by class imbalance and limited training data.
comment: Accepted to SemEval-2025 Task 6 (ACL 2025)
☆ Synchronizing Process Model and Event Abstraction for Grounded Process Intelligence (Extended Version)
Model abstraction (MA) and event abstraction (EA) are means to reduce complexity of (discovered) models and event data. Imagine a process intelligence project that aims to analyze a model discovered from event data which is further abstracted, possibly multiple times, to reach optimality goals, e.g., reducing model size. So far, after discovering the model, there is no technique that enables the synchronized abstraction of the underlying event log. This results in loosing the grounding in the real-world behavior contained in the log and, in turn, restricts analysis insights. Hence, in this work, we provide the formal basis for synchronized model and event abstraction, i.e., we prove that abstracting a process model by MA and discovering a process model from an abstracted event log yields an equivalent process model. We prove the feasibility of our approach based on behavioral profile abstraction as non-order preserving MA technique, resulting in a novel EA technique.
☆ Subgraph Gaussian Embedding Contrast for Self-Supervised Graph Representation Learning
Graph Representation Learning (GRL) is a fundamental task in machine learning, aiming to encode high-dimensional graph-structured data into low-dimensional vectors. Self-Supervised Learning (SSL) methods are widely used in GRL because they can avoid expensive human annotation. In this work, we propose a novel Subgraph Gaussian Embedding Contrast (SubGEC) method. Our approach introduces a subgraph Gaussian embedding module, which adaptively maps subgraphs to a structured Gaussian space, ensuring the preservation of input subgraph characteristics while generating subgraphs with a controlled distribution. We then employ optimal transport distances, more precisely the Wasserstein and Gromov-Wasserstein distances, to effectively measure the similarity between subgraphs, enhancing the robustness of the contrastive learning process. Extensive experiments across multiple benchmarks demonstrate that \method~outperforms or presents competitive performance against state-of-the-art approaches. Our findings provide insights into the design of SSL methods for GRL, emphasizing the importance of the distribution of the generated contrastive pairs.
☆ Individual differences in the cognitive mechanisms of planning strategy discovery
People employ efficient planning strategies. But how are these strategies acquired? Previous research suggests that people can discover new planning strategies through learning from reinforcements, a process known as metacognitive reinforcement learning (MCRL). While prior work has shown that MCRL models can learn new planning strategies and explain more participants' experience-driven discovery better than alternative mechanisms, it also revealed significant individual differences in metacognitive learning. Furthermore, when fitted to human data, these models exhibit a slower rate of strategy discovery than humans. In this study, we investigate whether incorporating cognitive mechanisms that might facilitate human strategy discovery can bring models of MCRL closer to human performance. Specifically, we consider intrinsically generated metacognitive pseudo-rewards, subjective effort valuation, and termination deliberation. Analysis of planning task data shows that a larger proportion of participants used at least one of these mechanisms, with significant individual differences in their usage and varying impacts on strategy discovery. Metacognitive pseudo-rewards, subjective effort valuation, and learning the value of acting without further planning were found to facilitate strategy discovery. While these enhancements provided valuable insights into individual differences and the effect of these mechanisms on strategy discovery, they did not fully close the gap between model and human performance, prompting further exploration of additional factors that people might use to discover new planning strategies.
☆ TRAP: Targeted Redirecting of Agentic Preferences
Autonomous agentic AI systems powered by vision-language models (VLMs) are rapidly advancing toward real-world deployment, yet their cross-modal reasoning capabilities introduce new attack surfaces for adversarial manipulation that exploit semantic reasoning across modalities. Existing adversarial attacks typically rely on visible pixel perturbations or require privileged model or environment access, making them impractical for stealthy, real-world exploitation. We introduce TRAP, a generative adversarial framework that manipulates the agent's decision-making using diffusion-based semantic injections. Our method combines negative prompt-based degradation with positive semantic optimization, guided by a Siamese semantic network and layout-aware spatial masking. Without requiring access to model internals, TRAP produces visually natural images yet induces consistent selection biases in agentic AI systems. We evaluate TRAP on the Microsoft Common Objects in Context (COCO) dataset, building multi-candidate decision scenarios. Across these scenarios, TRAP achieves a 100% attack success rate on leading models, including LLaVA-34B, Gemma3, and Mistral-3.1, significantly outperforming baselines such as SPSA, Bandit, and standard diffusion approaches. These results expose a critical vulnerability: Autonomous agents can be consistently misled through human-imperceptible cross-modal manipulations. These findings highlight the need for defense strategies beyond pixel-level robustness to address semantic vulnerabilities in cross-modal decision-making.
☆ A Robot-Assisted Approach to Small Talk Training for Adults with ASD RSS
From dating to job interviews, making new friends or simply chatting with the cashier at checkout, engaging in small talk is a vital, everyday social skill. For adults with Autism Spectrum Disorder (ASD), small talk can be particularly challenging, yet it is essential for social integration, building relationships, and accessing professional opportunities. In this study, we present our development and evaluation of an in-home autonomous robot system that allows users to practice small talk. Results from the week-long study show that adults with ASD enjoyed the training, made notable progress in initiating conversations and improving eye contact, and viewed the system as a valuable tool for enhancing their conversational skills.
comment: Accepted for publication in Robotics: Science and Systems (RSS) 2025, 14 pages, 4 figures,
☆ Can Large Language Models Challenge CNNS in Medical Image Analysis?
This study presents a multimodal AI framework designed for precisely classifying medical diagnostic images. Utilizing publicly available datasets, the proposed system compares the strengths of convolutional neural networks (CNNs) and different large language models (LLMs). This in-depth comparative analysis highlights key differences in diagnostic performance, execution efficiency, and environmental impacts. Model evaluation was based on accuracy, F1-score, average execution time, average energy consumption, and estimated $CO_2$ emission. The findings indicate that although CNN-based models can outperform various multimodal techniques that incorporate both images and contextual information, applying additional filtering on top of LLMs can lead to substantial performance gains. These findings highlight the transformative potential of multimodal AI systems to enhance the reliability, efficiency, and scalability of medical diagnostics in clinical settings.
☆ Autoformalization in the Era of Large Language Models: A Survey
Autoformalization, the process of transforming informal mathematical propositions into verifiable formal representations, is a foundational task in automated theorem proving, offering a new perspective on the use of mathematics in both theoretical and applied domains. Driven by the rapid progress in artificial intelligence, particularly large language models (LLMs), this field has witnessed substantial growth, bringing both new opportunities and unique challenges. In this survey, we provide a comprehensive overview of recent advances in autoformalization from both mathematical and LLM-centric perspectives. We examine how autoformalization is applied across various mathematical domains and levels of difficulty, and analyze the end-to-end workflow from data preprocessing to model design and evaluation. We further explore the emerging role of autoformalization in enhancing the verifiability of LLM-generated outputs, highlighting its potential to improve both the trustworthiness and reasoning capabilities of LLMs. Finally, we summarize key open-source models and datasets supporting current research, and discuss open challenges and promising future directions for the field.
☆ Socratic-PRMBench: Benchmarking Process Reward Models with Systematic Reasoning Patterns
Process Reward Models (PRMs) are crucial in complex reasoning and problem-solving tasks (e.g., LLM agents with long-horizon decision-making) by verifying the correctness of each intermediate reasoning step. In real-world scenarios, LLMs may apply various reasoning patterns (e.g., decomposition) to solve a problem, potentially suffering from errors under various reasoning patterns. Therefore, PRMs are required to identify errors under various reasoning patterns during the reasoning process. However, existing benchmarks mainly focus on evaluating PRMs with stepwise correctness, ignoring a systematic evaluation of PRMs under various reasoning patterns. To mitigate this gap, we introduce Socratic-PRMBench, a new benchmark to evaluate PRMs systematically under six reasoning patterns, including Transformation, Decomposition, Regather, Deduction, Verification, and Integration. Socratic-PRMBench}comprises 2995 reasoning paths with flaws within the aforementioned six reasoning patterns. Through our experiments on both PRMs and LLMs prompted as critic models, we identify notable deficiencies in existing PRMs. These observations underscore the significant weakness of current PRMs in conducting evaluations on reasoning steps under various reasoning patterns. We hope Socratic-PRMBench can serve as a comprehensive testbed for systematic evaluation of PRMs under diverse reasoning patterns and pave the way for future development of PRMs.
☆ EVOREFUSE: Evolutionary Prompt Optimization for Evaluation and Mitigation of LLM Over-Refusal to Pseudo-Malicious Instructions
Large language models (LLMs) frequently refuse to respond to pseudo-malicious instructions: semantically harmless input queries triggering unnecessary LLM refusals due to conservative safety alignment, significantly impairing user experience. Collecting such instructions is crucial for evaluating and mitigating over-refusals, but existing instruction curation methods, like manual creation or instruction rewriting, either lack scalability or fail to produce sufficiently diverse and effective refusal-inducing prompts. To address these limitations, we introduce EVOREFUSE, a prompt optimization approach that generates diverse pseudo-malicious instructions consistently eliciting confident refusals across LLMs. EVOREFUSE employs an evolutionary algorithm exploring the instruction space in more diverse directions than existing methods via mutation strategies and recombination, and iteratively evolves seed instructions to maximize evidence lower bound on LLM refusal probability. Using EVOREFUSE, we create two novel datasets: EVOREFUSE-TEST, a benchmark of 582 pseudo-malicious instructions that outperforms the next-best benchmark with 140.41% higher average refusal triggering rate across 9 LLMs, 34.86% greater lexical diversity, and 40.03% improved LLM response confidence scores; and EVOREFUSE-ALIGN, which provides 3,000 pseudo-malicious instructions with responses for supervised and preference-based alignment training. LLAMA3.1-8B-INSTRUCT supervisedly fine-tuned on EVOREFUSE-ALIGN achieves up to 14.31% fewer over-refusals than models trained on the second-best alignment dataset, without compromising safety. Our analysis with EVOREFUSE-TEST reveals models trigger over-refusals by overly focusing on sensitive keywords while ignoring broader context.
☆ LCB-CV-UNet: Enhanced Detector for High Dynamic Range Radar Signals RSS 2025
We propose the LCB-CV-UNet to tackle performance degradation caused by High Dynamic Range (HDR) radar signals. Initially, a hardware-efficient, plug-and-play module named Logarithmic Connect Block (LCB) is proposed as a phase coherence preserving solution to address the inherent challenges in handling HDR features. Then, we propose the Dual Hybrid Dataset Construction method to generate a semi-synthetic dataset, approximating typical HDR signal scenarios with adjustable target distributions. Simulation results show about 1% total detection probability improvement with under 0.9% computational complexity added compared with the baseline. Furthermore, it excels 5% over the baseline at the range in 11-13 dB signal-to-noise ratio typical for urban targets. Finally, the real experiment validates the practicality of our model.
comment: 5 pages, 4 figures. Accepted to IEEE IGARSS 2025
☆ CryoCCD: Conditional Cycle-consistent Diffusion with Biophysical Modeling for Cryo-EM Synthesis
Cryo-electron microscopy (cryo-EM) offers near-atomic resolution imaging of macromolecules, but developing robust models for downstream analysis is hindered by the scarcity of high-quality annotated data. While synthetic data generation has emerged as a potential solution, existing methods often fail to capture both the structural diversity of biological specimens and the complex, spatially varying noise inherent in cryo-EM imaging. To overcome these limitations, we propose CryoCCD, a synthesis framework that integrates biophysical modeling with generative techniques. Specifically, CryoCCD produces multi-scale cryo-EM micrographs that reflect realistic biophysical variability through compositional heterogeneity, cellular context, and physics-informed imaging. To generate realistic noise, we employ a conditional diffusion model, enhanced by cycle consistency to preserve structural fidelity and mask-aware contrastive learning to capture spatially adaptive noise patterns. Extensive experiments show that CryoCCD generates structurally accurate micrographs and enhances performance in downstream tasks, outperforming state-of-the-art baselines in both particle picking and reconstruction.
☆ Bounded-Abstention Pairwise Learning to Rank
Ranking systems influence decision-making in high-stakes domains like health, education, and employment, where they can have substantial economic and social impacts. This makes the integration of safety mechanisms essential. One such mechanism is $\textit{abstention}$, which enables algorithmic decision-making system to defer uncertain or low-confidence decisions to human experts. While abstention have been predominantly explored in the context of classification tasks, its application to other machine learning paradigms remains underexplored. In this paper, we introduce a novel method for abstention in pairwise learning-to-rank tasks. Our approach is based on thresholding the ranker's conditional risk: the system abstains from making a decision when the estimated risk exceeds a predefined threshold. Our contributions are threefold: a theoretical characterization of the optimal abstention strategy, a model-agnostic, plug-in algorithm for constructing abstaining ranking models, and a comprehensive empirical evaluations across multiple datasets, demonstrating the effectiveness of our approach.
☆ Emergent Risk Awareness in Rational Agents under Resource Constraints
Advanced reasoning models with agentic capabilities (AI agents) are deployed to interact with humans and to solve sequential decision-making problems under (approximate) utility functions and internal models. When such problems have resource or failure constraints where action sequences may be forcibly terminated once resources are exhausted, agents face implicit trade-offs that reshape their utility-driven (rational) behaviour. Additionally, since these agents are typically commissioned by a human principal to act on their behalf, asymmetries in constraint exposure can give rise to previously unanticipated misalignment between human objectives and agent incentives. We formalise this setting through a survival bandit framework, provide theoretical and empirical results that quantify the impact of survival-driven preference shifts, identify conditions under which misalignment emerges and propose mechanisms to mitigate the emergence of risk-seeking or risk-averse behaviours. As a result, this work aims to increase understanding and interpretability of emergent behaviours of AI agents operating under such survival pressure, and offer guidelines for safely deploying such AI systems in critical resource-limited environments.
☆ A Mathematical Framework for AI-Human Integration in Work ICML 2025
The rapid rise of Generative AI (GenAI) tools has sparked debate over their role in complementing or replacing human workers across job contexts. We present a mathematical framework that models jobs, workers, and worker-job fit, introducing a novel decomposition of skills into decision-level and action-level subskills to reflect the complementary strengths of humans and GenAI. We analyze how changes in subskill abilities affect job success, identifying conditions for sharp transitions in success probability. We also establish sufficient conditions under which combining workers with complementary subskills significantly outperforms relying on a single worker. This explains phenomena such as productivity compression, where GenAI assistance yields larger gains for lower-skilled workers. We demonstrate the framework' s practicality using data from O*NET and Big-Bench Lite, aligning real-world data with our model via subskill-division methods. Our results highlight when and how GenAI complements human skills, rather than replacing them.
comment: This paper will appear in ICML 2025
☆ Enhanced DACER Algorithm with High Diffusion Efficiency
Due to their expressive capacity, diffusion models have shown great promise in offline RL and imitation learning. Diffusion Actor-Critic with Entropy Regulator (DACER) extended this capability to online RL by using the reverse diffusion process as a policy approximator, trained end-to-end with policy gradient methods, achieving strong performance. However, this comes at the cost of requiring many diffusion steps, which significantly hampers training efficiency, while directly reducing the steps leads to noticeable performance degradation. Critically, the lack of inference efficiency becomes a significant bottleneck for applying diffusion policies in real-time online RL settings. To improve training and inference efficiency while maintaining or even enhancing performance, we propose a Q-gradient field objective as an auxiliary optimization target to guide the denoising process at each diffusion step. Nonetheless, we observe that the independence of the Q-gradient field from the diffusion time step negatively impacts the performance of the diffusion policy. To address this, we introduce a temporal weighting mechanism that enables the model to efficiently eliminate large-scale noise in the early stages and refine actions in the later stages. Experimental results on MuJoCo benchmarks and several multimodal tasks demonstrate that the DACER2 algorithm achieves state-of-the-art performance in most MuJoCo control tasks with only five diffusion steps, while also exhibiting stronger multimodality compared to DACER.
☆ From Knowledge to Noise: CTIM-Rover and the Pitfalls of Episodic Memory in Software Engineering Agents
We introduce CTIM-Rover, an AI agent for Software Engineering (SE) built on top of AutoCodeRover (Zhang et al., 2024) that extends agentic reasoning frameworks with an episodic memory, more specifically, a general and repository-level Cross-Task-Instance Memory (CTIM). While existing open-source SE agents mostly rely on ReAct (Yao et al., 2023b), Reflexion (Shinn et al., 2023), or Code-Act (Wang et al., 2024), all of these reasoning and planning frameworks inefficiently discard their long-term memory after a single task instance. As repository-level understanding is pivotal for identifying all locations requiring a patch for fixing a bug, we hypothesize that SE is particularly well positioned to benefit from CTIM. For this, we build on the Experiential Learning (EL) approach ExpeL (Zhao et al., 2024), proposing a Mixture-Of-Experts (MoEs) inspired approach to create both a general-purpose and repository-level CTIM. We find that CTIM-Rover does not outperform AutoCodeRover in any configuration and thus conclude that neither ExpeL nor DoT-Bank (Lingam et al., 2024) scale to real-world SE problems. Our analysis indicates noise introduced by distracting CTIM items or exemplar trajectories as the likely source of the performance degradation.
comment: Short Paper, REALM '25 camera-ready
☆ SWE-bench Goes Live!
The issue-resolving task, where a model generates patches to fix real-world bugs, has emerged as a critical benchmark for evaluating the capabilities of large language models (LLMs). While SWE-bench and its variants have become standard in this domain, they suffer from key limitations: they have not been updated since their initial releases, cover a narrow set of repositories, and depend heavily on manual effort for instance construction and environment setup. These factors hinder scalability and introduce risks of overfitting and data contamination. In this work, we present \textbf{SWE-bench-Live}, a \textit{live-updatable} benchmark designed to overcome these challenges. Our initial release consists of 1,319 tasks derived from real GitHub issues created since 2024, spanning 93 repositories. Each task is accompanied by a dedicated Docker image to ensure reproducible execution. Central to our benchmark is \method, an automated curation pipeline that streamlines the entire process from instance creation to environment setup, removing manual bottlenecks and enabling scalability and continuous updates. We evaluate a range of state-of-the-art agent frameworks and LLMs on SWE-bench-Live, revealing a substantial performance gap compared to static benchmarks like SWE-bench, even under controlled evaluation conditions. To better understand this discrepancy, we perform detailed analyses across repository origin, issue recency, and task difficulty. By providing a fresh, diverse, and executable benchmark grounded in live repository activity, SWE-bench-Live facilitates rigorous, contamination-resistant evaluation of LLMs and agents in dynamic, real-world software development settings.
comment: Homepage: \url{https://swe-bench-live.github.io/}, Code: \url{https://github.com/SWE-bench-Live}, Dataset: \url{https://huggingface.co/SWE-bench-Live}
☆ Toward Effective AI Governance: A Review of Principles
Artificial Intelligence (AI) governance is the practice of establishing frameworks, policies, and procedures to ensure the responsible, ethical, and safe development and deployment of AI systems. Although AI governance is a core pillar of Responsible AI, current literature still lacks synthesis across such governance frameworks and practices. Objective: To identify which frameworks, principles, mechanisms, and stakeholder roles are emphasized in secondary literature on AI governance. Method: We conducted a rapid tertiary review of nine peer-reviewed secondary studies from IEEE and ACM (20202024), using structured inclusion criteria and thematic semantic synthesis. Results: The most cited frameworks include the EU AI Act and NIST RMF; transparency and accountability are the most common principles. Few reviews detail actionable governance mechanisms or stakeholder strategies. Conclusion: The review consolidates key directions in AI governance and highlights gaps in empirical validation and inclusivity. Findings inform both academic inquiry and practical adoption in organizations.
☆ Bidirectional predictive coding
Predictive coding (PC) is an influential computational model of visual learning and inference in the brain. Classical PC was proposed as a top-down generative model, where the brain actively predicts upcoming visual inputs, and inference minimises the prediction errors. Recent studies have also shown that PC can be formulated as a discriminative model, where sensory inputs predict neural activities in a feedforward manner. However, experimental evidence suggests that the brain employs both generative and discriminative inference, while unidirectional PC models show degraded performance in tasks requiring bidirectional processing. In this work, we propose bidirectional PC (bPC), a PC model that incorporates both generative and discriminative inference while maintaining a biologically plausible circuit implementation. We show that bPC matches or outperforms unidirectional models in their specialised generative or discriminative tasks, by developing an energy landscape that simultaneously suits both tasks. We also demonstrate bPC's superior performance in two biologically relevant tasks including multimodal learning and inference with missing information, suggesting that bPC resembles biological visual inference more closely.
☆ Buffer-free Class-Incremental Learning with Out-of-Distribution Detection
Class-incremental learning (CIL) poses significant challenges in open-world scenarios, where models must not only learn new classes over time without forgetting previous ones but also handle inputs from unknown classes that a closed-set model would misclassify. Recent works address both issues by (i)~training multi-head models using the task-incremental learning framework, and (ii) predicting the task identity employing out-of-distribution (OOD) detectors. While effective, the latter mainly relies on joint training with a memory buffer of past data, raising concerns around privacy, scalability, and increased training time. In this paper, we present an in-depth analysis of post-hoc OOD detection methods and investigate their potential to eliminate the need for a memory buffer. We uncover that these methods, when applied appropriately at inference time, can serve as a strong substitute for buffer-based OOD detection. We show that this buffer-free approach achieves comparable or superior performance to buffer-based methods both in terms of class-incremental learning and the rejection of unknown samples. Experimental results on CIFAR-10, CIFAR-100 and Tiny ImageNet datasets support our findings, offering new insights into the design of efficient and privacy-preserving CIL systems for open-world settings.
☆ Video Editing for Audio-Visual Dubbing
Visual dubbing, the synchronization of facial movements with new speech, is crucial for making content accessible across different languages, enabling broader global reach. However, current methods face significant limitations. Existing approaches often generate talking faces, hindering seamless integration into original scenes, or employ inpainting techniques that discard vital visual information like partial occlusions and lighting variations. This work introduces EdiDub, a novel framework that reformulates visual dubbing as a content-aware editing task. EdiDub preserves the original video context by utilizing a specialized conditioning scheme to ensure faithful and accurate modifications rather than mere copying. On multiple benchmarks, including a challenging occluded-lip dataset, EdiDub significantly improves identity preservation and synchronization. Human evaluations further confirm its superiority, achieving higher synchronization and visual naturalness scores compared to the leading methods. These results demonstrate that our content-aware editing approach outperforms traditional generation or inpainting, particularly in maintaining complex visual elements while ensuring accurate lip synchronization.
☆ GAM-Agent: Game-Theoretic and Uncertainty-Aware Collaboration for Complex Visual Reasoning
We propose GAM-Agent, a game-theoretic multi-agent framework for enhancing vision-language reasoning. Unlike prior single-agent or monolithic models, GAM-Agent formulates the reasoning process as a non-zero-sum game between base agents--each specializing in visual perception subtasks--and a critical agent that verifies logic consistency and factual correctness. Agents communicate via structured claims, evidence, and uncertainty estimates. The framework introduces an uncertainty-aware controller to dynamically adjust agent collaboration, triggering multi-round debates when disagreement or ambiguity is detected. This process yields more robust and interpretable predictions. Experiments on four challenging benchmarks--MMMU, MMBench, MVBench, and V*Bench--demonstrate that GAM-Agent significantly improves performance across various VLM backbones. Notably, GAM-Agent boosts the accuracy of small-to-mid scale models (e.g., Qwen2.5-VL-7B, InternVL3-14B) by 5--6\%, and still enhances strong models like GPT-4o by up to 2--3\%. Our approach is modular, scalable, and generalizable, offering a path toward reliable and explainable multi-agent multimodal reasoning.
☆ A Unified Framework for Human AI Collaboration in Security Operations Centers with Trusted Autonomy
This article presents a structured framework for Human-AI collaboration in Security Operations Centers (SOCs), integrating AI autonomy, trust calibration, and Human-in-the-loop decision making. Existing frameworks in SOCs often focus narrowly on automation, lacking systematic structures to manage human oversight, trust calibration, and scalable autonomy with AI. Many assume static or binary autonomy settings, failing to account for the varied complexity, criticality, and risk across SOC tasks considering Humans and AI collaboration. To address these limitations, we propose a novel autonomy tiered framework grounded in five levels of AI autonomy from manual to fully autonomous, mapped to Human-in-the-Loop (HITL) roles and task-specific trust thresholds. This enables adaptive and explainable AI integration across core SOC functions, including monitoring, protection, threat detection, alert triage, and incident response. The proposed framework differentiates itself from previous research by creating formal connections between autonomy, trust, and HITL across various SOC levels, which allows for adaptive task distribution according to operational complexity and associated risks. The framework is exemplified through a simulated cyber range that features the cybersecurity AI-Avatar, a fine-tuned LLM-based SOC assistant. The AI-Avatar case study illustrates human-AI collaboration for SOC tasks, reducing alert fatigue, enhancing response coordination, and strategically calibrating trust. This research systematically presents both the theoretical and practical aspects and feasibility of designing next-generation cognitive SOCs that leverage AI not to replace but to enhance human decision-making.
comment: Journal Article
☆ Afterburner: Reinforcement Learning Facilitates Self-Improving Code Efficiency Optimization
Large Language Models (LLMs) generate functionally correct solutions but often fall short in code efficiency, a critical bottleneck for real-world deployment. In this paper, we introduce a novel test-time iterative optimization framework to address this, employing a closed-loop system where LLMs iteratively refine code based on empirical performance feedback from an execution sandbox. We explore three training strategies: Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and Group Relative Policy Optimization~(GRPO). Experiments on our Venus dataset and the APPS benchmark show that SFT and DPO rapidly saturate in efficiency gains. In contrast, GRPO, using reinforcement learning (RL) with execution feedback, continuously optimizes code performance, significantly boosting both pass@1 (from 47% to 62%) and the likelihood of outperforming human submissions in efficiency (from 31% to 45%). Our work demonstrates effective test-time code efficiency improvement and critically reveals the power of RL in teaching LLMs to truly self-improve code efficiency.
☆ VModA: An Effective Framework for Adaptive NSFW Image Moderation
Not Safe/Suitable for Work (NSFW) content is rampant on social networks and poses serious harm to citizens, especially minors. Current detection methods mainly rely on deep learning-based image recognition and classification. However, NSFW images are now presented in increasingly sophisticated ways, often using image details and complex semantics to obscure their true nature or attract more views. Although still understandable to humans, these images often evade existing detection methods, posing a significant threat. Further complicating the issue, varying regulations across platforms and regions create additional challenges for effective moderation, leading to detection bias and reduced accuracy. To address this, we propose VModA, a general and effective framework that adapts to diverse moderation rules and handles complex, semantically rich NSFW content across categories. Experimental results show that VModA significantly outperforms existing methods, achieving up to a 54.3% accuracy improvement across NSFW types, including those with complex semantics. Further experiments demonstrate that our method exhibits strong adaptability across categories, scenarios, and base VLMs. We also identified inconsistent and controversial label samples in public NSFW benchmark datasets, re-annotated them, and submitted corrections to the original maintainers. Two datasets have confirmed the updates so far. Additionally, we evaluate VModA in real-world scenarios to demonstrate its practical effectiveness.
☆ AutoGPS: Automated Geometry Problem Solving via Multimodal Formalization and Deductive Reasoning
Geometry problem solving presents distinctive challenges in artificial intelligence, requiring exceptional multimodal comprehension and rigorous mathematical reasoning capabilities. Existing approaches typically fall into two categories: neural-based and symbolic-based methods, both of which exhibit limitations in reliability and interpretability. To address this challenge, we propose AutoGPS, a neuro-symbolic collaborative framework that solves geometry problems with concise, reliable, and human-interpretable reasoning processes. Specifically, AutoGPS employs a Multimodal Problem Formalizer (MPF) and a Deductive Symbolic Reasoner (DSR). The MPF utilizes neural cross-modal comprehension to translate geometry problems into structured formal language representations, with feedback from DSR collaboratively. The DSR takes the formalization as input and formulates geometry problem solving as a hypergraph expansion task, executing mathematically rigorous and reliable derivation to produce minimal and human-readable stepwise solutions. Extensive experimental evaluations demonstrate that AutoGPS achieves state-of-the-art performance on benchmark datasets. Furthermore, human stepwise-reasoning evaluation confirms AutoGPS's impressive reliability and interpretability, with 99\% stepwise logical coherence. The project homepage is at https://jayce-ping.github.io/AutoGPS-homepage.
Dynamic Spectral Backpropagation for Efficient Neural Network Training
Dynamic Spectral Backpropagation (DSBP) enhances neural network training under resource constraints by projecting gradients onto principal eigenvectors, reducing complexity and promoting flat minima. Five extensions are proposed, dynamic spectral inference, spectral architecture optimization, spectral meta learning, spectral transfer regularization, and Lie algebra inspired dynamics, to address challenges in robustness, fewshot learning, and hardware efficiency. Supported by a third order stochastic differential equation (SDE) and a PAC Bayes limit, DSBP outperforms Sharpness Aware Minimization (SAM), Low Rank Adaptation (LoRA), and Model Agnostic Meta Learning (MAML) on CIFAR 10, Fashion MNIST, MedMNIST, and Tiny ImageNet, as demonstrated through extensive experiments and visualizations. Future work focuses on scalability, bias mitigation, and ethical considerations.
☆ PAN-Crafter: Learning Modality-Consistent Alignment for PAN-Sharpening
PAN-sharpening aims to fuse high-resolution panchromatic (PAN) images with low-resolution multi-spectral (MS) images to generate high-resolution multi-spectral (HRMS) outputs. However, cross-modality misalignment -- caused by sensor placement, acquisition timing, and resolution disparity -- induces a fundamental challenge. Conventional deep learning methods assume perfect pixel-wise alignment and rely on per-pixel reconstruction losses, leading to spectral distortion, double edges, and blurring when misalignment is present. To address this, we propose PAN-Crafter, a modality-consistent alignment framework that explicitly mitigates the misalignment gap between PAN and MS modalities. At its core, Modality-Adaptive Reconstruction (MARs) enables a single network to jointly reconstruct HRMS and PAN images, leveraging PAN's high-frequency details as auxiliary self-supervision. Additionally, we introduce Cross-Modality Alignment-Aware Attention (CM3A), a novel mechanism that bidirectionally aligns MS texture to PAN structure and vice versa, enabling adaptive feature refinement across modalities. Extensive experiments on multiple benchmark datasets demonstrate that our PAN-Crafter outperforms the most recent state-of-the-art method in all metrics, even with 50.11$\times$ faster inference time and 0.63$\times$ the memory size. Furthermore, it demonstrates strong generalization performance on unseen satellite datasets, showing its robustness across different conditions.
comment: Please visit our project page https://kaist-viclab.github.io/PAN-Crafter_site
☆ Representing local protein environments with atomistic foundation models
The local structure of a protein strongly impacts its function and interactions with other molecules. Therefore, a concise, informative representation of a local protein environment is essential for modeling and designing proteins and biomolecular interactions. However, these environments' extensive structural and chemical variability makes them challenging to model, and such representations remain under-explored. In this work, we propose a novel representation for a local protein environment derived from the intermediate features of atomistic foundation models (AFMs). We demonstrate that this embedding effectively captures both local structure (e.g., secondary motifs), and chemical features (e.g., amino-acid identity and protonation state). We further show that the AFM-derived representation space exhibits meaningful structure, enabling the construction of data-driven priors over the distribution of biomolecular environments. Finally, in the context of biomolecular NMR spectroscopy, we demonstrate that the proposed representations enable a first-of-its-kind physics-informed chemical shift predictor that achieves state-of-the-art accuracy. Our results demonstrate the surprising effectiveness of atomistic foundation models and their emergent representations for protein modeling beyond traditional molecular simulations. We believe this will open new lines of work in constructing effective functional representations for protein environments.
☆ Synthetic Generation and Latent Projection Denoising of Rim Lesions in Multiple Sclerosis CVPR 2025
Quantitative susceptibility maps from magnetic resonance images can provide both prognostic and diagnostic information in multiple sclerosis, a neurodegenerative disease characterized by the formation of lesions in white matter brain tissue. In particular, susceptibility maps provide adequate contrast to distinguish between "rim" lesions, surrounded by deposited paramagnetic iron, and "non-rim" lesion types. These paramagnetic rim lesions (PRLs) are an emerging biomarker in multiple sclerosis. Much effort has been devoted to both detection and segmentation of such lesions to monitor longitudinal change. As paramagnetic rim lesions are rare, addressing this problem requires confronting the class imbalance between rim and non-rim lesions. We produce synthetic quantitative susceptibility maps of paramagnetic rim lesions and show that inclusion of such synthetic data improves classifier performance and provide a multi-channel extension to generate accompanying contrasts and probabilistic segmentation maps. We exploit the projection capability of our trained generative network to demonstrate a novel denoising approach that allows us to train on ambiguous rim cases and substantially increase the minority class. We show that both synthetic lesion synthesis and our proposed rim lesion label denoising method best approximate the unseen rim lesion distribution and improve detection in a clinically interpretable manner. We release our code and generated data at https://github.com/agr78/PRLx-GAN upon publication.
comment: Accepted full paper in Synthetic Data @ CVPR 2025 12 pages, 10 figures
☆ Understanding the Information Propagation Effects of Communication Topologies in LLM-based Multi-Agent Systems
The communication topology in large language model-based multi-agent systems fundamentally governs inter-agent collaboration patterns, critically shaping both the efficiency and effectiveness of collective decision-making. While recent studies for communication topology automated design tend to construct sparse structures for efficiency, they often overlook why and when sparse and dense topologies help or hinder collaboration. In this paper, we present a causal framework to analyze how agent outputs, whether correct or erroneous, propagate under topologies with varying sparsity. Our empirical studies reveal that moderately sparse topologies, which effectively suppress error propagation while preserving beneficial information diffusion, typically achieve optimal task performance. Guided by this insight, we propose a novel topology design approach, EIB-leanrner, that balances error suppression and beneficial information propagation by fusing connectivity patterns from both dense and sparse graphs. Extensive experiments show the superior effectiveness, communication cost, and robustness of EIB-leanrner.
☆ Towards Reward Fairness in RLHF: From a Resource Allocation Perspective ACL 2025
Rewards serve as proxies for human preferences and play a crucial role in Reinforcement Learning from Human Feedback (RLHF). However, if these rewards are inherently imperfect, exhibiting various biases, they can adversely affect the alignment of large language models (LLMs). In this paper, we collectively define the various biases present in rewards as the problem of reward unfairness. We propose a bias-agnostic method to address the issue of reward fairness from a resource allocation perspective, without specifically designing for each type of bias, yet effectively mitigating them. Specifically, we model preference learning as a resource allocation problem, treating rewards as resources to be allocated while considering the trade-off between utility and fairness in their distribution. We propose two methods, Fairness Regularization and Fairness Coefficient, to achieve fairness in rewards. We apply our methods in both verification and reinforcement learning scenarios to obtain a fairness reward model and a policy model, respectively. Experiments conducted in these scenarios demonstrate that our approach aligns LLMs with human preferences in a more fair manner.
comment: Accepted to ACL 2025
☆ Matryoshka Model Learning for Improved Elastic Student Models KDD 2025
Industry-grade ML models are carefully designed to meet rapidly evolving serving constraints, which requires significant resources for model development. In this paper, we propose MatTA, a framework for training multiple accurate Student models using a novel Teacher-TA-Student recipe. TA models are larger versions of the Student models with higher capacity, and thus allow Student models to better relate to the Teacher model and also bring in more domain-specific expertise. Furthermore, multiple accurate Student models can be extracted from the TA model. Therefore, despite only one training run, our methodology provides multiple servable options to trade off accuracy for lower serving cost. We demonstrate the proposed method, MatTA, on proprietary datasets and models. Its practical efficacy is underscored by live A/B tests within a production ML system, demonstrating 20% improvement on a key metric. We also demonstrate our method on GPT-2 Medium, a public model, and achieve relative improvements of over 24% on SAT Math and over 10% on the LAMBADA benchmark.
comment: 10 pages, 5 figures, Accepted at KDD 2025
☆ Fine-Tuning Next-Scale Visual Autoregressive Models with Group Relative Policy Optimization
Fine-tuning pre-trained generative models with Reinforcement Learning (RL) has emerged as an effective approach for aligning outputs more closely with nuanced human preferences. In this paper, we investigate the application of Group Relative Policy Optimization (GRPO) to fine-tune next-scale visual autoregressive (VAR) models. Our empirical results demonstrate that this approach enables alignment to intricate reward signals derived from aesthetic predictors and CLIP embeddings, significantly enhancing image quality and enabling precise control over the generation style. Interestingly, by leveraging CLIP, our method can help VAR models generalize beyond their initial ImageNet distribution: through RL-driven exploration, these models can generate images aligned with prompts referencing image styles that were absent during pre-training. In summary, we show that RL-based fine-tuning is both efficient and effective for VAR models, benefiting particularly from their fast inference speeds, which are advantageous for online sampling, an aspect that poses significant challenges for diffusion-based alternatives.
☆ Enhancing Marker Scoring Accuracy through Ordinal Confidence Modelling in Educational Assessments ACL 2025
A key ethical challenge in Automated Essay Scoring (AES) is ensuring that scores are only released when they meet high reliability standards. Confidence modelling addresses this by assigning a reliability estimate measure, in the form of a confidence score, to each automated score. In this study, we frame confidence estimation as a classification task: predicting whether an AES-generated score correctly places a candidate in the appropriate CEFR level. While this is a binary decision, we leverage the inherent granularity of the scoring domain in two ways. First, we reformulate the task as an n-ary classification problem using score binning. Second, we introduce a set of novel Kernel Weighted Ordinal Categorical Cross Entropy (KWOCCE) loss functions that incorporate the ordinal structure of CEFR labels. Our best-performing model achieves an F1 score of 0.97, and enables the system to release 47% of scores with 100% CEFR agreement and 99% with at least 95% CEFR agreement -compared to approximately 92% (approx.) CEFR agreement from the standalone AES model where we release all AM predicted scores.
comment: This is the preprint version of our paper accepted to ACL 2025 (Industry Track). The DOI will be added once available
☆ Adversarial Semantic and Label Perturbation Attack for Pedestrian Attribute Recognition
Pedestrian Attribute Recognition (PAR) is an indispensable task in human-centered research and has made great progress in recent years with the development of deep neural networks. However, the potential vulnerability and anti-interference ability have still not been fully explored. To bridge this gap, this paper proposes the first adversarial attack and defense framework for pedestrian attribute recognition. Specifically, we exploit both global- and patch-level attacks on the pedestrian images, based on the pre-trained CLIP-based PAR framework. It first divides the input pedestrian image into non-overlapping patches and embeds them into feature embeddings using a projection layer. Meanwhile, the attribute set is expanded into sentences using prompts and embedded into attribute features using a pre-trained CLIP text encoder. A multi-modal Transformer is adopted to fuse the obtained vision and text tokens, and a feed-forward network is utilized for attribute recognition. Based on the aforementioned PAR framework, we adopt the adversarial semantic and label-perturbation to generate the adversarial noise, termed ASL-PAR. We also design a semantic offset defense strategy to suppress the influence of adversarial attacks. Extensive experiments conducted on both digital domains (i.e., PETA, PA100K, MSP60K, RAPv2) and physical domains fully validated the effectiveness of our proposed adversarial attack and defense strategies for the pedestrian attribute recognition. The source code of this paper will be released on https://github.com/Event-AHU/OpenPAR.
☆ Score-based Generative Modeling for Conditional Independence Testing KDD2025
Determining conditional independence (CI) relationships between random variables is a fundamental yet challenging task in machine learning and statistics, especially in high-dimensional settings. Existing generative model-based CI testing methods, such as those utilizing generative adversarial networks (GANs), often struggle with undesirable modeling of conditional distributions and training instability, resulting in subpar performance. To address these issues, we propose a novel CI testing method via score-based generative modeling, which achieves precise Type I error control and strong testing power. Concretely, we first employ a sliced conditional score matching scheme to accurately estimate conditional score and use Langevin dynamics conditional sampling to generate null hypothesis samples, ensuring precise Type I error control. Then, we incorporate a goodness-of-fit stage into the method to verify generated samples and enhance interpretability in practice. We theoretically establish the error bound of conditional distributions modeled by score-based generative models and prove the validity of our CI tests. Extensive experiments on both synthetic and real-world datasets show that our method significantly outperforms existing state-of-the-art methods, providing a promising way to revitalize generative model-based CI testing.
comment: Accepted by KDD2025
☆ Spoken question answering for visual queries
Question answering (QA) systems are designed to answer natural language questions. Visual QA (VQA) and Spoken QA (SQA) systems extend the textual QA system to accept visual and spoken input respectively. This work aims to create a system that enables user interaction through both speech and images. That is achieved through the fusion of text, speech, and image modalities to tackle the task of spoken VQA (SVQA). The resulting multi-modal model has textual, visual, and spoken inputs and can answer spoken questions on images. Training and evaluating SVQA models requires a dataset for all three modalities, but no such dataset currently exists. We address this problem by synthesizing VQA datasets using two zero-shot TTS models. Our initial findings indicate that a model trained only with synthesized speech nearly reaches the performance of the upper-bounding model trained on textual QAs. In addition, we show that the choice of the TTS model has a minor impact on accuracy.
comment: Accepted for Interspeech 2025 (with additional results)
☆ How Does Response Length Affect Long-Form Factuality ACL 2025
Large language models (LLMs) are widely used for long-form text generation. However, factual errors in the responses would undermine their reliability. Despite growing attention to LLM factuality, the effect of response length on factuality remains underexplored. In this work, we systematically investigate this relationship by first introducing an automatic and bi-level long-form factuality evaluation framework, which achieves high agreement with human annotations while being cost-effective. Using this framework, we conduct controlled experiments and find that longer responses exhibit lower factual precision, confirming the presence of length bias. To explain this phenomenon, we empirically examine three hypotheses: error propagation, long context, and facts exhaustion. Our results reveal that facts exhaustion, where the model gradually exhausts more reliable knowledge, is the primary cause of factual degradation, rather than the other two hypotheses.
comment: ACL 2025 Findings. 24 pages, 10 figures, 18 tables. Code available at https://github.com/XuZhao0/length-bias-factuality
☆ Federated Unsupervised Semantic Segmentation
This work explores the application of Federated Learning (FL) in Unsupervised Semantic image Segmentation (USS). Recent USS methods extract pixel-level features using frozen visual foundation models and refine them through self-supervised objectives that encourage semantic grouping. These features are then grouped to semantic clusters to produce segmentation masks. Extending these ideas to federated settings requires feature representation and cluster centroid alignment across distributed clients -- an inherently difficult task under heterogeneous data distributions in the absence of supervision. To address this, we propose FUSS Federated Unsupervised image Semantic Segmentation) which is, to our knowledge, the first framework to enable fully decentralized, label-free semantic segmentation training. FUSS introduces novel federation strategies that promote global consistency in feature and prototype space, jointly optimizing local segmentation heads and shared semantic centroids. Experiments on both benchmark and real-world datasets, including binary and multi-class segmentation tasks, show that FUSS consistently outperforms local-only client trainings as well as extensions of classical FL algorithms under varying client data distributions. To support reproducibility, full code will be released upon manuscript acceptance.
☆ MathArena: Evaluating LLMs on Uncontaminated Math Competitions
The rapid advancement of reasoning capabilities in large language models (LLMs) has led to notable improvements on mathematical benchmarks. However, many of the most commonly used evaluation datasets (e.g., AIME 2024) are widely available online, making it difficult to disentangle genuine reasoning from potential memorization. Furthermore, these benchmarks do not evaluate proof-writing capabilities, which are crucial for many mathematical tasks. To address this, we introduce MathArena, a new benchmark based on the following key insight: recurring math competitions provide a stream of high-quality, challenging problems that can be used for real-time evaluation of LLMs. By evaluating models as soon as new problems are released, we effectively eliminate the risk of contamination. Using this framework, we find strong signs of contamination in AIME 2024. Nonetheless, evaluations on harder competitions, such as SMT 2025 -- published well after model release dates -- demonstrate impressive reasoning capabilities in top-performing models. MathArena is also the first benchmark for proof-writing capabilities. On USAMO 2025, even top models score below 25%, far behind their performance on final-answer tasks. So far, we have evaluated 30 models across five competitions, totaling 149 problems. As an evolving benchmark, MathArena will continue to track the progress of LLMs on newly released competitions, ensuring rigorous and up-to-date evaluation of mathematical reasoning.
☆ Sentinel: Attention Probing of Proxy Models for LLM Context Compression with an Understanding Perspective
Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external context, but retrieved passages are often lengthy, noisy, or exceed input limits. Existing compression methods typically require supervised training of dedicated compression models, increasing cost and reducing portability. We propose Sentinel, a lightweight sentence-level compression framework that reframes context filtering as an attention-based understanding task. Rather than training a compression model, Sentinel probes decoder attention from an off-the-shelf 0.5B proxy LLM using a lightweight classifier to identify sentence relevance. Empirically, we find that query-context relevance estimation is consistent across model scales, with 0.5B proxies closely matching the behaviors of larger models. On the LongBench benchmark, Sentinel achieves up to 5$\times$ compression while matching the QA performance of 7B-scale compression systems. Our results suggest that probing native attention signals enables fast, effective, and question-aware context compression. Code available at: https://github.com/yzhangchuck/Sentinel.
comment: Preprint. 17 pages including appendix
☆ The Arabic AI Fingerprint: Stylometric Analysis and Detection of Large Language Models Text
Large Language Models (LLMs) have achieved unprecedented capabilities in generating human-like text, posing subtle yet significant challenges for information integrity across critical domains, including education, social media, and academia, enabling sophisticated misinformation campaigns, compromising healthcare guidance, and facilitating targeted propaganda. This challenge becomes severe, particularly in under-explored and low-resource languages like Arabic. This paper presents a comprehensive investigation of Arabic machine-generated text, examining multiple generation strategies (generation from the title only, content-aware generation, and text refinement) across diverse model architectures (ALLaM, Jais, Llama, and GPT-4) in academic, and social media domains. Our stylometric analysis reveals distinctive linguistic patterns differentiating human-written from machine-generated Arabic text across these varied contexts. Despite their human-like qualities, we demonstrate that LLMs produce detectable signatures in their Arabic outputs, with domain-specific characteristics that vary significantly between different contexts. Based on these insights, we developed BERT-based detection models that achieved exceptional performance in formal contexts (up to 99.9\% F1-score) with strong precision across model architectures. Our cross-domain analysis confirms generalization challenges previously reported in the literature. To the best of our knowledge, this work represents the most comprehensive investigation of Arabic machine-generated text to date, uniquely combining multiple prompt generation methods, diverse model architectures, and in-depth stylometric analysis across varied textual domains, establishing a foundation for developing robust, linguistically-informed detection systems essential for preserving information integrity in Arabic-language contexts.
☆ Does Machine Unlearning Truly Remove Model Knowledge? A Framework for Auditing Unlearning in LLMs
In recent years, Large Language Models (LLMs) have achieved remarkable advancements, drawing significant attention from the research community. Their capabilities are largely attributed to large-scale architectures, which require extensive training on massive datasets. However, such datasets often contain sensitive or copyrighted content sourced from the public internet, raising concerns about data privacy and ownership. Regulatory frameworks, such as the General Data Protection Regulation (GDPR), grant individuals the right to request the removal of such sensitive information. This has motivated the development of machine unlearning algorithms that aim to remove specific knowledge from models without the need for costly retraining. Despite these advancements, evaluating the efficacy of unlearning algorithms remains a challenge due to the inherent complexity and generative nature of LLMs. In this work, we introduce a comprehensive auditing framework for unlearning evaluation, comprising three benchmark datasets, six unlearning algorithms, and five prompt-based auditing methods. By using various auditing algorithms, we evaluate the effectiveness and robustness of different unlearning strategies. To explore alternatives beyond prompt-based auditing, we propose a novel technique that leverages intermediate activation perturbations, addressing the limitations of auditing methods that rely solely on model inputs and outputs.
☆ Unsupervised Transcript-assisted Video Summarization and Highlight Detection
Video consumption is a key part of daily life, but watching entire videos can be tedious. To address this, researchers have explored video summarization and highlight detection to identify key video segments. While some works combine video frames and transcripts, and others tackle video summarization and highlight detection using Reinforcement Learning (RL), no existing work, to the best of our knowledge, integrates both modalities within an RL framework. In this paper, we propose a multimodal pipeline that leverages video frames and their corresponding transcripts to generate a more condensed version of the video and detect highlights using a modality fusion mechanism. The pipeline is trained within an RL framework, which rewards the model for generating diverse and representative summaries while ensuring the inclusion of video segments with meaningful transcript content. The unsupervised nature of the training allows for learning from large-scale unannotated datasets, overcoming the challenge posed by the limited size of existing annotated datasets. Our experiments show that using the transcript in video summarization and highlight detection achieves superior results compared to relying solely on the visual content of the video.
☆ VLM-RRT: Vision Language Model Guided RRT Search for Autonomous UAV Navigation
Path planning is a fundamental capability of autonomous Unmanned Aerial Vehicles (UAVs), enabling them to efficiently navigate toward a target region or explore complex environments while avoiding obstacles. Traditional pathplanning methods, such as Rapidly-exploring Random Trees (RRT), have proven effective but often encounter significant challenges. These include high search space complexity, suboptimal path quality, and slow convergence, issues that are particularly problematic in high-stakes applications like disaster response, where rapid and efficient planning is critical. To address these limitations and enhance path-planning efficiency, we propose Vision Language Model RRT (VLM-RRT), a hybrid approach that integrates the pattern recognition capabilities of Vision Language Models (VLMs) with the path-planning strengths of RRT. By leveraging VLMs to provide initial directional guidance based on environmental snapshots, our method biases sampling toward regions more likely to contain feasible paths, significantly improving sampling efficiency and path quality. Extensive quantitative and qualitative experiments with various state-of-the-art VLMs demonstrate the effectiveness of this proposed approach.
☆ Disrupting Vision-Language Model-Driven Navigation Services via Adversarial Object Fusion
We present Adversarial Object Fusion (AdvOF), a novel attack framework targeting vision-and-language navigation (VLN) agents in service-oriented environments by generating adversarial 3D objects. While foundational models like Large Language Models (LLMs) and Vision Language Models (VLMs) have enhanced service-oriented navigation systems through improved perception and decision-making, their integration introduces vulnerabilities in mission-critical service workflows. Existing adversarial attacks fail to address service computing contexts, where reliability and quality-of-service (QoS) are paramount. We utilize AdvOF to investigate and explore the impact of adversarial environments on the VLM-based perception module of VLN agents. In particular, AdvOF first precisely aggregates and aligns the victim object positions in both 2D and 3D space, defining and rendering adversarial objects. Then, we collaboratively optimize the adversarial object with regularization between the adversarial and victim object across physical properties and VLM perceptions. Through assigning importance weights to varying views, the optimization is processed stably and multi-viewedly by iterative fusions from local updates and justifications. Our extensive evaluations demonstrate AdvOF can effectively degrade agent performance under adversarial conditions while maintaining minimal interference with normal navigation tasks. This work advances the understanding of service security in VLM-powered navigation systems, providing computational foundations for robust service composition in physical-world deployments.
comment: Under review
☆ Deep Retrieval at CheckThat! 2025: Identifying Scientific Papers from Implicit Social Media Mentions via Hybrid Retrieval and Re-Ranking
We present the methodology and results of the Deep Retrieval team for subtask 4b of the CLEF CheckThat! 2025 competition, which focuses on retrieving relevant scientific literature for given social media posts. To address this task, we propose a hybrid retrieval pipeline that combines lexical precision, semantic generalization, and deep contextual re-ranking, enabling robust retrieval that bridges the informal-to-formal language gap. Specifically, we combine BM25-based keyword matching with a FAISS vector store using a fine-tuned INF-Retriever-v1 model for dense semantic retrieval. BM25 returns the top 30 candidates, and semantic search yields 100 candidates, which are then merged and re-ranked via a large language model (LLM)-based cross-encoder. Our approach achieves a mean reciprocal rank at 5 (MRR@5) of 76.46% on the development set and 66.43% on the hidden test set, securing the 1st position on the development leaderboard and ranking 3rd on the test leaderboard (out of 31 teams), with a relative performance gap of only 2 percentage points compared to the top-ranked system. We achieve this strong performance by running open-source models locally and without external training data, highlighting the effectiveness of a carefully designed and fine-tuned retrieval pipeline.
☆ Accelerating RLHF Training with Reward Variance Increase
Reinforcement learning from human feedback (RLHF) is an essential technique for ensuring that large language models (LLMs) are aligned with human values and preferences during the post-training phase. As an effective RLHF approach, group relative policy optimization (GRPO) has demonstrated success in many LLM-based applications. However, efficient GRPO-based RLHF training remains a challenge. Recent studies reveal that a higher reward variance of the initial policy model leads to faster RLHF training. Inspired by this finding, we propose a practical reward adjustment model to accelerate RLHF training by provably increasing the reward variance and preserving the relative preferences and reward expectation. Our reward adjustment method inherently poses a nonconvex optimization problem, which is NP-hard to solve in general. To overcome the computational challenges, we design a novel $O(n \log n)$ algorithm to find a global solution of the nonconvex reward adjustment model by explicitly characterizing the extreme points of the feasible set. As an important application, we naturally integrate this reward adjustment model into the GRPO algorithm, leading to a more efficient GRPO with reward variance increase (GRPOVI) algorithm for RLHF training. As an interesting byproduct, we provide an indirect explanation for the empirical effectiveness of GRPO with rule-based reward for RLHF training, as demonstrated in DeepSeek-R1. Experiment results demonstrate that the GRPOVI algorithm can significantly improve the RLHF training efficiency compared to the original GRPO algorithm.
☆ OSS-UAgent: An Agent-based Usability Evaluation Framework for Open Source Software
Usability evaluation is critical to the impact and adoption of open source software (OSS), yet traditional methods relying on human evaluators suffer from high costs and limited scalability. To address these limitations, we introduce OSS-UAgent, an automated, configurable, and interactive agent-based usability evaluation framework specifically designed for open source software. Our framework employs intelligent agents powered by large language models (LLMs) to simulate developers performing programming tasks across various experience levels (from Junior to Expert). By dynamically constructing platform-specific knowledge bases, OSS-UAgent ensures accurate and context-aware code generation. The generated code is automatically evaluated across multiple dimensions, including compliance, correctness, and readability, providing a comprehensive measure of the software's usability. Additionally, our demonstration showcases OSS-UAgent's practical application in evaluating graph analytics platforms, highlighting its effectiveness in automating usability evaluation.
☆ MCTSr-Zero: Self-Reflective Psychological Counseling Dialogues Generation via Principles and Adaptive Exploration
The integration of Monte Carlo Tree Search (MCTS) with Large Language Models (LLMs) has demonstrated significant success in structured, problem-oriented tasks. However, applying these methods to open-ended dialogues, such as those in psychological counseling, presents unique challenges. Unlike tasks with objective correctness, success in therapeutic conversations depends on subjective factors like empathetic engagement, ethical adherence, and alignment with human preferences, for which strict "correctness" criteria are ill-defined. Existing result-oriented MCTS approaches can therefore produce misaligned responses. To address this, we introduce MCTSr-Zero, an MCTS framework designed for open-ended, human-centric dialogues. Its core innovation is "domain alignment", which shifts the MCTS search objective from predefined end-states towards conversational trajectories that conform to target domain principles (e.g., empathy in counseling). Furthermore, MCTSr-Zero incorporates "Regeneration" and "Meta-Prompt Adaptation" mechanisms to substantially broaden exploration by allowing the MCTS to consider fundamentally different initial dialogue strategies. We evaluate MCTSr-Zero in psychological counseling by generating multi-turn dialogue data, which is used to fine-tune an LLM, PsyLLM. We also introduce PsyEval, a benchmark for assessing multi-turn psychological counseling dialogues. Experiments demonstrate that PsyLLM achieves state-of-the-art performance on PsyEval and other relevant metrics, validating MCTSr-Zero's effectiveness in generating high-quality, principle-aligned conversational data for human-centric domains and addressing the LLM challenge of consistently adhering to complex psychological standards.
comment: 50 pages, 3 figures
☆ SAMamba: Adaptive State Space Modeling with Hierarchical Vision for Infrared Small Target Detection
Infrared small target detection (ISTD) is vital for long-range surveillance in military, maritime, and early warning applications. ISTD is challenged by targets occupying less than 0.15% of the image and low distinguishability from complex backgrounds. Existing deep learning methods often suffer from information loss during downsampling and inefficient global context modeling. This paper presents SAMamba, a novel framework integrating SAM2's hierarchical feature learning with Mamba's selective sequence modeling. Key innovations include: (1) A Feature Selection Adapter (FS-Adapter) for efficient natural-to-infrared domain adaptation via dual-stage selection (token-level with a learnable task embedding and channel-wise adaptive transformations); (2) A Cross-Channel State-Space Interaction (CSI) module for efficient global context modeling with linear complexity using selective state space modeling; and (3) A Detail-Preserving Contextual Fusion (DPCF) module that adaptively combines multi-scale features with a gating mechanism to balance high-resolution and low-resolution feature contributions. SAMamba addresses core ISTD challenges by bridging the domain gap, maintaining fine-grained details, and efficiently modeling long-range dependencies. Experiments on NUAA-SIRST, IRSTD-1k, and NUDT-SIRST datasets show SAMamba significantly outperforms state-of-the-art methods, especially in challenging scenarios with heterogeneous backgrounds and varying target scales. Code: https://github.com/zhengshuchen/SAMamba.
comment: Information Fusion 2025
☆ Less is More: Unlocking Specialization of Time Series Foundation Models via Structured Pruning
Scaling laws motivate the development of Time Series Foundation Models (TSFMs) that pre-train vast parameters and achieve remarkable zero-shot forecasting performance. Surprisingly, even after fine-tuning, TSFMs cannot consistently outperform smaller, specialized models trained on full-shot downstream data. A key question is how to realize effective adaptation of TSFMs for a target forecasting task. Through empirical studies on various TSFMs, the pre-trained models often exhibit inherent sparsity and redundancy in computation, suggesting that TSFMs have learned to activate task-relevant network substructures to accommodate diverse forecasting tasks. To preserve this valuable prior knowledge, we propose a structured pruning method to regularize the subsequent fine-tuning process by focusing it on a more relevant and compact parameter space. Extensive experiments on seven TSFMs and six benchmarks demonstrate that fine-tuning a smaller, pruned TSFM significantly improves forecasting performance compared to fine-tuning original models. This "prune-then-finetune" paradigm often enables TSFMs to achieve state-of-the-art performance and surpass strong specialized baselines.
comment: Manuscript with fixed typos and figures
Fooling the Watchers: Breaking AIGC Detectors via Semantic Prompt Attacks
The rise of text-to-image (T2I) models has enabled the synthesis of photorealistic human portraits, raising serious concerns about identity misuse and the robustness of AIGC detectors. In this work, we propose an automated adversarial prompt generation framework that leverages a grammar tree structure and a variant of the Monte Carlo tree search algorithm to systematically explore the semantic prompt space. Our method generates diverse, controllable prompts that consistently evade both open-source and commercial AIGC detectors. Extensive experiments across multiple T2I models validate its effectiveness, and the approach ranked first in a real-world adversarial AIGC detection competition. Beyond attack scenarios, our method can also be used to construct high-quality adversarial datasets, providing valuable resources for training and evaluating more robust AIGC detection and defense systems.
comment: 9 pages
☆ ExpeTrans: LLMs Are Experiential Transfer Learners
Recent studies provide large language models (LLMs) with textual task-solving experiences via prompts to improve their performance. However, previous methods rely on substantial human labor or time to gather such experiences for each task, which is impractical given the growing variety of task types in user queries to LLMs. To address this issue, we design an autonomous experience transfer framework to explore whether LLMs can mimic human cognitive intelligence to autonomously transfer experience from existing source tasks to newly encountered target tasks. This not only allows the acquisition of experience without extensive costs of previous methods, but also offers a novel path for the generalization of LLMs. Experimental results on 13 datasets demonstrate that our framework effectively improves the performance of LLMs. Furthermore, we provide a detailed analysis of each module in the framework.
comment: 9 pages, 12 figs/tables
Cross-Task Experiential Learning on LLM-based Multi-Agent Collaboration
Large Language Model-based multi-agent systems (MAS) have shown remarkable progress in solving complex tasks through collaborative reasoning and inter-agent critique. However, existing approaches typically treat each task in isolation, resulting in redundant computations and limited generalization across structurally similar tasks. To address this, we introduce multi-agent cross-task experiential learning (MAEL), a novel framework that endows LLM-driven agents with explicit cross-task learning and experience accumulation. We model the task-solving workflow on a graph-structured multi-agent collaboration network, where agents propagate information and coordinate via explicit connectivity. During the experiential learning phase, we quantify the quality for each step in the task-solving workflow and store the resulting rewards along with the corresponding inputs and outputs into each agent's individual experience pool. During inference, agents retrieve high-reward, task-relevant experiences as few-shot examples to enhance the effectiveness of each reasoning step, thereby enabling more accurate and efficient multi-agent collaboration. Experimental results on diverse datasets demonstrate that MAEL empowers agents to learn from prior task experiences effectively-achieving faster convergence and producing higher-quality solutions on current tasks.
comment: Work in Progress
☆ Unsupervised Word-level Quality Estimation for Machine Translation Through the Lens of Annotators (Dis)agreement
Word-level quality estimation (WQE) aims to automatically identify fine-grained error spans in machine-translated outputs and has found many uses, including assisting translators during post-editing. Modern WQE techniques are often expensive, involving prompting of large language models or ad-hoc training on large amounts of human-labeled data. In this work, we investigate efficient alternatives exploiting recent advances in language model interpretability and uncertainty quantification to identify translation errors from the inner workings of translation models. In our evaluation spanning 14 metrics across 12 translation directions, we quantify the impact of human label variation on metric performance by using multiple sets of human labels. Our results highlight the untapped potential of unsupervised metrics, the shortcomings of supervised methods when faced with label uncertainty, and the brittleness of single-annotator evaluation practices.
comment: Under review. Code: https://github.com/gsarti/labl/tree/main/examples/unsup_wqe Metrics: https://huggingface.co/datasets/gsarti/unsup_wqe_metrics
☆ FreRA: A Frequency-Refined Augmentation for Contrastive Learning on Time Series Classification KDD 2025
Contrastive learning has emerged as a competent approach for unsupervised representation learning. However, the design of an optimal augmentation strategy, although crucial for contrastive learning, is less explored for time series classification tasks. Existing predefined time-domain augmentation methods are primarily adopted from vision and are not specific to time series data. Consequently, this cross-modality incompatibility may distort the semantically relevant information of time series by introducing mismatched patterns into the data. To address this limitation, we present a novel perspective from the frequency domain and identify three advantages for downstream classification: global, independent, and compact. To fully utilize the three properties, we propose the lightweight yet effective Frequency Refined Augmentation (FreRA) tailored for time series contrastive learning on classification tasks, which can be seamlessly integrated with contrastive learning frameworks in a plug-and-play manner. Specifically, FreRA automatically separates critical and unimportant frequency components. Accordingly, we propose semantic-aware Identity Modification and semantic-agnostic Self-adaptive Modification to protect semantically relevant information in the critical frequency components and infuse variance into the unimportant ones respectively. Theoretically, we prove that FreRA generates semantic-preserving views. Empirically, we conduct extensive experiments on two benchmark datasets, including UCR and UEA archives, as well as five large-scale datasets on diverse applications. FreRA consistently outperforms ten leading baselines on time series classification, anomaly detection, and transfer learning tasks, demonstrating superior capabilities in contrastive representation learning and generalization in transfer learning scenarios across diverse datasets.
comment: KDD 2025
☆ Best Arm Identification with Possibly Biased Offline Data UAI 2025
We study the best arm identification (BAI) problem with potentially biased offline data in the fixed confidence setting, which commonly arises in real-world scenarios such as clinical trials. We prove an impossibility result for adaptive algorithms without prior knowledge of the bias bound between online and offline distributions. To address this, we propose the LUCB-H algorithm, which introduces adaptive confidence bounds by incorporating an auxiliary bias correction to balance offline and online data within the LUCB framework. Theoretical analysis shows that LUCB-H matches the sample complexity of standard LUCB when offline data is misleading and significantly outperforms it when offline data is helpful. We also derive an instance-dependent lower bound that matches the upper bound of LUCB-H in certain scenarios. Numerical experiments further demonstrate the robustness and adaptability of LUCB-H in effectively incorporating offline data.
comment: Accepted to UAI 2025
☆ Implicit Inversion turns CLIP into a Decoder
CLIP is a discriminative model trained to align images and text in a shared embedding space. Due to its multimodal structure, it serves as the backbone of many generative pipelines, where a decoder is trained to map from the shared space back to images. In this work, we show that image synthesis is nevertheless possible using CLIP alone -- without any decoder, training, or fine-tuning. Our approach optimizes a frequency-aware implicit neural representation that encourages coarse-to-fine generation by stratifying frequencies across network layers. To stabilize this inverse mapping, we introduce adversarially robust initialization, a lightweight Orthogonal Procrustes projection to align local text and image embeddings, and a blending loss that anchors outputs to natural image statistics. Without altering CLIP's weights, this framework unlocks capabilities such as text-to-image generation, style transfer, and image reconstruction. These findings suggest that discriminative models may hold untapped generative potential, hidden in plain sight.
☆ Conceptual Framework Toward Embodied Collective Adaptive Intelligence
Collective Adaptive Intelligence (CAI) represent a transformative approach in artificial intelligence, wherein numerous autonomous agents collaborate, adapt, and self-organize to navigate complex, dynamic environments. This paradigm is particularly impactful in embodied AI applications, where adaptability and resilience are paramount. By enabling systems to reconfigure themselves in response to unforeseen challenges, CAI facilitate robust performance in real-world scenarios. This article introduces a conceptual framework for designing and analyzing CAI. It delineates key attributes including task generalization, resilience, scalability, and self-assembly, aiming to bridge theoretical foundations with practical methodologies for engineering adaptive, emergent intelligence. By providing a structured foundation for understanding and implementing CAI, this work seeks to guide researchers and practitioners in developing more resilient, scalable, and adaptable AI systems across various domains.
☆ FlowAlign: Trajectory-Regularized, Inversion-Free Flow-based Image Editing
Recent inversion-free, flow-based image editing methods such as FlowEdit leverages a pre-trained noise-to-image flow model such as Stable Diffusion 3, enabling text-driven manipulation by solving an ordinary differential equation (ODE). While the lack of exact latent inversion is a core advantage of these methods, it often results in unstable editing trajectories and poor source consistency. To address this limitation, we propose FlowAlign, a novel inversion-free flow-based framework for consistent image editing with principled trajectory control. FlowAlign introduces a flow-matching loss as a regularization mechanism to promote smoother and more stable trajectories during the editing process. Notably, the flow-matching loss is shown to explicitly balance semantic alignment with the edit prompt and structural consistency with the source image along the trajectory. Furthermore, FlowAlign naturally supports reverse editing by simply reversing the ODE trajectory, highlighting the reversible and consistent nature of the transformation. Extensive experiments demonstrate that FlowAlign outperforms existing methods in both source preservation and editing controllability.
☆ VERINA: Benchmarking Verifiable Code Generation
Large language models (LLMs) are increasingly integrated in software development, but ensuring correctness in LLM-generated code remains challenging and often requires costly manual review. Verifiable code generation -- jointly generating code, specifications, and proofs of code-specification alignment -- offers a promising path to address this limitation and further unleash LLMs' benefits in coding. Yet, there exists a significant gap in evaluation: current benchmarks often lack support for end-to-end verifiable code generation. In this paper, we introduce Verina (Verifiable Code Generation Arena), a high-quality benchmark enabling a comprehensive and modular evaluation of code, specification, and proof generation as well as their compositions. Verina consists of 189 manually curated coding tasks in Lean, with detailed problem descriptions, reference implementations, formal specifications, and extensive test suites. Our extensive evaluation of state-of-the-art LLMs reveals significant challenges in verifiable code generation, especially in proof generation, underscoring the need for improving LLM-based theorem provers in verification domains. The best model, OpenAI o4-mini, generates only 61.4% correct code, 51.0% sound and complete specifications, and 3.6% successful proofs, with one trial per task. We hope Verina will catalyze progress in verifiable code generation by providing a rigorous and comprehensive benchmark. We release our dataset on https://huggingface.co/datasets/sunblaze-ucb/verina and our evaluation code on https://github.com/sunblaze-ucb/verina.
☆ Zero-to-Hero: Zero-Shot Initialization Empowering Reference-Based Video Appearance Editing
Appearance editing according to user needs is a pivotal task in video editing. Existing text-guided methods often lead to ambiguities regarding user intentions and restrict fine-grained control over editing specific aspects of objects. To overcome these limitations, this paper introduces a novel approach named {Zero-to-Hero}, which focuses on reference-based video editing that disentangles the editing process into two distinct problems. It achieves this by first editing an anchor frame to satisfy user requirements as a reference image and then consistently propagating its appearance across other frames. We leverage correspondence within the original frames to guide the attention mechanism, which is more robust than previously proposed optical flow or temporal modules in memory-friendly video generative models, especially when dealing with objects exhibiting large motions. It offers a solid ZERO-shot initialization that ensures both accuracy and temporal consistency. However, intervention in the attention mechanism results in compounded imaging degradation with over-saturated colors and unknown blurring issues. Starting from Zero-Stage, our Hero-Stage Holistically learns a conditional generative model for vidEo RestOration. To accurately evaluate the consistency of the appearance, we construct a set of videos with multiple appearances using Blender, enabling a fine-grained and deterministic evaluation. Our method outperforms the best-performing baseline with a PSNR improvement of 2.6 dB. The project page is at https://github.com/Tonniia/Zero2Hero.
☆ Patient Domain Supervised Contrastive Learning for Lung Sound Classification Using Mobile Phone SC
Auscultation is crucial for diagnosing lung diseases. The COVID-19 pandemic has revealed the limitations of traditional, in-person lung sound assessments. To overcome these issues, advancements in digital stethoscopes and artificial intelligence (AI) have led to the development of new diagnostic methods. In this context, our study aims to use smartphone microphones to record and analyze lung sounds. We faced two major challenges: the difference in audio style between electronic stethoscopes and smartphone microphones, and the variability among patients. To address these challenges, we developed a method called Patient Domain Supervised Contrastive Learning (PD-SCL). By integrating this method with the Audio Spectrogram Transformer (AST) model, we significantly improved its performance by 2.4\% compared to the original AST model. This progress demonstrates that smartphones can effectively diagnose lung sounds, addressing inconsistencies in patient data and showing potential for broad use beyond traditional clinical settings. Our research contributes to making lung disease detection more accessible in the post-COVID-19 world.
comment: ITS-CSCC 2024
ContextQFormer: A New Context Modeling Method for Multi-Turn Multi-Modal Conversations
Multi-modal large language models have demonstrated remarkable zero-shot abilities and powerful image-understanding capabilities. However, the existing open-source multi-modal models suffer from the weak capability of multi-turn interaction, especially for long contexts. To address the issue, we first introduce a context modeling module, termed ContextQFormer, which utilizes a memory block to enhance the presentation of contextual information. Furthermore, to facilitate further research, we carefully build a new multi-turn multi-modal dialogue dataset (TMDialog) for pre-training, instruction-tuning, and evaluation, which will be open-sourced lately. Compared with other multi-modal dialogue datasets, TMDialog contains longer conversations, which supports the research of multi-turn multi-modal dialogue. In addition, ContextQFormer is compared with three baselines on TMDialog and experimental results illustrate that ContextQFormer achieves an improvement of 2%-4% in available rate over baselines.
comment: 9 pages, 6 figures
☆ Elicit and Enhance: Advancing Multimodal Reasoning in Medical Scenarios
Effective clinical decision-making depends on iterative, multimodal reasoning across diverse sources of evidence. The recent emergence of multimodal reasoning models has significantly transformed the landscape of solving complex tasks. Although such models have achieved notable success in mathematics and science, their application to medical domains remains underexplored. In this work, we propose \textit{MedE$^2$}, a two-stage post-training pipeline that elicits and then enhances multimodal reasoning for medical domains. In Stage-I, we fine-tune models using 2,000 text-only data samples containing precisely orchestrated reasoning demonstrations to elicit reasoning behaviors. In Stage-II, we further enhance the model's reasoning capabilities using 1,500 rigorously curated multimodal medical cases, aligning model reasoning outputs with our proposed multimodal medical reasoning preference. Extensive experiments demonstrate the efficacy and reliability of \textit{MedE$^2$} in improving the reasoning performance of medical multimodal models. Notably, models trained with \textit{MedE$^2$} consistently outperform baselines across multiple medical multimodal benchmarks. Additional validation on larger models and under inference-time scaling further confirms the robustness and practical utility of our approach.
☆ Decom-Renorm-Merge: Model Merging on the Right Space Improves Multitasking
In the era of large-scale training, model merging has evolved into a tool for creating multitasking models efficiently. It enables the knowledge of models to be fused, without the need for heavy computation as required in traditional multitask learning. Existing merging methods often assume that entries at identical positions in weight matrices serve the same function, enabling straightforward entry-wise comparison and merging. However, this assumption overlooks the complexity of finetuned neural networks, where neurons may develop distinct feature compositions, making direct entry-wise merging problematic. We present Decom-Renorm-Merge (DRM), a simple yet effective approach that leverages Singular Value Decomposition to decompose and coordinate weight matrices into an aligned joint space, where entry-wise merging becomes possible. We showcase the effectiveness of DRM across various settings ranging from smaller encoder-based such as ViT and DeBERTa, encoder-decoder-based such as T5, and larger decoder-based such as Llama3.1-8B. Our experimental results show that DRM outperforms several state-of-the-art merging techniques across full finetuning and low-rank adaptation settings. Moreover, our analysis reveals renormalization as the crucial component for creating a robust and even joint space for merging, significantly contributing to the method's performance.
☆ CrossLinear: Plug-and-Play Cross-Correlation Embedding for Time Series Forecasting with Exogenous Variables
Time series forecasting with exogenous variables is a critical emerging paradigm that presents unique challenges in modeling dependencies between variables. Traditional models often struggle to differentiate between endogenous and exogenous variables, leading to inefficiencies and overfitting. In this paper, we introduce CrossLinear, a novel Linear-based forecasting model that addresses these challenges by incorporating a plug-and-play cross-correlation embedding module. This lightweight module captures the dependencies between variables with minimal computational cost and seamlessly integrates into existing neural networks. Specifically, it captures time-invariant and direct variable dependencies while disregarding time-varying or indirect dependencies, thereby mitigating the risk of overfitting in dependency modeling and contributing to consistent performance improvements. Furthermore, CrossLinear employs patch-wise processing and a global linear head to effectively capture both short-term and long-term temporal dependencies, further improving its forecasting precision. Extensive experiments on 12 real-world datasets demonstrate that CrossLinear achieves superior performance in both short-term and long-term forecasting tasks. The ablation study underscores the effectiveness of the cross-correlation embedding module. Additionally, the generalizability of this module makes it a valuable plug-in for various forecasting tasks across different domains. Codes are available at https://github.com/mumiao2000/CrossLinear.
☆ EAD: An EEG Adapter for Automated Classification
While electroencephalography (EEG) has been a popular modality for neural decoding, it often involves task specific acquisition of the EEG data. This poses challenges for the development of a unified pipeline to learn embeddings for various EEG signal classification, which is often involved in various decoding tasks. Traditionally, EEG classification involves the step of signal preprocessing and the use of deep learning techniques, which are highly dependent on the number of EEG channels in each sample. However, the same pipeline cannot be applied even if the EEG data is collected for the same experiment but with different acquisition devices. This necessitates the development of a framework for learning EEG embeddings, which could be highly beneficial for tasks involving multiple EEG samples for the same task but with varying numbers of EEG channels. In this work, we propose EEG Adapter (EAD), a flexible framework compatible with any signal acquisition device. More specifically, we leverage a recent EEG foundational model with significant adaptations to learn robust representations from the EEG data for the classification task. We evaluate EAD on two publicly available datasets achieving state-of-the-art accuracies 99.33% and 92.31% on EEG-ImageNet and BrainLat respectively. This illustrates the effectiveness of the proposed framework across diverse EEG datasets containing two different perception tasks: stimulus and resting-state EEG signals. We also perform zero-shot EEG classification on EEG-ImageNet task to demonstrate the generalization capability of the proposed approach.
☆ Infi-MMR: Curriculum-based Unlocking Multimodal Reasoning via Phased Reinforcement Learning in Multimodal Small Language Models
Recent advancements in large language models (LLMs) have demonstrated substantial progress in reasoning capabilities, such as DeepSeek-R1, which leverages rule-based reinforcement learning to enhance logical reasoning significantly. However, extending these achievements to multimodal large language models (MLLMs) presents critical challenges, which are frequently more pronounced for Multimodal Small Language Models (MSLMs) given their typically weaker foundational reasoning abilities: (1) the scarcity of high-quality multimodal reasoning datasets, (2) the degradation of reasoning capabilities due to the integration of visual processing, and (3) the risk that direct application of reinforcement learning may produce complex yet incorrect reasoning processes. To address these challenges, we design a novel framework Infi-MMR to systematically unlock the reasoning potential of MSLMs through a curriculum of three carefully structured phases and propose our multimodal reasoning model Infi-MMR-3B. The first phase, Foundational Reasoning Activation, leverages high-quality textual reasoning datasets to activate and strengthen the model's logical reasoning capabilities. The second phase, Cross-Modal Reasoning Adaptation, utilizes caption-augmented multimodal data to facilitate the progressive transfer of reasoning skills to multimodal contexts. The third phase, Multimodal Reasoning Enhancement, employs curated, caption-free multimodal data to mitigate linguistic biases and promote robust cross-modal reasoning. Infi-MMR-3B achieves both state-of-the-art multimodal math reasoning ability (43.68% on MathVerse testmini, 27.04% on MathVision test, and 21.33% on OlympiadBench) and general reasoning ability (67.2% on MathVista testmini).
☆ Equivariant Spherical Transformer for Efficient Molecular Modeling
SE(3)-equivariant Graph Neural Networks (GNNs) have significantly advanced molecular system modeling by employing group representations. However, their message passing processes, which rely on tensor product-based convolutions, are limited by insufficient non-linearity and incomplete group representations, thereby restricting expressiveness. To overcome these limitations, we introduce the Equivariant Spherical Transformer (EST), a novel framework that leverages a Transformer structure within the spatial domain of group representations after Fourier transform. We theoretically and empirically demonstrate that EST can encompass the function space of tensor products while achieving superior expressiveness. Furthermore, EST's equivariant inductive bias is guaranteed through a uniform sampling strategy for the Fourier transform. Our experiments demonstrate state-of-the-art performance by EST on various molecular benchmarks, including OC20 and QM9.
comment: 24 pages, 3 figures
☆ GeoMan: Temporally Consistent Human Geometry Estimation using Image-to-Video Diffusion
Estimating accurate and temporally consistent 3D human geometry from videos is a challenging problem in computer vision. Existing methods, primarily optimized for single images, often suffer from temporal inconsistencies and fail to capture fine-grained dynamic details. To address these limitations, we present GeoMan, a novel architecture designed to produce accurate and temporally consistent depth and normal estimations from monocular human videos. GeoMan addresses two key challenges: the scarcity of high-quality 4D training data and the need for metric depth estimation to accurately model human size. To overcome the first challenge, GeoMan employs an image-based model to estimate depth and normals for the first frame of a video, which then conditions a video diffusion model, reframing video geometry estimation task as an image-to-video generation problem. This design offloads the heavy lifting of geometric estimation to the image model and simplifies the video model's role to focus on intricate details while using priors learned from large-scale video datasets. Consequently, GeoMan improves temporal consistency and generalizability while requiring minimal 4D training data. To address the challenge of accurate human size estimation, we introduce a root-relative depth representation that retains critical human-scale details and is easier to be estimated from monocular inputs, overcoming the limitations of traditional affine-invariant and metric depth representations. GeoMan achieves state-of-the-art performance in both qualitative and quantitative evaluations, demonstrating its effectiveness in overcoming longstanding challenges in 3D human geometry estimation from videos.
comment: Project page: https://research.nvidia.com/labs/dair/geoman
☆ Document-Level Text Generation with Minimum Bayes Risk Decoding using Optimal Transport ACL 2025
Document-level text generation tasks are known to be more difficult than sentence-level text generation tasks as they require the understanding of longer context to generate high-quality texts. In this paper, we investigate the adaption of Minimum Bayes Risk (MBR) decoding for document-level text generation tasks. MBR decoding makes use of a utility function to estimate the output with the highest expected utility from a set of candidate outputs. Although MBR decoding is shown to be effective in a wide range of sentence-level text generation tasks, its performance on document-level text generation tasks is limited as many of the utility functions are designed for evaluating the utility of sentences. To this end, we propose MBR-OT, a variant of MBR decoding using Wasserstein distance to compute the utility of a document using a sentence-level utility function. The experimental result shows that the performance of MBR-OT outperforms that of the standard MBR in document-level machine translation, text simplification, and dense image captioning tasks. Our code is available at https://github.com/jinnaiyuu/mbr-optimal-transport
comment: ACL 2025
☆ Second Opinion Matters: Towards Adaptive Clinical AI via the Consensus of Expert Model Ensemble
Despite the growing clinical adoption of large language models (LLMs), current approaches heavily rely on single model architectures. To overcome risks of obsolescence and rigid dependence on single model systems, we present a novel framework, termed the Consensus Mechanism. Mimicking clinical triage and multidisciplinary clinical decision-making, the Consensus Mechanism implements an ensemble of specialized medical expert agents enabling improved clinical decision making while maintaining robust adaptability. This architecture enables the Consensus Mechanism to be optimized for cost, latency, or performance, purely based on its interior model configuration. To rigorously evaluate the Consensus Mechanism, we employed three medical evaluation benchmarks: MedMCQA, MedQA, and MedXpertQA Text, and the differential diagnosis dataset, DDX+. On MedXpertQA, the Consensus Mechanism achieved an accuracy of 61.0% compared to 53.5% and 45.9% for OpenAI's O3 and Google's Gemini 2.5 Pro. Improvement was consistent across benchmarks with an increase in accuracy on MedQA ($\Delta\mathrm{Accuracy}_{\mathrm{consensus\text{-}O3}} = 3.4\%$) and MedMCQA ($\Delta\mathrm{Accuracy}_{\mathrm{consensus\text{-}O3}} = 9.1\%$). These accuracy gains extended to differential diagnosis generation, where our system demonstrated improved recall and precision (F1$_\mathrm{consensus}$ = 0.326 vs. F1$_{\mathrm{O3\text{-}high}}$ = 0.2886) and a higher top-1 accuracy for DDX (Top1$_\mathrm{consensus}$ = 52.0% vs. Top1$_{\mathrm{O3\text{-}high}}$ = 45.2%).
comment: 23 pages, 11 figures
☆ Efficient Quantum Approximate $k$NN Algorithm via Granular-Ball Computing IJCAI 2025
High time complexity is one of the biggest challenges faced by $k$-Nearest Neighbors ($k$NN). Although current classical and quantum $k$NN algorithms have made some improvements, they still have a speed bottleneck when facing large amounts of data. To address this issue, we propose an innovative algorithm called Granular-Ball based Quantum $k$NN(GB-Q$k$NN). This approach achieves higher efficiency by first employing granular-balls, which reduces the data size needed to processed. The search process is then accelerated by adopting a Hierarchical Navigable Small World (HNSW) method. Moreover, we optimize the time-consuming steps, such as distance calculation, of the HNSW via quantization, further reducing the time complexity of the construct and search process. By combining the use of granular-balls and quantization of the HNSW method, our approach manages to take advantage of these treatments and significantly reduces the time complexity of the $k$NN-like algorithms, as revealed by a comprehensive complexity analysis.
comment: 8 pages; 7 figure; accepted by IJCAI 2025
☆ Composite Flow Matching for Reinforcement Learning with Shifted-Dynamics Data
Incorporating pre-collected offline data from a source environment can significantly improve the sample efficiency of reinforcement learning (RL), but this benefit is often challenged by discrepancies between the transition dynamics of the source and target environments. Existing methods typically address this issue by penalizing or filtering out source transitions in high dynamics-gap regions. However, their estimation of the dynamics gap often relies on KL divergence or mutual information, which can be ill-defined when the source and target dynamics have disjoint support. To overcome these limitations, we propose CompFlow, a method grounded in the theoretical connection between flow matching and optimal transport. Specifically, we model the target dynamics as a conditional flow built upon the output distribution of the source-domain flow, rather than learning it directly from a Gaussian prior. This composite structure offers two key advantages: (1) improved generalization for learning target dynamics, and (2) a principled estimation of the dynamics gap via the Wasserstein distance between source and target transitions. Leveraging our principled estimation of the dynamics gap, we further introduce an optimistic active data collection strategy that prioritizes exploration in regions of high dynamics gap, and theoretically prove that it reduces the performance disparity with the optimal policy. Empirically, CompFlow outperforms strong baselines across several RL benchmarks with shifted dynamics.
☆ From Token to Action: State Machine Reasoning to Mitigate Overthinking in Information Retrieval
Chain-of-Thought (CoT) prompting enables complex reasoning in large language models (LLMs), including applications in information retrieval (IR). However, it often leads to overthinking, where models produce excessively long and semantically redundant traces with little or no benefit. We identify two key challenges in IR: redundant trajectories that revisit similar states and misguided reasoning that diverges from user intent. To address these, we propose State Machine Reasoning (SMR), a transition-based reasoning framework composed of discrete actions (Refine, Rerank, Stop) that support early stopping and fine-grained control. Experiments on the BEIR and BRIGHT benchmarks show that SMR improves retrieval performance (nDCG@10) by 3.4% while reducing token usage by 74.4%. It generalizes across LLMs and retrievers without requiring task-specific tuning, offering a practical alternative to conventional CoT reasoning. The code and details are available at https://github.com/ldilab/SMR.
☆ Be.FM: Open Foundation Models for Human Behavior
Despite their success in numerous fields, the potential of foundation models for modeling and understanding human behavior remains largely unexplored. We introduce Be.FM, one of the first open foundation models designed for human behavior modeling. Built upon open-source large language models and fine-tuned on a diverse range of behavioral data, Be.FM can be used to understand and predict human decision-making. We construct a comprehensive set of benchmark tasks for testing the capabilities of behavioral foundation models. Our results demonstrate that Be.FM can predict behaviors, infer characteristics of individuals and populations, generate insights about contexts, and apply behavioral science knowledge.
☆ Augment or Not? A Comparative Study of Pure and Augmented Large Language Model Recommenders
Large language models (LLMs) have introduced new paradigms for recommender systems by enabling richer semantic understanding and incorporating implicit world knowledge. In this study, we propose a systematic taxonomy that classifies existing approaches into two categories: (1) Pure LLM Recommenders, which rely solely on LLMs, and (2) Augmented LLM Recommenders, which integrate additional non-LLM techniques to enhance performance. This taxonomy provides a novel lens through which to examine the evolving landscape of LLM-based recommendation. To support fair comparison, we introduce a unified evaluation platform that benchmarks representative models under consistent experimental settings, highlighting key design choices that impact effectiveness. We conclude by discussing open challenges and outlining promising directions for future research. This work offers both a comprehensive overview and practical guidance for advancing next-generation LLM-powered recommender.
☆ Multi-Sourced Compositional Generalization in Visual Question Answering IJCAI 2025
Compositional generalization is the ability of generalizing novel compositions from seen primitives, and has received much attention in vision-and-language (V\&L) recently. Due to the multi-modal nature of V\&L tasks, the primitives composing compositions source from different modalities, resulting in multi-sourced novel compositions. However, the generalization ability over multi-sourced novel compositions, \textit{i.e.}, multi-sourced compositional generalization (MSCG) remains unexplored. In this paper, we explore MSCG in the context of visual question answering (VQA), and propose a retrieval-augmented training framework to enhance the MSCG ability of VQA models by learning unified representations for primitives from different modalities. Specifically, semantically equivalent primitives are retrieved for each primitive in the training samples, and the retrieved features are aggregated with the original primitive to refine the model. This process helps the model learn consistent representations for the same semantic primitives across different modalities. To evaluate the MSCG ability of VQA models, we construct a new GQA-MSCG dataset based on the GQA dataset, in which samples include three types of novel compositions composed of primitives from different modalities. Experimental results demonstrate the effectiveness of the proposed framework. We release GQA-MSCG at https://github.com/NeverMoreLCH/MSCG.
comment: Accepted by IJCAI 2025
☆ Are Unified Vision-Language Models Necessary: Generalization Across Understanding and Generation
Recent advancements in unified vision-language models (VLMs), which integrate both visual understanding and generation capabilities, have attracted significant attention. The underlying hypothesis is that a unified architecture with mixed training on both understanding and generation tasks can enable mutual enhancement between understanding and generation. However, this hypothesis remains underexplored in prior works on unified VLMs. To address this gap, this paper systematically investigates the generalization across understanding and generation tasks in unified VLMs. Specifically, we design a dataset closely aligned with real-world scenarios to facilitate extensive experiments and quantitative evaluations. We evaluate multiple unified VLM architectures to validate our findings. Our key findings are as follows. First, unified VLMs trained with mixed data exhibit mutual benefits in understanding and generation tasks across various architectures, and this mutual benefits can scale up with increased data. Second, better alignment between multimodal input and output spaces will lead to better generalization. Third, the knowledge acquired during generation tasks can transfer to understanding tasks, and this cross-task generalization occurs within the base language model, beyond modality adapters. Our findings underscore the critical necessity of unifying understanding and generation in VLMs, offering valuable insights for the design and optimization of unified VLMs.
☆ From Theory to Application: Fine-Tuning Large EEG Model with Real-World Stress Data
Recent advancements in Large Language Models have inspired the development of foundation models across various domains. In this study, we evaluate the efficacy of Large EEG Models (LEMs) by fine-tuning LaBraM, a state-of-the-art foundation EEG model, on a real-world stress classification dataset collected in a graduate classroom. Unlike previous studies that primarily evaluate LEMs using data from controlled clinical settings, our work assesses their applicability to real-world environments. We train a binary classifier that distinguishes between normal and elevated stress states using resting-state EEG data recorded from 18 graduate students during a class session. The best-performing fine-tuned model achieves a balanced accuracy of 90.47% with a 5-second window, significantly outperforming traditional stress classifiers in both accuracy and inference efficiency. We further evaluate the robustness of the fine-tuned LEM under random data shuffling and reduced channel counts. These results demonstrate the capability of LEMs to effectively process real-world EEG data and highlight their potential to revolutionize brain-computer interface applications by shifting the focus from model-centric to data-centric design.
☆ Case-Based Reasoning Enhances the Predictive Power of LLMs in Drug-Drug Interaction
Drug-drug interaction (DDI) prediction is critical for treatment safety. While large language models (LLMs) show promise in pharmaceutical tasks, their effectiveness in DDI prediction remains challenging. Inspired by the well-established clinical practice where physicians routinely reference similar historical cases to guide their decisions through case-based reasoning (CBR), we propose CBR-DDI, a novel framework that distills pharmacological principles from historical cases to improve LLM reasoning for DDI tasks. CBR-DDI constructs a knowledge repository by leveraging LLMs to extract pharmacological insights and graph neural networks (GNNs) to model drug associations. A hybrid retrieval mechanism and dual-layer knowledge-enhanced prompting allow LLMs to effectively retrieve and reuse relevant cases. We further introduce a representative sampling strategy for dynamic case refinement. Extensive experiments demonstrate that CBR-DDI achieves state-of-the-art performance, with a significant 28.7% accuracy improvement over both popular LLMs and CBR baseline, while maintaining high interpretability and flexibility.
☆ Bayesian Neural Scaling Laws Extrapolation with Prior-Fitted Networks ICML 2025
Scaling has been a major driver of recent advancements in deep learning. Numerous empirical studies have found that scaling laws often follow the power-law and proposed several variants of power-law functions to predict the scaling behavior at larger scales. However, existing methods mostly rely on point estimation and do not quantify uncertainty, which is crucial for real-world applications involving decision-making problems such as determining the expected performance improvements achievable by investing additional computational resources. In this work, we explore a Bayesian framework based on Prior-data Fitted Networks (PFNs) for neural scaling law extrapolation. Specifically, we design a prior distribution that enables the sampling of infinitely many synthetic functions resembling real-world neural scaling laws, allowing our PFN to meta-learn the extrapolation. We validate the effectiveness of our approach on real-world neural scaling laws, comparing it against both the existing point estimation methods and Bayesian approaches. Our method demonstrates superior performance, particularly in data-limited scenarios such as Bayesian active learning, underscoring its potential for reliable, uncertainty-aware extrapolation in practical applications.
comment: Accepted to ICML 2025
☆ Diverse Prototypical Ensembles Improve Robustness to Subpopulation Shift ICML 2025
The subpopulationtion shift, characterized by a disparity in subpopulation distributibetween theween the training and target datasets, can significantly degrade the performance of machine learning models. Current solutions to subpopulation shift involve modifying empirical risk minimization with re-weighting strategies to improve generalization. This strategy relies on assumptions about the number and nature of subpopulations and annotations on group membership, which are unavailable for many real-world datasets. Instead, we propose using an ensemble of diverse classifiers to adaptively capture risk associated with subpopulations. Given a feature extractor network, we replace its standard linear classification layer with a mixture of prototypical classifiers, where each member is trained to classify the data while focusing on different features and samples from other members. In empirical evaluation on nine real-world datasets, covering diverse domains and kinds of subpopulation shift, our method of Diverse Prototypical Ensembles (DPEs) often outperforms the prior state-of-the-art in worst-group accuracy. The code is available at https://github.com/minhto2802/dpe4subpop
comment: ICML 2025 Paper
☆ Context Robust Knowledge Editing for Language Models ACL 2025
Knowledge editing (KE) methods offer an efficient way to modify knowledge in large language models. Current KE evaluations typically assess editing success by considering only the edited knowledge without any preceding contexts. In real-world applications, however, preceding contexts often trigger the retrieval of the original knowledge and undermine the intended edit. To address this issue, we develop CHED -- a benchmark designed to evaluate the context robustness of KE methods. Evaluations on CHED show that they often fail when preceding contexts are present. To mitigate this shortcoming, we introduce CoRE, a KE method designed to strengthen context robustness by minimizing context-sensitive variance in hidden states of the model for edited knowledge. This method not only improves the editing success rate in situations where a preceding context is present but also preserves the overall capabilities of the model. We provide an in-depth analysis of the differing impacts of preceding contexts when introduced as user utterances versus assistant responses, and we dissect attention-score patterns to assess how specific tokens influence editing success.
comment: ACL 2025 Findings. Our code and datasets are available at (https://github.com/holi-lab/CoRE)
☆ AgentAlign: Navigating Safety Alignment in the Shift from Informative to Agentic Large Language Models ACL 2025
The acquisition of agentic capabilities has transformed LLMs from "knowledge providers" to "action executors", a trend that while expanding LLMs' capability boundaries, significantly increases their susceptibility to malicious use. Previous work has shown that current LLM-based agents execute numerous malicious tasks even without being attacked, indicating a deficiency in agentic use safety alignment during the post-training phase. To address this gap, we propose AgentAlign, a novel framework that leverages abstract behavior chains as a medium for safety alignment data synthesis. By instantiating these behavior chains in simulated environments with diverse tool instances, our framework enables the generation of highly authentic and executable instructions while capturing complex multi-step dynamics. The framework further ensures model utility by proportionally synthesizing benign instructions through non-malicious interpretations of behavior chains, precisely calibrating the boundary between helpfulness and harmlessness. Evaluation results on AgentHarm demonstrate that fine-tuning three families of open-source models using our method substantially improves their safety (35.8% to 79.5% improvement) while minimally impacting or even positively enhancing their helpfulness, outperforming various prompting methods. The dataset and code have both been open-sourced.
comment: Submitted to ACL 2025
☆ $K^2$VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting
Probabilistic Time Series Forecasting (PTSF) plays a crucial role in decision-making across various fields, including economics, energy, and transportation. Most existing methods excell at short-term forecasting, while overlooking the hurdles of Long-term Probabilistic Time Series Forecasting (LPTSF). As the forecast horizon extends, the inherent nonlinear dynamics have a significant adverse effect on prediction accuracy, and make generative models inefficient by increasing the cost of each iteration. To overcome these limitations, we introduce $K^2$VAE, an efficient VAE-based generative model that leverages a KoopmanNet to transform nonlinear time series into a linear dynamical system, and devises a KalmanNet to refine predictions and model uncertainty in such linear system, which reduces error accumulation in long-term forecasting. Extensive experiments demonstrate that $K^2$VAE outperforms state-of-the-art methods in both short- and long-term PTSF, providing a more efficient and accurate solution.
☆ Synthetic Document Question Answering in Hungarian
Modern VLMs have achieved near-saturation accuracy in English document visual question-answering (VQA). However, this task remains challenging in lower resource languages due to a dearth of suitable training and evaluation data. In this paper we present scalable methods for curating such datasets by focusing on Hungarian, approximately the 17th highest resource language on the internet. Specifically, we present HuDocVQA and HuDocVQA-manual, document VQA datasets that modern VLMs significantly underperform on compared to English DocVQA. HuDocVQA-manual is a small manually curated dataset based on Hungarian documents from Common Crawl, while HuDocVQA is a larger synthetically generated VQA data set from the same source. We apply multiple rounds of quality filtering and deduplication to HuDocVQA in order to match human-level quality in this dataset. We also present HuCCPDF, a dataset of 117k pages from Hungarian Common Crawl PDFs along with their transcriptions, which can be used for training a model for Hungarian OCR. To validate the quality of our datasets, we show how finetuning on a mixture of these datasets can improve accuracy on HuDocVQA for Llama 3.2 11B Instruct by +7.2%. Our datasets and code will be released to the public to foster further research in multilingual DocVQA.
☆ A Practical Approach for Building Production-Grade Conversational Agents with Workflow Graphs ACL 2025
The advancement of Large Language Models (LLMs) has led to significant improvements in various service domains, including search, recommendation, and chatbot applications. However, applying state-of-the-art (SOTA) research to industrial settings presents challenges, as it requires maintaining flexible conversational abilities while also strictly complying with service-specific constraints. This can be seen as two conflicting requirements due to the probabilistic nature of LLMs. In this paper, we propose our approach to addressing this challenge and detail the strategies we employed to overcome their inherent limitations in real-world applications. We conduct a practical case study of a conversational agent designed for the e-commerce domain, detailing our implementation workflow and optimizations. Our findings provide insights into bridging the gap between academic research and real-world application, introducing a framework for developing scalable, controllable, and reliable AI-driven agents.
comment: Accepted to ACL 2025 Industry Track. 12 pages, 5 figures
☆ Hybrid Cross-domain Robust Reinforcement Learning ECML
Robust reinforcement learning (RL) aims to learn policies that remain effective despite uncertainties in its environment, which frequently arise in real-world applications due to variations in environment dynamics. The robust RL methods learn a robust policy by maximizing value under the worst-case models within a predefined uncertainty set. Offline robust RL algorithms are particularly promising in scenarios where only a fixed dataset is available and new data cannot be collected. However, these approaches often require extensive offline data, and gathering such datasets for specific tasks in specific environments can be both costly and time-consuming. Using an imperfect simulator offers a faster, cheaper, and safer way to collect data for training, but it can suffer from dynamics mismatch. In this paper, we introduce HYDRO, the first Hybrid Cross-Domain Robust RL framework designed to address these challenges. HYDRO utilizes an online simulator to complement the limited amount of offline datasets in the non-trivial context of robust RL. By measuring and minimizing performance gaps between the simulator and the worst-case models in the uncertainty set, HYDRO employs novel uncertainty filtering and prioritized sampling to select the most relevant and reliable simulator samples. Our extensive experiments demonstrate HYDRO's superior performance over existing methods across various tasks, underscoring its potential to improve sample efficiency in offline robust RL.
comment: Accepted at ECML PKDD 2025
☆ Verify-in-the-Graph: Entity Disambiguation Enhancement for Complex Claim Verification with Interactive Graph Representation NAACL 2025
Claim verification is a long-standing and challenging task that demands not only high accuracy but also explainability of the verification process. This task becomes an emerging research issue in the era of large language models (LLMs) since real-world claims are often complex, featuring intricate semantic structures or obfuscated entities. Traditional approaches typically address this by decomposing claims into sub-claims and querying a knowledge base to resolve hidden or ambiguous entities. However, the absence of effective disambiguation strategies for these entities can compromise the entire verification process. To address these challenges, we propose Verify-in-the-Graph (VeGraph), a novel framework leveraging the reasoning and comprehension abilities of LLM agents. VeGraph operates in three phases: (1) Graph Representation - an input claim is decomposed into structured triplets, forming a graph-based representation that integrates both structured and unstructured information; (2) Entity Disambiguation -VeGraph iteratively interacts with the knowledge base to resolve ambiguous entities within the graph for deeper sub-claim verification; and (3) Verification - remaining triplets are verified to complete the fact-checking process. Experiments using Meta-Llama-3-70B (instruct version) show that VeGraph achieves competitive performance compared to baselines on two benchmarks HoVer and FEVEROUS, effectively addressing claim verification challenges. Our source code and data are available for further exploitation.
comment: Published at NAACL 2025 Main Conference
☆ MenTeR: A fully-automated Multi-agenT workflow for end-to-end RF/Analog Circuits Netlist Design
RF/Analog design is essential for bridging digital technologies with real-world signals, ensuring the functionality and reliability of a wide range of electronic systems. However, analog design procedures are often intricate, time-consuming and reliant on expert intuition, and hinder the time and cost efficiency of circuit development. To overcome the limitations of the manual circuit design, we introduce MenTeR - a multiagent workflow integrated into an end-to-end analog design framework. By employing multiple specialized AI agents that collaboratively address different aspects of the design process, such as specification understanding, circuit optimization, and test bench validation, MenTeR reduces the dependency on frequent trial-and-error-style intervention. MenTeR not only accelerates the design cycle time but also facilitates a broader exploration of the design space, demonstrating robust capabilities in handling real-world analog systems. We believe that MenTeR lays the groundwork for future "RF/Analog Copilots" that can collaborate seamlessly with human designers.
comment: 9 pages, 7 figures, accepted by IEEE ICLAD 2025
☆ Model-Preserving Adaptive Rounding
The main goal of post-training quantization (PTQ) is to produced a compressed model whose output distribution is as close to the original model's as possible. To do this tractably, almost all LLM PTQ algorithms quantize linear layers by independently minimizing the immediate activation error. However, this localized objective ignores the effect of subsequent layers, so reducing it does not necessarily give a closer model. In this work, we introduce Yet Another Quantization Algorithm (YAQA), an adaptive rounding algorithm that uses Kronecker-factored approximations of each linear layer's Hessian with respect to the \textit{full model} KL divergence. YAQA consists of two components: Kronecker-factored sketches of the full layerwise Hessian that can be tractably computed for hundred-billion parameter LLMs, and a quantizer-independent rounding algorithm that uses these sketches and comes with theoretical guarantees. Across a wide range of models and quantizers, YAQA empirically reduces the KL divergence to the original model by $\approx 30\%$ while achieving state of the art performance on downstream tasks.
comment: Preprint
☆ Strategic Reflectivism In Intelligent Systems
By late 20th century, the rationality wars had launched debates about the nature and norms of intuitive and reflective thinking. Those debates drew from mid-20th century ideas such as bounded rationality, which challenged more idealized notions of rationality observed since the 19th century. Now that 21st century cognitive scientists are applying the resulting dual process theories to artificial intelligence, it is time to dust off some lessons from this history. So this paper synthesizes old ideas with recent results from experiments on humans and machines. The result is Strategic Reflectivism, which takes the position that one key to intelligent systems (human or artificial) is pragmatic switching between intuitive and reflective inference to optimally fulfill competing goals. Strategic Reflectivism builds on American Pragmatism, transcends superficial indicators of reflective thinking such as model size or chains of thought, and becomes increasingly actionable as we learn more about the value of intuition and reflection.
comment: An earlier version of this paper was presented at the 2025 ACM Workshop on Human-AI Interaction for Augmented Reasoning (CHI25-WS-AUGMENTED-REASONING). Permission to copy for educational use is granted, provided copies are not for sale or profit and include this notice and full citation on the first page. Other uses require the author permission
☆ Knowledge Distillation for Reservoir-based Classifier: Human Activity Recognition
This paper aims to develop an energy-efficient classifier for time-series data by introducing PatchEchoClassifier, a novel model that leverages a reservoir-based mechanism known as the Echo State Network (ESN). The model is designed for human activity recognition (HAR) using one-dimensional sensor signals and incorporates a tokenizer to extract patch-level representations. To train the model efficiently, we propose a knowledge distillation framework that transfers knowledge from a high-capacity MLP-Mixer teacher to the lightweight reservoir-based student model. Experimental evaluations on multiple HAR datasets demonstrate that our model achieves over 80 percent accuracy while significantly reducing computational cost. Notably, PatchEchoClassifier requires only about one-sixth of the floating point operations (FLOPS) compared to DeepConvLSTM, a widely used convolutional baseline. These results suggest that PatchEchoClassifier is a promising solution for real-time and energy-efficient human activity recognition in edge computing environments.
comment: 23 pages,5 figures
☆ Toward Memory-Aided World Models: Benchmarking via Spatial Consistency
The ability to simulate the world in a spatially consistent manner is a crucial requirements for effective world models. Such a model enables high-quality visual generation, and also ensures the reliability of world models for downstream tasks such as simulation and planning. Designing a memory module is a crucial component for addressing spatial consistency: such a model must not only retain long-horizon observational information, but also enables the construction of explicit or implicit internal spatial representations. However, there are no dataset designed to promote the development of memory modules by explicitly enforcing spatial consistency constraints. Furthermore, most existing benchmarks primarily emphasize visual coherence or generation quality, neglecting the requirement of long-range spatial consistency. To bridge this gap, we construct a dataset and corresponding benchmark by sampling 150 distinct locations within the open-world environment of Minecraft, collecting about 250 hours (20 million frames) of loop-based navigation videos with actions. Our dataset follows a curriculum design of sequence lengths, allowing models to learn spatial consistency on increasingly complex navigation trajectories. Furthermore, our data collection pipeline is easily extensible to new Minecraft environments and modules. Four representative world model baselines are evaluated on our benchmark. Dataset, benchmark, and code are open-sourced to support future research.
☆ EquiReg: Equivariance Regularized Diffusion for Inverse Problems
Diffusion models represent the state-of-the-art for solving inverse problems such as image restoration tasks. In the Bayesian framework, diffusion-based inverse solvers incorporate a likelihood term to guide the prior sampling process, generating data consistent with the posterior distribution. However, due to the intractability of the likelihood term, many current methods rely on isotropic Gaussian approximations, which lead to deviations from the data manifold and result in inconsistent, unstable reconstructions. We propose Equivariance Regularized (EquiReg) diffusion, a general framework for regularizing posterior sampling in diffusion-based inverse problem solvers. EquiReg enhances reconstructions by reweighting diffusion trajectories and penalizing those that deviate from the data manifold. We define a new distribution-dependent equivariance error, empirically identify functions that exhibit low error for on-manifold samples and higher error for off-manifold samples, and leverage these functions to regularize the diffusion sampling process. When applied to a variety of solvers, EquiReg outperforms state-of-the-art diffusion models in both linear and nonlinear image restoration tasks, as well as in reconstructing partial differential equations.
☆ Exploring Scaling Laws for EHR Foundation Models
The emergence of scaling laws has profoundly shaped the development of large language models (LLMs), enabling predictable performance gains through systematic increases in model size, dataset volume, and compute. Yet, these principles remain largely unexplored in the context of electronic health records (EHRs) -- a rich, sequential, and globally abundant data source that differs structurally from natural language. In this work, we present the first empirical investigation of scaling laws for EHR foundation models. By training transformer architectures on patient timeline data from the MIMIC-IV database across varying model sizes and compute budgets, we identify consistent scaling patterns, including parabolic IsoFLOPs curves and power-law relationships between compute, model parameters, data size, and clinical utility. These findings demonstrate that EHR models exhibit scaling behavior analogous to LLMs, offering predictive insights into resource-efficient training strategies. Our results lay the groundwork for developing powerful EHR foundation models capable of transforming clinical prediction tasks and advancing personalized healthcare.
☆ Revisiting Multi-Agent Debate as Test-Time Scaling: A Systematic Study of Conditional Effectiveness
The remarkable growth in large language model (LLM) capabilities has spurred exploration into multi-agent systems, with debate frameworks emerging as a promising avenue for enhanced problem-solving. These multi-agent debate (MAD) approaches, where agents collaboratively present, critique, and refine arguments, potentially offer improved reasoning, robustness, and diverse perspectives over monolithic models. Despite prior studies leveraging MAD, a systematic understanding of its effectiveness compared to self-agent methods, particularly under varying conditions, remains elusive. This paper seeks to fill this gap by conceptualizing MAD as a test-time computational scaling technique, distinguished by collaborative refinement and diverse exploration capabilities. We conduct a comprehensive empirical investigation comparing MAD with strong self-agent test-time scaling baselines on mathematical reasoning and safety-related tasks. Our study systematically examines the influence of task difficulty, model scale, and agent diversity on MAD's performance. Key findings reveal that, for mathematical reasoning, MAD offers limited advantages over self-agent scaling but becomes more effective with increased problem difficulty and decreased model capability, while agent diversity shows little benefit. Conversely, for safety tasks, MAD's collaborative refinement can increase vulnerability, but incorporating diverse agent configurations facilitates a gradual reduction in attack success through the collaborative refinement process. We believe our findings provide critical guidance for the future development of more effective and strategically deployed MAD systems.
comment: Preprint, under review
☆ Darwin Godel Machine: Open-Ended Evolution of Self-Improving Agents
Today's AI systems have human-designed, fixed architectures and cannot autonomously and continuously improve themselves. The advance of AI could itself be automated. If done safely, that would accelerate AI development and allow us to reap its benefits much sooner. Meta-learning can automate the discovery of novel algorithms, but is limited by first-order improvements and the human design of a suitable search space. The G\"odel machine proposed a theoretical alternative: a self-improving AI that repeatedly modifies itself in a provably beneficial manner. Unfortunately, proving that most changes are net beneficial is impossible in practice. We introduce the Darwin G\"odel Machine (DGM), a self-improving system that iteratively modifies its own code (thereby also improving its ability to modify its own codebase) and empirically validates each change using coding benchmarks. Inspired by Darwinian evolution and open-endedness research, the DGM maintains an archive of generated coding agents. It grows the archive by sampling an agent from it and using a foundation model to create a new, interesting, version of the sampled agent. This open-ended exploration forms a growing tree of diverse, high-quality agents and allows the parallel exploration of many different paths through the search space. Empirically, the DGM automatically improves its coding capabilities (e.g., better code editing tools, long-context window management, peer-review mechanisms), increasing performance on SWE-bench from 20.0% to 50.0%, and on Polyglot from 14.2% to 30.7%. Furthermore, the DGM significantly outperforms baselines without self-improvement or open-ended exploration. All experiments were done with safety precautions (e.g., sandboxing, human oversight). The DGM is a significant step toward self-improving AI, capable of gathering its own stepping stones along paths that unfold into endless innovation.
comment: Code at https://github.com/jennyzzt/dgm
☆ Foundation Molecular Grammar: Multi-Modal Foundation Models Induce Interpretable Molecular Graph Languages ICML 2025
Recent data-efficient molecular generation approaches exploit graph grammars to introduce interpretability into the generative models. However, grammar learning therein relies on expert annotation or unreliable heuristics for algorithmic inference. We propose Foundation Molecular Grammar (FMG), which leverages multi-modal foundation models (MMFMs) to induce an interpretable molecular language. By exploiting the chemical knowledge of an MMFM, FMG renders molecules as images, describes them as text, and aligns information across modalities using prompt learning. FMG can be used as a drop-in replacement for the prior grammar learning approaches in molecular generation and property prediction. We show that FMG not only excels in synthesizability, diversity, and data efficiency but also offers built-in chemical interpretability for automated molecular discovery workflows. Code is available at https://github.com/shiningsunnyday/induction.
comment: ICML 2025
♻ ☆ Maximizing Confidence Alone Improves Reasoning
Reinforcement learning (RL) has enabled machine learning models to achieve significant advances in many fields. Most recently, RL has empowered frontier language models to solve challenging math, science, and coding problems. However, central to any RL algorithm is the reward function, and reward engineering is a notoriously difficult problem in any domain. In this paper, we propose RENT: Reinforcement Learning via Entropy Minimization -- a fully unsupervised RL method that requires no external reward or ground-truth answers, and instead uses the model's entropy of its underlying distribution as an intrinsic reward. We find that by reinforcing the chains of thought that yield high model confidence on its generated answers, the model improves its reasoning ability. In our experiments, we showcase these improvements on an extensive suite of commonly-used reasoning benchmarks, including GSM8K, MATH500, AMC, AIME, and GPQA, and models of varying sizes from the Qwen and Mistral families. The generality of our unsupervised learning method lends itself to applicability in a wide range of domains where external supervision is unavailable.
comment: Website: https://rent-rl.github.io/
♻ ☆ Pre-training for Recommendation Unlearning SIGIR 2025
Modern recommender systems powered by Graph Neural Networks (GNNs) excel at modeling complex user-item interactions, yet increasingly face scenarios requiring selective forgetting of training data. Beyond user requests to remove specific interactions due to privacy concerns or preference changes, regulatory frameworks mandate recommender systems' ability to eliminate the influence of certain user data from models. This recommendation unlearning challenge presents unique difficulties as removing connections within interaction graphs creates ripple effects throughout the model, potentially impacting recommendations for numerous users. Traditional approaches suffer from significant drawbacks: fragmentation methods damage graph structure and diminish performance, while influence function techniques make assumptions that may not hold in complex GNNs, particularly with self-supervised or random architectures. To address these limitations, we propose a novel model-agnostic pre-training paradigm UnlearnRec that prepares systems for efficient unlearning operations. Our Influence Encoder takes unlearning requests together with existing model parameters and directly produces updated parameters of unlearned model with little fine-tuning, avoiding complete retraining while preserving model performance characteristics. Extensive evaluation on public benchmarks demonstrates that our method delivers exceptional unlearning effectiveness while providing more than 10x speedup compared to retraining approaches. We release our method implementation at: https://github.com/HKUDS/UnlearnRec.
comment: Accepted to SIGIR 2025 Oral
♻ ☆ FastTD3: Simple, Fast, and Capable Reinforcement Learning for Humanoid Control
Reinforcement learning (RL) has driven significant progress in robotics, but its complexity and long training times remain major bottlenecks. In this report, we introduce FastTD3, a simple, fast, and capable RL algorithm that significantly speeds up training for humanoid robots in popular suites such as HumanoidBench, IsaacLab, and MuJoCo Playground. Our recipe is remarkably simple: we train an off-policy TD3 agent with several modifications -- parallel simulation, large-batch updates, a distributional critic, and carefully tuned hyperparameters. FastTD3 solves a range of HumanoidBench tasks in under 3 hours on a single A100 GPU, while remaining stable during training. We also provide a lightweight and easy-to-use implementation of FastTD3 to accelerate RL research in robotics.
comment: Project webpage: https://younggyo.me/fast_td3
♻ ☆ On the performance of machine-learning-assisted Monte Carlo in sampling from simple statistical physics models
Recent years have seen a rise in the application of machine learning techniques to aid the simulation of hard-to-sample systems that cannot be studied using traditional methods. Despite the introduction of many different architectures and procedures, a wide theoretical understanding is still lacking, with the risk of suboptimal implementations. As a first step to address this gap, we provide here a complete analytic study of the widely-used Sequential Tempering procedure applied to a shallow MADE architecture for the Curie-Weiss model. The contribution of this work is twofold: firstly, we give a description of the optimal weights and of the training under Gradient Descent optimization. Secondly, we compare what happens in Sequential Tempering with and without the addition of local Metropolis Monte Carlo steps. We are thus able to give theoretical predictions on the best procedure to apply in this case. This work establishes a clear theoretical basis for the integration of machine learning techniques into Monte Carlo sampling and optimization.
comment: 16 pages, 9 figures
♻ ☆ MINDSTORES: Memory-Informed Neural Decision Synthesis for Task-Oriented Reinforcement in Embodied Systems
While large language models (LLMs) have shown promising capabilities as zero-shot planners for embodied agents, their inability to learn from experience and build persistent mental models limits their robustness in complex open-world environments like Minecraft. We introduce MINDSTORES, an experience-augmented planning framework that enables embodied agents to build and leverage mental models through natural interaction with their environment. Drawing inspiration from how humans construct and refine cognitive mental models, our approach extends existing zero-shot LLM planning by maintaining a database of past experiences that informs future planning iterations. The key innovation is representing accumulated experiences as natural language embeddings of (state, task, plan, outcome) tuples, which can then be efficiently retrieved and reasoned over by an LLM planner to generate insights and guide plan refinement for novel states and tasks. Through extensive experiments in the MineDojo environment, a simulation environment for agents in Minecraft that provides low-level controls for Minecraft, we find that MINDSTORES learns and applies its knowledge significantly better than existing memory-based LLM planners while maintaining the flexibility and generalization benefits of zero-shot approaches, representing an important step toward more capable embodied AI systems that can learn continuously through natural experience.
♻ ☆ Agent-UniRAG: A Trainable Open-Source LLM Agent Framework for Unified Retrieval-Augmented Generation Systems
This paper presents a novel approach for unified retrieval-augmented generation (RAG) systems using the recent emerging large language model (LLM) agent concept. Specifically, Agent LLM, which utilizes LLM as fundamental controllers, has become a promising approach to enable the interpretability of RAG tasks, especially for complex reasoning question-answering systems (e.g., multi-hop queries). Nonetheless, previous works mainly focus on solving RAG systems with either single-hop or multi-hop approaches separately, which limits the application of those approaches to real-world applications. In this study, we propose a trainable agent framework called Agent-UniRAG for unified retrieval-augmented LLM systems, which enhances the effectiveness and interpretability of RAG systems. The main idea is to design an LLM agent framework to solve RAG tasks step-by-step based on the complexity of the inputs, simultaneously including single-hop and multi-hop queries in an end-to-end manner. Furthermore, we introduce SynAgent-RAG, a synthetic dataset to enable the proposed agent framework for small open-source LLMs (e.g., Llama-3-8B). The results show comparable performances with closed-source and larger open-source LLMs across various RAG benchmarks. Our source code and dataset are publicly available for further exploitation.
♻ ☆ Topological Structure Learning Should Be A Research Priority for LLM-Based Multi-Agent Systems
Large Language Model-based Multi-Agent Systems (MASs) have emerged as a powerful paradigm for tackling complex tasks through collaborative intelligence. Nevertheless, the question of how agents should be structurally organized for optimal cooperation remains largely unexplored. In this position paper, we aim to gently redirect the focus of the MAS research community toward this critical dimension: develop topology-aware MASs for specific tasks. Specifically, the system consists of three core components - agents, communication links, and communication patterns - that collectively shape its coordination performance and efficiency. To this end, we introduce a systematic, three-stage framework: agent selection, structure profiling, and topology synthesis. Each stage would trigger new research opportunities in areas such as language models, reinforcement learning, graph learning, and generative modeling; together, they could unleash the full potential of MASs in complicated real-world applications. Then, we discuss the potential challenges and opportunities in the evaluation of multiple systems. We hope our perspective and framework can offer critical new insights in the era of agentic AI.
♻ ☆ Train with Perturbation, Infer after Merging: A Two-Stage Framework for Continual Learning
Continual Learning (CL) aims to enable models to continuously acquire new knowledge from a sequence of tasks with avoiding the forgetting of learned information. However, existing CL methods only rely on the parameters of the most recent task for inference, which makes them susceptible to catastrophic forgetting. Inspired by the recent success of model merging techniques, we propose \textbf{Perturb-and-Merge (P\&M)}, a novel continual learning framework that integrates model merging into the CL paradigm to mitigate forgetting. Specifically, after training on each task, P\&M constructs a new model by forming a convex combination of the previous model and the newly trained task-specific model. Through theoretical analysis, we minimize the total loss increase across all tasks and derive an analytical solution for the optimal merging coefficient. To further improve the performance of the merged model, we observe that the degradation introduced during merging can be alleviated by a regularization term composed of the task vector and the Hessian matrix of the loss function. Interestingly, we show that this term can be efficiently approximated using second-order symmetric finite differences, and a stochastic perturbation strategy along the task vector direction is accordingly devised which incurs no additional forward or backward passes while providing an effective approximation of the regularization term. Finally, we combine P\&M with LoRA, a parameter-efficient fine-tuning method, to reduce memory overhead. Our proposed approach achieves state-of-the-art performance on several continual learning benchmark datasets.
comment: 17 pages, 3 figures
♻ ☆ SplitLoRA: Balancing Stability and Plasticity in Continual Learning Through Gradient Space Splitting
Continual Learning requires a model to learn multiple tasks in sequence while maintaining both stability:preserving knowledge from previously learned tasks, and plasticity:effectively learning new tasks. Gradient projection has emerged as an effective and popular paradigm in CL, where it partitions the gradient space of previously learned tasks into two orthogonal subspaces: a primary subspace and a minor subspace. New tasks are learned effectively within the minor subspace, thereby reducing interference with previously acquired knowledge. However, existing Gradient Projection methods struggle to achieve an optimal balance between plasticity and stability, as it is hard to appropriately partition the gradient space. In this work, we consider a continual learning paradigm based on Low-Rank Adaptation, which has gained considerable attention due to its efficiency and wide applicability, and propose a novel approach for continual learning, called SplitLoRA. We first provide a theoretical analysis of how subspace partitioning affects model stability and plasticity. Informed by this analysis, we then introduce an effective method that derives the optimal partition of the gradient space for previously learned tasks. This approach effectively balances stability and plasticity in continual learning. Experimental results on multiple datasets demonstrate that the proposed method achieves state-of-the-art performance.
comment: 18 pages, 4 figures
♻ ☆ Skywork Open Reasoner 1 Technical Report
The success of DeepSeek-R1 underscores the significant role of reinforcement learning (RL) in enhancing the reasoning capabilities of large language models (LLMs). In this work, we present Skywork-OR1, an effective and scalable RL implementation for long Chain-of-Thought (CoT) models. Building on the DeepSeek-R1-Distill model series, our RL approach achieves notable performance gains, increasing average accuracy across AIME24, AIME25, and LiveCodeBench from 57.8% to 72.8% (+15.0%) for the 32B model and from 43.6% to 57.5% (+13.9%) for the 7B model. Our Skywork-OR1-32B model surpasses both DeepSeek-R1 and Qwen3-32B on the AIME24 and AIME25 benchmarks, while achieving comparable results on LiveCodeBench. The Skywork-OR1-7B and Skywork-OR1-Math-7B models demonstrate competitive reasoning capabilities among models of similar size. We perform comprehensive ablation studies on the core components of our training pipeline to validate their effectiveness. Additionally, we thoroughly investigate the phenomenon of entropy collapse, identify key factors affecting entropy dynamics, and demonstrate that mitigating premature entropy collapse is critical for improved test performance. To support community research, we fully open-source our model weights, training code, and training datasets.
♻ ☆ Exploring the Limitations of Mamba in COPY and CoT Reasoning
Transformers have become the backbone of modern Large Language Models (LLMs); however, their inference overhead grows linearly with the sequence length, posing challenges for modeling long sequences. In light of this, Mamba has attracted attention for maintaining a constant inference size, with empirical evidence demonstrating that it can match Transformer performance in sequence modeling while significantly reducing computational costs. However, an open question remains: can Mamba always bring savings while achieving performance comparable to Transformers? In this paper, we focus on analyzing the expressive ability of Mamba to perform our defined COPY operation and Chain of Thought (CoT) reasoning. First, inspired by the connection between Mamba and linear attention, we show that constant-sized Mamba may struggle to perform COPY operations while Transformers can handle them more easily. However, when the size of Mamba grows linearly with the input sequence length, it can accurately perform COPY, but in this case, Mamba no longer provides overhead savings. Based on this observation, we further analyze Mamba's ability to tackle CoT tasks, which can be described by the Dynamic Programming (DP) problems. Our findings suggest that to solve arbitrary DP problems, the total cost of Mamba is still comparable to standard Transformers. However, similar to efficient Transformers, when facing DP problems with favorable properties such as locality, Mamba can provide savings in overhead. Our experiments on the copy and CoT tasks further demonstrate Mamba's limitations compared to Transformers in learning these tasks.
comment: Mamba, Chain of Thought
♻ ☆ Speculative Decoding Meets Quantization: Compatibility Evaluation and Hierarchical Framework Design
Speculative decoding and quantization effectively accelerate memory-bound inference of large language models. Speculative decoding mitigates the memory bandwidth bottleneck by verifying multiple tokens within a single forward pass, which increases computational effort. Quantization achieves this optimization by compressing weights and activations into lower bit-widths and also reduces computations via low-bit matrix multiplications. To further leverage their strengths, we investigate the integration of these two techniques. Surprisingly, experiments applying the advanced speculative decoding method EAGLE-2 to various quantized models reveal that the memory benefits from 4-bit weight quantization are diminished by the computational load from speculative decoding. Specifically, verifying a tree-style draft incurs significantly more time overhead than a single-token forward pass on 4-bit weight quantized models. This finding led to our new speculative decoding design: a hierarchical framework that employs a small model as an intermediate stage to turn tree-style drafts into sequence drafts, leveraging the memory access benefits of the target quantized model. Experimental results show that our hierarchical approach achieves a 2.78$\times$ speedup across various tasks for the 4-bit weight Llama-3-70B model on an A100 GPU, outperforming EAGLE-2 by 1.31$\times$. Code available at https://github.com/AI9Stars/SpecMQuant.
comment: 12 pages, 5 figures
♻ ☆ BatteryLife: A Comprehensive Dataset and Benchmark for Battery Life Prediction KDD 2025
Battery Life Prediction (BLP), which relies on time series data produced by battery degradation tests, is crucial for battery utilization, optimization, and production. Despite impressive advancements, this research area faces three key challenges. Firstly, the limited size of existing datasets impedes insights into modern battery life data. Secondly, most datasets are restricted to small-capacity lithium-ion batteries tested under a narrow range of diversity in labs, raising concerns about the generalizability of findings. Thirdly, inconsistent and limited benchmarks across studies obscure the effectiveness of baselines and leave it unclear if models popular in other time series fields are effective for BLP. To address these challenges, we propose BatteryLife, a comprehensive dataset and benchmark for BLP. BatteryLife integrates 16 datasets, offering a 2.5 times sample size compared to the previous largest dataset, and provides the most diverse battery life resource with batteries from 8 formats, 59 chemical systems, 9 operating temperatures, and 421 charge/discharge protocols, including both laboratory and industrial tests. Notably, BatteryLife is the first to release battery life datasets of zinc-ion batteries, sodium-ion batteries, and industry-tested large-capacity lithium-ion batteries. With the comprehensive dataset, we revisit the effectiveness of baselines popular in this and other time series fields. Furthermore, we propose CyclePatch, a plug-in technique that can be employed in various neural networks. Extensive benchmarking of 18 methods reveals that models popular in other time series fields can be unsuitable for BLP, and CyclePatch consistently improves model performance establishing state-of-the-art benchmarks. Moreover, BatteryLife evaluates model performance across aging conditions and domains. BatteryLife is available at https://github.com/Ruifeng-Tan/BatteryLife.
comment: Accepted by KDD 2025
♻ ☆ From Head to Tail: Towards Balanced Representation in Large Vision-Language Models through Adaptive Data Calibration CVPR 2025
Large Vision-Language Models (LVLMs) have achieved significant progress in combining visual comprehension with language generation. Despite this success, the training data of LVLMs still suffers from Long-Tail (LT) problems, where the data distribution is highly imbalanced. Previous works have mainly focused on traditional VLM architectures, i.e., CLIP or ViT, and specific tasks such as recognition and classification. Nevertheless, the exploration of LVLM (e.g. LLaVA) and more general tasks (e.g. Visual Question Answering and Visual Reasoning) remains under-explored. In this paper, we first conduct an in-depth analysis of the LT issues in LVLMs and identify two core causes: the overrepresentation of head concepts and the underrepresentation of tail concepts. Based on the above observation, we propose an $\textbf{A}$daptive $\textbf{D}$ata $\textbf{R}$efinement Framework ($\textbf{ADR}$), which consists of two stages: $\textbf{D}$ata $\textbf{R}$ebalancing ($\textbf{DR}$) and $\textbf{D}$ata $\textbf{S}$ynthesis ($\textbf{DS}$). In the DR stage, we adaptively rebalance the redundant data based on entity distributions, while in the DS stage, we leverage Denoising Diffusion Probabilistic Models (DDPMs) and scarce images to supplement underrepresented portions. Through comprehensive evaluations across eleven benchmarks, our proposed ADR effectively mitigates the long-tail problem in the training data, improving the average performance of LLaVA 1.5 relatively by 4.36%, without increasing the training data volume.
comment: Accepted by CVPR 2025. Project Page: https://vlmlt.github.io/
♻ ☆ DORAEMON: Decentralized Ontology-aware Reliable Agent with Enhanced Memory Oriented Navigation
Adaptive navigation in unfamiliar environments is crucial for household service robots but remains challenging due to the need for both low-level path planning and high-level scene understanding. While recent vision-language model (VLM) based zero-shot approaches reduce dependence on prior maps and scene-specific training data, they face significant limitations: spatiotemporal discontinuity from discrete observations, unstructured memory representations, and insufficient task understanding leading to navigation failures. We propose DORAEMON (Decentralized Ontology-aware Reliable Agent with Enhanced Memory Oriented Navigation), a novel cognitive-inspired framework consisting of Ventral and Dorsal Streams that mimics human navigation capabilities. The Dorsal Stream implements the Hierarchical Semantic-Spatial Fusion and Topology Map to handle spatiotemporal discontinuities, while the Ventral Stream combines RAG-VLM and Policy-VLM to improve decision-making. Our approach also develops Nav-Ensurance to ensure navigation safety and efficiency. We evaluate DORAEMON on the HM3D, MP3D, and GOAT datasets, where it achieves state-of-the-art performance on both success rate (SR) and success weighted by path length (SPL) metrics, significantly outperforming existing methods. We also introduce a new evaluation metric (AORI) to assess navigation intelligence better. Comprehensive experiments demonstrate DORAEMON's effectiveness in zero-shot autonomous navigation without requiring prior map building or pre-training.
♻ ☆ Cross-modal RAG: Sub-dimensional Retrieval-Augmented Text-to-Image Generation
Text-to-image generation increasingly demands access to domain-specific, fine-grained, and rapidly evolving knowledge that pretrained models cannot fully capture. Existing Retrieval-Augmented Generation (RAG) methods attempt to address this by retrieving globally relevant images, but they fail when no single image contains all desired elements from a complex user query. We propose Cross-modal RAG, a novel framework that decomposes both queries and images into sub-dimensional components, enabling subquery-aware retrieval and generation. Our method introduces a hybrid retrieval strategy - combining a sub-dimensional sparse retriever with a dense retriever - to identify a Pareto-optimal set of images, each contributing complementary aspects of the query. During generation, a multimodal large language model is guided to selectively condition on relevant visual features aligned to specific subqueries, ensuring subquery-aware image synthesis. Extensive experiments on MS-COCO, Flickr30K, WikiArt, CUB, and ImageNet-LT demonstrate that Cross-modal RAG significantly outperforms existing baselines in both retrieval and generation quality, while maintaining high efficiency.
♻ ☆ CAST: Contrastive Adaptation and Distillation for Semi-Supervised Instance Segmentation
Instance segmentation demands costly per-pixel annotations and large models. We introduce CAST, a semi-supervised knowledge distillation (SSKD) framework that compresses pretrained vision foundation models (VFM) into compact experts using limited labeled and abundant unlabeled data. CAST unfolds in three stages: (1) domain adaptation of the VFM teacher(s) via self-training with contrastive pixel calibration, (2) distillation into a compact student via a unified multi-objective loss that couples standard supervision and pseudo-labels with our instance-aware pixel-wise contrastive term, and (3) fine-tuning on labeled data to remove residual pseudo-label bias. Central to CAST is an \emph{instance-aware pixel-wise contrastive loss} that fuses mask and class scores to mine informative negatives and enforce clear inter-instance margins. By maintaining this contrastive signal across both adaptation and distillation, we align teacher and student embeddings and fully leverage unlabeled images. On Cityscapes and ADE20K, our ~11X smaller student surpasses its adapted VFM teacher(s) by +3.4 AP (33.9 vs. 30.5) and +1.5 AP (16.7 vs. 15.2) and outperforms state-of-the-art semi-supervised approaches.
♻ ☆ SVRPBench: A Realistic Benchmark for Stochastic Vehicle Routing Problem
Robust routing under uncertainty is central to real-world logistics, yet most benchmarks assume static, idealized settings. We present SVRPBench, the first open benchmark to capture high-fidelity stochastic dynamics in vehicle routing at urban scale. Spanning more than 500 instances with up to 1000 customers, it simulates realistic delivery conditions: time-dependent congestion, log-normal delays, probabilistic accidents, and empirically grounded time windows for residential and commercial clients. Our pipeline generates diverse, constraint-rich scenarios, including multi-depot and multi-vehicle setups. Benchmarking reveals that state-of-the-art RL solvers like POMO and AM degrade by over 20% under distributional shift, while classical and metaheuristic methods remain robust. To enable reproducible research, we release the dataset and evaluation suite. SVRPBench challenges the community to design solvers that generalize beyond synthetic assumptions and adapt to real-world uncertainty.
comment: 18 pages, 14 figures, 11 tables
♻ ☆ PhyX: Does Your Model Have the "Wits" for Physical Reasoning?
Existing benchmarks fail to capture a crucial aspect of intelligence: physical reasoning, the integrated ability to combine domain knowledge, symbolic reasoning, and understanding of real-world constraints. To address this gap, we introduce PhyX: the first large-scale benchmark designed to assess models capacity for physics-grounded reasoning in visual scenarios. PhyX includes 3K meticulously curated multimodal questions spanning 6 reasoning types across 25 sub-domains and 6 core physics domains: thermodynamics, electromagnetism, mechanics, modern physics, optics, and wave\&acoustics. In our comprehensive evaluation, even state-of-the-art models struggle significantly with physical reasoning. GPT-4o, Claude3.7-Sonnet, and GPT-o4-mini achieve only 32.5%, 42.2%, and 45.8% accuracy respectively-performance gaps exceeding 29% compared to human experts. Our analysis exposes critical limitations in current models: over-reliance on memorized disciplinary knowledge, excessive dependence on mathematical formulations, and surface-level visual pattern matching rather than genuine physical understanding. We provide in-depth analysis through fine-grained statistics, detailed case studies, and multiple evaluation paradigms to thoroughly examine physical reasoning capabilities. To ensure reproducibility, we implement a compatible evaluation protocol based on widely-used toolkits such as VLMEvalKit, enabling one-click evaluation. More details are available on our project page: https://phyx-bench.github.io/.
♻ ☆ Keep Everyone Happy: Online Fair Division of Numerous Items with Few Copies
This paper considers a novel variant of the online fair division problem involving multiple agents in which a learner sequentially observes an indivisible item that has to be irrevocably allocated to one of the agents while satisfying a fairness and efficiency constraint. Existing algorithms assume a small number of items with a sufficiently large number of copies, which ensures a good utility estimation for all item-agent pairs from noisy bandit feedback. However, this assumption may not hold in many real-life applications, for example, an online platform that has a large number of users (items) who use the platform's service providers (agents) only a few times (a few copies of items), which makes it difficult to accurately estimate utilities for all item-agent pairs. To address this, we assume utility is an unknown function of item-agent features. We then propose algorithms that model online fair division as a contextual bandit problem, with sub-linear regret guarantees. Our experimental results further validate the effectiveness of the proposed algorithms.
comment: We propose a contextual bandit algorithm for online fair division problems involving multiple agents and a large number of items, each with only a few copies
♻ ☆ ReAgent: Reversible Multi-Agent Reasoning for Knowledge-Enhanced Multi-Hop QA
Recent advances in large language models (LLMs) have significantly improved multi-hop question answering (QA) through direct Chain-of-Thought (CoT) reasoning. However, the irreversible nature of CoT leads to error accumulation, making it challenging to correct mistakes in multi-hop reasoning. This paper introduces ReAgent: a Reversible multi-Agent collaborative framework augmented with explicit backtracking mechanisms, enabling reversible multi-hop reasoning. By incorporating text-based retrieval, information aggregation and validation, our system can detect and correct errors mid-reasoning, leading to more robust and interpretable QA outcomes. The framework and experiments serve as a foundation for future work on error-tolerant QA systems. Empirical evaluations across three benchmarks indicate ReAgent's efficacy, yielding average about 6\% improvements against baseline models.
comment: 25pages, 3 figures
♻ ☆ Unifying Perspectives: Plausible Counterfactual Explanations on Global, Group-wise, and Local Levels
The growing complexity of AI systems has intensified the need for transparency through Explainable AI (XAI). Counterfactual explanations (CFs) offer actionable "what-if" scenarios on three levels: Local CFs providing instance-specific insights, Global CFs addressing broader trends, and Group-wise CFs (GWCFs) striking a balance and revealing patterns within cohesive groups. Despite the availability of methods for each granularity level, the field lacks a unified method that integrates these complementary approaches. We address this limitation by proposing a gradient-based optimization method for differentiable models that generates Local, Global, and Group-wise Counterfactual Explanations in a unified manner. We especially enhance GWCF generation by combining instance grouping and counterfactual generation into a single efficient process, replacing traditional two-step methods. Moreover, to ensure trustworthiness, we innovatively introduce the integration of plausibility criteria into the GWCF domain, making explanations both valid and realistic. Our results demonstrate the method's effectiveness in balancing validity, proximity, and plausibility while optimizing group granularity, with practical utility validated through practical use cases.
♻ ☆ SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression ICML 2025
Conventional model compression techniques for LLMs address high memory consumption and slow inference challenges but typically require computationally expensive retraining to preserve accuracy. In contrast, one-shot compression methods eliminate retraining cost, but struggle to achieve accuracy comparable to dense models. This paper presents SLIM, a new one-shot compression framework that holistically integrates hardware-friendly quantization, sparsity, and low-rank approximation into a unified process. First, we formulate the quantization process using a probabilistic approach (SLIM-Quant) that enables us to apply uniform quantization. Then, we use an existing one-shot pruning method to apply semi-structured sparsity on top of the quantized weights. Finally, to compensate for the introduced aggregated quantization and sparsity error, we use a novel saliency function with unique invertible and additive features that enables us to mathematically compute the value of low-rank adapters. SLIM improves model accuracy by up to 5.66% (LLaMA-2-7B) for 2:4 sparsity with 4-bit weight quantization, outperforming prior methods. Models compressed with SLIM achieve up to 4.3x and 3.8x on Nvidia RTX3060 and A100 GPUs, respectively. Additionally, they achieve up to 0.23x end-to-end memory reduction in comparison to their dense counterparts. We also propose an optional PEFT recipe that further improves accuracy by up to 1.66% (LLaMA-2-13B) compared to SLIM without fine-tuning.
comment: Published at Proceedings of the 42 nd International Conference on Machine Learning (ICML 2025)
♻ ☆ Carbon-Efficient 3D DNN Acceleration: Optimizing Performance and Sustainability
As Deep Neural Networks (DNNs) continue to drive advancements in artificial intelligence, the design of hardware accelerators faces growing concerns over embodied carbon footprint due to complex fabrication processes. 3D integration improves performance but introduces sustainability challenges, making carbon-aware optimization essential. In this work, we propose a carbon-efficient design methodology for 3D DNN accelerators, leveraging approximate computing and genetic algorithm-based design space exploration to optimize Carbon Delay Product (CDP). By integrating area-efficient approximate multipliers into Multiply-Accumulate (MAC) units, our approach effectively reduces silicon area and fabrication overhead while maintaining high computational accuracy. Experimental evaluations across three technology nodes (45nm, 14nm, and 7nm) show that our method reduces embodied carbon by up to 30% with negligible accuracy drop.
comment: IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 2025
♻ ☆ Burger: Robust Graph Denoising-augmentation Fusion and Multi-semantic Modeling in Social Recommendation
In the era of rapid development of social media, social recommendation systems as hybrid recommendation systems have been widely applied. Existing methods capture interest similarity between users to filter out interest-irrelevant relations in social networks that inevitably decrease recommendation accuracy, however, limited research has a focus on the mutual influence of semantic information between the social network and the user-item interaction network for further improving social recommendation. To address these issues, we introduce a social \underline{r}ecommendation model with ro\underline{bu}st g\underline{r}aph denoisin\underline{g}-augmentation fusion and multi-s\underline{e}mantic Modeling(Burger). Specifically, we firstly propose to construct a social tensor in order to smooth the training process of the model. Then, a graph convolutional network and a tensor convolutional network are employed to capture user's item preference and social preference, respectively. Considering the different semantic information in the user-item interaction network and the social network, a bi-semantic coordination loss is proposed to model the mutual influence of semantic information. To alleviate the interference of interest-irrelevant relations on multi-semantic modeling, we further use Bayesian posterior probability to mine potential social relations to replace social noise. Finally, the sliding window mechanism is utilized to update the social tensor as the input for the next iteration. Extensive experiments on three real datasets show Burger has a superior performance compared with the state-of-the-art models.
comment: 10 pages, 5 figures
♻ ☆ Towards Unified Attribution in Explainable AI, Data-Centric AI, and Mechanistic Interpretability
The increasing complexity of AI systems has made understanding their behavior critical. Numerous interpretability methods have been developed to attribute model behavior to three key aspects: input features, training data, and internal model components, which emerged from explainable AI, data-centric AI, and mechanistic interpretability, respectively. However, these attribution methods are studied and applied rather independently, resulting in a fragmented landscape of methods and terminology. This position paper argues that feature, data, and component attribution methods share fundamental similarities, and a unified view of them benefits both interpretability and broader AI research. To this end, we first analyze popular methods for these three types of attributions and present a unified view demonstrating that these seemingly distinct methods employ similar techniques (such as perturbations, gradients, and linear approximations) over different aspects and thus differ primarily in their perspectives rather than techniques. Then, we demonstrate how this unified view enhances understanding of existing attribution methods, highlights shared concepts and evaluation criteria among these methods, and leads to new research directions both in interpretability research, by addressing common challenges and facilitating cross-attribution innovation, and in AI more broadly, with applications in model editing, steering, and regulation.
♻ ☆ Generative Agents for Multi-Agent Autoformalization of Interaction Scenarios
Multi-agent simulations are versatile tools for exploring interactions among natural and artificial agents, but their development typically demands domain expertise and manual effort. This work introduces the Generative Agents for Multi-Agent Autoformalization (GAMA) framework, which automates the formalization of interaction scenarios in simulations using agents augmented with large language models (LLMs). To demonstrate the application of GAMA, we use natural language descriptions of game-theoretic scenarios representing social interactions, and we autoformalize them into executable logic programs defining game rules, with syntactic correctness enforced through a solver-based validation. To ensure runtime validity, an iterative, tournament-based procedure tests the generated rules and strategies, followed by exact semantic validation when ground truth outcomes are available. In experiments with 110 natural language descriptions across five 2x2 simultaneous-move games, GAMA achieves 100% syntactic and 76.5% semantic correctness with Claude 3.5 Sonnet, and 99.82% syntactic and 77% semantic correctness with GPT-4o. The framework also shows high semantic accuracy in autoformalizing agents' strategies.
comment: code: https://github.com/dicelab-rhul/GAMA
♻ ☆ Position: Scaling LLM Agents Requires Asymptotic Analysis with LLM Primitives ICML 2025
Decomposing hard problems into subproblems often makes them easier and more efficient to solve. With large language models (LLMs) crossing critical reliability thresholds for a growing slate of capabilities, there is an increasing effort to decompose systems into sets of LLM-based agents, each of whom can be delegated sub-tasks. However, this decomposition (even when automated) is often intuitive, e.g., based on how a human might assign roles to members of a human team. How close are these role decompositions to optimal? This position paper argues that asymptotic analysis with LLM primitives is needed to reason about the efficiency of such decomposed systems, and that insights from such analysis will unlock opportunities for scaling them. By treating the LLM forward pass as the atomic unit of computational cost, one can separate out the (often opaque) inner workings of a particular LLM from the inherent efficiency of how a set of LLMs are orchestrated to solve hard problems. In other words, if we want to scale the deployment of LLMs to the limit, instead of anthropomorphizing LLMs, asymptotic analysis with LLM primitives should be used to reason about and develop more powerful decompositions of large problems into LLM agents.
comment: In Proceedings of the 42nd International Conference on Machine Learning (ICML 2025); 13 pages including references
♻ ☆ YESciEval: Robust LLM-as-a-Judge for Scientific Question Answering ACL 2025
Large Language Models (LLMs) drive scientific question-answering on modern search engines, yet their evaluation robustness remains underexplored. We introduce YESciEval, an open-source framework that combines fine-grained rubric-based assessment with reinforcement learning to mitigate optimism bias in LLM evaluators. We release multidisciplinary scienceQ&A datasets, including adversarial variants, with evaluation scores from multiple LLMs. Independent of proprietary models and human feedback, our approach enables scalable, cost-free evaluation. By advancing reliable LLM-as-a-judge models, this work supports AI alignment and fosters robust, transparent evaluation essential for scientific inquiry.
comment: 9 pages, 4 figures, Accepted as a Long Paper at the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025)
♻ ☆ EXIT: Context-Aware Extractive Compression for Enhancing Retrieval-Augmented Generation ACL 2025
We introduce EXIT, an extractive context compression framework that enhances both the effectiveness and efficiency of retrieval-augmented generation (RAG) in question answering (QA). Current RAG systems often struggle when retrieval models fail to rank the most relevant documents, leading to the inclusion of more context at the expense of latency and accuracy. While abstractive compression methods can drastically reduce token counts, their token-by-token generation process significantly increases end-to-end latency. Conversely, existing extractive methods reduce latency but rely on independent, non-adaptive sentence selection, failing to fully utilize contextual information. EXIT addresses these limitations by classifying sentences from retrieved documents - while preserving their contextual dependencies - enabling parallelizable, context-aware extraction that adapts to query complexity and retrieval quality. Our evaluations on both single-hop and multi-hop QA tasks show that EXIT consistently surpasses existing compression methods and even uncompressed baselines in QA accuracy, while also delivering substantial reductions in inference time and token count. By improving both effectiveness and efficiency, EXIT provides a promising direction for developing scalable, high-quality QA solutions in RAG pipelines. Our code is available at https://github.com/ThisIsHwang/EXIT
comment: Findings of ACL 2025
♻ ☆ LifelongAgentBench: Evaluating LLM Agents as Lifelong Learners
Lifelong learning is essential for intelligent agents operating in dynamic environments. Current large language model (LLM)-based agents, however, remain stateless and unable to accumulate or transfer knowledge over time. Existing benchmarks treat agents as static systems and fail to evaluate lifelong learning capabilities. We present LifelongAgentBench, the first unified benchmark designed to systematically assess the lifelong learning ability of LLM agents. It provides skill-grounded, interdependent tasks across three interactive environments, Database, Operating System, and Knowledge Graph, with automatic label verification, reproducibility, and modular extensibility. Extensive experiments reveal that conventional experience replay has limited effectiveness for LLM agents due to irrelevant information and context length constraints. We further introduce a group self-consistency mechanism that significantly improves lifelong learning performance. We hope LifelongAgentBench will advance the development of adaptive, memory-capable LLM agents.
♻ ☆ STeCa: Step-level Trajectory Calibration for LLM Agent Learning ACL2025
Large language model (LLM)-based agents have shown promise in tackling complex tasks by interacting dynamically with the environment. Existing work primarily focuses on behavior cloning from expert demonstrations or preference learning through exploratory trajectory sampling. However, these methods often struggle to address long-horizon tasks, where suboptimal actions accumulate step by step, causing agents to deviate from correct task trajectories. To address this, we highlight the importance of timely calibration and the need to automatically construct calibration trajectories for training agents. We propose Step-Level Trajectory Calibration (STeCa), a novel framework for LLM agent learning. Specifically, STeCa identifies suboptimal actions through a step-level reward comparison during exploration. It constructs calibrated trajectories using LLM-driven reflection, enabling agents to learn from improved decision-making processes. We finally leverage these calibrated trajectories with successful trajectories for reinforced training. Extensive experiments demonstrate that STeCa significantly outperforms existing methods. Further analysis highlights that timely calibration enables agents to complete tasks with greater robustness. Our code and data are available at https://github.com/WangHanLinHenry/STeCa.
comment: Accepted by ACL2025 Findings
♻ ☆ From Lived Experience to Insight: Unpacking the Psychological Risks of Using AI Conversational Agents
Recent gains in popularity of AI conversational agents have led to their increased use for improving productivity and supporting well-being. While previous research has aimed to understand the risks associated with interactions with AI conversational agents, these studies often fall short in capturing the lived experiences of individuals. Additionally, psychological risks have often been presented as a sub-category within broader AI-related risks in past taxonomy works, leading to under-representation of the impact of psychological risks of AI use. To address these challenges, our work presents a novel risk taxonomy focusing on psychological risks of using AI gathered through the lived experiences of individuals. We employed a mixed-method approach, involving a comprehensive survey with 283 people with lived mental health experience and workshops involving experts with lived experience to develop a psychological risk taxonomy. Our taxonomy features 19 AI behaviors, 21 negative psychological impacts, and 15 contexts related to individuals. Additionally, we propose a novel multi-path vignette-based framework for understanding the complex interplay between AI behaviors, psychological impacts, and individual user contexts. Finally, based on the feedback obtained from the workshop sessions, we present design recommendations for developing safer and more robust AI agents. Our work offers an in-depth understanding of the psychological risks associated with AI conversational agents and provides actionable recommendations for policymakers, researchers, and developers.
comment: 31 pages, 6 figures, 8 tables; Accepted at ACM FAccT 2025
♻ ☆ X-TURING: Towards an Enhanced and Efficient Turing Test for Long-Term Dialogue Agents ACL 2025
The Turing test examines whether AIs exhibit human-like behaviour in natural language conversations. The traditional setting limits each participant to one message at a time and requires constant human participation. This fails to reflect a natural conversational style and hinders the evaluation of dialogue agents based on Large Language Models (LLMs) in complex and prolonged interactions. This paper proposes \textbf{\textsc{X-Turing}}, which enhances the original test with a \textit{burst dialogue} pattern, allowing more dynamic exchanges using consecutive messages. It further reduces human workload by iteratively generating dialogues that simulate the long-term interaction between the agent and a human to compose the majority of the test process. With the \textit{pseudo-dialogue} history, the agent then engages in a shorter dialogue with a real human, which is paired with a human-human conversation on the same topic to be judged using questionnaires. We introduce the \textit{X-Turn Pass-Rate} metric to assess the human likeness of LLMs across varying durations. While LLMs like GPT-4 initially perform well, achieving pass rates of 51.9\% and 38.9\% during 3 turns and 10 turns of dialogues respectively, their performance drops as the dialogue progresses, which underscores the difficulty in maintaining consistency in the long term.
comment: Accepted to ACL 2025 Main Conference
♻ ☆ Wake-Informed 3D Path Planning for Autonomous Underwater Vehicles Using A* and Neural Network Approximations
Autonomous Underwater Vehicles (AUVs) encounter significant energy, control and navigation challenges in complex underwater environments, particularly during close-proximity operations, such as launch and recovery (LAR), where fluid interactions and wake effects present additional navigational and energy challenges. Traditional path planning methods fail to incorporate these detailed wake structures, resulting in increased energy consumption, reduced control stability, and heightened safety risks. This paper presents a novel wake-informed, 3D path planning approach that fully integrates localized wake effects and global currents into the planning algorithm. Two variants of the A* algorithm - a current-informed planner and a wake-informed planner - are created to assess its validity and two neural network models are then trained to approximate these planners for real-time applications. Both the A* planners and NN models are evaluated using important metrics such as energy expenditure, path length, and encounters with high-velocity and turbulent regions. The results demonstrate a wake-informed A* planner consistently achieves the lowest energy expenditure and minimizes encounters with high-velocity regions, reducing energy consumption by up to 11.3%. The neural network models are observed to offer computational speedup of 6 orders of magnitude, but exhibit 4.51 - 19.79% higher energy expenditures and 9.81 - 24.38% less optimal paths. These findings underscore the importance of incorporating detailed wake structures into traditional path planning algorithms and the benefits of neural network approximations to enhance energy efficiency and operational safety for AUVs in complex 3D domains.
comment: 11 pages, 6 figures, preprint of journal paper
♻ ☆ LEXam: Benchmarking Legal Reasoning on 340 Law Exams
Long-form legal reasoning remains a key challenge for large language models (LLMs) in spite of recent advances in test-time scaling. We introduce LEXam, a novel benchmark derived from 340 law exams spanning 116 law school courses across a range of subjects and degree levels. The dataset comprises 4,886 law exam questions in English and German, including 2,841 long-form, open-ended questions and 2,045 multiple-choice questions. Besides reference answers, the open questions are also accompanied by explicit guidance outlining the expected legal reasoning approach such as issue spotting, rule recall, or rule application. Our evaluation on both open-ended and multiple-choice questions present significant challenges for current LLMs; in particular, they notably struggle with open questions that require structured, multi-step legal reasoning. Moreover, our results underscore the effectiveness of the dataset in differentiating between models with varying capabilities. Adopting an LLM-as-a-Judge paradigm with rigorous human expert validation, we demonstrate how model-generated reasoning steps can be evaluated consistently and accurately. Our evaluation setup provides a scalable method to assess legal reasoning quality beyond simple accuracy metrics. Project page: https://lexam-benchmark.github.io/
♻ ☆ Fast Large Language Model Collaborative Decoding via Speculation
Large Language Model (LLM) collaborative decoding techniques improve output quality by combining the outputs of multiple models at each generation step, but they incur high computational costs. In this paper, we introduce Collaborative decoding via Speculation (CoS), a novel framework that accelerates collaborative decoding without compromising performance. Inspired by Speculative Decoding--where a small proposal model generates tokens sequentially, and a larger target model verifies them in parallel, our approach builds on two key insights: (1) the verification distribution can be the combined distribution of both the proposal and target models, and (2) alternating each model as the proposer and verifier can further enhance efficiency. We generalize this method to collaboration among n models and theoretically prove that CoS is never slower than standard collaborative decoding, typically achieving faster speed. Extensive experiments demonstrate CoS is 1.11x-2.23x faster than standard collaborative decoding without compromising generation quality. Our code is available at https://github.com/Kamichanw/CoS/.
♻ ☆ Hume: Introducing System-2 Thinking in Visual-Language-Action Model
Humans practice slow thinking before performing actual actions when handling complex tasks in the physical world. This thinking paradigm, recently, has achieved remarkable advancement in boosting Large Language Models (LLMs) to solve complex tasks in digital domains. However, the potential of slow thinking remains largely unexplored for robotic foundation models interacting with the physical world. In this work, we propose Hume: a dual-system Vision-Language-Action (VLA) model with value-guided System-2 thinking and cascaded action denoising, exploring human-like thinking capabilities of Vision-Language-Action models for dexterous robot control. System 2 of Hume implements value-Guided thinking by extending a Vision-Language-Action Model backbone with a novel value-query head to estimate the state-action value of predicted actions. The value-guided thinking is conducted by repeat sampling multiple action candidates and selecting one according to state-action value. System 1 of Hume is a lightweight reactive visuomotor policy that takes System 2 selected action and performs cascaded action denoising for dexterous robot control. At deployment time, System 2 performs value-guided thinking at a low frequency while System 1 asynchronously receives the System 2 selected action candidate and predicts fluid actions in real time. We show that Hume outperforms the existing state-of-the-art Vision-Language-Action models across multiple simulation benchmark and real-robot deployments.
♻ ☆ An AI System for Continuous Knee Osteoarthritis Severity Grading Using Self-Supervised Anomaly Detection with Limited Data
The diagnostic accuracy and subjectivity of existing Knee Osteoarthritis (OA) ordinal grading systems has been a subject of on-going debate and concern. Existing automated solutions are trained to emulate these imperfect systems, whilst also being reliant on large annotated databases for fully-supervised training. This work proposes a three stage approach for automated continuous grading of knee OA that is built upon the principles of Anomaly Detection (AD); learning a robust representation of healthy knee X-rays and grading disease severity based on its distance to the centre of normality. In the first stage, SS-FewSOME is proposed, a self-supervised AD technique that learns the 'normal' representation, requiring only examples of healthy subjects and <3% of the labels that existing methods require. In the second stage, this model is used to pseudo label a subset of unlabelled data as 'normal' or 'anomalous', followed by denoising of pseudo labels with CLIP. The final stage involves retraining on labelled and pseudo labelled data using the proposed Dual Centre Representation Learning (DCRL) which learns the centres of two representation spaces; normal and anomalous. Disease severity is then graded based on the distance to the learned centres. The proposed methodology outperforms existing techniques by margins of up to 24% in terms of OA detection and the disease severity scores correlate with the Kellgren-Lawrence grading system at the same level as human expert performance. Code available at https://github.com/niamhbelton/SS-FewSOME_Disease_Severity_Knee_Osteoarthritis.
♻ ☆ SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning ICLR'25
Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simplicity bias, guiding models toward simple and generalizable solutions. However, in deep RL, designing and scaling up networks have been less explored. Motivated by this opportunity, we present SimBa, an architecture designed to scale up parameters in deep RL by injecting a simplicity bias. SimBa consists of three components: (i) an observation normalization layer that standardizes inputs with running statistics, (ii) a residual feedforward block to provide a linear pathway from the input to output, and (iii) a layer normalization to control feature magnitudes. By scaling up parameters with SimBa, the sample efficiency of various deep RL algorithms-including off-policy, on-policy, and unsupervised methods-is consistently improved. Moreover, solely by integrating SimBa architecture into SAC, it matches or surpasses state-of-the-art deep RL methods with high computational efficiency across DMC, MyoSuite, and HumanoidBench. These results demonstrate SimBa's broad applicability and effectiveness across diverse RL algorithms and environments.
comment: ICLR'25 (spotlight)
♻ ☆ Joint Localization and Activation Editing for Low-Resource Fine-Tuning ICML 2025
Parameter-efficient fine-tuning (PEFT) methods, such as LoRA, are commonly used to adapt LLMs. However, the effectiveness of standard PEFT methods is limited in low-resource scenarios with only a few hundred examples. Recent advances in interpretability research have inspired the emergence of activation editing (or steering) techniques, which modify the activations of specific model components. Due to their extremely small parameter counts, these methods show promise for small datasets. However, their performance is highly dependent on identifying the correct modules to edit and often lacks stability across different datasets. In this paper, we propose Joint Localization and Activation Editing (JoLA), a method that jointly learns (1) which heads in the Transformer to edit (2) whether the intervention should be additive, multiplicative, or both and (3) the intervention parameters themselves - the vectors applied as additive offsets or multiplicative scalings to the head output. Through evaluations on three benchmarks spanning commonsense reasoning, natural language understanding, and natural language generation, we demonstrate that JoLA consistently outperforms existing methods. The code for the method is released at https://github.com/wenlai-lavine/jola.
comment: Accepted by ICML 2025 (camera-ready version). The code is released at https://github.com/wenlai-lavine/jola
♻ ☆ Towards Logically Sound Natural Language Reasoning with Logic-Enhanced Language Model Agents
Large language models (LLMs) are increasingly explored as general-purpose reasoners, particularly in agentic contexts. However, their outputs remain prone to mathematical and logical errors. This is especially challenging in open-ended tasks, where unstructured outputs lack explicit ground truth and may contain subtle inconsistencies. To address this issue, we propose Logic-Enhanced Language Model Agents (LELMA), a framework that integrates LLMs with formal logic to enable validation and refinement of natural language reasoning. LELMA comprises three components: an LLM-Reasoner, an LLM-Translator, and a Solver, and employs autoformalization to translate reasoning into logic representations, which are then used to assess logical validity. Using game-theoretic scenarios such as the Prisoner's Dilemma as testbeds, we highlight the limitations of both less capable (Gemini 1.0 Pro) and advanced (GPT-4o) models in generating logically sound reasoning. LELMA achieves high accuracy in error detection and improves reasoning correctness via self-refinement, particularly in GPT-4o. The study also highlights challenges in autoformalization accuracy and in evaluation of inherently ambiguous open-ended reasoning tasks.
comment: Source code: https://github.com/dicelab-rhul/LELMA
♻ ☆ Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent performance across multiple interaction rounds. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. First, we propose a novel Position-Weighted Consistency (PWC) score that captures both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by incorporating model confidence signals into the generation process. Empirical results demonstrate that CARG significantly improves response stability without sacrificing accuracy, underscoring its potential for reliable LLM deployment in critical applications.
comment: 8 pages, 5 figures
♻ ☆ Retrieval Visual Contrastive Decoding to Mitigate Object Hallucinations in Large Vision-Language Models ACL 2025
Despite significant advancements in Large Vision-Language Models, Object Hallucination (OH) remains a persistent challenge. Building upon prior studies on contrastive decoding that address this issue without requiring additional model training, we introduce RVCD (Retrieval Visual Contrastive Decoding), an advanced method to suppress OH. RVCD leverages both negative and positive images at the logit level, explicitly referencing AI-generated images designed to represent a single concept. Our approach demonstrates substantial improvements over existing decoding-based methods.
comment: ACL 2025 Findings camera-ready version. Code is released at https://github.com/JiHoonLee9898/RVCD
♻ ☆ Agentic Knowledgeable Self-awareness ACL 2025
Large Language Models (LLMs) have achieved considerable performance across various agentic planning tasks. However, traditional agent planning approaches adopt a "flood irrigation" methodology that indiscriminately injects gold trajectories, external feedback, and domain knowledge into agent models. This practice overlooks the fundamental human cognitive principle of situational self-awareness during decision-making-the ability to dynamically assess situational demands and strategically employ resources during decision-making. We propose agentic knowledgeable self-awareness to address this gap, a novel paradigm enabling LLM-based agents to autonomously regulate knowledge utilization. Specifically, we propose KnowSelf, a data-centric approach that applies agents with knowledgeable self-awareness like humans. Concretely, we devise a heuristic situation judgement criterion to mark special tokens on the agent's self-explored trajectories for collecting training data. Through a two-stage training process, the agent model can switch between different situations by generating specific special tokens, achieving optimal planning effects with minimal costs. Our experiments demonstrate that KnowSelf can outperform various strong baselines on different tasks and models with minimal use of external knowledge. Code is available at https://github.com/zjunlp/KnowSelf.
comment: ACL 2025
♻ ☆ LENSLLM: Unveiling Fine-Tuning Dynamics for LLM Selection ICML'2025
The proliferation of open-sourced Large Language Models (LLMs) and diverse downstream tasks necessitates efficient model selection, given the impracticality of fine-tuning all candidates due to computational constraints. Despite the recent advances in LLM selection, a fundamental research question largely remains nascent: how can we model the dynamic behaviors of LLMs during fine-tuning, thereby enhancing our understanding of their generalization performance across diverse downstream tasks? In this work, we propose a novel theoretical framework that provides a proper lens to assess the generalization capabilities of LLMs, thereby enabling accurate and efficient LLM selection for downstream applications. In particular, we first derive a PAC-Bayesian Generalization Bound that unveils fine-tuning dynamics of LLMs and then introduce LENSLLM, a Neural Tangent Kernel (NTK)-based Rectified Scaling Model that enables accurate performance predictions across diverse tasks while maintaining computational efficiency. Extensive empirical results on 3 large-scale benchmarks demonstrate that our model achieves up to 91.1% accuracy and reduces up to 88.5% computational cost in LLM selection, outperforming 5 state-of-the-art methods. We open-source our proposed LENSLLM model and corresponding results at LensLLM.io.
comment: Accepted by ICML'2025
♻ ☆ Broadband Ground Motion Synthesis by Diffusion Model with Minimal Condition ICML 2025
Shock waves caused by earthquakes can be devastating. Generating realistic earthquake-caused ground motion waveforms help reducing losses in lives and properties, yet generative models for the task tend to generate subpar waveforms. We present High-fidelity Earthquake Groundmotion Generation System (HEGGS) and demonstrate its superior performance using earthquakes from North American, East Asian, and European regions. HEGGS exploits the intrinsic characteristics of earthquake dataset and learns the waveforms using an end-to-end differentiable generator containing conditional latent diffusion model and hi-fidelity waveform construction model. We show the learning efficiency of HEGGS by training it on a single GPU machine and validate its performance using earthquake databases from North America, East Asia, and Europe, using diverse criteria from waveform generation tasks and seismology. Once trained, HEGGS can generate three dimensional E-N-Z seismic waveforms with accurate P/S phase arrivals, envelope correlation, signal-to-noise ratio, GMPE analysis, frequency content analysis, and section plot analysis.
comment: Accepted to ICML 2025
♻ ☆ RingMo-Aerial: An Aerial Remote Sensing Foundation Model With Affine Transformation Contrastive Learning
Aerial Remote Sensing (ARS) vision tasks pose significant challenges due to the unique characteristics of their viewing angles. Existing research has primarily focused on algorithms for specific tasks, which have limited applicability in a broad range of ARS vision applications. This paper proposes the RingMo-Aerial model, aiming to fill the gap in foundation model research in the field of ARS vision. By introducing the Frequency-Enhanced Multi-Head Self-Attention (FE-MSA) mechanism and an affine transformation-based contrastive learning pre-training method, the model's detection capability for small targets is enhanced and optimized for the tilted viewing angles characteristic of ARS. Furthermore, the ARS-Adapter, an efficient parameter fine-tuning method, is proposed to improve the model's adaptability and effectiveness in various ARS vision tasks. Experimental results demonstrate that RingMo-Aerial achieves SOTA performance on multiple downstream tasks. This indicates the practicality and efficacy of RingMo-Aerial in enhancing the performance of ARS vision tasks.
♻ ☆ GSQ-Tuning: Group-Shared Exponents Integer in Fully Quantized Training for LLMs On-Device Fine-tuning ACL 2025
Large Language Models (LLMs) fine-tuning technologies have achieved remarkable results. However, traditional LLM fine-tuning approaches face significant challenges: they require large Floating Point (FP) computation, raising privacy concerns when handling sensitive data, and are impractical for resource-constrained edge devices. While Parameter-Efficient Fine-Tuning (PEFT) techniques reduce trainable parameters, their reliance on floating-point arithmetic creates fundamental incompatibilities with edge hardware. In this work, we introduce a novel framework for on-device LLM fine-tuning that eliminates the need for floating-point operations in both inference and training, named GSQ-Tuning. At its core is the Group-Shared Exponents Integer format, which efficiently represents model parameters in integer format using shared exponents among parameter groups. When combined with LoRA-like adapters, this enables fully integer-based fine-tuning that is both memory and compute efficient. We demonstrate that our approach achieves accuracy comparable to BF16-based fine-tuning while significantly reducing 1.85x memory usage. Moreover, compared to FP8, our method can reduce 5x power consumption and 11x chip area with same performance, making large-scale model adaptation feasible on edge devices.
comment: Accepted by Findings of ACL 2025
♻ ☆ SCoTT: Strategic Chain-of-Thought Tasking for Wireless-Aware Robot Navigation in Digital Twins
Path planning under wireless performance constraints is a complex challenge in robot navigation. However, naively incorporating such constraints into classical planning algorithms often incurs prohibitive search costs. In this paper, we propose SCoTT, a wireless-aware path planning framework that leverages vision-language models (VLMs) to co-optimize average path gains and trajectory length using wireless heatmap images and ray-tracing data from a digital twin (DT). At the core of our framework is Strategic Chain-of-Thought Tasking (SCoTT), a novel prompting paradigm that decomposes the exhaustive search problem into structured subtasks, each solved via chain-of-thought prompting. To establish strong baselines, we compare classical A* and wireless-aware extensions of it, and derive DP-WA*, an optimal, iterative dynamic programming algorithm that incorporates all path gains and distance metrics from the DT, but at significant computational cost. In extensive experiments, we show that SCoTT achieves path gains within 2% of DP-WA* while consistently generating shorter trajectories. Moreover, SCoTT's intermediate outputs can be used to accelerate DP-WA* by reducing its search space, saving up to 62% in execution time. We validate our framework using four VLMs, demonstrating effectiveness across both large and small models, thus making it applicable to a wide range of compact models at low inference cost. We also show the practical viability of our approach by deploying SCoTT as a ROS node within Gazebo simulations. Finally, we discuss data acquisition pipelines, compute requirements, and deployment considerations for VLMs in 6G-enabled DTs, underscoring the potential of natural language interfaces for wireless-aware navigation in real-world applications.
♻ ☆ Reality Check: A New Evaluation Ecosystem Is Necessary to Understand AI's Real World Effects
Conventional AI evaluation approaches concentrated within the AI stack exhibit systemic limitations for exploring, navigating and resolving the human and societal factors that play out in real world deployment such as in education, finance, healthcare, and employment sectors. AI capability evaluations can capture detail about first-order effects, such as whether immediate system outputs are accurate, or contain toxic, biased or stereotypical content, but AI's second-order effects, i.e. any long-term outcomes and consequences that may result from AI use in the real world, have become a significant area of interest as the technology becomes embedded in our daily lives. These secondary effects can include shifts in user behavior, societal, cultural and economic ramifications, workforce transformations, and long-term downstream impacts that may result from a broad and growing set of risks. This position paper argues that measuring the indirect and secondary effects of AI will require expansion beyond static, single-turn approaches conducted in silico to include testing paradigms that can capture what actually materializes when people use AI technology in context. Specifically, we describe the need for data and methods that can facilitate contextual awareness and enable downstream interpretation and decision making about AI's secondary effects, and recommend requirements for a new ecosystem.
comment: 9 pages
♻ ☆ CodePMP: Scalable Preference Model Pretraining for Large Language Model Reasoning
Large language models (LLMs) have made significant progress in natural language understanding and generation, driven by scalable pretraining and advanced finetuning. However, enhancing reasoning abilities in LLMs, particularly via reinforcement learning from human feedback (RLHF), remains challenging due to the scarcity of high-quality preference data, which is labor-intensive to annotate and crucial for reward model (RM) finetuning. To alleviate this issue, we introduce CodePMP, a scalable preference model pretraining (PMP) pipeline that utilizes a large corpus of synthesized code-preference pairs from publicly available high-quality source code. CodePMP improves RM finetuning efficiency by pretraining preference models on large-scale synthesized code-preference pairs. We evaluate CodePMP on mathematical reasoning tasks (GSM8K, MATH) and logical reasoning tasks (ReClor, LogiQA2.0), consistently showing significant improvements in reasoning performance of LLMs and highlighting the importance of scalable preference model pretraining for efficient reward modeling.
comment: work in progress
♻ ☆ Forms of Understanding for XAI-Explanations
Explainability has become an important topic in computer science and artificial intelligence, leading to a subfield called Explainable Artificial Intelligence (XAI). The goal of providing or seeking explanations is to achieve (better) 'understanding' on the part of the explainee. However, what it means to 'understand' is still not clearly defined, and the concept itself is rarely the subject of scientific investigation. This conceptual article aims to present a model of forms of understanding for XAI-explanations and beyond. From an interdisciplinary perspective bringing together computer science, linguistics, sociology, philosophy and psychology, a definition of understanding and its forms, assessment, and dynamics during the process of giving everyday explanations are explored. Two types of understanding are considered as possible outcomes of explanations, namely enabledness, 'knowing how' to do or decide something, and comprehension, 'knowing that' -- both in different degrees (from shallow to deep). Explanations regularly start with shallow understanding in a specific domain and can lead to deep comprehension and enabledness of the explanandum, which we see as a prerequisite for human users to gain agency. In this process, the increase of comprehension and enabledness are highly interdependent. Against the background of this systematization, special challenges of understanding in XAI are discussed.
comment: revised version
♻ ☆ The challenge of hidden gifts in multi-agent reinforcement learning
Sometimes we benefit from actions that others have taken even when we are unaware that they took those actions. For example, if your neighbor chooses not to take a parking spot in front of your house when you are not there, you can benefit, even without being aware that they took this action. These "hidden gifts" represent an interesting challenge for multi-agent reinforcement learning (MARL), since assigning credit when the beneficial actions of others are hidden is non-trivial. Here, we study the impact of hidden gifts with a very simple MARL task. In this task, agents in a grid-world environment have individual doors to unlock in order to obtain individual rewards. As well, if all the agents unlock their door the group receives a larger collective reward. However, there is only one key for all of the doors, such that the collective reward can only be obtained when the agents drop the key for others after they use it. Notably, there is nothing to indicate to an agent that the other agents have dropped the key, thus the act of dropping the key for others is a "hidden gift". We show that several different state-of-the-art RL algorithms, including MARL algorithms, fail to learn how to obtain the collective reward in this simple task. Interestingly, we find that independent model-free policy gradient agents can solve the task when we provide them with information about their own action history, but MARL agents still cannot solve the task with action history. Finally, we derive a correction term for these independent agents, inspired by learning aware approaches, which reduces the variance in learning and helps them to converge to collective success more reliably. These results show that credit assignment in multi-agent settings can be particularly challenging in the presence of "hidden gifts", and demonstrate that learning awareness in independent agents can benefit these settings.
♻ ☆ LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty CVPR 2025
We present LoTUS, a novel Machine Unlearning (MU) method that eliminates the influence of training samples from pre-trained models, avoiding retraining from scratch. LoTUS smooths the prediction probabilities of the model up to an information-theoretic bound, mitigating its over-confidence stemming from data memorization. We evaluate LoTUS on Transformer and ResNet18 models against eight baselines across five public datasets. Beyond established MU benchmarks, we evaluate unlearning on ImageNet1k, a large-scale dataset, where retraining is impractical, simulating real-world conditions. Moreover, we introduce the novel Retrain-Free Jensen-Shannon Divergence (RF-JSD) metric to enable evaluation under real-world conditions. The experimental results show that LoTUS outperforms state-of-the-art methods in terms of both efficiency and effectiveness. Code: https://github.com/cspartalis/LoTUS.
comment: Accepted as a main conference paper at CVPR 2025 (https://cvpr.thecvf.com/virtual/2025/poster/33292)
♻ ☆ DELMAN: Dynamic Defense Against Large Language Model Jailbreaking with Model Editing
Large Language Models (LLMs) are widely applied in decision making, but their deployment is threatened by jailbreak attacks, where adversarial users manipulate model behavior to bypass safety measures. Existing defense mechanisms, such as safety fine-tuning and model editing, either require extensive parameter modifications or lack precision, leading to performance degradation on general tasks, which is unsuitable to post-deployment safety alignment. To address these challenges, we propose DELMAN (Dynamic Editing for LLMs JAilbreak DefeNse), a novel approach leveraging direct model editing for precise, dynamic protection against jailbreak attacks. DELMAN directly updates a minimal set of relevant parameters to neutralize harmful behaviors while preserving the model's utility. To avoid triggering a safe response in benign context, we incorporate KL-divergence regularization to ensure the updated model remains consistent with the original model when processing benign queries. Experimental results demonstrate that DELMAN outperforms baseline methods in mitigating jailbreak attacks while preserving the model's utility, and adapts seamlessly to new attack instances, providing a practical and efficient solution for post-deployment model protection.
♻ ☆ Understanding and Mitigating Overrefusal in LLMs from an Unveiling Perspective of Safety Decision Boundary
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet they often refuse to answer legitimate queries-a phenomenon known as overrefusal. Overrefusal typically stems from over-conservative safety alignment, causing models to treat many reasonable prompts as potentially risky. To systematically understand this issue, we probe and leverage the models'safety decision boundaries to analyze and mitigate overrefusal. Our findings reveal that overrefusal is closely tied to misalignment at these boundary regions, where models struggle to distinguish subtle differences between benign and harmful content. Building on these insights, we present RASS, an automated framework for prompt generation and selection that strategically targets overrefusal prompts near the safety boundary. By harnessing steering vectors in the representation space, RASS efficiently identifies and curates boundary-aligned prompts, enabling more effective and targeted mitigation of overrefusal. This approach not only provides a more precise and interpretable view of model safety decisions but also seamlessly extends to multilingual scenarios.We have explored the safety decision boundaries of various LLMs and construct the MORBench evaluation set to facilitate robust assessment of model safety and helpfulness across multiple languages. Code and datasets will be released at https://anonymous.4open.science/r/RASS-80D3.
comment: We have identified significant errors in the results presented in this paper, specifically in the evaluation sections concerning the DPO training of LLaMA2 and Qwen2.5, as well as in the representation space visualization section. Given the extent of these issues, we intend to substantially revise the manuscript's content and structure. Hence, we request to withdraw it from arXiv at this time
♻ ☆ Hierarchical Neuro-Symbolic Decision Transformer
We present a hierarchical neuro-symbolic control framework that tightly couples a classical symbolic planner with a transformer-based policy to address long-horizon decision-making under uncertainty. At the high level, the planner assembles an interpretable sequence of operators that guarantees logical coherence with task constraints, while at the low level each operator is rendered as a sub-goal token that conditions a decision transformer to generate fine-grained actions directly from raw observations. This bidirectional interface preserves the combinatorial efficiency and explainability of symbolic reasoning without sacrificing the adaptability of deep sequence models, and it permits a principled analysis that tracks how approximation errors from both planning and execution accumulate across the hierarchy. Empirical studies in stochastic grid-world domains demonstrate that the proposed method consistently surpasses purely symbolic, purely neural and existing hierarchical baselines in both success and efficiency, highlighting its robustness for sequential tasks.
♻ ☆ SPRI: Aligning Large Language Models with Context-Situated Principles ICML 2025
Aligning Large Language Models to integrate and reflect human values, especially for tasks that demand intricate human oversight, is arduous since it is resource-intensive and time-consuming to depend on human expertise for context-specific guidance. Prior work has utilized predefined sets of rules or principles to steer the behavior of models (Bai et al., 2022; Sun et al., 2023). However, these principles tend to be generic, making it challenging to adapt them to each individual input query or context. In this work, we present Situated-PRInciples (SPRI), a framework requiring minimal or no human effort that is designed to automatically generate guiding principles in real-time for each input query and utilize them to align each response. We evaluate SPRI on three tasks, and show that 1) SPRI can derive principles in a complex domain-specific task that leads to on-par performance as expert-crafted ones; 2) SPRI-generated principles lead to instance-specific rubrics that outperform prior LLM-as-a-judge frameworks; 3) using SPRI to generate synthetic SFT data leads to substantial improvement on truthfulness. We release our code and model generations at https://github.com/honglizhan/SPRI-public.
comment: Forty-Second International Conference on Machine Learning (ICML 2025) Camera-Ready Version
♻ ☆ Risk-aware Direct Preference Optimization under Nested Risk Measure
When fine-tuning pre-trained Large Language Models (LLMs) to align with human values and intentions, maximizing the estimated reward can lead to superior performance, but it also introduces potential risks due to deviations from the reference model's intended behavior. Most existing methods typically introduce KL divergence to constrain deviations between the trained model and the reference model; however, this may not be sufficient in certain applications that require tight risk control. In this paper, we introduce Risk-aware Direct Preference Optimization (Ra-DPO), a novel approach that incorporates risk-awareness by employing a class of nested risk measures. This approach formulates a constrained risk-aware advantage function maximization problem and then converts the Bradley-Terry model into a token-level representation. The objective function maximizes the likelihood of the policy while suppressing the deviation between a trained model and the reference model using a sequential risk ratio, thereby enhancing the model's risk-awareness. Experimental results across three open-source datasets: IMDb Dataset, Anthropic HH Dataset, and AlpacaEval, demonstrate the proposed method's superior performance in balancing alignment performance and model drift. Our code is opensourced at https://github.com/zlj123-max/Ra-DPO.
♻ ☆ DynaCode: A Dynamic Complexity-Aware Code Benchmark for Evaluating Large Language Models in Code Generation ACL 2025
The rapid advancement of large language models (LLMs) has significantly improved their performance in code generation tasks. However, existing code benchmarks remain static, consisting of fixed datasets with predefined problems. This makes them vulnerable to memorization during training, where LLMs recall specific test cases instead of generalizing to new problems, leading to data contamination and unreliable evaluation results. To address these issues, we introduce DynaCode, a dynamic, complexity-aware benchmark that overcomes the limitations of static datasets. DynaCode evaluates LLMs systematically using a complexity-aware metric, incorporating both code complexity and call-graph structures. DynaCode achieves large-scale diversity, generating up to 189 million unique nested code problems across four distinct levels of code complexity, referred to as units, and 16 types of call graphs. Results on 12 latest LLMs show an average performance drop of 16.8% to 45.7% compared to MBPP+, a static code generation benchmark, with performance progressively decreasing as complexity increases. This demonstrates DynaCode's ability to effectively differentiate LLMs. Additionally, by leveraging call graphs, we gain insights into LLM behavior, particularly their preference for handling subfunction interactions within nested code. Our benchmark and evaluation code are available at https://github.com/HWH-2000/DynaCode.
comment: 18 pages, 13 figures. Accepted to the ACL 2025 Findings
♻ ☆ VietASR: Achieving Industry-level Vietnamese ASR with 50-hour labeled data and Large-Scale Speech Pretraining
Automatic speech recognition (ASR) has made remarkable progress but heavily relies on large-scale labeled data, which is scarce for low-resource languages like Vietnamese. While existing systems such as Whisper, USM, and MMS achieve promising performance, their efficacy remains inadequate in terms of training costs, latency, and accessibility. To address these issues, we propose VietASR, a novel ASR training pipeline that leverages vast amounts of unlabeled data and a small set of labeled data. Through multi-iteration ASR-biased self-supervised learning on a large-scale unlabeled dataset, VietASR offers a cost-effective and practical solution for enhancing ASR performance. Experiments demonstrate that pre-training on 70,000-hour unlabeled data and fine-tuning on merely 50-hour labeled data yield a lightweight but powerful ASR model. It outperforms Whisper Large-v3 and commercial ASR systems on real-world data. Our code and models will be open-sourced to facilitate research in low-resource ASR.
♻ ☆ Re-ranking Using Large Language Models for Mitigating Exposure to Harmful Content on Social Media Platforms ACL 2025
Social media platforms utilize Machine Learning (ML) and Artificial Intelligence (AI) powered recommendation algorithms to maximize user engagement, which can result in inadvertent exposure to harmful content. Current moderation efforts, reliant on classifiers trained with extensive human-annotated data, struggle with scalability and adapting to new forms of harm. To address these challenges, we propose a novel re-ranking approach using Large Language Models (LLMs) in zero-shot and few-shot settings. Our method dynamically assesses and re-ranks content sequences, effectively mitigating harmful content exposure without requiring extensive labeled data. Alongside traditional ranking metrics, we also introduce two new metrics to evaluate the effectiveness of re-ranking in reducing exposure to harmful content. Through experiments on three datasets, three models and across three configurations, we demonstrate that our LLM-based approach significantly outperforms existing proprietary moderation approaches, offering a scalable and adaptable solution for harm mitigation.
comment: Accepted to ACL 2025 Main Conference
♻ ☆ ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off Code Generation ACL 2025
Code generation plays a crucial role in various tasks, such as code auto-completion and mathematical reasoning. Previous work has proposed numerous methods to enhance code generation performance, including integrating feedback from the compiler. Inspired by this, we present ReflectionCoder, a novel approach that effectively leverages reflection sequences constructed by integrating compiler feedback to improve one-off code generation performance. Furthermore, we propose reflection self-distillation and dynamically masked distillation to effectively utilize these reflection sequences. Extensive experiments on three benchmarks, i.e., HumanEval (+), MBPP (+), and MultiPL-E, demonstrate that models fine-tuned with our method achieve state-of-the-art performance. Beyond the code domain, we believe this approach can benefit other domains that focus on final results and require long reasoning paths. Code and data are available at https://github.com/SenseLLM/ReflectionCoder.
comment: Accepted to ACL 2025 (main conference)
♻ ☆ ExpandR: Teaching Dense Retrievers Beyond Queries with LLM Guidance
Large language models (LLMs) have demonstrated significant potential in enhancing dense retrieval through query augmentation. However, most existing methods treat the LLM and the retriever as separate modules, overlooking the alignment between generation and ranking objectives. In this work, we propose ExpandR, a unified LLM-augmented dense retrieval framework that jointly optimizes both the LLM and the retriever. ExpandR employs the LLM to generate semantically rich query expansions, which are leveraged to enhance the retriever's training. Simultaneously, the LLM is trained using Direct Preference Optimization (DPO), guided by a carefully designed reward function that balances retrieval effectiveness and generation consistency. This joint optimization paradigm enables mutual adaptation between the LLM and the retriever, resulting in query expansions that are both informative and well-suited for retrieval. Experimental results on multiple benchmarks show that ExpandR consistently outperforms strong baselines, achieving more than a 5% improvement in retrieval performance. All codes are available at https://github.com/NEUIR/ExpandR.
comment: 16 pages, 10 tables, 5 figures
♻ ☆ Subgroups Matter for Robust Bias Mitigation
Despite the constant development of new bias mitigation methods for machine learning, no method consistently succeeds, and a fundamental question remains unanswered: when and why do bias mitigation techniques fail? In this paper, we hypothesise that a key factor may be the often-overlooked but crucial step shared by many bias mitigation methods: the definition of subgroups. To investigate this, we conduct a comprehensive evaluation of state-of-the-art bias mitigation methods across multiple vision and language classification tasks, systematically varying subgroup definitions, including coarse, fine-grained, intersectional, and noisy subgroups. Our results reveal that subgroup choice significantly impacts performance, with certain groupings paradoxically leading to worse outcomes than no mitigation at all. Our findings suggest that observing a disparity between a set of subgroups is not a sufficient reason to use those subgroups for mitigation. Through theoretical analysis, we explain these phenomena and uncover a counter-intuitive insight that, in some cases, improving fairness with respect to a particular set of subgroups is best achieved by using a different set of subgroups for mitigation. Our work highlights the importance of careful subgroup definition in bias mitigation and presents it as an alternative lever for improving the robustness and fairness of machine learning models.
♻ ☆ A Statistical Learning Perspective on Semi-dual Adversarial Neural Optimal Transport Solvers
Neural network-based optimal transport (OT) is a recent and fruitful direction in the generative modeling community. It finds its applications in various fields such as domain translation, image super-resolution, computational biology and others. Among the existing OT approaches, of considerable interest are adversarial minimax solvers based on semi-dual formulations of OT problems. While promising, these methods lack theoretical investigation from a statistical learning perspective. Our work fills this gap by establishing upper bounds on the generalization error of an approximate OT map recovered by the minimax quadratic OT solver. Importantly, the bounds we derive depend solely on some standard statistical and mathematical properties of the considered functional classes (neural nets). While our analysis focuses on the quadratic OT, we believe that similar bounds could be derived for general OT case, paving the promising direction for future research.
GWQ: Gradient-Aware Weight Quantization for Large Language Models
Large language models (LLMs) show impressive performance in solving complex language tasks. However, its large number of parameters presents significant challenges for the deployment. So, compressing LLMs to low bits can enable to deploy on resource-constrained devices. To address this problem, we propose gradient-aware weight quantization (GWQ), the first quantization approach for low-bit weight quantization that leverages gradients to localize outliers, requiring only a minimal amount of calibration data for outlier detection. GWQ retains the top 1\% outliers preferentially at FP16 precision, while the remaining non-outlier weights are stored in a low-bit. We widely evaluate GWQ on different task include language modeling, grounding detection, massive multitask language understanding and vision-language question and answering. Results show that models quantified by GWQ performs better than other quantization method. During quantization process, GWQ only need one calibration set to realize effective quant. Also, GWQ achieves 1.2x inference speedup in comparison to the original model and effectively reduces the inference memory.
♻ ☆ Rethinking the Sampling Criteria in Reinforcement Learning for LLM Reasoning: A Competence-Difficulty Alignment Perspective
Reinforcement learning exhibits potential in enhancing the reasoning abilities of large language models, yet it is hard to scale for the low sample efficiency during the rollout phase. Existing methods attempt to improve efficiency by scheduling problems based on problem difficulties. However, these approaches suffer from unstable and biased estimations of problem difficulty and fail to capture the alignment between model competence and problem difficulty in RL training, leading to suboptimal results. To tackle these limitations, this paper introduces $\textbf{C}$ompetence-$\textbf{D}$ifficulty $\textbf{A}$lignment $\textbf{S}$ampling ($\textbf{CDAS}$), which enables accurate and stable estimation of problem difficulties by aggregating historical performance discrepancies of problems. Then the model competence is quantified to adaptively select problems whose difficulty is in alignment with the model's current competence using a fixed-point system. Experimental results across a range of challenging mathematical benchmarks show that CDAS achieves great improvements in both accuracy and efficiency. CDAS attains the highest average accuracy against baselines and exhibits significant speed advantages compared to Dynamic Sampling, a competitive strategy in DAPO, which is 2.33 times slower than CDAS.
♻ ☆ Graph of Records: Boosting Retrieval Augmented Generation for Long-context Summarization with Graphs ACL 2025
Retrieval-augmented generation (RAG) has revitalized Large Language Models (LLMs) by injecting non-parametric factual knowledge. Compared with long-context LLMs, RAG is considered an effective summarization tool in a more concise and lightweight manner, which can interact with LLMs multiple times using diverse queries to get comprehensive responses. However, the LLM-generated historical responses, which contain potentially insightful information, are largely neglected and discarded by existing approaches, leading to suboptimal results. In this paper, we propose $\textit{graph of records}$ ($\textbf{GoR}$), which leverages historical responses generated by LLMs to enhance RAG for long-context global summarization. Inspired by the $\textit{retrieve-then-generate}$ paradigm of RAG, we construct a graph by establishing an edge between the retrieved text chunks and the corresponding LLM-generated response. To further uncover the intricate correlations between them, GoR features a $\textit{graph neural network}$ and an elaborately designed $\textit{BERTScore}$-based objective for self-supervised model training, enabling seamless supervision signal backpropagation between reference summaries and node embeddings. We comprehensively compare GoR with 12 baselines across four long-context summarization datasets, and the results indicate that our proposed method reaches the best performance ($\textit{e.g.}$, 15%, 8%, and 19% improvement over retrievers w.r.t. Rouge-L, Rouge-1, and Rouge-2 on the WCEP dataset). Extensive experiments further demonstrate the effectiveness of GoR.
comment: Accepted by ACL 2025 Main. The code is available at https://github.com/ulab-uiuc/GoR
♻ ☆ Personality-Guided Code Generation Using Large Language Models ACL 2025
Code generation, the automatic creation of source code from natural language descriptions, has garnered significant attention due to its potential to streamline software development. Inspired by research that links task-personality alignment with improved development outcomes, we conduct an empirical study on personality-guided code generation using large language models (LLMs). Specifically, we investigate how emulating personality traits appropriate to the coding tasks affects LLM performance. We extensively evaluate this approach using seven widely adopted LLMs across four representative datasets. Our results show that personality guidance significantly enhances code generation accuracy, with improved pass rates in 23 out of 28 LLM-dataset combinations. Notably, in 11 cases, the improvement exceeds 5%, and in 5 instances, it surpasses 10%, with the highest gain reaching 12.9%. Additionally, personality guidance can be easily integrated with other prompting strategies to further boost performance. We open-source our code and data at https://github.com/IanWalls/Persona-Code.
comment: Accepted by the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025) Main Track
♻ ☆ MiZero: The Shadowy Defender Against Text Style Infringements
In-Context Learning (ICL) and efficient fine-tuning methods significantly enhanced the efficiency of applying Large Language Models (LLMs) to downstream tasks. However, they also raise concerns about the imitation and infringement of personal creative data. Current methods for data copyright protection primarily focuses on content security but lacks effectiveness in protecting the copyrights of text styles. In this paper, we introduce a novel implicit zero-watermarking scheme, namely MiZero. This scheme establishes a precise watermark domain to protect the copyrighted style, surpassing traditional watermarking methods that distort the style characteristics. Specifically, we employ LLMs to extract condensed-lists utilizing the designed instance delimitation mechanism. These lists guide MiZero in generating the watermark. Extensive experiments demonstrate that MiZero effectively verifies text style copyright ownership against AI imitation.
♻ ☆ Error Broadcast and Decorrelation as a Potential Artificial and Natural Learning Mechanism
We introduce Error Broadcast and Decorrelation (EBD), a novel learning framework for neural networks that addresses credit assignment by directly broadcasting output errors to individual layers, circumventing weight transport of backpropagation. EBD is rigorously grounded in the stochastic orthogonality property of Minimum Mean Square Error estimators. This fundamental principle states that the error of an optimal estimator is orthogonal to functions of the input. Guided by this insight, EBD defines layerwise loss functions that directly penalize correlations between layer activations and output errors, thereby establishing a principled foundation for error broadcasting. This theoretically sound mechanism naturally leads to the experimentally observed three-factor learning rule and integrates with biologically plausible frameworks to enhance performance and plausibility. Numerical experiments demonstrate EBD's competitive or better performance against other error-broadcast methods on benchmark datasets. Our findings establish EBD as an efficient, biologically plausible, and principled alternative for neural network training.
♻ ☆ Exploring Spatiotemporal Emotional Synchrony in Dyadic Interactions: The Role of Speech Conditions in Facial and Vocal Affective Alignment
Understanding how humans express and synchronize emotions across multiple communication channels particularly facial expressions and speech has significant implications for emotion recognition systems and human computer interaction. Motivated by the notion that non-overlapping speech promotes clearer emotional coordination, while overlapping speech disrupts synchrony, this study examines how these conversational dynamics shape the spatial and temporal alignment of arousal and valence across facial and vocal modalities. Using dyadic interactions from the IEMOCAP dataset, we extracted continuous emotion estimates via EmoNet (facial video) and a Wav2Vec2-based model (speech audio). Segments were categorized based on speech overlap, and emotional alignment was assessed using Pearson correlation, lag adjusted analysis, and Dynamic Time Warping (DTW). Across analyses, non overlapping speech was associated with more stable and predictable emotional synchrony than overlapping speech. While zero-lag correlations were low and not statistically different, non overlapping speech showed reduced variability, especially for arousal. Lag adjusted correlations and best-lag distributions revealed clearer, more consistent temporal alignment in these segments. In contrast, overlapping speech exhibited higher variability and flatter lag profiles, though DTW indicated unexpectedly tighter alignment suggesting distinct coordination strategies. Notably, directionality patterns showed that facial expressions more often preceded speech during turn-taking, while speech led during simultaneous vocalizations. These findings underscore the importance of conversational structure in regulating emotional communication and provide new insight into the spatial and temporal dynamics of multimodal affective alignment in real world interaction.
♻ ☆ Dataset Featurization: Uncovering Natural Language Features through Unsupervised Data Reconstruction
Interpreting data is central to modern research. Large language models (LLMs) show promise in providing such natural language interpretations of data, yet simple feature extraction methods such as prompting often fail to produce accurate and versatile descriptions for diverse datasets and lack control over granularity and scale. To address these limitations, we propose a domain-agnostic method for dataset featurization that provides precise control over the number of features extracted while maintaining compact and descriptive representations comparable to human labeling. Our method optimizes the selection of informative binary features by evaluating the ability of an LLM to reconstruct the original data using those features. We demonstrate its effectiveness in dataset modeling tasks and through two case studies: (1) Constructing a feature representation of jailbreak tactics that compactly captures both the effectiveness and diversity of a larger set of human-crafted attacks; and (2) automating the discovery of features that align with human preferences, achieving accuracy and robustness comparable to human-crafted features. Moreover, we show that the pipeline scales effectively, improving as additional features are sampled, making it suitable for large and diverse datasets.
♻ ☆ Emergent social conventions and collective bias in LLM populations
Social conventions are the backbone of social coordination, shaping how individuals form a group. As growing populations of artificial intelligence (AI) agents communicate through natural language, a fundamental question is whether they can bootstrap the foundations of a society. Here, we present experimental results that demonstrate the spontaneous emergence of universally adopted social conventions in decentralized populations of large language model (LLM) agents. We then show how strong collective biases can emerge during this process, even when agents exhibit no bias individually. Last, we examine how committed minority groups of adversarial LLM agents can drive social change by imposing alternative social conventions on the larger population. Our results show that AI systems can autonomously develop social conventions without explicit programming and have implications for designing AI systems that align, and remain aligned, with human values and societal goals.
♻ ☆ A blockchain-based intelligent recommender system framework for enhancing supply chain resilience
This research proposed a data-driven supply chain disruption response baseline framework based on intelligent recommender system technology as an initial SCRes reactive solution. To improve the data quality and reliability of the proposed IRS as a stable, secure, and resilient decision support system, blockchain technology is integrated into the baseline architecture. The smart contract is prototyped to demonstrate the information exchange mechanism under a BLC network environment. The BLC-IRS framework is then implemented with an industrial case to demonstrate its executable function. A system dynamics (SD) simulation model is adopted to validate the BLC-IRS framework as an effective digital SCRes enhancement measure. The simulation results indicated that the proposed BLC-IRS framework can be effectively implemented as a SC disruption mitigation measure in the SCRes response phase as reactive measure, enabling SC participants to react better to SC disruptions at the physical level. Compared to previous studies that limited at the conceptual level as the proactive SCRes measure with a standalone fashion, the developed BLC-IRS contributes an executable SCRes digital solution with synthetic technologies as a reactive SCRes measure for the SCRes community, by identifying the internal and external supplementary resource information in an agile, safe, and real-time manner after SC disruption.
comment: Manuscript submitted for Production and Operations Management
♻ ☆ Improving Continual Learning Performance and Efficiency with Auxiliary Classifiers ICML 2025
Continual learning is crucial for applying machine learning in challenging, dynamic, and often resource-constrained environments. However, catastrophic forgetting - overwriting previously learned knowledge when new information is acquired - remains a major challenge. In this work, we examine the intermediate representations in neural network layers during continual learning and find that such representations are less prone to forgetting, highlighting their potential to accelerate computation. Motivated by these findings, we propose to use auxiliary classifiers(ACs) to enhance performance and demonstrate that integrating ACs into various continual learning methods consistently improves accuracy across diverse evaluation settings, yielding an average 10% relative gain. We also leverage the ACs to reduce the average cost of the inference by 10-60% without compromising accuracy, enabling the model to return the predictions before computing all the layers. Our approach provides a scalable and efficient solution for continual learning.
comment: ICML 2025 (main track poster)
♻ ☆ Behavior-Regularized Diffusion Policy Optimization for Offline Reinforcement Learning ICML 2025
Behavior regularization, which constrains the policy to stay close to some behavior policy, is widely used in offline reinforcement learning (RL) to manage the risk of hazardous exploitation of unseen actions. Nevertheless, existing literature on behavior-regularized RL primarily focuses on explicit policy parameterizations, such as Gaussian policies. Consequently, it remains unclear how to extend this framework to more advanced policy parameterizations, such as diffusion models. In this paper, we introduce BDPO, a principled behavior-regularized RL framework tailored for diffusion-based policies, thereby combining the expressive power of diffusion policies and the robustness provided by regularization. The key ingredient of our method is to calculate the Kullback-Leibler (KL) regularization analytically as the accumulated discrepancies in reverse-time transition kernels along the diffusion trajectory. By integrating the regularization, we develop an efficient two-time-scale actor-critic RL algorithm that produces the optimal policy while respecting the behavior constraint. Comprehensive evaluations conducted on synthetic 2D tasks and continuous control tasks from the D4RL benchmark validate its effectiveness and superior performance.
comment: Accepted by ICML 2025
♻ ☆ A Reality Check on Context Utilisation for Retrieval-Augmented Generation ACL 2025
Retrieval-augmented generation (RAG) helps address the limitations of parametric knowledge embedded within a language model (LM). In real world settings, retrieved information can vary in complexity, yet most investigations of LM utilisation of context has been limited to synthetic text. We introduce DRUID (Dataset of Retrieved Unreliable, Insufficient and Difficult-to-understand contexts) with real-world queries and contexts manually annotated for stance. The dataset is based on the prototypical task of automated claim verification, for which automated retrieval of real-world evidence is crucial. We compare DRUID to synthetic datasets (CounterFact, ConflictQA) and find that artificial datasets often fail to represent the complexity and diversity of realistically retrieved context. We show that synthetic datasets exaggerate context characteristics rare in real retrieved data, which leads to inflated context utilisation results, as measured by our novel ACU score. Moreover, while previous work has mainly focused on singleton context characteristics to explain context utilisation, correlations between singleton context properties and ACU on DRUID are surprisingly small compared to other properties related to context source. Overall, our work underscores the need for real-world aligned context utilisation studies to represent and improve performance in real-world RAG settings.
comment: Accepted at ACL 2025
♻ ☆ Smaller, Smarter, Closer: The Edge of Collaborative Generative AI
The rapid adoption of generative AI (GenAI), particularly Large Language Models (LLMs), has exposed critical limitations of cloud-centric deployments, including latency, cost, and privacy concerns. Meanwhile, Small Language Models (SLMs) are emerging as viable alternatives for resource-constrained edge environments, though they often lack the capabilities of their larger counterparts. This article explores the potential of collaborative inference systems that leverage both edge and cloud resources to address these challenges. By presenting distinct cooperation strategies alongside practical design principles and experimental insights, we offer actionable guidance for deploying GenAI across the computing continuum.
comment: This paper has been accepted for publication in IEEE Internet Computing. Upon publication, the copyright will be transferred to IEEE
♻ ☆ Tensor Product Attention Is All You Need
Scaling language models to handle longer input sequences typically necessitates large key-value (KV) caches, resulting in substantial memory overhead during inference. In this paper, we propose Tensor Product Attention (TPA), a novel attention mechanism that uses tensor decompositions to represent queries, keys, and values compactly, substantially shrinking the KV cache size at inference time. By factorizing these representations into contextual low-rank components and seamlessly integrating with Rotary Position Embedding (RoPE), TPA achieves improved model quality alongside memory efficiency. Based on TPA, we introduce the Tensor Product Attention Transformer,(T6), a new model architecture for sequence modeling. Through extensive empirical evaluation on language modeling tasks, we demonstrate that T6 surpasses or matches the performance of standard Transformer baselines, including Multi-Head Attention (MHA), Multi-Query Attention (MQA), Grouped-Query Attention (GQA), and Multi-Head Latent Attention (MLA) across various metrics, including perplexity and a range of established evaluation benchmarks. Notably, TPA's memory efficiency and computational efficiency at the decoding stage enable processing longer sequences under fixed resource constraints, addressing a critical scalability challenge in modern language models. The code is available at https://github.com/tensorgi/T6.
comment: 52 pages, 11 figures
♻ ☆ Edge-First Language Model Inference: Models, Metrics, and Tradeoffs
The widespread adoption of Language Models (LMs) across industries is driving interest in deploying these services across the computing continuum, from the cloud to the network edge. This shift aims to reduce costs, lower latency, and improve reliability and privacy. Small Language Models (SLMs), enabled by advances in model compression, are central to this shift, offering a path to on-device inference on resource-constrained edge platforms. This work examines the interplay between edge and cloud deployments, starting from detailed benchmarking of SLM capabilities on single edge devices, and extending to distributed edge clusters. We identify scenarios where edge inference offers comparable performance with lower costs, and others where cloud fallback becomes essential due to limits in scalability or model capacity. Rather than proposing a one-size-fits-all solution, we present platform-level comparisons and design insights for building efficient, adaptive LM inference systems across heterogeneous environments.
comment: This paper has been accepted for publication and presentation at the 45th IEEE International Conference on Distributed Computing Systems (IEEE ICDCS 2025). The copyright will be transferred to IEEE upon publication in the conference proceedings
♻ ☆ Autonomous Data Selection with Zero-shot Generative Classifiers for Mathematical Texts
We present Autonomous Data Selection (AutoDS), a method that leverages base language models themselves as zero-shot "generative classifiers" to automatically curate high-quality mathematical texts. Unlike prior approaches that require human annotations or training a dedicated data filter, AutoDS relies solely on a model's logits to determine whether a given passage is mathematically informative and educational. By integrating AutoDS into a continual pretraining pipeline, we substantially boost downstream performance on challenging math benchmarks (MATH, GSM8K, and BBH) while using far fewer tokens than previous methods. Empirically, our approach achieves roughly a twofold improvement in pretraining token efficiency over strong baselines, underscoring the potential of self-directed data selection in enhancing mathematical reasoning. We release our curated AutoMathText dataset to facilitate future research in automated domain-specific data curation. The AutoMathText dataset is available at https://huggingface.co/datasets/math-ai/AutoMathText. The code is available at https://github.com/yifanzhang-pro/AutoMathText.
comment: 22 pages, 9 figures
♻ ☆ Language Agents with Reinforcement Learning for Strategic Play in the Werewolf Game ICML 2024
Agents built with large language models (LLMs) have shown great potential across a wide range of domains. However, in complex decision-making tasks, pure LLM-based agents tend to exhibit intrinsic bias in their choice of actions, which is inherited from the model's training data and results in suboptimal performance. To develop strategic language agents, i.e., agents that generate flexible language actions and possess strong decision-making abilities, we propose a novel framework that powers LLM-based agents with reinforcement learning (RL). We consider Werewolf, a popular social deduction game, as a challenging testbed that emphasizes versatile communication and strategic gameplay. To mitigate the intrinsic bias in language actions, our agents use an LLM to perform deductive reasoning and generate a diverse set of action candidates. Then an RL policy trained to optimize the decision-making ability chooses an action from the candidates to play in the game. Extensive experiments show that our agents overcome the intrinsic bias and outperform existing LLM-based agents in the Werewolf game. We also conduct human-agent experiments and find that our agents achieve human-level performance and demonstrate strong strategic play.
comment: Published in ICML 2024
♻ ☆ Fusing Bidirectional Chains of Thought and Reward Mechanisms A Method for Enhancing Question-Answering Capabilities of Large Language Models for Chinese Intangible Cultural Heritage
The rapid development of large language models (LLMs) has provided significant support and opportunities for the advancement of domain-specific LLMs. However, fine-tuning these large models using Intangible Cultural Heritage (ICH) data inevitably faces challenges such as bias, incorrect knowledge inheritance, and catastrophic forgetting. To address these issues, we propose a novel training method that integrates a bidirectional chains of thought and a reward mechanism. This method is built upon ICH-Qwen, a large language model specifically designed for the field of intangible cultural heritage. The proposed method enables the model to not only perform forward reasoning but also enhances the accuracy of the generated answers by utilizing reverse questioning and reverse reasoning to activate the model's latent knowledge. Additionally, a reward mechanism is introduced during training to optimize the decision-making process. This mechanism improves the quality of the model's outputs through structural and content evaluations with different weighting schemes. We conduct comparative experiments on ICH-Qwen, with results demonstrating that our method outperforms 0-shot, step-by-step reasoning, knowledge distillation, and question augmentation methods in terms of accuracy, Bleu-4, and Rouge-L scores on the question-answering task. Furthermore, the paper highlights the effectiveness of combining the bidirectional chains of thought and reward mechanism through ablation experiments. In addition, a series of generalizability experiments are conducted, with results showing that the proposed method yields improvements on various domain-specific datasets and advanced models in areas such as Finance, Wikidata, and StrategyQA. This demonstrates that the method is adaptable to multiple domains and provides a valuable approach for model training in future applications across diverse fields.
comment: 22 pages, 5 figures
♻ ☆ DiagnosisArena: Benchmarking Diagnostic Reasoning for Large Language Models
The emergence of groundbreaking large language models capable of performing complex reasoning tasks holds significant promise for addressing various scientific challenges, including those arising in complex clinical scenarios. To enable their safe and effective deployment in real-world healthcare settings, it is urgently necessary to benchmark the diagnostic capabilities of current models systematically. Given the limitations of existing medical benchmarks in evaluating advanced diagnostic reasoning, we present DiagnosisArena, a comprehensive and challenging benchmark designed to rigorously assess professional-level diagnostic competence. DiagnosisArena consists of 1,113 pairs of segmented patient cases and corresponding diagnoses, spanning 28 medical specialties, deriving from clinical case reports published in 10 top-tier medical journals. The benchmark is developed through a meticulous construction pipeline, involving multiple rounds of screening and review by both AI systems and human experts, with thorough checks conducted to prevent data leakage. Our study reveals that even the most advanced reasoning models, o3, o1, and DeepSeek-R1, achieve only 51.12%, 31.09%, and 17.79% accuracy, respectively. This finding highlights a significant generalization bottleneck in current large language models when faced with clinical diagnostic reasoning challenges. Through DiagnosisArena, we aim to drive further advancements in AI's diagnostic reasoning capabilities, enabling more effective solutions for real-world clinical diagnostic challenges. We provide the benchmark and evaluation tools for further research and development https://github.com/SPIRAL-MED/DiagnosisArena.
♻ ☆ am-ELO: A Stable Framework for Arena-based LLM Evaluation ICML2025
Arena-based evaluation is a fundamental yet significant evaluation paradigm for modern AI models, especially large language models (LLMs). Existing framework based on ELO rating system suffers from the inevitable instability problem due to ranking inconsistency and the lack of attention to the varying abilities of annotators. In this paper, we introduce a novel stable arena framework to address these issues by enhancing the ELO Rating System. Specifically, we replace the iterative update method with a Maximum Likelihood Estimation (MLE) approach, m-ELO, and provide theoretical proof of the consistency and stability of the MLE approach for model ranking. Additionally, we proposed the am-ELO, which modify the Elo Rating's probability function to incorporate annotator abilities, enabling the simultaneous estimation of model scores and annotator reliability. Experiments demonstrate that this method ensures stability, proving that this framework offers a more robust, accurate, and stable evaluation method for LLMs.
comment: ICML2025 Accepted
♻ ☆ KBQA-o1: Agentic Knowledge Base Question Answering with Monte Carlo Tree Search ICML 2025
Knowledge Base Question Answering (KBQA) aims to answer natural language questions with a large-scale structured knowledge base (KB). Despite advancements with large language models (LLMs), KBQA still faces challenges in weak KB awareness, imbalance between effectiveness and efficiency, and high reliance on annotated data. To address these challenges, we propose KBQA-o1, a novel agentic KBQA method with Monte Carlo Tree Search (MCTS). It introduces a ReAct-based agent process for stepwise logical form generation with KB environment exploration. Moreover, it employs MCTS, a heuristic search method driven by policy and reward models, to balance agentic exploration's performance and search space. With heuristic exploration, KBQA-o1 generates high-quality annotations for further improvement by incremental fine-tuning. Experimental results show that KBQA-o1 outperforms previous low-resource KBQA methods with limited annotated data, boosting Llama-3.1-8B model's GrailQA F1 performance to 78.5% compared to 48.5% of the previous sota method with GPT-3.5-turbo. Our code is publicly available.
comment: Accepted by ICML 2025 main conference
♻ ☆ Improving Parallel Program Performance with LLM Optimizers via Agent-System Interfaces
Modern scientific discovery increasingly relies on high-performance computing for complex modeling and simulation. A key challenge in improving parallel program performance is efficiently mapping tasks to processors and data to memory, a process dictated by intricate, low-level system code known as mappers. Developing high-performance mappers demands days of manual tuning, posing a significant barrier for domain scientists without systems expertise. We introduce a framework that automates mapper development with generative optimization, leveraging richer feedback beyond scalar performance metrics. Our approach features the Agent-System Interface, which includes a Domain-Specific Language (DSL) to abstract away the low-level complexity of system code and define a structured search space, as well as AutoGuide, a mechanism that interprets raw execution output into actionable feedback. Unlike traditional reinforcement learning methods such as OpenTuner, which rely solely on scalar feedback, our method finds superior mappers in far fewer iterations. With just 10 iterations, it outperforms OpenTuner even after 1000 iterations, achieving 3.8X faster performance. Our approach finds mappers that surpass expert-written mappers by up to 1.34X speedup across nine benchmarks while reducing tuning time from days to minutes.
♻ ☆ Disentangled Multi-span Evolutionary Network against Temporal Knowledge Graph Reasoning ACL 2025
Temporal Knowledge Graphs (TKGs), as an extension of static Knowledge Graphs (KGs), incorporate the temporal feature to express the transience of knowledge by describing when facts occur. TKG extrapolation aims to infer possible future facts based on known history, which has garnered significant attention in recent years. Some existing methods treat TKG as a sequence of independent subgraphs to model temporal evolution patterns, demonstrating impressive reasoning performance. However, they still have limitations: 1) In modeling subgraph semantic evolution, they usually neglect the internal structural interactions between subgraphs, which are actually crucial for encoding TKGs. 2) They overlook the potential smooth features that do not lead to semantic changes, which should be distinguished from the semantic evolution process. Therefore, we propose a novel Disentangled Multi-span Evolutionary Network (DiMNet) for TKG reasoning. Specifically, we design a multi-span evolution strategy that captures local neighbor features while perceiving historical neighbor semantic information, thus enabling internal interactions between subgraphs during the evolution process. To maximize the capture of semantic change patterns, we design a disentangle component that adaptively separates nodes' active and stable features, used to dynamically control the influence of historical semantics on future evolution. Extensive experiments conducted on four real-world TKG datasets show that DiMNet demonstrates substantial performance in TKG reasoning, and outperforms the state-of-the-art up to 22.7% in MRR.
comment: Accepted to ACL 2025 Findings
♻ ☆ Aligning Text to Image in Diffusion Models is Easier Than You Think
While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Some approaches address this issue by fine-tuning models in terms of preference optimization, etc., which require tailored datasets. Orthogonal to these methods, we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages existing dataset as both positive and negative pairs. To enable efficient alignment with pretrained models, we propose SoftREPA- a lightweight contrastive fine-tuning strategy that leverages soft text tokens for representation alignment. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.
♻ ☆ Seek-CAD: A Self-refined Generative Modeling for 3D Parametric CAD Using Local Inference via DeepSeek
The advent of Computer-Aided Design (CAD) generative modeling will significantly transform the design of industrial products. The recent research endeavor has extended into the realm of Large Language Models (LLMs). In contrast to fine-tuning methods, training-free approaches typically utilize the advanced closed-source LLMs, thereby offering enhanced flexibility and efficiency in the development of AI agents for generating CAD parametric models. However, the substantial cost and limitations of local deployment of the top-tier closed-source LLMs pose challenges in practical applications. The Seek-CAD is the pioneer exploration of locally deployed open-source inference LLM DeepSeek-R1 for CAD parametric model generation with a training-free methodology. This study is the first investigation to incorporate both visual and Chain-of-Thought (CoT) feedback within the self-refinement mechanism for generating CAD models. Specifically, the initial generated parametric CAD model is rendered into a sequence of step-wise perspective images, which are subsequently processed by a Vision Language Model (VLM) alongside the corresponding CoTs derived from DeepSeek-R1 to assess the CAD model generation. Then, the feedback is utilized by DeepSeek-R1 to refine the initial generated model for the next round of generation. Moreover, we present an innovative 3D CAD model dataset structured around the SSR (Sketch, Sketch-based feature, and Refinements) triple design paradigm. This dataset encompasses a wide range of CAD commands, thereby aligning effectively with industrial application requirements and proving suitable for the generation of LLMs. Extensive experiments validate the effectiveness of Seek-CAD under various metrics.
♻ ☆ Audio Visual Segmentation Through Text Embeddings
The goal of Audio-Visual Segmentation (AVS) is to localize and segment the sounding source objects from video frames. Research on AVS suffers from data scarcity due to the high cost of fine-grained manual annotations. Recent works attempt to overcome the challenge of limited data by leveraging the vision foundation model, Segment Anything Model (SAM), prompting it with audio to enhance its ability to segment sounding source objects. While this approach alleviates the model's burden on understanding visual modality by utilizing knowledge of pre-trained SAM, it does not address the fundamental challenge of learning audio-visual correspondence with limited data. To address this limitation, we propose \textbf{AV2T-SAM}, a novel framework that bridges audio features with the text embedding space of pre-trained text-prompted SAM. Our method leverages multimodal correspondence learned from rich text-image paired datasets to enhance audio-visual alignment. Furthermore, we introduce a novel feature, $\mathbf{\textit{\textbf{f}}_{CLIP} \odot \textit{\textbf{f}}_{CLAP}}$, which emphasizes shared semantics of audio and visual modalities while filtering irrelevant noise. Our approach outperforms existing methods on the AVSBench dataset by effectively utilizing pre-trained segmentation models and cross-modal semantic alignment. The source code is released at https://github.com/bok-bok/AV2T-SAM.
Promptus: Can Prompts Streaming Replace Video Streaming with Stable Diffusion
With the exponential growth of video traffic, traditional video streaming systems are approaching their limits in compression efficiency and communication capacity. To further reduce bitrate while maintaining quality, we propose Promptus, a disruptive semantic communication system that streaming prompts instead of video content, which represents real-world video frames with a series of "prompts" for delivery and employs Stable Diffusion to generate videos at the receiver. To ensure that the generated video is pixel-aligned with the original video, a gradient descent-based prompt fitting framework is proposed. Further, a low-rank decomposition-based bitrate control algorithm is introduced to achieve adaptive bitrate. For inter-frame compression, an interpolation-aware fitting algorithm is proposed. Evaluations across various video genres demonstrate that, compared to H.265, Promptus can achieve more than a 4x bandwidth reduction while preserving the same perceptual quality. On the other hand, at extremely low bitrates, Promptus can enhance the perceptual quality by 0.139 and 0.118 (in LPIPS) compared to VAE and H.265, respectively, and decreases the ratio of severely distorted frames by 89.3% and 91.7%. Our work opens up a new paradigm for efficient video communication. Promptus is open-sourced at: https://github.com/JiangkaiWu/Promptus.
♻ ☆ MADCluster: Model-agnostic Anomaly Detection with Self-supervised Clustering Network
In this paper, we propose MADCluster, a novel model-agnostic anomaly detection framework utilizing self-supervised clustering. MADCluster is applicable to various deep learning architectures and addresses the 'hypersphere collapse' problem inherent in existing deep learning-based anomaly detection methods. The core idea is to cluster normal pattern data into a 'single cluster' while simultaneously learning the cluster center and mapping data close to this center. Also, to improve expressiveness and enable effective single clustering, we propose a new 'One-directed Adaptive loss'. The optimization of this loss is mathematically proven. MADCluster consists of three main components: Base Embedder capturing high-dimensional temporal dynamics, Cluster Distance Mapping, and Sequence-wise Clustering for continuous center updates. Its model-agnostic characteristics are achieved by applying various architectures to the Base Embedder. Experiments on four time series benchmark datasets demonstrate that applying MADCluster improves the overall performance of comparative models. In conclusion, the compatibility of MADCluster shows potential for enhancing model performance across various architectures.
comment: 24 pages, 9 figures
♻ ☆ Contrastive Learning and Abstract Concepts: The Case of Natural Numbers
Contrastive Learning (CL) has been successfully applied to classification and other downstream tasks related to concrete concepts, such as objects contained in the ImageNet dataset. No attempts seem to have been made so far in applying this promising scheme to more abstract entities. A prominent example of these could be the concept of (discrete) Quantity. CL can be frequently interpreted as a self-supervised scheme guided by some profound and ubiquitous conservation principle (e.g. conservation of identity in object classification tasks). In this introductory work we apply a suitable conservation principle to the semi-abstract concept of natural numbers by which discrete quantities can be estimated or predicted. We experimentally show, by means of a toy problem, that contrastive learning can be trained to count at a glance with high accuracy both at human as well as at super-human ranges.. We compare this with the results of a trained-to-count at a glance supervised learning (SL) neural network scheme of similar architecture. We show that both schemes exhibit similar good performance on baseline experiments, where the distributions of the training and testing stages are equal. Importantly, we demonstrate that in some generalization scenarios, where training and testing distributions differ, CL boasts more robust and much better error performance.
♻ ☆ Global Tensor Motion Planning
Batch planning is increasingly necessary to quickly produce diverse and quality motion plans for downstream learning applications, such as distillation and imitation learning. This paper presents Global Tensor Motion Planning (GTMP) -- a sampling-based motion planning algorithm comprising only tensor operations. We introduce a novel discretization structure represented as a random multipartite graph, enabling efficient vectorized sampling, collision checking, and search. We provide a theoretical investigation showing that GTMP exhibits probabilistic completeness while supporting modern GPU/TPU. Additionally, by incorporating smooth structures into the multipartite graph, GTMP directly plans smooth splines without requiring gradient-based optimization. Experiments on lidar-scanned occupancy maps and the MotionBenchMarker dataset demonstrate GTMP's computation efficiency in batch planning compared to baselines, underscoring GTMP's potential as a robust, scalable planner for diverse applications and large-scale robot learning tasks.
comment: 8 pages, 3 figures. Accepted at IEEE Robotics and Automation Letters 2025
♻ ☆ Temporal Relation Extraction in Clinical Texts: A Span-based Graph Transformer Approach
Temporal information extraction from unstructured text is essential for contextualizing events and deriving actionable insights, particularly in the medical domain. We address the task of extracting clinical events and their temporal relations using the well-studied I2B2 2012 Temporal Relations Challenge corpus. This task is inherently challenging due to complex clinical language, long documents, and sparse annotations. We introduce GRAPHTREX, a novel method integrating span-based entity-relation extraction, clinical large pre-trained language models (LPLMs), and Heterogeneous Graph Transformers (HGT) to capture local and global dependencies. Our HGT component facilitates information propagation across the document through innovative global landmarks that bridge distant entities. Our method improves the state-of-the-art with 5.5% improvement in the tempeval $F_1$ score over the previous best and up to 8.9% improvement on long-range relations, which presents a formidable challenge. We further demonstrate generalizability by establishing a strong baseline on the E3C corpus. This work not only advances temporal information extraction but also lays the groundwork for improved diagnostic and prognostic models through enhanced temporal reasoning.
comment: Introducing a novel method for joint extraction of medical events and temporal relations from free-text, leveraging clinical LPLMs and Heterogeneous Graph Transformers, achieving a 5.5% improvement over the previous state-of-the-art and up to 8.9% on long-range relations
♻ ☆ Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving
The end-to-end learning pipeline is gradually creating a paradigm shift in the ongoing development of highly autonomous vehicles (AVs), largely due to advances in deep learning, the availability of large-scale training datasets, and improvements in integrated sensor devices. However, a lack of explainability in real-time decisions with contemporary learning methods impedes user trust and attenuates the widespread deployment and commercialization of such vehicles. Moreover, the issue is exacerbated when these vehicles are involved in or cause traffic accidents. Consequently, explainability in end-to-end autonomous driving is essential to build trust in vehicular automation. With that said, automotive researchers have not yet rigorously explored safety benefits and consequences of explanations in end-to-end autonomous driving. This paper aims to bridge the gaps between these topics and seeks to answer the following research question: What are safety implications of explanations in end-to-end autonomous driving? In this regard, we first revisit established safety and explainability concepts in end-to-end driving. Furthermore, we present critical case studies and show the pivotal role of explanations in enhancing driving safety. Finally, we describe insights from empirical studies and reveal potential value, limitations, and caveats of practical explainable AI methods with respect to their potential impacts on safety of end-to-end driving.
comment: Accepted for publication in IEEE Transactions on Intelligent Transportation Systems
♻ ☆ Privacy-Aware Joint DNN Model Deployment and Partitioning Optimization for Collaborative Edge Inference Services
Edge inference (EI) has emerged as a promising paradigm to address the growing limitations of cloud-based Deep Neural Network (DNN) inference services, such as high response latency, limited scalability, and severe data privacy exposure. However, deploying DNN models on resource-constrained edge devices introduces additional challenges, including limited computation/storage resources, dynamic service demands, and heightened privacy risks. To tackle these issues, this paper presents a novel privacy-aware optimization framework that jointly addresses DNN model deployment, user-server association, and model partitioning, with the goal of minimizing long-term average inference delay under resource and privacy constraints. The problem is formulated as a complex, NP-hard stochastic optimization. To efficiently handle system dynamics and computational complexity, we employ a Lyapunov-based approach to transform the long-term objective into tractable per-slot decisions. Furthermore, we introduce a coalition formation game to enable adaptive user-server association and design a greedy algorithm for model deployment within each coalition. Extensive simulations demonstrate that the proposed algorithm significantly reduces inference delay and consistently satisfies privacy constraints, outperforming state-of-the-art baselines across diverse scenarios.
comment: 14 pages
♻ ☆ ParamMute: Suppressing Knowledge-Critical FFNs for Faithful Retrieval-Augmented Generation
Large language models (LLMs) integrated with retrieval-augmented generation (RAG) have improved factuality by grounding outputs in external evidence. However, they remain susceptible to unfaithful generation, where outputs contradict retrieved context despite its relevance and accuracy. Existing approaches aiming to improve faithfulness primarily focus on enhancing the utilization of external context, but often overlook the persistent influence of internal parametric knowledge during generation. In this work, we investigate the internal mechanisms behind unfaithful generation and identify a subset of mid-to-deep feed-forward networks (FFNs) that are disproportionately activated in such cases. Building on this insight, we propose Parametric Knowledge Muting through FFN Suppression (ParamMute), a framework that improves contextual faithfulness by suppressing the activation of unfaithfulness-associated FFNs and calibrating the model toward retrieved knowledge. To evaluate our approach, we introduce CoFaithfulQA, a benchmark specifically designed to evaluate faithfulness in scenarios where internal knowledge conflicts with accurate external evidence. Experimental results show that ParamMute significantly enhances faithfulness across both CoFaithfulQA and the established ConFiQA benchmark, achieving substantial reductions in reliance on parametric memory. These findings underscore the importance of mitigating internal knowledge dominance and provide a new direction for improving LLM trustworthiness in RAG. All code will be released via GitHub.
comment: 22 pages, 7 figures, 7 tables
♻ ☆ Bridging Critical Gaps in Convergent Learning: How Representational Alignment Evolves Across Layers, Training, and Distribution Shifts
Understanding convergent learning -- the degree to which independently trained neural systems -- whether multiple artificial networks or brains and models -- arrive at similar internal representations -- is crucial for both neuroscience and AI. Yet, the literature remains narrow in scope -- typically examining just a handful of models with one dataset, relying on one alignment metric, and evaluating networks at a single post-training checkpoint. We present a large-scale audit of convergent learning, spanning dozens of vision models and thousands of layer-pair comparisons, to close these long-standing gaps. First, we pit three alignment families against one another -- linear regression (affine-invariant), orthogonal Procrustes (rotation-/reflection-invariant), and permutation/soft-matching (unit-order-invariant). We find that orthogonal transformations align representations nearly as effectively as more flexible linear ones, and although permutation scores are lower, they significantly exceed chance, indicating a privileged representational basis. Tracking convergence throughout training further shows that nearly all eventual alignment crystallizes within the first epoch -- well before accuracy plateaus -- indicating it is largely driven by shared input statistics and architectural biases, not by the final task solution. Finally, when models are challenged with a battery of out-of-distribution images, early layers remain tightly aligned, whereas deeper layers diverge in proportion to the distribution shift. These findings fill critical gaps in our understanding of representational convergence, with implications for neuroscience and AI.
♻ ☆ OmniArch: Building Foundation Model For Scientific Computing ICML 2025
Foundation models have revolutionized language modeling, while whether this success is replicated in scientific computing remains unexplored. We present OmniArch, the first prototype aiming at solving multi-scale and multi-physics scientific computing problems with physical alignment. We addressed all three challenges with one unified architecture. Its pre-training stage contains a Fourier Encoder-decoder fading out the disharmony across separated dimensions and a Transformer backbone integrating quantities through temporal dynamics, and the novel PDE-Aligner performs physics-informed fine-tuning under flexible conditions. As far as we know, we first conduct 1D-2D-3D united pre-training on the PDEBench, and it sets not only new performance benchmarks for 1D, 2D, and 3D PDEs but also demonstrates exceptional adaptability to new physics via in-context and zero-shot learning approaches, which supports realistic engineering applications and foresight physics discovery.
comment: ICML 2025
♻ ☆ Policy Filtration for RLHF to Mitigate Noise in Reward Models ICML2025
While direct policy optimization methods exist, pioneering LLMs are fine-tuned with reinforcement learning from human feedback (RLHF) to generate better responses under the supervision of a reward model learned from preference data. One major challenge of RLHF is the inaccuracy of the intermediate reward model, especially in the tasks that requires complex reasoning for the reward model to score a response. We find that the reliability of the reward model varies across responses assigned with different rewards. This motivates us to filter the samples whose rewards may be unreliable to improve the signal-to-noise ratio during policy learning, resulting in Policy Filtration for Proximal Policy Optimization (PF-PPO). To choose a proper policy filtering strategy, we use the coefficient of determination (R2) between the rewards and actual scores on filtered samples as the metrics to help us find promising strategies since it measures how well the rewards filtered by PF-PPO indicate real performance. We provide extensive experiments to validate the effectiveness of PF-PPO in code generation and math reasoning tasks. In code generation, PF-PPO achieves the state-of-the-art performance of 7-billion-parameter models on HumanEval (+7.9%), MBPP (+0.7%), and LeetCode Contest (+10.0%) which is a more challenging benchmark created by us. In math reasoning, PF-PPO yields performance increase using different reward models and benchmarks (Ape210K and CMATH). Code is available on https://github.com/DtYXs/verl/tree/pf-ppo.
comment: ICML2025
♻ ☆ Text-to-Decision Agent: Offline Meta-Reinforcement Learning from Natural Language Supervision
Offline meta-RL usually tackles generalization by inferring task beliefs from high-quality samples or warmup explorations. The restricted form limits their generality and usability since these supervision signals are expensive and even infeasible to acquire in advance for unseen tasks. Learning directly from the raw text about decision tasks is a promising alternative to leverage a much broader source of supervision. In the paper, we propose \textbf{T}ext-to-\textbf{D}ecision \textbf{A}gent (\textbf{T2DA}), a simple and scalable framework that supervises offline meta-RL with natural language. We first introduce a generalized world model to encode multi-task decision data into a dynamics-aware embedding space. Then, inspired by CLIP, we predict which textual description goes with which decision embedding, effectively bridging their semantic gap via contrastive language-decision pre-training and aligning the text embeddings to comprehend the environment dynamics. After training the text-conditioned generalist policy, the agent can directly realize zero-shot text-to-decision generation in response to language instructions. Comprehensive experiments on MuJoCo and Meta-World benchmarks show that T2DA facilitates high-capacity zero-shot generalization and outperforms various types of baselines.
comment: 18 pages, 8 figures
♻ ☆ Learning to Reason under Off-Policy Guidance
Recent advances in large reasoning models (LRMs) demonstrate that sophisticated behaviors such as multi-step reasoning and self-reflection can emerge via reinforcement learning with verifiable rewards~(\textit{RLVR}). However, existing \textit{RLVR} approaches are inherently ``on-policy'', limiting learning to a model's own outputs and failing to acquire reasoning abilities beyond its initial capabilities. To address this issue, we introduce \textbf{LUFFY} (\textbf{L}earning to reason \textbf{U}nder o\textbf{FF}-polic\textbf{Y} guidance), a framework that augments \textit{RLVR} with off-policy reasoning traces. LUFFY dynamically balances imitation and exploration by combining off-policy demonstrations with on-policy rollouts during training. Specifically, LUFFY combines the Mixed-Policy GRPO framework, which has a theoretically guaranteed convergence rate, alongside policy shaping via regularized importance sampling to avoid superficial and rigid imitation during mixed-policy training. Compared with previous RLVR methods, LUFFY achieves an over \textbf{+6.4} average gain across six math benchmarks and an advantage of over \textbf{+6.2} points in out-of-distribution tasks. Most significantly, we show that LUFFY successfully trains weak models in scenarios where on-policy RLVR completely fails. These results provide compelling evidence that LUFFY transcends the fundamental limitations of on-policy RLVR and demonstrates the great potential of utilizing off-policy guidance in RLVR.
comment: Work in progress
♻ ☆ EarthSE: A Benchmark Evaluating Earth Scientific Exploration Capability for Large Language Models
Advancements in Large Language Models (LLMs) drive interest in scientific applications, necessitating specialized benchmarks such as Earth science. Existing benchmarks either present a general science focus devoid of Earth science specificity or cover isolated subdomains, lacking holistic evaluation. Furthermore, current benchmarks typically neglect the assessment of LLMs' capabilities in open-ended scientific exploration. In this paper, we present a comprehensive and professional benchmark for the Earth sciences, designed to evaluate the capabilities of LLMs in scientific exploration within this domain, spanning from fundamental to advanced levels. Leveraging a corpus of 100,000 research papers, we first construct two Question Answering (QA) datasets: Earth-Iron, which offers extensive question coverage for broad assessment, and Earth-Silver, which features a higher level of difficulty to evaluate professional depth. These datasets encompass five Earth spheres, 114 disciplines, and 11 task categories, assessing foundational knowledge crucial for scientific exploration. Most notably, we introduce Earth-Gold with new metrics, a dataset comprising open-ended multi-turn dialogues specifically designed to evaluate the advanced capabilities of LLMs in scientific exploration, including methodology induction, limitation analysis, and concept proposal. Extensive experiments reveal limitations in 11 leading LLMs across different domains and tasks, highlighting considerable room for improvement in their scientific exploration capabilities. The benchmark is available on https://huggingface.co/ai-earth .
♻ ☆ Jailbreaking to Jailbreak
Large Language Models (LLMs) can be used to red team other models (e.g. jailbreaking) to elicit harmful contents. While prior works commonly employ open-weight models or private uncensored models for doing jailbreaking, as the refusal-training of strong LLMs (e.g. OpenAI o3) refuse to help jailbreaking, our work turn (almost) any black-box LLMs into attackers. The resulting $J_2$ (jailbreaking-to-jailbreak) attackers can effectively jailbreak the safeguard of target models using various strategies, both created by themselves or from expert human red teamers. In doing so, we show their strong but under-researched jailbreaking capabilities. Our experiments demonstrate that 1) prompts used to create $J_2$ attackers transfer across almost all black-box models; 2) an $J_2$ attacker can jailbreak a copy of itself, and this vulnerability develops rapidly over the past 12 months; 3) reasong models, such as Sonnet-3.7, are strong $J_2$ attackers compared to others. For example, when used against the safeguard of GPT-4o, $J_2$ (Sonnet-3.7) achieves 0.975 attack success rate (ASR), which matches expert human red teamers and surpasses the state-of-the-art algorithm-based attacks. Among $J_2$ attackers, $J_2$ (o3) achieves highest ASR (0.605) against Sonnet-3.5, one of the most robust models.
♻ ☆ Can LLMs Reason About Program Semantics? A Comprehensive Evaluation of LLMs on Formal Specification Inference ACL 2025
Large Language Models (LLMs) are increasingly being used to automate programming tasks. Yet, LLMs' capabilities in reasoning about program semantics are still inadequately studied, leaving significant potential for further exploration. This paper introduces FormalBench, a comprehensive benchmark designed to evaluate LLMs' reasoning abilities on program semantics, particularly via the task of synthesizing formal program specifications to assist verifying program correctness. This task requires both comprehensive reasoning over all possible program executions and the generation of precise, syntactically correct expressions that adhere to formal syntax and semantics. Using this benchmark, we evaluated the ability of LLMs in synthesizing consistent and complete specifications. Our findings show that LLMs perform well with simple control flows but struggle with more complex structures, especially loops, even with advanced prompting. Additionally, LLMs exhibit limited robustness against semantic-preserving transformations. We also highlight common failure patterns and design self-repair prompts, improving success rates by 25%.
comment: Accepted to ACL 2025 (Main Conference)
♻ ☆ Human-Readable Adversarial Prompts: An Investigation into LLM Vulnerabilities Using Situational Context
As the AI systems become deeply embedded in social media platforms, we've uncovered a concerning security vulnerability that goes beyond traditional adversarial attacks. It becomes important to assess the risks of LLMs before the general public use them on social media platforms to avoid any adverse impacts. Unlike obvious nonsensical text strings that safety systems can easily catch, our work reveals that human-readable situation-driven adversarial full-prompts that leverage situational context are effective but much harder to detect. We found that skilled attackers can exploit the vulnerabilities in open-source and proprietary LLMs to make a malicious user query safe for LLMs, resulting in generating a harmful response. This raises an important question about the vulnerabilities of LLMs. To measure the robustness against human-readable attacks, which now present a potent threat, our research makes three major contributions. First, we developed attacks that use movie scripts as situational contextual frameworks, creating natural-looking full-prompts that trick LLMs into generating harmful content. Second, we developed a method to transform gibberish adversarial text into readable, innocuous content that still exploits vulnerabilities when used within the full-prompts. Finally, we enhanced the AdvPrompter framework with p-nucleus sampling to generate diverse human-readable adversarial texts that significantly improve attack effectiveness against models like GPT-3.5-Turbo-0125 and Gemma-7b. Our findings show that these systems can be manipulated to operate beyond their intended ethical boundaries when presented with seemingly normal prompts that contain hidden adversarial elements. By identifying these vulnerabilities, we aim to drive the development of more robust safety mechanisms that can withstand sophisticated attacks in real-world applications.
comment: arXiv admin note: text overlap with arXiv:2407.14644
♻ ☆ Surrogate-Assisted Evolutionary Reinforcement Learning Based on Autoencoder and Hyperbolic Neural Network
Evolutionary Reinforcement Learning (ERL), training the Reinforcement Learning (RL) policies with Evolutionary Algorithms (EAs), have demonstrated enhanced exploration capabilities and greater robustness than using traditional policy gradient. However, ERL suffers from the high computational costs and low search efficiency, as EAs require evaluating numerous candidate policies with expensive simulations, many of which are ineffective and do not contribute meaningfully to the training. One intuitive way to reduce the ineffective evaluations is to adopt the surrogates. Unfortunately, existing ERL policies are often modeled as deep neural networks (DNNs) and thus naturally represented as high-dimensional vectors containing millions of weights, which makes the building of effective surrogates for ERL policies extremely challenging. This paper proposes a novel surrogate-assisted ERL that integrates Autoencoders (AE) and Hyperbolic Neural Networks (HNN). Specifically, AE compresses high-dimensional policies into low-dimensional representations while extracting key features as the inputs for the surrogate. HNN, functioning as a classification-based surrogate model, can learn complex nonlinear relationships from sampled data and enable more accurate pre-selection of the sampled policies without real evaluations. The experiments on 10 Atari and 4 Mujoco games have verified that the proposed method outperforms previous approaches significantly. The search trajectories guided by AE and HNN are also visually demonstrated to be more effective, in terms of both exploration and convergence. This paper not only presents the first learnable policy embedding and surrogate-modeling modules for high-dimensional ERL policies, but also empirically reveals when and why they can be successful.
♻ ☆ BroadGen: A Framework for Generating Effective and Efficient Advertiser Broad Match Keyphrase Recommendations
In the domain of sponsored search advertising, the focus of Keyphrase recommendation has largely been on exact match types, which pose issues such as high management expenses, limited targeting scope, and evolving search query patterns. Alternatives like Broad match types can alleviate certain drawbacks of exact matches but present challenges like poor targeting accuracy and minimal supervisory signals owing to limited advertiser usage. This research defines the criteria for an ideal broad match, emphasizing on both efficiency and effectiveness, ensuring that a significant portion of matched queries are relevant. We propose BroadGen, an innovative framework that recommends efficient and effective broad match keyphrases by utilizing historical search query data. Additionally, we demonstrate that BroadGen, through token correspondence modeling, maintains better query stability over time. BroadGen's capabilities allow it to serve daily, millions of sellers at eBay with over 2.3 billion items.
♻ ☆ CASS: Nvidia to AMD Transpilation with Data, Models, and Benchmark
We introduce CASS, the first large-scale dataset and model suite for cross-architecture GPU code transpilation, targeting both source-level (CUDA <--> HIP) and assembly-level (Nvidia SASS <--> AMD RDNA3) translation. The dataset comprises 70k verified code pairs across host and device, addressing a critical gap in low-level GPU code portability. Leveraging this resource, we train the CASS family of domain-specific language models, achieving 95% source translation accuracy and 37.5% assembly translation accuracy, substantially outperforming commercial baselines such as GPT-4o, Claude, and Hipify. Our generated code matches native performance in over 85% of test cases, preserving runtime and memory behavior. To support rigorous evaluation, we introduce CASS-Bench, a curated benchmark spanning 16 GPU domains with ground-truth execution. All data, models, and evaluation tools are released as open source to foster progress in GPU compiler tooling, binary compatibility, and LLM-guided hardware translation.
comment: 20 pages, 11 figures, 5 tables
♻ ☆ To Judge or not to Judge: Using LLM Judgements for Advertiser Keyphrase Relevance at eBay
E-commerce sellers are recommended keyphrases based on their inventory on which they advertise to increase buyer engagement (clicks/sales). The relevance of advertiser keyphrases plays an important role in preventing the inundation of search systems with numerous irrelevant items that compete for attention in auctions, in addition to maintaining a healthy seller perception. In this work, we describe the shortcomings of training Advertiser keyphrase relevance filter models on click/sales/search relevance signals and the importance of aligning with human judgment, as sellers have the power to adopt or reject said keyphrase recommendations. In this study, we frame Advertiser keyphrase relevance as a complex interaction between 3 dynamical systems -- seller judgment, which influences seller adoption of our product, Advertising, which provides the keyphrases to bid on, and Search, who holds the auctions for the same keyphrases. This study discusses the practicalities of using human judgment via a case study at eBay Advertising and demonstrate that using LLM-as-a-judge en-masse as a scalable proxy for seller judgment to train our relevance models achieves a better harmony across the three systems -- provided that they are bound by a meticulous evaluation framework grounded in business metrics.
♻ ☆ MineStudio: A Streamlined Package for Minecraft AI Agent Development
Minecraft's complexity and diversity as an open world make it a perfect environment to test if agents can learn, adapt, and tackle a variety of unscripted tasks. However, the development and validation of novel agents in this setting continue to face significant engineering challenges. This paper presents MineStudio, an open-source software package designed to streamline the development of autonomous agents in Minecraft. MineStudio represents the first comprehensive integration of seven critical engineering components: simulator, data, model, offline pre-training, online fine-tuning, inference, and benchmark, thereby allowing users to concentrate their efforts on algorithm innovation. We provide a user-friendly API design accompanied by comprehensive documentation and tutorials. Our project is released at https://github.com/CraftJarvis/MineStudio.
♻ ☆ Learning to Reason from Feedback at Test-Time ACL 2025
Solving complex tasks in a single attempt is challenging for large language models (LLMs). Iterative interaction with the environment and feedback is often required to achieve success, making effective feedback utilization a critical topic. Existing approaches either struggle with length generalization or rely on naive retries without leveraging prior information. In this paper, we introduce FTTT, a novel paradigm that formulates feedback utilization as an optimization problem at test time. Additionally, we propose a learnable test-time optimizer, OpTune, to effectively exploit feedback. Experiments on two LLMs across four reasoning datasets demonstrate that FTTT and OpTune achieve superior scalability and performance.
comment: ACL 2025 Main; Project Page: https://github.com/LaVi-Lab/FTTT
♻ ☆ Automatic Transmission for LLM Tiers: Optimizing Cost and Accuracy in Large Language Models ACL 2025
LLM providers typically offer multiple LLM tiers, varying in performance and price. As NLP tasks become more complex and modularized, selecting the suitable LLM tier for each subtask is a key challenge to balance between cost and performance. To address the problem, we introduce LLM Automatic Transmission (LLM-AT) framework that automatically selects LLM tiers without training. LLM-AT consists of Starter, Generator, and Judge. The starter selects the initial LLM tier expected to solve the given question, the generator produces a response using the LLM of the selected tier, and the judge evaluates the validity of the response. If the response is invalid, LLM-AT iteratively upgrades to a higher-tier model, generates a new response, and re-evaluates until a valid response is obtained. Additionally, we propose accuracy estimator, which enables the suitable initial LLM tier selection without training. Given an input question, accuracy estimator estimates the expected accuracy of each LLM tier by computing the valid response rate across top-k similar queries from past inference records. Experiments demonstrate that LLM-AT achieves superior performance while reducing costs, making it a practical solution for real-world applications.
comment: ACL 2025 (Findings)
♻ ☆ Stochastic Diffusion: A Diffusion Based Model for Stochastic Time Series Forecasting KDD 2025
Recent innovations in diffusion probabilistic models have paved the way for significant progress in image, text and audio generation, leading to their applications in generative time series forecasting. However, leveraging such abilities to model highly stochastic time series data remains a challenge. In this paper, we propose a novel Stochastic Diffusion (StochDiff) model which learns data-driven prior knowledge at each time step by utilizing the representational power of the stochastic latent spaces to model the variability of the multivariate time series data. The learnt prior knowledge helps the model to capture complex temporal dynamics and the inherent uncertainty of the data. This improves its ability to model highly stochastic time series data. Through extensive experiments on real-world datasets, we demonstrate the effectiveness of our proposed model on stochastic time series forecasting. Additionally, we showcase an application of our model for real-world surgical guidance, highlighting its potential to benefit the medical community.
comment: 15 pages, 4 figures. SIGKDD 2025
♻ ☆ RepCali: High Efficient Fine-tuning Via Representation Calibration in Latent Space for Pre-trained Language Models
Fine-tuning pre-trained language models (PLMs) has become a dominant paradigm in applying PLMs to downstream tasks. However, with limited fine-tuning, PLMs still struggle with the discrepancies between the representation obtained from the PLMs' encoder and the optimal input to the PLMs' decoder. This paper tackles this challenge by learning to calibrate the representation of PLMs in the latent space. In the proposed representation calibration method (RepCali), we integrate a specific calibration block to the latent space after the encoder and use the calibrated output as the decoder input. The merits of the proposed RepCali include its universality to all PLMs with encoder-decoder architectures, its plug-and-play nature, and ease of implementation. Extensive experiments on 25 PLM-based models across 8 tasks (including both English and Chinese datasets) demonstrate that the proposed RepCali offers desirable enhancements to PLMs (including LLMs) and significantly improves the performance of downstream tasks. Comparison experiments across 4 benchmark tasks indicate that RepCali is superior to the representative fine-tuning baselines.
comment: 13 pages, 4 figures
♻ ☆ SimGRAG: Leveraging Similar Subgraphs for Knowledge Graphs Driven Retrieval-Augmented Generation ACL 2025
Recent advancements in large language models (LLMs) have shown impressive versatility across various tasks. To eliminate their hallucinations, retrieval-augmented generation (RAG) has emerged as a powerful approach, leveraging external knowledge sources like knowledge graphs (KGs). In this paper, we study the task of KG-driven RAG and propose a novel Similar Graph Enhanced Retrieval-Augmented Generation (SimGRAG) method. It effectively addresses the challenge of aligning query texts and KG structures through a two-stage process: (1) query-to-pattern, which uses an LLM to transform queries into a desired graph pattern, and (2) pattern-to-subgraph, which quantifies the alignment between the pattern and candidate subgraphs using a graph semantic distance (GSD) metric. We also develop an optimized retrieval algorithm that efficiently identifies the top-k subgraphs within 1-second on a 10-million-scale KG. Extensive experiments show that SimGRAG outperforms state-of-the-art KG-driven RAG methods in both question answering and fact verification. Our code is available at https://github.com/YZ-Cai/SimGRAG.
comment: accepted by ACL 2025 (Findings)
♻ ☆ GrokFormer: Graph Fourier Kolmogorov-Arnold Transformers ICML 2025
Graph Transformers (GTs) have demonstrated remarkable performance in graph representation learning over popular graph neural networks (GNNs). However, self--attention, the core module of GTs, preserves only low-frequency signals in graph features, leading to ineffectiveness in capturing other important signals like high-frequency ones. Some recent GT models help alleviate this issue, but their flexibility and expressiveness are still limited since the filters they learn are fixed on predefined graph spectrum or spectral order. To tackle this challenge, we propose a Graph Fourier Kolmogorov-Arnold Transformer (GrokFormer), a novel GT model that learns highly expressive spectral filters with adaptive graph spectrum and spectral order through a Fourier series modeling over learnable activation functions. We demonstrate theoretically and empirically that the proposed GrokFormer filter offers better expressiveness than other spectral methods. Comprehensive experiments on 10 real-world node classification datasets across various domains, scales, and graph properties, as well as 5 graph classification datasets, show that GrokFormer outperforms state-of-the-art GTs and GNNs. Our code is available at https://github.com/GGA23/GrokFormer
comment: 20 pages, 7 figures, 11 tables, Accepted by ICML 2025
♻ ☆ Scaling Up Liquid-Resistance Liquid-Capacitance Networks for Efficient Sequence Modeling
We present LrcSSM, a $\textit{nonlinear}$ recurrent model that processes long sequences as fast as today's linear state-space layers. By forcing the state-transition matrix to be diagonal and learned at every step, the full sequence can be solved in parallel with a single prefix-scan, giving $\mathcal{O}(TD)$ time and memory and only $\mathcal{O}(\log T)$ sequential depth, for input-sequence length $T$ and a state dimension $D$. Moreover, LrcSSM offers a formal gradient-stability guarantee that other input-varying systems such as Liquid-S4 and Mamba do not provide. Lastly, for network depth $L$, as the forward and backward passes cost $\Theta(T\,D\,L)$ FLOPs, with its low sequential depth and parameter count $\Theta(D\,L)$, the model follows the compute-optimal scaling law regime ($\beta \approx 0.42$) recently observed for Mamba, outperforming quadratic-attention Transformers at equal compute while avoiding the memory overhead of FFT-based long convolutions. We show that on a series of long-range forecasting tasks, LrcSSM outperforms LRU, S5 and Mamba.
♻ ☆ M3Bench: Benchmarking Whole-body Motion Generation for Mobile Manipulation in 3D Scenes
We propose M3Bench, a new benchmark for whole-body motion generation in mobile manipulation tasks. Given a 3D scene context, M3Bench requires an embodied agent to reason about its configuration, environmental constraints, and task objectives to generate coordinated whole-body motion trajectories for object rearrangement. M3Bench features 30,000 object rearrangement tasks across 119 diverse scenes, providing expert demonstrations generated by our newly developed M3BenchMaker, an automatic data generation tool that produces whole-body motion trajectories from high-level task instructions using only basic scene and robot information. Our benchmark includes various task splits to evaluate generalization across different dimensions and leverages realistic physics simulation for trajectory assessment. Extensive evaluation analysis reveals that state-of-the-art models struggle with coordinating base-arm motion while adhering to environmental and task-specific constraints, underscoring the need for new models to bridge this gap. By releasing M3Bench and M3BenchMaker we aim to advance robotics research toward more adaptive and capable mobile manipulation in diverse, real-world environments.
comment: This paper has been accepted by IEEE Robotics and Automation Letters 2025 (RA-L)
♻ ☆ GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation
Existing approaches based on context prompting or reinforcement learning (RL) to improve the reasoning capacities of large language models (LLMs) depend on the LLMs' internal knowledge to produce reliable Chain-Of-Thought (CoT). However, no matter the size of LLMs, certain problems cannot be resolved in a single forward pass. Meanwhile, agent-based reasoning systems require access to a comprehensive nonparametric knowledge base, which is often costly or not feasible for use in scientific and niche domains. We present Graph Inspired Veracity Extrapolation (GIVE), a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input. GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak). Extensive experiments demonstrated the following benefits of our framework: (1) GIVE boosts the performance of LLMs across various sizes. (2) In some scenarios, GIVE allows smaller LLMs to surpass larger, more sophisticated ones in scientific tasks (GPT3.5T + GIVE > GPT4). (3) GIVE is effective on scientific and open-domain assessments. (4) GIVE is a training-free method that enables LLMs to tackle new problems that extend beyond their training data (up to 43.5% -> 88.2%} accuracy improvement). (5) GIVE allows LLM agents to reason using both restricted (very small) and noisy (very large) knowledge sources, accommodating knowledge graphs (KG) ranging from 135 to more than 840k nodes. (6) The reasoning process involved in GIVE is fully interpretable.
♻ ☆ Beyond Face Swapping: A Diffusion-Based Digital Human Benchmark for Multimodal Deepfake Detection
In recent years, the rapid development of deepfake technology has given rise to an emerging and serious threat to public security: diffusion-based digital human generation. Unlike traditional face manipulation methods, such models can generate highly realistic videos with consistency through multimodal control signals. Their flexibility and covertness pose severe challenges to existing detection strategies. To bridge this gap, we introduce DigiFakeAV, the new large-scale multimodal digital human forgery dataset based on diffusion models. Employing five of the latest digital human generation methods and the voice cloning methods, we systematically produce a dataset comprising 60,000 videos (8.4 million frames), covering multiple nationalities, skin tones, genders, and real-world scenarios, significantly enhancing data diversity and realism. User studies demonstrate that participants misclassify forged videos as real in 68% of tests, and existing detection models exhibit a large drop in performance on DigiFakeAV, highlighting the challenge of the dataset. To address this problem, we propose DigiShield, an effective detection baseline based on spatiotemporal and cross-modal fusion. By jointly modeling the 3D spatiotemporal features of videos and the semantic-acoustic features of audio, DigiShield achieves state-of-the-art (SOTA) performance on the DigiFakeAV and shows strong generalization on other datasets.
♻ ☆ Articulatory Feature Prediction from Surface EMG during Speech Production
We present a model for predicting articulatory features from surface electromyography (EMG) signals during speech production. The proposed model integrates convolutional layers and a Transformer block, followed by separate predictors for articulatory features. Our approach achieves a high prediction correlation of approximately 0.9 for most articulatory features. Furthermore, we demonstrate that these predicted articulatory features can be decoded into intelligible speech waveforms. To our knowledge, this is the first method to decode speech waveforms from surface EMG via articulatory features, offering a novel approach to EMG-based speech synthesis. Additionally, we analyze the relationship between EMG electrode placement and articulatory feature predictability, providing knowledge-driven insights for optimizing EMG electrode configurations. The source code and decoded speech samples are publicly available.
comment: Accepted for Interspeech2025
♻ ☆ HyperTree Planning: Enhancing LLM Reasoning via Hierarchical Thinking
Recent advancements have significantly enhanced the performance of large language models (LLMs) in tackling complex reasoning tasks, achieving notable success in domains like mathematical and logical reasoning. However, these methods encounter challenges with complex planning tasks, primarily due to extended reasoning steps, diverse constraints, and the challenge of handling multiple distinct sub-tasks. To address these challenges, we propose HyperTree Planning (HTP), a novel reasoning paradigm that constructs hypertree-structured planning outlines for effective planning. The hypertree structure enables LLMs to engage in hierarchical thinking by flexibly employing the divide-and-conquer strategy, effectively breaking down intricate reasoning steps, accommodating diverse constraints, and managing multiple distinct sub-tasks in a well-organized manner. We further introduce an autonomous planning framework that completes the planning process by iteratively refining and expanding the hypertree-structured planning outlines. Experiments demonstrate the effectiveness of HTP, achieving state-of-the-art accuracy on the TravelPlanner benchmark with Gemini-1.5-Pro, resulting in a 3.6 times performance improvement over o1-preview.
comment: arXiv admin note: text overlap with arXiv:2406.14228 by other authors
♻ ☆ OrionBench: A Benchmark for Chart and Human-Recognizable Object Detection in Infographics
Given the central role of charts in scientific, business, and communication contexts, enhancing the chart understanding capabilities of vision-language models (VLMs) has become increasingly critical. A key limitation of existing VLMs lies in their inaccurate visual grounding of infographic elements, including charts and human-recognizable objects (HROs) such as icons and images. However, chart understanding often requires identifying relevant elements and reasoning over them. To address this limitation, we introduce OrionBench, a benchmark designed to support the development of accurate object detection models for charts and HROs in infographics. It contains 26,250 real and 78,750 synthetic infographics, with over 6.9 million bounding box annotations. These annotations are created by combining the model-in-the-loop and programmatic methods. We demonstrate the usefulness of OrionBench through three applications: 1) constructing a Thinking-with-Boxes scheme to boost the chart understanding performance of VLMs, 2) comparing existing object detection models, and 3) applying the developed detection model to document layout and UI element detection.
♻ ☆ One Model for One Graph: A New Perspective for Pretraining with Cross-domain Graphs
Graph Neural Networks (GNNs) have emerged as a powerful tool to capture intricate network patterns, achieving success across different domains. However, existing GNNs require careful domain-specific architecture designs and training from scratch on each dataset, leading to an expertise-intensive process with difficulty in generalizing across graphs from different domains. Therefore, it can be hard for practitioners to infer which GNN model can generalize well to graphs from their domains. To address this challenge, we propose a novel cross-domain pretraining framework, "one model for one graph," which overcomes the limitations of previous approaches that failed to use a single GNN to capture diverse graph patterns across domains with significant gaps. Specifically, we pretrain a bank of expert models, with each one corresponding to a specific dataset. When inferring to a new graph, gating functions choose a subset of experts to effectively integrate prior model knowledge while avoiding negative transfer. Extensive experiments consistently demonstrate the superiority of our proposed method on both link prediction and node classification tasks.
♻ ☆ Multilingual Encoder Knows more than You Realize: Shared Weights Pretraining for Extremely Low-Resource Languages ACL 2025
While multilingual language models like XLM-R have advanced multilingualism in NLP, they still perform poorly in extremely low-resource languages. This situation is exacerbated by the fact that modern LLMs such as LLaMA and Qwen support far fewer languages than XLM-R, making text generation models non-existent for many languages in the world. To tackle this challenge, we propose a novel framework for adapting multilingual encoders to text generation in extremely low-resource languages. By reusing the weights between the encoder and the decoder, our framework allows the model to leverage the learned semantic space of the encoder, enabling efficient learning and effective generalization in low-resource languages. Applying this framework to four Chinese minority languages, we present XLM-SWCM, and demonstrate its superior performance on various downstream tasks even when compared with much larger models.
comment: ACL 2025 camera-ready
♻ ☆ HPS: Hard Preference Sampling for Human Preference Alignment
Aligning Large Language Model (LLM) responses with human preferences is vital for building safe and controllable AI systems. While preference optimization methods based on Plackett-Luce (PL) and Bradley-Terry (BT) models have shown promise, they face challenges such as poor handling of harmful content, inefficient use of dispreferred responses, and, specifically for PL, high computational costs. To address these issues, we propose Hard Preference Sampling (HPS), a novel framework for robust and efficient human preference alignment. HPS introduces a training loss that prioritizes the most preferred response while rejecting all dispreferred and harmful ones. It emphasizes "hard" dispreferred responses -- those closely resembling preferred ones -- to enhance the model's rejection capabilities. By leveraging a single-sample Monte Carlo sampling strategy, HPS reduces computational overhead while maintaining alignment quality. Theoretically, HPS improves sample efficiency over existing PL methods and maximizes the reward margin between preferred and dispreferred responses, ensuring clearer distinctions. Experiments on HH-RLHF and PKU-Safety datasets validate HPS's effectiveness, achieving comparable BLEU and reward scores while greatly improving reward margins and thus reducing harmful content generation.
♻ ☆ AMEX: Android Multi-annotation Expo Dataset for Mobile GUI Agents
AI agents have drawn increasing attention mostly on their ability to perceive environments, understand tasks, and autonomously achieve goals. To advance research on AI agents in mobile scenarios, we introduce the Android Multi-annotation EXpo (AMEX), a comprehensive, large-scale dataset designed for generalist mobile GUI-control agents which are capable of completing tasks by directly interacting with the graphical user interface (GUI) on mobile devices. AMEX comprises over 104K high-resolution screenshots from popular mobile applications, which are annotated at multiple levels. Unlike existing GUI-related datasets, e.g., Rico, AitW, etc., AMEX includes three levels of annotations: GUI interactive element grounding, GUI screen and element functionality descriptions, and complex natural language instructions with stepwise GUI-action chains. We develop this dataset from a more instructive and detailed perspective, complementing the general settings of existing datasets. Additionally, we finetune a baseline model SPHINX Agent and illustrate the effectiveness of AMEX.The project is available at https://yxchai.com/AMEX/.
♻ ☆ Chain of Grounded Objectives: Bridging Process and Goal-oriented Prompting for Code Generation
The use of Large Language Models (LLMs) for code generation has gained significant attention in recent years. Existing methods often aim to improve the quality of generated code by incorporating additional contextual information or guidance into input prompts. Many of these approaches adopt sequential reasoning strategies, mimicking human-like step-by-step thinking. However, such strategies may constrain flexibility, as they do not always align with the structured characteristics of programming languages. This paper introduces the Chain of Grounded Objectives (CGO), a method that embeds functional objectives into input prompts to enhance code generation. By leveraging appropriately structured objectives as input and avoiding explicit sequential procedures, CGO adapts effectively to the structured nature of programming tasks. Empirical evaluations demonstrate that CGO effectively enhances code generation, addressing limitations of existing approaches.
comment: Accepted by ECOOP 2025 main conference
♻ ☆ Beyond Reward Hacking: Causal Rewards for Large Language Model Alignment
Recent advances in large language models (LLMs) have demonstrated significant progress in performing complex tasks. While Reinforcement Learning from Human Feedback (RLHF) has been effective in aligning LLMs with human preferences, it is susceptible to spurious correlations in reward modeling. Consequently, it often introduces biases-such as length bias, sycophancy, conceptual bias, and discrimination-that hinder the model's ability to capture true causal relationships. To address this, we propose a novel causal reward modeling approach that integrates causality to mitigate these spurious correlations. Our method enforces counterfactual invariance, ensuring reward predictions remain consistent when irrelevant variables are altered. Through experiments on both synthetic and real-world datasets, we show that our approach mitigates various types of spurious correlations effectively, resulting in more reliable and fair alignment of LLMs with human preferences. As a drop-in enhancement to the existing RLHF workflow, our causal reward modeling provides a practical way to improve the trustworthiness and fairness of LLM finetuning.
♻ ☆ Is Attention Required for Transformer Inference? Explore Function-preserving Attention Replacement
While transformers excel across vision and language pretraining tasks, their reliance on attention mechanisms poses challenges for inference efficiency, especially on edge and embedded accelerators with limited parallelism and memory bandwidth. Hinted by the observed redundancy of attention at inference time, we hypothesize that though the model learns complicated token dependency through pretraining, the inference-time sequence-to-sequence mapping in each attention layer is actually ''simple'' enough to be represented with a much cheaper function. In this work, we explore FAR, a Function-preserving Attention Replacement framework that replaces all attention blocks in pretrained transformers with learnable sequence-to-sequence modules, exemplified by an LSTM. FAR optimize a multi-head LSTM architecture with a block-wise distillation objective and a global structural pruning framework to achieve a family of efficient LSTM-based models from pretrained transformers. We validate FAR on the DeiT vision transformer family and demonstrate that it matches the accuracy of the original models on ImageNet and multiple downstream tasks with reduced parameters and latency. Further analysis shows that FAR preserves the semantic token relationships and the token-to-token correlation learned in the transformer's attention module.
comment: 12 pages main paper + 6 pages appendix, 14 figures
♻ ☆ The First MPDD Challenge: Multimodal Personality-aware Depression Detection
Depression is a widespread mental health issue affecting diverse age groups, with notable prevalence among college students and the elderly. However, existing datasets and detection methods primarily focus on young adults, neglecting the broader age spectrum and individual differences that influence depression manifestation. Current approaches often establish a direct mapping between multimodal data and depression indicators, failing to capture the complexity and diversity of depression across individuals. This challenge includes two tracks based on age-specific subsets: Track 1 uses the MPDD-Elderly dataset for detecting depression in older adults, and Track 2 uses the MPDD-Young dataset for detecting depression in younger participants. The Multimodal Personality-aware Depression Detection (MPDD) Challenge aims to address this gap by incorporating multimodal data alongside individual difference factors. We provide a baseline model that fuses audio and video modalities with individual difference information to detect depression manifestations in diverse populations. This challenge aims to promote the development of more personalized and accurate de pression detection methods, advancing mental health research and fostering inclusive detection systems. More details are available on the official challenge website: https://hacilab.github.io/MPDDChallenge.github.io.
comment: This paper has been accepted as part of the MPDD Challenge in the ACMMM 2025 Grand Challenge
♻ ☆ A Data-Driven Framework for Discovering Fractional Differential Equations in Complex Systems
In complex physical systems, conventional differential equations often fall short in capturing non-local and memory effects, as they are limited to local dynamics and integer-order interactions. This study introduces a stepwise data-driven framework for discovering fractional differential equations (FDEs) directly from data. FDEs, known for their capacity to model non-local dynamics with fewer parameters than integer-order derivatives, can represent complex systems with long-range interactions. Our framework applies deep neural networks as surrogate models for denoising and reconstructing sparse and noisy observations while using Gaussian-Jacobi quadrature to handle the challenges posed by singularities in fractional derivatives. To optimize both the sparse coefficients and fractional order, we employ an alternating optimization approach that combines sparse regression with global optimization techniques. We validate the framework across various datasets, including synthetic anomalous diffusion data, experimental data on the creep behavior of frozen soils, and single-particle trajectories modeled by L\'{e}vy motion. Results demonstrate the framework's robustness in identifying the structure of FDEs across diverse noise levels and its capacity to capture integer-order dynamics, offering a flexible approach for modeling memory effects in complex systems.
♻ ☆ OmniBal: Towards Fast Instruction-Tuning for Vision-Language Models via Omniverse Computation Balance
Vision-language instruction-tuning models have recently achieved significant performance improvements. In this work, we discover that large-scale 3D parallel training on those models leads to an imbalanced computation load across different devices. The vision and language parts are inherently heterogeneous: their data distribution and model architecture differ significantly, which affects distributed training efficiency. To address this issue, we rebalance the computational load from data, model, and memory perspectives, achieving more balanced computation across devices. Specifically, for the data, instances are grouped into new balanced mini-batches within and across devices. A search-based method is employed for the model to achieve a more balanced partitioning. For memory optimization, we adaptively adjust the re-computation strategy for each partition to utilize the available memory fully. These three perspectives are not independent but are closely connected, forming an omniverse balanced training framework. Extensive experiments are conducted to validate the effectiveness of our method. Compared with the open-source training code of InternVL-Chat, training time is reduced greatly, achieving about 1.8$\times$ speed-up. Our method's efficacy and generalizability are further validated across various models and datasets. Codes will be released at https://github.com/ModelTC/OmniBal.
♻ ☆ Theorem-Validated Reverse Chain-of-Thought Problem Generation for Geometric Reasoning
Large Multimodal Models (LMMs) face limitations in geometric reasoning due to insufficient Chain of Thought (CoT) image-text training data. While existing approaches leverage template-based or LLM-assisted methods for geometric CoT data creation, they often face challenges in achieving both diversity and precision. To bridge this gap, we introduce a two-stage Theorem-Validated Reverse Chain-of-Thought Reasoning Synthesis (TR-CoT) framework. The first stage, TR-Engine, synthesizes theorem-grounded geometric diagrams with structured descriptions and properties. The second stage, TR-Reasoner, employs reverse reasoning to iteratively refine question-answer pairs by cross-validating geometric properties and description fragments. Our approach expands theorem-type coverage, corrects long-standing misunderstandings, and enhances geometric reasoning. Fine-grained CoT improves theorem understanding and increases logical consistency by 24.5%. Our best models surpass the baselines in MathVista and GeoQA by 10.1% and 4.7%, outperforming advanced closed-source models like GPT-4o.
♻ ☆ Position: AI Competitions Provide the Gold Standard for Empirical Rigor in GenAI Evaluation
In this position paper, we observe that empirical evaluation in Generative AI is at a crisis point since traditional ML evaluation and benchmarking strategies are insufficient to meet the needs of evaluating modern GenAI models and systems. There are many reasons for this, including the fact that these models typically have nearly unbounded input and output spaces, typically do not have a well defined ground truth target, and typically exhibit strong feedback loops and prediction dependence based on context of previous model outputs. On top of these critical issues, we argue that the problems of leakage and contamination are in fact the most important and difficult issues to address for GenAI evaluations. Interestingly, the field of AI Competitions has developed effective measures and practices to combat leakage for the purpose of counteracting cheating by bad actors within a competition setting. This makes AI Competitions an especially valuable (but underutilized) resource. Now is time for the field to view AI Competitions as the gold standard for empirical rigor in GenAI evaluation, and to harness and harvest their results with according value.
♻ ☆ MedRAX: Medical Reasoning Agent for Chest X-ray
Chest X-rays (CXRs) play an integral role in driving critical decisions in disease management and patient care. While recent innovations have led to specialized models for various CXR interpretation tasks, these solutions often operate in isolation, limiting their practical utility in clinical practice. We present MedRAX, the first versatile AI agent that seamlessly integrates state-of-the-art CXR analysis tools and multimodal large language models into a unified framework. MedRAX dynamically leverages these models to address complex medical queries without requiring additional training. To rigorously evaluate its capabilities, we introduce ChestAgentBench, a comprehensive benchmark containing 2,500 complex medical queries across 7 diverse categories. Our experiments demonstrate that MedRAX achieves state-of-the-art performance compared to both open-source and proprietary models, representing a significant step toward the practical deployment of automated CXR interpretation systems. Data and code have been publicly available at https://github.com/bowang-lab/MedRAX
comment: 16 pages, 4 figures, 5 Tables
♻ ☆ Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval
Determining which legal cases are relevant to a given query involves navigating lengthy texts and applying nuanced legal reasoning. Traditionally, this task has demanded significant time and domain expertise to identify key Legal Facts and reach sound juridical conclusions. In addition, existing data with legal case similarities often lack interpretability, making it difficult to understand the rationale behind relevance judgments. With the growing capabilities of large language models (LLMs), researchers have begun investigating their potential in this domain. Nonetheless, the method of employing a general large language model for reliable relevance judgments in legal case retrieval remains largely unexplored. To address this gap in research, we propose a novel few-shot approach where LLMs assist in generating expert-aligned interpretable relevance judgments. The proposed approach decomposes the judgment process into several stages, mimicking the workflow of human annotators and allowing for the flexible incorporation of expert reasoning to improve the accuracy of relevance judgments. Importantly, it also ensures interpretable data labeling, providing transparency and clarity in the relevance assessment process. Through a comparison of relevance judgments made by LLMs and human experts, we empirically demonstrate that the proposed approach can yield reliable and valid relevance assessments. Furthermore, we demonstrate that with minimal expert supervision, our approach enables a large language model to acquire case analysis expertise and subsequently transfers this ability to a smaller model via annotation-based knowledge distillation.
♻ ☆ Gravity-Bench-v1: A Benchmark on Gravitational Physics Discovery for Agents ICML 2025
Modern science emerged from reasoning over repeatedly-observed planetary motions. We present Gravity-Bench-v1, an environment-based benchmark that challenges AI agents on tasks that parallel this historical development. Gravity-Bench-v1 evaluates agents on the discovery of physics concealed within a dynamic environment, using rigorous gravitational dynamics simulations. Gravity-Bench includes out-of-distribution cases, i.e. with physics that deviates from the real world, to evaluate true scientific generalization capabilities. Agents must plan to collect data within an experimental budget and must perform a dynamic form of data analysis and reasoning to solve tasks efficiently. Our benchmark admits an open-ended space of solutions. Reference solutions for each task are provided to calibrate AI performance against human expertise. Technically at an upper-undergraduate level, our benchmark proves challenging to baseline AI agents. Gravity-Bench-v1 and planned extensions should help map out AI progress towards scientific discovery capabilities.
comment: Accepted at ICML 2025
♻ ☆ LEAVS: An LLM-based Labeler for Abdominal CT Supervision MICCAI 2025
Extracting structured labels from radiology reports has been employed to create vision models to simultaneously detect several types of abnormalities. However, existing works focus mainly on the chest region. Few works have been investigated on abdominal radiology reports due to more complex anatomy and a wider range of pathologies in the abdomen. We propose LEAVS (Large language model Extractor for Abdominal Vision Supervision). This labeler can annotate the certainty of presence and the urgency of seven types of abnormalities for nine abdominal organs on CT radiology reports. To ensure broad coverage, we chose abnormalities that encompass most of the finding types from CT reports. Our approach employs a specialized chain-of-thought prompting strategy for a locally-run LLM using sentence extraction and multiple-choice questions in a tree-based decision system. We demonstrate that the LLM can extract several abnormality types across abdominal organs with an average F1 score of 0.89, significantly outperforming competing labelers and humans. Additionally, we show that extraction of urgency labels achieved performance comparable to human annotations. Finally, we demonstrate that the abnormality labels contain valuable information for training a single vision model that classifies several organs as normal or abnormal. We release our code and structured annotations for a public CT dataset containing over 1,000 CT volumes.
comment: Early acceptance (top 9% of submissions) for MICCAI 2025
♻ ☆ Minimal Sufficient Views: A DNN model making predictions with more evidence has higher accuracy
Deep neural networks (DNNs) exhibit high performance in image recognition; however, the reasons for their strong generalization abilities remain unclear. A plausible hypothesis is that DNNs achieve robust and accurate predictions by identifying multiple pieces of evidence from images. Thus, to test this hypothesis, this study proposed minimal sufficient views (MSVs). MSVs is defined as a set of minimal regions within an input image that are sufficient to preserve the prediction of DNNs, thus representing the evidence discovered by the DNN. We empirically demonstrated a strong correlation between the number of MSVs (i.e., the number of pieces of evidence) and the generalization performance of the DNN models. Remarkably, this correlation was found to hold within a single DNN as well as between different DNNs, including convolutional and transformer models. This suggested that a DNN model that makes its prediction based on more evidence has a higher generalization performance. We proposed a metric based on MSVs for DNN model selection that did not require label information. Consequently, we empirically showed that the proposed metric was less dependent on the degree of overfitting, rendering it a more reliable indicator of model performance than existing metrics, such as average confidence.
comment: 24 pages
♻ ☆ INRFlow: Flow Matching for INRs in Ambient Space
Flow matching models have emerged as a powerful method for generative modeling on domains like images or videos, and even on irregular or unstructured data like 3D point clouds or even protein structures. These models are commonly trained in two stages: first, a data compressor is trained, and in a subsequent training stage a flow matching generative model is trained in the latent space of the data compressor. This two-stage paradigm sets obstacles for unifying models across data domains, as hand-crafted compressors architectures are used for different data modalities. To this end, we introduce INRFlow, a domain-agnostic approach to learn flow matching transformers directly in ambient space. Drawing inspiration from INRs, we introduce a conditionally independent point-wise training objective that enables INRFlow to make predictions continuously in coordinate space. Our empirical results demonstrate that INRFlow effectively handles different data modalities such as images, 3D point clouds and protein structure data, achieving strong performance in different domains and outperforming comparable approaches. INRFlow is a promising step towards domain-agnostic flow matching generative models that can be trivially adopted in different data domains.
comment: 22 pages, 14 figures, 13 tables
♻ ☆ CodeSteer: Symbolic-Augmented Language Models via Code/Text Guidance
Existing methods fail to effectively steer Large Language Models (LLMs) between textual reasoning and code generation, leaving symbolic computing capabilities underutilized. We introduce CodeSteer, an effective method for guiding LLM code/text generation. We construct a comprehensive benchmark SymBench comprising 37 symbolic tasks with adjustable complexity and also synthesize datasets of 12k multi-turn guidance/generation trajectories and 5.5k guidance comparison pairs. We fine-tune the Llama-3-8B model with a newly designed multi-turn supervised fine-tuning (SFT) and direct preference optimization (DPO). The resulting model, CodeSteerLLM, augmented with the proposed symbolic and self-answer checkers, effectively guides the code/text generation of larger models. Augmenting GPT-4o with CodeSteer raises its average performance score from 53.3 to 86.4, even outperforming the existing best LLM OpenAI o1 (82.7), o1-preview (74.8), and DeepSeek R1 (76.8) across all 37 tasks (28 seen, 9 unseen). Trained for GPT-4o, CodeSteer demonstrates superior generalizability, providing an average 41.8 performance boost on Claude, Mistral, and GPT-3.5. CodeSteer-guided LLMs fully harness symbolic computing to maintain strong performance on highly complex tasks. Models, Datasets, and Codes are available at https://github.com/yongchao98/CodeSteer-v1.0 and https://huggingface.co/yongchao98.
comment: 28 pages, 12 figures
♻ ☆ Unsupervisedly Learned Representations: Should the Quest be Over?
After four decades of research there still exists a Classification accuracy gap of about 20% between our best Unsupervisedly Learned Representations methods and the accuracy rates achieved by intelligent animals. It thus may well be that we are looking in the wrong direction. A possible solution to this puzzle is presented. We demonstrate that Reinforcement Learning can learn representations which achieve the same accuracy as that of animals. Our main modest contribution lies in the observations that: a. when applied to a real world environment Reinforcement Learning does not require labels, and thus may be legitimately considered as Unsupervised Learning, and b. in contrast, when Reinforcement Learning is applied in a simulated environment it does inherently require labels and should thus be generally be considered as Supervised Learning. The corollary of these observations is that further search for Unsupervised Learning competitive paradigms which may be trained in simulated environments may be futile.
comment: published at The 6th International Conference on Machine Learning, Optimization and Data Science - LOD 2020
Graphics 11
☆ LayerPeeler: Autoregressive Peeling for Layer-wise Image Vectorization
Image vectorization is a powerful technique that converts raster images into vector graphics, enabling enhanced flexibility and interactivity. However, popular image vectorization tools struggle with occluded regions, producing incomplete or fragmented shapes that hinder editability. While recent advancements have explored rule-based and data-driven layer-wise image vectorization, these methods face limitations in vectorization quality and flexibility. In this paper, we introduce LayerPeeler, a novel layer-wise image vectorization approach that addresses these challenges through a progressive simplification paradigm. The key to LayerPeeler's success lies in its autoregressive peeling strategy: by identifying and removing the topmost non-occluded layers while recovering underlying content, we generate vector graphics with complete paths and coherent layer structures. Our method leverages vision-language models to construct a layer graph that captures occlusion relationships among elements, enabling precise detection and description for non-occluded layers. These descriptive captions are used as editing instructions for a finetuned image diffusion model to remove the identified layers. To ensure accurate removal, we employ localized attention control that precisely guides the model to target regions while faithfully preserving the surrounding content. To support this, we contribute a large-scale dataset specifically designed for layer peeling tasks. Extensive quantitative and qualitative experiments demonstrate that LayerPeeler significantly outperforms existing techniques, producing vectorization results with superior path semantics, geometric regularity, and visual fidelity.
comment: Project Page: https://layerpeeler.github.io/
☆ How Animals Dance (When You're Not Looking)
We present a keyframe-based framework for generating music-synchronized, choreography aware animal dance videos. Starting from a few keyframes representing distinct animal poses -- generated via text-to-image prompting or GPT-4o -- we formulate dance synthesis as a graph optimization problem: find the optimal keyframe structure that satisfies a specified choreography pattern of beats, which can be automatically estimated from a reference dance video. We also introduce an approach for mirrored pose image generation, essential for capturing symmetry in dance. In-between frames are synthesized using an video diffusion model. With as few as six input keyframes, our method can produce up to 30 second dance videos across a wide range of animals and music tracks.
comment: Project page: https://how-animals-dance.github.io/
☆ AMOR: Adaptive Character Control through Multi-Objective Reinforcement Learning SIGGRAPH 2025
Reinforcement learning (RL) has significantly advanced the control of physics-based and robotic characters that track kinematic reference motion. However, methods typically rely on a weighted sum of conflicting reward functions, requiring extensive tuning to achieve a desired behavior. Due to the computational cost of RL, this iterative process is a tedious, time-intensive task. Furthermore, for robotics applications, the weights need to be chosen such that the policy performs well in the real world, despite inevitable sim-to-real gaps. To address these challenges, we propose a multi-objective reinforcement learning framework that trains a single policy conditioned on a set of weights, spanning the Pareto front of reward trade-offs. Within this framework, weights can be selected and tuned after training, significantly speeding up iteration time. We demonstrate how this improved workflow can be used to perform highly dynamic motions with a robot character. Moreover, we explore how weight-conditioned policies can be leveraged in hierarchical settings, using a high-level policy to dynamically select weights according to the current task. We show that the multi-objective policy encodes a diverse spectrum of behaviors, facilitating efficient adaptation to novel tasks.
comment: SIGGRAPH 2025
☆ Errors in Stereo Geometry Induce Distance Misperception
Stereoscopic head-mounted displays (HMDs) render and present binocular images to create an egocentric, 3D percept to the HMD user. Within this render and presentation pipeline there are potential rendering camera and viewing position errors that can induce deviations in the depth and distance that a user perceives compared to the underlying intended geometry. For example, rendering errors can arise when HMD render cameras are incorrectly positioned relative to the assumed centers of projections of the HMD displays and viewing errors can arise when users view stereo geometry from the incorrect location in the HMD eyebox. In this work we present a geometric framework that predicts errors in distance perception arising from inaccurate HMD perspective geometry and build an HMD platform to reliably simulate render and viewing error in a Quest 3 HMD with eye tracking to experimentally test these predictions. We present a series of five experiments to explore the efficacy of this geometric framework and show that errors in perspective geometry can induce both under- and over-estimations in perceived distance. We further demonstrate how real-time visual feedback can be used to dynamically recalibrate visuomotor mapping so that an accurate reach distance is achieved even if the perceived visual distance is negatively impacted by geometric error.
☆ One Trajectory, One Token: Grounded Video Tokenization via Panoptic Sub-object Trajectory
Effective video tokenization is critical for scaling transformer models for long videos. Current approaches tokenize videos using space-time patches, leading to excessive tokens and computational inefficiencies. The best token reduction strategies degrade performance and barely reduce the number of tokens when the camera moves. We introduce grounded video tokenization, a paradigm that organizes tokens based on panoptic sub-object trajectories rather than fixed patches. Our method aligns with fundamental perceptual principles, ensuring that tokenization reflects scene complexity rather than video duration. We propose TrajViT, a video encoder that extracts object trajectories and converts them into semantically meaningful tokens, significantly reducing redundancy while maintaining temporal coherence. Trained with contrastive learning, TrajViT significantly outperforms space-time ViT (ViT3D) across multiple video understanding benchmarks, e.g., TrajViT outperforms ViT3D by a large margin of 6% top-5 recall in average at video-text retrieval task with 10x token deduction. We also show TrajViT as a stronger model than ViT3D for being the video encoder for modern VideoLLM, obtaining an average of 5.2% performance improvement across 6 VideoQA benchmarks while having 4x faster training time and 18x less inference FLOPs. TrajViT is the first efficient encoder to consistently outperform ViT3D across diverse video analysis tasks, making it a robust and scalable solution.
☆ To Measure What Isn't There -- Visual Exploration of Missingness Structures Using Quality Metrics
This paper contributes a set of quality metrics for identification and visual analysis of structured missingness in high-dimensional data. Missing values in data are a frequent challenge in most data generating domains and may cause a range of analysis issues. Structural missingness in data may indicate issues in data collection and pre-processing, but may also highlight important data characteristics. While research into statistical methods for dealing with missing data are mainly focusing on replacing missing values with plausible estimated values, visualization has great potential to support a more in-depth understanding of missingness structures in data. Nonetheless, while the interest in missing data visualization has increased in the last decade, it is still a relatively overlooked research topic with a comparably small number of publications, few of which address scalability issues. Efficient visual analysis approaches are needed to enable exploration of missingness structures in large and high-dimensional data, and to support informed decision-making in context of potential data quality issues. This paper suggests a set of quality metrics for identification of patterns of interest for understanding of structural missingness in data. These quality metrics can be used as guidance in visual analysis, as demonstrated through a use case exploring structural missingness in data from a real-life walking monitoring study. All supplemental materials for this paper are available at https://doi.org/10.25405/data.ncl.c.7741829.
comment: Submitted to IEEE Vis2025
☆ Quality assessment of 3D human animation: Subjective and objective evaluation
Virtual human animations have a wide range of applications in virtual and augmented reality. While automatic generation methods of animated virtual humans have been developed, assessing their quality remains challenging. Recently, approaches introducing task-oriented evaluation metrics have been proposed, leveraging neural network training. However, quality assessment measures for animated virtual humans that are not generated with parametric body models have yet to be developed. In this context, we introduce a first such quality assessment measure leveraging a novel data-driven framework. First, we generate a dataset of virtual human animations together with their corresponding subjective realism evaluation scores collected with a user study. Second, we use the resulting dataset to learn predicting perceptual evaluation scores. Results indicate that training a linear regressor on our dataset results in a correlation of 90%, which outperforms a state of the art deep learning baseline.
☆ 3DGEER: Exact and Efficient Volumetric Rendering with 3D Gaussians
3D Gaussian Splatting (3DGS) marks a significant milestone in balancing the quality and efficiency of differentiable rendering. However, its high efficiency stems from an approximation of projecting 3D Gaussians onto the image plane as 2D Gaussians, which inherently limits rendering quality--particularly under large Field-of-View (FoV) camera inputs. While several recent works have extended 3DGS to mitigate these approximation errors, none have successfully achieved both exactness and high efficiency simultaneously. In this work, we introduce 3DGEER, an Exact and Efficient Volumetric Gaussian Rendering method. Starting from first principles, we derive a closed-form expression for the density integral along a ray traversing a 3D Gaussian distribution. This formulation enables precise forward rendering with arbitrary camera models and supports gradient-based optimization of 3D Gaussian parameters. To ensure both exactness and real-time performance, we propose an efficient method for computing a tight Particle Bounding Frustum (PBF) for each 3D Gaussian, enabling accurate and efficient ray-Gaussian association. We also introduce a novel Bipolar Equiangular Projection (BEAP) representation to accelerate ray association under generic camera models. BEAP further provides a more uniform ray sampling strategy to apply supervision, which empirically improves reconstruction quality. Experiments on multiple pinhole and fisheye datasets show that our method consistently outperforms prior methods, establishing a new state-of-the-art in real-time neural rendering.
☆ Force-Dual Modes: Subspace Design from Stochastic Forces
Designing subspaces for Reduced Order Modeling (ROM) is crucial for accelerating finite element simulations in graphics and engineering. Unfortunately, it's not always clear which subspace is optimal for arbitrary dynamic simulation. We propose to construct simulation subspaces from force distributions, allowing us to tailor such subspaces to common scene interactions involving constraint penalties, handles-based control, contact and musculoskeletal actuation. To achieve this we adopt a statistical perspective on Reduced Order Modelling, which allows us to push such user-designed force distributions through a linearized simulation to obtain a dual distribution on displacements. To construct our subspace, we then fit a low-rank Gaussian model to this displacement distribution, which we show generalizes Linear Modal Analysis subspaces for uncorrelated unit variance force distributions, as well as Green's Function subspaces for low rank force distributions. We show our framework allows for the construction of subspaces that are optimal both with respect to physical material properties, as well as arbitrary force distributions as observed in handle-based, contact, and musculoskeletal scene interactions.
comment: 14 pages, 16 figures
♻ ☆ CraftsMan3D: High-fidelity Mesh Generation with 3D Native Generation and Interactive Geometry Refiner
We present a novel generative 3D modeling system, coined CraftsMan, which can generate high-fidelity 3D geometries with highly varied shapes, regular mesh topologies, and detailed surfaces, and, notably, allows for refining the geometry in an interactive manner. Despite the significant advancements in 3D generation, existing methods still struggle with lengthy optimization processes, irregular mesh topologies, noisy surfaces, and difficulties in accommodating user edits, consequently impeding their widespread adoption and implementation in 3D modeling software. Our work is inspired by the craftsman, who usually roughs out the holistic figure of the work first and elaborates the surface details subsequently. Specifically, we employ a 3D native diffusion model, which operates on latent space learned from latent set-based 3D representations, to generate coarse geometries with regular mesh topology in seconds. In particular, this process takes as input a text prompt or a reference image and leverages a powerful multi-view (MV) diffusion model to generate multiple views of the coarse geometry, which are fed into our MV-conditioned 3D diffusion model for generating the 3D geometry, significantly improving robustness and generalizability. Following that, a normal-based geometry refiner is used to significantly enhance the surface details. This refinement can be performed automatically, or interactively with user-supplied edits. Extensive experiments demonstrate that our method achieves high efficacy in producing superior-quality 3D assets compared to existing methods. HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan
comment: HomePage: https://craftsman3d.github.io/, Code: https://github.com/wyysf-98/CraftsMan3D
♻ ☆ Parametric/direct CAD integration
In the history of computer-aided design (CAD), feature-based parametric modeling and boundary representation-based direct modeling are two of the most important CAD paradigms, developed respectively in the late 1980s and the late 2000s. They have complementary advantages and limitations, thereby offering huge potential for improvement towards an integrated CAD modeling scheme. Some believe that their integration will be the key characteristic of next generation CAD software. This paper provides a brief review on current parametric/direct integration approaches. Their basic ideas, advantages, and disadvantages will be discussed. The main result reads that existing integration approaches are far from being completed if seamless parametric/direct integration is desired. It is hoped that, by outlining what has already been made possible and what still remains problematic, more researchers will be attracted to work on this very important research topic of parametric/direct integration. This paper serves as a complement to the CAD paper titled ``Variational Direct Modeling: A Framework Towards Integration of Parametric Modeling and Direct Modeling in CAD." Cite this work as follows: Qiang Zou, Hsi-Yung Feng, and Shuming Gao. Variational Direct Modeling: A Framework Towards Integration of Parametric Modeling and Direct Modeling in CAD. Computer-Aided Design 157 (2023): 103465.
comment: 12 pages; 3 figures